

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 29-10-2025

Time: 02.30pm to 04.00pm

School: SOCSE/SOE	Program: B.Tech	
Course Code: CAI3428	Course Name: Practical Deep Learning with Tensor Flow	
Semester: VII	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	26	24			

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	Define a perceptron and identify its major components (weights, bias, activation).	2 Marks	L1	CO1
2	List the steps involved in the perceptron learning algorithm.	2 Marks	L1	CO1
3	Describe the purpose of the learning rate (η) in gradient descent.	2 Marks	L2	CO1
4	Write the mathematical expressions for Sigmoid, Tanh, and ReLU.	2 Marks	L2	CO2
5	Describe the vanishing gradient problem in DNNs.	2 Marks	L2	CO2

Part B

Answer the Questions.

Total Marks 40M

6.	a.	Illustrate the architecture and working of a perceptron with a neat diagram.	10 Marks	L3	CO1
	b.	Demonstrate how a perceptron implements an OR gate using the given inputs.	10 Marks	L3	CO1
Or					
7.	a.	Demonstrate the forward and backward pass of a 2-layer MLP using sigmoid activation for inputs $[1, 0]$. Hidden weights = $[[0.1, 0.3], [0.2, 0.5]]$ Output weights = $[0.6, 0.9]$, Target = 1	10 Marks	L3	CO1
	b.	Compute the error at the output and update the weights using backpropagation for one iteration.	10 Marks	L4	CO1

8.	a.	Compare activation functions — Sigmoid, Tanh, and ReLU — with equations and graphs.	10 Marks	L3	CO2
	b.	Compute the output of a 3-layer DNN with ReLU activation (Inputs $X_1=0.6, X_2=0.4$; Hidden weights $[[0.2, 0.4], [0.3, 0.7]]$; Output weights $[0.5, 0.9]$; Hidden bias $[0.1, 0.2]$; Output bias 0.3).	10 Marks	L3	CO2
Or					
9.	a.	Illustrate the architecture of a Deep Neural Network and explain how it differs from MLP.	10 Marks	L3	CO2
	b.	Discuss major training problems in DNNs — vanishing gradient, exploding gradient, and overfitting.	10 Marks	L3	CO2