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Preface

Digitalization reshaping the oil industry has become the industry consensus, and data
have become a torrent flowing into every area of the global economy. According to
IDC’s estimation, the data increases by 50% annually all the time, and much
information is contained in plenty of data. The new data revolutionary has emerged,
and big data and data mining technologies are pushing science into a new era of big
science. In line with this, this book focuses on drilling. The digital application of
drilling engineering has developed too fast in recent years. I don’t want to discuss the
digital technologies purely, because the oil and gas industry is too vast. I hope this
book can open a window and let more people pay attention to some aspects of
drilling application in data analysis and processing. Some of the results in the book
are our own research results, and we have published related papers. In other chapters,
we try our best to explain the data model and technical difficulties according to our
understanding. I am very pleased that Professor Henry has approved this field and
invited me to write this volume. After more than a year of hard work, this book is
finally available.

This book is mainly for data processing and mining in drilling engineering and is
committed to build a bridge between drilling engineers and signal processing
scientists. In drilling engineering, a lot of signal processing technologies are required
to solve practical problems, such as downhole information transmission, spatial
attitude of drillstring, drillstring dynamics, seismic while drilling, and so on. The
current main problem is that signal processing experts do not understand the actual
project and drilling engineers lack knowledge of signal processing, so there is an
urgent need for a document which summarizes the signal processing issues in
drilling engineering as a mathematical problem understandable to the average
drilling scientist. This book presents the difficulties and challenges in signal
processing encountered in drilling engineering, such as continuous wave downhole
information transmission and dynamic measurement of spatial attitude at the bottom
rotating drillstring, in which the signal processing algorithm is one of the core
technologies. In conclusion, this book will show the importance of signal processing
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to drilling engineers and open up a new area of application for signal processing
scientists.

So, hopefully, the book will be easily understood. It is intended for IT people,
engineers, managers, business users, data analysts, and everyone involved in the
drilling business who are looking for ways to improve drilling processes by using
data as one of their pillars. Thanks to Dr. Wang Lu from China University of
Geosciences (Beijing) and Associate Professor Wang ZiZhen of China University
of Petroleum (East) for contributing to Chapters 4 and 7, respectively, to my wife
and family for their support, and to my classmates and students for helping me
organize the materials. My apologies if there are inappropriateness or mistakes found
in the book, as these are inevitable. I hope that the interested readers can send me an
email if they have any questions. I welcome any in-depth discussions and exchanges
with any of the same occupation.

Beijing, China Qilong Xue
September 2019
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Chapter 1
Application of Data Processing in Drilling
Engineering: A Review

Abstract Digitalization will reshape the oil industry has become the industry
consensus, data have become a torrent flowing into every area of the global econ-
omy. This book is mainly for data processing and mining in drilling engineering, and
is committed to build a bridge between drilling engineers and signal processing
scientists. The technical development of drilling engineering focuses on commercial
operations, so the final presentation of any kind of data processing theory is software
and some kind of instrument, Many oil companies only give the results of the test,
more is used for advertising, however, we need to get to the bottom of its theoretical
basis.

Keywords Data analytics · Drilling engineering · Theory · Algorithms ·
Experiments · Software

1.1 Theory

In drilling engineering, the following four aspects are extremely demanding on the
level of signal processing, they are downhole information transmission, spatial
attitude of drillstring, drillstring dynamics measurement and seismic while drilling
respectively. The last three items are about downhole measurements, and the first is
about how to transfer the measurement data to the ground. Various downhole
parameters can be obtained through Measurement While Drilling (MWD) and
Logging While Drilling (LWD) in real time. Drilling fluid pulse signal generator,
as a type of data transmission mode, can be divided into positive pulse, negative
pulse and continuous wave generator according to the signal type. We focus on the
continuous wave generator because it is the fastest and most difficult to achieve.
Currently, only a few companies have products for MWD systems [1–3] that
transmit information in continuous wave mode. PowerPulser™ of Schlumberger,
the continuous wave signal generator with continuous rotary valve, sends signals at a
frequency of 24 Hz with the highest data transmission rate of 12bit/s. The transmis-
sion characteristics of continuous wave signal mainly include signal reflection,
signal transmission and signal attenuation. At present, there are two main theories
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on the attenuation of pressure waves in pipelines: one is the acoustic attenuation
model based on Lamb law [4], and the other is the attenuation model based on wall
friction which is commonly used in the pipeline water hammer theory. The acoustic
attenuation model based on Lamb’s law is simple and easy to use. Therefore, almost
all oil companies use this formula for attenuation estimation. The attenuation model
based on wall friction, in the course of its development, has undergone the stages of
quasi-static wall shear model, frequency-related friction of laminar flow [5], and
frequency-related friction of turbulent flow [6]. Although the water hammer theory is
developing continuously, it is limited to Newtonian fluid.

Several other new transmission modes are also worthy of our attention. XACT
company successively published the invention patents of related equipment and
technology of acoustic remote transmission [7, 8]. The acoustic transmission system
[9] uses sound waves to transmit signals through the drill pipe. Since the signal
decays rapidly in the drill pipe string, relay stations should be installed every
400–500 m in the drill pipe. According to the attenuation characteristics of electro-
magnetic signals during channel transmission [10–12], the following conclusions
can be drawn: (1) electromagnetic signals are seriously attenuated by formation, and
the formation resistivity suitable for EM-MWD operation is usually 2–200; (2) if the
transmission distance of EM-MWD signals reaches thousands of meters, the work-
ing frequency of electromagnetic signals should not be more than 100 Hz; (3) the
working frequency, transmission distance, formation resistivity and drill pipe resis-
tivity of electromagnetic signals can all affect the signal voltage and signal current
between ground receiving electrodes. IntelliPipe [13] system, successfully devel-
oped by American IntelliServ, realizes the non-contact transmission of signals by
using the electromagnetic induction coupling principle, and solved a series of
problems such as line wear and poor contact in the wired transmission mode
[14]. The attenuation of signal propagation can manifest as the decrease of signal
output amplitude [15]. The signal output amplitude changes with the transmission
distance.

As shown in the Fig. 1.1, data is transmitted to the ground through mud pulses,
acoustic, electromagnetic waves or IntelliPipe. Although increasing the amount of
transmitted data is the bottleneck in the development of drilling engineering tech-
nology, how to effectively apply data after it is transmitted to the ground is also an
important topic. The solution platform will use 3 stages, first is data visualization and
dashboarding, second is shallow analysis in which the linear regression analysis and
cross plots are created and third, which is the most value add will be deep data
analysis and machine learning.

In the oil & gas drilling engineering, measurement-while-drilling (MWD) system
is usually used to provide real-time monitoring of the position and orientation of the
bottom hole. Particularly in the rotary steerable drilling technology and application,
that is a challenging task to measurement the spatial attitude of the bottom drillstring
accurately in real time while the drillstring rotating. The regular wellbore position
calculations are typically performed by measuring azimuth and inclination with the
MWD system in a stationary mode (the drillstring non-rotating). However, the
attitude of the bottom rotating drilling tool should be obtained at the real time in
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both of the rotary steerable system (RSS) and automatic vertical drilling system [16–
18]. Even with development of the drilling technology, continuous measurement of
well trajectory becomes increasingly important.

A set of “strap-down” measurement system was developed in our research, the
triaxial accelerometer and triaxial fluxgate were installed near the bit, and real-time
inclination and azimuth can beenmeasured while the drillstring rotating [19, 20]. Fur-
thermore, established the mathematical model of continuous measurement while
drilling. We proposed a dynamic solution approach to azimuth and inclination of the
bottom rotating drillstring. The real-time signals of the accelerometer and the
fluxgate sensors are processed and analyzed in a time window, and the movement
patterns of the drilling bit will be observed, such as stationary, uniform rotation and
stick-slip. The different signal processing methods will be used for different move-
ment patterns. Additionally, put forward a scientific approach to improve the solver
accuracy benefit from the use of stick-slip vibration phenomena. Based on the
dynamic measurement theoretical models, we develop the Kalman filter to improve
the solver accuracy as well. Although the stick-slip vibration should be avoided
point of view the endurance of the drillstring, we can still take advantage of it
because of it cannot be avoided entirely. Finally, develop continuous measurement
while drilling algorithm processor using Kalman filtering. The actual measurement
data through drilling process verify that the algorithm proposed is reliable and
effective and the dynamic measurement errors of inclination and azimuth are
effectively reduced. In addition, strong downhole vibration will generate greater
random noise of fiber-optic gyroscope and accelerometer during MWD operation.
The random noise in vibration features concerning time series mutation, slowness
and periodicity in its varying. The results in Chap. 4 shows a wide internal noise

Fig. 1.1 Data transfer and
application mode
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band and the changing of the noise over time. Considering all these features, this
section explores with the dynamic Allan variance [21, 22] method the dynamic
characteristics of the random noise produced by fiber-optic gyroscope and acceler-
ometer in vibration, to offer theoretical guidance for improving the environmental
adaptability of sensors in vibration and offer theoretical support for noise modeling.

Interpretation of the vibration signal of the drillstring is another important issue
[23], many dangerous phenomena related to drilling are normally caused by the
dynamics of the drillstring and its interactions with the surroundings. At present, the
exploration and analysis of the vibration mechanism of the drillstring mainly adopts
two methods, namely theoretical analysis and numerical simulation method [24–29]
and vibration signal measurement method [30–36]. The theoretical analysis and
numerical simulation methods for the vibration of the drillstring mainly include
the analytical method based on the energy method [26, 27] and the numerical
solution method based on the finite element method [28, 29]. In order to clarify
the rules of dynamic drillstring in the rotary steerable system, we fully utilize modern
computing methods and try to establish a model close to the real drilling environ-
ment. According to field measured data correct theory model; complex dynamic
problems of drillstring may have a clear understanding. Our innovation lies in
combining actual measurement with theoretical modeling. Two evaluation methods
are compared systematically, such as theoretical and measurement methods. In the
Dynamic Modeling we should coupling the separate vibration form at the same time
decomposition the coupled vibration form in the vibration measurement data. This is
like forward and inversion algorithms in geophysics.

Seismic While Drilling (SWD) [37–40] is a well seismic method developed in
recent years which is based on reverse vertical seismic logging. It is a newly-
developed well seismic technology which combines the seismic exploration tech-
nology with petroleum drilling engineering technology. Compared to conventional
VSP, SWD has its own characteristics and unique advantages in that it uses bit
vibration in the process of drilling as the source for seismic measurement, without
interfering with the drilling or occupying drilling time, and without any risk to the
hole, especially the bit can be predicted in real-time structure details of the formation
in front of the bit through the field seismic imaging processing, with the main
purpose of reducing drilling risks. The key of this technology is how to collect and
recover the weak bit reflection signal under strong disturbance noise and make it the
equivalent formation impulse response.

Logging while drilling (LWD) [41, 42] is a technique of conveying well logging
tools into the well borehole downhole as part of the bottom hole assembly (BHA).
Although the terms Measurement while drilling (MWD) and LWD are related,
within the context of this section, the term MWD refers to directional-drilling
measurements, e.g., for decision support for the smooth operation of the drilling,
while LWD refers to measurements concerning the geological formation made while
drilling. LWD tools work with its measurement while drilling (MWD) system to
transmit partial or complete measurement results to the surface via typically a
drilling mud pulse or other improved techniques, while LWD tools are still in the
borehole, which is called “real-time data”. Complete measurement results can be
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downloaded from LWD tools after they are pulled out of hole, which is called
“memory data”.

Big data is a new area for drilling engineers, we don’t care about big data theory
itself, we only focus on how big data technology can be applied in drilling engi-
neering. In Chap. 8, We have introduced the application status of big data technol-
ogy in drilling engineering as comprehensively as possible. Of course, it is still far
from enough. In recent years, big data technology has developed spurt and there are
thousands of papers produced every year. The big data technology will generate
disruptive influences on the whole oil & gas industry. Better utilize the big data,
improve the petroleum and petrochemical industries and take it as the global leading
industry to take the preemptive opportunities on the tide of economic development.

1.2 Experiments

Drilling engineering is science and technology that focuses on applications, the
establishment of each scientific theory or the invention of new technologies requires
the test of field tests. Just like the products of downhole information transmission,
digital communication for drilling has to overcome unique challenges in comparison
to modern wireless communication systems such as fourth generation long-term
evolution and Wi-Fi.

PowerPulser™ of Schlumberger, the continuous wave signal generator with
continuous rotary valve, sends signals at a frequency of 24 Hz with the highest
data transmission rate of 12bit/s. Baker Hughes’ continuous wave signal generator
with oscillating shear valve has an experimental transmission rate of 40 bps at the
well depth of 3000 ft. and of 15 bps at well depth of 24,000 ft. Halliburton is also
working on developing MWD systems that transmit information in a continuous
wave mode, aiming at achieving transmission rates of 20–30bit/s. XACT and
Extreme Engineering conducted on-site testing of acoustic MWD tools with two
diameter specification, one tool with the diameter of 121 mm, well depth of 1205 m
and the transmission rate of 10bit/s, another tool with the diameter of 165 mm, well
depth of 2489 m and the transmission rate of 20bit/s [43]. Up to 2011, XACT has
offered service for more than 400 Wells, among which two relay amplifiers are used
to achieve a maximum depth of 4000 meters. However, the use of relay amplifiers
makes the reliability of the instrument under great restriction. Its system uses
640–680 Hz single passband and BPSK encoding [44]. In 2013 XACT used six
relay amplifiers to offer service for wells at the greatest depth of 4000 m
(13,200 ft) [45].

In Chap. 3, dynamic measurement algorithms developed were tested through
laboratory bench and field measurements data respectively [46]. The field tests were
carried out on wells using automatic vertical or rotary steerable drilling. Three and
four ribs actuators were adopted. A lot of raw measurement data were accumulated.
These data were input into our algorithm for authentication. Conclusions on bit
movement rules were gained through analyzing and summarizing large amounts of

1.2 Experiments 5



data. Two wells in China (Xuanye1 and Anshun1) are selected here to evaluate the
algorithm. Simulation and experimental results show that the dynamic solver
methods can meet the engineering requirements. However, according to the drilling
field tests, the storage data playback from the underground measurements indicated
that drillstring vibration is the enormous noise, which completely submerged the
desired signals.

In Chap. 5, We develop a strap down measurement while drilling surveying
system that incorporates three axis magnetometers and three axis accelerometers
arranged in three mutually orthogonal direction. E1~E9 in the Fig. 5.21 indicate the
field experiments in China. Field observations based on downhole and surface
vibration measurements have indicated that drillstrings exhibit severe vibrations.
These vibrations are observed to become more severe at the BHA. The value of the
angular speed fluctuates is between 0~120 rpm, which indicates that the system is in
the state of stick slip. This is another new discovery about the dynamics of RSS Tool,
it is observed he re that drilling vibration can lead to chaos [47, 48], since most
researches in universities are limited to laboratory or theoretical studies due to the
high cost of drilling, our findings reduce this gap by calculating physical nonlinear
dynamical model with real drilling experiments. The existence of chaos in drilling
may open a new concept of drilling chaos in the solid flow mechanics that will
benefit to both the physicists and the drilling engineers.

“Drilling Change Requires Changing Drillers”, drilling data is mainly obtained
through on-site construction or laboratory experiments. How effective use of data
poses new challenges for drilling engineers, as show the Fig. 1.2, Corva has grown

Fig. 1.2 Corva data analyst monitors many wells at a time, using programs tracking the status of
wells and sending alerts on potential issues. The digital drilling advisory company regularly releases
new tools to automate that job. (Source: Corva)
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rapidly due to the strong demand for its real-time data and analysis system. In a year,
it has gone from a couple of rigs equipped with its drilling advisory system to
250 rigs and 35 clients by September, said Ryan -Dawson, chief executive officer of
Corva [49].

At present, most of data in the oil & gas industry is applied into the control and
monitoring, not to optimize the assets performance. If the oil & gas industry can
analyze and comprehend all data generated by itself, the operation efficiency can be
enhanced by 20%. The research of Bain Capital shows that the bid data analysis can
enhance the performances of oilfield and factor by 6–8% [50]. For now, the oil price
and the economy are in downturn, and the profit gaining capability at the upstream
will be challenged, which makes the completion among oil & gas companies more
and more violent and cruel. How to reduce the operation cost of upstream enterprise,
enhance production efficiency and avoid environmental risk? This is a subject that
each oil & gas company must be confronted with.

The big data technology can be used to treat mass of isomeric data easily, thus
providing valuable reference information for the oil & gas industry, so as to help the
operation enterprise make a decision better. The digital technology can change the
upstream business, and create extra profit from existing production capacity, thus
making the industry more productive and flexible. Work on the application of Big
Data and analytics in the oil & gas industry is in the experimental stage [53]. Only a
handful companies have adopted Big Data in the field [54].

• Chevron proof-of-concept using Hadoop (IBM BigInsights) for seismic data
processing;

• Shell piloting Hadoop in Amazon Virtual Private Cloud (Amazon VPC) for
seismic sensor data;

• Cloudera Seismic Hadoop project combining Seismic Unix with Apache
Hadoop;

• PointCross Seismic Data Server and Drilling Data Server using Hadoop and
NoSQL;

• University of Stavanger data acquisition performance study using Hadoop.

1.3 Algorithms and Software

An algorithm is a procedure or formula for solving a problem, based on conducting a
sequence of specified actions. In this book, we present the basic formula as the basis
for algorithm programming. Of course, in drilling engineering, most algorithms are
applied to underground embedded systems, which is fundamentally different from
the traditional IT industry. Such as MWD or LWD tools, the measurement algorithm
of the downhole attitude needs to complete the operation in the downhole MCU. But
for wireless transmission systems, a perfect fit between downhole data encoding and
ground data processing is required to achieve high quality signals.
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For mature products, algorithms are certainly confidential in commercial compa-
nies. The software is also used as a commercial product supporting hardware or sold
separately. In Chap. 3, we developed an algorithm to dynamic measurement of
spatial attitude at the bottom rotating drillstring, although the effectiveness of the
algorithm is proved by experimental data, it does not form a product for commercial
application, so we cannot say that the algorithm must be successful [19, 20].

The future development direction is the effective combination of downhole
algorithms and ground computer programs, of course, combined with theoretical
analysis. As shown in Chap. 5, our innovation lies in combining actual measurement
with theoretical modeling. Two evaluation methods are compared systematically,
such as theoretical and measurement methods. Interpretation and development of
downhole data processing algorithms is the future trend of development, the forma-
tion can effectively promote the development of related software engineering dril-
ling technology.

The application of big data in the drilling industry is most likely to form large
commercial software in the future. Big data is considered the enormous amounts of
data sets, so complex that the traditional methods of analysis cannot even begin to
crack it. It is thus where the big-data analytics come in to process and from it
generate consistent patterns and correlations that could be used for discoveries and
communication of essential and useful tips and trends. During the entire process,
mathematical and statistical formulae and tools are used alongside algorithms
[51]. What oil companies can do with such information generated from a successful
analysis of the data is overwhelming. The only challenge is in the processing.
Drilling and performance, as well as prediction of the market trends, could be
taken to a whole new level. Subsurface geology, geographical locations, the type
of soil, and the depth are a few of the factors the tools take into consideration. Much
of the software innovation that’s key to the digitization of big oil is happening at oil
service contracting companies, such as Halliburton and Schlumberger, and big IT
providers including Microsoft, IBM, Oracle and Open Source Projects [54].

With the rise in exploratory frontiers, the increase in rig day rates and costs, and
the introduction of new regulatory policies, the demand for innovative technologies
has never been higher. To reduce costs and mitigate risks, oil and gas operators need
technologies that can enhance drilling efficiency and optimize drilling operations
across all phases. With SAS Visual Analytics [55], drilling engineers, advisors and
asset teammembers can use intuitive analytic tools to improve understanding of their
wells and operations – without being statisticians. And with an easy-to-use interface
atop a robust framework of data management and advanced analytic solutions,
engineers can ask and get answers to unanticipated questions on the fly.

The eDrilling [56] is a new and innovative system for real time drilling simula-
tion, 3D visualization and control from a remote drilling expert center. The concept
uses all available real time drilling data (surface and downhole) in combination with
real time modelling to monitor and optimize the drilling process. This information is
used to visualize the wellbore in 3D in real time.

As show in the Fig. 1.3, iSolutions [52] is working to generate an advanced
visualization and machine learning platform targeted at understanding drilling rig
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parameter impacts on Rate of Penetration (ROP). The platform will allow for drilling
rig parameters to be tuned to optimize ROP for wells on existing and nearby Pads in
the intermediate section. Using drilling information’s from historical wells, the
model will be trained to estimate ROP’s given various input settings for all forma-
tions intersected in the vertical portion of a drilling operation. The model will
consider parameters such as weight on bit, mud rate, bit type, RPM etc.

An optimization function will be generated to provide drilling engineers with
critical drilling parameter settings for each formation intersected in the drilling of the
wells. These recommended settings can be used as a starting point to provide a basis
for further optimization work. The optimization function will allow engineers to
perform ‘what-if’ analysis of a particular set of parameters without having to alter
the actual drilling plan of a well. Hereby the situation (challenge), complication and
solution for the project above are illustrated: The Challenge Drilling interbedded
formations is challenging . . . • Drilling parameters are important and must be
optimized • Different formations have different geological and geo-mechanical
characteristics • Bit life is vital in estimating the ROP and needs to be captured in
the drilling optimization effort There is a gap in OT analytics tools that can be
leveraged to facilitate drilling optimization.
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Chapter 2
Signal Detection and Processing
of Downhole Information Transmission

Abstract We introduced five types of information transmission method for Mea-
surementWhile Drilling (MWD): cable method, drilling fluid pulse method, acoustic
method and electromagnetic wave method and the latest technology of intelligent
drill pipe at present. With the application of advanced drilling technologies such as
rotary steering drilling and geosteering drilling, the real-time measurement and
transmission of a large number of downhole parameters put forward higher require-
ments on the information transmission rate. Lower transmission rate has become the
bottleneck of parameter expansion for measurement. Intelligent drill pipe (Intelli
Pipe) is now the latest downhole signal transmission technology with the highest
transmission rate. The communication rate can reach up to 2Mbps, and the stable
communication rate can reach 56 kbps, which is too much higher than the current
electromagnetic wave or mud pulse transmission applied in MWD, but high
manufacturing costs are the main factors that constrain its development.

Keywords Measurement While Drilling (MWD) · Information transmission ·
Acoustic · Electromagnetic wave · Intelligent drill pipe (Intelli pipe)

2.1 Introduction

In the drilling process, especially in the course of drilling some complex wells such
as horizontal wells, extended reach wells and multilateral wells, various downhole
parameters that the personnel need to track in real time can be obtained through
Measurement While Drilling (MWD) and Logging While Drilling (LWD). The
Measurement While Drilling (MWD) and Logging While Drilling (LWD) system
is composed of downhole controller, various downhole parameter measuring instru-
ments, MWD information transmission system and a system of receiving, processing
and displaying surface information [1]. The development of various subsystem of
MWD and LWD system has been extremely uneven for a long time, mainly in the
conflict between the low transmission rate in information transmission subsystem
and the increasing downhole information requiring transmission.
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With development and application of various new downhole measuring instru-
ments, more and more parameters for MWD are available, from the initial well
inclination, azimuth, tool face and other geometric parameters to drilling pressure,
torque, pressure, temperature, natural gamma, formation resistivity and other envi-
ronmental and geological parameters. At present, there are five types of information
transmission method for MWD: cable method, drilling fluid pulse method, acoustic
method and electromagnetic wave method and the latest technology of intelligent
drill pipe at present, each has its own limitations and scope of application. Among
the five methods, drilling fluid pulse method, the most widely applied and reliable
one, is the major means for downhole signal transmission. With the application of
advanced drilling technologies such as rotary steering drilling [2] and geosteering
drilling, the real-time measurement and transmission of a large number of downhole
parameters put forward higher requirements on the information transmission rate.
Lower transmission rate has become the bottleneck of parameter expansion for
measurement.

Drilling fluid pulse signal generator can be divided into positive pulse, negative
pulse and continuous wave generator according to the signal type. There have
already been some mature products in the signal transmission mode of both positive
pulse and negative pulse applied in drilling engineering, their information transmis-
sion rate is relatively low, usually less than 3bit/s. However, the transmission rate in
continuous wave signal transmission mode is relatively high, which can theoretically
reach more than 20bit/s, but with difficult technical implementation. Currently, only
a few companies have products for MWD systems [3–5] that transmit information in
continuous wave mode. For example, PowerPulser™ of Schlumberger, the contin-
uous wave signal generator with continuous rotary valve, sends signals at a fre-
quency of 24 Hz with the highest data transmission rate of 12bit/s. Baker Hughes’
continuous wave signal generator with oscillating shear valve has an experimental
transmission rate of 40 bps at the well depth of 3000 ft. and of 15 bps at well depth of
24,000 ft. Halliburton is also working on developing MWD systems that transmit
information in a continuous wave mode, aiming at achieving transmission rates of
20–30bit/s. This book mainly introduces the transmission characteristics and atten-
uation mechanism of continuous wave transmission mode (see Sect. 2.2).

Acoustic data transmission while drilling is a technology that uses acoustic waves
to transmit in the channel of drill string. The information transmission does not
depend on the traditional mud drilling fluid and formation, so the reliability and
applicability of the technology are relatively strong. Besides, it is a technology
without any extra drilling cost, because there is no need to embed wires in the drill
string which serves as acoustic transmission channel. Also, the technology does not
use any special drill string. The acoustic transmission speed in drill string is higher
than mud pulse. The carrier frequency of elastic wave which can be used is relatively
higher. And its theoretical transmission rate is 1–2 orders of magnitude higher than
that of mud pulse and electromagnetic wave data transmission technology. The
acoustic data transmission while drilling technology is not yet mature, because of
the fast signal decay rate, which seriously limits the commercial application of this
technology.
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From 2005 to 2007, XACT company successively published the invention
patents of related equipment and technology of acoustic remote transmission
[6–8]. In 2007, XACT and Extreme Engineering conducted on-site testing of
acoustic MWD tools with two diameter specification, one tool with the diameter
of 121 mm, well depth of 1205 m and the transmission rate of 10bit/s, another tool
with the diameter of 165 mm, well depth of 2489 m and the transmission rate of
20bit/s [9]. Up to 2011, XACT has offered service for more than 400 Wells, among
which two relay amplifiers are used to achieve a maximum depth of 4000 meters.
However, the use of relay amplifiers makes the reliability of the instrument under
great restriction. Its system uses 640-680 Hz single passband and BPSK encoding
[10]. In 2013 XACT used six relay amplifiers to offer service for wells at the greatest
depth of 4000 m (13,200 ft) [11]. The main difficulty in acoustic transmission lies in
the attenuation of acoustic signals in the drill string. The attenuation model will be
discussed in 2.3.

The MWD system using the electromagnetic wave transmission has been grad-
ually applied in the oil and gas drilling in recent years, EM-MWD (Electromagnetic
Measurement While Drilling) has the advantage of high data transmission rate, free
from the influence of drilling medium. And it costs less for data can be transmitted
without circulating drilling fluid, which makes up for the deficiency of mud pulse
MWD and provides an indispensable technical support for gas drilling and unbal-
anced drilling. The E-Pulse system developed by Schlumberger can transmit log data
with a vertical depth of 4183 m without using extended antenna and repeater
technology [12]. In 1987, Russian company Shamara Horizon successfully devel-
oped ZTS series of electromagnetic wave logging while drilling instruments [13],
which are powered by turbine motor. It has the advantage of high transmitting power
and large signal amplitude. The Trend SET system [14], manufactured by
Weatherford in 2004, uses signal relay technology and uses cascaded battery
packs for power supply. It can last for 500 h with transmission depth of up to
3240 m. It is reliable, heat resistant, and can operate normally in harsh drilling
environments.

EM-MWD technology has its own disadvantages: electromagnetic signal propa-
gation in the formation is seriously affected by formation resistivity, especially in the
low resistivity formation, signal attenuation is fast, which limits its effective trans-
mission depth. After many years of research and exploration, a number of achieve-
ments in research and application has been made in revealing and overcoming the
limitation of electromagnetic signal transmission distance while drilling.

Intelligent drill pipe (Intelli Pipe) is now the latest downhole signal transmission
technology with the highest transmission rate. The intelligent drill pipe system,
successfully developed by the American company Intelli Serv in 2002, uses elec-
tromagnetic inductive coupling principle to realize the non-contact signal transmis-
sion. It is installed on the inner wall of the drill string the sheathed wires, and “sinks”
the wire into the threaded end of the drill pipe at each end of the tool joints, so as to
transmit information between different drill pipes through electromagnetic induc-
tion. Because of the signal attenuation in the cable when transmiting, relay amplifiers
should be attached to the intelligent drill string at intervals of 350 m to 450 m. The
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technology has been applied in 17 test wells, including vertical and directional gas
wells with the depths of more than 14,000 feet (4267.2 meters) in the Arkoma area,
southeast of American Oklahoma [15, 16]. The communication rate can reach up to
2Mbps, and the stable communication rate can reach 56 kbps, which is too much
higher than the current electromagnetic wave or mud pulse transmission applied in
MWD. It tackles the obstacles of data transmission while drilling and realizes the
high-rate transmission of downhole information in real time during drilling.

2.2 Characteristics and Processing Methods of Sinusoidal
Pressure Wave Signal

At present, drilling fluid positive pulse transmission is commonly used in oil and gas
drilling. Its data transmission rate is relatively low, typically from 0.5 to 3bits. And it
has a high bit error rate because it can be easily interfered by the external condition.
When compared with positive pulse transmission, continuous wave pulse [6], with a
relatively higher data transmission rate and stronger anti-interference ability, is a
promising drilling fluid pulse transmission technology.

In general, ccontinuous wave pressure generators can be divided into two cate-
gories: oscillating shear valves and rotary valves. The shear valve is composed of
stator and rotor. The stator is fixed and the rotor oscillates back and forth with respect
to the stator at an angle deviation. When the rotor rotates in one direction, the drilling
fluid flow area decreases and the pressure increases. When the pressure increases to
its maximum, the rotor rotates in reverse, the flow area increases, and the pressure
decreases. When the rotor orifice coincides with the stator orifice, the pressure
returns to normal. The shear process of the rotor back and forth in relation to the
stator produces a continuous pressure change. In addition, the bidirectional rotary
characteristics of the shear valve rotor can help effectively reduce the risk of the
rotary valve being blocked by solid particles of drilling fluid. The disadvantage of
the shear valve is that the speed at the end of the both sides is zero, so the motor
needs to be continuously driven through positive and negative rotation. When this
occurs, the stepper motor needs to be adopted, but it is difficult for the motor to turn
to the set position when encountering great resistance.

Rotary valve and shear valve have the same structure. The difference between
them lies in that the rotary valve rotates in one direction and its anti-blocking
capability is not as good as the shear valve. However, the motor of the rotary
valve can be easily controlled. A lineal motor can be chosen to establish a closed-
loop feedback circuit and then generates, through accurate control the rotation of the
rotor, continuous pressure wave.

The generation of drilling fluid continuous pressure wave is shown in Fig. 2.1.
The drive and control circuit of the continuous pressure wave generator drives the
generator rotor to rotate, and the rotor creates an intercepting effect against the stator,
which causes the pressure fluctuation of drilling fluid in the drill string and forms a
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continuous sinusoidal pressure wave. The measured data can be gotten through first,
encoding the data measured with downhole sensors, then generating pressure change
with modulation system, and finally, processing after detecting pressure signals and
decoding. The continuous pressure wave technology has the advantage of the fast
rate for data transmission, while the disadvantage lies in the weak signal and high
demand for signal processing system.

Adopting the continuous wave pressure pulse signal of drilling fluid, the up-link
communication of downhole sensor data is completed. Actual transmitted wave is
generated through encoding and modulating the downhole information first, and
then controlling the continuous wave generator with downhole controller. The
pressure wave is transmitted to the ground through drilling fluid channel, and the
pressure signal is collected by the ground receiving sensor (high-precision pressure
sensor). After filtering and channel equalization, the ground processed wave is
generated, and the real-time data processing is conducted after demodulation and
decoding. The whole process includes four waveforms: coded modulated wave,
actual transmitted wave, ground receiving wave and ground processed wave.

(1) Coded modulated wave: this waveform converts downhole measurement
information into continuous waves for transmission (such as sinusoidal or
superimposed sinusoidal waves) according to certain encoding and modulation
methods. This wave describes the data frame to be sent, which is an ideal waveform
and can be strictly expressed through mathematics. The wave has a great impact on
the amount of information sent per unit time (related to pre-coding, such as differ-
ential coding), signal transmission rate, signal anti-interference, signal detection
synchronization and error detection.

Actual transmitted wave: the wave is the drilling fluid pressure wave generated by
the continuous wave generator. It is a continuous wave nearly close to the code
modulation wave, generated through regularly changing the flow area of the rotary
valve port after controlling the speed and position of the continuous wave generator
according to the code modulation waveform. There are many factors affecting the

Fig. 2.1 Generation of continuous wave pressure signals

2.2 Characteristics and Processing Methods of Sinusoidal Pressure Wave Signal 17



waveform: drilling fluid flow can affect the amplitude of the wave, different valve
port shape can produce different shapes of continuous wave, by adjusting the rotary
valve speed to adjust the frequency of continuous wave output, and to adjust output
of continuous wave phase by controlling the rotary valve position. If the the phase
and frequency of the actual transmitted wave are consistent with the coded modu-
lated wave (i.e. for sinusoidal or superimposed sinusoidal waves), the pulse gener-
ator is reasonable.

Ground receiving waves: this wave is the continuous pressure signal detected by
ground sensor after the actual transmitted wave is transmitted to the ground along the
drilling fluid channel with a certain depth in the drill string. In the process of
transmission, the actual transmitted wave attenuates greatly after a certain depth of
transmission, and at the same time it superposes with various noise waves, finally the
ground receiving wave is obtained. The factors affecting the wave include control-
lable factors and uncontrollable factors. The controllable factors are mainly the gas
content of drilling fluid, carrier frequency and the noise of mud pump. Uncontrol-
lable factors include signal attenuation due to well depth, reflection wave caused by
drill string structure, noise with similar frequency and carrier frequency, etc. The
requirements for this wave are high signal-to-noise ratio, non-distortion, and high
power spectral density under the carrier frequency of the actual transmitted wave
(which is related to the motor speed).

Ground processed wave. This wave is a pressure wave obtained through filtering
and channel equalization of ground receiving wave. It can be an analog signal or a
digital signal. The main factors affecting the wave are filterring method and channel
equalization method, which can be described by mathematical model. The require-
ment of the wave is to eliminate or reduce the noise and inter-symbol interference as
much as possible, and to realize spectrum analysis, filtering in frequency domain and
other functions. The wave can be demodulated and decoded after synchronous
processing of clock signal.

2.2.1 Rotary Valve Mud Pulse Generator

Rotary valve mud pulse generator, as the core component of generating continuous
wave pulse signal [5], can control the rotation of rotary valve to generate drilling
fluid pressure pulse with certain rules. Hydraulic drive and motor drive are two main
forms.

Driven by the upper impeller, the rotor of the hydraulic-drive rotary signal
generator with pilot control rotates in a predetermined coding mode through the
regulation of pilot control mechanism, thus generating pressure wave signal in the
drill pipe. After confirming the runner parameters of the signal generator, if the
drilling fluid flow deviates from the design flow, or the rotation speed deviates from
the design rotation speed, the efficiency will decline and erosion will be intensified.
This signal generator has low power dissipation.
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The rotary signal generator directly driven by motor is the drilling fluid pulse
generator, which is widely applied in field at present. The drilling fluid pressure
signal is generated by controlling the rotary valve speed or rotation frequency
according to the digital baseband signal.

The PowerPulser developed by Schlumberger uses the rotary valve in continuous
rotation, thus generating pressure waves. Blades are set under the rotary valve and on
the drive shaft, as shown in Fig. 2.2. The permissible operating temperature is
177 �C, and it can work in drilling fluid with the flow rate of 2.2 L/s to 75.7 L/s.
The servo control system adopted improves the data transmission reliability, trans-
mission rate and signal intensity, and it has stronger anti-interference ability.

The key of pulse generator research lies in the structure design of the stator and
rotor and the motor control scheme. The parameters of rotary valve models with
different structures, such as flow rate, valve port shape, axial clearance of stator and
rotor, and speed, all have a great impact on the pulse signal.
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Fig. 2.2 Frame diagram of slimpulse-MWD
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2.2.2 Mechanism of Pressure Wave Signal Generation

The pressure wave signal propagated in the drilling fluid channel is, in essence,
generated by compressibility of the drilling fluid. In the drilling fluid channel, the
pressure disturbance caused by the opening and closing the throttle of the rotary
valve will be propagated upstream and downstream respectively at the sound speed
[17]. The continuous wave generator rotary valve may be the ideal choice because of
only partial loss for the short process flow of thin-wall cutting edge, as well as the
flow-pressure relation being insensitive to the change of physical properties such as
temperature and viscosity of working medium. The flow-pressure characteristics of
the continuous wave generator can be expressed as:

Q ¼ CdA

ffiffiffiffiffiffiffiffiffi
2Δp
ρ

r
ð2:1Þ

In this equation where Q is the drilling fluid flow through the valve port, m3/s; Cd

is the flow coefficient of the valve port. When the Reynolds number is greater than
the critical Reynolds number, the flow coefficient remains approximately a constant,
usually from 0.6 to 0.8. A is the flow area of the valve port, m2; ρ is drilling fluid
density, kg/m3; Δp is the pressure difference between the valve front and the valve
back, Pa.

The characteristic quantity of pressure wave signal is related to the size of signal,
for example, the maximum amplitude of pressure wave signal and the duration of
signal, etc. However, it is not sufficient to use these characteristic quantity to
characterize the characteristics of pressure wave signal. The basic characteristic
quantity of pressure wave signal can be concluded as the maximum value, minimum
value, average value, power and frequency spectrum of signal.

Where the average value of the pressure wave signal is Mp,

Mp ¼ 1
T

ðT=2
�T=2

Δp tð Þdt ð2:2Þ

The average value reflects the magnitude of direct current component in pressure
wave signal.

The power of the pressure wave signal, Pp.

Pp ¼ 1
T

ðT=2
�T=2

Δp tð Þ2dt ð2:3Þ

Through the following analysis, it can be found that the power of pressure wave
signal is approximately proportional to the torque of the rotary valve and the water
power.
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Pressure wave signal, when travelling in the drilling fluid channel, will be
reflected in areas such as downhole bit and the surface drilling pump. Different
propagation paths will lead to different phase shifts of different frequency compo-
nents, making at the receiver point the direct wave of some frequency components is
counteracting the reflected wave, while part of the frequency components enhance
each other, thus forming the so-called selective attenuation phenomenon. Attenua-
tion during transmission is a key problem of downhole signal transmission, which
will be discussed in detail in 2.2.4

There is a large deviation between waveform of the pressure wave signal gener-
ated from the quadrant valve port and the sinusoidal pressure wave signal,
containing large harmonic components, which attenuates rapidly in the drilling
fluid channel. So only a few pressure wave signals generated from the quadrant
valve port can be useful. In the continuous carrier modulation of digital signal,
sinusoidal wave is used as the carrier signal. Therefore, the expected sinusoidal wave
pressure signal in the design of rotary valve is:

Δp0 tð Þ ¼ pmax � pmin

2
sin nωt � π

2

� �
þ pmax þ pmin

2
ð2:4Þ

The correlation coefficient of pressure wave signal Δp(t) and Δp0(t)within a
period:

ρxy ¼
Ð T
0 Δp tð ÞΔp0 tð ÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ T

0 Δp2 tð ÞdtÐ T0 Δp20 tð Þdt
q ð2:5Þ

The generation of pressure wave signals can be expressed by the simple model
shown in Fig. 2.3. The area of Sect. 1.1 is A1, the area of orifice section is A0, and the
area of jet contraction Sect. 2.2 is A2. Different from the free jet, the downstream of
the orifice is not connected with the atmosphere. So the liquid flow will diffuse after
passing through the orifice, and it is at its highest velocity at the jet section with the
minimum pressure. With the diffusion of the jet flow, the velocity decreases and the
pressure has shown a little recovery. However, due to the resistance loss at the
orifice, the pressure can not be completely restored.
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Fig. 2.3 Unsteady flow of
orifice
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For the incompressible liquid between Sect. 1.1 and jet Sect. 2.2, Bernoulli’s
equation is listed as follows:

ρ
∂φ1

∂t
þ ρα1v

2
1

2
þ ρgz1 þ p1 ¼ ρ

∂φ2

∂t
þ ρα2v

2
2

2
þ ρgz2 þ p2 þ ζ

ρv22
2

ð2:6Þ

In above equation, z1 ¼ z2, φ is the velocity potential function, ∂φ/∂x ¼ v.
φ1 ¼ v1x1, φ2 ¼ v2x2 at the Sect. 1.1 and Sect. 2.2. Also, it can be known from the
continuity equation that v1A1 ¼ v2A2 ¼ v2CcA0, by substituting the above equation
into (2.6), it can be drawn:

P1 � P2 ¼ ρ
∂ v2x2 � v1x1ð Þ

∂t
þ ρv21

2
α2 þ ξð Þ A1

CcA0

� �
� α1

� �
ð2:7Þ

Assume that the upstream velocity v1 is constant, the orifice area changes with
time. Because of the turbulent flow at the jet section, so α2 ¼ 1. Usually, A0 is much
smaller than A1, so α1 can be ignored, while the maximum flow area of the rotary
valve of continuous wave generator, cannot be ignored when compared with the flow
area of drill pipe, so α1 should be retained in the above equation.

2.2.3 Transmission Characteristics of Continuous Pulse
Signal

The transmission characteristics of continuous wave signal mainly include signal
reflection, signal transmission and signal attenuation. At present, there are two main
theories on the attenuation of pressure waves in pipelines: one is the acoustic
attenuation model based on Lamb law [18], and the other is the attenuation model
based on wall friction which is commonly used in the pipeline water hammer theory.
The acoustic attenuation model based on Lamb’s law is simple and easy to use.
Therefore, almost all oil companies use this formula for attenuation estimation. The
attenuation model based on wall friction, in the course of its development, has
undergone the stages of quasi-static wall shear model, frequency-related friction of
laminar flow [19], and frequency-related friction of turbulent flow [20]. Although the
water hammer theory is developing continuously, it is limited to Newtonian fluid.

The drilling fluid channel is actually a multilayered cylindrical waveguide com-
posed of drilling fluid in the drill string, drill string, annulus drilling fluid and
formation, as shown in Fig. 2.4. The formation in the figure can be open-hole
formation, casing, marine risers in offshore drilling, etc. The multilayered coupling
model is very complex and needs to be appropriately simplified according to the
problems studied [21]: ①not taking viscosity of drilling fluid into account; ②dril-
ling fluid velocity compared with the pressure wave propagation speed is very small,
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which can be ignored; ③the wave length of pressure wave signal is greater than the
radius of the drill string. ④drill string is an axisymmetric uniform elastomer.

In the cylindrical coordinate system, the motion equation of the multilayered
coupling model is [22]:

1. Longitudinal vibration equation of drilling fluid in drill string:

Bi
∂2ui
∂z2

¼ 2ζBi
ρp
E

∂2up
∂t2

þ 1þ 2Bi

E
2Ai

Ap
þ 1þ v

� �� �

ρi
∂2ui
∂t2

� 4B0

E
Ai þ Ap

Ap
ρ0

∂2u0
∂t2

ð2:8Þ

2. Vibration equation of annular drilling fluid:

B0
∂2u0
∂z2

¼ �2ζB0
ρp
E
At þ Ap

A0

∂2up
∂t2

� 4Biρi
E

Ai

Ap

Ai þ Ap

A0

∂2ui
∂t2

þ 1þ 2B0

E
Ai þ Ap

A0

2Ai

Ap
þ 1� v

� �
þ B0

G
Ai þ Ap

A0
þ 1

� �� �
ρ0

∂2u0
∂t2

ð2:9Þ

In the equation, up, ui and u0 are respectively the axial displacement of the drill
string, drilling fluid in the drill string and annular drilling fluid. Ap, Ai and A0 are
respectively the cross-sectional areas of drill string, in drill pipe and annulus. ζ is
Poisson’s ratio of drill string. E is the elastic modulus of drill string. Bi and B0 is the

Drilling fluid in the drillstring

Stratum

Drilling fluid in the annulus

Drillstring

Fig. 2.4 Multi-layered waveguide model of drilling fluid channel
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equivalent volume elastic modulus of drilling fluid in drill pipe and annulus respec-
tively. G is the shear modulus of the formation. ρp is the density of drill pipe. ρi and
ρ0 are drilling fluid density in drill pipe and annulus respectively.

Based on hydromechanics, elastic mechanics and transient flow theory, the
calculation model of transmission characteristics is established, and the basic equa-
tion of continuous pulse signal transmission is deduced.

After analyzing the fluid differential unit, the equation is obtained according to
the law of mass conservation, as follows:

d
dt

ρAΔxð Þ ¼ 0 ð2:10Þ

Where A is sectional area of the pipe, ρ is fluid density, it can be expanded as:

1
ρ
dρ
dt

þ 1
A
dA
dt

þ 1
Δx

dΔx
dt

¼ 0 ð2:11Þ

According to the definition of fluid compressibility, it can be:

1
ρ
dρ
dt

¼ 1
Kl

dP
dt

ð2:12Þ

Relative change rate of the fluid differential unit can be expressed:

1
Δx

dΔx
dt

¼ 1
Δx lim

Δt!0

V þ ∂V
∂x Δx

� �
Δt � V Δt

Δt ¼ ∂V
∂x

ð2:13Þ

The relative change rate of the fluid differential unit is related to the elasticity of
the pipe wall and the support of the pipe.

Set ɛ2 as the circumferential stress of the pipeline. When the pressure increases,
the increment of pipeline circumference is πDε2, and the diameter is D(1 + ε2).
Therefore, the corresponding increment of circulation area and relative change rate
are ΔA � π

4D
22ε2 ¼ π

2D
2ε2, so:

1
A
dA
dt

� 2
dε2
dt

ð2:14Þ

According to hooke’s law, the stress analysis of the pipe wall is shown in Fig. 2.5.

ε2 ¼ 1
E

σ2 � μ0σ1ð Þ

dε2
dt

¼ 1
E

dσ2
dt

� μ0
dσ1
dt

� �
ð2:15Þ

24 2 Signal Detection and Processing of Downhole Information Transmission



For thin tube walls, circumferential stress σ2¼ PD/2e, it can be obtained by doing
time derivation:

dσ2
dt

¼ D
2e

dP
dt

ð2:16Þ

Axial stress of pipeline can be divided into the following three cases:
①Only the upstream end of the pipe is fixed;

dσ1
dt

� A
πDe

dP
dt

¼ D
4e

dP
dt

¼ 1
2
dσ2
dt

ð2:17Þ

②The whole pipe is fixed, the axial stress is 0, then ε1 ¼ 0;

ε1 ¼ 1
E

σ1 � μ0σ2ð Þ ¼ 0 ð2:18Þ
dσ1
dt

¼ μ0
dσ2
dt

ð2:19Þ

③The whole pipe being connected by expansion joint, the pipe is free from axial
force;

dσ1
dt

¼ 0 ð2:20Þ

By substituting the three cases into the Eq. (2.15), it can be obtained as follows:

σ2

σ1

σ1

σ2

e

D

Fig. 2.5 Stress distribution
of pipe wall in transmission
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dε2
dt

¼ ψ
E
dσ2
dt

ð2:21Þ

In the equation, ψ can be respectively expressed as follows according to the three
cases.

ψ ¼
1� μ0

2
1� μ0

2

1

8>><
>>: ð2:22Þ

By substituting (2.15) into (2.13), it can be obtained as follows:

1
A
dA
dt

¼ Dψ
Ee

dP
dt

ð2:23Þ

Substitute (2.12), (2.13), (2.23) into (2.11), the following equation can be
obtained, which is one-dimensional continuous equation of unsteady flow in the
pipeline

1
Kl

dP
dt

þ Dψ
Ee

dP
dt

þ ∂V
∂x

¼ 0 ð2:24Þ

For thick wall pipes, the influence of circumferential stress uniformity should be
taken into account, the influence factor can be expressed as follows:

ψ ¼

1

1þ e
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1� μ0
2
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þ 2

e
D
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ð2:25Þ

Apparently, when e/D is 0, the calculation formula of the thick wall pipe is almost
the same as that of the corresponding thin wall pipe. It is generally assumed that
D/e ¼ 25 is the dividing line between thin wall pipe and thick wall pipe. In general,
when D/e > 40, the transmission speed calculated by the two formulas differs
slightly. In drilling engineering, both drill pipe and drill collar should belong to
thick wall pipe, so it is recommended to use the thick wall pipe formula.

Because drilling fluid belongs to gas-liquid two-phase flow, it can be treated as
single-phase flow when the gas content is low. As shown in Fig. 2.6, select a pipe
with length of l ¼ c0t and the volume of V ¼ Sl.

26 2 Signal Detection and Processing of Downhole Information Transmission



In Fig. 2.6, the initial velocity of continuous pulse signal is V0, the fluid density in
the pipeline is ρ, and the pressure increase in the pipeline is ΔP. Using momentum
conservation law, we can get:

�ΔPSt ¼ �ρV0Sl ð2:26Þ

ΔP ¼ ρV0l
t

¼ c0ρV0 ð2:27Þ

The pipe is influenced by ΔP, so the volume changes dV ¼ ΔPV/Ke. Due to
liquid compressibility and pipeline expansion, some space will be left. At this time,
the same volume of liquid will be added, which is expressed as V0St.

V0St ¼ ΔPV
Ke

¼ ΔPSl
Ke

¼ ΔPSc0t
Ke

ð2:28Þ

V0 ¼ c0ΔP
Ke

ð2:29Þ

It can be obtained through simultaneous Eqs. (2.28) and (2.29):

c0 ¼
ffiffiffiffiffiffi
Ke

ρ

r
ð2:30Þ

According to the Eq.2.30, the main parameter affecting the transmission speed of
continuous pulse signal is the apparent elastic modulus of the system Ke. The
following Fig. 2.7 is used for studing Ke. Assuming that there is a piston on the
right side of the container, the volume of the liquid in the container is Vl, the volume
of the gas is Vg, and the system pressure is P.

Fig. 2.6 Pipeline fluid
transmission model
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Now move the piston to the left by a certain amount of volume ΔVt. At this point,
the pressure of the system P is changed to P + ΔP, the volume of the liquid Vl is
changed to Vl � ΔVl, the volume of the gas is changed Vg to Vg � ΔVg, and the
volume of the container Vc is changed to Vc + ΔVc, so it can be obtained:

ΔVt ¼ �ΔVl � ΔVg þ ΔVc ð2:31Þ

It can be calculated by substituting the Eq. (2.31) into dV ¼ ΔPV/Ke, shown as
follows:

1
Ke

¼ ΔVt

ΔPVt
¼ Vl

Vt
� ΔVl

ΔPVl

� �
þ Vg

Vt
� ΔVg

ΔPVg

� �
þ ΔVc

ΔPVc
ð2:32Þ

Because the volume elastic modulus of liquid, gas and pipe can be Kl ¼
� ΔPVl

ΔVl
,Kg ¼ � ΔPVg

ΔVg
and Kc ¼ � ΔPVc

ΔVc
respectively and substitutes them into

Eq. (2.32):

1
Ke

¼ 1
Kc

þ 1
Kl

� �
þ βg

1
Kg

� 1
Kl

� �
ð2:33Þ

The volume elastic modulus of the pipeline Kc Kc is mainly generated by
deformation. Let Kc ¼ ΔPVc/ΔVc, then:

ΔA
A

¼ ΔPD
Ee

ψ ð2:34Þ

Ke ¼ ΔPVt

ΔVt
¼ ΔPA

ΔA ¼ Ee
Dψ

ð2:35Þ

It can be obtained through simultaneous Eq. (2.34) and (2.35):

Fig. 2.7 Analysis model of liquid apparent elastic modulus
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1
Ke

¼ 1
Kl

1þ ψ
KlD
Ee

þ βg
Kl

Kg
� 1

� �	 

ð2:36Þ

In addition, the density calculation formula of the transmission medium is shown
as follows:

ρ ¼ 1� βg
� �

ρl þ βgρg ð2:37Þ

Therefore, it can be obtained from the Eq. (2.36) and (2.37):

c0 ¼
ffiffiffiffiffiffi
Ke

ρ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kl

1�βgρlþβgρg

1þ ψ KlD
Ee þ βg

Kl
Kg

� 1
� �

vuuut ð2:38Þ

In the equation, the density of the gas is determined by the gas state equation
ρg¼ P/ZRT, where: P is the absolute pressure, Pa; Z is the compressibility coefficient
of real gas; R is the gas constant, let R ¼ 287.4 N�m/kg�K; T is Kelvin, K; In the
boundary condition of top fixed, ψ ¼ 1

1þ e
D

1� μ0
2

� �þ 2 e
D 1þ μ0ð Þ 1þ e

D

� �� �
.

2.2.4 Drilling Fluid Pulse Signal Transmission
Characteristics and Noise Analysis

In the upload process of downhole information, susceptible to the external interfer-
ence, useful signals are severely attenuated and mixed with a lot of noise, which
results in the drowning of useful signals collected at the wellhead in the noise.
Therefore, it is an important part of extracting the weak drilling fluid cw signal from
strong noise.

The premise of flow field analysis of rotary valve is to make clear the intensity
and frequency of pressure wave generated by pulse signal generator so that the signal
can be detected when transmitted onto the ground. Therefore, it is necessary to
analyze the transmission characteristics of pulse signal to provide some boundary
conditions like pressure and speed for flow field of rotary valve. The study of drilling
fluid pressure pulse signal transmission characteristics can be used to evaluate
various factors influencing signal transmission speed and signal baud property.
The influencing factors such as signal transmission speed, signal energy loss and
waveform characteristics during signal transmission can all be analyzed.

The downhole pressure pulse signal travels along the drilling fluid in the drill
string to the signal receiver, and its amplitude decreases as the transmission distance
increases. The attenuation of drilling fluid pulse amplitude is related to the charac-
teristics of drilling fluid and its transmission distance. Field tests show that the signal
decreases by about half at each well depth of 450 m to 900 m. The attenuation of
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drilling fluid pulse signal increases with the decrease of drill string diameter, and
increases with the increase of drilling fluid compressibility, well depth, drilling fluid
viscosity and signal frequency. The gas is not completely removed from the fault
pump or drilling fluid, resulting in the presence of gas in the drilling fluid, which will
improve the compressibility of the drilling fluid, greatly reducing the amplitude of
the pulse signal sent onto the ground.

The attenuation of continuous pulse signals is related to the transmission distance
in the pipeline and the characteristics of the transmission medium. The loss of
continuous pulse signal propagating along the pipeline mostly comes from the
friction of the pipe wall. Similar to other physical transmission phenomena, contin-
uous pulse signal also conforms to the law of exponential decay. In a pipeline filled
with gas-liquid two-phase flow, the quantitative relationship between the intensity of
continuous pulse signal and the transmission distance is expressed as:

p ¼ p0 � e�
x
L ð2:39Þ

In the equation, p is the intensity of pulse signal, Pa; p0 is the initial intensity of
pulse signal, Pa; x is the transmission distance, m; L is the attenuation factor, that is,
the transmission distance when the pulse signal attenuates to the its initial intensity
1/e, m.

The expression of defining attenuation is shown as follows:

α ¼ p
p0

¼ e�
x
L ð2:40Þ

Where the attenuation factor can be expressed as:

L ¼ cD
2

ffiffiffiffiffiffiffiffi
ρ
πf μ

r
ð2:41Þ

For the relation between the angular frequency and the frequency of the pulse
signal is, it can be obtained by solving the two simultaneous Eqs. (2.40) and (2.41).

L ¼ D

½1þ Rf

ω

� �
2�

1
4

cos ½12 tan �1 Rf

ω

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kl

2μω 1þ ψ
KlD
Ee

þ βg
Kl

Kg
� 1

� �	 

vuuut ð2:42Þ

By substituting the Eq. (2.42) into the (2.39), the formula for attenuation can be
obtained:
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α¼ exp � 1þ
�Rf
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1
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1
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ð2:43Þ

For deep wells or with viscous drilling fluids, it is not easy to increase the signal
transmission rate, because higher signal frequency will greatly reduce the signal
amplitude. Therefore, the signal transmitted to the ground can be detected only by
reducing the signal frequency, reducing the signal attenuation and increasing the
pulse signal amplitude.

There are many factors affecting pulse attenuation. Some are uncontrollable in the
drilling process except the carrier frequency and drilling fluid gas content, but those
uncontrollable factors can still make a great impact. The selection of the drilling fluid
in continuous wave communication system is as critical as the selection of carrier
frequency. Reasonable selection of carrier frequency and carrier amplitude is one of
the key points of studying drilling fluid continuous pulse transmission, which could
be achieved by analyzing the influence of well depth, drilling fluid viscosity and
signal frequency on signal attenuation, and combining signal coding modulation
method.

Noise may flood the drilling fluid pulse signal and distort the signal so that even
after filtering, the original information of the signal will be missed. Therefore, noise
has a great impact on the structure and working conditions of the signal generator.
By analyzing the influence of noise factors and the drilling fluid transmission
characteristics, the selection of the appropriate signal strength and frequency range
can be thus made, which can improve the reliability of signal transmission. From the
perspective of rotary valve flow field, only the rotary valve flow field analysis based
on noise analysis has its practical significance.

Part of the noise is produced by downhole instruments, and its transmission
direction is the same as that of the transmitted pulse signal. And some noise
comes from ground instruments such as a mud pump, which transmits in the
opposite direction to the transmitted pulse signal. There are in the drilling fluid
channel many noise sources with variable frequencies and distribution ranging over
wide spectrum. Even for the same sources of noise, their frequency may change over
time during drilling. The frequency of the drilling fluid pulse communication system
usually operates below 100 Hz. The main noise sources include: mud pump, the
interaction of the drill bit with the bottom hole, the interaction of the drill string with
the wellbore, downhole turbine generator, etc. Among all the noises, the noise
generated by the mud pump has the greatest impact on the drilling fluid pulse signal.
The noise source and the frequency range are shown in Fig. 2.8. Study the signal
propagation, signal attenuation and the influence of noise, and select the optimal
frequency and amplitude of the continuous wave carrier. The purpose of channel
transmission characteristics analysis is to analyze the attenuation law and noise
influence of the actual transmitted wave to the ground receiving wave, and to
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solve such problems like: under what intensity and frequency, pressure waves are
less disturbed by noise.

2.2.5 The Encoding and Modulation of the Pulse Signal
Carrier Data

Data coding refers to the binary number composed of 0 and 1 by conversion of
downhole sensor signals. Signal modulation loads the coded signals onto carrier
signals, thus forming continuous signals. Its drive pulse generator generates pressure
waves that transmit coded information along the drilling fluid in the drill string.
Coded modulation signal serves as the driving source of pulse signal generation, and
as the data basis ensuring the normal operation of pulse signal generator. Therefore,
studying data coded modulation is a prerequisite for rotary valve flow field analysis
of drilling fluid pulse signal generator, which can provide feasible and correct
driving information for flow field analysis.

As shown in Fig. 2.9, downhole information data frame of continuous wave
communication system adopts PSK modulation with the data transmission rate of
6bit/s, and each has a fixed time width (also known as bit period), which is in PSK
modulation the time period of sending a continuous pressure wave (carrier fre-
quency) to represent binary “0” or “1”. To change the binary “0” to the binary
“1”, the speed of turning valve can be reduced and the phase of continuous wave
signal can be converted. In the figure, each downhole variable parameter has a
different update cycle. For example, resistivity transmission takes 8bits and updates
every 8 s. In addition, control bits such as data frame synchronization and error
detection are included in the coded modulation data frame to improve the reliability
of information transmission. Some coding modulation methods in modern commu-
nication technology are applied to drilling fluid pulse communication system, which

Fig. 2.8 Drilling noise source and the frequency range
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can transmit downhole information onto the ground. Data communication methods
mainly include baseband transmission and frequency band transmission.

Baseband transmission can transmit discrete pressure pulse signals, as shown in
Fig. 2.10, but it cannot transmit continuous pressure wave signals. And baseband
transmission can be applied in modes of positive pulse and negative pulse. There are
many encoding modulation methods applied in baseband transmission, such as
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Fig. 2.9 The continuous wave pulse signal adopting PSK modulation data frame

Fig. 2.10 Different coding modulation methods for baseband transmission
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return-to-zero coding (RZ), non-return to zero level coding (NRZ) and Manchester
coding.

Frequency band transmission can transmit continuous pressure wave signals at a
specific frequency (carrier frequency), as shown in Fig. 2.11. Bits “1” and “0” are
represented by changing the characteristics of continuous pressure wave (amplitude,
phase, frequency). Compared with baseband transmission, frequency band transmis-
sion can transmit data by adopting carrier frequency different from noise, which can
reduce the interference of noise to some extent. The continuous wave pulse com-
munication system can transmit data in this way. Frequency band transmission
mainly includes three modulation modes: amplitude shift keying modulation
(ASK), frequency shift keying modulation (FSK) and phase shift keying coding
(PSK).

To improve signal-to-noise ratio and information transmission rate,
Schlumberger adopts some signals encoding methods such as CPFSK (coherent
phase FSK), QPSK, OPSK and other methods. Baker Hughes’s oscillating shear
valve can generate not only FSK and PSK coded signals, but also ASK coded and
ASK combined with FSK coded signals.

Signal coding modulation will directly affect the signal transmission rate, signal
anti-interference, synchronization of signal detection and detection errors.
According to the characteristics of downhole information and characteristics of the
continuous wave signals generated, selecting appropriate encoding modulation
method can effectively improve the information transmission rate of drilling fluid
continuous wave communication system.

2.2.6 Ground Signal Receiving and Data Processing

The extraction and identification of mud pulse signal involves different disciplines,
such as electronics, fluid mechanics, vibration, signal identification theory and

Fig. 2.11 The three-
modulation method for
frequency band
transmission
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technology, etc. It is a typical interdisciplinary problem. The research work of
ground decoding system mainly includes the following four aspects:

1. The mechanism analysis of mud pulse signal transmission. The factors affecting
the viscosity velocity of mud pulse signal and the transmission velocity of drilling
fluid under ideal conditions are systematically analyzed. The attenuation degree
of mud pulse signal amplitude along the drill string and its influencing factors are
systematically analyzed.

2. Research on mud pulse signal noise. Different de-noising algorithms are system-
atically studied. Under different noises, the optimal de-noising algorithm is
selected to de-noise in the mud pulse signal, and the mud pulse signal is
effectively identified.

3. Research on mud pulse signal recognition algorithm. The mud pulse signal
recognition model is established systematically, and the theoretical basis of
mud pulse signal recognition algorithm is proposed.

4. Design and development of ground signal acquisition box. Develop ground
signal acquisition box. The ground signal acquisition box adopts high-precision
16-bit A/D conversion chip to collect mud pulse signal, and the acquisition circuit
is transmitted to the computer through USB output interface for signal processing.

The wireless MWD ground system should collect the mud pressure pulse signals
in real time and accurately, and convert them into various parameters that can be
directly used by the staff on the ground. Preliminary research lays the basis for the
successful interpretation of information by the ground decoding system. Sections
2.2.1–2.2.4 of this chapter comprehensively analyzes the generation mechanism,
transmission characteristics and noise model of mud pulse signal, providing a
theoretical basis for the recognition and noise reduction algorithm of the ground
acquisition system.

The traditional wavelet decomposition can decompose the signal into different
frequency bands, and eliminate the noise of high frequency band through threshold
processing. But the low frequency noise will remain in the reconstructed signal. For
weak continuous wave signals, part of the noise is mixed with useful signals.
Although some effect has been achieved by using wavelet threshold, this part of
the noise remains in the reconstructed signal, affecting the further optimization of
denoising results. Therefore, to improve the precision of denoising, the
low-frequency noise must be eliminated from the reconstructed signal as much as
possible.

Compared with traditional wavelet transform, empirical mode decomposition has
the advantage of self-adaptability. The number of decomposition layers depends on
the characteristics of the signal. The decomposed modal components can reveal the
local characteristics of the signal and reconstruct the signal by analyzing the instan-
taneous frequency of the modal components. However, the number of decomposi-
tion layers of traditional wavelet transform needs to be set. If there are too many
decomposition layers, the coefficients on large scale are easy to be distorted. If there
are too few layers, useful signals and noises cannot be separated well. Moreover, the
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selection of threshold value is based on the empirical formula, and the signal with
different characteristics will also produce a different effect.

For the weak continuous wave under strong noise, the wavelet transforms and
empirical mode decomposition when used alone cannot achieve the ideal denoising
effect, but the two methods in the process show their own advantages of denoising.
Wavelet denoising can effectively remove high frequency noise while the empirical
mode decomposition under high signal-to-noise ratio has a good decomposition
performance. The two methods need to be combined for signal processing. Firstly,
the signal is decomposed to different scales by means of wavelet decomposition, and
then empirical mode decomposition is carried out after selecting decomposition
layer coefficients dominated by useful signals, which is equivalent to empirical
mode decomposition processing signals under high signal-to-noise ratio. This well
satisfies the conditions of empirical mode decomposition. The specific operation
process is shown in Fig. 2.12.

1. Stationary wavelet decomposition. j layer wavelet decomposition for sufficiently
long signals is carried out (the length is defined to delete boundary signals when
suppressing end effect, so as not to affect normal information), with j starting
from 1. Do the calculation of frequency of the low frequency coefficient
decomposed each time, and the assessment of the frequency of useful signal
absolutely dominant in the low frequency coefficients, if not, further

Continuous wave signal at the wellhead

j-layer stationary wavelet decomposition, j0= 1

Whether the useful 
signal is dominant

j+1

N

Y

Decomposition k=j+1, obtain CAk,CDk

Empirical mode decomposition of CAk and CDk

Reconstruct CAk and CDk

Decoding

Layered threshold processing and reconstruction

Fig. 2.12 Combined
de-noising scheme
decomposition flow chart
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decomposition is needed until it is decomposed to the appropriate decomposition
layers. Then denote this layer as j, and do signal decomposition of K ¼ j + 1
times.

2. Do empirical mode decomposition of the low frequency coefficient CAk and high
frequency coefficient CDk at the K layer. The signal to be decomposed is set as
x(t), and its specific decomposition process is:

a. Determine all local extremum points of the signal x(t), do the fitting of the local
maximum value and minimum value respectively, and generate corresponding
upper envelope E1 and lower envelope E2. The upper and lower envelope
should cover all data points.

b. Calculate the average value of the upper envolope and lower envelope
m(t) ¼ (E1(t) + E2(t))/2

c. Calculate processing sequence h1(t) ¼ x(t) � m(t). For nonlinear
non-stationary process, the initial calculated h1(t) generally do not satisfy the
conditions of internal modelfunction, so repeat the steps (a) and (b) until the
conditions are met, then c1(t) ¼ h1(t).

d. Separate the internal modelfunction obtained in step (3) to obtain the
remaining time sequence r1(t) ¼ x(t) � c1(t)

e. Following the below equation, repeat steps a-d to obtain the internal
modelfunction in turn until the remaining sequence cannot be extracted, then
the cycle ends.

r2 tð Þ ¼ r1 tð Þ � c2 tð Þ
r3 tð Þ ¼ r2 tð Þ � c3 tð Þ
� � �
rn tð Þ ¼ rn�1 tð Þ � cn tð Þ

8>>><
>>>:

ð2:44Þ

Until now, time series x(t) is decomposed into the form of multiple internal
modelfunctions ci(t) and a superposition of residual rn(t). And ci(t) represents
the different frequency bands of the data sequence from high to low, that is:

x tð Þ ¼
Xn
i¼1

ci tð Þ þ rn tð Þ ð2:45Þ

3. The instantaneous frequency of each internal modelfunction is calculated, and
select the internal model components distributed in the frequency band of useful
signals to reconstruct the coefficient at the K layer according to the frequency of
the original signal.

4. The high frequency coefficients at other layers are denoised by multi-layered
threshold [23], and then the stationary wavelet is used to reconstruct the signal,
and delete the boundary part at both ends of the reconstructed signal.
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2.3 Acoustic Signal Transmission Technology

The acoustic transmission system [24] uses sound waves to transmit signals through
the drill pipe. Since the signal decays rapidly in the drill pipe string, relay stations
should be installed every 400–500 m in the drill pipe. Because of the diameter
change at drill string joint and the influence of screw assembly, the signal will be
attenuated by reflection and refraction. The advantages of acoustic transmission are
simple structure and low cost. The disadvantages are as follows: less information
transmitted, interference of the noise on sound wave when drilling, weak signal, fast
signal attenuation with depth, low reliability of relay device and high cost.

2.3.1 Acoustic Transmission System Model of Data while
Drilling

Acoustic wireless transmission of data while drilling uses the acoustic wave as
carrier, and drill string formed by periodic cascade of drill pipe and coupling as
channel, so that downhole logging data can reach the ground control system quickly
and effectively. Figure 2.13 shows the acoustic wireless transmission system model
of logging data while drilling.

Fig. 2.13 The acoustic
wireless transmission
system model of logging
data while drilling
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In the course of the drilling, the drill string composed of a cascade of drill pipe
and coupling goes through the wellbore and directly to the ground, forming a
channel for acoustic transmission. Downhole transmission circuit modulates the
logging data and by vibrator converts it into acoustic waves, which is loaded into
the channel of the drill string. After attenuation and noise interference, the acoustic
waves are transmitted to the receiver end acceleration sensor. Finally the acceleration
sensor converts the received acoustic signal into electrical signals, which are sent to
the receiving circuit and are restored to the original sending data after processing. By
cascaded sound insulation between the transmitting end and the drill bit, the inter-
ference of the strong noise from the drill bit to the downhole circuit can be
effectively reduced.

LWD data from downhole transmitter reaches the ground receiving end through
the channel, and the control command from the ground reaches the downhole
receiving end through the channel. The acoustic wireless transmission of data
while drilling string realizes the two-way communication between surface and
downhole by using the channel of the drill string. In the uplink transmission of
logging data, Xd represents the logging data signal at the sending end, Yd represents
the signal at the receiving end, Hc represents the frequency domain response of the
channel, Nc, Nb and Ns represents downhole environmental noise, bit coupling noise
and wellbore environmental noise respectively. The uplink transmission system of
logging data can be expressed as:

Yd ¼ Hc Xd þ Nc þ Nbð Þ þ Ns ð2:46Þ

Where Xc is the downlink logging command signal, and Yc is the downlink
receiving command signal.

2.3.2 Types and Characteristics of Acoustic Wave through
Pipeline Transmission

The transmission of acoustic wave in elastic solid medium can be equivalent to the
transmission of elastic wave in solid medium. Therefore, the transmission charac-
teristics of acoustic wave in drill pipe can be analyzed according to the wave theory
of elastic wave in solid medium. Due to different boundary conditions, the trans-
mission form of acoustic wave in drill pipe is different from that in infinite solid
medium. Only approximate solutions of acoustic wave equation can be obtained
under special conditions. For the drill pipe unit, it can be considered that the infinite
long uniform thin rod in vacuum or in air is isotropic and its cross-sectional area is
much smaller than the acoustic wavelength.

Acoustic wave is transmitted through tubing strings [25], and three types of
acoustic waves can be observed at frequencies ranging from 1 Hz to 2 k Hz:
extensional wave, torsional wave, and bending wave. Bending waves are the slowest
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of the three and can disperse even in pipes of the same diameter, which leads to great
attenuation of the signal. Therefore, generally bending waves will not be applied for
transmission, while extensional waves and torsional waves can do this.

For the above frequencies, the wavelengths of the extensional and torsional
waves are longer than the diameters of ordinary pipes, so they will not scatter in
pipes of the same diameter. The problem of acoustic transmission would be easily
solved if there are uniform connectors in the actual pipeline. But actually, tubing
strings are combined and assembled through toll joints. Therefore, the structure of
tubing string is periodically divided and joint with a certain cross-sectional area, and
the diameter of the tube is quite different from the size of the cross-sectional area.
Extensional and torsional waves will be partially reflected at each toll joint, with the
reflection coefficient of extensional waves depending on the proportion of the cross-
sectional area in the whole tube, and the torsional waves depending on the polar
moment of inertia of the cross section. The torsional waves can be strongly reflected
at the joint. That’s why we choose extensional wave. The elastic waveform phe-
nomenon of the extensional wave and torsional wave in tubing string [26] can be
expressed as follows:

cos k d1 þ d2ð Þ ¼ cos
ωd1
c

cos
ωd2
c

þM sin
ωd1
c

sin
ωd2
c

ð2:47Þ

Where is c is the velocity of acoustic wave, k is the wave number, and M is the
reflection coefficient.

M ¼ 1
2

a1=a2 þ a2=a1 extensional wave

I1=I2 þ I2=I1 torsional wave



Where, d1 and d2 represents the length, a1 and a2 represents the cross-sectional
area, I1and I2 is the polar moment of inertia between the joint and the pipe.

Before analyzing the transmission characteristics, set the following:
Drill string density as ρ(x), joint area as a(x), velocity of longitudinal wave as c,

impedance as z ¼ ρac, and ujn as the transmission location u(x, t), where x ¼ xn,
t ¼ jΔt, n and j are indexes of location and time respectively (Fig. 2.14).

1 2

h

3 N

dN
d3d2d1

Fig. 2.14 The physical
model diagram of general
tubing string
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The transmission pipeline model is shown in the Fig. 2.14:
For the N pipe joint, the potential function can be expressed as:

Φ ¼ Φie
jkx þΦre

�jkx ð2:48Þ

Where Φ represents the potential function, Φi represents the amplitude of poten-
tial function that directly reaches the pipe joint, Φr represents the amplitude of
potential function that reaches the pipe joint through reflection, and k represents
the wave number of the longitudinal wave.

The relation can be expressed as follows:

u ¼ ∂Φ
∂x

¼ jk cos kxð Þ Φi �Φrð Þ þ j sin kxð Þ Φi þΦrð Þ½ � ð2:49Þ

F ¼ �ρac2
∂u
∂x

¼ jρac2k2 sin kxð Þ Φi �Φrð Þ � j cos kxð Þ Φi þΦrð Þ½ � ð2:50Þ

Angle of matrix can be expressed as:

u

F

	 

¼ A xð Þ Φi þΦr

Φi �Φr

	 

ð2:51Þ

Where A(x) is the matrix of x, the elements of the matrix can be expressed as:
a11 ¼ �k sin(kx), a12 ¼ jk cos(kx), a21 ¼ ρac2k2 cos(kx) and a22 ¼ jρac2k2 sin(kx).

Studing the transmission effect of the tubing string, denote Φi and Φr as ΦI and
ΦR at the receiving end, it can be obtained from the above equation:

u

F

	 

x¼dþn

¼ A 0ð Þ ΦI þΦR

ΦI �ΦR

	 

ð2:52Þ

Besides, there is no reflected acoustic wave at the transmitting end, so Φr ¼ 0, Φi

is the amplitude of potential function of transmitting sound wave.
Reflection coefficient R and transmission coefficient T can be defined as R ¼ ΦR

ΦI
,

I ¼ Φi
ΦI
. Let MN ¼ A(dN)A

�1(0), then:

A 0ð Þ ¼ 1þ R

1� R

� �
¼ MA 0ð Þ T

T

� �
ð2:53Þ

Since:

A 0ð Þ ¼ 0 jk

ρac2 0

� �
ð2:54Þ

Let M ¼ [Mij]2�2, then it can be obtained:
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jk jm11k þ m12ρac2k
2

�ρac2k2 jm21k þ m22ρac2k
2

 !
� R

T

� �
¼ jk

ρac2k2

� �
ð2:55Þ

From the above Eq. 2.55, transmission coefficient and reflection coefficient of
tubing string can thus be obtained.

Drill string has roughly the same basic structure, but for different types of drill
string, its joint thread and joint cross-sectional area are not the same. So even with
the same drill string channel structure, the acoustic transmission characteristics also
matters in it. As the proportion of drill string pipe body and joint cross-sectional area
gradually increases, the cross-sectional area of the two gradually approaches, and the
reflection of acoustic transmission in the channel decreases. At this time, the higher
the transmission coefficient is, the smaller the curve curvature can be and the smaller
the attenuation of acoustic transmission can be. Therefore, the variation of drill string
pipe body and cross-sectional area affects the attenuation range of acoustic trans-
mission. The greater the difference, the more serious the attenuation will be.

2.3.3 Attenuation Characteristics of Acoustic Propagation
along Tubing String

When the acoustic wave propagates in the tubing string [27], its signal strength will
gradually decline. The coupling, acoustic frequency and the damping of surrounding
media are the main causes of the attenuation. Generally speaking, the propagation
attenuation of acoustic signal can be divided into the following three forms:

1. Absorption attenuation inside the drill pipe: the acoustic waves are transmitted in
the drill pipe. Due to the viscous effect of the medium, the internal friction
between particles is caused, which converts acoustic energy into heat energy.
Heat energy is transmitted through the medium, resulting in energy loss.

2. Diffusion-type attenuation at the coupling: when there exists granular structure,
defective structure and the structure containing dopants in the drill pipe, it will
cause attenuation of acoustic wave intensity. Generally, when the granule size is
much smaller than the wave length, the scattering attenuation is proportional to
the fourth power of the acoustic wave frequency. When granule size is close to
wavelength, scattering attenuation is proportional to the square of acoustic wave
frequency.

3. Scattering attenuation: as the acoustic wave travels around, the energy of the
acoustic wave gradually diffuses, which reduces the energy stored per unit area.
The acoustic energy per unit area decreases with the increase of the square value
of the distance from the sound source.

Among them, absorption attenuation is actually the energy conversion when
acoustic waves travel along the tubing string. Part of it becomes heat energy, the
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other part is converted to the energy needed for intramolecular motion. The absorp-
tion attenuation law can be expressed as follows:

A ¼ A0e
�δL ð2:56Þ

Where A represents the acoustic wave intensity at the distance from the sound
source L, with the unit dB; L represents the propagation distance, with unit m; e is a
constant of 2.3; δ is attenuation coefficient of acoustic wave in tubing string.

The attenuation coefficient of acoustic wave is usually related to the viscosity
coefficient of surrounding medium, the transmission distance of acoustic wave
signal and the transmission frequency. The law of it can be expressed as: the greater
the viscosity coefficient of the surrounding medium is, the greater δ is. In addition,
the attenuation coefficient also increases with the increase of transmission distance
and frequency. It can be seen from the Eq. (2.56) that the amplitude of acoustic wave
travelling along the tubing string can be approximately regarded as attenuation by
the exponential law.

Similarly, the discontinuity of the transmission medium at the joint between the
tubing and the coupling also lead to reflection and scattering attenuation of acoustic
waves as they travel along the tubing string. Acoustic waves attenuate slightly in the
same oil tube but attenuate greatly at the coupling. This is because the signal strength
of acoustic waves becomes relatively weak after some energy is reflected by screw
threaded during the transmission of acoustic waves along the tubing string. Then the
refracted acoustic waves are weaker than than incident acoustic waves. In the whole
transmission process, the refracted wave will always be smaller than the incident
wave, which makes acoustic energy is being attenuating in the whole process of
transmission.

The wave equation corresponding to the acoustic transmission can be expressed
as follows:

A ¼ A0e
�αxej ωt�kxð Þ ð2:57Þ

In the equation, is envelope curve function in the amplitude wave Eq. (2.57). In
the process of acoustic wave propagation along tubing string, its signal amplitude
attenuates exponentially with the increase of transmission distance.

The attenuation coefficient α can be expressed as follows:

α ¼ 1
x
ln

A0

A
¼ 2:3026

x
lg
A0

A
ð2:58Þ

In which A0 is the initial wave amplitude, and A is the wave amplitude at the wave
distance x.

Assuming that there are two different well depths x1, x2 (x1 < x2), the amplitude of
acoustic signals in the two different well depths is expressed as A1 and A2 respec-
tively, and the attenuation coefficient can be approximatively expressed as:
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α ¼ 1
x2 � x1

ln
A1

A2
ð2:59Þ

2.3.4 Noise Interference Characteristics and Model

Based on different research objects, noise and useful signals are on opposite sides.
Noise is considered as a kind of “pollution” to useful signals, and its interference to
useful signals can be divided into additive interference and multiplicative interfer-
ence, which correspond to additive noise and multiplicative noise respectively. In
most cases, noise interference can be considered as additive noise. The characteris-
tics of noise determines its interference characteristics. According to the inherent
characteristics of noise, noise can be divided into white noise, colored noise and
impulse noise, Among which white noise is one of the simplest and most common
noise. It mainly features in the noise component containing all frequency, and the
probability of each noise component is the same. The noise spectrum is a straight
line. Compared with the concept of white noise, the concept of colored noise does
not include the noise components of all frequency, and the corresponding noise
spectrum is not a straight line. Impulse noise is a kind of impulse interference which
appears in a very short time with a large peak value in time domain and noise
components at all frequency points of frequency domain.

Downhole environmental noise is generated by a series of downhole drilling
logging, including the contact between drill pipe and borehole wall, circulation flow
of drilling fluid, and working noise of LWD instruments, etc. [28]. The character-
istics of such noise are closely related to drilling pipe parameters, formation char-
acteristics, the type of drilling fluid, flow rate, the type of logging instrument and
working state. The noise generated by the collision of drill pipe and borehole wall is
related to the characteristics of borehole wall. The harder the wellbore rock layer is,
the higher the noise frequency is. The circulating flow of drilling fluid can produce
relative motion relatively to the drill pipe, and its viscous coupling effect reduces the
acoustic energy. Meanwhile, the drilling fluid carries a large number of crushed rock
in the fractured stratum, which will excite noise interference when the gravel collides
with the drill pipe. When the bit drilling stops, the noise frequency of drilling fluid
circulation is mainly in the low frequency band with the frequency ranging from 1 to
2300Hz.

When noise intensity Xn is Gaussian distribution, the probability density function
of Xn is:

f Xn
¼ 1ffiffiffiffiffi

2π
p

σn
exp � xn � unð Þ2

2σ2n

	 

ð2:60Þ
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Where un and σ2n are respectively the average and variance of Xn. When the noise
intensity obeys Gaussian distribution and the power spectral density is a constant,
the white noise is called Gaussian white noise. Gaussian white noise is very simple
and easy to deal with in time domain and frequency domain, so it is often used as a
mathematical model for theoretical analysis of noise.

Compared with Gaussian white noise, impulse noise is featuring its fast burst,
short duration, high energy and fast attenuation, which causes serious interference to
signal transmission. Bernoulli-Gaussian noise model is widely used in Power Line
Communication (PLC) channels [29, 30]. This kind of noise wk consists of Gaussian
noise zk and impulse noise qkik, which can easily and clearly describe the influence of
Gaussian noise and impulse noise. Similarly, in the acoustic transmission system
while drilling, to simplify the interference of impulse noise, the mathematical model
of impulse noise should be established. Most researchers apply Bernoulli-Gaussian
noise model for the modeling of impulse noise.

Bernoulli-Gaussian noise model is expressed as follows:

wk ¼ zk þ qkik, k ¼ 0, 1, � � � ð2:61Þ

Where zk and ik are mutually independent Gaussian white noise sequences, and qk
is Bernoulli sequences, and the expression is:

qk ¼
0, 1� PI

1, PI


ð2:62Þ

PI is the probability of the impulse occurring.
The variance of Gaussian sequence zk is denoised as σ2z , the variance of Gaussian

sequence ik is denoised as σ2I , and the two SNR are defined as:

SNRg ¼ 10 � log 10
σ2s
σ2z

� �

SNRI ¼ 10 � log 10
σ2s
σ2I

� �
8>>><
>>>:

ð2:63Þ

Where SNRg is the power ratio of Gaussian white noise zk to signal, and SNRI is
the power ratio of Gaussian white noise Ik to signal. The probability density wk of is
the joint probability of two Gaussian white noises, the expression of it is:

Pwk wkð Þ¼ 1ffiffiffiffiffi
2π

p PI
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2z þσ2q

� �r expð� w2
k

2 σ2z þσ2q

� �þ 1�PIð Þ 1ffiffiffiffiffiffiffiffiffi
σ2z
� �q exp

w2
k

2σ2z

� �2
664

3
775

ð2:64Þ
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Downhole environmental noise, bit coupling noise and wellbore environmental
noise have caused serious interference to acoustic transmission while drilling.
Effectively suppressing noise interference plays a key role in improving transmis-
sion quality. The methods of noise suppression mainly include active noise suppres-
sion and passive noise suppression, which can be expressed as noise source control
and propagation control. At present, passive noise suppression schemes are mostly
adopted in noise suppression by installing mufflers, sound absorbers, sound insula-
tion and other multi-technology combination schemes.

Downhole environmental noise and bit coupling noise can reach the downhole
transmitter through drill collar, and the noise can be effectively reduced by cascading
sound insulation between the drill bit and the acoustic transmitter. For wellbore
noise, the interference caused by such noise to the receiving end can be effectively
reduced by installing sound insulation wall and muffler at the side of diesel generator
set. Meanwhile, for the remaining noise interference, a series of signal processing
means can be used to suppress noise, thus improving the quality of signal
transmission.

2.4 Electromagnetic Transmission Mode

Electromagnetic wave MWD system realizes electromagnetic signal transmission
using the drill pipe as an antenna, excites on both ends of bare conductors pipe in the
drilling hole extremely low frequency electric current that carries the transmitted
data, which goes through the surrounding strata to form electric field or magnetic
field, and then is transmitted to the ground by long-distance transmission. Through
the receiving electrode at the wellhead, the attenuated electromagnetic signal from
the ground can thus be received. During the drilling process, the exposed drill pipe
and borehole wall, the space between them and the surrounding strata all constitute
the electromagnetic transmission channel. The propagation distance of electromag-
netic wave in formation is seriously affected by formation resistivity. The formation
resistivity of different region and depth varies greatly, which leads to different
transmission depths of EM-MWD instrument signals. In addition, contact resistance
exists between each section of drill pipe and between drill pipe and stratum, and the
size of contact resistance changes dynamically with the vibration of drill pipe, thus
affecting the stability of signal transmission.

2.4.1 EM-MWD Electromagnetic Communication Channel

According to the attenuation characteristics of electromagnetic signals during chan-
nel transmission [31–33], the following conclusions can be drawn:(1) electromag-
netic signals are seriously attenuated by formation, and the formation resistivity
suitable for EM-MWD operation is usually 2–200Ω � m; (2) if the transmission
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distance of EM-MWD signals reaches thousands of meters, the working frequency
of electromagnetic signals should not be more than 100 Hz; (3) the working
frequency, transmission distance, formation resistivity and drill pipe resistivity of
electromagnetic signals can all affect the signal voltage and signal current between
ground receiving electrodes.

Assuming that the resistivity of homogeneous formation around the borehole ρ is
2–2000Ω � m, the relative dielectric constant is not more than 200, and the highest
working frequency of electromagnetic signal is 100 Hz, then:

σ
ωε

¼ 1
2πf ρεrε0

ð2:65Þ

In the equation, σ is formation resistivity, f is working frequency of electromag-
netic signal, and free space dielectric constant ε0 ¼ 8.85 � 10�12F/m. Then the
conduction current of electromagnetic signal propagating in the homogeneous
formation is much larger than that of displacement current. Therefore, EM-MWD
usually uses low frequency current field for data communication.

EM-MWD electromagnetic communication channel has the following
characteristics:

1. The low frequency current signal is seriously attenuated. When inner diameter
and outer diameter of the drill pipe, drill pipe resistivity, insulation end length and
lower drill pipe length are fixed, the low-frequency current signal is seriously
attenuated due to the influence of formation resistivity, signal working frequency
and transmission distance when propagating in homogeneous formation, and the
conduction current is much larger than the displacement current. So the ground
EM-MWDS or downhole EM-MWDS communication system modeling need not
consider shadow fading and multipath fading, and EM-MWD electromagnetic
communication channel is approximated as Gaussian white noise AWGN
channel.

2. Low frequency channel. To make the transmission distance reach thousands of
meters, the working frequency of electromagnetic communication signals is
usually less than 100 Hz [34]. In addition to weak electromagnetic communica-
tion signals, voltage signals between ground receiving electrodes are also mixed
with self-potential and wellsite power frequency interference signals. If the
electromagnetic signal communication frequency band is higher than the self-
potential frequency band and lower than the power frequency band, filter method
can be used to extract weak useful communication signals from received signals.

3. Parametric variation channel. In the drilling process, the dynamic contact of lower
drill pipe with the formation results in dynamic change of contact resistance; The
formation resistivity around the lower drill pipe varies with different drilling
depths, and the signal attenuation degree is also different. The composition of
drilling fluid around the insulation nodes affects the resistivity and thus affects the
emission current. For the above factors, the transmitting signal current changes
dynamically with drilling fluid, formation and contact resistance around the
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insulation nodes, resulting in the dynamic change of the receiving signal voltage
amplitude with time. This requires the EM-MWD receiver possessing the auto-
matic gain control function.

2.4.2 The Transmission Characteristics of Electromagnetic
Wave in Formation

In the through-the-earth communication, the main factor affecting the propagation of
electromagnetic wave is the electromagnetic parameters of the earth medium,
including: conductivity, permeability and dielectric constant. The three parameters
jointly affect the propagation of electromagnetic wave in the stratum. The propaga-
tion coefficient is expressed as follows:

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jωμ σ þ jωεð Þ

p
¼ jω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ ε� jσ=ωð Þ

p
¼ αþ jβ ð2:66Þ

Where,

α ¼ ω
με
2

�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ=ωεð Þ2

q	 
 �1=2

β ¼ ω
με
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ=ωεð Þ2

q	 
 �1=2

When |E/E0| ¼ 1/e, the skin depth can be expressed as:

δ ¼ 1=α ¼
ffiffiffi
2

p
= ω2με �1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ=ωεð Þ2

q	 
 �1=2

ð2:67Þ

Considering that the permeability of the formation is the same as that of free
space, the propagation coefficient in the formation can be written as:

k ¼ j
2π
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εr � 60jσλ

p
ð2:68Þ

In the electric conduction of the medium, when σ/ωε � 1, the skin depth in
Eq. (2.67) can be simplified as δ ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
πf μσ

p
. Skin depth reflects the penetration

ability of electromagnetic wave, indicating that the penetration ability of electro-
magnetic wave is related to the frequency ( f ) of electromagnetic wave and the
conductivity of medium. The higher the frequency is, the greater the conductivity of
medium is and the smaller the penetration ability of electromagnetic wave is. So the
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more serious the signal attenuation is, and the shorter the propagation distance will
be. Due to the serious attenuation of electromagnetic wave caused by the formation,
the signal of receiving point is weak, and the available frequency band for wireless
communication through the formation only includes very low frequency band or
even below it.

2.4.3 The Transmission Characteristics of Electromagnetic
Wave in Drill Pipe

Due to the narrow drilling space, the rotating drill pipe is used as the transmission
channel of electromagnetic waves. Only the vertical electric antenna (axial current
along the drill pipe) and the vertical magnetic antenna (horizontal current ring
around the drill pipe provokes the magnetic field alongside) are feasible to stimulate
the electric field and magnetic fields respectively. Solve the modular equation of the
propagation of these two fields along the conductive cylinder [35]. The result shows
that the attenuation rate of the magnetic field corresponding TE wave is 3–4 orders of
magnitude higher than that of the TM wave. Therefore, the most suitable excitation
mode is the vertical electric antenna.

There are two kinds of analysis methods for conducting electromagnetic wave:
field-based analysis method and path-based analysis method. According to the
electromagnetic wave transmission mode in the drill pipe, it is more convenient to
adopt the “path-based” analysis method, that is, the drill pipe is equivalent to
uniform transmission line. For uniform transmission line, dz. can be taken from
any point z of transmission line for research. Considering the physical significance of
distributed parameter resistance, inductance, leakage conductance and capacitance,
there exist parallel distributed capacitance C1dz, series distributed inductance L1dz,
series distributed resistance R1dz and parallel distributed leakage conductance G1dz
on the transmission line of dz length. Thus, the equivalent circuit of the transmission
line can be drawn according to the “path-based” analysis method, as shown in
Fig. 2.15.

Fig. 2.15 The equivalent
circuit model of the
transmission line
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It can be drawn from Kirchhoff’s law:

u z, tð Þ � R1i z, tð Þdz� L1
∂i z, tð Þ
∂t

dz� u zþ dz, tð Þ ¼ 0 ð2:69Þ

i z, tð Þ � G1i z, tð Þdz� C1
∂u z, tð Þ

∂t
dz� i zþ dz, tð Þ ¼ 0 ð2:70Þ

Since:

∂u z, tð Þ
∂z

¼ u zþ dz, tð Þ � u z, tð Þ
dz

,
∂i z, tð Þ
∂z

¼ i zþ dz, tð Þ � i z, tð Þ
dz

By substituting the Eqs. (2.67) and (2.70), it can be obtained:

�∂u z, tð Þ
∂z

¼ R1i z, tð Þ þ L1
∂i z, tð Þ
∂t

ð2:71Þ

�∂i z, tð Þ
∂z

¼ G1u z, tð Þ þ C1
∂u z, tð Þ

∂t
ð2:72Þ

Equations (2.70) and (2.72) are the differential equations of voltage and current
when electromagnetic wave propagates in drill pipe, in which equation R1 ¼ ρ/2bτ
(1 � τ/2b), L1 ¼ μ0/2π ln (D/b), G1 ¼ 2πσ/ ln (D/b), C1 ¼ 2πε/ ln (D/b).

To determine the size of D, the total parallel admittance of the equivalent
transmission line can be set as equal to the admittance from the drill pipe of the
infinite distance when the drill pipe exists independently, namely:

g ¼ hR1ð Þ�1 ¼ 2πσ= ln 2h=bð Þ ð2:73Þ

Thus, the equivalent radius of the transmission line is D ¼ 2h. If U(z) and I(z)are
respectively complex voltage and complex current at z, the plural form of Eqs. (2.71)
and (2.72) is:

� dU zð Þ
dz

¼ R1 þ iωL1ð ÞI zð Þ ð2:74Þ

� dI zð Þ
dz

¼ G1 þ iωC1ð ÞU zð Þ ð2:75Þ

By derivation of the Eqs. (2.74) and (2.75), it can be obtained:

d2U zð Þ
dz2

¼ Γ2U zð Þ ð2:76Þ
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d2I zð Þ
dz2

¼ Γ2I zð Þ ð2:77Þ

Where Γ is defined as propagation coefficient, Γ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1 þ iωL1ð Þ G1 þ iωC1ð Þp ¼ ψ þ jφ.
Equations (2.76) and (2.77) are called wave equations of the transmission line.

Their general solution form is as follows:

U zð Þ ¼ A1e
�Γz þ A2e

Γz ð2:78Þ

I zð Þ ¼ 1
Z0

A1e
�Γz � A2e

Γz� � ð2:79Þ

The characteristic impedance of the transmission line is Z0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1 þ iωL1ð Þ= G1 þ iωC1ð Þp

, integration constant A1 and A2 can be determined by
the boundary condition of the transmission line.

2.4.4 The Attenuation Model of Downhole Electromagnetic
Signal

Electromagnetic waves can penetrate and propagate through most nonmetallic
medium, and the depth of penetration is inversely proportional to the frequency of
the wave and the conductivity of the medium. Electromagnetic MWD system
realizes the information transmission from this characteristic of electromagnetic
wave. AJ Mansure and others [36] proposed the signal model of “long electrode
embedded in the formation ideal conductor”. According to the signal model, the
distribution of signal current on the drill string in the formation can be calculated as:

Ir zð Þ ¼ It exp �zsð Þ ð2:80Þ

Where z is the distance from a point on the drill string to the signal source point,
m; Ir(z) is the intensity of signal current at point z, A; It is the maximum amplitude of
source point signal current, A; s is the skin inversion coefficient of electric current in
the formation, s ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

πf μ=ρ
p

, where μ represents the magnetic conductivity of the
formation, generally 4π � 10�7 H/m. ρ represents the resistivity of electric current
through the formation, Ω � m and f is the emission signal frequency, Hz.

It can be seen from the Eq. (2.80) that the current intensity at a point on the drill
string is related to formation resistivity ρ, signal frequency f and the distance from
this point to the signal source z, on the premise that the amplitude of transmitting
signal current It remains unchanged. If the signal frequency and formation resistivity
remain unchanged, the signal current on the drill string Ir(z) decreases exponentially
with the increase of distance z, as shown in Fig. 2.16 (the vertical axis is the
logarithm).
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The actual formation tends to be stratified. If the drill string passes through the
formation with different resistivity ρ1, ρ1, � � �, ρn in n layers, and the corresponding
thickness of each layer is z(1), z(2), � � �, z(n) respectively, then the current distribu-
tion on the drill string can be expressed as:

Ir zð Þ ¼ It exp �
Xn
i¼1

z ið Þs ið Þ
" #

ð2:81Þ

Where, s ið Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πf μ=ρ ið Þp

It can be seen from Eq. (2.81) that, in the multi-stratum environment, the law of
signal attenuation is basically consistent with that of a single formation. In single
formation, the higher the transmitted signal frequency is, the stronger the attenuation
is and the smaller the signal amplitude received on the ground is. In order to improve
the MWD depth, signal frequency must be reduced, which means the reduction of
data transmission rate, affecting the real-time performance of MWD measurement
data. The lower the resistivity of the drill string through the formation is, the faster
the signal current decayed. Electromagnetic MWD in drilling engineering are
committed through different formation with large difference in resistivity. Therefore,
transmission frequency must be dynamically adjusted according to formation resis-
tivity and working depth without increasing downhole transmission power, so as to
improve MWD depth and data transmission rate.

2.5 Remote Transmission System of the IntelliPipe Data

In 2002, the IntelliPipe [37] system, successfully developed by American Intelli
Serv, realizes the non-contact transmission of signals by using the electromagnetic
induction coupling principle, and solved a series of problems such as line wear and
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poor contact in the wired transmission mode [15]. Since the intelligent drill pipe
constitutes a network system, downhole instruments can also communicate, receive
and execute instructions with each other. Information transmission can thus be
achieved with various downhole tools and measurement sensors in the drilling
process, so as to effectively evaluate oil and gas reservoirs in real time and guide
drilling tracks accurately. The induction coil unit is installed in the joint, which
facilitates the electrical conduction of the drill string for the full length. Downhole
instruments such as sensors is installed in intelligent drill collars that are connected
to the lower end of the drill pipe via armored cables. At the top of the drill pipe is a
rotating ring connected to the ground instruments. The advantages of this transmis-
sion mode are fast data transmission and simple two-way communication. The
disadvantages lie in that the transmission drill pipe needs special processing and
costs a lot. Moreover, the transmission drill pipe can only transmit downhole
measurement information and cannot transmit power (electricity) to downhole
instruments.

2.5.1 Principle of Signal Inductive Coupling Transmission

The signal can be transmitted along the cable in the drill pipe and transmitted
through an inductive coupler at the joint of the drill pipe. The signal transmission
principle of inductive coupler can be analyzed according to electromagnetic induc-
tion theorem.

The number of turns of the coupler coil is set as N, the magnitude of the current
passing through the coil is set as i, and the magnitude of the magnetic flux generated
by each turn of the coil is set as Φ, which is proportional to the magnitude of the
current i. If the magnetic induction line can pass through all N turns of the coil,
namely, there is no leakage flux between adjacent turns of the coil, then the full flux
ψ ¼ NΦ, which is also called the flux linkage. The relation of it and current is:

ψ ¼ Li ð2:82Þ

Where L is the self-inductance of the coupling coil.
Start studying from two coils that are close to each other, as shown in Fig. 2.17,

coil 1 and coil 2 are close to each other. Coil 1 is called primary coil, and let its
number of turns be N1, the self-inductance, L1. Coil 2 is called secondary coil, and let
its number of turns be N2, the self-inductance coil, L2.

The current i1 generates the flux Φ11 through the primary coil and generates the
flux Φ21 through the secondary coil. The flux Φ1n that does not pass through the
secondary coil is called the flux leakage. The transfer of magnetism from one coil to
another is called magnetic coupling. The flux linkage generated by i1 through the
secondary coil is:
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ψ21 ¼ N2Φ21 ¼ Mi1 ð2:83Þ

Where M is the coefficient describing the coupling effect between two coils,
which is called mutual inductance. The size of it is related to the shape, position,
distance and other factors of the two coils. Due to the existence of flux leakage Φ1n,
the two coils in Fig. 2.17 cannot be fully coupled. The coupling coefficient k
(0 	 k 	 1) is defined as the ratio of coupling flux to total flux, i.e.

k ¼ Mffiffiffiffiffiffiffiffiffiffi
L1L2

p ð2:84Þ

Then k ¼ 0 represents no coupling; k ¼ 1 represents full coupling. At this time,
Mmax ¼

ffiffiffiffiffiffiffiffiffiffi
L1L2

p
.

According to the law of electromagnetic induction, if the area of the closed coil
remains unchanged, when the magnetic flux across its area changes, the coil will
generate induced electromotive force, magnitude of which is the rate of flux change.
Thus, the mutual inductance electromotive force e of the secondary coil is:

e ¼ � dψ21

dt
¼ �M

di1
dt

ð2:85Þ

From the above equation, we can know the magnitude of mutual induced
electromotive force. Firstly, it is related to the speed of current change rate of coil
1, namely di/dt. The second is related to the mutual inductance M between the two
coils.

2.5.2 The Circuit Model of an Inductive Coupler

The magnetic induction drill pipe simulation prototype is shown in Fig. 2.18. The
inductive coupler structure is similar to that of a transformer with high working

N1

Φ11

Φ1n

Φ21

N2

i2i1

1 2Fig. 2.17 Mutual
inductance coil magnetic
coupling
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frequency. The model of the inductive coupler can be obtained from the general
model of high-frequency transformer. The high frequency transformer model takes
into account the parasitic effect of components at high frequency and can be
represented by a network of lumped parameter elements (inductor, capacitor, resistor
and double-port ideal transformer), as shown in Fig. 2.19.

In Fig. 2.19, L1s and Lm represents leakage inductance and magnetizing induc-
tance respectively. The resistance R1 and R2 represent the direct current loss of
transformer coil at low frequency. Rm represents hysteresis loss and eddy current loss
of magnetic core at high frequency. C1 and C2 are distributed capacitors generated by
primary and secondary coils respectively. Cp is the stray capacitance between the
two coils of the transformer. These parameters are all related to working
frequency [38].

The current transformer model is not too different from the high-frequency
transformer model, and it is only equivalent to the circuit model after a switch
between the primary side and secondary side in Fig. 2.19. L1s, L2s and Lm are not
real in the circuit, and it is difficult to measure. To make it more intuitive, the three
parameters are represented by coil self-inductance and mutual inductance. At the
same time, for the model in the figure above, it does not involve the secondary loss of
the transformer, but the secondary loss of the inductive coupler should be considered
due to its symmetry. Therefore, on the basis of high-frequency transformer, the
circuit model of inductive coupler is given, as shown in Fig. 2.20.

The resistance R represents the dc loss of the coil, the capacitance C represents the
distributed capacitance of the coil; Rm, the hysteresis loss and eddy current loss of the
magnetic core at high frequency; Cp, an the stray capacitance between the two coils.
The ideal transformer model is not adopted in the transformer. The coupling

Fig. 2.18 Inductively
coupled with simulation
drill pipe

R1 R2

Cp

Rm Lm

L1s L2s

C1
C2

Fig. 2.19 Model of high-
frequency transformer
circuit

2.5 Remote Transmission System of the IntelliPipe Data 55



coefficient k < 1, L is the self-inductance of the primary coil and secondary coil of the
inductive coupler, and M is mutual inductance. End 1 and end 3 are of the
same name.

2.5.3 The Circuit Model of the Magnetic Inductive
Transmission

The cable used in the channel is radio-frequency coaxial cable, which can be
equivalent to a uniform and unbalanced transmission line filled with medium in
the middle of two concentric cylindrical conductors. The characteristic impedance is
denoted as Z0 ¼ 75Ω, and every 100 m attenuation is denoted as α100 ¼ 2.2dB when
the signal frequency is less than 5 MHz. The attenuation of signal propagation can
manifest as the decrease of signal output amplitude [39]. The signal output amplitude
changes with the transmission distance, which can be expressed as follows:

u lð Þ ¼ uin � 10�kx=20 ð2:86Þ

In the equation, l is the position of a point on the transmission line, and u(l) is the
signal output amplitude at l on the transmission line, uin is the amplitude of the input
signal, and α is the attenuation per unit length.

By substituting α100 ¼ 2.2dB into the equation, the voltage attenuation ratio of
100 m long coaxial cable is 97%. It can be seen that the attenuation of 10 m long
coaxial cable is much more smaller. The cable can then be equivalent to the simplest
zero-order circuit, in which case the cable serves as a capacitor. From its main
electrical characteristic, coaxial cable serves as the capacitor Ct. Considering the
capacitance effect of coaxial cable and compensating the capacitance of inductive
coupler, the transmission model of magnetic induction channel is shown in Fig. 2.21:

In Fig. 2.21, S is the equivalent circuit model of inductive coupler; T is the zero-
order circuit model of coaxial cable, which manifests as the capacitance connected at
both ends of the coil.

R

Rm RmC L C

3

41:12

1

L

Cp

M R

Fig. 2.20 Model of
inductive coupling circuit
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2.5.4 Advantages and Disadvantages of Intelligent Drillpipe
Transmission Technology

Intelligent drill pipe transmission technology has the advantages of high data
transmission speed, large capacity, real-time and two-way transmission, which is
suitable for conventional drilling, underbalanced drilling and gas drilling. It is a
breakthrough in downhole signal transmission technology.

Compared with mud pulse, electromagnetic wave and acoustic wave transmission
mode, intelligent drill pipe transmission mode has obvious advantages, which are
mainly shown in the following aspects:

1. high data transmission speed, large capacity and real-time. The data transmission
rate is up to 57,600 bits /s, which enables real-time monitoring of drilling process
without any interference.

2. two-way communication. Through downward transmission functions and spe-
cialized downhole interface joints, the rotary steering drilling system can be
remotely operated while drilling continuously, thereby improving the control
accuracy and efficiency of well track, improving wellbore smoothness and
wellbore quality, reducing non-production time and reducing overall drilling
costs.

3. wide range of application. It can be used for data transmission under any
downhole conditions, including underbalanced drilling and gas drilling.

4. real-time monitoring of the whole wellbore, which is conducive to timely pre-
vention of downhole complex conditions.

5. mud pulse can be used as an alternative transmission mode when the intelligent
drill pipe is applied. In case the transmission of drill string is interrupted, mud
pulse transmission mode can be enabled without lifting the drill string.

6. with the capability of high-speed transmission and two-way communication. It
will greatly promote the further development of monitoring, evaluation, diagnosis
and prediction technologies while drilling, such as MWD, LWD, geological
guidance, formation testing while drilling and seismic while drilling.

In addition to the above advantages, intelligent drill pipe telemetry system also
has some shortcomings. For example, the cost of intelligent drill pipe is much higher
than that of ordinary drill pipe. It is not possible to supply downhole electricity
through such soft-connected cables.

S

1

2

3

4

T T

CtCt

S S

Fig. 2.21 Transmission model of magnetic induction channel
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2.6 Summary

Unlike conventional wireline logging methods, LWD has the main advantage of the
real-time data transmission, which can provide powerful support for the analyzing,
processing and interpretation of the downhole data in field. And it is helpful to
evaluate formation timely and effectively, update the formation model, optimize
well track and completion well design, thus improving the efficiency and effective-
ness of oil and gas exploration and development.

Data transmission technology is the core as well as bottleneck of LWD. At
present, the widely used LWD data transmission technologies mainly include mud
pulse transmission, electromagnetic transmission, acoustic transmission and intelli-
gent drill pipe transmission. In general, the wireless transmission mode has a simple
structure and relatively low technical cost, but with a low data transmission rate,
limited data transmission volume and poor anti-interference ability. The wired
transmission mode has obvious advantages, including high transmission rate (up to
1-2Mbit /s) and two-way transmission, but with complex instrument design and high
cost. The main trend of development for later research lies in the following three
aspects:

1. in the future, the main goal of mud pulse transmission is to achieve higher data
transmission rate, improve working reliability and environmental adaptability, so
as to achieve the best transmission effect under the factors such as mechanical
drilling speed, mud type, well depth, drill pipe diameter and others.

2. electromagnetic and acoustic transmission technologies need to solve the prob-
lems of signal attenuation and noise interference, improve the reliability of signal
transmission, increase the transmission depth of measured data and effectively
reduce the costs.

3. the transmission of intelligent drill pipe continues to achieve the two-way, high-
rate and real-time communication. Continuous improvement need to be make in
reduced costs, further prevention of the operational risks, improved drilling
efficiency and reduced non-operational time.
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Chapter 3
Dynamic Measurement of Spatial Attitude
at the Bottom Rotating Drillstring

Abstract In oil and gas directional drilling technology and application, how to
accurately measurement the spatial attitude of the bottom drillstring in real time
while the drillstring rotating is a challenging problem. We developed a set of “strap-
down” measurement system using the triaxial accelerometer and triaxial magnetom-
eters installed near the bit, and real-time well deviation and azimuth can been
measured even when the drillstring rotates. Although magnetic based system is the
classical, we will use this system to achieve continuous measurement-while-drilling
relying on software algorithms. We developed the novel state space models to
establish the Kalman filter, improving the accuracy of dynamic measurements.
Simulation and experiments results show that the continuous survey system with
Kalman filter approach could effectively enhance the measurement precision, and
deduce the error that produced by the drillstring vibration. The algorithm greatly
improved the accuracy of well-trajectory measurements and is expected to be
applied to ordinary magnetic surveying systems, which are more widely used in
drilling engineering.

Keywords Directional drilling · Continuous measurement-while-drilling · Kalman ·
State space model

3.1 Introduction

Directional drilling technology involves directing a wellbore along a predefined
trajectory, which dramatically reduces costs and saves time during drilling opera-
tions [1–3]. During the last several years, more and more attention is been paid to the
development of directional well-drilling technologies. Technology for directional-
drilling navigation is currently based on an integrated magnetometer and acceler-
ometer triad [4]. To compute the bottom-hole assembly (BHA) position, measuring
data of the earth’s magnetic field and the force of gravity are employed. The
surveying system is executed along the well trajectory at stationary survey stations.
In drilling engineering, the bottom drillstring attitude (inclination and azimuth)
measurement is usually carried out when the drillstring is not rotating.
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Q. Xue, Data Analytics for Drilling Engineering, Information Fusion
and Data Science, https://doi.org/10.1007/978-3-030-34035-3_3

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34035-3_3&domain=pdf


Besides the conventional drilling assembly, directional drilling operations require
position sensors to provide estimations of the inclination expressed as I (deviation
from the vertical direction as show Fig. 3.1) and azimuth expressed as A (deviation
from the north direction in the horizontal plane as shown in Fig. 3.1). These sensors
are part of the MWD (measurement while drilling) tool, which is installed several
feet behind the drill bit to monitor all physical parameters that affect the drilling
operation.

There are two conventional systems for measurements while drilling based on
magnetometers and gyroscope. The system is called Gyroscope based system which
uses gyro and accelerometer, and the one is called Magnetometers based system
using flux sensors and accelerometers, because in the drilling engineering the
accelerometer is always used in various measuring systems.

Current MWD surveying is performed along the well path at stationary survey
stations. That is to say, usually in drilling engineering, the bottom drill string attitude
(inclination and azimuth) measurement is carried out in the case that the drill string
does not rotate.

However, as drilling technology improves, continuous measurement of the well
trajectory becomes increasingly important. It is also essential in a rotary-steerable
system (RSS). Rotary steering system is a mechatronics tool generated by the
development of directional drilling, which can drill more economical and smoother
borehole. However, to measure down hole tools posture with the drill string rotating
is one of the technical difficulties, since this is completely different from the current
MWD surveying method. Actually, in the control process, assume that measured
values under stationary state remain unchanged during drilling, could still achieve
the closed-loop control of rotary steerable. However, the disadvantage is obvious, as
shown in Fig. 3.2 actual drilling trajectory fluctuate with the design trajectory. This
phenomenon cannot be avoided because of the hysteresis measurement.

Vertical

BoreholeI

Borehole direction

North

East

A
Horizontal projection

Fig. 3.1 Diagram of
Inclination and Azimuth
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An RSS [5–7] is a mechatronics tool developed for directional drilling. It can drill
a more economical and smoother borehole. Since the introduction of RSS, rotary-
steerable technology has achieved notable progress in reliability and has become a
standard drilling tool in many worldwide applications. The application of RSS is
restricted to high-cost offshore sites, and is becoming more common in cost-
sensitive land work, especially in shale-gas and shale-oil drilling [8]. Despite pop-
ular use of the RSS, field-trial results of continuous measurement of inclination and
azimuth have not been well documented in the literature. However, measuring the
posture of downhole tools as the drillstring rotates is essential because of its closed-
loop control structure [9, 10]. A bottom-drilling tool shows complex dynamics while
rotating owing to the combined effects of nonlinear vibration, such as vertical
vibration, horizontal vibration, eddy, and sticky slip [11, 12]. The effects of such
vibrations cause to measurement sensors to generate large errors. This is a huge
challenge for signal processing [9], which is completely different from the
measurement-while-drilling (MWD) survey systems in current oil and gas industry.

Continuous MWD are studied under laboratory conditions using a gyroscope-
based system [13–15]. They proposed an advanced inclination and direction sensor
package based on an inertial navigation system (INS). They verified the reliability of
the algorithm through simulation, which used INS to achieve continuous MWDwith
high accuracy. The influences of vibration and temperature on MWD were also
analyzed [16–18]. Literature [19, 20] conducted a similar study by developing a
MWD instrument based on a predigested inertial measurement unit. However, they
did not consider the downhole complex situations, severe vibration, and high
temperature. These are great challenges for measurement accuracy and sensors
lifetime. Drillstring vibration can greatly affect the life of the gyroscope, and an
increasing temperature can cause an error drift in the gyroscope.

The approaches mentioned above can increase the accuracy of measurements to a
certain extent. However, some effort still needs to be made in order to improve the
performance of the MWD instrument. We developed a strap-down multimode
surveying system in the Ref. [9]. We gave more consideration to the actual situation
of the drilling process and used field test data to study the measurement algorithm.
This system is more conducive to field applications. Moreover, improvement in
accuracy is crucial, especially for the continuous MWD of an RSS, for precise and
efficient measurement of wellbores drilled for oil and gas exploration. Within the

Fig. 3.2 Schematic
diagram of traditional
trajectory control
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signal-processing community, Kalman Filter remains a very active topic. This
chapter is concerned with improving the accuracy and stability of inclination and
azimuth measurements of the accelerometer and magnetometer. We developed a
new state-space models that were applied to the Kalman Filter model. The algorithm
greatly improved the accuracy of well-trajectory measurements and is expected to be
applied to ordinary magnetic surveying systems, which are more widely used in
drilling engineering.

3.2 Construction of Measurement System

We develop a “strap-down” MWD system here that incorporates three-axis magne-
tometers and three-axis accelerometers arranged in three mutually orthogonal direc-
tions [9, 10], as show in the Fig. 3.3(a). The magnetic measuring tools are installed in
the interiors of nonmagnetic drill collars. These special drill collars are usually
designed from monel metal to avoid external interference with measurements
taken by magnetic MWD surveying tools [3, 9]. Figure 3.3(b) shows the structure
of the downhole measurement system, and Table 3.1 shows the characteristics of the
sensors. ax, ay and az are defined as survey signals of the triaxial accelerometers on
the x, y, and z axes, respectively. Moreover, mx, my and mz are defined as survey
signals of the triaxial magnetometers on the x, y, and z axes, respectively. Assume

that the earth’s magnetic field strength is M. Obviously, M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

x þ m2
y þ m2

z

q
.

Under a certain sample frequency (100 Hz), the measuring signal can be consider as
a time series.

Theoretically, that is enough in measuring subsystem only have three accelerom-
eters and three fluxgate sensors which were installed in the instrument coordinate
system, additional requires a temperature sensor and an angular rate gyroscope.

Fig. 3.3 (a) Multimodel measurement system at the drill bit, and (b) construction of measurement
system

64 3 Dynamic Measurement of Spatial Attitude at the Bottom Rotating Drillstring



Actually, we designed with a redundancy scheme in order to effectively improve the
system reliability.

1. 7 accelerometers (Colibrys MS9010): AX, AX11, AX12, AY, AY11, AY12,
AZ. Of which AX, AX11 and AX12 were installed in the axes of the X axis of the
instrument; AY, AY11 and AY12 were installed in the axes of the Y axis of the
instrument; AZ was installed in the axes of the Z axis of the instrument.

2. 8 fluxgate sensors(CTM-DT06): FX1, FX2, FX3, FY1, FY2, FY3, FZ1, FZ2. Of
which FX1, FX2 and FX3 were installed in the axes of the X axis of the
instrument; FY1, FY2, FY3 were installed in the axes of the X axis of the
instrument; FZ1, FZ2 were installed in the axes of the X axis of the instrument.

3. 3 Temperature sensors: Tem1, Tem2, Tem3.
4. 3 Gyroscopes (ADXRS150): G1, G2, G3.(take the gyro measurement signals as a

reference)

In the module design, the AD mode using two DSP chips (TMS320F2812) as the
processor, combine the three AD7656 chips to complete the data collection. Data
acquisition board hardware block diagram is shown in Fig. 3.4.

Table 3.1 Characteristics of sensors

Parameter Accelerometers (MS9010) Fluxgate magnetometers (CTM-DT06)

Range �10 g �100,000 nT

Scale factor 200 mV/g 5 V/G � 5%

Nonlinearity 0.8% of SF –

Calibration <50 mg �0.005 G

Noise 0.140 mg/√Hz �0.1 nT

Bandwidth 1000 Hz 350 Hz
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Fig. 3.4 Data acquisition board hardware block diagram
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Assume the acceleration of gravity is G, and that gx, gy and gz are defined as
survey signals of gravity acceleration on the x, y, and z axes, respectively. Then,

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2x þ g2y þ g2z

q
. The survey signals (ax, ay, az) of the triaxial accelerometers

include not only the acceleration of gravity but also the acceleration of the drillstring
vibration. Electronics instruments consisting of three-axis accelerometers and three-
axis magnetometers are shown to relate to measure inclination and azimuth. The
drillstring posture is determined via the following known equations:

Inc ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2x þ g2y

q
gz

0@ 1A ð3:1Þ

Azi ¼ arctan
G � gxmy � gymx

� �
mz g2x þ g2y

� �
� gz gxmx � gymy

� �
24 35 ð3:2Þ

The three-axis inclination and six-axis azimuth equations [22] are used in the
static MWD surveys as industry-standard survey methods. The azimuth direction is
determined in a stationary mode by using three-axis magnetometers, while the
inclination and the tool face angle are determined using three-axis accelerometers.
Drilling has to pause frequently at surveying stations in order to allow the inclination
and azimuth to be surveyed. The well trajectory is then computed between the two
surveying stations based on some mathematical assumptions; It is assumed that the
drilled distance is a smooth arc. In Eqs. (3.1) and (3.2), only the acceleration of
gravity is concerned, and the drillstring vibration signals is considered as noise. The
determination of azimuth while drilling (while the sensors are rotating) was not
demonstrated owing to limitations in the capabilities of downhole processing. The
survey signals of triaxial accelerometers do not include only the acceleration of
gravity but also the acceleration of drillstring vibration. Unlike the conventional
MWD, the inclination and azimuth should be solved dynamically when the
drillstring rotates. Accelerometers are hypersensitive to vibrations, so the violent
vibration of a bottom-hole assembly leads the measured signals to be submerged in
noise signals. The continuous MWD in This chapter is based on a strap-down multi-
model surveying system [9].

According to the field test data, we completed a frequency analysis of the
vibration signals to evaluate if the white noise hypothesis. Frequency analysis is
indispensable when discussing the most advanced approach that involves dynamic
spectral analysis, and to analyze how the spectrum of a signal evolves in time. This
analysis is performed with Gabor transforms [25], which are close relatives of
wavelet transforms. Gabor transforms are particularly useful in analyzing drillstring
vibration signals. The transform is employed here to determine the sinusoidal
frequency and phase content of local sections of a signal as it varies with time.
The function is first multiplied by a Gaussian window function. The resulting
function is then transformed by the Fourier transform.
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We use a time-frequency box to express the energy distribution of the Gabor
function. The time-frequency spectrum of the vibration signal is plotted in Fig. 3.5.
The Gabor transform can help us discriminate the rotational movement pattern.
Define Gu,ξ(t) as the time window function, where u is center point, σ is the width,
the Fourier transform of Gu,ξ(t) can be expressed by

bGu,ξ ωð Þ ¼ bG ω� ξð Þeiu ω�ξð Þ ð3:3Þ

As shown in Fig. 3.5, from the energy spectrum of lateral vibration signals (left)
and longitudinal vibration signals (right), we can find the spectrum not particularly
has energy concentration point, the signals can be considered as random.

3.3 Stationary Surveying

The present MWD surveying systems incorporate three-axis magnetometers and
three-axis accelerometers arranged in three mutually orthogonal directions as show
above. In the three-dimensional Cartesian coordinate system, the geographic coor-
dinate system (North West) XYZ and the probe carrier coordinate system xyz are
selected respectively, wherein the XYZ axes of the geographic coordinate system
point to the geographic North (N), West (W ), and Upper (U ) respectively. The z-axis
of the probe coordinate system is the axial direction of the drill, pointing upwards,
the x and y axes are perpendicular to each other on the cross-section of the drill, and
the three axes satisfy the right-hand rule. According to the Euler rotation transfor-
mation theorem, the three-dimensional attitude coordinates of the carrier in space
can be obtained by a finite number of rotations relative to the geographic coordinate
system.

As shown in Fig. 3.6. The first two coordinate systems coincide with each other,
first rotating the azimuth around the OZ axis to obtain the x1y1z1; Next, the x1y1z1
system rotates the tilt angle θ around y1 to obtain the x2y2z2; system. Finally, x2y2z2

Fig. 3.5 Energy spectrum of lateral vibration signals (left) and longitudinal vibration signals (right)
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rotates the tool face angle φ around the z2 axis to obtain the x3y3z3 system, so that
x3y3z3 is the xyz system. According to the relative rotation angle relationship between
the above coordinate systems, the three rotation transformation matrices can be
obtained as RZ(ψ), RY(θ) and RZ(φ), respectively.

Let the azimuth cosine array between the geographic coordinate system and the
exploration system be Cd

t ¼ RZ φð ÞRY θð ÞRZ ψð Þ, after a certain spatial transforma-
tion, the following formula is obtained.

Cd
t ¼ RZ φð ÞRY θð ÞRZ ψð Þ

¼
cosφ � sinφ 0

sinφ cosφ 0

0 0 1

264
375 cos θ 0 sin θ

0 1 0

� sin θ 0 cos θ

264
375

�
cosψ � sinψ 0

sinψ cosψ 0

0 0 1

264
375 ð3:4Þ

Then,

Cd
t ¼

cosφcosθ cosψ � sinφ sinψ � cosφcosθ sinψ � sinφcosψ cosφsinθ

sinφcosθ cosψ þ cosφ sinψ � sinφcosθ sinψ þ cosφcosψ sinφ sinθ

� sinθ cosψ sinθ sinψ cosθ

264
375

ð3:5Þ

Then the coordinate conversion relationship between the geographic coordinate
system and the probe coordinate system is as shown in Eq. (2.6):

Z
(z1)

x1

y1

O

The first rotation 2nd rotation 3rd rotation

Y

X

z1

x1

y1
(y2)

O

z2

x2

x

y2

O

z2
(z)

x2

y

ÐA
ÐA

ÐI

ÐT

ÐT

ÐI

Fig. 3.6 Euler transformation pronciple
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x y z½ �T ¼ Cd
t X Y Z½ �T ð3:6Þ

Wherein [x y z]T indicates the probe coordinate system, [X Y Z]T indicates the
geographic coordinate system. If the accelerometer and the fluxgate are used, the
attitude of the target carrier in the probe coordinate system is [x y z]T, Then multiply
both ends of Eq. (3.6) by Cd

t

� ��1
, obtaining the attitude of the carrier in the earth

coordinate system is [X Y Z]T, then,

X Y Z½ �T ¼ R�1
Z Að ÞR�1

Y Ið ÞR�1
Z Tð Þ x y z½ �T ð3:7Þ

Equations (3.5) and (3.7) are the basic transformation relations between the two
coordinate systems, and are also the theoretical basis for the attitude calculation of
the measurement system while drilling [26].

The magnitude of gravity G and the strength of the Earth’s magnetic field B is
known in the geographic coordinate system and is expressed as follows:

X Y Z½ �TG ¼ 0 0 � G½ �T ð3:8Þ
X Y Z½ �TB ¼ BH 0 BV½ �T ð3:9Þ

wherein, BH ¼ B cos Φ, a northward horizontal component representing the strength
of the Earth’s magnetic field; BV ¼ B sin Φ is a vertical component representing the
strength of the Earth’s magnetic field (up); Φ is the local geomagnetic dip, generally
45.5�.

Then the attitude angles ψ , θ, φ are determined separately, the relationship
between the theoretical value of the attitude angle of the bottom hole coordinate
system and the target body in the earth coordinate system is:

GxGyGZ

� �T ¼ Cd
t 0 0� G½ �T ð3:9Þ

BxByBZ

� �T ¼ Cd
t BH 0 BV½ �T ð3:10Þ

Define tool face as φG, inclination as θ, azimuth as ψ . About the static algorithm,
there are several different formulas, basically they are the same on the principle.

Gx

Gy

Gz

264
375 ¼

G cos φ sin θ

�G sin φ sin θ

�G cos θ

264
375 ð3:11Þ

Bx

By

Bz

264
375 ¼

BH cosψ cosφ cos θ � sinψ sinφð Þ � BV cosφ sin θ

�BH cosψ sinφ cos θ þ sinψ cosφð Þ þ BV sinφ sin θ

BH cosψ sin θ þ BV cos θ

264
375 ð3:12Þ
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Where BH ¼ B cos ϕ is the horizontal component of the earth’s magnetic field;
BV ¼ B sin ϕ is the vertical component of the earth’s magnetic field (ϕ is the local
magnetic inclination angle). Then the toolface, inclination and azimuth will be
obtained:

φG ¼ tg�1 �Gy

Gx

	 

ð3:13Þ

θ ¼ tg�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x þ G2
y

q
�Gz

0@ 1A ð3:14Þ

ψ ¼ tg�1 G ByGx � BxGy

� �
Bz G2

x þ G2
y

� �
� Gz BxGx þ ByGy

� �
0@ 1A ð3:15Þ

Richard D. DiPersio et al. [27] given the following calculation formulas from
another perspective. They provide useful inclination and azimuth equations, which
can be computed with the axial accelerometer and magnetometer readings. The
azimuth can be obtained as follows.

λ ¼ arcsin
GxBx þ GyBy þ GzBz

GtotalM

� �
ð3:16Þ

ψ ¼ cos ϕð Þ � cos θð Þ sin λð Þ
sin θð Þ cos λð Þ ð3:17Þ

When the angle of inclination θ is small, it is difficult to calculate the face angle of
the gravity tool, If θ ¼ 0, the measurement Gx and Gy should be zero, then Eq. (3.13)
cannot be used. Even if θ is not zero, when θ is small, the component Gx, Gy of the
gravitational acceleration applied to the measuring sensor will be small, the actual
measurement signal becomes very weak and the noise effect is significantly
enhanced. At this time, if the gravity acceleration component is still used to calculate
the tool face φG, it will be very inaccurate. The magnetic component Bx and By

measured by the magnetic sensor is mainly determined by the horizontal component
of the geomagnetic field, and the geomagnetic component is not affected by the
attitude of the carrier. Therefore, in the case of a small Inclination well, the magnetic
tool face angle φM is used instead of the required gravity tool face angle.

φM ¼ tg�1 By

Bx

	 

ð3:18Þ

In practical applications, in order to improve the calculation accuracy of the
bottom hole’s spatial attitude, it is often solved by the mean value of the gravity
component and the geomagnetic component signal in a window for a period of time.
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3.4 Dynamic Solver of Inclination and Azimuth

3.4.1 Magnetic Basis Measurement System

The magnetic surveying tools are installed inside nonmagnetic drill collars (Fig. 3.7).
These special drill collars are usually designed from monel metal to avoid external
interferences with the measurements taken by the magnetic MWD surveying tools.

Measurement system is conducted by triaxial accelerometer and triaxial fluxgate,
and redundancy design is adopted, due to the severe downhole vibration, the
reliability of gyroscopes will be greatly reduced. In order to ensure the system
reliability in the entire drilling process, we just take gyroscopes measurement signals
as a reference. Nonmagnetic drill collar is used (Fig. 3.7) to separate the electronic
survey instrumentation from the magnetic fields of drillstring both above and below
and prevent the distortion of the earth’s magnetic field at the sensors.

The stationary surveying method as show above, but when the drillstring rotated,
the above formulas were no longer applicable. When the sensors are installed in the
center of the rotating drillstring, the measurement x and y axis signal will exhibit a
sine wave, with zero mean. So, we need to develop a new set of formulas to meet the
needs of the dynamic rotation.

Firstly, give the azimuth measurement method when the inclination angle is
small. When the inclination angle I is close to zero, cosI	1, sinI	0, according to
Eq. (3.12), then:

Bx 	 B cosΦ cos Aþ Tð Þ ð3:19Þ
By 	 �B cosΦ sin Aþ Tð Þ ð3:20Þ

Fig. 3.7 Reduce the magnetic interference using nonmagnetic drill collar
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The value of Gx and Gy are very small when the well inclination is small, at this
time sinI cannot be approximated as 0. Multiplying Gx, Gy and Bx, By:

Gx

Gy

� �
Bx By½ � 	 k

cos Aþ Tð Þ
sin Aþ Tð Þ

� �
cos T sin T½ � ð3:21Þ

where k¼G � sin I � B � cosΦ, in this Eq. sinI also cannot be approximated as 0 using
trigonometric formulas:

Gy � Bx� Gx � By 	 k � cos Aþ Tð Þ � sin T � sin Aþ Tð Þ � cos Tð Þ
¼ k sinA ð3:22Þ

Gx � Bxþ Gy � By 	 k � cos Aþ Tð Þ � cos T þ sin Aþ Tð Þ � sin Tð Þ
¼ k cosA ð3:23Þ

Gain the azimuth Asmall when the inclination angle is small:

Asmall 	 tg�1 Gy � Bx� Gx � By
Gx � Bxþ Gy � By
	 


ð3:24Þ

When the drillstring is rotating, the measurement x and y axis signal will exhibit a
sine wave, the formulas above need to be further deduced, by the Eq. (3.20) we can
obtained:

Gx � By 	 k � cos Aþ Tð Þ � sin T
¼ k � cosA cos T � sinA sin Tð Þ � sin T
¼ k

2
� sinAþ cosA sin 2T þ sinA cos 2Tð Þ

ð3:25Þ

Integrating both sides of the above formula with the tool face angle T, obtained:

ð2Nπ
T¼0

Gx Tð Þ � By Tð ÞdT 	 �Nπk � sinA ð3:26Þ

Similarly, integrating Gx � Bxcan be obtained:

ð2Nπ
T¼0

Gx Tð Þ � Bx Tð ÞdT 	 Nπk � cosA ð3:27Þ

Then the azimuth A0
small can be obtained when the drilling string is rotating.

72 3 Dynamic Measurement of Spatial Attitude at the Bottom Rotating Drillstring



A0
small ¼ tg�1

� Ð2Nπ
T¼0

Gx Tð Þ � By Tð ÞdT
Ð2Nπ

T¼0
Gx Tð Þ � Bx Tð ÞdT

0BBB@
1CCCA ð3:28Þ

And though the Eq. (3.14) get the inclination angle Ismall:

Ismall ¼ sin �1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2Nπ

Ð2Nπ
T¼0

Gx Tð Þ � cos T � dT
	 
2

þ Ð2Nπ
T¼0

Gx Tð Þ � sin T � dT
	 
2s

G

0BB@
1CCA

ð3:29Þ

wherein T is the magnetic tool face angle, g is the earth gravitational acceleration.
When the inclination angle changed from 0� to 90�, using Eqs. (3.14) and (3.15),

integration throughout the cycle for magnetic toolface angle can be obtained the
other continuous formula under rotation condition. This formula applies to the entire
well inclination conditions. Computational formulas of deflection “Ir” and azimuth
“Amr” are given as following:

Ir ¼ tg�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ2Nπ
TM¼0

GxdTM

 !2

þ Ð2Nπ
TM¼0

GydTM

 !2
vuut

� Ð2Nπ
TM¼0

GzdTM

ð3:30Þ

Amr ¼ tg�1

Ð2Nπ
TM¼0

G ByGx� BxGyð ÞdTM

Ð2Nπ
TM¼0

Bz Gx2 þ Gy2
� �

dTM � Ð2Nπ
TM¼0

Gz BxGxþ ByGyð ÞdTM

0BBB@
1CCCA ð3:31Þ

Where TM is magnetic tool-face angle: TM ¼ tg�1 �By
Bx

� �
.

3.4.2 Gyro Based Measurement System

The three-axis accelerometer and the three-axis gyro are mounted along the axis of
the drill as shown in Fig. 3.8. The measuring sensor rotates along with the drill string
to form a strap-down inertial navigation while drilling measurement system.

Assume that the three-axis accelerometer output signal is: fb ¼ [fx fy fz]
T, The

output signal of the three-axis gyroscope is: ωb¼ [ωx ωy ωz]
T, Using these six output
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signals to effectively solve the attitude of the drilling tool belongs to the scope of the
solution of the Strapdown Inertial Navigation System. Next, we apply the solution
method of the inertial navigation system to solve the drilling posture and realize
continuous measurement while drilling.

Accelerometers and gyroscopes are mounted in a non-magnetic drill collar of a
rotary steering system with their sensitive axes along the tool’s forward axis ( y),
cross-sectional direction (x) and z-axis perpendicular to the xy plane, forming a
triaxial axis of the carrier coordinate system. As shown, the accelerometer and
gyroscope can provide linear acceleration and angular velocity in the coordinate
system. However, if the tool pose is to be solved, this coordinate system needs to be
converted to another coordinate system.

As shown in the Fig. 3.8, The three axes Xe, Ye, Ze represent the Earth coordinate
system. The navigation coordinate system is used to calculate the carrier position,
velocity and attitude, Because the navigation coordinate system is along the local
north, east, and vertical directions, as shown in the Fig. 3.9, “N, E, UP”, wherein λ is
longitude angle, φ is latitude angle. In the carrier coordinate system, the well
inclination, orientation and tool face angle can be obtained by the INS mechanical
equation.

The acceleration and angular velocity values measured in the b-system are
converted to the n-system by the transformation matrix Rn

b, We can solve the spatial
position and attitude [28] of the bottom hole tool. Define the longitude of the bottom

Fig. 3.8 Install schematic
diagram of triaxial
accelerometer and
gyroscope
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hole as λ, latitude isφ, Altitude is h, then its position can be expressed as: rn¼ [φ λ h]T.
Defining the velocity component of the n-system, northbound speed is Vn, eastward
speed is Ve, vertical speed is Vu. Then define the speed of the n system as:
Vn ¼ [Ve Vn Vu]T.

The velocity component can be expressed as a derivative of the position compo-
nent versus time and can be expressed as follows:

_rn ¼
_φ
_λ
_h

264
375 ¼

0 1=Mþh 0
1= Nþhð Þ cosφ 0 0

0 0 1

264
375 Ve

Vn

Vu

264
375 ¼ D�1Vn ð3:32Þ

Wherein, M is the radius of curvature of the meridian and N is the radius of
curvature of the ellipse of the earth.

In the carrier coordinate system, the measured value of the accelerometer
fb¼ [fx fy fz]

T converting to a geographic coordinate system through a transformation
matrix Rn

b is:

f n ¼
f e

f n

f u

264
375 ¼ Rn

b f
b ¼ Rn

b

f x
f y
f z

264
375 ð3:33Þ

Acceleration component fn in the n-series can integrate the velocity component
vn. However, due to the existence of the Earth itself, it will affect the solution
process. The rotation speed of the earth is ωe ¼ 15 deg/hr, the angular velocity
vector expressed in the n-system is as follows:

Fig. 3.9 Navigation frame
of a given point relative to
the earth-fixed frame
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ωn
ie ¼

0

ωe cosφ

ωe sinφ

264
375 ð3:34Þ

The change in the geographic coordinate system depends on the definition of the
north and vertical directions in the navigation coordinate system. The north direction
usually points in the direction of the meridian and the vertical direction to the surface
of the earth, as shown in Fig. 3.10. In the navigation coordinate system, the angular
velocity vector can be expressed as follows:

ωn
en ¼

� _φ
_λ cosφ
_λ sinφ

264
375 ¼

� Vn

M þ h
Ve

N þ h
Ve tanφ
N þ h

2666664

3777775 ð3:35Þ

Earth’s gravity also affects the IMU’s acceleration measurements. We can use the
gravity model to make corrections. The Earth’s gravity field [29] can be expressed
as:

g ¼ a1 1þ a2 sin
2φþ a3 sin

4φ
� �þ a4 þ a5 sin

2φ
� �

hþ a6h
2 ð3:36Þ

Wherein a1 ¼ 9.7803267715 m/sec2; a2 ¼ 0.0052790414; a3 ¼ 0.0000232718;
a4 ¼ �0.000003087691089 1/sec2; a5 ¼ 0.000000004397731 1/sec2;
a6 ¼ 0.000000000000721 1/(m
sec2).

Earth’s
Center

N
N

N

N

Vn

Vn

Vn

Vn

Fig. 3.10 Change of
orientation of the navigation
frame

76 3 Dynamic Measurement of Spatial Attitude at the Bottom Rotating Drillstring



The earth’s gravitational field in the n-series can be expressed as:

gn ¼ 0 0� g½ � ð3:37Þ

Taking into account the influence of the Earth’s factors, the rate of change of the
velocity component Vn can be expressed as follows:

_V
n ¼ Rn

b f
b � 2Ωn

ie þΩn
en

� �
Vn þ gn ð3:38Þ

Wherein:

Ωn
ie ¼

0 �ωe sinφ ωe cosφ

ωe sinφ 0 0

�ωe cosφ 0 0

264
375 ð3:39Þ

Ωn
en ¼

0 �Ve tanφ
N þ h

Ve

N þ h
Ve tanφ
N þ h

0
Vn

M þ h

� Ve

N þ h
� Vn

M þ h
0

2666664

3777775 ð3:40Þ

Transformation matrix Rn
b can be obtained by the following differential equation:

_R
n
b ¼ Rn

bΩ
b
nb ¼ Rn

b Ωb
ib � Ωb

in

� � ð3:41Þ

wherein Ωb
ib is the antisymmetric matrix of angular velocity measured by the gyro,

the angular velocity vector ωb
ib can be used as follows:

Ωb
ib ¼

0 �ωz ωy

ωz 0 ωx

�ωy ωx 0

264
375 ð3:42Þ

The gyro measures the angular velocity of the bottom drilling tool, and also
measures the angular velocity of the Earth’s rotation and the direction of the
navigation coordinate system. Therefore, the angular velocity Ωb

in needs to be
subtracted from Ωb

ib to eliminate the effects of these two factors. Angular velocity
vector Ωb

in contains two parts, the first is the earth’s rotation speed Ωb
ie and the speed

of change of the direction of the navigation coordinate system Ωb
en, as shown below:

Ωb
in ¼ Ωb

ie þΩb
en ð3:43Þ
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The antisymmetric matrix of the velocity matrix can be expressed as follows:

ωb
in ¼ ωb

ieþb
en ¼ Rb

nω
n
ie þ Rb

nω
n
en ¼ Rb

n ωn
ie þ ωn

en

� �

¼ Rb
n

0

ωe cosφ

ωe sinφ

2664
3775þ

� Vn

M þ h

Ve

N þ h

Ve tanφ
N þ h

26666664

37777775

26666664

37777775 ¼ Rb
n

� Vn

M þ h

Ve

N þ h
þ ωe cosφ

Ve tanφ
N þ h

þ ωe sinφ

26666664

37777775
ð3:44Þ

Finally, the transformation matrix can be obtained as follows:

_R
n
b ¼ Rn

b

ωx

ωy

ωz

264
375� Rb

n

� Vn

M þ h
Ve

N þ h
þ ωe cosφ

Ve tanφ
N þ h

þ ωe sinφ

2666664

3777775

2666664

3777775 ð3:45Þ

Define the well angle as θ, Azimuth angle is ψ , tool face is ϕ, transformation
matrix Rn

b can be expressed as follows:

Rn
b ¼

cosψ cosϕþ sinψ sinθ sinϕ sinψ cosθ cosψ sinϕ� sinψ sinθcosϕ

�sinψ cosϕþ cosψ sinθ sinϕ cosψ cosθ �sinψ sinϕ� cosψ sinθcosϕ

�cosθ sinϕ sinθ cosθcosϕ

264
375

ð3:46Þ

According to the previous assumption, the output signal of the three-axis accel-
erometer is: fb ¼ [fx fy fz]

T; The output signals of the three-axis gyroscope is: ωb
ib ¼

ωx ωy ωz

� �T
. The amount of angular change can be calculated from the measured

angular velocity:

θbib ¼
Δθx
Δθy
Δθz

264
375
b

ib

¼
ωx

ωy

ωz

264
375Δt ð3:47Þ

where Δt is the data sampling time.
Similarly, the line speed can be calculated from the measured value of the

acceleration:

Δvb ¼
Δvx
Δvy
Δvz

264
375 ¼

f x
f y
f z

264
375Δt ð3:48Þ
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Considering the effects of the Earth’s rotation and the change in the direction of
the navigational coordinate system, when at the time tk, the increase in angle can be
expressed as:

θbin tkð Þ ¼ ωb
in tkð ÞΔt ¼ Rb

n tkð Þ

Vn tkð Þ
M þ h

Ve tkð Þ
N þ h

þ ωe cosφ

Ve tkð Þ tanφ
N þ h

þ ωe sinφ

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
Δt ð3:49Þ

Then,

θbnb tkð Þ ¼ θbib tkð Þ � θbin tkð Þ ¼ Δθx Δθy Δθz
� �T ð3:50Þ

In summary, the mechanical equations of the strapdown inertial navigation
system based on the geographic coordinate system are as follows:

_xn ¼
_rn

_V
n

_R
n
b

2664
3775 ¼

D�1Vn

Rn
bf

b � 2Ωn
ie þ Ωn

en

� �
Vn þ gn

Rn
b Ωb

ib � Ωb
in

� �
264

375 ð3:51Þ

The solution of Eq. (3.51) can be solved by Euler angle method, direction
cosine method or quaternion method. In this way, by mounting a three-axis
accelerometer and a three-axis gyroscope on the carrier axis, information such as
the attitude, velocity and position of the carrier can be obtained by the measured
values.

3.4.3 Quaternion Solution Method

To solve the mechanical equation of the inertial navigation system, the attitude
matrix Rn

b needs to be obtained by the differential equation of attitude rate. Quater-
nion is one of the commonly used methods [30]. As shown in Fig. 3.11, assuming
that a rigid body rotates at the origin, according to Euler’s theorem, the orientation of
the moving coordinate system (b-series) relative to the navigation coordinate system
(n-series), Equivalent to b system rotating an angle Θ around an equivalent axis.
Therefore, the quaternion Q ¼ [q1 q2 q3 q4]

T used to describe the rotation of the b
system relative to the n system, defined as follows:

3.4 Dynamic Solver of Inclination and Azimuth 79



Q ¼

q1
q2
q3
q4

26664
37775 ¼

Θx=Θð Þ sin Θ=2ð Þ
Θy=Θ
� �

sin Θ=2ð Þ
Θz=Θð Þ sin Θ=2ð Þ
cos Θ=2ð Þ

26664
37775 ð3:52Þ

Wherein the rotation angle is Θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θ2

x þ Θ2
y þ Θ2

z

q
, Θx/Θ,Θy/Θ and Θz/Θ are the

cosine of the direction of the rotating axis in the n-series.
From the definition of quaternion, q21 þ q22 þ q23 þ q24 ¼ 1, The components of the

quaternion are not independent of each other, and only three independent quaternion
components are needed to describe the rotation of the coordinate axes. However,
there is usually a calculation error, defined as Δ ¼ 1� q21 þ q22 þ q23 þ q24

� �
. To

correct for this error, the quaternion Q expressed in vector form should be updated
with the following formula after each calculation:

bQ ¼ Qffiffiffiffiffiffiffiffiffiffiffiffi
1� Δ

p 	 Q 1þ Δ
2

� �
ð3:53Þ

Describe the time domain variation of quaternions by using first-order differential
equations,

_Q ¼ 1
2
Ω ωð ÞQ ð3:54Þ

where Ω(ω) is an anti-symmetric matrix, expressed as follows:

Fig. 3.11 Quaternion
rotation
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Ω ωð Þ ¼

0 ωz �ωy ωx

�ωz 0 ωx ωy

ωy �ωx 0 ωz

�ωx �ωy �ωz 0

26664
37775 ð3:55Þ

where ωx, ωy, ωz are the carrier rotation angular rate.
To solve the first order differential equation, Determine Qk + 1 at time tk + 1

according to Qk at time tk, As shown below:

Qkþ1 ¼ Qk þ 1
2
Q ωkð ÞQk

� �
Δt ð3:56Þ

where Δt ¼ tk+ 1 � tk. When at time tk, the quaternion is determined, Rn
b can be

directly determined by the following formula:

Rn
b ¼

R11 R12 R13

R21 R22 R23

R31 R32 R33

264
375

¼
q21 � q22 � q23 þ q24 2 q1q2 � q3q4ð Þ 2 q1q2 þ q3q4ð Þ
2 q1q2 þ q3q4ð Þ �q21 þ q22 � q23 þ q24 2 q2q3 � q1q4ð Þ
2 q1q3 � q2q4ð Þ 2 q2q3 þ q1q4ð Þ �q21 � q22 þ q23 þ q24

264
375 ð3:57Þ

Therefore, as shown in the formula (3.57), the update equation for the quaternion
can be obtained as:

q1 tkþ1ð Þ
q2 tkþ1ð Þ
q3 tkþ1ð Þ
q4 tkþ1ð Þ

26664
37775 ¼

q1 tkð Þ
q2 tkð Þ
q3 tkð Þ
q4 tkð Þ

26664
37775þ 1

2

0 Δθz �Δθy Δθx
�Δθz 0 Δθx Δθy
Δθy �Δθx 0 Δθz
�Δθx �Δθy �Δθz 0

26664
37775

q1 tkð Þ
q2 tkð Þ
q3 tkð Þ
q4 tkð Þ

26664
37775 ð3:58Þ

Get BHA inclination θ、tool face ϕ and azimuth ψ are as follows:

θ ¼ arctan
R32ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
12 þ R2

22

q
0B@

1CA ð3:59Þ

ϕ ¼ arctan
�R31

R33

	 

ð3:60Þ
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ψ ¼ arctan
�R12

R22

	 

ð3:61Þ

where the wellbore inclination is I ¼ 90 � θ.
In the Strapdown navigation system, due to GPS alignment, the Kalman filtering

method can be used to obtain accurate carrier attitude and position information after
establishing the error model. However, in the measurement while drilling, GPS
signal correction cannot be used, and the Kalman filter model needs to be
re-established. Regarding the Kalman filter model of the gyro-while-drilling mea-
surement system, since the inertial gyro and the acceleration sensor are used, the
error model is consistent with the Kalman filter error model of the strapdown
navigation in the aerospace field. From the perspective of reliability, it is currently
in the field of drilling measurement, magnetic-based measurement systems have
more application advantages than gyro systems. However, due to magnetic interfer-
ence and other factors, the magnetic base system cannot be completely perfect. The
future development direction must be the composite mode measurement system, that
is, the measurement while drilling system combined with the magnetic sensor and
the gyro system.

3.5 Calibration Model for Installation Error

In practical cases, even if carefully try to make the three-axis accelerometers and
three-axis fluxgates orthogonal, it is impossible to guarantee the coordinate axis are
orthogonal and installation is centered exactly. This will bring about the final
solution error regardless of whatever the solution method. Therefore, if want to
improve the accuracy measurement, we must develop a compensation algorithm to
make sensors centered and mutually orthogonal, that is, from the mathematical
model of the system, design the corresponding algorithm to solve out the installed
error, and to accurately calculate the drilling string attitude.

3.5.1 Mathematical Model

We try to establish the algorithm model of error compensation since the installation
error cannot be avoided and the calibration parameters will be obtained through the
laboratory experiments. First of all, assuming that Ax, Ay, Az, were output voltage of
the accelerometer before the establishment of mathematical model, so the relation-
ship between the respective components of the gravity and the output voltage as
shown in the following formula.
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Ax

Ay

Az

264
375 ¼

Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

264
375�

Gx

Gy

Gz

264
375þ

Ax0

Ay0

Az0

264
375 ð3:62Þ

where Kix, Kiy, Kiz(i¼ x, y, z) indicated triaxial accelerometer calibration coefficient.
Then assume that IAx, IAy, IAz and TAx, TAy, TAz indicated triaxial accelerometers

installation angle and the phase of the installation angle. The following formula can
be obtained.

Ax

Ay

Az

264
375 ¼

KAx � cos IAx KAx � sin IAx � cos TAx KAx � sin IAx � sin TAx

KAy � sin IAy � sin TAy KAy � cos IAy KAy � sin IAy � cos TAy

KAz � sin IAz � cos TAz KAz � sin IAz � sin TAz KAz � cos IAz

264
375

�
Gx

Gy

Gz

264
375þ

Ax0

Ay0

Az0

264
375

ð3:63Þ

Obviously, Kxx ¼ KAx � cos IAx, � � �, Kzz ¼ KAz � cos IAz, So, we can calculate the
accelerometers calibration coefficient as follows:

KAx

KAy

KAz

264
375 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KxxGð Þ2 þ KxyG

� �2 þ KxzGð Þ2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KyxG
� �2 þ KyyG

� �2 þ KyzG
� �2q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KzxGð Þ2 þ KzyG

� �2 þ KzzGð Þ2
q

266664
377775� 1

G

h i
ð3:64Þ

The bias of the sensors can be obtained:

BiasAx
BiasAy

BiasAz

264
375 ¼

1=KAx
0 0

0 1=KAy
0

0 0 1=KAz

264
375�

Ax0

Ay0

Az0

264
375 ð3:65Þ

For the accelerometer installed in the x-axis, defined the cos(AxPx), cos(AxPy) and
cos(AxPz) are cosine values of angles between accelerometer sensitive axis and three
axes of the instrument coordinate system.

Ax ¼ Gx � cos AxPxð Þ þ Gy � cos AxPyð Þ þ Gz � cos AxPzð Þ� � � KAx þ BiasAx � KAx

¼ Gx � cos AxPxð Þ þ Gy � cos AxPyð Þ þ Gz � cos AxPzð Þ þ BiasAx
� � � KAx

ð3:66Þ

Obviously, G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x þ G2
y þ G2

z

q
.
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Then we get the calibration mathematical model of accelerometer error as shown
in Eq. 3.67.

Ax

Ay

Az

264
375 ¼

KAx � cosAxPx KAx � cosAxPy KAx � cosAxPz

KAy � cosAyPx KAy � cosAyPy KAy � cosAyPz

KAz � cosAzPx KAz � cosAzPy KAz � cosAzPz

264
375

�
Gx

Gy

Gz

264
375þ

KAx � BiasAx
KAy � BiasAy
KAz � BiasAz

264
375 ð3:67Þ

Similarly, we get the calibration mathematical model of fluxgate error as shown in
Eq. 3.68.

Fx

Fy

Fz

264
375 ¼

LFx � cosFxPx LFx � cosFxPy LFx � cosFxPz

LFy � cosFyPx LFy � cosFyPy LFy � cosFyPz

LFz � cosFzPx LFz � cosFzPy LFz � cosFzPz

264
375

�
Bx

By

Bz

264
375þ

LFx � BiasFx
LFy � BiasFy
LFz � BiasFz

264
375 ð3:68Þ

wherein, B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
x þ B2

y þ B2
z

q
Then the calibration parameters KAi, BiasAi, cos(AiPj), or LFi, BiasFi, cos(FiPj) LFx

will be used in the algorithm, where i ¼ x, y, z; j ¼ x, y, z.

3.5.2 Experimental Methods

Designed the experimental instrument that can be put in arbitrary position in the
three-dimensional space (as shown in Fig. 3.12 on the left side), and using
non-magnetic materials to ensure that the fluxgate sensors will not be disturbed.

First using the orthogonal method to calibrate the installation error. Determine the
24 positions as shown in Table 3.2, correction parameters can be obtained when the
inclination and azimuth values for each point have been calculated. As show in
Fig. 3.12 on the right side, point A represents the number 2 in Table 1. As an
example of Ax, obtain the following formula by Eq. (3.67) and Table 1.
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KAx� cosAxPx�Gx¼ 1
8

Ax1þAx5þAx18þAx24�Ax3�Ax7�Ax20�Ax22ð Þ
ð3:69Þ

KAx� cosAxPx�Gy¼ 1
8

Ax2þAx6þAx10þAx16�Ax4�Ax8�Ax12�Ax14ð Þ
ð3:70Þ

KAx�cosAxPx�Gz¼ 1
8
Ax11þAx15þAx19þAx23�Ax9�Ax13�Ax17�Ax21ð Þ

ð3:71Þ

And because of G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x þ G2
y þ G2

z

q
, so we get the following:

Table 3.2 Orthogonal
position

No.

Sensor shaft

No.

Sensor shaft

X Y Z X Y Z

1 north east down 13 up west south

2(A) east south down 14 west down south

3 south west down 15 down east south

4 west north down 16 east up south

5 north west up 17 up north west

6 east north up 18 north down west

7 south east up 19 down south west

8 west south up 20 south up west

9 up east north 21 up south east

10 east down north 22 south down east

11 down west north 23 down north east

12 west up north 24 north up east

Fig. 3.12 Experimental equipment and location coordinates
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KAx� cosAxPx�G¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KAx� cosAxPx�Ghcð Þ2þ KAx� cosAxPx�Ghsð Þ2
þ KAx� cosAxPx�Gvð Þ2

s
ð3:72Þ

KAx�G¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KAx� cosAxPx�Gð Þ2þ KAx� cosAxPy�Gð Þ2þ KAx� cosAxPz�Gð Þ2

q
ð3:73Þ

Finally, we get 5 calibration coefficients.
But using orthogonal method for the instrument required of the calibration system

is not only high precision but also complex in structure. It is difficult for practical
application, so we developed the method of data fitting. Specific steps are as follows.

Let the instrument fixed in one position (a fixed well inclination and azimuth) and
rotated 360�. Sample one data when the instrument rotated 45� (error:�1o) and will
get 8 sampling data when the instrument rotated 360�. Using numerical fitting theory
which based on the orthogonal trigonometric we can get the sensors output voltage
curve when the instrument rotated 360�. Then we can calculate the calibration
coefficients for each sensor.

Calculation methods are described with Ax and Fx as an example. According to
Eqs. 3.67 and 3.68, Ax and Fx are presented as:

Ax ¼ Gx � cosAxPxþ Gy � cosAxPyþ Gz � cosAxPzþ BiasAxð Þ � KAx ð3:74Þ
Fx ¼ Bx � cosFxPxþ By � cosFxPyþ Bz � cosFxPzþ BiasFxð Þ � LFx ð3:75Þ

Then,

Ax ¼ KAx � G � sinI � cosAxPx � cosT� KAx � G � sinI � cosAxPy � sinT
þ KAx � �G � cosI � cosAxPzþ BiasAxð Þ ð3:76Þ

Assume that:

M ¼ KAx � G � sinI:cosAxPx ð3:77Þ
N ¼ �KAx � G � sinI � cosAxPy ð3:78Þ
P ¼ KAx � �G � cosI � cosAxPzþ BiasAxð Þ ð3:79Þ

If the inclination is unchanged, M, N, P are constants. Brought into Eq. 3.67,
Ax and Fx can be presented as:

Ax ¼ M � cosr þ N � sinr þ P ð3:80Þ
Fx ¼ m � cosr þ n � sinr þ p ð3:81Þ
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wherein : m ¼ LFx � Bh � cosA � cosI� Bv � sinIð Þ � cosFxPx � Bh � sinA:cosFxPy½ �
n ¼ LFx � �Bh � sinA � cosFxPxþ �Bh � cosA � cosIþ Bv � sinIð Þ � cosFxPy½ �

p ¼ LFx � Bh � cosA � sinIþ Bv � cosIð Þ � cosFxPzþ BiasFx½ �

Eqs. 3.80 and 3.81 are the output of accelerometer and fluxgate mathematical
model, so, in order to achieve higher fitting precision, selected the orthogonal
trigonometric as basic functions to fit the curve of the output of each sensor.

Taken Ax as an example, assuming Am ¼ α0, I ¼ d1, Ax output is:

Ax1 ¼ M1 � cosr þ N1 � sinr þ P1 ð3:82Þ

Assuming Am ¼ α0, I ¼ d2 ¼ d1 @+ 90∘, Ax output is:

Ax2 ¼ M2 � cosr þ N2 � sinr þ P2 ð3:83Þ

Then,

Biasax �

G � sind1 � cosAxPx
�G � sind1 � cosAxPy

�G � cosd1 � cosAxPz þ BiasAx
G � sind2 � cosAxPx
�G � sind2 � cosAxPy

�G � cosd2 � cosAxPz þ BiasAx

2666666664

3777777775
¼

M1

N1

P1
M2

N2

P2

2666666664

3777777775
ð3:84Þ

We can calculate the d1, d2, KAx, BiasAx, cosAxPx, cosAxPy, cosAxPz as
follows:

d1 ¼ arctan M1=M2ð Þ ð3:85Þ
d2 ¼ d1 þ 90 ð3:86Þ

cosAxPx ¼ 1 � tand1 þ 1ð Þ �M1=ðM2
1 � tan 2d1 þ 2 � N2

1 � tand1 þ 2 �M2
1 � tand1þ

M2
1 þ N2

1 � tan 2d1 þ P21 � tan 2d1 þ N2
1 þ P22 � tan 2d1 � 2 � tan 2d1 � P1 � P2Þ1=2

ð3:87Þ

cosAxPy ¼ � N1

M1
� cosAxPx ð3:88Þ

cosAxPz ¼ P2 � P1ð Þ � sind1
M1 � sind1 þ cosd1ð Þ ð3:89Þ

KAx ¼ M1

G � sind1 � cosAxPx ð3:90Þ
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BiasAx ¼ P1
SFax

þ G � cosd1 � cosAxPz ð3:91Þ

The fluxgate calculation method is similar as above.

3.5.3 Performance Results after Calibration

Using orthogonal method and the numerical fitting calibration method calculated the
calibration coefficients respectively. The results obtained for comparison in the
Table 3.3. Two calibration methods have a little difference in calculate the coeffi-
cients. Using these coefficients to calculate the borehole inclination and azimuth as
shown in Fig. 3.13.

It can be seen that each error range is within the scope of the engineering allows.
So, the two calibration methods all achieving the purpose of the system calibration.
But the numerical fitting method is easy to operate, and the calibration instrument

Table 3.3 Compared calibration factor of two methods calculated

Coefficients
Numerical
fitting

Orthogonal
design Coefficients

Numerical
fitting

Orthogonal
design

KAx(V/G) 1.1060 1.1063 LFx(V/uT) 0.0546 0.0544

BiasAx(G) 0.0587 0.0567 BiasFx(uT) 2.2123 2.2975

cosAxPx 0.9965 0.9965 cosFxPx 0.9920 0.9960

cosAxPy 0.0824 0.0832 cosFxPy 0.0880 0.0883

cosAxPz �0.001 �0.0008 cosFxPz �0.0155 �0.0156
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Fig. 3.13 Inclination and Azimuth error of numerical fitting (Red represents inclination error,
black represents azimuth error)
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has simple structure, even if the calibration instrument has lower precision than
before, we can also obtain the very precise calculation coefficients like orthogonal
method. Despite the error of the final result still exists, it has been greatly improved
that achieve the requirements of field application.

1. In Rotary steerable system, must establish a measurement system equipped with a
triaxial fluxgate and triaxial accelerometer, but the installation error cannot be
avoided and must be calibrated.

2. Developed the calibration model which can well meet the requirements of field
application. The final errors of the measurement of Inclination and Azimuth are
small.

3. Orthogonal method and curve-fitting method has little difference of calculating
calibration coefficients, however, the curve fitting method is easy to operate and
the calibration instrument has simple structure, even if the calibration instrument
has lower precision than before, we can also obtain the very precise calculation
coefficients like orthogonal method, more suitable for engineering applications.

3.6 Dynamic Algorithm for Stick-Slip Motion (DAS)

In the actual drilling process, the drillstring will appear torsional vibration and stick-
slip phenomenon but not always presents uniform rotating. As shown in the
Fig. 3.14a, extracting a period of underground data, the rotary table speed
maintained at 100 r/min, the drill bit speed has fluctuated between 0–200 r/min,
stick-slip phenomenon is very serious. In this situation, the theoretical models based
on the drillstring uniform rotating will not be practicable [31].

We first analyzed the movement of the drillstring, actually figure out how often
the stick-slip phenomenon emerges throughout the drilling process. The rotary
steerable system we have developed has conducted a number of field tests [32],
the measurement data show that stick-slip vibration will occur in drilling frequently.
We randomly selected speed data of 2 h utilizing the reservoir sampling principle
[33], and estimated the overall characteristics from the characteristics of the sample.
First select the top of data points of 1 h; suppose there are k data points; From the
k + 1 data point to the last data point is reached; Select the i-th data point in the
probability of 1/i (i¼ k + 1, k + 2,. . .,N ), and randomly replace a previously selected
elements. This traversal time can guarantee data points of 1 h to be completely
randomly selected. As shown in Fig. 3.14b, speed at vicinity of zero represents the
emergence of stick-slip. Stick-slip vibration is always existent throughout the dril-
ling process, so the application of stick-slip vibration method to improve measure-
ment accuracy is feasible.
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Fig. 3.14 Analysis of stick-slip vibration phenomena, as show in the part a, when the surface top
drive rotary speed is 100 r/min, the speed of drill bit has fluctuated between 0–200 r/min, stick-slip
phenomenon is very serious. Form the part b, Stick-slip vibration is always existent throughout the
drilling process
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3.6.1 Experiment Data

Using the formula (3.30), (3.31) and the designed filter, establish the DSP program.
Put the entire system to the laboratory bench for accuracy testing of the measuring
system. Figures 3.15 and 3.16 shows the accelerometer (x, y, z axis) and fluxgate
(x, y, z axis) measurement data. It can be seen the measurement noise of acceler-
ometer is relatively larger than that of fluxgate; the main reason is due to acceler-
ometers’ sensitivity to the drill string vibrations. Through the filter can be obtained to
a certain extent on the noise elimination. Finally, inclination and azimuth values in
the test are shown in Fig. 3.17. Wherein X region is the calculated results in the case
of vibration noise caused by rotary drillstring.

The design of the measuring algorithm can used for the strap-down rotary
steerable drilling system, while the drill string rotary, dynamic algorithm be used

Fig. 3.15 Accelerometer (x, y, z axis) measurement data (g: acceleration due to gravity)

Fig. 3.16 Fluxgate (x, y, z axis) measurement data
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to measure deflection and azimuth. Experiments show that the dynamic solver
method can meet the project requirements.

3.6.2 Field Data Analysis

3.6.2.1 Measurement Data Performance

In practice, we have adopted some of the methods such as low-pass filter and moving
average filter, but the result is not satisfactory when the drilling string rotating. As
Fig. 3.18 shows, inclination and azimuth show great fluctuations when the drilling
string is rotating, otherwise the fluctuations are significantly smaller when momen-
tarily at rest, this prompted us to seek a way to use the data when the drilling string
momentarily at rest to improve the accuracy of the whole process.

Time series as shown in Fig. 3.18, the inclination and azimuth are calculated
every 10 s, while the down hole sensors sampling frequency is 100 Hz. That is to
say, each calculation using 1000 data points, so we can see that non-rotating region
in Fig. 3.18 lasted about 400 s. That is the result of the stop artificially in the drilling
process. Actually, the down-hole drill string also could automatically stop when on
the ground seems to be in continuous rotation.

To observe in a smaller time scale as shown in Fig. 3.19, sampling frequency is
100 Hz and 500 data points representing 5 s. These data are even not enough to
calculate a point in Fig. 3.18, however, we have found the stationary area which we
can call sticky monument. In the sticky area, fluxgate signal maintains at a fixed
value, accelerometer signal shows some fluctuations but much smaller than the
performance when the drilling string is rotating. Through the installation structure
of Fig. 3.1, it can be inferred that the y-axis signal and the x-axis are similar, and the

Fig. 3.17 Inclination and azimuth values in the test
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phase difference is of 90�, so there is not shown y-axis signal in the figure.
Obviously, accelerometer signal should also be presented sine wave like fluxgate
signal when in the rotating monument, but we do not see this result because of the
strong vibration of the drillstring.

Fig. 3.19 Accelerometer and fluxgate x-axis measurement data (sampling frequency 100 Hz)

Fig. 3.18 The result of the calculation of the Formula (7), (8), the field tests playback data
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Accelerometer signal of z-axis is also subjected to the influence of vibration
which is relatively smaller. We use moving average filter for further processing, As
in Eq. (3.92).

An ¼
X10
i¼1

aiAnþi�9, ai ¼ 1
10

ð3:92Þ

The filtered signals have been greatly improved as shown in Fig. 3.20. In This
chapter, we also use FIR filter elimination of signal-to-noise. About fluxgate signal,
noise signal has been considered to be high-frequency component since it is not
affected by vibration.

After the pre-treatment, it can go into the dynamic calculation part. We need to set
a time window to judge the state of motion of the drill string in real time. Maximum
using accurate information hidden in the original measurement signal to improve the
final measurement accuracy.

3.6.2.2 Analysis of Stick-Slip Vibration Phenomena

We should first analyze the movement of the drillstring, actually to figure out that
how often the stick-slip phenomenon emerges throughout the drilling process. The
rotary steerable system developed has conducted a number of on-site tests, test data
playback show that stick-slip vibration frequency of occurrence is very high. Anal-
ysis of the entire measurement data is time-consuming and labor-intensive due to the
large amount of data.

So, we randomly selected 2 h of speed data utilizing the reservoir sampling
principle [34], in order to estimate the overall characteristics from those of the
sample. First select the top of 1 h of data points, suppose there are k data points,
From the k + 1 data point to the last data point is reached, Select the i-th data point in

Fig. 3.20 Accelerometer z-axis measurement data (sampling frequency 100 Hz)
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the probability of 1/i (i ¼ k + 1, k + 2,. . .,N ), and randomly replace a previously
selected elements. This traversal time to get 1 h of data points can be guaranteed to
be completely randomly selected.

As can be seen from Fig. 3.21, Speed at vicinity of zero represents the emergence
of stick-slip. Stick-slip vibration is always there throughout the drilling process, so
the application of stick-slip vibration method to improve measurement accuracy is
feasible.

3.6.3 Utilizing Stick-Slip Vibration to Improve Measurement
Accuracy

3.6.3.1 Application Methodology of Stick-Slip Vibration

Dynamic solution approach to the bottom of the rotating drill string attitude was
proposed in Fig. 3.22, that is, with non-rotating string, filtered real time signals on
three-axis were all used for calculation, at the same time, filtered signals on x-axis,
y-axis were stored; on condition of rotation string, real time filtered signals on z-axis
and stored signals of x-axis, y-axis with non-rotating string were adopted.

In addition, stick-slip state of the down-hole drilling tool was seen as a
non-rotating “stationary” state. Real-time judgment method of string rotation state
based on down-hole survey data was proposed. Drillstring rotational speed may be
used to determine whether the string is rotating or not, it is a practicable method, but
the reliability is not high. By analysis of above, the standard deviation statistical
methods to determine the drilling string movement will be better, because it reflects
the degree of dispersion among the individuals within the group. Using 50 data
points as a time window, assumed to be x1, x2,. . ., x49, x50, will get the standard
deviation σ. As shown in Fig. 3.23, the drill string moment can be considered static
when the standard deviation is close to zero.

(a) Filed test 1 (b) Filed test 2
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Fig. 3.21 Speed statistical histogram
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3.6.3.2 Kalman Filter Approach

Kalman filter is an optimal recursive data processing algorithm. It is optimal in the
sense that it uses all available information to minimize the errors in the state variables
of a given system. It is recursive, because it does not require all previous data to be
kept in storage. It is also a data processing algorithm since it is not an electrical filter,
but rather a computer program [35]. In order to implement a discrete Kalman filter,
the error models have to be given in state space form:

Triaxial 
accelerometer

Triaxial 
fluxgate
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Gx,Gy,Gz

Hx,Hy,Hz

A/D
Drillstring 
rotation?
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Fig. 3.22 Dynamic measurement algorithm flowchart
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xk ¼ Fk,k�1 þ Gk�1wk�1 ð3:93Þ
yk ¼ Hkxk þ vk ð3:94Þ

Equation (3.93) is called the dynamics equation and Eq. (3.94) is the observation
or update equation [36]. Here xk is the process state vector, Fk, k�1 is a square matrix
relating xk to xk�1 being called the state transition matrix, and wk�1 is a random
function considered white noise with Gk�1 as its coefficient vector. In Eq. (12), yk is
the measurement vector at the kth moment, Hk is the design matrix giving the ideal
noiseless relationship between the observations vector and the state vector, and vk is
the observation random noise. It is assumed that vk has no correlation with wk�1. The
Kalman filter model using in This chapter is shown in the Fig. 6.

When defined tool face as φG, inclination as θ, azimuth as ψ . Transformation
matrix Rn

b can be defined as following:

Rn
b ¼

cosψ cosϕþ sinψ sinθ sinϕ sinψ cosθ cosψ sinϕ� sinψ sinθcosϕ

�sinψ cosϕþ cosψ sinθ sinϕ cosψ cosθ �sinψ sinϕ� cosψ sinθcosϕ

�cosθ sinϕ sinθ cosθcosϕ

264
375

ð3:95Þ

Assuming that Gb ¼ [Gx Gy GZ]
T, the rotary speed defined as ωx, ωy, ωz on the

xyz axis respectively, ωb
ib ¼ ωx ωy ωz

� �T
.Then the rotary angle will be obtained.

θbib ¼
Δθx
Δθy
Δθz

264
375
b

ib

¼
ωx

ωy

ωz

264
375Δt ð3:96Þ

Using quaternion Q ¼ [q1 q2 q3 q4]
T to express the coordinate system transfor-

mation, then Rn
b can be redefined as following:

Rn
b ¼

R11 R12 R13

R21 R22 R23

R31 R32 R33

264
375

¼
q21 � q22 � q23 þ q24 2 q1q2 � q3q4ð Þ 2 q1q2 þ q3q4ð Þ
2 q1q2 þ q3q4ð Þ �q21 þ q22 � q23 þ q24 2 q2q3 � q1q4ð Þ
2 q1q3 � q2q4ð Þ 2 q2q3 þ q1q4ð Þ �q21 � q22 þ q23 þ q24

264
375 ð3:97Þ

Then the dynamics equation in the inclination and azimuth solving will be
obtained.
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Qkþ1 ¼

1 � 1
2
ωxdt � 1

2
ωydt � 1

2
ωzdt

1
2
ωxdt 1

1
2
ωzdt � 1

2
ωydt

1
2
ωydt � 1

2
ωzdt 1

1
2
ωxdt

1
2
ωzdt

1
2
ωydt � 1

2
ωxdt 1

2666666664

3777777775
Qk ð3:98Þ

When the drillstring appears torsional or stick-slip vibration in the actual drilling
process, we use the algorithm defined as “DAS” method.

3.6.4 Simulation Results

We extracted 4000 data points under the state of the rotating drill string, simulation
results in Matlab are shown in Fig. 3.24. It can be seen, using stick-slip phenomenon
has greatly improved the borehole inclination and azimuth calculation accuracy
when the drilling string is in dynamic rotation.

In directional drilling and rotary steerable drilling technology and application, to
accurately measure the spatial attitude (inclination, azimuth, tool face) of the bottom
drilling tool in real time with the drill string rotating is a challenging problem.

(a) The whole drilling test                                     (b) 4000 data points simulation results 

Fig. 3.24 Contrast inclination and azimuth dynamic measurement results with the former
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Simulation and experiments show that the dynamic solver methods developed in this
chapter can meet the project requirements. But the drilling string vibration seriously
affected the dynamic solver accuracy. Through statistical analysis of field data, we
found that the stick-slip phenomenon is widespread, so we use the stick-slip state to
develop a dynamic algorithm, in order to improve the borehole inclination and
azimuth solver accuracy. The simulation and experimental evaluation results show
that the designed algorithm has good practicability. That has reference significance
for the directional drilling and rotary steerable technology development.

3.7 New Kalman Filter Approach

The application of KF [23, 24, 37] requires that both the system and the measure-
ment models of the underlying process be linear. A discrete-time linear state space
system is described by:

xk ¼ Φk,k�1xk�1 þ Gk�1wk�1 ð3:99Þ

where Φk,k�1 is the state transition matrix, xk is the state vector, Gk�1 is the noise
distribution matrix, wk�1 is the process noise vector, and k is the measurement epoch.

The measurement equation of the system is given by

zk ¼ Hkxk þ ηk ð3:100Þ

where zk is the measurement vector of the system output, Hk is the observation or
design, and ηk is the measurement noise. The system noise wk and the measurement
noise ηk are unassociated zero-mean white-noise processes with determined
autocovariance functions.

We developed an algorithm with new state-space models by analyzing
drillstring dynamics. In the solution system, we define the input vector of KF-1 as

X ¼ ax ay az

mx my mz

� �
, which is measured by the three-axis magnetometers and

three-axis accelerometers. The input vector of KF-2 is the inclination and azimuth,

defined asM ¼ I

A

� �
, where I is the inclination of the borehole, and A is the azimuth

of the borehole. Using the solving process as shown in Fig. 3.25, we develop two

Kalman
Filter1 

Calculate the
inclination

and azimuth  
M M

Kalman
Filter2

, ,x y za a a , ,x y zg g g

, ,x y zm m m

Fig. 3.25 Solving process for the system
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KFs for the entire drilling process. After KF-1, we can obtain the more precise
signals of gravity acceleration gx, gy and gz, that defined as the output of KF-1. Using
the gravity accelerations, we can obtain the inclination and azimuth by the equation
developed when the drillstring rotates. KF-2 is then used to further smooth the
drilling trajectory. The output of KF-2 defined as M0 ¼ [I0 A0]T, which is more
precisely.

3.7.1 State-Space Model for KF-1

The sensors installed in the center of the drillstring, the measurement signals of x and
y axis will exhibit a sine wave during rotation. Theoretically, accelerometer and
magnetometer signals have the same rule. In the actual drilling process, the vibration
of the drillstring affects less on the magnetometer signals. That is, the magnetometer
signals are used to calibrate the accelerometer signals. From the laboratory testing
we can conclude that the changes of signals of fluxgate in line with signals of gravity
acceleration, as show in the Fig. 3.25 which will provide in the following.

Assume the angular velocity is ωx, y, z, sampling interval is Δt, then,

mx,y kð Þ
mx,y k � 1ð Þ ¼

M sinωx,yt
M sinωx,y t � Δtð Þ ¼

G sinωx,yt
G sinωx,y t � Δtð Þ ¼

gx,y kð Þ
gx,y k � 1ð Þ ð3:101Þ

In the KF-1, we define the state vector as xg kð Þ ¼
gx kð Þ
gy kð Þ
gz kð Þ

264
375, as show in Fig. 3.25,

from the vibration signals of ax, ay, az we can obtain the signals of gravity acceler-

ation xg(k). Thus, the measurement vector of the system output as z kð Þ ¼
ax

ay
az

264
375 ,

when the drillstring rotates, the measurement signals of the x- and y-axis will exhibit
a sine wave except the signal of z-axis. So, the transformation matrix defined as

Hk ¼

mx kð Þ
mx k � 1ð Þ 0 0

0
my kð Þ

my k � 1ð Þ 0

0 0 1

2666664

3777775 . The system noise wk and the measurement

noise ηk are uncorrelated zero-mean white-noise processes. Therefore, we obtain the
state-space model of the KF-1 as follows:
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xg kð Þ ¼

mx kð Þ
mx k � 1ð Þ 0 0

0
my kð Þ

my k � 1ð Þ 0

0 0 1

2666664

3777775xg k � 1ð Þ þ
wx k � 1ð Þ
wy k � 1ð Þ
wz k � 1ð Þ

264
375 ð3:102Þ

z kð Þ ¼ Hkxg kð Þ þ η kð Þ ð3:103Þ

3.7.2 Calculating the Inclination and Azimuth

When the drillstring rotates, the above equations are not applicable. The sensors
installed in the center of the drillstring, the measurement signals of the x- and y-axis,
will exhibit a sine wave during rotation.

Through KF-1, we obtain gx, gy and gz which are defined as survey signals of
gravity acceleration on the x, y, and z axes, respectively. Then define the input vector

of the system as X0 ¼ gx gy gz
mx my mz

� �
Define the rotational speed as R. If R ¼ 0, Eqs. (3.16) and (3.17) are used to

calculate the inclination and azimuth. R 6¼ 0 indicates that the drillstring is rotating,
and computational formulas of inclination I and azimuth A are given as follows:

I ¼ tg�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ2Np
TM¼0

gxdTM

 !2

þ Ð2Np
TM¼0

gydTM

 !2
vuut

� Ð2Np
TM¼0

gzdTM

ð3:104Þ

A ¼ tg�1

Ð2Np
TM¼0

G mygx � mxgy
� �

dTM

Ð2Np
TM¼0

mZ g2x þ g2y

� �
dTM � Ð2Np

TM¼0
gz mxgx þ mygy
� �

dTM

0BBBB@
1CCCCA ð3:105Þ

where TM is the magnetic tool-face angle: TM ¼ tg�1 �my

mx

� �
. Tool face angle used for

near-vertical wells. Magnetic tool face is the angle, or azimuth, of the borehole
survey instrument within the wellbore measured clockwise relative to magnetic
north and in the plane perpendicular to the wellbore axis; the north, east, south
and west directions have magnetic tool face angles of 0�, 90�, 180� and 270�,
respectively. Magnetic tool face may be corrected to reference either grid north or
true north.

Although the drillstring rotational speed is a way to determine whether the string
is rotating or not, it reliability of this approach is not high. Instead, using the
standard-deviation statistical methods to determine the drillstring movement is
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more effective because it reflects the degree of dispersion among the individuals
within the group. Using 50 data points as a time window, assumed them to be x1,

x2, . . ., x49, x50, we get the standard deviation σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1

xi � xð Þ2
s

. The drillstring

can be considered static when the standard deviation σ is close to zero.

3.7.3 State-Space Model for KF-2

In the drilling process, the movement states that σ¼0 or σ 6¼0 will appear alternately.
When σ¼0, the solving results are more accurate because the vibration is slight when
the drillstring is not rotating. We develop another Kalman Filter (KF-2) to smooth
the trajectory of the drilling. (KF-2 was divided into KF-2.1 and KF2.2 respectively
as show in the Fig. 3.27.)

In a normal drilling process, the drilling operation has to stop at measurement
stations frequently in order to measure the inclination and azimuth. The well
trajectory is then computed between the two surveying stations based on mathemat-
ical assumptions. For instance, it may be assumed that the drilled distance is a
straight line, smooth arc, or polygonal line; each requires a different calculating
method. Assuming that the three-dimensional coordinates of the measuring N-th
point of the actual drilling trajectory are (xN, yN, zN), the measuring (N + 1)-th point is
(xN+1, yN+1, zN+1), and the well depth, vertical depth, inclination, and azimuth are LN,
HN, θN, ψN, and LN+1,HN+1, θN+1,ψN+1, respectively. The well trajectory between
two points can be then defined as follows:

L ¼ LNþ1 � LN
H ¼ HNþ1 � HN

θ ¼ θN þ θNþ1ð Þ=2
ψ ¼ ψN þ ψNþ1

� �
=2

8>>><>>>: ð3:106Þ

If the vertical depth H is a known, the three-dimensional coordinates of the
measuring (N + 1)-th point can be defined as

xNþ1 ¼ xN þ H tan θ cosψ

yNþ1 ¼ yN þ H tan θ cosψ

zNþ1 ¼ zN þ H

8><>: ð3:107Þ

We can obtain the spatial coordinates of each point by recursive calculation,
thereby obtaining the entire drilling trajectory.

As shown in Fig. 3.26, we can use the wellbore trajectory extrapolation method to
establish a recursive relationship between two adjacent measurement points. Assume
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L is the depth of the drilling, γ is the angle of the drilling trajectory and its tangent.
Then,

L kð Þ ¼ L k � 1ð Þ þ ΔL kð Þ ð3:108Þ
γ ¼ arccos cos Ik�2ð Þ cos Ik�1ð Þ þ sin Ik�2ð Þ sin Ik�1ð Þ cos Ak�1 � Ak�2ð Þ½ �

ð3:109Þ
γ kð Þ ¼ γ

ΔL k � 1ð ÞΔL kð Þ ð3:110Þ

Form the Eq. (3.108) to Eq. (3.110), we can use two points to estimate the next
point, so the well trajectory can be smoothed. As shown in Fig. 5, we can calibrate
the drilling trajectory using Kalman Filter 2.2, wherein defined the k-thmeasurement
point as P(k)¼ [Ik Ak]. The system input is P(k-2) and P(k-1), KF-2.2 estimated P(K )
combined with measured values and the theoretical calculation values.

KF-2.2 can smooth the well trajectory by using inclination and azimuth as

inputs. Assuming the state vector as x kð Þ ¼ Ik
Ak

� �
, the measurement vector of the

system output as y kð Þ ¼ Ik
Ak

� �
m

, which is calculated from Eqs.(8) and (9). With

H
 (

k-
1)

H
(k

)

K-2

K-1

K

L(k-1)

L(k)

Fig. 3.26 Trajectory
prediction using method of
inclined plane cirque
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Fig. 3.27 Solving process
for KF-2
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H kð Þ ¼ 1 0

0 1

� �
. According to the Eqs. (3.107), (3.108) and (3.109), the state-space

model for KF-2.2 can be obtained as follows:

Ik
Ak

� �
¼

arccos cos Ik�2ð Þcos γþ γ kð Þð Þ� sin γþ γ kð Þð Þ
sin γð Þ cos Ik�2ð Þcosγ� cos Ik�1ð Þð Þ

� �
Ak�1þ Ak�1�Ak�2ð Þ � arccos cos γ kð Þð Þ� cos Ik�1ð Þcos Ikð Þ

sin Ik�1ð Þsin Ikð Þ
� �

26664
37775þ wI kð Þ

wA kð Þ

� �

ð3:111Þ
y kð Þ ¼ H kð Þx kð Þ þ v kð Þ ð3:112Þ

As show above, we should determine the ΔL as the KF-2.2 input. (The distance
that the drill bit moves forward during Δt). As show in the Fig. 3.26, we can use the
measurement of acceleration on z axis to calculate the displacement. az is the signal
of the triaxial accelerometers on the z axis, which combined with the gravitational
acceleration and vibration acceleration. Defined the measurement of acceleration on
z axis time series as az(k) .

So before calculated the displacement ΔL, we should exclude the impact of
gravity first as follows:

f gz kð Þ ¼ az kð Þ � G � cos Ik�1ð Þ ð3:113Þ

wherein f gz kð Þ is the acceleration time series function by remove the acceleration of

gz, can be calculated from az(k) and inclination Ik�1 corresponding to the same time.
Then we can calculate the depth (ΔL ) of drilling using acceleration on z axis time

series f gz kð Þ. Define the state vector as ΔL kð Þ ¼
ΔL kð Þ
Δ _L kð Þ
Δ€L kð Þ

264
375, the measurement vector

of the system output as z kð Þ ¼ f gz kð Þ, we develop a state-space model for KF-2.1 as

follows:

ΔL kð Þ
Δ _L kð Þ
Δ€L kð Þ

264
375 ¼

1 t
1
2
t2

0 1 t

0 0 1

2664
3775

ΔL k � 1ð Þ
Δ _L k � 1ð Þ
Δ€L k � 1ð Þ

264
375þ

ε kð Þ
_ε kð Þ
€ε kð Þ

264
375 ð3:114Þ

f gz kð Þ ¼ 0 0 1½ �
ΔL kð Þ
Δ _L kð Þ
Δ€L kð Þ

264
375þ η kð Þ ð3:115Þ

By preprocessing the measured signals, a dynamic azimuth and inclination
solving algorithm is established based on dynamical analysis of the bottom rotating
drilling tool. Based on the theoretical model, we develop a Kalman filter to improve
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the solver accuracy as well; the state space equations used for the Kalman filter have
been established based on the drilling trajectory predicted. The dynamic measure-
ment algorithm with the Kalman filter is a new model that can greatly reduce the
solution errors.

3.7.4 Experimental Results

Dynamic measurement algorithms developed were tested through laboratory bench
and field measurements data respectively [37].

3.7.4.1 Laboratory Testing

The combined measurement system was tested first in a laboratory environment, as
shown in Fig. 3.28. Measurement data were obtained under different inclination and

(a) (b)

1. Power simulation motor; 
2. Measurement system; 
3. Angle measuring device; 
4. Load device; 
5. Hydraulic cylinders; 
6. Bracket; 
7. Platform rotating motor.

(c)

Fig. 3.28 (a) Laboratory bench, (b) Three-dimensional simulation model of the test bench, (c)
Experimental equipment at inclinations of �5�, �2�, 0�, 2�, and 5� (Shown by red line)
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rotating speed conditions. In the experimental system, we use the encoder measure
the drillstring rotational speed and positioned the inclination mechanically.

As show in Fig. 3.28 (b), part 1 (power simulation motor) will work to provide
electricity, although this time the drillstring not continuously rotates, the power
simulation motor will generate vibration making the static solver results as above
are not very accurate. Part 7 (Platform rotating motor) working makes the drillstring
continuously rotates, we could use Eqs. (3.16) and (3.17) to dynamic solve the
inclination and azimuth. In the experiment we set the lab test at different inclination
and different rotate speed, as show in Fig. 3.28(c).

When the drillstring rotates continuously with a constant speed and is located at a
particular borehole inclination and azimuth, accelerometer (x, y, z axis) and fluxgate
(x, y, z axis) measurement data are obtained as shown in Figs. 3.29(b) and 3.29(c),
respectively.

We put the entire system on a laboratory bench [Fig. 3.28(a)] to conduct an
accuracy test of the measurement system. Figure 3.29(b) and 3.29(c) show the
measurement data for the magnetometers (x, y, z axes) and accelerometers (x, y,
z axes). Here, we can calculate the signals of the magnetometers and accelerometers
if we know the inclination according to the Eqs. (3.104) and (3.105). Defined the
reference is the reverse theoretical calculations results, The relative errors of mea-
surement data as show in the Fig. 3.30, it can be seen that the accelerometer noises
are relatively much larger than the magnetometer signal noises, the peaks in the
figure show that the measurement error increases when drillstring appear stick-slip
vibration. The main reason is that accelerometers are hypersensitive to drillstring
vibrations. In the field test, the vibration of the drillstring is more violent. Using the
components of gravity acceleration on the x, y, and z axes can help us calculating the
inclination and then combining the fluxgate measurement signals to obtain the
azimuth [Fig. 3.29(d)].

Fig. 3.29 Measurement system. (a), construction of measurement system; (b), laboratory survey
signals of triaxial magnetometers on the xyz axis; (c), laboratory survey signals of triaxial accel-
erometers on the xyz axis; (d), Continuous survey method, gx, gy, gz are the gravity acceleration on
the xyz axis, in the Eqs. 8 and 9, we only concerned about the acceleration of gravity
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In engineering applications, the inclination error of 0.1 will suffice. As shown in
Fig. 3.28(c), when the experimental equipment is at inclinations of�5�,� 2�, 0�, 2�,
and 5�, the test results are shown in Table 3.4. Through laboratory tests, the
theoretical models can be verified as entirely feasible when the drillstring rotates.
Experiments show that the dynamic solving methods in this chapter meet engineer-
ing requirements.

3.7.4.2 Field-Drilling Testing

In the field that some methods such as a low-pass filter and moving average filter are
considered, but the results are not satisfactory when the drillstring rotates. The
accelerometer signals of the field tests are completely different from those obtained
via laboratory survey. The azimuth is determined by using three-axis

Fig. 3.30 The relative errors of accelerometers and magnetometers measurement data

Table 3.4 Error of
inclination

Inclination /(�)
The error of results

Max/(�) Min/(�)
5 1.58 0.02

2 0.53 0.03

0 1.2 0

�2 0.61 0.01

�5 0.27 0.01
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magnetometers, while the inclination is determined using three-axis accelerometers.
Therefore, the drillstring vibration dramatically amplifies the error of the continuous
survey when the drillstring rotates. The algorithms developed in this chaper will
solve this problem by improving the accuracy of continuous MWD with the pro-
posed state-space models. Figure 3.31 is the schematic diagram of the field test.
From the measurement data stored in real time, we can obtain the vibration signals
measured by the accelerometer (x, y, and z axes), which contain the gravity accel-
eration on the x, y, and z axes.

We use the real field-test data to demonstrate the feasibility of our algorithm. The
results are shown in Fig. 3.32. During the first step of the solving process for the

Fig. 3.31 Schematic diagram of field test. The electro circuit is installed on a compressive cylinder
and placed in the axis of the drill collar, the sampling frequency of measurement and the control
system is 100 Hz, and the measurement data can be stored in real time
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Fig. 3.32 Signals of triaxial accelerometers on the x, y, and z axes, before KF-1 and after KF-1
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system (Fig. 3.25), the signals of the triaxial accelerometers (ax, ay, az) going though
KF-1 get the gravity acceleration (gx, gy, gz).

The results of KF-1 are shown in Fig. 3.32. The red line is the output of KF-1, that
is, the gravity acceleration. Because the accelerometer on the z-axis is not influenced
by the rotation of the drillstring, the curve tends to be a straight line when the
inclination does not change [Fig. 3.32(c)]. We can not estimate the error of this
process, because the data is came from the field-test, impossible to know the exact
measurements.

In the actual drilling process, we need to find a way to measure how good the
measurement accuracy is. For continuous drilling trajectory, there is no method that
could be used to accurately measure the wellbore trajectory. So we could only use
the MWD static measuring points for comparison. It should be feasible to evaluate
the advantages of the dynamic measurement algorithm. Tests of more than 10 wells
were conducted throughout China. The dynamic measurement system was deployed
at multiple formations. The field tests were carried out on wells using automatic
vertical or rotary steerable drilling. Three and four ribs actuators were adopted. A lot
of raw measurement data were accumulated. These data were input into our algo-
rithm for authentication. Conclusions on bit movement rules were gained through
analyzing and summarizing large amounts of data.

Two wells in China (Xuanye1 and Anshun1) are selected here to evaluate the
algorithm. The results for the inclination and azimuth are shown in Figs. 3.33 and
3.34. The basic parameters of field tests are shown in Table 3.5. The proposed
Kalman filter method can significantly improve the precision of the survey and
reduce vibration interference in the solution results.

We can also use the periodic static measurements to improve the dynamic solver
accuracy. Dynamic solution approach to the bottom of the rotating drillstring attitude
is proposed in [9, 37]. With non-rotating string, filtered real time signals on three-
axis are all used for calculation, and at the same time, filtered signals on x-axis, y-axis
were stored; on condition of rotation string, real time filtered signals on z-axis and
stored signals of x-axis, y-axis with non-rotating string are adopted; In addition,
stick-slip state of the down-hole drilling tool is considered as a non-rotating “sta-
tionary” state.

Inclination and azimuth show great fluctuations when the drilling string is rotates.
Using the method we developed, the results are shown again in Figs. 3.33 and 3.34.
Comparing static measurement points, it can be seen that the dynamic measurement
inclination error is less than 1�, and the azimuth error is relatively large, between
5�~20�, because it is calculated under small inclination angles. When the angle of
inclination is small, accelerometer signals of Gx and Gy are small as well, which lead
to the impact of noise increased. Moreover, the error accumulated in the formula
(3.17) causes the azimuth error become larger [37].

1. Drilling at Xuanye1

This drilling field test was conducted on May 19, 2010. We use the static
measurement data to evaluate the continuous solving results. From Figs. 3.33 and
3.34, we can see that the inclination error is less than 1�, additionally, the error is
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Fig. 3.33 The solving results of inclination and azimuth at XuanYe 1

Fig. 3.34 The inclination error of solving results
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gradually reduced. Unfortunately, we did not get the static field measurement data of
Azimuth.

2. Drilling at Anshun1

This drilling field test was conducted on January 23, 2012. We use the static
measurement data to evaluate the continuous solving results (Fig. 3.35). From
Fig. 3.35, we can see that the inclination error is less than 1�, and that the azimuth
error is between 5�~20�.
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Fig. 3.35 Solving results of inclination and azimuth at Anshun1

Table 3.5 Basic parameters of field test

Location Segment/m Length/m During/h Diameter/mm

Xuanye1 650.03–791.75 141.72 32 φ228.6
Anshun1 2436–2518.37 82.37 81 φ300
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3.8 Conclusion

In directional drilling and rotary-steerable drilling technology, it is a challenge to
measure the spatial attitude (inclination, azimuth, and tool face) of the bottom-
drilling tool accurately in real time while the drillstring is rotating. The drillstring
vibration seriously affects the accuracy of a dynamic solution. In drilling engineer-
ing, the bottom drillstring attitude is usually measured when the drillstring does not
rotate. However, with recent progress in drilling technology, continuous measure-
ment of the well trajectory becomes increasingly important. It also becomes neces-
sary in rotary-steerable and automatic vertical drilling systems. In recent years, the
requirement for a continuous survey that captures the actual trajectory between
stationary surveying stations has become an urgent need. This allows for a better
estimation of the casing pipe and cementing of the borehole. In addition, this
provides an actual estimation of the curvature along the well trajectory. Therefore,
in this chapter the trajectory between the two surveying stations is continuously
surveyed using a triad of accelerometers and a triad of magnetometers. The calcu-
lation algorithm is based on a strap-down computation mechanism and Kalman
filtering. We developed downhole measurement signal-processing methods and an
algorithm to dynamically solve the spatial attitude of the bottom rotating drillstring.
Initially we established a theoretical system of dynamic solving and laid a theoretical
and technical foundation for continuous MWD and rotary-steerable systems
development.

As the core of a rotary-steerable system, MWD urgently needs to improve its
accuracy and reliability. However, due to the complexity of BHA vibration, dynamic
real-time measurement, precise solution has become a key technology affecting the
rapid development of MWD. For the downhole signal filtering of sensors, a specific
algorithm needs to be proposed by analyzing the motion state of the bottom-hole
drillstring. After filtering, the measurement signals are input into a space attitude
dynamic measurement algorithm model that is based on motion analysis. The use of
stick-slip vibration phenomena can improve the accuracy of the solution. Using the
dynamic measurement theory model and a trajectory prediction, a new space-state
equation can be established. A more effective Kalman filter model was developed.
This further reduces the errors of the results of a dynamic solution. The dynamic
measuring algorithm proposed is analyzed through downhole measurement instance
data. Results show that the algorithm can effectively reduce inclination and azimuth
solving errors. Field measurement data analysis shows that the algorithm can
effectively solve the dynamic inclination and azimuth when the inclination is large.
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Chapter 4
Analysis of Vibration Noise
on the Fiber-Optic Gyroscope

Lu Wang

Abstract The random noise of the sensor is the main cause of the error in naviga-
tion accuracy. In addition, strong downhole vibration will generate greater random
noise of fiber-optic gyroscope and accelerometer during MWD operation. The
random noise in vibration features concerning time series mutation, slowness and
periodicity in its varying. The results show a wide internal noise band and the
changing of the noise over time. Considering all these features, this section explores
with the dynamic Allan variance method the dynamic characteristics of the random
noise produced by fiber-optic gyroscope and accelerometer in vibration, to offer
theoretical guidance for improving the environmental adaptability of sensors in
vibration and offer theoretical support for noise modeling.

Keywords Allan variance · Navigation accuracy · Fiber-optic gyroscope · Dynamic
characteristics

4.1 Allan Variance

In statistics, mean value and variance value are two classical parameters in describ-
ing random variables. Traditional variance method is adopted in quantitative char-
acterization of frequency stability in early days. While in 1966, when the scholar
D.W. Allan analyzed the frequency stability of cesium atom frequency standard,
called Allan Variance (AVAR, Allan Variance) [1]. Allan Variance is recommended
by IEEE (IEEE, Institute of Electrical and Electronics Engineers) as a time-domain
method for frequency stability analysis. Also, Allan Variance is widely used in
random error modeling of those inertial devices with the characteristic of the
oscillators. In 1995, Allan Variance is also adopted in the modeling analysis of
laser gyroscope in IEEE Standard 647-1995 specification format guide and test
procedure for single-Axis Laser Gyros.
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At present, the method of Allan Variance has been a crucial means to observe and
evaluate various errors and noise characteristic of the inertial devices. Allan Vari-
ance is also used to identify various random errors and statistical characteristics, and
to calculate the coefficients in the characterization of various random errors. Noise
sources in data can thus be identified.

4.1.1 Allan Variance Theory

Suppose sample data N, and the sampling interval τ0. Group the sample data
according to the time interval τ0, 2τ0, . . . kτ0 (k < N/2). Data are grouped due to
different time intervals. For each group, quadratic sum of the difference between the
mean value of the adjacent data set is called Allan Variance. Different groups have
its different Allan Variance. Thus, Allan Variance is the function of group time
interval kτ0. Allan Variance can be expressed as follows:

σ2ω τð Þ ¼ 1
2

ω t þ τð Þ � ω tð Þð Þ2
D E

ð4:1Þ

Where τ is the varying group time intervals, also called observation time. hi is total
time averaging. ω tð Þ is the mean value of group at time t. It can be given by:

ω tð Þ ¼ 1
τ

ðtþτ

t
ω uð Þdu ð4:2Þ

u is integral variable. The formula (3.1) is the definition of Allan Variance for
continuous data. The formula of Allan Variance for discrete data is expressed in
(3.3).

σ2ω kð Þ ¼ 1
2k2τ20

1
N � 2k

XN�2k�1

n¼0

ω nþ k½ � � ω n½ �ð Þ2Þ ð4:3aÞ

ω n½ � ¼ 1
k

Xnþk‐1

i¼n

ω i½ � ð4:3bÞ

In the reference Ng, L.C. [2], the study shows that Allan Variance is related with
power spectral density (PSD, power spectral density) of the noise in primary data.
The relationship between Allan Variance and PSD SΩ( f ) can be expressed as:

σ2 τð Þ ¼ 4
ðþ1

0
SΩ fð Þ sin

4 πf τð Þ
πf τð Þ2 df ð4:4Þ

Here, SΩ( f ) is the PSD of random process Ω(t), is the integral time
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Equation (4.4) indicates that Allan variance [3] of the random process can be
obtained through integral of PSD in random process. It should be noted that Allan
variance is proportional to the noise energy in the random process when passing
through the filter, transfer function can be expressed as sin 4u

u2 . This specific transfer
function is obtained through the method of array generation and operation. That is,
the frequency band of filter is determined by τ. That is to say, different types of
random process can be verified by adjusting the frequency band of the filter, or rather
to say, different τ can be used to verify different types of random process [4]
(Fig. 4.1)

Analysis of Allan variance for random process is inputting the random signal into
a series of filter with different frequency bandwidth τ, then the output of a group of
random noise can be obtained. It is Allan variance for the noise of a certain
frequency band σ2(τ). Thus, the different noise in random process can be identified
and expressed quantitatively by quantitative Eq. (4.4) of the relation between Allan
variance and noise PSD. Generally, log-log curve σ2(τ) � τ should be drawn for
visually display.

Generally, Noise of fiber optic gyroscope can be divided into five types: the
quantization noise-Q, angular random walk-N, bias instability-B, rate random walk-
K, the rate slope-R. PSD corresponding to different noise is shown in Table 4.1.
Different noise will display in different observation time.

If the various noise items are mutually independent of each other, its Allan
variance can be expressed as Allan variance sum of all types of noise, as shown in
the Eq. (4.5).

σ2 τð Þ ¼ σ2Q τð Þ þ σ2N τð Þ þ σ2B τð Þ þ σ2K τð Þ þ σ2R τð Þ

¼ 3Q2

τ2
þ N2

τ
þ 2B2

π
ln 2þ K2τ

3
þ R2τ2

2

ð4:5Þ

Fractional averaging

Segmentation

Adjacent mean subtraction

Variance of difference

Relationship with noise PSD-T Figure

Determine different noise

s 2(T)

s 2(T)

s 2(T)

Fig. 4.1 Flow chart of allan
variance calculation
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Where, σ2Q τð Þ, σ2N τð Þ, σ2B τð Þ, σ2K τð Þ, σ2R τð Þ are variances of the five different noise
items. When the analysis of random noise produced by fiber optic gyroscope and
accelerometer is carried out, the unit of data for fiber optic gyroscope is (�/h).

4.1.2 Gyroscope Noise Analysis

1. Angle (Velocity) Random Walk

The noise source is caused by unstable excitation source or external interference,
such as electron-thermal noise, shot noise and mechanical vibration, resulting from
integral of broad-band noise. Other high frequency noise with less correlation
time than the sampling time can also be produced by angle (velocity) random
walk, which always exists in the output of the light source. But most of these
noise source can be eliminated by designing. The angular random walk noise of
gyroscope (or accelerometer rate) increases slowly with time with its bandwidth less
than 10 Hz. Therefore, if angle (velocity) random walk cannot be accurately
determined within the bandwidth range of the most navigation system, it will
become the main noise limiting the performance of the navigation system. When
the noise amplitude is N, the noise power spectral density is [15]:

SΩ fð Þ ¼ N2 ð4:6Þ

By substituting the above equation into the Eq. (4.4), Allan Variance of angle
(velocity) random walk is:

Table 4.1 PSD and Allan variance of different noise in fiber optic

Noise type
Noise
coefficient SΩ(v) σ2(τ) Slope

Quantization noise Q

SΩ fð Þ ¼
4Q2

τ
sin 2 πf τð Þ

2πfð Þ2τQ2

8<
:

f � 1
2τ

f <
1
2τ

3Q2

τ2
�1

Angular random
walk

N SΩ( f ) ¼ N2 N2

τ
�1/2

Bias instability B
SΩ fð Þ ¼

B2

2π

� �
1
f

0

8<
:

f � f 0
f > f 0

2B2

π
ln 2

0

Angular Rate random
walk

K SΩ fð Þ ¼ K2

2π

� �
1
f 2

K2τ
3

1/2

Rate slope R SΩ fð Þ ¼ R2

2πfð Þ3 R2τ2

2
1
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σN
2 τð Þ ¼ N2

τ
ð4:7Þ

Meaning: the slope of angle (velocity) random walk coefficient in σN(τ) for
log-log curve τ is �1/2. The value of angle (velocity) random walk coefficient
N can be estimated when τ ¼ 1 [15].

2. Bias Instability

Bias instability mainly refers to low-frequency null-shift jitter, mainly reflected in
1/f noise, which is common in resonators. 1/f noise is related not only to the random
fluctuation of the conductance of the contact points between electronic components,
but also to the quality factorQ of the resonator. A mass of experiments demonstrated
that the power spectrum of noise mainly comes from discharge components, plasma
discharge, circuit noise, environmental noise or other random flicker sensitive items.
The rate power spectral density of the noise is [5]:

SΩ fð Þ ¼
B2

2π

� �
1
f
, f � f 0

0, f > f 0

8<
: ð4:8Þ

In the equation, B is bias instability coefficient, f0 is cut-off frequency. By
substituting the above equation into the Eq. (4.4), it can be obtained:

σB
2 τð Þ ¼ 2B2

π
ln 2� sin 3x

2x2
sin xþ 4x cos xð Þ þ Ci 2xð Þ � Ci 4xð Þ

� �
ð4:9Þ

When x ¼ πf0τ, in the σB(τ) for log-log curve τ, the bias instability coefficient
B can be estimated from the straight part of the curve [14].

3. Rate (Acceleration) Random Walk

Rate (acceleration) random walk is a result of the integral of the power spectral
density for the broadband angular acceleration rate, along with long-term effect of
the resonator. Still the source of a random process has not been determined yet,
which may be due to the limit case of exponential correlation noise with long
correlation time, or to the aging effect of crystal oscillator. The power spectral
density of burst noise at high frequency can approximate to rate (acceleration)
random walk. The power spectral density of the noise is [14]:

SΩ fð Þ ¼ K
2π

� �2 1
f 2

ð4:10Þ

In the above equation, K is the coefficient of rate (acceleration) random walk. By
substituting the above equation into the Eq. (4.4) and integrating, it can be obtained:
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σK
2 τð Þ ¼ K2τ

3
ð4:11Þ

The above equation shows that, in the σK(τ) for log-log curve τ, the slope of rate
(acceleration) random walk noise is 1/2, and the coefficient of rate (acceleration)
random walk K can be estimated when τ¼3.

4. Rate (Acceleration) Drift Ramp

For extremely long but limited time intervals, the noise is more like a determin-
istic noise than a random noise. The noise in the data will show a rather slow
monotonic change in the intensity of the light source for long period. Such change
may also be due to a minimal acceleration of the platform in the same direction over
a long period of time. The rate power spectral density of the noise is [14]:

SΩ fð Þ ¼ R2

2πfð Þ3 ð4:12Þ

In above equation, R is coefficient of the rate (acceleration) drift ramp. By
substituting the above equation into the Eq. (4.4) and integrating, it can be obtained:

σR
2 τð Þ ¼ R2τ2

2
ð4:13Þ

In the equation, in σR(τ) for log-log curve τ, the slope of rate (acceleration) drift
ramp noise is 1, and the coefficient of rate (acceleration) drift ramp R can be
estimated when τ¼ ffiffiffi

2
p

[14]

5. Quantization Noise

Quantization noise is caused by quantization and digital output characteristic of
the sensor during the output, which reflects the minimum resolution of the sensor. It
is caused by A/D conversion during sampling. The size of quantization noise
depends on the data collection system accuracy and the initial sampling time. Due
to a very short correlation time (equals to a very wide bandwidth), quantization noise
will cause a great impact in the environment application where fast sampling speed is
required. And measures shall be taken to suppress. In order to reduce the noise, the
accuracy of the collection system can be improved and the initial sampling time can
be shortened. Also, a filter can be used in the system for filtering. The rate power
spectral density is [15]:

SΩ fð Þ ¼
4Q2

τ0
sin 2 πf τ0ð Þ

� 2πfð Þ2τ0Q2, f <
1
2τ0

8>><
>>:

ð4:14Þ
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In the equation, Q is coefficient of quantization noise. By substituting the
equation into the Eq. (4.4), it can be obtained:

σQ
2 τð Þ ¼ 3Q2

τ2
ð4:15Þ

The equation shows that: in σQ(τ) for log-log curve τ, the slope of quantization
noise is �1, and the coefficient of quantization noise Q can be estimated when
τ ¼ ffiffiffi

3
p

[15].
By Allan variance, the effectiveness of time series filtering method can be

quantitatively analyzed by analyzing and comparing the five noise source coeffi-
cients given above before and after filtering.

4.2 Dynamic Allan Variance Method

Allan variance method is the main tool for static test data analysis, which can
effectively identify and analyze the noise characteristics of the static data. However,
Allan variance method is usually based on stationary signals and cannot characterize
the noise under non-stationary signals. While the noise of fiber optic gyroscope and
accelerometer operated in dynamic environment is often unstable. Therefore, the
dynamic Allan variance method is proposed to characterize the noise in
dynamic data.

In 2003, dynamic Allan variance (DAVAR) was proposed by L.Galleani and P.
Tavella on the basis of Allan variance to analyze the time-domain stability of atomic
clock signal [6]. It is a new method of tracking and describing dynamic character-
istics of time series, which can be used to reveal the stability changes of atomic
clocks affected by humidity, temperature, radiation, sudden failure, aging and other
factors [7–9]. In 2007, DAVAR was first used in Galileo’s test satellites, GIOVE-A
and GIOVE-B [10–12]. In 2009, L.Galleani studied the fast algorithm of DAVAR
application in atomic clock signal analysis [13, 14]. In 2010–2011, he made another
study of DAVAR confidence and detection sensitivity [15, 16], and then applied
DAVAR in the evaluation of the time-domain stability under the case of atomic
clock data loss in 2013 [17]. While in China, Wei Guo and other people applied
DAVAR in the evaluation of random error for mechanically dithered RLG in 2008
[18]. While Li Ying and other people applied it into the analysis of static test data of
fiber optic gyroscope [19]. Li Xuyou, Zhang Na et al. made an analysis of signal
swing of marine fiber optic gyroscope, and studied the impact of window function on
DAVAR [20, 21]. However, there is still no complete analysis of DAVAR correct-
ness, effectivity and practicability, and no quantitative two-dimensional display of
the coefficient dynamic characteristics for FOG noise.

This chapter gives a brief introduction of DAVAR algorithm and fast DAVAR
algorithm is also mentioned. Simulation data is used to verify the algorithm.
DAVAR not only quantitatively reflects the non-stationary characteristics of the
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output data of fiber optic gyroscope and accelerometer, but also presents quantitative
two-dimensional display of the dynamic characteristics for each noise coefficient.

4.2.1 Basic Principle of Dynamic Allan Variance

Allan variance can describe the characteristics of various errors and noise by signal
processing, but it cannot capture various non-stationary factors in signals. Dynamic
Allan variance is an improvement and extension of Allan variance. Allan variance of
signals can be repeatedly estimated in various time periods by integrating the
information of time and Allan variance. Finally, it is expressed in the form of
three-dimensional graph, from which the change of statistical characteristics over
time for signal noise can be seen clearly, thus making up for the deficiency in Allan
variance method.

DAVAR analyzed the signals as follows [22]:

1. Fixed-analyze time point t1;
2. Definition-the window function PL(t) with a window length of L, use PL(t) to cut

off the signal ω(t) on the time axis. t1 is set as the center point of the window and
if the condition t ‐ L/2 � t1 � t + L/2 is satisfied, the signal y(t, t1) obtained
through cut-off of the window function can be expressed as follows:

y t, t1ð Þ ¼ ω tð ÞPL t � t1ð Þ ð4:16Þ

3. Assuming that the sum of processing sample is N, sample time is y(t, t1), com-
posed of Nw continuous data of t0. Then make Allan variance analysis using
cut-off data Nw as samples.

4. Choose another time point t2 (the cut-off data of window function at the time of t2
should overlap the cut-off data at the time of t1), and repeat the steps (2) and (3) to

get Ωp τð Þ ¼ 1
τ

Ð tpþτ

tp
Ω tð Þdt , and so on, Ωp τð Þ ¼ 1

k

Ppþk

i¼p
Ωi t0ð Þ is thus obtained

(where m¼ 1, 2,. . .K, K�M � m + 1). Finally, DAVAR is obtained by drawing
in the same three-dimensional graph in chronological order. In general, dynamic
Allan deviation (dynamic Allan deviation, DADEV) σ(tm, τ) is used to represent
in the three-dimensional graph.

The above procedure of signal processing with Allan variance, it can be obtained
[23]:

σ2ω t, τð Þ ¼ 1
2τ2 Nw � 2τð Þ

ðtþNw
2 �τ

t�Nw
2 þτ

ϖ uþ τð Þ �ϖ uð Þð Þ2du ð4:17Þ

Where Nw is cut-off window length, t is analysis time point, τ is observation time
interval. σ2ω t, τð Þ is the value of DAVAR. u is integral variable. In the above
equation, t and τ has time-continuous relation. The discrete time series are:
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u ¼ mτ0, m ¼ NW

2
, 2, � � �N � NW

2

� �
, τ ¼ kτ0, k ¼ 1, 2, � � �NW

2

� �
ð4:18Þ

By substituting the Eq. (4.18) in the (4.17), DAVAR of the discrete time series can
be obtained:

σ2ω n, k½ � ¼ 1
2k2τ20

1
Nw � 2k

	
XnþNw=2�2k�1

m¼n�Nw=2

ϖ mþ k½ � �ϖ k½ �ð Þ2 ð4:19Þ

τ0 is sample interval, kτ0 is observation interval, N is the total sample, Nw is the
cut-off window length (Assuming Nw is even).

Summing up the above analysis process, by moving time analysis points with
certain principles, and based on those points, appropriate window functions are
adopted to cut-off the signals. Then calculate the Allan variance or standard devia-
tion, and draw it into the same three-dimensional graph in chronological order. By
observing the change of Allan variance curve or standard deviation curve with
analysis time point, the dynamic characteristic of the signal can be quantitatively
reflected.

4.2.2 Two-Dimensional Display of the Noise Based
on Dynamic Allan Variance

Ng, L.C. [24] shows a uniquely determined relation between Allan variance σ2ω τð Þ
and power spectral density (power spectral density, PSD) of fixed noise, as shown in
the following equation:

σ2ω τð Þ ¼ 4
ð1
0
Sω fð Þ sin

4 πf τð Þ
πf τð Þ2 du ð4:20Þ

Where, Sω( f ) is PSD of random process ω(t), any random process of the physical
meanings can be substituted into the above equation, thus obtaining the related
function between Allan variance of random process σ2ω τð Þ and the time τ [25]. As
we know, there are five types of noise in a gyroscope: the quantization noise (Q),
angular random walk (N), bias instability (B), rate random walk (K), the rate slope
(R). Equation (4.4) shows that Allan variance is proportional to the total power of the

random process after passing the filter with the transfer function of sin 4 πf τð Þ
πf τð Þ2 . It also

means that different types of random noise can be filtered by changing τ. PSD of five
types of noise and its corresponding Allan variance are given in Table 5.

Different noise will appear in different time zones so as to separate different noise
in gyro data. Supposing that each noise is statistically independent of each other,
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Allan variance can be expressed as the sum of Allan variance of different noise, as
follows:

σ2 τð Þ ¼ σ2Q τQð Þ þ σ2N τNð Þ þ σ2B τBð Þ þ σ2K τKð Þ þ σ2R τRð Þ

¼ 3Q2

τQ2 þ N2

τN
þ 2B2

π
ln 2þ K2τK

3
þ R2τR2

2

ð4:21Þ

Where, represent Allan variance of five types of noise respectively. Then the
noise coefficients of the five types of noise can be obtained through the method of
curve fitting. When the gyro data unit is �/h and the noise coefficient is converted to
common unit, the coefficients of the five types of noise can be expressed as follows:

N ¼
ffiffiffiffiffiffiffiffi
C�1

p
60

�
=h

1
2

� �

K ¼ 60
ffiffiffiffiffiffiffiffi
3C1

p �
=h

3
2

� �

B ¼
ffiffiffiffiffiffi
C0

p
0:664

�
=h

	 


Q ¼ 106π
ffiffiffiffiffiffiffiffi
C�2

p

180	 3600	 ffiffiffi
3

p 00ð Þ

R ¼ 3600
ffiffiffiffiffiffiffiffi
2C2

p �
=h2

	 


ð4:22Þ

DAVAR is a slip Allan variance analysis method. At each analysis time point,
Allan variance can be obtained. Least square fitting of this Allan variance, and noise
characteristics of cut-off data corresponding to each analysis time point can be
obtained. Hence, at each time point t, it can be obtained as follows:

σ2 tð Þ ¼ σ2Q t, τQð Þ þ σ2N t, τNð Þ þ σ2B tð Þ þ σ2K t, τKð Þ þ σ2R t, τRð Þ

¼ 3Q2

τ2Q
þ N2

τ2N
þ 2B2

π
ln 2þ K2τK

3
þ R2τ2R

2

ð4:23Þ

By presenting the two-dimensional display in chronological order, the change of
each noise coefficient over time can be obtained, thus quantitatively reflecting the
dynamic characteristics of the signal noise over time. Therefore, dynamic Allan
variance method can be applied to achieve the quantitative two-dimensional descrip-
tion of random noise. The algorithm flow chart of dynamic Allan variance is shown
below (Fig. 4.2).
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Fig. 4.2 The algorithm flow chart of DAVAR
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4.2.3 Fast Algorithm of Dynamic Allan Variance

Dynamic Allan variance can effectively track and identify non-stationary character-
istics in time series. However, with the increase of time series length, the time for the
calculation of dynamic Allan variance increases greatly, resulting in waste of time in
data processing. Therefore, it can be called Fast dynamic Allan variance briefly (Fast
DAVAR).

Allan variance is used to observe the stability of the gyro output time series w(t)
through different observation time τ. The standard definition equation can be
expressed as follows:

σ2ω τð Þ ¼ 1
2

ω t þ τð Þ � ω tð Þð Þ2
D E

ð4:24Þ

Where, τ is observation time, h i is total time averaging, the total time averaging
of ω(t) can be expressed as follows:

ω tð Þ ¼ 1
τ

ðtþτ

t
ω t0ð Þdt0 ð4:25Þ

In which, ω(t) is standard time series.
Based on Allan variance, cut-off initial time series by using slip rectangular

window function on the time axis, and then calculate the Allan variance of the
cut-off data, DAVAR can thus be obtained. Rectangular window length is T, time
analysis point is t, then the dynamic Allan variance is σ2ω t, τð Þ.

σ2ω t, τð Þ ¼ 1
2 T � 2τð Þ 	

ðtþT
2�2τ

t�T
2

ω t0 þ τð Þ � ω t0ð Þð Þ2dt0 ð4:26Þ

Define another time series θ(t), its relation with ω(t) is as follows, θ(t) and ω(t) are
both random process:

ω tð Þ ¼ dθ tð Þ
dt

ð4:27Þ

Combining Eq. (4.26) and Eq. (4.27), DAVAR can be rewritten as follows:

σ2ω t, τð Þ ¼ 1
2 T � 2τð Þτ2 	

ðtþT
2�2τ

t�T
2

θ t0 þ 2τð Þ � 2θ t0 þ τð Þ þ θ t0ð Þð Þ2dt0 ð4:28Þ

For discrete time series θ(n), DAVAR can be expressed as the Eq. (4.28).
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σ2ω n, k½ � ¼ 1
2k2τ20

1
Nw � 2k

	
XnþNw=2�2k�1

m¼n�Nw=2

θ mþ 2k½ � � 2θ mþ k½ � þ θ m½ �ð Þ2 ð4:29Þ

Wherein, τ0 is sampling interval, k ¼ τ=τ0 is observation interval, N is the total
sample of time series θ(n), Nw is analyzed width in rectangular window. At the time
of t, when k ¼ 1, 2, � � �, N

2 � 1, dynamic Allan variance of the discrete data can be
obtained. Suppose N is the even number.

Through a further study on the calculation process of DAVAR, it can be found
that DAVAR has recursive nature. With the unique characteristic, fast calculation of
DAVAR can thus be obtained. In other words, DAVAR at the time of n + 1 can be
obtained by the recursive nature of DAVAR at the time of n. Based on the Eq. (4.29),
a fast algorithm of DAVAR is deduced.

First, define the second-order difference Δk[m]

Δk m½ � ¼ θ mþ 2k½ � � 2θ mþ k½ � þ θ m½ � ð4:30Þ

Thus, the Eq. (4.29) can also be written as the Eq. (4.31) as follows:

σ2ω n, k½ � ¼ 1
2k2τ20

1
Nw � 2k

	
XnþNw=2�2k�1

m¼n�Nw=2

Δ2
k m½ � ð4:31Þ

In the same way, DAVAR can be obtained at the time of n + 1:

σ2ω nþ 1, k½ � ¼ 1
2k2τ20

1
Nw � 2k

	
XnþNw=2�2k

m¼nþ1�Nw=2

Δ2
k m½ � ð4:32Þ

Expand and recombine the above sum, it can be obtained:

σ2ω nþ 1, k½ � ¼ 1
2k2τ20

1
Nw � 2k

	
XnþNw=2�2k�1

m¼n�Nw=2

Δ2
k m½ �

þ 1
2k2τ20

1
Nw � 2k

	 Δ2
k nþ Nw=2� 2k½ � � Δ2

k n� Nw=2½ �	 
 ð4:33Þ

Obviously, the first item in the right side of the equation is σ2ω n, k½ � at the time of
n, so DAVAR at the time of n + 1 can be expressed as:

σ2ω nþ 1, k½ � ¼ σ2ω n, k½ � þ 1
2k2τ20

1
Nw � 2k

	 Δ2
k nþ Nw=2� 2k½ � � Δ2

k n� Nw=2½ �	 
 ð4:34Þ
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Equation (4.34) is the recursive algorithm of DAVAR. So DAVAR at the time of
n + 1 can be obtained through σ2ω n, k½ � at the time of n and calculating two separated
second-order difference. That is, when the analysis data increases θ[n + Nw/2 � 2k],
and decreases θ[n� Nw/2], it needs to increase on the basis of the previous DAVAR,
and then increase the second-order difference Δ2

k n� Nw=2½ � , and decrease the
second-order difference Δ2

k n� Nw=2½ �.
From the recursive algorithm, an initial value is needed before calculation. If

DAVAR is calculated from the time of n0, the initial value is:

σ2ω n0, k½ � ¼ 1
2k2τ20

1
Nw � 2k

Xn0þNw=2�2k�1

m¼n0�Nw=2

Δ2
k m½ � ð4:35Þ

So when the sample size is N, rectangular window length is Nw, step length is Bw,
and observation intervals are k ¼ 1, 2, � � �, Nw

2 � 1, using dynamic Allan variance to
calculate the times of Allan variance, it can be expressed as SDAVAR:

SDAVAR ¼ Nw

2
	 N � Nw

BW

� �
ð4:36Þ

While dynamic Allan variance based recursive sequence only requires calculating
at the initial time Allan variance for Nw

2 times and then carrying out addition and
subtraction. The flow chart for the calculation of the fast algorithm of dynamic Allan
variance is shown as follows (Fig. 4.3):

4.3 Verification of the Fast-Dynamic Allan Variance

Dynamic Allan variance can be used to judge the stability of time series, track the
changes of time signal, identify the sudden signal, the signals of periodic changes
and slow changes. To prove its effectiveness, two simulated signals with known
variation characteristics are generated. Two groups of simulated signals are
uncorrelated white noise with zero mean value. The noise model is shown as
follows:

x n½ � ¼ σ n½ �f n½ � ð4:37Þ

Where, f[n] is Gaussian white noise and σ[n] is the standard deviation of
Gaussian white noise. x[n] is the simulation data of fiber optic gyroscope with the
unit of �/h. Utilize the above model, two sets of simulation data of fiber optic
gyroscope are generated. And x1[n] is stationary Gaussian white noise with its
mean value of 0 and variance of 1. x2[n] is non-stationary white noise which variance
increases with time. The sampling interval of the two groups of simulation data is
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Fig. 4.3 The flow chart of fast algorithm of DAVAR
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0.01 s, the simulation time of the simulation data 1 is 60s, so the data length is
L1 ¼ 6 	 103. The simulation time of the simulation data 2 is 6000 s, so the data
length is L2 ¼ 6 	 105. The characteristics of the simulation data are shown as
follows:

Classical Allan variance method is used to analyze the two groups of simulation
data, and then fit them by the least square method. The initial simulation data and the
corresponding Allan variance are shown in the Fig. 4.4., the blue line is the initial
data while the red line is the least squares fitting curve, the characteristics of the
simulation data as shown in Table 4.2.

Angular random walk is a result of white noise integral of the broadband angular
rate, that is, the accumulated total angular incremental error of the gyroscope from
the time of zero is shown as the random walk. And the equivalent angular velocity
error at each time is expressed as white noise. The simulation data 1 is stationary
white noise. The analysis chart of Allan variance presents the Allan characteristic of
specific slope� 1/2 corresponding to the angular random walk, and also presents the
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Fig. 4.4 Three types of simulation data and the corresponding Allan variance (a) Gaussian white
noise x1[n] (b) Allan variance of x1[n] Gaussian white noise with linear growth x2[n] (d) Allan of
x2[n]

Table 4.2 The characteristics of the simulation data

Simulation data Variance of the noise Simulation time Data length

x1[n] σ[n]¼1 60s L1 ¼ 6 	 103

x2[n] σ n½ � ¼ 1þ 10
L2
	 n 6000s L2 ¼ 6 	 105
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characterization of the simulation data x1[n] as white noise. The angular random
walk coefficient N of the stationary white noise x1[n] is 0.00214814

�
=

ffiffiffi
h

p
. Allan

variance of the simulation data x2[n] also presents the particular slope of angular
random walk, �1/2, with the characterization of simulation data as white noise. The
angular random walk coefficient N of the stationary white noise x2[n] is
0.01141631

�
=

ffiffiffi
h

p
. The simulation data x2[n] is not stationary white noise, but it

has the same shape with Allan variance chart of the stationary white noise x1[n], the
slope is both �1/2. From the analysis of Allan variance, we can only get the noise
coefficient of the angular random walk caused by white noise rather than reflect the
dynamic changes of the noise.

DAVAR algorithm and fast DAVAR algorithm are used to analyze the above two
kinds of simulation data. The analysis results are shown in the following figure.
Choose rectangular window as truncation window. The length of the rectangular
window for the first group simulation data is 1000 with the step length of 100. The
length of the rectangular window for the second group simulation data is 2000 with
the step length of 300. The computer model (Intel(R) Core(TM) i7–3770,
CPU@3.4GHz), matlab2010a is used. Figure 4.5 (a)(c) are DAVAR results in the
analysis of two sets of the simulation data, (b)(d) are fast DAVAR results in the
analysis of two sets of the simulation data.

As is shown in Fig. 4.5 (a)(b), DAVAR changes stationary with time. The slope
of Allan variance curve at each time point is�1/2, indicating of the data as stationary

Fig. 4.5 DAVAR of the simulation data and fast DAVAR (a) DAVAR of x1[n] (b) Fast DAVAR
of x1[n] (c) DAVAR of x2[n] (d) Fast DAVAR of x2[n]
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white noise. From Figure (c)(d), Allan variance of the noise increases linearly with
time. According to the simulation results, fast DAVAR and DABAR can track and
describe the non-stationary changes of the signal over time. By the dynamic Allan
variance, the change of the noise coefficient with time can be quantitatively
expressed in the two-dimensional graph. The angular random walk coefficient
N of the simulation data changes with time, as shown in the figure.

It can be seen from Fig. 4.6 (a) and (b) that the noise coefficient of angular
random walk fluctuates around 0.00215

�
=

ffiffiffi
h

p
, indicating that the white noise in the

simulation data changes steadily. From (c) and (d), noise coefficient of angular
random walk increases linearly with time, the minimum value of it is
0.00215

�
=

ffiffiffi
h

p
, and the variance of the white noise is 1. As the variance of the

white noise increases gradually, the angular random walk coefficient also increases
gradually, it is not a constant value. The correctness of DAVAR and fast DAVAR
can thus be proved.

The comparison of calculation time and the calculation amount between DAVAR
and fast DAVAR is drawn in the following table.

For the same set of simulation data, by using the same window length and the
same calculation. The calculation of fast DAVAR takes far less time than the
calculation of DAVAR. When the data size is relatively small 6
103, DAVAR and
fast DAVAR both takes a rather short time for calculation. Hence, fast DAVAR
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Fig. 4.6 Angular random walk coefficient of the simulation data (a)(b) Angular random walk
coefficient of x1[n] (c)(d) Angular random walk coefficient of x2[n]
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saves 78.93% of the time. When the large data size 6
105, DAVAR takes about
16 min while fast DAVAR takes only 27.92727 s, saving about 97.09% of calcula-
tion time. The last column in the table shows the times of Allan variance calculated
by DAVAR and fast DAVAR. As the increase of the data amount, DAVAR needs
more and more times of Allan variance calculation, which takes a lot of calculation
time. But fast DAVAR needs to be calculated only once, that is, the initial value of
Allan variance. Then DAVAR at each time point can be obtained by performing
addition and subtraction, which greatly saves not only the calculation amount but
also the calculation time (Table 4.3).

4.4 Downhole Vibration Simulation Test Verification

The fiber optic gyroscope inertial navigation system was places on a vibration table
with the vibration frequency of 25 Hz, vibration acceleration of 1 g, vibration time of
2 h and vibration direction of Y axis. Static data were collected for 5 min before and
after the vibration.

Taking the data of Y-axis fiber optic gyro and Y-axis accelerometer as an
example, fast DAVAR is used for the analysis of the vibration data. The results
are shown in the Fig. 4.7 (a) and (b). From the figure, noise change before, during
and after the vibration can be clearly drawn. At each moment before vibration, Allan
variance of the noise is relatively low, indicating that the noise in the pre-vibration
data is relatively low. During vibration, Allan variance of the noise becomes strong,
indicating the the noise in the sensor data during vibration gets bigger. After
vibration, Allan variance of the noise returns to the pre-vibration level. As can be
drawn from DAVAR figure of fiber optic gyroscope, before vibration, the slope of
Allan variance is �1, indicating that the quantization noise is the main noise before
vibration. During the vibration, the slope of Allan variance is �1 and �1/2,
indicating that quantization noise and angular random walk are main noise during
the vibration. And as can be drawn from DAVAR figure of the accelerometer, before
vibration, the slope of Allan variance is�1/2, indicating that the rate random walk is
the main noise of the accelerometer before vibration. During the vibration, the slope
of Allan variance is �1, indicating that the quantization noise is the main noise. We
can see from DAVAR figure that fast DAVARmethod can track and characterize the
non-stationary characteristics of noise under vibration state, and make quantization
analysis of the characteristics of the noise under vibration state.

Table 4.3 Comparison of the calculation amount for DAVAR and fast DAVAR

Data Length NW Step length

Calculation time
Times of Allan
variance calculation

DAVAR Fast DAVAR DAVAR Fast DAVAR

x1[n] 6	103 1000 30 3.656864 0.770367 166 1

x2[n] 6	105 2000 300 960.422362 27.92727 1993 1
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In Fig. 4.7 (a) and (b), quantitative two-dimensional display for each noise
coefficient is presented. The value of noise coefficient before, during and after the
vibration is listed in the table. It can be seen that five types of noise get stronger
during the vibration compared with that before vibration. The quantization noise
coefficient of fiber optic gyroscope is 201.4074 times of that before vibration, and
angular random walk coefficient is 23.5417 times of that before vibration. Other
noise of fiber optic gyroscope increased by about three or four times. The quantiza-
tion noise of the accelerometer is 70.1951 times of that before vibration. Angular
random walk coefficient is 53.9532 times of that before vibration. Other noise of the
accelerometer increased by about 14–18 times. The vibration excites the quantiza-
tion noise and angular random walk in fiber optic gyroscope and the accelerometer.
Through the analysis of noise source, the quantization noise and angular random
walk noise show high frequency characteristics, which can be filtered by filtering
technology. Due to the fixed vibration of the test, the noise coefficient is also in a
relatively stable state under the vibration. But the coefficient fluctuates greatly under
the state of motion, such as at the beginning or at the end of the vibration. When the
motion changes to stable state, the noise coefficient returns to the stable state. So
dynamic Allan variance can track and characterize the dynamic characteristics of the
noise. The angular random noise in the fiber optic gyroscope comes from the white
noise generated by light source, photoelectric detector and the noise from electronic
devices. Therefore, it can be concluded that the performance of these optical devices
is partially deteriorated in the vibration, such as to reduce the vibration white noise,
the anti-vibration performance of optical devices and electronic devices in fiber optic
gyroscope needs to be improved.

As can be seen from Fig. 4.8, the five types of noise of gyroscope and the
accelerometer changes dramatically when the state of motion changes. When it
returns to a stable state, the noise of the gyroscope and the accelerometer becomes
stable. When the fiber optic inertial navigation is in a stable fixed vibration of 25hz,
the vibration is in a stable motion state. It can be seen from the figure that the three
types of the noise of the gyroscope, bias instability noise, angular random walk noise

Fig. 4.7 DAVAR of Y-axis fiber optic and accelerometer
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and rate slope noise, are relatively small and stable in fixed vibration. These three-
noise items of the accelerometer are also small and stable under stable fixed
vibration. But the quantization noise and the angular random walk noise of the
gyroscope and the accelerometer will get bigger in fixed vibration. It shows that
although the fixed vibration is in a stable state, it can excite quantization noise and
white noise of the sensor. Table 8 shows the comparison of noise coefficient between
the fiber optic gyroscope and the accelerometer under different states. From the
Table 4.4, three noise of the gyroscope, bias instability noise, angular rate random

(a) Variation diagram of the noise coefficient in Y-axis fiber optic gyroscope  
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Fig. 4.8 Variation diagram of noise coefficient
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walk noise and rate slope noise, increase by more than 3 times under fixed vibration.
Rate random walk noise increases by 23.54 times and quantization noise by 201.4
times. While the three noise of the accelerometer, bias instability noise, angular rate
random walk noise and rate slope noise, increase by about 15 times in fixed
vibration. Rate random walk noise of the accelerometer increases by 53.9 times
and quantization noise by 70 times. Since quantization noise is the inherent noise
generated by the quantization of the continuous time series, if quantization fre-
quency at rest is used in vibration at the time of high dynamic carrier work, it will
inevitably cause higher quantization noise. Therefore, it is proved that increasing the
sampling frequency can reduce the quantization noise in vibration.

In this section, dynamic Allan variance is used to identify and analyze the
characteristics of the random noise of the sensor (including white noise and colored
noise) in vibration, and can present quantitative two-dimensional display of the
gyroscope noise. Fast DAVAR method for long while drilling data is proposed to
make for the shortage of DAVAR, which wastes lots of time with large amount of
calculation work. Dynamic Allan variance can show the dynamic characteristics of
random noise error, and provide theoretical basis for error modeling. It can also
provide theoretical support for error source locating and improvement of anti-
vibration performance of the inertial devices.
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Chapter 5
Measurement and Analysis of Drillstring
Dynamics

Abstract We shown that drilling dynamics is a crucial problem must be attached
great importance to. Our innovation lies in combining actual measurement with
theoretical modeling. Two evaluation methods are compared systematically, such as
theoretical and measurement methods. In this chapter, our investigations concern the
dynamics of drilling, unveiling a chaotic regime and suggesting practical ways of
improving current drilling techniques. The reveal of chaos provides a new way to
detect early fatigue cracks as weak signals in a noisy environment to reduce
engineering cost and the possibility of disaster. Data from all nine fields in China
are used in our studies. Proposes a theoretical model for drilling dynamics, and a real
drilling system is developed to validate the theoretical dynamical behaviour. The
existence of chaos in drilling may open a new concept of drilling chaos in the solid
flow mechanics that will benefit to both the physicists and the drilling engineers.

Keywords Drilling dynamics · Chaotic · Drillstring vibration · Fatigue cracks ·
Detection

5.1 Introduction

Oil spill disaster as in the Gulf of Mexico has caused great impact on lost assets,
health, safety and environment. The cement work has agreed to be the main reason
relating to the investigation of the disaster. But what are the factors that affect the
quality of cementing?

Drilling dynamics [1, 2] is a crucial problem must be attached great importance
to. Many dangerous phenomena related to drilling are normally caused by the
dynamics of the drillstring and its interactions with the surroundings. Such as
deterioration of the borehole quality caused by the drilling dynamics will directly
affect the cementing quality. Most of all, the drilling dynamics will accelerate fatigue
damage to the downhole tools and drillstring, which is the most common
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phenomenon in the drilling process. Drillstring failure may occur frequently. Not
only does it cost billions of dollars per year, but it also puts the drilling engineering at
risk. Downhole vibrations can decrease rate of penetration (ROP), interfere with
MWD tools and even cause premature fatigue of the components. The axial, lateral
(as transverse or bending)) and torsional vibration modes with different destructive
properties are the three main modes of drillstring vibration. Around 73% of
inspected drillstrings are defective because of fatigue cracks. In order to improve
the drilling efficiency and tools reliability, an effective detection [23] of downhole
drillstring dynamics should be done in order to detect the early fatigue cracks.
Nowadays, the three-dimensional downhole measurements could provide us the
vibration signals supporting the study. However, it is a great challenge like financial
crisis forecasting because the potential signals are so weak.

The drillstring dynamics such as vibrations and shocks (V&S) can limit the
optimization of drilling performance, which is a key problem for trajectory control,
wellbore design, increasing drill tools life, rate of penetration, and intelligent dril-
ling. As a whole drilling system, slenderness ratio of the drillstring is large, and the
stiffness is very small, Drillstring V&S is divided into three basic forms such as axial
mode, torsional mode, transverse mode. Which the Torsional vibrations are caused
due to an irregular rotation of the drillstring when rotated from the surface at constant
speed.

Torsional vibration [3] in the drilling process has drawn extensive attention
because of its huge danger and unavoidable. It can be seen from the downhole
measurement data that applying a constant rotational speed from the surface does not
result in a stable rotational motion of the drill bit. In fact, during a large part of the
drilling time, the down-hole torsional speed may experience large fluctuations due to
the flexibility of the drillstring. Based on lots of theoretical and experimental studies,
self-excited vibration of drillstring caused by drill negative damping torque [4, 5],
and the nonlinear friction formed between the drillstring and the borehole wall lead
to drillstring torsional vibration [6, 7]. A study [8] shows that the axial natural
frequency of the drillstring can be derived using a partial differential equation for
longitudinal rod vibration. The axial vibration of the drillstring can be defined using
discrete mass segments and springs [9] and the frequency response function can be
used to demonstrate the similarity of the model to the real drillstring response. The
axial vibration problem would more obvious during the extreme-depth wells, veloc-
ity changes at the top of the drillstring can produce transient axial pulse excitation.
Lubinski [10] investigates the dynamics of the drillstring during tripping movement.
Aadnoy et al. [11] studies using the static model of the drillstring and the rotation of
the drillstring to reduce the drillstring borehole friction during torsional vibration.

Some studies are dedicated to better understanding the full dynamics of rotary
drilling systems [12~16]. Sunit [17] develops the global dynamics of coupled axial
torsional vibration and the possibility of bit bounce. Huang et al. [18] establishes a
generalized quasi-static model of drillstring system. A unified generalized model is
further combined by a forward model and an inversion model. Lian et al. [19]
establishes a nonlinear dynamical model to investigate the vibration behavior of
drillstring in drilling horizontal wells, the finite element model is also established
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and analysis of the buckling of the drillstring and the contact with the wellbore.
However, none of these studies reports the dynamical motion state of the bottom hole
assembly (BHA) in automatic vertical drilling system (VDS) [20], The hydraulically
driven top drive on the surface drives the entire drillstring from surface to downhole.
The VDS has push-the-bit tools like rotary steerable drilling system (RSS) [21]. It is
mounted on the outside of the tool to cause the bit to create a force on the opposite side
of the high side of the wellbore during drilling, resulting in a change in the direction of
the wellbore trajectory. The pads of the actuator in the VDS or RSS are continuously
pushed toward the borehole wall to form a non-linear cyclic damping force, which
leads to chaotic vibration of the bottom drilling tool [22].

At present, the exploration and analysis of the vibration mechanism of the
drillstring mainly adopts two methods, namely theoretical analysis and numerical
simulation method [24–29] and vibration signal measurement method [30–36].

The theoretical analysis and numerical simulation methods for the vibration of the
drillstring mainly include the analytical method based on the energy method [26, 27]
and the numerical solution method based on the finite element method [28, 29].

When using the analytical method and the numerical method to solve the vibra-
tion of the drillstring, the drillstring calculation model is inevitably greatly simpli-
fied, so the calculation result often differs greatly from the actual vibration state of
the downhole drillstring. For this reason, the downhole drillstring Vibration mea-
surement has become another focus of attention. The work in this area mainly
includes the development of downhole vibration measurement tools, the analysis
of the influence of drilling parameters on the vibration of the drillstring under the
well [30–33] and the vibration excitation mechanism [34]. As early as the middle of
the twentieth century, the research on the relevant aspects of the drillstring vibration
test has been carried out internationally, and great progress has been made. The
world-renowned petroleum technology service companies such as Baker Hughes,
Schlumberger and Halliburton have independently developed the reliable drillstring
vibration measurement and analysis system [35–37]. Through the vibration signal
measurement and analysis under different working conditions of the drillstring, the
actual working state of the drillstring can be identified in time, thus effectively
preventing the occurrence of drill accidents. The development of vibration measure-
ment technology makes up for the shortcomings of numerical methods in studying
the vibration mechanism of drill string, and effectively promotes the development of
drill string vibration research [38, 39].

According to past theories, indoor experiments, and field studies, the relationship
of ten kinds of V&S is listed, which contains basic forms, modes, frequencies,
amplitudes response, and tool damage, Stick slip is the highest, most severe form
of torsional vibration. Taken from high speed downhole data, the BHA is coming to
a full stop for up to 3 s and peaks at 230 rpm, with a stick slip period of 7.3 s while
the top drive is at a constant 92 rpm. The stick slip causing the drill string to
periodically be torqued up and then spin free is a phenomenon of nonuniform drill
string rotation. The whirl is the eccentric rotation of the BHA& bits and is associated
with the BHA rolling around the wellbore. Drillstring lateral shock not only causes
harm to drillstring itself but also can cause whirl and serious damage to the wellbore
quality.
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We should find the reason Why the vibrations are so bad? To drill bit, it will cause
Broken cutting structure Failed bearings Uneven wear and so on, to drillstring itself,
it will cause Wash outs, Twist offs Tool joint damage Tool failure electrical or
mechanical and so on. From the perspective of drilling process, it will Reduce ROP,
reduce bit life, reduce efficiency of drilling, also will cause Steering problems Poor
hole quality and so on.

In order to clarify the rules of dynamic drillstring in the rotary steerable system,
we fully utilize modern computing methods and try to establish a model close to the
real drilling environment. According to field measured data correct theory model;
complex dynamic problems of drillstring may have a clear understanding. Our
innovation lies in combining actual measurement with theoretical modeling. Two
evaluation methods are compared systematically, such as theoretical and measure-
ment methods. As show in the Fig. 5.1, in the Dynamic Modeling we should
coupling the separate vibration form at the same time decomposition the coupled
vibration form in the vibration measurement data. This is like forward and inversion
algorithms in geophysics.

5.2 Modeling of Dynamics

As shown in Fig. 5.2 is a typical drilling rig, the torque applied to the surface causes
the drillstring to rotate and transfer the rotary motion to the drill bit., it consists of a
rotary table at the surface and a series of drillstring which transmits the rotary power

Fig. 5.1 Forward and inversion algorithms of dynamic modeling and vibration measurement data
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required for drilling to the bottom hole assembly (BHA) and drill bit to break the
rock.

In the drilling process, the top drive to generate power, relying on the drillstring to
transmit torque to the bottom of the drill-bit. The bottom of the drilling tool in the
process of rotation generated periodic friction damping in the RSS or VDS, the
mathematical model of the dynamics mechanism of VDS can be fully described by
the model combination of the entire drilling system, including top drive, dynamics of
drillstring, the interaction between the drill bit and the rock being cut, and the depth
of cut, excitations produced by push-the-bit in the automatic guidance process. The
following assumptions are made: (1) the drillstring is in the range of linear elastic
deformation and the cross section is circular; (2) The borehole wall is regarded as a

Collars with stabilizers and

Vertical Drilling System  

Rotary Table 

Top drive Model

Drill bit and VDS

Model 

Drillstring Model

Fig. 5.2 A schematics of a typical drilling rig, contains the most important components: drill bit,
drill collars, drillstring, stabilizers, wellbore annulus, lifting system for controlling WOB and
electric drive for providing rotary motion to the drill string [17]
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rigid shell, and the influence of borehole clearance is neglected, and it is considered
that the center line of drillstring coincides with the borehole axis; (3) The drillstring
is in sliding friction state or static state in the well.

5.2.1 Torsional Dynamics Model of Rotary Steerable System

We try to develop a new model of the RSS to analyses the drilling dynamics
[2, 40]. The motor rotor driven drillstring rotation through the reduction gear, then
the drillstring obtain the torque n � Tm at the top and the initial velocityΩ0, the torque
transmitted through the drillstring to the drill bit, and the drill bit receives three
counter-torque effects, as shown in Fig. 5.3, the whole analysis process of torsional
oscillation for VDS was established. The drillstring of length le will be solving by
finite element method. In this chapter, its particularity lies in the existence of the
dynamics of push the bit, which is the main feature that VDS differs from other drill
tools. In the simulation results, we will see the difference between the two cases, that
is drillstring torsional vibration with or without the effect of Tf. It is shown that the
VDS implementing agencies pushing the borehole wall cause more serious the
torsional vibration of drill bit.

In the outside of bottom hole assembly (BHA) of the RSS, we use three pads
(Fig. 5.5b and 5.5c) which press against the well bore thereby causing the bit to press

Fig. 5.3 Analysis process of torsional oscillation for VDS or RSS

144 5 Measurement and Analysis of Drillstring Dynamics



on the opposite side causing a direction change. The pads of the implementing
agency constantly push against the borehole wall, making bottom hole a cycle of
nonlinear damping force. The oriented actuator is used to push the pads to steer the
drilling trajectory. Power section consists of turbo generator, which is basically
driven by drilling fluid. The servo section stabilizes the disk valve at a certain tool
face angle, and then drilling fluid moves the pads out by flowing through valves
(Fig. 5.5b). Drilling fluid pushes one of the pads to the borehole and produces the
steering force (Fig. 5.5c) that can orient the drilling.

5.2.1.1 Modelling of Top Drive

The motor of top drive is connected to a slide rail that is fixed to the derrick, as
shown in Fig. 5.4a. The motor can move up and down along the rail but cannot
rotate. Therefore, the motor housing can be considered to be stationary for torsional
vibration of the drillstring. The motor rotor driven drillstring rotation through the
reduction gear. Assume that the gearbox gear ratio is n, Jt is the top drive equivalent
moment of inertia, (kg�m2); θt is the rotation angle at the top of the drillstring, (rad);
c2 is equivalent rotational damping of the motor rotor and gear reduction system,
(N�m�s/rad); Tm is the electromagnetic torque produced by the rotor, (N�m); Tst is the
torque acting on the top of the drillstring to the top drive, (N�m);

The following equation can then be obtained:

Jt � €θt þ c2 � _θt ¼ n � Tm � Tst ð5:1Þ

(a) (b)

Ω0

Jt

c2
Tst

ktt

ctt

θt

ψ

Motor

Slide rails

Gearbox

Fig. 5.4 The equivalent mechanical model of top drive

5.2 Modeling of Dynamics 145



As shown in Fig. 5.4b, suppose that the torque transmitted by the equivalent
torsion spring and equivalent damper is n�Tm, Ω0 is the rotational speed of motor, Ktt

is the spring stiffness of top drive, and Ctt is the viscous damping coefficient of top
drive, the equivalent mechanical model can be explained as:

Ω0 � d n � Tm=kttð Þ
dt

� n � Tm

ctt
¼ _θt ð5:2Þ

In the equivalent mechanical model, the connection rotation angle of equivalent
damper and equivalent torsion spring is assumed to the ψ t, we have:

ktt � Ω0 � t � ψ tð Þ ¼ ctt � _ψ t � _θt
� � ð5:3Þ

n � Tm ¼ ktt � Ω0 � t � ψ tð Þ ð5:4Þ

Solving Eq. (5.3) by set ψ t(0) ¼ 0, we have:

ψ t ¼ e�
ktt
ctt
�t �
ðt
0

_θt þ ktt
ctt

� Ω0 � τ
� �

� ektt
ctt
�τ � dτ ð5:5Þ

Substitute Eq. (5.5) into Eq. (5.4), we can obtain the torque transmitted by the
equivalent torsion spring:

n � Tm ¼ ktt � Ω0 � t � e�
ktt
ctt
�t �
ðt
0

_θt þ ktt
ctt

�Ω0 � τ
� �

� ektt
ctt
�τ � dτ

� �
ð5:6Þ

This model is equivalent to giving the boundary conditions at the top of the
drillstring.

5.2.1.2 Drillstring Model

The RSS is assumed as a rigid body, and the drillstring is homogenous along its
entire length and simply considered as a single linear torsional spring [41] of
torsional stiffness Kt and torsional damping Ct. The number of drillstrings can be
modified depending on system analysis requirements. The jth drillstring is connected
to the BHA by means of Kb and Cb. The simplified drillstring torsional vibration
model is shown in Fig. 5.5a.

The top drive torque is supposed to be constant and positive. The drillstrings are
considered to have the same inertia, and the drilling fluid is simplified by a viscous-
type friction element at the hit. The drillstring torsional model [40, 41] takes the
following form:
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Js _Ωþ Ct
_ϕr � _ϕj

� �þ Kt ϕr � ϕj

� � ¼ Tdrive ð5:7Þ
J €ϕj þ Ct 2 _ϕj � _ϕjþ1 � _ϕj�1

� �þ Kt 2ϕj � ϕjþ1 � ϕj�1

� � ¼ 0 ð5:8Þ
Jb _ωþ Cb

_ϕb � _ϕj

� �þ Kb ϕb � ϕj

� � ¼ TY þ Tbit ð5:9Þ

where ϕb is the angular displacement of BHA; ω is the angular speed of BHA;
ϕr is the angular displacement of the top-drive; Ω is the angular speed of the
top drive; ϕj is the angular displacement of jth drillstring; Jb is the moment of
the inertia of BHA; Js is the moment of the inertia of the rotary table; J is the moment
of the inertia of drill string; Tdrive is top drive input torque and Tbit is the torque on
the bit.

From the Eq. (5.8), angular acceleration of the jth drillstring €ϕj can be
expressed as:

€ϕj ¼ �Ct

J
2 _ϕj � _ϕjþ1 � _ϕj�1

� �� Kt

J
2ϕj � ϕjþ1 � ϕj�1

� � ð5:10Þ

(a) (c)

(b)

Disk valve

Control shaft

Fig. 5.5 Torsional dynamics model (a) drillstring torsional vibration model, there are many
drillstrings not indicated in the figure; (b) structure of the strap-down rotary steerable drilling
system; (c) the cross-sectional view of the pads coming from (b), if has three pads, and the outside is
borehole wall
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Assume that the drillstring number is p, except both sides, j ¼ 2, 3, � � �, p � 1.
Obviously, _ϕr ¼ Ω, _ϕb ¼ ω, we will obtain the following equations:

€ϕr ¼ �Ct

Js
_ϕr � _ϕ1

� �� Kt

Js
ϕr � ϕ1ð Þ þ Tdrive

Js
ð5:11Þ

€ϕ1 ¼ �Ct

J
2 _ϕ1 � _ϕr � _ϕ2

� �� Kt

J
2ϕ1 � ϕr � ϕ2ð Þ ð5:12Þ

€ϕp ¼ �Ct

J
_ϕp � _ϕp�1

� �� Kt

J
ϕp � ϕp�1

� �� Cb

J
_ϕp � _ϕb

� �� Kb

J
ϕp � ϕb

� �
ð5:13Þ

€ϕb ¼ �Cb

Jb
_ϕb � _ϕp

� �� Kb

Jb
ϕb � ϕp

� �þ TY þ Tbit

Jb
ð5:14Þ

From the Eq. (5.9)~(5.14), define a vector X ¼ ϕr, _ϕr, � � �,ϕj, _ϕj, � � �,ϕb, _ϕb

� �T
,

then:

_X tð Þ ¼ AX tð Þ ð5:15Þ

Assume p ¼ 4 in our simulation, the matrix of coefficients can be express as:

A ¼

0 1 0 0

�Kt

Js
�2

Ct

Js
Kt

Js
Ct

Js
0 0 0 1
Kt

Jb
Ct

Jb
�Kt

Jb
�Ct þ Cb

Jb

2666664

3777775 ð5:16Þ

The parameters in the simulation as show in the Table 5.1.

Table 5.1 System parameter values used to generate numerical results for comparison with
experimental results

Variable Value Units Variable Value Units

Js 0.518 kg � m2 Jb 0.0318 kg � m2

J 0.025 kg � m2 Cb 0.01 N � m � s/rad
Ct 0.0001 N � m � s/rad Kb 0.073 N � m/rad

Kt 0.073 N � m/rad Ks 1.2 � 10�4 N � m/rad

M1 1000 kg M2 12.5 kg

R, rh 0.1555 Mm e1 1.57 � 10�5
–

e2 �0.658 – μd 0.3 –

μs 0.35 – ζ 0.01 –
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5.2.1.3 Deterministic Excitations of Push-the-Bit

In the VDS or RSS system, the frictional force between the pads and borehole wall
will make the bottom drill tool instantaneous rotational speed reduce [22]. The VDS
pads pushing the borehole wall cause the drill bit torsional vibration more severe.
The mechanism of torsional vibration generation between push-the-bit RSS and
ordinary drilling systems is completely different. During the rotation of the
drillstring, the pads of the VDS is periodically pushed out and acts on the fixed
position of the borehole wall for a period of time. This is the main difference between
VDS and traditional drilling systems. The friction between the pads and the borehole
wall will instantaneously reduce the speed of the drill bit. Assume that the radius of
the borehole is R, at the angle θ when the drillstring rotate to a circle, there will be a
speed value at the position of (R�sinθ, R�cosθ) in the orthogonal coordinates.

As shown in Fig. 5.6, the pads of the actuator are constantly pushed toward the
borehole wall, forming a cyclical nonlinear damping force at the bottom of the hole.
The launch of the pads in the actuator is to change the drilling trajectory. The disk
valve at a certain tool face angle, and then drilling fluid moves the pads out by
flowing through valves. Drilling fluid push one of the pads to the borehole and
produce the steering force that orients the drilling.

When the push tool is in operation, the pushing force of the actuator is the
resultant force of the three pads. The phase difference between the three round
holes on the bottom plate is 120�. When the central angle of the high-pressure hole
on the top plate valve is 180�, the thrust force is in the optimal state, and the coverage
angle of the thrust force is equal to 60�.

The pushing force Fti can be calculated,

Fti ¼ Δpπr2p i ¼ 1, 2, 3ð Þ ð5:17Þ

where, Fti is the push force of a single pad pushing against the borehole wall, Δpis
the internal and external pressure difference, rp is the piston radius.

(a) The cross-sectional view of the pads

t

Inside of the drillstring

borehole wall
Pads

(b) Actuator of push the bit

Pads

Piston
Cross-section

Fig. 5.6 Actuator’s thrust model of VDS
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The pushing force of the piston is the pressure difference of the drilling fluid on
both sides of the piston chamber (inside and outside of the drilling tool). This
pressure difference is mainly caused by the pressure drop caused by the drill nozzle.
Δp can be expressed as:

Δp ¼ 4ρwQn
2

5π2Cne
2d4ne

ð5:18Þ

where ρw is the drilling fluid density, g/cm3; Qn is the nozzle flow, 1/s; Cne is the
nozzle flow coefficient, dne is the nozzle equivalent diameter, (mm).

When the bottom tool rotates at a constant speed, the concentration effect of the
piston’s pushing force can be expressed as:

Ftitp ¼ Fti
θE � θS

ωt
ð5:19Þ

where tP is the pushing time of one of the pads, θS is the initial phase angle of pads
pushing, θE is the termination phase angle of pads pushing, ωt is the rotation angular
speed of bottom tool.

As shown in Fig. 5.7, due to θS � π/2 ¼ π/2 � θE, αf ¼ θE � θS is the sweeping
angle of the pushing force, comprehensive effect of push force Fti within the time tp
can be expressed as:

Ft ¼ Fti
sin θE � θSð Þ
θE � θS

¼ Fti
sin αf
αf

ð5:20Þ

The difference between VDS and ordinary drilling system is the friction torque.
As shown in Fig. 5.6 (a), when the pads push against the borehole wall and rotates
together with the tool, the wall of the well gives a frictional torque to the drilling tool.
Friction torque Tf of the push the bit can be expressed as:

Tf ¼ Ft � Re � μ vð Þ ð5:21Þ

where μ(v) is defined as the friction coefficient generated by the friction model, v is
the relative speed of movement, (m/s).

�

�s

�
E

-FE

Fp

Y

X

Fig. 5.7 Left is schematic
of equivalent directing
force, right is the actual
photo of disk valve
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5.2.1.4 Rock Breaking Model

We use the equation proposed by Spanos et al. [42], assuming that the friction is
considered to be evenly distributed on the front face of the bit.

Tbit ¼ Fw
2
3
rhu ωð Þ þ ζ

ffiffiffiffiffiffiffiffi
rhδc

ph i
ð5:22Þ

where Fw is the weight on bit, rh is the drill bit radius, δc is the average cutting depth,
and ζ is a dimensionless parameter that characterizes the force necessary to cut the
rock. The average cutting depth, δc, is obtained from the following relation:

δc ¼ 2πrp
Ω ð5:23Þ

where rp is the average rate of penetration, calculated as a function of the applied
weight-on-bit, Fw, and the rotary table rotation, Ω, using the following empirical
relation:

rp ¼ e1Fw

ffiffiffiffi
Ω

p
þ e2 ð5:24Þ

where e1 and e2 are constants.

5.2.1.5 Friction Model

We define the dry friction as a continuous function to describe both the static and
dynamic friction. Using the coulomb friction model, as shown in Fig. 5.8, the
constants μs and μd are the static and dynamic friction coefficients, respectively.

Fig. 5.8 The curve
generated from a dry friction
of model
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Assuming that v is the slip velocity at the friction point, vs is stiction transition
velocity; vd is the friction transition velocity.

Set μ(�vs) ¼ μs, μ(vs) ¼ � μs, μ(0) ¼ 0, μ(�vd) ¼ μd, μ(vd) ¼ � μd. Then the
function u(v) can be defined as follows:

μ vð Þ ¼ �sign vð Þ � μd j v j> vd ð5:25Þ
μ vð Þ ¼ �s jvj, vd, μd, vs, μsð Þ � sign vð Þvs �j v j� vd ð5:26Þ

μ vð Þ ¼ s v� vs, μs, vs � μsð Þ j v j< vs ð5:27Þ

The s(x, x0, h0, x1, h1) function can be defined as follows, assume x is the inde-
pendent variable, x0 is a real variable that specifies the x value at which the s function
begins, x1 is a real variable that specifies the x value at which the s function ends, h0
is the initial value of the step, h1 is the final value of the step, and assume a¼ h1� h0,
Δ ¼ (x � x0)/(x1 � x0), then:

s x, x0, h0, x1, h1ð Þ ¼
h0 x � x0
h0 þ a � Δ2 3� 2Δð Þ x0 < x < x1

h1 x � x1

8><>: ð5:28Þ

We do not allow vs ¼ 0, the friction transition velocity vd is greater than the
stiction transition velocity vs by definition.

5.2.1.6 Phase Torque of Drill Bit

In the drilling progress, wells often appear rugged wavy, which is called wave
bottom. The bottom hole coring shows that the crests and troughs of the undulating
bottom are different depending on the drilling parameters and the rock type, some-
times up to 12.7 mm. What is the effect of the wave bottom on the bit torque?

As shown in Fig. 5.9, a three-wave-shaped bottom surface with a sinusoidal shape
is developed along a cutting line of a radius, where the abscissa is the product of the

Fig. 5.9 Force analysis of
drill bit in rolling bottom, a
wave bottom surface along a
certain radius cutting line
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phase angle of the cone at the bottom of the well and the corresponding radius,
Radius on the bottom of the well to the height of the trough.

If y represents the ordinate, x represents the abscissa, and assuming that the height
difference between the crest and the trough is proportional to the size of the radius rc,
the ratio coefficient is Kh, then,

y ¼ rc � Kh

2
� 1þ sin 3αð Þ½ 	 ð5:29Þ

α ¼ x
2π � rc ð5:30Þ

Where α is the phase angle of the cone in the bottom of the well, (rad).
Due to the close linear contact between the cone and the bottom of the well, the

wellbore radius is assumed to be Re. Fig. 5.9 shows the force analysis diagram of the
folded cone bit rolling at the bottom of the corrugated bottom. Point c is the contact
point between the cone and the corrugated bottom, Fw is the pressure of the
drillstring acting on the roller through the bearing, Nw is the positive pressure acting
on the roller cone, Fdrive is the driving force of the drill string on the cone. Consider
that the inertia force of the roller cone when moving downhole is small compared
with other forces, it is ignored. Thus, according to the static balance conditions of
force and moment, we have:

Fw � rc � sin β � Fdrive � rc � cos β ¼ 0 ð5:31Þ
Fw � cos β þ Fdrive � sin β ¼ Nw ð5:32Þ

Where rc is the corresponding cone diameter at the equivalent radius, β ¼
arctan 3Kh

4π � cos 3αð Þ� �
.

From Eqs. (5.31) and (5.32), we can obtain:

Fdrive ¼ 3Kh

4π
cos 3αð Þ � Fw ð5:33Þ

Nw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3Kh

4π
cos 3αð Þ

h i2r
� Fw ð5:34Þ

Assume the weight on the bit is evenly distributed on the drill bit, the bit torque
caused by the wave bottom can be expressed as:

Tw ¼ 3Re � Kh

4π
� cos 3αð Þ �Wb ð5:35Þ

Where Tw is the drill bit torque caused by the wave bottom hole, (N�m);
Then the total bit torque is Td + Tw, The corrugated hole bottom causes the drill bit

to act on the phase moment associated with its angle of rotation. Furthermore, the
drillstring with uneven bending rigidity is also affected by the phase moment in the
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curved wellbore. Therefore, the phase moment is still present in the actual drilling
process, but in most cases the value is relatively small.

5.2.2 Modeling of Lateral Vibration

The drillstring is assumed as a beam with two cross sections (collars and pipes). A
planar wire shape sketch with hollow pipe profiles is used to model the entire
drillstring. The “Hermite cubic” beam element is used, which does not account for
the shear flexibility, although axial strain is considered. The drillstring–mud inter-
action effects on the drillstring dynamic analysis are important. The effect of internal
and external mud flow is sensitive to the annular space between the drillstring and
wellbore. When the fluid flow was considered in the dynamic equations, the lateral
dynamic response was a bit larger initially. However, steady-state response was
unchanged.

The partial differential equations of drillstring lateral vibration will be obtained
according to the drillstring bending theory and D’Alembert’s principle [43, 45].

∂2y
∂t2

þ a2
∂4y
∂x4

¼ 0 ð5:36Þ

wherein, a2 ¼ EIg
Aρ ; A is cross-sectional area of drillstring; I is moment of inertia of

drillstring; ρ is density of drillstring material; y is the deflection of the drillstring; t is
the time。

Study of the fundamental oscillation mode only, the displacement of each point
on the axis is the harmonic function with respect to time, then,

y ¼ X A cos pt þ B sin ptð Þ ð5:37Þ

Xis a function of x, then,

∂y
∂t

¼ X �Ap sin pt þ Bp cos ptð Þ ð5:38Þ

∂2y
∂t2

¼ X �Ap2 cos pt � Bp2 sin pt
� � ð5:39Þ

∂y
∂X

¼ A cos pt þ B sin ptð Þ ∂y
∂X

ð5:40Þ

∂4y
∂X4 ¼ A cos pt þ B sin ptð Þ ∂

4y
∂X4 ð5:41Þ

Simultaneous Eq. (5.38) -(5.41),
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∂4y
∂X4 ¼

p2

a2
X ð5:42Þ

The general solution is:

X ¼ C1 cosKxþ coshKxð Þ þ C2 cosKx� coshKxð Þþ
C3 sinKxþ sinhKxð Þ þ C4 sinKx� sinhKxð Þ

ð5:43Þ

where in: K ¼ p2Aγ/EIg.

5.2.3 Modeling of Longitudinal Vibration

There are more than 5 types of longitudinal free vibration of drillstring model have
been developed, in them, three types of most widely used mechanical models are
shown in Fig. 5.10 [44]. Compared with Model 1, Model 2 has omitted the quality of
the damper and driving system, which includes the quality of the traveling system,
Kelly and steel wire rope. In the meantime, Model 3 has ignored the quality of the
damper and simplified the quality of drill collar as a focus quality. Due to the best
versatility in these mathematical and mechanical models, a lot of special longitudinal
vibration can be analyzed by using Model 1, which is currently selected as the
longitudinal vibration model of drillstring in this chapter. In Fig. 1, k1 and m1

represents the equivalent stiffness coefficient and the equivalent mass of the driving
system respectively; k2 and m2 respectively express the stiffness coefficient and the
mass of damper, which could be approximately considered as the equivalent

Fig. 5.10 The longitudinal vibration models of the drillstring
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integrated structure of BHA; l1 and l2 denotes the length of drill pipe and drilling
collar, both of them are considered as two elastic links; x1 and x2 means the length
from the sampled differential element to the top of drill pipe and the top of drilling
collar respectively.

Model 1 consists of drill collar, drill stem, joint, stabilizer, damper, and other
downhole tools, which could be assembled by any arbitrary combinations and
applied for any arbitrary RPM & WOB. During drilling process, the BDTs are
inevitably influenced by disturbing factors, such as WOB induced by disturbing
forces, the disturbing torsion on stabilizers, the inertial force induced by rotating of
drillstring, the damping & viscosity resistance of drilling fluid, et al. Thus, in order to
facilitate an efficient analysis, some assumptions must be proposed as follow:
(a) With homogeneous density, the drillstring is an elastic straight bar owning a
circular cross section, the inner & outer peripheries of which is rigid; (b) The inner
wall of borehole is rigid, the annular between borehole and drillstring is a circular
ring, the friction between them is neglected; (c) The top driving system is simplified
as a spring, the quality and stiffness coefficient of which is m1 and k1 respectively;
(d) The vibration is derived from the interaction between drill bit and rock, by which
the motion of bit can be regarded as a kind of resonance vibration observing sine or
cosine changing alone with time.

Based on the assumptions above, the longitudinal vibration equation of drillstring
can be deduced by elastic rod theory, the partial differential equation of drillstring
longitudinal vibration can be given as follow:

∂2u
∂t2

¼ η2
∂2u
∂x2

ð5:44Þ

Wherein, x is the length from the sampled differential element to the top end of
drillstring, u is the displacement of sampled differential element along the borehole
axis direction, t and a respectively refer to time and wave velocity of longitudinal
vibration, here η2 ¼ E/ρ, in which E and ρ respectively refers to the elastic modulus
and the density of steel. Eq. 1 can be solved by the method of separation of variables,
here we set:

u ¼ T tð Þ � X xð Þ ð5:45Þ

Wherein T(t) refers to the variable function of phase position, which is related to
the variable of time t and location-independent; X(x) refers to the variable function of
vibration amplitude, which is related to the variable of location x and location-
independent. With Eq. 5–45, Eq. 5–44 can be rewritten as:

X xð Þ d
2T tð Þ
dt2

¼ η2
d2X xð Þ
dx2

� T tð Þ ð5:46Þ

Here we introduce p as the natural frequency of the drilling system and set:
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d2T tð Þ
dt2 =T tð Þ ¼ η2

d2X xð Þ
dx =X xð Þ ¼ �p2 ð5:47Þ

Then the solution of the partial differential equation Eq. 1 can be transformed to
the solution of the ordinary differential equation as follow:

T tð Þ ¼ A sin pt þ ηð Þ
X xð Þ ¼ C cos

px
η
þ D sin

px
η

(
ð5:48Þ

The general solution of Eq. 5.48 is:

u ¼ A sin pt þ αð Þ C cos
px
η
þ D sin

px
η

� �
ð5:49Þ

Wherein A, α, C, and D are integration constant. Here we bring the lower corner
mark 1 and 2 referring to the drillstring and the drill collar respectively, the
displacement of longitudinal vibration of drillstring and drill collar can be given as:

u1 ¼ A1 sin pt þ α1ð Þ C1 cos
px
η
þ D1 sin

px
η

� �
u2 ¼ A2 sin pt þ α2ð Þ C2 cos

px
η
þ D2 sin

px
η

� �
8>>><>>>: ð5:50Þ

Where in, μ1 and μ2 respectively represents the displacement of longitudinal
vibration of drillstring and drill collar; A1, C1, D1 and A2, C2, D2 are different
undetermined integration constant for drillstring and drill collar. Taking the partial
derivation of Eq. 5.49 with x and t, the equation group can be obtained as follow:

∂u
∂x

¼ A
p
η
sin pt þ αð Þ �C sin

px
η
þ D cos

px
η

� �
∂u
∂t

¼ Ap cos pt þ αð Þ C cos
px
η
þ D sin

px
η

� �
∂2u
∂x2

¼ �A
p2

η2
sin pt þ αð Þ C cos

px
η
þ D sin

px
η

� �
∂2u
∂t2

¼ �Ap2 sin pt þ αð Þ C cos
px
η
þ D sin

px
η

� �

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð5:51Þ

To solve the equations, some boundary equations must be given according to
boundary conditions. On the top end of drillstring, when x1 ¼ 0, on the basis of
mechanical equilibrium theory:
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m1
∂2u
∂t2

¼ �k1u1 þ EF1
∂u1
∂x1

ð5:52Þ

Wherein F1 is the area of the cross-section of drillstring. On the interface between
drillstring and drill collar, when x1 ¼ l1, x2 ¼ 0, according to the conditions of equal
tension and equal velocity:

EF1
∂u1
∂x1

¼ EF2
∂u2
∂x2

ð5:53Þ

∂u1
∂t

¼ ∂u2
∂t

ð5:54Þ

Wherein F2 is the area of the cross section of the drill collar. On the bottom of drill
collar, when x2 ¼ l, the mechanical equilibrium equation can be given as:

m2
∂2u2
∂t2

¼ k2u2 þ EF2
∂2u2
∂x2

ð5:55Þ

By using Eq. 5.51 plug into the boundary condition equations from Eq. 5.52 to
Eq. 5.53, the frequency equation of Model 1 can be deduced as:

1
F1

pEF1 þ η k1 �m1p2ð Þ tan pl1
η

�pEF1 tan
pl1
η þ η k1 �M1p2ð Þ ¼

1
F2

�pEF2 � η k2 �m2p2ð Þ tan pl2
η

�pEF2 tan
pl2
η þ η k2 �M2p2ð Þ ð5:56Þ

Then the natural frequency of the longitudinal vibration of drillstring system can
be solved, which is directly influenced by the stiffness coefficient of the damper.
Because Eq. 5.56 is a nonlinear equation, in order to acquire an effective solution,
the finite element method will be selected.

5.3 Simulation Results of Torsional Dynamics

5.3.1 Drillstring Torsional Vibration without the Effect of Tf

The specification of the drillstring can be found in Table 5.2. Based on the model
developed, simulation is carried out for deterministic case.

Table 5.2 Drillstring
parameter

Drillstring Drillcollar+VDS

Length 2000 m 200 m

Outer diameter 0.127 m 0.1778 m

Inner diameter 0.1086 m 0.0572 m

Drillstring density ρ ¼ 7850.0 kg/m3

Elastic modulus 210�109 N/m2

Shear modulus 7.96�1010 N/m2
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The simulation results in the case when the desired table speed is 60 rpm and ratio
is 0.6, assume that before the top of the drill pipe begins to rotate, the distributed
friction torque and bottom bit torque have been slowly loaded, then the three modes
of mode shape of drillstring free torsional vibration are shown in Fig. 5.11.

As depicted in Fig. 5.11, the magnitude larger place of first-order vibration mode
concentrates on the high moments section of the drillstring inertia. However, when
the second and third-order modes have large amplitudes, they correspond to small
moments of inertia of drillstring. As a result, the energy of the first-order modal
vibration of the drillstring is greater than other orders. Table 5.3 lists the vibration
energy of various modes:

Compared to single drillstring system, this system includes both drill pipe and
drill collar, which is more like inertia centralized torsion pendulum. As shown in
Fig. 5.12 (b), it can be seen that the drill bit rotary speed experiences large
fluctuations. At some points, the drill bit rotation speed slows to near zero and
then increase to as high as 14 rad/s (133.7 rpm), this phenomenon is called stick-slip
vibration.

In Fig. 5.12, the simulation curve shows that this is two-stage system with drill
pipe and drill collar is closer to the concentrated inertia twisting pendulum model,
sinusoidal waveform exhibiting free torsional vibration. This also shows that the
two-stage drillstring system is more suitable than the single drillstring for simplify-
ing the inertial torsional pendulum. At the same time, comparing the two graphs
(a) and (b) in Fig. 5.12, it is observed that the wellhead torque vibration waveform is
not as regular as the bottom hole speed vibration waveform. This is mainly due to the

Fig. 5.11 Three modes of mode shape of drillstring free torsional vibration

Table 5.3 The modal vibration energy in the drillstring accounts for the percentage of the total
energy of the torsional vibration

Modal order First order
Second-
order

Third-
order

Fourth-
order

Fifth-
order The other

Percentage (%) 85.402 8.4299 2.5882 1.2054 0.6896 1.6849
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fact that the torque in the drillstring at the wellhead is greatly affected by higher-
order modal vibrations (except for the first-order modal vibrations).

As previously defined, φ(t) is the drillstring twist angle, the total energy E of the
drillstring torsional vibration can be expressed as:

E ¼ 1
2
� Js � φ2 þ 1

2
� Ke � φ2 ð5:57Þ

The derivative with respect to time for E, get the expression of energy change
rate:

_E ¼ �ce � _φ2 � Tor _φþ Ω0ð Þ � Tor Ω0ð Þ½ 	 � _φ ð5:58Þ

As shown in Fig. 5.13, when the vibration amplitude is small, the vibration
energy is always increasing. When the amplitude is large, the vibration energy will
be decreasing. There is an appropriate amplitude value during this period, so that the
vibration energy absorbed and dissipated by the drillstring system during one
vibration period is equal. At equilibrium, in most cases, this suitable amplitude is
the amplitude at which stick-slip phenomena occur. Energy analysis reflects the
energy absorption and dissipation of the drillstring during the entire vibration

Fig. 5.12 Diagram of wellhead torque and bottom hole speed over time
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process. Under normal conditions, local instability will lead to stick-slip vibration of
the drillstring.

When the drillstring is subjected to small-scale torsional vibration, the rate of
change of its vibration energy is always greater than zero, indicating that the energy
of the drillstring torsion vibration will increase continuously, and the increase in
torsional vibration energy of the drillstring will inevitably lead to the amplitude of
the drillstring torsional vibration increase.

When the amplitude increases to a certain extent, the energy dissipated by the
drillstring during a vibration cycle is greater than the absorbed energy, then the
amplitude of the drillstring decreases. Finally, a proper amplitude value is
maintained for torsional vibration.

Through the previous analysis, it can be determined that the steady-state rota-
tional equilibrium state of the drillstring system is unstable. And for any disturbance,
it eventually tends to have a constant amplitude for torsional vibration. Figure 5.14
shows the time-domain waveform of the drillstring system under the influence of a
small disturbance near the steady-state rotational equilibrium state. It shows how the
drillstring develops from stick-slip-vibration to a near-uniform rotational state.
Figure 5.15 is a phase diagram of the stick-slip vibration formation process described
above. It can be seen how the drillstring starts from near the steady-state equilibrium

Fig. 5.13 The relationship
between the energy change
rate and the vibration speed

Fig. 5.14 Time-domain waveforms in the formation of stick-slip vibration of drill string
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and gradually absorbs the vibration energy, resulting in a gradually increasing
amplitude, and finally a process of stable stick-slip vibration. The minimum vibra-
tion energy of the drillstring system corresponds to point h in Fig. 5.15.

5.3.2 Drillstring Torsional Vibration With the Effect of Tf

Drillstring torsional vibrations often occurs during the drilling. However, the tor-
sional vibration of the VDS in the Push-the-Bit mode is more severe than that of the
conventional drilling system. Statistics show that in most cases, the bottom hole dill
bit exhibits stick-slip vibration. In this chapter, we reveal that the main difference
between the VDS of Push-the-Bit and the ordinary drilling system is the friction
torque (Tf) that generated in the process of pads pushed against the borehole wall.
Previous work [2, 40] show that the drill bit torsional vibration phenomena percep-
tible increased when the friction torque exist. This chapter will reveal the impact
mechanism of drillstring free torsional vibration with the effect of Tf.

Figure 5.16 is shown the timing diagram of pushing forces of the three pads. The
direction of force follows the rotation of the drillstring. The Fig. 5.14 shows the
projection of force Fti on the x-axis. Each pad is pushed 180 degrees apart, equiv-
alent to the previous definition:Δθ ¼ θE � θS ¼ π, then we can get the total friction
torque Tf ¼

P
i¼1, 2, 3

Fti � μ vð Þ, where the friction model is used Dahl model as shown

above. When the top drive rotary speed is _ψ tð Þ ¼ π=2 rad.

Fig. 5.15 Phase diagram of stick-slip vibration in drill string
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Figure 5.17 presents an example response for which the model exhibits a typical
torsional vibration behavior. For time-series data generated in the simulation as
shown in Fig. 5.17, we perform phase space reconstruction and probability density
estimation, the dynamics of the time series x0, x1, � � �, xn � 1 are fully captured or
embedded in the m-dimensional phase space, m � d where d is the dimension of the
original attractor.

A vector x
!
i in the reconstructed phase space [46] is constructed from the time

series as follows:

x
!
i ¼ xi, xi�τ, � � �, xi� m�1ð Þτ

	 
 ð5:59Þ

where τ is the delay time. Cao’s method [47] computes E1 and E2 for the data set of
dimension 1 up to a dimension ofD, which is the largest embedding dimension, used
in the calculation. E1 and E2 are defined as follows:

Fig. 5.16 Timing diagram of pushing forces of the three pads

Fig. 5.17 The time series of the angular velocities at the bottom drill bit, torsional oscillations
occurring in the simulation. For the parameter values: J¼ 0.299 kg � m2, c¼ 0.010N � m � sec /rad,
k ¼ 5N � m/rad, ω ¼ 4.8 rad/s, Wb ¼ 1kN
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E1 dð Þ ¼ 1
N � dτ

XN�dτ

i¼1

xiþdτ � xn i,dð Þþdτ

�� �������
����� ð5:60Þ

E2 dð Þ ¼ E1 d þ 1ð Þ=E1 dð Þ ð5:61Þ

where d is the embedding dimension, N is the number of data points, τ is the
embedding delay, xi + dτ and xn(i, d ) + dτ is the i-th vector in the data sets and its
nearest neighbors of d-dimensional phase space.

We obtain d ¼ 2, τ ¼ 5. The phase diagram corresponding to the time series is
shown in Fig. 5.18 (left). The two circles indicate that there are two outstanding
periods. Figure 5.18 (right) also confirm that two spikes of probability density
estimation indicate the existence of two cycles at the same time. For torsional
vibration, it often contains stick-slip phenomenon. Stick-slip occurs when the
rotational speed of the drillstring slows (or even stops) and then suddenly increases
when the torque overcomes the counter-torque generated by rock cutting and
friction. In this chapter, the pushing force of vertical drilling tool will provide
more major friction torque.

Using the Stationarity time series, we continue to increase the value of Tf,
increasing Δp can achieve its objective. Stick-slip vibration happens as shown in
Fig. 5.19. We present an example response for which the model exhibits a typical
stick-slip behavior with the effect of Tf, the duration of Tf is Δθ ¼ π/3 rad. As shown
in the Fig. 5.19, as Tf increases, the rotation speed drastically reduces, because of
Δθ < 2π/3, there is no effect on pushing force for a period of time, so the rotary speed
appears negative.

In fact, hydraulically induced thrust does not increase instantaneously, the
dynamics of a hydraulic actuator of VDS is more aptly captured by a nonlinear
spring. Oscillation frequency can be expressed as, f F ¼ 1

2πMHKs, wherein Ks is the
equivalent stiffness. This hydraulic characteristic will make the stick-slip vibration

Fig. 5.18 Phase diagram (left) and probability density estimation (right) corresponding to the time
histories shown in Fig. 5.17
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show different characteristics. Fig. 5.19 shows another example of stick-slip
oscillations occurring in the simulation. When Δθ ¼ π/3, top drive rotary speed
_ψ ¼ 100 r=min, since the rotary speed is faster, hydraulic actuator is like a nonlinear
spring which does not always act timely, so the stick phenomena always appear after
a few revolutions. Through the time histories of the angular position, we can see this
phenomenon clearly.

In the time window 700–1200, in Fig. 5.19, the drill bit angular speed ω is
positive, and hence the system operates under the slip mode. At 450–700, ω decrease
to zero, and thus the system switches to the stick phase. The bottom drillstring is
stationary during the stick mode, which can be verified in the angular speed as shown
in Fig. 5.19. As the angular displacement ψ of the rotary table increases, the reaction
torque Tr shows a tendency to grow due to the increasing elastic energy stored in the
flexible shaft. The stick regime finishes when the break-away torque value Tr > Tb, as
long as the angular velocity of the bit is positive, the system changes the sliding
mode of operation and remains there.

As shown in Fig. 5.20 (right), the phase diagram from angular position and
angular velocities shows chaotic characteristics of dynamics. Bifurcation and
chaos mark the sudden change of the motion in mechanical systems. It is observed
that the system response is very sensitive to the changes in parameters. Closely
related to bifurcations, chaos is a special kind of motion which is unique to nonlinear
oscillation systems. It marks the behavior of a system that is inherently
unpredictable. It is observed here that many changes in the parameters lead to chaotic
responses. As seen in Fig. 5.20, the clearances between the bit trajectories definitely
exceeds the numerical error and therefore it is considered to be chaotic. Bifurcation
and chaos will inevitably bring complexity to drillstring system and make down-hole
dynamic responses difficult to predict. This requires further in-depth study, espe-
cially in the vertical drilling system under the action of pushing force.

Fig. 5.19 An example of stick-slip oscillations occurring in the simulation with the effect of Tf
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5.4 Vibration Measurement Systems

5.4.1 The Basic Method of Data Acquisition & Processing

We developed a Rotary Steerable Drilling System (RSS), that is a new technology
used in directional drilling, the whole drillstring is rotated from the surface by a
hydraulically driven top drive, as show in Fig. 5.21a. That mainly included two
parts: strap-down measurement while drilling (MWD) surveying system (Fig. 5.21b)
and oriented actuator (Fig. 5.5b).

We develop a strap-down measurement while drilling (MWD) surveying system
[48] that incorporates three-axis magnetometers and three-axis accelerometers
arranged in three mutually orthogonal directions. The sensors are installed inside
nonmagnetic drill collar that can avoid the external magnetic interferences. Perfor-
mance characteristics of the accelerometers and magnetometers are summarized in
Table 5.4.

Figure 5.21b shows the installing structure of downhole measurement system.
E1~E9 in Fig. 5.21a indicate the field experiments in China between the year of
2011~2013. ax, ay, az are defined as survey signals of triaxial accelerometers on the
xyz axis respectively. mx, my, mz are defined as survey signals of triaxial magnetom-
eters on the xyz axis respectively, the sampling frequency fs is 100 Hz. Assume that

the Earth’s magnetic field strength as M. Obviously, M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

x þ m2
y þ m2

z

q
. Under

certain sample frequency, measuring signal is time series and can be expressed as

time function. We can use ah ¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x þ a2y

q
define the lateral vibration of the BHA

and use az express the longitudinal vibration.
Triaxial magnetometers are installed 90� phase difference between mx and my,

assume mh is the horizontal projection of the Earth’s magnetic field, after Δt, the
drillstring rotates an angle of αn.

Fig. 5.20 An example of stick-slip oscillations occurring in the simulation when use dynamics of a
hydraulic actuator model, left is the time histories of the angular position at the bottom drill bit, right
is the phase diagram from angular position and angular velocities
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tg αnð Þ ¼ mh � sin αnð Þ
mh � cos αnð Þ ¼

mx

my
ð5:62Þ

Thus, αn ¼ arctg mx
my

� 
, as show in Fig. 5.22a and Fig. 5.22b, drillstring rotary

from αn to αn+1 though time Δt, it defines the rotary angle as a time series
α(α1, α2, � � �, αn�1, αn), drillstring rotational speed (RPM) is then defined as follows:

RPM ¼ 60
2π

ω ¼ 60
2π

� jαnj � jαnþ1jð Þ
Δt r=minð Þ ð5:63Þ

There is a more practical approach to quantitative analysis the bottom drilling tool
motion characteristics, through the measurement of the bottom drilling bit rotation
speed, as well as some other downhole measurement parameters.

Table 5.4 Characteristics of Sensors

Parameter Accelerometers (MS9010) Magnetometers (CTM-DT06)

Range 
10 g 
100000nT

Scale factor 200 mV/g 5 V/G 
 5%

Nonlinearity 0.8% of SF —

Bias calibration <50 mg 
0.005 G

Noise 0.140 mg/√Hz �0.1nT

Bandwidth 1000 Hz 350 Hz

Fig. 5.21 Data acquisition system (a), rotary steerable drilling system, E1~E9 indicate the field
experiments using the RSS in China, the map is created by the Microsoft PowerPoint; (b),
construction of the downhole measurement system, three-axis magnetometers and three-axis
accelerometers arranged in three mutually orthogonal directions
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Field observations based on downhole and surface vibration measurements have
indicated that drillstrings exhibit severe vibrations. These vibrations are observed to
become more severe at the bottom hole assembly (BHA). As shown in the
Fig. 5.23b, the value of the angular speed fluctuates is between 0~120 r/min,
which indicates that the system is in the state of stick-slip. The survey signals of
triaxial accelerometers on the xyz axes as show in the Fig. 5.23a. These measured
signals are used to analyses the drilling dynamics.

Moreover, as shown in Fig. 5.23a, when the drillstring rotates, we define
the displacement of point A at the x axis as a time series S(s1, s2, � � �, sn�1, sn), with
the circle radius of R. Obviously, si ¼ R sin (ωt). Then the velocity time series V(v1,
v2, � � �, vn�1, vn), the acceleration time series A(a1, a2, � � �, an�1, an) can be obtained.

5.4.2 Quantification of the Risk Level of Drillstring Vibration

Schlumberger developed an independent quantitative vibration risk technique based
on seismic engineering theory [49]. This technique is used to establish the relation-
ship between the measured acceleration value and the failure parameters.

1. Drillstring axial and lateral vibration level

Vibration intensity is an index used to objectively characterize the strength
of vibration energy. In the application of drillstring vibration, the parameter
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Fig. 5.22 The rotation speed calculation schematics of magnetometers, (a) the model of rotation
speed calculation; (b) survey signals of magnetometers and calculational speed. When the
drillstring rotates from αn to αn + 1 though time Δt, drillstring rotational speed (RPM) will be
obtained using the survey signals of triaxial magnetometers on the xy axis
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used to describe the vibration intensity is recorded as arms, and the calculation
formula is:

arms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Td

ðTd

0
a tð Þ2dt

s
ð5:64Þ
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Fig. 5.23 The time series of measurement (a), survey signals of triaxial accelerometers on the xyz
axes; (b), the time series of the drillstring rotary speed calculated by Eq. (2), the unstable angular
speed indicates that the system is in the stick-slip state
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Where Td, dt are the total drilling time and sampling interval respectively, s; a(t) is
the measured acceleration, m/s2.

Characteristic intensity Ic is an index that defines the structural damage caused by
deformation and energy diffusion. Its definition is:

Ic ¼ a1:5rms � t0:5d ð5:65Þ

wherein td is the measurement duration, unit is s.
According to the characteristic intensity Ic value, the drillstring vibration is

divided into 4 grades. The specific division criteria are shown in Table 5.5.

2. Stick-slip vibration level of the drillstring

According to the two indexes of the drillstring rotation speed and the stick-slip
percentage when the drillstring produces the stick-slip motion, the stick-slip motion
level is divided into 4 levels, as show in the Table 5.6.

Stick-slip speed difference is Rs ¼ Rmax � Rmin, where Rmax is the maximum
speed of the drillstring, and Rmin is the minimum speed of the drillstring. Then get the
stick-slip ratio:

stick=slip ¼ Rs

2� Rsurface
� 100% ð5:66Þ

wherein Rsurface is the rotary speed of surface.

3. Impact level

When evaluating the degree of impact of the drill string, Schlumberger calculates
the impact level based on the peak of the acceleration peak (CPS) with an acceler-
ation peak exceeding 490 m/s2, and divides the impact risk level into 4 according to
the CPS value, as show in the Table 5.7.

Table 5.5 Drillstring
vibration level [49]

Vibration level

Characteristic intensity range

Axial vibration Lateral vibration

Low <0.5 <0.5

Intermediate 0.5–1.5 0.5–2.5

High 1.5–3.5 2.5–5.5

Severe >3.5 >5.5

Table 5.6 Stick-slip vibration level of the drillstring [49]

Stick-slip ratio
Stick-slip vibration
level Recommend

<0.5 Low Normal drilling

0.5–1.0 Intermediate For more than 25 h, the risk of failure is intermediate

1.0–1.5 High For more than 12 h, the risk of failure is high

>1.5 Severe For more than 0.5 h, the risk of failure is severe
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5.4.3 Mature Products of Vibration Measurement Systems

1. Measurement system developed by Baker Hughes

The measuring tools developed by Baker Hughes include ground measurement
systems and near-bit measurement systems, which can independently measure the
vibration signal of the drillstring. The ground measurement system [50] is mounted
above the kelly joint and can be used to measure the axial force and torque, axial and
torsional acceleration and speed, and transmitted to the field processing device by
microwave remote sensing, the data transmission rate is high, real-time and storage,
digital filtering from three frequency bands by means of signal processing device,
extraction and spectral analysis can realize time domain analysis, spectrum analysis
and time-frequency analysis. The ground measurement system has a very significant
analysis effect on torsion and stick-slip motion, and can also accurately determine
the axial vibration condition, and at the same time, the resonance condition and the
corresponding excitation frequency is analyzed and judged. However, the shortcom-
ing of ground measurement technology is that it cannot accurately determine the
lateral vibration of the well. This is because the drillstring has ultra-long slender
characteristics and frequent contact with the wellbore causes lateral vibration has a
large attenuation in the process of transmission to the wellhead [51].

Baker Hughes has also developed a downhole near-bit measurement tool [52]
consisting of an axial accelerometer, two orthogonal bending strain gauges, two
orthogonal magnetometers, and axial and torsional strain gauges. Axial acceleration,
transverse bending moment, torsional angular velocity and axial force and torque are
measured, so that vibration modes such as axial vibration, lateral vibration, torsional
vibration and stick-slip motion can be analyzed. The system uses mud pulse tech-
nology to transmit to the ground device in real time. Downhole vibration signal, the
data transmission rate is low. However, due to its close distance from the drill bit, the
measured signal is highly realistic.

2. Drillstring Dynamics Sensor (DDS) developed by Halliburton

In order to accurately understand the motion state of BHA, Halliburton developed
a drillstring vibration measuring tool DDS [53] equipped with a three-axis acceler-
ometer in 1998, which consists of three mutually orthogonal accelerometers. DDS
For the storage type vibration sensor, three kinds of vibration acceleration signals of
acceleration mean value, peak value and instantaneous value can be recorded
simultaneously for post-drill analysis.

Table 5.7 Impact level
of the drillstring [49]

Impact ratio Impact level CPS

0 Low <1

1 Intermediate 1–5

2 High 5–10

3 Severe >10
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By measuring the lateral, axial, tangential and radial accelerations to determine
the lateral vibration, skipping, stick-slip motion and whirl, etc. Based on this
information, the technician can pass the drill type, BHA structure, well structure
and optimized selection of drilling parameters to reduce harmful vibrations of the
drillstring and improve drilling efficiency [54].

The advantage of DDS is that it can deeply reveal the excitation mechanism and
inherent characteristics of the vibration of the drill string through the analysis of the
instantaneous characteristics of the acceleration obtained by high-frequency acqui-
sition. The disadvantage is that the real-time vibration data cannot be obtained, so the
feedback cannot be timely. Downhole vibration, but with the continuous improve-
ment of mud pulse transmission technology, the problem of high-speed transmission
of high-frequency data to the ground has been initially solved.

3. MVC (multi-axis vibration chassis) measurement system developed by
Schlumberger

Schlumberger has developed a four-axis measuring tool MVC [55–57] mounted
on the axis of the drillstring, which uses mud pulse technology to transmit downhole
vibration data to the ground in real time, so that the vibration status of the drillstring
can be monitored in time to improve drilling efficiency and guarantees the drilling
safety.

The MVC tool is mounted on the shaft of the downhole BHA and consists of four
axes: the first axis contains the strain gauge and the sensor for measuring torque, and
the other three axes contain three accelerometers (measured as ax, ay, az) and a
vibration acquisition board, And the three axes are orthogonal to each other. The ax
value reflects the axial vibration, and ay, az reflects the lateral vibration in two
orthogonal directions. The signal transmitted by the MWD (measurement while
drilling) to the ground in real time is the root mean square value RMS (root mean
square) and the torque signals. In addition, a separate sensor is installed on the MWD
to establish a risk level CPS (counts per second) based on the number of impacts
(maximum acceleration over 50�9.8 m/s2). When the impact of more than 50�9.8 m/
s2 in more than 10 times in 1 s (CPS value is greater than 10), the risk of tool failure
must be considered. The shortcoming of MVC real-time uploading method is that it
can’t analyze the spectrum of its signal, so it can’t further analyze the frequency
component of the downhole vibration signal. This is because the sampling frequency
is low due to the small amount of transmitted data.

5.4.4 Signal Processing Technology of Drillstring Vibration

In the drillstring vibration measurement technology, the vibration signal processing
technology is very important, which is the key to understand the vibration informa-
tion composition and the type of excitation source. The drillstring vibration signal is
a typical non-stationary random signal. The processing methods are mainly time
domain analysis, frequency domain analysis, time-frequency analysis and wavelet
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analysis. The time domain analysis reflects the variation of the vibration amplitude
of the drillstring with time, which is mainly reflected in the variation of the energy of
the drillstring with time. The frequency domain analysis includes spectrum analysis,
wavelet analysis, etc. The theoretical basis is Fourier transform. The analysis can
determine the distribution of the vibration signal of the drill string in the frequency
band and the energy intensity of each frequency component.

5.4.4.1 Time Domain Analysis Method

The vibration signal is an acceleration time domain signal obtained according to a
certain sampling frequency. The acceleration peak indicates the impact magnitude of
the vibration, the acceleration average indicates the overall trend of the drill string
vibration, and the acceleration rms value indicates the strength of the drill string
vibration signal.

The acceleration peak, mean and root mean square expression are:

am ¼ max a tð Þj j ð5:67Þ

a ¼
PN
1

a tð Þj j
N

ð5:68Þ

arms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
1
a2 tð Þ
N

vuuut
ð5:69Þ

5.4.4.2 Frequency Domain Analysis Method

The spectrum is an important feature of the signal in the frequency domain. It reflects
the frequency component and distribution of the signal. The theoretical basis is the
Fourier transform, which decomposes the vibration signal into a series of superpo-
sitions of sine waves of different frequencies.

The mathematical expression of the Fourier transform is as follows:

X ωð Þ ¼
ðþ1

�1
x tð Þe�i2πf tdt ð5:70Þ

Where x(t) is the time domain signal, X(ω) is the transformed frequency domain
amplitude signal, and f is the frequency.

Fourier transform has the disadvantages of large computational complexity and
high storage space requirements. For this reason, Cooley et al. [58] proposed fast
Fourier transformation in 1965. FFT algorithm is an improvement on the algorithm
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of discrete Fourier transform. It can greatly reduce the number of multiplications
required for the computer to calculate the discrete Fourier transform, and the
operation speed is significantly improved.

Although FFT spectrum analysis is widely used and the algorithm is simple, its
shortcomings are obvious. It is mainly manifested in two aspects: single frequency
resolution and lack of time-frequency analysis capability. Morlet [59], who worked
on petroleum signal processing in France, first proposed wavelet analysis in 1974.
Wavelet analysis is the decomposition of signals into a series of wavelet functions.
These wavelet functions are derived from a mother wavelet function through
translation and scale expansion. The localization of the wavelet transform is variable,
with high time resolution and low frequency resolution at high frequencies; At low
frequencies, the time resolution is low and the frequency resolution is high, so the
wavelet analysis method has the property of adaptive window.

The definition of wavelet transform is:

WT b, cð Þ ¼ 1ffiffiffi
b

p
ðþ1

�1
x tð Þφ t � c

b

� 
dt ð5:71Þ

Where WT(b, c) is the transformed frequency domain amplitude signal; x(t) is the
time domain signal; b, c are the scale parameter and the displacement parameter,
respectively. Using the wavelet transform analysis method to process the spectrum
of the drillstring vibration signal, an important breakthrough has been achieved.

5.4.4.3 Time-Frequency Analysis Method

The time-frequency analysis method is a signal analysis method that can reflect both
time domain features and frequency domain features. The short-time Fourier trans-
form can analyze non-stationary dynamic signals and analyze the time-frequency
characteristics of the drillstring signals. The frequency components of the drillstring
at different times are obtained. Commonly used time-frequency analysis methods
include short-time Fourier transform, empirical mode decomposition method, etc.

Short time Fourier transform definition:

TFTx τ, fð Þ ¼
ðþ1

�1
x tð Þ h t � τð Þej2πf t	 


dt ð5:72Þ

Where, TFTx(τ, f ) is the transformed time-frequency domain amplitude signal, x(t) is
the time domain signal, and h(t � τ)e j2πf is the synthesis window.

In summary, the time domain analysis can timely grasp the vibration state and
motion form of the drill string, so as to adjust the drilling parameters to avoid serious
downhole vibration [60]. In addition, further analysis and analysis of the vibration
signal of the drillstring can be performed. In-depth understanding of the excitation
characteristics of the induced downhole vibration and the action mechanism of the
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drillstring and the rock formation, optimize the drilling tool structure, and funda-
mentally weaken the impact of the vibration of the drillstring body.

5.4.4.4 Wavelet Noise Reduction of Vibration Signals

In the orthogonal wavelet transform, the low frequency portion is decomposed each
time, so the frequency resolution is low in the high frequency portion of the signal,
and the time resolution is low in the low frequency portion of the signal. Some
practical problems may require more detailed analysis of certain time-frequency
windows, and wavelet packet analysis provides a solution.

Assumed wavelet packet ψ i
j,k tð Þ is a function of amplitude modulation i, range

parameter is j, The translation parameter is k, which can be expressed as follows:

ψ i
j,k tð Þ ¼ 2j=2ψ i 2jt � k

� �
i ¼ 1, 2, 3, � � � ð5:73Þ

Base wavelet function ψ t will be obtained:

ψ2t tð Þ ¼ 21=2
X1
k¼�1

h kð Þψ t 2t � kð Þ ð5:74Þ

ψ2tþ1 tð Þ ¼ 21=2
X1
k¼�1

g kð Þψ t 2t � kð Þ ð5:75Þ

wherein h(k) and g(k)is filter coefficient. At each decomposition level N, have 2N

wavelet packet. This allows the input signal to be analyzed at different frequency
bandwidths. Wavelet packet analysis provides an effective analytical method for
sensor measurement signals that are affected by drillstring vibration. The analysis of
the 3-stage decomposition wavelet packet for the input signal is shown in Fig. 5.24.
If I have a good understanding of the vibration law of the drillstring, we can use the

Fig. 5.24 Wavelet packet transform of decomposition of the input signal
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wavelet packet analysis to separate the vibration shock signal from the acceleration
signal used for attitude measurement.

The vibration signal is decomposed by 6-layer wavelet using the wavelet analysis
toolbox in Matlab software. The base wavelet used is Debauches wavelet, and the
analysis results are shown in Fig. 5.25.

Fig. 5.25 Wavelet decomposition of accelerometer signal

176 5 Measurement and Analysis of Drillstring Dynamics



As can be seen from Fig. 5.25, the d6 signal is closest to the change law of the
fluxgate, and the fluxgate signal and the wavelet decomposed d6 signal are put
together for comparison. That the decomposed d6 signal is identical to the main
frequency of the fluxgate signal except for the phase difference. However, when the
drillstring is stick slip, the d6 signal completely shows the opposite trend of the
fluxgate signal, which indicates that the wavelet decomposition is still powerless for
the stick-slip phenomenon of the drillstring.

From the signal decomposed in Fig. 5.25, d1 represents the high-frequency
component of the signal, reflecting the dynamic characteristics of the drill string at
this time, we can use the d1 signal at this time as a measure of the degree of vibration
of the drill string. Define as following:

d1k k ¼
Xnd
k¼1

D12 kð Þ
" #1=2

ð5:76Þ

where nd is the coefficient of wavelet packet d1, d1 can well reflect the severity of the
vibration or impact in the drilling, and can be used as a parameter in subsequent
signal processing.

In the orthogonal wavelet, the orthogonal basis is more dominant than the
traditional signal processing method, and the noise signal can be more easily
discerned and separated by the wavelet transform. If a signal f(n) is assumed to be
changed s(n) after adding noise interference, it can be expressed as the following
model:

s nð Þ ¼ f nð Þ þ σe nð Þ ð5:77Þ

where e(n) is the noise, σ is noise intensity. Assume e(n) is Gaussian white noise, and
σ ¼ 1. The purpose of wavelet transform noise reduction is to suppress e(n) as much
as possible to recover f(n). From a statistical point of view, this model is a regression
model over time. This decomposition method can also be regarded as a
non-parametric estimation of the function f on an ortho basis.

Represent the signal as Lϕ on the wavelet domain, is the decomposition coeffi-
cient of the original noise-containing signal under wavelet transform. Threshold
operator fδ retained coefficient terms with large modulus values after the wavelet
effect, other coefficients with small modulus values are set to zero. Then:

Fδcð Þm,n ¼
cm,n, j cm,n j> δ

0, other

�
ð5:78Þ

The mask operator is M, Its function is to retain the specific coefficients needed
and set the other coefficients to zero. Then,

Mcð Þm,n ¼
cm,n, m, nð Þ 2 Q

0, other

�
ð5:79Þ
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It can be seen that the generalized threshold operator can obtain the mask
operator, and the threshold operator is implemented by introducing the mask oper-
ator of the coefficient modulus.

The db6 wavelet packet analysis is used for signal denoising processing, as
shown in Fig. 5.26, the statistical analysis results of the original input accelerometer
signal and the spectrogram.

From the frequency domain, the stick-slip state and the non-stick slip state are not
significantly different. However, on the statistical histogram, there are still signifi-
cant differences between the two. When the drillstring is stick slip, the velocity
amplitude is more concentrated in the zero-speed region. Using Matlab software, the
wavelet denoising effect is simulated and analyzed. The noise reduction result is
shown in Fig. 5.27. The red line is the filtered signal. It can be seen that the signal
amplitude is significantly reduced.

The degree of signal fluctuation can be measured due to the standard deviation σ,
we use the standard deviation as a measure of the signal noise reduction effect. After
the wavelet denoising process is performed on the three-axis signals of the

Fig. 5.26 Statistical analysis of wavelet decomposition of accelerometer signal d6
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accelerometer, the standard deviation of the filtered signal is calculated, and the pair
of original signals are shown in Table 5.8.

It can be seen that the amplitude of the signal after noise reduction is above 70%.
However, for the gravitational acceleration signal, it has the same sinusoidal varia-
tion as the fluxgate signal. The filtered signal does not clearly indicate this charac-
teristic. Especially in the stick-slip state, the signal fluctuates constantly is lost after
filtering.

5.5 Vibration Characteristics Based on Dynamics
Measurement

5.5.1 Data Analysis of Torsional Vibration

5.5.1.1 Surface Data of Drilling Process

The (Weight on the bit) WOB, surface rotary table torque and speed, pump pressure,
as well as the underlying lithology will combine effect of the drilling torsional
vibration. We used the drilling field test (Anshun well in China) data to do a detailed
analysis. At the period of using rotary steerable system, the well logging data show
in Fig. 5.28. It can be seen the surface data has been little changed. Therefore, it can
be inferred that the drill bit complex torsional vibration is caused by the underground
environment.

Fig. 5.27 The results of wavelet noise reduction

Table 5.8 Signal output
uncertainty of raw and
filtered measurements

Gx Gy Gz

Original signal σ 7.09 7.02 1.36

Filtered signal σ 1.13 1.86 0.16

Degree of improvement 84% 73% 88%
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5.5.1.2 Torsional Vibration Patterns

Extracted a period of underground measurement data, as shown in Fig. 5.29, the
rotary table speed maintained at 45 r/min, the drill bit speed has fluctuated between
0–140 r/min, stick-slip phenomenon is very serious. Simulation by torsional vibra-
tion model as described above, as shown in Fig. 12, the torsional vibration phenom-
enon significantly increased when TY exists. Simulation results show that the
torsional vibration phenomenon of push-the-bit rotary steerable drilling system is
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indeed more serious than the conventional of. It can be concluded that the model
established in this chapter very good response of the actual drilling process by way
of compare the BitRPM with TY in Fig. 5.30 and the BitRPM in Fig. 5.29.

Through statistical analysis of speed time series, the bottom of the drill torsional
vibration phenomena is divided into the following modes (Fig. 5.31): ① constant
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Fig. 5.30 SurfaceRPM and BitRPM of simulation with torsional vibration model

Fig. 5.31 The movement patterns of drill bit torsional vibration (The data is replayed from the
underground storage system)
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speed (including stationary) ② stationary to constant speed ③ constant speed to
torsional to stick-slip ④ stick-slip ⑤ stick-slip to torsional to a constant speed. The
drillstring mostly circulate between the three modes of ③, ④ and ⑤.

Usually the drilling engineers use a parameter SI to quantitatively the intensity of
drillstring torsional vibration. The SI will be defined as follows:

SI ¼ max RPMð Þ � min RPMð Þ
2 � avg RPMð Þ ð5:80Þ

However, within a certain time window of the actual measurement data, we
usually met avg(RPM) ¼ 0, cause inconvenience for downhole real-time solver.
We take the method of calculate the standard deviation to determine the dispersion
degree of time series, taken 1000 data point as each calculation of the time window.

The standard deviation statistical method to determine the drilling string move-
ment will be better, because it reflects the degree of dispersion among the individuals
within the group. Using 1000 data points as a time window, assumed to be x1, x2, . . .,
x999, x1000, the average value defines as u.

u ¼ 1
N

XN
i¼1

xi ð5:81Þ

Standard deviation σ obtained:

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

xi � uð Þ2
vuut ¼ SI ð5:82Þ

Wherein N ¼ 1000, xi is a particular velocity data, u is the average value.
As shown in Fig. 5.31,, SI approaches zero in the mode ①; SI presents a short

pulse in mode ②; SI is increased gradually from the vicinity of 0 in mode ③, until
the mode④ becomes completely stick-slip vibration state, SI is approximately equal
to the average speed, tend to be gentle., SI gradually decreased when the mode ④
becomes mode③, then SI tend to 0 until go back to mode①, the drill string return to
the constant speed rotation state. The state of motion will continuously circulating
between these modes when the drillstring work in the underground, we need to focus
on these three modes of③, ④ and ⑤, because the status of these movements is the
main reason for the downhole drillstring fatigue damage.

Assume the time series of bit rotational speed finally resolved as ω0, ω1, � � �, ωn,
then the time series of rotation angle is θ0, θ1, � � �, θn, sampling frequency is f ¼
1=Δt ¼ 100Hz. Then rotation angle and rotation speed satisfy will be expressed as
following:

θjþ1 ¼ 2πωjt þ θj, θ0 ¼ 0 ð5:83Þ
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Using the FFT algorithm, Fourier transforms for the time series of rotational
speed is:

Fk ¼ Δt
Xn�1

j¼0

ωje
�i2πkn j ð5:84Þ

Then its power spectral density will be obtained:

Sk ¼ S
2πk
nΔt

� �
¼ 1

nΔt Fkj j2 ð5:85Þ

As shown in Fig. 5.32, the power density spectrum has been obtained using
periodogram method with Matlab. It is clear that the time series follow a power-law
behavior where some characteristic frequencies also exist and are indicated f1 (60dB/
rad), f2 (55dB/rad) and f3 (47dB/rad) in the Fig. 14. The power-law behavior is
indicative of long-range correlations and self-similar behavior. There is a big
difference between model ① and the other model in the lower frequency segments.
This is because the drillstring is not rotated at this time, so the sensor signal should be
constant. The high frequency component of the spectrum analysis mainly comes
from the random noise. The mode④ occurs characteristic frequency at f1, showing
the stick-slip vibration period at this time. Mode②, Mode③ and Mode⑤ are the
transition stage between the stationary and stick-slip vibration. Their frequency
spectrums show more similarity. The high frequency noise always exists in the
measurement process, which is why each mode showed the same characteristics in
the high frequency.
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5.5.1.3 Uneven Distributed Data of the Rotary Speed

The simulation results in the Fig. 5.30 shows that the frictional torque generated by
the pads in the RSS will cause the drill bit torsional vibration more severely. The
frictional torque TY is not constant. It will appear when one of three pads pushed the
borehole wall. Hence, the speed of drill bit will decrease when the pads pushed out,
this will cause the drill bit torsional vibration. From our measurement data, the drill
bit torsional vibration appears all over the drilling process. If the frictional torque
generated by the pads is the main reason that leads the drill bit torsional vibration, we
can deduce that the rotary speed will slow down when the drill bit rotates to a certain
angle.

As show in Fig. 5.33, one of pads pushed out when it rotated to the point A and
then keep push through the angle α arrived to the point B. This process will make the
speed of drill bit slow down. The drillstring continuing clockwise rotate when the
pad will take back at the point B. The speed of the drill bit will increase because of
there is no frictional torque generated by the pads. Thus, if we consider the statistic
of downhole measurement data in the position of a circle, there must have uneven
distribution. In Fig. 5.33, at the arc of AB (red line), the speed will be lower than the
other part in the circle. We can find the evidence in the distribution of the downhole
measurement data.

The pads of the rotary steerable system were periodically pushed in a fixed
position against the borehole wall in the process of drillstring rotating. This is the
main difference between RSS and conventional drilling. Frictional force between the
pads and borehole wall will make the drill bit instantaneous rotational speed reduces.
Assuming the radius of the borehole is R, when the drillstring rotate to a circle, at a

Push out Take back

O

A B

Fig. 5.33 Position of the
pads pushing when the
drillstring rotating
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certain angle θ there will be has a speed value at the position of (R�sinθ, R�cosθ) in
the orthogonal coordinates. We draw all the speed data in a three-dimensional figure
as shown in Fig. 5.34. We can obtain the drill bit speed distribution map of different
angular position, part a is obtained from the RSS data which showing uneven
distribution between high and low-speed, part b is obtained from the conventional
drilling data which showing evenly distribution. Due to the Fig. 5.34 is generated
from all the data of drilling test, there will be have zero speed at each point of the
circle. Additionally, in the drilling process of RSS, there will must be having the time
that all the pads not pushing out as well as ordinary drilling system.

It can be concluded that the generation mechanism of torsional vibration is
completely different between push-the-bit RSS and the ordinary drilling system.
Although the conventional drilling also produces torsional vibration (Rotational
speed range of 0–80 r/min in Fig. 5.34b), the drilling bit rotational speed at different
rotation angles will not be a difference. Because the torsional vibration produced by
the drill bit breaking rock is completely disorder and stochastic.

5.5.2 Data Analysis of Lateral Vibration

In the measurement signals, ax,ay,az are defined as survey signals of triaxial accel-
erometers on the xyz axis respectively. Under certain sample frequency, measuring

signal is time series and can be expressed as time function. We can use ah ¼



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x þ a2y

q
define the lateral vibration of the BHA and use az express the longitu-

dinal vibration.
As shown in the Fig. 5.35, the frequency spectrum of the measurement time series

will be obtained. There is no characteristic frequencies in the ax and ay surveying
signals.

We used Welch’s method [61] approach to spectral density estimation. The
method is based on the concept of using periodogram spectrum estimates, which
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are the result of converting a signal from the time domain to the frequency domain.
Welch’s method reduces noise in the estimated power spectra in exchange for
reducing the frequency resolution. Due to the noise caused by imperfect and finite
data, the noise reduction from Welch’s method is often desired.

The time series of lateral vibration as shown in the Fig. 5.36a, frequency spectrum
as show in the Fig. 5.36b. Lateral vibration violently amplitude between 0–10G.
Since the sampling frequency is 100 Hz, we can obtain frequency spectrum domain
at 0~50 Hz, the characteristic frequency of the signal is not significant. It can be
inferred that lateral vibration signals are not periodic, essentially a random vibration.
The Fig. 5.36c indicate density of amplitude distributing, most of the vibration
amplitude concentrated between -5G~ + 5G. Fig. 5.36d show the spectral density
estimation using Welch’s method. The curve of power spectral density did not show
significant spikes, indicating that lateral vibration can be regards as random vibration
signals at this time.

Our treatment of frequency analysis would not be complete without discussing
the most up-to-date methods involving dynamic spectral analysis, analyzing how the
spectrum of a signal evolves in time. This analysis is carried out with Gabor trans-
forms, which are close relatives of wavelet transforms. Gabor transforms are partic-
ularly useful in analyzing drillstring vibration signals. It is used to determine the
sinusoidal frequency and phase content of local sections of a signal as it changes
over time. The function to be transformed is first multiplied by a Gaussian function,
which can be regarded as a window function, and the resulting function is then
transformed with a Fourier transform to derive the time-frequency analysis.

Using the FFT algorithm for the time series of vibration is:

Fk ¼ Δt
Xn�1

j¼0

ωje
�i2nkn j ð5:86Þ

Then its power spectral density will be obtained:
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Sk ¼ S
2πk
nΔt

� �
¼ 1

nΔt Fkj j2 ð5:87Þ

We using time-frequency box to express the energy distribution of Gabor func-
tion. The method of Gabor transform can help us discriminate the rotational move-
ment pattern. Then Fourier transform of the Gu, ξ(t) will be obtained:

bGu,ξ ¼ bG ω� ξð Þeiu ω�ξð Þ ð5:88Þ

As show in Fig. 5.37a, when the drillstring not exhibit stick-slip, the spectrum not
particularly has energy concentration point, the signals can be considered as random.
However, when the drillstring exhibit as stick-slip, the spectrum particularly occur
energy concentration stripe, as shown in the Fig. 5.37b. The results show that the
stick-slip of the drillstring not only reflecting the change of the rotating speed, but
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also affecting the lateral vibration of the drillstring, making the drillstring lateral
vibration signals lost the characteristics of random.

5.5.3 Data Analysis of Longitudinal Vibration

The spectrum of time-frequency of the longitudinal vibration signals is shown in
Fig. 5.38. Figure 5.38(a) is sequence diagram of longitudinal vibration, getting from
charts, longitudinal vibration has a smaller amplitude than horizontal vibration.
Figure 5.38(b) is a frequency range chart as correspondingly, signals also have no
obvious characteristic frequency, can be disposed of random signals. From distribu-
tion density of vibration ranges, as shown in Fig. 5.38(c), the range of longitudinal
vibration mostly occurred between 0~2G, smaller than horizontal vibration. As
shown in Fig. 5.38(d), the power spectrum density worked by period plan estima-
tion, extreme values occurred on three frequencies, proving time sequence of
longitudinal vibration intensified at some frequencies, it may be related to formation
lithology. The acceleration signals at z-axis have apparent noise spectrum characters,
proving under the rotation state, vibration of drilling tools have more regularly
influence to the signals of accelerated signals at axial direction.

Comparing with horizontal vibrations, longitudinal vibrations are bare, the accel-
eration sensors at z-axis are influenced by vibration of drill columns hardly, under
the condition of the rotation. Acceleration sensors are put on the center axis of
drilling supporter, not influenced by rotation speed of drilling tools theoretically, so
under a short time period, the time sequence of accelerated speed measurement
signals at z-axis should be a line paralleled to the x-axis. Based on the analysis
above, the filtering of signals on the accelerate sensor at z-axis is much easier to
realize than x-axis and y-axis. As the analysis of horizontal vibration, use instant
Fourier transform to make vibration time-frequency energy contour under two
conditions of stick-slip or not.
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As shown in Fig. 5.39, when there is no stick-slip vibration of drillstring, the
time-frequency has no point of concentration, disposing of the random signals like
the same before. But when it does exist stick-slip phenomenon, there are stripes
occurred on time-frequency contour, illustrating stick-slip vibration not only reflects

Fig. 5.38 Time-frequency analysis of the longitudinal vibration
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the change of rotation speed, but also influences the longitudinal vibration
of drillstring, making the signals of longitudinal vibration lose the random charac-
ters. Because the signals of longitudinal vibration are barely influenced by noise
interference, and the longitudinal component of acceleration of gravity is constant
whether drillstring rotating or not, so in the disposing of signals, to decrease the
calculated amount, the reverse and rotating vibration can be ignored during the
disposing of signals of longitudinal vibration, treating noise signals as random.

The results show that, during the whole drilling process, the chaotic phenomenon
of the vibration of the drilling bit is existence all the time. In order to rediscover the
phenomenon of drillstring vibration and improve the control algorithm used in
drillstring vibration, finding the chaotic characteristics of longitudinal vibration in
field measurement data of drillstring vibration is extremely helpful for engineering
application.

5.6 Chaos Identification

The rotary steerable system is a new form of drilling technology used in directional
drilling. It employs the use of specialized downhole equipment to replace conven-
tional directional tools such as mud motors. Specifically, the behavior of the
drillstring while operating under torsional vibrations [22], the main cause of dam-
ages to the drillstring, is of great importance. In this section, we report the observa-
tion of low-dimensional chaos in the drillstring torsional vibration using
measurement data from the field test using the RSS. The results are in good match
with mathematical models. To our knowledge, this is the first report of the finding of
order-chaos transitions in a real drillstring system.

To perform dynamical analyses, we use the phase-space reconstruction method
[62] (apply the mutual information [63] to estimate embedding delay, and Cao’s
method [64] to determine the embedding dimension) to reconstruct the attractor and
estimate the correlation dimension [65] and largest Lyapunov exponents (LLE) [66].

5.6.1 Methods

5.6.1.1 Phase-Space Reconstruction

The dynamics of the time series x0, x1, � � �, xn � 1 are fully captured or embedded in
the m-dimensional phase space, m � d where d is the dimension of the original
attractor. A vector x

!
i in the reconstructed phase space [62] is constructed from the

time series as follows:
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x
!
i ¼ xi, xi�τ, � � �, xi� m�1ð Þτ

	 
 ð5:89Þ

where τ is the delay time.
Cao’s method [64] computes E1 and E2 for the data set of dimension 1 up to a

dimension of D, which is the largest embedding dimension, used for calculate. E1

and E2 defined as follows:

E1 dð Þ ¼ 1
N � dτ

XN�dτ

i¼1

xiþdτ � xn i,dð Þþdτ

�� �������
����� ð5:90Þ

E2 dð Þ ¼ E1 d þ 1ð Þ=E1 dð Þ ð5:91Þ

wherein d is the embedding dimension, N is the number of data points, τ is the
embedding delay, xi + dτ and xn(i, d ) + dτ is the i-th vector in the data sets and its nearest
neighbors of d-dimensional phase space.

5.6.1.2 Largest Lyapunov Exponent (LLE)

The basic characteristics of chaotic motion are that the movement is extremely
sensitive to initial conditions, two very close initial values resulting in orbit over
time by separating exponentially, Lyapunov exponent [66, 67] that describes the
amount of this phenomenon.

We use the algorithm of Rosenstein et al. [67] to calculate the LLE. The results
were carried out with Tisean package [68], version 3.01. Consider the representation
of the time series data as a trajectory in the embedding space, and assume that
observe a very close return sn0 to a previously visited point sn. Then consider the
distance Δ0 ¼ sn � sn0 as a small perturbation, Δl ¼ snþl � sn0þl . If one finds that
jΔl j � Δ0e

λl then λ is the largest Lyapunov exponent.
Assuming S(ε,m, t) exhibits a linear increase with identical slope for all m larger

than some m0 and for a reasonable range of ε, and then this slope can be taken as an
estimate of the largest exponent.

S ε,m, tð Þ ¼ ln
1
un

X
sn0 2un

jsnþt � sn0þtj
 !( )

n

ð5:92Þ

5.6.1.3 Correlation Dimension

The correlation dimension method is used for detecting the presence possibility of
chaos. An algorithm proposed by Grassberger and Procaccia [65] is the most
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commonly applied method. According to this method the correlation sum, C(r), is
expressed as:

C rð Þ ¼ 2
N N � 1ð Þ

XN
i¼1

XN
j¼iþ1

H r � kxi � xjk
� � ð5:93Þ

Where H is Heaviside step function defined as:

H xð Þ ¼ 0 when x � 0

1 when x � 0

�
ð5:94Þ

N is the number of points in time series; r is the radius of a sphere with its center at
either of current points. Then the correlation dimension is:

D2 ¼ lim
D ! 1
r ! 0

d ln C rð Þð Þ
d ln r

ð5:95Þ

When the system is chaotic, the slope of logC(r) vs logr converges to D2 over an
appropriate interval as m increase. The results were carried out with Tisean package
[68], version 3.01.

5.6.2 Phase-Space Reconstruction of Vibration Signals

We obtained the first minimum of the mutual information calculated at τ ¼ 10 and
the embedding dimension is 6. We then represent the system by a phase-space

trajectory X
*

tð Þ ¼ A tð Þ,V tð Þ, S tð Þð Þ, as shown in Fig. 5.40. We compare the phase-
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space trajectory X
*

tð Þ using the experimental data of E3 and simulated data.The
phase-space of our system is at least three dimensional, and the oscillatory tends to
give rise to a strange attractor in both real and simulated data.

The main difference between the Push-the-Bit RSS and ordinary drilling system
is the friction torque (TY) that generated in the process of pads pushed against the
borehole wall. The simulation results show that the drilling bit torsional vibration
phenomena perceptible increased when the friction torque exist.

As show in the Fig. 5.41, we found that the TY will change the kinetic properties
of the system. Figure 5.41(a1–3) is the simulation results when we set as F( fF) ¼ 0,
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from the ordinarily drilling system, we can see the phase-space of our system has a limit cycle. The
second row (b.1-b.3) is produced when the RSS is worked, Pads pushed to the bit generated the
torque TY lead to the system to chaotic. The third row (c.1-c.3) is produced by the Tbit ¼ 0, just the
simulation results which will not present to the real drilling process. In addition, the first column is
the phase-space of torsional velocity and acceleration, the second column is the phase-space of
torsional velocity and steering force, and the third column is the phase-space of torsional velocity
and the one of pads shift. Along with the TY increased, we first found the sequence of order to chaos
transitions in the drill-string system
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like the ordinarily drilling system, shows the dynamics of the system only have the
torque on the bit (Tbit), the stable limit cycle indicates that the system incline to a
period. When the F( fF) increase, the limit cycle lost its stability gradually, we can
see from the Fig. 5.41(b1–3), which produced by Tbit + TY, the phase-space trajectory
shows fractal. Figure 5.41 (c1–3) shows the dynamics of the system only have the
torque TY, which is more obvious that the chaos existence in the system. We can find
the vibration sequences are transition from order to chaos along with the TY
increased. Generally, the drilling system will be worked on the pattern of A and B,
the red dot in the Fig. 5.41a.1 and 5.41b.1 is generated from measurement data,
which are good matched to the simulation results. However, we haven’t measured
the steering force and the pads shift that is why we cannot obtain the phase-space in
the column 2 and 3 of Fig. 5.41.

5.6.3 Largest Lyapunov Exponent and Correlation
Dimension

The LLE estimation is derived on the algorithm in [67]. The positive value indicates
exponential divergence of trajectories and hence an evidence of chaos. Furthermore,
we use the Grassberger-Procaccia (GP) [65] algorithm to estimate the correlation
dimension D2. We use 100,000 data points as one data set and the whole drilling
experimental data is calculated. Data from all nine fields in China are used in our
studies. The results are shown in Table 5.9. Both measures indicate the existence of
low-dimensional chaos in drillstring torsional vibration. The results are carried out
with Tisean package [68], version 3.01.

As show in the Fig. 5.42 (a) and (b), the largest Lyapunov exponent is estimated
through least-squares line fit for the time series and is found to be 0.011 of the
experimental data of E3 field test and 0.013 of simulation data. This positive value
indicates exponential divergence of trajectories and hence an evidence of chaos.

Furthermore, as show in Fig. 5.42 (c) and (d), the slope of log(CD(r)) gives us an
estimation of the correlation dimension D2. We present the estimated slope as a
function of logr for embedding dimensions m ¼ 1 up to 10. In all cases we obtain a

Table 5.9 Chaos
identification of test data

LLE D2

E1 0.013 
 0.003 1.8 
 0.2

E2 0.015 
 0.004 2.1 
 0.15

E3 0.011 
 0.002 1.6 
 0.2

E4 0.011 
 0.0014 1.8 
 0.2

E5 0.018 
 0.003 2.3 
 0.3

E6 0.013 
 0.0018 1.8 
 0.2

E7 0.021 
 0.0024 2.2 
 0.3

E8 0.012 
 0.004 1.7 
 0.24

E9 0.022 
 0.005 2.3 
 0.4
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convergence toward a correlation dimension of D2 � 1.6 with the experimental data
and a correlation dimension of D2 � 1.8 with the simulation data.

5.6.4 Stationarity and Determinism Tests

Since linear statistics, such as the mean or standard data deviation, usually do not
possess enough discrimination power when analyzing irregular signals, nonlinear
statistics have to be applied. We apply the stationarity test [69] program stationarity.
exe provided by Matjaˇz Perc [70, 71]. They split the time series into several short
non-overlapping segments and then use a particular data segment to make
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Fig. 5.42 Chaos identification, Part (a) and (b) estimating the maximal Lyapunov exponent of
torsional vibration time series. The part (a) shows the result for the experimental data, the straight
line indicates λ ¼ 0.011. For comparison, part (b) shows the result for the simulation data, the
straight line indicates λ ¼ 0.013. Part (c) and Part (d) give us an estimation of the correlation
dimension D2. In all two cases the GP algorithm converges, creating a plateau on the slope of the
correlation integral. The red dashed curves give estimates of the correlation dimension in all two
cases: experimental time seriesD2¼ 1.6 and simulation time seriesD2¼ 1.8. The all results in these
figures were carried out with Tisean package [68], version 3.01
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predictions in another data segment. By calculating the cross-prediction error (δgh)
when considering points in segment g to make predictions in segment h, the cross-
prediction error as a function of g and h then revels which segments differ in their
dynamics. They obtained a very sensitive statistic capable of detecting changes in
dynamics and thus a very powerful probe for stationarity.

The average cross-prediction errors for all possible combinations of g and h are
presented in Fig. 5.43. The whole time series was partitioned into 56 non-overlapping
segments each occupying 1000 data points. The average value of all δgh is 0.17,
while the minimum and maximum values are 0.03 and 0.3, respectively. Since the
maximal cross-prediction error is not one time larger than the average, we can
determine that the studied time series is stationarity. We just consider only 1000s
of the torsional vibration time series. Otherwise, longer data sets of the vibration time
series almost yield non-stationary.

Additionally, the results of the surrogate data analysis could be further confirmed
by applying the determinism test [72], which enables us to verify if the time series
we have obtained originates from a deterministic process. In this chapter, we use the
method developed by Kaplan and Glass [73] in order to examine the possible
deterministic nature of the underlying process, if the system is deterministic, the
average length of all directional vectors k will be 1, while for a completely random
system k � 0.

As shown in Fig. 5.44, the value of the determinism factor k is in the range
0.5–0.9, indicating the possible stochastic nature of the underlying process.

Fig. 5.43 Stationarity test. The color map displays average cross-prediction errors δgh in depen-
dence on different segment combinations
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5.7 Quantification of Drillstring Integrity Failure Risk

The drillstrings are mechanical systems which undergo complex dynamical phe-
nomena, often involving non-desired oscillations. Three main types of oscillations
are distinguished: torsional, axial and lateral vibration [2, 74~76]. These oscillations
are a source of failures that reduce penetration rates and increase drilling operation
costs. Stick–slip phenomenon appearing at the bottom-hole assembly (BHA) is
particularly harmful for the drillstring and it is a major cause of drill pipes and bit
failures, in addition to well bore instability problems [76].

The risk of a vibration-related integrity failure of drillstring can be predicted by
using vibration measurement to calculate some severity index [77], defined as Ic ¼
a1:5rmst

0:5
d . It relates to the average root mean square (RMS) acceleration (arms) and

duration of the run time (td), where the RMS acceleration is defined as Eq. (5.64).
RMS increases with the presence of increasing vibration level. The number of

vibration samples used to calculate each feature sample is set to be N ¼ 50,000,
which means that the time interval between two successive feature samples is
Δt ¼ N/fs ¼ 500 second. The authors and field engineers have found that this time
frame is acceptable for the requirement of time accuracy. Additionally, Field data
indicates that higher rotary speeds generally lead to increased levels of lateral
vibration, as shown in the Fig. 5.45.

This failure detection is a very important issue in drilling. It is difficult to extract
the weak signals in such a drilling system. The measured data from such a system
contain detailed dynamic characteristics of the measured structure, but the amount of
data is often huge. How to efficiently and accurately extract concise, clear, and
unique system dynamic characteristics and health information from such a large set
of data is very difficult. Moreover, dynamics-based system identification is a very

Fig. 5.44 Deterministic test for measurement time series. The values of determinism factor k are
given for embedding dimensions in the range m ¼ 2–10. It is evident that k � 0.95, indicating the
possible random (stochastic) behavior
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challenging reverse engineering task. It is even more important to have a signal
processing and data mining method that can extract from each set of experimental
data as many system parameters as possible. A damaged structure shows nonlinear-
ities and intermittent transient response in its time traces of measured points. The
acquisition and analysis of this data provided new insights of the dynamic behavior
of drillstring.

Nonlinear dynamical systems sometimes exhibit chaotic behavior, and the
Lyapunov exponent is a useful tool to distinguish and measure the extent of chaos.
Previous studies on chaos and on the Lyapunov exponents have found applications
to several fields such as turbulence, communication, heartbeats, and so on. However,
little research has been done on the relationship between the behavior of Lyapunov
exponents and fault detection. In the history of the field of fault detection, many
methods have been proposed to extract and analyze experimental data in order to
detect faults and assist in diagnosis [78–80]. Difficult to detect faults early on due to
certain weakly developing faults usually covered by background noise and other
chaotic elements. If the signal to noise ratio (SNR) is low, weak fault signals may not
be extracted from background noise using only the above-mentioned methods. In
recent years, as chaos theory has developed, some new technologies (especially
phase space reconstruction) have begun to be applied to extract information hidden
beneath experimental data [81, 82]. The largest Lyapunov exponent is usually used
to distinguish and to measure chaos of dynamical systems. The exponent or its
change can have some relationships with system faults. Usually, the equations of the
dynamical systems are difficult to obtain directly; only time series data sets are
observable. There are varieties of faults which are hard to detect directly from the
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Fig. 5.45 Statistical analyses indicated there is direct relationship between RPM and lateral
vibration levels (RMS Lateral Acceleration)
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data itself. The LLE is the indicator of divergence or convergence of two trajectories
with nearby initial conditions, and it could be sensitive to small changes of the
systems. However, the relationship between the LLE and the system damage level is
not clear and rarely studied up to now. Based on the LLE calculation method and
considering the conditions of a real system and the measured data, the changes of the
LLE are applied to fault detection of the RSS.

The severity index of vibration measurement is lack of sensitivity. Assume that Ln
is the LLE of nth data set; we define the drillstring integrity failure risk parameter Fr

as,

Fr ¼
X
n!N

Ln � Lnþ1

Ln
þ 1

� �
� a15rms � t05d ð5:96Þ

We got the results of the risk parameter Fr and compare it with the Ic as shown in
Fig. 5.46.

We chose 6 field test data sets as shown in Fig. 5.21. (a). Three of them are from
drillstring failure and three of them are in good condition. We calculate both indices
at the beginning and the end of the drilling process. By comparing the variation of
coefficients, we observe that the proposed measure provides a more reliable solution
to support risk-management processes with regard to drillstring failures. The chaos
detected is related to the inner dynamic characteristics of drillstring.

Fig. 5.46 Vibration index charts.We use 1e6 data points as one data set to calculate the vibration
index. In the six field tests as shown in Fig. 1.a, E3, E5 and E7 are failure cases. Both indices Ic and
Fr are less than one at the beginning of the drilling process, and the indices increase at the end of the
drilling process. This is different from the normal cases E1, E6 and E9, in which the drillstrings are
in good condition for the entire drilling process. It is noted that Ic cannot identify the failure in
sample 2 while the ruptured dynamical approach can detect the weak failure signal
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5.8 Discussion

As a booming technology catering the twenty-first century, automatic vertical
drilling system features extended reach capacity, well trajectory control accuracy
and flexibility, etc. which can notably increase drilling efficiency and safety. The one
of the technical difficulties in the VDS is that how to dynamic measurement of
spatial attitude accurately at the bottom rotating drillstring. However, the dynamics
of bottom drillstring will greatly affect the accuracy of the solution. Detailed analysis
of the dynamic characteristics of VDS has great benefits for improving measurement
accuracy while drilling, improving the reliability of closed-loop control, and improv-
ing the life of drilling tools.

In this chapter, the dynamic model of the drillstring with Automatic Vertical
Drilling System (VDS) is introduced. The friction between the pads and the borehole
wall will reduce the instantaneous speed of the drill bit. The pads of the actuator
in the VDS is continuously pushed to the borehole wall during the work process,
and a cyclically acting nonlinear damping force is formed on the drill bit at the
bottom of the well, resulting in chaotic movement of the bottom drillstring. The
investigation is concerned with the modelling the oil drilling process, to better
understand the effect of friction upon the propagation of torsional waves. One type
of frictional model, the continuous frictional model, is considered using the Dahl
model. During the drillstring rotation, the drill bit breaking rock torque and friction
torque between the drillstring and borehole wall decreases with the increase in
rotating speed. Which will introduce negative damping to the drillstring system.
When the negative damping is over-assisted, the drillstring rotates at a constant
speed and the equilibrium state is unstable or reversed. When the vibration energy
gradually increases, the drillstring appears to be torsional vibration, resulting in
stick-slip vibration.

Furthermore, a stick-slip vibration model was introduced as a new mechanism to
explain the large torsional oscillation of the drillstring. We aim to improve under-
standing of the causes for torsional vibrations in VDS and the torsional vibrations
with or without stick-slip case. It is shown here that the VDS implementing agencies
pushing the borehole wall cause more serious the torsional vibration of drill bit. The
dynamics of the push-the-bit VDS can also be applied to the same type of rotary
steerable system (RSS). Additionally, the chaotic motion is mainly caused by
elasticity of the drillstring and changing frictional forces at the bottom tool of
VDS. The static friction coefficient is higher than the dynamic friction coefficient,
which makes the drill bit appear to work alternately with sticking and sliding., and
presents complex dynamic behavior, which makes down-hole dynamic responses
difficult to predict. Under the guidance of the above dynamic characteristics, our
measurement algorithms and control programs need to be further improved from a
nonlinear perspective.
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Chapter 6
Data Processing and Mining in Seismic
While Drilling

Jin Wang

Abstract Seismic While Drilling (SWD) is a well seismic method developed in
recent years which is based on reverse vertical seismic logging. It is a newly-
developed well seismic technology which combines the seismic exploration tech-
nology with petroleum drilling engineering technology. Compared to conventional
VSP, SWD has its own characteristics and unique advantages in that it uses bit
vibration in the process of drilling as the source for seismic measurement, without
interfering with the drilling or occupying drilling time, and without any risk to the
hole, especially the bit can be predicted in real-time structure details of the formation
in front of the bit through the field seismic imaging processing, with the main
purpose of reducing drilling risks. The key of this technology is how to collect and
recover the weak bit reflection signal under strong disturbance noise and make it the
equivalent formation impulse response.

Keywords Seismic While Drilling (SWD) · Data processing · Formation · Drilling
risks

6.1 Introduction

Oil drilling is an underground construction with high investment and high risk. The
fuzziness and uncertainty of underground conditions bring great risks to drilling
construction. Therefore, it is very important to master various parameters of forma-
tion, predict formation pressure and monitor downhole conditions. The sustainable
use of the global oil and gas resources is becoming more and more prominent. The
oil and gas exploration and development are developing towards new exploration
area, deep wells and ultra-deep wells, which puts forward higher technical require-
ments on the drilling efficiency, cost, safety, and reservoir protection. Thus, positive
and effective exploration should be carried out in scientifically drilling engineering
design and construction so as to prevent and reduce drilling accidents.
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Vertical Seismic Profiling (VSP) [1] is a seismic exploration technology for
conventional wells. When VSP is collecting data, it is necessary to interrupt the
drilling, put a detector in the well, and measure through the surface energy source
excitation. Considering the risk of operating in open hole wells, VSP measurements
are usually carried out after well cementing. The hysteresis of such measurements
makes it impossible to timely grasp the relative position of the drill bit and the target
layer in the drilling process. If the bit deviates from the target layer at this time, we
have lost the best time to adjust the bit’s drilling trajectory. In addition, during VSP
observation, the idled drilling equipment, geophone running and long drillstring
running (well pressure cannot be controlled) will bring high cost and greater risk to
further drilling operations. In fact, more often than not, the required borehole seismic
data may not be available due to high costs or surface conditions that do not allow for
the placement of surface sources.

Reverse Vertical Seismic Profiling (RVSP) [2] is a seismic exploration technol-
ogy which is completely opposite to the way of VSP observation both geometrically
and physically, it is also the further development of VSP technology. Therefore,
seismic data collected by RVSP has the same advantages as those collected by VSP.
RVSP technology adopted the downhole excitation ground receiving mode of
operation, reducing the exploration cost and improving the working efficiency.
And there is no risks and inconvenience caused during the geophone drilling.
RVSP can effectively overcome the effect of the noise caused by the bad coupling
of downhole instruments and the formation, and there is no uncertainty in the
direction of wave field received by multi-component downhole instruments. The
recording wave field is further purified, and the separation of wave field is relatively
simple and easy to carry out. However, RVSP requires that the downhole seismic
source must have enough energy to reach the surface through the formation without
destroying the borehole, which cannot be met at present. Moreover, it is difficult for
underground cables to maintain normal working conditions under high temperature
and high pressure. In addition, the RVSP measurement still requires the interruption
of drilling operations and cannot be continuously measured. These factors limit the
wide application of RVSP technology.

Seismic While Drilling (SWD) [3–6] is a well seismic method developed in
recent years which is based on reverse vertical seismic logging. It is a newly-
developed well seismic technology which combines the seismic exploration tech-
nology with petroleum drilling engineering technology. Different from surface
seismic and VSP (Vertical Seismic Profile), it uses the continuous random vibration
signal generated from the drill bit breaks as a downhole seismic source for the
seismic exploration. If the geophone or geophone arrangement is placed on or near
the surface of the earth, it is RVSP in essence, which is called an VSP while drilling
or an RVSP while drilling. SWD method overcomes the limitation of the conven-
tional VSP development and the drawbacks of VSP observation, is a combination of
the advantages of surface seismic and vertical seismic VSP. It features in the
non-interference with the drilling construction, continuous measurement in the
depth, high exploration efficiency (especially for 3D observation and offset and
directional observation) etc. Through real-time seismic measurement while drilling,
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it can predict the structural details of the formation around the wellbore and in front
of the drill bit, can timely acquire pore pressure, target layer and downhole status
monitoring of the formation to be drilled in front of the bit, and can timely find
abnormal high pressure and faults, thus providing real-time downhole working
parameters for the well team, timely adjusting the drilling plan for decision makers,
and providing valuable information for safe drilling, improving drilling efficiency
and optimizing casing design. Therefore, SWD is a high and new technology with
strategic significance, which has become a new drilling technology in the field of
drilling engineering.

Drill-bit seismic technology was a topic of rather intense research and develop-
ment in the 1980s and 1990s, and the application should not be forgotten. The
principle of geologic imaging with a rotary-cone drill bit is illustrated in Fig. 6.1. The
key to the imaging procedure is to position a reference sensor at the top of the drill
string, near the swivel. This reference sensor records each impact of each tooth of a
rotary-cone bit as rock strata are being drilled. As shown in Fig. 6.1, the drill-tooth
impulses propagate along direct paths to sensors deployed on the Earth surface
(or on the seafloor if the well is offshore) at stations that allow specific target geology
to be imaged. An imaging capability is created by the drill-bit wavefields that
propagate downward and reflect upward from rock interfaces below the drill bit as
depicted by the ray path diagram.
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Fig. 6.1 In drill-bit seismic technology, the mechanical energy produced by an active rotary-cone
drill bit propagates up the drill string to a reference sensor positioned on the swivel and radiates into
the Earth as a seismic wavefield. Seismic events are created that travel direct and reflected ray paths
from the drill bit to surface-positioned sensors. A conventional seismic trace is created by contin-
uously correlating the response of the reference sensor at the top of the drill string with the responses
of the surface sensors
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6.2 Law of Seismic Wave Propagation While Drilling

SWD is different from the surface seismic, and also from the conventional VSP
exploration. Since SWD uses drilling bit vibration in the drilling process as the
seismic source for exploration, it has its special seismic wave field and the spatial
propagation characteristics [7] (including the effective wave and interference wave).
Systematic analysis of the wave field and its spatial propagation characteristics is of
great significance for effective separation of the effective wave field and interference
wave field.

6.2.1 Propagation Speed of the Drill String

During the propagation of the bit signal along the drill string, the drill string absorbs
the bit signal, so the energy of the bit signal will be lost in the form of heat energy.
The absorption of bit signals is related to the physical characteristics of drill string.
When the characteristics of drill string are invariable, the longer the drill string is, the
more obvious the absorption effect will be, and the more energy will be lost.
Amplitude attenuation caused by drill string absorption can be expressed as:

A ¼ A0e
�ηx ð6:1Þ

In the equation, A0 represents the initial amplitude, x represents the distance prop-
agated along the drill string, and n represents the absorption coefficient of the drill
string.

6.2.2 Seismic Wave Propagation Time

The propagation time of P wave is easier to be detected than that of S wave in a
seismic map, so they are mainly used for seismic tomography. In the asymptotic
approximation, it can be proved that the propagation time of seismic waves satisfies
Eikonal equation [8], then:

∇2t xð Þ ¼ 1
c xð Þ ð6:2Þ

Here, only longitudinal waves are considered, and c(x) represents the longitudinal
wave velocity at a given position x of the underground medium. If only vertical
propagation waves are considered, then the sum of the depth z and time t is:
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z ¼ Ðt
0
c t0ð Þdt0

t ¼ Ðz
0

1
c z0ð Þ dt

0

8>>><>>>: ð6:3Þ

For the velocity model, the one-way travel time associated with each depth can be
calculated by using the above equation.

Using the bit’s seismic wave field to locate the bit requires searching for multi-
channel data in the xz plane to find possible coherent direct bit waves. In the
traditional offset scheme, the buried source location can be offset based on the
diffraction sum, which is the sum of the amplitudes of the source points along the
diffraction curve in the xz plane [9]. In the xz plane, when the correct coherent
hyperbola is matched, the sum produces high amplitudes in the offset domain. In
uniform medium, the wavefront of the underground sound source is circular in
space, and its diffraction shape (or emission shape) can be defined by the travel
time trajectory as:

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t20 þ

x� x0ð Þ2
v2

s
ð6:4Þ

Where t0 is the one-way zero offset time from the underground source to the
receiver at position x0; x0 is the position perpendicular to the source, and x�x0 is the
offset time of the receiver at position x0. The summation in the standard offset
scheme can be replaced by coherence to overcome weak signal detection or velocity
macro model defects.

6.2.3 3D Space-Time Relationship of Main Seismic Wave
Fields

The so-called 3D space-time relationship refers to the change of seismic wave
propagation time with 3D spatial coordinates. We consider the space-time relations
of various wave fields in 3D uniform half space from the viewpoint of 3D surface
seismic reflection. Assume that multiple geophone arrays are arranged on the ground
for receipt, and the array orientation is parallel to the x or y axis (equivalent to 3D
surface seismic observation). Rn is the position of the detector at n channel in any
array, and the coordinate is (x, y, 0). In lead-straight drilling, S is the position of
downhole bit, the coordinate is (0, 0, z), and z is the bit depth.

The one-way time td of direct wave propagating from the position of the bit
through the formation to the point Rn is:
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td ¼ 1
ve

r
!
n � r

!
s

�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
ve

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ z2

p
ve

ð6:5Þ

Where X ¼ r
!
n

�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, ve is the propagation speed of the formation above

the drill bit. Similarly, the travel time of the reflected wave (reflected from the
position of the drill bit through the interface in front of the drill bit and propagated
to the point Rn through the formation) is:

tr ¼ 1
ve

r
!

n � r
!
s � r

!
sr0

�� ��þ r
!
s0r0

�� ��� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ zþ 2hð Þ2

q
ve

ð6:6Þ

In normal drilling, if the velocity of seismic wave propagating along the drill
string is greater than the near-well formation velocity, and the radial displacement of
the drill bit can transfer sound energy into the well fluid, which is then transmitted to
the formation to form the drill string refraction wave (first wave), then the space-time
relationship of the drill string first wave is:

th ¼ z� Xtgθc
vp

þ X
ve cos θc

¼ X cos θc
ve

þ z
vp

ð6:7Þ

In the equation θc ¼ sin �1 ve
vp
, vp is the propagation speed along the drill string.

Since wellsite generators, mud pumps, and drilling operations produce a variety
of strong noise interference, such as surface waves and surface refraction waves, for
3D seismic observation, these interference sources can all be considered to be from
the ground wellhead location. Assume the propagation speed of noise on the surface
be vn, and the time to reach the geophone point Rn be tn, then:

tn ¼ X
vn

þ t0n ð6:8Þ

Where, for surface waves, t0n ¼ 0, vn is group velocity of surface waves
(frequency dispersion variation of surface waves is not considered); For the refrac-
tion wave of the surface layer, t0n 6¼ 0, it is the high-speed layer velocity that
produces the refraction wave.

6.3 SWD Data Processing

The key of SWD reference signal processing is to extract weak bit source signals by
eliminating interference from many noise components. To do this, the vibration
signals from the drill bit must first be isolated from the acceleration sensor records at
the top of the drill string as a source function correlated with the ground records.
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Because of the unique source of SWD – drill bit vibration, and a variety of
transmission paths from the source, SWD earthquake signals are characterized
with complexity. The analysis method based on periodicity and mixed signal
characteristics is very suitable for fast and effective analysis of SWD signal, a
continuous mixed signal with strong periodicity.

Seismic interferometry is based on interference theory proposed by Claerbout
[10], developed by Schuster [11], which includes correlation and offset, also known
as virtual shoting method or acoustic solar imaging method. Seismic interference
processing technology can be applied to extract weak effective seismic signal from
strong noise. Seismic interference measurement is widely used in the SWD data
processing.

During SWD exploration, it is a common method to improve the signal-to-noise
ratio and resolution by cross-correlation of the lead signals on the drill string through
deconvolution [12] and ground signals or by cross-correlation of a selected certain
ground track as a reference signal and other channels. Because of the complexity of
the SWD wave field, low signal-to-noise ratio, and susceptible to the influence of the
drill string, interferometry can synthesize the data recorded on any two receivers, and
the seismic waves propagating between the receivers can be approximately regarded
as a source.

6.3.1 Cross-Correlating

In the field of seismic interference measurement, the researchers retrieved surface
waves and body waves by cross-correlating unrelated noise sources to extract useful
subsurface information.

Cross-correlating is used to describe the correlation degree between two time
series, that is, the degree of correlation between the values of signals at any two
different times. SWD correlates the reference signal received by the sensor on the
drill string with the reference signal recorded by the geophone on the ground to
reflect the effective information of underground structure. Cross-correlating com-
presses the continuous bit signals into pulse signals, where the different pulses
correspond to different seismic waves (such as direct wave, emission wave, etc.).
Considering the cross-correlation test bit signal extraction effect, noise needs to be
attenuated and signal-to-noise ratio improved. The travel time required for seismic
waves to reach each receiver along different paths can be measured by the
corresponding time of pulses. Theoretically, we hope to cross-correlate the
downhole drill bits as reference signals. Since the sensor of the reference signal is
on the derrick, there is a time lag between the downhole signal and the reference
signal, called delay time of the drill string. To add the delay time of the drill string to
the cross-correlating timeline, the delay time of the bit signal in cross-correlating
function can become bit signal travel time in the formation.

Cross-correlating is used to measure the similarity of two signals, and its calcu-
lation formula is as follows:
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ϕpg τð Þ ¼
XN
k¼1

p kð Þg k þ τð Þ ð6:9Þ

In the equation, p(k) and g(k) represent the cross-correlating two signals respec-
tively, τ represents the amount of time shift of g(k) relative to p(k), N represents the
signal length in cross-correlating. Cross-correlating is a function relative to time
shift. For a certain relative shift, if the two signals are similar, then the corresponding
item is usually a, is the product of cross-correlation values is big;If two signals are
not very similar, the product of the corresponding terms is positive, the cross-
correlating value is big. If not similar, then the product may be either positive or
negative, and the sum of them is small.

6.3.1.1 Reference Signal Auto-Correlation

Since the drill bit rotates in the downhole, the seismic signals produced are contin-
uous. Continuous bit signals can be converted into sharp pulses by auto-correlation
of reference signals [13]. IfB(z) is used to represent the transformation of the discrete
bit signal. D(z) is used to represent the transmission response of the drill string, the
reference signal P(z) received by the pilot sensor on the drill string top can be
expressed as:

P Zð Þ ¼ B Zð ÞD Zð Þ ð6:10Þ

Auto-correlation of the reference signal can be expressed as:

ψpp Zð Þ ¼ P Zð ÞP 1
Z

� �
¼ B Zð ÞB 1

Z

� �
D Zð ÞD 1

Z

� �
ð6:12Þ

The frequency spectrum of the drill bit signal conforms to the characteristics of
white noise, then:

B Zð Þj j2 ¼ C1 ð6:13Þ

Where C1 is a constant, the auto-correlation of the reference signal is only the
transmission effect of the drill string,

ψpp Zð Þ ¼ C1 � D Zð ÞD 1
Z

� �
ð6:14Þ

In the Eq. (6.14), for SWD, assuming that the bit signal is white noise signal, the
auto-correlation of the reference signal is the auto-correlation of the drill string
impulse response.
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6.3.1.2 Auto-Correlation of Reference Signal and the Ground

The reference signal is collected by the sensor at the top of the drill string and is not a
true bit signal. If E(Z ) is used to represent the Z transformation of the bit signal
formation pulse response, the signal G(Z ) received by the ground sensor can be
expressed as:

G Zð Þ ¼ B Zð ÞE Zð Þ ð6:15Þ

The cross-correlation between reference signals and ground records is:

ψPG Zð Þ ¼ P
1
Z

� �
G Zð Þ ¼ B Zð ÞB 1

Z

� �
E Zð ÞD 1

Z

� �
¼ B Zð Þj j2E Zð ÞD 1

Z

� �
ð6:16Þ

The reference signals are cross-correlated with the ground to obtain not only an
ideal formation impulse response, but also the interference generated by drill string
transmission effect is coupled within the impulse response, so deconvolution (anti-
filtering) processing is necessary.

6.3.1.3 Theory of Interferometric Method [14, 15]

Assume that G0 is a non-direct wave, Gs includes all scattered waves; Only acoustic
waves are processed in SWD. Background medium and medium disturbance can be
arbitrary, non-uniform and anisotropic. The frequency domain wave field μ(rA, s,ω)
recorded at rA are the superposition of undisturbed scattering green function G0(rA,
s,ω) and GS(rA, s,ω), the convolution of source function W(s,ω) related with the
excitation at s, so:

μ rA, s,ωð Þ ¼ W s,ωð Þ G0 rA, s,ωð Þ þ GS rA, s,ωð Þ½ � ð6:17Þ

In the equation,G0 and Gs represents undisturbed wave and wave field distur-
bance respectively. Besides, W(s,ω) can either be the complicated function of
frequency or function of s.

The wave fields of rA and rB in the frequency domain are cross-correlated as
follows:

CAB ¼ W sð Þj j2G rA, sð ÞG � rB, sð Þ ð6:18Þ

In the equation, � represents the complex conjugate. From the Eq. (6.18), cross-
correlation CAB depends on the power spectrum of W(s). Integrate the cross-
correlation in Eq. (6.18) to the curved surface ∂V containing all sources, then:
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ð
∂V
CABds ¼ W sð Þj j2

D E
G rA, rBð Þ þ G � rA, rBð Þ½ � ð6:19Þ

In the equation, h|W(s)|2i is the source mean value of the power spectrum, G(rA,
rB) and G � (rA, rB) are respectively the causal and inverse causal green functions of
excitation rB and receiver excitation rA. For Eq. (6.19),G corresponds to the pressure
response in the acoustic medium. If it is the particle velocity response, the plus sign
on the right of Eq. (6.19) is replaced by the minus sign. Eq. (6.19) is strictly
applicable to nondestructive medium.

Given the complexity of h|W(s)|2i, it can be difficult to restore the response
between rA and the local receivers rB through the above equation. Most researchers
recommend deconvolution after the integral of the above equation, which presumes
that the power spectrum of the source can be independently estimated. In fact, such
an estimate can be obtained only in some applications, not in most of the cases.

Suppose the source function in Eqs. (6.17)–(6.19) is independent of the source
position s (W(s)¼W ). Combing (6.17) with (6.18), CAB can be extended as follows:

CAB ¼ μ rA, sð Þμ � rB, sð Þ
¼ μ0 rA, sð Þμ0 � rB, sð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

C1
AB

þ μS rA, sð Þμ0 � rB, sð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
C2
AB

þ μ0 rA, sð ÞμS � rB, sð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
C3
AB

þ μS rA, sð ÞμS � rB, sð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
C4
AB

ð6:20Þ

In the equation, μ0 ¼ WG0 and μs ¼ WGs. Four items C1
AB~C

4
AB are inserted into

the Eq. (6.20), and get:ð
∂V
C1
AB dsþ

ð
∂V
C2
AB dsþ

ð
∂V
C3
AB dsþ

ð
∂V
C4
AB ds

¼ W sð Þj j2 G0 rA, rBð Þ þ GS rA, rBð Þ½ þ G0 � rA, rBð Þ þ GS � rA, rBð Þ� ð6:21Þ

Considering only GS term (scattered wave) in Eq. (6.21), the first integral is
related to the undisturbed term on the right side of Eq. (6.21),ð

∂V
μ0 ra,sð Þμ0 � ra,sð Þds ¼ Wj j2 G0 rA, rBð Þ þ G0 � rA, rBð Þ½ � ð6:22Þ

The interference measurement of the undisturbed wavefield to the left of
Eq. (6.22) must yield the causal and anti-causal unperturbed wavefields (at right
side of Eq. 6). The main contribution of the causal scattered wavefield between rA
and rBcomes from the correlation between the unperturbed wave field at rB and
scattered wave field at rA,
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ð
∂V1

μS rA, sð Þμ0 � rB, sð Þds ¼ Wj j2GS rA, rBð Þ ð6:23Þ

where ∂V1 is a portion of ∂V that yields stationary-phase contributions to GS(rA, rB);
Eq. (6.23) is an approximate relation, ignoring the influence of volume integral.

However, in exploration experiments, it is impossible to surround the underground
with seismic source. Therefore, only a partial source integral can be yielded rather
than the closed surface integral required for the Eq. (6.19).

Truncation of the surface integral can introduce spurious events in the final
interferometric gathers. This holds for general 3D models as well, and it can be
verified. ð

∂V1

CABdsþ
ð
∂V2

CABds ¼ Wj j2 GS rA, rBð Þ þ GS � rA, rBð Þ½ � ð6:24Þ

In the equation, ∂V1 and ∂V2 are curved section, ∂V1 [ ∂V2 ¼ ∂V0

6.3.1.4 Interferometric Migration

1. Single seismic source

Interferometric offset [16, 17] converts relevant seismic data into reflectivity or
source distribution. Figure 6.2 illustrates interferometric imaging with unknown
source location and its wavelet. It shows only direct waves (SA, SB) and the ray
path of the first-order multiples SArB.

In uniform nondestructive medium, the receivers at position A and B can be
modeled as:

dA wð Þ ¼ s ωð Þe�iωtsA ð6:25Þ
dB wð Þ ¼ s ωð Þe�iωtsA þ s ωð ÞRe �iω tsAþtArþtrBð Þ ð6:26Þ

In the equation, s(ω) is the source function at position s, ω is the angular
frequency, tsA and tsB represent the travel time from s to A and B, tAr and trB are

Fig. 6.2 Source location
and interferometric offset of
reflectivity imaging
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travel time of the first order multiples from A to r and from r to B. Taking dA(ω) as a
reference, the correlation between A and B is:

Φ ωð Þ ¼ dA � dB ¼ s ωð Þj j2e�iω tsB�tsAð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
direct wave time delay

þ s ωð Þj j2 Re �iω tArþtrBð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
reflectivity

ð6:27Þ

Where � represents complex conjugate.

2. Two seismic sources

For spatially separated two-point source model (S1 and S2, as shown in Fig. 6.3),
in uniform nondestructive medium, the direct arrival of receiving points A and B can
be modeled in the frequency domain as follows:

dA wð Þ ¼ s1 ωð Þe�iωts1A þ s2 ωð Þe�iωts2A ð6:28Þ
dB wð Þ ¼ s1 ωð Þe�iωts1B þ s2 ωð Þe�iωts2B ð6:29Þ

In the equation, si represents the source function, ω represents the angular
frequency, and tsiA represents the propagation time of the direct wave from the
i source position to the receiver at A. Our goal is to determine the time delay of
the receiver array relative to the reference channel. Taking dA(ω) as a reference,
complex conjugate of dA is multiplied by db to get:

Φ ¼ dA � dB
¼ s1s1 � e�iω ts1B�ts1Að Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

rig crossterm

þ s2s2 � e�iω ts2Bþts2Að Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
bit crossterm

þ s1s2 � e�iω ts1B�ts1Að Þ þ s1s2 � e�iω ts2Bþts2Að Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
crosstalk

ð6:30Þ

The image of the underground seismic source location with direct wave time
delay term in the relevant domain is obtained by summation of the time delay
response of the receiving array of pilot channel [18], that is:

Fig. 6.3 Direct wave cross-
correlation diagram of
receiver A and B with two
vibration sources
(S1 and S2)
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m xð Þ ¼
X
A,B

X
ω

Φ A,B;ωð Þeiω txB�tx Að Þ ð6:31Þ

In the equation, (A, B) represents the sum in paired channel used for correlation,
A represents the reference channel, and B is the receiving array with indexes from
1 to n. Φ is correlation between channel A and channel B. The core of the interfer-
ometric offset at the unknown source location is eiω txB�tx Að Þ.

Cross-correlation is usually used to compress passive data records and construct
the source receiver set. Through deconvolution interference, reference channels can
be deconvolved to expand the cross-correlation spectrum, improve the detectability
of narrow-band weak signals in the relevant domain, and improve the time resolution
of cross-correlation. Correlation in the frequency domain can be expressed as:

Φ ωð Þ ¼ dA � ωð ÞdB ωð Þ
dA ωð Þj j2 ¼ dB ωð Þ

dA ωð Þ ð6:32Þ

In the equation, � is the complex conjugate. In an ideal nondestructive medium,
deconvolution by using the reference trace dA eliminates the receiving function dA,
removes the source wavelet, and normalizes the process to expand the relevant
spectrum. Therefore, the program improves the time delay (improves the resolution
of the time delay). Another benefit of this program is that it can remove contamina-
tion from other sources in open scattered medium [19].

Here, we apply coherence measurement in the offset process. The destructive
interference in the superposition can be minimized by using the cross-correlation of
imaging, which is more suitable for weak correlation signals.Correlation offset can
be expressed as,

m xð Þ ¼ coherency
X
ω

D A,B;ω; τð Þeiω txB�txAð Þ
 !

ð6:33Þ

In the equation, t is correlation time window, (-w, +w), in which w represents
sampling point.

6.3.1.5 Semblance Algorithm

In uniform medium, the wavefront of the underground acoustic source is circular in
space, and its diffraction shape (or emission shape) can be defined through propa-
gation time trajectory as:

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t20 þ

x� x0ð Þ2
v2

s
ð6:34Þ
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Semblance is most commonly used for coherency analysis. Semblance measurement
is made along the diffraction travel time curve given by Eq. (6.34) at a finite time
window to measure the bit-correlating straight wavefront. Semblance is the normal-
ized output-input energy ratio of signals normalized along the window hyperbola, as
shown below:

S x0, t0ð Þ ¼ 1
M

Pw
τ¼�w

P
xu x, t xð Þ þ τð Þ� �2

Pw
τ¼�w

P
x
u x, t xð Þ þ τð Þ2

ð6:35Þ

where M is the number of traces indexed by x, and τ ranges over a time window
(2w, +w). The semblance has value in range 0 < S < 1. The advantage of using
semblance over the simple summation is that it considers of the similarity of the
signals in the given time window. The length of the time window controls the trade-
off between a reduced resolution in time domain and low S/N detection.

6.3.1.6 MUSIC Coherency Measurement

Multiple Signal Classification (MUSIC) has the potential advantage of higher
imaging resolution than Semblance resolution.

MUSIC is a classic high-resolution algorithm for direction-of-arrival (DOA)
estimation. It was first proposed by Schmidt [20], and is applied to the position
estimation of the narrow-band, irrelevant multi-emission points and the signal
parameter estimation. The classical MUSIC algorithm uses the covariance matrix
of the receiving array as input and is robust to ambient noise. Asgedom [21]
integrates the window-controlled versions of classical MUSIC into coherency-
migration schemes, so that they can deal with broadband seismic data and coherent
sources.

An important prerequisite for using MUSIC is that the number of features to be
addressed must be smaller than the number of sources and receivers. When the
surface multiple-receiver array is used to calculate the position of drill bit, this
premise is easy to be satisfied. Window-steered MUSIC algorithm is described as
below. In the case of a receiver array with m receivers, the data can be modeled as:

dm tð Þ ¼ s t � Δtmð Þ þ nm tð Þ ð6:36Þ

Where, the modeling data at receiver m consists of delayed source wavefield s and
random noise n. Δtm represents the time delay of the receiver m.

In the time domain, the steering time window is adopted for coherency measure-
ment, and the it is obtained through time-shift operation, so there is no wavelet
stretch. In this process, adopting interpolation in the time domain is suggested.
MUSIC algorithm is closely related to singular value decomposition (SVD).
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The W sample of time window data was decomposed into signals and comple-
mentary noise subspaces by SVD, as shown below:

D ¼ Us Un½ �
P

s 0

0
P

n

	 

VT
s

VT
n

" #
ð6:37Þ

where U, V, and ∑ represent eigenvector matrices and the singular matrix, respec-
tively. The∑s denotes a diagonal matrix with the R largest singular values, which are
associated with the first R eigenvectors of Us, and Vs (referred to as the signal
subspace). The ∑n denotes the remaining diagonal matrix (corresponding to the
noise subspaces).

Consistency matrix d in steered finite-window data has the similarity between
row vectors. After SVD, the columns of U can be interpreted as seismic wavelet, and
the columns of V shows normalized amplitudes of each recording track wavelet.
Therefore, the MUSIC algorithm uses the matrix V to project the steering vector onto
the noise subspace of V, so as to determine the DOA and the number of scatterers.
The steering vector used for scanning space is a function of angle, which can be
obtained by a ¼ 1, e�iωΔt1 , e�iωΔt2 , � � �, e�i M�1ð ÞωΔtM�1

� �T
, where △t is a function of

angle θ. The angle is called the direction of the signal reaching the receiver array
[20], and ω is the angular frequency.

In the window-steered MUSIC, use the fixed steering vector [21, 22],
a ¼ [1, 1, 1, � � �, 1]T. For coherent flat events with relatively constant amplitude in
the data window, the signal space is divided by fixed steering vector A. Because of
the orthogonality of signal and noise subspace, the projection of A onto noise
subspace is the minimum. Therefore, placing the projection in the denominator
result can lead to a rush of such a coherency event. MUSIC coherency in imaging
spatial position (x0, z0)can be expressed as follows:

PMU x0, z0ð Þ ¼ 1
aT Pn½ �a ¼ 1PM

i¼1

PM
j�1 Pn½ �i,j

ð6:38Þ

where the estimated source positions (x0, z0) and velocity model (v) are used to
estimate the direct arrival of the source wavefield in a time window. Note that
Pn ¼ Vn � VT

n is the projection matrix onto the noise subspace. This defines the
coherency value at the imaging position (x0, z0), and is referred to as the MUSIC
pseudospectrum.

PMU t0, x0ð Þ ¼ aTa
aT En � ET

n

� �
a

ð6:39Þ

where a ¼ [1,1,1,��� ,1], T is a fixed steering vector. En ¼[eW+1,��� , eM], where
W split the signal and noise subspaces of left unitary matrix of singular value
decomposed data matrix Dw. The Dw is time shifted windowed data D.
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The above equation can be used for velocity analysis and imaging, and Music can
be well integrated into seismic coherency analysis. Semblance is the normalized
energy ratio with its value ranging from 0 to 1, while Music algorithm does not have
such boundary, and its value changes more randomly.

6.3.1.7 Cross-Correlation Algorithm in the Wavelet Transform Domain

The cross-correlation algorithm in the wavelet transform domain [23] can perform
the wavelet transform of the reference channel and other receiving channels respec-
tively under low SNR, and obtain the time delay of the receiving channel relative to
the reference channel, then extract the direct wave and reflected wave information.
Suppose there are two data x(t), y(t), where x(t) is reference channel, y(t) is the
sampling data on other channels. Suppose the common components of x(t) and y(t)
are s1 and s2. The time delay of the common component s1 and s2 in y(t) are τ1 and τ2
relative to that in x(t), then x(t) ¼ s1(t) + s2(t). The actual seismic record contains
noise, its mathematical model is expressed as y(t) ¼ s1(t � τ1) + s2(t � τ2) + z(t),
where z(t) is environmental noise. The cross-correlation of the two time domains can
be defined [24, 25] as:

Rxy τð Þ ¼
ð1
�1

x tð Þy t � τð Þdt ð6:40Þ

The discrete form can be expressed as:

Rxy τð Þ ¼
X1
n¼‐1

x nð Þy n� τð Þ ð6:41Þ

In actual SWD processing, since the seismic source signal is difficult to be
directly obtained, suppose the wavelet transform of the reference channel x(t) is:

Wφ,x a, bð Þ ¼
ðþ1

�1
x tð Þφ � t � b

a

 �
dt ¼

ðþ1

�1
s1 tð Þ þ s2 tð Þ� �

φ � t � b
a

 �
dt

¼ Wφ,s1 a, bð Þ þWφ,s2 a, bð Þ ð6:42Þ

The wavelet transform of the other channel is:

Wφ,y a, bð Þ ¼
ðþ1

�1
y tð Þφ � t � b

a

 �
dt

¼
ðþ1

�1
s1 t � τ1
� �þ s2 t � τ2

� �þ z tð Þ� �
φ � t � b

a

 �
dt

¼ Wφ,s1 a, b� τ1
� �þWφ,s2 a, b� τ2

� �þWφ,z a, bð Þ

ð6:43Þ
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The cross-correlation algorithm in the wavelet transform domain between the
reference channel x(t) and the other channel y(t) can be expressed as:

CF
y,x τð Þ ¼

ð
a

ð
b
Wφ,y a, bð ÞWφ,x a, b� τð Þdadb ð6:44Þ

By substituting the above equation into the Eqs. (6.40) and (6.41):ð
a

ð
b
Wφ,s1 a, b� τ1

� �þWφ,s2 a, b� τ2
� �� þ Wφ,z a, bð Þ�

Wφ,s1 a, b� τð Þþ�
Wφ,s2 a, b� τð Þ�dadb

¼ W s1s1 τ � τ1
� �þW s1s2 τ � τ1

� �þW s1s2 τ � τ2
� �

þW s2s2 τ � τ2
� �þWzs1 τð Þ þWzs2 τð Þ

ð6:45Þ

In the equation,Ws1s1 τ � τ1ð Þ is the wavelet transform domain auto-correlation of
the component s1. W s1s2 τ � τ1ð Þ and W s1s2 τ � τ2ð Þ is the cross-correlation of the
component s1 and s2 wavelet transform domain. W s2s2 τ � τ2ð Þ is wavelet domain
auto-correlation of the component s2. The latter two terms of Eq. (6.45) are inter-
ference elements.

When τ ¼ τ1:

CF
y,x τ1
� � ¼ W s1s1 0ð Þ þW s1s2 0ð Þ þW s1s2 τ1 � τ2

� �þW s2s2 τ1 � τ2
� �

þWzs1 τ1
� �þWzs2 τ1

� � ð6:46Þ

In the equation, the first term on the right side is the maximum value of the auto-
correlation function in the component s1 wavelet transform domain, which is far
greater than the latter terms, then this component is highlighted. When τ ¼ τ2, the
composition s2 is highlighted. When s1 ¼ s2, the Eq. (6.45) becomes:

CF
y,x τð Þ ¼ 2W s1s1 τ � τ1

� �þ 2W s1s1 τ � τ2
� �þ 2Wzs1 τð Þ ð6:47Þ

At this time, other channels can be interpreted as echoes of seismic signals with
different time delays. According to different formation wave impedance, the echos
number of source signals received by seismic receiving channels is different, then
CF
y,x τð Þ can be expressed as:

CF
y,x τð Þ ¼

ð
a

ð
b

XM
i¼1

ai

"
Wφ,y a, b� τi

� �þWφ,z a, bð Þ�Wφ,x a, b� τð Þdadb

¼
XM
i¼1

aiW ss τ � τi
� �þWzs τð Þ ð6:48Þ
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In the equation, Wzs(τ) is the time-frequency cross-correlation in the wavelet
domain between the source signal and noise, and it is the interference caused by
noise;Wss(τ) is the time-frequency correlation wavelet in the wavelet domain. As the
signal-to-noise ratio decreases, the optimal effect of one-time cross-correlation in the
wavelet domain can not be achieved, so multiple time-frequency cross-correlation
algorithms in the wavelet domain can be further performed. The specific steps are as
follows:

(1) Perform the wavelet transform of the reference channel signal and the
receiving channel signal respectively; (2) Calculate the wavelet coefficients of
each scale to the power of N after the two transformations. Let N be a natural
number and select the suitable N according to the analysis; (3) Carry out cross-
correlation algorithm after the coefficients of the two wavelet transforms to the
power of N. The specific time-frequency cross-correlation function in the wavelet
domain is:

CF
y,x τð ÞN ¼

ð
a

ð
b
Wφ,y a, bð ÞWφ,x a, b� τð Þ� �N

dadb ð6:49Þ

In the equation, the selection of N depends on the actual signal processing. In the
cross-correlation algorithm in wavelet transform domain, only the time domain and
frequency domain of noise overlap with the effective signal, thus causing interfer-
ence. If the noise delay information is the same as the signal delay information, it can
be extracted from the signal by the wavelet transform as long as the frequency
information is different, and then suppress the noise by cross-correlation algorithm,
highlighting the time delay of the useful signal.

The cross-correlation algorithm in the wavelet transform domain processes the
data by utilizing the characteristics of time overlapping between the noise and the
useful signals, no overlapping of the frequency domain. And its noise suppression
ability has obvious advantages over cross-correlation in time domain. Under low
signal-to-noise ratio, multiple cross-correlation can also be performed to suppress
interference and improve the signal-to-noise ratio.

6.3.2 Deconvolution-Deconvolution Interference

SWD, different from surface seismic and vertical seismic profiling (VSP), uses the
vibration of the drill bit in the drilling process as the source, arranges the sensor on
the top of the drill string to receive the bit signal propagated by the drill string, and
arranges the geophone on the ground to receive the seismic signal propagated by the
drill bit through the formation. And perform the cross-correlation of the two signals,
then the pulse response of the formation can be obtained.

The reference signal is obtained by convolution of drill bit signal and drill string
system function. The signal received by the sensor at the top of the drill pipe is
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affected by the drill string resonance effect or path propagation effect, which results
in spectrum distortion and high-speed multiple wave interference. The purpose of
deconvolution is to eliminate the influence of drill string propagation by processing
the reference signal into the bit signal. The application of deconvolution interference
processing method [12] can eliminate the processing results of seismic source
interference. And deconvolution of the cross-correlation output can eliminate the
high-speed multiple wave and spectral distortion of the reference signal in the cross-
correlation output, and improve the signal-to-noise ratio of SWD data.

Deconvolution interferometry, based on the theory put forward by Claerbout
[10], is developed based on cross-correlation. It can extract effective source signal
excited by bit from strong environmental seismic data, make use of the random noise
to obtain green function between the seismic stations, underground structure and
velocity structure imaging. There is no need to make independent estimates of the
source function and no need to depend on the source function information, and it is
the most suitable for pilot unrecorded or unreliable bit excitation.

6.3.2.1 Deconvolution Principle, Seismic Channel Convolution Model

The ideal seismic record is the time series of reflection coefficient, assuming ξ(t) is
the reflection coefficient series, then the ideal seismic record x(t) can be expressed as:

x tð Þ ¼ N0ξ tð Þ ð6:50Þ

In the equation, N0 is the intensity value of source pulse, it is a constant.
In fact, seismic channel x(t) is composed of the superposition of effective wave s

(t) and interference wave n(t), x(t) ¼ s(t) + n(t). The effective wave only refers to the
first reflection wave, and all the others are interference waves. The first reflection
wave of layered medium is usually represented by linear convolution model:

s tð Þ ¼ w tð Þ � r tð Þ ð6:51Þ

In the equation, w(t) is the system wavelet; r(t) is the function of reflection
coefficient.

System wavelet is formed by seismic source wavelet o(t) passing through the
formation filter g(t) to form the ground sub-wave w1(t), then it is received by the
ground receiver d(t) and recorded by the instrument i(t) after layer reflection-
refraction(penetrating response τ(t)-reflection). It is the result of the comprehensive
responses other than the reflection coefficient. Stratigraphic response, penetrating
response, receiving response, instrument response are all produced by filtering, the
source wavelet filtering is equivalent to continuous convolution in time domain:

w tð Þ ¼ o tð Þ � g tð Þ � τ tð Þ � d tð Þ � i tð Þ ¼ w1 tð Þ � τ tð Þ � d tð Þ � i tð Þ ð6:52Þ

By substituting the above equation into the Eq. (6.51):
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s tð Þ ¼ o tð Þ � g tð Þ � τ tð Þ � i tð Þ � r tð Þ ¼ o tð Þ � f τ tð Þ � f d tð Þ � r tð Þ ð6:53Þ

In the equation, fτ(t)¼ g(t) � τ(t) is the earth filter; fd(t)¼ d(t) � i(t) is the receiving
filter;

The convolution of Eq. (6.53) in the frequency domain is shown as follows:

S ωð Þ ¼ W ωð ÞR ωð Þ ð6:54Þ

In the equation, S(ω), W(ω) and R(ω) are the seismic record spectrum, wavelet
spectrum and reflection coefficient spectrum respectively. Apparently,

R ωð Þ ¼ 1
w ωð Þ � S ωð Þ ¼ A ωð ÞS ωð Þ ð6:55Þ

Where, A ωð Þ ¼ 1
w ωð Þ.

By inversely Fourier transform to the time domain, it can be obtained:

R ωð Þ ¼ a tð Þ � S tð Þ ¼ a tð Þ � w tð Þ � R tð Þ ð6:56Þ

In the equation, a(t) is the time function of A(ω), so, a(t) � w(t) ¼ δ(t), a(t) is the
deconvolution factor;

In the case of known seismic wavelet, a(t) can be obtained by using mathematical
method. And perform the convolution of the inverse wavelet with the seismic record
S(t) by using the Eq. (6.56):

R tð Þ ¼
X
τ

a τð ÞS t � τð Þ ð6:57Þ

6.3.2.2 Convolution Model of SWD

According to the Yilmaz’s [9] definition of the convolution model of ground seismic
data before vibroseis cross-correlation in 1987, if B(z) represents the Z transform of
discrete bit signal and D(z) represents the drill string impulse response, then the lead
signal P(z) received by the sensor at the top of the drill string can be expressed as:

P zð Þ ¼ B zð Þ � D zð Þ ð6:58Þ

Discrete signal received by the ground geophone G is:

G zð Þ ¼ B zð Þ � E zð Þ ð6:59Þ

In the equation, E(z) represents the impulse response of the formation.
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Bit deconvolution is mainly used to eliminate the drill string transmission effect
in the reference signal and to suppress long-period drill string multiples and BHA
multiples. The deconvolution operator can be obtained by auto-correlation of the
reference signal or bit deconvolution before and after cross-correlation.

After perform the bit deconvolution of the reference signal, it can be obtained:

P zð Þ � OP zð Þ ¼ B zð ÞD zð Þ=D zð Þ ¼ B zð Þ ð6:60Þ

The cross-correlation of the reference signal and the ground records:

ΨPG zð Þ ¼ P
1
z

� �
G zð Þ ¼ B

1
z

� �
B zð ÞE zð Þ ¼ B zð Þj j2E zð Þ ð6:61Þ

Bit deconvolution is performed after the cross-correlation, then the impulse
response of the formation can be:

ΨPG zð Þ � OP zð Þ ¼ P
1
z

� �
G zð ÞOP zð Þ ¼ B zð Þj j2E zð Þ ð6:62Þ

The length of bit deconvolution operator is determined by the pulse response of
drill string and the length of the response is determined by the time span of direct
wave and main drill pipe multiple waves. The drill string will affect the
deconvolution operator.

This is the ideal case without noise. The actual SWD reference signals are
recorded under the strong noise interference. Improving the signal-to-noise ratio of
SWD signals is still the key to SWD signal processing.

6.3.2.3 Elastic Deconvolution Interferometry

The deconvolution interferometry is developed from acoustic to elastic medium, it
can also be used for extracting elastic scattered waves. Then, the application of
deconvolution interferometry in dealing with drilling noise passive recording will be
described. The application of deconvolution interferometry to elastic waves should
meet the following definition:

D p,qð Þ
AB ¼ D p,qð Þ

AB,K ¼
u v,Φð Þ

p,Kð Þ rA, s,ωð Þ
u v,Φð Þ

q,Kð Þ rB, s,ωð Þ
¼

G v,Φð Þ
p,Kð Þ rA, s,ωð Þ

G v,Φð Þ
q,Kð Þ rB, s,ωð Þ

ð6:63Þ

In the equation, u v,Φð Þ
p,Kð Þ ¼ ωKG

v,Φð Þ
p,Kð Þ is the response measured in the frequency

domain, subscript p (or q) represents a specific component of the measured particle
velocity (superscript u represents the measured field quantity, particle velocity). All
subsequent equations meet the dependence on angular frequency ω.
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Similar to acoustic deconvolution interferometry, the denominator of Eq. (6.63)
can be expanded into a power series when the scattered wave field is weaker than the
direct wave field, then:

G v,Φð Þ
q,Kð Þ rB, sð Þ

n o�1
¼ 1

G v,Φð Þ
0 q,Kð Þ rB, sð Þ

�
X1
n¼0

�1ð Þn
G v,Φð Þ

S q,Kð Þ rB, sð Þ
G v,Φð Þ

0 q,Kð Þ rB, sð Þ

0@ 1An

ð6:64Þ

It is called the elastic deconvolution interference series, which has the same form
as the acoustic deconvolution interference series. As with deconvolution interfer-
ometry in acoustic medium, we put Eq. (6.64) into Eq. (6.63), and then integrate the
available sources to obtain:

ð
∂V1

D p,qð Þ
AB,Kds ¼

ð
∂V1

G v,Φð Þ
0 p,Kð Þ rA, sð Þ G v,Φð Þ

0 q,Kð Þ rB, sð Þ
n o

�

G v,Φð Þ
0 p,Kð Þ rB, sð Þ

��� ���2 ds

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Term 1

þ
ð
∂V1

G v,Φð Þ
s p,Kð Þ rA, sð Þ G v,Φð Þ

0 q,Kð Þ rB, sð Þ
n o

�

G v,Φð Þ
0 p,Kð Þ rB, sð Þ

��� ���2 ds

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Term 2

�
ð
∂V1

G v,Φð Þ
0 p,Kð Þ rA, sð Þ G v,Φð Þ

S q,Kð Þ rB, sð Þ
n o

�

G v,Φð Þ
0 p,Kð Þ rB, sð Þ

n o2 ds

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Term 3

ð6:65Þ

Only the term whose integrand function is linear in the scattered wave Gs is
retained, it can be obtained:

ð
∂V1

G v,Φð Þ
S p,Kð Þ rA, sð Þ G v,Φð Þ

0 p,Kð Þ rB, sð Þ
n o

�

G v,Φð Þ
0 p,Kð Þ rB, sð Þ

��� ���2 ds � κG v,fð Þ
S p,qð Þ rA, rBð Þ ð6:66Þ

where κ is a constant related to the source averaging of spectra G v,Φð Þ
0 p,Kð Þ rB, sð Þ

��� ���2. In
our elastic case, setting rA ¼ rB and p ¼ q in Eq. (6.66) results. In D q,qð Þ

BB,K ¼ 1, this
translates to the time-domain condition, then,

D q,qð Þ
BB,K tð Þ ¼ δ tð Þ ð6:67Þ

Eq. (6.67) imposes a clamped-point boundary condition for the pseudo-source
experiment reconstructed by deconvolution interferometry.
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6.3.2.4 Deconvolution Calculation of the Pilot Signal

Ideally (without noise interference), the auto-correlation method described above
can be used to eliminate the effect of drill string transmission. The reference signal
contains the recorded random noise in time. In the time domain, the method for
calculating the deconvolution of the pilot signal with random noise will be
discussed. The pilot signal model with random noise can be expressed as,

p tð Þ ¼ b tð Þ � d tð Þ þ n tð Þ ¼
Xn
τ¼0

b τð Þd t � τð Þ þ n tð Þ ð6:68Þ

Where b(t) represents the bit signal, d(t) represents the impulse response of the drill
string, and n(t) represents the recorded random noise.

The interference signal is maximum suppressed, and the error sum of squares
between the actual output and the desired output of the narrow pulse after the action
of the pilot signal p(t) and filter a(t) is the smallest, finally:

Xm
τ¼0

rpp τ � sð Þa τð Þ ¼ rτp sð Þ, s ¼ 0, 1, � � �mð Þ ð6:69Þ

Where rpp(τ � s) represents the auto-correlation of the pilot signal with a time delay
of (τ � s), and rτp(s) represents the cross-correlation between the pilot signal with a
time delay of s and the desired output.

The cross-correlation between the drill string impulse response and the desired

output spike pulse is also a spike pulse, so rld jð Þ ¼ 6¼ 0, j ¼ 0

¼ 0, j 6¼ 0

�
, the above matrix

form can be expressed as:

rpp 0ð Þ rpp 1ð Þ � � � rpp mð Þ
rpp 1ð Þ rpp 0ð Þ � � � rpp m� 1ð Þ
� � � � � � � � � � � �

rpp mð Þ rpp m� 1ð Þ � � � rpp 0ð Þ

26664
37775

a 0ð Þ
a 1ð Þ
� � �
a mð Þ

26664
37775 ¼

1

0

� � �
0

26664
37775 ð6:70Þ

Adding an artificial white noise, called pre-whitening processing:

1þ εð Þrpp 0ð Þ rpp 1ð Þ � � � rpp mð Þ
rpp 1ð Þ 1þ εð Þrpp 0ð Þ � � � rpp m� 1ð Þ
� � � � � � � � � � � �

rpp mð Þ rpp m� 1ð Þ � � � 1þ εð Þrpp 0ð Þ

26664
37775

a 0ð Þ
a 1ð Þ
� � �
a mð Þ

26664
37775 ¼

1

0

� � �
0

26664
37775 ð6:71Þ

Where ɛ¼0.1%-1%, the pilot signal deconvolution operator can be obtained from
the above equation, then the impulse response of drill string can be eliminated
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through direct convolution of the deconvolution operator with the pilot signal or
inverse convolution of the deconvolution operator in the time domain, and then
through the convolution of it with the record after cross-correlation.

6.3.3 Independent Component Analysis

Independent Component Analysis (ICA) [26], originated in the 1990s, is a statistical
signal processing method that makes use of the different statistical characteristics of
various components to separate different components. It is a new blind source
separation method, which is characterized by the independent statistics of signal
sources and various interference sources without the need to know its characteristics.
It can solve the problem of aliasing many kinds of SWD signals and improve the
quality of SWD data processing.

An effective independent component analysis method can find its inherent statis-
tical independent factors or components from multivariant or multidimensional
statistical data. The general linear model of ICA is:

x ¼ As ð6:72Þ

Where s ¼ (s1, s2, � � �, sm) is the signal sent by an independent signal source; A is
mixed matrix of order N�M; x¼ (x1, x2, � � �, xm) is the mixed signal. x is obtained by
observation, while s and A are waiting to be calculated. Since the mixed system s is
unknown, the process obtained from x is “blind”. The mixed matrix W of the order
N�M needs to be found out.

y ¼ Wx ð6:73Þ

Where y ¼ (y1, y2, � � �, ym) requires to get close to s as much as possible.
The central limit theorem indicates that mixed signals of multiple independent

random variables tend to be Gaussian distributed. Therefore, in the ICA model,
mixed signals composed of multiple independent source signals are closer to Gauss-
ian distribution than any source signal. Therefore, the non-gaussianism of separated
signals can be used as the measure of independence of the signals, which provides a
criterion for the separation of independent sources. For non-gaussian signals, the
independence of signals cannot be determined only by using irrelevance, and high-
order cumulants need to be considered, mainly taking extremum of fourth-order
cumulants (kurtosis).

The independent component analysis (ICA) algorithm generally consists of
two steps: spherification and non-gaussification. After spheroidizing calculation,
the input mixed signal is transformed into a set of unrelated signals with the mean
of 0 and the equal maximum amplitude. Spheroidizing calculation can make the
mixed signal separated at the second order cumulants, and make the expression of
fourth-order cumulants simplified, thus spheroidizing calculation is necessary
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pre-processing steps of ICA. After orthogonal transformation of z(t) obtained from
spheroidizing calculation can be expressed as y¼ Uz. Due to the orthogonality of U,
then,

E yyT
� � ¼ E UZZTUT

� � ¼ UIUT ¼ I ð6:74Þ

y(t) is also orthogonal. U is the Givens rotation matrix. Through rotation search, the
extremum of kurtosis of y(t) can be found out.

6.3.4 Compression of SWD Data

Downhole seismic data receivers can obtain more accurate seismic data signals, but
due to the limitation of downhole space and limited data storage capacity, it is
necessary to compress SWD data. Sensors are installed downhole near the drill bit to
better record seismic signals. However, the transmission of downhole data is a
difficult problem at present, downhole storage is a practical solution. Although
storage technology has improved greatly with large storage capacity in small storage
particles, internal storage will be filled up in a few hours at high acquisition rate. It is
necessary to compress SWD data.

Giancarlo Bernasconi has proposed a lossy data compression algorithm based on
a new downhole data in the angular domain [27], which is suitable for downhole
implementation and can be successfully applied to online and offline solutions.
Numerical tests based on field data can achieve high compression ratio without
causing significant information loss. This results in a significant increase in
downhole time acquisition and real-time information transmitted by mud pulse
telemetry. Downhole instruments are usually equipped with magnetometers or radial
accelerometers to calculate the rotation speed (rad/s or r/min). A magnetometer
measures the projection of the earth’s magnetic field along two orthogonal radial
relative to the vertical borehole shaft.

mx tð Þ ¼ AxM cos ϕ tð Þ½ � ð6:75Þ
my tð Þ ¼ AyM sin ϕ tð Þ½ � ð6:76Þ

Where, mx(t) and my(t) are the recorded signals; Ax and Ay is the gain of the
sensor; M is the earth’s magnetic field, and the angle law can be expressed as
follows:

ϕ tð Þ ¼ tan �1 Axmy tð Þ
Aymx tð Þ
	 


ð6:77Þ

When the time sampling period is much higher than the bit rotation speed, the
one-dimensional expansion of rotation angle cannot be a problem. To separate
centrifugal acceleration from pure radial acceleration, radial accelerometers are
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usually installed in pairs along the vertical axis of the well and in opposite positions.
In this case, the rotation speed is calculated as follows:

Ω tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax1 tð Þ þ ax2 tð Þ½ �= 2rð Þ

p
ð6:78Þ

Where t is the distance between the accelerometer and the rotation axis, ax1(t) and
ax2(t)is the radial acceleration. Relative to the rotation axis, the positive sign is
located in the outward direction of the rotation velocity, and the angular position can
be obtained through simple integration.

ϕ tð Þ ¼
ðt
0
Ω τð Þdτ ð6:79Þ

Due to the interaction with rocks, the low torsional stiffness of the drill string and
the fluctuation of the motor speed, the bit speed is not constant: the conventional
sampling of signals in the time domain becomes irregular sampling in the angular
position domain.

The key of the compression algorithm is re-sampling the signal as a function in
the angular position domain. As expected, the new representation restores the
periodicity implicit in the signal and unrecognized in the time domain. Apparently,
the periodicity presents the frequency shifts. In the angular frequency domain,
energy is compressed, spectral peaks appear sharper than that in the time-frequency
domain: this means that the main events occur at the same angle position. In
addition, the information contained in the signal is also compressed. The compres-
sion process organizes the data in a matrix as a function of rotation angle. Each row
represents a complete bit rotation, and the column is a continuous circulation.

6.4 Noise Processing and Filtering

The cone bit can generate enough energy, so there are few researches on suppressing
the noise of drilling rig in the early times. However, for hard rock drilling, it is very
important to extract useful bit signals by overcoming the noise of drilling rig because
of the weak vibration energy of the diamond bit.

Influenced by the characteristics of drill string and acceleration sensor, the wave
propagated by drill string attenuated slightly with faster speed compared with that
propagated by earth. Therefore, the frequency spectrum of SWD signal monitored by
the sensor on the top of the drill pipe is different from that recorded by the geophone
on the ground. The drill string data record contains a wide band and multiple
frequency peak energy, which reflects the instrument characteristics of the frequency
response of seismic waves in different paths and the noise of the drill rig. Therefore,
in the process of data processing, we do not use it as a reference wavelet. The
frequency band is mainly concentrated from the 0 Hz to 200 Hz, while the spectrum
peaks from 30 Hz to 75 Hz.
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6.4.1 Classification of the Noise

1. Coherent noise

The actual bit vibration signal is very weak compared with the noise interference
signal, and it is superimposed with the noise interference information continuously.
For weak bit, vibration signals are required. The interference caused by various
human factors in the drilling process directly affects the direct waves and reflected
waves of the drill bit. The typical coherent noise wave field is mainly composed of
the following factors:

1. Low-speed waves (usually 200 to 600 m/s) are surface waves generated by
drilling vibration and human activities in the well area.

2. Direct wave and refracted wave generated on the drilling platform pass through
the topmost layer. In common-source gathers, the apparent velocity of these
waves is related to the surface velocity (usually between 2000 and 4500 m/s).

3. The drill string can radiate conical head-waves when the propagation velocity in
the surrounding strata is below the extensional velocity in the drill pipe (such as
4750 m/s).

4. In the process of drilling inclined wells, strong coherent noise will be generated
due to the increased contact between drill string and wellbore wall (see Figure 2).
This noise is not fixed throughout the drilling phase and is difficult to eliminate
during processing.

5. Other coherent noise components include the bottomhole assembly (BHA) and
drillstring multiples, which will affect the signal and noise.

2. Random noise

In addition to the coherent noises, there are several types of time random-noise:

1. Spatially organized noise filtered by array. Part of this noise, such as the noise of
cars and human activity, is not stationary.

2. Pure random noise, such as the noise generated by rain and wind. One way to
eliminate the noise is to bury the receiver, which can reduce random noise.

3. Random scattered noise in vertical and inclined directions of well .As mentioned
above, all noise has its own characteristics. According to these characteristics, we
can effectively eliminate noise components and extract bit signals from various
environmental noise fields.

6.4.2 The F-K Filter

The separation of direct and reflected waves from SWD records in the common
detection point domain can be carried out in the F-K domain. The direct and reflected
waves in the F-K domain are separated and do not overlap with less computation
time by using fast Fourier transform. The seismic signal is filtered by F-K filter, and
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the signal is removed from the remote source according to the difference frequency,
wave propagation direction or wave number characteristics of the seismic data.
According to the difference between the effective signal generated by the bit
excitation and the direction and speed of ground propagation, the F-K filter is used
to separate the seismic wave field and study the characteristics of the effective signal.
The F-K filter eliminates the influence of noise and provide high quality data or
subsequent seismic interference analysis.

If f(t, x) is the set of SWD records of common detection points, then its
2-dimensional Fourier transform is:

F bf , k� �
¼
ð1

�1

ð1
�1

f t, xð Þ exp 2πj ft þ kxð Þ½ �dtdx ð6:80Þ

According to the difference in the apparent velocity of the direct wave and the
reflected wave, a filterH( f, k) with a certain frequency-wave number characteristic is

designed to filter the above F bf , k� �
:

F f , kð Þ ¼ F bf , k� �
H f , kð Þ ð6:81Þ

Then perform two-dimensional Fourier transform:

F bt, x� � ¼ ð1
�1

ð1
�1

f t, kð Þ exp �2πj ft þ kxð Þ½ �dtdk ð6:82Þ

In other words, the SWD records of common detection points are obtained which
eliminate direct or reflected wave fields. The separation of direct and reflected waves
in the F-K domain requires the space sampling interval to be dense enough, and the
basic principle is the same as that of multi-channel velocity filter in the time-space
domain.

6.4.3 Karhunen-Loéve Transform

In the SWD process, KL transform [28] can be used to suppress the coherent noise.
The wave field separation in the receiver gathering domain and the Karhunen-Loéve
(KL) transform can be used to suppress rig noise and improve SNR of the bit signal.
Compared with traditional 2D filters (such as f-k filters), KL transform is a more
effective SWD processing method.

The wave field of the bit can be extracted by KL transform in the case of bit
movement. KL transform is closely related to singular value decomposition (SVD),
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which can decompose any complex data set into limited patterns. In seismic
processing, kl transform is usually used to suppress the coherent noise in windowed
data segment. The seismic signal distortion is small by using KL transform.

The multi-channel seismic data set can be represented as matrix D of m � n,
where each column represents the seismic trace. D can be expressed as,

D ¼
D11 D12 � � � D1n

⋮ ⋮ ⋮ ⋮
Dm1 Dm2 � � � Dmn

264
375 ð6:83Þ

There are different ways in derivation of KL transform. Using SVD, matrix D can
be decomposed into:

D ¼ U
X

VH ð6:84Þ

Where the superscript H is Hermitian transposition, and U is composed of left
singular vectorsu

!
i i ¼ 1, 2, � � �,mð Þ, m � n is a unit matrix. ∑ is a m � n diagonal

matrix whose diagonal elements are singular values in descending order
σ1 � σ2 � _cσnf g . V is a n � n unit matrix with columns of singular vectors
v
!
j j ¼ 1, 2, � � �, nð Þ. Any column vector di ¼ Dji

� �m
j¼1 can be approximately a linear

combination of the first r feature vector u:

bdi ¼Xr
k¼1

UkU
H
k

� �
di ð6:85Þ

Where UH
k is called the KL transform operator on the vector di, becausePm

k¼1UkUH
k ¼ I is the full rank unit matrix of the unit matrix U. Since r¼m, the

vector d is completely reconstructed. However, if only the first r<m singular vector is
used, then bdi is equal to the lower order approximation of di. KL transform of data
matrix D is expressed as:

Ψ ¼ UHD ð6:86Þ

Where, the primary data D ¼ UΨ, the optimal estimation of matrix D can be
obtained by maintaining the first r rows of the matrix Ψ, and bDr is the low-order
approximation of matrix D, which is expressed as follows:

bDr ¼ UΨr ð6:87Þ

In the case of dealing with contaminated coherent noise, take rig noise as an
example, the best estimation matrix D represents rig noise, as described in the
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following section. So we need to set the first r rows of the matrixΨ to zero. Then, the
coherent noise suppression data can be expressed as,

bDm�r ¼ UΨm�r ð6:88Þ

SVD can produce the same results. The row vector of Ψ is σHi i , then, the
low-order approximation method is used to reconstruct the data to get:

bDr ¼
Xr
i¼1

σiuiv
H
i ¼ Ur

X
r
VH
r ð6:89Þ

Similarly, bD can be reconstructed by using the remaining m-r feature vectors.
Then,

bDm�r ¼
Xm

i¼m�rþ1

σiuiv
H
i ¼ Um�rþ1

X
m�rþ1

VH
m�rþ1 ð6:90Þ

SVD provides an effective method for calculating KL transform. In the applica-
tion of suppressing the noise in the coherent drilling field, the first r singular vector is
used to reconstruct the matrix, which greatly reduces the dimension of data com-
pression, and the filtering is realized by ignoring the first singular vector or basing on
the first few singular vectors of eigenvalue spectrum.

6.4.4 Wellsite Noise Suppression

In the early phase of de-noising the ground geophone signals, the former AGIP
company in Italy believed that the noise source of the MWD earthquake was mainly
from the derrick vibration, and the convolution model of the ground array track is as
follows:

Gi ¼ NHi þ ALi ð6:91Þ

Where Gi represents the record received from the ground geophone in the channel
of i; N represents the derrick vibration noise; Hi represents the transmission function
of the above noise Hi from the noise source to the geophone in the channel of i. A
represents the bit signal; Li represents the transfer function from bit position to
channel i geophone.

The interference noise of seismic wave field is very complex, the wellsite noise
can be interfered by the derrick vibration and the strong noise such as the mud pump
and generator. Considering the interference of various noises, the pilot signal is
deconvolved first, and the linear constrained least square method is used to fit the
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wellsite noise, then eliminate it respectively. The convolution model of the modified
ground array track is as follows:

Gi ¼
Xn
i¼1

NlHli þ ALi ¼ Hi

Xn
i¼1

Nl þ ALi ¼ Hi bNi þ ALi ð6:92Þ

Nl represents the strong interference noise generated by the l interference source
near the well site (l¼1,��, 1, n, assume that there be a total of n strong interference
noise sources). As the noise source is relatively close to the gathering site, Hi is
approximately the same for all the above noises.

Then, we can place multiple strong interference noise monitoring geophones near
each interference source, set there are M geophones, then the average estimation of
l interference noises N1 (l¼1, ��, m) received by the channel i geophone in the above
formula can be obtained by the following formula:

bNi ¼ 1
M

XM
j¼1

Nije
jwtj ð6:93Þ

Where Nij represents the interference wave ( j ¼ 1, � � �,M ) generated by the l
interference source received by the j interference noise monitoring geophone; t1 is
the propagation time from the lth interference source to the jth monitoring geophone
mentioned above. The above formula is equivalent to multiple strong interference
monitoring geophone combinations, which is better than single geophone receiving.

Similarly, the unbiased estimation bHi of the transmission function Hi can be
obtained:

bHi ¼
E Gi � bNi

h i
E bNi

��� ���2	 
 ð6:94Þ

Therefore, the above method is applied to obtain the geophone recording track
after eliminating the above M strong interference noises:

bGi ¼ Gi � bNi bHi ¼ AbLi ð6:95Þ

6.5 Bit Signal Extraction

6.5.1 Cepstrum Analysis of Drill String Vibration

Cepstrum analysis [29] is a technology used in reverberation signal processing. The
outstanding advantage lies in that it is insensitive to the influence of signal trans-
mission path and detection point position, so it can find unique applications in
transmission path, system identification and machine fault identification.
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Bit random excitation source signals are susceptible to drill string and other
machine noise due to the wide frequency range and short duration. The propagation
of bit signal along the drill string is a typical convolution and reverberation problem.
Cepstrum technique can be used for the separation of bit signal. The cepstrum
analysis method is a nonlinear filtering technique, which uses window function to
filter in inverse time domain, and can eliminate structure reverberation, so as to
separate signal and extract source signal. Cepstrum filtering can be used to process
SWD reference signal, which can strengthen bit source signal.

An acceleration sensor is installed at the top of the drill string to record signals
from the drill bit. For the convenience of research, it is generally assumed that the
drill string system is a linear system. Due to the influence of drill string structure
reverberation and transmission path, the bit signal received at the top of the drill
string has been seriously interfered. In other words, the reference signal p(n)
recorded at the top of the drill string is the convolution of the signal b(n) sent by
the bit and the drill string transmission path and other factors h(n):

p nð Þ ¼ b nð Þ � h nð Þ ¼
Xn�1

k¼0

h n� kð Þb kð Þ ð6:96Þ

Thus, the cepstrum of the above equation can be obtained as:

bp qð Þ ¼ F�1 lnB fð Þ þ lnH fð Þ½ � ¼ bb qð Þ þ bh qð Þ ð6:97Þ

Where, B( f ) and H( f ) are the frequency spectrum of the bit signal and the drill
string transmission path, bp qð Þ, bb qð Þ and bh qð Þ are the complex cepstrums of signal
P(n), b(n) and h(n), and q is the inverse frequency. From Eq. (6.97), it can be seen
that cepstrum is the spectrum of spectrum, and the reference signal complex
cepstrum bp qð Þ is the sum of the signal complex cepstrum bb qð Þ sent by the drill bit
and the signal complex cepstrum bh qð Þ of the drill string transmission path.

In this way, the convolution signal in the time domain becomes the addition
signal in the cepstrum domain, and the linear filtering method can be used to realize
the separation of signal in the time domain and extraction of the periodic components
of the signal, and carry out reverberation demodulation.

The purpose of complex cepstrum analysis of the reference signal is to separate
the convolution signal. Generally, the nonlinear filtering method, also known as
cepstrum filtering analysis method, is used to process the complex cepstrum with a
non-negative smoothing window, so as to obtain the desired cepstrum component.
Select a "inverse filtering rectangular window" w(q) to pick out the required
cepstrum component, then

bb qð Þ � bp nð Þw qð Þ ð6:98Þ

In the formula, w(q) has the following form: W qð Þ ¼ 1, 0 	 q 	 q0
0, other

�

236 6 Data Processing and Mining in Seismic While Drilling



Where q0 is the cut-off point of the source and the transmission path in the self-
cepstrum domain, and the value depends on the specific situation. Different window
functions should be selected according to the data, such as Hamming window,
Gaussian window, etc. to filter and separate the complex cepstrum of the reference
signal. Under the Fourier transform, exponential operation, inverse Fourier trans-
form and other mathematical inverse transformation of the separated signal, the
separated signal is returned back to the time domain, so as to achieve the source
signal extraction.

6.5.2 Sparse Representation Theory (Recovery of Bit Source
Signal)

The traditional linear time-frequency representation usually refers to the use of
orthogonal basis or non-orthogonal basis of signal space to represent the signal.
Using the unique signal form (Fourier transform, Gabor change and wavelet trans-
form, etc.), with the help of a complete set of orthogonal basis, perform decompo-
sition, and the corresponding decomposition coefficient can be obtained, then
suppress the coefficient related to noise, finally the purpose of denoising through
inverse transformation can thus be achieved. If the specified signal form does not
exactly match the basis function, then the decomposition result is not necessarily a
sparse representation of the signal, then it is difficult to achieve effective signal-noise
separation.

The sparse representation theory is introduced into the processing of SWD
reference signals. Based on Hilbert transform, the instantaneous attributes of actual
SWD reference signal can be calculated. Using Morlet wavelet [30], build appro-
priate complete atom dictionary and perform sparse decomposition of the SWD
reference signal. The L1 norm spectral projected gradient algorithm is adopted to
realize basis pursuit de-noising, which can realize the sparse decomposition and
de-noising of the SWD reference signal, improve signal-to-noise ratio, and recovery
bit source signal. Morlet wavelet in time domain is expressed as:

m tð Þ ¼ e� t�uð Þ2f 2 ln 2=kð Þe 2πif t�uð Þþφ½ � ð6:99Þ

Where u is the time delay, f is the frequency, k is the scale, and φ is phase. In
Eq. (6.99), the phase difference between the real part and the imaginary part is 90
.
The form of Morlet wavelet is primarily determined by parameter pairs ( f, u, k, φ).
The information of instantaneous amplitude, instantaneous frequency and instanta-
neous phase can be calculated by Hilbert transformation.

The actual seismic signal f(t) can be expressed as the superposition of the linear
combination of N Morlet atoms in A and random noise, that is,
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f tð Þ ¼ Sþ Q ¼
XN�1

n¼0

anmn f n, un, kn,ϕn, tð Þ þ Q ð6:100Þ

Where S is the effective signal, Q is the noise, and mn is the decomposed Morlet
atom of S based on dictionary A; an is the decomposition coefficient of effective
signal in A.

6.5.3 Bit Signal Extraction Algorithm

The method of extracting weak bit signal is another form of filtering. On the basis of
the analysis of the original seismic field, the noise is preliminarily evaluated and the
Fourier transform is carried out on the original seismic field. The core of it is to
summarize the contribution of a large amount of data logG(ω) to eliminate the strong
coherent noise generated during deviation drilling and strengthen the bit signal.
Finally, inverse Fourier transform is performed to obtain time domain seismic data.

The time domain raw seismic traces recorded by the receiver on the surface can be
expressed as:

g tð Þ ¼ b tð Þ � hB tð Þ � hDS tð Þ � hR tð Þ � ho tð Þ þ n tð Þ ð6:101Þ

Where the symbol � represents convolution, b(t) represents bit signal, hB(t),
hDS(t), hR(t)and ho(t) respectively represent the wave response, drill string response,
drill rig response and other coherent noise source responses propagated from the drill
bit to the receiver in the formation. n(t) represents pure random noise. Through the
random noise attenuation technique, we can remove pure random noise, which can
be expressed in the frequency domain as follows:

G ωð Þ ¼ B ωð ÞHB ωð ÞHDS ωð ÞHR ωð ÞHO ωð Þ ð6:102Þ

Here, the low-cut filter can remove the low-speed surface waves caused by
drilling rig vibration and human activities. The direct and refracted waves generated
by the drill rig can be removed by applying Wiener filtering, radial predictive
filtering, wavelet transform and curvelet transform. In addition to the multiples,
some other coherent noise component can be eliminated at the same time. It is not
recommended to use de-noising techniques with aliasing effect (such as F-K filter-
ing) to attenuate these coherent noises. Because they can cause serious damage to the
required signal components and distort the signal. After eliminating the above noise,
the frequency response can be obtained:

G ωð Þ ¼ B ωð ÞHB ωð ÞHDS ωð Þ ð6:103Þ
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In fact, the drill string response HDS(ω) includes head wave response Hhw(ω),
strong coherent noise response Hsc(ω) (produced during the hole deviation),
response with BHA and drilling string multiples Hm(ω). Then (6.103) can be
expressed as,

G ωð Þ ¼ B ωð ÞHB ωð ÞHhv ωð ÞHsc ωð ÞHm ωð Þ ð6:104Þ

Therefore, there are still three types of interference waves in the seismic track in
frequency domain. The multichannel statistical deconvolution can be used to sup-
press BHA and drill string multiples. Next, we can eliminate the head wave in the
radial trace transform. However, it is difficult to eliminate the strong coherent noise
generated by deviated drilling in frequency domain. Then (6.104) becomes:

G ωð Þ ¼ B ωð ÞHB ωð ÞHsc ωð Þ ð6:105Þ

In order to eliminate the strong coherent noise, we adopt (6.105) complex natural
logarithm:

logG ωð Þ ¼ logB ωð Þ þ logHB ωð Þ þ logHsc ωð Þ ð6:106Þ

Clearly, strong coherent noise becomes the additive noise component in logG(ω).
Based on the characteristics of strong coherent noise in the logarithmic domain, the
new method can suppress the strong coherent noise generated during deviated
drilling and at the same time strengthen the bit signal by summing the contributions
of sufficient amounts of data logG(ω). The key is to obtain the sum of the amount of
data logG(ω). In general, the larger the amount of data, the more effectively the
strong coherent noise can be suppressed. So (6.106) can also be written as:

logG ωð Þ ¼ logB ωð Þ þ logHB ωð Þ ð6:107Þ

There is no corresponding term of noise in Eq. (6.107). In order to obtain the bit
signal in time domain, we first use the natural index of (6.107):

e logG ωð Þ ¼ e log B ωð ÞþHB ωð Þ½ � ð6:108Þ

Meanwhile, G(ω) ¼ B(ω)HB(ω), conventional processing techniques such as
adaptive prediction filtering are used to enhance bit signals in the frequency domain,
and then inverse Fourier transform was performed to obtain the time-domain char-
acteristics of bit signals.

g tð Þ ¼ b tð Þ � hB tð Þ ð6:109Þ

Eq. (6.109) represents a common-source gather of each depth point, which
contains the bit signals directly reached and reflected by the drill bit.
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6.6 SWD Application

SWD technology has various applications in the oil and gas industry [33–
35]. According to wave velocity and density, key basic parameters such as pore
pressure [31], rock strength [32] and crustal stress that affect the stability of wellbore
wall can be calculated directly or indirectly. With the appropriate velocity-pore
pressure conversion, the pore pressure before drilling can be predicted from the
seismic velocity. This requires high resolution of seismic velocity obtained. The
porosity accuracy obtained by inversion of shear wave velocity should be lower than
that of longitudinal wave. The analysis of logging data shows that the influence of
porosity and argillaceous content on the longitudinal wave velocity is much greater
than that of water saturation, and the longitudinal wave velocity can also be affected
by the volume modules, which is influenced by rock matrix and porous medium.
Therefore, for low porosity and low permeability rocks containing gas, the relation-
ship between longitudinal wave velocity and water saturation should be treated
differently with lithology.

6.6.1 Formation Velocity

The reflection coefficient and velocity of each layer are different due to the influence
of formation properties, both are discrete random sequences. Based on the assump-
tion that the direct wave of the SWD is vertically incident to the ground, the average
velocity of the drilled formation can be obtained by the time that the direct wave
propagates from the drill bit to the geophone and the depth of the drill bit, as shown
in the following equation:

vav nð Þ ¼
Pn
i¼1

hiPn
i¼1

vi

ð6:110Þ

Where vav(n) is the average velocity of the n layer, hi is the thickness of layer i.
vi is the layer velocity of layer i.

According to the obtained data of formation velocity sequence and the mathe-
matical model of formation velocity changing with depth, the formation velocity in
front of the drill bit can be deduced.

240 6 Data Processing and Mining in Seismic While Drilling



6.6.2 Wave Impedance

According to the SWD observation data convolution forward model, each upstream
wave after the SWD wave field separation can be regarded as the convolution of the
downstream wave and the formation reflection coefficient sequence below the depth
of the channel, as shown in the following equation:

Sf tð Þ� � ¼ k � Su tð Þf g ¼ k
X

r fð ÞSd t � fð Þ ¼
X

r fð Þ � k � Sd t � fð Þ
¼ r tð Þf g � Sz tð Þf g ð6:111Þ

Where {Sf(t)} is the reflected wave of SWD and {Sz(t)} is the direct wave
of SWD.

Seismic record is the convolution of seismic wavelet and formation reflection
coefficient, and the emission coefficient is determined by wave velocity and density.
There is also a correlation between speed and density. SWD data can be separated
into direct wave {Sz(t)} and reflected wave {Sf(t)}, and the convolution relation with
reflection coefficient sequence{f(t)} is formed:

Sf tð Þ ¼ Sz tð Þ � f tð Þ ð6:112Þ

Therefore, the wave impedance profile can be obtained by inverting the reflection
coefficient sequence with the least-square filter, so as to achieve the purpose of
formation prediction in front of the drill bit. In this method, direct wave is directly
used as auto-correlation function of deconvolution, and reflection coefficient
sequence can be obtained by filtering only once, which avoids the steps of obtaining
wavelet and inverse wavelet in traditional inversion, improves the inversion accu-
racy, and has the function of eliminating multiples interference and the advantage of
not being constrained by the minimum phase of wavelet.

6.6.3 Seismic Wave Inversion Pore Pressure

Based on the correct velocity model, the spatial resolution of seismic velocity field
can be improved by iteratively optimizing the model so as to obtain more reliable
pore pressure estimation before drilling.

Based on the assumption that the elastic wave velocity depends on the pore
pressure P and the total stress tensor Sij, then,

σij ¼ Sij � αpδij ð6:113Þ
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Where α is coefficient, δij ¼ 1 (if i 6¼ j), δij ¼ 0 (if i ¼ j). The parameter σij is
called the effective stress tensor. Assuming parameter α ¼ 1, σij is the effective
stress:

σij ¼ Sij � pδij ð6:114Þ

The combination of pore pressure P and total tensor Sij is called differential
sensor. For uniaxial compression, it is generally assumed that porosity and velocity
depend only on the vertical component of differential stress, which is defined as
follows:

σ ¼ S� p ð6:115Þ

Where σ is the vertical component of the differential stress tensor defined in the
Eq. (6.114). S is the vertical component of the total stress tensor Sij.

Assume that the vertical component of the total stress S at any point is given by
the total weight of the water column above the sea bed, the rock matrix, and the fluid
in the pore space. This can be calculated by the density integral as follows:

S ¼ g

ðz
0
ρ zð Þdz ð6:116Þ

Where ρ(z) is the density at depth z below the sea surface, and g is the acceler-
ation of gravity.

Given the relation between elastic wave velocity and vertical diffusion stress, the
vertical stress can be obtained by using (6.116), and the pore pressure can be
obtained by (6.115) formula. In the absence of density logging, the sediment density
can be estimated from the depth below the sea floor by using the empirical relation:

ρ hð Þ ¼ 16:3þ h=3125ð Þ0:6 ð6:117Þ

Here, ρ hð Þ is the mud weight equivalent of the average sediment density
(in pounds per gallon) between the sea floor and the depth h (feet) below the sea
floor. The empirical formula is ρ ¼ avb, and sediment density can be measured by
seismic velocity. a and b are coefficients related to formation properties. Eaton’s
method use seismic velocity v to estimate differential stress, and its relation is
expressed as follows:

σ ¼ σNormal v=vNormalð Þn ð6:118Þ

Where σNormal and vNormal are the vertical component and the seismic velocity of
differential stress respectively, and n is the quantity describing the sensitivity of
velocity to differential stress.

vNormal can be obtained by the following equation:
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log dtNormal ¼ a� bz ð6:119Þ

Where dtNormal ¼ 1/vNormal, the relation between the velocity and depth of the
simplest and earliest earthquake is linear, which can be expressed as:

v ¼ v0 þ kz ð6:120Þ

Where v0 is the velocity of seabed sediments, and k generally ranges between 0.6-1.
Some researchers believe that there is a quantitative relationship between longi-

tudinal wave velocity and pore pressure, as shown in the following equation:

vP ¼ C0 þ C1 σV � αpPð Þ þ C2 exp C3 σV � αpPð Þ½ � ð6:121Þ

Where vp is the velocity of longitudinal wave, km/s; σv is the overlying formation
pressure, MPa; α is the effective stress coefficient; pp is formation pore pressure,
MPa; C0, C1, C2 and C3 are empirical parameters of the model.

Based on various relations, the seismic record can be expressed as a nonlinear
function with pore pressure as the independent variable, i.e., S¼f(p), where
S represents the seismic record and f(•) represents the nonlinear function.

According to the nonlinear optimization principle, when the seismic information
is known, the least square method can be used to directly invert the pore pressure
according to this functional relation as follows:

PP,iþ1 ¼ PP,i � A PP,ið ÞTA PP,ið Þ� þ γ2i I
��1

A PP,ið ÞT S PP,ið Þ � S0½ � ð6:122Þ

Where Pp is the solution vector of pore pressure obtained by the tth iteration; t is
the number of iterative calculation and the damping factor calculated successively;
A is the partial derivative matrix of nonlinear function; I is the unit matrix; S0 is the
original post-stack seismic record vector; S is the composite seismic record vector
calculated based on the tth pressure iterative solution. The optimization process is
completed when the synthetic seismic records obtained by iteration reach the
specified accuracy. The inversion process of crustal stress and rock strength is
similar to the above pore pressure seismic inversion, so the wellbore stability can
be predicted by seismic inversion.

6.7 Looking Into the Future

Compared to conventional VSP, SWD has its own characteristics and unique
advantages in that it uses bit vibration in the process of drilling as the source for
seismic measurement, without interfering with the drilling or occupying drilling
time, and without any risk to the hole, especially the bit can be predicted in real-time
structure details of the formation in front of the bit through the field seismic imaging
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processing, with the main purpose of reducing drilling risks. The key of this
technology is how to collect and recover the weak bit reflection signal under strong
disturbance noise and make it the equivalent formation impulse response.

The SWD techniques are evolving at fast pace and the future seems quite bright
for SWD as several new MWD Technologies are emerging.

• Memory tools with rugged high precision clock (application to Drill Bit-SWD
and VSP-WD)

• High speed / high transmission rate wired drill string system, such as
IntellipipeTM applicable to all seismic applications. Including, Drill-Bit seismic,
VSP-WD and SONIC-WD.

• Through bit logging device.
• Downhole mechanical devices to enhance the drill-bit axial vibration or the near

bit pressure seismic noise, such as hammer drill and Hydropulse Drilling.

The downhole technology to be developed for drill-bit walkaway SWD can be
restrained to an electronic equipment in central position inside the drill collars, the
precision and drift constrains on the downhole clock do not need to be very high,
which lead to reasonable equipment cost. The preferable downhole technology to
develop for VSP-WD is with an electronic equipment built in the crown of a drill
collar, for all possible drill collar diameters, since the VSP-WD measurements are
needed continuously in the deep half of vertical, deviated and horizontal wells. It is
also expected that the real time availability of full-waveform data will increase the
possibility of accurate well placement relative to a drilling target.

SWD technology is one of the important means to predict pre-drilling formation
information, which can effectively guide drilling construction and reduce drilling
risks. However, it is also a recognized worldwide problem. How to form perfect field
acquisition method and corresponding data processing method is a long-term explo-
ration, practice and summary process. This technology has considerable advantages
over conventional VSP in terms of real-time prediction of formation structure details
in front of the bit, reduction of drilling risks, improvement of exploration efficiency
and reduction of exploration cost (especially for multi-azimuth, multi-arrangement
and 3D observation). Therefore, it has good prospect in promotion and application,
mainly including the following aspects:

a. Real-time determination of the position of the drill bit on the seismic profile.
b. Predict in advance the structural details of the formation around the wellbore and

in front of the bit.
c. Predict pore pressure in formation in front of the bit by precise velocity measure-

ment combined with LWD.
d. Provide comprehensive formation evaluation services and dynamic bottom-hole

assembly monitoring in combination with MWD in bit position.
e. Obtain a full set of zero-offset, non-zero-offset, multi-offset, multi-azimuth VSP

and three-dimensional VSP measurements.
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Chapter 7
Signal Processing in Logging While Drilling

Zizheng Wang

Abstract Logging while drilling (LWD) technology can be roughly divided into
three generations. Correlation with construction and formation evaluation; logging
while drilling ensures that the logging data required to determine capacity and
economy and reduce drilling risks can be collected. The target location is found in
conjunction with wellbore imaging, formation dip and density data. These advances
have led to high success rates for drilling of many types of wells, especially high-
angle, super-long and horizontal wells. So far, serialized and complete sets of
logging while drilling equipment have been developed, including electric logging
while drilling, sonic logging while drilling, nuclear logging while drilling, formation
pressure logging while drilling, NMR logging while drilling and seismic logging
while drilling, etc.

Keywords Logging while drilling (LWD) · Wellbore imaging · Electric logging ·
Sonic logging · Nuclear logging

7.1 Overview of Logging While Drilling

Simultaneous logging during the drilling process is referred to as logging while
drilling. The downhole instrumentation of the logging while drilling in the logging
while drilling system is basically the same as that of the conventional logging tool.
The difference is that each instrument unit is installed in the drill collar, and these
drill collars must be able to adapt to the normal mud circulation. First, we will
calibrate all kinds of logging while drilling tools on the ground, then dock them
together for overall inspection, then connect the logging while drilling tool to the
bottom of the drill pipe, and finally connect the bottom drilling tool assembly and the
drill bit [1].
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In the early 1930s, J. C. Karaher of Dallas Geophysical Company insulated the
drill bit from the drill string with a length of 4–5 ft of insulated wire, embedded an
insulating rod in each drill pipe, and passed a wire through the insulating rod.
Passing to the ground, transmitting downhole signals through this wire, in this
way, has obtained encouraging results, measuring a continuous resistivity curve.
In 1938, the first LWD resistivity curve was acquired, which is the first LWD curve
for transmitting data by electrical connection.

Logging while drilling technology can be roughly divided into three generations.
It was the first generation before the late 1980s and provides basic azimuth mea-
surements and formation evaluation measurements. It is used as “insurance” logging
data for horizontal and high-angle wells, but its main application is to perform
formation near the wellbore. Correlation with construction and formation evaluation;
logging while drilling ensures that the logging data required to determine capacity
and economy and reduce drilling risks can be collected. From the early 1990s to the
mid-1990s, it belonged to the second generation. Azimuth measurement, borehole
imaging, automatic steering motor and forward modeling software were succes-
sively launched to accurately determine the well trajectory through geosteering. The
driller can use real-time azimuth measurement. The target location is found in
conjunction with wellbore imaging, formation dip and density data. These advances
have led to high success rates for drilling of many types of wells, especially high-
angle, super-long and horizontal wells. From the mid-1990s to the present, the third
generation, called Logging for Drilling, provides the data required to define the
geological environment, the drilling process, and collect real-time information [2].

So far, serialized and complete sets of logging while drilling equipment have been
developed, including electric logging while drilling, sonic logging while drilling,
nuclear logging while drilling, formation pressure logging while drilling, NMR
logging while drilling and seismic logging while drilling, etc. Schlumberger,
Baker Hughes, Halliburton, Weatherford and other large oilfield technical service
companies have developed a complete set of logging while drilling equipment, the
degree of integration is further improved, both can provide neutron porosity, density,
resistivity of multiple depths of detection, gamma, and parameters such as drilling
orientation, well inclination and tool surface can basically meet the needs of forma-
tion evaluation, geosteering and drilling applications. According to the needs of
oilfield companies and formation evaluation. Choose a different combination of
instruments. The two most commonly used combinations are MWD + gamma +
resistivity and MWD + gamma + resistivity + density + neutrons. The first one can
provide geosteering services. The second one can provide geosteering and basic
formation evaluation services.

7.2 Data Transmission of Logging While Drilling

There are two kinds of data transmission methods for logging while drilling. One is
wired transmission mode, which realizes signal transmission through cable and
optical fiber. The other is wireless transmission mode, which transmits signals
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through mud, electromagnetic and acoustic waves. The components of the tool
include: (1) the power source of the operating system; (2) the sensor that measures
the required information; (3) the transmitter that transmits the data to the ground in
the form of code; and (4) the micro-functions of the coordination tool. Processor or
control system.

7.2.1 Wired Transmission Mode

Wired transmission methods include cable transmission, special drill pipe transmis-
sion and fiber transmission [3].

7.2.1.1 Cable Transmission Method

The cable transmission method is to pass the electric wire inside the drill pipe. The
type of the wire is similar to the cable in the electric test, and is an armored cable. As
the well is deepened, cables and instruments must be placed when adding a single
root, or the cable should be pre-fitted into the bore of the drill pipe [4].

In addition, there is a coaxial conductor system that can be used for signal
transmission. It uses a coaxial wiring method with a copper tube center conductor
with an insulating layer. The conductor is inserted into a conventional drill pipe, and
the liquid pressure expands to seal against the inner wall of the drill pipe. When the
drill string is connected, signals can be transmitted between the drill rods to form a
high-speed two-way information network. The advantage of cable transmission is
that the transmission rate is high, the information can be transmitted in both
directions, and the power can be directly supplied from the ground to the downhole
sensor. The bottom of the well does not need an additional power source; the
disadvantage is that the manufacturing process is relatively complicated and often
affects the normal drilling process.

7.2.1.2 Special Drill Pipe Transmission Method

This method attaches a continuous conductor to the drill pipe to make it part of the
drill pipe. A special attachment device mounted in the joint allows the drill string to
conduct electricity over the entire length. The sensor is housed in a special drill
collar. An armored cable connects the drill collar to the lower end of the drill pipe.
An insulating ring is attached to the top of the kelly, which is connected to the
ground equipment.

The key to this transmission method is the drill pipe joint design. Drill pipe joint
design methods mainly include induction method, wet joint method, Hall effect
sensor method and wire docking method. The advantages of special drill pipe
transmission mode are fast data transmission and simple two-way communication;
the disadvantage is that special drill pipe is required, the cost is high, it is difficult to
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obtain continuous circuit at the joint, the reliability is poor, and it is difficult to
realize the power transmission [5, 6].

7.2.1.3 Optical Fiber Transmission Method

A cheap fiber with a simple protective layer is run into the wellbore. The length of
the fiber is the length of the entire drill string. The fiber can both circulate downhole
from the ground in the axial direction and back from the bottom hole assembly to the
ground [7]. The fiber optic cable used is very small, low cost, can be used for a short
time, and finally wears away in the drilling mud and is washed away. Fiber optic
telemetry technology can transmit data at approximately 1 Mbit/s, five orders of
magnitude faster than other commercially available wireless LWD telemetry.

7.2.2 Wireless Transmission Mode

The wireless transmission mode is divided into three types: mud pulse, electromag-
netic wave and sound wave according to the transmission channel.

7.2.2.1 Mud Pulse Transmission Method

The mud pulse method mainly uses a rotary valve to generate pressure waves in the
drilling fluid column under the well. This rotary valve is called a decomposer. By
changing the phase of the wave downhole and detecting these phase changes on the
ground, the signal can be continuously transmitted to the ground.

In the mud pulse system, due to the limitations of pulse diffusion, speed regula-
tion and other characteristics of the mud system, the data transmission speed is
relatively slow, the propagation speed of the pressure wave in the mud is about
1200 m/s, and the data transmission rate is not high. The transmission signal is
susceptible to noise. The advantage is that it does not require insulated cables and
special drill pipes, but uses mud flow as a power source, reducing development
costs.

7.2.2.2 Electromagnetic Transmission Method

Electromagnetic Measurement While Drilling is a new technology that entered
industrial application in the 1980s. There are two methods of transmitting signals.
One uses the formation as the transmission medium and the other uses the drill string
as the transmission medium. The downhole instrument loads the measured data onto
the carrier signal, which is transmitted from the electromagnetic wave transmitter to
the surrounding with the carrier signal. The ground detector unloads, decodes, and
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calculates the measurement signal in the detected electromagnetic wave on the
ground to obtain actual measurement data. This method is bidirectional transmission
and can be transmitted up and down in the well without mud circulation. The
advantage of EM transmission is that no mechanical receiving device is needed
and the data transmission speed is faster. It is suitable for transmission orientation
and geological data parameters in drilling construction such as ordinary mud, foam
mud, air drilling and laser drilling. The disadvantage is that the EM measurement
method is only suitable for use in shallow wells due to the rapid attenuation of the
transmission signal, and the low electromagnetic wave frequency is close to the earth
frequency, which is easily affected by the well field electrical equipment and the
formation resistivity, so that the signal detection and reception become more
difficult.

7.2.2.3 Acoustic Transmission Method

This transmission method uses sound waves or seismic waves to transmit signals
through a drill pipe or a formation. The downhole data testing process is to test the
instrument and the acoustic wireless transmission transmission system with the drill
pipe or the oil pump. The test instrument converts various downhole parameters into
digital information, and then encodes and temporarily stores the binary code pulse
representing the downhole parameters. It is sent to the control circuit to transmit the
acoustic vibration signal, which is transmitted to the ground along the drill string or
oil pipe. It is received by the acoustic wave receiving probe installed at the wellhead,
amplified and sent to the storage medium for recording, data processing and inter-
pretation, and the current well is obtained. Formation evaluation or production
dynamic data. Acoustic telemetry and electromagnetic wave telemetry do not require
mud circulation, and the implementation method is simple and the investment is
small. The disadvantage is that the attenuation is very fast, and the environmental
interference is large. The low intensity signal generated by the wellbore and the
acoustic noise generated by the drilling equipment make the detection signal very
difficult.

7.3 Resistivity Logging While Drilling

Like wireline logging technology, electromagnetic wave resistivity logging while
drilling technology is also divided into lateral and induction classes. Lateral types are
suitable for use in conductive mud, high resistivity formations, and high resistivity
intrusion environments. Inductive measure well in conductive formations and are
suitable for conductive or non-conductive muds.

An electromagnetic wave resistivity logging instrument, using multiple trans-
mitters and multiple receivers. The current in the transmitting antenna is the “wave
source” of the measuring system. The electromagnetic wave emitted by it is
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propagating in all directions in the ground. The attenuation rate and phase shift of the
wave are closely related to the conductivity of the formation, and the influence of the
fluid in the well is relatively small. The formation conductivity can be calculated by
receiving the antenna attenuation rate and phase difference. Different electromag-
netic resistivity logging instruments have similar operating frequencies. Only a
limited number of frequencies can be used to eliminate background effects such as
drill collars, such as 20 kHz, 250 kHz, 400 kHz, 500 kHz, 2 MHz [8].

The electromagnetic wave resistivity logging while drilling tool has the following
features:

a. Reduces the impact of the caliper.
b. Reduces the effects of fluids in the well and its intrusion.
c. Drilling fluid intrusion is small.
d. The impact of drilling fluid intrusion is small, and the measured value of

resistivity is equivalent to the measured value of deep induction.
e. Has a good (higher) vertical (longitudinal) resolution, which is very beneficial for

the thinning and interlayer subdivision

1. EWR While Drilling Resistivity Logging Tool

The EWR instrument consists of a transmitting coil and two receiving coils. As
shown in Fig. 7.1, the operating frequency is 2 MHz, the receiving coil spacing is
6 inches, and the source spacing is 27 inches. A phase difference can be measured.
Electromagnetic waves are emitted by the transmitting antenna through the wellbore
and the surrounding formation, and are received by two receiving antennas located at
different distances from the transmitting source. The difference in propagation time
between the two receiving points can be measured. Since it is a fixed frequency
transmission, this time difference can be expressed as a phase difference. This phase
difference is a function of the conductivity of the formation [9].

2. DPR Logging Tool

Compared with EWR, DPR has different receiving coil pitch and source distance
and performs amplitude ratio measurement. The operating frequency is 2 MHz, the
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Fig. 7.1 Schematic
diagram of the EWR
instrument
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spacing is 7 inches, and the source distance is 31 inches. The layering ability of
phase difference is worse than the layering ability of amplitude ratio, but the
detection depth is not as large as the amplitude ratio. The combination of the two
can be used to judge the formation intrusion. Therefore, the increase of DPR can
obtain the formation information more accurately than the measurement. The depth
of detection of the instrument is still defined by the geometric factor theory. For
typical formations during drilling, the depth of detection is 29.2–63.5 cm, and the
depth of detection is 49.5–76 cm [10].

3. CDR Compensation Double Resistivity Logging Tool

It adopts double-shot and double-receiver measurement mode. As shown in
Fig. 7.2, the upper and lower transmitters work alternately. The operating frequency
is 2 MHz, the spacing is 6 inches, the source distance is 28 inches, and the
measurement results are averaged to obtain the amplitude ratio resistivity and
phase resistivity. The wellbore is compensated to eliminate the thin layer response
due to collapse of the wellbore while obtaining a vertical symmetrical response curve
to the formation. In general, the detection depth of the amplitude specific resistivity
is 25 cm larger than the depth of the phase difference. Since the sensitivity of the
amplitude specific resistivity and the phase difference resistivity to the change of the
formation resistivity is different, when the intrusion is not large, the two intersect at
the boundary of the formation, thereby providing a simple method for determining
the thickness of the formation [11].

4. EWR-S Multi-detection Depth Logging Tool

The instrument consists of three transmitting coils and four receiving coils with a
pitch of 6 inches and a source distance of 15, 27, 39 inches. There are two operating
frequencies of 1 MHZ and 2 MHZ, which can obtain six kinds of measurement
parameters with deep, medium and shallow depth of detection. (three phase differ-
ences and three amplitude ratios). The 1 MHz frequency is used for deep depth
measurement and 2 MHz for medium and shallow depth measurements.

Receiver

Receiver

Transmitter

Transmitter
Fig. 7.2 Schematic
diagram of the CDR
instrument
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5. EWR-PHase4 Multi-detection Depth Logging Tool

The EWR-PHase4 logging tool consists of four transmitting coils and two
receiving coils, as shown in Fig. 7.3. The spacing is 6 inches, the source distance
is 9, 15, 27, 39 inches, and there are two operating frequencies of 1 MHz and 2 MHz,
The phase difference and amplitude ratio between each set of emitter and receiver are
measured in total for eight measurement parameters (four phase differences and four
amplitude ratios). The difference between this instrument and the conventional EWR
is that it can measure two deep curves and one deeper curve. The formation
conductivity is calculated as a function of the phase difference and amplitude ratio
of the transmitted signal. The calculation method was based on the test in a test
chamber made with different concentrations of brine and finite element
simulation [12].

The phase difference combination curve is superior to the simple amplitude ratio
curve. According to the solution of the single-phase difference or the amplitude ratio
resistivity curve, the real resistivity and the intrusion band measurement are often
misunderstood. After comparing all the measured data, the phase difference combi-
nation curve provides better real resistivity values and more information about
formation intrusion zones.

6. MPR Small Borehole While Drilling Logging Tool

MPR technology is developed based on CDR technology. MPR belongs to the
compensation electromagnetic wave propagation resistivity instrument. As shown in
Fig. 7.4, it has two sets of compensation transmitting antennas. The receiver adopts
the method of receiving the signals of the upper and lower symmetrical transmitters
for compensation measurement. The spacing is 6 inches and the source distance is
23, 25 inches. The resistivity measurement is performed by the phase difference and
the amplitude ratio of the long and short source distances. The operating frequencies
are 400 kHz and 2 MHz. In order to improve the measurement accuracy of the coil
symmetry setting, the 400 kHz operating frequency is selected to increase the
detection depth and eliminate the influence of the dielectric constant under high
water saturation conditions. A pair of receiving coils is added to increase the number
of detection depths. The instrument provides eight different depths of
measurement [13].
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Fig. 7.3 Schematic
diagram of the
EWR-PHase4 instrument
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Advanced electronic technology and a complete antenna combination make up
for many of the shortcomings of mechanical antennas. This method has many
advantages over the method of collecting data by asymmetric transmission and
then processing it by software technology. It uses array antennas to transmit elec-
tromagnetic waves of different frequencies to the ground. The frequencies are
different and the depth of detection is different. Such instruments have a wide
dynamic range from shallow to deep, and the deepest detection range far exceeds
the depth reached by the mud filtrate.

The main features of MPR technology are: high precision, large detection range;
multi-parameter measurement of intrusion profile; low borehole impact; reduced
sensitivity to adverse effects of oil-based mud; improved longitudinal resolution;
improved thin layer resistivity response; The combination of 2 MHz and 400 kHz
signals improves the ability to divide the boundary of horizontal wells. The system
can identify and correct environmental impacts and can perform dielectric parameter
calculations. For high-angle wells, the system also could calculate horizontal resis-
tivity and vertical resistivity values that represent anisotropy, with high-precision
model support and strict quality control. The introduction of MPR technology has
improved the accuracy of resistivity measurement, enhanced the ability of thin layer
and its fluid interface division, and improved and comprehensive reservoir interpre-
tation and detailed oil and gas analysis techniques.

7. RAB Drill Bit Resistivity Tool

RAB belongs to the lateral type of measurement while drilling resistivity instru-
ment. The circular transmitting coil is only 1~2 inches away from the bottom of the
instrument. The current flows through the drill bit into the formation (the drill bit
serves as the power supply electrode) and returns to the hoop away from the drill bit.
And establish a constant electric field near the drill bit, as shown in Fig. 7.5.
Knowing the voltage, measuring the axial current flowing through the drill bit, the
formation resistivity at the drill bit can be calculated using Ohm’s law. This
measurement is used to accurately indicate the location of the formation through
which the drill bit passes, with a resolution of 2–6 inches [11].

Transmitter Transmitter DrillRing 
Electrode

Azimuth 
Electrode

Fig. 7.5 Schematic
diagram of the RAB
instrument
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8. ARC5 Compensation Type While Drilling Resistivity Logging Tool

Using two frequencies of 2 MHz and 400 kHz, the wellbore compensation
removes the effects of pressure, temperature and vibration for high-resistivity for-
mations. The most ideal frequency with high sensitivity is 2 MHz; the frequency of
400 kHz provides a deeper detection for the conductive formation depth and a
smaller noise signal. The ARC5 instrument uses 5 transmitters to transmit 2 MHz
of electromagnetic waves to the ground plane, as shown in Fig. 7.6, providing five
raw phase difference measurements and five amplitude ratio measurements.

The ARC5 uses a unique borehole compensation technology. The standard
wellbore compensation method combines the signals of two transmitters placed
symmetrically around the receiver to obtain a compensated measurement. ARC5
relies on a linear combination of three sequentially arranged emitters for borehole
compensation, a method known as hybrid wellbore compensation. The five phase
shifts and attenuations after wellbore compensation can be converted into five scaled
phase shift resistivity and five scaled amplitude specific resistivity. Since the depth
of detection increases with the increase of the transmitter spacing, the five-phase
shift resistivity represent the formation resistivity values of five different depths of
detection with almost the same axial resolution. Similarly, the five-attenuation
resistivity reflect five different depths of detection measurements.

9. GVR Drill Bit Resistivity Logging Tool

GVR belongs to the lateral type while drilling resistivity logging tool, as shown in
Fig. 7.7. For conductive drilling mud, it provides 5 kinds of spacing lateral resistivity
and 3 depths of borehole resistivity imaging data. The drill bit is used as a measuring
electrode to truly measure near the bit. The measurement results directly reflect the
formation information at the drill bit and are used to select the casing and scoring
position in real time. The integrated columnar electrode provides a high-resolution
lateral resistivity, called the ring resistivity, which has a small impact on the
surrounding rock. The electric buckle has three azimuth focusing electrodes that
provide detailed azimuth measurements. The three electric buckles are arranged
longitudinally along the instrument axis, spaced 1 inch apart, thus providing mea-
surements of three depths of detection, determining the layer boundary direction and
quantizing the intrusion profile. The measurement results show a full borehole
resistivity image of 3 depths of detection for thin layers, structural dip and crack
analysis, and enhanced the accuracy of geosteering [14].
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Fig. 7.6 Schematic diagram of the ARC5 instrument
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7.4 Acoustic Logging While Drilling

When sound waves pass through the medium in the wellbore, they propagate in
different ways, such as longitudinal waves, transverse waves, Rayleigh waves, mud
waves, and Stoneley waves, and the corresponding propagation speeds are also
different, which can be identified from the acoustic signals. Longitudinal waves
travel longer through formation rocks containing water, oil, and gas than through
non-porous rocks. The change in propagation time is related to the volume of fluid in
the pore space of the rock, which is a function of porosity. Therefore, by analyzing
the logging acoustic wave information, the formation information can be obtained.

The information of acoustic logging while drilling is mainly used for: calculation
of formation porosity, seismic data time-depth conversion and synthetic seismic
record, rock mechanical characteristics analysis and wellbore stability prediction,
lithology identification, gas layer identification, and conventional logging data
correlation analysis and so on.

1. ISONIC Acoustic Logging Tool

The principle of ISONIC is very similar to that of acoustic logging in cable
logging. A sonic generator and array receiver are mounted in the drill collar 12 m
above the drill bit, as shown in Fig. 7.8. During drilling, the transmitter produces
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sonic pulses that travel through the mud and formation to the four receivers. The
longitudinal wave time difference of the formation is extracted from the wave train
recorded by the electronic collection part of the downhole instrument and can be sent
to the ground in real time, and the waveform is recorded in the downhole memory.

2. CLSS Acoustic Logging Tool

The CLSS while drilling sonic logging tool is also called a compensating sonic
logging tool, and its structure is shown in Fig. 7.9. Its working principle is basically
similar to that of single-shot and dual-receiver instruments. The working frequency
range of transmitter and receiver is 10~20,000 Hz. Since the transmitter and receiver
are non-omnidirectional, they are mounted on one side of the barrel. This structure
can eliminate the adverse effects on sound wave measurements such as caliper, rock
thickness, and cycle jump. The CLSS records the average of the acoustic time
difference and compensates for the effects of the wellbore factors. With high
acoustic insulation, its unique isolator and high efficiency emitter and receiver
ensure high signal-to-noise ratio and high anti-interference performance, as well as
improved logging capability in soft formations [15].

3. BAT Dipole Acoustic Logging Tool

The BAT dipole acoustic logging tool has two opposing emitters and two sets of
receivers consisting of seven receivers, as shown in Fig. 7.10, each receiver
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Fig. 7.8 Schematic
diagram of ISONIC
instrument structure
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combination corresponding to a transmitter. It uses a variety of mechanical design
methods to minimize the impact of drilling noise and reduce the direct coupling of
acoustic signals. The transmitter excites the longitudinal and refracting transverse
modes at a high frequency of 12–15 kHz, and then excites to the interface of the
wellbore in a pseudo dipole mode of 6–8 kHz.

4. APX Acoustic Characteristic Parameter Detector

The APX instrument has a wide-band sound source and 24 receivers (6 groups of
4 receivers per group), as shown in Fig. 7.11. The sound source emits an acoustic
energy pulse to the formation surrounding the wellbore at an optimal frequency.
When the acoustic energy propagates along the wellbore, the receiver measures the
wavefront. The velocity of the wavefront is directly affected by the environmental
characteristics of the formation near the wellbore. The system uses advanced
embedding technology to convert the received acoustic analog signal into a digital
signal to obtain the formation acoustic time difference. Raw and preprocessed sonic
waveform data is stored in high speed memory. APX uses a set of cylindrical
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piezoelectric crystal omnidirectional emitters to provide 360� coverage of the
wellbore and surrounding formation. The sound source can be transmitted with
monopoles and dipoles and frequency modulated in the frequency range of
10–18 kHz. The APX uses a 6 � 4 omnidirectional receiver array to align the
receiver array with the sound source to achieve radial multipole source excitation.
From the aspect of frequency, signal amplitude and phase matching, the response of
the matched receiver is very important for high-quality acoustic time difference
measurement in the drilling noise environment [15].

Multiple receiver combinations and long and short source distance combinations
provide high quality formation signals. Proper filtering techniques can reduce the
effects of rig noise, bit runout and mud flow. Advanced sound insulation technology
eliminates the interference of the body wave of the instrument. The acoustic velocity
is directly affected by the formation near the wellbore, so this technique can be used
to obtain accurate formation acoustic time differences. The measured information is
stored in the downhole high-speed memory in addition to being transmitted to the
ground in real time.

5. SonicVISION Acoustic Logging Tool

The signal transmitter array of the SonicVISION acoustic logging tool consists of
an omnidirectional unipolar transmitter and two dipole transmitters. The unipolar
signal transmitter has a frequency range of l~12,000 Hz and a main frequency of
5~6000 Hz. This main frequency is 1/2 or l/3 of the main frequency of the signal
transmitted by other types of unipolar full-wave acoustic instruments, which can
increase the detection range of shear wave and longitudinal wave. The instrument
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can transmit and receive wide-band acoustic signals in the frequency range of
3–19 kHz, and it is more likely to receive feedback information from most forma-
tions in this frequency range. The shear wave has a lower frequency than the
longitudinal wave, which is difficult to obtain with a narrow-band instrument,
while the frequency-optimized SonicVISION instrument uses a much wider fre-
quency band than the previous test instrument to excite the formation, so when
drilling in a formation with fast acoustic wave propagation speed Both shear and
longitudinal wave measurements can be made. To more effectively and the forma-
tion width of a coupling acoustic energy, the power output is increased by 10 times
the original [15].

It collects acoustic wave longitudinal and shear wave time difference data in real
time. The full-wave waveform data stored in the downhole memory is played back
for post processing. These data can be used for pore pressure prediction, gas
reservoir detection, movable liquid estimation, and the like. The instrument uses
automatic static measurements for quality control during drill pipe connection. In
this short, noise-free environment, the instrument’s static measurements are trans-
mitted to the ground. These data can be used to predict pore pressure, detect gas
layers, and estimate unbound liquids.

6. SonicScanner Acoustic Logging Tool

The SonicScanner instrument combines the long source distance method with the
wellbore compensation TR short source distance method and also adds a
circumferentially distributed receiver, as shown in Fig. 7.12. There are a total of
104 receivers with 13 axial receiving points on the receiver array and 8 receivers per
receiving point. There are 5 emitters, one unipolar emitter at each end of the receiver
array, and the other unipolar emitter and two orthogonal directional dipole emitters
located further away from the lower part of the instrument. The SonicScanner’s three
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unipolar emitters produce a stronger pressure pulse than previous sonic instruments.
These emitters produce clear longitudinal and shear waves, low-frequency Stoneley
waves, and the high-frequency energy required for cementing evaluation. Both
dipole emitters are a vibrating device consisting of an electromagnetic motor
mounted on a cylinder suspended from the instrument. This mechanism produces
a high voltage dipole signal that does not cause chattering of the instrument housing.
The source can be driven in two modes: a pulse signal generated by a conventional
dipole source, and a chirp signal generated by a frequency sweep. The two dipole
sources are orthogonally oriented, one vibrating along the instrument reference axis
and the other at 90� to the reference axis, producing a bending wave. The bending
wave propagates up and down along the wellbore and passes to different depths of
the formation depending on the frequency. Under all wellbore and formation
conditions, the frequency components of the new chirped pulse dipole source
(300Hz to 8 kHz) can produce curved waveforms, ensuring maximum signal to
noise ratio.

7. SonicScope Acoustic Logging Tool

SonicScope is a quadrupole LWD tool with a wide range of applications for
collecting downhole data in different modes. Acoustic waves are excited in the
wellbore in both monopole and quadrupole modes using a powerful broadband
transmitter, with frequencies ranging from 1 kHz to 20 kHz. There are 48 receivers
in the protection groove on the outside of the instrument, 10 cm (4 inches) apart from
each other, and the protection grooves are separated by a 90� angle. The receivers are
arranged in four arrays providing 12 axial and 4 azimuth measurements. Each row of
arrays contains 12 digitizers, one for each sensor. The signal to noise ratio is
maximized by optimizing the distance from the transmitter to the receiver. The 1G
memory is configured in the logging tool to store data recorded in all modes even
when the recording speed is once per second. Typically, the SonicScope tool is
programmed in the field to record high frequency monopole data, obtain longitudinal
and shear wave slowness in the fast formation, record low frequency monopole data
and quadrupole data, respectively for the slow formation stoneley wave and shear
wave. Through sonic dispersion analysis (using the inversion algorithm to best
match the recorded results to the simulated response), engineers can extract shear
wave slowness values below 2000 microseconds/meter. The SonicScope tool is fully
compatible with other MWD and LWD tools. Combined with other records such as
density data, sonic logging data can be used for a variety of applications, including
seismic correlation analysis, pore pressure determination, complex lithologic log
interpretation, and analysis of rock mechanics.

7.5 Nuclear Logging While Drilling

Nuclear logging while drilling includes: natural gamma logging while drilling,
density while drilling – neutron logging, and nuclear magnetic resonance logging
while drilling.
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7.5.1 Natural Gamma While Drilling Logging

Natural rocks contain natural radioactive elements, including potassium (40 K),
strontium (232Th) and uranium (238 U) elements, which produce gamma rays of
different energies when the radioactive elements naturally decay. The content of
radioactive elements in different lithologies is different and the types are also
different. The principle of natural gamma logging is to measure the total natural
gamma ray intensity in the formation using a gamma ray detector to divide the
formation lithology and permeable layer, determine the mudstone content, and
provide an accurate indication of shale.

The natural gamma-while-drilling logging tool uses two sets of Geiger-Miller
tube (GM tube) gas detectors for the detection of gamma rays. Each group of 8 and
two sets of detectors are circumferentially distributed, as shown in Fig. 7.13. Show.
The gamma ray detection method uses the incident gamma photon to interact with
the target atoms in the detector, and the secondary electrons are generated by the
three effects of photoelectric, Compton scattering and electrons, thereby inducing
gas ionization or crystal excitation to detect.

The measurement error of natural gamma measurement is related to instrument
design, ROP and sampling rate. The estimation formula can be as follows:

δGR
ffiffiffiffi

N
p

GR N
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k � ROP
GR� d

r

ð7:1Þ

Where N: gamma count value, 1/s; k: scale factor, gAPS/cps; d: longitudinal
sampling interval, m; ROP: mechanical drilling rate, m/s; GR: gamma
measurement, gAPI.

For the natural gamma logging tool while drilling, according to the instrument
scale coefficient k ¼ 2gAPI/cps; and assume: ROP ¼ 50 m/h, d ¼ 0.1 m,
GR ¼ 50gAPI, calculate the measurement error of the instrument, and get:

Fig. 7.13 Schematic
diagram of the detector
structure
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which is: GR ¼ 50 � 3.7gAPI。
It can be concluded that in the instrument design from the above analysis, the

k value is reduced as much as possible, that is, the detection efficiency of the gamma
ray is improved, which is the main means to improve the measurement accuracy. In
addition, proper reduction of ROP and sampling rate is also conducive to improve
measurement accuracy, but it will directly limit the efficiency of drilling engineering
operations for logging while drilling tools [16].

There are many factors affecting the error of natural gamma logging while
drilling, including: formation thickness, environment in the wellbore, radioactive
fluctuation error and vibration, etc. [17]

7.5.2 Neutron-Density Logging While Drilling

The high-energy fast neutron generated by the neutron source enters the formation
and inelastically scatters with the nucleus of the formation element and releases the
corresponding characteristic gamma ray; as the neutron energy decreases, the neu-
tron and the nucleus elastically scatter; When further reduced to become a thermal
neutron, a radiation capture reaction with the nucleus will occur, releasing the
captured gamma ray. Using inelastic scattering gamma rays generated by neutrons
and formations as gamma sources, density logging can be achieved by detecting
secondary gamma rays. Instrument introduction: including compensated neutron
density (CDN), azimuth neutron density (AND), azimuth density while drilling –

middle word logging tool (AND) and density – neutron gap caliper.

1. Compensated neutron density (CDN):

It consists of 2 neutron sources, 1 neutron detector, 1 density detector, 1 central-
izer and electronic circuit.

The tool has the following characteristics: (1) Anadrill special emphasis on tool
safety, radioactive source placement In the drill collar, while other companies are
placed sideways, sealed by screws, and easily fall into the well, Anadrill puts the
source in the middle of the drill collar and has a unique installation method. There is
a dedicated source installation platform that does not harm the surrounding people. If
the drill collar is stuck, it is easy to salvage the source; (2) the purpose of using two
detectors is to compensate for the impact of the wellbore; (3) compensating for the
thermal neutron density; (4) compensating for the density of the rock; (5) A full-size
or under-sized centralizer; (6) can store measurement data downhole; (7) can trans-
mit data in real time with MWD tools; (8) can be used in φ165.1 mm and φ203.2 mm
drill collars. The schematic of the instrument is shown in the Fig. 7.14.

264 7 Signal Processing in Logging While Drilling



2. Azimuthal Density-Neutron Tool (AND):

Schlumberger’s AND (Azimuthal Density-Neutron Tool) is a new generation of
wellbore compensation formation density-neutron drilling technology based on
CDN (Compensated Density-Neutron Tool) technology. In order to improve the
measurement accuracy, the instrument uses the wellbore compensation and gap
correction technology to measure the photoelectric absorption index. Compared
with CDN, AND technology is characterized by multi-directional real-time neutron
porosity, formation volume density and photoelectric absorption index measurement
during drilling, describing formation lithology and porosity characteristics. 360�

imaging of the density and porosity results measured by the instrument’s rotating
probe in four quadrants. In addition to the orientation parameters, the average of each
parameter is also recorded. In order to avoid affecting the measurement of the
direction and inclination of the drilling, the upper part of the instrument is neutron
measurement and the lower part is the density measurement part. The ultrasonic
transducer is located below the density measurement section (Fig. 7.15).

The density, neutron porosity detector and ultrasonic transducer are located on
one side of the drill and are in one. The improvement of the instrument is that the
instrument collects the quadrant measurements around the wellbore according to the
azimuth distribution as the instrument rotates. Ultrasonic detectors are used to
provide gap measurements for each quadrant instrument to ensure density and
neutron data quality, indicating wellbore size and shape. Improved understanding
of geological heterogeneity and stratigraphic boundaries has been improved. Azi-
muth measurements provide a means to quantitatively evaluate formation porosity
and lithology heterogeneity. The ADN instrument uses different sizes of stabilizers
for logging, or in flexible mode, without stabilizers. The new instrument series is a
video density neutron meter (VDN) with a density data of 16 points per well, which
improves the azimuth resolution.

Fig. 7.14 Compensated neutron density logging tool
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3. Density-Neutron Gap Caliper:

Halliburton’s density neutron gap well caliper (DNSC) is part of its Path Finder
LWD system. The density measurement section is located at the bottom of the
instrument and the detector is at the top of the source. The neutron measurement
section is above the density measurement section and the detector is below the
source. This arrangement prevents gamma rays generated by neutron interaction
from reaching the density detector. The difference is that the combination of three
ultrasonic detector measurements produces caliper measurements to correct for
density and neutron measurements. The gap ultrasonic measurement is provided
by the gap ultrasonic transducer, and the gap correction is performed according to
the small gap weighting over the large gap weighting. The primary purpose of
measuring the deviation gap and caliper is to correct the effect of the offset gap on
the neutron porosity measurement and improve the quality of all nuclear measure-
ment data. The DNSC instrument has 6.75in and 8 in.

In recent years, the nuclear logging tools have been greatly improved. The main
improvements on the hardware are: (1) to strengthen the source’s robustness, and to
salvage when stuck; (2) use ultrasonic transducer to measure the gap and caliper;
(3) The bottom side of the directional well is identified by a magnetometer; (4) The
nuclear logging tools of the same drilling method adopt two measurement
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combinations to solve the physical combination in the same drilling and the instru-
ment length is minimized. The improvement in the processing method mainly
includes: (1) using the quadrant data to obtain a large amount of information content
to improve the accuracy of the measurement. And use the average counting rate to
equalize the effect of dynamic gap; (2) use energy spectrum-based algorithm and fast
sampling technology; (3) use weighting technology to correct small gap data;
(4) Monte Carlo technology improves the response of instruments in horizontal
wells The understanding of the characteristics, especially the change of the gap in the
elliptical wellbore, is relatively accurate, and the calibration plate for the field
application can be developed [18].

4. Drilling Density Imaging Logging Tool:

Larger sizes of wellbore are often encountered in formation evaluation. This
unique size logging while drilling tool can measure large size wellbores and the
tool is capable of accurately providing density and optoelectronic data. The Fig. 7.16
shows the schematic of the tool.

This is a unique 9.5-inch Drilling Density Logging (LWD) tool that addresses the
challenges of large bore sizes. New tools provide density and optoelectronic mea-
surements in large diameter boreholes. It also includes an ultrasonic sensor that
provides accurate borehole geometry information, which helps identify stress-related
breakthroughs and provides accurate borehole volume estimates for later cement
placement for interlayer isolation [19].

7.5.3 NMR Logging While Drilling

NMR logging is the response of formation hydrogen nuclei to external magnetic
field [20]. An NMR probe equipped with a permanent magnet is passed through the
formation to magnetize randomly arranged protons in the formation fluid. The
permanent magnetic field causes the proton magnetization to generate a macroscopic
magnetization vector, and then the antenna emits an alternating excitation pulse to
generate an alternating magnetic field according to the principle of electromagnetic
induction. The frequency of the variable magnetic field is determined by the
frequency of the excitation pulse emitted. When the frequency of the transmitted
pulse coincides with the natural frequency of the protons of the formation, nuclear
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Fig. 7.16 Drilling density imaging tool
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magnetic resonance occurs. When the alternating magnetic field is cancelled, the
proton will gradually return to the state before the polarization due to the relaxation
process, and a set of spin echo signals will be generated. If the antenna probe is tuned
to the specific frequency, the original spin echo signal can be received. The peak set
of spin echo signals is the spin echo train. The measurement of the spin echo train
takes only a few hundred milliseconds or less, the instrument moves only a short
distance in the well, and the information of the recorded echo train can completely
represent the information of the fixed depth point. Thus, by transmitting a set of
excitation pulse signals at each depth, an echo train of a corresponding depth can be
acquired. The amplitude and attenuation information of the echo train is related to
the acquisition parameters set by the instrument on the one hand and the fluid
characteristics in the corresponding pore region on the other hand. The parameters
of the instrument work are set by the ground staff. There are mainly echo interval
time TE, polarization time TW, number of echoes NE, etc. By adjusting the length of
TE and TW, and combining various modes, we can Measuring different information
about the fluid [21] (Fig. 7.17).

The MWD logging tool measures rock formation parameters during drilling.
There are three drilling modes: stationary, sliding and rotating. Ground engineers
can adjust the sequence of measurements based on actual conditions at the site and
adjust the drilling mode according to the characteristics of the formation. It can also
automatically switch the drilling status according to the drilling conditions. At the
same time, there are three measurement modes of the instrument: measuring T1,
measuring T2, or measuring both T1 and T2. The T1 mode is unaffected by vibration
during drilling, while the T2 mode has short measurement times and higher vertical
resolution and repeatability. Both T1 and T2 measurements are processes that reflect
changes in formation fluid properties over time. The MWD instrument is installed in
the drill collar. The instrument consists of two main components: the bottom probe
and the upper electronic circuit. The probe includes a permanent magnet, a flow tube,
and an antenna; the electronic circuit portion includes a battery, a mud generator, a

Fig. 7.17 NMR logging tool logging diagram
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power controller, a mud pulse generator, a data memory, an azimuth probe, and the
like [22].

Commonly used NMR logging tools are Halliburton’s MRIL-WDTM,
Schlumberger’s LWD-NMR, BakerAtlas’ MagTrack, and American Petroleum’s
provision.

1. MRIL-WDTM

The instrument measures the vibration insensitive T1 and the instrument sliding
phase measurement T2 while drilling to achieve the purpose of measuring formation
parameters [23]. The instrument is measured in a medium-sized single-frequency
measurement. The upper part of the instrument is an electronic short section, and the
lower part is a probe, which is mainly composed of a permanent magnet, an antenna
and a flow tube. The static magnetic field design is the same as the magnetic field
design of MRIL. The uniform magnetic field formed by the magnet at the round shell
has an intensity of 120 Gs, the magnetic field gradient is 14 Gs/cm, and the
frequency of the RF pulse is about 500 kHz. The antenna is wrapped in fiberglass
and rubber sleeves, and the longer antenna ensures sufficient signal strength and
signal-to-noise ratio. The high magnetic field strength and resonant frequency of
MRIL-WDTM guarantee high signal strength and signal to noise ratio. According to
the drilling mode, there are two main data acquisition modes for the nuclear
magnetic while drilling: Reconnaissance Logging and LOG (Evaluation Logging)
(Fig. 7.18)

2. LWD-NMR

Both ends of the instrument are real-time LWD connectors that are compatible
with any part of the BHA [24]. The instrument’s operating rating is similar to that of
other commercial 6.75inLWD instruments: maximum temperature resistance is
300 �F, maximum withstand voltage is 2000ib/in2, maximum dog leg severity is
8�/100 ft. (1 ft. ¼ 305 mm) when rotating, maximum during sliding The dog leg has
a severity of 16�/100 ft., which satisfies the seismic performance of the logging while
drilling. The permanent magnets of the LWD-NMR probe are cylindrical and
mounted vertically. The opposite poles create a gradient magnetic field around the
magnet. The resonant region is a cylindrical shell with a diameter of 14 in. and a
length of 6 in. The magnetic field strength in the resonance region is 61 Gs, and the
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Fig. 7.18 Schematic diagram of MRIL-WDTM logging tool
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gradient of the magnetic field is 3 Gs/cm. The high gradient static magnetic field
produces a thinner thickness of the round shell, while the LWD-NMR uses a low
magnetic field gradient design with a thicker measuring housing that is insensitive to
instrument motion. The depth of detection of the instrument depends on the size of
the wellbore and the eccentricity of the instrument. For a 8.5in wellbore, if the
instrument is centered, the depth of detection is 2.75in; if the instrument is eccen-
trically measured, the depth of detection is between 2.375in and 3.125 in. For larger
boreholes, the stabilizer can be used to position the instrument to ensure that the
measured information comes from the formation, not the mud signal. When the size
of the wellbore exceeds 10.625 in, the measured signal may come from the mud
signal of the wellbore. The Fig. 7.19 shows the structure of the instrument.

LWD-NMR data inversion processing table, as shown in the following table, the
A-F pulse sequence is subjected to inversion processing to synthesize T2 spectrum
logging data [25] (Table 7.1).

3. MagTrack

The instrument has a total length of 32.8 (1 ft.¼ 305 mm) ft, a diameter of 6.75in,
and a minimum measurement of 8.375 in. For ease of operation, the MagTrack is
pre-programmed for a variety of formation and fluid properties. For each selected
mode, the raw data is processed downhole and the calculated parameters are passed
to the surface in real time, all of which is stored in the downhole memory. The
instrument has the following features: it can be compatible with other downhole
instruments; vibration has less influence on measurement; real-time measurement
data is obtained by mud pulse; has higher longitudinal resolution; can be measured in

Measurement Zone

Antenna
Mud Flow

Stabilizer
Annular Magnets

Fig. 7.19 Schematic diagram of LWD-NMR instrument structure

Table 7.1 Data of
LWD-NMR pulse signal
synthesis

Sequence Tw(ms) Te(ms) Ne Noise(pu)

A 8422 0.9 500 1

B 2200 0.9 20 1

C 300 0.6 10 1

D 100 0.6 10 1

E 30 0.6 10 1

F 10 0.6 10 1
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horizontal wells; less occupied drill floor Time can save money; real-time data
accuracy is high, which is conducive to geosteering [24].

4. ProVISION

ProVISION is a real-time reservoir-oriented service system introduced by Amer-
ican Petroleum Corporation in 2001. The LWD tool can perform accurate high-
resolution NMR measurements under common harsh drilling conditions. The Pro-
VISION NMR magnetic logging tool measures lithology-independent porosity,
bound fluid volume (BFV), free fluid volume (FFV), permeability and T2 distribu-
tion, and hydrocarbon detection (Table 7.2).

This table shows the three different waiting time parameter acquisition sequences
used in the evaluation of the oil production interval (the upper group) and the oil
production/gas layer (the lower group) in the Deepwater oil and gas wells in the US
Gulf of Mexico, indicating that the instrument has very Good programmable fea-
tures. The instrument can be controlled by manual programming or set to an
automatic state to automatically switch states according to drilling conditions
(Fig. 7.20).

Table 7.2 ProVISION instrument pulse sequence parameters

Expected output Waiting time (seconds) Repeat times Number of echoes

Oil 6.00 2 500

0.60 2 300

0.04 40 20

Oil and gas 13.00 2 500

0.60 2 300

0.04 40 20

Fig. 7.20 Schematic diagram of ProVISION instrument design
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The instrument has an outer diameter of 73/4 inches (19.7 cm) and is mounted in a
drill collar measuring 37 feet (11.3 m) and a diameter of 63/4 inches (17.1 cm). The
instrument can be used in wellbore diameters from 83/8 to 105/8 inches without the
use of external thickened layers and only with hard banding. Field engineers can use
bolted dome centralizers to reduce lateral movement of the instrument and center it
within the wellbore. The telemetry connections on both ends of the instrument allow
it to be mounted anywhere in the bottom hole assembly (BHA). The instrument is
powered by a turbine instead of a battery and is suitable for flow rates from 300 to
800 gallons per minute (1136–3028 liters per minute) (Fig. 7.21).

The axial cross-section of the antenna (left) shows the symmetrical design of the
instrument, the dark blue strip is a hollow cylindrical magnet, and the equal field
strength line (blue) indicates that the gradient magnetic field strength decreases as
the distance from the instrument increases.. Black shows the cross section of the
coaxially wound antenna coil. The interaction between the antenna and the magnet
produces a cylindrical resonant housing (red strip) that is 6 inches (15 cm) long and
0.4 inches (10 cm) thick. The diameter is 14 inches (36 cm). The cross section (right)
of the coaxially wound antenna coil shows an axisymmetric resonant housing (red).
The resonant housing is the only area where measurements can be made, and
measurements cannot be made between the instrument and the resonator and from
the resonant shell to the more distant layers. Formation depth (DOI) in a 81/2 inches
(21.5 cm) borehole is 23/4 inches (7 cm).

The MWD logging technology can be influenced by factors such as rock skeleton
and muddyness of the formation, and intuitively and accurately provide parameters
such as effective porosity, permeability, and irreducible water saturation of the
reservoir. NMR logging technology can distinguish the movable fluid volume and

Fig. 7.21 ProVISION instrument profile
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the capillary bound fluid volume by T2 cutoff value, and further reflect the pore
structure of the reservoir [26]. The pore structure analysis was performed using the
T2 spectrum of the NMR logging while drilling as shown in the Fig. 7.22.

While drilling NMR logging is a new logging method that uses new techniques to
evaluate reservoir porosity, completely different from conventional radioactive
logging to find pores. Because it does not use radioactive sources, it ensures the
safety of underground wells. At the same time, it can be used while drilling and can
be used for drilling and testing, providing more solutions for drilling and logging
work [27]. The following Fig. 7.23 shows the data of NMR logging while
drilling [28].

7.6 Seismic Logging While Drilling

The seismic logging while drilling technology is a technique that uses a seismic
while drilling instrument to measure the time when seismic waves propagate from
the surface to the downhole receiver while recording the 4-component waveform
data to improve the interpretation accuracy(Fig. 7.24).

To ensure the synchronization of surface excitation and downhole reception, the
downhole tool uses a high-precision synchronous clock (UHPC) to synchronize with
the GPS time of the ground to obtain an accurate time-depth relationship. The figure
below shows the working flow chart of the seismic logging while drilling.

Fig. 7.22 Interpretation and application of T2 spectrum of NMR logging while drilling
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1. SeismicVISION B

Seismic data acquisition while drilling uses Schlumberger’s second-generation
seismic logging tool, SeismicVISION B, which has four sensors, one downhole
processor and one memory. The four sensors include three orthogonal component
detectors and one hydrophone. The following Fig. 7.25 shows the use of
SeismicVISION B seismic logging tool [29].

The collected raw data is stored in the tool memory, and the tool also has real-time
processing function, pre-processing and superimposing the original waveform, and
using the drilling fluid pulse signal after the pump is turned on, the superimposed
waveform data is transmitted to the ground in real time to the downhole. Data is
collected for quality monitoring and real-time waveform data is further processed
and interpreted as needed to provide pre-drill prediction information.

2. Earthquake technology while drilling

The drill bit while drilling earthquake uses the vibration generated by the bit
breaking rock as the downhole source. The vibration signal transmitted by the drill

Fig. 7.23 NMR data while drilling
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pipe is collected by the sensor installed on the top of the derrick and the drill pipe,
and the geophone embedded in the surface is collected and transmitted through the
ground. Direct and reflected waves of the bit signal. The Fig. 7.26 shows the
principle of seismic acquisition while drilling.

The VSP technology uses the conventional VSP observation system to perform
source excitation on the ground or the sea surface. The first wave (green) and the
reflected wave (yellow) under the drill bit are detected by the seismic while drilling
tool installed in the drill string. The signal is transmitted to the surface via the MWD
telemetry system (red). In order to reduce noise and reduce non-production time, the
seismic while drilling uses the natural gap of the drilling process (connected to the
drill pipe) to collect, because the mud circulation is suspended and the drill string is
stationary, using the 4C detector (the geophone and Hydrophone) Obtain accurate
calibration gun time/depth measurement data, and then transmit the calibration gun
and first arrival wave data to the surface in real time through mud-pulse telemetry.

The data of the full wave field is temporarily stored in the memory on the drilling
tool, and is copied out from the memory for normal VSP processing. The Fig. 7.27
shows a schematic diagram of the VSP technology observation system while
drilling.

The VSP technology has a wide application range, and it has obvious application
effects for open hole, cased hole, soft formation, hard formation, shallow water, deep
water environment, large displacement well, high slope well and horizontal well.
The seismic while drilling technology enables accurate speed prediction before the
drill bit for high-precision structural imaging and accurate formation pressure
prediction, serving drilling engineering, reducing drilling time and cost, improving
drilling safety, and reducing depth uncertainty. It has played an important role in
optimizing well trajectories, reducing the number of casings, and reducing side
drilling and directional drilling [30].

Fig. 7.26 Principle of seismic acquisition of drill bit while drilling
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Chapter 8
Prospect of Big Data Application in Drilling
Engineering

Abstract The big data is often called the petroleum in the information era, but the
connection between petroleum and big data is not limited to it. The big data
technology and petroleum and natural gas industry are closely related. In the
economic environmental background where the global energy market is gloomy,
the petroleum and natural gas companies increasingly obviously pay close attention
to the big data. Not merely the big data technology will generate influences on the oil
& gas industry. The progresses obtained in computing technology, Internet of
Things, cloud computing, mobile communication technology, robot technology
and artificial intelligence bring new innovations for the oil & gas industry. Integrat-
ing the traditional production mode in the oil & gas industry with the rapidly
developing Internet industry will definitely make the oil & gas industry glow the
new vitality.

Keywords Big data · Oil & Gas · Fault identification · Optimization of drilling ·
Drilling safety

8.1 Introduction

“Data have become a torrent flowing into every area of the global economy [1]”.
According to IDC’s estimation, the data increases by 50% annually all the time.
Much information is contained in plenty of data. The big data technology refers to
“obtaining the regularities and relevance of a phenomenon through concluding,
analyzing and processing plenty of essential data”. The big data pays no attention
to the effect generation process and cause between two factors, but pays attention to
the result of effect on another factor due to the change of a factor. In other words, the
big data knows what but does not have to know why. By virtue of big data
processing, the regularities between them are obtained, and no attention is paid to
the intrinsic connection of phenomenon. The larger the essential data volume, the
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more accurate the relation analyzed. Mathematically, in the big data technology,
based on fitting of discrete data, the relation of one to another is obtained. If the data
volume is small, the fitting result may be linear. However, the more data, the more
accurate data obtained. In the big data era, data is changed from static to dynamic. In
the traditional situation, the dead outdated data is revitalized.

The most primitive definition of big data is presented by Meta Group [2], and
there are three distinct features, namely, volume, velocity and variety.

Firstly, Volume-large data volume. The required data leaps from TB level to PB
level;

Secondly, Variety- various data types, and wide heterogeneous data sources.
Thirdly, Velocity-fast processing. The big data calculation requires extremely

high velocity, and the huge lengthy data should be fulfilled within second. The big
data technology has an essential difference from the traditional data mining technol-
ogy. The big data technology has to more quickly meet the real-time demand. At
present, the requirement for smart and real-time data is increasingly tougher. The
information exchange and interaction between human and human and between
human and machine inevitably bring the data exchange. The key to data exchange
is reducing the delay, and the data is presented to the user in an almost real-time way.
IBM has put forward the fourth characteristic, namely, accuracy, for the data quality.
In the big data, the data should accurately describe the characteristic, so as to figure
out the definite association. Accuracy refers to quality and validity of data provided
for analysis and decision-making. It is about distinguishing the clean data and dirty
data. This point is very important, for the dirty data will leave obvious effects on the
velocity and accuracy of data analysis. The original data should undergo the
professional and effective processing and filtration, for the purpose of data analysis.
Otherwise, the result will be unreliable. Oracle stresses the value of data, and
increases the fifth definition, namely, value. If the value density is low, the com-
mercial value is high. As the value density of data is low, the big data has to extract
the useful data from the mass basic information, and value is an important charac-
teristic of big data. The return value of big data infrastructure investment is very
important. The big data analyzes the huge data set, so as to reveal the potential trend,
and helps the engineers predict the potential problem. The future performance of
equipment used in the operation process is known, and the failure is discovered so
that the company has the competitive advantages and the value is brought to the
company.

To be specific, the big data processing may be divided into three typical steps,
namely, data extraction and integration, data analysis and data interpretation.

1. There are miscellaneous big data sources and various data types. At first, the data
of required data source must be extracted and integrated, and relation and entity
are extracted. After association and aggregation, such data is stored by the
uniformly defined structure. In the data integration and extraction, the data should
be cleaned, so as to guarantee the data quality and credibility.

2. The data analysis is a key step of big data technology. The extracted and
integrated data constitutes the big data era of original data of big data analysis.
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The data volume will not directly lead to the increase of useful information. The
increase of data volume will also lead to the increase of interference data, and the
difficult extraction of valuable information. The traditional analysis technology
contains data mining, machine learning and statistical analysis. In the big data
background, these technologies should be adjusted to adapt to the real-time
property of big data technology. Due to the complicated and various types of
original data of big data, the difficulty in the design of data analysis algorithm is
caused. If the feature of overall data cannot be mastered, the analysis result will be
inaccurate.

3. The final result of data analysis is obtaining the data interpretation so that it is
provided to the user. By virtue of visual technology and enabling the users to
participate in the data processing, the data interpretation is more convincing.

4. The big data is often called the petroleum in the information era, but the
connection between petroleum and big data is not limited to it. The big data
technology and petroleum and natural gas industry are closely related. In the
economic environmental background where the global energy market is gloomy,
the petroleum and natural gas companies increasingly obviously pay close atten-
tion to the big data.

8.2 Oil & Gas Engineering and Big Data

8.2.1 Prospect of Developing the Oil & Gas Industry by Big
Data Technology [3–5]

In recent years, the oil & gas industry is moving ahead in the face of various
challenges. Although the oil & gas development company and oil & gas service
company are always committed to reducing the costs in the oil & gas development
process, the gloomy petroleum price and constantly rising operating costs all the
time still pose a huge impact on the oil & gas industry. The employees in the new
situation must have courage, wisdom and technology to face the current difficult
environment. The big data technology is a data processing tool or technology, and it
is used for storing and processing mass data of poor structure. The big data has
thoroughly changed every industry in the world, and the petroleum and petrochem-
ical industry is not an exception. The petroleum and petrochemical industry (P&P)
are an industry of the largest trading volume in the world. The oil & gas field,
exploration, drilling and production processes, petroleum and petroleum product
marketing and operation of oil & gas companies in the market will generate lots of
data. At the same time, with the development of digital technology, the data
generated in the upstream, mid-stream and downstream processes of oil & gas
industry constantly increases progressively.

Such data contains rich information and many hidden values, and they are like the
industrial raw materials. Like crude oil, the original data must be refined so that their
real value is brought into full play. The traditional data processing technology fails to
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meet the requirements for velocity and accuracy in the oil & gas industry. Mean-
while, there are shortcomings in the processing of a large amount of heterogeneous
data. The big data enjoy exceptional advantages in the oil & gas industry. In recent
years, the big data technology has been increasingly widely applied in the oil & gas
industry. With the help from progress in such aspects as high performance comput-
ing, network, storage, and machine learning, the operator and the service company
install the infrastructure and compile the necessary algorithm, so as to mine the data
and detail them into the operable steps.

In the interview, Darryl Willis, Vice President for Petroleum, Natural Gas and
Energy of Google Cloud said that: “The industry has seized the opportunity, but the
pace at which it’s been able to pull that opportunity forward and leverage it has not
been at the right pace. We have to pick up the pace of transformation and change.
Everyone is using the right buzzwords -artificial intelligence, machine learning,
digitalization – but truly leveraging it is taking too long”

It is estimated that only 5% of data collected in the oil & gas industry is used,
which will increase remarkably as the petroleum and natural gas companies continue
the digital transformation. In the Report on “2018 Chief Information Officer
Agenda: Insight into Petroleum and Natural Gas Industry”, Gartner said that 54%
petroleum and natural gas companies were carrying out the digitalization. According
to the Study “IDC Future Escape: Worldwide Oil & Gas 2018 Predictions” by IDC
Energy, 25% main operators make investment in the asset performance manage-
ment, and 75% oil & gas companies have at least one comprehensively operating
digital transformation plan.

The hierarchical decision-making in the petroleum and natural gas industry is
based on the processing and analysis results of such data. Meanwhile, the oil & gas
reservoir exploration and development, investment decision-making and oil & gas
production development depend on the processing and modeling of large data. To
shorten the data processing time and provide the real-time and effective data
processing results, it is required to establish the high-performance computing
(HPC) system. The big data has provided the method and technology in this aspect.
In addition, the big data technology may dig the potential value of data. More
attention is paid to the big data, predictive analysis, data science and machine
learning in the petroleum and natural gas field.

The big data technology has developed the prospect in the petroleum and natural
gas industry. The big data has provided an approach to obtain the new high-quality
knowledge and opportunity, and it not only provides the competitive advantage for
the enterprise in the market but also develops the whole industry through revealing
its potential. The exploration and development of petroleum and natural gas are a
large comprehensive complicated project, and the investment in the earlier stage is
very huge. In order to establish the competitive advantage, the petroleum and natural
gas companies will formulate a 10-year or a longer time strategy. When the big data
strategy in the petroleum industry is formulated, the features of specific company
and specific business should be considered. In the strategic direction, the overall
corporate strategy must be considered in the hierarchical structure, so as to guide the
big data technology to develop towards the implementation direction of business
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solution with better profitability. In addition, the implementation of main objective
must be provided. In this aspect, the big data technology should not meet the
requirement of scientific project but should focus on the business world. In some
management aspects, the formulation and implementation of big data strategy
include the decision-making of order of priority of application of these technologies,
description about explicit and precise objective, establishment of proper structure
and implementation of investment plan and effective feedback and assessment.

For a long time, technology is the key driving force for success in the petroleum
and natural gas industry all the time. By virtue of digital technology, changing the
business model and providing a new income and value creation opportunity may
push the industry to a new level. In the era of economic recession, the company or
the individual adopts the bottom-line thinking, and seeks the solution to maintain the
low cost without affecting the workplace safety. Big data technology, machine
learning, AI and other technologies can meet such demand, thus drawing great
attention in the oil & gas industry. These technologies are increasingly widely
applied in the oil & gas industry.

8.2.2 Common Big Data Algorithms in Oil & Gas
Engineering

The big data mining technology may be used for reservoir evaluation, drilling fluid
optimization, selection of measure operation way, prediction of production index
and fault diagnosis. Common algorithms in the oil & gas engineering include:
support vector machine algorithm, artificial neural network, cluster analysis, neural
network, grey correlation, decision tree, rough set and the like. Different algorithms
have their own advantages and disadvantages and scope of application. In the
specific big data mining application, based on the specific data set, the algorithm is
selected. Common algorithms are simply introduced as follows:

1. Artificial Neural Network

BP neural network [6], namely, error back propagation neural network, is the
most widely used in the neural network model. It is composed of input layer, hidden
layer and output layer. Suppose each layer of BP neural network has N nodes, the
action function is non-linear Sigmoid function, f(x) ¼ 1/(1 + e�x) is adopted
generally, the learning set includes M sample mode (Xp,Yp). For P learning sample
(P ¼ 1, 2, . . ., M), sum of input of node j is recorded as netpj, output is recorded as

Opj, netpj ¼
PN
j¼0

WjiOpj, Opj ¼ f(netpj).

If the network initial weight value is set at will, for each input sample P, error
between network output and expected output dpi may be expressed as:
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E ¼
X

Ep ¼
X
j

dpi � Opj

� �2 !
=2 ð8:1Þ

Correction formula of weight value of network

Wji ¼ Wji tð Þ þ ηδpiOpj ð8:2Þ

δpj ¼
f netpj
� �

dpi � Opj

� �
, output

f netpj
� �P

k
δpkWkj, input

8<
: ð8:3Þ

In the above mentioned formula, learning rate η is introduced to accelerate the rate
of convergence of network. Generally, in the correction formula of weight value, an
inertial parameter should be added to rewrite the formula (8.2) into:

Wji ¼ Wji tð Þ þ ηδpjOpj þ α Wji tð Þ �Wji t � 1ð Þ� � ð8:4Þ

Where, α is a constant, which decides the effect of previous weight value on this
weight value.

2. Decision Tree Algorithm

The decision tree algorithm based on information theory [7] includes ID3, CART
and C4.5 algorithms. C4.5 and CART algorithms derivate from ID3 algorithm. ID3
algorithm principle is as follows:

1. Information entropy of classification system

Suppose the sample space (D,Y) of a classification system, D stands for sample
(m characteristic), Y stands for n category, the possible value is C1, C2, � � �, Cn. The
occurrence probability of each category is P(C1), P(C2), � � �, P(Cn). The entropy of
such classification system is:

H Cð Þ ¼
Xn
i1

P Cið Þ � log2P Cið Þ ð8:5Þ

In the discrete distribution, the Occurrence Probability P(Ci) of Category Ci may
be obtained through the occurrence time of such category dividing the total number
of sample. For the continuous distribution, the discretization per zone is often
required.

2. Conditional Entropy

According to the definition of conditional entropy, the conditional entropy in the
classification system refers to the information entropy when a Characteristic
X of sample is fixed. Since the possible value of such Characteristic X may include
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x1, x2, � � �, xn, if it is required to fix it in the calculation of conditional entropy, each
possible value should be fixed. After that, the statistical expectation is figured out.

Therefore, the probability of sample Characteristic X value of xi is Pi, the
conditional information entropy when such characteristic is fixed as Value xi is H
(C|X ¼ xi), H(C|X) is the conditional entropy when Characteristic X is fixed in the
classification system (X ¼ (x1, x2, � � �, xn)):

H CjXð Þ ¼ P1H CjX ¼ x1ð Þ þ P2H CjX ¼ x2ð Þ þ . . . PnH CjX ¼ xnð Þ

¼
Xn
i¼1

Pi CjX ¼ xið Þ ð8:6Þ

3. Information Gain

The information gain of Characteristic X in the classification system is: Gain(D,
X) ¼ H(C)-H(C|X). The information gain is for each characteristic. The difference
value between the system information volume with Characteristic X and the system
information volume without Characteristic X is the information gain brought by such
characteristic to the system. For the selection of characteristic each time, the infor-
mation gain after division of data set for each characteristic value is calculated, and
then the characteristic whose information gain is the highest is selected.

If the characteristic value is binary, the information gain brought by characteristic
T to the system may be the difference between the original entropy of the system and
the conditional entropy after fixed Characteristic T:

IG Tð Þ ¼ �
Xn
i¼1

P Cið Þlog2P Cið Þ þ P tð Þ
Xn
i¼1

P Cijtð Þlog2P Cijtð Þ þ P tð Þ

�
Xn
i¼1

P Cijtð Þlog2P Cijtð Þ ð8:7Þ

After a round of information gain calculation above, a characteristic will be
obtained as the root node of decision tree. Such characteristic has several values,
the root node will have several branches, each branch will generate a new data
sub-set Dk, the remaining recursive process is repetition of abovementioned process
for each Dk till the sub-dataset belongs to the same class.

In the decision tree structure process, the following situation may occur: all
characteristics are used up as split characteristic, but the sub-set is not the pure set
(the elements in the set do not belong to the same category). In this case, since no
more information may be used, “decision by majority” is carried out for these
sub-sets. In other words, the category of the highest occurrence frequency in such
sub-set is regarded as the node category. After that, such node is regarded as the
leaf node.
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Although the abovementioned decision tree algorithm is effective, such algorithm
is often inclined to the attribute which selects more values. However, in reality, the
attribute which selects many values is not optimal sometimes. To improve ID3
algorithm, top priority is given to optimizing the selection standard of attribute.
Through the formula weighting of information entropy, the importance of attributes
is increased.

4. Support Vector Machine Algorithm

Since the gradient algorithm convergence is slow and the local minimum problem
exists simultaneously, in the solution process, the artificial neural network is largely
affected by the initialization condition. The initialization parameter may decide
whether the optimal solution is convergent. Besides, the initialization parameter
can decide whether the algorithm is convergent. Therefore, the initialization param-
eter leaves great effects on the neural network solution. In addition, in the optimi-
zation solution process, the artificial neural network will encounter such problems as
gradient explosion/disappearance and convergence to the local minimum value. As a
result, the optimal solution of neural network cannot be figured out. Meanwhile, for
the special field in the drilling industry, for example, fault diagnosis, the most
important thing is knowledge acquisition and experience utilization, but it is difficult
to obtain the training sample of neural network.

The support vector machine [8] favorably avoids the defects in the optimization
solution of artificial neural network. Based on the structural risk minimization
principle, the support vector machine guarantees that the learning model has good
generalization capacity. Besides, the optimization algorithm of support vector
machine may finally be converted into the convex optimization problem. Therefore,
the global optimality of algorithm may be guaranteed, and the local minimum
problem in the neural network is avoided. In addition, the support vector machine
has a strict theoretical and mathematical foundation, which avoids the experiential
element in the neural network.

In the practical application, the support vector machine (SVM) has an outstanding
problem: how to select the key parameter in the algorithm, for different parameter
combinations decide the learning performance and promotion capacity. At present,
most solutions are integrating other algorithms to select the parameter. In essence,
SVM is the classification algorithm. The effect depends on the classification goal
boundary. However, for the vague and changeable objective function in the drilling
engineering, applicability should be further researched.

SVM is a binary classification mode. Its basic model is the linear classifier of the
largest interval defined in the characteristic space. SVM also includes kernel func-
tion, which enables it to become the non-linear classifier in essence.

Suppose the training dataset of a characteristic space is given:

D ¼ x1,y1, . . . , xk, yk , . . . , xN , yNf g, xk 2 Rn, yk 2 R

f xð Þ ¼ wTφ xð Þ þ b
ð8:8Þ
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Where: Example xk is input space, the corresponding yk is the corresponding label
value; f(x) is non-linear support vector machine, w is weight matrix; φ(x) is kernel
function, the input data is mapped to high-dimensional characteristic space; the
non-linear problem is changed into the linear problem, and the original non-linear
problem is solved through the method for linear problem after conversion; b is offset.

The objective function for SVM algorithm solution is:

minJ w, b, αð Þ ¼ 1
2
wTwþ

Xm
k¼1

αk 1� yk wTxk þ b
� �� � ð8:9Þ

Where: αk is Lagrange multiplier, if partial derivative of J(w, b, α) to w and b is 0;

w ¼
Xm
k¼1

αkykxk; 0 ¼
Xm
k¼1

αkyk ð8:10Þ

After α is solved, w and b are figured out.

8.2.3 Big Data Architecture in Oil & Gas Engineering

The big data analysis can be applied into many complicated scenes, so it is necessary
to conduct rapid and exact processing to data. The frequently used data processing
tools include Apache Hadoop, Mango DB and Cassandra; wherein, the most exten-
sively applied one in the oil & gas industry.

From mass of data, the big data technology finds out, analyzes and extracts
valuable information through real-time recording, and its technological architecture
comes from Apache Hadoop basically.

Hadoop comes from the open source item of Apache, and it is an open source,
extension type and distributed big data analysis software, and is a kind of software
architecture conducting distributed processing to mass of data. This platform is
compiled in Java, with strong transportability, and is featured by linear expansion.
Hadoop is the most popular big data processing platform at present. Now, the
Hadoop has become a complete Eeosystem including the HDFS (Hadoop Distrib-
uted File System) [9], distributed database Hbase (HBase and Cassandra), data
analysis processing MapReduce, and other functional modules (Table 8.1).

The early version doesn’t realize the interface with other high-level languages.
However, along with the emerging of Python, R and other scripting languages in the
scientific computation field and the development of machine learning, there are
simple tools and platforms such as RHadoop, Oryx and OxData, which can be
used easily. Now, the Hadoop has been developed to the most popular big data
processing platform. To some extent, the Hadoop has become the actual standard of
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big data processing tool. The big data processing which improves the Hadoop and
applies it into various scenes has become a new research hot spot. For the Hadoop
doesn’t require the “schema on load”, the Petroleum and Natural Gas Companies can
store the data in original way and all formats: PDF file, video, sensor data or
structuralized ERP data. Then, it is only necessary to inquire relevant information
of each report. This multi-function performance makes the companies able to
respond to regulation change or information request flexibly.

The Hadoop is very powerful in the aspect of data warehouse. The Hadoop data is
stored and backup at three nodes at least, and the accidents which may occur on node
performance will not cause influence on the server, and the data even can be visit
without passing the User’s permit. However, the Hadoop has obvious insufficiency
in dataset and real-time analysis. Now, a good solution is to set up the data
warehouse of Hadoop.

At present, some main stream big data processing platforms in the market are
complete processing platforms, while some are specialized in specific big data
processing applications. But, all of them are expanded based on functions of
Hadoop, or provide data interfaces with Hadoop.

The Apache Hadoop is also the most extensively applied data architecture
[10, 11] in the oil & gas industry, and no matter in upstream, midstream, downstream
or oilfield service, Apache Hadoop can slow down the attenuation of oil & gas output
through optimizing production parameters, and it can monitor abnormal fluctuation,
utilize parameters to forecast and optimize using prices of exploration and drilling
rights, help the oil & gas companies to avoid risks, thus producing petroleum and
natural gas in a faster and more economic and efficient way, enhancing output and
production benefit. Figure 8.1 refers to the application architecture flow of Apache
Hadoop in the petroleum and natural gas industry.

Table 8.1 Processing platform of main stream big data

Category Examples

Platform Local Hadoop, MapR, Cloudera, Hortonworks, Info sphere big insights,
ASTERIX

Cloud AWS, Google compute engine, Azure

Database SQL Greenplum, Aster data, Vertica

NoSQL HBase, Cassandra, MongoDB, Redis

NewSQL Spanner, Megastore, Fl

Data warehouse Hive, Hadoop DB, Hadapt

Data
processing

Batch MapReduce, Dryad

Stream Storm, S4, Kafka

Query language HiveAl, Pig Latin, DryadLINQ, MRQL, SCOPE

Statistic and machine
learning

Mahout, Weka, R

Log processing Splunk, Loggly
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8.2.4 Big Data Technology for Reservoir Identification

The oil & gas company integrates the real-time of the drilling platform and office
into the earth model, thus identifying reservoir better during the drilling process, so
as to help the company formulate future strategies based on existing petroleum
economy. The company can comprehend the down-hole formation better with big
data tool, thus conducting detailed engineering research to the oil & gas well,
optimizing the quantity of well heads required by efficient oil production, optimizing
drilling resources, and reducing waste of drilling and well exploration.

1. Natural Gas Hydrate

In the research on the natural gas hydrate, the stability of hydrate and the
thickness of the stabilized zone are related to the seawater ionic concentration, gas
component, ground temperature gradient, seawater temperature and pressure. At
present, there have been many kinds of calculation methods for the thickness of
stabilized zone of natural gas hydrate, mainly referring to the phase equilibrium
curve and warm pressing equation of natural gas hydrate. In various warm pressing
equations, some secondary factors are neglected usually, so the obtained equation is
just an approximate result. The machine learning algorithm can obtain the influence
of all factors on the stabilized zone of hydrate, thus obtaining precise forecast to the
thickness of stabilized zone of natural gas hydrate.

Utilize the phase equilibrium data formed by natural gas hydrate to establish
SVM model [12], as shown in Fig. 8.2, and conduct optimization and solution

Fig. 8.1 Application of apache hadoop in the petroleum and natural gas industry
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through the gradient descent method, thus obtaining the required SVM model. Next,
the phase equilibrium conditions formed by natural gas hydrate can be forecasted,
thus obtaining the pressure value formed by natural gas hydrate at some temperature.

2. Identification of Shale Gas Reservoir

For the geologic structure generated by shale gas is complicated, compared with
conventional drilling of oil & gas, the quantity of drilling tasks required by produc-
tion of shale gas is more. The modeling and analysis on reservoir of shale gas also
need mass of dataset. The fracturing technology is a required technology for shale
gas production. Although the fracturing technology has obtained remarkable pro-
gress, the cost of fracturing is still very high. Seek the most suitable well sections for
fracturing, so as to get through the channel of flowing of hydrocarbon, thus reducing
the cost in development of shale gas. To be successful in the shale gas exploitation, it
is required to identify the reservoir region with the highest productivity, such as the
optimal positions of shale gas development and hydraulic fracturing. The data
measured on the site is adopted as basic dataset, and through adopting the data
mining and machine learning technologies, the optimal position of shale reservoir
can be determined, i.e. the region containing high total organic carbon (TOC) and
breakable brittle rocks, thus enhancing the fracturing efficiency and recovery rate of
shale gas, so as to achieve the purpose of reducing cost and enhancing drilling
benefit. When developing the dense shale reservoir, it is required to formulate the
optimal drilling strategies in case of utilizing the big data technology, thus reducing
the drilling risk in the region where the well may be of low productivity to the
greatest extent.

Fig. 8.2 SVM model about thickness of stabilized zone of natural gas hydrate
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8.3 Big Data in Drilling Process

Along with the constant development of drilling technology, various kinds of
measurement technologies and sensors are applied into the drilling process [13],
logging and mud logging, seismic (Seismic While Drilling), reservoir parameter,
formation information (porosity and pore pressure), etc. all will generate mass of
data. Along with the promotion of drilling engineering information, more and more
production and management data, field real-time data and tool specification data are
acquired into the drilling database, so as to conduct further mining of data, thus
forming an achievement which can provide support for decision of the next step
finally.

Due to long-term development course, the whole department of the conventional
drilling company will adopt different types of databases usually, and different types
of databases usually cause the summary and analysis of data unchanged, and also
cause difficulty of data inquiry. Targeting the mass of isomeric non-homologous, the
analysis on relevant data shall be realized, thus obtaining the implicit relationship
among data will be obtained, and the surplus value of data will be mined to guide the
drilling operation, and this is a problem which the drilling engineering must be
confronted with. The big data technology can be used to analyze the seismic, mud
logging & logging data, as well as various kinds of relevant data generated during
the drilling process, forecast reservoir characteristics, simulate and shorten drilling
period, and enhance drilling safety.

8.3.1 Source of Big Data of Drilling Engineering

The development of computer and communication technology brings new develop-
ment of petroleum and natural gas industry. Since the 1980–1990s, the digital and
intelligent degree of petroleum and natural gas industry is improved constantly. The
oilfield digital and intelligent [14] development enhances the exactness and effi-
ciency of decision making, and the correlation among functional units of various
well sites is closer, which enhances the petroleum output of petroleum to the greatest
extent, reducing the cost of operation and maintenance. Generally, such circum-
stance of the petroleum and natural gas industry is called “digital revolution”.

The innovation of most of software which plays a critical role during the
digitalization process of oilfield is provided by the petroleum service suppliers
(Halliburton and Schlumberger) and large-sized IT service suppliers (HP, Oracle,
Microsoft and IBM). Main global participants of the big data market of the petro-
leum and natural gas industry are HP, Hitachi data system, IBM, Oracle, Cloudera,
EMC, Mapr Technologies and SAP.

The digitalized and intelligent trend of oilfield will cause complexity of data
acquisition and processing problems. The data analysis tool must be powerful
enough and have high flexibility, so as to make full use of any extra engineering
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and geologic data, thus making the operator get to know the influence of these
factors on oil well performance deeply. For these problems, the big data tool may be
very useful. The digitalization and intelligence of oilfield rely on the sensor arranged
on the well site, as shown in Fig. 8.3, shows drilling operations and possible sensor
locations. This is also main source of big data of petroleum engineering.

The petroleum and natural gas industry are the largest consumer of different types
of sensors all over the world [13]. The digitalized process of oilfield, including
remote monitoring, modeling and management system, and real-time optimization
and control of drilling, needs a large number of sensors. There have been tens of
thousands of sensors monitors on the site. The sensors located down-hole, installed
at the well head, along with stream line or inside the technological equipment such as
those in the oil & gas exploitation, processing and transportation system will
transmit a series of uninterrupted data. The operator will receive real-time, discon-
tinuous and discrete field data, and extract the temperature, pressure, flow velocity or
other measured values, so as to determine the states of down-hole and ground
systems. The data of sensor is generated continuously, and it is a real-time data
source. In addition, new data will be obtained constantly along with the production
of oil well.

For example, the optical fiber sensor [15–17] in the oil well can be used to
measure the temperature, pressure and other parameters of each oil well. The sensor
can be utilized to control the performance and status of pipeline in a real-time way. In
practice, the most frequently used tool is pipeline visualization instrument, which is
used to monitor the states of mechanical and physical characteristics in various
points of pipeline. The daily data volume of single well received from such type
of sensor can reach several megabytes. With the appearance of down-hole and
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Fig. 8.3 Drilling operations and locations of sensors [13]
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ground sensors and instruments for optimizing system performances, the operation
personnel are confronted with processing and management of mass of dataflow
generated by these systems. Meanwhile, in the past few years, with the rapid
development of non-conventional oil & gas reservoir, the quantity of drilled wells
is huge. The field measurement, such as mud logging, is one of the most indispens-
able tools which provide mass of information and data for such non-conventional
reservoir (shale gas). There are usually several hundreds of oil wells in a large-sized
oilfield, and the mass of database generated by these wells are stored in the database.
These data can be processes as resulting force forecast model of oil well, so as to
evaluate the production performance of oil well. It is very important to judge and
analyze main factors to production performance of reservoir according to the data
generated by such several hundreds of wells, and this is related to the Company’s
operation cost.

8.3.2 Structural Characteristics of Drilling Engineering Data

The big data in the petroleum engineering possesses typical diversification charac-
teristics. Its diversification means various types of generated, stored and analyzed
data. The types of data recording equipment and sensor are different, so the gener-
ated data can possess different sizes and formats. The formats of generated data can
be text, image, audio or video. The classification can be completed in a more
technical way, such as structural, semi-structural and non-structural data. Mean-
while, there will be continuous real-time data flow, and these data comes from well
head, drilling equipment (EDR, LWD, MWD and mud logging) and flow and
drilling pressure sensing. Most of generated oil & gas data from ground and
underground facilities, drilling data and production data refers to structural data.
These data can be time series data, which is recorded through a certain time interval.
Another source of structural data includes assets, risk and project management
report. The structural data is usually processed with specific application procedure.
These applications include management investigation, processing and imaging,
exploration planning, oil reservoir modeling, production and other upstream activ-
ities, and there will be external structural data sources, such as market price and
weather data, which can be used for forecast. The structural data types include
PPDM, SEG-Y, WITSML, PRODML, RESML, etc. However, during the above-
mentioned process, there will be mass of non-structural data, such as images, log
curves, well log, maps, audio, video, etc. The non-structural data sources of oil & gas
industry include drilling log, daily written report and CAD mapping of drilling,
various types of data volumes, achievement files, maps and statements, instrument
data, etc., and for non-structural data, the overall management is relatively weak; in
the petroleum and natural gas industry, there are various kinds of experimental and
computer simulation practices, which can generate data for further analysis. These
data can be classified into semi-structural data.
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The drilling database refers to multi-layer table, i.e. the well information table is
regarded as root; through establishing step-by-step association of external key, the
described object will be detailed constantly. In the drilling database, most of data
tables refer to description of level progress of drilling tool combination, well
cementing and drilling fluid performance. The differences only lie in breadth and
depth. Based on purpose, the data in the drilling engineering can be divided into
three categories, drilling site level, oilfield block level and group company level. For
the data collected from multiple sources has the well-known complexity, usually,
due to increasing of data amount collected at a high speed, the data analysis is to be
conducted via efficient processing mechanism. It is very difficult to utilize these data
effectively in traditional data processing way, while the big data technology is
applicable to processing of these diversified data.

8.4 Application of Big Data Technology in Drilling
Engineering

At present, most of data in the oil & gas industry is applied into the control and
monitoring, not to optimize the assets performance. If the oil & gas industry can
analyze and comprehend all data generated by itself, the operation efficiency can be
enhanced by 20%. The research of Bain Capital shows that the bid data analysis can
enhance the performances of oilfield and factor by 6–8% [18]. For now, the oil price
and the economy are in downturn, and the profit gaining capability at the upstream
will be challenged, which makes the completion among oil & gas companies more
and more violent and cruel. How to reduce the operation cost of upstream enterprise,
enhance production efficiency and avoid environmental risk? This is a subject that
each oil & gas company must be confronted with.

The big data technology can be used to treat mass of isomeric data easily, thus
providing valuable reference information for the oil & gas industry, so as to help the
operation enterprise make a decision better. The digital technology can change the
upstream business, and create extra profit from existing production capacity, thus
making the industry more productive and flexible.

8.4.1 Design of Drilling Fluid

With regard to design of drilling fluid, spacer, cement slurry and fracturing fluid, in
the traditional flow, the design process of fluid is shown as below generally: firstly, a
preliminary fluid formula design will be proposed according to personal experience
of the engineer; and then, the performance testing will be conducted in the labora-
tory, and after multiple times of repeated tests, an ideal fluid design will be obtained.
This process relies on the prior knowledge of the Engineer. The trial and error
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process needs mass of time and cost; meanwhile, the mass of sample data generated
by trial and error is also difficult to be processed for the experimental personnel.

Based on the machine learning algorithm, the artificial neural network can be
adopted to make the process of fluid design intelligent, so as to save cost. The
intelligence is mainly divided into four processes: (1) prepare data, and select dataset
of data mining from historical data record; (2) conduct pre-processing of data, and
enhance the model training efficiency; (3) conduct dataset calculation; (4) conduct
mining verification, compare the original data set which hasn’t been mined with the
mining result, so as to judge whether the data mining can be forecasted; (5) explain
the mining result, and utilize the mining result for forecast. Take raw materials of
different drilling fluids as the data input set, and after training, the influence law of
different factors on drilling fluid performance can be obtained.

8.4.2 Big Data and Non-conventional Drilling

The development of digital technology enables the energy development of
non-conventional reservoir. Although the development of petroleum drilling tech-
nology has reduced the development cost of non-conventional reservoir, the oil &
gas exploitation of non-conventional reservoir is still confronted with the risks of
huge investment and easy occurrence of drilling accident.

The method for enhancing recovery rate [19] via hydraulic fracturing has been
widely applied into increasing of both production and income. Only designing the
well completion better in a scientific way and enhancing effectiveness of hydraulic
fracturing strategies can the oil & gas income increasing be enhanced. For the
hydraulic fracturing and drilling & well completion, it is necessary to get to know
underground geologic conditions more deeply. The oil well production capacity
cannot be enhanced unless the reservoir characteristics are improved, and the
drilling, well completion and production capacity increasing methods are optimized
by applying formation rock physics and geo-mechanical information.

It is very important to utilize a relatively small amount of capital to obtain higher
production effect. The traditional mud logging method is featured by high cost and
high risk, while a precise high-resolution geologic model can be established by
utilizing existing industrial data and relying on big data technology. For the
non-uniformity of non-conventional reservoir geology, the exploitation needs
establishing reservoir model of higher precision and resolution. The conventional
well completion methods and fracturing strategies are not practical or effective in
these unforeseen heterogeneous environments. Along with the borehole, in case of
meeting rocks which influence fracturing efficiency, the production effect of oil well
will be poor.

The big data is a very favorable tool for drilling of non-conventional reservoirs
and under non-conventional conditions [20]. After utilizing the big data to analyze
various relevant oil well datasets, such as rock debris analysis, gas detection, tracing
measurement and real-time pump pressure, the reason for difference between the
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actual oil well production capacity and predicated production capacity can be known
in an all-round way. After applying the big data technology into the oil well
production, the relationship among well completion, production increasing
processing and the final oil well production capacity can be analyzed. Finally,
according to the analysis result of big data, adjust the stage positions and dimen-
sions, while optimizing the cluster position, so as to reduce the difference in closure
stress among inter-stage formations to the greatest extent. Optimize the stimulated
rock volume, enhance the percentage of production potential, and enhance the
fracturing benefit; meanwhile, the formation fracturing pressure, reservoir ductility
and geologic anomaly of formation can be known clearly. This makes operation
personnel minimize the anomaly during the fracturing process, and make sure that
the loading capacity of propping agent is maximized, thus finally guaranteeing the
fracturing effect.

8.4.3 Fault Identification and Equipment Maintenance

Nowadays, major oil companies are mining big data through the micro-sensor
installed on the production equipment and they hope to save the costs by avoiding
shutdown of drilling machine, identifying potential safety hazards and improving the
supply management [21]. For example, Chevron’s Tengiz oil field located at
Kazakhstan expects to include about one million sensors.

8.4.3.1 Fault Diagnosis of Drilling Mechanical Equipment

Due to the complexity and concealment of stratum, frequent relocations of the
drilling machine as well as poor fieldwork conditions and other features, the fault
diagnosis of the drilling machine is more difficult than the fault diagnosis of other
enterprise mechanical equipment. As for the down-hole drilling tools, it cannot make
direct monitoring on the state of the equipment or make use of the data collected
from the pump and well, such as drilling pressure, pumping pressure, pump flow,
rotation speed, drilling speed and torque parameters to predict the operation condi-
tions of the tools. That is, during the drilling process, there are many complex and
uncertain influencing factors. It is very difficult to utilize precise modeling to
establish the mathematical model suitable for the practical drilling process and
then make predictions to the faults and equipment maintenance during the drilling
process.

The development of the data mining and artificial intelligence theory allows
people to make use of the actual input and output data of the drilling system and
the rich knowledge and experience of related experts to establish the model not
seriously relying on the internal mechanism of the drilling system. Big data has been
used for the intelligent drilling platform and pipeline infrastructure to realize the
problem prediction and fault prevention [22].
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In this aspect, the most commonly used big data algorithm is the decision tree
algorithm and neural network model. Take the data records at the time of historical
overhaul or fault of the drilling equipment as the feature parameters and take the
major factors influencing the fault and overhaul of the drilling equipment as the input
factors to make the adaptive learning and establish the model of fault feature, fault
and maintenance method. Make use of such model to get the maintenance program
and then realize the fault judgment on the automation of the drilling process.

8.4.3.2 Preventive Equipment Maintenance

Generally speaking, the downtime of the oil gas industry is as high as 10%,
equivalent to three times of the average value of American industry. The equipment
fault occurred in the oil gas industry leads to great economic losses. Big data
occurred in the oil gas industry forms the “Industrial Internet”, which combines
the machine learning and extraction of intelligent data in nature to improve the
quality of the preventive asset maintenance.

In the oil & gas industry, the preventive maintenance of the equipment is not a
new concept. The traditional method is to record the non-fault history of the machine
as the reference sample to monitor the pressure, volume, temperature and other
features of the operation of the new machine, and then compare it with the historical
data to predict the potential fault. As for the upstream of the oil & gas industry, the
equipment maintenance is also very important, especially whose professional equip-
ment with expensive costs.

The development of the well site digitization makes the sensor applied into each
position of the drilling equipment. The sensor can collect the data from the pump,
well and other equipment. It has higher frequency and lower cost than manually
collecting the same data. Transmit the monitoring data of the equipment to the big
data processing software to make the processing and analysis. It also can be enriched
with other data stream related with the weather, seismic activity and social media
sentiment to more completely describe the conditions occurred on the site. Under-
stand how the equipment is influenced by the pressure, volume, impact, vibration
and other variables during the maintenance interval by the algorithm parsing of the
large data set in Hadoop to adjust the maintenance plan, prevent the occurrence of
the fault or make fault prediction, get the prediction results of the equipment
operation conditions, compare it with the actual results of the equipment, and then
judge whether the fault time is earlier than the expected time. When it predicts any
fault, judge the time of the maintenance detection according to the on-site operation
state, optimize the on-site dispatching and make the team arrange the on-site
equipment maintenance more effectively. Guide the workers to maintain or replace
the machine as per the results of the fault analysis to avoid the losses due to the
equipment fault.
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8.4.4 Optimization of Drilling

As for the upstream enterprise, the expenditure of the drilling costs per hour is very
huge. Shortening the drilling time can cut down much cost for the emprise. Big data
technology can excavate the potential of the cost optimization in the drilling
operation; thus, it is very important.

In the traditional sense, the engineer makes the analysis for the daily drilling
report generally, and then adjusts the drilling performance. Oil companies need to
make real-time and continuous monitoring on each link to make use of 2D, 3D and
4D seismic technologies to make the geologic modeling simulation for the drilling
operation and acquire accurate seismic data or the operation conditions of the
equipment asset. This is usually completed by plenty of sensors distributed in the
underground boreholes and surface facilities. Therefore, it needs thousands of
sensors distributed in the whole drilling process. The underground sensor or the
sensor on the ground can record the information of the drilling process continuously
in real time. The drilling operation process will generate lots of data. These data is of
complex form, thus its explanation and analysis are very difficult. The daily data
flow of Chevrolet exceeds 1.5 TB.

The big data technology can avoid the disadvantages of the traditional analysis
method, realize the real-time analysis of the drilling monitoring data and then
optimize the drilling operation performance, improve the drilling efficiency, evade
the drilling risk, shorten the drilling time and reduce the costs. Integrate the ground
logging data and report information (such as daily drilling report and bit report)
together and measure the lithology, trajectory and other key data during the drilling
to create a complete set of drilling performance analysis.

The automation [23, 24] of drilling process management is the trend for the
drilling industry. The automation of drilling process needs to make in-depth analysis
for the data in nearly real time and then make the adjustment for various drilling
parameters. The predictive analysis on the data generated during the real-time
drilling process is very important. The big data technology must generate lots of
data during the real-time process and make the real-time handling. Once it is lagged
behind, the control on the drilling will be delayed and bring uncontrollable dangers.
Therefore, the researches on the application of the big data technology in the real-
time drilling are very special.

The mechanical drilling rate is an important indicator for the drilling engineering.
The drilling rate of the bore is affected by the layer, lithology, rock compressive
strength and other geological factors and meanwhile influenced by the bit type,
drilling parameter, drilling fluid density and other engineering factors. Make use of
the neural network algorithm and take the major factors influencing the drilling rate
as the neuron. As shown in Fig. 8.4, it may be influenced by the drilling rate
prediction and other factors, mainly including the geological factors and engineering
factors, wherein the geological factors include the layer, lithology, rock compressive
strength and other objective factors, and the engineering factors include bit type,
drilling parameter, drilling fluid density and other factors subject to human
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interventions. Take the major factors affecting the drilling rate as the neuron,
including the rock compressive strength, bit size and bit type (roller bit, PDC bit
and TSP bit), pump pressure, rotary speed and drilling fluid density. Make use of the
neural network algorithm to establish the prediction method of the bore mechanical
drilling rate.

8.4.5 Drilling Safety

The demands on the drilling safety are very critical. Mexican oil spill event [25] may
remain fresh in our memory till now. The Secretary General of China Chemical
Safety Association (CCSA) Lu Nianming stated that: “In recent years, the Chinese
government pays high attention to the problem of safety in the oil refining and
petrochemical industry.” Although the total number of the accidents happened in
Chinese oil refining, petrochemical and other chemical industries is decreased
greatly, the total number is still great. Chinese society has low tolerance on the
worker safety. Lu Nianming stated that: “Therefore, although the profits have
declined, the petrochemical industry still has to increase the investment on the safety
measures.” “The monitoring of the government is improved. When the accident
happens, the facility will be immediately ordered to halt production.”

60%–80% of the industrial accidents are caused by human errors. The digital
management system can effectively reduce the occurrence of the accidents. The
advantages of the digital and comprehensive data management of the oil & gas
system on the safety production are obvious. However, it also will generate new
dangers requiring management. Especially the network security problem, using the
sensor and monitoring technology to improve the safety is an important research
topic.

Rate of
penetration

Bit Model

Bit type

Weight of bit

Rotary speed

Drilling fluid density
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Fig. 8.4 Drilling rate prediction model based on neural network
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The digital technology will pay a more and more important role in the natural gas
industry. Even in the areas traditionally relying on the mechanical and hydraulic
safety may increasingly rely on the electric solutions and digital protection solutions
with higher efficiency and better cost effectiveness in the future.

Making use of the application of big data technology on the field of oil & gas
engineering safety relies on various sensors and monitors installed. These sensors in
special positions generally work unceasingly for 24 h. It may generate one constant
data flow. The big data processing center makes real-time handling and analysis on
the data of the sensor and compares it with the historical data. Once the data is usual
and deviates from the safety range set, the warning will be given immediately. No
matter it is the equipment fault, downhole accident or other situations, make the data
analysis on the reasons of these problems to get the influencing factors with certain
features. These features may indirectly cause the accidents, or are directly related
with the accident. The big data analysis could get the safety threshold of these
parameters. Set the safety threshold into the monitoring system for the real-time
processing system of big data as the fixed point. Once the value monitored by the
sensor deviates from the fixed point, give the warning and the engineer will adopt
corresponding measures according to the situations monitored. For example, the
monitoring equipment and sensors installed at the wellhead can collect the downhole
information in real time. The real-time capacity of the big data technology can
identify the abnormalities during the drilling process, monitor the downhole abnor-
malities, and make timely processing to prevent the well leakage and blowout. Make
the prediction and analysis to reduce the non-production time, save the equipment
losses during the drilling and well completion process and optimize the asset
performance and production. The big data technology can make the drilling and
well completion process more intelligent. Make use of the big data technology to
analyze the problems possibly occurred during the drilling and well completion
process to make the decision and processing plan in advance [26]. Monitor the
drilling process and record any other change due to the gas leakage, water channel,
pressure change and seismic activity.

Take the real-time oil well maintenance as an example and calibrate the safe
values or ideal values of the pump pressure, rotary speed, flow rate and temperature
of the oil well under normal production. These values are usually obtained by the
mining analysis of the historical data. The big data processing system Hadoop makes
the real-time analysis and warning on these feature values. Once these set values
deviate from the predefined scope, corrective measures shall be adopted.

The application of the big data in the safety field of petroleum engineering is in
multiple aspects. Get the tome nodes and environmental conditions that are easy to
be damaged for the drilling tool by mining the historical drilling data and then
prepare for the maintenance and accident handling; Devon Energy integrates
Hadoop, SAS and the text data, confirm the reasons for the non-production time
and then reduce the non-production time by 30%. By reducing the affected
non-production time, petroleum and petrochemical companies can save USD
500,000–1,000,000 per day in average.
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8.5 Big Data in Oil & Gas Production

In addition, the big data analysis can improve the oil production by 6–8% [18]. In
fact, the estimations of Chevron Corporation show that, the completely optimized
digital oil filed can improve 8% of the productivity and 6% of the gross recovery.

ShellGas Corporation cooperates with Hewlett-Packard and Amazon
WebServices and makes use of the big data to reduce the oil exploitation costs.
They utilizes the data stream collected and transmitted by optical fiber as well as the
big data technology to predict the geographic space data, petroleum and natural gas
report and make use of these water to acquire to accurate downhole information. It
can evaluate the layer, develop new prospect and offer advantages for the compet-
itive bidding. It also can improve the recovery ratio of the current oil well by
analyzing the earthquake, drilling and production data. Such information is helpful
for confirming when to change the oil deposit and when to change the oil extraction
method. While the could computing and big data are also helpful for more accurately
predicting the oil production. The big data technology is used to analyze and predict
the oil & gas price trend to guide the production, help the oil & gas companies to
realize the optimization of the resource allocation and then acquire the optimal cost
control and profit value. The world’s largest listed oil service group Schlumberger
released new software named del-fi. It improves the production of the whole oilfield
to the largest extent by improving the design of the oil well and the coordination of
the well drilling. Only this new system expects to reduce 40% of the production costs
in the future 10 years.

As for the oil & gas production, selecting the storage layer and production area
with high productivity is of great necessity. Big data can help analyze the oil& gas
reservoir, detect its non-optimal area and select the production scheme and predic-
tion result by. It can make the predictive analysis on the changes on the storage layer
of the oil deposit, offer intelligent analysis for the oil deposit engineer by integrating
and analyzing the seismic, drilling and production data and then improve the
recovery ratio. Meanwhile, predict the performance of the storage layer on the
basis of the historical data, identify the production area inferior to the related
standards, mark the aged well not satisfying the expected output threshold and
then make the repairing immediately.

70% of global oil & gas comes from mature oil wells. The improvement in the
analysis technology of sensor big data has made significant progress in enhancing
the recovery ratio. However, there is still great potential in this area. Even if adding
1% of the output on currently active oil & gas factories, it also can increase 2 years
for the global oil & gas supplies.

At present, as the discovery of the new oilfield becomes more and more difficult,
how to ensure the output of the current oil wells is a problem that oil companies must
be faced with. Decline curve analysis (DCA) [27, 28] makes use of the past output of
the oil well to estimate the future output. The decline curve most commonly used to
represent or extrapolate the production data are members of a hyperbolic family
defined by the following differential equation [28].

8.5 Big Data in Oil & Gas Production 301



d
dt

q
dq=dt

� �
¼ �b ð8:11Þ

where: q is the oil production rate. b is the reservoir Factor.
This method has many advantages. The decline of the oil well when its service

life finishes follows the nonlinear model. Generally the oil & gas production declines
faster with the time. How to optimize the production parameters is the intelligent
parameter (such as pressure, flow rate and thermal properties of the injection fluid
mixture) management of prolonging the service life of the oil well to the largest
extent. The big data can be utilized into the exploration and development process of
the oil & gas and then help the managers and experts to make the decision on the
drilling strategies. Make use of the big data technology to analyze the historical
drilling data and production data, analyze the current drilling process, establish and
evaluate the drilling model on the basis of the historical drilling data, and adjust and
optimize the parameters of the drilling machine during the drilling process in
real time.

In the later development stage of the oil deposit, making the directional
windowing at the original well position to make the sidetracking to the oil layer is
an effective oil increase method. Generally it needs the engineer to determine to
utilize which well to make the sidetracking according to its experiences and related
data. This traditional method has a big workload and strong subjectivity and it is
unfavorable for the promotion and utilization. Take the oil well-related data
implemented the sidetracking as the data source to train the neural network and it
can predict the sidetracking effect. The data technology also can be applied in
product optimization. For example, if the company integrates the enterprise data
and production data, it will be convenient for the workers at the well field to offer the
prediction of the layer information and convenient for the real-time decision-making.
With the help of the big data analysis, optimize the oilfield depletion planning and
de-risk the drilling to maximize the investment returns.

8.6 Big Data in Downstream Oil & Gas Industry

After the exploitation of the oil & gas, it needs to be transmitted by the oil & gas
pipeline to the market. The oil & gas leakage during the transportation will bring lots
of economic loses and safety risks. The midstream companies apply the big data
technology into the leakage detection, warning and emergency stop, etc. The Internet
of Things (IOT) is thoroughly changing the midstream pipeline operation through
the environmental monitoring and infrastructure management application based on
SCADA and by the monitoring and control on the operation of the pipeline infra-
structure. The big data is applied into the real-time oil condition monitoring (OCM)
technology [29]. It is helpful to product the midstream compressor. A reduction of
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0.5% in the efficiency of the compressor may cause the compression operation of the
natural gas lose USD 180,000 per year.

Recently, a kind of analysis system based on machine learning is named petro-
leum analysis learning machine (PALM) [30], as shown in Fig. 8.5. It is used to
simultaneously analyze hundreds of properties of the Internet of Things of hundreds
of horizontal wells in real time, including thousands of hydro fracture stages.

The data analysis may help monitor the pipeline and equipment and offer more
predictable and accurate maintenance method. For example, the sensor may indicate
when the equipment suffers usual pressure and it allows the operator to implement
the preventive shutdown or intervention to avoid any accident or leakage. For
example, the leading compressor manufacturer develops the customized sensor
model and uses the predictive analysis software to actively monitor the readings
offered by these sensors. It is helpful for the preventive maintenance of the equip-
ment arranged for the midstream customers.

Using big data analysis in the processing, logistics and sales (downstream)
expects to bring breakthroughs. The big data is helpful for predicting the oil product

Fig. 8.5 The internet of things provides the nervous system for the PALM brain to provide near
instantaneous cause-and-effect responses to problems detected in the field, and optimizing opera-
tions [30]

8.6 Big Data in Downstream Oil & Gas Industry 303



demands in the retail sale network and analyzing the pricing and price changes of the
competitors and competitive areas. Due to the modes discovered, increasing the sales
of related products and reducing the delays in the retail network (through more
accurate logistics by fuel transport vehicle) may be attractive. The prices of the bulk
commodities in the oil & gas market will influence the profit rate obviously, thus
utilizing the big data technology to formulate the expenditure strategy measuring the
costs is of great importance.

8.7 Implementation Status of Big Data in Oil & Gas
Industry

The development of the drilling digitization leads to fold increase of the geographic
location, weather, seismic data and other new data generated in the progress in
aspects of equipment, instrument, process automation and collaboration. These data
can be integrated with the “human generated” data, such as the market feedback,
social media, email, text and image, and make use of the big data technology to
acquire new insights. Meanwhile, due to the decrease of the oil price, the low oil
price hampers the oil & gas companies investing on data scientists who can help this
industry make full use of the big data; others consider that the collapse in oil price
really creates more powerful demands for lots of data-oriented innovations and
investments. These innovations and investments can improve the operation effi-
ciency and automation level. It expects that the status quo and future of the
exploration and production for the oil & gas industry will heavily rely on the big
data and Internet of Things [21]. According to the trend investigation of Accenture
and Microsoft digital energy in 2016, 56% of the executives in the oil industry
consider that, in future 3–5 years, the utilization of big data analysis will be the key
component of their business strategies.

The big data seems to have bright prospects in the oil & gas industry. However,
currently the big data lacks the business support and the cognition on the big data
within the industry is not deep. The data quality and the understanding on the
problem complexity are also parts of the challenges that the big data application is
faced with. Related analysis shows that, the application of big data analysis in the oil
& gas industry is still in the experiment level, this industry lags behind in the aspect
of adopting the big data and its application in the oil & gas companies is still in the
starting stage. In addition, as the research hotspot in current Internet field, the
technical accumulation and reserve of big data exist in large Internet companies,
such as IBM, Google, Oracle, Microsoft and other oil & gas service companies
Schlumberger, Halliburton,etc.

1. Chevron applies Hadoop to make the seismic data processing (IBM Big Insights)
[31]. At present, the internal flow generated by Chevron per day exceeds 1.5 MB.

2. Royal Dutch Shell implements a pilot program applying Hadoop for the data
collection of seismic sensor and puts the optical cable sensor into the well to
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measure the data. The collected data is used to analyze the working mode of the
oil well and the quantity of the remaining oil/gas. Mass data from the sensor is
located in Amazon private cloud (Amazon VPC). Shell plans to deploy the
optical cable within 10,000 oil wells in the future.

3. Газпромнефть analyzes the oil well operations applying Teradata ASTER sys-
tem within the framework of big data pilot program completed in 2015 [32]. Such
analysis uses the voltage reconnection logging data in about 200 million logging
data and accident logs recorded by 1649 wells in 2014. The analysis result shows
that, the utilization of big data can acquire a new cognition, and the
interdependence relation previously unknown occurs in the pumping equipment.

4. Intertek is cooperating with British Robert Gordon University for a research
program, which is aimed at helping the oil companies make use of the big data,
improve the asset performance, raise the efficiency, reduce the operation cost and
ensure safe operation.

5. Halliburton Company is applying the big data technology to optimize the seismic
space, drilling space and oil well planning.

6. Schlumberger insists in applying the digital technology for creation and acceler-
ating the continuous improvement. Schlumberger released DELFI cognitive E&P
environment in September 2017. Schlumberger Petrel E&P software platform
and Intersect high resolution oil deposit simulator are integrated into the Google
Cloud Platform in Delfi environment. It is a safe, cognitive and cloud-based
coordination environment, which makes use of the data analysis, machine learn-
ing and high performance computing and integrates the data, workflow and
digital technology (such as artificial intelligence and machine learning). Offering
the seamless integration technology among physical geography, geology, reser-
voir engineering, drilling and production area provides a new working mode for
the asset team and realizes the coordination among teams.

7. Saudi Aramco adopts the method of big data analysis to develop the automatic
system monitoring the well kick. This system adopts 5 kinds of big data machine
learning algorithms to monitor the well kick, including Decision Tree, K-Nearest
Neighbor (KNN), Sequential Minimum Optimization (SMO), Artificial Neural
Network (ANN) and Bayesian Network. These models use the ground, drilling
and logging parameters to predict the well kick, including pressure, flow, hanging
load, drilling time, torque, pump speed, and bit pressure, etc. Mark “with well
kick” or “without well kick” on each parameter set of the sample set collected,
then adopt five models to learn these samples separately and finally make the
anticipatory computing for each parameter set of the test set. It confirms the best
monitoring model is the decision tree and K-nearest neighbor methods after
assessment, and the prediction accuracies of these two ones both reach over 90%.

It must be definite that all data has a value. In addition, once the data is utilized,
the seemingly un-intuitive pattern relationships in the data can be realized. As for an
industry established on the basis of the data, selecting high-quality data from
low-quality data is a difficult and time-consuming challenge for a long time.
Possessing an ecosystem supporting all tool processing data volumes is also crucial.
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The supplier solutions in the big data field of oil & gas industry are still in the early
stage.

At present, Schlumberger is the leader in the big data technology of the drilling
industry. Schlumberger cooperates with Microsoft, Google and other Internet com-
panies and makes use of the host computers and cloud infrastructure of these
companies to bring the expansibility and safety of the data processing. Schlumberger
has over 250 software engineers working in American, Norwegian and Chinese
drilling software development centers. The technical experts and data scientists of
this company concentrate on various software technologies, including high-
performance computing, cloud, big data, analytics, Internet of things (IOT), Indus-
trial Internet, visualization and user experience, and offer digital supports for the
drilling services of Schlumberger.

8.8 Main Challenge of Big Data Strategy

The development time of the big data in the drilling engineering field is not long. The
integration of big data and traditional IT system is another problem for the big data in
the field of drilling engineering. The big data infrastructure is established in isolation
with the traditional IT system. The data moves from the master warehouse to HDF
for analysis, and then moves from HDF to the master warehouse. This isolation
causes the increase in the operation cost and the low efficiency and waste of the
resources. In view of this, some researchers state that, large-scale development of the
big data may not happen in the gas & oil industry. Although the oil & gas industry
already understands the value of the data, how to make correct data management for
mass data generated in current oil & gas industry is still the problem that the related
personnel must solve. The correct data management directly affects the business
efficiency as well as the success and risk of the new program. Establishing the big
data development strategy of the oil & gas industry requires considering the prob-
lems existed in the data use field.

One of the main challenges of the big data in any industry including the oil & gas
industry is the costs related with the management of the data records, storage and
analysis. The data collection of the oil & gas industry costs lots of funds, but the data
is not maintained. Most companies have no structured data management method. In
addition, most enterprises in the oil & gas industry usually take the data as the
descriptions and records of their assets or investment process, but not consider the
data as the asset and just ignore the inner value of the data. Generally, there are lots
of unprocessed old data archived in the oil & gas industry. With the big data
technology, they can be transferred into more valuable knowledge. However, only
the big data leaders (social network providers) of this industry are aware of the
significance of taking the data as the underlying asset. The data shall be taken as the
asset and incorporated into the operation philosophy of the organizations in the oil &
gas industry, define which data is valuable and apply the overall data evaluation
method. The data management shall be more highly regarded.
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The oil & gas industry has mass data, though these data belongs to different fields.
The value of the data extracted from the original data field (marketing, finance,
manufacturing, etc.) is of great importance and difficulty. Although there are con-
siderable researches, it has not achieved any actual effect.

In addition, integrating the digital tools and equipment into single system,
adopting the comprehensive method for capital-intensive new programs for data
collection and improving the application of the intelligent tools during production
process are all problems that the big data in the oil & gas industry must be faced with.
The biggest challenge for utilizing the big data in the oil & gas industry is lacking the
consciousness and business supports. Other challenges discovered in the investiga-
tion include the data-related decision, lacing proficient personnel and the cost of the
big data infrastructure. Therefore, let the staff and executive personnel be familiar
with this technology and its application will greatly accelerate the implementation of
the big data in the oil & gas industry.

8.9 Looking in the Future

Breakthroughs are happening in the oil & gas industry. This is not only the progress
in aspects of the new downhole tools, designs of the drilling machine and operation
procedures, but it is the revolutionary beginning of the overall trend in the oil & gas
industry. The rapid progress in the big data management, digital connection and
high-performance computing will change most costs and risks in the upstream
programs concerning drilling and oil well construction and then inevitably change
the game rules in overall health, safety, environment, efficiency and the financial
performance of oil well. The application of big data is called “the dawn of the new
era for the oil & gas industry” and “the fourth industrial revolution”. Although the
application of the big data technology in the oil & gas industry is still in the starting
phase, it displays extraordinary potentials.

8.9.1 Big Data Awareness

As previously mentioned, the big data seems to have bright prospects in the oil & gas
industry. One investigation made by IDC Energy finds out that, currently the big data
lacks the business support, the cognition of the big data within the industry is not
profound and the investigation in the oil & gas industry still lags behind. Among the
professionals accepting the investigation in the oil & gas industry, only 36% of them
plan to make major or moderate investment on the big data and analysis this year.
The oil & gas companies must understand the concept of “big data” and its potential
application and clearly know which technologies need to be updated. The main
problem here is defining which data is valuable and analyzing it to acquire the
market advantages and keep the competitive power.

8.9 Looking in the Future 307



Currently the oil & gas industry lacks the investment and construction on the big
data infrastructure, and meanwhile the big data practitioners and the big data
engineers in the oil & gas industry are also insufficient. Therefore, let the staff and
executive personnel be familiar with this technology and its application will greatly
accelerate the implementation of the big data in the oil & gas industry. In addition,
although some oil & gas companies have paid attention to the big data technology,
but the investments and researches in this aspect are still not enough. The facts prove
that, the oil & gas industry is cost-oriented. If the big data technology can prove its
capacity in reducing the operation cost, the oil & gas industry will increase its
attention on it greatly. The oil & gas companies shall lay emphasis on the patent
layout and technology layout of the big data technology, and remain invincible in the
future ware of big data.

8.9.2 Data Processing of Sensor

With the development of the digital oilfield, more and more data appear in the oil &
gas industry and various sensors and recording equipment generate millions of data
per day. One key challenge that the digital oilfield is faced with is transmitting the
data from the oilfield to the data processing facility according to the data type, data
volume and data protocol. Integrate the digital oilfield plan with the big data analysis
to realize better comprehensive operation and working process. This type of progress
in the big data aspect expects to lead to lower operation cost, lower descending risk
and less uncertainty and shorten the non-production time.

In fact, no matter it is the oil & gas industry or other industries, how to reduce the
costs of managing the data records, reservoir and analysis is a challenge that the big
data technology must be faced with. With the recent technical progress, fog com-
puting, cloud computing and Internet of Things have applied to solve the problems
related with data storage and computing. The cloud computing is connecting the
off-site high speed computer with the on-site computing system to process the
on-site situations. Amazon WebServices’s Oil &Gas Director of Global Business
Development of Arno van den Haak stated: “With the beginning of the cloud
operation, we completely see the innovation ability of our industry now, not several
years or several decades, but several weeks.” An operator using this “innovate fast,
fail fast” approach is, according to van den Haak, Australia’s Woodside Energy. The
company has fully embraced cloud computing capabilities in its daily operations.

The big data in the oil & gas industry, especially in the upstream field, relies on
the sensor arranged in the well site. The precision of the big data processing is
limited by the frequency and the data quality of the data recording sensor. However,
during the process of collecting mass data, the capacity of trusting its effectiveness
and source becomes more and more difficult. The oil engineering expert shall
cooperate with the data scientist and correctly apply the big data tools to solve
various problems in the oil engineering field. Each company shall develop its special
big data tools, including data recording and storage facilities as well as the data
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analysis tools. This may reduce the software ownership cost and optimize the value
of recording the data.

8.9.3 Interdisciplinary Collaboration

The process and decision related with the oil & gas exploration, development and
production generate mass data. At present, merely in America, there are about
1,000,000 oil wells producing oil and/or gas, and there are more oil well monitoring
performances. The data volume increase every day. The oil & gas industry realizes
that, using the data in a more intelligent and convenient way may find out strong
power and impending breakthroughs in these data. The oil & gas industry is a
traditional industry, while the big data technology is an emerging Internet technol-
ogy. The big data analysis adopts the statistical analysis, data mining, machine
learning, simulation model, optimization method, data visualization, data aggrega-
tion and integration and other methods. Bridging the gap in vocabulary and culture
between the data scientists and oil technical professionals is a problem required to be
solved in the oil big data field. This needs interdisciplinary collaboration among
various fields. In the oil & gas industry, the big data can be used for seismic analysis,
reservoir modeling, drilling services and production reporting. Integrate the big data
method and physics-oriented data analysis, establish the interdisciplinary team
composed of the computer scientists and oil engineers, take the results as the user-
friendly interface, take the demands as the orientation, solve the relation between the
problem and the overall situation and thus make the integration of the big data
technology in the oil engineering field closer. The oil industry is considered as the
“No Man’s Land” for the entrepreneurs in the new era, while the main technology
provider costs billions of dollars to attempt to enter into such industry (such as
General Electric, IBM and Microsoft). The big data analysis adopts the statistical
analysis, data mining, machine learning, simulation model, optimization method,
data visualization, data aggregation and integration and other methods.

8.9.4 Data Integration System

Various different types of data generated during the drilling and its processing are
problems that must be faced with during the drilling. As for the drilling process and
the features of dispersed data sources, data integration of the drilling data is the
precondition for making the analysis and processing of the drilling big data. Related
researchers commit themselves to establish the big data integration in the drilling
engineering, namely the analysis system expects to make the real-time processing
and utilization for the data during the drilling process, and offer decision-assistant
data support for improving the drilling technology and promoting the drilling
efficiency.
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Forcibly transferring the data to single data model may cause a series of problems,
such as reducing the performance and improving the integration complexity. How-
ever, the integrated data system supporting multiple data storages has begun to
appear, and the data integration system will become a key component for the
researches of big data.

The researchers propose the frame model for the integration system of the big data
and propose a group of qualitative evaluation standards: heterogeneity, autonomy,
transparency, flexibility and optimality; they analyze and propose the important
direction of future integration system, especially establishing the principles of
equivalence and inclusion for cross-model queries, valid data conversion (including
the migration among data storages), performance monitoring and automatic load
balancing as well as distributed locking and transaction management.

8.10 Conclusion

With the development of the drilling intelligentization and digitalization, the auto-
mation degree of the drilling system is continuously improved. The dehumanization
of the production facility and the intelligent management system during the tech-
nology, energy, transmission and industrial process is also continuously developing.
The data volume generated in the oil industry is continuously improved. In the
future, the data utilization will increase exponentially. Who has bigger data utiliza-
tion, who will take the superiority in the competition?

Oil is the commodity with the biggest transaction volume in the world. Google,
Facebook and Amazon advanced data analysis now is more and more applied into
the energy industry. The timeliness and the importance of this research are obvious.
The upstream, midstream and downstream of the oil industry is an integral whole,
inseparable. Driven by the upstream big data, the midstream and down stream’s
attentions on the big data technology also will be improved.

The big data technology will generate disruptive influences on the whole oil &
gas industry. Better utilize the big data, improve the petroleum and petrochemical
industries and take it as the global leading industry to take the preemptive opportu-
nities on the tide of economic development.

The functions of the big data in the production are embodied in following aspects:

1. Evaluate the stratum, develop new prospects and offer advantages for the com-
petitive bidding;

2. Predict and analyze the changes in the oil deposit layer. Offer intelligent analysis
for the oil deposit engineers by integrating and analyzing the seismic, drilling and
production data and then improve the recovery ratio;

3. Make use of the big data technology to analyze the oil & gas price trends to guide
the production, help the oil & gas companies to realize the optimization of
resource allocation and then acquire the optimal cost control and profit value;
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4. Optimize the production parameters to slow down the attenuation of the oil & gas
well;

5. The enterprise will utilize the big data to remold the production and supply chain
and then realize the maximization of the business value.

Not merely the big data technology will generate influences on the oil & gas
industry. The progresses obtained in computing technology, Internet of Things,
cloud computing, mobile communication technology, robot technology and artificial
intelligence bring new innovations for the oil & gas industry. Integrating the
traditional production mode in the oil & gas industry with the rapidly developing
Internet industry will definitely make the oil & gas industry glow the new vitality.
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