

Roll No.									
----------	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 27-10-2025

Time: 11.00am to 12.30pm

School: SOCSE/SOE	Program: B. TECH	
Course Code: CAI3429	Course Name: Deep Learning Techniques for Computer Vision	
Semester: VII	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	24	26	-	-	-

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	List the common optimization algorithms used in training Convolutional Neural Networks.	2 Marks	L1	CO1
2	Define the term Region Proposal Network (RPN) used in Faster R-CNN.	2 Marks	L1	CO1
3	Why is pooling used after convolution operations in a CNN?	2 Marks	L2	CO2
4	Differentiate between R-CNN and YOLO object detection approaches.	2 Marks	L2	CO2
5	What happens when the convolution kernel size increases in a CNN layer?	2 Marks	L2	CO2

Part B

Answer the Questions.

Total Marks 40M

6.	a.	Explain the architecture of a Convolutional Neural Network with a neat diagram and discuss the role of each layer.	10 Marks	L2	CO1
	b.	Demonstrate how backpropagation works in CNN with an example.	10 Marks	L3	CO1

Or

7.	a.	Analyze how different activation functions (ReLU, Sigmoid, Tanh, Softmax) affect CNN training performance.	10 Marks	L4	CO1
	b.	Evaluate the advantages and limitations of transfer learning compared to training a CNN from scratch.	10 Marks	L5	CO1

8.	a.	Describe the working principle of Faster R-CNN with the role of Region Proposal Network (RPN).	10 Marks	L2	CO2
	b.	Apply the YOLO detection concept to explain how real-time object detection is achieved.	10 Marks	L3	CO2

Or

9.	a.	Analyze the difference between semantic and instance segmentation with suitable examples.	10 Marks	L4	CO2
	b.	Evaluate the effectiveness of U-Net architecture in medical image segmentation tasks.	10 Marks	L5	CO2