

Roll No.								
----------	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 27-10-2025

Time: 11.00am to 12.30pm

School: SOCSE	Program: M.Tech. in CSE specialization in Artificial Intelligence	
Course Code : AIE4002	Course Name: Machine Learning Algorithms	
Semester: I	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	26	24	-	-	-

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	Explain the purpose of splitting data into training and test sets.	2 Marks	L2	CO1
2	Illustrate the usage of regularization in machine learning models.	2 Marks	L2	CO1
3	Describe the cost function and its relation to model optimization.	2 Marks	L2	CO1
4	Summarize the usage of dendrogram in hierarchical clustering.	2 Marks	L2	CO2
5	Differentiate between agglomerative and divisive hierarchical clustering	2 Marks	L2	CO2

Part B

Answer the Questions.**Total Marks 40M**

6.	a.	Describe the concept of data scaling. Compare standard scaling and robust scaling techniques with examples, and explain why scaling is essential before training models.	10 Marks	L2	CO 1
-----------	-----------	--	-----------------	-----------	-------------

Or

7.	a.	Discuss the structure and properties of a good dataset used for machine learning by stating the key characteristics that make a dataset suitable for training a model effectively?	10 Marks	L2	CO 1
-----------	-----------	--	-----------------	-----------	-------------

8.	a.	Explain the data-generating process in machine learning. How does understanding the data source and its underlying distribution help in designing better models?	10 Marks	L2	CO 1
-----------	-----------	--	-----------------	-----------	-------------

Or

9.	a.	Show how data is divided into training, validation, and test sets in machine learning. Discuss the importance of each set and elaborate on how cross-validation improves model reliability.	10 Marks	L2	CO 1
-----------	-----------	---	-----------------	-----------	-------------

10.	a.	Describe how the Expectation-Maximization (EM) algorithm is used to estimate parameters in Gaussian Mixture Models (GMM).	10 Marks	L3	CO 2
------------	-----------	---	-----------------	-----------	-------------

Or

11.	a.	Illustrate with suitable diagrams how K-means++ improves the centroid initialization process and reduces convergence time by comparing between K-means and K-means++ algorithms.	10 Marks	L3	CO 2
------------	-----------	--	-----------------	-----------	-------------

12.	a.	Compare and contrast partition-based, hierarchical, and density-based clustering methods by highlighting their advantages, disadvantages, and use cases with examples.	10 Marks	L3	CO 2
------------	-----------	--	-----------------	-----------	-------------

Or

13.	a.	How Spectral Clustering uses graph Laplacians and eigenvalues to form clusters? Provide a suitable example.	10 Marks	L3	CO 2
------------	-----------	---	-----------------	-----------	-------------