

PRESIDENCY UNIVERSITY, BENGALURU
SCHOOL OF ENGINEERING

Max Marks: 40 Max Time: 60mins Weightage: 20 %

TEST 2

I Semester AY 2017-18 Course: CSE 201 Data Structure 27 OCT 2017

__

Instructions:

i. Write legibly

ii. Scientific and non programmable calculators are permitted

__

Part A

 (3Q x 3 M= 09 Marks)

1. Define queue with an example. Write any two real-time applications of queue.

2. Write the differences between array and linked list. List the operations in Singly Linked

List.

3. Define Header node. What is the difference between Singly Linked List and Doubly

Linked List with respect to the node structure?

Part B

 (2Q x 8 M= 16 Marks)

4. Write a function to delete any duplicate nodes from a singular linked list sorted in non-

decreasing order. The list should only be traversed once.

5. Given a singly linked list, write a function to swap elements pairwise.

Sample Input 1->2->3->4->5 Output : 2->1->4->3->5,

 1->2->3->4->5->6 Output : 2->1->4->3->6->5.

Part C

 6. a . Define Circular linked list? Explain the operations on circular linked list. Write

 functions to insert and delete a node at any given position.

 (10 Marks)

 b. Write an algorithm to implement the function enque() for a QUEUE using arrays.

 (5Marks)

Solutions with scheme

PART-A

1. Define queue with example. Write any two real-time applications of queue.

A queue is another special kind of list, where items are inserted at one end called the rear

and deleted at the other end called the front. Another name for a queue is a “FIFO” or

“First-in-first-out” list. -1

Mark

 Example: -1 Mark

Let us consider a queue, which can hold maximum of five elements. Initially the queue is

empty.

0 1 2 3 4

F R

Queue Empty

F RO NT = RE A R = 0

Now, insert 11 to the queue. Then queue status will be:

0 1 2 3 4

11

F R

RE A R = RE A R + 1

= 1 FRO NT = 0

Next, insert 22 to the queue. Then the queue status is:

0 1 2 3 4

11 22

RE A R = RE A R + 1
= 2 FRO NT = 0

Again insert another element 33 to the queue. The status of the queue is:

 0 1 2 3 4

11 22 33

F R

Now, delete an element. The element deleted is the element at the front of the queue. So the status

of the queue is:

0 1 2 3 4

RE A R = 3

F RO NT = F R O NT + 1 = 1

F R

Again, delete an element. The element to be deleted is always pointed to by the FRONT pointer.

So, 22 is deleted. The queue status is as follows:

0 1 2 3 4

33

F R

RE A R = 3

F RO NT = F R O NT + 1 = 2

Now, insert new elements 44 and 55 into the queue. The queue status is:

0 1 2 3 4

33 44 55

F R

RE A R = 5
FRO NT = 2

Page 4 of 9

Next insert another element, say 66 to the queue. We cannot insert 66 to the queue as the rear

crossed the maximum size of the queue (i.e., 5). There will be queue full signal. The queue status

is as follows:

 0 1 2 3 4

Now it is not possible to insert an element 66 even though there are two vacant positions in the linear

queue. To over come this problem the elements of the queue are to be shifted towards the beginning

of the queue so that it creates vacant position at the rear end. Then the FRONT and REAR are to be

adjusted properly. The element 66 can be inserted at the rear end. After this operation, the queue

status is as follows:

0 1 2 3 4

33 44 55 66

F R

 Applications: 1) Ticket Counter 2) Processes executed by operating system -1 Mark

2. Write the differences between array and linked list. List the operations in Singly Linked List.

Solution:

Differences between array and linked list: (Any 4) 4*1/2 = 2Marks

ARRAY LINKED LIST

Size of an array is fixed Size of a list is not fixed

Memory is allocated from stack Memory is allocated from heap

It is necessary to specify the number of

elements during declaration (i.e., during

compile time).

It is not necessary to specify the number

of elements during declaration (i.e.,

memory is allocated during run
time).

It occupies less memory than a linked list

for the same number of elements.

It occupies more memory.

Inserting new elements at the front is

potentially expensive because existing

elements need to be shifted over to
make room.

Inserting a new element at any position

can be carried out easily.

Deleting an element from an array is not

possible.

Deleting an element is possible.

Page 5 of 9

 Operations on Linked List: (Any 4) 4*1/4 =

1Mark

1. Inserting a node at the beginning.

2. Inserting a node at the end.

3. Inserting a node at intermediate position.

4. Delete a node at the end.

5. Delete the node at the beginning

6. Display

3. Define Header node. What is the difference between Singly Linked List and Doubly Linked List with

respect to the node structure?

Solution:

 1 - Mark

A header node is a special dummy node found at the front of the list. The use of header node is an

alternative to remove the first node in a list.

Usually header node data field contains the number of nodes present in the list.

 1-Mark

 Singly Linked list contains one link field, which stores the address of the next node whereas doubly

linked list contains 2 link fields, where the left link contains the previous node address and right link

contains the address of the next node.

 1-Mark

 Singly linked list node structure:

Data field Address

field

 Doubly linked list node structure:

Address

field

Data

field

Address

field

4. Write a function to delete any duplicate nodes from a singular linked list sorted in non-decreasing order.
The list should only be traversed once.

 Sol:

Algorithm:

Traverse the list from the head (or start) node. While traversing, compare each node with its next node. If

Page 6 of 9

data of next node is same as current node then delete the next node. Before we delete a node, we need to

store next pointer of the node

Implementation:
Functions other than removeDuplicates() are just to create a linked linked list and test

removeDuplicates().

#include<stdio.h>

#include<stdlib.h>

/* Link list node */

struct Node

{

 int data;

 struct Node* next;

};

/* The function removes duplicates from a sorted list */

void removeDuplicates(struct Node* head)

{

 /* Pointer to traverse the linked list */

 struct Node* current = head;

 /* Pointer to store the next pointer of a node to be deleted*/

 struct Node* next_next;

 /* do nothing if the list is empty */

 if (current == NULL)

 return;

 /* Traverse the list till last node */

 while (current->next != NULL)

 {

 /* Compare current node with next node */

 if (current->data == current->next->data)

 {

 /* The sequence of steps is important*/

 next_next = current->next->next;

 free(current->next);

 current->next = next_next;

 }

 else /* This is tricky: only advance if no deletion */

 {

 current = current->next;

 }

 }

}

 Declaration 1 mark
 List Traversal 2 marks
 Node comparision 1 Marks
 The Sequence of steps to remove the duplicates 2 Marks
 Advance the pointer to next if no deletion required 1 mark

Page 7 of 9

5. Given a singly linked list, write a function to swap elements pairwise.

Sample Input 1->2->3->4->5 Output : 2->1->4->3->5,

 1->2->3->4->5->6 Output 2->1->4->3->6->5.

*Function to swap two integers at addresses a and b */
void swap(int *a, int *b);

/* Function to pairwise swap elements of a linked list */
void pairWiseSwap(struct Node *head)
{
 struct Node *temp = head; 1 Mark

 /* Traverse further only if there are at-least two nodes left */
 while (temp != NULL && temp->next != NULL) -2 marks
 {
 /* Swap data of node with its next node's data */
 swap(&temp->data, &temp->next->data); 2 marks

 /* Move temp by 2 for the next pair */
 temp = temp->next->next; 2 marks
 }
}
 Declaration 1 mark
 List traversal 2 marks
 Swapping 2 marks
 Move pointer by 2 for the next pair 2 marks

6a. Define Circular linked list? Explain the operations on circular linked list. Write the function

 to insert and delete a node at a given position.

 Sol: A circular linked list is one, which has no beginning and no end. A single linked list can be

 made a circular linked list by simply storing address of the very first node in the link field of the

 last node. 1.5m

 The basic operations in a circular linked list are: 1.5m

 Creation.
 Insertion.
 Deletion.
 Traversing.

Page 8 of 9

The Function to insert and delete at particular position is given below:

NODE insert_at_pos(NODE head,int pos,int item) 3.5m

{

 NODE temp,cur,prev;

 int cn=1;

 temp = (NODE)malloc(sizeof(struct node));

 temp->data = item;

 prev=head;

 cur=head->link;

 while(cur!=head && pos!=cn)

 {

 prev=cur;

 cur=cur->link;

 cn++;

 }

 prev->link=temp;

 temp->link=cur;

 head->data=++count;

return head;

}

 NODE del_pos(NODE head,int pos) 3.5m

 {

 NODE cur,prev;

 int cn=1;

 if(pos>head->data)

 {

 printf("deletion not possible Invalid position\n");

 }

 else

 {

 prev=head;

 cur=head->link;

 while(cur!=head && pos!=cn)

 {

 prev=cur;

 cur=cur->link;

 cn++;

 }

 prev->link=cur->link;

 printf("ele deleted is %d\n", cur->data);

 free(cur);

 head->data=--count;

 return head;

 }

}

Page 9 of 9

6b. Write an algorithm to implement the function enque() for a QUEUE using aarrys. 5m.

#define QSize 5

int front=-1,rear=-1;

Void enque()

{

 int ele;

 printf(“Enter the element\n”);

 scanf(“%d\n”,&ele);

 if(front!=rear)

 {

 Q[++rear]=ele;

 }

 else

 printf(“Q if FULL\n”);

}

Page 1 of 1

PRESIDENCY UNIVERSITY, BENGALURU
SCHOOL OF ENGINEERING

Max Marks: 40 Max Time: 60 Mins Weightage: 20 %

TEST 1

I Semester 2017-2018 Course: CSE 201 Data Structure 16 SEPT 2017

Instructions:

i. Write legibly

ii. Scientific and non programmable calculators are permitted

Part A

 (3Q x 3 M= 09 Marks)

1. Define Data structure? What are the different types of data types of structure with example.

2. What is a pointer? Explain with example the syntax and declaration of pointer variable.

3. What is dynamic memory allocation? Name the different types of memory management function

Part B

 (7 Q x 3 M= 21 Marks)

1. Define structure and union with syntax. Explain with simple example.

2. Explain how algorithms are analyzed? Differentiate between the recursive and iterative algorithm.

3. Give the recursive algorithm to find the GCD of a two numbers.

4. Define stack? Explain on what principal the stack works with example.

5. What are the operations on stack? Give the algorithm for the operations on stack.

6. What are the applications of stack?

7. Convert the following infix expression to postfix and evaluate the postfix expression.

i) ((2+(4-3)*6)^1+4)

ii) (7-2*(3+4)-3*2)*5

Part C

 (1 Q x 10 M= 10Marks)

1. What is postfix expression? Write the algorithm to convert the infix to postfix expression .Convert the given

infix expression to postfix using the algorithm.

A * (B + C * D) + E

