

Roll No.									
----------	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 27-10-2025

Time: 11.00am to 12.30pm

School: SOE/SOCSE	Program: B.TECH, (CSE)	
Course Code : CSD3403	Course Name: Optimization Techniques For Data Science	
Semester: VII	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	24	26	-	-	-

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	Calculate L1 and L2 norm of given vector $v = (0, -4, 5, -1)$.	2 Marks	L1	CO1
2	Define a vector and what is vector space.	2 Marks	L1	CO1
3	Write the first order & second order Optimality Conditions.	2 Marks	L1	CO2
4	Define Gradient, Hessian in the context of Optimization.	2 Marks	L2	CO2
5	Differentiate between a local maximum and a global maximum of a function.	2 Marks	L2	CO2

Part B

Answer the Questions.

Total Marks 40M

6.	a.	What are convex sets and convex functions explain with a an example. What is the difference between convex and non-convex optimization problems	10 Marks	L3	CO1
-----------	-----------	--	-----------------	-----------	------------

Or

7.	a.	Comment on solution for the system of linear equations and solve for the solution if it exists. $x + 2y + 3z = 6$ $2x + 4y + 6z = 12$ $-3x - 6y - 9z = -18$	10 Marks	L2	CO1
----	----	--	----------	----	-----

8.	a.	Derive the first order and second order necessary conditions for optimality of a differentiable function.	10 Marks	L2	CO1
----	----	---	----------	----	-----

Or

9.	a.	Find the stationary points and determine their nature (maxima, minima or saddle) for $f(x) = x^2 + y^2 - 4x - 6y + 13$	10 Marks	L3	CO1
----	----	--	----------	----	-----

10.	a.	Given the function $f(x,y) = x^2 + 3y^2 - xy - 10x$ and initial point $(x_0, y_0) = (0,0)$ using newtons method, find the maxima of the given function using weights updation (Learning rate = 1)	10 Marks	L3	CO2
-----	----	---	----------	----	-----

Or

11.	a.	Write a short note on RMSProp and Adam Optimizers.	10 Marks	L2	CO2
-----	----	--	----------	----	-----

12.	a.	Write a short note on Quasi – Newton methods (BFGS, L-BFGS) and its advantages over newtons method b. Define step size and Line Search.	10 Marks	L2	CO2
-----	----	--	----------	----	-----

Or

13.	a.	Explain Gradient Descent on a non-symmetric quadratic function $f(x,y) = x^2 + xy + y^2$ and compute (i) gradient at (x_0, y_0) (ii) new point (x_1, y_1) (iii) function value $f(x_1, y_1)$, where initial point $(x_0, y_0) = (2,1)$ and learning rate = 0.1	10 Marks	L3	CO2
-----	----	--	----------	----	-----