

Roll No.								
----------	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations -October 2025

Date: 27-10-2025

Time: 11.00am to 12.30pm

School: SOCSE/SOE	Program:	
Course Code : CAI3407	Course Name: Agentic AI	
Semester: VII	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	25	25			

Instructions: Read all questions carefully and answer accordingly.

(i) Do not write anything on the question paper other than roll number.

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	List any two advantages of Agentic AI systems.	2 Marks	L1	CO1
2	What is the purpose of the OpenAI API in building agentic systems?	2 Marks	L2	CO1
3	Give one example of a task that benefits from parallel processing.	2 Marks	L3	CO1
4	Illustrate the use of agents and tasks in a CrewAI workflow.	2 Marks	L3	CO2
5	Compare single-agent and multi-agent architectures.	2 Marks	L2	CO2

Part B

Answer the Questions.

Total Marks 40M

6.	a.	Explain the concept of Agentic AI and illustrate how multi-step LLM workflows enable autonomous decision-making in real-world applications.	10 Marks	L3	CO1
	b.	Illustrate how to set up a complete development environment for building agentic systems, including Git, Cursor IDE, and API integration. Why is each component important?	10 Marks	L3	CO1

Or

7.	a.	Interpret the principles of prompt engineering for achieving tool-based autonomy. How can effective prompts enhance agent performance?	10 Marks	L3	CO1
	b.	Demonstrate how asynchronous programming in Python can improve the efficiency of LLM-based systems. Include code examples.	10 Marks	L3	CO1

8.	a.	Demonstrate the major components of CrewAI such as agents, tasks, tools, processes, and memory.	10 Marks	L3	CO2
	b.	Apply the principles of CrewAI to design a workflow for a finance-based multi-agent system.	10 Marks	L3	CO2

Or

9.	a.	Examine the interaction between agents, tasks, and tools in CrewAI during a complex process execution.	10 Marks	L3	CO2
	b.	Sketch a conceptual model of a multi-agent CrewAI-based system for managing energy grids, detailing the roles of agents, message passing, and collaboration mechanisms.	10 Marks	L3	CO2