

PRESIDENCY UNIVERSITY

BENGALURU

Mid - Term Examinations – October 2025

Date: 28-10-2025

Time: 11.00am to 12.30pm

School: SOCSE	Program: IST	
Course Code : CSE3022	Course Name: CRYPTO CURRENCY TECHNOLOGY	
Semester: VII	Max Marks: 50	Weightage: 25%

CO - Levels	CO1	CO2	CO3	CO4	CO5
Marks	26	24	-	-	-

Instructions:

- (i) *Read all questions carefully and answer accordingly.*
- (ii) *Do not write anything on the question paper other than roll number.*

Part A

Answer ALL the Questions. Each question carries 2marks.

5Q x 2M=10M

1	Describe collision-resistance in the context of cryptographic hash functions.	2 Marks	L	CO1
2	Identify the three algorithms that make up a digital signature scheme?	2 Marks	L	CO2
3	Describe a message digest and discuss its relation to cryptographic hash functions?	2 Marks	L	CO1
4	Explain why storing only the latest block's hash is enough to detect tampering in a blockchain?	2 Marks	L	CO2
5	Discuss about "nonce" in the context of commitment schemes?	2 Marks	L	CO1

Part B

Answer the Questions.

Total Marks 40M

6.	a.	Summarize digital signatures and discuss how the unforgeability game defines their security.	10 Marks	L	CO1
	b.	Describe GoofyCoin's mechanism and analyze its security flaw showing the double-spending challenge in cryptocurrencies.	10 Marks	L	CO1

Or

7.	a.	Discuss why a reliable source of randomness is vital in ECDSA and how poor randomness can compromise key generation and signature security	10 Marks	L	CO1
	b.	Describe how cryptography ensures security in cryptocurrencies and compare its use with traditional encryption.	10 Marks	L	CO1

8.	a.	Describe the components of a digital signature and discuss how the unforgeability game validates its security.	10 Marks	L	CO2
	b.	Distinguish cash-based and credit-based systems and discuss their advantages, drawbacks, and relevance to online payments.	10 Marks	L	CO2

Or

9.	a.	Explain how public keys serve as identities in decentralized systems, noting their benefits and related privacy concerns.	10 Marks	L	CO2
	b.	Discuss how hash pointers make a blockchain tamper-evident and discuss why altering data within the chain would fail.	10 Marks	L	CO2