ROLL NO

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Max Marks: 40

Max Time: 120 Mins

Weightage: 40 %

ENDTERM FINAL EXAMINATION

I Semester AY 2017-18 Course: ECE/EEE 201 ANALOG ELECTRONICS 19 DECEMBER 2017

Instructions:

- i. Write legibly
- ii. Scientific and non-programmable calculators are permitted

Part A

[4 Q x 4 M= 16 Marks]

- 1. On what basis the power amplifiers are classified? List only the types of power amplifiers.
- 2. Give a comparison table for the Push-Pull and Complementary Symmetry Class-B amplifiers.
- **3.** Using the voltage and current equivalencies of a two-port network, obtain different h-parameters (**Hint: Use Two-Port equations**).
- **4.** Briefly discuss the operation of an n-channel JFET by drawing its construction diagram with proper voltage sources and its characteristics curve.

Part B

[2 Q x 7 M= 14 Marks]

- 5. Show that the Class-A Series Fed power amplifier has a maximum power efficiency of 25%.
- 6. With the help of a neat circuit diagram, explain the working of Heartley Oscillator.

Part C

[1 Q x 10 M= 10 Marks]

7. The typical h-parameter values of a Common Emitter amplifier is given as $h_{ie} = 1100 \Omega$, $h_{re} = 2.5 \times 10^{-4}$, $h_{fe} = 50$, $h_{oe} = 24 \mu A / V$. If the load resistance $R_L = 20K$ and the source resistance $R_S = 4K$, find A_I , A_{IS} , R_i , A_V , A_{VS} .

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Max Marks: 20

Max Time: 60 Mins

Weightage: 20 %

TEST 2

I Semester AY 2017-2018	Course: ECE/EEE 201 ANALOG ELECTRONICS	27-OCT-2017
I Semester AY 2017-2018	Course: ECE/EEE 201 ANALOG ELECTRONICS	27 - 0C1-201

Instructions:

- i. Write legibly
- ii. Scientific and non programmable calculators are permitted

Part A

(1Q x 8 M= 08 Marks)

1) Explain with a neat diagram voltage divider bias circuit for Exact analysis.

Part B

 $(1Q \times 7M = 07 \text{ Marks})$

 Draw a double diode clipper which limits at two independent levels and explain its Working.

Part C

(1Q x5 M= 05 Marks)

3) For the fixed bias circuit, RB=50k Ω , Rc=500 Ω , Vcc=10 V. Find the coordinates of the operating points. Draw the DC load line and locate the operating points on the DC load line. Assume silicon transistor with β =50 and VBE=0.7v.

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Max Marks: 20

Max Time: 60 Mins

Weightage: 20 %

TEST 1

I Semester 2017-2018 Course: ECE / EEE 201 Analog Electronics 16 September 2017

Instructions:

- i. Write legibly
- ii. Scientific and non-programmable calculators are permitted.

Part A

$$(3 Q x 2 M = 6 Marks)$$

- 1. Briefly explain with a neat sketch the "Hall Effect".
- 2. Plot and label the V-I characteristics for a Ge and Si diode.
- 3. Define the Diffusion Capacitance and Transition Capacitance.
- 4. Find *I* and *V* in the four circuits shown in Figure 1 below using the constant voltage drop (simplified) model with $V_{Th} = V_{Y} = V_{K} = 0.7 V$.

(1 Q x 8 M = 8 Marks)

5. With a neat circuit diagram and the corresponding waveform, explain the working principle of a Full Wave Rectifier (with 2 diodes) and derive the following formulae:
(a) I_{dc}
(b) I_{rms}
(c) Ripple Factor.

Part B

(1 Q x 6 M = 6 Marks)