ROLL NO

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Max Time: 120 Mins
Weightage: 40 \%
ENDTERM FINAL EXAMINATION

I Semester AY 2017-18 Course: ECE/EEE 201 ANALOG ELECTRONICS 19 DECEMBER 2017

Instructions:

i. Write legibly
ii. Scientific and non-programmable calculators are permitted

Part A

[4 Q x 4 M= 16 Marks]

1. On what basis the power amplifiers are classified? List only the types of power amplifiers.
2. Give a comparison table for the Push-Pull and Complementary Symmetry Class-B amplifiers.
3. Using the voltage and current equivalencies of a two-port network, obtain different hparameters (Hint: Use Two-Port equations).
4. Briefly discuss the operation of an n-channel JFET by drawing its construction diagram with proper voltage sources and its characteristics curve.

Part B

[2 Q x 7 M=14 Marks]
5. Show that the Class-A Series Fed power amplifier has a maximum power efficiency of 25%.
6. With the help of a neat circuit diagram, explain the working of Heartley Oscillator.

Part C

$$
\text { [1 Q x } 10 \mathrm{M}=10 \text { Marks] }
$$

7. The typical h-parameter values of a Common Emitter amplifier is given as $\mathrm{h}_{\mathrm{ie}}=1100 \Omega, \mathrm{~h}_{\mathrm{re}}$ $=2.5 \times 10^{-4}, \mathrm{~h}_{\mathrm{fe}}=50, \mathrm{~h}_{\mathrm{oe}}=24 \mu \mathrm{~A} / \mathrm{V}$. If the load resistance $\mathrm{R}_{\mathrm{L}}=20 \mathrm{~K}$ and the source resistance $\mathrm{R}_{\mathrm{S}}=4 \mathrm{~K}$, find $\mathrm{A}_{\mathrm{I}}, \mathrm{A}_{\mathrm{IS}}, \mathrm{R}_{\mathrm{i}}, \mathrm{A}_{\mathrm{v}}, \mathrm{A}_{\mathrm{vs}}$.

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Max Marks: 20
Max Time: 60 Mins
Weightage: 20 \%

TEST 2

Instructions:

i. Write legibly
ii. Scientific and non programmable calculators are permitted

Part A

(1Q x 8 M= 08 Marks)

1) Explain with a neat diagram voltage divider bias circuit for Exact analysis.

Part B

(1Q x 7M= 07 Marks)
2) Draw a double diode clipper which limits at two independent levels and explain its Working.

Part C

(1Q x5 M= 05 Marks)
3) For the fixed bias circuit, $\mathrm{RB}=50 \mathrm{k} \Omega, \mathrm{Rc}=500 \Omega, \mathrm{Vcc}=10 \mathrm{~V}$. Find the coordinates of the operating points. Draw the DC load line and locate the operating points on the DC load line. Assume silicon transistor with $\beta=50$ and $\mathrm{VBE}=0.7 \mathrm{v}$.

Max Marks: 20
GAIN MORE KNOWLEDGE
REACH GREATER HEIGHTS

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Max Time: 60 Mins
TEST 1
I Semester 2017-2018 Course: ECE / EEE 201 Analog Electronics
Weightage: 20%

16 September 2017

Instructions:

i. Write legibly
ii. Scientific and non-programmable calculators are permitted.

Part A

(3 Q x $2 \mathrm{M}=6$ Marks)

1. Briefly explain with a neat sketch the "Hall Effect".
2. Plot and label the V-I characteristics for a Ge and Si diode.
3. Define the Diffusion Capacitance and Transition Capacitance.

Part B

(1 Q x $6 \mathrm{M}=6$ Marks)
4. Find I and V in the four circuits shown in Figure -1 below using the constant voltage drop (simplified) model with $V_{T h}=V_{\gamma}=V_{K}=0.7 \mathrm{~V}$.

Figure - 1

Part C

(1 Q x $8 \mathrm{M}=8$ Marks)
5. With a neat circuit diagram and the corresponding waveform, explain the working principle of a Full Wave Rectifier (with 2 diodes) and derive the following formulae:
(a) $I_{d c}$
(b) $I_{r m s}$
(c) Ripple Factor.

