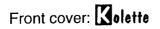
Institut Français du Pétrole Publications


drilling data handbook

Seventh edition

ÉDITIONS TECHNIP

NOTICE

The numerical values and characteristics of the equipment and procedures described in this book are for guidance purposes only, and are not the responsibility of the authors or the companies and organizations mentioned. Further information can be obtained directly from the companies and manufacturers concerned.

© 1999, Éditions Technip, Paris

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without the prior written permission of the publisher.

ISBN 2-7108-0756-4

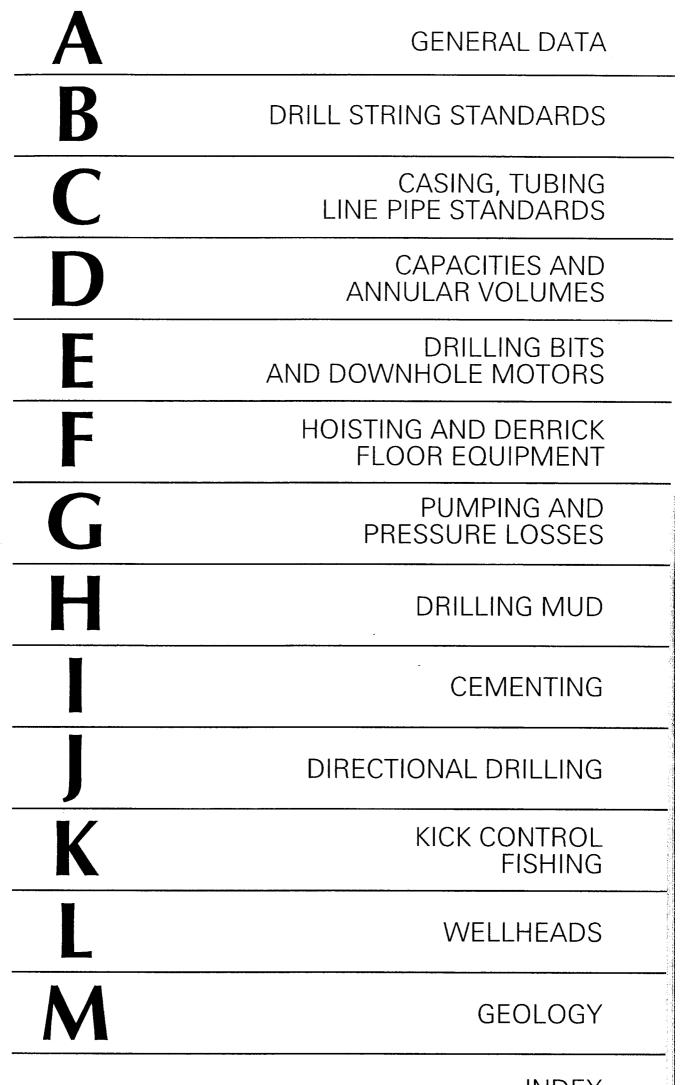
Foreword

to the Seventh Edition

The sixth edition of the Drilling Data Handbook was published in 1991. Over the past ten years, drilling techniques have considerably evolved.

New Specifications and Recommended Practices have been published by the American Petroleum Institute and, in the meantime, manufacturers have also greatly improved their equipment.

ş


Į

In particular, remarkable progress has been achieved in the following fields:

- Horizontal displacements have reached a distance of over ten kilometers in directional and horizontal drilling, with the use of more complex bottom hole assemblies and drill strings.
- Coiled tubing units are now being used almost systematically during workover, and occasionally during drilling.
- The range of drilling bits has been entirely renewed, and the classifications and Used Bit Dull Grading System Format and Codes of the IADC have been modified accordingly.
- New dimensions and weights for casings have appeared with the drilling of HP-HT wells.
- Wellhead equipment and control systems were modified to keep up with deep offshore drilling.

This list is not exhaustive. However, it demonstrates that a new edition of the Drilling Data Handbook was undeniably needed in order to reflect these changes.

We indeed hope that experienced users of this handbook will appreciate the new edition in an environment which is already familiar to them.

INDEX

_____ general data

Conversion factor to SI units	A1
Conversion factors	A2-A7
Decimal multiples and submultiples of a unit	A 8
Decimals and metric equivalents of fraction of an inch	A9
Temperature conversion table	A10
Correspondence between specifig gravity and degrees API (at 15.56 °C in relation to water at 15.56°C and 760 mmHg).	A11
Numerical constant and mathematical formulas	A12
Trigonometric formulas	A13
Geometry formulas for areas and volumes	A14
Inertia of plane surface	A15
Content of horizontal cylindrical tank	A16
Mechanics and strength of material	A17-A19
Electricity. Direct current	A20-A21
Electricity. Alternating current	A22-A23
Principal chemical symbol, atomic numbers and weights	A24
Specific gravity of various materials and fluids	A25

Physical properties of metals	A26
Stratigraphic scale	A27
Buoyancy factor (Steel specific gravity = 7.85)	A28

CONVERSION FACTORS TO SI UNITS

Multiply	Symbol	by	to obtain	Symbol
Acres		4046.8	Square meters	m ²
Barrels	bbl	0.158984	Cubic meters	m ³
Barrels per day	bbl/d	0.0066243	Cubic meters per hour	m ³ /h
British thermal units	Btu	1055.06	Joules	J
Feet	ft	0.3048	Meters	m
Square feet	ft ²	0.0929	Square meters	m ²
Cubic feet	ft ³	28.302	Liters	
Cubic feet per barrel	ft ³ /bbl	0.17811088	Cubic meters by cubic meter	m ³ /m ³
Foot.pound-force	ft.lbf	1.35582	Joules	J
Foot.pound-force	ft.lbf	1.3558	Newton.meter	N.m
Gallons (US)	gal (US)	3.7854	Liters	
Gallons (US) per foot	gal/ft	12.4191	Liters per meter	l/m
Horsepowers	hp	0.7457	Kilowatts	kW
Inches	in	2.54	Centimeters	cm
Square inches	in ²	6.4516	Square centimeters	cm ²
Cubic inches	in ³	16.387064	Cubic centimeters	cm ³
Inches.pound-force	in.lbf	0.1129848	Newton.meter	N.m
kip		4.45E+03	Newton	N
kip per square inch	ksi	6.89E+06	Pascal	Pa
Knot		0.514444	Meters per second	m/s
Miles	mile	1609.3	Meters	m
Square miles	sq mile	258.9998	Hectares	ha
Miles (Nautical)	mile (Nau)	1.853	Kilometers	km
Miles (Statute) <i>land miles</i>	mile (st)	1.6093	Kilometers	km
Pounds per square inches/foot	psi/ft	22.62	Kilopascal/meter	kPa/m
Pounds-force	lbf	4.44822	Newtons	N
Pounds-force per cubic foot	lbf/ft ³	0.0160185	Kilograms-force per liter	kgf/l
Pounds-force per square inch	psi	0.068947448	Bars	bar
Pounds-force per square inch	psi	6.894745	Kilopascals	kPa
Pounds-force/cubic foot	lbf/ft ³	0.01602	Kilogram-force/liter	kgf/l
Pounds-force/gallon	lbf/gal	0.1198	Kilogram-force/liter	kgf/l
Fons-force (long)	lg tonf	1.01605	Tons-force	tf
Fons-force (short)	sh tonf	0.9072	Tons-force	tf
Yards	yd	0.9144027	Meters	m
Square yards	yd ²	3.22831E-07	Square miles	sq mile
Cubic yards	yd ³	764.6	Liters	1

CONVERSION FACTORS

Acres Acres				Symbol
Acres		0.404686	Hectares	ha
		0.00404686	Square kilometers	km²
Acres		43560	Square feet	ft ²
Acres		4840	Square yards	yd ²
Acres		43560	Square feet	ft ²
Acres		4840	Square yards	yd ²
Acres		4046.8	Square meters	m²
Acres		0.00156	Square miles	sq mile
Acres		40.47	Ares	а
Ampere-hour	Ah	3600	Coulomb	С
Ares	а	0.0247096	Acres	
Atmospheres (mean sea level)	atm	29.92	Inches of mercury	inHg
Atmospheres (mean sea level)	atm	14.691	Pounds per square inch	psi
Atmospheres (mean sea level)	atm	76	Centimeters of mercury	cmHg
Atmospheres (mean sea level)	atm	101325	Pascals	Pa
Barrels	bbl	0.158984	Cubic meters	m ³
Barrels	bbl	9702	Cubic inches	in ³
Barrels	bbl	5.6146	Cubic feet	ft ³
Barrels	bbl	34.9726	Imperial gallons	gal (UK)
Barrels	bbl	42	Gallons (US)	gal (US)
Barrels	bbl	158.984	Liters	1
Barrels per day	bbl/d	0.0066243	Cubic meters per hour	m³/h
Barrels per foot	bbl/ft	0.5216119	Square meters	m²
Barrels per inch	bbl/in	6.259343	Square meters	m²
Bars	bar	14.5038	Pounds-force per square inch	psi
Bars	bar	100 000	Pascals	Pa
Bars	bar	100	Kilopascals	kPa
Bars	bar	0.1	Megapascals	MPa
British thermal units	Btu	1055.06	Joules	J
British thermal units	Btu	0.252075	Kilocalories	kcal
British thermal units per cubic foot	Btu/ft ³	8.90036	Kilocalories per cubic meter	kcal/m ³
British thermal units per pound	Btu/lb	0.55573	Kilocalories per kilogram	kcal/kg
British thermal units per square foot	Btu/ft ²	2.71331396	Kilocalories per square meter	kcal/m ²
Calories	cal	4.186	Joules	J
Centimeters	cm	0.3937	Inches	in
Centimeters	cm	0.01094	Yards	yd
Centimeters	cm	0.03280839	Feet	ft
Centimeters	cm	0.0001	Kilometers	km
Square centimeters	cm ²	0.155	Square inches	in ²
Square centimeters	cm ²	0.00107639	Square feet	ft ²
Square centimeters	cm ²	0.0001	Square meters	m²
Cubic centimeters	cm ³	0.0610236	Cubic inches	in ³
Cubic centimeters	cm ³	0.0353	Cubic feet	ft ³
Cubic centimeters	cm ³	0.0000013	Cubic yards	yd ³
Cubic centimeters	cm ³	0.001	Liters	1
Centimeters of mercury	cmHg	0.01315789	Atmospheres (mean sea level)	atm
Centipoises	сР	0.001	Pascals.second	Pa.s
Centistokes	cSt	0.0000001	Square meter.second	m².s
Coulombs	С	0.0002777	Ampere-hour	Ah

Multiply	Symbol	by	to obtain	Symbol
Daltons		1.66E-27	Kilograms	kg
Darcies	D	9.87E-13	Square meters	m ²
Decanewtons	daN	1.02	Kilograms-force	kgf
Decanewtons	daN	2.2482014	Pounds-force	lbf
Decanewtons.meters	daN.m	7.3746312	Feet.pound-force	ft.lbf
Decanewtons.meters	daN.m	10	Newtons.meters	N.m
Degree (angle)		1.75E-02	Radians	rad
Electronvolts	eV	1.60E-19	Joules	J
Fathoms	fth	1.8288	Meters	m
Feet	ft	0.3048	Meters	m
Feet	ft	0.3333	Yards	yd
Feet	ft	30.48	Centimeters	cm
Feet	ft	0.0003048	Kilometers	km
Feet	ft	0.0001894	Miles	mile
Feet	ft	12	Inches	in in
Square feet	ft ²	144	Square inches	in ²
Square feet	ft ²	0.1111	Square yards	yd ²
Square feet	ft ²	0.0929	Square meters	m ²
Square feet	ft ²	929.03	Square centimeters	cm ²
Square feet	ft ²	2.2957E-05	Acres	CIT
Cubic feet	ft ³	28.302	Liters	
Cubic feet	ft ³	0.02832	Cubic meters	3
Cubic feet	ft ³	1728	Cubic inches	m ³
Cubic feet	ft ³	0.03704	Cubic yards	in ³
Cubic feet	ft ³	7.4805	Gallons (US)	yd ³
Cubic feet	ft ³	6.288	Imperial gallons	gal (US)
Cubic feet	ft ³	0.200	Barrels	gal (UK)
Cubic feet	ft ³	28320	Cubic centimeters	bbl
Cubic feet per barrel	ft ³ /bbl	0.17811088		cm^3
Feet.pounds-force	ft.lbf	1.35582	Cubic meters by cubic meter Joules	m ³ /m ³
Feet.pounds-force	ft.lbf	0.138255		J
Feet.pounds-force	ft.lbf	1.3558	Kilograms.meters	kg.m
Feet.pounds-force	ft.lbf	0.1356	Newtons.meters	N.m
Gallons (imperial)		277.42	Decanewtons.meters	daN.m
Gallons (imperial)	gal (UK)	0.0045461	Cubic inches	in ³
Gallons (imperial)	gal (UK)		Cubic meters	m ³
Gallons (imperial)	gal (UK)	4.54595	Liters	
Gallons (imperial)	gal (UK)	0.0285938	Barrels	bbl
Gallons (imperial)	gal (UK)	0.159033	Cubic feet	ft ³
•	gal (UK)	1.200912	Gallons (US)	gal (US)
Gallons (US)	gal (US)	128	Ounces	OZ
Gallons (US)	gal (US)	4	Quarts	qt
Gallons (US)	gal (US)	8	Pints	
Gallons (US)	gal (US)	0.8327	Imperial gallons	gal (UK)
Gallons (US)	gal (US)	231	Cubic inches	in ³
Gallons (US)	gal (US)	0.02380952	Barrels	bbl
Gallons (US)	gal (US)	3.7854	Liters	I
Gallons (US)	gal (US)	0.0037854	Cubic meters	m ³
Gallons (US) per barrel	gal/bbl	23.81	Liters per cubic meter	l/m ³
Gallons (US) per foot	gal/ft	12.4191	Liters/meter	l/m
Grains-force	grf	0.0647987	Grams-force	gf
Grams-force	gf	15.4324	Grains-force	grf
Grams-force	gf	0.035274	Ounces-force	ozf

Multiply	Symbol	by	to obtain	Symbol
Hectares	ha	2.47105	Acres	
Hectares	ha	10 000	Square meters	m ²
Hectares	ha	a 0.00386101 Square miles		sq mile
Hectares	ha	10 000	Square meters	m ²
Horsepowers	hp	0.7457	Kilowatts	kW
Horsepowers	hp	1.01387	Steam horsepowers	ch
Horsepowers	hp	745.701	Watts	W
Horsepowers (steam)	ch	0.98632	Horsepowers	hp
Horsepowers (steam)	ch	735.498	Watts	W
Inches	in	25.4	Millimeters	mm
Inches	in	2.54	Centimeters	cm
Inches	in	0.0833333	Feet	ft
Inches	in	0.02777	Yards	yd
Square inches	in ²	6.4516	Square centimeters	cm ²
Square inches	in ²	0.00694444	Square feet	ft ²
Square inches	in ²	0.0007716	Square yards	yd ²
Square inches	in ²	0.00064516	Square meters	m ²
Cubic inches	in ³	16.3871027	Cubic centimeters	cm ³
Cubic inches	in ³	0.00010307	Barrels	bbl
Cubic inches	in ³	0.0005787	Cubic feet	ft ³
Cubic inches	in ³	0.0163865	Liters	
Cubic inches	in ³	0.5541	Ounces	oz
Cubic inches	in ³	0.0173	Quarts	qt
Cubic inches	in ³	0.004329	Gallons (US)	gal (US)
Cubic inches	in ³	0.004525	Imperial gallon	gal (UK)
Cubic inches	in ³	1.6387E-05	Cubic meters	m^3
Cubic inches	in ³	2.1433E-05	Cubic meters	yd ³
	inHg	0.03342246	Atmospheres (mean sea level)	atm
Inches of mercury	inHg	1333.22	Pascals	Pa
Inches of mercury	-	0.4912	Pounds-force per square inch	psi
Inches of mercury	inHg	0.4912	, ,	N.m
Inches.pounds-force	in.lbf	6.2415E+18	Newtons.meters Electronvolts	eV
Joules	J	0.23889154		1
Joules	J		Calories	cal ft.lbf
Joules	J	0.737561	Feet.pounds-force	Btu
Joules	J	0.00094781	British thermal units	Btu
Kilocalories	kcal	3.96707	British thermal units	Btu/ft ³
Kilocalories per cubic meter	kcal/m ³	0.112355	British thermal units per cubic foot	
Kilocalories per kilogram	kcal/kg	1.79943	British thermal units per pound	Btu/lb
Kilocalories per square meter	kcal/m ²	0.368553	British thermal units per square foot	Btu/ft ²
Kilograms-force	kgf	2.204586	Pounds-force	lbf
Kilograms-force	kgf	0.00098425	Long tons-force	lg tonf
Kilograms-force	kgf	0.001	Tons-force	tf
Kilograms-force	kgf	2.20462	Pounds-force	lbf
Kilograms-force	kgf	0.0234534	Sacks (cement)	
Kilograms-force	kgf	0.0011023	Short tons-force	sh tonf
Kilograms-force	kgf	9.81	Newtons	N
Kilograms-force	kgf	0.981	Decanewtons	daN
Kilograms-force per cubic meter	kgf/m ³	0.3505	Pounds-force per barrel	lbf/bbl
Kilograms-force per cubic meter	kgf/m ³	0.35050001	Pounds-force per barrel	lbf/bbl
Kilograms-force per liter	kgf/l	8.34523	Pounds-force per gallon (US)	lbf/gal
Kilograms-force per liter	kgf/l	62.4278	Pounds-force per cubic foot	lbf/ft ³

Multiply	Symbol	by	to obtain	Symbol	
Kilograms-force per meter	kgf/m	0.671971	Pounds-force per foot	lbf/ft	
Kilograms-force per square centimeter	kgf/cm ²	14.2233	Pound-force per square inch	psi	
Kilograms-force per square millimeter	kgf/mm ²	0.711167	Short tons-force per square inch	sh tonf/in ²	
Kilograms-force per square millimeter	kgf/mm ²	102.408	Short tons-force per square foot	sh tonf/ft ²	
Kilograms-force.meters	kgf.m	9.81	Newtons.meters	N.m	
Kilograms-force.meters	kgf.m	7.23301	Feet.pounds-force	ft.lbf	
Kilograms-force/liter	kgf/l	8.3472454	Pounds-force/gallon	lbf/gal	
Kilograms-force/liter	kgf/l	62.421972	Pounds-force/cubic foot	lbf/ft ³	
Kilometers	km	0.621373	Statute miles (land miles)	mile (st)	
Kilometers	km	0.539613	Nautical miles (UK sea miles)	mile (Nau) UK	
Kilometers	km	0.539957	Nautical miles (other countries)	mile (Nau)	
Kilometers	km	3280.83	Feet	ft	
Kilometers	km	1093.61	Yards	yd	
Kilometers	km	1000	Meters	,∝ m	
Kilometers	km	10000	Centimeters	cm	
Kilometers	km	0.621388	Miles	mile	
Kilometers	km	0.539957	Nautical miles	mile (Nau)	
Square kilometers	km ²	0.386102	Square miles	sq mile	
Square kilometers	km²	247.1	Acres	oq o	
Kilopascals	kPa	0.145038	Pounds-force per square inch	psi	
Kilopascals	kPa	0.01	Bars	bar	
Kilopascal/meter	kPa/m	0.0442086	Pounds square inches/foot	psi/ft	
Kilowatt-hours	kWh	3.60E+06	Joules	J	
Kilowatts	kW	1.34102	Horsepowers	hp	
kips		4.45E+03	Newtons	N	
kips per square inch	ksi	6.89E+06	Pascals	Pa	
Knots		0.514444	Meters per second	m/s	
Liters	1	61.025844	Cubic inches	in ³	
Liters	1	0.0353147	Cubic feet	ft ³	
Liters		0.264178	Gallons (US)	gal (US)	
Liters	1	0.219976	Imperial gallons	gal (UK)	
Liters		0.00628994	Barrels	bbl	
Liters	1	1000	Cubic centimeters	cm ³	
Liters		1.0567	Quarts	qt	
Liters		0.0013	Cubic yards	yd ³	
Liters		0.001	Cubic meters	m ³	
Liters per cubic meter	l/m ³	0.042	Gallons (US) per barrel	gal/bbl	
Liters/meter	l/m	0.0805214	Gallons (US) per foot	gal/ft	
Megapascals	MPa	10	Bars	bar	
Megapascals	MPa	145.038	Pounds-force per square inch	psi	
Meters	m	3.28084	Feet	ft	
Meters	m	1.09361	Yards	yd	
Meters	m	0.001	Kilometers	km	
Meters	m	0.00062137	Miles	mile	
Meters	m	1000	Millimeters	mm	
Square meters	m²	0.15976117	Barrels per inch	bbl/in	
Square meters	m ²	1.91713417	Barrels per foot	bbl/ft	
Square meters	m ²	10.7639	Square feet	ft ²	
Square meters	m ²	0.0002471	Acres	it i	

Multiply	Symbol	by	to obtain	Symbol
Square meters	m ²	1550	Square inches	in ²
Square meters	m ²	1.1959	Square yards	yd ²
Square meters	m ²	10 000	Square centimeters	cm ²
Square meters	m ²	0.0001	Hectares	ha
Cubic meters	m ³	35.3147	Cubic feet	ft ³
Cubic meters	m ³	6.28994	Barrels (US)	bbl
Cubic meters	m ³	219.96876	Imperial gallons	gal (UK)
Cubic meters	m ³	61023.38	Cubic inches	in ³
Cubic meters	m ³	1.30796	Cubic yards	yd ³
Cubic meters	m ³	1000	Liters	-
Cubic meters	m ³	264.17	Gallons (US)	gal (US)
Cubic meters by cubic meter	m ³ /m ³	5.61448	Cubic feet per barrel	ft ³ /bbl
Cubic meters per hour	m ³ /h	150.959	Barrels per day	bbl/d
Miles	mile	5280	Feet	ft
Miles	mile	1760	Yards	yd
Miles	mile	1609.3	Meters	m
Miles	mile	1.6093	Kilometers	km
Miles	mile	0.8684	Nautical miles	mile (Nau)
Miles	mile	0.86840005	Nautical miles	mile (Nau)
Square miles	sq mile	641.025	Acres	
Square miles	sq mile	3097600	Square yards	yd ²
Square miles	sq mile	258.9998	Hectares	ha
Square miles	sq mile	2.5899	Square kilometers	km ²
Miles (Nautical)	mile (Nau)	1.151543	Miles	mile
Miles (Nautical)	mile (Nau)	1.853	Kilometers	km
Miles (statute) <i>land miles</i>	mile (st)	1.6093	Kilometers	km
Millimeters	mm	0.03937	Inches	in
Millimeters	mm	0.001	Meters	m
Newtons	N	0.102	Kilograms-force	kgf
Newtons	N	0.224809	Pounds-force	lbf
Newtons	N	0.22480902	Pounds-force	lbf
Newtons.meters	N.m	0.22400002	Decanewtons.meters	daN.m
Newtons.meters	N.m	0.102	Kilograms-force.meters	kgf.m
Newtons.meters	N.m	0.737561	Feet pounds-force	ft.lbf
Ounces	OZ	1.804728	Cubic inches	in ³
Ounces	OZ OZ	0.0078125	Gallons (US)	gal (US)
Ounces	OZ OZ	0.0625	Pounds	lbf
Ounces-force	ozf	28.34949	Grams-force	gf
Pascals	Pa	0.00001	Bars	bar
Pints	Fa	0.125	Gallons (US)	gal (US)
Pounds-force	lbf	0.125	Decanewtons	daN
Pounds-force	lbf	0.4448	Long tons-force	lg tonf
Pounds-force	lbf	0.00044643	Short tons-force	sh tonf
Pounds-force	lbf	16	Ounces-force	ozf
Pounds-force	lbf	0.0005	Short tons-force	sh tonf
Pounds-force	lbf	0.0005		
	ldi Ibf		Kilograms-force	kgf
Pounds-force		4.44822	Newtons Kilograma farea par subia mater	N Iverfilm ³
Pounds-force per barrel	lbf/bbl	2.853067	Kilograms-force per cubic meter	-
Pounds-force per cubic foot	lbf/ft ³	0.0160185	Kilograms-force per liter	kgf/l
Pounds-force per foot	lbf/ft	1.4881594	Kilograms-force per meter	kgf/m

Multiply	Symbol	by	to obtain	Symbol
Pounds-force per square inch	psi	0.06894745	Bars	bar
Pounds-force per square inch	psi	0.07030717	Kilograms-force per square centimeter	kgf/cm ²
Pounds-force per square inch	psi	6.894745	Kilopascals	kPa
Pounds-force per square inch	psi	0.00689474	Megapascals	MPa
Pounds-force per square inch	psi	2.03583062	Inches of mercury	inHg
Pounds-force per square inch	psi	0.06804	Atmospheres	atm
Pounds-force per square inches/foot	psi/ft	22.62	Kilopascals/meter	kPa/m
Pounds-force/gallon	lbf/gal	0.1198	Kilogram-force/liter	kgf/l
Quarts	qt	0.25	Gallons (US)	gal (US)
Quarts	qt	57.8034682	Cubic inches	in ³
Quarts	qt	0.94634239	Liters	
rpm		0.1047198	Radians per second	rad/s
Sacks (cement)		42.6377412	Kilograms-force	kgf
Tons-force	tf	1000	Kilograms-force	-
Tons-force	tf	0.9842	Long tons-force	kg Ia tapf
Tons-force	tf	1.10231	Short tons-force	lg tonf
Tons-force.kilometers	tf.km	0.684944	Short tons-force.miles	sh tonf
	U.NII	0.004544	Short tons-force.miles	sh tonf.mile
Tons-force (long)	lg tonf	1016	Kilograms-force	kgf
Tons-force (long)	lg tonf	2240	Pounds-force	lbf
Tons-force (long)	lg tonf	1.01605	Tons-force	tf
Tons-force (long)	lg tonf	1.12	Short tons-force	sh tonf
Tons-force (short)	sh tonf	0.89287	Long tons-force	lg tonf
Tons-force (short)	sh tonf	2000	Pounds-force	lbf
Tons-force (short)	sh tonf	0.8929	Long tons-force	lg tonf
Tons-force (short)	sh tonf	0.9072	Tons-force	ig torn tf
Tons-force (short)	sh tonf	907.194	Kilograms-force	
Tons-force (short).miles	sh tonf.mile		Tons-force.kilometers	kgf tf.km
Tons-force (short) per square foot	sh tonf/ft ²	0.00976486	Kilograms-force per square millimeter	kgf/mm ²
Tons-force (short) per square inch	sh tonf/in ²	1.40613949	Kilograms-force per square millimeter	kgf/mm²
Yards	yd	91.44027	Centimeters	cm
Yards	yd	0.9144027	Meters	
Yards	y⊒ yd	3	Feet	m ft
Yards	yd .	36	Inches	in
Yards	yd	0.0009144	Kilometers	km
Yards	yd j	0.00056818	Miles	mile
Square yards	yd ²	0.00020661	Acres	mie
Square yards	yd yd ²	9	Square feet	ft ²
Square yards	yd yd ²	1296		
Square yards	yu yd ²	0.83619032	Square inches	in ²
Square yards	yu yd ²	0.83619032 3.2283E-07	Square meters	m ²
Cubic yards	yu yd ³	3.2283E-07 46656	Square miles	sq mile
Cubic yards	yd ³		Cubic inches	in ³
Cubic yards	yu ^s yd ³	764559.4	Cubic centimeters	cm ³
Cubic yards		27 46656	Cubic feet	ft ³
	yd ³	46656	Cubic inches	in ³
Cubic yards	yd ³	764.6	Liters	
Cubic yards	yd ³	0.76454937	Cubic meters	m ³
Watts	W	0.00134102	Horsepowers	hp
Watt-hours	Wh	3600	Joules	J

DECIMAL MULTIPLES AND SUBMULTIPLES OF A UNIT

Multiples

Unit multiplier	Prefix to put before the name of the unit	Symbol to put before the unit symbol		
$10^{12} = 1\ 000\ 000\ 000\ 000$	tera	T		
$10^{9} = 1\ 000\ 000\ 000$	giga	G		
$10^{6} = 1\ 000\ 000$	mega	M		
$10^{3} = 1\ 000$	kilo	k		
$10^{2} = 100$	hecto	h		
$10^{1} = 10$	deca	da		

Submultiples

Unit multiplier	Prefix to put before the name of the unit	Symbol to put before the unit symbol		
$10^{-1} = 0.1$	deci	d		
$10^{-2} = 0.01$	centi	С		
$10^{-3} = 0.001$	milli	m		
$10^{-6} = 0.000\ 001$	micro	μ		
$10^{-9} = 0.000\ 000\ 001$	nano	n		
$10^{-12} = 0.000\ 000\ 000\ 001$	pico	q		
$10^{-15} = 0.000\ 000\ 000\ 000\ 001$	femto	f		
$10^{-18} = 0.000\ 000\ 000\ 000\ 000\ 001$	atto	a		

Examples: 1 megameter (Mm) = 10^6 meters (m) 1 micrometer (μ m) (micron or μ) = 10^{-6} meters (m)

DECIMAL AND METRIC EQUIVALENTS OF FRACTIONS OF AN INCH

F	raction		Decimal equivalent	(mm)	Fraction		Decimal equivalent	(mm)
		1/64	0.015625	0.39688		33/64	0.515625	13.09690
	1/32		0.031250	0.79375	17/32		0.531250	13.49378
		3/64	0.046875	1.19063		35/64	0.546875	13.89065
1/16			0.062500	1.58750	9/16		0.562500	14.28753
		5/64	0.078125	1.98438		37/64	0.578125	14.68440
	3/32		0.093750	2.38125	19/32		0.593750	15.08128
		7/64	0.109375	2.77813		39/64	0.609375	15.47816
1/8			0.125000	3.17501	5/8		0.625000	15.87503
		9/64	0.140625	3.57188		41/64	0.640625	16.27191
	5/32		0.156250	3.96876	21/32		0.656250	16.66878
		11/64	0.171875	4.36563		43/64	0.671875	17.06566
3/16			0.187500	4.76251	11/16		0.687500	17.46253
		13/64	0.203125	5.15939		45/64	0.703125	17.85941
	7/32	Ì	0.218750	5.55626	23/32		0.718750	18.25629
		15/64	0.234375	5.95314		47/64	0.734375	18.65316
1/4			0.250000	6.35001	3/4		0.750000	19.05004
		17/64	0.265625	6.74689		49/64	0.765625	19.44691
	9/32		0.281250	7.14376	25/32		0.781250	19.84379
		19/64	0.296875	7.54064		51/64	0.796875	20.24067
5/16			0.312500	7.93752	13/16		0.812500	20.63754
		21/64	0.328125	8.33439		53/64	0.828125	21.03442
	11/32		0.343750	8.73127	27/32		0.843750	21.43129
		23/64	0.359375	9.12814		55/64	0.859375	21.82817
3/8			0.375000	9.52502	7/8		0.875000	22.22504
		25/64	0.390625	9.92189		57/64	0.890625	22.62192
	13/32		0.406250	10.31877	29/32		0.906250	23.01880
		27/64	0.421875	10.71565		59/64	0.921875	23.41567
7/16			0.437500	11.11252	15/16		0.937500	23.81255
		29/64	0.453125	11.50940		61/64	0.953125	24.20942
	15/32		0.468750	11.90627	31/32		0.968750	24.60630
		31/64	0.484375	12.30315		63/64	0.984375	25.00318
1/2			0.500000	12.70003	1		1.000000	25.40005

	Γ	Τ	Ъ	Г
Е 111.2	Å	788 824 8860 896 932 968 1004 1112 1112 1112 1220 11128 1111		7 7 7
		420 440 5500 5500 5500 5500 5500 5500 55		
44 elsius renheit	ပံ	216 216 227 227 2276 2276 2276 2276 2276		VV O
44 heit →6.67° Celsius → 111.2° Fahrenheit	Ľ,	197.6 201.2 201.2 201.2 201.2 200.0 3350.0 3350.0 572.0 572.0 572.0 572.0 572.0 716.0 716.0		0 2 2 2 2 2
6.67 Fahrent Celsius		92 94 96 1120 3320 3320 3320 3320 3320 3320 3320		7 78 8 33
440	ာ	33.3 35.6 35.6 35.6 35.6 48.9 48.9 48.9 56.7 115.6 115		7.22
sius or ures in ctively.	Ľ,	125.6 129.2 132.8 136.4 1440.0 1440.0 1440.0 1440.0 156.4 156.8 15	table	11 6.67
<i>Example:</i> The central figures refer to the temperatures either in degrees Celsius o degrees Fahrenheit which require conversion. The corresponding temperatures ir degrees Fahrenheit or degrees Celsius will be found to the right or left respectively		52 57 57 58 58 58 58 58 58 58 58 58 58 58 58 58	iterpolation table	5.56 6.1
her in deg ponding 1 right or h	ပ့	11.1 12.2 13.2 14.4 15.6 175.7 175.6 175.6 175.6 175.7 175.6 175.7 175.6 175.7 175.6 175.7 175.6 175.7 175.6 175.7 175.6 175.7	iterpo	1 5
fer to the temperatures eit aire conversion.The correst Celsius will be found to the	ų	53.6 57.2 60.8 64.4 68.8 75.2 75.2 75.2 75.2 75.2 71.6 95.8 85.0 95.8 95.8 95.2 95.8 95.2 111.2 104.0 107.6 111.2 111.2	<u>_</u>	.89 4.44
e tempera ersion.Th vill be fou		50 50 50 50 50 50 50 50 50 50 50 50 50 5		3.33 3.
efer to the uire conv Celsius v	ာ	11.10 10.00 10		2 2.78
al figures refer to the temperatures eit which require conversion.The corres or degrees Celsius will be found to the	ų,	940 941 942 944 945 946 946 946 946 946 946 946 946		1.67 2.22
The central Fahrenheit v ahrenheit o		5888884488885550004∞6 1111111111		1.11
<i>ole:</i> The es Fahr es Fahr		N0040000400-000000400		0.56
<i>Example</i> degrees degrees	ပ္	133.44 133.44		ů

11.11

10.56

10 18

9.44 17

8.89

8.33 15 27

7.78

7.22

6.67

6.11

5.56

ഹ ດ

3.89 ~

2.78 ß ດ

10 18

20 36

34.2 19

32.4

30.6

28.8 16

25.2 14

23.4

21.6 12

19.8 :-

16.2

14.4 ω

12.6

10.8 9

7.2 4

5.4 ო

3.6 2

<u>,</u> --

ų.

13

TEMPERATURE CONVERSION TABLE

A 10

CORRESPONDENCE BETWEEN SPECIFIC GRAVITY AND DEGREES API (at 15.56°C in relation to water at 15.56°C and 760 mmHg)

Degrees AP Specific gravity 1.020 1.022 1.024 1.026 1.028 1.000 1.002 1.006 1.008 1.010 1.012 1.016 1.018 1.030 1.032 1.036 1.036 040 042 046 046 046 Degrees 177.4 16.5 16.5 15.9 15.3 15.3 14.7 14.1 14.1 13.5 13.5 13.5 13.5 12.9 12.0 112.3 112.3 112.3 110.9 10.0 10.0 10.3 44000 Specific gravity 950 954 958 958 $\begin{array}{c} 0.960\\ 0.962\\ 0.964\\ 0.966\\ 0.968\\ 0.968 \end{array}$ 0.970 0.972 0.974 0.976 0.978 $\begin{array}{c} 0.980\\ 0.982\\ 0.984\\ 0.986\\ 0.988\\ 0.988\end{array}$ 0.990 0.992 0.994 0.996 0.998 00000 Degrees 255.7 Specific gravity 0.900 0.902 0.904 0.906 0.908 0.910 0.912 0.916 0.916 0.918 0.920 0.922 0.924 0.928 0.928 0.930 0.932 0.934 0.938 0.938 940 942 946 946 948 00000 Degrees 0,0,0,0,4 333.0 322.7 31.9 31.5 31.5 30.8 30.8 29.7 29.7 29.3 27.8 27.8 27.5 27.5 26.4 26.1 33.44.65 Specific gravity $\begin{array}{c} 0.850 \\ 0.852 \\ 0.854 \\ 0.856 \\ 0.858 \\ 0.858 \end{array}$ 0.860 0.862 0.864 0.866 0.866 870 875 876 876 876 882 882 888 888 888 888 888 890 892 898 898 898 00000 00000 Degrees AP Specific gravity 00000 00000 00000 00000 00000 Degrees arara rarar 000004 04000 922 ကထ 0000000 4447 Specific gravity 750 752 754 756 756 0.770 0.772 0.774 0.776 0.778 0.760 0.762 0.764 0.766 0.768 0.768 0.780 0.782 0.784 0.786 0.788 792 792 794 796 796 798 00000 00000 Degrees ი-იი4 LULUL 70 68 69 68 68 67. 66. 65 63. 63. 61 60. 60. 20000 Specific gravity 700 704 706 708 0.710 0.712 0.714 0.716 0.718 0.720 0.722 0.724 0.726 0.728 0.730 0.732 0.734 0.736 0.736 0.740 0.742 0.744 0.746 0.746 00000 Degrees ÅPI Specific gravity 0.650 0.652 0.654 0.656 0.658 .670 .672 .674 .676 .678 0.660 0.662 0.666 0.666 0.668 .680 .682 .684 .684 .686 .686 690 692 696 698 698 00000 00000 00000 Degrees | API Specific gravity 600 604 606 606 608 610 616 616 618 618 0.6200.6200.6260.6280.6300.6360.6380.638640 644 646 648 648 00000 00000 00000

0.0009 0.0008 0.00075 - add if t > 15°C 0.00065 - substract if t < 15°C 0.00065 0.0006

Approximate temperature correction

Correction for 1°C

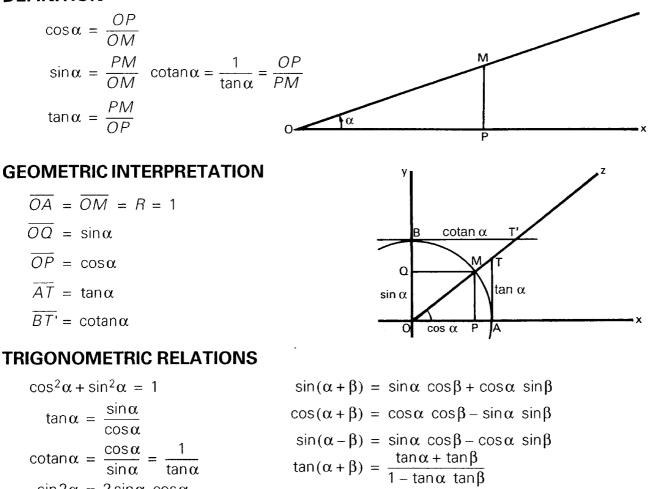
Specific gravity

to obtain temperatures at 15°C

 $Degrees \text{ API} = \frac{141.5}{d(15.56^{\circ}\text{C}/15.56^{\circ}\text{C})} - 131.5 \qquad \begin{array}{c} 0.600 \text{ to } 0.700 \\ 0.700 \text{ to } 0.800 \\ 0.800 \text{ to } 0.840 \\ 0.840 \text{ to } 0.880 \\ 0.880 \text{ to } 0.920 \\ 0.920 \text{ to } 1.000 \\ 0.920 \text{ to } 1.000 \\ \end{array}$

A 12

NUMERICAL CONSTANTS AND MATHEMATICAL FORMULAS


π	3.1415927	$\frac{1}{\pi}$	0.3183099	$\frac{\pi}{2}$	1.5707963	$\frac{\pi}{180}$	0.0174533
_							
π^2	9.8696044	$\frac{1}{\pi^2}$	0.1013212	$\frac{\pi}{3}$	1.0471976	$\frac{\pi}{200}$	0.0157080
π^3	31.0062767	$\frac{1}{\pi^3}$	0.0322515	$\frac{\pi}{4}$	0.7853982	$\frac{180}{\pi}$	57.2957795
$\sqrt{\pi}$	1.7724539	$\frac{1}{\sqrt{\pi}}$	0.5641896	$\frac{4\pi}{3}$	4.1887902	$\frac{200}{\pi}$	63.6619763
3√π	1.4645919	$\frac{1}{\sqrt[3]{\pi}}$	0.6827840				
√2	1.414214	√3	1.732051	√5	2.236068	√10	3.162278
$\frac{1}{\sqrt{2}}$	0.70711	$\frac{1}{\sqrt{3}}$	0.57735	$\frac{1}{\sqrt{5}}$	0.44721	$\frac{1}{\sqrt{10}}$	0.31623
е	2.7182818	$\frac{1}{e}$	0.3678794	log ₁₀ e = 0).4342945	g = 9.806	665 m/s ²
$\frac{1}{\log_{10} e}$	= colog e =	log _e 10 = 2	2.3025851	$\log_e x = 2.30$	25851 log ₁₀ x	$\log_{10} x = 0.43$	342945log _e x
Arithmetic progression $a a+r a+2r a+3r \dots a+(n-1),$ $S_n = \left(\frac{a+\ell}{2}\right)n = \frac{n}{2}[2a+(n-1)r]$				(n – 1)r	a = first term r = common n = number d $\ell = last term$	difference	
Geometric progression $a aq aq^2 aq^3 \dots aq^{n-1}$ Si $q \neq 1 \qquad S_n = \frac{\ell q - a}{q - 1} = a \frac{(q^n - 1)}{q - 1}$					a = first term r = common n = number (left) $\ell = last term$	ratio of terms	

Miscellaneous constants

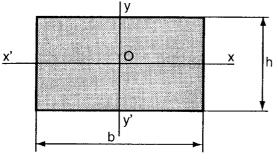
- 0.0764 = air density in lb/ft³ at 60°F and 14.7 psia
- 14.691 = normal atmospheric pressure (76 cmHg) in psi
- $32.174 = \text{gravitational acceleration in ft/s}^2 (980.655 \text{ cm/s}^2)$
- 550 = number of lb.ft/s one horsepower (hp)
- 778.2 = number of lb.ft in one Btu
- 62.43 = water density in lbf/ft³ at 4° C
- 8.345 = water density in lbf/gal at 4°C
- °C + 273.16 = K (Kelvin)
- °F + 459.69 = °R (Rankine)

TRIGONOMETRIC FORMULAS

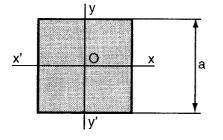
DEFINITION

 $\sin 2\alpha = 2\sin \alpha \cos \alpha$ $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$ $= 1 - 2\sin^2\alpha$ $\tan 2\alpha = \frac{2\tan\alpha}{1-\tan^2\alpha}$

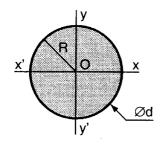
 $\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$

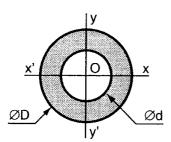

VALUES OF TRIGONOMETRIC FUNCTIONS RELATED **TO HALF-ANGLE TANGENTS**

 $\tan\frac{\alpha}{2} = t \qquad \cos\alpha = \frac{1-t^2}{1+t^2} \qquad \sin\alpha = \frac{2t}{1+t^2} \qquad \tan\alpha = \frac{2t}{1-t^2}$ **RELATIONS BETWEEN SIDES AND ANGLE** OF ANY TRIANGLE $\hat{A} + \hat{B} + \hat{C} = \pi$ $a^2 = b^2 + c^2 - 2bc \cos \hat{A}$ $b^2 = c^2 + a^2 - 2ca \cos \hat{B}$ $\frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}} = 2R$ $c^2 = a^2 + b^2 - 2ab \cos \hat{C}$


GEOMETRY FORMULAS FOR AREAS AND VOLUMES

Area	Volume
Triangle $p = \frac{a+b+c}{2}$ $S = \frac{ah}{2} = \frac{abc}{4R} = pr$	h_{B} Regular or oblique prism V = B h
$ \begin{array}{c} \begin{array}{c} \\ h \\ $	e Right cylinder $V = \pi R^2 h = Bh$ Hollow cylinder $V = \pi (R^2 - r^2)h = \pi (R + r)eh$
Square: $S = a^2$ Rectangle: $S = ab$	Right cone $V = \frac{\pi R^2 h}{3}$
$A = B$ $M = MN + h$ $S = \frac{AB + CD}{2}h = MN + h$	Truncated right cone $V = \frac{\pi h}{3}(R^2 + r^2 + Rr)$
C C C C C C C C C C C C C C	Pyramid $V = \frac{1}{3}Bh$
Sector of a circle Sector of a circle $S = \frac{\operatorname{arc} ABC \cdot R}{2} = \frac{\pi R^2 \alpha}{360}$ (α is the number of degrees of arc ACB) Segment of a circle $S = \frac{\pi R^2 \beta}{360} - \frac{DF}{2}(R-f)$	Truncated pyramid with parallel bases $V = \frac{1}{3}h(B+b+\sqrt{Bb})$
Annulus $S = \frac{\pi}{4} (D^2 - d^2) = \pi (R^2 - r^2)$ $= \frac{\pi}{4} (D + d) (D - d)$ $= \pi (R + r) (R - r)$	Sphere $S = 4\pi R^2 = \pi D^2$ $V = \frac{4}{3}\pi R^3 = 4,189R^3$ Hollow sphere $V = \frac{4}{3}\pi (R^3 - r^3)$
Ellipse a = semimajor axis b = semiminor axis $S = \pi ab$	Spherical segment with one base $ \begin{array}{ccc} h & & \\ \hline \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \\ \hline \\ \hline & & \\$


INERTIA OF PLANE SURFACE



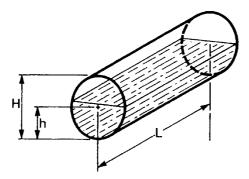
$$l_{xx'} = \frac{bh^3}{12} \qquad l_{yy'} = \frac{hb^3}{12}$$
$$l_0 = \frac{bh}{12}(b^2 + h^2)$$

$$l_{xx'} = l_{yy'} = \frac{a^4}{12}$$

 $l_0 = \frac{a^4}{6}$

$$l_{xx'} = l_{yy'} = \frac{\pi D^4}{64} = \frac{\pi R^4}{4}$$
$$l_0 = \frac{\pi D^4}{32} = \frac{\pi R^4}{2}$$

$$l_{xx'} = l_{yy'} = \frac{\pi}{64} (D^4 - d^4)$$
$$l_0 = \frac{\pi}{32} (D^4 - d^4)$$

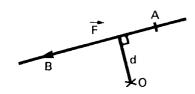

|у <u>x'</u>

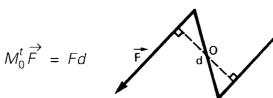
CONTENT OF HORIZONTAL CYLINDRICAL TANKS Tank characteristics: Volume: V; Height: H Concordance table of fraction of H and fraction of V

Fraction	Fraction	Fraction	Fraction	Fraction	Fraction
of <i>H</i>	of <i>V</i>	of <i>H</i>	of V	of <i>H</i>	of V
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33	0.0017 0.0047 0.0087 0.0134 0.0187 0.0245 0.0308 0.0375 0.0446 0.0520 0.0599 0.0680 0.0764 0.0851 0.0941 0.1033 0.1127 0.1223 0.1323 0.1424 0.1526 0.1631 0.1737 0.1845 0.1955 0.2066 0.2179 0.2292 0.2407 0.2523 0.2640 0.2759 0.2878	0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.62 0.63 0.64 0.65 0.66	0.2998 0.3119 0.3241 0.3241 0.3364 0.3487 0.3611 0.3736 0.3860 0.3986 0.4111 0.4237 0.4364 0.4490 0.4617 0.4745 0.4872 0.5000 0.5128 0.5255 0.5383 0.5510 0.5636 0.5763 0.5889 0.6014 0.6140 0.6264 0.6389 0.6513 0.6636 0.6759 0.6881 0.7002	0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.99	0.7122 0.7241 0.7360 0.7477 0.7593 0.7708 0.7821 0.7934 0.8045 0.8155 0.8263 0.8369 0.8474 0.8576 0.8677 0.8776 0.8873 0.8967 0.9059 0.9149 0.9236 0.9320 0.9401 0.9236 0.9320 0.9401 0.9480 0.9554 0.9625 0.9692 0.9755 0.9813 0.9866 0.9913 0.9952 0.9983

Example: Consider a tank of volume $V = 12\,000$ I and height H = 2 m. Measurements show a liquid height of 0.20 m in the tank. How much liquid does the tank contain?

Answer: Fraction of height 0.20/2 = 0.10 corresponding in the table to a volume fraction of 0.0520. The content is thus: $0.0520 \times 12\ 000 = 624$ liters.




V = total volume:

$$V = \frac{\pi H^2}{4} L$$

Fraction of $H = \frac{h}{H}$ h =liquid height

MECHANICS AND STRENGTH OF MATERIALS Moment of a force about a point. Moment of a torque

$$M_0^t C = Fd$$

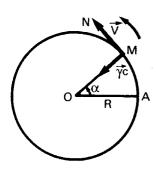
 $(M_0^t \text{ in newtons.meter}, F \text{ in newtons and } d \text{ in meters})$

UNIFORM STRAIGHT LINE MOTION

 $l = l_0 + vt$

l = distance travelled (m) $l_0 = \text{initial distance (m)}$ v = velocity (m/s)t = time (s)

UNIFORMLY-ACCELERATED MOTION


$$l = l_0 + v_0 t + \frac{\gamma t^2}{2}$$

l = distance travelled (m) $l_0 = \text{initial distance (m)}$ $v_0 = \text{initial velocity (m/s)}$ t = time (s) $\gamma = \text{acceleration (m/s^2)}$

UNIFORM CIRCULAR MOTION

Angular velocity $\omega = \frac{\alpha}{t}$ or $\alpha = \omega t$ (α : angle of rotation during time t)

Angular velocity as a function of revolutions per minute

 $\omega = \frac{2\pi N}{60}$ (ω in radians per second and N in revolutions per minute)

Circumferential velocity

$$v(m/min) = 2\pi RN$$
 or $v(m/s) = \omega R = \frac{2\pi RN}{60}$

(ω in radians per second, R in meters and N in revolutions per minute)

Centripetal acceleration γ_{c}

$$\gamma_{\rm c} = \omega^2 R$$
 or $\gamma_{\rm c} = \frac{V^2}{R}$

($\gamma_{\rm c}\,$ in meters per second per second, ω in radians per second, ${\it R}$ in meters and V in meters per second)

FUNDAMENTAL FORMULA OF DYNAMICS

 $F = m\gamma$ $m = mass, \gamma = acceleration$

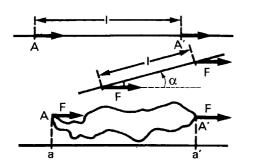
(F in newtons, m in kilograms and γ in meters per second per second)

Specific case of gravity $P = m\vec{g}$

 \vec{g} = gravitational acceleration \vec{g} = about 9.81 m/s²

MECHANICS AND STRENGTH OF MATERIALS

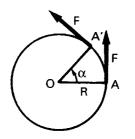
(continued)


CENTRIFUGAL FORCE

$$f_{\rm c} = m\omega^2 R$$
 or $f_{\rm c} = m\frac{V^2}{R}$

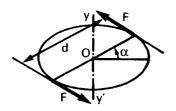
(f_c in newtons, m in kilograms, ω in radians per second, R in meters and V in meters per second)

WORK OF A FORCE


Constant force in quantity and direction displacing its point of application

1. on its action lineT = FI2. on an oblique line to its action line $T = FI \cos \alpha$ 3. on a curve in its planeT = Faa'

(T in joules, F in newtons and I in meters)


Constant force moving tangentially to a circle

 $T = FR\alpha = M_0^t F\alpha$ for one rotation $T = 2\pi RF$ (*T* in joules, *F* in newtons, *R* in meters, α in radians and M_0^t in meter Newtons)

WORK OF A TORQUE

Torque rotating about an axis perpendicular to its plane

 $T = Fd\alpha = M_0^t C\alpha$ for one rotation $T = 2\pi M_0^t C = 2\pi Fd$ (*T*in joules, *F*in newtons, *d* in meters, α in radians and M_0^t in meter Newtons)

POWER

Work produced per unit time $P = \frac{T}{t}$ (*P* in watts, *T* in joules and *t* in seconds) Power of a torque rotating at constant speed ω

$$P = M_0^t C \omega$$
 or $P = F d \omega = F d \frac{2\pi N}{60}$

(*P* in watts, M_0^t in meter Newtons, ω in radians per second, *F* in newtons, *d* in meters and *N* in revolution per minute)

MECHANICS AND STRENGTH OF MATERIALS

(continued)

KINETIC ENERGY

$$W=\frac{1}{2}mv^2$$

(Win joules, m in kilograms and v in meters per second)

STRENGTH OF MATERIALS

Tension and compression

Stress:

$$n = \frac{N}{S} 10^{-6}$$

n = stress (MPa)

N = tensile or compressive force (N)

S = cross-sectional area (m²)

Hooke's law:

$$n = E \frac{\Delta \ell}{\ell}$$

= Young's modulus or longitudinal elastic modulus: approximately 200 000 to Е 220 000 MPa for steel

 $\begin{array}{l} \Delta \ell = \text{elongation} \\ \ell = \text{length} \end{array} \right\} \text{ expressed in the same units} \\ \end{array}$

Torsion

Torsional moment: $M_t = 2Fr$ (M_t in meter Newtons, F in newtons and r in meters)

Unit torsion
$$\theta = \frac{\alpha}{\ell}$$

Hooke's law: $t_{max} = Gr\theta$
 $t_{max} = \frac{M_t}{GI_0}$
 $t_{max} = \frac{M_t}{\frac{I_0}{r}}$
 $\theta = unit torsion$
 $\alpha = angle$
 $\ell = length$
 $t = torsion$
 $G = transv$
 $G = 0$.
 $G =$

- = unit torsion (rad/m)

 α = angle of rotation (rad)

- = length (m)
- = torsional or tangential shear stress (MPa)
- G = transverse elastic modulus:
 - $G = 0.4 \times E$ (Young's modulus)
 - $G = 80\ 000\ MPa$ for steel
- = radius of cylinder (m)
- p = polar moment of inertia

ELECTRICITY Direct current

CURRENT: I

Unit: Ampere (A)

Constant current which, maintained in two straight parallel conductors of infinite length and negligible circular cross-sectional area, and placed one meter apart in a vacuum, produces a force of 2.10⁻⁷ newtons per meter of length between these conductors.

QUANTITY OF ELECTRICITY: Q

Unit: Coulomb (C)

Quantity of electricity transmitted in one second by a current of one ampere.

Practical unit: ampere-hour (Ah)

Quantity of electricity transmitted in one hour by a current of one ampere (1 Ah = 3600 C)

Q(Ah) = I(A) t(h)

POTENTIAL DIFFERENCE (VOLTAGE): U

Unit: Volt (V)

Potential difference between two points of conducting wire carrying a constant current of one ampere when the power dissipated between these points is one watt.

RESISTANCE: R

Unit: Ohm (Ω)

Resistance between two points of a conducting wire when a potential difference of one volt, applied between these two points, produces a current of one ampere in the conductor, the conductor not being a source of any electromotive force.

Resistivity: ρ (Ω /m/mm²) at 15°C

Resistance of a wire one meter long with a cross-sectional area of one square millimeter

	$\rho(\Omega/m \text{ per }mm^2)$		ρ(Ω/m per mm ²)
Copper Silver Aluminium	0.017 – 0.0175 0.016 – 0.018 0.229 – 0.0175	lron Steel Nickel/silver (Cu 60%, Zn 20%,	0.11 0.10 - 0.25 0.36 - 0.39 Ni 20%)

$$R = \rho \frac{\ell}{S}$$
 ℓ : length of condu

of conductor (m) ; S: cross-sectional area of conductor (mm²)

TEMPERATURE COEFFICIENT OF A RESISTANCE AND RESISTIVITY

$$R_t = R_0 (1 + \alpha t) \qquad \rho_t = \rho_0 (1 + \alpha t)$$

 R_t , ρ_t = resistance, resistivity at t°C

 R_0 , ρ_0 = resistance, resistivity at 0°C

 α = temperature coefficient at 15°C

	α
Copper	3.93 10 ⁻³
Silver	3.6 10 ⁻³
Aluminium	3.9 10 ⁻³

_	u
Iron Steel Nickel/silver (60%, Zn 20%, Ni 20%	4.7 10 ⁻³ 5 10 ⁻³ 3 10 ⁻⁴
(60%, ZN 20%, NI 20%	/o)

ELECTRICITY Direct current (continued)

RESISTANCE CONNECTIONS

1) Connection in series:

$$R = R_1 + R_2 + R_3...$$

 $U = U_1 + U_2 + U_3...$ / constant

2) Connection in parallel:

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \dots$$

 $l = l_1 + l_2 + l_3 \dots$
U constant

For two resistances in parallel:

$$R = \frac{R_1 R_2}{R_1 + R_2} \qquad l_1 = l \frac{R_2}{R_1 + R_2} \qquad l_2 = l \frac{R_1}{R_1 + R_2}$$

OHM'S LAW

$$U = RI$$
 $I = \frac{U}{R}$ $R = \frac{U}{I}$ $R(\Omega), I(A), U(V)$

ELECTRICAL ENERGY (W) OR QUANTITY OF HEAT: Q

Unit: joule (J)

Electrical energy generated each second by a current of one ampere flowing through a resistance of one ohm.

W =	. R	12	t	W =	U	1	t
(J)	(Ω)	(A)	(S)	(J)	(V)	(A)	(S)

Non SI units: 1) Watt-hour (Wh)

Energy expended in one hour by a power of one watt

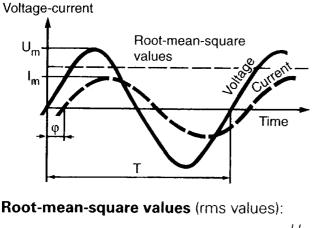
$$W = R l^2 t$$
 1 Wh = 3600 J
(Wh) (Ω) (A) (h)

2) Calorie (cal)

 $Q = 0.24 R l^2 t$ 1 cal = 4.1855 J 1 J = 0.2389 cal (cal) (Ω) (A) (h)

4.1855 is an experimental value.

ELECTRICAL POWER (P): P


Unit: Watt (W)

Power of one joule per second

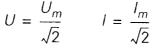
$$\begin{array}{ccccc} P &=& R & I^2 & P &=& U & I & P &=& \frac{U^2 \left(\mathsf{V} \right)}{R \left(\mathsf{\Omega} \right) \left(\mathsf{A} \right) & \left(\mathsf{W} \right) & \left(\mathsf{V} \right) \left(\mathsf{A} \right) & \left(\mathsf{W} \right) & \left(\mathsf{W} \right) & \left(\mathsf{W} \right) \end{array}$$

Power:

ELECTRICITY **Alternating current**

Root-mean-square values (rms values):

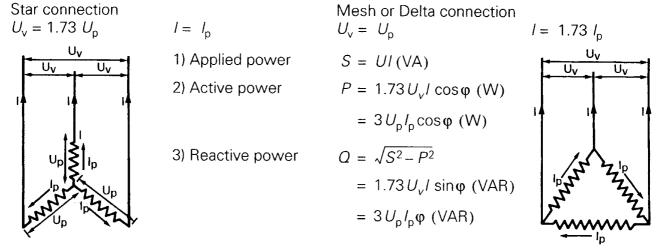
Period $T = \frac{1}{F}$ Frequency $F = \frac{1}{T}$ (Hz)


Angular frequency $\omega = 2\pi F$ (rad/s)

Instantaneous values:

 $u = U_m \cos \omega t$

 $i = l_m \cos(\omega t - \varphi)$


 φ = angle of phase difference between current and voltage

 Applied power Active power Reactive power 		in volt-ampere (VA) s φ in watts (W) φ in reactive volt-amperes (VAR)
	Current	$S^2 = P^2 + Q^2$
Applied power	Reactive	$\tan \varphi = \frac{Q}{P}$
Active power	Voltage	$\cos\varphi = \frac{P}{S}$ (power factor)

THREE-PHASE SYSTEM

Phases windings (formulas valid with same load for all 3 phases)

where:

- $U_{\rm v}$ = voltage in volts between two conductors of the three-phase winding
- $U_{\rm p}$ = voltage for each phase
- I = current in amperes through each conductor of the three-phase winding
- $l_{\rm v}$ = current in each phase
- φ = phase difference between current and voltage

ELECTRICITY Alternating current, three-phase system (continued)

Capacitance: C

Unit: farad (F), a capacitance of one farad requires one coulomb of electricity to raise its potential one volt.

1 farad = $\frac{1 \text{ Coulomb}}{1 \text{ volt}}$ $C = \frac{Q}{U}$

Connections of capacitors (or condensers)

Capacitors in parallel:

$$C = C_1 + C_2 + C_3 + \dots$$

Capacitors in series:

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots \text{ for 2 capacitors: } C = \frac{C_1 \cdot C_2}{C_1 + C_2}$$

Permissible current through conductors

	Current Temperature rise = 45°C					
Nominal cross- sectional area	Numbers of conductors					
(mm²)	2	2 3				
	Current (A)					
2	20	17	15			
3	27	22.5	21			
5	35	31	28			
10	53	47	44			
16	66	60	55			
25	88	81	70			
40	110	103	88			
50	130	123	105			
75	167	154	132			
95	192	184	155			

For temperature rises different from 45°C multiply the currents opposite by the following coefficients:					
Temperature rise Coefficient					
20 25 30 35 40 45 50 55 60	0.67 0.75 0.82 0.88 0.94 1 1.05 1.10 1.15				

PRINCIPAL CHEMICAL SYMBOLS, ATOMIC NUMBERS AND WEIGHTS

Name	Symbol	Atomic number	Atomic weight	Name	Symbol	Atomic number	Atomic weight
Aluminium	AI	113	27.0	Mercury	Hg	80	200.6
Antimony	Sb	51	122.0	Molybdenum	Mo	42	96.0
Argon	A	18	40.0	Neon	Ne	10	20.0
Arsenic	As	33	75.0	Nickel	Ni	28	58.7
Barium	Ba	56	137.0	Nitrogen	N	7	14.0
Bismuth	Bi	83	209.0	Oxygen	0	8	16.0
Boron	В	5	11.0	Phosphorus	Р	15	31.0
Bromine	Br	35	80.0	Platinium	Pt	78	195.0
Cadmium	Cd	48	112.0	Plutonium	Pu	94	242.0
Calcium	Ca	20	40.0	Potassium	К	19	397.0
Carbon	С	6	12.0	Radium	Ra	88	226.0
Chlorine	CI	17	35.5	Selenium	Se	34	79.0
Chromium	Cr	24	52.0	Silicon	Si	14	28.0
Cobalt	Со	27	59.0	Silver	Ag	47	108.0
Copper	Cu	29	63.5	Sodium	Na	11	23.0
Fluorine	F	9	19.0	Strontium	Sr	38	87.6
Gold	Au	79	197.0	Sulfur	S	16	32.0
Helium	He	2	4.0	Tin	Sn	50	119.0
Hydrogen	н	1	1.0	Titanium	Ti	22	48.0
lodine	I	53	127.0	Tungsten	W	74	184.0
Iron	Fe	26	56.0	Uranium	U	92	238.0
Lead	Pb	82	207.0	Vanadium	V	23	51.0
Lithium	Li	3	7.0	Xenon	Xe	54	131.3
Magnesium	Mg	12	24.0	Zinc	Zn	30	65.4
Manganese	Mn	25	55.0	Zirconium	Zr	40	91.0

SPECIFIC GRAVITY OF VARIOUS MATERIALS AND FLUIDS

Name	Specific gravity	Name	Specific gravity
Rock:		Materials:	
Dry sand	2.6	Baryte (barium sulfate)	4.2 to 4.3
Gypsum	2.3 to 2.37	Compact brick	2.2
Granite	2.4 to 3.0	Compact clay	2.1
Hard limestone	2.4 to 2.7	Concrete	2.25
Marble	2.5 to 2.9	Glass	2.53
Medium-hard limestone	1.9 to 2.3	Portland cement (powder)	3.0 to 3.3
Quartzite	2.2 to 2.8	Portland cement slurry	1.8 to 2.0
Rock salt	2.16	Walnut shells	1.3
Sandstone	1.9 to 2.6		
		Gas (at 10°C and 760 mmHg	
Liquids (at 25°C):		in relation to air):	
Acetone	0.791	Air	1
Benzene	0.878	Isobutane	2.067
Carbon tetrachloride	1.595	<i>n</i> -butane	2.0854
Chloroform	1.482	Carbon dioxide	1.529
Ether	0.714	Carbon monoxide	0.9671
Ethyl alcohol	0.816	Ethane	1.0493
Glycerin	1.260	Ethylene	0.9749
Methyl alcohol	0.792	hydrogen	0.06952
Trichloroethylene	1.455	Hydrogen sulfide	1.19
Water at 4°C	1	Methane	0.5544
		Oxygen ,	1.10527
		Propane	1.554

PHYSICAL PROPERTIES OF METALS

Name	Symbol	Specific gravity	Melting point (°C)	Brinell hardness	Mohs scale
Aluminium	AI	2.70	660	16	2.5
Antimony	Sb	6.70	631	-	3.2
Bismuth	Bi	9.75	271	-	2.5
Cadmium	Cd	8.65	321	23	2
Chromium	Cr	7.19	1890	70-130	9
Cobalt	Со	8.90	1495	124	-
Copper	Cu	8.94	1083	_	2.5
Gold	Au	19.32	1063	-	2.5
Iron	Fe	7.88	1535	77	4.5
Lead	Pb	11.34	327	4	1.5
Magnesium	Mg	1.74	651	29	2
Manganese	Mn	7.20	1260	-	5
Mercury	Hg	13.55	- 39	-	-
Molybdenum	Mo	10.20	2620	150-200	-
Nickel	Ni	8.90	1455	110-300	-
Platinium	Pt	21.45	1774	64	4.3
Silver	Ag	10.50	961	_	2.5-7
Tin	Sn	7.30	232	-	1.7
Titanium	Ti	4.50	1800	-	-
Tungsten	W	19.30	3370	350	-
Vanadium	V	5.96	1710	-	-
Zinc	Zn	7.14	419	_	2.5

ш
7
N
0
S
C
=
T
Δ_
٢
\sim
G
<u> </u>
4
\mathbf{r}
S

Formations	Zechstein or Thuringian Saxonian Autunian	Coal form. (Stephanian) (Wesphalian) Dinantian (Culm)	Fammennian Frasnian Givetian Eifelian Coblencian Gedinnian Downtonian	Gothlandian Ordovician	Potsdamian Acadian Georgian			
Period	Permian	Carboniferous	Devonian	Silurian	Cambrian	Precambrian (Algonkian)	Archean	
Era	Primary (Paleozoic)							
Formations	Danian Senonian Turonian Cenomanian	Albian Aptian Barremian (Urgonian) Hauterivian Valanginian	(Purbeckian) Portlandian (Tithonic) Kimmeridgian Sequanian Rauracian Argovian Oxfordian Callovian	Bathonian Bajocian	Aalenian Toarcian Charmouthian Sinemurian Hettangian Rhetian	Keuper Muschelkalk	Bunter	
Period	Upper Cretaceous	Lower Cretaceous (Eocretaceous)	Upper Jurassic (Malm)	Middle Jurassic (Dogger)	Lower Jurassic (Lias)	Trias		
Era Secondary (Mesozoic)								
Formations	Flandrian Tyrrhenian Sicilian	Flandrian Tyrrhenian Sicilian Sicilian Calabrian Astian Plaisancian (Pontian) Vindobonian Burdigalian Vindobonian Burdigalian Ludian Sannoisian Sannoisian Chattian Sannoisian Montian Montian						
Period	Holocene (Neolithic) Pleistocene (Paleolithic)	Pliocene	Miocene	Oligocene	Eocene			
Ēra	Quaternary (Psychozoic) Tertiary (Cenozoic)							

A 27

BUOYANCY FACTOR (Steel specific gravity = 7.85)

Mud density		Factor k	Mud density			Factor k	
(kg/l)	(lb/gal)	(lb/ft ³)	Factor K	(kg/l)	(lb/gal)	(Ib/ft ³)	TACIOFIC
1.00	8.35	62.4	0.873	1.62	13.52	101.1	0.794
1.02	8.51	63.7	0.870	1.64	13.69	102.4	0.791
1.04	8.68	64.9	0.868	1.66	13.85	103.6	0.789
1.06	8.85	66.2	0.865	1.68	14.02	104.9	0.786
1.08	9.01	67.4	0.862	1.70	14.19	106.1	0.783
1.10	9.18	68.7	0.860	1.72	14.35	107.4	0.781
1.12	9.35	69.9	0.857	1.74	14.52	108.6	0.778
1.14	9.51	71.2	0.855	1.76	14.69	109.9	0.776
1.16	9.68	72.4	0.852	1.78	14.85	111.1	0.773
1.18	9.85	73.7	0.850	1.80	15.02	112.4	0.771
1.20	10.01	74.9	0.847	1.82	15.19	113.6	0.768
1.22	10.18	76.2	0.845	1.84	15.36	114.9	0.766
1.24	10.35	77.4	0.842	1.86	15.52	116.1	0.763
1.26	10.51	78.7	0.839	1.88	15.69	117.4	0.761
1.28	10.68	79.9	0.837	1.90	15.86	118.6	0.758
1.30	10.85	81.2	0.834	1.92	16.02	119.9	0.755
1.32	11.02	82.4	0.832	1.94	16.19	121.1	0.753
1.34	11.18	83.7	0.829	1.96	16.36	122.4	0.750
1.36	11.35	84.9	0.827	1. 9 8	16.52	123.6	0.748
1.38	11.52	86.2	0.824	2.00	16.69	124.9	0.745
1.40	11.68	87.4	0.822	2.02	16.86	126.1	0.743
1.42	11.85	88.6	0.819	2.04	17.02	127.4	0.740
1.44	12.02	89.9	0.817	2.06	17.19	128.6	0.738
1.46	12.18	91.1	0.814	2.08	17.36	129.8	0.735
1.48	12.35	92.4	0.811	2.10	17.52	131.1	0.732
1.50	12.52	93.6	0.809	2.12	17.69	132.3	0.730
1.52	12.68	94.9	0.806	2.14	17.86	133.6	0.727
1.54	12.85	96.1	0.804	2.16	18.03	134.8	0.725
1.56	13.02	97.4	0.801	2.18	18.19	136.1	0.722
1.58	13.19	98.6	0.799	2.20	18.36	137.3	0.720
1.60	13.35	99.9	0.796	2.22	18.53	138.6	0.717

 $k = 1 - \frac{\text{Mud density}}{2}$

= 1 - Steel density

Calculation of apparent string weight in mud

Apparent weight = Real weight - Buoyancy

$$Buoyancy = \frac{Real weight \times Mud density}{Steel density}$$

hence:

Apparent weight = Real weight [Steel density - Mud density] Steel density

Apparent weight = Real weight × Buoyancy factor

Example: Steel weight of a string = 125 t

Mud density = 1.18 kg/l

Apparent weight of string = $125 \times 0.849 = 106.1$ t

drill string standards

API steel grade and properties (API Spec 5D, 3 rd edition, Aug. 1,1992)(API Spec.7, 38 th edition, Apr. 1, 1994)	B1
API drill pipe list and body and upset geometry (API Spec 5D, 3 rd edition, August 1, 1992)	B2
Upset tubing for small-diameter work string (API Standard 5A and Spec 7)(Grade N-80)	В3
Classification of used drill pipe (API RP 7G, 15 th edition January 1, 1995)(All sizes, weight and grades)	B4
Inspection standards. Zones and color code identification (API RP 7G, 15 th edition January 1, 1995).	В5
Recommended practice for mill slot and groove method of drill string identification (API RP 7G, 15 th edition January 1, 1995)	B6-B7
Geometric characteristics of drill pipes (New pipe bodies and tool joints)	B8-B12
New (N), premium class (P) and class2 (2) drill pipe, torsional and tensile data (API RP 7G, 15 th edition, January 1, 1995)	B13-B15
New (N), premium class (P) and class2 (2) drill pipe, collapse and burst pressure data (API RP 7G, 15 th edition January 1, 1995)	B16-B18

Recommended minimum OD* and make-up torque of weld-on type tool joints based on the torsional strength of box and drill pipe (API RP 7G, 15 th edition, January 1, 1995)	B19-B23
Thread dimensions of rotary shouldered connections (API Spec 38 th edition, April 1, 1994)	B24
Shouldered connections	B25
Dimensions of obsolete shouldered connections (API Spec 7, Appendix I)	B26
API threads forms and dimensions (API Spec 7, 38 th edition, April 1,1994)	B27
Characteristics of some non_API tool joints threads	B28-B29
Rotary shouldered connection interchange list	B30-B31
Cylindrical drill collars. Dimensions and threads (API Spec7)	B32
Ideal drill collar range	B33
Weight of drill collar (Kg/m)	B34
Polar modulus of drill collars (in ³ -mm ³)	B35
Drill-collar Assembly. Rigidity R	B36
Stress-relief features for drill collar connections (API Spec 7)	B37
Large-diameter drill collars from 8 ³ / ₄ to 11 ¹ / ₄ inches. Shoulder modifications for low-torque connections. Dimensions of low-torque shouldered	B38
Spiral drill collars (Drilco)	B39
Drill collar slip and elevator recess elevator bore dimensions (API RP 7G, 15 th edition, January 1, 1995)	B40
Recommended make-up torque for rotary shouldered drill collar connections (API RP 7G, 15 th edition,	
January 1,1995)	B41-B46

Heavy wall drill pipes (Drilco, Division of Smith	
International, Inc.)	B47-B48
Kellys (API Spec 7, 38 th edition, April 1, 1994)	B49
Strength of Kellys (API RP 7G, 15 th edition, January 1, 1995)	B50
Stretch of suspended drill pipe	B51
Drill stem design calculations (API RP 7G, 15 th edition, January 1,1995)	B52-B55
Drill stem design calculations. Calculation examples	B56-B59
Critical buckling force (Baker Hughes INTEQ)	B60

API STEEL GRADES AND PROPERTIES (API Spec 5D, 3rd edition, August 1, 1992) (API Spec 7, 38th edition, April 1, 1994)

		Yield s	strength		Minimu	m tensile]
	Mini	mum	Maxi	mum	_	ngth	
	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	
Drill pipe Steel grade E75 X95 G105 S135	75 000 95 000 105 000 135 000	517 655 724 931	105 000 125 000 135 000 165 000	724 862 931 1138	100 000 105 000 115 000 145 000	689 724 793 1000	Box minimum hardness (Brinnel)
Tool joints	120 000	827	_		140 000	965	285
Drill collars and cross-over sub Outside diameter (in) 3 1/8 to 6 7/8 7 to 11	110 000 100 000	758 689	_ _		140 000 135 000	965 931	285 285

Mechanical properties and tests New non magnetic drill collars

Drill collar		Stainle	ss steels			Berylliur	n copper	······
OD range	Minimu strei	•	Minimur strer		Minimu strei	•	1	n tensile ngth
(in)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)
3 1/2 to 6 7/8 7 to 11	110 000 100 000	758 689	120 000 110 000	827 758	110 000 100 000	758 689	140 000 135 000	965 931

API DRILL PIPE LIST AND BODY AND UPSET GEOMETRY (API Spec 5D, 3rd edition, August 1, 1992)

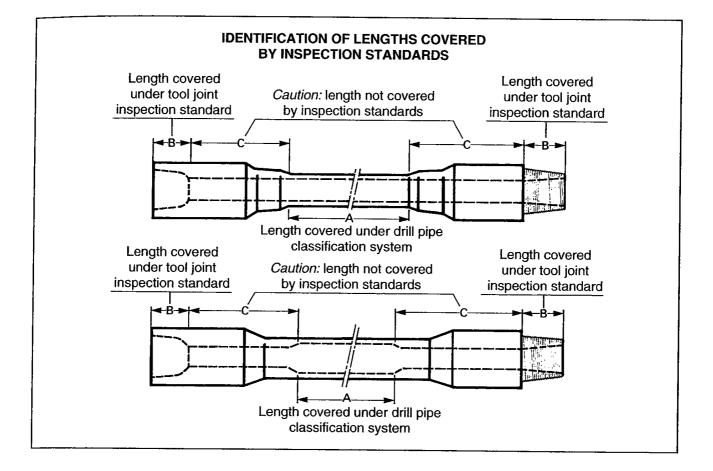
		_	iess ody	leter ody				Up	set		
Nom diam		Nominal weight	Wall thickness of pipe body	Inside diameter of pipe body	Steel grade	IL	J	E	U	IE	U
(in)	(mm)	(lb/ft)	(mm)	(mm)	S	OD (mm)	ID (mm)	OD (mm)	ID (mm)	OD (mm)	ID (mm)
2 3/8	60.3	6.65	7.11	46.1	E X-G-S			67.5 67.5	46.1 39.7		
2 7/8	73.0	10.40	9.19	54.6	E X-G-S	73.0 73.0	33.3 41.4	81.8 82.6	54.6 49.2		
3 1/2	88.9	9.50	6.45	76.0	E	88.9	57.2	97.1	76.0		
3 1/2	88.9	13.30	9.35	70.2	E X-G-S	88.9 88.9	49.2 49.2	97.1 101.6	66.1 63.5		
3 1/2	88.9	15.50	11.40	66.1	E X-G-S	88.9 -	49.2 -	97.1 101.6	66.1 63.5	96.0	- 49.2
4	101.6	14.00	8.38	84.8	E X-G-S	101.6 101.6	69.8 66.8	114.3 117.5	84.8 77.8		
4 1/2	114.3	13.75	6.88	100.5	E	114.3	85.7	127.0	100.5		
4 1/2	114.3	16.60	8.56	97.2	E X-G-S	-		127.0 131.8	- 97.2 90.5	118.3 118.3	80.2 73.0
4 1/2	114.3	20.00	10.92	92.5	E X-G-S			127.0 131.8	92.5 87.3	121.4 121.4	76.2 71.5
5	127.0	16.25	7.52	112.0	E	127.0	95.2				
5	127.0	19.50	9.19	108.6	E X-G-S			_ 146.1	_ 100.0	131.8 131.8	93.7 90.5
5	127.0	25.60	12.70	101.6	E X-G-S			_ 149.2	_ 96.9	131.8 131.8	87.3 84.2
5 1/2	139.7	21.90	9.17	121.4	E X-G-S					141.3 141.3	101.6 96.9
5 1/2	139.7	24.70	10.54	118.6	E X-G-S					141.3 141.3	101.6 96.9
6 5/8	168.3	25.20	8.38	151.5	E					176.0	135.0
6 5/8	168.3	25.20	8.38	151.5	X-G-S					176.0	135.0
6 5/8	168.3	27.70	9.19	149.9	E X-G-S					176.0 176.0	135.0 135.0

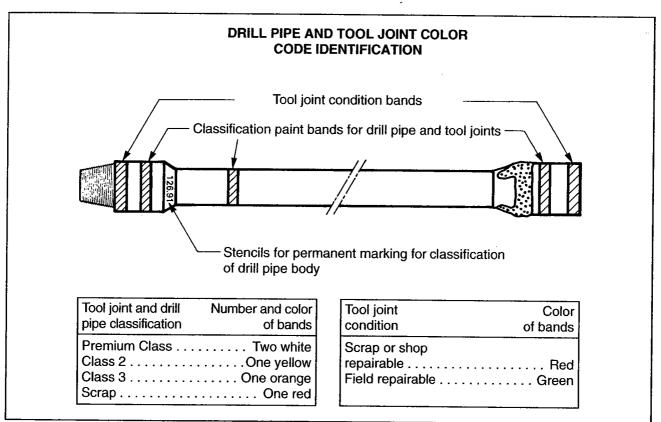
UPSET TUBING FOR SMALL-DIAMETER WORK STRINGS (1) (API Standard 5A and Spec 7) (Grade N80)

Ou diar	Outside diameter	Nominal weight	Wall thickness	Weight with tool-joints	⁴ Ins diam	¹ Inside diameter	Upset outside diameter	Cross section area	Inside capacity	Volume of steel	Tensile yield strength (2)	Torsional yield strength (2)	Internal pressure (2)	Collapse resistance (2)
(in)	(mm)	(Ib/ft)	(mm)	(kg/m)	Body (mm)	Upset (mm)	(mm)	(mm ²)	(m/l)	(I/m)	(10 ³ daN) (daN.m)	(daN.m)	(MPa)	(MPa)
1.050 1.315 1.660 1.900	26.7 33.4 42.2 48.3	1.55 2.30 3.29 4.19	3.91 4.55 5.03 5.56	2.20 3.36 4.77 6.10	18.9 24.3 32.1 37.2	17.5 21.4 22.2 23.8	36.5 42.8 47.6 55.5	280 413 588 746	0.280 0.464 0.810 1.085	0.280 0.428 0.607 0.777	15.8 23.4 33.4 42.3	89 168 310 455	141 131 115 111	139 131 116 111
(1) These	drill pipes a	Ire derived fi	rom IEU tubi	(1) These drill pipes are derived from IEU tubing pipes for welding tool joints with API numbered rotary shouldered connections NC10 NC12 NC13 and NC16	welding too	ol joints with	API numbe	red rotary sh	nouldered co	vnnections N	IC10, NC12	NC13 and N	IC16	

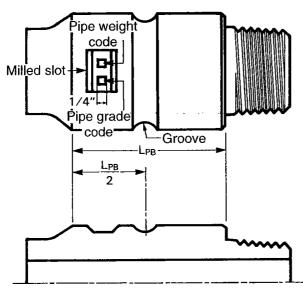
The dimensions specified for upsets were selected to accommodate the various bores of the tool joints and to maintain a satisfactory cross-section in the weld zone after final

machining of the assembly. (2) These pipes are generally of N80 steel. The mechanical properties are given for this steel grade.

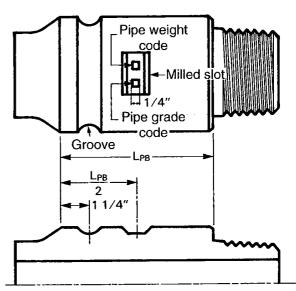

 $1/m \times 0.0805 = gal/ft$ $1/m \times 0.00192 = bbl/ft$ $mm^2 \times 0.00155 = in^2$ bar \times 14.5 = psi kg/m × 0.672 = lb/ft daN.m \times 7.38 = lb.ft mm × 0.0394 = in daN × 2.25 = lb d

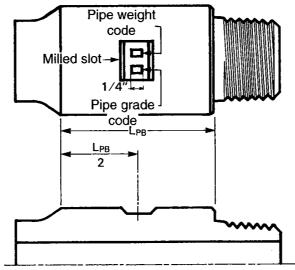

CLASSIFICATION OF USED DRILL PIPE (API RP 7G, 15th edition, January 1, 1995) (All sizes, weights and grades)

(Nominal dimension is basis for all calculations)


Pipe condition	PREMIUM CLASS Two white bands One center punch mark	CLASS 2 Yellow bands Two center punch marks	CLASS 3 Orange bands Three center punch marks
I EXTERIOR CONDITIONS A. OD wear Wall	Pamaining well not	Pomoining well not	Anvimnefections
vvan	Remaining wall not less than 80%	Remaining wall not less than 70%	Any imperfections or damages exceeding CLASS 2
B. Dents & mashes	Diameter reduction not over 3% of OD	Diameter reduction not over 4% of OD	
C. Slip area			
Mechanical damage			
1. Crushing, necking	Diameter reduction not over 3% of OD	Diameter reduction not over 4% of OD	
2. Cuts, gouges	Depth not to exceed 10% of the average adjacent wall	Depth not to exceed 20% of the average adjacent wall	
D. Stress induced			
Diameter variations			
1. Stretched	Diameter reduction not over 3% of OD	Diameter reduction not over 4% of OD	
2. String shot	Diameter increase not over 3% of OD	Diameter increase not over 4% of OD	
E. Corrosion,			
cuts and gouges			,
1. Corrosion	Remaining wall not less than 80%	Remaining wall not less than 70%	
2. Cuts and gouges			
Longitudinal	Remaining wall not less than 80%	Remaining wall not less than 70%	
Transverse	Remaining wall	Remaining wall	
	not less than 80%	not less than 80%	
F. Cracks	None	None	None
II INTERIOR CONDITIONS			
A. Corrosive pitting			
Wall	Remaining wall	Remaining wall	
	not less than 80% measured from vase of deepest pit	not less than 70% measured from base of deepest pit	
B. Errosion and wear			
Wall	Remaining wall not less than 80%	Remaining wall not less than 70%	
C. Cracks	None	None	None

INSPECTION STANDARDS Zones and color code identification (API RP 7G, 15th edition, January 1, 1995)




RECOMMENDED PRACTICE FOR MILL SLOT AND GROOVE METHOD OF DRILL STRING IDENTIFICATION (API RP 7G, 15th edition, January 1, 1995)

Standard weight high strength drill pipe

Heavy weight high strength drill pipe

Heavy weight grade E drill pipe

RECOMMENDED PRACTICE FOR MILL SLOT AND GROOVE METHOD OF DRILL STRING IDENTIFICATION (API RP 7G, 15th edition, January 1, 1995) (continued)

	Drill pipe	grade code	
Stand	ard grades	High stren	gth grades
Grade	Symbol	Grade	Symbol
N-80	N	X-95	X
E	E	G-105	G
C-75	C	S-135	S
	Drill pipe v	veight code	
Size OD	Nominal weight	Wall thickness	Weight
(in)	(lb/ft)	(in)	code number
2 3/8	4.85 6.65*	0.190 0.280	1
2 7/8	6.85 10.40*	0.280 0.217 0.362	2 1 2
3 1/2	9.50 13.30* 15.50	0.254 0.368 0.449	2 1 2 3
4	11.85	0.262	1
	14.00*	0.330	2
	15.70	0.380	3
4 1/2	13.75	0.271	1
	16.60*	0.337	2
	20.00	0.430	3
	22.82	0.500	4
	24.66	0.550	5
	25.50	0.575	6
5	16.25	0.296	1
	19.50*	0.362	2
	25.60	0.500	3
5 1/2	19.20	0.304	1
	21.90*	0.361	2
	24.70	0.415	3
6 5/8	25.20*	0.330	2
	27.70	0.362	3

* Designates standard weight for drill pipe size.

Note: Standard weight grade E drill pipe designated by an asterisk (*) in the drill pipe weight code will have no groove or milled slot for identification.

Grade E heavy weight drill pipe will have a milled slot only, in the center of the tong space.

GEOMETRIC CHARACTERISTICS OF DRILL PIPES (New pipe bodies and tool joints)

weight including tool joint (Ib/ft) **7.50** 6.90 6.90 6.90 10.69 10.69 10.60 11.20 11.20 11.20 11.09 11.09 11.30 11.30 Approximate (kg/m) **7.89** 7.59 7.24 7.44 **10.44** 10.12 **10.58** 10.42 **10.58** 10.42 **11.16** 10.27 10.57 **16.21** 15.78 15.78 16.67 **15.48** 15.33 **16.49** 16.22 **16.49** 16.22 **17.18** 16.82 (mm) **44.5** 50.8 50.8 50.8 50.8 50.8 50.8 44.5 44.5 46.0 46.0 **54.0** 601.0 601.0 61.0 61.0 54.8 74.7 60.8 50.8 50.8 50.8 Tool Dint **41.3** 41.3 85.7 85.7 79.4 82.6 82.6 73.0 73.0 85.7 82.6 82.6 82.6 82.6 **104.8** 95.3 95.3 95.4 98.4 98.4 98.4 98.4 98.4 79.8 79.4 (mm) **104.8** 98.4 **104.8** 101.6 **111.1** 104.8 Tool Joint OD NC26 (IF) WO OH SL-H90 NC26 (IF) OH PAC NC26(IF) SL-H90 NC26 (IF) SL-H90 Type of tool joint NC31 (IF) WO OH SL-H90 NC31 (IF) OH SL-H90 NC31 (IF) SL-H90 SL-H90 NC31 (IF) SL-H90 NC31 (IF) SL-H90 NC31 (IF) SL-H90 **ച**നനന **ച**നന ന**ന**ന **X**× **Q**Q സ **ա**տոր **ա**տոր **×** Հ Չ Չ and grade Upset $\mathbf{B} \subseteq \mathbf{C} \mathbf{C} \subseteq \mathbf{C} \mathbf{C} \subseteq \mathbf{C} \mathbf{C} \subseteq \mathbf{C} \subseteq \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \subseteq \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C$ Polar modulus (mm³)** 28 403 662 36 724 52 495 5 moment of inertia 653 421 856 775 (mm⁴)* 916 866 340 977 Polar Cross-section (mm^2) 842 1 169 843 1 189 (mm) 50.67 46.11 62.01 .65 54. ≙ 1.815 1.995 2.441 2.151 (in) thickness (mm) 9.19 Wall 4.83 7.11 5.51 Nominal weight 4.85 6.65 10.40 (lb/ft) 6.85 2 3/8 (60.33 mm) 2 7/8 (73.03 mm) Nominal diameter (iu)

 $mm^4 \times 2.40 \ 10^{-6} = in^4$ ** Polar modulus = $\frac{\pi}{16} \left(\frac{OD^4 - ID^4}{OD} \right)$ $mm^3 \times 6.10 \ 10^{-5} = in^3$ Polar moment of inertia = $\frac{\pi}{32}$ (OD⁴ – ID⁴) $mm^2 \times 0.00155 = in^2$ mm × 0.0394 = in

B 8

GEOMETRIC CHARACTERISTICS OF DRILL PIPES (New pipe bodies and tool joints) (continued)

	-	T	• • • • • • • • • • • • • • • • • • • •				·····		_
Approximate weight including tool joint	(lb/ft)	10.59 10.33 10.00	13.95 13.95 13.60	14.62 14.20	14.20 14.92 15.30	16.56 16.83 17.05	12.50 13.50 12.16	13.10 15.09 15.05 15.05 16.19	15.60
Appro weight i tool	(kg/m)	15.76 15.38 14.88 15.18	20.76 20.76 21.13 20.24	21.75 21.13 21.89	22.21 22.21 22.77	24.65 25.05 25.37	20.09 19.79 18.10	23.65 23.65 22.32 22.39 22.14 22.110 22.110	23.22
Tool joint ID	(mm)	68.3 76.2 76.2	68.3 68.3 61.9 54.0	65.1 65.1 61.9	54.0 54.0 61.9	65.1 61.9 54.0	82.6 87.3 88.1	71.4 82.6 651.4 82.6 82.6 82.6	/ .4
Tool joint OD	(mm)	120.7 120.7 114.3 117.5	120.7 120.7 120.7 104.8	127.0 120.7 127.0	127.0 127.0 136.5	127.0 127.0 127.0	152.4 146.1 133.4	152.4 139.7 117.5 152.4 133.4	138./
Type of tool joint		NC38 (IF) NC38(WO) OH SL-H90	NC38 (IF) OH XH NC31 (SH)	NC38 (IF) SL-H90 NC38 (IF) SL-H90	NC38 (IF) SL-H90 NC40 (4FH)	NC38 (IF) NC38 (IF) NC38 (IF)	NC46 (IF) NC46 (IF) OH OH	NC46 (IF) OH NC40 (FH) SH NC46 (IF) NC46 (IF)	DSU DSU
Upset and grade		ய யயய	យ យយយ	אא ט מ	ა ათ	ш×Ос) 	u w m m m XX >	<
Up and g		B 9999	9 225					5 3 5 3 5 3 5 3 5 3 5	2
Polar modulus	(mm ³)**	64 269	84 316			95 791	88 442	105 802	
Polar moment of inertia	(mm ⁴)*	2 856 744	3 747 837			4 257 912 `	4 492 846	5 374 730	
Cross- section	(mm²)	1 671	2 337			2 776	1 984	2 454	
0	(mm)	76.00	70.20			66.10	88.30	84.84	
≙	(in)	2.992	2.764			7.602	3.476	3.340	
Wall thickness	(mm)	6.45	9.35				6.65	80 80 80	
Nominal weight	(Ib/ft)	9.50	13.30			D0.01	11.85	14.00	
Nominal diameter	(in)	3 1/2 (88.90 mm)					4 (101.60 mm)		

 $mm^2 \times 0.00155 = in^2$ $mm^3 \times 6.10 \ 10^{-5} = in^3$ $mm^4 \times 2.40 \ 10^{-6} = in^4$

*, ** See notes on page B 8.

GEOMETRIC CHARACTERISTICS OF DRILL PIPES	Vew pipe bodies and tool joints) (continued)
GEOME	(New

Nominal diameter	Nominal weight	Wall thickness	<u>Q</u>		Cross- section	Polar moment of inertia	Polar modulus	Upset and grade	set Irade	Type of tool joint	Tool joint OD	Tool joint ID	Approximate weight including tool joint	kimate ncluding oint
	(lb/ft)	(mm)	(in)	(mm)	(mm²)	(mm ⁴)	(mm³)				(mm)	(mm)	(kg/m)	(Ib/ft)
4 (101.60 mm)	14.00	8.38	3.340	84.84	2 454	5 374 730	105 802	0 5 5 0 5 5	ა ო თ თ ლ ლ	NC46 (IF) NC40(FH) H90 NC46 (IF) NC40(FH) H90	152.4 139.7 139.7 152.4 139.7 139.7	82.6 61.9 71.4 76.2 50.8 71.4	24.10 23.59 23.22 24.44 24.00	16.19 15.85 15.60 16.42 16.13 15.60
4 1/2 (114.30 mm)	13.75	6.88	3.958	100.54	2 322	6 725 300	117 678	3 5555	. w www	NC50 (IF) NC50 (VO) 0H H90	161.9 155.6 146.1 152.4	95.3 98.4 100.8 82.6	22.91 22.03 20.98 22.62	15.39 14.80 15.20
	10.	8 20 8 20 8 20 0	3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3		2 844	8 000 253	139 992	ප පප ස ුළුළුළ ප පළුළුළ ප පළුළුළ	ຠ ՠՠՠՠՠ X XXXX G QQQQ 0 0000000000000000000000000000000	NC50 (IF) OH NC50 (IF) OH FH H90 NC46 (XH) NC46 (XH) H90 NC50 (IF) NC46 (XH) FH H90 NC50 (IF) NC50 (IF) H90	161.9 152.44 155.88 155.44155.44 155.44155.44 155.44 155.44 155.44155.44 155.44 155.44155.44 155.44 155.44155.44 155.44 155.44155.44 155.44 155.441	96 96 96 96 96 96 96 96 96 96 96 96 96 96	26.78 27.49 27.4	78.36 17.10 77.10 78.37 78.37 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.37 78.36 78.37 78.36 78.37 78.36 78.37 78.36 78.37 78.36 78.37 78.36 78.37 78.37 78.37 78.36 78.37 78.36 78.37 78.36 78.37 78.36 78.37 78.36 78.37 78.36 78.37 78.36 78.36 78.37 78.36 78.37 78.36 78.37 78.36 78.37 78.36 78.36 78.37 78.36 78.36 78.36 78.36 78.36 78.37 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.3678.37 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.36 78.3678.36 78.36 78.36 78.3678.37 78.36 78.36 78.3678.37 78.36 78.36 78.3678.37 78.36 78.3678.37 78.36 78.3678.37 78.36 78.3678.37 78.3678.3778.3778.3778.3778.3778.3778.3778.3778.377

B 10

75*

GEOMETRIC CHARACTERISTICS OF DRILL PIPES (New pipe bodies and tool joints) (continued)

Approximate weight including tool joint	(Ib/ft)	21.63 22.1166 22.1166 21.166 21.70 22.58 22.58 21.90 21.90 21.90 22.35 21.90 21.90 22.35 21.90 21.90 22.35 21.90 22.35 21.90 22.35 21.50 22.35 21.50 22.35	20.87 21.35 21.35 21.35 21.87 21.87 22.36 22.356 22.356 22.356 22.356 22.356 22.356 22.356 22.356 22.356 22.356 22.356 28.30 28.30 28.35 28.30 28.35 28.30 28.35 28.35 28.35 28.35 28.35 28.35 28.35 28.35 28.35 28.35 29.35 29.35 20.87
Appro weight i tool	(kg/m)	32.19 32.19 32.29 32.29 333.66 335.66 333.	31.06 31.77 33.19 31.84 32.555 32.557 32.555 32.5577 32.5577 32.5577 32.5577 32.5577 32.5577 32.5577 32.5577 32.5577
Tool Joint D	(mm)	92. 92. 92. 92. 92. 92. 92. 92. 92. 93. 93. 93. 93. 93. 93. 93. 93. 93. 93. 93. 93. 93. 94. 95. 95. 95. 95. 95. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97. 9 . 9 . 1111111111111	669. 000 .000 000 .000 0000 .000 000 .000 0000000000
Tool Joint OD	(mm)	161 1522.88 1522.88 1522.88 1522.88 1522.88 1588.3 1522.88 1588.3 1522.88 1588.3 1522.88 1588.3 1588.3 1588.3 1522.88 1588.3 1	161.9 167.8 177.8 165.1 177.8 165.1 177.8 168.3 177.8 168.3 168.3 177.8 161.9 177.8
Type of tool joint		NC50 (IF) NC50 (IF) FH H90 NC50 (IF) NC50 (IF)	NC50 (XH) 5 1/2 FH NC50 (IF) 5 1/2 FH
Upset and grade		ຠ ຓຓຓຓ × ××× ຎ ຎຎຎຎ	ՠ ՠՠ ★×× ጨնն லல ՠ ՠՠ
and o		$\mathbf{J}_{\mathbf{U}} = \mathbf{J}_{\mathbf{U}} = $	$\mathbf{\tilde{n}}_{\mathbf{r}} \cong \mathbf{\tilde{n}}_{\mathbf{r}} = \tilde{$
Polar modulus	(mm ³)	167 658	186 988
Polar moment of inertia	(mm ⁴)	9 581 665	11 873 714 15 078 604
Cross- section	(mm²)	3 547	6 0
	(mm)	92.46	76 108.62 3 40 00 101.60 4 56
Q	(in)	3.640	1.00
Wall thickness	(mm)	10.92	50 9.19 ² 60 12.70 ²
Nominal weight	(Ib/ft)	20.00	25.
Nominal diameter	(in)	4 1/2 (114.30 mm)	(127 mm)

B 11

GEOMETRIC CHARACTERISTICS OF DRILL PIPES (New pipe bodies and tool joints) (continued)

	<u> </u>			·····		
Approximate weight including tool joint	(lb/ft)	27.82 28.07 28.55 28.55 28.55 29.11	23.79 24.41 25.26 26.37	26.31 27.75 27.75 27.75 28.85	27.55 27.55 28.61 30.04	29.41 30.45 30.45 31.88
Appro weight i tool	(kg/m)	41.40 41.77 42.48 42.08 43.32 43.73	35.41 36.33 37.59 39.25	39.16 41.29 42.94	41.00 41.00 42.57 44.70	43.76 45.32 45.32 47.44
Tool joint ID	(mm)	76.2 73.2 88.9 69.9 82.6	101.6 95.3 88.9 76.2	101.6 88.9 88.9 76.2	127.0 127.0 120.7 107.9	127.0 120.7 120.7 107.9
Tool joint OD	(mm)	165.1 168.3 177.8 168.3 177.8 184.2 184.2	177.8 177.8 184.2 190.5	177.8 184.2 184.2 190.5	203.2 203.2 209.6 215.9	203.2 209.6 209.6 215.9
Type of tool joint	<u>L.,</u>	NC50 (XH) NC50 (IF) 5 1/2 FH NC50 (XH) 5 1/2 FH 5 1/2 FH	£ £ £ £	ŦŦŦŦ	ŦŦŦŦ	# # # #
set Irade		××× ೮ ೮ೲ	ш X Q N	ш × С о	ш X Q S	мхGо
Upset and grade	:				ieu Ieu Ieu	
Polar modulus	(mm ³)	237 458	230 442	257 058	320 677	346 560
Polar moment of inertia	(mm ⁴)	15 078 604	16 096 385	17 955 483	26 981 773	29 159 551
Cross- section	(mm²)	4 560	3 760	4 277	4 210	с С
0	(mm)	101.60	121.36	118.62	151.52	1 149.90 4 5
Q	(in)	4.000	4.778	4.670	5.965	.90
Wall thickness	(mm)	12.70	9.17	10.54	8.38	9.19
Nominal weight	(Ib/ft)	25.60	21.90	24.70	25.20	27
Nominal diameter	(in)	5 (127 mm)	5 1/2 (139.70 mm)		6 5/8 (168.28 mm)	

B 12

1

NEW (N), PREMIUM CLASS (P) AND CLASS 2 (2) DRILL PIPE, TORSIONAL AND TENSILE DATA (API RP 7G, 15th edition, January 1, 1995)

Size	Nominal				Tot	Torsional yield st	eld strength ¹	th ¹					Ĕ	ensile yiel	Tensile yield strength	L		
0	weight	Class		ш	95	2	10	105	135	35	Ш		95		105	15	10	35
(in)	(ib/ft)		(ft.lb)	(daN.m)	(ft.lb)	(daN.m)	(ft.lb)	(daN.m)	(ft.lb)	(daN.m)) (qj)	(10 ³ daN)	(qj)	(10 ³ daN)	(qI)	(10 ³ daN)	(qI)	(10 ³ daN)
2 3/8	4.85	ZLN	4 763 3 725 3 224	645 505 437	6 033 4 719 4 083	817 639 553	6 668 5 215 4 513	904 707 612	8 574 6 705 5 802	1 162 909 786	97 817 76 893 66 686	43.5 34.2 29.6	123 902 97 398 84 469	55.1 43.3 37.5	136 944 107 650 93 360	60.9 47.8 41.5	176 071 138 407 120 035	78.3 61.5 53.3
	6.65	ZLN	6 250 4 811 4 130	847 652 560	7 917 6 093 5 232	1 073 826 709	8 751 6 735 5 782	1 186 913 783	11 251 8 659 7 434	1 525 1 173 1 007	138 214 107 616 92 871	61.4 47.8 41.3	175 072 136 313 117 636	77.8 60.6 52.3	193 500 150 662 130 019	86.0 67.0 57.8	248 786 193 709 167 167	110.6 86.1 74.3
2 7/8	6.85	ZLN	8 083 6 332 5 484	1 095 858 743	10 238 8 020 6 946	1 387 1 087 941	11 316 8 865 7 677	1 533 1 201 1 040	14 549 11 397 9 871	1 971 1 544 1 338	135 902 106 946 92 801	60.4 47.5 41.2	172 143 135 465 117 549	76.5 60.2 52.2	190 263 149 725 129 922	84.6 66.5 57.7	244 624 192 503 167 043	108.7 85.6 74.2
	10.40	ZLN	11 554 8 858 7 591	1 566 1 200 1 029	14 635 11 220 9 615	1 983 1 520 1 303	16 176 12 401 10 627	2 192 1 680 1 440	20 798 15 945 13 663	2 818 2 161 1 851	214 344 166 535 143 557	95.3 74.0 63.8	271 503 210 945 181 839		300 082 233 149 200 980	133.4 103.6 89.3	385 820 299 764 258 403	171.5 133.2 114.8
3 1/2	9.50	ZLN	14 146 11 094 9 612	1 917 1 503 1 302	17 918 14 052 12 176	2 428 1 904 1 650	19 805 15 531 13 457	2 684 2 104 1 823	25 463 19 968 17 302	3 450 2 706 2 344	194 264 152 979 132 793	86.3 68.0 59.0	246 068 193 774 168 204	109.4 86.1 74.8	271 970 214 171 185 910	120.9 95.2 82.6	349 676 275 363 239 027	155.4 122.4 106.2
	13.30	ZLN	18 551 14 361 12 365	2 514 1 946 1 675	23 498 18 191 15 663	3 184 2 465 2 122	25 972 20 106 17 312	3 519 2 724 2 346	33 392 25 850 22 258	4 525 3 503 3 016	271 569 212 150 183 398	120.7 94.3 81.5	343 988 268 723 232 304		380 197 297 010 256 757		488 825 381 870 330 116	217.3 169.7
	15.50	ZLN	21 086 16 146 13 828	2 857 2 188 1 874	26 708 20 452 17 515	3 619 2 771 2 373	29 520 22 605 19 359	4 000 3 063 2 623	37 954 29 063 24 890	5 143 3 938 3 373	322 775 250 620 215 967			1 ~ + 0	451 885 350 868 302 354		580 995 451 115 388 741	258.2 200.5 172.8
(1) N: Bas	ed on the	shear str	(1) N: Based on the shear strength equal to 57.7% of minimum yield str	ial to 57.7	% of mini	imum yiel	d strengt	ength and nominal thickness	ninal thick	cness.								

urn yield strength and nominal thickness.

P: Based on the shear strength equal to 57.7% of minimum yield strength and torsional data based on 20% of uniform wear on outside diameter and tensile data based on 20% uniform wear on outside diameter and tensile data based on 20%

2: Based on the shear strength equal to 57.7% of minimum yield strength and torsional data based on 30% of uniform wear on outside diameter and tensile data based on 30% uniform wear on outside diameter and tensile data based on 30%

NEW (N), PREMIUM CLASS (P) AND CLASS 2 (2) DRILL PIPE, TORSIONAL AND TENSILE DATA (continued) (API RP 7G, 15th edition, January 1, 1995)

		Î	(0 (0)0		<u> </u>		0 0 - 0
	35	(10 ³ daN)	184.6 145.6 126.5	228.3 179.3 155.5	259.3 203.1 175.8	216.0 170.6 148.3 264.4 208.1 180.6 329.9 258.3	223.6 377.0 294.1 254.0
	13	(qI)	415 360 327 630 284 638	513 646 403 527 349 852	583 413 456 931 395 528		503 103 848 230 661 620 571 495
c	05	(10 ³ daN)	143.6 113.3 98.4	177.6 139.5 120.9	201.7 158.0 136.7	168.0 132.7 115.4 205.7 161.9 140.5 256.6 2556.6 2556.6	173.9 293.2 228.7 197.6
Tensile yield strength	10	(qI)	323 057 254 823 221 385	399 502 313 854 272 108	453 765 355 391 307 633		391 302 659 734 514 593 444 496
ensile yie	10	(10 ³ daN)	129.9 102.5 89.0	160.6 126.2 109.4	182.5 142.9 123.7	152.0 120.1 104.4 186.1 146.5 127.1 232.1 181.8	157.3 265.3 206.9 178.7
Ţ	95	(ql)	292 290 230 554 200 301	361 454 283 963 246 193	410 550 321 544 278 335	342 043 270 127 234 827 418 707 329 542 329 542 285 977 522 320 409 026	354 035 596 903 465 584 402 163
		(10 ³ daN)	102.6 80.9 70.3	126.8 99.6 86.4	144.1 112.8 97.7	120.0 94.8 82.4 146.9 115.6 100.3 183.3	124.2 209.4 163.4 141.1
	ш	(qi)	230 755 182 016 158 132	285 359 224 182 194 363	324 118 253 851 219 738	270 034 213 258 185 389 330 558 260 165 225 771 412 358 322 916	279 502 471 239 367 566 317 497
	ទេ	(daN.m)	4 750 3 734 3 239	5 680 4 438 3 839	6 295 4 894 4 223	6 319 4 976 7 514 5 099 9 000 9 900	
	135	(ft.lb)	35 054 27 557 23 907	41 918 32 752 28 329	46 458 36 120 31 166	46 633 36 725 31 887 55 453 450 43 450 37 634 66 421 51 630	44 544 73 641 56 856 48 890
h ¹	05	(daN.m)	3 694 2 904 2 520	4 418 3 452 2 986	4 896 3 807 3 285	4 915 3 870 3 361 5 844 4 579 3 966 7 000 7 000	4 694 7 761 5 992 5 153
Torsional yield strength ¹	10	(ft.lb)	27 264 21 433 18 594	32 603 25 474 22 034	36 134 28 094 24 241	36 270 28 564 24 801 43 130 33 795 29 271 51 661 40 157	34 645 57 276 44 222 38 026
sional yie	<u>م</u>	(daN.m)	3 343 2 628 2 280	3 997 3 123 2 701	4 430 3 444 2 972	4 447 3 502 5 288 4 143 3 588 6 333 6 333 6 333	4 247 7 022 5 421 4 662
Tor	95	(ft.lb)	24 668 19 392 16 823	29 498 23 048 19 935	32 692 25 418 21 932	32 816 25 844 22 439 39 022 30 576 26 483 36 741 46 741	31 346 51 821 40 010 34 404
		(daN.m)	2 639 2 075 1 800	3 156 2 466 2 133	3 497 2 719 2 346	3510 2765 2400 2400 3271 2833 2887 3887	3 353 5 544 4 280 3 680 3 680
	Ш	(ft.lb)	19 474 15 310 13 281	23 288 18 196 15 738	25 810 20 067 17 315	25 907 20 403 17 715 30 807 22 139 20 908 36 901 36 901	24 747 40 912 31 587 27 161
	Class		ZUN	ZUN	ZGN	ZON ZON ZO	NZLN
Nominal	weight	(Ib/ft)	11.85	14.00	15.70	13.75 16.60 20.00	22.82
Size	QO	(in)	4			4 1/2	

(1) See note B 13.

NEW (N), PREMIUM CLASS (P) AND CLASS 2 (2) DRILL PIPE, TORSIONAL AND TENSILE DATA (continued) (API RP 7G, 15th edition, January 1, 1995)

NEW (N), PREMIUM CLASS (P) AND CLASS 2 (2) DRILL PIPE, COLLAPSE AND BURST PRESSURE DATA (API RP 7G, 15th edition, January 1, 1995)

Nominal Class E 95 105 135	Collapse pressure Class E 95 105	Collapse pressure 95 105	Collapse pressure 95 105	Collapse pressure	Collapse pressure	55		135	22		ш		95	Burst pressure	ressure 105	D D	1	135
(Ib/ft) (psi) (MPa) (psi) (MPa) (psi)	(MPa) (psi) (MPa) (ps	(MPa) (psi) (MPa) (ps	(psi) (MPa) (ps	(MPa) (ps	sd)	(isd)		(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(isd)	(MPa)	(psi)	(MPa)
4.85 N 11 040 76.1 13 984 96.4 15 456 P 8 522 58.8 10 161 70.1 10 912 2 6 852 47.2 7 996 55.1 8 491	11 040 76.1 13 98.4 96.4 15 4 8 522 58.8 10 161 70.1 10 9 6 852 47.2 7 99 55.1 8 8	040 76.1 13 984 96.4 15.4 522 58.8 10 161 70.1 10 9 852 47.2 7 996 55.1 8.4	1 13 984 96.4 15.4 8 10 161 70.1 10 9 2 7 996 55.1 8.4	984 96.4 15.4 161 70.1 10.9 996 55.1 8.4	154 109 84	404		106.6 75.2 58.5	19 035 12 891 9 664	131.2 88.9 66.6	10 500 9 600 8 400	72.4 66.2 57 q	13 300 12 160	91.7 83.8 73.4	14 700 13 440	101.4 92.7 81.1	18 900 17 280	130.3 119.1
599 107.6 19 759 136.2 21 8 378 92.2 16 945 116.8 18 7 138 83.7 15 375 106.0 16 9	15 599 107.6 19 759 136.2 21 8 13 378 92.2 16 945 116.8 18 7 12 138 83.7 15 375 106.0 16 9	599 107.6 19 759 136.2 21 8 378 92.2 16 945 116.8 18 7 138 83.7 15 375 106.0 16 9	6 19 759 136.2 21 8 2 16 945 116.8 18 7 7 15 375 106.0 16 9	759 136.2 218 945 116.8 187 375 106.0 169	2 21 8 8 18 7 0 16 9	000		150.6 129.1 117.2	28 079 24 080 21 849	193.6 166.0 150.6	15 474 14 147 12 379	106.7 97.5 85.4	19 600 17 920 15 680	135.1 123.6 108.1	21 663 19 806 17 331	149.4 136.6 119.5	27 853 25 465 22 282	192.0 175.6 153.6
6.85 N 10.467 72.2 12.940 89.2 14.020 P 7.640 52.7 9.017 62.2 9.633 2 6.055 41.7 6.963 48.0 7.335	10 467 72.2 12 940 89.2 14 0 7 640 52.7 9 017 62.2 9 6 6 055 41.7 6 963 48.0 7 3	467 72.2 12.940 89.2 14.0 640 52.7 9.017 62.2 96 055 41.7 6.963 48.0 7.3	12 940 89.2 14 0 9 017 62.2 9 6 6 963 48.0 7 3	940 89.2 14 0 017 62.2 96 963 48.0 7 3	2 2 96 7 3 3	ျပဖက်		96.7 66.4 50.6	17 034 11 186 8 123	117.4 77.1 56.0	9 907 9 057 7 925	68.3 62.4 54.6	12 548 11 473 10 039	86.5 79.1 69.2	13 869 12 680 11 095	95.6 87.4 76.5	17 832 16 303 14 265	122.9 112.4 98.4
10.40 N 16 509 113.8 20 911 144.2 23 112 P 14 223 98.1 18 016 124.2 19 912 2 12 938 89.2 16 388 113.0 18 113	16 509 113.8 20 911 144.2 23 11 14 223 98.1 18 016 124.2 19 91 12 938 89.2 16 388 113.0 18 11	509 113.8 20 911 144.2 23 11 223 98.1 18 016 124.2 19 91 938 89.2 16 388 113.0 18 11	8 20 911 144.2 23 11 1 18 016 124.2 19 91 2 16 388 113.0 18 11	911 144.2 23 11 016 124.2 19 91 388 113.0 1811	23 11 19 91 18 11	3 11 9 91 8 11		159.4 137.3 124.9	29 716 25 602 23 288	204.9 176.5 160.6	16 526 15 110 13 221	113.9 104.2 91.2	20 933 19 139 16 746	144.3 132.0 115.5	23 137 21 153 18 509	159.5 145.8 127.6	29 747 27 197 23 798	205.1 187.5 164.1
9.50 N 10.001 69.0 12.077 83.3 13.055 P 7.074 48.8 8.284 57.1 8.813 2 5.544 38.2 6.301 43.4 6.596	10 001 69.0 12 077 83.3 13 05 7 074 48.8 8 284 57.1 8 8 5 544 38.2 6 301 43.4 6 56	001 69.0 12 077 83.3 13 05 074 48.8 8 284 57.1 8 81 544 38.2 6 301 43.4 6 55	0 12 077 83.3 13 05 .8 8 284 57.1 8 81 .2 6 301 43.4 6 56	077 83.3 13 05 284 57.1 8 81 301 43.4 6 56	13 05 8 81 6 55	5223		90.0 60.8 45.5	15 748 10 093 7 137	108.6 69.6 49.2	9 525 8 709 7 620	65.7 60.0 52.5	12 065 11 031 9 652	83.2 76.1 66.5	13 335 12 192 10 668	91.9 84.1 73.6	17 145 15 675 13 716	118.2 108.1 94.6
13.30 N 14 113 97.3 17 877 123.3 19 758 P 12 015 82.8 15 218 104.9 16 820 2 10 858 74.9 13 753 94.8 15 042	14 113 97.3 17 877 123.3 197.1 12 015 82.8 15 218 104.9 16 8 10 858 74.9 13 753 94.8 15 0	113 97.3 17 877 123.3 197.1 015 82.8 15 218 104.9 16 8.3 858 74.9 13 753 94.8 15 0.4	17 877 123.3 197.1 15 218 104.9 16 8.1 13 753 94.8 15 0.2	877 123.3 19.7 218 104.9 16.8 753 94.8 15.0	8 19 1 16 8 1 15 8 1	<u>۲</u> ю о		136.2 116.0 103.7	25 404 21 626 18 396	175.2 149.1 126.8	13 800 12 617 11 040	95.1 87.0 76.1	17 480 15 982 13 984	120.5 110.2 96.4	19 320 17 664 15 456	133.2 121.8 106.6	24 840 22 711 19 872	171.3 156.6 137.0
15.50 N 16 774 115.7 21 247 146.5 23 484 P 14 472 99.8 18 331 126.4 20 260 2 13 174 90.8 16 686 115.0 18 443	16 774 115.7 21 24 146.5 23 44 14 472 99.8 18 331 126.4 20 20 21 13 174 90.8 16 686 115.0 18 44	774 115.7 21 247 146.5 23 44 472 99.8 18 331 126.4 20 20 174 90.8 16 686 115.0 18 44	7 21 247 146.5 23 4 8 18 331 126.4 20 20 8 16 686 115.0 18 4	1 247 146.5 23 44 8 331 126.4 20 24 6 686 115.0 18 44	5 23 4 4 20 2 18 4	494		161.9 139.7 127.2	30 194 26 049 23 712	208.2 179.6 163.5	16 838 15 394 13 470	116.1 106.1 92.9	21 328 19 499 17 062	147.1 134.4 117.6	23 573 21 552 18 858	162.5 148.6 130.0	30 308 27 710 24 246	209.0 191.1 167.2
							ļ											

Calculations are based on formules in API 5 C3

N: Nominal ID and OD. P: Minimum wall of 80% nominal wall. Collapse pressures are based on uniform OD wear. Burst pressures are based on uniform wear and nominal OD. 2: Minimum wall of 70% nominal wall. Collapse pressures are based on uniform OD wear. Burst pressures are based on uniform wear and nominal OD.

NEW (N), PREMIUM CLASS (P) AND CLASS 2 (2) DRILL PIPE, COLLAPSE AND BURST PRESSURE DATA (continued) (API RP 7G, 15th edition, January 1, 1995)

Size	Nominal					Collapse	Collapse pressure							Burst pi	Burst pressure			
0	weight	Class		ш	95	2	105	15	135	5			95		105	Ð	13	35
(in)	(Ib/ft)		(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(psi)	(MPa)	(isd)	(MPa)	(jsd)	(MPa)	(isi)	(MPa)
4	11.85	ZLN	8 381 5 704 4 311	57.8 39.3 29.7	9 978 6 508 4 702	68.8 44.9 32.4	10 708 6 827 4 876	73.8 47.1 33.6	12 618 7 445 5 436	87.0 51.3 37.5	8 597 7 860 6 878	59.3 54.2 47.4	10 889 9 956 8 712	75.1 68.6 60.1	12 036 11 004 9 620	83.0 75.9 66.4	15 474 14 148	106.7 97.5
	14.00	ZLN	11 354 9 012 7 295	78.3 62.1 50.3	14 382 10 795 8 570	99.2 74.4 59.1	15 896 11 622 9 134	109.6 80.1 63.0	20 141 13 836 10 520	138.9 95.4 72 5		74.7 68.3 60.7		94.6 96.5	15 159 13 860	104.5 95.6		134.4 122.9
	15.70	ZLN	12 896 10 914 9 531	88.9 75.2 65.7	16 335 13 825 11 468	112.6 95.3 79.1	18 055 15 190 12 374	124.5 104.7 85.3		160.0 128.2 102.3		86.0 78.6 68.8			17 456 15 960 13 965	83.0 120.4 110.0 96.3	15 593 22 444 20 520 17 955	107.5 154.7 141.5 123.8
4 1/2	13.75	ZLN	7 173 4 686 3 397	49.5 32.3 23.4	8 412 5 190 3 845	58.0 35.8 26.5	8 956 5 352 4 016	61.7 61.7 36.9 27.7	10 283 5 908 4 287	70.9 40.7 29.6	7 904 7 227 6 323	54.5 49.8 43.6	10 012 9 154 8 010	69.0 63.1 55.2	11 066 10 117 8 853	76.3 69.8 61.0	14 228 13 008 11 382	98.1 89.7 78.5
	16.60	ZUN	10 392 7 525 5 951	71.7 51.9 41.0	12 765 8 868 6 828	88.0 61.1 47.1	13 825 9 467 7 185	95.3 65.3 49.5	16 773 10 964 7 923	115.6 75.6 54.6	9 829 8 987 7 863	67.8 62.0 54.2	12 450 11 383 9 960	85.8 78.5 68.7	13 761 12 581 11 009	94.9 86.7 75.9	17 693 16 176 14 154	122.0 111.5 97.6
	20.00	ZUN	12 964 10 975 9 631	89.4 75.7 66.4	16 421 13 901 11 598	113.2 95.8 80.0	18 149 15 350 12 520	125.1 105.8 86.3	23 335 18 806 15 033	160.9 129.7 103.6	12 542 11 467 10 033	86.5 79.1 69.2	15 886 14 524 12 709	109.5 100.1 87.6	17 558 16 053 14 047	121.1 110.7 96.9	22 575 20 640 18 060	155.6 142.3 124.5
	22.82	ZUN	14 815 12 655 11 458	102.1 87.3 79.0	18 765 16 030 14 514	129.4 110.5 100.1	20 741 17 718 16 042	143.0 122.2 110.6	26 667 22 780 20 510	183.9 157.1 141.4	14 583 13 333 11 667	100.5 91.9 80.4	18 472 16 889 14 779	127.4 116.4 101.9	20 417 18 667 16 333	140.8 128.7 112.6	26 250 24 000 21 000	181.0 165.5 144.8
See note	B 16.												1	1				

NEW (N), PREMIUM CLASS (P) AND CLASS 2 (2) DRILL PIPE, COLLAPSE AND BURST PRESSURE DATA (continued) (API RP 7G, 15th edition, January 1, 1995)

r						·				
	5	(MPa)	96.4 88.2 77.1	117.9 107.8 94.3	162.9 148.9 130.3	90.0 82.3 72.0	106.9 97.7 85.5	122.9 112.4 98.3	81.1 74.2 64.9	89.0 81.4 71.2
	135	(psi)	13 986 12 787 11 189	17 105 15 638 13 684	23 625 21 600 18 900	13 058 11 939 10 447	15 507 14 177 12 405	17 826 16 298 14 261	11 768 10 759 9 414	12 909 11 803 10 327
	10	(MPa)	75.0 68.6 60.0	91.7 83.9 73.4	126.7 115.8 101.4	70.0 64.0 56.0	83.2 76.0 66.5	95.6 87.4 76.5	63.1 57.7 50.5	69.2 63.3 55.4
essure	105	(isd)	10 878 9 946 8 702	13 304 12 163 10 643	18 375 16 800 14 700	10 156 9 286 8 125	12 061 11 027 9 649	13 865 12 676 11 092	9 153 8 368 7 322	10 040 9 180 8 032
Burst pressure		(MPa)	67.9 62.0 54.3	83.0 75.9 66.4	114.6 104.8 91.7	63.4 57.9 50.7	75.2 68.8 60.2	86.5 79.1 69.2	57.1 52.2 45.7	62.6 57.3 50.1
	95	(psi)	9 842 8 998 7 874	12 037 11 005 9 629	16 625 15 200 13 300		10 912 9 977 8 730	12 544 11 469 10 035	8 281 7 571 6 625	9 084 8 306 7 267
		(MPa)	53.6 49.0 42.9	65.5 59.9 52.4	90.5 82.7 72.4	50.0 45.7 40.0	59.4 54.3 47.5	68.3 62.4 54.6	45.1 41.2 36.1	49.4 45.2 39.6
	ш	(psi)	7 770 7 104 6 216	9 503 8 688 7 602	13 125 12 000 10 500		8 615 7 876 6 892	9 903 9 055 7 923	6 538 5 977 5 230	7 172 6 557 5 737
	2 2	(MPa)	67.8 39.0 28.0	108.1 69.1 48.8	167.5 141.4 114.4	55.8 32.5 22.5	87.4 51.7 37.7	117.4 77.1 56.0	41.6 23.6 16.2	53.9 31.5 21.7
	135	(psi)	9 831 5 661 4 065	15 672 10 029 7 079	24 300 20 510 16 587	8 093 4 714 3 265	12 679 7 496 5 464	17 023 11 177 8 115	6 036 3 429 2 346	7 813 4 562 3 148
	12	(MPa)	59.4 34.9 26.5	89.6 60.4 45.2	130.3 110.6 94.4	50.4 29.9 22.2	74.1 47.3 33.8	96.6 66.4 50.5	37.9 23.1 16.2	49.0 29.1 21.5
pressure	105	(psi)	8 616 5 067 3 850	12 999 8 765 6 552	18 900 16 042 13 685	7 313 4 336 3 215	10 753 6 865 4 899	14 013 9 626 7 329	5 500 3 353 2 346	7 103 4 222 3 113
Collapse	10	(MPa)	55.9 34.0 25.5	82.9 56.8 43.2	117.9 100.1 87.1	47.9 28.5 21.6	69.1 45.1 32.6	89.2 62.1 48.0	36.7 22.4 16.2	46.6 27.8 20.9
	95	(isd)	8 108 4 935 3 696	12 026 8 241 6 262	17 100 14 514 12 640	6 942 4 130 3 128	10 019 6 542 4 733	12 933 9 011 6 957	5 321 3 252 2 343	6 755 4 029 3 037
		(MPa)	47.8 31.0 22.6	68.7 48.5 38.0	93.1 79.0 71.3	41.6 25.8 19.5	58.0 39.5 29.9	72.1 52.6 41.7	33.0 20.2 15.4	40.6 24.9 19.1
	μ	(isd)	6 938 4 490 3 275	9 962 7 041 5 514	13 500 11 458 10 338	6 039 3 736 2 835	8 413 5 730 4 334	10 464 7 635 6 050	4 788 2 931 2 227	5 894 3 615 2 765
	Class		ZLN	ZUN	ZLN	ZLN	ZLN	ZUN	ZUN	ZUN
Nominal	weight	(lb/ft)	16.25	19.50	25.60	19.20	21.90	24.70	25.20	27.70
	00	. <u>⊆</u>	ى			5 1/2			6 5/8	

See note B 16.

B 18

x

RECOMMENDED MINIMUM OD* AND MAKE-UP TORQUE OF WELD-ON TYPE TOOL JOINTS BASED ON TORSIONAL STRENGTH OF BOX AND DRILL PIPE (API RP 7G, 15th edition, January 1, 1995)

	e-up e for num	(daN m)	229 237	215 234	278	270	370	407	380	390	361 361	524	496	520	511 511	400 673	000	47 / 74	100	650	099	<u>۵/۵</u>
	Make-up torque for minimum OD tool ioint	(ft Ib)	689 746	1 726		2 204 1 996 2 075	2 734	3 005	2 804	2 876	2 666	3 867	3 664	3 839	3 770	4 969			2000	4 797	4 /9/ 4 868 7 200	5 UU 0
s 2	num oulder centric	(mm)	0.8	1 Ci	- 5.8 - 7.8	0.00	2.4	2.8	1.6	1.6	0.0				0 00 C		-+-			4.	4 00 t 7 00 t	+
Class	Minimum box shoulder with eccentric wear	(in)	1/32 3/64	3/64 3/64	7/64	1/16	3/32	7/64	1/16	1/16	1/16	7/64	7/64	5/32	7/64	5/32 5/32	11/64	15/67		3/32	7/64	1010
	oint	(mm)	78.6 77.0 75.4	74.6	69.1 80.2	75.4	81.8	82.6	92.9	91.3	87.3	95.3	92.9	84,9 7	89.7	97.6 97.6	- 77 08 4	101 6		110.3	108.0	2.22
	Minimum OD tool joint	(in)	3 3/32 3 1/32 2 31/32	2 15/16	2 23/32 3 5/32	2 31/32 3 1/32	3 7/32	3 1/4	3 21/32	3 19/32	37/16	3 3/4	3 21/32	3 11/32	3 17/32 3 1//32	3 27/32 3 5/8	3 7/8			11/32	4 1/4 4 5/32	1717
	e for a for ol joint	(daN.m)	264 270 248	570	333 334	345 315	407	444	427	436	460				614 466				-+-		724	
	Make-up torque for minimum OD tool joint	(ft.lb)	1 945 1 994 1 830	1 996		2 549 2 324	3 005	3 279	3 154	3 216	3 397	4 597	4 357	4 773	4 529 3 439	5 726 5 702		7 694		5 7 / 3	5 340	
n class	num bulder centric ar	(mm)	1.0 1.6		3.6 2.0	2.2 4.2	2.8	3.2	2.0	0 0 0 0	2.4	3.6	- 9.0 7.0	4.4	3.6 6.0	4.8	5.2	6.7	, c	, c , c , c	3.2	
Premium class	Minimum box shoulder with eccentric wear	(in)	3/64 1/16 1/16	1/16	9/64 5/64	3/32 3/32	7/64	1/8	5/64	5/64 7/64	3/32	9/64	9/64	5/32	9/64 15/64	3/16 3/16	13/64	17/64	10	0/1	1/8 7/64	
	D D oint	(mm)	79.4 77.8 76.2	75.4	70.6 81.0	77.0 77.8	82.6	83.3	93.7	92.1 88.9	6.88	96.8	94.5 05.7	91.3	91.3 79.4	99.2 93.7	100.0	103.2	0111	111.9	108.7 106.4	
	Minimum OD tool joint	(in)	3 1/8 3 1/16 3	2 31/32	2 25/32 3 3/16	3 1/32 3 1/16	3 1/4	3 9/32	3 11/16	31/2 31/2	3 1/2	3 13/16	3 23/32 3 2/8	3 19/32	3 19/32 3 1/8	3 29/32 3 11/16	3 15/16	1/16	13/37	13/32	9/32 3/16	
	dn- -	(daN.m)	559 350 368		381 559		559	559	965 505			965	-		918 466	1 073 918	1 073 3	1 378 4	+ -	-	978 4 1 028 4	
	Make-up torque ⁶	(ft.lb)	4 125 B 2 586 P 2 713 P	074	2 813 P 4 125 B	391 391	4 125 B	4 125 B	7 122 P	351 351	575	7 122 P	/ 969 P 4 125 B	5 270 P	6 773 P 3 439 P	7 918 P 6 773 P	7 918 P	0 167 P	889	864	7 218 P	
ta	30	(mm)	44.5 50.8 50.8	50.8	34.9 44.5	50.8 44.5	44.5	44.5	54.0 61 0	61.9 	61.9	54.0	47.0 44.5	54.8	54.8 38.1	50.8 54.8	50.8	41.3 10			76.2 7 76.2 7	
New tool joint data	New	(in)	1 3/4 2 2	2	1 3/8 1 3/4	2 1 3/4	1 3/4	1 3/4	2 1/8 2 7/16	2 7/16	2 7/16	2 1/8	1 3/4	2 5/32	2 5/32 1 1/2	2 2 5/32	5	1 5/8		2 11/16	 ოო	
New too	New OD	(mm)	85.7 85.7 79.4	82.6	73.0	82.6 82.6	85.7	85.7	104.8 104.8		_				98.4 79.4	104.8 98.4	104.8	111.1			120.7	
	ž ^o	(in)	3 3/8 3 3/8 3 1/8	3 1/4	2 7/8 3 3/8	3 1/4 3 1/4	3 3/8	3 3/8	4 1/8 4 1/8	3 3/4	3 7/8	4 1/8	3 3/8	3 7/8	3 //8 3 1/8	4 1/8 3 7/8	4 1/8	4 3/8	3/4	3/4	4 3/4 4 5/8	
	Connection		NC26 VVO 2 3/8 OHLW	2 3/8 SL-H90	2 3/8 PAC ² NC26 2 7.6 51 1150	2 3/8 OHSW	NC26	NC26 ²	NC31 2 7/8 WO	2 7/8 OHLW ²	2 7/8 SL-H90	NC31	2 //2 // NC26 ²	2 7/8 OHSW ²	2 7/8 5L-H90 2 7/8 PAC ²	NC31 2 7/8 SL-H90 ²	NC31	NC31	NC38	NC38	3 1/2 SL-H90	3 23
	Type upset and grade	,	EU 75 EU 75 EU 75	EU 75	IU 75 EU 75 EU 75	EU 75	EU 95	EU 105	EU 75 EU 75	EU 75	EU /5	EU 75	IU 75	EU 75	EU 75	EU 95 EU 95	EU 105	EU 135	EU 75	EU 75	EU 75	end of
Drill pipe	Nomi- nal weight	(lb/ft)	4.85	_	6.65 6.65		6.65	6.65	6.85 6.85	85		10.40		10.40	_	10.40 10.40	10.40	10.40		0.50 0.50		ss at the
	Nomi- nal size	(in)	2 3/8		2 3/8			2 3/8	2 7/8	, -		2 7/8	·			2 7/8	2 7/8	2 7/8	3 1/2			See notes at the end of B 23

RECOMMENDED MINIMUM OD* AND MAKE-UP TORQUE OF WELD-ON TYPE TOOL JOINTS BASED ON TORSIONAL STRENGTH OF BOX AND DRILL PIPE (continued) (API RP 7G, 15th edition, January 1, 1995)

	Make-up torque for minimum OD tool joint	(daN.m)	849 828 844 844 879 1055	1 036	1 195	1 459 1 485	917	1 195	1 267 1 300	1 621	878 878 893 943	1 067 1 063 1 059 1 059 1 062	1 300 1 346 1 311
	Mak torqu minir OD to	(ft.Ib)	6 268 6 110 6 229 6 487 7 785	7 646	8 822	10 768 10 957	6 769	8 822	9 348 9 595	11 963	6 476 6 476 6 593 6 562	7 877 7 843 7 817 7 817 7 839 7 839 7 630	9 595 9 937 9 673
ss 2	Minimum box shoulder with eccentric wear	(աա)	3.6 5.2 2.8 4.0	3.6 1.4	5.6	6.0 7.1	4.0	5.6	6.0 5.2	6.7	2.0 2.8 2.8	4.0 3.6 3.8 8 3.6	5.2 4.0 4.0
Class	Mini box sh with ec w	(in)	9/64 13/64 5/32 7/64 3/16	9/64	7/32	15/64 9/32	5/32	7/32	15/64 13/64	17/64	5/64 5/64 7/64 3/32	5/32 7/64 13/64 9/64 7/64	13/64 5/32 5/32
	num oint	(um)	112.7 100.0 114.3 115.1	115.9	116.7	124.6 119.9	113.5	116.7	117.5 123.0	126.2	131.0 131.0 125.4 125.4	120.7 132.6 111.1 127.0 123.8	123.0 134.9 126.2
	Minimum OD tool joint	(in)	4 7/16 3 15/16 4 11/32 4 1/2 4 1/2	4 3/10 4 9/16	4 19/32	4 29/32 4 23/32	4 15/32	4 19/32	4 5/8 4 27/32	4 31/32	5 5/32 5 5/32 4 15/16 4 27/32	4 3/4 5 7/32 4 3/8 5 4 7/8	4 27/32 5 5/16 4 31/32
	e-up e for num ol joint	(daN.m)	986 934 986 957 1195	1 196	1 339	1 703 1 709	1 055	1 339	1 485 1 540	1 954	1 063 1 063 1 066 1 066	1 222 1 251 1 190 1 237 1 218	1 540 1 540 1 499
	Make-up torque for minimum OD tool joint	(ft.lb)	7 274 6 893 7 278 7 064 8 822	o /42 8 826	9 879	12 569 12 614	7 785	9 879	10 957 11 363	14 419	7 843 7 843 7 866 7 866 7 630	9 017 9 233 8 782 9 131 8 986	11 363 11 363 11 065
n class	num bulder centric ar	(mm)	4.4 6.0 3.2 8.0	5.2 4.4	6.4	7.1 8.3	4.8	6.4	7.1 6.4	8.3	2.8 2.8 3.6 2.8	4 6 0 4 6 8 0 4 0 0 4 0	6.4 4.8 4.8
Premium class	Minimum box shoulder with eccentric wear	(in)	11/64 15/64 3/16 1/8 7/32	13/04 11/64	1/4	9/32 21/64	3/16	1/4	9/32 1/4	21/64	7/64 7/64 9/64 7/64	3/16 9/64 15/64 11/64 9/64	1/4 3/16 3/16
	oint	(ww)	114.3 101.6 111.9 115.1 116.7	117.5	118.3	127.0 122.2	115.1	118.3	119.9 125.4	129.4	132.6 132.6 127.0 123.8	122.2 134.1 112.7 128.6 125.4	125.4 136.5 127.8
	Minimum OD tool joint	(in)	4 1/2 4 13/32 4 13/32 4 17/32 4 19/32	4 3/8 4 5/8	4 21/32	5 4 13/16	4 17/32	4 21/32	4 23/32 4 15/16	5 3/32	5 7/32 5 7/32 5 4 7/8	4 13/16 5 9/32 4 7/16 5 1/16 4 15/16	4 15/16 5 3/8 5 1/32
	dn- e	(daN.m)	1 472 965 1 407 1 938 1 938	1 938	1 806	2 433 2 156	1 653	1 806	2 156 2 257	2 678	2 734 2 342 1 787 2 876	1 909 2 734 1 233 2 211 2 211	2 087 2 734 2 876
	Make-up torque ⁶	(ft.lb)	10 864 P 7 122 P 10 387 P 14 300 P 12 196 P	11 137 P	13 328 P	17 958 P 15 909 P	12 196 P	13 328 P	15 909 P 16 656 P	19 766 P	20 175 P 17 285 P 13 186 P 21 224 P	14 092 P 20 175 P 9 102 P 16 320 P 21 224 P	15 404 P 20 175 P 21 224 P
g	>	(mm)	68.3 54.0 68.3 69.9 65.1	69.9	61.9	61.9 54.0	65.1	61.9	54.0 65.1	57.2	82.6 87.3 88.1 71.4	71.4 82.6 65.1 82.6 71.4	68.3 82.6 71.4
New tool joint data	New	(in)	2 11/16 2 1/8 2 11/16 2 3/4 2 9/16	2 3/4	2 7/16	2 7/16 2 1/8	2 9/16	2 7/16	2 1/8 2 9/16	2 1/4	3 1/4 3 7/16 3 15/32 2 13/16	2 13/16 3 1/4 2 9/16 3 1/4 2 13/16	2 11/16 3 1/4 2 13/16
New too	ξQ	(mm)		117.5	127.0	136.5 127.0	127.0	127.0	127.0 133.4	139.7	152.4 146.1 133.4 139.7	133.4 152.4 117.5 139.7 139.7	133.4 152.4 139.7
	New	(in)	4 3/4 4 1/8 4 3/4 5 1/4 5 2	4 5/8 5 1/4	2	5 3/8	5	5	5 5 1/4	5 1/2	6 5 3/4 5 1/2 5 1/2	5 1/4 6 4 5/8 5 1/2 5 1/2	5 1/4 6 5 1/2
	Connection			3 1/2 SL-H90 3 1/2 H90	NC38	NC40 NC38	NC38	NC38	NC38 NC40	NC40	NC46 4 WO 4 OHLW 4 H90	NC40 NC46 4 SH ² 4 OHSW 4 H90	NC40 NC46 4 H90
(Type upset and	grade	EU 75 IU 75 EU 75 EU 75 EU 95	EU 95 EU 95	EU 105	EU 135 EU 135	EU 75	EU 95	EU 105 EU 105	EU 135	EU 75 EU 75 EU 75 IU 75	IU 75 EU 75 IU 75 EU 75 IU 75 IU 75	IU 95 EU 95 IU 95
Drill pipe	Nomi- nal weight	(lb/ft)		13.30	13.30	13.30 13.30	15.50	15.50	15.50 15.50	15.50	11.85 11.85 11.85 11.85	14.00 14.00 14.00 14.00 14.00	14.00 14.00 14.00
	Nomi- nal size	(in)	3 1/2		3 1/2	3 1/2	3 1/2	3 1/2	3 1/2	3 1/2	4	4	4

RECOMMENDED MINIMUM OD* AND MAKE-UP TORQUE OF WELD-ON TYPE TOOL JOINTS BASED ON TORSIONAL STRENGTH OF BOX AND DRILL PIPE (continued) (API RP 7G, 15th edition, January 1, 1995)

	Make-up torque for minimum OD tool joint	(daN.m)	1 459 1 443 1 400	1 936	1 144 1 157 1 155	1 459 1 443 1 499	1 638 1 595	2 037 2 037	1 365 1 443 1 406 1 460 1 460	1 737 1 736 1 736 1 795 1 775	1 928 1 936 1 908 1 982
	Make-up torque for minimum OD tool joi	(ft.lb)	10 768 10 647 11 065	14 288	8 444 8 535 8 305	10 768 10 647 11 065	12 085 11 770	15 035 15 035	10 072 10 647 10 375 10 773 10 773		14 231 14 288 14 082 14 625
ss 2	Minimum box shoulder with eccentric wear	(mm)	0.4.4 0.4.4		4.4 3.2 3.2	6.0 4.4 8.4	5.2 5.2	6.7 6.7	44404 0440C	5.6 5.6 5.7 6 7.0 7 7 7 6 7 7 6 7 7 6 7 7 7 7 7 7 7 7 7	6.4 6.2 6.0 0
Class	Mini box sh with ec	(ij	15/64 11/64 3/16	1/4	11/64 1/8 1/8	15/64 11/64 3/16	13/64 13/64	17/64 17/64	5/32 5/32 11/64 9/64 9/64	7/32 7/32 3/16 13/64	1/4 1/4 13/64 15/64
	Minimum OD tool joint	(mm)	124.6 135.7 127.8	139.7	121.4 133.4 124.6	124.6 135.7 127.8	137.3 128.6	140.5 140.5	134.1 135.7 135.7 136.5 144.5 134.1	137.3 138.1 146.8 136.5	138.9 139.7 147.6 138.1
	Minimum OD tool joint	(ii)	4 29/32 5 11/32 5 1/32	5 1/2	4 25/32 5 1/4 4 29/32	4 29/32 5 11/32 5 1/32	5 13/32 5 1/16	5 17/32 5 17/32	5 9/32 5 11/32 5 3/8 5 11/16 5 9/32	5 13/32 5 7/16 5 25/32 5 3/8	5 15/32 5 1/2 5 1/2 5 7/16
	Make-up torque for minimum OD tool joint	(daN.m)	1 703 1 736 1 691	2 139	1 379 1 346 1 311	1 703 1 736 1 691	1 836 1 886	2 450 2 450	1 643 1 638 1 638 1 607 1 570 1 655	2 025 2 037 2 037 2 032 2 092	2 221 2 242 2 254 2 204
	Mak torqu OD to	(ft.lb)	12 569 12 813 12 813	15 787	10 179 9 937 9 673	12 569 12 813 12 481	13 547 13 922	18 083 18 083	12 125 12 085 12 085 11 862 11 590 12 215	14 945 15 035 14 926 15 441	16 391 16 546 16 633 16 264
Premium class	num oulder centric iar	(mm)	7.1 5.6 5.6	7.1	5.6 4.0	7.1 5.6 5.6	6.0 6.4	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5.0 5.0 8 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6.7 5.6 6.4	7.5 7.5 6.4 6.7
Premiur	Minimum box shoulder with eccentric wear	(in)	9/32 7/32 7/32	9/32	7/32 5/32 5/32	9/32 7/32 7/32	15/64 1/4	21/64 21/64	13/64 13/64 13/64 5/32 3/16	17/64 17/64 7/32 1/4	19/64 19/64 1/4 17/64
	nimum OD I joint	(mm)	127.0 138.1 129.4	141.3	123.8 134.9 126.2	127.0 138.1 129.4	138.9 131.0	143.7 143.7	136.5 137.3 138.1 145.3 135.7	139.7 140.5 148.4 138.9	141.3 142.1 150.0 139.7
	Minimum OD tool joint	(in)	5 5 7/16 5 3/32	5 9/16	4 7/8 5 5/16 4 31/32	5 5 7/16 5 3/32	5 15/32 5 5/32	5 21/32 5 21/32	5 3/8 5 13/32 5 7/16 5 23/32 5 11/32	5 1/2 5 17/32 5 27/32 5 15/32	5 9/16 5 19/32 5 29/32 5 1/2
	dnrub	(daN.m)	2 448 2 734 2 876	3 189	2 087 2 734 2 876	2 448 3 189 2 876	3 189 2 876	3 656 3 404	2 828 2 764 2 215 3 094 3 165	3 231 2 764 3 094 3 671	3 231 3 224 3 094 3 671
	Make-up torque ⁶	(ft.lb)	18 068 P 20 175 P 21 224 P	23 538 P	15 404 P 20 175 P 21 224 P	18 068 P 23 538 P 21 224 P	23 538 P 21 224 P	26 982 B 25 118 P	20 868 P 20 396 P 16 346 P 22 836 P 23 355 P	23 843 P 20 396 P 22 836 P 27 091 P	23 843 P 23 795 P 22 836 P 27 091 P
IJ	3.0	(mm)	61.9 82.6 71.4	76.2	68.3 82.6 71.4	61.9 76.2 71.4	76.2 71.4	66.7 73.0	76.2 82.6 95.3 82.6	69.9 82.6 95.3 76.2	69.9 76.2 95.3 76.2
New tool joint data	New	(in)	2 7/16 3 1/4 2 13/16	с С	2 11/16 3 1/4 2 13/16	2 7/16 3 2 13/16	3 2 13/16	2 5/8 2 7/8	3 31/4 33/4 33/4 31/4	2 3/4 3 1/4 3 3/4 3 3/4	2 3/4 3 3 3/4 3
New too	New OD	(mm)	139.7 152.4 139.7	152.4	133.4 152.4 139.7	139.7 152.4 139.7	152.4 139.7	152.4 152.4	152.4 158.8 149.2 168.3 152.4	152.4 158.8 168.3 152.4	152.4 158.8 168.3 152.4
	žŪ	(in)	5 1/2 6 5 1/2	9	5 1/4 6 5 1/2	5 1/2 6 5 1/2	6 5 1/2	ou	6 6 1/4 5 7/8 6 5/8 6	6 6 1/4 6 5/8 6	6 6 1/4 6 5/8 6
	Connection		NC40 NC46 4 H90	NC46	NC40 NC46 4 H90	NC40 NC46 4 H90	NC46 4 H90	NC46 NC46	4 1/2 FH NC46 4 1/2 OHSW NC50 4 1/2 H-90	4 1/2 FH NC46 NC50 4 1/2 H-90	4 1/2 FH NC46 NC50 4 1/2 H-90
ω	Type upset and) 	IU 105 EU 105 IU 105	EU 135	IU 75 EU 75 IU 75	IU 95 EU 95 IU 95	EU 105 IU 105	IU 135 EU 135	IEU 75 IEU 75 IEU 75 EU 75 IEU 75	IEU 95 IEU 95 EU 95 IEU 95	IEU 105 IEU 105 EU 105 IEU 105 IEU 105
Drill pipe	Nomi- nal weight	(Ib/ft)	14.00 14.00 14.00	14.00	15.70 15.70 15.70	15.70 15.70 15.70	15.70 15.70	15.70 15.70	16.60 16.60 16.60 16.60		16.60 16.60 16.60 16.60
	Nomi- nal size	(in)	4	4	4	4	4	4	4 1/2	4 1/2	4 1/2

See notes at the end of B 23.

B 21

RECOMMENDED MINIMUM OD* AND MAKE-UP TORQUE OF WELD-ON TYPE TOOL JOINTS BASED ON TORSIONAL STRENGTH OF BOX AND DRILL PIPE (continued) (API RP 7G, 15th edition, January 1, 1995)

	Make-up torque for minimum OD tool joint	(daN.m)	2 450 2 489	1 643 1 643 1 638 1 682 1 655	2 123 2 139 2 138 2 092	2 346 2 254	2 969	1 908	2 371 2 319	2 605 2 566	3 339 3 308	2 371 2 321	2 969 3 021	3 215 3 308
	Mak torgu DD to	(ft.lb)	18 083 18 367	12 125 12 085 12 085 12 415 12 215	15 665 15 787 15 776 15 776 15 441	17 311 16 633	21 914	14 082	17 497 17 116	19 224 18 940	24 645 24 412	17 497 17 127	21 914 22 294	23 728 24 412
ss 2	num oulder centric tar	(mm)	8.3 7.1	4.4 5.2 4.4 8.4 7.2	7.1 7.1 6.0 6.4	7.9 6.4	8.7	5.2	6.7 6.4	7.5 7.1	9.9 7.9	6.7 5.2	8.7 7.1	9.5 7.9
Class	Minimum box shoulder with eccentric wear	(in)	21/64 9/32	13/64 13/64 11/64 3/16	9/32 9/32 15/64 1/4	5/16 1/4	11/32	13/64	17/64 1/4	19/64 9/32	25/64 5/16	17/64 13/64	11/32 9/32	3/8 5/16
	oint	(աա)	143.7 151.6	136.5 137.3 146.1 135.7	140.5 141.3 149.2 138.9	142.9 150.0	154.8	147.6	150.8 146.1	152.4 147.6	157.2 168.3	150.8 162.7	154.8 166.7	156.4 168.3
	Minimum OD tool joint	(in)	5 21/32 5 31/32	5 3/8 5 13/32 5 3/4 5 11/32	5 17/32 5 9/16 5 7/8 5 15/32	5 5/8 5 29/32	6 3/32	5 13/16	5 15/16 5 3/4	6 5 13/16	6 3/16 6 5/8	5 15/16 6 13/32	6 3/32 6 9/16	6 5/32 6 5/8
	Make-up torque for minimum OD tool joint	(daN.m)	2 877 2 848	1 928 1 936 1 908 1 872	2 420 2 450 2 371 2 429	2 662 2 727	3 465	2 138	2 727 2 691	2 969 2 944	3 846 3 894	2 727 2 738	3 465 3 45 3	3 718 3 746
	Make-up torque for minimum OD tool joi	(ft.lb)	21 230 21 017	14 231 14 238 14 288 14 082 13 815	17 861 18 083 17 497 17 929	19 644 20 127	25 569	15 776	20 127 19 862	21 914 21 727	28 381 28 737	20 127 20 205	25 569 25 483	27 437 27 645
Premium class	num oulder centric ar	(աա)	9.9 8.3	6.4 5.2 5.6	8.3 8.3 6.7 7.5	9.1 7.9	10.3	6.0	7.9 7.5	8.7 8.3	11.5 9.5	7.9 6.4	10.3 8.3	11.1 9.1
Premiu	Minimum box shoulder with eccentric wear	(in)	25/64 21/64	1/4 1/4 13/64 7/32	21/64 21/64 17/64 19/64	23/64 5/16	13/32	15/64	5/16 19/64	11/32 21/64	29/64 3/8	5/16 1/4	13/32 21/64	7/16 23/64
	num O oint	(աա)	146.8 154.0	138.9 139.7 147.6 137.3	142.9 143.7 150.8 141.3	145.3 153.2	158.0	149.2	153.2 148.4	154.8 150.0	160.3 171.5	153.2 165.1	158.0 169.1	159.5 170.7
	Minimum OD tool joint	(in)	5 25/32 6 1/16	5 15/32 5 1/2 5 13/16 5 13/32	5 5/8 5 21/32 5 15/16 5 9/16	5 23/32 6 1/32	6 7/32	5 7/8	6 1/32 5 27/32	6 3/32 5 29/32	6 5/16 6 3/4	6 1/32 6 1/2	6 7/32 6 21/32	6 9/32 6 23/32
	dn- ee	(daN.m)	3 648 3 669	2 828 3 224 3 387 3 671	3 599 3 648 3 669 3 671	4 035 3 669	4 932	3 094	3 669 4 212	4 204 4 748	5 155 5 893	3 669 5 114	4 699 5 114	5 155 5 893
	Make-up torque ⁶	(ft.lb)	26 923 P 27 076 P	20 868 P 23 795 P 24 993 P 27 091 P	26 559 P 26 923 P 27 076 P 27 091 P	29 778 P 27 076 P	36 398 P	22 ⁸³⁶ P	27.076 P 31 084 P	31 025 P 35 039 P	38 044 P 43 490 P	27 076 P 37 742 B	34 680 P 37 742 B	38 044 P 43 490 P
lata	3 -	(աա)	69.9 88.9	76.2 76.2 92.1 76.2	63.5 69.9 88.9 76.2	63.5 88.9	73.0	95.3	88.9 82.6	82.6 76.2	69.9 88.9	88.9 88.9	76.2 88.9	69.9 88.9
ool joint c	New ID	(in)	2_3/4 3_1/2	з 35/8 35/8	2 1/2 2 3/4 3 1/2 3	2 1/2 3 1/2	2 7/8	3 3/4	3 1/2 3 1/4	3 1/4 3	2 3/4 3 1/2	3 1/2 3 1/2	3 3 1/2	2 3/4 3 1/2
New tool joint data	New OD	(mm)	158.8 168.3	152.4 158.8 168.3 152.4	152.4 158.8 168.3 152.4	158.8 168.3	168.3	168.3	168.3 165.1	168.3 165.1	168.3 184.2	168.3 177.8	168.3 177.8	168.3 184.2
	ĕΟ	(in)	6 1/4 6 5/8	6 6 1/4 6 5/8 6	6 6 1/4 6 5/8 6	6 1/4 6 5/8	6 5/8	6 5/8	6 5/8 6 1/2	6 5/8 6 1/2	6 5/8 7 1/4	6 5/8 7	6 5/8 7	6 5/8 7 1/4
	Connection		NC46 NC50	4 1/2 FH NC46 NC50 4 1/2 H-90	4 1/2 FH NC46 NC50 4 1/2 H-90	NC46 NC50	NC50	NC50	NC50 5 H-90	NC50 5 H-90	NC50 5 1/2 FH	NC50 5 1/2 FH	NC50 5 1/2 FH	NC50 5 1/2 FH
	Type upset and	000	IEU 135 EU 135	IEU 75 IEU 75 EU 75 IEU 75 IEU 75	IEU 95 IEU 95 EU 95 IEU 95	IEU 105 EU 105	EU 135	IEU 75	IEU 95 IEU 95	IEU 105 IEU 105	IEU 135 IEU 135	IEU 75 IEU 75	IEU 95 IEU 95	IEU 105 IEU 105
Drill pipe	Nomi- nat weight	(t)/(t)	16.60 16.60	20.00 20.00 20.00 20.00	20.00 20.00 20.00	20.00 20.00	20.00	19.50	19.50 19.50	19.50 19.50	19.50 19.50	25.60 25.60	25.60 25.60	25.60 25.60
	Nomi- nal size	(in)	4 1/2	4 1/2	4 1/2	4 1/2	4 1/2	5	5	വ	5	5	5	5

See notes at the end of B 23.

й. .

RECOMMENDED MINIMUM OD* AND MAKE-UP TORQUE OF WELD-ON TYPE TOOL JOINTS BASED ON TORSIONAL STRENGTH OF BOX AND DRILL PIPE (continued) (API RP 7G, 15th edition, January 1, 1995)

Γ		(m Neb)	4 102	2 2 2 1	1	2 879 2 802	0.00	5 8	4 193	598	64	599	496	3	266	58	33.5				130	٦.
	Make-up torque for minimum OD tool ioint									2	3 164				<u> </u>	_	5 733	•	ימ			
	0 <u>∃</u> ₫ ≤	(41 H)	30.043	17 197		21 246	23 2E0		30 843	19 172	23 350	26 560	33 180		24 100	33 730	42 312	26 46	104 07	36 556	45 241	
Class 2	Minimum box shoulder with eccentric wear	(mm)	10.3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4	6.7	и ~		n 	6.0	7.5	8.7	11.1	L L	0 - 0 -	0 8	10.7	6	00	ο 9 -	11.5	
Cla	Mini box sh with ee	(in)	13/37	13/64		9/32	19/64	00/01	70/01	15/64	19/64	11/32	7/16	0012	0/32	21/64	27/64	15/6/	5/24	23/64	29/64	
	num O oint	(mm)	173.0	162.7		165.9 154.8	167.5	172.0	0.071	164.3	167.5	169.9	174.6	107 0	190.5	192.9	197.6	1 88 1	192.1	194.5	188.5	
	Minimum OD tool joint	(in)	6 13/16	6 13/32		6 1 //32 6 3/32	6 19/32	6 13/16		6 15/32	6 19/32	6 11/16	6 7/8	0/5 2	7 1/2	19/32	25/32	13/32	9/16	7 21/32	27/64	
	up for joint	(daN.m)	4 803		600	3 308	-		-	3 021	3 746	4 043 6	5 271 6	2 632			6 532 7	4 004 7			7 143 7	5. Any tool joint with an outside diameter less than ADI hourd diameter less than ADI hourd diameter less than ADI hourd
	Make-up torque for minimum OD tool joint	(ft.lb) (c	35 446	172		4 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	645	446	_	22 294	645	836	901	010	139		204	552	983	860		ater les
ass	Line Line	(uuu)	11.90 35	5.95 19		7.34 24 8.33 24	9.13 27	11.91 35		7.14 22	9.13 27	92 29	13.10 38	35 26		-	30 48	7.14 29	53 37	10.32 40		
Premium class	Minimum box shoulder with eccentric wear	┝	<u> </u>		-			+	·			9 0		-								n outsir
Prer	¥ bo ≥	Ē	15/32	15/64	E/16	2	23/64	15/32		9/32	23/64	25/64	33/64	1/4	=		31/64	9/32		<u>(1)</u>	<u> </u>	with ar
	Minimum OD tool joint	(mm)	176.2	164.3	168.2	157.2	170.7	176.2		166.7	170.7	172.2	178.6	188.9	193.7	195.3	200.8	190.5	195.3	196.9	203.2	ol ioint
	Mini C tool	(ij	6 15/16	6 15/32	6 5/8		6 23/32	6 15/16	0100	6 9/16	6 23/32	6 25/32	7 1/32	7 7/16	7 5/8	7 11/16	7 29/32	7 1/2		7 3/4	~	Anv to
	dn ₉ 9	(daN.m)	6 400	4 547	5 114	4 804	5 893	7 222		4 54/	5 893	5 893	7 087	5 989		61	8 880	5 989		011	2088 8	1
	Make-up torque ⁶	(qr	230 B	560 P	742 R	54	490 P	02 P		1 000	490 P	490 P	302 P		0	0.0	-		0	0		ble ma
		u) (tt	82.6 47 2	101.6 33	95.3 37.7		88.9 43	76.2 53 3	6	0.55 0.	9 43	88.9 43 4	52			.7 51 742	_			7 51 742 F		the tal
data	New	(աա)		101		_		76	10	2	88		76.2				108.0	127.0		_	108.0	ted in
New tool joint data		(in)	3 1/4	4	3 3/4		3 1/2	m	<	t	3 1/2	3 1/2	m		ی ک		-	ഹ		4	4 1/4	iose lis
New to	New	(mm)	184.2	177.8	177.8	177.8	184.2	190.5	177 8	0.771	184.2	184.2	190.5	203.2	203.2	209.6	210.9	203.2	209.6	209.6	215.9	than th
	ZŪ	(in)	1/4	7	7	7	7 1/4	7 1/2	-	、	7 1/4	7 1/4	7 1/2	8	2 0 0	0 1/4 7 2/7	7/1 0	ω	8 1/4	8 1/4	2/I Q	maller
	Connection		5 1/2 FH	5 1/2 FH	5 1/2 FH	5 1/2 H-90	5 1/2 FH	5 1/2 FH	5 1/2 FH		5 1/2 FH	5 1/2 FH	5 1/2 FH	6 5/8 FH	6 5/8 FH	0 5/8 FH		6 5/8 FH	6 5/8 FH	0 5/8 FH	H1 8/C 0	1. The use of outside diameters (OD) smaller than those listed in the table may be
φ -	Type upset and arade	>	IEU 135	IEU 75	IEU 95	IEU 95	IEU 105	IEU 135	IEU 75		IEU 95	IEU 105	IEU 135	IEU 75	IEU 95			IEU 75				1. The use of outside diameters
Drill pipe	Nomi- nal weight	(11/dl)	25.60	21.90	21.90	21.90	21.90	21.90	24.70		24.70	24.70	24.70	25.20				27.70				ise of c
	Nomi- nal size	(in)	2	5 1/2	5 1/2		5 1/2	5 1/2	5 1/2		Z/L G	5 1/2	5 1/2	6 5/8				6 5/8				1. The L

acceptable due to special service requirements.

2. Tool joint with dimensions shown has lower torsional yield ratio than the 0.80 which is generally used. 3. Recommended make-up torque is based on 72 000 psi stress.

in the plane of the face from the ID of the counter bore to the outside diameter of the the tool joint shoulders are disregarded. This thickness measurement should be made 4. In calculation of torsional strengths of tool joints, both new and worn, the bevels of box, disregarding the bevels.

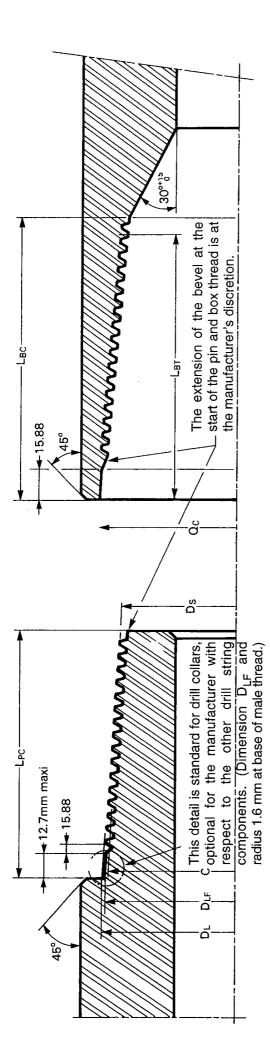
o. Any tool point with an outside diameter less than AFT bever diameter shoutd be provided with a minimum 1/32" depth × 45° bevel on the outside and inside diameter of the box shoulder and * Tool joint diameters specified are required to retain torsional strength in the tool joint comoutside diameter of the pin shoulder. 6. P = pin limit, B = Box limit.

service. Tool joints with torsional strengths considerably below that of the drill pipe may be adequate for much drilling service. parable to the torsional strength of the attached drill pipe. These should be adequate for all

THREAD DIMENSIONS OF ROTARY SHOULDERED CONNECTIONS (API Spec 7, 38th edition, April 1, 1994)

(see Fig. B 25)

All dimensions in mm


Connection No. or size (1)	Thread form	Threads per inch	Taper (%)	Pitch diameter at gage point	Large pin diameter	Flat diameter on pin ± 0.40	Small pin diameter	Pin length + 0 - 3.18	Minimum length of box thread	Box counterbore + 9.52 - 0	Box inside diameter + 0.79 – 0.40
				С	$D_{L^{*}}$	D _{LF}	D _S	L _{PC}	L _{BT}	L _{BC}	Q _C
NC23 NC26* NC31* NC35 NC38* NC40* NC40* NC46* NC50* NC56 NC61 NC70 NC77	V-0.038R V-0.038R V-0.038R V-0.038R V-0.038R V-0.038R V-0.038R V-0.038R V-0.038R V-0.038R V-0.038R V-0.038R V-0.038R	4 4 4 4 4 4 4 4 4 4 4 4 4	$\begin{array}{c} 16.66 \\ 16.66 \\ 16.66 \\ 16.66 \\ 16.66 \\ 16.66 \\ 16.66 \\ 16.66 \\ 16.66 \\ 25.00 \\ 25.00 \\ 25.00 \\ 25.00 \end{array}$	59.8 67.8 80.8 89.7 96.7 103.4 112.2 117.5 128.1 142.6 156.9 179.1 196.6	65.1 73.1 95.0 102.0 108.7 117.5 122.8 133.4 149.3 163.5 185.8 203.2	61.9 69.8 83.0 92.1 98.8 105.6 114.3 119.6 130.4 144.9 159.2 181.4 198.8	52.4 60.4 71.3 79.1 85.1 89.7 98.4 103.7 114.3 117.5 128.6 147.7 162.0	76.2 76.2 88.9 95.2 101.6 114.3 114.3 114.3 114.3 127.0 139.7 152.4 165.1	79.4 79.4 92.1 98.4 104.8 117.5 117.5 117.5 117.5 130.2 142.9 155.6 168.3	92.1 92.1 104.8 111.1 117.5 130.2 130.2 130.2 130.2 142.9 155.6 168.3 181.0	66.7 74.6 87.7 96.8 103.6 110.3 119.1 124.6 134.9 150.8 165.1 187.3 204.8
2 3/8 REG 2 7/8 REG 3 1/2 REG 4 1/2 REG 5 1/2 REG 6 5/8 REG 7 5/8 REG 8 5/8 REG 5 1/2 FH 6 5/8 FH	V-0.040 V-0.040 V-0.040 V-0.050 V-0.050 V-0.050 V-0.050 V-0.050 V-0.050	5 5 5 4 4 4 4 4 4 4	25.00 25.00 25.00 25.00 16.66 25.00 25.00 16.66 16.66	60.1 69.6 82.2 110.9 132.9 146.2 170.5 194.7 142.0 165.6	66.7 76.2 88.9 117.5 140.2 152.2 177.8 202.0 148.0 171.5		47.6 54.0 65.1 90.5 110.1 131.0 144.5 167.8 126.8 150.4	76.2 88.9 95.2 108.0 120.6 127.0 133.4 136.5 127.0 127.0	79.4 92.1 98.4 111.1 123.8 130.2 136.5 139.7 130.2 130.2	92.1 104.8 111.1 123.8 136.5 142.9 149.2 152.4 142.9 142.9 142.9	68.3 77.8 90.5 119.1 141.7 154.0 180.2 204.4 150.0 173.9

(1) The NC connection No. is the pitch diameter in inches of the pin thread at the gage point (C), rounded off to units and tenths of an inch.

* NC connections are interchangeable with connections having the same pitch diameter in the FH and IF styles. These connections differ only in the form of the thread. Like the thread, the connections are interchangeable:

NC26	2 3/8 IF
NC31	2 7/8 IF
NC38	3 1/2 IF
NC40	4 FH
NC46	4 IF
NC50	4 1/2 IF

SHOULDERED CONNECTIONS

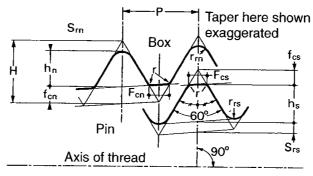
Color Processing and the second

DIMENSIONS OF OBSOLETE SHOULDERED CONNECTIONS (API Spec 7, Appendix I)

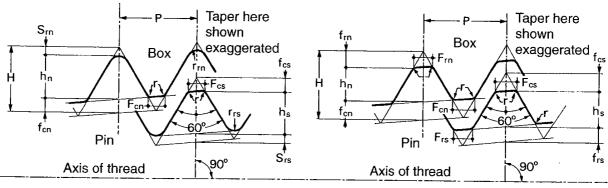
(see Fig. B 25)

All dimensions in mm

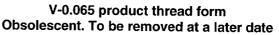
Connection No. or size (1)	Thread form	Threads per inch	Taper (%)	Pitch diameter at gage point	Large pin diameter	Flat diameter on pin ±0.40	Small pin diameter	Pin length + 0 - 3.18	Minimum length of box thread	Box counterbore + 9.52 - 0	Box inside diameter + 0.79 - 0.40
				С	DL	D_{LF}	Ds	L _{PC}	L _{BT}	L _{BC}	O _C
3 1/2 FH	V-0.040	5	25.00	94.8	101.4	_	77.6	95.2	98.4	111.1	102.8
4 FH	V-0.040	4	16.66	103.4	108.7	105.6	89.7	114.3	117.5	130.2	110.3
4 1/2 FH	V-0.040	5	25.00	115.1	121.7	-	96.3	101.6	104.8	117.5	123.8
6 5/8 FH	V-0.040	4	16.66	165.6	171.5	-	150.4	127.0	130.2	142.9	173.8
2 3/8 IF	V-0.040	4	16.66	67.8	73.1	69.8	60.4	76.2	79.4	92.1	74.6
2 7/8 IF	V-0.040	4	16.66	80.8	86.1	83.0	71.3	88.9	92.1	104.8	87.7
3 1/2 IF	V-0.040	4	16.66	96.7	102.0	98.8	85.1	101.6	104.8	117.5	103.6
4 IF	V-0.040	4	16.66	117.5	122.8	119.6	103.7	114.3	117.5	130.2	124.6
4 1/2 IF	V-0.040	4	16.66	128.1	133.4	130.4	114.3	114.3	117.5	130.2	134.9
5 1/2 IF	V-0.040	4	16.66	157.2	162.5	_	141.3	127.0	130.2	142.9	163.9


 $mm \times 0.0394 = in$

API THREAD FORMS AND DIMENSIONS (API Spec 7, 38th edition, April 1, 1994)


All dimensions in mm

	%) %ight ated		ed ed	5	Crest truncation	Width	of flat	ns	
Thread form	Taper (%)	Thread height not truncated	Thread height truncated	truncated Root truncation		Crest	Root	Root radius	Radius at thread corners
- F	(1)	Н	$h_n = h_s$	$S_{rn} = S_{rs}$ $f_{rn} = f_{rs}$	$f_{cn} = f_{cs}$	$F_{cn} = F_{cs}$	$R_{rn} = F_{rs}$	$r_{rn} = r_{rs}$	r
V-0.038R	16.66	5.5	3.1	1.0	1.4	1.7	 	1.0	0.4
V-0.038R	25.00	5.5	3.1	1.0	1.4	1.7	-	1.0	0.4
V-0.040	25.00	4.4	3.0	0.5	0.9	1.0	-	0.5	0.4
V-0.050	25.00	5.5	3.7	0.6	1.1	1.3	—	0.6	0.4
V-0.050	16.66	5.5	3.8	0.6	1.1	1.3	_	0.6	0.4


(1) Taper (%) equal 8.33 x taper in in/ft.

V-0.038 R product thread form

V-0.040 and V-0.050 product thread form

The dimensions in the tables below are given only to identify the type of thread. In particular, the joint outside and inside diameters, the diameter of the cylindrical part possibly turned at the base of the pin, and the lengths of the threaded parts, which differ, for the same shape, from one manufacturer to another, have not been indicated below.

Size	Р	in	Box	Taper	Threads	Thread	Make-up		
(in)	D _{LF} (1) (mm)	<i>C</i> (mm)	<i>Q_C</i> (1) (mm)	(%)	per in	form	torque (daN.m)		
	Extra Hole (XH) style								
2 7/8	84.5	79.2	85.3	16.66	4	V-0.065	760–950		
3 1/2	96.8	91.5	98.4	16.66	4	V-0.065	975–1220		
4 1/2	122.8	117.5	124.6	16.66	4	V-0.065	1950–2440		
5	133.3	128.1	134.9	16.66	4	V-0.065	21402515		
			Double Stre	amline style					
3 1/2	84.5	79.2	85.3	16.66	4	V-0.065	570–705		
4	98.7	93.4	99.6	16.66	4	V-0.065	870–1080		
4 1/2	108.7	103.4	110.3	16.66	4	V-0.065	1060–1330		
5 1/2	133.3	128.1	134.9	16.66	4	V-0.065	1900–2370		
	Slim Hole (SH) style								
2 7/8	73.1	67.8	74.6	16.66	4	V-0.065	390–490		
3 1/2	86.1	80.8	87.7	16.66	4	V-0.065	650800		
4	96.8	91.5	98.4	16.66	4	V-0.065	870–1080		
4 1/2	102.0	96.7	103.6	16.66	4	V-0.065	1060–1330		
			Hughes I	-190 style			1,		
3 1/2	104.8	99.8	106.4	16.66	3 1/2	H90	1300–1630		
4	114.3	109.3	115.9	16.66	3 1/2	H90	2000–2450		
4 1/2	122.8	117.8	124.2	16.66	3 1/2	H90	2200–2700		
			Reed Wide Op	ben (WO) style	Э	• <u> </u>			
2 3/8	71.5	66.2	72.6	16.66	4	V-0.065	245–300		
2 7/8	84.5	79.3	85.7	16.66	4	V-0.065	405–515		
3 1/2	102.0	96.7	103.6	16.66	4	V-0.065	730–920		
4	122.8	117.5	124.6	16.66	4	V-0.065	670–2050		
4 1/2	133.3	128.1	134.9	16.66	4	V-0.065	900–2370		

(1) Identical to those used to define the characteristics of API tool joints threads

 $mm \times 0.0394 = in$ $daN.m \times 7.38 = lb.ft$

12

CHARACTERISTICS OF SOME NON-API TOOL JOINT THREADS

(continued)

Size	Р	Pin		Taper	Threads	Thread	Make-up	
(in)	D _{LF} (1) (mm)	C (mm)	<i>Q_C</i> (1) (mm)	(%)	per in	form	torque (daN.m)	
		Aı	merican Open	Hole (OH) sty	/le			
2 3/8 2 7/8 3 1/2 4 4 1/2	69.8 79.9 98.8 116.3 124.8	65.7 75.8 94.7 112.2 120.7	71.4 81.8 100.4 117.9 126.6	12.5 12.5 12.5 12.5 12.5	4 4 4 4 4	Special American	260-325 490-610 650-810 1520-1900 1170-1460	

Size	Pin		Tener	Threads	Hybrid	Make-up
(in)	D _{LF} (1) (mm)	C (mm)	Taper (%)	Threads per in	special thread	torque (daN.m)
			Hydril IF style	·		
2 3/8 2 7/8 3 1/2 4 1/2	71.3 80.8 97.5 132.1	100.0 100.0 100.0 100.6	4.17 4.17 4.17 4.17	3 3 3 3	2 steps 2 steps 2 steps 2 steps 2 steps	515 730 895 1550
			Hydril EIU style			
3 1/2 4 4 1/2 5 1/2	95.0 118.4 120.4 148.2	107.9 109.6 112.7 139.7	4.17 4.17 4.17 4.17	3 3 3 3	2 steps 2 steps 2 steps 2 steps 2 steps	895 1550 1550 2060
			Hydril SH style			
2 7/8 3 1/2 4 4 1/2 5 1/2	71.3 80.8 97.5 106.5 132.1	100.0 100.0 100.0 104.8 101.6	4.17 4.17 4.17 4.17 4.17 4.17	3 3 3 3 3 3	2 steps 2 steps 2 steps 2 steps 2 steps 2 steps	580 730 895 1180 1550
			Hydril F style			
2 3/8 2 7/8 3 1/2 4 4 1/2 5 1/2	48.9 60.1 71.3 84.8 97.5 118.4	65.1 90.5 101.6 100.0 100.0 106.4	4.17 4.17 4.17 4.17 4.17 4.17 4.17	3 3 3 3 3 3 3	1 step 2 steps 2 steps 2 steps 2 steps 2 steps 2 steps	215 365 580 730 895 1550

(1) Identical to those used to define the characteristics of API tool joints threads

 $mm \times 0.0394 = in$ daN.m $\times 7.38 = lb.ft$

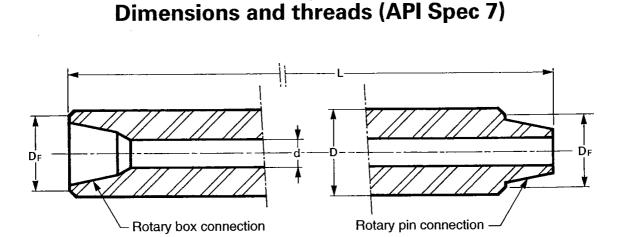
Comm		Pin base diameter tapered	Threads per	Taper	Thread form	Same as
Style	Size	<i>D_L</i> (mm)	in	%	(1)	or interchanges with (2)
	2 3/8	73.1	4	16.66	V-0.065 (V-0.038R)	2 7/8 Slim Hole NC26
	2 7/8	86.1	4	16.66	V-0.065 (V-0.038R)	3 1/2 Slim Hole NC31
Internal Flush	3 1/2	102.0	4	16.66	V-0.065 (V-0.038R)	4 1/2 Slim Hole NC38
(IF)	4	122.8	4	16.66	V-0.065 (V-0.038R)	4 1/2 Extra Hole NC46
	4 1/2	133.4	4	16.66	V-0.065 (V-0.038R)	5 Extra Hole NC50 5 1/2 Double Streamline
Full Hole (FH)	4	108.7	4	16.66	V-0.065 (V-0.038R)	4 1/2 Double Streamline NC40
	2 7/8	84.5	4	16.66	V-0.065 (V-0.038R)	3 1/2 Double Streamline
Extra Hole	3 1/2	96.8	4	16.66	V-0.065 (V-0.038R)	4 Slim Hole 4 1/2 External Flush
(XH) EH	4 1/2	122.8	4	16.66	V-0.065 (V-0.038R)	4 Internal Flush NC46
	5	133.4	4	16.66	V-0.065 (V-0.038R)	4 1/2 Internal Flush NC50 5 1/2 Double Streamline
	2 7/8	73.1	4	16.66	V-0.065 (V-0.038R)	2 3/8 Internal Flush NC31
Slim Hole	3 1/2	86.1	4	16.66	V-0.065 (V-0.038R)	2 7/8 Internal Flush NC31
(SH)	4	96.8	4	16.66	V-0.065 (V-0.038R)	3 1/2 Extra Hole 4 1/2 External Flush
	4 1/2	102.0	4	16.66	V-0.065 (V-0.038R)	3 1/2 Internal Flush NC38

(1) Connections with two thread form shown may be machined with either thread form without affecting gaging or interchangeability.

(2) Numbered connections (NC) may be machined only with the V-0.038 radius thread form.

 $mm \times 0.0394 = in$

ROTARY SHOULDERED CONNECTION INTERCHANGE LIST


(continued)

Comr nan		Pin base diameter	Threads	Taper	Thread	Same as
Style	Size	tapered D _L (mm)	per in	%	form (1)	Same as or interchanges with (2)
	3 1/2	84.5	4	16.66	V-0.065 (V-0.038R)	2 7/8 Extra Hole
Double Streamline (DSL)	4 1/2	108.7	4	16.66	V-0.065 (V-0.038R)	4 Full Hole NC40
	5 1/2	133.4	4	16.66	V-0.065 (V-0.038R)	4 1/2 Internal Flush 5 Extra Hole NC50
	26	73.1	4	16.66	V-0.038R	2 3/8 Internal Flush 2 7/8 Slim Hole
	31	86.1	4	16.66	V-0.038R	2 7/8 Internal Flush 3 1/2 Slim Hole
Numbered connection	38	102.0	4	16.66	V-0.038R	3 1/2 Internal Flush 4 1/2 Slim Hole
(NC)	40	108.7	4	16.66	V-0.038R	4 Full Hole 4 1/2 Double Streamline
	46	122.8	4	16.66	V-0.038R	4 Internal Flush 4 1/2 Extra Hole
	50	133.4	4	16.66	V-0.038R	4 1/2 Internal Flush 5 Extra Hole 5 1/2 Double Streamline
External Flush (EF)	4 1/2	96.8	4	16.66	V-0.065 (V-0.038R)	4 Slim Hole 3 1/2 Extra Hole

(1) Connections with two threads forms shown may be machined with either thread form without affecting gaging or interchangeability.

(2) Numbered connections (NC) may be machined only with the V-0.038 radius form.

 $mm \times 0.0394 = in$

CYLINDRICAL DRILL COLLARS

Drill collar	Outside diameter D		Bor	e d	Length ± 0.15 L	Diameter at bevel ± 0.4 D _f	BSR
No. (1)	(in)	(mm)	+1/16 - 0 (in)	+1/16 - 0 (mm)	(m)	(mm)	
NC23-31 NC26-35 (2 3/8 IF) NC31-41 (2 7/8 IF) NC35-47 NC38-50 (3 1/2 IF) NC44-60 NC44-60 NC44-62 NC46-62 (4 IF) NC46-65 (4 IF) NC46-65 (4 IF) NC46-67 (4 IF) NC50-70 (4 1/2 IF) NC50-70 (4 1/2 IF) NC50-72 (4 1/2 IF)	3 1/8 3 1/2 4 1/8 4 3/4 5 6 6 6 1/4 6 1/4 6 1/2 6 1/2 6 1/2 6 3/4 7 7 7 7 1/4	79.4 88.9 104.8 120.7 127.0 152.4 152.4 158.8 165.1 165.1 165.1 171.5 177.8 177.8 184.2	1 1/4 1 1/2 2 2 1/4 2 1/4 2 13/16 2 1/4 2 13/16 2 1/4 2 13/16 2 1/4 2 1/4 2 1/4 2 1/4 2 13/16 2 1/4	31.8 38.1 50.8 57.2 57.2 71.4 57.2 71.4 57.2 71.4 57.2 71.4 57.2 57.2 71.4 57.2 71.4 57.2	9.1 9.1 9.1 9.1 9.1 or 9.4 9.1 or 9.4	76.2 82.9 100.4 114.7 121.0 144.5 144.5 149.2 150.0 154.8 154.8 154.8 159.5 164.7 164.7 169.5	2.57 2.42 2.43 2.58 2.38 2.49 2.84 2.91 2.63 2.76 3.05 3.18 2.54 2.73 3.12 2.73
NC56-77 NC56-80 6 5/8 REG NC61-90 7 5/8 REG NC70-97 NC70-100 8 5/8 REG	7 3/4 8 8 1/4 9 9 1/2 9 3/4 10 11	196.9 203.2 209.6 228.6 241.3 247.7 254.0 279.4	2 13/16 2 13/16 2 13/16 2 13/16 3 3 3 3 3 3 3	71.4 71.4 71.4 76.2 76.2 76.2 76.2 76.2	9.1 or 9.4 9.1 or 9.4	185.3 190.1 195.7 212.7 223.8 232.6 237.3 266.7	2.70 3.02 2.93 3.17 2.81 2.57 2.81 2.84

(1) The drill collar number consists of two parts separated by a hyphen. The first part is the connection number in the NC style. The second part, consisting of 2 (or 3) digits, indicates the drill collar outside diameter in units and tenths of inches. The connections shown in parentheses in Col. 1 are not a part of the drill collar number; they indicate interchangeability of drill collars made with the standard (NC) connections as shown. If the connections shown in parentheses in column 1 are made with the V-0.038R thread form the connections, and drill collars, are identical with those in the NC style. Drill collars with 8 1/4 and 9 1/2 inches outside diameters are shown with 6 5/8 and 7 5/8 REG connections, since there are no NC connections in the recommended bending strength ratio range.

 $mm \times 0.0394 = in \qquad m \times 3.28 = ft$

IDEAL DRILL COLLAR RANGE

Hole size	Casing size to be run	Ideal drill	collar range	API drill collar sizes
in	to be full	Min	Max	which fall in the ideal range
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 3.875\\ 3.750\\ 3.250\\ 2.125\\ 4.225\\ 3.725\\ 6.405\\ 6.280\\ -\\ -\\ 6.030\\ 6.562\\ 6.812\\ 7.500\\ 5.437\\ 7.125\\ 6.375\\ -\\ 8.250\\ 9.000\\ -\\ -\\ 9.750\\ 10.750\\ 11.250\\ 14.000\\ 15.500\\ 16.000\\ \end{array}$	$\begin{array}{c} 4.750\\ 4.875\\ 5.125\\ 6.250\\ 6.250\\ 6.750\\ 6.750\\ 6.750\\ 6.750\\ 7.125\\ 7.125\\ 7.625\\ 7.875\\ 8.000\\ 8.000\\ 8.500\\ 8.500\\ 8.500\\ 8.500\\ 8.500\\ 8.500\\ 10.125\\ 10.125\\ 10.125\\ 10.125\\ 10.125\\ 11.250\\ 12.000\\ 13.375\\ 14.750\\ 16.750\\ 19.500\\ \end{array}$	$\begin{array}{c} 4\ 1/8,\ 4\ 3/4\\ 4\ 1/8,\ 4\ 3/4\\ 3\ 1/2,\ 4\ 1/8,\ 4\ 3/4,\ 5\\ 3\ 1/8,\ 3\ 1/2,\ 4\ 1/8,\ 4\ 3/4,\ 5\\ 3\ 1/8,\ 3\ 1/2,\ 4\ 1/8,\ 4\ 3/4,\ 5\\ 3\ 1/8,\ 3\ 1/2,\ 4\ 1/8,\ 4\ 3/4,\ 5\\ 5\ 6\ 6\ 1/4\\ 4\ 3/4,\ 5,\ 6,\ 6\ 1/4\\ 4\ 1/8,\ 4\ 3/4,\ 5,\ 6,\ 6\ 1/4\\ 4\ 1/8,\ 4\ 3/4,\ 5,\ 6,\ 6\ 1/4\\ 6\ 1/2,\ 6\ 3/4\\ 6\ 1/2,\ 6\ 3/4\\ 6\ 1/2,\ 6\ 3/4\\ 6\ 1/2,\ 6\ 3/4,\ 7\\ 6\ 3/4,\ 7\\ 6\ 6\ 1/4,\ 6\ 1/2,\ 6\ 3/4,\ 7\\ 7\ 3/4,\ 8\\ 7\ 1/4,\ 7\ 3/4,\ 8\\ 6\ 1/2,\ 6\ 3/4,\ 7,\ 7\ 1/4,\ 7\ 3/4,\ 8\\ 7\ 1/4,\ 7\ 3/4,\ 8\\ 6\ 1/2,\ 6\ 3/4,\ 7,\ 7\ 1/4,\ 7\ 3/4,\ 8\ 1/4\\ 8\ 1/4\\ 8\ 1/4\\ 8\ 1/4\\ 9,\ 9\ 1/2,\ 9\ 3/4,\ 10\\ 10\\ 9\ 3/4,\ 10,\ 11\\ 11,\ *\ 12\\ *\ 12\\ *\ 14\\ *\ 16\\ *\ 16\\ *\ 16\end{array}$

The minimum size drill-collar is calculated from the Lubinski and Hock equation. * Not API standard size drill collar. 14.00

E
<
D
<u> </u>
C
10
2
Ξ
Ö
S
_
m
Ц.
O
U
H
ш
>
>

									·	
	4	101.60				117.59	131.26 145.43 160.10 175.27	190.93 207.09 223.74 240.90	276.70 295.34 314.48	334.12 374.89 396.03 417.65 439.78 509.14 715.98
Inside diameter (in and mm)	3 3/4	95.25				87.26 99.44 105.72 112.12 118.65 125.30	138.97 153.14 167.81 182.97	198.63 214.79 231.45 248.60	284.40 303.05 322.19	341.83 382.60 403.73 425.36 447.49 516.85 723.68
	3 1/2	88.90				94.47 106.65 112.93 119.33 125.86 132.51	146.18 160.35 175.02 190.18	205.84 222.00 238.66 255.81	291.61 310.26 329.40	349.04 389.81 410.94 432.57 454.70 524.06 730.89
	3 1/4	82.55			89.50	101.18 113.36 119.64 126.04 132.57 139.22	152.89 167.06 181.73 196.89	212.56 228.72 245.37 262.53	298.32 316.97 336.11	355.75 396.52 417.65 439.28 461.41 530.77 737.61
	3	76.20			73.84 84.53 95.71	107.40 119.58 125.86 132.26 138.78 145.43	159.11 173.28 187.94 203.11	218.77 234.93 251.59 268.74	304.54 323.18 342.33	361.97 402.74 423.87 445.50 467.50 536.62 536.98 743.82
	2 7/8	73.03			76.76 87.45 98.63	110.32 122.50 128.78 135.18 141.70 148.35	162.03 176.20 190.87 206.03	221.69 237.85 254.51 271.66	307.46 326.11 345.25	364.89 405.66 426.79 448.79 470.54 539.50 746.74
	2 4/5	71.44			78.17 88.86 100.05	111.73 123.91 123.91 130.19 136.59 143.12 149.77	163.44 177.61 192.28 207.44	223.11 239.27 255.92 273.08	308.87 327.52 346.66	366.30 407.07 428.20 449.83 471.96 541.32 748.16
	2 3/4	69.85			69.36 79.55 90.24 101.43	113.11 125.30 131.57 137.97 144.50 151.15	164.82 178.99 193.66 208.83	224.49 240.65 257.30 274.46	310.26 328.90 348.04	367.68 408.46 429.59 451.22 473.34 542.70 749.54
	2 1/2	63.50		64.89	74.58 84.77 95.46 106.65	118.34 130.52 136.79 143.20 149.72 156.37	170.04 184.22 198.88 214.05	229.71 245.87 262.53 279.68	315.48 334.12 353.27	372.91 413.68 434.81 456.44 478.56 547.92 547.92
	2 1/4	57.15		43.51 47.55 51.71 60.41 69.61	79.30 89.50 100.19 111.37	123.06 135.24 141.52 147.92 154.44	174.77 188.94 203.61 218.77	234.43 250.59 267.25 284.40	320.20 338.85 357.99	377.63 418.40 439.53
	7	50.80		47.73 51.77 55.94 64.64 73.84	83.53 93.72 104.41 115.60	127.28 139.47 145.74 152.15 158.67 165.32	178.99 193.16 207.83 223.00	238.66 254.82 271.47 288.63	324.43 343.07 362.22	381.85 422.63 443.76
	1 3/4	44.45	43.75	51.46 55.50 59.66 68.37 77.56	87.26 97.45 108.14 119.33	131.01 143.20 149.47 155.87 162.40 169.05	182.72 196.89 211.56 226.73	242.39 258.55 275.20 292.36	328.16 346.80 365.94	
	1 1/2	38.10	23.90 20.08 23.08 23.08 23.08 23.08 23.08 20.08	54.69 58.73 62.90 80.80	90.49 100.68 111.37 122.56	134.25 146.43 152.70 159.11 165.63 172.28	185.96 200.13 214.79 229.96	245.62 261.78 278.44 295.59		
	1 1/4	31.75	26.66 29.58 32.63 35.80 42.51 49.72	57.43 61.47 65.63 74.33 83.53						
	-	25.40	28.90 31.82 34.87 38.04 44.75 51.96	59.66 63.70 67.87 76.57 85.77	95.46 105.66 116.35 127.53	139.22 151.40 157.68 164.08 177.25	190.93 205.10 219.77 234.93	250.59 266.75 283.41 300.56	336.36 355.01 374.15	393.79 434.56 455.69 477.32 499.44 568.80 775.64
Q		un Mu	73.03 76.20 79.38 82.55 88.90 95.25	101.60 104.78 107.95 114.30 120.65	127.00 133.35 139.70 146.05	152.40 152.40 161.93 165.10 168.28 171.45	177.80 184.15 190.50 196.85	203.20 209.55 215.90 222.25	234.95 241.30 247.65	254.00 266.70 273.05 273.05 273.05 273.40 273.40 275.60 304.80 355.60
0		ŗ	2 7/8 3 3 3 1/8 3 1/4 3 1/2 3 3/4	4 4 1/8 4 1/4 4 1/2 4 3/4	5 5 1/4 5 1/2 5 3/4	6 6 1/4 6 3/8 6 3/8 6 5/8 6 3/4	7 71/4 71/2 73/4	8 8 1/4 8 1/2 8 3/4	9 1/4 9 1/2 9 3/4	10 101/2 103/4 11 12 12 14

POLAR MODULUS OF DRILL COLLARS (in³-mm³) Polar modulus = $\pi \left(\frac{OD^4 - id^4}{2} \right)$

			(mm ³)	14 793 30 262 63 490	140 770 162 659 185 677 235 286 235 286		651 562 651 562 743 845 792 744 843 535 896 257	50 343 66 402 90 206 22 672 64 110	4 10 10 10	8 398 81 249 55 525	01 530 09 944 12 961 13 922 8 922
	ĸ	76.20						~~~~	1 61 1 77 2 124	2 51 2 73 2 95	3 19 3 69 3 97 4 25 7 55
)			(in ³)	0.90 3.87 3.87	ျပာတက္ကဖ	21.36 25.38 29.78 34.56	12000-400	00.03 65.08 72.63 80.71 89.35	98.54 98.54 108.33 118.71 129.72	153.68 166.67 180.36	194.76 225.78 242.44 259.90 278.15
~	13/16	1.44	(mm ³)	33 769 48 507 80 432 115 991		361 934 427 248 498 722 576 681	661 446 661 446 753 333 802 046 852 658 905 208	1 074 873 1 074 873 1 198 385 1 330 578 1 471 761	1 622 242 1 782 325 1 952 319 2 132 527	2 524 809 2 737 491 2 961 607	
	2	12	(in ³)	2.06 2.96 7.08	9.49 9.49 10.80 15.16 18.46	22.09 26.07 30.43 35.19	40.36 45.97 48.94 52.03 55.24	പ്പങ്ക്	99.00 108.76 119.14 130.13	154.07 167.05 180.73	
	1/4	7.15	(mm ³)	71 805 85 081 114 393 147 687	185 310 205 850 227 597 274 878 327 475	385 706 449 888 520 334 597 353	681 256 772 351 820 691 870 945 923 149 977 344				
	2	57	(in ³)	4.38 5.19 6.98 9.01	11.31 12.56 13.89 16.77 19.98	23.54 27.45 31.75 36.45	41.57 47.13 50.08 53.15 56.33 59.64	0N			
	2	.80	(mm ³)	81 719 94 613 123 245 155 949	193 056 213 361 234 887 281 763 333 997	391 903 455 790 525 967 602 741					
		50.	(in ³)	4.99 5.77 9.52 9.52	11.78 13.02 14.33 17.19 20.38	23.92 27.81 32.10 36.78					
	1/2	38.10	(mm ³)	92 981 105 442 133 300 165 334	201 854 221 892 243 168						
,			(in ³)	5.67 6.43 8.13 10.09	12.32 13.54 14.84						
	1/4	31.75		95 679 108 037 135 710 167 583							
	-			5.84 6.59 8.28 10.23							
14 (in)		/	(mm)	79.38 82.55 88.90 95.25	24040	27.0 33.3 39.7 46.0	152.40 158.75 161.93 165.10 168.28 171.45	N40010	203.20 209.55 215.90 222.25 222.25	241.30 241.30 247.65	254.00 266.70 273.05 279.40 285.75
/	/	ao		3 1/8 3 1/4 3 3/4 3 3/4	4 4 1/8 4 1/4 4 1/2 4 3/4	5 5 1/4 5 3/4	6 6 1/4 6 3/8 6 1/2 6 3/4 6 3/4	7 7 1/4 7 3/4		9 1/2 9 3/4	10 1/2 10 3/4 11 1/4

DRILL COLLAR ASSEMBLY RIGIDITY R

$$R = \frac{E_1 \times \text{Lower DC polar modulus}}{E_2 \times \text{Upper DC polar modulus}} = \frac{\text{id}}{\text{OD}} \times \frac{\text{OD}^4 - \text{ID}^4}{\text{od}^4 - \text{id}^4}$$

E = Young's modulus of material

$$\frac{l_0}{V}$$
 = Polar modulus = $\frac{\pi}{16} \frac{OD^4 - ID^4}{OD}$

Drilco recommendation: $R \le 5.5$

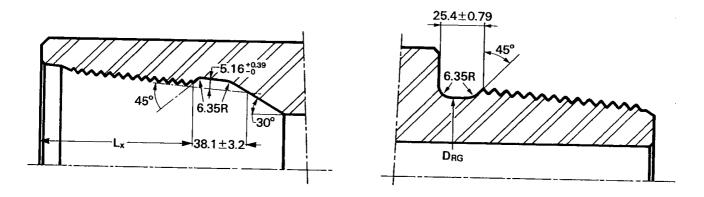
Flexion stress at yield Y (psi): t

 $t = \frac{Y}{2} \frac{l_0}{V} = Y \frac{OD^4 - id^4}{122.23 \times OD}$

Lower DC (in)	Upper DC	R
11 × 3	9 1/2 × 3 8 1/2 × 2 13/16 7 1/4 × 2 13/16 6 1/2 × 2 13/16	1.6 2.2 3.5 5.0
9 1/2 × 3	8 1/2 × 2 13/16 7 1/4 × 2 13/16 6 1/2 × 2 13/16	1.4 2.3 3.2
8 1/4 × 2 13/16	7 1/4 × 2 13/16 6 1/2 × 2 13/16 HW 5 × 3	1.5 2.1 5.1
8 × 2 13/16	7 1/4 × 2 13/16 6 1/2 × 2 13/16 HW 5 × 3	1.4 1.9 4.6
7 1/4 × 2 13/16	6 1/2 × 2 13/16 HW 5 × 3	1.4 3.4
6 1/2 × 2 13/16	HW 5 × 3 DPS × 4.276	2.4 4.6
HW 5 × 3	DPS × 4.276	1.9
4 3/4 × 2 1/4	3 1/2 × 2.764	3.9

87.55

Contraction of the second s

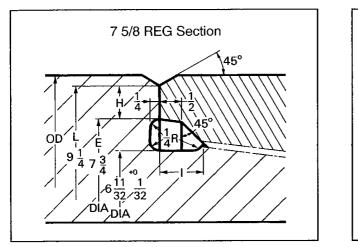

a a state di anti a state di 1985 di a da 1985 di 1985 di 1985 di anti a state di angle di Angle

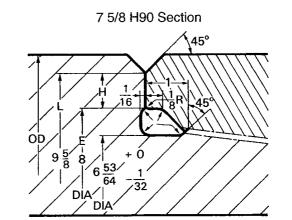
STRESS-RELIEF FEATURES FOR DRILL COLLAR CONNECTIONS (API Spec 7)

Number of size and style of connection	Length should of box me	er face to groove ember <i>L_x</i> (1)	Diameter of pin member at groove D _{RG} (2)			
	(mm)	(in)	(mm)	(in)		
NC35 NC38 (3 1/2 IF) NC40 (4 FH) NC44 NC46 (4 IF) NC50 (4 1/2 IF) NC56 NC61 NC70 NC77 4 1/2 FH 5 1/2 REG 6 5/8 REG 7 5/8 REG 8 5/8 REG	85.7 92.1 104.8 104.8 104.8 104.8 104.8 117.5 130.2 142.9 155.6 92.1 111.1 117.5 123.8 123.8	3 3/8 3 5/8 4 1/8 4 1/8 4 1/8 4 1/8 4 1/8 4 5/8 5 1/8 5 5/8 6 1/8 3 5/8 4 3/8 4 3/8 4 5/8 4 7/8 4 7/8	82.2 89.3 96.0 106.4 109.9 120.7 134.5 148.8 171.1 188.5 106.8 123.4 137.7 162.7 184.9	3 15/64 3 33/64 3 25/32 4 3/16 4 21/64 4 3/4 5 19/64 5 55/64 6 47/64 7 27/64 4 13/64 4 55/64 5 27/64 6 13/32 7 18/64		

(1) Tol + 0 – 3.2 mm (+ 0 – 1/8")

(2) Tol + 0 – 0.8 mm (+ 0 – 1/32")




Remarks:

Dimensions in mm.

Connections NC23, NC26 and NC31 (2 3/8 IF and 2 7/8 IF) do not have a sufficient metal to accomodate stress-relief features.

LARGE-DIAMETER DRILL COLLARS FROM 8 3/4 TO 11 1/4 INCHES SHOULDER MODIFICATIONS FOR LOW-TORQUE CONNECTIONS

DIMENSIONS OF LOW-TORQUE SHOULDERED

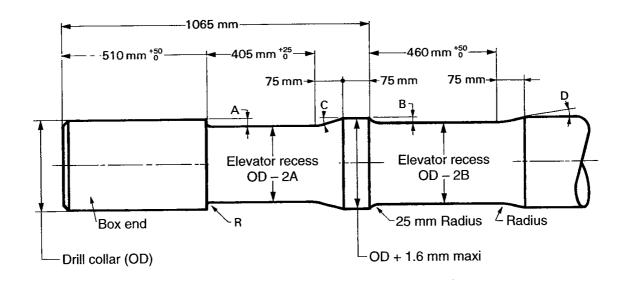
Connection size and style	Outside diameter OD	Bevel d	iameter -	Inside d of shou E		Width of flat H N: normal R: modified			
	(in)	(in)	(mm)	(in)	(mm)	(in)	(mm)		
7 H 90	8 1/4 8 1/2 8 3/4 9	8 8 1/4 8 1/2 8 5/8	203.2 209.6 215.9 219.1	6 9/16 6 9/16 7 1/8 7 1/8	166.7 166.7 181.0 181.0	23/32 27/32 11/16 3/4	18.26 21.43 17.46 19.05	N N R R	
7 H 90	9 1/2 9 3/4 10 10 1/4	9 1/4 9 1/4 9 5/8 9 5/8	235.0 235.0 244.5 244.5	7 29/64 8 8 8 8	189.3 203.2 203.2 203.2	57/64 5/8 13/16 13/16	22.62 15.88 20.64 20.64	N R R R	
7 5/8 REG	9 1/2 9 3/4 10	8 7/8 9 1/4 9 1/4	225.4 235.0 235.0	7 3/32 7 3/4 7 3/4	180.2 196.9 196.9	57/64 3/4 3/4	22.62 19.05 19.05	N R R	
8 5/8 H 90	10 1/2 10 3/4 11 11 1/4	10 3/8 10 1/2 10 1/2 10 3/4	263.5 266.7 266.7 273.1	8 11/32 9 3/8 9 3/8 9 3/8 9 3/8	211.9 238.1 238.1 238.1 238.1	11/64 9/16 9/16 11/16	25.80 14.29 14.29 17.46	N R R	
8 5/8 REG	10 1/2 10 3/4 11	9 3/4 11 1/2 10 1/2	247.7 292.1 266.7	8 1/16 9 9	204.8 228.6 228.6	27/32 3/4 3/4	21.43 19.05 19.05	N R R	

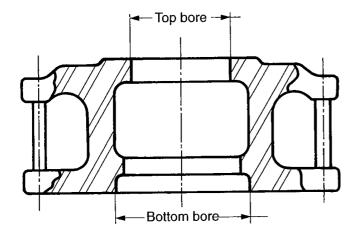
SPIRAL DRILL COLLARS (Drilco)

609.6 609.6 Maxi Box end (mm) Length of cylindrical end 457.2 457.2 Mini Maxi 457.2 457.2 Pin end (mm) 340.8 Mini 304.8 914.4 ± 25.4 914.4 ± 25.4 965.2 ± 25.4 1066.8 ± 25.4 1625.6 ± 25.4 1727.2 ± 25.4 1828.8 ± 25.4 1930.4 ± 25.4 2032.0 ± 25.4 1066.8 ± 25.4 1168.4 ± 25.4 Pitch (mm) To the right Direction Number of spirals ოოოო $\begin{array}{c} 1.98 \pm 0.79 \\ 4.76 \pm 0.79 \\ 5.56 \pm 0.79 \\ 6.35 \pm 0.79 \\ 7.14 \pm 1.59 \\ 7.14 \pm 1.59 \\ 7.94 \pm 1.59 \end{array}$ 8.73 ± 1.59 9.53 ± 1.59 10.32 ± 2.38 11.11 ± 2.38 11.91 ± 2.38 Depth of cut *e* (mm) 7 1/8 to 7 7/8 8 to 8 7/8 9 to 9 7/8 10 to 10 7/8 11 to 12 4 to 4 3/8 4 1/2 to 5 1/8 5 1/4 to 5 3/4 5 7/8 to 6 3/8 6 1/2 to 7 7 Size OD (in) 3 7/8 4 120° 120° Cross section for drill collars Cross section for drill collars 7 1/8" to 12" 3 7/8" to 7" ⊕ ▼ ₽ ¥ ¥

Note: the weight of a spiral drill-collar will be reduced approximately of 4%. mm \times 0.0394 = in

B 39


DRILL COLLAR SLIP AND ELEVATOR RECESS ELEVATOR BORE DIMENSIONS (API RP 7G, 15th edition, January 1, 1995)


			Dimensions		Elevator bore			
Drill collar		Elevator		ip				
OD range (in)	A (1) (mm)	R (mm)	C (2) (°)	B (1) (mm)	D (2) (°)	Top bore (3) + 0 - 1 (mm)	Bottom bore (3) + 2 - 0 (mm)	
4 to 4 5/8 4 3/4 to 5 5/8 5 3/4 to 6 5/8 6 3/4 to 8 5/8 8 3/4 and up	5.6 6.4 7.9 9.5 11.1	3.2 3.2 3.2 4.8 6.4	4 5 6 7.5 9	4.8 4.8 6.4 6.4 6.4	3.5 3.5 5 5 5	OD - 7.9 OD - 9.5 OD - 12.7 OD - 14 OD - 15.9	OD + 3.2 OD + 3.2 OD + 3.2 OD + 3.2 OD + 3.2 OD + 3.2	

(1) A and B dimensions are from nominal OD of new drill collar.

(2) Angle C and D dimensions are reference and approximate.

(3) OD is the outside diameter in millimeters of the new drill collar.

Drill collar elevator

Note : These dimensions must not be used as API Standards.

mm x 0.0394 = in

FOR ROTARY SHOULDERED DRILL COLLAR CONNECTIONS (API RP 7G, 15th edition, January 1, 1995)

		1/2	(daN.m)				<u> </u>						1 004 1 004 1 004		1120	
		5	(ft.lb)										7 411 7 411 7 411	· - c	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ოო
		1/4	(daN.m)								770 770 770	730	1 225 1 247 1 247		1 375	30
		2	(ft.lb)							_	5 685 5 685 5 685		000	*5 161	10 144	
			(daN.m)							629 929	876 964 964	929 929	1 225 1 467 1 467	69	- 1- 1-	200
enb		5	(ft.lb)			-			<u>-</u>	*4 640 6 853	*6 466 7 115 7 115	6 853 6 853	$\circ \omega \omega$		11 803	<u> </u>
ke-up tor	drill collars	3/4	(daN.m)		237 237 237	396 396 3396 3396	501 501	520 542 542	554 725 1 007	629 1 001	876 1 069 1 137	1 106 1 106	1 225 1 663 1 663		1 636	
Minimum make-up torque	Bore of di	13	(ft.lb)		1 749 1 749 1 749	2 926 2 926 2 926	3 697 3 697	*3 838 4 002 4 002	*4 089 *5 352 7 433	*4 640 *7 390	*6 466 *7 886 8 394	8 161 8 161	*9 038 12 273 12 273	100	*12 074	າຕ
Min		1/2	(daN.m)	340 359 359	304 349 349	514 562 562	624 633	520 671 671	554 725 1 092	629 1 001	876 1 069 1 289	1 200 1 261			- T	
		1/4 1	(ft.lb)	*2 508 2 647 2 647	*2 241 2 574 2 574	*3 797 4 151 4 151	*4 606 4 668	*3 838 4 951 4 951	*4 089 *5 352 *8 059	*4 640 *7 390	*6 466 *7 886 9 514	*8 858 9 307				
			(daN.m)	340 451 459	304 410 445	514 673 705	624 745	520 781 781	554 725 1 092	629 1 001	876 1 069 1 419	1 200 1 394				
		1	(ft.lb)	*2 508 *3 330 3 387	*2 241 *3 028 3 285	*3 797 *4 966 5 206	*4 606 5 501	*3 838 5 766 5 766	*4 089 *5 352 *8 059	*4 640 *7 390	*6 466 *7 886 10 471	*8 858 10 286				
			(daN.m)	340 451 542												
		-	(ft.lb)	*2 508 *3 330 4 000			-									
		D	(mm)	76.2 79.4 82.6	76.2 79.4 82.6	76.2 79.4 82.6	88.9 95.3	88.9 95.3 98.4	95.3 98.4 104.8	98.4 104.8	104.8 108.0 114.3	108.0 114.3	114.3 120.7 127.0	108.0 114.3	120.7	133.4
		OD	(in)	3 3 1/8 3 1/4	3 31/8 31/4	3 3 1/8 3 1/4	3 1/2 3 3/4	3 1/2 3 3/4 3 7/8	3 3/4 3 7/8 4 1/8	3 7/8 4 1/8	4 1/8 4 1/4 4 1/2	4 1/4 4 1/2	4 1/2 4 3/4 5	4 1/4 4 1/2	4 3/4	5 1/4
		eavT	arik	NC23	Regular	PAC ³	API IF NC26	Regular	Extra Hole Dbl. Streamline Mod. Open	API IF NC31	Regular	Slim Hole	NC35	Extra Hole Slim Hole	Mod. Open	
		Size	(in)	API	2 3/8	2 7/8	2 3/8 API	2 7/8	2 7/8 3 1/2 2 7/8	2 7/8 API	3 1/2	3 1/2	API	3 1/2 4	3 1/2	

B 41

	<u> </u>	T —	T	T					· · · · · · · · · · · · · · · · · · ·			
			(daN.m)			i i				2 4 2 5 2 4 2 5 2 4 2 5 2 4 2 5 2 4 2 5	2 7 5 2 2 7 5 2 7 7 5 2 7 5 7 5	
		e e	(ft.lb)							*12 973 17 900 17 900 17 900		
		/16	(daN.m)	1 127 1 127 1 127 1 127	1 191 1 410 1 410 1 410	1 478 1 643 1 643 1 643 1 643 1 643	1 706 2 241 2 241 2 241 2 241	2 111 2 253 2 253 2 253	2222 461 461		2 404 2 404 2 0339 0 339 0 4 0 339 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	
		2 13/1	(ft.lb)	8315 8315 8315 8315	<u>6644</u>	*10 910 12 125 12 125 12 125 12 125	*12 590 16 536 16 536 16 536 16 536		ထထထထ	o~ooo		
		1/2	(daN.m)	1 353 1 487 1 487 1 487	1 191 1 734 1 782 1 782	1 478 2 028 2 028 2 028 2 028	1 706 2 358 2 648 2 648 2 648 2 648	2 111 2 656 2 656 2 656	2 831 2 880 2 880 2 880 2 880	1 758 2 455 3 120 2 985 2 985	2 404 3 174 3 479 3 479 3 479	
Minimum make-up torque	drill collars	21	(ft.lb)	*9 986 10 977 10 977 10 977	ファーー	*10 910 14 969 14 969 14 969 14 969	*12 590 *17 500 19 543 19 543 19 543	*15 576 19 601 19 601 19 601	*20 895 21 257 21 257 21 257 21 257	0-000		
linimum ma	Bore of dr	1/4	(daN.m)	1 353 1 749 1 749 1 749		1 478 2 072 2 307 2 307 2 307	1 706 2 358 2 942 2 942 2 942 2 942	2 111 2 793 2 947 2 947	2 831 3 183 3 183 183	- 758 2 455 3 1995 3 424 3 424	2 404 3 174 3 797 3 797 3 797	
2		2 1	(ft.lb)	*9 986 12 907 12 907 12 907	*8 786 *12 794 15 137 15 137	*10 910 *15 290 17 028 17 028 17 028	*12 590 *17 401 21 714 21 714 21 714	*15 576 *20 609 21 749 21 749	*20 895 23 493 23 493 23 493	*12 973 *18 119 *23 605 25 272 25 272	*17 738 *23 422 28 021 28 021 28 021	
			(daN.m)	1 353 1 890 1 984 1 984		1 478 2 559 2 559 2 559 2 559	1 706 2 358 3 053 3 207 3 207	2 111 2 793 3 209 3 209	2 831 3 457 3 457 3 457	1 758 2 455 3 199 3 698 3 698		
		2	(ft.lb)	*9 986 *13 949 14 643 14 643	*8 786 *12 794 16 929 16 929	*10 910 *15 290 18 886 18 886 18 886 18 886	*12 590 *17 401 *22 531 23 671 23 671	*15 576 *20 609 23 686 23 686	*20 895 25 510 25 510 25 510 25 510	*12 973 *18 119 *23 605 27 294 27 294		
		3/4	(daN.m)	1 353 1 890 2 196 2 196	1 191 1 734 2 316 2 510	1 478 2 072 2 708 2 783 2 783	1 706 2 358 3 053 3 443 3 443	2 111 2 793 3 443 3 443	2 831 3 584 3 699 8 699			-'
		13	(ft.lb)	*9 986 *13 949 16 207 16 207	*8 786 *12 794 *17 094 18 522	*10 910 *15 290 *19 985 20 539 20 539	*12 590 *17 401 *22 531 25 408 25 408	*15 576 *20 609 25 407 25 407	*20 895 *26 453 27 300 27 300			
		OD	(mm)	120.7 127.0 133.4 139.7	120.7 127.0 133.4 139.7	127.0 133.4 139.7 146.1 152.4	133.4 139.7 146.1 152.4 158.8	139.7 146.1 152.4 158.8	146.1 152.4 158.8 165.1	139.7 146.1 152.4 158.8 165.1	146.1 152.4 158.8 165.1 171.5	
			(in)	4 3/4 5 5 1/4 5 1/2	4 3/4 5 5 1/4 5 1/2	5 5 1/4 5 3/4 6	5 1/4 5 1/2 6 3/4 6 1/4	5 1/2 5 3/4 6 6 1/4	5 3/4 6 6 1/4 6 1/2	5 1/2 5 3/4 6 1/4 6 1/2	5 3/4 6 1/4 6 1/2 6 3/4	
Connection		Tyre	adk -	API IF NC38 Slim Hole	H-90 ⁴	Full Hole NC40 Mod. Open Dbl.Streamline	H-90 ⁴	API Regular	NC44	API Full Hole	Extra Hole NC46 API IF Semi IF Dbl. Streamline	notes at the end of B 46
		Size	(in)	3 1/2 API 4 1/2	3 1/2	4 API 4 1/2		4 1/2	AP	4 1/2	4 1/2 API 4 5 1/2	See note:

B 42

<u>~%</u>

FOR ROTARY SHOULDERED DRILL COLLAR CONNECTIONS (continued) (API RP 7G, 15th edition, January 1, 1995)

Ū		3 1/4 3 1/2 3 3/4	(ft.lb) (daN.m) (ft.lb) (daN.m) (ft.lb) (daN.m)		23 988 3 250 23 988 3 250	0004 0004 0675 0675 36 6675 36 6675 36 36 375 36 375 36 375 36 375 36 375 36 375 36 375 36 375 376 376 376 376 376 376 376 376 376 377 376 377 376 377 377	0 781 4 0 781 4 0 781 4 0 781 4 0 781 4	0 495 0 495 0 495 0 495 0 495 4 1 0 495 4 1	4 ທ ທ ທ 4 ທ ທ ທ 4 ທ ທ ທ	വവവവ			
Minimum make-up torg	re of drill collars	m	t.lb) (daN.m)	8 019 2 442 1 051 2 852 1 051 2 852 1 051 2 852 1 051 2 852	360 360 167 3 167 3 167 3 3	0044 966 966 973 444 973 4444 4444 973	142 142 142 142 444 444	941 4 32 868 4 58 868 4 58 868 4 58 868 4 58	762 4 998 5 190 6 190 6	498 680 680 680 680 680 680			
Minimu	Bore	3/16	(daN.m) (ft	2 442 *18 3 138 21 3 138 21 3 138 21 3 138 21 3 138 21	436 984 984 984	374 374 374 374 374 374 374 374		4 328 4 910 4 910 33 4 910 33 33	4 439 *32 5 555 *40 6 471 45 6 471 45	5 488 6 534 6 534 6 534 6 534 6 534 4 5			
		2 1:	(ft.lb)	*18 019 23 159 23 159 23 159 23 159 23 159	*	*23 004 *29 679 32 277 32 277 32 277 32 277	*	*31 941 36 235 36 235 36 235 36 235	*32 762 *40 998 47 756 47 756	*40 498 48 221 48 221 48 221 48 221			
		2 1/2	(daN.m)	9 2 442 31 3 209 37 3 577 377 3 577 3 577 3 577	0 3 436 95 4 322 15 4 448 1448	117 117 117 117 117 117 117 117 117 117	8 4 676 7 5 436 7 5 436 7 5 436 7 5 436	5 402 5 402 5 402 5 402 5 402	62 4 439 98 5 555 61 6 729 87 7 004	8 5 488 0 6 648 5 7 062 7 062			
			(ft.lb)	*18 01 *26 39 26 39 26 39		വവവവരന നെന്ന് * *	* 8444 4000	*31 941 *39 419 39 866 39 866	**32 7 *40 9 51 6	*40 49 *49 06 52 111 52 111			
		1/4	(daN.m)	9 2 442 3 209 3 893 3 893 3 893 3 893	4 325 4 322 4 782 4 782 4 782	6 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 ល ល ល	+ 328 5 341 5 756 5 756	6 729 5 555 6 729 7 387				
		2	(ft.lb)	*18 019 *23 681 28 732 28 732 28 732 28 732	*25 360 *31 895 35 292 35 292	*23 004 *29 679 *36 742 38 379 38 379 38 379 38 379	*34 508 *41 993 42 719 42 719	*31 941 *39 419 42 481 42 481	*32 762 *40 998 *49 661 54 515				
		a	go	ao	ac -	(mm)	146.1 152.4 158.8 165.1 171.5	158.8 165.1 171.5 177.8	158.8 165.1 171.5 184.2 190.5	171.5 177.8 184.2 190.5	171.5 177.8 184.2 190.5	177.8 184.2 190.5 196.9	184.2 190.5 196.9 203.2
	_	0	(in)	5 3/4 6 1/4 6 1/2 6 3/4	6 1/4 6 1/2 6 3/4 7	6 1/4 6 1/2 6 3/4 7 1/4 7 1/2	6 3/4 7 7 1/4 7 1/2	6 3/4 7 7 1/4 7 1/2	7 1/4 7 1/2 7 3/4	7 1/4 7 1/2 8 8			
		Cont T	adkı	H-90 ⁴	H-90 ⁴	API IF NC50 Extra Hole Mod. Open Dbl. Streamline Semi-IF	H-90 ⁴	API Regular	API Full Hole	NC56			
		Size	(in)	4 1/2	ы	4 1/2 თუე 4 1/2 თე 1/2	5 1/2	5 1/2	5 1/2	API			

See notes at the end of B 46.

1. 1. S. P. Martin Martin P. Hards Advances in Specific Street Street Street

FOR ROTARY SHOULDERED DRILL COLLAR CONNECTIONS (continued) (API RP 7G, 15th edition, January 1, 1995)

	<u> </u>			1					
		3/4	(daN.m			1		00000 0104 0104 0104	- 000000
		e e	(ft.Ib)					67 184 67 184 67 184 67 184	- ՒᲢᲗᲗᲗᲗ
		5	(daN.m)				7 7 7 998 998 998 998 998	0	
		3 1/2	(ft.lb)				*56 641 59 027 59 027 59 027 59 027		
		1/4	(daN.m)	6 287 6 360 6 360 6 360		40000	ມດດດດອ	$\infty\infty\infty$	
ue		3 1/	(ft.lb)	*46 399 46 936 46 936 46 936	*46 509 49 855 49 855 49 855		* 56 641 63 381 63 381 63 381 63 381 381 381 381	*67 789 76 706 76 706 76 706 76 706	000
ke-up torg	drill collars		(daN.m)	6 287 6 870 6 870 6 870		7 470 8 867 8 890 8 754 8 890 8 890	7 675 9 097 9 138 9 138 9 138 9 138	18726	0000000
Minimum make-up torque	Bore of d	m	(ft.Ib)	*46 399 50 704 50 704 50 704		*55 131 *65 438 65 607 64 607 65 607	*56 641 *67 133 67 436 67 436 67 436 67 436 67 436	*67 789 *79 544 80 991 80 991	*75 781 *75 781 *88 802 *102 354 105 657 105 657
Mi		13/16	(daN.m)	6 287 7 228 7 228 7 228		7 470 8 867 9 268 2 268 2 268	9 675 9 675 9 523 9 523 9 523	9 186 10 778 11 381 11 381	
		2 13	(ft.Ib)	*46 399 53 346 53 346 53 346 53 346	*46 509 *55 708 56 273 56 273	*55 131 *65 438 68 398 68 398 68 398 68 398	*56 641 *67 133 70 277 70 277 70 277 70 277	*67 789 *79 544 83 992 83 992 83 992	*75 781 *88 802 *102 354 108 841 108 841 108 841
		1/2	(daN.m)	6 287 7 538 7 777 7 777		7 470 8 867 9 847 9 847 9 847	7 675 9 097 10 112 10 112 10 112	9 186 10 778 12 003 12 003 12 003	10 268 12 033 15 408 15 408 15 408
		2	(ft.Ib)	*46 399 *55 627 57 393 57 393	80000 8000	*55 131 *65 438 72 670 72 670 72 670	*56 641 *67 133 74 626 74 626 74 626 74 626 74 626	*67 789 *79 544 88 582 88 582 88 582 88 582	*75 781 *88 802 *102 354 113 710 113 710 113 710 113 710
	1	1/4	(daN.m)						
		2 1	(ft.lb)						
		۵	(mm)	190.5 196.9 203.2 209.6	190.5 196.9 203.2 209.6	203.2 209.6 215.9 222.3 228.6	203.2 209.6 215.9 222.3 228.6 228.6 228.6 228.6	215.9 222.3 228.6 235.0 241.3	228.6 235.0 241.3 247.7 254.0 260.4
uc.		đo	(in)	7 1/2 7 3/4 8 1/4	7 1/2 7 3/4 8 8 1/4	8 8 1/4 9 3/4 9	88888 81/4 993/4 1/4	8 1/2 8 3/4 9 1/4 9 1/2	9 9 1/4 9 1/2 9 3/4 10 10
Connection		Tvna	odk -	API Regular	H-90 ⁴	NC61	APIIF	API Full Hole	NC70
		Size .	(in)	6 5/8	6 5/8	API	5 1/2	6 5/8	API

FOR ROTARY SHOULDERED DRILL COLLAR CONNECTIONS (continued) (API RP 7G, 15th edition, January 1, 1995)

		3 3/4	lb) (daN.	194 14 051 16 375 17 375 17	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		529 10 529 10 529 10 529 10 10 529 10 10 529 10 10 529 10 10 529 10 10 529 10 10 529 10 10 529 100 100 100 100 100 100 100 100 100 10		2 404	- 15	31 7 7	099 9 900 289 10 47:	289 10 47 289 10 47
			Ľ.	* 108 129 129	203 203 *	00 90 8 8		508 86 86 86	*109	*1130	288 228 	*73	77
		1/2	(daN.m)	14 660 16 809 18 309 18 309	0007 0	0 00 0 0 00 0	10 777 10 777 10 777	o 1 0	495	15 37 15 37	851 851	9 905 11 173	11 173 11 173
		м м	(ft.lb)	*108 194 *124 051 135 119 135 119	- 400 004 -	*60 402	79 536	*73 017 *86 006	*109 345 *125 263 130 277	148 06		*73 099 82 457	82 457 82 457
		1/4	(daN.m)	14 660 16 809 19 036 19 036	<u>ν</u> Γαα) oo o	11412	0-6	. œ04	37		9 905 11 716	11 828 11 828
ldue		ю П	(ft.lb)	*108 194 *124 051 140 488 140 488	រ លួលផ		84 221 84 221 84 221 84 221	*73 017 *86 006 *99 508	4884 464		67 257 67 257	*73 099 *86 463	87 292 87 292
nake-up to	drill collars	е С	(daN.m)	14 660 16 809 19 712 19 712) დთ 	11 442 12 003 12 003		4 <u>6</u> 6	15 377 17 624	9 222 9 670	9 905 11 716	12 438 12 438
Minimum make-up torqu	Bore of		(ft.lb)	*108 194 *124 051 *140 491 145 476	*53 454 *63 738 *63 738	*60 402 *72 169	*84 442 88 580 88 580 88 580	*73 017 *86 006 *99 508	*109 345 *125 263 141 134	*113 482 *130 063	*68 061 71 361	*73 099 *86 463	91 789 91 789
~		3/16	(daN.m)	14 660 16 809 19 037 20 185	2 ~ ∞ 0	8 18 9 77	11 442 12 416 12 416	9 894 11 654 13 483	14 816 16 973 19 210	15 377 17 624	9 222 10 059		
		2 1:	(ft.Ib)	*108 194 *124 051 *140 491 148 965	*53 454 *63 738 72 066		*84 442 91 633 91 633	*73 017 *86 006 *99 508	*109 345 *125 263 *141 767	*113 482 *130 063	*68 061 74 235		
		1/2	(daN.m)	14 660 16 809 19 037 20 907 20 907	7 243 8 637 10 092	8 185 9 779	11 442 13 049 13 049	9 894 11 654 13 483	14 816 16 973 19 210	15 377 17 624			
		2	(ft.Ib)	*108 194 *124 051 *140 491 154 297	*53 454 *63 738 *74 478	*60 402 *72 169	*84 442 96 301 96 301	*73 017 *86 006 *99 508	*109 345 *125 263 *141 767	*113 482 *130 063			
		1/4	(daN.m)										
		5	(ft.lb)										
	-	QD	(mm)	254.0 260.4 266.7 273.1 273.1	203.2 209.6 215.9	215.9 222.3	228.6 235.0 241.3	228.6 235.0 241.3	254.0 260.4 266.7	260.4 266.7	222.3 228.6	235.0 241.3	247.7 254.0
ion		0	(in)	10 10 10 10 10 11 10 11	8 8 1/4 8 1/2	8 1/2 8 3/4	9 9 1/4 9 1/2	9 9 1/4 1/2	10 10 1/4 10 1/2	10 1/4 10 1/2	8 3/4 9	9 1/4 9 1/2	9 3/4 10
Connection		Tvne		NC77	H-90⁴	API Regular		H-90 ⁴	API Regular	H-90⁴	H-90 ⁴ (with low torque face)	API Regular (with low torque face)	
		Size	(in)	ЧЧ Ч	~	7 5/8		7 5/8	8 5/8	8 5/8	~	7 5/8	

See notes at the end of B 46.

		c c							2	Minimum make-up torque	ake-up tor	enb					
		5								Bore of c	Bore of drill collars						
Size	T, no	QO	0	2	2 1/4	2 1/2	/2	2 13/16	/16	m		3 1/4	4	3 1/2	/2	3 3/4	/4
(in)	adki	(in)	(mm)	(ft.lb)	(daN.m)	(ft.lb)	(daN.m)	(ft.lb)	(daN.m)	(ft.lb)	(daN.m)	(ft.lb)	(daN.m)	(ft.lb)	(daN.m)	(ft.lb)	(daN.m)
7 5/8	H-90 ⁴ (with low	9 3/4 10	247.7 254.0					*91 667 *106 260	12 421 14 398	*91 667 *106 260	12 421 14 398	*91 667 *106 260	12 421 14 398	*91 667 104 171	12 421 14 115	*91 667 98 804	12 421 13 388
		10 1/4 10 1/2	260.4 266.7					117 112 117 112	15 869 15 869	113 851 113 851	15 427 15 427	109 188 109 188	14 795 14 795	104 171 104 171	14 115 14 115	98 804 98 804	13 388 13 388
8 5/8	API Regular (with low torque face)	10 3/4 11	273.1 279.4							*112 883 *130 672	15 296 17 706	*112 883 *130 672	15 296 17 706	*112 883 *130 672	15 296 17 706	*112 883 *130 672	15 296 17 706
8 5/8	H-90 ⁴ (with low	11 1/4 10 3/4 11	285.8 273.1 279.4							147 616 *92 960 *110 781	20 002 12 596 15 011	14 243 *92 960 *110 781	1 930 12 596 15 011	136 846 *92 960 *110 781	18 543 12 596 15 011	130 871 *92 960 *110 781	17 733 12 596 15 011
	iondue racel	11 1/4	285.8							*129 203	17 507	*129 203	17 507	*129 203	17 507	*129 203	17 507

Notes

(1) Torque figures preceded by an asterisk indicate that the weaker member for the corresponding outside diameter (OD) and bore is the BOX. For all other torque values the weaker member is the PIN

(2) In each connection size and type group, torque values apply to all connection types in the group, when used with the same drill collar outside diameter, i.e. 2 3/8 API IF, API NC26, and 2 7/8 Slim Hole connections used with 3 1/2 × 1 1/4 drill collars all have the same minimum make-up torque of 4600 ft.lb, and the BOX is the weaker member.

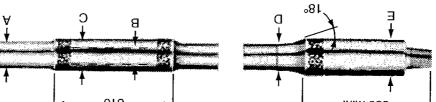
(3) Stress relief features are disregarded for make-up torque.

1. Basis of calculations for recommended make-up torque assume the use of a thread compound containing 40-60% by weight of finely powdered metallic zinc or 60% by weight of finely powdered metallic zinc or 60% by weight of finely powdered metallic zinc or 60% by weight of finely powdered metallic zinc or 60% by weight of finely powdered metallic lead, with not more than 0.3% total active sulfur (reference the caution regarding the use of hazardous materials in Appendix F of Specification 7) applied thoroughly to all threads and shoulders and using the modified Screw Jack formula in Appendix A, paragraph A.8, and a unit stress of 62 500 psi in the box or pin, whichever is weaker.

2. Normal torque range is tabulated value plus 10%. Higher torque values may be used under extreme conditions.

3. Make-up torque for 2 7/8 PAC connection is based on 87 500 psi stress and other factors listed in footnote 1.

4. Make-up torque for H-90 connection is based on 56 200 psi stress and other factors listed in footnote 1.


HEAVY WALL DRILL PIPES (Drilco, Division of Smith International, Inc)

81

a ∤

E ∳

	nin	n 533 n		.				10 	•						I			iim 985	
			Inside diameter	(in) (mm)	2 3/16 55.6	2 11/16 68.3	2 7/8 73.0	3 1/8 79.4					Steel volume	(I/m)	4.81	5.64	7.79	6.9 9.30	dimens)
	Tool joint	Outside	diameter (E)	(in) (mm)	4 3/4 120.7	5 1/4 133.4	6 1/4 158.8	6 1/2 165.12			Volumes		Interior	(l/m)	2.19	3.37	3.87	4.61	
			Connec- tion		NC38 (3 1/2 IF)	NC40 (4 FH)	NC46 (4 IF)	NC50 (4 1/2 IF)					Exterior	(m/l)	7.00	9.01	11.66	13.97	-
		Pipe mechanical properties	Torsional yield	(daN.m)	2654	3747	5520	7660		(Make-up	torque	(daN.m)	1342	1797	2956	3985	
Range II		Pipe r	Tensile yield	(10 ³ daN)	153	181	244	307		e ll (continued		joint	Pipe weight (30 ft)	(kg)	344.3	404.2	557.9	670.9	.25 = lb 2 = bbl/ft
Characteristics, Range II	body	End upset	outside diameter (D)	(in) (mm)	3 5/8 92.1	4 1/8 104.8	4 5/8 117.5	5 1/8 130.2		Characteristics, Range II (continued)	Weight	Pipe + tool joint	Linear Pi weight	(kg/m)	37.7	44.2	61.0	73.4	.ft daN x 2.25 = lb l/m x 0.00192 = bbl/ft
	Drill pipe b	Central upset	outside diameter (C)	(in) (mm)	4 101.6	4 1/2 114.3	5 127.0	5 1/2 139.7		Charac		erties	Torsional I vield v	-	2383	3190	5260	6966	in ² daN.m × 7.38 = lb.ft l/m × 0.0805 = gal/ft l/n
		ensions	Cross- sectional area	(mm²)	4051	4779	6427	8106			oint	Mechanical properties							X L
		Body nominal dimensions	Wall	(mm)	18.2	18.2	22.2	25.4			Tool joint	Mec		(10 ³ daN)	333	316	456	263	mm ² × 0.00155 = in ² kg × 2.20 = lb l/r
		Body	Inside diameter (B)	(in) (mm)	2 1/16 52.4	2 9/16 65.1	2 3/4 69.9	3 76.2					Connection		NC38 (3 1/2 IF)	NC40 (4 FH)	NC46 (4 IF)	NC50 (4 1/2 IF)	±
		Nominal size	(Y)	(in)	3 1/2	4	4 1/2	5				size	Ś	(in)	3 1/2	4	4 1/2	വ	mm x 0.0394 = in kg/m x 0.672 = lb/ft

HEAVY WALL DRILL PIPES (Drilco, Division of Smith International, Inc) (continued)

		- <u></u>				('X(abbuc) 0148	51
			diameter	(in) (mm)	2 7/8 73.0	3 1/8 79.4			
	Tool joint	Outside	diameter (E)	(in) (mm)	6 1/4 158.8	6 1/2 165.1			
			Connec- tion		NC46 (4 IF)	NC50 (4 1/2 IF)			
		chanical rties	Torsional yield	(daN.m)	5520	7660			
ange III		Pipe mechanical properties	Tensile yield	(10 ³ daN)	244	307		l (continued)	
Characteristics, Range III	×	End upset	outside diameter (D)	(in) (mm)	4 5/8 117.5	5 1/8 130.2		Characteristics, Range III (continued)	
Che	Drill pipe body	Central upset	outside diameter (C)	(in) (mm)	5 127.0	5 1/2 139.7		Character	
		sions	Cross- sectional area	(mm ²)	6427	8106			
		Body nominal dimensions	Wałl thickness	(mm)	22.2	25.4			- - -
		Body r	Inside diameter (B)	(in) (mm)	2 3/4 69.9	3 76.2			
		Nominal size	(Y	(in)	4 1/2	ъ			

					<u></u>	(-
		Steel	volume	(I/m)	7.57	9.20	
	Volumes	-	Interior	(m/l)	3.87	4.61	
			Exterior	(l/m)	11.66	13.81	
G		Make-up torque	-	(daN.m)	2956	3985	
Characteristics, Range III (continued)	ght	ool joint	Pipe weight	(kg)	796.3	968.0	× 2.25 = lb 1192 = bbl/ft
aracteristics, Ra	Weight	Pipe + tool joint	Linear	(kg/m)	59.4	72.2	daN.m × 7.38 = lb.ft daN × 2.25 = lb 0.0805 = gal/ft l/m × 0.00192 = bbl/f
Chá		properties	Torsional	(daN.m)	5260	6966	in ² daN.m x 7.38 = lb.ft daN x 2.25 = lb l/m x 0.0805 = gal/ft l/m x 0.00192 = bbl/ft
	Tool joint	Mechanical	Tensile	(10 ³ daN)	456	563	$mm^2 \times 0.00155 = in^2$: kg x 2.20 = lb l/rr
			Connection		NC46 (4 IF)	NC50 (4 1/2 IF)	$4 = in mm^2 \times 2 = lb/ft kg x$
		size	Ŕ	(in)	4 1/2	ع	mm x 0.0394 = in kg/m x 0.672 = lb/ft

(mm ni snoisnemib)

nim 888

Ξ

۰8I

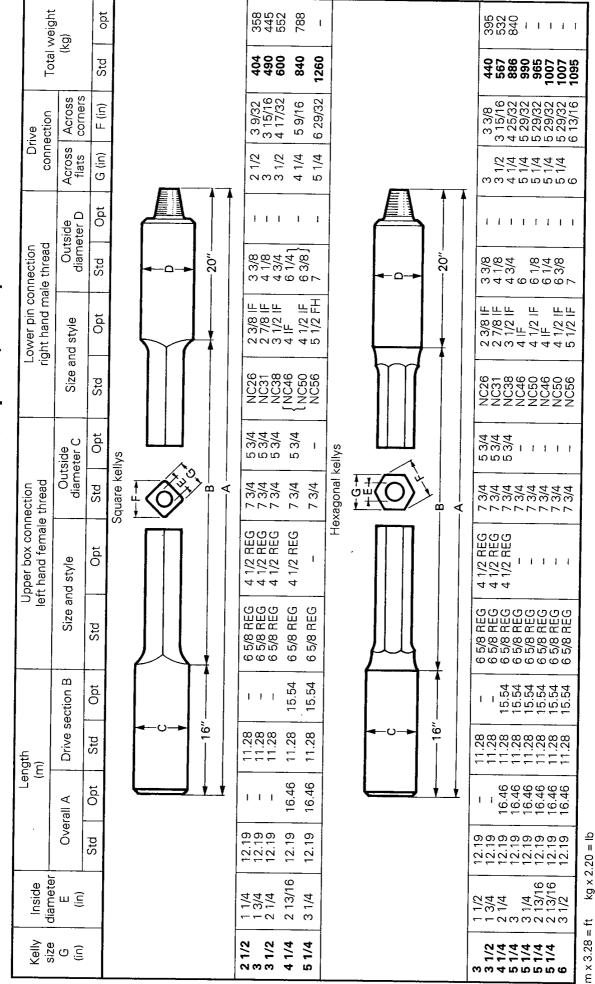
đ

C ↓

B

798

∃ ∤


f

.nim 553 🗝

°81

₫

С Т B

KELLYS (API Spec 7, 38th edition, April 1, 1994) B 49

	, 1995)
(L)	2
ΥS	January
KELLYS (1)	Jan
ΤX	th edition, 、
STRENGTH OF I	ditio
GTI	е Е
Ž	151
STR	, 7G,
U)	I RP
	(API
	3

diameter (in) Size and style diameter (in) (in) (in) (in) (in) 1 1/4 NC26 (2 3/8 IF) 3 3/8 (2 1/4 NC31 (2 7/8 IF) 4 1/8 NC31 (2 7/8 IF) 4 1/8 NC38 (3 1/2 IF) 6 1/4 6 1/4 NC38 (3 1/2 IF) 6 1/4 6 1/4 NC38 (3 1/2 IF) 7 7 7 7 7 7 7 8 17 17/8 NC38 (3 1/2 IF) 7 7 7 7 7 7 7 8 17 17/8 NC38 (3 1/2 IF) 7 7 7 7 7 7 7 8 17 17/8 NC38 (3 1/2 IF) 3 3/8 1/2 IF) 3 1/2 IF) 6 3/8 17 7 7 7 7 7 7 7 8 17 17/8 NC30 (4 1/2 IF) 6 3/8 5 1/2 FH NC50 (4 1/2 IF) 6 3/8 5 1/2 FH NC50 (4 1/2 IF) 6 3/8 5 1/2 FH NC50 (4 1/2 IF) 6 3/8 5 1/2 FH NC50 (4 1/2 IF) 6 3/8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Kelly size	Inside	Lower pin connection	nection	Minimum recommended	Tensile yield	e yield	Torsional yield	al yield	Yield in bending	Internal pressure at yield stress
e 11/4 NC26 (2 3/8 IF) 3 3/8 4 1/2 185 198 1 310 1680 1700 2710 7000	and style (in)	diameter (in)	Size and style	Outside diameter (in)	casing OD (2) (in)	Lower pin connection (3) (10 ³ daN)	Drive section (10 ³ daN)	Lower pin connection (daN.m)	Drive section (daN.m)	Drive section (m.daN)	Drive section (MPa)
13/4 NC31 (2 7/8 F) 4 1/8 5 1/2 2 33 2 600 2 670 2 700 2 1/4 NC38 (3 1/2 F) 4 3/4 6 5/8 3 23 3 3080 3 930 4 010 2 13/16 NC50 (4 1/2) 6 1/4 8 5/8 468 7 760 5 810 7 000 2 13/16 NC50 (4 1/2) F) 6 1/4 8 5/8 658 3 232 3 3 080 3 930 4 010 2 13/16 NC50 (4 1/2) F) 6 1/4 8 5/8 658 3 232 3 235 6 810 7 000 3 1/4 5 1/2 FH 7 9 5/8 715 758 9 900 13 700 13 940 1 1/2 NC26 (2 3/8 F) 7 758 9 900 13 700 13 940 1 1/2 NC26 (2 3/8 F) 7 1/5 758 9 900 13 700 13 940 1 1/2 NC26 (2 3/8 F) 7 1/6 7 1/5 7 260 6 810 7 700 1 1/2 NC26 (2 3/8 F) 7 1/8 5 1/2 1 28 2 780 2 780 2 780 1 1/2 NC26 (2 3/8 F) 4 1/8	Square 2 1/2	1 1/4	NC26 (2 3/8 IF)			185	198	1 310	1 680	1 680	20E
2 13/16 NC46 (4 F) 6 1 6 1 7 000 13 940 7 000 13 940 7 000 13 940 7 000 13 940 7 000 13 940 7 000 13 940 13 13 13 13 13 13 13 13 13 13 13 <th>3 3 1/2</th> <th>1 3/4 2 1/4</th> <th>NC31 (2 7/8 IF) NC38 (3 1/2 IF)</th> <th></th> <th></th> <th>238</th> <th>259</th> <th>1 960</th> <th>2 670</th> <th>2 710</th> <th>175.8</th>	3 3 1/2	1 3/4 2 1/4	NC31 (2 7/8 IF) NC38 (3 1/2 IF)			238	259	1 960	2 670	2 710	175.8
2 13/16 NC50 (4 1/2 IF) 6 3/8 8 5/8 632 466 7 760 6 810 7 000 3 1/4 5 1/2 FH 7 9 5/8 715 758 9 900 13 700 13 940 1 1/2 NC26 (2 3/8 IF) 3 3/8 4 1/2 158 240 1 125 2 780 2 520 1 7/8 NC23 (2 7/8 IF) 4 1/8 5 1/2 1815 4 270 3 880 1 7/8 NC38 (3 1/2 IF) 4 1/8 5 1/2 220 316 1 815 4 270 3 880 2 1/4 NC38 (3 1/2 IF) 4 1/8 5 1/2 220 316 1 815 4 270 3 880 3 1/4 NC56 (4 1F) 6 1/4 8 5/8 512 621 6 3080 7700 6 980 3 1/2 5 1/2 FH 7 9 5/8 512 621 6 3060 12 610 3 1/2 5 1/2 FH 7 9 5/8 512 621 6 335 13 030 11 880 3 1/2 FH 7 9 5/8 512 621 6 335 13 030 11 880 <th>4 1/4</th> <th>2 13/16</th> <th>NC46 (4 IF)</th> <th></th> <th></th> <th>468</th> <th>466</th> <th>5 335</th> <th>5 330 6 810</th> <th>7 000</th> <th>134.5</th>	4 1/4	2 13/16	NC46 (4 IF)			468	466	5 335	5 330 6 810	7 000	134.5
1 1/2 NC26 (2 3/8 lF) 3 3/8 4 1/2 158 240 1 125 2 520 1 7/8 NC31 (2 7/8 lF) 3 3/8 4 1/2 158 240 1 125 2 520 1 7/8 NC31 (2 7/8 lF) 4 1/8 5 1/2 2 220 316 1 815 4 270 3 880 2 1/4 NC38 (3 1/2 lF) 4 3/4 6 5/8 322 466 3 080 7 700 6 980 3 1/4 NC56 (4 1/2 lF) 6 1/4 8 5/8 512 621 6 335 13 870 12 610 3 1/2 5 1/2 FH 7 9 5/8 512 621 8 390 20 400 18 580 3 1/2 5 1/2 FH 7 9 5/8 512 621 8 990 20 400 18 580	5 1/4 5 1/4	2 13/16 3 1/4	NC50 (4 1/2 (F) 5 1/2 FH			632 715	466 758	7 760 9 900	6 810 13 700	7 000 13 940	134.5 142.0
1/2 11/2 NC26 (2 3/8 IF) 3 3/8 4 1/2 158 240 1125 2 520 1/4 21/4 NC31 (2 7/8 IF) 4 1/8 5 1/2 220 316 1125 2 780 2 520 1/4 2 1/4 NC31 (2 7/8 IF) 4 1/8 5 1/2 220 316 1 125 4 270 3 880 1/4 3 1/4 NC38 (3 1/2 IF) 4 3/4 6 5/8 322 466 3 080 7 700 6 980 1/4 3 1/4 NC46 (4 IF) 6 1/4 8 5/8 512 671 4 805 13 870 12 610 1/4 3 1/2 5 1/2 IF) 6 3/8 8 5/8 512 621 6 335 13 030 11 800 1/4 3 1/2 5 1/2 FH 7 9 5/8 512 650 861 8 990 20 400 18 580	Hexagonal										
1/2 17/8 NC31 (2 7/8 IF) 4 1/8 5 1/2 220 316 1 815 4 270 3 800 1/4 2 1/4 NC38 (3 1/2 IF) 4 3/4 6 5/8 322 466 3 080 7 700 6 980 1/4 3 NC46 (4 IF) 6 1/4 8 5/8 426 671 4 805 13 870 12 610 1/4 3 1/4 8 5/8 512 621 6 335 13 870 12 610 1/4 3 1/2 5 1/2 IF) 6 3/8 8 5/8 512 621 6 335 13 030 11 880 3 1/2 5 1/2 FH 7 9 5/8 650 861 8 990 20 400 18 580	e	1 1/2	NC26 (2 3/8 IF)	3 3/8		158	240	1 125	2 780	2 520	184 1
1/4 2 1/4 NC38 (3 1/2 IF) 4 3/4 6 5/8 322 466 3 080 7 700 6 980 1/4 3 NC46 (4 IF) 6 1/4 8 5/8 426 671 4 805 13 870 12 610 1/4 3 1/4 3 1/4 6 3/8 8 5/8 512 621 6 335 13 870 11 880 1/4 3 1/2 5 1/2 FH 7 9 5/8 512 650 861 8 990 20 400 18 580		1 7/8	NC31 (2 7/8 IF)	4 1/8		220	316		4 270	3 880	175.8
1/4 3 NC46 (4 IF) 6 1/4 8 5/8 426 671 4 805 13 870 12 610 1/4 3 1/2 5 1/2 FH 7 9 5/8 512 621 6 335 13 030 11 880 1/4 3 1/2 5 1/2 FH 7 9 5/8 650 861 8 990 20 400 18 580		2 1/4	NC38 (3 1/2 IF)	4 3/4		322	466	3 080	7 700	6 980	172.4
1/4 3 1/4 NC50 (4 1/2 IF) 6 3/8 8 5/8 5 1/2 6 21 6 335 1 3 030 1 1 880 3 1/2 5 1/2 FH 7 9 5/8 650 861 8 990 20 400 18 580		ະ ກ	NC46 (4 IF)	6 1/4		426	671	4 805	13 870	12 610	142.0
3 1/2 5 1/2 FH 7 9 5/8 650 861 8 990 20 400 18 580		3 1/4	NC50 (4 1/2 IF)	6 3/8		512	621	6 335	13 030	11 880	142.0
	œ	3 1/2	5 1/2 FH	2		650	861	066 8	20 400	18 580	125.5

(1) None of the values is corrected by a safety factor. They are based on a minimum tensile yield strength of 758 MPa (110 000 psi) for connections, and 620 MPa (90 000 psi) for the drive section, and on a shear strength of 57.7% of the minimum tensile yield strength.

Clearance between protector rubber on kelly saver sub and casing inside diameter should also be checked.
 Tensile area calculated at thread root 3/4 inch from pin shoulder.

daN.m x 7.38 = lb.ft MPa x 145 = psi daN x 2.25 = lb

STRETCH OF SUSPENDED DRILL PIPE

STRETCH DUE TO ITS OWN WEIGHT

$$A_a = 0.0785 \frac{L^2}{2E}$$

- L = length of string (m)
- E =modulus of elasticity = 210 000 MPa

 A_a in meters = 1.87 10⁻⁷ L^2

SHRINKAGE DUE TO BUOYANCY IN MUD

$$A_b = -\frac{d_b L^2}{E}(1-\upsilon)$$

- d_b = mud specific gravity
- L = length of string (m)
- E =modulus of elasticity = 210 000 MPa
- υ = Poisson's ratio = 0.3 for steel

$$A_b$$
 in meters = $-0.334 \ 10^{-7} \ d_b L^2$

STRETCH DUE TO TEMPERATURE

$$A_t = 11.88 \ 10^{-6} \ Ldt$$

L = length of string (m)

dt = temperature variation of the mud

TOTAL STRETCH

$$A = A_a + A_b + A_t$$

$$A = L^2 \ 10^{-7} (1.87 - 0.334 d_b) + 11.8 \ 10^{-6} \ Ldt$$

B 52

DRILL STEM DESIGN CALCULATIONS (API RP 7G, 15th edition, January 1, 1995)

A. DESIGN PARAMETERS

- a) Anticipated total depth with this string.
- b) Hole size.
- c) Mud weight.
- d) Desired Factor of Safety in tension and/or Margin of Over Pull.
- e) Desired Factor of Safety in collapse.
- f) Length of drill collars, OD, ID, and weight per meter.
- g) Drill pipe sizes and inspection class.

B. TENSION LOADING

$$T = 0.981 \times 10^{-3} (L_{\rm DP} P_{\rm DP} + L_{\rm DC} P_{\rm DC}) k$$

where:

- T = submerged load hanging below the upper end of this section of drill pipe (10³ daN)
- L_{DP} = length of drill pipe of section considered (m)

 $L_{\rm DC}$ = length of drill collars (m)

- $P_{\rm DP}$ = weight per meter of drill pipe assembly in air (kg/m)
- $P_{\rm DC}$ = weight per meter of drill collar in air (kg/m)

k = buoyancy factor.

C. ALLOWABLE LOAD. FACTOR OF SAFETY. MARGIN OF OVER PULL

$$T_a = 0.9 T_e$$

where:

- T_a = maximum allowable load on this pipe in tension (10³ daN)
- T_e = yield strength of this pipe (10³ daN)

$$R_T = T_a - T$$

 R_T = Margin of Over Pull (MOP) (10³ daN) on this drill pipe

$$F_{\rm S} = \frac{T_a}{T}$$

 $F_{\rm S}$ = safety factor in tension on this drill pipe.

չին չերու ենք Մեննները։ Ավելու ենքնունենը ու սուրեն հանձեն ենքներին երանդեսներին հետևեներություններին որի երանություն

DRILL STEM DESIGN CALCULATIONS (continued) (API RP 7G, 15th edition, January 1, 1995)

D. MAXIMUM DRILLING DEPTH

Considering the type of drill pipe, the load and the desired safety, the string length is limited to the following:

$$L_{\rm DP\,max} = \frac{0.9 \ T_e \ 10^3}{F_{\rm S} P_{\rm DP} k} - \frac{P_{\rm DC} L_{\rm DC}}{P_{\rm DP}}$$

or:

$$L_{\rm DP\,max} = \frac{10^3(0.9\ T_e - R_T)}{kP_{\rm DP}} - \frac{P_{\rm DC}L_{\rm DC}}{P_{\rm DP}}$$

L_{DP max} = maximum length (in m) of this drill string taking account of the desired safety, the pipe mechanical properties, the load of the drill collars and the mud.

Composite drill strings

If the drill string is composite, i.e. consisting of sections of pipes which differ in their nominal size, grade or wear class, the weakest section in tension must be placed above the drill collars and its maximum length is calculated as above. A stronger section is placed above and its maximum length can be calculated by using the equation for D, but by replacing the term $P_{\rm DC} L_{\rm DC}$ by the weight in air of the drill collars plus the weight of the weakest section.

E. COLLAPSE DUE TO ANNULAR HYDROSTATIC PRESSURE

$$P_{ca} = \frac{P_{ct}}{F_c}$$

where:

 P_{ct} = limit collapse pressure (kPa) P_{ca} = maximum allowable collapse pressure (kPa) F_{c} = collapse safety factor

When the fluid levels inside and outside the drill pipe are equal, the collapse pressure (equal to the differential hydrostatic pressure) is zero.

DRILL STEM DESIGN CALCULATIONS (continued) (API RP 7G, 15th edition, January 1, 1995)

If there is no fluid inside the pipe (for example, during testing), the collapse pressure is:

$$P_{\rm C} = 9.81 \ Zd$$

where:

 $P_{\rm C}$ = collapse pressure (kPa)

Z = vertical depth (m)

d = mud weight (kg/l)

F. TORSIONAL STRENGTH

The torque applied to the drill string should not exceed the actual tool joint make-up torque. For a composite string, the torsional torque at the rotary table should be limited to the lowest value of the tool joint make-up torque.

Torsional deformation

The following formula can be used to calculate the number of rotations causing torsional deformation of a drill string, ignoring friction and tool joints:

$$N = 1.49 \frac{ML}{\left(\frac{l_0}{R}\right)D}$$

where:

N = number of torsional rotations

M = applied torque (daN.m)

L = length of drill pipes (m)

 I_0

 $\frac{10}{R}$ = polar modulus (mm³)

D = pipe outside diameter (in)

Torsion limit taking account of tensile load

In certain drilling configurations, such as washover, deep holes, highly-deviated holes, use of a power swivel etc., it may be necessary to apply a high torque to the drill string. The pipes must withstand both the tensile and torsional loads.

The API criterion is as folows:

$$n^2 + 3t^2 \le Y_P^2$$

where:

 Y_P = yield strength

n = normal stress

t = tangential stress

DRILL STEM DESIGN CALCULATIONS (continued) (API RP 7G, 15th edition, January 1, 1995)

The following formula can be used to calculate the maximum allowable torque:

$$\left(\frac{T}{T_e}\right)^2 + \left(\frac{M}{M_e}\right)^2 \le 1$$

where:

T = tensile load on pipe

 T_e = tensile yield strength

M = torsional torque on pipe

 M_e = torque at maximum allowable stress

• Calculation of the maximum allowable torque for a tensile load T and the pipe mechanical properties:

$$M < M_e \sqrt{1 - \left(\frac{T}{T_e}\right)^2}$$

• Calculation of the maximum allowable tensile load for a torque *M* and the pipe mechanical properties:

$$T < T_e \sqrt{1 - \left(\frac{M}{M_e}\right)^2}$$

DRILL STEM DESIGN CALCULATIONS CALCULATION EXAMPLES

Design parameters

Depth = 3800 mHole size = $8 \frac{1}{2}$ Mud weight = 1.16Desired MOP = $30 \ 10^3 \text{ daN}$ Safety factor in collapse = 1.15Size of drill collars = $6 \frac{3}{4} \times 2 \frac{13}{16}$ Length of drill collars = 185 m

The following formula can be used to calculate the length of drill collars (if necessary):

$$L_{\rm DC} = \frac{10^5 \ WOB}{\cos \alpha \ F_{\rm PN} P_{\rm DC} k}$$

where:

$$L_{\rm DC}$$
 = length of drill collars (m)

WOB = maximum weight on bit (t)

 α = hole angle from vertical

$$F_{\rm PN}$$
 = neutral point position as percentage of the total drill collar string length

 $P_{\rm DC}$ = weight per meter of drill collars (kg/m)

 k^{-} = buoyancy factor

I Numerical application

 $\alpha = 3 \text{ degrees}$ WOB = 20 t $F_{PN} = 85\%$ k = 0.852 $P_{DC} = 149.8 \text{ kg/m}$

 $L_{\rm DC} = \frac{20.10^5}{(0.998)(85)(149.8)0.852} = 185 \,\mathrm{m}$ or 20DC

DRILL STEM DESIGN CALCULATIONS CALCULATION EXAMPLES (continued)

Il Pipe size, weight and grade used

5 in - 19.50 lb/ft, Grade E, NC50 tool joints, Inspection Class II

 $P_{\text{DP 1}} = 31.06 \text{ kg/m}$ $T_{e1} = 120.3 \ 10^3 \text{ daN}$ $P_{ct} = 30 \ 000 \text{ kPa}$

• Calculation of the maximum pipe length taking account of the desired MOP:

$$L_{\text{DP1}} = \frac{10^3 (0.9 \times 120.3 - 30) 1.02}{0.852 \times 31.06} - \frac{(185 \times 149.8)}{31.06}$$
$$L_{\text{DP1}} = 2125 \text{ m}$$

It is apparent that drill pipe of a higher strength will be required to reach 3800 m. For example, the following pipes can be used:

5 in - 19.50 lb/ft, Grade X, NC50 tool joint, Premium Class

 $P_{\text{DP2}} = 31.83 \text{ kg/m}$ $T_{e2} = 175.6 \ 10^3 \text{ daN}$

• Calculation of the maximum pipe length considering the MOP and weight of the first section:

$$L_{\text{DP}2} = \frac{10^3(0.9 \times 175.6 - 30)1.02}{0.852 \times 31.83} - \frac{(2125 \times 31.06) + (185 \times 149.8)}{31.83}$$
$$L_{\text{DP}2} = 1872 \text{ m}$$

The depth of 3800 m can therefore be reached with these drill strings and in the requisite conditions.

DRILL STEM DESIGN CALCULATIONS CALCULATION EXAMPLES (continued)

Summary of string weights and dimensions:

	Length (m)	Weight on air (t)	Weight in mud (t)
Drill collars P _{DC} = 149.8 kg/m	185	27.7	23.6
No. 1 pipe 5 in – 19.50, Grade E Class II P _{DP 1} = 31.06 kg/m	2125	66.0	56.2
No. 2 pipe 5 in – 19.50, Grade X Premium Class P _{DP 1} = 31.06 kg/m	1490	47.4	40.4
Total	3800	141.1	120.2

III Collapse pressure

For the No. 1 pipes, the limit collapse pressure is:

$$P_{ct1} = 38 \text{ MPa}$$

The maximum hydrostatic pressure on the No. 1 pipes is:

$$P_{\rm h} = 9.81 \times 1.16 \times (3800 - 185)$$

 $P_{\rm h} = 41\ 140\ {\rm kPa}$ or $41.14\ {\rm MPa}$

The string cannot be run empty to the final depth.

• Calculation of the maximum depth that can be reached by empty No. 1 pipes with a safety factor of 1.15:

$$L_{\rm max} = \frac{38\,000}{9.81 \times 1.16 \times 1.15} = 2\,904\,\,{\rm m}$$

DRILL STEM DESIGN CALCULATIONS CALCULATION EXAMPLES (continued)

IV Combination of tensile and torsional loads

Let us consider the use of a power swivel to pull out the string in rotation to release it. In this case, the combination of the tensile load and torque may be high.

The string is at the maximum depth.

 Maximum allowable tensile load at surface: 120.3 + 30 = 150.3 10³ daN. Torque at maximum allowable stress of No. 1 pipes: M_e = 3790 daN.m. Make-up torque of tool joints: 1900 daN.m. Load on No. 1 pipes: (56.2 + 23.6) 0.981 + 30 = 108.3 10³ daN. Tensile yield strength: T_{e1} = 120.3 10³ daN.

$$M < M_e \sqrt{1 - \left(\frac{T}{T_{e1}}\right)^2}$$

 $M < 3790 \sqrt{1 - \left(\frac{108.3}{120.3}\right)^2} = 1650 \text{ daN.m}$

The torque limit should be 1650 daN.m.

Calculation of maximum torque with extra tensile load of 15 10³ daN.
 Load on No. 1 pipes: (56.2 + 23.6) 0.981 + 15 = 93.3 10³ daN.

$$M < 3790 \sqrt{1 - \left(\frac{93.3}{120.3}\right)^2} = 2393 \text{ daN.m}$$

The torque limit remains the minimum make-up torque, i.e. 1900 daN.m.

CRITICAL BUCKLING FORCE (Baker Hughes INTEQ)

Formula Critical Buckling force in drill pipe (Dawson and Paslay):

 $F_{cr} = 2 (E/W \sin\theta/r)^{1/2}$ (lbs)

E = Young's modulus (psi)

I = Axial moment of inertia (in⁴)

W = Buoyed weight per unit length (lb/in)

 θ = Bore-hole inclination

r = Radial clearance between the pipe and the bore-hole wall (in)

If the compressive force reaches F_{cr} , then **sinusoidal buckling** occurs

Metric formula:

 $F_{cr} = 2/99.03 \ (EIW \sin\theta/r)^{1/2} \ (kgf)$

E (MPa) ; *I* (mm⁴) ; *W* (kg/m) ; *r* (mm)

Application:

E = 29 10⁶ psi		(199 950 MPa)	
4 1/2 DP – E – 16.66 lb/ft: approximate weight =	17.99 lb/ft	(26.77 kg/m)	B 10
8 1/2 Hole - Inclination = 50° - Mud weight = 14	ppg, buoyancy	factor = 0.786 .	A 37
$l = \pi/64 (4.5^4 - 3.826^4) = 9.61 \text{ in}^4$	(8 000 523/2	= 4 000 263 mm ⁴)	B 10
W = (17.99/12)*0.786= 1,178 lb/in	(26.77*0	.786 = 21.04 kg/m)	
sin 50 = 0.766 <i>r</i> = 8.5 - 4.5 = 2 in		(50.8 mm)	
$F_{cr} = 2 (29 \times 106 \times 9.61 \times 1.178 \times 0.766/2)^{1/2} = 22$	2 420 lbs		

Metric formula: $F_{cr} = 2/99.03(199\ 950 \times 4\ 000\ 263 \times 21.04 \times 0.766/50.8)^{1/2} =$ **10 170** kgf С

— casing, tubing line pipe standards

Tensile requirements. Casing and tubing (API Standard 5CT, 5 th edition, April 1, 1995). Line pipe (API Standard 5L, April 1, 1995)	C1
Tensile requirements of special steels (non-API) (Vallourec & Mannesmann documentation)	C2
API casing list (API Specification 5CT, 5 th edition, April 1, 1995)	C3-C4
API tubing list (API Specification 5CT, 5 th edition, April 1, 1995)	C5
Drift diameter (API Standard 5CT, 5 th edition, April 1, 1995)	C6
Efficiency of a connection	C7
Make-up torque	C8
Geometrical characteristics and mechanical properties of small-diameter tubing	C9-C15
Geometrical characteristics and mechanical properties of tubing	C16-C34
Geometrical characteristics and mechanical properties of casing	C35-C79
Geometrical characteristics and mechanical properties of coiled tubing	C80-C87
Geometrical characteristics and mechanical properties of line pipe, risers and conductor pipe	C88-C90

C91
C92
C93
C94
C95
C96-C97

(API Standard 5CT, 5th edition, April 1, 1995) **TENSILE REQUIREMENTS** Casing and tubing

Grade	H40	J55	K55	N80	L80 (1)	C90 (2)	C95	T95 (3)	P110	Q125 (4)
Grade color band codes (5)	1 black	1 green	2 green	1 red	1 red and 1 brown	1 purple	1 brown	1 silver	1 white	1 orange
Minimum vield strenath										
(MPa) (psi) Maximum vield strenoth	276 40 000	379 55 000	379 55 000	551 80 000	551 80 000	620 90 000	655 95 000	655 95 000	758 110 000	862 125 000
(MPa) (Psi) Minimum tensile strendth	551 80 000	551 80 000	551 80 000	758 110 000	655 95 000	724 105 000	758 110 000	758 110 000	965 140 000	1034 150 000
(MPa) (psi)	413 60 000	517 75 000	655 95 000	689 100 000	655 95 000	689 100 000	724 105 000	724 105 000	862 125 000	931 135 000
(1) L80 9Cr: 1 red. 1 brown and 2 vellow hands: I 80 13Cr: 1 red. 1 hrown and 1 wallow hands.	/ hands' I 80 1	30r: 1 rod 1 h								

(1) DO Solution that is prive bands, not that the set is the set is the set of the set of

(API Standard 5L, April 1, 1995) Line pipe

r	T	
X80 (1)	551 80 000	620 90 000
X70 (1)	482 70 000	565 82 000
X65 (1)	448 65 000	530 77 000
X60 (1)	413 60 000	517 75 000
X56	386 56 000	489 71 000
X52	358 52 000	455 66 000
X46	317 46 000	434 63 000
X42	289 42 000	413 60 000
в	241 35 000	413 60 000
A	207 30 000	331 48 000
A25	172 25 000	310 45 000
Properties	Minimum yield strength (MPa) (psi) Minimum tensile strenath	(MPa) (psi)

(1) Non-weldable.

TENSILE REQUIREMENTS OF SPECIAL STEELS (NON-API) (Vallourec & Mannesmann documentation)

Grade			H ₂ S-re	esistant				Collapse resistant	resistant	
Properties	VM 80SS	VM 90S SS*	VM 95S SS*	VM 100SS	VM 110SS	VM 125SS	VM 80HC	VM 95HC	VM 110HC	VM 125HC
Color band identification	Red + orange and orange bands	Purple + orange *and orange	Brown + orange *and orange	Black + orange and orange bands	White + orange and orange bands	Yellow + orange and orange bands	Red + green band	Brown + green band	White + green band	Orange + green band
Minimum yield strength (MPa)	551	620	655	069	758	862	551	655	758	862
(bsi)	80 000	000 06	95 000	100 000	110 000	125 000	80 000	95 000	110 000	125 000
Maximum yield strength (MPa)	655	724	758	792	862	965	758	862	965	1069
(psi)	95 000	105 000	110 000	115 000	125 000	140 000	110 000	125 000	140 000	155 000
Minimum tensile strength (MPa)		689	724	758	828	931	689	758	862	931
(psi)	95 000	100 000	105 000	110 000	120 000	135 000	100 000	110 000	125 000	135 000

Grade		Special de	deep wells			Speci	Special arctic (Permafrost)	frost)	
Properties	VM80 HCSS	VM 90HCS HCSS*	VM 95HCS HCSS*	VM 110 HCSS	VM 55LT	VM 80LT	VM 95LT	VM 110LT	VM 125LT
Color band identification	Red + green orange and orange bands	Purple + green and orange bands	Brown + green and orange bands	White + green orange and orange bands	Green + blue band	Red + blue band	Brown + blue band	White + blue band	Orange + blue band
Minimum yield strength (MPa)	551	621	655	758	379	551	655	758	862
(psi) Maximum vield strenath	80 000	000 06	95 000	110 000	55 000	80 000	95 000	110 000	125 000
(MPa)	655	724	758	862	551	655	758	965	1034
(psi) Minimum tensile strenath	95 000	105 000	110 000	125 000	80 000	95 000	110 000	140 000	150 000
(MPa)	655	0 <u>69</u>	724	828	517	655	724	862	931
(psi)	95 000	100 000	105 000	120 000	75 000	95 000	105 000	125 000	135 000

* + orange.

API CASING LIST (API Specification 5CT, 5th edition, April 1, 1995)

Nominal		Nominal Wall thi	icknoss			Туре	e of end fi	nish*		
outside	Nominal weight						Grade		-	
diameter (in)	(lb/ft)	(in)	(mm)	H40	J55 K55	L80 C95	N80	C90 T95	P110	Q125
4 1/2 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2	9.50 10.50 11.60 13.50 15.10	0.205 0.224 0.250 0.290 0.337	5.21 5.69 6.35 7.37 8.56	PS	PS PSB PSLB	PLB PLB	PLB PLB	PLB PLB	PLB PLB PLB	PLB
5 5 5 5 5 5 5 5 5 5	11.50 13.00 15.00 18.00 21.40 23.20 24.10	0.220 0.253 0.296 0.362 0.437 0.478 0.500	5.59 6.43 7.52 9.19 11.10 12.14 12.70		PS PSLB PSLBE	PLBE PLBE PLB PLB PLB PLB	PLBE PLBE PLB PLB PLB PLB	PLBE PLBE PLB PLB PLB PLB	PLBE PLBE PLB PLB	PLBE PLB PLB PLB
5 1/2 5 1/2	14.00 15.50 17.00 20.00 23.00 26.80 29.70 32.60 35.30 38.00 40.50 43.10	0.244 0.275 0.304 0.361 0.415 0.500 0.562 0.625 0.687 0.750 0.812 0.875	$\begin{array}{c} 6.20\\ 6.99\\ 7.72\\ 9.17\\ 10.54\\ 12.70\\ 14.27\\ 15.88\\ 17.45\\ 19.05\\ 20.62\\ 22.23\\ \end{array}$	PS	PS PSLBE PSLBE	PLBE PLBE PLBE	PLBE PLBE PLBE	PLBE PLBE PLBE P P P P P P P P	PLBE PLBE PLBE	PLBE
6 5/8 6 5/8 6 5/8 6 5/8 6 5/8	20.00 24.00 28.00 32.00	0.288 0.352 0.417 0.475	7.32 8.94 10.59 12.07	PS	PSLB PSLBE	PLBE PLBE PLBE	PLBE PLBE PLBE	PLBE PLBE PLBE	PLBE PLBE PLBE	PLBE
7 7 7 7 7 7 7 7 7 7 7 7 7	$\begin{array}{c} 17.00\\ 20.00\\ 23.00\\ 26.00\\ 29.00\\ 32.00\\ 35.00\\ 35.00\\ 38.00\\ 42.70\\ 46.40\\ 50.10\\ 53.60\\ 57.10\end{array}$	0.231 0.272 0.317 0.362 0.408 0.453 0.498 0.540 0.625 0.687 0.750 0.812 0.875	$5.87 \\ 6.91 \\ 8.05 \\ 9.19 \\ 10.36 \\ 11.51 \\ 12.65 \\ 13.72 \\ 15.88 \\ 17.45 \\ 19.05 \\ 20.62 \\ 22.23 \\ \end{array}$	PS PS	PS PSLBE PSLBE	PLBE PLBE PLBE PLBE PLBE PLBE	PLBE PLBE PLBE PLBE PLBE PLBE	PLBE PLBE PLBE PLBE PLBE PLBE P P P P	PLBE PLBE PLBE PLBE PLBE	PLBE PLBE
7 5/8 7 5/8	24.00 26.40 29.70 33.70 39.00 42.80 45.30 47.10 51.20 55.30	0.300 0.328 0.375 0.430 0.500 0.562 0.595 0.625 0.625 0.687 0.750	7.62 8.33 9.53 10.92 12.70 14.27 15.11 15.88 17.45 19.05	PS	PSLBE	PLBE PLBE PLBE PLBE PLB PLB PLB PLB	PLBE PLBE PLBE PLB PLB PLB PLB PLB	PLBE PLBE PLBE PLB PLB PLB PLB PLB P	PLBE PLBE PLBE PLB PLB PLB PLB	PLBE PLB PLB PLB PLB

* P = plain end; S = short round thread; L = long round thread; B = buttress thread; E = extreme-line.

API CASING LIST (continued) (API Specification 5CT, 5th edition, April 1, 1995)

						Тур	e of end f	inish*		
Nomina outside	weight	Wall t	hickness				Grade			- <u></u>
diameter (in)	(lb/ft)	(in)	(mm)	H40	J55 K55	L80 C95	N80	C90 T95	P110	Q125
7 3/4	46.10	0.595	15.11			P	P	Р	P	P
8 5/8 8 5/8 8 5/8 8 5/8 8 5/8 8 5/8 8 5/8 8 5/8	24.00 28.00 32.00 36.00 40.00 44.00 49.00	0.264 0.304 0.352 0.400 0.450 0.500 0.557	6.71 7.72 8.94 10.16 11.43 12.70 14.15	PS PS	PS PSLBE PSLBE	PLBE PLBE PLBE PLBE	PLBE PLBE PLBE PLBE	PLBE PLBE PLBE PLBE	PLBE PLBE PLBE	PLBE
9 5/8 9 5/8	32.30 36.00 40.00 43.50 47.00 53.50 58.40 59.40 64.90 70.30 75.60	0.312 0.352 0.395 0.435 0.472 0.545 0.595 0.609 0.672 0.734 0.797	7.92 8.94 10.03 11.05 11.99 13.84 15.11 15.47 17.07 18.64 20.24	PS PS	PSLB PSLBE	PLBE PLBE PLBE PLBE PLB	PLBE PLBE PLBE PLBE PLB	PLBE PLBE PLBE PLB PLB P P P P P	PLBE PLBE PLBE PLB	PLBE PLBE PLB
10 3/4 10 3/4 10 3/4 10 3/4 10 3/4 10 3/4 10 3/4 10 3/4 10 3/4	32.75 40.50 45.50 51.00 55.50 60.70 65.70 73.20 79.20 85.30	0.279 0.350 0.400 0.450 0.495 0.545 0.595 0.672 0.734 0.797	7.09 8.89 10.16 11.43 12.57 13.84 15.11 17.07 18.64 20.24	PS PS	PSB PSBE PSBE	PSBE PSBE	PSBE PSBE	PSBE PSBE PSBE PSB P P P P P	PSBE PSBE PSBE PSB	PSBE PSB
11 3/4 11 3/4 11 3/4 11 3/4 11 3/4 11 3/4	42.00 47.00 54.00 60.00 65.00 71.00	0.333 0.375 0.435 0.489 0.534 0.582	8.46 9.53 11.05 12.42 13.56 14.78	PS	PSB PSB PSB	PSB P P	PSB P P	PSB P P	PSB P P	PSB P P
13 3/8 13 3/8 13 3/8 13 3/8 13 3/8 13 3/8	48.00 54.50 61.00 68.00 72.00	0.330 0.380 0.430 0.480 0.514	8.38 9.65 10.92 12.19 13.06	PS	PSB PSB PSB	PSB PSB	PSB PSB	PSB PSB	PSB PSB	PSB
16 16 16 16	65.00 75.00 84.00 109.00	0.375 0.438 0.495 0.656	9.53 11.13 12.57 16.66	PS	PSB PSB P	Ρ	Ρ	Ρ	Р	P
18 5/8	87.50	0.435	11.05	PS	PSB	_				
20 20 20	94.00 106.50 133.00	0.438 0.500 0.635	11.13 12.70 16.13	PSL	PSLB PSLB PSLB					

* P = plain end; S = short round thread; L = long round thread; B = buttress thread; E = extreme-line.

API TUBING LIST (API Specification 5CT, 5th edition, April 1, 1995)

ide	Weig	ght desigi	nation		nickness			Туре	of end	finish*		
ninal outs diameter (in)	, Ê						,		Grade			
Nominal outside diameter (in)	Non- upset (N) (Ib/ft)	External upset (U) (lb/ft)	Integral joint (I) (Ib/ft)	(in)	(mm)	H40	J55	L80	N80	C90	T95	P110
1.050 1.050	1.14 1.48	1.20 1.54		0.113 0.154	2.87 3.91	PNU PU	PNU PU	PNU PU	PNU PU	PNU PU	PNU PU	PU
1.315 1.315	1.70 2.19	1.80 2.24	1.72	0.133 0.179	3.38 4.55	PNUI PU	PNUI PU	PNUI PU	PNUI PU	PNUI PU	PNUI PU	PU
1.660 1.660 1.660	2.30 3.03	2.40 3.07	2.10 2.33	0.125 0.140 0.191	3.18 3.56 4.85	PI PNUI PU	PI PNUI PU	PNUI PU	PNUI PU	PNUI PU	PNUI PU	PU
1.900 1.900 1.900 1.900 1.900	2.75 3.65 4.42 5.15	2.90 3.73	2.40 2.76	0.125 0.145 0.200 0.250 0.300	3.18 3.68 5.08 6.35 7.62	PI PNUI PU	PI PNUI PU	PNUI PU P P	PNUI PU	PNUI PU P P	PNUI PU P P	PU
2.063 2.063	4.50		3.25	0.156 0.225	3.96 5.72	PI P	PI P	PI P	PI P	Pi P	PI P	P
2.375 2.375 2.375 2.375 2.375 2.375	4.00 4.60 5.80 6.60 7.35	4.70 5.95 7.45		0.167 0.190 0.254 0.295 0.336	4.24 4.83 6.45 7.49 8.53	PN PNU	PN PNU	PN PNU PNU P PU	PN PNU PNU	PN PNU PNU P PU	PN PNU PNU P PU	PNU PNU
2.875 2.875 2.875 2.875 2.875 2.875 2.875	6.40 7.80 8.60 9.35 10.50 11.50	6.50 7.90 8.70 9.45		0.217 0.276 0.308 0.340 0.392 0.440	5.51 7.01 7.82 8.64 9.96 11.18	PNU	PNU	PNU PNU PNU PU P P	PNU PNU PNU	PNU PNU PNU PU P P	PNU PNU PNU PU P P	PNU PNU PNU
3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500	7.70 9.20 10.20 12.70 14.30 15.50 17.00	9.30 12.95		0.216 0.254 0.289 0.375 0.430 0.476 0.530	5.49 6.45 7.34 9.53 10.92 12.09 13.46	PN PNU PN	PN PNU PN	PN PNU PN PNU P P P	PN PNU PN PNU	PN PNU PN PNU P P P P	PN PNU PN PNU P P P P	PNU PNU
4.000 4.000 4.000 4.000 4.000 4.000	9.50 13.20 16.10 18.90 22.20	11.00		0.226 0.262 0.330 0.415 0.500 0.610	5.74 6.65 8.38 10.54 12.70 15.49	PN PU	PN PU	PN PU P P P	PN PU	PN PU P P P P	PN PU P P P P	
4.500 4.500 4.500 4.500 4.500 4.500 4.500	12.60 15.20 17.00 18.90 21.50 23.70 26.10	12.75		0.271 0.337 0.380 0.430 0.500 0.560 0.630	6.88 8.56 9.65 10.92 12.70 14.22 16.00	PNU	PNU	PNU P P P P P	PNU	PNU P P P P P	PNU P P P P P	

* P = plain end; N = non-upset T & C; U = external upset T & C; I = integral joint.

DRIFT DIAMETER (API Standard 5CT, 5th edition, April 1, 1995)

All drift testing shall be performed with a drift mandrel containing a cylindrical portion conforming to the requirements shown below. The ends of the drift mandrel extending beyond the specified cylindrical portion shall be shaped to permit easy entry in the pipe. The drift mandrel shall pass freely through pipe by the use of a manual or power drift procedure. In case of dispute, the manual drift procedure shall be used.

Casing diameter	Mandr	el length	Mandrel	diameter
(in)	(in)	(mm)	(in)	(mm)
8 5/8 or less 9 5/8 to 13 3/8 16 or more	6 12 12	152 305 305	d - 1/8 d - 5/32 d - 3/16	d - 3.18 d - 3.97 d - 4.76

Tubing diameter	Mandre	el length	Mandrel	diameter
(in)	(in)	(mm)	(in)	(mm)
2 7/8 or less 3 1/2 or more	42 42	1067 1067	d - 3/32 d - 1/8	d – 2.38 d – 3.18

Example: 7 in (177.8 mm) casing 26.00 lb/ft, wall thickness t = 9.2 mm:

 $d = 177.8 - 2 \times 9.2 = 159.4 \text{ mm}$

いたい はんごう たいやい おおびにおんで (あたいため) にっこう たいかい おんやいた おたい かん たいにあたいがた いがい

Mandrel diameter:

d - 3.18 = 159.4 - 3.18 = 156.22 mm

EFFICIENCY OF A CONNECTION

In this section, the efficiency is the ratio of the critical cross-section of the connection (pin or box end) to the steel cross-section of the pipe body (line 5). It is expressed as a percentage.

The efficiency also represents the ratio of the tension at the yield strength of the connection to the tension at the yield strength of the pipe body (line 11), unless the coupling is of a different grade from the pipe body.

Since the API 5C3 formulas for calculating the strength of API round and buttress joints employ considerations of pull-out and only account for the minimum tensile strength, it is not possible to apply the concept of efficiency to these connections for casings. For API tubings since the strength is calculated at the yield stress, the concept of efficiency can be applied.

An efficiency under 100 means that the connection is weaker than the pipe body.

The efficiency hence serves to calculate three parameters:

a) **The critical cross-section of the joint:** the value in line 5 is multiplied by the efficiency. *Example:*

Hydril 511 7 in 29 lb/ft, line 20, efficiency: 60.6

Critical cross-section of Hydril 511:

5451 mm² × 0.606 = 3303 mm² 8.45 in² × 0.606 = 5.121 in²

b) The tension at yield stress of the joint: the value in line 11 is multiplied by the efficiency.

Example:

Hydril 511 7 in 29 lb/ft, tension at the yield stress for N80:

 $301 \times 0.606 = 182 \ 10^3 \ daN$

c) **The minimum tensile strength of the joint:** the critical cross-section of the joint is multiplied by the minimum tensile strength (100 000 psi for N80). *Example:*

5.121 in² × 100 000 = 512 10³ lb = 228 10³ daN

Or the value in line 11 is multiplied by the efficiency and by the ratio of the minimum tensile strength to the yield strength:

 $301 \times 0.606 \times \frac{100\ 000}{80\ 000} = 228\ 10^3\ daN$

MAKE-UP TORQUE

The make-up torques in the tables C 9-C 15, C 16-C 34, C 35-C 79 correspond to the values and recommendations below:

Buttress

In sizes 4 1/2" through 13 3/8", make-up torque values should be determined by carefully noting the torque required to make up each of several connections to the base of the triangle; then using the torque value thus established, make up the balance of the pipe of that particular weight and grade in the string.

For buttress thread sizes 16", 18 5/8" and 20", see API STC or LTC.

API STC or LTC

In sizes 4 1/2" through 13 3/8", values listed are optimum values. The minimum torque should be not below 75 percent of the optimum value. The maximum torque should be not over 125 percent of the optimum value.

In sizes 16", 18 5/8" and 20", values listed are minimum values. Make-up shall be to a position on each connection represented by the thread vanish point on 8-round thread and the base of triangle on buttress thread using the minimum torque.

Grant Prideco

Make-up torque values listed are optimum values. Minimum value is generally 5 to 10 percent below optimum value and maximum value is generally 5 to 10 percent over optimum value.

Hydril

Make-up torque values listed are optimum values for SLX, 511, 533, CS, PH-4, PH-6.

For 563, the torque is a minimum make-up torque and applies to all grades of steel.

For 521, values listed are minimum make-up torque. A field target torque 15 percent over minimum is recommended.

For MAC-II, values listed are minimum make-up torque. A field target torque 10 percent over minimum is recommended.

Vallourec & Mannesmann

Make-up torque values listed are optimum values. Minimum value is 10 percent below optimum value and maximum value is 10 percent over optimum value. GEOMETRICAL CHARACTERISTICS AND MECHANICAL PROPERTIES OF SMALL-DIAMETER TUBING

 $MPa \times 145 = psi$ daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

1.70/1.80 lb/ft 2.48/2.63 0.133 in 0.133 in $2.48/2.63$ 0.0494 in 0.033 in 3.4 m 0.071 gal/ft 0.494 in^2 3.4 m 0.071 gal/ft 0.035 gal/ft 0.661 0.071 gal/ft 0.071 gal/ft 0.661 0.071 gal/ft 0.071 gal/ft 0.881 0.071 gal/ft 0.76 0.881 0.071 gal/ft 0.76 0.881 0.071 gal/ft 0.031 0.031 155 100.3 100.3 112.8 110.1 17.6 17.8 119.2 66.1 97.6 97.6 109.8 115.1 12.1 17.6 17.6 109.8 115.1 12.1 17.6 17.6 109.8 116.61 12.1 17.6 17.6 100.0 110.0 12.1 17.6 17.6 100.0 110.0 37 51 100.0 100.0			-	33.4 mm	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3 daN/m	2.19/2.24 lb/ft		3.20/3.27 daN/m	E
J55 L80 N80 C90 T9 ure (MPa) 68.9 100.3 100.3 112.8 119. angth (1000 daN) 12.1 17.6 17.6 19.8 20. angth (1000 daN) 12.1 17.6 17.6 19.8 20. B 67.1 97.6 97.6 100.3 112.8 115. B 67.1 97.6 17.6 19.8 20. B 100.0 100.0 8 100.0 8 J55 LN80 C90 100.0 100.0 Smann mini VAM J55 LN80 C90 00 J55 LN80 C90 C95 P110 J55 LN80 C90 C95 P110 J55 LN80 C90 C95 P110 J54 105 113 48.3 54 61 61 61 39.4	mm mm ² mm ² m/m	0.179 in 0.957 in 0.639 in ² 0.037 gal/ft 0.071 gal/ft		4.5 mm 24.3 mm 412 mm ² 0.46 l/m 0.88 l/m	
e (MPa) e (MPa) e (MPa) e (MPa) e (MPa) e (7.1 97.6 97.6 109.8 115. 12.1 17.6 19.8 20. 12.1 17.6 19.8 20. 100.0 8 8 100.0 1	95 P110	J55 L80	N80 C90) T95	P110
8 100.0 80.8 80.8 100.0 1	9.1 137.9 5.9 134.2 0.9 24.2	89.2 129.7 90.3 131.4 15.6 22.7	129.7 145.9 131.4 147.8 22.7 25.6	9 154.0 8 156.0 6 27.0	178.4 180.7 31 . 3
Make-up torque Make-up torque J55 LN80 C95 P110 J55 LN80 C90 C95 P110 (mm) 37 51 54 72 79 48.3 39.4 61 61 61 61 61 39.4			100.0 100.0 100.0		
J55 LN80 C90 C95 P110 (mm) 37 51 54 222 42.2 77 105 113 48.3 54 72 79 48.3 46 61 61 39.4 47 61 61 61 39.4	ID API	Make-up torque (daN.m)	enb	 0	Drift
37 51 54 42.2 77 105 113 48.3 54 72 79 39.4 46 61 61 61 47 61 61 61		J55 LN80 C90	C95 P110	-	
Vallourec & Mannesmann mini VAM 30 40 39.5	24.3 24.3 24.3 24.3 24.3 24.3 24.3 24.3	46 61 47 61 61	61 61 61	40.6 40.6 41.0 41.0	21.9 21.9 21.9

•

计计算机 化量子 计字符 化合合合合合

1. 1. Mar. 1.

.

C 10

	 Nominal size (OD) Nominal weight 		1.660 in 2.10 lb/ft	E ŧ			42.2 mm 3 06 deN/m	E E			1.660 in					42.2 mm
							0.00 48				04.2/06.2			ກໍ	ģ	2.5U 08
Pipe body	 3 Wall thickness 4 Inside diameter 5 Steel cross-section 6 Capacity 7 Displacement 		0.125 in 1.410 in 0.603 in ² 0.081 gal/ft 0.112 gal/ft	in al/ft al/ft			3.2 mm 35.8 mm 389 mm ² 1.01 l/m 1.40 l/m	ЕЁ [°] ЕЕЕ			0.140 in 1.380 in 0.669 in ² 0.078 gal/ft 0.112 gal/ft	╴╴┍╴╫╫			3.6 mm 35.1 mm 431 mm ² 0.96 l/m 1.40 l/m	3.6 mm 35.1 mm 431 mm ² 0.96 l/m 1.40 l/m
	8 Grade	J55	L80		NBO	C90	195		P110	J55	L80	N80	0	C90	T95	10
	 9 Collapse resistance (MPa) 10 Internal yield pressure (MPa) 11 Pipe body yield strength (1000 daN) 	52.8 50.0 14.7	76.8 72.7 21.5		76.8 72.7 21.5	85.1 81.8 24.1	88.9 86.3 25.5		99.9 99.9 29.5	58.6 56.0 16.4	85.2 81.4 23.8	85.2 81.4 23.8		95.8 91.6 26.8	101.2 96.7 28.3	NDM
Connection efficiency	 API Non-Upset API External Upset API Integral Joint Grant Prideco RTS-8 Hydril CS Vallourec & Mannesmann mini VAM 				92.0								58.1 100.0 82.9 100.0 100.0 100.0			
soite			Make (d	Make-up torque (daN.m)	e			Ō	Drift API		Make-u (dai	Make-up torque (daN.m)		`	B	₽
sinetceris		J55	LN80	C30	C95	P110			(uuu)	J55	LNB0 C	C30	C95 P.	P110		E .
	 18 API Non-Upset 19 API External Upset 20 API Integral Joint 21 Grant Prideco RTS-8 22 Hydril CS 23 Vallourec & Mannesmann mini VAM 	8 9					47.8		33.4	47 94 61 61 50	65 65 93 93 95 70 70	69 99 95 95	6	92 95 4 4 4 4 4 4 4 5 5 5	52.2 55.9 47.8 47.8 47.8 47.8	33.0 33.3

MPa x 145 = psi daN x 2.25 = lb daN.m x 7.38 = lb.ft mm x 0.0394 = in

61 92 LNB	resistance (MPa) 77.2 F6.4 76.4 75.4 75.4 75.4 75.4 75.4 7.2 76.4 7.2 76.4 7.2 76.4 7 70 8 8 Mannesmann mini VAM & Mannesmann mini VAM & Mannesmann mini VAM & D55 1.NE 155 1.
J55 61 61 95 61 95 61 95 61 61 61 61 61 61 61 61 61 61 61 62 61 62 62 63 63 63 64 64 64 64 64 64 64 64 64 64 64 64 64	ssure (MPa) 76.4 trength (1000 daN) 21.6 S-8 S-8 S-8 semann mini VAM iesmann m
15 1 2	API Non-Upset API External Upset API Integral Joint Grant Prideco RTS-8 Hydril CS Vallourec & Mannesmann r API Non-Upset API Integral Joint Grant Prideco RTS-8 Hydril CS Vallourec & Mannesmann n Second N × 2 25 - 1h

	3 Wall thickness		8 Grade	 9 Collapse resistance (MPa) 10 Internal yield pressure (MPa) 11 Pipe body yield strength (1000 daN) 	 12 API Non-Upset 13 API External Upset 14 API Integral Joint 15 Grant Prideco RTS-8 16 Hydril CS 17 Vallourec & Mannesmann mini VAM 			 API Non-Upset API External Upset API Integral Joint Grant Prideco RTS-8 	
				daN)	VAM		<u>-</u>		MA/
			J55	53.5 50.6 19.6			J55	56 119 79 02	95 60
2.75/2.90 lb/ft	0.145 in	0.147 gal/ft 0.799 in ² 0.106 gal/ft 0.147 gal/ft	L80	77.8 73.7 28.4		Make (d	LN80	77 163 108	
0 lb/ft	.9	5 in 0 in 9 in ² gal/ft gal/ft	N80			Make-up torque (daN.m)	C90	83 176 117	122
				77.8 73.7 28.4	59.7 100.0 84.1 100.0 100.0	Φ	C95		122
4			C90	87.0 82.9 32.0	V 0 1 0 0 0		P110		122
4.01/4.23 daN/m	37 mm	3.7 mm 40.9 mm 516 mm ² 1.31 l/m 1.83 l/m	T95	90.9 87.5 33.8				55.9 63.5 53.3	53.7 53.7 54.4
aN/m		c 6 °- c c	P110	102.3 101.3 39.1		Drift API		38.5 38.5 38.5	38.5
) J55	71.4 69.9 26.1			1) J55		
3.65/2		0.2 1.5 0.09 0.147				Ma	LN80		122
3. 73 lb/ft		.00 in .00 in 38 in ² 2 gal/ft 7 gal/ft	80			ke-up torg (daN.m)	060		122
			N80	103.9 101.6 38.0	100.	ent	C95	-	122
			C90	116.9 114.3 42.8	0 0 0		P110	-	122 122
5.33/5.44 d		5.1 mr 38.1 ml 689 mn 1.14 l/n 1.83 l/n	195	123.4 120.7 45.1					54.9 36 54.9 36
aN/m		c E ^c -c-c	1d				_		36.6 35.7 36.6 35.7
	3.65/3.73 lb/ft 5.33/5.44 daN/m	3.65/3.73 lb/ft 5.33/5.44 daN/m		5.33/5.44 daN/m 5.1 mm 38.1 mm 689 mm ² 1.14 l/m 1.83 l/m N80 C30 T95	N80 C90 103.9 116.9 101.6 114.3 38.0 42.8	5.33/5.44 daN/m 5.1 mm 5.1 mm 38.1 mm 38.1 mm 689 mm ² 1.14 1/m 1.83 1/m 1.83 1/m 1.83 1/m 1.83 1/m 1.83 1/m 1.33.9 101.6 114.3 101.6 114.3 101.6 114.3 100.0 100.0 100.0 100.0	5.33/5.44 daN/m 5.1 mm 38.1 mm 38.1 mm 38.1 mm 38.1 mm 38.1 mm 38.1 mm 1.14 l/m 1.14 l/m 1.13 l/m 38.0 101.6 114.3 101.6 114.3 101.6 114.3 101.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	3.73 lb/ft 5.33/5.44 daN/m 200 in 5.1 mm 200 in 5.1 mm 500 in 5.1 mm 58 in ² 689 mm ² 92 gal/ft 1.14 l/m 47 gal/ft 1.83 l/m 47 gal/ft 1.83 l/m 200 in 38.0 23.9 103.9 1.14 l/m 1.83 l/m 23.9 103.9 1.14.1 1.83 l/m 1.14.2 123.4 01.6 101.6 114.3 120.7 38.0 38.0 38.0 42.8 45.1 38.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	3.73 lb/ft 5.33/5.44 daN/m 200 in 5.1 mm 200 in 5.1 mm 500 in 500 in 500 in 51 mm 52 gal/ft 1.14 l/m 1.14 l/m 1.83 l/m 1.14 l/m 1.83 l/m 03.9 103.9 116.9 1.14.13 120.7 01.6 101.6 01.6 101.6 114.3 120.7 01.6 101.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 10.0

MPa × 145 = psi daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

C 13

, t

1.900 in 48.3 mm 48.3 mm	4.42 lb/ft 6.45 daN/m 5.15 lb/ft 7.52 daN/m	0.250 in 6.3 mm 0.300 in 7.6 mm 1.400 in 35.6 mm 1.300 in 33.0 mm 1.296 in ² 836 mm ² 1.508 in ² 973 mm ² 0.080 gal/ft 0.091/m 0.068 gal/ft 0.86 l/m 0.147 gal/ft 1.83 l/m 0.147 gal/ft 1.83 l/m	J55 L80 N80 C90 T95 P110 J55 L80 N80 C90 T95 P110	86.7 126.1 141.8 149.7 173.3 100.8 146.7 165.0 174.2 201.7 87.3 127.0 127.0 142.9 150.8 174.6 104.8 152.4 152.4 171.5 181.0 209.6 31.7 46.1 46.1 51.9 54.8 63.4 36.9 53.7 53.7 60.4 63.7 73.8		Make-up torque (daN.m) OD ID Drift Make-up torque (daN.m) OD ID API	(mm) (mm) J55 LN80 C90 C95 P110 (mm)	
1.900 in	4.42 lb/ft	0.250 in 1.400 in 1.296 in ² 0.080 gal/ft 0.147 gal/ft				Make-up (daN.	LN80	
Nominal size (OD)	Nominal weight	Wall thickness Inside diameter Steel cross-section Capacity Displacement	Grade	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	API Non-Upset API External Upset API Integral Joint Grant Prideco RTS-8 Hydril CS Vallourec & Mannesmann mini VAM			API Non-Upset API External Upset API Integral Joint Grant Prideco RTS-8 Hydril CS Vallourec & Mannesmann mini VAM
-	2	0 4 10 0 M	80	9 11	efficiency 5 5 5 5 5 7			19 20 23 23 23
		Pipe body			Connection	lics	icinetoe	sterion changes and the second s

	Nominal size (OD) Nominal weight		2.063 in 3.25 lb/ft	3 in lb/ft			52.4 mm 4.74 daN/m	mm aN/m			2.063 in 4.50 lb/ft	8 in b/ft			52.4 mm 6.57 daN/m	E N	
Wall thickness Inside diameter Steel cross-section Capacity Displacement	ness neter s-section ent		0.156 in 1.751 in 0.935 in ² 0.125 gal/ft 0.174 gal/ft	6 in 1 in 5 in ² gal/ft gal/ft			4.0 mm 44.5 mm 603 mm ² 1.55 l/m 2.16 l/m	н т т т т т т т т т т т т т т т т т т т			0.225 in 1.613 in 1.299 in ² 0.106 gal/ft 0.174 gal/ft	5 in 8 in in ² gal/ft			5.7 mm 41.0 mm 838 mm ² 1.32 l/m 2.16 l/m	E E E E E	
Grade		J55	L80	0	N80	C90	T95		P110	J55	L80		N80	C90	T95		P110
Collapse nternal ⁻ ³ ipe boo	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	53.0 50.2 22.9	77.1 73.0 33.3	1 0 6	77.1 73.0 33.3	85.7 82.1 37.4	89.5 86.7 39.5	ri L L L	100.6 100.4 45.7	73.7 72.4 31.8	107.2 105.3 46.2		107.2 105.3 46.2	120.6 118.4 52.0	127.3 125.0 54.9		147.4 114.8 63.6
API Non-Upset API External Ur API Integral Joi Grant Prideco F Hydril CS Vallourec & Ma	API Non-Upset API External Upset API Integral Joint Grant Prideco RTS-8 Hydril CS Vallourec & Mannesmann mini VAM				95.3 100.0 100.0	95.3 100.0 100.0							100.0 100.0 100.0	000			
			Mał	Make-up torque (daN.m)	ent		a	₽	Drift API		Ţ. Mak	Make-up torque (daN.m)	e و		B	₽	Drift API
		J55	LN80	C90	C95	P110			(mm)	J55	LN80	C90	C95	P110		(ພພ	(mm)
API Non-I API Exter API Integi Grant Pric Hydril CS Vallourec	API Non-Upset API External Upset API Integral Joint Grant Prideco RTS-8 Hydril CS Vallourec & Mannesmann mini VAM	100 107 108 70	138 137 142 90	149	142	137 142	59.1 59.2 59.2 59.2	43.2 43.2	42.1 42.1 42.1 42.1	107 108	137 142	142	142	137 142	62.5 61.8 61.8	39.4 3.9	38.6 38.6 38.6

MPa × 145 = psi daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

PROPERTIES OF TUBING	
S AND MECHANICAL F	
GEOMETRICAL CHARACTERISTICS	

			P110	111.2 106.2 63.8	į		Drift	(mm)	48.3 48.3 48.3	48.3	40.0 48.0	48.3 48.3 48.3	48.3 48.3										
60.3 mm	6 daN/m	mm mm ² mm ² m/m	T95				□	(mm)	49.4	48.8	49.4	49.7	49.1										
60.3	6.71/6.86 daN/m	4.8 mm 50.7 mm 841 mm ² 2.02 l/m 2.86 l/m	T9	96.4 91.7 55.1			0	(mm)	73.0 77.8 68.6	60.3	6.70 68.6	73.0 68.8 68.5	67.5 60.3										
			060	91.3 86.9 52.2	68.9 100.0 100.0 100.0 100.0	100.0 106.8 108.9 100.0 44.9		P110	174 308 229	8	230	275 157	94										
			N80	81.2 77.2 46.4	000400	00004	(daN.m)	C95		81	230	245 146	88										
2.375 in	4.60/4.70 lb/ft	0.190 in 1.995 in 1.304 in ² 0.162 gal/ft 0.230 gal/ft	L80	81.2 77.2 46.4			Make-up torque (daN.m)	060	146 260	81	230	245 146	88										
2.3	4.60/4	0.1 1.3(0.16) 0.23(Make-u	LN80	136 241 229	8	230	216 137	79										
			J55	55.8 53.1 31.9				J55	99 175 168	89	169	157 127											
			P110	87.8 93.3 56.7			Drift	(um)	49.5		-												
30.3 mm	5.84 daN/m	4.2 mm 51.8 mm 747 mm ² 2.11 l/m 2.86 l/m	T95	78.7 80.6 49.0				(uu)															
60.3	5.84 (÷.				G	(uu)	73.0														
			C90	75.4 76.4 46.4	65.0			P110															
					167 in 041 in 158 in ² 70 gal/ft 30 gal/ft	N80	68.8 67.9 41.2	ö		(daN.m)	C95												
2.375 in	4 lb/ft					167 in 041 in 58 in ² 0 gal/ft 0 gal/ft	167 in 041 in 158 in ² 70 gal/ft 30 gal/ft	167 in 041 in 158 in ² 70 gal/ft 30 gal/ft	.167 in .041 in 158 in ² 70 gal/ft 30 gal/ft	.167 in 041 in 158 in ² 70 gal/ft 30 gal/ft	0.167 in 2.041 in 1.158 in ² 0.170 gal/ft 0.230 gal/ft	167 in 041 in 158 in ² 70 gal/ft 30 gal/ft	167 in 041 in 58 in ² 70 gal/ft 80 gal/ft	67 in 141 in 58 in ² 0 gal/ft 0 gal/ft	67 in 41 in 58 in ² 0 gal/ft 0 gal/ft	67 in 141 in 58 in ² 0 gal/ft 0 gal/ft	041 in 58 in ² 0 gal/ft 0 gal/ft -80	68.8 67.9 41.2			Make-up torque (daN.m)	C90	123
2.3	4	0.1 2.0 1.1 0.17(0.23(Make-u	LN80	114														
			J55	49.6 46.7 28.3				J55	83														
Nominal size (OD)	Nominal weight	Wall thickness Inside diameter Steel cross-section Capacity Displacement	Grade	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	API Non-Upset API External Upset Grant Prideco CSTCP Grant Prideco STL Grant Prideco TCII Hydril CS Hydril CS				API Non-Upset API External Upset Grant Prideco CSTCP				Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann FJL										
1	2	м400r	8	9 11 11	ciency 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5						3 8 8		35 35										
		Pipe body			nection			so	racteristi	ецэ і	-ction	enno.											

		Pipe body			ection iency		·	soite	haracteris	c tion c	- <u>-</u> - əuuoʻj	
-	8	м460 г	œ	9 11 9	2644646	23 53 59 1 8 23 57 59 1 8			25 25 26 25	7 78 78	32 33	35 35
Nominal size (OD)	Nominal weight	Wall thickness Inside diameter Steel cross-section Capacity Displacement	Grade	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	API Non-Upset API External Upset Grant Prideco CSTCP Grant Prideco STL Grant Prideco TCII Hydril CS	Hydril PH4-PH6 Vallourec & Mannesmann TDS Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann FJL Vallourec & Mannesmann FJL			API Non-Upset API External Upset Grant Prideco CSTCP Grant Prideco STI	Grant Prideco TCII Hydril CS	Hydril PH4-PH6 Vallourec & Mannesmann TDS Vallourec & Mannesmann New VAM	valiourec & Manifestriann VAM AUE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann Fill
			J55	63.2 60.9 36.1				J55	168	169	157	121
2.375 in	5.10 lb/ft	0.218 in 1.939 in 1.477 in ² 0.153 gal/ft 0.230 gal/ft	L80	2 92.0 9 88.6 52.6			Make-up torgu	LN80	229	530	216	
.c.	o/ft		8 in 9 in 7 in ² gal/ft gal/ft						C90		230	255
			N80	92.0 88.6 52.6	100.0 100.0	100.0 102.8 119.3 119.0 51.4	e (daN.m)	C95		230	255	146
			C30		0 00	08604		P110	229	230		
60.3 mm	7.44 daN/m	5.5 mm 49.3 mm 953 mm ² 1.91 l/m 2.86 l/m	T95	109.2 105.2 62.4			g	(mm)		69.0 69.8	73.0 69.5	70.5 68.5
шu	M/m							(um)	48.0	48.0		ŗ
			P110	126.5 121.8 72.3			Drift	(um)	46.9	46.9 46.9	46.9 46.9	46.9 46.9
			J55	72.4 71.0 41.4				J55 1		95		157
2.375 in	5.80/5.90 lb/ft	0.254 in 1.867 in 1.692 in ² 0.142 gal/ft 0.230 gal/ft	L80	105.4 103.2 60.2			Vlake-up to	LN80 C		290		176
- -	lb/ft		N80	105.4 103.2 60.2			Make-up torque (daN.m)	C90 C95		122 122 290 290		186 186
			Ceo	118.5 116.1 67.8	76.1 100.0 53.4 100.0	100.0 100.0 102.4 100.0 55.3	яĵ	5 P110	<u> </u>	2 122		206
909	8.46/8	2 4 0 2 - 105 2 - 2					G		73.0 77.8 73.8	60.3 70.3	73.8 73.0 70.7	70.5 69.8
60.3 mm	8.46/8.68 daN/m	6.5 mm 47.4 mm 1092 mm ² 1.77 l/m 2.86 l/m	T95	125.1 122.6 71.5				(mm)	4 5.8	45.4 47.1	45.8 46.5	
			P110	144.9 141.9 82.8			Drift	API (mm)	45.0 45.0 45.0	45.0 45.0	45.0 45.0	45.0 45.0

MPa × 145 = psi daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

C 17

e en ser en ser de la ser en ser de la se

$\widehat{\mathbf{T}}$
ĕ
Ŋ
contin
Ē
<u> </u>
$\underline{0}$
U
ž
BING
Щ.
2
S.
Щ
ERTIES OF TUI
PROPEI
ō
Ř
ā
A
U
NIC
4
¥
古
Ш
5
Z
4
S
Ü
Ē
ACTERISTICS
Ä
ш
F
Ö
4
A R
CH
0
Ļ
Ä
2
Ĩ
GEOMETRICAL (
Σ
0
Щ
9

		Pipe body				connectio Sonnectio			soi	teinetaeteriat	onnectio											
Ž F	Ž R	₩4 ₽ 00 ₽	ق 8	11 10 11 10 11 10	12 Al 13 Al 15 Gi Al		23 23			58,2,2,2,4,4 58,2,3,4,4 58,2,3,4,4 58,2,3,4,4 59,4,4 50,4,4 50,4,4,4 50,4,4,4 50,4,4,4 50,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4	• • • • • •	32 Va 33 Va 34 Va										
Nominal size (OD)	Nominal weight	Wall thickness Inside diameter Steel cross-section Capacity Displacement	Grade	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	API Non-Upset API External Upset Grant Prideco CSTCP Grant Prideco STL Grant Prideco TCII	Hydrii PH4-PH6 Vallourec & Mannesmann TDS	Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann FJL			API Non-Upset API External Upset Grant Prideco CSTCP Grant Prideco STL Grant Prideco TCI	Hydrii CS Hydrii PH4-PH6 Vallourec & Mannesmann TDS	Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PBO	Vallourec & Mannesmann FJL									
			J55	82.5 82.4 47.2					J55													
2.375 in	6.60 lb/ft	0.295 in 1.785 in 1.928 in ² 0.130 gal/ft 0.230 gal/ft	0.295 in 1.785 in 1.928 in ² 0.130 gal/ft 0.230 gal/ft	0.295 in 1.785 in 1.928 in ² 0.130 gal/ft 0.230 gal/ft	0.295 in 1.785 in 1.928 in ² 0.130 gal/ft 0.230 gal/ft	0.295 in 1.785 in 1.928 in ² 0.130 gal/ft 0.230 gal/ft	0.295 in 1.785 in 1.928 in ² 0.130 gal/ft 0.230 gal/ft	0.295 in 1.785 in 1.928 in ² 0.130 gal/ft 0.230 gal/ft	0.295 in 1.785 in 1.928 in ² 0.130 gal/ft 0.230 gal/ft	0.295 in 1.785 in 1.928 in ² 0.130 gal/ft 0.230 gal/ft	0.295 in 1.785 in 1.928 in ² 0.130 gal/ft 0.230 gal/ft	L80	120.0 119.9 68.6				Make-up torque (daN.m)					
.c.	/ft																orque (d	060		366		
					N80	120.0 119.9 68.6		100.0	102.0 100.0	aN.m)	C95		380									
			C90	135.0 134.9 77.2		<u>o</u>	0.0		P110		414											
60.3 mm	9.63 daN/m	7.5 mm 45.3 mm 1244 mm ² 1.61 l/m 2.86 l/m	T95	142.5 142.4 81.5				a	(mm)		77.0	71.7 20.5	0.07									
шш	N/m	an m (/m // m/							(mm)		43.8											
			P110	165.0 164.9 94.3				Drift	L (uuu)		43.0	43.0	0.0 1									
			J55	92.1 93.9 52.7					J55	<u> </u>		245										
2.375 in	7.35/7.45 lb/ft	0.336 in 1.703 in 2.152 in ² 0.118 gal/ft 0.230 gal/ft	0.336 in 1.703 in 2.152 in 0.118 gal/ 0.230 gal/	0.336 i 1.703 i 2.152 ir 0.118 ga 0.230 ga	L80	134.0 136.6 76.6				Make-up torque (daN.m)	LNB0 C		339	294 3	118 1							
_	b/ft	Transformed and the second sec	N80	134.0 136.6 76.6				rque (daN.	C90 C95		366 380	304 304	127 127									
			060) 150.7 5 153.6 86.2	100.0	100.0	102.0 100.0 55.0	Ê	5 P110	414	0 414	4 324	7 137									
60.	10.73/10	138.5 1.4 2.5 2.5		}				8		79.4	79.4	73.0	60.3									
60.3 mm	10.73/10.87 daN/m	8.5 mm 43.3 mm 1389 mm ² 1.47 l/m 2.86 l/m	T95	159.1 162.2 91.0					(mm)	41.8	41.8		42.0									
	E		P110	184.2 187.8 105.3		ļ		Drift	(mm)	40.9	40.9	40.9	40.9 40.9									

		Pipe body			Connection efficiency		soi	teinetcenerte noit	connec						
-	8	で 4 ら の て	80	e 5 E	22222222222222222222222222222222222222			25 26 28 28 28 29 29	33 33 34	35					
Nominal size (OD)	Nominal weight	Wall thickness Inside diameter Steel cross-section Capacity Displacement	Grade	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	API Non-Upset API External Upset Grant Prideco CSTCP Grant Prideco STL Grant Prideco STL Grant Prideco TCII Hydril PH4-PH6 Vallourec & Mannesmann NAM ACE Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann FJL	API Non-Upset API External Upset Grant Prideco CSTCP Grant Prideco STL Grant Prideco TCII Hydril PH4-PH6 Vallourec & Mannesmann TDS Vallourec & Mannesmann New VAM Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE									
			J55	52.9 50.1 44.3			J55	142 224 229 95 230	236 197						
2.875 in	6.40/6.50 lb/	0.217 in 2.441 in 1.812 in ² 0.243 gal/ft 0.337 gal/ft	0.217 in 2.441 in 1.812 in ² 0.243 gal/ft 0.337 gal/ft	L80	77.0 72.9 64.5		Make-up torqu	LN80	197 308 320 351 351 319	324 245	118				
. <u> </u>	0 lb/ft			7 in 1 in 3al/ft gal/ft	17 in 11 in 2 in ² gal/ft gal/ft	7 in 1 in 2 in ² gal/ft gal/ft	7 in 1 in 2 in ² gal/ft gal/ft	7 in 1 in 2 in ² gal/ft gal/ft	7 in 1 in 2 in ² gal/ft gal/ft					C90	213 334 122 351 319
-						NBO	77.0 72.9 64.5	72.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	ie (daN.m)	C95	351 319	382 264	127		
			C90	85.4 82.0 72.5	800000 00400		P110	251 395 320 122 351 351	431 294	133					
73.0 mm	9.34/9.49 daN/m 5.5 mm 62.0 mm 1169 mm ² 3.02 l/m	5.5 r 62.0 1169 3.02 4.19	T95	89.2 86.5 76.6		QO	(mm)	88.9 93.2 81.5 73.0 81.6 81.6	88.9 82.0 82.0	81.0 73.0					
mm		5 mm 5 mm 2 l/m 9 l/m	5 mm 9 mm ² 9 l/m	6 mm 9 mm ² 9 //m 9 //m	0 mm 0 mm 2 l/m 9 l/m	mm mm 2 l/m 2 l/m	5			۵	(um)	60.2 85.8 61.7 60.2	61.0	60.5	
			P110	100.3 100.2 88.7		Drift An	(mm)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 6 2 2 2 6 2	59.6 59.6					
			J55	65.8 63.7 55.1			J55	122	255 245						
2.875 in	7.80/7.90 lb/ft	0.276 2.323 2.254 0.220 g 0.337 g	0.276 2.323 2.254 0.220 g 0.337 g	0.276 in 2.323 in 2.254 in ² 0.220 gal/ft 0.337 gal/ft	0.276 2.323 2.254 0.220 g 0.337 g	0.276 2.323 2.254 0.220 <u>c</u> 0.337 <u>c</u>	0.27(2.32: 2.254 0.220 (0.337 (L80	95.7 92.7 80.2		Make-up	LN80	262 371 461 163 351	461 343 275	137
5 in	30 lb/ft	3 in 3 in gal/ft gal/ft	0			Make-up torque (daN.m)	060	283 403 163 351	488 392 304	157					
			NBO	95.7 92.7 80.2	78.1 100.0 55.2 100.0 100.0 100.0 100.0 100.0 52.0 52.0	laN.m)	C95	163 351	502 392 304	157					
			C90	107.7 104.2 90.2			P110	335 335 475 536 163 351	536 451 334	176					
73.0 mm	11.38/11.53 daN/m	7.0 mm 59.0 mm 1454 mm ² 2.73 l/m 4.19 l/m	T95	113.7 110.0 95.2		8	~	88.9 93.2 87.3 83.7 83.7	87.3 88.9 84.5 84.5	83.3 73.0					
ш	3 daN/m						(uuu)	57.5 57.1 58.7	57.5 58.0	57.8					
	ļ		P110	131.6 127.4 110.3		Drift	API (mm)	56.6 56.6 56.6 56.6	56.6 56.6 56.6	56.6 56.6					

,
ued
continued
Ū
BIN
- PROPERTIES OF TUBING
Н
S S
ШL
E
ЮР О
ЪН
ÄL
NICAL
HA
ECH/
Σ
ND
S A
Ë
IISI
TEH
AR
H
H
ME
ËO
U

-	8	Pipe body م م م 4 س	ω	9 11	 Juch	connec efficiei 5 & 5 & 2	3228		soi	characterist 2 8 5 2 2			33 34 35		
Nominal size (OD)	Nominal weight	Wall thickness Inside diameter Steel cross-section Capacity Displacement	Grade	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	API Non-Upset API External Upset Grant Prideco CSTCP Grant Prideco STL Grant Prideco TCII	Hydrii CS Hydrii PH4-PH6 Vallourec & Mannesmann TDS Vallourec & Mannesmann New VMM	Vallourec & Mannesmann Vew VAN Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann FJL			API Non-Upset API External Upset Grant Prideco CSTCP Grant Prideco STL	Grant Prideco TCII Hydril CS Hydril DHA DHA	Vallourec & Mannesmann TDS Vallourec & Mannesmann TDS Vallourec & Mannesmann New VAM	Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann FJL		
			J55	72.5 71.1 60.8					J55	149		285	294		
2.875 in	8.60/8.70 lb/ft	0.308 in 2.259 in 2.484 in ² 0.208 gal/ft 0.337 gal/ft	0.308 in 2.259 in 2.484 in ² 0.208 gal/ft 0.337 gal/ft	L80	105.5 103.4 88.4				Make-up torqu	LN80 C90	296 321 405 438 461 438 176 176		401 488 382 441	334 363 176 195	-
	/ft			N80	105.5 103.4 88.4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			tue (daN.m)	0 C95			502 - 1 1 441		
			C90	118.7 116.3 99.4	99.4 116.3 99.4 100.0 1000.0 100.0 1			P110	378 517 536 176	351	510	392 226			
73.0 mm	73.0 mm 12.55/12.70 daN/m	7.8 mm 57.4 mm 1602 mm 2.59 l/m 4.19 l/m	T95	125.3 122.8 105.0				g	(mm)	88.9 93.2 88.9 73.0	84:9	88.9 88.0 87.0	85.2 84.4 73.0		
шш		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7.8 mm 57.4 mm 1602 mm ² 2.59 l/m 4.19 l/m							(iuu)	55.9 55.8		56.4	56.2	
			P110	145.1 142.2 121.5		<u>. </u>	<u></u>	Drift		55.0 55.0 55.0	1 22.0	55.0 55.0	55.0 55.0 55.0		
			J55	79.1 78.5 66.2				Σ	J55 LI				324 - 3		
2.875 in	9.35/9.45 lb/ft	0.340 in 2.195 in 2.708 in ² 0.197 gal/ft 0.337 gal/ft	L80	115.0 114.2 96.4				Make-up torque (daN.m)	LN80 C90	691		685 746	382 422		
			N80	115.0 114.2 96.4	10	10	10	ie (daN.m)	C95			780	422		
			060	129.4 128.4 108.4	100.0	100.0	100.3 100.0		P110	841		841	451		
73.0 mm	13.65/13.79 daN/m	8.6 mm 55.8 mm 1747 mm ² 2.44 l/m 4.19 l/m	T95	136.6 135.6 114.4				8		92.1		92.1	86.3 85.5		
E	daN/m	- E E E E E	P110	158.2 157.0 132.5				Drift	(mm) API (mm)	54.1 53.4		54.1 53.4	53.4 53.4 53.4		

			P110	178.6 181.0 149.6		Drift	(mm)	50.7 50.7 50.7
ш.	m/m					<u></u>	(mm)	5 .0
73.0 mm	15.32 daN/m	10.0 mm 53.1 mm 1973 mm ² 2.22 l/m 4.19 l/m	T95	154.3 156.3 129.2		8	(mm)	93.7 88.0 86.3
			C90	146.1 148.1 122.4	0 00		P110	841
			N80	129.9 131.6 108.8	100.0 101.3 100.0	aN.m)	C95	780
,c	lb/ft	2 in in ja/ft ja/ft				Make-up torque (daN.m)	060	746
2.875 in	10.50 lb/ft	0.392 in 2.091 in 3.058 in ² 0.178 gal/ft 0.337 gal/ft	L80	129.9 131.6 108.8		Make-up	LN80	685
			J55	89.3 90.5 74.8			J55	
			P110	166.9 167.1 139.8		Drift • 2	(mm)	5233 5233 5233 5233
73.0 mm	14.30 daN/m	9.2 mm 54.6 mm 1844 mm ² 2.34 l/m 4.19 l/m	T95	144.2 144.3 120.8		⊴	(mm)	ភ ភូ.ភ ភូ
73.0	14.30	9.2 54.6 1844 2.3/ 4.19	Ĥ			8	(mm)	87.2 87.0 85.3 73.0
			C90	136.6 136.7 114.4	103.1 102.0 55.0		P110	579 491 245
			N80	121.4 121.5 101.7	, 001 0	(daN.m)	C95	510 461 226
2.875 in	9.80 lb/ft	0.362 in 2.151 in 2.858 in ² 0.189 gal/ft 0.337 gal/ft	L80	121.4 121.5 101.7		Make-up torque	060	510 461 226
2.8	9.80	0.3(2.11 0.185 0.185 0.337				Маke-ц	LN80	441 422 206
			J55	83.5 83.6 69.9			J55	324 343
Nominal size (OD)	Nominal weight	Wall thickness Inside diameter Steel cross-section Capacity Displacement	Grade	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	API Non-Upset API External Upset Grant Prideco CSTCP Grant Prideco STL Grant Prideco STL Grant Prideco TCII Hydril PH4-PH6 Vallourec & Mannesmann New VAM Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann FJL			API Non-Upset API External Upset Grant Prideco CSTCP Grant Prideco STL Grant Prideco TCII Hydril CS Hydril PH4-PH6 Vallourec & Mannesmann TDS Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM PRO
-	2	4000 901	80	9 10 11	efficiency 3 2 2 2 6 5 8 1 6 5 1 7 3 2			33 35 33 33 33 36 56 001 011919C61191
L		Pipe body			Connection		so	Connection characterist

er an ander an

in the second of the second se

Â
nec
continu
noc
\sim
ING
UB
F
Ō
PROPERTIES OF TUBIN
RTI
БП
RO
NICAL
Ĭ
HA
ECH
Σ
g
A
RISTICS
ST
ERI
CTE
RĂ
Į
$\overline{\mathbf{O}}$
SICAL (
L RIC
Π
Σ
GEOMI
Ċ

73.0 mm	16.78 daN/m	11.2 mm 50.7 mm 2172 mm ² 2.02 l/m 4.19 l/m 0.50	T95 P110 J55 L80	169.8 196.6 41.2 54.2 175.4 203.1 41.0 59.6 142.2 164.7 54.5 79.3					- <u>-</u>	164	163 05.3 7.0 A 7.0 A	4. 7.	48.3
	Ę		J55	41.2 41.0 54.5				 	API (mm)		са а	4 4 5	
	-	0.2 2.2 0.38 0.50	J55	41.2 41.0 54.5				Drift				-	
		0.2 3.6 0.38 0.50							55			<u>8</u> 2	
3.500 in	7.70 lb/ft	045882		1				Make-up	LN80	228	217 427	422 264	146
0 in	lb/ft	0.216 in 3.068 in 2.228 in ² 0.384 gal/ft 0.500 gal/ft	08N	2 54.2 5 59.6 3 79.3	-			Make-up torque (daN.m)	C90 C95	247	217 217 427 427	491 491 285 285	
			C90	58.9 67.0 89.2		100.0	100.0 104.1 101.7 47.5	1_	P110		217 427	549 97.6 313 97.3	
88.9 mm	11.24 daN/m	5.5 mm 77.9 mm 1438 mm ² 4.77 l/m 6.21 l/m		73.0			8		108.0	97.2	0.00	0.0 0.0	

MPa x 145 = psi daN x 2.25 = lb daN.m x 7.38 = lb.ft mm x 0.0394 = in

C 22

•-	• •	Pipe body	~	9 10 11	iection Siercy 5 7 6 3 7 4 3 2	vittə		soi	terist 3 2	on charac	itoennecti		, w				
1 Nominal size (OD)	2 Nominal weight	 3 Wall thickness 4 Inside diameter 5 Steel cross-section 6 Capacity 7 Displacement 	8 Grade	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	API Non-Upset API External Upset Grant Prideco CSTCP Grant Prideco STL Grant Prideco STL Hydril CS Hydril CS				API Non-Upset		 Hydril CS Hydril PH4-PH6 Vallourec & Mannesmann TDS Vallourec & Mannesmann New VAM 						
			J55	51.0 48.2 63.4				J55	201 309	381	380 324 324	334	1				
3.500 in	9.20/9.30 lb/ft	0.254 in 2.992 in 2.590 in ² 0.365 gal/ 0.500 gal/	0.254 in 2.992 in 2.590 in ² 0.365 gal/ft 0.500 gal/ft	0.254 in 2.992 in 2.590 in 0.365 gal 0.500 gal	72.6 70.1 92.2			Make-up torque (daN.m)	LN80 C	278 3(430 4(382	167 1			
	o/ft	t t	N80	72.6 70.1 92.2		. .	que (daN.m	C90 C95	301 465	217 217 427 427		412 412	176 176				
			060	C90 79.8 78.8 103.7 100.0 100.0 100.0 100.0		100.0 103.4 101.5 100.0 54.8	(P110	355 549	458 217 427	461 570	441	186				
88.9 mm	13.43/13.57 daN/m	6.5 r 76.0 1671 - 4.54 6.21	T95	83.3 83.2 109.5			QO	(mm)	108.0 114.3	99.4 98.9	99.4 107.9 99.1	97.0	2.02 88.0				
mm	57 daN/m mm mm ² //m	6.5 mm 76.0 mm 1671 mm ² 4.54 l/m 6.21 l/m	mm mm 4 l/m 1 l/m	mm mm 4 1/m 1 1/m	mm mm 4 1/m 1 1/m	mm mm 4 l/m 1 //m						(mm)		74.2 76.0 75.7	74.2 76.0		74.7
			P110	93.3 96.3 126.7			Drift	f (mm)	72.8 72.8	72.8 72.8 72.8	72.8 72.8 72.8	72.8	72.8				
			J55	57.5 54.8 71.3			2	J55 L	233			422					
3.500 in	10.20 lb/ft	0.289 in 2.922 in 2.915 in ² 0.348 gal/ft 0.500 gal/ft	L80	83.6 79.7 103.7			1ake-up tor	LN80 C	323 35			470 50	186 15				
	بر ا	tt	N80	83.6 79.7 103.7			Make-up torque (daN.m)	C90 C95	351	217 217 427 427		500 500	195 195				
			060	94.0 89.7 116.7	79.4 100.0 56.4 100.0	100.0 104.8 102.9 54.8	Ê	P110				240	216				
88.9 mm	14.89	7.3 mm 74.2 mm 1881 mm ² 4.33 l/m 6.21 l/m	T95				8	(iuu)	108.0	101.1 88.9 100.1	99.4 107.9	100.3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
шш	14.89 daN/m	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		99.2 94.6 123.2			Q	(mm)		72.9 72.3 73.9	72.9 74.2		72.6				
			P110	114.9 109.6 142.6			Drift	(mm)	71.0	71.0 71.0 71.0	71.0	222	71.0 71.0				

MPa × 145 = psi daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

· · · · · · · · ·

,
ne
ntin
(co
DNG
UBI
OF TU
TIES
ER.
ROP
Ъ
CAI
₽ Z
CH
ME
Å
CHARACTERISTICS
IISI
TER
AC
IAR
R
GEOMETRICAL CI
L RIC
ИЕЛ
EON
ច

1 Nomi	2 Nomi	 3 Wall thic 4 Inside dia 5 Steel croo 6 Capacity 7 Displace 	8 Grade	9 Collap 10 Interr 11 Pipe b	efficiency efficiency 22 Vallourec 23 Vallourec 23 Vallourec 23 Vallourec 23 Vallourec 23 Vallourec			24API Non-L25API Extern26Grant Prid27Grant Prid28Grant Prid29Hvidri Cs		34 Vallou 35 Vallou
Nominal size (OD)	Nominal weight	Wall thickness Inside diameter Steel cross-section Capacity Displacement	0	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	API Non-Upset API External Upset Grant Prideco CSTCP Grant Prideco CSTCP Grant Prideco STL Grant Prideco TCII Hydril CS Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann FJL			API Non-Upset API External Upset Grant Prideco CSTCP Grant Prideco STL Grant Prideco TCII Huvari CS	Hydrii PH4-PH6 Vallourec & Mannesmann TDS Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE	vallourec & Mannesmann VAM PRO vallourec & Mannesmann FJL
			J55	72.6 71.1 90.1			J55	244	431 588	
3.500 in	12.70/12.95 lb/ft	0.375 in 2.750 in 3.682 in ² 0.309 gal/ft 0.500 gal/ft	L80	105.5 103.4 131.0		Make-up torque	LN80 C90	430 466 576 625 841 312 312 312 427 427	841 929 579 667 667 716	
	b/ft		N80	105.5 103.4 131.0	<u> </u>	ue (daN.m)	0 C95	5 5 312 427	9 976 7 667 5 716	
	*		C90	118.7 116.3 147.4	83.7 100.0 64.7 100.0 100.0 100.0 100.0 64.9 64.9		P110	550 736 1071 312 427	1071 755 765	294
88.9 mm	18.53/18.90 daN/m	9.5 mm 69.9 mm 2375 mm ² 3.83 l/m 6.21 l/m	T95	125.3 122.8 155.6		do	(uuu)	108.0 114.3 109.6 88.9 103.2	109.6 107.9 103.6 103.4	102.5 88.9
шш	0 daN/m	ար հար //որ			7 8		(uuu)	68.2 67.4 69.5	68.2 69.8	67.9
-			P110	145.1 142.2 180.1		Drift	(um)	66.7 66.7 66.7 66.7 66.7 66.7	66.7 66.7 66.7 66.7 66.7	
			J55	78.9 78.3 98.0	1	Ž	J55 LN		500 6. 637	
3.500 in	13.70 lb/ft	0.413 in 2.674 in 4.005 in ² 0.292 gal/ft 0.500 gal/ft	2.674 in 4.005 in ² 0.292 gal/ft 0.500 gal/ft 114.8 113.9 142.5 142.5	Make-up toro	Make-up torque (daN.m)	LN80 C90		677 785 735 785		
			N80	114.8 113.9 142.5		ue (daN.m)	0 C95		785	
			C90	129.2 128.1 160.3	104.4 104.7 67.7 67.7		P110		892 883	324
88.9 mm	20.00 daN/m	10.5 mm 67.9 mm 2584 mm ² 3.62 l/m 6.21 l/m	T95	136.3 135.3 169.3		8	~		105.1 105.1	102.5 88.9 6
٤	//m	FFFFF	P110	157.9 156.6 196.0	j.	Drift	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			65.9 64.7 64.7

1	I	Pipe body	1		nection ciency	ittə	<u> </u>	soi	terion characterist		
ž F	й х	مەت 4 ھ 25002	8 2	10 Cc 11 Pi	21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				※注于应应应是关 3,3,3,5,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5		35 Va
Nominal size (OD)	Nominal weight	Wall thickness Inside diameter Steel cross-section Capacity Displacement	Grade	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	API Non-Upset API External Upset Grant Prideco CSTCP Grant Prideco STL Grant Prideco TCII Hydrii CS Hvdrii PH4-PH6	Vallourec & Mannesmann TDS Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann FJL			API Non-Upset API External Upset Grant Prideco CSTCP Grant Prideco STL Grant Prideco TCII Hydril CS Vallourec & Mannesmann TDS	Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PBO	allourec & Mannesmann FJL
			J55	81.7 81.5 101.5			-	J55			
3.500 in	14.30 lb/ft	0.430 in 2.640 in 4.147 in ² 0.284 gal/ft 0.500 gal/ft	L80	118.9 118.6 147.6			Make-up torque (daN.m)	LN80 CS	841		
		t t	N80	118.9 118.6 147.6			que (daN.r	C90 C95	976		-
			060	133.7 133.4 166.0	100.0	101.9	(u	5 P110	1071		
88.9	20.87	10.5 67 : 2676 3.55 6.2					0	(mm)	112.0	105.2	103.0
88.9 mm	20.87 daN/m	10.9 mm 67.1 mm 2676 mm ² 3.53 l/m 6.21 l/m	T95	141.2 140.8 175.3			₫	(mm)	64.8		
			P110	163.5 163.1 202.9			Drift	(mm)	63.9 63	63.9 63.9	03.9
			J55	84.8 85.1 105.3				J55		579 735	
3.500 in	14.70 lb/ft	0.449 in 2.602 in 4.304 in ² 0.276 gal/ft 0.500 gal/ft	L80	123.4 123.8 153.1			Make-up t	LN80		795 834	275
c	Æ		N80	123.4 123.8 153.1			Make-up torque (daN.m)	060		931 931 93	304 3(
						105.6 106.9 100.0 68.1	Û.	C95 P110		883 1029 931 1029	304 37
~	21		C90	138.8 139.3 172.3			8	-		29 106.5 29 106.7	343 88.9
88.9 mm	21.45 daN/m	11.4 mm 66.1 mm 2777 mm ² 3.43 l/m 6.21 l/m	T95	146.5 147.0 181.9				(mm)		17.0	9 64.1
			P110	169.6 170.3 210.6			Drift	(mm)		62.9 62.9	

4

e G
Ľ
tin
Ę
u
Ŭ
/n
U Z
\leq
Ξ
ĽL.
Q
~~~
TIES
Ē
~
ROPI
Ř
РН
_
AL
ICA
Ĕ
Z
4
T
C
Щ
Σ
$\frown$
¥
5
٩
S
C
F
ίΩ.
~
Ш Н
Ö
Ā
È
4
Î
Ū
<u> </u>
A
G
ž
Ē
EON
0
Щ
G

		Pipe body			Connection efficiency		tica	tion characteria	Jan	 იე	
1 Nominal size (OD)	2 Nominal weight	<ul> <li>3 Wall thickness</li> <li>4 Inside diameter</li> <li>5 Steel cross-section</li> <li>6 Capacity</li> <li>7 Displacement</li> </ul>	8 Grade	<ul> <li>9 Collapse resistance (MPa)</li> <li>10 Internal yield pressure (MPa)</li> <li>11 Pipe body yield strength (1000 daN)</li> </ul>	<ul> <li>API Non-Upset</li> <li>API External Upset</li> <li>Grant Prideco CSTCP</li> <li>Grant Prideco STL</li> <li>Grant Prideco TCII</li> <li>Hydril PH4-PH6</li> <li>Vallourec &amp; Mannesmann TDS</li> <li>Vallourec &amp; Mannesmann VAM ACE</li> <li>Vallourec &amp; Mannesmann VAM ACE</li> <li>Vallourec &amp; Mannesmann VAM PRO</li> <li>Vallourec &amp; Mannesmann VAM PRO</li> </ul>			<ul> <li>24 API Non-Upset</li> <li>25 API External Upset</li> <li>26 Grant Prideco CSTCP</li> <li>27 Grant Prideco STL</li> <li>28 Grant Prideco TCII</li> <li>29 Hvdrit CS</li> </ul>			35 Vallourec & Mannesmann FJL
			J55	89.1 90.3 110.6			J55	312		588 785	
3.5	15.5	0.4 2.5 4.52 0.265 0.500				Make-ul	LN80	841 393 427	841	804 883	294
<b>3.500</b> in	<b>15.50</b> lb/ft	0.476 in 2.548 in 4.522 in ² 0.265 gal/ft 0.500 gal/ft	L80	129.6 131.3 160.9		Make-up torque (	C90	393 427	929	883 980	324
			N80	129.6 131.3 160.9	100.0 66.7 100.0 100.0 103.0 100.0 68.0	(daN.m)	C95	393 427	976	883 980	324
			060	145.8 147.7 181.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		P110	1071 393 427	1071	1029 1079	373
88.9 mm	22.62 daN/m	12.1 mm 64.7 mm 2917 mm ² 3.29 l/m 6.21 l/m	T95	153.9 155.9 191.1		8	(mm)	114.3 88.9 107.0	114.3	107.0 106.7	104.5 88.9
шш	daN/m	mm mm // m //					(ມມ)	63.1 63.2 64.7	63.1		62.8
			P110	178.2 180.5 221.3		Drift	(mm)	61.5 61.5 61.5	61.5	61.5 61.5	61.5 61.5
			J55	97.5 100.5 121.0			J55 I				
<b>3.500</b> in	<b>17.00</b> lb/ft	0.530 in 2.440 in 4.945 in ² 0.243 gal/ft 0.500 gal/ft	L80	141.8 146.2 176.0		Make-up tor	LN80 C		1220 1342		
~	Lt L	2 ¥¥	N80	141.8 146.2 176.0		Make-up torque (daN.m)	C90 C95		42   1403		<u> </u>
			060	159.5 164.4 198.0	100.0		P110		1525		
88.9	24.81	13.5 62.0 3190 3.02 6.21				GO	(um)		115,9		
88.9 mm	24.81 daN/m	13.5 mm 62.0 mm 3190 mm ² 3.02 l/m 6.21 l/m	T95				(uu)		60.3		<u> </u>
			P110	194.9 201.0		Drift	API (mm)		58.8		

C 26

Nominal size (OD)	Nominal weight	Wall thickness Inside diameter Steel cross-section Capacity Displacement	Grade	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	API Non-Upset API External Upset Grant Prideco CSTCP Grant Prideco STL Grant Prideco TCII Hydril CS Hydrid PHA-PH6	Vallourec & Mannesmann TDS Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann FJL	1		API Non-Upset API External Upset	Grant Prideco CSTCP Grant Prideco STL Grant Prideco TCII Hydrii CS Lucari DUS	Vallourec & Mannesmann TDS Vallourec & Mannesmann New VAM Vallourec & Mannesmann NAM ACE	valiourec & Iviannesmann VAIVI Pi Vallourec & Mannesmann FJL
			J55	35.3 37.5 N) 65.6		AM CE 30		J55	165	149	AM 392 CE 343	<u> </u>
<b>4.000</b> in	9.50 lb/ft	0.226 in 3.548 in 2.680 in ² 0.514 gal/ft 0.653 gal/ft	L80	8 45.4 5 54.5 8 95.4			Make-up to	LN80 0	230	190 190 1488	540 392 4	176 2
c	ft	م م ۱/۲ ۱/۴t	N80	45.4 54.5 95.4			Make-up torque (daN.m)	C90 C6	264	190 15 488 46	628 628 441 441	206 20
			) C90	4 48.8 5 61.4 107.3	67.2 47.0 100.0	100.0 104.0 101.9 100.0 48.1	(m.	C95 P110		190 190 488 488	28 706 11 491	206 236
101	13.86 daN/m 5.7 mm 90.1 mm 1729 mm ² 6.38 l/m 8.11 l/m	5. 172 6.5 8.1					00	(mm) 	120.7	101.6	120.7 110.4 110.2	101.0
101.6 mm		T95	50.4 64.8 113.2				(mm)		88.1 89.8	88 8	88.4	
			P110	54.5 75.0 131.1			Drift	(mm)	86.9	80.9 86.9	0,0,0,0 0,00,0 0,00,0 0,00,0 0,00,0 0,00,0	6.0 80.0
			J55	45.5 43.5 75.3				J55	347	458 176 461	412 441	
<b>4.000</b> in	<b>11.00</b> lb/ft	0.262 in 3.476 in 3.077 in ² 0.493 gal/ft 0.653 gal/ft	L80	60.7 63.2 109.5			Make-up to	LN80 C		534 217 536 536 536	559 519 5	195
6	tt	tt 2 tt	N80	60.7 63.2 109.5			Make-up torque (daN.m)	C90 C95	525	217 217 488 488 536 536	647 647 569 569	216 216
			060	66.2 71.1 123.2	100.0 100.0 55.1 100.0	100.0 103.8 101.9 54.8	(-	P110		534 217 536 536	735 618	245
101.6 mm	16.05 0	6.7 mm 88.3 mm 1985 mm ² 6.12 l/m 8.11 l/m	T95	-			0	(m (m ()	127.0	112.2 101.6 112.1 112.1	120.7 111.9 111.7	111.4 101.6
mm	6.05 daN/m	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5	68.8 76.2 75.1 86.9 30.0 150.5			₽	(mm)		86.2 86.0 88.0 86.2	88.3	86 J

 $MPa \times 145 = psi$  daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

led)
ontinu
0) <b>D</b> N
-UBII
OF 1
<b>TIES OF TUBING</b>
Ш
L PROPI
NICA
ECHAI
D ME
S ANI
STICS
TERIS
RAC
CHA
ICAL
AETR
GEON
J

		Pipe body				ction ction	enno eioitte			soi	ion characterist	าวอบเ	roJ	
L	2	う 4 ら ら て	8	9 10 11	12 13 14	16	8 5	22 23 23			25 25 26 28 28 28 28	30 23	33 35	35
Nominal size (OD)	Nominal weight	Wall thickness Inside diameter Steel cross-section Capacity Displacement	Grade	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	API Non-Upset API External Upset Grant Prideco CSTCP Grant Prideco CTCP	Grant Prideco TCI Hvdril CS	Hydrii PH4-PH6	Valiourec & Mannesmann 105 Valiourec & Mannesmann New VAM Valiourec & Mannesmann VAM PRO Valiourec & Mannesmann FJL			API Non-Upset API External Upset Grant Prideco CSTCP Grant Prideco STL Grant Prideco TCII Grant Prideco TCII	Hydrii PH4-PH6 Vallouroo 8. Mennormon TDC	Vallourec & Mannesmann 105 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE	Vallourec & Mannesmann FJL
			J55	57.4 54.7 93.1						J55	227		470 491	
<b>4.000</b> in	<b>13.20</b> lb/ft	0.330 in 3.340 in 3.805 in ² 0.455 gal/ft 0.653 gal/ft	L80	83.5 79.6 135.4					Make-up	LN80	841 285 488	841	647 588	304
) in	lb/ft	) in 2 in 3 al/ft 3al/ft							Make-up torque (daN.m)	C90	285 488	929	746 637	343
			N80	83.5 79.6 135.4	100.0	100.0	100.0	103.9 102.0 55.0	aN.m)	C95	285 488	976	746 637	343
			C90	93.9 89.6 152.3	0 <	ť Ó	o.	၈၀၀၀		P110	1071 285 488	1071	843 686	373
101.6 mm	19.26 daN/m	8.4 mm 84.8 mm 2455 mm ² 5.65 l/m 8.11 l/m	8.11// 1/1/7 99.2 99.2 99.2 160.8				0 (m 0 (m)		117.5 101.6 114.8	117.5	114.7 114.4	101.6		
mm	M/M	ատ հատ (ատ							Q	(uu)	83.2 83.2 86.4	83.2		82.8
			P110	114.8 109.5 186.2				<u></u>	Drift	(mm)	81.7 81.7 81.7	81.7	81.7 81.7	81.7 81.7
			J55	65.2 63.0 105.7					2	J55 L			588 637	
<b>4.000</b> in	<b>14.80</b> lb/ft	0.380 in 3.240 in 4.322 in ² 0.428 gal/ft 0.653 gal/ft	L80	94.8 91.7 153.8					/ake-up to	LNB0 C			813	353
	ft	2 5 2 4 ##	N80	94.8 91.7 153.8					Make-up torque (daN.m)	C90 C95			941 941 834 834	382 382
			060	106.7 103.2 173.0				106.5 106.5 60.4 60.4	(	P110			1079 912	412
101.6	21.60	9.7 82.3 2788 5.32 8.11							0	(uuu)			117.0	114.4 101.6
101.6 mm	21.60 daN/m	9.7 mm 82.3 mm 2788 mm ² 5.32 l/m 8.11 l/m	195	112.6 108.9 182.6					<u>0</u>	(mm)				80.4
			P110	130.4 126.1 211.5		ļ			Drift	API (mm)			79.1 79.1	79.1 79.1

 $MPa \times 145 = psi$  daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

		Pipe body				Connec efficie			tics	tion characteris	bennect	) D	
-	2	م م م م م ا م	80	9 10 11	12 14 15 16	2 <u>8</u> 5	8288			24 25 25 28 28 28 28	3 8 6	32 34 34	35
Nominal size (OD)	Nominal weight	Wall thickness Inside diameter Steel cross-section Capacity Displacement	Grade	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	API Non-Upset API External Upset Grant Prideco CSTCP Grant Prideco STL Grant Prideco TCII Hudri CS	Hydrii PH4-PH6 Vallourec & Mannesmann TDS	Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann FJL			API Non-Upset API External Upset Grant Prideco CSTCP Grant Prideco STL Grant Prideco TCII Hvdril CS	Hydrii PH4-PH6 Vallourec & Mannesmann TDS	Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO	Vallourec & Mannesmann FJL
+			J55	70.5 68.9 114.3		<b>.</b>			J55				
4.000 in	<b>16.10</b> lb/ft	0.415 in 3.170 in 4.674 in ² 0.410 gal/ft 0.653 gal/ft	L80	102.6 100.1 166.3				Make-up torqu	LN80 C		841 9.		
с	/ft	r r Vft Vft	Ĩ					rque (daN.m)	C90 C		6 636		
			N80	102.6 100.1 166.3		100.0	102.0 100.0	۲.m)	С95 Р		976 1(		
			C90	115.4 112.7 187.1					P110 (n		1071 12		
101.6 mm	23.50 daN/m 10.5 mm 80.5 mm 5.09 l/m 8.11 l/m		T95	121.8 118.9 197.5				- 00	(mm) (m		121.0 78	117.6 115.7	
E	m/1	E E E	P110	141.0 137.7 228.7				Drift	(mm) (mm)		78.2 77.3	77.3	
			0 J55	0 72.8 7 71.3 7 118.0				t,	n) J55		ო	3 735	 v
4.(	16.	3 9.40 0.65						Make-1	LN80			824 883	000
<b>4.000</b> in	<b>16.50</b> lb/ft	0.430 in 3.140 in 4.823 in ² 0.402 gal/ft 0.653 gal/ft	L80	105.8 103.8 171.6				Make-up torque (daN.m)	060			961 980	000
			NBO	105.8 103.8 171.6			102.8 101.5 100.0 64.5	(daN.m)	C95			961 980	
_			C90	119.1 116.7 193.1			5 0 2 8		P110			1079 1079	<u> </u>
101.6 mm	24.08 daN/m	10.9 mm 79.8 mm 3111 mm ² 5.00 l/m 8.11 l/m	T95	125.7 123.2 203.8					 			118.3	116.2
٦	L,		P110	145.5 142.7 236.0					and API			76.6 76.6	

 $MPa \times 145 = psi$  daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

	J	ι λpoq ədi _c	 J			itoenno: ineicitte			so	tion characteristi	วอนน	- <u>-</u> იე
1	2	~ 4 û 9 h	8	9011	5 <u>5</u>	11 19 19	2222			25 25 28 28 28 29 29	30 31	32 34 35
Nominal size (OD)	Nominal weight	Wall thickness Inside diameter Steel cross-section Capacity Displacement	Grade	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	API Non-Upset API External Upset Grant Prideco CSTCP Grant Prideco STL Grant Prideco TCI	Hydril CS Hydril PH4-PH6 Vallourec & Mannesmann TDS	Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann FJL			API Non-Upset API External Upset Grant Prideco STCP Grant Prideco STL Grant Prideco TCII Hvdrii CS	Hydril PH4-PH6 Vallourec & Mannesmann TDS	Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann FJL
			J55	83.0 83.0 134.5					J55			883
<b>4.000</b> in	<b>18.90</b> lb/ft	0.500 in 3.000 in 5.498 in ² 0.367 gal/ft 0.653 gal/ft	L80	120.7 120.7 195.6				Make-up torque	LN80 C		1295 14	956 10
	Lt.	~ # #	N80	120.7 120.7 195.6				rque (daN.m)	C90 C95		1417 1478	1029 1029
			C90	/ 135.7 / 135.7 \$ 220.1		100.0	102.2	(m	5 P110		78   1600	29 1125
101.	27.58	12. 76. 354 8.1						G	(mm)		127.0	118.6
101.6 mm	27.58 daN/m	12.7 mm 76.2 mm 3547 mm ² 4.56 l/m 8.11 l/m	T95	143.3 143.3 232.3				Q	(mm)		74.2	
			P110	165.9 165.9 269.0				Drift	(mm)		73.0	73.0 73.0
			J55	98.0 101.2 158.9				_	J55			
<b>4.000</b> in	<b>22.20</b> lb/ft	0.610 in 2.780 in 6.496 in ² 0.315 gal/ft 0.653 gal/ft	L80	142.6 147.2 231.2				Make-up t	LN80		1451	
5	/ft	n Vft Vft	N80	142.6 147.2 231.2				Make-up torque (daN.m)	C30		1573   16	
	-					100.0	102.0	(m.	C95 P110		1634 1756	
10.	32.4	15 702 3.3 8.3	C90	160.4 165.6 260.1				O	(mm) 0		6 131.8	123.9
101.6 mm	32.40 daN/m	15.5 mm 70.6 mm 4191 mm ² 3.92 l/m 8.11 l/m	T95	169.3 174.8 274.5				Q	(mm)		8 68.6	
			P110	196.0 202.4 317.9		1		Drift	( u u u		67.4	67.4

 $MPa \times 145 = psi$  daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

		Pipe body	_		ection iency			soit	ion characteris	loann		-1
-	2	<b>4604</b>	œ	961	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	23 2 3 1 18 23 2 3 4 19 8			25 27 25 24			35
Nominal size (OD)	Nominal weight	Wall thickness Inside diameter Steel cross-section Capacity Displacement	Grade	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	API Non-Upset API External Upset Grant Prideco CSTCP Grant Prideco STL Grant Prideco TCII Hydril CS	Hydril PH4-PH6 Vallourec & Mannesmann TDS Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann FJL			API Non-Upset API External Upset Grant Prideco STCP Grant Prideco STL Grant Prideco TCII	Hydril PH4-PH6 Vallourec & Mannesmann TDS	Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO	Vallourec & Mannesmann FJL
			J55	39.5 40.0 88.1				J55	236 534 203	0 2 2 2	480 441	
4.50	12.60/1;	0.271 in 3.958 in 3.600 in ² 0.639 gal/ft 0.826 gal/ft		-			Make-up tordu	LN80	5 258 5 40 5 588 5 58 5 58 5 58 5 58 5 58 5 58 5		647 491	304
<b>4.500</b> in	12.60/12.75 lb/ft	0.271 in 3.958 in 3.600 in ² 0.639 gal/ft 1.826 gal/ft	L80	51.7 58.1 28.1			Ψ	06D	357 587 587 549 549	GRO	746 540	334
			N80	51.7 58.1 128.1	2008000	100.0 101.4 115.2 100.0 49.9	(daN.m)	C95	258 549 529	680	746 540	334
	-		C90	56.0 65.4 144.1	72.5 100.0 55.9 100.0	00.0 01.4 00.0 49.9		P110	686 258 549		834 588	373
114.3	114.3 8.39/18. 6.9 100.5 2323		15	152			9	(uu)	132.1 141.3 125.0 114.3 125.3	125.0	124.3	124.9
114.3 mm 8.39/18.61 daN/m 6.9 mm 100.5 mm		6.9 mm 100.5 mm 2323 mm ² 7.94 l/m 10.26 l/m	T95	58.0 69.0 52.1			ē	(uu)	98.2 98.7 100.2	98.2   100 E	2.22	98.5
	6		P110	63.5 79.9 176.2			Drift Api	um)	97.4 97.4 97.4 97.4 97.4	97.4	97.4 97.4	97.4 97.4
			J55	52.5 59.7 107.8				J55	258		569 588	
<b>4.500</b> in	<b>15.20</b> lb/ft	0.337 in 3.826 in 4.407 in ² 0.597 gal/ft 0.826 gal/ft	L80	76.4 72.3 156.8			Make-up	LN80	915 915 549	915	785 735	343
<b>o</b> in	lb/ft	7 in 6 in 7 in ² gal/ft gal/ft	0				Make-up torque (daN.m)	060	339 549	1010	902 785	373
			N80	76.4 72.3 156.8	100.0 58.9 100.0	100.0 103.6 103.6 101.9 59.1	łaN.m)	C95	339 549	1051	902 785	373
			C90	84.3 81.3 81.3 176.4	ဝရင	၀၀ဖစ္၀-		P110	1146 339 549	1146	1029 834	412
114.3 mm	22.18 daN/m	8.6 mm 97.2 mm 2844 mm ² 7.42 l/m 10.26 l/m	T95	88.0 85.8 186.2			G		130.2 114.3 127.9		132.1 127.3 127.1	-
E E	m/m		Ì				⊆	(mm)	ອ ອີ ອີ ອີ ອີ ອີ ອີ ອີ	95.6	97.2	95.4
			P110	98.9 99.4 215.7			Drift	API (mm)	94.0 94.0	94.0	94.0 94.0 94.0	94.0 94.0

C 31

and the second se

and the second second

_,	4	مېbod ۹qi	d		Connection efficiency		s	Connection characteristic
1 Nominal size (OD)	2 Nominal weight	<ul> <li>3 Wall thickness</li> <li>4 Inside diameter</li> <li>5 Steel cross-section</li> <li>6 Capacity</li> <li>7 Displacement</li> </ul>	8 Grade	<ul> <li>9 Collapse resistance (MPa)</li> <li>10 Internal yield pressure (MPa)</li> <li>11 Pipe body yield strength (1000 daN)</li> </ul>	<ul> <li>API Non-Upset</li> <li>API Karnt Upset</li> <li>API External Upset</li> <li>Grant Prideco STL</li> <li>Grant Prideco STL</li> <li>Grant Prideco TCII</li> <li>Hydril PH4-PH6</li> <li>Vallourec &amp; Mannesmann TDS</li> <li>Vallourec &amp; Mannesmann VAM ACE</li> <li>Vallourec &amp; Mannesmann VAM PRO</li> <li>Vallourec &amp; Mannesmann VAM PRO</li> <li>Vallourec &amp; Mannesmann VAM PRO</li> </ul>			<ul> <li>24 API Non-Upset</li> <li>25 API External Upset</li> <li>26 Grant Prideco CSTCP</li> <li>27 Grant Prideco STL</li> <li>28 Hydril CS</li> <li>30 Hydril CS</li> <li>31 Vallourec &amp; Mannesmann TDS</li> <li>32 Vallourec &amp; Mannesmann New VAM</li> <li>33 Vallourec &amp; Mannesmann VAM PRO</li> <li>35 Vallourec &amp; Mannesmann VAM PRO</li> </ul>
			J55	58.6 56.0 120.3			J55	686 735
4.500 in	17.00 lb/ft	0.380 in 3.740 in 4.918 in ² 0.571 gal/ft 0.826 gal/ft	L80	85.3 81.5 175.0		Make-up torque	LN80	1024 941 883 373
Ē	b/ft	in in al/ft al/ft				torque (daN.m)	C90	1132 1079 931 412
			180	N80 85.3 81.5 175.0 100 100 63 63	100.0 108.5 107.6 63.3		C95	1173 1079 931 412
			C90 96.0 91.7 196.9	C90 96.0 196.3 196.9 196.9 13		P110	1281 1227 980 451	
114.3 mm	24.81 daN/m 9.7 mm 95.0 mm 3173 mm ² 7.09 l/m 10.26 l/m	T95	101.3 96.8 207.8		B	~	132.3 122.3 129.7 129.7 129.7 129.7 114.3	
E	//m	с Е ² Е с Е	6				) (uuu)	92.7 95.0 93.3
			P110	117.3 112.1 240.7		Drift	(mm)	9 9 9 9 9 9 8 8 8 8 8 1 8 9 8 9 8
			J55	65.5 63.4 134.5		2	J55 L	
4.500 in	<b>18.90</b> lb/ft	0.430 in 3.640 in 5.498 in ² 0.541 gal/ft 0.826 gal/ft	L80	95.3 92.2 195.7		Make-up torque (daN.m)	LN80 C	1146 12 961 11 1029 11 403 4
	L.	² ft	N80	95.3 92.2 195.7		rque (daN.	C90 C95	1268 1329 1125 1125 1125 1125 1125 442
					100.0 100.0 110.3 110.3 65.1	Э Ш	95 P110	329 1451 125 1274 125 1227 442 500
117	27.5	10 35 10 10	C90	107.3 103.8 220.1		DO	0 (mm)	1 135.0 127.0 127.0 128.8 132.1 114.3
114.3 mm	27.58 daN/m	10.9 mm 92.5 mm 3547 mm ² 6.71 l/m 10.26 l/m	T95	113.2 109.5 232.3		Q	(mm)	90.8
			P110	131.1 126.8 269.0	2	Drift	(mm)	00000000000000000000000000000000000000

Nominal size (OD)	Nominal weight	Wall thickness Inside diameter Steel cross-section Capacity Displacement		Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	API Non-Upset API External Upset Grant Prideco CSTCP Grant Prideco STL Grant Prideco TCII Hydrii PH4-PH6 Vallourec & Mannesmann TDS Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann FJL			API Non-Upset API External Upset Grant Prideco CSTCP Grant Prideco STL Grant Prideco STL Grant Prideco TCII Hydril PH4-PH6 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM PRO	Vallourec & Mannesmann FJL
			J55	74.9 73.7 153.7	VAM ACE I PRO		J55	VAM 834 ACE 1079	)
<b>4.500</b> in	<b>21.50</b> lb/ft	0.500 in 3.500 in 6.283 in ² 0.500 gal/ft 0.826 gal/ft	L80	9 109.0 7 107.3 7 223.6		Make-up t	LN80	1451 1 1180 1 1274 1	451
i	b/ft	in in al/ft al/ft	N80	0 109.0 3 107.3 5 223.6		Make-up torque (daN.m)	C30	1600 16 1376 13 1376 13	491 4
					100.0 100.0 107.4 106.8 100.0 65.0	۲.m)	C95 P1	1681 1830 1376 1620 1376 1620	491 54
	31	- 4	C90	122.6 120.7 251.5		0	P110 (mm)		549 114.3
114.3 mm	31.38 daN/m	12.7 mm 88.9 mm 4054 mm ² 6.21 l/m 10.26 l/m	T95	129.4 127.4 265.5		<u> </u>	(um) (nm	92.5 92.5	.3 87.7
			P110	149.8 147.5 307.4		Drift	(mm)		
			J55	82.6 82.6 169.6			J55	853 1274	
<b>4.500</b> in	23.70 lb/ft	0.560 in 3.380 in 6.932 in ² 0.466 gal/ft 0.826 gal/ft	L80	120.2 120.1 246.7		Make-up t	LN80	1559 1566 1566	451
. <u>.</u>	b/ft	in in al/ft al/ft	N80	2 120.2 1 120.1 7 246.7		Make-up torque (daN.m)	ວ 06ວ	1708 18 1424 14 1668 16	530 5
					100.0 101.9 101.9 65.1	(m.)	C95 P1	1803 19 1424 1668 17	530 58
	34	. 4	060	135.2 135.1 277.5		6	P110 (mm)	1986 141.3 1620 135.5 1760 135.5	588 114
114.3 mm	34.59 daN/m	14.2 mm 85.9 mm 4472 mm ² 5.79 l/m 10.26 l/m	T95	142.7 142.6 292.9				83.8 83.8 83.8	3 84.7
	ŧ		P110	165.3 165.2 339.2		Drift	API (mm)	82.7 82.7 82.7 82.7	82.7 82.7

MPa x 145 = psi daN x 2.25 = lb daN.m x 7.38 = lb.ft mm x 0.0394 = in

(p
tinue
(contin
SING
TUB
S OF
RTIE
ROPER
L PR
IICAI
HAN
MEC
AND
TICS /
<u>S</u>
CTER
ARA
L CH/
RICAI
AETR
GEON
Ū

		Pipe body			Connection efficiency		so	Connection characteristi
1	8	×4007	8	<b>11</b> 9	23 23 23 23 23 23 23 23 23 23 23 23 23 2			3333333333555555
Nominal size (OD)	Nominal weight	Wall thickness Inside diameter Steel cross-section Capacity Displacement	Grade	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	API Non-Upset API External Upset Grant Prideco STL Grant Prideco STL Grant Prideco TCII Hydril CS Hydril PH4-PH6 Vallourec & Mannesmann New VAM Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann FJL			API Non-Upset API External Upset Grant Prideco CSTCP Grant Prideco STL Grant Prideco TCII Hydril CS Hydril PH4-PH6 Vallourec & Mannesmann TDS Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann FJL
			J55	91.3 92.9 187.4		 	J55	
<b>4.500</b> in	<b>26.10</b> lb/ft	0.630 in 3.240 in 7.660 in ² 0.428 gal/ft 0.826 gal/ft	L80	132.8 135.1 272.6		Make-up torque	LN80 C	1756
_	/ft		N80	~~()			C90 C	1939 20
		· · · · · · · · · · · · · · · · · · ·	30		100.0	(daN.m)	сө5 Р	2027
			C90	149.4 152.0 306.6			P110	2210
114.3 mm	38.09 daN/m	16.0 mm 82.3 mm 4942 mm ² 5.32 l/m 10.26 l/m	T95	157.7 160.5 323.7		do		144.5
E	//m	E E E E E E	5				(um)	80.3
			P110	182.6 185.8 374.8		Drift	(mm)	79.1
					1			

MPa x 145 = psi daN x 2.25 = lb daN.m x 7.38 = lb.ft mm x 0.0394 = in

	1	T	Γ.	1								T	4	.500 in			114.0		
	1	Nominal size (OD)	1		4	. <b>500</b> in			114.3	mm			4.	.500 In			114.3	mm 	
	2	Nominal weight	2		10	. <b>50</b> lb/f	t		15.3 da	aN/m			11	. <b>60</b> lb/f	t		16.9 da	aN/m	
	3	Wall thickness	3		0	.224 in			5.7 n	nm			0.	250 in			6.3 m	ากา	
	4	Inside diameter	4		4	.052 in			102.9	mm			4.	000 in			101.6	mm	
>	5	Steel cross-section	5			.01 in ²			1941 r	nm²			3	.34 in ²			2154 n	nm²	
poo		Capacity	6			57 gal/ft			8.32			1		65 gal/f	r		8.111		
Pipe body	6					33 gal/f1			10.26					33 gal/f			10.26		
d.	7	Displacement (1)	<u> </u>		0.0				10.20										
	8	Grade	8	K55	L80	N8	i0 C	:90	T95	P110	Q125	K55	L80	N8	30 C	.90	T95	P110	012
	9	Collapse resistance (MPa)	9	27.6	34.0	34	.0 3		36.6	38.3	40.2	34.2	43.8				48.4	52.2	55.2
	10	Internal yield pressure (MPa)	10	33.0	48.0	) 48	.0 5	4.1	57.1	66.1	75.1	36.9	53.6	53	.6 6	0.3	63.7	73.7	83.8
	11	Pipe body yield strength (1000 daN)	11	74	107	10	)7 1	20	127	147	167	82	119	11	9 1	134	141	163	186
<u>.</u>	12	Buttress Standard	12	111	117	/ 12	2 1	24	130	154	168	123	129	13	85 1	38	145	171	187
e fi ĝ	13	Buttress Special Clearance	13	111	117	/ 12	2 1	24	130	154	168	123	129	13	85 1	38	145	171	187
tensue trength 0 ³ daN	1 - C		14	65	81			85	90	107	115	76	94	. 9	6	99	104	124	134
tensue strength (10 ³ daN)	14	API STC	15	69	81			85	90	107	115	80	94		9	99	104	124	134
	15	APILTC										ļ							
	16	Grant Prideco TCII	16	× .															
	17	Grant Prideco STL	17				4	8.5							5	52.8			
5	18	Hydrif LX	18																
e	19	Hydril 563	19													91.1			
ffic	20	Hydril 511	20	1			6	3.2								63.2			
e C	21	Hydril 521	21				6	0.5							e	64.1			
Connection efficiency	22	Vallourec & Mannesmann New VAM	22	1			11	3.7							10	2.5			
iner.	23	Vallourec & Mannesmann VAM ACE	23	1			11	2.4							10	4.1			
Co	24	Vallourec & Mannesmann VAM PRO	24				10	0.0							1.0	0.0			
Ŭ,	25	Vallourec & Mannesmann VAM TOP	25	1															
	26	Vallourec & Mannesmann FJL	26												4	5.9			
				<u>ь</u>	/ake-un	o torque	(daN n		T	Τ	1	N	Aake-up	torque	(daN.n	 n)	T	1	
	-						Г. <u></u> .	1	D P	10E	Drift API (mm)			· · · ·		1	102	- Ê	Drift API (mm)
				K55	LN80	C90/95	P110	Q125	Q U D	Ω Û	Ű II	K55	LN80	C90/95	P110	Q125	G Û Û O	⊇Ê	ΙĘ ĝ
				Ÿ.	2	ဗီ	E.	δ		[	Δ .	×	5	ð	à.	ð			
									127.0		99.7						127.0		98.4
1	27	Buttress Standard	27						127.0		99.7						123.8		98.4
tics	28	Buttress Special Clearance	28		í				1			220							98.4
List.	29	APISTC	29	198					127.0		99.7	230		050			127.0		1
acte	30	APILTC	30									244	306	350	409	5.40	127.0		98.4
ars.	31	Grant Prideco TCI	31		549	549	549	549	123.3	1	99.7		549	549	549	549	124.4	103.1	98.4
ъ с	32	Grant Prideco STL	32	149	190	190	190	190	114.3	100.4	99.7	176	230	230	230	230	114.3	99.8	98.4
tion of	33	Hydrit LX	33						ł	1									
Uec.	34	Hydril 563	34							1		407	407	407	407		132.1	100.3	98.4
Connection characteristics	35	Hydril 511	35	230	230	230	230	230	114.3	100.6	99.7	244	244	244	244	244	114.3	99.3	98.4
U	36	Hydril 521	36	420	420	420	420	420	118.1	101.0	99.7	488	488	488	488	488	119.3	100.6	98.4
	37	Vallourec & Mannesmann New VAM	37	461	607	706	795	892	123.5	1	99.7	470	628	725	813	912	123.5		98.4
· · · ·	38	Valleurec & Mannesmann VAM ACE	38	373	451	491	540	588	123.5		99.7	441	540	588	637	686	123.8		98.4
	39	Vallourec & Mannesmann VAM PRO	39						122.9		99.7						124.0		98.4
	40	Vallourec & Mannesmann VAM TOP	40																
	1.1.1	Vallourec & Mannesmann FJL	41							1			294	324	363	403	114.3	99.5	98.4
	41																		

٠,

and a second of a

10 M T I

A State of March

#### GEOMETRICAL CHARACTERISTICS AND MECHANICAL PROPERTIES OF CASING (continued)

	1	Nominal size (OD)	1	1	4	.500 in			114.3	mm		[	4	. <b>500</b> in			114.3	mm	
	2	Nominal weight	2		13	.50 lb/f	t		19.7 da	N/m			15	. <b>10</b> lb/f	t		22.0 da	n/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		3 3 0.6	.290 in .920 in .84 in ² 53 gal/ft 33 gal/ft			7.4 m 99.6 r 2475 n 7.79 l 10.26	nm nm ² /m			3 4 0.0	.337 in .826 in .41 in ² 60 gal/ft 33 gal/ft			8.6 m 97.2 r 2844 n 7.42 l 10.26	nm nm ² /m	
	8	Grade	8	K55	L80	N8	30 C	90	T95	P110	Q125	K55	L80	NE	80 C	90	Т95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	44.3 42.8 94	58.9 62.2 136	62	.2 70		66.6 73.9 162	73.7 85.5 188	80.0 97.2 213	52.5 49.7 108	76.4 72.3 157	3 72	.3 8	1.3	88.0 85.8 186	98.9 99.4 216	109.1 112.9 245
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	141 141 92 97	149 142 114 114	15 11	50 1 7 1	58 50 20 20	166 157 126 126	197 187 150 150	214 202 162 162	162 142 110 116	171 142 137 137	2 15 7 14	i0 1 10 1	50 44	191 157 152 152	226 187 180 180	246 202 195 195
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCI Grant Prideco STL Hydnil LX Hydnil 563 Hydnil 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26				7 9 6 10 10 10	6.9 3.8 2.2 0.6 8.2 9,0 8.1 0.0 2.9							7 9 6 10 10	8.9 2.8 3.3 1.2 3.6 1.9 0.0 9.1			
				. N	/Jake-up	torque	daN.m		1			N	/ake-up	torque	(daN.m	ר)			
				K55	LNBO	C90/95	P110	Q125	0 Q Q Q Q U	₽ (î E	Drift API (mm)	K55	LN80	C90/95	P110	Q125	0 (mm)	DI (mm)	Drift API (mm)
stics	27 28 29	Buttress Standard Buttress Special Clearance API STC	27 28 29						127.0 123.8		96.4 96.4						127.0 123.8		94.0 94.0
Connection characteristics	2.3 30 31 32 33 34 35 36 37 38 39 40	API LTC Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP	30 31 32 33 34 35 36 37 38 39 40	217 339 542 285 569 500 491	371 549 285 400 542 285 569 667 569	424 549 285 441 542 285 569 765 618	496 549 285 475 542 285 569 864 667	549 285 508 285 569 952 735	127.0 126.0 114.3 116.5 132.1 114.3 120.9 126.0 126.0 125.6	101.1 97.9 97.5 98.3 97.2 98.6	96.4 96.4 96.4 96.4 96.4 96.4 96.4 96.4	258 407 800 380 569 588	549 339 488 800 380 785 735	549 339 529 800 380 902 785	597 549 339 583 800 380 1029 834	666 549 339 630 380 1125 883	127.0 127.9 114.3 116.8 132.1 114.3 127.3 127.1 125.3	98.7 95.9 95.1 94.8	94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0
	40 41	Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	40		315	343	382	422	114.3	97.6	96.4		343	373	412	451	114.3	95.4	94.0

	1	Nominal size (OD)	1		5	.000 in			127.0	mm			5.	.000 in			127.0	mm	
	2	Nominal weight	2		13	.00 lb/f	t		19.0 da	aN/m	0		15	.00 lb/fi	t		21.9 da	aN/m	
vbod eqi	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		4 3 0.8	.253 in .494 in .77 in ² 32 gal/f 02 gal/f			6.4 m 114.1 2434 n 10.23 12.67	mm nm² ∦m			4. 4. 0.7	296 in 408 in 37 in ² '9 gal/ft 12 gal/ft			7.5 n 112.0 2822 r 9.85 12.67	mm nm² I/m	
۵	8	Grade	8	K55	L80	NE	80 C	90	T95	P110	Q125	K55	L80	N8	0 C	:90	T95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	28.6 33.6 92	35.4 48.8 134	3 48	.8 54	4.9	38.3 58.0 159	40.3 67.2 185	41.7 76.3 210	38.3 39.3 107	50.0 57.1 156	57.	1 6		55:9 67.9 185	61.0 78.6 214	65.4 89.3 243
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	138 138 83 89	145 145 104 107	5 18 I 10	i2 1 16 1	55 13	163 163 118 118	193 193 140 141	210 210 152 152	159 159 101 110	169 162 127 131	17	1 1 9 1	80 71 38 38	189 179 145 145	224 213 172 173	244 230 187 187
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26				8 6 14 14 10	4.4 8.8 4.4 5.7 0.4 0.0 5.1							7 9 6 12 12 10 10	57.0 11.9 50.3 54.4 55.7 51.1 50.0 55.0			
				K55	Make-up	torque 96/32 C30/32	(daN.m 01 14	Q125	G O D O U U U	D (mm)	Drift AP! (mm)	K55	Nake-up	torque 36/062	(daN.n 0110 LL	0125	DO (mm)	Q (um)	Drift API (mm)
Connection characteristics	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL Hydrit LX Hydrit 563 Hydrit 511 Hydrit 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	252 273 203 610 556 569 491	271 610 556 618 540 245	271 610 556 658 588 285	271 610 556 686 637 324	271 610 556 716 686 390	141.3 131.7 141.9 141.3 141.8	112.3 112.9 112.9 112.2	111.0 111.0 111.0 111.0 111.0 111.0	309 334 258 407 746 312 556 637 491 588	422 502 325 488 746 312 556 697 540 686 264	483 502 325 536 746 312 556 725 588 785 304	502 325 590 746 312 556 755 637 883 343	502 325 637 746 312 556 795 686 980 373	141.3 136.5 141.3 141.3 137.9 127.0 129.3 141.3 127.0 133.5 141.9 141.3 141.8 138.9 127.0	110.4 109.9 110.7 109.7 110.7	108.8 108.8 108.8 108.8 108.8 108.8 108.8 108.8 108.8 108.8 108.8 108.8 108.8 108.8 108.8 108.8

(1) The closed end displacement does not account for couplings. MPa  $\times$  145 = psi daN  $\times$  2.25 = lb daN.m  $\times$  7.38 = lb.ft mm  $\times$  0.0394 = in

. . .

N. 3X. Y. -.

	1	Nominal size (OD)	1		5.	000 in			127.0	mm			5.	.000 in			127.0	mm	
-	2	Nominal weight	2			<b>00</b> lb/ft			26.3 da	N/m			21	.40 lb/ft			31.2 da	N/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		4. 5. 0.7	362 in 276 in 27 in ² 5 gal/ft 2 gal/ft			9.2 m 108.6 m 3403 m 9.26 k 12.67	mm nm² /m			4. 6 0.6	437 in 126 in 26 in ² 39 gal/ft 32 gal/ft			11.1 n 104.8 r 4042 n 8.63 l 12.67	mm nm² /m	
u	8	Grade	8	K55	L80	N8	0 C	90	T95	P110	Q125	K55	L80	N8	0 C	90	T95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	50.9 48.0 129	72.3 69.9 188		9 78	3.6	32.9 33.0 223	92.9 96.1 258	102.2 109.2 293	60.5 58.0 153	88.0 84.4 223	84	4 94			121.0 116.0 307	137.5 131.8 348
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	192 162 129 140	203 162 162 167	21 17 16 17	1 1 5 1	71 76	228 179 185 185	270 213 219 220	294 230 238 238	227 162 160 173	227 162 200 207	17 20	1 1 4 2	39 71 18 18	251 179 229 229	299 213 271 273	322 230 294 294
Connection afficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCII Grant Prideco STL Hydrii LX Hydrii 563 Hydrii 511 Valiourec & Mannesmann New VAM Valiourec & Mannesmann VAM ACE Valiourec & Mannesmann VAM PRO Valiourec & Mannesmann VAM TOP Valiourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26	,			7 9 6 7 10 10 10	8.2 0.1 2.0 2.8 3.8 4.2 2.0 0.0 2.1 0.8							8 11 9 10	9.2 8.8 7.8 1.1 1.0 2.1 5.2			
-				K55	Nake-up 08 N	torque 96/062	(daN.m 0 1 4	Q125	DO (mm)	D [mm]	Drift API (mm)	K55	/lake-up 08 N	corque C30/32	(daN.m 0 5	Q125	DD (mm)	DI (mm)	Drift API (mm)
Connection characteristics	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	325 515 881 542 827 774 637 686	538 556 380 597 881 542 827 834 785 785 264	617 556 380 644 881 542 827 873 883 883 834 304	556 380 691 881 542 827 912 931 931 343	556 380 739 881 542 827 961 1029 1029 373	141.3 136.5 141.3 140.5 127.0 129.7 141.3 127.0 136.1 141.9 141.5 141.8 141.7 127.0	106.4 106.6 106.3 107.3	105.4 105.4 105.4 105.4	563 1885 971 883 931	665 922 651 1885 1079 1079 1125 530	762 922 705 1885 1125 1180 1274 569	922 759 1885 1180 1274 1376 588	922 813 1885 1227 1376 1471 607	141.3 136.5 141.3 143.4 130.0 146.1 141.9 146.1 141.8 144.6 127.0	102.8 103.5	101.6 101.6 101.6 101.6 101.6 101.6

(1) The closed end displacement does not account for couplings. MPa x 145 = psi daN x 2.25 = lb daN.m x 7.38 = lb.ft mm x 0.0394 = in

~

COMPARENT COMPARENT

											1							
1	Nominal size (OD)	1	-	ţ	5.000 in			127.0	៣៣			:	5.000 in			127.0	mm	
2	Nominal weight	2		23	3.20 lb/f	it		33.9 d	aN/m			24	4.10 lb/i	t		35.2 d	aN/m	
3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		2 6 0.	1.044 in 6.79 in ² 67 gal/f	t		102.7 4381 8.29	mm mm² I/m			0.	‡.000 in 7.07 in ² .65 gal/f	t		101.6 4560 8.11	mm mm² I/m	
8	Grade	8	K55	L80	D N	30 (	:90	T95	P110	Q125	K55	L8(	) N	30 (	290	T95	P110	Q125
9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	65.6 63.4 166	92.3	3 92	.3 1	03.8		131.1 126.9 332	149.0 144.2 378	68.3 66.4 173	96.	5 96	.5 1			136.5 132.7 346	155.1 150.8 393
12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	227 162 176 191	162 22	2 17 1 22	71 25	171 240	251 179 252 252	299 213 299 300	322 230 324 324	227 162 185 200	16: 23:	2 17 2 23	71 36	171 252	251 179 265 265	299 213 314 315	322 230 340 340
16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCI Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26	2			7 8 10 8 10	79.0 89.7 11.0 92.5 19.0 12.0							7 9 10 8	79.7 90.1 77.8 95.6 35.0			
			1	Make-up	o torque	daN.n	n)			_	N	/Jake-up	o torque	daN.n	n)			-
			K55	LN80	C90/95	P110	Q125	G (mm)	0 (in m	Drift AF (mm)	K55	LN80	C90/95	P110	Q125	DO DO	⊆ (î )	Drift AP (mm)
27 28 29	Buttress Standard Buttress Special Clearance	27 28 29						141.3 136.5		99.5 99.5						141.3 136.5		98.4 98.4
29 30 31 32 33 34 35	API LTC Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511	30 31 32 33 34 35	461 583 1966	1139 590 678 1966	1139 590 739 1966	1139 590 766 1966	1139 590 847 1966	144.9 127.0 130.3 146.1	104.4 101.3 100.7 101.4	99.5 99.5 99.5 99.5	420 630 2034	768 1207 529 725 2034	881 1207 529 780 2034	1207 529 841 2034	1207 529 902 2034	141.3 145.7 127.0 130.4 146.1	103.5 103.0 99.6 100.3	98.4 98.4 98.4 98.4 98.4
36 37 38 39 40 41	Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	36 37 38 39 40 41	1029 980 1079	1125 1274 1322 540	1180 1376 1424 588	1227 1519 1620 637	1274 1668 1817 697	141.9 146.1 141.8 146.1 127.0	101.5	99.5 99.5 99.5 99.5 99.5	1029 1079	1125 1376 549	1180 1471 607	1274 1668 667	1322 1763 716	141.9 147.5 141.8 127.0	100.5	98.4 98.4 98.4 98.4
	2 3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 4 33 34 35 36 37 38 39 40 31 31 31 32 33 34 35 36 37 38 39 40 30 31 31 31 31 31 31 31 31 31 32 32 33 34 35 36 37 38 39 40 30 31 31 31 31 31 31 31 32 32 33 34 35 36 37 38 39 30 31 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 40 30 31 31 32 33 34 35 36 37 38 39 40 30 31 32 33 34 35 36 37 38 39 40 31 35 36 37 38 39 40 31 32 33 34 35 36 37 38 39 40 30 31 31 35 36 37 38 39 40 30 31 35 36 37 38 39 40 30 30 31 35 35 36 37 38 39 40 30 30 31 35 35 35 35 35 35 35 35 35 35	2       Nominal weight         3       Wall thickness         4       Inside diameter         5       Steel cross-section         6       Capacity         7       Displacement (1)         8       Grade         9       Collapse resistance (MPa)         10       Internal yield pressure (MPa)         11       Pipe body yield strength (1000 daN)         12       Buttress Standard         13       Buttress Standard         14       API STC         15       API LTC         16       Grant Prideco TCI!         17       Grant Prideco STL         18       Hydril LX         19       Hydril 563         20       Hydril 511         21       Hydril 521         22       Vallourec & Mannesmann NAM ACE         23       Vallourec & Mannesmann VAM PRO         24       Vallourec & Mannesmann VAM CE         25       Vallourec & Mannesmann FJL         26       Vallourec & Mannesmann FJL         27       Buttress Standard         28       Buttress Standard         29       API LTC         30       API LTC	2Nominal weight23Wall thickness34Inside diameter45Steel cross-section56Capacity67Displacement (1)78Grade89Collapse resistance (MPa)910Internal yield pressure (MPa)1011Pipe body yield strength (1000 daN)1112Buttress Standard1213Buttress Special Clearance1314API STC1415API LTC1516Grant Prideco TCIF1617Grant Prideco STL1718Hydril LX1819Hydril 5631920Hydril 5112021Vallourec & Mannesmann New VAM2222Vallourec & Mannesmann VAM PRO2323Vallourec & Mannesmann VAM PRO2524Vallourec & Mannesmann VAM PRO2525Vallourec & Mannesmann VAM TOP2526Vallourec & Mannesmann FJL2627Buttress Standard278Buttress Special Clearance2829API STC3030API LTC3031Grant Prideco TCII3132Grant Prideco TCI3134Hydril 563344ydril LX3334Hydril 5633435Hydril 5213636Hydril 52136	Nominal weight         Image: constraint of the second	2         Nominal weight         2         Z           3         Wall thickness         3         4           4         Inside diameter         4         4           5         Steel cross-section         5         6           6         Capacity         6         0.0.           7         Displacement (1)         7         1.           8         Grade         8         K55         L80           9         Collapse resistance (MPa)         9         65.6         95.           10         Internal yield pressure (MPa)         10         63.4         92.           11         Pipe body yield strength (1000 daN)         11         166         24           12         Buttress Standard         12         22.7         22           13         Buttress Standard         12         22.7         22           14         API STC         14         176         22           15         API LTC         15         191         224           16         Grant Prideco TCI         16         17         17           17         Grant Prideco TCI         17         18         Hydrii 553         193	Nominal weight         Z         Z3.20 lb/f           3         Wall thickness         3         0.478 in           4         Inside diameter         4         4.044 in           5         Steel cross-section         5         6.79 al/f           6         Capacity         6         0.67 gal/f           7         Displacement (1)         7         1.02 gal/f           8         Grade         8         K55         L80         NB           9         Collapse resistance (MPa)         9         65.6         95.4         92           10         Internal yield pressure (MPa)         10         62.1         92         11         166         242         22           12         Buttress Standard         12         227         227         22         12           13         Buttress Standard         12         12         162         162         17           14         API STC         13         162         162         17           14         API STC         15         191         228         24           20         Hydril 563         19         9         20         20           14         <	Instant weight         Image: Constraint of the sector of the secto	International weight         Image: Constraint of the second	Image: Standard         Image: St	Interval         Image is a strain of the image is strain of the image is a strain of the image is a strain of th	Image of the second	2         Nominal weight         2 $23.20$ b/rt $33.9$ daN/m $3$	2         Nominal weight         2         23.2 d b/r         33.9 d b/r         2         2           3         Walf Dickness         4 $4.044$ in $102.7$ mm         4 $4.044$ in $102.7$ mm         6 $0.73$ in? $4.381$ mm? $4.044$ in $102.7$ mm $0.7$ $33.9$ d b/r $22.7$ $32.8$ $10.73.7$ $13.3.7$ $11.1.490.7$ $66.4.96.4.96.7$ $66.4.96.7$ $66.4.96.7$ $66.4.96.7$ $10.6.29.7$ $11.490.7$ $66.3.92.7$ $22.7$ $230.73.8.106.6.126.9.144.20$ $66.4.96.6.126.9.144.20$ $66.4.96.6.126.9.144.20$ $66.4.96.6.126.9.144.20$ $66.4.96.6.126.9.144.20$ $66.4.96.6.126.9.144.20$ $66.7.9.7.227.226.72.20$ $332.2.27.227.22.72.22.72.23.103.8.10.6.126.9.144.20$ $66.2.9.9.324.173.220.162.17.13.13.13.17.11.199.130.130.131.135.13.13.13.13.13.13.13.13.13.13.13.13.13.$	Image: Index weight         Image: Index weight	2         Nominal weight         7         2         2.3 2 0 b/t         3.3 9 de/t         3.3 9 de/t         2.4 10 b/t           3         Walt inclucass         3         0.478 in         1.21 mm         3.9 de/t         4.000 in         7.07 m²         4.000 in         7.07 m²         7.07 m²	2         Nominal weight         2 $22.20 \text{ b/t}$ $33 \text{ deV/m}$ $22.1 \text{ m}$ $33 \text{ deV/m}$ $22.1 \text{ m}$ $30 \text{ def}$ $30 \text{ def}$ $30 \text{ def}$ $30 \text{ def}$ $12.1 \text{ m}$ $4.000 \text{ m}$ $4.000 \text{ m}$ 6         Steel conselection         6 $67.3 \text{ m}^2$ $4381 \text{ m}^2$ $4.000 \text{ m}^2$ $4.000 \text{ m}^2$ $0.005 \text{ galvt}$ $0.055 \text{ galvt}$	Image: Problem         Province of the section of the sectin of the sectin of the section of the sectin of the section of t	Indicat         Indice         Image         Image <thimage< th="">         Image         Image</thimage<>

(1) The closed-end displacement does not account for couplings. MPa x 145 = psi daN x 2.25 = lb daN.m x 7.38 = lb.ft mm x 0.0394 = in

/ and the second second 1997 - 1998 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1

CONTRACTOR .

	1	Nominal size (OD)	1		5.	.500 in			139.7	mm			5.	.500 in			139.7	mm	
	2	Nominal weight	2		14	. <b>00</b> lb/fi	:		20.4 da	aN/m			15	. <b>50</b> lb/ft			22.6 da	ıN/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		5. 4 1.0	244 in 012 in .03 in ² 02 gal/ft 23 gal/ft			6.2 m 127.3 2599 r 12.73 15.33	mm nm² I/m			4. 4. 1.0	275 in 950 in .51 in ² )0 gal/ft !3 gal/ft			7.0 m 125.7 2912 n 12.42 15.33	mm nm² I/m	
	8	Grade	8	К55	L80		0 C	90	T95	P110	Q125	K55	L80	N8	0 C	90	T95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	21.5 29.4 99	24.9 42.8 143	42	.8 48		27.3 50.9 170	29.2 58.9 197	30.4 66.9 224	27.9 33.2 110	34.4 48.3 161	48.	35	6.3 4.3 81	37.1 57.3 191	38.8 66.4 221	40.6 75.4 251
Tensile strength (1.0 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	145 145 84 91	155 155 106 113	16 10	i 1 18 1	65 65 17 19	173 173 123 125	205 205 144 149	224 224 161 161	163 163 99 106	173 173 124 132	18 12	1 1 6 1	85 85 37 39	194 194 144 146	230 230 168 174	251 251 188 188
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26	3			8 6 14	3.5 8.5 3.3 8.3 0.0							8 6 13 12 10	9.3 9.7 6.4 6.9 2.4 8.5 0.0 2.1 5.1			
				K55	Aake-up 08 N	torque 30/82 C30/	(daN.m 01 6	Q125	00 (iii uu	QI (mm)	Drift API (mm)	4 K55	Nake-up	torque 26/062	(daN.n	Q125	CO (imm)	Q W	Drift API (mm)
Connection characteristics	27 28 29 30 31 32 33 34 35 36 37 38 39	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann NAM ACE Vallourec & Mannesmann VAM PRO	27 28 29 30 31 32 33 34 35 36 37 38 39	256 217 610 542 540	271 610 542 647	271 610 542 686	271 610 542 725	271 610 542 765	153.7 149.2 153.7 139.7 153.7 143.8 154.3 154.2		124.1	301 324 230 705 312 624 637 392	339 705 312 624 697 491	339 705 312 624 735 540	339 705 312 624 774 588	339 705 312 624 813 637	139.7 145.1 154.3 153.7 154.2	124.2 124.2 124.5 123.4 124.5	122.6 122.6 122.6 122.6 122.6 122.6 122.6 122.6 122.6 122.6 122.6 122.6 122.6
	40 41	Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	40 41						aN.m ×	[		540	686 363 .0394 =	785 412	883 470	980 519	150.6 139.7	123.8	122.6 122.6

.

逐渐建立

(1) The closed-end displacement does not account for couplings. MPa x 145 = psi daN x 2.25 = lb daN.m x 7.38 = lb.ft mm x 0.0394 = in

.

	1	Nominal size (OD)	1			5.500 in			139.7	mm		Ī	5	.500 in			139.7	mm	
	2	Nominal weight	2	1	1	7.00 lb/1	ft		24.8 d	aN/m			20	0.00 lb/	ft		29.2 da	aN/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		. 2 2 0.	).304 in 1.892 in 1.96 in ² 98 gal/f 23 gal/f	ït		7.7 r 124.3 3202 r 12.13 15.33	mm mm² I/m			4 5 0.1	.361 in .778 in i.83 in ² 93 gal/f 23 gal/f	t		9.2 n 121.4 3760 n 11.57 15.33	mm nm² I/m	
u.	8	Grade	8	K55	L80	) N	80 (	C90	T95	P110	Q125	K55	L80	) N	30 C	:90	T95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	33.9 36.7 121	43. 53. 17	4 53	8.4 6		47.9 63.4 210	51.6 73.4 243	54.4 83.4 276	45.6 43.6 143	60.9 63.4 207	<b>i</b> 63	.4 7		69.1 75.2 246	76.6 87.1 285	83.3 99.0 324
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	179 179 112 121	19 17 14 15	9 18 1 14	39 44		213 198 164 166	253 236 191 198	276 255 214 214	210 179 138 149	224 179 174 189	) 18 1 17	39 1 77 1	238 189 191 195	251 198 202 205	297 236 235 244	324 255 263 263
Connection afficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26				6 6 12 11 10	52.9 71.9 90.6 50.9 59.6 6.9 90.0 90.0 92.1 55.1					<i>.</i>		5 9 7 10 11 10 10	59.0 71.0 92.0 52.4 73.8 92.6 5.7 90.0 92.1 58.7			
				K55	Aake-ur 08 NJ	torque Cooloe Cooloe	e (daN.n 01 14	0125 (u	go (mm)	DI DI	Drift API (mm)	K55	Nake-up 08 N	torque C30/32	of (daN.n 0114	0125	GD (mm)	DI (mm)	Drift API (mm)
Connection characteristics	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL Hýdril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	342 369 271 475 786 339 705 686 540 588	467 590 380 576 786 339 705 746 686 735 382	537 590 380 644 786 339 705 785 735 834 431	626 590 380 705 786 339 705 824 785 931 480	590 380 766 786 339 705 864 834 1029 540	153.7 149.2 153.7 153.7 151.0 139.7 142.2 153.7 146.3 154.3 154.3 154.2 151.8 139.7	122.3 122.4 122.2 123.0 122.0 123.0	121.1 121.1 121.1 121.1 121.1 121.1 121.1 121.1 121.1 121.1 121.1 121.1 121.1 121.1	298 583 895 529 854 804 735 735	575 630 447 685 895 529 854 883 883 883 883 480	660 630 447 746 895 529 854 922 980 980 549	771 630 447 807 895 529 854 971 1029 1029 607	630 447 868 895 529 854 1029 1125 1125 677	139.7 142.4 153.7 139.7 148.6 154.3 156.2 154.2 154.2	122.3 119.3 119.3 119.1 120.1 119.6	118.2 118.2 118.2 118.2 118.2 118.2 118.2 118.2 118.2 118.2 118.2 118.2 118.2 118.2 118.2 118.2

(1) The closed-end displacement does not account for couplings. MPa x 145 = psi daN x 2.25 = lb daN.m x 7.38 = lb.ft mm x 0.0394 = in

1.000

	1	Nominal size (OD)	1		5.	500 in			139.7	mm	*		5.	500 in		-	139.7	mm	
	2	Nominal weight	2		23	. <b>00</b> lb/ft			33.6 da	N/m			26	00 lb/ft			37.9 da	N/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		4. 6. 0.8	415 in 670 in 63 in ² 89 gal/ft 23 gal/ft			10.5 n 118.6 i 4277 n 11.05 15.33	mm nm² I/m			4. 7. 0.8	476 in 548 in 51 in ² 4 gal/ft 3 gal/ft			12.1 r 115.5 4847 n 10.48 15.33	mm nm² I/m	````
	8	Grade	8	K55	L.80	N8	0 C	90	T95	P110	Q125	K55	L80	N8	0 C	90	T95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	52.9 50.1 162	77.0 72.8 236	72.	8 81	1.9 8		100.2 100.1 324	110.7 113.8 369	60.0 57.4 184	87.2 83.5 267		5 94			119.9 114.9 368	136.3 130.5 418
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	239 179 162 175	245 179 204 217	18 20	91 82	89 24	271 198 237 240	322 236 276 286	348 255 309 309	245 179 188 203	245 179 237 253	18 24	9 1 1 2	58 89 61 66	271 198 275 279	322 236 321 333	348 255 359 359
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26	3			7 9 10 9 10	2.9 7.7 3.0 6.5 0.2 1.7 2.0 1.9 3.7	- 	1					7) 8: 10: 8: 10	7.0 6.3 9.7 9.6 2.0 9.0 1.9 7.0			
				K55	Aake-up 08N	torque 26/062	(daN.m 01 14	Q125	a (mm)	Q (mm)	Drift API (mm)	X55 7	Aake-up	torque C30/32	(daN.m 0 L1 L	Q125	go (mm)	DI (mm)	Drift API (mm)
Connection characteristics	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	353 590 1044 990 961 883 931	675 1017 569 698 1044 990 1079 1079 1125 579	776 1017 569 766 1044 990 1125 1180 1227 598	906 1017 569 827 1044 990 1180 1322 1424 658	1013 1017 569 895 1044 990 1274 1424 1519 716	153.7 149.2 153.7 155.4 139.7 142.7 153.7 150.8 154.3 156.2 154.2 156.4 139.7	116.8 116.6	115.4 115.4 115.4 115.4 115.4 115.4 115.4 115.4	515 651 1491 1029 1125 1180	1254 651 780 1491 1125 1424 1471 574	1254 651 854 1491 1227 1566 1620 667	1254 651 929 1491 1274 1715 1864 706	1254 651 1003 1491 1322 1864 2061 765	153.7 149.2 157.8 139.7 143.0 155.6 154.3 158.6 154.2 158.7 139.7	117.2 114.1 115.2 114.2 114.2	112.3 112.3 112.3 112.3 112.3 112.3 112.3 112.3 112.3 112.3 112.3

(1) The closed end displacement does not account for couplings. MPa × 145 = psi daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

۰.

- UNITAL SACRAGE

13.32 M 20.22

[	1	Nominal size (OD)	1		5	500 in			139.7	mm			6.	625 in		,	168.3	mm	
	2	Nominal weight	2		26	. <b>80</b> lb/ft			39.1 d	aN/m			20	<b>00 l</b> b/ft			29.2 da	N/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		4. 7. 0.8	500 in 500 in .85 in ² 33 gal/ft 23 gal/ft			12.7 114.3 5067 10.26 15.33	mm nm² ∦m			6 5 1.4	288 in 049 in .73 in ² 19 gal/ft '9 gal/ft			7.3 n 153.6 .3699 r 18.54 22.24	mm nm² ∜m	
	8	Grade	8	K55	L80	N8	0 C	90	T95	P110	Q125	K55	L80	N8	o c	90	T95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	62.7 60.3 192	91.2 87.8 279	87.	89		108.3 104.2 332	125.4 120.7 384	142.5 137.1 437	20.5 28.8 140	24.0 42.0 204	42.	0 43	7.2	26.2 49.8 242	27.8 57.7 281	28.7 65.6 319
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	245 179 198 214	245 179 250 267	18 25	9 · 5 2	258 189 275 281	271 198 290 295	322 236 339 351	348 255 379 379	202 202 119 129	217 217 151 164	22 15	62 41	31 67	245 243 176 189	289 289 205 222	316 312 230 243
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCIł Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Yallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26	3			7 9 10	3.4 8.7 0.2 2.0 5.1							8 6 16 16 10	7.0 8.6 5.5 8.6 4.1 0.0 1.9			
				K55	Nake-up	torque 26/062	(daN.m 0110 LJ	Q125	DO DO Umuj	DI (mm)	Drift AP! (mm)	K55	Nake-up 08N	torque 96/062	(daN.m 01 14	Q125	OD (mm)	DI (mm)	Drift API (mm)
Connection characteristics	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII. Grant Prideco STL Hydril 563 Hydril 553 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	515 780 1627 1125	1356 651 902 1627 1424	1356 651 976 1627 1566	1356 651 1051 1627 1715	1356 651 1119 1627 1864	153.7 149.2 158.7 139.7 143.1 155.6 159.5 139.7	116.1 113.5 112.3 113.0	111.1 111.1 111.1 111.1	362 393 325 800 746 765 540 637	644 420 800 746 864 686 834	644 420 800 746 912 735 931	644 420 800 746 971 785 1079	644 420 800 746 1029 834 1180	187.7 177.8 187.7 187.7 178.8 168.3 187.7 173.2 188.3 187.7 188.2 179.9	152.4	150.5 150.5 150.5 150.5 150.5 150.5 150.5 150.5 150.5 150.5 150.5 150.5

(1) The closed end displacement does not account for couplings. MPa × 145 = psi daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

1-1261-001-1261-1

| <u> </u>                                                             | ·                                                                                                                                                                                                                                                                     | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                     |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                    | Nominal size (OD)                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .625 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     |                                                                                                                      | 168.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mm<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .625 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | | | | | | | | |
                                                     | 168.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2                                                                    | Nominal weight                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .20 lb/ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                     |                                                                                                                      | 33.9 da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | iN/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .00 lb/ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | | | | | | | | |
                                                     | 35.0 da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3<br>4<br>5<br>6<br>7                                                | Wall thickness<br>Inside diameter<br>Steel cross-section<br>Capacity<br>Displacement (1)                                                                                                                                                                              | 3<br>4<br>5<br>6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5<br>6<br>1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .965 in<br>i.53 in²<br>45 gal/fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                     |                                                                                                                      | 151.5 i<br>4210 r<br>18.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mm<br>nm²<br>I/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5<br>6<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .921 in<br>.94 in ²<br>13 gal/ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   
                                          | 150.4 i<br>4475 r<br>17.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mm<br>nm²<br>I/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8                                                                    | Grade                                                                                                                                                                                                                                                                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 C                                                                                 | 90                                                                                                                   | T95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | K55                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
                                                     | Т95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Q125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9<br>10<br>11                                                        | Collapse resistance (MPa)<br>Internal yield pressure (MPa)<br>Pipe body yield strength (1000 daN)                                                                                                                                                                     | 9<br>10<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.7<br>33.1<br>160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 48.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 54                                                                                | 1.1 5                                                                                                                | 57.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38.4<br>66.1<br>319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40.2<br>75.1<br>363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31.4<br>35.3<br>170                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 51.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 51.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46.4<br>70.5<br>339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48.4<br>80.1<br>386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12<br>13<br>14<br>15                                                 | Buttress Standard<br>Buttress Special Clearance<br>API STC<br>API LTC                                                                                                                                                                                                 | 12<br>13<br>14<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 229<br>220<br>141<br>153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 220<br>179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 2<br>2 1                                                                          | 31<br>98                                                                                                             | 243<br>208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 329<br>289<br>243<br>264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 360<br>312<br>272<br>289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 244<br>220<br>152<br>166                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 220<br>194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 2<br>7 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                     | 296<br>243<br>225<br>243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 350<br>289<br>263<br>285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 383<br>312<br>295<br>312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26       | Grant Prideco TCII<br>Grant Prideco STL<br>Hydril 563<br>Hydril 553<br>Hydril 511<br>Hydril 521<br>Vallourec & Mannesmann New VAM<br>Vallourec & Mannesmann VAM ACE<br>Vallourec & Mannesmann VAM PRO<br>Vallourec & Mannesmann VAM TOP<br>Vallourec & Mannesmann FJL | 16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14<br>10<br>10                                                                      | 8.2<br>0.0<br>2.0                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6<br>9<br>6<br>7<br>13<br>13<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.6<br>0.6<br>3.3<br>1.0<br>9.4<br>5.6<br>0.0<br>2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   
                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                      |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٨                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /lake-up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | torque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (daN.m                                                                              | n)                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ā                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ∕lake-up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | torque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (daN.n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ר)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 
                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ā.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                      |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LN80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C90/95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P110                                                                                | Q125                                                                                                                 | G<br>O<br>O<br>U<br>U<br>U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | []<br>[]<br>[]<br>[]<br>[]<br>[]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Drift A<br>(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | K55                                                                                                                                                                                                                                                                                                    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LN80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C90/95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   
                                                     | 00<br>(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Drift API<br>(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38 | Buttress Standard<br>Buttress Special Clearance<br>API STC<br>API LTC<br>Grant Prideco TCII<br>Grant Prideco STL<br>Hydril LX<br>Hydril 563<br>Hydril 511<br>Hydril 521<br>Valfourec & Mannesmann New VAM<br>Valfourec & Mannesmann VAM ACE                           | 27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 732<br>843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1064<br>922<br>941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1064<br>1037<br>980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1064<br>1152<br>1079                                                                | 1064<br>1274<br>1125                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 148.3<br>148.3<br>148.3<br>148.3<br>148.3<br>148.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 464<br>504<br>420<br>800<br>1017<br>691<br>936<br>941<br>785                                                                                                                                                                                                                                           
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 647<br>1139<br>529<br>990<br>1017<br>691<br>936<br>1079<br>980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 744<br>1139<br>529<br>1098<br>1017<br>691<br>936<br>1125<br>1079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 869<br>1139<br>529<br>1200<br>1017<br>691<br>936<br>1180<br>1125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1139<br>529<br>1308<br>1017<br>691<br>936<br>1274<br>1227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              
                                                     | 168.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 148.3<br>149.3<br>148.4<br>149.1<br>148.1<br>149.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 147.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                      | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37                                                     | 2       Nominal weight         3       Wall thickness         1       Inside diameter         5       Steef cross-section         6       Capacity         7       Displacement (1)         8       Grade         9       Collapse resistance (MPa)         10       Internal yield pressure (MPa)         11       Pipe body yield strength (1000 daN)         12       Buttress Standard         13       Buttress Special Clearance         14       API STC         15       API LTC         16       Grant Prideco TCII         17       Grant Prideco STL         18       Hydril LX         19       Hydril 563         20       Hydril 511         21       Hydril 521         22       Vallourec & Mannesmann New VAM         23       Vallourec & Mannesmann VAM ACE         24       Vallourec & Mannesmann VAM ACE         25       Vallourec & Mannesmann FJL         26       Vallourec & Mannesmann FJL         27       Buttress Standard         38       Buttress Standard         39       API STC         30       API STC | 2Nominal weight23Wall thickness34Inside diameter45Steel cross-section56Capacity67Displacement (1)78Grade89Collapse resistance (MPa)910Internal yield pressure (MPa)1011Pipe body yield strength (1000 daN)1112Buttress Standard1213Buttress Special Clearance1314API STC1415API LTC1516Grant Prideco TCII1617Grant Prideco STL1718Hydril LX1819Hydril 5631920Hydril 5112021Hydril 5212122Vallourec & Mannesmann NAM ACE2323Vallourec & Mannesmann VAM ACE2324Vallourec & Mannesmann VAM TOP2525Vallourec & Mannesmann VAM TOP2526Vallourec & Mannesmann FJL2627Buttress Standard2728Buttress Special Clearance2829API STC3031Grant Prideco STL3132Grant Prideco STL3233Hydril 5113534Hydril 5633435Hydril 5113536Hydril 5213637Vallourec & Mannesmann New VAM37 | Nominal weight         2           Nominal weight         2           Wall thickness         3           Inside diameter         4           Steel cross-section         5           Gapacity         6           Displacement (1)         7           B         Grade         8         K55           9         Collapse resistance (MPa)         9         27.7           10         Internal yield pressure (MPa)         10         33.1           11         Pipe body yield strength (1000 daN)         11         160           12         Buttress Standard         12         229           13         Buttress Special Clearance         13         220           14         API STC         14         141           15         API LTC         16         17           15         API LTC         16         17           17         Buttress Standard         20         21           19         Hydril LX         18         19           19         Hydril S53         20         Hydril S51         21           21         Hydril S51         20         21         21           22 | Norminal weight         2         Z           2         Norminal weight         2         23           3         Wall thickness         3         0           4         Inside diameter         4         5           5         Steef cross-section         6         1.4           7         Displacement (1)         7         6         1.4           8         Grade         8         K55         L80           9         Collapse resistance (MPa)         9         27.7         34.1           10         Internal yield pressure (MPa)         10         33.1         48.1           11         Pipe body yield strength (1000 daN)         11         160         232           12         Buttress Standard         12         22.9         248           13         Buttress Standard         12         22.9         248           13         Buttress Standard         12         22.9         248           14         API STC         14         141         175           15         API LTC         15         153         194           16         Grant Prideco TCI         16         17         14 | 1       Nominal weight       2 $23.20$ lb/ft         3       Wall thickness       3 | 1       Nominal weight       2 $2 = 2 \cdot 2 \cdot 1 \cdot$ | 1       Nominal weight       2 $23.20$ lb/rt         3       Wall thickness       3       0.330 in         4       Inside diameter       4       5.965 in         5       Steel cross-section       6       1.45 gal/ft         7       Displacement (1)       7       1.79 gal/ft         8       Grade       8       K55       L80       N80       C90         9       Collapse resistance (MPa)       9       27.7       34.1       34.1       35.9       3         10       Internal yield pressure (MPa)       9       27.7       34.1       34.1       35.9       3         11       Pipe body yield strength (1000 daN)       11       160       23.2       232       261         12       Buttress Standard       12       22.9       248       258       265         13       Buttress Special Clearance       13       14       141       179       182       198         14       Pipe body yield strength (1000 daN)       15       153       194       198       214         16       Grant Prideco TCI       16       141       141       179       182       198         19       H | 1       1       2       23.20 lb/lt       33.9 dc         2       Nominal weight       2 $23.20$ lb/lt $33.9$ dc         3       Wall thickness       3       0.330 in $8.4$ n         4       inside diameter       4 $5.965$ in $151$ 5         5       Steel cross-section       6 $1.45$ ga/lt $18.03$ 7       Displacement (1)       7 $1.79$ ga/lt $22.24$ 8       Grade       8       K55       L80       N80       C90       T95         9       Collapse resistance (MPa)       9       27.7       34.1       34.1       35.9       36.7         10       Internal yield pressure (MPa)       10       33.1       48.1       48.1       54.1       57.1         11       Pipe body yield strength (1000 daN)       11       160       222       222       231       231       243         12       Buttress Special Clearance       13       220       220       231       231       243         13       Buttress Special Clearance       13       14       141       179       182       148         14       141       179       < | 1       Norminal weight       2 $23.20$ lb/lt $33.9$ ds/lv         3       Wall thickness       3 $0.330$ in $8.4$ mm         4       Inside diameter       5 $6.53$ in ² $4210$ mm ² 5       Steel cross-section       5 $6.53$ in ² $4210$ mm ² 6       Capacity       7 $1.79$ gal/t $22.24$ l/m         7       Displacement (1)       7 $1.79$ gal/t $22.24$ l/m         8       Grade       8       K55       L80       N80       C90       T95       P110         9       Collapse resistance (MPa)       10       33.1       48.1       48.1       57.1       66.1         11       Pipe body yield strength (1000 daN)       11       160       232       232       261       276       319         12       Buttress Standard       12       229       248       243       243       243         14       141       179       182       198       208       243       243         14       141       179       182       198       208       243       243         15       APL LC       16 <td< td=""><td>1       Norminal weight       2       33.9 dal/m         2       Norminal weight       2       3.3.0 in 3.0 in 151.5 mm         3       Wall thickness       3       3.0.330 in 151.5 mm       8.4 mm         5       Steel cross-section       5       6.53 in²       4.210 mm²       4.210 mm²         6       Capacity       6       8.4 mm       18.03 l/m       22.24 l/m       18.03 l/m         7       Displacement (1)       7       1.7.9 gal/t       22.24 l/m       18.03 l/m       22.24 l/m       22.42 l/m         8       Grade       8       K55       L60       N80       C90       95       P110       O125         9       Collapse resistance (MPa)       10       23.1       48.1       48.1       54.1       57.1       66.1       75.1         11       Pipe body yield strength (1000 daN)       11       160       22.2       22.0       231       231       243       289       363         13       Buttress Standard       12       22.9       22.0       231       231       243       243       243       243       243       243       243       242       243       243       <t< td=""><td>1       1       2       23.20 b/ft       33.9 daW       1       1       1       3       3       $3.0 m$ $3.3 m$ $3.0 m$ $3.4 m$ $3.1 m$<td>International weight       2       $22 20 \text{ b/t}$ $33.9 \text{ del M/m}$ $53.9 \text{ del M/m}$ $53.9 \text{ del M/m}$ $54.7 \text{ del M/m}$         3       Wall thickness       3       $65.5 \text{ in}^2$ $151.5 \text{ mm}$ $151.5 \text{ mm}$ $55.5 \text{ def cross-section}$ $66$ $1.45 \text{ gal/t}$ $151.5 \text{ mm}$ $151.7 \text{ mm}$ $150.3 \text{ m}^2$ $150.3$</td><td>indication         initial elements         initial elements</td><td>Indicator         2         Defining weight         2         $22.20 \text{ b/f}$ $33.9 \text{ d/l}/m$ $32.9 \text{ d/l}/m$ $22.00 \text{ b/l}/m$ $33.9 \text{ d/l}/m$ $5.52 \text{ in}$ $22.00 \text{ b/l}/m$ $33.9 \text{ d/l}/m$ $5.52 \text{ in}$ $1.43 \text{ gal/t}$ <th< td=""><td>is bounded wight       is bounded wight       <t< td=""><td>Name       Nome       Nome</td><td>Non-state weight         Non-state weight         State drameter         St</td></t<></td></th<></td></td></t<></td></td<> | 1       Norminal weight       2       33.9 dal/m         2       Norminal weight       2       3.3.0 in 3.0 in 151.5 mm         3       Wall thickness       3       3.0.330 in 151.5 mm       8.4 mm         5       Steel cross-section       5       6.53 in ² 4.210 mm ² 4.210 mm ² 6       Capacity       6       8.4 mm       18.03 l/m       22.24 l/m       18.03 l/m         7       Displacement (1)       7       1.7.9 gal/t       22.24 l/m       18.03 l/m       22.24 l/m       22.42 l/m         8       Grade       8       K55       L60       N80       C90       95       P110       O125         9       Collapse resistance (MPa)       10       23.1       48.1       48.1       54.1       57.1       66.1       75.1         11       Pipe body yield strength (1000 daN)       11       160       22.2       22.0       231       231       243       289       363         13       Buttress Standard       12       22.9       22.0       231       231       243       243       243       243       243       243       243       242       243       243 <t< td=""><td>1       1       2       23.20 b/ft       33.9 daW       1       1       1       3       3       $3.0 m$ $3.3 m$ $3.0 m$ $3.4 m$ $3.1 m$<td>International weight       2       $22 20 \text{ b/t}$ $33.9 \text{ del M/m}$ $53.9 \text{ del M/m}$ $53.9 \text{ del M/m}$ $54.7 \text{ del M/m}$         3       Wall thickness       3       $65.5 \text{ in}^2$ $151.5 \text{ mm}$ $151.5 \text{ mm}$ $55.5 \text{ def cross-section}$ $66$ $1.45 \text{ gal/t}$ $151.5 \text{ mm}$ $151.7 \text{ mm}$ $150.3 \text{ m}^2$ $150.3$</td><td>indication         initial elements         initial elements</td><td>Indicator         2         Defining weight         2         $22.20 \text{ b/f}$ $33.9 \text{ d/l}/m$ $32.9 \text{ d/l}/m$ $22.00 \text{ b/l}/m$ $33.9 \text{ d/l}/m$ $5.52 \text{ in}$ $22.00 \text{ b/l}/m$ $33.9 \text{ d/l}/m$ $5.52 \text{ in}$ $1.43 \text{ gal/t}$ <th< td=""><td>is bounded wight       is bounded wight       <t< td=""><td>Name       Nome       Nome</td><td>Non-state weight         Non-state weight         State drameter         St</td></t<></td></th<></td></td></t<> | 1       1       2       23.20 b/ft       33.9 daW       1       1       1       3       3 $3.0 m$ $3.3 m$ $3.0 m$ $3.4 m$ $3.1 m$ <td>International weight       2       $22 20 \text{ b/t}$ $33.9 \text{ del M/m}$ $53.9 \text{ del M/m}$ $53.9 \text{ del M/m}$ $54.7 \text{ del M/m}$         3       Wall thickness       3       $65.5 \text{ in}^2$ $151.5 \text{ mm}$ $151.5 \text{ mm}$ $55.5 \text{ def cross-section}$ $66$ $1.45 \text{ gal/t}$ $151.5 \text{ mm}$ $151.7 \text{ mm}$ $150.3 \text{ m}^2$ $150.3$</td> <td>indication         initial elements         initial elements</td> <td>Indicator         2         Defining weight         2         $22.20 \text{ b/f}$ $33.9 \text{ d/l}/m$ $32.9 \text{ d/l}/m$ $22.00 \text{ b/l}/m$ $33.9 \text{ d/l}/m$ $5.52 \text{ in}$ $22.00 \text{ b/l}/m$ $33.9 \text{ d/l}/m$ $5.52 \text{ in}$ $1.43 \text{ gal/t}$ <th< td=""><td>is bounded wight       is bounded wight       <t< td=""><td>Name       Nome       Nome</td><td>Non-state weight         Non-state weight         State drameter         St</td></t<></td></th<></td> | International weight       2 $22 20 \text{ b/t}$ $33.9 \text{ del M/m}$ $53.9 \text{ del M/m}$ $53.9 \text{ del M/m}$ $54.7 \text{ del M/m}$ 3       Wall thickness       3 $65.5 \text{ in}^2$ $151.5 \text{ mm}$ $151.5 \text{ mm}$ $55.5 \text{ def cross-section}$ $66$ $1.45 \text{ gal/t}$ $151.5 \text{ mm}$ $151.7 \text{ mm}$ $150.3 \text{ m}^2$ $150.3 $ | indication         initial elements         initial elements | Indicator         2         Defining weight         2 $22.20 \text{ b/f}$ $33.9 \text{ d/l}/m$ $32.9 \text{ d/l}/m$ $22.00 \text{ b/l}/m$ $33.9 \text{ d/l}/m$ $5.52 \text{ in}$ $22.00 \text{ b/l}/m$ $33.9 \text{ d/l}/m$ $5.52 \text{ in}$ $1.43 \text{ gal/t}$ <th< td=""><td>is bounded wight       is bounded wight       <t< td=""><td>Name       Nome       Nome</td><td>Non-state weight         Non-state weight         State drameter         St</td></t<></td></th<> | is bounded wight       is bounded wight <t< td=""><td>Name       Nome       Nome</td><td>Non-state weight         Non-state weight         State drameter         St</td></t<> | Name       Nome       Nome | Non-state weight         Non-state weight         State drameter         St |

(1) The closed end displacement does not account for couplings. MPa  $\times$  145 = psi daN  $\times$  2.25 = lb daN.m  $\times$  7.38 = lb.ft mm  $\times$  0.0394 = in

THE ALL OF

	1	Nominal size (OD)	1		6	6.625 in			168.3	mm		1	6	<b>.625</b> in			168.3	mm	
	2	Nominal weight	2		28	<b>3.00</b> lb/f	t		40.9 di	aN/m			32	2.00 lb/f	t		46.7 da	aN/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		÷ ا	).417 in 5.791 in 3.13 in ² 37 gal/l 79 gal/l	t		10.6 147.1 5247 16.99 22.24	mm mm² €I/m			۶ ۱.	).475 in 5.675 in 3.18 in ² 31 gal/f 79 gal/f	ťt		12.1 ( 144.1 5921 ( 16.32 22.24	mm mm² Vm	
	8	Grade	8	K55	L80	) N8	30 C	:90	T95	P110	Q125	K55	L80	) N8	30 C	:90	T95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	42.6 41.8 199	60.8	3 60	.8 6		63.6 72.1 344	70.1 83.5 398	75.8 94.9 452	50.5 47.6 225	71.2 69.2 323	2 69	.2 7		81.5 82.2 388	91.2 95.2 449	100.2 108.1 510
tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	286 220 185 202		) 23 5 24	81 2 10 2		347 243 275 296	410 289 321 347	449 312 359 380	323 220 215 233	348 220 273 296	) 23 3 27	31 2 78 3	231 801	391 243 318 342	463 289 371 402	506 312 415 440
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Yałlourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26				7 9 5 7 11 11 10 10	6.9 7.9 2.0 9.9 4.7 8.9 5.7 0.0 1.9 3.8							7 9 7 10 10 10	8.1 9.3 2.9 7.3 5.4 2.5 0.0 5.8			
				K55	Make-up	torque 26/062	(daN.m 010	Q125	an (mm)	DI Um	Drift API (mm)	K55	Aake-up	torque	(daN.n	Q125	OD (mm)	D (mm)	Drift API (mm)
istics	27 28 29	Buttress Standard Buttress Special Clearance API STC	27 28 29						187.7 177.8		143.9 143.9						187.7 177.8		141.0 141.0
Connection characteristics	30 31 32 33 34 35 36	API LTC Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521	30 31 32 33 34 35 36	563 793 1166 895 1125	788 1254 705 949 1166 895 1125	907 1254 705 1051 1166 895 1125	1059 1254 705 1146 1166 895 1125	1254 705 1220 1166 895 1125	187.7 184.3 168.3 171.5 187.7 168.3 178.5	145.1	143.9 143.9 143.9 143.9 143.9 143.9 143.9	637 949 1342 1302	911 1552 800 1105 1342 1302	1049 1552 800 1207 1342	1226 1552 800 1329 1342 1302	1371 1552 800 1437 1342 1302	187.7 186.6 168.3 171.8 187.7 180.8	145.7 142.5 142.1 142.9	141.0 141.0 141.0 141.0 141.0 141.0
	36 37 38 39 40 41	Hydrii 52 I Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann FJL	36 37 38 39 40 41	1125 1180 1079 1079	1125 1322 1274 1274 706	1125 1424 1376 1376 803	1519 1471 1519 902	1125 1566 1668 1668 980	178.5 188.3 187.7 188.2 185.3 168.3		143.9 143.9 143.9 143.9 143.9 143.9	1302 1227 1376	1302 1424 1566 755	1519 1763 853	1566 1966 952	1668 2156	188.3 187.7 188.2		141.0 141.0 141.0 141.0

THE THE PROPERTY.

CONTRACTOR -

1       Nominal size (OD)         2       Nominal weight         3       Wall thickness         1 Inside diameter         5       Steel cross-section         6       Capacity         7       Displacement (1)         8       Grade         9       Collapse resistance (MPa)         10       Internal yield pressure (MPa)         11       Pipe body yield strength (1000 daN)         12       Buttress Standard         13       Buttress Special Clearance         14       API STC         15       API LTC         16       Grant Prideco TCII         17       Grant Prideco STL         18       Hydril LX         19       Hydril 563	2 3 4 5 6 6 7 7 8 8 9 10 11 11 12 13 14 15 16 17 18	K55 55.3 52.6 246 354 220 239 260	0. 5. 10 1.2	76. 35 39 23 31	0 C3 5 90 5 86 8 4 7 4 1 2 0 3	90 - 90 - 90 - 90 - 90 - 90 - 90 - 90 -	95.6 90.8 425 429 243	nm mm nm² I/m	Q125 121.3 119.5 559 555 312	K55 15.7 25.8 141 200 200	0.: 6 5. 1.7	00 lb/ft 272 in 456 in 75 in ² 0 gal/ft 0 gal/ft N80 18.5 37.5 205 . 226 226	9 19 5 42 5 2 5 2	90 9.7 2 2.2 4 30 33	20.0 14.5 243 245	nm nm 1/m 1/m P110 20.5 51.6 281 289	Q125 20.6 58.6 320 316 316
<ul> <li>Wall thickness</li> <li>Inside diameter</li> <li>Steel cross-section</li> <li>Capacity</li> <li>Displacement (1)</li> <li>Grade</li> <li>Collapse resistance (MPa)</li> <li>Internal yield pressure (MPa)</li> <li>Pipe body yield strength (1000 daN)</li> <li>Buttress Standard</li> <li>Buttress Standard</li> <li>Buttress Special Clearance</li> <li>API STC</li> <li>API STC</li> <li>Grant Prideco TCII</li> <li>Grant Prideco STL</li> <li>Hydril LX</li> </ul>	3 4 5 6 7 8 9 10 11 11 12 13 14 15 16 17	55.3 52.6 246 354 220 239	0. 5. 10 1.2 1.7 L80 80.5 76.5 358 382 220 305	525 in 575 in 06 in ² 7 gal/ft 79 gal/ft 80. 76. 35 39 23 31	0 C3 5 90 5 86 8 4 7 4 1 2 0 3	90 - 90 - 90 - 90 - 90 - 90 - 90 - 90 -	13.3 n 141.6 i 6491 r 15.75 22.24 195 95.6 90.8 425 429 243	nm mm² ł/m l/m P110 109.4 105.2 492 507	121.3 119.5 559 555 312	15.7 25.8 141 200	0 6.4 5. 1.7 2.0 L80 18.9 37.5 205 217	272 in 456 in 75 in ² 0 gal/ft 0 gal/ft N80 18.9 37.9 209	9 19 5 42 5 2 5 2	90 9.7 2 2.2 4 30 33	6.9 m 164.0 r 3709 n 21.12 24.83 T95 20.0 44.5 243 245	nm nm 1/m 1/m P110 20.5 51.6 281 289	20.6 58.6 320 316
<ul> <li>9 Collapse resistance (MPa)</li> <li>10 Internal yield pressure (MPa)</li> <li>11 Pipe body yield strength (1000 daN)</li> <li>12 Buttress Standard</li> <li>13 Buttress Special Clearance</li> <li>14 API STC</li> <li>15 API LTC</li> <li>16 Grant Prideco TCII</li> <li>17 Grant Prideco STL</li> <li>18 Hydril LX</li> </ul>	9 10 11 12 13 14 15 16 17	55.3 52.6 246 354 220 239	80.5 76.5 358 382 220 305	80. 76. 35 39 23 31	5 90 5 86 8 4 7 4 1 2 0 3	0.6 9 5.1 9 03	95.6 90.8 425 429 243	109.4 105.2 492 507	121.3 119.5 559 555 312	15.7 25.8 141 200	18.9 37.5 205 217	18.9 37.9 209	9 19 5 42 5 2 5 2	9.7 2 2.2 4 30 33	20.0 14.5 243 245	20.5 51.6 281 289	20.6 58.6 320 316
<ul> <li>10 Internal yield pressure (MPa)</li> <li>11 Pipe body yield strength (1000 daN)</li> <li>12 Buttress Standard</li> <li>13 Buttress Special Clearance</li> <li>14 API STC</li> <li>15 API LTC</li> <li>16 Grant Prideco TCII</li> <li>17 Grant Prideco STL</li> <li>18 Hydril LX</li> </ul>	10 11 12 13 14 15 16 17	52.6 246 354 220 239	76.5 358 382 220 305	76. 35 39 23 31	5 86 8 4 7 4 1 2 0 3	5.1 9 03 - 08 - 31 -	00.8 425 429 243	105.2 492 507	119.5 559 555 312	25.8 141 200	37.5 205 217	37.9 209 - 220	5 42 5 2 5 2	2.2 4 30 33	14.5 243 245	51.6 281 289	58.6 320 316
<ul> <li>Buttress Special Clearance</li> <li>API STC</li> <li>API LTC</li> <li>Grant Prideco TCII</li> <li>Grant Prideco STL</li> <li>Hydril LX</li> </ul>	13 14 15 16 17	220 239	220 305	23 31	1 2: 0 3:	31	243		312								
<ol> <li>Grant Prideco STL</li> <li>Hydril LX</li> </ol>	17	1			5 5	63	354 381	413 448	463 490	113 125	145 159	141 162	7 1	60	245 168 185	28 <u>9</u> 196 216	220 240
<ul> <li>Information of the second se</li></ul>	19 20 21 22 23 24 25 26				90 10: 100	2.0 0.0							8	5.7 8.0 3.1 0.0			
	-	4 K55	Make-up	torque 26/062	(daN.m 0 L	Q125	OD (mm)	Q (IIII)	Drift API (mm)	X K55	1ake-up 08 N	torque C 00/32 C 00/32	(daN.m 6110 61	Q125	0 QD (mm)	(mm)	Drift API (mm)
<ul> <li>27 Buttress Standard</li> <li>28 Buttress Special Clearance</li> <li>29 API STC</li> <li>30 API LTC</li> <li>31 Grant Prideco TCII</li> <li>32 Grant Prideco STL</li> <li>33 Hydril LX</li> <li>34 Hydril 563</li> <li>35 Hydril 511</li> <li>36 Hydril 521</li> <li>37 Vallourec &amp; Mannesmann VAM ACE</li> <li>39 Vallourec &amp; Mannesmann VAM PRO</li> <li>40 Vallourec Mannesmann VAM PRO</li> </ul>	27 28 29 30 31 32 33 34 35 36 37 38 39	1024 1322 1566	1817 1220 1471 1864	1817 1342 1566 2061	1817 1451 1668 2156	1817 1559 1763 2156			138.4 138.4 138.4 138.4 138.4 138.4 138.4 138.4	344 325 759 705	407 759 705	407 759 705	407 759 705	407 759 705	194.5	162.7	160.8 160.8 160.8 160.8 160.8 160.8
22222	<ul> <li>Vallourec &amp; Mannesmann New VAM</li> <li>Vallourec &amp; Mannesmann VAM ACE</li> <li>Vallourec &amp; Mannesmann VAM PRO</li> <li>Vallourec &amp; Mannesmann VAM TOP</li> <li>Vallourec &amp; Mannesmann FJL</li> <li>Buttress Standard</li> <li>Buttress Special Clearance</li> <li>API STC</li> <li>API STC</li> <li>API LTC</li> <li>Grant Prideco TCII</li> <li>Grant Prideco TCII</li> <li>Grant Prideco STL</li> <li>Hydril LX</li> <li>Hydril 521</li> <li>Vallourec &amp; Mannesmann New VAM</li> <li>Vallourec &amp; Mannesmann New VAM</li> <li>Vallourec &amp; Mannesmann New VAM</li> <li>Vallourec &amp; Mannesmann VAM ACE</li> <li>Vallourec &amp; Mannesmann VAM PRO</li> <li>Vallourec &amp; Mannesmann VAM TOP</li> <li>Vallourec &amp; Mannesmann VAM TOP</li> <li>Vallourec &amp; Mannesmann FJL</li> </ul>	2Vallourec & Mannesmann New VAM223Vallourec & Mannesmann VAM ACE234Vallourec & Mannesmann VAM PRO245Vallourec & Mannesmann VAM TOP256Vallourec & Mannesmann VAM TOP257Buttress Standard278Buttress Special Clearance289API STC290API LTC301Grant Prideco TCII312Grant Prideco STL323Hydril LX334Hydril 563345Hydril 521367Vallourec & Mannesmann New VAM378Vallourec & Mannesmann VAM ACE389Vallourec & Mannesmann VAM PRO390Vallourec & Mannesmann VAM ACE341Vallourec & Mannesmann VAM ACE349Vallourec & Mannesmann VAM ACE389Vallourec & Mannesmann VAM PRO390Vallourec & Mannesmann FJL41	2       Vallourec & Mannesmann New VAM       22         3       Vallourec & Mannesmann VAM ACE       23         4       Vallourec & Mannesmann VAM PRO       24         5       Vallourec & Mannesmann VAM TOP       25         6       Vallourec & Mannesmann VAM TOP       25         7       Buttress Standard       27         8       Buttress Special Clearance       28         9       API STC       29         0       API STC       30         1       Grant Prideco TCII       31         2       Grant Prideco STL       32         3       Hydril LX       33       1024         4       Hydril 563       34       34         5       Hydril 521       36       34         7       Vallourec & Mannesmann New VAM       37       1322         8       Vallourec & Mannesmann New VAM       37       1322         9       Vallourec & Mannesmann VAM PRO       39       9         9       Vallourec & Mannesmann VAM PRO       39       9         9       Vallourec & Mannesmann VAM TOP       40       41	2       Vallourec & Mannesmann New VAM       22         3       Vallourec & Mannesmann VAM ACE       23         4       Vallourec & Mannesmann VAM PRO       24         5       Vallourec & Mannesmann VAM TOP       25         6       Vallourec & Mannesmann VAM TOP       25         7       Buttress Standard       27         8       Buttress Standard       27         9       API STC       29         0       API STC       30         1       Grant Prideco TCH       31         2       Grant Prideco STL       32         3       Hydril LX       33         4       Hydril 563       34         5       Hydril 551       36         6       Hydril 551       36         7       Vallourec & Mannesmann New VAM       37       1322         14       Hydril 563       34       156         5       Hydril 551       36       136         7       Vallourec & Mannesmann New VAM       37       1322         8       Vallourec & Mannesmann VAM PRO       39       1471         9       Vallourec & Mannesmann VAM PRO       39       141         1 <td< th=""><th>2       Vallourec &amp; Mannesmann New VAM       22         3       Vallourec &amp; Mannesmann VAM ACE       23         4       Vallourec &amp; Mannesmann VAM PRO       24         5       Vallourec &amp; Mannesmann VAM TOP       25         6       Vallourec &amp; Mannesmann VAM TOP       25         7       Buttress Standard       27         8       Buttress Standard       27         9       API STC       29         0       API STC       30         1       Grant Prideco TCli       31         2       Grant Prideco STL       32         3       Hydril LX       33         4       Hydril 551       36         5       Hydril 521       36         7       Vallourec &amp; Mannesmann New VAM       37         3       Hydril 521       36         4       Hydril 551       36         5       Vallourec &amp; Mannesmann VAM ACE       38         6       Vallourec &amp; Mannesmann VAM PRO       39         7       Vallourec &amp; Mannesmann VAM PRO       39         9       Vallourec &amp; Mannesmann VAM PRO       39         9       Vallourec &amp; Mannesmann VAM PRO       39         9</th><th>2       Vallourec &amp; Mannesmann New VAM       22       94         3       Vallourec &amp; Mannesmann VAM ACE       23       100         4       Vallourec &amp; Mannesmann VAM PRO       24       100         5       Vallourec &amp; Mannesmann VAM TOP       25       26         6       Vallourec &amp; Mannesmann VAM TOP       25       6         7       Buttress Standard       27       26       6         8       Buttress Special Clearance       28       29       6         9       API STC       29       20       6       6         9       API STC       30       1817       1817       1817         1       Grant Prideco TCli       31       1817       1817       1817         2       Grant Prideco STL       32       31       1024       1220       1342       1451         4       Hydril 553       34       34       34       35       1024       1220       1342       1451         5       Hydril 521       36       37       1322       1471       1566       1668         6       Vallourec &amp; Mannesmann VAM ACE       38       1566       1864       2061       2156</th><th>2       Vallourec &amp; Mannesmann New VAM       22       96.1         3       Vallourec &amp; Mannesmann VAM ACE       23       102.0         4       Vallourec &amp; Mannesmann VAM PRO       24       100.0         5       Vallourec &amp; Mannesmann VAM TOP       25       6         6       Vallourec &amp; Mannesmann VAM TOP       25       6         7       Buttress Standard       27       26       9         8       Buttress Special Clearance       29       9       9         9       API STC       30       1817       1817       1817         1       Grant Prideco TCli       31       1817       1817       1817         2       Grant Prideco STL       32       31       1024       1220       1342       1451       1559         4       Hydril 1511       35       34       35       1322       1471       1566       1668       1763         8       Vallourec &amp; Mannesmann VAM ACE       38       1566       1864       2061       2156       2156         3       Vallourec &amp; Mannesmann VAM PRO       39       9       1079       1079</th><th>2       Vallourec &amp; Mannesmann New VAM       22       96.1         3       Vallourec &amp; Mannesmann VAM ACE       23       102.0         4       Vallourec &amp; Mannesmann VAM PRO       24       100.0         5       Vallourec &amp; Mannesmann VAM TOP       25       67.4         6       Vallourec &amp; Mannesmann VAM TOP       26       67.4         7       Buttress Standard       27       28       96.1         8       Buttress Standard       27       28       96.1         9       API STC       28       96.1       187.7         9       API STC       30       1817       1817       1817       1817         1       Grant Prideco TCII       31       1817       1817       1817       1817       1817         2       Grant Prideco STL       32       31       1024       1220       1342       1451       1559       172.0         4       Hydril 1511       35       34       35       1322       1471       1566       1668       1763       188.3         5       Hydril 521       36       1322       1471       1566       1668       1763       188.3         6       Vallourec &amp; Mannes</th><th>2       Vallourec &amp; Mannesmann New VAM       22       96.1         3       Vallourec &amp; Mannesmann VAM ACE       23       102.0         4       Vallourec &amp; Mannesmann VAM PRO       24       100.0         5       Vallourec &amp; Mannesmann VAM TOP       25       67.4         6       Vallourec &amp; Mannesmann FJL       26       67.4         7       Buttress Standard       27       8       96.1         8       Buttress Standard       27       8       96.1         9       API STC       29       96.1       187.7         9       API STC       30       1817       1817       1817       187.7         1       Grant Prideco TCII       31       1817       1817       1817       188.5       143.5         1       Grant Prideco TCII       32       3       1024       1220       1342       1451       1559       172.0       139.6         1       Hydril LX       33       1024       1220       1342       1451       1559       172.0       139.6         1       Hydril LX       33       1024       1220       1342       1451       1559       172.0       139.6         1       &lt;</th><th>2       Vallourec &amp; Mannesmann New VAM       22       96.1         3       Vallourec &amp; Mannesmann VAM ACE       23       102.0         4       Vallourec &amp; Mannesmann VAM PRO       24       100.0         5       Vallourec &amp; Mannesmann VAM TOP       25       67.4         6       Vallourec &amp; Mannesmann FJL       26       67.4         7       Buttress Standard       27       28       90.00       181.7       181.7.7       138.4         8       Buttress Standard       27       28       9       9       9       0       181.7       177.8       138.4         9       API STC       30       31       181.7       181.7       181.7       138.4       138.4         2       Grant Prideco TCII       31       181.7       181.7       181.7       138.4       138.4         4       Hydril LX       33       1024       1220       1342       1451       1559       172.0       139.6       138.4         5       Hydril S21       36       37       132.2       147.1       1566       1668       1763       188.3       138.4         4       Hydril S21       36       37       132.2       147.1</th><th>2       Vallourec &amp; Mannesmann New VAM       22       96.1         3       Vallourec &amp; Mannesmann VAM ACE       23       102.0         4       Vallourec &amp; Mannesmann VAM PRO       24       100.0         5       Vallourec &amp; Mannesmann VAM TOP       25       67.4         6       Vallourec &amp; Mannesmann FJL       26       67.4         7       Buttress Standard       27       8       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1</th><th>2       Vallourec &amp; Mannesmann New VAM       22       96.1         3       Vallourec &amp; Mannesmann VAM ACE       23       102.0         4       Vallourec &amp; Mannesmann VAM PRO       24       100.0         5       Vallourec &amp; Mannesmann VAM TOP       25         6       Vallourec &amp; Mannesmann VAM TOP       26         6       Vallourec &amp; Mannesmann FJL       26         7       Buttress Standard       27         8       Buttress Standard       27         9       API STC       29         9       API STC       30         9       API TC       30         1       Grant Prideco TCII       31         23       1024       1220       1342       1451       1559       172.0       138.4       325       407         7       Vallourec &amp; Mannesmann New VAM       37       1322       1471       1566       1668       1763       188.3       138.4       325       407         7       Vallourec &amp; Mannesmann New VAM       37       1322       1471       1566       1668       1763       188.3       138.4       759       759       759         7       Vallourec &amp; Mannesmann VAM ACE       38</th></td<> <th>2       Vallourec &amp; Mannesmann New VAM       22       $33$ $36$ $102.0$ $102.0$ $102.0$ $102.0$ $100.0$         3       Vallourec &amp; Mannesmann VAM PRO       24       $100.0$ $100.0$ $100.0$ $100.0$ $100.0$         4       Vallourec &amp; Mannesmann VAM TOP       26       $67.4$ $67.4$ $100.0$ $100.0$</th> <th>1       1011 021       102       96.1       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102</th> <th>Image: Name and the second second</th> <th>1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1</th> <th>Image: Name and the second second</th>	2       Vallourec & Mannesmann New VAM       22         3       Vallourec & Mannesmann VAM ACE       23         4       Vallourec & Mannesmann VAM PRO       24         5       Vallourec & Mannesmann VAM TOP       25         6       Vallourec & Mannesmann VAM TOP       25         7       Buttress Standard       27         8       Buttress Standard       27         9       API STC       29         0       API STC       30         1       Grant Prideco TCli       31         2       Grant Prideco STL       32         3       Hydril LX       33         4       Hydril 551       36         5       Hydril 521       36         7       Vallourec & Mannesmann New VAM       37         3       Hydril 521       36         4       Hydril 551       36         5       Vallourec & Mannesmann VAM ACE       38         6       Vallourec & Mannesmann VAM PRO       39         7       Vallourec & Mannesmann VAM PRO       39         9       Vallourec & Mannesmann VAM PRO       39         9       Vallourec & Mannesmann VAM PRO       39         9	2       Vallourec & Mannesmann New VAM       22       94         3       Vallourec & Mannesmann VAM ACE       23       100         4       Vallourec & Mannesmann VAM PRO       24       100         5       Vallourec & Mannesmann VAM TOP       25       26         6       Vallourec & Mannesmann VAM TOP       25       6         7       Buttress Standard       27       26       6         8       Buttress Special Clearance       28       29       6         9       API STC       29       20       6       6         9       API STC       30       1817       1817       1817         1       Grant Prideco TCli       31       1817       1817       1817         2       Grant Prideco STL       32       31       1024       1220       1342       1451         4       Hydril 553       34       34       34       35       1024       1220       1342       1451         5       Hydril 521       36       37       1322       1471       1566       1668         6       Vallourec & Mannesmann VAM ACE       38       1566       1864       2061       2156	2       Vallourec & Mannesmann New VAM       22       96.1         3       Vallourec & Mannesmann VAM ACE       23       102.0         4       Vallourec & Mannesmann VAM PRO       24       100.0         5       Vallourec & Mannesmann VAM TOP       25       6         6       Vallourec & Mannesmann VAM TOP       25       6         7       Buttress Standard       27       26       9         8       Buttress Special Clearance       29       9       9         9       API STC       30       1817       1817       1817         1       Grant Prideco TCli       31       1817       1817       1817         2       Grant Prideco STL       32       31       1024       1220       1342       1451       1559         4       Hydril 1511       35       34       35       1322       1471       1566       1668       1763         8       Vallourec & Mannesmann VAM ACE       38       1566       1864       2061       2156       2156         3       Vallourec & Mannesmann VAM PRO       39       9       1079       1079	2       Vallourec & Mannesmann New VAM       22       96.1         3       Vallourec & Mannesmann VAM ACE       23       102.0         4       Vallourec & Mannesmann VAM PRO       24       100.0         5       Vallourec & Mannesmann VAM TOP       25       67.4         6       Vallourec & Mannesmann VAM TOP       26       67.4         7       Buttress Standard       27       28       96.1         8       Buttress Standard       27       28       96.1         9       API STC       28       96.1       187.7         9       API STC       30       1817       1817       1817       1817         1       Grant Prideco TCII       31       1817       1817       1817       1817       1817         2       Grant Prideco STL       32       31       1024       1220       1342       1451       1559       172.0         4       Hydril 1511       35       34       35       1322       1471       1566       1668       1763       188.3         5       Hydril 521       36       1322       1471       1566       1668       1763       188.3         6       Vallourec & Mannes	2       Vallourec & Mannesmann New VAM       22       96.1         3       Vallourec & Mannesmann VAM ACE       23       102.0         4       Vallourec & Mannesmann VAM PRO       24       100.0         5       Vallourec & Mannesmann VAM TOP       25       67.4         6       Vallourec & Mannesmann FJL       26       67.4         7       Buttress Standard       27       8       96.1         8       Buttress Standard       27       8       96.1         9       API STC       29       96.1       187.7         9       API STC       30       1817       1817       1817       187.7         1       Grant Prideco TCII       31       1817       1817       1817       188.5       143.5         1       Grant Prideco TCII       32       3       1024       1220       1342       1451       1559       172.0       139.6         1       Hydril LX       33       1024       1220       1342       1451       1559       172.0       139.6         1       Hydril LX       33       1024       1220       1342       1451       1559       172.0       139.6         1       <	2       Vallourec & Mannesmann New VAM       22       96.1         3       Vallourec & Mannesmann VAM ACE       23       102.0         4       Vallourec & Mannesmann VAM PRO       24       100.0         5       Vallourec & Mannesmann VAM TOP       25       67.4         6       Vallourec & Mannesmann FJL       26       67.4         7       Buttress Standard       27       28       90.00       181.7       181.7.7       138.4         8       Buttress Standard       27       28       9       9       9       0       181.7       177.8       138.4         9       API STC       30       31       181.7       181.7       181.7       138.4       138.4         2       Grant Prideco TCII       31       181.7       181.7       181.7       138.4       138.4         4       Hydril LX       33       1024       1220       1342       1451       1559       172.0       139.6       138.4         5       Hydril S21       36       37       132.2       147.1       1566       1668       1763       188.3       138.4         4       Hydril S21       36       37       132.2       147.1	2       Vallourec & Mannesmann New VAM       22       96.1         3       Vallourec & Mannesmann VAM ACE       23       102.0         4       Vallourec & Mannesmann VAM PRO       24       100.0         5       Vallourec & Mannesmann VAM TOP       25       67.4         6       Vallourec & Mannesmann FJL       26       67.4         7       Buttress Standard       27       8       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1       90.1	2       Vallourec & Mannesmann New VAM       22       96.1         3       Vallourec & Mannesmann VAM ACE       23       102.0         4       Vallourec & Mannesmann VAM PRO       24       100.0         5       Vallourec & Mannesmann VAM TOP       25         6       Vallourec & Mannesmann VAM TOP       26         6       Vallourec & Mannesmann FJL       26         7       Buttress Standard       27         8       Buttress Standard       27         9       API STC       29         9       API STC       30         9       API TC       30         1       Grant Prideco TCII       31         23       1024       1220       1342       1451       1559       172.0       138.4       325       407         7       Vallourec & Mannesmann New VAM       37       1322       1471       1566       1668       1763       188.3       138.4       325       407         7       Vallourec & Mannesmann New VAM       37       1322       1471       1566       1668       1763       188.3       138.4       759       759       759         7       Vallourec & Mannesmann VAM ACE       38	2       Vallourec & Mannesmann New VAM       22 $33$ $36$ $102.0$ $102.0$ $102.0$ $102.0$ $100.0$ 3       Vallourec & Mannesmann VAM PRO       24 $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ 4       Vallourec & Mannesmann VAM TOP       26 $67.4$ $67.4$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$ $100.0$	1       1011 021       102       96.1       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102.0       102	Image: Name and the second	1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	Image: Name and the second

(1) The closed end displacement does not account for couplings. MPa x 145 = psi daN x 2.25 = lb daN.m x 7.38 = lb.ft mm x 0.0394 = in

1

NER CORE

	1	Nominal size (OD)	1	<u> </u>	7	.000 in			177.8	mm			7	.000 in			177.8	mm	
	2	Nominal weight	2		23	1.00 lb/f	t		33.6 da	aN/m			26	.00 lb/fi	t		37.9 da	aN/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		6 6 1.	0.317 in 6.366 in 6.66 in ² 65 gal/f 00 gal/f			8.1 n 161.7 4294 r 20.53 24.83	mm mm² I/m			6 7 1.	1.362 in 1.276 in 1.55 in ² 61 gal/f 00 gal/f			9.2 r 159.4 4870 i 19.96 24.83	mm mm² I/m	
-	8	Grade	8	K55	L.80	) N8	30 C	:90	T95	P110	Q125	K55	L80	N8	10 C	:90	T95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	22.5 30.1 163	26.4 43.7 237	7 43	.7 4	9.2	28.6 51.9 281	30.6 60.1 326	32.0 68.3 370	29.8 34.3 185	37.3 49.9 269	49	.9 5		40.6 59.3 319	43.0 68.6 369	44.5 78.0 420
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	232 232 138 152	251 237 176 193	7 25 6 17	50 2 '9 1	250 94	283 262 205 225	335 312 239 262	366 337 267 291	263 237 162 178	285 237 207 227	25 21	i0 2 0 2	805 250 228 250	321 262 240 264	380 312 281 308	415 337 314 342
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26				7 8 6 13 13 10 10	8.2 3.3 9.6 0.8 7.7 6.2 3.1 0.0 2.0 1.1	·				·		7 9 6 7 12 11 10 10	59.2 4.2 60.9 1.2 10.1 7.3 10.0 11.9 6.9	-		
		-		K55	Aake-up 08 N	torque	(daN.n 0 1 4	a125	OD (mm)	Q (mm)	Drift API (mm)	K55 ~	Aake-up 08 N	torque 36/06 C	(daN.m 0 L	Q125	on (mm)	QI Mm)	Drift API (mm)
Connection characteristics	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	419 462 393 820 908 515 841 843 637 834	595 915 502 942 908 515 841 952 785 1029 795	685 915 502 1051 908 515 841 1029 834 1125 912	915 502 1159 908 515 841 1079 883 1274 1030	915 502 1281 908 515 841 1125 980 1376 1128	194.5 187.3 194.5 194.5 189.2 177.8 180.6 194.5 177.8 183.5 195.1 194.5 195.0 190.2 177.8	160.4 159.7 160.4 159.7 159.8	158.5 158.5 158.5 158.5 158.5 158.5 158.5 158.5 158.5 158.5 158.5 158.5 158.5 158.5 158.5 158.5	494 544 508 868 1058 813 976 980 883 931	698 1193 651 1058 813 976 1125 1079 1125 824	804 1193 651 1166 1058 813 976 1180 1180 1180 1227 941	940 1193 651 1302 1058 813 976 1274 1274 1274 1376 1079	1193 651 1410 1058 813 976 1376 1376 1376 1471 1177	194.5 187.3 194.5 194.4 191.1 177.8 180.8 194.5 177.8 185.4 195.1 194.5 195.0 192.2 177.8	158.2 157.8 157.4 158.1 157.1 157.5 157.5	156.2 156.2 156.2 156.2 156.2 156.2 156.2 156.2 156.2 156.2 156.2 156.2 156.2 156.2 156.2 156.2 156.2

(1) The closed-end displacement does not account for couplings.  $MPa \times 145 = psi$  daN  $\times 2.25 = lb$  daN  $m \times 7.38 = lb.ft$  mm  $\times 0.0394 = in$ 

. ....

[]									177.0 -			· · ·		000 in			177.8		
	1	Nominal size (OD)	1		7.0	000 in			177.8 r	11871									
	2	Nominal weight	2		29.	00 lb/ft			42.3 da	N/m			32.	.00 lb/ft			46.7 da	N/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		6. 8. 1.5	408 in 184 in 45 in ² 16 gal/ft 10 gal/ft			10.4 m 157.1 m 5451 m 19.38 24.83	nm nm² I/m			6. 9. 1.5	.453 in .094 in .32 in ² 52 gal/ft 00 gal/ft			11.5 n 154.8 r 6011 n 18.82 24.83	nm nm² I/m	
	8	Grade	8	K55	L80	N80	) CS	90	T95	P110	Q125	K55	L80	N8	0 C	90	T95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	37.3 38.7 207	48.4 56.3 301	48.4 56.3 30	3 63	8.3 E		58.8 77.4 413	62.8 87.9 470	44.6 42.9 228	59.3 62.5 332	62.	5 70	0.3	67.2 74.2 394	74.3 85.9 456	80.7 97.6 518
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	295 237 186 205	319 237 238 261	33: 25( 24: 26(	2 2! 2 20	50 62	359 262 277 304	425 312 323 354	465 337 362 394	325 237 209 231	352 237 268 294	25 27	02 22	50 95	396 262 311 342	468 312 363 399	513 337 407 443
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26	•			76 9 60 73 10 10 10 100	4.8 0.0							7 9 7 12 10 10	7.0 9.5 2.6 6.1 7.3 8.1 0.0 2.1 5.1			
		-		X K55	Nake-up	torque C30/32	(daN.m 0 L	Q125	00 (mm)	D (Lu	Drift API (mm)	N55	Aake-up	torque C <del>0</del> 0/32 C <del>0</del> 0/32	(daN.n 0110	a125	OD (mm)	⊆ ( ^j ш	Drift API (mm)
stics	27 28 29	Buttress Standard Buttress Special Clearance API STC	27 28 29						194.5 187.3		153.9 153.9	·					194.5 187.3		151.6 151.6
Connection characteristics	30 31 32 33 34 35	API LTC Grant Prideco TCII Grant Prideco STL Hýdril LX Hydril 563 Hydril 511	30 31 32 33 34 35	569 786 1139 908	803 1281 732 963 1139 908	926 1281 732 1064 1139 908	1081 1281 732 1173 1139 908	1281 732 1295 1139 908	194.4 193.0 177.8 181.1 194.5 177.8 187.3	158.2 157.2 156.5 154.8 155.2	153.9 153.9 153.9 153.9 153.9 153.9 153.9	637 969 1288 1261	904 1519 813 1146 1288 1261	1041 1519 813 1241 1288 1261	1216 1519 813 1349 1288 1261	1519 813 1458 1288 1261		153.1 153.3	151.6 151.6 151.6 151.6 151.6 151.6
	36 37 38 39 40 41	Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	36 37 38 39 40 41	1125 1125 1079 1079	1125 1274 1274 1274 1274 864	1125 1376 1376 1376 980	1125 1471 1566 1566 1079	1125 1566 1668 1668 1226	197.3 195.1 194.5 195.0 194.2 177.8		153.9 153.9 153.9 153.9 153.9 153.9	1201 1227 1274 1274	1376 1519 1519 912	1201 1471 1668 1668 1030	1201 1566 1864 1864 1128	1201 1668 1959 2007 1274	195.1 200.9 195.0 196.0 177.8	153.7	151.6 151.6 151.6 151.6 151.6 151.6

(1) The closed-end displacement does not account for couplings. MPa × 145 = psi daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

Characterization (C)

200702011-5-1

	1	Nominal size (OD)	1	T	7	<b>.000</b> in			177.8	mm			7	<b>.000</b> in			177.8	mm	
	2	Nominal weight	2	1	35	5.00 lb/f	t		51.1 da	aN/m			38	<b>3.00</b> lb/f	t		55.5 da	aN/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		6 1 1.	).498 in 5.004 in 0.17 in ² 47 gal/f 00 gal/f	t		12.6 r 152.5 6563 r 18.27 24.83	mm nm² 'l/m			5 1) 1.	).540 in 5.920 in 0.96 in ² 43 gal/f 00 gal/f	ťt		13.7 150.4 7070 17.76 24.83	mm mm² i l/m	
	8	Grade	8	K55	L80	) N8	30 C	:90	Т95	P110	Q125	K55	L80	) N8	30 (	:90	T95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	50.1 47.2 249	70.2 68.2 362	7 68	.7 7	7.3	80.3 81.5 430	89.8 94.4 498	98.7 107.3 566	54.0 51.2 268	78.9 74.9 390	5 74	.5 8		92.6 88.4 463	104.3 102.4 536	115.4 116.3 609
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	355 237 232 256	37( 237 297 327	7 29 7 30	50 2 02 3	250 128	409 262 346 379	487 312 403 443	526 337 452 492	370 237 254 280	370 237 324 356	7 25 <b>1</b> 33	50 2 30 3	390 250 358 393	409 262 377 414	487 312 440 483	526 337 493 537
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26				8 8 11 9 10	57.9 50.7 59.4 59.1 7.4 1.0 2.0 5.3							8 9 10 8 10	68.6 31.8 90.1 82.7 88.9 95.0 91.9 15.3			
				K55	Aake-up	torque C30/32	(daN.n 0114	0125	QD (mm)	Q (mm)	Drift API (mm)	K55	Nake-up 08 N	etorque C30/32	(daN.n 0114	Q125	a (mm)	DI (mm)	Drift API (mm)
Connection charactaristics	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL Hýdril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	705 976 2007 1274 1471 1471	1003 1769 895 1173 2007 1424 1763 1817 961	1157 1769 895 1322 2007 1519 1959 2061 1079	1350 1769 895 1437 2007 1620 2156 2257 1177	1512 1769 895 1546 2007 1715 2156 2454 1325	196.7 177.8 181.5	154.2 150.5 150.5 151.2	149.3 149.3 149.3 149.3	773 1017 2196 1322 1668 1715	1095 2020 976 1213 2196 1519 2061 2102 1030	1262 2020 976 1342 2196 1566 2156 2352 1128	1474 2020 976 1451 2196 1668 2156 2549 1226	1649 2020 976 1559 2196 1763 2156 2847 1376	194.5 187.3 194.5 198.3 177.8 182.1 196.8 195.1 200.9 195.0 199.4 177.8	148.3 150.1 149.1	147.2 147.2 147.2 147.2 147.2 147.2 147.2 147.2 147.2 147.2 147.2 147.2 147.2

(1) The closed end displacement does not account for couplings. MPa  $\times$  145 = psi daN  $\times$  2.25 = lb daN.m  $\times$  7.38 = lb.ft mm  $\times$  0.0394 = in

. .

. .....

WARD THAT

#### GEOMETRICAL CHARACTERISTICS AND MECHANICAL PROPERTIES OF CASING (continued)

	1	Nominal size (OD)	1		7.	000 in			177.8	mm			7.	<b>000</b> in			177.8 r	nm	
	2	Nominal weight	2		41.	00 lb/ft			59.8 da	aN/m			44.	00 lb/ft			64.2 da	N/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steël cross-section Capacity Displacement (1)	3 4 5 6 7		5. 11 1.3	590 in 820 in .88 in ² 38 gal/ft 30 gal/ft			15.0 r 147.8 7665 r 17.16 24.83	mm mm² I/m			5. 12 1.3	640 in 720 in .79 in ² 13 gal/ft 10 gal/ft			16.3 m 145.3 r 8250 n 16.58 24.83	mm nm² I/m	
Ľ	8	Grade	8	K55	L80	N8	0 C!	90	T95	P110	Q125	K55	L.80	N8	0 C	90	T95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	58.5 55.9 291	85.1 81.4 423		4 91			117.1 111.9 581	133.0 127.1 661	63.0 60.7 313	91.6 88.3 455	88.	3 9			126.0 121.3 626	143.2 137.9 711
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	370 237 279 307	370 237 356 391	25	0 2! 2 3!	90 50 93 31	409 262 414 455	487 312 483 531	526 337 541 589	370 237 303 334	370 237 387 426	25 39	0 : 4 -	390 250 427 469	409 262 450 495	487 312 526 577	526 337 589 641
Connection efficiency	16 17 18 19 20 21	Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521	16 17 18 19 20 21	2			8:	8.1 2.2 0.9								5.0			
Connectio	22 23 24 25 26	Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	22 23 24 25 26				10: 8! 10:	5.0								9.0	T		T
				٩	/lake-up	torque	(daN.m	n) 			ā. :	A	Make-up	torque	(daN.n	n) 1			a a
,	-			K55	LN80	C90/95	P110	Q125	G O U U U U U U U U U U		Drift AP (mm)	K65	LNBO	C90/95	011d	Q125	Q Q U U U U U U U U U U	⊆ ( ^m w)	Drift API (mm)
ristics	27 28 29	Buttress Standard Buttress Special Clearance API STC	27 28 29						194.5 187.3		144.7 144.7						194.5 187.3		142.1 142.1
Connection characteristics	30 31 32 33 34 35	API LTC Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511	30 31 32 33 34 35	841 1173 2346	2318 1071 1376 2346	2318 1071 1491 2346	2318 1071 1627 2346	2318 1071 1830 2346	200.2 177.8 181.9 196.8	145.9 145.8	144.7	841	1071	1071	1071	1071	177.8	146.3	142.1
	36 37 38 39 40 41	Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	36 37 38 39 40 41	1424 1959 1959	1566 2156 2454 1079	1668 2156 2746 1177	1763 2156 2942 1325	1864 2156 3139 1424	195.0		144.7 144.7 144.7 144.7 144.7 144.7	1668	1864	1959	2061	2156	195.1 195.0		142.1 142.1

	1	Nominal size (OD)	1		7	.000 in			177.8	mm			7	.625 in			193.7	mm	
			2	<u> </u>		5.00 lb/f			67.1 d					6.40 lb/f	•		38.5 da		
	2	Nominal weight																	•
	3	Wall thickness	3			).670 in 5.660 in			17.0 143.8			1		).328 in 6.969 in			8.3 n 177.0		
	4	Inside diameter	5	ł		3.32 in ²			8596			1		7.52 in ²			4851 r		
(po	5	Steel cross-section	6	ļ		31 gal/f	•		16.23					98 gal/f	+		24.61		
Pipe body	6	Capacity	7			00 gal/f			24.83					37 gal/f			29.46		
ä	7	Displacement (1)	<u> </u>	ļ	Z.	oo gawi			24.00								20.40	<b>W</b> .11	
	8	Grade	8	K55	L80	) N8	80 C	90	T95	P110	Q125	K55	L80	) NE	30 C	:90	T95	P110	Q125
	9	Collapse resistance (MPa)	9	65.6	95.5					131.3	149.2	20.0	23.5				25.6	27.1	27.9
	10	Internal yield pressure (MPa)	10	63.5	92.4				09.7	127.0	144.4	28.5	41.5				49.3	57.1	64.9
	11	Pipe body yield strength (1000 daN)	11	326	474	47	4	533	563	652	741	184	268	3 26	58 3	801	318	368	418
	12	Buttress Standard	12	370	370	) 39	90	390	409	487	526	258	282	2 , 29	93 3	803	318	376	412
Tensile strength (10 ³ daN)	13	Buttress Special Clearance	13	237	237	7 25	50	250	262	312	337	258	282			803	318	376	412
en: O ³ cer	14	API STC	14	317	406	5 41	2	448	472	551	617	152	196			16	227	265	297
. « E	15	API LTC	15	350	446	6 45	3 4	492	518	605	672	167	214	21	8 2	37	249	291	326
	16	Grant Prideco TCII	16	2															
	17	Grant Prideco STL	17				6	4.6								8.2			
Ś	18	Hydril LX	18													4.1			
Connection efficiency	19	Hydril 563	19													0.0			
effi	20	Hydril 511	20													1.6 7.7			
u -	21	Hydril 521	21 22				6	8.0								1.6			
lect	22	Vallourec & Mannesmann New VAM	23				U	0.0								6.8			
our	23	Vallourec & Mannesmann VAM ACE	24				7	5.0								0.0			
· 0,	24 25	Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP	25				,	0.0											
	25 26	Valiourec & Mannesmann FJL	26												5	1.8			
		······		٨	/lake-up	torque	(daN.m	n)			-	N	Лake-up	torque	(daN.n	 1)	[		-
				K55	LNBO	C90/95	P110	Q125		Q (mm)	Drift AP1 (mm)	K55	LN80	C90/95	P110	Q125	(mm)	⊡ (î m	Drift AP( (mm)
	07	D. House Characteria	27						194.5		140.6						215.9		173.8
	27 28	Buttress Standard Buttress Special Clearance	28						187.3	1	140.6						206.4		173.8
stic	29	API STC	29								1	464			[		215.9		173.8
ter	30	APILTC	30									511	659	759			215.9		173.8
Connection characteristics	31	Grant Prideco TCII	31										1044	1044	1044	1044	205.9	175.5	173.8
ç	32	Grant Prideco STL	32	881	1112	1112	1112	1112	177.8	147.3	140.6	447	576	576	576	576	193.7	175.0	173.8
Lion	33	Hýdrit LX	33									929	1166	1308	1430	1620	196.7	175.0	173.8
Dec	34	Hydril 563	34							1		1058	1058	1058	1058	1058	215.9	175.7	173.8
iuo	35	Hydril 511	35									583	583	583	583	583	193.7	174.8	173.8
	36	Hydril 521	36									976	976	976	976	976	199.8	175.1	173.8
11 - E		North Anna and Anna Anna Anna Anna Anna Anna	37	1763	1912	1959	2061	2156	195.1		140.6	971	1079	1180	1227	1322	216.6		173.8
	37	Vallourec & Mannesmann New VAM								1	1	735	834	931	1029	1125	215.9		173.8
	37 38	Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE	38							1			1	1			040 1		
		· 이상 : : : : : : : : : : : : : : : : : :	39						195.0		140.6						216.4		173.8
	38	Vallourec & Mannesmann VAM ACE							195.0		140.6		961	1128	1274	1424	216.4 193.7	175.4	173.8 173.8

(1) The closed end displacement does not account for couplings.  $MPa \times 145 = psi$   $daN \times 2.25 = lb$   $daN.m \times 7.38 = lb.ft$  mm  $\times 0.0394 = in$ 

30.2

edille Asia

CONTRACTOR .

22(122)/22/22

2382 1011

		·															100 7		
	1	Nominal size (OD)	1		7.6	525 in			193.7 n	nm 			7.0	625 in			193.7 r	1111	
	2	Nominal weight	2		29.	70 lb/ft			43.3 dal	√/m			33.	70 lb/ft			49.2 da	√/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		6.1 8. 1.9	375 in 875 in 54 in ² 3 gal/ft 7 gal/ft			9.5 m 174.6 n 5510 m 23.95   29.46	nm nm² I/m			6. 9. 1.8	430 in 765 in 72 in ² 7 gal/ft 7 gal/ft			10.9 m 171.8 r 6271 n 23.19 29.46	nm 1m² I/m	
<u>م</u> ۲	8	Grade	8	K55	L80	N80	) CS	90 1	F95 I	P110	Q125	K55	L80	N8(	) C	<del>.</del> 90 -	<b>F</b> 95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	27.0 32.6 209	33.0 47.5 304	33.0 47.5 304	5 53	.4 5		36.9 65.3 418	39.1 74.2 475	35.1 37.4 238	45.2 54.4 346	45.: 54.4 34(	4 61 6 31	.2 € 89	64.6 411	54.3 74.8 476	57.5 85.1 540
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	293 293 179 197	321 321 230 252	333 333 233 256	3 34 3 25	14 : 54 :	362 361 267 293	427 427 312 342	468 465 350 383	334 327 210 231	365 327 269 295	379 344 273 300	4 3 3 2	44 97	412 361 313 343	486 430 366 401	533 465 410 449
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26				72 91 61 71 151 140 100	5.9 0.0							7; 9; 6; 13; 12; 10; 10;	6.8 8.4 2.3 0.1 4.3 2.7 9.0 0.0 2.0 2.7			
				√ K55	Aake-up 08 N	torque C30/32 C30/32	(daN.m 0110 da	Q125	OD E U D D D D D D D D D D D D D D D D D	ם (în	Drift API (mm)	X55	Aake-up	torque 26/062	(daN.m	Q125	0 (m m)	01 (Î 10	Drift API (mm)
Connection characteristics	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	569 1071 1166 922 1139 1125 980 1079	774 1342 719 1322 1166 922 1139 1274 1180 1274 980	893 1342 719 1444 1166 922 1139 1376 1274 1471 1128 daN x	1043 1342 719 1559 1166 922 1139 1471 1376 1668 1274	1342 719 1763 1166 922 1139 1566 1471 1763 1424	215.9 206.4 215.9 207.9 193.7 196.9 215.9 193.7 201.9 216.6 215.9 216.4 208.6 193.7	172.3 172.6 172.4 172.7 172.7	171.4 171.4 171.4 171.4 171.4 171.4 171.4 171.4 171.4 171.4 171.4	1180	907 1458 841 1220 1369 1180 1329 1566 1376 1376 1376 1030	1047 1458 841 1335 1369 1180 1329 1668 1566 1566 1177	1222 1458 841 1458 1369 1180 1329 1817 1668 1763 1325	1458 841 1627 1369 1180 1329 1912 1763 1864 1471	215.9 206.4 215.9 210.2 193.7 197.2 215.9 193.7 204.1 216.6 215.9 216.4 210.9 193.7	173.0 169.8 169.8 169.6 169.9 170.4	168.7 168.7 168.7 168.7 168.7 168.7 168.7 168.7 168.7 168.7 168.7 168.7 168.7 168.7

(1) The closed end displacement does not account for couplings. MPa × 145 = psi daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

Sales Sales Sales

<b></b>	4	Nominal size (OD)	1			625 in			193.7 r	 nm	1		7.0	525 in			193.7 г	nm	
	1												20.	00 lb/ft			56.9 dal	1/m	
	2	Nominal weight	2		35.	80 lb/ft			52.2 dal	N/m									
Vpod eqi	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		6. 10 1.8	465 in 695 in .46 in ² 13 gal/ft 17 gal/ft			11.8 m 170.1 r 6748 n 22.71 29.46	nm nm² I/m			6.) 11. 1.7	500 in 625 in 19 in ² 9 gal/ft 7 gal/ft			12.7 m 168.3 r 7221 m 22.24 29.46	nm 1m² I/m	
a.	8	Grade	8	K55	£80	N8(	D CS	90 1	195	P110	Q125	K55	L80	N8	D C	90 T	ſ95	P110	Q125
	9 10 11	Collapse résistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	40.3 40.5 256	53.0 58.9 372	53. 58. 37:	9 66	.2 6		65.3 80.9 512	70.3 92.0 582	45.5 43.5 274	60.8 63.3 398	60. 63. 39	3 71	.2 7		76.4 87.0 548	83.1 98.9 622
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	359 327 229 252	393 327 294 323	400 34 299 320	4 34 9 32	14 3 25 3	443 361 342 375	523 430 399 438	573 465 448 490	385 327 248 273	420 327 319 350	- 43 34 32 35	4 3 4 3	44 52	474 361 371 406	560 430 433 474	613 465 485 531
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 551 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26				12: 115 100 102 6!	9.9 ).0							7: 8: 7: 11: 11: 10: 10: 6:	2.1 0.0 2.0 5.2	1		
	-			K55	Nake-up	torque 6/062	(daN.m 0110 H	Q125	G G M M M M	Q (Ē	Drift API (mm)	X K55	fake-up 08NJ	torque C30/32	(daN.m	Q125	OD (mm)	01 (mm)	Drift API (mm)
Connection characteristics	27 28 29 30 31 32 33	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL Hydrif LX	27 28 29 30 31 32 33		1668	1668	1668	1668	215.9 206.4 211.7	171.5	166.9 166.9 166.9	759 1220	1074 1891 963 1471	1239 1891 963 1627	1445 1891 963 1695	1619 1891 963 1830	215.9 206.4 215.9 213.1 193.7 197.5	169.9 166.8 166.2	165.1 165.1 165.1 165.1 165.1 165.1
Connecti	33 34 35 36 37 38 39 40 41	Hydril 563 Hydril 551 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	34 35 36 37 38 39 40 41	1424 1376 1376	1620 1566 1668 1079	1763 1763 1864 1226	1864 1864 2061 1376	1959 1959 2257 1519	216.6 215.9 216.4 212.4 193.7	168.8	166.9 166.9 166.9 166.9 166.9	2183 1573 1471 1566 1566	2183 1573 1668 1763 1959 1128	2183 1573 1817 1959 2156 1274	2183 1573 1912 2061 2454 1424	2183 1573 2061 2156 2746 1566	215.9 207.0 216.6 215.9 216.4 213.8 193.7	167.0 166.4 167.0	165.1 165.1 165.1 165.1 165.1 165.1 165.1

(1) The closed end displacement does not account for couplings. MPa × 145 = psi daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

A CONTRACTOR

N.W. WAN

	1	Nominal size (OD)	1		7.	.625 in			193.7	mm			7	.625 in			193.7	mm	
	2	Nominal weight	2		42	.80 lb/ft			62.5 da	iN/m			45	. <b>30</b> lb/fi	• t		66.1 da	N/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		6 12 1.1	.562 in .501 in 2.47 in ² 72 gal/ft 37 gal/ft			14.3 r 165.1 8045 r 21.41 29.46	mm nm² I/m			6 10 1.1	.595 in .435 in 3.14 in ² 69 gal/f 37 gal/f			15.1 n 163.4 n 8478 n 20.98 29.46	mm nm² I/m	
L.	8	Grade	8	K55	L80	N8	0 C	:90	T95	P110	Q125	K55	L80	N8	80 C	90	T95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	51.8 48.9 305	74.6 71.1 444	71.	1 8	0.0	85.6 84.5 527	96.0 97.8 610	105.8 111.2 693	54.6 51.8 321	79.4 75.3 468	75	.3 84	4.7 8		106.5 103.6 643	117.9 117.7 731
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	428 327 281 310	468 327 362 397	34 36	4 3 7 3	844 199	528 361 421 461	624 430 491 538	683 465 550 603	451 327 299 329	493 327 384 421	34 39	14 3 90 4	44 24	556 361 447 490	657 430 522 572	720 465 584 640
officiency	16 17 18 19 20	Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511	16 17 18 19 20	1			8	69.5 81.6 90.6							8	9.9 2.3 11.0			
Connection efficiency	21 22 23 24 25	Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP	21 22 23 24 25				10 10	)3.5 )2.0 )0.0							10 10	8.2 2.0 0.0			
<u>.</u>	26	Vallourec & Mannesmann FJL	26					5.1	1	]	1			toraus	6 	6.0	T		
				K55	08 Nake-up	C90/95	(daN.n 0 110 6	Q125	OD (mm)	Q (mm)	Drift API (mm)	K55	LN80	C90/95	0110	Q125	g (mm)	DI (mm)	Drift API (mm)
Connection characteristics	27 28 29 30 31 32 33 34 35 36	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521	27 28 29 30 31 32 33 34 35 36 37	1200 2413 1620	1218 2285 1458 2413 1817	1406 2285 1559 2413 1912	1641 2285 1695 2413 2061	1837 2285 1898 2413 2156	215.9 206.4 215.9 215.6 193.7 197.8 215.9 216.6	163.9	162.0 162.0 162.0 162.0 162.0 162.0 162.0	936 1288 2576 1668	1180 1491 2576 1864	1180 1695 2576 1959	1180 1830 2576 2061	1180 1966 2576 2156	197.9	162.8 161.4	160.3 160.3 160.3 160.3 160.3
	37 38 39 40 41	Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	37 38 39 40 41	1620 1864	1817 2061 1177	1912 2156 1325	2061 2156 1471	2156 2156 1620	216.6 216.2 216.4 193.7	163.9	162.0 162.0 162.0 162.0	2061	1864 2156 1177	1959 2156 1376	2061 2156 1519	2156 2156 1715	217.5 216.4 193.7	162.2	160.3 160.3 160.3 160.3

(1) The closed end displacement does not account for couplings. MPa × 145 = psi daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

a dina di Reference Same and

I DAYSZYKZZARY

[	1	Nominal size (OD)	1		7	.625 in			193.7	mm		1	8	.625 in			219.1	mm	
	2	Nominal weight	2		47	. <b>10</b> lb/fi			68.7 da	aN/m			28	. <b>00</b> lb/f	t		40.9 da	aN/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		0 6 13 1.0	1.625 in 5.375 in 3.74 in ² 66 gal/f 37 gal/f	t		15.9 r 161.9 8867 r 20.59 29.46	mm mm² I l/m			8 7 2.	0.304 in 8.017 in 7.95 in ² 62 gal/f 04 gal/f	t		7.7 r 203.6 5127 r 32.57 37.69	mm mm² I/m	
	8	Grade	8	K55	L80	N8	:0 C	90	Т95	P110	Q125	K55	L80	N8	30 C	:90	T95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	57.1 54.4 336	83.0 79.1 489	79	1 8	9.0		114.1 108.8 673	128.9 123.6 764	13.0 23.4 194	14.9 34.0 283	) 34	.0 3	8.3	15.2 40.4 336	15.2 46.8 389	15.2 53.2 442
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	472 327 315 346	516 327 404 443	7 34 I 41	4 3 1 4	44 46	579 361 470 516	687 430 549 602	744 465 615 674	267 267 149 168	295 295 193 216	5 30 8 19	)6 3 )6 2	18 13	334 334 225 252	394 394 262 293	433 433 294 329
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26	3			8 9	0.2 2.3 3.9 0.0							20 20	6.4 2.8 0.0			
				K55	Nake-up 08 N	torque C30/32	(daN.m 01 6	ر 0125 ک	do (mm)	Q (mm)	Drift API (mm)	K55	Make-up 08 22	torque	(daN.n	Q125	OD (mm)	DI (mm)	Drift API (mm)
Connection characteristics	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL Hydril 563 Hydril 511 Hydril 521. Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	976 1383 1715	1367 2712 1241 1627 1912	1571 2712 1241 1830 2061	1834 2712 1241 1966 2156	2054 2712 1241 2169 2156	215.9 206.4 215.9 224.8 193.7 198.1 216.6 216.6		158.8 158.8 158.8 158.8 158.8 158.8 158.8	461 1029 735	976 583 1180 834	976 583 1274 883	976 583 1376 931	976 583 1471 980		202.1 202.2	200.5 200.5 200.5 200.5 200.5 200.5 200.5

(1) The closed-end displacement does not account for couplings. MPa × 145 = psi daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

٠,

Sec. Shares

N. M. W. N.

	1	Nominal size (OD)	1		8.	625 in			219.1	mm		[	8	.625 in			219.1	mm	
	2	Nominal weight	2		32	.00 lb/ft			46.7 da	N/m			36	.00 lb/fi	t		52.5 da	N/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		7 9 2.5	.352 in .921 in .15 in ² 56 gal/ft 94 gal/ft			8.9 n 201.2 5902 r 31.79 37.69	mm nm² I/m			7 10 2.9	.400 in .825 in ).34 in ² 50 gal/fi 04 gal/fi			10.2 r 198.8 i 6668 r 31.03 37.69	mm nm² I/m	
	8	Grade	8	K55	L80	N8	0 C	90	T95	P110	Q125	K55	L80	N8	0 C	90	T95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	17.5 27.1 224	21.0 39.4 326	39.	4 44	1.3	22.6 46.8 387	23.6 54.2 448	23.9 61.6 509	23.8 30.8 253	28.3 44.8 368	44	.8 50	0.4	30.0 53.2 437	32.3 61.6 506	34.0 69.9 575
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	307 307 179 201	340 340 232 259	35 23	23 52	66 56	384 384 270 302	454 454 315 352	498 498 353 394	347 347 208 234	384 373 270 302	39 27	333 32	93 98	434 412 314 351	512 491 366 410	563 530 411 459
Connection afficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26				9 5 6 17 17 10	9.3 0.7 7.3 8.1 9.3 6.2 0.0 4.5							7 9 6 7 15 15 10	6.0 3.3 1.8 1.4 1.4 8.7 6.0 0.0 2.1 9.7			
				K55	1ake-up 08 N	torque C30/32	(daN.m 0 1 4	Q125	O O D	DI (mm)	Drift API (mm)	K55	Aake-up 08 N	torque 260/062	(daN.m	a125	OD (mm)	⊆ ^{(ji}	Drift API (mm)
Connection characteristics	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 551 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	545 613 556 1274 746 1166 1125 883	1369 705 1274 746 1166 1274 980 1226	1369 705 1274 746 1166 1376 1079	1369 705 1274 746 1166 1471 1180	1369 705 1274 746 1166 1566 1274 1817	244.5 231.8 244.5 232.8 219.1 244.5 219.1 225.8 245.1 244.5 244.5 244.5	200.2 201.6 201.1 201.3	198.0 198.0 198.0 198.0 198.0 198.0 198.0 198.0 198.0 198.0 198.0 198.0	635 713 691 1173 1424 1098 1383 1376 1079 1079	926 1478 881 1458 1424 1098 1383 1566 1227 1227 1227 1274	1070 1478 881 1627 1424 1098 1383 1668 1376 1376 1376 1471	1478 881 1763 1424 1098 1383 1817 1471 1471 1668	1478 881 1966 1424 1098 1383 1959 1566 1566 1864	244.5 231.8 244.5 234.9 219.1 222.6 244.5 219.1 227.8 245.1 244.5 244.5 235.4 219.1	199.7 196.9 196.7 196.7 196.8 197.3	195.6 195.6 195.6 195.6 195.6 195.6 195.6 195.6 195.6 195.6 195.6 195.6 195.6 195.6 195.6

AND ROOMS

12/02/10/14

(1) The closed end displacement does not account for couplings.  $MPa \times 145 = psi daN \times 2.25 = lb daN.m \times 7.38 = lb ft mm \times 0.0394 = in daN.m \times 145 = psi dA$ 

 $\sim p_{e_1}^{(n)}$ 

											T								
	1	Nominal size (OD)	1		8.6	25 in			219.1 n	nm			8.6	525 in			219.1 m	nm 	
	2	Nominal weight	2		40.0	<b>10</b> lb/ft		Ę	58.4 dal	<b>\</b> /m			44.0	<b>10</b> lb/ft		(	64.2 daN	l/m	
Pipe body	3 4 5 6	Wall thickness Inside diameter Steef cross-section Capacity Displacement (1)	3 4 5 6 7		7.1 11. 2.4	150 in 725 in 56 in ² 3 gal/ft 4 gal/ft			11.4 m 196.2 n 7456 m 30.24 l 37.69 l	nm nm² /m			7.6 12. 2.3	500 in 525 in 76 in ² 7 gal/ft 4 gal/ft			12.7 m 193.7 m 8234 m 29.46 l 37.69 l	nm Im ² /m	
ā	7	Displacement (1) Grade	8	K55	L80	N80	C9	T	95 I	P110	Q125	K55	L80	N80	) CS	ю т	'95 F	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11 12	30.3 34.6 283 388	38.1 50.4 411 430	38.1 50.4 411 445	56 46	.7 5 33 4		44.1 69.2 565 573	45.7 78.7 643 629	36.9 38.5 312 428	47.9 56.0 454 474	47.9 56.0 454	) 63 1 5 ⁻ 2 5 ⁻	.0 6 11 1	6.4 539 536	58.1 76.9 624 633	61.9 87.4 710 695
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	13 14 15	373 239 268	373 309 345	393 313 351	39 34	11 3	412 360 402	491 419 469	530 470 526	373 268 302	373 347 389	390 352 394	2 38	34 4	412 405 452	491_ 472 528	530 529 592
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26				75 92 58 74 141 139 100 102	9.5 ).0							7( 89 7( 12) 120 100 100 100	6.3 0.0 2.0 5.4			
				K55	1ake-up 08NJ	torque C30/32	(daN.m 0114	Q125	OD (imm)	Q (mm)	Drift API (mm)	×55	Nake-up 08 NJ	C90/95	0 6 6	Q125	OD (mm)	0 1 1 1	Drift API (mm)
tics	27 28	Buttress Standard Buttress Special Clearance	27 28 29						244.5 231.8		193.0 193.0						244.5 231.8		190.5 190.5
Connection characteristics	29 30 31 32 33 34 35 36 37 38 39 40 41	API STC API LTC Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521. Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	30 31 32 33 34 35 36 37 38 39 40 41	786 1363 1627 1369 1573 1471 1376 1376	1060 1830 1003 1627 1627 1369 1573 1668 1566 1668 1325	1226 1830 1003 1830 1627 1369 1573 1817 1763 1864 1519	1430 1830 1003 1966 1627 1369 1573 1912 1864 2061 1668	1830 1003 2169 1627 1369 1573 2061 1959 2257 1864	244.5 237.1 219.1 222.8 244.5 219.1 229.9 245.1 244.5 244.5 237.5 219.1	194.7	193.0 193.0 193.0 193.0		1194 2196 963 1695 2468 1763 1763 1864 2257 1376	1379 2196 963 1898 2468 1763 1912 2061 2454 1566	1608 2196 963 2102 2468 1763 2061 2156 2746 1763	2196 963 2305 2468 1763 2156 2156 2156 2942 1959	244.5 239.1 219.1 223.1 244.5 232.0 245.1 244.5 244.5 244.5 239.6 219.1	195.2 194.8 191.6 192.4 191.8	190.5 190.5 190.5 190.5 190.5 190.5 190.5

(1) The closed-end displacement does not account for couplings. MPa  $\times$  145 = psi daN  $\times$  2.25 = lb

and the second of the

C 57

1222112233

Carlos Carlos

	1	Nominal size (OD)	1	1	8	.625 in			219.1	mm			8	.625 in			219.1	mm	
	2	Nominal weight	2		49	.00 lb/fi	1		71.5 da	nN/m			52	. <b>00</b> lb/f	t		75.9 da	N/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		7 14 2.3	1.557 in 1.511 in 1.12 in ² 30 gal/f 04 gal/f			14.1 r 190.8 r 9108 r 28.59 37.69	mm mm² I/m			7 15 2.1	.595 in .435 in 5.01 in ² 26 gal/f 04 gal/f			15.1 r 188.8 9684 r 28.01 37.69	mm nm² ∦m	
	8	Grade	8	K55	L80	N8	0 C	90	T95	P110	Q125	K55	L80	NE	30 C	90	T95	P110	Q125
	9 10 11	Collapse résistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	44.4 42.9 345	59.1 62.3 502	62	.3 70	).1	66.9 74.0 597	74.0 85.7 691	80.4 97.4 785	48.7 45.8 367	66.6 66.6 534	66	.6 7	4.9	75.9 79.1 634	84.6 91.6 734	92.7 104.0 835
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	474 373 302 339	525 373 391 437	8 39 39	13 3 16 4	93 32	593 412 455 509	700 491 531 594	769 530 595 665	504 373 324 364	558 373 419 469	i 39 1 42	93 3 25 4	893 163	631 412 488 546	744 491 570 637	817 530 639 714
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26				7 9 11 11 10 10	9.1 9.4 0.6 6.2 4.2 0.0 2.0 9.2			-				9 10 10 10	9.0 )1.1 )9.3 )7.4 )0.0 )2.0 )5.1			
				K55	Nake-up	torque 36/06 C	(daN.m 0110	Q125	OD (mm)	D (mm)	Drift API (mm)	K55	Nake-up	torque 26/062	(daN.n 0114	Q125	OD (mm)	0 ( ^w w)	Drift API (mm)
Connection characteristics	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	759 1627 2685 1668 1959 2257	1342 2624 963 1966 2685 1864 2156 2847 1471	1551 2624 963 2102 2685 2061 2156 3037 1620	1810 2624 963 2305 2685 2156 2156 2156 3139 1817	2028 2624 963 2508 2685 2156 2156 3139 1959	244.5 231.8 244.5 241.5 219.1 223.3 244.5 245.1 244.5 244.5 244.5 244.5 242.0 219.1	192.6	187.6 187.6 187.6 187.6 187.6 187.6 187.6 187.6 187.6 187.6 187.6 187.6	1627 2874 1763 2156 2549	1966 2874 1959 2156 3139 1519	2169 2874 2061 2156 3139 1715	2440 2874 2156 2156 3139 1912	2644 2874 2156 2156 3139 2061	244.5 231.8 223.5 244.5 245.1 244.5 244.5 244.5 243.5 219.1	186.8	185.7 185.7 185.7 185.7 185.7 185.7 185.7 185.7 185.7 185.7

(1) The closed end displacement does not account for couplings. MPa × 145 = psi daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

and prove a

4.20030.4025

11 NE CORRENT

	1	Nominal size (OD)	1	1		9.625 in			244.5			T		9.625 in			244.5		
		· · · · · · · · · · · · · · · · · · ·		+														·	
Pipe body	2 3 4 5 6 7	Nominal weight Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	2 3 4 5 6 7		( { 1 3.	5.00 lb/ 0.352 ir 3.921 ir 0.25 in ⁴ 25 gal/ .78 gal/	n 2 ft		52.5 d 8.9 ( 226.6 6616 40.33 46.94	mm mm mm ² 3 l/m			1	0.00 lb/i 0.395 ir 3.835 ir 1.45 in ² .18 gal/	ı 9 2 ft		58.4 di 10.0 i 224.4 7390 39.55 46.94	mm mm mm² i l/m	
	8	Grade	8	K55	L80	) N	BO (	:90	T95	P110	Q125	K55	L8	) N	80 (	290	Т95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	14.0 24.3 251	16.4 35.3 36	3 35	5.3 3		17.0 41.9 433	17.1 48.5 502	17.1 55.2 570	17.7 27.2 280	39.	6 39	.6 4	22.4 14.6 459	22.9 47.0 484	24.0 54.5 560	24.3 61.9 637
l ensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	336 336 188 218	377 377 249 282	7 3! 5 24	90 4 49 2	107 107 271 312	428 428 286 328	504 504 334 383	555 555 374 430	375 375 216 250	41 28	5 43 2 28	36 ( 35 (	454 437 312 358	478 459 328 377	563 547 383 440	620 591 430 493
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCII Grant Prideco STL Hydrif LX Hydrif 563 Hydrif 511 Hydrif 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26				6 17 17 10	0.7 6.7 7.6 3.9 0.0 3.5							5 7 15 15 10 10	59.9 91.7 59.6 59.0 55.6 90.0 92.1 58.4			
				K55	Make-up 08 N	torque C30/32	e (daN.n 011	0125	do Mm)	QI (imm)	Drift API (mm)	K55	Make-u 08 NJ	torque C30/32 C30/32	e (daN.r 0114	0125 (u	do (mm)	DI (mm)	Drift API (mm)
Connection characteristics	27 28 29 30 31 32 33	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII. Grant Prideco STL Hydrif LX	27 28 29 30 31 32 33	574 663	1593	1593	1593	1593	269.9 257.2 269.9 269.9 258.1			659 761 691	992 1708 881	1148 1708 881	1708 881	1708 881	269.9 257.2 269.9 269.9 260.0 244.5	225.2 223.8	220.4
Connei	34 35 36 37 38 39 40 41	Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	34 35 36 37 38 39 40 41	1356 1247 1180 980	1356 1247 1376 1180 1519	1356 1247 1519 1274 1763	1356 1247 1620 1376 2061	1356 1247 1763 1471 2156		225.3 224.7 224.3	222.6 222.6 222.6 222.6 222.6 222.6	1464 1180 1424 1424 1180 1079	1464 1180 1424 1668 1376 1274 1566	1464 1180 1424 1817 1566 1376 1817	1464 1180 1424 1959 1668 1566 2061	1464 1180 1424 2156 1864 1668 2156	269.9 244.5 252.9 270.5 269.9 269.9 260.7 244.5	223.4 223.5 222.2	220.4 220.4 220.4 220.4 220.4 220.4 220.4 220.4 220.4

MARKEN STOV

LEASE STREET

г — т			<u> </u>	r								<b></b>							
	1	Nominal size (OD)	1		9.	625 in			244.5	mm 		<b> </b>	9.	.625 in			244.5	mm	
	2	Nominal weight	2		43.	50 lb/ft			63.5 da	N/m			47	. <b>00</b> lb/fi	t		68.6 da	N/m	
	3	Wall thickness	3			435 in			11.0 n					.472 in			12.0 r		
	4	Inside diameter	4			755 in			222.4					.681 in			220.5		
- Apo	5	Steel cross-section	5			.56 in ²			8103 r					8.57 in ²			8756 r		
Pipe body	6	Capacity	6	1		3 gal/ft			38.84					07 gal/f			38.19		
ä	7	Displacement (1)			3.7	78 gal/ft			46.94	<i>u</i> m			3.	78 gal/f	t 		46.94	1/m	
	8	Grade	8	K55	L80	N8	0 C	90	T95	P110	Q125	K55	L80	N8	10 C	:90	T95	P110	Q125
· ·	9	Collapse resistance (MPa)	9	22.4	26.3	26.	3 27	7.6	28.4	30.5	31.9	26.8	32.8	32	.8 3	4.4	35.1	36.5	38.8
·	10	Internal yield pressure (MPa)	10	30.0	43.6	43.	6 49	9.1 !	51.8	60.0	68.2	32.5	47.3		.3 5	3.3	56.2	65.1	74.0
	11	Pipe body yield strength (1000 daN)	11	307	447	44	7 5	03	531	615	698	332	483	48	33 E	543	574	664	755
	12	Buttress Standard	12	411	462	47	8 4		524	617	679	445	499	·			566	667	734
dan	13	Buttress Special Clearance	13	411	416				459	547	591	416	416				459	547	591
Tensile strength (10 ³ daN)	14	API STC	14	242	315				367	428	481	265	346				403	470	527
ν C	15	API LTC	15	279	362	36	7 4	00	422	492	552	306	397	40	3 4	39	463	540	605
	16	Grant Prideco TCII	16	,															
	17	Grant Prideco STL	17					7.0								6.0			
, A	18	Hydril LX	18					4.1								5.7			
Connection efficiency	19	Hydril 563	19					2.4								3.0 1.2			
effi	20	Hydril 511	20					2.5 2.3			'					4.1			1
L OI	21	Hydril 521	21 22					2.3 5.0								4.1			
. Tect	22	Vallourec & Mannesmann New VAM	22					1.9								1.4			
onr	23	Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO	23					0.0								0.0			
0	24 25	Vallourec & Mannesmann VAW TOP	25					2.0								2.0			
	25 26	Vallourec & Mannesmann FJL.	26					2.0								4.9			
			<b> </b>	N	/lake-up	torque	(daN.m	n)				1	Make-up	torque	(daN.r	n)			
			1.		ò	95	0	22	Q L	Q €	Drift API (mm)	പ	õ	95	0	25	Q (u u)	Q ûu ∭ ⊇	Drift API (mm)
				K55	LN80	C90/95	P110	Q125				K55	LN80	C90/95	P110	Q125			۵×
		Buttress Standard	27						269.9		218.4						269.9		216.5
s.	27 28	Buttress Standard Buttress Special Clearance	28						257.2		218.4						257.2		216.5
Connection characteristics	20 29	API STC	29																
ter	30	APILTC	30		1110	1285	1498		269.9		218.4		1219	1410	1645	1844	269.9		216.5
ara c	31	Grant Prideco TCII	31		2054	2054	2054	2054	261.7	223.4	218.4		2373	2373	2373	2373	263.3	221.8	216.5
che	32	Grant Prideco STL	32	868	1098	1098	1098	1098	244.5	219.7	218.4	908	1234	1234	1234	1234	244.5	219.6	216.5
ion	33	Hydrif LX	33	1491	1830	2034	2237	2508	248.4	220.3	218.4	1627	2034	2305	2440	2644	248.5	218.5	216.5
	34	Hydril 563	34	1613	1613	1613	1613	1613	269.9		218.4	1790	1790	1790	1790	1790	269.9		216.5
iuo	35	Hydril 511	35	1315	1315	1315	1315	1315	244.5	220.2	218.4	1627	1627	1627	1627	1627	244.5	217.7	216.5
	36	Hydril 521	36	1586	1586	1586	1586	1586	254.6	220.5		1735	1735	1735	1735	1735	256.2	218.6	216.5
	37	Vallourec & Mannesmann New VAM	37	1620	1912	2061	2156	2156	270.5		218.4	1668	1959	2156	2156	2156	270.5		216.5
	38	Vallourec & Mannesmann VAM ACE	38	1471	1668	1864	1959	2156	269.9		218.4	1763	1959	2156	2156	2156	269.9		216.5
	39	Vallourec & Mannesmann VAM PRO	39						269.9	ļ	218.4						269.9		216.5
	40	Vallourec & Mannesmann VAM TOP	40	1471	1763	1959	2156	2352	262.5		218.4	1763	2156	2352	2746	2942	264.1		216.5
	41	Vallourec & Mannesmann FJL	41		1620	1864	2061	2156	244.5	220.2	218.4		1668	1912	2156	2156	244.5	219.4	216.5
and the second second	بتجبيب	that the second does not account for couplings	1				2 25 -												

(1) The closed end displacement does not account for couplings. MPa x 145 = psi daN x 2.25 = lb daN m x 7.38 = lb.ft mm x 0.0394 = in

C 60

- TELEVER

	1	Nominal size (OD)	1		9	9.625 in			244.5	mm			5	9.625 in			244.5	mm	
	2	Nominal weight	2		5:	3.50 lb/	t		78.1 d	aN/m			5	<b>3.40</b> lb/i	t		85.2 d	aN/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		1 2	0.545 ir 8.535 ir 5.55 in ⁴ .97 gal/ .78 gal/	r 2 ft		13.8 216.8 10 030 36.91 46.94	mm mm² I/m			1 2	0.595 in 3.435 in 6.88 in ² .90 gal/1 .78 gal/1	ft		15.1 214.2 10 890 36.05 46.94	mm mm² 5 l/m	
	8	Grade	8	K55	L80	) N	30 (	:90	T95	P110	Q125	K55	L8(	) N	BO (	C90	T95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	35.4 37.6 380	45. 54. 55:	7 54	.7 6		50.6 64.9 657	54.8 75.2 761	58.2 85.4 864	41.3 41.0 413	54. 59. 60	7 59	.7 6		61.3 70.9 713	67.3 82.0 826	72.7 93.2 939
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	509 416 311 359	57: 41( 40) 46(	6 43 5 4	37 4 11 4	516 137 148 515	648 459 473 543	764 547 551 633	841 591 618 710	553 416 342 395	62 41 44 51	6 43 6 49	37 d 52 d	569 137 193 566	704 459 520 596	830 547 606 696	913 591 680 780
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 551 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26				7 9 11 11 10 10	2.9 7.6 3.9 7.0 7.1 4.7 0.0 2.1 5.1							10 10 10 10	)5.0 76.9 )1.2 )7.9 )5.6 )0.0 )2.0 )8.1			
				4 K55	Vake-ur 08 NJ	torque	(daN.n 0 1 4	Q125	00 (mm)	G (mm)	Drift AP! (mm)	K55	Make-up	Ca0/95	(daN.n	Q125	OD (mm)	QI (mm)	Drift API (mm)
Connection characteristics	27 28 29 30 31 32 33 34 35 36 37 38 39 40	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL Hydril EX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	1098 1763 2102 2020 1817 1966 2454	1430 2861 1383 2169 2102 2020 2156 2156 3139 1763	1654 2861 1383 2373 2102 2020 2156 2156 2156 3139 1959	1928 2861 1383 2644 2102 2020 2156 2156 3139 2156	2163 2861 1383 2847 2102 2020 2156 2156 3139 2156	244.5 249.5 269.9 259.2 270.5 269.9 269.9 269.9	219.8 217.6 216.8 216.8 216.8	212.8 212.8 212.8 212.8 212.8 212.8 212.8 212.8 212.8 212.8 212.8 212.8 212.8 212.8 212.8	1112 1966 3064 1912 2156 2942	3512 1410 2373 3064 2156 2156 3139 1817	3512 1410 2576 3064 2156 2156 3139 2061	3512 1410 2847 3064 2156 2156 3139 2156	3512 1410 3118 3064 2156 2156 3139 2156	269.9 257.2 268.4 244.5 249.7 269.9 270.5 269.9 269.9 269.9 269.2 244.5	216.3 215.2 214.5	210.3 210.3 210.3 210.3 210.3 210.3 210.3 210.3 210.3 210.3 210.3 210.3

(1) The closed end displacement does not account for couplings. MPa × 145 = psi daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

and the second s

State State

	1	Nominal size (OD)	1		9.6	25 in			244.5 m	nm			9.6	5 <b>25</b> in			244.5 m	im	
	2	Nominal weight	2		59.4	10 lb/ft		ε	36.7 daN	√m			61.	10 lb/ft		6	89.2 daN	l/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		8.4 17. 2.8	609 in 107 in 25 in ² 8 gal/ft 8 gal/ft			15.5 m 213.5 m 1 129 n 35.81 l 46.94 l	nm nm² /m			8.: 17. 2.8	625 in 375 in .67 in ² 6 gal/ft 8 gal/ft			15.9 m 212.7 m 1 401 m 35.54 l, 46.94 l,	im im ^z /m	
. <u>с</u> .	8	Grade	8	K55	L80	N80	) C9	0 T	95 1	P110	Q125	K55	1.80	N8(	) C9	ю т	'95 F	110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	42.9 42.0 422	56.9 61.1 614	56.9 61.1 614	68	.7 7	2.5	70.9 84.0 844	76.7 95.4 959	44.8 43.1 432	59.7 62.7 629	59. 62. 629	7 70	.5 7	4.4 8 747	74.9 36.2 865	81.4 97.9 983
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	565 416 351 405	634 416 457 525	656 437 463 532	7 43 3 50	87 4 95 5	720 159 533 51 1	848 547 621 713	933 591 697 800	579 416 360 416	650 416 469 539	672 43 476 54	7 43 5 51	37 4 19 5	<b>1</b> 59	869 547 638 733	956 591 716 822
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26				105 103 100	3.3							100 100 100	2.0			
				K55 7	1ake-up 08 N	torque C60/32	(daN.m 0110	Q125	DO O U U U U U U	DI DI	Drift API (mm)	M K55	Aake-up 08N N	torque 26/062	(daN.m 0110 H	Q125	OD (mm)	(mm)	Drift API (mm)
Conhection characteristics	27 28 29 30 31 32	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL	27 28 29 30 31 32 33						269.9 257.2		209.6 209.6						269.9 257.2		208.8 208.8
Connectic	33 34 35 36 37 38 39	Hydril LX Hydril 563 Hydril 511 Hydril 521. Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP	33 34 35 36 37 38 39 40	3146 1966 2156	3146 2156 2156	3146 2156 2156	3146 2156 2156	3146 2156 2156	269.9 270.5 269.9 269.9		209.6 209.6 209.6 209.6		3254 2156 2156	3254 2156 2156	3254 2156 2156	3254 2156 2156	269.9 270.5 270.2 269.9		208.8 208.8 208.8 208.8
	40 41	Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	40		1817	2061	2156	L	244.5 aN.m x				1864 0.0394	2061	2156	2156	244.5	212.4	208.8

(1) The closed end displacement does not account for couplings. MPa × 145 = psi daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

STREET STREET

	1	Nominal size (OD)	1		ę	9.875 in			250.8	mm		Τ	1	0.750 ir	 1		273.0	mm	
	2	Nominal weight	2		62	2.80 lb/i	it		91.6 d	aN/m			4(	<b>).50</b> lb/i	it		59.1 da	aN/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		1 3.	0.625 in 8.625 in 8.16 in ² .04 gal/1 .98 gal/1	ft		15.9 219.1 11 718 37.69 49.41	mm   mm² 9 l/m			1 1 4	0.350 in 0.050 ir 1.44 in ² 12 gal/ 72 gal/	n ? ft		8.9 r 255.3 7378 i 51.18 58.56	mm mm² I/m	
-	8	Grade	8	K55	L80	) N	30 C	090	T95	P110	Q125	K55	L,8(	) N	BO (	290	T95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yiëld pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	43.0 42.0 444	56.9 61. 646	1 61	.1 6		64.3 72.5 768	70.9 84.0 889	76.8 95.5 1010	10.9 21.6 280	11.9 31.4 40	4 31	.4 3		11.9 37.3 483	11.9 43.2 560	11.9 49.1 636
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15									364 200	416 262			449 291	473 306	557 357	614 401
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCII Grant Prideco STL Hydrii LX Hydrii 563 Hydrii 511 Hydrii 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26				7 9 10 9	70.3 79.1 91.6 92.1 90.0 92.0 98.1							e 17 17	59.9 90.7 63.2 76.6 73.7			
				1	Make-up	o torque	e (daN.n	n)	T		-	1	Aake-up	torque	e (daN.n	n)			_
				K55	LN80	C90/95	P110	Q125	OD (The second s	QI (WW)	Drift API (mm)	K55	LNBO	C90/95	P110	Q125	a (în m	Ω Ê	Drift API (mm)
Connection characteristics	27 28 29 30 31 32 33 34 35 36 37 38 39	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Valiourec & Mannesmann New VAM Valiourec & Mannesmann VAM ACE Valiourec & Mannesmann VAM PRO	27 28 29 30 31 32 33 34 35 36 37 38 39	1302 2169 3254 2752	3925 1661 2576 3254 3186	3925 1661 2915 3254 3186	3925 1661 3186 3254 3186	3925 1661 3457 3254 3186	250.8 255.7 269.9	221.3 216.3 216.8	215.1	610 691 1654 1356 1274 1079	1830 881 1654 1356 1519 1274	1830 881 1654 1356 1668 1471	1830 881 1654 1356 1817 1566	1830 881 1654 1356 1959 1668	298.4 285.8 298.5 286.6 273.0 298.4 275.9 299.0 298.4	253.5 254.5 254.0 253.4	251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3 251.3
	35 40 41	Vallourec & Mannesmann VAM THO Vallourec & Mannesmann VAM TOP Vállourec & Mannesmann FJL	40 41	3139	3139 1959	3139 2156	3139 2156	3139 2156	277.0	217.9	215.1 215.1 215.1		1959	2156	2156	2156	273.0	253.2	251.3

(1) The closed end displacement does not account for couplings. MPa × 145 = psi daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

1	Nominal size (OD)	<u> </u>	1	1(				273.0			1		0.750 in			273.0	mm	
2 3 4 5 6 7	Nominal weight Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	2 3 4 5 6 7		C 9 13 4.	).400 in ).950 in 3.01 in ² 04 gal/f	 t		10.2 r 252.7 8391 r 50.17	mm mm mm ² ' I/m			0 9 14 3.	).450 in ).850 in 4.56 in ² 96 gal/f	t		11.4 r 250.2 9394 r 49.16	mm mm mm ²	
8	Grade	8	K55	L80	) N8	0 C	90	T95	P110	Q125	K55	L80	NE	80 C	0,0	T95	P110	Q125
9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	14.4 24.7 318	35.9	9 35	9 40	0.4 4	42.7	18.0 49.4 636	18.0 56.1 723	18.7 27.8 356	40.4	<b>1</b> 40	.4 4	5.5	48.0	25.2 55.6 712	25.8 63.1 810
12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	414 235						633 419	698 471	464 269						709 480	782 539
16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCIł Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Yallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26				9 5 6 15 15	1.8 9.0 6.5 5.2 2.7 2.1							7 9 6 7 13 13	73.9 92.7 52.9 70.4 88.6 86.4 92.1			
			K55	Make-up	torque 56/062	(daN.m	Q125	QD (mm)	D (nm)	Drift API (mm)	4 K55	Make-up 08NJ	torque 96/062	(daN.n 0110 L	0125	OD (mm)	Ð (mm)	Drift API (mm)
27 28 29 30 31 32 33 34 35 36 37 38 39 40	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL Hydril 563 Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM TOP	27 28 29 30 31 32 33 34 35 36 37 38 39 40	716 786 1830 1329 1600 1566 1376 1180	1993 1003 1830 1329 1600 1912 1566 1471	1993 1003 1830 1329 1600 2061 1763 1566	1993 1003 1830 1329 1600 2156 1959 1763	1993 1003 1830 1329 1600 2156 2156 2156 1959		252.7	248.8 248.8 248.8 248.8 248.8 248.8 248.8 248.8 248.8 248.8 248.8 248.8	822 1017 1830 2102 1722 1844 1668 1668 1668	1083 2481 1274 2305 2102 1722 1844 1959 1840 2156	1257 2481 1274 2508 2102 1722 1844 2156 2061 2352	1463 2481 1274 2847 2102 1722 1844 2156 2156 2644	3051 2102 1722 1844 2156	273.0 277.2 298.4 273.0	248.0 248.2 247.4	246.2 246.2
	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	2       Nominal weight         3       Wall thickness         1 Inside diameter         5       Steef cross-section         6       Capacity         7       Displacement (1)         8       Grade         9       Collapse resistance (MPa)         10       Internal yield pressure (MPa)         11       Pipe body yield strength (1000 daN)         12       Buttress Standard         13       Buttress Special Clearance         14       API STC         15       API LTC         16       Grant Prideco TCH         17       Grant Prideco TCH         18       Hydril 563         20       Hydril 511         21       Hydril 521         22       Vallourec & Mannesmann New VAM         23       Vallourec & Mannesmann VAM ACE         24       Vallourec & Mannesmann VAM TOP         25       Vallourec & Mannesmann FJL         27       Buttress Standard         28       Buttress Standard         29       API STC         30       API ETC         31       Grant Prideco TCII         32       Grant Prideco TCII	2Nominal weight23Wall thickness34Inside diameter45Steel cross-section56Capacity67Displacement (1)78Grade89Collapse resistance (MPa)910Internal yield pressure (MPa)1011Pipe body yield strength (1000 daN)1112Buttress Special Clearance1314API STC1415API LTC1516Grant Prideco TCII1617Grant Prideco TCI1718Hydril LX1819Hydril 5212121Vallourec & Mannesmann New VAM2222Vallourec & Mannesmann VAM PRO2423Vallourec & Mannesmann VAM TOP2526Vallourec & Mannesmann FJL2627Buttress Special Clearance2829API STC3031Grant Prideco TCII3132Hydril 5112124Vallourec & Mannesmann FJL2625Vallourec & Mannesmann FJL2627Buttress Special Clearance2829API STC3031Grant Prideco TCII3132Hydril 5113334Hydril 513344Hydril 5113534Hydril 5113535Hydril 5113634Hydril 51136<	Nominal weight2Nominal weight2Wall thickness3Inside diameter4Steel cross-section5Capacity6Displacement (1)7RGrade8K559Collapse resistance (MPa)910Internal yield pressure (MPa)911Pipe body yield strength (1000 daN)11318Buttress Standard1244API STC1413Buttress Special Clearance1314API STC1515API LTC1617Grant Prideco TCH1617Grant Prideco STL1718Hydril 5531920Hydril 5512021Hydril 5512122Vallourec & Mannesmann NAM ACE2323Vallourec & Mannesmann VAM TOP2524Vallourec & Mannesmann VAM TOP2525Vallourec & Mannesmann FJL2627Buttress Standard2728Buttress Special Clearance2829API STC2931Grant Prideco TCH3131Grant Prideco TCH3132API STC2933Hydril 123034Hydril 5633435Hydril 5633436Hydril 123537Vallourec X Mannesman NAM TOP3738Hydril 143539H	2         Nominal weight         2         Image: Constraint of the second sec	Nominal weight         2 $4 + 5.50 + 5/16$ 3         Wall thickness         3 $-400 + n$ 4         Inside diameter         4 $9.950 + n$ 5         Steet cross-section         5 $13.01 + n^2$ 6         Capacity         6 $4.04 + galf$ 7         Displacement (1)         7 $4.72 + galf$ 8         Grade         8         K55         L80         N8           9         Collapse resistance (MPa)         9         14.4 $17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.1 + 17.$	Nominal weight         2         45.50 lb/t           3         Wall thickness         3         0.400 in           4         Inside diameter         4         9.950 in           5         Steel cross-section         5         13.01 in ² 6         Capacity         6         4.04 gal/ft           7         Displacement (1)         7         4.72 gal/ft           8         Grade         8         K55         L80         N80         C           9         Collapse resistance (MPa)         9         14.4         17.1         17.1         17.1           10         Internal yield pressure (MPa)         10         24.7         35.9         35.9         463           11         Pipe body yield strength (1000 daN)         11         318         463         463         5           12         Buttress Standard         12         414         473         488         5           13         Buttress Standard         12         414         473         488         5           14         API STC         14         235         308         312         3           14         HPi StC         14         15 <td< th=""><th>Nominal weight         2         45.50 lb/t           3         Wall thickness         3         0.400 in           4         Inside diameter         4         9.950 in           5         Steel cross-section         6         4.04 gal/ft           7         Displacement (1)         7         4.72 gal/ft           8         Grade         8         K55         L80         N80         C90           9         Collapse resistance (MPa)         9         14.4         17.1         17.1         17.6           10         thternal yield pressure (MPa)         10         24.7         35.9         35.9         40.4           11         Pipe body yield strength (1000 daN)         11         318         463         521           12         Buttress Standard         12         414         473         488         511           13         Buttress Standard         12         414         235         308         312         341           14         API STC         16         59.9         59.9         59.9         59.9         59.9         59.0           14         Hydrii B53         19         91.8         91.8         91.8         91</th><th>Nominal weight         2         45.50 lb/t         $66.4 dt$           3         Wall thickness         3         0.400 in         10.21           4         Inside diameter         5         13.01 in²         8391.           6         Capacity         6         4.04 gal/ft         50.17           7         Displacement (1)         7         4.72 gal/ft         58.56           8         Grade         8         K55         L80         N80         C.90         T95           9         Collapse resistance (MPa)         9         14.4         17.1         17.6         17.8           10         Internal yield pressure (MPa)         10         24.7         35.9         40.4         42.7           11         Pipe body yield strength (1000 daN)         11         21.4         47.3         488         51.1         53.8           13         Buttress Standard         12         41.4         47.3         488         51.1         53.8           14         API STC         14         235         30.8         31.2         34.1         359           15         API LTC         15         15.2         59.9         18.4         51.1         52</th><th>Nominal weight         2         45.50 lb/t         $66.4 dW/m$           3         Walt thickness         3         0.400 in         10.2 mm           4         9.950 in         252.7 mm         331 mm²         331 mm²           6         Capacity         6         4.04 ga/ft         552.7 mm           7         Displacement (1)         7         4.72 ga/ft         55.5 lb/t         55.5 lb/t           7         Displacement (1)         7         4.72 ga/ft         55.9 3.5 9         10.4 4.2.7         49.4           10         Internal yield pressure (MPa)         10         24.7         35.9 3.5 9         40.4         42.7         49.4           11         Pipe body yield strength (1000 daN)         11         318         463         521         550         636           12         Buttress Standard         12         414         473         488         511         538         633           13         Buttress Standard         12         414         473         488         511         538         633           14         API LTC         15         91.8         59.0         59.0         59.0         59.0         59.0         59.0         59.0</th><th>2         Nominal weight         2         45.90 b/t1         66.4 deN/m           3         Wall thickness         3         0.400 in         10.2 mm           4         Inside diameter         4         9.950 in         252.7 mm           5         Steel cross-section         5         13.01 m²         6331 mm²           6         Capacity         6         4.04 qv/t1         50.17 /m           7         Displacement (1)         7         4.72 gal/t1         58.56 /m           8         Grade         8         K55         L80         N80         C90         195         P110         0125           9         Collapse resistance (MPa)         9         14.4         17.1         17.1         17.6         17.8         18.0         18.0           10         Internal yield pressure (MPa)         10         24.7         35.9         35.9         40.4         42.7         49.4         56.1           11         Pipe body yield strength (1000 daN)         11         318         463         453         521         55.8         633         698           14         API STC         14         235         308         312         341         359</th><th>2         Nominal weight         2         45.50 h/t         $66.4 \text{ del}/(m)$ $10.2 \text{ mm}$ $10.3 \text{ mm}$           3         Wall thickness         3         $0.400$ in         $10.2 \text{ mm}$ $25.7 \text{ mm}$ $10.2 \text{ mm}$           5         Steel cross-section         6         $4.04 \text{ gelft}$ $60.17 \text{ /m}$ $8391 \text{ rm}^{-1}$ $8391 \text{ rm}^{-1}$ $8391 \text{ rm}^{-1}$ $8360 \text{ rm}^{-1}$ $8391 \text{ rm}^{-1}$</th><th>2       Nominal weight       2       $45.50$ lb/t       $66.4$ dk/t       $66.4$ dk/t       $57.50$ $57.5$</th><th>2         Nominal weight         2         $45.60 \text{ bl/t}$ $66.4 \text{ ds/Wm}$ $51.00 \text{ bl/t}$           3         Wall thickness         3         $0.400 \text{ in}$ $10.2 \text{ mm}$ $51.00 \text{ bl/t}$           4         Inside diameter         4         $9.965 \text{ in}$ $252.7 \text{ mm}$ $9.9850 \text{ in}$           5         Steel cross-section         5         $13.0 \text{ till}$ $58.56 \text{ till}$ $58.56 \text{ till}$ $58.56 \text{ till}$ $3.96 \text{ gall}$ $3.96 \text{ gall}$           6         Grade         8         K55         L60         N80         C90         $195.56 \text{ till}$ $10.25$         K55         L80         R8           9         Collapse resistance (MPa)         9         14.4         17.1         17.1         17.6         17.8         R8.4         R4.4         22.2         22.2         23.56         518         25.8         3.9         A0.4         42.7         49.4         56.1         17.8         40.4         40.4         40.4         26.8         22.1         55.0         55.0         518         518         51         27.8         35.6         518         51         22.8         40.4         40.4         25.9         55.0</th><th>2       Nominal weight       2       $45.00 \text{ Ib}/\text{It}$ $66.4 \text{ del}\text{W}$ $51.00 \text{ Ib}/\text{It}$ $51.00 \text{ Ib}/\text{It}$         3       Wall trackness       3       $0.400 \text{ in}$ $10.2 \text{ rm}$ $9.850 \text{ in}$ $3.980 \text{ in}$ $4.72 \text{ gulft}$ $3.980 \text{ in}$ $4.80 \text{ in}$ $4.90 \text{ in}$ $4.98 \text{ in}$</th><th>2       Nominal weight       2       $45.50$ lb/t       $66.4$ dk/v       $0.450$ in       $51.00$ lb/t       $31.00$ lb/t         3       Wall tickness       3       $0.400$ in       $10.2$ mm       $9.850$ in       $8.856$ in</th><th>2         Nominal weight         2         $4550$ bb/t         $60.4$ dal/m         $74.4$ d         $74.4$ d           3         Wall takkness         3         $0.400$ m         $10.2$ mm         $9850$ m         $2950$ m         $2950$ m         $2950$ m         $2950$ m         $2950$ m         $2950$ m         $9850$ m         $2950$ m         $3950$ m&lt;</th><th>2       Nominal weight       2       <math>455 \circ hr/t       $66.4 \ deV/t$ $65.4 \ deV/t$ $7.4 \ deV/t$ $7.4 \ deV/t$         3       Wall thickness       3       $0.400 \ h$ $102 \ nm$ $262 \ nm$ $9.80 \ h$ $260 \ n$ $200 \ n$<!--</math--></math></th></td<>	Nominal weight         2         45.50 lb/t           3         Wall thickness         3         0.400 in           4         Inside diameter         4         9.950 in           5         Steel cross-section         6         4.04 gal/ft           7         Displacement (1)         7         4.72 gal/ft           8         Grade         8         K55         L80         N80         C90           9         Collapse resistance (MPa)         9         14.4         17.1         17.1         17.6           10         thternal yield pressure (MPa)         10         24.7         35.9         35.9         40.4           11         Pipe body yield strength (1000 daN)         11         318         463         521           12         Buttress Standard         12         414         473         488         511           13         Buttress Standard         12         414         235         308         312         341           14         API STC         16         59.9         59.9         59.9         59.9         59.9         59.0           14         Hydrii B53         19         91.8         91.8         91.8         91	Nominal weight         2         45.50 lb/t $66.4 dt$ 3         Wall thickness         3         0.400 in         10.21           4         Inside diameter         5         13.01 in ² 8391.           6         Capacity         6         4.04 gal/ft         50.17           7         Displacement (1)         7         4.72 gal/ft         58.56           8         Grade         8         K55         L80         N80         C.90         T95           9         Collapse resistance (MPa)         9         14.4         17.1         17.6         17.8           10         Internal yield pressure (MPa)         10         24.7         35.9         40.4         42.7           11         Pipe body yield strength (1000 daN)         11         21.4         47.3         488         51.1         53.8           13         Buttress Standard         12         41.4         47.3         488         51.1         53.8           14         API STC         14         235         30.8         31.2         34.1         359           15         API LTC         15         15.2         59.9         18.4         51.1         52	Nominal weight         2         45.50 lb/t $66.4 dW/m$ 3         Walt thickness         3         0.400 in         10.2 mm           4         9.950 in         252.7 mm         331 mm²         331 mm²           6         Capacity         6         4.04 ga/ft         552.7 mm           7         Displacement (1)         7         4.72 ga/ft         55.5 lb/t         55.5 lb/t           7         Displacement (1)         7         4.72 ga/ft         55.9 3.5 9         10.4 4.2.7         49.4           10         Internal yield pressure (MPa)         10         24.7         35.9 3.5 9         40.4         42.7         49.4           11         Pipe body yield strength (1000 daN)         11         318         463         521         550         636           12         Buttress Standard         12         414         473         488         511         538         633           13         Buttress Standard         12         414         473         488         511         538         633           14         API LTC         15         91.8         59.0         59.0         59.0         59.0         59.0         59.0         59.0	2         Nominal weight         2         45.90 b/t1         66.4 deN/m           3         Wall thickness         3         0.400 in         10.2 mm           4         Inside diameter         4         9.950 in         252.7 mm           5         Steel cross-section         5         13.01 m ² 6331 mm ² 6         Capacity         6         4.04 qv/t1         50.17 /m           7         Displacement (1)         7         4.72 gal/t1         58.56 /m           8         Grade         8         K55         L80         N80         C90         195         P110         0125           9         Collapse resistance (MPa)         9         14.4         17.1         17.1         17.6         17.8         18.0         18.0           10         Internal yield pressure (MPa)         10         24.7         35.9         35.9         40.4         42.7         49.4         56.1           11         Pipe body yield strength (1000 daN)         11         318         463         453         521         55.8         633         698           14         API STC         14         235         308         312         341         359	2         Nominal weight         2         45.50 h/t $66.4 \text{ del}/(m)$ $10.2 \text{ mm}$ $10.3 \text{ mm}$ 3         Wall thickness         3 $0.400$ in $10.2 \text{ mm}$ $25.7 \text{ mm}$ $10.2 \text{ mm}$ 5         Steel cross-section         6 $4.04 \text{ gelft}$ $60.17 \text{ /m}$ $8391 \text{ rm}^{-1}$ $8391 \text{ rm}^{-1}$ $8391 \text{ rm}^{-1}$ $8360 \text{ rm}^{-1}$ $8391 \text{ rm}^{-1}$	2       Nominal weight       2 $45.50$ lb/t $66.4$ dk/t $66.4$ dk/t $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.50$ $57.5$	2         Nominal weight         2 $45.60 \text{ bl/t}$ $66.4 \text{ ds/Wm}$ $51.00 \text{ bl/t}$ 3         Wall thickness         3 $0.400 \text{ in}$ $10.2 \text{ mm}$ $51.00 \text{ bl/t}$ 4         Inside diameter         4 $9.965 \text{ in}$ $252.7 \text{ mm}$ $9.9850 \text{ in}$ 5         Steel cross-section         5 $13.0 \text{ till}$ $58.56 \text{ till}$ $58.56 \text{ till}$ $58.56 \text{ till}$ $3.96 \text{ gall}$ $3.96 \text{ gall}$ 6         Grade         8         K55         L60         N80         C90 $195.56 \text{ till}$ $10.25$ K55         L80         R8           9         Collapse resistance (MPa)         9         14.4         17.1         17.1         17.6         17.8         R8.4         R4.4         22.2         22.2         23.56         518         25.8         3.9         A0.4         42.7         49.4         56.1         17.8         40.4         40.4         40.4         26.8         22.1         55.0         55.0         518         518         51         27.8         35.6         518         51         22.8         40.4         40.4         25.9         55.0	2       Nominal weight       2 $45.00 \text{ Ib}/\text{It}$ $66.4 \text{ del}\text{W}$ $51.00 \text{ Ib}/\text{It}$ $51.00 \text{ Ib}/\text{It}$ 3       Wall trackness       3 $0.400 \text{ in}$ $10.2 \text{ rm}$ $9.850 \text{ in}$ $3.980 \text{ in}$ $4.72 \text{ gulft}$ $3.980 \text{ in}$ $4.80 \text{ in}$ $4.90 \text{ in}$ $4.98 \text{ in}$	2       Nominal weight       2 $45.50$ lb/t $66.4$ dk/v $0.450$ in $51.00$ lb/t $31.00$ lb/t         3       Wall tickness       3 $0.400$ in $10.2$ mm $9.850$ in $8.856$ in	2         Nominal weight         2 $4550$ bb/t $60.4$ dal/m $74.4$ d $74.4$ d           3         Wall takkness         3 $0.400$ m $10.2$ mm $9850$ m $2950$ m $2950$ m $2950$ m $2950$ m $2950$ m $2950$ m $9850$ m $2950$ m $3950$ m<	2       Nominal weight       2 $455 \circ hr/t       66.4 \ deV/t 65.4 \ deV/t 7.4 \ deV/t 7.4 \ deV/t         3       Wall thickness       3       0.400 \ h 102 \ nm 262 \ nm 9.80 \ h 260 \ n 200 \ n$

(1) The closed end displacement does not account for couplings. MPa × 145 = psi daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

. -

 $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$ 

1

	<u> </u>	1								<u> </u>					070.0		
Nominal size (OD)	1	ļ		1.750 in			273.0	mm				9.750 in			273.0	71M	
Nominal weight	2		55	.50 lb/ft	t		81.0 da	iN/m			60	. <b>70</b> lb/ft	t		88.6 da	N/m	
Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		9 15 3.1	.760 in 5.95 in ² 39 gal/f1			247.9 i 10 289 48.27	mm mm² I∕m			9 17 3.1	.660 in 7.47 in ² 81 gal/f			245.4 11 273 47.28	mm mm² I/m	
Grade	8	K55	L80	N8	10 C	90	T95	P110	Q125	K55	L80	N8	10 C	90	T95	P110	Q125
Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	23.4 30.6 390	44.4	44.	.4 50	0.0	52.8	31.8 61.1 780	33.4 69.4 887	28.7 33.6 427	48.9	48	.9 5	5.1 !	58.1	40.5 67.3 855	41.9 76.5 972
Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	508 300						776 535	856 601	557 334						851 595	938 668
Grant Prideco TCI Grant Prideco STL Hydril LX Hydril 563 Hydril 551 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26				7 9 6 7 12 12	5.8 0.5 0.4 1.9 6.6 4.6							7 9 6 7 11 11	6.7 1.3 4.4 4.0 5.6 3.7 2.1			•
		K55	Make-up	torque 6/062	(daN.m 01 6	Q125	OD (mm)	DI Dum)	Drift API (mm)	K55	Aake-up 08 N	torque	(daN.n 0114 d	Q125	OD (mm)	Q (m m	Drift API (mm)
Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL Hydril 563 Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP	27 28 29 30 31 32 33 34 35 36 37 38 39 40	976 2034 3091 1871 2400 1763 1959 2156	1206 2922 1234 2440 3091 1871 2400 2061 2156 2746	1399 2922 1234 2779 3091 1871 2400 2156 2156 3139	1630 2922 1234 2983 3091 1871 2400 2156 2156 3139	2922 1234 3322 3091 1871 2400 2156 2156 3139	298.4 285.8 293.0 273.0 277.4 298.4 273.0 279.7 299.0 298.4 293.8	245.9	243.9	1070 2237 3390 2495 2698 1864 2156 2746	3464 1349 2779 3390 2495 2698 2156 2156 3139	3464 1349 3118 3390 2495 2698 2156 2156 3139	1813 3464 1349 3457 3390 2495 2698 2156 2156 3139	2036 3464 1349 3661 3390 2495 2698 2156 2156 3139	298.4 285.8 298.5 295.1 273.0 277.6 298.4 273.0 281.8 299.0 298.4 299.0	247.0 243.5 243.3 242.6 243.5	241.4 241.4 241.4
	Wall thickness         Inside diameter         Steel cross-section         Capacity         Displacement (1)         Grade         Collapse resistance (MPa)         Internal yield pressure (MPa)         Pipe body yield strength (1000 daN)         Buttress Standard         Buttress Special Clearance         API STC         API LTC         Grant Prideco TCII         Grant Prideco STL         Hydril LX         Hydril 511         Hydril 521         Vallourec & Mannesmann New VAM         Vallourec & Mannesmann VAM ACE         Vallourec & Mannesmann VAM PRO         Vallourec & Mannesmann VAM TOP         Vallourec & Mannesmann FJL         Buttress Special Clearance         API STC         API STC         API STC         API LTC         Grant Prideco TCII         Grant Prideco TCII         Grant Prideco STL         Hydril LX         Hydril 521         Vallourec & Mannesmann New VAM         Yalfi LX         Hydril 521         Vallourec & Mannesmann New VAM	Nominal weight2Wall thickness3Inside diameter4Steel cross-section5Capacity6Displacement (1)7Grade8Collapse resistance (MPa)9Internal yield pressure (MPa)10Pipe body yield strength (1000 daN)11Buttress Standard12Buttress Standard12Buttress Special Clearance13API STC14API STC14API STC16Grant Prideco TCII16Grant Prideco STL17Hydril 56319Hydril 55121Vallourec & Mannesmann New VAM22Vallourec & Mannesmann VAM ACE23Vallourec & Mannesmann VAM TOP25Vallourec & Mannesmann VAM TOP25Vallourec & Mannesmann FJL26Buttress Special Clearance28API STC29API LTC31Grant Prideco TCII31Jirres Special Clearance28API STC29API LTC32Hydril 55334Hydril 55334Hydril 55135Hydril 55136Vallourec & Mannesmann New VAM37Vallourec & Mannesmann New VAM37	Nominal weight2Wall thickness3Inside diameter4Steel cross-section5Capacity6Displacement (1)7Grade8K55Collapse resistance (MPa)9Internal yield pressure (MPa)9Pipe body yield strength (1000 daN)11300Buttress Standard12Buttress Special Clearance13API STC14API STC14Hydril LX18Hydril 56319Hydril 55121Vallourec & Mannesmann New VAM22Vallourec & Mannesmann VAM ACE23Vallourec & Mannesmann FJL26Buttress Special Clearance28API STC16Grant Prideco TCII16Grant Prideco TCI21Vallourec & Mannesmann VAM ACE23Vallourec & Mannesmann VAM ACE24Vallourec & Mannesmann VAM PRO24Vallourec & Mannesmann FJL26Buttress Special Clearance28API STC29API STC30Grant Prideco TCII31Grant Prideco TCII31Grant Prideco TCII31Grant Prideco TCII31Grant Prideco TCII31Grant Prideco TCII31Grant Prideco TCII30Grant Prideco TCII31Grant Prideco TCII31Grant Prideco TCII31Grant Prideco TCII31Grant	Nominal weight         2         55           Wall thickness         3         0           Inside diameter         4         9           Steel cross-section         5         15           Capacity         6         3.3           Displacement (1)         7         4.1           Grade         8         K55         L80           Collapse resistance (MPa)         9         23.4         27.7           Internal yield pressure (MPa)         10         30.6         44.4           Pipe body yield strength (1000 daN)         11         390         568           Buttress Standard         12         508         580           Buttress Special Clearance         13         300         393           API STC         14         300         393           API STC         14         300         393           Hydril 563         19         19         14         300         393           Hydril 511         20         17         14         300         393           Vallourec & Mannesmann NAM ACE         23         19         19         19         10         10         10         10         10         10	Nominal weight         2         55.50 lb/m           Wall thickness         3         0.495 in           Inside diameter         4         9.760 in           Steel cross-section         5         15.95 in ² Capacity         6         3.89 gal/f           Displacement (1)         7         4.72 gal/f           Grade         8         K55         L80         N8           Collapse resistance (MPa)         9         23.4         27.7         27           Internal yield pressure (MPa)         9         23.4         27.7         27           Internal yield pressure (MPa)         9         23.4         27.7         27           Internal yield pressure (MPa)         10         30.6         44.4         44           Pipe body yield strength (1000 daN)         11         390         568         560           Buttress Standard         12         503         580         55           Buttress Standard         12         503         580         55           Hydril SC1         16         17         14         300         393         35           Grant Prideco TCI!         16         17         14         20         14	Nominal weight         2         55.50 lb/lt           Walt thickness         3         0.495 in Steel cross-section         5           Steel cross-section         5         15.95 in ² Capacity         6         3.89 gal/ft           Displacement (1)         7         4.72 gal/ft           Grade         8         K55         L80         N80         C           Collapse resistance (MPa) Internal yield pressure (MPa)         9         23.4         27.7         27.7         26           Pipe body yield strength (1000 daN)         11         390         568         568         66           Buttress Standard         12         508         580         598         6           Buttress Standard         13         300         393         398         4           API LTC         16	Nominal weight         2         55.50 lb/t           Walt thickness         3         0.495 in 9.760 in 55 sin 760 in 760 in 770 in 7	Nominal weight       2 $35.50$ lb/ft $81.0$ da         Wall thickness       3 $0.495$ in $12.6$ r         Inside diameter       4 $9.760$ in $247.9$ Steed cross-section       5 $15.95$ in ² $10.289$ Capacity       6 $3.89$ ga/ft $48.27$ Displacement (1)       7 $4.72$ ga/ft $58.66$ Grade       8       K55       L80       N80       C90       T95         Collapse resistance (MPa)       9 $23.4$ $27.7$ $27.7$ $28.7$ $29.6$ Internal yield pressure (MPa)       10 $30.6$ $44.4$ $44.4$ $50.0$ $52.8$ Pipe body yield strength (1000 daN)       11 $390$ $568$ $568$ $638$ $674$ Buttress Standard       12 $503$ $580$ $598$ $627$ $660$ Battress Standard       12 $503$ $580$ $598$ $627$ $660$ Grant Prideco TCIP       16 $75.8$ $75.8$ $75.8$ $75.8$ $75.8$ $75.8$ $75.8$ $75.8$ $75.8$	Nominal weight       2 $55.50$ lb/rt $81.0$ daN/m         Walt thickness       3 $0.495$ in $12.6$ mm         Inside diameter       4 $9.760$ in $247.9$ mm         Steel cross-section       5 $15.95$ m² $10.289$ mm²         Capacity       6 $3.89$ ga/ft $48.27.7$ $27.7$ $28.7$ $29.6$ $31.8$ Displacement (1)       7 $4.72$ ga/ft $58.6$ k²m $62.8$ $61.1$ Colapse resistance (MPa)       9 $23.4$ $27.7$ $27.7$ $28.7$ $29.6$ $31.8$ Internal yield pressure (MPa)       10 $30.6$ $44.4$ $44.50.0$ $52.8$ $61.1$ Pipe body yield strength (1000 daN)       11 $390$ $568$ $668$ $638$ $674$ $780$ Buttress Standard       12 $508$ $590$ $598$ $627$ $660$ $776$ Rat Prideco TCI       16 $59.9$ $75.8$ $75.8$ $75.8$ $75.8$ Hydril SC3       19 $90.5$ $75.8$ $75.8$ $75.8$ $75.8$ $75.8$	Nominal weight         2         55.50 lt/t         81 0 dal/m           Wall thickness         3         0.495 in         12.6 mm           Inside diameter         4         9.760 in         247.9 mm           Steel cross-section         5         15.95 in ² 10.289 mm ² Capacity         6         3.89 gat/t         48.27 (m           Displacement (11)         7         4.72 gat/t         568 6 (m)           Grade         8         K55         L80         N80         C90         795         P110         O125           Collapse resistance (MPa)         9         23.4         27.7         28.7         28.6         31.8         33.4           Pipe body yield strength (1000 daN)         11         300         568         568         638         674         780         887           Buttress Standard         12         506         500         599         535         601           API STC         17         18         300         393         398         459         535         601           API STC         17         18         75.8         71.9         71.9         71.9         71.9         71.9         71.9         71.	Nominal weight       2       55.50 k/t       81.0 dal/(m)       12.6 mm         Wall thickness       3       0.495 in       12.6 mm       12.6 mm         Inside diameter       4       9.760 in       247.9 mm       10.289 mm ² Capacity       5       15.55 in ² 10.289 mm ² 10.289 mm ² Displacement (1)       7       4.72 gal/t       58.56 l/m       88.55       10.280 mm ² Grade       8       K55       16.0       N80       C90       T95       P110       0.125       K55         Collapse resistance (MPa)       9       23.4       27.7       27.7       28.7       29.6       31.8       33.4       28.7         Internal yield pressure (MPa)       9       23.4       27.7       27.7       28.7       28.6       18.8       33.4       28.7         Buttress Standard       12       508       598       627       660       7.6       856       557         Grant Prideco TCII       17       59.9       14.44.44       50.0       535       601       334         API SC       Mannesmann KAM ACE       23       71.9       24.6       24.6       24.6       24.6       24.6       24	Nominal scie (CC)       1       Image: Construction of the construlin of the	International unit (Construction)       Image: Construction (Construction)       Image: Construction)       Image: Construction (Construc	Nominal weight       2       55.0 h/t       B1 0 daN/m       60.70 h/t       90.70 h/t         Wall thickness       3       0.495 in       12.6 mm       0.555 m/t       0.298 mm ² 0.555 m/t       0.555 m/t       0.298 mm ² 0.77 m/t       0.7 m/t       0.7 m/t       0.7 m/t	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

(1) The closed end displacement does not account for couplings. MPa × 145 = psi daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

	1	Nominal size (OD)	1		10.	<b>750</b> in			273.0 n	nm			11.	750 in			298.4 r	nm	
	2	Nominal weight	2		65.	70 lb/ft			95.9 dal	N/m			47.	00 lb/ft			- 68.6 dal	√/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		9.9 18. 3.7	595 in 560 in .98 in ² 3 gal/ft 2 gal/ft		1	15.1 m 242.8 n 2 247 r 46.31 58.56	nm nm² I/m			11. 13 4.9	375 in 000 in .40 in ² 4 gal/ft 3 gal/ft			9.5 m 279.4 r 8646 m 61.31 69.96	nm nm² I/m	
ā.	8	Grade	8	K55	L80	N80	) CS	 90 1	ſ95 I	P110	Q125	K55	L80	N80	) CS	жо 1	95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	33.9 36.7 464	43.5 53.4 675	43.9 53.4 679	4 60	.1 €		51.7 73.5 929	54.6 83.5 1055	10.4 21.2 328	11.2 30.8 477	11. 30. 47	8 34	.7 3		11.2 42.4 656	11.2 48.1 745
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	605 367	690 481	712 483			785 562	924 655	1019 735	416 226	482 298	_ 49 30:			550 348	647 406	715 456
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26	:			78 93 59 79 106 106	9.9 3.2 2.0 9.6 5.7 6.3 4.6 2.0 5.6							6 16 16 5	1.5 5.9			
				X55	Make-up	torque 26/062	(daN.m 0110 LL	Q125	OD (mm)	Q (m	Drift API (mm)	K55	Make-up	torque 36/062	(daN.m 0114	Q125	OD (mm)	GI (mm)	Drift API (mm)
Connection characteristics	27. 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL Hýdril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	1152 2373 3661 2495 2996 1959 2156 3139	4013 1458 2915 3661 2495 2996 2156 2156 3139 2156	4013 1458 3254 3661 2495 2996 2156 3139 2156	1994 4013 1458 3525 3661 2495 2996 2156 2156 3139 2156	2240 4013 1458 3796 3661 2495 2996 2156 2156 3139 2156	298.4 285.8 298.5 297.2 273.0 278.5 298.4 273.0 283.9 299.0 298.4 298.0 298.4 298.0 273.0	245.8 242.4 242.5 242.6	238.9 238.9 238.9 238.9 238.9 238.9 238.9 238.9 238.9	690 1763 1546 1424 1471	2332 1763 1546 1715 1668 2156	2332 1763 1546 1912 1763 2156	2332 1763 1546 2061 1959 2156	2332 1763 1546 2156 2156 2156	323.9 323.9 313.0 323.9 302.1 324.4 323.9 298.4		275.4 275.4 275.4 275.4

(1) The closed end displacement does not account for couplings. MPa × 145 = psi daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

÷

CONSERVATION -

3000 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -

		Nerrical size (OD)	1	1	4.	1.750 in			298.4	 mm			11	1.750 in			298.4	 mm	
	1	Nominal size (OD)									<u></u>								
	2	Nominal weight	2		54	.00 ib/fi	t 		78.8 da	aN/m		ļ	60	.00 lb/f1			87.6 da	N/m	
	3	Wall thickness	3			).435 in ).880 in			11.0 r 276.4					1.489 in ).772 in			12.4 r 273.6 i		
~	4	Inside diameter Steel cross-section	5			5.46 in ²			9976 r					7.30 in ²			11 161		
poq	5	Capacity	6			83 gal/f	t		59.98					73 gal/f	t		58.80		
Pipe body	7	Displacement (1)	7			63 gal/f			69.96					63 gal/f			69.96	l/m	
<u>ο</u> .	8	Grade	8	К55	L80	) N8	ю С	90	T95	P110	Q125	K55	L80	N8	0 C	90	T95	P110	Q125
	9	Collapse résistance (MPa)	9	14.3	16.9	) 16	9 1	7.4	17.6	17.7	17.7	18.4	21.9	21	9 23	3.2 2	23.7	24.9	25.4
	10	Internal yield pressure (MPa)	10	24.6	35.7				12.4	49.1	55.8	27.6	40.2				17.7	55.2	62.8
	11	Pipe body yield strength (1000 daN)	11	378	550				653	757	860	423	616	61	66	93	731	846	962
	12	Buttress Standard	12	480	556	5 57	36	03	635	746	825	537	622	. 64	1 6	75	710	835	923
sile ngth daN	13	Buttress Special Clearance	13	l.															
Tensile strength (10 ³ daN)	14	API STC	14 15	270	355	5 35	93	94	415	484	·543	308	406	5 41	1 4	50	474	553	621
	15	APILTC		ļ					<u> </u>										
	16 17	Grant Prideco TCI Grant Prideco STL	16 17	1											5	9.9			
	18	Hydrif LX	18													2.5			
Connection efficiency	19	Hydril 563	19				9	2.5							9	0.4			
ffici	20	Hydril 511	20													0.7			
ол ө	21	Hydril 521	21					8.5								0.6			
ectic	22	Vallourec & Mannesmann New VAM	22					2.2							12 12				
uuo	23	Vallourec & Mannesmann VAM ACE	23				13	9.9							12	D. I			
S O	24 25	Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP	24 25				10	21							10	2.0			
	26	Vallourec & Mannesmann FJL	26					9.7							6	3.5			
				N	/lake-up	torque	(daN.m	a)			-	N	Make-up	o torque	(daN.m	1)			-
				K55	LN80	C90/95	P110	Q125	DO (mm)	Q ( ¹ m)	Drift API (mm)	K55	LNBO	C90/95	P110	Q125	0 (mm) 0	ΩÊ	Drift API (mm)
	27	Buttress Standard	27						323.9		272.4						323.9		269.6
ý	28	Buttress Special Clearance	28						020.0		1								
	29	API STC	29	822					323.9		272.4	940	1245	1445	1684	1891	323.9		269.6
st			1																
cteristi	30	APILTC	30							1 277 2			3173	3173	3173	3173	318.1	274.8	269.6
laracteristi	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		31		2569	2569	2569	2569	315.7	211.2	272.4								
n characteristi	30 31 32	API LTC Grant Prideco TCII Grant Prideco STL	31 32		2569	2569	2569	2569	315.7	211.2	272.4	1058	1329	1329	1329	1329	298.4	275.0	269.6
otion characteristi	30 31 32 33	API LTC Grant Prideco TCII Grant Prideco STL Hydrif LX	31 32 33	2000						277.2		2305	1329 2915	1329 3254	1329 3593	4000	303.0	271.6	269.6
nnection characteristi	30 31 32 33 34	API LTC Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563	31 32 33 34	2088	2569 2088	2569 2088	2569 2088	2569 2088	315.7 323.9	211.2	272.4	2305 3051	1329 2915 3051	1329 3254 3051	1329 3593 3051	4000 3051	303.0 323.9	271.6 272.3	269.6 269.6
Connection characteristics	30 31 32 33 34 35	API LTC Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511	31 32 33 34 35		2088	2088	2088				272.4	2305	1329 2915	1329 3254	1329 3593	4000	303.0	271.6 272.3 271.1	269.6
Connection characteristi	30 31 32 33 34 35 36	API LTC Grant Prideco TCII Grant Prideco STL Hydni LX Hydni 563 Hydni 511 Hydni 521	31 32 33 34	2088 1844 1959				2088	323.9		272.4	2305 3051 2413	1329 2915 3051 2413	1329 3254 3051 2413	1329 3593 3051 2413	4000 3051 2413	303.0 323.9 298.4	271.6 272.3 271.1	269.6 269.6 269.6
Connection characteristi	30 31 32 33 34 35	API LTC Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511	31 32 33 34 35 36	1844	2088 1844	2088 1844	2088 1844	2088 1844	323.9 304.7		272.4 272.4	2305 3051 2413 2427	1329 2915 3051 2413 2427	1329 3254 3051 2413 2427	1329 3593 3051 2413 2427	4000 3051 2413 2427	303.0 323.9 298.4 303.0	271.6 272.3 271.1	269.6 269.6 269.6 269.6
Connection characteristi	30 31 32 33 34 35 36 37	API LTC Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM	31 32 33 34 35 36 37	1844 1959	2088 1844 2156	2088 1844 2156	2088 1844 2156	2088 1844 2156	323.9 304.7 324.4		272.4 272.4 272.4	2305 3051 2413 2427 2061 2156	1329 2915 3051 2413 2427 2156 2156	1329 3254 3051 2413 2427 2156 2156	1329 3593 3051 2413 2427 2156 2156	4000 3051 2413 2427 2156 2156	303.0 323.9 298.4 303.0 324.4 323.9	271.6 272.3 271.1	269.6 269.6 269.6 269.6 269.6 269.6
Connection characteristi	30 31 32 33 34 35 36 37 38	API LTC Grant Prideco TCII Grant Prideco STL Hydril EX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannésmann VAM ACE	31 32 33 34 35 36 37 38	1844 1959	2088 1844 2156	2088 1844 2156	2088 1844 2156	2088 1844 2156	323.9 304.7 324.4	271.4	272.4 272.4 272.4 272.4 272.4	2305 3051 2413 2427 2061	1329 2915 3051 2413 2427 2156	1329 3254 3051 2413 2427 2156	1329 3593 3051 2413 2427 2156	4000 3051 2413 2427 2156	303.0 323.9 298.4 303.0 324.4	271.6 272.3 271.1	269.6 269.6 269.6 269.6 269.6

(1) The closed-end displacement does not account for couplings. MPa × 145 = psi daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

and the second second

ч.

#### GEOMETRICAL CHARACTERISTICS AND MECHANICAL PROPERTIES OF CASING (continued)

	1	Nominal size (OD)	1	1	1	1.750 in	1		298.4	mm		<u> </u>	1	<b>1.750</b> ir	<u></u> า		298.4	mm	
	2	Nominal weight	2		65	5.00 lb/f	t		94.9 da	aN/m			71	.00 lb/f			103.6 d	aN/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7	3	10 11 4.	),534 in ),682 in 8,82 in ² 66 gal/f 63 gal/f	it		13.6 271.3 12 139 57.82 69.96	mm mm² ? l/m			10 20 4.	).582 in ).586 ir ).42 in ² 57 gal/f 63 gal/f	n 2 ft		14.8 r 268.9 13 174 56.78 69.96	mm mm² 1/m	
	8	Grade	8	K55	L8C	) N8	30 C	:90	T95	P110	Q125	K55	L80	) N8	BO (	090	T95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	22.7 30.2 460	26.3 43.9 670	9 43	.9 4	9.4	28.8 52.1 795	30.9 60.3 921	32.3 68.5 1046	27.4 32.9 500	33.6 47.8 727	3 47	.8 5		36.1 56.8 863	37.7 65.7 999	39.7 74.7 1135
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	584 340	677 448			-	772 523	908 610	1004 685	634 374	734 492	•		796 546	838 575	985 670	1089 753
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCI Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26				7 9 5 7 11 11	88.8 44.4 11.2 55.8 0.1 6.9 5.0 2.1 4.6							5	59.9 76.7 91.9 74.6			
				4 K55 K	Make-up	torque	(daN.n 01 6	0125	DO (mm)	Q (mm)	Drift API (mm)	K55	Make-up	storque	e (daN.r 0110	0125 (u	OD (mm)	QI (mm)	Drift AP! (mm)
Connection characteristics	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521. Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	1125 2373 3254 2413 2657 2156 2156 2156	3701 1424 2983 3254 2413 2657 2156 2156 3139 2156	3701 1424 3322 3254 2413 2657 2156 2156 3139 2156	3701 1424 3661 3254 2413 2657 2156 2156 3139 2156	3701 1424 4000 3254 2413 2657 2156 2156 3139 2156	298.4 303.9 323.9 298.4 303.9 324.4 323.9 321.0	272.8 271.6 271.0 271.1	267.4 267.4 267.4 267.4 267.4 267.4 267.4 267.4	1251 2915 3661 3037	4291 1566 3457 3661 3037	4291 1566 3796 3661 3037	4291 1566 4135 3661 3037	4291 1566 4474 3661 3037	323.9 322.1 298.4 304.2 323.9 308.0	270.7 271.8 266.8 266.7	264.9 264.9 264.9 264.9 264.9 264.9

(1) The closed end displacement does not account for couplings. MPa  $\times$  145 = psi daN  $\times$  2.25 = lb daN.m  $\times$  7.38 = lb.ft mm  $\times$  0.0394 = in

S. 17

Martin States

		I		1															
	1	Nominal size (OD)	1		13	.375 in			339.7 1	mm 			13	.375 in			339.7 ı	nm	
ſ	2	Nominal weight	2		54.	. <b>50</b> lb/ft			79.5 da	N/m			61.	.00 lb/ft			89.0 da	N/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		12 15 6.4	.380 in .615 in 5.51 in ² 49 gal/ft 30 gal/ft			9.7 m 320.4 r 10 009 r 80.64 90.65	mm mm² ∦m			12 17 6.3	.430 in .515 in '.49 in ² 39 gal/ft 30 gal/ft			10.9 n 317.9 r 11 282 79.36 90.65	nm mm² I/m	
	8	Grade	8	K55	L80	N8	0 C	90 .	T95	P110	Q125	K55	L80	N8	0 C	90 .	T95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	7.8 18.9 380	7.9 27.4 552	27.	4 30	).9 3	7.9 32.6 656	7.9 37.7 759	7.9 42.9 863	10.6 21.3 428	11.5 31.0 622	31.	0 34	1.9 3	11.5 36.9 739	11.5 42.7 856	11.5 48.5 972
l ensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	462 243	548 322				629 377	738 439	818 494	520 282	618 373				709 437	832 509	923 572
Connection efficiency	16 17 18 19 20 21 22 23 24 25	Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP	16 17 18 19 20 21 22 23 24 25				6 16	0.3 1.0 0.4 8.0							9 6 14 14	9.9 1.4 5.0 2.3 0.2 2.0			
	26	Vallourec & Mannesmann FJL	26		Make-up	toraua	(dal) n			1	<u> </u>		Aake-un	torque	(daN.n	 1)			
				K55		C30/95	P110	0125	D (în m	₽Û	Drift API (mm)	K55	LN80	C90/95	P110	Q125	G G U U U U U U U U U U U U	Q (LL)	Drift API (mm)
ics	27 28	Buttress Standard Buttress Speciał Clearance	27 28						365.1		316.5	050					365.1		313. 313.
Connection characteristics	29 30 31 32 33	API STC API LTC Grant Prideco TCII Grant Prideco STL Hydril LX	29 30 31 32 33	742	2657	2657	2657	2657	365.1	318.6	316.5 316.5	858 1058	2874 1349	2874 1349	2874 1349	2874 1349	356.5 339.7	318.6 318.6	313.
Connecti	33 34 35 36 37	Hydril 563 Hydril 511 Hydril 521 Valjourec & Mannesmann New VAM	34 35 36 37	2359 2061 1566	2359 2061 1959	2359 2061 2156	2359 2061 2156	2359 2061 2156	343.7 365.7		316.5 316.5 316.5	2386 2061	2712 2386 2156	2712 2386 2156	2712 2386 2156	2712 2386 2156	365.1 320.5 365.7	316.0 316.0	313. 313.
	38 39 40 41	Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	38 39 40 41	1668	1959	2156	2156	2156	365.1		316.5	2061 1763	2156 2257	2156 2549	2156 2847	2156 3139	365.1 357.8		313

(1) The closed end displacement does not account for couplings. MPa × 145 = psi daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

THE REPORT

	1	Nominal size (OD)	1		13.	375 in			339.7 r	nm			13	.375 in			339.7 r	nm	
	2	Nominal weight	2		68.	00 lb/ft		9	99.2 da	N/m			72.	<b>00</b> lb/ft		1	05.1 da	N/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		12. 19. 6.2	480 in 415 in 45 in ² 9 gal/ft 0 gal/ft			12.2 m 315.3 r 2 545 r 78.10 90.65	mm mm² !/m			12 20 6.2	514 in .347 in .77 in ² 2 gal/ft 80 gal/ft			13.1 m 313.6 r 3 398 r 77.25 90.65	nm nm² I/m	
u	8	Grade	8	K55	L80	N80	) C9	<del>)</del> 0 1	195	P110	Q125	K55	L80	N80	D C9	90 T	95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	13.4 23.8 476	15.6 34.6 692	15.0 34.0 692	6 39	.0 4		16.1 47.6 951	16.1 54.1 1081	15.4 25.5 508	18.4 37.1 739	37.	1 41	.7 4	9.5 4.1 878	19.9 51.0 1016	19.9 58.0 1155
Tensile strength (10 ³ daNi)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	578 320	687 424	705 428			788 496	925 577	1026 649	618 345	734 458				842 535	988 623	1096 701
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26				7: 9:	5.0		1					7: 9: 11: 11: 10:	2.1			
				K55	1ake-up	euprot C90/95	(daN.m 011d	Q125	QO (mm)	Q Û	Drift API (mm)	K55	Make-up	torque C60/62	(daN.m 0 14	0125	00 00 00	D (ju m	Drift API (mm)
Connection characteristics	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Buttress Standard Buttress Special Clearance APLSTC APLTC Grant Prideco TCII. Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	973 1180 2779 2847 2725 2156 2156 2156 2549	1298 3539 1505 3457 2847 2725 2156 2156 3139	1510 3539 1505 3932 2847 2725 2156 2156 3139	1758 3539 1505 4339 2847 2725 2156 2156 3139	3539 1505 4813 2847 2725 2156 2156 3139	365.1 365.1 358.8 339.7 344.5 365.1 348.2 365.7 365.1 360.0	316.8 312.5 313.4	311.4 311.4 311.4	2847 3118 2956 2156 2156	1403 3762 1674 3729 3118 2956 2156 2156 3139	1632 3762 1674 4000 3118 2956 2156 2156 3139	1900 3762 1674 4474 3118 2956 2156 2156 3139	2138 3762 1674 4881 3118 2956 2156 2156 3139	365.1 365.1 360.3 339.7 345.5 365.1 349.7 365.7 365.1 361.6	313.4 312.3	309.6 309.6 309.6 309.6 309.6 309.6 309.6 309.6 309.6 309.6

(1) The closed-end displacement does not account for couplings. MPa × 145 = psi daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

al an an <del>ann a</del> tha an ann. Talaiste

1999 (B) (J.

C 71

# GEOMETRICAL CHARACTERISTICS AND MECHANICAL PROPERTIES OF CASING (continued)

	1	Nominal size (OD)	1		1	<b>3.375</b> ir			339.7	mm			1	<b>3.375</b> ir	ייייי. ר		339.7	mm	
	2	Nominal weight	2		7	7.00 lb/1	t		112.4 c	laN/m			8	0.70 lb/f	ft		117.8 c	laN/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		1. 2 6.	0.550 in 2.275 ir 2.16 in 15 gal/ 30 gal/	it		14.0 311.8 14 297 76.35 90.65	mm mm² 5∦m			1 2 6	0.580 in 2.215 ir 3.31 in ² .09 gal/l .30 gal/l	n 2 ft		14.7 310.3 15 041 75.60 90.65	mm mm² ) l/m	
	8	Grade	8	K55	L80	) Ni	30 (	:90	T95	P110	Q125	K55	L8(	D N8	B0 (	C90	T95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	17.8 27.3 542	21.4 39.1 789	7 39	.7 4		23.0 47.1 936	24.1 54.6 1084	24.5 62.0 1232	20.4 28.8 570	41.	9 41	.9 4		26.0 49.7 985	27.6 57.6 1141	28.5 65.4 1296
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	659 372	78: 49:			353 548	898 577	1054 672	1169 756	694 395	82 52			398 580	945 612	1109 713	1230 802
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCI Grant Prideco TCI Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26		· · · · · · · · · · · · · · · · · · ·		7 9 7 11 11	i9.9 i5.7 i0.6 i0.3 i2.3 i0.6 i2.1							5 7 10 10	75.9 91.1 71.6 96.7 95.1 92.0			
				K55	Aake-up	torque	(daN.n 0110	Q125	(mm)	QI (mm)	Drift API (mm)	K55	Vake-u 08N N	torque 96/062	o (daN.r 0110	0125 (J	OD (mm)	DI (mm)	Drift API (mm)
acteristics	27 28 29 30	Buttress Standard Buttress Special Clearance API STC API LTC	27 28 29 30						365.1		307.8						365.1		306.3
Connection characteristics	31 32 33 34 35	Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511	31 32 33 34 35 26	1356 3118 4610	4528 1708 3864 4610	4528 1708 4339 4610	4528 1708 4745 4610	4528 1708 5220 4610 3756	361.9 339.7 345.7 365.1	314.4	307.8	3322 4881 4000	4969 4271 4881 4000	4969 4813 4881 4000	4969 5355 4881 4000	4969 5898 4881 4000	363.2 345.8 365.1 348.9		306.3 306.3
	36 37 38 39 40 41	Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vállourec & Mannesmann FJL	36 37 38 39 40 41	3756 2156 2156 3139	3756 2156 2156 3139	3756 2156 2156 3139	3756 2156 2156 3139	3756 2156 2156 3139	347.6 365.7 365.1 363.2	309.9	307.8 307.8 307.8 307.8	2156 2156 3139	2156 2156 2156 3139	2156 2156 3139	2156 2156 3139	2156 2156 3139	348.9 365.7 365.1 364.5	308.4	306.3 306.3 306.3 306.3

(1) The closed end displacement does not account for couplings. MPa × 145 = psi daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

ange at internet

VARIANCE.

COMPLEX STREET

÷

**NAX** 3325

	1	Nominal size (OD)	1	Ţ	1	3.625 ir	 n		346.1	mm		1	14	<b>1.000</b> ir	<u>ו</u>		355.6	5 mm	
	2	Nominal weight	2		8	8.20 lb/	ft		128.7 c	taN/m	··· · · · · · · · · · · · · · · · ·		82	. <b>50</b> ib/f	ft		120.4	daN/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		1 2 6	0.625 ir 2.375 ir 5.53 in .25 gal/ .57 gal/	n 2 ft		15.9 314.3 16 468 77.60 94.07	mm ⊧mm² D∦/m			12 23 6.1	1.562 in 2.876 ir 3.73 in ² 76 gal/1 00 gal/1	n ! ft		14.3 327.1 15 307 84.0 99.3	: mm 7 mm² 1 l/m	
	8	Grade	8	K55	L8	D N	80 (	C <b>9</b> 0	T95	P110	Q125	K55	L80	N	30 (	C90	T95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	23.2 30.4 624	27. 44. 90	3 44	1.3	28.5 49.8 022	29.3 52.6 1079	31.5 60.9 1249	33.1 69.2 1419	16.7 26.6 580	20.3 38.7 844	38	i.7 4	21.3 43.6 950	21.7 46.0 1003	22.6 53.3 1161	22.7 60.5 1319
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15														×.		
Connection afficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCI Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26	-			9	70.7 91.7 73.3 90.0											
		-		1	Make-u	o torque	e (daN.r	n)			⊒	N	lake-up	torque	daN.r	n)			ō
				K55	LN80	C90/95	P110	Q125	OD UD UD UD	⊆ ( ⁰ ш	Drift API (mm)	K55	LN80	C90/95	P110	Q125	G G O U U U U	0 (inc)	Drift API (mm)
Connection characteristics	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	1844 5017 4393 2156	2346 5017 4393 2156	2346 5017 4393 2156	2346 5017 4393 2156	2346 5017 4393 2156	346.1 371.5 356.6 365.7	312.3 312.5	309.6 309.6 309.6 309.6								

(1) The closed and displacement does not account for couplings. MPa × 145 = psi daN × 2.25 = lb daN m × 7.38 = lb.ft mm × 0.0394 = in

	1	Nominal size (OD)	1		14.	000 in			355.6	3 mm			14.	000 in			355.6	mm	
	2	Nominal weight	2		94.8	30 lb/ft			138.4	daN/m			99.0	<b>)0</b> lb/ft			144.5 c	laN/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		12. 27. 6.5	556 in 688 in 50 in ² 7 gal/ft 0 gal/ft			16.7 322.3 17 742 81.5 99.3	3 mm 2 mm² 7 ∦/m			12.0 28. 6.50	588 in 524 in 77 in ² 0 gal/ft 0 gal/ft			17.5 320.6 18 563 80.78 99.31	mm mm² ō l/m	
ľ.,	8	Grade	8	K55	L80	N8(	) C	:90	T95	P110	Q125	K55	L80	N80	C	90	T95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	24.3 31.1 673	29.1 45.2 979	29. 45.2 979	2 5	30.2 50.9 101	30.7 53.7 1162	33.1 62.2 1346	34.9 70.7 1529	26.9 32.6 704	33.0 47.4 1024	33.0 47.4 1024	15	34.6 53.4 152	35.3 56.3 1216	36.8 65.2 1408	39.0 74.1 1600
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15																
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26																
				M	lake-up t	orque	daN.m	n)			_	М	lake-up t	orque (d	laN.m	n)			-
				K55	LN80	C90/95	P110	Q125	00 (mm)	ם (mm)	Drift API (mm)	K55	LN80	C90/95	P110	Q125	OD Mm	Q (Lum)	Drift API (mm)
Connection characteristics	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL Hydril 563 Hydril 553 Hydril 551 Valiourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41																

(1) The closed end displacement does not account for couplings. MPa  $\times$  145 = psi daN  $\times$  2.25 = lb daN.m  $\times$  7.38 = lb.ft mm  $\times$  0.0394 = in

100000

13322 1200 2

			1		14	.000 in			355.6	mm			16	.000 in			406.4		
	1	Nominal size (OD)												00 lb/ft			94.9 da	······	
Pipe body	2 3 4 5 6 7	Nominal weight Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	2 3 4 5 6 7		0. 12 33 6.2	.00 lb/ft 800 in 400 in .18 in ² 7 gal/ft 0 gal/ft			20.3 n 315.0 21 403 77.91 99.31	nm mm mm ² I/m			0. 15 18 9.4	375 in 250 in .41 in ² 9 gal/ft 14 gal/ft			94.9 da 9.5 n 387.4 i 11 876 117.84 129.72	nm mm mm² ∦m	
	8 9 10 11	Grade Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	8 9 10 11	K55 36.0 37.9 812	L80 46.5 55.2 1181	2 55	.5 5 .2 6	0.1 2.1	195 51.7 65.5 1402	P110 56.1 75.8 1623	Q125 59.6 86.2 1845	K55 4.4 15.6 450	L80 4.4 22.6 655	N80 4.4 22.1 655	4 5 2	4.4 5.5	4.4	P110 4.4 31.1 901	Q125 4.4 35.3 1024
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15									509 278	632 371	64 37			731 435	855 506	954 570
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26				9	3.5											
				K55 🛛	Aake-up 08 N	torque C30/32	(daN.m 0110 Ld	Q125	G (mm)	O (WW)	Drift API (mm)	K55	Aake-up	torque C60/32	(daN.r 0 12	0125	do (uuu)	0 (Ê L	Drift API (mm)
Connection characteristics	27 28 29 30 31 32 33 34 35 36 37 38 39 40	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP	27 28 29 30 31 32 33 34 35 36 37 38 39 40	7593	7593	7593	7593	7593	381.0		310.2						431.8		382.6

(1) The closed-end displacement does not account for couplings. MPa × 145 = psi daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

٠.

MARKE AND

	1	Nominal size (OD)	1		16	i.000 in			406.4	mm			10	6.000 in			406.4	mm	
	2	Nominal weight	2		75	. <b>00</b> lb/f	t		109.5 d	aN/m			84	1.00 lb/f	t		122.6 d	aN/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		15 21 9.3	.438 in .124 in .41 in ² 33 gal/f 44 gal/f	t		11.1 r 384.1 13 815 115.90 129.72	mm mm² ) I/m			19 24 9.	).495 in 5.010 in 4.11 in ² 19 gal/f .44 gal/f	t		12.6 / 381.3 15 556 114.16 129.72	mm mm² S I/m	
	8	Grade	8	K55	L80	NS	30 C	90	T95	P110	Q125	K55	L80	) N8	30 C	:90	T95	P110	Q12
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	7.0 18.2 524	7.0 26.4 762	26	.4 2		7.0 31.4 905	7.0 36.3 1048	7.0 41.3 1191	9.7 20.5 590	10.2 29.9 858	9 29	.9 3		10.2 35.5 1019	10.2 41.1 1180	10 46 134
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	592 334	735 446				850 523	995 609	1110 685	667 385	828 514			909 571	958 602	1120 701	12! 78
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCI Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26					1.6 5.6		<b>,</b>						2.5 9.0			
			•	K55	Make-up	torque G30/62	(daN.n 0114	Q125	OD (mm)	D (mm)	Drift API (mm)	K55 ~	Nake-up	torque	(daN.n 0114	Q125	DD (mm)	⊆ Ű	Drift API
Connection characteristics	27 28 29 30 31 32	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL	27 28 29 30 31 32	1020		-			431.8 431.8		379.4 379.4	1173					431.8		376
Connection	33 34 35 36 37 38 39 40 41	Hýdril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vállourec & Mannesmann FJL	33 34 35 36 37 38 39 40 41	3254 2725	3254 2725	3254 2725	3254 2725	3254 2725	431.8 410.3		379.4 379.4	3525 3159	3525 3159	3525 3159	3525 3159	3525 3159	431.8 412.9	379.3	376 376

(1) The closed-end displacement does not account for couplings. MPa x 145 = psi daN x 2.25 = lb daN.m x 7.38 = lb.ft mm x 0.0394 = in

a transfer and

X.33. 186161

18:238:23:

	1	Nominal size (OD)	- 1		16	6.000 ir	)		406.4	l mm	· ··· ,		1	6.000	n		406.4	1 mm	
	2	Nominal weight	2		94	. <b>50</b> lb/f	ť		137.9	daN/m			1(	<b>9.00</b> lb	/ft		159.1	daN/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		14 27 9.0	.562 in .876 in .26 in ² .3 gal/f 44 gal/f	) it		14.3 377.9 17 585 112.1 129.7	) mm 5 mm² 3 l/m			1 3 8	0.656 ir 4.688 i 11.62 in .80 gal/ 0.44 gal,	n 2 'ft		16.7 373.1 20 401 109.3 129.7	' mm   mm²  2 <b> /</b> m	
	8	Grade	8	K55	L80	N	30	C90	T95	P110	Q125	K55	L8	0 N	80	C90	T95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	12.9 23.3 667	14.8 33.9 970	33	.9	15.0 38.1 1091	15.1 40.3 1152	15.1 46.6 1334	15.1 53.0 1516	17.7 27.2 774	39	.6 3	9.6	22.4 44.5 1266	22.9 47.0 1336	23.9 54.4 1547	24.3 61.8 1758
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	754 444	936 593			1027 658	1083 694	1266 808	1413 910	874 526	108 70	•	107 1 709	1192 780	1256 822	1469 957	1639 1077
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCIF Grant Prideco TCIF Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26	5												92.2			
1. 1. 1.				N	Nake-up	torque	{daN.r	m)	T	1	_	ŗ	/lake-up	o torque	e (daN.r	n)	Τ		-
				K55	LNBO	C90/95	P110	Q125	G Û D Û	£ £ £	Drift API (mm)	K55	LN80	C90/95	P110	Q125	a în m	⊆ îu B	Drift API (mm)
Connection characteristics	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL Hydril 563 Hydril 553 Hydril 551 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann TJL	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41						431.8		373.1	6644 5355	6644 5355	6644 5355	6644 5355	6644 5355	431.8 431.8 418.2	371.2	368.3 368.3 368.3

C 76

(1) The closed end displacement does not account for couplings. MPa × 145 = psi daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

المجمعة المعيود المع

STOR 100 - 2

NEXESSION.

	1	Nominal size (OD)	1	1	16.	<b>)00</b> in		406.4	1 mm		Τ	1	<b>8.625</b> ir	<u></u>	·• ·· ··	473.1	mm	
	2	Nominal weight	2		128.	00 lb/ft		186.8	daN/m			8	7.50 lb/i	t		127.7 c	laN/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		14.4 37.3 8.51	'81 in 138 in 34 in ² gal/ft 1 gal/ft		19.8 366.7 24 091 105.6 129.7	' mm   mm² 3 l/m			1 2 12	0.435 in 7.755 ir 4.86 in ² .86 gal/ .15 gal/	n : ft		11.0 451.0 16 038 159.7 175.7	mm mm² 3 l/m	
	8	Grade	8	K55	L80	N80	C90	T95	P110	Q125	K55	L8	D N	30 (	C90	T95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	26.5 32.4 914	32.4 47.1 1329	32.4 47.1 1329	34.0 53.0 1495	34.6 56.0 1578	36.1 64.8 1827	38.4 73.6 2076	4.3 15.5 608	22.	5 22	.5 2	4.3 25.4 995	4.3 26.8 1050	4.3 31.0 1216	4.3 35.2 1382
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	1032 633	1282 845	1308 854	1402 939	1472 990	1735 1152	1893 1297	635 353				917 529	967 557	1127 649	1265 731
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26											e	<b>35.3</b>			
				K55 W	·	60/82	T	DD (mm)	DI QI	Drift API (mm)	K55	Make-up 08N	C30/32	(daN.n 0114	0125 (u	do OD	Ū (mm)	Drift API (mm)
Connection characteristics	27 28 29 30 31 32 33 34	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL Hydril LX Hydril 563	27 28 29 30 31 32 33 34					431.8		362.0	1077		·			508.0 508.0 508.0	449.1	446.2 446.2 446.2
	35 36 37 38 39 40 41	Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL d displacement does not account for couplings.	35 36 37 38 39 40 41			N × 2.25		laN.m ×			3539	3539	3539	3539	3539	478.9	448.0	446.2

(1) The closed end displacement does not account for couplings. MPa × 145 = psi daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

A State

1.

1.00 No. 1

	1	Nominal size (OD)	1		20	.000 in			508.0	mm		1	20.	000 in			508.0	mm	]
	2	Nominal weight	2		94.	00 lb/ft			137.2 c	laN/m			106.	50 lb/ft			155.4 d	aN/m	
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		19 26 14.9	438 in .124 in .92 in ² 32 gal/f 32 gal/f			11.1 485.7 17 366 185.3 202.68	mm - mm² 2 I/m			19. 30. 14.7	500 in 000 in 63 in ² 3 gal/ft 2 gal/ft	-		12.7 n 482.6 n 19 762 182.92 202.68	mm mm² I/m	
	8	Grade	8	K55	L80	N8	0 (	C90	T95	P110	Q125	K55	L80	N80	) (	C90	T95	P110	Q125
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	3.6 14.5 659	3.6 21.1 958	21.	1	3.6 23.8 1078	3.6 25.1 1137	3.6 29.1 1317	3.6 33.0 1497	5.3 16.6 749	5.3 24.1 1090	24.	1 2	5.3 27.1 226	5.3 28.7 1294	5.3 33.2 1499	5.3 37.7 1703
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	658 366 425	883 495 572	49	9	982 550 636	1035 580 670	1205 675 780	1357 761 879	749 427 495	1005 576 666		1	117 641 741	1178 676 781	1371 787 909	1544 887 1024
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCII Grant Prideco STL Hydrii LX Hydrii 563 Hydrii 511 Hydrii 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26																
		-		N	/lake-up	torque	(daN.	m)	_		ā	Ν	Aake-up	torque	(daN.r	n)			ā
	:			K55	LN80	C90/95	P110	Q125	QD QD	⊡ (m m	Drift API (mm)	K55	LN80	C90/95	P110	Q125		Q (Lu Lu Lu Lu Lu Lu Lu Lu Lu Lu Lu Lu Lu L	Drift API (mm)
Connection characteristics	27 28 29 30 31 32 33 34 35 36 37 38	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII. Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO	27 28 29 30 31 32 33 34 35 36 37 38 39	1116 1295					533.4 533.4 533.4		481.0 481.0 481.0	1300 1509					533.4 533.4 533.4		477.8 477.8 477.8
	39 40 41	Vallourec & Mannesmann VAM FRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	40 41																

(1) The closed end displacement does not account for couplings. MPa  $\times$  145 = psi daN  $\times$  2.25 = lb daN.m  $\times$  7.38 = lb.ft mm  $\times$  0.0394 = in

٠.

 $\max_{i \in \mathcal{I}} \{ i \} \{ i \} \}$ 

122302361 2011

	1	Nominal size (OD)	1			20.000	in		508.0	mm		1		 	 	 ٦
	2	Nominal weight	2	1	1:	33.00 II	b/ft		194.1 (	daN/m				 	 	 -
Pipe body	3 4 5 6 7	Wall thickness Inside diameter Steel cross-section Capacity Displacement (1)	3 4 5 6 7		1 3 14	0.635 i 8.730 38.63 ir 4.31 ga 5.32 ga	in 1 ² I/ft		16.1 475.7 24 923 177.7 202.6	mm mm² 6 l/m				 		 ~
	8	Grade	8	K55	L8	1 0	180	C90	T95	P110	Q125			 	 	 -
	9 10 11	Collapse resistance (MPa) Internal yield pressure (MPa) Pipe body yield strength (1000 daN)	9 10 11	10.3 21.1 945	30	.6 :	11.1 30.6 375	11.1 34.5 1547	11.1 36.4 1632	11.1 42.1 1890	11.1 47.9 2148				 	
Tensile strength (10 ³ daN)	12 13 14 15	Buttress Standard Buttress Special Clearance API STC API LTC	12 13 14 15	944 557 647	126 75 87	52	280 759 878	1409 837 967	1486 883 1020	1729 1027 1187	1947 1158 1337		•			
Connection efficiency	16 17 18 19 20 21 22 23 24 25 26	Grant Prideco TCI Grant Prideco STL Hydril LX Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL	16 17 18 19 20 21 22 23 24 25 26	,					<u></u>				,	 	 	
				K55	Aake-up 0801	torqu 26/062	e (daN.	Q125 (j)	OD (mm)	Q (IIII)	Drift API (mm)		-			
Connection characteristics	30 31 32 33 34 35 36 37 38 39 40	Buttress Standard Buttress Special Clearance API STC API LTC Grant Prideco TCII Grant Prideco STL Hydril 563 Hydril 563 Hydril 511 Hydril 521 Vallourec & Mannesmann New VAM Vallourec & Mannesmann VAM ACE Vallourec & Mannesmann VAM PRO Vallourec & Mannesmann VAM TOP Vallourec & Mannesmann FJL		1697 1970					533.4 533.4 533.4		471.0 471.0 471.0					

(1) The closed-end displacement does not account for couplings. MPa × 145 = psi daN × 2.25 = lb daN.m × 7.38 = lb.ft mm × 0.0394 = in

al al an agrèce de la destruction de la companya d La companya de la comp

N N W W W

			_			_	-	_				_																
. Calculated coiled tubing performance properties	External	External displacement (I/m)		0 285	0.285	0.507	0.507	0.507	0.507	0.507	0.507	0.507	0.507	0.507	0.507	0.507	0.507	0.507	0.507	0.507	0.507	0.507	0.507	0.507	0.507	0.507	0.792 0.792	
	Wall displacement (l/m)		0.112	0.112	0.117	0.154	0 149	0.154	0.161	0.174	0.180	0.222	0.154	0.149	0.161	0.174	0.197	0.222	0.149	0.161	0.186	0.197	0 149	0.161	0.174	0.186 0.222	0.196 0.222	
	Capacity (I/m)		0.173	0.173	0.168	0.352	0.358	0.352	0.346	0.332	0.321	0.285	0.352 0.346	0.358	0.346	0.332	0.310	0.285	0.358	0.346	0.321	0.310	0.358	0.346	0.332	0.321 0.285	0.595 0.569	
	Torsional yield (N.m)		188	256	282	364	450	463	479	511 577	561 25/	613	496 513	515	548	584 912	641	700	579	010	069	722 788	643	685	729	/6/ 876	598 664	
	Internal yield (MPa)		62	108	121	59	72	75	6/	àò	100 100	113	85 85	83	06	96	115	129	33	112	120	129	103	113	124	161	47 55	
	Tension	yield (kN)	40	55	61	55	68	70	74	) (U	0.0	101	75	78	84	92 00	104	115	87	40 103	110	117	97	105	114	144	70 80	= bbl/ft
Tuho area		Minimum (in ² )	0.165	0.165	0.172	0.226	0.218	0.226	0.236	102.0	0.293	0.325	0.226 0.236	0.218	0.236	0.25/	0.293	0.325	0.218	0.250	0.275	0.293 0.325	0.218	0.236	0.257	0.325	0.287 0.328	l/m × 0.00192 =
Tuho		Nominal (in ² )	0.174	0.174	0.181	0.239	0.231	0.239	0.250	0.270	0.305	0.344	0.239 0.250	0.231	0.250	0.270	0.305	0.344	0.231	0.230	0.288	0.305 0.344	0.231	0.250	0.270	0.344	0.304 0.345	= gal/ft l/r
Coiled tubing dimensions and specifications	Inside diameter (in)		0.584	0.584	0.576	0.834	0.840	0.834	0.826	0.810	0.782	0.750	0.834 0.826	0.840	0.826	0.810	0.782	0.750	0.840	0.810	0.796	0.750	0.840	0.826	0.810	0.750	1.084 1.060	l/m × 0.0805 =
	Wall thickness	Minimum (in)	0.078	0.078	0.082	0.078	0.075	0.078	0.082	0.090	0.104	0.117	0.078 0.082	0.075	0.082	0.097	0.104	0.117	0.075	060.0	0.097	0.104	0.075	0.082	0.090	0.117	0.078 0.090	= lb.ft
	Wall th	Nominal (in)	0.083	0.083	0.087	0.083	0.080	0.083	0.08/	0.102	0.109	0.125	0.083 0.087	0.080	0.087	0.102	0.109	0.125	0.080	0.095	0.102	0.125	0.080	0.087	0.095	0.125	0.083 0.095	N.m × 0.738
	Yield strength (psi)		55 000	75 000	80 000	55 000			000 0/		70 000	70 000	75 000 75 000	80 000	000 08	000 08	80 000	80 000	000 06	000 06	000 06	000 06				100 000	55 000 55 000	: 145 = psi
	Body weight (Ib/ft)		0.59	0.59	0.62	0.81	0.79	0.81	0.00	0.98	1.04	1.17	0.81 0.85	0.79	0.85	26.0 0.98	1.04	1.1/	0.79 0.85	0.92	0.98	1:17	<u> </u>	œίc	0.92	2	1.03 1.17	kip MPa×
5	Outside diameter (in)		0.750	0.750	0.750	1.000	1.000	000	000	000	1.000	1.000	1.000	1.000	1.000	000	1.000	000.1	000	1.000	1.000	1.000	1.000	1.000	000	1.000	1.250	kN × 0.225 =

C 80

Г	T		It	Т																									_				7
	S	External	displacement (I/m)	0.792	0.792	0.792	0.792	0./92	0.792	0.792	0.792	0.792	0.792	0.792 0.792	0 792	0 792	0.792	0.792	0.792	0.702	0.792	0.792	0.792	0.792	0.792	0.792	0.792	0.792	0.792	0.792	0.792	0.792	0./32
		Wall	displacement (I/m)	0.190	0.196	0.205	0.222	0.23/	0.235	0.303	0.346	0.381	0.196	0.222	0.252	0.190	0.205	0.222	0.237	0.232	0.303	0.346	0.301	0.190	0.222	0.237	0.252	0.203	0.346	0.381	0.190	0.222	107.0
		Capacity	(m/l)	0.602	0.595	0.587	0.503	0.004	0.507	0.489	0.446	0.410	0.595	0.569	0.540	0.602	0.587	0.569	0.504	0.507	0.489	0.446	0.4.0	0.587	0.569	0.554	0.540	0.489	0.446	0.410	0.602	0.569	
Calculated coiled tubing		Torsional	yield (N.m)	739	761	06/	040 000	0.00	1 034	1 084	1 196	107	815 046 046	906 906	1 005	844	902	966	1 020	1 182	1 239	1 367		1 015	1 087	1 148	1 320	1 394	1 538	1 040	1 055	1 208	2,4
Calcula		Internal	yleid (MPa)	28	86	203	700	80	6	97	114	ם מ -	00 00 00 00 00 00 00 00 00 00 00 00 00	74	86	99	72	90 00	26	103		131		t 18	83	96	116	125	147	00		960 200	2
		Tension	(N)	80	D x	101	109	117	130	139	160		9 9 9 0	109	125	66	101 101	1-1 70/	133	148	158	202 202	111	120	131	141	167	178	205	177	123	146	
	Tube area		Minimum (in ² )	0.277	0.28/	- 200- 200- 200- 200- 200- 200- 200- 200	0.351	0.374	0.416	0.445	0.512		0.301	0.328	0.374	0.277	0.301	0.351	0.374	0.416	0.445	0.568	0 277	0.301	0.328	0.351	0.416	0.445	0.512 0.568		0.301	0.328	6
_	Tube		i Nominal (in ² )	0.294	0.004 0.318	0.345	0.368	0.391	0.442	0.470	0.591		0.318	0.345	0.391	0.294	0.318	0.368	0.391	0.442	0.470	0.591	0.294	0.318	0.345	0.308	0.442	0.470	0.536		0.318	0.345 0.368	cal/ft
		linside diameter	(in)	1.090	1 076	1.060	1.046	1.032	1.000	0.982	0.900	1087	1.076	1.060	1.032	1.090	1.0/0	1.046	1.032	1.000	0.982 0.938	006.0	1.090	1.076	090.1	1.032	1.000	0.982	0.938		1.076	1.060 1.046	$1/m \times 0.0805 =$
cifications	Wall thickness		(in)	0.075	0.082	060.0	0.097	0.104	0.117	0.120	0.167	0.078	0.082	0.090	004	0.075	060 0	0.097	0.104	0.117	0.126	0.167	0.075	0.082	0.090	0.104	0.117	0.126	0.167	0.075	0.082	0.090	= lb.ft
ons and spe	Wall th	No.	(in)	0.080	0.087	0.095	0.102	0.109	971.0	0.134	0.175	0.083	0.087	0.095	0.100	0.080	0.095	0.102	0.109	0.125	0.156	0.175	0.080	0.087	0.035	0.109	0.125	0.134	0.175	0.080	0.087	0.095 0.102	N.m × 0.738
Coiled tubing dimensions and specifications	Vield	strength	(psi)	70 000	70 000							75 000	75 000	75 000			80 000		80 000		000 08	80 000	000 06	000 06			000 06		000 06	100 000		100 000	145 = psi
Coiled tub	Body	weight	(Ib/ft)	1.00	1.08	1.17	1.25		00.1	2001	2.01	1.03	1.08	1.17	- <i>-</i>	0.1	1.17	1.25	1.33	00	1.82	2.01	1.00	1.08	1.25	1.33	1.50	00.1	2.01	1.00	1.08	1.1/	kip MPa x
	Outside	diameter	(in)	1.250	1.250	1.250	1.250	092.1	1 250	1250	1.250	1.250	1.250	1.250		1.250	1.250	1.250	1.250	1 250	1.250	1.250	1.250	0920	1.250	1.250	1.250	1 250	1.250	1.250	1.250	1.250	kN × 0.225 = k

	1		Г	1							T		٦
	External	displacement (I/m)	0.792 0.792 0.792 0.792 0.792	1.140 1.140	1.140 1.140 1.140	1.140 1.140 1.140 1.140	1.140 1.140 1.140	1.140	1.140	1.140 1.140 1.140	1.552 1.552 1.552	1.552 1.552 1.552	
performance properties	Wall	displacement (I/m)	0.252 0.285 0.303 0.346 0.381	0.271 0.307	0.271 0.289 0.307	0.348 0.371 0.425 0.470	0.271 0.289 0.307	0.3710.0371	0.289	0.371 0.371 0.425 0.470	0.280 0.293 0.319	0.363 0.412 0.504	
	4 1 2 2 2 2	Lapacity (l/m)	0.540 0.507 0.489 0.446 0.410	0.870 0.833	0.870 0.851 0.833	0.792 0.769 0.715 0.670	0.870 0.851 0.833	0.792 0.769 0.715 0.715	0.870 0.851 0.833 0.833	0.769 0.715 0.670	1.271 1.259 1.233	1.189 1.140 1.113 1.048	
Calculated coiled tubing	Torsional	yield (N.m)	1 339 1 477 1 549 1 708 1 829	1 356 1 512	1 446 1 531 1 613	1 790 2 884 2 098 2 263	1 627 1 722 1 815	2 014 2 120 2 360 2 546		2 356 2 356 2 829	1 241 1 292 1 391	1 983 2 211 2 334 2 614	_
Calculat	Internal	yield (MPa)	115 129 139 163	62 72	66 71 76	86 93 109 123	74 80 86	97 122 138	88895 88895	116 154	36 36 36 36	57 65 82	
	Tension	yield (KN)	167 185 198 228 253	133 152	142 152 162	181 194 224 249	160 171 183	204 218 252 280	177 190 203	242 242 311	100 105 115	167 187 200 232	= bbl/ft
	alea	Minimum (in ² )	0.374 0.416 0.445 0.512 0.568	0.399 0.456	0.399 0.428 0.456	0.508 0.544 0.629 0.699	0.399 0.428 0.456	0.508 0.544 0.629 0.699	0.399 0.428 0.456	0.544 0.629 0.699	0.410 0.430 0.469	0.538 0.600 0.643 0.745	/m × 0.00192
, t		Nominal (in ² )	0.391 0.442 0.470 0.536 0.591	0.419 0.476	0.419 0.448 0.476	0.540 0.575 0.659 0.728	0.419 0.448 0.476	0.540 0.575 0.659 0.728	0.419 0.448 0.476	0.575 0.659 0.728	0.435 0.455 0.494	0.562 0.638 0.680 0.781	gal/ft
	Inside	diameter (in)	1.032 1.000 0.982 0.938 0.900	1.310 1.282	1.310 1.296 1.282	1.250 1.232 1.188 1.150	1.310 1.296 1.282	1.250 1.232 1.188 1.150	1.310 1.296 1.282	1.150	1.584 1.576 1.560	1.532 1.500 1.482 1.438	/m × 0.0805 =
ifications	ckness	Minimum (in)	0.104 0.117 0.126 0.148 0.167	0.090 0.104	0.090 0.097 0.104	0.117 0.126 0.148 0.167	0.090 0.097 0.104	0.117 0.126 0.148 0.167	0.090 0.097 0.104	0.126 0.148 0.167	0.078 0.082 0.090	0.104 0.117 0.126 0.148	= lb.ft
ns and spec	Wall thickness	Nominal (in)	0.109 0.125 0.134 0.156 0.175	0.095 0.109	0.095 0.102 0.109	0.125 0.134 0.156 0.175	0.095 0.102 0.109	0.125 0.134 0.156 0.175	0.095 0.102 0.109	0.134 0.156 0.175	0.083 0.087 0.095	0.109 0.125 0.134 0.156	N.m × 0.738
Coiled tubing dimensions and specifications	Yield	strength (psi)	100 000 100 000 100 000 100 000 000	75 000 75 000	00000 80000 80000		000 06 06 06	000 00 06 6 6 6	100 000	100 000	55 000 55 000 55 000	70 000 70 000 70 000	145 = psi
Coiled tubi	Body	weight (Ib/ft)	1.33 1.50 1.60 2.01	1.43 1.62	1.43 1.52 1.62	1.84 1.95 2.24 2.48	1.43 1.52 1.62	1.84 1.95 2.24 2.48	1.43 1.52 1.62	2.24	1.48 1.55 1.68	1.91 2.17 2.66	kip MPa×
	Outside	diameter (in)	1.250 1.250 1.250 1.250	1.500 1.500	1.500	1.500	1.500 1.500	1.500 1.500 1.500	1.500	1.500	1.750 1.750 1.750	1.750 1.750 1.750 1.750	kN × 0.225 = I

**OF COILED TUBING** (continued) **GEOMETRICAL CHARACTERISTICS IES** AND MECHANICAL PROPERT

displacement External 552 552 552 552552552552552552552552552 552 552 552 552 552 552 552 (m/l) 552 552 552 552 552 552 552 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 properties displacement 0.319 0.559 0.3190.3630.4120.5040.5590.5950.6010.3410.3630.4120.4390.5040.5590.559Wall (I/m) 0.3190.3630.4120.4390.5040.5590.4180.4750.5070.5830.5830.5830.6470.6900.6970.7390.418 0.475 Calculated coiled tubing performance Capacity 1.2331.2331.1891.1401.1131.0480.9930.9570.9511.2111.1891.1891.1401.0480.9930.951(m/l) 0.993 1.233 1.189 1.189 1.140 1.140 1.140 1.048 0.993 0.993 .609 552 552 552 552 336 336 552 552 552 552 552 552 Torsional 2 530 2 530 3 159 3 334 4 053 4 053 837 979 897 024 527 667 988 405 242 405 415 549 843 843 361 858 858 yield (N.m) 652 968 968 533 850 850 054 085 085 279 031 392 MUNNNNN 200 ოოოო 200 сm 4 4 4 ကက Internal (MPa) yield 50 56 57 57 57 57 57 57 57 Tension yield (kN) 157 167 191 214 229 229 2265 2296 316 319 319 202 2557 2557 2557 2557 359 359 359 359 3331 359 3331 193 216 231 231 233 320 324 324 324 220 2220 2220 l/m × 0.00192 = bbl/ft Minimum (in²) 0.831 0.888 0.4690.5380.6000.6430.7450.8310.8310.8880.8970.6000.6000.6430.7450.7450.7450.7450.8310.7450.8310.7450.8310.7450.8310.8310.8310.8310.8310.8310.8310.8310.8330.7450.8330.7450.8330.7450.8330.7450.8330.7450.8330.7450.8330.8330.8330.8330.7450.8330.7450.8330.8330.6000.6000.6000.8330.7450.8330.7450.8330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.930.469 0.4690.5380.6000.6430.6430.6430.7450.8310.8310.619 0.692 0.742 0.861 0.962 1.029 1.106 0.619 0.692 Tube area Nominal (in²) 0.866 0.494 0.4940.5620.6380.6800.7810.7810.9230.9310.5280.5620.6380.6800.7810.8660.9310.494 0.562 0.680 0.680 0.781 0.866 0.923 0.648 0.736 0.736 0.904 1.003 1.070 1.080 1.146 0.648 0.736 gal/ft Ш  $1/m \times 0.0805$ diameter Inside .400 560 .782 .750 .658 .658 .624 .624 .594 1.782 (in) Minimum Coiled tubing dimensions and specifications  $\begin{array}{c} 0.090\\ 0.104\\ 0.117\\ 0.126\\ 0.148\\ 0.167\\ 0.182\\ 0.182\\ 0.182\end{array}$ 0.090 0.0970.1040.1170.1170.1260.1480.1670.1820.1820.167 0.180 0.0900.1040.1170.1260.1670.1670.180 $0.104 \\ 0.117 \\ 0.126 \\ 0.148 \\ 0.180 \\ 0.182 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.195 \\ 0.19$ 0.104 0.117 = lb.ft Wall thickness (in)  $N.m \times 0.738$ Nominal 0.175 0.188 0.0950.1250.1250.1260.17560.1760.1760.1760.1760.1760.1760.102 0.109 0.125 0.134 0.136 0.175 0.175 0.095 0.0950.1090.1250.1250.1340.1750.1750.178 $0.109 \\ 0.136 \\ 0.156 \\ 0.156 \\ 0.175 \\ 0.188 \\ 0.190 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.203 \\ 0.20$ (i 0.109 0.125 strength 88 000 = psi 80 000 80 000 Yield (isa) 75  $MPa \times 145$ Body weight (Ib/ft) 2.20 2.50 3.07 3.67 3.67 3.67 3.90 2.50 , T T R Outside diameter kN × 0.225 .750 .750 (in) 000 N N

	<del></del>		
	External	displacement (I/m)	2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027
nance properties	Wall	displacement (I/m)	$\begin{array}{c} 0.507\\ 0.699\\ 0.699\\ 0.699\\ 0.739\\ 0.739\\ 0.739\\ 0.739\\ 0.697\\ 0.697\\ 0.697\\ 0.697\\ 0.697\\ 0.699\\ 0.739\\ 0.699\\ 0.739\\ 0.699\\ 0.739\\ 0.699\\ 0.739\\ 0.699\\ 0.739\\ 0.699\\ 0.739\\ 0.699\\ 0.739\\ 0.699\\ 0.739\\ 0.699\\ 0.702\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.$
ubing performance		(l/m)	$\begin{array}{c} 1.520\\ 1.520\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.336\\ 1.$
Calculated coiled tubing	Torsional	yield (N.m)	3 587         3 587         3 587         3 587         3 587         3 587         3 587         3 587         3 587         3 587         3 587         3 587         3 587         3 587         3 587         3 587         3 587         3 587         3 587         3 587         3 587         3 597         3 597         3 8116         5 597         5 597         5 597         5 597         5 597         5 597         5 597         5 597         5 597         5 597         5 597         5 597         5 597         5 597         5 597         5 597         5 597         5 597         5 597         5 597         5 597         5 597         5 597         5 597         5 597         5 597         5 597
Calcula.	Internal	yield (MPa)	9988876655548777766655484 100000000000000000000000000000000000
	Tension	yield (kN)	264 366 342 342 342 342 342 342 345 342 345 342 342 342 342 342 345 345 345 345 345 330 330 330 330 330 3317 255 3317 255 330 330 330 330 330 330 330 330 330 3
		Minimum (in ² )	0.742 0.742 0.9661 0.9661 1.1039 0.619 0.619 0.619 0.619 0.619 0.742 0.742 0.742 0.742 0.742 0.742 0.742 1.039 0.742 0.742 0.742 0.742 0.742 1.158 1.158 1.158 1.158 1.158 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.1355 1.13555 1.13555 1.13555 1.13555 1.13555 1.135555 1.135555 1.1355555 1.135555555555
L L L		Nominal (in ² )	0.786 0.904 1.003 1.070 1.080 0.548 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003
	Inside	diameter (in)	1.732         1.6588         1.6524         1.6524         1.6524         1.6524         1.6524         1.6524         1.6524         1.6524         1.6524         1.6524         1.6524         1.6524         1.6524         1.752         1.752         1.752         2.157         2.157         2.157         2.157         2.157         2.157         2.157         2.157         2.157         2.157         2.157         2.157         2.157         2.157         2.157         2.155         2.155         2.155         2.155         2.155         2.155         2.155         2.155         2.155         2.155         2.155         2.155         2.155         2.155         2.155         2.155         2.155         2
and specifications	Wall thickness	Minimum (in)	0.126 0.126 0.188 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195
	Wall thi	Nominał (in)	0.134 0.156 0.175 0.198 0.198 0.199 0.125 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175
Coiled tubing dimensions	Yield	strength (psi)	80 000 80 000 100 0000 100 000 100 0000 100 000 100 00
Coiled tub	Body	weight (Ib/ft)	Xin Mpax Xin Xin Mpax Xin Mpax
	Outside	diameter (in)	2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.00000000

AND MECHANICAL PROPERTIES OF COILED TUBING (continued) **GEOMETRICAL CHARACTERISTICS** 

displacement External  $\begin{array}{c} 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.858\\ 2.$  $\begin{array}{c} 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,188\\ 4,$ (l/m) Calculated coiled tubing performance properties displacement 0.5700.6090.7020.7800.7800.7800.8410.8410.8980.5700.5700.5700.6090.7800.7800.7800.7800.7800.7800.7800.7800.7800.7020.7020.7020.7020.7020.7020.7020.7020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.77020.78040.77020.77020.78020.77020.78020.77020.78020.78020.77020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78020.78Wall (m/l) 0.697 0.744 0.860 0.958 1.024 1.024 1.034 1.099 0.697 0.744 0.860 0.958 0.958 1.024 1.034 0.744 0.860 0.958 1.034 1.104 1.204 0.697 0.744 0.860 Capacity 2.288 2.250 2.157 2.157 2.017 2.017 2.017 2.078 2.250 2.157 2.078 2.250 2.157 2.078 1.964 1.964 3.4923.4443.3293.2313.23333.23333.23333.2443.23333.23343.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.23323.2332(L/I) 3.492 3.444 3.329 Torsional 6 499 6 901 8 630 9 144 9 221 9 221 7 427 7 427 7 427 7 8 8630 8 9867 9 8670 9 8670 9 8670 9 8670 10 539 11 105 5 546 5 877 6 651 7 281 7 281 7 281 7 754 8 177 7 5 484 8 177 7 390 6 530 7 3990 8 547 9 052 9 052 9 052 vield (N.m) 8 873 10 092 11 095 11 856 12 542 13 482 284 858 213 00<u>-</u> Internal yield (MPa) 66 66 66 95 95 95 95 95 97 97 97 97 97  $\begin{array}{c} 3.3\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\$ Tension yield (kN) 3333 356 356 3537 3330 3330 5337 5552 5552 5552 5552 = bbl/ft  $l/m \times 0.00192$ Minimum 0.830 0.890 0.890 1.035 1.158 1.158 1.158 1.254 ..342 0.742 0.830 0.890 0.890 1.035 1.158 1.158 1.241  $\begin{array}{c} 0.14 \\ 268 \\ 522 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642 \\ 642$ (in²) .014 .088 .268 Tube area Nominal 776 943 943 210 2385 2385  $\begin{array}{c} 080\\ 154\\ 154\\ 233\\ 333\\ 603\\ 603\\ 704\end{array}$ (in²)  $l/m \times 0.0805 = gal/ft$ diameter Inside 2.125 2.107 2.003 2.005 2.107 1.995 1.967 2.157 2.157 2.157 2.157 2.157 2.107 2.107 2.063 2.005 2.005 2.005 2.005 2.007 1.999 1.999 2.607 2.563 2.5563 2.525 2.467 2.467 .625 .607 .563 (ij NANANAN NANANAN Minimum tubing dimensions and specifications 0.117 0.126 0.126 0.148 0.182 0.182 0.196 0.176 0.176 0.176 0.178 0.180 0.180 0.180 = lb.ft Wall thickness (i  $N.m \times 0.738$ Nominal 0.1250.1340.1750.1750.1750.1750.1750.1250.1250.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.1750.170.1250.1340.17560.17560.17560.17500.19000.12500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.17500.10.125 0.134 0.156 (in) strength (psi) psi 0000 Yield 11 888  $MPa \times 145$ Coiled weight (Ib/ft) Body 33.0033.2133.2133.2133.2033.2033.2044.114.7333.214.7333.704.734.714.734.734.714.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.734.7367 92 53 m m H ki ki 11 Outside diameter  $\times 0.225$ 875 875 875 (in) NNNNNN NNNNNNN NNNNNN NUNUNUN 00000000000 Ž

AND MECHANICAL PROPERTIES OF COILED TUBING (continued) **GEOMETRICAL CHARACTERISTICS** 

displacement External 4.188 4.188 4.188 6.207 6.207 6.207 6.207 6.207 6.207 6.207 6.207 6.207 6.207 6.207 6.207 6.207 6.207 6.207 6.207 6.207 6.207 6.207 6.207 6.207 6.207 6.207 6.207 6.207 (I/m) 10.261 10.261 10.261 10.261 Calculated coiled tubing performance properties displacement 0.914 1.179 1.179 1.262 1.275 1.357 1.357 1.487 0.958 1.024 1.099 1.660 1.776 1.941 2.154 0.914 1.179 1.179 1.262 1.262 1.255 1.357 1.357 1.487 .057 .057 .179 .275 .363 .363 .914 .057 .179 ..262 (I/u) Wall Capacity  $\begin{array}{c} 5.293 \\ 5.150 \\ 5.028 \\ 4.945 \\ 4.932 \\ 4.851 \\ 4.720 \end{array}$  $\begin{array}{c} 5.293 \\ 5.150 \\ 5.028 \\ 4.945 \\ 4.932 \\ 4.851 \\ 4.720 \end{array}$  $\begin{array}{c} 5.293 \\ 5.150 \\ 5.028 \\ 4.932 \\ 4.720 \end{array}$ .601 .485 .319 .107 (m/l) 3.231 3.164 3.089 5.293 5.150 5.028 4.945 4.851 യ്യ്യ് യ് Torsional yield 10 489 11 981 13 220 14 042 14 167 14 966 15 027 16 215 13 486 15 404 16 997 18 215 19 320 20 848 328 062 882 11 988 13 692 15 108 16 048 16 191 17 104 17 173 18 531 115 885 060 380 985 294 838 991 695 (N.m) 200 228277 3225 Internal yield (MPa) 980 35545 52 52 52 Tensior 632 678 730 yield (kN) 769 825 905 008 = bbl/ft Minimum (in²)  $l/m \times 0.00192$ 421 524 642 1.3361.5591.7491.8771.8771.8972.0252.0252.028 $\begin{array}{c} 1.336\\ 1.559\\ 1.749\\ 1.877\\ 1.897\\ 1.897\\ 2.025\\ 2.034\\ 2.228\end{array}$ .336 .559 .749 .897 .034 .228 469 650 907 237 .336 .559 .749 .877 .025 Tube area Nominal 1.4171.6391.8281.9561.9762.1032.1122.3051.484 1.587 1.704 1.4171.6391.8281.9561.9762.1032.1122.3051.417 1.639 1.828 1.976 2.112 2.305 .417 639 828 956 103 2.573 2.753 3.009 3.338 (in²) gal/ft  $l/m \times 0.0805$ diameter Inside 2.525 2.499 2.469 3.232 3.150 3.151 3.124 3.124 3.122 3.092 3.092 3.092 3.124 3.120 3.092 3.092 3.092 3.092 3.092 3.232 3.188 3.150 3.150 3.150 3.092 3.052 3.232 3.188 3.150 3.150 3.124 3.094 4.120 4.092 4.052 4.000 (iii) Minimum Coiled tubing dimensions and specifications 0.167 0.180 0.195 0.1260.1480.1670.1800.1820.1950.1960.1960.2160.1260.1480.1670.1800.1820.1950.1950.1960.2160.126 0.148 0.167 0.182 0.182 0.196 0.216 0.126 0.148 0.167 0.180 0.195 0.182 0.196 0.216 0.242 = lb.ft (in) Wall thickness  $N.m \times 0.738$ Nominal 0.175 0.188 0.203 0.1340.1560.1750.1880.1880.1900.2030.2240.2240.1340.1560.1750.1750.1750.1750.1900.2030.2040.224 $\begin{array}{c} 0.134\\ 0.156\\ 0.175\\ 0.175\\ 0.204\\ 0.224\end{array}$ 0.134 0.156 0.175 0.175 0.178 0.203 0.190 0.204 0.224 0.250 (iii) Yield strength (psi)  $MPa \times 145 = psi$ 888 8888 888 0200  $\begin{array}{c} 4.82\\ 6.651\\ 7.182\\ 6.651\\ 7.182\\ 6.651\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.182\\ 7.1$ Body weight (Ib/ft) 5.05 5.40 5.79 8.75 9.36 10.23 11.35 ki b H Outside diameter kN × 0.225 2.875 2.875 2.875 50005500 5000 (iu) ω. က်က်က်က် ຕ່ຕ່ຕ່ຕ່ຕ 4 4 4

11

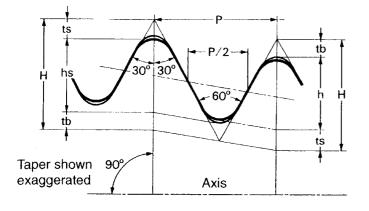
GEOMETRICAL CHARACTERISTICS AND MECHANICAL PROPERTIES OF COILED TUBING (continued)

	Coiled tut	Coiled tubing dimensions and specifications	ons and spe	cifications		F			Calcula	ted coiled tu	ubing perfor	Calculated coiled tubing performance properties	
Outside	Bodv	Yield	Wall th	Wall thickness	Inside		i ube area	Taneion	0+010	Toroional			
diamotor									I I I CI I GI		Canadity	VVall	External
(in)	weignt (Ib/ft)	strengtn (psi)	Nominal (in)	Minimum (in)	diameter (in)	Nominal (in ² )	Minimum (in ² )	yield (kN)	yield (MPa)	yield (N.m)	(I/m)	displacement (I/m)	displacement (I/m)
4.500	8.75	80 000	0.190	0.182	4.120	2.573	2.469	879	45	27 764	8 601	1 860	
4.500	9.36	80 000	0.204	0.196	4.092	2 753	2 650	013	α	20 520	100.0	000.1	107.01
4.500	10.23	80 000	0.224	0.216	4 052	000	20010		2 C			0//-1	197.01
4.500	11.35	80 000	0.250	0.242	4 000	0.00 0.00 0.00	2007	100-1	00	000010	0.0 0.0 0	1.941	10.261
			2010	1110	000.t	0000	107.0	7011	ກິດ	35 UBU	8.10/	2.154	10.261
4.500	8.75	000 06	0.190	0.182	4.120	2.573	2.469	988	50	31 235	8 601	1 660	10 261
4.500	9.36	000 06	0.204	0.196	4.092	2.753	2.650	1 061	27	33 221	- 00 - 00 - 00 - 00	0007-1 07-1-1	107.01
4.500	10.23	000 06	0.224	0 216	4 052	2000	200 0	1 1 2 1				0/7.1	107.01
4 500	11 25		0.250		1000				26	22 200	0.019	1.741	10.261
0000 t	00	2000	0.5.0	U.242	4.000	3.338	3.23/	1 296	67	39 465	8.107	2.154	10.261
5.000	11.43	70 000	0.224	0.216	4.552	3.361	3.246	1 011	42	35 083	10 499	2 168	17 660
2.000	12.68	70 000	0.250	0.242	4.500	3.731	3.617	1 126	47	38 542	10.261	2,100	12,000
5.000	11.43	80 000	0.224	0.216	4 552	3 361	3 246	1 1 7 7 7	07	10.005		007.0	000.7
2000	17 68	BO OOO	0.250						) (	40 090	0.400	2.108	12.668
000			007.0	0.242	4.300	0.701	3.01/	1871	53	44 048	10.261	2.407	12.668
kN × 0.225 = kip		MPa × 145 = psi	N.m × 0.75	38 = lb.ft //	$N.m \times 0.738 = 1b.ft 1/m \times 0.0805 \equiv gal/ft$		1/m × 0 00192 - hhl/ft	- hhl/f+					

0.225 = Kip MPa × 145 = psi N.m × 0.738 = lb.ft l/m × 0.0805 = gal/ft l/m × 0.00192 = bbl/ft

<b>26</b> 660.4	15.88         19.05         25.40           0.625         0.750         1.000	628.7 622.3 609.6 24.75 24.50 24.00	321.4 383.8 506.7 49.8 59.5 78.5	247.5 295.6 390.2 169.6 202.5 267.4	342.5 342.5 342.5 3.69 3.69 3.69	310.4         304.2         291.9           3.35         3.28         3.15	2 B X52 B X52 B X52	4.1         4.7         6.5         7.7         11.2         14.6           3         595         682         943         1117         1624         2117	7 776 1152 926 1376 1223 1817 3 1744 2591 2082 3094 2749 4084	4 8.7 13.8 10.4 13.8 13.8 13.8 0 1260 2000 1510 2000 2000
	12.70 0.500	635.0 25.00	258.4 40.1	199.0 136.4	342.5 3.69	316.7 3.42	B X52	2.4 2.4 348 348	624 927 1402 2083	7.0 12.4 1010 1800
	25.40 1.000	558.8 22.00	466.2 72.3	359.0 246.0	291.9 3.14	245.2 2.65	B X52	12.8 16.8 1856 2436	1125 1671 2529 3757	15.1 15.9 2190 2300
	19.05 0.750	571.5 22.50	353.4 54.8	272.2 186.5	291.9 3.14	256.5 2.77	X52	9.4 1363	1267 2849	15.9 2300
<b>24</b> 609.6							X52 B	6.0 7.7 870 1117	1062 853 2387 1917	15.9 11.3 2300 1640
	15.88	577.9 22.75	296.1 45.9	228.0 156.2	291.9 3.14	262.3 2.83	2 B	5 5.1 5 740	715 1606	9.4 1370
	12.70 0.500	584.2 23.00	238.2 36.9	183.4 125.7	291.9 3.14	268.0 2.89	B X52	3.0 3.0 435 435	575 854 1292 1920	7.5 13.4 1090 1950
	19.05 0.750	520.7 20.50	323.0 50.1	248.8 170.5	245.2 2.64	212.9 2.30	52 X52	0 11.5 05 1668	1158 2604	17.2 2500
<b>2</b> 3.8			<b></b>				X52 B	4.0 9.0 580 1305	781 780 1756 1752	14.7 12.3 2130 1790
<b>22</b> 558.8	12.70 0.500	533.4 21.00	217.9 33.8	167.8 115.0	245.2 2.64	223.5 2.41	B	5 4.0 9 580	) 526 5 1182	8.2 1190
	9.53 0.375	539.8 21.25	164.4 25.5	126.6 86.7	245.2 2.64	228.8 2.47	B X52	1.65 1.65 239 239	397 589 892 1325	6.1 11.0 890 1600
Outside diameter (in) (mm)	Wall thickness (mm) (in)	(mm) (mm) (in)	(m ² ) (in ² ) (in ² ) (in ² )	(ib/ft)	Uisplacement closed-end (I/m) (ft ³ /ft)	(1/m) (ft ³ /ft)	Steel grade	Collapse resistance (1) (MPa) (psi)		Standard test pressure (2) (MPa) (psi)

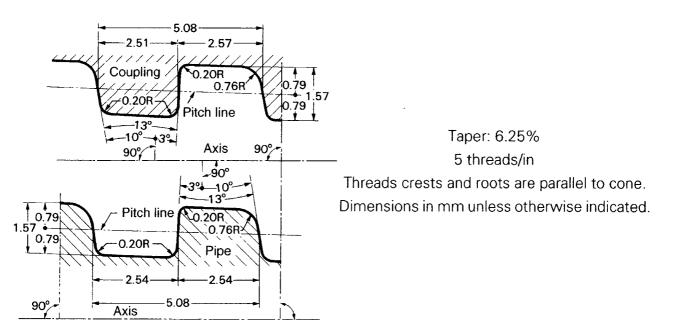
Collapse resistance and yield strength are calculated according to API 5C3.
 Standard test pressures are API pressures calculated taking stress equal to 75% of the specified minimum yield strength for grade B and 90% for Grade X52 (API Standard 5L).


**GEOMETRIC CHARACTERISTICS AND MECHANICAL PROPERTIES** OF LINE PIPE, RISER AND CONDUCTOR PIPE (continued)

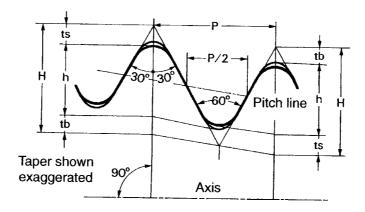
2543 5718 6.9 1000 17.9 2600 (1) Collapse resistance and yield strength are calculated according to API 5C3. (2) Standard test pressures are API pressures calculated taking stress equal to 75% of the specified minimum yield strength for grade B and 90% for Grade X52 (API Standard 5L). X52 863.6 34.00 25.40 1.000 709.4 110.0 546.3 374.3 656.7 7.07 585.8 6.32 1712 3848 10.1 1460 6.0 870 ш 1921 4319 13.4 1950 X52 3.0 435 535.8 83.1 412.6 282.8 876.3 34.50 603.1 6.51 19.05 656.7 7.07 1293 2907 7.5 1090 3.0 435 മ **36** 914.4 1607 3612 11.2 1620 1.8 261 X52 345.1 236.5 611.9 6.60 15.88 0.625 882.7 34.75 448.1 69.5 656.7 7.07 1081 2431 1.8 261 6.3 910 ഫ 1290 2900 9.0 1300 X52 0.9 889.0 35.00 359.8 55.8 277.0 189.8 620.7 6.70 12.70 656.7 7.07 868 1952 5.0 730 0.9 131 ന 2253 5064 9.4 1363 20.1 2920 X52 762.0 30.00 628.3 97.4 483.9 331.5 518.9 5.59 456.0 4.92 25.40 1.000 1516 3409 11.3 1640 7.7 1120 മ 1703 3829 15.1 2190 4.4 638 X52 475.0 73.6 365.8 250.7 518.9 5.59 471.4 5.09 19.05 0.750 774.7 30.50 1425 1146 3203 2577 8.5 1230 4.4 638 മ **32** 812.8 12.6 1830 X52 2.5 363 15.88 0.625 781.1 30.75 397.4 61.6 518.9 5.59 306.1 209.7 479.1 5.17 959 2156 7.1 1030 2.5 363 മ 1145 2573 10.1 1460 X52 1.3 189 319.2 49.5 245.8 168.4 518.9 5.59 486.9 5.26 12.70 787.4 31.00 770 1732 5.7 820 1.3 189 മ 1418 2107 3189 4738 10.9 1581 20.7 3000 X52 452.6 310.2 711.2 28.00 587.8 91.1 456.0 4.91 397.3 4.29 25.40 1.000 16.1 12.1 2340 1750 3 8.7 1262 ഫ 1073 1594 2412 3584 4.9 711 X52 444.6 68.9 411.6 4.44 19.05 0.750 723.9 28.50 342.4 234.6 456.0 4.91 9.0 1310 4.6 667 ന **30** 762.0 13.4 1950 1334 2999 3.0 435 X52 730.3 28.75 286.6 196.4 456.0 4.91 418.8 4.52 15.88 0.625 372.1 57.7 898 2019 7.5 1090 3.0 435 ω 1072 2410 10.8 1560 1.5 218 X52 299.0 46.3 230.2 157.8 736.6 29.00 456.0 4.91 12.70 0.500 426.1 4.60 721 1622 1.5 218 6.1 880 œ Standard test pressure (2) Displacement closed-end Collapse resistance (1) Cross section area Outside diameter Yield strength (1) inside diameter Wall thickness (1000 daN) ( Weight (daN/m) (lb/ft) Steel grade (1000 lb) (MPa) (MPa) (mm) (ft³/ft) Capacity (in) (mm) (in m (cm²) (in²) (l/m) (ft³/ft) (m/l) (isd) (psi) (in)

Outside diameter (in) (mm)				<b>40</b> 1016.0	.0							<b>42</b> 1066.8	α. 0			
Wall thickness (mm) (in)	12.70 0.500	02	15.88 0.625	38	19.05 0.750	05 50	25.40 1.000	40 00	12. 0.5	12.70 0.500	15. 0.6	15.88 0.625	19.05 0.750	05 50	25.40 1.000	0400000
(mm) (mm) (in)	990.6 39.00	9.0	984.3 38.75	5. 3	977.9 38.50	50 50	965.2 38.00	5.2 00	10 41.	1041 41.00	40.	1035 40.75	1029 40.50	29 50	1016 40.00	90
Cross section area (cm ² ) (in ² )	400.3 62.0	0.0	498.8 77.3	<u>م م</u>	596.6 92.5	5.6	79( 122	790.5 122.5	42\ 65	420.6 65.2	524.1 81.2	4. 1. 0i	627.0 97.2	0. 2 2	831.0 128.8	0. 8.
(daN/m) (daN/m) (lb/ft)	308.3 211.2	.2 .3	384.1 263.2	ci	459.5 314.8	<u>م</u> ی	608.7 417.1	3.7	32; 22 [,]	323.9 221.9	400 276	403.6 276.6	482.9 330.9	6. G.	639.9 438.5	<u>ي</u> و
Uisplacement closed-end (//m) (ft ³ /ft)	810.7 8.73		810.7 8.73	e	810.7 8.73	2. E	810.7 8.73	).7 73	89; 9,6	893.8 9.62	893.8 9.62	3.8	893.8 9.62	8. 23	893.8 9.62	2.8
Capacity (I/m) (ff ³ /ft)	770.7 8.32	1.7	760.9 8.21	6 _. -	751.1 8.11		731.7 7.90	00	85. 9.	851.8 9.19	841.4 9.08	1.4	831.1 8.97	5	810.7 8.75	2.7
Steel grade	ß	X52	8	X52	В	X52	В	X52	В	X52	В	X52	в	X52		X52
Collapse resistance (1) (MPa) (psi)	0.65 94	0.65 94	1.3 189	1.3 189	2.2 319	2.2 319	4.8 696	5.3 769	0.56 81	0.56 81	1.1 160	1.1 160	1.9 276	1.9 276	4.0 580	4.6 667
Yield strength (1) (1000 daN) (1000 lb)	966 2172	1435 3226	1204 2706	1788 4020	1440 3237	2139 4809	1908 4288	2834 6371	1015 2282	1508 3390	1265 2843	1879 4224	1513 3402	2248 5054	2005 4508	2979 6698
Standard test pressure (2) (MPa) (psi)	4.6 660	8.1 1170	5.7 820	10.1 1460	6.8 980	12.1 1760	9.0 1310	16.1 2340	4.3 620	7.7 1110	5.4 780	9.6 1390	6.5 940	11.5 1670	8.6 1250	15.4 2230
(1) Collapse resistance and vield strength are calculated according to API 5C3.	ield streng	th are cal	culated ac	cordina te	2 API 5C3											

Collapse resistance and yield strength are calculated according to API 5C3.
 Standard test pressures are API pressures calculated taking stress equal to 75% of the specified minimum yield strength for grade B and 90% for Grade X52 (API Standard 5L).


#### **API AND BUTTRESS CASING THREAD FORMS**




#### API round thread form

Taper: 6.25% 8 threads/in, p = 3.175 mm (1/8 in) H = 0.866 p = 2.750 mm h = 0.626 p - 0.178 = 1.810 mm tb = 0.120 p + 0.051 = 0.432 mm ts = 0.120 p + 0.127 = 0.508 mm

#### **Buttress thread form**



## **API TUBING THREAD FORM**



Taper: 6.25%

Thread element	10 threads per inch $\rho$ = 2.540 mm (1/10 in)	8 threads per inch p = 3.175 mm (1/8 in)
H = 0.866 p	2.200 mm	2.750 mm
h = 0.626 p - 0.178	1.412 mm	1.810 mm
tb = 0.120 p + 0.051	0.356 mm	0.432 mm
ts = 0.120 p + 0.127	0.432 mm	0.508 mm

	Threads per inch							
OD (in)	Tubing without upset	Tubing with external upset	Tubing with integral joint					
1.050	10	10						
1.315	10	10	10					
1.660	10	10	10					
1.900	10	10	10					
2.063	-	-	10					
2 3/8	10	8	-					
2 7/8	10	8						
3 1/2	10	8	_					
4	8	8	_					
4 1/2	8	8	_					

#### EFFECT OF TENSILE LOAD ON COLLAPSE RESISTANCE

The collapse resistance of casing in the presence of an axial stress is calculated by modifying the yield stress to an axial stress equivalent grade according to formula:

$$Y_{\text{pa}} = \left[\sqrt{1 - 0.75 \left(\frac{S_{\text{a}}}{Y_{\text{p}}}\right)^2} - 0.5 \frac{S_{\text{a}}}{Y_{\text{p}}}\right] Y_{\text{p}}$$

where:

 $S_a$  = axial stress, psi or MPa (tension is positive)

 $Y_{\rm p}$  = minimum yield strength of the pipe, psi or MPa

 $Y_{pa}$  = yield strength of axial stress equivalent grade, psi or MPa

This formula is based on the Hencky-Von Mises maximum strain energy of distortion theory of yielding.

#### Example of how to use this formula:

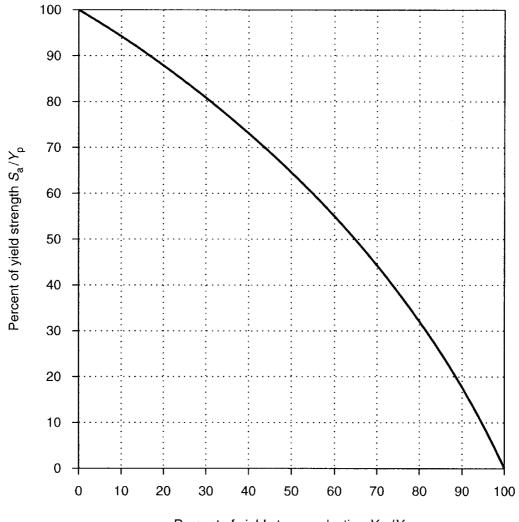
Let use assume that 150 10³ daN of casing are suspended below a 9 5/8 in, 43.50 lb/ft T95 joint. Using the formula, determine the effective collapse resistance of the pipe as a function of the applied load:

Solution: Determine the axial stress:

$$S_{a} = \frac{1 \text{ ensile load applied}}{\text{Pipe cross-section area}} = \frac{1\ 000\ 000}{8\ 103\ 10^{-6}} = 123.4 \text{ MPa}$$
$$S_{a} = 17\ 898\ \text{psi}$$
$$Y_{pa} = \left[\sqrt{1 - 0.75 \left(\frac{17\ 898}{95\ 000}\right)^{2}} - 0.5 \frac{17\ 898}{95\ 000}\right]95\ 000$$
$$Y_{pa} = 84\ 778\ \text{psi}$$

The collapse resistance of this 9 5/8 in, 43.50 lb/ft T95 casing under a tensile load of 100 10³ daN is an intermediate value between the collapse resistance of a LN80 grade casing and a T95 grade casing:

Collapse pressure for LN80 43.50 lb/ft: 26.3 MPa


Collapse pressure for T95 43.50 lb/ft: 28.5 MPa


Approximated collapse pressure for '84 778' grade 43.50 lb/ft is:

$$P_{\rm co} = 26.3 + (28.5 - 26.3) \frac{84778 - 80000}{95000 - 80000} = 27.0 \text{ MPa}$$

Note: Exact calculation using API 5C3 formulas gives: 26.7 MPa

$$Y_{\text{pa}} = \left[\sqrt{1 - 0.75 \left(\frac{S_{\text{a}}}{Y_{\text{p}}}\right)^2} - 0.5 \frac{S_{\text{a}}}{Y_{\text{p}}}\right] Y_{\text{p}}$$





#### QUALITATIVE INFLUENCE OF VARIOUS OPERATIONS ON THE STRESSES IN A PARTIALLY-CEMENTED CASING STRING

Operations	Tension	Collapse	Bursting	Buckling tendency
Decrease of average temperature	Increases			Decreases
Increase of average temperature	Decreases			Increases
Increase of internal pressure	Increases		Increases	Increases
Decrease of internal pressure	Decreases		Decreases	Decreases
Increase of external pressure	Decreases	Increases		Decreases
Decrease of external pressure	Increases	Decreases		Increases
Substitution of internal fluid by a heavier fluid	Increases		Increases	Increases
Substitution of internal fluid by a lighter fluid	Decreases		Decreases	Decreases
Substitution of external fluid by a heavier fluid	Decreases	Increases		Decreases
Substitution of external fluid by a lighter fluid	Increases	Decreases		Increases
Swabbing	Decreases		Decreases	Decreases

#### QUANTITATIVE INFLUENCE OF TEMPERATURE AND PRESSURE VARIATIONS ON THE STRESSES IN A PARTIALLY-CEMENTED CASING STRING

#### Influence of temperature changes

The increase or decrease of the tension at the top of a casing string due to a decrease or increase of the average temperature is given by:

 $T = 25.5 S \Delta t$  or  $T = 32.W \Delta t$ 

where:

T = tension variation (daN)

S = cross section of casing (cm²)

W = linear weight of casing (daN/m)

 $\Delta t$  = average temperature variation of casing (°C or K)

The average temperature of the free part of the casing is given by the formula:

$$t = t_0 + \frac{(t_1 - t_0)L_2}{2L_1}$$

with:

t = average temperature of the free part of the casing (°C)

 $t_0$  = surface temperature (°C)

 $t_1$  = bottom hole temperature (°C)

 $L_1$  = depth of the hole (m)

 $L_2$  = depth of top of cement (m)

#### Influence of internal pressure changes

The increase or decrease of the tension at the top of a casing string due to an increase or decrease of the internal pressure is given by the formula:

$$T = 6 A_i \Delta p_i$$

where:

T = tension variation (daN)

 $A_i$  = internal section area of casing (cm²)

 $\Delta p_i$  = variation of internal average pressure (MPa)

#### Influence of external pressure changes

The increase or decrease of the tension at the top of a casing string due to a decrease or increase of the external pressure is given by the formula:

$$T = 6 A_{\rm e} \Delta p_{\rm e}$$

where:

T = tension variation (daN)

 $A_{\rm e}$  = external section area of casing (cm²)

 $\Delta p_{e}$  = variation of external average pressure (MPa)

#### QUANTITATIVE INFLUENCE OF TEMPERATURE AND PRESSURE VARIATIONS ON THE STRESSES IN A PARTIALLY-CEMENTED CASING STRING (continued)

If the average internal or external pressure change is due to a change in the mud weight, the average pressure change is given by:

$$\Delta p = 9.81 \ (d_2 - d_1) \frac{L_2}{2}$$

where:

 $d_1$  = initial mud specific gravity

 $d_2$  = new mud specific gravity

 $L_2$  = depth at the top of cement (m)

 $\Delta p$  = average pressure change (kPa)

#### **Critical buckling force**

The critical buckling force is given by:

$$F_{\rm c} = 10 \left( P_{\rm e} A_{\rm e} - P_{\rm i} A_{\rm i} \right)$$

where:

 $F_{\rm c}$  = critical buckling force (daN)

 $P_{\rm e}$  = annulus pressure at the top of cement (MPa)

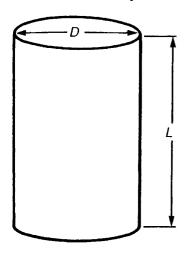
 $P_{\rm i}$  = internal pressure at the top of cement (MPa)

 $A_{\rm e}$  = external section area of casing (cm²)

 $A_i$  = internal section area of casing (cm²)

If  $F_c$  is positive, the string can withstand a maximum compression load at the top of cement equal to  $F_c$  without buckling.

If  $F_{\rm c}$  is negative, the string will buckle for a tensile load lower than  $F_{\rm c}$ .


D

# capacities and annular volumes

General formulas	D1
Clearance between standard bits and casing size	D2-D3
Capacities of cylinders	D4-D5
Capacities of drill pipes	D6-D7
Capacities of drill collars	D8
Capacities and displacements of casing	D9-D10
Capacities and displacements of tubings	D11
Annular volume between drill collar and open hole (liters per meter)	D12
Annular volume between drill pipe and open hole (liters per meter)	D13
Annular volume between drill pipe and casing (liters per meter)	D14-D15
Annular volume between casing and open hole (liters per meter)	D16
Annular volume between two string of casing (liters per meter)	D17-D19
Annular volume between casing and tubing (liters per meter)	D20-D21
Capacities of coiled tubing	D22-D23

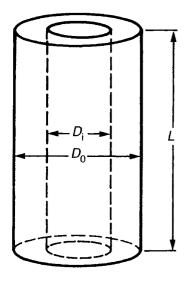
## **GENERAL FORMULAS**

#### Volume of a cylinder



$$V = \frac{\Pi}{4} D^2 L$$

Volume in I/m:  $V = 0.0007854 D^2$  (with *D* in mm)  $V = 0.5067 D^2$  (with *D* in inches)


Approximate formula:

$$V = \frac{D^2}{2}$$
 (with *D* in inches)

#### Example:

D = 3 inches= 76.2 mmExact formula:V = 4.560 l/mApproximate formula:V = 4.5 l/m

#### Volume of an annular space



$$V = \frac{\Pi}{4} (D_0^2 - D_i^2) L$$

Volume in I/m:  $V = 0.0007854 \ (D_0^2 - D_i^2)$ 

$$V = 0.5067 (D_0^2 - D_i^2)$$

(with  $D_0$  in mm) (with  $D_i$  in mm)

(with  $D_0$  in inches) (with  $D_i$  in inches)

#### CLEARANCE BETWEEN STANDARD BITS AND CASING SIZES

		Casing di	mensions				Bit si	ze (1)	Clearance
1	side neter		ninal ight	Thickness (mm)	Inside diameter	Drift (mm)		diately v drift	between bit and casing size
(in)	(mm)	(lb/ft)	(daN/m)	((((()))))	(mm)		(in)	(mm)	(mm)
4 1/2	114.3	9.50 10.50 11.60 13.50 15.10 16.90 17.70 18.80	13.86 15.32 16.93 19.70 22.04 24.66 25.83 27.44	5.21 5.69 6.35 7.37 8.56 9.65 10.20 10.92	103.88 102.92 101.60 99.56 97.18 95.00 93.90 92.46	100.71 99.75 98.43 96.39 94.01 91.83 90.73 89.29	3 7/8 3 7/8 3 7/8 3 3/4 3 5/8 3 1/2 3 1/2 3 1/2 3 1/2	98.43 98.43 98.43 95.25 92.08 88.90 88.90 88.90	5.5 4.5 3.2 4.3 5.1 6.1 5.0 3.6
5	127.0	11.50 13.00 15.00 18.00 21.40 23.20 24.10	16.78 18.97 21.89 26.27 31.23 33.86 35.17	5.59 6.43 7.52 9.19 11.10 12.14 12.70	115.82 114.14 111.96 108.62 104.80 102.72 101.60	112.65 110.97 108.79 105.45 101.63 99.54 98.43	4 3/8 4 1/4 4 1/4 4 1/8 4 3 7/8 3 7/8	111.13 107.95 107.95 104.78 101.60 98.43 98.43	4.7 6.2 4.0 3.8 3.2 4.3 3.2
5 1/2	139.7	14.00 15.50 17.00 20.00 23.00 26.00 26.80	20.43 22.62 24.81 29.19 33.57 37.94 39.11	6.20 6.98 7.72 9.17 10.54 12.09 12.70	127.30 125.74 124.26 121.36 118.62 115.52 114.30	124.13 122.57 121.09 118.19 115.44 112.34 111.13	4 7/8 4 3/4 4 3/4 4 5/8 4 1/2 4 3/8 4 3/8	123.83 120.65 120.65 117.48 114.30 111.13 111.13	3.5 5.1 3.6 3.9 4.3 4.4 3.2
6 5/8	168.3	20.00 23.20 24.00 28.00 32.00 35.00	29.19 33.86 35.03 40.86 46.70 51.08	7.32 8.38 8.94 10.59 12.07 13.34	153.64 151.52 150.40 147.10 144.15 141.60	150.46 148.34 147.22 143.92 140.97 138.42	5 7/8 5 3/4 5 3/4 5 5/8 5 1/2 5 3/8	149.23 146.05 146.05 142.88 139.70 136.53	4.4 5.5 4.3 4.2 4.4 5.1
7	177.8	17.00 20.00 23.00 26.00 29.00 32.00 35.00 38.00 41.00 44.00 46.00	24.81 29.19 33.57 37.94 42.32 46.70 51.08 55.46 59.83 64.21 67.13	5.87 6.91 8.05 9.19 10.36 11.51 12.65 13.72 14.98 16.25 17.02	166.06 163.98 161.70 159.42 157.08 154.78 152.50 150.36 147.84 145.30 143.76	162.89 160.81 158.53 156.25 153.91 151.61 149.33 147.19 144.67 142.13 140.59	6 3/8 6 1/4 6 1/8 6 1/8 6 5 7/8 5 7/8 5 7/8 5 3/4 5 5/8 5 1/2 5 1/2	161.93 158.75 155.58 155.58 152.40 149.23 149.23 146.05 142.88 139.70 139.70	4.1 5.2 6.1 3.8 4.7 5.5 3.3 4.3 5.0 5.6 4.1
7 5/8	193.7	24.00 26.40 29.70 33.70 35.80 39.00 42.80 45.30 47.10	35.03 38.53 43.34 49.18 52.25 56.92 62.46 66.11 68.74	7.62 8.33 9.52 10.92 11.81 12.70 14.27 15.11 15.88	178.44 177.02 174.64 171.84 170.06 168.28 165.14 163.46 161.92	175.26 173.84 171.46 168.66 166.88 165.10 161.96 160.28 158.74	6 7/8 6 3/4 6 3/4 6 5/8 6 1/2 6 1/2 6 1/2 6 3/8 6 1/4 6 1/4	174.63 171.45 171.45 168.28 165.10 165.10 161.93 158.75 158.75	3.8 5.6 3.2 3.6 5.0 3.2 3.2 4.7 3.2

(1) Drift rounded to the lower 1/8 inch. Not necessarily a size proposed by a bit manufacturer.

 $mm \times 0.0394 = in$ 

### CLEARANCE BETWEEN STANDARD BITS AND CASING SIZES (continued)

		Casing d	imensions		r			size (1)	Clearance
	itside meter		minal eight	Thickness (mm)	Inside diameter	Drift (mm)	1	ediately w drift	between bit and casing
(in)	(mm)	(lb/ft)	(daN/m)	(11111)	(mm)		(in)	(mm)	size (mm)
8 5/8	219.1	24.00 28.00 32.00 36.00 40.00 44.00 49.00 52.00	35.03 40.86 46.70 52.54 58.38 64.21 71.51 75.89	6.71 7.72 8.94 10.16 11.43 12.70 14.15 15.11	205.66 203.64 201.20 198.76 196.22 193.68 190.78 188.86	202.48 200.46 198.02 195.58 193.04 190.50 187.60 185.68	7 7/8 7 7/8 7 3/4 7 5/8 7 1/2 7 1/2 7 1/2 7 3/8 7 1/4	200.03 200.03 196.85 193.68 190.50 190.50 187.33 184.15	5.6 3.6 4.3 5.1 5.7 3.2 3.4 4.7
9 5/8	244.5	32.30 36.00 40.00 43.50 47.00 53.50 58.40 59.40 61.10 71.80	47.14 52.54 58.38 63.48 68.59 78.08 85.23 86.69 89.17 104.78	7.92 8.94 10.03 11.05 11.99 13.84 15.11 15.47 15.87 19.05	228.64 226.60 224.42 222.38 220.50 216.80 214.26 213.54 212.74 206.38	224.67 222.63 220.45 218.41 216.53 212.83 210.29 209.57 208.77 202.41	8 3/4 8 3/4 8 5/8 8 1/2 8 1/2 8 3/8 8 1/4 8 1/4 8 1/4 8 1/8 7 7/8	222.25 222.25 219.08 215.90 215.90 212.73 209.55 209.55 206.38 200.03	$\begin{array}{c} 6.4 \\ 4.3 \\ 5.3 \\ 6.5 \\ 4.6 \\ 4.1 \\ 4.7 \\ 4.0 \\ 6.4 \\ 6.4 \end{array}$
9 7/8	250.8	62.80	91.65	15.88	219.07	215.10	8 3/8	212.73	6.3
10 3/4	273.1	32.75 40.50 45.50 51.00 55.50 60.70 65.70	47.80 59.56 66.91 75.00 81.61 89.26 95.88	7.09 8.89 10.16 11.43 12.57 13.84 15.11	258.87 255.27 252.73 250.19 247.91 245.37 242.83	254.90 251.30 248.76 246.22 243.94 241.40 238.86	10 9 7/8 9 3/4 9 5/8 9 1/2 9 1/2 9 3/8	254.00 250.83 247.65 244.48 241.30 241.30 238.13	4.9 4.4 5.1 5.7 6.6 4.1 4.7
11 3/4	298.5	42.00 47.00 54.00 60.00 65.00 71.00	61.29 68.59 78.81 87.56 94.86 103.62	8.46 9.52 11.05 12.42 13.56 14.78	281.53 279.41 276.35 273.61 271.33 268.89	277.56 275.44 272.38 269.64 267.36 264.92	10 7/8 10 3/4 10 5/8 10 1/2 10 1/2 10 3/8	276.23 273.05 269.88 266.70 266.70 263.53	5.3 6.4 6.5 6.9 4.6 5.4
13 3/8	339.7	48.00 54.50 61.00 68.00 72.00 77.00 80.70	70.05 79.54 89.02 99.24 105.08 112.37 117.77	8.38 9.65 10.92 12.19 13.06 13.97 14.73	322.97 320.43 317.89 315.35 313.61 311.79 310.27	319.00 316.46 313.92 311.38 309.64 307.82 306.30	12 1/2 12 3/8 12 1/4 12 1/4 12 1/4 12 1/8 12 12	317.50 314.33 311.15 311.15 307.98 304.80 304.80	5.5 6.1 6.7 4.2 5.6 7.0 5.5
13 5/8	346.1	88.20	128.72	15.88	314.33	309.57	12 1/8	307.98	6.4
14	355.6	82.50 94.80 99.00 114.00	120.40 138.35 144.48 166.37	14.27 16.66 17.48 20.32	327.06 322.28 320.64 314.96	322.30 317.52 315.88 310.20	12 5/8 12 1/2 12 3/8 12 1/8	320.68 317.50 314.33 307.98	6.4 4.8 6.3 7.0
16	406.4	65.00 75.00 84.00 94.50 109.00 128.00	94.86 109.45 122.59 137.91 159.07 186.80	9.52 11.13 12.57 14.27 16.66 19.84	387.36 384.14 381.26 377.86 373.08 366.72	382.60 379.38 376.50 373.10 368.32 361.96	15 14 7/8 14 3/4 14 5/8 14 1/2 14 1/2	381.00 377.83 374.65 371.48 368.30 361.95	6.4 6.3 6.6 6.4 4.8 4.8
18 5/8	473.1	87.50	127.70	11.05	450.98	446.21	17 1/2	444.50	6.5
20	508.0	94.00 106.50 133.00	137.18 155.43 194.10	11.13 12.70 16.13	485.74 482.60 475.74	480.98 477.84 470.98	18 7/8 18 3/4 18 1/2	479.43 476.25 469.90	6.3 6.4 5.8

## **CAPACITIES OF CYLINDERS**

Diameter (in)	Capacity (I/m)								
1	0.507	5	12.67	9	41.04	13	85.63	17	146.4
1 1/8	0.641	5 1/8	13.31	9 1/8	42.19	13 1/8	87.29	17 1/8	148.6
1 1/4	0.792	5 1/4	13.97	9 1/4	43.35	13 1/4	88.96	17 1/4	150.8
1 3/8	0.958	5 3/8	14.64	9 3/8	44.53	13 3/8	90.64	17 3/8	153.0
1 1/2	1.140	5 1/2	15.33	9 1/2	45.73	13 1/2	92.35	17 1/2	155.2
1 5/8	1.338	5 5/8	16.03	9 5/8	46.94	13 5/8	94.06	17 5/8	157.4
1 3/4	1.552	5 3/4	16.75	9 3/4	48.17	13 3/4	95.80	17 3/4	159.6
1 7/8	1.781	5 7/8	17.49	9 7/8	49.41	13 7/8	97.55	17 7/8	161.9
2	2.027	6	18.24	10	50.67	14	99.31	18	164.2
2 1/8	2.288	6 1/8	19.01	10 1/8	51.94	14 1/8	101.1	18 1/8	166.5
2 1/4	2.565	6 1/4	19.79	10 1/4	53.24	14 1/4	102.9	18 1/4	168.8
2 3/8	2.858	6 3/8	20.59	10 3/8	54.54	14 3/8	104.7	18 3/8	171.1
2 1/2	3.167	6 1/2	21.41	10 1/2	55.86	14 1/2	106.5	18 1/2	173.4
2 5/8	3.491	6 5/8	22.24	10 5/8	57.20	14 5/8	108.4	18 5/8	175.8
2 3/4	3.832	6 3/4	23.09	10 3/4	58.56	14 3/4	110.2	18 3/4	178.1
2 7/8	4.188	6 7/8	23.95	10 7/8	59.93	14 7/8	112.1	18 7/8	180.5
3	4.560	7	24.83	11	61.31	15	114.0	19	182.9
3 1/8	4.948	7 1/8	25.72	11 1/8	62.71	15 1/8	115.9	19 1/8	185.3
3 1/4	5.352	7 1/4	26.63	11 1/4	64.13	15 1/4	117.8	19 1/4	187.8
3 3/8	5.772	7 3/8	27.56	11 3/8	65.56	15 3/8	119.8	19 3/8	190.2
3 1/2	6.207	7 1/2	28.50	11 1/2	67.01	15 1/2	121.7	19 1/2	192.7
3 5/8	6.658	7 5/8	29.46	11 5/8	68.48	15 5/8	123.7	19 5/8	195.2
3 3/4	7.125	7 3/4	30.43	11 3/4	69.96	15 3/4	125.7	19 3/4	197.6
3 7/8	7.608	7 7/8	31.42	11 7/8	71.45	15 7/8	127.7	19 7/8	200.2
4	8.107	8	32.43	12	72.96	16	129.7	20	202.7
4 1/8	8.622	8 1/8	33.45	12 1/8	74.49	16 1/8	131.7	20 1/8	205.2
4 1/4	9.152	8 1/4	34.49	12 1/4	76.04	16 1/4	133.8	20 1/4	207.8
4 3/8	9.699	8 3/8	35.54	12 3/8	77.60	16 3/8	135.9	20 3/8	210.4
4 1/2	10.26	8 1/2	36.61	12 1/2	79.17	16 1/2	137.9	20 1/2	212.9
4 5/8	10.84	8 5/8	37.69	12 5/8	80.76	16 5/8	140.0	20 5/8	215.5
4 3/4	11.43	8 3/4	38.79	12 3/4	82.37	16 3/4	142.2	20 3/4	218.2
4 7/8	12.04	8 7/8	39.91	12 7/8	83.99	16 7/8	144.3	20 7/8	220.8

 $\label{eq:lm} \mbox{I/m} \times 0.0805 = \mbox{gal/ft} \qquad \mbox{I/m} \times 0.00192 = \mbox{bbl/ft}$ 

Diameter (in)	Capacity (l/m)	Diameter (in)	Capacity (I/m)	Diameter (in)	Capacity (I/m)	Diameter (in)	Capacity (I/m)
21	223.5	25	316.7	29	426.1	33	551.8
21 1/8	226.1	25 1/8	319.9	29 1/8	429.8	33 1/8	556.0
21 1/4	228.8	25 1/4	323.1	29 1/4	433.5	33 1/4	560.2
21 3/8	231.5	25 3/8	326.3	29 3/8	437.2	33 3/8	564.4
21 1/2	234.2	25 1/2	329.5	29 1/2	441.0	33 1/2	568.6
21 5/8	237.0	25 5/8	332.7	29 5/8	444.7	33 5/8	572.9
21 3/4	239.7	25 3/4	336.0	29 3/4	448.5	33 3/4	577.2
21 7/8	242.5	25 7/8	339.2	29 7/8	452.2	33 7/8	581.4
22	245.2	26	342.5	30	456.0	34	585.7
22 1/8	248.0	26 1/8	345.8	30 1/8	459.8	34 1/8	590.1
22 1/4	250.8	26 1/4	349.1	30 1/4	463.7	34 1/4	594.4
22 3/8	253.7	26 3/8	352.5	30 3/8	467.5	34 3/8	598.7
22 1/2	256.5	26 1/2	355.8	30 1/2	471.4	34 1/2	603.1
22 5/8	259.4	26 5/8	359.2	30 5/8	475.2	34 5/8	607.5
22 3/4	262.2	26 3/4	362.6	30 3/4	479.1	34 3/4	611.9
22 7/8	265.1	26 7/8	366.0	30 7/8	483.0	34 7/8	616.3
23	268.0	27	369.4	31	486.9	35	620.7
23 1/8	271.0	27 1/8	372.8	31 1/8	490.9	35 1/8	625.1
23 1/4	273.9	27 1/4	376.3	31 1/4	494.8	35 1/4	629.6
27 3/8	379.7	27 3/8	379.7	31 3/8	498.8	35 3/8	634.1
23 1/2	279.8	27 1/2	383.2	31 1/2 ·	502.8	35 1/2	638.6
23 5/8	282.8	27 5/8	386.7	31 5/8	506.8	35 5/8	643.1
23 3/4	285.8	27 3/4	390.2	31 3/4	510.8	35 3/4	647.6
23 7/8	288.8	27 7/8	393.7	31 7/8	514.8	35 7/8	652.1
24	291.9	28	397.3	32	518.9	36	656.7
24 1/8	294.9	28 1/8	400.8	32 1/8	522.9	36 1/8	661.3
24 1/4	298.0	28 1/4	404.4	32 1/4	527.0	36 1/4	665.8
24 3/8	301.1	28 3/8	408.0	32 3/8	531.1	36 3/8	670.4
24 1/2	304.1	28 1/2	411.6	32 1/2	535.2	36 1/2	675.1
24 5/8	307.3	28 5/8	415.2	32 5/8	539.3	36 5/8	679.7
24 3/4	310.4	28 3/4	418.8	32 3/4	543.5	36 3/4	684.3
24 7/8	313.5	28 7/8	422.5	32 7/8	547.6	36 7/8	689.0

 $l/m \times 0.0805 = gal/ft$   $l/m \times 0.00192 = bbl/ft$ 

## **CAPACITIES OF DRILL PIPES**

Nominal	Nominal				Тоо	l joint	Vo	plumes (1) (I/	′m)
size (in)	(lb/ft)	Upset	Grade	Thread	OD (in)	ID (in)	Metal displa- cement	Capacity	Total displa- cement
2 3/8 2 3/8 2 3/8	6.65 6.65 6.65	EU EU EU	E75 X95 G105	NC26(IF) NC26(IF) NC26(IF)	3 3/8 3 3/8 3 3/8	1 3/4 1 3/4 1 3/4	1.33 1.35 1.35	1.66 1.66 1.66	2.99 3.01 3.01
2 7/8 2 7/8 2 7/8 2 7/8 2 7/8	10.40 10.40 10.40 10.40	EU EU EU EU	E75 X95 G105 S135	NC31(IF) NC31(IF) NC31(IF) NC31(IF)	4 1/8 4 1/8 4 1/8 4 3/8	2 1/8 2 2 1 5/8	2.06 2.10 2.10 2.19	2.34 2.33 2.33 2.29	4.41 4.43 4.43 4.48
3 1/2 3 1/2	9.50 9.50	EU EU	E75 E75	NC38(IF) NC38(IF)	4 3/4 4 3/4	2 11/16 3	2.01 1.96	4.49 4.54	6.50 6.50
3 1/2 3 1/2 3 1/2 3 1/2 3 1/2	13.30 13.30 13.30 13.30 13.30	EU EU EU EU	E75 X95 G105 S135	NC38(IF) NC38(IF) NC38(IF) NC38(IF)	4 3/4 5 5 5 5	2 11/16 2 9/16 2 7/16 2 1/8	2.64 2.77 2.79 2.83	3.86 3.84 3.82 3.78	6.50 6.61 6.61 6.61
3 1/2 3 1/2 3 1/2 3 1/2 3 1/2	15.50 15.50 15.50 15.50	EU EU EU EU	E75 X95 G105 S135	NC38(IF) NC38(IF) NC38(IF) NC40(FH)	5 5 5 5 1/2	2 9/16 2 7/16 2 1/8 2 1/4	3.14 3.19 3.23 3.33	3.42 3.41 3.37 3.38	6.57 6.60 6.60 6.72
4 4 4 4	14.00 14.00 14.00 14.00	IU IU IU IU	E75 X95 G105 S135	NC40(FH) NC40(FH) NC40(FH) NC40(FH)	5 1/4 5 1/4 5 1/2 5 1/2	2 13/16 2 11/16 2 7/16 2	2.85 2.90 3.01 3.06	3.46 5.55 5.51 5.46	6.31 8.45 8.52 8.52
4 4 4 4	14.00 14.00 14.00 14.00	EU EU EU EU	E75 X95 G105 S135	NC46(IF) NC46(IF) NC46(IF) NC46(IF)	6 6 6 6	3 1/4 3 1/4 3 1/4 3 1/4 3	3.01 3.07 3.07 3.11	5.64 5.64 5.64 5.59	8.65 8.71 8.71 8.71
4 1/2 4 1/2	13.75 13.75	EU EU	E75 E75	NC50(IF) NC50(IF)	6 3/8 6 5/8	3 3/4 3 7/8	2.92 2.98	7.89 7.92	10.81 10.90
4 1/2 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2	16.60 16.60 16.60 16.60 16.60 16.60 16.60 16.60	IEU IEU IEU IEU IEU IEU IEU	E75 X95 G105 S135 E75 X95 G105 S135	NC46(XH) NC46(XH) NC46(XH) NC46(XH) FH FH FH FH FH	6 1/4 6 1/4 6 1/4 6 1/4 6 6 6 6 6 1/4	3 1/4 3 3 2 3/4 3 3 3 3 2 1/2	3.48 3.53 3.53 3.57 3.44 3.44 3.44 3.61	7.30 7.26 7.26 7.22 7.26 7.26 7.26 7.26 7.18	10.79 10.79 10.79 10.79 10.70 10.71 10.71 10.71 10.79
4 1/2 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2	16.60 16.60 16.60 16.60 16.60 16.60 16.60 16.60	EU EU EU EU EU EU EU EU	E75 E75 X95 X95 G105 G105 S135 S135	NC50(IF) NC50(IF) NC50(IF) NC50(IF) NC50(IF) NC50(IF) NC50(IF) NC50(IF)	6 3/8 6 5/8 6 3/8 6 5/8 6 3/8 6 5/8 6 3/8 6 3/8 6 5/8	3       3/4         3       3/4         3       3/4         3       3/4         3       3/4         3       3/4         3       3/4         3       3/4         3       3/4         3       1/2         3       1/2         3       1/2	3.41 3.50 3.48 3.57 3.48 3.57 3.53 3.62	7.40 7.40 7.40 7.40 7.40 7.40 7.40 7.35 7.35	10.81 10.90 10.88 10.97 10.88 10.97 10.88 10.97
4 1/2 4 1/2 4 1/2 4 1/2 4 1/2	20.00 20.00 20.00 20.00	IEU IEU IEU IEU	E75 X95 G105 S135	NC46(XH) NC46(XH) NC46(XH) NC46(XH)	6 1/4 6 1/4 6 1/4 6 1/4	3 2 3/4 2 1/2 2 1/4	4.19 4.29 4.32 4.36	6.60 6.56 6.52 6.49	10.79 10.84 10.84 10.84

(1) Approximate volumes calculated with the approximate weight (API RP 7G).

## CAPACITIES OF DRILL PIPES (continued)

size (in)         we (lb           4 1/2         20           4 1/2         20           4 1/2         20           4 1/2         20           4 1/2         20           4 1/2         20           4 1/2         20           4 1/2         20           4 1/2         20           4 1/2         20           4 1/2         20           4 1/2         20           4 1/2         20           4 1/2         20           4 1/2         20           5         19           5         19           5         19           5         19           5         19           5         19	minal eight b/ft)         Upset           0.00         IEU           0.00         IEU           0.00         IEU           0.00         EU           0.50         IEU           .50         IEU           .50         IEU	Grade E75 X95 G105 E75 E75 X95 G105 G105 G105 S135 E75 E75 E75 X95	Thread FH FH FH NC50(IF) NC50(IF) NC50(IF) NC50(IF) NC50(IF) NC50(IF) NC50(IF) NC50(XH)	OD (in) 6 6 6 6 6 6 7 8 6 5/8 6 5/8 6 5/8 6 5/8 6 5/8 6 5/8 6 5/8 6 5/8 6 5/8	ID (in) 3 2 1/2 2 1/2 3 5/8 3 5/8 3 5/8 3 1/2 3 1/2 3 1/2 3 1/2 3 1/2 3 1/2	Metal displa- cement 4.11 4.24 4.24 4.24 4.10 4.19 4.19 4.28 4.19 4.28 4.19 4.28 4.37	Capacity 6.60 6.52 6.52 6.71 6.71 6.69 6.69 6.69	Total displa- cement 10.71 10.76 10.76 10.81 10.90 10.88 10.97 10.99
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D.00         IEU           D.00         IEU           D.00         EU           D.00         IEU           D.50         IEU           D.50         IEU           D.50         IEU	X95 G105 E75 E75 X95 X95 G105 G105 S135 E75 E75 X95	FH FH NC50(IF) NC50(IF) NC50(IF) NC50(IF) NC50(IF) NC50(IF) NC50(XH)	6 6 6 3/8 6 5/8 6 3/8 6 5/8 6 3/8 6 5/8 6 5/8	2 1/2 2 1/2 3 5/8 3 5/8 3 1/2 3 1/2 3 1/2 3 1/2 3 1/2 3 1/2	4.24 4.24 4.10 4.19 4.19 4.28 4.19 4.28 4.19 4.28	6.52 6.52 6.71 6.71 6.69 6.69 6.69	10.76 10.76 10.81 10.90 10.88 10.97
$\begin{array}{c ccccc} 4 & 1/2 & 20 \\ \hline 4 & 1/2 & 20 \\ 4 & 1/2 & 20 \\ 4 & 1/2 & 20 \\ 4 & 1/2 & 20 \\ 4 & 1/2 & 20 \\ 4 & 1/2 & 20 \\ 4 & 1/2 & 20 \\ 4 & 1/2 & 20 \\ \hline 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	D.00         IEU           D.00         EU           D.00         IEU           D.50         IEU           D.50         IEU           D.50         IEU	G105 E75 X95 X95 G105 G105 S135 E75 E75 X95	FH NC50(IF) NC50(IF) NC50(IF) NC50(IF) NC50(IF) NC50(IF) NC50(XH)	6 6 3/8 6 5/8 6 3/8 6 5/8 6 3/8 6 5/8 6 5/8	2 1/2 3 5/8 3 5/8 3 1/2 3 1/2 3 1/2 3 1/2 3 1/2 3 1/2	4.24 4.10 4.19 4.28 4.19 4.28 4.19 4.28	6.52 6.71 6.71 6.69 6.69 6.69	10.76 10.81 10.90 10.88 10.97
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.00         EU           0.50         IEU           0.50         IEU           0.50         IEU	E75 E75 X95 X95 G105 G105 S135 E75 E75 X95	NC50(IF) NC50(IF) NC50(IF) NC50(IF) NC50(IF) NC50(IF) NC50(IF)	6 3/8 6 5/8 6 3/8 6 5/8 6 3/8 6 3/8 6 5/8 6 5/8	3 5/8 3 5/8 3 1/2 3 1/2 3 1/2 3 1/2 3 1/2 3	4.10 4.19 4.19 4.28 4.19 4.28 4.19 4.28	6.71 6.71 6.69 6.69 6.69	10.81 10.90 10.88 10.97
$\begin{array}{c ccccc} 4 & 1/2 & 20 \\ 4 & 1/2 & 20 \\ 4 & 1/2 & 20 \\ 4 & 1/2 & 20 \\ 4 & 1/2 & 20 \\ 4 & 1/2 & 20 \\ 4 & 1/2 & 20 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 19 \\ 5 & 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	0.00         EU           0.50         IEU           0.50         IEU           0.50         IEU           0.50         IEU	E75 X95 X95 G105 G105 S135 E75 E75 X95	NC50(IF) NC50(IF) NC50(IF) NC50(IF) NC50(IF) NC50(IF)	6 5/8 6 3/8 6 5/8 6 3/8 6 5/8 6 5/8	3 5/8 3 1/2 3 1/2 3 1/2 3 1/2 3 1/2 3	4.19 4.19 4.28 4.19 4.28	6.71 6.69 6.69 6.69	10.90 10.88 10.97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00         EU           0.50         IEU           0.50         IEU           0.50         IEU           0.50         IEU           0.50         IEU	X95 X95 G105 G105 S135 E75 E75 X95	NC50(IF) NC50(IF) NC50(IF) NC50(IF) NC50(IF) NC50(XH)	6 3/8 6 5/8 6 3/8 6 5/8 6 5/8	3 1/2 3 1/2 3 1/2 3 1/2 3 1/2 3	4.19 4.28 4.19 4.28	6.71 6.69 6.69 6.69	10.90 10.88 10.97
4 1/2       20         4 1/2       20         4 1/2       20         4 1/2       20         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19	0.00         EU           0.50         IEU           0.50         IEU           0.50         IEU           0.50         IEU	X95 G105 G105 S135 E75 E75 X95	NC50(IF) NC50(IF) NC50(IF) NC50(IF) NC50(XH)	6 5/8 6 3/8 6 5/8 6 5/8	3 1/2 3 1/2 3 1/2 3 1/2 3	4.28 4.19 4.28	6.69 6.69	10.97
4 1/2       20         4 1/2       20         4 1/2       20         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.	0.00         EU           0.00         EU           0.00         EU           0.00         EU           0.50         IEU	G105 G105 S135 E75 E75 X95	NC50(IF) NC50(IF) NC50(IF) NC50(XH)	6 3/8 6 5/8 6 5/8	3 1/2 3 1/2 3	4.19 4.28	6.69	
4 1/2       20         4 1/2       20         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19         5       19	0.00         EU           0.00         EU           0.50         IEU	G105 S135 E75 E75 X95	NC50(IF) NC50(IF) NC50(XH)	6 5/8 6 5/8	3 1/2 3	4.28	ł	10.00
4 1/2     20       5     19       5     19       5     19       5     19       5     19       5     19       5     19       5     19       5     19       5     19       5     19       5     19       5     19       5     19       5     19       5     19	0.00         EU           0.50         IEU	S135 E75 E75 X95	NC50(IF) NC50(XH)	6 5/8	3	1		10.88
5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.	0.50         IEU	E75 E75 X95	NC50(XH)			1 1 27	6.69	10.97
5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.	.50         IEU           .50         IEU           .50         IEU           .50         IEU           .50         IEU	E75 X95		6 3/8		4.07	6.59	10.97
5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.         5       19.	.50 IEU .50 IEU .50 IEU	X95	NC50(XH)		3 3/4	3.96	9.15	13.11
5         19.           5         19.           5         19.           5         19.           5         19.           5         19.           5         19.           5         19.           5         19.           5         19.	.50 IEU .50 IEU			6 5/8	3 3/4	4.05	9.15	13.19
519.519.519.519.519.	.50 IEU		NC50(XH)	6 3/8	3 1/2	4.06	9.10	13.16
519.519.519.	1	X95	NC50(XH)	6 5/8	3 1/2	4.15	9.10	13.24
5 19. 5 19.		G105	NC50(XH)	6 1/2	3 1/4	4.15	9.05	13.20
5 19.		G105 S135	NC50(XH)	6 5/8	3 1/4	4.19	9.05	13.24
		E75	NC50(XH)	6 5/8	2 3/4	4.28	8.97	13.24
		X95	5 1/2 FH 5 1/2 FH	7	3 3/4	4.23	9.14	13.37
5 19.		G105	5 1/2 FH	7 7	3 3/4	4.28	9.14	13.42
5 19.	-	S135	5 1/2 FH	7 7 1/4	3 3/4 3 1/2	4.28	9.14	13.42
					· · · · · · · · · · · · · · · · · · ·	4.44	9.08	13.52
5 25. 5 25.		E75	NC50(IF)	6 3/8	3 1/2	5.10	8.01	13.10
5 25.0 5 25.0		E75	NC50(IF)	6 5/8	3 1/2	5.19	8.00	13.19
5 25.0		X95	NC50(IF)	6 1/2	3	5.27	7.92	13.19
5 25.0		X95 G105	NC50(IF)	6 5/8	3	5.32	7.91	13.23
5 25.0	_	E75	NC50(IF)	6 5/8 7	2 3/4	5.36	7.87	13.23
5 25.0		X95	5 1/2 FH 5 1/2 FH	7	3 1/2	5.37	7.99	13.36
5 25.6		G105	5 1/2 FH	7 7 1/4	3 1/2	5.41	7.99	13.41
5 25.6		S135	5 1/2 FH	7 1/4	3 1/2	5.52	7.99	13.51
·······					3 1/4	5.57	7.94	13.51
5 1/2 21.9 5 1/2 21.9	1	E75	5 1/2 FH	7	4	4.51	11.37	15.88
5 1/2 21.5		X95 G105	5 1/2 FH	7	3 3/4	4.63	11.32	15.95
5 1/2 21.9	1	S135	5 1/2 FH 5 1/2 FH	7 1/4	3 1/2	4.79	11.26	16.05
				7 1/2	3	5.00	11.15	16.15
5 1/2 24.7		E75	5 1/2 FH	7	4	4.99	10.89	15.87
5 1/2 24.7 5 1/2 24.7		X95	5 1/2 FH	7 1/4	3 1/2	5.26	10.77	16.03
5 1/2 24.7 5 1/2 24.7		G105	5 1/2 FH	7 1/4	3 1/2	5.26	10.77	16.03
		S135	5 1/2 FH	7 1/2	3	5.47	10.67	16.14
6 5/8 25.2		E75	6 5/8 FH	8	5	5.22	17.72	22.95
6 5/8 25.2		X95	6 5/8 FH	8	5	5.22	17.72	22.95
6 5/8 25.2		G105	6 5/8 FH	8 1/4	4 3/4	5.42	17.64	23.07
6 5/8 25.2		S135	6 5/8 FH	8 1/2	4 1/4	5.69	17.50	23.19
6 5/8 27.7	í	E75	6 5/8 FH	8	5	5.57	17.36	22.93
6 5/8 27.7		X95	6 5/8 FH	8 1/4	4 3/4	5.77	17.28	23.05
6 5/8 27.7	70 IEU	G105	6 5/8 FH	8 1/4	4 3/4	5.77	17.28	23.05
6 5/8 27.7		S135	6 5/8 FH	8 1/2	4 1/4		17.20	20.00

(1) Approximate volumes calculated with the approximate weight (API RP 7G).

 $l/m \times 0.0805 = gal/ft$   $l/m \times 0.00192 = bbl/ft$ 

## **CAPACITIES OF DRILL COLLARS (1)**

Outside diameter (in)	Total displacement (l/m)	Standard inside diameter (in)	Capacity (l/m)	Optional inside diameter (in)	Capacity (l/m)
3 1/8	4.95	1 1/4	0.79		
3 1/4	5.35	1 1/2	1.14	1 1/4	0.79
3 1/2	6.21	1 1/2	1.14	1 1/4	0.79
3 3/4	7.13	1 1/2	1.14	1 1/4	0.79
4 1/8	8.62	2	2.03	1 3/4	1.55
4 1/4	9.15	2	2.03	1 3/4	1.55
4 1/2	10.26	2	2.03	1 3/4	1.55
4 3/4	11.43	2	2.03	1 3/4	1.55
5	12.67	2 1/4	2.57	1 3/4	1.55
5 1/4	13.97	2 1/4	2.57	1 3/4	1.55
5 1/2	15.33	2 1/4	2.57	1 3/4	1.55
5 3/4	16.75	2 1/4	2.57	2 13/16	4.01
6	18.24	2 1/4	2.57	2 13/16	4.01
6 1/4	19.79	2 1/4	2.57	2 13/16	4.01
6 1/2	21.41	2 1/4	2.57	2 13/16	4.01
6 3/4	23.09	2 1/4	2.57	2 13/16	4.01
7	24.83	2 1/4	2.57	2 13/16	4.01
7 1/4	26.63	2 13/16	4.01	2 1/4	2.57
7 1/2	28.50	2 13/16	4.01	2 1/4	2.57
7 3/4	30.43	2 13/16	4.01	3	4.56
8	32.43	2 13/16	4.01	3	4.56
8 1/4	34.49	2 13/16	4.01	3	4.56
8 1/2	36.61	2 13/16	4.01	3	4.56
8 3/4	38.79	2 13/16	4.01	3	4.56
9	41.04	2 13/16	4.01	3	4.56
9 1/4	43.35	3	4.56	2 13/16	4.01
9 1/2	45.73	3	4.56	2 13/16	4.01
9 3/4	48.17	3	4.56	2 13/16	4.01
10	50.67	3	4.56	2 13/16	4.01
11	61.31	3	4.56	2 13/16	4.01
11 1/4	64.13	3	4.56	2 13/16	4.01

(1) Capacity per meter is calculated on the basis of simples cylinders.

 $l/m \times 0.0805 = gal/ft \qquad l/m \times 0.00192 = bbl/ft$ 

## **CAPACITIES AND DISPLACEMENTS OF CASING (1)**

OD and total displacement (in and I/m)	Nominal weight (lb/ft)	Thickness (mm)	Capacity (I/m)	OD and total displacement (in and I/m)	Nominal weight (lb/ft)	Thickness (mm)	Capacity (I/m)
<b>4 1/2</b> 10.26	9.50 10.50 11.60 13.50 15.10 16.90 17.70 18.80	5.21 5.69 6.35 7.37 8.56 9.65 10.20 10.92	8.48 8.32 8.11 7.79 7.42 7.09 6.92 6.71	<b>7</b> 24.83	17.00 20.00 23.00 26.00 29.00 32.00 35.00 38.00	5.87 6.91 8.05 9.19 10.36 11.51 12.65 13.72	21.66 21.12 20.54 19.96 19.38 18.82 18.27 17.76
5	11.50 13.00 15.00	5.59 6.43 7.52	10.54 10.23 9.84		41.00 44.00 46.00	14.98 16.25 17.02	17.17 16.58 16.23
12.67	18.00 21.40 23.20 24.10	9.19 11.10 12.14 12.70	9.27 8.63 8.29 8.11	7 5/8	24.00 26.40 29.70 33.70	7.62 8.33 9.52 10.92	25.01 24.61 23.95 23.19
<b>5 1/2</b> 15.33	14.00 15.50 17.00 20.00 23.00	6.20 6.98 7.72 9.17 10.54	12.73 12.42 12.13 11.57 11.05	29.46	35.80 39.00 42.80 45.30 47.10	11.81 12.70 14.27 15.11 15.88	22.71 22.24 21.42 20.98 20.59
	26.00 26.80	12.09 12.70	10.48 10.26		24.00 28.00	6.71 7.72	33.22 32.57
<b>6 5/8</b> 22.24	20.00 23.20 24.00 28.00 32.00 35.00	7.32 8.38 8.94 10.59 12.07 13.34	18.54 18.03 17.76 16.99 16.32 15.75	<b>8 5/8</b> 37.69	32.00 36.00 40.00 44.00 49.00 52.00	8.94 10.16 11.43 12.70 14.15 15.11	31.79 31.03 30.24 29.46 28.58 28.01

(1) No allowance made for couplings.

 $mm \times 0.0394 = in$   $l/m \times 0.0805 = gal/ft$   $l/m \times 0.00192 = bbl/ft$ 

## CAPACITIES AND DISPLACEMENTS OF CASING (1) (continued)

OD and total displacement (in and l/m)	Nominal weight (lb/ft)	Thickness (mm)	Capacity (I/m)	OD and total displacement (in and l/m)	Nominal weight (lb/ft)	Thickness (mm)	Capacity (I/m)
<b>9 5/8</b> 46.94	32.30 36.00 40.00 43.50 47.00 53.50 58.40 59.40 61.10 71.80	7.92 8.94 10.03 11.05 11.99 13.84 15.11 15.47 15.87 19.05	41.06 40.33 39.55 38.84 38.18 36.91 36.05 35.81 35.54 33.45	<b>13 3/8</b> 90.64 <b>13 5/8</b> 94.06	48.00 54.50 61.00 68.00 72.00 77.00 80.70 88.20	8.38 9.65 10.92 12.19 13.06 13.97 14.73 15.88	81.92 80.64 79.36 78.10 77.24 76.35 75.60 74.49
<b>9 7/8</b> 49.41	62.80	15.88	45.73	<b>14</b> 99.31	82.50 94.80 99.00	14.27 16.66 17.48	76.05 73.74 72.95
<b>10 3/4</b> 58.56	32.75 40.50 45.50 51.00 55.50 60.70 65.70	7.09 8.89 10.16 11.43 12.57 13.84 15.11	52.63 51.18 50.16 49.16 48.27 47.29 46.31	<b>16</b> 129.72	65.00 75.00 84.00 94.50 109.00 128.00	9.52 11.13 12.57 14.27 16.66 19.84	70.25 70.25 117.8 115.9 114.2 112.1 109.3 105.6
11 3/4	42.00 47.00 54.00	8.46 9.52 11.05	62.25 61.32 59.98	<b>18 5/8</b> 175.77	87.50	11.05	159.7
69.96	60.00 65.00 71.00	12.42 13.56 14.78	58.80 57.82 56.78	<b>20</b> 202.68	94.00 106.50 133.00	11.13 12.70 16.13	185.3 182.9 177.8

(1) No allowance made for couplings.

 $mm \times 0.0394 = in \quad l/m \times 0.0805 = gal/ft \quad l/m \times 0.00192 = bbl/ft$ 

## **CAPACITIES AND DISPLACEMENTS OF TUBING (1)**

OD and total displacement (in and I/m)	Nominal weight (lb/ft)	Thickness (mm)	Capacity (I/m)	OD and total displacement (in and I/m)	Nominal weight (lb/ft)	Thickness (mm)	Capacity (I/m)
<b>1.050</b> 0.56	1.14/1.20 1.48/1.54	2.87 3.91	0.34 0.28		7.70 9.20/9.30	5.49 6.45	4.77 4.54
<b>1.315</b> 0.88	1.70/1.80 2.19/2.24	3.38 4.55	0.56 0.46	<b>3 1/2</b> 6.21	10.20 12.70/12.95 13.70	7.34 9.53 10.49	4.33 3.83 3.62
<b>1.660</b> 1.40	2.10 2.30/2.40 3.03/3.07	3.18 3.56 4.85	1.01 0.96 0.83	0.21	14.30 14.70 15.50 17.00	10.92 11.40 12.09 13.46	3.53 3.43 3.29 3.02
<b>1.900</b> 1.83	2.4 2.75/2.90 3.65/3.73 4.42 5.15	3.18 3.68 5.08 6.35 7.62	1.38 1.31 1.14 0.99 0.86	<b>4</b> 8.11	9.50 11.00 13.20 14.80 16.10	5.74 6.65 8.38 9.65 10.54	6.38 6.12 5.65 5.32 5.09
<b>2.063</b> 2.16	3.25 4.50	3.96 5.72	1.55 1.32		16.50 18.90 22.20	10.92 12.70 15.49	5.00 4.56 3.92
<b>2 3/8</b> 2.86	4.00 4.60/4.70 5.10 5.80/5.90 6.60 7.35/7.45	4.24 4.83 5.54 6.45 7.49 8.53	2.11 2.02 1.90 1.77 1.61 1.47	<b>4 1/2</b> 10.26	12.60/12.75 15.20 17.00 18.90 21.50 23.70	6.88 8.56 9.65 10.92 12.70 14.22	7.9 7.4 7.1 6.7 6.2 5.8
<b>2 7/8</b> 4.19	6.40/6.50 7.80/7.90 8.60/8.70 9.35/9.45 9.80 10.50 11.50	5.51 7.01 7.82 8.64 9.19 9.96 11.18	3.02 2.73 2.59 2.44 2.35 2.21 2.02		26.10	16.00	5.8 5.3

(1) No allowance made for couplings.

 $mm \times 0.0394 = \text{in} \quad l/m \times 0.0805 = gal/ft \quad l/m \times 0.00192 = bbl/ft$ 

**ANNULAR VOLUME BETWEEN DRILL COLLAR AND OPEN HOLE** (liters per meter)

11.7 14.7 48.9 68.4 68.4 93.9 93.9 93.9 141.4 183.9 230.5 595.4 595.4 e 61 6.5 22.3 59.6 6.5 79.0 79.0 79.0 79.0 79.0 606.0  $\sim$ 0 50. 9.0 27.9 62.1 65.8 81.5 107.0 197.1 197.1 243.7 294.4  $\sim$ ഹ 3/4 48. 608. ດ 3.7 11.5 30.3 64.5 68.3 68.3 84.0 157.0 199.5 246.1 246.1 296.8 611.0 12 45. ດ 5.9 31.9 35.0 6.2 331.9 35.0 6.9 23.0 73.0 88.7 114.1 161.6 204.2 250.8 301.5 615.6 0 4 တ 3.2 6.6 6.6 12.5 75.8 38.5 75.8 95.2 95.2 120.7 257.4 257.4 257.4 308.0 622.2 ഹ 4 34 ω  $\begin{array}{c} 3.1\\ 5.3\\ 6.4\\ 6.4\\ 6.4\\ 6.4\\ 6.4\\ 77.6\\ 81.6\\ 81.6\\ 81.6\\ 81.6\\ 81.6\\ 81.6\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2259.4\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 2212.8\\ 22$ 310.1 624.3 4 32. ω  $\begin{array}{c} 5.1\\ 6.2\\ 7.3\\ 8.4\\ 10.6\\ 19.0\\ 26.8\\ 83.6\\ 83.6\\ 83.6\\ 83.6\\ 83.6\\ 99.3\\ 214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8\\ 2214.8$ 4 3/4 312.1 626.2 30. Ø 1/4 26 ~ Outside diameter of drill collar (in) 11.8 12.9 12.9 12.9 12.9 12.9 12.9 85.4 85.4 85.4 85.4 85.4 85.4 130.3 220.4 9 220.4 2.7 6.6 10.7 267.0 ω 317.7  $\sim$ 24 631 319.4 633.6 3/4 23. ဖ  $\begin{array}{c} 1.7\\ 6.2\\ 1.7\\ 1.6.2\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1.6.3\\ 1$ 4 1/2 21 ω ω 1/4 6 Q 638.4  $\sim$ ğ G 329.9 644.0 279.2 12. ഹ 280.4 645.3 233.8 11.4 331.1 3/4 4  $\begin{array}{c} 2.8\\ 9.6\\ 9.6\\ 1.1.2\\ 1.1.2\\ 1.1.2\\ 1.1.2\\ 1.1.2\\ 1.1.2\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.$ G 1/8 . 348. ` ω 4 239.0¹ 285.7 336.3 650.5  $\begin{array}{c} 5.2\\ 1.2.2\\ 1.2.2\\ 1.2.3\\ 1.2.3\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2\\ 2.25.2$  $\sim$ 1/2 , o 3 337.6 651.7 თ 1/8 4 e **11.1 11.6 13.6 13.6 13.6 33.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6114.6 14.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.6114.61114.61111111111111 155.2** 202.7 245.2 291.9 291.9 656.7 110.2 114.0 129.7 (1) (I/m) 0 **6** 5 7/8 **6** 7/8 **6** 7/8 **6** 1/8 **6** 1/8 **6** 1/8 **7**/8 **8** 3/8 **8** 3/8 **8** 3/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7**/8 **7** 3/4 7/8  $\overline{\mathbf{0}}$ 0 Diameter of open hole (in)

(2) The zero horizontal line gives the total displacement of drill collar.  $/m \times 0.0805 = gal/ft$   $l/m \times 0.00192 = bbl/ft$ 

(1) The zero vertical column gives the capacity of open hole.

D 12

## ANNULAR VOLUME BETWEEN DRILL PIPE AND OPEN HOLE (liters per meter)

				No	minal size	of drill pipe	ə (in)	<u> </u>		
		0 (1)	2 3/8	2 7/8	3 1/2	4	4 1/2	5	5 1/2	6 5/8
	0 (2)	(l/m)	3.01	4.44	6.58	8.58	10.84	13.29	16.01	23.05
	5 7/8	17.5	14.5	13.0	10.9	8.9				·
	6	18.2	15.2	13.8	11.7	9.7				1
	6 1/8	19.0	16.0	14.6	12.4	10.4				
	6 1/4	19.8	16.8	15.4	13.2	11.2	9.0			
	6 5/8	22.2	19.2	17.8	15.7	13.7	11.4	8.9		
	6 3/4	23.1	20.1	18.6	16.5	14.5	12.2	9.8		
	7 3/8	27.6	24.5	23.1	21.0	19.0	16.7	14.3	11.5	4.5
	7 7/8	31.4	28.4	27.0	24.8	22.8	20.6	18.1	15.4	8.4
	8 3/8	35.5	32.5	31.1	29.0	27.0	24.7	22.3	19.5	12.5
Î	8 1/2	36.6	33.6	32.2	30.0	28.0	25.8	23.3	20.6	13.6
) e	8 5/8	37.7	34.7	33.3	31.1	29.1	26.9	24.4	21.7	14.6
рd	8 3/4	38.8	35.8	34.4	32.2	30.2	28.0	25.5	22.8	15.7
еn	9	41.0	38.0	36.6	34.5	32.5	30.2	27.8	25.0	18.0
g	9 5/8	46.9	43.9	42.5	40.4	38.4	36.1	33.7	30.9	23.9
r of	9 7/8	49.4	46.4	45.0	42.8	40.8	38.6	36.1	33.4	26.4
ete	10 5/8	57.2	54.2	52.8	50.6	48.6	46.4	43.9	41.2	34.2
Diameter of open hole (in)	12	73.0	70.0	68.5	66.4	64.4	62.1	59.7	57.0	49.9
Ō	12 1/4	76.0	73.0	71.6	69.5	67.5	65.2	62.7	60.0	53.0
	14 3/4	110.2	107.2	105.8	103.7	101.7	99.4	96.9	94.2	87.2
	15	114.0	111.0	109.6	107.4	105.4	103.2	100.7	98.0	91.0
	16	129.7	126.7	125.3	123.1	121.1	118.9	116.4	113.7	106.7
	17 1/2	155.2	152.2	150.7	148.6	146.6	144.3	141.9	139.2	132.1
	20	202.7	199.7	198.2	196.1	194.1	191.8	189.4	186.7	179.6
	22	245.2	242.2	240.8	238.7	236.7	234.4	232.0	229.2	222.2
	24	291.9	288.8	287.4	285.3	283.3	281.0	278.6	275.8	268.8
	26	342.5	339.5	338.1	335.9	333.9	331.7	329.2	326.5	319.5
	36	656.7	653.7	652.2	650.1	648.1	645.8	643.4	640.7	633.6

(1) The zero vertical column gives the capacity of open hole.

(2) The zero horizontal line gives the total displacement of drill pipe with tool joint (average value).

 $l/m \times 0.0805 = gal/ft$   $l/m \times 0.00192 = bbl/ft$ 

## ANNULAR VOLUME BETWEEN DRILL PIPE AND CASING (liters per meter)

Casing				Non	ninal size d	of drill pipe	e (in)		<u></u>	
size		0 (1)	2 3/8	2 7/8	3 1/2	4	4 1/2	5	5 1/2	6 5/8
(in)	0 (2)	(l/m)	3.01	4.44	6.58	8.58	10.84	13.29	16.01	23.05
4 1/2	9.50 10.50 11.60 13.50 15.10 16.90 17.70 18.80	8.48 8.32 8.11 7.79 7.42 7.09 6.92 6.71	5.47 5.31 5.10 4.78 4.41 4.08 3.91 3.70							
5	11.50 13.00 15.00 18.00 21.40 23.20 24.10	10.54 10.23 9.84 9.27 8.63 8.29 8.11	7.53 7.22 6.83 6.83 6.83 5.28 5.10	6.10 5.79 5.40						
5 1/2	14.00 15.50 17.00 20.00 23.00 26.00 26.80	12.73 12.42 12.13 11.57 11.05 10.48 10.26	9.72 9.41 9.12 8.56 8.04 7.47 7.25	8.29 7.98 7.69 7.13 6.61 6.04 5.82						
6 5/8	20.00 23.20 24.00 28.00 32.00 35.00	18.54 18.03 17.76 16.99 16.32 15.75	15.53 15.02 14.75 13.98 13.31 12.74	14.10 13.59 13.32 12.55 11.88 11.31	11.96 11.45 11.18 10.41 9.74 9.17					
7	$\begin{array}{c} 17.00\\ 20.00\\ 23.00\\ 26.00\\ 29.00\\ 32.00\\ 35.00\\ 38.00\\ 41.00\\ 44.00\\ 46.00\\ \end{array}$	21.66 21.12 20.54 19.96 19.38 18.82 18.27 17.76 17.76 17.17 16.58 16.23	18.65 18.11 17.53 16.95 16.37 15.81 15.26 14.75 14.16 13.57 13.22	17.22 16.68 16.10 15.52 14.94 14.38 13.83 13.32 12.73 12.14 11.79	15.08 14.54 13.96 13.38 12.80 12.24 11.69 11.18 10.59 10.00 9.65	13.08 12.54 11.96 11.38 10.80				
7 5/8	24.00 26.40 29.70 33.70 35.80 39.00 42.80 45.30 47.10	25.01 24.61 23.95 23.19 22.71 22.24 21.42 20.98 20.59	22.00 21.60 20.94 20.18 19.70 19.23 18.41 17.97 17.58	20.57 20.17 19.51 18.75 18.27 17.80 16.98 16.54 16.15	18.43 18.03 17.37 16.61 16.13 15.66 14.84 14.40 14.01	16.43 16.03 15.37 14.61 14.13 13.66 12.84 12.40 12.01	14.17 13.77 13.11 12.35 11.87 11.40 10.58 10.14 9.75			
8 5/8	24.00 28.00 32.00 36.00 40.00 44.00 49.00 52.00	33.22 32.57 31.79 31.03 30.24 29.46 28.58 28.01	30.21 29.56 28.78 28.02 27.23 26.45 25.57 25.00	28.78 28.13 27.35 26.59 25.80 25.02 24.14 23.57	26.64 25.99 25.21 24.45 23.66 22.88 22.00 21.43	24.64 23.99 23.21 22.45 21.66 20.88 20.00 19.43	22.38 21.73 20.95 20.19 19.40 18.62 17.74 17.17	19.93 19.28 18.50 17.74 16.95 16.17 15.29 14.72	17.21 16.56 15.78 15.02 14.23 13.45 12.57 12.00	

(1) The zero vertical column gives the capacity of the casing.

(2) The zero horizontal line gives the average total displacement of drill pipe with tool joint.

## ANNULAR VOLUME BETWEEN DRILL PIPE AND CASING (liters per meter) (continued)

Casing				Nc	ominal size	of drill pip	pe (in)			
size (in)		0 (1)	2 3/8	2 7/8	3 1/2	4	4 1/2	5	5 1/2	6 5/8
(11)	0 (2)	(l/m)	3.01	4.44	6.58	8.58	10.84	13.29	16.01	23.05
9 5/8	32.30 36.00 40.00 43.50 47.00 53.50 58.40 59.40 61.10 71.80	41.1 40.3 39.6 38.8 38.2 36.9 36.1 35.8 35.5 33.5	38.1 37.3 36.5 35.8 35.2 33.9 33.0 32.8 32.5 30.4	36.6 35.9 35.1 34.4 33.7 32.5 31.6 31.4 31.1 29.0	34.5 33.8 33.0 32.3 31.6 30.3 29.5 29.2 29.0 26.9	32.5 31.8 31.0 30.3 29.6 28.3 27.5 27.2 27.0 24.9	30.2 29.5 28.7 28.0 27.3 26.1 25.2 25.0 24.7 22.6	27.8 27.0 26.3 25.6 24.9 23.6 22.8 22.5 22.3 20.2	25.1 24.3 23.5 22.8 22.2 20.9 20.0 19.8 19.5 17.4	18.0 17.3 16.5 15.8 15.1 13.9 13.0 12.8 12.5
9 7/8	62.80	45.7	42.7	41.3	39.2	37.2	34.9	32.4	29.7	
10 3/4	32.75	52.6	49.6	48.2	46.1	44.1	41.8	39.3	36.6	29.6
	40.50	51.2	48.2	46.7	44.6	42.6	40.3	37.9	35.2	28.1
	45.50	50.2	47.2	45.7	43.6	41.6	39.3	36.9	34.2	27.1
	51.00	49.2	46.2	44.7	42.6	40.6	38.3	35.9	33.2	26.1
	55.50	48.3	45.3	43.8	41.7	39.7	37.4	35.0	32.3	25.2
	60.70	47.3	44.3	42.9	40.7	38.7	36.5	34.0	31.3	24.2
	65.70	46.3	43.3	41.9	39.7	37.7	35.5	33.0	30.3	23.3
11 3/4	42.00	62.3	59.2	57.8	55.7	53.7	51.4	49.0	46.2	39.2
	47.00	61.3	58.3	56.9	54.7	52.7	50.5	48.0	45.3	38.3
	54.00	60.0	57.0	55.5	53.4	51.4	49.1	46.7	44.0	36.9
	60.00	58.8	55.8	54.4	52.2	50.2	48.0	45.5	42.8	35.8
	65.00	57.8	54.8	53.4	51.2	49.2	47.0	44.5	41.8	34.8
	71.00	56.8	53.8	52.3	50.2	48.2	45.9	43.5	40.8	33.7
13 3/8	48.00	81.9	78.9	77.5	75.3	73.3	71.1	68.6	65.9	58.9
	54.50	80.6	77.6	76.2	74.1	72.1	69.8	67.4	64.6	57.6
	61.00	79.4	76.4	74.9	72.8	70.8	68.5	66.1	63.4	56.3
	68.00	78.1	75.1	73.7	71.5	69.5	67.3	64.8	62.1	55.1
	72.00	77.2	74.2	72.8	70.7	68.7	66.4	64.0	61.2	54.2
	77.00	76.4	73.3	71.9	69.8	67.8	65.5	63.1	60.3	53.3
	80.70	75.6	72.6	71.2	69.0	67.0	64.8	62.3	59.6	52.6
13 5/8	88.20	74.5	71.5	70.1	67.9	65.9	63.7	61.2	58.5	51.4
14	82.50	76.1	73.0	71.6	69.5	67.5	65.2	62.8	60.0	53.0
	94.80	73.7	70.7	69.3	67.2	65.2	62.9	60.5	57.7	50.7
	99.00	73.0	69.9	68.5	66.4	64.4	62.1	59.7	56.9	49.9
	114.00	70.3	67.2	65.8	63.7	61.7	59.4	57.0	54.2	47.2
16	65.00	117.8	114.8	113.4	111.2	109.2	107.0	104.5	101.8	94.8
	75.00	115.9	112.9	111.5	109.3	107.3	105.1	102.6	99.9	92.9
	84.00	114.2	111.2	109.8	107.6	105.6	103.4	100.9	98.2	91.2
	94.50	112.1	109.1	107.7	105.5	103.5	101.3	98.8	96.1	89.1
	109.00	109.3	106.3	104.9	102.7	100.7	98.5	96.0	93.3	86.3
	128.00	105.6	102.6	101.2	99.0	97.0	94.8	92.3	89.6	82.6
18 5/8	87.50	159.7	156.7	155.3	153.1	151.1	148.9	146.4	143.7	136.7
20	94.00	185.3	182.3	180.9	178.7	176.7	174.5	172.0	169.3	162.3
	106.50	182.9	179.9	178.5	176.3	174.3	172.1	169.6	166.9	159.9
	133.00	177.8	174.8	173.4	171.2	169.2	167.0	164.5	161.8	154.8
30	267.00	407.8	404.8	403.4	401.2	399.2	397.0	394.5	391.8	384.8
	310.00	397.0	394.0	392.6	390.4	388.4	386.2	383.7	381.0	374.0

(1) The zero vertical column gives the capacity of the casing.

(2) The zero horizontal line gives the average total displacement of drill pipe with tool joint.

	3/4 13 3/8 13 5/8 14 16 18 5/8 20 30	69.96         90.64         94.06         99.31         129.7         175.8         202.7         456.0											•								40.3	44.1 23.4		64.5	112.0 108.6 1	154.6 151.2	201.2 197.8	251.9 248.5 243.2 212.8 166.8 1	
(L	10 3/4 11	58.56 69						~											14.4	17.5	51.7 4(	55.5 44	-	·	144.1 132	186.7 175		284.0 272	
Casing outside diameter (in)	9 7/8	49.41							-										23.6		60.8		80.3	105.8	153.3	195.8		293.1	
outside di	9 5/8	46.94							<u> </u>											29.1			82.8	108.2	155.7	198.3			
Casing c	8 5/8	37.69														·	11.7	19.5	35.3	38.3	72.5	76.3	92.0	117.5	165.0	207.5	254.2	304.8	6100
	7 5/8	29.46								·			8.2	9.3 0.3	11.6	17.5	20.0	27.7	43.5	46.6	80.8	84.5	100.3	125.7	173.	215.	262.4	313.1	
	7	24.83							±,-		10.7		12.9	14.0	16.2	22.1	24.6	32.4	48.1	51.2	85.4	89.2	104.9	130.3	177.9	220.4	267.0	317.7	621 O
	6 5/8	22.24								9.2	13.3	14.4	15.5	16.6	18.8	24.7	27.2	35.0	50.7	53.8	88.0	91.8	107.5	132.9	180.4	223.0	269.6	320.3	601 1
	5 1/2	15.33			3.7	4.5	6.9	7.8	12.2	16.1	20.2	21.3	22.4	23.5	25.7	31.6	34.1	41.9	57.6	60.7	94.9	98.7	114.4	139.8	187.4	229.9	276.5	327.2	211 1
	വ	12.67	4.8	5.6	6.3	7.1	9.6	10.4	14.9	18.8	22.9	23.9	25.0	26.1	28.4	34.3	36.7	44.5	60.3	63.4	97.6	101.3	117.0	142.5	190.0	232.6	279.2	329.9	0110
	4 1/2	10.26	7.2	8.0	8.7	9.D	12.0	12.8	17.3	21.2	25.3	26.3	27.4	28.5	30.8	36.7	39.2	46.9	62.7	65.8	100.0	103.7	119.5	144.9	192.4	235.0	281.6	332.3	616.1
	0 (1)	(I/m)	17.49	18.24	19.01	19.79	22.24	23.09	27.56	31.42	35.54	36.61	37.69	38.79	41.04	46.94	49.41	57.20	72.96	76.04	110.2	114.0	129.7	155.2	202.7	245.2	291.9	342.5	6567
		0 (2)	5 7/8	9	6 1/8		6 5/8	6 3/4	7 3/8	7 7/8	8 3/8	8 1/2	8 5/8	8 3/4	თ	9 5/8	9 7/8	10 5/8	12	12 1/4	14 3/4	15	16	17 1/2	20	22	24	26	36
												(uļ	) ə	юч	uə	do	ło .	ıəte	ອເມເ	ыŪ									

(1) The zero vertical column gives the capacity of open hole. (2) The zero horizontal line gives the total displacement of casing without coupling.  $1/m \times 0.0805 = gal/ft$   $1/m \times 0.00192 = bbl/ft$ 

D 16

ANNULAR VOLUME BETWEEN TWO STRINGS OF CASING (liters per meter)
--------------------------------------------------------------------

								N	Nominal size of inner casing (in)	e of inner	casing (ir	(							
casing		0 (1)	4 1/2	9	5 1/2	6 5/8	2	7 5/8	8 5/8	9 5/8	9 7/8	10 3/4	11 3/4	13 3/8	13 5/8	14	16	18 5/8	20
/111/	0 (2)	(l/m)	10.26	12.67	15.33	22.24	24.83	29.46	37.69	46.94	49.41	58.56	69.96	90.64	94.06	99.31	129.7	175.8	202.7
6 5/8	20.00 23.20 24.00 32.00 35.00	18.54 18.03 17.76 16.99 16.32 15.75	8.28 7.77 7.50 6.73 6.06 5.49	5.87 5.36 5.09 4.32															
7	17.00 20.00 23.00 26.00 29.00 29.00 29.00 33.00 41.00 44.00 44.00	21.66 21.12 20.54 19.96 19.38 19.38 18.27 17.76 17.76 17.17 16.58 16.53	11.40 10.28 9.70 9.12 8.56 8.01 7.50 6.91 6.32 5.97	8.99 8.45 6.71 9.50 9.50 3.91 3.91 3.91 3.91 3.91	6.33 5.79 5.21 4.05 4.05														
7 5/8	24.00 26.40 29.70 33.70 35.80 35.80 35.80 35.80 35.80 47.10 47.10	25.01 24.61 23.95 23.19 23.19 22.71 22.24 21.42 20.98 20.59	14.75 14.35 13.69 12.93 12.45 11.98 11.16 10.72 10.72	12.34 11.28 11.28 10.52 9.57 7.92 7.92	9.68 9.268 9.286 9.386 9.386 9.386 9.386 9.386 9.386 9.386 9.386 9.386 9.386 9.386 9.386 9.386 9.386 9.386 9.386 9.386 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.586 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.566 9.5666 9.5666 9.566 9.5666 9.5666 9.5666 9.5666 9.5666 9.5666 9.5666 9.56														
8 5/8	24.00 28.00 32.00 36.00 44.00 49.00	33.23 32.59 31.79 31.04 30.23 29.47 28.59	22.97 22.33 21.53 20.78 19.97 19.21 18.33	20.56 19.12 19.12 18.37 15.92 15.92	17.90 17.26 16.46 15.71 14.14 13.26	10.99 9.55 8.80 7.23 6.35	8.40 7.76 6.96 6.21												
(1) The ze	zero vertical	column	dives the capacity of casing	canacity c	of casino		1												1

(1) The zero vertical column gives the capacity of casing. (2) The zero horizontal line gives the total displacement of casing without coupling.  $1/m \times 0.0805 = gal/ft$   $1/m \times 0.00192 = bbl/ft$ 

	14	99.31											;								,										
	13 5/8	94.06						·																							
	13 3/8	90.64														•															
	11 3/4	69.96																							-						
	10 3/4	58.56																													
	9 7/8	49.41			*														4 6 1						23.36	22.08	20.80	19.54	18.68	17.04	15.93
(in)	9 5/8	46.94											-						15.31	14.38	13.04				34.98	33.70	32.42	31.16	30.30	28.66	27.55
of inner casing	8 5/8	37.69										14.94	13.49	12.47	11.47				24.56	23.63	22.29	21.11	20.13	13.03	44.23	42.95	41.67	40.41	39.55 38.66	37.91	36.80
Nominal size of	7 5/8	29.46	11.60 10.87	10.09	9.38	8.72						23.17	21.72	20.70	19.70	18.81	17.83	16.85	32.79	31.86	30.52	29.34	28.36	21.32	52.46	51.18	49.90	48.64	47.78	46.14	45.03
Nom	7	24.83	16.23 15.50	14.72	14.01	13.35	12.08	11.22	10.40	8.62	20.90	27.80	26.35	25.33	24.33	23.44	22.46	21.48	37.42	36.49	35.15	33.97	32.99 21.0E	C2.10	57.09	55.81	54.53	53.27	52.41 51.52	50.77	49.66
	6 5/8	22.24	18.82 18.09	17.31	16.60	15.94	14.67	13.81	10.01	11.21	23.49	30.39	28.94	27.92	26.92	26.03	25.05	24.07	40.01	39.08	37.74	36.56	35.58 24 54	04.04	59.68	58.40	57.12	55.86	55.UU	53.36	52.25
	5 1/2	15.33	25.73 25.00	24.22	23.51	22.85	21.58	20.72	20.40	18.12	30.40	37.30	35.85	34.83	33.83	32.94	31.96	30.98	46.92	45.99	44.65	43.47	42.49 41.45		66.59	65.31	64.03	11.20	61.03	60.27	59.16
	2	12.67	28.39 27.66	26.88	26.17	25.51	24.24	23.38	20.14	20.78	33.06	39.96	38.51	37.49	36.49	35.60	34.62	33.64	49.58	48.65	47.31	46.13	45.15		69.25	6/.9/	66.69	00.43	63.68	62.93	61.82
	4 1/2	10.26	30.80 30.07	29.29	28.58	27.92	26.65	25./9 25.65	20.00 20.00	23.19	35.47	42.37	40.92	39.90	38.90	38.01	37.03	30.05	51.99	51.06	49.72	48.54	47.56 16 50	40.04	71.66	/0.38	69.10 63.01	07.00	00.30 66.09	65.34	64.23
	0 (1)	(I/m)	41.06 40.33	39.55	38.84	38.18	36.91	30.05 25.01	20.00	33.45	45.73	52.63	51.18	50.16	49.16	48.27	47.29	40.31	62.25	61.32	59.98	58.80	57.82 56.78		81.92	80.64	79.36	/ 00	76.35	75.60	74.49
		0 (2)	32.30 36.00	40.00	43.50	47.00	53.50	50.4U	00.10 1.10	71.80	62.80	32.75	40.50	45.50	51.00	55.50	60./0	00.70	42.00	47.00	54.00	60.00	65.00 71.00	20.1	48.00	54.50	00.10	00.00	77.00	80.70	88.20
	casing (in)					9 5/8					9 7/8				10 3/4						11 2/4							13 3/8			13 5/8

ANNULAR VOLUME BETWEEN TWO STRINGS OF CASING (continued) (liters per meter)

The zero vertical column gives the capacity of casing.
 The zero horizontal line gives the total displacement of casing without coupling.

 $l/m \times 0.0805 = gal/ft$   $l/m \times 0.00192 = bbl/ft$ 

## D 18

NNULAR VOLUME BETWEEN TWO STRINGS OF CASING (continued) (liters per meter)
-------------------------------------------------------------------------------

•

Outer							Mom	ninal size of	Nominal size of inner casing (in)	g (in)						
casing (in)		0 (1)	4 1/2	5	5 1/2	6 5/8	7	7 5/8	8 5/8	9 5/8	9 7/8	10 3/4	11 3/4	13 3/8	13 5/8	14
la de la	0 (2)	(l/m)	10.26	12.67	15.33	22.24	24.83	29.46	37.69	46.94	49.41	58.56	69.96	90.64	94.06	99.31
	82.50	76.05	65.79 62.40	63.38	60.72	53.81	51.22	46.59	38.36	29.11	17.49					
14	99.00 99.00	72.95	62.69	60.28	57.62	50.71	48.91 48.12	44.28 43.49	36.05 35.26	26.80 26.01	15.18 14.39					
	114.00	70.25	59.99	57.58	54.92	48.01	45.42	40.79	32.56	23.31	11.69					
	65.00	117.80	107.54	105.13	102.47	95.56	92.97	88.34	80.11	70.86	59.24	47.84	27.16			
	75.00	115.90	105.64	103.23	100.57	93.66	91.07	86.44	78.21	68.96	57.34	45.94	25.26			
16	84.00	114.20	103.94	101.53	98.87	91.96	89.37	84.74	76.51	67.26	55.64	44.24	23.56			
2	94.50	112.10	101.84	99.43	96.77	89.86	87.27	82.64	74.41	65.16	53.54	42.14	21.46			
	109.00	109.30	99.04	96.63	93.97	87.06	84.47	79.84	71.61	62.36	50.74	39.34	18.66			
	128.00	105.60	95.34	92.93	90.27	83.36	80.77	76.14	67.91	58.66	47.04	35.64	14.96			
18 5/8	87.50	159.70	149.44	147.03	144.37	137.46	134.87	130.24	122.01	112.76	101.14	89.74	69.06	29.98		
	94.00	185.30	175.04	172.63	169.97	163.06	160.47	155.84	147.61	138.36	126.74	115.34	94.66	55 58		
20	106.50	182.90	172.64	170.23	167.57	160.66	158.07	153.44	145.21	135.96	124.34	112.94	92.26	53.18		
	133.00	177.80	167.54	165.13	162.47	155.56	152.97	148.34	140.11	130.86	119.24	107.84	87.16	48.08		
30	267.00	407.80	397.54	395.13	392.47	385.56	382.97	378.34	370.11	360.86	349.24	337.84	317.16	278.08	232.03	205 12
2	310.00	397.00	386.74	384.33	381.67	374.76	372.17	367.54	359.31	350.06	338.44	327.04	306.36	267.28	221.23	194.32
(1) The zer	o vertical co	(1) The zero vertical column gives the capacity of casing	the capaci	ity of casing												

(2) The zero horizontal line gives the total displacement of casing without coupling.

 $1/m \times 0.0805 = gal/ft$   $1/m \times 0.00192 = bbl/ft$ 

# **ANNULAR VOLUME BETWEEN CASING AND TUBING** (liters per meter)

Outor		<u> </u>			Nomin	al size of	[:] inner tu	ibing (in)				
Outer casing (in)		0 (1)	1.050	1.315	1.660	1.900	2.063	2 3/8	2 7/8	3 1/2	4	4 1/2
(,,,,,	0 (2)	(l/m)	0.56	0.88	1.40	1.83	2.16	2.86	4.19	6.21	8.11	10.26
	9.50	8.48	7.92	7.60	7.08	6.65	6.32	5.62	4.29			
	10.50	8.32	7.76	7.44	6.92	6.49	6.16	5.46	4.13			
	11.60	8.11	7.55	7.23	6.71	6.28	5.95	5.25	3.92			
4 1/2	13.50	7.79	7.23	6.91	6.39	5.96	5.63	4.93	3.60			
	15.10	7.42	6.86	6.54	6.02	5.59	5.26	4.56	3.23			
	16.90	7.09	6.53	6.21	5.69	5.26	4.93	4.23				
	17.70	6.92	6.36	6.04	5.52	5.09	4.76	4.06				
	18.80	6.71	6.15	5.83	5.31	4.88	4.55	3.85				
	11.50	10.54	9.98	9.66	9.14	8.71	8.38	7.68	6.35			
	13.00	10.23	9.67	9.35	8.83	8.40	8.07	7.37	6.04			
	15.00	9.84	9.28	8.96	8.44	8.01	7.68	6.98	5.65			
5	18.00	9.27	8.71	8.39	7.87	7.44	7.11	6.41	5.08			
	21.40	8.63	8.07	7.75	7.23	6.80	6.47	5.77	4.44			
	23.20	8.29	7.73	7.41	6.89	6.46	6.13	5.43	4.10			
	24.10	8.11	7.55	7.23	6.71	6.28	5.95	5.25	3.92			
	14.00	12.73	12.17	11.85	11.33	10.90	10.57	9.87	8.54	6.52		
	15.50	12.42	11.86	11.54	11.02	10.59	10.26	9.56	8.23	6.21		
	17.00	12.13	11.57	11.25	10.73	10.30	9.97	9.27	7.94	5.92		
5 1/2	20.00	11.57	11.01	10.69	10.17	9.74	9.41	8.71	7.38	5.36		
	23.00	11.05	10.49	10.17	9.65	9.22	8.89	8.19	6.86	4.84		
	26.00	10.48	9.92	9.60	9.08	8.65	8.32	7.62	6.29	4.27		
	26.80	10.26	9.70	9.38	8.86	8.43	8.10	7.40	6.07	4.05		
	20.00	18.54	17.98	17.66	17.14	16.71	16.38	15.68	14.35	12.33	10.43	8.28
	23.20	18.03	17.47	17.15	16.63	16.20	15.87	15.17	13.84	11.82	9.92	7.77
6 5/8	24.00	17.76	17.20	16.88	16.36	15.93	15.60	14.90	13.57	11.55	9.65	7.50
0 5/0	28.00	16.99	16.43	16.11	15.59	15.16	14.83	14.13	12.80	10.78	8.88	6.73
	32.00	16.32	15.76	15.44	14.92	14.49	14.16	13.46	12.13	10.11	8.21	6.06
	35.00	15.75	15.19	14.87	14.35	13.92	13.59	12.89	11.56	9.54	7.64	5.49
	17.00	21.66	21.10	20.78	20.26	19.83	19.50	18.80	17.47	15.45	13.55	11.40
	20.00	21.12	20.56	20.24	19.72	19.29	18.96	18.26	16.93	14.91	13.01	10.86
	23.00	20.53	19.97	19.65	19.13	18.70	18.37	17.67	16.34	14.32	12.42	10.27
	26.00	19.95	19.39	19.07	18.55	18.12	17.79	17.09	15.76	13.74	11.84	9.69
	29.00	19.38	18.82	18.50	17.98	17.55	17.22	16.52	15.19	13.17	11.27	9.12
7	32.00	18.82	18.26	17.94	17.42	16.99	16.66	15.96	14.63	12.61	10.71	8.56
<b>'</b>	35.00	18.27	17.71	17.39	16.87	16.44	16.11	15.41	14.08	12.06	10.16	8.01
	38.00	17.77	17.21	16.89	16.37	15.94	15.61	14.91	13.58	11.56	9.66	7.51
	41.00	17.21	16.65	16.33	15.81	15.38	15.05	14.35	13.02	11.00	9.10	6.95
	44.00	16.58	16.02	15.70	15.18	14.75	14.42	13.72	12.39	10.37	8.47	6.32
	46.00	16.23	15.67	15.35	14.83	14.40	14.07	13.37	12.04	10.02	8.12	5.97
		l			of the or	l	l	l	<u> </u>	1		

(1) The zero vertical column gives the capacity of the casing.(2) The zero horizontal line gives the total displacement of tubing without coupling.

 $I/m \times 0.0805 = gal/ft$   $I/m \times 0.00192 = bbl/ft$ 

# ANNULAR VOLUME BETWEEN CASING AND TUBING (liters per meter) (continued)

Outer		·····		<u>_</u>	Nomir	nal size o	f inner ti	ubing (in)			<del></del>	<u> </u>
casing (in)		0 (1)	1.050	1.315	1.660	1.900	2.063	2 3/8	2 7/8	3 1/2	4	4 1/2
()	0 (2)	(l/m)	0.56	0.88	1.40	1.83	2.16	2.86	4.19	6.21	8.11	10.26
	24.00	25.01	24.45	24.13	23.61	23.18	22.85	22.15	20.82	18.80	16.90	14.75
	26.40	24.61	24.05	23.73	23.21	22.78	22.45	21.75	20.42	18.40	16.50	14.35
	29.70	23.95	23.39	23.07	22.55	22.12	21.79	21.09	19.76	17.74	15.84	13.69
	33.70	23.19	22.63	22.31	21.79	21.36	21.03	20.33	19.00	16.98	15.08	12.93
7 5/8	35.80	22.71	22.15	21.83	21.31	20.88	20.55	19.85	18.52	16.50	14.60	12.45
	39.00	22.24	21.68	21.36	20.84	20.41	20.08	19.38	18.05	16.03	14.13	11.98
	42.80	21.42	20.86	20.54	20.02	19.59	19.26	18.56	17.23	15.21	13.31	11.16
	45.30	20.98	20.42	20.10	19.58	19.15	18.82	18.12	16.79	14.77	12.87	10.72
	47.10	20.59	20.03	19.71	19.19	18.76	18.43	17.73	16.40	14.38	12.48	10.33
	24.00	33.22	32.66	32.34	31.82	31.39	31.06	30.36	29.03	27.01	25.11	22.96
	28.00	32.57	32.01	31.69	31.17	30.74	30.41	29.71	28.38	26.36	24.46	22.31
	32.00	31.79	31.23	30.91	30.39	29.96	29.63	28.93	27.60	25.58	23.68	21.53
8 5/8	36.00	31.03	30.47	30.15	29.63	29.20	28.87	28.17	26.84	24.82	22.92	20.77
	40.00	30.24	29.68	29.36	28.84	28.41	28.08	27.38	26.05	24.03	22.13	19.98
	44.00	29.46	28.90	28.58	28.06	27.63	27.30	26.60	25.27	23.25	21.35	19.20
	49.00	28.58	28.02	27.70	27.18	26.75	26.42	25.72	24.39	22.37	20.47	18.32
	52.00	28.01	27.45	27.13	26.61	26.18	25.85	25.15	23.82	21.80	19.90	17.75
	32.30	41.06	40.50	40.18	39.66	39.23	38.90	38.20	36.87	34.85	32.95	30.80
	36.00	40.33	39.77	39.45	38.93	38.50	38.17	37.47	36.14	34.12	32.22	30.07
	40.00	39.55	38.99	38.67	38.15	37.72	37.39	36.69	35.36	33.34	31.44	29.29
	43.50	38.84	38.28	37.96	37.44	37.01	36.68	35.98	34.65	32.63	30.73	28.58
9 5/8	47.00	38.19	37.63	37.31	36.79	36.36	36.03	35.33	34.00	31.98	30.08	27.93
	53.50	36.91	36.35	36.03	35.51	35.08	34.75	34.05	32.72	30.70	28.80	26.65
	58.40	36.05	35.49	35.17	34.65	34.22	33.89	33.19	31.86	29.84	27.94	25.79
	59.40	35.81	35.25	34.93	34.41	33.98	33.65	32.95	31.62	29.60	27.70	25.55
	61.10	35.54	34.98	34.66	34.14	33.71	33.38	32.68	31.35	29.33	27.43	25.28
	71.80	33.45	32.89	32.57	32.05	31.62	31.29	30.59	29.26	27.24	25.34	23.19

(1) The zero vertical column gives the capacity of the casing.

(2) The zero horizontal line gives the total displacement of tubing without coupling.

 $l/m \times 0.0805 = gal/ft \quad l/m \times 0.00192 = bbl/ft$ 

# **CAPACITIES OF COILED TUBING**

	Coiled	tubing dim	ensions		Tube	e area		Volumes	<u> </u>
Outside diameter (in)	Body weight (lb/ft)	Wall th Nominal (in)	ickness Minimum (in)	Inside diameter (in)	Nominal (in ² )	Minimum (in ² )	Capacity (I/m)	Wall displace- ment (l/m)	External displace- ment (I/m)
0.750	0.59	0.083	0.078	0.584	0.174	0.165	0.173	0.112	0.285
0.750	0.62	0.087	0.082	0.576	0.181	0.172	0.168	0.117	0.285
1.000	0.79	0.080	0.075	0.840	0.231	0.218	0.358	0.149	0.507
1.000	0.81	0.083	0.078	0.834	0.239	0.226	0.352	0.154	0.507
1.000	0.85	0.087	0.082	0.826	0.250	0.236	0.346	0.161	0.507
1.000	0.92	0.095	0.090	0.810	0.270	0.257	0.332	0.174	0.507
1.000	0.98	0.102	0.097	0.796	0.288	0.275	0.321	0.186	0.507
1.000	1.04	0.109	0.104	0.782	0.305	0.293	0.310	0.197	0.507
1.000	1.17	0.125	0.117	0.750	0.344	0.325	0.285	0.222	0.507
1.250	1.00	0.080	0.075	1.090	0.294	0.277	0.602	0.190	0.792
1.250	1.03	0.083	0.078	1.084	0.304	0.287	0.595	0.196	0.792
1.250	1.08	0.087	0.082	1.076	0.318	0.301	0.587	0.205	0.792
1.250	1.17	0.095	0.090	1.060	0.345	0.328	0.569	0.222	0.792
1.250	1.25	0.102	0.097	1.046	0.368	0.351	0.554	0.237	0.792
1.250	1.33	0.109	0.104	1.032	0.391	0.374	0.540	0.252	0.792
1.250	1.50	0.125	0.117	1.000	0.442	0.416	0.507	0.285	0.792
1.250	1.60	0.134	0.126	0.982	0.470	0.445	0.489	0.303	0.792
1.250	1.82	0.156	0.148	0.938	0.536	0.512	0.446	0.346	0.792
1.250	2.01	0.175	0.167	0.900	0.591	0.568	0.410	0.381	0.792
1.500	1.43	0.095	0.090	1.310	0.419	0.399	0.870	0.271	1.140
1.500	1.52	0.102	0.097	1.296	0.448	0.428	0.851	0.289	1.140
1.500	1.62	0.109	0.104	1.282	0.476	0.456	0.833	0.307	1.140
1.500	1.84	0.125	0.117	1.250	0.540	0.508	0.792	0.348	1.140
1.500	1.95	0.134	0.126	1.232	0.575	0.544	0.769	0.371	1.140
1.500	2.24	0.156	0.148	1.188	0.659	0.629	0.715	0.425	1.140
1.500	2.48	0.175	0.167	1.150	0.728	0.699	0.670	0.470	1.140
1.750	1.48	0.083	0.078	1.584	0.435	0.410	1.271	0.280	1.552
1.750	1.55	0.087	0.082	1.576	0.455	0.430	1.259	0.293	1.552
1.750	1.68	0.095	0.090	1.560	0.494	0.469	1.233	0.319	1.552
1.750	1.80	0.102	0.097	1.546	0.528	0.504	1.211	0.341	1.552
1.750	1.91	0.102	0.104	1.532	0.562	0.538	1.189	0.363	1.552
1.750	2.17	0.100	0.117	1.500	0.638	0.600	1.140	0.303	1.552
1.750	2.31	0.120	0.126	1.482	0.680	0.643	1.140	0.412	1.552
1.750	2.66	0.154	0.120	1.438	0.781	0.745	1.048	0.439	1.552
1.750	2.94	0.135	0.140	1.400	0.866	0.743	0.993	0.559	1.552
1.750	3.14	0.178	0.180	1.374	0.923	0.888	0.957	0.595	1.552
1.750	3.17	0.190	0.180	1.374	0.923	0.887	0.957	0.595	1.552
2.000	2.20	0.109	0.104	1.782	0.648	0.619	1.609	0.418	2.027
2.000	2.50	0.105	0.117	1.750	0.736	0.692	1.552	0.418	2.027
2.000	2.67	0.120	0.126	1.732	0.786	0.742	1.520	0.475	2.027
			0.120		0.700	0.772	1.520	0.007	2.027

 $l/m \times 0.0805 = gal/ft$   $l/m \times 0.00192 = bbl/ft$ 

# CAPACITIES OF COILED TUBING (continued)

	Coiled	tubing dim	ensions		Tubo	e area		Volumes	
Outside	Body	Wall th	ickness	Inside	TUDE		Capacity	Wall displace-	External displace-
diameter (in)	weight (lb/ft)	Nominal (in)	Minimum (in)	diameter (in)	Nominal (in²)	Minimum (in ² )	(I/m)	ment (I/m)	ment (I/m)
2.000	3.07	0.156	0.148	1.688	0.904	0.861	1.444	0.583	2.027
2.000	3.41	0.175	0.167	1.650	1.003	0.962	1.380	0.647	2.027
2.000	3.64	0.188	0.180	1.624	1.070	1.029	1.336	0.690	2.027
2.000	3.67	0.190	0.182	1.620	1.080	1.039	1.330	0.697	2.027
2.000	3.90	0.203	0.195	1.594	1.146	1.106	1.287	0.739	2.027
2.375	2.64	0.109	0.104	2.157	0.776	0.742	2.358	0.501	2.858
2.375	3.00	0.125	0.117	2.125	0.884	0.830	2.288	0.570	2.858
2.375	3.21	0.134	0.126	2.107	0.943	0.890	2.250	0.609	2.858
2.375	3.70	0.156	0.148	2.063	1.088	1.035	2.157	0.702	2.858
2.375	4.11	0.175	0.167	2.025	1.210	1.158	2.078	0.780	2.858
2.375	4.39	0.188	0.180	1.999	1.292	1.241	2.025	0.833	2.858
2.375	4.43	0.190	0.182	1.995	1.304	1.254	2.017	0.841	2.858
2.375	4.71	0.203	0.195	1.969	1.385	1.335	1.964	0.894	2.858
2.375	4.73	0.204	0.196	1.967	1.391	1.342	1.960	0.898	2.858
2.875	3.67	0.125	0.117	2.625	1.080	1.014	3.492	0.697	4.188
2.875	3.92	0.134	0.126	2.607	1.154	1.088	3.444	0.744	4.188
2.875	4.53	0.156	0.148	2.563	1.333	1.268	3.329	0.860	4.188
2.875	5.05	0.175	0.167	2.525	1.484	1.421	3.231	0.958	4.188
2.875	5.40	0.188	0.180	2.499	1.587	1.524	3.164	1.024	4.188
2.875	5.45	0.190	0.182	2.495	1.603	1.540	3.154	1.034	4.188
2.875	5.79	0.203	0.195	2.469	1.704	1.642	3.089	1.099	4.188
2.875	5.82	0.204	0.196	2.467	1.712	1.650	3.084	1.104	4.188
2.875	6.34	0.224	0.216	2.427	1.866	1.804	2.985	1.204	4.188
3.500	4.82	0.134	0.126	3.232	1.417	1.336	5.293	0.914	6.207
3.500	5.57	0.156	0.148	3.188	1.639	1.559	5.150	1.057	6.207
3.500	6.21	0.175	0.167	3.150	1.828	1.749	5.028	1.179	6.207
3.500	6.65	0.188	0.180	3.124	1.956	1.877	4.945	1.262	6.207
3.500	6.72	0.190	0.182	3.120	1.976	1.897	4.932	1.275	6.207
3.500	7.15	0.203	0.195	3.094	2.103	2.025	4.851	1.357	6.207
3.500	7.18	0.204	0.196	3.092	2.112	2.034	4.844	1.363	6.207
3.500	7.84	0.224	0.216	3.052	2.305	2.228	4.720	1.487	6.207
4.500	8.75	0.190	0.182	4.120	2.573	2.469	8.601	1.660	10.261
4.500	9.36	0.204	0.196	4.092	2.753	2.650	8.485	1.776	10.261
4.500	10.23	0.224	0.216	4.052	3.009	2.907	8.319	1.941	10.261
4.500	11.35	0.250	0.242	4.000	3.338	3.237	8.107	2.154	10.261
5.000	11.43	0.224	0.216	4.552	3.361	3.246	10.499	2.168	12.668
5.000	12.68	0.250	0.242	4.500	3.731	3.617	10.261	2.407	12.668

 $l/m \times 0.0805 = gal/ft$   $l/m \times 0.00192 = bbl/ft$ 

Ε

# drilling bits and downhole motors

Common sizes and tolerance on new bits (API RP 7G, January 1, 1995)	E1
IADC roller bit classification system	E2
IADC roller bit classification table (IADC/SPE 23937, February, 1992)	E3
How to use the roller bit table	E4
Comparison of roller bits	E5-E7
IADC fixed cutter drill bit classification system (IADC/SPE February 18-21, 1992)	E8-E9
IADC comparison of PDC bits	E10-E11
IADC comparison of TPS & natural diamonds bits	E12-E13
IADC dull bit grading (After IADC/SPE 23938-23939 of 1992)	E14-E16
Parameters for using insert bits and friction bearings (After Baker-Hughes)	E17
Threads and make-up torques for drill bits and coring bits (API RP 7G, January 1, 1995 - API Spec 7, April 1, 1994)	E18
Turbodrill	E19
Turbodrilling	E20
Performance curves on turbodrill (Specific gravity $d$ , constant flow rate $Q_n$ )	E21

Turbodrill specifications (Specific gravity of mud 1.20)	E22
Positive displacement motors	E23-E24
Performance curves of positive displacement motors for different flow rates Q	E25
Specifications of positive displacement motors (Moineau type)	E26-E29

### COMMON SIZES AND TOLERANCE ON NEW BITS (API RP 7G, January 1, 1995)

#### **COMMON SIZES**

Sizes other than those shown may be available in limited cutting structure types:

Rolle	r bits
Diame	eter (in)
3 3/4	9 1/2
3 7/8	9 7/8
4 1/4	10 3/4
5 7/8	11
6	12 1/4
6 1/8	13 1/2
6 1/4	14 3/4
6 1/2	16
6 3/4	17 1/2
7 7/8	20
8 3/8	22
8 1/2	24
8 3/4	26

#### Fixed cutter bit

Diame	eter (in)
3 7/8	8 1/2
4 1/2	8 3/4
4 3/4	9 1/2
5 7/8	9 7/8
6	10 3/4
6 1/8	12 1/4
6 1/4	14 3/4
6 1/2	16
6 3/4	17 1/2
7 7/8	

#### **TOLERANCE ON NEW BITS**

#### **Rock bits**

Nominal	bit size	Tole	rance
(in)	(mm)	(in)	(mm)
3 3/8 – 13 3/4 incl. 14 – 17 1/2 incl.	85.7 - 349.3 355 6 - 444 5	- 0, + 1/32 - 0, + 1/16	- 0, + 0.79 - 0, + 1.59
17 5/8 and larger	447.7 and larger	- 0, 3/32	-0, +1.59

#### **Diamond and PDC bits**

Nomina	l bit size	Tole	rance
(in)	(mm)	(in)	(mm)
up to 6 1/4 6 25/32 – 9 9 1/32 – 13 3/4 13 25/32 and larger	up to 158.8 172.2 – 228.6 229.4 – 349.3 350.0 and larger	+ 0, - 0.015 + 0, - 0.020 + 0, - 0.030 + 0, - 0.045	+ 0, - 0.38 + 0, - 0.51 + 0, - 0.76 + 0, - 1.14

## IADC ROLLER BIT CLASSIFICATION SYSTEM

The 1992 version of the IADC classification (SPE/IADC 1992 No. 123937) contains minor changes from the 1987 Roller Bit Classification System.

In 1987, the Classification System was changed to include a fourth character to denote features available. The 1992 revision added some letters to the classification (B, H, L, M, T and W) and deleted the R letter.

#### First digit: Cutting Structure Series (1 – 8)

Eight categories or "Series" numbers describe general formation characteristics.

Series 1, 2 and 3 refer to steel tooth (milled tooth) bits.

Series 4, 5, 6, 7 and 8 refer to insert (tungsten carbide) bits.

Within the steel tooth and insert groups, the formation becomes harder and more abrasive as the Series numbers increase.

#### Second digit: Cutting Structure Types (1 – 4)

Each Series is divided into 4 "Types" or degrees of hardness. Type 1 refers to bits designed for the softest formation in a particular Series. Type 4 refers to the hardest formation within the Series.

#### Third digit: Bearing/Gage (1 – 7)

Seven categories of bearing design and gage protection are defined as "Bearing/Gage":

- 1 = standard roller bearing
- 2 = roller bearing, air-cooled
- 3 = roller bearing, gage-protected
- 4 = sealed roller bearing
- 5 = sealed roller bearing, gage-protected
- 6 = sealed friction bearing
- 7 = sealed friction bearing, gage-protected.

Categories 8 and 9 are reserved for future use.

#### **Additional letter**

- A = air application
- B = special bearing seal
- C = center jet
- D = deviation control
- E = extended jets
- G = gauge/body protection
- H = horizontal/steering application
- J = jet deflection

- L = lug pads
- M = motor application
- S = standard steel tooth model
- T = two cone bits
- W = enhanced cutting structure
- X = predominantly chisel tooth insert
- Y = conical tooth insert
- Z = other shape insert

IADC ROLLER BIT CLASSIFICATION TABLE (IADC/SPE 23937, February, 1992)

Features Available		A Air application	B Special bearing seal			D Deviation control	F Fytandad jate		G Gage/body protection	(additional)	H Horizontal/steering	applications	J Jet deflection		r rug pags	M Motor application		S Standard steel tooth	T Two cone hit		W Enhanced cutting		X Predominantely chisel		Y Conical tooth insert		Z Other shape insert	
Sealed friction bearing gage protected	~																										2	
Sealed friction bearing	S																											
Sealed roller bearing gage protected	0																											
Sealed roller bearing	+																											-
Roller bearing gage protected	>																											
Roller bearing air-cooled																												
Standard roller bearing																												
sədkī	-	2	ς 4	+	~ ~	n 4		~ ~	n <	-, t	- c	v r	) 4		2	m <	t	2	ო	4	-	~ ~		7 4	- c	чс	04	
Series					7			<i>с</i> о				4	<b>.</b>		വ			(	2			~		Ţ		8	•	
Formations	Coft formations	compressive strength	and high drillability	Medium to medium hard	formations with high	compressive strength	· · ·	Hard Semi-abrasive			Soft formations with low	compressive strength	and high drillability	Soft to medium soft	formations with low	compressive strength		Wedium hard formations	strength			and shrock formations			Extremely hard	and abrasive formations		
			s1	id di	001	ləət	S										st	d f	เอรเ	л Л								

## HOW TO USE THE ROLLER BIT TABLE

#### **EXAMPLE OF THE CHOICE OF A BIT**

The formation to be drilled is soft, with low compressive strength and high drillability. We wish to use a milled tooth bit with sealed friction bearings.

The table on page E 3 gives us the bit code No.:

- (a) First digit: soft formation with high drillability: 1
- (b) Second digit: estimated hardness in series 1 above: 2
- (c) Third digit: sealed bearings: 6.

#### Bit code No. 126

The table on page E 5 gives a choice between:

- (a) Hughes: ATJ2, J2, J2T
- (b) Reed: EHP12, HP12
- (c) Security: S33F
- (d) Smith: FDT
- (e) Varel: L126

#### HOW TO KNOW THE DESIGN OF A ROCK BIT

Let us consider Reed HP52 bit. Which formation is it designed for?

Table E 7 states that it is equivalent to the Hughes ATJ22C, ATM22C, ATJ28, ATM28, Security S85F, S85CF, Smith F27, MF27 and Varel ETD527, V527 bits, and its code No. is **527**.

Table E 3 shows us that it is an **insert bit** for **soft to medium soft formations** with **hard-ness 2** and that it has **sealed bearings and gage protectors**.

#### Note

Bit classifications are general guidelines only. All bit types will drill effectively in formations other than those specified. It is the manufacturer's responsibility to classify his bits in these tables.

# **COMPARISON OF ROLLER BITS**

Code	Hughes Christ.	Reed	Security DBS	Smith	Varel
111	R1	Y11	S3SJ 2S3JD	DSJ	L111
114	ATX1, GTX1 X3A		S33S, MS33S SS33S	SDS	L114
115	GTXG1, MAXG1 MAXGT1	EMS11G S11G	SS33SG ERA 1RD	MSDSH MSDSSH	ETR1G
116	ATJ1, ATJS ATM1/H/S, GT1	HP11 HP11+	S33SF, PSF S33SFX	FDS, FDS+ FDSS+	L116
117	ATJG1H, GT1H ATMG1/S, GTG1 ATMGT1	MHP11G MHP11DH	S33SGF ERA MPSF	MFDSH MSDSHOD	L117 L117GT ETD1G
121	R2	Y12	S3J, S3TJ	DTJ	L3S, L121
126	ATJ2, J2, J2T	EHP12, HP12	S33F	FDT	L126
131	R3	Y13	S4J, S4TJ, S4T	DGJ	L3, L131
135	GTXG3, MAXG3 MAXGT3, XGG	EMS13G ETS13G	S44G SS44G	MSDGH SDGH	L135 ETR3G
136		HP13		FDG	L136
137	JG3, ATMG3 ATMGT3	HP13G MHP13G/DH	S44GF S44F	FDGH MFDGH	L137
215		MS21G, S21G	M44NG MM44NG	SVH	
217	JG4	HP21G	M44NGF	FVH	
317	JG7	HP31G			

#### Milled tooth bits

# **COMPARISON OF ROLLER BITS**

(continued)

#### Insert tooth bits

Code	Hughes Christ.	Reed	Security DBS	Smith	Varel
415	AT05, GTX03 MAX00/03/05	MS41H-M MS41HD-M	SS80	M02S	ETD415
417	ATJ00/05 ATM00/05 ATMGT00/03 GT00, GT03	EHP41H	S80F ERA03 ERA03D	F05	ETD417
425	ATX05C, MAX05C		SS81	M05S	
427	ATJ05C, ATM05C GT03C, GT05C		S81F	F07	
435	ATX11H/S ATX11, GTX09 MAX11H/GT09	MS43A, MS43A-M MS43ADM, S43A MS43HM/HDM	S82 SS82	M1S	ETD435
437	ATJ11/H/S ATM11/H/HG ATMGT09, GT09	EHP43/A/H EHP43AD/AH HP43/A/AM/M	S82F S82CF SS82F	F1, F1S	ETD437 V437
445	GTX18, ATX11C MAX09C/GT18	MS44A MS44AD		15JS, M15S	ETD445
447	ATJ11C, ATJ18 ATM11C/11CG ATM18/GT18 GT09C/18/18C	HP44M	S83F SS83F	F15 F15S MF15	ETD437C

# **COMPARISON OF ROLLER BITS**

(continued)

#### Insert tooth bits

Code	Hughes Christ.	Reed	Security DBS	Smith	Varel
515	ATX22 MAX22/G	MS51A/AM MS51ADM, S51A	S84, SS84	2JS, M2S	ETD515
517	ATJ22/G/S, GT20 ATM22/G, GT09C	EHP51/A/H/X/AD HP51/A/AM/H/HM	S84F, S84CF DS84F, SS84F	A1, F15H, F17, F2 F2H, F25/A, MF2H	ETD517/C V517
525				M27S	ETD525
527	ATJ22C, ATM22C ATJ28, ATM28 GT20C, GT28	HP52/A/X/M	S85F, S85CF	F27, MF27, F27i	ETD527/C V527 EDT527CB/CH
535	ATX33	MS53, MS53D	S86, SS86	3JS, M3S	ETD535
537	ATJ33/S/A ATM33, ATJ35/G	EHP53/A/D/AD HP53/A/AM/D/AD			ETD537 V537
545			S88		ETD545
547	ATJ33C, ATJ35C ATJ35CG ATM33C	HP54	S88F, S88CF S88FA	F35, F37 F37D, F37A	V537C EDT537C/CH ETD547A
615	ATX44		M84	4JS	ETD615, V615
617	ATJ44/A/CA ATJ44D, ATJ44G	EHP61/A/D/AD HP61/A/AD	M84, M84CF M84FA, M85F	F4, F4H F45A, F45H	ETD617 V617/A
625	ATX44C	MS62/D, S62A	M88, MM88, M89T	5GA, 5JA	ETD625, V625
627	ATJ44C	EHP62/A HP62/A/JAK/D/AD	M85F, M88F M88FA, M89TF	F47, F47H, F5	ETD627 V627
637	ATJ55/A/D/R	EHP63, HP63/D	M89F	F57, F57A	ETD637, V637
647	ATJ66		F67	M90F	
737	ATJ77, ATM77	EHP73, HP73/D	H87F	F7	V737
747	ATJ88		H88F	F8	
837	ATJ99/A, ATM99	EHP83/D, HP83/D	H100F	F9	

### IADC FIXED CUTTER DRILL BIT CLASSIFICATION SYSTEM (IADC/SPE February 18-21, 1992)

Fixed-Cutter Drill Bit Classification System (SPE/IADC 1987 No. 16142), which attempted to describe each bit style individually was not being used.

The new classification system is composed of four characters, designating body material, cutter density, cutter size or type, and profile, respectively. It is presented as an attempt to improve the ability to classify and thus employ fixed-cutter PDC and diamond drill bits more effectively.

The proposed system is notably simpler than the former system. It no longer considers hydraulics.

The benefit of the new fixed-cutter classification system is that it allows classification and grouping of similar bits.

#### **First character**

The first character becomes **M** for **matrix** or **S** for **steel** body construction respectively.

#### Second character

The second character is labeled **density**, and ranges from 1 to 4 for PDC bits, and from 6 to 8 for surface-set bits using diamond-type cutters. Numerals 0, 5 and 9 are reserved for future use.

#### Third character

The third character (digits 1 to 4) represents:

- (a) The size of PDC cutter on this type of bit, or
- (b) The diamond type for surface-set bits.

#### Fourth character

The fourth character (digits 1 to 4) gives an idea of basic **appearance** of the bit, based on overall length of the cutting face of the bit.

#### **Examples**

#### Code S423

This is a (**S**) Steel body PDC bit with a cutters density (**4**) of 50 cutters or more and a size (**2**) (14 to 24 mm) for the cutters. The profile (**3**) is a medium profile.

In the tables E 10-E 11, several bits correspond to the code S423 or M423: Christensen G547, R547, G549, R549 Diamant Boart Stratabit FM2563, FM2565, FM2865 Hycalog DS68, DS78H, DS77H, DS70H Crystal Profor RD51 Geodiamond M44, M61, M68, M61V.

#### • Code M713

This is a (M) Matrix body Surface-Set bit using diamond-type cutter with a density/size (7) of 3 to 7 stones per carat of (1) natural diamonds. The profile (3) is medium longer.

In the tables E 12-E 13, several bits correspond to the code M713: Christensen D262, D331 Diamant Boart Stratabit TB16 Hycalog 730, 733, 744, 753, 901 Crystal Profor H300 Geodiamond D54, D73.

# IADC FIXED CUTTER DRILL BIT CLASSIFICATION SYSTEM (IADC/SPE February 18-21, 1992) (continued)

#### First character: body material

- M = matrix body construction
- S = steel body construction

#### Second character: density

#### **PDC** bits

- 1 = 30 or fewer 1/2 in cutters
- 2 = 30 to 40 1/2 in cutters
- 3 = 40 to 50 1/2 in cutters
- 4 = 50 or more 1/2 in cutters

#### Surface-set cutters bits

- 6 = diamond sizes larger than 3 SPC*
- 7 =from 3 SPC to 7 SPC*
- 8 = diamond size smaller than 7 SPC*

#### Third character: size or type

#### PDC size

- 1 = cutters larger than 24 mm
- 2 = cutters from 14 mm to 24 mm
- 3 = cutters of 13.3 mm (1/2 in)
- 4 = cutters of 8 mm

#### Surface-set cutters bits type

- 1 = natural diamonds
- 2 = TSP material
- 3 = combination cutter type
- 4 = impregnated diamond

#### Fourth character: body style

- 1 = fishtail PDC bit or flat TSP and natural diamond bit
- 2 = short bit profile
- 3 = medium bit profile
- 4 = long bit profile

for example, a long-flanked "turbine style" bit would be clearly categorized as a 4.

# IADC COMPARISON OF PDC BITS

s >							Body	/ style							
Cutters density	S	ize			1 Fishtail					2 Short					
ΰð			HC	DBS	HYC	CRYST	GEO	HC	DBS	HYC	CRYST	GEO			
	1	> 24		B9-44											
1	2	14-24	R523 G573 G554 AG574	B9-33 FM2466	DS40H	S45	S94 M94 M96 M97	G536	FM2862						
	3	< 14	R443 R423	FM2445 FM2446 FM2648						DS100H DS43ST					
	1	> 24		B9-44											
2	2	14-24	G/R526 G526 AR526 AG526	B9-33	DS61H	S65 I			TD19L	DS105H	S66				
	3	< 14	R426 AR426	FM2445 TD13L	DS53H DS39H			R482	HZ23-2	DS95H DS35 DS35H DS44ST		M53 M53V			
	1	> 24													
3	2	14-24		FM2465 FM2665					FM2862	DS68H DS88H DS81					
	3	< 14		FM2643 FM2445				G/R435 AG435 AR435 R335		DS107H DS102H DS48H	RD3				
	1	> 24													
4	2	14-24		FM2365 FM2463 FM2365	DS103H		M83 M83V		FM2563 FM2565 FM2865		S75				
	3	< 14							FM2643 FM2745 FM2545 FM2845	DS90H DS56H DS85H DS84H	RD1001 RD1002	M22 M27 M22V M27V			

HC = Hughes Christensen; DBS = Security Diamant Boart Stratabit; HYC = Hycalog; CRYST = Crystal Profor; GEO = Geodiamond.

# IADC COMPARISON OF PDC BITS (continued)

s 3							Boo	dy style				
Cutters		Size		~	3 Mediu	im				4 Lon	g	
		····	НС	DBS	HYC	CRYS	T GEO	НС	DBS	HYC	CRYST	GEO
	1	> 24	4									
1	2	14-24	1				S81 S91 M80 S76		FM2566	5		
	3	< 14			DS38							
	1	> 24										
2	2	14-24		B25 FM2565	DS80H DS76H DS34H DS76H	S250	M91 M75 M88 S82					
	3	< 14		FM2743 FM2943	DS46H		M75V					
	1	> 24						ŕ				
3	2	14-24	G/R535 AG545		DS104 DS90 DS86 DS70	RD50	M71 M71V		FM2862	DS68H		
	3	< 14		FM2943 FM2643 FM2943			M42 M50	R445 AG445 AR445		DS92		
	1	> 24										
4	2	14-24	G/R547 G/R549 AR547	FM2563 FM2565 FM2865	DS68 DS78H DS77H DS70H	RD51	M44 M61 M68 M61V		FM2665 FM2865		S265H	
	3	< 14	G/R437 AG437 AR437 G/R447	FM2643 FM2745 FM2546 FM2845	DS93H DS75H DS47H DS47H		M34/M35 M36/M37 M39/M40 M41/M42	G417	B10-25 B36-2 FM2745 FM2846	DS65H DS92H DS92H DS57H	S280H S280HY	

HC = Hughes Christensen; DBS = Security Diamant Boart Stratabit; HYC = Hycalog; CRYST = Crystal Profor; GEO = Geodiamond.

### E 12

# IADC COMPARISON OF TPS & NATURAL DIAMONDS BITS

0						Boo	dy style	·				
Cutters size	F	lement			1 Flat					2 Short		
			НС	DBS	HYC	CRYST	GEO	НС	DBS	HYC	CRYST	GEO
	1	NAT*										
< 3 SPC*	2	TSP*				DK320			TT521			
	3	COMB*				DK320RC						
	1	NAT*	D411ST(M) D42SM(M)			K300 DK300		D41 D24			H400	D42
7 3-7 SPC*	2	TSP*	S296ST(M)		828ST					263 263ND		
	3	COMB*										
	1	NAT*		TB26						585		
8 SPC*	2	TSP*										
8 > 7 SP	3	COMB*		TBT26								
	4	IMP*	S279(M)		480		K33 K35			460, 461 462, 463 464, 470 471/72/73		

HC = Hughes Christensen; DBS = Security Diamant Boart Stratabit; HYC = Hycalog; CRYST = Crystal Profor; GEO = Geodiamond.

* NAT = Natural Diamond Bits; TSP = Thermostable; COMB = Combination Cutter Bits; IMP = Impregnated Diamond Bits; SPC = Stones Per Carat.

### IADC COMPARISON OF TPS & NATURAL DIAMONDS BITS (continued)

5						Bc	ody style								
Cutters size		Element			3 Medium					4 Long					
			нс	DBS	HYC	CRYST	GEO	HC	DBS	HYC	CRYST	GEO			
	1	NAT*				H200	D62 D62HT D71 D72	T18				D51 D52			
< 3 SPC*	2	TSP*			211 241			S725	TT561						
	3	COMB*	S225 Z437					SD248	TBT17		M320 M320RC				
	1	NAT*	D262 D311	TB16	753 901 744 730, 733	H300	D54 D73	T51 D331(M)				D53			
7 3-7 SPC*	2	TSP*	226		223 243 223ND 243ND			S248	TT593						
	3	COMB*							TBT703						
	1	NAT*						-			H600				
* 	2	TSP*													
8 > 7 SPC*	3	COMB*													
	4	IMP*		TBT601MP	445 442 443 450										

HC = Hughes Christensen; DBS = Security Diamant Boart Stratabit; HYC = Hycalog; CRYST = Crystal Profor;

GEO = Geodiamond. * NAT = Natural Diamond Bits; TSP = Thermostable; COMB = Combination Cutter Bits; IMP = Impregnated Diamond Bits; SPC = Stones Per Carat.

## IADC DULL BIT GRADING (After IADC/SPE 23938-23939 of 1992)

The dull grading system applies both to roller bits and fixed cutter bits. The system is flexible enough for use in bit reports, daily reports and databases.

	Cutting s	structure		Bearing	Gaga	Other	Reason	
Inner	Outer	Dull char.	Location	seals	Gage	dull char.	pulled	
Table <b>1</b>	Table <b>1</b>	Table <b>3</b>	Table <b>4</b>	Table <b>5</b>	Table <b>6</b>	Table <b>3</b>	Table <b>8</b>	

#### Table 1

**Inner cutting structure** (inner = inner 2/3 of the bit) **Outer cutting structure** (outer = outer 1/3 of the bit – gage row only)

In columns 1 and 2 a linear scale from **0** to **8** is used to describe the condition of the cutting structure according to the following:

#### Steel tooth bits

A measure of lost tooth height due to abrasion and/or damage:

**0** = No loss of tooth height

1

 $\mathbf{8}$  = Total loss of tooth height

#### **Insert bits**

A measure of total cutting structure reduction due to lost, worn and/or broken inserts:

**0** = No lost, worn and/or broken inserts

1

**8** = All inserts lost, worn and/or broken

#### **Fixed cutter bits**

A measure of lost, worn and/or broken cutting structure:

- **0** = No lost, worn and/or broken cutting structure
- 1

**8** = All of cutting structure lost, worn and/or broken.

# IADC DULL BIT GRADING (After IADC/SPE 23938-23939 of 1992) (continued)

#### Table 2 – Dull characteristics

(Use only cutting structure related codes)

BC* = Broken Cone BF = Bond Failure BT = Broken Teeth/Cutters BU = Balled Up Bit CC* = Cracked Cone CD* = Cone Dragged CI = Cone Interference CR = Cored CT = Chipped Teeth/Cutters ER = Erosion FC = Flat Crested Wear HC = Heat Checking JD = Junk Damage LC* = Lost Cone * Show cone # or #'or marked section (when 0)	LN = Lost Nozzle LT = Lost Teeth/Cutters OC = Off Center Wear PB = Pinched Bit PN = Plugged Nozzle/Flow Passage RG = Rounded Gage RO = Ring Out SD = Shirttail Damage SS = Self Sharpening Wear TR = Tracking WO = Washed Out Bit WT = Worn Teeth/Cutters NO = No Dull Characteristics
* Show cone # or #'s under location (table 3).	

#### Table 3 – Location

Roller con	Fixed cutter	
N = nose row M = middle row G = gage row A = all rows	Cone # 1 2 3	C = cone N = nose T = taper S = shoulder G = gage A = all rows

#### Table 4 – Bearings/seals

Non-sealed bearings	Sealed bearings
A linear scale estimating bearing life used: 0 = no life used 8 = all life used	E = seals effective F = seals failed N = not able to grade X = fixed cutter bit

### Table 5 – Gage

Measure in fra	action of an inch:
1	in gage
0 – 1/16 in	out of gage
2/16 – 1/8 in	out of gage

# E 16

### IADC DULL BIT GRADING (After IADC/SPE 23938-23939 of 1992) (continued)

#### Table 6 – Reason pulled or run terminated

- BHA = Change Bottom Hole Assembly
  DMF = Downhole Motor Failure
  DTF = Downhole Tool Failure
  DSF = Drill String Failure
  DST = Drill Stem Test
  DP = Drill Plug
  CM = Condition Mud
  CP = Core Point
  FM = Formation Change
  HP = Hole Problems
- LIH = Left In Hole HR = Hours On Bit
- LOG = Run Logs
- PP = Pump Pressure
- PR = Penetration Rate
- RIG = Rig Repair
- TD = Total Depth/Casing Depth
- TW = Twist Off
- TQ = Torque
- TR = Weather Conditions

#### Location designation



### PARAMETERS FOR USING INSERT BITS AND FRICTION BEARINGS (After Baker-Hughes)

For ATJ and ATM series, the numbers in the table indicate the product of bit weight (W) in 1000 daN times rotary speed (N) in revolution per minute that the bearing can safely handle.

**Note:** This table only considers bearing capability and does not consider compact breakage or seal failure, which may be the limiting factors for bit performance.

WN	4 3/4	5 7/8	6	6 1/8	6 1/2	7 7/8	8 3/8	8 1/2	8 3/4	9 1/2	9 7/8	10 5/8	12 1/4	14 3/4	17 1/2
ATJ05											1975		2850		
ATJ11								1625		2125	1975		2850		
ATM11						1450		1450	1725		1975		2550		3325
ATJ1								1650					2850		
ATJ22		1225	1225	1225	1225		1725	1925		2225	2225	2175	2900		
ATM22						1525		1625	1775	2225	2075		2625	2425	3550
ATJ2C								1925		2225	2225		2900		
ATJ33	1150	1225	1225	1225	1225		1725	1925		2225	2225	2175	2900		
ATM33						1525	1525	1625	1625		2075		2625		3950
ATJ33C								1925		2225	2225	2175	2900		
ATJ44			1175		1300		1675	2050		2150	2150	2125	2775		
ATJ44C								2050		2150	2150	2125	2775		
ATJ55	1100	1175	1175	1175			1675	2050		2150	2150		2775		
ATJ55R					1300		1675	2050		2150	2150		2775		
ATJ77					1300			2050		2150	2150		2775		
ATJ99					1300			2050		2150	2125				

For WN in 1000 lb  $\times$  rpm, multiply the number given in the table by 2.25.

*Example:* 8 1/2 in bit – ATM22: *WN* = 1625 (1000 daN × rpm)

 $WN = 1625 \times 2.25 = 3650 (1000 \text{ lb} \times \text{rpm})$ 

The following alternatives are available:

(a) WOB	16 250 daN	(36 500 lb)
(b) rotary speed	100 rpm	(100 rpm)
or:		
(a) WOB	20 000 daN	(45 000 lb)
(b) rotary speed	81 rpm	(81 rpm)

or any other combination, according to whether the rotary speed or weight on bit is adjusted for best action on the formation.

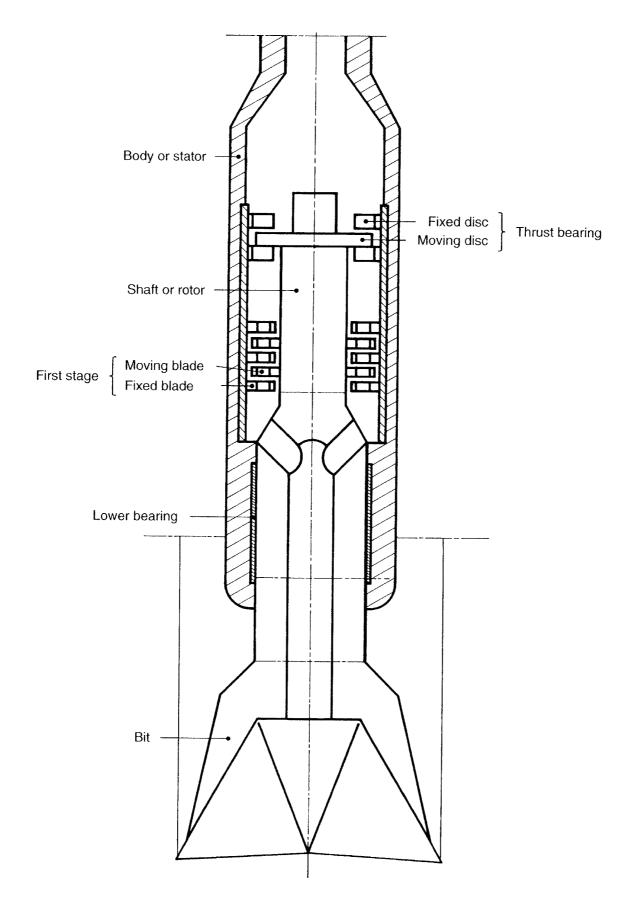
 $daN \times 2.25 = lb$ 

### THREADS AND MAKE-UP TORQUES FOR DRILL BITS AND CORING BITS (API RP 7G, January 1, 1995 – API Spec 7, April 1, 1994)

#### **Rock bits**

Bit size	Bit	Bit	Make-u	ip torque
(in)	thread	thread	(daN.m)	(ft.lb)
3 3/4 - 4 1/2 4 5/8 - 5 5 1/8 - 7 3/8 7 1/2 - 9 3/8 9 1/2 - 14 3/8 14 1/2 - 18 1/2 18 5/8 to 26 27 and larger	2 3/8 REG 2 7/8 REG 3 1/2 REG 4 1/2 REG 6 5/8 REG 6 5/8 or 7 5/8 REG 7 5/8 or 8 5/8 REG 8 5/8 REG	2 3/8 REG 2 7/8 REG 3 1/2 REG 4 1/2 REG 6 5/8 REG 7 5/8 REG 8 5/8 REG	$\begin{array}{r} 400-480\\ 600-750\\ 950-1200\\ 1600-2200\\ 3800-4300\\ 4600-5400\\ 5400-8100\\ \end{array}$	$\begin{array}{c} 3\ 000 - 3\ 500 \\ 4\ 500 - 5\ 500 \\ 7\ 000 - 9\ 000 \\ 12\ 000 - 16\ 000 \\ 28\ 000 - 32\ 000 \\ 34\ 000 - 40\ 000 \\ 40\ 000 - 60\ 000 \end{array}$

#### **Diamond and PDC bits**


Bit size	Bit thread	Maximum pin ID	Bit sub OD	Minimum mak	e-up torque (1)
(in)	identification	(in)	(in)	(daN.m)	(ft.lb)
3 11/16 – 4 1/2	2 3/8 REG	1	3 3 1/8 3 1/4	243 328 418	1 791 2 419 3 085
4 17/32 – 5	2 7/8 REG	1 1/4	3 1/2 3 3/4 3 7/8	417 626 632	3 078 4 617 4 658
5 1/32 – 7 3/8	3 1/2 REG	1 1/2	4 1/8 4 1/4 4 1/2	701 855 1 039	5 171 6 306 7 660
7 13/32 – 9 3/8	4 1/2 REG	2 1/4	5 1/2 5 3/4 6 6 1/4	1 688 2 234 2 380 2 408	12 451 16 476 17 551 17 757
9 13/32 14 1/2	6 5/8 REG	3 1/4	7 1/2 7 3/4 8 8 1/4	5 030 5 133 5 178 5 224	37 100 37 857 38 193 38 527
14 9/16 – 18 1/2	7 5/8 REG	3 3/4	8 1/2 8 3/4 9 9 1/4 9 1/2	6 548 7 824 8 130 8 200 8 256	48 296 57 704 59 966 60 480 60 895

(1) Normal torque range is tabulated value plus 10%.

	•	
Core barrel	Make-u	p torque
size (in)	(daN.m)	(ft.lb)
4 1/8 4 1/2 4 3/4 5 3/4 6 1/4 × 3 6 1/4 × 4 6 3/4 8	400 - 490 680 - 800 550 - 660 1 000 - 1 190 2 020 - 2 410 1 100 - 1 330 1 340 - 1 630 2 580 - 3 080	$\begin{array}{c} 3\ 000\ -\ 3\ 600\\ 5\ 000\ -\ 6\ 000\\ 4\ 050\ -\ 4\ 850\\ 7\ 400\ -\ 8\ 800\\ 14\ 900\ -\ 17\ 800\\ 8\ 150\ -\ 9\ 800\\ 9\ 900\ -\ 12\ 000\\ 19\ 000\ -\ 22\ 700 \end{array}$

#### **Coring bits**

### TURBODRILL



### TURBODRILLING

#### I TURBODRILL SPECIFICATIONS

Turbodrills are characterized by:

- (a) Outside diameter of the body
- (b) Number of stages
- (c) Number of sections
- (d) Type of blades
- (e) Length and weight.

The hydraulic specifications are given for a nominal pump flow  $Q_n$  and a mud specific gravity of 1.20.

These nominal specifications are:

- (a) Nominal speed  $N_n$
- (b) Nominal horsepower output  $P_n$
- (c) Nominal torque  $T_n$
- (d) Nominal pressure drop  $\Delta p_{0}$
- (e) Axial thrust  $P_a$ .

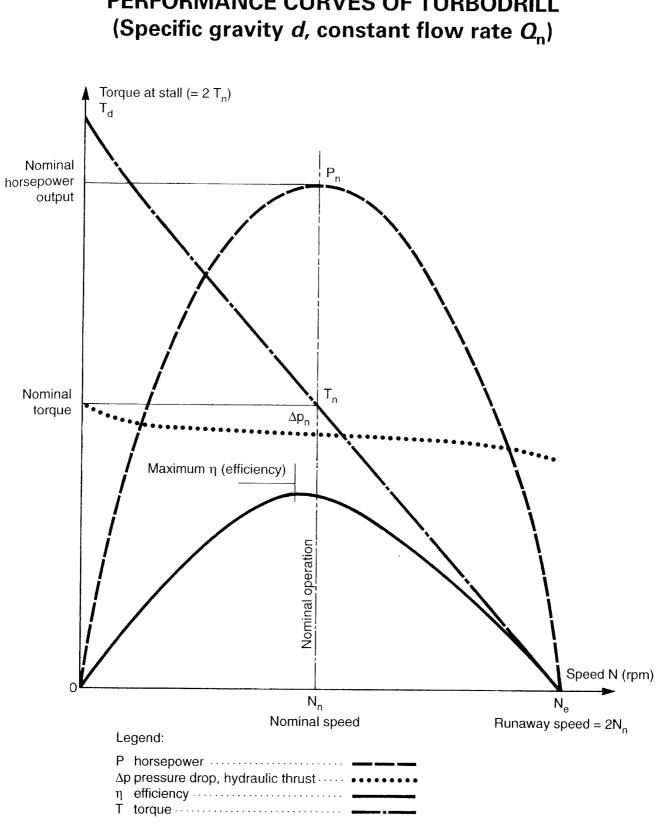
The nominal horsepower output is the maximum output obtained with nominal pump flow.

The efficiency of the turbodrill is equal to the ratio of the mechanical horsepower supplied by the turbodrill to the hydraulic horsepower supplied to the turbodrill:

$$\eta = \frac{\text{Mechanical horsepower}}{\text{Hydraulic horsepower}}$$

#### II VARIATIONS IN NOMINAL SPECIFICATIONS WITH PUMP FLOW AND MUD SPECIFIC GRAVITY

If  $N_n$ ,  $P_n$ ,  $T_n$  and  $\Delta p_n$  are the nominal specifications of a turbodrill for a flow rate  $Q_n$  and specific gravity of 1.20, for a flow rate Q and specific gravity d, the specifications are:


$$N'_{n} = N_{n} \frac{Q}{Q_{n}}$$

$$T'_{n} = T_{n} \frac{d}{1.20} \left[\frac{Q}{Q_{n}}\right]^{2}$$

$$P'_{n} = P_{n} \frac{d}{1.20} \left[\frac{Q}{Q_{n}}\right]^{3}$$

$$\Delta p'_{n} = \Delta p_{n} \frac{d}{1.20} \left[\frac{Q}{Q_{n}}\right]^{2}$$

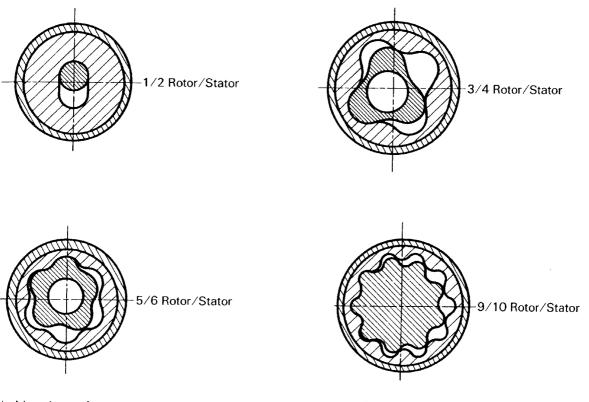
The axial thrust is approximately proportional to the specific gravity d and to the square of Q.



# **PERFORMANCE CURVES OF TURBODRILL**

IONS	1.20)
SPECIFICATIONS	mud
. SPEC	avity of
URBODRILL	ecific grav
TURBC	(Spec

	1/4	3/4	/4	8	7/8	7/8	7/8	7/8	7/8	7/8	1/4	1/4	/4	1/4	1/4	1/4	1/4	1/2	1/2		1
size )	9	0	9	2	7	7	0	ດ	တ	თ	12	2	2	2	12	12	12	17	17	26	
Hole size (in)	7/8 to	to	to	1/8 to	1/8 to	1/8 to	3/8 to	3/8 to	3/8 to	3/8 to	3/8 to	3/8 to	3/8 to	1/2 to	1/2 to	1/2 to	1/2 to	1/4 to	1/4 to	3/4 to	
	ى م	Q	9	O	O	ю 	ω	8	ω	ώ	ω	<u></u>	<u></u>	œ	œ	œ	œ	12	12	14	
Weight (daN)	893	765	256	910		700	888	536	160	940	730	030	390	310		900	380	370	935	260	
We (dâ			~	0,			-	2	5	5		-	() (	2		0,	<del>~</del>	4	сл С	2 2	
nber f Jes	0	129	8	0	0;	90	2	80	5	ų	50	80	100	0	0	0	0	5	œ	79	
Number of stages	200	12	258	150	240	0)	172	258	164	246	ω	ω	10	<u>6</u>	220		100	172	258		
inal out V)	5	0	a	0	2	2	0	m	5	2	0	4	0	10	4	0	0	0	0	(0	
Nominal output (kW)	52	30	58	60	97	37	210	313	182	272	40	64	68	255	374	120	170	273	410	136	
ure 5	600	300	700	400	0	000	600	400	400	0	00	700	000	0	200	800	300	000	700	0	
Pressure drop (kPa)	9 6	5 3(	97(	8 4(	14 000	200	12 6(	18 4(	10 4(	14 900	2 400	3 7(	50(	12 400	18 2(	5 8(	8 3(	11 00	15 7(	4 700	
														0					~~~~		-
Nominal speed (rpm)	1 180	1 020	1 020	1 030	1 030	1 030	1 100	1 100	880	880	750	750	750	1 020	1 020	1 020	1 020	723	723	630	
Nominal torque (N.m)	420	280	540	560	006	340	1 820	2 720	1 970	2 950	510	820	1 130	2 390	3 500	1 120	1 590	3 610	5 420	2 060	
																	<b>_</b> ??_				
Nominal pump flow (Ipm)	600	600	600	009	600	600	600	600	800	800	800	800	800	800	800	800	800	2 500	500	3 000	
										·	·	·			~	·					
Type	T2AI		T2FI	ST15	25	STD1-5	IAI	T3AI	IAI	١٩	ST	Z	ĻL.	ST1	12	D1	D2	T2AI	T3AI	TFST	
Τv	Τ2	⊢	L L	ST	ST	STE	T2	Ë	12	Ê	Ē	LL F	<b>⊢</b> −−	്ഗ	'ഗ	ST	ST	T2	ΕĽ	Ĕ	
turer	Neir	Neir	Neir	LI.	EII.	riil	Neir	II.	=	Ē	Ē	Veir	Neir	Neir							
Manufacturer	Neyrfor Weir	Neyrfor Weir	Neyrfor Weir	Redi D	Redi Drill	Redi Drill	Neyrfor Weir	Redi Drill	Redi Drill	Redi Drill	Redi Drill	Neyrfor Weir	Neyrfor Weir	Neyrfor Weir							
Ma	Ne	Ne	Ne	<u>ц</u>	·L_	·LL	Se	Se	Ze	Se	Ne	Ne	Ze	· <b>L</b> .	<u>ц</u>	ш	·L.	Ne	Ne	Z	
Size (in)	3/4	5	ស	വ	വ	ស	5/8	5/8	1/4	1/4	1/4	1/4	1/4	1/4	1/4	1/4	1/4	1/2	9 1/2	10 1/4	
, - , v	4						Q	Q	2	~		7	~	7	7		7	თ	ത	10	


lpm × 0.264 = gpm kW × 1.34 = hp N.m × 0.738 = lb.ft kPa × 0.145 = psi daN × 2.25 = lb

### **POSITIVE DISPLACEMENT MOTORS**

#### **I SPECIFICATIONS OF POSITIVE DISPLACEMENT MOTORS**

Positive displacement motors are identified by:

- (a) Outside diameter of the body
- (b) Ratio of the shaft lobes (rotor) to the sleeve (stator) which may vary from 1/2 to 9/10:



- (c) Number of stages
- (d) Length and weight.

The hydraulic characteristics are indicated by:

- (a) Minimum and maximum flow rates
- (b) Minimum and maximum rotary speeds
- (c) Maximum pressure drop across the motor
- (d) Maximum torque supplied
- (e) Maximum mechanical horsepower output supplied
- (f) Maximum efficiency.

#### **II VARIATIONS IN SPECIFICATIONS**

The specifications are given by the manufacturers for a specific gravity of 1.20 (10 ppg):

• The rotary speed is directly proportional to the flow rate:

$$N_2 = N_1 \frac{Q_2}{Q_1}$$

The higher the number of shaft lobes, the lower the rotary speed. It varies only slightly with torque and pressure drop. E 24

# **POSITIVE DISPLACEMENT MOTORS**

(continued)

• The torque is directly proportional to the pressure drop across the motor:

$$T_2 = T_1 \frac{\Delta p_2}{\Delta p_1}$$

• The **mechanical horsepower output** transmitted to the rotor is the product of the rotary speed multiplied by the torque:

$$P_{\rm m} = \frac{TN}{9550}$$

• The hydraulic horsepower is the product of the pressure drop multiplied by the flow rate:

$$P_{\rm h} = \frac{\Delta p Q}{60\ 000}$$

where:

$$T = torque (in N.m)$$

N =rotary speed (in rpm)

 $\Delta p$  = pressure drop in the motor (in kPa)

Q = mud flow rate (in l/min)

 $P_{\rm h}$  = hydraulic horsepower (in kW)

 $P_{\rm m}$  = mechanical horsepower output at rotor (in kW)

The efficiency is the ratio:

$$\eta = \frac{P_{\rm m}}{P_{\rm h}}$$

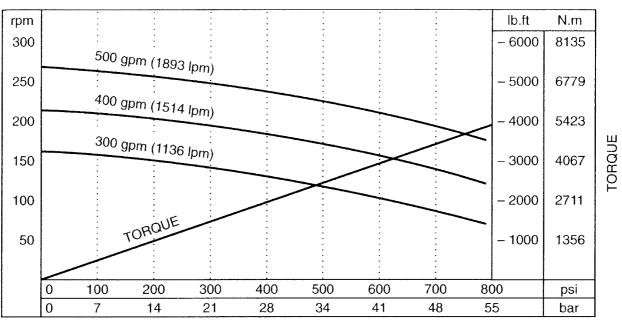
$$\eta = 6.28 \frac{TN}{\Delta p Q}$$

Example: Halliburton 6 3/4 in F2000S

$$Q_{max} = 1704 \text{ l/min} \qquad T_{max} = 5694 \text{ N.m}$$

$$\Delta P_{max} = 4100 \text{ kPa} \qquad N_{max} = 170 \text{ rpm}$$

$$P_{h} = \frac{4100 \times 1704}{60\ 000} = 116.4 \text{ kW}$$


$$P_{m} = \frac{5694 \times 170}{9550} = 101.3 \text{ kW}$$

$$\eta = \frac{101.3}{116.4} = 87\%$$

In fact the rotary speed slightly decreases with torque (see diagram E 25) and the real value of efficiency is lower than 87. With a torque of 5694 N.m, the rotary speed decreases to about 120 rpm (Halliburton Dyna-Drill handbook). Real efficiency is 61%.

### PERFORMANCE CURVES OF POSITIVE DISPLACEMENT MOTORS FOR DIFFERENT FLOW RATES Q

Example of a  $6 \frac{3}{4''} - \frac{4}{5}$  lobe Performance Curves:



### Motor start pressure 100 psi (7 bar)

PRESSURE

SPECIFICATIONS OF POSITIVE DISPLACEMENT MOTORS (Moineau type)	
------------------------------------------------------------------	--

r						1				· · · ·							<b></b>						·								
Hole size	(U)	to 2		to 2	to 2	1/4 to 3		1/4 to 3	1/4 to 3	7/8 to 3	2 7/8 to 3 1/2	7/8 to 3	7/8 to 3	7/8 to 3	7/8 to 3	3 to 4 5/8		3/8 to		1/4 to 4	to 4	1/4 to 4	1/4 to 5	4 1/4 to 5 7/8	4 1/2 to 6	4 1/2 to 6	3 7/8 to 4 3/4	7/8 to 4	3 7/8 to 4 3/4	3 7/8 to 4 3/4	
Overall Lenath	(E)	2.26	2.38	2.26	2.38	2.78	3.14	2.78	3.14	2.57	3.81	2.78	2.87	2.71	2.87	3.90	3.05	4.47	3.05	2.32	2.59	2.83	3.60	4.50	4.60	4.60	3.14	3.45	3.69	3.65	
Operating horse- power	output (KVV)	ω	7	ω	7	15	13	15	<del>,</del>	പ	12	15	16	15	16	25	11	27	თ	24	24	10	20	37	27	14	23	24	35	33	
Maximum operating	pressure drop (kPa)		3 500			5 200	5 200	5 200	5 200		5 378				5 200	6 200					2 600	2 600	2 900						3 400	3 400	
Maximum operating	torque (N.m)	52	102	52	101	163	204	163	169	115	292	163	251	163	251	152	224	542	278	360	542	278	515	976	711	746	542	359	881	881	
Rotary speed (rpm)	Max.	1 435	700	1 435	700	850	600	850	600	380	400	850	600	850	600	1 590	480	480	300	642	415	360	365	365	360	180	400	642	375	360	
Rotary (rp.	Min.	645	365	645	365	580	230	580	325	100	100	580	300	580	300	790	120	120	75	285	200	145	180	180	86	48	290	285	175	180	
Flow rate (I/min)	Max.	83	159	83	159	159	246	159	246	189	189	159	303	159	303	303	303	303	303	341	473	473	606	606	416	416	416	341	606	606	
Flow (I/n	Min.	38	83	38	83	114	95	114	132	76	76	114	151	114	151	151	76	76	76	151	227	189	303	303	114	114	303	151	284	303	
No. of	lobes	3/4	5/6	3/4	5/6	5/6	5/6	5/6	5/6	5/6	5/6	5/6	5/6	5/6	5/6	1/2	5/6	5/6	7/8	7/8	7/8	7/8			4/5	7/8	9/10	7/8	5/6	5/6	
Tvpe		D170	D170HF	MS200H	MS200HF	D212	D212HF	MS200M	MS200HF	A238M	A238M	D237	D237HF	MS200M	MS200HF	D1000H	A287M	A287XP	A287M	D287HS	D287HF	MS600M	M1X	M1XL	A350M	A350M	D350	D350HS	D350HF	MS500M	Y
Manufacturer		Drilex	Drilex	Halliburton	Halliburton	Drilex	Drilex	Halliburton	Halliburton	Anadrill Schlum.	Anadrill Schlum.	Drilex	Drilex	Halliburton	Halliburton	Halliburton	Anadrill Schlum.	Anadrill Schlum.	Anadrill Schlum.	Drilex	Drilex	Halliburton	Baker Hughes Integ	Baker Hughes Integ	Anadrill Schlum.	Anadrill Schlum.	Drilex	Drilex	Drilex	Halliburton	
Size	(u)	1 11/16	1 11/16	1 11/16	1 11/16	2 1/8	2 1/8	2 1/8	2 1/8	2 3/8	2 3/8	2 3/8			2 3/8	2 3/4	2 7/8	2 7/8	2 7/8	2 7/8	2 7/8	2 7/8	3 1/8	3 1/8	3 1/2	3 1/2	3 1/2	3 1/2	3 1/2	3 1/2	

 $V = V \times 0.264 = ga/min = N \times 0.738 = Ib.ft = kPa \times 0.145 = psi = kW \times 1.34 = hp = m \times 3.281 = ft$ 

SPECIFICATIONS OF POSITIVE DISPLACEMENT MOTORS (continued) (Moineau type)

5 7/8 to 7 7/8 5 3/4 to 6 1/2 5 3/4 to 6 1/2 5 3/4 to 6 1/2 8 3/8 to 9 7/8 8 3/8 to 9 5/8 7 7/8 to 10 5/8 6 1/2 to 7 7/8 5 7/8 to 7 5 7/8 to 7 6 to 7 7/8 6 to 7 7/8 6 to 7 3/8 6 to 7 7/8 6 to 7 7/8 Hole size (in) 5 7/8 to 7 5 7/8 to 7 6 to 7 7/8 4 3/4 to 6 5/8 to 6 6 to 7 7/8 Overall Length (m)  $\begin{array}{c} 5.74 \\ 5.05 \\ 6.86 \\ 5.05 \\ 5.05 \\ 5.70 \\ 8.50 \\ 8.50 \\ 8.50 \\ 5.76 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.12 \\ 7.$ 3.60 6.00 6.80 7.60 12.60 6.90 6.09 5.88 7.15 80 ŝ Operating horse-power output (KW) 44 48 85 34 47 76 105 94 operating pressure drop (kPa) Maximum 5 200 5 200 2 586 3 447 5 860 5 860 4 9500 9 5000 9 5000 11 000 3 400 3 400 3 400 3 2400 3 2400 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 2 100 4 1003 1005 8004 200 8 400 2 500 3 450 2 500 4 300 2 500 3 100 4 100 6 200 500 500 (n (n Maximum operating torque (N.m) 617 556 423 576 1 220 1 844 3 525 1 966 2 847 2 847 4 067 4 067 2 847 2 135 2 135 2 949 2 135 2 949 2 989 3 796 5 989 3 796 5 69 786 576 812 935 3797 1817 7592 5 204 1 851  $\infty$ Мах. 530 745 Rotary speed (rpm) 560 480 190 550 190 172 500 200 Min. 320 320 335 75 275 105 350 105 86 200 192 192 003 946 946 946 946 946 946 136 946 703 325 704 514 704 Max. 586 662 757 946 946 946 946 946 946 950 757 280 892 Flow rate (I/min) 2 Min. 757 946 946 946 284 568 1135 757 341 644 No. of lobes 5/6 1/2 4/5 7/8 5/6 5/6 5/6 5/6 7/8 7/8 7/8 1/2 4/5 1/2 5/6 5/6 7/8 1/2 F2000S-tand+ F2000M-tand+ F2000M-tand F2000S-tand+ VM7000 VM5000 F2000S F2000M M2P/XL DIR475 D475SS VM5000 VM5000 A475XP A475M D475TPS D1000H D500 F2000S A475M A475M F2000H D625SS F2000H D475 D375 М1X M1XL D500 Type Baker Hughes Integ Baker Hughes Integ Baker Hughes Integ Anadrill Schlum. Anadrill Schlum. Anadrill Schlum. Anadrill Schlum Neyrfor Weir Neyrfor Weir Manufacturer Veyrfor Weir Veyrfor Weir Halliburton Drilex Drilex Drilex Drilex Drilex Drilex 3 7/8 3/4 6 1/2 6 1/2 6 1/2 6 1/2 5/8 5/8 Size (in) 1/4 m G ഗ ဖဖ

E 27

= t

m × 3.281

 $kW \times 1.34 = hp$ 

= psi

 $kPa \times 0.145$ 

= lb.ft

N.m × 0.738

 $1/min \times 0.264 = gal/min$ 

State Information         Monutacture Information         Type         Flow refer to the state         Monutacture Information         Constitue (mmm)         Constitue (mmm)														
Min         Max.         Min.         Min.         Max.         Min.         Min.         Min.	Size	Manufacturer	Type	No. of	Flov (I/r	v rate nin)	Rotary (rp	/ speed m)	Maximum operating	Maximum operating	Operating horse- nower	Overall Lenoth	Hole size	ſ
34         Anachill Schlum.         A675M         1/2         757         1 893         180         465         7.19         87         7.19           34         Anachill Schlum.         A675XP         45         1136         2271         150         300         415         5         550         650         650         650         650         650         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         750         560         750         560         750         560         750         560         750         750         560         750         750         560         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750         750 <td< td=""><td></td><td></td><td></td><td>0068</td><td>Min.</td><td>Max.</td><td>Min.</td><td>Max.</td><td>(N.m) (N.m)</td><td>pressure drop (kPa)</td><td>output (kVV)</td><td>(m)</td><td>(u)</td><td></td></td<>				0068	Min.	Max.	Min.	Max.	(N.m) (N.m)	pressure drop (kPa)	output (kVV)	(m)	(u)	
3.4         Anadrill Schlum.         A757         1136         2.271         1150         300         4135         4757         130         6.50         8           3.4         Anadrill Schlum.         A75Xyr         7/8         1136         2.271         150         300         4135         4757         130         6.50         8           3.4         Anadrill Schlum.         A75Xyr         7/8         1136         2.271         86         165         4.000         3378         690         159         960         8           3.4         Baker Hughes Inteq         M1X         1003         2.498         30         220         6.847         5.900         138         960         184         7.00           3.4         Baker Hughes Inteq         M1X         1003         2.461         55         185         6.101         2.700         139         7.00         189         7.00         18         7.00         130         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00         7.00 <t< td=""><td></td><td>Anadrill Schlum.</td><td>A675M</td><td>1/2</td><td>757</td><td></td><td>180</td><td>465</td><td>1 790</td><td>3 447</td><td>87</td><td>7.19</td><td>8 3/8 to 9 7/8</td><td>T</td></t<>		Anadrill Schlum.	A675M	1/2	757		180	465	1 790	3 447	87	7.19	8 3/8 to 9 7/8	T
3.4         Anadrill Schlum.         A75/M         4/5         1136         2.271         150         300         6169         6964         194         805         759           3.4         Anadrill Schlum.         A75/M         7/8         1136         2.271         86         175         7.400         5376         133         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7.67         8         7         7         8         7.67         8         7         7         7		Anadrill Schlum.	A675M	4/5	1 136		150	300	4 135	4 757	130	6.50	8 3/8 to 9 7/8	
34         Anadrill Schum         AF75M         7/8         1136         2271         86         155         4.000         3378         669         563         133         7.07         8           34         Anadrill Schum         M715X         7/8         1136         2271         86         165         4.000         3378         663         133         7.07         8           34         Baker Hughes Inteq         M1XL         1003         2.496         39         220         6.477         559         170         7.600         178         9.60         78           34         Baker Hughes Inteq         M1XL         1003         2.461         155         185         185         166         5.00         178         9.60         178         9.60         78         7.60         7.60         7.60         7.60         7.60         7.60         7.60         7.60         7.60         7.60         7.60         7.60         7.60         7.60         7.60         7.60         7.60         7.60         7.60         7.60         7.60         7.60         7.60         7.60         7.60         7.60         7.60         7.60         7.60         7.60         7.60		Anadrill Schlum.	A675XP	4/5	1 136		150	300	6 1 6 9	6 964	194	8 05	8.3/8 to 9.7/8	
3.4         Amadrill Schum         Mitx         7/6         1136         2.271         86         170         7.457         5.555         133         7.67         6           3.4         Baker Hughes Inteq         M1X         1003         2.495         90         220         6.847         4.00         584         7.00         113         960         13           3.4         Baker Hughes Inteq         M1X         1.003         2.461         55         135         4.700         158         9.60         134         7.00         117         9.60         13           3.4         Dnlex         D67575         9/10         757         2.461         55         185         10.0         136         5.60         117         9.60         13         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53		Anadrill Schlum.	A675M	7/8	1 136		86	165	4 000	3 378	60	5.89	8 3/8 to 9 7/8	
34         Baker Hughes Inten         MIX         1003         2.498         90         220         3.44         5.00         175         9.00         175         9.00         175         9.00         175         9.00         175         9.00         175         9.00         175         9.00         175         9.00         175         9.00         175         9.00         175         9.00         175         9.00         175         9.00         175         9.00         175         9.00         175         9.00         175         9.00         175         9.00         175         9.00         175         9.00         175         9.00         175         9.00         175         9.00         176         9.00         176         9.00         176         9.00         177         9.00         176         9.00         177         9.00         177         9.00         177         9.00         176         9.00         176         9.00         176         9.00         177         9.00         176         9.00         177         9.00         177         9.00         177         9.00         177         9.00         177         9.00         177         9.00         176		Anadrill Schlum.	A675XP	7/8	1 136		86	170	7 457	5 585	133	7.67	83/8 to 97/8	
3.4         Baker Hughes Inteq         MIXL         1003         2.486         9.0         2.20         6.847         5.900         1.58         9.60         8.62         7.7         9.60         8.62         7.7         9.60         8.62         7.7         9.60         8.62         7.7         9.60         1.03         2.461         5.5         1.85         6.101         7.57         2.461         5.5         1.85         6.101         7.57         9.60         1.78         9.60         1.78         9.60         1.78         9.60         1.78         9.60         1.78         9.60         1.78         9.60         1.78         9.60         1.78         9.60         1.78         9.60         1.78         9.60         1.78         9.60         1.78         9.60         1.78         9.60         1.78         9.60         1.78         9.60         1.77         9.60         1.78         9.60         1.76         9.60         1.76         9.60         1.76         9.60         1.76         9.60         1.77         9.60         1.77         9.60         1.77         9.60         1.76         9.60         1.76         9.60         1.76         9.60         1.76         1.76         1.76 <td></td> <td>Baker Hughes Integ</td> <td>M1X X</td> <td></td> <td>1 003</td> <td></td> <td>90</td> <td>220</td> <td>3 647</td> <td>4 400</td> <td>84</td> <td>7.00</td> <td>8 3/8 to 9 7/8</td> <td></td>		Baker Hughes Integ	M1X X		1 003		90	220	3 647	4 400	84	7.00	8 3/8 to 9 7/8	
3.4         Baker Hughes Inter         MZP/XL         1003         2 006         2.35         470         3 593         7 900         177         9 60         7           3.4         Drilex         DR675         9/10         757         1514         159         136         3 240         177         9 60         753           3.4         Drilex         D875FNS         9/10         757         1514         159         185         8135         3 400         108         753         7           3.4         Drilex         D875FNS         9/10         757         1514         159         185         1865         6 500         171         750         191         753         7         340         178         4 700         101         753         7         340         178         4 700         101         750         101         756         508         753         7         7         360         177         750         191         753         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7		Baker Hughes Integ	M1XL		1 003		06	220	6 847	5 900	158	9.60	8 3/8 to 9 7/8	
34         Diffex         DR6755         9/10         1136         2461         85         185         6101         2600         118         4.00         7.5           34         Drifex         D6755S         9/10         757         2461         55         185         6101         2600         118         4.00         7.5           34         Drifex         D6755S         9/10         757         2461         55         185         185         6101         2600         118         4.00         7.5           34         Halliburton         F2000NK         4/5         1135         1833         165         5084         5100         111         7.30         8         6.25         7.3         8         6.25         7.3         8         6.25         7.3         8         6.25         7.3         8         6.25         7.3         8         6.25         7.30         111         7.30         8         6.25         7.30         111         7.30         8         6.40         7.30         112         111.50         8         6.40         7.30         112         111.50         8         6.40         7.30         117         7.30         117 <td></td> <td>Baker Hughes Integ</td> <td>M2P/XL</td> <td></td> <td>1 003</td> <td></td> <td>235</td> <td>470</td> <td>3 593</td> <td>7 900</td> <td>177</td> <td>0.60</td> <td>8 3/8 to 9 7/8</td> <td></td>		Baker Hughes Integ	M2P/XL		1 003		235	470	3 593	7 900	177	0.60	8 3/8 to 9 7/8	
3.4         Diffex         D675SS         9/10         757         2.461         55         185         8.155         3.400         158         6.25         7           3.4         Drifex         D675TPS         9/10         757         1.514         159         318         3.241         4.000         101         7.30         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.11         7.73         7		Drilex	DIR675	9/10	1 136		85	185	6 101	2 600	118	4.00	7 7/8 to 9 7/8	
3.4         Drilex         D6/5M/S         6/7         757         1514         159         318         3.254         4.300         108         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.53         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.1160         8         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.50         7.17         7.500 <t< td=""><td></td><td>Drilex</td><td>D675SS</td><td>9/10</td><td>757</td><td>2 461</td><td>55</td><td>185</td><td>8 135</td><td>3 400</td><td>158</td><td>6.25</td><td>7 7/8 to 10 5/8</td><td></td></t<>		Drilex	D675SS	9/10	757	2 461	55	185	8 135	3 400	158	6.25	7 7/8 to 10 5/8	
3.4         Dirliex         D575FS         9/10         757         2 461         55         185         10 850         6 900         210         896         7           3.4         Halliburton         F20000X         4/5         1135         1830         1704         95         5644         500         210         896         7           3.4         Halliburton         F20000X         4/5         1135         1830         1704         95         500         121         7.30         891           3.4         Halliburton         F2000X-tand         4/5         1135         1831         6101         2.600         142         11.60         8           3.4         Halliburton         F2000X-tand         4/5         135         185         185         6101         2.00         142         11.60         8           5.8         Drilex         D77575         9/10         757         2.461         55         185         16.00         2.00         142         11.60         8         6.40         9         0         2.60         142         11.60         8         6.40         9         0         2.60         147         11.60         8		Drilex	D675MS	6/7	757	1514	159	318	3 254	4 300	108	7.53	7 7/8 to 10 5/8	
3.4         Halliburton         F2000S         5/6         946         1704         95         170         5/64         4/100         7/30         8           3.4         Halliburton         F2000M         4/5         1125         1893         165         265         5/044         5/200         147         7/30         8           3.4         Halliburton         F2000M-tand         5/6         946         1704         95         170         7972         5/800         1427         9/10         1160         8           5.8         Driex         Driex         Driex         Drifex         07755S         9/10         1736         2461         55         185         6101         2600         170         8           5.8         Driex         Driex         Drifex         07755S         9/10         757         2461         55         185         6101         2600         170         8         4.00         9           5.8         Driex         D7755S         9/10         777         2461         55         185         10.850         6.00         171         7         7         160         9         7         19         9         7		Drilex	D675TPS	9/10	757	2 461	55	185	10 850	6 900	210	8.96	7 7/8 to 10 5/8	
3/4         Halliburton         F2000M         4/5         1135         1893         165         265         5 084         5 200         141         7.60         8           3/4         Halliburton         F2000MX         4/5         1135         1833         165         265         5 084         5 200         141         7.60         8           3/4         Halliburton         F2000MX         4/5         1356         185         165         7117         7 200         1942         1160         8           3/4         Halliburton         F2000M-tand         4/5         1356         2461         55         185         6101         2 600         142         11.60         8           5/8         Drilex         D775TS         9/10         757         2 461         55         185         6101         2 600         114         9         9         6         40         9         6         40         9         6         41         9         9         6         41         9         6         9         6         41         7         10         7         10         7         10         7         10         7         10         7 <td></td> <td>Halliburton</td> <td>F2000S</td> <td>5/6</td> <td>946</td> <td>1 704</td> <td>95</td> <td>170</td> <td>5 694</td> <td>4 100</td> <td>101</td> <td>7.30</td> <td>8 3/8 to 9 7/8</td> <td></td>		Halliburton	F2000S	5/6	946	1 704	95	170	5 694	4 100	101	7.30	8 3/8 to 9 7/8	
3/4         Haliburton         F2000MX         4/5         1628         2461         211         319         7 699         6 200         257         9.13         E           3/4         Haliburton         F20000X-tand         5/6         946         1704         95         717         7200         197         11.60         8           3/4         Haliburton         F2000X-tand         5/6         946         170         757         2665         7117         7200         197         11.60         8           5/8         Drilex         D17755         9/10         1356         2461         55         185         6101         2600         118         4.00         9           5/8         Drilex         D7755S         9/10         757         2461         55         185         10850         6900         217         1160         8           3/4         Haliburton         F2000H         122         1135         1704         275         2461         55         185         10850         6900         210         700         97         16         700         97         17.60         97         700         97         97         97         9		Halliburton	F2000M	4/5	1 135		165	265	5 084	5 200	141	7.60	8 3/8 to 9 7/8	·· ·
3/4         Haliburton         F2000X-tand         5/6         946         1704         95         170         7372         5 800         142         11.60         8 3/8 to 9           3/4         Haliburton         F2000X-tand         4/5         1135         1 704         95         170         7 372         5 800         142         11.60         8 3/8 to 9           5/8         Drifex         D1755S         9/10         757         2 461         55         185         6 101         2 600         118         4 00         9 7/8 to 12           5/8         Drifex         D7755S         9/10         757         2 461         55         185         8 135         3 400         158         6 400         9 7/8 to 12           3/4         Haliburton         F2000S         1/2         1136         1 704         275         415         1 520         6 101         2 500         67.10         9 7/8 to 12           3/4         Haliburton         F2000S         1/2         1136         1 893         2 201         167         6 200         9 7/8 to 12           3/4         Haliburton         F200S         1/2         1 136         2 271         2 20         1 7 00		Halliburton	F2000MX	4/5	1 628		211	319	7 699	6 200	257	9.13	8 3/4 to 9 7/8	
34         Haliburton         F2000Nt-tand         4/5         1135         1833         165         265         7117         7         7         10         8         3/8 to 97/8 to 14           5/8         Drilex         DIR775         9/10         1136         2.461         55         185         6.101         2.600         118         4.00         9.7/8 to 14           5/8         Drilex         D1755S         9/10         757         2.461         55         185         6.101         2.600         118         4.00         9.7/8 to 12           5/8         Drilex         D7755S         9/10         757         2.461         55         185         6.101         2.600         118         4.00         9.7/8 to 12           3/4         Halliburton         F2000S         1/2         1136         2.271         20         185         1.0305         6.900         210         9.7/8 to 12           3/4         Halliburton         F2000S         1/2         1136         2.271         20         185         10.305         6.700         200         9.7/8 to 12           3/4         Halliburton         F2000S-tand         7/8         1135         2.271         210 <td></td> <td>Halliburton</td> <td>F2000S-tand</td> <td>5/6</td> <td>946</td> <td>1 704</td> <td>95</td> <td>170</td> <td>7 972</td> <td>5 800</td> <td>142</td> <td>11.60</td> <td>3/8 to 9</td> <td></td>		Halliburton	F2000S-tand	5/6	946	1 704	95	170	7 972	5 800	142	11.60	3/8 to 9	
5/8DrilexDirty759/1011362.461851856.1012.6001184.009.7/8 to 145/8DrilexD775TS9/107572.4615518581353.4001586.449.7/8 to 145/8DrilexD775TS9/107572.461551851856.9002108:969.7/8 to 143/4HalliburtonD5001/2113517042754151.5322.500676.2009.7/8 to 123/4HalliburtonD5001/211362.2719018510.3054.7001647.009.7/8 to 123/4HalliburtonF2000S-tand7/811362.2719018510.3054.7001676.209.7/8 to 123/4HalliburtonF2000S-tand7/811362.2719018511.8626.5002.309.7/8 to 123/4HalliburtonF2000S-tand7/811362.271752.2268.4477.009.7/8 to 148Anadrill Schlum.A800M1/211362.271752.2258.2303.3022.309.7/8 to 148Anadrill Schlum.A800M7/811362.271752.2268.4079.7/8 to 148Anadrill Schlum.A800M7/811362.271752.2258.23043.4471017.879.7/8 to 148 <td>6 3/4</td> <td>Halliburton</td> <td>F2000M-tand</td> <td>4/5</td> <td>1 135</td> <td>1 893</td> <td>165</td> <td>265</td> <td>7117</td> <td>7 200</td> <td>197</td> <td>11.60</td> <td>3/8 to 9</td> <td></td>	6 3/4	Halliburton	F2000M-tand	4/5	1 135	1 893	165	265	7117	7 200	197	11.60	3/8 to 9	
5/8DrilexD775SS9/107572.461551858.1353.4001586.449.7(8.014)5/8DrilexD775TPS9/107572.4615518510.8506.9002108.969.7(8.014)3/4HalliburtonD5001/211361.7042754151.5322.500676.209.7(8.012)3/4HalliburtonF2000S7/811362.2719018510.3054.7001647.009.7(8.012)3/4HalliburtonF2000S7/811362.2719018510.3054.7001647.009.7(8.012)3/4HalliburtonF2000S7/811362.27190185118626.50023010.509.7(8.014)3/4HalliburtonF2000S-tand7/811362.27121042023610169.7(8.014)8Anadrill Schlum.A800M1/211362.2717107.879.7(8.014)8Anadrill Schlum.A800M7/811362.271752255.4373.5861039.7(8.014)8Anadrill Schlum.A800XP7/811362.271752258.2401938.929.7(8.014)8Anadrill Schlum.A800XP7/811362.271752258.2401938.917.1997/8.0148Anadrill Schlum.A800X		Drilex	DIR775	9/10	1 136		85	185	6 101		118	4 00	7/8 to 1/	
5/8DrilexD775TFS9/10757246155185108506 9002108.969 7/8 to 123/4HalliburtonD5001/211361 7042754151 5322 500676.209 7/8 to 123/4HalliburtonD5001/211361 7042754151 5322 500676.209 7/8 to 123/4HalliburtonF2000H1/211361 7042754151 5322 500676.209 7/8 to 123/4HalliburtonF2000H1/211362 2719018511 8626 5002309 7/8 to 123/4HalliburtonF2000S-tand7/811362 2719018511 8626 5002309 7/8 to 143/4HalliburtonF2000S-tand7/811362 2717104202 3043 4779 7/8 to 148Anadrill Schlum.A800M1/211362 2717552 2555 4373 4009 7/8 to 148Anadrill Schlum.A800M7/811362 2717552 2555 4373 4009 7/8 to 148Anadrill Schlum.A800M7/811362 2717552 2555 4373 4009 7/8 to 148Anadrill Schlum.A800M7/811362 2717552 2555 4373 4009 7/8 to 148Anadrill Schlum.A800M7/8 <td></td> <td>Drilex</td> <td>D775SS</td> <td>9/10</td> <td>757</td> <td></td> <td>55</td> <td>185</td> <td>8 135</td> <td></td> <td>200</td> <td>6.44</td> <td>7/8 to 14</td> <td></td>		Drilex	D775SS	9/10	757		55	185	8 135		200	6.44	7/8 to 14	
3/4       Halliburton       D500       1/2       1135       1704       275       415       1532       2500       67       6.20       97/8 to 12         3/4       Halliburton       F2000S       7/8       1136       2271       90       185       10.305       4.700       164       7.00       97/8 to 12         3/4       Halliburton       F2000S       7/8       1136       2.271       90       185       10.305       4.700       167       6.20       9.7/8 to 12         3/4       Halliburton       F2000S-tand       7/8       1136       2.271       90       185       11.862       6.500       230       10.50       9.7/8 to 14         3/4       Halliburton       F2000S-tand       7/8       1136       2.271       210       420       2.30       101       7.87       9.7/8 to 14         8       Anadril Schlum.       A800M       4/5       1136       2.271       75       2.255       5.437       3.58       9.7/8 to 14         8       Anadril Schlum.       A800M       7/8       1136       2.271       75       2.255       5.437       3.600       9.7/8 to 14         8       Anadril Schlum.       A800M		Drilex	D775TPS	9/10	757		55	185	10 850		210	8.96	7/8 to 14	
3/4       Halliburton       F2000S       7/8       1136       2 271       90       185       10 305       4 700       164       7.00       97/8 to 12         3/4       Halliburton       F2000H       1/2       1136       1 893       230       390       2 928       4 100       120       8.00       9 7/8 to 12         3/4       Halliburton       F2000H       1/2       1136       1 893       230       390       2 828       4 100       120       8.00       9 7/8 to 12         3/4       Halliburton       F2000N-tand       7/8       1 135       2 271       210       420       2 470       164       7.00       9 7/8 to 14         8       Anadril Schlum.       A800M       1/2       1 136       2 271       75       2 255       5 437       3 447       101       7.87       9 7/8 to 14         8       Anadril Schlum.       A800M       4/5       1 136       2 271       75       2 255       5 437       3 447       101       7.87       9 7/8 to 14         8       Anadril Schlum.       A800M       7/8       1 136       2 2271       48       145       8 410       9 7/8 to 14         8       Anadril Schlum.	7 3/4	Halliburton	D500	1/2	1 135		275	415	1 532		67	6 20	7/8 to 12	
3/4       Halliburton       F2000H       1/2       1136       1893       230       390       2 928       4 100       120       8.00       97/8 to 12         3/4       Halliburton       F2000S-tand       7/8       1135       2 271       90       185       11 862       6 500       2 30       97/8 to 12         3/4       Halliburton       F2000S-tand       7/8       1135       2 271       90       185       11 862       6 500       2 30       97/8 to 14         8       Anadrill Schlum.       A8000M       4/5       1136       2 271       710       420       2 347       101       7.87       97/8 to 14         8       Anadrill Schlum.       A8000M       4/5       1136       2 271       75       225       5 437       3 585       128       7.19       97/8 to 14         8       Anadrill Schlum.       A8000XP       4/5       1136       2 2271       75       225       8 240       193       8 92       9 7/8 to 14         8       Anadrill Schlum.       A800XP       7/8       1136       2 2271       748       145       8 41       9 7/8 to 14         8       Neyrfor Weir       WM7000       7/8       11	7 3/4	Halliburton	F2000S	7/8	1 136		06	185	10 305	4 700	164	04.0	7/8 to 12	
3/4       Halliburton       F2000S-tand       7/8       1135       2 271       90       185       11 862       6 500       230       10.50       97/8 to 12         8       Anadril Schlum.       A800M       1/2       1136       2 271       210       420       2 304       3 447       101       7.19       9 7/8 to 14         8       Anadril Schlum.       A800M       1/2       1136       2 271       75       225       5 437       3 585       128       7.19       9 7/8 to 14         8       Anadril Schlum.       A800M       4/5       1 136       2 271       75       225       5 437       3 586       128       7.19       9 7/8 to 14         8       Anadril Schlum.       A800XP       4/5       1 136       2 271       48       145       6 101       3 309       93       7.19       9 7/8 to 14         8       Anadril Schlum.       A800XP       7/8       1 136       2 271       48       145       6 101       3 309       93       7.19       9 7/8 to 14         8       Anadril Schlum.       A800XP       7/8       1 136       2 271       48       145       6 101       3 309       93       7.19	7 3/4	Halliburton	F2000H	1/2	1 136		230	390	2 928	4 100	120	8.00	7/8 to 12	
Anadrill Schlum.         AB00M         1/2         1136         2 271         210         420         2 304         3 447         101         7.87         9 7/8 to 14           Anadrill Schlum.         A800M         4/5         1136         2 271         75         225         5 437         3 585         128         7.19         9 7/8 to 14           Anadrill Schlum.         A800M         4/5         1136         2 271         75         225         5 437         3 585         128         7.19         9 7/8 to 14           Anadrill Schlum.         A800XP         7/8         1136         2 271         75         225         5 437         3 585         128         7.19         9 7/8 to 14           Anadrill Schlum.         A800XP         7/8         1136         2 271         48         145         6 101         3 309         93         7.19         9 7/8 to 14           Anadrill Schlum.         A800XP         7/8         1136         2 271         48         145         8 13         4 482         134         9 7/8 to 14           Neyrfor Weir         VM7000         7/8         1135         2 270         210         448         142         6.69         9 1/2 to 12      <		Halliburton	F2000S-tand	7/8	1 135		06	185	11 862	6 500	230	10.50	7/8 to 12	
Anadrill Schlum.       A800M       4/5       1136       2.271       75       2.25       5.437       3.585       128       7.19       9.7/8 to 14         Anadrill Schlum.       A800XP       4/5       1136       2.271       75       2.255       8.203       5.240       193       8.92       9.7/8 to 14         Anadrill Schlum.       A800XP       7/5       1136       2.271       75       2255       8.203       5.240       193       8.92       9.7/8 to 14         Anadrill Schlum.       A800XP       7/8       1136       2.271       48       145       6.101       3.309       93       7.19       97/8 to 14         Anadrill Schlum.       A800XP       7/8       1136       2.271       48       145       6.101       3.309       93       7.19       97/8 to 14         Neyrfor Weir       VM7000       7/8       1135       2.271       48       145       9.17       142       6.69       91/2 to 12         Neyrfor Weir       VM5000       7/8       1135       2.270       210       210       223       132.825       6.101       33       91/2 to 12         Neyrfor Weir       VM5000       1/2       2.271       340	ω	Anadrill Schlum.	A800M	1/2	1 136		210	420			101	7.87	7/8 to 14	
Anadrill Schlum.       A800XP       4/5       1136       2 271       75       2 25       8 203       5 2 40       193       8.92       9 7/8 to 14         Anadrill Schlum.       A800M       7/8       1136       2 271       48       145       6 101       3 309       93       7.19       9 7/8 to 14         Anadrill Schlum.       A800XP       7/8       1136       2 271       48       145       6 101       3 309       93       7.19       9 7/8 to 14         Anadrill Schlum.       A800XP       7/8       1136       2 271       48       145       6 101       3 309       93       7.19       9 7/8 to 14         Neyrfor Weir       VM7000       7/8       1135       3 410       50       145       9 367       3 400       142       6.69       9 1/2 to 12         Neyrfor Weir       VM5000       1/2       1135       2 270       210       420       2 487       3 400       109       7.38       9 1/2 to 12         Neyrfor Weir       VM5000       1/2       2 3407       149       2 23       13 825       6 200       3 23       9 1/2 to 12         Halliburton       F2000MX       5/6       2 271       3 407       149 <td>00</td> <td>Anadrill Schlum.</td> <td>A800M</td> <td>4/5</td> <td>1 136</td> <td></td> <td>75</td> <td>225</td> <td>5 437</td> <td>3 585</td> <td>128</td> <td>7.19</td> <td>7/8 to 14</td> <td></td>	00	Anadrill Schlum.	A800M	4/5	1 136		75	225	5 437	3 585	128	7.19	7/8 to 14	
Anadrill Schlum.       A800M       7/8       1136       2 271       48       145       6 101       3 309       93       7.19       9 7/8 to 14         Anadrill Schlum.       A800XP       7/8       1136       2 271       48       145       6 101       3 309       93       7.19       9 7/8 to 14         Anadrill Schlum.       A800XP       7/8       1136       2 271       48       145       8 813       4 482       134       8.41       9 7/8 to 14         Neyrfor Weir       VM7000       7/8       1 135       3 410       50       145       9 367       3 400       142       6.69       9 1/2 to 12         Neyrfor Weir       VM5000       1/2       1 135       2 270       210       420       2 487       3 400       109       7.38       9 1/2 to 12         Neyrfor Weir       VM5000       1/2       2 270       210       420       2 487       3 400       109       7.38       9 1/2 to 12         Halliburton       F2000MX       5/6       2 271       3 407       149       223       13 825       6 200       323       9.13       9 7/8 to 12	00	Anadrill Schlum.	A800XP	4/5	1 136		75	225	8 203	5 240	193	8.92	7/8 to 14	
Anadrill Schlum.         A800XP         7/8         1136         2 271         48         145         8 813         4 482         134         8.41         9 7/8 to 14           Neyrfor Weir         VM7000         7/8         1 135         3 410         50         145         9 367         3 400         142         6.69         9 1/2 to 12           Neyrfor Weir         VM5000         7/8         1 135         2 270         210         420         2 487         3 400         142         6.69         9 1/2 to 12           Neyrfor Weir         VM5000         1/2         1 135         2 270         210         420         2 487         3 400         109         7.38         9 1/2 to 12           Halliburton         F2000MX         5/6         2 271         3 407         149         223         13 825         6 200         323         9.13         9 7/8 to 12	00 -	Anadrill Schlum.	A800M	7/8	1 136		48	145	6 101	3 309	93	7.19	7/8 to 14	
Neyrfor Weir         VM7000         7/8         1135         3 410         50         145         9 367         3 400         142         6.69         9 1/2 to 12           Neyrfor Weir         VM5000         1/2         1135         2 270         210         420         2 487         3 400         109         7.38         9 1/2 to 12           Neyrfor Weir         VM5000         1/2         1 135         2 270         210         420         2 487         3 400         109         7.38         9 1/2 to 12           Halliburton         F2000MX         5/6         2 271         3 407         149         223         13 825         6 200         323         9.13         9 7/8 to 12	ω (	Anadrill Schlum.	A800XP	7/8	1 136		48	145	8 813	4 482	134	8.41	7/8 to 14	
Neyrfor Weir         ViM5000         1/2         1135         2 270         210         420         2 487         3 400         109         7.38         9 1/2 to 12           Halliburton         F2000MX         5/6         2 271         3 407         149         223         13 825         6 200         323         9.13         9 7/8 to 12	ω	Neyrfor Weir	VM7000	7/8	1 135		50	145	9 367	3 400	142	6.69	1/2 to 12	
Halliburton         F2000MX         5/6         2 271         3 407         149         223         13 825         6 200         323         9 7/8 to 12	000	Neyrtor Weir	VM5000	1/2	ന		210	420	2 487	3 400	109	7.38	1/2 to 12	
	α	Halliburton		9/q			149	223	13 825		323	9.13	7/8 to 12	

E 28

SPECIFICATIONS OF POSITIVE DISPLACEMENT MOTORS (continued) (Moineau type)

12 1/4 to 17 1/2 12 1/4 to 17 1/2 12 1/4 to 17 1/2 9 7/8 to 14 3/4 9 7/8 to 12 1/4 9 7/8 to 12 1/4 12 1/4 to 17 1/2 12 1/4 to 26 12 1/4 to 17 1/2 9 7/8 to 14 3/4 12 1/4 to 26 17 1/2 to 26 15 to 26 12 1/4 to 36 Hole size (in) 17 1/2 to 26 Overall Length (m) 6.62 7.47 7.50 10.50 10.70 6.50 7.35 8.69 8.94 8.94 9.84 8.89 8.00 9.27 8.00 9.27 7.70 7.70 9.27 7.80 9.27 7.80 9.11 11.80 11.80 10.10 8.84 9.63 Operating horse-power output (KW) 183 245 313 152 152 155 1155 1155 166 266 266 310 310 158 234 169 226 252 202 234 256 256 181 181 264 188 241 283 171 operating pressure drop (kPa) Maximum 3 400 4 300 4 100 6 500 5 900 3 400 4 300 3 400 3 100 4 280 4 150 413  $\begin{array}{c} 4 \ 309 \\ 5 \ 688 \\ 3 \ 103 \\ 3 \ 103 \\ 3 \ 103 \\ 2 \ 500 \\ 5 \ 200 \\ 5 \ 200 \\ 5 \ 200 \\ 5 \ 200 \end{array}$ 3 378 3 500 2 500 Maximum operating 8 135 9 491 8 950 11 682 torque (N.m) 14 602 10 169 9 491 13 558 12 916 9 475 4 500 11 253 10 847 15 050 2 623 10 575 10 539 6 236 4 610 8 813 21 842 14 944 21 150 13 558 15 010 677  $\infty$ Max. 380 266 266 134 134 134 134 134 170 170 170 170 185 235 180 185 165 190 235 235 235 190 134 134 266 400 170 180 188 Rotary speed (rpm) Min. 55 110 115 90 80 1110 1115 67 67 200 190 133 67 67 67 90 90 1115 115 90 90 115 120 125 2 461 2 839 3 028 2 271 012 218 Max. 839 4 164 540 540 028 3 028 4 542 4 542 4 542 4 542 4 542 2 650 3 407 3 407 3 785 4 921 678 670 542 3 407 542 Flow rate (I/min) 4 ഗവ 4 757 1 325 1 893 1 135 Min. 2 006 1 893 1 352 2 650 2 650 2 270 2 270 1 495 514 2 271 2 271 2 271 1 514 3 028 3 028 2 271 3 028 3 028 2 271 2 271 2 271 3 785 3 780 No. of lobes 9/10 5/6 5/6 7/8 0/11 5/6 5/6 3/4 1/2 3/4 1/2 F2000S-tand F2000M-tand F2000S-tand+ VM7000 A962XP F2000MX D825HF **D825SS** F2000S **2950MS D950HF** VM7000 /M5000 A962XP F2000S F2000M F2000H A962M A962M A1125M VM7000 A962M Type M1XL D950 D500 D500 Baker Hughes Inteq Anadrill Schlum. Anadrill Schlum. Anadrill Schlum. Anadrill Schlum Anadrill Schlum. Anadrill Schlum Manufacturer Neyrfor Weir Neyrfor Weir Neyrfor Weir Halliburton Halliburton Halliburton Neyrfor Weir Halliburton Halliburton Halliburton Halliburton Halliburton Halliburton Halliburton Drilex Drilex Drilex Drilex Drilex //min × 0.264 = gal/min Size (in) 8 1/4 8 1/4 8 1/4 8 1/4 8 1/4 9 1/2 9 1/2 9 1/2 9 1/2 9 1/2 9 1/2 11 1/4 12

F

# hoisting and derrick floor equipment

Hoisting mechanics. Reeving function	F1
Hoisting mechanics. Power	F2
API wire rope. Factor of safety (RP 9B, May 30, 1986)	F3-F4
API wire rope	F5
Typical sizes and constructions of wire rope	F6-F7
API classification of bright (uncoated) or drawn galvanized wire rope. Class 6 x 7. Fiber Core (FC) (API Spec 9A, 24 th edition, June 1, 1995)	F8
API classification of bright (uncoated) or drawn galvanized wire rope. Classes 6 x 19 and 6 x 37. Fiber Core (FC) (API Spec 9A, 24 th edition, June 1, 1995).	F9
API classification of bright (uncoated) or drawn galvanized wire rope (continued). Class 6 x 19. Independent Wire Rope Core (IWRC) (API Spec 9A, 24 th edition, June 1, 1995)	F10
API classification of bright (uncoated) or drawn galvanized wire rope (continued). Class 6 x 37. Independent Wire Rope Core (IWRC) (API Spec 9A, 24 th edition, June 1, 1995)	F11
API classification of bright (uncoated) or drawn galvanized wire rope (continued). Configurations (API Spec 9A, 24 th edition, June 1, 1995)	F12-F13

API classification of bright (uncoated) or drawn galvanized wire rope (continued). Class 6 x 61. Independent Wire Rope Core (IWRC) (API Spec 9A, 24 th edition, June 1, 1995)	F14
API classification of bright (uncoated) or drawn galvanized wire rope (continued). Class 6 x 91. Independent Wire Rope Core (IWRC) (API Spec 9A, 24 th edition, June 1, 1995)	F15
API classification of bright (uncoated) or drawn galvanized wire rope (continued). Class 8 x 19. Independent Wire Rope Core (IWRC) (API Spec 9A, 24 th edition, June 1, 1995)	F16
API classification of bright (uncoated) or drawn galvanized wire rope (continued). Class 18 x 7. Fiber Core (FC). (API Spec 9A, 24 th edition, June 1, 1995).	F17
API classification of bright (uncoated) or drawn galvanized wire rope (continued). Class 19 x 7. Metal Core. (API Spec 9A, 24 th edition, June 1, 1995)	F18
API classification of bright (uncoated) or drawn galvanized wire rope (continued). Classes 6 x 25 "B", 6 x 27 "H", 6 x 30 "G" and 6 x 31 "V" (API Spec 9A, 24 th edition, June 1, 1995)	F19
API wire rope. Sheave sizes (API RP 9B, May 30, 1986)	F20
Sheave grooves. (API Spec 8A, 12 th edition, June 1, 1992)	F21
Work done by a drilling line	F22
Cutoff practice for drilling lines. Cutoff length as a function of derrick or mast height and drum diameter (API RP 9B, 9 th edition, may 30, 1986)	F23
Cutoff practice for drilling lines (continued). Cumulative work before first cut-off (API RP 9B, 9 th edition, May 30, 1986)	F24

Drum and reel capacity (from IADC Drilling Manual)	F25
Elevator link arms. Remaining capacities of work link arms. Dimensions and nominal capacity of link arms (per set).	F26
Recommended hoisting tool contact surface radii (API Spec 8A, 12 th edition, June 1, 1992)	F27-F29
Drill pipe elevators bores (API Spec 8A, 12 th edition, June 1, 1992)	F30
Brake blocks	F31
Vibrator and drilling hose (API Spec 7K, 2 nd edition, February, 1996)	F32-F33
Chains (API Standard 7F, 5 th edition, October 1, 1993)	F34
Chains (continued). Standard chain dimensions (ANSI Standard, B29.1)	F35
Chains (continued)	F36
Rotary table opening and square drive master bushing (API Spec 8C, 2 nd edition, June 1, 1992)	F37
Four-pin drive Kelly bushing and master bushing (API Spec 8C, 2 nd edition, June 1, 1992)	F38
Tension in slings. Two-wire slings	F39

### HOISTING MECHANICS Reeving function

F = hook load (t)

N = number of lines

t = dead line tension (t)

 $t_a$  = fast line tension (t)

$$t = \frac{F}{N}$$

in static conditions 
$$\begin{cases} t_a = t \\ t_a = \frac{t}{\eta_m} \end{cases}$$

 $\eta_m$ = reeving efficiency (see F 3)  $V_c$  = hook speed (m/s)  $V_t$  = fast line speed (m/s)

$$V_t = V_c N$$

- R = winch speed of rotation (rpm)
- D = winch spooling diameter (m)

$$R = \frac{60 V_t}{\pi D}$$



### **HOISTING MECHANICS Power**

#### I POWER DEVELOPED AT HOOK

$$P_c = FV_c$$

 $P_c$  = power on hook (W) F = hook load (N)

 $V_c$  = hook speed (m/s)

$$P_{c}(kW) = \frac{F(kg) \times V_{c}(m/s)}{102}$$
$$P_{c}(hp) = \frac{F(kg) \times V_{c}(m/s)}{76}$$
$$P_{c}(hp) = \frac{F(lb) \times V_{c}(ft/s)}{550}$$

#### **II POWER CONSUMED AT WINCH**

$$P_t = t_a V_t$$

 $P_t =$ 

$$P_t = \frac{t}{\eta_m} V_c N = \frac{FV_c}{\eta_m}$$

F = hook load (N) $V_c$  = hook speed (m/s)

 $P_t$  = winch power (W)  $t_a$  = fast line tension (N)  $V_t$  = fast line speed (m/s) t = dead line tension (N)

 $\eta_m$  = reeving efficiency

#### **III TORQUE CONSUMPTION AT WINCH**

$$M = \frac{P_t}{R}$$

M = winch torque (m·N)

R = speed of rotation (rad/s)

$$M(m.daN) = \frac{955P_t(kW)}{R(rpm)}$$
$$M(ft.lb) = \frac{5252P_t(hp)}{R(rpm)}$$

### API WIRE ROPE Factor of safety (RP 9B, May 30, 1986)

### **J DEFINITION OF FACTOR OF SAFETY**



f = factor of safety T = wire rope breaking load (t)

 $t_a$  = fast line tension (t)

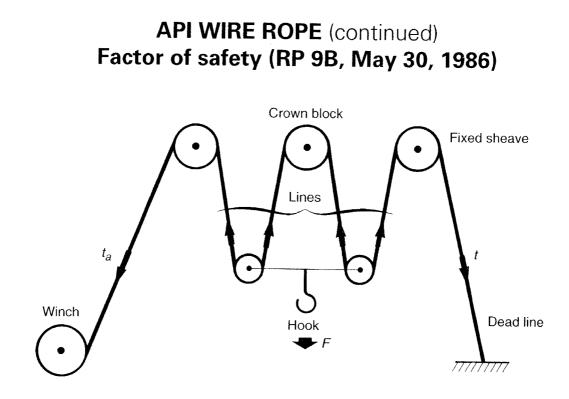
### **II MINIMUM FACTOR OF SAFETY**

Cable rig	0
Sand line	3
Rotary drilling line	3
Hoisting other than drilling line	3
Mast raising line	3
Drilling line when running in casing.	2.5
Extra pull for unsticking or other occasional operations	2
Extra participation anoticing of other occasional operations	2

### **III CALCULATION OF FAST LINE TENSION**

$$t_a = \frac{F}{N\eta_m}$$

F = hook load (t)  $t_a$  = fast line tension (t)


 $\tilde{N}$  = number of lines

 $\eta_m$  = reeving efficiency

#### **Reeving efficiency**

N Friction factor	2	4	6	8	10	12	14
K = 1.09 Plain bearings	0.880	0.810	0.748	0.692	0.642	0.597	0.556
K = 1.04 Roller bearings	0.943	0.907	0.874	0.842	0.811	0.782	0.755

$$\eta_m = \frac{K^N - 1}{N(K - 1)K^N}$$



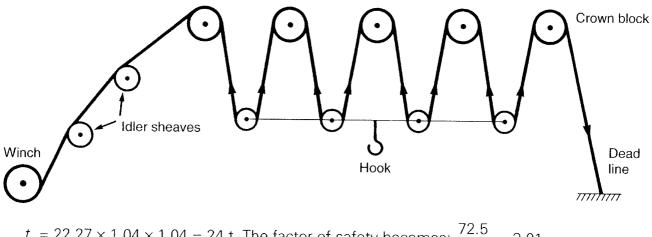
#### IV EXAMPLE OF APPLICATION

The hoisting equipment is reeved with eight lines: N = 8.

The hook load is 150 t.

 $\eta_P$ 

The drilling line is: 1 1/4,  $6 \times 19$  IWRC, EIPS with breaking load T = 72.5 t.


The sheaves have bearings, thus K = 1.04 or sheave efficiency  $\eta_P$ :

$$t_{a} = \frac{P}{N \times \eta_{m}} = \frac{150}{8 \times 0.842} = 22.27 \text{ t}$$

$$f = \frac{T}{N} = \frac{72.5}{8 \times 0.842} = 3.26$$

$$f = \frac{1}{t_a} = \frac{72.5}{22.27} = 3.26$$

*Remark:* if idler sheaves are placed between the drilling winch and the crown block, the fast line tension must be multiplied by the friction factor (K = 1.04) as many times as the number of sheaves:



### **API WIRE ROPE**

### **I DEFINITIONS AND USUAL ABBREVIATIONS**

1.4/	Marrington	
W	Warrington	The outside layer contains filling wires
S	Seale	All layers contain the same number of wires
WS	Warrington-Seale	Mixed strand, Warrington inside and Seale outside
FS	Flattened Strand	Flat Strand
FW	Filler Wire	Inner layer with filler wires
PS	Plow Steel	Steel with breaking strength between 1570 and 1760 MPa
IPS	Improved Plow Steel	Steel with breaking strength between 1770 and 1960 MPa
EIPS	Extra Improved Plow Steel	Steel with breaking strength between 1970 and 2150 MPa
PF	Preformed	Preformed wires
NPF	Non Preformed	Non preformed wires
RL	Right Lay	Normal (regular) right lay: the strands are twisted to the right and the wires to the left
LL	Left Lay	Normal (regular) right lay: the strands are twisted to the left and the wires to the right
FC	Fiber Core	Fiber core
IWRC	Independant Wire Rope Core	Independant wire rope core

#### **II TYPICAL STRAND CONSTRUCTION**



SINGLE LAYER e.g. strand 1-6



FILLER WIRE Inner layer contains filling wires e.g. : 1-6-6f-12 Filler wires



SEALE Two layers with the same number of wires e.g. : 1-9-9



WARRINGTON Two layers with wires of the same diameter The outside layer contains filler wires e.g. : 1-6-(6 + 6)



MIXED WARRINGTON-SEALE

```
The first two
layers are
Warrington
and the last
two Seale
e.g. : 1-5-(5 + 5)-10
```

### **III DIFFERENT KINDS OF WIRE ROPE TWISTING**



Right lay Regular lay



Left lay Regular lay



Right lay Lang lay



Left lay Lang lay

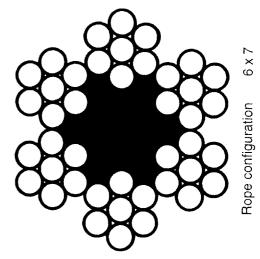
In ropes with "regular" lay the wires are twisted in one direction and the strands in the opposite direction.

In ropes with "lang" lay the wire and the strands are twisted in the same direction.

TYPICAL SIZES AND CONSTRUCTIONS OF WIRE ROPE

Service and well depth	Wire rope diameter (in)	Wire rope description (regular lay)
Rod and tubing pull lines: Shallow Intermediate Deep	1/2 to 3/4 incl. 3/4 to 7/8 7/8 to 1 1/8 incl.	$6 \times 25$ FW or $6 \times 26$ WS or $6 \times 31$ WS or $18 \times 7$ (1) or $19 \times 7$ (1), PF, LL (1), IPS or EIPS, IWRC
Rod hanger lines	1/4	6 × 19, PF, RL, IPS, FC
Sand lines: Shallow Intermediate Deep	1/4 to 1/2 incl. 1/2, 9/16 9/16, 5/8	6 × 7 Bright or Galv (2), PF, RL, PS or IPS, FC
Drilling lines. Cable tool (drilling and cleanout): Shallow Intermediate Deep	5/8, 3/4 3/4, 7/8 7/8, 1	6 × 21 FW, PF or NPF, RL or LL, PS or IPS, FC
Casing lines. Cable tool: Shallow Intermediate Deep	3/4, 7/8 7/8, 1 1, 1 1/8	. 6 × 25 FW or 6 × 26 WS, PF, RL, IPS or EIPS, FC or IWRC
Drilling lines. Coring and slim hole rotary rigs: Shallow Intermediate	7/8, 1 1, 1 1/8	6 × 26 WS, PF, RL, IPS or EIPS, IWRC 6 × 19 S or 6 × 26 WS, PF, RL, IPS or EIPS, IWRC
(1) Single line pulling of rods and tubing requires left low construction		

Single line pulling of rods and tubing requires left lay construction or 18×7 or 19×7 construction.
 Bright wire sand lines are regularly furnished: galvanized finish is sometimes required.


TYPICAL SIZES AND CONSTRUCTIONS OF WIRE ROPE (continued)

Service and well depth	Wire rope diameter (in)	Wire rope description (regular lay)
Drilling lines. Rotary rigs: Shallows Intermediate Deep	1, 1 1/8 1 1/8, 1 1/4 1 1/4 to 1 3/4	6 x 19 S or 6 x 21 S or 6 x 25 FW or FS, PF, RL, IPS or EIPS, IWRC
Winch lines. Heavy duty	5/8 to 7/8 7/8 to 1 1/8 incl.	6 × 26 WS or 6 × 31 WS, PF, RL, IPS or EIPS, IWRC 6 × 36 WS, PF, RL, IPS or EIPS, IWRC
Horsehead pumping. Unit lines: Shallow Intermediate	1/2 to 1 1/8 incl. (4) 5/8 to 1 1/8 incl. (3)	6 x 19 Class or 6 x 37 Class or 19 x 7 PF, IPS, FC or IWRC 6 x 19 Class or 6 x 37 Class, PF, IPS, FC or IWRC
Offshore anchorage lines	7/8 to 2 3/4 incl. 1 3/8 to 4 3/4 incl. 3 3/4 to 4 3/4 incl.	6 × 19 Class, Bright or Galv., PF, RL, IPS or EIPS, IWRC 6 × 37 Class, Bright or Galv., PF, RL, IPS or EIPS, IWRC 6 × 61 Class, Bright or Galv., PF, RL, IPS or EIPS, IWRC
Mast raising lines (5)	1 3/8 and smaller 1 1/2 and larger	6 × 19 Class, PF, RL, IPS or EIPS, IWRC 6 × 37 Class, PF, RL, IPS or EIPS, IWRC
Guideline tensioner line	3/4	6 × 25 FW, PF, RL, IPS or EIPS, IWRC
Riser tensioner lines	1 1/2, 2	(Lang lay): 6 x 37 Class or PF, RL, IPS or EIPS, IWRC
(3) Applies to pumping units having one piece of wire rope ic	oped over an ear on the	(3) Applies to pumping units having one piece of wire rope looped over an ear on the horsehead and both ends fastened to a polished-rod equalizer voke.

a polisnea-roa equalizer yoke. 2 (4) Applies to pumping units having two wertical lines (parallel) with sockets at both ends of each lines.
 (5) See API Spec 4E

	(IPS)	(t)	5.3 9.3 11.8 20.6 36.0
	Improved Plow Steel (IPS)	(kN)	53 71 117 203 356 356
Breaking strength	Impro	(qI)	11 720 15 860 20 600 31 800 45 400 61 400 79 400
Breaking		(t)	4.6 8.3 1203 1203 1203 1203 1203 1203 1203 120
	Plow Steel (PS)	(kN)	45.7 61.9 80.3 101.3 239.3 239.3 239.3 239.3 239.3 239.3 239.3
		(lb)	10 200 13 800 13 820 17 920 22 600 23 600 69 000 69 000
Annroximata wainht		(kg/m)	0.31 0.43 0.77 1.25 2.23 2.23
Annroxime		(Ib/ft)	0.21 0.29 0.48 0.59 1.15 1.50
liameter		(mm)	220-142-0 522-16-0 522-16-0 522-16-0 52-16-0 52-16-0 52-16-0 52-16-0 52-0 52-16-0 52-0 52-0 52-0 52-0 52-0 52-0 52-0 52
Nominal diameter		(in)	3/8     9.5     0.21     0.31       7/16     14.5     0.29     0.43       1/2     12.7     0.38     0.57       9/16     14.3     0.38     0.57       5/8     15.9     0.48     0.71       5/8     15.9     0.59     0.71       7/8     22.2     1.15     1.25       7/8     25.4     1.15     1.25

Note: The strength of galvanized wire rope is 10% less than the figures given in this table.



F 8

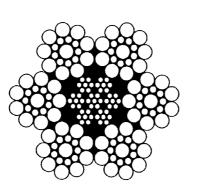
API CLASSIFICATION OF BRIGHT (UNCOATED) OR DRAWN GALVANIZED WIRE ROPE (continued) Classes  $6 \times 19$  and  $6 \times 37$ . Fiber Core (FC) (API Spec 9A, 24th edition, June 1, 1995)

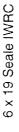
1		
v Steel	(t)	1000 1000 1000 1000 1000 1000 1000 100
nproved Plov	(KN)	105 105 132 163 163 163 163 1050 8988 13390 12200 1560
Extra In	(ql)	23 600 29 800 52 400 52 400 70 800 70 800 72 800 72 800 72 800 33 72 000 33 72 000 30 70 0000000000
el (IPS)	(t)	9.7 9.7 9.7 9.7 9.7 9.7 9.7 1.1 1.2 1.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
ed Plow Ste	(kN)	96 1221 1221 1221 1221 1220 1220 1220 122
Improv	(q))	21 400 21 400 21 400 22 400 22 400 22 400 12 5 200 12 5 200 12 5 200 22 14 000 22 14 000 22 14 000 22 12 000 20 12 0000 20 12 0000 20 12 0000 20 10 000 20 10 0
S)	(t)	0.000 0.000 0.000 0.000 0.000 0.000
low Steel (P:	(kN)	84 1305 1305 1305 1305 1305 1305 1305 1305
۵_	(qI)	18 700 23 600 41 400 56 000 91 400 91 400 112 400
	(kg/m)	0.63 0.79 0.79 0.79 0.00 0.61 0.00 0.00 0.00 0.00 0.00 0.00
	(Ib/ft)	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.000000
	(mm)	0.000000000000000000000000000000000000
	(in)	1/2 9/16 5/8 3/4 1/4 1/2 1/8 1/2 1/8 1/2 1/8 2/1 1/8 2/8 1/2 2/16 1/2 8/3 2/8 2/8 2/8 2/8 2/8 2/8 2/8 2/8 2/8 8/16 2/8 8/16 2/8 8/16 2/8 8/16 2/8 8/16 2/8 8/16 2/8 8/16 2/8 8/16 2/8 8/16 2/8 8/16 2/8 8/16 2/8 8/16 2/8 8/16 2/8 8/16 1/8 8/16 1/8 8/16 1/8 8/16 1/8 1/8 8/16 1/8 1/8 8/16 1/8 8/16 1/8 1/8 1/8 8/16 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
	Plow Steel (PS) Improved Plow Steel (IPS) Extra Improved Plow Steel	(mm)         (lb/ft)         (kg/m)         (lb)         (kN)         (t)         (lb)         (kN)         (t)         (lb)         (kN)         (t)

Note: The strength of galvanized wire rope is 10% less than the figures given in this table.

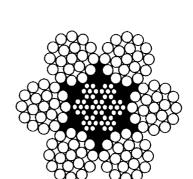
API CLASSIFICATION OF BRIGHT (UNCOATED) OR DRAWN GALVANIZED WIRE ROPE (continued) Class  $6 \times 19$ . Independent Wire Rope Core (IWRC) (API Spec 9A, 24th edition, June 1, 1995)

Nominal	Nominal diameter	Annroxim	Annroximate weight				Br	Breaking strength	gth			
				Idml	mproved Plow Steel	iteel	Extra Ir	Extra Improved Plow Steel	v Steel	Extra In	Extra Improved Plow Steel	v Steel
(in)	(mm)	(lb/ft)	(kg/m)	(qj)	(kN)	(t)	(ql)	(KN)	(t)	(q )	(kN)	(t)
1/2	12.7	0.46	0.68	23 000	103	10.4	26 600	119	12.1		131	13.2
9/16	14.3	0.59	0.88	29 000	130	13.2	33 600	151	15.2	37 000	166	16.8
5/8	15.9	0.72	1.07	35 800	160	16.2	41 200	185	18.7	45 400	203	20.6
3/4	19.1	1.04	1.55	51 200	229	23.2	58 800	264	26.7	64 800	290	29.4
7/8	22.2	1.42	2.11	69 200	310	31.4	79 600	357	36.1	87 600	808 808	39.7
<b>~</b>	25.4	1.85	2.75	89 800	403	40.7	103 400	463	46.9	113 800	510	51.6
1 1/8	28.6	2.34	3.48	113 000	506	51.3	130 000	583	59.0	143 000	641	649
1 1/4	37 .00	2.89	4.30	138 800	622	63.0	159 800	716	72.5	175 800	788	79.7
1 3/8	34.9	3.50	5.21	167 000	749	75.8	192 000	861	87.1	212 000	950	96.2
1 1/2	38.1	4.16	6.19	197 800	887	89.7	228 000	1 022	103.0	250 000	1121	113.0
1 5/8	41.3	4.88	7.26	230 000	1 031	104.0	264 000	1 183	120.0	292 000	1 309	132.0
1 3/4	44.5	5.67	8.44	266 000	1 192	121.0	306 000	1 372	139.0	338 000	1 515	153.0
1 7/8	47.6	6.50	9.67	304 000	1 363	138.0	348 000	1 560	158.0	384 000	1 721	174.0
7	50.8	7.39	11.00	344 000	1 542	156.0	396 000	1 775	180.0	434 000	1 945	197.0
Note: The stre	ength of galva	nized wire rop	be is 10% less	Note: The strength of galvanized wire rope is 10% less than the figures	es given in this table	s table.						


F 10


API CLASSIFICATION OF BRIGHT (UNCOATED) OR DRAWN GALVANIZED WIRE ROPE (continued) Class  $6 \times 37$ . Independent Wire Rope Core (IWRC) (API Spec 9A, 24th edition, June 1, 1995)

	w Steel	(t)	13.2 13.2 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8
	Improved Plow	(kN)	$\begin{array}{c} 131\\ 136\\ 2393\\ 2393\\ 2393\\ 2393\\ 2393\\ 2593\\ 2510\\ 2293\\ 2510\\ 2293\\ 2510\\ 2293\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2553\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2552\\ 2$
	Extra Ir	(ql)	$\begin{array}{c} 29\ 200\\ 37\ 000\\ 37\ 000\\ 64\ 800\\ 64\ 800\\ 64\ 800\\ 64\ 800\\ 64\ 800\\ 64\ 800\\ 728\ 000\\ 526\ 000\\ 338\ 000\\ 584\ 000\\ 564\ 000\\ 664\ 000\\ 664\ 000\\ 564\ 000\\ 664\ 000\\ 728\ 000\\ 664\ 000\\ 664\ 000\\ 1116\ 000\\ 728\ 000\\ 1116\ 000\\ 1116\ 000\\ 1116\ 000\\ 1116\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 11108\ 000\\ 000\ 000\\ 000\ 000\\ 000\ 000\ 0$
gth	w Steel	(t)	11.8 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2
Breaking strength	Improved Plow	(kN)	$\begin{array}{c} 1157\\ 1157\\ 1157\\ 1157\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\ 1156\\$
Br	Extra Ir	(qj)	$\begin{array}{c} 26\ 000\\ 33\ 600\\ 58\ 800\\ 58\ 800\\ 58\ 800\\ 58\ 800\\ 100\ 658\ 800\\ 100\ 800\\ 1100\ 400\\ 334\ 800\\ 549\ 000\\ 558\ 000\\ 334\ 800\\ 658\ 000\\ 558\ 000\\ 558\ 000\\ 558\ 000\\ 558\ 000\\ 558\ 000\\ 558\ 000\\ 558\ 000\\ 558\ 000\\ 558\ 000\\ 558\ 000\\ 558\ 000\\ 558\ 000\\ 558\ 000\\ 558\ 000\\ 558\ 000\\ 558\ 000\\ 558\ 000\\ 558\ 000\\ 558\ 000\\ 558\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 568\ 000\\ 000\\ 000\ 000\\ 000\ 000\\ 000\ 000\\ 000\ 000\ 000\\ 000\ 000\$
	Improved Plow Steel	(t)	$\begin{array}{c} 10.4\\ 10.4\\ 1322\\ 13222\\ 13222222\\ 10022\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 233200\\ 23320$
		(KN)	103 103 103 103 103 103 103 103 103 103
		(q))	5       5       5       5       5       5       5       000         5       5       5       5       5       000       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 </td
Approximate weight		(kg/m)	00.00 4.80 3.33 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25
Approxim		(Ib/ft)	60000000000000000000000000000000000000
Nominal diameter		(mm)	12222222222222222222222222222222222222
Nominal		(in)	1/2     1/2       9/16     3/4       9/16     3/4       9/16     1/2       7/8     3/4       1/8     1/2       3/4     1/2       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2     3/4       1/2

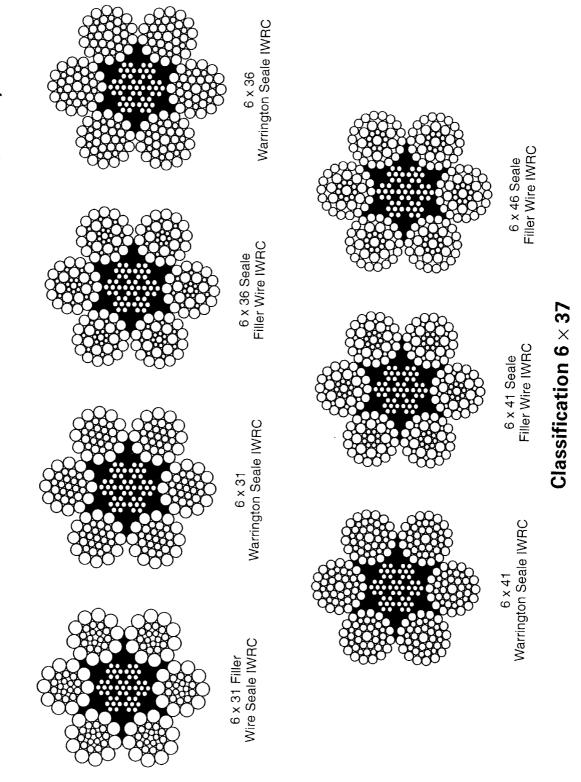

: The strength of galvanized wire rope is 10% less than the figures given in this table.







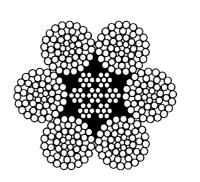
6 x 21 Filler Wire FC






6 x 25 Filler Wire IWRC

Classification  $6 \times 19$ 


Configurations (API Spec 9A, 24th edition, June 1, 1995) API CLASSIFICATION OF BRIGHT (UNCOATED) OR DRAWN GALVANIZED WIRE ROPE (continued)



API CLASSIFICATION OF BRIGHT (UNCOATED) OR DRAWN GALVANIZED WIRE ROPE (continued) Class  $6 \times 61$ . Independent Wire Rope Core (IWRC) (API Spec 9A, 24th edition, June 1, 1995)

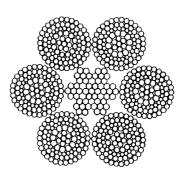
	Steel	(t)	503 573 647 725 806 890 978
	Extra Improved Plow Steel	(KN)	4 975 5 666 6 392 7 163 7 163 8 794 9 664
Breaking strength	Extra	(10 ³ lb)	1 110 1 264 1 526 1 598 1 976 2 156 2 156
Breaking	iel	(t)	438 562 630 700 850
	mproved Plow Steel	(kN)	4 330 5 558 5 221 6 921 8 400
	Ш	(10 ³ lb)	966 1 298 1 240 1 544 1 706 1 874
ate weight		(kg/m)	33.78 38.78 49.05 55.66 62.06 68.75
Approximate weight		(lb/ft)	22.70 26.00 29.60 33.30 37.40 41.70 46.20
Nominal diameter		(mm)	220.7 27.0 27.0 27.0 27.0 27.0 27.0 27.0
		(in)	0 3/2 3/4 4 1/2 4 1/2 4 1/2 4 1/2

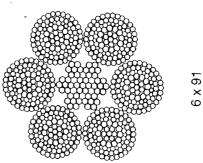
Note: The strength of galvanized wire rope is 10% less than the figures given in this table.



6 x 57 Seale Filler Wire IWRC

Filler Wire Warrington Seale IWRC


6 x 61

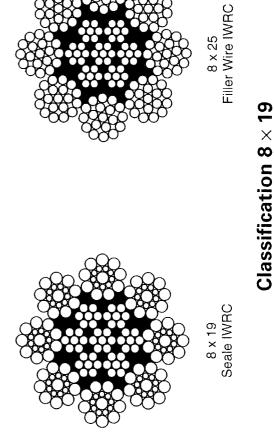

Classification  $6 \times 61$ 

API CLASSIFICATION OF BRIGHT (UNCOATED) OR DRAWN GALVANIZED WIRE ROPE (continued) Class  $6 \times 91$ . Independent Wire Rope Core (IWRC) (API Spec 9A, 24th edition, June 1, 1995)

			······································
	Steel	(t)	614 689 766 929 1106 1198 294
	Extra Improved Plow Steel	(KN)	6 069 6 804 9 180 9 180 11 8333 12 783 783
strength	Extra	(10 ³ lb)	2 2 2 4 0 2 2 4 3 2 2 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Breaking strength	e	(t)	534 536 559 559 559 559 735 888 888 888 1041 125
	Improved Plow Steel	(kN)	5 280 5 917 6 580 6 580 7 261 7 261 7 987 8 731 9 502 10 291 11 116
	E	(10 ³ lb)	1 178 1 320 1 620 2 1948 2 120 2 296
Approximate weight	5	(kg/m)	44.0 555.7 622.1 74.1 88.1 96.7
Approxime	-	(Ib/ft)	29 3333 55554443 5555465 5055565 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 505555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 50555 505555 505555 505555 505555 505555 505555 5055555 505555 505555 505555 505555 5055555 5055555 505555 5055555 5055555 5055555 5055555 5055555 5055555 5055555 5055555 5055555 50555555
diameter	Nominal diameter		101.6 108.6 108.6 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.6 108.7 108.7 108.7 108.6 108.7 108.6 108.7 108.6 108.7 108.6 108.7 108.7 108.7 108.7 108.6 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 108.7 1000000000000000000000000000000000000
Nominal		(in)	6000004444 0000004444 3/4224 3/4224

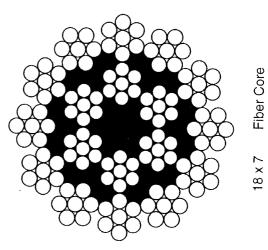
Note: The strength of galvanized wire rope is 10% less than the figures given in this table.






core  $6 \times 103$  independant wire-rope core Classification  $6 \times 91$ 

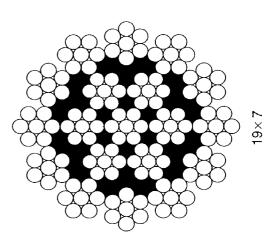
independant wire-rope core


API CLASSIFICATION OF BRIGHT (UNCOATED) OR DRAWN GALVANIZED WIRE ROPE (continued) Class 8 imes 19. Independent Wire Rope Core (IWRC) (API Spec 9A, 24th edition, June 1, 1995)

1	1	
Steel	(t)	100 130 130 130 130 130 130 130 130 130
Improved Plow	(kN)	105 1352 162 168 114 518
Extra I	(qj)	23 400 29 400 51 800 91 000 114 600
el	(t)	0,14,10 0,14,10 0,0,4,10,0 0,0,4,10,0,0
proved Plow Ste	(kN)	91 115 273 273 273 273 273 273 273 273 273
шI	(qI)	20 200 25 600 31 400 45 000 79 200 99 600
	(kg/m)	3,2,2,1,0,0 5,0,0,0,0 5,0,0,0,0,0 5,0,0,0,0,0,0
Nominal diameter		0.47 0.60 1.06 1.88 2.39 88 2.39
		22221112 22221112 2222112 2222112 22222 222212 22222 22222 22222 22222 22222 22222 2222
		1/2 9/16 3/8 3/4 1/8
		m)     (lb/ft)     (kg/m)     (lb)     (kN)     (t)     (lb)     (kN)



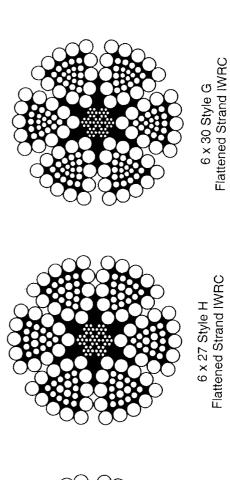
API CLASSIFICATION OF BRIGHT (UNCOATED) OR DRAWN GALVANIZED WIRE ROPE (continued) Class  $18 \times 7$ . Fiber Core (FC) (API Spec 9A,  $24^{th}$  edition, June 1, 1995)


	1		
	Steel	(t)	20010000000000000000000000000000000000
	Extra Improved Plow Steel	(kN)	97 151 291 291 291 291 203 203 203
Breaking strength	Extra	(q))	21 600 27 200 33 600 65 000 84 400 106 200 156 800 156 800
Breaking	eel	(t)	8.9 213.9 213.9 213.9 213.7 213.7 26.6 21.7 26.6
	Improved Plow Steel	(kN)	88 1137 133 133 133 133 133 133 133 133 13
	<u></u>	(qI)	19 700 24 800 32 4 800 55 600 76 600 76 600 1418 400 142 600 168 800
Approximate weight		(kg/m)	0.64 0.82 1.96 3.25 7.97 5.79 5.79
Approxim		(lb/ft)	0.43 0.55 0.68 0.97 1.73 2.70 3.27 3.27 3.27 3.27
Vominal diameter		(mm)	33325221 33325221 33325221 33325521 38555521 385555 385555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 38555 385555 385555 385555 385555 385555 385555 385555 385555 385555 385555 385555 385555 385555 385555 385555 385555 3855555 3855555 3855555 3855555 3855555 3855555 3855555 3855555 3855555 3855555 3855555 395555555 3955555555 39555555555 3955555555
Nominal		(in)	1/2 9/16 3/4 7/8 11/8 11/2 11/2



F 17

(API Spec 9A, 24 th edition, June 1, 1995)


·											
Steel	(t)	9.8	12.3	15.2	21.8	29.5	38.3	48.2	59.1	71.1	84.2
Improved Plow	(kN)	97	122	151	215	291	378	476	584	703	832
Extra	(q )	21 600	27 200	33 600	48 000	65 000	84 400	106 200	130 200	156 800	185 600
ē	(t)	0.8 0.8	11.2	13.9	19.8	26.8	34.7	43.7	53.7	64.7	76.6
oroved Plow Ste	(kN)	88	1-1	137	195	264	343	432	531	639	757
E	(qI)									142 600	168 800
e weight		0.67	0.86	1.06	1.52	2.07	2.71	3.42	4.23	5.10	6.07
Approximate weight		0.45	0.58	0.71	1.02	1.39	1.82	2.30	2.84	3.43	4.08
liameter		12.7	14.3	15.9	19.1	22.2	25.4	28.6	31.8	34.9	38.1
Nominal diameter		1/2	9/16	5/8	3/4	7/8		1 1/8	1 1/4	13/8	1 1/2
		n)     (lb/ft)     (kg/m)     (lb)     (lb)     (t)     (lb)     (kN)	Image: Contract weight         Improved Plow Steel         Extra Improved Plow Steel           (mm)         (lb/ft)         (kg/m)         (lb)         (kN)         (t)         (lb)         (kN)           12.7         0.45         0.67         19700         88         8.9         21600         97	Image: Contract weight         Improved Plow Steel         Extra Improved Plow Steel           (mm)         (lb/ft)         (kg/m)         (lb)         (kN)         (t)         (lb)         (kN)           12.7         0.45         0.67         19 700         88         8.9         21 600         97           14.3         0.58         0.67         19 700         88         8.9         21 600         97	Image: Contract weight         Improved Plow Steel         Extra Improved Plow Steel           (mm)         (lb/ft)         (kg/m)         (lb)         (kN)         (t)         (lb)         (kN)           12.7         0.45         0.67         19 700         88         8.9         21 600         97           14.3         0.58         0.67         19 700         88         8.9         21 600         97           15.9         0.71         1.06         30 600         137         13.9         33 600         151	Image: Construction of the section of the secting the section of the section of the section of the sect	Image: construction         Construction         Improved Plow Steel         Extra Improved Plow Steel           (mm)         (lb/ft)         (kg/m)         (lb)         (kN)         (t)         (lb)         (kN)           12.7         0.45         0.67         19 700         88         8.9         21 600         97           14.3         0.58         0.67         19 700         88         8.9         21 600         97           15.9         0.71         1.06         30 600         111         11.2         27 200         151           19.1         1.02         1.52         43 600         137         13.9         26.4         26.8         65 000         215	Immunation         Improved Plow Steel         Extra Improved Plow Steel         Extra Improved Plow Steel           (mm)         (lb/ft)         (kg/m)         (lb)         (kN)         (t)         (lb)         (kN)           12.7         0.45         0.67         19 700         88         8.9         21 600         97           14.3         0.58         0.67         19 700         88         8.9         21 600         97           15.9         0.71         1.06         320 600         137         13.9         27 200         151           19.1         1.02         1.52         43 600         137         13.9         26.6         65 000         215           25.4         1.82         2.71         76 600         343         34.7         84 400         378	Immunation         Textra Improved Plow Steel         Extra Improved Plow Steel           (mm)         (lb/ft)         (kg/m)         (lb)         (kN)         (t)         (t)         (kN)           12.7         0.45         0.67         19 700         88         8.9         21 600         97           14.3         0.58         0.67         19 700         88         8.9         21 600         97           15.9         0.71         1.06         30 600         137         13.9         27 200         151           19.1         1.02         1.52         43 600         137         13.9         23 600         215           22.2         1.39         2.07         59 000         264         26.8         65 000         215           25.4         1.82         2.71         76 600         34.7         84 400         378           28.6         2.30         34.7         84 400         378         378           28.6         2.30         34.7         84 400         378         378           28.4         28.4         400         378         378         378	Image: Construction of the state o	Immodel for the first of the first



F 18

API CLASSIFICATION OF BRIGHT (UNCOATED) OR DRAWN GALVANIZED WIRE ROPE (continued) Classes  $6 \times 25~"B"$ ,  $6 \times 27~"H"$ ,  $6 \times 30~"G"$  and  $6 \times 31~"V"$  (API Spec 9A, 24th edition, June 1, 1995)

r			
	Steel	(t ³ )	127.0 82.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 127.0 1
	Extra Improved Plow Steel	(kN)	125 157 157 193 276 276 276 276 193 193 193 1250 1250 1430 1840
Typical nominal strength*	Extra	(q))	28 000 35 200 43 400 62 000 137 200 137 200 138 800 138 800 1000 1000 1000 1000 1000 1000 1000
Typical nomi	ee	(t ³ )	111.5 8895.4 111.5 8895.4 111.5 8895.4 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 111.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5
	mproved Plow Steel	(kN)	113 255 172 172 173 173 173 173 173 173 173 173 173 173
	<u></u>	(qI)	25 400 32 000 39 400 56 400 76 400 76 400 124 400 152 600 152 600 152 600 254 000 334 000 338 000 338 000
Approximate weight	0	(kg/m)	0.70 0.70 0.70 0.70 0.75 0.75 0.75 0.75
Approxim		(Ib/ft)	0.47 0.667 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.655 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.555 7.5557 7.5557 7.5557 7.5557 7.5557 7.55577 7.55577 7.555777 7.55577777 7.55577777777
diameter	Nominal diameter		13.0 51.0 51.0 51.0 51.0 51.0 51.0 51.0 51
Nominal		(in)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2



Flattened strand constructions

6 x 25 Style B Flattened Strand IWRC

6 x 31 Style V Flattened Strand IWRC

### API WIRE ROPE Sheave sizes (API RP 9B, May 30, 1986)

#### I WINCH DRUM

The winch drum must allow wire rope spooling with a minimum of layering. Its diameter must be more than twenty times the nominal rope diameter.

#### **II SHEAVES**

$$D_T = dF$$

 $D_T$  = sheave groove root diameter

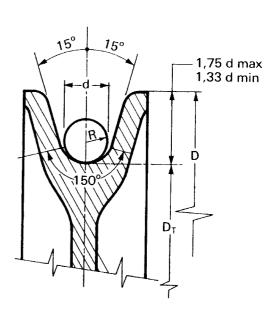
d = nominal rope diameter

F = service factor

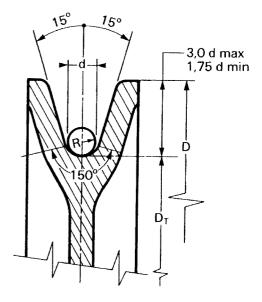
	Service factor F				
Rope type	Cond	litions			
	А	В			
6 × 17	72	42			
6 × 17 S	56	33			
6 × 19 S	51	30			
6 × 21 F	45	26			
6 × 25 FW	41	24			
6 × 31	38	22			
6 × 37	33	18			
8 × 19 S	36	21			
8 × 19 W	31	18			
$18 \times 7$ and $19 \times 7$	51	36			
FS	51	45			

#### Condition A: ideal size.

Condition B: less rigorous size but implying shorter rope life.


*Example:* with a  $6 \times 19$  wire rope, diameter 1 1/4 inches, in condition A:

$$D_T = 1.25 \times 51 = 63.75$$
 in  
= 1620 mm


In condition B:  $D_T = 953 \text{ mm}$ = 37.50 in

## SHEAVE GROOVES (API Spec 8A, 12th edition, June 1, 1992)

Nominal wire rope diameter		roove root lius: <i>R</i>		roove gage lius: <i>R</i>
(in)	(in)	(mm)	(in)	(mm)
1/4	0.137	3.48	0.129	3.28
5/16	0.167	4.24	0.160	4.06
3/8	0.201	5.11	0.190	4.83
7/16	0.234	5.94	0.220	5.59
1/2	0.271	6.88	0.256	6.50
9/16	0.303	7.70	0.288	7.32
5/8	0.334	8.48	0.320	8.13
3/4	0.401	10.19	0.380	9.65
7/8	0.468	11.89	0.440	11.18
1	0.543	13.79	0.513	13.03
1 1/8	0.605	15.37	0.577	14.66
1 1/4	0.669	16.99	0.639	16.23
1 3/8	0.736	18.69	0.699	17.75
1 1/2	0.803	20.40	0.759	19.28
1 5/8	0.876	22.25	0.833	21.16
1 3/4	0.939	23.85	0.897	22.78
1 7/8	1.003	25.48	0.959	24.36
2	1.070	27.18	1.019	25.88
2 1/8	1.137	28.88	1.079	27.41
2 1/4	1.210	30.73	1.153	29.29
2 3/8	1.273	32.33	1.217	30.91
2 1/2	1.338	33.99	1.279	32.49
2 5/8	1.404	35.66	1.339	34.01
2 3/4	1.481	37.62	1.409	35.79
2 7/8	1.544	39.22	1.473	37.41
3	1.607	40.82	1.538	39.07



Drilling line and casing line sheave



Sand line sheave

### WORK DONE BY A DRILLING LINE

#### I ROUND-TRIP OPERATIONS

Running the drill string into the hole and pulling the string out of the hole (to change the bit) at depth *L*:

$$T_m = 0.981 \left[ pL(L+\ell) + 4L\left(P + \frac{d}{2}\right) \right] 10^{-6}$$

where :

 $T_m$  = amount of work (10³ daN.km)

- L = depth of hole (m)
- $\ell$  = length of a stand (m) (single, double or triple) (m)
- *d* = additional weight due to drill collars and bit (accounting for buoyancy) (kg) (see *Note*)
- p = weight per meter of drill pipes with tool-joints (accounting for buoyancy) (kg/m)
- P = total weight of travelling block/elevator assembly (kg)

#### **II DRILLING OPERATIONS**

To drill to depth  $L_1$ :

To drill from depth  $L_1$  to depth  $L_2$ :

$$T_f = 3 T_{m1}$$

$$T_{f1-2} = 3 [T_{m2} - T_{m1}]$$

#### **III CORING OPERATION**

Between depth  $L_1$  and depth  $L_2$ :

$$T_{c1-2} = 2 \left[ T_{m2} - T_{m1} \right]$$

Example:

Depth = 400 m; 100 m of DC  $8'' \times 3''$ ; DP 5'' - 19.5 (TJ 6 1/4)-E.

Mud d = 1.4; weight of travelling block/elevator assembly P = 8000 kg.

Weight of drill pipes in air = 31.06 kg/m.

Apparent weight =  $31.06 \times 0.822 = 25.53$  kg/m.

Weight of DC in air = 218.8 kg/m.

Weight of DC in mud = 179.85 kg/m.

Total additional apparent weight  $d = (179.85 - 25.53) \times 100 = 15432$  kg.

$$T_m = 0.981 \left[ 25.53 \times 400(400 + 27) + 4 \times 400 \left( 8000 + \frac{15\,432}{2} \right) \right] 10^{-6}$$

 $T_m = 28.9 \ 10^3 \ daN.km$ 

Note: If L_{DC} is the length of the drill collars

 $p_{DC}$  is the weight per meter of the drill collars accounting for buoyancy:

$$d = L_{DC} \left( p_{DC} - p \right)$$

Cutoff length as a function of derrick or mast height and drum diameter **CUTOFF PRACTICE FOR DRILLING LINES** (API RP 9B, 9th edition, May 30, 1986)

				· · · · · · · · · · · · · · · · · · ·						_				
	36		33.0 11.5											
	34	_	33.9 12.5											
	32		34.5 13.5	26.8 10.5	24.3 9.5	24.3 9.5								
	30	Sde	sde	34.7 14.5	27.5 11.5	25.1 10.5	22.7 9.5							
	28			aps	aps	laps	laps	aps	34.6 15.5	25.7 11.5	25.7 11.5	23.5 10.5	19.0 8.5	
	26	r of drum l		25.9 12.5	23.9 11.5	23.9 11.5	19.7 9.5			-				
neter (in)	24	Cutoff length in meters and number of drum laps		25.9 13.5	23.9 12.5	23.9 12.5	18.2 9.5							
Drum diameter (in)	22	n meters a			25.5 14.5	21.9 12.5	18.4 10.5							
	20	off length i			24.7 15.5	23.1 14.5	18.4 11.5							
	18	Cuto			e	22.3 15.5	18.0 12.5	16.5 11.5						
	16					22.3 17.5	18.5 14.5	16.0 12.5		a lanc due				
	4						19.6 17.5	16.2 14.5		ther of drug				
	13			<u> </u>			20.2 19.5	18.2 17.5	12.0 11.5					
	<u>,</u>								11.0	th aiven is a				
	or mast height (ft)		151 or more	142 to 150	133 to 140	120 to 132	91 to 119	73 to 90	Up to 72	Note: The cutoff length diven is a whole number of drum lens number on holf for in order to shares the second of the				

length given is a whole number of drum laps plus one half-lap in order to change the rope crossover point, which is a point of high wear NOIE. THE CULOIL  $m \times 3.28 = ft$ 

### CUTOFF PRACTICE FOR DRILLING LINES (1) (continued) Cumulative work before first cutoff (API RP 9B, 9th edition, May 30, 1986)

Derrick or mast height			Total	work of drilling line before first cutoff, fonction of line diameter								
	Drilling difficulties	1″		1 1/8″		1 1/4″		1 3/8″		1 1/2″		
(ft)	unneuties	10 ³ daN.km	ton. mile	10 ³ daN.km	ton. mile	10 ³ daN.km	ton. mile	10 ³ daN.km	ton. mile	10 ³ daN.km	ton. mile	
80 to 87	Very hard Hard Medium Low	716 716 716 859	500 500 500 600									
94 to 100	Very hard Hard Medium Low	716 716 716 859	500 500 500 600	859 1003 1146 1289	600 700 800 900							
126 to 131	Very hard Hard Medium Low			859 1003 1146 1289	600 700 800 900	1432 1575 1719 1862	1000 1100 1200 1300					
133 to 138	Very hard Hard Medium Low			859 1003 1146 1289	600 700 800 900	1432 1575 1719 1862	1000 1100 1200 1300					
142 to 147	Very hard Hard Medium Low					1432 1575 1719 1862	1000 1100 1200 1300	2292 2578 2864 3008	1600 1800 2000 2100			
187 to 189	Very hard Hard Medium Low							2292 2578 2864 3008	1600 1800 2000 2100	2864 3150 3437 3724	2000 2200 2400 2600	

(1) This table approximately gives the work done by the drilling line before the first cutoff, for Improved Plow Steel drilling lines with a metal core, using a factor of safety of 5. If a different factor of safety is selected, the curve opposite gives the correction factor to apply to the work given in the table above.

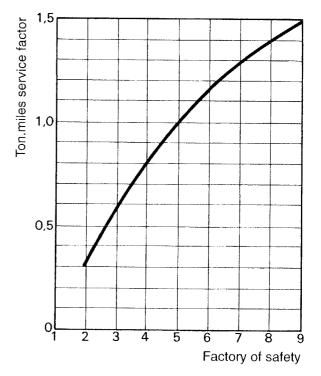
Example:

Mast height = 138 ft

Wire rope diameter =  $1 \frac{1}{4''}$ 

Drilling difficulties = hard Drum diameter = 28 in

Factor of safety = 3


Factor of safety = 3

For a factor of 5, the above table gives  $1575 \ 10^3 \ daN.km$ Factor selected = 3. The curve opposite gives a correction factor of 0.58

Work =  $1575 \times 0.58 = 914 \ 10^3 \ daN.km$  before the first cutoff

The table F 23 *Cutoff length as a function of drum diameter* gives 25.70 m for 28 in.

*Note:* For the following cutoffs, the total work given in the table must be reduced by 100 ton.mile (143  $10^3$  daN.km) for 1 1/8 in in and smaller wire rope diameter, and by 200 ton.mile (286  $10^3$  daN.km) for other wire rope diameters.



### DRUM AND REEL CAPACITY (from IADC Drilling Manual)

• The length of wire rope (in meters) that can be spooled on a drum or reel is:

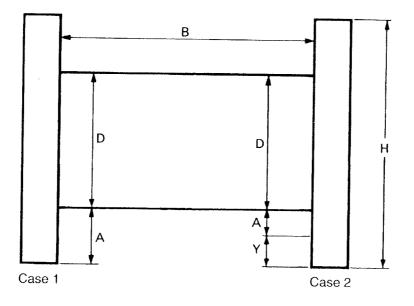
$$(A + D) \times A \times B \times K$$

where:

$$A = \frac{H-D}{2} \text{ (cm)}$$

D = diameter of drum barrel (cm)

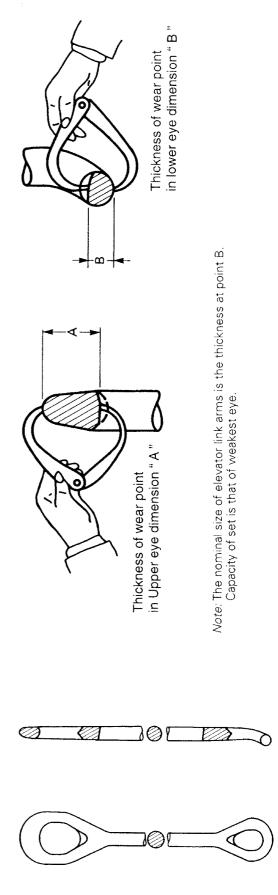
H = diameter of drum flanges (cm)


K = factor depending on the wire rope diameter selected

B = distance between flanges (cm)

• The length of wire rope, in meters, contained on an incompletely filled drum or reel is given by the same formula where:

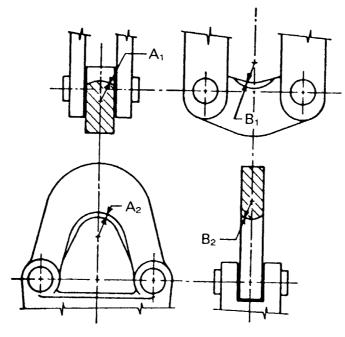
$$A = \frac{H - D - 2Y}{2}$$
 Y = distance between the last rope lay and the flange edge


Nominal rope diameter (in)	Factor K	Nominal rope diameter (in)	Factor <i>K</i>	Nominal rope diameter (in)	Factor <i>K</i>
3/8	0.02939	13/16	0.00658	1 5/8	0.00165
7/16	0.02214	7/8	0.00573	1 3/4	0.00143
1/2	0.01721	1	0.00445	1 7/8	0.00126
9/16	0.01378	1 1/8	0.00355	2	0.00111
5/8	0.01129	1 1/4	0.00283	2 1/8	0.00099
11/16	0.00941	1 3/8	0.00236	2 1/4	0.00089
3/4	0.00796	1 1/2	0.00199	2 3/8	0.00078



ELEVATOR LINK ARMS Remaining capacities of worn link arms

Dimensions and nominal capacity of link arms (per set)

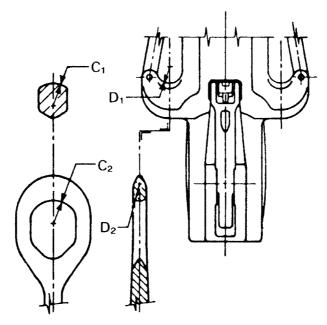

			1 3/4 - 150 tons	50 tons			2 1/4 - 250 tons	50 tons			2 3/4 – 350 tons	150 tons			3 1/2 - 500 tons	00 tons	
Dimension A	(in)	3 1/2	3 1/2 3 3/8 3 1/4		3 1/8	വ	4 3/4	4 5/8	4 1/2	ъ	4 3/4	4 5/8	4 1/2	9	5 5/8	5 1/4	53/16
	(mm)	88.9	85.7	82.6	79.4	127.0	120.7	117.5	114.3	120.7 117.5 114.3 127.0 120.7	120.7		117.5 114.3 152.4	152.4	142.9	142.9 133.4 131.8	131.8
	(in)	1 3/4	1 5/8	1 5/8 19/16	1 1/2	2 1/4	2 1/8	21/16	2	2 3/4	2 5/8	2 1/2	27/16	3 1/2	3 1/4	m	2 7/8
	(mm)	44.5	41.3	39.7	38.1	57.2	54.0	52.4	50.8	6.69	66.7	63.5	61.9	88.9	82.6	76.2	73.0
Canacity per set	(ton)	150	125	110	100	250	210	188	175	350	290	262	245	500	440	375	345
	10 ³ daN	135	112	98	89	222	185	168	155	312	258	234	213	445	392	334	308



### RECOMMENDED HOISTING TOOL CONTACT SURFACE RADII (API Spec 8A, 12th edition, June 1, 1992)

Can	acity			Trav	elling bloc	k and hoc	ok bail		
	αστιγ	A ₁ 1	max.	A ₂	min.	B ₁	min.	B ₂	max.
(short tons)	(10 ³ daN)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)
25–40	22–36	2 3/4	69.9	2 3/4	69.9	3 1/4	82.6	3	76.2
41–65	36–57	2 3/4	69.9	2 3/4	69.9	3 1/4	82.6	3	76.2
66–100	57–89	2 3/4	69.9	2 3/4	69.9	3 1/4	82.6	3	76.2
101–150	89–133	2 3/4	69.9	2 3/4	69.9	3 1/4	82.6	3	76.2
151–250	133-222	4	101.6	4	101.6	3 1/4	82.6	3	76.2
251-350	222-312	4	101.6	4	101.6	3 1/4	82.6	3	76.2
351–500	312–445	4	101.6	4	101.6	3 1/2	88.9	3 1/4	82.6
501-650	445–578	4	101.6	4	101.6	3 1/2	88.9	3 1/4	82.6
651–750	578–667	6	152.4	6	152.4	3 1/2	88.9	3 1/4	82.6
751–1000	667–890	6	152.4	6	152.4	6 1/4	158.8	6	152.4

Travelling block

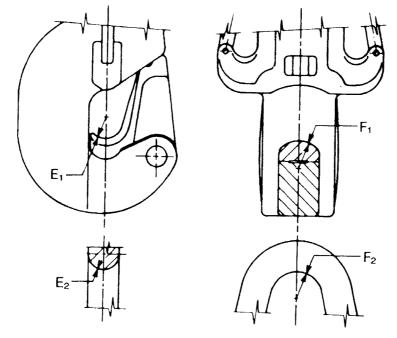



Hook bail

### RECOMMENDED HOISTING TOOL CONTACT SURFACE RADII (continued) (API Spec 8A, 12th edition, June 1, 1992)

Can	acity			Eleva	ator link ar	nd hook lir	nk ear		
Cap	acity	C ₁ r	nax.	C ₂ 1	min.	D ₁	min.	D ₂ r	max.
(short tons)	(10 ³ daN)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)
25-40	22–36	1 1/2	38.1	1 1/2	38.1	1 1/4	31.7	7/8	22.2
41–65	3657	2 1/2	63.5	2 1/2	63.5	1 1/4	31.7	7/8	22.2
66–100	57–89	2 1/2	63.5	2 1/2	63.5	1 1/2	38.1	1 1/2	28.6
101–150	89–133	2 1/2	63.5	2 1/2	63.5	1 1/2	38.1	1 1/2	28.6
151–250	133–222	4	101.6	4	101.6	1 3/8	44.4	1 3/8	34.9
251–350	222–312	4	101.6	4	101.6	1 3/4	44.4	1 3/8	34.9
351–500	312-445	4	101.6	4 3/4	120.6	2 1/4	57.1	1 7/8	47.6
501-650	445–578	4	101.6	4 3/4	120.6	2 1/4	57.1	1 7/8	47.6
651-750	578-667	4	101.5	5	127.0	2 1/2	63.5	2 1/2	63.5
751–1000	667–890	4 1/2	114.3	5	127.0	3	76.2	2 3/4	69.9

Link ears




Elevator links

### RECOMMENDED HOISTING TOOL CONTACT SURFACE RADII (continued) (API Spec 8A, 12th edition, June 1, 1992)

Cap	acity				Hook and	swivel ba	ail		
		E ₁	max.	E ₂	min.	F ₁	min.	F ₂ I	max.
(short tons)	(10 ³ daN)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)
25–40	22–36	2	50.8	1 1/2	38.1	3	76.2	3	76.2
41–65	36–57	2	50.8	1 3/4	44.5	3 1/2	88.9	3 1/2	88.9
66–100	57–89	2 1/4	57.2	2	50.8	4	101.6	4	101.6
101–150	89–133	2 1/2	63.5	2 1/4	57.2	4 1/2	114.3	4 1/2	114.3
151–250	133–222	2 3/4	69.9	2 1/2	63.5	4 1/2	114.3	4 1/2	114.3
251–350	222-312	3	76.2	2 3/4	69.9	4 1/2	114.3	4 1/2	114.3
351–500	312–445	3 1/2	88.9	3 1/4	82.6	4 1/2	114.3	4 1/2	114.3
501650	445–578	3 1/2	88.9	3 1/4	82.6	4 1/2	114.3	4 1/2	114.3
651–750	578-667	4 1/4	108.0	4	101.6	4 1/2	114.3	4 1/2	114.3
751–1000	667-890	5 1/4	133.4	5	127.0	5	127.0	5	127.0

Hook



Swivel bail

DRILL PIPE ELEVATOR BORES (API Spec 8A, 12th edition, June 1, 1992)

					Weld-on 1	Weld-on tool joints				
Tool joint	Drill pipe size and style		Taper shoulder	houlder			Square shoulder	shoulder		Elev.
reference	(all weights and grades)	Neck diam. max.	m. max.	Elev.	Elev. bore	Neck diam. max.	m. max.	Elev	Elev. bore	marking
		(in)	(ww)	(in)	(ww)	(in)	(mm)	(in)	(mm)	
NC26 (2 3/8 IF)	2 3/8 EU	2 9/16	65.09	2 21/32	67.47	*		*		2 3/8 EU
NC31 (2 7/8 IF)	2 7/8 EU	3 3/16	80.96	3 9/32	83.34	3 3/16	80.96	3 3/8	85.73	2 7/8 EU
NC38 (3 1/2 IF) NC40 (4 FH)	3 1/2 EU 3 1/2 EU	3 7/8 3 7/8	98.43 98.43	3 31/32 3 31/32	100.81 100.81	3 7/8 3 7/8	98.43 98.43	4 1/16 4 1/16 4 1/16	103.19 103.19	3 1/2 EU
NC40 (4 FH)	4 IU	4 3/16	106.36	4 9/32	101.86	4 1/8	104.78	4 5/16	109.54	4 IU
NC46 (4 IF)	4 4 1/2 EU	4 1/2 4 11/16	114.30 119.06		119.86 121.44		114.30 117.48	13/1	122.24 122.24	
4 1/2 FH**	4 1/2 IEU 4 1/2 IU 4 1/2 IEU	4 11/16 4 11/16 4 11/16	119.06 119.06 119.06	4 25/32 4 25/32 4 25/32	121.44 121.44 121.44	4 5/8 4 5/8 5/8	117.48 117.48 117.48	4 13/16 4 13/16 4 13/16	122.24 122.24 122.24	4 1/2 IU 4 1/2 IEU
NC50 (4 1/2 IF) 5 1/2 FH**	4 1/2 EU 5 IEU 5 IEU	5 5 1/4 5 1/8	127.00 130.18 130.18	5 1/4 5 1/4 5 1/4	133.35 133.35 133.35	5 5 1/8 5 1/8	127.00 130.18 130.18	55/16 55/16 55/16	134.94 134.94 134.94	4 1/2 EU 5 IEU
5 1/2 FH**	5 IEU	5 11/16	144.46	5 13/16	147.64	5 11/16	144.46	5 7/8	149.23	5 1/2 IEU
6 5/8 FH	6 5/8 IEU	6 57/64	175.02	7 1/32	178.59					6 5/8
<i>Note</i> : Flevators with the same hores are the same elevators	the same horae a	re the same ele	viatore							

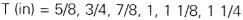
*Note:* Elevators with the same bores are the same elevators. * Not manufactured.

** Obsolescent connection.

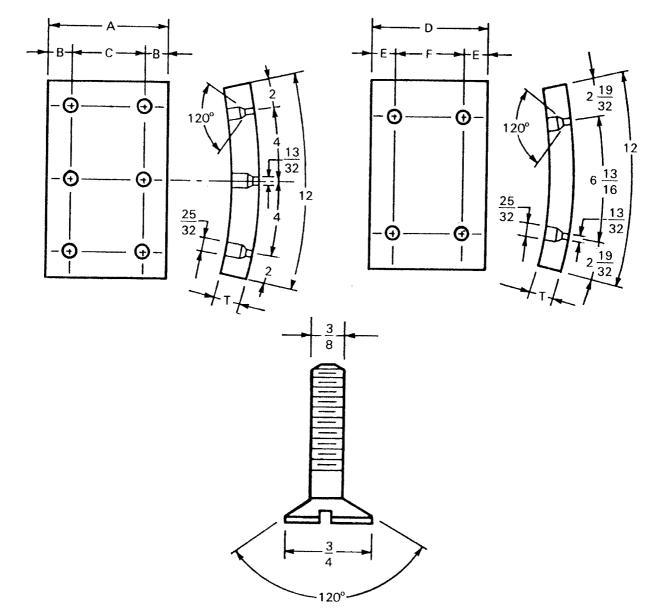
l

### **BRAKE BLOCKS**

#### 6 hole API brake block


API	A	B	C
block No.	(in)	(in)	(in)
1	6	1 1/4	3 1/2
2	7	1 1/2	4
3	8	1 3/4	4 1/2
4	9	2	5
5	10	2 1/4	5 1/2
6	11	2 1/2	6
7	12	2 3/4	6

#### 4 hole API brake block


API	D	E	F
block No.	(in)	(in)	(in)
10 11 12 13 14	6 7 8 9 10	1 1/4 1 1/2 1 1/2 1 1/2 1 1/2 1 1/2	3 1/2 4 5 6 7

Brake block thickness: brake block thickness is not stipulated; for any given block size, however, several standard thickness are provided:

• 6 hole brake block:



• 4 hole brake block: T (in) = 5/8, 3/4, 7/8, 1



Screws for fastening brake blocks to the brake bands shall be 3/8, 120°, flathead brass machine screw as shown in figure. Screw threads shall be 3/8-16 UNC-2A.

#### Inside diameter Standard length (1) Line pipe D L thread size T Grade (in) (in) (mm)(ft) (m) 2 50.8 35 10.67 2 1/2 A-B 40 12.19 2 1/2 A-B-C 2 1/2 63.5 10 3.05 3 A-B-C-D-E 12 3.66 З A-B-C-D-E 15 3 4.57 A-B-C-D-E 20 3 6.10 A-B-C-D-E 30 9.14 3 A-B-C-D-E 50 15.24 3 A-B-C-D-E 55 3 16.76 A-B-C-D-E 3 76.2 10 3.05 4 C-D-E 12 3.66 4 C-D-E 15 4.57 4 C-D-E 20 6.10 4 C-D-E 30 9.14 4 C-D-E 55 16.76 4 C-D-E 60 18.29 4 C-D-E 70 21.34 4 C-D-E 75 22.86 4 C-D-E 3 1/2 88.9 10 3.05 4 C-D-E 12 3.66 4 C-D-E 15 4.57 4 C-D-E 20 6.10 4 C-D-E 30 9.14 4 C-D-E 55 16.76 4 C-D-E 60 18.29 4 C-D-E 70 21.34 4 C-D-E 75 22.86 4 C-D-E 101.6 4 10 3.05 5 C-D 12 5 3.66 C-D 15 4.57 5 C-D 20 5 6.10 C-D 30 9.14 5 C-D 55 5 16.76 C-D 5 60 18.29 C-D 70 21.34 5 C-D 75 22.86 5 C-D

### VIBRATOR AND DRILLING HOSE (API Spec 7K, 2nd edition, February, 1996)

(1) Non standard lengths in 5 ft (1.50 m) increments may be marked with API monogram provided the hose meets all other requirements of this specification.

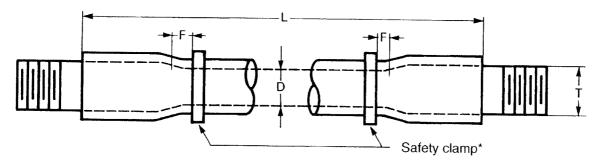
### VIBRATOR AND DRILLING HOSE (continued) (API Spec 7K, 2nd edition, February, 1996)

Grade	Working	pressure	Test pr	essure
	(psi)	(kPa)	(psi)	(kPa)
Grade A Grade B Grade C Grade D Grade E	1 500 2 000 4 000 5 000 7 500	10 300 13 800 27 600 34 500 51 700	3 000 4 000 8 000 10 000 15 000	20 600 27 600 55 200 69 000 103 400

#### Hose length

$$L = \frac{L_r}{2} + \pi R + S$$

with:


- L =length of hose in feet or meters
- $L_r$  = length of hose travel in feet or meters
- R = minimum bending radius of hose in feet or meters:
  - R = 0.9 m (3 ft) for 2'' hose
  - $R = 1.2 \text{ m} (4 \text{ ft}) \text{ for } 2 \frac{1}{2} \text{ cm and } 3'' \text{ hose}$
  - R = 1.4 m (4 1/2 ft) for 3 1/2'' hose
- S = allowance for contraction in L due to maximum recommended working pressure in feet or meters, which is 0.3 m (1 ft) for all sizes of hose

#### Stand pipe height

 $H_s = \frac{L_r}{2} + Z$ 

with:

- $H_s$ = vertical height of stand pipe in feet or meters
- $L_r$  = length of hose in feet or meters
- Z = height, in ft or m, from the top of the derrick floor to the end of hose at swivel when the swivel is in its lowest drilling position



- F = For drilling hoses, this dimension must be 6 to 18 inches. For drilling pump hoses, this dimensions is 6 to 10 inches
- * Note: Manufacturer must mark the hose: "Fix safety clamp here".

#### CHAINS (API Standard 7F, 5th edition, October 1, 1993)

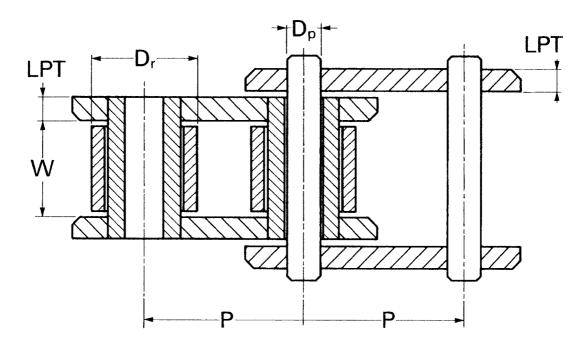
#### I SINGLE AND MULTIPLE CHAIN ASSEMBLIES

Chains are designated by:

- a) A number of which the right-hand digit is:
  - 0 for standard chain
  - 1 for lightweight chain

5 for chain without roller

and the one or two digits to the left represent(s) the pitch of the chain expressed as the number of 1/8 in increments.


- b) A number representing the number of chain strands
- c) The letter H may be inserted between these two numbers for a heavy chain.

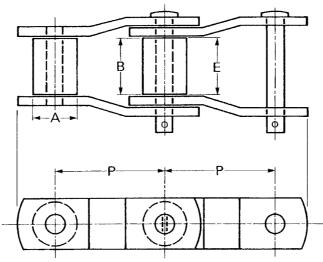
#### Example: chain 160-6 or 160-H-6

```
0 = standard
16 = 16/8 = 2 in
```

- 6 = six-strand chain
- H = heavy

In the H series, only the flange thickness are different.




# CHAINS (continued) Standard chain dimensions (ANSI Standard, B29.1)

	1		-			-													
	Неачу	(mm)		I	I	1	I	1	Э.2 Э.2	4.0	4.7	5	)	+ t 1 C	. /	7.9	9.5	12.7	
Flange thickness <i>LPT</i>	He	(in)		1	I	1	ł	1	0.125	0.156	0.187	0.219	0.250		0.201	0.312	0.375	0.500	
Flange thic	dard	(mm)	(	ю. С. ч		, <u>-</u> نز	<del>ر</del> د د د	7.0 7	7.4	3.2	4.0	4.7	с С	) < ) ((	, ț 1 C		7.9	9.5	
	Standard	(in)		0.030	0.050	ngn.n	0.000	0.080	0.084	0.125	0.156	0.187	0.219	0.250		0.201	0.312	0.375	-
Tension for measuring	length	(kg)	с 0	7 C 0 C	7. C C	7.0 7		7.77		56.7	88.5	127.5	173.7	276 R	0.01 4 201 4		5.465	510.3	
Ten: for mea	len	(ql)	0	0 0	0 0	0 7	- 07	0 C		971	195	281	383	500	200 200		12/	1125	
meter	C _D	(mm)	60	2 U 7 U	יי היה		) ← t ư	- o	, c		0.D	11.1	12.7	14.3	17.4		0.0 -	23.8	
Pin diameter	7	(in)	0 0905	0.1110	01/10	0 1560	0.2000	0.2340		0.3120	0.3750	0.4370	0.5000	0.5620	0.6870	0.001 0	0.1010	0.9370	
link width	~	(mm)	3.2	1 00	2. 4	5	0.0	12.2		0 ( 0 (		25.4	25.4	31.8	35.7	τας	- 0	22.2	
Inner lir	2	(in)	1/8	3/16	1/4	5/16	3/8	1/2	1 Q/L	0/0	3/4		<b>~</b>	1 1/4	1 13/32	11/2	4 ( 2 T	8//	
Roller diameter	, <u>,</u>	(mm)	3.3	5.1	7.8	6.2	10.2	11 0.11	150	) (		22.2	25.4	28.6	35.7	39.7	) ; 7 ( 7 (	47.0	
Roller d		(in)	0.130	0.200	0.306	0.312	0.400	0.469	0625	0.450	0.730	0.8/5	1.000	1.125	1.406	1.562		G/0.1	
Pitch <i>P</i>		(mm)	6.4	9.5	12.7	12.7	15.9	19.1	25.4	α - α - σ	0, T - 0 0 0	τ. 	44.5	50.8	57.2	63.5	76.7	10.2	
Pitc		(in)	1/4	3/8	1/2	1/2	5/8	3/4	<b>e</b>	11/1	t ç 	7/1 1	1 3/4	2	2 1/4	2 1/2	Ċ	2	-
Chain	No.		*25	ഥ ന *	41	40	50	60	80	100			140	160	180	200	070		141141.1

(*) Without roller.

#### **CHAINS** (continued)

#### **II ROTARY CHAINS**



Standard rotary chains are given in the Table below:

			Nominal	size (in)		
	3	3	3 1	/8	4	ļ
	(in)	(mm)	(in)	(mm)	(in)	(mm)
Pitch P	3.075	78.1	3.125	79.4	4.063	103.2
Roller diameter A	1 1/4	31.7	1 5/8	41.3	1 3/4	44.4
Roller length B	1 7/16	36.5	1 19/32	40.5	1 7/8	47.6
Distance between flanges E	1 1/2	38.1	1 5/8	41.3	1 15/16	49.2
Distance between center lines for duplex chains	-	-	3 3/16	81.0		
Number of links in 10 ft (3.048 m)	3	9	3	9	3	0

Note: For the purpose of measuring standard length, the chains should be under a tensile load of 500 lb (225 daN).

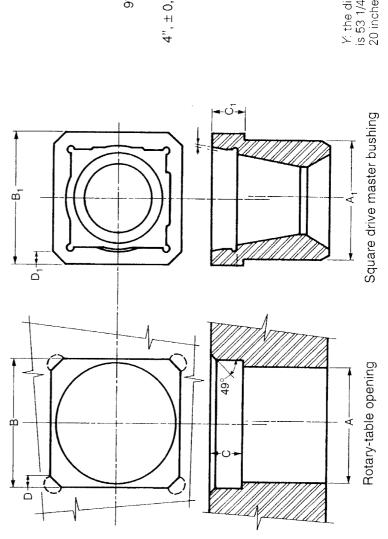
#### **III LENGTH OF A CHAIN**

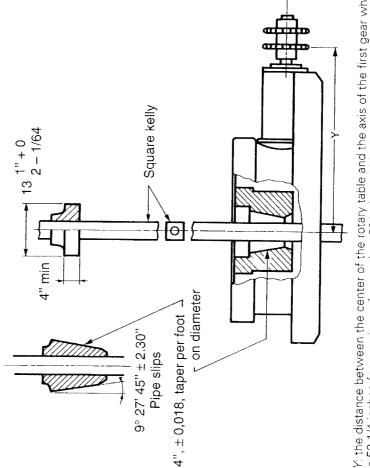
$$L = 2C + \frac{N+n}{2} + 39.5 \frac{(N-n)^2}{C}$$

where:

- L = chain length in pitches
- C = distance between sprocket centres in pitches
- N = number of teeth on the large sprocket
- n = number of teeth on the small sprocket

#### **IV PROPER CHAIN TENSION**


For a check of a chain tension, turn one sprocket to tighten the lower strand of chain; then measure the sag of upper strand. This sag measured at midpoint should be approximately two to three per cent of the length of the tangent to the sprockets.


*Example:* If the length of the tangent between the sprockets is 200 cm, the sag shall be between 4 and 6 cm.

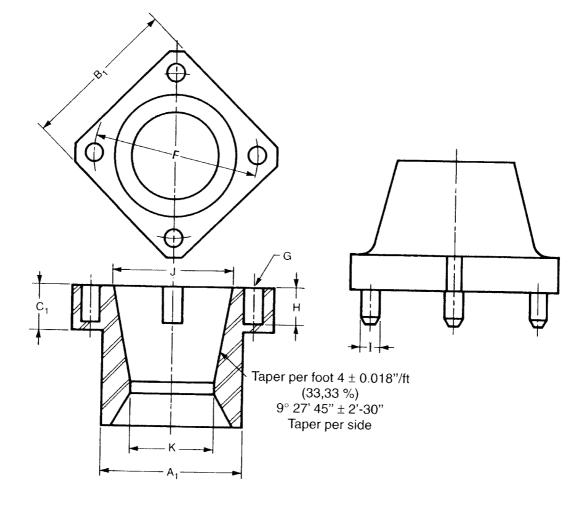
ROTARY TABLE OPENING AND SQUARE DRIVE MASTER BUSHING (API Spec 8C, 2nd edition, June 1, 1992)

	licity	(ii)	1/32 1/32 1/32 -
	Concentricity TIR	(cm)	0.794 0.794 0.794 -
		(in)	1 3/4 1 3/4 1 3/4 -
ing	0	(cm)	4.445 4.445 4.445 
Square drive master bushing		(in)	5 1/4 5 1/4 5 1/4 -
re drive m	J	(cm)	13.33 13.33 13.33 13.33
Squa		(in)	18 1/8 21 1/8 28 1/16 -
	B	(cm)	46.04 53.66 71.28 -
		(in)	17 7/16 20 7/16 27 7/16 37 7/16 -
	A1	(cm)	44.29 51.91 69.69 95.08 -
	D naximal	(in)	1 3/4 1 3/4 1 3/4 
	L max	(cm)	4.44 <b>5</b> 4.445 4.445 
	С	(in)	5 1/4 5 1/4 1 1 /4
e opening	)	(cm)	13.33 13.33 13.33 13.33
Rotary-table opening	B	(in)	18 3/16 21 3/16 28 3/16 -
_		(cm)	46.20 53.82 71.60 -
- Andrew - A		(iri)	17 1/2 20 1/2 27 1/2 37 1/2 49 1/2
	4	(cm)	44.45 52.07 69.85 95.25 125.73
Nominal	table size (in)		17         1/2         44.45         17         1/2         46.2           20         1/2         52.07         20         1/2         53.8           27         1/2         69.85         27         1/2         71.6           37         1/2         95.26         37         1/2         -           49         1/2         125.73         49         1/2         -

Note: Pipe slips and master bushing must have a taper of 4 in per foot on diameter (33.33%), that is an angle of 9°27'45"

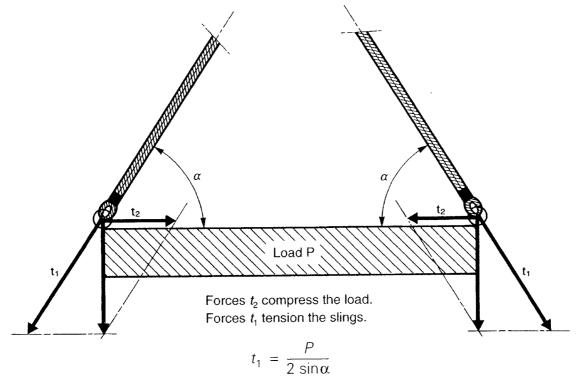







į

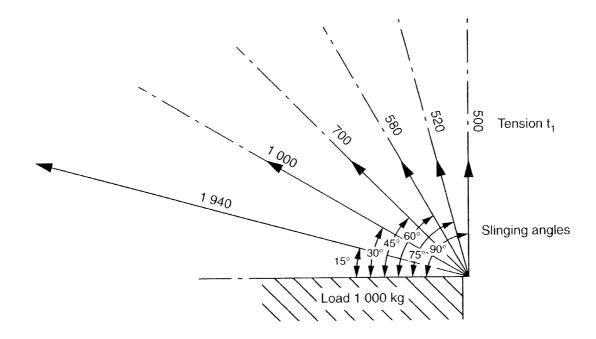
F 37


#### FOUR-PIN DRIVE KELLY BUSHING AND MASTER BUSHING (API Spec 8C, 2nd edition, June 1, 1992)

Nominal		F		G		H		1		J		ĸ
table size (in)	± 1.6 (mm)	± 1/16 (in)	± 0.13 (mm)	± 0.005 (in)	(mm)	(in)	± 0.13 (mm)	± 0.005 (in)	+ 1.6 - 0 (mm)	+ 1/16 - 0 (in)	+ 1/16 - 0 (mm)	+ 1/16 - 0 (in)
17 1/2	482.6	19	65.2	2.565	107.9	4 1/4	62.8	0.470	005.4	110/0		
20 1/2	584.2	23						2.472	365.1	14 3/8	257.2	10 1/8
			65.2	2.565	107.9	4 1/4	62.8	2.472	365.1	14 3/8	257.2	10 1/8
27 1/2	654.2	25 3/4	86.2	3.395	107.9	4 1/4	82.9	3.265	365.1	14 3/8	257.2	10 1/8
37 1/2	654.1	25 3/4	86.2	3.395	107.9	4 1/4	82.9	3.265	00011	110,0	207.2	10 1/0
49 1/2		-		-	-		-	-	_	_	_	



#### TENSION IN SLINGS Two-wire slings


#### I PRINCIPLE OF BREAKDOWN OF FORCES



#### II TENSION IN SLINGS AS A FUNCTION OF ANGLE $\boldsymbol{\alpha}$

#### For a load P = 1000 kg

$\alpha$ (degrees)	15	30	45	60	75	90
t ₁ (kg)	1940	1000	700	580	520	500



G

### — pumping and pressure losses

Mud pumps	G1
Pumping power	G2
Output in liters per stroke double acting duplex pumps based on liner size and piston rod diameter	G3-G4
Triplex pumps. Maximum pressure based on liner (kPa)	G5
Output in liters per stroke of single acting triplex pumps (Volumetric efficiency 100%)	G6
Mud cycle time	G7
Circulation flow rate (I/min) as a function of mud rising velocity opposite drill pipes ( $V_r$ in meters per minute) and hole / pipe annulus ( $V_a$ in liters per meter)	G8-G9
Amount of drilled cuttings in mud	G10
Annular mud specific gravity <i>d</i> ann	G11
Hydraulics	G12
Rheology	G13
Critical velocity based on rheological parameters (Practical units)	G14
Pressure losses (General)	G15
Pressure loss equations	G16-G18
Pressure drop in orifices	G19

Calculation of the bit nozzle velocity	G20
Pressure loss calculation	G21-G22
Table of coefficients B	G23-G29
Table of coefficients $N_1$ . Calculation of pressure losses in surface equipment	G30
Table of coefficients $N_2$ . Calculation of pressure losses in drill pipes	G31-G44
Table of coefficients $N_3$ . Calculation of pressure losses in drill collars	G45-G46
Calculations of pressure drop in nozzles. Combination of three nozzles	G47-G52
Calculations of pressure drop in nozzles. Combination of two nozzles.	G53-G55
Table of nozzle areas. Combinations of three nozzles	G56
Table of nozzle areas. Combinations of two nozzles	G57
Table of nozzle areas	G58
Table of coefficients $N_4$ . Calculations of pressure loss in hole/drill collar annulus	G59-G63
Table of coefficients $N_5$ . Calculation of pressure loss in hole/pipe annulus	G64-G67
Equivalent lengths for special line connections (in meter)	G68

#### **MUD PUMPS**

#### I THEORETICAL FLOW RATE

#### a. Duplex pump

$$Q_t = 0.0515 \ nL\left(D^2 - \frac{d^2}{2}\right)$$

#### b. Single-acting Triplex pump

$$Q_t = 0.0386 \ nLD^2$$

where:

 $Q_t$  = theoretical flow rate (I/m)

- n = strokes per minute (strokes/min)
- L =length of stroke (in)

D = liner diameter (in)

d = piston rod diameter (in)

#### II VOLUMETRIC EFFICIENCY $\eta_v$

$$\eta_{\vee} = \frac{O_r}{O_t}$$

 $Q_r$  = true measured flow rate (l/min)

#### III HYDRAULIC POWER P_h

$$P_{\rm h} (\rm kW) = \frac{pQ_t}{60\,000}$$
  
 $P_{\rm h} (\rm hp) = \frac{pQ_t}{44\,750}$ 

where:

p = discharge pressure (kPa)

 $Q_t =$ flow rate (l/min)

#### I TRUE HYDRAULIC POWER P_{hr}

$$P_{hr}(kW) = \frac{pQ_r}{60\ 000} \quad \text{or} \quad P_{hr}(kW) = \frac{pQ_t\eta_v}{60\ 000}$$
$$P_{hr}(hp) = \frac{pQ_r}{44\ 750} \quad \text{or} \quad P_{hr}(hp) = \frac{pQ_t\eta_v}{44\ 750}$$

#### II ENGINE POWER REQUIRED TO PRODUCE p AND $Q_r$

 $\eta_{\rm m}$  = mechanical efficiency of pump

 $\eta_t$  = compound efficiency

$$P_m(kW) = \frac{pQ_r}{60\ 000\ \eta_m\ \eta_t}$$
$$P_m(hp) = \frac{pQ_r}{44\ 750\ \eta_m\ \eta_t}$$

#### III MAXIMUM SERVICE PRESSURE $p_{max}$ (kPa)

$$p_{\max} = \frac{10F_{\max}}{S}$$

where:

 $F_{max}$  = maximum load on cross head extension (*piston load*) (N)

 $S = average area under p_{max} pressure (cm²)$ 

 $S = 5.067 \left( D^2 - \frac{d^2}{2} \right)$  Duplex pump  $S = 5.067 D^2$  Triplex pump

where:

D = liner diameter (in)

d = piston rod diameter (in)

#### **IV EFFICIENCY**

 $\eta_{\rm m}$  = mechanical efficiency of pump: 0.85 to 0.90

 $\eta_t$  = compound efficiency:

V-belts = 0.97 chains = 0.95 torque converter = 0.70 to 0.90

 $\eta_v$  = volumetric efficiency, which varies widely according to the state of the valves, the supercharging, and the type of fluid. In the best case  $\eta_v$  = 0.98 for a supercharged Triplex pump

**OUTPUT IN LITERS PER STROKE DOUBLE ACTING DUPLEX PUMPS** based on liner size and piston rod diameter

Length of stroke 10″

ო	4.05 3.94 3.84
3 1/4	4.86 4.75 4.65
3 1/2 3 1/4	5.73 5.62 5.52
3 3/4	6.66 6.55 6.45
4	7.66 7.55 7.45
4 1/4	8.72 8.61 8.51
4 1/2	9.85 9.74 9.64
4 3/4 4 1/2	11.04 10.93 10.83
വ	12.29         11.04           12.18         10.93           12.08         10.83
5 1/4	15.02         13.61         12.29         11.04           14.91         13.50         12.18         10.93           14.81         13.40         12.08         10.83
5 1/2	15.02 14.91 14.81
5 3/4	17.95         16.44         15.02           17.84         16.33         14.91           17.74         16.23         14.81
Q	17.95 16.44 17.84 16.33 17.74 16.23
6 1/4	19.53 17.95 19.42 17.84 19.32 17.74
6 1/2	21.17 21.06 20.96
6 3/4	22.88 22.77 22.67
7	24.65 24.54 24.44
7 1/4	26.49         24.65         22.88         21.17           26.38         24.54         22.77         21.06           26.27         24.44         22.67         20.96
3/4 7 1/2	
7 3/4	
ω	
Ø Piston (in) Ø Rod (in)	1 1/2 1 5/8 1 3/4

## Length of stroke 12"

m	
/4	
m m	
3 1/2	
3 3/4 3 1/2 3 1/4	
4	9.07 8.80 8.65 8.32
4 3/4 4 1/2 4 1/4	10.34 10.07 9.92 9.59
4 1/2	11.69 11.42 11.27 10.94
4 3/4	13.12 12.85 12.70 12.37
2	21.42         19.61         17.87         16.21         14.63         13.12         11.69         10.34           23.05         21.15         19.34         17.60         15.94         14.36         12.85         11.42         10.07           22.90         21.00         19.19         17.45         15.94         14.21         12.85         11.42         10.07           22.57         20.67         18.86         17.12         15.46         13.88         12.37         10.94         9.95
5 1/4	16.21 15.94 15.79 15.79
5 1/2 5 1/4	17.87 17.60 17.45 17.12
5 3/4	19.61 19.34 19.19 18.86
Q	21.42 21.15 21.00 20.67
6 1/4	23.05 22.90 22.57
6 1/2	25.02 24.87 24.54
6 3/4	31.39         29.19         27.06         25.02           31.24         29.04         26.91         24.87           30.89         28.71         26.58         24.54
~	29.19 29.04 28.71
7 1/4	31.39 31.24 30.89
7 3/4 7 1/2 7 1/4	33.51
7 3/4	35.87 33.51 31.39 29.19 27.06 25.02 31.24 29.04 26.91 24.87 30.89 28.71 26.58 24.54
ω	
Ø Piston (in) Ø Rod (in)	1 5/8 1 7/8 2 2 1/4

# Length of stroke 14"

Ø Piston (in)	œ	7 3/4	3/4 7 1/2 7 1/4	7 1/4	~	6 3/4	6 1/2	6 1/4	Q	5 3/4	5 1/2	5 1/4	IJ	4 3/4 4 1/2 4 1/4	4 1/2	4 1/4	4	3 3/4	3 1/2 3 1/4	3 1/4	m
1 3/4 2 2 1/8 2 1/4 2 1/2 2 5/8	44.68 44.68 44.49 44.30 43.87 43.87 43.64	44.68 41.85 44.49 41.66 44.30 41.47 43.87 41.47 43.64 40.81	44.68         41.85         39.10         36.44           44.49         41.66         38.91         36.25           44.30         41.47         38.72         36.06           43.87         41.04         38.72         36.06           43.87         41.04         38.29         35.63           43.87         41.04         38.29         35.63           43.64         40.81         38.06         35.40		34.21 33.87 33.68 33.68 33.49 33.06 32.83	31.74 31.40 31.21 31.02 30.40 30.36	29.35 29.01 28.82 28.63 28.63 28.20 27.97	27.05 24.84 26.71 24.50 26.52 24.31 26.53 24.12 26.33 24.12 25.67 23.46 23.69	27.05         24.84         22.73           26.71         24.50         22.39           26.52         24.31         22.20           26.53         24.12         22.01           25.69         23.69         21.58           25.67         23.46         21.35	27.05         24.84         22.73           26.71         24.50         22.73           26.71         24.51         22.73           26.52         24.31         22.20           26.53         24.12         22.01           25.60         23.46         21.58           25.67         23.46         21.35	20.70 20.36 20.17 19.98 19.55 19.32	20.70 18.76 16.92 20.36 18.42 16.58 20.17 18.23 16.39 19.98 18.04 16.20 19.55 17.61 15.77 19.32 17.38 15.54	18.76         16.92         15.16         13.49           18.42         16.58         14.82         13.15           18.23         16.39         14.63         12.96           18.04         16.20         14.44         12.77           17.61         15.77         14.01         12.34           17.38         15.54         13.78         12.11	15.16         13.49           14.82         13.15           14.63         12.96           14.44         12.77           14.01         12.34           13.78         12.11	13.49 13.15 12.96 12.77 12.34 12.11						

## Length of stroke 15"

		5 3/4	5 1/2	5 1/4	5	4 3/4 4 1/2	4 1/4	4	3 3/4 3 1/2	3 1/4	ო
<b>2 1/4 2 1/4 44.43</b> 41.48 38.63 35.88 33.23 30.67 28 <b>27/8 43.19</b> 40.24 37.39 34.64 31.99 29.43 26	28.21         25.84         23.58         21.40         19.33         17.35           26.97         24.60         22.38         20.16         18.09         16.11	23.58 22.38	21.40 20.16	19.33 1 18.09 1	7.35 6.11				· · · · · ·		

OUTPUT IN LITERS PER STROKE DOUBLE ACTING DUPLEX PUMPS based on liner size and piston rod diameter (continued)

Length of stroke 16"

Ø Piston         Ø Piston         8         7 3/4         7 1/2         6 3/4         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         5 1/4         5         1/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         5         4 3/4         6         5 3/4         5 1/2         5 1/4         5         4 3/4           1/2         56.94         50.14         46.90         43.76         40.72         37.28         232.062         18.61						ŀ													
57.43       53.98       50.63       47.39       44.25       41.21       38.27       35.44       32.71       30.09       27.57       25.15       22.83       20.62       18.51         56.94       53.49       50.14       46.90       43.76       40.72       37.78       34.95       32.21       29.60       27.57       25.15       22.83       20.62       18.51         56.40       52.95       49.60       43.76       40.72       37.24       34.41       31.68       29.06       26.54       24.12       21.8       19.59       17.48         55.81       52.95       49.01       45.77       42.63       39.59       35.65       33.82       31.09       28.47       25.95       21.21       19.00       16.89         55.44       52.04       48.69       45.45       42.31       39.27       36.33       33.70       20.77       28.15       23.53       21.21       19.00       16.89         55.447       51.07       47.67       44.43       41.79       38.75       36.33       30.77       28.15       25.63       23.21       19.00       16.57         54.47       51.07       47.67       44.23       41.79       36.33	Ø Rod (in)		8 1/4	ω	7 3/4	7 1/2	7 1/4	7	6 3/4	6 1/2	6 1/4	9			5 1/4	പ	4 3/4	4 1/2	4 1/4
	2 1/4 2 1/2 2 3/4 3 1/8 3 1/4	57.43 56.94 56.40 55.81 55.49 54.47	53.98 53.98 52.95 52.36 52.04 52.04	50.63 50.14 49.60 48.69 47.67	47.39 46.90 46.36 45.77 45.45 44.43		41.21 40.72 40.18 39.59 39.27 38.25	38.27 37.78 37.24 35.65 36.33 36.33	35.44 35.44 34.41 33.60 33.50 33.50	32.71 32.22 31.68 31.09 30.77	30.09 29.60 29.06 28.47 28.15	27.57 27.08 26.54 25.95 25.95 25.63	25.15 24.66 24.12 23.53 23.53 23.21 23.21	+		18.51 18.02 17.48 16.89 16.57	16.50 16.01 15.48 14.56 14.56		

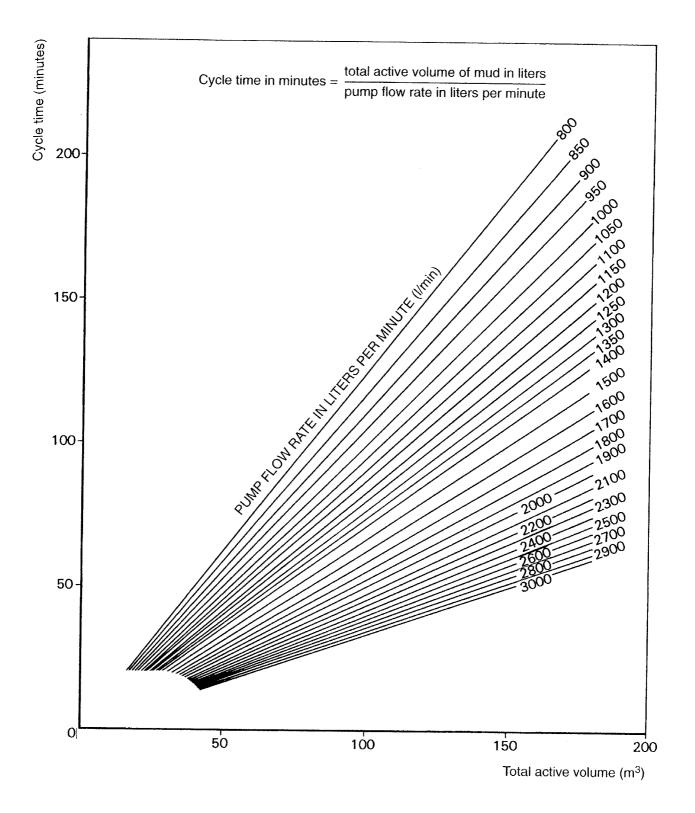
Length of stroke 18"

							)											
Ø Rod (in)	8 1/2	8 1/4	œ	7 3/4	7 1/2	7 1/4	2	6 3/4	6 1/2	6 1/4	Q	5 3/4	5 1/2	5 1/4	വ	4 3/4	4 1/2	4 1/4
2 1/4 2 3/8 2 1/2 2 3/4 3 1/8 3 1/4		60.72 60.45 60.17 59.57 58.55 58.55 58.55 58.18	56.95 56.68 56.68 56.40 55.80 53.13 54.78 54.41	53.30 53.03 52.75 52.15 51.15 51.13 51.13	49.77 49.50 49.22 48.62 47.95 47.95 47.23	46.35 46.08 45.80 45.20 44.53 44.18 43.81	43.05 42.78 42.50 41.23 40.88 40.51	39.87 39.60 39.32 38.72 38.72 37.33 37.33	36.80 36.53 36.53 36.25 36.25 34.98 34.98 34.63	33.85 33.58 33.58 33.30 32.70 32.70 31.68 31.68	31.01 30.74 30.74 29.19 28.84 28.47	28.29 28.02 27.74 27.14 26.47 26.12 26.12	25.68 25.41 25.13 25.13 24.53 24.53 23.51 23.51	23.19 22.92 22.64 22.04 221.02 21.02	20.82 20.55 20.55 20.27 19.67 19.00 18.65	18.56 18.29 18.29 18.01 17.41 16.74 16.39	16.41 16.14 15.26 15.26 14.59 14.24	14.39 14.12 13.84 13.24 12.57 12.57
						)	-	000	01.10	5	40.4/	c/.cz	40.14	C0.U2	187.8	16.02		13.87

Length of stroke 20"

4 1/4 17.63 16.59 4 1/2 4 3/4 20.01 18.97 22.52 21.48 വ 25.16 24.12 5 1/4 27.93 26.89 5 1/2 30.92 29.78 5 3/4 33.85 32.81 9 37.00 35.96 6 1/4 40.28 39.24 6 1/2 43.69 42.65 6 3/4 47.23 46.19  $\sim$ 50.90 49.86 7 1/4 54.70 53.66 7 1/2 58.62 57.58 7 3/4 62.68 61.64 ω 8 1/4 8 1/2 Ø Piston (in) 2 1/2 2 7/8  $| \times 0.264 = ga|$ Ø Rod (in)

TRIPLEX PUMPS Maximum pressure based on liner (kPa)


From SI Drilling Manual, First Edition, Canadian Association of Oilwell Drilling Contractors, Gulf

 $kW \times 1.34 = hp$   $kPa \times 0.145 = psi$ 

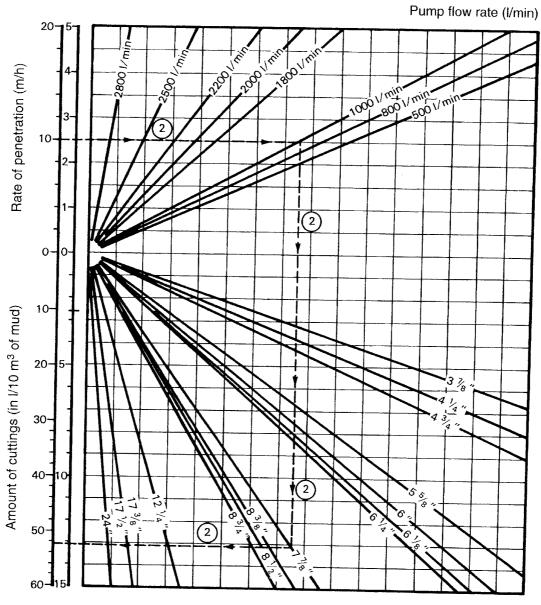
OUTPUT IN LITERS PER STROKE OF SINGLE ACTING TRIPLEX PUMPS (Volumetric efficiency 100%)

Length of stroke	if stroke									Liner si	Liner size (mm and in)	and in)	ļ							
(uuu)	(in)	190.50	184.15	177.80	171.45	165.10	158.75	152.40	146.05	139.70	133.35	127.00	120.65	114.30	107.95	101.60	95.25	88.90	76.20	63.50
/internet		7.50	7.25	7.00	6.75	6.50	6.25	6.00	5.75	5.50	5.25	5.00	4.75	4.50	4.25	4.00	3.75	3.50	3.00	2.50
127.00	5.00	10.86	10.15	9.46	8.80	8.16	7.54	6.95	6.38	5.84	5.32	4.83	4.36	3.91	3.49	3.09	2.71	2.36	1.74	1.21
133.35	5.25	11.40	10.65	9.93	9.24	8.56	7.92	7.30	6.70	6.13	5.59	5.07	4.57	4.10	3.66	3.24	2.85	2.40	1.82	1.27
139.70	5.50	11.95	11.16	10.41	9.68	8.97	8.30	7.64	7.02	6.42	5.85	5.31	4.79	4.30	3.84	3.40	2.99	2.60	1.91	1.33
146.05	5.75	12.49	11.67	10.88	10.12	9.38	8.67	7.99	7.34	6.72	6.12	5.55	5.01	4.50	4.01	3.55			2.00	1.39
152.40	6.00	13.03	12.18	11.35	10.56	9.79	9.05	8.34	7.66	7.01	6.39	5.79	5.23	4.69	4.18	3.71	3.26	2.84	2.08	1.45
158.75	6.25	13.57	12.68	11.82	11.00	10.20	9.43	8.69	7.98	7.30	6.65	6.03	5.44	4.89	4.36	3.86	3.39	2.96	2.17	1.51
165.10	6.50	14.12	13.19	12.30	11.43	10.60	9.80	9.03	8.30	7.59	6.92	6.27	5.66	5.08	4.53	4.02	3.53	3.07	2.26	1.57
171.45	6.75	14.66	13.70	12.77	11.87	11.01	10.18	9.38	8.62	7.88	7.18	6.52	5.88	5.28	4.71	4.17	3.67	3.19	2.35	1.63
177.80	7.00	15.20	14.21	13.24	12.31	11.42	10.56	9.73	8.94	8.18	7.45	6.76	6.10	5.47	4.88	4.32	3.80	3.31	2.43	1.69
184.15	7.25	15.75	14.71	13.72	12.75	11.83	10.93	10.08	9.26	8.47	7.72	7.00	6.32	5.67	5.06	4.48	3.94	3.43	2.52	1.75
190.50	7.50	16.29	15.22	14.19	13.19	12.23	11.31	10.42	9.57	8.76	7.98	7.24	6.53	5.86	5.23	4.63	4.07	3.55		1.81
196.85	7.75	16.83	15.73	14.66	13.63	12.64	11.69	10.77	9.89	9.05	8.25	7.48	6.75	6.06	5.40	4.79	4.21	3.67	2.69	1.87
203.20	8.00	17.37	16.24	15.14	14.07	13.05	12.07	11.12	10.21	9.34	8.51	7.72	6.97	6.25	5.58	4.94	4.34	3.78	2.78	1.93
209.55	8.25	17.92	16.74	15.61	14.51	13.46	12.44	11.47	10.53	9.64	8.78	7.96	7.19	6.45	5.75	5.10	4.48	3.90	2.87	1.99
215.90	8.50	18.46	17.25	16.08	14.95	13.87	12.82	11.81	10.85	9.93	9.05	8.20	7.40	6.65	5.93	5.25	4.62	4.02	2.95	2.05
222.25	8.75	19.00	17.76	16.55	15.39	14.27	13.20	12.16	11.17	10.22	9.31	8.45	7.62	6.84	6.10	5.41	4.75	4.14	3.04	2.11
228.60	9.00	19.55	18.27	17.03	15.83	14.68	13.57	12.51	11.49	10.51	9.58	8.69	7.84	7.04	6.28	5.56	4.89	4.26	3.13	2.17
234.95	9.25	20.09	18.77	17.50	16.27	15.09	13.95	12.86	11.81	10.80	9.84	8.93	8.06	7.23	6.45	5.71	5.02	4.38	3.21	2.23
241.30	9.50	20.63	19.28	17.97	16.71	15.50	14.33	13.20	12.13	11.10	10.11	9.17	8.28	7.43	6.63	5.87	5.16	4.49	3.30	2.29
254.00	10.00	21.72	20.29	18.92	17.59	16.31	15.08	13.90	12.77	11.68	10.64	9.65	8.71	7.82	6.97	6.18	5.43	4.73	3.47	2.41
266.70	10.50	22.80	21.31	19.87	18.47	17.13	15.84	14.59	13.40	12.26	11.17	10.14	9.15	8.21	7.32	6.49	5.70	4.97	3.65	2.53
279.40	11.00	23.89	22.32	20.81	19.35	17.94	16.59	15.29	14.04	12.85	11.71	10.62	9.58	8.60	7.67	6.80	5.97	5.20	3.82	2.65
292.10	11.50	24.98	23.34	21.76	20.23	18.76	17.34	15.98	14.68	13.43	12.24	11.10	10.02	8.99	8.02	7.10	6.24	5.44	4.00	
304.80	12.00	26.06	24.35	22.70	21.11	19.58	18.10	16.68	15.32	14.02	12.77	11.58	10.45	9.38	8.37	7.41	6.52	5.68	4.17	2.90
I × 0.264	= gal												-		_					

#### **MUD CYCLE TIME**



as a function of mud rising velocity opposite drill pipes (*V_r* in meters per minute) and hole/pipe annulus (*V_a* in liters per meter) **CIRCULATION FLOW RATE (I/min)** 


 $\boldsymbol{O} = \boldsymbol{V}_{\mathrm{r}}\boldsymbol{V}_{\mathrm{a}}$ 

Prescentini Implicit         27/8         31/2         27/8         31/2         27/8         31/2         21/3         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5         41/2         5 <th>Hole size (in)</th> <th>ze (in)</th> <th>4 3/4</th> <th>21</th> <th>7/8</th> <th>ţ</th> <th>9</th> <th>6</th> <th>1/4</th> <th></th> <th>7 7/8</th> <th></th> <th></th> <th>8 1/2</th> <th></th> <th></th> <th>9 7/8</th> <th></th> <th>12 1/4</th> <th>1/4</th> <th>17 1/2</th> <th>1/2</th>	Hole size (in)	ze (in)	4 3/4	21	7/8	ţ	9	6	1/4		7 7/8			8 1/2			9 7/8		12 1/4	1/4	17 1/2	1/2
7.25         13.3         11.26         13.05         15.05         15.25         25.21         25.21         21.16         30.4         26.35         23.15         65.76         65.76         65.37         144.94           73         133         113         140         120         156         136         23.7         24.5         30.4         25.3         39.5         51.8         47.0         44.1         789         760         1739           116         213         130         120         156         163         23.7         30.5         56.5         54.8         53.1         14.4         789         760         1739           116         213         180         223         129         44.5         36.5         56.4         43.3         43.7         778         76.5         56.1         14.4         23.3         31.9         23.7         31.9         23.7         31.9         23.7         31.9         23.7         31.9         23.7         31.9         23.7         31.9         23.7         31.9         23.7         31.9         23.7         31.9         23.7         31.9         23.7         31.9         23.7         31.9         31.9	Pipe siz	ze (in)						2 7/8		3 1/2	4 1/2	വ		4 1/2	ى ك	3 1/2	4 1/2	2	4 1/2	ى س		сı
10         73         133         113         140         120         156         136         272         252         212         304         264         239         432         367         658         634         1449           16         116         123         163         157         164         187         163         327         303         254         365         316         273         359         466         548         518         470         441         789         760         1739           20         146         116         213         120         254         365         335         566         426         366         567         433         567         568         560         1144         1394         1141         1394           20         145         217         289         567         466         566         567         473         566         561         164         1141         1394         1141         1394         1149         1141         1394         1149         1141         1394         1149         1141         1394         1149         1149         1149         1149         1149         1149	Annu olume	llus (l/m)	7.25	13.3	11.28	13.95	12.03	15.6	13.58	27.23	25.21	21.16	30.4	26.35	23.94	43.2	39.15	36.74	65.78	63.37	144.94	142.53
12         87         160         135         157         144         187         153         327         303         246         355         516         246         548         514         700         1739           16         1102         136         156         168         168         168         168         168         168         168         168         1739         200         1739           20         145         266         156         168         353         605         548         514         201         203         204           20         145         266         276         273         605         548         571         1014         2319         202         1014         2319         202         1014         2319         202         1014         2319         202         1014         2319         202         1014         2319         202         1014         2319         202         1014         2319         202         1014         2319         202         1014         2319         202         1014         2319         202         1014         2319         202         202         202         202         202		10	73	133	113	140	120	156	136	272	252	212	304	264	239	432	392	367	658	637	1440	100
14         102         186         158         195         169         218         190         381         353         296         426         363         335         605         548         514         311         2003           20         131         233         136         203         333         486         423         383         691         656         1104         1114         1101         2003           20         145         266         273         440         457         580         527         560         766         1104         1141         2039           21         140         233         203         556         456         669         580         527         960         881         1141         1260         1261         1273         1343         313         3479         313         3479         316         1267         1710         1541         3343         313         3479         366         1361         1441         1341         2349         2029         1361         1271         1018         955         1710         1541         1271         1449         1341         1343         1341         1343         13		12	87	160	135	167	144	187	163	327	303	254	365	316	287	518	470	441	789	1002	1720	1710
16         111         213         190         223         192         250         217         436         423         383         691         656         1194         1141         2600           27         15         150         233         190         233         192         213         233         319         211         231         233         313         246         504         453         504         453         513         1014         2600           24         174         319         271         335         289         374         325         654         656         650         500         503         503         513         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313         313		4	102	186	158	195	168	218	190	381	353	296	426	369	335	605	548	514	921	887	6606	1005 1005
1813123920325121728124449045438154747443177870566111941141260221602392493772555044236065574798647837351316126728992416023923433723559455050055357510379408618011447139431826189346293363313406532560500553575103794086315312632820333723163913374055337865507366555607366556571037940853117110343183302183393393384133303373313405334355507366555731037940853151710379408531517103794085315171037940853133112492237219144343021847445383773684377619341331124922372191443430555344755344655344655344610568431756140615291403233721914		16	116	213	180	223	192	250	217	436	403	339	486	422	383	691	626	588	1052	1014	7319	0000
20         145         266         279         241         312         272         545         504         423         608         527         479         864         783         735         1316         1267         2893           24         1143         3193         221         315         315         316         315         315         316         1267         316         1267         1283         3189           26         1184         3193         321         337         316         317         316         3173         1018         900         882         1710         1643         3768           30         218         339         337         316         337         337         316         357         479         882         1710         1643         1331         1347         1343         1304           30         218         337         316         357         490         882         670         1121         11018         1023         1847         1343         1316         1453         1324         1574         4058           30         218         306         550         1034         1934         1331		18	131	239	203	251	217	281	244	490	454	381	547	474	431	778	705	661	1184	1141	2609	2566
24         150         243         248         307         266         343         299         555         466         665         560         577         950         867         1579         1571         3479         378           28         174         319         271         335         289         374         326         569         550         570         632         575         1037         940         882         1571         3479           28         133         316         405         350         555         550         730         652         173         1018         955         1710         1648         3768           30         218         399         336         419         361         460         550         550         730         652         173         1018         955         1710         1648         3768           31         216         391         361         460         530         452         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550 <th></th> <td>20</td> <td>145</td> <td>266</td> <td>226</td> <td>279</td> <td>241</td> <td>312</td> <td>272</td> <td>545</td> <td>504</td> <td>423</td> <td>608</td> <td>527</td> <td>479</td> <td>864</td> <td>783</td> <td>735</td> <td>1316</td> <td>1267</td> <td>2899</td> <td>2851</td>		20	145	266	226	279	241	312	272	545	504	423	608	527	479	864	783	735	1316	1267	2899	2851
24 $174$ $319$ $271$ $335$ $289$ $374$ $326$ $654$ $605$ $508$ $730$ $632$ $575$ $1037$ $940$ $882$ $1579$ $1571$ 28 $203$ $333$ $410$ $353$ $437$ $353$ $437$ $356$ $550$ $790$ $686$ $522$ $1123$ $1018$ $956$ $1710$ $1648$ $3768$ $30$ $218$ $399$ $338$ $419$ $361$ $466$ $555$ $550$ $790$ $686$ $552$ $1123$ $1018$ $956$ $1774$ $4058$ $32$ $218$ $399$ $338$ $419$ $361$ $496$ $557$ $191$ $817$ $756$ $655$ $570$ $1822$ $1726$ $1102$ $1973$ $1901$ $4348$ $32$ $232$ $344$ $472$ $586$ $499$ $457$ $897$ $871$ $897$ $719$ $1096$ $1026$ $1175$ $1102$ $1973$ $1901$ $4348$ $32$ $232$ $447$ $406$ $530$ $445$ $580$ $956$ $637$ $896$ $831$ $1109$ $1226$ $1206$ $1206$ $1206$ $1202$ $1202$ $1202$ $1203$ $34$ $232$ $556$ $472$ $550$ $492$ $560$ $896$ $596$ $1901$ $1202$ $1202$ $1202$ $1202$ $1202$ $366$ $556$ $477$ $590$ $883$ $11156$ $1106$ $9102$ $814$ $1469$ $1323$ <th< td=""><th></th><td>22</td><td>160</td><td>293</td><td>248</td><td>307</td><td>265</td><td>343</td><td>299</td><td>599</td><td>555</td><td>466</td><td>669</td><td>580</td><td>527</td><td>950</td><td>861</td><td></td><td>1447</td><td>1394</td><td>3189</td><td>3136</td></th<>		22	160	293	248	307	265	343	299	599	555	466	669	580	527	950	861		1447	1394	3189	3136
26         189         346         293         313         406         353         708         655         550         790         685         522         1123         1018         955         1710         1648         3768         376         376         376         376         1724         405         376         1774         4058         376         1774         4058         376         1775         1102         1973         1901         4348         3768         376         1331         1249         1774         4058         3768         3768         3768         1775         1102         1973         1901         4348         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3768         3	/1.41	24	174	0 10	271	335	289	374	326	654	605	508	730	632	575	1037	940		1579	1521	3479	3421
28203372316391337437380762706592851738670121010961029184217444058302183993384193614684078177566359127718129611751102197319014348322232426361446385499435877677973843766132312492237215549283424714523844744095304529268577191034896814146913311249223721554928362614794065024335504439809809609087621001910164214881333124922372155492836290532451560453562489980980762100191016421488133322372155492838277650542958656056351110393113331124276326622626382764915605224916221103910910164214881333276326624431956549661452961089108110791011723 <th< td=""><th>/</th><td>26</td><td>68</td><td>346</td><td>293</td><td>363</td><td>313</td><td>406</td><td>353</td><td>708</td><td>655</td><td>550</td><td>790</td><td>685</td><td>522</td><td>1123</td><td>1018</td><td></td><td>1710</td><td>1648</td><td>3768</td><td>3706</td></th<>	/	26	68	346	293	363	313	406	353	708	655	550	790	685	522	1123	1018		1710	1648	3768	3706
302183993384193614684078177566359127917181296117511021973190134832232426386439435871807 $677$ 973 $843$ 76613821253117621052028453834247455384474409530462926 $857$ 7191034 $896$ $814$ 14691331124922372155492836261479406502 $433$ 5624899309087621094949 $862$ 15551409132323682281362505534515535161035958804115510019101642148139625032652402305554745665701144105684612161005811416441543276326624131958549661452968659811981107100518141644154327632662463346125196125196125109731338110720112732662463346125196125191031277110710051814164415432763266246334	1) 6	28	203	372	316	391	337	437	380	762	706	592	851	738	670	1210	1096		1842	1774	4058	3991
32 $232$ $426$ $361$ $446$ $385$ $499$ $435$ $871$ $807$ $677$ $973$ $843$ $766$ $1322$ $1253$ $1176$ $2105$ $2033$ $4538$ $34$ $247$ $452$ $384$ $474$ $409$ $530$ $462$ $926$ $857$ $719$ $1034$ $896$ $814$ $1469$ $1331$ $1249$ $2237$ $2155$ $4928$ $36$ $205$ $429$ $530$ $457$ $593$ $516$ $1035$ $958$ $804$ $1155$ $1001$ $910$ $1642$ $1488$ $1396$ $2203$ $2261$ $4928$ $40$ $290$ $532$ $451$ $556$ $451$ $503$ $516$ $1035$ $958$ $804$ $1155$ $1001$ $910$ $1642$ $1488$ $1396$ $2500$ $2408$ $40$ $290$ $532$ $451$ $556$ $481$ $624$ $543$ $1089$ $1008$ $846$ $1216$ $1001$ $910$ $1642$ $1543$ $2501$ $2408$ $41$ $319$ $586$ $496$ $614$ $529$ $686$ $598$ $1198$ $1100$ $931$ $1333$ $1107$ $1005$ $1814$ $1644$ $1543$ $2763$ $2662$ $43$ $334$ $612$ $519$ $686$ $556$ $686$ $556$ $686$ $557$ $1109$ $1353$ $1107$ $1005$ $1814$ $1640$ $3157$ $2014$ $2062$ $46$ $3348$ $588$ <t< td=""><th></th><td>02 02</td><td>218</td><td>399</td><td>338</td><td>419</td><td>361</td><td>468</td><td>407</td><td>817</td><td>756</td><td>635</td><td>912</td><td>791</td><td>718</td><td>1296</td><td>1175</td><td></td><td>1973</td><td>1901</td><td>4348</td><td>4276</td></t<>		02 02	218	399	338	419	361	468	407	817	756	635	912	791	718	1296	1175		1973	1901	4348	4276
34 $24/1$ $452$ $384$ $474$ $409$ $530$ $462$ $926$ $857$ $719$ $1034$ $896$ $814$ $1469$ $1331$ $1249$ $2237$ $2155$ $4928$ $38$ $276$ $505$ $429$ $530$ $457$ $593$ $516$ $1035$ $958$ $804$ $1155$ $1001$ $910$ $1642$ $1488$ $1396$ $2500$ $2408$ $40$ $290$ $532$ $451$ $563$ $516$ $1035$ $958$ $804$ $1155$ $1001$ $910$ $1642$ $1488$ $1396$ $2500$ $2408$ $40$ $290$ $532$ $451$ $563$ $516$ $1035$ $958$ $804$ $1156$ $1001$ $910$ $1642$ $1470$ $2531$ $2237$ $42$ $305$ $559$ $474$ $586$ $506$ $503$ $1144$ $1059$ $889$ $1277$ $1107$ $1001$ $910$ $1642$ $1276$ $1470$ $253$ $2652$ $2691$ $2763$ $2652$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ $2692$ <th></th> <td>22</td> <td>232</td> <td>426</td> <td>361</td> <td>446</td> <td>385</td> <td>499</td> <td>435</td> <td>871</td> <td>807</td> <td>677</td> <td>973</td> <td>843</td> <td>766</td> <td>1382</td> <td>1253</td> <td></td> <td>2105</td> <td>2028</td> <td>4638</td> <td>4561</td>		22	232	426	361	446	385	499	435	871	807	677	973	843	766	1382	1253		2105	2028	4638	4561
36 $261$ $479$ $406$ $502$ $433$ $562$ $489$ $980$ $908$ $762$ $1094$ $949$ $862$ $1555$ $1409$ $1323$ $2368$ $2281$ $38$ $276$ $505$ $429$ $530$ $457$ $593$ $516$ $1035$ $958$ $804$ $1155$ $1001$ $910$ $1642$ $1488$ $1396$ $2500$ $2408$ $40$ $290$ $532$ $451$ $558$ $481$ $624$ $543$ $1089$ $1008$ $846$ $1216$ $1054$ $958$ $1728$ $1642$ $1488$ $1396$ $2500$ $2408$ $42$ $305$ $559$ $474$ $556$ $570$ $1144$ $1059$ $889$ $1277$ $1107$ $1005$ $1814$ $1543$ $2763$ $2662$ $44$ $339$ $565$ $569$ $614$ $529$ $686$ $598$ $1109$ $931$ $1338$ $1172$ $1642$ $1488$ $1323$ $2763$ $2662$ $44$ $339$ $511$ $509$ $612$ $529$ $686$ $598$ $1109$ $1201$ $1071$ $1005$ $1814$ $1642$ $1470$ $2234$ $2763$ $2662$ $44$ $334$ $612$ $519$ $642$ $523$ $1160$ $931$ $1323$ $1101$ $1987$ $1801$ $1723$ $1617$ $2074$ $1879$ $2763$ $2062$ $44$ $334$ $612$ $510$ $512$ $1101$ $1987$ $1210$ $1101$ $101$	6	34	24/	452	384	474	409	530	462	926	857	719	1034	896	814	1469	1331		2237	2155	4928	4846
38 $276$ 50542953045759351610359588041155100191016421488139625004029053245155848162454310891008 $846$ 1216105495817281566147026314230555947458650557011441059 $839$ 127711071005181415432763433195854966145296865981198110993113381159105319011723161728944633461251964255371862517511101101614591265114415331617289448348638541670577749655130712101016145912651149207418711600503655646986027806791362120110161459127611972160176431575136556469860278067913621201101614592074187917643157523776925877256268117061110101614591276119720741879176453377692587725626 </td <th></th> <td>36</td> <td>261</td> <td>479</td> <td>406</td> <td>502</td> <td>433</td> <td>562</td> <td>489</td> <td>980</td> <td>908</td> <td>762</td> <td>1094</td> <td>949</td> <td>862</td> <td>1555</td> <td>1409</td> <td></td> <td>2368</td> <td>2281</td> <td>) 1 )</td> <td>2</td>		36	261	479	406	502	433	562	489	980	908	762	1094	949	862	1555	1409		2368	2281	) 1 )	2
40 $230$ $532$ $451$ $558$ $481$ $624$ $543$ $1089$ $1008$ $846$ $1216$ $1054$ $958$ $1728$ $1566$ $1470$ $2631$ 42 $305$ $559$ $474$ $586$ $505$ $655$ $570$ $1144$ $1059$ $889$ $1277$ $1107$ $1005$ $1814$ $1543$ $2763$ 44 $319$ $585$ $496$ $614$ $529$ $686$ $598$ $1198$ $1109$ $931$ $1338$ $1159$ $1005$ $1814$ $1543$ $2763$ 46 $334$ $612$ $519$ $642$ $553$ $718$ $625$ $1253$ $1108$ $1101$ $1987$ $1801$ $1644$ $1543$ $2763$ 46 $334$ $612$ $519$ $642$ $553$ $718$ $625$ $1253$ $1106$ $973$ $1398$ $1212$ $1101$ $1987$ $1801$ $1644$ $1543$ $2763$ 47 $334$ $612$ $519$ $642$ $553$ $718$ $625$ $1253$ $1106$ $973$ $1398$ $1212$ $1101$ $1987$ $1801$ $1690$ $3026$ 48 $348$ $638$ $642$ $553$ $718$ $625$ $1307$ $1210$ $1016$ $1212$ $1101$ $1987$ $1879$ $1764$ $3157$ 50 $365$ $564$ $698$ $602$ $780$ $679$ $1361$ $11100$ $1265$ $11265$ $11265$ $1179$ $2074$ $1879$ $1774$		8	276	505	429	530	457	593	516	1035	958	804	1155	1001	910	1642	1488		2500	2408		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	·····	9	290	532	451	558	481	624	543	1089	1008	846	1216	1054	958	1728	1566		2631	2535		
319       585       496       614       529       686       598       1198       1109       931       1338       1159       1053       1617       2894         334       612       519       642       553       718       625       1253       1160       973       1398       1212       1101       1987       1801       1690       3026         334       612       519       642       553       718       625       1210       1016       1459       1212       1101       1987       1801       1690       3026         348       638       541       670       577       749       652       1307       1210       1016       1459       1265       1149       2074       1879       1764       3157         363       665       564       698       602       780       1362       1261       1058       1520       1318       1197       2160       1958       1837       3289         377       692       587       725       626       811       706       1416       1311       1100       1581       1370       1245       2246       2036       1910       3421		4	305	559	474	586	505	655	570	1144	1059	889	1277	1107	1005	1814	1644		2763	2662		
334       612       519       642       553       718       625       1253       1160       973       1398       1212       1101       1987       1801       1690       3026         348       638       541       670       577       749       652       1307       1210       1016       1459       1265       1149       2074       1879       1764       3157         363       665       564       698       602       780       679       1362       1261       1058       1520       1318       1197       2160       1958       1837       3289         377       692       587       725       626       811       706       1416       1311       1100       1581       1370       1245       2036       1910       3421         392       718       609       753       650       842       733       1470       1361       1143       1642       1423       1293       2333       2114       1984       3552		44	010 0	585	496	614	529	686	598	1198	1109	931	1338	1159	1053	1901	1723		2894	788		
348         638         541         670         577         749         652         1307         1210         1016         1459         1265         1149         2074         1879         1764         3157           363         665         564         698         602         780         679         1362         1261         1058         1520         1318         1197         2160         1958         1837         3289           377         692         587         725         626         811         706         1416         1311         1100         1581         1370         1245         2036         1910         3421           392         718         609         753         650         842         733         1470         1361         1143         1642         1293         2333         2114         1984         3552		46	334	612	519	642	553	718	625	1253	1160	973	1398	1212	1101	1987	1801		3026	2915		
363         665         564         698         602         780         679         1362         1261         1058         1520         1318         1197         2160         1958         1837         3289           377         692         587         725         626         811         706         1416         1311         1100         1581         1370         1245         2246         2036         1910         3421           392         718         609         753         650         842         733         1470         1361         1143         1642         1293         2333         2114         1984         3552		48	348	638	541	670	577	749	652	1307	1210	1016	1459	1265	1149	2074	1879		3157	3042		
377     692     587     725     626     811     706     1416     1311     1100     1581     1370     1245     2246     2036     1910     3421       392     718     609     753     650     842     733     1470     1361     1143     1642     1423     1293     2333     2114     1984     3552		20	363	665	564	698	602	780	679	1362	1261	1058	1520	1318	1197	2160	1958		3289	3169		
392         718         609         753         650         842         733         1470         1361         1143         1642         1423         2333         2114         1984         3552		52	377	692	587	725	626	811	706	1416	1311	1100	1581	1370	1245	2246	2036		3421	3295		
		54	392	718	609	753	650	842	733	1470	1361	1143	1642	1423	1293	2333	2114		3552	3422		

as a function of mud rising velocity opposite drill pipes (*V_r* in meters per minute) and hole/pipe annulus (*V_a* in liters per meter) (continued) **CIRCULATION FLOW RATE (I/min)** 

 $\boldsymbol{Q} = \boldsymbol{V}_{\mathrm{r}}\boldsymbol{V}_{\mathrm{a}}$ 

Hole s	Hole size (in)	4 3/4	Q	5 7/8	_	9	9	6 1/4		7 7/8			8 1/2			9 7/8		12	12 1/4	17	17 1/2
Pipe s	size (in)	2 7/8	2 7/8	3 1/2	2 7/8	3 1/2	2 7/8	3 1/2	3 1/2	4 1/2	പ	3 1/2	4 1/2	വ	3 1/2	4 1/2	പ	4 1/2	ى	4 1/2	2
Ann volum	Annulus volume (I/m)	7.25	13.3	11.28	13.95	12.03	15.6	13.58	27.23	25.21	21.16	30.4	26.35	23.94	43.2	39.15	36.74	65.78	63.37	144.94	142.53
	56	406	745	632	781	674	874	760	1525	1412	1185	1702	1476	1341	2419	2192	2057	3684	3549		
	58	421	771	654	809	698	905	788	1579	1462	1227	1763	1528	1389	2506	2271	2131	3815	3675		
	60	435	798	677	837	722	936	815	1634	1513	1270	1824	1581	1436	2592	2349	2204	3947	3802		
	62	450	825	669	865	746	967	842	1688	1563	1312	1885	1634	1484	2678	2427	2278	4078	3929		
	64	464	851	722	893	770	998 9	869	1743	1613	1354	1946	1686	1532	2765	2506	2351	4210	4056		
(uiu	66	479	878	744	921	794	1030	896	1797	1664	1397		1739	1580	2851	2584	2425	4341	4182		
u/w	89	493	904	767	949	818	1061	923		1714	1439		1792	1628	2930	2662	2498	4473	4309		
) Á1	70	508	931	790	977	842	1092	951		1765	1481		1845	1676		2741	2572		4436		
iooli	72	522	958	812	1004	866	1123	978			1524		1897	1724		2819	2645				******
ə∧ f	74	537	984	835	1032	890	1154	1005			1566		1950	1772		2997	2719				
buis	76	551		857	1060	914	1186	1032			1608			1819		2975	2792				
in b	78	566		880	1088	938		1059			1650			1867			2866				
nΜ	80	580		902	1116	962		1086			1693			1915			2939			·	
	82	595		925	1144	986		1114			1735		<u>a. 1</u>	1963							
	84	609		948	1172	1011		1141			1777	·									
	86			970	1200	1035		1168											*****		
	88			993		1059		1195									,				
	06			1015		1083															



#### AMOUNT OF DRILLED CUTTINGS IN MUD

Hole size (in)

#### Examples:

- 1. Rate of penetration = 6 m/h Pump flow rate = 2000 l/min Hole size = 12.25 in Amount of cuttings =  $38.0 \text{ l in } 10 \text{ m}^3$  of mud
- 2. Rate of penetration = 10 m/h Pump flow rate = 1000 l/m Hole size = 7 7/8 in Amount of cuttings = 52.2 l in 10 m³ of mud

$$V=\frac{84.45\ D^2A_v}{Q}$$

where:  $V = \text{amount of cuttings (I/10 m^3)}$  D = hole size (in)  $A_v = \text{rate of penetration (m/h)}$ Q = pump flow rate (I/m)

 $m/h \times 3.28 = ft/h$   $l \times 0.264 = gal$   $l/min \times 0.264 = gal/min$ 

#### ANNULAR MUD SPECIFIC GRAVITY $d_{ann}$

**d**_{ann} depends on the following:

- (a) Rate of penetration  $A_v$  (m/h)
- (b) Initial specific gravity **d**_{init}
- (c) Mud flow rate **Q** (I/min)
- (d) Rate of fall of cuttings  $V_s$  (m/min)
- (e) Hole size **D**_f (in)
- (f) Pipe size  $D_t$  (in)

$$d_{\text{ann}} = d_{\text{init}} + \frac{D_f^2 A_v (2.5 - d_{\text{init}})}{118.41 Q - 60 (D_f^2 - D_t^2) V_s}$$

Example:

 $D_{f} = 17 \ 1/2''$   $D_{t} = 5''$   $d_{init} = 1.15$   $A_{v} = 25 \ m/h$   $Q = 3200 \ l/min$   $V_{s} = 10 \ m/min$ 

 $d_{\rm ann} = d_{\rm init} + 0.05 = 1.20$ 

#### **HYDRAULICS**

(From the *Manuel de rhéologie des fluides de forage et laitiers de ciment*, Manual of Rheology of Drilling Fluids and Cement Slurries), Oil and Gas Exploration and Production Association, published by Éditions Technip, Paris, 1979).

Symbol	Unit	Signification
A	in ²	Total surface area of bit nozzles
d	kg/l	Fluid specific gravity
D	in	String inside diameter
$D_{\rm o}$	in	Annulus outside diameter
$D_i$	in	Annulus inside diameter (outside string)
L	m	Length
р	kPa	Pressure losses, pressure
Q	l/min	Fluid flow rate
V	m/min	Fluid velocity
$V_{\rm c}$	m/min	Critical fluid velocity
$\mu$	cP	Dynamic viscosity
$\mu_{p}$	cP	Plastic viscosity
$ au_0$	lb/100 ft ²	Yield value
K	lb.s ⁿ /100 ft ²	Consistency index
n		Rheological behavior index

#### Notation (Practical units)

#### RHEOLOGY

RHEOLOGICAL SYSTEM	RHEOLOGICAL EQUATION	FLOW CURVE CARTESIAN COORDINATES	FLOW CURVE LOGARITHMIC COORDINATES
Newtonian	$ au=\mu\gamma$	r arc tan μ ý	log 7 45° log ý
Bingham or plastic	$\tau = \tau_0 + \mu_p \gamma$	$\tau_0$ arc tan $\mu_p$ $\dot{\gamma}$	log 7 log ý
" Power " or pseudoplastic or Ostwald	$ au = K \gamma^n$	τ ý	log T log K arc tan n log 1 log ý

#### Rheological formulas for the Fann viscometer:

Apparent viscosity $\mu_a = \frac{\Theta_{600}}{2}$	(cP)
Yield value $ au_0 = \Theta_{600} - 2(\Theta_{600} - \Theta_{300})$	(lb/100 ft ² )
Plastic viscosity $\mu_{\rm p} = \Theta_{600} - \Theta_{300}$	(cP)
Rheological index $n = 3.32 \log \left(\frac{\Theta_{600}}{\Theta_{300}}\right)$	
Consistency index $K = \frac{\Theta_{600}}{(1020)^n} = \frac{\Theta_{300}}{(510)^n}$	(lb.s ⁿ /100 ft ² )

#### CRITICAL VELOCITY BASED ON RHEOLOGICAL PARAMETERS (Practical units)

#### **BINGHAM FLUIDS**

Circulation in drill pipes and drill collars:

$$V_{\rm c} = \frac{2.48}{Dd} \left( \mu_p + \sqrt{\mu_p^2 + 73.57 \ \tau_0 D^2 d} \right)$$

**Circulation in the annulus:** 

$$V_{\rm c} = \frac{3.04}{(D_0 - D_{\rm I})d} \left( \mu_p + \sqrt{\mu_p^2 + 40.05 \tau_0 (D_0 - D_{\rm I})^2} d \right)$$

#### **OSTWALD FLUIDS**

Circulation in drill pipes and drill collars:

$$V_{\rm c} = 0.6 \left( \frac{(3470 - 1370n)K}{1.27d} \right)^{\frac{1}{2-n}} \left( \frac{3n+1}{1.25Dn} \right)^{\frac{n}{2-n}}$$

**Circulation in the annulus:** 

$$V_{\rm c} = 0.6 \left( \frac{(3470 - 1370n)K}{2.05d} \right)^{\frac{1}{2-n}} \left( \frac{2n+1}{0.64(D_0 - D_1)n} \right)^{\frac{n}{2-n}}$$

If  $V < V_c$ , the flow is laminar

If  $V > V_{\rm c}$ , the flow is turbulent

with critical Re = 2100 (Bingham fluid)

critical Re = 3470 - 1370n (Ostwald fluid).

#### PRESSURE LOSSES (General)

#### Fluid flow in pipes

Any fluid flowing in a pipe loses part of its energy, which is absorbed by dissipation in friction forces:

- (a) Internal friction due to its viscosity
- (b) External friction due to pipe roughness

This loss of energy is called the pressure drop or loss, and is expressed by the difference in the pressure of the fluid between two points of the pipe. For example, a circulating drilling mud has an initial energy represented by the pump discharge pressure. This energy is totally lost in the mud circuit because the mud pressure is zero when it returns to the pits. In this case, the pump discharge pressure represents the total pressure losses in the mud circuit.

These pressure losses occur:

- 1) In the surface equipment
- 2) In the drill pipes and drill collars
- 3) Through the bit
- 4) In the annulus between the well bore and the drill string

The pressure loss equations are a function of:

- (a) The rheology of the fluid
- (b) The type of flow (laminar or turbulent)
- (c) The pipe and hole geometry

The equations given below are used in drilling for:

- (a) A Newtonian fluid, a Bingham fluid and Ostwald fluid
- (b) Laminar and turbulent flow
- (c) A cylindrical pipe and annulus

#### PRESSURE LOSS EQUATIONS

#### **NEWTONIAN FLUID**

#### In drill string

• Laminar flow:

$$p = \frac{QL\mu}{612.95D^4}$$

• Turbulent flow:

$$\rho = \frac{Ld^{0.8}Q^{1.8}\mu^{0.2}}{901.63D^{4.8}}$$

#### Annulus

• Laminar flow:

$$p = \frac{OL\mu}{408.63(D_0 + D_i)(D_0 - D_i)^3}$$

• Turbulent flow:

$$\rho = \frac{Ld^{0.8}Q^{1.8}\mu^{0.2}}{706.96(D_0 + D_i)^{1.8}(D_0 - D_i)^3}$$

#### PRESSURE LOSS EQUATIONS (continued)

#### **BINGHAM FLUID**

#### In drill string

• Laminar flow:

$$\rho = \frac{L Q \mu_{\rm p}}{612.95 D^4} + \frac{\tau_0 L}{13.26 D}$$

• Turbulent flow:

$$p = \frac{Ld^{0.8}Q^{1.8}\mu_{\rm p}^{0.2}}{901.63D^{4.8}}$$

#### Annulus

- Laminar flow:  $p = \frac{LQ\mu_{\rm p}}{408.63(D_0 + D_{\rm i})(D_0 - D_{\rm i})^3} + \frac{\tau_0 L}{13.26(D_0 - D_{\rm i})}$
- Turbulent flow:

$$\rho = \frac{Ld^{0.8}Q^{1.8}\mu_{\rm p}^{0.2}}{706.96(D_0 + D_{\rm i})^{1.8}(D_0 - D_{\rm i})^3}$$

#### G 18

#### **PRESSURE LOSS EQUATIONS** (continued)

#### **OSTWALD FLUID**

#### In drill string

• Laminar flow:

$$p = \frac{KL}{13.26D} \left[\frac{2.59Q}{D^3} \frac{(3n+1)}{n}\right]^n$$

• Turbulent flow:

$$p = \frac{(\log n + 2.5)dQ^2L}{586.94D^5} \left[ \frac{D^4 K \left(\frac{2.59Q}{D^3} \frac{(3n+1)}{n}\right)^n}{18.07Q^2 d} \right]^{\frac{1.4 + \log n}{7}}$$

#### Annulus

• Laminar flow:

$$p = \frac{KL}{13.26 (D_0 - D_i)} \left[ \frac{5.18Q}{(D_0 + D_i)(D_0 - D_i)^2} \left( \frac{2n+1}{n} \right) \right]^n$$

• Turbulent flow:  

$$p = \frac{(\log n + 2.5) dQ^2 L}{479.23 (D_0 + D_i)^2 (D_0 - D_i)^3} \left[ \frac{[(D_0 + D_i)^2 (D_0 - D_i)^2 K] \left[ \frac{5.18 Q}{(D_0 + D_i) (D_0 - D_i)^2} \left( \frac{2n+1}{n} \right) \right]^n}{22.13 Q^2 d} \right]^{\frac{1.4 + \log n}{7}}$$

#### **PRESSURE DROP IN ORIFICES**

$$p = \frac{dQ^2}{2959.41 C^2 A^2}$$

where:

- p = pressure drop (kPa)
- d = specific gravity (kg/l)
- Q = flow rate (l/min)
- $A = \text{total nozzle area (in}^2)$
- C = orifice coefficient
  - C: 0.80 for non-jet bit

C: 0.95 for jet bit

#### Example:

#### d = 1.15 kg/lQ = 1500 l/min

2 nozzles size 12/32 in 1 nozzle size 13/32 in

1

$$p = \frac{1.15 \times (1500)^2}{2959.41 \times (0.95)^2 \left[\frac{\pi}{4} \left(\frac{12^2 + 12^2 + 13^2}{32^2}\right)\right]^2} = 7885 \text{ kPa}$$

With table G 48: at 1500 l/min

$$p_{d} = 6857 \text{ kPa}$$
 for  $d = p = 6857 \times 1.15 = 7885 \text{ kPa}$ 

#### CALCULATION OF THE BIT NOZZLE VELOCITY

$$V = \frac{Q}{38.71A}$$
 $V = \text{velocity (m/s)}$  $A = \text{total nozzle area (in^2)}$ 

Order of magnitude: 100 m/s < V < 120 m/s

#### CALCULATION OF THE HYDRAULIC POWER AT THE BIT NOZZLES: Ph

$$P_{\rm h}(\rm kW) = \frac{\rho_{\rm d} Q}{60\,000}$$

 $p_d$  = pressure drop in nozzles (kPa)

$$P_{\rm h}({\rm hp}) = \frac{p_{\rm d}Q}{44\,750}$$

Q =flow rate (l/min)

### HYDRAULIC PRESSURE AT BIT IN RELATION TO BIT AREA: $P_{hHSI}$

$$P_{hHSI} = \frac{P_{\rm d}Q}{35\ 140D^2}$$

D = hole size (in)  $P_{hHSI}$  = power (hp/in²)

Order of magnitude: 2 hp/in² <  $P_{hHSI}$  < 5 hp/in².

#### **PRESSURE LOSS CALCULATION**

The tables below can be used to calculate the pressure loss of a fluid circulating in a drilling installation.

The fluid is assumed to be a **Bingham fluid** in **turbulent** flow. The equations used are those in G 17 of the Drilling Data Handbook. The pressure losses have the form:

p = NB

with:

$$N = \frac{LQ^{1.8}}{901.63D^{4.8}}$$
 (in drill string)  
$$N = \frac{LQ^{1.8}}{706.96(D_0 + D_i)^{1.8}(D_0 - D_i)^3}$$
 (annulus)

(The tables are calculated with L = 100 m)

$$B = d^{0.8} \mu_{\rm p}^{0.2}$$

#### Important: Note that the coefficients N represent pressure losses for pure water.

To calculate the pressure losses in a circuit:

a) Find in G 23 to G 29 the coefficient B corresponding to the circulating mud.

b) **Note** the **lengths** of the different sections of identical geometry in hundreds of meters (drill pipe interior, drill collar interior, hole/ drill collar annulus, hole/ drill pipe annulus).

c) Find in G 30 to G 67, the corresponding coefficients  $N_1$ ,  $N_2$ ,  $N_3$ ,  $N_4$  and  $N_5$ .

d) Calculate the pressure drops in the nozzles.

$$p_{\text{total}} = (N_1 + L_2 N_2 + L_3 N_3 + L_4 N_4 + L_5 N_5) B + p_d d$$

where:

 $L_2$ ,  $L_3$ ,...  $L_5$  = lengths of the different sections (100 m)

 $p_{\rm d}$  = pressure drop in nozzles for d = 1 kg/l (kPa), G 47 to G 55

d = specific gravity (kg/liter)

 $N_1$  = pressure loss coefficient in the surface equipment, G 30

 $N_2$  = pressure loss coefficient in the drill pipes (kPa/100 m), G 31 to G 44

- $N_3$  = pressure loss coefficient in the drill collars (kPa/100 m), G 45 to G 46
- $N_4$  = pressure loss coefficient in hole/drill collar annulus (kPa/100 m), G 59 to G 63

 $N_5$  = pressure loss coefficient in hole/drill pipe annulus (kPa/100 m), G 64 to G 67

#### **PRESSURE LOSS CALCULATION** (continued)

#### **Calculation example**

8 1/2 inch hole at a depth of 2300 m. The mud specific gravity d = 1.15 and its plastic viscosity  $\mu_p = 22$  cP. The drilling flow rate Q = 1500 l/min. The surface equipment is No. 3.

The drill string consists of:

(a) 170 m of 6  $3/4 \times 2$  13/16 in drill collars.

(b) 2130 m of 5 inch, 19.50 – E – NC50 drill pipes.

The bit is equipped with a combination of nozzles: 11/11/12.

```
I. Coefficient B = 2.08 G 23
```

.	1) Surface equipment	G 30	<i>N</i> ₁ = 95
	2) In drill pipes	G 40	N ₂ = 57
	3) In drill collars	G 45	<i>N</i> ₃ = 404
	4) In nozzles	G 47	$p_{\rm d}$ = 9608 kPa
	5) Hole/DC	G 60	<i>N</i> ₄ = 102
	6) Hole/pipe	G 66	N ₅ = 19

III. Discharge pressure in normal circulation  $p_r$ :

 $p_r = (N_1 + 21.3 N_2 + 1.7 N_3 + 1.7 N_4 + 21.3 N_5)B + p_dd$ = (95 + 21.3 × 57 + 1.7 × 404 + 1.7 × 102 + 21.3 × 19)2.08 + 9608 × 1.15 = **16 403 kPa** 

Ш
S
Z
GE
Ē
OEI
2
ОF
щ
BL
A T

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Specific gravity	1.00	1.01	1.02	1.03	1.04	1.05	1.06	1.07	1.08	1.09	1.10	1.11	1.12	1.13	1.1 1.1	1 15	1 16	1 17	4 1 0 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Viscosity																2	2	2	0
1.32         1.33         1.34         1.45         1.44         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45 <th< th=""><th>7</th><th>1.15</th><th></th><th>1.17</th><th>1.18</th><th>1.19</th><th>1.19</th><th>1.20</th><th>1.21</th><th>1.22</th><th></th><th>1.24</th><th>1.25</th><th></th><th>1 97</th><th></th><th>1 2 A</th><th>1 20</th><th>- 0 0</th><th>2 0 7</th></th<>	7	1.15		1.17	1.18	1.19	1.19	1.20	1.21	1.22		1.24	1.25		1 97		1 2 A	1 20	- 0 0	2 0 7
143         144         145         146         150         151         153         153         156         157         156         157         156         157         156         157         156         157         156         157         156         157         157         157         157         157         157         157         157         157         157         157         157         158         156         157         158         156         157         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158         158 <th>4</th> <th>1.32</th> <th></th> <th>1.34</th> <th>1.35</th> <th>1.36</th> <th>1.37</th> <th>1.38</th> <th>1.39</th> <th>1.40</th> <th><b>v</b></th> <th>147</th> <th>1 43</th> <th></th> <th>1 46</th> <th></th> <th>07.1</th> <th>07.7</th> <th> С</th> <th>- +  +</th>	4	1.32		1.34	1.35	1.36	1.37	1.38	1.39	1.40	<b>v</b>	147	1 43		1 46		07.1	07.7	 С	- + +
152         153         154         155         156         156         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         158         156         157         157         157         158         156         157         157         158         156         157         157         158         156         157         157         158         156         157         157         158         156         157         157         158         156         157         157         157         158         156         157         157         157         157         157         157         157         157         157         157         157         157         157         157         156         157         157         157         158         150         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157 <th>Q</th> <th>1.43</th> <th></th> <th>1.45</th> <th>1.47</th> <th>1.48</th> <th>1.49</th> <th>1.50</th> <th>1.51</th> <th>1.52</th> <th>~~~</th> <th>1.54</th> <th>20</th> <th></th> <th></th> <th></th> <th> </th> <th>0 1 1 1 1 1</th> <th>- 1. 0.0</th> <th></th>	Q	1.43		1.45	1.47	1.48	1.49	1.50	1.51	1.52	~~~	1.54	20				 	0 1 1 1 1 1	- 1. 0.0	
158         160         161         182         164         165         166         167         176         177         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173 <th>ω</th> <th>1.52</th> <th></th> <th>1.54</th> <th>1.55</th> <th>1.56</th> <th>1.58</th> <th>1.59</th> <th>1 60</th> <th>19</th> <th>~~~</th> <th>1.67</th> <th></th> <th></th> <th>2 2 2 7 2 7 2 7</th> <th></th> <th></th> <th>- , -</th> <th>701</th> <th> 0</th>	ω	1.52		1.54	1.55	1.56	1.58	1.59	1 60	19	~~~	1.67			2 2 2 7 2 7 2 7			- , -	701	 0
1.64         1.65         1.67         1.74         1.75         1.74         1.75         1.74         1.75         1.74         1.75         1.74         1.75         1.74         1.75         1.74         1.75         1.74         1.75         1.74         1.75         1.74         1.75         1.74         1.75         1.74         1.75         1.74         1.75         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76         1.76 <th< th=""><th>10</th><th>1.58</th><th></th><th>1.61</th><th>1.62</th><th>1.64</th><th>1.65</th><th>1 66</th><th>1 67</th><th>69</th><th></th><th>171</th><th>20.7</th><th></th><th>10.</th><th></th><th>0/.1</th><th>- 1</th><th>7/.</th><th>./</th></th<>	10	1.58		1.61	1.62	1.64	1.65	1 66	1 67	69		171	20.7		10.		0/.1	- 1	7/.	./
1.70       1.71       1.72       1.74       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76       1.76	12	1.64		1.67	1.68	1.70	171	1 72	1 74	175	· · ·	1 77	1 70		. / . /	- 0	/ (	ν ν.	) ) ) ) ) ) ) ) (	
174         1.76         1.77         1.78         1.80         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81         1.81 <th1.81< th="">         1.81         1.81         1</th1.81<>	14	1.70		1.72	1.74	1.75	1.76	1.78	1 79	1 80	• u	22	2 / C /	~ ~	- 0	$\circ \circ$	20. 1 0	ς 2. τ 2. τ		20. 20. c
1.78         1.80         1.81         1.87         1.86         1.87         1.86         1.87         1.86         1.87         1.86         1.87         1.86         1.87         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96 <th1.96< th="">         1.96         1.96         <th1< th=""><th>16</th><th></th><th>76</th><th>1.77</th><th>1.78</th><th>1.80</th><th>1.81</th><th>1.82</th><th>1.84</th><th>1.85</th><th>10</th><th>2.00</th><th>τα - τ</th><th>00</th><th>1 00</th><th>00</th><th>р т С Ц С Ц С Ц</th><th></th><th>71.</th><th>40.1</th></th1<></th1.96<>	16		76	1.77	1.78	1.80	1.81	1.82	1.84	1.85	10	2.00	τα - τ	00	1 00	00	р т С Ц С Ц С Ц		71.	40.1
188         188         186         188         188         189         101         102         103         104         106         103         104         105         104         106         103         104         106         103         104         106         103         104         106         103         104         106         103         104         106         103         104         106         103         104         106         103         104         106         103         104         106         103         104         106         103         104         106         103         104         106         103         104         106         103         104         106         103         104         106         103         104         106         103         104         106         103         104         106         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101 <th>18</th> <th></th> <th>80</th> <th>1.81</th> <th>1.83</th> <th>1.84</th> <th>1.85</th> <th>1.87</th> <th>1.88</th> <th>06.1</th> <th>τΟ.</th> <th>1 90</th> <th>707</th> <th>, 0</th> <th>707</th> <th>0</th> <th>00. 00. 00.</th> <th>- c</th> <th>/? c</th> <th>- CC</th>	18		80	1.81	1.83	1.84	1.85	1.87	1.88	06.1	τΟ.	1 90	707	, 0	707	0	00. 00. 00.	- c	/? c	- CC
1.86         1.87         1.89         1.90         1.93         1.94         1.93         1.94         1.95         1.94         1.95         1.94         1.95         1.94         1.95         1.94         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.95         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         2.01         2.06         2.04         2.06         2.04         2.06         2.04         2.06         2.04         2.06         2.04         2.06         2.04         2.06         2.04         2.06         2.04         2.06         2.04         2.06         2.04         2.06         2.04         2.06         2.04         2.06         2.04         2.06         2.04         2.06         2.04         2.06         2.04 <th< th=""><th>20</th><th></th><th>84</th><th>1.85</th><th>1.86</th><th>1.88</th><th>1.89</th><th>1.91</th><th>1.92</th><th>1.94</th><th>, UJ</th><th>1.96</th><th>200</th><th>, 0.</th><th> </th><th><i>-</i> –</th><th>200</th><th>10.4</th><th>7 C C</th><th>2000 2000 2000</th></th<>	20		84	1.85	1.86	1.88	1.89	1.91	1.92	1.94	, UJ	1.96	200	, 0.	 	<i>-</i> –	200	10.4	7 C C	2000 2000 2000
1.89         1.90         1.92         1.93         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96 <th< th=""><th>22</th><th></th><th>87</th><th>1.89</th><th>1.90</th><th>1.91</th><th>1.93</th><th>1.94</th><th>1.96</th><th>1.97</th><th>ິ</th><th>2.00</th><th>2.02</th><th>$\sim$</th><th>2.05</th><th><u>ب</u></th><th>2 C C</th><th>200</th><th>00.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>0.70</th></th<>	22		87	1.89	1.90	1.91	1.93	1.94	1.96	1.97	ິ	2.00	2.02	$\sim$	2.05	<u>ب</u>	2 C C	200	00.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.70
1.95         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         1.96         2.01         2.06         2.04         2.06         2.07         2.09         2.11         2.13         2.16         2.11         2.13         2.16         2.16         2.14         2.16         2.11         2.13         2.16         2.18         2.20         2.26         2.23         2.26         2.27         2.23         2.26         2.27         2.23         2.26         2.27         2.26         2.27         2.26         2.27         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26 <th< th=""><th>24</th><th>68 02</th><th>8</th><th>1.92</th><th>1.93</th><th>1.95</th><th>1.96</th><th>1.98</th><th>1.99</th><th>2.01</th><th>-</th><th>2.04</th><th>2.05</th><th>-</th><th>2.08</th><th></th><th>2 1 1 2 1 1</th><th></th><th>2 - 0</th><th>10 10 10 10</th></th<>	24	68 02	8	1.92	1.93	1.95	1.96	1.98	1.99	2.01	-	2.04	2.05	-	2.08		2 1 1 2 1 1		2 - 0	10 10 10 10
1.35         1.96         1.98         1.99         2.01         2.06         2.04         2.06         2.07         2.09         2.19         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16         2.16 <th< th=""><th>26</th><th>92</th><th>က္က</th><th>1.95</th><th>1.96</th><th>1.98</th><th>2.00</th><th>2.01</th><th>2.03</th><th>2.04</th><th>$\circ$</th><th>2.07</th><th>2.09</th><th>•</th><th>2.12</th><th>· · ·</th><th>15</th><th>0 1 2 2 2 0 1 0 1 0</th><th>101</th><th>0 0 0 0 0 0</th></th<>	26	92	က္က	1.95	1.96	1.98	2.00	2.01	2.03	2.04	$\circ$	2.07	2.09	•	2.12	· · ·	15	0 1 2 2 2 0 1 0 1 0	101	0 0 0 0 0 0
1.97       1.99       2.01       2.05       2.06       2.05       2.06       2.05       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.06       2.07       2.08       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11       2.11	28	പ്പ	90	1.98	1.99	2.01	2.02	2.04	2.06	2.07	$\circ$	2.10	2.12	``	2.15	· · · ·	210	10	2.00	5
2.00         2.03         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06         2.06 <th< th=""><th>30</th><th>97</th><th>66</th><th>2.01</th><th>2.02</th><th>2.04</th><th>2.05</th><th>2.07</th><th>2.08</th><th>2.10</th><th><u> </u></th><th>2.13</th><th>2.15</th><th>•</th><th>2.18</th><th>· · ·</th><th>2.0</th><th>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th><th>1 2 2 2</th><th>141 141 141</th></th<>	30	97	66	2.01	2.02	2.04	2.05	2.07	2.08	2.10	<u> </u>	2.13	2.15	•	2.18	· · ·	2.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 2 2	141 141 141
2.02         2.04         2.06         2.07         2.09         2.10         2.11         2.15         2.14         2.15         2.14         2.15         2.14         2.15         2.14         2.15         2.14         2.15         2.14         2.15         2.14         2.15         2.14         2.16         2.17         2.18         2.19         2.21         2.23         2.24         2.26         2.27         2.29         2.31         2.33         2.35         2.34         2.35         2.34         2.35         2.37         2.33         2.35         2.34         2.35         2.34         2.35         2.37         2.33         2.35         2.34         2.35         2.34         2.35         2.34         2.35         2.34         2.35         2.34         2.35         2.34         2.35         2.34         2.35         2.34         2.35         2.34         2.35         2.34         2.35         2.34         2.36         2.34         2.36         2.34         2.36         2.34         2.36         2.34         2.36         2.34         2.36         2.34         2.35         2.34         2.36         2.34         2.36         2.34         2.36         2.34         2.36 <td< th=""><th>32</th><th>8</th><th>02</th><th>2.03</th><th>2.05</th><th>2.06</th><th>2.08</th><th>2.10</th><th>2.11</th><th>2.13</th><th>·</th><th>2.16</th><th>2.17</th><th>· · ·</th><th>2.21</th><th>. ( \</th><th>2.24</th><th>2.05</th><th>2 27</th><th>0,1 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0</th></td<>	32	8	02	2.03	2.05	2.06	2.08	2.10	2.11	2.13	·	2.16	2.17	· · ·	2.21	. ( \	2.24	2.05	2 27	0,1 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
2.00       2.08       2.10       2.11       2.15       2.16       2.16       2.18       2.19       2.21       2.23       2.26       2.27       2.28       2.33       2.33       2.33       2.33       2.35       2.33       2.35       2.33       2.35       2.33       2.35       2.33       2.35       2.33       2.35       2.33       2.35       2.33       2.35       2.33       2.35       2.33       2.35       2.33       2.35       2.33       2.35       2.33       2.35       2.33       2.35       2.33       2.35       2.33       2.35       2.33       2.35       2.34       2.35       2.33       2.35       2.34       2.35       2.33       2.35       2.34       2.35       2.33       2.35       2.34       2.35       2.34       2.35       2.34       2.35       2.34       2.35       2.34       2.35       2.34       2.35       2.34       2.35       2.34       2.35       2.34       2.35       2.34       2.35       2.34       2.35       2.34       2.35       2.34       2.35       2.34       2.35       2.34       2.35       2.34       2.35       2.34       2.35       2.34       2.35       2.34       2.35	34	02	04	2.06	2.07	2.09	2.10	2.12	2.14	2.15		2.18	2.20		2.23		2.26	2.28	1000	0.40 0.40
2.07       2.08       2.04       2.16       2.17       2.19       2.20       2.23       2.26       2.23       2.26       2.37       2.33       2.33       2.33       2.33       2.33       2.35       2.37       2.33       2.35       2.37       2.33       2.35       2.37       2.33       2.36       2.37       2.33       2.33       2.33       2.33       2.33       2.35       2.37       2.33       2.33       2.33       2.33       2.33       2.33       2.33       2.36       2.37       2.33       2.33       2.33       2.33       2.33       2.33       2.33       2.33       2.33       2.33       2.33       2.33       2.33       2.33       2.33       2.33       2.33       2.33       2.33       2.33       2.33       2.33       2.33       2.33       2.33       2.33       2.33       2.33       2.34       2.36       2.37       2.35       2.33       2.34       2.35       2.33       2.34       2.35       2.33       2.34       2.36       2.34       2.36       2.34       2.35       2.34       2.36       2.34       2.35       2.34       2.35       2.34       2.35       2.34       2.36       2.34       2.36	36	с С С	90	2.08	2.10	2.11	2.13	2.15	2.16	2.18	<u> </u>	2.21	2.23	~ ~ ~	2.26	(N	2.29	2.31	2.32	2.34
2.09       2.11       2.12       2.14       2.16       2.17       2.19       2.21       2.22       2.24       2.26       2.27       2.29       2.31       2.33       2.35       2.35       2.35       2.35       2.35       2.35       2.35       2.35       2.35       2.35       2.35       2.35       2.35       2.35       2.36       2.35       2.35       2.35       2.35       2.35       2.35       2.35       2.35       2.35       2.35       2.35       2.35       2.35       2.35       2.36       2.35       2.35       2.35       2.35       2.35       2.35       2.35       2.35       2.35       2.35       2.35       2.35       2.37       2.38       2.40       2.44       2.46       2.44       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46       2.46	× ×	20	60,	2.10	2.12	2.14	2.15	2.17	2.19	2.20	$(\mathbf{N})$	2.23	2.25	~~	2.28	ຸບງ	2.31	2.33	2.35	2.36
2.11       2.15       2.16       2.18       2.20       2.21       2.23       2.25       2.26       2.28       2.30       2.31       2.33       2.35       2.36       2.38       2.39       2.40       2.42       2.44       2.42       2.44       2.42       2.44       2.42       2.44       2.42       2.44       2.42       2.44       2.42       2.44       2.46       2.42       2.44       2.46       2.42       2.44       2.46       2.42       2.44       2.46       2.42       2.44       2.46       2.42       2.44       2.46       2.42       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46	40	50,	- (	2.12	2.14	2.16	2.17	2.19	2.21	2.22	$(\mathbf{N})$	2.26	2.27	( )	2.31	- (° )	2.34	2.35	2.37	0000
2.15       2.11       2.18       2.20       2.22       2.23       2.25       2.27       2.28       2.30       2.33       2.35       2.37       2.38       2.40       2.42       2.44       2.46       2.42       2.44       2.46       2.42       2.44       2.46       2.42       2.44       2.46       2.42       2.44       2.46       2.42       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.44       2.46       2.48       2.50       2.27       2.29       2.31       2.33       2.34       2.36       2.33       2.34       2.36       2.41       2.45       2.44       2.46       2.48       2.50       2.55       2.57       2.29       2.31       2.33       2.34       2.36       2.41       2.45       2.46       2.48       2.55       2.57       2.59       2.51       2.59       2.56       2.57       2.59       2.56       2.57       2.59       2.56       2.57       2.56       2.57       2.56       2.57       2.59       2.66       2.57       2.59       2.66	44	_ (	<u></u> ηι.	Ω [.]Ω	2.16	2.18	2.20	2.21	2.23	2.25	$\sim$	2.28	2.30	<b>U</b>	2.33	-{*}	2.36	2.38	2.39	2.41
2.10       2.11       2.18       2.20       2.22       2.24       2.25       2.27       2.29       2.31       2.32       2.34       2.35       2.37       2.39       2.40       2.42       2.46       2.48       2.46       2.48       2.46       2.48       2.46       2.48       2.46       2.48       2.46       2.48       2.46       2.48       2.46       2.48       2.46       2.48       2.46       2.48       2.46       2.48       2.46       2.48       2.46       2.48       2.46       2.48       2.46       2.48       2.46       2.48       2.46       2.48       2.46       2.48       2.46       2.48       2.46       2.48       2.46       2.48       2.46       2.48       2.46       2.48       2.46       2.48       2.50       2.52       2.27       2.29       2.31       2.33       2.34       2.36       2.38       2.41       2.46       2.48       2.50       2.52       2.51       2.20       2.25       2.21       2.29       2.31       2.33       2.34       2.36       2.41       2.46       2.48       2.50       2.51       2.55       2.51       2.52       2.51       2.55       2.51       2.55       2.51	+ 4 + 4	ς Σ	<u>η</u>	/	2.18	2.20	2.22	2.23	2.25	2.27	$\sim$	2.30	2.32	U.J.	2.35	(1)	2.38	2.40	2.42	2.43
2.19       2.20       2.22       2.24       2.26       2.27       2.29       2.31       2.32       2.34       2.36       2.37       2.39       2.41       2.45       2.46       2.48       2.60       2.51       2.20       2.52       2.24       2.66       2.74       2.46       2.48       2.60       2.61       2.74       2.46       2.48       2.60       2.61       2.74       2.46       2.48       2.60       2.61       2.74       2.46       2.48       2.60       2.61       2.74       2.46       2.48       2.60       2.61       2.74       2.46       2.48       2.60       2.61       2.74       2.46       2.48       2.60       2.61       2.74       2.46       2.48       2.60       2.61       2.74       2.46       2.48       2.60       2.65       2.61       2.61       2.61       2.61       2.61       2.61       2.61       2.61       2.61       2.61       2.61       2.61       2.61       2.61       2.61       2.61       2.61       2.61       2.61       2.61       2.61       2.61       2.61       2.61       2.61       2.61       2.61       2.61       2.61       2.61       2.61       2.61       2.61	40	<u>1 Ω</u>	<u>&gt; </u> ;		7.20	2.22	2.24	2.25	2.27	2.29	m	2.32	2.34	<b>U</b>	2.37	(*)	2.40	2.42	2.44	2.46
2.70       2.24       2.24       2.29       2.31       2.33       2.34       2.36       2.38       2.41       2.45       2.46       2.48       2.50         2.22       2.22       2.24       2.26       2.27       2.33       2.34       2.36       2.38       2.41       2.43       2.46       2.48       2.50       2.57       2.59       2.31       2.33       2.34       2.36       2.38       2.40       2.41       2.43       2.46       2.48       2.50       2.51       2.52       2.52       2.52       2.52       2.52       2.54       2.56       2.57       2.59       2.51       2.59       2.51       2.59       2.51       2.53       2.46       2.41       2.43       2.45       2.47       2.48       2.50       2.51       2.59       2.51       2.59       2.51       2.59       2.51       2.59       2.51       2.54       2.56       2.56       2.57       2.56       2.56       2.57       2.56       2.56       2.57       2.56       2.56       2.57       2.56       2.56       2.57       2.56       2.56       2.57       2.56       2.56       2.57       2.56       2.56       2.57       2.56       2.57		<u> </u>	ר מ ס מ	N7.7	77.7	7.24	97.7	7.77	2.29	2.31	m	2.34	2.36	U.J.	2.39	5	2.43	2.44	2.46	2.48
2:22       2:24       2:27       2:29       2:31       2:33       2:34       2:36       2:38       2:40       2:41       2:45       2:47       2:48       2:50       2:52       2:54       2:52       2:54       2:56       2:57       2:52       2:54       2:56       2:57       2:52       2:54       2:56       2:57       2:59       2:51       2:52       2:54       2:56       2:57       2:59       2:51       2:57       2:59       2:51       2:57       2:54       2:56       2:57       2:56       2:57       2:59       2:51       2:57       2:57       2:57       2:59       2:57       2:59       2:51       2:57       2:59       2:51       2:57       2:59       2:57       2:59       2:51       2:57       2:59       2:57       2:59       2:57       2:59       2:57       2:59       2:57       2:59       2:57       2:59       2:57       2:59       2:57       2:59       2:57       2:59       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57	200		 > C V C	77.7	7 V 7 V 7 V	010	/7.7	2.29	2.31	2.33	$\sim$	2.36	2.38	(')	2.41	<u>_</u>	2.45	2.46	2.48	2.50
2:24       2:37       2:33       2:34       2:36       2:38       2:40       2:41       2:45       2:47       2:48       2:50       2:54       2:54       2:54       2:54       2:54       2:54       2:54       2:54       2:54       2:54       2:54       2:54       2:56       2:54       2:56       2:57       2:54       2:56       2:57       2:54       2:56       2:57       2:54       2:56       2:57       2:52       2:54       2:56       2:57       2:56       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57       2:57	54	200	7 7	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	07.7 C	/ 7. V	517 7 7	2.3 2.3	2.2.2	2.34	mι	2.38	2.40	5	2.43	5	2.46	2.48	2.50	2.52
2.25       2.37       2.34       2.34       2.38       2.40       2.41       2.43       2.45       2.47       2.48       2.50       2.52       2.54       2         2.25       2.27       2.29       2.31       2.32       2.34       2.36       2.38       2.41       2.45       2.47       2.48       2.50       2.52       2.54       2.55       2         2.27       2.32       2.34       2.36       2.38       2.39       2.41       2.45       2.47       2.48       2.50       2.52       2.54       2.55       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2	r 4	7 V 7 V	т 1 С 1	270	/ V C	27.7	- v. v - v v	2.2 2.0 2.0	2.34	2.36	$\sim$	2.40	2.41	<u> </u>	2.45	<u>_</u>	2.48	2.50	2.52	2.54
2.27       2.38       2.34       2.38       2.40       2.41       2.45       2.47       2.48       2.50       2.52       2.54       2.55       2         2.27       2.23       2.34       2.36       2.38       2.41       2.45       2.47       2.48       2.50       2.52       2.54       2.55       2       2         2.28       2.30       2.37       2.39       2.41       2.45       2.47       2.48       2.50       2.51       2.59       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2	о С С	т т т		/7.7	2 K 2 K 2 K	2 v. 1 v. 1 v.	27.7	2.34	2.36	2.38	<del></del>	2.41	2.43	5	2.47	<u> </u>	2.50	2.52	2.54	2.55
2:28       2:37       2:38       2:39       2:41       2:45       2:47       2:48       2:50       2:54       2:55       2:57       2         2:28       2:31       2:37       2:39       2:41       2:45       2:46       2:48       2:50       2:57       2:57       2:59       2       2         2:28       2:37       2:39       2:41       2:45       2:46       2:48       2:50       2:55       2:57       2:59       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2<				2,40	10.7	7.07	2.34 0.00	2.30 0000	2.38	2.40	<u>_</u>	2.43	2.45	<u> </u>	2.48	10	2.52	2.54	2.55	2.57
2:30       2:32       2:34       2:39       2:41       2:43       2:45       2:46       2:48       2:50       2:51       2:55       2:57       2:59       2         2:30       2:32       2:37       2:39       2:41       2:43       2:46       2:48       2:50       2:51       2:55       2:57       2:59       2         2:31       2:33       2:35       2:37       2:39       2:41       2:48       2:46       2:48       2:50       2:53       2:57       2:59       2:60       2       2       2       2       2:51       2:59       2:60       2:62       2       2       2       2:63       2:60       2:62       2       2:62       2       2:64       2       2       2:34       2:61       2:62       2:61       2       2:64       2       2       2:34       2:61       2:62       2:64       2       2       2:64       2       2       2:54       2:61       2:62       2:64       2       2       2:64       2       2:64       2       2:64       2       2:64       2:64       2       2:64       2       2:64       2       2:64       2:64       2       2:64       2:64	9 6	- 0 V 0	ר א כ	2.20 2.20	75.7	45.7	9 C 20	2.38	2.39	2.41	<del>\</del>	2.45	2.47	51	2.50	10	2.54	2.55	2.57	2.59
2.31       2.33       2.35       2.37       2.39       2.41       2.43       2.46       2.48       2.50       2.52       2.53       2.57       2.59       2.60       2         2.31       2.33       2.35       2.37       2.39       2.41       2.45       2.48       2.51       2.53       2.57       2.59       2.60       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2	7 0			2 C 2 C	4.04 7.04	5 2 2 2 1 0 1 0	1.2.7	2.39	2.41	2.43	<del>.</del> + .	2.46	2.48	10	2.52	10	2.55	2.57	2.59	2.61
2.31       2.35       2.35       2.37       2.43       2.44       2.46       2.48       2.49       2.51       2.53       2.57       2.59       2.60       2.62       2         2.33       2.34       2.36       2.38       2.41       2.45       2.47       2.49       2.51       2.53       2.56       2.60       2.62       2         2.34       2.36       2.47       2.49       2.51       2.53       2.56       2.60       2.62       2       2         2.34       2.36       2.47       2.49       2.51       2.53       2.56       2.60       2.62       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2	44	2 2	N C	2.2 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2	2.30 0.20	7.37	2.39	2.41	2.43	2.44		2.48	2.50	10	2.53	10	2.57	2.59	2.60	2.62
2.34       2.36       2.38       2.40       2.44       2.45       2.47       2.49       2.51       2.53       2.56       2.58       2.60       2.62       2.64       2         2.34       2.36       2.38       2.41       2.45       2.47       2.49       2.51       2.53       2.56       2.58       2.60       2.62       2.63       2.64       2         2.34       2.36       2.47       2.49       2.51       2.52       2.54       2.58       2.60       2.63       2.63       2.65       2         2.34       2.36       2.47       2.49       2.51       2.52       2.54       2.58       2.60       2.62       2.63       2.65       2       2.65       2.63       2.65       2       2.65       2       2.65       2       2.65       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2	00	- 6	ກີ	02.7 00.7	7.37	2.39	2.40	2.42	2.44	2.46	<del></del>	2.49	2.51	10	2.55	10	2.59	2.60	2.62	2.64
2.55 2.55 2.56 2.58 2.39 2.41 2.43 2.45 2.47 2.49 2.51 2.52 2.54 2.56 2.58 2.60 2.62 2.63 2.65 2	000	0,0	4 0	2.30 00.0	۲.30 200	2.40	2.42	2.44	2.45	2.47		2.51	2.53	10	2.56	10	2.60	2.62	2.64	2.65
	2	4 7	0	2.38	2.39	2.41	2.43	2.45	2.47	2.49	10	2.52	2.54	10	2.58	(O	2.62	2.63	2.65	2.67

1.37	22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 222020 22292 22292 22292 22292 22292 22292 22292 22292 22292 22292 22220 2222 22220 2222 2222 2222 2222 2222 2222 2222 2222	3.01
1.36	222222222222222222222222222222222222222	50
1.35	222222222222222222222222222222222222222	2
1.34	22222222222222222222222222222222222222	0
1.33	222222222222222222222222222222222222222	4
1.32	22222222222222222222222222222222222222	AZ.
1.31	22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.74 22.88 22.74 22.88 22.74 22.88 22.74 22.88 22.74 22.88 22.74 22.88 22.74 22.88 22.74 22.88 22.74 22.88 22.74 22.88 22.74 22.88 22.74 22.88 22.74 22.88 22.74 22.88 22.74 22.88 22.88 22.74 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 22.88 23.88 23.88 23.88 23.88 24.88 24.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.880	200
1.30	22.22.22.22.22.22.22.22.22.22.22.22.22.	0 Q
1.29	22222222222222222222222222222222222222	
1.28	22.22.22.22.22.22.22.22.22.22.22.22.22.	0
1.27	22222222222222222222222222222222222222	20
1.26	22222222222222222222222222222222222222	
1.25	22225522252222222222222222222222222222	
1.24	222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.688 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 222.788 223.788 223.788 223.788 223.788 223.788 223.788 223.788 223.788 223.788 223.788 223.788 223.788 223.788 223.788 223.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.788 233.787 233.787 233.787 233.787 233.787 233.787 233.787 233.787 233.787 233.7777 233.7777777777777777777777777	0/.7
1.23	22.23 22.25 22.66 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 23.73 24.73 24.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73 27.73	
1.22	22266 222255 22266 22266 22266 22266 22266 22266 22266 2227 22266 22266 2227 2226 2227 2226 2227 2226 2227 2226 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2227 2277 2277 2277 2277 22777 22777 227777 22777777	-
1.21	22.668 22.555 22.668 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 22.555 23.555 23.555 23.555 23.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.555 25.5555 25.5555 25.5555 25.5555 25.5555 25.5555 25.5555 25.5555 25.5555 25.5555 25.5555 25.55555 25.55555 25.555555 25.555555 25.55555555	7/.7
1.20	22.66 2.65 2.65 2.65 2.65 2.65 2.65 2.65	- / . 7
1.19	22.66 2.67 2.66 2.67 2.67 2.66 2.67 2.67	2 2
Specific gravity Viscosity	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2

G 24

TABLE OF COEFFICIENTS B (continued)

1.56	2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.166 2.176 2.166 2.176 2.166 2.176 2.166 2.176 2.166 2.176 2.166 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176
1.55	2.163 2.268 2.272 2.272 2.272 2.272 2.272 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275 2.275
1.54	22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22.92 22
1.53	22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20
1.52	22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22,222 22
1.51	2.233 $3.230$ $3.230$ $3.230$ $3.230$ $3.230$ $3.230$ $3.230$ $3.230$ $3.230$ $3.230$ $3.230$ $3.230$ $3.230$ $3.230$ $3.230$ $3.230$ $3.230$ $3.230$ $3.230$ $3.230$ $3.230$ $3.230$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.250$ $3.25$
1.50	22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20
1.49	2.20 3.3.10 3.3.10 3.3.10 3.3.10 3.3.10 3.3.10 3.3.10 5.60 5.60 5.60 5.60 5.60 5.60 5.60 5.6
1.48	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 $1.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571.571$
1.47	1.56         1.56         1.56         1.56         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58         1.58 <t< th=""></t<>
1.46	3.11 3.11 3.10 3.10 3.10 3.10 3.10 3.10
1.45	33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3007 33.3
1.44	3.3008 $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.008$ $3.0$
1.43	3330064
1.42	2.983 $2.983$ $2.983$ $2.983$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.933$ $2.93$
1.41	1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.00
1.40	2.033 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.004 3.00
1.39	2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.933 2.93
1.38	2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09
Specific gravity Viscosity	0 4 9 8 2 2 2 8 8 8 8 8 8 8 8 8 9 7 7 9 8 8 8 8 8 8 8

(continued)
В
TABLE OF COEFFICIENTS

10	
1.75	$\begin{array}{c} -1.80\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2.52\\ -2$
1.74	$\begin{array}{c} -1.79\\ -2.23\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2.56\\ -2$
1.73	3.63
1.72	01000000000000000000000000000000000000
1.71	9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20
1.70	
1.69	
1.68	22222222222222222222222222222222222222
1.67	-1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.73 -1.7
1.66	251 251 251 251 251 251 251 251 251 251
1.65	
1.64	
1.63	
1.62	1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 $1.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691.691$
1.61	1.68 1.68 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325 3.3.325
1.60	1.67 1.67 1.67 1.67 1.67 1.67 1.67 2.547 2.547 2.547 2.547 2.547 2.543 2.547 2.539 2.539 3.018 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.
1.59	1.66 1.66 1.91 1.66 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 $1.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921.921$
1.58	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.57	1.65 1.65 1.65 1.65 1.65 1.65 1.65 2.17 2.16 2.17 2.16 2.17 2.16 3.3.00 3.3.00 3.3.00 3.3.19 3.3.19 3.3.10 3.3.25 3.3.10 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25 3.3.25
Specific gravity	
S Viscosity	7888666885555555444468883333222223242429882 288888888888888888888888888888

TABLE OF COEFFICIENTS B (continued)

94	195 195 195 195 195 195 195 195 195 195
-	
1.93	22.234 2.256 2.233 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.2566 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.256 2.2566 2.2566 2.2566 2.2566 2.2566 2.2566 2.2566 2.2566 2.2566 2
1.92	22.224 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.225 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.255 22.2555 22.2555 22.2555 22.2555 22.2555 22.2555 22.2555 22.2555 22.2555
1.91	1.93         2.21         2.21         2.21         2.21         2.21         2.21         2.21         2.21         2.21         2.21         2.21         2.21         2.21         2.22         2.22         2.22         2.22         2.22         2.22         2.22         2.22         2.22         2.22         2.22         2.22         2.22         2.22         2.22         2.22         2.22         2.22         2.23         2.25         2.25         2.25         2.25         2.25         2.25         2.25         2.25         2.25         2.25         2.25         2.25         2.25         2.25         2.25         2.25         2.25         2.25         2.25 <t< th=""></t<>
1.90	2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
1.89	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
1.88	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
1.87	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
1.86	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
1.85	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
1.84	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
1.83	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
1.82	2.135 2.135 2.135 2.135 2.133 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.13 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2.145 2
1.81	22.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12
1.80	2.2.2.1.8 3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.
1.79	33.38.98.98.98.98.98.98.98.98.98.98.98.98.98
1.78	3.3.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9
1.77	3.3.3.3.3.3.9.9.9.9.9.9.9.9.9.9.9.9.9.9
1.76	33.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3
Specific gravity	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Viscosity	

(continued)
ш
COEFFICIENTS
LL_
0
щ
BL
A
F

r	
2.13	22.22.22.22.22.22.22.22.22.22.22.22.22.
2.12	22.40 22.41 22.41 22.41 22.41 22.41 22.41 22.42 22.45 23.32 23.32 23.32 23.32 23.32 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.44 24.444 24.444 24.444 24.444 24.444 24.4444 24.4444 24.44444 24.44444444
2.11	22.20 22.20 22.20 22.20 22.20 22.20 22.20 22.20 22.20 22.20 22.20 23.33 23.33 23.33 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25.60 25
2.10	22.20 22.20 22.20 22.20 22.20 22.20 22.20 22.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 23.20 25
2.09	22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 24.00 24.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.000
2.08	22.557 22.557 22.557 22.557 22.557 22.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.5577 23.5577 23.5577 23.5577 23.5577 23.55777 23.55777 23.557777 23.5577777 23.5577777777777777777777777777777777777
2.07	22.06 22.06 22.06 22.06 22.06 23.02 22.06 23.02 22.06 23.02 23.03 23.03 24.03 23.03 25.06 25.06 25.06 25.06 25.06 25.06 25.06 25.05 25.06 25.05 25.06 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05
2.06	22.055 22.055 22.055 22.055 22.055 22.055 22.055 22.055 22.055 22.055 22.055 22.055 22.055 22.055 22.055 22.055 22.055 22.055 22.055 22.055 22.055 22.055 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 23.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25.05 25
2.05	2.554 2.554 2.554 2.554 2.554 2.554 2.554 2.554 2.555 2.554 2.323 2.555 2.554 2.323 2.554 2.555 2.554 2.555 2.554 2.554 2.555 2.554 2.555 2.555 2.554 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.555 2.5555 2.555 2.5555 2.5555 2.5555 2.5555 2.5555 2.5555 2.5555 2.5555 2.5555 2.5555 2.5555 2.5555 2.5555 2.55555 2.55555 2.55555 2.55555 2.555555 2.55555 2.55555555
2.04	22.02 22.03 22.03 22.03 22.03 23.00 24.04 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.000
2.03	2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.5522 2.
2.02	2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.551 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322 2.322
2.01	2.501 2.501 2.501 2.501 2.501 2.501 2.501 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502 2.502
2.00	22.00 22.00 22.00 22.00 22.00 22.00 22.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.000 20.000 20.000 20.000 20.00000000
1.99	1,00
1.98	1.08
1.97	2.28 2.292 2.273 2.273 2.261 2.273 2.261 2.233 2.261 2.273 2.261 2.273 2.261 2.273 2.261 2.273 2.262 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.273 2.
1.96	2.297 2.297 2.297 2.297 2.297 2.297 2.297 2.297 2.297 2.297 2.297 2.297 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2.292 2
1.95	$2^{-1.00}$
Specific gravity Viscosity	0 4 9 8 2 2 2 2 8 8 8 8 8 8 8 8 9 4 4 9 8 9 2 2 8 8 8 9 8 9 9 8 8 9 9 9 9 9 9

TABLE OF COEFFICIENTS B (continued)

2.32	2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55
2.31	22.22 22.22 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 22.26 27.277 27.277 27.2777 27.27777777777
2.30	22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.527 22.577 22.577 22.577 22.577 22.5777 22.5777 22.5777 22.5777 22.57777 22.57777 22.57777777777
2.29	22250 22250 22250 22250 22250 22250 22250 22250 22250 22250 22250 22250 22250 22250 22250 22250 22250 22250 22250 22250 22250 22250 22250 22250 22250 22250 22250 22250 22250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 2250 200 20
2.28	2222         2222         2223         2223         2223         2223         2223         2223         2223         2223         2223         2223         2223         2233         2233         2233         2233         2233         2233         2333         2333         2333         2333         2333         2333         2333         2333         2333         2333         2333         2333         2333         2333         2333         2333         2333         2334         2335         2335         2335         2335         2335         2335         2335         2335         2335         2335         2335         2335         2335         2345         2355 <t< th=""></t<>
2.27	2552 2552 2552 2552 2552 2552 2552 255
2.26	2.221         2.221         2.221         2.221         2.221         2.221         2.221         2.221         2.221         2.221         2.221         2.221         2.221         2.221         2.221         2.221         2.221         2.221         2.221         2.221         2.221         2.221         2.221         2.221         2.221         2.221         2.222         2.223         2.223         2.223         2.224         2.225         2.225         2.221         2.222         2.223         2.223         2.224         2.225         2.225         2.225         2.225         2.225         2.225         2.225         2.225         2.225         2.225         2.225         2.225         2.225
2.25	4444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       444444       4444444       4444444       4444444       44444444       44444444       44444444       44444444       444444444       444444444       444444444       4444444444       4444444444444444444       444444444444444444444444444444444444
2.24	2.19         2.19         2.19         2.19         2.13         3.13         3.13         3.13         3.13         3.13         3.13         3.13         3.13         3.13         3.13         3.13         3.13         3.13         3.13         3.13         3.13         3.13         3.13         3.14         3.14         3.14         3.14         3.14         3.14         3.14         3.14         3.14         3.14         3.14         3.14         3.14         3.14         3.14         3.14         3.14         3.14         3.14         3.14         3.14         3.14         3.14         3.14         3.14         3.14         3.14         3.14         3.14 <t< th=""></t<>
2.23	4.44233       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.3333       3.33333       3.3333       3.3333
2.22	4.4       4.4       4.03       3.3.3       3.51         4.4       4.4       4.03       3.3.3       3.51         4.4       4.4       4.03       3.3.3       3.51         4.4       4.23       3.3.3       3.51       3.51         4.4       4.23       3.3.3       3.51       3.51         4.4       4.23       3.3.3       3.52       3.51         4.4       4.23       3.53       3.53       3.51         4.4       4.23       3.53       3.53       3.51         4.4       4.23       3.53       3.53       3.51         4.4       4.23       4.14       4.03       3.51         4.4       4.23       4.14       4.14       4.14         4.4       4.23       4.14       4.14       4.14         4.4       4.4       4.14       4.14       4.14         4.4       4.4       4.4       4.4       4.4         4.4       4.4       4.4       4.4       4.4         4.4       4.4       4.4       4.4       4.4         4.4       4.4       4.4       4.4       4.4         4.4       4.4<
2.21	4.4.333       3.3.333       3.72       2.70         4.4.25       3.3.333       3.72       3.72         4.4.25       3.3.33       3.72       3.72         4.4.33       3.3.33       3.72       3.72         4.4.33       3.3.33       3.72       3.72         4.4.25       3.3.33       3.72       3.72         4.4.33       3.333       3.72       3.72         4.4.33       3.333       3.72       3.72         4.4.33       3.333       3.72       3.72         4.4.33       3.333       3.72       3.72         4.4.33       3.333       3.72       3.72         4.4.33       3.333       3.72       3.72         4.4.33       3.72       3.72       3.72         4.4.33       3.72       3.72       3.72         4.4.33       3.72       3.72       3.72         4.4.4       3.73       3.72       3.72         4.4.4       4.4.33       4.4.33       4.4.33         4.4.4       4.4.33       4.4.33       4.4.33         4.4.4       4.4.33       4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.
2.20	44,123       3.3.76         44,123       3.3.76         44,123       3.3.76         44,123       3.3.76         44,123       3.3.76         44,123       3.420         44,124       4.11         44,124       4.11         44,123       4.12         44,124       4.12         44,124       4.14         44,124       4.14
2.19	2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15         2.15 <t< th=""></t<>
2.18	2.14 2.46 2.46 2.46 2.46 2.46 2.46 2.46 2.83 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.58 3.3.59 3.3.59 3.3.59 3.3.59 3.3.59 3.3.59 3.3.59 3.3.59 3.3.59 3.3.59 3.3.59 3.59
2.17	2.66         2.95         2.95         2.95         2.95         2.95         3.3.15         2.95         3.3.245         3.3.351         4.4.13         4.242         4.224         4.133         3.3.33         3.3.45         4.332         4.4.13         4.4.13         4.4.13         4.4.13         4.4.13         4.4.13         4.4.4.4         4.4.4.4         4.4.4         4.4.4         4.4.4         4.4.4         4.4.4         4.4.4         4.4.4         4.4.4         4.4.4         4.4.4         4.4.4         4.4.4         4.4.4         4.4.4         4.4.4         4.4.4         4.4.4         4.4.4         4.4.4         4.4.4         4.4.4         4.4.4         4.4.4         4.4.4      4.4      4.4     4.4
2.16	2.13         2.13         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.15         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14         2.14 <t< th=""></t<>
2.15	2.2.12         2.2.12         2.2.13         3.133         3.133         3.133         3.133         3.133         3.133         3.133         3.133         3.133         3.133         3.133         3.133         3.133         3.133         3.133         3.133         3.133         3.133         3.133         3.133         3.133         3.133         3.133         3.133         3.133         3.133         3.133         3.133         3.133         3.133         3.133         3.134         4.16         4.16         4.16         4.17         4.18         4.18         4.19         4.110         4.110         4.110         4.110         4.110         4.110         4.110         4.110         4.110
2.14	2.431         2.433         2.433         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441         2.441
Specific gravity Viscosity	N4000000000000000000000000000000000000

# TABLE OF COEFFICIENTS N1Calculation of pressure losses in surface equipment

## $P_{\text{surface equipment}} = N_1 B \text{ (kPa)}$

		Case 1			Case 2			Case 3			Case 4	
	ID	Length	Length	ID	Length	Length	ID	Length	Length	ID	Length	Length
	(in)	(ft)	(m)	(in)	(ft)	(m)	(in)	(ft)	(m)	(in)	(ft)	(m)
Stand pipe	3	40	12.19	3 1/2	40	12.19	4	45	13.72	4	45	13.72
Drilling hose	2	45	13.72	2 1/2	55	16.76	3	55	16.76	3	55	16.76
Kelly	2 1/4	40	12.19	3 1/4	40	12.19	3 1/4	40	12.19	4	40	12.19
Swivel	2	4	1.22	2 1/2	5	1.52	2 1/2	5	1.52	3	6	1.83

Débit (I/min)	Case 1	Case 2	Case 3	Case 4	Débit (I/min)	Case 1	Case 2	Case 3	Case 4
$\begin{array}{c} 500\\ 550\\ 600\\ 650\\ 700\\ 750\\ 800\\ 850\\ 990\\ 9950\\ 1\ 000\\ 1\ 050\\ 1\ 050\\ 1\ 050\\ 1\ 050\\ 1\ 050\\ 1\ 050\\ 1\ 050\\ 1\ 050\\ 1\ 050\\ 1\ 050\\ 1\ 050\\ 1\ 050\\ 1\ 050\\ 1\ 050\\ 1\ 050\\ 2\ 050\\ 2\ 050\\ 2\ 050\\ 2\ 050\\ 2\ 050\\ 2\ 050\\ 2\ 050\\ 2\ 050\\ 2\ 050\\ 2\ 050\\ 2\ 050\\ 2\ 050\\ 2\ 050\\ 2\ 050\\ 2\ 050\\ 2\ 050\\ 2\ 050\\ 2\ 050\\ 2\ 050\\ 2\ 050\\ 2\ 050\\ 2\ 050\\ 2\ 050\\ 2\ 050\\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ $	$\begin{array}{c} 68\\ 80\\ 94\\ 109\\ 124\\ 141\\ 158\\ 176\\ 195\\ 215\\ 236\\ 258\\ 280\\ 304\\ 328\\ 353\\ 379\\ 405\\ 433\\ 461\\ 490\\ 520\\ 550\\ 581\\ 613\\ 646\\ 680\\ 714\\ 749\\ 785\\ 822\\ 859\\ 897\\ 936\\ 976\\ 1\ 016\\ 1\ 057\\ 1\ 099\\ 1\ 141\\ 1\ 184\\ 1\ 228\\ 1\ 273\\ 1\ 318\\ 1\ 364\\ 1\ 411\\ 1\ 458\\ \end{array}$	$\begin{array}{c} 24\\ 28\\ 33\\ 38\\ 44\\ 49\\ 55\\ 62\\ 69\\ 76\\ 83\\ 90\\ 98\\ 107\\ 115\\ 124\\ 133\\ 142\\ 152\\ 162\\ 172\\ 182\\ 193\\ 204\\ 215\\ 227\\ 239\\ 251\\ 263\\ 276\\ 288\\ 302\\ 315\\ 329\\ 342\\ 357\\ 371\\ 386\\ 400\\ 416\\ 431\\ 447\\ 463\\ 479\\ 495\\ 512 \end{array}$	$\begin{array}{c} 13\\ 16\\ 18\\ 21\\ 24\\ 27\\ 31\\ 34\\ 38\\ 42\\ 46\\ 50\\ 55\\ 59\\ 64\\ 69\\ 74\\ 90\\ 95\\ 101\\ 107\\ 113\\ 119\\ 126\\ 132\\ 139\\ 146\\ 153\\ 160\\ 167\\ 175\\ 182\\ 190\\ 198\\ 206\\ 214\\ 222\\ 231\\ 239\\ 248\\ 257\\ 266\\ 275\\ 284\\ \end{array}$	$\begin{array}{c} 10\\ 12\\ 14\\ 17\\ 19\\ 21\\ 24\\ 27\\ 30\\ 33\\ 36\\ 39\\ 43\\ 46\\ 50\\ 54\\ 57\\ 62\\ 66\\ 70\\ 74\\ 98\\ 88\\ 93\\ 103\\ 109\\ 114\\ 125\\ 131\\ 136\\ 142\\ 148\\ 154\\ 161\\ 167\\ 173\\ 180\\ 187\\ 193\\ 200\\ 207\\ 214\\ 221\\ \end{array}$	$\begin{array}{c} 2\ 800\\ 2\ 850\\ 2\ 900\\ 2\ 950\\ 3\ 000\\ 3\ 050\\ 3\ 100\\ 3\ 200\\ 3\ 250\\ 3\ 250\\ 3\ 300\\ 3\ 250\\ 3\ 350\\ 3\ 450\\ 3\ 550\\ 3\ 650\\ 3\ 550\\ 3\ 650\\ 3\ 550\\ 3\ 650\\ 3\ 700\\ 3\ 850\\ 3\ 950\\ 4\ 000\\ 4\ 150\\ 4\ 250\\ 4\ 350\\ 4\ 400\\ 4\ 250\\ 4\ 350\\ 4\ 450\\ 4\ 550\\ 4\ 650\\ 4\ 650\\ 4\ 650\\ 4\ 650\\ 4\ 650\\ 4\ 650\\ 4\ 650\\ 4\ 950\\ 5\ 000\\ \end{array}$	$\begin{array}{c} 1 \ 506\\ 1 \ 555\\ 1 \ 604\\ 1 \ 655\\ 1 \ 705\\ 1 \ 705\\ 1 \ 705\\ 1 \ 705\\ 1 \ 705\\ 1 \ 705\\ 1 \ 705\\ 2 \ 705\\ 2 \ 925\\ 2 \ 080\\ 2 \ 136\\ 2 \ 193\\ 2 \ 251\\ 2 \ 309\\ 2 \ 368\\ 2 \ 427\\ 2 \ 488\\ 2 \ 548\\ 2 \ 548\\ 2 \ 548\\ 2 \ 548\\ 2 \ 610\\ 2 \ 672\\ 2 \ 735\\ 2 \ 798\\ 2 \ 862\\ 2 \ 927\\ 2 \ 992\\ 3 \ 058\\ 3 \ 125\\ 3 \ 192\\ 3 \ 260\\ 3 \ 329\\ 3 \ 398\\ 3 \ 468\\ 3 \ 538\\ 3 \ 609\\ 3 \ 681\\ 3 \ 753\\ 3 \ 826\\ 3 \ 900\\ 3 \ 974\\ 4 \ 049\\ 4 \ 124\\ 4 \ 200\\ 4 \ 277\\ \end{array}$	$\begin{array}{c} 529\\ 546\\ 563\\ 581\\ 598\\ 617\\ 635\\ 653\\ 672\\ 691\\ 710\\ 730\\ 750\\ 770\\ 790\\ 810\\ 831\\ 852\\ 873\\ 894\\ 916\\ 938\\ 960\\ 982\\ 1\ 004\\ 1\ 027\\ 1\ 050\\ 1\ 073\\ 1\ 097\\ 1\ 120\\ 1\ 144\\ 1\ 168\\ 1\ 192\\ 1\ 217\\ 1\ 242\\ 1\ 267\\ 1\ 292\\ 1\ 317\\ 1\ 343\\ 1\ 368\\ 1\ 395\\ 1\ 421\\ 1\ 447\\ 1\ 501\\ \end{array}$	$\begin{array}{c} 293\\ 303\\ 312\\ 322\\ 332\\ 342\\ 352\\ 362\\ 373\\ 383\\ 394\\ 405\\ 416\\ 427\\ 438\\ 449\\ 461\\ 472\\ 484\\ 496\\ 508\\ 520\\ 532\\ 545\\ 557\\ 570\\ 582\\ 595\\ 608\\ 621\\ 635\\ 648\\ 661\\ 675\\ 689\\ 703\\ 716\\ 731\\ 745\\ 759\\ 774\\ 788\\ 803\\ 818\\ 833\\ \end{array}$	$\begin{array}{c} 229\\ 236\\ 244\\ 251\\ 259\\ 267\\ 275\\ 283\\ 291\\ 299\\ 308\\ 316\\ 324\\ 333\\ 342\\ 351\\ 360\\ 369\\ 378\\ 387\\ 396\\ 406\\ 415\\ 425\\ 435\\ 445\\ 455\\ 465\\ 475\\ 485\\ 495\\ 506\\ 516\\ 527\\ 537\\ 548\\ 559\\ 570\\ 581\\ 592\\ 604\\ 615\\ 626\\ 638\\ 650\\ \end{array}$

 $I/min \times 0.264 = gal/min$ 

TABLE OF COEFFICIENTS  $N_2$ Calculation of pressure losses in drill pipes  $p_{int} = N_2 B$  (kPa/100 m)

ſ

Nominal pipe size (in)	Nominal weight (lb/ft)	Pipe inside diameter (in)	Tool joint inside die	Flow rate O (I/min)
e (in)	5/ft)	er (in)	diameter (in)	100 250 350 350 350 350 350 350 350 350 350 3
			1 13/16	0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 3/8	6.65	1.815	1 3/4	26 53 53 54 53 55 55 55 55 55 55 55 55 55 55 55 55
			1.3/8	6 6 6 6 7 7 4 4 4 3 3 3 3 3 2 2 2 4 4 4 4 3 3 5 3 2 4 4 4 4 3 3 3 3 3 3 2 2 4 5 4 4 4 4 3 3 3 3 3 3 2 2 4 5 4 4 4 4 4 4 5 6 6 6 7 7 4 4 4 4 4 3 3 3 3 3 2 2 2 4 5 4 4 4 4 4 5 6 6 6 7 7 4 4 4 4 3 3 3 3 3 2 2 2 4 4 4 4 4 5 6 6 6 7 7 4 4 4 4 3 2 2 4 5 4 4 4 4 4 5 6 6 6 7 7 4 4 4 4 3 3 3 3 3 2 2 4 4 4 4 4 4 5 6 6 6 7 7 4 4 4 4 5 6 6 6 7 7 4 4 4 4 5 6 6 6 7 7 4 4 4 5 6 6 6 7 7 4 4 4 4 5 6 6 6 7 7 4 4 4 4 5 6 6 6 7 7 4 4 4 4 5 6 6 6 7 7 4 4 4 4 5 6 6 6 7 7 4 4 4 5 6 6 6 7 7 4 4 4 5 6 6 6 7 7 4 4 7 6 6 6 6 7 7 4 4 4 5 6 6 6 7 7 4 4 7 6 6 6 6 7 7 4 7 7 7 7 7
			2 5/32	22222222222222222222222222222222222222
			2 1/8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
			6	2222111222221111222222111122222211122222
2 7/8		2 151	.   Г	2222221111111122000 88189330 222221111111112 22228 22221128 222221128 22228 2222211111111
			1 2/4	22222222822822822822822822822881290000000000
			Q U	
			<u>(</u>	

 $l/min \times 0.264 = gal/min$ 

Calculation of pressure losses in drill pipes *p*_{int} = *N*₂*B* (kPa/100 m) TABLE OF COEFFICIENTS N₂ (continued)

1/8  $\sim$ 2 1/4 15.5 1 2.602 7/16  $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & &$  $\sim$ 9/16  $\sim$ 1/8  $\sim$ 3 1/2 7/16  $\sim$ 2.764 13.3 9/16  $\begin{array}{c} 1 \\ 18 \\ 25 \\ 25 \\ 25 \\ 25 \\ 27 \\ 27 \\ 27 \\ 23 \\ 22 \\ 23 \\ 33 \\ 22 \\ 33 \\ 22 \\ 33 \\ 22 \\ 33 \\ 22 \\ 33 \\ 22 \\ 33 \\ 22 \\ 23 \\ 33 \\ 22 \\ 23 \\ 33 \\ 22 \\ 23 \\ 33 \\ 22 \\ 23 \\ 33 \\ 22 \\ 23 \\ 33 \\ 22 \\ 23 \\ 33 \\ 22 \\ 23 \\ 33 \\ 22 \\ 23 \\ 33 \\ 22 \\ 23 \\ 33 \\ 22 \\ 23 \\ 33 \\ 22 \\ 23 \\ 33 \\ 22 \\ 23 \\ 33 \\ 22 \\ 23 \\ 33 \\ 22 \\ 23 \\ 33 \\ 22 \\ 23 \\ 33 \\ 22 \\ 23 \\ 33 \\ 22 \\ 23 \\ 33 \\ 22 \\ 23 \\ 33 \\ 22 \\ 23 \\ 33 \\ 22 \\ 23 \\ 33 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\$  $\sim$ 2 11/16 11/16  $\sim$ 992 ß ல்  $\mathcal{O}$ Tool joint inside diameter (in) Pipe inside diameter (in) Nominal pipe size (in) Nominal weight (lb/ft) Flow rate *Q* (I/min)

 $//min \times 0.264 = gal/min$ 

Calculation of pressure losses in drill pipes *p*_{int} = N₂*B* (kPa/100 m) TABLE OF COEFFICIENTS N₂ (continued)

 $l/min \times 0.264 = gal/min$ 

TABLE OF COEFFICIENTS  $N_2$  (continued) Calculation of pressure losses in drill pipes  $p_{int} = N_2 B$  (kPa/100 m)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Nominal pipe size (in)	(in)			4					41	1/2		
3.34         3.34         3.34         3.34         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366         3.366 <th co<="" th=""><th>Nominal weight (lb/</th><th>(ft)</th><th></th><th></th><th>~</th><th>t</th><th></th><th></th><th></th><th>13.</th><th>75</th><th></th></th>	<th>Nominal weight (lb/</th> <th>(ft)</th> <th></th> <th></th> <th>~</th> <th>t</th> <th></th> <th></th> <th></th> <th>13.</th> <th>75</th> <th></th>	Nominal weight (lb/	(ft)			~	t				13.	75	
3 1/4 $3$ $2 13/16$ $2 11/16$ $2 7/16$ $3 31/32$ $3 7/8$ $3 3/4$ $3$ $2 13/16$ $2 11/16$ $2 7/16$ $3 31/32$ $3 7/8$ $3 3/4$ $3$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/6$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$ $3 3/4$	Pipe inside diamete	er (in)			С. С.	34				3.9	158		
100         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	Tool joint inside dia	meter (in)		m	13/1	1/11	9/1	1/7	31/3				
150         3         3         3         3         3         3         3         3         3         3         1         1         1           200         7         7         7         8         8         8         9         3         3         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th></th> <th>100</th> <th>-</th> <th></th> <th>-</th> <th>2</th> <th>2</th> <th>2</th> <th><b>—</b></th> <th><b>~</b></th> <th><del></del></th> <th>-</th>		100	-		-	2	2	2	<b>—</b>	<b>~</b>	<del></del>	-	
200         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5		150	m	ო	ო	ო	m	ო	ę	<del></del>	<del>~~</del>	<del>6</del>	
250         7         7         8         8         9         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3		200	ى ك	വ	IJ	വ	9	Q	7	2	5	5	
300         10         11         11         11         11         11         12         4         4           350         13         13         14         11         11         11         12         4         4         4           450         27         28         23         23         23         24         25         26         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7 <th7< th=""><th></th><th>250</th><th>7</th><th>7</th><th>ω</th><th>ω</th><th>00</th><th>ຓ</th><th>ო</th><th>ო</th><th>က</th><th>ო</th></th7<>		250	7	7	ω	ω	00	ຓ	ო	ო	က	ო	
350       13       13       14       14       15       16       6       6       6         400       17       17       18       18       18       18       18       16       6       6       6       7       7       7       7         550       25       26       27       28       23       33       34       36       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13 </th <th></th> <th>300</th> <th>10</th> <th>10</th> <th>11</th> <th></th> <th><del>~~</del></th> <th>12</th> <th>4</th> <th>4</th> <th>4</th> <th>ß</th>		300	10	10	11		<del>~~</del>	12	4	4	4	ß	
400         17         17         18         18         19         20         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7		350	13	13	14	14	15	16	9	9	Q	9	
450         20         21         22         23         24         25         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9		400	17	17	18	18	19	20	7	7	7	ω	
500         25         26         27         28         29         30         11         11         11           550         29         30         37         28         29         30         11         11         11           650         34         36         47         43         44         46         49         17         18         13         13         13           750         45         47         49         50         53         55         57         28         29         30         11         11         11           750         45         47         49         50         53         55         57         60         63         22         23         23         23           900         71         74         77         79         83         77         71         25         27         28         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23		450	20	21	22	23	24	25	თ	თ	თ	10	
550         29         30         32         33         34         36         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13		500	25	26	27	28	29	30	<del>, -</del>		ç	12	
600         34         36         37         38         40         42         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         16         17         18         18         18         17         18         18         18         17         18         18         18         18         18         18         18         18         18         18         18         13         13         13         13         13         13         13         13         13         13         13         13		550	29	30	32	33	34	36	13	13	13	14	
650         40         41         43         44         46         49         17         18         18           700         45         47         49         50         53         55         57         60         63         22         23         23           700         45         47         49         50         53         55         57         71         71         18         18           830         58         60         62         64         67         71         75         71         25         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23		600	34	36	37	38	40	42	15	15	15	17	
700         45         47         49         50         53         55         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20		650	40	41	43	44	46	49	17	18	18	0 0	
750         51         53         55         57         60         63         22         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23		700	45	47	49	20	53	55	20	20	20	22	
800         58         60         62         64         67         71         25         25         26           900         71         74         77         79         81         87         31         31         32           900         71         74         77         79         83         87         31         31         32           950         79         81         84         87         91         96         34         35         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33	Flow rate	750	ນ 1	53	55	57	60	63	22	23	23	25	
850         64         67         69         71         75         79         28         28         28         29         29         20         71         74         77         79         87         31         31         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33	(1/mim)	800	58	60	62	64	67	71	25	25	26	28	
717477798387313131337981848791963435353594971011051001053838393594971011051001154142421021061101141191254545451021061101141191254445451201241291231281364949501201241291331491565253531201241291331491585657561291331481541601696165661481531541711816565661581631711811811816566168174181187195206747475		850	64	67	69	71	75	79	28	28	29	Э	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		006	71	74	77	79	83	87	31	31	32	35	
86         89         93         96         100         105         38         38         38         39         39         39         39         39         39         39         39         39         39         39         30         36         38         38         38         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         31         30         111         111         115         119         125         149         125         44         45         46         46         46         47         43         43         140         125         140         126         133         143         146         55         56         57         58         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53		950	79	81	84	87	91	96	34	35	35	8 8 9	
94         97         101         105         109         115         41         42         42           102         106         110         114         119         125         45         45         46           111         115         119         123         123         128         136         49         49         50           120         124         129         133         139         146         52         53         53         53           129         133         133         139         146         52         53         53         53         53           129         133         148         154         160         166         57         58         56         57         58         53           138         148         154         160         169         66         57         58         56         56         57         58         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56		1 000	86	89	93	96	100	105	38	38	6°	42	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 050	94	97	101	105	109	115	41	42	42	46	
111 $115$ $119$ $123$ $128$ $136$ $49$ $49$ $50$ $120$ $124$ $129$ $133$ $133$ $139$ $146$ $52$ $53$ $53$ $129$ $133$ $133$ $143$ $149$ $158$ $56$ $57$ $58$ $128$ $143$ $154$ $160$ $166$ $61$ $61$ $61$ $62$ $148$ $153$ $154$ $160$ $169$ $61$ $61$ $62$ $66$ $148$ $153$ $170$ $175$ $183$ $193$ $69$ $70$ $71$ $168$ $174$ $181$ $187$ $195$ $206$ $74$ $74$ $75$ $75$		1 100	102	106	110	114	119	125	45	45	46	20	
120       124       129       133       139       146       52       53       53         129       133       138       143       149       158       56       57       58         129       133       148       154       160       168       56       57       58         138       143       154       160       169       61       61       61       62         148       153       159       164       171       181       65       65       66         158       163       170       175       183       193       69       70       71         168       174       181       187       195       206       74       74       75		1 150		115	119	123	128	136	49	49	20	54	
129       133       138       143       149       158       56       57       58         138       143       154       160       169       61       61       62         148       153       159       164       171       181       65       65       66         158       163       164       171       181       65       66       66         158       163       175       183       193       69       70       71         168       174       181       187       195       206       74       74       75		1 200	120	124	129	133	139	146	52	53	23	28	
138     143     148     154     160     169     61     61     62       148     153     159     164     171     181     65     66     66       158     163     170     175     183     193     69     70     71       168     174     181     187     195     206     74     75     75		1 250	129	133	138	143	149	158	56	57	28	62	
148         153         159         164         171         181         65         65         66           158         163         170         175         183         193         69         70         71           168         174         181         187         195         206         74         75		1 300	138	143	148	154	160	169	61	61	62	67	
158         163         170         175         183         193         69         70         71           168         174         181         187         195         206         74         74         75		1 350	148	153	159	164	171	181	65	65	66	72	
168 174 181 187 195 206 74 74 75		1 400	158	163	170	175	183	193	69	70	71	76	
		1 450	168	174	181	187	195	206	74	74	75	81	

 $1/min \times 0.264 = gal/min$ 

Calculation of pressure losses in drill pipes  $p_{int} = N_2 B$  (kPa/100 m) TABLE OF COEFFICIENTS N₂ (continued)

TABLE OF COEFFICIENTS  $N_2$  (continued) Calculation of pressure losses in drill pipes  $p_{int} = N_2 B$  (kPa/100 m)

Nominal pipe size (in)	e (in)			4					4 1	1/2	
Nominal weight (lb/ft)	)/ft)			14	t				13.75	75	
Pipe inside diameter (in)	er (in)			3.34	72				3.958	58	
Tool joint inside diameter (in)	ameter (in)	3 1/4	ю	2 13/16	2 11/16	2 9/16	2 7/16	3 31/32	3 7/8	3 3/4	3 1/4
	2 900	585	606	629	651	679	717	256	259	262	284
	2 950	604	625	649	671	700	739	264	267	270	293
	3 000	622	644	669	692	722	762	273	275	278	301
	3 050	641	663	689	713	744	785	281	283	287	311
	3 100	660	683	710	734	766	808	289	291	295	320
	3 150	679	703	730	755	788	832	298	300	304	329
	3 200	669	723	751	777	811	855	306	309	312	339
	3 250	718	744	773	799	834	880	315	317	321	348
	3 300	739	765	794	821	857	904	324	326	330	358
	3 350	759	786	816	844	880	929	333	335	339	368
	3 400	779	807	838	867	904	954	341	344	349	378
	3 450	800	828	860	890	928	979	351	353	358	388
i	3 500	821	850	883	913	953	1 005	360	363	367	398
Flow rate	3 550	842	872	906	937	977	1 031	369	372	377	408
(I/min)	3 600	864	894	929	961	1 002	1 057	378	382	386	419
	3 650	885	917	952	985	1 027	1 084	388	391	396	429
	3 700	907	939	976	1 009	1 053	1 1 1 1	398	401	406	440
	3 750	930	962	1 000	1 034	1 079	1 138	407	411	416	451
	3 800	952	986	1 024	1 059	1 105	1 166	417	421	426	461
	3 850	975	1 009	1 048	1 084	1 131	1 193	427	431	436	472
	3 900	866	1 033	1 073	1 109	1 158	1 221	437	441	446	483
-	3 950	1 021	1 057	1 098	1 135	1 184	1 250	447	451	457	495
	4 000	1 044	1 081	1 123	1 161	1 211	1 278	458	461	467	506
	4 050	1 068	1 105	1 148	1 187	1 239	1 307	468	472	478	517
	4 100	1 092	1 130	1 174	1 214	1 267	1 336	478	482	488	529
	4 150	1 116	1 155	1 200	1 241	1 294	1 366	489	493	499	541
	4 200	1 140	1 180	1 226	1 268	1 323	1 396	500	504	510	552
	4 250	1 164	1 206	1 252	1 295	1 351	1 426	510	514	521	564

l/min × 0.264 = gal/min

TABLE OF COEFFICIENTS  $N_2$  (continued) Calculation of pressure losses in drill pipes  $p_{int} = N_2 B$  (kPa/100 m)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Nominal pipe size (in)	ze (in)						C 4 4					
main weight (b)(1)         16.6         16.6         20           inside dammetr (n)         3.3/4         3.1/2         3.1/4         3         2.3/4         2.1/1/6         2.1/2         3.5/8         3.1/2         3.1/4         3.0           inside dammetr (n)         3.3/4         3.1/2         3.1/4         3         2.3/4         2.1/1/6         2.1/2         3.5/8         3.1/2         3.1/4         3.0           inside dammetr (n)         3.3/4         3.1/2         3.1/4         3         2.3/4         2.1/1/6         2.1/2         3.5/8         3.1/2         3.1/4           200         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th></th>													
Inside diameter (in) 3 3/4 3 1/2 3 1/4 3 2.334 2.11/16 2 1/2 3 5/6 3 1/2 3 1/4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Nominal weight (	b/ft)				Ö.			1		2	0	
diameter (ii) $3 3/4$ $3 1/2$ $3 1/4$ $3$ $2 3/4$ $2 11/16$ $2 1/2$ $3 5/6$ $3 1/2$ $3 1/4$ 100         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	inside	ter (in)									3.6	64	
100         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1		iameter (in)			1	m	1	1/11			1		m
150         1         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2 <th2< th="">         2         <th2< th=""> <th2< th=""></th2<></th2<></th2<>		100	-	F		-	-	-		۶-	-	-	Ť
200         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3		150	¢	2	~	~	· C	- c	- c	(	- (	_	<u>.</u>
250 $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ <th></th> <th>200</th> <th>~</th> <th>ć</th> <th>1 (7)</th> <th>10</th> <th>1 (</th> <th>4 (</th> <th>7.</th> <th>7</th> <th>7</th> <th>7</th> <th>2</th>		200	~	ć	1 (7)	10	1 (	4 (	7.	7	7	7	2
350         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5		250	1 <	) <		°.	ν I	n	4	ო	ო	ო	m
350 $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $6$ $7$ $7$ $7$ $6$ $7$ $7$ $7$ $6$ $7$ $7$ $7$ $6$ $7$ $7$ $7$ $6$ $7$ $7$ $7$ $6$ $7$ $7$ $7$ $6$ $7$ $7$ $7$ $6$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ <th></th> <th>0.00</th> <th>ı t</th> <th>4  </th> <th>4</th> <th>4</th> <th>ເດ</th> <th>വ</th> <th>Ð</th> <th>ູ</th> <th>വ</th> <th>വ</th> <th>LC</th>		0.00	ı t	4	4	4	ເດ	വ	Ð	ູ	വ	വ	LC
350         7         7         7         8         9         10         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11		300	Q	IJ	ى ك	Q	9	7	7	9	7		
400         9         9         9         10         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         12         13         13         13         13         13         13         13         14         15         13         14         15         13         14         15         13         14         15         13         14         15         13         14         15         13         14         15         13         14         15         14         15         14         15         14         15         14         15         14         15         14         15         14         15         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         14         15         14 </th <th></th> <th>350</th> <th>7</th> <th>7</th> <th>7</th> <th>ω</th> <th>ω</th> <th>თ</th> <th>10</th> <th>σ.</th> <th>σ</th> <th>- σ</th> <th>- C</th>		350	7	7	7	ω	ω	თ	10	σ.	σ	- σ	- C
4501111111213141513141513550151616171920221920205501516161719202219202055021212122232627303436277002424252720232627303436750242425272033343834362670027272723262730343626700272727233334383437369003733343627232627209003738404447515657333436900535556646771787874779005355566667777874779100535556646777787477150565774887066777474170053555657748876655717005356577778 <th></th> <th>400</th> <th>ത</th> <th>თ</th> <th>ຓ</th> <th>10</th> <th>11</th> <th></th> <th>12</th> <th>) (</th> <th>,</th> <th>- 7</th> <th>, D (</th>		400	ത	თ	ຓ	10	11		12	) (	,	- 7	, D (
500         13         13         14         15         16         17         18         16         17         18         16         17         18         16         17         19         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20		450	<del>~</del>			12	13	14	<u>لد</u>	- (*			
55015161617192023222322232223242324232324242323242323242324232324232324232323242323232423232323232323242323232323232323232323232323232323242323232423232323232324232323242323242323232423232324232323232423232323232323232423232323232423232323232323242323242323232323242323232323232323232323232323232323232323232323232323232323232323232323232323232323232323232323232323232323 </th <th></th> <th>500</th> <th>13</th> <th>13</th> <th>4</th> <th>15</th> <th>16</th> <th>17</th> <th>. α</th> <th>) (<u></u></th> <th>t (</th> <th>1 t 7 -</th> <th>0,0</th>		500	13	13	4	15	16	17	. α	) ( <u></u>	t (	1 t 7 -	0,0
600         18         18         18         18         18         19         20         22         23         26         27         30         31         32         24         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27		550	15	16	16	17	0	20	0.00	ο σ		~ C	τ τ τ
650 $21$ $21$ $22$ $23$ $26$ $27$ $20$ $24$ $25$ $27$ $20$ $26$ $27$ $20$ $26$ $27$ $20$ $26$ $27$ $20$ $26$ $27$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ $20$ <th< th=""><th></th><th>600</th><th>18</th><th>8</th><th>6</th><th>20</th><th>22</th><th>23</th><th>26</th><th>) (r</th><th>0 C</th><th>0 4 0</th><th>- L V C</th></th<>		600	18	8	6	20	22	23	26	) (r	0 C	0 4 0	- L V C
700 $24$ $24$ $26$ $27$ $29$ $30$ $31$ $32$ $33$ $34$ $36$ $33$ $34$ $36$ $33$ $34$ $36$ $33$ $34$ $36$ $33$ $33$ $34$ $36$ $33$ $34$ $36$ $33$ $34$ $36$ $33$ $34$ $36$ $33$ $34$ $36$ $33$ $34$ $36$ $36$ $33$ $34$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ $36$ <th< th=""><th></th><th>650</th><th>21</th><th>21</th><th>22</th><th>23</th><th>26</th><th>27</th><th>000</th><th>29</th><th>29</th><th>24 27</th><th>C C C</th></th<>		650	21	21	22	23	26	27	000	29	29	24 27	C C C
750 $27$ $27$ $29$ $30$ $33$ $34$ $37$ $37$ $38$ $34$ $37$ $37$ 800 $30$ $30$ $31$ $32$ $33$ $34$ $37$ $39$ $37$ $38$ $34$ $34$ $34$ $34$ 800 $30$ $33$ $31$ $32$ $33$ $34$ $37$ $39$ $43$ $37$ $39$ $43$ $37$ $33$ $34$ $37$ $39$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ $44$ $42$ <th< th=""><th>Flow rate</th><th>200</th><th>24</th><th>24</th><th>25</th><th>27</th><th>29</th><th>30</th><th>34</th><th>n CE</th><th>0.00</th><th>, t</th><th>0 0</th></th<>	Flow rate	200	24	24	25	27	29	30	34	n CE	0.00	, t	0 0
800         30         31         32         34         37         39         43         43         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44	a	750	27	27	29	30	33	34	38	34	200	- ц С	2 5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(I/min)	800	30	31	32	34	37	39	43	38	8		, c <u>r</u>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		850	ee ee	34	36	38	42	43	48	42	43	44	2 4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		006	37	38	40	42	46	48	53	47	47	40	) + 1 U
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		950	41	42	44	47	51	53	59	52	52	5.4	- r ) u
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 000	45	46	48	51	56	58	64	57	57	0	è è
$ \begin{bmatrix} 53 & 55 & 57 & 61 & 66 & 68 & 76 & 67 & 67 & 68 & 70 \\ 58 & 59 & 62 & 66 & 72 & 74 & 83 & 73 & 74 & 76 \\ 67 & 69 & 64 & 67 & 71 & 78 & 80 & 89 & 78 & 79 & 82 \\ 67 & 69 & 84 & 86 & 96 & 84 & 86 & 88 \\ 77 & 79 & 82 & 90 & 92 & 103 & 91 & 92 & 95 \\ 77 & 79 & 82 & 88 & 96 & 99 & 110 & 97 & 98 & 102 \\ 87 & 90 & 94 & 100 & 110 & 111 & 104 & 105 & 108 \\ 87 & 90 & 94 & 100 & 110 & 112 & 112 & 112 & 111 \\ 112 & 126 & 110 & 112 & 112 & 116 \\ 112 & 126 & 110 & 112 & 116 & 116 \\ 113 & 104 & 110 & 112 & 116 & 116 \\ 114 & 105 & 116 & 116 & 116 \\ 116 & 111 & 112 & 116 & 116 \\ 116 & 111 & 112 & 116 & 116 \\ 116 & 111 & 112 & 116 & 116 \\ 116 & 111 & 116 & 116 & 116 \\ 116 & 111 & 116 & 116 & 116 \\ 116 & 111 & 116 & 116 & 116 \\ 110 & 111 & 116 & 116 & 116 \\ 110 & 111 & 116 & 116 & 116 \\ 110 & 111 & 116 & 116 & 116 \\ 110 & 111 & 116 & 116 & 116 \\ 110 & 111 & 116 & 116 & 116 \\ 111 & 110 & 111 & 116 & 116 \\ 111 & 110 & 111 & 116 & 116 \\ 111 & 110 & 111 & 116 & 116 \\ 111 & 110 & 110 & 116 & 116 \\ 111 & 110 & 110 & 116 & 116 \\ 111 & 110 & 110 & 116 & 116 \\ 111 & 110 & 110 & 116 & 116 \\ 111 & 110 & 110 & 116 & 116 \\ 111 & 110 & 110 & 116 & 116 \\ 111 & 110 & 110 & 116 & 116 \\ 111 & 110 & 110 & 116 & 116 \\ 111 & 110 & 110 & 110 & 116 \\ 111 & 110 & 110 & 110 & 116 \\ 111 & 110 & 110 & 110 & 116 \\ 111 & 110 & 110 & 110 & 116 \\ 111 & 110 & 110 & 110 & 116 \\ 111 & 110 & 110 & 110 & 116 \\ 111 & 110 & 110 & 110 & 116 \\ 111 & 110 & 110 & 110 & 116 \\ 111 & 110 & 110 & 110 & 116 \\ 111 & 110 & 110 & 110 & 116 \\ 111 & 110 & 110 & 110 & 116 \\ 111 & 110 & 110 & 110 & 116 \\ 111 & 110 & 110 & 110 & 116 \\ 111 & 110 & 110 & 110 & 116 \\ 111 & 110 & 110 & 110 & 110 \\ 111 & 110 & 110 & 110 & 110 \\ 111 & 110 & 110 & 110 & 110 \\ 111 & 110 & 110 & 110 & 110 \\ 111 & 110 & 110 & 110 & 110 \\ 111 & 110 & 110 & 110 & 110 \\ 111 & 110 & 110 & 110 & 110 \\ 111 & 110 & 110 & 110 & 110 \\ 111 & 110 & 110 & 110 & 110 \\ 111 & 110 & 110 & 110 & 110 \\ 111 & 110 & 110 & 110 & 110 \\ 111 & 110 & 110 & 110 & 110 \\ 111 & 110 & 110 & 110 & 110 \\ 111 & 110 & 110 & 110 & 110 \\ 111$		040 1	49	50	52	56	61	63	70	62	67	) L (	4 α 1 α
$ \begin{bmatrix} 58 & 59 & 62 & 66 & 72 & 74 & 83 & 73 & 74 & 76 \\ 67 & 69 & 67 & 71 & 78 & 80 & 89 & 78 & 79 & 82 \\ 67 & 69 & 67 & 71 & 78 & 80 & 89 & 78 & 79 & 82 \\ 72 & 74 & 77 & 79 & 82 & 90 & 92 & 103 & 91 & 92 & 95 \\ 77 & 79 & 82 & 88 & 96 & 99 & 110 & 97 & 98 & 102 \\ 87 & 90 & 94 & 100 & 109 & 112 & 126 & 110 \\ 87 & 90 & 94 & 100 & 109 & 112 & 126 & 110 \\ 112 & 126 & 110 & 112 & 112 & 116 \\ 110 & 111 & 112 & 112 & 116 & 116 \\ 111 & 112 & 126 & 110 & 112 \\ 116 & 111 & 112 & 116 & 116 \\ 111 & 111 & 112 & 116 & 116 \\ 111 & 111 & 111 & 111 \\ 112 & 112 & 111 & 111 \\ 112 & 112 & 111 & 111 \\ 112 & 112 & 111 & 111 \\ 112 & 112 & 111 & 111 \\ 112 & 111 & 111 & 111 \\ 112 & 111 & 111 & 111 \\ 111 & 111 & 111 & 111 \\ 112 & 111 & 111 & 111 \\ 111 & 111 & 111 & 111 \\ 112 & 111 & 111 & 111 \\ 111 & 111 & 111 & 111 \\ 111 & 111 & 111 & 111 \\ 111 & 111 & 111 & 111 \\ 111 & 111 & 111 & 111 \\ 111 & 111 & 111 & 111 \\ 111 & 111 & 111 & 111 \\ 111 & 111 & 111 & 111 \\ 111 & 111 & 111 & 111 \\ 111 & 111 & 111 & 111 \\ 111 & 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 \\ 111 & 111 & 111 \\ 111 & 111 & 111 \\ 111 & 1$		1 100	23	55	57	61	66	68	76	67		002	7 C 7 C
62         64         67         71         78         80         89         78         79         82           67         69         72         74         77         78         86         96         84         86         88         88         88         88         88         88         88         88         88         88         88         88         88         88         95         91         92         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         106         110         1105         1108         102         95         95         95         95         95         95         95         95         95         95         95         106         1105         1108         102		1 150	58	59	62	66	72	74	83	73	00 V L	70	t C
67         69         72         76         84         86         96         84         86         96         84         86         96         84         86         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         96         95         96         97         93         1002         91         92         1002         93         1003         1103         1112         112         112         112         112         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116<		1 200	62	64	67	71	78	80	68	78	62	) C	000
72     74     77     82     90     92     103     91     92       77     79     82     96     99     110     97     92     95       82     88     96     99     110     97     92     95       87     90     94     100     103     106     118     104     105       112     126     110     1012     126     110     116     116		1 250	67	69	72	76	84	86	96	δα	ο (g - α	0 0	8 6
77         79         82         88         96         99         110         97         93         93           82         84         88         93         103         106         110         97         98         102           87         90         94         100         103         106         118         104         105         108           112         112         126         110         112         112         116         116		1 300	72	74	77	82	06	92	103	5	200	0 00	n c
82         84         88         93         103         106         118         104         105         108           87         90         94         100         109         112         126         106         116           112         112         126         110         112         116         116		1 350	77	79	82	88	96	66	110	- 6	ν α	0.00	007
87         90         94         100         109         112         126         110         112         116           116         112         126         110         112         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116		1 400	82	84	88	93	103	106	110	104	200 100	200	
		1 450	87	06	94	100	109	112	126	110	112	116	121

Calculation of pressure losses in drill pipes  $p_{int} = N_2 B$  (kPa/100 m) TABLE OF COEFFICIENTS N₂ (continued)

$\matrix field in the lenger (h) \matrix is closed answer (h) \matrix is $	Nominal pipe size (in)	e (in)						4 1/2					
Inside demeter (in) $3.34$ $3.12$ $3.14$ $3$ $2.34$ $3.12$ $3.14$ $3.12$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$ $3.14$	Nominal weight (It	b/ft)							-		3	0	
diameter (ii)         3 3/4         3 1/2         3 1/4         3 1/2         3 1/4         3 1/2         3 1/4         3 1/2         3 1/4         3 1/2         3 1/4         3 1/2         3 1/4         3 1/2         3 1/4         3 1/2         3 1/4         3 1/2         3 1/4         3 1/2         3 1/4         119         123         133         117         119         123         133         134         135         135         135         135         135         135         135         135         135         135         135         135         136         137         147         149         156         136         136         147         149         157         165         137         147         149         157         156         156         177         149         157         156         157         156         157         157         157         157         156         177         157         156         177         157         156         177         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         <	e inside	ter (in)				3.826					3.6	34	
1500         93         96         100         106         116         127         133         117         119         123           1550         101         101         113         113         126         133         117         119         123         133         136         133         134         150         133         134         150         133         145         153         153         147         143         143         146         153         153         143         156         153         143         146         154         153         154         156         157         153         156         157         153         156         157         153         156         157         153         156         157         153         156         157         153         156         157         153         156         157         153         154         153         154         153         154         153         154         153         153         154         153         154         153         154         153         154         153         154         153         154         153         154         153         154         153		iameter (in)				e		11/1		5			m
1550         98         101         106         112         123         127         142         124         126         130           1600         110         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         113         114         115         123         133         133         133         133         133         133         134         153         154         153         154         154         154         154         154         154         154         154         154         154         153         154         153         154         153         154         153         154         155         153         154         155         153         154         156         171         173         155         156         170         171         173         155         156         170         156         171         173         155         156         170         156         170         157         156         157         156         157         156         170         170         170         170		1 500	93	95	100	106	116	120	133	117	119	123	129
1600         104         107         112         119         130         134         150         133         144         150         133         143         146         133         143         146         143         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146         146 <th></th> <th>1 550</th> <th>86</th> <th>101</th> <th>106</th> <th>112</th> <th>123</th> <th>127</th> <th>142</th> <th>124</th> <th>126</th> <th>130</th> <th>137</th>		1 550	86	101	106	112	123	127	142	124	126	130	137
1660         110         113         118         126         133         145         150         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         153         153         145         153         153         145         153         153         151         151         151         151         151         151         151         153         153         147         153         153         147         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173 <th></th> <th>1 600</th> <th>104</th> <th>107</th> <th>112</th> <th>119</th> <th>130</th> <th>134</th> <th>150</th> <th>132</th> <th>133</th> <th>138</th> <th>145</th>		1 600	104	107	112	119	130	134	150	132	133	138	145
1700         116         120         125         133         145         150         157         147         147         164         157         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         167         170         165         167         170         165         167         173         165         170         167         173         163         170         167         173         163         170         163         170         163         170         163         170         163         170         163         170         163         170         163         170         163         170         163         170         163         170         162         170         162         170         163         170         163         170         163         170         163         170 <th></th> <th>1 650</th> <th>110</th> <th>113</th> <th>118</th> <th>126</th> <th>138</th> <th>142</th> <th>158</th> <th>139</th> <th>141</th> <th>146</th> <th>153</th>		1 650	110	113	118	126	138	142	158	139	141	146	153
1750         123         126         131         140         153         158         176         155         157         162           1800         123         133         136         147         161         166         165         167         165         177           1900         142         154         154         154         166         174         195         179         179         179           1950         145         153         166         177         173         173         173         179           1950         156         170         186         176         186         174         197         193         197           2000         156         168         176         186         174         196         173         193           2100         170         177         183         190         201         201         211         224         206         208         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216		1 700	116	120	125	133	145	150	167	147	149	154	162
1800         129         133         138         147         161         166         185         163         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173 <th></th> <th>1 750</th> <th>123</th> <th>126</th> <th>131</th> <th>140</th> <th>153</th> <th>158</th> <th>176</th> <th>155</th> <th>157</th> <th>162</th> <th>170</th>		1 750	123	126	131	140	153	158	176	155	157	162	170
1850         135         139         145         154         169         174         195         171         173         173         173           1900         142         164         152         165         170         186         179         199         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197         197 <th></th> <th>1 800</th> <th>129</th> <th>133</th> <th>138</th> <th>147</th> <th>161</th> <th>166</th> <th>185</th> <th>163</th> <th>165</th> <th>170</th> <th>179</th>		1 800	129	133	138	147	161	166	185	163	165	170	179
1900         142         146         152         162         178         183         204         179         182         183           2000         156         160         170         186         192         214         188         190         197           2000         156         160         170         186         195         195         199         206           2000         156         160         177         188         196         219         245         206         208         215           2100         177         183         190         202         233         204         179         182         199         206           2100         177         183         190         202         233         234         237         235         237         246         255           2300         206         216         228         281         233         266         275         234         237         246         255         237         246         255         237         246         255         237         246         255         234         236         236         237         246         255		1 850	135	139	145	154	169	174	195	171	173	179	188
1950         149         153         160         170         186         192         214         188         190         197           2000         165         160         175         186         197         186         197         199         199         206           2000         165         160         175         182         194         213         219         206         208         215           2100         177         183         190         204         213         219         206         208         215           2100         177         183         190         203         233         234         237         206         208         215           2100         177         183         190         206         221         223         233         245         216         237         246         237         246         237         246         237         246         237         246         237         246         237         246         237         246         237         246         236         237         236         237         236         237         236         237         236         237		1 900	142	146	152	162	178	183	204	179	182	188	198
2 000         156         160         167         178         195         201         22.4         197         199         206           2 050         163         168         175         175         186         204         210         215         218         219         226           2 100         177         183         190         202         234         206         208         215           2 100         177         183         190         202         222         215         218         217         236         226         224         237         236         265         224         237         236         266         234         237         246         255         224         237         246         256         227         235         245         237         246         256         234         237         246         255         224         237         246         256         227         235         246         256         234         237         246         256         227         235         246         256         227         235         246         277         236         294         296         297         297<			149	153	160	170	186	192	214	188	190	197	207
2         050         163         168         175         186         204         210         234         206         208         215           2         100         177         183         190         202         225         215         215         215         215         215         215         216         218         219         231         225         234         226         234         227         235         235         236         237         245         216         237         245         237         246         265         234         237         246         265         237         246         265         237         246         266         277         234         237         246         265         277         234         237         246         265         266         277         234         237         246         265         265         277         234         237         246         265         265         266         277         234         237         246         265         265         266         277         234         237         246         265         265         224         227         224         227			156	160	167	178	195	201	224	197	199	206	217
2         100         170         175         182         194         213         219         245         215         218         225           2         100         177         183         190         202         222         225         214         227         235           2         2500         185         190         198         211         231         238         266         234         227         235           2         2500         193         198         206         228         288         277         245         237         246         255           2         300         206         214         223         223         237         246         277         243         246         265         274         237         246         265         274         277         246         265         266         274         277         286         265         275         284         287         297         297         297         297         297         297         297         297         297         297         297         297         297         297         297         297         297         297         29			163	168	175	186	204	210	234	206	208	215	226
<b>2150</b> 177       183       190       202       222       229       255       224       237       235 <b>2200</b> 185       190       198       211       231       238       266       234       237       245 <b>2200</b> 193       198       206       220       241       248       237       246       255 <b>2350</b> 200       206       215       228       288       266       234       237       246       255 <b>2350</b> 208       214       223       237       266       234       237       246       255 <b>2400</b> 214       223       237       260       268       277       288       266       277       286       287       286       277       286       277       286       277       286       277       286       277       286       277       286       277       286       277       287       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       29			170	175	182	194	213	219	245	215	218	225	237
<b>2200</b> 185       190       198       211       231       238       266       234       237       245 <b>2350</b> 193       198       206       220       241       248       277       243       246       255 <b>2350</b> 200       206       215       228       250       258       288       253       256       265 <b>2400</b> 216       213       237       260       268       299       266       277       246       255 <b>2450</b> 216       223       237       260       268       299       266       277       286       297       286       297       286       297       286       297       286       297       286       297       286       277       286       277       286       277       286       277       286       277       286       277       286       277       286       277       286       277       286       277       286       277       287       297       297       297       297       297       297       297       297       297       297       297       297       297       297 </th <th></th> <th></th> <th>177</th> <th>183</th> <th>190</th> <th>202</th> <th>222</th> <th>229</th> <th>255</th> <th>224</th> <th>227</th> <th>235</th> <th>247</th>			177	183	190	202	222	229	255	224	227	235	247
250       193       198       206       220       241       248       277       243       246       255         300       200       206       215       228       253       256       265       265         350       208       214       223       250       258       288       253       266       275         400       216       223       237       260       268       299       263       266       277         450       216       223       232       247       270       279       311       273       277       286       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       296       265       266       275       286       286       287       297       297       297       297       2	(I/min)		185	190	198	211	231	238	266	234	237	245	257
300         200         206         215         228         250         258         288         253         256         265         265         275         266         275         266         275         266         275         266         275         266         275         266         275         266         275         266         275         266         275         266         275         266         277         286         277         286         277         286         277         286         277         286         277         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287         287 <th></th> <th></th> <th>193</th> <th>198</th> <th>206</th> <th>220</th> <th>241</th> <th>248</th> <th>277</th> <th>243</th> <th>246</th> <th>255</th> <th>268</th>			193	198	206	220	241	248	277	243	246	255	268
<b>350</b> 208       214       223       237       260       268       299       263       266       275 <b>400</b> 216       223       232       247       270       279       311       273       297       286       297 <b>450</b> 216       223       231       241       256       281       289       311       273       287       297       286       297       287       297       287       297       287       297       287       297       287       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       297       308       308       319       308       319       308       319       308       319       308       319       308       319       319       310       308       319       319       319       319       310       310       310       310       310       310       310       310       310       310       310       310       310       310       310       310       310			200	206	215	228	250	258	288	253	256	265	279
400       216       223       232       247       270       279       311       273       277       286         450       224       231       241       256       281       289       311       273       297       297         500       233       231       241       256       291       300       335       294       287       297         550       233       259       373       300       335       294       298       308         550       241       248       259       275       300       335       294       298       308         550       251       268       285       312       322       336       316       333       317       305       333       316       320       333       342       342       366         500       256       287       305       312       322       333       372       331       342       342       366         500       276       287       305       334       344       384       333       342       354       366         700       276       287       305       346       3			208	214	223	237	260	268	299	263	266	275	290
450       224       231       241       256       281       289       323       284       287       297         500       233       239       250       265       291       300       335       294       298       308         550       241       259       265       291       300       335       294       298       308         550       241       265       291       300       335       294       298       308         550       241       265       302       311       347       305       309       310         600       250       256       285       312       322       359       316       320       330         600       250       266       277       295       323       333       372       327       331       342         700       267       277       296       315       344       384       338       342       354         700       276       284       366       377       339       342       354       366         700       276       284       368       410       361       365       3			216	223	232	247	270	279	311	273	277	286	301
500233239250265291300335294298308550241248259275302311347305309319550241248259275302311347305309319600250259275302311347305309319600250259275302311347305333700259275287305334344384338342700266277296315346356337331342700267275287305334344384338342700276284296315346356397349354700285294306315346356397349356800285294306315346356377367371800295303316336330424372377390			224	231	241	256	281	289	323	284	287	297	312
550       241       248       259       275       302       311       347       305       309       319         600       250       257       268       285       312       322       359       316       320       330         600       250       257       268       285       312       322       359       316       320       330         650       257       286       277       295       323       333       372       331       342         700       267       275       287       305       333       372       331       342         700       276       287       305       374       384       383       342         700       276       284       296       315       346       356       373       354         750       276       286       315       368       361       365       378         750       295       336       368       410       361       365       378         850       295       336       380       424       372       377       390		2 500	233	239	250	265	291	300	335	294	298	308	324
600         250         257         268         285         312         322         359         316         320         330           650         259         266         277         295         323         333         372         327         331         342           700         267         275         287         305         334         344         384         333         372         351         342           700         276         275         287         305         334         344         384         338         342         354           750         276         286         315         346         356         373         366         372         367         366           750         276         285         294         366         372         367         366         372         373         366           800         285         293         316         336         368         371         365         377         390           800         295         368         380         410         361         365         377         390           800         295         370         37		2 550	241	248	259	275	302	311	347	305	309	319	335
650         259         266         277         295         323         337         372         331         342         342           700         267         275         287         305         334         344         384         338         342         354           700         267         275         287         305         334         344         384         338         342         354           750         276         286         315         346         356         397         349         366           800         285         294         306         325         357         368         410         361         365         378           800         285         294         336         368         410         361         365         378           800         295         336         368         380         424         372         377         390			250	257	268	285	312	322	359	316	320	330	347
700         267         275         287         305         334         344         384         338         342         354           750         276         284         296         315         346         356         397         349         356         356           800         285         294         306         315         346         356         397         349         356         366           800         285         294         306         325         357         368         410         361         365         378           800         295         336         368         380         424         372         377         390			259	266	277	295	323	333	372	327	331	342	360
<b>750</b> 276         284         296         315         346         356         397         349         354         366 <b>800</b> 285         294         306         325         357         368         410         361         365         378 <b>800</b> 285         294         306         325         357         368         410         361         365         378 <b>850</b> 295         336         368         370         349         372         377         390			267	275	287	305	334	344	384	338	342	354	372
800         285         294         306         325         357         368         410         361         365         378           850         295         303         316         336         368         380         424         372         390		2 750	276	284	296	315	346	356	397	349	354	366	384
850         295         303         316         336         368         380         424         372         377         390		2 800	285	294	306	325	357	368	410	361	365	378	397
			295	303	316	336	368	380	424	372	377	390	410

 $1/min \times 0.264 = gal/min$ 

Calculation of pressure losses in drill pipes  $p_{int} = N_2 B$  (kPa/100 m) TABLE OF COEFFICIENTS N, (continued)

TABLE OF COEFFICIENTS  $N_2$  (continued) Calculation of pressure losses in drill pipes  $p_{int} = N_2 B$  (kPa/100 m)

ß	0.0	.276	3 1/4 2 3/4 3 1/2 3 1/4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																	
(u		(in) 4	diameter (in) 3 3/4 3 1/2	500         8         8         8         8         8         11         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12																	
Nominal pipe size (in)	Nominal weight (lb/ft)	Pipe inside diameter (in)	pe inside	pe inside	pe inside	pe inside	pe inside	pe inside	pe inside	pe inside	pe inside	pe inside	pe inside	pe inside	pe inside	pe inside	pe inside	pe inside	pe inside	ool joint inside diam	Flow rate O (I/min)

l/min × 0.264 = gal/min

N₂B (kPa/100 m) TABLE OF COEFFICIENTS N₂ (continued) 11  $p_{int}$ pipes Calculation of pressure losses in drill

Calculation of pressure losses in drill pipes  $p_{int} = N_2 B$  (kPa/100 m) TABLE OF COEFFICIENTS N₂ (continued)

Nominal pipe size	Nominal weight (Ib/ft)	Pipe inside diameter (in)	Tool joint inside d	Flow rate 0 (I/min)
ie (in)	b/ft)	ter (in)	diameter (in)	75000000000000000000000000000000000000
			4	1008888335555555555555555555555555555555
	21.9	4.778	3 3/4	100887333325588833332223198 10088888333377777755555555555555555555555
	0	78	3 1/2	110051100588888877720966666666666674793333222219 11005128888888877729666666666666667479988888889189911 1100511005111005666666666666666666666
5 1/2			3	24 26 26 26 26 26 26 26 26 26 26 26 26 26
			4	111002005200000000000000000000000000000
	24.7	4.67	3 1/2	22222 22222 22222 22222 22222 22222 2222
			3	11111111111111111111111111111111111111
			5	35333336827655455256687776567711110 3533333682765255555562571111111111111111111111111
	25.2	5.965	4 3/4	333333368788788788788798798288788998788878
6 5/			4 1/4	443333333332555555555555555555555555555
8			5	33333332555555555555555555555555555555
	27.72	5.901	4 3/4	83383838555555555555555555555555555555
		and a stand of the stand of t	4 1/4	78888888888678678678667849786667848888888888

 $1/min \times 0.264 = gal/min$ 

TABLE OF COEFFICIENTS  $N_2$  (continued) Calculation of pressure losses in drill pipes  $p_{int} = N_2 B$  (kPa/100 m)

Nominal pipe size (in)	Nominal weight (lb/ft)	Pipe inside diameter (in)	Tool joint inside diameter (in)	2 800 2 850 2 950 2 950 3 100 3 100 3 150 3 200 3 200 3 250 3 450 3 450 3 450 3 750 3 850 3 850 3 850 3 850 3 850 3 850 3 850 3 850 4 100 4 150 4 100 4 150 4
			4	106 117 117 117 117 117 117 117 117 117 11
	21.	4.778	3 3/4	112 116 116 116 1172 1172 1172 1172 1172
	6	8	3 1/2	120 124 128 135 135 140 144 157 157 157 157 157 157 157 157 157 157
5 1/2			ε	152 152 152 152 152 152 152 153 155 255 255 255 255 255 255 255 255 255
			4	117 121 125 125 125 125 125 125 125 125 125
	24.7	4.67	3 1/2	131 135 135 1484 1572 1572 1572 1572 1572 1572 1572 1572
			3	162 168 173 173 173 173 195 173 201 201 201 201 201 201 201 201 201 201
	_		ß	88888831 8665332212 8665332212 8665332212 8665332212 8665332212 8665332212 86653322 86653322 86653322 86653322 86653322 86653322 86653322 86653322 86653322 86653322 86653322 86653322 86653322 86653322 8665332 8665332 8665332 8665332 8665332 8665332 8665332 866533 866533 867532 867532 867532 867532 867532 867532 867532 867532 867532 867532 867532 867532 867532 867532 867532 867532 867532 867532 867532 867532 867532 867532 867532 867532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 877532 8775757 877577777777777777777777777777
	25.2	5.965	4 3/4	900 900 900 900 900 900 900 900 900 900
65			4 1/4	$\begin{array}{c} 4 \\ 4 \\ 4 \\ 4 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
5/8			a	90 88 88 88 88 88 88 88 88 88 88 88 88 88
	27.72	5.901	4 3/4	66666666666666666666666666666666666666
	-		4 1/4	444 1000 1000 1000 1000 1000 1000 1000

Calculation of pressure losses in drill pipes  $p_{int} = N_2 B$  (kPa/100 m) TABLE OF COEFFICIENTS N₂ (continued)

Nominal pipe size	Nominal weight (lb/ft)	Pipe inside diame	Tool joint inside d	Flow rate a (I/min)
ze (in)	lb/ft)	diameter (in)	diameter (in)	4 4 4 4 4 4 600 4 4 4 4 4 4 7 50 4 4 7 7 50 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7
			4	260 275 275 275 275 275 275 275 275 275 275
	21.	4.77	3 3/4	274 274 274 274 274 2900 277 2900 277 292 292 292 292 292 292 292 292 292
	6	/8	3 1/2	293 293 311 293 311 293 322 3329 3329 33
5 1/2			ю	371 373 371 371 371 373 373 373 373 373
			4	286 297 303 303 303 303 309 309 309 309 309 309
	24.7	4.67	3 1/2	319 326 3326 3326 3326 3326 3326 3326 3337 3326 3337 4470 4440 4440 4440 5523 5624 5624 5624 5633 5624 5633 5624 5633 5624 5633 5624 5633 5624 5633 5624 5633 5624 5635 5707 5707 5707 5707 5707 5707 5707 57
			3	70999999999999999999999999999999999999
			5	99999999999999999999999999999999999999
	25.2	5.965	4 3/4	95 95 95 95 95 95 101 102 1112 1112 1112 1112 1112 1112
65/			4 1/4	105 105 111 111 111 111 111 111 111 111
8/			5	99 99 101 101 100 100 100 100 100 100 10
	27.72	5.901	4 3/4	90 97 101 102 102 102 102 102 102 102 102 102
			4 1/4	100 111 111 111 111 111 111 111 111 111

l/min × 0.264 = gal/min

	Drill collar ID		Flow rate a (I/min)	
Ca	(in)	(mm)	$\begin{array}{c} 100\\ 150\\ 250\\ 250\\ 250\\ 250\\ 250\\ 250\\ 250\\ 2$	
lculatio	1 1/2	38.10	63 63 63 64 64 64 65 64 66 64 66 64 66 64 66 64 66 64 66 64 66 64 66 64 66 66	
Calculation of pressure	1 3/4	44.45	30 20 20 20 20 20 20 20 20 20 2	
ssure lo	2	50.80	333 334 335 335 336 337 333 334 3333 347 55 333 347 55 55 55 55 55 55 55 55 55 55 55 55 55	
sses in	2 1/4	57.15	2211125579 97112557 1009 20112251 97112559 97113251 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 971125559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 97112559 971125559 971125559 971125559 971125559 971125559 971125559 97112555559 9711	
drill collars	2 1/2	63.50	55 11 11 11 11 11 11 11 11 11	
ars p _{int}	2 3/4	69.85	8 7 7 7 8 8 8 8 8 7 7 7 8 8 8 8 7 9 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 9 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 8 7 8 8 8 7 8 8 8 7 8 8 8 8 7 9 8 8 8 8	
$= N_3 B$ (k	2 13/16	71.44	7 7 6 6 8 8 8 8 9 1 3 3 3 3 3 3 2 5 2 0 0 1 1 1 1 1 1 1 1 1 0 0 8 8 8 8 8 3 3 3 3 3 3 3 2 5 2 5 1 1 1 1 1 1 1 1 1 1 0 0 8 8 8 8 8 3 3 3 3 3 3 3 3 3 3 3 3 3	
N ₃ B (kPa/100	3	76.20	720753321111120825233884008328768798788788788778877887788778877887788	·
(m	3 1/4	82.55	22233333333333333333333333333333333333	2 2
	3 1/2	00		P.02

Г

TABLE OF COEFFICIENTS N₃

G 45

l/min × 0.264 = gal/min

	Driil collar ID (mm) 38.10 44.45	2       15       15       75       75       75         2       2250       15       75       78       7530         2       2350       17       16       747       78       7530         2       2350       17       18       521       78       8172         2       2350       17       16       447       7530       8602         2       2350       17       12       8602       8602       8602         2       2550       27       19       9536       9526       9778         2       2600       27       965       27       9778       9778         2       2700       22       2779       11       27       977         2       2700       22       2779       11       77       17       10       97         2       2700       27       28       3733       37       12       963       17       197       17       17       17       17       17       17       17       11       17       12       14       14       14       14       14       14       16       17       16
2	50.80	3 967 3 967
2 1/4	57.15	25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25252 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 25552 255552 25552 255552 255552 255552 255552 255552 255552 255552 2555
2 1/2	63.50	$\begin{array}{c} 1 & 359 \\ 1 & 359 \\ 1 & 440 \\ 1 & 440 \\ 1 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 255 \\ 2 & 2 & 255 \\ 2 & 2 & 255 \\ 2 & 2 & 255 \\ 2 & 2 & 255 \\ 2 & 2 & 255 \\ 2 & 2 & 255 \\ 2 & 2 & 255 \\ 2 & 2 & 255 \\ 2 & 2 & 255 \\ 2 & 2 & 255 \\ 2 & 2 & 255 \\ 2 & 2 & 255 \\ 2 & 2 & 255 \\ 2 & 2 & 255 \\ 2 & 2 & 255 \\ 2 & 2 & 255 \\ 2 & 2 & 255 \\ 2 & 2 & 2 & 255 \\ 2 & 2 & 2 & 255 \\ 2 & 2 & 2 & 255 \\ 2 & 2 & 2 & 255 \\ 2 & 2 & 2 & 255 \\ 2 & 2 & 2 & 255 \\ 2 & 2 & 2 & 2 & 255 \\ 2 & 2 & 2 & 2 & 255 \\ 2 & 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 & 2$
2 3/4	69.85	860 896 933 935 935 935 936 937 935 935 935 935 935 935 935 935 935 935
2 13/16	71.44	772 8305 8305 906 977 941 977 977 977 977 977 977 977 977 11255 11255 11255 11255 11255 11255 11255 11255 11255 11255 11255 11255 11255 11255 11255 11255 11255 11255 1262 1262
ĸ	76.20	566 645 645 665 665 665 691 777 770 855 9411 192 884 9411 192 1159 1159 1159 1159 1159 1159 115
3 1/4	82.55	386 4102 4102 4102 4102 564 564 5621 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 1001 5621 1005 5621 767 5621 767 5621 1005 5621 1005 5621 1005 5621 1005 5621 1005 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 767 5621 7725 5621 7725 5621 7725 5621 7725 5621 7725 5621 7725 5621 7725 5621 7725 5621 7725 5621 7725 5621 7725 5621 7725 5621 7725 5621 7725 5621 7725 5621 7725 5621 7725 5621 7725 5621 7725 5621 7725 5621 7725 5621 7725 5621 7725 5621 7775 5621 7775 5621 7775 5621 7775 5621 7775 5621 7775 5621 7775 5621 7775 5621 7775 5621 7775 5621 7775 5621 7775 5621 77755 5621 77755 5621 77755 5621 777555 5621 7775555555555555555555555555555555555
3 1/2	88.90	270 282 305 305 305 305 305 305 305 507 507 507 507 507 507 507 507 507 5

**CALCULATIONS OF PRESSURE DROP IN NOZZLES Combination of three nozzles**  $p_d = \frac{1}{2.959.41 \times (0.95)^2 A^2}$  (kPa)  $dQ^2$ 

d = 1, A = nozzle area (in²)

Nozzles (1/32)	A (in ² )	Flow rate a (I/min)
		2500 3500 3500 3500 3500 3500 3500 3500
8-8-8	0.1473	690 690 690 690 690 690 690 690
8-8-9	0.1603	583 911 922333 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 9225 1110 925 1110 925 1110 925 1110 925 1110 925 1110 925 1110 925 1110 925 1110 925 1110 925 1110 925 1110 925 1110 925 1110 925 1110 925 1110 925 1110 925 1110 925 1110 925 1110 925 1110 925 110 925 110 925 110 925 110 925 110 925 110 925 110 925 110 925 110 925 110 925 110 925 110 925 110 925 110 925 110 925 110 925 110 925 110 925 110 925 110 925 110 925 110 925 110 925 110 925 110 925 110 925 100 100 100 100 100 100 100 100 100 10
8-9-9	0.1733	7400 1220 1220 1220 1220 1220 1220 1220 1
6-6-6	0.1864	431 970 1555 110 1110 1110 1110 1111 1110 1111 1110 1111 1110 1111 1110 1111 1110 1111 1110 1111 1110 1111 1110 1111 1110 1111 1111 1111 1111 1111 1111 1111 1111
9-9-10	0.201	371 372 373 374 374 375 375 375 375 375 375 375 375
9-10-10	0.2155	702 102 102 102 102 102 102 102 1
10-10-10	0.2301	22 23 24 23 24 24 24 24 24 24 24 24 24 24
10-10-11	0.2462	247 386 386 386 386 386 386 386 386 386 386
10-11-11	0.2623	218 248 248 248 248 248 248 248 248 248 24
11-11-11	0.2784	$\begin{array}{c} 193\\ 193\\ 193\\ 193\\ 193\\ 113\\ 112\\ 100\\ 153\\ 150\\ 113\\ 100\\ 153\\ 100\\ 153\\ 100\\ 153\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 10$
11-11-12	0.2961	171 171 171 171 172 171 172 172 173 173 173 173 173 173 173 173 173 173
11-12-12	0.3137	11111110 1111110 11111110 11111110 11111110 11111110 11111110 11111111

G 47

l/min × 0.264 = gal/min kPa × 0.125 = psi kg/l = sp.gr kg/l × 8.35 = lb/gal

 $p_d = \frac{dQ^2}{2.959.41 \times (0.95)^2 A^2}$  (kPa)

d = 1, A = nozzle area (in²)

A (in ² ) 200 300 350 450 550 600 650	0.3313										
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		GUG5.U	0.3697	0.3889	0.4096	0.4303	0.451	0.4732	0.4955	0.5177	0.541
ע ש ש ש ש ש ש ש ש ש ש ש ש ש ש ש ש ש ש ש			110	66	68	81	74	67	61	56	51
	<b>300</b> 213 307	774	171	155	139	126	115 166	105	95	87	08
ע ש ש מ מ דיריי יין ש ש מ מ מ			336	303	273	248	225	205	ν Γα	171	115 156
ין שי שי שי שי די שי שי שי איז			438	396	357	324	295	268	244	224	204
רים שים מו מ 			555	501	452	409	373	339	309	283	259
	·		000	1010	558 675	506	460	418	381	349	319
9 1			986	2 4 0 0 1 0	0/0	210	55/ 663	506 803	461	423	386
			1 157	1 046	943	854	200 877	200	040	203	460
			1 342	1 213	1 094	199	206		044 777	200 900 900	539 676
			1 541	1 392	1 255	1 137	1 035	941	828	786	718
		I	1 753	1 584	1 428	1 294	1 178	1 070	976	894	2 C C
			1 979	1 789	1 612	1 461	1 330	1 208	1 102	1 009	923
" 		. \ (	2 219	2 005	1 808	1 638	1 491	1 354	1 235	1 132	1 034
π <b>C</b>	າດ 		2/72	2 234	2 014	1 825	1 661	1 509	1 376	1 261	1 152
Flow rate	າງ ເ 	··) (	2 /39	2 476	2 232	2 022	1 841	1 672	1 525	1 397	1 277
	·) ر		3 020	2 729	2 460	2 229	2 029	1 843	1 681	1 540	1 408
	4 •	·····	3 3 1 5	2 995	2 700	2 447	2 227	2 023	1 845	1 690	1 545
		- 1	3 623	3 274	2 951	2 674	2 434	2 211	2 017	1 848	1 689
	4 1	4	3 945	3 565	3 214	2 912	2 651	2 408	2 196	2 012	1 839
N 0 - +	ດ ເ		4 280	3 868	3 487	3 160	2 876	2 613	2 383	2 183	1 995
ν <del>τ</del>	ດ ( 	ມ 	4 630	4 184	3 772	3 417	3 111	2 826	2 577	2 361	2 158
- ·	о ( 	ົ້	4 992	4 512	4 067	3 685	3 355	3 047	2 779	2 546	2 327
	0 r	ດ ( 	5 369 150	4 852	4 374	3 963	3 608	3 277	2 989	2 738	2 503
- + - 	~ r	00	0 / DG	5 205 	4 692	4 251	3 870	3 516	3 206	2 937	2 685
ой 	~ 0		0 104	55/0	5 021	4 550	4 142	3 762	3 431	3 143	2 873
	00		0 20 1	5 948 2 2 2 4 8	5 362	4 858	4 422	4 017	3 664	3 356	3 068
	o c	~ c	7 013	0 33/	5 / 13	1/1 G	4 712	4 281	3 904	3 576	3 269
	ი თ 	00	1 450	140	60/6	5 505	5 011	4 552	4 152	3 803	3 476
171	750 10 477	o	/ 00 / 0	- 104 - 104	0 440	0 844	5 320	4 832	4 407	4 037	3 690
			000000000000000000000000000000000000000	000 0	0 834	0 193	5 637	5 121	4 670	4 278	3 910
	- +-		0/000	170 8	7 231	6 552	5 964	5 418	4 941	4 526	4 137
		2	00000 000000	0 4 / C	/ 638 010	6 921	6 300	5 723	5 219	4 781	4 370
	950 12 971		9 009 10 416	0 410	8 U50 0 100	2 200	6 645	6 036	5 505	5 043	4 610
2 0(	131	12	10 957	0 902 0 902	8 977	2000 2000 2000	7 263	6 358 6 888	5 /99 6 100	5 312	4 855 1 200
							0000 /	0000	001.0	0 200	801 G

CALCULATIONS OF PRESSURE DROP IN NOZZLES (continued) **Combination of three nozzles** 

<u>, (kPa)</u>  $dQ^2$ 

rea (in²) . <

	<b>2</b> 959.41 $\times$ (0.95) ² $A^2$
11	
ď	-

ar
e
ozzle
6
c
11
A
~
11
q

Nozzles (1/32)		12-12-12	12-12-13	12-13-13	13-13-13	13-13-14	13-14-14	14-14-14	14-14-15	14-15-15	1E 1E 1E	45 45 40
A (in ² )		0.3313	0.3505	0.3697	0.3889	0.4096	0.4303	0.451	0.4732	1955	0 5177	- L
Flow rate a (I/min)	2 050 2 150 2 2 550 2 2 5 500 2 5 500	14 335 15 768 17 269 18 838 20 476 21 320 21 320	12 808 14 751 15 429 16 832 19 048 19 048 21 402 21 402 21 402	11 512 12 663 13 258 15 129 15 129 16 443 16 443 16 121 17 121 19 237 21 477 21 477 21 477 21 477 21 477	$\begin{array}{c} 10\ 404\\ 11\ 982\\ 11\ 982\\ 12\ 532\\ 13\ 6796\\ 15\ 4759\\ 16\ 735\\ 16\ 097\\ 15\ 475\\ 16\ 097\\ 15\ 475\\ 16\ 097\\ 15\ 475\\ 16\ 097\\ 15\ 475\\ 16\ 097\\ 15\ 475\\ 16\ 097\\ 15\ 475\\ 16\ 097\\ 15\ 475\\ 16\ 097\\ 15\ 475\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\ 097\\ 12\$	9 379 10 3716 11 298 11 298 11 298 13 9496 15 672 18 7589 16 877 18 7589 19 7579 19 7579 10 7579 1000000000000000000000000000000000000	8 498 9 347 9 287 10 237 10 237 10 237 11 167 11 167 11 167 11 167 11 167 11 167 11 167 11 167 11 167 11 167 12 138 138 13 149 13 15 292 13 16 425 15 853 13 14 200 13 16 425 13 16 425 16 425 16 425 16 425 16 425 16 425 16 425 17 16 425 16 45 16 425 16 425			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
l/min × 0.264 = ga	gal/min kPa x 0	0.125 = psi kç	kg/l = sp.gr kç	kg/l × 8.35 = lb/	o/gal				-			

CALCULATIONS OF PRESSURE DROP IN NOZZLES (continued) **Combination of three nozzles** 

102
σ

d = 1, A = nozzle area (in²)

(kPa)	
	2 959.41 $\times$ (0.95) ² $A^2$

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Nozzles (1/32)		15-16-16	16-16-16	16-16-18	16-18-18	18-18-18	20-20-20	20-20-22	20-22-22	22-22-22	24-24-24	32-32-32
500         293         270         228         195         168         110         97         85         75         53           500         435         336         275         236         133         117         103         91         64           700         435         436         336         236         236         236         133         117         103         91         64           700         574         553         382         286         233         233         217         103         117         103         117           750         553         563         446         382         333         217         193         170         128         104           750         553         513         487         313         273         246         217         113           950         1102         1172         1034         853         533         246         233         235         245         173           950         1667         947         823         246         246         233         235         245         173           950         1172         103         1034<	A (in ² )		0.5653	0.589	0.6412	0.6934	0.7455	0.9204	0.9848	1.0492	1.1137	1.3254	2.3562
550         354         326         275         236         204         134         117         103         91         64           560         574         529         286         286         163         133         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         174         173         173         174         173         174         173         174         174         173         174         174         173         174         174         174         174         174         174         174         174         174         174         174         174         174         174         174         174         176         174         128         136         137         136         137         136         137         136         137         136         133         136         136         133         136         137         136         137         136         133         136         136         133         136         136         133         136         136         133         136         133		500	293	270	228	195	168	110	67	85	75	23	17
600         422         389         328         280         243         159         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         154         153         154         156         153         154         153         154         156         154         156         154         156         156         156         153         154         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156         156 <th16< th=""> <th173< th=""> <th156< th=""></th156<></th173<></th16<>		550	354	326	275	236	204	134	117	10.3	0,0	200	
560         456         456         385         329         285         187         163         144         128         91           700         574         529         446         332         337         217         193         170         120           800         750         631         583         437         339         217         193         170           800         750         631         583         437         339         217         193         170           800         1057         940         633         563         437         319         277         193         173           950         1057         974         437         318         275         245         218         173           1100         1172         1079         911         773         663         535         343         307         272         192           1100         1172         1074         859         743         336         375         327         245         373           1100         1172         1074         123         1103         1701         123         123         124         123		600	422	389	328	280	243	159	139	122	10.9	t 7	04 0
700         574         529         446         382         330         217         189         167         148         100           800         550         691         533         487         319         217         189         167         148         100           800         750         691         533         487         319         217         181         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170         170		650	495	456	385	329	285	187	163	144	128	- C - 0	7 t 78 t
750         669         607         512         438         379         249         217         191         170         120           850         875         601         512         438         379         249         217         191         170         120           900         949         874         738         633         548         359         247         218         133         136           900         949         874         780         658         633         539         343         375         246         170         173           900         949         874         739         633         548         333         275         245         173           910         1722         1190         1004         855         743         487         426         375         245         233         235           1100         1418         1306         1024         859         743         886         337         235         337         235         245         233         235           1100         1418         1306         1221         1217         1217         472         333         235		700	574	529	446	382	330	217	189	167	148	201	3 20
800         750         691         583         498         431         283         247         218         193         136           850         847         780         653         498         431         283         247         218         193         136           950         944         874         738         653         546         356         313         275         245         173           950         1057         1722         1079         911         779         674         442         386         340         302         213           1050         1172         1079         911         779         674         442         386         340         302         213           1050         1524         1102         942         855         511         446         412         335         235         332         235         332         235         337         235         337         235         337         235         337         235         337         235         337         235         337         235         337         235         337         337         337         337         337         337		750	659	607	512	438	379	249	217	191	170	120	
850         847         780         653         487         319         279         246         218         154           900         1057         974         738         631         564         358         313         275         245         173           900         1172         1079         911         779         574         442         386         307         272         192           1050         1172         1079         911         773         608         366         346         356         375         245         173           1050         1172         1079         911         779         674         442         386         347         302         213           1050         1418         1706         1102         942         815         535         467         412         365         282         283         307         235         213         213         213         213         1121         1121         970         655         551         447         412         365         213         307         307         307         307         313         212         112         1112         1139		800	750	691	583	498	431	283	247	218	193	136	43
900         949         874         738         631         546         358         313         275         245         173           950         1057         974         822         703         608         399         348         307         272         192           1000         1172         1079         911         779         674         442         386         340         302         213           1000         1172         1079         911         779         674         442         386         340         302         213           1150         1418         1306         11024         855         743         487         426         375         333         235         258         256         258         266         336         266         336         266         336         266         336         266         336         266         336         266         266         266         367         268         367         258         307         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213		850	847	780	658	563	487	319	279	246	218	154	- 67 67
950 $1057$ $974$ $822$ $703$ $608$ $399$ $348$ $307$ $272$ $192$ 1000 $1172$ $1090$ $1172$ $1090$ $1172$ $1090$ $1172$ $1090$ $2172$ $213$ $322$ $213$ 1000 $1172$ $1090$ $1172$ $1090$ $1016$ $1122$ $1090$ $1172$ $3106$ $311$ $217$ $422$ $336$ $340$ $302$ $213$ 1100 $11418$ $1306$ $1102$ $942$ $815$ $535$ $467$ $412$ $365$ $258$ 1200 $1687$ $1549$ $1127$ $1002$ $891$ $555$ $511$ $450$ $333$ $233$ 1200 $1687$ $1549$ $1121$ $1030$ $891$ $555$ $511$ $445$ $333$ 1200 $1831$ $1121$ $1030$ $891$ $555$ $511$ $445$ $333$ $1200$ $1986$ $1427$ $1121$ $1050$ $655$ $511$ $472$ $333$ $1200$ $1986$ $1423$ $1121$ $1050$ $655$ $511$ $472$ $333$ $1300$ $1980$ $1824$ $1539$ $1316$ $11228$ $806$ $704$ $652$ $550$ $448$ $1300$ $1980$ $1824$ $1539$ $1228$ $805$ $777$ $657$ $677$ $667$ $592$ $418$ $1400$ $2296$ $2183$ $1772$ $1272$ $1278$ $805$ $776$ $667$ $592$ $416$ <th></th> <th>006</th> <th>949</th> <th>874</th> <th>738</th> <th>631</th> <th>546</th> <th>358</th> <th>313</th> <th>275</th> <th>245</th> <th>173</th> <th>22</th>		006	949	874	738	631	546	358	313	275	245	173	22
100011721079911779 $674$ $442$ $386$ $340$ $302$ $213$ 1050129211901004117210041102 $942$ $815$ $743$ $487$ $426$ $375$ $333$ $235$ 10501549142712041030 $891$ $585$ $511$ $442$ $386$ $226$ $333$ $235$ 11501687155411121970 $636$ $556$ $490$ $435$ $233$ 12001887166014191228 $805$ $571$ $442$ $386$ $233$ 130019801824155413111121 $970$ $636$ $556$ $490$ $435$ $307$ 12501831166014191228 $805$ $704$ $657$ $551$ $333$ 130019801824155913161139 $747$ $652$ $556$ $418$ 14002.29621151728 $805$ $704$ $627$ $592$ $418$ 14002.29621151730 $866$ $757$ $667$ $592$ $418$ 14002.2962115175216191062 $929$ $812$ $715$ $657$ $448$ 14502.8152.6332.4792.725 $1716$ $922$ $817$ $773$ $546$ 15502.8152.6332.331 $1924$ $1725$ $1131$ $1062$ $929$ $817$ $773$		950	1 057	974	822	703	608	399	348	307	272	192	61
1050129211901004859743487426375333235110014181306110294281553546741236528212001549142712041030891585511450399282120016871554131111219706365564904353071200168715641311112197063655649043530712001831168614231217105369160353147233313001980182415391316113974765255033813502135196716601419122880576551036014002263215515169948657576676794481500263621551516994863765679448150029992763218818711619106292988177731600299927632131161910629298817773546155023863190276321831725113198887772551216002999276327832703105192688777354651216002999276317251131<		1 000	1 172	1 079	911	779	674	442	386	340	302	213	67
110014181306110294281553546741236525815015491427120410308915855114503992821260168715541311112197063655649043530713001980182415391217105369160353147233313001980182415391316113974765539928213001980182415391316113974765551036013502195196716601419122880570462055038814502296211517851526132086677465755038814502296211517521141692988127156675503881550281525932188187117551131988871773546155021902331199417551131988871773546155021911651106292888177755121550239321881871175511319888717731550239327832479272018341203106192616002999276323311994872667650<	i	1 050	1 292	1 190	1 004	859	743	487	426	375	333	235	74
11501549 $1427$ 120410308915855114503992821200168715541311112197063655649043530712501831168614231217105369160353147233313001980182415391316113974765257551036013502135196716601419122880570462055038814002296211517851526132086675766759241814002296211517851526131012288057046205503831450229621151785152613161228805765679448145022962115178515261313122880576567759215502815259321881871161910629288177755461550299927632331199417251131988871773546155033863119263227331951165192682258015502385278927201834122319511775546155033883305278927201834122319511051926	Flow rate	1 100	1 418	1 306	1 102	942	815	535	467	412	365	258	87
120016871554131111219706365564904353071250183116861423121710536916035314723331300198018241539131611397476525755103601350213519671660141912288057046205503881400229621151785152613208667576675924181450229621151785152613161228805704620550388145022962115178515261320866757667592418156022992763248327831871161910629288177735461550299927632188187116191062928871773546160029992763218317551131988871773546165033863119263222501934120310619235461750358833052789238522601947120310619838716651750358833052789238522601947127711169838726161750358833052789238520631354<		1 150	1 549	1 427	1 204	1 030	891	585	511	450	999 3	282	1 0.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(0.00171)	1 200	1 687	1 554	1311	1 121	970	636	556	490	435	307	97
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 250	1 831	1 686	1 423	1 217	1 053	691	603	531	472	333	105
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 300		1 824	1 539	1316	1 139	747	652	575	510	360	114
2       296       2       115       1       556       1       320       866       757       667       592       418         2       463       2       269       1915       1637       1416       929       812       715       653       448         2       463       2       2636       1915       1637       1416       929       812       715       653       448         2       463       2       6167       535       1416       929       817       755       512         2       636       2       753       2       1871       1619       1062       928       871       773       546         2       999       2       765       1725       1131       988       871       773       546         3       190       2       938       871       773       546       580         3       3190       2       283       2       1834       1       203       1051       926       822       580         3       3366       3       193       1       2703       1051       926       872       616		1 350		1 967	1 660	1 419	1 228	805	704	620	550	388	123
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 400			1 785	1 526	1 320	866	757	667	592	418	132
2 636       2 428       2 049       1 752       1 516       994       869       765       679       480         2 815       2 593       2 188       1 871       1 619       1 062       928       817       725       512         2 815       2 593       2 188       1 871       1 619       1 062       928       871       773       546         3 190       2 938       2 479       2 120       1 834       1 203       1 051       926       822       580         3 190       2 938       2 479       2 120       1 834       1 203       1 051       926       822       580         3 386       3 119       2 632       2 250       1 947       1 277       1 116       983       872       616         3 588       3 305       2 789       2 385       2 063       1 354       1 182       1 042       924       653         3 796       3 497       2 523       2 183       1 432       1 251       1 102       978       651		1 450				1 637	1 416	929	812	715	635	448	142
2815       2593       2188       1871       1619       1062       928       817       725       512         2999       2763       2331       1994       1725       1131       988       871       773       546         3190       2938       2479       2120       1834       1203       1051       926       822       580         3190       2938       2479       2120       1834       1203       1051       926       822       580         3386       3119       2632       2250       1947       1277       1116       983       872       616         3588       3305       2789       2385       2063       1354       1182       1042       924       653         3796       3497       2951       2523       2183       1432       1251       1102       978       691		1 500				1 752	1516	994	869	765	679	480	152
2 999       2 763       2 331       1 994       1 725       1 131       988       871       773       546         3 190       2 938       2 479       2 120       1 834       1 203       1 051       926       822       580         3 190       2 938       2 479       2 120       1 834       1 203       1 051       926       822       580         3 386       3 119       2 632       2 250       1 947       1 277       1 116       983       872       616         3 588       3 305       2 789       2 385       2 063       1 354       1 182       1 042       924       653         3 796       3 497       2 523       2 183       1 432       1 251       1 102       978       691		1 550				1 871	1 619	1 062	928	817	725	512	162
3190     2938     2479     2120     1834     1203     1051     926     822     580       3386     3119     2632     2250     1947     1277     1116     983     872     616       3588     3305     2789     2385     2063     1354     1182     1042     924     653       3796     3497     2551     2183     1432     1432     1251     1102     978     691		1 600				1 994	1 725	1 131	988	871	773	546	173
3386     3119     2632     2250     1947     1277     1116     983     872     616       3588     3305     2789     2385     2063     1354     1182     1042     924     653       3796     3497     2951     2523     2183     1432     1251     1102     978     691		1 650				2 120	1 834	1 203	1 051	926	822	580	184
3 588         3 305         2 789         2 385         2 063         1 354         1 182         1 042         924         653           3 796         3 497         2 951         2 523         2 183         1 432         1 251         1 102         978         691		1 700				2 250	1 947	1 277	1 116	983	872	616	195
3 796         3 497         2 951         2 523         2 183         1 432         1 251         1 102         978         691		1 750					2 063	1 354	1 182	1 042	924	653	207
		1 800					2 183	1 432	1 251	1 102	978	691	219

l/min x 0.264 = gal/min kPa x 0.125 = psi kg/l = sp.gr kg/l x 8.35 = lb/gal

CALCULATIONS OF PRESSURE DROP IN NOZZLES (continued) Combination of three nozzles

d = 1

2 959.41 × (0.95)² A² (kPa) - = p d

3
(ju
g
area
ð
ž
Ň
ĕ
11
A
~

Nozzles (1/32)		15-16-16	16-16-16	16-16-18	16-18-18	18-18-18	20-20-20	20-20-22	20-22-22	22-22-22	24-24-24	32-32-32
A (in ² )		0.5653	0.589	0.6412	0.6934	0.7455	0.9204	0.9848	1.0492	1.1137	1.3254	2.3562
	1 850	4 010	3 694	3 117	2 665	2 306	1 513	1 321	1 164	1 033	729	231
	1 900	4 230	3 896	3 288	2 811	2 432	1 596	1 394	1 228	1 090	769	243
	1 950	4 455	4 104			2 562	1 681	1 468	1 293	1 148	810	256
		4 687			3 115	2 695	1 768	1 544	1 360	1 207	853	270
			4 535	3 827	3 273		1 857	1 622	1 429	1 269	896	283
		5 167		4 016	3 434	2 971	1 949	1 703	1 500	1 331	940	297
		5 416		4 210	3 600	3 114	2 043	1 785	1 572	1 395	985	312
		5 671		4 408	3 769	3 261	2 139	1 869	1 646	1 461	1 032	326
		5 931			3 942	3 410	2 237	1 954	1 722	1 528	1 079	341
		6 198	5 709	4 817	4 119		2 338	2 042	1 799	1 597	1 127	357
		6 470	5 960	5 029	4 300	3 720	2 441	2 132	1 878	1 667	1 1 7 7	372
i	2 400	6 749	6 216	5 245	4 485	3 880	2 546	2 224	1 959	1 739	1 228	388
Flow rate		7 033		5 466	4 674	4 044		2 317		1 812	1 279	405
				5 692		4 210	2 762	4	2 126	1 887	1 332	422
				5 922		4 381	2 874		2 212	1 963	1 386	439
				6 156		4 554	2 988			2 041	1 441	456
		8 228		6 395	5 469	4 731	3 104		2 388	2 120	1 497	474
				6 639	5 677	4 911	3 222				1 554	492
		8 860	8 162	6 887		5 095	3 342	2 920	2 572	2 283	1 612	510
			8 461	7 140		5 282	3 465	3 027	2 667		1 671	529
						5 472	3 590	3 136	2 763		1 731	548
		9 853			6 549	5 666	3 717	3 247	2 860	2 539	1 792	567
					6 777	5 863	3 846	3 360	2 960		1 855	587
	3 000			8 196	7 008	6 063	3 978	3 475	3 061	2 717	1 918	607
		-			7 244	6 267	4 111	3 591	3 164	2 808	1 983	627
		11 259			7 483	6 474	4 247	3 710	3 269	2 901		648
	3 150	11 625	10 709	9 036	7 727	6 685	4 385	3 831	$^{\circ}$	2 995	2 115	669
$1/min \times 0.264 = ga$	gal/min kPa×0	0.125 = psi k	kg/l = sp.gr k	kg/l × 8.35 = lt	b/gal							

CALCULATIONS OF PRESSURE DROP IN NOZZLES (continued) **Combination of three nozzles** 

*d*0² (kPa)

d = 1, A = nozzle area (in²)

Y	
-	
с С	<(0.95) ² A ²
1	
	41
	959.
I	2
11	
$\boldsymbol{p}_{\boldsymbol{q}}$	l

0.5653         0.589         0.6412         0.6934         0.7455         0.9204         0.9848           200         111997         111051         9325         7974         6898         4526         3953           250         12755         11753         9117         8480         7336         4568         4078           350         12755         11753         9171         8480         7336         4960         4333           350         12759         11753         9171         8480         7336         4963         4078           350         12759         11753         9171         8480         7560         4363         4078           350         13544         12476         10527         9022         8739         7560         4363           450         13541         12476         10527         9022         8731         5744         4729           550         14367         11802         10374         9875         5888         5143         4729           550         14475         12476         10374         8975         5888         5143           560         14377         12480         11802 <td< th=""><th>Nozzles (1/32)</th><th></th><th>15-16-16</th><th>16-16-16</th><th>16-16-18</th><th>16-18-18</th><th>18-18-18</th><th>20-20-20</th><th>20-20-22</th><th>20-22-22</th><th>22-22-22</th><th>24-24-24</th><th>32-32-32</th></td<>	Nozzles (1/32)		15-16-16	16-16-16	16-16-18	16-18-18	18-18-18	20-20-20	20-20-22	20-22-22	22-22-22	24-24-24	32-32-32
3 200         11 997         11 051         9 325         7 974         6 898         4 526         3 963           3 250         12 375         11 339         9 619         8 225         7 116         4 668         4 078           3 350         12 759         11 753         9 917         8 480         7 336         4 813         4 204           3 350         13 149         12 112         10 220         8 739         7 560         4 960         4 333           3 450         13 544         12 476         10 527         9 002         7 788         5 109         4 463           3 550         14 352         13 2241         11 1656         9 539         8 233         5 414         4 7 59           3 550         14 765         13 201         11 477         9 814         8 490         5 570         4 865           3 550         14 765         13 201         11 477         9 814         8 490         5 728         5 003           3 550         16 940         14 775         9 814         8 490         5 728         5 013           3 550         16 640         14 775         9 814         8 490         5 728         5 749           3 500	A (in ² )		0.5653	0.589	641	0.6934	110	0.9204	0.9848	1.0492	1.1137	1.3254	2.3562
<b>3250</b> 12375       11399       9619       8225       7116       4668       4078 <b>3330</b> 12759       11753       9917       8480       7336       4813       4204 <b>3350</b> 1349       12112       10527       9002       7336       4813       4204 <b>3450</b> 13544       12476       10527       9002       7336       4813       4204 <b>3450</b> 13945       12846       10527       9002       7336       4813       4264 <b>3550</b> 14765       12846       106339       9269       8018       5261       4763 <b>3550</b> 15184       11166       9533       8253       5414       4729 <b>3650</b> 15184       11802       10092       8731       5728       5103 <b>3650</b> 16406       14477       9814       8490       5570       4865 <b>3750</b> 16476       11802       10092       8731       5728       5003 <b>3760</b> 16476       11802       10927       8975       5888       5143 <b>3760</b> 16476       17326       12866       12875			1	11 051	32	97	80					2 182	691
<b>3300</b> 12 759       11 753       9917       8 480       7 336       4 813       4 204 <b>3350</b> 13 149       12 112       10 220       8 739       7 560       4 960       4 333 <b>3450</b> 13 345       12 476       10 527       9 002       7 758       5 109       4 463 <b>3450</b> 13 345       12 321       11 1477       9 002       7 758       5 109       4 463 <b>3550</b> 14 765       10 539       9 269       8 731       5 261       4 759 <b>3550</b> 14 765       12 321       11 4477       9 814       8 490       5 738       5 103 <b>3560</b> 15 1694       11 477       9 814       8 490       5 738       5 103 <b>3750</b> 16 640       14 775       12 467       10 661       9 223       6 051       5 745 <b>3750</b> 16 476       15 177       12 806       10 971       8 975       5 848       5 143 <b>3750</b> 16 476       15 177       12 806       10 971       9 223       6 051       5 728 <b>3760</b> 16 976       17 246       6 10 971       9 223       6 051       5 722			37	11 399	6	22	,			3 593		2 251	712
<b>3350</b> 13149       12112       10220       8739       7560       4960       4333 <b>3460</b> 13544       12476       10527       9002       7788       5109       4463 <b>3450</b> 13545       12321       11156       9539       8253       5414       4595 <b>3550</b> 14765       13321       11477       9814       8490       5570       4463 <b>3550</b> 15184       13987       11802       10092       8731       5728       5003 <b>3560</b> 15184       13987       11802       10092       8731       5728       5003 <b>3750</b> 16040       14775       12467       10561       9424       651       5286 <b>3750</b> 16476       15177       12806       10951       9474       6215       5429 <b>3750</b> 16446       17702       13450       11245       9728       6386       5143 <b>3850</b> 17366       15937       13450       11245       9728       6387       5429 <b>3700</b> 16918       17360       16416       13463       11643       5728       5429			75		δ			ω				2 321	734
3400       13 544       12 476       10 527       9002       7 788       5 109       4 463         3450       13 945       12 846       10 839       9 269       8 018       5 261       4 595         3500       14 755       13 221       11 156       9 539       8 253       5 414       4 729         3550       14 755       13 601       11 477       9 814       8 490       5 261       4 865         3550       15 184       13 987       11 802       10 0022       8 731       5 728       5 003         3 650       15 184       13 3987       11 802       10 0022       8 731       5 728       5 143         3 700       16 476       15 177       12 806       10 951       9 223       6 051       5 728         3 700       16 918       15 584       11 245       9 728       6 315       5 722       5 826         3 850       17 366       16 415       13 851       11 245       9 223       6 051       5 722       5 826         3 850       17 366       16 415       13 851       11 245       9 726       6 317       5 722       5 872         3 850       17 368       17 268       14 571					22	73		4 960		3 817	3 388	2 392	757
3 450       13 945       12 846       10 839       9 265       8 018       5 261       4 595         3 500       14 352       13 201       11 477       9 814       8 490       5 570       4 865         3 550       15 184       13 987       11 802       10 092       8 731       5 728       5 003         3 550       15 184       13 987       11 802       10 092       8 731       5 728       5 003         3 550       15 184       13 987       11 802       10 092       8 731       5 728       5 003         3 560       15 177       12 806       10 374       8 975       5 888       5 143         3 750       16 476       15 177       12 806       10 951       9 474       6 215       5 286         3 750       16 918       15 584       13 150       11 245       9 728       6 051       5 728         3 850       17 366       15 597       13 498       11 543       9 223       6 051       5 725         3 850       17 820       16 415       13 851       11 245       9 728       6 382       5 575         3 900       17 820       16 779       18 74       10 247       6 722								5 109	46	3 932	3 490	2 464	780
<b>3500</b> 14.352       13.221       11.156       9.539       8.253       5.414       4.729 <b>3550</b> 15.184       13.987       11.477       9.814       8.490       5.570       4.865 <b>3 650</b> 15.184       13.987       11.802       10.092       8.731       5.728       5.003 <b>3 650</b> 15.184       13.987       11.802       10.092       8.731       5.728       5.003 <b>3 750</b> 16.040       14.775       12.132       10.374       8.975       5.888       5.143 <b>3 750</b> 16.040       14.775       12.806       10.951       9.474       6.215       5.285 <b>3 750</b> 16.918       15.584       13.150       11.245       9.728       6.051       5.722 <b>3 850</b> 177366       13.851       11.844       10.247       6.215       5.429 <b>3 850</b> 177202       14.457       13.851       11.844       10.247       6.722       5.872 <b>3 950</b> 18.246       17.202       14.571       12.459       10.779       6.722       5.872 <b>3 950</b> 18.246       17.202       14.937       12.150       <								5 261	LO .	4 048	3 593	2 537	803
<b>3 550</b> 14 765       13 601       11 477       9 814       8 490       5 570       4 865 <b>3 600</b> 15 184       13 987       11 802       10 092       8 731       5 728       5 003 <b>3 650</b> 15 609       14 775       12 467       10 661       9 223       6 051       5 288       5 143 <b>3 750</b> 16 476       15 177       12 806       10 951       9 474       6 215       5 429 <b>3 750</b> 16 918       15 584       13 150       11 245       9 728       6 051       5 285 <b>3 800</b> 16 918       15 584       13 150       11 245       9 728       6 382       5 755 <b>3 800</b> 17 366       15 997       13 498       11 543       9 986       6 551       5 722 <b>3 800</b> 18 280       16 415       13 851       11 844       10 247       6 215       5 429 <b>3 800</b> 18 280       16 839       14 209       12 150       10 779       6 722       5 872 <b>3 800</b> 18 280       16 839       14 209       12 150       10 779       6 724       5 872 <b>3 950</b> 18 246       17 208								5 414	72	4 166	3 698	2 611	826
3600       15 184       13 987       11 802       10 092       8 731       5 728       5 003         3650       15 609       14 775       12 467       10 661       9 223       6 051       5 285       5 143         3750       16 040       14 775       12 467       10 661       9 223       6 051       5 285       5 143         3750       16 476       15 177       12 806       10 951       9 474       6 215       5 429         3800       16 918       15 584       13 150       11 245       9 728       6 382       5 575         3800       17 366       15 997       13 498       11 543       9 986       6 551       5 722         3900       17 820       16 415       13 851       11 844       10 247       6 722       5 872         3900       18 746       17 702       14 937       12 150       10 779       7 795       6 177         4005       19 218       17 702       14 937       12 753       11 050       7 249       6 332         4100       19 695       18 142       13 411       11 050       7 249       6 332         4200       19 249       13 3 030       11 325       7 4								5 570	4 865	4 286	3 804	2 686	850
<b>3 650</b> 15 609       14 378       12 132       10 374       8 975       5 888       5 143 <b>3 750</b> 16 476       15 177       12 467       10 661       9 223       6 051       5 285 <b>3 750</b> 16 476       15 177       12 806       10 951       9 474       6 215       5 429 <b>3 750</b> 16 476       15 177       12 806       10 951       9 474       6 215       5 429 <b>3 800</b> 16 918       15 584       13 150       11 245       9 728       6 382       5 755 <b>3 800</b> 17 366       15 3851       13 150       11 245       9 936       6 551       5 722 <b>3 950</b> 17 820       16 415       13 851       11 844       10 247       6 722       5 872 <b>3 950</b> 18 280       14 571       12 459       10 779       6 722       5 872 <b>4 050</b> 19 218       17 702       14 937       12 773       11 050       7 249       6 332 <b>4 100</b> 19 695       18 142       15 508       13 309       11 325       7 430       6 449 <b>4 200</b> 19 695       18 142       15 773       11 050							73	5 728	5 003	4 408	3 912	2 762	874
<b>3 700</b> 16 040       14 775       12 467       10 661       9 223       6 051       5 285 <b>3 750</b> 16 476       15 177       12 806       10 951       9 474       6 215       5 429 <b>3 850</b> 16 918       15 584       13 150       11 245       9 728       6 382       5 575 <b>3 850</b> 17 366       15 997       13 498       11 543       9 986       6 551       5 722 <b>3 850</b> 17 366       15 997       13 498       11 543       9 986       6 551       5 722 <b>3 950</b> 17 820       16 415       13 851       11 844       10 247       6 722       5 872 <b>3 950</b> 18 280       16 839       14 209       12 150       10 511       6 8296       6 023 <b>4 000</b> 18 746       17 702       14 937       12 773       11 050       7 249       6 332 <b>4 100</b> 19 695       18 142       15 308       13 3090       11 325       7 430       6 490 <b>4 150</b> 19 695       18 142       15 308       13 373       11 050       7 612       6 649 <b>4 200</b> 19 938       16 664       13 737							97	5 888	5 143	4 531	4 022	2 839	898
<b>3 750</b> 16 476       15 177       12 806       10 951       9 474       6 215       5 429 <b>3 800</b> 16 918       15 584       13 150       11 245       9 728       6 382       5 575 <b>3 800</b> 17 366       15 997       13 498       11 543       9 986       6 551       5 722 <b>3 850</b> 17 366       15 997       13 498       11 543       9 986       6 551       5 722 <b>3 850</b> 17 366       15 997       13 851       11 844       10 247       6 722       5 872 <b>3 950</b> 18 280       16 415       13 851       11 844       10 247       6 722       5 872 <b>3 950</b> 18 280       16 435       14 571       12 459       10 779       7 072       6 177 <b>4 050</b> 19 218       17 702       14 937       12 773       11 050       7 249       6 332 <b>4 100</b> 19 695       18 142       15 308       13 3090       11 325       7 430       6 490 <b>4 250</b> 19 955       15 684       13 701       11 884       7 736       6 810 <b>4 250</b> 19 038       16 064       13 741       11 666								6 051	5 285		4 133	2 918	923
3800       16 918       15 584       13 150       11 245       9 728       6 382       5 575         3850       17 366       15 997       13 498       11 543       9 986       6 551       5722         3850       17 366       15 997       13 498       11 543       9 986       6 551       5722         3950       17 820       16 415       13 851       11 844       10 247       6 722       5 872         3950       18 280       16 415       13 851       11 844       10 247       6 722       5 872         3950       18 280       16 839       14 571       12 450       10 779       7 072       6 177         4 050       19 218       17 702       14 937       12 773       11 050       7 249       6 332         4 100       19 695       18 142       15 508       13 411       11 602       7 430       6 490         4 250       19 938       16 064       13 737       11 884       7 796       6 810         4 250       19 938       16 064       13 737       11 884       7 796       6 649         4 350       19 955       16 838       14 366       13 737       11 884       7 796 <t< th=""><th></th><th></th><th></th><th>15 177</th><th></th><th></th><th>47</th><th>6 215</th><th>5 429</th><th></th><th></th><th>2 997</th><th>948</th></t<>				15 177			47	6 215	5 429			2 997	948
<b>3 850</b> 17 366       15 997       13 498       11 543       9 986       6 551       5722 <b>3 900</b> 17 820       16 415       13 851       11 844       10 247       6 722       5 872 <b>3 950</b> 17 820       16 415       13 851       11 844       10 247       6 722       5 872 <b>3 950</b> 18 746       17 268       14 571       12 459       10 779       7 072       6 177 <b>4 000</b> 18 746       17 702       14 937       12 773       11 050       7 249       6 332 <b>4 100</b> 19 695       18 142       15 508       13 090       11 325       7 430       6 490 <b>4 150</b> 19 695       18 142       15 684       13 411       11 602       7 612       6 649 <b>4 250</b> 19 038       16 064       13 737       11 884       7 796       6 810 <b>4 250</b> 19 955       16 838       14 366       12 168       7 983       6 973 <b>4 350</b> 19 955       16 838       14 366       12 168       7 983       6 973 <b>4 250</b> 19 955       16 838       14 736       12 168       7 930       6 973	Flow rate			15 584		11 245		6 382	5 575		4 359	3 078	974
<b>3 900</b> 17 820       16 415       13 851       11 844       10 247       6 722       5 872 <b>3 950</b> 18 280       16 839       14 209       12 150       10 511       6 896       6 023 <b>4 000</b> 18 746       17 268       14 571       12 459       10 779       7 072       6 177 <b>4 000</b> 19 218       17 702       14 937       12 773       11 050       7 249       6 332 <b>4 100</b> 19 695       18 142       15 308       13 090       11 325       7 430       6 490 <b>4 100</b> 19 695       18 142       15 684       13 411       11 602       7 612       6 649 <b>4 200</b> 19 695       18 587       15 684       13 3737       11 884       7 796       6 810 <b>4 250</b> 19 955       16 064       13 737       11 884       7 796       6 810 <b>4 350</b> 19 955       16 838       14 366       12 168       7 983       6 973 <b>4 350</b> 19 955       16 838       14 366       12 168       7 983       6 973 <b>4 350</b> 19 955       16 838       14 366       12 168       7 305       7 474 <th>a</th> <th></th> <th></th> <th>15 997</th> <th></th> <th>11 543</th> <th></th> <th>6 551</th> <th>5722</th> <th>5 041</th> <th>4 474</th> <th>3 159</th> <th>1 000</th>	a			15 997		11 543		6 551	5722	5 041	4 474	3 159	1 000
950       18 280       16 839       14 209       12 150       10 511       6 896       6 023         000       18 746       17 268       14 571       12 459       10 779       7 072       6 177         050       19 218       17 702       14 937       12 773       11 050       7 249       6 332         100       19 695       18 142       15 308       13 090       11 325       7 430       6 490         150       19 695       18 142       15 5684       13 411       11 602       7 612       6 649         200       19 695       18 142       15 684       13 737       11 884       7 796       6 810         200       19 038       16 064       13 737       11 884       7 796       6 810         200       19 955       16 838       14 066       12 168       7 983       6 973         300       19 955       16 838       14 368       12 456       8 172       7 138         300       17 232       14 735       12 748       8 363       7 305         300       17 232       14 735       12 748       8 363       7 305	(l/min)					11 844		6 722	5 872		4 591	3 242	1 026
000       18746       17268       14571       12459       10779       7072       6177         050       19218       17702       14937       12733       11050       7249       6332         100       19695       18142       15308       13090       11325       7430       6490         150       19695       18142       15684       13411       11602       7612       6649         200       19695       18687       15684       13411       11602       7612       6649         200       19938       16064       13737       11884       7796       6810         200       19955       16838       14066       12168       7983       6973         300       19955       16838       14398       12456       8172       7138         300       17232       14735       12748       8363       7305         300       17232       14735       12748       8363       7305         300       17631       15076       13707       13705       7474							0	6 896	6 023		4 710	3 325	1 052
050       19 218       17 702       14 937       12 773       11 050       7 249       6 332         100       19 695       18 142       15 308       13 090       11 325       7 430       6 490         150       19 695       18 142       15 508       13 090       11 325       7 430       6 490         150       19 695       18 142       15 684       13 411       11 602       7 612       6 649         200       19 038       16 064       13 737       11 884       7 796       6 810         200       19 494       16 449       14 066       12 168       7 983       6 973         300       19 955       16 838       14 398       12 456       8 172       7 138         300       17 232       14 735       12 748       8 363       7 305         300       17 6.076       13 042       8 567       7 474								7 072	6 177		4 830	3 410	1 079
100       19 695       18 142       15 308       13 090       11 325       7 430       6 490         150       18 587       15 684       13 411       11 602       7 612       6 649         200       19 038       16 064       13 737       11 884       7 796       6 810         200       19 494       16 449       14 066       12 168       7 983       6 973         300       19 955       16 838       14 398       12 456       8 172       7 138         300       17 232       14 735       12 748       8 363       7 305         470       17 647       13 042       8 567       7 474		4 050	21		14 937			7 249	6 332	5 579		3 496	1 106
150     18 587     15 684     13 411     11 602     7 612     6 649       200     19 038     16 064     13 737     11 884     7 796     6 810       250     19 494     16 449     14 066     12 168     7 983     6 973       300     19 955     16 838     14 066     12 168     7 983     6 973       300     19 955     16 838     14 398     12 456     8 172     7 138       300     19 955     16 838     14 735     12 748     8 363     7 305       400     17 631     16 076     13 042     8 567     7 474			69				<b>~</b>	7 430	6 490		5 074	3 583	1 134
200         19 038         16 064         13 737         11 884         7 796         6 810           250         19 494         16 449         14 066         12 168         7 983         6 973           300         19 955         16 838         14 398         12 456         8 172         7 138           300         19 955         16 838         14 398         12 456         8 172         7 138           300         19 955         16 838         14 338         12 456         8 172         7 138           300         19 955         16 838         14 735         12 748         8 363         7 305           300         17 631         15 076         13 042         8 567         7 474							·	7 612	6 649	5 858		3 671	1 162
250     19 494     16 449     14 066     12 168     7 983     6 973       300     19 955     16 838     14 398     12 456     8 172     7 138       300     19 955     16 838     14 398     12 456     8 172     7 138       350     17 232     14 735     12 748     8 363     7 305       17 631     15 076     13 042     8 557     7 474					16 064			7 796	6 810	6 000		~	1 190
300         19 955         16 838         14 398         12 456         8 172         7 138           350         17 232         14 735         12 748         8 363         7 305           17 631         15 676         13 647         8 457         7 474		4 250			44			7 983	6 973	6 143			1 218
<b>350</b> 17 232 14 735 12 748 8 363 7 305 17 631 15 076 13 042 8 557 7 474				95			4	17	7 138	6 289	5 581	3 941	1 247
<b>17</b> 631 15 076 13 042 8 557 7 474								8 363	7 305	6 436			1 276
		4 400			17 631	15 076	13 042	8 557	7 474	58		4 126	1 306
341 8 752 7 645								75	64	6 735	5 978	4 221	1 335
769 13 642 8 950 7 818						76	64	95	ώ	6 887	-1	4 316	1 366

 $1/min \times 0.264 = gal/min kPa \times 0.125 = psi kg/l = sp.gr kg/l \times 8.35 = lb/gal$ 

**CALCULATIONS OF PRESSURE DROP IN NOZZLES** Combination of two nozzles  $= p^{q}$ 

d = 1,

(in²)
area
nozzle
A = 1

0.497         0.6136         0.7424         0.8836           379         249         170         120           379         249         170         120           459         301         205         145           546         358         245         173           546         358         245         173           546         358         245         173           540         420         287         203           743         487         333         235           970         636         420         287           970         636         435         307           970         636         435         307           970         636         435         307           970         636         435         307           970         636         749         336           1228         895         679         433           1368         897         613         749           1516         1994         749         529           1834         1554         1061         749           2562         1812         1331			-	71-71	01-01		2 2	2-2-	00	02-02	00-00	VC VC	00 00
500         2717         1918         1393         1035         766         607         379         249         170         120           650         3788         2731         1686         1253         951         734         459         301         223         170         120           750         5328         3760         2732         1035         766         607         379         249         170         120           750         5326         3760         2732         1749         1328         1326         1326         170         120         120         143           750         5326         3760         2335         2329         1560         1306         833         249         170         120           750         5326         734         1328         1560         1306         636         435         333         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233	A (in ² )		0.1856	0.2209	0.2592	0.3007			0.497		0.7424		<u> </u>
550         3 238         2 321         1 680         1 253         9 51         7 34         4 59         3 70         1 45           650         5 356         1 749         1 132         8 74         5 46         3 58         2 205         1 44           750         5 326         3 760         7 34         4 59         3 56         2 365         1 20         1 42         2 205         1 44           750         5 326         3 760         3 750         5 734         3 567         2 305         1 734         1 356         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333         2 333		500		1 918	1 393	1 035	786	607	040				
600         3 913         2 762         1 000         1 45         445         350         1 45         145           750         6 514         4 502         3 735         7 745         1 732         8 74         5 46         3 55         7 205         1 47           750         6 514         4 316         3 735         2 3223         1 736         8 55         3 487         3 337         2 355         1 73         2 35         1 73           850         6 514         4 206         2 731         2 252         1 754         1 706         7 43         3 337         2 357         3 357         2 550         3 37         2 356         3 73         2 357         3 356         3 73         2 357         3 356         3 73         2 356         3 37         2 356         3 37         2 356         3 37         2 356         3 37         2 356         3 37         2 356         3 37         2 356         3 37         2 356         3 37         2 356         3 37         2 356         3 37         2 356         3 37         2 356         3 37         2 356         3 37         2 356         3 37         2 37         3 37         3 37         3 37         3 37         3 37		550		2 321					5/3 210	243	0/1	120	ထ္က
500         5313         2.702         2.006         1491         1132         874         546         358         245         173           750         5326         3720         2335         1749         1328         1026         640         420         287         203           750         6326         4311         3367         2.650         2.012         1564         970         636         431         333         2.35         373         2.35         373         2.35         373         2.35         373         2.35         373         2.35         373         2.35         373         2.35         374         2.35         375         335         355         365         385         337         2.35         373         2.35         373         2.35         373         2.35         375         373         2.35         373         2.35         373         2.35         373         2.35         373         2.35         373         2.35         373         2.35         373         2.35         373         2.35         373         2.35         373         2.35         373         2.35         373         2.35         373         2.35         373 </th <th></th> <th>003</th> <th></th> <th></th> <th></th> <th>002</th> <th>- CA</th> <th>134</th> <th>459</th> <th>301</th> <th>205</th> <th>145</th> <th>46</th>		003				002	- CA	134	459	301	205	145	46
700         5 3 2 4 5 3 2 6 6 114         7 3 3 3 5 3 2 6 6 1 4 7 15         7 3 3 2 4 5 3 7 6 6 1 4 7 15         7 3 3 4 5 3 7 6 7 15         7 3 3 5 5 5 4 7 15         7 3 3 5 5 5 4 7 15         7 3 3 5 5 5 4 7 15         7 3 3 5 5 5 7 7 15         7 3 7 7 3 7		010		7.97 7	2 006	1 491	1 132	874	546	358	245	173	С С
750         532         3760         2731         2029         1540         1190         743         487         333         235         233         235         233         233         233         233         233         233         233         233         235         2339         1768         1754         1095         559         337         235         2339         1768         1754         1095         718         491         3367         337         2350         337         2350         337         235         233         237         236         332         237         236         332         237         236         332         237         236         332         237         236         337         236         337         236         337         236         337         236         337         236         337         236         337         236         337         236         337         236         337         236         337         236         337         236         337         236         337         236         337         239         236         236         236         236         236         236         236         236         236		050		3 242	2 355		1 328	1 026	640	420	287	203	60 64
750         6114         4316         3135         2329         1768         1366         853         559         322         270           850         6956         4311         3567         2660         2012         1554         970         636         435         307           950         8804         6215         4511         3567         2982         2271         1754         1095         718         491         346           950         8804         6713         5573         4141         3144         2428         1516         997         613         433           910         11983         8459         6144         3567         2191         1368         897         613         433           910         1752         9284         6743         5476         3465         3466         2677         1671         1096         749         529           910         13152         9284         6743         5476         3453         3211         2005         529         580           910         13152         9284         6743         6743         331         1326         938         749         679         749 <th></th> <th>700</th> <th></th> <th>3 760</th> <th>2 731</th> <th></th> <th>1 540</th> <th>1 190</th> <th>743</th> <th>487</th> <th>333</th> <th>23E</th> <th></th>		700		3 760	2 731		1 540	1 190	743	487	333	23E	
800         6 956         4 911         3 567         2 650         2 715         1 754         1 095         7 18         4 35         3 54         4 35         3 55         4 35         4 35         4 35         3 55         4 35         5 544         4 026         2 992         2 737         7 1228         8 05         5 550         3 36         4 335         3 354         2 191         1 366         5 50         3 373         2 191         1 368         8 97         6 13         4 33         3 44         2 354         1 367         1 095         7 18         4 33         3 46         4 33         3 46         4 33         3 46         6 73         4 80         5 50         3 368         5 76         3 368         5 76         3 368         5 76         3 368         3 76         5 75         3 44         2 428         3 450         5 75         3 44         2 428         5 75         3 450         5 73         3 496         5 73         3 496         5 749         5 75         5 898         6 57         5 690         3 460         5 749         5 729         5 893         6 512         5 749         5 749         5 729         5 893         6 512         5 749         5 749         5 749		750	6 114			32	1 768	1 366	853	0 2 2 2	2000	000	+ L
850         7         853         5         5         4         4         0.05         1         7.54         1         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05         0.05		800	6 956		3 567			1 554	970	636	100		0 0
900         8 804         6 215         4 514         3 354         2 546         1 957         1 228         8 05         5 50         3 885           950         9 809         6 9255         5 0 30         3 737         2 837         2 191         1 368         8 95         6 13         4 33           950         10 869         7 673         5 5 73         4 141         3 144         2 428         1 516         9 94         6 79         4 80           950         11 983         8 459         6 144         4 565         3 406         2 677         1 671         1 0 96         749         5 29           100         13 152         9 244         4 565         3 406         2 677         1 671         1 0 36         6 79         4 80           200         13 152         9 248         6 733         3 4103         3 231         2 1065         1 1 3 33         8 22         5 50         5 50         5 50         5 50         5 50         5 50         5 50         5 74         5 743         5 743         5 743         5 743         5 749         5 749         5 749         5 749         5 749         5 749         5 749         5 743         7 49         7 49		850			4 026			1 754	1 095	710	107	00/ 070	, u , u
950         9809         6 925         5 030         3 737         2 837         2 191         1 368         897         613         433           000         11983         8459         6 144         4 565         3 4441         2 428         1516         994         673         5 573         4 141         2 428         1516         994         679         5 73           000         11983         8 459         6 144         4 565         3 466         2 677         1 671         1 096         7 49         5 29           100         13 152         9 284         6 713         3 134         2 305         1 834         1 203         8 22         5 80         6 79         4 80           250         15 651         11 043         8 025         5 476         4 158         3 211         2 005         1 3 15         9 39         6 34           350         15 651         11 049         8 706         5 313         4 103         2 5 53         1 4 23         8 74         2 93           350         19 809         13 984         10 157         7 547         5 730         4 425         2 763         1 8 12         1 2 63         8 74           350		006		6 215	4 514			1 967	1 228	хОл	- C 2 4 4		
000         10 869         7673         5573         4 141         3 144         2 428         1 516         994         679         480           100         11 983         8 459         6 144         4 565         3 466         2 677         1 671         1 096         749         5 20           150         13 152         9 284         6 743         5 010         3 804         2 938         1 834         749         5 29           200         15 651         11 049         8 025         5 963         4 527         3 496         2 183         1 432         994         679         4 80           250         16 693         11 989         8 025         5 963         4 527         3 496         2 183         1 432         994         679         4 80           350         16 983         11 989         8 025         5 963         4 425         2 368         1 554         1 061         749         573           350         18 369         10 957         7 491         2 368         1 554         1 061         749         1 331           300         18 369         16 937         4 425         2 763         1 4 425         2 368         1 631		950		6 925	5 030	3 737			1 368	200	000 10	000	2 V 7 V 7 V
050         11983         8459         6144         4565         3466         2577         1571         1096         749         529           100         13152         9284         6743         5010         3804         2938         1834         1203         822         580           200         15651         11049         8025         5963         4527         3496         2183         1203         822         580           300         15651         11049         8025         5963         4527         3496         2183         1203         822         580           300         15651         11049         8025         5963         4577         3794         2065         1315         898         631           300         18369         12987         9418         6998         5313         4103         2362         1681         1161         749           400         21303         15039         10923         8116         6162         4759         2971         1949         1331         940           350         19809         13321         10323         8116         6162         4759         2971         1949         13		1 000	10 869	7 673	5 573				) (U			0 0 0 0 0 0	10/
100         13152         9 284         6 743         5 010         3 3240         2 307         1 000         1 315         9 289         5 29           150         14 374         10 147         7 370         5 476         4 158         3 211         2 005         1 315         5 898         6 34           250         15 651         11 049         8 025         5 963         4 527         3 496         2 105         1 315         6 938         6 34         5 321         2 005         1 315         8 98         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         6 34         1 061		1 050	11 983	8 459	6 144				10-0		0/0 1	480	152
150 $14374$ $10147$ $7370$ $5476$ $4158$ $2200$ $1634$ $1203$ $822$ $580$ 250 $15651$ $11049$ $8025$ $5963$ $4527$ $3496$ $2183$ $11432$ $938$ $691$ 250 $16983$ $11989$ $8708$ $6470$ $4912$ $3794$ $2368$ $1554$ $1061$ $749$ 350 $18369$ $12967$ $9418$ $6998$ $5313$ $4103$ $2562$ $1631$ $1148$ $810$ 350 $18369$ $12967$ $9418$ $6998$ $5313$ $4103$ $2562$ $1631$ $11432$ $874$ 350 $19809$ $13984$ $10157$ $7547$ $5730$ $4425$ $2.368$ $1554$ $1061$ $749$ 400 $21303$ $15039$ $10923$ $8116$ $6162$ $4759$ $2971$ $1949$ $1331$ $940$ $450$ $21303$ $15039$ $10923$ $8116$ $6162$ $4759$ $2971$ $1949$ $1331$ $940$ $21303$ $16132$ $11777$ $8.706$ $6610$ $5105$ $3187$ $2091$ $1428$ $1008$ $17264$ $12533$ $9408$ $7553$ $5933$ $3410$ $22237$ $1528$ $1079$ $18434$ $133389$ $9428$ $7553$ $5833$ $3642$ $23391$ $12,23$ $1172$ $18434$ $133389$ $9428$ $7553$ $5833$ $3642$ $22377$ $12,28$ $1105$ $19$	Flow rate	1 100	13 152		6743		000			060 -	/49	629	167
200 $130/4$ $10/4/7$ $73/0$ $54/6$ $4158$ $3211$ $2005$ $1315$ $898$ $634$ 250 $15651$ $11049$ $8025$ $5963$ $4527$ $3496$ $2183$ $1432$ $978$ $691$ 250 $16983$ $11989$ $8708$ $6470$ $4912$ $3794$ $2368$ $1554$ $1061$ $749$ 350 $18369$ $12967$ $9418$ $6998$ $5313$ $4103$ $2562$ $1681$ $1148$ $810$ 350 $18369$ $10923$ $8116$ $6162$ $4759$ $2763$ $1812$ $1238$ $874$ 400 $21303$ $10923$ $8116$ $6162$ $4759$ $2971$ $1949$ $1331$ $410$ $21303$ $10923$ $8116$ $6162$ $4759$ $2971$ $1249$ $1331$ $410$ $21303$ $10923$ $8116$ $6162$ $4759$ $2971$ $1249$ $1061$ $17264$ $12539$ $9317$ $7074$ $5463$ $3410$ $2237$ $1228$ $1079$ $16132$ $11771$ $8.706$ $6610$ $5105$ $3187$ $2091$ $1228$ $1079$ $16132$ $11771$ $8.706$ $6610$ $5105$ $3187$ $2091$ $1228$ $1079$ $17264$ $12539$ $9348$ $7553$ $5833$ $3642$ $2237$ $1228$ $1079$ $18434$ $13389$ $940$ $8765$ $5833$ $3642$ $2237$ $1258$ $1726$ $19642$ $1256$	Ø	1 150	1001				0.004			1 203	822	580	184
250 $10.049$ $8.025$ $5.963$ $4.527$ $3.496$ $2.183$ $1.432$ $978$ $691$ 370 $16.983$ $11.989$ $8.708$ $6.470$ $4.912$ $3.794$ $2.368$ $1.554$ $1.061$ $749$ 350 $18.369$ $12.967$ $9.418$ $6.998$ $5.313$ $4.103$ $2.562$ $1.681$ $11.148$ $810$ 350 $19.809$ $13.984$ $10.157$ $7.547$ $5.730$ $4.425$ $2.763$ $1812$ $12.38$ $874$ 400 $2.1303$ $15.039$ $10.923$ $8.116$ $6.162$ $4.759$ $2.971$ $1949$ $1331$ $940$ 450 $17264$ $12.539$ $9317$ $7.074$ $5.463$ $3.187$ $2.091$ $1.428$ $10.079$ 550 $17264$ $12.539$ $9317$ $7.074$ $5.463$ $3.410$ $2.237$ $1528$ $1079$ 560 $17264$ $12.539$ $9948$ $7.553$ $5.833$ $3.642$ $2.237$ $1632$ $1079$ 560 $17264$ $12.738$ $9523$ $3.642$ $2.237$ $1632$ $1079$ $18 434$ $13.389$ $9948$ $7.553$ $5.833$ $3.642$ $2.237$ $1632$ $1079$ $19 642$ $11273$ $8.766$ $6.100$ $8.746$ $3.187$ $2.091$ $1228$ $19 642$ $11272$ $11273$ $8.559$ $6.100$ $4.127$ $2.077$ $1949$ $1272$ $19 642$ $17.2681$ $9628$ $7.435$ $7.435$ <	(I/min)		+	10 -4 /	/ 3/0					1 315	898	634	201
<b>250</b> $10593$ $11989$ $8708$ $6470$ $4912$ $3794$ $2368$ $1554$ $1061$ $749$ <b>300</b> $18369$ $12967$ $9418$ $6998$ $5313$ $4103$ $2562$ $1681$ $1148$ $810$ <b>350</b> $19809$ $13384$ $10157$ $7547$ $5730$ $4425$ $2763$ $1812$ $1238$ $874$ <b>400</b> $21303$ $15039$ $10923$ $8116$ $6162$ $4759$ $2971$ $1949$ $1331$ $940$ <b>450</b> $21303$ $15039$ $10923$ $8116$ $6162$ $4759$ $2971$ $1949$ $1331$ $940$ <b>450</b> $21303$ $155039$ $107923$ $8116$ $6162$ $4759$ $2971$ $1949$ $1331$ $940$ <b>450</b> $21303$ $170923$ $8716$ $6610$ $5105$ $3187$ $2091$ $1428$ $1008$ <b>460</b> $17264$ $12539$ $9317$ $7074$ $5463$ $3410$ $2237$ $1528$ $1079$ <b>550</b> $17264$ $12339$ $9948$ $7553$ $5833$ $3642$ $2237$ $1528$ $1079$ <b>560</b> $17264$ $13380$ $9948$ $7553$ $5833$ $3642$ $22707$ $1849$ $1278$ <b>560</b> $19642$ $11272$ $11273$ $8559$ $6610$ $4127$ $2707$ $1849$ $1206$ <b>700</b> $19642$ $11967$ $9086$ $7017$ $4127$ $2071$ $4127$ $2080$ $1469$ <b>700</b> $1$		1 200			8 025					1 432	978	691	219
350       18369       12967       9418       6998       5313       4103       2562       1681       1148       810         350       19809       13984       10157       7547       5730       4425       2763       1812       1238       874         400       21303       15039       10923       8116       6162       4759       2971       1949       1331       940         450       21303       15039       10923       8116       6162       4759       2971       1949       1331       940         450       21303       15039       9317       7074       5463       3410       2237       1528       1079         550       17264       12539       9317       7074       5463       3410       2237       1528       1079         550       17264       13389       9380       2645       533       3642       2389       1632       1152         550       18434       13389       9380       2615       3880       2646       1739       1228         550       19642       11272       11273       8559       6610       4127       2707       1849       1306     <		092 1	16 983	11 989	8 708		4 912			1 554	1 061	749	237
350       19 809       13 984       10 157       7 547       5 730       4 425       2 763       1 812       1 238       874         450       21 303       15 039       10 923       8 116       6 162       4 759       2 971       1 949       1 331       940         450       21 303       15 039       10 923       8 116       6 162       4 759       2 971       1 949       1 331       940         450       21 303       17 264       12 539       9 317       7 074       5 463       3 410       2 237       1 528       1 0079         550       17 264       12 539       9 948       7 553       5 833       3 642       2 337       1 528       1 0079         550       18 434       13 389       9 948       7 553       5 833       3 642       2 237       1 528       1 0079         560       18 434       13 389       9 348       7 553       5 833       3 642       2 370       1 849       1 306         700       16 642       11 273       8 559       6 610       4 127       2 874       1 963       1 306         700       16 106       11 967       9 086       7 017       4 381		1 300		12 967	9 418		5313			1 681	1 148	810	256 256
400 $21303$ 15 03910 923 $8116$ $6162$ $4759$ $2971$ $1949$ $1331$ $940$ 450 $1712$ $8.706$ $6610$ $5105$ $3187$ $2091$ $1428$ $1008$ 550 $17264$ $12539$ $9317$ $7074$ $5463$ $3410$ $2237$ $1528$ $1008$ 550 $17264$ $12539$ $9317$ $7074$ $5463$ $3410$ $2237$ $1528$ $1079$ 550 $18434$ $13389$ $9948$ $7553$ $5833$ $3642$ $2237$ $1528$ $1079$ 600 $19642$ $14267$ $10600$ $8048$ $6215$ $3880$ $2546$ $1739$ $1228$ 610 $119642$ $11273$ $8559$ $6610$ $4127$ $22707$ $1849$ $1306$ 700 $16106$ $11967$ $9086$ $7017$ $4381$ $2874$ $1963$ $1306$ 700 $16106$ $11967$ $9086$ $7017$ $4381$ $2874$ $1963$ $1306$ 700 $18056$ $13416$ $10186$ $7876$ $4642$ $3045$ $2030$ $1469$ 800 $18056$ $13416$ $10186$ $7866$ $4911$ $3222$ $2201$ $1554$		1 350			10 157		5 730	4 425		1 812	1 238	0-0 070	270
450       16 132       11 717       8.706       6 610       5 105       3 187       2 091       1 428       1 008         500       17 264       12 539       9 317       7 074       5 463       3 410       2 237       1 528       1 079         550       18 434       13 389       9 948       7 553       5 833       3 410       2 237       1 528       1 079         600       19 642       14 267       10 600       8 048       6 215       3 880       2 546       1 739       1 228         600       19 642       14 267       10 600       8 048       6 215       3 880       2 546       1 739       1 228         700       19 642       11 273       8 559       6 610       4 127       2 707       1 849       1 306         700       16 106       11 967       9 086       7 017       4 381       2 874       1 963       1 386         700       18 056       13 416       10 186       7 836       7 017       4 381       2 2874       1 963       1 366         700       18 056       13 416       10 186       7 836       7 017       4 381       2 2874       1 963       1 469      1		1 400			10 923		6 162			1949	1 331	t ()	707
500       17 264       12 539       9 317       7 074       5 463       3 410       2 237       1 528       1 079         550       18 434       13 389       9 948       7 553       5 833       3 642       2 389       1 632       1 1079         600       19 642       14 267       10 600       8 048       6 215       3 880       2 546       1 739       1 228         700       19 642       16 106       11 273       8 559       6 610       4 127       2 707       1 849       1 306         700       700       11 273       8 559       6 610       4 127       2 707       1 849       1 306         700       16 106       11 967       9 086       7 017       4 381       2 874       1 963       1 306         700       18 056       13 416       10 186       7 836       7 017       4 381       2 2030       1 469         800       18 056       13 416       10 186       7 866       4 642       3 045       2 030       1 469		1 450			11 717		6 610		3 187		1 428		2 C 2
550       18 434       13 389       9 948       7 553       5 833       3 642       2 389       1632       1152         600       19 642       14 267       10 600       8 048       6 215       3 880       2 546       1 739       1 228         700       15 172       11 273       8 559       6 610       4 127       2 707       1 849       1 306         700       16 106       11 967       9 086       7 017       4 381       2 874       1 963       1 386         700       17 067       12 681       9 628       7 435       4 642       3 045       2 080       1 469         800       18 056       13 416       10 186       7 866       4 911       3 222       2 201       1 554		1 500			12 539	9 317	7 074		3 410		1 528	1079	0-70 0-70
600       19 642       14 267       10 600       8 048       6 215       3 880       2 546       1 739       1 228         650       700       15 172       11 273       8 559       6 610       4 127       2 707       1 849       1 306         700       16 106       11 967       9 086       7 017       4 381       2 874       1 963       1 386         700       17 067       12 681       9 628       7 435       4 642       3 045       2 080       1 469         800       18 056       13 416       10 186       7 866       4 911       3 222       2 201       1 554		1 550			13 389	9 948	Ω	83	3 642		1 632	1 100	- 11 t (1) c
650     15 172     11 273     8 559     6 610     4 127     2 707     1 849     1 306       700     16 106     11 967     9 086     7 017     4 381     2 874     1 963     1 386       750     17 067     12 681     9 628     7 4127     2 874     1 963     1 386       750     17 067     12 681     9 628     7 017     4 381     2 874     1 963     1 386       800     18 056     13 416     10 186     7 866     4 911     3 222     2 201     1 554		1 600					0	5	3 880		1 739	1 2 2 2	
700         16 106         11 967         9 086         7 017         4 381         2 874         1 963         1 386           750         17 067         12 681         9 628         7 435         4 642         3 045         2 080         1 469           800         18 056         13 416         10 186         7 866         4 911         3 222         2 201         1 554		1 650			15 172	11 273	8 559	61			1 849	1 306	000
750         17 067         12 681         9 628         7 435         4 642         3 045         2 080         1 469           800         18 056         13 416         10 186         7 866         4 911         3 222         2 201         1 554		1 700				11 967					1 963	1 386	2 0 7 t
<b>800</b> 13 416 10 186 7 866 4 911 3 222 2 201 1 554		1 750							ω	2		1 469	
		1 800				41	18	7 866	တ	22		1 554	492

Nozzles (1/32)	(	11-11	12-12	13-13	14-14	15-15	16-16	18-18	20-20	22-22	24-24	32-32
A (in ² )		0.1856	0.2209	0.2592	0.3007	0.3451	0.3927	0.497	0.6136	0.7424	0.8836	1.5708
	1 850			19 073	14 172			5 188	3 403	32	1 641	519
	1 900			20 118				5 472	3 590	45	1 731	548
	1 950							5 764	3 781	2 583	1 823	577
	2 000								3 978	71	1 918	607
					17 402	13 212	10 203	6 370	4 179	2 855	2 015	638
									4 385	2 996	2 115	669
									4 597	3 140	2 217	701
	2 200					15 216	11 751		4 813	3 288	2 321	734
	2 250						12 291		5 034	3 439	2 428	768
	2 300						12 843		5 261	3 594	2 537	803
	2 350								5 492	3 752	2 648	838
	2 400					18 108	13 985		5 728	3 913	2 762	874
Flow rate	2 450					18 871	14 573		5 969	4 078	2 879	911
a	2 500					19 649	15 174		6 215	4 246	2 997	948
(I/min)	2 550					20 443	15 787		6 466	4 417	3 118	987
	2 600						16 412		6 722	4 592	3 242	1 026
	2 650						17 050		6 983	4 770	3 368	1 066
	2 700						17 699	11 050	7 249	4 952	3 496	1 106
	2 750						18 361	11 463	7 520	5 137	3 627	1 148
	2 800								7 796	5 326	3 760	1 190
	2 850						19 720			5 518	3 895	1 233
								12 748	8 363	5 713	4 033	1 276
										5 912	4 173	1 321
								13 642		6 114	4 316	1 366
	3 050							14 101	9 251	6319	4 461	1412
	3 100							14 567	9 557	6 528	4 609	1 458
	3 150							15 040	9 867	74		1 506

CALCULATIONS OF PRESSURE DROP IN NOZZLES (continued) Combination of two nozzles

d = 1, A = nozzle area (in²) $p_d = \frac{3}{2.959.41 \times (0.95)^2 A^2}$  (kPa)

	176/1/ SSI3201		12-12	13-13	14-14	15-15	16-16	18-18	20-20	22-22	24-24	32-32
A (in ² )		0.1856	0.2209	0.2592	0.3007	0.3451	0.3927	0.497	0.6136	0.7424	0 8836	1 5708
	3 200							15 522	10 183	6 956	A 011	
	3 250								- L		- 0 7	- 004
	2 200							010 01	10 504	7 175	5 065	1 603
	0 0 0 0 0 0 0 0							16 507	10 829	7 398	5 222	1 652
	005 0							17 011	11 160	7 624	5 382	1 703
	3 400							17 522	11 496	7 853	5 544	1 754
	3 450 2 700							18 042	11 836	8 086	5 708	1 806
	3 500 2 660							18 568	12 182	8 322	5 875	1 859
	000 0							19 103	12 532	8 561	6 044	1 912
	3 6U0							19 644		8 804	6 215	1 967
								20 194	13 248	9 050	6 389	2 022
	3 /UU			~~~~				20 751	13 614	9 300	6 565	2 077
Elow vato	000 0								13 984	9 553	6 744	2 134
	3 0UU 2 0ED								14 360	9 809	6 925	2 191
(I/min)	000 0								14 740	10 069	7 108	2 249
•	2 060								15 125	10 332	7 294	2 308
									15 516	10 599	7 482	2 368
	1 000						÷			10 869	7 673	2 428
	1000									11 142	7 866	2 489
	4 150									11 419	8 061	2 551
										11 700	8 259	2 613
	4 250								17 542	11 983	8 459	2 677
	1 200								17 962		8 662	2 741
	1 260								18 387	12 561	8 867	2 806
								**		12 854	9 074	2 871
	4 460								19 252	13 152	9 284	2 938
									19 692	13 452	9 496	3 005
									20 137	13 756		3 073

A = total area of nozzle combination (in²) S = total area of nozzle combination (cm²)

$0.1473$ $0.9501$ $16 \cdot 17 \cdot 17$ $0.6144$ $0.1603$ $1.0342$ $17 \cdot 17 \cdot 18$ $0.6397$ $0.1864$ $1.2965$ $17 \cdot 17 \cdot 18$ $0.6918$ $0.1864$ $1.2024$ $17 \cdot 17 \cdot 18$ $0.6918$ $0.1864$ $1.2024$ $17 \cdot 17 \cdot 18$ $0.6918$ $0.2010$ $1.2965$ $17 \cdot 18 \cdot 18$ $0.739$ $0.2301$ $1.4845$ $18 \cdot 18 \cdot 18$ $0.739$ $0.2155$ $1.3905$ $18 \cdot 18 \cdot 18$ $0.739$ $0.2301$ $1.4845$ $18 \cdot 18 \cdot 18$ $0.739$ $0.2301$ $1.4845$ $18 \cdot 18 \cdot 19$ $0.739$ $0.2301$ $1.7962$ $18 \cdot 18 \cdot 19$ $0.739$ $0.23313$ $0.2161$ $1.919 \cdot 19$ $0.8006$ $0.33137$ $2.0239$ $0.8006$ $0.93005$ $0.33137$ $2.0239$ $0.919 \cdot 19$ $0.9303$ $0.33137$ $2.0239$ $0.9305$ $0.9305$ $0.3389$ $2.3351$ $0.3729$ $0.9305$	Nozzles (1/32 in)	A (in ² )	S (cm²)	Nozzles (1/32 in)	A (in ² )	<i>S</i> (cm ² )	Nozzles (1/32 in)	A (in ² )	S (cm²)
0.1603 $1.0342$ $1.7.17.17$ $0.6530$ $0.1733$ $1.1183$ $1.7.17.17$ $0.6650$ $0.1733$ $1.1183$ $0.7187$ $0.6650$ $0.1733$ $1.1083$ $1.7.17.17$ $0.6650$ $0.1864$ $1.2024$ $17.17.18$ $0.6650$ $0.2010$ $1.2965$ $1.7.17.18$ $0.7187$ $0.2301$ $1.4845$ $1.7.17.18$ $0.7187$ $0.2301$ $1.4845$ $1.7.17.18$ $0.7455$ $0.2301$ $1.4845$ $1.8.19.19$ $0.7455$ $0.2164$ $1.7.962$ $1.8.19.19$ $0.7739$ $0.2303$ $0.2784$ $1.7962$ $1.9.19.20$ $0.8005$ $0.23137$ $0.2023$ $1.9.19.20$ $0.8005$ $0.7455$ $0.33137$ $2.0233$ $1.9.19.20$ $0.8005$ $0.7455$ $0.33137$ $2.0233$ $1.9.19.20$ $0.8005$ $0.3307$ $0.33137$ $2.0233$ $1.9.19.20$ $0.8005$ $0.3307$	8-8-8	0.1473	0.9501	16-16-17	0.6144	3.9636	24-24-25	1.3629	8.7932
0.1864 $1.2024$ $17.17.18$ $0.6918$ $0.7187$ $0.2010$ $1.2965$ $17.18.18$ $0.7187$ $0.7455$ $0.2001$ $1.2965$ $1.3905$ $18.18.18$ $0.7187$ $0.7455$ $0.2001$ $1.4845$ $18.18.18$ $0.7739$ $0.7455$ $0.7455$ $0.2001$ $1.4845$ $18.18.19$ $0.7739$ $0.7739$ $0.22623$ $1.4845$ $18.19.19$ $0.7739$ $0.7739$ $0.2784$ $1.5923$ $19.1920$ $0.8005$ $0.3307$ $0.23137$ $2.0239$ $0.2301$ $1.9100$ $19.20.20$ $0.8905$ $0.33137$ $2.0233$ $2.022020$ $0.8905$ $0.6905$ $0.33313$ $0.3397$ $2.1377$ $2.022020$ $0.8905$ $0.9204$ $0.9204$ $0.3397$ $2.3381$ $2.12121$ $1.0147$ $0.9305$ $0.3697$ $0.3897$ $2.3381$ $2.2614$ $2.0-2020$ $0.9905$ $0.9147$ $0.3897$	6-8-8 6-6-8	0.1603 0.1733	1.0342 1.1183	17-17-17	0.6650	4.1269 4.2902	24-25-25 25-25-25	1.4005 1.4381	9.0356 9.2781
0.2010         1.2965         17.18.18         0.7187           0.2301         1.3905         18.18.18         0.7455           0.2301         1.4845         18.18.19         0.7739           0.2301         1.4845         18.18.19         0.7739           0.2301         1.4845         18.19.19         0.7739           0.2301         1.5884         18.19.19         0.7739           0.2462         1.5884         18.19.19         0.7739           0.20523         1.5623         1.9100         0.8005           0.2784         1.7962         19-19-19         0.8307           0.2313         0.22614         1.9190         0.8005           0.3313         2.0239         0.9204         0.9204           0.3313         2.0233         0.9305         0.9204           0.3313         2.1377         20-20-20         0.9204           0.33697         2.1377         20-20-21         0.9518           0.3633         0.33697         2.1377         20-20-21           0.3889         0.33697         2.10147         0.9618           0.3889         2.5618         21-21-21         1.0147           0.4510         0.3863	6-6-6	0.1864	1.2024	17-17-18	0.6918	4.4634	25-25-26	1.4772	9.5305
0.2155         1.3905         18-18-18         0.7455           0.2301         1.4845         18-19-19         0.7739           0.2301         1.4845         18-19-19         0.7739           0.2462         1.5884         1.4845         18-19-19         0.7739           0.2023         0.2462         1.5884         1.919         0.8307           0.2011         1.9100         19-19-19         0.8005         0.8307           0.2784         1.9100         19-19-20         0.8006         0.8307           0.23137         2.0239         19-19-20         0.8005         0.8307           0.3313         2.1377         2.0239         0.8005         0.8305           0.3313         2.0239         2.0220         0.9504         0.8005           0.3313         2.0239         2.0220         0.9518         0.1477           0.3505         0.3350         2.02021         0.9618         0.9833           0.3505         2.2614         20-21-21         1.0147         0.9833           0.3505         2.33851         21-21-21         1.0147         0.9807           0.3889         2.5088         2.121-21         1.0477         0.4906	9-9-10	0.2010	1.2965	17-18-18	0.7187	4.6366	25-26-26	1.5163	9.7828
0.2301 $1.4845$ $18.19.19$ $0.7739$ $0.7739$ $0.2462$ $1.5884$ $18.19.19$ $0.8023$ $0.8023$ $0.2623$ $1.5884$ $18.19.19$ $0.8307$ $0.8307$ $0.2784$ $1.7962$ $19.19.19$ $0.8307$ $0.8307$ $0.2784$ $1.7962$ $19.19.20$ $0.8066$ $0.8307$ $0.2784$ $1.7962$ $19.19.20$ $0.8066$ $0.8307$ $0.23505$ $2.0239$ $0.202.20$ $0.9204$ $0.8905$ $0.33137$ $2.0239$ $20.20-20$ $0.9204$ $0.9204$ $0.33137$ $2.0239$ $20.2202$ $0.9204$ $0.9204$ $0.33137$ $2.0239$ $20-20-20$ $0.9204$ $0.9204$ $0.33057$ $2.1377$ $20-21-21$ $0.9618$ $0.4747$ $0.3889$ $2.5608$ $21-21-21$ $1.0477$ $0.4747$ $0.3889$ $2.5608$ $21-21-21$ $1.0477$ $0.4747$ $0.45010$ $2.9096$ $2$	9-10-10	0.2155	1.3905		0.7455	4.8098	26-26-26	1.5555	10.0352
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10-10-10	0.2301	1.4845	18-18-19	0.7739	4.9929	26-26-27	1.5961	10.2974
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10-10-11	0.2462	1.5884	18-19-19	0.8023	5.1759	26-27-27	1.6368	10.5597
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10-11-11	0.2623	1.6923	19-19-19	0.8307	5.3590	27-27-27	1.6774	10.8220
0.2961         1.9100         19-20-20         0.8905           0.3137         2.0239 <b>20-20-20</b> 0.9204           0.3137         2.0339 <b>20-20-20</b> 0.9204           0.3137         2.1377 <b>20-20-21</b> 0.9518           0.3313         2.1377 <b>20-20-21</b> 0.9518           0.3505         2.2614 <b>20-21-21</b> 0.9833           0.3697         2.3851 <b>21-21-21</b> 1.0147           0.3889         2.5088 <b>21-21-21</b> 1.0147           0.3889         2.5038 <b>21-21-21</b> 1.0147           0.4096         2.6424 <b>21-21-21</b> 1.0147           0.4303         2.7760 <b>21-21-22</b> 1.0807           0.4510         2.90966 <b>22-22-22</b> 1.1137           0.4510         2.90366 <b>22-22-23</b> 1.1182           0.4555         3.1966 <b>22-22-23</b> 1.1182           0.5177         3.4935 <b>22-23-23</b> 1.1182           0.5553         3.4935 <b>23-23-23</b> 1.1827           0.5653         3.4935 <b>23-23-24</b> 1.2533		U.2/84	1./962	19-19-20	0.8606	5.5520	27-27-28	1.7196	11.0941
0.3137         2.0239         20-20-20         0.9204           0.3505         2.1377         20-20-21         0.9518           0.3505         2.1377         20-20-21         0.9518           0.3505         2.2614         20-21-21         0.9518           0.3697         2.3851         21-21-21         1.0147           0.3697         2.56088         21-21-21         1.0147           0.3889         2.5008         21-21-22         1.0477           0.4096         2.6424         21-21-22         1.0477           0.4303         2.7760         21-21-22         1.0477           0.4303         2.7760         21-21-22         1.0477           0.4510         2.9096         21-22-22         1.1137           0.4510         2.9096         22-22-23         1.1182           0.4732         3.0531         22-22-23         1.1182           0.4955         3.1966         22-23-23         1.1182           0.5177         3.3401         23-23-23         1.1827           0.5177         3.4935         23-23-23         1.2172           0.5653         3.6469         23-23-24         1.2533 <th>11-11-12</th> <td>0.2961</td> <td>1.9100</td> <td>19-20-20</td> <td>0.8905</td> <td>5.7450</td> <td>27-28-28</td> <td>1.7618</td> <td>11.3663</td>	11-11-12	0.2961	1.9100	19-20-20	0.8905	5.7450	27-28-28	1.7618	11.3663
0.3505         2.101         20-20-21         0.9518         0.9518         0.9518         0.9518         0.9518         0.9518         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9833         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914         0.9914	11-12-12	0.3137	2.0239	20-20-20	0.9204	5.9380	28-28-28	1.8040	11.6384
0.3505         2.2614 <b>20-21-21</b> 0.9833           0.3697         2.3851 <b>21-21-21</b> 1.0147           0.3697         2.3851 <b>21-21-21</b> 1.0147           0.3697         2.5088 <b>21-21-22</b> 1.0147           0.3889         2.5088 <b>21-21-22</b> 1.0477           0.4096         2.6424 <b>21-22-22</b> 1.0807           0.4303         2.7760 <b>22-22-22</b> 1.1137           0.4510         2.9096 <b>22-22-23</b> 1.1482           0.4732         3.0531 <b>22-22-23</b> 1.1482           0.4735         3.1966 <b>22-23-23</b> 1.1827           0.4955         3.1966 <b>22-23-23</b> 1.1827           0.5177         3.3401 <b>23-23-23</b> 1.1827           0.5177         3.4935 <b>23-23-23</b> 1.2172           0.5415         3.4935 <b>23-23-24</b> 1.2533           0.5653         3.6469 <b>23-24-24</b> 1.2633	2 2 2	2	1101.2	20-20-21	0.9518	6.1409	28-28-29	1 8477	11 9205
0.369/         2.3851         21-21-21         1.0147           0.3889         2.5088         21-21-22         1.0477           0.4096         2.6424         21-21-22         1.0477           0.4096         2.6424         21-22-22         1.0807           0.4303         2.7760         22-22-22         1.1137           0.4510         2.9096         22-22-23         1.1187           0.4732         3.0531         22-22-23         1.1482           0.4732         3.0531         22-22-23         1.1482           0.4732         3.0531         22-22-23         1.1482           0.4732         3.0531         22-22-23         1.1827           0.4955         3.1966         22-23-23         1.1827           0.5177         3.3401         23-23-23         1.2172           0.5177         3.4935         23-23-23         1.2172           0.5653         3.6469         23-23-24         1.2533           0.5653         3.6469         23-24-24         1.2633	12-12-13	0.3505	2.2614	20-21-21	0.9833	6.3437	28-29-29	1.8914	12.2025
0.4096         2.6424         21-21-22         1.0477           0.4096         2.6424         21-22-22         1.0807           0.4510         2.9096         22-22-22         1.1137           0.4510         2.9096         22-22-23         1.1182           0.4732         3.0531         22-22-23         1.1482           0.4755         3.1966         22-23-23         1.1827           0.4955         3.1966         23-23-23         1.1827           0.5177         3.3401         22-23-23         1.1827           0.5177         3.4935         23-23-23         1.2172           0.5415         3.4935         23-23-23         1.2533           0.5653         3.6469         23-23-24         1.2533	12-13-13 13-13-13	0.3889	2.5088	21-21-21	1.0147	6.5466	29-29-29	1.9351	12.4846
0.4000         2.0424         21-22-22         1.0807           0.4303         2.7760         2.7760         22-22-22         1.1137           0.4510         2.9096         22-22-23         1.1482           0.4732         3.0531         22-22-23         1.1482           0.4732         3.1966         22-22-23         1.1482           0.4955         3.1966         22-23-23         1.1827           0.5177         3.3401         23-23-23         1.2172           0.5177         3.4935         23-23-23         1.2172           0.5415         3.4935         23-23-24         1.2533           0.5653         3.6469         23-24-24         1.2633	10 10 14	0 4006		21-21-22	1.0477	6.7594	29-29-30	1.9804	12.7765
0.4510         2.9096         22-22-22         1.1137           0.4510         2.9096         22-22-23         1.1482           0.4732         3.0531         22-22-23         1.1482           0.4955         3.1966         22-23-23         1.1827           0.4955         3.1966         22-23-23         1.1827           0.5177         3.3401         23-23-23         1.2172           0.5415         3.4935         23-23-23         1.2172           0.5653         3.6469         23-23-24         1.2533	13-13-14	0.4030	2.0424 2.7760	21-22-22	1.0807	6.9722	29-30-30	2.0256	13.0685
0.4732         3.0531         22-22-33         1.1482           0.4955         3.1966         22-23-23         1.1482           0.4955         3.1966         22-23-23         1.1827           0.5177         3.3401         23-23-23         1.2172           0.5177         3.4935         23-23-23         1.2172           0.5415         3.4935         23-23-24         1.2533           0.5653         3.6469         23-24-24         1.2893	14-14-14	0.4510	2.9096	22-22-22	1.1137	7.1850	30-30-30	2.0709	13.3605
0.4955         3.1966 <b>22-23-23</b> 1.1827           0.5177         3.3401 <b>23-23-23</b> 1.2172           0.5177         3.4935 <b>23-23-23</b> 1.2172           0.5415         3.4935 <b>23-23-24</b> 1.2533           0.5653         3.6469 <b>23-24-24</b> 1.2893	14-14-15	0.4732	3.0531	22-22-23	1.1482	7.4076	30-30-31	2.1177	13.6623
0.5177         3.3401         23-23-23         1.2172           0.5415         3.4935         23-23-24         1.2533           0.5653         3.6469         23-24-24         1.2893	14-15-15	0.4955	3.1966	22-23-23	1.1827	7.6303	30-31-31	2.1644	13.9641
0.5415         3.4935         23-23-24         1.2533           0.5653         3.6469         23-24-24         1.2893	15-15-15	0.5177	3.3401	23-23-23	1.2172	7.8530	31-31-31	2.2112	14.2660
0.5653 3.6469 <b>23-24-24</b> 1.2893	15-15-16	0.5415	3.4935		1.2533	8.0855	31-31-32	2.2596	14.5777
	15-16-16	0.5653	3.6469	23-24-24	1.2893	8.3181	31-32-32	2.3079	14.8895
<b>16-16-16</b> 0.5890 3.8003 <b>24-24-24</b> 1.3254 8.550	16-16-16	0.5890	3.8003	24-24-24	1.3254	8.5507	32-32-32	2.3562	15.2012

TABLE OF NOZZLE AREAS Combinations of two nozzles A = total area of nozzle combination (in²) S = total area of nozzle combination (cm²)

Nozzles (1/32 in)	A (in ² )	S (cm ² )	Nozzles (1/32 in)	A (in ² )	S (cm ² )	Nozzles (1/32 in)	A (in ² )	S (cm ² )
8- 80	0.0982	0.6334	16-17	0.4180	2.6968	24-25	0.9212	5.9429
6- 8	0 1112	0 7175	/1-/1	0.4433	7.8601	25-25	0.9587	6.1854
6-6	0.1243	0.8016	17-18	0.4702	3.0333	25-26	0.9979	6.4378
9-10	0.1388	0.8956	18-18	0.4970	3.2065	26-26	1.0370	6.6901
10-10	0.1534	0.9897	18-19	0.5254	3.3896	26-27	1.0776	6.9524
10-11	0.1695	1.0936	19-19	0.5538	3.5727	27-27	1.1183	7.2146
11-11	0.1856	1.1975	19-20	0 5837	3 7657	86-26	1 - AOR	0306 L
11-12	0.2033	1.3113	20-20	0.6136	3.9587	28-28	1.2026	7.7590
71-71	0.2203	-074			L			
12-13 13-13	0.2401 0.2592	1.5488 1.6725	21-21	0.6765 0.6765	4.101.4 4.3644	28-29 29-29	1.2464 1.2901	8.0410 8.3231
		0						
13-14 14-14	0.2800 0.3007	1.8061 1.9397	21-22 22-22	0.7095 0.7424	4.5772 4.7900	29-30 30-30	1.3353 1.3806	8.6150 8.9070
14-15 15-15	0.3229 0.3451	2.0832 2.2267	22-23 23-23	0.7770 0.8115	5.0126 5.2353	30-31 31-31	1.4274 1.4742	9.2088 9.5107
15-16 16-16	0.3689 0.3927	2.3801 2.5335	23-24 24-24	0.8475 0.8836	5.4679 5.7005	31-32 32-32	1.5225 1.5708	9.8224 10.1341

LE OF NOZZLE AREAS	l = area of nozzle (in ² )	= area of nozzle (cm ² )
ABLE	A II	
$\geq$		

3.0927 3.6073 3.8795 4.1615 4.4535 4.7553 3.3451 5.0671  $\mathcal{S}^{(cm^2)}$ 0.6013 0.5185 0.6450 0.4794 0.5591 0.6903 0.7854 0.7371  $A_{(in^2)}$ Nozzles (1/32 in) 26 28 27 29 30 25 31 32 1.7863 1.9793 1.6033 2.1822 2.3950 2.6177 2.8502 1.4301  $S (cm^2)$ 0.2217 0.2485 0.4418 0.2769 0.3068 0.3382 0.3712 0.4057  $(in^2)$ Nozzles (1/32 in) 30 19 20 17 22 23 21 24 0.4008 0.4948 0.7126 0.8363 0.3167 0.5987 0.9699 1.1134 1.2668  $S (cm^2)$ 0.0928 0.0491 0.0621 0.0767 0.1104 0.1296 0.1503 0.1726 0.1963  $(in^2)$ Nozzles (1/32 in) 10 ; 12 13 4 ω თ 15 16

TABLE OF COEFFICIENTS  $N_4$ Calculation of pressure loss in hole/drill collar annulus  $p_{ann} = N_4 B$  (kPa/100 m)

Drill collis outside demeter (in)         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8         43/4         41/8	Hole size (in)		5 2	5/8	53/	3/4	57	7/8	e	9	61	1/8	9	1/4
100         12         3         8         2         6         2         4         1         3         1         2           250         43         11         23         1         23         8         3         6         2         5         6         2         4         1         3         1         2         5           250         65         14         43         11         23         8         3         1         3         1         2         5         5         5         5         5         5         5         5         5         6         2         4         1         3         1         2         6         2         4         1         3         1         2         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         6         5         4         1         3         1         2         1         2         1         1         2         1	Drill collar outsi	de diameter (in)				1	ŝ	1	3/	-	3	-	3	-
150         25         6         17         4         12         3         6         2         5         6         2         5         6         2         5         5         1         7         10         2         5         11         2         2         11         2         2         11         2         2         11         2         2         11         2         2         11         2         2         11         2         2         11         2         2         11         2         2         11         2         2         11         2         2         11         2         2         11         2         2         11         2         2         11         2         2         11         2         2         11         2         2         11         2         2         11         2         11         2         11         2         11         2         2         11         2         11         2         11         2         11         2         11         2         11         2         11         2         11         2         11         2         2         2		100	12	m	ω	2	9	0	4	-	r	-	c	~
200         43         10         28         7         20         6         14         5         10         4         8           350         90         16         14         5         16         14         5         10         4         8           350         90         165         14         12         29         9         21         7         15         6         12         8           350         165         17         34         99         26         68         20         49         16         36         13         21         23         21         23         21         23         21         23         21         23         21         23         21         23         21         23         21         23         21         23         23         23         23         23         23         24         23         24         23         24         23         24         23         24         23         24         23         24         23         24         23         24         23         24         23         24         23         24         23         24         23		150	26	9	17	4	1	10	- α	- r	שכ	- c	4 L	- (
250         85         14         43         11         29         21         7         15         6         16         13           300         90         26         78         15         34         99         26         64         15         3         11         23         8         16         41         12         29         16         41         12         29         16         44         16         33         13         28         10         21         8         16         33         33         33         33         33         33         33         33         33         33         33         33         33         36         10         21         33         24         35         10         21         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33		200	43	10	28	7	00	ິ	) 5	טכ		1 <	ററ	V (
300         90         27         27         29         21         7         19         21         7         19         21         7         19         21         7         19         21         17         19         21         21         17         19         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21 <th></th> <th>250</th> <th>ЯL</th> <th>77</th> <th>e v</th> <th>- <del>-</del></th> <th></th> <th>) (</th> <th>† 7</th> <th>ו כ</th> <th>2 !</th> <th>t</th> <th>α</th> <th>N)</th>		250	ЯL	77	e v	- <del>-</del>		) (	† 7	ו כ	2 !	t	α	N)
350         19         20         59         15         41         12         29         10         21         8         16           450         151         32         50         151         32         50         21         8         16         33         28         10         21         8         16         33         28         10         21         8         16         33         28         10         21         8         16         33         28         10         21         8         32         8         10         21         8         33         28         10         21         8         33         28         10         21         8         33         28         10         21         8         33         34         23         34         33         34         33         34         33         34         33         34         35         35         35         36         37         34         33         34         35         34         35         34         35         34         35         34         35         34         35         34         35         34         35         34				t (			73	ת	1.7	<u> </u>	15	9	12	ഹ
350         119         26         78         20         119         26         78         20         13         28         10         21           450         151         34         99         26         50         21         38         13         28         10         21           550         226         50         148         39         20         144         123         39         20         49         13         28         13         28         13         27         27         27         26         27         27         24         53         31         27         36         36         37         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27         27		300	000	20	20	15	41	12	29	10	21	ω	16	9
400         151         34         99         26         68         20         49         16         36         13         27           550         2266         50         178         41         123         33         24         53         33         24         53         33         24         53         33         24         53         33         24         23         46         31         46         31         46         33         74         23         55         56         50         20         44         16         33         24         23         48         31         66         33         33         24         23         33         24         23         48         31         66         33         33         24         23         53         33         24         23         74         23         53         74         23         53         74         23         54         23         74         23         56         74         23         56         74         23         56         74         23         56         74         23         56         74         23         56         74         <		350	119	26	78	20	54	16	æ	13	28	10	10	0.00
450         187         41         123         32         84         25         60         20         44         16         53           550         226         50         176         45         121         36         86         23         24         53         19         40           550         226         50         176         46         121         36         86         23         24         53         19         40           550         382         80         238         62         163         48         117         33         74         27         56         74           750         440         92         271         71         187         55         133         74         27         56         94         27         56         117         33         74         27         56         117         33         74         27         56         116         33         74         27         56         116         33         74         27         56         116         33         74         27         56         116         33         56         116         33         56 <th< th=""><th></th><th>400</th><td>151</td><td>34</td><td>00 0</td><td>26</td><td>68</td><td>20</td><td>49</td><td>16</td><td>36</td><td>) (r.</td><td>- 10</td><td></td></th<>		400	151	34	00 0	26	68	20	49	16	36	) (r.	- 10	
500         226         50         148         39         102         30         73         24         53         19         40           550         361         70         206         54         121         36         86         28         64         23         19         40           700         314         70         206         54         121         36         86         28         64         23         74         23         48         31         65         31         65         31         65         31         65         31         65         31         65         31         65         31         65         31         65         31         65         31         65         31         65         31         65         31         65         31         65         31         65         31         65         31         65         31         65         31         65         31         65         31         65         31         65         31         65         31         65         31         65         31         65         31         65         31         65         31         32		450	187	41	123	32	84	25	09	20	44	<u> </u>	, č	
550         268         60         176         46         121         36         86         28         64         23         46         27         56         57         48         117         33         74         27         56         57         48         117         33         74         27         56         57         48         117         33         74         27         56         31         65         133         74         27         56         31         65         133         74         27         56         31         65         133         74         27         56         31         65         131         65         131         65         131         65         131         65         131         65         131         65         131         65         131         65         131         65         131         65         131         65         131         65         131         65         131         65         131         65         131         65         131         65         131         65         131         65         131         65         131         65         131         133         133		500	226	50	148	68 9	102	30	73	24	23 33	<u>, 0</u>	00	<u>, c</u>
600         314         70         206         54         141         42         101         33         74         27         55         133         74         27         55         133         74         27         55         133         74         27         55         133         74         27         55         133         74         27         55         74         27         55         133         74         27         55         74         27         55         133         74         27         55         74         27         56         31         65         74         31         65         74         31         65         74         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31         31		550	268	60	176	46	121	36	86	28	64	0.0	γα	20
660         362         80         238         62         163         48         117         38         86         31         65           700         414         92         271         71         187         55         133         44         98         35         74           750         469         104         307         80         237         70         169         56         133         35         91         35         94         98         35         74         98         35         74         98         35         74         98         35         74         98         35         74         98         35         74         98         35         74         98         35         74         98         35         74         98         35         74         98         35         74         98         35         74         98         35         74         165         94         94         75         94         75         94         76         170         61         121         84         35         105         171         61         124         165         116         128         105 <t< th=""><th></th><th>600</th><th>314</th><th>70</th><th>206</th><th>54</th><th>141</th><th>42</th><th>101</th><th>33</th><th>74</th><th>27</th><th>) بر</th><th>200</th></t<>		600	314	70	206	54	141	42	101	33	74	27	) بر	200
700         414         92         271         71         187         55         133         44         98         35         74           800         526         117         345         90         211         63         151         50         111         40         84           800         556         130         385         100         237         70         169         56         125         44         98         35         74           950         571         130         385         100         265         78         189         56         125         94         87           950         717         159         470         122         323         96         57         170         61         128           970         717         159         470         122         323         96         57         170         61         128           1100         731         156         147         387         115         276         91         276         141           1100         859         191         563         147         387         115         276         91         203 <th></th> <th>650</th> <th>362</th> <th>80</th> <th>238</th> <th>62</th> <th>163</th> <th>48</th> <th>117</th> <th>88</th> <th>86</th> <th>31</th> <th>020</th> <th>0 1 1 1</th>		650	362	80	238	62	163	48	117	88	86	31	020	0 1 1 1
750         469         104         307         80         211         63         151         50         111         40         84           800         526         117         345         90         237         70         169         56         125         45         94           900         551         117         345         90         237         70         169         56         125         45         94           900         551         117         233         87         209         69         154         56         116           900         761         175         516         171         293         87         209         69         154         56         166           1000         853         191         563         147         387         115         276         91         203         74         153           1100         934         207         612         135         276         137         240         87         161         223           1150         1012         225         135         236         136         237         131         236         131 <t< th=""><th>i</th><th>200</th><td>414</td><td>92</td><td>271</td><td>71</td><td>187</td><td>55</td><td>133</td><td>44</td><td>80</td><td>- цо С</td><td>74</td><td>200</td></t<>	i	200	414	92	271	71	187	55	133	44	80	- цо С	74	200
800         526         117         345         90         237         70         169         56         125         45         94           950         587         130         385         100         265         78         189         62         139         50         105           950         651         144         427         111         293         87         209         69         154         56         116           950         77         159         470         122         323         96         231         76         170         61         128           950         787         175         516         134         355         105         253         84         186         67         141           1000         787         175         516         134         355         115         276         91         165           1100         934         207         612         159         471         125         374         153           1100         934         207         613         125         276         93         196           1200         1072         240	Flow rate	750	469	104	307	80	211	63	151	50		40	84	8 8
850         587         130         385         100         265         78         189         62         139         50         105           950         651         144         427         111         293         87         209         69         154         56         116           950         767         144         427         111         293         87         76         170         61         128           1000         787         175         516         134         355         105         233         76         170         61         128           1050         859         191         563         147         387         115         276         91         203         74         153           1100         934         207         612         159         421         125         301         99         221         80         167         141           1100         1012         225         663         173         456         135         326         107         240         87         167           1200         11262         280         168         426         135         326	ע ערוביינע	800	526	117	345	06	237	70	169	56	125	4	6	200
		850	587	130	385	100	265	78	189	62	139	50	105	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		006	651	144	427		293	87	209	69	154	56	110	45
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		950	717	159	470	122	323	96	231	76	170	61	128	205
859191563147387115 $276$ 91 $203$ 741539342076121594211253019922180167101222566317345613532610724087181101222566317345613532610724087181101222566317345613532610724087181117626177120153015737812527810121012622808272155691684061342991082251350300885230609180434143320116241144232094524665019346415334112325815363411<00726269220549416336413127416323621070279736218525173366131274163236210702797362185251733641312741632362107027973621852517336413127416323611637362185251733641312741632361163736218<		1 000	787	175	516	134	355	105	253	84	186	67	141	
934       207       612       159       421       125       301       99       221       80       167         1012       225       663       173       456       135       326       107       240       87       181         1012       225       663       173       456       135       326       107       240       87       181         1012       225       663       173       456       135       378       125       240       87       181         1176       261       771       201       530       157       378       125       278       101       210         1262       280       827       215       569       168       406       134       299       108       225         1350       300       885       230       193       464       153       320       116       241         1442       320       193       464       153       320       116       241         1536       341       1007       276       692       205       494       163       364       131       274         1632       365		1 050	859	191	563	147	387	115	276	91	203	74	15.3	90
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 100	934	207	612	159	421	125	301	66	221	08	167	о ц С
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 150	1 012	225	663	173	456	135	326	107	240	87	201	710
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 200	1 092	242	716	186	492	146	351	116	259	56	- 0 - 10 - 10	76
1262       280       827       215       569       168       406       134       299       108       225         1350       300       885       230       609       180       434       143       299       108       225         1442       320       945       246       650       193       464       153       341       123       258         1536       341       1007       262       692       205       494       163       364       131       274         1632       362       1070       279       736       218       525       173       386       140       293		1 250	1 176	261	771	201	530	157	378	125	278	101	010	) (a
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 300	1 262	280	827	215	569	168	406	134	000	- 01 - 01	- C - C	4 0
1     1     442     320     945     246     650     193     464     153     341     123     258       1     536     341     1     007     262     692     205     494     163     364     131     274       1     632     1     070     279     736     218     525     173     386     140     292		1 350	1 350	300	885	230	609	180	434	143	320	110	040	
1536         341         1007         262         692         205         494         163         364         131         274           1632         362         1070         279         736         218         525         173         364         131         274           1632         362         1070         279         736         218         525         173         386         140         292		1 400	1 442	320	945	246	650	193	464	153	341	10.0	- μ - μ - μ - μ - μ - μ - μ - μ - μ - μ	5 5
1 632 362 1 070 279 736 218 525 173 386 140 292		1 450	1 536	341	1 007	262	692	205	494	163	364	04.6	2 4 C	- 10
		1 500	1 632	362	1 070	279	736	218	525	173	386	140	292	114

 $l/min \times 0.264 = gal/min$ 

ued)	$p_{\rm ann} = N_4 B  (\rm kPa/100  m)$
TABLE OF COEFFICIENTS N ₄ (continued)	Calculation of pressure loss in hole/drill collar annulus $p_{ann} = N_4 B$ (kPa/100 m)

Hole size (in)	Drill collar outside	Flow rate Q (I/min)
	de diameter (in)	100 100 100 100 100 100 100 100
63	4 3/4	9876080000000000000000000000000000000000
3/4	5 1/2	666356665544640 66635666655483333257257888666666626666524833333574 666936665248666666666666748333333574 666936666524866666666666666666666666666666666
	y	028033333333333333333333333333333333333
7 7/8	6 1/4	532533333546556835377065853473585527471 535533358468877766883345577471 5355333584627268877766883345577471 53553335846277668877766883345577471 5355333585688777668877766883345577471 5355333585688777668877766883345577471 53553335857746776887776688777668877767777677777777
	6 3/4	666304 666304 666304 666304 666304 666304 666304 666304 74 777 73 8662 74 73 8662 74 73 8662 74 73 867 74 8662 74 73 867 74 8662 74 73 867 74 8662 74 73 867 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 8662 74 867 867 867 867 867 867 867 867 867 867
	9	00004000000000000000000000000000000
	6 1/4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 3/8	6 1/2	433360440327666844333332822674420 4633604403372666844333332822674420 4633604403372666844333332822674420 46336044032727266844333332822674470 463372740688877266844333332822674470
	6 3/4	2208880-122224700388788788722727873727 177880-1222711000388748872227272777 177880-122271100038874887222727777 177880-12227777777777777777777777777777777777
	7	33372288 33372288 33372288 3337228 3337228 33372 560 520 520 520 520 520 520 520 520 520 52
	9	00000000000000000000000000000000000000
	6 1/4	8887777666655576787878787878787878787878
8 1/2	6 1/2	1110 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
	6 3/4	- 46692238-1582606066683846517330663074297 - 4669258-158260606668384651733066307429 - 4669258-158260606666683846551733066307452 - 46669258-15826606666666666666666666666666666666666
	7	252 252 252 252 252 252 252 252 252 252

		1	
		11 1/4	42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 42024 420000000 4200000000
<u> </u>		10	00000040000000000000000000000000000
00 m)	12 1/4	9 1/2	000uuuuu444maarraaaaaaaaaaaaaaaaaaaaaaaaaaa
a/10		8	00000000000000004444000000000
(kPa/1		7 3/4	0000000
$N_4B$		8	0 0 0 0 0 0 0 0 0 0 0 0 0 0
11	7/8	7 3/4	0000400-00-0104080-0004080444400000440044004400440044
ued) <b>P_{ann}</b>	97	6 3/4	00000000440000000000004400000000000
4 (contin <b>nnulus</b>		6 1/2	00000000004440000000000000400000000
N ₄ (continued annulus p _{an}		7 1/4	22222066673333204211 22222066673333204211 22222066673333204211 22222066673333204211 22222066673333204211 22222066673333204211 22222066673333204211 2222206673333204211 2222206673333204211 222220667333204211 22222067333204211 22222067333204211 22222067333204211 2222206733204211 2222206733204211 22222073207320732073207320741 22222073207320732073207320741 2222207320732073207474 222220732074747474747474747474747474747474747474
<u> </u>		7	141444 6444 6444 7444 7444 7444 7444 744
S EN.	8 3/4	6 3/4	
FICII /drill		6 1/2	±2000000000000000000000000000000000000
COEF hole		6 1/4	0 0 0 0 0 0 0 0 0 0 0 0 0 0
н г		7 1/4	22207 32149 322207 322207 322207 3282207 32852 32852 32852 32852 32852 32852 32852 32852 32852 32852 32852 32852 32852 32852 32852 32852 32852 32852 32852 32852 32852 32852 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 32955 329555 329555 329555 329555 329555 329555 329555 329555 329555 329555 329555 329555 329555 329555 329555 329555 329555 329555 329555 3295555 3295555 3295555 3295555 3295555 32955555 3295555555555
		7	20807883820201110814848 20807883820201110814848 20807883820001110888874848 20807883332730776888469 20807883332730776868469 2080788333273077687848 20807887887776878487 20807887887877768784877777777777777777777
	8 5/8	6 3/4	132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 132111000 13211000 13211000 13211000 13211000 13211000 13211000 13211000 13211000 13211000 13211000 13211000 13211000 13211000 13211000 13210000000000
TAB pressure		6 1/2	00000000000000000000000000000000000000
of pr		6 1/4	00000000000000000000000000000000000000
Calculation o		de diameter (in)	100 150 250 350 350 350 350 350 350 350 350 350 3
Ca	Hole size (in)	Drill collar outside	Flow rate a (I/min)

G 61

 $l/min \times 0.264 = gal/min$ 

Calculation of pressure loss in hole/drill collar annulus  $p_{ann} = N_4 B$  (kPa/100 m) TABLE OF COEFFICIENTS N4 (continued)

	11 1/4	44         5500         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         5520         520
	10	445 445 555 555 555 555 555 555 555 555
12 1/4	9 1/2	0 0 0 0 0 0 0 0 0 0 0 0 0 0
	8	222222222222222222222222222222222222222
	7 3/4	222000000000000000000000000000000000000
-	8	109 114 114 114 114 114 114 114 114 114 11
7/8	7 3/4	77 884 95 95 1106 1110 1122 1128 1128 1128 1128 1128 1128
8/2 6	6 3/4	22222222222222222222222222222222222222
	6 1/2	10875555335008866622255555555555555555555555555555
	7 1/4	261 275 275 275 275 275 275 275 275 273 273 273 273 273 273 273 273 271 273 256 565 565 565 565 565 565 565 565 571 773 5665 6683 5665 572 773 773 773 773 773 773 773 773 773 7
	7	169 1769 1769 1924 1924 1925 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 19259 1
8 3/4	6 3/4	116 122 122 132 155 155 155 155 155 155 155 155 155 15
	6 1/2	888 9288 92884 1110 1110 1110 1110 1110 1110 1110 1
	6 1/4	66 66 66 66 66 66 66 66 66 66 66 66 77 75 94 1111 1111 1111 1111 1111 1111 1111
	7 1/4	343 354 355 356 356 357 456 456 552 553 556 553 556 553 553 553 553 553 553
	7	214 2233 2233 2243 2253 2263 2263 2263 2263 2375 2384 2375 5328 4477 504 4575 504 575 560 575 560 575 560 6619 6650 6650 6650 6650 6650 6650 6650 665
8 5/8	6 3/4	143 156 156 156 156 190 193 193 193 193 193 193 193 193 193 193
	6 1/2	201 202 202 202 202 202 202 202 202 202
	6 1/4	75 882 882 885 885 895 995 995 107 111 111 111 111 111 111 111 111 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1123 1222 1222 1222 1222 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 1233 123
	diameter (in)	2 050 2 150 2 150 2 250 2 2 2 200 2 2 2 2
Hole size (in)	Drill collar outside	Flow rate a (I/min)

 $l/min \times 0.264 = gal/min$ 

N4 (continued)	oss in hole/drill collar annulus $p_{ann} = N_4 B$ (kPa/100 m)	
TABLE OF COEFFICIENTS N4 (continued)	Calculation of pressure loss in hole/drill colla	

Hole size (in)	Drill collar outside	Flow rate Q (I/min)
	diameter (in)	22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 22200 2000 22200 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000000
	7 3/4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	8	~~2222222333300000000000000000000000000
15	9 1/2	იოოოო444ოიიიიიიიიიიიიიიიიიიიიიიიიიიიიი
	10	ww444wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
	11	00778000001110044007780070040008877000 0084887 0084887
	11 1/4	77888888888888888888888888888888888888
	7 3/4	000
	œ	00
	9 1/2	
17 1/2	10	
	11	иииииииииииииииииииииииииииииииии
	11 1/4	∽∽∽∽иииииииииииииииииииииииииииииииии
	14	007789900777007870788607787807800780078088888888

l/min × 0.264 = gal/min

TABLE OF COEFFICIENTS  $N_5$ Calculation of pressure loss in hole/pipe annulus  $p_{ann} = N_5B$  (kPa/100 m)

Hole size (in)	Nominal pipe size	Tool joint outside	Flow rate 0 (I/min)
	e (in)	e diameter (in)	100 250 250 250 250 250 250 250 250 250 2
	2 3/8	3 3/8	088887708862287088677877878888777888887778888887798888877988887798879877887989778778
	2 7/8	3 7/8	1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100
5 5/8		4 1/2	22255 2225 2225 2225 2233 2225 2233 2225 2233 2225 2233 2225 2233 2225 2233 2225 2233 2225 2233 2225 2233 2225 2233 2225 2233 2225 2233 2225 2233 2225 2233 2225 2233 225 225
	3 1/2	4 3/4	2233333 233333 233333 233333 23333 23333 23333 23333 23333 23333 23333 23333 23333 23333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 23
		Ð	55322 5332 5332 5332 5332 5332 5332 533
	2 3/8	3 3/8	00000000000000000000000000000000000000
	2 7,	3 7/8	
53	7/8	4 3/8	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
3/4		4 1/2	22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22105 22005 22005 22005 22005 22005 22005 22005 22005 22005 22005 22005 22005 22005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 20
	3 1/2	4 3/4	25532 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25230 25200 25230 25230 25230 25230 25230 25230 25230 25230 25200 25200 25200 25200 25200 25200 25200 25200 25200 25200 25200 25200 25200 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 2500000000
		2	222206 23281488 23283322206 23283322206 23281484 22206 23281484 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 22206 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 2000 200 200 200 200 200 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000000
	2 3/8	3 3/8	00000000000000000000000000000000000000
	2 7.	3 7/8	0-0000000000000000000000000000000000000
57	7/8	4 3/8	
7/8		4 1/2	87683-2722222222222222222222222222222222222
	3 1/2	4 3/4	2000-0010000000000000000000000000000000
		പ	00753320000888000025413307707 00754332000088800055443335207777 007543320000888800055443335207777

 $1/min \times 0.264 = gal/min$ 

Calculation of pressure loss in hole/pipe annulus  $p_{ann} = N_5 B$  (kPa/100 m) TABLE OF COEFFICIENTS N5 (continued)

31/2         4         31/2         4         31/2         4         31/2         4         4         31/2         4         4         1/2         4         31/2         4         1/2         4         31/2         4         31/2         4         31/2         4         1/2         4         1/2         4         1/2         4         1/2         4         1/2         4         1/2         4         1/2         4         31/2         4         5         51/4         51/4         51/2         4         5         51/4         51/2         4         5         51/4         51/2         4         5         51/4         51/2         4         5         51/4         51/2         4         5         51/4         51/2         4         5         51/4         51/2         4         5         51/4         51/2         4         51/2         51/2         4         51/2         51/2         4         51/2         51/2         4         51/2         51/2         4         51/2         51/2         4         51/2         51/2         4         51/2         51/2         51/2         51/2         51/2         51/2         51/2         51/2						4/20		
Ool joint outside diameter (in) $4$ $1/2$ $4$ $5$ $5$ $1/4$ $5$ $5$ $1/4$ $5$ $5$ $1/4$ $5$ $5$ $1/4$ $5$ $1/2$ $4$ $1/2$ $4$ $1/2$ $4$ $1/2$ $4$ $1/2$ $4$ $1/2$ $4$ $1/2$ $4$ $1/2$ $4$ $1/2$ $1/2$ $4$ $1/2$ $1/2$ $4$ $1/2$ $1/2$ $4$ $1/2$ $1/2$ $4$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$ $1/2$		3 1/2	4	3	8 1/2		4	
500         13         14         18         35         11         12         14         16         30         49           550         15         17         21         41         13         14         16         30         49           650         15         17         21         21         41         13         14         16         30         49           700         24         28         56         17         19         22         24         66           750         27         23         64         20         22         24         57         46         75           750         37         44         81         25         27         33         31         36         66         17         19         22         46         75           850         37         45         50         37         47         33         34         44         36         130           950         45         50         121         33         45         44         36         133           1050         54         56         121         33         45         57         <	5 5 1/4 5	-	5 1/4 5 1/2	4 1/2 4	3/4 5	2	1/4 5 1/2	9
550         15         17         21         41         13         14         16         30         49           600         18         20         24         48         15         16         19         35         57           700         21         23         28         56         17         21         23         25         46         75           700         24         26         37         26         37         27         22         24         29         55         57         46         75         57         35         57         36         66         106         35         57         32         35         57         32         35         57         32         35         57         35         57         35         35         57         35         35         35         35         35         35         36         106         106         35         36         106         106         35         35         36         36         106         35         35         36         36         106         106         106         106         106         106         106         106         106 <th>14 25</th> <th>9</th> <th>10</th> <th>ß</th> <th></th> <th></th> <th></th> <th>6.</th>	14 25	9	10	ß				6.
600         18         20         24         48         15         16         19         35         57           700         221         23         28         56         17         19         22         46         75           750         27         30         37         72         22         24         26         75           800         30         34         41         81         25         27         32         59         95           850         37         42         51         100         31         34         40         73         118           950         45         56         110         34         37         44         80         133           950         45         56         110         34         37         44         80         133           950         45         56         110         34         37         44         80         133           1100         54         66         106         34         45         49         57         104         169           1150         58         155         164         127         138 </th <th>16 30</th> <th>11 12</th> <th>23</th> <th>9</th> <th></th> <th></th> <th></th> <th>22</th>	16 30	11 12	23	9				22
650         21         23         28         56         17         19         22         40         66           700         24         26         33         72         22         24         25         46         75           700         24         26         32         64         27         32         55         64         75           800         30         34         41         81         25         27         32         59         95           800         37         46         90         28         31         36         66         106           850         37         46         90         28         31         36         66         106           950         41         46         56         61         102         34         41         48         80         130           1100         54         65         132         41         45         52         96         166         166           1150         58         50         161         73         143         80         133         143         143         163         143         163         142 </th <th>19 35</th> <th>13 14</th> <th>27</th> <th>2</th> <th></th> <th></th> <th></th> <th>26</th>	19 35	13 14	27	2				26
700         24         26         32         64         20         22         25         46         75           850         30         37         72         22         24         29         55         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         96         106         73         118         73         148         88         142         142         143         169         130         130         130         131         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133 <td>22 40</td> <td></td> <td>31 44</td> <td></td> <td>ං</td> <td>0 13</td> <td>15</td> <td>0 0 0 0 0</td>	22 40		31 44		ං	0 13	15	0 0 0 0 0
750         27         30         37         72         22         24         29         52         85         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         95         96         106         103         13         34         40         73         118         86         103         37         44         86         106         130         130         130         130         131         23         23         14         40         73         118         142         141         153         133         183         163         131         131         231         133         133         133         133         133         133         133         133         133         133         133         133         133         133         133	25 46	17 18	35	ດ				35
800         30         34         41         81         25         27         32         59         95           900         37         42         51         100         31         34         40         73         118           950         37         42         51         100         31         34         40         73         118           950         37         42         51         100         31         34         40         73         118           950         41         46         56         112         38         41         48         88         142           1000         45         50         61         121         38         41         48         88         142           1100         54         60         73         143         45         54         57         104         169           11100         58         65         132         44         57         104         169           11200         58         166         73         143         45         57         104         169           11200         58         194         60	29 52	19 20	40	10				39.68
850         34         37         46         90         28         31         36         66         106           950         37         42         51         100         31         34         40         73         118           950         37         42         51         100         31         34         40         73         118           950         41         46         56         112         38         41         48         88         142           1000         45         50         61         121         38         41         48         88         142           1100         54         60         73         143         45         52         96         156           1100         58         65         79         155         48         57         104         169           1200         68         75         92         181         56         113         183         133           1200         68         75         92         181         56         111         212         213         213         213         213         213           1300	32 59	21 23	45	1				44
900       37       42       51       100       31       34       40       73       118         950       41       46       56       110       34       37       44       80       130         1050       45       50       61       121       38       41       48       88       142         1050       45       50       61       121       38       41       45       52       96       156         1100       54       60       73       143       45       52       96       156         1150       58       65       79       155       48       53       62       113       183         1200       68       75       92       181       56       61       72       131       213         1200       68       75       92       181       56       61       72       133       213       213         1300       72       81       98       194       60       66       77       141       228         1300       72       81       105       227       63       75       145       261	36 66	24 25	50	13				49
950         41         46         56         110         34         37         44         80         130           1000         45         50         61         121         38         41         48         88         142           1050         54         55         67         132         41         45         52         96         156           1100         54         60         73         143         45         57         104         169           1150         58         65         79         155         48         53         62         113         183           1200         68         75         92         181         56         61         72         131         213           1200         68         75         92         181         56         61         72         131         213           1300         72         81         194         60         66         77         141         228           1300         72         81         194         60         66         77         141         278           1300         127         231         78	40 73	26 28	55	14				54
1000         45         50         61         121         38         41         48         88         142           1050         54         60         73         143         45         52         96         156           1100         54         60         73         143         45         59         57         104         169           1150         58         65         79         155         48         53         62         113         183           1200         68         75         92         181         56         61         72         131         213           1200         68         75         92         181         56         61         72         131         213           1300         72         81         194         60         66         77         141         228           1350         78         92         112         221         69         171         213         245           1450         88         106         172         131         213         213         213           1450         93         120         236         73 <td< th=""><th>44 80</th><th>29 31</th><th>61</th><th>15</th><th></th><th></th><th></th><th>60</th></td<>	44 80	29 31	61	15				60
1050         49         55         67         132         41         45         52         96         156           1100         54         60         73         143         45         49         57         104         169           1150         58         65         79         155         48         53         62         113         183           1200         63         70         85         168         52         57         67         122         198           1250         68         75         92         181         56         61         72         131         213           1300         72         81         194         60         66         77         141         228           1350         72         81         194         60         66         77         141         223           1400         83         92         112         221         69         171         223         296         171         213         245           1450         88         100         182         226         83         161         271         245         366         171	48 88	32 34	67	17				66
1100         54         60         73         143         45         49         57         104         169           1150         58         65         79         155         48         53         62         113         183           1200         63         70         85         168         52         57         67         122         198           1200         63         75         92         181         56         61         72         131         213           1300         72         86         105         207         64         70         82         161         228           1350         78         86         105         207         64         70         82         161         213           1400         83         92         112         221         69         75         88         161         261           1450         93         110         127         231         73         88         161         263           1450         93         110         135         266         83         101         118         233         2314           1550	52 96	34 37	73	18				72
1150         58         65         79         155         48         53         62         113         183           1260         63         70         85         168         52         57         67         122         198           1250         68         75         92         181         56         61         72         131         213           1300         72         81         98         194         60         66         77         141         228           1350         78         86         105         207         64         70         82         151         245           1400         83         92         112         221         69         75         88         161         261           1450         98         120         236         73         80         94         171         278           1450         98         100         182         236         73         80         94         171         278           1550         99         110         135         266         83         101         182         276         3314           1550	57 104	37 40	79	20				78
1200       63       70       85       168       52       57       67       122       198         1250       68       75       92       181       56       61       72       131       213         1350       72       81       98       194       60       66       77       141       228         1350       78       86       105       207       64       70       82       151       245         1400       83       92       112       221       69       75       88       161       261         1450       88       105       207       64       70       82       151       245         1450       88       105       207       64       70       82       161       261         1450       88       120       236       73       80       94       171       278         1550       99       110       135       266       83       101       182       276         1550       99       111       124       127       236       88       96       112       216       371         1550	62 113	41 44	86	22				84
1250 $68$ $75$ $92$ $181$ $56$ $61$ $72$ $131$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $213$ $228$ $151$ $228$ $161$ $221$ $28$ $161$ $221$ $228$ $88$ $161$ $228$ $88$ $161$ $228$ $88$ $161$ $221$ $245$ $171$ $228$ $88$ $161$ $221$ $245$ $100$ $182$ $236$ $111$ $212$ $231$ $121$ $236$ $331$ $121$ $232$ $286$ $1112$ $236$ $331$ $121$ $216$ $61$ $122$ $236$ $331$ $121$ $216$ $331$ $121$ $216$ $331$ $121$ $216$ $331$ $1212$ $216$ $331$ <th>67 122</th> <th>44 47</th> <th>83 83</th> <th>23</th> <th></th> <th></th> <th></th> <th>б Г</th>	67 122	44 47	83 83	23				б Г
1300       72       81       98       194       60       66       77       141       228         1350       78       86       105       207       64       70       82       151       245         1400       83       92       112       221       69       75       88       161       261         1400       83       92       112       221       69       75       88       161       261         1450       88       98       120       236       73       80       94       171       278         1550       94       104       127       251       78       85       100       182       296         1550       94       104       127       256       83       96       112       278         1550       99       110       135       266       83       96       112       276         1550       111       124       151       298       96       112       216       351         1600       117       143       288       96       112       216       351         1700       117       143	72 131	47 51	100	25				86 08
78       86       105       207       64       70       82       151       245         83       92       112       221       69       75       88       161       261         88       98       120       236       73       80       94       171       278         94       104       127       251       78       85       100       182       296         94       104       127       256       83       90       106       182       296         99       110       135       266       83       90       106       193       314         105       117       143       282       88       96       112       296       332         111       124       151       298       93       101       118       216       351         117       130       159       314       98       107       125       228       370         117       130       159       314       98       107       125       228       370         124       137       168       331       103       112       214       390	77 141	51 54	107	27				105
83       92       112       221       69       75       88       161       261         88       98       120       236       73       80       94       171       278         94       104       127       251       78       85       100       182       296         94       110       135       2566       83       90       106       193       314         105       117       143       282       88       96       112       276       332         111       124       151       298       93       101       118       216       351         117       130       159       314       98       107       112       205       332         117       130       159       314       98       107       118       216       351         124       137       168       331       103       112       121       298       370         130       145       176       348       103       112       121       241       390         131       159       156       341       103       112       241       39	82 151	54 58	115	29				113
88       98       120       236       73       80       94       171       278         94       104       127       251       78       85       100       182       296         99       110       135       266       83       90       106       193       314         105       117       143       282       88       96       112       205       332         111       124       151       298       93       101       118       216       351         117       130       159       314       98       107       125       228       370         117       130       159       314       98       107       125       228       370         124       137       168       331       103       112       131       241       390         130       145       176       348       108       118       138       253       410         137       152       185       366       114       124       145       266       431         137       159       195       384       119       130       157 <t< th=""><td>88 161</td><td>58 62</td><td>122</td><td>31</td><td></td><td></td><td></td><td>120</td></t<>	88 161	58 62	122	31				120
94       104       127       251       78       85       100       182       296         99       110       135       266       83       90       106       193       314         105       117       143       282       88       96       112       205       332         111       124       151       298       93       101       118       216       351         117       130       159       314       98       107       125       228       370         117       130       159       314       98       107       125       228       370         124       137       168       331       103       112       131       241       390         130       145       176       348       108       118       138       253       410         137       152       185       366       114       124       145       266       431         143       159       195       384       119       130       157       279       457       457	94 171	62 66	130	33				128
99       110       135       266       83       90       106       193       314         105       117       143       282       88       96       112       205       332         111       124       151       298       93       101       118       216       351         117       130       159       314       98       107       125       228       370         124       137       168       331       103       112       131       241       390         130       145       176       348       103       112       131       241       390         137       152       185       366       114       124       145       266       431         143       159       195       384       119       130       157       279       457       1	100 182	65 70	139	35				136
105       117       143       282       88       96       112       205       332         111       124       151       298       93       101       118       216       351         117       130       159       314       98       107       125       228       370         124       137       168       331       103       112       131       241       390         124       137       168       331       103       112       131       241       390         130       145       176       348       108       118       138       253       410         137       152       185       366       114       124       145       266       431         143       159       195       384       119       130       157       279       457       1	106 193	69 75	147	37				145
111     124     151     298     93     101     118     216     351       117     130     159     314     98     107     125     228     370       124     137     168     331     103     112     131     241     390       130     145     176     348     108     112     131     241     390       130     145     176     348     108     118     138     253     410       137     152     185     366     114     124     145     266     431       143     159     195     384     119     130     157     279     457     457	112 205	73 79	156	39				153
117         130         159         314         98         107         125         228         370           124         137         168         331         103         112         131         241         390           124         137         168         331         103         112         131         241         390           130         145         176         348         108         118         138         253         410           137         152         185         366         114         124         145         266         431           143         159         195         384         119         130         157         279         457         1	118 216	78 84	165	42				162
124         137         168         331         103         112         131         241         390           130         145         176         348         108         118         138         253         410           137         152         185         366         114         124         145         266         431           143         159         195         384         119         130         157         279         467         1	125 228	82 88	174	44				171
130         145         176         348         108         118         138         253         410           137         152         185         366         114         124         145         266         431           143         159         195         384         119         130         157         279         467         1	131 241	86 93	183	46				180
137 152 185 366 114 124 145 266 431 143 159 195 384 119 130 152 279 452 1	138 253	91 98	192	49				189
143 159 195 384 119 130 157 279 452 1	145 266	103	202	ນ 2				199
	152 279	108	212	54				209
167 204 402 125 136 160 292 474 1	160 292	113	222	56		<b></b>	·	219
<b>000</b> 157 175 213 421 131 143 167 306 496 1	167 306	118	233	59			····	229

Calculation of pressure loss in hole/pipe annulus  $p_{ann} = N_5 B$  (kPa/100 m) TABLE OF COEFFICIENTS  $N_5$  (continued)

<b></b>			r	
	2	6 3/8-7	6 3/8	00004400000000000000000000000000000000
3/4	4 1/2	6-6 3/8	9	-0000004400000000000000000000000000000
8	4	5 1/4-6	5 3/8	
	3 1/2	4 1/2-5	4 3/4	00000000044466660000000000000000000
	ß	6 3/8-7	6 5/16	233322222222222222222222222222222222222
5/8	4 1/2	6-6 3/8	6 1/16	00000044000000000000000000000000000000
85	4	5 1/4-6	5 1/2	000000044000000000000000000000000000
	3 1/2	4 1/2-5	5	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
	പ	6 3/8-7	6 1/2	кка 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 200 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2
1/2	4 1/2	6-6 3/8	6 3/16	00000044000000000000000000000000000000
81	4	5 1/4-6	5 1/2	-0000000444000000000000000000000000000
	3 1/2	4 1/2-5	4 3/4	00000000444000000000000000000000000
	ß	6 3/8-7	6 1/2	ж 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
/8	4 1/2	6-6 3/8	6 3/16	000000000000000000000000000000000000000
8 3/	4	5 1/4-6	5 3/8	-0000004400000000000000000000000000000
	3 1/2	4 1/2-5	4 3/4	
	4 1/2	6-63/8	6 1/4	44000000000000000000000000000000000000
7 7/8	4	5 1/4-6	5 1/2	00000000000000000000000000000000000000
	3 1/2	4 1/2-5	4 3/4	000000440000000000000000000000000000000
	size (in)	e diameter (in)	e diameter (in)	500 550 650 850 850 950 950 1100 1100 1100 1100 1100 1100
Hole size (in)	Nominal pipe siz	Tool joint outside	Average outside	Flow rate a (I/min)

 $l/min \times 0.264 = gal/min$ 

			_	
	5 1/2	7-7 1/2	7 1/4	000000000000000000000000000000000000000
17 1/2	ى.	6 3/8-7	6 1/2	000000000000000000000000000000000000000
	4 1/2	6-6 3/8	9	000000000000000000000000000000000000000
	5 1/2	7-7 1/2	7 1/4	000
15	2	6 3/8-7	6 1/2	0000
	4 1/2	6-6 3/8	9	00000
	5 1/2	7-7 1/2	7 1/4	-0000000004444000000000000000000000000
12 1/4	ъ	6 3/8-7	6 1/2	
	4 1/2	6-6 3/8	9	► ← ← ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩
	5 1/2	7-7 1/2	7 1/4	00000000000000000000000000000000000000
9 7/8	5	6 3/8-7	6 1/2	00000000000000000000000000000000000000
	4 1/2	6-6 3/8	9	4ºr@@r@@@000000044r@r@@00000000000000000
	(in)	diameter (in)	diameter (in)	1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Hole size (in)	Nominal pipe size (in)	Tool joint outside diameter (in)	Average outside d	Flow rate Q (1/min)

Calculation of pressure loss in hole/pipe annulus  $p_{ann} = N_5 B$  (kPa/100 m) TABLE OF COEFFICIENTS N5 (continued)

 $1/min \times 0.264 = gal/min$ 

EQUIVALENT LENGTHS FOR SPECIAL LINE CONNECTIONS (in meter)

The values given in the table are approximate averages.

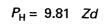
However, the table offers a quick way to find the pressure drops in a low pressure circuit. For a change in pipe size, the calculation is always carried out in relation to the smaller size (d).

mud pit outlet mud pit outlet mud pit outlet mud pit outlet mud pit inter mud pit inter mu	Equation 1.2 Equat	Equivalent length 4" 6" 4" 6" 1.1 1.1 1.8 1.1 1.8 2.7 4.5 2.7 4.5 5.4 9.0 5.4 9.0 5.4 9.0 5.4 9.0 5.4 6.3 3.8 1.6 3.6 3.6 3.6 3.7 4.5 5.4 9.0		for pipe size 8" 8" 8" 2.5 2.5 2.5 2.5 1.3 1.3 1.3 1.3 1.2 1. 1.2 1 1.3 1.2 1 1.3 1.3 1.3 1.2 1 1.3 1.3 1.3 1.4 1.4 1.5 1.4 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	ize 10″ 10″ 110″ 10″ 10″ 11.7 11.7 11.6 5.0 6.6 6.6 6.6	$\begin{array}{c} TES \\ TES \\$	3"         3"           3"         3"           1.5         1.0           1.3         3.6           1.3         3.6           1.3         3.6           1.3         3.6           1.3         3.6           1.3         3.6           1.3         3.6           1.3         3.6           1.3         3.6	Equivalent length for 4" 6" 4" 6" 4" 6" 4" 6" 4" 6" 4" 6" 4" 6" 4" 6" 4" 6" 4" 10.8 1.3 2.2 1.3 2.2 1.3 6.4 10.8 6.3 2.7 2.1 3.6 2.7 2.1 3.6 2.7 2.1 3.6 2.7 2.1 3.6 2.7 2.1 3.6 2.7 2.1 3.6 2.7 2.1 3.6 2.7 1.2 0.9 0.8 1.4 1.1 1.8 1.7 2.9 0.9 0.9 1.5 1.7 2.9 0.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.7 2.9 0.9 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	length for 6" 6" 10.8 12.6 1.3 10.8 1.2.6 1.3.6 2.2 3.6 8.5 8.5 1.4 1.4 1.4 1.4 1.4 1.3 2.5 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.2 2.2	pipe         pipe           11.0         11.0         11.0         11.0           11.0         11.0         11.0         11.0           11.0         11.0         11.0         11.0	size 10" 10" 10" 10" 10" 10" 10" 10" 10" 10"
= = = = = = = = = = = = = = = = = = =	2.3 2.3 2.3	0.8 3.2 3.2	5.4 5.4		2.5 6.6 10.0	direct flow valve	0.5	0.7	1.1 2.7 2.7	3.8	2.0 5.0

# Η

# drilling mud

_____


Relationship between mud weight and pressure head of mud	H1
Increase of mud specific gravity with barite ( $d = 4.2$ ) Weight (in kg) of barite to add to 1 m ³ of mud ( $M$ )	H2
Increase of mud specific gravity with calcium carbonate ( $d = 2.65$ ). Weight (in kg) of calcium carbonate to add to 1 m ³ of mud ( $M$ )	H3
Mud specific gravity reduction with water ( $d = 1$ ) Water volume in liters to add to 1 m ³ of mud ( $M$ )	H4
Mud specific gravity reduction with oil ( $d = 0.85$ ) Oil volume in liters to add to 1 m ³ of mud ( $M$ )	H5
Final volume $V_F$ (in liters) after adding weighting material of specific gravity $d_a$ to 1 m ³ of mud. $M_a$ weight of weighting material added (kg/m ³ )	H6
Mud volume (in liters) required to prepare 1 m ³ of mud weighted with barite ( $d = 4.2$ )	H7
Ternary diagram for determining solid content of mud (water base muds)	H8
Ternary diagram m for determining solid content of mud (saturated salt water mud)	H9
Properties of sodium chloride solutions	H10
Properties of calcium chloride solutions	H11
Properties of potassium chloride solutions	H12
Properties of sodium carbonate (Na ₂ CO ₃ ) solutions	H13

Properties of potassium carbonate (K ₂ CO ₃ ) solutions	H14
Properties of sodium bromide (NaBr) solutions	H15
Effect of temperature on densities of calcium chloride and sodium chloride solutions (Field Data Handbook, Dowel Schlumberger)	H16
Grain size classification of solids $(1\mu = 0.000001 \text{ m})$	H17
Shale shaker screens	H18
Screen standards	H19
Air/gas flow rate required for drilling. Data for calculating approximate circulation rates required to produce a minimum annular velocity which is equivalent in lifting power to a standard air velocity of 914 m/min (3000 ft/h)	H20

# RELATIONSHIP BETWEEN MUD WEIGHT AND PRESSURE HEAD OF MUD

	Mud weigh	rt	Fluid	d head
(kg/l)	(lb/gal)	(lb/ft ³ )	(psi/ft)	(kPa/m)
0.90	7.51	56.20	0.39	8.83
0.92	7.68	57.40	0.40	9.03
0.94	7.84	58.70	0.41	9.22
0.96	8.01	59.90	0.42	9.42
0.98	8.18	61.20	0.42	9.61
1.00	8.35	62.40	0.43	9.81
1.02 1.04	8.51	63.70	0.44	10.01
1.04	8.68 8.85	64.90	0.45	10.20
		66.20	0.46	10.40
1.08	9.01	67.40	0.47	10.59
1.10 1.12	9.18	68.70	0.48	10.79
1.12	9.35 9.51	69.90	0.49	10.99
1.14	9.68	71.20 72.40	0.49	11.18
1.18	9.85	73.70	0.50 0.51	11.38 11.58
1.10	10.01	74.90	0.51	11.58
1.22	10.01	76.20	0.52	11.97
1.24	10.35	77.40	0.54	12.16
1.26	10.51	78.70	0.55	12.36
1.28	10.68	79.90	0.55	12.56
1.30	10.85	81.20	0.56	12.75
1.34	11.18	83.70	0.58	13.15
1.38	11.52	86.10	0.60	13.54
1.42	11.85	88.60	0.62	13.93
1.46	12.18	91.10	0.63	14.32
1.50	12.52	93.60	0.65	14.72
1.54 1.58	12.85	96.10	0.67	15.11
1.56	13.19 13.52	98.60 101.10	0.69	15.50
1.66	13.85	103.60	0.70 0.72	15.89
1.70	14.19	105.00	0.72	16.28 16.68
1.74	14.52	108.60	0.74	17.07
1.78	14.85	111.10	0.77	17.46
1.82	15.19	113.60	0.79	17.85
1.86	15.52	116.10	0.81	18.25
1.90	15.86	118.60	0.82	18.64
1.94	16.19	121.10	0.84	19.03
1.98	16.52	123.60	0.86	19.42
2.02	16.86	126.10	0.88	19.82
2.06	17.19	128.60	0.89	20.21
2.10 2.14	17.52	131.10	0.91	20.60
2.14	17.86	133.60	0.93	20.99
2.18	18.19 18.53	136.10 138.60	0.95	21.39
2.22	18.86	138.60	0.96 0.98	21.78
2.30	19.19	141.10	1.00	22.17 22.56
			1.00	22.00

### Hydrostatic pressure



$$P_{\rm H}$$
 = hydrostatic pressure (kPa)

Z = vertical depth (m)

d = mud weight (kg/l)

#### **Conversion factors**

To convert from	Into	Multiply by
kg/l kg/l lb/gal lb/ft ³ lb/ft ³ kPa/m psi/ft	Ib/gal Ib/ft ³ Ib/ft ³ kg/I kg/I Ib/gal psi/ft kPa/m	8.3452 62.427 7.48082 0.11983 0.016019 0.13368 0.044213 22.618

INCREASE OF MUD SPECIFIC GRAVITY WITH BARITE (d = 4.2) Weight (in kg) of barite to add to 1 m³ of mud (M)

gravity d ₁ 1.05         1.10         1.15           1.00         67         135         207           1.05         67         68         138           1.10         67         68         138	1.15 1	-											-									
135 68	-	1.20 1.25	25 1.30	0 1.35	5 1.40	1.45	1.50	1.55	1.60	1.65	1.70	1.75	1.80	1.85	1.90	1.95	2.00	2.05	2.10	2.15	2.20	2.25
							778		696	1071	1176	1286	1400	1519	1643	1773	1909	2051		2356	2520	2692
		210 28					700		888	988	1092	1200	1313	1438	1552	1680	1814	1953	2100	2254		2585
							622		808	906	1008	1114	1225	1340	1461	1587	1718	1856		2151		2477
		70 142	12 217	7 295			544		727	824	924	1029	1138	1251	1370	1493	1623	1758		2049		2369
		~					467		646	741	840	943	1050	1162	1278	1400	1527	1660		1946		2262
			7.				389		565	659	756	857	963	1072	1187	1307	1432	1563		1844	1995	2154
				74	1 150	229	311	396	485	576	672	771	875	983	1096	1213	1336	1465	1600	1741		2046
					75		233		404	494	588	686	788	894	1004	1120	1241	1367		1639		1938
						76	156		323	412	504	600	700	804	913	1027	1145	1270		1537		1831
							78		242	329	420	514	613	715	822	933	1050	1172		1434		1723
									162	247	336	429	525	626	730	840	955	1074		1332		1615
									81	165	252	343	438	536	639	747	859	977		1229		1508
										82	168	257	350	447	548	653	764	879		1127		1400
											84	171	263	357	457	560	668	781		1024		1292
												86	175	268	365	467	573	684		922		1185
													88	179	274	373	477	586		820		1077
														68	183	280	382	488		717		969
															9	187	286	391		615		862
																93	191	293		512		754
								,									95	195		410		646
																		86		307		538
														* *-*		• •			100	205		431
																				102	210	323
																						215
												·										108

 $M = 4200 \frac{(d_2 - d_1)}{(4.2 - d_2)} \quad (\text{kg/m}^3)$ 

 $kg/m^3 \times 0.3505 = lb/bbl$ 

 $m^3 \times 6.29 = bbl$ 

kg × 2.20 = lb

INCREASE OF MUD SPECIFIC GRAVITY WITH CALCIUM CARBONATE (d = 2.65) Weight (in kg) of calcium carbonate to add to  $1 \text{ m}^3$  of mud (*M*)

Initial mud						ă	sired mu	d specific	Desired mud specific gravity $d_2$	42					
gravity d ₁	1.05	1.10	1.15	1.20	1.25	1.30	1.35	1.40	1.45	1.50	1.55	1.60	1.65	1.70	1.75
1.00	83	171	265	366	473	589	713	848	994	1152	1325	1514	1723	1953	2208
1.05		85	177	274	379	491	612	742	883	1037	1205	1388	1590	1813	2061
1.10			88	183	284	393	510	636	773	922	1084	1262	1458	1674	1914
1.15				91	189	294	408	530	663	807	964	1136	1325	1534	1767
1.20					95	196	306	424	552	691	843	1010	1193	1395	1619
1.25						86	204	318	442	576	723	883	1060	1255	1472
1.30							102	212	331	461	602	757	928	1116	1325
1.35								106	221	346	482	631	795	976	1178
1.40									110	230	361	505	663	837	1031
1.45										115	241	379	530	697	883
1.50					- <u>-</u>						120	252	398	558	736
1.55												126	265	418	589
1.60													133	279	442
1.65			<u> </u>							<u> </u>				139	294
1.70															147

 $kg \times 2.20 = lb$  m³ × 6.29 = bbl kg/m³ × 0.3505 = lb/bbl

(kg/m³)  $M = 2650 \frac{(d_2 - d_1)}{(2.65 - d_2)}$ 

gr o

1.60         1.65         1.70         1.75         1.80         1.36         1.30         1.35         2.00         2.05         2.10         2.15         2.20         2.25         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26         2.26 <th< th=""><th>전 Desired mud specific gravity $d_2$</th><th>Desired</th><th>Desired</th><th>Desired</th><th>Desired</th><th>Desired</th><th>Desired</th><th>Desired</th><th>Desired</th><th>Desired</th><th>je j</th><th><u>-</u></th><th>ds pnu</th><th>ecific</th><th>gravit</th><th>Y d₂</th><th></th><th></th><th>-</th><th>、 <del> </del></th><th></th><th></th><th>-</th><th></th><th>-</th><th></th></th<>	전 Desired mud specific gravity $d_2$	Desired	Desired	Desired	Desired	Desired	Desired	Desired	Desired	Desired	je j	<u>-</u>	ds pnu	ecific	gravit	Y d ₂			-	、 <del> </del>			-		-	
100         91         77         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7 <th>1.05         1.10         1.15         1.20         1.25         1.30         1.35         1.40</th> <th>1.10 1.15 1.20 1.25 1.30 1.35 1.40</th> <th>1.15 1.20 1.25 1.30 1.35 1.40</th> <th>1.20 1.25 1.30 1.35 1.40</th> <th>1.30 1.35 1.40</th> <th>1.35 1.40</th> <th>1.40</th> <th></th> <th></th> <th>1.45 1</th> <th>1.50 1</th> <th>1.55</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>··</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>2.25</th>	1.05         1.10         1.15         1.20         1.25         1.30         1.35         1.40	1.10 1.15 1.20 1.25 1.30 1.35 1.40	1.15 1.20 1.25 1.30 1.35 1.40	1.20 1.25 1.30 1.35 1.40	1.30 1.35 1.40	1.35 1.40	1.40			1.45 1	1.50 1	1.55								··						2.25
100         91         7         7         50         91           200         91         77         71         7         7         7           300         182         83         77         50         54         71         56           500         364         250         157         77         56         56         56           600         455         333         231         143         67         56         58         266         156         50           600         455         333         231         143         67         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         56         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45	1 000																									l
100         91         200         91         200         91         200         91         200         91         200         91         200         91         200         91         200         91         200         91         200         91         200         91         200         182         77         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7	2 000																				,					
100         91         200         91         52         154         71         56         53         55         157         77         56         56         154         71         56         56         154         71         56         56         154         71         56         56         154         71         56         154         71         56         154         71         56         53         233         231         143         67         56         53         233         231         133         63         56         56         56         56         56         56         56         56         56         56         56         45         56         45         56         45         56         45         56         45         56         45         56         45         56         45         56         45         56         45         56         45         45         46         47         375         294         222         116         115         53         256         145         45         45         45         45         45         45         45         45         45         45         45	3 000 1 000	1 000										ŧ									· · ·					
100         210         310         120         316         77         510         316         77         510         316         77         510         321         143         67         77         510         323         157         77         510         323         157         77         510         324         256         154         71         550         364         256         154         71         550         364         250         143         67         59         59         50         385         286         200         125         59         50         363         260         385         260         133         63         56         45         333         231         118         56         50         40         313         235         116         56         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45 <t< td=""><th>1 500 667</th><td>1 500 667</td><td>667</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	1 500 667	1 500 667	667																							
100         200         91           200         91         330         182         83           400         273         167         77         50           500         364         250         154         71           500         364         256         154         71           500         364         256         154         71           500         365         500         385         286         200           700         545         417         308         214         133         63           700         545         417         308         214         133         63         60         126         147         308           700         636         500         383         286         200         126         118         56         167         105         50           1100         903         756         615         500         400         313         235         167         105         50         45         45           1100         903         77         769         643         533         278         211         156         50         45<	5 000 2 000 1000 500	2 000 1000 500	1000 500	500	200																					
100         200         91         500         182         83         77         77         77         77         77         77         77         77         77         77         77         73         167         77         77         500         364         250         154         71         500         364         250         154         71         560         364         250         154         71         560         365         333         231         143         67         591         800         655         333         231         143         67         591         800         656         363         214         133         63         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561         561	6 000 2 500 1333 750 400	2 500 1333 750 400	1333 750 400	750 400		167	· 																			
100         200         91         500         154         71         500         91         500         154         71         500         154         71         500         333         167         77         500         364         250         154         71         500         364         250         154         71         560         364         250         154         71         303         231         143         67         500         417         308         214         133         65         500         385         286         200         125         59         56         333         231         143         66         500         417         308         214         133         65         50         385         286         200         125         59         56         500         400         313         255         160         48         118         56         50         400         313         235         167         105         50         445         41         43           1000         818         667         538         235         216         111         53         50         45         45         45	7 000 3 000 1667 1000 600 333	3 000 1667 1000 600 333	1667 1000 600 333	1000 600 333	333		143															•				
100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1110         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         1111         11111         1111         1111 <th< td=""><th>8 000 3 500 2000 1250 800 500 286</th><td>3 500 2000 1250 800 500 286</td><td>2000 1250 800 500 286</td><td>1250 800 500 286</td><td>500 286</td><td>286</td><td></td><td>125</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	8 000 3 500 2000 1250 800 500 286	3 500 2000 1250 800 500 286	2000 1250 800 500 286	1250 800 500 286	500 286	286		125																		
100         91         100         91         100         91         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         500         364         250         154         71         56         56         333         231         143         67         56         56         57         58         56         333         235         167         116         53         56         176         111         53         56         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45	9 000 4 000 2333 1500 1000 667 429 250	4 000 2333 1500 1000 667 429 250	2333 1500 1000 667 429 250	1500 1000 667 429 250	667 429 250	429 250	250	•			· · · .														<del></del>	
200         91         200         91           300         182         83           400         273         167         77           500         364         250         157         71           500         364         250         154         71           600         455         333         231         143         67           700         545         417         308         214         133         63           800         636         500         385         286         200         125         59           900         727         583         462         357         267         188         118         56           900         727         583         462         357         267         188         116         53           1100         818         667         538         235         167         105         50           1100         903         750         615         500         400         313         235         167         105         50           1100         818         667         533         233         235         278 <td< td=""><th>10 000 4 500 2667 1750 1200 833 571 375</th><td>4 500 2667 1750 1200 833 571 375</td><td>2667 1750 1200 833 571 375</td><td>1750 1200 833 571 375</td><td>833 571 375</td><td>571 375</td><td>375</td><td></td><td></td><td></td><td>100</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	10 000 4 500 2667 1750 1200 833 571 375	4 500 2667 1750 1200 833 571 375	2667 1750 1200 833 571 375	1750 1200 833 571 375	833 571 375	571 375	375				100															
300         182         83         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         70         364         250         154         71         308         214         133         67         59         70         545         333         231         143         67         50         385         286         200         125         59         80         63         667         387         280         116         56         90         727         583         462         333         250         176         111         53         616         617         105         50         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45	11 000 5 000 3000 2000 1400 1000 714	5 000 3000 2000 1400 1000 714	3000 2000 1400 1000 714	2000 1400 1000 714	1000 714	714		500				91														
400         273         167         77           500         364         250         154         71           600         455         333         231         143         67           700         545         417         308         214         133         63           700         545         417         308         214         133         63           700         545         417         308         214         133         63           900         727         583         462         357         267         188         118         56           900         727         583         429         333         250         176         111         53           11000         818         667         538         429         333         255         167         105         50           11100         909         750         615         500         400         313         235         167         105         50         45           1300         1001         817         716         617         50         45         45           1300         1001         816	12 000 5 500 3333 2250 1600 1167 857 625	5 500 3333 2250 1600 1167 857 625	3333 2250 1600 1167 857 625	2250 1600 1167 857 625	1167 857 625	857 625	625		-	······														~ <b>-</b>	· · ·	
500         364         250         154         71           700         455         333         231         143         67           700         545         417         308         214         133         63           800         636         500         385         286         200         125         59           900         727         583         462         357         267         188         118         56           900         727         583         462         357         267         188         118         56           1000         818         667         538         220         167         105         50           1100         909         750         615         500         400         313         235         167         105         50           1200         1000         833         692         571         467         375         294         222         158         100         48           1300         1091         917         769         643         533         260         141         53         45         45           1500         182	13 000 6 000 3667 2500 1800 1333	6 000 3667 2500 1800 1333 1000	3667 2500 1800 1333 1000	2500 1800 1333 1000	1333 1000	1000		750	_					77												
600         455         333         231         143         67           700         545         417         308         214         133         63           800         636         500         385         286         200         125         59           900         727         583         462         357         267         188         118         56           1000         818         667         538         429         333         250         176         111         53           11000         909         750         615         500         400         313         235         167         105         50           11000         909         750         615         500         400         313         235         167         105         50           1100         909         750         615         500         400         313         235         167         105         50           1200         1091         917         769         643         533         278         211         150         95         45           1400         1182         1000         886         714	14 000 6 500 4000 2750 2000 1500 1143 875	6 500 4000 2750 2000 1500 1143 875	4000 2750 2000 1500 1143 875	2750 2000 1500 1143 875	1500 1143 875	1143 875	875		-						71											į
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 000 7 000 4333 3000 2200 1667 1286	7 000 4333 3000 2200 1667 1286	4333 3000 2200 1667 1286	3000 2200 1667 1286	1667 1286	1286		8	• •							67										
800         636         500         385         286         200         125         59         56           900         727         583         462         357         267         188         118         56           1000         818         667         538         429         333         250         176         111         53         50           1100         909         750         615         500         400         313         235         167         105         50           1100         903         750         615         500         400         313         235         167         105         50           1200         1000         833         692         571         467         375         294         222         158         100         48           1300         1091         917         769         643         533         278         211         150         95         45           1400         1182         1000         846         714         600         500         412         333         263         270         143         91         43           1500         127	16 000 7 500 4667 3250 2400 1833 1429	7 500 4667 3250 2400 1833 1429	4667 3250 2400 1833 1429	3250 2400 1833 1429	1833 1429	1429		125	~								83									
900         727         583         462         357         267         188         118         56           1000         818         667         538         429         333         250         176         111         53           11100         909         750         615         500         400         313         235         167         105         50           1200         1000         833         692         571         467         375         294         222         158         100         48           1300         1001         917         769         643         533         236         278         211         150         95         45           1400         1182         1000         846         714         600         500         412         333         263         200         143         91         43           1500         1273         1083         923         734         333         263         200         143         91         43           1500         1273         1083         923         733         265         444         368         300         238         143	17 000 8 000 5000 3500 2600 2000 1571 1250	8 000 5000 3500 2600 2000 1571 1250	5000 3500 2600 2000 1571 1250	3500 2600 2000 1571 1250	2000 1571 1250	1571 1250	1250		<b>_</b>									59								
1000         818         667         538         429         333         250         176         111         53         50         400         313         235         167         105         50         46         313         235         167         105         50         48         48         46         313         235         167         105         50         48         46         313         235         167         105         50         48         46         313         235         167         105         50         48         46         313         235         278         211         150         45         45         45         46         375         294         222         168         100         48         45         45         45         47         373         263         278         45         45         45         46         47         389         316         250         143         43           1400         1364         1167         1000         857         733         625         529         444         368         300         136         43           1600         1364         167         529	18 000 8 500 5333 3750 2800 2167 1714	8 500 5333 3750 2800 2167 1714	5333 3750 2800 2167 1714	3750 2800 2167 1714	2167 1714	1714		375	÷										56				<u>.                                    </u>			
1100         909         750         615         500         400         313         235         167         105         50         48           1200         1000         833         692         571         467         375         294         222         158         100         48           1300         1091         917         769         643         533         438         353         278         211         150         95         45           1400         1182         1000         846         714         600         500         412         333         263         200         143         91         43           1500         1273         1083         923         786         667         563         471         389         316         250         190         136         87         42           1600         1364         1167         1000         857         733         625         529         444         368         300         238         130         130         837         42           1600         1364         1167         733         625         529         444         368         300	19 000 9 000 5667 4000 3000 2333 1857	9 000 5667 4000 3000 2333 1857	5667 4000 3000 2333 1857	4000 3000 2333 1857	2333 1857	1857		500												53						
1200         1000         833         692         571         467         375         294         222         158         100         48         45         375         294         222         158         100         48         45         467         375         294         222         158         100         48         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45 <th< td=""><th>20 000 9 500 6000 4250 3200 2500 2000</th><td>9 500 6000 4250 3200 2500 2000</td><td>6000 4250 3200 2500 2000</td><td>3200 2500 2000</td><td>2500 2000</td><td>2000</td><td></td><td>625</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>50</td><td></td><td></td><td></td><td></td><td></td></th<>	20 000 9 500 6000 4250 3200 2500 2000	9 500 6000 4250 3200 2500 2000	6000 4250 3200 2500 2000	3200 2500 2000	2500 2000	2000		625	1												50					
1300         1091         917         769         643         533         438         353         278         211         150         95         45           1400         1182         1000         846         714         600         500         412         333         263         200         143         91         43           1500         1273         1083         923         786         667         563         471         389         316         250         190         136         87         42           1600         1364         1167         1000         857         733         625         529         444         368         300         238         182         130         83	21 000 10 000 6333 4500 3400 2667 2143	10 000 6333 4500 3400 2667 2143	6333 4500 3400 2667 2143	3400 2667 2143	2667 2143	2143	-	750	<u>-</u>												•	48				·
1400         1182         1000         846         714         600         500         412         333         263         200         143         91         43           1500         1273         1083         923         786         667         563         471         389         316         250         190         136         87         42           1600         1364         1167         1000         857         733         625         529         444         368         300         238         182         130         83	22 000 10 500 6667 4750 3600 2833 2286 1875	10 500 6667 4750 3600 2833 2286 1875	6667 4750 3600 2833 2286 1875	3600 2833 2286 1875	2833 2286 1875	2286 1875	1875		ï,													<u></u>	45			
1500         1273         1083         923         786         667         563         471         389         316         250         190         136         87         42           1600         1364         1167         1000         857         733         625         529         444         368         300         238         182         130         83	000 11 000 7000 5000 3800 3000 2429 2000	11 000 7000 5000 3800 3000 2429 2000	7000 5000 3800 3000 2429 2000	3800 3000 2429 2000	3000 2429 2000	2429 2000	2000		-															 ဌ		
1600         1364         1167         1000         857         733         625         529         444         368         300         238         182         130         83	11 500 7333 5250 4000 3167 2571	11 500 7333 5250 4000 3167 2571	7333 5250 4000 3167 2571	4000 3167 2571	3167 2571	2571		125	÷						_								·		2	
	000 12 000 7667 5500 4200 3333	12 000 7667 5500 4200 3333 2714	7667 5500 4200 3333 2714	4200 3333 2714	3333 2714	2714		250	1	1889 16		-						-								40

 $M = 1000 \frac{(d_2 - d_1)}{(d_2 - 1)}$  (liters/m³)

MUD SPECIFIC GRAVITY REDUCTION WITH OIL (d = 0.85) Oil volume in liters to add to 1 m 3  of mud (M)

2.25 2.20 2.15 77 115 2.10 160 2.05 83 125 167 208 2.00 87 130 174 217 261 1.95 91 136 136 182 227 273 318 1.90 95 143 143 143 190 190 238 238 238 333 333 381 1.85 100 150 250 350 350 450 1.80 105 158 211 2213 263 316 421 474 526 Desired mud specific gravity  $d_2$ 1.75 111 167 167 222 278 278 333 333 389 444 556 556 556 1.70 1176 176 176 235 294 471 471 471 529 588 588 588 706 1.65 125 125 188 188 250 250 563 563 625 688 688 688 813 1.60 2200 2200 2267 2267 2267 267 600 667 6600 667 733 867 733 867 933 1.55 154 231 308 385 538 615 692 692 692 692 769 846 923 923 923 1000 1000 1.50 1.45 182 273 364 455 545 545 636 636 636 636 818 818 818 818 909 1000 1.40 1364 1636 1.35 200 300 500 600 700 1600 222 333 444 556 667 778 667 778 889 889 1000 11111 1111 2111 1444 1556 1.30 250 375 500 625 625 750 875 1750 11250 11250 11250 11250 11250 11250 11250 11250 2125 2625 1.25 286 429 571 714 857 2857 3000 3143 1143 1286 1.20 500 667 833 1167 1333 1500 1667 2000 2167 3000 3167 3667 1.15 1.10 600 800 1200 1600 22000 22000 22000 22000 22000 22600 4400 4600 3400 4500 ' 500 750 1000 11250 1750 22500 22500 22500 2750 3250 3500 3750 4250 5000 5250 5750 6000 6250 1.05 gravity d₁ 1.110 1.125 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.2555 1.2555 1.2555 1.2555 1.2555 1.2555 1.2555 1.2555 1.2555 1.2555 1. 2.15 2.20 2.25 2.25 2.30 specific bu<u>m</u> leitinl

 $| \times 0.264 = \text{gal}$  m³ × 6.29 = bbl l/m³ × 0.042 = gal/bbl

(liters/m³)  $(d_2 - 0.85)$  $(d_2 - d_1)$ H Z

## FINAL VOLUME $V_{\rm F}$ (IN LITERS) AFTER ADDING WEIGHTING MATERIAL OF SPECIFIC GRAVITY $d_a$ TO 1 m³ OF MUD $M_a$ weight of weighting material added (kg/m³)

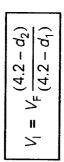
d _a M _a	2.75	2.70	2.65	2.60	2.55	2.50	d _a M _a	4.40	4.35	4.30	4.25	4.20	4.15
50	1018	1019	1019	1019	1020	1020	50	1011	1011	1012	1012	1012	1012
100	1036	1037	1038	1038	1039	1040	100	1023	1023	1023	1024	1024	1024
150	1055	1056	1057	1058	1059	1060	150	1034	1034	1035	1035	1036	1036
200	1073	1074	1075	1077	1078	1080	200	1045	1046	1047	1047	1048	1048
250	1091	1093	1094	1096	1098	1100	250	1057	1057	1058	1059	1060	1060
300	1109	1111	1113	1115	1118	1120	300	1068	1069	1070	1071	1071	1072
350	1127	1130	1132	1135	1137	1140	350	1080	1080	1081	1082	1083	1084
400	1145	1148	1151	1154	1157	1160	400	1091	1092	1093	1094	1095	1096
450	1164	1167	1170	1173	1176	1180	450	1102	1103	1105	1106	1107	1108
500	1182	1185	1189	1192	1196	1200	500	1114	1115	1116	1118	1119	1120
550	1200	1204	1208	1212	1216	1220	550	1125	1126	1128	1129	1131	1133
600	1218	1222	1226	1231	1235	1240	600	1136	1138	1140	1141	1143	1145
650	1236	1241	1245	1250	1255	1260	650	1148	1149	1151	1153	1155	1157
700	1255	1259	1264	1269	1275	1280	700	1159	1161	1163	1165	1167	1169
750	1273	1278	1283	1288	1294	1300	750	1170	1172	1174	1176	1179	1181
800	1291	1296	1302	1308	1314	1320	800	1182	1184	1186	1188	1190	1193
850	1309	1315	1321	1327	1333	1340	850	1193	1195	1198	1200	1202	1205
900	1327	1333	1340	1346	1353	1360	900	1205	1207	1209	1212	1214	1217
950	1345	1352	1358	1365	1373	1380	950	1216	1218	1221	1224	1226	1229
1000	1364	1370	1377	1385	1392	1400	1000	1227	1230	1233	1235	1238	1241
1050	1382	1389	1396	1404	1412	1420	1050	1239	1241	1244	1247	1250	1253
1100	1400	1407	1415	1423	1431	1440	1100	1250	1253	1256	1259	1262	1265
1150	1418	1426	1434	1442	1451	1460	1150	1261	1264	1267	1271	1274	1277
1200	1436	1444	1453	1462	1471	1480	1200	1273	1276	1279	1282	1286	1289
1250	1455	1463	1472	1481	1490	1500	1250	1284	1287	1291	1294	1298	1301
1300	1473	1481	1491	1500	1510	1520	1300	1295	1299	1302	1306	1310	1313
1350	1491	1500	1509	1519	1529	1540	1350	1307	1310	1314	1318	1321	1325
1400	1509	1519	1528	1538	1549	1560	1400	1318	1322	1326	1329	1333	1337
1450	1527	1537	1547	1558	1569	1580	1450	1330	1333	1337	1341	1345	1349
1500	1545	1556	1566	1577	1588	1600	1500	1341	1345	1349	1353	1357	1361
1550	1564 1582	1574	1585	1596	1608	1620	1550	1352	1356	1360	1365	1369	1373
1600 1650		1593 1611	1604 1622	1615	1627 1647	1640	1600 1650	1364	1368	1372 1384	1376	1381 1393	1386
1700	1600 1618	1630	1623 1642	1635 1654	1667	1660 1680	1700	1375 1386	1379 1391	1304	1388 1400		1398
	1636		1642		1686	1700						1405 1417	1410
1750 1800	1655	1648 1667	1679	1673 1692	1706	1720	1750 1800	1398 1409	1402 1414	1407 1419	1412 1424	1417 1429	1422
1850	1673	1685	1679	1712	1725	1720	1850	1409	1414	1419	1424	1429 1440	1434 1446
1900	1673	1704	1717	1731	1725	1760	1900	1420	1425	1430	1435	1440	1440
1900	1709	1704	1736	1750	1745	1780	1900	1432	1437	1442	1447	1452	1458
2000	1709	1722	1755	1769	1784	1800	2000	1445	1440	1455	1459	1404	1470

 $l \times 0.00629 = bbl$  kg  $\times 2.20 = lb$ 

$$V_{\rm F} = \left(V_{\rm I} + \frac{M_a}{d_a}\right)$$

 $V_{\rm F}$  = final volume (I)

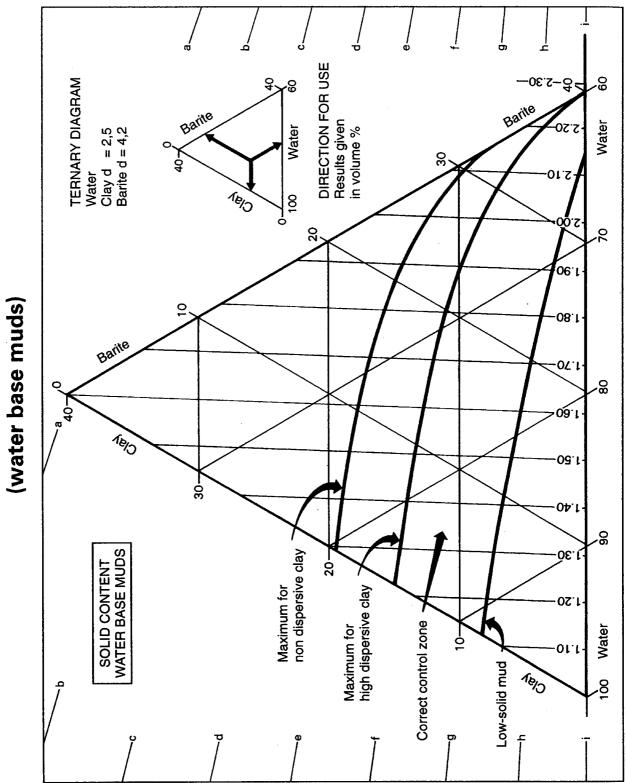
 $V_{\rm I}$  = initial volume = 1000 l


 $M_a$  = weight of weighting material (kg)

 $d_a$  = specific gravity of weighting material

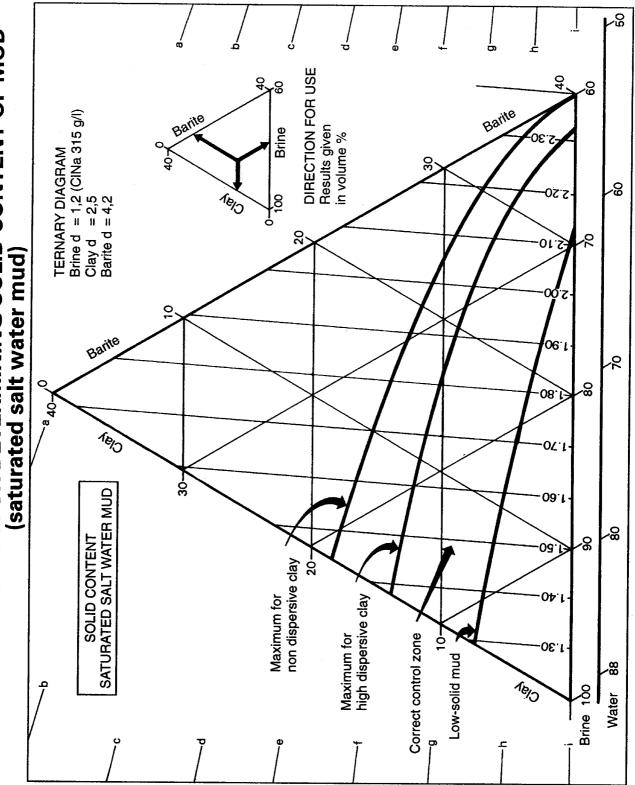
MUD VOLUME (IN LITERS) REQUIRED TO PREPARE 1 m³ OF MUD WEIGHTED WITH BARITE (d = 4.2)

2.25 2.20 2.15 641 653 6672 6672 6672 707 719 6673 779 779 779 779 779 8887 774 8887 778 8872 7788 8872 788 8872 9891 19911 9976 953 2.10 2.05 2.00 688 698 710 771 772 772 772 772 772 772 777 772 880 8815 8815 8815 8815 8815 917 8936 957 878 1.95 1.90 1.85 734 758 758 770 770 783 810 825 833 825 8339 8255 8339 8255 8255 8255 8250 8264 922 922 959 979 1.80 Desired mud specific gravity d₂ 1.75 766 778 778 8803 8817 8817 8817 8817 8875 8891 8875 8891 9255 9422 961 1.70  $\begin{array}{c} 781 \\ 794 \\ 820 \\ 820 \\ 820 \\ 823 \\ 823 \\ 823 \\ 823 \\ 823 \\ 827 \\ 823 \\ 827 \\ 829 \\ 829 \\ 829 \\ 829 \\ 829 \\ 829 \\ 829 \\ 829 \\ 829 \\ 829 \\ 829 \\ 829 \\ 829 \\ 829 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\ 820 \\$ 1.65 797 810 823 823 850 850 850 850 895 911 927 944 962 981 1.60 828 841 855 869 869 883 883 914 914 930 946 964 981 1.55 1.50 844 857 871 871 885 900 915 931 947 964 1.45 859 873 887 902 917 932 948 948 985 1.40 875 889 903 918 933 949 949 982 982 1.35 891 905 919 934 950 983 1.30 906 921 951 967 983 1.25 922 937 952 967 983 1.20 938 952 968 984 1.15 953 968 984 1.10 969 984 1.05 984 ¹ρ γπνειθ specific bum leitial


 $| \times 0.00629 = bbl$ 



= initial volume of specific gravity  $d_1$  $V_{\rm F}$  = initial volume of specifi  $V_{\rm F}$  = final volume of mud  $d_2$ 


here  $V_{\rm F} = 1000$ 





)

TERNARY DIAGRAM FOR DETERMINING SOLID CONTENT OF MUD



<b>RIDE SOLUTIONS</b>	
CHLORID	
OF SODIUM (	
PROPERTIES	

. رو

S S	Solution weight	Materials to prepar	Materials to prepare 1 m ³ of solution		
at 15.6°C	at 15.6°C (kg/m ³ )	Salt NaCl (kg)	Freshwater (m ³ )		Apploannate % NaCl
1.007	1006.3	8.56	0.998	- 0.50	-
1.019	1018.3	25.68	0.993	- 1.70	ო
1.031	1030.3	45.65	0.986	- 2.80	4
1.043	1042.3	62.77	0.981	- 3.30	9
1.055	1054.2	79.89	0.976	- 4.40	7
1.067	1066.2	99.86	0.969	- 5.60	თ
1.079	1078.2	116.98	0.962	- 7.20	11
1.091	1090.2	134.10	0.952	- 8.30	12
1.103	1102.2	154.07	0.948	- 10.00	14
1.115	1114.1	174.04	0.940	- 11.70	15
1.127	1126.1	194.02	0.933	- 12.80	17
1.139	1138.1	211.14	0.926	- 14.40	18
1.151	1150.1	231.11	0.919	- 16.10	20
1.163	1162.1	251.08	0.909	- 18.30	21
1.175	1174.0	271.05	0.902	- 20.60	23
1.187	1186.0	291.03	0.895	- 15.00	24
1.199	1198.0	311.00	0.888	- 3.90	26

 $kg/m^3 \times 0.00835 = lb/gal$  kg × 2.20 = lb m³ × 6.29 = bbl

PROPERTIES OF CALCIUM CHLORIDE SOLUTIONS

Approximate % anhydrous Cacl₂ c တ 1 Freezing point - 2.20 - 3.90 - 14.40 - 17.80 - 22.20 - 27.80 - 33.90 - 41.70 - 50.60 - 0.56 - 6.10 - 8.30 - 30.00 - 17.80 - 2.78 - 11.10 6.67 15.60 21.10 () ) Freshwater (m³) 395 0.983 0.933 0.914 0.895 0.879 0.855 0.833 0.817 0.817 0.795 0.779 0.779 0.755 0.967 0.950 0.709 0.688 0.659 0.629 With a normal CaCl₂ content (77 to 80%) Materials to prepare 1 m³ of solution 122.69 416.57 45.65 85.60 162.63 456.51 499.31 205.43 245.37 285.32 330.97 373.77 542.11 587.76 CaCl₂ (kg) 11.41 633.41 676.21 724.71 778.92 Freshwater (m³) 0.988 0.998 0.993 0.979 0.971 0.962 0.950 0.943 0.919 0.912 0.900 0.893 0.879 0.864 0.931 0.855 0.843 0.826 0.809 With a high CaCl₂ content (94 to 97%) 131.25 165.48 199.72 231.11 8.56 37.09 68.48 <u>99.86</u> 268.20 302.44 336.68 405.15 439.39 476.48 513.57 547.81 587.76 630.55 370.91 (kg) Solution weight at 15.6°C (kg/m³) 1413.6* 1437.6* 1317.8 1341.8 1245.9 006.3 030.3 054.2 1078.2 102.2 1174.0 1198.0 1222.0 1269.9 1293.8 1389.7 1365.7 1126.1 1150.1 Sp. Gr. at 15.6°C 1.415* 1.439* 1.127 1.151 1.175 .199 .223 1.247 1.271 1.295 1.319 1.367 1.391 .030 0.055 1.079 I.103 .343 .00

* Calculated values, since at 15.6°C, these are not liquids.  $kg/m^3 \times 0.00835 = lb/gal kg \times 2.20 = lb m^3 \times 6.29 = bbl$ 

**PROPERTIES OF POTASSIUM CHLORIDE SOLUTIONS** 

Approximate % kCl  $\sim$ Freezing point (°C) -0.56+ 1.1 - 1.7 - 2.8 - 2.8 - 2.8 - 2.8 - 2.8 - 3.3 - 5.6 - 6.7 - 8.3 - 9.4 - 1.1 - 10.6 - 1.1 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - 1.7 - Freshwater (m³) Materials to prepare 1 m³ of solution 0.995 0.990 0.983  $\begin{array}{c} 0.974\\ 0.967\\ 0.957\\ 0.948\\ 0.938\\ 0.929\\ 0.917\\ 0.883\\ 0.883\end{array}$ 11.4 20.0 39.9 62.8 82.8 105.6 176.9 202.6 225.4 225.4 251.1 255.4 (kg) Solution weight at 15.6°C (kg/m³) 1002.73 1009.91 1021.89 1021.89 10248.25 1061.43 1074.61 1088.98 1102.16 1116.54 1130.91 1134.19 1160.86 Sp. Gr. at 15.6°C 1.005 1.011 1.024 1.037 1.050 1.063 1.063 1.063 1.063 1.104 1.119 1.119 1.162 1.162

 $kg/m^3 \times 0.00835 = lb/gai$  kg × 2.20 = lb m³ × 6.29 = bbl

PROPERTIES OF SODIUM CARBONATE (Na₂CO₃) SOLUTIONS

	Approximate	% Anhydrous Na ₂ CO ₃	A%	,	<b>,</b>	7	ო	4	ß	9	7	- 0	0 0	א ל	2;		12	13	10	<u>1</u>
	Freezina point	(°C)	Δ		- U.4	- 0.8		- 1.4	1 8.	- 2.1										
	L	ated salt	Freshwater (m ³ )	100.0	0.301	0.904	0.946	0.928	0.908	0.889	0.869	0.848	0 877	0.805	0.000	0.00	0./00	0./3/	0.713	0.689
	Materials to prepare 1 m ³ of solution	With hydrated salt	Na ₂ CO ₃ 10 H ₂ O (kg)	977 77	247.14 240	010.00	83.37U	141 203	141./5/	1/1./93	202.410	233.593	265.368	297 741	330.693	264 265		398.435	433.241	468.681
	Materials to prep	With anhydrous salt	Freshwater (m ³ )	666.0	0000		0000	00000	0.000	188.0	0.996	0.995	0.994	0.993	0.991	080		0.000	0.986	0.984
		With anhy	Na ₂ CO ₃ (kg)	10.09	20.38	30.88	41 59	50 F1	10.70 R0 R1		/4.98	86.53	98.30	110.29	122.50	134.93	147 50		100.48	173.61
	Concentration	g/i or kg/m°	ບຶ	10.09	20.38	30.88	41.59	52.51	63.64		/4.38	86.53	98.30	110.29	122.50	134.93	147 59	160.40	07.001	173.61
		solution	(kg/m ³ )	1008.6	1019.0	1029.4	1039.8	1050.2	1060.6	1071 1	1.1.101	1081.6	1092.2	1102.9	1113.6	1124.4	1135.3	1146 3		1157.4
- H0	gravity	at 20°C	<b>D</b> ²⁰	1.010	1.021	1.031	1.042	1.052	1.063	1 073		1.084	1.094	1.105	1.116	1.126	1.137	1.148		1.160
Doloti or iteloa	density	at 20°C	$\rho$ or $D_4^{20}$	1.009	1.019	1.029	1.040	1.050	1.061	1 071	1 00.1	700.1	1.092	1.103	1.114	1.124	1.135	1.146	1 7 7	/01.1

SOLUTIONS
ATE (K ₂ CO ₃ )
CARBONATI
<b>ES OF POTASSIUM</b>
ERTIES OF I
PROPE

Approximate % Anhydrous K ₂ CO ₃	A%	¢	- 6	4 0	o <	1 LT	) (C	2	ω	о О	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	52
Freezing point (°C)	Φ	- 03	2.0		1  - c	 	1 2 0	- 2.4	- 2.8	- 3.2	- 3.6	- 4.4	- 5.4	- 6.4	- 7.6	1 8.8		- 12.0		- 16.0		- 21.5	-	- 28.6		- 37.6						
Materials to prepare 1 m ³ of solution with anhydrous salt	Freshwater (m ³ )	0.997	0000	0.000		0.990	066.0	0.988	0.986	0.984	0.981	0.976	0.971	0.965	0.959	0.952	0.945	0.936	0.928	0.918	606.0	0.898	0.887	0.875	0.862	0.849	0.834	0.819	0.804	0.787	<u></u>	0.752
Materials to prepar with anhy	K ₂ CO ₃ (kg)	10.07	20.23	20.02	00.10	41.30 57 19	63.17	74.35	85.72	97.28	109.04	133.14	158.07	183.84	210.46	237.96	266.40	295.68	325.98	357.14	389.39	422.53	456.77	491.94	528.33	565.68	604.28	643.85	684.83	726.82	770.20	814.53
Concentration g/l or kg/m ³	ဒိ	101	- CC		0.00	4 - 1 70 - 1	63.2	74.4	85.7	97.3	109.0	133.1	158.1	183.8	210.5	238.0	266.4	295.7	326.0	357.1	389.4	422.5	456.8	491.9	528.3	565.7	604.3	643.9	684.8	726.8	770.2	814.5
Solution weight	(kg/m)	1007	1016	1010	1020	1044	1053	1062	1072	1081	1090	1110	1129	1149	1169	1190	1211	1232	1254	1276	1298	1320	1343	1367	1390	1414	1439	1463	1489	1514	1540	1566
Specific gravity at 20°C	<b>D</b> ²⁰	1 009	a10.1	2 - 0 - C	10.27	1.030	1 055	1.064	1.073	1.083	1.092	1.112	1.131	1.151	1.171	1.192	1.213	1.234	1.241	1.278	1.301	1.323	1.347	1.369	1.393	1.417	1.440	1.466	1.491	1.517	1.543	1.569
Relative density at 20°C	$p \text{ or } \mathbf{D}_4^{20}$	1 007	1016		1.023	000.1 000.1	1 053	1.062	1.072	1.081	1.090	1.110	1.129	1.149	1.169	1.190	1.211	1.232	1.254	1.276	1.298	1.320	1.343	1.367	1.390	1.414	1.439	1.463	1.489	1.514	1.540	1.566

SOLUTIONS
(NaBr)
<b>M BROMIDE (NaB</b>
OF SODIUM
PROPERTIES C

								_			_																
Approximate % NaBr	Δ%		<u></u>	- c	V (	ກ •	4 1	വ	9	7	œ	σ	0 5	2 7	- (	71	13	14	15	16			Ω,	19	20	21	22
Freezing point (°C)			- 0.3	- 0 -				α - 4 1	- 2.1	- 2.5	- 2.9	- 3,3	00 () ()	- 4 -	1.1	1 4.7	Z.C -	- 5./	- 6.2	- 6.7	- 7.3	2					
Materials to prepare 1 m ³ of solution	Freshwater (m ³ )		0.996	0.994	0 991	0000	0.000	0000	0.383	0.981	0.978	0.975	0.972	0.969	0 966	0.000	0.00	0.300	0.95/	0.954	0.950	0.947	CV0 0		0.040	0.930	0.302
Materials to prepa	NaBr (kg)		10.06	20.28	30.65	41.19	51.90	20:10	11.20	13.82	85.04	96.44	108.03	119.81	131.77	143 94	15.001		100.00	181.63	194.62	207.83	221.26	23/ 00	246.30	240.01	10.101
Concentration g/l or kg/m ³	లి		1.0.1	20.3	30.7	41.2	51.9	67 R	72.0	0.00	00.0	96.4	108.0	119.8	131.8	143.9	156.3	160.0	0.00	181.0	194.6	207.8	221.3	234.9	248.8	262.9	
Solution weight	(Kg/m ² )	1006	0001 • • • • •	1014	1022	1030	1038	1046	1055	1063		7/01	1080	1089	1098	1107	1116	1126	1125		G41	1155	1165	1175	1185	1195	
Specific gravity at 20°C	$D_{20}^{20}$	1 008		010.1	1.024	1.032	1.040	1.048	1.056	1.065	× 10 1	0/4	1.082	1.091	1.100	1.109	1.118	1.128	1 137	701.1	1.14/	/91.1	1.167	1.177	1.187	1.197	
Relative density at 20°C	$\rho$ or ${f D}_4^{20}$	1.006	1 01/	t cc	1.022	1.030	1.038	1.046	1.055	1.063	1 072	1 080	000.1	1.089	260.1	1.107	1.116	1.126	1.135	1 145		100	1.165	1.175	1.185	1.195	

## EFFECT OF TEMPERATURE ON DENSITIES OF CALCIUM CHLORIDE AND SODIUM CHLORIDE SOLUTIONS (Field Data Handbook, Dowell Schlumberger)

As the temperature of the solution rises, the volume increases with a resulting decrease in density. The change in density of these solutions can be readily calculated by the formula:

Density change = 0.647  $(T_1 - T_2)$  (kg/m³)

 $T_1$  = initial temperature (°C)

 $T_2$  = desired temperature (°C)

### **Example of application**

For example, if the average well temperature is 80°C, and an average solution density of 1300 kg/m³ is required at 15°C.

Ş

Density change (kg/m ³ )	= 0.647 (80 – 15) = 42.06 kg/m ³
Required solution density at 15°C	= 1300 + 42.06 = 1342.06 kg/m ³ at 15°C

# GRAIN SIZE CLASSIFICATION OF SOLIDS (1 $\mu$ = 0.000001 m)

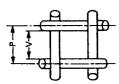
### Some examples of solid sizes:

	(μ)
	30 to 200
Pollen	10 to 100
Powdered cement	3 to 100
Flour	1 to 80
	5 to 50
Make-up powder	35

## French definition for classification of solids:

	( <i>µ</i> )
Coarse sand	> 200
Fine sand	20 to
Silt	200
Coarse clay	10 to 20
	2 to 10
Colloidal clay	0.2 to 2
	< 0.2

### American definition in API 13C:


	(µ)
Coarse	> 2000
Intermediate	2000 to 250
Medium	250 to 74
Fine	74 to 44
	44 to 2
Colloidal	< 2

# In drilling, another classification has been adopted:

	(μ)
Sand	> 74
Silt	2 to 74
Colloid	< 2

	Wire diameter		Width of o	pening V	Т	
Mesh/in	(in)	(10 ^{−3} mm)	(in)	(10 ⁻³ mm)	Approximate open area (%)	API designation
8×8	0.028	711	0.097	2464	60.2	8 × 8 (2464 × 2464. 60.2)
10 × 10	0.025	635	0.075	1905	56.3	10 × 10 (1905 × 1905. 56.3)
12 × 12	0.023	584	0.060	1524	51.8	12 × 12 (1524 × 1524. 51.8)
14 × 14	0.020	508	0.051	1295	51.0	14 × 14 (1295 × 1295. 51.0)
16 × 16	0.018	457	0.0445	1130	50.7	16 × 16 (1130 × 1130. 50.7)
18 × 18	0.018	457	0.0376	955	45.8	18 × 18 (955 × 955. 45.8)
20 × 20	0.017	432	0.033	838	43.6	20 × 20 (838 × 838. 43.6)
8 × 20	0.032/0.020	813/508	0.093/0.030	2362/762	45.7	8 × 20 (2362 × 762. 45.7)
20 × 30	0.015	381	0.035/0.0183	889/465	39.5	20 × 30 (889 × 465. 39.5)
30 × 30	0.012	305	0.0213	541	40.8	30 × 30 (541 × 541. 40.8)
30 × 40	0.010	254	0.0233/0.015	592/381	42.5	30 × 40 (592 × 381. 36.0)
40 × 36	0.010	254	0.015/0.0178	381/452	40.5	40 × 36 (381 × 452. 40.5)
40 × 40	0.010	254	0.015	381	36.0	40 × 40 (381 × 381. 36.0)
50 × 40	0.0085	216	0.0115/0.0165	292/419	38.3	50 × 40 (292 × 419. 38.3)
50 × 50	0.009	229	0.011	279	30.3	50 × 50 279 × 279. 30.3)
60 × 40	0.009	229	0.0077/0.016	200/406	31.1	60 × 40 (200 × 406. 31.1)
60 × 60	0.0075	191	0.0092	234	30.5	60 × 60 234 × 234. 30.5)
70 × 30	0.0075	191	0.007/0.026	178/660	40.3	70 × 30 (178 × 660. 40.3)
80 × 80	0.0055	140	0.007	178	31.4	80 × 80 (178 × 178. 31.4)
100 × 100	0.0045	114	0.0055	140	30.3	100 × 100 (140 × 140. 30.3)
120 × 120	0.0037	94	0.0046	117	30.9	120 × 120 (117 × 117. 30.9)

# SHALE SHAKER SCREENS



 $T(\%) = \frac{(\text{open area})^2}{(\text{pitch})^2} \times 100 = \frac{V^2}{P^2} \times 100$ 

For a square mesh

# **SCREEN STANDARDS**

Afnor Ass Franç de Norma NF X 1 197	aise	Deutsche	Bri	····						USA		
		Normen	' Stan	itish Idards tution	Unifica zione Italianc			Cle	VS TYLEF eveland 1 Ohio	Soc	nerican liety for Materials	
L		DIN 4100 1957		-410 943	UNI 233 1943		T-3584-53 1953	St. Scre	TYLER andard en Scale ieves	1	STM E 1-61 961	Wenworth and J. Boucart scale
Opening (mm)	Module	Opening (mm)	Opening (mm)	Designation number (No.)	Opening (mm)	Opening (mm)	Designation number (No.)	Opening (mm)	Designation number (mesh)	Opening (mm)	Designation number (No.)	
0.04 0.05	17 18	0.04 0.045 0.05	0.044	350	0.04 0.05	0.04 0.045 0.05 0.056	4 45 5 56	0.038 0.043 0.053 0.061	400 + 325 270 250	0.037 0.044 0.053	400 325 270 +	Silt. loess 4 to 62.5 μ
0.063	19	0.063	0.064	240	0.063	0.063	63			0.063	230	
0.08	20	0.071 0.08	0.076	200	0.075 0.08	0.071	71	0.074	200 +	0.074	200 +	
0.1	21	0.09 0.1	0.089	170 150	0.09 0.1 0.106	0.09 0.1	9 1	0.088	170 +	0.088	170	Very fine sand 62.5 to 125 μ
0.125	22	0.125	0.124	120	0.106	0.112 0.125 0.14	112 125 14	0.104	150 + 115	0.105	140 + 120	02.5 το 725 μ
0.16	23	0.16	0.152 0.178 0.211	100 85 72	0.15 0.16 0.18 0.2 0.212	0.16 0.18 0.2	16 18 2	0.147	100 + 80 +	0.149	100 + 80	Fine sand
0.25	25	0.25	0.251	60	0.212	0.224 0.25 0.28	224 25 28	0.208 0.246	65 + 60	0.21 0.25	70 60 +	125 to 250 μ
0.315	26	0.315	0.295 0.353	52 44	0.3 0.315 0.355 0.4	0.355 0.4	355 4	0.295 0.351	48 + 42	0.297 0.354	50 + 45	Medium sand 0.25 to 0.5 mm
0.5	28	0.5	0.422 0.5	36 30	0.425 0.5	0.45 0.5	45 5	0.417 0.495	35 + 32	0.42 0.5	40 + 35	0.20 10 0.5 mm
0.63	29	0.63	0.599 0.699	25 22	0.6 0.63 0.71	0.56 0.63 0.7	56 63 7	0.589 0.701	28 + 24	0.595 0.707	30 + 25	
0.8	30	0.8	0.853	18	0.75 0.8 0.85	0.8 0.9	8 9	0.833 0.991	20 + 16	0.841	20 +	Coarse sand 0.5 to 1 mm
1	31	1	1.003	16	1	1	1	0.001	10	100	18	
1.25	32	1.25	1.204	14	1.18 1.25	1.25	1.25	1.168	14 +	1.19	16	
1.6	33	1.6	1.405	12	14.4 1.6	1.6	1.6	1.397	12	1.41	14	Very coarse sand 1 to 2 mm
2	34	2	1.676 2.057	10 8	1.7 2	2	2	1.651 1.981	10 + 9	1.68 2	12 + 10	
2.5	35	2.5	2.411	7	2.36 2.5 2.8	2.5	2.5	2.362 2.794	8 + 7	2.38	8	
3.15	36	3.15	2.812	6	3.15					2.83	7	Granulated
4	37	4	3.353	5	3.35 4			3.327 3.962 4.699	6 + 5 4 +	3.36 4 4.76	6 + 5 4	material 2 to 4 mm
5	38	5						5.613	312	5.66	312	

 $mm \times 0.0394 = in$ 

### AIR/GAS FLOW RATE REQUIRED FOR DRILLING Data for calculating approximate circulation rates required to produce a minimum annular velocity which is equivalent in lifting power to a standard air velocity of 914 m/min (3000 ft/h)

 $\boldsymbol{Q} = \boldsymbol{Q}_{\boldsymbol{o}} + (\boldsymbol{N}\boldsymbol{H})$ 

- Q =flow rate required (m³/min)
- $Q_o =$  initial flow rate (m³/min) (tables)
- N = (tables)

H = depth (100 m) (330 ft)

Hole	size	Drill pipe size –		Air			G	as <i>d</i> = 0.	60				
			Dhii pipe size		Values of N					Value	s of N		
(in)	(mm)_	(in)	(mm)	<i>Q</i> ₀	Rate		OP etration (	m/h)	0 ₀	Rate	R( e of pene	OP etration (	m/h)
					0	10	20	30		0	10	20	30
17 1/2	445	6 5/8	168	119.18	0.764	1.250	1.719	2.160	153.87	0.616	1.243	1.821	2.357
		5 1/2	140	125.38	0.741	1.216	1.667	2.085	161.86	0.574	1.158	1.711	2.263
		4 1/2	114	129.92	0.725	1.184	1.614	2.020	167.75	0.539	1.096	1.619	2.124
15	381	6 5/8	168	82.26	0.666	1.074	1.470	1.833	106.22	0.596	1.142	1.635	2.098
		5 1/2	140	91.01	0.638	1.027	1.389	1.742	114.20	0.544	1.043	1.507	1.938
		4 1/2	114	93.02	0.613	0.989	1.335	1.669	120.09	0.502	0.983	1.411	1.829
12 1/4	311	6 5/8	168	48.14	0.579	0.94	1.258	1.559	62.13	0.585	1.082	1.509	1.910
		5 1/2	140	54.31	0.538	0.861	1.151	1.423	70.14	0.523	0.942	1.332	1.682
	070	4 1/2	114	58.87	0.514	0.801	1.074	1.321	76.00	0.472	0.853	1.207	1.540
11	279	6 5/8	168	35.03	0.563	0.906	1.201	1.467	45.22	0.599	1.075	1.472	1.837
		5 1/2	140	41.23	0.509	0.803	1.066	1.312	53.24	0.516	0.940	1.268	1.594
0.70	054	4 1/2	114	45.76	0.470	0.737	0.977	1.208	59.10	0.465	0.814	1.126	1.431
9 7/8	251	5 1/2	140	30.55	0.492	0.769	1.007	1.229	39.45	0.524	0.912	1.239	1.530
		5	127	32.93	0.467	0.723	0.952	1.164	42.53	0.486	0.846	1.156	1.434
	000	4 1/2	114	35.11	0.444	0.685	0.902	1.105	45.31	0.453	0.785	1.074	1.348
9	229	5	127	25.43	0.456	0.697	0.911	1.096	32.85	0.492	0.836	1.119	1.372
		4 1/2	114	27.61	0.428	0.653	0.853	1.042	35.62	0.455	0.769	1.047	1.281
0.044	000	3 1/2	89	31.23	0.386	0.582	0.764	0.926	40.32	0.390	0.666	0.907	1.118
8 3/4	222	5	127	23.43	0.455	0.696	0.897	1.084	30.24	0.497	0.835	1.113	1.360
		4 1/2	114	25.57	0.427	0.650	0.843	1.018	33.02	0.456	0.768	1.062	1.266
מיד ד	200	3 1/2	89	29.22	0.379	0.572	0.746	0.905	37.72	0.388	0.658	0.893	1.112
7 7/8	200	4 1/2 3 1/2	114	18.97 22.60	0.415	0.620	0.795	0.952	24.49	0.465	0.756	1.004	1.211
73/8	187		89		0.364	0.540	0.700	0.842	29.19	0.386	0.636	0.850	1.039
6 3/4	171	3 1/2 3 1/2	89	19.14 15.15	0.358 0.347	0.524 0.503	0.669	0.802	24.72	0.386	0.624	0.827	1.014
	159	3 1/2	89		0.347		0.634	0.753	19.54	0.386	0.611	0.794	0.962
6 1/4	109	3 1/2 2 7/8	89 73	12.18 13.99	0.344	0.488 0.438	0.613 0.450	0.721 0.652	15.72	0.390	0.602	0.742	0.917
4 3/4	121	2 7/8	73	6.48	0.305	0.438	0.450		18.07	0.344	0.532	0.687	0.824
4 3/4	121	2 3/8	60	0.46 7.67	0.294	0.391	0.472	0.540 0.493	8.38 9.91	0.344 0.300	0.487 0.432	0.599 0.538	0.691 0.628
		2 0,0		7.07	0.200	0.002	0.427	0.400	3.31	0.000	0.402	0.000	0.020

 $m^{3}/min \times 35.3 = ft^{3}/min$   $m/h \times 3.28 = ft/h$ 

Example : 8 3/4 in hole, 5 in drill pipes, depth 7900 ft

 $Q = 23.43 + 24 \times 0.696 = 40.13 \text{ m}^3/\text{min}$ 

Sources : R.R. Angel, Phillips Petroleum Co., AIME Paper 873 – G, AIME Petroleum Transactions, vol. 210, 1957.

# _____ cementing

General data units commonly used in cementing	11
Correlation between sacks and tons of cement	12
API cement classes and types (API Spec 10, 5 th edition, July 1, 1990)	13
API Specifications for cements (API Spec 10, 5 th edition, July 1, 1990)	14
Preparation of freshwater slurry	15
Cement slurry (freshwater)	16
Preparation of one cubic meter of freshwater cement slurry	17
Preparation of salt water slurry (Brine 315 g/l, d = 1.20)	18
Cement slurry (saturated salt-water), (Brine 315 g/l, <i>d</i> = 1.20)	19
Preparation of one cubic meter of saturated salt-water slurry	I10
Preparation of bentonite cements	11- 12
Bentonite cement slurry. Class G (per 100 kg of cement).	l13
Preparation of one cubic meter of bentonite cement slurry - Class G cement	l14

Preparation of weighted cements	115
Cementing additives	116-118
Effects of some additives on cement properties	119
Slurry displacement	120-121
Bottomhole cementing temperature by depth (API RP 10B, 22 nd edition, December, 1997)	122

# **GENERAL DATA UNITS COMMONLY USED IN CEMENTING**

### Packaging

1 sack of cement (USA)	{94 lb {42.64 kg
	∫42.64 kg
Cement volume in one sack of 94 lb	{1 cu ft 28.32 liters
	28.32 liters
(Hence a silo of <i>x</i> cu ft contains <i>x</i> sacks)	
Net weight of one 50 kg sack of cement	∫49.5 kg
Net weight of one 50 kg sack of cement	∫109 lb
Cement volume in one 50 kg sack	{32.89 liters {1.16 cu ft
	∫1.16 cu ft

### Weight

/eight	
	2000 lb
1 short ton =	907 kg
	21.28 sacks of 94 lb 18.33 sacks of 50 kg
	18.33 sacks of 50 kg
	2205 lb
1 metric ton =	23.45 sacks of 94 lb 1.10 short ton 0.984 long ton
	1.10 short ton
	0.984 long ton
	2240 lb
1 short ton $=$	1016 kg
	23.83 sacks of 94 lb 20.53 sacks of 50 kg
	20.53 sacks of 50 kg

### Volume

1 cubic foot	= 28.32 liters	1 barrel	=	0.159 m ³
1 US gallon	= 3.785 liters	1 barrel	=	5.61 cu ft

.

### Density

1 kg/l	= 8.345 lb/gal	1 lb/gal =	= 7.48 lb/ft ³
1 kg/l	$= 62.428 \text{ lb/ft}^3$	1 lb/ft ³ =	= 0.01602 kg/l
1 lb/gal	= 0.1198 kg/l	1 lb/ft ³ =	= 0.1337 lb/gal

# Cement specific gravity

True density of powdered cement	3.15
Apparent density of powdered cement	1.5
True volume occupied by 1 kg of powdered cement (liters)	0.3175

# **CORRELATION BETWEEN SACKS AND TONS OF CEMENT**

### 94 lb sacks

Sacks	Metric tons 2205 lb 1000 kg	Short tons 2000 lb 907 kg	Long tons 2240 lb 1016 kg
100	4.26	4.70	4.20
120	5.12	5.64	5.04
140	5.97	6.58	5.87
160	6.82	7.52	6.71
180	7.68	8.46	7.55
200	8.53	9.40	8.39
220	9.38	10.34	9.23
240	10.23	11.28	10.07
260	11.09	12.22	10.91
280	11.94	13.16	11.75
300	12.79	14.10	12.59
320	13.64	15.04	13.43
340	14.50	15.98	14.27
360	15.35	16.92	15.11
380	16.20	17.86	15.95
400	17.06	18.80	16.79
420	17.91	19.74	17.62
440	18.76	20.68	18.46
460	19.61	21.62	19.30
480	20.47	22.56	20.14
500	21.32	23.50	20.98
520	22.17	24.44	21.82
540	23.03	25.38	22.66
560	23.88	26.32	23.50
580	24.73	27.26	24.34
600	25.58	28.20	25.18
620	26.44	29.14	26.02
640	27.29	30.08	26.86
660 600	28.14	31.02	27.70
680	29.00	31.95	28.54
700	29.85	32.89	29.37
720	30.70	33.83	30.21
740	31.55	34.77	31.05
760 780	32.41 33.26	35.71	31.89 32.73
	33.26 34.11	36.65	
800 820	34.11	37.59 38.53	33.57 34.41
820 840	34.96	38.53 39.47	34.41 35.25
840 860	35.82 36.67	39.47 40.41	35.25 36.09
880 880	30.67	40.41 41.35	36.09 36.93
900	37.52 38.38	41.35	36.93
900 920	38.38	42.29 43.23	37.77
920 940	40.08	43.23 44.17	38.61
940 960	40.08	44.17 45.11	39.45 40.29
980 980	40.93 41.79	45.11 46.05	40.29
	-1.75	40.00	71.12

50 kg sacks

# API CEMENT CLASSES AND TYPES (API Spec 10, 5th edition, July 1, 1990)

Class	Туре
А	For use from surface to 1830 m (6000 ft) depth, when special properties are not required. Available only in ordinary type.
В	For use from surface to 1830 m (6000 ft) depth, when conditions require moderate to high sulfate-resistance. Available in both moderate and high sulfate-resistant types.
С	For use from surface to 1830 m (6000 ft) depth, when conditions require high early strength. Available in ordinary and moderate and high sulfate-resistant types.
D	For use from 1830 m (6000 ft) to 3050 m (10 000 ft) depth, under conditions of moderately high temperatures and pressures. Available in both moderate and high sulfate-resistant types.
E	For use from 3050 m (10 000 ft) to 4270 m (14 000 ft) depth, under conditions of high temperature sand pressures. Available in both moderate and high sulfate-resistant types.
F	For use from 3050 m (10 000 ft) to 4880 m (16 000 ft) depth, under conditions of extremely high temperatures and pressures. Available in both moderate and high sulfate-resistant types.
G	For use as a basic well cement from surface to 2440 m (8000 ft) depth as manufactured, or can be used with accelerators and retarders to cover a wide range of well depths and temperatures. No additions other than calcium sulfate or water, or both, shall be interground or blended with the clinker during manufacture of Class G well cement. Available in moderate and high sulfate-resistant types.
Н	For use as a basic well cement from surface to 2440 m (8000 ft) depth as manufactured, or can be used with accelerators and retarders to cover a wide range of well depths and temperatures. No additions other than calcium sulfate or water, or both, shall be inter- ground or blended with the clinker during manufacture of Class H well cement. Available in moderate and high sulfate-resistant types.

Notes: For details concerning the chemical composition of the different classes of API cement, refer to API Spec 10.

API SPECIFICATIONS FOR CEMENTS (API Spec 10, 5th edition, July 1, 1990)

7.39 (gal) 6.07 6.07 5.02 5.02 5.02 5.8¹ 5.02 Per 50 kg (ql 001) sack (liters) 19 19 23 23 28 9 19 22 Mixing water 5.19 5.19 6.32 4.29 4.29 4.29 4.29 (gal) 4.97 <u>5</u> Per 42.5 k (94 lb) sack (liters) 19.6 19.6 23.9 16.2 16.2 16.2 18.8 16.2 weight cement % by 46 38 ð 46 90 38 88 44 88 . 1 800 1 500 2 000 1 000 2 000 1 000 2 000 1 000 1 000 (isd) curing time After 24 h according to API Spec 10 tests Table 7.2 10 300 6 900 13 800 12 400 13 800 6 900 13 800 006 (kPa) Compressive strength (kPa and psi) ဖဖ 200 250 300 500 500 500 300 1 500 300 1 500 (isd) curing time After 8 h 2 100 10 300 2 100 10 300 500 3 500 3 500 1 400 1 700 2 100 (kPa) e 20 700 20 700 P (kPa) 20 700 20 700 20 700 20 700 ure and pressure Curing temperaatm atn atm atm atm atm atm T (°C) 110 38 88 88 1100 143 80 38 80 38 at 3 050 m: 100 at 4 270 m: 154 40: 90 max 120 40: 90 max 120 at 1 830 m: 90 at 3 050 m: 100 at 3 050 m: 100 at 4 880m: 190 88 88 88 according to API 10 tests thickening Minimum time (min) at 305 m: at 1 830 m: at 305 m: at 1 830 m: at 305 m: at 1 830 m: at 2 440: at 2 440: 10 000-16 000 50 000-10 000 10 000-14 000 0--6 000 0-000 9-0 0-0 0-0 0-8 000 0-8 000 £ Maximum depth 830-3 050 3 050-4 270 3 050-4 880 0-1 830 0-1 830 0-2 440 0-1 830 0-2 440 Ê sselD ∢ മ ပ Δ ш u. വ Ι

Remarks:

The addition of bentonite to cement requires an increase in the amount of water. For testing purpose, 5.3% water should be added for each1% of bentonite in all API cement classes. For example, for class A or B cement slurry containing 4% bentonite, the water/cement ratio must be raised from 46% to 67.2% (46 + 4× 5.3 = 46 + 21.2 = 67.2). The addition of barite to cement requires an increase in the amount of water by 0.2% for each1% of barite added for all cement classes. For example, for 60% barite added, the water/cement.

# **PREPARATION OF FRESHWATER SLURRY**

Rule of the thumb:

1 sack 
$$\begin{cases} 94 \text{ lb} \\ 1 \text{ cu ft} \end{cases}$$
 + 5 gal water  $\Rightarrow$  cement with  $d = 1.90$ 

Slurry

density = 
$$\frac{\text{Cement mass} + \text{Water mass}}{\text{Cement volume} + \text{Water volume}} = \frac{\text{Total mass}}{\text{Slurry volume}}$$

### For 100 kg of cement:

• Slurry specific gravity:

$$d = \frac{100 + e}{\frac{100}{3.15} + e}$$

• Water volume (in liters):

$$e = \frac{100\left(1 - \frac{d}{3.15}\right)}{d - 1}$$

Class of cement	Volume of water (liters) for 100 kg of cement	Specific gravity obtained
A	46	1.88
В	46	1.88
C	56	1.78
D	38	1.98
E	38	1.98
F	38	1.98
G	44	1.90
Н	38	1.98

• Slurry yield (in liters):

$$v = \frac{100}{3.15} + e$$
  
 $v = \frac{68.3}{d-1}$ 

Example: 100 kg of cement + 44 liters of water gives:

slurry specific gravity:  $d = \frac{100 + 44}{\frac{100}{3.15} + 44} = \frac{144}{31.8 + 44} = \frac{144}{75.8} = 1.90$ 

and slurry yield:

#### v = 75.9 liters

_
2
Ш
2
Ž
2
1 1
ш
2
Щ,
>
Ŕ
Ĩ
$\Box$
3
F
5
Ш
Σ
ш
C

		Slurry density	ity			Fresh	Freshwater volume	ime				S	Slurry volume	6	
	(kg/l)	(Ib/gal)	(lb/ft ³ )	(I/100 kg)	(gal/94 lb sack)	(ft³/94 lb sack)	(I/94 Ib sack)	(I/sh ton)	(gal/ sh ton)	(ft ³ / sh ton)	(i/100 kg)	(I/94 lb sack)	(ft ³ /94 lb sack)	(I/sh ton)	(ft ³ / sh ton)
	1.74 1.75 1.76 1.77	14.5 14.6 14.7 14.8	108.6 109.2 109.9 110.5	60.5 59.3 58.1 56.9	6.81 6.67 6.54 6.41	0.91 0.89 0.87 0.86	25.8 25.3 24.8 24.3	549 538 527 516	145.0 142.0 139.1 136.4	19.38 18.98 18.60 18.23	92.2 91.0 89.8 88.6	8.98.99 8.98.99 8.98.99 8.99 8.99 8.99	1.35 1.35 1.35 1.35	837 826 815 804	29.55 29.16 28.77 28.77
Class C	1.78	14.9	111.1	55.8	6.28	0.84	23.8	506	133.6	17.86	87.5	37.3	1.32	794	28.03
	1,79 1,80 1,82 1,83 1,83 1,83 1,83 1,83 1,83 1,83 1,83	40000000000000000000000000000000000000	11124 113.6 113.6 114.2 115.5 115.5 115.5	4 4 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	001 001 001 001 001 001 001 001 001 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 0000	0.82 0.78 0.78 0.75 0.75 0.75 0.75 0.75	233 222.8 2011 2011 2011 2011 2011 2011 2011 201	496 476 449 449 449 449 449 449 449 449 449 44	131.0 1258.4 1258.4 1255.9 1255.9 1255.9 1255.9 1166.7	17.51 17.16 16.50 16.83 15.55 15.55 15.55	8888886.4 8823232325534 88333534 883353555 883355555 8835555 8835555 8835555 883555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 885555 88555555	33,250,00 33,250,00 33,250,00 33,250,00 33,250,00 33,250,00 33,250,00 33,250,00 33,250,00 33,250,00 33,250,00 33,500,00 33,500,00 33,500,00 33,500,00 33,500,00 33,500,00 33,500,00 33,500,00 33,500,00 33,500,00 33,500,00 33,500,00 33,500,00 33,500,00 33,500,00 33,500,00 33,500,00 33,500,00 33,500,00 33,500,00 33,500,00 33,500,00 33,500,00 33,500,00 33,500,00 33,500,00 33,500,00 33,500,00 33,500,00 33,500,000,000,000,000,000,000,000,000,0	1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22	784 755 755 746 755 737 728 728	27.68 27.68 27.33 27.00 26.67 26.33 26.33 26.03 25.73 25.73
Class A, B	1.88	15.7		<b>45.8</b>		<u> </u>	19.5	416 416	9	14.30	0.0/	33.5 23 1	21. 21.	21/	25.13
	1.89	15.8	118.0	44.9	5.06	0.68		408	107.7	14.40	76.7	32.7	1.15	<b>5</b> 969	<b>24.57</b>
Class G	1.90	15.9	118.6	44.1	4.97	0.66	18.8	400	105.7	14.13	75.8	32.3	1.14	688	
	1.91 1.92 1.93 1.96 1.96	15.9 16.0 16.1 16.3 16.4 16.4	119.2 119.9 120.5 121.1 121.7 122.4	43.3 42.4 40.9 38.6 38.6	4.87 4.78 4.56 4.69 4.50 4.53 35 35 35	0.65 0.65 0.55 0.55 0.55 0.55 0.55 0.55	128.4 177.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10	392 385 378 378 378 371 357 357 357	103.7 101.7 99.8 97.9 96.1 92.6	13.86 13.360 13.34 12.85 12.85 12.85	75.0 73.4 71.8 71.1 70.4	3333333333 3333333333 30333333333 30333333	1.06 1.07 1.07 1.08 1.07	680 673 659 659 645 638 638	24.03 23.77 23.54 23.26 23.26 22.78 22.54
Class D, E, F	1.98	16.5	123.6	37.9	4.27	0.57	16.2	344	90.8	12.14	69.6	29.7	1.05	632	22.31
	2,2,2,2,2,2,2,2,2,2,2,2,3,2,2,2,2,2,2,2	66 66 76 76 76 76 76 76 76 76 76 76 76 7	124.2 126.5 126.1 126.1 126.1 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 100.0 100.0 100.00	33333333333333333333333333333333333333	4,14 4,13 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,	0.56 0.55 0.553 0.553 0.551 0.553 0.554 0.554 0.554 0.554 0.554 0.554 0.554 0.554 0.554 0.554 0.554 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.557 0.556 0.557 0.556 0.557 0.557 0.556 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.5577 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0.557 0	0000074200074000 0000074200074000	337 331 331 3325 3331 2285 2285 2285 2285 2285 2285 2285 228	89.1 87.5 775.8 775.8 775.8 775.8 775.8 775.8 775.8 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 775.9 77	11.92 11.70 11.70 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27 11.27	88 88 90 90 90 90 90 90 90 90 90 90 90 90 90	22010 2010 2010 2010 2010 2010 2010 201	0.000000000000000000000000000000000000	625 625 6013 6013 6013 602 704 703 704 703 704 703 704 703 704 703 704 703 704 703 704 703 704 703 704 704 704 705 705 705 705 705 705 705 705 705 705	22.09 22.09 22.03 22.03 22.03 22.03 22.03 22.03 22.03 22.03 22.03 23 22.03 23 23 20 23 23 23 23 23 23 23 23 23 24 23 23 24 23 23 24 24 24 25 24 24 24 24 24 24 24 24 24 24 24 24 24
Note: When using the same volume of sea-water instead of freshwater	ng the sam	e volume o	f sea-water	instead of fi		the slurry s	specific gra	aravity is increased	ased by 0	6	≥				2012

*Note:* When using the same volume of sea-water instead of freshwater, the slurry specific gravity is increased by 0.01 on the average. *Example:* a sea-water cement slurry with a water/cement ratio of 45 liters/100 kg has a slurry density of 1.90 kg/l instead of 1.89 kg/l as shown in the table for freshwater.

# PREPARATION OF ONE CUBIC METER OF FRESHWATER CEMENT SLURRY

	Sidity specific		nt weight	Water volume
	gravity	(kg)	(94 lb sacks)	l (liters)
	1.75	1099	25.8	651
	1.76	1113	26.1	647
	1.77	1128	26.5	642
Class C	1.78	1143	26.8	637
	1.79	1157	27.1	633
	1.80	1172	27.5	628
	1.81	1187	27.8	623
	1.82	1201	28.2	619
	1.83	1216	28.5	614
	1.84	1231	28.9	609
	1.85	1245	29.2	605
	1.86	1260	29.5	600
	1.87	1275	29.9	595
Class A, B	1.88	1289	30.2	591
	1.89	1304	30.6	586
Class G	1.90	1319	30.9	581
	1.91	1333	31.3	577
	1.92	1348	31.6	572
	1.93	1363	32.0	567
	1.94	1377	32.3	563
	1.95	1392	32.6	558
	1.96	1407	33.0	553
	1.97	1421	33.3	549
Class D, E, F	1.98	1436	33.7	544
	1.99	1450	34.0	540
	2.00	1465	34.4	535
	2.01	1480	34.7	530
	2.02	1494	35.0	526
	2.03	1509	35.4	521
	2.04	1524	35.7	516
	2.05	1538	36.1	512
	2.06	1553	36.4	507
	2.07	1568	36.8	502
	2.08	1582	37.1	498
	2.09	1597	37.5	493
	2.10	1612	37.8	488

 $m^3 \times 264 = gal$   $m^3 \times 35.3 = cu ft$   $l \times 0.264 = gal$   $l \times 0.0353 = cu ft$ 

## PREPARATION OF SALT WATER SLURRY (Brine 315 g/l, d = 1.20)

Slurry density =  $\frac{\text{Cement mass} + \text{Brine mass}}{\text{Cement volume} + \text{Brine volume}}$ 

Brine mass  $(kg) = 1.20 \times brine volume (liters)$ 

### For 100 kg of cement:

• Slurry specific gravity:

$$d = \frac{100 + 1.20 \ e}{\frac{100}{3.15} + e}$$

where:

d = slurry specific gravity

e = brine volume in liters

• Water volume (in liters):

$$e = \frac{100\left(1 - \frac{d}{3.15}\right)}{d - 1.20}$$

• Slurry yield (in liters):

$$v = \frac{100}{3.15} + e$$

$$v = \frac{61.9}{d - 1.20}$$

*Example:* 100 kg of cement + 46 liters of water gives:

slurry specific gravity: 
$$d = \frac{100 + 1.20 \times 46}{\frac{100}{3.15} + 46} = \frac{155.2}{31.8 + 46} = \frac{155.2}{77.8} = 2.00$$
  
and slurry yield:  $v = 77.4$  liters

CEMENT SLURRY (SATURATED SALT-WATER) (Brine 315 g/l, d = 1.20)

sh ton) (ft³/ (I/sh ton) Slurry volume (ft³/ 94 lb sack (l/ 94 lb sack) (I/100 kg) (ft³/ sh ton) **22.38 22.38 22.34 22.34 22.34 22.34 19.43 19.63 19.63 19.63 19.63 19.63 19.63 19.63 19.63 19.63 10.76 10.76 10.76 11.7.76 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.7.37 11.** 171.2 167.1 165.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 155.7 (gal/ sh ton) l/sh ton) Brine volume (1/ 94 lb sack) (ft³/ 94 lb sack) 1.051.051.051.050.9800.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.9330.933(gal/ 94 lb sack) (l/100 kg) (Ib/ft³)  $\begin{array}{c} 112.4\\ 113.0\\ 113.0\\ 114.2\\ 114.2\\ 114.2\\ 114.2\\ 114.2\\ 114.2\\ 114.2\\ 114.2\\ 114.2\\ 112.5\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 112.2\\ 11$ Slurry density (lb/gal) (kg/l) 

19

### PREPARATION OF ONE CUBIC METER OF SATURATED SALT-WATER SLURRY

gravity(kg)(94 lb sacks)(liters) $1.75$ 88820.8718 $1.76$ 90521.2713 $1.77$ 92121.6708 $1.78$ 93722.0703 $1.79$ 95322.4697 $1.80$ 96922.7692 $1.81$ 98523.1687 $1.82$ 100223.5682 $1.83$ 101823.9677 $1.84$ 103424.2672 $1.85$ 105024.6667 $1.86$ 106625.0662 $1.87$ 108225.4656 $1.88$ 109825.8651 $1.90$ 113126.5641 $1.91$ 114726.9636 $1.92$ 116327.3631 $1.93$ 117927.7626 $1.94$ 119528.0621 $1.95$ 121228.4615 $1.96$ 122828.8610 $1.97$ 124429.2605 $1.99$ 127629.9595				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
1.81 $985$ $23.1$ $687$ $1.82$ $1002$ $23.5$ $682$ $1.83$ $1018$ $23.9$ $677$ $1.84$ $1034$ $24.2$ $672$ $1.85$ $1050$ $24.6$ $667$ $1.86$ $1066$ $25.0$ $662$ $1.87$ $1082$ $25.4$ $656$ $1.88$ $1098$ $25.8$ $651$ $1.89$ $1115$ $26.1$ $646$ $1.90$ $1131$ $26.5$ $641$ $1.91$ $1147$ $26.9$ $636$ $1.92$ $1163$ $27.3$ $631$ $1.93$ $1179$ $27.7$ $626$ $1.94$ $1195$ $28.0$ $621$ $1.95$ $1212$ $28.4$ $615$ $1.96$ $1228$ $28.8$ $610$ $1.97$ $1244$ $29.2$ $605$ $1.98$ $1260$ $29.5$ $600$ $1.99$ $1276$ $29.9$ $595$				
1.82 $1002$ $23.5$ $682$ $1.83$ $1018$ $23.9$ $677$ $1.84$ $1034$ $24.2$ $672$ $1.85$ $1050$ $24.6$ $667$ $1.86$ $1066$ $25.0$ $662$ $1.87$ $1082$ $25.4$ $656$ $1.88$ $1098$ $25.8$ $651$ $1.89$ $1115$ $26.1$ $646$ $1.90$ $1131$ $26.5$ $641$ $1.91$ $1147$ $26.9$ $636$ $1.92$ $1163$ $27.3$ $631$ $1.93$ $1179$ $27.7$ $626$ $1.94$ $1195$ $28.0$ $621$ $1.95$ $1212$ $28.4$ $615$ $1.96$ $1228$ $28.8$ $610$ $1.97$ $1244$ $29.2$ $605$ $1.98$ $1260$ $29.5$ $600$ $1.99$ $1276$ $29.9$ $595$				
1.83 $1018$ $23.9$ $677$ $1.84$ $1034$ $24.2$ $672$ $1.85$ $1050$ $24.6$ $667$ $1.86$ $1066$ $25.0$ $662$ $1.87$ $1082$ $25.4$ $656$ $1.88$ $1098$ $25.8$ $651$ $1.89$ $1115$ $26.1$ $646$ $1.90$ $1131$ $26.5$ $641$ $1.91$ $1147$ $26.9$ $636$ $1.92$ $1163$ $27.3$ $631$ $1.93$ $1179$ $27.7$ $626$ $1.94$ $1195$ $28.0$ $621$ $1.95$ $1212$ $28.4$ $615$ $1.96$ $1228$ $28.8$ $610$ $1.97$ $1244$ $29.2$ $605$ $1.98$ $1260$ $29.5$ $600$ $1.99$ $1276$ $29.9$ $595$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
1.90113126.56411.91114726.96361.92116327.36311.93117927.76261.94119528.06211.95121228.46151.96122828.86101.97124429.26051.98126029.56001.99127629.9595				
1.91114726.96361.92116327.36311.93117927.76261.94119528.06211.95121228.46151.96122828.86101.97124429.26051.98126029.56001.99127629.9595				
1.92116327.36311.93117927.76261.94119528.06211.95121228.46151.96122828.86101.97124429.26051.98126029.56001.99127629.9595				
1.93117927.76261.94119528.06211.95121228.46151.96122828.86101.97124429.26051.98126029.56001.99127629.9595				
1.94119528.06211.95121228.46151.96122828.86101.97124429.26051.98126029.56001.99127629.9595				
1.95121228.46151.96122828.86101.97124429.26051.98126029.56001.99127629.9595	626			
1.96122828.86101.97124429.26051.98126029.56001.99127629.9595	621			
1.97124429.26051.98126029.56001.99127629.9595	615			
1.98126029.56001.99127629.9595				
1.99 1276 29.9 595	605			
2.00 1292 30.3 590				
2.01 1308 30.7 585				
2.02 1325 31.1 579				
2.03 1341 31.4 574				
2.04 1357 31.8 569				
2.05 1373 32.2 564				
2.06 1389 32.6 559				
2.07 1405 33.0 554				
2.08 1422 33.3 549				
2.09 1438 33.7 544	1			
2.10 1454 34.1 538				
2.11 1470 34.5 533				
2.12 1486 34.9 528				
2.13 1502 35.2 523	1			
2.14 1518 35.6 518				
2.15 1535 36.0 513				
2.16 1551 36.4 508				

 $m^3 \times 264 = gal$   $m^3 \times 35.3 = cu ft$   $l \times 0.264 = gal$   $i \times 0.0353 = cu ft$ 

## **PREPARATION OF BENTONITE CEMENTS**

To prepare a lightweight cement with freshwater, bentonite (1) can be added:

(a) **Dry** to the cement in proportions ranging between 1 and 20% to obtain a slurry specific gravity between 1.85 and 1.42 (for Class G)

(b) Or **prehydrated** in proportions ranging between 0.25 and 5% to obtain a slurry specific gravity between 1.84 and 1.39 (also for Class G).

Slurry density = <u>Cement mass + Water mass + Bentonite mass</u> <u>Cement volume + Water volume + Bentonite volume</u>

#### For 100 kg of cement:

• Slurry specific gravity:

$$d = \frac{100 + e + (Z+1)b}{\frac{100}{3.15} + e + \left(Z + \frac{1}{2.65}\right)b}$$

where:

- d = bentonite slurry specific gravity
- b = percentage of bentonite in relation to cement (or weight of bentonite per 100 kg of cement)
  - In general 0 < b < 20 if **dry mixture**

#### 0 < b < 5 if prehydrated mixture

*e* = volume of cement hydration water in relation to cement:

Class of cement	Volume of water (liters) for 100 kg of cement
A B C D E F G H	46 46 56 38 38 38 38 44 38

- Z = percentage of bentonite swelling water in relation to bentonite (or liters of water per kg of bentonite)
  - Z = 5.3 for bentonite added dry
  - Z = 21.2 for prehydrated bentonite

The specific gravity of bentonite is taken as 2.65.

### PREPARATION OF BENTONITE CEMENTS (continued)

• Bentonite weight (in kg):

$$b = \frac{100\left(1 - \frac{d}{3.15}\right) - (d - 1)e}{d\left(\frac{1}{2.65} + Z\right) - (Z + 1)}$$

• Water volume (in liters):

$$E = e + Zb$$

• Slurry volume (in liters):

$$v = \frac{100}{3.15} + \frac{b}{2.65} + e + Zb$$

*Example:* to prepare a slurry with prehydrated bentonite and Class G cement, with specific gravity d = 1.50:

d = 1.50e = 44 liters Z = 21.2

the calculation (or table 1 13) gives b = 3%

For 100 kg of cement: 3 kg of bentonite 107.6 liters of water 140.5 liters of slurry

# **BENTONITE CEMENT SLURRY** Class G (per 100 kg of cement)

### **Prehydrated mixture**

(21.2 liters of water/kg bentonite)

% of bentonite	Volume water (I)	Specific gravity
0.00	44.0	1.901
0.25	49.3	1.843
0.50	54.6	1.792
0.75	59.9	1.748
1.00	65.2	1.708
1.25	70.5	1.672
1.50	75.8	1.640
1.75	81.1	1.611
2.00	86.4	1.585
2.25	91.7	1.560
2.50	97.0	1.538
2.75	102.3	1.518
3.00	107.6	1.499
3.25	112.9	1.482
3.50	118.2	1.466
3.75	123.5	1.451
4.00	128.8	1.437

#### **Dry mixture**

(5.3 liters of water/kg bentonite)

% of bentonite	Volume water (I)	Specific gravity				
0	44.0	1.901				
1	49.3	1.846				
2	54.6	1.798				
3	59.9	1.756				
4	65.2	1.719				
5	70.5	1.685				
6	75.8	1.656				
7	81.1	1.629				
8 (1)	86.4	1.604				
9	91.7	1.582				
10	97.0	1.562				
11	102.3	1.543				
12	107.6	1.526				
13	112.9	1.511				
14	118.2	1.496				
15	123.5	1.482				
16	128.8	1.470				
17	134.1	1.458				
18	139.4	1.447				
19	144.7	1.436				
20	150.0	1.426				

(1) For 8% and higher, it is advisable to add a thinner.

### PREPARATION OF ONE CUBIC METER OF BENTONITE CEMENT SLURRY – CLASS G CEMENT

%	Cement	Bentonite	Water	Specific
bentonite	(kg)	(kg)	volume (I)	gravity
0.00	1320	0.00	581	1.901
0.25	1232	3.08	608	1.843
0.50	1156	5.78	631	1.792
0.75	1088	8.16	652	1.748
1.00	1028	10.28	670	1.708
1.25	974	12.17	686	1.672
1.50	925	13.87	701	1.640
1.75	881	15.42	714	1.611
2.00	841	16.82	727	1.585
2.25	805	18.10	738	1.560
2.50	771	19.28	748	1.538
2.75	740	20.36	757	1.518
3.00	712	21.36	766	1.499
3.25	686	22.28	774	1.482
3.50	661	23.14	781	1.466
3.75	638	23.94	788	1.451
4.00	617	24.68	795	1.437

### **Prehydrated mixture**

#### **Dry mixture**

% bentonite	Cement (kg)	Bentonite (kg)	Water volume (I)	Specific gravity
0	1320	0.00	581	1.901
1	1228	12.28	605	1.846
2	1148	22.96	627	1.798
3	1078	32.34	646	1.756
4	1016	40.63	662	1.719
5	960	48.02	677	1.685
6	911	54.64	690	1.656
7	866	60.61	702	1.629
8	825	66.03	713	1.604
9	788	70.95	723	1.582
10	755	75.46	732	1.562
11	724	79.60	740	1.543
12	695	83.41	748	1.526
13	669	86.93	755	1.511
14	644	90.19	761	1.496
15	621	93.22	768	1.482
16	600	96.05	773	1.470
17	581	98.69	778	1.458
18	562	101.16	783	1.447
19	545	103.48	788	1.436
20	528	105.66	792	1.426

 $kg \times 0.0235 = sack$   $I \times 0.264 = gal$   $I \times 0.0353 = cu ft$ 

### **PREPARATION OF WEIGHTED CEMENTS**

### For 100 kg of cement:

• Slurry specific gravity:

$$d = \frac{100 + e + a}{\frac{100}{3.15} + e + \frac{a}{d_a}}$$

where:

*e* = water volume (in liters)

a = weight of heavy weight additive (in kg)

 $d_{a}$  = heavy weight additive specific gravity

• Specific gravity of some heavy weight additives:

Barite:	4.20 - 4.33
llmenite:	4.45
Hematite:	4.95

• Specific gravity obtained:

Specific gravity	2.10	2.20	2.30	2.40	2.50	2.60	2.70
Barite (% BWOC) Water (% BWOC)* Dispersant (% BWOC)	40 48	87 60	110 58 1				
Ilmenite (% BWOC) Water (% BWOC)		30 38	55 41				
Hematite (% BWOC) Water (% BWOC) Dispersant (% BWOC)		40 44	60 46	80 46 0.3	110 50 0.5	150 55 0.8	175 55 1.0

* 44% BWOC water + 0.20 I water /kg barite

Dispersant: CD-31 (BJ Services), D65 (Dowell) - CFR2 (Halliburton) or similar

*Example:* for 100 kg of cement: 87 kg of barite 60 liters of water

$$d = \frac{100 + 60 + 87}{\frac{100}{3.15} + 60 + \frac{87}{4.20}}$$

d = 2.20

Application	Description	BJ Services	Doweil	Halliburton
Accelerators	Sodium chloride Calcium chloride Sodium silicate Gypsum Potassium chloride	A5 A7 (A7L) A2/Diacel A (A3L) A10 A9	D44 S1 (D77) D79/D75 D53 M117	Salt Cacl ₂ (Cacl ₂ liq) Econolite Cal-seat/EA2 Kcl
Extenders and density-reducing agents	Bentonite Attapulgite Type F flyash Type C flyash Natural pozzolan Diatomaceous earth Perlite Fumed silica Glass microspheres Pozzolan microspheres Proprietary extender	Bentonite Attapulgite Flyash Flyash Pozzolan Diacel D Perlite BA58 (BA58L - LW8L) LW7-2/LW7-4 LW-6 LW-6 T40/FWC47 (BJ BLUE)	D20 D128 D35 D132 D61 D72 D154 (D155) D124 D124 (D111)	Gel Attapulgite Pozmix A Class C flyash Diacel D Perlite Silicate (Microblock) Glass spheres Spherelite VersaSet (verSaset L)
Retarders	Temperature <180°F Temperature 125°F to 225°F Temperature 175°F to 300°F Temperature > 225°F Temperature > 300°F Aid for lignosulfonates Synthetic < 425°F For improved comp. strength For thixotropic cement Permafrost non lignosulfonate Permafrost lignosulfonate	R3 (R21L) R3 (R10L/R12L/R21L) R6/Diacel LWL R8 (R8L) R9 SR30 (R14/R15LS/R20L) SR30 (R14/R15LS/R20L) R18/SR30 R7 R7	D13 (D81) D800 (D801) D8 (D110) D28 (D150) D93/D121 D161 (D110) D74 D13 (D81)	HR4/HR7 (HR4L/HR7L) HR5 (HR6L) Diacel LWL HR12/HR15 (HR12L/HR15L) HR20 Comp R/HR25 SCR100 (SCR100L) HR25 (HR25L) SCR100 (SCR100L) SCR100 (SCR100L) SCR100 (SCR100L) SCR100 (SCR100L) SCR100 (SCR100L) SCR100 (SCR100L)

**CEMENTING ADDITIVES** 

() liquid additive.

**CEMENTING ADDITIVES** (continued)

Application	Description	BJ Services	Dowell	Halliburton
Fluid loss additive	Fresh water 60°F to 120°F Salt (<10%) 60°F to 120°F	FL62 (BA10L)	D127/D156	LAP1 (LA2)
	Salt (<18%) 60°F to 120°F Fresh water 80°F to 200°F	FL33/FL63 (FL33L/FL63L) FL62 (BA10L)	D146	Halad 322/344/413 (L)
	Salt (<10%) 80°F to 200°F Salt (<18%) 80°F to 200°F		(D300) D60	Halad 10L) Halad 10L) Halad 9/322 (91 /3221)
	Salt (>18%) 80°F to 200°F Fresh water <250°F Salt (<10%) <250°F	FL62 (FL62L)	D59	
	Salt (<18%) <250°F Salt (>18%) <250°F		D160 (D603/D159) D65A (D80A/D604AM)	Halad 22A/344 (22AL)
	Fresh water <300°F Salt (<10%) <300°F Salt (<18%) <300°F			
	Salt (>18%) <300°F Fresh water >300°F	FL25/FL52		
	Salt (<10%) >300°F Salt (<18%) >300°F		(D73/D73.1/D158)	
	Salt (>18%) >300°F	FL33/FL63 (FL33L/FL63L)	D8/D143 (D158)	Halad 413/100A (413L/361A)
Cement dispersant	General application Salt-satured sluries Dispersant with anti-settling	CD31/CD32 (CD31L/CD32L) XR2 CD32 (CD32L)	D65/D121 (D80/D145A) D45/D65A (D80A/D604AM) (D604AM)	CFR2/CFR3 (CFR2L/CFR3L) FE2/CFR2 (CFR2L) CFR2 (CFR2L)
Loss circulation additives	Gilsonite Cellophane flake Ground coal	Gilsonite Celloflake Kol Sool	D24 D29	Gilsonite Flocele
	Walnut plug Polyester, thermoplastic Graded particule sizes	Nut Plug Flex Seal/Mud Save Kwik Seal	D130	Tuf Plug Granulite TR1/4 Kwik Seal

() liquid additive.

I 17

Application	Description	BJ Services	Dowell	Halliburton
Heavy weight additives	Sand 100 mesh Silica flour Barite Hematite Ilmenite Manganese Oxides Calcium carbonate	S8C S8 Barite Hematite W10	D30 D66 D31 D76 D18 D157 D157	SSA2 SSA1 Barite Hi-dense 3/Hi-dense 4 Micromax
Anti-foam agents	Decrease foaming	FP 11 (FP 6L/9L/10L/12L)	D46 (D47/M45/D144)	D-Air1 (D-Air2/3 /NF1/2/3)
Free water control	Polymers, sodium silicates	A2 /Diacel A/T40 (A3L/T40L)	D79/Diacel A/D153 (D75/D162)	Econolite/Diacel A/VersaSet
Bond improving expanding additives and anti-gas migration	Latex Fumed silica Expanding agent Gas-generating agents	BA10/BA58 (BA10L/BA86L) BA58/CSE (BA58L) A10/EC1 BA29/BA61	(D600/D134) D154 (D155) D53	Latex 2000 (LA2) Silicalite (Microblock) Cal-Seal/EA2/Microbond Super CBL (Gas-Chek)
Spacer and washes	No weighted chemical washes OBM chemical washes Spacer aqueous Spacer emulsion Spacer OBM Spacer high salt concentration	Flowcheck/Flo Guard Mud Clean/MRS2 Mud Sweep/Ultraflush II MCS 2/3/4/5 Ultraflush II APS1/OB1/RSB MCS 3/4/RSB	Zonelock/Zonelock SC CW7/CW8/CW8ES CW100/CW101 CW8/CW8ES/CW101 MUDPUSH XT/XTO/XS/XSO/XL MUDPUSH XCO/XTO/XS/XSO/XL MUDPUSH XLO/XTO/XEO MUDPUSH XS	Superflush Mud Flush Aqua Preflush N-Ver-Sperse/Alpha Preflush Dual Spacer/SD Spacer Dual/Alpha Spacer Dual Spacer/Dual Spacer E
Specialty cement blends	Thixotropic cements Silica flume and pozzolan Lightweight pozzolan micros. Permafrost	Sure Fill Cenolite Cold Set	RFC HILITE LITEFIL ARTICSET	Thix Set 31 My-T-Lite 2000 PERMAFROST

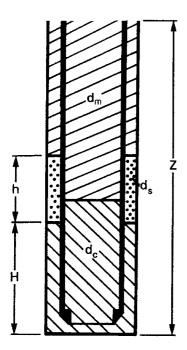
**CEMENTING ADDITIVES** (continued)

() liquid additive.

### **EFFECTS OF SOME ADDITIVES ON CEMENT PROPERTIES (1)**

		Bentonite	Perlite	Diatomaceous earth	Pozzolan	Sand	Barite	Hematite	Calcium chloride	Sodium chloride	Lignosulfonate	CMHEC (2)	Diesel oil	Water loss additives	Lost circulation material
Density	Decreased	•	•	•	•										
Density	Increased					•	•	•	X	X	X				
Water	Decreased										•				
required	Increased	•	X	•	Х	Х	X	X							X
Viscosity	Decreased					-			X		•				
VISCOSILY	Increased	x	X	X	Х	Х	X	Х							
Thickening	Accelerated	X					Х	Х	•	•					
time	Retarded			Х						х	•	٠	X	Х	
Setting	Accelerated						Х	Х	•	٠					
time	Retarded	X	X	Х	Х						•	•		Х	
Early	Decreased	X	х	х	X		X	Х			•	٠		Х	X
strength	Increased								•	•					
Final	Decreased	x	X	٠	X		X					Х		Х	X
strength	Increased														
Duration	Decreased	х	Х	Х									Х		Х
Duration	Increased				•										
Water	Decreased	•									X	•	X	•	х
loss	Increased		X	X											

(1) From Dowell Schlumberger Engineer's Handbook


x Denotes minor effect

Denotes major effect and/or purpose of additive

(2) Carboxylmethyl hydroxyethyl cellulose

### SLURRY DISPLACEMENT

Calculation of displacement volume corresponding to the time when the fluids in the annulus and the fluids in the casing reach hydrostatic equilibrium:



 $V_{\rm s}$  = spacer volume at specific gravity  $d_{\rm s}$ 

- $V_{\rm c}$  = cement volume at specific gravity  $d_{\rm c}$
- V = displacement volume at specific gravity  $d_{\rm m}$  at time of equilibrium
- a = volume per meter in casing
- *b* = volume per meter in annulus
- h = spacer height in annulus in meters
- H = cement height in annulus at equilibrium in meters
- Z = casing setting depth in meters

$$h = \frac{V_{\rm s}}{b} \tag{1}$$

$$H = \frac{V_{\rm c}}{b+a} - \frac{a}{b(b+a)} V_{\rm s} \frac{d_{\rm s} - d_{\rm m}}{d_{\rm c} - d_{\rm m}}$$
(2)

$$V = \left(Z - \frac{V_{\rm c}}{b+a} - \frac{V_{\rm s}}{b+a} \frac{d_{\rm s} - d_{\rm m}}{d_{\rm c} - d_{\rm m}}\right)a$$
(3)

# **SLURRY DISPLACEMENT** (continued)

Specific case without spacer:

$$V = \left(Z - \frac{V_{\rm c}}{b+a}\right)a$$

**Cementing with two slurries:** Formula (1), (2) and (3) can be used for a cement gel instead of a spacer, provided that, at the time of equilibrium, the cement gel, like the spacer, is already in the annulus.

Calculation example:

<i>Z</i> = 3000 m	
Hole size: 12 1/4 in	
Casing 9 5/8 in 47 lb/ft	(a = 38.18 l/m)
	(b = 28.94  l/m)
Spacer volume:	$V_{\rm s}$ = 5 000 liters
Spacer specific gravity:	$d_{\rm s} = 1.50$
Cement volume:	$V_{\rm c}$ = 50 000 liters
Cement specific gravity:	$d_{\rm c} = 1.90$
Mud specific gravity:	$d_{\rm m} = 1.10$
Results:	<i>h</i> = 173 m
	$H = 696  \mathrm{m}$
•	$V = 85  \text{m}^3$

The displacement volume corresponding to the time when the fluids in the annulus and the fluids in the casing reach hydrostatic equilibrium is 85 m³.

-

### **BOTTOMHOLE CEMENTING TEMPERATURE BY DEPTH** (API RP 10B, 22nd edition, December, 1997)

Well	depth	Temp	Temperature gradient °C/100 m					
(m)	(ft)	(°C)	1.6	2.0	2.4	2.7	3.1	3.5
300	1 000	BHCT BHLT	27 32	27 33	27 34	27 35	27 36	27 37
610	2 000	BHCT BHLT	32 37	32 39	32 41	32 43	33 46	33 48
1 220	4 000	BHCT BHLT	37 47	38 51	38 56	39 60	39 64	40 69
1 830	6 000	BHCT BHLT	44 57	46 63	47 70	48 77	49 83	52 90
2 440	8 000	BHCT BHLT	52 67	54 76	57 84	60 93	63 102	71 111
3 050	10 000	BHCT BHLT	61 77	63 88	70 99	75 110	82 121	93 132
3 660	12 000	BHCT BHLT	64 87	74 100	84 113	94 127	104 140	113 153
4 270	14 000	BHCT BHLT	73 97	85 112	97 128	109 143	121 159	133 174
4 880	16 000	BHCT BHLT	83 107	97 124	112 142	126 160	140 178	154 196
5 490	18 000	BHCT BHLT	94 117	111 137	127 157	144 177	161 197	177 217
6 100	20 000	BHCT BHLT	106 127	124 149	144 171	163 193	182 216	202 238
6 710	22 000	BHCT BHLT	118 137	140 161	162 186	184 210	207 234	229 259

BHCT = Bottom Hole Circulating Temperature BHLT = Bottom Hole Log Temperature after 24 hours

# - directional drilling

Reference coordinates	J1-J2
Radius of curvature and project in the vertical plane	J3
Calculation of characteristic points of the theoretical vertical profile. <i>J</i> hole : <i>D</i> < <i>R</i>	J4-J5
Calculation of characteristic points of the theoretical vertical profile. <i>J</i> hole : <i>D</i> > <i>R</i>	J6-J7
Calculation of characteristic points of the theoretical vertical profile. S hole : $R_1 + R_2 < D$	J8-J9
Calculation of characteristic points of the theoretical vertical profile. S hole : $R_1 + R_2 > D$	J10-J11
Theoretical vertical profile. Rate of buildup: 0.50 deg/10 m	J12
Theoretical vertical profile (continued). Rate of buildup: 1.00 deg/10 m	J13
Theoretical vertical profile (continued). Rate of buildup: 1.50 deg/10 m	J14
Theoretical vertical profile (continued). Rate of buildup: 2.00 deg/10 m	J15
Theoretical vertical profile (continued). Rate of buildup: 2.50 deg/10 m	J16
Ragland diagram	J17-J18
Control of actual hole shape. Calculation of projections	J19

Control of actual hole shape. Different calculation formulas	J20-J21
Course correction	J22-J23
Radius of borehole curvature limitation on downhole tools	J24-J25

### **REFERENCE COORDINATES**

#### **AZIMUTH**

Azimuths measured in holes refer to one of the following:

- (a) **True geographic North** (meridian direction): this is the direction of the geographic North Pole. The direction is shown on maps by the meridians of longitude.
- (b) **Magnetic North** (compass direction): the compass initially gives a reading referenced to magnetic North. The position of this point is subject to time variation.
- (c) **Grid North** (Lambert or UTM North): the surface of the Earth is a curved surface but the maps are flat surfaces.

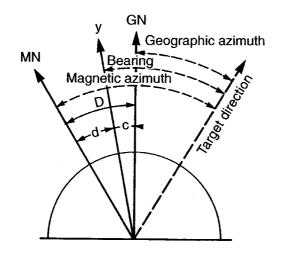
They are measured positively clockwise from:

- (a) 0 to 360 degrees
- (b) 0 to 400 grades

The system of quadrants still used in certain measuring instruments refers, depending on the direction, to North or South, from 0 to 90 degrees to East or West.

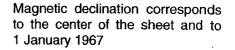
Example: Azimuth 227 degrees is equivalent to S47W or 47SW.

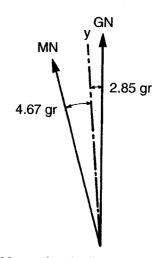
#### DECLINATION


The declination is the angle between local magnetic North and geographic North (local meridian) measured positively eastward.

#### CONVERGENCE

Convergence is the angle between the local meridian (True North) and Lambert or UTM North (Grid North – central meridian of the projection).


The values of declination related to the grid, and the value of convergence are normally indicated by a diagram on the right-hand margin of topographic maps.


### **REFERENCE COORDINATES** (continued)



**RELATIONSHIPS BETWEEN THE DIFFERENT ANGLES:** 

- y = North of kilometric grid
- D = Declination (varies according to location and time: ordinance maps provide details allowing their calculation)
- d = Declination related to grid
- c = Convergence angle of meridians (varies according to location)





Magnetic declination decreases each year by 11 centesimal minutes

According to the diagram of the specific case, the declination d related to the grid in 1968 is:

$$d = 4.67 - 0.11 \times 21 = 2.36$$
 gr

If the magnetic azimuth (MA) of the target measured by a compass is 150 gr:

Lambert azimuth (LA) or bearing = 150 - 2.36 = 147.64 gr

Geographic azimuth = Lambert azimuth - convergence = 147.64 - 2.85 = 144.79 gr

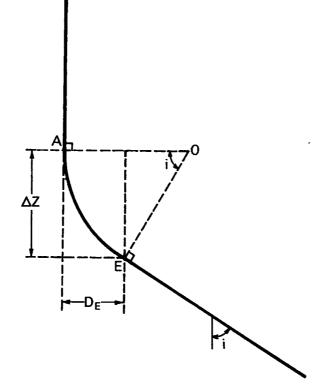
If the direction is marked using quadrants:

$$MA = 150 \text{ gr} = S45E$$

and according to the diagram:

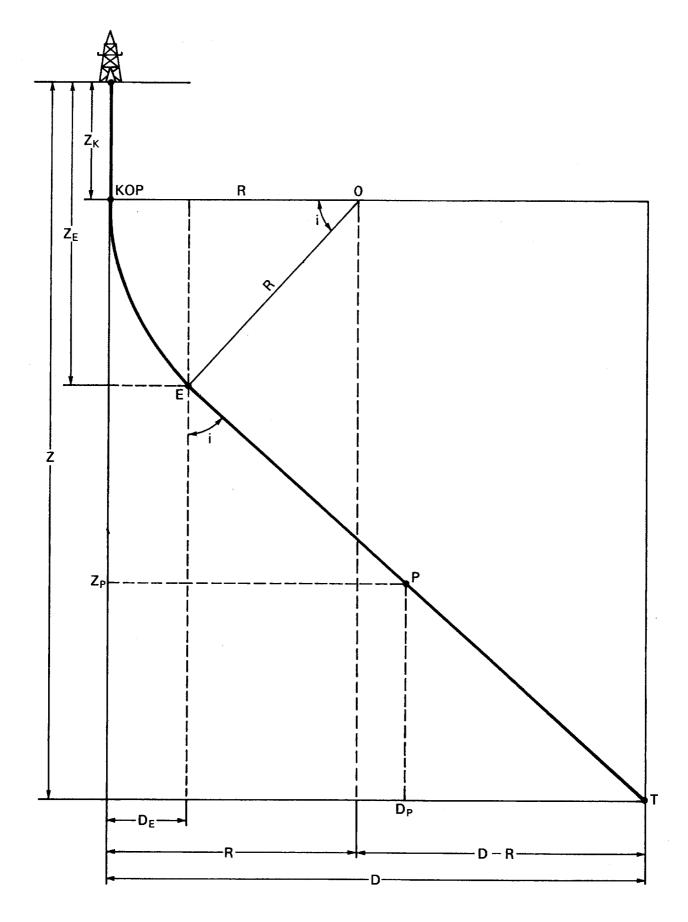
$$LA = MA + convergence$$
$$= S45E + 2.85 \times 0.9 = S47.56E$$

### RADIUS OF CURVATURE AND PROJECTION IN THE VERTICAL PLANE


AE = LLength drilled from A to E $R = \frac{360}{2\Pi} \frac{\Delta L}{\Delta i}$ Radius of curvature (m) $gbu = \frac{\Delta i}{\Delta L}$ Rate of buildup (°/10 m)

in general  $\frac{\Delta i}{\Delta L}$  is kept as constant as possible during kickoff (constant radius of curvature).

Hence:


$$R = \frac{573}{gbu}$$

$$D_E = R(1 - \cos i) \quad (m)$$
  
$$\Delta Z = R \sin i \quad (m)$$



### Radius of curvature for different rates of buildup:

<i>gbu</i> (°/10 m)	0.5	1.0	1.5	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
<i>R</i> (m)	1146	573	382	286	191	143	115	95	82	72	64	57

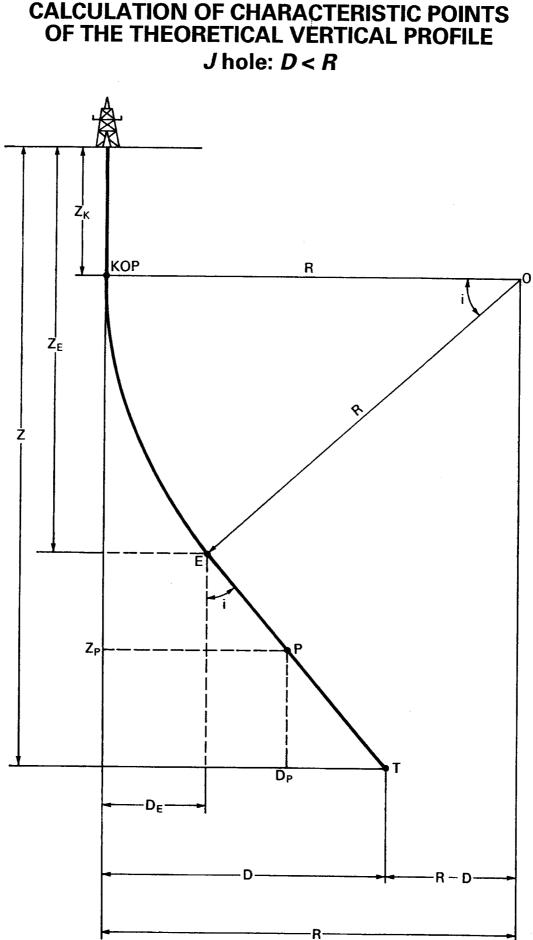


### CALCULATION OF CHARACTERISTIC POINTS OF THE THEORETICAL VERTICAL PROFILE J hole: D > R (continued)

$$i = 180 - \tan^{-1} \left[ \frac{Z - Z_K}{D - R} \right] - \cos^{-1} \left[ \frac{R}{Z - Z_K} \sin \tan^{-1} \frac{Z - Z_K}{D - R} \right]$$

Example:

Displacement	$D = 700 \mathrm{m}$
КОР	$Z_{\kappa} = 350 \mathrm{m}$
Vertical depth of target	<i>Z</i> = 2350 m
Rate of buildup	<i>gbu</i> = 1°/10 m ( <i>R</i> = 573 m)


 $i = 180 - \tan^{-1} \left[ \frac{2000}{700 - 573} \right] - \cos^{-1} \left[ \frac{573}{2000} \sin \tan^{-1} \frac{2000}{700 - 573} \right]$  $i = 20^{\circ}$ 

(see graphic method in J 13)

	Measured depth <i>L</i> (TMD)	Vertical depth <i>Z</i> (TVD)	Inclination	Displacement
Kickoff point (K)	Z _K	Z _K	0	0
End of deviation (E)	$L_E = Z_K + \frac{\Pi i R}{180}$	$Z_E = Z_K + R \sin i$	i _	$D_E = R(1 - \cos i)$
Target (T)	$L_T = Z_K + \frac{\Pi i R}{180} + \frac{Z - Z_K - R \sin i}{\cos i}$	Z	į	D

Vertical depth  $Z_P$  as a function of drilled depth  $L_P$  at point P:

$$Z_P = Z_K + \frac{573}{gbu} \sin i + \left(L_P - Z_K - \frac{10i}{gbu}\right) \cos i$$



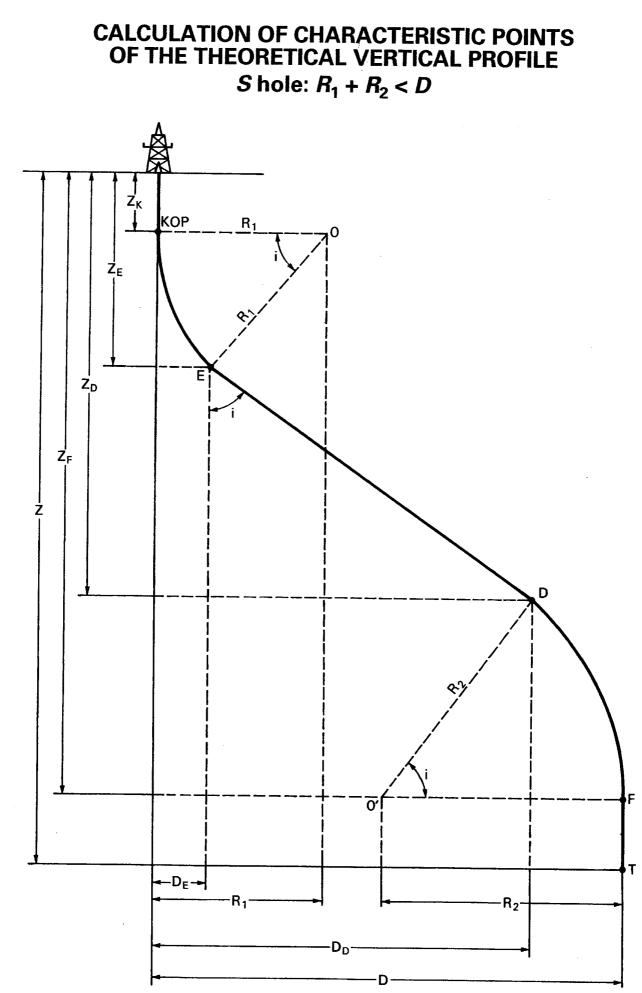
CALCULATION OF CHARACTERISTIC POINTS OF THE THEORETICAL VERTICAL PROFILE

### CALCULATION OF CHARACTERISTIC POINTS OF THE THEORETICAL VERTICAL PROFILE J hole: D < R (continued)

$$i = \tan^{-1} \left[ \frac{Z - Z_{\kappa}}{R - D} \right] - \cos^{-1} \left[ \frac{R}{Z - Z_{\kappa}} \sin \tan^{-1} \frac{Z - Z_{\kappa}}{R - D} \right]$$

Example:

Displacement	$D = 300 \mathrm{m}$
КОР	$Z_{K} = 600 \mathrm{m}$
Vertical depth of target	$Z = 1800 \mathrm{m}$
Rate of buildup	<i>gbu</i> = 1°/10 m ( <i>R</i> = 573 m)
i = top-1 1200 ]	год 1 573 года 1 1200 г


 $i = \tan^{-1} \left[ \frac{1200}{573 - 300} \right] - \cos^{-1} \left[ \frac{573}{1200} \sin \tan^{-1} \frac{1200}{573 - 300} \right]$  $i = 15^{\circ}$ 

(see graphic method in J 13)

Kiskoff	Measured depth L (TMD)	Vertical depth Z (TVD)	Inclination	Displacement
Kickoff point (K)	Z _K	Z _K	0	0
End of deviation (E)	$L_E = Z_K + \frac{\Pi i R}{180}$	$Z_E = Z_K + R \sin i$	i .	$D_E = R(1 - \cos i)$
Target (7)	$L_T = Z_{\kappa} + \frac{\Pi i R}{180} + \frac{Z - Z_{\kappa} - R \sin i}{\cos i}$	Ζ	j	D

Vertical depth  $Z_P$  as a function of drilled depth  $L_P$  at point P:

$$Z_P = Z_K + \frac{573}{gbu} \sin i + \left(L_P - Z_K - \frac{10i}{gbu}\right) \cos i$$



### CALCULATION OF CHARACTERISTIC POINTS OF THE THEORETICAL VERTICAL PROFILE S hole: $R_1 + R_2 < D$ (continued)

Assuming a return of the well to the vertical at F, the inclination *i* depends on the depth selected for point F:

$$i = 180 - \tan^{-1} \left[ \frac{Z_F - Z_K}{D - R_1 - R_2} \right] - \cos^{-1} \left[ \frac{R_1 + R_2}{Z_F - Z_K} \sin \tan^{-1} \frac{Z_F - Z_K}{D - R_1 - R_2} \right]$$

The remaining calculations are identical to those in J 5 and J 7 up to  $D(Z_{D_r}, D_D)$ .

Vertical projection at D:

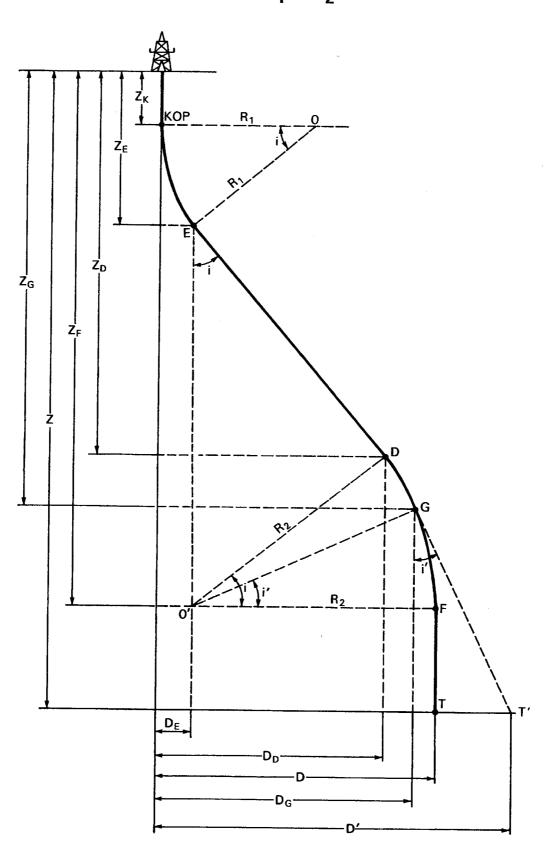
$$Z_D = Z_F - R_2 \sin i$$

Measured depth at D:

$$L_D = Z_K + \frac{\Pi i R_1}{180} + \frac{Z_D - Z_K - R_1 \sin i}{\cos i}$$

Displacement at D:

$$D_D = R_1 (1 - \cos i) + (Z_D - Z_K - R_1 \sin i) \tan i$$


Measured depth at F:

$$L_F = L_D + \frac{\Pi i R_2}{180}$$

Total measured depth at T:

$$L_T = Z_K + \frac{\Pi i R_1}{180} + \frac{Z_D - Z_K - R_1 \sin i}{\cos i} + \frac{\Pi i R_2}{180} + Z - Z_F$$

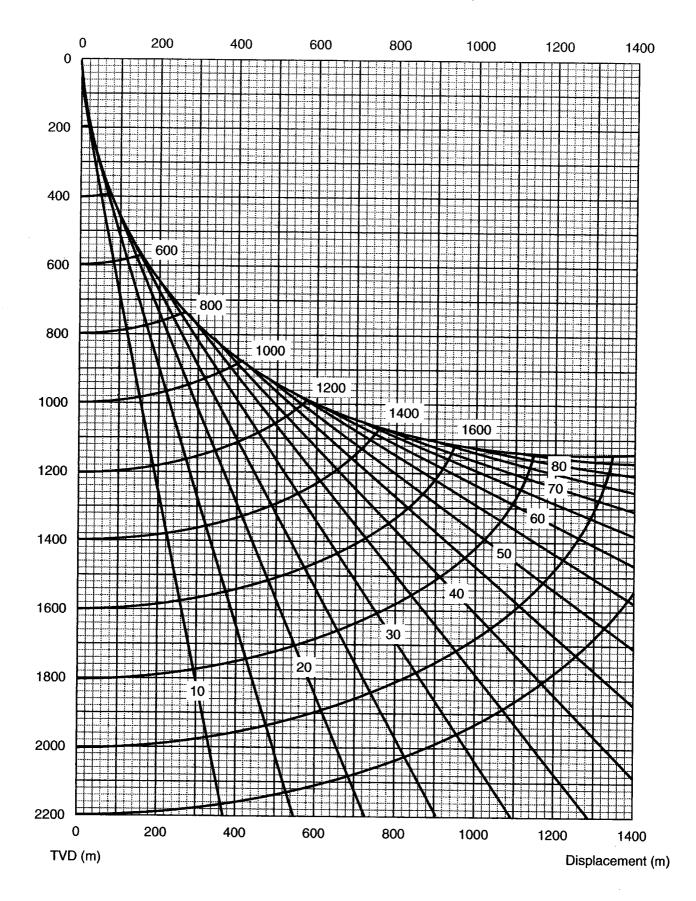
# CALCULATION OF CHARACTERISTIC POINTS OF THE THEORETICAL VERTICAL PROFILE S hole: $R_1 + R_2 > D$



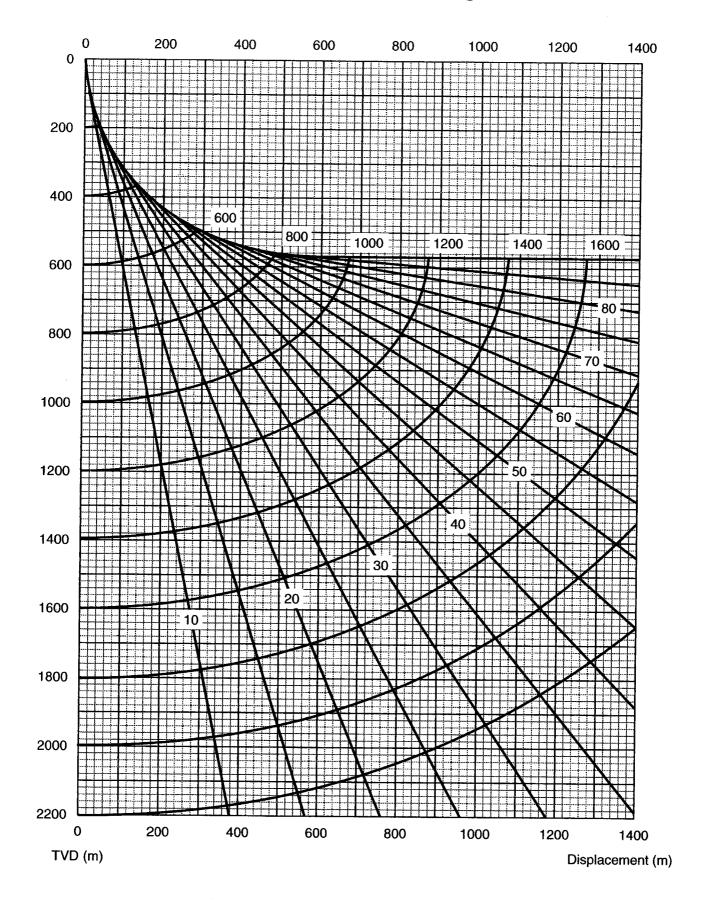
### CALCULATION OF CHARACTERISTIC POINTS OF THE THEORETICAL VERTICAL PROFILE S hole: $R_1 + R_2 > D$ (continued)

Assuming a return of the well to the vertical at F, the inclination *i* depends on the depth selected for point F:

$$i = \tan^{-1} \left[ \frac{Z_F - Z_K}{R_1 + R_2 - D} \right] - \cos^{-1} \left[ \frac{R_1 + R_2}{Z_F - Z_K} \sin \tan^{-1} \frac{Z_F - Z_K}{R_1 + R_2 - D} \right]$$

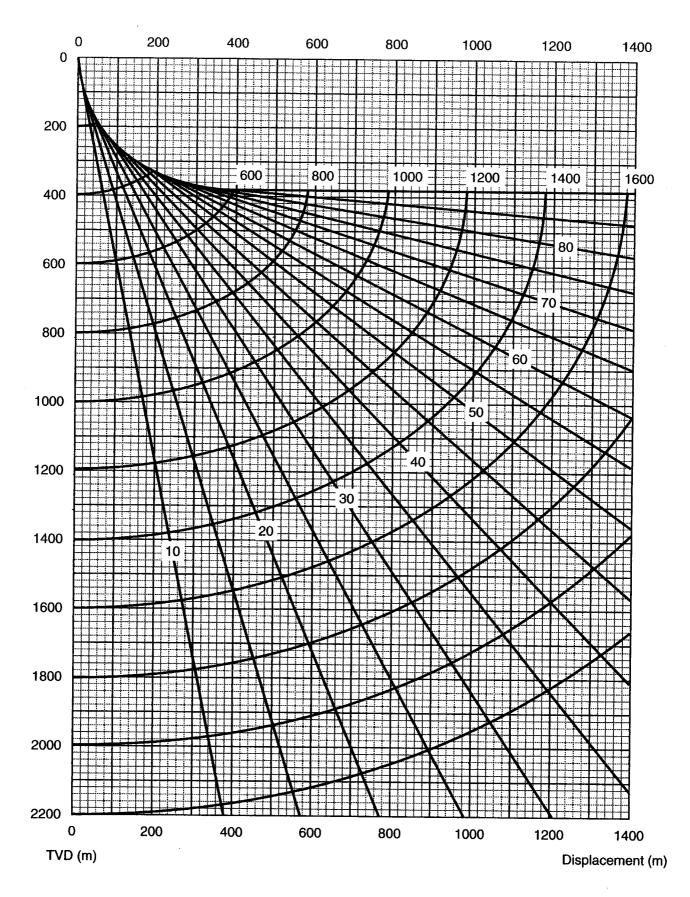

The remaining calculations are unchanged (see J 9).

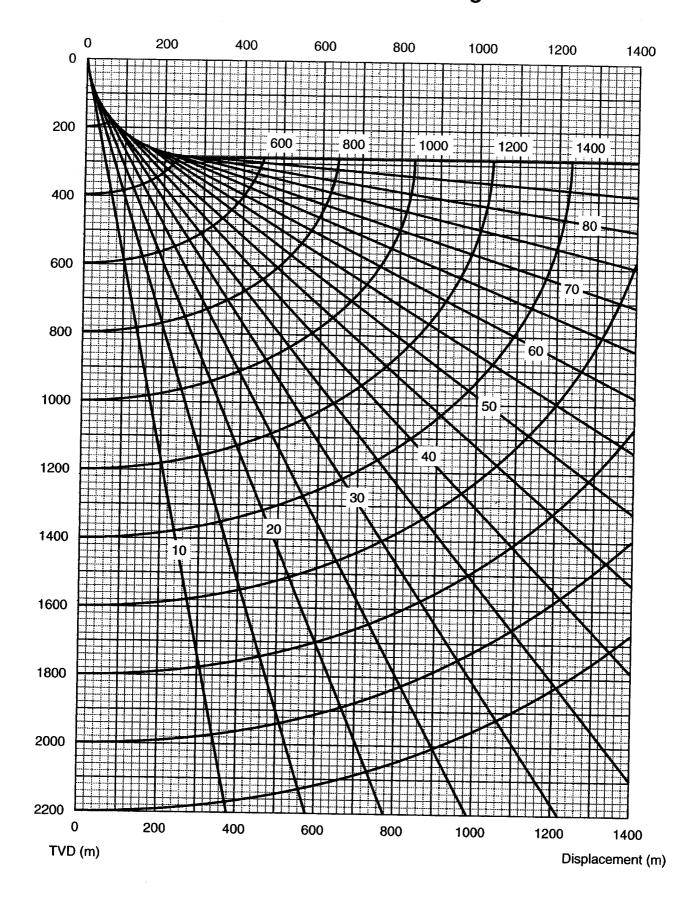
If the well does not return to the vertical, the displacement at T' from point G becomes:


$$D' = D_G + (Z - Z_G) \tan i'$$
$$L_{T'} = L_G + \frac{(Z - Z_G)}{\cos i'}$$

J 12

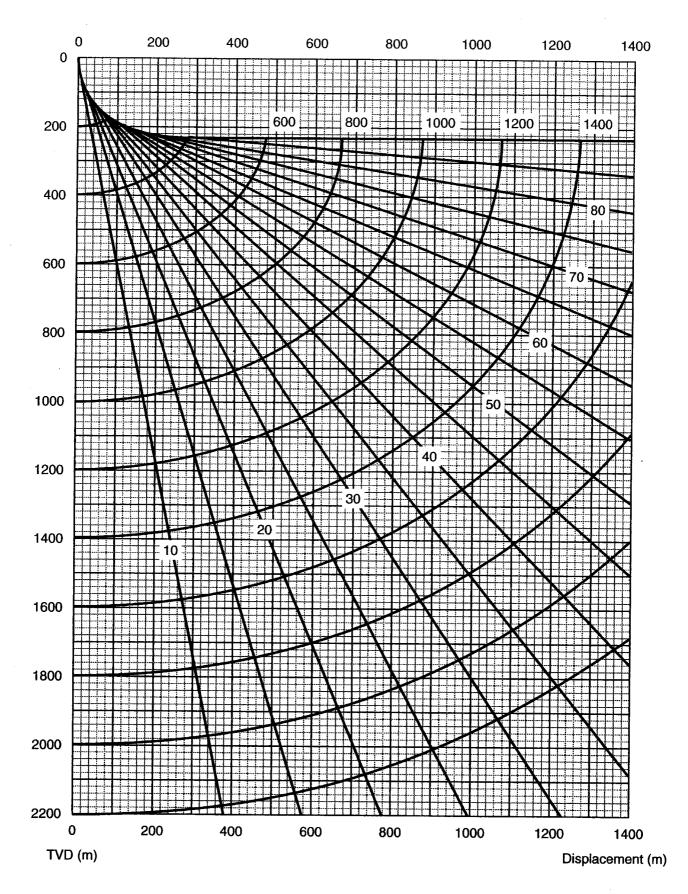
# THEORETICAL VERTICAL PROFILE RATE OF BUILDUP: 0.50 deg/10 m





# THEORETICAL VERTICAL PROFILE (continued) RATE OF BUILDUP: 1.00 deg/10 m



J 14


### THEORETICAL VERTICAL PROFILE (continued) RATE OF BUILDUP: 1.50 deg/10 m

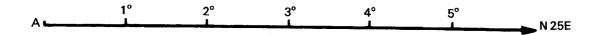




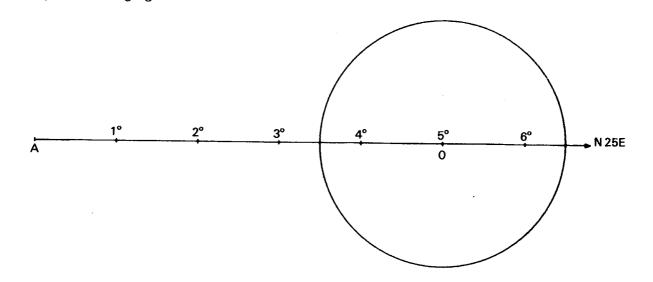
J 16

# THEORETICAL VERTICAL PROFILE (continued) RATE OF BUILDUP: 2.50 deg/10 m



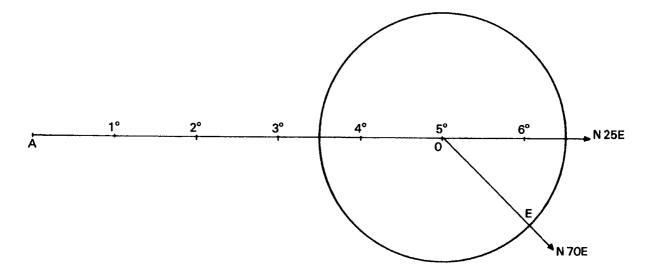

### **RAGLAND DIAGRAM**

The Ragland diagram serves to determine the parameters used to calculate the orientation of the deflecting tool.


The diagram has four lines representing the characteristics of the hole and the deflecting tools.

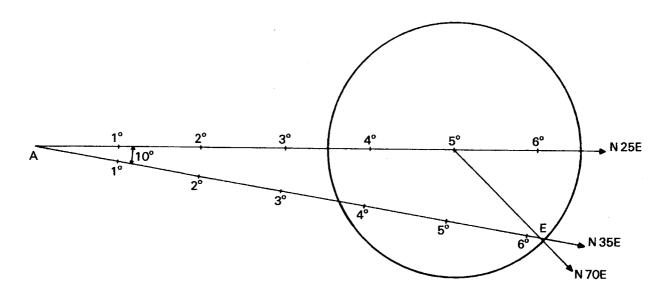
These lines are the following:

1) Original direction and inclination of a part of the hole. *Example:* 5° and N25E




2) Dogleg circle (see dogleg formula in J 21). *Example:* 1.5° dogleg



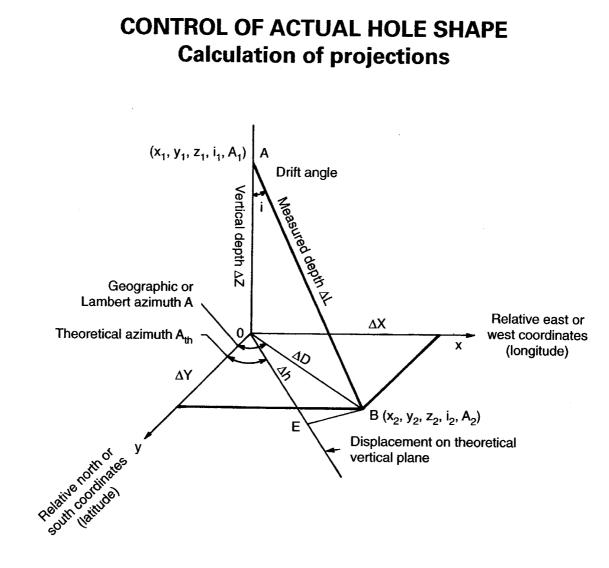

3) Orientation of deflecting tool in relation to the original direction, taking roll-off into account.

Example: deflecting tool 45° to the right of the original direction, i.e. N70E.



### **RAGLAND DIAGRAM** (continued)

4) Direction obtained in relation to the original direction:




The angle between the two directions is 10 degrees. The new direction is N35E.

Point *E* is common to the three lines:

- (a) Orientation of deflecting tool
- (b) Dogleg circle
- (c) Direction obtained.

The third point can be obtained if two of them are known.



The following table gives the method to be used to calculate the different coordinates. Example of the method of the secant or average angle:

Element	Basi	Calculation (average angle)		
Vertical depth ΔΖ	Course length between two	Average drift angle	$\Delta Z = \Delta L \cos i$	
Horizontal Displacement ΔD	consecutive surveys $\Delta L$	$i = \frac{i_1 + i_2}{2}$	$\Delta D = \Delta L \sin i$	
Relative north or south coordinates $\Delta Y$	Horizontal displacement	Average Lambert or geographic azimuth $A = \frac{A_1 + A_2}{2}$	$\Delta Y = \Delta D \cos A$	
Relative east or west coordinates $\Delta X$	$\Delta D$		$\Delta X = \Delta D \sin A$	
Projection on theoretical plane $\Delta h$		Angular difference between geographic azimuths of survey and target $(A - A_{th})$	$\Delta h = \Delta D \cos(A - A_{th})$	

### CONTROL OF ACTUAL HOLE SHAPE Different calculation formulas

The drift angle  $i_1$  and azimuth  $A_1$  are measured at point A. If  $i_2$  and  $A_2$  are measured at point B, lying at a distance  $\Delta L$  from point A:

### a. Tangent method

$$\Delta Z = \Delta L \cos i_2$$
$$\Delta D = \Delta L \sin i_2$$
$$\Delta Y = \Delta D \cos A_2$$
$$\Delta X = \Delta D \sin i_2$$

### b. Secant or average angle method

$$\Delta Z = \Delta L \cos \frac{i_1 + i_2}{2}$$
$$\Delta D = \Delta L \sin \frac{i_1 + i_2}{2}$$
$$\Delta Y = \Delta D \cos \frac{A_1 + A_2}{2}$$
$$\Delta X = \Delta D \sin \frac{A_1 + A_2}{2}$$

#### c. Balanced tangent method

1

$$\Delta Z = \frac{\Delta L}{2} \cos i_1 + \frac{\Delta L}{2} \cos i_2$$
  

$$\Delta D = \frac{\Delta L}{2} \sin i_1 + \frac{\Delta L}{2} \sin i_2$$
  

$$\Delta Y = \frac{\Delta L}{2} \sin i_1 \cos A_1 + \frac{\Delta L}{2} \sin i_2 \cos A_2$$
  

$$\Delta X = \frac{\Delta L}{2} \sin i_1 \sin A_1 + \frac{\Delta L}{2} \sin i_2 \sin A_2$$

# **CONTROL OF ACTUAL HOLE SHAPE Different calculation formulas** (continued)

# d. Radius of curvature method

$$\Delta Z = \frac{180}{\Pi} \frac{\Delta L}{i_2 - i_1} (\sin i_2 - \sin i_1)$$
$$\Delta D = \frac{180}{\Pi} \frac{\Delta L}{i_2 - i_1} (\cos i_1 - \cos i_2)$$
$$\Delta Y = \frac{180}{\Pi} \frac{\Delta D}{A_2 - A_1} (\sin A_2 - \sin A_1)$$
$$\Delta X = \frac{180}{\Pi} \frac{\Delta D}{A_2 - A_1} (\cos A_1 - \cos A_2)$$

# e. Minimum curvature method

The drilled section is assimilated to a spherical arc with a minimum curvature (maximum radius):

if:

 $DLG = \cos^{-1}[\cos i_1 \cos i_2 + \sin i_1 \sin i_2 \cos(A_2 - A_1)]$ 

and:

$$K = \frac{\Delta L}{DLG} \sin \frac{DLG}{2}$$

$$\Delta Z = K(\cos i_1 + \cos i_2)$$
  

$$\Delta D = K(\sin i_1 + \sin i_2)$$
  

$$\Delta Y = K(\sin i_1 \cos A_1 + \sin i_2 \cos A_2)$$
  

$$\Delta X = K(\sin i_1 \sin A_1 + \sin i_2 \sin A_2)$$

#### f. Dogleg

The formula for dogleg (DL) is the following:

 $\mathsf{DL} = \cos^{-1}[\cos i_1 \cos i_2 + \sin i_1 \sin i_2 \cos(A_2 - A_1)]$ 

### g. Dogleg severity

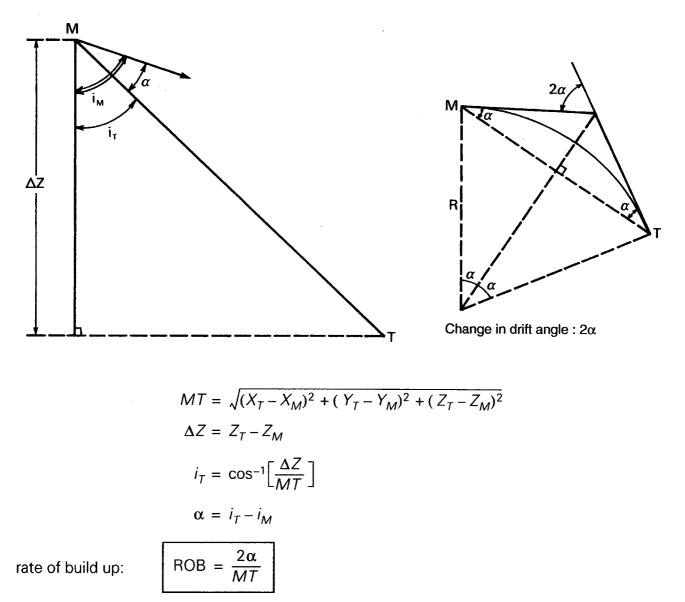
The API formula for Dogleg severity is the following:

DLS = 
$$\frac{100}{\Delta L} (\cos)^{-1} [\cos i_1 \cos i_2 + \sin i_1 \sin i_2 \cos(A_2 - A_1)]$$

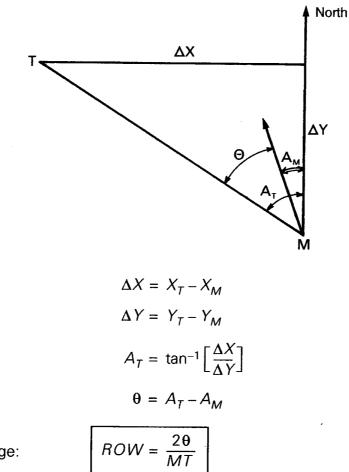
The values are expressed in degrees/100 ft if DL is in feet.

Other DLS formulas are available according to the calculation method employed.

# **COURSE CORRECTION**


Let us assume that the last survey was made at point *M*:

$$M\begin{cases} \text{Drift angle} = i_M \\ \text{Azimuth} = A_M \\ \text{Coordinates} = X_M, Y_M, Z_M \end{cases}$$


The target is at point *T*:

T coordinates =  $X_T$ ,  $Y_T$ ,  $Z_T$ 

# Drift angle correction



#### **Azimuth correction**



rate of azimuth change:

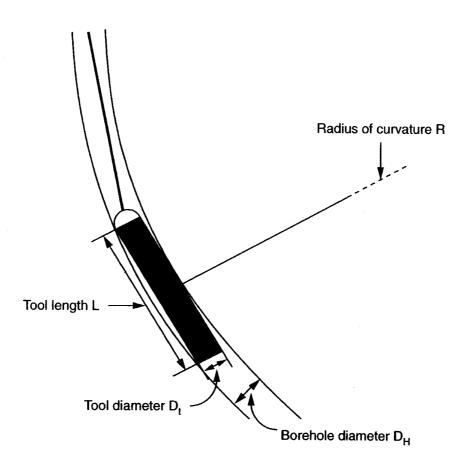
# Possible azimuth variation with a deflecting tool

The maximum angle that can be turned to right or left with a deflecting tool is given by the practical formula:

$$\Delta A = \frac{180}{i}$$

where  $\Delta A$  is the maximum azimuth variation with a hole inclination *i*.

# RADIUS OF BOREHOLE CURVATURE LIMITATION ON DOWNHOLE TOOLS


The length of a rigid downhole tool that can be run in a deviated well is given by:

 $L = 2\sqrt{(R + 0.0254D_H)^2 - (R + 0.0254D_t)^2}$ 

where:

- L = Maximum length of the downhole tool in meters
- $R_{\rm c}$  = Radius of borehole curvature in meters (see page J 3)
- $D_H$  = Borehole diameter in inches

 $D_t$  = Tool diameter in inches



Conversely, the minimum radius of curvature of a well in which a specific rigid tool can be run is given by:

$$R = \frac{L^2 - 0.00258(D_H^2 - D_t^2)}{0.2032(D_H - D_t)}$$

J 24

# RADIUS OF BOREHOLE CURVATURE LIMITATION ON DOWNHOLE TOOLS (continued)

# Example 1:

Borehole diameter:5 3/4 inRadius of curvature:143 m (4°/10 m)Tool diameter:3 1/2 in

 $L = 2\sqrt{(143 + 0.0254 \times 5.75)^2 - (143 + 0.0254 \times 3.5)^2} = 8.09 \text{ m}$ 

# Example 2:

Borehole diameter:	6 in
Tool length:	6.40 m (21 ft)
Tool diameter:	2 3/4 in

$$R = \frac{6.40^2 - 0.00258(6^2 - 2.75^2)}{0.2032(6 - 2.75)} = 61.91 \text{ m}$$

The equivalent gbu is:  $gbu = \frac{573}{61.91} = 9.25^{\circ}/10 \text{ m}$ 

Κ

# kick control fishing

Main symbols used	K1-K2
Preliminary calculations	K3
Driller's procedures	K4-K5
Calculation after well shut-in	K6
Driller's method on land or on fixed support	K7
Wait and weight method on land or on fixed support	K8
Wait and weight method on floating support (Example without kick assembly)	K9
Control on a floating rig	K10
Well strength	K11-K12
Charts giving coefficient K and gas specific gravity	K13
Example of kick control	K14-K17
Determination of the length of free pipe in a stuck string	K18-K19
Maximum allowable number of turns which can be given to 1000 m of new drill pipe under a given axial tension (Grade E drill pipe)	K20
Maximum allowable number of turns which can be given to 1000 m of new drill pipe under a given axial tension (Grade X95 drill pipe)	K21

Maximum allowable number of turns which can be given to 1000 m of new drill pipe under a given axial tension (Grade G105 drill pipe)	K22
Maximum allowable number of turns which can be given to 1000 m of new drill pipe under a given axial tension (Grade S135 drill pipe)	K23
Back-off	K24
Tool joint matting surface area (API Spec 7, April 1, 1994)	K25

# MAIN SYMBOLS USED

D	
B	barite weight to be added to $V \text{ m}^3$ of mud to raise the mud weight from $d_1$ to $d_2$ (kg)
B _r	rate of barite addition (kg/min)
BHP	Bottom Hole Pressure (kPa)
$C_{i}$	number of pump strokes corresponding to drill string internal volume $V_i$
Ca	number of pump strokes corresponding to total annular volume $V_a$
Coh	number of pump strokes corresponding to open-hole annular volume $V_{ m oh}$
СР	Circulating Pressure (kPa)
<i>d</i> ₁	initial specific gravity of the mud (at shut-in)
d ₂	intermediate specific gravity in case of multi-step weighting
d _e	specific gravity of the mud balancing formation pressure
$d_{\rm frac}$	specific gravity of the mud corresponding to formation fracture
$d_{g}$	specific gravity (or density in kg/l) of gas measured with respect to water
d _r	specific gravity of the mud required to kill the well
FCP	Final Circulating Pressure at kill rate with mud at specific gravity $d_r$ (kPa)
G	volume of kick measured at shut-in (liter)
G _{max}	maximum volume of kick to avoid fracture at shoe or exceeding the maximum working pressure (liter)
h	height of gas influx (m)
HP	Hydrostatic Pressure (kPa)
ICP	Initial Circulating Pressure at kill rate with mud at specific gravity $d_1$ (kPa)
ICP ₂	Initial Circulating Pressure at kill rate with mud at specific gravity $d_2$ (kPa)
£	
К	ratio $\frac{I_s Z_s}{Z_b T_b}$ of $ZT \left(\frac{PV}{ZT} = \text{constant}\right)$ between surface and bottom hole
MAASP	Maximum Allowable Annulus Surface Pressure, well shut-in, corresponding
	to fracturing at weak zone (or shoe) (kPa)
N	pump speed (strokes) corresponding to drilling flow rate (strokes/min)
N _r	pump speed (strokes) corresponding to kill flow rate (strokes/min)
Pa	annulus surface pressure during kick control (kPa)
$P_{\rm afg}$	static surface annulus pressure, well full of gas (kPa)
$P_{a \max}$	annulus surface pressure when gas reaches surface (kPa)
P _{dp}	drill pipe pressure (kPa)
$\Delta P_{cl}$	pressure losses in choke line (kPa)
Pf	formation pressure (kPa)
P _{frac}	fracturing pressure at weak zone (kPa)
$\Delta P_{ka}$	additional pressure loss due to circulating head (kick assembly) and to pumping line
	between reading pressure gauge and circulating head on floating rig (kPa)
P _{max}	maximum safe casing pressure, either the working pressure of the BOP's or the
	bursting strength of the last casing string, whichever is the lowest. This pressure
	must never be exceeded (kPa)
Ps	pressure at weak zone (or shoe) (kPa)
P _{s max}	maximum pressure at weak zone (or shoe) (kPa)
P _{sr1}	pressure losses at kill (slow) rate with mud specific gravity $d_1$ , measured by
	the normal drilling circuit (shale shakers or riser) (kPa)

# MAIN SYMBOLS USED (continued)

$P_{\rm sr_2}$	pressure losses at kill (slow) rate with mud specific gravity <i>d</i> ₂ , measured by the normal drilling circuit (shale shakers or riser) (kPa)
$P_{\rm sr_r}$	pressure losses at kill (slow) rate with mud specific gravity $d_r$ , measured by the normal drilling circuit (shale shakers or riser) (kPa)
Q	flow rate during drilling operation (I/min)
Q _r	flow rate (reduced) during kill operation (l/min)
S	downhole pressure increase (safety margin) during kill operation (kPa)
SICP	stabilized annulus (casing) pressure, well shut-in, after kick (kPa)
SIDPP	stabilized drill pipe pressure, well shut-in, after kick, with mud at specific gravity <i>d</i> ₁ (kPa)
SIDPP ₂	stabilized drill pipe pressure, well shut-in, after kick, with mud at specific gravity $d_2^{}$ (kPa)
V	total volume of mud to be weighted (including tanks) (m ³ )
$V_{a}$	total annulus volume (m ³ )
V _a	volume per meter of annulus (I/m)
$V_{ab}$	volume per meter of annulus downhole (I/m)
V _B	volume increase due to barite weighting of V m ³ of mud from $d_1$ to $d_2$ (m ³ )
Vi	drill string internal volume (m ³ )
$V_{\rm oh}$	open-hole annular volume (m ³ )
V _{tk}	volume of mud in tanks (m ³ )
Ζ	vertical depth (m)
Zs	vertical depth at weak zone (or shoe) (m)

# **PRELIMINARY CALCULATIONS**

To act promptly and effectively when a kick occurs, certain data, necessary to control a well, must be known or determined in advance, and the values regularly updated.

# **VOLUMES OF CIRCULATING FLUIDS**

- $V_i$  = inside volume of drill string (m³)
- $V_a$  = total annular volume (m³)
- $V_{\rm oh}$  = open-hole annular volume (m³)
- $V_{\rm tk}$  = volume of mud in tanks (m³)

# **REDUCED MUD FLOW RATE TO CONTROL A KICK**

The reduced mud flow rate  $Q_r$  selected in advance, generally ranges between a half and a quarter of the drilling mud flow rate Q (usually Q/2). It is selected according to the geometry of the well, and the surface installation.

# NUMBER OF CIRCULATING STROKES AT REDUCED MUD FLOW RATE

a) From surface to bit:

$$C_{\rm i} = \frac{V_{\rm i}}{Q_{\rm r}} N_{\rm r}$$

b) From bit to surface:

$$C_{\rm a} = \frac{V_{\rm a}}{Q_{\rm r}} N_{\rm r}$$

c) Corresponding to open-hole annular volume:

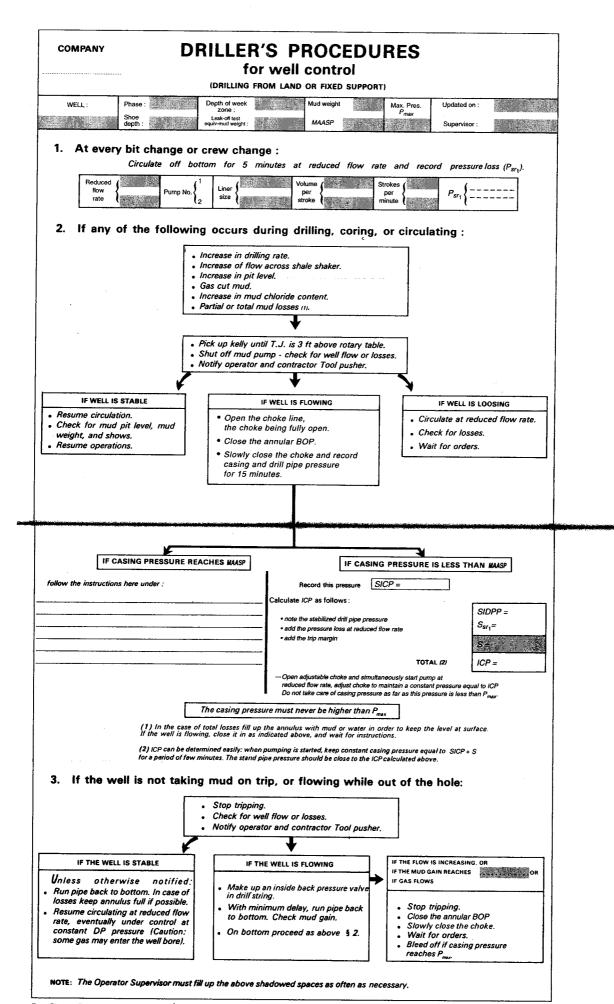
$$C_{\rm oh} = \frac{V_{\rm oh}}{Q_{\rm r}} N_{\rm r}$$

# PRESSURE LOSSES AT REDUCED MUD FLOW RATE WITH INITIAL MUD WEIGHT ( $P_{\rm sr}$ )

These pressure losses can be determined as drilling proceeds:

(a) At fixed times, at crew changes for example

(b) After running a new bit before resuming drilling.


These pressure losses are measured onshore and offshore by the normal drilling circuit.

Additional pressure losses  $\Delta P_{cl}$  occur when circulating in the control lines. They are normally negligible on land or on a fixed offshore support, but are higher on a floating rig.

Since these additional pressure losses occur in the annulus, they must not appear in the expression of the circulating pressure during control.

# MAASP and $d_{\text{frac}}$

(see Well strength, K 11).



From Blowout Prevention and Well Control. Éditions Technip, Paris, 1981.

大 5

# **CALCULATION AFTER WELL SHUT-IN**

#### **Basic calculations**

$$P_{f} = SIDDP + 9.81Zd_{1}$$
$$d_{e} = \frac{P_{f}}{9.81Z}$$
$$ICP = SIDDP + P_{sr_{1}} + S$$
$$d_{r} = d_{1} + \frac{SIDDP + S}{9.81Z}$$
$$FCP = P_{sr_{r}} = P_{sr_{1}}\frac{d_{r}}{d_{1}}$$

# Circulation of an intermediate mud weight $d_2$

From the time when mud  $d_2$  reaches the bit, the casing pressure becomes:

$$\mathsf{ICP}_2 = \mathsf{SIDDP}_2 + P_{\mathsf{sr}_2} + S$$

with:

 $SIDPP_2 = P_f - 9.81Zd_2$  $P_{sr_2} = P_{sr_1} \frac{d_2}{d_1}$ 

Special case, if:

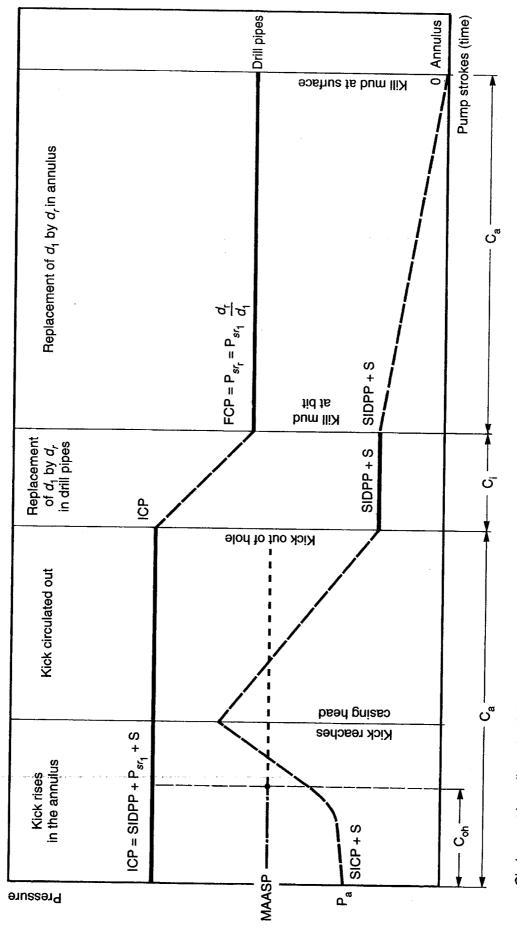
$$d_2 = \frac{d_1 + d_r}{2}$$
$$ICP_2 = \frac{ICP + FCP}{2}$$

then:

#### **Barite addition**

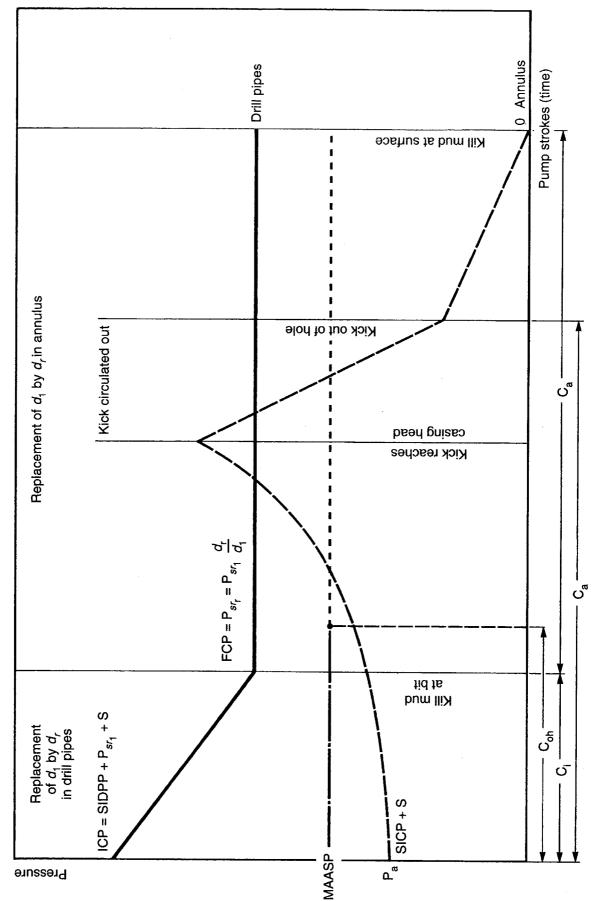
Barite weight to be added to  $V m^3$  of mud to raise the specific gravity from  $d_1$  to  $d_2$ :

$$B = 4.2 V \frac{d_2 - d_1}{4.2 - d_2}$$
 (in metric tons)


rate of barite addition at flow rate  $Q_r$  to raise the specific gravity from  $d_1$  to  $d_2$ :

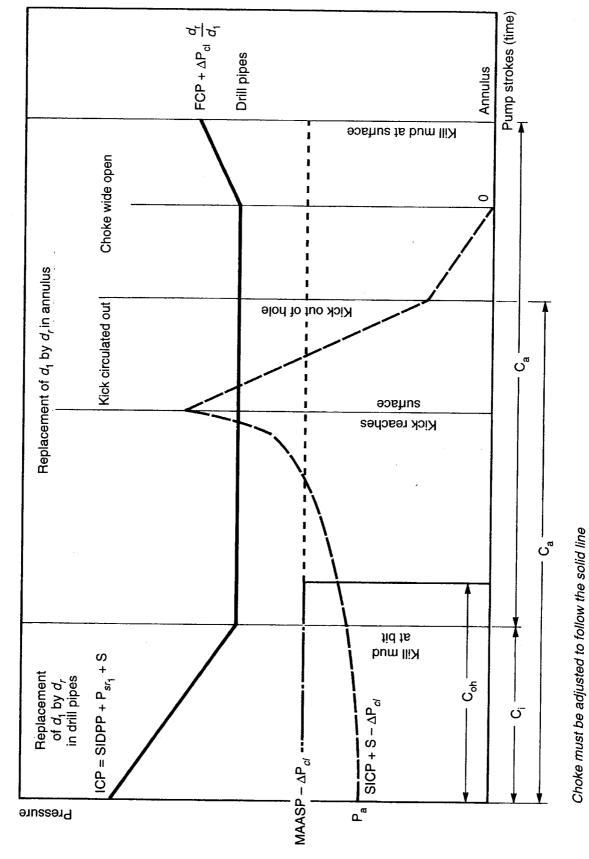
$$B = 4.2 Q_{\rm r} \frac{d_2 - d_1}{4.2 - d_2}$$
 (in kg/min)

Volume increase due to barite addition:


$$V_{\rm B} = \frac{B}{4.2}$$
 (in m³)

DRILLER'S METHOD ON LAND OR ON FIXED SUPPORT




Choke must be adjusted to follow the solid line

WAIT AND WEIGHT METHOD ON LAND OR ON FIXED SUPPORT



Choke must be adjusted to follow the solid line

WAIT AND WEIGHT METHOD ON FLOATING SUPPORT (Example without kick assembly)



# **CONTROL ON A FLOATING RIG**

Control is started with a drill pipe pressure of:

$$ICP = P_{sr_1} + \Delta P_{ka} + SIDPP + S$$

To avoid fracturing at the shoe, the starting annular surface pressure must be:

$$P_a < MAASP - \Delta P_{cl}$$

When the mud of the required weight reaches the bit, the drill pipe pressure is:

$$FCP = (P_{sr_1} + \Delta P_{ka}) \frac{d_r}{d_1}$$

In very deep water, the choke plays the role of a fixed choke. As long as the pressure loss caused by this fixed choke can be offset by opening the adjustable choke, the downhole pressure is unaffected.

As control is completed, with the adjustable choke completely open, the circulationg pressure exceeds FCP. To limit this excess, which corresponds to a downhole overpressure of:

$$\Delta P_{\rm cl} \frac{d_{\rm r}}{d_{\rm 1}}$$

at the end of control, the second choke line can be opened or control completed at a lower flow rate.

(1)  $\Delta P_{ka}$ : additional pressure loss due to a kick assembly. If fluid circulates through the kelly instead of a kick assembly  $\Delta P_{ka} = 0$ .

# WELL STRENGTH

#### MAASP

The maximum allowable pressure MAASP at the top of the annulus, well closed, without any risk of fracturing the formation at the weak zone, is related to the specific gravity of the fluid in the annulus between the weak zone and the surface.

The MAASP changes as the fluid specific gravity changes:

$$MAASP = P_{frac} - 9.81 Z_s d_1$$

Fracturing specific gravity

$$d_{\rm frac} = \frac{P_{\rm frac}}{9.81Z_{\rm s}}$$

# Maximum allowable gain at shut-in to avoid fracturing at the weak zone

Gas height:

$$h = \frac{\text{MAASP} - (P_{\text{f}} - 9.81Zd_{1})}{9.81(d_{1} - d_{0})}$$

 $d_{q}$  is given by the chart on page K 13.

$$G_{\text{max}} = \frac{\text{MAASP} - (P_{\text{f}} - 9.81Zd_{1})}{9.81(d_{1} - d_{\text{g}})} v_{\text{ab}}$$

Maximum allowable gain at shut-in to avoid exceeding the  $P_{max}$  pressure of the well when the gas arrives below the BOP during the circulation of a gas kick:

$$G_{\max} = \frac{P_{\max}[9.81Zd_1 - (P_f - P_{\max})]}{9.81Kd_1P_f} v_{ab}$$

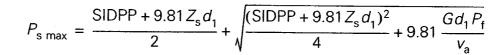
*K* is given by the chart on page K 13.

# Maximum annulus pressure, well shut-in and filled with gas

$$P_{\rm afg} = P_f - 9.81 Z d_{\rm g}$$

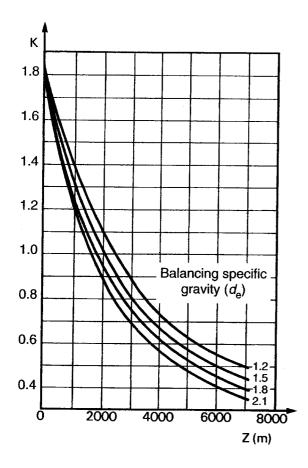
 $d_{g}$  is given by the chart on page K 13.

# WELL STRENGTH (continued)


# Maximum casing pressure during the circulation of a gas kick with the initial mud weight

 $P_{\text{a max}} = \frac{\text{SIDPP}}{2} + \sqrt{\frac{\text{SIDPP}^2}{4} + 9.81} \frac{KGd_1P_f}{V_a}$ 

K is given by the chart on page K 13.

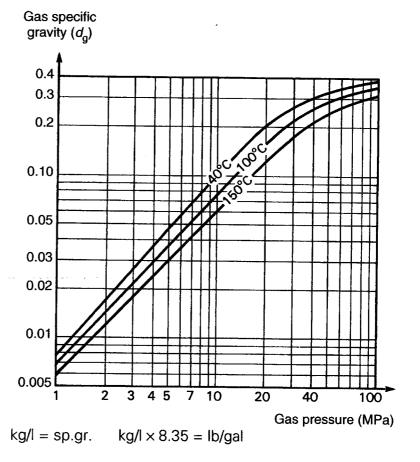

*Note:* this pressure is calculated when the gas arrives below the BOP. The geometry of the annulus is considered constant.

# Maximum pressure at weak zone during circulation of a gas kick with mud of the original weight



*Note:* this pressure is calculated when the gas arrives below the weak zone. The geometry of the annulus is considered constant. *K* is equal to 1.

# CHARTS GIVING COEFFICIENT K AND GAS SPECIFIC GRAVITY




Value of the coefficient K as a function of depth and balancing mud weight for a given formation (coefficient used to calculate maximum circulating casing pressure  $P_{a max}$  when taking a kick). From *Blowout Prevention and Well control*, Éditions Technip, Paris, 1981.

Specific gravity of a gas as a function of pressure and temperature (for a gas of average composition (80% C1) specific gravity of 0.675 (air = 1) and a temperature gradient of  $3^{\circ}$ C/ 100 m).

From *Blowout Prevention and Well control,* Éditions Technip, Paris, 1981.

 $m \times 3.28 = ft$  MPa  $\times 145 = psi$ 



# **EXAMPLE OF KICK CONTROL**

# I INITIAL DATA

Well depth	Z Z _s		2500 m 1750 m
BOP serie 10 000			
Bit size 8 1/2 in with:			
. 5 in drill pipes, 19.5 lb/ft		=	2320 m
. 6 3/4 in - 2 1/4 in drill collars		=	180 m
. mud weight		=	1.15
. drilling mud flow rate	Q	=	1300 l/min
			(80 strokes/min)
. reduced mud flow rate	$Q_{r}$	=	650 l/min
			(40 strokes/min)
	Ρ	=	10 900 kPa
. pressure losses with mud $d_1$ at reduced flow rate .	$P_{\rm sr_1}$	Ξ	3500 kPa
Leak Off Test at shoe with mud at $d_1 \dots \dots \dots \dots$	MAASP	=	7700 kPa

# **II PRELIMINARY CALCULATIONS**

Inside volume of drill pipes (9.15 l/m)		
Inside volume of drill string V _i	21 690	liters (1335 strokes)
Annulus casing (38.18 l/m) - drill pipe (13.11 l/m) volume Annulus hole (36.61 l/m) - drill pipe (13.11 l/m)	43 872	liters
volume Annulus hole (36.61 l/m) - drill collar (23.09 l/m)	13 395	liters
volume	2 434	liters
Total annulus volume V _a		

Fracture pressure:

$$P_{\text{frac}} = \text{MAASP} + 9.81 \ Z_{\text{s}}d_1 = 7700 + 9.81 \times 1750 \times 1.15$$
  
 $P_{\text{frac}} = 27 \ 440 \ \text{kPa}$ 

Fracture mud weight :

$$d_{\rm frac} = \frac{P_{\rm frac}}{9.81Z_{\rm s}} = \frac{27\ 440}{9.81 \times 1750}$$
$$d_{\rm frac} = 1.60$$

# **III WELL SHUT-IN**

After waiting about 15 min for stabilization of the pressures, the readings are:

$$SIDPP = 2300 \text{ kPa}$$
  

$$SICP = 4500 \text{ kPa}$$
  

$$G = 4000 \text{ liters}$$

# **EXAMPLE OF KICK CONTROL** (continued)

# **IV CALCULATIONS AFTER SHUT-IN**

 $P_{\rm f} = 2300 + 9.81 \times 2500 \times 1.15 = 30500 \, \text{kPa}$ 

Given the difference between MAASP (7700 kPa) and SICP (4500 kPa), the following safety margin is used:

$$d_{\rm r} = 1.15 + \frac{2300 + 1000}{9.81 \times 2500} = 1.29$$

Total volume to be weighted by considering the circulating volume of 80 m³ at the surface:

 $V = V_i + V_a + V_{tk} = 21.690 + 59.701 + 80.000 = 161.4 \text{ m}^3$ 

Barite to be added:

$$B = 4.2 \times 161.4 \times \frac{1.29 - 1.15}{4.20 - 1.29} = 32.6$$
 metric tons

Volume increase due to barite:

$$V_{\rm B} = \frac{32.6}{4.2} = 7.8 \,{\rm m}^3$$

# **V KICK CONTROL BY THE DRILLER'S METHOD**

a) After setting the pump strokes counter to zero, open the choke and start the pump at the rate of 650 l/min (40 strokes/min). Adjust the choke to read the casing pressure:

$$P_{a} = SICP + S = 4500 + 1000 = 5500 \text{ kPa}$$

b) After a few moments, the drill pipe pressure should stabilize at:

if not:

. if  $P_{dp}$  read < ICP, the pump may be running at **less** than 40 strokes/min: check the pump

. if P_{dp} read > ICP, the pump may be running at **more** than 40 strokes/min: check the pump.

c) When the drill pipe pressure is stabilized at ICP, continue to maintain ICP for at least 3673 strokes.

# EXAMPLE OF KICK CONTROL (continued)

d) After 974 strokes, the entire influx has gone into the casing. If the casing pressure then exceeds MAASP, there is no risk of fracture if ICP and  $Q_r$  are still constant.

e) After 3673 strokes, (or more if the well is caved in), the influx has been circulated out completely, and you can stop the pump and shut in the well (record the position of the choke before shut-in) to read the pressures. They must be:

 $P_{dp} = SIDPP = 2300 \text{ kPa}$  $P_{a} = SIDPP = 2300 \text{ kPa}$ 

f) Reset the stroke counter to zero. Restart the pump at 650 l/min (40 strokes/min) repositioning the choke at its value before shut-in, as  $d_r$  mud is pumped into the drill pipes.

g) Control the choke to have the following casing pressure:

$$P_{a} = SIDPP + S = 2300 + 1000 = 3300 \text{ kPa}$$

The drill pipe pressure should drop from:

ICP = 6800 kPa to FCP = 3925 kPa in 1335 strokes.

h) After 1335 strokes, maintain the drill pipe pressure at:

FCP = 3925 kPa

until the kill mud  $d_r$  reaches the surface.

## **VI WELL STRENGTH**

# a. Maximum allowable gain at shut-in to avoid fracturing at weak zone

$$h = \frac{\text{MAASP} - (P_{\text{f}} - 9.81Zd_{1})}{9.81(d_{1} - d_{0})}$$

With  $P_{\rm f}$  = 30 500 kPa = 30.5 MPa and a downhole temperature of about 80°C, we can take (chart page K 13):

 $d_{0} = 0.25$ 

$$h = \frac{7700 - (30\ 000 - 9.81 \times 2500 \times 1.15)}{9.81 \times (1.15 - 0.25)}$$

or: 180 m opposite the drill collars:	$180 \times 13.52$	Ξ	2 424 liters
432 m opposite the drill pipes:	$432 \times 23.5$	=	10 152 liters
	Gain	=	12 586 liters

Since the maximum allowable gain is less than the open-hole annulus volume, the calculation with the gas-filled well is unacceptable.

# EXAMPLE OF KICK CONTROL (continued)

# b. Maximum pressure at weak zone (or shoe) during gas circulation

$$P_{s \max} = \frac{\text{SIDPP} + 9.81Z_sd_1}{2} + \sqrt{\frac{(\text{SIDPP} + 9.81Z_sd_1)^2}{4} + 9.81\frac{Gd_1P_f}{v_a}}{4}$$

$$P_{s \max} = \frac{2300 + 9.81 \times 1750 \times 1.15}{2}$$

$$+ \sqrt{\frac{(2300 + 9.81 \times 1750 \times 1.15)^2}{4} + 9.81\frac{4000 \times 1.15 \times 30500}{23.5}}$$

$$P_{s \max} = 24\ 439\ \text{kPa} < P_{\text{frac}}$$

At shut-in, the pressure at the weak zone (or shoe):

$$P_{\rm s} = {\rm SICP} + 9.81 Z_{\rm s} d_1 = 4500 + 9.81 \times 1750 \times 1.15 = 24242 \, {\rm kPa}$$

When circulation is started:

$$P_{\rm s} = {\rm SICP} + S + 9.81 Z_{\rm s} d_1 = 25242 \text{ kPa}$$

 $P_{\rm s max}$  calculated is lower than the value reached when starting control.

This is explained by the moderating effect of the drill collars. The gas height at the shoe is lower than downhole. This is not always the case, especially if the shoe is shallow.

# c. Maximum casing pressure when circulating the kick

For Z = 2500 m and  $d_e = 1.24$ , we obtain K = 0.95 on the chart on page K 13.

$$P_{a \max} = \frac{\text{SIDPP}}{2} + \sqrt{\frac{\text{SIDPP}^2}{4} + 9.81 \frac{\text{KGd}_1 P_f}{v_a}}$$
$$P_{a \max} = \frac{2300}{2} + \sqrt{\frac{2300^2}{4} + 9.81 \frac{0.95 \times 4000 \times 1.15 \times 30500}{23.5}}$$
$$P_{a \max} = 8697 \text{ kPa}$$

Value lower than :

(a) The BOP working pressure = 68 950 kPa

(b) The casing bursting pressure = 47300 kPa

# DETERMINATION OF THE LENGTH OF FREE PIPE IN A STUCK STRING

The length of free pipe in a stuck string is given by the formula:

$$L = \frac{2.675 P_{\rm dp} \ell}{T_2 - T_1}$$

where:

L = length of free pipe (m)

 $P_{dp}$  = weight per meter of pipe (kg/m)

 $\ell$  = differential stretch in mm for differential pull  $T_2 - T_1$  (10³ daN)

Note: this method does not give high accuracy on L.

# **EXAMPLE OF HOW TO USE THE METHOD**

Sticking at 2247 m in a 8 1/2 in hole with a mud weight 1.40 (SG). The drill string consists of 2000 m of 5 in, 19.50 lb/ft (NC50) grade X95, class Premium drill pipes, 31.83 kg/m and 247 m of 6 3/4 in by 2 13/16 in drill collars, 149.8 kg/m.

First step. Calculate the maximum pull on drill pipe:

(a) Tension load at minimum yield strength =  $175.6 \ 10^3 \ daN$ .

(b) Maximum allowable pull =  $175.6 \times 0.9 = 158 \ 10^3 \ daN$ 

Second step. Calculate the weight of the drill string in mud:

(a) Drill collars = 247 m × 149.8 kg/m =  $37\ 000\ \text{kg} \approx 37.0\ 10^3\ \text{daN}$ 

(b) Drill pipes = 2000 m × 31.83 kg/m =  $63600 \text{ kg} \approx 63.6 10^3 \text{ daN}$ 

Total  $\approx$  100.6 10³ daN

in mud d = 1.40, the buoyancy factor is 0.822.

Weight of drill string in mud =  $100.6 \times 0.822 = 82.6 \ 10^3 \ daN$ .

The allowable pull margin is:  $158 - 82.6 = 75.4 \ 10^3 \ daN$ .

**Third step**. Pull on the drill string until the weight indicator shows a pull  $T_1$  of 105 10³ daN (1). Draw a mark at the kelly bushing level. Apply 110 10³ daN and return to 105 10³ daN. Draw a second mark at the kelly bushing level. This second mark should be distinct from the first (difference caused by friction of drill pipes in the hole). Draw a datum line midway between the two marks.

# DETERMINATION OF THE LENGTH OF FREE PIPE IN A STUCK STRING (continued)

**Fourth step.** Proceed as above by applying  $T_2 = 135 \ 10^3$  daN (1). Draw a mark. Pull at 140  $10^3$  daN and return to 135  $10^3$  daN. Draw a mark. Draw a datum line midway between these two marks. Measure the distance  $\ell$  in mm between the two datum lines.

Assume  $\ell = 700$  mm.

Fifth step. Apply the formula with:

 $P_{dp} = 31.8 \text{ kg/m}$   $\ell = 700 \text{ mm}$   $T_1 = 105 \ 10^3 \text{ daN}$  $T_2 = 135 \ 10^3 \text{ daN}$ 

$$L = \frac{2.675 \times 31.8 \times 700}{30} = 1985 \,\mathrm{m}$$

Conclusion. The sticking point is nearly at the top of the drill collars.

MAXIMUM ALLOWABLE NUMBER OF TURNS WHICH CAN BE GIVEN TO 1000 m OF NEW DRILL PIPE UNDER A GIVEN AXIAL TENSION (Grade E drill pipe)

Number of turns for 1000 m           0         10         20         30         40         50         60         70         80         90	10 20 30 40 50 60	20 30 40 50 60	40 50 60	e0 20	09		umber of turns for 1000 m ( 70 80 90 7	f turns for 1000 m ( 80 90 7	or 1000 m 6	č	of drill 1	pipe unde	er a tensic 120	on of (100 130	00 daN)	150	160	170	180	190	200	210
4.85 18 3/4 18 1/4 16 3/4 13 1/2 6.65 18 3/4 18 1/2 17 3/4 16 1/4 14 1/4	18 1/4 16 3/4 13 1/2 18 1/2 17 3/4 16 1/4 14	16 3/4 13 1/2 17 3/4 16 1/4 14	13 1/2 16 1/4 14	14 1/4																		
6.85         15         15         14         14         1/2         13         1/2         8         3/4           10.40         15         1/2         15         1/4         14         3/4         14         12         10         10	15         1/4         14         1/2         13         1/2         11         1/2         8         3/4           15         1/2         15         1/4         14         3/4         14         12	14         1/2         13         1/2         11         1/2         8         3/4           15         1/4         14         3/4         14         12	11         1/2         8         3/4           14         13         1/4         12	1/2 8 3/4 13 1/4 12	12		0 1/	3	8 1/2													
9.50     12 3/4     12 3/4     12 1/4     12 1/4     10 1/4     9 1/4     7       13.30     12 3/4     12 1/2     12 1/2     12 1/4     11 1/2     11 1/2     11     10       15.50     12 3/4     12 1/2     12 1/2     12 1/2     12 1/2     12 1/2     11 1/2     11 1/2     11	12     3/4     12     1/4     12     1/1     1/4     10     1/4     9     1/4       12     3/4     12     1/2     12     1/4     12     11     1/2       12     3/4     12     1/2     12     1/4     12     11     1/2       12     3/4     12     1/2     12     1/2     12     1/4     12	12     1/4     12     11     1/4     10     1/4     9     1/4       12     1/2     12     1/4     12     11     1/2     11       12     1/2     12     1/2     12     1/4     12     11	12         11         1/4         10         1/4         9         1/4           12         1/4         12         11         1/2         11         1/2           12         1/2         12         1/4         12         1/1         1/2         1	1/4         10         1/4         9         1/4           11         1/2         11         1           1/4         12         11         1/2	1/4 9 1/4 1/2 11 11 1/2	1/4 1/2	r 0 r	7 1/2 10 1/4 11 1	4 3/4 9 1/2 10 1/2	8 1/2 10	7 1/4 9	5 1/4 8 1/4	. 2	5 1/2	2 3/4							
11.85         11         11         11         11         10         3/4         10         1/2         10         1/4         9         1           14.00         11         1/4         11         11         10         3/4         10         1/2         10         1/4         9         3/4         5         5	11         11         10         3/4         10         1/4         9         3/4         9           11         11         10         3/4         10         1/2         10         1/4         9         3/4	10 3/4         10 1/4         9 3/4         9           10 3/4         10 1/2         10 1/4         9 3/4	10 1/4 9 3/4 9 10 1/2 10 1/4 9 3/4	9 3/4 9 10 1/4 9 3/4	9 9 3/4	3/4		8 1/4 9 1/4	7 8 3/4	5 1/4 7 3/4	2 1/2 6 3/4	5 1/2	3 1/2									
13.75         10         9 3/4         9 3/4         9 1/2         9 1/4         9         8 1/2         8           16.60         10         9 3/4         9 3/4         9 3/4         9 1/2         9 1/4         9         8         8         7         8           20.00         10         10         9 3/4         9 3/4         9 3/4         9 3/4         9 1/2         9 1/4         9         8         8         1         1         1         1         9         1         9         1         9         1         9         1         9         1         9         1         9         1         9         1         9         9         1         9         9         1         9         9         1         9         1         9         1         9         1         9         1         9         1         9         1         9         1         1         9         1         1         9         1         9         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td>9 3/4     9 1/2     9 1/4     9 8 1/2       9 3/4     9 3/4     9 1/2     9 1/4     9       9 3/4     9 3/4     9 3/4     9 1/2     9 1/4</td> <td>9 3/4     9 1/2     9 1/4     9 8 1/2       9 3/4     9 3/4     9 1/2     9 1/4     9       9 3/4     9 3/4     9 3/4     9 1/2     9 1/4</td> <td>1/2 9 1/4 9 8 1/2 3/4 9 1/2 9 1/4 9 3/4 9 3/4 9 1/2 9 1/4</td> <td>1/4 9 8 1/2 1/2 9 1/4 9 3/4 9 1/2 9 1/4</td> <td>8 1/2 1/4 9 1/2 9 1/4</td> <td>1/2 1/4</td> <td></td> <td>3/4 1/4</td> <td>7 1/2 8 1/4 9</td> <td>6 1/2 7 3/4 8 1/2</td> <td>5 1/2 7 1/4 8 1/4</td> <td>4 6 1/2 8</td> <td>5 3/4 7 1/2</td> <td>4 1/2 7</td> <td>3 6 1/2</td> <td>5 3/4</td> <td>4 3/4</td> <td>3 3/4</td> <td>1 3/4</td> <td></td> <td></td> <td>}</td>	9 3/4     9 1/2     9 1/4     9 8 1/2       9 3/4     9 3/4     9 1/2     9 1/4     9       9 3/4     9 3/4     9 3/4     9 1/2     9 1/4	9 3/4     9 1/2     9 1/4     9 8 1/2       9 3/4     9 3/4     9 1/2     9 1/4     9       9 3/4     9 3/4     9 3/4     9 1/2     9 1/4	1/2 9 1/4 9 8 1/2 3/4 9 1/2 9 1/4 9 3/4 9 3/4 9 1/2 9 1/4	1/4 9 8 1/2 1/2 9 1/4 9 3/4 9 1/2 9 1/4	8 1/2 1/4 9 1/2 9 1/4	1/2 1/4		3/4 1/4	7 1/2 8 1/4 9	6 1/2 7 3/4 8 1/2	5 1/2 7 1/4 8 1/4	4 6 1/2 8	5 3/4 7 1/2	4 1/2 7	3 6 1/2	5 3/4	4 3/4	3 3/4	1 3/4			}
19:50         9         9         8 3/4         8 3/4         8 3/4         8 1/2         8 1/4         8           25:60         9         9         8 3/4         8 3/4         8 3/4         8 3/4         8 1/2         8         1/2         8	8 3/4 8 3/4 8 3/4 8 1/2 8 1/4 8 3/4 8 3/4 8 3/4 8 3/4 8 1/2	3/4 8 3/4 8 3/4 8 1/2 8 1/4 3/4 8 3/4 8 3/4 8 3/4 8 1/2	3/4         8         3/4         8         1/2         8         1/4           3/4         8         3/4         8         3/4         8         1/2	3/4 8 1/2 8 1/4 3/4 8 3/4 8 1/2	1/2 8 1/4 3/4 8 1/2	1/4 1/2	$\infty \infty$ I	8 1/4 8 1/2	8 8 1/4	7 3/4 8 1/4	7 1/4 8	7 7 3/4	6 1/2 7 3/4	6 7 1/2	5 1/2 7 1/4	4 3/4 6 /4	3 3/4 6 1/2	2 1/4 6 1/4	5 3/4	5 1/4	4 3/4	4
21.90         8         8         8         8         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7         3/4         7 <td>8 8 7 3/4 7 3/4 8 8 8 7 3/4 7 3/4 7 3/4</td> <td>8 8 7 3/4 7 3/4 8 8 8 7 3/4 7 3/4</td> <td>8 7 3/4 7 3/4 8 8 7 3/4</td> <td>7 3/4 7 3/4 8 7 3/4</td> <td>7 3/4 7 3/4</td> <td></td> <td></td> <td>7 1/2 7 3/4</td> <td>7 1/2 7 1/2</td> <td>7 1/4 7 1/2</td> <td>7 7 1/4</td> <td>6 3/4 7</td> <td>6 1/4 6 3/4</td> <td>6 6 1/2</td> <td>5 1/2 6 1/4</td> <td>5 1/4 6</td> <td>4 1/2 5 1/2</td> <td>4 5 1/4</td> <td>3 4 3/4</td> <td>4 1/4</td> <td>3 1/2</td> <td>2 1/2</td>	8 8 7 3/4 7 3/4 8 8 8 7 3/4 7 3/4 7 3/4	8 8 7 3/4 7 3/4 8 8 8 7 3/4 7 3/4	8 7 3/4 7 3/4 8 8 7 3/4	7 3/4 7 3/4 8 7 3/4	7 3/4 7 3/4			7 1/2 7 3/4	7 1/2 7 1/2	7 1/4 7 1/2	7 7 1/4	6 3/4 7	6 1/4 6 3/4	6 6 1/2	5 1/2 6 1/4	5 1/4 6	4 1/2 5 1/2	4 5 1/4	3 4 3/4	4 1/4	3 1/2	2 1/2
25.20         6 3/4         6 3/4         6 3/4         6 3/4         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2         6 1/2 <th< td=""><td>6 3/4         6 3/4         6 3/4         6 1/2         6 1/2         6 1/2           6 3/4         6 3/4         6 1/2         6 1/2         6 1/2         6 1/2</td><td>6 3/4         6 3/4         6 1/2         6 1/2         6 1/2           6 3/4         6 3/4         6 1/2         6 1/2         6 1/2</td><td>3/4         6         1/2         6         1/2         6         1/2         3/4         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/</td><td>1/2 6 1/2 6 1/2 1/2 6 1/2 6 1/2</td><td>1/2 6 1/2 1/2 6 1/2</td><td>1/2</td><td></td><td>6 1/4 6 1/2</td><td>6 1/4 6 1/4</td><td>6 6 1/4</td><td>99</td><td>5 3/4 6</td><td>5 1/2 5 3/4</td><td>5 1/2 5 1/2</td><td>5 1/4 5 1/2</td><td>4 3/4 5 1/4</td><td>4 1/2 5</td><td>4 1/4 4 3/4</td><td>3 3/4 4 1/2</td><td>3 1/4 4</td><td>2 3/4 3 1/2</td><td>1 3/4 3 1/4</td></th<>	6 3/4         6 3/4         6 3/4         6 1/2         6 1/2         6 1/2           6 3/4         6 3/4         6 1/2         6 1/2         6 1/2         6 1/2	6 3/4         6 3/4         6 1/2         6 1/2         6 1/2           6 3/4         6 3/4         6 1/2         6 1/2         6 1/2	3/4         6         1/2         6         1/2         6         1/2         3/4         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/2         6         1/	1/2 6 1/2 6 1/2 1/2 6 1/2 6 1/2	1/2 6 1/2 1/2 6 1/2	1/2		6 1/4 6 1/2	6 1/4 6 1/4	6 6 1/4	99	5 3/4 6	5 1/2 5 3/4	5 1/2 5 1/2	5 1/4 5 1/2	4 3/4 5 1/4	4 1/2 5	4 1/4 4 3/4	3 3/4 4 1/2	3 1/4 4	2 3/4 3 1/2	1 3/4 3 1/4
							1															

m × 3.28 = ft daN × 2.25 = lb

100*T*² 3*A*²*S*² Note: Tabulated values are based on the following formula:  $N = \frac{100LS}{\Pi DG} \sqrt{100}$ where:

N = number of turns which can be given for a tensile load T (daN)

L = length of drill pipe string (m) S is 57.7% of the minimum yield strength (grade) S = maximum shear strength (MPa). S is 57.7% of the minimum yield strength (grade)

D = outside diameter of drill pipe (cm) G = modulus of elasticity in shear: 84 000 MPa

T = total tensile load (daN)

A = pipe cross-sectional area (mm²).

MAXIMUM ALLOWABLE NUMBER OF TURNS WHICH CAN BE GIVEN TO 1000 m OF NEW DRILL PIPE UNDER A GIVEN AXIAL TENSION (Grade X95 drill pipe)

Nomini and di of dri	Nominal weight and diameter of drill pipe								Number	of turns	for 1000	m of dril.	ber of turns for 1000 m of drill pipe under a tension of (1000 daN)	ler a tensi	ion of (1C	)00 daN)							
(in)	(Ib/ft)	0	10	20	30	40	50	60	70	8	66	100	110	120	130	140	150	160	170	180	190	000	210
2 3/8 2 3/8	4.85 6.65	23 3/4 23 3/4	23 1/4 23 1/2	23	20	16 1/4 20 1/4	10 18 1/4	15 1/4	10 1/2						1								2
2 7/8 2 7/8	6.85 10.40	19 1/2 19 1/2	19 1/2 19 1/2	19 19 1/4	8 6	16 3/4 18 1/2	14 3/4 17 3/4	12 1/4 17	8 9	14 3/4	13	11	ω	2 1/4									
3 1/2 3 1/2 3 1/2	9.50 13.30 15.50	16 16 16	16 16 16	15 3/4 16 16	15 1/2 15 3/4 16	15 15 1/2 15 3/4	14 1/4 15 1/4 15 1/2	13 1/2 14 3/4 15 1/4	12 12 12	1/2 11 1/4 13 3/4 3/4 14 1/2	9 1/4 13 14	6 1/2 12 1/4 13 1/2	11 1/4 12 3/4	12	8 1/2 11 1/4 1	6 1/2 10 1/4	3 1/4 9	7 3/4	5 3/4	2 1/4			
44	11.85 14.00	14 14	14 14	4 4	13 1/2 13 3/4	13 1/2 13 3/4	13 13 1/2	12 1/2 13	12 12 3/4	11 12 1/4	10 11 3/4	o [	7 1/2 10 1/4	5 1/2 9 1/4	8 1/4	~	ى ى						
4 1/2 4 1/2 4 1/2	13.75 16.60 20.00	12 1/2 12 1/2 12 1/2	12 1/2 12 1/2 12 1/2	12 1/2 12 1/2 12 1/2 12 1/2	12 1/4 12 12 1/4 12 1/4 12 1/2 12 1/4		11 3/4 12 12 1/4	11 1/2 11 3/4 12	11 11 1/2 12	10 3/4 11 1/4 11 3/4	10 11 11 1/2	9 1/2 10 1/2 11 1/4	8 3/4 10 11	7 3/4 9 1/2 10 3/4 1	6 1/2 9 10 1/2 1	5 8 1/4 10	2 7 1/2 9 1/2		5 8 1/2	3 1/4 8	7 1/4	6 1/4	5 1/4
പറ	19.50 25.60	11 1/4 11 1/4	11 1/4	11 1/4 1 11 1/4 1	11 1/4 1 11 1/4 1	11 11 1/4	11	10 3/4 11	10 3/4 11	10 1/2 10 3/4	10 1/4 10 3/4	10 10 3/4	9 3/4 10 1/2	9 1/2 10 1/4 1	9 1/4 10 1/4 1	8 3/4 10	8 1/4 9 3/4	7 3/4 9 1/2	7 1/4 9 1/4	6 3/4 9	6 8 3/4	5 8 1/4	
5 1/2 5 1/2	21.90 24.70	10 1/4 10 1/4	10 1/4 1 10 1/4 1	10 1/4 1 10 1/4 1	10 1/4 1 10 1/4 1	10 10 1/4	10 10	10 10	9 3/4 10	9 3/4 9 3/4	9 1/2 9 3/4	9 1/4 9 1/2	9 1/4 9 1/2	9 9 1/4	8 3/4 9	8 1/2 9	8 1/4 8 3/4	7 3/4 8 1/2	7 1/2 8 1/4	7 7 3/4		6 7 1/4	5 1/4 6 3/4
6 5/8 6 5/8	25.20 27.70	8 1/2 8 1/2	8 1/2 8 1/2	8 1/2 8 1/2	8 1/2 8 1/2	8 1/2 8 1/2	8 1/4 8 1/2	8 1/4 8 1/4	8 1/4 8 1/4	8 1/4 8 1/4	ωω	ωω	7 3/4 8	7 3/4 7 3/4	7 1/2 7 3/4	7 1/4	7 1/4 7 1/2	7 7 1/4	6 3/4 7	6 1/2 6 3/4		5 3/4 6 1/4	
daN × 2.25 = lb	25 = lb	m × 3.	m × 3.28 = ft			1					]			1		1			-	5	11.0		,

100*T*² 3*A*²*S*² *Note:* Tabulated values are based on the following formula:  $N = \frac{100 LS}{IIDG}$ where: N = number of turns which can be given for a tensile load T (daN)

L = length of drill pipe string (m)  $\tilde{S}$  = maximum shear strength (MPa). S is 57.7% of the minimum yield strength (grade) D = outside diameter of drill pipe (cm)

G = modulus of elasticity in shear: 84 000 MPa T = total tensile load (daN)

A = pipe cross-sectional area (mm²).

MAXIMUM ALLOWABLE NUMBER OF TURNS WHICH CAN BE GIVEN TO 1000 m OF NEW DRILL PIPE UNDER A GIVEN AXIAL TENSION (Grade G105 drill pipe)

Nomine and di of dri	Nominal weight and diameter of drill pipe							۲.	Jumber (	of turns f	or 1000 r	n of drill	pipe und	er a tens	Number of turns for 1000 m of drill pipe under a tension of (1000 daN)	)00 daN)							
(in)	(lb/ft)	0	10	20	30	40	50	60	70	80	06	100	110	120	130	140	150	160	170	180	190	200	210
2 3/8 2 3/8	4.85 6.65	26 1/4 26 1/4	26 26	24 3/4 25 1/2	22 3/4 24 1/2	19 3/4 23 1/4	15 21 1/4	4 1/2 18 3/4	15 1/4	9 3/4													
2 7/8 2 7/8	6.85 10.40	21 3/4 21 3/4	21 1/2 21 1/2	21 21 1/2	20 1/4 21	19 20 3/4	17 1/2 20	15 1/4 19 1/4	12 1/4 18 1/2	7 17 1/4	16	14 1/4	12 1/4	9 1/2	ى								
3 1/2 3 1/2 3 1/2	9.50 13.30 15.50	17 3/4 17 3/4 17 3/4	17 3/4 17 3/4 17 3/4	17 1/2 17 3/4 17 3/4	17 1/4 17 1/2 17 1/2	16 3/4 17 1/4 17 1/2	16 1/4 17 17 1/4	15 1/2 16 3/4 17	14 1/2 16 1/4 16 3/4	13 1/4 15 3/4 16 1/4	12 15 16	10 14 1/4 15 1/2	7 1/2 13 1/2 15	2 1/4 12 1/2 14 1/4	11 1/2 13 1/2	10 12 3/4	8 1/4 11 3/4	5 3/4 10 3/4	9 1/2	ω	5 3/4	1 1/2	
44	11.85 14.00	15 1/2 15 1/2	15 1/2 15 1/2	15 1/2 15 1/2	15 1/4 15 1/4	15 15 1/4	14 1/2 15	14 1/4 14 3/4	13 1/2 14 1/4	13 14	12 1/4 13 1/2	11 1/4 12 3/4	10 12 1/4	8 1/2 11 1/2	6 1/2 10 1/2	3 1/2 9 1/2	8 1/4	6 3/4	4 1/2				
4 1/2 4 1/2 4 1/2	13.75 16.60 20.00	13 3/4 13 3/4 13 3/4	13 1/2 13 1/2 13 3/4	13 1/4 13 1/2 13 1/2 13 1/2	13 13 1/4 13 1/2	12 1/2 13 13 1/4	12 1/4 12 3/4 13 1/4	11 3/4 12 1/2 13	11 1/4 12 12 3/4	10 1/2 11 3/4 12 1/2	9 3/4 11 1/4 12 1/4	8 3/4 10 3/4 12	7 3/4 10 1/4 11 1/2	6 1/4 9 1/2 11 1/4	4 1/4 8 3/4 10 3/4	7 3/4 10 1/4	6 3/4 9 3/4	5 1/4 9 1/4	3 1/4 8 3/4	ω			
ນ ນ	19.50 25.60	12 1/2 12 1/2	12 1/2 12 1/2	12 1/2 12 1/2	12 1/4 12 1/2		12 1/4 12 1/4	12 12 1/4	12 12 1/4	11 3/4 12	11 1/2 12	11 1/2 12	11 1/4 11 3/4	11 11 1/2	10 1/2 1 11 1/2	10 1/4 1 11 1/4 1	10	9 1/2	9 10 3/4 1	8 1/2 10 1/2 1	8 10 1/4 1	7 1/4 10	6 1/2 9 1/2
5 1/2 5 1/2	21.90 24.70	11 1/4 11 1/4	11 1/4 11 1/4	11 1/4 11 1/4	11 1/4 11 1/4		11 1/4 11 1/4	11	11	10 3/4 11	10 3/4 10 3/4	10 1/2 10 3/4	10 1/4 10 1/2	10 1/4 10 1/2	10 10 1/4	9 3/4 10	9 1/2 10	9 1/4 9 3/4	8 3/4 9 1/2	8 1/2 9 1/4	<u></u>	7 3/4 8 3/4	7 1/4 8 1/4
6 5/8 6 5/8	25.20 25.20	9 1/2 9 1/2	9 1/2 9 1/2	9 1/2 9 1/2	9 1/4 9 1/4	9 1/4 9 1/4	9 1/4 9 1/4	9 1/4 9 1/4	9 1/4 9 1/4	9 9 1/4	იი	ით	8 3/4 9	8 3/4 8 3/4	8 1/2 8 3/4	8 1/4 8 1/2	8 1/4 8 1/2	8 8 1/4	7 3/4 8	7 1/2 8	7 1/4 7 3/4	7 1/2	6 3/4 7 1/4
C > Neb	daN × 2 25 - 1h	2 2 2	m ~ 3 28 – ft																				]

daN × 2.25 = lb m × 3.28 = ft

| - 100*T*² 3*A*²*S*² Note: Tabulated values are based on the following formula:  $N = \frac{100LS}{\Pi DG}$ 

N = number of turns which can be given for a tensile load T (daN) where:

L = length of drill pipe string (m)

S = maximum shear strength (MPa). S is 57.7% of the minimum yield strength (grade) D = outside diameter of drill pipe (cm) G = modulus of elasticity in shear: 84 000 MPa T = total tensile load (daN)

 = total tensile load (daN)
 = pipe cross-sectional area (mm²). ۲

MAXIMUM ALLOWABLE NUMBER OF TURNS WHICH CAN BE GIVEN TO 1000 m OF NEW DRILL PIPE UNDER A GIVEN AXIAL TENSION (Grade S135 drill pipe)

			1	1	1			
210			6 13 1/4	7 3/4	4 1/4 10 3/4 13 3/4	12	11 3/4 12 1/4	10 1/4 10 1/2
200			9 14 1/2	9 3/4	6 3/4 11 3/4 14 1/4	12 1/2 14 1/4	12 12 1/2	10 1/2 10 3/4
190			11 15 1/2	÷	8 1/2 12 1/2 14 1/2	12 3/4 14 1/4	12 1/4 12 3/4	10 1/2 10 3/4
180	•		12 3/4 16 1/2	4 1/2 12 1/4	9 3/4 13 15	13 1/4 14 1/2	12 1/2 13	10 3/4 11
170		3 3/4	14 1/4 17 1/4	7 3/4 13 1/4	11 13 3/4 15 1/4	13 1/2 14 3/4	12 3/4 13 1/4	11
160		10	15 1/2 18	10 14 1/4	12 14 1/4 15 1/2	13 3/4 14 3/4	13 13 1/4	11 11 1/4
150		13 1/2	6 16 1/2 18 3/4	11 3/4 15	12 3/4 14 3/4 15 3/4	14 15	13 1/4 13 1/2	11 1/4 11 1/4
nber of turns for 1000 m of drill pipe under a tension of (1000 daN)       0     80     90     110     120     140		16	10 17 1/2 19 1/4	13 15 3/4	13 1/2 15 16	14 1/4 15 1/4	13 1/4 13 3/4	11 1/4 11 1/2
sion of (1 130		18 1/4	12 1/2 18 1/4 19 3/4	14 1/4 16 1/2	14 1/4 15 1/2 16 1/4	14 1/2 15 1/4	13 1/2 13 3/4	11 1/2 11 1/2
der a ten 120		20	14 1/2 19 20 1/4	15 1/4 17	14 3/4 15 3/4 16 1/2	14 3/4 15 1/4	13 3/4 14	11 3/4 11 1/2 11 1/2 11 1/2 11 3/4 11 3/4 11 1/2 11 1/2
pipe uno 110		21 1/2	16 1/4 19 3/4 20 3/4	16 17 1/2	15 1/4 16 1/4 16 3/4	15 15 1/2	13 3/4 14	11 1/2 11 3/4
m of drill 100	14 1/2	11 22 3/4	17 1/2 20 1/4 21	16 3/4 18	15 3/4 16 1/2 17	15 1/4 15 1/2	14 14	11 3/4 11 3/4
for 1000 90	19 1/2	15 1/2 23 3/4	18 3/4 20 3/4 21 1/2	17 1/2 18 1/2	16 1/4 16 3/4 17 1/4	15 1/4 15 3/4	14 14 1/4	11 3/4 11 3/4
of turns 80	23 1/4	18 3/4 24 3/4	19 3/4 21 1/4 21 3/4	18 18 3/4	3/4 16 1/2 1/4 17 1/2 17 1/4	15 1/2 15 3/4	14 1/4 14 1/4	11 ^{3/4} 12
	15 26	21 1/4 25 1/2	20 1/2 21 3/4 22	18 1/2 19	16 3/4 17 1/4 17 1/2	15 3/4 15 3/4	14 1/4 14 1/4	12
8	21 3/4 28 1/4	23 1/4 26	21 22 22 1/4	19 19 1/4	17 17 1/4 17 1/2	15 3/4 15 3/4	14 1/4 14 1/2	12
20	26 30	24 3/4 26 3/4	21 3/4 22 1/4 22 1/2	19 1/4 19 1/2	17 1/4 17 1/2 17 1/2	15 3/4 16	14 1/2 14 1/2	12 12
40	29 31 1/2	26 27	22 22 1/2 22 1/2	19 1/2 19 3/4	17 1/2 17 1/2 17 3/4	16 16	14 1/2 14 1/2	12 12
	31 1/4 32 1/2	26 3/4 27 1/2	22 1/2 22 3/4 22 3/4	19 3/4 19 3/4	17 3/4 17 3/4 17 3/4	16 16	14 1/2 14 1/2	12
20	32 1/2 33 1/4	27 1/2 27 3/4	22 3/4 22 3/4 22 3/4 22 3/4	20 20	17 3/4 17 3/4 17 3/4	16 16	14 1/2 14 1/2	12
10	33 1/2 33 1/2	27 3/4 27 3/4	22 3/4 22 3/4 23	20	17 3/4 17 3/4 17 3/4	16 16	14 1/2 14 1/2	
0	3/4	27 3/4 27 3/4	23 23	20 20	17 3/4 17 3/4 17 3/4	16 16	21.90 14 1/2 14 1/2 24.70 14 1/2 14 1/2	12 12 12 12
drill pipe (1b/ft) (1b/ft)	4.85 6.65	6.85 10.40	9.50 13.30 15.50	11.85 14.00	13.75 16.60 20.00	19.50 25.60	21.90 24.70	
Nominal weight and diameter of drill pipe (in) (lb/ft)	2 3/8 2 3/8	2 7/8 2 7/8	3 1/2 3 1/2 3 1/2	44	4 1/2 4 1/2 4 1/2	ى ى	5 1/2 5 1/2	6 5/8 25.20 6 5/8 27.70

m × 3.28 = ft daN x 2.25 = lb

1007² 3A²S² *Note:* Tabulated values are based on the following formula:  $N = \frac{100LS}{\Pi DG}$ where:

N = number of turns which can be given for a tensile load T (daN)

L = length of drill pipe string (m)
S = maximum shear strength (MPa). S is 57.7% of the minimum yield strength (grade)
D = outside diameter of drill pipe (cm)
G = modulus of elasticity in shear: 84 000 MPa
T = total tensile load (daN)

A = pipe cross-sectional area (mm²).

# **BACK-OFF**

1) Before any back-off, determine the depth of the stuck point using an extensometer or by the stretch test (see K 18).

2) Make-up the drill string to a maximum of 80% of the torsional limit (see K 20 to K 23).

3) Set the neutral point at the level of the joint to back-off.

The tension on the Martin Decker is given by:

$$T = P + \frac{HP \times S}{100\ 000}$$

where:

T = weight indicator tension (10³ daN)

P = weight in mud of free length of drill pipe plus travelling block, hook, etc. (10³ daN)

HP = hydrostatic pressure at back-off point (kPa)

S = area of matting surface of tool joint (cm²) (see K 25)

4) Apply leftward twist amounting to 60 to 80% of the rightward twist used to make-up the string.

*Example:* Back-off at 2000 m of a 5 in string, 19.50 lb/ft (NC50), class Premium, grade X95 drill pipe, in a hole containing mud with SG = 1.40. Weight of travelling block and accessories: 8  $10^3$  daN (see K 18).

#### **Calculations**:

Weight per meter of drill pipe = 31.83 kg/m

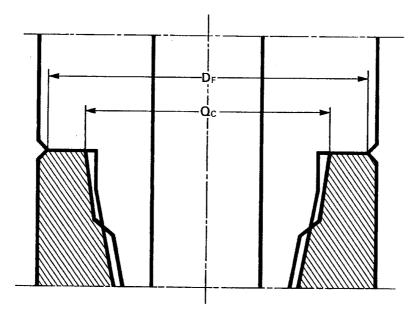
Buoyancy factor = 0.822

Weight per meter of drill pipe in mud =  $31.83 \times 0.822 = 26.16$  kg/m

Weight of 2000 m of drill pipe in mud =  $2000 \times 26.16 \approx 52 \ 10^3 \text{ daN}$ 

Hydrostatic pressure at 2000 m HP =  $9.81 \times 2000 \times 1.4 \approx 28\ 000\ \text{kPa}$ 

Area of matting surface of tool-joint (see K 25) S =  $34.73 \text{ cm}^2$ .


**First step.** Make-up the drill string to 80% of the torsional limit of the drill pipes in tension. The weight of the drill string, before sticking, was 90  $10^3$  daN on the weight indicator, or 90 – 8 = 82  $10^3$  daN for the drill string only. For 80  $10^3$  daN, page K 21 indicates a maximum number of turns of 10 1/2 per 1000 m of drill pipe, or 21 turns for 2000 m. Make-up the drill string with 80% of 21 turns, or 16 turns of the right.

Second step. Set the neutral point at 2000 m. The weight indicator should show:

$$T = P + \frac{\text{HP} \times S}{100\ 000}$$
 with:  $P = 52 + 8 = 60$  and:  $\frac{\text{HP} \times S}{100\ 000} = \frac{28\ 000 \times 34.73}{100\ 000} = 10$   
 $T = 60 + 10 = 70\ 10^3 \text{ daN}$ 

**Third step.** Twist to the left to 80% of the rightward twist given above, or 80% of 16 turns or 13 turns.

# TOOL JOINT MATTING SURFACE AREA (API Spec 7, April 1, 1994)



Type of	Bevel dia	ameter D _F	Inside dia	ameter Q _c	Matting s	urface area
connection	(mm)	(in)	(mm)	(in)	(mm²)	(in ² )
NC23 NC26 NC31 NC35 NC38 NC40 NC44 NC46 NC50 NC50 (1) NC56 NC61 NC70 NC77 2 3/8 REG 2 7/8 REG 3 1/2 REG 4 1/2 REG 5 1/2 REG 5 5 1/2 REG 8 5/8 REG 5 1/2 FH 6 5/8 FH	$\begin{array}{c} 76.2\\ 82.9\\ 100.4\\ 114.7\\ 116.3\\ 127.4\\ 144.5\\ 145.3\\ 150.4\\ 154.0\\ 185.3\\ 212.7\\ 232.6\\ 260.7\\ 76.6\\ 91.7\\ 104.4\\ 135.3\\ 165.1\\ 186.9\\ 215.1\\ 242.5\\ 170.7\\ 195.7\\ \end{array}$	3 3 17/64 3 61/64 4 33/64 4 37/64 5 1/64 5 11/16 5 23/32 5 59/64 6 1/16 7 19/64 8 3/8 9 5/32 9 11/32 3 1/64 3 39/64 4 7/64 5 21/64 6 1/2 7 23/64 8 15/32 9 35/64 6 23/32 7 45/64	$\begin{array}{c} 66.7\\ 74.6\\ 87.7\\ 96.8\\ 103.6\\ 110.3\\ 119.1\\ 124.6\\ 134.9\\ 134.9\\ 150.8\\ 165.1\\ 187.3\\ 204.8\\ 68.3\\ 77.8\\ 90.5\\ 119.1\\ 141.7\\ 154.0\\ 180.2\\ 204.4\\ 150.0\\ 173.8\\ \end{array}$	$\begin{array}{c} 2 \ 5/8 \\ 2 \ 15/16 \\ 3 \ 29/64 \\ 3 \ 13/16 \\ 4 \ 5/64 \\ 4 \ 11/32 \\ 4 \ 11/16 \\ 4 \ 29/32 \\ 5 \ 5/16 \\ 5 \ 5/16 \\ 5 \ 5/16 \\ 5 \ 5/16 \\ 5 \ 5/16 \\ 5 \ 5/16 \\ 5 \ 5/16 \\ 6 \ 1/2 \\ 7 \ 3/8 \\ 8 \ 1/16 \\ 3 \ 1/16 \\ 3 \ 9/16 \\ 4 \ 11/16 \\ 5 \ 37/64 \\ 6 \ 1/16 \\ 7 \ 3/32 \\ 8 \ 3/64 \\ 5 \ 29/32 \\ 6 \ 27/32 \end{array}$	$\begin{array}{c} 1 \ 066 \\ 1 \ 027 \\ 1 \ 876 \\ 2 \ 973 \\ 2 \ 193 \\ 3 \ 192 \\ 5 \ 259 \\ 4 \ 388 \\ 3 \ 473 \\ 4 \ 334 \\ 9 \ 107 \\ 14 \ 124 \\ 14 \ 939 \\ 20 \ 437 \\ 945 \\ 1 \ 850 \\ 2 \ 128 \\ 3 \ 237 \\ 5 \ 638 \\ 8 \ 809 \\ 10 \ 835 \\ 13 \ 373 \\ 5 \ 214 \\ 6 \ 355 \end{array}$	$\begin{array}{c} 1.653\\ 1.591\\ 2.908\\ 4.609\\ 3.400\\ 4.948\\ 8.151\\ 6.801\\ 5.383\\ 6.717\\ 14.116\\ 21.892\\ 23.156\\ 31.678\\ 1.464\\ 2.868\\ 3.298\\ 5.017\\ 8.740\\ 13.654\\ 16.795\\ 20.728\\ 8.081\\ 9.851\end{array}$

(1) Standard for all NC50 connections manufactured after June 1986.

# — wellheads

API flanges. Working pressure as a function of nominal size (API Spec 6A, 17 th edition, February 1,
1996) L1
Physical properties of steel for wellheads (PSL 1 to 4) API Spec 6A, 17 th edition, February 1, 1996) L2
Minium vertical full-opening body bores and maximum casing sizes (API Spec 6A, 17 th edition, February 1, 1996) L3
API type 6B flanges. Working pressure 2000 psi (13.8 Mpa) (API Spec 6A, 17 th edition, February 1, 1996) L4
API type 6B flanges. Working pressure 3000 psi (20.7 MPa) (API Spec 6A, 17 th edition, February 1, 1996) L <b>5</b>
API type 6B flanges. Working pressure 5000 psi (34.5 MPa) (API Spec 6A, 17 th edition, February 1, 1996) L <b>6</b>
API type 6BX flanges. Working pressures: 2000 psi (13.8 MPa), 3000 psi (20.7 MPa), 5000 psi (34.5 MPa) and 10 000 psi (69 MPa) (API Spec 6A, 17 th edition, February 1, 1996) L7
API type 6BX flanges. Working pressures: 2000 psi (13.8 MPa), 3000 psi (20.7 MPa), 5000 psi (34.5 MPa) and 10 000 psi (69 MPa) (API Spec 6A, 17 th edition, February 1, 1996) L8

API type 6BX flanges. Working pressure: 15 000 psi (103.5 MPa), (API Spec 6A, 17 th edition, February 1, 1996)	L9
API type 6BX flanges. Working pressures: 20 000 psi (138 MPa), (API Spec 6A, 17 th edition, February 1, 1996)	L10
API Type R ring-joint gaskets. (API Spec 6A, 17 th edition, February 1, 1996)	L11
API Type RX ring-joint gaskets (API Spec 6A, 17 th edition, February 1, 1996)	L12
API Type BX ring-joint gaskets. (API Spec 6A, 17 th edition, February 1, 1996)	L13
Recommended flange bolt torque	L14
API Type 16B integral hub connections (API Spec 6A, 1 st edition, November 1, 1986)	L15-L17
Clamp for flanges. Clamp dimensions (Cameron)	L18
CIW clamp for flanges. Make-up torque on bolts of CIW clamps	L19
Cameron Ram-Type blow-out preventers Operating data	L20
Hydril Ram-Type blow-out preventers Operating data	L21-L22
NL Shaffer blow-out preventers. Operating data	L23
Koomey Ram-Type blow-out preventers. Operating data	L24
Cameron ram-type blow-out preventers. Dimensions and weights	L25
Hydril ram-type blow-out preventers. Dimensions and weights	L26
NL Shaffer ram-type blow-out preventers. Dimensions and weights	L27-L29

Koomey ram-type blow-out preventers. Dimensions and weights	L30-L31
Cameron type D annular blow-out preventers . Dimensions and operating data	L32
Hydril annular blow-out preventers. Dimensions and operating data	L33-L34
Hydril annular blow-out preventers. Average closing pressure (psi) required to establish initial seal-off in a surface installation.	L35-L37
NL Shaffer annular blow-out preventers. Dimensions and operating data. Closing pressure on casing (psi)	L38
BOP control system. Example of calculations for fluid capacity (IADC Drilling Manual, 11 th edition, 1992)	L39-L41
Schematic symbols for fluid power diagrams (Bases on ANSI Y.32.10) (API Spec 16D, 1 st edition, March 1, 1993)	L42-L46

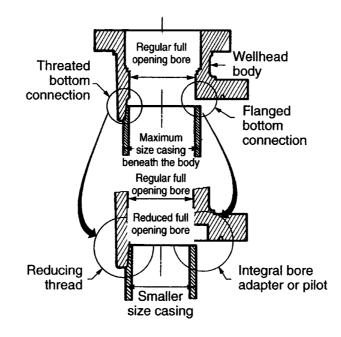
# API FLANGES Working pressure as a function of nominal size (API Spec 6A, 17th edition, February 1, 1996)

			_				. <u></u>	
	6BX	(mm)	680 to 762	680 to 762	346 to 540	46 to 540	46 to 476	46 to 346
Nominal size (in)	Type 6BX	(in)	26 3/4 to 30	26 3/4 to 30	13 5/8 to 21 1/4	1 13/16 to 21 1/4	1 13/16 to 18 3/4	1 13/16 to 13 5/8
Nominal	GB	(mm)	52 to 540	52 to 527	52 to 279			
	Type 6B	(in)	2 1/16 to 21 1/4	2 1/16 to 20 3/4	2 1/16 to 11			
king	sure	(MPa)	13.8	20.7	34.5	69.0	103.4	138.0
Working	pressure	(bsi)	2 000	3 000	5 000	10 000	15 000	20 000

PHYSICAL PROPERTIES OF STEEL FOR WELLHEADS (PSL 1 to 4) (API Spec 6A, 17th edition, February 1, 1996) API material property requirements for bodies, bonnets and end and outlet connections

Reduction in area, Minimum (%)	No Requirement 32 35 35
Elongation in 2 in (50 mm), Minimum (%)	21 19 17
Tensile strength, Minimum, psi (MPa)	70 000 (483) 70 000 (483) 85 000 (586) 95 000 (655)
0.2% yield strength Minimum, psi (MPa)	36 000 (248) 45 000 (310) 60 000 (414) 75 000 (517)
API material designation	36K 45K 60K 75K

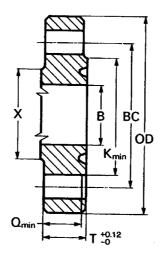
# API material applications for bodies, bonnets, and end and outlet connections


Part			Pressure rati	Pressure ratings, psi (MPa)		
	2 000 (13.8)	3 000 (20.7)	5 000 (34.5)	10 000 (69.0)	15 000 (103.4)	20 000 (138.0)
			API materia	API material designation		
Body*, Bonnet	36K, 45K	36K, 45K	36K, 45K	36K÷45K	45K 60K	ROV JEV
	60K, 75K	60K, 75K	60K, 75K	60K. 75K	75K	
Integral end connection			-			
Flanged	60K, 75K	60K, 75K	60K. 75K	60K 75K	75K	L L
Threaded	60K, 75K	60K, 75K	60K, 75K	NA		
Other	(See note)	(See note)	(See note)	(See note)	(See note)	
Loose connectors						
Weld neck	45K	45K	45K	60K 75K	75.1	) 1 7
Blind	60K, 75K	60K, 75K	60K. 75K	60K 75K	757	
Threaded	60K, 75K	60K, 75K	60K, 75K	ND ND	VC/	
Other	(See note)	(See note)	(See note)	(See note)	(See note)	(See note)
Moto: As succified hitths manufactor						

Note: As specified by the manufacturer.

* Provided end connections are of the API material designation indicated, welding is done in accordance with Section 6 and design is performed in accordance with Section 4.

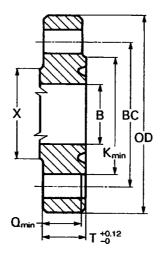
### MINIMUM VERTICAL FULL-OPENING BODY BORES AND MAXIMUM CASING SIZES (API Spec 6A, 17th edition, February 1, 1996)


	Nomina	al flange			Casir	ng beneath	body			n vertical
	nal size of flange		working sure		outside neter	Nominal weight		cified ameter	well	pening neads v bore
(in)	(mm)	(psi)	(MPa)	(in)	(mm)	(lb/ft)	(in)	(mm)	(in)	(mm)
7 1/16	179.39	2 000 3 000 5 000	13.8 20.7 34.5	7 7 7	177.80 177.80 177.80	17.0 20.0 23.0	6.413 6.331 6.241	162.9 160.8 158.5	6.45 6.36 6.28	163.8 161.5 159.5
7 1/16	179.39	10 000 15 000 20 000	68.9 103.4 137.9	7 7 7	177.80 177.80 177.80	29.0 38.0 38.0	6.059 5.795 5.795	153.9 147.2 147.2	6.09 5.83 5.83	154.7 148.1 148.1
9	228.60	2 000 3 000 5 000	13.8 20.7 34.5	8 5/8 8 5/8 8 5/8	219.08 219.08 219.08	24.0 32.0 36.0	7.972 7.796 7.700	202.5 198.0 195.6	8.00 7.83 7.73	203.2 198.9 196.3
9	228.60	10 000 15 000 2 000	68.9 103.4 13.8	8 5/8 8 5/8 10 3/4	219.08 219.08 273.05	40.0 49.0 40.5	7.600 7.386 9.894	193.0 187.6 251.3	7.62 7.41 9.92	193.5 188.2 252.0
11	279.40	3 000 5 000	20.7 34.5	10 3/4 10 3/4	273.05 273.05	40.5 51.0	9.894 9.694	251.3 246.2	9.92 9.73	252.0 247.1
11	279.40	10 000 15 000	68.9 103.4	9 5/8 9 5/8	244.48 244.48	53.5 53.5	8.379 8.379	212.8 212.8	8.41 8.41	213.6 213.6
13 5/8	346.08	2 000 3 000	13.8 20.7	13 3/8 13 3/8	339.73 339.73	54.5 61.0	12.459 12.359	316.5 313.9	12.50 12.39	317.5 314.7
13 5/8	346.08	5 000	34.5	13 3/8	339.73	72.0	12.191	309.7	12.22	310.4
13 5/8	346.08	10 000	68.9	11 3/4	298.45	60.0	10.616	269.6	10.66	270.8
16 3/4	425.45	2 000 3 000	13.8 20.7	16 16	406.40 406.40	65.0 84.0	15.062 14.822	382.6 376.5	15.09 14.86	383.3 377.4
16 3/4	425.45	5 000 10 000	34.5 68.9	16 16	406.40 406.40	84.0 84.0	14.822 14.822	376.5 376.5	14.86 14.86	377.4 377.4
18 3/4	476.25	5 000 10 000	34.5 68.9	18 5/8 18 5/8	473.08 473.08	87.5 87.5	17.567 17.567	446.2 446.2	17.59 17.59	446.8 446.8
20 3/4	527.05	3 000	20.7	20	508.00	94.0	18.936	481.0	18.97	481.8
21 1/4	539.75	2 000	13.8	20	508.00	94.0	18.936	481.0	18.97	481.8
21 1/4	539.75	5 000 10 000	34.5 68.9	20 20	508.00 508.00	94.0 94.0	18.936 18.936	481.0 481.0	18.97 18.97	481.8 481.8



# API TYPE 6B FLANGES Working pressure 2000 psi (13.8 MPa) (API Spec 6A, 17th edition, February 1, 1996)

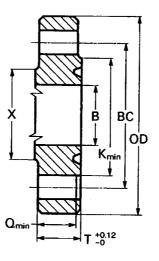
Nominal size	b	imum ore B	dian	tside neter )D	of rais	neter ed face K		otal kness T	thicl	mum kness Q	of	neter hub X
(in)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(iņ)	(mm)
2.0625	2.09	53.09	6.50	165.10	4.25	107.95	1.31	33.27	1.00	25.40	3.31	84.07
2.5625	2.59	65.79	7.50	190.50	5.00	127.00	1.44	36.58	1.12	28.45	3.94	100.08
3.1250	3.22	81.79	8.25	209.55	5.75	146.05	1.56	39.62	1.25	31.75	4.62	117.35
4.0625	4.28	108.71	10.75	273.05	6.88	174.75	1.81	45.97	1.50	38.10	6.00	152.40
7.0625	7.16	181.86	14.00	355.60	9.50	241.30	2.19	55.63	1.88	47.75	8.75	222.25
9.0000	9.03	229.36	16.50	419.10	11.88	301.75	2.50	63.50	2.19	55.63	10.75	273.05
11.0000	11.03	280.16	20.00	508.00	14.00	355.60	2.81	71.37	2.50	63.50	13.50	342.90
13.6250	13.66	346.96	22.00	558.80	16.25	412.75	2.94	74.68	2.62	66.55	15.75	400.05
16.7500	16.78	426.21	27.00	685.80	20.00	508.00	3.31	84.07	3.00	76.20	19.50	495.30
21.2500	21.28	540.51	32.00	812.80	25.00	635.00	3.88	98.55	3.50	88.90	24.00	609.60


Nominal size		neter circle BC	Number of bolts		neter polts		ngth olts L	Ring number R or RX
(in)	(in)	(mm)	OFDOIDS	(in)	(mm)	(in)	(mm)	R-RX
2.0625	5.00	127.00	8	0.625	15.88	4.50	114.30	23
2.5625	5.88	149.35	8	0.750	19.05	5.00	127.00	26
3.1250	6.62	168.15	8	0.750	19.05	5.25	133.35	31
4.0625	8.50	215.90	8	0.875	22.23	6.00	152.40	37
7.0625	11.50	292.10	12	1.000	25.40	7.00	177.80	45
9.0000	13.75	349.25	12	1.125	28.58	8.00	203.20	49
11.0000	17.00	431.80	16	1.250	31.75	8.75	222.25	53
13.6250	19.25	488.95	20	1.250	31.75	9.00	228.60	57
16.7500	23.75	603.25	20	1.500	38.10	10.25	260.35	65
21.2500	28.50	723.90	24	1.625	41.28	11.75	298.45	73



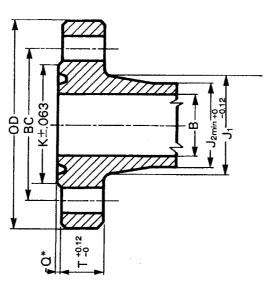
# API TYPE 6B FLANGES Working pressure 3000 psi (20.7 MPa) (API Spec 6A, 17th edition, February 1, 1996)

Nominal size	bo	mum pre 3	dian	side neter )D	of rais	neter ed face K		otal kness T	Minimum thickness Q		of	neter hub X
(in)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)
2.0625	2.09	53.09	8.50	215.90	4.88	123.95	1.81	45.97	1.50	38.10	4.12	104.65
2.5625	2.59	65.79	9.62	244.35	5.38	136.65	1.94	49.28	1.62	41.15	4.88	123.95
3.1250	3.22	81.79	9.50	241.30	6.12	155.45	1.81	45.97	1.50	38.10	5.00	127.00
4.0625	4.28	108.71	11.50	292.10	7.12	180.85	2.06	52.32	1.75	44.45	6.25	158.75
7.0625	7.16	181.86	15.00	381.00	9.50	241.30	2.50	63.50	2.19	55.63	9.25	234.95
9.0000	9.03	229.36	18.50	469.90	12.12	307.85	2.81	71.37	2.50	63.50	11.75	298.45
11.0000	11.03	280.16	21.50	546.10	14.25	361.95	3.06	77.72	2.75	69.85	14.50	368.30
13.6250	13.66	346.96	24.00	609.60	16.50	419.10	3.44	87.38	3.12	79.25	16.50	419.10
16.7500	16.78	426.21	27.75	704.85	20.62	523.75	3.94	100.08	3.50	88.90	20.00	508.00
20.7500	20.78	527.81	33.75	857.25	25.50	647.70	4.75	120.65	4.25	107.95	24.50	622.30


Nominal size		neter circle BC	Number of bolts		neter polts		ngth olts L	Ring number R or RX
(in)	(in)	(mm)	OF DOILS	(in)	(mm)	(in)	(mm)	R-RX
2.0625	6.50	165.10	8	0.875	22.23	6.00	152.40	24
2.5625	7.50	190.50	8	1.000	25.40	6.50	165.10	27
3.1250	7.50	190.50	8	0.875	22.23	6.00	152.40	31
4.0625	9.25	234.95	8	1.125	28.58	7.00	177.80	37
7.0625	12.50	317.50	12	1.125	28.58	8.00	203.20	45
9.0000	15.50	393.70	12	1.375	34.93	9.00	228.60	49
11.0000	18.50	469.90	16	1.375	34.93	9.50	241.30	53
13.6250	21.00	533.40	20	1.375	34.93	10.25	260.35	57
16.7500	24.25	615.95	20	1.625	41.28	11.75	298.45	66
20.7500	29.50	749.30	20	2.000	50.80	14.50	368.30	74



# API TYPE 6B FLANGES Working pressure 5000 psi (34.5 MPa) (API Spec 6A, 17th edition, February 1, 1996)

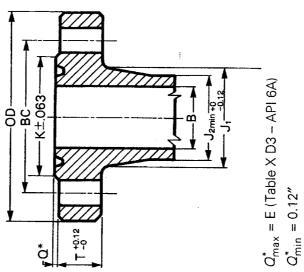

Nominal size	bo	imum ore B	dian	tside neter )D	of rais	neter ed face K		otal kness T		mum ເກess ີ	of	neter hub X
(in)	(in)	(mm)	(in)	(mm)	: (in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)
2.0625	2.09	53.09	8.50	215.90	4.88	123.95	1.81	45.97	1.50	38.10	4.12	104.65
2.5625	2.59	65.79	9.62	244.35	5.38	136.65	1.94	49.28	1.62	41.15	4.88	123.95
3.1250	3.22	81.79	10.50	266.70	6.62	168.15	2.19	55.63	1.88	47.75	5.25	133.35
4.0625	4.28	108.71	12.25	311.15	7.62	193.55	2.44	61.98	2.12	53.85	6.38	162.05
7.0625	7.16	181.86	15.50	393.70	9.75	247.65	3.62	91.95	3.25	82.55	9.00	228.60
9.0000	9.03	229.36	19.00	482.60	12.50	317.50	4.06	103.12	3.62	91.95	11.50	292.10
11.0000	11.03	280.16	23.00	584.20	14.63	371.60	4.69	119.13	4.25	107.95	14.50	368.30

Nominal size		neter circle BC	Number of bolts		meter bolts		ngth olts L	Ring number R or RX
(in)	(in)	(mm)	OFDORES	(in)	(mm)	(in)	(mm)	R-RX
2.0625	6.50	165.10	8	0.875	22.23	6.00	152.40	24
2.5625	7.50	190.50	8	1.000	25.40	6.50	165.10	27
3.1250	8.00	203.20	8	1.125	28.58	7.25	184.15	35
4.0625	9.50	241.30	8	1.250	31.75	8.00	203.20	39
7.0625	12.50	317.50	12	1.375	34.93	10.75	273.05	46
9.0000	15.50	393.70	12	1.625	41.28	12.00	304.80	50
11.0000	19.00	482.60	16	1.875	47.63	13.75	349.25	54



Working pressures: 2000 psi (13.8 MPa), 3000 psi (20.7 MPa), 5000 psi (34.5 MPa) and 10 000 psi (69 MPa) (API Spec 6A, 17th edition, February 1, 1996) **API TYPE 6BX FLANGES** 

		,		<b>.</b>			<b>1</b>		
nall diameter of hub J2	(mm)		742.95 833.12		776.22 871.22		423.93 527.05 598.42 679.45		65.02 74.68 91.95 91.95 110.24 110.24 1146.05 254.00 327,15 490.05 601.73 601.73 601.73 762.00
Small d of hu	(in)		29.25 32.80		30.56 34.30		16.69 20.75 23.56 26.75		2.56 2.94 2.94 2.94 5.75 7.19 1.2.88 1.0.00 1.2.88 1.5.75 1.5.75 2.3.69 2.3.69 2.3.69 2.3.69 2.3.69 2.3.69 2.56 2.3.69 2.56 2.3.69 2.56 2.3.60 2.3.62 2.56 2.3.62 2.56 2.75 2.75 2.75 2.75 2.75 2.75 2.75 2.75
diameter Jub J1	(mm)		835.91 931.93		869.95 970.03		481.08 555.75 674.62 758.95		88.90 100.08 120.65 141.99 141.99 374.65 552.45 555.57 752.35 752.35 847.85
Large dia of hub	(in)		32.91 36.69		34.25 38.19		18.94 21.88 26.56 29.88		3.50 3.50 3.94 3.94 7.19 7.19 8.81 11.188 11.4.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.75 21.7
tal ess T	(mm)		126.24 134.11		161.04 167.13		112.78 130.30 165.86 180.85		42.16 43.94 51.31 58.42 70.36 70.36 70.35 103.12 168.15 168.15 168.15 168.15 223.01 221.30 241.30
Total thickness	(in)	MPa)	4.97 5.28	MPa)	6.34 6.58	MPa)	4.44 5.13 6.53 7.12	MPa)	9.8.6.6.5.8 9.8.6.6.5.8 9.8.6.6.5.8 9.8.6.6.5 9.8.6.6.5 9.8.6.6.5 9.8.6.6.5 9.8.6.6.5 9.8.6.6.5 9.8.6.6.5 9.8.6.6.5 9.8.6.6.5 9.8.6.6.5 9.8.6.5 9.8.6.5 9.8.6.5 9.8.6.5 9.8.6.5 9.8.6.5 9.8.6.5 9.8.6.5 9.8.6.5 9.8.6.5 9.8.6.5 9.8.6.5 9.8.6.5 9.8.6.5 9.8.6.5 9.8.6.5 9.8.6.5 9.8.6.5 9.8.6.5 9.8.6.5 9.8.6.5 9.8.6.5 9.8.6.5 9.8.6.5 9.8.6.5 9.8.6.5 9.8.5.5 9.8.5.5 9.8.5.5 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.7 9.7.
Diameter raised face K	(uuu)	psi (13.8 MPa	804.93 908.05	psi (20.7	831.85 922.27	psi (34.5	457.20 534.92 627.13 701.55	) psi (69 MPa	104.65 111.25 131.83 152.40 182.40 182.40 182.51 220.73 301.75 517.65 517.65 576.33 696.98 781.05
Diarr of raise	(in)	2000	31.69 35.75	3000	32.75 36.31	5000	18.00 21.06 24.69 27.62	10 000	4.12 5.19 5.19 6.00 6.00 6.00 6.00 7.28 11.88 14.12 14.12 22.69 22.69 22.69 22.69 22.69 22.69
Outside Imeter OD	(mm)		1041.40 1122.43		1101.85 1185.67		673.10 771.65 904.75 990.60		187,45 200,15 231,65 231,65 259,75 357,12 479,55 552,45 654,05 654,05 654,05 871,47 1039,88 871,147 1143,00
Outsid diameter	(in)		41.00 44.19		43.38 46.68		26.50 30.38 35.62 39.00		7.38 9.12 9.12 12.44 12.44 12.44 12.44 14.06 21.75 25.75 33.25 33.25 34.31 45.00
mum e B	(mm)		680.21 762.76		680.21 762.76		346.96 426.21 477.01 540.51		46.74 53.09 65.79 78.49 130.06 130.06 130.09 229.36 280.16 346.21 477.01 540.51
Maximun bore B	(in)		26.78 30.03		26.78 30.03		13.66 16.78 18.78 21.28		1.84 2.09 2.59 3.09 4.09 9.03 1.03 13.66 16.78 18.78 21.28 21.28
Nominal size	(in)		26.7500 30.00		26.7500 30.00		13.6250 16.7500 18.7500 21.2500		1.8125 2.6625 2.5625 3.0625 5.1250 7.0625 9.0000 11.0000 13.6250 11.0000 13.6250 18.7500 18.7500 21.2500

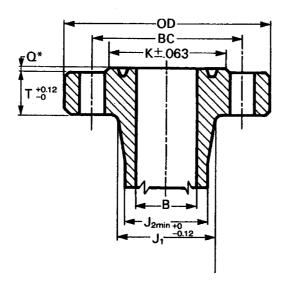



 ${\cal O}^{*}_{max}$  = E (Table X D3 – API 6A)  ${\cal O}^{*}_{min}$  = 0.12"

Working pressures: 2000 psi (13.8 MPa), 3000 psi (20.7 MPa), 5000 psi (34.5 MPa) and 10 000 psi (69 MPa) (API Spec 6A, 17th edition, February 1, 1996) **API TYPE 6BX FLANGES** 

**Bolt sizes** 

			<b>₩</b>	>	<b>-1</b>				
Ring-point type	BX		167 303		168 303		160 162 165		151 152 155 155 155 155 155 155 155 155
Length of bolts L	(mm)		349.25 361.95		431.80 450.85		317.50 368.30 444.50 476.25		127.00 132.08 152.40 171.45 222.25 336.75 3381.00 444.60 571.50 622.30 622.30 622.30
Length	(in)		13.75 14.25		17.00 17.75		12.50 14.50 17.50 18.75		5.00 5.20 6.05 6.75 8.00 11.25 11.25 11.25 24.50 24.50
Diameter of bolts	(mm)	MPa)	44.45 41.28	MPa)	50.80 47.63	IPa)	41.28 47.63 50.80 50.80	lPa)	19.05 19.05 22.23 28.58 38.10 38.10 38.10 47.63 57.15 63.50 63.50
Diamete	(in)	2000 psi (13.8 N	1.750 1.625	psi (20.7	2.000 1.875	5000 psi (34.5 MPa	1.625 1.875 2.000 2.000	10 000 psi (69 MPa	0.750 0.750 0.750 0.875 1.000 1.500 1.500 1.875 1.875 2.250 2.500
Number of bolts		200	20 32	3000	24 32	500	16 20 24	10 (	8888800000444
meter circle BC	(mm)		952.50 1039.88		1000.25 1090.68		590.55 676.15 803.15 885.95		146.05 158.75 184.15 215.90 258.83 258.83 476.25 673.10 776.25 673.10 776.25 925.58 1022.35
Dian of bolt c	(in)		37.50 40.94		39.38 42.94		23.25 26.62 31.62 34.88		5.75 6.25 6.25 7.25 8.50 10.19 10.19 10.19 26.50 30.56 30.56 30.56 20.55 26.50 26.50 26.50 26.50 26.50 27.55 10.19 20.25 26.25 26.25 26.25 27.55 27.55 26.25 26.25 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55 27.55
Nominal size	(in)		26.75 30.00		26.75 30.00		13.6250 16.7500 18.7500 21.2500		1.8125 2.6625 3.0625 5.1250 7.0625 9.0000 11.00000 18.7500 18.7500 21.2500 21.2500

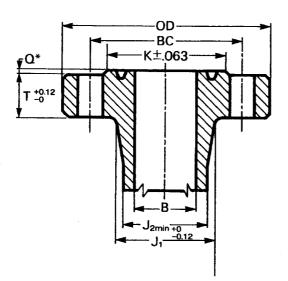



## API TYPE 6BX FLANGES Working pressure: 15 000 psi (103.5 MPa) (API Spec 6A, 17th edition, February 1, 1996)

Nominal size	bo	mum pre 3	dian	side neter DD	of rais	neter ed face K	-	otal kness T	Large diameter of hub J1		of	liameter hub 12
(in)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)
1.8125	1.84	46.74	8.19	208.03	4.19	106.43	1.78	45.21	3.84	97.54	2.81	71.37
2.0625	2.09	53.09	8.75	222.25	4.50	114.30	2.00	50.80	4.38	111.25	3.25	82.55
2.5625	2.59	65.79	10.00	254.00	5.25	133.35	2.25	57.15	5.06	128.52	3.94	100.08
3.0625	3.09	78.49	11.31	287.27	6.06	153.92	2.53	64.26	6.06	153.92	4.81	122.17
4.0625	4.09	103.89	14.19	360.43	7.62	193.55	3.09	78.49	7.69	195.33	6.25	158.75
7.0625	7.09	180.09	19.88	504.95	12.00	304.80	4.69	119.13	12.81	325.37	10.88	276.35
9.0000	9.03	229.36	25.50	647.70	15.00	381.00	5.75	146.05	17.00	431.80	13.75	349.25
11.0000	11.03 .	280.16	32.00	812.80	17.88	454.15	7.38	187.45	23.00	584.20	16.81	426.97
13.6250	13.66	346.96	34.88	885.95	21.31	541.27	8.06	204.72	23.44	595.38	20.81	528.57
18.7500	18.78	477.01	45.75	1162.05	28.44	722.38	10.06	255.52	32.00	812.80	28.75	730.25

#### **Bolt sizes**

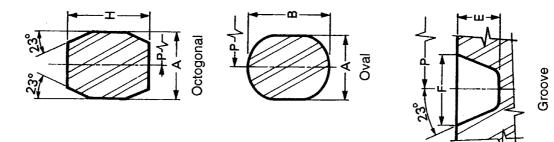
Nominal size		neter circle BC	Number of bolts		neter polts		ngth olts L	Ring joint type
(in)	(in)	(mm)	OFBOILS	(in)	(mm)	(in)	(mm)	вх
1.8125	6.31	160.27	8	0.875	22.23	5.50	139.70	151
2.0625	6.88	174.75	8	0.875	22.23	6.00	152.40	152
2.5625	7.88	200.15	8	1.000	25.40	6.75	171.45	153
3.0625	9.06	230.12	8	1.125	28.58	7.50	190.50	154
4.0625	11.44	290.58	8	1.375	34.93	9.25	234.95	155
7.0625	16.88	428.75	16	1.500	38.10	12.75	323.85	156
9.0000	21.75	552.45	16	1.875	47.63	15.75	400.05	157
11.0000	28.00	711.20	20	2.000	50.80	19.25	488.95	158
13.6250	30.38	771.65	20	2.250	57.15	21.25	539.75	159
18.7500	40.00	1016.00	20	3.000	76.20	26.75	679.45	164




 $Q^*_{max} = E$  (Table X D3 – API 6A)  $Q^*_{min} = 0.12''$ 

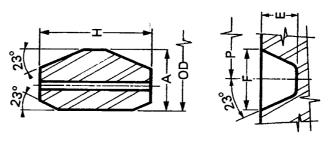
# API TYPE 6BX FLANGES Working pressure 20 000 psi (138 MPa) (API Spec 6A, 17th edition, February 1, 1996)

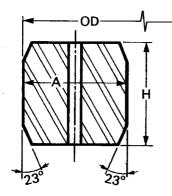
Nominal size	bo	imum pre B	dian	tside neter )D	of rais	neter ed face K		otal kness T	of	liameter hub J1	of	liameter hub 12
(in)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)
1.8125	1.84	46.74	10.12	257.05	4.62	117.35	2.50	63.50	5.25	133.35	4.31	109.47
2.0625	2.09	53.09	11.31	287.27	5.19	131.83	2.81	71.37	6.06	153.92	5.00	127.00
2.5625	2.59	65.79	12.81	325.37	5.94	150.88	3.12	79.25	6.81	172.97	5.69	144.53
3.0625	3.09	78.49	14.06	357.12	6.75	171.45	3.38	85.85	7.56	192.02	6.31	160.27
4.0625	4.09	103.89	17.56	446.02	8.62	218.95	4.19	106.43	9.56	242.82	8.12	206.25
7.0625	7.09	180.09	25.81	655.57	13.88	352.55	6.50	165.10	15.19	385.83	13.31	338.07
9.0000	9.03	229.36	31.69	804.93	17.38	441.45	8.06	204.72	18.94	481.08	16.88	428.75
11.0000	11.03	280.16	34.75	882.65	19.88	504.95	8.81	223.77	22.31	566.67	20.00	508.00
13.6250	13.66	346.96	45.75	1162.05	24.19	614.43	11.50	292.10	27.31	693.67	24.75	628.65

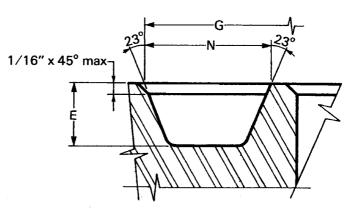

Nominal size		neter circle BC	Number of bolts	Dian of b	neter polts	Ler of b	Ring joint type	
(in)	(in)	(mm)	01 00125	(in)	(mm)	(in)	(mm)	В
1.8125	8.00	203.20	8	1.0000	25.40	7.50	190.50	151
2.0625	9.06	230.12	8	1.1250	28.58	8.25	209.55	152
2.5625	10.31	261.87	8	1.2500	31.75	9.25	234.95	153
3.0625	11.31	287.27	8	1.3750	34.93	10.00	254.00	154
4.0625	14.06	357.12	8	1.7500	44.45	12.25	311.15	155
7.0625	21.81	553.97	16	2.0000	50.80	17.50	444.50	156
9.0000	27.00	685.80	16	2.5000	63.50	22.38	568.45	157
11.0000	29.50	749.30	16	2.7500	69.85	23.75	603.25	158
13.6250	40.00	1016.00	20	3.1250	79.38	30.00	762.00	159



 $Q^*_{max} = E$  (Table X D3 – API 6A)  $Q^*_{min} = 0.12''$ 


API TYPE R RING-JOINT GASKETS API Spec 6A, 17th edition, February 1, 1996)


S distance between make-up flanges (mm)  $\begin{array}{c} 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\ 4,06\\$ Approximate (ij (mm) Width of groove F 0.3440.4690.4690.4690.4690.4690.4690.4690.4690.4690.4690.4690.6560.4690.6560.4690.6560.4690.6560.4690.6560.4690.6560.4690.6560.4690.6560.4690.6560.4690.6560.4690.6560.4690.6560.4690.6560.4690.6560.4690.6560.4690.6560.4690.6560.6560.6560.7810.6560.7810.6560.7810.6560.7810.6560.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.7810.78(ii) 6.35 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 7.877 (mm) of groove E Depth (ij ring (mm)  $\begin{array}{c} 12.70\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 31.75\\ 20.57\\ 16.00\\ 31.75\\ 33.16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 16.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\ 10.00\\$ of octogonal Height I 0.50 0.50 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 (ij  $\begin{array}{c} 14.22\\ 17.53\\ 17.53\\ 17.53\\ 17.53\\ 17.53\\ 17.53\\ 22.35\\ 25.40\\ 25.40\\ 25.40\\ 25.53\\ 25.40\\ 25.53\\ 25.40\\ 25.53\\ 25.53\\ 25.40\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25.53\\ 25$ (mm) Height of oval ring B  $\begin{array}{c} 0.56\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\$ (i) 7.9511.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.1 (աա) Width of ring A 0.3130.4380.4380.4380.4380.4380.4380.4380.4380.4380.4380.4380.4380.4380.6250.6250.4380.6250.6250.6250.7500.6250.7500.6250.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.7500.75(ii) 68.28 82.55 82.55 82.55 82.55 95.25 1101.60 1107.95 1123.83 1123.83 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 1107.95 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.05 100.0 đ ring and groove P (mm) Pitch diameter Ē Ring. No. 
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 œ



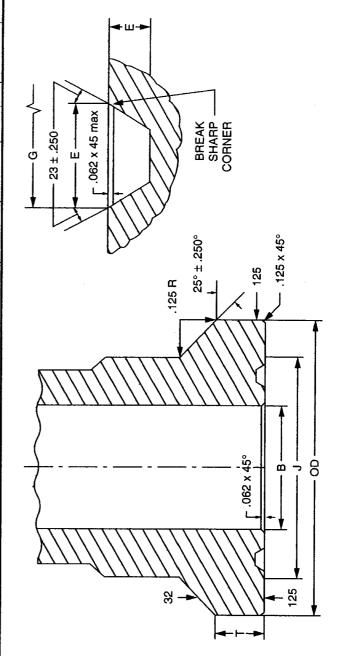

API TYPE RX RING-JOINT GASKETS (API Spec 6A, 17th edition, February 1, 1996)

	<del>.</del>	
Approximate distance between make-up flanges S	(mm)	$\begin{array}{c} 113896655\\ 1138265565656565656565656565656565656565656$
Appro distance make-up	(in)	0.000000000000000000000000000000000000
Width of groove F	(mm)	10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012 10.012
of gr	(in)	0.344 0.469 0.469 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.466 0.2781 0.466 0.02781 0.466 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.02781 0.0278100000000000000000000000000000000000
Depth f groove E	(mm)	6.35 6.35 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.8
of gr	(in)	0.25100000000000000000000000000000000000
ight L	(mm)	255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 255.40 25
Height H	(in)	0.750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000 1.0000 1.0000 1.000
Width of ring A	(uu)	11.91 8.74 8.74 8.74 8.74 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.91 11.9
Wi of r	(in)	0.344 0.469 0.469 0.469 0.469 0.469 0.469 0.469 0.469 0.469 0.469 0.469 0.469 0.469 0.469 0.469 0.469 0.469 0.469 0.469 0.469 0.469 0.469 0.469 0.469 0.469 0.656 0.656 0.656 0.781 0.781 0.781 0.781 0.781 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.783 0.723 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.73
ide diameter of ring OD	(mm)	76.20 93.27 105.97 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 11.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.91 111.9
Outside diame of ring OD	(in)	7.23,656 7.23,656 7.44,172 7.547,000 7.547,000 7.547,000 7.547,000 7.547,000 7.547,000 7.547,000 7.547,000 7.547,000 7.547,000 7.547,000 7.547,000 7.547,000 7.547,000 7.547,000 7.547,000 7.547,000 7.547,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,000 7.567,0000 7.567,0000 7.567,0000 7.56
Pitch diameter of ring and groove P	(mm)	68.28 95.25 95.25 95.25 95.25 101.60 101.60 101.60 101.60 101.60 123.83 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126.95 126
Pitch diar ring and P	(in)	2.688 3.750 3.750 3.750 3.750 3.750 3.750 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.3755 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.55555 5.55555 5.55555 5.55555 5.55555 5.55555 5.55555 5.55555 5.55555 5.555555
Ring No.	RX	22220 1100100008888888888888882222222 1100100008888888888








Ring No.	of	diameter ring D	Height H		Width of ring A		Depth of groove E		] of gr	diameter oove G	Width of groove N	
BX	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(in)	(mm)
150	2.842	72.19	0.366	9.30	0.366	9.30	0.220	5.59	2.893	73.48	0.450	11.43
151	3.008	76.40	0.379	9.63	0.379	9.63	0.220	5.59	3.062	77.77	0.466	11.84
152	3.334	84.68	0.403	10.24	0.403	10.24	0.230	5.84	3.395	86.23	0.498	12.65
153 154	3.974 4.600	100.94 116.84	0.448 0.488	11.38	0.448	11.38	0.270	6.86	4.046	102.77	0.554	14.07
154	5.825	110.84	0.488	12.40 14.22	0.488 0.560	12.40 14.22	0.300 0.330	7.62 8.38	4.685 5.930	119.00	0.606	15.39
155	9.367	237.92	0.500	14.22	0.560	14.22	0.330	11.18	9.521	150.62 241.83	0.698 0.921	17.73 23.39
150	11.593	294.46	0.826	20.98	0.735	20.98	0.440	12.70	11.774	299.06	1.039	25.39
158	13.860	352.04	0.020	23.14	0.911	20.50	0.560	14.22	14.064	357.23	1.149	20.39
159	16.800	426.72	1.012	25.70	1.012	25.70	0.620	15.75	17.033	432.64	1.279	32.49
160	15.850	402.59	0.938	23.83	0.541	13.74	0.560	14.22	16.063	408.00	0.786	19.96
161	19.347	491.41	1.105	28.07	0.638	16.21	0.670	17.02	19.604	497.94	0.930	23.62
162	18.720	475.49	0.560	14.22	0.560	14.22	0.330	8.38	18.832	478.33	0.705	17.91
163	21.896	556.16	1.185	30.10	0.684	17.37	0.720	18.29	22.185	563.50	1.006	25.55
164	22.463	570.56	1.185	30.10	0.968	24.59	0.720	18.29	22.752	577.90	1.290	32.77
165	24.595	624.71	1.261	32.03	0.728	18.49	0.750	19.05	24.904	632.56	1.071	27.20
166	25.198	640.03	1.261	32.03	1.029	26.14	0.750	19.05	25.507	647.88	1.373	34.87
167	29.896	759.36	1.412	35.86	0.516	13.11	0.840	21.34	30.249	768.32	0.902	22.91
168	30.198	767.03	1.412	35.86	0.632	16.05	0.840	21.34	30.481	774.22	1.018	25.86
169	6.831	173.51	0.624	15.85	0.509	12.93	0.380	9.65	6.955	176.66	0.666	16.92
170	8.584	218.03	0.560	14.22	0.560	14.22	0.330	8.38	8.696	220.88	0.705	17.91
171	10.529	267.44	0.560	14.22	0.560	14.22	0.330	8.38	10.641	270.28	0.705	17.91
172	13.113	333.07	0.560	14.22	0.560	14.22	0.330	8.38	13.225	335.92	0.705	17.91
303	33.573	852.75	1.494	37.95	0.668	16.97	0.890	22.61	33.949	862.30	1.078	27.38

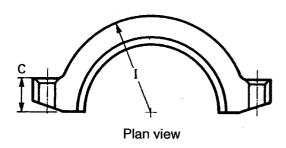
O
$\sim$
Ц
Ľ.
<b>-</b>
Ζ
0
$\mathbf{m}$
ш
(7)
$\simeq$
2
4
<b>L</b>
$\frown$
Ш
=
~
5
$\leq$
5
<b>E</b>
O
ŏ.
$\mathbf{M}$
щ

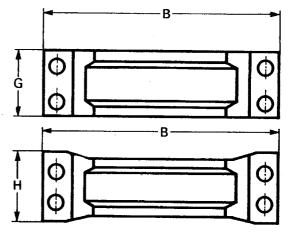
Щ

API TYPE 16B INTEGRAL HUB CONNECTIONS (API Spec 16A, 1st edition, November 1, 1986)

			r		1													
Cameron clamp	number		25 12 18		0[1													
Ring gasket	number		RX-45 RX-65 RX-73		RX-53 RX-57 RX-65													
Depth of groove E	(mm)				14.275 14.275 17.475		14.275 14.275 14.275											
Depth o	(in)					0.562 0.562 0.688		0.562 0.562 0.562										
Width of groove N	(ww)		16.9672 16.9672 19.9136		16.9672 16.9672 16.9672													
Width o	(in)	Pa	0.668 0.668 0.784	Pa	0.668 0.668 0.668													
Groove OD G	(mm)	ire = 13.8 M	228.2698 486.0290 603.3262	ire = 20.7 M	340.487 397.129 486.029													
Groo	(in)	ing pressu	8.987 19.14 23.75	ing pressu	13.41 15.64 19.14													
le diameter of neck J	(mm)	2000 psi. Maximum working pressure = 13.8 MPa	225.425 482.6 622.3	osi. Maximum working pressure = 20.7 MPa	355.6 425.45 498.475													
Large diam	(in)	000 psi. Max	8.875 19 24.5	3000 psi. Max	14 16.75 19.625													
Total thickness T	(mm)	50	36.6522 32.2326 47.5488	30	35.5346 33.9344 37.0586													
Total th	(in)		1.443 1.269 1.872		1.399 1.336 1.459													
Outside diameter OD	(mm)		263.525 517.525 669.925		396.875 466.725 539.750													
Outside O	(in)															10.375 20.375 26.375		15.625 18.375 21.250
Nominal size B	(mm)		179.39 425.45 539.75		279.40 346.08 425.45													
Nomir E	(in)		7 1/16 16 3/4 21 1/4		11 13 5/8 16 3/4													




API TYPE 16B INTEGRAL HUB CONNECTIONS (continued) (API Spec 16A, 1st edition, November 1, 1986)


		· · · · ·											2						_					
<i>Cameron</i> clamp	number		Ļ	21.	4 u	000	ω	10	13	19	27		-	2	4	വ	Q	10	10	22	15	28	27	26
Ring gasket	number		BX-152	BX-153	BX-154 BX-155	BX-156	BX-157	BX-158	BX-160	BX-162	BX-165	-	BX-151	BX-152	BX-153	BX-154	BX-155	BX-156	BX-157	BX-158	BX-159	BX-162	BX-164	BX-166
Depth of groove E	(mm)		5.9436	5.7404	7.5438 8.3312	11.1252	12.7000	14.2748	14.2748	8.3312	19.0500		5.5626	5.9436	6.7564	7.5438	8.3312	11.1252	12.7000	14.2748	15.8750	8.3312	18.2626	19.0500
Depth o I	(in)		0.234	0.226	0.328	0.438	0.5	0.562	0.562	0.328	0.75		0.219	0.234	0.266	0.297	0.328	0.438	0.5	0.562	0.625	0.328	0.719	0.75
Width of groove N	(mm)		12.6492	14.0716	15.3924 17.7292	23.3934	26.3906	29.1846	19.9644	17.907	27.2034		11.8364	12.6492	14.0716	15.3924	17.7292	23.3934	26.3906	29.1846	32.4866	17.907	32.766	34.8742
Width o	(in)	Pa	0.498	0.554	0.698 0.698	0.921	1.039	1.149	0.786	0.705	1.071	Pa	0.466	0.498	0.554	0.606	0.698	0.921	1.039	1.149	1.279	0.705	1.29	1.373
ve OD G	(mm)	re = 34.5 M	86.233	102.768	150.622	241.833	299.06	357.226	408	478.333	632.562	ure = 69 M	77.7748	86.2330	102.7680	118.9990	150.6220	241.8330	299.0600	357.2260	432.6380	478.3330	577.9010	647.8780
Groove OD G	(in)	ing pressul	3.395	4.046	4.085 5.930	9.521	11.774	14.064	16.063	18.832	24.904	king press	3.062	3.395	4.046	4.685	5.930	9.521	11.774	14.064	17.033	18.832	22.752	25.507
diameter of neck J	(mm)	Maximum working pressure = 34.5 MPa	92.8624	111.9124	158.7500	295.2750	295.2750	371.4750	482.6000	609.6000	708.0250	isi. Maximum working pressure = 69 MPa	92.8624	111.9124	125.4252	158.7500	173.0248	371.4750	371.4750	473.0750	523.8750	635.0000	708.0250	774.7000
Large diame	(in)	5000 psi. Max	3.656	4.406	4.338 6.250	11.625	11.625	14.625	19.000	24.000	27.875	10 000 psi. Ma	3.656	4.406	4.938	6.250	6.812	14.625	14.625	18.625	20.625	25.000	27.875	30.500
Total thickness T	(mm)	5(	29.616	29.616	30.404	41.199	41.199	42.012	47.523	45.161	92.202	10	29.616	29.616	29.616	30.404	33.274	41.986	41.986	51.689	58.649	76.327	92.202	101.730
Total th	(in)		1.166	1.166 1.166	1.197	1.622	1.622	1.654	1.871	1.778	3.63		1.166	1.166	1.166	1.197	1.31	1.653	1.653	2.035	2.309	3.005	3.63	4.005
Outside diameter OD	(mm)		127,7874	146.8374	193.6750	336.5500	336.5500	412.7500	523.8750	650.8750	793.7500		127.7874	146.8374	160.3248	193.6750	214.2998	412.7500	412.7500	523.8750	565.1500	711.2000	793.7500	863.6000
Outside O	(in)		5.031	5.781	0.312 7.625	13.25	13.25	16.25	20.625	25.625	31.250		5.031	5.781	6.312	7.625	8.437	16.250	16.250	20.625	22.250	28.000	31.250	34.000
Nominal size B	(mm)		52.3875	65.0875	103.188	179.390	228.600	279.400	346.075	425.450	539.750		46.0375	52.3875	65.0875	77.7875	103.188	179.388	228.600	279.400	346.075	425.450	476.250	539.750
Nomir	(ii)		2 1/16	2 9/16 2 1/0	3 1/8 4 1/16	7 1/16	თ	11	13 5/8	16 3/4	21 1/4		1 13/16	2 1/16	2 9/16	3 1/16	4 1/16	7 1/16	თ	11	13 5/8	16 3/4	18 3/4	21 1/4

API TYPE 16B INTEGRAL HUB CONNECTIONS (continued) (API Spec 16A, 1st edition, November 1, 1986

Cameron clamp number BX-151 BX-152 BX-152 BX-154 BX-154 BX-155 BX-156 BX-156 BX-156 BX-159 BX-150 number BX-151 BX-152 BX-152 BX-154 BX-155 BX-156 BX-156 BX-156 BX-158 Ring gasket 8.3312 5.9436 7.5438 8.3312 5.9436 7.5438 6.7564 5.5626 5.7404 5.5626 11.1252 14.2748 15.8750 8.2626 11.1252 14.2748 Depth of groove E (mm) 0.266 0.297 0.328 0.438 0.438 0.562 0.562 0.625 0.297 0.328 0.438 0.562 0.219 0.234 0.219 0.234 0.226 <u>(</u> 23.3934 17.7292 23.3934 12.6492 17.7292 32.4866 32.7660 29.1846 12.6492 11.8364 14.0716 15.3924 29.1846 14.0716 15.3924 11.8364 Width of groove N (mm) 0.498 0.554 0.606 0.698 0.698 0.921 0.498 0.554 0.606 0.698 0.921 1.149 1.279 1.149 0.466 1.290 0.466 (j 15 000 psi. Maximum working pressure = 103.5 MPa 20 000 psi. Maximum working pressure = 138 MPa 118.9990 150.6220 432.6380 577.9010 77.7748 86.2330 86.2330 357.2260 241.8330 150.6220 02.7680 357.2260 118.9990 241.8330 77.7748 102.7680 (mm) Groove OD ഗ 3.062 3.395 4.046 5.930 3.062 3.395 4.046 4.685 5.930 9.521 14.064 17.033 9.521 14.064 22.752 (ij Large diameter of neck 295.2750 371.4750 173.0248 523.8750 635.0000 173.0248 111.9124 114.3000 114.3000 295.2750 473.0750 114.3000 523.8750 635.0000 774.7000 114.3000 (ww) 25.000 30.500 6.812 11.625 20.625 14.625 4.406 4.500 4.500 18.625 4.500 4.500 11.625 20.625 6.812 25.000 (i 29.616 101.730 58.649 76.327 41.199 41.199 33.274 41.199 58.649 33.274 41.199 41.986 51.689 76.327 41.199 41.199 (աա) Total thickness 2.035 2.309 3.005 1.622 1.622 1.31 1.653 1.653 2.309 3.005 1.166 1.622 1.622 1.622 4.005 1.31 <u>[</u>] 214.2998 146.8374 55.5750 155.5750 214.2998 336.5500 523.9004 565.1500 711.2000 363.6000 127.7874 146.8374 160.3248 193.6750 412.7500 523.8750 Outside diameter (mm) 0 28.000 34.000 8.437 20.626 6.312 7.625 16.250 13.250 22.250 6.125 6.125 8.437 20.625 5.781 5.031 (ij 46.0375 52.3875 65.0875 77.7875 46.0375 52.3875 65.0875 77.7875 279.4000 179.3900 103.1880 346.0750 103.1880 179.3880 279.4000 176.2500 (uuu) Nominal size B 1 13/16 1 13/16 2 1/16 2 9/16 4 1/16 7 1/16 2 1/16 2 9/16 3 1/16 4 1/16 7 1/16 3 1/16 13 5/8 18 3/4 (ij 1

# CLAMP FOR FLANGES Clamp dimensions (cameron)





Side view

Clamp No.	B (mm)	C (mm)	Nominal size of studs (in)	Length of studs F (mm)	G (mm)	H (mm)	l (mm)
1	266.70	50.80	0.875-9 UN	177.80	106.43	_	97.54
2	304.80	63.50	0.875-9 UN	203.20	108.71	_	108.71
3	355.60	69.85	1.000-8 UN	228.60	157.23	-	127.76
4	317.50	63.50	1.000-8 UN	215.90	113.54	-	119.13
5	349.25	63.50	1.000-8 UN	215.90	114.30	-	134.11
6	419.10	76.20	1.125-8 UN	247.69	136.65	_	153.92
7	508.00	95.25	1.375-8 UN	304.80	149.35	_	187.45
8	603.25	107.95	1.500-8 UN	342.90	165.10		223.01
9	654.05	107.95	1.375-8 UN	330.20	139.70	146.05	245.36
10	723.90	139.70	1.625-8 UN	412.75	171.45	_	264.41
11	771.65	141.22	1.375-8 UN	381.00	139.70	149.39	292.10
12	771.65	133.35	1.375-8 UN	381.00	117.35	146.05	305.56
13	838.20	153.16	2.250-8 UN	508.00	195.07	234.95	331.22
14	793.75	165.10	1.625-8 UN	463.55	146.05	146.05	328.68
15	990.60	133.35	2.500-8 UN	488.95	263.65		371.35
16	889.00	171.45	1.625-8 UN	476.25	139.70	172.97	373.13
17	968.25	162.05	2.250-8 UN	501.65	172.97	234.95	393.70
18	990.60	165.10	2.250-8 UN	508.00	184.15	241.3	412.75
19	1028.70	200.15	2.500-8 UN	596.90	225.30	266.7	406.40
20	1216.20	152.40	1.500-8 UN	431.80	193.55	<b>—</b> *	505.71
21	1025.70	139.70	1.250-8 UN	381.00	165.10	-	421.39
22	853.95	139.70	2.250-8 UN	457.20	222.25	234.95	338.07
23	1397.00	184.15	2.250-8 UN	546.10	234.95	-	607.31
24	1295.40	162.05	1.625-8 UN	457.20	193.55	-	546.10
25	425.45	66.55	0.875-9 UN	215.90	120.65	-	169.93
26	1384.30	290.58	4.000-8 UN	939.80	401.57	-	552.20
27	1231.90	169.67	3.250-8 UN	622.30	333.25		496.82
28	1136.90	152.40	3.000-8 UN	660.40	304.80	-	450.85

 $mm \times 0.0394 = in$ 

# CIW CLAMP FOR FLANGES Make-up torque on bolts of CIW clamps

Clamp No.	3	nal size studs		e API 5A ricant	Torque molybdenum lubricant			
	(in)	(mm)	(daN.m)	(lb.ft)	(daN.m)	(lb.ft)		
1	7/8	22.23	18.6	137.27	12.7	93.73		
2	7/8	22.23	37.2	274.54	24.5	180.81		
3	1	25.40	54.9	405.16	37.2	274.54		
4	1	25.40	54.9	405.16	37.2	274.54		
5	1	25.40	54.9	405.16	37.2	274.54		
6	1 1/8	28.58	81.4	600.73	54.9	405.16		
7	1 3/8	34.93	149.0	1 099.62	95.0	701.10		
8	1 1/2	38.10	197.0	1 453.86	129.4	954.97		
9	1 3/8	34.93	149.0	1 099.62	95.0	701.10		
10	1 5/8	41.28	251.0	1 852.38	162.8	1 201.46		
11	1 3/8	34.93	149.0	1 099.62	95.0	701.10		
12	1 3/8	34.93	149.0	1 099.62	95.0	701.10		
13	2 1/4	57.15	678.8	5 009.54	. 434.5	3 206.61		
14	1 5/8	41.28	251.0	1 852.38	162.8	1 201.46		
15	2 1/2	63.50	949.6	7 008.05	597.4	4 408.81		
16	1 5/8	41.28	251.0	1 852.38	162.8	1 201.46		
17	2 1/4	57.15	678.8	5 009.54	434.5	3 206.61		
18	2 1/4	57.15	678.8	5 009.54	434.5	3 206.61		
19	2 1/2	63.50	949.6	7 008.05	597.4	4 408.81		
20	1 1/2	38.10	197.0	1 453.86	129.4	954.97		
21	1 1/4	31.75	108.8	802.94	74.5	549.81		
22	2 1/4	57.15	678.8	5 009.54	434.5	3 206.61		
23	2 1/4	57.15	678.8	5 009.54	434.5	3 206.61		
24	1 5/8	41.28	251.0	1 852.38	162.8	1 201.46		
25	7/8	22.23	36.2	267.16	24.5	180.81		
26	4	101.60	3866.0	28 531.08	2427.0	17 911.26		
27	3 1/4	82.55	2062.0	15 217.56	1302.0	9 608.76		
28	3	76.20	1628.0	12 014.64	1031.0	7 608.78		

 $daN.m \times 7.38 = lb.ft$ 

# CAMERON RAM-TYPE BLOW-OUT PREVENTERS Operating data

Model	Nominal size	Working pressure		volume In rams		volume se rams	Closing	Opening
	(in)	(psi)	(gal)	(liters)	(gal)	(liters)	ratio	ratio
	7 1/16	3 000 to 15 000	1.3	4.9	1.3	4.9	6.9	2.2
	11	3 000 to 10 000	3.4	12.9	3.5	13.2	7.3	2.5
	11	15 000	6.1	23.1	6.2	23.5	9.8	2.2
	13 5/8	3 000 to 10 000	5.4	20.4	5.8	· 22.0	7.0	2.3
	13 5/8	15 000	10.4	39.4	10.6	40.1	10.6	3.6
Type U	16 3/4	3 000 and 5 000	9.8	37.1	10.6	40.1	6.8	2.3
	16 3/4	10 000	11.6	43.9	12.4	46.9	6.8	2.3
	18 3/4	10 000	21.2	80.2	23.1	87.4	7.4	3.7
	20 3/4	3 000	7.9	20.0	0.4	21.0	7.0	1.0
	21 1/4	2 000	7.9	29.9	8.4	31.8	7.0	1.3
	21 1/4	5 000	27.2	103.0	29.9	113.2	6.2	4.0
	21 1/4	10 000	24.5	92.7	26.9	101.8	7.2	4.0
	26 3/4	3 000	10.1	38.2	10.8	40.9	7.0	1.0
	11	3 000 to 10 000	7.4	28.0	7.6	28.8	12.0	4.8
Ê	11	15 000	8.9	33.7	9.0	34.1	15.2	3.7
hear ram)	13 5 <u>/</u> 8	3 000 to 10 000	10.5	39.7	10.9	41.3	10.8	4.5
pe ר ity (s	13 5/8	15 000	16.0	60.6	16.2	61.3	16.2	6.0
Type U special cavity (she	16 3/4	3 000 and 5 000	18.1	68.5	19.0	71.9	10.4	4.4
spec	16 3/4	10 000	18.2	68.9	19.1	72.3	10.4	4.4
	20 3/4	3 000	140	EA 1	14.0	50.4	10.0	4 7
	21 1/4	2 000	14.3	54.1	14.9	56.4	10.8	1.7
5	18 3/4	10 000	22.3	84.4	24.7	93.5	6.7	2.5
Type UII	18 3/4	15 000	32.3	122.3	34.7	131.4	9.3	3.5
Type T	18 3/4	15 000	22.2	84.0	24.2	91.6	6.7	3.1

# HYDRIL RAM-TYPE BLOW-OUT PREVENTERS Operating data

Model	Nominal size	Working pressure		volume en rams		volume se rams	Closing	Opening
	(in)	(psi)	(gal)	(liters)	(gal)	(liters)	- ratio	ratio
	7 1/16	3 000 and 5 000	0.93	0.93 3.5		3.8	4.8	1.5
	7 1/16	10 000	1.80	6.8	1.9	7.2	7.7	1.7
	7 1/16	15 000	3.40	12.9	3.7	14.0	7.1	6.6
	9	3 000 and 5 000	1.90	7.2	1.9	7.2	4.5	2.6
Manual-Lock	11	3 000 and 5 000	3.20	12.1	3.3	12.5	6.0	2.0
-Iual-	11	10 000	5.00	18.9	5.2	19.7	6.9	2.4
Mar	11	15 000	8.10	30.7	8.8	33.3	7.2	3.24
	13 5/8	3 000 and 5 000	4.90	18.5	5.4	20.4	4.8	2.1
	13 5/8	10 000	11.80	44.7	11.8	44.7	10.2	3.8
	20 3/4	3 000	7.20	27.2	0.1	00.7		
	21 1/4	2 000	7.20	27.3	8.1	30.7	4.75	0.98
	21 1/4	5 000	16.60	62.8	17.5	<i>,</i> 66.2	10.2	1.9
	11	3 000 and 5 000	5.00	18.9	5.5	20.8	5.6	4.2
	11	10 000	8.20	31.0	8.8	33.3	11.7	4.0
Lock	11	15 000	8.10	30.7	8.8	33.3	7.2	3.24
Manual-Lock Shear rams	13 5/8	3 000 and 5 000	11.20	42.4	11.5	43.5	10.1	4.7
201	20 3/4	3 000	16.20	61.7	17.0	05.1		
	21 1/4	2 000	16.30	61.7	. 17.2	65.1	10.14	2.2
	21 1/4	5 000	16.60	62.8	17.5	66.2	10.2	1.9
	7 1/16	3 000 and 5 000	0.93	3.5	1.2	4.5	5.4	1.5
MPL	7 1/16	10 000	1.80	6.8	2.0	7.6	8.2	1.7
Σ	7 1/16	15 000	3.40	12.9	3.9	14.8	7.6	6.6
	9	3 000 and 5 000	1.90	7.2	2.2	8.3	5.3	2.6

# HYDRIL RAM-TYPE BLOW-OUT PREVENTERS (continued) Operating data

Model	Nominal size	Working pressure		volume n rams		volume se rams	Closing ratio	Opening ratio	
	(in)	(psi)	(gal)	(liters)	(gal)	(liters)	1800	Tatio	
	11	3 000 and 5 000	3.20	12.1	3.7	14.0	6.80	2.00	
1	11	10 000	5.00	18.9	5.7	21.6	7.60	2.40	
	11	15 000	8.10	30.7	9.3	35.2	7.60	3.24	
	13 5/8	3 000	4.90	18.5	5.9	22.3	5.20	2.10	
	13 5/8	5 000	5.20	19.7	5.9	22.3	5.20	2.10	
[	13 5/8	10 000	11.80	44.7	12.9	48.8	10.60	3.80	
MPL	13 5/8	15 000	11.00	41.6	12.6	47.7	7.74	3.56	
	16 3/4	10 000	14.10	53.4	15.6	59.1	10.60	2.41	
-	18 3/4	10 000	15.60	59.1	17.1	64.7	10.60	1.90	
	18 3/4	15 000	16.70	63.2	19.4	73.4	7.27	2.15	
	20 3/4	3 000	7.20	27.3	8.9	33.7	E 20	0.00	
	21 1/4	2 000	7.20	27.3	0.9	33.7	5.20	0.98	
	21 1/4	5 000	16.60	62.8	19.3	73.1	10.60	1.90	
	11	3 000 and 5 000	5.00	18.9	6.0	22.7	6.00	4.20	
	11	10 000	8.20	31.0	9.3	35.2	12.40	4.00	
	11	15 000	8.10	30.7	9.3	35.2	7.60	3.24	
-	13 5/8	3 000 and 5 000	11.20	42.4	12.0	45.4	10.60	4.70	
ock	13 5/8	10 000	11.80	44.7	12.9	48.8	10.60	3.80	
Manual-Lock Shear rams	13 5/8	15 000	11.00	41.6	12.6	47.7	7.74	3.56	
She	16 3/4	10 000	14.10	53.4	15.6	59.1	10.60	2.40	
ſ	18 3/4	10 000	15.60	59.1	17.1	64.7	10.60	1.90	
	18 3/4	15 000	16.70	63.2	19.4	73.4	7.27	2.15	
ſ	20 3/4	3 000	10.00	61 7	10.0	60.1	10.00	0.00	
ŀ	21 1/4	2 000	16.30	61.7	18.0	68.1	10.60	2.20	
ŀ	21 1/4	5 000	16.60	62.8	19.3	73.1	10.60	1.90	

# NL SHAFFER BLOW-OUT PREVENTERS Operating data

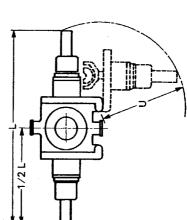
Model	Nominal size	Working pressure		volume en rams		volume se rams	Closing	Opening	Ram size
	(in)	(psi)	(gal)	(liters)	(gal)	(liters)	- ratio	ratio	(in)
Sentinel	7 1/4	3 000	0.28	1.1	0.29	1.1	4.00	2.50	-
LWP	7 1/16	3 000	0.51	1.9	0.55	2.1	4.49	2.50	5
	9	3 000	0.68	2.6	0.77	2.9	4.49	1.81	5
	7 1/16	10 000	2.34	8.9	2.72	10.3	7.11	3.37	10
	7 1/16	10 000	5.57	21.1	6.00	22.7	13.94	7.14	14
	7 1/16	15 000	2.34	8.9	2.72	10.3	7.11	3.37	10
	7 1/16	15 000	5.57	21.1	6.00	22.7	13.94	7.14	14
<u>×</u>	11	10 000	7.00	26.5	9.45	35.8	7.11	4.62	14
-Loc	11	15 000	8.10	30.7	9.40	35.6	7.11	2.80	14
-lau	13 5/8	3 000	4.46	16.9	5.44	20.6	5.54	3.00	10
Mar	13 5/8	5 000	4.46	16.9	5.44	20.6	5.54	3.00	10
pu	13 5/8	5 000	10.52	39.8	11.00	41.6	10.85	10.02	14
Poslock and Manual-Lock	13 5/8	10 000	10.52	39.8	10.58	40.0	7.11	4.29	14
oslo	13 5/8	15 000	10.52	39.8	11.56	43.8	7.11	2.14	14
SL Po:	16 3/4	5 000	4.97	18.8	6.07	23.0	5.54	2.03	10
0	16 3/4	5 000	10.67	40.4	11.76	44.5	10.85	5.77	14
[	16 3/4	10 000	12.50	47.3	14.47	54.8	7.11	2.06	14
	18 3/4	10 000	13.21	50.0	14.55	55.1	7.11	1.83	14
	18 3/4	15 000	13.33	50.5	14.62	55.3	10.85	1.68	14
	21 1/4	10 000	13.86	52.5	16.05	60.8	7.11	1.63	14
	4 1/16	5 000 and 10 000	0.52	2.0	0.59	2.2	8.45	4.74	6
	7 1/16	5 000	1.18	4.5	1.45	5.5	5.45	1.93	6 1/2
book	7 1/16*	10 000	5.25	19.9	5.18	19.6	10.63	15.22	14
	9	5 000	2.27	8.6	2.58	9.8	5.57	3.00	8 1/2
lan	11	3 000	1.45	5.5	1.74	6.6	5.45	1.16	6 1/2
2	11	5 000	2.62	9.9	2.98	11.3	5.57	2.09	8 1/2
kar	11	5 000	8.9	33.7	9.50	36.0	16	3.41	14
sloc	20 3/4	3 000	4.46	16.9	5.07	19.2	5.57	0.78	8 1/2
LWS Poslock and Manual-Lock	20 3/4	3 000	6.86	26.0	7.80	29.5	8.16	1.15	10
SX [	20 3/4	3 000	13.59	51.4	14.50	54.9	16	2.21	14
-	21 1/4	2 000	4.46	16.9	5.07	19.2	5.57	0.78	8 1/2
Γ	21 1/4	2 000	6.86	26.0	7.80	29.5	8.16	1.15	10
Γ	21 1/4	2 000	13.59	51.4	14.50	54.9	16	2.21	14

* Replaced by 7 1/16 inch, 10 000 psi type SL.

# KOOMEY RAM-TYPE BLOW-OUT PREVENTERS Operating data

Model	Nominal size	Working pressure		volume n rams	1	rolume e rams	Closing ratio	Opening ratio
	(in)	(psi)	(gal)	(liters)	(gal)	(liters)	1410	18110
_	7 1/16	3 000	0.96	3.6	1.02	3.9	4.62	1.50
ange	7 1/16	5 000	0.96	3.6	1.02	3.9	0.69	0.50
n ch	7 1/16	10 000	0.96	3.6	1.02	3.9	7.75	2.50
PB-PRC (Power ram change)	13 5/8	3 000	5.78	21.9	6.25	23.7	4.62	1.50
owe	13 5/8	5 000	5.78	21.9	6.25	23.7	7.69	2.50
H)	13 5/8	10 000	5.78	21.9	6.25	23.7	7.75	2.50
	7 1/16	3 000	0.97	3.7	1.10	4.2	4.62	1.50
	7 1/16	5 000	0.97	3.7	1.10	4.2	7.69	2.50
PL-PRC (Power ram change)	7 1/16	10 000	0.97	3.7	1.10	4.2	7.75	2.50
PRC n ch	11	3 000	3.30	12.5	3.60	13.6	4.44	1.50
PL-PRC er ram ch	11	5 000	3.30	12.5	3.60	13.6	7.41	2.50
9MOC	11	10 000	3.30	12.5	3.60	13.6	7.41	2.50
E.	13 5/8	5 000	5.78	21.9	6.25	23.7	7.69	2.50
	13 5/8	10 000	5.78	21.9	6.25	23.7	7.75	2.50
	7 1/16	15 000	0.75	2.8	0.75	2.8	30.00	18.99
	11	15 000	2.66	10.1	2.66	10.1	42.86	16.72
	13 5/8	10 000	2.80	10.6	2.80	10.6	28.57	20.75
	13 5/8	15 000	3.54	13.4	3.54	13.4	42.86	25.00
ngec	18 3/4	10 000	11.50	43.5	11.50	43.5	30.00	25.00
PL hinged	18 3/4	15 000	11.50	43.5	11.50	43.5	30.00	25.00
	20 3/4	3 000	12.18	46.1	12.65	47.9	1.48	0.75
	21 1/4	2 000	9.20	34.8	9.20	34.8	4.00	2.00
	21 1/4	5 000	9.70	36.7	9.70	36.7	4.94	1.60
	21 1/4	10 000	4.40	16.7	4.40	16.7	18.32	13.30

CAMERON RAM-TYPE BLOW-OUT PREVENTERS Dimensions and weights

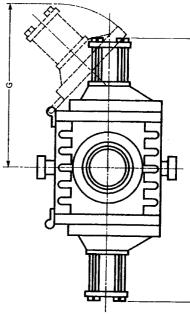

486 713 346 618 19 732 25 833 11 589 11 408 26 309 29 711 20 049 Approximate weight 2 268 2 359 2 359 3 062 4 491 4 627 5 126 8 346 12 088 12 220 501 501 501 80 (kg) 323 (333) ပထတ ဓမ္မ 5 000 5 200 6 400 6 750 9 900 11 300 18 400 14 300 14 800 18 400 43 250 940 500 550 550 550 200 200 200 200 809 706 209 446 744 980 650 (q)) 26 26 Double BOP 51 50 69 85 Height between flanges 197.5 221.3 168.0 159.4 209.2 254.2 254.2 200.3 135.6 141.9 169.2 207.6 104.1 1123.5 126.7 126.7 126.1 138.4 141.9 177.2 174.9 221.3 188.0 251.1 221.6 ကဲ 20 (cm) 67. 249. ପ ମ 3 41.000 44.188 48.625 49.875 54.500 55.875 69.750 77.750 87.125 66.125 62.750 82.375 82.375 78.875 78.875 87.125 74.000 ( 98.875 87.250 ( 53.375 55.875 66.625 81.750 875 68.875 800 000 (iii <u>8</u> 98. 87. Approximate weight 3 266 3 493 4 672 10 750  $\begin{array}{c} 1 & 179 \\ 1 & 270 \\ 1 & 610 \\ 1 & 724 \\ 2 & 404 \\ 2 & 540 \\ 2 & 540 \\ 2 & 503 \\ 4 & 672 \\ \end{array}$ 10 569 13 109 6 192 6 010 13 608 15 717 15 717 214 237 (kg) ശ ဖ 2 600 2 800 3 550 3 800 5 800 6 400 6 400 0 300 23 300 28 900 13 650 13 250 30 000 34 650 24 000 2000 700 13 750 (ql) 23177 e Single BOP Height between flanges 61.1 69.9 77.6 80.8 87.2 90.6 113.8 79.5 85.9 105.9 136.4 118.6 142.2 94.5 103.0 1103.0 122.7 122.7 109.4 109.5 164.5 134.9 163.1 134.6 ω (EC) 5 2 ß ର 24.062 27.500 30.562 31.812 29.062 34.312 34.312 44.812 31.312 33.812 41.688 53.688 43.125 ( 64.750 53.125 (  $\begin{array}{c} 46.688 \\ 56.000 \\ 40.562 \\ 37.188 \\ 50.938 \\ 66.000 \\ 66.000 \\ 48.312 \end{array}$ 000 000 40.062 43.062 (ii) <u>8</u>.8 435.6 435.6 438.8 544.5 519.6 554.7 615.0 576.1 576.1 628.0 636.0 636.0 513.4 471.2 551.2 474.7 (Cu) ams unscrewed 278.1 278.1 278.1 278.1 373.1 373.1 373.1 373.1 245.3 Width bonnets open locking 217.000 (1) 186.875 (1) 185.500 (1) 109.500 109.500 109.500 109.500 146.875 146.875 146.875 175.312 218.375 242.125 226.812 226.812 226.812 2275.375 275.375 171.500 171.500 172.750 214.375 202.125 204.562 <u>(</u> 188.0 188.0 188.0 188.0 244.5 244.5 244.5 244.5 315.0 284.8 284.8 289.9 353.1 323.2 328.3 353.1 397.2 365.0 365.0 417.2 415.0 430.8 373.4 376.9 449.6 (GU) closed locking rams screwed Width bonnets 147.000 (1) 177.000 (1) 148.375 (1)  $\begin{array}{c} 74.000\\ 74.000\\ 74.000\\ 96.250\\ 96.250\\ 96.250\\ 96.250\\ 124.000\end{array}$ 112.125 112.125 114.125 139.000 139.000 156.375 143.688 143.688 143.688 164.250 163.375 169.625 127.250 129.250 (ij Working pressure 3 000 5 000 15 000 80  $\begin{array}{c} 3 \ 000 \\ 5 \ 000 \\ 15 \ 000 \\ 3 \ 000 \\ 5 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \\ 10 \ 000 \ 000 \\ 10 \ 000 \ 000 \\ 10 \ 000 \ 000 \\ 10 \ 000 \ 000 \\ 10 \ 000 \ 000 \ 000 \\ 10 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 000 \ 0$ 3 000 15 000 5 000 10 000 (isd) പ്പ 1/16 1/16 1/16 1/16 Nominal 3/4 3/4 3/4 size (j <u>8</u> 8 ğ Model Т эдүТ U 9qv i II U aqyT

With Wedge Lock system.
 Clamped upper and lower connections.

<b>RIL RAM-TYPE BLOW-OUT PREVENTERS</b>	<b>Dimensions and weights</b>
HYDRIL R	

lanimol lanimol	Working	Midth Accord	et control		, t		Single I	e BOP			Double	Double BOP	
size	pressure	closed	d L	radius U	S D	Height between flanges H	etween ∋s H	Approxim weight	Approximate weight	Height between flanges H	etween es H	Approximate weight	imate ght
(in)	(psi)	(in)	(cm)	(in)	(cm)	(in)	(cm)	(qi)	(kg)	(in)	(cm)	(ql)	(kg)
7 1/16	3 000	77 1/16	195.7	36 3/16	<u> </u>	22 9/16	57.3	2 350	1 066		90.3		2 2 2 7
7 1/16	5 000	77 1/16	195.7	36 3/16	91.9	24 1/4	61.6	2 465	1 118	37 3/8	94.9	4 930	2 236
7 1/16	10 000		200.7	37 3/16	4	29 1/4	74.3	5 600		46	116.8		4 808
7 1/16	15 000	86 3/16	218.9	42 3/8	~	34 3/16	86.8	5 370			138.7		4 627
ວ ເ	3 000	82 1/2	209.6			28 3/16	71.6	5 200		48 9/16	123.3		4 627
໑	5 000	82 1/2	209.6			31 11/16	80.5	5 400			132.2		4 717
	3 000	95	241.3		113.3	30 1/4	76.8	5 600			126.4		4 899
	5 000	95	241.3		113.3		90.2	6 000			139.7		5 443
	10 000	4	269.9	62 1/2	158.8	36 1/4	92.1	9 750	4 423		144.5	18 100	8 210
		114 13/16	291.6		113.3		119.7	15 900			189.4		12 792
13 5/8		116 3/4	296.5		132.7		84.5	8 450			140.0		7 394
13 5/8		116 3/4	296.5		132.7		92.1	8 850			147.6		
13 5/8		124 3/4	316.9		148.0		106.0				169.5		
13 5/8		*119 1/8	302.6		115.3		130.5	21 150		80 5/8	204.8		18 666
16 3/4			363.2		155.7		114.0				185.4		19 505
18 3/4	10 000		351.2		157.5		137.8			85 3/4	217.8		23 587
18 3/4	15 000	*150 3/4	382.9		167.5		166.4				262.9		28 463
20 3/4			384.8	59 3/4	151.8		97.8	14 500			212.1		12 701
21 1/4	2 000	151 1/2	384.8		151.8		89.5	14 000		60 1/4	153.0		12 247
21 1/4		148	375.9	99	167.6	47	119.4				191.1		14 515
Note L dime	nsions corre	sound to Man	al-l ock two	Note:   dimensions correspond to Manual-) ock types upless marked by	Ad by an actorial	iorial *							






L 26

NL SHAFFER RAM-TYPE BLOW-OUT PREVENTERS Dimensions and weights

Piston size (ii 14 9 4 5 950 943 1 116 4 649 4 649 Approximate weight (kg) I ł 2 078 2 095 2 460 10 250 10 250 € Double BOP I I 47.0 77.5 134.6 82.2 134.6 Height between (cu) ł I flanges 30 1/2 32 3/8 18 1/2 (ii I L 53 23 523 649 533 2812 3 425 2 812 3 425 Approximate weight (kg) 1 176 6 200 1 152 1 430 7 550 6 200 7 550 (qj Single BOP Height between flanges 25.4 48.6 54.5 99.7 (cm) 99.7 99.7 99.7 21 7/16 19 1/8 39 1/4 39 1/4 39 1/4 39 1/4 (in) 10 Overall dimensions bonnets open G 84.9 116.8 167.8 85.1 (cu) I I. ł 66 1/16 33 7/16 66 1/16 33 1/2 (in) 1 46 46 344.8 157.2 133.0 344.8 Width bonnets 152.7 200.7 200.7 (Cu) closed L 61 7/8 60 1/8 3/8 135 3/4 135 3/4 (ij 52 79 79 Nominal Working size pressure 15 000 10 000 3 000 3 000 3 000 10 000 15 000 (isd) 7 1/16 7 1/16 7 1/16 7 1/16 7 1/16 **7 1/4 (in) თ Lock المحلا Lock المعام -Model **Sentinel** ЧΜЛ SL POSLOCK

* Poslock type. All others: Manual-Lock type.
** Hydraulic control.



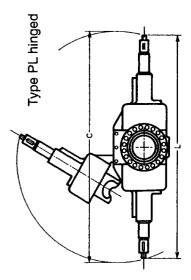
NL SHAFFER RAM-TYPE BLOW-OUT PREVENTERS (continued) **Dimensions and weights** 

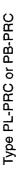
Piston size 0 (in) 4 9 14 9 879 17 123 555 11 506 12 088 21 994 27 216 24 884 7 533 19 863 7 282 20 471 (kg) Approximate I ω weight 25 365 37 750 16 054 16 608 18 860 26 648 48 488 45 130 60 000 54 860 21 780 43 790 (qj Double BOP ł 153.0 191.8 120.3 127.3 127.3 168.0 214.0 155.9 155.9 188.3 198.3 Height between 235.0 225.4 (cu) flanges 3/8 1/8 1/8 1/8 1/4 1/8 1/4 1/2 3/8 3/8 3/4 1/2 (ii) 80 75 47 20 99 84 74 20 88 78 92 6 6 4 076 16 912 5 758 11 184 3 824 4 586 6 938 13 177 7 013 13 926 12 891 (kg) Approximate ł weight 12 695 24 655 10 110 15 295 29 050 15 460 28 420 30 700 37 285 8 430 8 985 (q) I Single BOP 163.8 Height between 108.9 144.8 77.8 84.8 84.8 122.2 110.5 110.5 141.9 153.0 176.5 (cu) flanges 1/8 7/8 5/8 3/8 3/8 1/2 1/2 1/2 7/8 1/2 1/4 (ij 43 42 8 g 33 48 64 43 55 80 69 57 **Overall dimensions** 172.9 163.5 172.9 174.6 196.9 192.2 201.5 197.5 165.1 183.7 182.1 205.7 213.7 bonnets open G (CU) 71 11/16 75 11/16 72 21/64 68 1/16 68 1/16 79 5/16 64 3/8 68 3/4 77 1/2 77 3/4 1/8 (ii) <u>8</u> 65 ω 362.6 343.5 330.8 330.8 359.4 328.6 342.3 311.8 274.3 327.0 300.7 323.2 346.1 (cm) Width bonnets closed L 135 7/32 10 000 | *136 1/4 122 3/4 130 1/4 130 1/4 142 3/4 141 1/2 *118 3/8 *127 1/4 *129 3/8 128 3/4 *134 3/4 (in) *108 Nominal Working size pressure 10 000 15 000 5 000 10 000 15 000 5 000 10 000 10 000 15 000 3 000 5 000 5 000 (isd) 1/4 5/8 5/8 5/8 5/8 5/8 3/4 3/4 3/4 3/4 3/4 (ii) 21 33 3 33 <u>ന</u> 10 16 8 3 10 <u>∞</u> 1 7 Model Manual-Lock SL POSLOCK and

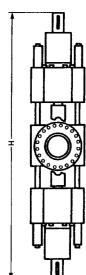
* Poslock type. All others: Manual-Lock type.

NL SHAFFER RAM-TYPE BLOW-OUT PREVENTERS (continued) Dimensions and weights

Dioton Dioton	size	(in)					1	8 1/2	14	8 1/2	10	14	8 1/2	10	14
	imate ght	(kg)	1	1 227	5 641	2 771	2 068	3 803	1	7 128	7 457	9 523	6 874	7 203	9 253
BOP	Approximate weight	(ql)	· · 1	2 706	12 435	6 110	4 560	8 385	1	15 715	16 440	20 995	15 155	15 880	20 400
Double BOP	etween Jes	(cm)	1	101.6	151.4	120.5	106.7	128.3	128.3	172.1	172.1	172.1	162.2	162.2	162.2
	Height between flanges	(in)	1	40	59 5/8	47 7/16	42	50 1/2	50 1/2	67 3/4	67 3/4	67 3/4	63 7/8	63 7/8	63 7/8
-	imate ght	(kg)	442	719	3 023	1 465	1 170	2 186	3 026	3 878	4 042	5 067	3 622	3 786	4 810
BOP	Approximate weight	(qı)	975	1 585	6 665	3 230	2 580	4 820	6 670	8 550	8 912	11 170	7 985	8 347	10 605
Single BOP	etween Jes	(cm)	52.7	71.8	101.3	76.5	68.9	94.0	94.0	105.7	105.7	105.7	95.9	95.9	95.9
	Height between flanges	(in)	20 3/4	28 1/4	39 7/8	30 1/8	27 1/8	37	37	41 5/8	41 5/8	41 5/8	37 3/4	37 3/4	37 3/4
iensions	open	(cm)	60.5	82.6	110.2	117.6	101.5	117.6	144.8	171.8	172.4	187.0	171.8	172.4	190.8
Overall dimensions	bonnets open G	(in)	23 13/16	32 1/2	43 3/8	46 5/16	39 31/32	46 5/16	57	67 5/8	67 7/8	73 5/8	67 5/8	67 7/8	75 1/8
nets	70	(cm)	107.3	148.0	189.9	201.0	184.5	226.7	257.2	323.9	297.5	335.6	323.9	297.8	335.9
Width bonnets	closed	(in)	42 1/4	58 1/4	74 3/4	79 1/8	72 5/8	89 1/4	*101 1/4	127 1/2	*117 1/8	*132 1/8	127 1/2	*117 1/4	*132 1/4
\\/orking	bressure	(bsi)	5 000 and 10 000	5 000	10 000	5 000	3 000	5 000	5 000	3 000	3 000	3 000	2 000	2 000	2 000
lenimoly		(in)	4 1/16	7 1/16	7 1/16	6	11	11	11	20 3/4	20 3/4	20 3/4	21 1/4	21 1/4	21 1/4
	Model							a¦-ro ℃Ck							


* Poslock type. All others: Manual-Lock type.


KOOMEY RAM-TYPE BLOW-OUT PREVENTERS Dimensions and weights


973 270 1 556 6 528 7 174 1 675 6 221 1 465 1 906 4 359 4 569 (kg) 901 5 721 Approximate t weight 4 2 146 15 816 13 714 2 800 3 430 14 392 3 692 9 610 10 072 12 612 3 230 10 804 4 201 (QI) Double BOP ł 76.8 86.7 90.5 112.4 138.3 Height between 125.1 78.7 87.0 93.0 103.8 (cm) 117.2 121.9 136.9 4 132. flanges 30.250 34.125 35.625 44.250 49.250 31.000 36.625 40.875 34.250 46.125 54.437 48.000 52.125 53.880 (iu) 726 800 547 3 287 594 824 1 055 4 377 2 322 2 532 771 2 864 3 190 Approximate weight (kg) I c 1 205 009 1 764 7 246 924 1816 650 1 700 2 325 6313 5 120 5 582 033 (Q) Single BOP I 7 ດ 7 Height between 51.4 61.0 63.8 68.9 81.6 57.8 98.9 49.5 (cm) 63.8 67.3 80.6 85.4 93.3 ດ 80.00 flanges 25.125 20.250 24.000 27.125 32.125 25.125 19.500 22.750 26.500 31.750 33.630 35.000 36.750 38.937 (ii) **Overall dimensions** 186.4 364.5 364.5 186.4 186.4 364.5 220.8 220.8 220.8 322.3 322.3 322.3 (cu) 400.1 400.1 bonnets open C or H 73.375 73.375 73.375 86.940 86.940 143.500 86.940 143.500 143.500 126.875 157.500 126.875 126.875 157.500 (ii) 176.8 347.0 176.8 176.8 347.0 347.0 260.6 260.6 260.6 321.9 321.9 Width bonnets (cu) 175.1 175.1 175.1 closed L 69.625 69.625 69.625 68.940 68.940 136.625 136.625 68.940 102.580 136.625 102.580 126.750 102.580 126.750 (ii) Working pressure 5 000 10 000 3 000 5 000 10 000 3 000 3 000 5 000 10 000 10 000 3 000 5 000 10 000 5 000 (isd) 7 1/16 7 1/16 7 1/16 Nominal 7 1/16 7 1/16 7 1/16 5/8 5/8 5/8 size 5/8 5/8 (in) 13 3 <u>3</u> 33 5 3 1 Model (Power Ram Change) PL hinged РL-РРС

KOOMEY RAM-TYPE BLOW-OUT PREVENTERS (continued) **Dimensions and weights** 

16 193 28 313 2 642 11 340 9 308 536 42 670 16 174 12 429 30 232 (kg) Approximate 9 weight 62 418 5 825 25 000 20 520 35 699 69 524 94 070 35 657 66 650 27 401 (qE) Double BOP 155.9 143.5 187.3 214.0 243.8 140.0 131.8 207.6 103.8 215.9 Height between flanges H (cm) 40.875 56.500 73.750 84.250 96.000 55.130 81.750 85.000 61.370 51.880 (ii) 8 935 8 539 15 285 1 452 5 297 16 907 22 797 17 205 6 577 6 591 (kg) Approximate weight 14 500 19 698 37 274 50 258 18 826 14 530 33 698 3 200 11 678 37 930 (Q Single BOP 100.0 138.6 163.5 91.4 83.8 142.2 107.3 138.4 72.1 125.1 Height between flanges H (cu) 28.375 39.375 49.250 64.375 54.500 56.000 42.250 54.560 36.000 33.000 (i 670.6 281.9 422.9 468.6 632.8 632.8 660.4 660.4 624.8 438.2 (cm) Width bonnets open C or H 246.000 111.000 172.500 166.500 184.500 249.125 249.125 260.000 260.000 264.000 (in) 364.5 543.6 233.0 378.5 505.8 505.8 538.5 538.5 502.9 345.4 (cm) Width bonnets closed L 91.750 143.500 136.000 149.000 199.125 199.125 212.000 212.000 198.000 214.000 (in) Working pressure 10 000 15 000 15 000 10 000 15 000 10 000 15 000 3 000 2 000 5 000 (isd) Nominal 7 1/16 5/8 20 3/4 21 1/4 21 1/4 13 5/8 18 3/4 21 3/4 3/4 size (in) ല <u>8</u> Ξ Model (Power Ram Change) PB-PRC







		Τ																			
Opening fluid volume	(liters)		 0,	ο c	23.2	2012 2016	17.8	17.8	34.3	80.6	39.1	39.1	61.1	85.2	71.9	719	134 1	α 001	170.7	91.0 01.0	91.2
fluid >	(gal)	1 30	0.1		6.12	7 56	4.69	4.69	9.06	21.30	10.34	10.34	16.15	22.50	19.00	19.00	35.42	29.00	45.10	24.10	24.10
Closing fluid volume	(liters)	Бд	4.9	1.1 1 1	26.3	31.7	21.4	21.4	38.4	88.9	45.9	45.9	68.5	98.4	84.5	84.5	154.2	134.7	193.0	150.3	150.3
Clos fluid v	(gal)	1.69	1 69	2.94	6.94	8.38	5.65	5.65	10.15	23.50	12.12	12.12	18.10	26.00	22.32	22.32	40.75	35.60	51.00	39.70	39.70
Weight	(kg)	1 242	1 260	3 291		8 036	3 744	3 832	6 330	16 103	5 845	7 355	12 366	16 330	11 771	11 930	16 012	8 036	18 570	9 072	8 981
Me	(qj)	2 738	2 778	7 255	12 000	17 716	8 255	8 447	13 954	35 500	12 885	16 215	27 262	36 000	25 950	26 300	35 300	17 716	40 940	20 000	19 800
Diameter	(cm)	70.8	70.8	94.9	109.9	121.9	104.8	104.8	123.2	154.9	127.0	133.0	154.9	167.0	153.7	153.7	160.0	157.5	170.2	167.6	167.6
Dian	(in)			37 3/8	43 1/4	48	41 1/4	41 1/4		61	50	52 3/8	61		60 1/2		63	62	67	66	66
Overall height flanged	(cm)	60.8	64.8	86.9	113.7	128.9	82.6	88.7	104.3	158.8	93.2	102.1	124.7	170.8	119.4	124.5	166.4	154.5	179.1	139.1	135.4
Ove height	(in)	23 15/16		34 7/32			32 1/2		41 1/16			40 3/16	49 3/32	67 1/4	47	49	65 1/2	60 13/16	70 1/2		53 5/16
Working pressure	(psi)	3 000	5 000	10 000	15 000	20 000	3 000	5 000	10 000	15 000	3 000	5 000	10 000	15 000	3 000	5 000	10 000	5 000		3 000	2 000
Nominal size	(in)	7 1/16	7 1/16	7 1/16	7 1/16	7 1/16	11	11		<del></del>					16 3/4					-	21 1/4
Model											۵										

HYDRIL ANNULAR BLOW-OUT PREVENTERS Dimensions and operating data

Previous models may have a vertical bore of 8 5/16 inches. (3) Latched head others screwed. (4) HL: special Helirig. (5) Equipped with a (liters) 0000 75.7 75.7 111.7 31. 62. Secondary chamber 20.00 24 60 60 50 (gal) ထိုထိုထို 29. (liters) 67.7 91.4 91.4 128.7 219.5 ထပ္လ വവ ß Opening fluid volume 60. 00. 219. 33.74 33. 17.88 24.14 24.14 34.00 58.00 19.76 35.30 35.30 58.00  $\begin{array}{c} 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\$ 44.00 44.00 (gal) 67.7 91.4 91.4 128.7 219.5 (liters) ထုထုထ വവ £ Closing fluid volume 219. 33. 33. 66. 17.88 24.14 24.14 34.00 58.00 19.76 35.30 35.30 58.00 44.00 44.00 (gal) 876 622 6 260 6 010 4 264 9 451 9 630 412  $\begin{array}{c} 1 & 232 \\ 5 & 534 \\ 6 & 464 \\ 6 & 464 \\ 1 & 6 & 864 \\ 1 & 588 \\ 1 & 588 \\ 2 & 722 \\ 8 & 410 \\ 8 & 410 \\ 2 & 495 \\ 3 & 720 \\ 3 & 720 \\ \end{array}$ 856 266 948 9 700 984 12 701 23 701 (kg) 20 m V 4 4 28 19 Weight <u></u>  $\begin{array}{c} 2 & 715 \\ 4 & 000 \\ 112 & 200 \\ 23 & 000 \\ 3 & 500 \\ 5 & 500 \\ 8 & 200 \\ 8 & 200 \\ \end{array}$ 784 28 000 800 250 835 230 230 800 320 450 000 80 00 52 250 21 385 (q) ł T . 45 25°°33 317 ω ខ្លួន 153.4 170.5 163.8 186.1 213.4 81.9 90.8 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 125.7 12 193.7 193.7 ω NPP (cm) 142.1 179.1 198.8 Diameter 3/4 1/2 1/4 3/4 **440044000** 3/4 44 1/2 60.38 67.12 64.50 73.25 84.00 (in 28 76 70 Overall height flanged 81.3 93.7 93.7 93.7 96.2 96.2 96.2 96.2 96.2 1114.9 96.2 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1114.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 1111.9 11111.9 1111.9 11111.9 1111.9 11111.9 11111.9 1111.9 1111 145.1 -160.7 195.6 203.6 132.6 162.9 279.7 165.7 284.5 196.9 (cm) 52 3/16 64 1/8 (1) 110 1/8 (1) 7/8 3/4 3/4 3/4 1/4 1/4 1/4 1/2 1/2 1/4 19/64 බ 57.12 -63.25 77.00 80.15 65 1/4 112 1/2 (in) Lowest flange of 10 000 psi series. (2) 17 Working 10 000 15 000 15 000 15 000 888 88 000 (psi) വവവ ഥ ພົມພົມພົກການອີ້ງພົກການອີ້ງພົກການອີ້ງພາກ വവ 7 1/16 7 1/16 7 1/16 1/16 1/16 (2) (2) ෆ ෆ ෆ <u>6</u> Nominal size 13 5/8 16 3/4 Dual 18 3/4 18 3/4 18 3/4 Dual 21 1/4 5/8 3/4 4 (ii) (1) Lowest flan, CIW lower hub.  $\frac{1}{2}$ Model Я ö б

HYDRIL ANNULAR BLOW-OUT PREVENTERS Dimensions and operating data (continued)

Model	Nominal size	Working pressure	Overall hei	Overall height flanged	Overall c	Overall diameter	Wei	Weight	Closing flu	Closing fluid volume	Opening fl	Opening fluid volume
	(in)	(isd)	(in)	(cm)	(in)	(cm)	(qi)	(kg)	(gal)	(liters)	(gal)	(liters)
	7 1/16	2 000	25 3/4	65.41	29 7/8	75.88	1 850	839	2.85	10.8	1 98	75
	თ	2 000	30 1/4	76.84	32	81.28	2 450	1111	4.57	17.3	2.95	0.7
	11	2 000	31 1/4	79.38	37 1/4	94.62	3 520	1 597	7.43	28.1	5.23	- 0
	20 3/4 (1)	2 000	54 1/4	137.80	58 3/4	149.23	1	I	31.05	117.5	18.93	717
MSP	21 1/4	2 000	52 1/2	133.35	58 3/4	149.23	15 100	6 849	31.05	117.5	18.93	7.17
	21 1/4 (2)	2 000	52 1/2	133.35	58 3/4	149.23	16 320	7 403	31.05	117.5	18.93	717
	21 1/4 (3)	2 000	48	121.92		155.58	12 700	5 761	31.75	120.2	19.25	0 64
	29 1/2	200	67 13/16	172.24		209.55	24 500	11 113	60.00	227.1		2 1
	30 (2)	1 000	58 1/8	147.64	90 1/2	229.87	32 500	14 742	87.60	331.6	27.8	105.2
•												

Available with latched head. Lower flange 3000 psi.
 Latched head.
 HL: special Helirig. Screw head and CIW lower hub.

HYDRIL ANNULAR BLOW-OUT PREVENTERS Average closing pressure (psi) required to establish initial seal-off in a surface installation

GL
Ð
<b>Z</b>
Ĺ.

[		T	1	
		(!	5000	950 1000 1100 1500
	18 3/4 – 5000 psi	Well pressure (psi)	3500	825 900 1050 1500
ning chamber)		>	2000	700 800 1000 1500
of type GL (secondary chamber connected to opening chamber)		()	5000	950 1000 1050 1500
ndary chamber co	16 3/4 – 5000 psi	Well pressure (psi)	3500	825 850 925 1500
of type GL (secor		<b>N</b>	2000	700 725 800 1400
Nominal size d		()	5000	1100 1100 1200 1500
	13 5/8 – 5000 psi	Vell pressure (psi)	3500	950 950 1200 1500
		>	2000	900 900 1200 1400
	Pipe outside	diameter (in)		7 5 3 1/2 Full closure

For optional hook-up in which the secondary chamber is connected to the closing chamber, the average pressures above must be multiplied by the coefficient S below:

GL – 5000 psi	13 5/8	16 3/4	18 3/4	211/4
S	0.71	0.68	0.69	0.66

Average closing pressure (psi) required to establish initial seal-off in a surface installation (continued) HYDRIL ANNULAR BLOW-OUT PREVENTERS

Type GK

	16 3/4 5000			*600	650	750	850	950	1050	1150	
	16 3/4 3000	450	500	*500	600	700	800	950	1000	1150	
	16 3/4 2000	350	400	*500	009	700	800	006	1000	1150	
-	13 5/8 10 000		700	*700	1200	1400	1400	1500	1500	2200	
	13 5/8 5000	600	650	*650	700	750	950	1000	1000	1150	
ОР	13 5/8 3000	700	800	006*	1000	1100				1200	
Nominal size and working pressure of type GK BOP	11 10 000		500	500	*700	800	1100			1500	
sure of ty	11 5000	350	450	450	*525	800	006			1150	
king pres	11 3000		450	450	*550	650	750	920	950	1150	
and wor	9 10 000		350	380	*570	760	860	850	1000	1150	
ninal size	9 5000			450	*600	650	750	850	950	1150	
Nor	9 3000		_	400	*500	550	650	. 750	850	1050	
	7 1/16 20 000			2200	*2200	2200	2200			_,	
	7 1/16 15 000			2100	*2100	2100	2100		·		
	7 1/16 10 000			350	550	*750	850	006	1000	1150	
	7 1/16 5000		400	400	450	*450	500	009	700	1000	
	7 1/16 3000			350	400	*400	200	600	700	1000	
Pipe	diameter (in)	6 5/8	ഹ	4 1/2	3 1/2	2 7/8	2 3/8	1.90	1.66	Full	ciosure

* For tests: pipe size and closing pressure recommended for maximum packing unit life.

HYDRIL ANNULAR BLOW-OUT PREVENTERS Average closing pressure (psi) required to establish initial seal-off in a surface installation (continued)

# **Type MSP**

Nominal size and working pressure of MSP 2000 BOP	11 21 1/4 22000 2000	350 350 450 <b>*700</b> 600 650 650 650 850 850 850 850 850 850 850 800 800 8
Nominal size and wo	9 2000	400 <b>*500</b> 550 650 750 850 1050
	7 1/16 2000	350 350 500 1000 1000
	Pipe outside diameter (in)	5 1/2 <b>4 1/2</b> <b>3 1/2</b> 2 7/8 2 3/8 1.90 1.65 Full closure

*For tests: pipe size and closing pressure recommended for maximum packing unit life.

Initial closing pressure (psi) for MSP 30″ – 1000 psi BOP/diverter	20	400
	7 to 9 5/8	700
	3 1/2 to 5	1000
Initial closing pressure (psi) for MSP 29 1/2" – 500 psi BOP/ diverter (well pressure: 500 psi)	Full closure	1500
	വ	1350
	12	950
BOP	Pipe outside diameter (in)	Closing pressure (psi)

Note: For tests. the recommended pipe diameter is 5 inches.

Opening fluid volume (liters)  $\begin{array}{c} 1.94\\ 3.21\\ 5.03\\ 8.72\\ 8.72\\ 6.78\\ 8.72\\ 6.78\\ 8.72\\ 6.78\\ 6.78\\ 7.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\ 17.41\\$ (gal) 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41 Closing fluid volume (liters)  $\begin{array}{c} 2.38\\ 2.38\\ 1.7.11\\ 2.2358\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3356\\ 2.3$ (gal) (kg) Weight  $\begin{array}{c} 1 & 850 \\ 2 & 3 & 175 \\ 3 & 176 \\ 6 & 800 \\ 5 & 825 \\ 6 & 800 \\ 6 & 800 \\ 5 & 825 \\ 6 & 800 \\ 6 & 800 \\ 10 & 650 \\ 10 & 850 \\ 100 \\ 23 & 100 \\ 23 & 100 \\ 23 & 100 \\ 23 & 100 \\ 23 & 100 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 & 750 \\ 28 &$ ĝ (cu) Overall diameter 7/8 3/4 3/8 12 1/2 44 (ii Overall height flanged 64.8 746.8 82.6 82.6 83.7 746.8 82.6 746.8 83.7 746.8 83.7 746.8 83.7 746.8 83.7 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.8 746.9 746.8 746.9 746.8 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 746.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747.9 747 (cm) ဖဖ G 11/1 15/1 15/1 28242282 3/4 1/8 5/8 (ij Working pressure  $\begin{array}{c} 10 & 00 \\ 00 & 0 \\ 00 & 0 \\ 00 & 0 \\ 00 & 0 \\ 00 & 0 \\ 00 & 0 \\ 00 & 0 \\ 00 & 0 \\ 00 & 0 \\ 00 & 0 \\ 00 & 0 \\ 00 & 0 \\ 00 & 0 \\ 00 & 0 \\ 00 & 0 \\ 00 & 0 \\ 00 & 0 \\ 00 & 0 \\ 00 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0$ (isd) 1/16 1/16 1/16 1/16 Vomina size (in) 3222388273333777777 32228882733333777777 Model (1) 

(1) B for bolted cover, W for wedge cover

Closing pressure on casing (psi)

Casing size (in)	1         13 3/8         16         18 5/8         20	480         300         190         150           480         300         190         150           310         325         190         150           480         300         325         190         150           480         325         190         150         150           1480         325         190         900         900	
	10 3/4 11 3/4	790 640 790 640 790 640 790 640 790 640 415 280	
	9 5/8	975 975 975 975 975 975 1100	irad to cloco on oncine
	8 5/8	1 175 1 175 1 175 1 175 8 90	
	7 5/8	1 400 1 400 1 400 1 265	r BOPe no adii
	7	1 500 1 500 1 500 1 500	Shaffer annular
Well	biessure (bsi)	5 000 2 000 5 000 5 000 3 000/5 000 3 000/5 000 1 000	(1) For other nominal sizes of Shaffer annular ROPs no adjustment recu
Nominal	(in)	21 1/4 21 1/4 18 3/4 16 3/4 13 5/8 30 3/4	(1) For other no

#### BOP CONTROL SYSTEM Example of calculations for fluid capacity (IADC Drilling Manual, 11th edition, 1992)

# I APPLICATION OF BOYLE'S LAW FOR CALCULATING STORED USABLE FLUID IN A SURFACE ACCUMULATOR BOTTLES

$$P_1 \times V_1 = P_2 \times V_2$$

 $P_1$  = initial pressure (nitrogen pre-charge)

 $V_1$  = initial gas volume

 $P_2$  = pressure at a later time

 $V_2$  = gas volume at a later time

#### **Application:**

Accumulator bottle pre-charge:	1000	psi	(P ₁ )
Accumulator capacity:	10	gallons	$(V_1)$
Minimum pressure required to operate BOP:	1200	psi	$(P_{2})$
Maximum pressure in the bottle:	3000	psi	(P ₃ )

Usable fluid forced out of the bottle from 3000 psi to 1200 psi:  $V_2 - V_3$ 

$V_2 = P_1 \times V_1 / P_2$	$V_3 = P_1 \times V_1 / P_3$
$V_2 = 1000 \times 10/1200$	$V_3 = 1000 \times 10/3000$
$V_2 = 8.3$ gallons.	$V_3 = 3.3$ gallons.

Usable fluid : 5.0 gallons

#### **II SIZING ACCUMULATOR SYSTEM FOR SURFACE BOP**

Example of BOP stack:		
Hydril GK 13 5/8-5 000		(L 33)
Three U-13 5/8-10 000 (two rams and one shea	r ram)	(L 20)
Annular gallons to close:	17.98	
Two rams @ 5.8 gal each to close:	11.6	
One shear ram to close:	10.9	
Total:	40.48	
Plus 50% Safety Factor:	20.24	
Stored Usable Fluid Required:	60.72 gallons	
Accumulator Bottles = 60.72/5.0 = 12.15	Required bottles = 13	

Nota: Regulations of various countries and some oil companies may have specific requirements. These calculations are for example only.

## BOP CONTROL SYSTEM Example of calculations for fluid capacity (IADC Drilling Manual, 11th edition, 1992) (continued)

## III APPLICATION OF BOYLE'S LAW FOR CALCULATING STORED USABLE FLUID IN A SUBSEA ACCUMULATOR BOTTLES

 $P_1 \times V_1 = P_2 \times V_2$ 

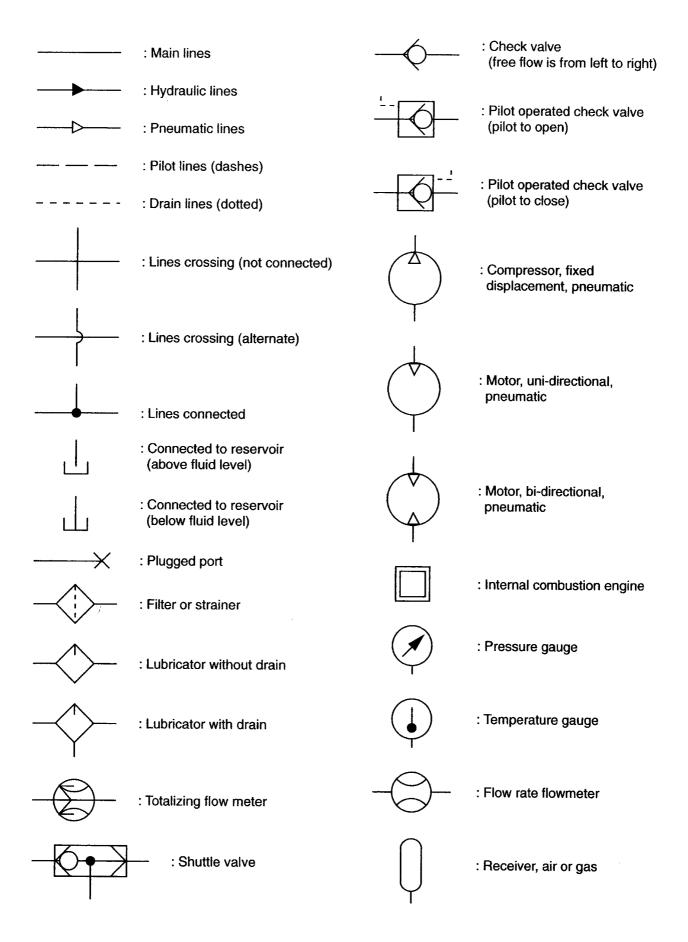
In subsea, the pre-charge pressure must be added with the seawater hydrostatic pressure : seawater hydrostatic gradient = 0.445 psi per foot

Application in 3000 feet of water:						
Accumulator capacity:	10 gallons	$(V_1)$				
Accumulator bottle pre-charge in 3000 feet of wate	er:					
$1000 + 3000 \times 0.445 = 2335$	osi	(P ₁ )				
Minimum pressure required to operate BOP in 300	0 feet of water:	:				
2335 + 200 = 2535 psi		(P ₂ )				
Maximum pressure in the bottle in 3000 feet of wa	iter:					
2335 + 2000 = 4335 psi		(P ₃ )				
Usable fluid forced out of the bottle from 4535 psi	to 2535 psi: V ₂ -	– V ₃				
$V_2 = P_1 \times V_1 / P_2$	$V_3 = P_1 \times V_1 / P_3$					
$V_2 = 2335 \times 10/2535$ $V_3 = 2335 \times 10/433$						
$V_2 = 9.2$ gallons	$V_3 = 5.4$ gallons	6.				
l Isable fluid: 3.8 gallons						

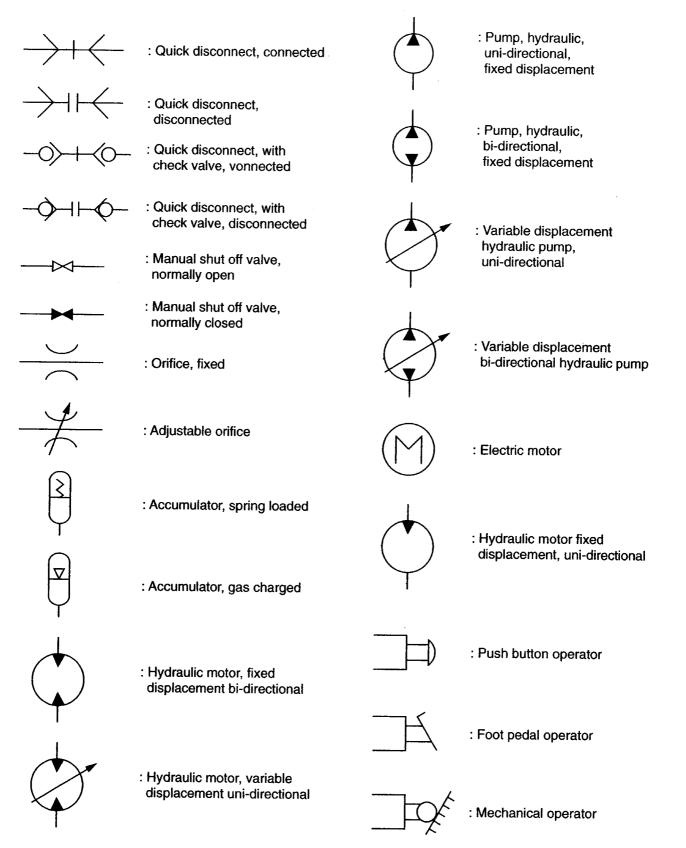
Usable fluid: 3.8 gallons

#### IV SIZING ACCUMULATOR SYSTEM FOR SUBSEA BOP

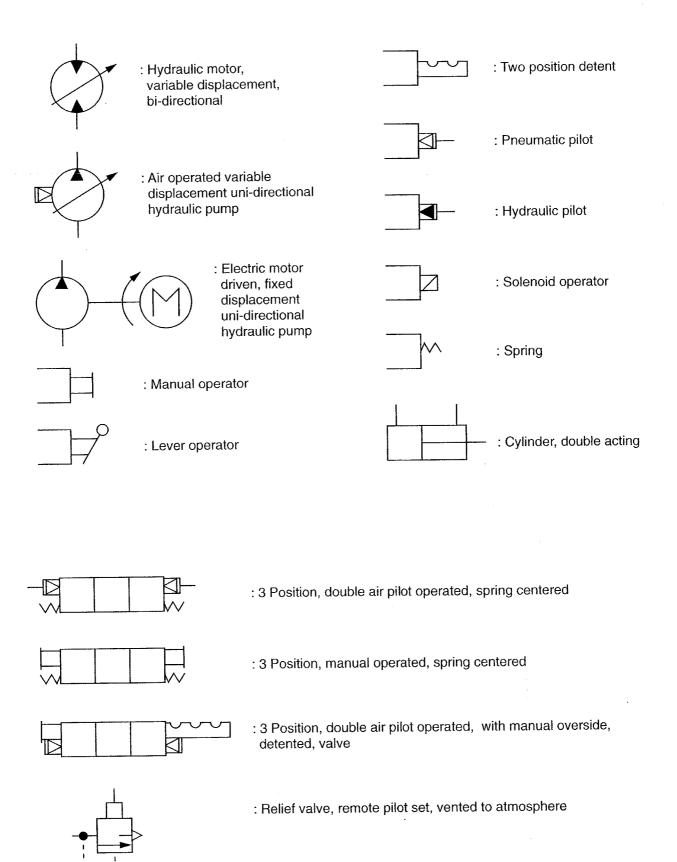
Example of BOP stack:		
Hydril GK 13 5/8-5000	(L 33	3)
Three U-13 5/8-10000 (two rams and one shear ram)	(L 20	))
Annular gallons to close:	17.98	
Annular gallons to open:	14.16	
Two rams @ 5.8 gal. each to close:	11.6	
Two rams @ 5.4 gal. each to open:	10.8	
One shear ram to close:	10.9	
One shear ram to open:	10.5	
Total:	75.94	
Plus 50% Safety Factor:	37.97	
Stored Usable Fluid Required:	113.91 gallons	


## BOP CONTROL SYSTEM Example of calculations for fluid capacity (IADC Drilling Manual, 11th edition, 1992) (continued)

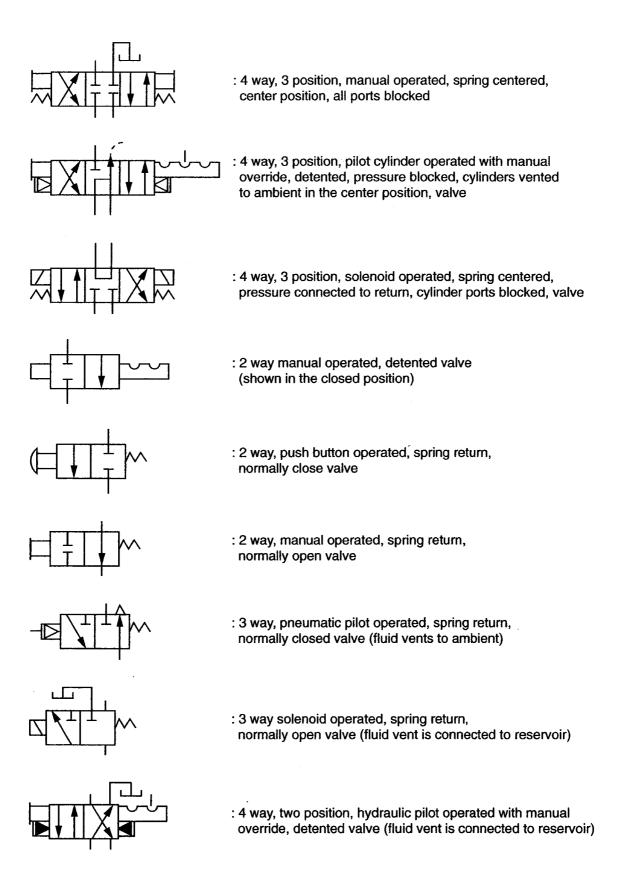
At least the capacity to close the annular and one ram will be mounted subsea:


Subsea capacity			=	29.58 gallons
Subsea bottles	=	29.58/3.8	=	7.78 or <b>8</b> bottles
Surface capacity			=	84.33 gallons
Surface bottles	=	84.33/5.0	=	16.87 or <b>17</b> bottles

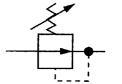
Nota: These subsea bottles must be of 5000 psi Working Pressure. Regulations of various countries and some oil companies may have specific requirements. These calculations are for example only.


.

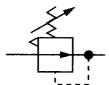



(continued)

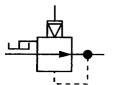



(continued)

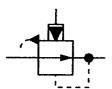



(continued)

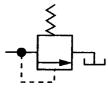



(continued)




: Regulator, manual set, non-relieving




: Regulator, manual set, relieving type (fluid vented to ambient)



: Regulator, air pilot operated, relieving (fluid vent connected to reservoir)



: Regulator, hydraulic pilot operated, relieving (fluid vented to ambient)



: Relief valve, non adjustable (vent connected to reservoir)



: Relief valve, adjustable (vented to ambient)

# M

— geology

Tertiary and quaternary cenozoic eras	M1
Secondary Mesozoic era	M2
Primary paleozoic era	М3
Table of grain size classes	M4
Representation of sediments	M5-M6
Exploration symbols in drilling	M7
Gases present in drilling muds and detected by chromatography	M8
Physical properties of H ₂ S	M9
Pore pressure	M10
Fracturing gradient and leak off test	M11
Abbreviations used in wireline logging – Halliburton	M12-M13
Abbreviations used in wireline logging – Schlumberger	M14-M15
Abbreviations used in wireline logging - Western Atlas	M16-M17

## **TERTIARY AND QUATERNARY CENOZOIC ERAS**

Cosuna	Odin	Systems	Serie	es /	STAGES	-	AGES	Orogenic							
	e (Ma)	Period	Epoch		Standard classification	Sub-stag local equ	es and/or uivalents	phases							
0.0	1	,	Holo	cene	Versilian	Flandrian									
		QUATERNARY	PLEISTOCENE	Upper	Tyrrhenian Milazzian Sicilian			Pasadenian							
		ğ	PLEIS	Ŀ	Emilian Calabrian		-								
			Dlies		Astian Plaisancian	Villafranchian		Walachian Rhodanian							
5.3	mmulitio		Plioc	ene	Zanclean Tabianian		Dacian	Attic							
			ш	Upper	Messinian Tortonian		Pontian Meotian								
		Z Z	MIOCENE		Serravallian Langhian Burdigalian	Helvetian	Sarmatian								
			MI			Vindobodian	]								
25	23			Lower	Aquitanian		· · · ·								
38	38		Oligocene		Oligocene		Oligocene		Oligocene		Chattian Rupelian Stampian	Sannoisian		Lepontine	
	PALEOGENE		Ē	Upper	Bartonian Priabonian	Ludian Marinesian Auversian	Lattorfian Tongrian	Pyrenean	Ψ						
			EOCENE	Mid	Lutetian	Ledian	Biarritzian		ALPINE						
55	55	РA	Section Secti				llerdian								
67	65				Montian	Landenian		Laramide							

SECONDARY MESOZOIC ERA

Cosuna	Odin	Systems	Sei	ries	STAGES	<u> </u>	AGES		Orononia
	e (Ma		Epoch		Standard classification				Orogenic phases
				E	Maestrichtian	Aturian	Rognacian Begudian		
			j ja	Senonian		Alurian	Fuvelian Valdoniar		
			Upper		Santonian Coniacian	Emscherian			
		CRETACEOUS			Turonian	Provencian Ligerian	Angoumia Salmuriar		eo-Alpine
100	95	TAC	<u> </u>		Cenomanian				
		CRE			Albanian	Vraconian			
				er	Aptian	- Clansayesian Gargasian Bedoulian	Gault		
			.	Lower	Barremian		Urgonian		
					Hauterivian Valanginian	Neocomian	Wealden	,	
140	130				Berriasian		Purbeckia	n	Late
					Portlandian Kimmeridgian	Tithonian	Volgian		Cimmerian
			Upper	Malm			Sequaniar		
160	158		5	Σ	Oxfordian		Rauracian Argovian		
F	F				Callovian	4			
				Dogger	Bathonian				ALPINE
100	170			õ	Bajocian Aalenian				AL
180	178	JURASSIC			Toarcian				
		JURA			Pliensbachian	Charmoution	Domerian		
			Lower	Lias		Charmoutian	Carixian		
				-	Sinemurian	Lotharingian			
200	204				Hettangian				
					Rhaetic Norian				Forty
			Trias		Carnian		Keuper		Early Cimmerian
					Ladinian Anisian	Wirglorian	Muschelka		
250	245				Scythian	Werfenian	Bundsands	stein I	Palatinian

## **PRIMARY PALEOZOIC ERA**

Cosuna	Odin	Systems	Series	STAGE	STAGES — AGES		Orogenic			
	e (Ma)	Period	Period Epoch Standard classificatio							
		NA	Upper	Tatarian Kazanian	Thuringian	Zechstein	Saalian			
		PERMIAN		Kungurian	Saxonian					
290	290	-	Lower	Artinskian Sakmarian	Autunian	Rotliegende				
330		CARBONI-	Upper	Stephanian Westphalian Namurian	Ouralian Moscovian Bashkirian	Pennsylvanian	- Asturian _ Sudetic	-		
365	5_360	FEROUS	Lower	Dinantian	Visean Tournaisian	Mississippian	Bretonic	VARISCAN		
			Linner	Famennian	Strunian			7		
		AN	Upper	Frasnian		Old				
		DEVONIAN	Middle	Givetian Couvinian	Eifelian	Red	eo-Hercinian			
405	400		Lower	Emsian Siegenian Gedinnian	Coblenzian	Sandstones				
	- 		Upper	Pridoli Ludlow Wenlock			Ardennes			
425	418	SILURIAN	Lower	Llandoverey			Taconic			
			Upper	Ashgill Caradoc				DONIAN		
		ordo- Vician	Middle	Llandeilo Llanvim			Sardinian	CALEDON		
500	495			Arenig Tremadoc						
570	530	CAMBRIAN		Postdamian Acadian Georgian			Cadomian			
Γ	- 1000	-7	Dretore	Brioverian		Infracambrian	Grenvillian			
2500		PRECAMBRIAN	Protero-Brioverian Zoic Pentevrian		Algonkian					
	3000 4000	PRECA			ARCHAEAN					

## **TABLE OF GRAIN SIZE CLASSES**

Φsca	le	10		9	8	7	6	5	4	4 : L	3	2	1	0 -	- 1	2 -	3 -	- 4
Fractions of mm 2			1 256	1 128	1 64 1	1 32 1	1	1 6 8	1 8 1	<u>1</u> 4	1 2 1	1	1	1	L	1		
		1μι	n	2	4	8	16	31	62	2.5 1:	25 2 L	50 5	00 1	mm :	24	4 8 1	B 1	6
			L	utit	es						A	renit	es			Ruc	lites	
										Sands					Granules			6
Loose		Cla	y			Silt					Very fine Fine Medium Coarse Very coarse					Journey		Pebbles
Consolidated	Mı	udst	one	əs		Siltstones					Sa	ndsto	ones	>	Co	ngloi	mera	ites

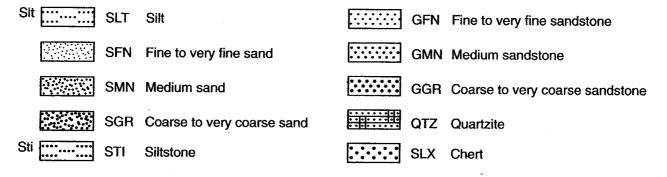
Sizes are expressed in millimeters or microns, in fractions of millimeters and in  $\Phi$  units. ( $\Phi = -\log_2$  of diameter in millimeters).

## **REPRESENTATION OF SEDIMENTS (1)**

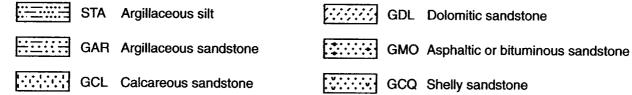
#### **1 PREDOMINANTLY SHALE ROCKS**

#### **1.1 One-component rocks**

Clay, shale


#### **1.2 Two-component rocks**




ASL Silicified claystone

#### 2 PREDOMINANTLY SILICA ROCKS

#### 2.1 One-component rocks

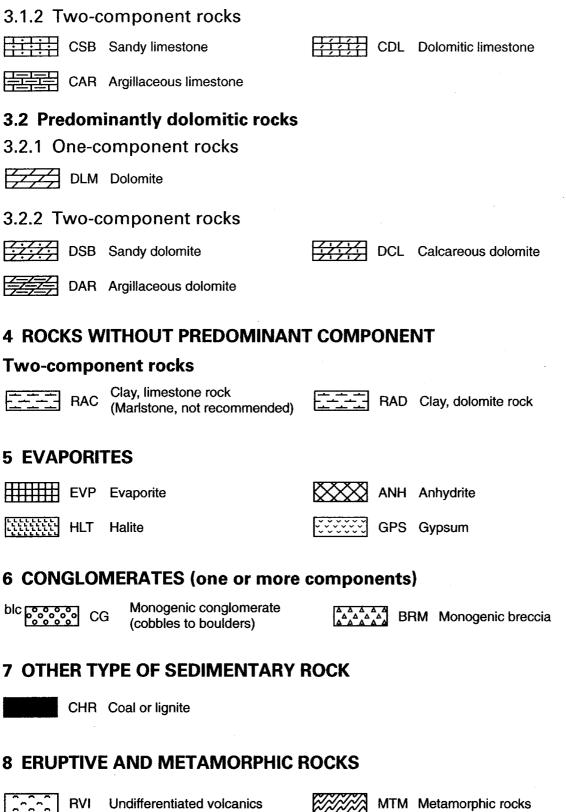


#### 2.2 Two-component rocks



#### **3 PREDOMINANTLY CARBONATE ROCKS**

#### 3.1 Predominantly limestone rocks


#### 3.1.1 One-component rocks



(1) From document of French Oil and Gas Industry Association. Technical Committee.

M 6

## **REPRESENTATION OF SEDIMENTS** (continued)





CI Acid rocks (granite)

 ジジンズ BS

BSL Basalt

#### 9 MINERALS

## **EXPLORATION SYMBOLS IN DRILLING**

#### **SHOWS**

Α.	Shows from cuttings and cores	
	Oil in mass	•
	Oil in fractures	Ø
	Emanation of gas	¢
	Direct fluorescence of mass (pale +, bright + +, very bright + + +)	<b>A</b> +
	Direct fluorescence on fractures	<b>Z</b> +
	Fluorescence on extraction	Δ
	Asphalt, bitumen	•
	Water (with indication of salinity in g/l)	<b>#</b> 35
	Odor (x) ¹	♦ x
В.	In drilling mud	
	Oil	● M
	Direct fluorescence (pale +, bright + +, very bright + + +)	▲ M -
	Gas (y, z,) ²	¢, ^M
	Gasoline, condensate	¢ ^M
	Sulfides dissolved in mud	SM
	Losses	Z, Z
	Gains	z

## GASES PRESENT IN DRILLING MUDS AND DETECTED BY CHROMATOGRAPHY (1)

Gas	Formula	Boiling point (°C) (3)	Density (in relation to air) (4)
Helium	He	- 268.9	0.138
Hydrogen	H ₂	- 252.9	0.070
Nitrogen	N ₂	- 195.8	0.967
Methane	$CH_4$ (C ₁ )	- 161.5	0.555
Carbon dioxide	CO ₂	- 78.2 (2)	1.527
Ethane	$C_{2}H_{6}(C_{2})$	- 88.6	1.047
Hydrogen sulfide	H ₂ S	- 60.3	1.187
Propane	C ₃ H ₈ (C ₃ )	- 42.1	1.551
Isobutane	C ₄ H ₁₀ ( <i>i</i> -C ₄ )	– 11.8	2.075
<i>n</i> -butane	C ₄ H ₁₀ ( <i>n-</i> C ₄ )	- 0.5	2.081
Isopentane	C ₅ H ₁₂ ( <i>i-</i> C ₅ )	27.8	2.626
<i>n</i> -pentane	C ₅ H ₁₂ ( <i>n</i> -C ₅ )	36.1	2.643
-	(C ₆ +)	> 50	-

(1) Retention time in the chromatograph is inversely proportional to the boiling point (except for  $CO_2$ ). The detection of a gas depends on the type of chromatographic column and on its concentration.

(2) Sublimation point.

(3) At 101.325 kPa (abs.)

(4) At 101.325 kPa (abs.) and 15°C

Reference: J.F. Gravier. Propriétés des fluides de gisements. Éditions Technip, Paris. 1986.

## PHYSICAL PROPERTIES OF H₂S

Color:	Colorless
Odor:	Rotten eggs at low concentration, odorless at high concentration
Density:	1.189 hence heavier than air
Solubility:	Four volumes of gas are soluble in one volume of water
Flammability:	It forms an explosive mixture with air when it occupies between 4.3 and 46% of this mixture.
	It burns with a blue flame and its combustion produces a very irritating gas: sulfur dioxide (SO $_2$ ).

## $H_2S$ is a toxic gas

#### For an H₂S content of:

1 ppm	= 0.0001%	: detection by smell (rotten eggs)
10 ppm	= 0.001%	: concentration limit for work lasting 8 hours (1)

#### USE YOUR BREATHING APPARATUS ABOVE THIS CONCENTRATION

100 ppm	= 0.01%	: loss of sense of smell in 3 to 15 min
200 ppm	= 0.02%	: sense of smell paralyzed
500 ppm	= 0.05%	: loss of balance and consciousness breathing difficulty within 2 to 15 min
700 ppm	= 0.07%	: fainting; respiratory arrest
1000 ppm	= 0.1%	: mortal concentration if artificial respiration is not practised

(1) 10 or 20 ppm depending on local regulations.

From publication of the French Oil and Gas Industry Association, Technical Committee.

## **PORE PRESSURE**

The main techniques for evaluating the pore pressure are based on the difference between the measured or calculated value of a parameter (resistivity, shale density, standard rate of penetration, etc.) and the extrapolated value based on the normal trend.

One of the most widely used parameter is the rate of penetration.

#### The "d exponent" method of Jordan and Shirley

The *d* exponent is only significant in shale and with milled tooth bits (rock bits).

The interpretation is based on the assumption of undercompacted shales:

$$v_{a} = KN \left(\frac{WOB}{D}\right)^{d}$$

where:

 $v_a$  = rate of penetration (**m/h** or ft/h)

WOB = weight on bit (t or lb)

N = speed of rotation of the bit (**rpm**)

D = bit diameter (in)

K = proportionality factor

 $d = d \exp \theta$ 

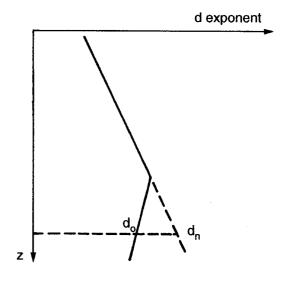
$$d = \frac{\log \frac{v_a}{N}}{\log \frac{WOB}{D}}$$

$$\frac{\log \frac{v_a}{60N}}{12WOB} \quad \text{or} \quad d = \frac{1.26 - \log N}{12WOB}$$

American units

Combined units (in bold above)

1.58 - log


$$P_f = P_{fn} \frac{d_n}{d_o}$$

d =

- $P_f$  = observed pore pressure
- $P_{fn}$  = normal pore pressure at depth Z

 $d_n = d$  exponent extrapolated on the normal curve

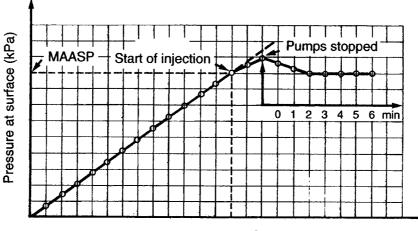
 $d_o = d$  exponent calculated at the same depth



## FRACTURING GRADIENT AND LEAK OFF TEST

#### EATON FORMULA

$$P_{\text{frac}} = P_f + \frac{\mu}{1-\mu}(S-P_f)$$


 $P_{\text{frac}}$  = fracturing pressure

 $P_f$  = pore pressure S = overburden pressure

S = overburden pressure (weight of formations)

 $\mu$  = Poisson's ratio (0.25 to 0.50)

#### LEAK OFF TEST



Cumulative volume pumped (I)

$$P_{\rm frac} = {\rm MAASP} + 9.81 Z_{\rm s} d$$

$$d_{\rm frac} = \frac{P_{\rm frac}}{9.81Z_{\rm c}}$$

where:

 $P_{\text{frac}}$  = fracturing pressure (kPa)

MAASP = pressure at start of injection point (kPa)

 $d_{\text{frac}}$  = fracture density (kg/l)

- d =mud density in the well during leak off test (kg/l)
- $Z_{\rm s}$  = depth of weak point (or shoe) (m)

#### **MUD COMPRESSIBILITY**

Water Base Mud (WBM)	Oil Base Mud (OBM)	Base Oil
$0.45 \ 10^{-6} \ \text{kPa}^{-1}$ $0.30 \ 10^{-5} \ \text{psi}^{-1}$ $0.45 \ 10^{-2} \ \text{liters/bar per m}^3$ $4.5 \ \text{liters per bar for 100 m}^3$ $4.5 \ \text{liters per m}^3 \ \text{for 100 bar}$ $4.5 \ \text{liters per m}^3 \ \text{for 10 MPa}$ $3 \ \text{liters per m}^3 \ \text{for 1000 psi}$ $0.125 \ \text{gal per bbl for 1000 psi}$	0.80 10 ⁻⁶ kPa ⁻¹ 0.55 10 ⁻⁵ psi ⁻¹ 0.80 10 ⁻² liters/bar per m ³ 8 liters per bar for 100 m ³ 8 liters per m ³ for 100 bar 8 liters per m ³ for 100 MPa 5.5 liters per m ³ for 1000 psi 0.229 gal per bbl for 1000 psi	$0.70 \ 10^{-6} \ \text{kPa}^{-1}$ $0.47 \ 10^{-5} \ \text{psi}^{-1}$ $0.70 \ 10^{-2} \ \text{liters/bar per m}^3$ 7 liters per bar for 100 m ³ 7 liters per m ³ for 100 bar 7 liters per m ³ for 10 MPa 4.7 liters per m ³ for 10 MPa 4.7 liters per m ³ for 1000 psi 0.192 gal per bbl for 1000 psi

## Halliburton

Resistivity		Diplog and Caliper	
DIL	Go Dual Induction	CAL_x	Caliper x
DIND	Dits Dual Induction	FEDOLD	Four Arm Dipmeter
DLL	Standard Dual Laterolog	FIAC	Four Independant Arm Caliper
HDIL	Hostile Dual Induction	HECT	Hostile Four Arm caliper
HEDL	Hostile Env. Dual Laterolog	MACT	Multi-Arm Caliper Tool
LL3	Laterolog 3	MSFCAL	MSFL Caliper
MICLOG	Microlog	SED	Six Electrode Dipmeter (DITS)
MSFL	Micro-Spherically Focused	XYCA	Analog XY Caliper
	Radioactivity		Formation Sampling
CDL	Compensated Density Log	PQ_PL	Pressure -[Petro-Quartz]
CNT	Conpensated Neutron Log	SFT	Sequential Formation Tester
DSEN	Dual Spacing Epithermal Neutron	SFT4	SFT4 Petro Quartz
EVRSDL	Spectral Density (EVR)	Production Logging	
GAMMA	Gamma Ray Tool		
GR_xyz	Natural Gamma + xyz	BATS	Borehole Audio Tracer Survey
HDSN	Hostile Dual Spaced Neutron	CEN_x	Production Logging Centralizer
HGNC	Hostile CCL/Gamma/Neutron	CENT	Bottom Centralizer in FWST
HSDL	Hostile Spectral Density Inst.	COP_MP	Pressure [Petro-Quartz]
RMT	Reservoir Monitor Tool	FDF_TT	Flow Diverter - TTTC
SDL	Spectral Density	FLD_PL	Fluid Density
SGR	Spectral Gamma Ray	FLTT	Fluid travel Tool
SLD	Spectral Litho-Density	FMS_MP	High Sensitive Flowmeter
TMD	Thermal Multigate Decay	GHT	Gas Holdup Mux
TMDL	Thermal Multigate Decay Lith.	H_CENT	Hostile Centralizer
TRAC_x	Tracer Scan - x	HMR_MC	HMR Quartz Pressure Tool
	A 4	HYD_xy	Center Sample Hydrometer
	Acoustic	M_FLOW	Sondex Fullbore Flowmeter
BCS	Compensated Sonic	M_GRAD	Sondex Gradiometer
CAST	Acoustic Scanning Tool	QPG_MP	Quartz Pressure Tool
CBL	Cement Bond Log	SPIN	DC Spinner
FWS	Full Wave Sonic	TEMPDC	Temperature
HFWSA	Hostile Sonic - Full Wave (A)	TPH_PL	Temperature High Resolution

## Halliburton (continued)

Pipe Evaluation		Pipe Recovery	
	Plug Setting and Mechanical	CIC CIT PIT PIT8	Casing Inspection Caliper Casing Inspection Tool DITS Pipe Inspection Tool Pipe Inspection Tool (8 pad)
			Perforating
		CCL M157 M187	Casing Collar Locator M157 Gamma Perforator M187 Gamma Perforator
	Auxiliary		
BRID DTD DTEN FLEX HDTD	Cable Electrode Bridle Downhole Tension Device Differential Tension Flex joint Hostile Downhole Tension Sub		

## Schlumberger

AIT ALAT	Resistivity		Radioactivity	
ARC CDR DIT	Array Induction Imager Tool Azimuthal Laterolog Array Resistivity Compensed Tool (Anadrill) Compensated Dual Resistivity Tool (Anadrill) Dual Induction Tool (SFL or LL8)	PGT PNT RST SGT	Compensated Density Tool Sidewall Neutron Tool (SNP) Reservoir Saturation Tool Scintillation Gamma Ray Tool	
DLT DST ES HALS	Dual Laterolog Tool Dual Laterolog Tool with SRT (MSFL) Electrical Survey Tool HILT Azimuthal Laterolog Sonde	SLDT SSGT SWT TDT	Slimhole Litho-Density Tool Scintillation Gama Ray Tool Water Saturation Tool Thermal Decay Time Tool	
IRT ISF LL3	Induction Logging Tool (w/o SN) Induction Spherical Focused Log Laterolog 3 Sonde	Acoustic		
LLS MCFL MLL MLT MPT RAB SRT	Laterolog 7 Sonde Laterolog 7 Sonde HILT Micro-Cylindrical Focused Log Device Microlaterolog Tool Microlog Tool Microlog Proximity Tool (PL) Azimuthal Resistivity At the Bit Tool (Anadrill) Micro Spherical Focused Resistivity Tool	ASMT AST BHTV CBT CET CMT CSAT CWRT	Acoustic Sonde Measuring Tool Acoustic Scanner Tool Borehole Televiewer Cement Bond Tool Cement Evaluation Tool Circumferential Microsonic Tool Combined Seismic Acquisition Tool Cross Well Receiver Tool	
	Radioactivity	DSA DSLT DSST	Downhole Seismic Array Digitizing Sonic Logging Tool Dipole about Sonic Images Tool	
AACT ADN AGS CDN CGRS CNT ECS FGT FSMT GFT GNT	Aluminium Activation Clay Tool Azimuthal Density Neutron Tool (Anadrill) Aluminium Gamma Ray Spectroscopy Sonde Accelerator Porosity Sonde Neutron Density Sonde (Anadrill) Compact Gamma Ray Sonde Compensated Neutron Tool Elemental Capture Spectroscopy Cartridge Formation Gamma Ray Tool Formation Subsidence Monitoring Tool Formation Tester Gamma Ray Tool Gamma Neutron tool	DSST DWST ISONIC OSST SAT SDT SLT SSLT UBI UCI USIT WST	Dipole shear Sonic Imager Tool Digital Waveform Sonic Tool Sonic Tool (Anadrill) Quick Shot Seismic Tool Seismic Acquisition Tool Sonic Digital Tool (AS, BHC, DDBHC, CBL) Sonic Logging Tool (BHC, DDBHC, CBL) Slim Sonic Logging Tool Ultrasonic Borehole Imager Ultrasonic Corrosion Imager Ultrasonic Imaging Tool Seismic Acquisition Tool	
GPT GRA	Gamma Ray Perforating Tool Geochemical Reservoir Analyzer		Diplog and Caliper	
GRT GST HLDT HNGT HSGT LDS LDT MIST MSGT NDT NFD NGT NPLT PGGT	Gamma Ray Tool Gamma Spectroscopy Tool Hostile Environment Litho Density Tool Hostile Natural Gamma Ray Spectroscopy Tool Hostile Environment Gamma Ray Tool Litho Density Tool (IPLT) Litho Density Tool Multiple Isotope Spectroscopy Tool Scintillation Gamma Ray Tool Neutron Depth Tool Nuclear Fluid Density Tool Natural Gamma Ray Spectroscopy Tool Nuclear Porosity Lithology Tool (IPLT)	CALI ECD EDAC HDT FBST MCD MEST OBDT PCD SHDT SPCS TCS VCD	Generalized Caliper Eccentred Caliper Device Eccentred Dual Axis Caliper High Resolution Dipmeter Tool Full Bore Scanner Tool (FMI) Mechanical Caliper Device Micro-Electrical Scanner Tool (FMS) Oil Base Mud Dipmeter Tool Powered Caliper Device Stratigraphic High Res. Dipmeter Tool Slim Powered Caliper Sonde Through Tubing Caliper Sonde Caliper Device	

## Schlumberger (continued)

Formation Sampling		Pipe evaluation		
CST FIT MDT MSCT PST RFT	Core Sidewall Takeri Formation Interval Tester Modular Formation Dynamics Tester Mechanical Sidewall Coring Tool Production Fluid Sampler Tool Repeat Formation Tester <b>Production Logging</b>	CIT CPET ETT FTGT MFCT PAT PHAT	Casing inspection Tool Corrosion Protection Evaluation Tool Electromagnetic Thickness Tool Tubing Geometry Tool Multi-Finger Caliper Tool Pipe Analysis Tool Pit and Hole Analysis Tool	
CFS DEFT	Continuous Flowmeter Sonde Digital Entry and Fluid Imager Tool		Plug Setting and Mechanical	
EFM FBDS FBS GMS HCFT HTT HUM	<ul> <li>Electrical Flowmeter Tool (Flopetrol-John.)</li> <li>Full Bore Directional Spinner Flowmeter Sonde</li> <li>Full Bore Spinner Flowmeter Sonde</li> <li>Gradiomanometer Sonde</li> <li>Flowmeter Sonde</li> <li>High Resolution Thermometer Tool</li> </ul>	BO CCL CERT FPIT MPBT SPPT	Back-off Tool Casing Anomaly Locator Correlatable Electromagnetic Recovery Tool Free Point Indicator Tool Mechanical Plugback Tool Production Packer Tool	
LEE_FM	EE_FM         Flowmeter manufactured by Lee Tools           _IFT         Local Impedance Flowmeter Tool		Auxiliary	
PBFT RCT SCTT SVFS TEMP TMT	CTFlowmeter Transmitter (Rotron type)CTTSidewall Contact Temperature ToolVFSSlim Hole Vortex Flowmeter SondeEMPTemperature	ACTS AMS EMS MPD NOSE TTG	Auxiliary Compression Tension Sub Auxiliary Measurement Sonde Environment Measurement Sonde Magnetic Positioning Device Nose Orienting Scanning Equipment Through Tubing Guide	
			Perforating	
		GUN PGGT	Perforating Gun Powered Gun Gamma Ray Tool	

## Western Atlas

Resistivity			Diplog [®] and Caliper
DEL2	Dielectric Log 200MHz	2CAL	2-Arm Caliper Log
DIFL	Dual Induction-Focused Log	3CAL	3-Arm Caliper Log
DLL	Dual Laterolog	4CAL	4-Arm Caliper Log
DPIL SM	Dual Phase Induction Log	DIP	High Resolution 4-Arm Diplog
IEL	Induction Electrolog	HDIP SM	Hexagonal Diplog SM
ML	Minilog®		Formation Sampling
MLL	Micro Laterolog		romation Sampling
TBRT®	Thin-Bed Resistivity	CHFT	Cased Hole Formation Tester
		FMT	Formation Multi-Tester
	Radioactivity	FQPG	Fast Response Quartz Pressure Gauge
	Commente de la SM	QPG	Quartz Pressure Gauge
CDL	Compensated Densilog SM	RCI SM	Reservoir Characterization Instrument
ĊN	Compensated Neutron Log	RCOR SM	Rotary Sidewall Coring Tool
GR	Gamma Ray Log	SWC	Sidewall Corgun
HYDL	Hydrolog SM	VPC	VPC Formation Multi-Tester
MRIL®	Magnetic Resonance Imaging Log	Production Logging	
MSI	Multiparameter Spectroscopy	CCL	Carrier Caller Land
	Instrument	DWP	Casing Collar Locator Downhole Wireline Packoff
PDK	PDK-100 [®]	FCON	Fluid Conductivity Log
PFC	Perforation-Formation-Collar Log	FDDP	Differential Pressure Fluid Density
PRSM	PRISM [®] Log	FDN	Nuclear Fluid Density
SL	Stectralog®	FMBK	Basket Flowmeter
ZDL	Compensated Z-Densilog SM	FMCS	Continuous Spinner Flowmeter
	I	FMFI	Folding Impeller Flowmeter
	Acoustic	FQPG	Fast Response Quartz Pressure Gauge
AC	PHC Acquetiles	NFL	Nuclear Flolog SM
	BHC Acoustilog	PHT	Photon Log
ACL	Long-Spaced BHC Acoustilog SM	QPG	Quartz Pressure Gauge
BAL®	Bond Attenuation Log	SON	Sonar
CBIL SM	Circumferential Borehole Imaging Log	SPG	Strain Pressure Gauge
CBL	Acoustic Cement Bond Log	SRPL	Surface Recorded Pressure Log
DAC SM	Digital Array Acoustilog SM	SWAT	Swing-Arm Tracerlog
DAL	Digital Acoustilog	TBFS	Through-Tubing Borehole Fluid Sampler
DRB SM	Dual Receiver Bond Log	TCAL	Through-Tubing (X-Y) Caliper
MAC SM	Multiple Array Acoustilog SM	TEMP TRL	Differential Temperature
SBT SM	Segmented Bond Tool	VIBR	Tracerlog Vibrator
SRB	Single Receiver Bond Log	WHI	Water Holdup Indicator
·	I	V V F (1	

Pipe Evaluation		Pipe Recovery		
СРР	Casing Potential Profile	BHJ	Bottomhole Junk Shot	
DMAG	Digital Magnelog SM	во	String Shot-Back Off	
DVRT	Digital Vertilog SM	сс	Chemical Cutters	
MAG	Magnelog SM	FG	Feeler Gauge	
MFC	Multi-Finger Caliper	FPST	Spring-Tector SM Freepoint Indicator	
MVRT	Multichannel Vertilog SM	FPTM	Tri-Mag Freepoint Indicator	
VRT	Vertilog®	HCS	Hydraulic Cleanout Service	
VTLN	Vertiline SM	JCS	Jet Cutters	
	J	MST	Metal Severing Tool	
Plug	g Setting and Mechanical	PRL	Pipe Recovery Log	
BP	Bridge Plug	SSH	Surface Shot	
CRET	Cement Retainer			
DB	Dump Bailer		Perforating	
JCGR	Junk Catcher Gauge Ring	AJ	Alpha Jet [™]	
PDB	Positive Displacement Dump Bailer	EBC	Expendable Bar Carrier	
PPKR	Production Packer	EGUN	Bullet Guns	
SB	Sinker Bar	EHC	Expendable Hollow Carrier	
ттвр	Through-Tubing Bridge Plug	EMO SM	Electromagnetic Orientation Tool	
	<b>4</b>	JJ	Jumbo Jet [®]	
	Auxiliary	PHC	Ported Hollow Carrier	
BHVC	Borehole Video Camera	POL	Perforating Orientation Log	
CHTS	Cablehead Tension Sub	SJ	Silver Jet [®]	
DIRO	Photoinclinometer	ТСР	Tubing-Conveyed Perforating	
EMT	Electromagnetic Fishing Tool			
ORIT	Instrument Orienting Log			
PSM	Precision Subsidence Monitoring			
TFLR	Fluid Resistivity			
TTEM	Temperature			
TTEN	Tension			
TTRM SM	TTRM Sub			

## Western Atlas (continued)

# Index

Bingham (fluid), G 13

Capacities, D 4-D 11

Capacitor (electricity), A 23

Acceleration (centripetal), A 17 Additive (cementing), | 16-| 19 Air (flow rate required for drilling), H 20 Air drilling (gas flow rate), H 20 Allowable gain, K 11 Ampere, A 20 Anadrill (downhole motors), E 26-E 29 Angular (velocity), A 17 Angular frequency, (electricity), A 22 Annular space, (volume), D 1 Annulus (area), A 14 Annulus (volume), D 1 **API** grades casing, tubing, C1 drill string, B 1 **API thread**, C 91-C 92 Area (combinations of nozzles), G 56-G 58 Areas (formulas), A 14 **Azimuth** (directional drilling), J 1, J 2, J 23 **B** (pressure loss coefficient), G 21, G 23-G 29 Back-off (drill string), K 24 Bail hook, F 27-F 28 swivel, F 29 Baker (downhole motors), E 26-E 29 Balanced tangent method (directional drillina), J 20 Barite (mud weight increase), H 2, K 6 Barrels (US oil, conversion into m³), A 1 Bearing friction (rock bit), E 2-E 3 Bentonite cements, | 11-| 14 Biaxial yield stress (ellipse, casing), C 93-C 94

Bit comparison, E 5-E 7 diamond, E 8, E 9, E 12-E 16 rock bits (IADC classification), E 2-E 3 tolerance on new bit size, E 1 used bit dull grading system, E 14-E 16 Blocks (winch brake), F 31 Blow-out (control), K 1-K 17 Bolts (for flanges), L 4-L 10 BOP, annular (operating data, dimensions), L 20-L 34 BOP, ram type dimensions and weights, L 25-L 31 operating data, L 20-L 24 Brake (block), F 31 BSR (drill collars), B 32 Buckling (critical buckling force of casing), C 97 Buildup (rate of), J 3, J 12-J 16 Buoyancy (factor), A 28 **Burst pressure** drill pipe, B 16-B 18 tubing, casing, C 9-C 79 Buttress (thread form), C 91 C90 (grade), C 1 C95 (grade), C 1 CaCl₂, (solution), H 11 Calcium chloride (solution), H 11 **Cameron** (BOP), L 20, L 25, L 32 Capacitance (electricity), A 23

Casing

API (list), C 3, C 4 collapse resistance, tensile load, C 93-C 94 connections, C 35-C 79 efficiency of connection, C 7, C 35-C 79 geometry, C 35-C 79 stress on cemented casing string, C 96-C 97 Celsius (conversion into Fahrenheit), A 10 Cement additives, | 16-| 18 API specifications, 14 bentonite, | 11-| 12, | 14 classes, 13 density, 11 weighted, 115 Cementing displacement, I 20-I 21 general data and units, 11 Cenozoic (era), M 1 Centrifugal (force), A 18 Chains (rotary), F 34, F 35 Chalk (representation), M 5 Chromatograph (geological survey), M 8 Circle (area), A 14 Clamp (for CIW flanges), L 19 Classes (API cement), 13 **Classes of used drill pipe**, B 4 Classification of drill pipes, B 4 of fixed cutter bits, E 8-E 9 of roller bits, E 2-E 3 Clay (representation), M 5 Clearance (casing/bit), D 2-D 3 Closing ratio, L 20-L 24 Closing (volume to close rams), L 20-L 34 Coal (representation), M 6 Code (color) casing-tubing, C 1, C 2 drill pipe, B 5 **Coiled tubing** capacities, D 21-D 22 dimensions, C 80-C 87 performance, C 80-C 87

**Collapse resistance** drill pipe, B 16-B 18 effect of tensile load (casing), C 93-C 94 tubing, casing, C 9-C 79 Colloid (grain size), H 17 **Color code** casing, C 1-C 2 drill pipe, B 5 Combined tension and torsion, B 54, B 55, B 59 Comparison of diamond bits, E 12-E 13 of roller bits, E 5-E 7 of PDC bits, E 10-E 11 **Composite drill string**, B 53 Compressibility (mud), M 11 Conductor pipe (line pipe), C 88-C 90 Cone (volume), A 14 Connection (star, mesh/delta), A 22 Content (solid) H 8, H 9 Convergence (directional drilling), J 1 Conversion factors, A 1-A 7 Coordinates (directional drilling), J 1, J 2 Coring (bit, thread, torque), E 18 Correction azimuth (directional drilling), J 23 course (directional drilling), J 22 drift angle (directional drilling), J 22 **Correction factor** make-up torque, C 8 work of drilling line, F 24 Coulomb, A 20 Course (directional drilling), J 3-J 16 Course control (directional drilling), J 19-J 21 Course correction (directional drilling), J 22-J 23 Cretaceous, A 27, M 2 Critical (velocity), G 14 Cross-section (drill pipes), B 8-B 12 Current alternating, A 22, A 23 direct, A 20, A 21 Curvature (directional drilling) minimum (method), J 21

radius, J 3 radius of borehole, J 24-J 25 Cut-off practice (drilling lines), F 23, F 24 Cuttings (amount in mud), G 10 Cycle (mud circulation), G 7 Cylinder (volume), A 14 d (exponent), M 10 Dead line, F 1 Deca, A8 Declination (directional drilling), J 1 Degrees API (conversion into specific gravity), A 11 **Delta connection**, A 22 Density annular mud, G 11 fracturing, K 11 kick control, K 6 Detection (gas, chromatography), M 8 **Diamond** (drill bits), E 1, E 8-E 16, E 18 **Dilution** (mud weight reduction), H 4, H 5 Displacement calculation, J 19-J 21 directional drilling, J 4-J 16 slurry, cementing, | 20, | 21 **DLS** (Dog Leg Severity, directional drilling), J 21 Dogleg (directional drilling), J 17, J 18, J 21 **Dolomite** (representation), M 6 Drift (casing, tubing), C 6, D 2, D 3 Drilex (downhole motors), E 26-E 29 **Drill bit** comparison of diamond bits, E 12-E 13 comparison of PDC bits, E 10-E 11 comparison of roller bits, E 5-E 7 diamond, IADC classification, E 8-E 9 rock bits, IADC classification, E 2-E 3 tolerance on new bit size, E 1 used bit dull grading system, E 14-E 16 **Drill collars** characteristics, B 32 spiral, B 39 **Drill pipes** dimensions, B 8- B 12 heavy-weight, B 47- B 48

Drill string design calculations, B 52-B 59 Drilled cuttings (amount in mud), G 10 Driller's (control method), K 7 Driller's procedures (kick control), K 4-K 5 Drum (capacity), F 25 Dull grading system (used bits), E 14-E 16 Duplex pumps (output, liner size), G 3, G 4 Eaton (fracturing formula), M 11 Efficiency casing values, C 35-C 79 definition, C 7 tubing values, C 9-C 34 reeving, F 3 volumetric, G 1 EIPS (Extra Improved Plow Steel), F 5 Elastic modulus, A 19 Electricity, A 22-A 23 Elevator drill collars, B 40 drill pipes, F 26 Elevator link arms (capacity), F 26 Ellipse area, A 14 of biaxial yield stress (casing), C 94 Equivalent lengths, G 68 Evaporites (representation), M 6 External upset (tubing), C 5

Factor of safety drill pipe tension, B 52 drilling line, F 3
Fahrenheit (conversion into Celsius), A 10
Fann viscometer (measurements), G 13
Farad, A 23
Fast line, F 1
FH (thread), B 28
Flanges
6B, L 4-L 6
6BX, L 7-L 10
API, L 1-L 10
API (bolts), L 6-L 10
API (nominal dimensions), L 1

Floating rig (kick control), K 9-K 10 Flow rate (air drilling), H 20 Form of casing/tubing threads, C 91-C 92 Fracturing density, K 11 gradient, M 11 Free pipe (determination of length), K 18-K 19 Frequency (electricity), A 22 **Friction bearing** parameters, E 17 roller bits, E 2-E 3 Frozen string (determination of length of free pipe), K 18-K 19 Full hole (thread), B 30 Gain (allowable), K 11 Gallons, US (conversion into liters), A 3 Gas kick (specific gravity), K 13 properties, M 8 Giga, A8 Grades API casing-tubing, C1, C2 drill string, B 1 Gradient hydrostatic pressure, H 1 Grain size (classification), H 20, M 4 Grooves sheaves, F 21 stress relief (drill collars), B 37 H₂S physical properties, M 9

steel for casings, C 2 **H40** (grade), C 1 **Halliburton** abbreviations, M 12-M 13 downhole motors, E 26-E 29 **Heavy-weight DP**, B 47- B 48 **Hecto**, A 8 **Hematite** (weighted cements), I 15 **Hexagonal Kelly**, B 49, B 50 **Hole angle** (directional drilling), J 3-J 16 **Hooke's law**, A 19 Hose (vibrator and drilling), F 32, F 33 Hub, L 15, L 17 Hughes (rock bits), E 5-E 7, E 10-E 13, E 17 Hydril (BOP), L 21, L 22, L 26, L 33-L 37

#### IADC

classification of fixed cutter bits, E 8-E 13 classification of roller bits, E 2-E 7 Identification (used drill pipes) B 4 IEU (Internal/External Upset), B 2 IF (thread), B 30 **Ilmenite** (weighted cements), 115 Inch (fractions of), A 9 Inclination (directional drilling) J 3-J 16 Injection (LOT), M 11 Inertia, A 15 **Insert** (roller bits), E 2, E 6-E 7, E 17 Integral joint (tubing), C 5 Internal flush (thread), B 30 **IPS** (Improved Plow Steel), F 5 IU (Internal Upset), B 2 **IWRC**, F 5

J (hole, directional drilling), J 3-J 7 J55 (grade), C 1 Joule (electricity), A 21 Jurassic, A 27, M 2

K₂CO₃ (solution), H 14
K55 (grade), C 1
KCI (solution), H 12
Kelly

dimensions, B 49
mechanical strength, B 50

Kick (control), K 1-K 17
Kick control methods, K 7-K 9
Kilo, A 8
Kilopascal (conversion into psi), A 5
Koomey (BOP), L 24, L 30-L 31
KOP (directional drilling), J 3-J 11

L80 (grade), C 1 Lambert (directional drilling), J 1, J 2 Laminar (flow), G 14 Lang (wire rope lay), F 5 Leak Off Test, LOT, M 11 Length (equivalent), G 68 Limestone (representation), M 5, M 6 Line dead, F 1 fast, F 1 Line pipe (riser, conductor pipe), C 88-C 90 Lobe (positive displacement motor), E 23, E 26-E 29 LOT, M 11

**MAASP**, K 3, K 11, M 11

Make-up torque API flanges, L 14 casing, tubing, C 8 casing, tubing, values, C 9-C 79 drill bits and core bits, E 18 drill collars, B 41-B 46 drill pipe, B 19-B 23 heavy wall drill pipe (HW), B 48 Mandrel (casing, tubing), C 6 Margin of Over Pull (MOP), B 52 Master bushing, F 37, F 38 Matting (surface area), K 25 Mechanics, A 17- A 19 Mega, A8 Mesh (screens), H 19 Mesh connection, A 22 Mesozoic (era), A 27, M 2 Metals (properties), A 26 Minerals (representation), M 5, M 6 Moineau (type, positive displacement motor), E 23-E 29 Moment of inertia of drill pipe (mm⁴), B 8-B 12 polar, A 15 Mud flow rate (well control), K 3 Mud pumps flow rate, G 1 maximum pressure, G 2 Mud weight conversions, H1 equilibrium (kick control), K 6 required (kick control), K 6

N (pressure loss coefficient), G 30-G 46, G 59-G 67 N80 (grade). C 1 NaBr (solution), H 15 NaCI (solution), H 10 Na₂CO₃ (solution), H 13 **NC** (numbered connections dimensions). B 30-B 31 Newton, A 6 Newtonian (fluid), G 13 Neyrfor-Weir (turbodrill), E 22, E 26-E 29 Non upset (tubing), C 5 Nozzle area, G 56-G 58 pressure loss formula, G 19 pressure loss/combination of three nozzles, G 47-G 52 pressure loss/combination of two nozzles, G 53-G 55

**Ohm**, A 20

Opening ratio (BOP), L 20-L 24 rotary table, F 37 volume to open rams (BOP), L 25-L 34 Operating parameters (roller bits), E 17 Ostwald (or power fluid), G 13

P110 (grade), C 1 Paleozoic (era), M 3 Parallelogram (area), A 14 Pascal, A 6 **PDC** (drill bit), E 8-E 11, E 14-E 18 Period (electricity), A 22 Permafrost (special steel), C 2 Phase difference (electricity), A 22 **PI** (value), A 12 Piston load. G 2 Polar modulus of drill pipe (mm³), B 8-B 12 Pore pressure, M 10 Positive displacement motor (characteristics), E 23-E 29 Potassium carbonate (solution), H 14 Potassium chloride (solution), H 12

Power active (electricity), A 22 applied (electricity), A 22 at hook, F 2 hydraulic, G 1, G 2 hydraulic (nozzles), G 20 nominal (positive displacement motor), E 26-E 29 nominal (turbodrill), E 22 reactive (electricity), A 22 Prehydrated (bentonite, cement), | 11-| 14 Premium (class of used drill pipe), B 4 Pressure hydrostatic, H 1 pore, M 10 working (well head), L 1 **Pressure losses** calculation example, G 22 calculations, G 21, G 22 equations, G 16-G 19 equivalent length, G 68 Prism (volume), A 14 Procedures (driller's), K 4-K 7 Profile (well, directional drilling), J 3-J 16 Progressions (arithmetic and geometric), A 12 Projection (directional drilling), J 19-J 21 PS (Plow Steel), F 5 psi (conversion into kilopascals) A 7 Pyramid (volume), A 14 Q125 (grade), C 1 Quartzite (representation), M 5 Radius of curvature (directional drilling), J 3, J 21 Ragland diagram (directional drilling), J 17-J 18 Rate of build-up (directional drilling) J 3, J 12-J 16 Recess (drill collars), B 40 Redi Drill (turbodrill), E 22

Reed (rock bits), E 5-E 7

Reel (capacity), F 25

Regular threads, B 27 wire rope lay, F 5 Resistance (electricity), A 21 Resistivity, A 20 Reynolds number (critical), G 14 Rheology, G 13 **Ring-joint gaskets** type BX, L 13 type R, L 11 type RX, L 12 Riser (line pipe), C 88-C 90 **Rock bits** comparison, E 5-E 7 dull grading, E 14-E 16 IADC classification, E 2-E 3 operating parameters, E 17 **Roller bearing** (rock bits), E 2-E 3 **Rotary speed** nominal (positive displacement motor), E 26-E 29 rock bits, E 17 Rotary table, F 37

**S** (hole, directional drilling), J 8-J 11 Sack (cementing), 11, 12 Safety margin (kick control), K 5, K 6 Sand grain size, H 17 representation, M 5 Sandstone (representation) M 5 Schlumberger (abbreviations), M 14-M 15 Screen (shale shaker), H 18-H 19 Seale (steel wire rope), F 5 Secant method (directional drilling), J 20 Secondary (era), A 27 Security DBS (rock bits), E 5-E 7 Sediment (geology, representation), M 5, M 6 Severity (dogleg), J 21 Shaffer (BOP), L 23, L 27-L 29, L 38 Shale (representation), M 5 Shale shaker screens, H 18

Sheaves groove root radius, F 21 sizes, F 20 Shoulder, low torque (drill collars), B 38 Shows (symbols), M 7 SI units. A Silt grain size, H17 representation, M 5 Slings (tension in), F 39 Slurry density, 16, 19 displacement, I 20-I 21 preparation, cementing, 15, 17, 18, 110 Smith (rock bits), E 5-E 7 Sodium bromide (solution), H 15 Sodium carbonate (solution), H 13 Sodium chloride (solution), H 10 Solid (content), H 8, H 9 Spacer (cementing), I 20-I 21 Specific gravity (examples), A 25 Speed, nominal (turbodrill), E 22 Sphere (volume), A 14 Stages (turbodrill), E 22 Star (connection), A 31 Steel casing, tubing, line pipe, C1 special (casing), C 2 Strand construction (typical), F 5 Stratigraphy (scale), A 27 Strength of materials, A 17 of well, K 11, K 12 Stress (yield, biaxial, casing), C 93-C 94 Stretch (drill pipes), B 51 Stuck pipe (determination of length of free pipe), K 18-K 19 Symbols chemical, A 24 exploration (shows), M 7

**T95** (grade), C 1 **Tangent**, A 13

Tangent method (directional drilling), J 20 Tanks, cylindrical, A 16 Temperature bottomhole (cementing), 1 22 influence on stresses, C 96-C 97 Tensile yield strength (drill pipes), B 13-B 15 Tera, A8 Ternary diagrams, H 8, H 9 Thickening time (cementing), 14 Thread (forms and dimensions), B 27 Threads casing (API and buttress), C 91 drill and core bits, E 18 interchangeable, B 30-B 31 rotary shouldered connections (characteristics), B 25 tubing (API), C 92 Tolerance casing (bit), D 2, D 3 on new bit size, E 1 Tool-joints (types and dimensions), B 8-B 12 Torque maximum, positive displacement motor, E 26-E 29 nominal, turbodrill, E 22 Torsion limit, B 54 Torsion Hooke's law, A 19 turns of, drill pipe, K 20-K 23 Torsional deformation formula, B 54 Torsional strength (drill pipes), B 13-B 15 Trapezium (area), A 14 Trend (pore pressure), M 10 Triangle area, A 14 trigonometry, A 13 Trias, A 27, M 2 Trigonometry, A 13 **Trip margin** (kick control), K 5, K 6 **Triplex pumps** maximum pressure, G 5 output, liner size, G 6 **TSP** (drill bits), E 9, E 12-E 13

Tubing

connections, C 9-C 34
efficiency of connections C 9-C 34
geometry, C 9-C 34
list, C 5

Turbodrills (characteristics) E 19-E 22
Turbulent flow, G 14
Turns (of torsion, drill pipe), K 20-K 23

Units (SI), A I Upset (types and dimensions), B 2 UTM (directional drilling), J 1

Varel (rock bits), E 5-E 7 Velocity angular, A 17 at nozzles, G 20 critical (fluid mechanics), G 14 mud rise, G 9 Viscosity, G 13 **Volt**, A 20 Volumes annular space, D 12-D 21 casing, D 9-D 10 coiled tubing, D 22-D 23 cylinders, D 1, D 4-D 5 drill collars, D 8 drill pipes, D 6-D 7 formulas, A 14 heavy wall (HW) drill pipes, B 47, B 48 tubing, D 11

Wait and weight (control method), K 8-K 9
Warrington, F 5
Watt (electricity), A 21
Weight

annular BOP, L 25-L 38

drill collars, B 34 drill pipes, B 8-B 12 heavy wall (HW) drill pipes, B 47, B 48 kellies, B 49 mud (conversions), H 1 on bit (rock bits) E 17 ram-type BOP, L 20-L 31 steel wire rope, F 8-F 11 Weight increase mud, H 2, H 3, K 6 weighted cement, I 15 Weight reduction cement slurry, | 11-| 14 mud, H 4, H 5 Well (strength), K 11-K 12 Well control main symbols, K 1-K 2 preliminary calculations, K 3 Western Atlas (abbreviations), M 16-M 17 Wireline logging (abbreviations), M 12-M 17 Wire rope API classification, F 5 nominal strength, F 8-F 11 sizes and construction, F 6, F 7 Wire rope twisting, F 5 **WN** (rock bit parameter), E 17 **WOB** (rock bit parameter), E 17 Work of a force, of a torque, A 18 of drilling line (formulas), F 22

Yield (slurry, cementing), I 5-I 8
Yield stress (biaxial, ellipse, casing), C 93-C 94
Yield value, G 13
Young's modulus, A 19

Z (ratio K of ZT), K 13

Achevé d'imprimé Impression : EUROPE MEDIA DUPLICATION S.A. F 53110 Lassay-les-Châteaux N° 6291 - Dépôt légal : Avril 1999 N° d'éditeur 1010