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To Linda

Her husband is known in the gates, when he sits among the elders of the
land. Proverbs 31:23
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PREFACE

SCOPE

This book offers one engineer’s insight into the complexities of oil well casing and
tubing design. The book’s intent is to be sufficiently detailed on the tubular-oriented
application of principles of solid mechanics to serve as a stand-alone reference, while at
the same time providing the reader with ready access to the key equations pertinent to
design.

It will be apparent from the outset that the presentation is equation-rich. An objec-
tive of this work is to offer the reader a unified treatment of the current state of tubular
design starting with the fundamentals of continuum theory and then applying those
relations to a loaded tubular structure. New concepts are reinforced by example calcu-
lations. The interrelation between, and differentiation of, various limit states is clearly
defined.

Organization
Mechanical design involves two competing considerations—load and resistance. Due to
its geometry and material, a structure has the potential for a certain level of resistance.
That potential is evidenced when the structure is subjected to a load. The object of
design is to ensure that the structure retains integrity by some reasonable margin for all
foreseeable loads, i.e.,

Resistance ≥ Load,

where the placement of the margin will be discussed later. The current treatment of the
above equation begins with a discussion of resistance. Assuming the presence of internal
pressure, external pressure and axial load from some unknown origin, the resistance of
a tubular or tubular string to those loads, singly or in combination, is examined.

Chapters 3–6 review the concepts of deformation, stress and elastic and inelastic be-
havior in sufficient detail to provide reference for the discussions to follow. Chapter 3
begins with the position of a point within the tubular and, introducing displacement,
then proceeds to examine the consequences of differential displacement in the struc-
ture. This leads to the consideration of three measures of differential displacement—
Lagrangian, Eulerian and logarithmic strain. The chapter concludes with a number of
special cases of strain applicable to investigations in later chapters.

Chapter 4 examines the internal stresses associated with applied surface tractions
and distributed body force (gravity). Natural consequences of the discussion of traction
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include the equations of motion and principal stresses. The general concepts are then
simplified for certain special load cases.

The two material-independent concepts of strain and stress are then related through
the introduction of two models of material constitution—elastic (Chapter 5) and plastic
(Chapter 6) behavior. Chapter 5 includes derivations of the essential equations of tubu-
lar design applicable to elastic response, including thermoelastic response. Introduced
here are the Lamé equations and the general relations for a tubular when viewed as a
beam. Chapter 6 addresses the all-important boundary between elasticity and plastic-
ity, the yield criterion. Several alternatives for expressing yield are offered, depending
on the investigation to be performed. Further, sufficient material is included to ad-
dress post-yield behavior associated with the ductile rupture limit state and expandable
tubulars.

In addition to yield (Chapter 6), limit states associated with loads dominated by
internal (Chapter 7) and external (Chapter 8) pressure are addressed. A separate chapter
is devoted to the unique considerations surrounding structural behavior and resistance
of threaded connections (Chapter 9).

Anticipating the discussion of loads, two transition subjects—column stability
(Chapter 10) and environmental change (Chapter 11)—receive attention. Chapter 10
includes a discussion of the concept of effective force and constrained post-buckling
behavior leading to sinusoidal and helical configurations of the tubular.

The discussion of Chapter 11 is key to subsequent well design calculations. Here, the
importance of environmental change is discussed inasmuch as surrounding pressure and
temperature changes not only effect change in axial load but also, through the altered
axial load, impact the tubular’s resistance to the environmental load change.

Following the discussion of the transition topics, the origin of the imposed loads—
pressure, temperature, axial force—is examined in Chapter 12. Typical design loads for
each limit state, and for each tubular type (Chapter 1), are presented as conjectures of
reasonable worst-case environments to which the tubular might be subjected. A closing
design discussion in Chapter 13 addresses the topic of tubular geometry—to what depth
should each tubular string be run and what is its appropriate diameter.

Finally, the two concepts—resistance and load—are combined in an example design
in Chapter 14. Design calculations incorporating all previous knowledge are detailed.
The discussion closes with selected special topics (Chapter 15), addressing such issues as
annular pressure build-up and wear.

Appendix A addresses vector and tensor notation and operations. A review of this
chapter, even for the advanced reader, is recommended for familiarity with the notation
used throughout the book. Derivations in earlier material make frequent reference to
this appendix. Appendix B discusses the relations necessary to describe a space curve,
which for current purposes will be the centerline of the wellbore. Detailing one aspect
of the discussion of casing seat selection (Chapter 13), Appendix C presents the funda-
mental relations governing determination of mechanical wellbore stability. Appendix D
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contains tubing and casing property tables pertinent to calculations in the main body of
text.

The above organizational scheme encompasses the bulk of the text. This entire
exposition is preceded by two important chapters—an introduction setting forth the
conceptual aspects of tubular design (Chapter 1) and a design summary (Chapter 2).
The latter is of particular importance for the practitioner. Whereas the bulk of the text
is arranged in an order that flows from the general to the specific in terms of developing
the equations of design, the design summary is arranged in an order suitable for using the
equations of design. The design summary is a narrative focusing on a (design-oriented)
chronological presentation of the final equations, with appropriate cross references to
their details in the later chapters of the book.

AUDIENCE

The book has as its intended audience:
• upper-class undergraduate petroleum engineers, particularly those leaning toward

the drilling and completion disciplines;
• graduates from other engineering fields desiring an in-depth discussion of tubular

structural design;
• practicing engineers desiring a reference for mechanical1 well tubular design;
• research or technology-oriented engineers desiring a unified treatment of tubular

design, including pertinent background references for major tubular topics.

HOW TO READ THE CONTENTS

The contents of this book can be digested in different orders depending on one’s tubular
focus.

Petroleum engineering student or graduate from another discipline
Begin your study by at least scanning Appendix A to review both the concepts of
tensor analysis and the nomenclature dominating derivations in the main text. Then,
beginning with Chapter 3, read the main text sequentially through Chapter 15. This
path begins with deformation (Chapter 3) and load (Chapter 4) concepts, then relates
the two through mechanical constitutive equations for elastic (Chapter 5) and inelastic
(Chapter 6) behavior. Subsequent chapters specialize the opening developments to the
specific task of designing an oil or gas well tubular string. These topical chapters are
then followed by an example design (Chapter 14) that illustrates the concerted use of

1 The terms “solid mechanics” and “mechanical design” are used here to emphasize that this book has little
to say of the metallurgical aspects of tubular design. The interested reader is referred to [1].
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previous material in practice. The survey closes with a chapter (Chapter 15) on subjects
of specialized interest to particular areas such as deepwater and viscous oil.

Practicing drilling or completion engineer
If your need inclines toward a ready reference of design principles for actual design, use
Chapter 2 as a base from which all other queries originate. Chapter 2 presents a step-
by-step procedure—starting with the minimum input data requirements—for designing
a well’s tubulars. The procedure of Chapter 2 is heavily documented with references to
other chapters in case a refresher on a particular concept is in order. Particularly use-
ful for the practitioner is the example design. This scenario can be input into existing
commercial software packages and then used to better understand the software tools’
calculations and sensitivities to input variables.

Research engineer
The material of this book can also be useful to the technology branch of an enterprise as
a reference source. Not all papers on any subjects have been included, but hopefully the
reference list is sufficient to aid a technologist in his or her personal study. The attempt
herein to present a unified treatment of tubular design principles is especially directed
at such individuals.

P.D. Pattillo
Cypress, TX, USA
December 2, 2017
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SYMBOLS

The units following the definition of each symbol are in a generic system where the
base units include mass (M), length (L), time (T), temperature (�) and amount of
substance (N). If no units are supplied the quantity is dimensionless or has variable
dimensions.

The symbols are arranged in alphabetical order with upper case first. The same
pattern is used in sorting symbols by superscript or subscript.

In some cases the same symbol is used for more than one quantity. The assignment
at a particular point in the text should be clear from the context.

A area, [L2]
A material area vector, [L2]
Ac empirical constant in historical API collapse formulation
Acr connection critical cross-sectional area, [L2]
Ai cross-sectional area based on inside diameter, Ai = π

4 d2, [L2]
Aia cross-sectional area based on outer boundary of annulus exposed to external fluid flow, [L2]
Ao cross-sectional area based on outside diameter, Ao = π

4 D2, [L2]
Aoa cross-sectional area of annulus, [L2]
AS surface area, [L2]
As cross-sectional area of tube, As = Ao − Ai, [L2]
a acceleration, [LT−2]
a spatial area vector, [L2]
aN inspection threshold corresponding t the maximum depth of a crack-like imperfection that

could be undetected by the tube inspection system, [L]
B a configuration of the body B
B a collection of particles
Bc empirical constant in historical API collapse formulation
b property per unit mass
b unit binormal vector
bf body force per unit mass, [LT−2]
C Green deformation tensor
C̆ Cauchy deformation tensor
CBHA annular capacity opposite bottomhole assembly, [L2]
Cc empirical constant in historical API collapse formulation, [ML−1T−2]
CDP annular capacity opposite drill pipe, [L2]
Cf compressibility of fluid, [M−1LT2]
Ci circumference based on inside diameter, Ci = πd, [L]
Cia circumference of outer boundary of annulus exposed to external fluid flow, [L]
Co circumference based on outside diameter, Co = πD, [L]
c cohesion, intercept of Mohr–Coulomb failure envelope with �′

s axis, [ML−1T−2]
c moment per length, [MLT−2]
c0 wave speed, [LT−1]
D specified outside diameter, [L]

xxiii



xxiv Symbols

D̄ mean diameter, D̄ = D+d
2 , [L]

Dl “lower” outside diameter at a cross-over, [L]
Dmax maximum value of D around cross section, [L]
Dmin minimum value of D around cross section, [L]
DTJ outside diameter of tool joint, [L]
Du “upper” outside diameter at a cross-over, [L]
d inside diameter, d = D − 2t, [L]
dl “lower” inside diameter at a cross-over, [L]
du “upper” inside diameter at a cross-over, [L]
dwall inside diameter including factor to account for the manufacturing tolerance of the tube wall

thickness, dwall = D − 2kwallt , [L]
DFCollapse collapse design factor
DFTriaxial triaxial design factor(

D
t

)
yp

D/t boundary between API minimum yield and plastic collapse(
D
t

)
pt

D/t boundary between API minimum plastic and transition collapse(
D
t

)
te

D/t boundary between API minimum transition and elastic collapse

E Young’s modulus, [ML−1T−2]
E Lagrangian strain tensor
Ĕ Eulerian strain tensor
Ĕ(e) elastic part of Eulerian strain tensor
Ĕ(p) plastic part of Eulerian strain tensor
Ẽ logarithmic strain tensor
Ẽ(e) elastic part of logarithmic strain tensor
Ẽ(p) plastic part of logarithmic strain tensor
Ĕ(p)

e equivalent plastic strain
EIJ component of Lagrangian strain tensor
Ĕij component of Eulerian strain tensor
Ejt joint efficiency, [%]
EL local slope of Ludwik stress–strain model, [ML−1T−2]
Es secant modulus, [ML−1T−2]
Et tangent modulus, [ML−1T−2]
E1 thread pitch diameter at hand-tight plane for API round thread, [L]
e base of the natural logarithm, ln e = 1
eK unit base vector associated with K th material coordinate axis, K = 1,2,3 or K = R,�,Z
F deformation gradient
Fc empirical constant in historical API collapse formulation
f̂ () function describing yield surface, [M2L−2T−4]
f force, [MLT−2]
f̃ pseudo-force related to Piola–Kirchhoff stress of second kind, [MLT−2]
fb shear force along b in t–n–b coordinate system, [MLT−2]
fb bending force distribution, [MLT−2]
fc critical effective force for buckling, [MLT−2]
fch critical effective force for helical buckling, [MLT−2]
fcs critical effective force for sinusoidal buckling, [MLT−2]
feff effective force, [MLT−2]
ff resultant force on fluid, [MLT−2]
fh axial force (ft) in helix, [MLT−2]
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fn shear force along n in t–n–b coordinate system, [MLT−2]
f(n)−res resultant force on surface with normal n, [MLT−2]
fS−res resultant force on surface area AS , [MLT−2]
ft axial force in t–n–b coordinate system, [MLT−2]
fy yield stress, [ML−1T−2]
fycom yield stress adjusted for the presence of axial stress and internal pressure, [ML−1T−2]
fymn specified minimum yield stress, [ML−1T−2]
fu ultimate stress, [ML−1T−2]
fumn specified minimum ultimate stress, [ML−1T−2]
futs axial force scaling factor in API ductile rupture calculation, [MLT−2]
fWOB axial force associated with weight on bit, [MLT−2]
fw wear factor, [M−1LT2]
fz axial force, [MLT−2]
fz axial force in API ductile rupture calculation, [MLT−2]
G shear modulus, G = μE , [ML−1T−2]
Ĝ limit state equation
G matrix transforming tensors from the X coordinate system to the xw coordinate system
Gc empirical constant in historical API collapse formulation
g acceleration of gravity, [LT−2]
gc gravitational constant
ghyd unit vector along hydrostatic state of stress
gk unit base vector associated with kth spatial coordinate axis, k = 1,2,3 or k = r, θ,z, or k = t,n, b
gp

k unit base vector associated with kth spatial coordinate axis, k = 1,2,3
H(x) Heaviside step function
h height, [L]
hc height of wear groove segment in casing, [L]
hLC height of lost circulation fluid column, [L]
hTJ height of wear groove segment in tool joint, [L]
hw wall thickness loss due to wear, hw = hTJ − hc , [L]

I moment of inertia of cross section (I = π
64

(
D4 − d4

)
for a tube), [L4]

I identity tensor
I1 first invariant of a second order tensor, trace
I2 second invariant of a second order tensor
I3 third invariant of a second order tensor
J Jacobian, or determinant of F
J1 first invariant of the deviatoric stress tensor, [ML−1T−2]
J2 second invariant of the deviatoric stress tensor, [M2L−2T−4]
J3 third invariant of the deviatoric stress tensor, [M3L−3T−6]
Kb bulk modulus of a porous medium, [ML−1T−2]
Ks bulk modulus of a solid medium, [ML−1T−2]
ka burst strength factor—1.0 for quenched and temperated tubes with a martensitic grain structure

or grades with minimum 13% chromium and 2.0 for as-rolled and normalized tubes—which
offers a measure (which may optionally be determined experimentally) of the ductility of the
tube material

kBR bias factor for necking and rupture in ductile rupture calculation
kbcy buoyancy factor, kbcy = 1 − ρf /ρs = 1 − γf /γs
kch constant multiplier for helical buckling in an inclined wellbore
kcorr design factor multiplying factor to account for loss of specified wall thickness due to corrosion
kDR ratio of �eff to �θθ − �rr in ductile rupture calculation
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kM factor in API ductile rupture calculation, [L2]
kR factor in API ductile rupture calculation
kscc design factor multiplying factor to account for a sour environment
kwall factor to account for the manufacturing tolerance of the tube wall thickness
kwear design factor multiplying factor design factor to account loss of specified wall thickness due to

wear
L length, [L]
L coordinate transformation matrix
Lc length of contact in tool joint wear calculation, [L]
Lc length of helix along its (straight) tubular centerline at incipient buckling, [L]
(Lc)TJ residence length per tool joint at a casing location, [L]
Ldp length of a joint of drill pipe, [L]
Ldr length of drilled interval, [L]
Lh length of helix measured along its (curved) tubular centerline, [L]
LTJ length of tool joint, [L]
L1 length from end of pin to hand-tight plane for API round thread, [L]
L2 length of effective threads for API round thread, [L]
�L length change, [L]
�LB length change due to ballooning, [L]
�LBu length change due to column buckling, [L]
�LS length change due to force change on exposed shoulder, [L]
�LT length change due to temperature change, [L]
�LTotal total length change, [L]
�LW length change due to self-weight, [L]
M molecular mass
m mass, [M]
m moment, [ML2T−2]
mb bending moment in t–n–b coordinate system, [ML2T−2]
mt torsion in t–n–b coordinate system, [ML2T−2]
n Needleman’s parameter
n unit normal vector, coordinate unit base vector in t–n–b coordinate system
n̆ unit normal vector to control surface
nNR Ludwik’s parameter
o offset between origins of global material and spatial coordinate systems, [L]
P matrix transforming tensors from the Xp coordinate system to the X coordinate system
p pressure, [ML−1T−2]
p path, position vector, [L]
p̄c collapse pressure measured at tube mid-surface, [ML−1T−2]
�pc collapse differential pressure, [ML−1T−2]
pcn characteristic magnitude of nonuniform pressure, [ML−1T−2]
pco confining pressure, [ML−1T−2]
pcr pressure of a fluid at its critical point, [ML−1T−2]
pDF design factor pressure for kick tolerance calculation, [ML−1T−2]
pdr internal ductile rupture pressure, [ML−1T−2]
pds differential sticking pressure, [ML−1T−2]
pf pressure in fluid column, [ML−1T−2]
pfr fracture pressure, [ML−1T−2]
ph pitch of helix, [L]
pi internal pressure, [ML−1T−2]
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pis static component of internal pressure, [ML−1T−2]
pM internal pressure at rupture from von Mises yield criterion in API ductile rupture calculation,

[ML−1T−2]
pmax maximum pressure, [ML−1T−2]
po external pressure, [ML−1T−2]
poc collapse pressure measured at outside diameter, [ML−1T−2]
pof frictional component of external pressure, [ML−1T−2]
pos static component of external pressure, [ML−1T−2]
pp pore pressure, [ML−1T−2]
ppc pseudocritical pressure of a fluid, [ML−1T−2]
ppr pseudoreduced pressure
ppt characteristic magnitude of nonuniform line load, [MT−2]
prefM capped-end design rupture pressure from von Mises yield criterion in API ductile rupture

calculation, [ML−1T−2]
prefT capped-end design rupture pressure from Tresca yield criterion in API ductile rupture calcula-

tion, [ML−1T−2]
puts pressure scaling factor in API ductile rupture calculation, [ML−1T−2]
Q fluid volumetric flow rate, [L3T−1]
Qa fluid volumetric flow rate in annulus, [L3T−1]
Qh heat flow into system, [ML2T−2]
q (total) force per length, [MT−2]
qc force per length due to contact with confining hole, [MT−2](
qc

)
pipe force per length on drill pipe body due to contact with confining hole, [MT−2](

qc
)
TJ force per length on tool joint due to contact with confining hole, [MT−2]

qf force per length due to the presence of fluids and pressure, [MT−2]
qfr force per length due to friction from contact with confining hole, [MT−2]
qt component of q along t, qt = q · t, [MT−2]
R material radial coordinate, [L]
R̄ mean radius, R̄ = D+d

4 , [L]
R individual gas constant, [L2T−2�−1]
Rjt connection joint strength, MLT−2]
Rjt−API API casing connection joint strength based on fumn, MLT−2]
Rjt−yield API casing connection joint strength based on fymn, MLT−2]
Rta tube body strength, MLT−2]
Ru universal gas constant, [ML2T−2�−1N−1]
r spatial radial coordinate, radius, [L]
rc radial clearance, [L]
rS−max maximum radius of bounding surface S, [L]
S surface, control surface, [L2]
S Piola–Kirchhoff stress of first kind, [ML−1T−2]
Se rock mechanical effective Piola–Kirchhoff stress of first kind, [ML−1T−2]
S′ Piola–Kirchhoff deviatoric stress of first kind, [ML−1T−2]
S̃ Piola–Kirchhoff stress of second kind, [ML−1T−2]
SH1 (algebraically) larger horizontal (total) stress or closure stress, [ML−1T−2]
SH2 (algebraically) smaller horizontal (total) stress, [ML−1T−2]
SIJ component of Piola–Kirchhoff stress tensor, [ML−1T−2]
SV overburden (total) stress, [ML−1T−2]
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Sa axial Piola–Kirchhoff stress in the absence of bending, [ML−1T−2]
Sc confining Piola–Kirchhoff stress, [ML−1T−2]
Si surface of tube exposed to internal fluid flow, [L2]
Sia surface of outer boundary of annulus exposed to external fluid flow, [L2]
Sn normal Piola–Kirchhoff stress on a plane, [ML−1T−2]
So surface of tube exposed to external fluid flow, [L2]
Sp

I principal Piola–Kirchhoff stress of first kind, Sp
1 ≥ Sp

2 ≥ Sp
3, [ML−1T−2]

Ss shear Piola–Kirchhoff stress on a plane, [ML−1T−2]
s length along path, [L]
s spatial surface, [L2]
s surface unit vector perpendicular to n
sh length along helically buckled path measured from either the neutral point (vertical well) or

from the transition from a sinusoidal to a helical configuration, [L]
sn (negative) distance along helically buckled path to the neutral point from a location where feff

is known, [L]
SFAxial axial safety factor
SFCollapse collapse safety factor
SFTriaxial triaxial safety factor
SG specific gravity
T temperature, [�]
Tcr temperature of a fluid at its critical point, [�]
T(N) local traction on material surface with local normal N, [ML−1T−2]
Tpc pseudocritical temperature of a fluid, [�]
Tpr pseudoreduced temperature
T0 initial temperature, [�]
t specified wall thickness, [L]
t unit tangent vector
tb bending traction, [ML−1T−2]
tDR design wall thickness for ductile rupture calculations, tDR = kwallt − kaaN , [L]
t(n) local traction on spatial surface with local normal n, [ML−1T−2]
t(n)−ave average traction on surface with normal n, [ML−1T−2](
t(n)

)
n component of t(n) normal to surface, [ML−1T−2](

t(n)

)
s component of t(n) in plane of surface, [ML−1T−2]

Û displacement function in global material coordinate system, u = Û(X, τ ), [L]
Ui internal energy of system, [ML2T−2]
Uia internal energy due to axial force, [ML2T−2]
Uib internal energy due to bending, [ML2T−2]
u displacement, [L]
û displacement function in spatial coordinate system, u = û(x, τ ), [L]
V volume, [L3]
Vbit volume of gas influx at bit, [L3]
Vf fluid volume, [L3]
Ve total potential energy of external forces, [ML2T−2]
Vk total kinetic energy of system, [ML2T−2]
VO volume of oil constituent in mixture, [L3]
Vp total potential energy of system, [ML2T−2]
VS volume of solid constituent in mixture, [L3]
VW volume of water constituent in mixture, [L3]
Vw volume of wear per length, [L2]
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Vwp volume of gas influx at open hole section weak point, [L3]
Vwp|bit volume of gas influx at open hole section weak point corrected to bit depth, [L3]
v speed, v = √

v · v, [LT−1]
v spatial volume, [L3]
v specific volume, v = 1/ρ, [M−1L3]
v velocity, [LT−1]
vTJ forward velocity of tool joint/rate of penetration, [LT−1]
W total work done on system, [ML2T−2]
W ′ virtual work done on system, [ML2T−2]
We elastic work done on system, Ẇ = Ẇ e + Ẇp, [ML2T−2]
Wp plastic work done on system, Ẇ = Ẇ e + Ẇp, [ML2T−2]
We work done by external forces on system, W = We + Wi, [ML2T−2]
Wi work done by internal forces in system, W = We + Wi, [ML2T−2]
wa “air” weight per length, [MT−2]
weff effective weight per length, [MT−2]
X material (initial) position, [L]
Xp position in a coordinate system aligned with the global principal stresses, [L]
X1 material coordinate aligned with North, [L]
X2 material coordinate aligned with East, [L]
X3 material coordinate aligned with vertical depth, [L]
x spatial coordinate, [L]
x spatial position, [L]
xi spatial coordinate, i = 1,2,3, [L]
y spatial coordinate, [L]
Z material axial coordinate, vertical depth, Z = X3, [L]
Zbit vertical depth to bit, [L]
Zc compressibility factor
ZMSL vertical depth to mean sea level, [L]
Zwh vertical depth to subsea wellhead, [L]
Zwp vertical depth to open hole section weak point, [L]
Z0 vertical depth datum, [L]
z spatial axial coordinate, [L]
A translation of center of initial yield surface, [ML−1T−2]
α Biot parameter, 0 ≤ α ≤ 1
αT linear coefficient of thermal expansion, [�−1]
αTf linear coefficient of linear thermal expansion of fluid, [�−1]
BT coefficient of linear thermal stress tensor, [ML−1T−2�−1]
βT coefficient of linear thermal stress, [ML−1T−2�−1]
γ weight density, [ML−2T−2]
γds differential sticking limit gradient, [ML−2T−2]
γf weight density of fluid, [ML−2T−2]
γfr fracture pressure gradient, [ML−2T−2]
γi weight density of internal fluid, [ML−2T−2]
γg weight density of gas, [ML−2T−2]
γo weight density of external fluid, [ML−2T−2]
γp pore pressure gradient, [ML−2T−2]
γrm riser margin, [ML−2T−2]
γs weight density of solid, [ML−2T−2]



xxx Symbols

γsb swab margin, [ML−2T−2]
γsu surge margin, [ML−2T−2]
γsw weight density of sea water, [ML−2T−2]
γT temperature gradient, [�L−1]
γwn minimum drilling fluid density for wellbore stability, [ML−2T−2]
γwx maximum drilling fluid density for wellbore stability, [ML−2T−2]
δKj, δkJ component of shifter tensor, δKj = eK · gj , δkJ = gk · eJ
δmn Kronecker delta, δmn = 1 if m = n, δmn = 0 otherwise
εijk Levi-Civita (permutation) symbol, see Section A.3.1.4 in Appendix A
εw specific wear energy, [ML−1T−2]
εy yield strain
ηc central angle in casing spanning wear groove, [rad]
ηTJ central angle in tool joint spanning wear groove, [rad]
� material angular coordinate measured from the X1 axis, [rad]
θ spatial angular coordinate measured from the x1 axis or inclination, [rad]
θ angle between tangent to wellbore trajectory and downward vertical, [rad]
κ curvature of space curve, [L−1]
κw work hardening parameter

� scalar function that relates ˙̆E(p) to ∂ f̂
∂�

�(N) stretch ratio in direction of unit vector N
λ arbitrary constant
λ characteristic value or eigenvalue
λE Lamé constant, [ML−1T−2]
M parameter in Ziegler’s kinematic hardening rule
μ tangent of angle of internal friction in Mohr–Coulomb model
μE Lamé constant, [ML−1T−2]
μk kinetic coefficient of friction
μs static coefficient of friction
ν Poisson’s ratio
πk Coordinate system associated with π-plane.
ρ mass density, [ML−3]
ρf mass density of fluid, [ML−3]
ρi mass density of internal fluid, [ML−3]
ρOf final mass density of oil constituent in mixture, [ML−3]
ρo mass density of external fluid, [ML−3]
ρPF mass density of packer fluid, [ML−3]
ρSf final mass density of solid constituent in mixture, [ML−3]
ρs mass density of steel, [ML−3]
ρWf final mass density of water constituent in mixture, [ML−3]
� Cauchy stress tensor, [ML−1T−2]
�̌ elastic stiffness tensor, [ML−1T−2]
�′ Cauchy deviatoric stress tensor, �′ = � − �mI, [ML−1T−2]
�a portion of axial Cauchy stress not due to bending, [ML−1T−2]
�b portion of axial Cauchy stress due to bending, [ML−1T−2]
�e von Mises equivalent stress, [ML−1T−2]
�e rock mechanical effective stress, [ML−1T−2]
�eff effective stress, [ML−1T−2]
�ffi wall shear stress on tube due to internal fluid flow, [ML−1T−2]
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�ffo wall shear stress on annulus outer boundary due to external/annular fluid flow, [ML−1T−2]
�ffoa wall shear stress on tube due to external/annular fluid flow, [ML−1T−2]
�m mean Cauchy stress, [ML−1T−2]
�

p
i principal Cauchy stress, �

p
1 ≥ �

p
2 ≥ �

p
3, [ML−1T−2]

�s shear stress magnitude, [ML−1T−2]
�smax maximum shear stress magnitude, [ML−1T−2]
�w Cauchy far field stress tensor, [ML−1T−2]
�we rock mechanical far field effective stress tensor, [ML−1T−2]
τ time, [T]
τ torsion of space curve, [L−1]
τTJ residence time per tool joint at a casing location, [T]
υ polar angle of helix, [rad]
φ internal angle of friction in Mohr–Coulomb failure envelope or azimuth, [rad]
φ azimuth angle between horizontal projection of tangent to wellbore trajectory (sin θ ) and North,

[rad]
χ vector of variables in limit state equation
χL portion of χ that defines the load
χOi initial fractional percentage of oil constituent in mixture
χR extension of χR to the limit state
χSi initial fractional percentage of solid constituent in mixture
χWi initial fractional percentage of water constituent in mixture
� rotary speed of drill string, [T−1]
ω ovality
(̂. . .) functional form of quantity (. . . )
(. . .) average of quantity (. . . )
(. . .)bot value of quantity (. . . ) at bottom of tubular string
(. . .)e rock mechanical effective counterpart of stress quantity (. . . )
(. . .)rup value of quantity (. . . ) at ductile rupture condition
(. . .)T transpose of quantity (. . . )
tr(. . .) trace of quantity (. . . )
(. . .)TOC value of quantity (. . . ) at top of cement
(. . .)top value of quantity (. . . ) at top of tubular string
|v| magnitude of vector v
�(. . .) change in quantity (. . . )
δ(. . .) increment (not necessarily infinitesimal) in quantity (. . . )
D(...)
Dτ material derivative, D(...)

Dτ = ∂(...)
∂x · v(X, τ ) + ∂(...)

∂τ

∇ del operator, ∇ = ∂
∂X1

e1 + ∂
∂X2

e2 + ∂
∂X3

e3, [L−1]



CHAPTER 1

Introduction
1.1. THE PLACE OF WELL TUBULARS

Well tubulars—combinations of a circular cylindrical tube and the associated threaded
connections with which it is joined to its neighbors—constitute major pressure con-
taining components of an oil or gas well. Some tubulars, such as the intermediate casing
string(s) used to penetrate the overburden layers above a hydrocarbon reservoir (see
Section 1.3.1.3), serve a temporary function. The outermost (structural) and innermost
(pressurized conduit) tubulars, however, are permanent, active components of the well
structure.

As detailed in Chapter 13 (see especially Section 13.2.1), an underlying function of
all casing and tubing is to remedy the inability of subsurface rock formations to provide
the fluid isolation and mechanical integrity crucial to protection of the local environ-
ment. Depending on the subsurface climate, an individual well can contain from two
(onshore, benign subsurface) to eight or more (deepwater high pressure, high temper-
ature environment) tubular strings, with each successive string sized to fit within its
previously installed neighbor.

Almost all well tubulars are composed of steel. Although applications can be found
that favor alternative materials, particularly in corrosive environments [2], to date steel,
perhaps lined with a less corrosive susceptible material, remains the well construction
product of choice.1

Well schematics have become increasingly detailed, reflecting the current state of
interactive graphics software. In this book we will use simple stick figures to discuss the
particulars of a well design. Examples of typical well components discussed below and
analyzed in the remainder of the book are shown in Fig. 1.1. Unlike the schematics
in Fig. 1.1, the cement sheath may be shown in a wellbore sketch. When cement is
included it is usually indicated by a patterned or shaded area.

1.2. CASING AND TUBING AS WELL BARRIERS

The intent of well construction is to provide a controlled means of transporting reser-
voir fluids to the surface. A well barrier, on the other hand, has as its objective the
prevention of unintended flow of fluids. This flow may either be from one subsur-

1 In this regard, the entirety of this book assumes the tubular to be composed of a crystalline solid having
elastic, plastic and creep behavior governed by the classic mathematical models of metals.
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Figure 1.1 Sample wellbore schematics. (A) Diagram depicts an offshore well with surface casing,
production casing and production tubing (intermediate strings are omitted), with the production tub-
ing annulus, the so-called A annulus, sealed by a packer. (B) Diagram depicts an onshore well with
one intermediate casing string containing a scab liner, perhaps to protect against a mobile salt. The
production casing in this diagram consists of a liner and tieback.

face location to another—for example, cross flow between formations—or it may be
between a subsurface source and the surface [3].

A well barrier is an envelope of one or more barrier elements that, together with
their neighbors, form a continuous boundary against flow. A barrier element may be any
one of a number of well components—fluid column, cement sheath, valve—including
a casing or tubing string. While some barrier elements may be temporary (for exam-
ple, a fluid column), under normal2 operating conditions, tubular strings are usually
considered to be permanent barrier elements.

1.3. TYPES OF TUBULAR

Well tubulars can be categorized in a number of ways depending on the context of the
discussion. We begin with the most common determinant—function—and then discuss
a second classification system—interval.

1.3.1 Differentiation by function
Starting with the shallowest tubulars, typical designations are as follows:

2 We insert “normal” to accommodate those instances when, for example, a tubing string is pulled for
repair of itself or an associated accessory.
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1.3.1.1 Conductor casing
Conductor casing is usually the primary structural component of the well and supports
the wellhead, into which many or all of the subsequent casing and tubing strings are
landed during installation, depending on the type of installation:
• Onshore wells. For onshore developments all casings and the production tubing

usually have their upper terminus in a profile in the surface wellhead (except for
liners).

• Offshore platform wells. If an offshore development is based on a fixed offshore
structure, usually all of the casings will terminate in a wellhead located in the well
bay of the structure. In some instances, in order to decrease the weight that must
be supported by the platform, some casing may be landed in a hanger at the mud-
line and then tied back to the platform with a tubular string termed a riser. The
conductor extends up to the well bay and supports the wellhead.

• Offshore floating structures (TLP,3 spar4). For these deepwater structures only the
production tubing extends to the surface. It is possible to extend the A (produc-
tion tubing) and B (production casing) annuli to the platform, but the extension
is accomplished with risers, design of which, especially for fatigue, is outside the
bounds of conventional casing and tubing design. The conductor terminates a few
feet/meters above the mudline and supports those casings which are terminated at
that point. The conductor supports a wellhead at the mudline into which subse-
quent strings are landed in profiles.

• Offshore subsea completions. In subsea completions the gathering system for pro-
duced fluids is usually a manifold setting on the sea floor. The conductor supports
a subsea wellhead and all casings and tubing which are extended to the mudline.

Particularly in offshore locations the conductor is exposed to environmental loads that
are the purview of the structural engineering team designing the platform and risers—
essentially from the mudline upward.

Often the conductor casing is preceded by a structural casing string intended to sta-
bilize loose or weak near-surface formations and provide a means of circulating drilling
fluid.

The conductor can be driven, or it can be drilled and cemented. In the latter case it
is usually cemented to the surface or mudline. In either case, it serves as a receptacle for
the surface casing, including the wellhead to which the surface casing is attached.5

1.3.1.2 Surface casing
The surface casing serves several purposes:

3 Tension-leg platform.
4 A moored offshore structure similar in shape to a large buoy.
5 In subsea completions a low pressure wellhead is normally attached to the conductor casing. The surface

casing is attached to the high pressure wellhead.
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• acting in concert with the conductor to provide both axial and lateral structural
integrity;

• supporting the wellhead to which it is usually attached;
• isolating shallow fresh water aquifers;
• isolating shallow formations which may be weak or overpressured.

The surface casing is the string to which the blowout preventer (BOP) is attached.
If more than one string of surface casing is necessary, the second string is often landed
in a supplemental adaptor installed in the first string, to preserve profile and seal room
in the wellhead for the casing strings to follow. The surface casing is often cemented to
the surface or mudline.

1.3.1.3 Intermediate casing

Intermediate (sometimes called drilling) casing refers to all strings between the surface
casing and production casing and is therefore the primary casing used to penetrate the
reservoir overburden. Multiple intermediate strings may be necessary to allow adjusting
drilling fluid density when drilling subsequent hole sections. Intermediate casing serves
as a barrier to both weak (both mechanically and chemically) formation rock and ab-
normally (either high or low) pressured zones, and is particularly important in traversing
a transition between pressure gradients (see Section 13.2 of Chapter 13).

1.3.1.4 Production casing

Depending on the type of completion in the reservoir, production casing will penetrate,
and may traverse, the reservoir formation. To the degree that the production casing
penetrates the reservoir, the casing, along with a cement sheath in the production casing
annulus, serves to isolate the reservoir fluids from the results of drilling.

Perforations—post-installation holes in the production casing—provide communi-
cation between the reservoir and the interior of the wellbore, particularly the production
tubing. A short distance above the perforations, the lower end of the tubing receives the
produced fluids, the annulus of the production tubing being sealed with a packer.

The production casing also serves as an integral contributor to well completion.
Temperature and pressure gauges, control lines, gas lift mandrels and other artificial lift
equipment all may reside in the annulus between the production tubing and casing. The
production casing also serves as an anchor for packers and may, if a packer is not present,
constitute the primary path of hydrocarbons to the surface.

In a typical well the production casing serves as one element of the secondary well
barrier during production [3].
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1.3.1.5 Production tubing

In most wells the production tubing is the conduit for fluids from the reservoir to the
surface or mudline. It is the most important tubular to size (see Section 13.4 of Chap-
ter 13), as inefficiency in flow will affect the economics of the well and its parent project.

Because of its proximity to reservoir hydrocarbons the tubing may require special
metallurgy or, as a minimum, a corrosion-resistant lining. Further, as it serves as an
element of the primary well barrier during production, the tubing should be machined
with a threaded connection that has sufficient leak integrity in service to avoid the
exposure of other, less metallurgically robust tubulars.

Although remedial action, such as removing and replacing a portion of a tubing
string, can be costly, the tubing is the one tubular string in the well installed with the
knowledge that it may be removed in the future. Wear (sucker rod pumps), corrosion
and low-cycle fatigue from repeatedly producing and shutting-in a well all serve to
lower the desired life of a tubing string.

It is possible for a well to have no tubing string, or for the production tubing and
production casing to be the same string [4]. A number of fields in the mid-continental
United States use so-called tubingless completions in the recovery of gas from low per-
meability formations. Using a size range (3.500–4.500 in. or 88.9–114.3 mm) such a
wellbore can provide sufficient cross-section for massive hydraulic fracturing and, fol-
lowing, accommodate the produced gas.

1.3.2 Differentiation by interval
In addition to function, tubular strings can also be characterized by their top and bottom
locations.

1.3.2.1 Long string

The term “long string” simply refers to a single tubular string run from the bottom of
the current hole section up to the wellhead. This construction technique results in a
simple well design but, depending on the clearance with the previous casing, may have
collateral effects associated with the hydrodynamic pressure required to cement such a
long annulus.

1.3.2.2 Liner

A liner is a casing string that, rather than extending back to the wellhead, is landed with
its top inside a previous casing and its bottom still reaching into the next hole section.
Liners are connected to the previous casing by slips which penetrate the wall of that
casing. Further a liner top packer can be run to better assure isolation of pressure and
fluids in the annulus.
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Table 1.1 Comparison of long string with liner/tieback solutions
Issue Long string Liner/Tieback

Cost Less expensive (if no tieback is
necessary)

Rig hook load
capacity

Entire string is run at once Tubulars are run in two “parts”

Cementing A long, continuous fluid column
may be difficult to achieve

Cementing the tieback, when
performed, avoids any open hole
issues

Component
reliability

Primary concern is connections Liner hanger, liner top packer and
receptacle for tieback are additional
components
A trapped, inaccessible annulus may
be created (a) adjacent to the polished
bore in the tieback and (b) below the
hanger in the liner

Collateral design
issues

String is in greater tension

All previous strings are isolated Previous strings are subject to
additional loads until a tieback is runa

a See discussions in Sections 12.7.1.1, 12.7.1.2, 12.7.1.3 and 12.8.1.1 of Chapter 12.

1.3.2.3 Tieback

A tieback extends a previously run liner to the wellhead. The tieback may or not be
cemented although it is typically sealed at its lower end to provide a continuous conduit
with the liner it extends.

The liner/tieback combination is a viable alternative to a long string. Both choices,
however, possess favorable and unfavorable aspects as listed in Table 1.1.

1.3.2.4 Scab liner

A scab liner is a liner which is installed completely within previously run casing. A scab
liner might be run as a remediation on a previously damaged tubular, or it might be
run as an aid in preventing damage. An example of the latter application is to create a
concentric configuration to counter nonuniform loading opposite a mobile formation
(see Section 8.3 of Chapter 8).

Of concern with a scab liner is the associated reduction in hole size. This reduction
may affect access to the wellbore below the liner and, depending on whether the scabbed
string is the production casing, the ability to implement artificial lift or other completion
practices associated with the production tubing annulus.
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Table 1.2 Base units for USC and SI unit systemsa

Quantity USC unit SI unit Unit designatorb

Length foot (ft) meter (m) L
Mass pound mass (lbm) kilogram (kg) M
Time second (s) second (s) T
Temperature rankine (R) kelvin (K) �

Amount lbm mole mole (mol) N
a HYB units are a mixture of USC and SI.
b See Symbols section in front matter of the book.

1.4. UNIT SYSTEMS

Within petroleum-based tubular mechanics three unit systems are popular:
1. US Customary (USC). This unit system is primarily used in the United States.
2. International System (SI6). This modern version of the metric system is used exten-

sively throughout a large portion of the world, but less so in petroleum applications.
3. Hybrid (HYB). The name and abbreviation are of this author. A hybrid mixture

of USC with SI units for length and possibly pressure gradient is common in both
Europe, South America and the Middle East.
A starting point for defining a unit system is the collection of base units. In the

SI system base units are defined for length, mass, time, temperature, electric current,
luminous intensity and amount of substance [5]. All other units are derived from these
base units. The base units pertinent to this book for the USC and SI unit systems are
summarized in Table 1.2.

The last column of Table 1.2 lists designators for the base units. The Symbols section
in the front matter preceding this chapter uses these designators to indicate the base units
comprising the derived units used in this book.

Conversion factors between quantities in the three unit systems follow in Ta-
bles 1.3–1.16. In using the tables:
• Multiply a USC quality in the first column times the number in the second column

to arrive at the equivalent SI quantity in the third column. Example using Table 1.3:
9.625 in. × 25.4 = 244.475 mm.

• Multiply an SI quality in the third column times the number in the fourth column to
arrive at the equivalent USC quantity in the fifth column. Example using Table 1.3:
30 m × 3.28084 = 98.4252 ft.

• The lower sections of some tables include conversion factors for units in the same
unit system. These rows may be used as described in the above bullets by sim-
ply ignoring the column headings referring to USC and SI units. Example using
Table 1.3: 24 in. × (1/12) = 2 ft.

6 Système international d’unités.
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Table 1.3 Unit conversions for the base unit lengtha

USC unit ×b SI unit ×c USC unit
inch (in.) 25.4 millimeter (mm) 0.03937008 inch
inch (in.) 2.54 centimeter (cm) 0.3937008 inch
inch (in.) 0.0254 meter (m) 39.37008 inch
foot (ft) 0.3048 meter (m) 3.28084 foot
USC units to USC units
inch (in.) 1

12 foot (ft) 12 inch

SI units to SI units
millimeter (mm) 0.001 meter (m) 1000 millimeter
centimeter (cm) 0.01 meter (m) 100 centimeter
a Underlined conversion factors are exact.
b Example: 1 inch = 25.4 millimeters.
c Example: 1 millimeter = 0.03937008 inches.

Table 1.4 Unit conversions for the derived unit areaa

USC unit ×b SI unit ×c USC unit
square inch (in2) 645.16 square millimeter

(mm2)
0.0015500031 square inch

square inch (in2) 6.4516 square centimeter
(cm2)

0.15500031 square inch

square foot (ft2) 0.09290304 square meter (m2) 10.763910417 square foot
USC units to USC units
square inch (in2) 1

144 square foot (ft2) 144 square inch

SI units to SI units
square millimeter

(mm2)
1 × 10−6 square meter (m2) 1 × 106 square

millimeter
square centimeter

(cm2)
1 × 10−4 square meter (m2) 1 × 104 square

centimeter
a Underlined conversion factors are exact.
b Example: 1 square inch = 645.16 square millimeters.
c Example: 1 square millimeter = 0.0015500031 square inches.

1.4.1 Force and mass
Confusion sometimes exists over the conversion between force f and mass m. In the
context of unit systems, mass, the quantity of substance, is the more primitive quantity
and is related to force through the equation

f ∝ ma, (1.1)

where acceleration a is defined in terms of the length and time primitives, a = L/τ 2.
This implies that the units of force in the USC unit system are pound mass ×
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Table 1.5 Unit conversions for the derived unit dry volumea

USC unit ×b SI unit ×c USC unit
cubic foot (ft3) 0.02831685 cubic meter (m3) 35.314666721 cubic foot

USC units to USC units
cubic inch (in3) 1

1728 square foot (ft3) 1728 cubic inch

SI units to SI units
cubic millimeter

(mm3)
1 × 10−9 cubic meter (m3) 1 × 109 cubic millimeter

cubic centimeter
(cm3)

1 × 10−6 cubic meter (m3) 1 × 106 cubic centimeter

a Underlined conversion factors are exact.
b Example: 1 cubic foot = 0.02831685 cubic meters.
c Example: 1 cubic meter = 35.314666721 cubic feet.

Table 1.6 Unit conversions for the derived unit wet volumea

USC unit ×b SI unit ×c USC unit
gallon (gal) 0.003785411784 cubic meter (m3) 264.17205236 gallon
gallon (gal) 3.785411784 liter (L) 0.26417205236 gallon
barrel (bbl) 0.1589873 cubic meter (m3) 6.2898107704 barrel
barrel (bbl) 158.9873 liter (L) 0.0062898107704 barrel
USC units to USC units
gallon (gal) 1

42 barrel (bbl) 42 gallon

gallon (gal) 0.13368055556 cubic foot (ft3) 7.4805194805 gallon
barrel (bbl) 5.6145833334 cubic foot (ft3) 0.17810760668 barrel
SI units to SI units

liter (L) 0.001 cubic meter (m3) 1000 liter
a Underlined conversion factors are exact.
b Example: 1 gallon = 0.003785411784 cubic meters.
c Example: 1 cubic meter = 264.17205236 gallons.

foot/second2 ( lbm ft
s2 ). Similarly, in the SI system the units for force would be kilogram ×

meter/second2 ( kg m
s2 ). We prefer, however, to have unique units for force, examples be-

ing pound force (lbf, USC system) and newton N (N, SI system). To accommodate this
preference, we may do the following:
• Define the force unit. In the USC system, for example, the pound force is defined

as the force of gravitational attraction of the earth on a pound mass (lbm) of material,
where the acceleration of gravity is taken to be 32.1740 feet per second squared ( ft

s2 ).
A newton, however, is defined at the force necessary accelerate a kilogram of mass
at the rate of one meter per second squared ( m

s2 ).
• Introduce a proportionality constant into Equation (1.1).
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Table 1.7 Unit conversions for the derived unit velocitya

USC unit ×b SI unit ×c USC unit
inch per second ( in

s ) 2.54 centimeter per
second ( cm

s )
0.3937008 inch per second

inch per second ( in
s ) 0.0254 meter per second

(m
s )

39.37008 inch per second

foot per second ( ft
s ) 0.3048 meter per second

(m
s )

3.28084 foot per second

USC units to USC units
inch per second ( in

s ) 1
12 foot per second ( ft

s ) 12 inch per second

SI units to SI units
centimeter per
second ( cm

s )
0.01 meter per second

(m
s )

100 centimeter per second

a Underlined conversion factors are exact.
b Example: 1 inch per second = 2.54 centimeters per second.
c Example: 1 centimeter per second = 0.3937008 inches per second.

Table 1.8 Unit conversions for the derived unit accelerationa

USC unit ×b SI unit ×c USC unit
inch per second

squared ( in
s2

)
2.54 centimeter per

second squared ( cm
s2

)
0.3937008 inch per second

squared
inch per second

squared ( in
s2

)
0.0254 meter per second

squared (m
s2

)
39.37008 inch per second

squared
foot per second

squared ( ft
s2

)
0.3048 meter per second

squared (m
s2

)
3.28084 foot per second

squared
USC units to USC units

inch per second
squared ( in

s2
)

1
12 foot per second

squared ( ft
s2

)
12 inch per second

squared
SI units to SI units

centimeter per
second squared ( cm

s )
0.01 meter per second

squared(m
s2

)
100 centimeter per

second squared
a Underlined conversion factors are exact.
b Example: 1 inch per second squared = 2.54 centimeters per second squared.
c Example: 1 centimeter per second squared = 0.3937008 inches per second squared.

In the USC system, Eq. (1.1) becomes

1 lbf = 1
gc

× 1 lbm × 32.1740
ft
s2 . (1.2)

From Eq. (1.2)

gc = 32.1740
lbm ft
lbf s2 . (1.3)
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Table 1.9 Unit conversions for the derived unit volumetric flow ratea

USC unit ×b SI unit ×c USC unit
gallon per minute

(gpm)d
0.0000630902 cubic meter per

second (m3

s )
15850.3 gallon per minute

gallon per minute
(gpm)d

0.0630902 liter per second
(L

s )
15.8503 gallon per minute

barrel per minute
(bpm)e

0.0026497882 cubic meter per
second (m3

s )
377.3886 barrel per minute

barrel per minute
(bpm)e

2.6497882 liter per second
(L

s )
0.3773886 barrel per minute

USC units to USC units
gallon per minute

(gpm)d
1
42 barrel per minute

(bpm)e
42 gallon per minute

gallon per minute
(gpm)d

34.2857 barrel per day
(bpd)e

0.0291667 gallon per minute

SI units to SI units
liter per second

(L
s )

0.001 cubic meter per
second (m3

s )
1000 liter per second

a Underlined conversion factors are exact.
b Example: 1 gallon per minute = 0.0000630902 cubic meters per second.
c Example: 1 cubic meter per second = 15850.3 gallons per minute.
d 1 gpm = 1 gal

min .
e 1 bpm = 1 bbl

min ; 1bpd = 1 bbl
d .

Table 1.10 Unit conversions for the derived unit curvaturea

USC unit ×b SI unit ×c USC unit
radian per foot

( rad
ft )

3.28084 radian per meter
( rad

m )
0.3048 radian per foot

degree per foot
( °
ft )

3.28084 degree per meter
( °

m )
0.3048 degree per foot

degree per 100
foot ( °

100 ft )
0.984252 degree per 30

meter ( °
30 m )

1.016 degree per 100
foot

USC units to USC units
degree per 100

foot ( °
100 ft )

1.745329 × 10−4 radian per foot
( rad

ft )
5729.578 degree per 100

foot
SI units to SI units

degree per 30
meter ( °

30 m )
5.817764 × 10−4 radian per meter

( rad
m )

1718.873 degree per 30
meter

a Underlined conversion factors are exact.
b Example: 1 radian per foot = 3.28084 radians per meter.
c Example: 1 radian per meter = 0.3048 radians per foot.
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Table 1.11 Unit conversions for the base unit massa

USC unit ×b SI unit ×c USC unit
pound mass (lbm) 453.59237 gram (g) 0.002204623 pound mass
pound mass (lbm) 0.45359237 kilogram (kg) 2.204623 pound mass
a Underlined conversion factors are exact.
b Example: 1 pound mass = 453.59237 grams.
c Example: 1 kilogram = 2.204623 pounds mass.

Table 1.12 Unit conversions for the derived unit mass densitya

USC unit ×b SI unit ×c USC unit
pound mass per
gallon (pmpg)d

119.8264 kilogram per cubic
meter ( kg

m3 )
0.008345405 pound mass per

gallon

pound mass per
gallon (pmpg)d

0.1198264 gram per cubic
centimeter ( g

cm3 )
8.345405 pound mass per

gallon
pound mass per
gallon (pmpg)d

0.1198264 specific gravity
(SG)e

8.345405 pound mass per
gallon

a Underlined conversion factors are exact.
b Example: 1 pound mass per gallon = 119.8264 kilograms per cubic meter.
c Example: 1 kilogram per cubic meter = 0.008345405 pounds mass per gallon.
d 1 pmpg = 1 lbm

gal .
e 1 SG = 1 g

cm3 at standard temperature (273.15 K) and pressure (100 kPa).

Table 1.13 Unit conversions for the derived unit forcea

USC unit ×b SI unit ×c USC unit
pound force (lbf) 4.448222 newton (N) 0.2248089 pound force
a Underlined conversion factors are exact.
b Example: 1 pound force = 4.448222 newtons.
c Example: 1 newton = 0.2248089 pounds mass.

In the SI system, Eq. (1.1) becomes

1N = 1
gc

× 1kg × 1
m
s2 , (1.4)

and from Eq. (1.4)

gc = 1
kg m
N s2 . (1.5)

Each new unit system that we investigate will require a new definition of gc .
In the remainder of this book we will continually use the constant gc when necessary

to properly convert between units of force and mass.
Finally, consider the difference between Eq. (1.1) when applied to converting mass

to weight for the two instances considered in this example. For the USC system, the
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Table 1.14 Unit conversions for the derived unit pressurea

USC unit ×b SI unit ×c USC unit
pound force per
square inch (psi)

6894.757 newton per
square meter

( N
m2 )

0.0001450377 pound force per
square inch

pound force per
square inch (psi)

6894.757 pascal (Pa) 0.0001450377 pound force per
square inch

pound force per
square inch (psi)

6.894757 kilopascal (kPa) 0.1450377 pound force per
square inch

pound force per
square inch (psi)

0.006894757 megapascal
(MPa)

145.0377 pound force per
square inch

pound force per
square inch (psi)

0.06894757 bar (bar) 14.50377 pound force per
square inch

SI units to SI units
pascal (Pa) 1 newton per

square meter
( N

m2 )

1 pascal

kilopascal (kPa) 1000 pascal (Pa) 0.001 kilopascal
megapascal

(MPa)
106 pascal (Pa) 10−6 megapascal

bar (bar) 105 pascal (Pa) 10−5 bar
a Underlined conversion factors are exact.
b Example: 1 pound force per square inch = 6894.757 Newtons per square meter.
c Example: 1 Newton per square meter = 0.0001450377 pounds force per square inch.

weight of 1 lbm is

1
32.1740 lbm ft

lbf s2
× 1 lbm × 32.1740

ft
s2 = 1 lbf, (1.6)

whereas in the SI system, the weight of 1 kg is

1

1 kg m
N s2

× 1kg × 9.80664
m
s2 = 9.80664N. (1.7)

1.4.1.1 Example problem—compute gc using inch for length in a USC system

Often commercial software has no inherent unit system but expects the user to input
data in “consistent” units, that is, values that use only the base units. For example, one
might work a finite element problem for a tubular with such a code. If so, it is often the
case for tubular problems that inches are a better length choice than feet. Assuming that
is the case, compute gc for working problems in a system where the base unit for length
is inches.



14 Elements of Oil and Gas Well Tubular Design

Table 1.15 Unit conversions for the derived unit pressure gradienta

USC unit ×b SI unit ×c USC unit
pound force

per square inch
per foot ( psi

ft )

2.262059 × 104 newton per
square meter

per meter
( N

m2 m
)

4.420749 × 10−5 pound force per
square inch per

foot

pound force
per square inch
per foot ( psi

ft )

2.262059 × 104 pascal per
meter ( Pa

m )
4.420749 × 10−5 pound force per

square inch per
foot

pound force
per square inch
per foot ( psi

ft )

22.62059 kilopascal per
meter ( kPa

m )
0.04420749 pound force per

square inch per
foot

pound force
per square inch
per foot ( psi

ft )

0.02262059 megapascal per
meter (MPa

m )
44.20749 pound force per

square inch per
foot

USC units to USC units
pound force

per square inch
per foot ( psi

ft )

0.05194805 pound force
per gallon (ppg)

19.25000 pound force per
square inch per

foot

SI units to SI units
pascal per
meter ( Pa

m )
1 newton per

square meter
per meter

( N
m2 m

)

1 pascal per meter

kilopascal per
meter ( kPa

m )
1000 pascal per

meter ( Pa
m )

0.001 kilopascal per
meter

megapascal per
meter (MPa

m )
106 pascal per

meter ( Pa
m )

10−6 megapascal per
meter

a Underlined conversion factors are exact.
b Example: 1 pound force per square inch per foot = 2.262059 × 104 Newtons per square meter per meter.
c Example: 1 Newton per square meter per meter = 4.420749 × 10−5 pounds force per square inch per foot.

Table 1.16 Unit conversions for the base unit temperaturea

USC unit ×b SI unit ×c USC unit
Rankine 0.55555556 Kelvin 1.8 Rankine

a Underlined conversion factors are exact.
b Example: 1 Rankine =0.55555556 Kelvin.
c Example: 1 Kelvin = 1.8 Rankine.

Returning to Eq. (1.2) and using Table 1.3 to convert the acceleration of gravity to

inches per second squared
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1 lbf = 1
gc

× 1 lbm × 32.1740
ft
s2

× 12
in
ft

= 386.088
1
gc

lbm in
s2

, (1.8)

or gc = 386.088 lbm in
lbf s2 .

1.4.1.2 Example problem—compute gc using slug for mass in a USC system

An alternate mass unit for USC unit systems is the slug, which is defined as the mass that
accelerates 1 ft

s2 when acted on by a force of 1 lbf. Compute gc for working problems in
a system where the base unit for mass is a slug.

In a manner similar to Eq. (1.2), from the definition of a slug we may write

1 lbf = 1
gc

× 1 slug × 1
ft
s2 . (1.9)

or gc = 1 slug ft
lbf s2 . The weight of 1 slug is

1

1 slug ft
lbf s2

× 1 slug × 32.1740
ft
s2 = 32.1740 lbf. (1.10)

1.4.2 Conversion of temperature units
Conversion of the standard temperature units does not lend itself to the tabular format
used above for other quantities. Let [°F] be the temperature value in degrees Fahrenheit,
[◦C] be the temperature value in degrees Celsius, [R] be the temperature value in
Rankine and [K] be the temperature value in Kelvin. Then absolute zero is [R] =
[K] = 0 and

[R] = [°F] + 459.67, (1.11)

[K] = [◦C] + 273.15, (1.12)

[◦C] = ([°F] − 32) × 5
9
, (1.13)

[°F] = [◦C] × 9
5

+ 32. (1.14)

1.4.3 The gas constants
Calculations involving gas constituents can include either the universal gas constant Ru

or the constant of an individual gas R. The two are related by

R = Ru

M , (1.15)
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where M is the molecular mass of the gas. A few comments are in order:
• Ru is truly universal (applicable to all gases), its value depending only on the unit

system. For USC units, Ru = 1545.349 lbf ft
lbm mol R ; for SI units, Ru = 8.314472 N m

g mol K .
• The mol appearing in the above constants is not actually a unit—it is an amount.

A mol is the amount of a substance that contains as many particles as there are
atoms in carbon-12 that, by definition, has an atomic mass of 12. That number is
Avogadro’s constant, 6.022140857 × 1023 1

mol . As an example, since the molecular
mass of methane is 16.04, 16.04 lbm of methane has the same number of molecules
(Avogadro’s constant) as 12 lbm of carbon-12, and 16.04 g of methane has the same
number of molecules as 12 g of carbon-12.

• Although the lbm mol is still used in USC units, the term g mol has now been
replaced with simply mol.

• The conversion from Ru to R involves dividing by the atomic mass of the gas (or gas
mixture) in question. Using USC units as an example, since we are dividing “per
lbm mol” by molecular mass, this is the same as multiplying by the conversion factor
1
M with units lbm mol

lbm
. Following the conversion, we are no longer dealing with

Avogadro’s constant amount of substance, but rather the amount of substance that
has a mass of 1 lbm. That is, again using methane, R (with units lbf ft

lbm R is addressing
1/16.04 as many molecules as Ru, and that amount of substance has a mass of 1 lbm.

1.5. NOTATION

Throughout the book use is made of three orders of tensors:
• Zeroth order tensors. Scalars such as temperature T and hydrostatic pressure p are

denoted by lightface letters.
• First order tensors. Vectors such as displacement u and force f are denoted by low-

ercase boldface letters. Exception is the initial position vector of a material point in
the global coordinate system, which is X.

• Second order tensors. Stress S, strain E and deformation gradient F are denoted by
uppercase boldface letters.
The term “tensor” is proper for all of the above quantities. In use, however, tensor

operations often resemble those of matrix algebra. The term “matrix” must be avoided
in general because all matrices are not tensors. In math, a matrix is simply a rectangular
array of numbers, whereas a tensor obeys certain transformation rules. Appendix A
provides a more detailed discussion of zeroth, first and second order tensors and the
tensor operations employed in this book. Even the seasoned reader should at least scan
this appendix to view the manipulations common to the discussion to follow.

Whenever possible, equations will contain two forms—direct (coordinate-
independent) and index notation. As an example, Newton’s second law of motion
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can be written in the alternate forms

f = m
gc

a, fi = m
gc

ai, (1.16)

where f is the force vector, m is mass (a scalar) and a is the acceleration vector. The left
form of Newton’s second law in Eq. (1.16) is written in direct notation. This equation
is independent of the coordinate system with which one might be working. The right
form of the law is written in index notation and shows the relation between the ith
components of force and acceleration in a particular coordinate system. Appendix A
contains a number of examples worked using these alternate expressions.

1.6. EXAMPLE PROBLEM CALCULATIONS

The book contains a number of worked examples, many involving floating point cal-
culations. Some of these calculations have been worked using a hand calculator; other
calculations employ a commercial spreadsheet; still others depend on a small computer
program. If a reader employs a different tool(s) in attempting to match the book’s val-
ues, it may be difficult to match every significant figure in an example, particularly for
intermediate numerical results. Almost all calculations, however, should be the same to
at least two, and often three significant digits.



CHAPTER 2

Design Summary

2.1. INTRODUCTION

Subsequent chapters detail the origin and development of the equations used in casing
and tubing design. In those chapters the material is presented deliberately and with a
view to unifying the variety of historical studies which have led to the current state-of-
the-art. The fundamental concepts of kinematics and loads are combined via material
constitution into low level, and fairly general, behavior of tubulars as solid mechanical
components of the oil well. Specific limit states associated with internal and external
pressure, axial loading and possible column buckling, and operational factors such as
wear are then treated as applications of the fundamental concepts. A similar treatment is
given to design loads. The presentation is from the general to the specific.

In this chapter the emphasis is on design. Here the governing equations are identical
to those in the chapters to follow, but the presentation is a narrative that walks through
the chronological implementation of the equations in a well design. Only the final forms
of pertinent relations are presented, and these are limited to the relations actually used
by the designing engineer. The remainder of the book is for the reader who requires a
deeper discussion, either because of the uniqueness of the well’s loads and/or resistance
requirements, or in order to apply the principles covered to a new type of problem.

One’s first exposure to this chapter should be accompanied by a coordinated review
of Chapter 14. The current chapter is formal, presenting concepts and procedures in
abbreviated form; Chapter 14 is intended to add flesh to the skeleton summary presented
here.

2.2. INPUT DATA

As a minimum, a well design will begin with the following input data1:
• a distribution of pore pressure versus vertical depth;
• a distribution of fracture pressure versus vertical depth;
• a distribution of undisturbed temperature versus depth;
• a wellbore trajectory from the surface to the well target.

1 The actual data package accompanying the initiation of a well will, in general, include a number of
additional pieces of information—the reason for drilling the well, offset well (if available) experience,
expected risks, etc.—all of which are important to the drilling engineer. The list provided here relates to
the physical design of the well.
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Table 2.1 Design status following initial data collection
Taska Calculations Chapters Knowns

Initial data
collection

N/Ab N/A Pore and fracture pressure distributions,
temperature distribution, trajectory

a Completed rows highlighted in gray.
b Abandonment pressure and some estimate of reservoir fluid properties are useful when available.

Table 2.1 summarizes the status of the design following initial data collection. This is
the first of several such tables indicating what should have been accomplished and what
data should be available at each stage in the design. The design process is rarely this
linear and can involve repeated visits to previous work. The general flow, however, is
important and provides an overview of when specific data should be available for future
design steps.

2.3. CASING SEAT DETERMINATION (SEE SECTION 13.3 OF CHAPTER 13)

Given the distributions of pore pressure and fracture pressure with vertical depth, plot
the data with pressure gradient as the abscissa and vertical depth as the (axis pointing
downward) ordinate. Adjust both curves inward for the effects of surge and swab pressure
and uncertainty in the pressure distributions. Using this plot as a starting point, consider
additional adjustments to the acceptable range of drilling fluid density by consideration
of the following:
• differential sticking (Section 13.3.2.3 of Chapter 13);
• wellbore stability (Section 13.3.2.4 of Chapter 13);
• riser margin (Section 13.3.2.5 of Chapter 13).
All of the above should limit the acceptable drilling fluid density at each vertical depth
according to the formula (Eq. (13.15)) reproduced here (see also Fig. 2.1)

max

⎧⎪⎨
⎪⎩

γp(Z) + γsb(Z)

γwn(Z)

γp(Z) + γrm(Z)

≤

γf (Z) ≤ min

⎧⎪⎨
⎪⎩

γfr(Z) − γsu(Z)

γds(Z)

γwx(Z)

,

base constraint
+ surge and swab margins
+ differential sticking limit
+ wellbore stability
+ riser margin

. (2.1)

In addition, the following considerations—formation mobility and/or chemical
sensitivity (see Section 13.3.2.6 of Chapter 13) and government regulations (see Sec-
tion 13.3.2.7 of Chapter 13)—may dictate that casing be set at a specific depth.
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Figure 2.1 Casing seat selection—illustration of limitations on the acceptable range of drilling fluid
density provided by Eq. (2.1). Either the “bottom-up” or the “top-down” method, or a combination of
the two, can be used to determine casing seats.

With the above constraints, either the “bottom-up” or “top-down” method of cas-
ing seat selection (see Section 13.3.3 of Chapter 13) may be used.

Check each casing seat for its kick tolerance—see Section 13.3.4 of Chapter 13.

2.4. TUBULAR SIZING (SEE SECTION 13.4 OF CHAPTER 13)

The following are guidelines for sizing the production tubing and casing:
• Size the production tubing first, as it is the most important tubular determinant

of well production rate. For tubing sizing considerations see Section 13.4.1 of
Chapter 13. This task is usually the responsibility of production and completions
engineers and is heavily tied to flow assurance considerations.

• Size the production casing. For production casing sizing considerations see Sec-
tion 13.4.2 of Chapter 13.

• Size the intermediate and surface casing. Sizing of these strings follows the discus-
sion (see Section 13.4.3 of Chapter 13) surrounding Table 13.4, reproduced here
(see Table 2.2).
Table 2.3 summarizes the status of the design following casing seat selection and

sizing.



Table 2.2 Casing diametric sizing—selection chart.a,b See Table 13.4 in Section 13.4.3 of Chapter 13 for details
Casingc Bit or confining open hole size (in.)

4-3/4 5-7/8 6-1/8 6-1/2 7-7/8 8-1/2 8-3/4 9-1/2 10-5/8 12-1/4 14-3/4 17-1/2 20 22 26 33
3-1/2 C
4 SC C
4-1/2 SC C
5 SC C
5-1/2 SB SC C
6-5/8 B SB SC C
7 B SB C C
7-5/8 B B SC SC C
7-3/4 B B SC SC C
8-5/8 B SB SC C
9-5/8 B B SB SC C
9-7/8 B B SB SC C
10-3/4 B B SC C
11-3/4 B C
11-7/8 B C
13-3/8 B SC C
13-5/8 B SC C
14 B SC C
16 B SC C C C
18-5/8 SC SC C
20 B C
24 B B C
26 C
30 B C
36 B

a C = standard clearance for running and cementing casing, SC = non-standard casing clearance, B = standard bit inside casing, SB = thinner casing wall to accommodate
bit.

b Starting with the production casing size, search horizontally for a “C” or “SC”, according to the desired annular clearance between the casing and its confining open
hole. Then read the corresponding column heading to determine the bit/confining open hole size for this casing. Search vertically in this same column for previous
casing sizes that can accommodate this bit, with either popular wall thicknesses (“B”) or thinner walls (“SB”). Having selected a previous casing size, repeat the process
to determine its bit/hole size. Continue until all casing sizes have been determined.

c Label 1 designation or outside diameter in inches.
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Table 2.3 Design status following casing seat selection and tubular sizing
Taska Calculations Chapters Knowns

Initial data
collection

N/Ab N/A Pore and fracture pressure dis-
tributions, temperature distri-
bution, trajectory

Tubular sizing Flow assurance and reservoir
calculations to size tubing,
DE/CE discussion to size pro-
duction casing

13c Length and diameter of each
tubular string, which casings are
long strings, liners and tiebacks,
drilling fluid density for each
hole section

a Completed rows highlighted in gray.
b Abandonment pressure and some estimate of reservoir fluid properties are useful when available.
c Possibly supplemented by Appendix C for directional wellbores.

Table 2.4 Example table of initial and load case states developed in preliminary calculations
Variable MD TVD Initial Load Case 1 � Load Case 2 �

Ttop xx.xx xx.xx xx.xx xx.xx xx.xx xx.xx xx.xx
TTOC xx.xx xx.xx xx.xx xx.xx xx.xx xx.xx xx.xx
Tbot xx.xx xx.xx xx.xx xx.xx xx.xx xx.xx xx.xx
T a N/A N/A xx.xx xx.xx xx.xx xx.xx xx.xx
pi−top xx.xx xx.xx xx.xx xx.xx xx.xx xx.xx xx.xx
pi−TOC xx.xx xx.xx xx.xx xx.xx xx.xx xx.xx xx.xx
pi−bot xx.xx xx.xx xx.xx xx.xx xx.xx xx.xx xx.xx
pi

a N/A N/A xx.xx xx.xx xx.xx xx.xx xx.xx
po−top xx.xx xx.xx xx.xx xx.xx xx.xx xx.xx xx.xx
po−TOC xx.xx xx.xx xx.xx xx.xx xx.xx xx.xx xx.xx
po−bot xx.xx xx.xx xx.xx xx.xx xx.xx xx.xx xx.xx
po

a N/A N/A xx.xx xx.xx xx.xx xx.xx xx.xx
a Average values are averages above cement top.

2.5. PRELIMINARY CALCULATIONS (SEE SECTIONS 12.5, 12.6, 12.7 AND
12.8 OF CHAPTER 12)

For the tube(s) being designed, obtain or determine/construct the following:
• The load cases to which the tubular will be subjected. Tables 2.6–2.8 can aid in

selecting design loads. Once a load case is selected, Table 2.9 summarizes sections
of Chapter 12 containing the appropriate equations for constructing a pressure load
distribution.

• Construct a table of landmark depths (top of string, cross-over, top of cement,
kick-off point, bottom of string) and the internal pressure, external pressure and
temperature corresponding to those depths. A sample is Table 2.4:
• the first column lists the variable names for temperature, internal pressure and

external pressure that will be used in the design;
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Table 2.5 Design status following preliminary calculations
Taska Calculations Chapters Knowns

Initial data
collection

N/Ab N/A Pore and fracture pressure dis-
tributions, temperature distri-
bution, trajectory

Tubular sizing Flow assurance and reservoir
calculations to size tubing,
DE/CE discussion to size pro-
duction casing

13c Length and diameter of each
tubular string, which casings are
long strings, liners and tiebacks,
drilling fluid density for each
hole section

Preliminary
calculations

Selection of load cases (includ-
ing initial condition) and con-
struction of load vs. depth ta-
ble, graphical check of fidelity
of load vs. depth tabled

12 Detailed information on (pres-
sure, temperature) load values
for each load case

a Completed rows highlighted in gray.
b Abandonment pressure and some estimate of reservoir fluid properties are useful when available.
c Possibly supplemented by Appendix C for directional wellbores.
d Collection of company-specific design information—approved connections for different strings, design factors (see

Table 2.14 for typical industry values), restrictions on metallurgy—are appropriate at this time.

• the second and third columns record the depths—measured and, if deviated,
vertical;

• the fourth column lists the values of the variables from column 1 in the initial
state (i.e., after WOC for casing, after setting packer for tubing);

• the next columns appear in pairs for each load case—a value of the column 1
variable for the load case and a change column (�) to record pressure or temper-
ature change as load case value minus initial value.

• Plot the tabulated values of temperature vs. depth, internal and external pressure vs.
depth, and load case pressure differential vs. depth. This will both provide a sense
check on the load case data and aid in the selection of a candidate tubular (see next
bullet). Typical plots are shown in Figs. 14.2–14.4.

• The dimensions and strengths of the tubulars to be designed (D, t, kwall, fymn, con-
fining hole input; d, dwall, Ai, Ao, As, rc calculated). Save this step until after the
load cases have been tabulated and plotted. Viewing the loads may make selection
of a candidate for design easier by allowing a comparison between, for example,
differential pressures and the vendor’s internal and external pressure ratings.
The narrative of the design procedure continues in Section 2.7 following the pre-

liminary calculations.
Table 2.5 summarizes the status of the design following preliminary calculations.
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Table 2.6 Design load summary—surface and intermediate casinga

Load Internal pressure External pressure Temperature Table
Running in hole RF RF G 12.1
Overpull RF RF G 12.2
Initial conditions RF RF + SP + CMT G 12.5
Pressure test Test pressure + DF RF G 12.9
Well control Fracture pressure at

shoe – gas gradient
above

One of severalb C 12.10

Drill ahead DF RF C 12.11
Lost circulation Empty to top of DF,

then DF
RF G or C 12.18

Riser marginc SW to mudline,
then DF

RF G or C 12.19

a CMT = cement, DF = drilling fluid for next hole section, RF = running fluid, SP = spacer, SW = sea
water, G = local geostatic, C = circulating.

b See the discussion at the beginning of Section 12.7 of Chapter 12 for external fluid alternatives.
c Deepwater wells only.

Table 2.7 Design load summary—production casinga

Load Internal pressure External pressure Temperature Table
Running in hole RF RF G 12.1
Overpull RF RF G 12.2
Initial conditions RF RF + SP + CMT G 12.5
Pressure test Test pressure + RF RF G 12.9
Tubing leak Shut-in tubing

pressure + PF
One of severalb G or P 12.12

Riser marginc SW to mudline,
then RF

RF G or C 12.19

Packer leak Empty to top of PF,
then PF

RF G 12.20

See also Section 12.7.2.3 for possible additional loads associated with other tubulars.
a CMT = cement, PF = packer fluid, RF = running fluid, SP = spacer, SW = sea water, G = local geostatic,

C = circulating, P = producing.
b See the discussion at the beginning of Section 12.7 of Chapter 12 for external fluid alternatives.
c Deepwater wells only.

2.6. DESIGN LOADS (SEE CHAPTER 12)
Design loads depend on the string being designed. Tables 2.6–2.8 summarize the de-
sign loads in terms of internal pressure, external pressure and temperature. For more
information on a particular design load, see the referenced table in Chapter 12.

When building a design load—internal pressure, external pressure, tempera-
ture—Table 2.9 summarizes sections containing the appropriate equations for con-
structing a pressure load distribution.
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Table 2.8 Design load summary—production tubinga

Load Internal pressure External pressure Temperature Table
Running in hole CF CF G 12.3
Overpull CF CF G 12.4
Initial conditions—
mechanically-set
packer

CF/PF CF/PF G 12.6

Initial conditions—
hydraulic-set
packer

Setting pressure +
CF/PF

CF/PF G 12.7

Initial conditions—
hydrostatic-set
packer

Setting pressure +
CF/PF

Setting pressure +
CF/PF

G 12.8

Pressure test Test pressure + CF PF G 12.13
Injection Injection wellhead

pressure + IF
PF I 12.14

Production Flowing wellhead
pressure + HC

PF P 12.15

Pump in to kill well Shut-in tubing
pressure + kill
margin + IF (start
kill), steady state
pump pressure + IF
(end kill)

PF I 12.16

Shut-in Shut-in pressure +
HC

PF G or P 12.17

Annulus pressure test CF Test pressure + PF G 12.21
Production from long
term shut-in

Flowing tubing
pressure + HC

Shut-in pressure +
PF

G 12.22

Safety Valve Leak Shut-in reservoir
pressure at
perforations – HC

Annulus pressure +
PF (above packer)

G or P 12.23

Evacuation Empty PF G or P 12.24
Consider possible additional loads associated with artificial lift.
a CF = completion fluid, IF = injection fluid, PF = packer fluid, HC = reservoir fluid, G = local geostatic, I =

injecting, P = producing.

2.7. DESIGN PROCEDURE

It is assumed that the preliminary data gathering and calculation steps of Section 2.5
are complete. That is, the initial condition and all load cases have been tabulated at
landmark depths, along with the change in state between each load case and the initial
condition—see Table 2.4.

The following design procedure is recommended, regardless of the tubular in focus:



Table 2.9 Construction of an internal or external pressure load
Fluid Examplea Equation Number Comment

Single incompressible
fluid

CF, CMT, DF, HC (if
oil only), IF, PF, RF,
SP, SW

p2 − p1 = g
gc

ρPF (Z2 − Z1) (12.16) Intended for hand calculations or simple
spreadsheets.

Ideal gas HC (if gas only),
average T known

p2 = p1 exp
[

g
gc

1
RT

(Z2 − Z1)
]

(12.20) Use in hand calculations or simple
spreadsheets. See example problem in
section ‘Example problem—ideal gas
hydrostatic head’ of Chapter 12.

Ideal gas HC (if gas only),
linear T distribution

p2 = p1

(
1 + γT (Z2−Z1)

T1

) g
gc

1
RγT (12.23) Use in hand calculations or simple

spreadsheets. See example problem in
section ‘Example problem—ideal gas
hydrostatic head’ of Chapter 12.

Real gas HC (if gas only),
linear T distribution

p2 = p1 exp
[

g
gc

1
ZcRT

(Z2 − Z1)
]

(12.31) Use in spreadsheets or design software.
See example problem in
section ‘Example problem—real gas
hydrostatic head’ of Chapter 12.

a CF = completion fluid, CMT = cement, DF = drilling fluid for next hole section, HC = hydrocarbon (reservoir) fluid, IF = injection fluid, PF = packer fluid, RF =
running fluid, SP = spacer, SW = sea water.
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Table 2.10 Summary of equations for potential length change
�L Sourcea Equation Number

Temperature �LT = αT�TL (11.8)

Ballooning �LB = − 2ν
E

�pid2−�poD2

D2−d2 L (11.10)

Shoulder �LS =
[
�pi

(
d2
u−d2

l
)+�po

(
D2

l −D2
u
)]

L
E

(
D2

u−d2
u
) (11.12)

Bucklingb �LBu = − r2c
4EIweff cos θ

(−feff 2 + fcs
) (−0.3771feff 2 + 0.3668fcs

)
(11.15)

Bucklingc �LBu = − r2c
(
f 2
eff 2−f 2

eff 1

)
8EIweff cos θ

(11.20)
a Each �L represents final state minus initial state.
b Only applicable if there is buckling and the mode is sinusoidal.
c Only applicable if there is buckling and the mode is helical.

1. Preinstallation loads. First check the loads that happen before the initial conditions
event. These loads are different from those to follow in that only one end of the tube
is fixed. Further, neither of the load cases—“Running in hole” (Section 12.5.1.1
for casing, Section 12.5.2.1 for tubing, both in Chapter 12) or “Overpull” (Sec-
tion 12.5.1.2 for casing, Section 12.5.2.2 for tubing, both in Chapter 12)—is usually
a design determinant. If the available grades and wall thicknesses cannot pass these
load cases, or if their variables create issues for the assigned rig, a change of the well
design may be in order.

2. For postinstallation loads compute the (potential) length changes due to tempera-
ture, ballooning and shoulder forces using pressure and temperature difference from
the initial state to the final state. Assume column buckling does not occur. These
calculations are aided by pressure and temperature tabulations similar to Table 2.4
and the length change formulas summarized in Table 2.10.

3. Initial conditions. Determine the initial state of the tubular string:
(a) Using the information from Table 2.4 and the trial string, compute the initial

axial force at the bottom of the string. Then compute the axial force along
the string to the surface by adding the (hole inclination adjusted) air weight
per length of the tubular in each segment between design landmarks. If the
landmark is a cross over to a different geometry, calculate the net (inside and
outside) shoulder force at the cross over.

(b) Construct a table similar to Table 2.12 preparing two columns for each load
case. For any landmark depths where a discontinuity in axial force can occur,
create two rows—one above (+) and one below (–) the landmark.

(c) Enter the initial axial force distribution in the table.
4. For each load case that follows the initial condition in time:
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Table 2.11 Equations to map length change to change in axial force
Location Equation Number

Casing above TOC, tubing �fz = −EAs�LTotal
L (14.5)

Casing below TOC �fz = −EAsαT�T + 2ν
(
�piAi − �poAo

)
(14.10)

�LTotal = �LT + �LB + �LS + �LBu.

Table 2.12 Example table of initial and load case axial loads
Location Initial Load Case 1 Load Case 2 Load Case 3

Increment Total Increment Total Increment Total
Topa xx.xx xx.xx xx.xx xx.xx xx.xx xx.xx xx.xx
TOC+a xx.xx xx.xx xx.xx xx.xx xx.xx xx.xx xx.xx
TOC-b xx.xx xx.xx xx.xx xx.xx xx.xx xx.xx xx.xx
Bottomb xx.xx xx.xx xx.xx xx.xx xx.xx xx.xx xx.xx
a Use Section 14.2.3.1 of Chapter 14 for load case calculations.
b Use Section 14.2.3.2 of Chapter 14 for load case calculations.

(a) Compute the change in axial force corresponding to the total length change
from temperature, ballooning and shoulder forces.2 Table 2.11 summarizes the
appropriate equations to use to map potential length change into change in
axial force.

(b) Add the change in axial force from the previous step to the initial axial force
and enter these values in Table 2.12 as “Increment” and “Total” , respectively.

5. Compute the effective force at any significant depths. For casing, at least check the
top of cement; for tubing at least check the packer.

6. If the effective force is less than the critical buckling force, the string has buck-
led. Repeat steps 4 and 5, now including the length change due to buckling in
the incremental axial force calculation. Follow this procedure until an acceptable
convergence has been achieved.3

7. With the axial force table updated for the possible effects of buckling, compute the
safety factors in the string at least at all landmark locations. Table 2.13 summarizes
the design equations for limit states used in selecting a tube body. Table 2.14 sum-
marizes typical design factors appearing in the industry for limit states that might

2 Exception: If the string is production tubing landed in a packer allowing axial motion or the string is an
uncemented tieback, skip this step. Instead, calculate the new axial force (in the same manner as the initial
axial force was calculated in step 3.a) and enter this value under the “Total” column for each load case.
The length changes previously calculated in step 2 are still valuable for determining tubing movement
and required seal length in the seal assembly. If buckling is detected in step 6, add the length change due
to buckling to the previously calculated total length change.

3 This trial-and-error procedure can be ignored for many casing strings. The radial clearance between
casings is usually small enough to prevent major column buckling. The procedure cannot be ignored for
almost all tubing strings.
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Table 2.13 Design equations for tube body limit states
Design limit state Equation Number

Yielda f̂des(r) =(
�zz − pid2

wall−poD2

D2−d2
wall

)2
+ 3

16r4

((
pi−po

)
d2
wallD

2

D2−d2
wall

)2
− f 2

ymn = 0

(6.95)

Internal pressureb Included in yield design check (6.95)
External pressurec,d API collapse procedure, Section 8.2.4 of Chapter 8 (8.10)–(8.23)
Axial yield Included in yield design check (6.95)
a If |m| = 0, check at r = dwall

2 ; otherwise, replace �zz with �a ± �̂b(r) = �a ± |m|r
I and check at r = dwall

2 , �b = ± |m|dwall
2I

and at r = D
2 , �b = ± |m|D

2I , using the largest of the latter four results.
b The ductile rupture equation can be used in addition to, rather than in replacement of, the design check for yield,

a typical example being tube materials for which the margin between fymn and fumn is small, i.e., high strength steels
and solid expandable tubulars.

c Yield, as opposed to collapse, due to external pressure, is included in the yield design check.
d Should the collapse resistance be increased above the API rating with zero axial stress, ignore the increase.

Table 2.14 Typical design factors for tubular design
Limit Statea Tube body Connection Comment

Triaxial yieldb 1.15–1.25f N/A Difficult to define for a threaded
connection.

Internal yield pressurec,e 1.00–1.25 Rupture is typically not a design limit
state.

Collapsee 1.00–1.10 Indicator of inherent conservatism in
API collapse equations.

Tensiond 1.30–1.60 Lower value corresponds to yield-based
limit state; higher value corresponds to
ultimate-based limit state.

Compressiond 1.30–1.60 1.00 Lower value corresponds to yield-based
limit state; higher value corresponds to
ultimate-based limit state.

a All limit state design factors may be adjusted upward for tubing by a multiplying factor kcorr ≈ 1.10 to account for
corrosion. All limit states except collapse may be adjusted downward for tubing by a multiplying factor kscc ≈ 1.10 to
account for a sour environment.

b Includes the limit states for internal yield pressure and yield in tension and compression.
c Does not account for bi-dimensional effects.
d Does not account for bi-dimensional effects. Recommended for threaded connections, and even then only if a man-

ufacturer’s evaluation envelope is not available.
e Should be adjusted upward for anticipated wear by a multiplying factor kwear , where kwear is the inverse of the fraction

of remaining specified wall thickness under the anticipated wear groove, i.e., for 12% wall loss, kwear = 1/0.88 = 1.14.
f The lower value usually applies when kwall = 0.875; the higher value usually applies when kwall = 1.000.

be encountered in a design. Of the limit states, those emphasized in this book are
triaxial yield, collapse and a manufacturer’s evaluation envelope for threaded con-
nections.

8. Once the above steps yield a satisfactory combination of wall thickness and grade
for the tube body, design of the threaded connection is in order. Individual load
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Table 2.15 Design status following design procedure
Taska Calculations Chapters Knowns

Initial data
collection

N/Ab N/A Pore and fracture pressure
distributions, temperature
distribution, trajectory

Tubular
sizing

Flow assurance and reservoir
calculations to size tubing,
DE/CE discussion to size
production casing

13c Length and diameter of each
tubular string, which casings are
long strings, liners and tiebacks,
drilling fluid density for each
hole section

Preliminary
calculations

Selection of load cases
(including initial condition) and
construction of load vs. depth
table, graphical check of fidelity
of load vs. depth tabled

12 Detailed information on
(pressure, temperature) load
values for each load case

Design
procedure

Compute preinstallation loads 12 Load values for installing tubular

Compute initial condition, the
state to which all
post-installation loads are
compared

12 Initial condition axial load

Compute length change, axial
load change and final axial load
assuming no buckling

11, 14 Initial guess at axial loads for all
load cases

Check for buckling and, if
necessary, iterate on axial load
calculation

10, 11, 14 Final values of axial load for all
load cases

Use pressure, temperature and
axial load for each landmark
depth to determine tube
resistance and safety factor;
restart design procedure if tube
is inadequate

6, 8 Tube design, ready for
connection selection

a Completed rows highlighted in gray.
b Abandonment pressure and some estimate of reservoir fluid properties are useful when available.
c Possibly supplemented by Appendix C for directional wellbores.
d Collection of company-specific design information—approved connections for different strings, design factors (see

Table 2.14 for typical industry values), restrictions on metallurgy—are appropriate at this time.

case values of pressures (particularly differential pressure) and temperature, together
with final computations of axial force (see Section 9.4 of Chapter 9), are pertinent
to connection selection, together with the following:
(a) maximum wellbore curvature;
(b) minimum radial clearance with confining hole;
(c) fluid medium to be sealed—liquid or gas (see Sections 9.5 and 9.6 of Chap-

ter 9);
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(d) potential for fatigue (tubulars run above the mudline in a dry tree installation);
(e) potential for loading above tube body yield (thermal wells);
(f) production or injection at high rates (see Section 9.7.1 of Chapter 9).

9. Whenever possible obtain a manufacturer’s performance envelope (to be converted
to a design envelope with appropriate design factors) for the connection to be used
and compare its capacity to the design load cases. If no performance/design en-
velope is available, create one using the tension and compression, internal pressure
and external pressure ratings of the connection and appropriate design factors (see
Section 14.2.5 of Chapter 14).

Table 2.15 summarizes the status of the design following the design procedure.



CHAPTER 3

Kinematics
3.1. INTRODUCTION

Under the action of forces and/or force fields, a body can translate, rotate and deform.
Translation, a motion in which all points of a body move with a common velocity
vector, and rotation, revolution of all points in a body about a single, fixed location,
are rigid body motions during which the distance between points is constant. With
deformation, on the other hand, the distance between two points in the body is altered,
that change being measured by a quantity called strain.

We begin with the definitions of the position and displacement of a point and then
consider the possibility that adjacent points may have differing displacements. The re-
sulting displacement gradients in a body can be described by various tensor quantities
from deformation gradient to strain. With regard to the latter, several valid definitions
exist of which we shall consider three—Lagrangian strain, Eulerian strain and logarith-
mic strain. Because of its importance in tubular design, work previously expressed in
Cartesian (rectangular) coordinates is then reexpressed in cylindrical coordinates.

The developments previewed above are fairly general. A final section considers spe-
cial cases of the strain tensor for axisymmetric and infinitesimal strain.

3.2. POSITION

Consider the current (spatial) position1 x of a point in a deforming body2 that is a
function of its original (material) position X and time τ

x = x̂(X, τ ), xi = x̂i(XI , τ ), (3.1)

where the function x̂ and its inverse, X = X̂(x, τ ), are assumed to be single-valued3 and
continuously differentiable4 in their independent variables.

1 See Appendix A for a review of tensors and the notation used in this book.
2 Beginning, as we have, with the discussion of points in a Euclidean coordinate space, we bypass an

assumption of kinematics that the ensemble of points x to which we refer is actually a configuration B of
a body B, where B is a collection of particles. We will not need this level of abstraction in our discussion.
The interested reader can consult the chapter on Basic Kinematics in [6] or similar texts.

3 Two material points X1 and X2 are not permitted to occupy the same location as the body deforms; nor
is a single point X1 permitted to split into two points as the body deforms.

4 Curves, surfaces and regions in the initial state remain curves, surfaces and regions in the deformed
state [6].
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Figure 3.1 Illustration of the displacement of a point in the global coordinate system. X1 is North,
X2 is East, X3 is vertical depth.

Fig. 3.1 illustrates Eq. (3.1) in the global material coordinate system (X1–X2–X3) that
will be used almost exclusively in this book.5 The global material coordinate system
appears upside-down to accommodate the alignment of the X1-axis with North, the
X2-axis with East and the X3-axis with vertical depth.

Fig. 3.1 also contains another, spatial coordinate system6 associated with the dis-
placed point, and having axes x1, x2 and x3. The spatial coordinate axes are not
necessarily parallel to the material coordinate axes but can, if desired, align or even
coincide with the material coordinate axes. The position of the spatial axes depends
largely on convenience in the particular problem being addressed.7 It is sufficient for
the present to simply regard the x1–x2–x3 system as another set of axes fixed in space.

The index notation of Eq. (3.1) highlights an important issue regarding the relation
between the components of X and the components of x. The natural decomposition
of each of these vectors is in its parent coordinate system—X in the global material

5 An expression wherein X is an independent variable is termed a Lagrangian description.
6 An expression wherein x is an independent variable is termed an Eulerian description.
7 For example, consider the manufacturing process wherein a flat plate is formed along its long axis into

the shape of a cylinder and then (electrically) welded to create a tube. It might be convenient to describe
the initial, undeformed shape in rectangular coordinates and the formed tube in cylindrical coordinates
(see Section 3.6.2).
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coordinate system and x in the spatial coordinate system. For each of these vectors we
respectively have (see Eq. (A.1))

X = XKeK , x = xkgk, (3.2)

where the eK , K = 1,2,3 are unit base vectors8 in the global material coordinate system
and the gk, k = 1,2,3 are unit base vectors in the spatial coordinate system

eJ · eK = δJK , gj · gk = δjk, (3.3)

and we use upper case indices to indicate the global material coordinate system and
lower case indices to indicate the spatial coordinate system.

Both δJK and δjk in Eq. (3.3) are expressions of the Kronecker delta which has the
value 1 if the two indices are the same and 0 otherwise (see Section A.24 of Ap-
pendix A).

If, on the other hand, we wish to express X (or any material vector) in the spatial
coordinate system, then we write

Xj = XKeK · gj = XKδKj, δKj = eK · gj. (3.4)

Similarly, if we wish to express x (or any spatial vector) in the global material coor-
dinate system, then we write

xJ = xkgk · eJ = xkδkJ , δkJ = gk · eJ . (3.5)

The scalars δKj and δkJ are components of shifter tensors [7,8], and should not be
confused with the Kronecker delta symbol9 appearing in Eq. (3.3). Shifters allow one
to express the components of a vector in something other than its native coordinate
system by (see Eqs. (3.4) and (3.5)) using the dot product to compute the components
of the vector’s unit base vectors in the alternate coordinate system (see Section A.4 of
Appendix A). The components of a shifter tensor will equal the Kronecker delta when
the material and spatial reference frames are identical, but in general the two will differ.

3.3. DISPLACEMENT

Returning to Fig. 3.1, the difference between x and X is the displacement u given by

u = û(x, τ ) = x − X + o, ui = ûi(x, τ ) = xi − XJδJi + oi, (3.6)

8 A unit base vector is a vector of magnitude one that is collinear with a coordinate axis. If the coordinate
line is curved, the unit base vector is collinear with the local tangent to the coordinate line.

9 The Kronecker delta will have indices that are both of the same case. The indices of the shifter tensor will
differ in case.
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where we have used Eq. (3.4) to express X in the spatial coordinate system. The vector
o is the constant offset between the origins of the global material and spatial coordinate
systems, o = omgm.

Alternatively, we can write

u = Û(X, τ ) = x − X + o, UI = ÛI(X, τ ) = xjδjI − XI + OI , (3.7)

where now we have used Eq. (3.5) to express x in the global material coordinate system,
and the vector o uses the material coordinates to express the offset between the origins
of the global material and spatial coordinate systems, o = OMeM .

In the above expressions, u = ûi(x, τ )gi = ÛI(X, τ )eI and we use shifters to manip-
ulate between components in the global material and spatial coordinate systems.

3.4. DEFORMATION GRADIENT

Now consider an infinitesimal line element within a deforming body. The initial (τ = 0)
position of one end of the line element is X and the initial position of the other end of
the element is X + dX where, in a rectangular coordinate system,

dX = dXIdeI , (3.8)

the eI , I = 1,2,3 being unit base vectors along the axes of the global material coordinate
system.10

Due to deformation, at a later time, τ > 0, the line element becomes dx (see
Fig. 3.2). From Eq. (3.1) we have

dx = ∂x̂
∂X

· dX = F · dX, dxi = ∂ x̂i

∂XK
dXK = FiKdXK , (3.9)

where upper case indices refer to the material coordinate system and lower case indices
refer to the spatial coordinate system. The tensor F is the deformation gradient. The
determinant of F must be nonzero and finite.11

If Eq. (3.6) is substituted into Eq. (3.9), then

dx =
∂
(
X + Û − o

)
∂X

· dX =
(
I + ∂Û

∂X

)
· dX = F · dX,

10 This expression will be somewhat more complicated in Section 3.6.2 when deformation is referenced to
a cylindrical coordinate system. The simplicity of Eq. (3.8) follows from the fact that the eI are constant.

11 Consider a simple one-dimensional deformation dx1 = kdX1, where k is a constant. In this case, F11 = k,
and the determinant of F is k. If k is zero, then the deformation is collapsing the line element dX1 to
zero length. If k is infinite, then the deformation can take an element dX1 of zero length and produce a
finite length spatial element dx1. Neither of these extremes is desirable or physically reasonable.
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Figure 3.2 Illustration of the deformation of a line element in the global coordinate system.

dxi =
∂
(
XJ + ÛJ − OJ

)
δJi

∂XK
dXK =

(
δJK + ∂ÛJ

∂XK

)
δJidXK = FiKdXK , (3.10)

where I is the identity tensor (unity along its diagonal, zero elsewhere).
From Eqs. (3.9) and (3.10) we get

F = ∂x̂
∂X

= I + ∂Û
∂X

, FiK = ∂ x̂i

∂XK
=
(

δJK + ∂ÛJ

∂XK

)
δJi. (3.11)

Since the determinant of F is nonzero, its inverse exists and satisfies

F−1 · F = F · F−1 = I, F−1
Kl FlM = δKM FkLF−1

Lm = δkm. (3.12)

Further, since ∂XK
∂xl

∂xl
∂XM

= δKM , we have

∂X̂
∂x

· ∂x̂
∂X

= I ⇒ F−1 = ∂X̂
∂x

,
∂X̂K

∂xl

∂ x̂l

∂XM
= δKM ⇒ F−1

Kl = ∂X̂K

∂xl
. (3.13)
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Figure 3.3 Examples of translation, rotation and deformation. In the deformation example the de-
formed line element has been offset positively from the X1-axis to distinguish it from the undeformed
line element. The X3-axis is directed out of the page toward the reader.

If Eq. (3.9) is now multiplied by F−1, then

F−1 · dx = ∂X̂
∂x

· dx = dX, F−1
Ki dxi = ∂X̂K

∂xi
dxi = dXK , (3.14)

and, using Eq. (3.7),

dX = ∂
(
x − û + o

)
∂x

· dx =
(
I − ∂û

∂x

)
· dx = F−1 · dx,

dXI = ∂
[(

xi − ûi + oi
)
δiI
]

∂xk
dxk =

(
δik − ∂ ûi

∂xk

)
δiI dxk = F−1

Ik dxk. (3.15)

From Eqs. (3.14) and (3.15) we obtain

F−1 = ∂X̂
∂x

= I − ∂û
∂x

, F−1
Ik = ∂X̂I

∂xk
=
(

δik − ∂ ûi

∂xk

)
δiI . (3.16)

In the work to follow, F will be used in developing the Lagrangian and logarithmic
strain tensors from the perspective of the undeformed configuration X; F−1 will be
used in developing the Eulerian strain tensor from the perspective of the deformed
configuration x.

3.4.1 Example problem—the deformation gradient
For selected line elements etched on a body initially lying in the X1–X2 plane (see
Fig. 3.3), and with the material and spatial coordinate systems coinciding, determine
the deformation gradient for the following:

• Translation. The displacement Û1 = k1, Û2 = k2, Û3 = 0, where k1 and k2 are con-
stants, translates all points in the body k1 units along the X1-axis and k2 units along
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the X2-axis, with no change in the original vertical (X3) position of the points.
From Eq. (3.10) we get

F11 = ∂
(
X1 + k1

)
∂X1

= 1, F22 = ∂
(
X2 + k2

)
∂X2

= 1, F33 = ∂ (X3 + 0)

∂X3
= 1, (3.17)

and FiK = 0 for all other values of i and K . The deformation gradient measures
relative changes in position following a motion by deviation from a value of unity.12

Since all relative positions remain the same in a translation, the only nonzero values
of FiK in this instance are all 1.

• Rotation. If a body with etched line element initially lying along an angle α from
the X1-axis is rotated about the X3-axis and the origin of the line element (assumed
to be at X1 = 0) is not allowed to displace, the displaced position of the end of
the line element is x1 = r cos

(
α + kτ

) = r
(
cosα cos kτ − sinα sin kτ

) = X1 cos kτ −
X2 sin kτ , x2 = r sin

(
α + kτ

) = r
(
sinα cos kτ + cosα sin kτ

) = X2 cos kτ + X1 sin kτ ,
where k is a constant. This time using Eq. (3.11) we obtain

F11 = ∂x1

∂X1
= cos kτ,F12 = ∂x1

∂X2
= − sin kτ, F21 = ∂x2

∂X1
= sin kτ,

F22 = ∂x2

∂X2
= cos kτ, F33 = ∂ (X3 + 0)

∂X3
= 1, (3.18)

and FiK = 0 for all other values of i and K .
• Deformation. Consider the simple extension, x1 = kX1. From Eq. (3.10) with Û1 =

x1 − X1 = (k − 1)X1 we have

F11 = ∂
(
X1 + (k − 1

)
X1
)

∂X1
= k, F22 = ∂ (X2 + 0)

∂X2
= 1, F33 = ∂ (X3 + 0)

∂X3
= 1,

(3.19)

and FiK = 0 for all other values of i and K .

3.5. STRAIN

Eqs. (3.9) and (3.10) suggest that the spatial relation between two nearby points in a
body can change with motion due to deformation. If F �= I, dx will, with the possible
exception of pure rotation, differ in length from dX (see Eq. (3.10)). This difference
can be measured in a variety of ways. Here we will consider three of the more popular
definitions—the Lagrangian strain tensor, the Eulerian strain tensor and the logarithmic

12 Revisiting Eq. (3.9), if F = I, dx = dX, implying no change in the original length of dX.
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strain tensor. All three definitions use either the Cauchy or Green deformation tensor
as an intermediate constituent of strain.

The Lagrangian and Eulerian strains are similar in concept. The former relates
deformation to the initial, undeformed configuration whose functional dependence in-
volves X; the latter relates deformation to the deformed configuration whose functional
dependence involves x. The Lagrangian strain satisfies one’s initial intuition regarding
a deformation measure, so its derivation will be given detail while the Eulerian strain
development will be abbreviated. For infinitesimal strain that dominates the remainder
of the book, the two strains are indistinguishable.

3.5.1 The Cauchy and Green deformation tensors
We wish to further describe the deformation of an infinitesimal line element with time.
In its original position, the square of the length of the infinitesimal element dX in
Fig. 3.2 is

dS2 = dXT · dX, dS2 = dXIdXI . (3.20)

Similarly, the square of the length of the same infinitesimal element later (τ > 0) is

ds2 = dxT · dx, ds2 = dxidxi. (3.21)

One suitable description of deformation compares the two squared lengths13 in
Eqs. (3.20) and (3.21) by taking the difference

ds2 − dS2 = dxT · dx − dXT · dX, ds2 − dS2 = dxidxi − dXIdXI . (3.22)

With Eq. (3.9) substituted into Eq. (3.22), we get

ds2 − dS2 = (dXT · FT ) · (F · dX
)− dXT · dX = dXT · (FT · F − I

) · dX

= dXT · (C − I) · dX,

ds2 − dS2 = dXT
K FT

KiFiLdXL − dXKdXK = dXT
K

(
FT

KiFiL − δKL
)
dXL (3.23)

= (CKL − δKL)dXKdXL,

where we have used the associative property of the matrix contraction product
(Eq. (A.42)), the relation (A · B)T = BT · AT (see subsection ‘Example problem—prove
(A · B)T = BT · AT ’ in Section A.4.1.4 of Appendix A) and the fact that dXK and dXT

K

have the same value.

13 One could choose to compare lengths, which in this case would introduce square roots, greatly compli-
cating future calculations.
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The tensor C in Eq. (3.23) is the Green deformation tensor. From Eq. (3.11)14 we
have

C = FT · F =
(
I + ∂Û

∂X

)T

·
(
I + ∂Û

∂X

)
= I + ∂Û

∂X
+
(

∂Û
∂X

)T

+
(

∂Û
∂X

)T

· ∂Û
∂X

,

CKL = FiKFiL =
(

δJK + ∂ÛJ

∂XK

)
δJi

(
δML + ∂ÛM

∂XL

)
δMi

= δKL + ∂ÛK

∂XL
+ ∂ÛL

∂XK
+ ∂ÛN

∂XK

∂ÛN

∂XL
. (3.24)

The Cauchy deformation tensor C̆ is the counterpart in the deformed configuration
of the Green deformation tensor C. With the aid of Eq. (3.14), an alternative expression
of Eq. (3.23) that focuses on the deformed configuration is

ds2 − dS2 = dxT · dx −
(
dxT · (F−1)T · F−1 · dx

)
= dxT ·

(
I − (F−1)T · F−1

)
· dx

= dxT ·
(
I − C̆

)
· dx,

ds2 − dS2 = dxkdxk − dxT
k

(
F−1)T

kM F−1
Ml dxl = dxT

k

(
δkl −

(
F−1)T

kM F−1
Ml

)
dxl (3.25)

=
(
δkl − C̆kl

)
dxkdxl,

or, from Eq. (3.16)15,

C̆ = (F−1)T · F−1 =
(
I − ∂û

∂x

)T

·
(
I − ∂û

∂x

)
= I − ∂û

∂x
−
(

∂û
∂x

)T

+
(

∂û
∂x

)T

· ∂û
∂x

,

C̆kl = F−1
MkF

−1
Ml =

(
δik − ∂ ûi

∂xk

)
δiM

(
δjl − ∂ ûj

∂xl

)
δjM = δkl − ∂ ûk

∂xl
− ∂ ûl

∂xk
+ ∂ ûm

∂xk

∂ ûm

∂xl
, (3.26)

where the displacement is now considered a function of x, i.e., u = û(X̂(x, τ ), τ ).

14 In arriving at the form of CKL in index notation, a key relation is δJiδMi = δJM . Recall from Eq. (3.4)
that δJi = eJ · gi, that is, δJi is the dot product between a unit base vector in the global material
coordinate system and a unit base vector in the spatial coordinate system. We can therefore write
δJiδMi = (eJ · gi

) (
eM · gi

)
. For cases when J = M , this product is just the sum of the squares of the

components of an e unit vector in the g (spatial) coordinate system. This sum must be 1 from the def-
inition of a unit vector. If J �= M , the product

(
eJ · gi

) (
eM · gi

)
is the sum of the components of two

dissimilar e unit base vectors, say e1 and e2, in the g coordinate system. This sum must be 0 since two
unit base vectors must be orthogonal. Our conclusion is that the product δJiδMi is 1 when J = M and
0 when J �= M , which is the definition of δJM . Using this result in Eq. (3.24) will produce the form
displayed.

15 For the transformation of the product δiM δjM to δij see Footnote 14.
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3.5.1.1 Example problem—the Green deformation tensor

We continue the problem from Section 3.4.1. For selected line elements etched on a
body initially lying in the X1–X2 plane, and with the material and spatial coordinate
systems coinciding, determine the Green deformation tensor for the following:
• Translation. The displacement Û1 = k1, Û2 = k2, Û3 = 0, where k1 and k2 are con-

stants, produces a deformation gradient tensor with F11 = F22 = F33 = 1 and all
other FiK = 0. From Eq. (3.24) we have

C11 = FT
11F11 = 1, C22 = FT

22F22 = 1, C33 = FT
33F33 = 1, (3.27)

and CKL = 0 for all other values of K and L.
• Rotation. For a body with etched line element initially lying along an angle α from

the X1-axis that is rotated about the X3-axis, with the origin of the line element not
allowed to displace, F11 = cos kτ , F12 = − sin kτ , F21 = sin kτ , F22 = cos kτ , F33 = 1
and all other FiK = 0. Again, from Eq. (3.24) we obtain

C11 = FT
11F11 + FT

12F21 + FT
13F31 = F11F11 + F21F21 + F31F31 = cos2 kτ + sin2 kτ = 1,

C12 = C21 = 0,C22 = 1, C33 = FT
33F33 = 1, (3.28)

and CKL = 0 for all other values of K and L.
• Deformation. With the simple extension, x1 = kX1, and Eq. (3.24), F11 = k, F22 =

F33 = 1 and all other FiK = 0, and

C11 = FT
11F11 = k2, C22 = FT

22F22 = 1, C33 = FT
33F33 = 1, (3.29)

with CKL = 0 for all other values of K and L.

3.5.2 The Lagrangian strain tensor
With Eq. (3.24) substituted into Eq. (3.23),

ds2 − dS2 = dXT ·
⎡
⎣∂Û

∂X
+
(

∂Û
∂X

)T

+
(

∂Û
∂X

)T

· ∂Û
∂X

⎤
⎦ · dX = 2dXT · E · dX,

ds2 − dS2 = dXT
K

[
∂ÛK

∂XL
+ ∂ÛL

∂XK
+ ∂ÛN

∂XK

∂ÛN

∂XL

]
dXL = 2dXT

K EKLdXL. (3.30)

The tensor E is the Lagrangian strain tensor, formally defined as

E = 1
2

(C − I) = 1
2

⎡
⎣∂Û

∂X
+
(

∂Û
∂X

)T

+
(

∂Û
∂X

)T

· ∂Û
∂X

⎤
⎦ ,
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EKL = 1
2

(CKL − δKL) = 1
2

(
∂ÛK

∂XL
+ ∂ÛL

∂XK
+ ∂ÛN

∂XK

∂ÛN

∂XL

)
. (3.31)

Note the following regarding the Lagrangian strain tensor:
• The term 1

2 appearing in the definition is necessary for E to properly transform as
a tensor;

• The strain contains both linear ( ∂Û
∂X +

(
∂Û
∂X

)T
or ∂ÛK

∂XL
+ ∂ÛL

∂XK
) and nonlinear

(
(

∂Û
∂X

)T · ∂Û
∂X or ∂Ûi

∂XK

∂Ûi
∂XL

) terms;

• If all the ∂Û
∂X are of the same order and these quantities are small compared to unity,

the nonlinear terms can be neglected;
• The strain is symmetric, that is, E = ET or EKL = ELK ;
• The deformation datum for the diagonal components (EIJ with I = J) of E is zero,

not unity as was the case with C.

3.5.2.1 Example problem—the Lagrangian strain tensor

We continue the problem from Sections 3.4.1 and 3.5.1.1. For selected line elements
etched on a body initially lying in the X1–X2 plane, and with the material and spatial
coordinate systems coinciding, determine the Lagrangian strain tensor for the following:
• Translation. The displacement Û1 = k1, Û2 = k2, Û3 = 0, where k1 and k2 are con-

stants, produces a Green deformation tensor with C11 = C22 = C33 = 1 and all other
CKL = 0. From Eq. (3.31) we get

E11 = 1
2

(C11 − 1) = 0, E22 = 1
2

(C22 − 1) = 0, E33 = 1
2

(C33 − 1) = 0, (3.32)

and EKL = 0 for all other values of K and L. This is expected since translation
produces no deformation.

• Rotation. For a body with etched line element initially lying along an angle α from
the X1-axis that is rotated about the X3-axis, with the origin of the line element
not allowed to displace, C11 = C22 = C33 = 1 and all other CKL = 0. As was the case
with translation, all EKL vanish, again producing no strain.

• Deformation. For the simple extension, x1 = kX1, C11 = k2, C22 = C33 = 1 and all
other CKL = 0. From Eq. (3.31) we obtain

E11 = 1
2

(C11 − 1) = 1
2
(
k2 − 1

)
, (3.33)

and EKL = 0 for all other values of K and L. We have stretch of the element along
the X1-axis (i.e., ds2 − dS2 = (k2 − 1

)
dX2

1 ), but no deformation in any other direc-
tion.
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Table 3.1 Summary comparison of Lagrangian and Eulerian strain tensorsa

Strainb Coordinates Deformationb Deformation gradientb

Lagrangian (E) Material (X) Green (C) F
Eulerian (Ĕ) Spatial (x) Cauchy (C̆) F−1

a The logarithmic strain tensor (Section 3.5.4) is sufficiently different to be considered separately.
b Second order tensor.

3.5.3 The Eulerian strain tensor
If Eq. (3.26) is substituted into Eq. (3.25), then

ds2 − dS2 = dxT ·
[

∂û
∂x

+
(

∂û
∂x

)T

−
(

∂û
∂x

)T

· ∂û
∂x

]
· dx = 2dxT · Ĕ · dx,

ds2 − dS2 = dxT
k

[
∂ ûk

∂xl
+ ∂ ûl

∂xk
− ∂ ûm

∂xk

∂ ûm

∂xl

]
dxl = 2dxkT Ĕkldxl. (3.34)

The tensor Ĕ is the Eulerian strain tensor, formally defined as

Ĕ = 1
2

(
I − C̆

)
= 1

2

[
∂û
∂x

+
(

∂û
∂x

)T

−
(

∂û
∂x

)T

· ∂û
∂x

]
,

Ĕkl = 1
2

(
δkl − C̆kl

)
= 1

2

(
∂ ûk

∂xl
+ ∂ ûl

∂xk
− ∂ ûm

∂xk

∂ ûm

∂xl

)
. (3.35)

Table 3.1 summarizes the distinguishing features of the Lagrangian and Eulerian strain
tensors. The Lagrangian strain has as its focus the initial position of an element; the
Eulerian strain has as its focus the deformed position of an element.

3.5.4 The Logarithmic strain tensor
Our choosing to measure strain as the difference ds2 − dS2 led to the definition of
the Lagrangian strain tensor. In this section we select an alternative measure of strain
involving the stretch ratio �(N), where

�(N) =
√

ds2

dS2 =
√

dxT · dx
dXT · dX

, �(N) =
√

dxkdxk

dXKdXK
, (3.36)

where the subscript (N) indicates that � is associated with a direction in the global
material coordinate system whose unit vector of direction is N. The stretch ratio has
the value one if there is no deformation in direction N.

By Eq. (3.9),

�(N) =
√

dXT · FT · F · dX
dXT · dX

, �(N) =
√

dXRFkRFkSdXS

dXKdXK
, (3.37)
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or, with the application of Eq. (3.24),

�2
(N) = dXT

√
dXT · dX

· FT · F · dX√
dXT · dX

= NT · FT · F · N = NT · C · N,

�2
(N) = dXR√

dXKdXK
FkRFkS

dXS√
dXLdXL

= NRFkRFkSNS = NRCRSNS, (3.38)

where we recognize dXR√
dXK dXK

as the component of N along the XR-axis.
With the above preliminaries, we define the logarithmic strain as

Ẽ = 1
2

lnC = lnC
1
2 . (3.39)

The definition of Ẽ is complex, involving the logarithm of a tensor. Using properties
of lnC detailed by Khan and Huang [9], we can say the following about Ẽ:
• Ẽ has the same principal directions (i.e., eigenvectors, see Section A.5.2.3 of Ap-

pendix A) as C;
• The principal values (i.e., eigenvalues) of Ẽ are 1

2 lnλi, where λi are the principal
values of C.
Fortunately, all applications of Eq. (3.39) to tubular design in this book are such

that, in the local coordinate system, C is a diagonal tensor, that is, CKL = 0 if K �= L. In
this special case the characteristic equation for C (see Section A.5.2.3 of Appendix A)
becomes ⎡

⎢⎣
C11 − λ 0 0

0 C22 − λ 0
0 0 C33 − λ

⎤
⎥⎦
⎡
⎢⎣

v1

v2

v3

⎤
⎥⎦=

⎡
⎢⎣

0
0
0

⎤
⎥⎦ , (3.40)

which has nonzero solution v if and only if (C11 − λ) (C22 − λ) (C33 − λ) = 0. We can
write the solutions of this cubic equation by inspection—λ1 = C11, λ2 = C22, λ3 = C33.
The corresponding logarithmic strain tensor is Ẽ11 = 1

2 ln C11, Ẽ22 = 1
2 ln C22, Ẽ33 =

1
2 ln C33, all other ẼKL = 0.

3.5.4.1 Example problem—the Logarithmic strain tensor

We continue the problem from Sections 3.4.1 and 3.5.1.1, only this time choosing
logarithmic strain as our strain measure. For selected line elements etched on a body
element initially lying in the X1–X2 plane, and with the material and spatial coordinate
systems coinciding, determine the logarithmic strain tensor for the following:
• Translation. The displacement Û1 = k1, Û2 = k2, Û3 = 0, where k1 and k2 are

constants, produces a Green deformation tensor with C11 = C22 = C33 = 1 and
all other CKL = 0. Inasmuch as C11, C22 and C33 are the eigenvalues of C, and
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from Eq. (3.39),

Ẽ11 = 1
2

ln 1 = 0, Ẽ22 = 1
2

ln 1 = 0, Ẽ33 = 1
2

ln 1 = 0, (3.41)

and ẼKL = 0 for all other values of K and L. This is expected since translation
produces no deformation.

• Rotation. For a body with etched line element initially lying along an angle α from
the X1-axis that is rotated about the X3-axis, with the origin of the line element
not allowed to displace, C11 = C22 = C33 = 1 and all other CKL = 0. As was the case
with translation, all ẼKL vanish, again producing no strain.

• Deformation. For the simple extension, x1 = kX1, C11 = k2, C22 = C33 = 1 and all
other CKL = 0. From Eq. (3.39) we have

Ẽ11 = 1
2

ln (C11) = 1
2

ln k2 = ln k, (3.42)

and ẼKL = 0 for all other values of K and L. We have stretch of the element along
the X1-axis (i.e., �(1) = k), but no deformation in any other direction.

3.5.5 Relating strain definitions
The strain measures discussed here—Lagrangian, Eulerian and logarithmic—are among
a large number of possible strain definition candidates. These three definitions are, how-
ever, fairly popular and can be conveniently related.

First, anticipating sections to follow on infinitesimal strain, we note that for the
special case of strain only along the X1-axis of an element initially lying along that axis,
the Lagrangian strain is (see Eq. (3.31))

E11 = ∂Û1

∂X1
+ 1

2

(
∂Û1

∂X1

)2

, (3.43)

and, assuming the global and spatial coordinate systems coincide, the Eulerian strain is
(see Eq. (3.35))

Ĕ11 = ∂ û1

∂x1
− 1

2

(
∂ û1

∂x1

)2

, (3.44)

where ∂Û1
∂X1

= ∂ û1
∂x1

.
The logarithmic strain is (see Eqs. (3.24) and (3.39))

Ẽ11 = ln
√

C11 = 1
2

ln

⎛
⎝1 + 2

∂Û1

∂X1
+
(

∂Û1

∂X1

)2
⎞
⎠= ln

√√√√1 + 2
∂Û1

∂X1
+
(

∂Û1

∂X1

)2

. (3.45)
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If the displacements and displacement gradients are small, Û1 � 1 and ∂Û1
∂X1

� 1, the
Lagrangian and Eulerian strains can be respectively approximated by

E11 ≈ ∂Û1

∂X1
, Ĕ11 ≈ ∂ û1

∂x1
. (3.46)

For the logarithmic strain, and recalling that the series approximation of the natural
logarithm is [10]

ln (1 + x) = x − x2

2
+ x3

3
− x4

4
+ · · · (−1 < x ≤ 1) , (3.47)

we have

Ẽ11 ≈ ∂Û1

∂X1
, (3.48)

that is, for small displacements and displacement gradients, all three strain measures
approach the same value.

From the definition of stretch ratio in Eq. (3.36), aided by use of Eq. (3.7),16

�(1) = dx1

dX1
= dX1 + dÛ1

dX1
= 1 + E11|inf = 1 + Ẽ11|inf , (3.49)

where the (. . .)|inf signifies “infinitesimal.” Further, since for this simple deformation,
�(1) = √

C11, from Eqs. (3.45) and (3.49) we have

Ẽ11 = ln
√

C11 = ln
√

�2
(1) = ln

(
1 + E11|inf

)
. (3.50)

This relation will be of importance in subsequent problems solving using logarithmic
strain.

For large strain the three finite strain definitions diverge. Fig. 3.4 illustrates the be-
havior of the strain measures for the simple deformation of this section. Also plotted is
the displacement gradient itself, ∂Û1

∂X1
(= ∂ û1

∂x1
), which from Eqs. (3.46) and (3.48) is also

the infinitesimal strain.

3.5.6 Volume and area change with deformation
With deformation, both volume and area changes occur. The ability to quantify these
changes is particularly important for finite deformation problems as one must, for ex-
ample, update the local area during deformation to arrive at an accurate measure of
stress (see Section 7.3 of Chapter 7).

16 The shifter value is unity since the global and spatial coordinate systems are identical.
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Figure 3.4 Comparison of Lagrangian, Eulerian and logarithmic strain measures. For small strains,
the three measures approach the same value.

3.5.6.1 Volume change

Consider an infinitesimal element (see Fig. 3.5) originally with sides dP, dQ and dR.
The volume of this element is17

dV = dR · (dP × dQ
)
, dV = dRIεIJKdPJdQK . (3.51)

From Eq. (3.10), following deformation

dp = F · dP, dpi = FiJdPJ ,

dq = F · dQ, dqi = FiJdQJ , (3.52)

dr = F · dR, dri = FiJdRJ ,

the deformed infinitesimal element volume is

dv = dr · (dp × dq
)

dv = riεijkpjqk

= (F · dR
) · [(F · dP

)× (F · dQ
)]

, = FiLdRLεijkFjMdPMFkNdQN . (3.53)

17 The cross product dP × dQ = ∣∣dP∣∣ ∣∣dQ∣∣ sin∠PQePQ, where ∠PQ is the angle between dP and dQ
and ePQ is a unit vector perpendicular to the plane of dP and dQ—see Section A.3.1.4 of Appendix A.
Taking the dot product of dR with ePQ, which is the height of the parallelepiped, completes the volume
calculation.
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Figure 3.5 Volume and area of a deforming infinitesimal element. The material volume dV = dR ·
(dP × dQ) is deformed to the spatial volume dv = dr · (dp × dq). The material area dA = dP × dQ is
deformed to the spatial area da = dp × dq.

We introduce the Jacobian J , that is, the determinant of the deformation gradient F.
From Eq. (A.97) we have

J = detF = 1
6
εijkεLMNFiLFjMFkN . (3.54)

Further, from the epsilon–delta identity (Eq. (A.26)) we obtain

εijkεijk = δjjδkk − δjkδkj = 3 × 3 − 3 = 6. (3.55)

Applying Eq. (3.55) to Eq. (3.54), we arrive at the useful relation [11,12]

εLMNJ = εLMN detF = εijkFiLFjMFkN . (3.56)

If we substitute Eq. (3.56) into Eq. (3.53), then

dv = J dR · (dP × dQ
)= J dV , dv = J εLMNdRLdPMdQN = J dV , (3.57)

where the last substitution in either notation recalls Eq. (3.51).
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3.5.6.2 Area change

Consider an infinitesimal area (see Fig. 3.5) originally with sides dP and dQ. We define
an area vector dA perpendicular to the vectors dP and dQ whose area is that of a
parallelogram, computed with the cross product (see Section A.3.1.4 of Appendix A)

∣∣dA∣∣= ∣∣dP × dQ
∣∣= ∣∣dP∣∣ ∣∣dQ∣∣ sin∠PQ, dAI = εIJKdPJdQK . (3.58)

From Eq. (3.10), following deformation

dp = F · dP, dpi = FiJdPJ ,

dq = F · dQ, dqi = FiJdQJ , (3.59)

and, using Eq. (A.20), the deformed area is

da = dp × dq dai = εijkdpjdqk

= (F · dP
)× (F · dQ

)
, = εijkFjMFkNdPMdQN . (3.60)

Recall Eq. (3.56). Postmultiplying both sides of this relation by F−1
Nh [11,12] yields

εLMNJF−1
Nh = εijkFiLFjMFkNF−1

Nh = εijkFiLFjMδkh = εijhFiLFjM = εhijFiLFjM , (3.61)

where we have used the fact that F ·F = I, FkNF−1
Nh = δkh. If we substitute Eq. (3.61) into

Eq. (3.60), then

da = J
(
F−1)T · dA, dai = J εOMNF−1

Oi dPMdQN = J F−1
Oi dAO. (3.62)

3.6. LAGRANGIAN STRAIN IN CYLINDRICAL COORDINATES

To this point the kinematic discussion has focused on the X1–X2–X3 coordinate sys-
tem that is Cartesian or rectangular—the coordinate lines are linear and orthogonal.
A second coordinate system playing a major role in tubular studies is the cylindrical
coordinate system. The cylindrical coordinate system is termed curvilinear in that the
coordinate lines may be curved, although intersections of coordinate lines remain or-
thogonal.

Fig. 3.6 illustrates an R–	–Z cylindrical coordinate system having the same origin
as the global X1–X2–X3 coordinate system used previously. The R-coordinate axis lies
in the X1–X2 plane and is measured along a radius from the origin of the X1–X2–X3

coordinate system. The 	-coordinate lies in the X1–X2 plane and is an angular mea-
surement from the positive X1-axis toward the positive X2-axis. The Z-coordinate is
collinear with the X3-axis. The eR, e	 and eZ unit base vectors are orthogonal and
form a right-handed system such that eR × e	 = eZ .



Kinematics 51

Figure 3.6 A cylindrical coordinate system superimposed on the global coordinate system. The e	
base unit vector lies in the X1–X2 plane. The eZ base unit vector is parallel to the X3-axis.

A spatial cylindrical coordinate system using coordinates (r–θ–z) and having unit
base vectors gr , gθ and gz could similarly be associated with the x1–x2–x3 coordinate
system of Fig. 3.2 (see Section 3.7).

The mathematics of tensor analysis is available for general curvilinear systems [13,14],
but the use of such is beyond the scope of this text. There exist several alternatives to the
elegance of the curvilinear formulations of general tensor analysis. For example, Fung
[15] computes18 the derivatives with respect to X1, X2 and X3 in terms of derivatives
with respect to R, 	 and Z, and then applies coordinate transformations to the dis-
placement vector u and the strain tensor E to accomplish the transition to cylindrical
coordinates. As Fung mentions, this method is straightforward but somewhat tedious.
Such computations are further complicated here as we are addressing three dimensions
and have not yet ignored any nonlinear terms.

We shall follow an alternative approach that revisits the derivation in rectangular
coordinates, this time expressing the position and displacement vectors in cylindrical
coordinates. Retracing previous work19 offers the opportunity to collect insights into
the origin of the various terms in the cylindrical coordinate strain formulation.

18 Fung’s exposition [15] is actually for two-dimensional, polar coordinates (no X3 = Z-axis), but the
principle can be followed for the three-dimensional case of cylindrical coordinates.

19 Although we will follow previous work, we will forego explicit derivation of the Green deformation
tensor C as we will not find use for this tensor in subsequent sections.
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Figure 3.7 Illustration of the derivation of de	/d	. The unit vector has a constant magnitude of
unity, but its direction changes with 	. Similar behavior is exhibited by eR .

As we revisit selected equations, our work will leave the direct notation of expres-
sions untouched; it is the equations in index notation that will require reexpression.
These changes will have two sources—the curvilinear nature of the 	 coordinate lines
and, as a consequence, the nonconstant character of the eR and e	 unit base vectors.
Consider Fig. 3.7 that views the cylindrical system of Fig. 3.6 from a position along the
negative Z-axis. The derivatives of eR and e	 with respect to 	 are controlled by the
polar angle. There is no change in length of either unit vector, but the azimuth of the
vector changes as

deR

d	
= e	,

de	

d	
= −eR, (3.63)

implying that for a vector v = V̂(X, τ ) that

dv = ∂V̂
∂R

dR + 1
R

∂V̂
∂	

Rd	 + ∂V̂
∂Z

dZ + ∂V̂
∂τ

dτ

=
(

∂V̂R

∂R
eR + ∂V̂	

∂R
e	 + ∂V̂Z

∂R
eZ

)
dR

+
(

1
R

∂V̂R

∂	
eR + V̂R

R
∂eR

∂	
+ 1

R
∂V̂	

∂	
e	 + V̂	

R
∂e	

∂	
+ 1

R
∂V̂Z

∂	
eZ

)
Rd	
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+
(

∂V̂R

∂Z
eR + ∂V̂	

∂Z
e	 + ∂V̂Z

∂Z
eZ

)
dZ +

(
∂V̂R

∂τ
eR + ∂V̂	

∂τ
e	 + ∂V̂Z

∂τ
eZ

)
dτ

(3.64)

=
[

∂V̂R

∂R
dR +

(
1
R

∂V̂R

∂	
− V̂	

R

)
Rd	 + ∂V̂R

∂Z
dZ + ∂V̂R

∂τ
dτ

]
eR

+
[

∂V̂	

∂R
dR +

(
V̂R

R
+ 1

R
∂V̂	

∂	

)
Rd	 + ∂V̂	

∂Z
dZ + ∂V̂	

∂τ
dτ

]
e	

+
[

∂V̂Z

∂R
dR + 1

R
∂V̂Z

∂	
Rd	 + ∂V̂Z

∂Z
dZ + ∂V̂Z

∂τ
dτ

]
eZ,

which contains extra terms in the R and 	 components due to Eq. (3.63). As part of
the arrangement of terms, the differential d	 in Eq. (3.64) is associated with R, in some
cases by multiplying a term by R

R = 1. This grouping renders all differential quantities’
lengths (see Fig. 3.8). Further (see Eq. (3.74)) the grouping makes all the cylindrical
components of the Lagrangian strain tensor dimensionless.

In cylindrical coordinates the vectors X and x can be written (see Eqs. (3.6) and
(3.7) regarding the latter)

X = ReR + ZeZ, (3.65)

x = (R + uR)eR + u	e	 + (Z + uZ)eZ, (3.66)

where

u = û(r, θ,z, τ ) = ûrgr + ûθgθ + ûzgz

= Û(R,	,Z, τ ) = ÛReR + Û	e	 + ÛZeZ, (3.67)

and both eR and e	 are functions of 	.
In writing Eqs. (3.66) and (3.67), we have simplified all shifters by setting the offset

between the material and spatial coordinate systems to zero (i.e., o = 0) and aligning
like coordinate axes (i.e., eR = gr , e	 = gθ , eZ = gz). This renders all shifters identical
to Kronecker deltas, essentially eliminating these terms from the deformation gradient.

3.6.1 Deformation gradient in cylindrical coordinates
Using Eqs. (3.65) and (3.66) in Eq. (3.11) yields

F =
⎡
⎢⎣

1 + ∂ÛR
∂R

1
R

∂ÛR
∂	

− Û	

R
∂ÛR
∂Z

∂Û	

∂R 1 + ÛR
R + 1

R
∂Û	

∂	

∂Û	

∂Z
∂ÛZ
∂R

1
R

∂ÛZ
∂	

1 + ∂ÛZ
∂Z

⎤
⎥⎦ , (3.68)

where now u = Û(R,	,Z, τ ).
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Figure 3.8 Illustration of Eq. (3.69). The arc length Rd	 measures distance along the 	 coordinate.
The e	 base unit vector lies in the X1–X2 plane. The eZ base unit vector is parallel to the X3-axis.

3.6.2 Strain in cylindrical coordinates
An increment in X is

dX = dReR + Rd	e	 + dZeZ . (3.69)

Eq. (3.69) leaves us with what we would expect for a differential element in cylindri-
cal coordinates—a component having the units of length in each of the three coordinate
directions. Accounting for deR/d	 introduces R to the 	 component of dX so that the
measure of circular arc Rd	 appears naturally (see Fig. 3.8).

An increment in u is found by substituting Eq. (3.67) into Eq. (3.64):

du =
[

∂ÛR

∂R
dR +

(
1
R

∂ÛR

∂	
− Û	

R

)
Rd	 + ∂ÛR

∂Z
dZ + ∂ÛR

∂τ
dτ

]
eR

+
[

∂Û	

∂R
dR +

(
ÛR

R
+ 1

R
∂Û	

∂	

)
Rd	 + ∂Û	

∂Z
dZ + ∂Û	

∂τ
dτ

]
e	 (3.70)

+
[

∂ÛZ

∂R
dR + 1

R
∂ÛZ

∂	
Rd	 + ∂ÛZ

∂Z
dZ + ∂ÛZ

∂τ
dτ

]
eZ .

If we use the fact that dx = dX + du in Eq. (3.22), then

ds2 − dS2 = dxT · dx − dXT · dX = (dX + du
)T · (dX + du

)− dXT · dX

= dXT · dX + 2dXT · du + duT · du − dXT · dX (3.71)

= 2dXT · du + duT · du = (2dXT + duT ) · du.
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Eq. (3.71) makes use of the commutative and distributive properties of the dot product
(see Section A.3.1.3 of Appendix A) and the facts that

(
dX + du

)T = dXT + duT and
dXT · du = duT · dX. With Eqs. (3.69) and (3.70) substituted into Eq. (3.71),20

ds2 − dS2 =
{[

2dR + ∂ÛR

∂R
dR +

(
1
R

∂ÛR

∂	
− Û	

R

)
Rd	 + ∂ÛR

∂Z
dZ

]
eR

+
[

2Rd	 + ∂Û	

∂R
dR +

(
ÛR

R
+ 1

R
∂Û	

∂	

)
Rd	 + ∂Û	

∂Z
dZ

]
e	

+
[

2dZ + ∂ÛZ

∂R
dR + 1

R
∂ÛZ

∂	
Rd	 + ∂ÛZ

∂Z
dZ

]
eZ

}

·
{[

∂ÛR

∂R
dR +

(
1
R

∂ÛR

∂	
− Û	

R

)
Rd	 + ∂ÛR

∂Z
dZ

]
eR (3.72)

+
[

∂Û	

∂R
dR +

(
ÛR

R
+ 1

R
∂Û	

∂	

)
Rd	 + ∂Û	

∂Z
dZ

]
e	

+
[

∂ÛZ

∂R
dR + 1

R
∂ÛZ

∂	
Rd	 + ∂ÛZ

∂Z
dZ

]
eZ

}
.

Eq. (3.72) can be simplified by carrying out the indicated dot products and collecting
terms to

ds2 − dS2 =
⎡
⎣2

∂ÛR

∂R
+
(

∂ÛR

∂R

)2

+
(

∂Û	

∂R

)2

+
(

∂ÛZ

∂R

)2
⎤
⎦dRdR

+
⎡
⎣2

(
ÛR

R
+ 1

R
∂Û	

∂	

)
+
(

1
R

∂ÛR

∂	
− Û	

R

)2

+
(

ÛR

R
+ 1

R
∂Û	

∂	

)2

+
(

1
R

∂ÛZ

∂	

)2
⎤
⎦Rd	Rd	

+
⎡
⎣2

∂ÛZ

∂Z
+
(

∂ÛR

∂Z

)2

+
(

∂Û	

∂Z

)2

+
(

∂ÛZ

∂Z

)2
⎤
⎦dZdZ

+ 2

[(
1
R

∂ÛR

∂	
− Û	

R

)
+ ∂ÛR

∂R

(
1
R

∂ÛR

∂	
− Û	

R

)
+ ∂Û	

∂R
(3.73)

+ ∂Û	

∂R

(
ÛR

R
+ 1

R
∂Û	

∂	

)
+ ∂ÛZ

∂R
1
R

∂ÛZ

∂	

]
RdRd	

20 In this substitution, dτ = 0 as we wish to examine spatial gradients at a specific time.
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+ 2

[(
1
R

∂ÛR

∂	
− Û	

R

)
∂ÛR

∂Z
+ ∂Û	

∂Z
+ ∂Û	

∂Z

(
ÛR

R
+ 1

R
∂Û	

∂	

)

+ 1
R

∂ÛZ

∂	
+ 1

R
∂ÛZ

∂	

∂ÛZ

∂Z

]
Rd	dZ

+ 2

[
∂ÛZ

∂R
+ ∂ÛR

∂Z
+ ∂ÛR

∂Z
∂ÛR

∂R
+ ∂Û	

∂Z
∂Û	

∂R
+ ∂ÛZ

∂Z
∂ÛZ

∂R

]
dZdR.

Eq. (3.73) can be rewritten in terms of the components of the strain tensor in
cylindrical coordinates as

ds2 − dS2 = 2ERRdRdR + 2E		Rd	Rd	 + 2EZZdZdZ + 2 (ER	 + E	R)RdRd	

+ 2 (E	Z + EZ	)Rd	dZ + 2 (ERZ + EZR)dZdR, (3.74)

where ER	 = E	R, E	Z = EZ	 and ERZ = EZR. When Eqs. (3.73) and (3.74) are com-
pared, the components of strain emerge:

ERR = ∂ÛR

∂R
+ 1

2

⎡
⎣
(

∂ÛR

∂R

)2

+
(

∂Û	

∂R

)2

+
(

∂ÛZ

∂R

)2
⎤
⎦ , (3.75)

E		 = ÛR

R
+ 1

R
∂Û	

∂	
+ 1

2

⎡
⎣
(

1
R

∂ÛR

∂	
− Û	

R

)2

+
(

ÛR

R
+ 1

R
∂Û	

∂	

)2

+
(

1
R

∂ÛZ

∂	

)2
⎤
⎦ ,

(3.76)

EZZ = ∂ÛZ

∂Z
+ 1

2

⎡
⎣
(

∂ÛR

∂Z

)2

+
(

∂Û	

∂Z

)2

+
(

∂ÛZ

∂Z

)2
⎤
⎦ , (3.77)

ER	 = E	R = 1
2

[
∂Û	

∂R
+
(

1
R

∂ÛR

∂	
− Û	

R

)
+ ∂ÛR

∂R

(
1
R

∂ÛR

∂	
− Û	

R

)

+ ∂Û	

∂R

(
ÛR

R
+ 1

R
∂Û	

∂	

)
+ ∂ÛZ

∂R
1
R

∂ÛZ

∂	

]
, (3.78)

E	Z = EZ	 = 1
2

[
1
R

∂ÛZ

∂	
+ ∂Û	

∂Z
+
(

ÛR

R
+ 1

R
∂Û	

∂	

)
∂Û	

∂Z

+
(

1
R

∂ÛR

∂	
− Û	

R

)
∂ÛR

∂Z
+ 1

R
∂ÛZ

∂	

∂ÛZ

∂Z

]
, (3.79)

EZR = ERZ = 1
2

[
∂ÛR

∂Z
+ ∂ÛZ

∂R
+ ∂ÛR

∂Z
∂ÛR

∂R
+ ∂Û	

∂Z
∂Û	

∂R
+ ∂ÛZ

∂Z
∂ÛZ

∂R

]
. (3.80)
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Eqs. (3.75)–(3.80) are the final expressions for the Lagrangian strain tensor expressed in
terms of the global material coordinate system and displacement.

3.6.3 Special cases of Lagrangian strain in cylindrical coordinates
The geometry of the structure or the nature of the displacement field may be such as to
allow simplification of Eqs. (3.75)–(3.80). The more important of these simplifications
to tubular design are detailed in the sections to follow.

3.6.3.1 Infinitesimal deformation

If all displacements and displacement gradients are small enough so that second or-
der terms in these infinitesimals can be neglected (i.e., ÛR � 1 and ∂ÛR

∂XR
� 1, etc.),

Eqs. (3.75)–(3.80) become21

ERR = ∂ÛR

∂R
, (3.81)

E		 = ÛR

R
+ 1

R
∂Û	

∂	
, (3.82)

EZZ = ∂ÛZ

∂Z
, (3.83)

ER	 = E	R = 1
2

[
∂Û	

∂R
+
(

1
R

∂ÛR

∂	
− Û	

R

)]
, (3.84)

E	Z = EZ	 = 1
2

(
1
R

∂ÛZ

∂	
+ ∂Û	

∂Z

)
, (3.85)

EZR = ERZ = 1
2

(
∂ÛR

∂Z
+ ∂ÛZ

∂R

)
. (3.86)

The volume change for an infinitesimal depends, from Eq. (3.57), on the determi-
nant of the deformation gradient. From Eq. (3.68), we compute

J =
(

1 + ∂ÛR

∂R

)[(
1 + ÛR

R
+ 1

R
∂Û	

∂	

)(
1 + ∂ÛZ

∂Z

)
− O(2)

]
− O(2) + O(2)

= 1 + ∂ÛR

∂R
+ ÛR

R
+ 1

R
∂Û	

∂	
+ ∂ÛZ

∂Z
+ O(2), (3.87)

21 Inasmuch as this entire section is devoted to infinitesimal deformation, although the simplifications are
applied to the Lagrangian strain tensor, the resulting expressions can be associated with Eulerian and
logarithmic strain also, as in the limit of small displacements and displacement gradients, these three
strains are indistinguishable (see Section 3.5.5).
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Figure 3.9 Physical interpretation of strain component EZZ . The 	-axis is perpendicular to the page,
directed away from the reader. For clarity the two states of the infinitesimal element have been slightly
offset from the Z-axis.

where O(2) indicates a quantity that is at least second order in infinitesimal quantities.
Comparing Eq. (3.87) with Eqs. (3.81)–(3.83) gives

dv
dV

= J = 1 + ERR + E		 + EZZ,
dv − dV

dV
= ERR + E		 + EZZ, (3.88)

that is, the change in infinitesimal volume as compared to the original volume is, un-
der the assumption of infinitesimal deformation, the sum of the three normal strain
components.22 This same result for J can be useful in the formula for area change,
Eq. (3.62).

Physical interpretation of infinitesimal strain components

By examining simple deformations of properly aligned infinitesimal line elements, we
can attach physical meaning to the components of infinitesimal strain.

Extension Consider an infinitesimal line element originally lying along the Z-axis
that undergoes a deformation having only a displacement component along the Z-axis.
Then ÛR = Û	 = 0.

As depicted in Fig. 3.9, initially the element has length dZ. Due to deformation
along the Z-axis, the left side of the element displaces a distance Ûz and the right side
of the element displaces a distance ÛZ +

(
∂ÛZ/∂Z

)
dZ, resulting in a length change of(

∂Ûz/∂Z
)

dZ. According to Eqs. (3.74) and (3.83), the length change of the element,
as compared to its original length, is

ds2 − dS2 = (ds − dS
) (

ds + dS
)= 2

∂ÛZ

∂Z
dZdZ, (3.89)

22 Consideration of the procedure used to arrive at Eq. (3.88) will lead one to conclude that the same
is true for volumetric strain in a Cartesian or rectangular coordinate system—under the assumption of
infinitesimal deformation, dv−dV

dV = EKK .
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or

ds − dS = 2
ds + dS

∂ÛZ

∂Z
dZdZ ≈ ∂ÛZ

∂Z
dZ, (3.90)

where we have used the fact that for infinitesimal strain, ds ≈ dS = dZ. That is, for
the case of infinitesimal strain, the linear portion of EZZ is the change in length, as
compared to the original length, of a line element originally positioned along the Z-axis
and undergoing extension in the Z-direction

ds − dS
dS

= dz − dZ
dZ

≈ ∂ÛZ

∂Z
= EZZ . (3.91)

The above argument can be used to explain the physical meaning of ERR = ∂ÛR/∂R
and any of the three EK̄K̄ = ∂ÛK̄/∂XK̄ in a rectangular coordinate system, where the
bar indicates the indices are not to be summed.

In the 	 coordinate direction for a cylindrical coordinate system, we can also use
the same argument as above, provided we recognize (a) the length of the differential
element dS = Rd	 and (b) a displacement in the R direction can also cause a length
change in the differential element.

First, consider a deformation where ÛR = 0, that is, the element only stretches
along the 	 coordinate line. As depicted in Fig. 3.10, initially the element has length23

Rd	. Due to deformation along the 	 coordinate line, the side of the element closest
to the X1-axis displaces24 a distance Û	 and the far side of the element displaces a
distance Û	 +

(
∂Û	/∂	

)
d	, resulting in a length change of

(
∂Û	/∂	

)
d	. According

to Eq. (3.82) with ÛR = 0, the length change of the element, as compared to its original
length, is

ds2 − dS2 = (ds − dS
) (

ds + dS
)= 2

1
R

∂Û	

∂	
Rd	Rd	, (3.92)

or

ds − dS = 2
ds + dS

1
R

∂Û	

∂	
Rd	Rd	 ≈ 1

R
∂Û	

∂	
Rd	, (3.93)

where we have used the fact that for infinitesimal strain, ds ≈ dS = Rd	. That is, the
linear portion of E		 associated with change along the 	 coordinate line is the change
in length, as compared to the original length, of a line element originally positioned

23 Once more the factor R
R = 1 is employed to achieve a length dimension along the 	 coordinate line.

24 In Fig. 3.10 the displacements are shown having a curvature following the coordinate line. This curvature
disappears to whatever degree necessary when the displacements are recognized to be infinitesimal.
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Figure 3.10 Physical interpretation of the 1
R

∂Û	
∂	

term in strain component E		. The Z-axis is per-
pendicular to the page, directed away from the reader. For clarity the two states of the infinitesimal
element have been slightly offset from the 	 coordinate line.

along the 	 coordinate line and only undergoing displacement in the 	-direction

ds − dS
dS

= rdθ − Rd	

Rd	
≈ 1

R
∂Û	

∂	
= E		, ÛR = 0. (3.94)

To examine the ÛR/R term in the linearized E		 strain component, consider a
deformation where Û	 = 0, that is, the element only stretches as it is deformed in the R
coordinate direction.25 As depicted in Fig. 3.11, initially the element has length Rd	.
Due to deformation along the R coordinate line, the element displaces a distance ÛR,
resulting in a length change of ÛRd	. According to Eq. (3.82) with Û	 = 0, the length
change of the element, as compared to its original length, is

ds2 − dS2 = (ds − dS
) (

ds + dS
)= 2

∂ÛR

R
Rd	Rd	, (3.95)

or

ds − dS = 2
ds + dS

ÛR

R
Rd	Rd	 ≈ ÛR

R
Rd	, (3.96)

25 Axisymmetric expansion or contraction of a cylindrical cross section is an example of this type of
deformation.
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Figure 3.11 Physical interpretation of the ÛR
R term in strain component E		. The Z-axis is perpen-

dicular to the page, directed away from the reader.

where we have used the fact that for infinitesimal strain, ds ≈ dS = Rd	. That is, the
linear portion of E		 associated with change along the R coordinate line is the change
in length, as compared to the original length, of a line element originally positioned
along the 	 coordinate line and only undergoing displacement in the R-direction

ds − dS
dS

= rdθ − Rd	

Rd	
≈ ÛR

R
= E		, Û	 = 0. (3.97)

Shear Consider two infinitesimal line elements—one originally lying along the
R-axis (dR = dReR) and one originally lying along the Z-axis (dZ = dZeZ )—that un-
dergo a deformation having no displacement component along the 	 coordinate line.
Then Û	 = 0.

As depicted in Fig. 3.12, initially the angle between the two line elements is π/2
radians or 90◦. Due to radial26 deformation along the Z-axis, the left side of ele-
ment 2 displaces a distance ÛR and the right side of the element displaces a distance
ÛR + (∂ÛR/∂Z)dZ. As Fig. 3.12 illustrates, the differential radial displacement along
the element is (∂ÛR/∂Z)dZ and the tangent of the resulting angle with the Z-axis is
∂ÛR/∂Z. For a small angle, however, the angle (measured in radians) is approximately

26 As indicated in Fig. 3.12, there also exists a (differential) displacement in the Z direction. This displace-
ment has no effect on the current discussion.
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Figure 3.12 Physical interpretation of strain component EZR = ERZ . The 	-axis is perpendicular to
the page, directed away from the reader.

equal to both its sine and tangent.27 We may write

�2 = arctan
∂ÛR

∂Z
≈ ∂ÛR

∂Z
. (3.98)

By a similar argument along the R-axis, we may conclude

�1 = arctan
∂ÛZ

∂R
≈ ∂ÛZ

∂R
. (3.99)

The total decrease in angle between two differential line segments, which were initially
perpendicular and aligned with the R and Z-axes, is therefore

�2 + �1 = ∂ÛR

∂Z
+ ∂ÛZ

∂R
, (3.100)

which, according to Eq. (3.86), is exactly twice the value of the EZR shear strain.
The above argument can be used to explain the physical meaning of

E	Z = (1/2)[(1/R)∂ÛZ/∂	 + ∂Û	/∂Z]
and any of the three

EIJ = (1/2)[∂ÛI/∂XJ + ∂ÛJ/∂XI ], I �= J,

in a rectangular coordinate system.

27 The series expansion [10] of the sine function is sinα = α − α3/3! + α5/5! − α7/7! + · · · , and the series
expansion of the tangent function is tanα = α + (1/3)α3 + (2/15)α5 + (17/315)α7 + · · · . If the higher
order terms in both these expressions are ignored, α ≈ sinα ≈ tanα.
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Figure 3.13 Physical interpretation of strain component ER	 = E	R. Of the two infinitesimal line
segments, the line segment in the e	 direction has been removed for clarity (see Fig. 3.14 for both
line segments). The curved 	-coordinate line requires a correction when measuring angle �2.

Prior to examining ER	, we note that the first two terms on the right-hand side
of Eq. (3.84) are similar to the work described above in the interpretation of ERZ . It
is the origin of the Û	/R term that requires further discussion. To this end, consider
Fig. 3.13 that omits the line segment along the 	-coordinate line and concentrates on
displacement of the dR differential line element.

Due to circumferential deformation along the R coordinate line, the end of the
differential line element closest to the origin displaces a distance Û	 and the other
end of the element displaces a distance Û	 + (∂Û	/∂R)dR. As Fig. 3.13 illustrates,
the differential circumferential displacement along the element is (∂Û	/∂R)dR, and the
tangent of the resulting angle with the R-axis is ∂Û	/∂R. A correction must be made
to this angle, however, since, as indicated in the figure, a portion of the angle is due to
Û	 itself.28 This corrective angle, to be subtracted from �2, has magnitude Û	/R. The
net angle change from the R-coordinate line is therefore

�2 = arctan
∂Û	

∂R
− Û	

R
≈ ∂Û	

∂R
− Û	

R
. (3.101)

Fig. 3.14 now presents the complete problem. The angle �2 is given by Eq. (3.101).
The other angle change is

28 Consider Fig. 3.13 and a deformation Û	 = k, where k is a constant. Then ∂Û	/∂R = 0, and the line
segment dR translates in a parallel fashion. The pertinent, intersecting coordinate lines, however, have
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Figure 3.14 Physical interpretation of strain component ER	 = E	R. Here the complete problem is
displayed, with some details from Fig. 3.13 omitted for clarity.

�1 = arctan
1
R

∂ÛR

∂	
≈ 1

R
∂ÛR

∂	
, (3.102)

and the total angle change is therefore

�2 + �1 = ∂Û	

∂R
− Û	

R
+ 1

R
∂ÛR

∂	
, (3.103)

which, according to Eq. (3.84), is exactly twice the value of the ER	 shear strain.

3.6.3.2 Axisymmetric deformation

If the deformation is axisymmetric, ∂/∂	 = Û	 = 0, and Eqs. (3.75)–(3.80) become

ERR = ∂ÛR

∂R
+ 1

2

⎡
⎣
(

∂ÛR

∂R

)2

+
(

∂ÛZ

∂R

)2
⎤
⎦ , (3.104)

E		 = ÛR

R
+ 1

2

(
ÛR

R

)2

, (3.105)

EZZ = ∂ÛZ

∂Z
+ 1

2

⎡
⎣
(

∂ÛR

∂Z

)2

+
(

∂ÛZ

∂Z

)2
⎤
⎦ , (3.106)

rotated an amount Û	/R without undergoing deformation. Thus, relative to the orthogonal coordinate lines,
the line segment has undergone a (negative) rotation.
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ER	 = E	R = 0, (3.107)

E	Z = EZ	 = 0, (3.108)

EZR = ERZ = 1
2

[
∂ÛR

∂Z
+ ∂ÛZ

∂R
+ ∂ÛR

∂Z
∂ÛR

∂R
+ ∂ÛZ

∂Z
∂ÛZ

∂R

]
. (3.109)

3.6.3.3 Axisymmetric, infinitesimal deformation

If the deformation is both axisymmetric and infinitesimal, Eqs. (3.104)–(3.109) (or
Eqs. (3.81)–(3.86)) become

ERR = ∂ÛR

∂R
, (3.110)

E		 = ÛR

R
, (3.111)

EZZ = ∂ÛZ

∂Z
, (3.112)

ER	 = E	R = 0, (3.113)

E	Z = EZ	 = 0, (3.114)

EZR = ERZ = 1
2

(
∂ÛR

∂Z
+ ∂ÛZ

∂R

)
. (3.115)

3.6.3.4 Generalized plane strain

Generalized plane strain as defined here29 and its special case, plane strain, are usually
employed if one dimension—in the case of a tubular the Z dimension—is much larger
than the other two. For any value of Z the undeformed R–	 plane defined by that Z
value is assumed to remain normal to the Z-axis during deformation and EZZ is at most
constant. This is equivalent to stating that Ûz = k1Z +k2, where k1 and k2 are constants,
and ∂ÛR/∂Z = ∂Û	/∂Z = 0. Eqs. (3.75)–(3.80) become

ERR = ∂ÛR

∂R
+ 1

2

⎡
⎣
(

∂ÛR

∂R

)2

+
(

∂Û	

∂R

)2
⎤
⎦ , (3.116)

E		 = ÛR

R
+ 1

R
∂Û	

∂	
+ 1

2

⎡
⎣
(

1
R

∂ÛR

∂	
− Û	

R

)2

+
(

ÛR

R
+ 1

R
∂Û	

∂	

)2
⎤
⎦ , (3.117)

29 Here we deal with a subset of truly generalized plane strain. In the more general case, the undeformed
configuration can be curved, the body to be analyzed being imagined as extruded between two (not
necessarily parallel) bounding planes. Applications of generalized plane strain in this book only consider
a tube whose bounding planes are parallel and whose extrusion axis is a straight line.
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EZZ = ∂ÛZ

∂Z
+ 1

2

(
∂ÛZ

∂Z

)2

= k1 + 1
2

k2
1, (3.118)

ER	 = E	R = 1
2

[
∂Û	

∂R
+
(

1
R

∂ÛR

∂	
− Û	

R

)
+ ∂ÛR

∂R

(
1
R

∂ÛR

∂	
− Û	

R

)

+ ∂Û	

∂R

(
ÛR

R
+ 1

R
∂Û	

∂	

)]
, (3.119)

E	Z = EZ	 = 0, (3.120)

EZR = ERZ = 0. (3.121)

Plane strain, a special case of generalized plane strain, occurs when k1 = 0. In this case,
EZZ = 0.

A review of Eqs. (3.116)–(3.121) reveals that at this level of simplification defor-
mation in the R–	 (cross-sectional) plane is decoupled from deformation normal to a
cross-section. The value of k2 is immaterial to the analysis of cross-sectional deforma-
tion.

3.6.3.5 Generalized plane strain, axisymmetric deformation

If to generalized plane strain we add the assumption of axisymmetry, then Ûz =
k1Z + k2, where k1 and k2 are constants, Û	 = 0, and ∂ÛR/∂Z = ∂Û	/∂Z = ∂/∂	 = 0,
and Eqs. (3.104)–(3.109) (or Eqs. (3.116)–(3.121)) become

ERR = ∂ÛR

∂R
+ 1

2

(
∂ÛR

∂R

)2

, (3.122)

E		 = ÛR

R
+ 1

2

(
ÛR

R

)2

, (3.123)

EZZ = k1 + 1
2

k2
1, (3.124)

ER	 = E	R = 0, (3.125)

E	Z = EZ	 = 0, (3.126)

EZR = ERZ = 0. (3.127)

3.6.3.6 Generalized plane strain, axisymmetric, infinitesimal deformation

Finally, if to generalized plane strain, axisymmetric deformation we wish to add the
assumption that all displacements and displacement gradients are small enough to ignore
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terms higher than first order, Eqs. (3.122)–(3.127) (or Eqs. (3.110)–(3.115)) become

ERR = ∂ÛR

∂R
, (3.128)

E		 = ÛR

R
, (3.129)

EZZ = k1, (3.130)

ER	 = E	R = 0, (3.131)

E	Z = EZ	 = 0, (3.132)

EZR = ERZ = 0. (3.133)

3.7. EULERIAN STRAIN IN CYLINDRICAL COORDINATES

We shall not repeat the above derivation of Lagrangian strain for the Eulerian strain
tensor, although we shall summarize the Eulerian results. The two derivations are simi-
lar, an important distinction being that in the case of Eulerian strain the deformation is
referenced to the deformed configuration, that is, u = û(r, θ,z, τ ).

Some useful observations regarding the Eulerian strain can be made by noting the
following:
• Recalling the discussion regarding Fig. 3.4, for infinitesimal deformation the La-

grangian and Eulerian strains approach a common value.
• A comparison of Eqs. (3.31) and (3.35) reveals that the two strain measures are

nearly identical in form with two exceptions:
• The Lagrangian strain has X as its reference, whereas the Eulerian strain has x

as its reference (e.g., in the Eulerian counterpart of Fig. 3.6 r and θ lie in the
spatial x1–x2 plane and z is parallel to the x3-axis, the x1–x2–x3 coordinate system
having unit base vectors gi, i = 1,2,3);

• The nonlinear terms in the two strain tensors differ by a sign.
The conclusion to be reached from the above is that the discussion in Section 3.6
regarding Lagrangian strain is equally applicable to Eulerian strain, provided one substi-
tutes (r, θ,z) for (R,	,Z) and û for Û. This includes both the forms of the equations
(except for the signs of the nonlinear terms) and the physical interpretation of the strain
components.

The following subsections summarize the formulas for Eulerian strain for ready ref-
erence in the chapters to follow. As the derivations follow closely those for Lagrangian
strain, details will be kept to a minimum.
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3.7.1 Strain in cylindrical coordinates
An increment in x is

dx = drgr + rdθgθ + dzgz. (3.134)

Eq. (3.134) leaves us with what we would expect for a differential element in cylindrical
coordinates—a component having the units of length in each of the three coordinate
directions. Accounting for dgr/dθ introduces r to the θ component of dx so that the
measure of circular arc rdθ appears naturally.

An increment in u is found by substituting Eq. (3.67) into Eq. (3.64):

du =
[

∂ ûr

∂r
dr +

(
1
r

∂ ûr

∂θ
− ûθ

r

)
rdθ + ∂ ûr

∂z
dz + ∂ ûr

∂τ
dτ

]
gr

+
[
∂ ûθ

∂r
dr +

(
ûr

r
+ 1

r
∂ ûθ

∂θ

)
rdθ + ∂ ûθ

∂z
dz + ∂ ûθ

∂τ
dτ

]
gθ (3.135)

+
[
∂ ûz

∂r
dr + 1

r
∂ ûz

∂θ
rdθ + ∂ ûz

∂z
dz + ∂ ûz

∂τ
dτ

]
gz.

If we use the fact that dX = dx − u in Eq. (3.22)

ds2 − dS2 = dxT · dx − dXT · dX = dxT · dx − (dx − du
)T · (dx − du

)
= dxT · dx − (dxT · dx − 2dxT · du + duT · du

)
(3.136)

= 2dxT · du − duT · du = (2dxT − duT ) · du.

Eq. (3.136) makes use of the commutative and distributive properties of the dot product
(see Section A.3.1.3 of Appendix A) and the facts that

(
dx − du

)T = dxT − duT and
dxT · du = duT · dx. With Eqs. (3.134) and (3.135) substituted into Eq. (3.136),30

ds2 − dS2 =
{[

2dr − ∂ ûr

∂r
dr −

(
1
r

∂ ûr

∂θ
− ûθ

r

)
rdθ − ∂ ûr

∂z
dz
]
gr

+
[
2rdθ − ∂ ûθ

∂r
dr −

(
ûr

r
+ 1

r
∂ ûθ

∂θ

)
rdθ − ∂ ûθ

∂z
dz
]
gθ

+
[
2dz − ∂ ûz

∂r
dr − 1

r
∂ ûz

∂θ
rdθ − ∂ ûz

∂z
dz
]
gz

}

·
{[

∂ ûr

∂r
dr +

(
1
r

∂ ûr

∂θ
− ûθ

r

)
rdθ + ∂ ûr

∂z
dz
]
gr (3.137)

+
[
∂ ûθ

∂r
dr +

(
ûr

r
+ 1

r
∂ ûθ

∂θ

)
rdθ + ∂ ûθ

∂z
dz
]
gθ

+
[

∂ ûz

∂r
dr + 1

r
∂ ûz

∂θ
rdθ + ∂ ûz

∂z
dz
]
gz

}
.

30 In this substitution, dτ = 0 as we wish to examine spatial gradients at a specific time.
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Eq. (3.137) can be simplified by carrying out the indicated dot products and collecting
terms to

ds2 − dS2 =
[

2
∂ ûr

∂r
−
(

∂ ûr

∂r

)2

−
(

∂ ûθ

∂r

)2

−
(

∂ ûz

∂r

)2
]

drdr

+
[

2
(

ûr

r
+ 1

r
∂ ûθ

∂θ

)
−
(

1
r

∂ ûr

∂θ
− ûθ

r

)2

−
(

ûr

r
+ 1

r
∂ ûθ

∂θ

)2

−
(

1
r

∂ ûz

∂θ

)2
]

rdθ rdθ

+
[

2
∂ ûz

∂z
−
(

∂ ûr

∂z

)2

−
(

∂ ûθ

∂z

)2

−
(

∂ ûz

∂z

)2
]

dzdz

+ 2
[(

1
r

∂ ûr

∂θ
− ûθ

r

)
− ∂ ûr

∂r

(
1
r

∂ ûr

∂θ
− ûθ

r

)
+ ∂ ûθ

∂r
(3.138)

− ∂ ûθ

∂r

(
ûr

r
+ 1

r
∂ ûθ

∂θ

)
− ∂ ûz

∂r
1
r

∂ ûz

∂θ

]
rdrdθ

+ 2
[
−
(

1
r

∂ ûr

∂θ
− ûθ

r

)
∂ ûr

∂z
+ ∂ ûθ

∂z
− ∂ ûθ

∂z

(
ûr

r
+ 1

r
∂ ûθ

∂θ

)

+ 1
r

∂ ûz

∂θ
− 1

r
∂ ûz

∂θ

∂ ûz

∂z

]
rdθdz

+ 2
[
∂ ûz

∂r
+ ∂ ûr

∂z
− ∂ ûr

∂z
∂ ûr

∂r
− ∂ ûθ

∂z
∂ ûθ

∂r
− ∂ ûz

∂z
∂ ûz

∂r

]
dzdr.

Eq. (3.138) can be rewritten in terms of the components of the strain tensor in
cylindrical coordinates as

ds2 − dS2 = 2Ĕrrdrdr + 2Ĕθθ rdθ rdθ + 2Ĕzzdzdz + 2
(
Ĕrθ + Ĕθ r

)
rdrdθ

+ 2
(
Ĕθz + Ĕzθ

)
rdθdz + 2

(
Ĕrz + Ĕzr

)
dzdr, (3.139)

where Ĕrθ = Ĕθ r , Ĕθz = Ĕzθ and Ĕrz = Ĕzr . When Eqs. (3.138) and (3.139) are compared,
the components of strain emerge:

Ĕrr = ∂ ûr

∂r
− 1

2

[(
∂ ûr

∂r

)2

+
(

∂ ûθ

∂r

)2

+
(

∂ ûz

∂r

)2
]

, (3.140)

Ĕθθ = ûr

r
+ 1

r
∂ ûθ

∂θ
− 1

2

[(
1
r

∂ ûr

∂θ
− ûθ

r

)2

+
(

ûr

r
+ 1

r
∂ ûθ

∂θ

)2

+
(

1
r

∂ ûz

∂θ

)2
]

, (3.141)

Ĕzz = ∂ ûz

∂z
− 1

2

[(
∂ ûr

∂z

)2

+
(

∂ ûθ

∂z

)2

+
(

∂ ûz

∂z

)2
]

, (3.142)
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Ĕrθ = Ĕθ r = 1
2

[
∂ ûθ

∂r
+
(

1
r

∂ ûr

∂θ
− ûθ

r

)
− ∂ ûr

∂r

(
1
r

∂ ûr

∂θ
− ûθ

r

)

− ∂ ûθ

∂r

(
ûr

r
+ 1

r
∂ ûθ

∂θ

)
− ∂ ûz

∂r
1
r

∂ ûz

∂θ

]
, (3.143)

Ĕθz = Ĕzθ = 1
2

[
1
r

∂ ûz

∂θ
+ ∂ ûθ

∂z
−
(

ûr

r
+ 1

r
∂ ûθ

∂θ

)
∂ ûθ

∂z

−
(

1
r

∂ ûr

∂θ
− ûθ

r

)
∂ ûr

∂z
− 1

r
∂ ûz

∂θ

∂ ûz

∂z

]
, (3.144)

Ĕzr = Ĕrz = 1
2

[
∂ ûr

∂z
+ ∂ ûz

∂r
−
(

∂ ûr

∂z
∂ ûr

∂r
+ ∂ ûθ

∂z
∂ ûθ

∂r
+ ∂ ûz

∂z
∂ ûz

∂r

)]
. (3.145)

Eqs. (3.140)–(3.145) are the final expressions for the Eulerian strain tensor expressed in
terms of the spatial coordinate system and displacement.

3.7.2 Special cases of Eulerian strain in cylindrical coordinates
The geometry of the structure or the nature of the displacement field may be such as
to allow simplification of Eqs. (3.140)–(3.145). The more important of these simplifi-
cations to tubular design are detailed in the sections to follow.

3.7.2.1 Infinitesimal deformation

If all displacements and displacement gradients are small enough that second order terms
in these infinitesimals can be neglected, Eqs. (3.140)–(3.145) become

Ĕrr = ∂ ûr

∂r
, (3.146)

Ĕθθ = ûr

r
+ 1

r
∂ ûθ

∂θ
, (3.147)

Ĕzz = ∂ ûz

∂z
, (3.148)

Ĕrθ = Ĕθ r = 1
2

[
∂ ûθ

∂r
+
(

1
r

∂ ûr

∂θ
− ûθ

r

)]
, (3.149)

Ĕθz = Ĕzθ = 1
2

(
1
r

∂ ûz

∂θ
+ ∂ ûθ

∂z

)
, (3.150)

Ĕzr = Ĕrz = 1
2

(
∂ ûr

∂z
+ ∂ ûz

∂r

)
. (3.151)

The volume change for an infinitesimal is

dv
dV

= J = 1 + Ĕrr + Ĕθθ + Ĕzz,
dv − dV

dV
= Ĕrr + Ĕθθ + Ĕzz. (3.152)
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3.7.2.2 Axisymmetric deformation

If the deformation is axisymmetric, ∂/∂θ = ûθ = 0, and Eqs. (3.140)–(3.145) become

Ĕrr = ∂ ûr

∂r
− 1

2

[(
∂ ûr

∂r

)2

+
(

∂ ûz

∂r

)2
]

, (3.153)

Ĕθθ = ûr

r
− 1

2

(
ûr

r

)2

, (3.154)

Ĕzz = ∂ ûz

∂z
− 1

2

[(
∂ ûr

∂z

)2

+
(

∂ ûz

∂z

)2
]

, (3.155)

Ĕrθ = Ĕθ r = 0, (3.156)

Ĕθz = Ĕzθ = 0, (3.157)

Ĕzr = Ĕrz = 1
2

[
∂ ûr

∂z
+ ∂ ûz

∂r
− ∂ ûr

∂z
∂ ûr

∂r
− ∂ ûz

∂z
∂ ûz

∂r

]
. (3.158)

3.7.2.3 Axisymmetric, infinitesimal deformation

If the deformation is both axisymmetric and infinitesimal, Eqs. (3.153)–(3.158) (or
Eqs. (3.146)–(3.151)) become

Ĕrr = ∂ ûr

∂r
, (3.159)

Ĕθθ = ûr

r
, (3.160)

Ĕzz = ∂ ûz

∂z
, (3.161)

Ĕrθ = Ĕθ r = 0, (3.162)

Ĕθz = Ĕzθ = 0, (3.163)

Ĕzr = Ĕrz = 1
2

(
∂ ûr

∂z
+ ∂ ûz

∂r

)
. (3.164)

3.7.2.4 Generalized plane strain

Generalized plane strain as defined here and its special case, plane strain, are usually
employed if one dimension—in the case of a tubular the z dimension—is much larger
than the other two. For any value of z the undeformed r–θ plane defined by that z
value is assumed to remain normal to the z-axis during deformation and Ĕzz is at most
constant. This is equivalent to stating that ûz = k1z + k2, where k1 and k2 are constants,
and ∂ ûr/∂z = ∂ ûθ /∂z = 0. Eqs. (3.140)–(3.145) become
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Ĕrr = ∂ ûr

∂r
− 1

2

[(
∂ ûr

∂r

)2

+
(

∂ ûθ

∂r

)2
]

, (3.165)

Ĕθθ = ûr

r
+ 1

r
∂ ûθ

∂θ
− 1

2

[(
1
r

∂ ûr

∂θ
− ûθ

r

)2

+
(

ûr

r
+ 1

r
∂ ûθ

∂θ

)2
]

, (3.166)

Ĕzz = ∂ ûz

∂z
− 1

2

(
∂ ûz

∂z

)2

= k1 − 1
2

k2
1, (3.167)

Ĕrθ = Ĕθ r = 1
2

[
∂ ûθ

∂r
+
(

1
r

∂ ûr

∂θ
− ûθ

r

)
− ∂ ûr

∂r

(
1
r

∂ ûr

∂θ
− ûθ

r

)

− ∂ ûθ

∂r

(
ûr

r
+ 1

r
∂ ûθ

∂θ

)]
, (3.168)

Ĕθz = Ĕzθ = 0, (3.169)

Ĕzr = Ĕrz = 0. (3.170)

Plane strain, a special case of generalized plane strain, occurs when k1 = 0. In this case,
Ĕzz = 0.

A review of Eqs. (3.165)–(3.170) reveals that at this level of simplification defor-
mation in the r–θ (cross-sectional) plane is decoupled from deformation normal to a
cross-section. The value of k2 is immaterial to the analysis of cross-sectional deforma-
tion.

3.7.2.5 Generalized plane strain, axisymmetric deformation

If to generalized plane strain we add the assumption of axisymmetry, then ûz =
k1z + k2, where k1 and k2 are constants, ûθ = 0, and ∂ ûr/∂z = ∂ ûθ /∂z = ∂/∂θ = 0, and
Eqs. (3.153)–(3.158) (or Eqs. (3.165)–(3.170)) become

Ĕrr = ∂ ûr

∂r
− 1

2

(
∂ ûr

∂r

)2

, (3.171)

Ĕθθ = ûr

r
− 1

2

(
ûr

r

)2

, (3.172)

Ĕzz = k1 − 1
2

k2
1, (3.173)

Ĕrθ = Ĕθ r = 0, (3.174)

Ĕθz = Ĕzθ = 0, (3.175)

Ĕzr = Ĕrz = 0. (3.176)

3.7.2.6 Generalized plane strain, axisymmetric, infinitesimal deformation
Finally, if to generalized plane strain, axisymmetric deformation we wish to add the
assumption that all displacements and displacement gradients are small enough to ignore
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terms higher than first order, Eqs. (3.171)–(3.176) (or Eqs. (3.159)–(3.164)) become

Ĕrr = ∂ ûr

∂r
, (3.177)

Ĕθθ = ûr

r
, (3.178)

Ĕzz = k1, (3.179)

Ĕrθ = Ĕθ r = 0, (3.180)

Ĕθz = Ĕzθ = 0, (3.181)

Ĕzr = Ĕrz = 0. (3.182)

The assumption of generalized plane strain with both axisymmetry and small displace-
ments and displacement gradients will be used to derive the Lamé equations.

3.8. LOGARITHMIC STRAIN IN CYLINDRICAL COORDINATES

In the cylindrical coordinate system of Fig. 3.6, we define the stretch ratios

�(R) =
√

dr2

dR2 , �(�) =
√

r2dθ2

R2d	2 , �(Z) =
√

dz2

dZ2 , (3.183)

where the spatial cylindrical coordinate system (r, θ , z) has the same conceptual relation
to the global material cylindrical coordinate system (R, 	, Z) as the spatial Cartesian
coordinate system (x1, x2, x3) have to the global material Cartesian coordinate system
(X1, X2, X3) (see Fig. 3.1).

If we restrict our investigations with logarithmic strain to deformations where C is
a diagonal tensor (see Section 3.5.4), then from Eqs. (3.38) and (3.68) we get

�2
(R) =

(
1 + ∂ÛR

∂R

)2

+
(

∂Û	

∂R

)2

+
(

∂ÛZ

∂R

)2

, (3.184)
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∂ÛR

∂	
− Û	
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∂Û	
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1 + ∂ÛZ
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and from Eq. (3.39), addressing only deformations that are aligned with the coordinate
directions,

Ẽ = lnC
1
2 =
⎡
⎢⎣

ln�(R) 0 0
0 ln�(�) 0
0 0 ln�(Z)

⎤
⎥⎦ . (3.187)
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3.8.1 Axisymmetric deformation
If the deformation is axisymmetric, ∂/∂	 = Û	 = 0, and Eqs. (3.184)–(3.186) become

�2
(R) =
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1 + ∂ÛR

∂R

)2

+
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∂ÛZ
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)2

, (3.188)
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�2
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1 + ∂ÛZ
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)2

. (3.190)

3.8.2 Generalized plane strain
If for any value of Z the undeformed R–	 plane defined by that Z value is assumed
to remain normal to the Z-axis during deformation and EZZ is at most constant (see
discussion in Section 3.6.3.4), Ûz = k1Z +k2, where k1 and k2 are constants, ∂ÛR/∂Z =
∂Û	/∂Z = 0, and Eqs. (3.184)–(3.186) become
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R
+ 1

R
∂Û	
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�2
(Z) = (1 + k1

)2
. (3.193)

3.8.3 Generalized plane strain, axisymmetric deformation
If to generalized plane strain we add the assumption of axisymmetry, then Ûz = k1Z +
k2, where k1 and k2 are constants, Û	 = 0, and ∂ÛR/∂Z = ∂Û	/∂Z = ∂/∂	 = 0, and
Eqs. (3.188)–(3.190) (or Eqs. (3.191)–(3.193)) become

�(R) = 1 + ∂ÛR

∂R
, (3.194)

�(�) = 1 + ÛR

R
, (3.195)

�(Z) = 1 + k1. (3.196)

Eqs. (3.194)–(3.196) will be used in the discussion of ductile rupture in Section 7.3 of
Chapter 7.
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Table 3.2 Choice of strain measure in this book.
Strain tensor Major application Chapter Section
Lagrangian Uniaxial stress–strain curve 6 6.2
Eulerian All infinitesimal deformation problemsa Many
Logarithmic Ductile rupture 7 7.3
a For infinitesimal strain the three strain measures converge.

We shall forego the investigation of logarithmic strain for infinitesimal deformation,
as the only use we will make of logarithmic strain is in the presence of finite deforma-
tion.

3.9. CHOOSING A STRAIN TENSOR

In this chapter we have discussed three strain tensors—Lagrangian strain, Eulerian strain
and logarithmic strain. With the proper constitutive model, any of these strains can be
related to a choice of stress tensor (Chapter 4). We have examined these three because
they are most pertinent to oil well tubular analyses appearing in the literature.

The Lagrangian strain has been included because it is, at least to this author, the
most conceptually straightforward and the one to which most engineers have been
exposed. The Eulerian strain is closely related to its Lagrangian counterpart, differing
only in the frame to which it is referenced. The logarithmic strain is somewhat unwieldy
once one ventures beyond a coordinate system aligned with the axes of principle stress
(see Section 3.5.4) but provides the user substantial power when addressing problems
involving large strain and behavior beyond yield.

Table 3.2 summarizes the use of these three definitions in this book. The workhorse
will be the Eulerian strain primarily as a convenience in handling reference frames. That
is, choice of the Eulerian strain will follow our preference for the Cauchy stress that also
uses the spatial frame of reference. We will use the other two strain measures, but in
limited, special applications to which they are most appropriate. For most of the book
we will limit ourselves to infinitesimal strain, so the choice of strain measure will have
minimal impact.



CHAPTER 4

Stress
4.1. INTRODUCTION

The previous chapter considered the translation, rotation and deformation of a body
without regard to the initiator(s) of the movement. This chapter addresses the action(s)
leading to deformation—forces and moments.

A body subjected to contact and field forces deforms. Locally, investigation of the
degree to which the body is loaded usually involves a discussion of force intensity.
The intensity can either be examined as a surface traction vector of force intensity or,
more commonly, by considering the second order stress tensor at the point of interest.
The stress tensor contains information regarding force intensity with respect to any
orientation of the internal or external surface in focus.

The discussion of kinematics (Chapter 3) initially focused on quantities related to the
undeformed or material configuration and its coordinate system. Once basic concepts
(the deformation and deformation gradient tensors, the strain tensor) were introduced,
alternative measures related to the deformed or spatial configuration and its coordinate
system followed. With stress, we shall reverse the process. We first define the Cauchy
stress tensor associated with the deformed configuration. This eases the discussion of
such important relations as the equation of motion. Having the basic concepts in hand,
we then introduce an additional stress tensor—the Piola–Krichhoff stress tensor—related
to the undeformed configuration.

4.2. THE CONCEPT OF STRESS

To define terms related to stress, we begin with a fairly general state of loading. Fig. 4.1
illustrates a body of general shape loaded by a variety of external forces which are of
two types:
• forces involving contact (fi, i = 1,2,3,4 in Fig. 4.1) between the body shown and

its surroundings—for example, the forces of the supports of a casing or tubing rack
on a tubular being suspended;

• forces involving a field (bfi, i = 1 in Fig. 4.1) between the body and another body
where the two bodies are not in contact—for example, the gravitational force of
the earth on the tubular suspended on a casing or tubing rack.

If the body is in motion, the vector sum (see Section A.3.1.1 of Appendix A) of all
forces equals the body’s mass times the acceleration of its center of mass. If the body is
moving at constant (or zero) velocity, the vector sum of all forces must be zero.
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Figure 4.1 Contact and body forces. The m multiplier is used with the body force to indicate this force
is expressed per unit mass. Alternately, the body force may be expressed per unit volume.

The contact forces in Fig. 4.1 are idealizations. In reality, each contact force vector
shown represents the integration of a force distribution (force per unit area) in the
vicinity of the indicated contact force. The area over which the integration occurs is
finite, but may be exceedingly small. Body force vectors are usually expressed per unit
mass (or, alternately, unit volume).

As mentioned in Section 4.1 in the study of kinematics, it seems reasonable, at least
for solids, to reference the deformation quantities to the original, undeformed state from
which the quantities proceed. With stress, on the other hand, a more natural reference
is the current, deformed state of the body. In Fig. 4.1 therefore the spatial coordinate
system assumes immediate importance, and vector and tensor quantities related to stress
should be viewed from a spatial perspective. This separation of focus—material coor-
dinates for kinematics, spatial coordinates for stress—seems to invite inconsistencies.
We shall demonstrate later, however, that in the case of infinitesimal deformation the
distinction between material and spatial coordinates diminishes.

4.2.1 Traction
Fig. 4.2 examines the loading on an internal surface of the body created by imaginarily
cutting the body with an intersecting plane. The plane is identified by a unit vector
normal to the plane and positive when directed outward. The resultant force acting on
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Figure 4.2 Average traction. The resultant force on the internal surface f(n)−res is not shown, but
has the same location and direction as the average traction vector t(n)−ave . The shaded area is AS . To
simplify the figure, the body force (see Fig. 4.1), although present, is also not shown.

this internal surface (not shown, but at the same location and in the same direction as the
vector t(n)−ave) is designated f(n)−res, the subscript n being used to identify this resultant
internal force with a particular cutting plane via the plane’s normal. Vector f(n)−res is the
sum (see Section A.3.1.1 of Appendix A) of all force distributions acting on the internal
surface created by the intersecting plane.

The portion of the body of which the internal surface is a boundary (the lower left
portion in Fig. 4.2) has the following relation to its environment:
• from the perspective of this portion of the body f(n)−res is an external force;
• the designation of f(n)−res as an internal force relates to the imaginary nature of the

cutting plane used to create the internal surface and examine the resultant force to
which that internal surface is subjected;

• this resultant force has an equal and opposite counterpart associated with the re-
maining portion of the overall body and represented in Fig. 4.2 by the surface with
normal −n.

Associated with the resultant contact force f(n)−res is an average force intensity or traction,1

1 The force intensity on a surface is sometimes called the stress vector. Following the example of
Malvern [8], the convention adopted here is to use “traction” to designate the vector of force inten-
sity and reserve the term “stress” for the stress tensor.
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Figure 4.3 Local traction. The neighborhood of point A is indicated by the dotted circle. The darker
shaded area is AS . To simplify the figure, the body force (see Fig. 4.1), although present, is not shown.

designated by t(n)−ave and obtained by dividing the resultant force by the area of the
internal surface with normal n (shown shaded in Fig. 4.2)

t(n)−ave = f(n)−res

AS
, (4.1)

where AS is the area of the shaded surface in Fig. 4.2.
As depicted in Fig. 4.2, the traction t(n)−ave represents the average intensity of all

internal forces acting on the surface associated with the cutting plane with normal n.
Of interest in many problems is the local intensity of internal forces acting at a point
on the exposed surface. Determination of this local traction is illustrated in Fig. 4.3,
where now interest is focused on the immediate neighborhood of the point A. The
local traction is defined by the limit

t(n) = lim
rS−max→0

fS−res

AS
, (4.2)

where fS−res is the vector sum of all force distributions acting on local area AS and the
limit has the following properties:
• rather than requiring AS approach zero, we require rS−max, the maximum radius

from point A to any point on the boundary of S, to approach zero, thus eliminating
the possibility of a limit where S approaches the geometry of a line;
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Figure 4.4 Traction in pure bending of a tube. The lower left-hand diagram indicates the force areal
distribution, an example local surface area being AS . The force distribution vectors in the lower left-
hand diagram are shown in perspective relative to the plane of the paper. In actuality these vectors
are perpendicular to the view plane and directed into the paper.

• in the limit, as rS−max decreases, the resultant of the force distributions acting on
local area AS will be continually changing.

Although Eq. (4.2) has been introduced in the context of an interior surface created
by a cutting plane with normal n, the formula is general enough to permit its use in
defining the local traction on an external surface having local normal n.

4.2.1.1 Example problem—average and local traction

Consider a tubular in a state of pure bending. The tube is loaded by moments on either
end, and one end of the tube is free to translate in order to avoid generating an axial force
associated with the bending. The loading is depicted in the upper portion of Fig. 4.4.

Within the local x–y coordinate system of the cross-section, the force distribution
and the local bending traction distribution are constant along the x direction and vary
linearly in the y direction, being compressive in the upper half of the cross-section
and tensile in the lower half of the cross-section. If the bending traction is2 tb(y), the
corresponding bending force distribution is fb(y) with (see Eq. (4.2))

2 The recommended subscript “n” for traction is not used here since the cutting plane normal is understood
to be perpendicular to the tube cross-section.
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tb = lim
rS→0

fb

AS
, (4.3)

where rS is the maximum lateral dimension of AS in the plane of the paper.
Although the topic of bending has not yet been discussed, the bending traction

distribution in any internal cross-section can be shown to be

tb(y) = −|m| y
I

, (4.4)

where |m| is the magnitude of the bending moment and I is the moment of inertia of
the tube cross-section (I = π

64

(
D4 − d4

)
). The average traction on the cross-section is,

from Eq. (4.1), determined using the resultant of the force distribution acting on the
entire cross-section. From Fig. 4.4, integrating fb over the cross-section yields a resul-
tant (axial) force of zero.3 Eq. (4.1) therefore requires that the average traction on the

3 Specifically, we take advantage of symmetry about the y-axis in Fig. 4.4 and integrate the force distribution
over the cross-sectional area of the tube. Our differential area at each y value is a horizontal strip whose
height is dy and width is the difference between the x values corresponding to y at the outer and inner
radii of the tube cross-section—see lower left diagram of Fig. 4.4. We also have to account for the fact
that for

∣∣y∣∣ > d/2, d no longer participates in the calculation of the width of the differential horizontal
strip. Explicitly∫

ACrosssection

dfb =
∫ D/2

−D/2
tb(y)dA(y) = −2

|m|
I

∫ D/2

−D/2

[
x̂(y)

∣∣
D/2 − x̂(y)

∣∣
d/2

]
ydy

= −2
|m|
I

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫ −d/2

−D/2

√(
D
2

)2
− y2ydy

︸ ︷︷ ︸
Lower, “solid” cross-section

+
∫ d/2

−d/2

⎡
⎣
√(

D
2

)2
− y2 −

√(
d
2

)2
− y2

⎤
⎦ydy

︸ ︷︷ ︸
y-range with hole

+
∫ D/2

d/2

√(
D
2

)2
− y2ydy

︸ ︷︷ ︸
Upper, “solid” cross-section

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

= −2
3

|m|
I

⎧⎪⎪⎨
⎪⎪⎩−

[(
D
2

)2
− y2

] 3
2
∣∣∣∣∣∣
− d

2

− D
2

−
[(

D
2

)2
− y2

] 3
2
∣∣∣∣∣∣

d
2

− d
2

+
[(

d
2

)2
− y2

] 3
2
∣∣∣∣∣∣

d
2

− d
2

−
[(

D
2

)2
− y2

] 3
2
∣∣∣∣∣∣

D
2

d
2

⎫⎪⎪⎬
⎪⎪⎭

= −2
3

|m|
I

⎧⎨
⎩−

[(
D
2

)2
−

(
d
2

)2
] 3

2

+
[(

D
2

)2
−

(
d
2

)2
] 3

2
⎫⎬
⎭ = 0.



Stress 83

cross-section be t(n)−ave = 0. By comparison, the local traction at any distance from the
centerline of the tube cross-section is given by Eq. (4.4). In this example, the difference,
both qualitatively and quantitatively, between the average and local traction is significant.

4.2.2 Stress and stress components
Consider a special case of Fig. 4.3 when n = g1, that is, the cutting plane is parallel to
the spatial x2–x3 plane, and the normal to the cutting plane is collinear with the unit
vector4 g1 along the x1-axis. The resulting traction t(g1) can be written as the sum of its
three components along the xi-axes (see Section A.4 of Appendix A)

t(g1) = (
t(g1) · g1

)
g1 + (

t(g1) · g2
)
g2 + (

t(g1) · g3
)
g3

= �11g1 + �12g2 + �13g3. (4.5)

The components of the traction are called stresses,5 with the following definitions taken
directly from Eq. (4.5):
• �11 is the Cauchy stress acting on the spatial surface with normal g1 and in the

direction of g1;
• �12 is the Cauchy stress acting on the spatial surface with normal g1 and in the

direction of g2;
• �13 is the Cauchy stress acting on the spatial surface with normal g1 and in the

direction of g3.
The Cauchy stress is a second order tensor whose components have units of force per
area.

Similar decompositions involving cutting planes with normals collinear with the
unit vectors along the x2- and x3-axes can be used to introduce stress components �21,
�22 and �23 associated with the plane normal to the x2-axis and �31, �32 and �33

associated with the plane normal to the x3-axis. The general rule of designation is that
stress component �ij is the component of the local traction acting on a surface whose
normal is aligned with the positive xi-axis, and acting in the direction of the positive
xj-axis. Stress components where the two indices are equal are normal stresses6; stress
components where the two indices differ are shear stresses.

Fig. 4.5 summarizes the above introduction of the components of stress by showing
the positive direction of stress components acting on an infinitesimal element of a body.7

4 Here we recall (see Section 3.2 of Chapter 3) the unit vectors gi, i = 1,2,3, which serve the same function
for the spatial xi-axes as the unit vectors eI serve for the material XI -axes.

5 We introduce the symbol � to designate the Cauchy stress. This � should not be confused with the
identical symbol for summation. The context of the discussion should aid in the distinction.

6 The designation “normal stress” indicates the stress is normal, or perpendicular, to the surface on which
it acts.

7 Because of the proximity of casing to the wellbore wall, many problems involving both tubular mechanical
concepts and rock mechanical concepts become important. Care should be taken in formulating such
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Figure 4.5 Components of stress. A positive stress component �ij acts on the positive i-face and in
the direction of the positive j-axis. All components in the figure are positive as shown. For clarity only
the spatial coordinate axes are displayed.

Positive stresses on faces of the element whose normals align with the unit normal
vectors for the coordinate axes point in the positive direction of coordinate axes; positive
stresses on faces of the element whose normals are the negative of the unit normal
vectors for the coordinate axes point in the negative direction of coordinate axes.

For problems involving cylindrical coordinates interpretation of stress components
is identical to that described above for rectangular coordinates:
• the cylindrical coordinates r, θ and z replace rectangular coordinates x1, x2 and x3;
• the naming convention for cylindrical coordinates is analogous to that for rectangu-

lar coordinates—�θθ is the normal stress acting on the surface with normal gθ and
in the direction of gθ ; �rz is the shear stress acting on the surface with normal gr

and in the direction of gz.
The physical components of the stress tensor in cylindrical coordinates can be writ-

ten in terms of the physical components of the stress tensor in rectangular coordinates
and vice versa. A discussion and derivation of these equations is presented in Sec-
tion A.5.2.1 in Appendix A.

problems as the common practice in rock mechanics is to assume compression, rather than tension, to be
positive. The two disciplines do not therefore have positive stress components with the same directional
sense.
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Figure 4.6 Determination of the local traction from the stress tensor. The shaded surface partially
bounding the infinitesimal body is da. A body force acting on the infinitesimal volume is not shown in
the figure.

4.2.3 Determining traction from stress
Given the components of the stress tensor �ij, we may determine the local traction on
any surface with normal n. Fig. 4.6 illustrates such a problem.

As it intersects the infinitesimal body (see Fig. 4.5), the cutting plane with normal
n creates a triangle of area da shown shaded in Fig. 4.6. The volume of the irregular
tetrahedron is dv = 1

3Adah, where h is the distance from the surface da to the opposite
vertex. The areas of each of the coordinate planes acted on by components of the stress
tensor are given by dai = (n · gi)da. Summing forces in each coordinate direction and
including any body force acting on the infinitesimal element

−�11n · g1da − �21n · g2da − �31n · g3da + ρbf · g1dv + t(n) · g1da = ρ

gc
a · g1dv, (4.6)

−�12n · g1da − �22n · g2da − �32n · g3da + ρbf · g2dv + t(n) · g2da = ρ

gc
a · g2dv, (4.7)

−�13n · g1da − �23n · g2da − �33n · g3da + ρbf · g3dv + t(n) · g3da = ρ

gc
a · g3dv, (4.8)
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where a is acceleration and the body force is assumed to be provided per unit mass.
Writing Eqs. (4.6)–(4.8) more compactly gives

−�jkn · gjda + ρbf · gkdv + t(n) · gkda = ρ

gc
a · gkdv. (4.9)

In the limit as the dimensions of the body approach zero, the body force and ac-
celeration terms vanish as their infinitesimal dimensions are one order higher than the
other terms, and

(
t(n) · gk − �jkn · gj

)
da = 0, (4.10)

which, for a small but nonzero surface area, implies

t(n) = �T · n,
(
t(n)

)
k = �jknj. (4.11)

The kth component of the traction acting on a surface with normal n can be determined
from the stress tensor � and n.

4.2.4 The equations of motion
Fig. 4.7 illustrates the general stress state on an infinitesimal element whose faces align
with the coordinate axes.8 A continuously varying stress field is examined in the vicinity
of a particular point x.

Summing forces in the three coordinate directions, the equations of motion are

[
−�11 +

(
�11 + ∂�11

∂x1
dx1

)]
dx2dx3 +

[
−�21 +

(
�21 + ∂�21

∂x2
dx2

)]
dx1dx3+[

−�31 +
(

�31 + ∂�31

∂x3
dx3

)]
dx1dx2 + ρbf · g1dx1dx2dx3 (4.12)

= ρ

gc
a · g1dx1dx2dx3,[

−�12 +
(

�12 + ∂�12

∂x1
dx1

)]
dx2dx3 +

[
−�22 +

(
�22 + ∂�22

∂x2
dx2

)]
dx1dx3+[

−�32 +
(

�32 + ∂�32

∂x3
dx3

)]
dx1dx2 + ρbf · g2dx1dx2dx3 (4.13)

= ρ

gc
a · g2dx1dx2dx3,

8 Fig. 4.5 is a special case of Fig. 4.7 when the stress field in a body is constant.
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Figure 4.7 Forces acting on an infinitesimal element in motion or at rest. The body force bf is not
shown.

[
−�13 +

(
�13 + ∂�13

∂x1
dx1

)]
dx2dx3 +

[
−�23 +

(
�23 + ∂�23

∂x2
dx2

)]
dx1dx3+[

−�33 +
(

�33 + ∂�33

∂x3
dx3

)]
dx1dx2 + ρbf · g3dx1dx2dx3 (4.14)

= ρ

gc
a · g3dx1dx2dx3,

where the body force is assumed to be provided per unit mass. Simplifying Eqs. (4.12)–
(4.14) gives

(
∂�jk

∂xj
+ ρbf · gk − ρ

gc
a · gk

)
dx1dx2dx3 = 0, k = 1,2,3, (4.15)

implying

∂�jk

∂xj
+ ρbf · gk − ρ

gc
a · gk = 0. (4.16)

The element must also satisfy the moment of momentum equations. Taking mo-
ments about the x1-axis as an example, Fig. 4.8 shows the stress components that can
produce a nonzero moment on the element.
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Figure 4.8 Moment of momentum in an infinitesimal element. Only components contributing to a
nonzero moment about the x1-axis are shown. In addition, although it may contribute to the moment
about the x1-axis (see Eq. (4.17)), the body force bf is not shown.

Taking moments about point A in the direction of the x1-axis, we obtain

[
�12 −

(
�12 + ∂�12

∂x1
dx1

)]
dx3

2
dx2dx3 −

[
�13 −

(
�13 + ∂�13

∂x1
dx1

)]
dx2

2
dx2dx3+[

�22 −
(

�22 + ∂�22

∂x2
dx2

)]
dx3

2
dx1dx3 +

[
�23 + ∂�23

∂x2
dx2

]
dx2dx1dx3−[

�33 −
(

�33 + ∂�33

∂x3
dx3

)]
dx2

2
dx1dx2 −

[
�32 + ∂�32

∂x3
dx3

]
dx3dx1dx2− (4.17)

ρbf · g2
dx3

2
dx1dx2dx3 + ρbf · g3

dx2

2
dx1dx2dx3

=
(

−ρ

gc
a · g2

dx3

2
+ ρ

gc
a · g3

dx2

2

)
dx1dx2dx3,

where the right-hand side is the angular momentum and the body force is assumed to
be provided per unit mass. Simplifying and dropping higher order terms gives

(�23 − �32)dx1dx2dx3 = 0, (4.18)

or

�23 = �32. (4.19)
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Similar calculations involving moments about the x2 and x3-axes lead to the following
results:

�31 = �13, (4.20)

�12 = �21. (4.21)

Eqs. (4.19)–(4.21) imply the Cauchy stress tensor is symmetric, i.e., �ij = �ji, i �= j.

4.2.5 Principal stresses
In general, the traction t(n) will not be collinear with the normal n. There will be a
normal component of the traction vector (t(n))n aligned with n and a shear component
of the traction vector (t(n))s lying in the plane with which n is associated.

An important special case of n is the normal for which t(n) is collinear with n, there
being no shear component. In this case

t(n) = λn, (t(n))k = λnk, (4.22)

where λ is a scalar. Rearranging Eq. (4.22) gives

t(n) − λn = 0, (t(n))k − λnk = 0, (4.23)

where 0 is a vector, all of whose elements are zero, of the same dimension as t(n) and n.
Using Eq. (4.11) in Eq. (4.23) yields

(
�T − λI

) · n = 0,
(
�kj − λδjk

)
nk = 0, (4.24)

where we have used the fact that In = n, I being the identity matrix (see Section A.5.1.2
of Appendix A). In expanded form, Eq. (4.24) is

⎡
⎢⎣

�11 − λ �21 �31

�12 �22 − λ �31

�13 �23 �33 − λ

⎤
⎥⎦
⎡
⎢⎣

n1

n2

n3

⎤
⎥⎦ =

⎡
⎢⎣

0
0
0

⎤
⎥⎦ . (4.25)

Further, we have the relation

n · n = 1, nknk = 1, (4.26)

since n is a unit vector.
Eq. (4.25) will have nonzero solutions if and only if the determinant of �T − λI

vanishes [16].
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4.2.5.1 Example problem—solution for principal stresses
Given the stress tensor9

� = �T =
⎡
⎢⎣

−10 14 23
14 −80 5
23 5 54

⎤
⎥⎦ , (4.27)

find the principal stresses and their respective directions.
From Section A.5.2.3 of Appendix A, we must solve Eq. (A.105), repeated here for

reference

λ3 − I1λ
2 − I2λ − I3 = 0, (4.28)

where, from Eq. (A.91)

I1 = �T
jj = −10 − 80 + 54 = −36, (4.29)

and from Eq. (A.94)

I2 = 1
2

[
�T

rs �
T
rs − (

�T
kk

)2
]

= (
�T

12

)2 + (
�T

23

)2 + (
�T

31

)2 − �T
11�

T
22 − �T

22�
T
33 − �T

33�
T
11

= (14)2 + (5)2 + (23)2 − (−10) (−80) − (−80) (54) − (54) (−10) (4.30)

= 4810,

and from Eq. (A.97)

I3 = det�T

= −10 [−80 × 54 − 5 × 5] − 14 [14 × 54 − 5 × 23] + 23 [14 × 5 + 80 × 23] (4.31)

= 78406.

Eq. (4.28) becomes

λ3 + 36λ2 − 4810λ − 78406 = 0, (4.32)

which is of the general form ax3 + bx2 + cx+ d = 0, where a = 1, b = 36, c = −4810 and
d = −78406. To solve this equation (see [10] or any intermediate algebra text), we first
use the substitution x = y − b

3a to reexpress the general form as y3 + 3py + 2q = 0. We
may now calculate the discriminant D = −p3 − q2 of the this alternate form of the cubic
equation

p = 1
3

3ac − b2

3a2 = 1
3

3 × 1 × (−4810) − (36)2

3 (1)2 = −1747.33, (4.33)

9 The reader uncomfortable with such small stress values can consider the units to be 1 000 s of psi, or ksi.
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Table 4.1 Possible solutions of a cubic equation depending on the value of the discrimi-
nant D
Condition Equation rootsa

D ≥ 0 Three real roots which are distinct if D > 0
D = 0 Either a double root (if p3 = −q2 �= 0) or a triple zero root (if p = q = 0)
D < 0 One real root and two complex conjugate roots
a Assumes p and q are real.

and

q = 1
2

[
2b3

27a3 − bc
3a2 + d

a

]

= 1
2

[
2 (36)3

27 (1)3 − 36 (−4810)

3 (1)2 + −78406
1

]
(4.34)

= −8615.

Finally,

D = −p3 − q2 = − (−1747.33)3 − (−8615)2 = 5260694089. (4.35)

The solution proceeds according to the value of D, as indicated in Table 4.1. For this
example problem, D > 0 so the solution for λ has three distinct real roots as illustrated
in Fig. 4.9, which displays the functional behavior of Eq. (4.28).

Several methods [10] exist to determine the three roots of Eq. (4.28). The first is
simply trial-and-error. A commercial spreadsheet or similar software can be used to
straightforwardly solve the equation, particularly if a plot such as Fig. 4.9 is available
to help properly seed the initial guess. For this example the three solutions are10 λ1 =
−82.6986, λ2 = −15.2937, and λ3 = 61.9923.

Each root of λ solving Eq. (4.28) may then be substituted into Eq. (4.25) to de-
termine the direction n corresponding to that principal stress. As an example, for
λ1 = −82.6986 and the stress tensor given for this example in Eq. (4.27), Eq. (4.25)
yields ⎡

⎢⎣
72.6986 14 23

14 2.6986 5
23 5 136.6986

⎤
⎥⎦
⎡
⎢⎣

n1

n2

n3

⎤
⎥⎦ =

⎡
⎢⎣

0
0
0

⎤
⎥⎦ . (4.36)

Multiplying the second row(s) in Eq. (4.36) by 72.6986/14 and subtracting the result
from the first row, and multiplying the third row(s) by 72.6986/23 and subtracting the

10 We carry 4 decimals on the solutions for λ to provide reasonably accurate behavior in the work to follow.
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Figure 4.9 Behavior of Eq. (4.28) for example problem. Roots of equation are intersections with
λ-axis; I1 = −36, I2 = 4810, I3 = 78406.

result from the first row produces
⎡
⎢⎣

72.6986 14 23
0 −0.01317 −2.9638
0 −1.8040 −409.0781

⎤
⎥⎦
⎡
⎢⎣

n1

n2

n3

⎤
⎥⎦ =

⎡
⎢⎣

0
0
0

⎤
⎥⎦ . (4.37)

Now multiplying the third row(s) in Eq. (4.37) by −0.01317/−1.8040 and subtracting
the result from the second row gives

⎡
⎢⎣

72.6986 14 23
0 −0.01317 −2.9638
0 0 0.02265

⎤
⎥⎦
⎡
⎢⎣

n1

n2

n3

⎤
⎥⎦ =

⎡
⎢⎣

0
0
0

⎤
⎥⎦ . (4.38)

The last row in the matrix of coefficients should have all zero elements. The value
0.02265 is solely a consequence of the rounding done in this presentation. This last row
disappears because the determinant of the original matrix (see Eq. (4.36)) vanishes from
Eq. (4.28) and its associated discussion in Appendix A. As a consequence there are an
infinite number of solutions of Eq. (4.36). One such solution can be obtained by setting
n3 = 1 and then (see second row of Eq. (4.38)) solving for n2 = −225.0418. These values
of n2 and n3 can then be used (see first row of Eq. (4.38)) to solve for n1 = 43.02125.
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There exists, however, an additional constraint on the components of n; namely, n is
a unit vector. Normalizing the above arbitrary solution by its magnitude gives

n(1) =
⎡
⎢⎣

0.1878
−0.9822
0.004365

⎤
⎥⎦ . (4.39)

Similar solution procedures using λ2 and λ3 result in the other two eigenvectors
(e.g., unit normal vectors in principal stress directions 2 and 3)11

n(2) =
⎡
⎢⎣

−0.93032
−0.1764
0.3215

⎤
⎥⎦ , (4.40)

n(3) =
⎡
⎢⎣

0.3150
0.06440
0.9469

⎤
⎥⎦ . (4.41)

A quick check of the solution is to take the inner products of the principal stress unit
normal vectors—they should be mutually perpendicular to each other, i.e., n(i) ·n(j) = 0
for i �= j.

We have now determined both the principal stresses and their directions. If the stress
tensor in the spatial coordinate system (x1–x2–x3) given by Eq. (4.27) is expressed in a
coordinate system aligned with the unit vectors given by Eqs. (4.39)–(4.41), there will
be no shear stresses and

�p =
⎡
⎢⎣

−82.6986 0 0
0 −15.2937 0
0 0 61.9923

⎤
⎥⎦ . (4.42)

4.2.6 Stress equations in cylindrical coordinates
Fig. 4.10 illustrates the components of the stress tensor in a cylindrical coordinate sys-
tem, and is the counterpart of Fig. 4.5 for a rectangular coordinate system. For those
problems of tubular design dealing with the stresses in the wall of the tube, the cylindri-
cal coordinate system is often the most convenient in which to frame the solution. The
important equations derived above are rewritten here in cylindrical coordinates.

11 Except for the value of the eigenvalue itself, no rounding was used in arriving at the solutions for n(2)

and n(3).
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Figure 4.10 Components of stress in cylindrical coordinates. A positive stress component acts on a
positive face and in the direction of a positive axis. All components in the figure are positive as shown.

4.2.6.1 The equations of motion

Conversion of Eq. (4.16) to cylindrical coordinates is a two-step process.12 First, the
physical components of stress and body force in the rectangular global material co-
ordinate system are expressed in terms of their cylindrical counterparts. This process
has already been demonstrated in Section A.5.2.1 of Appendix A for a general second
order tensor T. The resulting relations, Eqs. (A.85)–(A.90), are repeated here with �

12 We discussed, but did not use this process in deriving the equations for strain in cylindrical coordinates
in Section 3.6 of Chapter 3—see the review of Fung’s exposition of strain in polar coordinates [15].
Instead, the approach taken for strain was to start from deformation and rederive the strain expressions
in cylindrical coordinates. Here, we will use the coordinate and derivative transformations to convert
stress directly from rectangular to cylindrical coordinates. To retrieve the physical insight lost by the
transformation process, we will supplement the derivation with an explanation of the physical meaning of
the various stress terms in the final expressions for motion. Treating the strain and stress transformations
differently will hopefully leave the reader with an appreciation for the difference between the two
conversion paths.
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substituted for T

�11 = �rr cos2 θ − �rθ sin 2θ + �θθ sin2 θ, (4.43)

�12 = (�rr − �θθ) sin θ cos θ + �rθ cos 2θ = �21, (4.44)

�13 = �rz cos θ − �θz sin θ = �31, (4.45)

�22 = �rr sin2 θ + �rθ sin 2θ + �θθ cos2 θ, (4.46)

�23 = �rz sin θ + �θz cos θ = �32, (4.47)

�33 = �zz. (4.48)

Similarly, Section A.5.1.1 of Appendix A demonstrates the transformation for a vector.
The resulting relation, Eq. (A.66), is repeated here with gk substituted for v

bf · g1 = bf · gr cos θ − bf · gθ sin θ, bf · g2 = bf · gr sin θ + bf · gθ cos θ,

bf · g3 = bf · gz. (4.49)

a · g1 = a · gr cos θ − a · gθ sin θ, a · g2 = a · gr sin θ + a · gθ cos θ,

a · g3 = a · gz. (4.50)

The second step in the conversion involves expressing the derivatives of xi in terms
of the cylindrical coordinates. We note that

x1 = r cos θ, x2 = r sin θ, x3 = z, (4.51)

or

r =
√

x2
1 + x2

2, θ = tan−1 x2

x1
, z = x3. (4.52)

Using Eqs. (4.51) and (4.52) produces

∂

∂x1
= ∂r

∂x1

∂

∂r
+ ∂θ

∂x1

∂

∂θ
= cos θ

∂

∂r
− sin θ

r
∂

∂θ
, (4.53)

∂

∂x2
= ∂r

∂x2

∂

∂r
+ ∂θ

∂x2

∂

∂θ
= sin θ

∂

∂r
+ cos θ

r
∂

∂θ
, (4.54)

∂

∂x3
= ∂

∂z
. (4.55)

Substituting the above relations into Eq. (4.16), for k = 1 we get

∂�11

∂x1
+ ∂�21

∂x2
+ ∂�31

∂x3
+ ρbf · g1 =

(
cos θ

∂

∂r
− sin θ

r
∂

∂θ

)(
�rr cos2 θ − �rθ sin 2θ + �θθ sin2 θ

)+
(

sin θ
∂

∂r
+ cos θ

r
∂

∂θ

)
((�rr − �θθ) sin θ cos θ + �rθ cos 2θ)+ (4.56)
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∂

∂z
(�rz cos θ − �θz sin θ) + ρ

(
bf · gr cos θ − bf · gθ sin θ

)
= ρ

gc

(
a · gr cos θ − a · gθ sin θ

)
,

and, carrying out the indicated differentiations, we obtain

cos θ

(
∂�rr

∂r
+ 1

r
∂�rθ

∂θ
+ ∂�rz

∂z
+ �rr − �θθ

r
+ ρbf · gr − ρ

gc
a · gr

)
−

sin θ

(
∂�rθ

∂r
+ 1

r
∂�θθ

∂θ
+ ∂�θz

∂z
+ 2�rθ

r
+ ρbf · gθ − ρ

gc
a · gθ

)
= 0. (4.57)

Eq. (4.57) can only be true for all values of θ if the two expressions in parentheses
vanish. The first two equations of motion in cylindrical coordinates are therefore

∂�rr

∂r
+ 1

r
∂�rθ

∂θ
+ ∂�rz

∂z
+ �rr − �θθ

r
+ ρbf · gr − ρ

gc
a · gr = 0, (4.58)

∂�rθ

∂r
+ 1

r
∂�θθ

∂θ
+ ∂�θz

∂z
+ 2�rθ

r
+ ρbf · gθ − ρ

gc
a · gθ = 0. (4.59)

Returning to Eq. (4.16), for k = 2 we get

∂�21

∂x1
+ ∂�22

∂x2
+ ∂�32

∂x3
+ ρbf · g2 =

(
cos θ

∂

∂r
− sin θ

r
∂

∂θ

)
((�rr − �θθ) sin θ cos θ + �rθ cos 2θ)+

(
sin θ

∂

∂r
+ cos θ

r
∂

∂θ

)(
�rr sin2 θ + �rθ sin 2θ + �θθ cos2 θ

)+ (4.60)

∂

∂z
(�rz sin θ + �θz cos θ) + ρ

(
bf · gr sin θ + bf · gθ cos θ

)
= ρ

gc

(
a · gr sin θ + a · gθ cos θ

)
.

Carrying out the indicated operations, and by the same reasoning, Eq. (4.60) also leads
to Eqs. (4.58) and (4.59).

Finally, for k = 3, Eq. (4.16) becomes

∂�31

∂x1
+ ∂�32

∂x2
+ ∂�33

∂x3
+ ρbf · g3 =

(
cos θ

∂

∂r
− sin θ

r
∂

∂θ

)
(�rz cos θ − �θz sin θ)+

(
sin θ

∂

∂r
+ cos θ

r
∂

∂θ

)
(�rz sin θ + �θz cos θ) + ∂�zz

∂z
+ ρbf · gz = ρ

gc
a · gz. (4.61)

Carrying out the indicated differentiations yields

∂�rz

∂r
+ 1

r
∂�θz

∂θ
+ ∂�zz

∂z
+ �rz

r
+ ρbf · gz − ρ

gc
a · gz = 0. (4.62)
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Figure 4.11 Forces acting on an infinitesimal element in motion or at rest in cylindrical coordinates.
The stresses �zr + ∂�zr

∂z dz (along r) and �zθ + ∂�zθ
∂z dz (along θ ) and the body force bf are not shown.

4.2.6.2 Physical interpretation of stress components

Eqs. (4.58), (4.59) and (4.62) are the equations of motion in cylindrical coordinates.
Their similarity to Eq. (4.16) (see also the left-hand sides of Eqs. (4.56), (4.60) and
(4.61)) is obvious except for the terms �rr−�θθ

r (Eq. (4.58)), 2�rθ
r (Eq. (4.59)) and �rz

r
(Eq. (4.62)). The origin of these terms can be discerned viewing Fig. 4.11.

Consider first motion in the radial direction. Summing forces on the differential
element gives

− �rr rdθdz +
(

�rr + ∂�rr

∂r
dr
) (

r + dr
)

︸ ︷︷ ︸
origin of extra term

dθdz+

[
−�θ rdrdz +

(
�θ r + 1

r
∂�θ r

∂θ
rdθ

)
drdz

]
cos

dθ

2
+

[
−�zr +

(
�zr + ∂�zr

∂z
dz

)]
r + (

r + dr
)

2
dθdr− (4.63)
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(
�θθ + �θθ + 1

r
∂�θθ

∂θ
rdθ

)
drdz sin

dθ

2︸ ︷︷ ︸
origin of extra term

+ρbf · gr
r + (

r + dr
)

2
drdθdz

= ρ

gc
a · gr

r + (
r + dr

)
2

drdθdz.

If we substitute the small angle approximations cos x ≈ 1 and sin x ≈ x, and ignore higher
order terms, Eq. (4.63) becomes

(
∂�rr

∂r
+ 1

r
∂�θ r

∂θ
+ ∂�zr

∂z
+ �rr − �θθ

r
+ ρbf · gr − ρ

gc
a · gr

)
rdrdθdz = 0, (4.64)

from which Eq. (4.58) follows.
The term �rr−�θθ

r in Eq. (4.58) has two sources. The �rr contribution is due to the
area change with r on either side of the differential element. The �θθ contribution is
associated with a component of �θθ acting in the radial direction. Both terms are due to
the curvilinear nature of cylindrical coordinates. As the radius r increases both of these
contributions to the equation of motion decrease.

In the circumferential direction, and again with reference to Fig. 4.11, summing
forces perpendicular to both the r and z directions results in the following equation of
motion:

− �rθ rdθdz +
(

�rθ + ∂�rθ

∂r
dr
) (

r + dr
)

︸ ︷︷ ︸
origin of extra term

dθdz+

[
−�θθdrdz +

(
�θθ + 1

r
∂�θθ

∂θ
rdθ

)
drdz

]
cos

dθ

2
+

[
−�zθ +

(
�zθ + ∂�zθ

∂z
dz

)]
r + (

r + dr
)

2
dθdr− (4.65)

(
�θ r + �θ r + 1

r
∂�θ r

∂θ
rdθ

)
drdz sin

dθ

2︸ ︷︷ ︸
origin of extra term

+ρbf · gr
r + (

r + dr
)

2
drdθdz

= ρ

gc
a · gr

r + (
r + dr

)
2

drdθdz.

We can simplify Eq. (4.65) as before, leading to the condition

(
∂�rθ

∂r
+ 1

r
∂�θθ

∂θ
+ ∂�zθ

∂z
+ 2�θ r

r
+ ρbf · gθ − ρ

gc
a · gθ

)
rdrdθdz = 0, (4.66)

from which Eq. (4.59) follows.
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The term 2�rθ
r = 2�rθ

r in Eq. (4.59) has two sources. Half the expression is due to the
area change with r on either side of the differential element. The other half is associated
with a component of �θ r acting in the circumferential direction.

Finally, summing forces in the z direction13 gives

− �rzrdθdz +
(

�rz + ∂�rz

∂r
dr
) (

r + dr
)

︸ ︷︷ ︸
origin of extra term

dθdz−

�θzdrdz +
(

�θz + 1
r

∂�θz

∂θ
rdθ

)
drdz+

[
−�zz +

(
�zz + ∂�zz

∂z
dz

)]
r + (

r + dr
)

2
dθdr+ (4.67)

ρbf · gz
r + (

r + dr
)

2
drdθdz = ρ

gc
a · gz

r + (
r + dr

)
2

drdθdz.

Simplifying Eq. (4.67) as before produces

(
∂�rz

∂r
+ 1

r
∂�θz

∂θ
+ ∂�zz

∂z
+ �zr

r
+ ρbf · gz − ρ

gc
a · gz

)
rdrdθdz = 0, (4.68)

from which Eq. (4.62) follows.

Example problem—computing shock load

A casing string is being run in the hole at depth L when the slips are inadvertently set
on the rig floor halting constant velocity v downward movement. Ignoring the effect
of the surrounding fluid and attenuation associated with threaded connections and hole
contact, estimate the shock load seen at the top of the string due to this abrupt cessation
of movement.

We ignore fluid effects in order to arrive at a simple solution, recognizing that the
interaction between the casing and its fluid environment will probably require a numer-
ical analysis [17–20]. From the equation of motion, Eq. (4.62), and assuming a plane,
one-dimensional wave such that ∂�rz

∂r = ∂�θz
∂θ

= �rz = 0, we get

∂�zz

∂z
+ ρbf · gz − ρ

gc
a · gz = 0. (4.69)

13 Several of the stresses in the z direction are not shown in Fig. 4.11 but should be obvious from the
naming convention introduced in Section 4.2.2 and employed in the figure, and from the first two
solutions in this example.
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Further, assuming isotropic elastic behavior (Eq. (5.27)) and infinitesimal strain
(Eq. (3.148)), Eq. (4.69) becomes

∂

∂z

(
E

∂ ûz

∂z

)
+ ρbf · gz − ρ

gc

∂2ûz

∂τ 2 = 0. (4.70)

Finally, taking Young’s modulus to be constant along the tubular, Eq. (4.70) becomes

E
∂2ûz

∂z2 + ρbf · gz = ρ

gc

∂2ûz

∂τ 2 , 0 < z < L, 0 < τ < ∞, (4.71)

where bf is the (constant) force (per unit mass) of gravity.
The homogeneous form of Eq. (4.71) (ρbf · gz = 0) is the wave equation. We shall

solve the homogeneous equation, concentrating on the shock loading of the tube.14

Our focus therefore is

E
∂2ûz

∂z2 = ρ

gc

∂2ûz

∂τ 2 , 0 < z < L, 0 < τ < ∞. (4.72)

Eq. (4.72) has the boundary conditions

ûz(0, τ ) = 0, τ > 0, (4.73)

∂ ûz

∂z
(L, τ ) = 0, τ > 0. (4.74)

Eq. (4.73) states that the string is fixed at the top (by the prematurely set slips).

Eq. (4.74) states that the stress (�̂zz = E ˆ̆Ezz = E ∂ ûz
∂z if displacement gradients are as-

sumed infinitesimal—see Section 3.7.2.1 of Chapter 3) at the bottom of the string is
zero (the effects of surrounding fluids are being ignored).

Also associated with Eq. (4.72) are initial conditions. We may start the current prob-
lem by zeroing the displacement along the string at the instant the slips engage

ûz(z,0) = f̂i(z) = 0, 0 ≤ z ≤ L, (4.75)

14 By ignoring the gravity term, we are assuming that during the lowering of the string under constant
velocity it has time to stretch under the force of gravity prior to inadvertently setting the slips. To
determine the total axial load on the casing, one can superimpose the weight component on the solution
from the shock analysis.

Other inhomogeneous solutions to the wave equation are available in the literature and include such
additions as fluid/frictional axial drag. A particularly important application of the wave equation in
tubular design is the analysis of polished rod and pump dynagraph cards for sucker-rod pumping wells
[21,22].
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and by assigning all locations along the string the running velocity v, except for the very
top of the string whose velocity has been arrested by the slips

∂ ûz

∂τ
(z,0) = ĝi(z) = vĤ(z) = v ×

{
0 for z = 0,
1 for 0 < z ≤ L,

0 ≤ z ≤ L, (4.76)

where Ĥ(z) is one form of the Heaviside step function15 that is zero if its argument is
nonpositive and unity otherwise.

The solution to Eq. (4.72) can be determined by seeking solutions of the form [23]

ûz(z, τ ) = Ẑ(z)T̂ (τ ). (4.77)

If we substitute Eq. (4.77) into Eq. (4.72), then

c20
∂2Ẑ(z)

∂z2 T̂ (τ ) = ∂2T̂ (τ )

∂τ 2 Ẑ(z), c0 =
√

Egc

ρ
. (4.78)

Eq. (4.78) can be rewritten as

∂2Ẑ(z)

∂z2

1

Ẑ(z)
= ∂2T̂ (τ )

∂τ 2

1

c20 T̂ (τ )
. (4.79)

The right-hand side of Eq. (4.79) is strictly a function of z; the left-hand side is strictly
a function of τ . This is possible only if both sides of the equation are equal to a constant
λ and then

∂2Ẑ(z)

∂z2 − λẐ(z) = 0,
∂2T̂ (τ )

∂τ 2 − c20λT̂ (τ ) = 0. (4.80)

It can be shown [24] that positive values of λ lead to solutions that are unbounded as
τ → ∞, and a zero value of λ leads to a zero solution for û given the current problem’s
boundary conditions.16 Therefore only negative values of λ are reasonable. If λ < 0, the
solutions of Eq. (4.80) take the form17

Ẑ(z) = C sin (βz) + D cos (βz) , T̂ (τ ) = A sin (c0βz) + B cos (c0βz) , λ = −β2,

(4.81)

15 Differing forms of this function exist depending on the value assigned the function at the zero disconti-
nuity.

16 Further, solutions for λ ≥ 0 cannot describe a periodic motion [23].
17 See [25] or any text on ordinary differential equations for solutions to homogeneous equations with

constant coefficients.
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or, using Eq. (4.77)

ûz(z, τ ) = [
C sin (βz) + D cos (βz)

] [
A sin (c0βτ) + B cos (c0βτ)

]
, λ = −β2. (4.82)

Consider first the boundary conditions. From Eq. (4.73) we have

ûz(0, τ ) = [D]
[
A sin (c0βτ) + B cos (c0βτ)

] = 0, (4.83)

which, except for the trivial, motionless solution A = B = 0, is true for all τ only if
D = 0. From Eq. (4.74) we obtain

∂ ûz(z, τ )

∂z
= Cβ cos (βz)

[
A sin (c0βτ) + B cos (c0βτ)

] = 0, z = L, (4.84)

which, except for the trivial solutions (either C = 0 or A = B = 0) implies

cos (βL) = 0, β = (2n − 1)π

2L
, n = 1,2,3, . . . . (4.85)

We conclude from the application of the boundary conditions that û is actually a
series of solutions18 depending on the value of n, that is,

ûzn(z, τ ) = Ẑn(z)T̂n(τ )

= sin (βnz)
[
An sin (βnc0τ) + Bn cos (βnc0τ)

]
, n = 1,2,3, . . . . (4.86)

Our current solution for û is therefore

ûz(z, τ ) =
∞∑

n=1

sin (βnz)
[
An sin (βnc0τ) + Bn cos (βnc0τ)

]
. (4.87)

Now we apply the initial conditions. Substituting Eq. (4.87) into Eqs. (4.75) and
(4.76) yields

ûz(z,0) =
∞∑

n=1

Bn sin (βnz) = f̂i(z) = 0, (4.88)

∂ ûz

∂τ
(z,0) =

∞∑
n=1

Anβnc0 sin (βnz) = ĝi(z) = vĤ(z) = v ×
{

0 for z = 0,
1 for 0 < z ≤ L.

(4.89)

18 An and Bn are now new constants that, for each n, include Cβn.
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Eqs. (4.88) and (4.89) can be solved for the An and Bn by appealing to the condition19

∫ L

0
sin (βmz) sin (βnz)dz =

{
0 for m �= n,
L/2 for m = n.

(4.90)

Multiplying each of Eqs. (4.88) and (4.89) through by sin (βmz) and integrating from 0
to L, from Eq. (4.90) we obtain

Bn = 2
L

∫ L

0
f̂i(z) sin (βnz)dz = 0, (4.91)

An = 2
βnc0L

∫ L

0
ĝi(z) sin (βnz)dz

= 2v
βnc0L

∫ L

0
Ĥ(z) sin (βnz)dz (4.92)

= − 2v
β2

n c0L

[
Ĥ(z) (cos (βnz) − 1)

]L

0
= 2v

β2
n c0L

,

where in the last step we use the integral formula
∫

Ĥ(z) sin
(
kz

)
dz = − Ĥ(z)

[
cos

(
kz

)−1
]

k +
constant.

The final expressions for ûz(z, τ ) and �̂zz(z, τ ) are, using Eqs. (4.91) and (4.92) in
Eq. (4.87),

ûz(z, τ ) = 2v
c0L

∞∑
n=1

1
β2

n
sin (βnz) sin (βnc0τ) , n = 1,2,3 . . . , (4.93)

19 For the cosine function, if we begin with the trigonometric identity sinα sinβ = 1
2 cos (α − β) −

1
2 cos (α + β), then

Î(m,n) =
∫ L

0
sin

(
(2m − 1)πz

2L

)
sin

(
(2n − 1)πz

2L

)
dz

= 1
2

∫ L

0

{
cos

[
(m − n)

πz
L

]
− cos

[
(m + n − 1)

πz
L

]}
dz

= 1
2

{
L

(m − n)π
sin

[
(m − n)

πz
L

]L

0
− L

(m + n − 1)π
sin

[
(m + n − 1)

πz
L

]L

0

}

= 1
2

{
L

(m − n)π
sin [(m − n)π ] − L

(m + n − 1)π
sin [(m + n − 1)π ]

}
.

If m �= n, Î(m,n) = 0. If m = n, and to avoid dealing with the zero denominator in the first term of the
last equation, we return to the second equation in the above series. There, with m = n

Î(m,n) = 1
2

∫ L

0
1 − cos

(
(2n − 1)πz

L

)
dz = 1

2

[
z − L

(2n − 1)π
sin

(
(2n − 1)πz

L

)]L

0
= L

2
.
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Figure 4.12 Displacement with time along tubular undergoing shock load in example problem. Ini-
tial wave is a solid line; reflected wave is a dotted line.

�̂zz = E
∂ ûz(z, τ )

∂z
= 2Ev

c0L

∞∑
n=1

1
βn

cos (βnz) sin (βnc0τ) , n = 1,2,3 . . . . (4.94)

In addition, by differentiating ûz(z, τ ) with respect to τ , we can recover an expression
for the velocity of the tube, namely

∂ ûz(z, τ )

∂τ
= 2v

L

∞∑
n=1

1
βn

sin (βnz) cos (βnc0τ) , n = 1,2,3 . . . . (4.95)

Figs. 4.12–4.14 demonstrate the behavior of the displacement and stress wave with
time if 7500 ft of a steel tubular (E = 30000000 psi, ρs = 0.2836 lbm

in3 , gc = 386.088 lbm in
lbf s2 ,

c0 = 16841 ft
s ) is being lowered at 2 ft

s when its uppermost part is arrested by an inad-
vertent action of the slips.

At τ = 0 when downward movement is arrested at the top of the string, a ramped
displacement wave (see Fig. 4.12) forms below the point of fixity. Depending on the
running speed and the speed of transmission of the wave, locations in the string that do
not yet “know” about the engagement at the top of the string continue to displace—see,
for example, the partially ramped solid curve labeled “τ = 1

2
L
c0

” in Fig. 4.12. Once the
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Figure 4.13 Velocity with time along tubular undergoing shock load in example problem. Initial
wave is a solid line; reflected wave is a dotted line. The initial wave is offset slightly from the abscissa
for visibility.

wave reaches a given location along the tubular, that location’s displacement halts. At
τ = L

c0
(the completely ramped solid curve in the figure) the displacement wave reaches

the lowermost end of the tubular, which has now stretched to its maximum extent.
Discussion of the reflection of this wave from the end will follow the initial discussions
of the velocity and stress waves.

The ramped displacement is related to the step velocity wave (see Fig. 4.13). Moving
at the speed c0, much faster than the running velocity v, portions of the tubular behind
the velocity wave abruptly realize zero velocity arresting further displacement. Fig. 4.13
shows two time snapshots by solid curves—the time at which the step velocity curve has
traveled one-half of the length of the tubular (labeled “τ = 1

2
L
c0

”) and a time just before
the step velocity curve has traversed the entire length of the tubular (labeled “τ = L

c0
−”).

At the instant the velocity wave has reached the end of the tubular, the entire tubular
length is at zero velocity.

A step tensile stress wave (see Fig. 4.14) traveling at 16841 ft
s in the tubular begins

at τ = 0 with the cessation of movement at the top. As modeled, the wave appears as
an expanding square wave. As the stress wave traverses the length of the tubular (cf. the
curve labeled “τ = 1

2
L
c0

”), the stress associated with tension due to the stretching of the
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Figure 4.14 Stress with time along tubular undergoing shock load in example problem. Initial wave
is a solid line; reflected wave is a dotted line. The reflected wave is offset slightly from the initial wave
and from the abscissa for visibility.

tubular is experienced along the current and all previous axial locations. Just before the
stress wave reaches the lower end of the tubular (see the curve labeled “τ = L

c0
−”) the

entirety of the tubular is subjected to an incremental tensile stress due to the closure
of the slips. The magnitude of that stress is, using the strain Ĕzz = û(L,L/c0)

L = vL
c0L = v

c0
,

�zz = Ev
c0

= 30000000 psi×2 ft
s

16841 ft
s

= 3563psi.

The functions ûz(z, τ ), ∂ ûz(z,τ )

∂τ
and �̂zz still supply results for z outside the interval

[0,L] although our problem is undefined outside those bounds. One way to view the
tubular behavior following the time τ = L

c0
marking arrival of the displacement, velocity

and stress waves at z = L is to consider a new problem in which the boundary condi-
tions, Eqs. (4.73) and (4.74), remain unchanged, but the initial conditions are redefined.
In this new problem, the initial conditions at τ ′ = τ − L

c0
= 0 are taken from the state of

the initial wave problem (Eqs. (4.93) and (4.95)) at τ = L
c0

û′
z(z, τ ′ = 0) = f̂ ′

i (z) = Lv
c0

z
L

= vz
c0

, 0 ≤ z ≤ L, (4.96)
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and by assigning all locations along the string the running velocity v, except for the very
top of the string whose velocity has been arrested by the slips

∂ û′
z

∂τ ′ (z, τ ′ = 0) = ĝ′
i(z) = 0, 0 ≤ z ≤ L. (4.97)

Eq. (4.96) is a snapshot of the tube as it has stretched to its limit, the displacement at
any location along the length of the tube being a linear function of that location, with
the maximum displacement at z = L being vL

c0
. Eq. (4.97) states that at this maximum

extension the velocity everywhere along the tube is zero. The tube is about to rebound
upward.

Proceeding as before, we substitute the initial conditions in Eqs. (4.96) and (4.97)
into Eq. (4.87) (now with τ ′ rather than τ as the time) to obtain

û′
z(z, τ ′ = 0) =

∞∑
n=1

Bn sin (βnz) = f̂ ′
i (z) = Lv

c0

z
L

= vz
c0

, (4.98)

∂ û′
z

∂τ ′ (z, τ ′ = 0) =
∞∑

n=1

Anβnc0 sin (βnz) = ĝ′
i(z) = 0, (4.99)

and integrate as in Eqs. (4.91) and (4.92) to get

Bn = 2
L

∫ L

0
f̂ ′
i (z) sin (βnz)dz

= 2v
c0L

∫ L

0
z sin (βnz)dz (4.100)

= 2v
c0L

[
sinβnz − βnz cosβnz

β2
n

]L

0
= 2v

β2
n c0L

(−1)n+1 ,

An = 2
L

∫ L

0
ĝ′
i(z) sin (βnz)dz = 0. (4.101)

The displacement û′
z(z, τ ′) on reflection is therefore

ûz(z, τ ′) = 2v
c0L

∞∑
n=1

(−1)n+1

β2
n

sin (βnz) cos
(
βnc0τ ′) , n = 1,2,3 . . . . (4.102)

Noting, however, that cos
(
βnc0τ ′) = cos

(
βnc0

(
τ − L

c0

))
= (−1)n+1 sin (βnc0τ), we may

rewrite Eq. (4.102) in terms of τ with a result that is identical to Eq. (4.93). It is
sufficient therefore to take the extended time (τ > L

c0
) solutions of Eqs. (4.93)–(4.95) to

describe the reflected waves from the bottom of the string back to the surface.
Reflected waves are also presented in Figs. 4.12–4.14. The ramped displacement

(Fig. 4.12), at its maximum value at τ = L
c0

, begins to recover its initial, zero displace-



108 Elements of Oil and Gas Well Tubular Design

ment. The reflected wave shown half way back to the surface at time τ = 3
2

L
c0

will, at
τ = 2 L

c0
, coincide with the abscissa.

Recovery of the displacement is further illustrated in the display of the step velocity
wave (Fig. 4.13). The reflection of the velocity is the negative of the incident wave.
At time τ = 3

2
L
c0

the location half way down the tubular and all positions below it are
traveling at the same velocity. Shallower locations are yet to experience the recovery of
displacement and (Fig. 4.12) temporarily retain their stretch from the incident wave.

For τ < L
c0

the step tension wave successively loads the entire tubular. At τ = L
c0

the
end of the tubular which, due to the boundary condition, can support no stress, sees
the stress wave reflect, successively unloading the tubular20 as the wave returns to the
surface.

Shock load for a dropped tubular Another impact problem related to the slip-
arrest study presented above is the stress on the lower end of a tubular that has parted
as that tubular falls and eventually contacts the bottom of the hole. This problem is
identical to that discussed above, except in the case of the falling tubular the velocity of
the tube is negative (and, if one investigates the effect of gravity, the sign of the gravity
term is reversed). That is, this latter problem is the slip-arrest problem turned upside
down and assigned a negative velocity. For the falling tubular the initial/incident stress
wave is compressive, and the rebound of the tube creates a reflective tensile wave that,
ignoring gravity, unloads the string at time τ = 2 L

c0
.

4.2.6.3 Traction from stress

Consider a cylindrical coordinate system whose z-axis aligns with the x3-axis of the
spatial (rectangular) coordinate system.21 We wish to determine the form Eq. (4.11)
takes when transformed from the spatial rectangular coordinate system to the cylindrical
coordinate system.

Section A.5.1 in Appendix A, and particularly the example problem shown in
Section A.5.1.1, illustrates the transformation of the components of a vector from rect-
angular coordinates to cylindrical coordinates. Applying Eq. (A.55) to Eq. (4.11) gives

L · t(n) = L · �T · n, Lik
(
t(n)

)
k = Lik�jknj, (4.103)

20 In discussing a one-dimensional impact wave reaching a free boundary, the point is usually made that
the wave, if tensile for example, will reflect as a compression of equal amplitude. In those discussions,
however, the incident wave is usually modeled as a pulse of small to infinitesimal length. In the current
problem, the tension has persisted behind the wave front on its downward travel, so the effect of the
reflected “compressive” wave is to eliminate the residual tension, returning the tubular to its unstressed
state.

21 See Section 4.2.6.2 of this chapter for a discussion of the physical components of stress in cylindrical
coordinates.
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where (see Section A.5.1.1 in Appendix A)

L =
⎡
⎢⎣

cos� sin� 0
− sin� cos� 0

0 0 1

⎤
⎥⎦ . (4.104)

But from Eq. (A.55), Lt(n) = t′(n). Further (see Section A.5.1.2), LTL = I. Using these
relations in Eq. (4.103) yields

t′(n) = L · �T · LT · L · n,
(
t′(n)

)
i = Lik�jkLT

jr Lrmnm, (4.105)

or, with Eq. (A.78)

t′(n) = �′T · n′,
(
t(n)

)′
i = �′

rin
′
r . (4.106)

That is, the traction-from-stress relation in cylindrical coordinates takes the same form
as its counter part in rectangular coordinates.

4.2.7 Special cases of stress
In several important problems in tubular design, due to the geometry of the tube and/or
its loading, simplifications can be made to either the rectangular or cylindrical coordi-
nate expressions of the stress tensor.

4.2.7.1 Traction from stress in two dimensions

Consider the special case of Eqs. (4.6)–(4.8) when n · g3 = t(n) · g3 = bf · g3 = 0 (see
Fig. 4.15). Recognizing that, as before, the body force and acceleration terms are of
higher order, and discarding Eq. (4.8) as offering no additional information on the
traction vector,22 in this special case

(−�11n · g1 − �21n · g2 + t(n) · g1
)
da = 0, (4.107)(−�12n · g1 − �22n · g2 + t(n) · g2

)
da = 0. (4.108)

Solving each of these equations in turn yields

(t(n))1 = �11 cos θ + �21 sin θ, (4.109)

22 Eq. (4.8) reduces to

−�13n · e1 − �23n · e2 = −�31n · g1 − �32n · g2 = 0,

that is, a relation between the out-of-plane shear stresses. One solution, �13 = �23 = 0, is similar to,
but not identical to, plane stress (see Section 4.2.7.3), the difference being that since n · e3 = 0, �33
is indeterminate, whereas in plane stress �33 is assumed to vanish. Our primary reason for discarding
Eq. (4.8) is that it provides no information regarding the traction t(n).
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Figure 4.15 Determination of the local traction from the stress tensor in a two-dimensional context.
The shaded surface partially bounding the infinitesimal body in Fig. 4.6 is now perpendicular to the
page. A (two-dimensional) body force acting on the infinitesimal surface is not shown in the figure.

(t(n))2 = �12 cos θ + �22 sin θ, (4.110)

where n = (
n · g1

)
g1 + (

n · g2
)
g2 = cos θg1 + sin θg2.

The component of t(n) normal to the (two-dimensional) plane of investigation is

(t(n))n = t(n) · n
= �11 cos2 θ + �21 sin θ cos θ + �12 sin θ cos θ + �22 sin2 θ (4.111)

= �11 cos2 θ + �12 sin 2θ + �22 sin2 θ,

where the last step makes use of Eq. (4.21).
The component of t(n) lying in the plane of the investigation, which we designate

the shear component, is

(t(n))s = t(n) − (t(n))nn

= (�11 cos θ + �12 sin θ)g1 + (�12 cos θ + �22 sin θ)g2−(
�11 cos2 θ + 2�12 sin θ cos θ + �22 sin2 θ

) (
cos θg1 + sin θg2

)
(4.112)

= [
�11 cos θ sin2 θ + �12 sin θ

(
1 − 2 cos2 θ

)− �22 cos θ sin2 θ
]
g1+[−�11 cos2 θ sin θ + �12 cos θ

(
1 − 2 sin2 θ

)+ �22 cos2 θ sin θ
]
g2.
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The magnitude of the shear component of the traction is, from Eq. (A.8),

∣∣(t(n))s
∣∣ = [

(t(n))s · (t(n))s
] 1

2

= |(�11 − �22) cos θ sin θ − �12 cos 2θ | , (4.113)

a result requiring a moderate amount of algebraic and trigonometric manipulation. The
absolute value sign results from taking the square root of the vector’s dot product with
itself.

4.2.7.2 Mohr’s circle in two dimensions

Using the trigonometric identities cos 2θ = 1 − 2 sin2 θ and cos 2θ = 2 cos2 θ − 1 in
Eqs. (4.111) and (4.113), these equations can be respectively reexpressed as

(t(n))n − �11 + �22

2
= �11 − �22

2
cos 2θ + �12 sin 2θ, (4.114)

∣∣(t(n))s
∣∣ =

∣∣∣∣�11 − �22

2
sin 2θ − �12 cos 2θ

∣∣∣∣ . (4.115)

Squaring both sides of Eqs. (4.114) and (4.115), and then adding, produces

[
(t(n))n − �11 + �22

2

]2

+ [
(t(n))s

]2 =
(

�11 − �22

2

)2

+ �2
12, (4.116)

which, in the (t(n))n–(t(n))s space is a circle.
Fig. 4.16 illustrates Eqs. (4.114)–(4.116) graphically. Given a stress state �11, �22,

�12, we can plot that state on a graph whose axes are normal and shear traction. The
points (�11, �12) and (�22, �12) lie on a circle whose center is �11+�22

2 and whose

radius is
√(

�11−�22
2

)2 + �2
12. The corresponding stresses ((t(n))n, (t(n))s) on a plane whose

normal n makes an angle θ with the X1-axis is found by traversing the circle an arc
whose angle is 2θ .

A common convention is to plot the shear stress (t(n))s as positive if it produces a
clockwise moment on the infinitesimal element of focus [26,15].

If, as is often the case, �11 and �22 are principal stresses, say �
p
1 and �

p
2, the corre-

sponding planes whose normals align with the X1 and X2-axes have no associated shear
stress, and the graph of Mohr’s circle takes the simpler form shown in Fig. 4.17, where

now the circle has radius

√(
�

p
1−�

p
2

2

)2
.

4.2.7.3 Plane stress

The assumption of plane stress usually involves one dimension of the body being sig-
nificantly smaller than the other two. In rectangular coordinates, assume this dimension
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Figure 4.16 Mohr’s circle in two dimensions.

Figure 4.17 Mohr’s circle in two dimensions for the special case when �11 and �22 are principal
stresses. The principal stress values, as indicated in the graphs are �

p
1 and �

p
2 , respectively.

is aligned with the x3-axis. Stresses associated with this axis can be ignored, that is,
�13 = �31 = 0, �23 = �32 = 0, �33 = 0. The matrix representation of the stress tensor
becomes

� =
⎡
⎢⎣

�11 �12 0
�21 �22 0
0 0 0

⎤
⎥⎦ . (4.117)
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4.2.7.4 Axisymmetric stress
If the geometry and loading are symmetric about an axis, for example, the longitudinal
axis of the tubular, the assumption of axisymmetry requires ∂/∂θ = 0, along with �rθ =
�θ r = 0, �θz = �zθ = 0 in a cylindrical coordinate system whose z-axis aligns with the
longitudinal axis of the tubular. The matrix representation of the stress tensor becomes

� =
⎡
⎢⎣

�rr 0 �rz

0 �θθ 0
�zr 0 �zz

⎤
⎥⎦ . (4.118)

4.3. THE PIOLA–KIRCHHOFF STRESS TENSOR

To this point in the discussion of stress all references have been to the Cauchy
stress—a force intensity that is measured in relation to the deformed configuration.
At times it is advantageous to use a force intensity measured in relation to the unde-
formed configuration. For this latter stress—denoted the Piola–Kirchhoff stress—the
pertinent coordinate system is the global material coordinate system, either rectangular
or cylindrical.

The Cauchy and Piola–Kirchhoff stress tensors can be related inasmuch as both
quantities refer to the same force, which allows us to write

f = t(n)da = T(N)dA, (4.119)

where da is the magnitude of the differential area with normal n and dA is the magni-
tude of the undeformed differential area with normal N prior to deformation that will
become da—see Section 3.5.6.2 of Chapter 3

da = dan, dA = dAN, dak = dank, dAK = dANK . (4.120)

The local traction T(N) is referenced to the global material coordinate system, i.e., the
counterpart of t(n), and N is the normal to the local area referenced to the global
material coordinate system, i.e., the counterpart of n.

Using Eqs. (4.11) and (4.120) in Eq. (4.119) yields

�T · nda = �T · da = T(N)dA. (4.121)

It is at this point that we encounter two definitions for the Piola–Kirchhoff stress.

4.3.1 Piola–Kirchhoff stress tensor of the first kind
The natural counterpart of Eq. (4.11) would seem to be a stress defined by the equation

T(N) = ST · N,
(
T(N)

)
k = SJkNJ . (4.122)
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This Piola–Kirchhoff stress definition provides a fictitious or pseudo-stress that is mea-
sured using the current (spatial) force f, but the differential area in the undeformed
configuration, and expresses the traction T(N) in terms of that undeformed area. Using
Eq. (4.122) in Eq. (4.121), we obtain

�T · da = ST · NdA = ST · dA. (4.123)

Thus the traction T(N) is the force on the deformed area per unit undeformed area.
The infinitesimal areas da and dA are related (see Section 3.5.6.2 of Chapter 3) by

Eq. (3.62). If we substitute this latter expression into Eq. (4.123), then
[
J�T · (F−1)T − ST

]
· dA = 0,

(
J�jkF−1

Ij − SIk

)
dAI = 0. (4.124)

Eq. (4.124) also employs the distributive property of the dot product (see Sec-
tion A.3.1.3 of Appendix A).

As the differential area dA is nonzero, Eq. (4.124) implies

ST = J�T · (F−1)T
, SIk = J�jkF−1

Ij = J�jk
∂XI

∂xj
. (4.125)

Although � is symmetric, F is not, implying the Piola–Kirchhoff stress tensor of the first
kind is not symmetric. Postmultiplying Eq. (4.125) by 1

J FT , we arrive at the inverse
relation

�T = 1
J ST · FT , �jk = 1

J SIkFjI = 1
J SIk

∂xj

∂XI
, (4.126)

where we have used the fact that (see Section A.44 of Appendix A)
(
F−1

)T · FT =(
F · F−1

)T = I.

4.3.1.1 Example problem—Piola–Kirchhoff stress tensor of the first kind
Consider a uniaxial tension test (see Section 6.2 of Chapter 6) wherein a circular cylin-
drical sample is loaded by a force f. The cross-sectional area of the sample is A(τ ), where
τ is the time of the test. Use these parameters to differentiate between the Cauchy stress
and the Piola–Kirchhoff stress of the first kind.

Assume the x3-axis of the spatial coordinate system to be collinear with the axis of
the test sample. Then at any time during the test the traction is (Eq. (4.2))

t(3)(τ ) = f
A(τ )

, (4.127)

and, from Eq. (4.11), the Cauchy stress is

�33 = ∣∣t(3)

∣∣ =
∣∣f∣∣

A(τ )
, all other �ij = 0. (4.128)
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The Cauchy stress is sometimes referred to as the true stress.
From Eq. (4.123) with23 da = A(τ ) and dA = A(0) we may now write the Piola–

Kirchhoff stress of the first kind as

S33 =
∣∣f∣∣

A(0)
, all other SIj = 0. (4.129)

The Piola–Kirchhoff stress of the first kind is sometimes referred to as the engineering
stress. It is a fictitious stress quantity in that at no time (except τ = 0) does it represent a
true physical measurement of force intensity.

4.3.2 Piola–Kirchhoff stress tensor of the second kind
Although the definition of the Piola–Kirchoff stress tensor of the first kind is con-
ceptually pleasing, its lack of symmetry is a drawback. As an alternative pseudo-stress
definition for the undeformed configuration, consider an alternate, fictitious force f̃ that
draws its correspondence to the true force f from the relation between the material and
spatial incremental position vectors dX and dx. If we recall from Eq. (3.14) the relation
dX = F−1 · dx, we can in a parallel fashion define this pseudo-force f̃ in the undeformed
configuration that is related to the true force f in the deformed configuration by

f̃ = F−1 · f, f̃K = F−1
Kj fj. (4.130)

The Piola–Kirchhoff stress tensor of the second kind is now defined using Eq. (4.11).
In direct analogy to Eq. (4.119) [8], the force definition in Eq. (4.130) implies

S̃T · NdA = f̃ = F−1 · f = F−1 · �T · nda, (4.131)

or, using Eq. (3.62),
[
S̃T −JF−1 · �T · (F−1)T

]
· dA = 0,

(
S̃KJ −JF−1

Ji �T
ij F−1

Kj

)
NKdA = 0. (4.132)

As the differential area dA is nonzero, Eq. (4.132) implies

S̃T = JF−1 · �T · (F−1)T
, S̃KJ = JF−1

Ji �T
ij F−1

Kj . (4.133)

Unlike the Piola–Kirchhoff stress tensor of the first kind, the Piola–Kirchhoff stress
tensor of the second kind is symmetric.24 Premultiplying Eq. (4.133) by F and postmul-

23 We can, in this instance, equate infinitesimal and finite areas since the local and average tractions are
identical.

24 This is perhaps most easily seen from the index notation expression of Eq. (4.133). Due to the symmetry
of the Cauchy stress �T , exchanging J and K in this expression does not affect the right-hand side of
the equation.
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tiplying by FT gives

�T = 1
J F · S̃T · FT , �T

ij = FiKS̃KJFjJ . (4.134)

4.3.3 Stress relations for infinitesimal deformations
From Eq. (3.15) we obtain

dX = ∂
(
x − û

)
∂x

· dx =
(
I − ∂û

∂x

)
· dx = F−1 · dx,

dXI = ∂
(
xi − ûi

)
δiI

∂xk
dxk =

(
δik − ∂ ûi

∂xk

)
δiI dxk = F−1

Ik dxk. (4.135)

We can substitute Eq. (4.135) into Eq. (4.125) for the Piola–Kirchhoff stress of the
first kind

ST = J�T ·
(
I − ∂û

∂x

)T

, SIk = J�jk

(
δmj − ∂ ûm

∂xj

)
δmI , (4.136)

and into Eq. (4.133) for the Piola–Kirchoff stress of the second kind

S̃T = J
(
I − ∂û

∂x

)
· �T ·

(
I − ∂û

∂x

)T

,

S̃KJ = J
(

δmi − ∂ ûm

∂xi

)
δmJ�

T
ij

(
δnj − ∂ ûn

∂xj

)
δnK . (4.137)

Eqs. (4.136) and (4.137) indicate that when the displacement gradients are small com-
pared to unity (i.e., I − ∂û

∂x ≈ I, J ≈ 1) the Piola–Kirchhoff stress tensors become
indistinguishable from the Cauchy stress tensor (i.e., SIk = �jkδjI , S̃KJ = �T

ij δiJδjK ). In
future work, unless explicitly needed for a large deformation problem, the Cauchy
stress tensor will be the stress measure of choice.



CHAPTER 5

Elastic Behavior
5.1. INTRODUCTION

Chapters 3 and 4, respectively, deal with the deformation and loading of a body or
structure. The discussion in both chapters is independent of the material constitution
of the body. If we wish to relate deformation and load, however, we must specify the
material constitution.

Such a specification will have limits of validity.1 For example, a structure when
loaded below a certain stress level may behave elastically.2 But as the stress level increases,
eventually an elastic model is no longer appropriate. A material description therefore
not only relates deformation to load3 but also provides bounds within which the stated
relation is applicable.

In this book we shall consider two constitutive models used in tubular design:
• linear elasticity—stress and strain are related linearly for stress combinations below a

certain limit;
• plasticity—an extension (i.e., the behavior is actually elastic-plastic) of linear elas-

ticity for stress combinations beyond the bounds of elastic behavior.
In both of the above behavioral models, temperature dependence will be included.

Linear elasticity will be covered in this chapter. Since the limit of elastic behavior
is also a major limit state for most tubular applications, equations derived here will
drive most of the design calculations in later chapters. Chapter 6 has two purposes.
First, opening sections of the chapter describe yield, the boundary of purely elastic
behavior and a primary limit state for tubular design. Later sections of Chapter 6 address
post-yield behavior for the purpose of describing the tubular design issues that involve
plastic deformation.

5.2. ISOTROPIC ELASTIC BEHAVIOR

We define an elastic material as one whose stress depends only on the deformation gra-
dient (or strain) and temperature at material position X and time τ . Further, we assume

1 A classic example of the validity limits of a material constitutive model is water. Depending on the
temperature and pressure, one must model different dependencies of water in its incarnations as steam,
water and ice.

2 At this point we use terms such as “elastic” and “stress level” loosely, trusting the reader has an intuitive
or qualitative feel for the undefined terms. The need for clarification will be rectified shortly.

3 In the broader field of continuum mechanics the behavior of other variables, such as entropy and internal
energy density, must also be specified [7]. Here, we limit ourselves to thermo-mechanical behavior.
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the relation between (Cauchy) stress � and either (Eulerian) strain Ĕ or temperature to
be linear and of the form

�kl = �̌klmnĔmn − Bkl (T − T0) , (5.1)

where �̌ is the fourth-order elastic stiffness tensor, B is the coefficient of linear thermal
stress tensor and T is temperature, T0 being the temperature corresponding to zero
strain.

At the outset Eq. (5.1) is imposing inasmuch as �̌ has 34 = 81 components. The
number of independent components of �̌ can be reduced, however, by the following
considerations:
• � is symmetric (see Eqs. (4.19)–(4.21)) implying �̌klmn = �̌lkmn and Bkl = Blk. Since

only six of the �kl are independent, this reduces the number of independent terms
in �̌klmn to 6 × 3 × 3, or 54, and the number of independent terms in Bkl to 6.

• Ĕ is symmetric (see Eq. (3.35) and the bullets to follow) implying �̌klmn = �̌klnm.
Since only six of the Ĕkl are independent, this reduces the number of independent
terms in �̌klmn to 6 × 6, or 36.

• Since � could be represented as the strain derivative of a potential, �̌ =
1
2 �̌klmnĔklĔmn = 1

2 �̌klmnĔmnĔkl, and since �kl = ∂�̌

∂Ĕkl
= ∂�̌

∂Ĕmn
, �̌klmn = �̌mnkl. This fur-

ther reduces the number of independent terms in �̌klmn to 21 [7].
The final forms of BT and �̌ are

BT =
⎡
⎢⎣

B11 B12 B13

B22 B23

symm B33

⎤
⎥⎦ , (5.2)

�̌ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�̌1111 �̌1122 �̌1133 �̌1123 �̌1113 �̌1112

�̌2222 �̌2233 �̌2223 �̌2213 �̌2212

�̌3333 �̌3323 �̌3313 �̌3312

symm �̌2323 �̌2313 �̌2312

�̌1313 �̌1312

�̌1212

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (5.3)

The above equations only depend on the symmetries of the preceding bulleted list and
are therefore completely general with regard to material symmetry.

Various special cases of Eqs. (5.2) and (5.3) can be exploited depending on the ma-
terial under consideration. For example, a common symmetry used by rock mechanists
is symmetry with respect to a plane (i.e., planar isotropy), where the elastic properties
of a material are invariant within a plane, but differ perpendicular to the plane. This
isotropy can be used to model certain depositional consequences on rock stiffness.



Elastic Behavior 119

In tubular design, any directional variation in elastic properties is usually ignored and
the material is considered to be isotropic. In this case, it can be demonstrated [7] that B
and �̌ reduce to the forms

BT =
⎡
⎢⎣

βT 0 0
βT 0

symm 0 βT

⎤
⎥⎦ , (5.4)

�̌ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λE + 2μE λE λE 0 0 0
λE + 2μE λE 0 0 0

λE + 2μE 0 0 0
symm μE 0 0

μE 0
μE

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (5.5)

where βT is the (isotropic) coefficient of linear thermal stress and λE and μE are known
as the Lamé constants. Returning to Eq. (5.1), we may now, using Eqs. (5.4) and (5.5),
write explicitly for an isotropic elastic material the following expressions:

�11 = (λE + 2μE) Ĕ11 + λE

(
Ĕ22 + Ĕ33

)
− βT (T − T0) , (5.6)

�22 = (λE + 2μE) Ĕ22 + λE

(
Ĕ33 + Ĕ11

)
− βT (T − T0) , (5.7)

�33 = (λE + 2μE) Ĕ33 + λE

(
Ĕ11 + Ĕ22

)
− βT (T − T0) , (5.8)

�12 = �̌12klĔkl = �̌1212Ĕ12 + �̌1221Ĕ21 =
(
�̌1212 + �̌1221

)
Ĕ12

= 2�̌1212Ĕ12 = 2μEĔ12, (5.9)

�23 = 2μEĔ23, (5.10)

�31 = 2μEĔ31, (5.11)

with the equations for �21, �32 and �13 understood by symmetry from Eqs. (5.9)–(5.11),
respectively. The substitution �̌1212 = �̌1221 in Eq. (5.9) follows from the symmetry of
the strain tensor.

5.2.1 Alternate elastic constants
As legitimate as Eqs. (5.6)–(5.11) may be, other elastic constants have assumed greater
relevance to many engineers. As a first step in considering alternate elastic constants, we
solve Eqs. (5.6)–(5.8) simultaneously. The solution for Ĕ11 is

Ĕ11 = 2 (λE + μE)�11 − λE (�22 + �33) + 2μEβT (T − T0)

2
[
(λE + 2μE) (λE + μE) − λ2

E

] . (5.12)
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In the case of isothermal, uniaxial loading with �11 being the only nonzero stress,
Eq. (5.12) can be solved for �11 as

�11 = μE (3λE + 2μE)

(λE + μE)
Ĕ11. (5.13)

To simplify Eq. (5.13), we may write

�11 = EĔ11, (5.14)

where E is Young’s modulus.4 Comparing this expression with Eq. (5.13) gives

E = μE (3λE + 2μE)

(λE + μE)
. (5.15)

Although �11 is the only nonzero stress, strain along the x1-axis will be accompanied
by a smaller strain of opposite sign along the x2 and x3-axes. The measure of these lateral
strains is termed Poisson’s ratio, the ratio being, for example, −Ĕ22/Ĕ11. Writing the
solution for Ĕ22 (see Eq. (5.12)) as

Ĕ22 = 2 (λE + μE)�22 − λE (�11 + �33) + 2μEβT (T − T0)

2
[
(λE + 2μE) (λE + μE) − λ2

E

] , (5.16)

and then once more requiring T − T0 = �22 = �33 = 0, gives

Ĕ22 = −λE�11

2μE (3λE + 2μE)
, (5.17)

and Poisson’s ratio becomes

ν = − Ĕ22

Ĕ11
= λE

2 (λE + μE)
. (5.18)

As a final comment, we note that μE is sometimes replaced by the symbol G. Both
these terms are denoted the shear modulus (see Eqs. (5.9)–(5.11)). Table 5.1 presents a
summary of the relations between the various moduli.

5.2.2 Stress–strain relations using E and ν

From Table 5.1, λE + 2μE = E(1−ν)

(1+ν)(1−2ν)
. Using this result in Eqs. (5.6)–(5.8) yields

�11 = E
(1 + ν) (1 − 2ν)

[
(1 − ν) Ĕ11 + ν

(
Ĕ22 + Ĕ33

)]
− βT (T − T0) , (5.19)

4 Imagine a uniaxial stress–strain experiment (see Section 6.2 of Chapter 6). Conveniently, the single vari-
able E appears naturally as the slope of a plot of specimen stress as a function of specimen strain.
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Table 5.1 Summary of elastic constants and their re-
lations for an isotropic material
Symbola f (E, ν) f (λE,μE)

E E
μE (3λE + 2μE)

(λE + μE)

G
E

2 (1 + ν)
μE

ν ν
λE

2 (λE + μE)

λE
Eν

(1 + ν) (1 − 2ν)
λE

μE
E

2 (1 + ν)
μE

a G and μE are identical.

�22 = E
(1 + ν) (1 − 2ν)

[
(1 − ν) Ĕ22 + ν

(
Ĕ33 + Ĕ11

)]
− βT (T − T0) , (5.20)

�33 = E
(1 + ν) (1 − 2ν)

[
(1 − ν) Ĕ33 + ν

(
Ĕ11 + Ĕ22

)]
− βT (T − T0) , (5.21)

and substituting G for μE produces

�12 = 2GĔ12, (5.22)

�23 = 2GĔ23, (5.23)

�31 = 2GĔ31. (5.24)

It is these forms of the mechanical constitutive equations for an isotropic elastic solid
that we will use most frequently in all discussion to follow. Solving Eqs. (5.19)–(5.21)
for the strains gives

Ĕ11 = 1
E

[�11 − ν (�22 + �33)] + αT (T − T0) , (5.25)

Ĕ22 = 1
E

[�22 − ν (�33 + �11)] + αT (T − T0) , (5.26)

Ĕ33 = 1
E

[�33 − ν (�11 + �22)] + αT (T − T0) . (5.27)

Ĕ12 = 1
2G

�12, (5.28)

Ĕ23 = 1
2G

�23, (5.29)

Ĕ31 = 1
2G

�31. (5.30)

αT = 1 − 2ν

E
βT , (5.31)
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where αT is the linear coefficient of thermal expansion. Eqs. (5.19)–(5.31) apply to
cylindrical coordinates with the index substitutions 1 = R, 2 = 	 and 3 = Z.

5.2.3 Finite strain
Aside from the material presented in the preceding sections, we will pass on further
development of elastic deformation for finite strain. On the few occasions when we
address finite deformation in this book, the inelastic strains are large enough that the
elastic strain contribution to total strain can be ignored.

5.2.4 Infinitesimal strain
Elastic, infinitesimal strain is applicable to a host of analyses for tubulars at stress states
below yield. Recall from Section 3.5.5 of Chapter 3 that the three strain definitions
discussed—Lagrangian, Eulerian and logarithmic—converge. Purely for consistency, we
shall retain the Eulerian notation.

5.2.4.1 Straight, vertical tube in generalized plane strain
A central result for future work is the stress state in a tubular cross-section when the
tube is placed in a service environment. Central to that result is the case of a vertical
tube, to which additional results for bending, buckling and temperature change can be
superimposed.

Consider an initially straight tube loaded by circumferentially uniform internal and
external pressure and axial load which has no bending component (see Fig. 5.1).
Each cross-sectional plane of the tube is such that it remains plane with deformation.
Displacements and their gradients are assumed to be infinitesimal. The vertical config-
uration of the tube means the body force is aligned with the positive z axis. We assume
constant or zero velocity and no temperature change.

Equilibrium equation for tube cross-section

The problem is axisymmetric, which from Section 4.2.7.4 of Chapter 4 implies ∂
∂θ

= 0,
along with �rθ = �θ r = 0, �θz = �zθ = 0 in a cylindrical coordinate system whose
z-axis aligns with the longitudinal axis of the tubular. From Eqs. (4.58) and (4.62)
we get

∂�rr

∂r
+ ∂�rz

∂z
+ �rr − �θθ

r
= 0, (5.32)

∂�rz

∂r
+ ∂�zz

∂z
+ �rz

r
+ ρ

g
gc

bf · gz = 0. (5.33)

In Eq. (5.32) we have also dropped the body force term. For an axisymmetric problem
this term must disappear since otherwise bf · gr renders equilibrium a function of θ

through the θ dependence of gr (recall Eq. (3.63)).
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Figure 5.1 Problem variables for analysis of a tube in plane strain.

For the subset of generalized plane strain (and its subset plane strain) used in this
book (see Section 3.7.2.4 of Chapter 3) Eq. (3.170) states that Ĕzr = 0, which from the
cylindrical coordinates equivalent of Eq. (5.24) implies �zr = �rz = 0. This fact further
simplifies the equilibrium equations (5.32) and (5.33) to

∂�rr

∂r
+ �rr − �θθ

r
= 0, (5.34)

∂�zz

∂z
+ ρ

g
gc

bf · gz = 0. (5.35)

Eq. (5.34) addresses equilibrium in the r–θ plane, that is, the tube cross-section.
Eq. (5.35) addresses equilibrium along the length of the tube. In the discussion that
follows we shall primarily be interested in the former relation. For future reference, sub-
stitution of the stress–strain relations for an isotropic, elastic material (Eqs. (5.19)–(5.21))
into Eq. (5.34) yields

(1 − ν)
∂Ĕrr

∂r
+ ν

(
∂Ĕθθ

∂r
+ ∂Ĕzz

∂r

)
+ 1 − 2ν

r

[
Ĕrr − Ĕθθ

]
= 0, (5.36)

Strain–displacement relations for tube cross-section

For generalized plane strain, axisymmetric, infinitesimal deformation the strain–
displacement relations are given in Section 3.7.2.6 of Chapter 3. With the substitution
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of Eqs. (3.177)–(3.179) into Eq. (5.36),

∂2ûr

∂r2 + 1
r

∂ ûr

∂r
− ûr

r2 = 0. (5.37)

This equation has a solution of the form5 ûr = krm, where k and m are constants. Upon
substitution of this form into Eq. (5.37),

km (m − 1) rm−2 + 1
r
kmrm−1 − krm

r2 = krm−2 [m2 − 1
]= 0, (5.38)

which has the solutions m = ±1. We may therefore write

ûr = k1r + k2
1
r
, (5.39)

along with

ˆ̆Err = ∂ ûr

∂r
= k1 − k2

1
r2 , (5.40)

ˆ̆Eθθ = ûr

r
= k1 + k2

1
r2 . (5.41)

To determine the constants k1 and k2 we use the boundary conditions

�rr = −pi at r = d
2
, (5.42)

�rr = −po at r = D
2

. (5.43)

Substituting these expressions into the cylindrical coordinates equivalent of Eq. (5.19)
gives

−pi = E
(1 + ν) (1 − 2ν)

{
(1 − ν) Ĕrr

∣∣∣
r= d

2

+ ν

[
Ĕθθ

∣∣∣
r= d

2

+ Ĕzz

]}

= E
(1 + ν) (1 − 2ν)

{
(1 − ν)

(
k1 − k2

4
d2

)
+ ν

[(
k1 + k2

4
d2

)
+ Ĕzz

]}
(5.44)

= E
(1 + ν) (1 − 2ν)

[
k1 − (1 − 2ν)k2

4
d2 + νĔzz

]
,

5 See [25] or any text on ordinary differential equations for solutions to homogeneous second order linear
equations.
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−po = E
(1 + ν) (1 − 2ν)

{
(1 − ν) Ĕrr

∣∣∣
r= D

2

+ ν

[
Ĕθθ

∣∣∣
r= D

2

+ Ĕzz

]}

= E
(1 + ν) (1 − 2ν)

{
[1 − ν)

(
k1 − k2

4
D2

)
+ ν

[(
k1 + k2

4
D2

)
+ Ĕzz

]}
(5.45)

= E
(1 + ν) (1 − 2ν)

[
k1 − (1 − 2ν)k2

4
D2 + νĔzz

]
.

When Eqs. (5.44) and (5.45) are solved simultaneously for k1 and k2,

k1 = (1 + ν) (1 − 2ν)

E
pid2 − poD2

D2 − d2 − νĔzz, (5.46)

k2 = 1 + ν

4E
d2D2

D2 − d2

(
pi − po

)
. (5.47)

By successive back-substitutions we now find, for the radial displacement from
Eq. (5.39),

ûr = 1 + ν

E
(
D2 − d2

)
[
(1 − 2ν)

(
pid2 − poD2) r + d2D2

4r
(
pi − po

)]− νĔzzr, (5.48)

for the strains from Eqs. (5.40) and (5.41),

ˆ̆Err = 1 + ν

E
(
D2 − d2

)
[
(1 − 2ν)

(
pid2 − poD2)− d2D2

4r2

(
pi − po

)]− νĔzz, (5.49)

ˆ̆Eθθ = 1 + ν

E
(
D2 − d2

)
[
(1 − 2ν)

(
pid2 − poD2)+ d2D2

4r2

(
pi − po

)]− νĔzz, (5.50)

and for the stresses from the cylindrical coordinate equivalents of Eqs. (5.19)–(5.21),

�rr = 1
D2 − d2

[(
pid2 − poD2)− d2D2

4r2

(
pi − po

)]
, (5.51)

�θθ = 1
D2 − d2

[(
pid2 − poD2)+ d2D2

4r2

(
pi − po

)]
, (5.52)

�zz = EĔzz + 2ν
(
pid2 − poD2

)
D2 − d2 , (5.53)

where for plane strain, Ĕzz = 0. Eqs. (5.51) and (5.52) are called the Lamé equations.
At the extremes of r,

�rr = −pi, r = d
2
, (5.54)

�θθ = pi
(
D2 + d2

)− 2poD2

D2 − d2 , r = d
2
, (5.55)
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Figure 5.2 Forces and moments acting on an infinitesimal length of a tube or beam in space. The
centerline of the beam is indicated by the trajectory whose coordinate is s. The double arrowhead on
the moment signifies a moment obeying the right-hand rule with the thumb of the hand pointing
in the direction of the arrowheads. The dot on the rearward face of the element is the point about
which moments are evaluated. The global material coordinate system is displayed to indicate e3 as
the direction of gravity.

�rr = −po, r = D
2

, (5.56)

�θθ = 2pid2 − po
(
D2 + d2

)
D2 − d2 , r = D

2
. (5.57)

5.2.4.2 Tube as a beam

We first consider a three-dimensional tube (beam with a hollow, circular cylindrical
cross-section) subjected to distributed forces per length and moments per length whose
source identities are unknown. Once the governing equations are derived, the contrib-
utors to these distributed forces will be identified and discussed.

Equations of motion

Consider an infinitesimal length of a tube subjected to end force f, a distributed force
per length q, an end moment m and a distributed moment per length c, as depicted in
Fig. 5.2. The equation of motion is

(
f + df

)− f + qds = ρ

gc
aAsds, (5.58)
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or

df
ds

+ q = ρ

gc
aAs,

dfi
ds

+ qi = ρs

gc
aiAs. (5.59)

The force f may be decomposed into three components—the t component, directed
along the tangent to the tube centerline, is the axial force (tension positive), and the
normal and binormal components, directed along n and b, respectively, are shear forces,
the n component being directed toward the instantaneous center of curvature of the
tube centerline.6 The distributed load q has a variety of sources to be explained in the
sections to follow, perhaps the most familiar being the effect of gravity on the tube mass.

Similarly for moment of momentum about the center of the rearward cross-section
(see dot in Fig. 5.2),

(
m + dm

)− m + tds × (f + df
)+ 1

2
tds × qds + cds = 1

2
tds × ρs

gc
aAsds, (5.60)

or, eliminating higher order terms,

dm
ds

+ t × f + c = 0,
dmi

ds
+ εijktjfk + ci = 0. (5.61)

The moment m may be decomposed into three components—the t component, di-
rected along the tangent to the tube centerline, is the torsion, and the normal and
binormal components, directed along n and b, respectively, are bending moments, the
n component causing bending around the instantaneous center of curvature of the tube
centerline. The distributed moment c has a variety of sources to be explained in the
sections to follow, perhaps the most familiar being the torsional resistance caused by
friction between the tube and its radial confinement.

Components of q

Depending on the problem, the distributed force per length q is the vector sum of one
or more components7:

Fluid and pressure qf [27,28] Fig. 5.3 depicts only the forces from Fig. 5.2. An
element of length8 δs is viewed along the binormal vector as the lower (from the reader’s
perspective) end of the element lies instantaneously in the t–n plane. The element is
referenced to a spatial coordinate system.

6 For details on the unit vectors t, n and b see Appendix B.
7 The references cited with each component are representative of applications of that component in a

tubular problem and are not intended to be all-inclusive.
8 The incremental length is characterized by δs rather than ds to signify that it may not be infinitesimal.
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Figure 5.3 Forces due to fluid presence and flow on a length of a tube. All forces associated with wall
contact, as well as all moments, have been omitted from the figure for the sake of clarity. The global
material coordinate system containing the unit vector e3 along the positive X3 = Z axis is not shown
(see Fig. 5.2). The symbol δ is used, rather than d, to signal changes are not necessarily infinitesimal.
The figure is drawn in the plane normal to the binormal vector b (see Fig. 5.2 for coordinate system) at
the element’s lower end.

First consider the right-hand portion of Fig. 5.3 detailing the tractions to which the
control volume9 consisting of the bounding surface of the fluid internal to the tube
is exposed. According to the balance of momentum equation the net force ff on the
control volume must equal the net change in momentum of the fluid in the control
volume.

To address the momentum balance requires a short excursion into fluid balance
equations. Following this excursion we will return to the specific issue of Fig. 5.3 so
that the force on the internal fluid can be properly combined with the fluid’s momentum
and with the equation of motion for the tubular.

The equation for rate of change of a quantity b per unit mass being conveyed by
a fluid which is instantaneously enclosed by a (control) surface fixed relative to an

9 A control volume is a volume in space through which a fluid flows. A control surface is a closed envelope
that defines the boundary of the control volume.
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inertial10 frame of reference is given by [31,32]

∫
V

ρ
Db
Dτ

dV =
∫

S
bρv · n̆dS +

∫
V

∂
(
bρ
)

∂τ
dV ,

∫
V

ρ
Db
Dτ

dV =
∫

S
bρvkn̆kdS +

∫
V

∂
(
bρ
)

∂τ
dV , (5.62)

where S is the (control) surface surrounding the (control) volume V and τ is time.
From the right-hand side of Eq. (5.62) we discern the following two contributors to
the rate of change of b:
• portions of the mass containing b are being conveyed through the bounding surface

of the control volume by the velocity field v, with both entry and exit of the control
volume possible;

• portions of the mass containing b that are instantaneously inside the control volume
are experiencing a change in b due to the time derivative of b at their location.
As we anticipate our eventual return to Fig. 5.2, the unit normal vectors n and n̆

must be distinguished. The former is the local normal to the trajectory of the tube
centerline (see Fig. 5.2). The latter is the normal to a surface, in this case the outward
normal to the control surface through which the fluid is flowing.

The operator D
Dτ

is a means of taking a material derivative in a spatial context. If we
wish to trace a physical property b of a single fluid particle, associating the history of that
particle with its undeformed configuration seems natural. In the material (undeformed)
description the identity of the particle, represented by its initial position X, does not
change so that a time derivative of the property is simply db(X,τ )

dτ
. Unfortunately, with

fluid flow tracing all particles in such a manner is cumbersome—the spatial description
is a better choice. How then, might one follow an individual particle using a spatial
description? The solution is to recognize that the spatial position is x((X, τ ), τ ) such
that the total time derivative of property b can be written as

Db(x, τ )

Dτ
= ∂b

∂x
· ∂x(X, τ )

∂τ
+ ∂b

∂τ
= ∂b

∂x
· v(X, τ ) + ∂b

∂τ
,

Db(x, τ )

Dτ
= ∂b

∂xk

∂xk(XK , τ )

∂τ
+ ∂b

∂τ
= ∂b

∂xk
vk(XK , τ ) + ∂b

∂τ
, (5.63)

where v = ∂x(X,τ )

∂τ
is velocity. The operator D

Dτ
is called the material derivative and may

only be used with spatial variables.

10 If the control surface is not inertial, additional considerations must be made. Problems involving flow
induced instability can fall into this category of investigation. Such problems also require additional
actions such as external fluid drag on the moving tubular [29,30].
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Applying Gauss’s theorem for a vector11 to the surface integral in Eq. (5.62) gives

∫
V

ρ
Db
dτ

dV =
∫

V

[
∇ · (bρv

)+ ∂
(
bρ
)

∂τ

]
dV ,

∫
V

ρ
Db
dτ

dV =
∫

V

[
∂

∂xk

(
bρvk

)+ ∂
(
bρ
)

∂τ

]
dV . (5.64)

Among the many useful applications of Eq. (5.64) two are of importance to the present
discussion—conservation of mass and conservation of momentum.

To derive the equation for conservation of mass, we set b = 1 in Eq. (5.64) with the
result ∫

V

[
∇ · (ρv) + ∂ρ

∂τ

]
dV = 0,

∫
V

[
∂

∂xk
(ρvk) + ∂ρ

∂τ

]
dV = 0, (5.65)

or, if V is constant, in differential form

∇ · (ρv) + ∂ρ

∂τ
= 0,

∂

∂xk
(ρvk) + ∂ρ

∂τ
= 0. (5.66)

As mentioned previously, the momentum conservation equation follows from the
fact that the total rate of change of momentum (ρv) of the fluid associated with a
(control) volume must equal ff , the vector resultant of all tractions and body forces
exerted on the fluid by its surroundings. Here b in Eq. (5.64) is being replaced by a
vector, but the substitution is acceptable if we view the vector as being defined by its
three scalar components. With the substitution of v for b,

ff = 1
gc

∫
V

ρ
Dv
dτ

dV = 1
gc

∫
V

[
∇ · (ρvv) + ∂ (ρv)

∂τ

]
dV , (5.67)

where vv is the tensor product of the velocity vector with itself—see Section A.4.1.3
of Appendix A.

We may most easily evaluate the term ∇ · (ρvv) in Eq. (5.67) using index notation.
With the coordinate system of Fig. 5.3,

[∇ · (ρvv)]k = ∂

∂xj

(
ρvjvk

)
, (5.68)

11 Gauss’s theorem, or the divergence theorem, states that for any scalar a,
∫
S an̆dS = ∫V ∇adV , where

∇ = ∂
∂x1

g1 + ∂
∂x2

g2 + ∂
∂x3

g3, and n̆ is the unit outward normal to the surface S enclosing volume V

[15]. The expression of the theorem for a vector v is
∫
S v · n̆dS = ∫V ∇ · vdV (

∫
S vkn̆kdS = ∫V ∂vk

∂xk
dV ).

The Gauss theorem for a second order tensor T is
∫
S T · n̆dS = ∫V ∇ · TdV (

∫
S Tijn̆jdS = ∫V ∂Tij

∂xj
dV ).
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or ∇ · (ρvv) is a vector whose components are12

∇ · (ρvv) =
⎡
⎢⎣

∂
∂x1

(ρv1v1) + ∂
∂x2

(ρv2v1) + ∂
∂x3

(ρv3v1)
∂

∂x1
(ρv1v2) + ∂

∂x2
(ρv2v2) + ∂

∂x3
(ρv3v2)

∂
∂x1

(ρv1v3) + ∂
∂x2

(ρv2v3) + ∂
∂x3

(ρv3v3)

⎤
⎥⎦ . (5.69)

This ends the excursion into fluid conservation relations.
If we now return to the fluid diagram in the right-hand portion of Fig. 5.3, the

resultant force on the fluid ff has the components

ff =
∫

S
t(n̆)dS +

∫
V

g
gc

ρe3dV

=
∫

S

{(
t(n̆) · n̆) n̆ + [t(n̆) − (t(n̆) · n̆) n̆]}dS +

∫
V

g
gc

ρe3dV ,

12 At this point in fluid mechanics texts one often sees the simplification of Eqs. (5.67)–(5.69) by application
of the conservation of mass, Eq. (5.66). From Eq. (5.68) for the kth component of the vector ∇ · (ρvv),

∇ · (ρvv) = ρ (v · ∇)v + v [∇ · (ρv)] ,
∂

∂xj

(
ρvjvk

)= ρvj
∂vk
∂xj

+ vk
∂

∂xj

(
ρvj
)
.

Using this expression in the right-hand side of Eq. (5.67) gives

∫
V

ρ
Dv
dτ

dV =
∫

V

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ (v · ∇)v + v
[

[∇ · (ρv)] + ∂ρ

∂τ

]
︸ ︷︷ ︸
Conservation of mass

+ρ
∂v
∂τ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

dV ,

where the contents of Eq. (5.66), the conservation of mass relation, vanishes, leaving

∫
V

ρ
Dv
dτ

dV =
∫

V

[
ρ (v · ∇)v + ρ

∂v
∂τ

]
dV ,

∫
V

ρ
Dvk
dτ

dV =
∫

V

[
ρvj

∂vk
xj

+ ρ
∂vk
∂τ

]
dV ,

where the components of vector (v · ∇)v are

(v · ∇)v =

⎡
⎢⎢⎣

v1
∂v1
∂x1

+ v2
∂v1
∂x2

+ v3
∂v1
∂x3

v1
∂v2
∂x1

+ v2
∂v2
∂x2

+ v3
∂v2
∂x3

v1
∂v3
∂x1

+ v2
∂v3
∂x2

+ v3
∂v3
∂x3

⎤
⎥⎥⎦ .

Using this simplification in Eq. (5.67), we can write the momentum conservation equation as

ff = 1
gc

∫
V

[
ρ (v · ∇)v + ρ

∂v
∂τ

]
dV ,

(
ff
)

k
= 1

gc

∫
V

[
ρvj

∂vk
xj

+ ρ
∂vk
∂τ

]
dV .

As tempting as this expression is, we will forego substitution of the continuity equation into the mo-
mentum conservation equation for the simple reason that, for tubular problems, maintaining Eq. (5.67)
in its present form results in a more useful form, particularly with regard to expressions involving the
effective force �eff .
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(
ff
)
k =

∫
S
(t(n̆))kdS +

∫
V

g
gc

ρ
(
e3 · gk

)
dV (5.70)

=
∫

S

{(
(t(n̆))jn̆j

)
n̆k + [(t(n̆))k − ((t(n̆))jn̆j

)
n̆k
]}

dS +
∫

V

g
gc

ρ
(
e3 · gk

)
dV ,

where we require e3 in the global material coordinate system, but not necessarily g3 in
the spatial coordinate system, to align with the gravitational body force.

In the last, expanded integrand in Eq. (5.70), the normal component is pressure on
the surface of the fluid control volume, and the remaining term is shear stress along the
surface of the fluid control volume:

(
t(n̆) · n̆) n̆ = −pn̆, t(n̆) − (t(n̆) · n̆) n̆ = �ss,(

(t(n̆))jn̆j
)
n̆k = −pn̆k, (t(n̆))k − ((t(n̆))jn̆j

)
n̆k = �ssk, (5.71)

where p is the local pressure, �s is a shear stress in the direction of s, and s is a unit
vector on the surface S and normal to n̆. With Eq. (5.71) substituted into Eq. (5.70),
and the result substituted into Eq. (5.67),

∫
S

[−pn̆ + �ss
]
dS +

∫
V

g
gc

ρe3dV = 1
gc

∫
V

[
∇ · (ρvv) + ∂ (ρv)

∂τ

]
dV ,

∫
S

[−pn̆k + �ssk
]
dS +

∫
V

g
gc

ρ
(
e3 · gk

)
dV = 1

gc

∫
V

[
∂

∂xj

(
ρvjvk

)+ ∂ (ρvk)

∂τ

]
dV . (5.72)

If we apply Gauss’s theorem (see Footnote 11) to the surface integral in Eq. (5.72),
then
∫

V

{
∇ · [−pn̆ + �ss

]+ g
gc

ρe3 − 1
gc

∇ · (ρvv) − 1
gc

∂ (ρv)

∂τ

}
dV = 0,

∫
V

{
∂

∂xk

[−pn̆k + �ssk
]+ g

gc
ρ
(
e3 · gk

)− 1
gc

∂

∂xj

(
ρvjvk

)− 1
gc

∂ (ρvk)

∂τ

}
dV = 0. (5.73)

Finallly, if V is constant in Eq. (5.67), we have the differential form of the conservation
of momentum equation, namely

ff − 1
gc

∇ · (ρvv) − 1
gc

∂ (ρv)

∂τ
= 0, ff = f

V(
ff

)
k
− 1

gc

∂

∂xj

(
ρvjvk

)− 1
gc

∂ (ρvk)

∂τ
= 0,

(
ff

)
k
= fk

V
. (5.74)

For steady-state flow the last term of Eq. (5.74) vanishes.
Any of Eqs. (5.72)–(5.74) can be used both inside and outside the tube. We will use

Eq. (5.72) because it preserves the physical origins of the various contributions to force
and momentum change.
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For internal flow, �s = �ffi in Fig. 5.3, p = pi, ρ = ρi, and V = Vi, the internal
volume of the tube for the distance δs. Further, we align the spatial axes such that
g1 = t, where t both aligns with the centerline of the tubular and is in the direction
of flow, g2 = n and g3 = b, t, n and b being a vector triad (at the bottom of the tube
element) associated with the Frenet–Serret formulas in Appendix B. In Eq. (5.72) it
is reasonable to set s = g1 with the implication that �ffit = −�ss since it opposes flow.
We further refine the fluid velocity v to be equal in magnitude to Q

Ai
, where Q is the

fluid volumetric flow rate, and to be collinear with t. Finally, we subdivide the control
volume into the following three segments:
• the surface Si, where δSi = Ciδs, Ci = πd being the circumference of the tube based

on its inside diameter;
• the surface Ai at the base (lower end) of the element in Fig. 5.3—the outward

normal to this surface is n̆ = −t;
• the surface Ai + δAi at the upper end of the element—the outward normal to this

surface is n̆ = t + δt.
Since the flow is in the t = g1 direction, from Eq. (5.69)13 we can write for each

position along s

∇ · (ρivv) =
(

∂

∂s
t
)

·
(

ρi
Q
Ai

t
Q
Ai

t
)

=
∂

[
ρi

(
Q
Ai

)2
t
]

∂s

=
∂

[
ρi

(
Q
Ai

)2
]

∂s
t +
[
ρi

(
Q
Ai

)2
]

κn, (5.75)

where κ is the local curvature of the centerline of the tubular.
With the above specifics and Eq. (5.75), Eq. (5.72) becomes

13 There is a subtle difference between our current, explicit formulation and Eq. (5.69). The right-hand
side of Eq. (5.69) is written for a spatial coordinate system whose unit base vectors are stationary (or,
possibly, translating at constant velocity). In our current application, we are using the t–n–b triad that
follows coordinate s and therefore may have rotating base unit vectors. For our problem, v = vt, so that
Eq. (5.69) becomes

∇ · (ρvv) =
(

d
ds

t
)

· (ρvtvt) = d
ds

(
ρv2t

)
=

d
(
ρv2
)

ds
t + ρv2κn,

[∇ · (ρvv)]k =
(

d
ds

tj

)(
ρvtjvtk

)= d
(
ρv2
)

ds
tk + ρv2κnk

where t · t = 1 and the last step uses Eq. (B.3), dt = κnds, dti = κnids. As indicated in the final, expanded
form of Eq. (5.75), when expanded the dyad term vv exposes two components—one associated with
the change of ρivv as one follows the flow path along its tangent t and one associated with the change
of direction of the flow path that is in the direction of n, the path derivative of t.
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∫
Si

[−pin̆ − �ffit
]
dS + t

∫
Ai

pidS − (t + δt)
∫

Ai+δAi

(
pi + δpi

)
dS

+ g
gc

∫
Vi

ρie3dV = 1
gc

∫
Vi

⎧⎪⎪⎨
⎪⎪⎩

∂

[
ρi

(
Q
Ai

)2
t
]

∂s
+

∂
(
ρi

Q
Ai

)
∂τ

t

⎫⎪⎪⎬
⎪⎪⎭dV ,

∫
Si

[−pin̆k − �ffitk
]
dS + tk

∫
Ai

pidS − (tk + dtk
)∫

Ai+δAi

(
pi + dpi

)
dS (5.76)

+ g
gc

∫
Vi

ρi
(
e3 · gk

)
dV = 1

gc

∫
Vi

⎧⎪⎪⎨
⎪⎪⎩

∂

[
ρi

(
Q
Ai

)2
tk

]

∂s
+

∂
(
ρi

Q
Ai

)
∂τ

tk

⎫⎪⎪⎬
⎪⎪⎭dV .

We can further simplify Eq. (5.76) by assuming the pressure pi is constant over a
cross-section,14,15 allowing us to move occurrences of pi outside the surface integrals
involving Ai and Ai + δAi

16:
∫

Si

[−pin̆ − �ffit
]
dS + tpiAi − (t + δt)

(
pi + δpi

)
(Ai + δAi)

+ g
gc

∫
Vi

ρie3dV = 1
gc

∫
Vi

⎧⎪⎪⎨
⎪⎪⎩

∂

[
ρi

(
Q
Ai

)2
t
]

∂s
+

∂
(
ρi

Q
Ai

)
∂τ

t

⎫⎪⎪⎬
⎪⎪⎭dV ,

∫
Si

[−pin̆k − �ffitk
]
dS + tkpiAi − (tk + δtk)

(
pi + δpi

)
(Ai + δAi) (5.77)

+ g
gc

∫
Vi

ρi
(
e3 · gk

)
dV = 1

gc

∫
Vi

⎧⎪⎪⎨
⎪⎪⎩

∂

[
ρi

(
Q
Ai

)2
tk

]

∂s
+

∂
(
ρi

Q
Ai

)
∂τ

tk

⎫⎪⎪⎬
⎪⎪⎭dV .

14 This assumption loses fidelity with the inclination of the wellbore, reaching its worst state for a horizontal
wellbore. Even if the wellbore is horizontal, however, the difference in pressure between the high and
low sides of the tubular cross section is small.

15 An alternative is to use the average pressure at a cross section, but this would require two distinct pressure
terms in Eq. (5.76)—one for the pressure acting on surface Si and one for the integrals on surfaces Ai
and Ai + δAi.

16 In particular, for the second and third integrals on the left-hand side of Eq. (5.76) we have

t
∫

Ai

pidS − (t + δt)
∫

Ai+δAi

(
pi + δpi

)
dS = tpiAi − (t + δt)

(
pi + δpi

)
(Ai + δAi) ,

tk

∫
Ai

pidS − (tk + δtk
)∫

Ai+δAi

(
pi + δpi

)
dS = tkpiAi −

(
tk + δtk

) (
pi + δpi

)
(Ai + δAi) .



Elastic Behavior 135

Figure 5.4 Forces due to fluid presence and flow in the annulus of a length of a tube. All forces as-
sociated with wall contact, as well as all moments, have been omitted from the figure for the sake of
clarity. The global material coordinate system containing the unit vector e3 along the positive X3 = Z
axis is not shown (see Fig. 5.2). The symbol δ is used, rather than d, to signal changes are not necessar-
ily infinitesimal. The figure is drawn in the plane normal to the binormal vector at the element’s lower
end.

The treatment of external fluids is similar to that of internal fluids. Fig. 5.4 repeats
the left-hand diagram of Fig. 5.3, with the right-hand diagram illustrating a control
volume for the tube annulus. The control volume consists of a length δs along the
annulus between the exterior of the tube and the interior of its confining hole.

With Eq. (5.72) applied to external flow �s = �ffo in Fig. 5.4, p = po, ρ = ρo, and
V = Vo, the annular volume of the tube for the distance δs. Using the same t–n–b co-
ordinate system as was used with the internal fluid analysis, we now imagine an annular
flow such that the fluid velocity v is equal in magnitude to Qa

Aoa
, where Qa is annular

volumetric flow rate, and is collinear with t. The cross-sectional area of the annulus is
denoted Aoa. Finally, we subdivide the control volume into the following four segments:
• the surface So, where δSo = Coδs, Co = πD being the circumference of the tube

based on its outside diameter;
• the surface Sia that is the surface of the outer boundary of the annulus exposed to

external fluid flow;
• the surface Aoa at the base (lower end) of the element in Fig. 5.4—the outward

normal to this surface is n̆ = −t;
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• the surface Aoa + δAoa at the upper end of the element—the outward normal to this
surface is n̆ = t + dt.

In a manner similar to that of Eq. (5.75) we can write for each position along s as

∇ · (ρovv) =
(

∂

∂s
t
)

·
(

ρo
Qa

Aoa
t
Qa

Aoa
t
)

=
∂

[
ρo

(
Qa
Aoa
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κn, (5.78)

and Eq. (5.72) becomes
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dS (5.79)

+
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Simplification of Eq. (5.79) proceeds in a manner identical to that used with
Eq. (5.76). Under the assumptions of constant cross-sectional po and flow velocity
collinear with t,
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∫
So
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]
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)
(Aoa + δAoa) (5.80)

+
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We now have expressions of momentum balance for the fluid inside the tubular
(Eq. (5.77), Fig. 5.3) and in the tubular’s annulus (Eq. (5.80), Fig. 5.4). Next consider
the left-hand portion of either Fig. 5.3 or Fig. 5.4 and the tractions to which the length
of the tube conveying fluid is exposed. Adopting the nomenclature used earlier in the
fluid momentum balances and summing forces gives

δf + g
gc

∫
Vs

ρse3dV +
∫

Si

[−pin̆ + �ffit
]
dS +

∫
So

[−pon̆ + �ffot
]
dS

=
∫
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adV ,

δfk + g
gc

∫
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ρs
(
e3 · gk

)
dV +

∫
Si

[−pin̆k + �ffitk
]
dS +

∫
So

[−pon̆k + �ffotk
]
dS (5.81)

=
∫

Vs

ρs

gc
akdV ,

where ρs is the mass density of steel and Vs is the volume of steel along length δs. At
this point the cross-sectional area of the tubular may not be constant, so dVs = As(s)ds.

In Eq. (5.81) the two surface integrals over Si and So are matched by identical, but
oppositely directed integrals in Eqs. (5.77) and (5.80). Eliminating these terms, we may
combine17 Eqs. (5.77), (5.80) and (5.81) to obtain

δf + g
gc

∫
Vs

ρse3dV + tpiAi − (t + δt)
(
pi + δpi

)
(Ai + δAi) + g

gc

∫
Vi
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17 The integrals
∫
Si

[
−pin̆ + �ffit

]
dS and

∫
So

[
−pon̆ + �ffot

]
dS assume the same role as internal forces in a

free body diagram. When two portions of a structure originally cut to view internal forces are rejoined,
the internal forces on either side of the cut cancel each other. In the present case we recognize two facts:

• at any point on the surface Si the normal n̆ on the tube is in the opposite direction of its counterpart
at the same location on Si for the fluid, and similarly for the surface So;

• the wall shear stress �ffi on the tube is in the opposite direction of its counterpart on Si for the
fluid, and similarly for the surface So,

which, when applied to the integrals, render each fluid integral the negative of its tube counterpart.
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where for the index notation we have introduced the shorthand Gk = (e3 · gk
)
.

Eq. (5.82) is formidable, but may be simplified with the following:
• As pointed out by Mitchell [27], both coiled tubing and aluminum drill pipe may

come with tapered wall thickness. As our primary interest is casing and tubing, we
assume a constant cross section for both the tubular and its confining hole,18 that
is, δAi = δAo = δAia = δAoa = 0. Further an integral over a flow stream volume—
either inside the tube or in its annulus—is now associated with the path length,
i.e.,

∫
Vi

{. . .}dV = Ai
∫
δs {. . .}dl and19

∫
Vo

{. . .}dV = Aoa
∫
δs {. . .}dl. For δAi = 0 we

can write

tpiAi − (t + δt)
(
pi + δpi

)
(Ai + δAi) = − (tδpi + δtpi

)
Ai − δtδpiAi, (5.83)

18 When addressing problems where either the tubular or its confining hole is a string consisting of a series
of piecewise constant diameters, we work the problem for a series of control volumes, each member of
the series having a tubular and confining hole of constant diameter.

19 In the case of the annulus, moving Aoa outside the integral implies Aia − Ao is constant, that is, the
tubular and its confining hole follow paths that are “parallel”, although the two are not necessarily
concentric. The two cross-section centers trace paths such that Ao and Aia are in the same plane. For
straight well bores, this offset would be measured as eccentricity.
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and for δAo = δAia = δAoa = 0,

tpoAoa − (t + δt)
(
po + δpo

)
(Aoa + δAoa) = − (tδpo + δtpo

)
Aoa − δtδpoAoa. (5.84)

• We may remove the term
∫

Sia

[−pon̆ − �ffoat
]
dS that relates to the outer boundary

of the annulus by the following adjustment. In Fig. 5.4, and as was also the case
in Fig. 5.3, the lateral boundaries of the control volume are at the interface be-
tween the fluid and its confining tubular(s). This gives rise to the terms such as∫

Sia

[−pon̆ − �ffoat
]
dS, which have a counterpart associated with the tubular, both

terms disappearing when we reassemble the fluid and tubular into a single control
volume. For the term in focus, and since it has no direct effect on the inner tubular’s
tractions, we may proceed as follows:
• introduce the assumption that the confining hole is rigid;
• extend the outer boundary of the annulus control volume in Fig. 5.4 so that

it encompasses the interface between the fluid and the confining hole (i.e.,
penetrates the material of the confining hole just slightly), thus eliminating∫

Sia

[−pon̆ − �ffoat
]
dS as it is canceled by its counterpart on the former control

volume boundary.
• A large number of problems are amenable to the case of steady flow for which

∂
∂τ

= 0. If the flow is steady, we also have from continuity Eq. (5.66) ∇ · (ρv) = 0,
or for the flow channels internal and external to the tube, respectively,
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= 0 over Aoa = Aia − Ao. (5.86)

With the above assumptions, Eq. (5.82) takes the form
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Eq. (5.87) applies when δs is finite. If we now allow δs to tend toward the in-
finitesimal, then the quantities in the integrals become local values and, after a slight
rearrangement of terms, we obtain
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Eq. (5.88) deserves examination:
• Consider the relation
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This is a generalization20 of the effective force21 discussed extensively in Chapter 10
and defined in Eq. (10.1) for the case of no fluid flow. If we differentiate Eq. (5.89)
as required by Eq. (5.88), then
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+
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}
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Section 10.2.1 of Chapter 10, and especially Fig. 10.4, offers a visual, qualitative
explanation of the influence of the pressure terms in the expression for effective
force in buckling and bending environments. Eq. (5.90) complements that discus-
sion with a mathematical explanation for the effect of internal and external pressure.
Differentiation of the effective force introduces an n component which acts laterally
on the tubular either promoting bending (internal pressure and flow22) by diminish-
ing the effect of ft or opposing bending (annulus pressure and flow) by incrementing
ft in the direction of more tension.

• The effective weight term is the same discussed in Chapter 10 and defined in
Eq. (10.2).

• Although our primary interest is in the first two terms—these terms involve direct
fluid contact with the inner tube—we must solve the entire momentum balance to
properly account for flow in the annulus. As noted by Mitchell [27], this can be
difficult for eccentric annuli. We can take some comfort in Mitchell’s conclusion
that often the annular flow effects can be ignored because they are small. As we
continue, we will assume that this difficult calculation has been accomplished.

20 It is not a complete generalization. We are assuming Ai and Ao are constant and steady fluid flow.
21 As a further generalization of the effective force, one could also consider the n and b components of f.

At some point, however, the connection with the classic meaning of effective force begins to fade.
22 Experientially, the internal flow term, coupled with the curvature κ , acts as city water pressure does to

rotate the curved nozzles on a lawn sprinkler.
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• In their current forms, pi and po are total pressures. In some instances it will be
useful to distinguish between the components of the total pressure [33]:
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)
ds = 0, (5.91)

where the signs of the pressure terms conform to the assumed directions of flow in
Figs. 5.3 and 5.4.
We are now in a position to record the character of qf from Eqs. (5.88) and (5.90)

as
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+ [wa + (γiAi − γoAo)
] (

e3 · gk
)
.

Contact traction with confining hole qc [34–39] Each infinitesimal length of this
distributed load lies in the b–n plane normal to the tangent of the tube centerline.
Further, qc is normal to the surface of the tube at the point of contact and is therefore
directed radially inward:

qc · t = 0, qc = − ∣∣qc
∣∣gr, qciti = 0,

(
qc
)
i = − ∣∣qc

∣∣ (gr · gi
)
, (5.93)

where gr is a unit vector from the center of the tube (see Fig. 5.5) and gi is either n
or b.

Frictional traction from confining hole qfr [34–37,40,38,39] Associated with the
contact traction is a distributed friction force which is opposite in direction to the
relative actual or impending velocity between the tube and its confining hole. Using a
Coulomb friction model, the resisting traction from the confining hole wall is

qfr =
{

−qs if
∣∣qs
∣∣≤ μs

∣∣qc
∣∣,

−μk
∣∣qc
∣∣ v

|v| if
∣∣qs
∣∣> μs

∣∣qc
∣∣, (5.94)

where μs is the static coefficient of friction, μk is the kinetic coefficient of friction, qs

is the shear traction between the tube and its confining hole. The behavior of μ is illus-
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Figure 5.5 Distributed contact forces on an infinitesimal length of a tube. The dashed line represent-
ing the centerline of the beam is collinear with t. As indicated the tube is simultaneously moving in the
direction of positive t and rotating about its centerline in a positive sense according to the right-hand
rule. Distributed contact traction qc is in the b–n plane normal to t. Distributed contact friction qfrθ
due to rotation is in this same plane. Distributed contact friction qfrt due to axial movement is parallel
to t.

trated in Fig. 5.6 for forces acting on a block [41]. Up to the point that the imposed force
fs exceeds a value μsfc , the friction force ffr is equal to fs in magnitude and opposite to fs
in direction. Once static friction is “broken”, ffr takes the constant value μkfc and is op-
posite to v in direction, where v is the relative velocity between the surfaces in contact.

Decomposing the frictional traction into axial and circumferential components gives

qfr = (qfr · t) t︸ ︷︷ ︸
Axial

+ (qfr · gθ

)
gθ︸ ︷︷ ︸

Circumferential

,

(
qfr
)
k = [(qfr

)
i ti
]
tk,

(
qfr
)
k = [(qfr

)
i

(
gθ

)
i

] (
gθ

)
k , (5.95)

where gθ is a unit vector in the same local (to the tube) cylindrical coordinate system
as gr and the subscripts i and k refer to the spatial coordinate system upon which the
t-n-b system is based. The axial component of qfr can be positive or negative depending
on the direction of axial movement relative to the local unit vector t.

Kinematics

The strains are infinitesimal. Further, in accordance with conventional beam theory, we
assume that cross-sections remain plane during deformation, regardless of whether the
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Figure 5.6 Illustration of the Coulomb friction model. In the simple diagram of a block on a surface,
forces rather than distributed tractions are depicted. The coefficients of friction μs and μk are assumed
to be independent of the surface area of contact and the relative velocity between the surfaces.

deformation is elastic or inelastic. Consider an isothermal tube (beam) that is originally
straight (as it sets on the rack at the rig site) but deforms due to the action of external
forces and moments (as it undergoes service loads, Fig. 5.2).

To describe the deformation, we employ a coordinate system such as depicted in
Fig. 5.2 where the following relations hold (see Appendix B):
• t is directed along the instantaneous centerline of the tube;
• n is normal to t (i.e., lies in the plane of the deformed cross-section) and points

toward the instantaneous center of curvature of the centerline of the tube;
• b = t × n.
This is the same coordinate system employed previously, redefined here solely for clarity.
Fig. 5.7 depicts the deformation of the tube from its initial state. If the displacements and
displacement gradients are infinitesimal, then the axial strain (see subsection ‘Extension’
in Section 3.6.3.1 of Chapter 3) along fiber be is

Ĕtt = 1
κ

dθ

dS
− 1, be. (5.96)

For fibers along ad and cf ,

Ĕtt =
dθ
κ

+ ∣∣y∣∣dθ

dS
− 1 ≈ Ĕtt0 + ∣∣y∣∣κ, cf ,

Ĕtt =
dθ
κ

− ∣∣y∣∣dθ

dS
− 1 ≈ Ĕtt0 − ∣∣y∣∣κ, ad, (5.97)
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Figure 5.7 Axial strain in a tube acting as a beam. The differential element dS is deformed to ds, with
the t and n axes forming the instantaneous plane of curvature in which ds lies. The deformation is
greatly exaggerated in the figure. The b unit vector points out of the paper.

where the added subscript “0” is applied to the middle surface23 of the tube and the ≈
sign refers to ds ≈ dS for infinitesimal strain. Either above or below the beam middle
surface the strain is a linear function of y, and since the slope is κ both above and below
the middle surface, the cross-section remains plane. The y-axis is directed opposite to n
so that fibers that stretch have a positive strain. Generally, we write

ˆ̆Ett(y) = Ĕtt0 + yκ. (5.98)

As the beam bends its cross-section will also deform. On the tension side (y > 0),
the cross-section will become thinner and shorter; on the compression side (y > 0),
the cross-section will become wider and longer. We shall ignore this distortion as-
sociated with Poisson’s ratio, which is equivalent to stating Ĕbb = Ĕnn = 0. From
Eqs. (5.25)–(5.27),

Ĕnn = 0, (5.99)

Ĕbb = 0, (5.100)

23 The middle surface of the tube passes through the centroid of the tube cross-section and has n as its
instantaneous normal.
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ˆ̆Ett(y) = 1
E

�tt(y) = Ĕtt0 + yκ, �̂tt(y) = E
(
Ĕtt0 + yκ

)
= �a + �̂b(y), (5.101)

where �a captures the portion of axial stress not associated with bending and �b is the
portion of axial stress due to bending. Both the elastic axial stress and strain are linear in
distance from the middle surface.

The section axial force and section moment along the b-axis on the tube are, re-
spectively,

ft = f · t =
∫

As

�̂tt(y)dA = E
∫

As

[
Ĕtt0 + yκ

]
dA = E

(
Ĕtt0As + κ

∫
As

ydA
)

, (5.102)

mb = m · b =
∫

As

�̂tt(y)ydA = E
∫

As

[(
Ĕtt0 + yκ

)
y
]

dA = E
(

Ĕtt0

∫
AS

ydA + κ

∫
As

y2dA
)

.

(5.103)

For a hollow circular cross-section such as a tube,

∫
As

ydA =
∫ D

2

d
2

∫ 2π

0
(r sin θ) rdθdr =

∫ D
2

d
2

[− cos θ ]2π
0 r2dr = 0, (5.104)

I =
∫

As

y2dA =
∫ D

2

d
2

∫ 2π

0
(r sin θ)2 rdθdr

=
∫ D

2

d
2

[
1
2

(θ − sin θ cos θ)

]2π

0
r3dr = π

[
r4

4

]D
2

d
2

= π

64
(
D4 − d4) , (5.105)

so that Eqs. (5.102) and (5.103), respectively, become

ft = EĔtt0As, (5.106)

mb = EκI = Eκ
π

64
(
D4 − d4) . (5.107)

The product EI in Eq. (5.107) is the bending stiffness.
We also introduce shear force components fn and fb in the n and b directions, re-

spectively, and the torsion mt, although for casing and tubing our use for the latter will
be minimal. Returning to Eqs. (5.59) and (5.61), with

f = ftt + fnn + fbb, (5.108)

and

m = mtt + mbb, (5.109)
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and recalling Eqs. (B.3), (B.11) and (B.9), respectively, for the derivatives of t, n and b,
we can write(

dft
ds

− κ fn

)
t +
(

dfn
ds

+ κ ft − τ fb

)
n +

(
dfb
ds

+ τ fn

)
b + q = ρ

gc
aAs, (5.110)

(
dmt

ds

)
t + (κmt − τmb − fb

)
n +

(
dmb

ds
+ fn

)
b + c = 0. (5.111)

The equations for the individual components of the force f and moment m are therefore

dft
ds

− κ fn + qt = ρ

gc
atAs, (5.112)

dfn
ds

+ κ ft − τ fb + qn = ρ

gc
anAs, (5.113)

dfb
ds

+ τ fn + qb = ρ

gc
abAs, (5.114)

dmt

ds
+ ct = 0, (5.115)

κmt − τmb − fb + cn = 0, κmt − τEIκ − fb + cn = 0, (5.116)

dmb

ds
+ fn + cb = 0, EI

dκ

ds
+ fn + cb = 0, (5.117)

where in Eqs. (5.116) and (5.117) we have included the results from Eq. (5.107). For
equilibrium, the components of a on the right-hand side of Eqs. (5.112)–(5.114) vanish.

Example problem—contact force Consider a tubular at equilibrium (a = 0).
Tubular designs often assume that the only nonzero component of f is ft (i.e., fn = fb = 0).
Under this assumption, derive an equation for the contact traction distribution qc .

From Eqs. (5.113) and (5.114) we have

κ ft + qn = 0, qb = 0. (5.118)

The components qn and qb have two constituents—one due to contact (our un-
known) and one due to qf . We write

qn = n · (qc + qf
)
, qb = b · (qc + qf

)
. (5.119)

From Eq. (5.92) under a condition of no flow,

n · qf = − (piAi − poAo
)
κ + weff (e3 · n) , b · qf = weff

(
e3 · b) , (5.120)

where wa + (γiAi − γoAo) (see Eq. (10.2)). From Eq. (5.93),

n · qc = − ∣∣qc
∣∣ cosη, b · qc = − ∣∣qc

∣∣ sinη, (5.121)
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where η is the angle between gr and the instantaneous n unit vector (see Eq. (5.93)).
From Eq. (B.4), and assuming the centerline of the tubular conforms to the center-

line of the wellbore, the curvature κ in Eq. (5.118) is

κ =
∣∣∣∣dt̂ds

∣∣∣∣ , (5.122)

where from Eq. (B.16) we get

t = t̂(s) = sin θ cosφ e1 + sin θ sinφ e2 + cos θ e3, (5.123)

where θ is the inclination of the wellbore from vertical (e3 · t = cos θ ) and φ is the
azimuth (e1 · t = sin θ cosφ). The derivative of t with respect to the wellbore centerline
coordinate s is

dt̂
ds

=
(

− sin θ sinφ
dφ

ds
+ cos θ cosφ

dθ

ds

)
e1 +

(
sin θ cosφ

dφ

ds
+ cos θ sinφ

dθ

ds

)
e2

− sin θ
dθ

ds
e3, (5.124)

in the global material coordinate system (see Fig. 3.1). Using Eq. (5.123) to evaluate
Eq. (5.122) produces

κ =
√

dt̂
ds

· dt̂
ds

=
[(

− sin θ sinφ
dφ

ds
+ cos θ cosφ

dθ

ds

)2

+
(

sin θ cosφ
dφ

ds
+ cos θ sinφ

dθ

ds

)2

+
(

− sin θ
dθ

ds

)2
] 1

2

(5.125)

=
√(

sin θ
dφ

ds

)2

+
(

dθ

ds

)2

.

Combining Eqs. (5.118)–(5.121), the n component of qc is

κ ft −
∣∣qc
∣∣ cosη − (piAi − poAo

)
κ + weff (e3 · n) = 0, (5.126)

or

∣∣qc
∣∣ cosη = κ ft −

(
piAi − poAo

)
κ + weff (e3 · n)

= feff κ + weff (e3 · n) , (5.127)
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where κ is given by Eq. (5.125). Similarly, for the b component of qc we have

∣∣qc
∣∣ sinη = weff

(
e3 · b) . (5.128)

Squaring and summing Eqs. (5.127) and (5.128) yields

∣∣qc
∣∣2 = f 2

eff κ
2 + 2feff κ weff (e3 · n) + w2

eff (e3 · n)2 + w2
eff

(
e3 · b)2 . (5.129)

Guided by the insight of Mitchell and Samuel [37], we can write

e3 · t = cos θ,
d
ds

(e3 · t) = e3 · dt
ds

= κe3 · n = − sin θ
dθ

ds
, (5.130)

where we make use of Eq. (B.3) and of the fact that de3
ds = 0. Since e3 is a unit vector,

we may also write

1 − (e3 · t)2 = (e3 · n)2 + (e3 · b)2 = sin2 θ. (5.131)

If we substitute Eqs. (5.125), (5.130) and (5.131) into Eq. (5.129), then

∣∣qc
∣∣2 = f 2

eff κ
2 − 2feff weff sin θ

dθ

ds
+ w2

eff sin2 θ

=
(

feff sin θ
dφ

ds

)2

+
(

feff
dθ

ds
− weff sin θ

)2

, (5.132)

or

∣∣qc
∣∣=
√(

feff sin θ
dφ

ds

)2

+
(

feff
dθ

ds
− weff sin θ

)2

. (5.133)

This same expression was derived by Sheppard et al. [42].



CHAPTER 6

Yield and Inelastic Behavior
6.1. INTRODUCTION

Elastic behavior as described in Chapter 5 is limited to a material-dependent range
of stress (or strain1). Beyond that range, the material yields, and its behavior is then
governed by the theory of plasticity.

Plastic behavior complicates analysis and, in addition to altered behavior, also signi-
fies that the material is undergoing increasing damage to its crystalline structure. For this
reason, yield, marking the onset of plastic behavior, is usually taken as one of the two
major mechanical limit states for the tube body,2 the other being collapse (Chapter 8).
Notable exceptions to the designation of yield as a limit state include the expansion
process of solid expandable tubulars, investigation of actual rupture of the tube body
and the plastic collapse mode for external pressure loading.

A complete description of plastic behavior involves three phenomena—yield, a flow
rule and a hardening law. Yield marks the departure from elastic behavior and is defined
by a surface in a space having components of stress as its coordinate axes. Once yield
occurs and plastic deformation begins, the flow rule determines the increment or rate of
deformation experienced. This deformation can both displace and distort the original
yield surface, the alteration of the yield surface being addressed by the hardening law.

In the sections to follow, each of the above aspects of plasticity is discussed in more
detail for the case of multiple active stresses. As a phenomenological bearing, however,
we begin the discussion with a one-dimensional load state.

A word on terminology is in order. Throughout the majority of this book the pre-
ferred stress is the Cauchy stress, �, which is defined relative to the deformed state of
the body in focus. As described in Section 4.3.1.1 of Chapter 4, however, the con-
ventional stress definition for a uniaxial tension test is the Piola–Kirchhoff stress of the
first kind, S—the so-called engineering stress. We will maintain this distinction in the
present chapter as follows. When discussing conventional uniaxial stress–strain curves at
the onset, S will be used. Later, when the discussion turns to multidimensional topics
and the general theory, � will be the stress definition of choice.

1 The elastic limit and possible inelastic behavior are usually referred to a multidimensional stress space.
There are instances, however, when it is more convenient to refer elastic-plastic behavior to strain space.
For the theoretical background of strain space plasticity see [43]; for an example application see [44]. The
treatment of elastic limit and possible inelastic behavior here will only address stress space plasticity.

2 Yield of the critical cross-section of a connection is also a limit state. Long before the connection yields
at its critical cross-section, however, one can expect minor yielding at the roots of some threads.
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Figure 6.1 Typical uniaxial stress–strain curve.

6.2. THE UNIAXIAL STRESS–STRAIN CURVE

Fig. 6.1 illustrates typical one-dimensional behavior of a crystalline solid such as steel in a
uniaxial tension test. A circular cylindrical specimen is subjected to tension along its axis,
while simultaneously measuring the elongation of the specimen from its original length.
The axes of the graph are axial strain (see subsection ‘Extension’ in Section 3.6.3.1 of
Chapter 3) and axial stress.3,4

Starting at the origin (point O), application of tension to the specimen in the region
0 ≤ SZZ ≤ fy elicits elastic response characterized by the following two behaviors:
• Linear. The relation between axial stress and axial strain is a straight line. The equa-

tion for this line is

SZZ = E EZZ, (6.1)

where E, the slope of the stress–strain line, is Young’s modulus.
• Recoverable. If the axial stress is increased, resulting in a corresponding strain deter-

mined by line OA, upon removal of the axial stress, all of the axial strain is recovered,
and the stress–strain state returns to the origin.

The above response is characterized as elastic as discussed in Chapter 5.

3 Strictly speaking, the external load is a traction. Due to (a) the fact that in this uniaxial experiment the
traction and the axial stress are intimately related and (b) the long history of using stress in naming the
curve in Fig. 6.1, we will leave well enough alone and call the axial component of load intensity “stress”.

4 One could choose elongation and force as the coordinate axes in Fig. 6.1. Doing so renders the figure
dependent on the geometry of the specimen. By using relative elongation (strain) and force intensity
(stress) the geometry of the sample is accounted for, and the response curve only depends on the specimen
material.
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6.2.1 Yield on a uniaxial stress–strain curve
Once the stress–strain path passes point A (SZZ > fy), both of the above elastic charac-
teristics are lost, and the response of the material becomes elastic-plastic, characterized
by the following two changes to purely elastic behavior:
• Nonlinear. As depicted in Fig. 6.1, the portion of the stress–strain curve between

points A and D no longer has constant slope; the stress–strain relation is no longer
linear. The instantaneous or local slope of the stress–strain curve between points A
and D is the tangent modulus

Et = dSZZ

dEZZ
. (6.2)

Some developments in plasticity theory also employ the secant modulus which is
the ratio of total stress to total strain

Es = SZZ

EZZ
, (6.3)

where Et ≤ Es ≤ E, the equal signs applying in the elastic region of the stress–strain
curve.

• Irrecoverable. As illustrated in Fig. 6.1, imagine that loading of a specimen proceeds
from the origin to point A and then continues to point B. If the specimen is un-
loaded from this stress level, it will not retrace the path BAO but rather will follow
a path BF that is parallel to path OA. When all axial load has been removed from
the specimen, it will have accrued a permanent change in length characterized by
the residual axial strain OF, commonly designated plastic strain.
The importance of point A and its corresponding value fy on the SZZ-axis is clear.

Point A serves as a boundary between elastic and elastic-plastic behavior, a boundary
between two approaches to modeling the constitution of the specimen material. The
value of fy, termed the yield stress,5 thus becomes a key parameter in defining the yield
limit state. In this regard, consider the left-hand diagram in Fig. 6.2.

5 From a metallurgical point of view, a number of important boundaries lie in the vicinity of point A
[45,14]:

• the elastic limit—the greatest stress the material can experience without suffering permanent strain
when the load is removed;

• the proportional limit—usually slightly less than the elastic limit, this is the maximum stress for which
Eq. (6.1) is valid;

• the yield stress—usually defined to be slightly greater than the elastic limit, the two are tantamount;
• the upper yield point—usually slightly higher than the yield stress, this is a stress realized by some

materials with a flat postyield stress–strain curve. Immediately following the strain corresponding to
the upper yield point, the stress–strain curve drops to a plateau, with stress remaining constant for an
appreciable range of strain.

In tubular design, and therefore in this book, all the above points are assumed to be collocated and
designated the yield stress.



154 Elements of Oil and Gas Well Tubular Design

Figure 6.2 Definition of yield from a uniaxial stress–strain curve.

Popular in academia and a number of industries is the so-called “0.2% offset” def-
inition of yield. Yield is defined as the intersection of the stress–strain curve with a
straight line constructed by starting at a strain6 of 0.002, or 0.2%, and having a slope
equal to Young’s modulus. An example construction to determine the 0.2% offset yield
is indicated in the left-hand diagram. The fact that the intersection occurs above fy is a
consequence of its definition. The apparent large discrepancy between the 0.2% offset
yield and fy is due to the low value assigned to E in the drawing—the 0.2% offset yield
is usually a good approximation of the onset of plasticity.

In contrast to the 0.2% offset method, the API uses an alternate definition of yield,
found by the intersection of the stress–strain curve with a vertical line usually drawn at
a strain of 0.005. For higher yield strength materials, in fact, any material having a value
of fy ≥ 150,000 psi, yield will be predicted when the material is still elastic. For this
reason, for higher yield materials the abscissa intersection may be raised above 0.005.

Table 6.1 lists the current API material grades for casing and tubing. The grade
naming convention consists of a letter followed by the API minimum yield stress in
1000 s of psi. The letters themselves were assigned historically and have no significance
other than to aid in grade name differentiation.7

Returning to the discussion of Fig. 6.2, there is no reason why the two offered
definitions of yield should be equal, or why either of them should equal fy. Fortunately,
as indicated by the right-hand diagram in the figure, most API tubular products have

6 All strain definitions used in this book are dimensionless, having “units” of in/in or mm/mm. Strain can
also be expressed without units or multiplied by 100 and expressed as a percent.

7 Such is not the case for letters appearing in proprietary (non-API) grade offerings. Acronyms used in pro-
prietary grade designations are explained by the manufacturer in a published catalog or on a commercial
website.
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Table 6.1 API material grades [46]. All yield and ultimate stress values are in alternate
units of psi/MPa
Grade Yield strain, % Min yield stress Max yield stress Min ultimate stressa

H40 0.5 40000/276 80000/552 60000/414
J55 0.5 55000/379 80000/552 75000/517
K55 0.5 55000/379 80000/552 95000/655
N80b 0.5 80000/552 110000/758 100000/689
R95 0.5 95000/655 110000/758 105000/724
M65 0.5 65000/448 85000/586 85000/586
L80c 0.5 80000/552 95000/655 95000/655
C90d 0.5 90000/621 105000/724 100000/689
T95e 0.5 95000/655 110000/758 105000/724
C110 0.67 110000/758 120000/828 115000/793
P110 0.6 110000/758 140000/965 125000/862
Q125f 0.65 125000/862 150000/1034 135000/931
a API terminology is tensile strength.
b Applicable to both Type 1 and Type Q.
c Applicable to Type 1, Type 9Cr and Type 13Cr.
d Applicable to Type 1, regardless of wall thickness.
e Applicable to Type 1, regardless of wall thickness.
f Applicable to Type 1, regardless of wall thickness.

a relatively flat postyield stress–strain curve, which renders the three values equal. This
behavior, however, is not evidenced by all API grades—in particular, the lower strength
materials and the high-chrome products.

6.2.1.1 Effect of temperature

Yield stress is inversely proportional to temperature, the relation being reasonably ap-
proximated by a straight line. Temperature dependency varies with chemistry. Although
the majority of low-alloy API tubular grades have behavior that may be fit with a single
curve, the chrome products and any proprietary high-alloy steels can vary noticeably in
their sensitivity to temperature increase. Two guidelines are as follows:
• Whenever possible, consult the source of the tubulars to be purchased to see if

temperature-dependent yield stress data is available.
• If absolutely no external data is available, and especially for low-carbon API grades

(all grades in Table 6.1 except L80 Type 9Cr and L80 Type 13Cr), modeling a ten
percent decrease in yield stress at 300 °F (149 ◦C) is a reasonable approximation

f̂y(T) = fy(70)

(
1 − 0.1

T − 70
300 − 70

)
= fy(70) (1.0304 − 0.000435 × T) , T ≥ 70, (6.4)
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where T is in units of °F. If the temperature is less than 70 °F, make no adjustment
for temperature. The corresponding formula for the Celsius scale is

f̂y(T) = fy(21.1) ×
{

1.0165 − 0.000783 × T if T ≥ 21.1,
1.0 otherwise.

(6.5)

The resulting yield stress should be used in all pertinent calculations—design for
yield, collapse, joint strength, etc.

6.2.2 Postyield behavior on a uniaxial stress–strain curve
Phenomenologically, postyield behavior has already been noted in the bulleted com-
ments accompanying Fig. 6.1 in Section 6.2.1. In detail, and with reference to the
points in Fig. 6.1, the behavior is as follows:
• Initially the yield stress of the material corresponds to point A.
• If the material is loaded beyond point A, the yield stress changes so as to always con-

tain the stress. For example, if the material is loaded beyond yield in tension to point
B, the yield stress increases and at the end of loading is now the stress corresponding
to point B. In a single dimension the phenomenon is readily discernible as the yield
condition is a point on the SZZ-axis. When two or more stresses are active, the re-
sponse of the yield condition to plastic deformation becomes increasingly complex,
since the yield condition is now represented by a surface in multidimensional stress
space (see Section 6.3). Combinations of expansion or contraction, translation and
local distortion of the yield surface at the point of penetration in stress space are
common.

• If the material is unloaded from point B the material response is elastic, following
the curve BF. A perfect metal crystal is much stronger than a macroscopic specimen,
the weakness of the latter being attributed to imperfections in the atomic structure.
An example of such a weakness is a dislocation, a region where one or more atoms
are out of position with respect to the material’s crystal structure. Movement of
dislocations, usually under the action of a macroscopic shear load, results in dis-
placement but little alteration of the main lattice structure [47]. Movement is also
aided by the presence of slip planes—planes along which atomic packing is most
dense—in the structure. Displacement of multiple dislocations can be arrested by
other microscopic imperfections, such as grain boundaries.8 This combination of
(a) substantial structural integrity of the lattice and (b) relatively major (and irre-
versible) movement along planes of weakness leads to a curve such as ABF. The AB

8 The accumulation of dislocations, as opposed to continued, unimpeded flow, means an increasing load
will be required to continue deformation. This work-hardening results in a nonzero slope to the stress–
strain curve beyond yield. Compare the left-hand (work-hardening) and right-hand (no work-hardening)
diagrams in Fig. 6.2.
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segment reflects the large, plastic movement associated with mobile dislocations and
planes of atomic close-packing; the BF segment indicates elastic-only recovery of
interatomic distance when the distorting load is removed.

• When the load is totally removed from a yielded specimen, an irrecoverable strain
will exist—in the current example the irrecoverable, or plastic strain is OF.

• If the sample remains in the test fixture and is reloaded in tension, the response path
begins at point F and follows line FB until a point near B is reached. The sample
then yields at its new yield stress corresponding approximately to point B, and under
continued loading follows the path BC. Deformation under increasing load along
any portion of the segment ABC is an indication of work-hardening.

• According to the stress–strain curve in Fig. 6.1, the maximum axial stress the sample
can withstand corresponds to point C, but the sample does not break until, as
indicated by the “x”, point D. This is an anomaly of a typical stress–strain curve and
is not real:
• The “decreasing” axial stress is a sign of material instability as the sample under-

goes significant plastic deformation and necking9 prior to its ultimate fracture.
• The curve shown in Fig. 6.1 is a so-called “engineering” stress–strain curve (see

Section 4.3.1.1 of Chapter 4). In constructing such a curve, the geometry of the
sample—its cross-sectional area and length—is only measured at the beginning
of the test. Each text fixture axial force value that is converted into axial stress
uses the original cross-sectional area to compute force intensity (stress). Were
each axial force value instead divided by its corresponding current cross-sectional
area, and similarly for the division by length to compute strain, the resulting
“true” stress–strain curve would be monotonically increasing to failure at the
ultimate stress.

6.2.2.1 The Bauschinger effect

Fig. 6.3 displays both tension and compression uniaxial stress–strain response for an
isotropic crystalline solid such as steel. Consider the following three load paths:
1. Path 1 (slightly offset from the stress–strain curve so as to be discernible) is the

tension path discussed in reference to Fig. 6.1. With increasing load the sample
experiences, in succession, elastic behavior, yield and postyield elastic-plastic be-
havior.

9 The postyield effective Poisson’s ratio of a sample in a uniaxial tension test begins at yield with a value
of approximately 0.3 (steel) and increases with increasing plastic deformation, limited to a theoretical
maximum value of 0.5. With increasing Poisson’s ratio, the change in cross-sectional area of the sample
with an increment of axial strain also increases. For ductile samples the decrease in cross-sectional area
at the point of fracture can be substantial. This near-failure cross-sectional behavior is referred to as
“necking.”.
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Figure 6.3 The Bauschinger effect.

2. Path 2, performed on a new specimen, exposes the sample to the same behav-
iors, only in compression. Provided the samples are identical and the material is
isotropic, the sample will yield in compression at the same absolute value under
which its companion yielded in tension.

3. Path 3, once again using a new specimen, is initially identical to Path 1—the sample
is loaded in tension beyond yield. From the initial discussion on postyield behavior
in this section, we recognize that the initial yield stress fy is supplanted with plastic
loading, such that the new yield stress is fy + �fy. Now the sample is unloaded and
again, according to preceding discussion, elastically unloads along a path parallel to
the original elastic path. Once all the load is removed, we do not, however, re-
move the specimen from the test fixture. Rather, we begin to load the specimen in
compression. We observe that now the yield stress in compression is no longer −fy,
but has decreased (in an absolute value sense) to a value of −fy + �fy, where �fy is
the amount by which yield was exceeded during the initial application of tension.
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This phenomenon, the decrease in yield in one direction when unloading a spec-
imen from postyield behavior in the opposite direction, is termed the Bauschinger
effect.

6.2.2.2 Cyclic loading

Some completions, most notably those associated with the recovery of viscous oil, in-
volve processes that cyclically load wellbore tubulars beyond yield. Both CSS (cyclic
steam stimulation) and SAGD (steam-assisted gravity drainage) involve high tempera-
ture 570–640 °F (300–340 ◦C) thermal cycles that simultaneously induce thermal stress
and reduce yield stress (Section 6.2.1.1). This load increase/resistance decrease can yield
axially constrained tubulars on both the steam injection (compression) and soak into
production (reduction in compression to tension) cycles [48], aided by a coincident re-
duction in yield stress on reverse loading due to the Bauschinger effect (Section 6.2.2.1).

6.2.3 Modeling a uniaxial stress–strain curve
When stress–strain data is unavailable, or to pursue solutions as far as possible, it is
sometimes useful to substitute a mathematical model for experimental uniaxial material
behavior. Two such models have gained acceptance in tubular design.

6.2.3.1 Needleman’s model

Needleman’s model [49] offers the following relation between uniaxial stress and strain:

SZZ

fy
=

⎧⎨
⎩

EZZ
εy

for EZZ ≤ εy,[
nEZZ

εy
+ 1 − n

] 1
n

for EZZ > εy,
(6.6)

where εy is the strain corresponding to fy, that is, εy = fy/E, and the variable n determines
the shape of the stress–strain curve beyond initial yield. The tangent modulus and secant
modulus are, respectively,

Et = dSZZ

dEZZ
= E ×

⎧⎨
⎩

1 for EZZ ≤ εy,(
fy

SZZ

)n−1
for EZZ > εy,

(6.7)

Es = SZZ

EZZ
= E ×

⎧⎪⎨
⎪⎩

1 for EZZ ≤ εy,
SZZ

fy
1
n

[(
SZZ

fy

)n−1
]
+1

for EZZ > εy.
(6.8)

A plot of Eq. (6.6) illustrating its sensitivity to n is provided in Fig. 6.4.
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Figure 6.4 Needleman’s model for a uniaxial stress–strain curve [49]. The yield values εy and fy are
related by fy = Eεy .

6.2.3.2 Ludwik’s model

Ludwik’s model [50] offers the following relation between uniaxial stress and strain10:

�zz = CẼnNR
ZZ , C =

(
e

nNR

)nNR

fu, (6.9)

where � is the Cauchy stress—force intensity related to current area—Ẽ is the logarith-
mic strain, fu is the ultimate (Cauchy) stress, nNR determines the shape of the stress–strain
curve, and e is the base of the natural logarithm. Ludwik’s model is not linear in the
low stress region, but we will only use this model for describing ductile rupture and
therefore will apply the model to material behavior at large inelastic strain.11

10 Regarding the notation used in this section, the fact that Ludwik’s model is normally used with large de-
formation problems fosters a small issue in notation consistency. The Cauchy stress is normally expressed
relative to a spatial coordinate system and the logarithmic strain is normally expressed relative to the
material coordinate system. For this one-dimensional stress state we simply assume the two coordinate
systems align, which allows us to maintain lower case indices for the stress and upper case indices for the
strain.

11 In practice, the strain ẼZZ in Ludwik’s model is not the total strain but the inelastic part of the total
strain (cf. Section 7.3.2 in Chapter 7). Since the elastic strain prior to yield is small, this is a reasonable
use of the model.
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Table 6.2 Ludwik’s nNR for API grades [51]
Grade nNR Grade nNR

H40 0.14 L80 Chrome 0.10
J55 0.12 C90 0.10
K55 0.12 R95 0.09
M65 0.12 T95 0.09
N80 0.10 P110 0.08

L80 Type 1 0.10 Q125 0.07

For future reference, the local slope EL of the Ludwik stress–strain curve is

EL = d�zz

dẼZZ
= nNRCẼnNR−1

ZZ = enNR fu

(
ẼZZ

nNR

)nNR−1

= efu

(
�zz

fu

) nNR−1
nNR

. (6.10)

A convenient relation associated with Eq. (6.10) specifies that if �zz = kEL, then

knNRCẼnNR−1
ZZ = CẼnNR

ZZ ⇒ ẼZZ = knNR, �zz = (
ek
)nNR fu if �zz = kEL. (6.11)

The API [51] provides both recommended values of nNR for API grades (see Ta-
ble 6.2) and an equation to determine nNR for nonstandard materials

nNR = 0.1693 −
{

0.000118 1
MPa for SI units

0.000000812 1
psi for USC units

}
× fy. (6.12)

A plot of Eq. (6.9) for selected values of nNR is provided in Fig. 6.5. In applications
the strain labeled “Logarithmic strain” in the figure is often the plastic part of the total
logarithmic strain. This will result in a poor fit of Ludwik’s model for small strain—
Eq. (6.9) assigns zero strain to zero stress whereas at zero plastic strain the stress should
be the initial yield stress. With increasing strain—the primary application of this model
is for ultimate strength limit states—the fit of Ludwik’s model to experimental plastic
strain can be excellent.

6.3. YIELD IN MULTIPLE DIMENSIONS

On the uniaxial stress–strain curve yield is represented by a point, e.g., point A in
Fig. 6.1. If the stress state is two-dimensional the yield criterion will be represented by
a closed line, the line serving as a boundary between elastic behavior (its interior) and
plastic behavior (its exterior). In the three-dimensional case yield is represented by a
(possibly open) surface.
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Figure 6.5 Ludwik’s model for a uniaxial stress–strain curve [50]. In application the abscissa is actu-
ally plastic logarithmic strain.

6.3.1 Isotropic yield and the von Mises yield criterion [52]
Consider the behavior of a homogeneous, isotropic crystalline metal as plotted in princi-
pal stress space. The orthogonal principal stress axes are arranged such that �

p
1 ≥ �

p
2 ≥ �

p
3

form a right-handed coordinate system.
An important experimental observation for crystalline solids is that, at least within

the limits of investigation of this discussion, yield is independent of the mean or hydro-
static component of the stress tensor, where the mean stress is defined as

�m = 1
3

tr (�) , �m = 1
3
�ii, (6.13)

which for a stress tensor aligned with the principal stress axes, becomes

�m = 1
3

tr (�p) , �m = 1
3
(
�

p
1 + �

p
2 + �

p
3

)
. (6.14)

For a hydrostatic stress state12 where �
p
1 = �

p
2 = �

p
3, a unit vector in principal stress

space will have the components

12 Here we use the term “hydrostatic” to denote a stress state in which the three principal stresses are equal
and, from Eq. (6.13), equal to the mean stress. This definition can be applied to solids as well as liquids,
although in the case of liquids it does conform to the state one normally describes when speaking of
hydrostatic pressure.
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ghyd = �
p
1g

p
1 + �

p
2g

p
2 + �

p
3g

p
3√

�
p2
1 + �

p2
2 + �

p2
3

= 1√
3

(
gp

1 + gp
2 + gp

3

)
, �

p
1 = �

p
2 = �

p
3, (6.15)

where gp
i is a unit base vector in the �p coordinate system. From Eq. (6.15) the unit vec-

tor ghyd will possess equal angles with each of the coordinate axes. That is, its direction
cosines are ghyd · gi = 1/

√
3, i = 1,2,3. Additional conclusions to be reached regarding

the position of a stress state relative to the hydrostatic stress include the following:
• As long as the current stress state lies on the hydrostatic axis, the material has no

tendency to yield;
• Departure of a stress state from the hydrostatic axis, which initiates an increasing

tendency to yield, is accompanied by the introduction of shear, that is, a state where
at least one of �

p
1 �= �

p
2, �

p
2 �= �

p
3 or �

p
3 �= �

p
1 is true;

• Yield will occur when departure from the hydrostatic axis reaches a critical value,
this critical value representing a radius in principal stress from an axis collinear with
the hydrostatic stress unit vector;

• For an isotropic material, the critical value of departure from the hydrostatic axis
should be the same regardless of the direction of this departure in stress space;

• This critical departure will be in a plane whose normal is the hydrostatic stress unit
vector.

Mathematically, the implications of the bulleted list above are as follows:
• The equation of the plane normal to the hydrostatic stress unit vector follows from

the fact that the dot product of any vector in that plane with ghyd must vanish, or,
from Eq. (6.15)

(vπ )1 �
p
1 + (vπ )2 �

p
2 + (vπ )3 �

p
3 = 0, �

p
1 = �

p
2 = �

p
3, (6.16)

where (vπ )1 = vπ ·gi, i = 1,2,3. This plane is designated the “π-plane” in mechan-
ics literature and is depicted in Fig. 6.6.

• Viewed in the π-plane, the criterion for yield of an isotropic material suggests a
circle, since (a) yield depends on departure from the hydrostatic stress axis, and
(b) departure to yield in any direction should be the same. Consider a π1–π2–π3

coordinate system (see Fig. 6.7) where the π1-axis lies in the �
p
2–�

p
3 plane, the

π2-axis lies in the plane formed by the hydrostatic stress unit vector (Eq. (6.15))
and the �

p
1-axis, and π3-axis aligns with the hydrostatic stress unit vector. The

transformation matrix from the �p coordinate system to the π coordinate system is,
due to Eq. (A.56),

L =
⎡
⎢⎣

gπ
1 · gp

1 gπ
1 · gp

2 gπ
1 · gp

3
gπ

2 · gp
1 gπ

2 · gp
2 gπ

2 · gp
3

gπ
3 · gp

1 gπ
3 · gp

2 gπ
3 · gp

3

⎤
⎥⎦ =

⎡
⎢⎢⎣

0 − 1√
2

1√
2√

2
3 − 1√

6
− 1√

6
1√
3

1√
3

1√
3

⎤
⎥⎥⎦ , (6.17)
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Figure 6.6 The π -plane, shown in relation to the principal stress axes. The π1 and π2-axes lie in the
π -plane. The π3-axis is normal to the π -plane, aligned with the hydrostatic stress unit vector ghyd of
Eq. (6.15). The angle between the π2-axis and the �

p
1 -axis is π

2 − cos−1 1√
3

. The projection of the

π3-axis onto the �
p
2 –�

p
3 plane makes an angle of π

4 with both the �
p
2 and �

p
3 -axes. The projection

of the π2-axis onto the �
p
2 –�

p
3 plane makes an angle of 3π

4 with both the �
p
2 and �

p
3 -axes.

Figure 6.7 Illustration of angles used to determine direction cosines between the π coordinate sys-
tem and the �p coordinate system.
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where gπ
i is a unit base vector in the π coordinate system. A circle in the π-plane is

π2
1 + π2

2 − r2
y = 0, (6.18)

where ry is the radius of the circle representing incipient yield. Using Eq. (6.17) to
express the πi in terms of the �

p
I we get

π1 = − 1√
2
�

p
2 + 1√

2
�

p
3, (6.19)

π2 =
√

2
3
�

p
1 − 1√

6
�

p
2 − 1√

6
�

p
3, (6.20)

π3 = 1√
3
�

p
1 + 1√

3
�

p
2 + 1√

3
�

p
3. (6.21)

Substituting Eqs. (6.19) and (6.20) into Eq. (6.18), the equation of the yield surface
in principal stress space is

f̂ = 2
3

(
�

p2
1 + �

p2
2 + �

p2
3 − �

p
1�

p
2 − �

p
2�

p
3 − �

p
3�

p
1

)
− r2

y = 0. (6.22)

The radius ry can be evaluated by considering a uniaxial tension test along the
direction of �

p
1. At yield, only �

p
1 = fy is nonzero, and Eq. (6.22) reduces to 2

3 f 2
y = r2

y ,

or ry =
√

2
3 fy. Using this value in Eq. (6.22), the final form of the yield surface in

principal stress space is

f̂ = �
p2
1 + �

p2
2 + �

p2
3 − �

p
1�

p
2 − �

p
2�

p
3 − �

p
3�

p
1 − f 2

y = 0. (6.23)

The surface defined by Eq. (6.23) is illustrated in Fig. 6.8. The surface is a right cir-
cular cylinder extending indefinitely in both directions from the origin of principal
stress space. The axis of the cylinder makes equal angles with the three principal

stress axes and the radius of the cylinder is
√

2
3 fy.

• Do not confuse the right circular cylinder in Fig. 6.8 with a physical tubular. A sep-
arate von Mises yield surface as depicted in Fig. 6.8 exists for every point along the
length and through the wall of a physical tube.

• For most tubular problems, the principal stresses can be identified with the normal
stresses in a cylindrical coordinate system whose Z-axis aligns with the axis of the
tube.13 Mapping of �rr , �θθ and �zz to �

p
1, �

p
2 and �

p
3 could be complicated by

the fact that principal stresses are usually ranked from highest to lowest in value.
That potential problem does not exist, however, since Eq. (6.23) is symmetric with
respect to the three principal stresses. Each of the cylindrical coordinate normal

13 An exception would be drilling with casing if the drilling involves application of torque to the casing
itself. This introduces a torsional shear stress in addition to �rr , �θθ and �zz.
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Figure 6.8 The surface corresponding to the von Mises yield criterion, shown in relation to the prin-
cipal stress axes. The broken line representing the axis of the right circular cylindrical surface makes
equal angles with the three principal stress axes. The cylinder is open and extends infinitely in both
axial directions.

stresses can be mapped to whichever principal stress desired without affecting the
condition for yield.
Although several investigators formulated the yield criterion14 discussed above,

Eq. (6.23) is almost universally designated the von Mises yield criterion. Comparing
the criterion to its one-dimensional form governing a uniaxial tension test, one finds
the following correspondences:
• In one dimension, provided the nonzero stress is less than the yield stress, the ma-

terial behaves elastically. In three dimensional principal stress space, provided the
combined, triaxial stress state lies within the circular cylindrical yield surface, the
material behaves elastically.

• In one dimension, when the nonzero stress equals the yield stress, yield is incipient.
Yield is incipient in the full principal stress space if the stress path in that space
touches any portion of the cylindrical yield surface.

• In one dimension, if loading is attempted beyond the initial value of the yield stress,
the yield stress will increase so that it is not exceeded. This alteration of the, for
example, tensile value of the yield stress can also affect the compressive yield stress.
The effect will depend on how inelastic loading is modeled. In three dimensions,

14 In particular, Heinrich Hencky [53] arrived independently at the same yield criterion, and the criterion
is often referred to as the Hencky–von Mises yield criterion. In this book we use von Mises’ name alone
primarily to conform to the criterion’s common designation in the petroleum industry.
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if loading is attempted such that the initial yield surface is penetrated, and again
according to the inelastic loading model, the yield surface may translate, expand
and locally deform to prevent the stress state from reaching its exterior.

6.3.2 Alternative derivation of the von Mises yield criterion
This section presents an alternative, less phenomenological approach to the von Mises
yield criterion, the purpose being to introduce new variables and concepts that will
be useful in later discussions. We begin by defining a new stress, the deviatoric stress,
which is the stress minus a diagonal tensor whose components are all equal to the mean
stress (see Eq. (6.13))

�′ = � − �mI, �′
ij = �ij − �mδij. (6.24)

The deviatoric stress tensor has invariants defined as those for the stress tensor that we
will distinguish with the letter J. From Eqs. (A.91), (A.94) and (A.97), respectively, we
obtain

J1 = �′
jj =

(
�jj − 3�m

) = 0, (6.25)

J2 = 1
2

[
�′

rs�
′
rs − (

�′
kk

)2
]

= 1
2
�′

rs�
′
rs, (6.26)

J3 = det�′, J3 = 1
6
εijkεpqr�

′
ip�

′
jq�

′
kr . (6.27)

An alternative statement of the von Mises yield criterion is

J2 − k2 = 0, (6.28)

where k is discussed below. With Eq. (6.24) we may write J2 in terms of stress as

J2 = 1
2

(�rs − δrs�m) (�rs − δrs�m)

= 1
2
(
�rs�rs − 2δrs�m�rs + 3�2

m

)
(6.29)

= 1
2
(
�rs�rs − 3�2

m

)
,

where we have used Eq. (6.13) and the fact that δkk = 3.
The following observations are in order:

• If � is a principal stress tensor, then �rs = 0 if r �= s. We may therefore explicitly
write Eq. (6.26) as

J2 = 1
2

[
�2

11 + �2
22 + �2

33 − 1
3

(�11 + �22 + �33)
2
]

= 1
3
(
�2

11 + �2
22 + �2

33 − �11�22 − �22�33 − �33�11
)
. (6.30)
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Using a uniaxial test (J2 = 1
3�2

11 = 1
3 f 2

y ) to determine k = 1√
3
�11 in Eq. (6.28), we

get

J2 − 1
3

f 2
y = 0, (6.31)

which is tantamount to Eq. (6.23).
• If � is not a principal stress tensor but a general, symmetric tensor of stress com-

ponents, then Eq. (6.28) provides a compact means of expressing yield. Explicitly,
with Eq. (6.29) we may write Eq. (6.28) as

J2 − k2 = 1
2

[
�rs�rs − 1

3
�2

ii

]
− k2

= 1
2

[
�2

11 + �2
22 + �2

33 + 2�2
12 + 2�2

23 + 2�2
31 − 1

3
(�11 + �22 + �33)

2
]

− k2

= 1
3
[(

�2
11 + �2

22 + �2
33 − �11�22 − �22�33 − �33�11

)
(6.32)

+ 3
(
�2

12 + �2
23 + �2

31

)]− k2.

The variable k, as determined from a uniaxial test is 1√
3
fy, so that finally,

�2
11 +�2

22 +�2
33 −�11�22 −�22�33 −�33�11 +3

(
�2

12 + �2
23 + �2

31

)− f 2
y = 0. (6.33)

• Eq. (6.33) is often rewritten as

�2
e − f 2

y = 0, (6.34)

where

�e =
√

�2
11 + �2

22 + �2
33 − �11�22 − �22�33 − �33�11 + 3

(
�2

12 + �2
23 + �2

31

)
,

(6.35)

is called the von Mises equivalent stress, or VME stress. Comparing Eqs. (6.35) and
(6.32) yields

�e = √
3J2. (6.36)

The von Mises equivalent stress is a powerful simplification of yield:
• Using �e, and with regard to the yield limit state, one is able to characterize the

entire local stress state by a single quantity.
• Since for �11 �= 0, all other �ij = 0, we have �e = �11, the von Mises equivalent

stress can be used as a bridge between uniaxial and multidimensional stress concepts.
Recall the bulleted discussion at the end of Section 6.3.1. The correspondence
between one and multiple dimensions of stress is treated identically using �e.
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6.3.3 Isotropic yield and the Tresca yield criterion [54]
An alternative to the von Mises yield criterion is that proposed by Tresca [54]. Yield is
defined as the load state at which the maximum shear stress in the material equals the
shear stress at yield from a uniaxial stress–strain curve, namely

�smax − k = 0, (6.37)

where �smax is the maximum shear stress.
Aligning a set of working coordinates with the principal stresses, we may write the

stress tensor in these coordinates as

�p =
⎡
⎢⎣

�
p
1 0 0

0 �
p
2 0

0 0 �
p
3

⎤
⎥⎦ , (6.38)

where �
p
1 ≥ �

p
2 ≥ �

p
3. Let us now search for the plane on which the maximum shear

stress occurs. If the normal to that plane is n, then the traction normal to that plane is
given by Eq. (4.11) and is

t(n) =
⎡
⎢⎣

�
p
1 0 0

0 �
p
2 0

0 0 �
p
3

⎤
⎥⎦
⎡
⎢⎣

n · gp
1

n · gp
2

n · gp
3

⎤
⎥⎦ =

⎡
⎢⎣

�
p
1n · gp

1
�

p
2n · gp

2
�

p
3n · gp

3

⎤
⎥⎦ . (6.39)

The n · gp
k are direction cosines of n with the xp

k axes, that is, the coordinate system
that aligns with the directions of the principal stresses. To shorten the notation, let
βk = n · gp

k. The magnitude of the normal component of the traction is

∣∣(t(n)

)
n

∣∣ = t(n) · n =
[

�
p
1β1 �

p
2β2 �

p
3β3

]⎡⎢⎣
β1

β2

β3

⎤
⎥⎦

= �
p
1β

2
1 + �

p
2β

2
2 + �

p
3β

2
3 . (6.40)

The magnitude of the shear component of the traction is, from Eqs. (6.39) and (6.40)
and Pythagorus’ theorem (see Fig. 6.9),

∣∣(t(n)

)
s

∣∣2 = (
�

p
1

)2
β2

1 + (
�

p
2

)2
β2

2 + (
�

p
3

)2
β2

3 − (
�

p
1β

2
1 + �

p
2β

2
2 + �

p
3β

2
3

)2
. (6.41)

For the unit vector n we can write

n · n = β2
1 + β2

2 + β2
3 = 1. (6.42)
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Figure 6.9 Determination of the shear component of tn. The unit vector s lies in the plane of investi-
gation whose normal is n.

Using Eq. (6.42) in Eq. (6.41) to eliminate β1, we obtain (cf. P.A. Kelly, ‘Mechanics
Lecture Notes: An Introduction to Solid Mechanics’, http://homepages.engineering.
auckland.ac.nz/~pkel015/SolidMechanicsBooks/index.html)

∣∣(t(n)

)
s

∣∣2 = (
�

p
1

)2 (1 − β2
2 − β2

3

)+ (
�
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2

)2
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�

p
3

)2
β2

3
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3

)+ �
p
2β

2
2 + �

p
3β

2
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]2
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p
1

)2 +
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p
2

)2 − (
�

p
1

)2
]
β2

2 +
[(

�
p
3

)2 − (
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]
β2

3 (6.43)

− [
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p
1 + (

�
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2 − �

p
1

)
β2

2 + (
�
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3 − �

p
1

)
β2

3

]2
.

The extrema of the shear component of the traction occur when the differential of∣∣(t(n)

)
s

∣∣2 with respect to β2 and β3 vanishes:

d
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dβ2 (6.44)

+ 2β3
(
�

p
3 − �

p
1

) {
�

p
3 − �

p
1 − 2

[(
�

p
2 − �

p
1

)
β2

2 + (
�

p
3 − �

p
1

)
β2

3

]}
dβ3 = 0.

One solution to Eq. (6.44) is β2 = β3 = 0, β1 = ±1. This solution has the normal n
to a plane of stationary shear stress aligning with a principal stress axis, for which case
the shear stress is zero—the extremum is a minimum. A second solution to Eq. (6.44)
is to arbitrarily set β3 = 0 and solve for a nonzero value of β2 that causes the coefficient
of dβ2 in Eq. (6.44) to vanish. For this case

β2
(
�

p
2 − �

p
1

) {
�

p
2 − �

p
1 − 2

(
�

p
2 − �

p
1

)
β2

2

}
dβ2 = 0, β2 = ±

√
1
2
, (6.45)

http://homepages.engineering.auckland.ac.nz/~pkel015/SolidMechanicsBooks/index.html
http://homepages.engineering.auckland.ac.nz/~pkel015/SolidMechanicsBooks/index.html


Yield and Inelastic Behavior 171

which, using Eq. (6.42), leads us to conclude that β1 = ±
√

1
2 also. That is, the normal

to the plane of extreme shear stress makes an angle of 45° with the 1 and 2 principle
axes. The value of this shear stress is, from Eq. (6.41),

∣∣(t(n)

)
s

∣∣2 = 1
2

[(
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)2 + (
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2

)2
]
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4
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p
1 + �

p
2

)2 = 1
4
(
�

p
1 − �

p
2

)2
, (6.46)

or

∣∣(t(n)

)
s

∣∣ = ±1
2
(
�

p
1 − �

p
2

)
, β1 = β2 = ±

√
1
2
, β3 = 0. (6.47)

If we repeat the above work starting with Eq. (6.44) and setting β2 = 0, the symmetry
of Eq. (6.44) indicates that our solution will be

∣∣(t(n)

)
s

∣∣ = ±1
2
(
�

p
1 − �

p
3

)
, β1 = β3 = ±

√
1
2
, β2 = 0. (6.48)

Further, the form of Eq. (6.41) suggests that if we were to now search for other ex-
trema of the shear stress magnitude by successively eliminating β2 and β3 using Eq. (6.42)
in Eq. (6.41), the results would be index permutations of Eqs. (6.47) and (6.48). We
conclude that in principal stress space the maximum shear stress is

�smax = 1
2

max
{∣∣�p

1 − �
p
2

∣∣ , ∣∣�p
2 − �

p
3

∣∣ , ∣∣�p
3 − �

p
1

∣∣} , (6.49)

and it occurs on a plane whose normal makes an angle of 45° with the two principal
stress axes having the same subscripts as those of the maximum shear stress.

Consider now a uniaxial tension test. If we align the �
p
1-axis with the specimen,

�
p
2 = �

p
3 = 0. When the specimen yields, �

p
1 = fy, and from Eq. (6.49) the maximum

shear stress at yield is �smax = fy
2 . Our final form of the Tresca yield criterion is therefore

fy = max
{∣∣�p

1 − �
p
2

∣∣ , ∣∣�p
2 − �

p
3

∣∣ , ∣∣�p
3 − �

p
1

∣∣} . (6.50)

The Tresca yield surface can also be plotted in the π-plane (recall Fig. 6.6). Solving
Eqs. (6.19)–(6.21) for the principal stresses in terms of the π coordinate system produces

�
p
1 =

√
2
3
π2 + 1√

3
π3, (6.51)

�
p
2 = − 1√

2
π1 − 1√

6
π2 + 1√

3
π3, (6.52)

�
p
3 = 1√

2
π1 − 1√

6
π2 + 1√

3
π3. (6.53)
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Figure 6.10 The surface corresponding to the Tresca yield criterion plotted in the π -plane. The cross-
section of the yield surface is a hexagon that is circumscribed by the cross-section of the von Mises
yield criterion.

Substituting Eqs. (6.51)–(6.53) into the constituents of Eq. (6.50) gives

�
p
1 − �

p
2 =

√
3
2

(
1√
3
π1 + π2

)
= ±fy, (6.54)

�
p
2 − �

p
3 = −√

2π1 = ±fy, (6.55)

�
p
3 − �

p
1 =

√
3
2

(
1√
3
π1 − π2

)
= ±fy. (6.56)

Eq. (6.55) supplies two vertical lines, and Eqs. (6.54) and (6.56) provide four straight
lines with positive and negative slopes and y intercepts

±π2 = − 1√
3
π1 ±

√
2
3

fy, (6.57)

where we note the value 1√
3

is the tangent of 30°. Neither of the equations defining the
Tresca yield surface depend on π3 which means that, like the von Mises yield surface,
the cross-section of the Tresca yield surface extends infinitely along the hydrostatic stress
axis on either side of the π-plane.

A plot of Eqs. (6.55) and (6.57) is shown in Fig. 6.10 in comparison to the von Mises
yield surface. Both yield surfaces are cylinders whose axes are normal to the π-plane.
The circular cross-section of the von Mises yield surface circumscribes15 the hexagonal

15 At π1 = ±fy (see Eq. (6.55)), Eq. (6.57) becomes π2 = ± 1√
6
fy, and therefore π2

1 + π2
2 = 2

3 f 2
y . That is,

the circumscribing circle (von Mises) touches the Tresca yield surface at the vertices/intersections of the
faces of the Tresca yield surface.
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cross-section of the Tresca yield surface. As indicated in the right-hand diagram of
Fig. 6.10, the four sloped faces of the Tresca hexagon can be traced to Eq. (6.57); the
two vertical faces can be traced to Eq. (6.55).

The Tresca yield criterion is simpler in concept than that of von Mises, and a body of
evidence indicates yield occurring between the two surfaces giving the Tresca surface a
slight advantage in conservatism. The primary disadvantage of the Tresca surface is that
in a general stress state its mathematical statement and implementation is more difficult,
particularly at the vertices which assume importance in load paths that exceed yield
(e.g., defining the normal to the yield surface at a vertex).

6.3.4 First yield of a tube in the absence of bending
It is important for our study to consider explicit forms of Eq. (6.33) specific to tubu-
lars. Section 5.2.4.1 of Chapter 5 introduces Eqs. (5.51)–(5.53) governing stress in a
deforming tube subject to neither bending nor torsion.16 These equations are valid up
to the point of incipient yield and may therefore be substituted in Eq. (6.35) to arrive at
a criterion for yield in terms of axial stress and internal and external pressure. Perform-
ing this substitution (�11 = �zz, �22 = �θθ , �33 = �rr , all other �ij = 0), the resulting
expression can be written as

�̂2
e (r) =

(
�zz − pid2 − poD2

D2 − d2

)2

+ 3
16r4

((
pi − po

)
d2D2

D2 − d2

)2

. (6.58)

Differentiating the left-hand side of this equation with respect to the tube radial
coordinate r gives

d�̂2
e (r)
dr

= −3
4

1
r5

((
pi − po

)
d2D2

D2 − d2

)2

≤ 0. (6.59)

If pi = po,
d�̂2

e (r)
dr vanishes for all r, implying a constant value of �̂e(r) through the cross-

section. If pi �= po,
d�̂2

e (r)
dr is negative for all r, implying that the maximum value of �̂e(r)

is at the inner diameter of the tube. In the absence of bending, we reach the con-
clusion that, regardless of internal and external pressure and axial load, �̂e(r) is always
greatest, and therefore yield always has its first occurrence at the tube’s inner diameter.

16 Later (Section 6.3.5) we shall include bending by superimposing the results of Section 5.2.4.2 of Chap-
ter 5. API Technical Report 5C3 [51] also includes the torsional stress �θz in its formulation of the
von Mises yield criterion (see again Section 5.2.4.2 of Chapter 5). This shear stress was included to
accommodate the torsion associated with the process of drilling with casing. As this aspect of tubular
design will not be discussed in this book, the term �θz has been dropped from consideration.
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Substituting this result into Eq. (6.34) by setting r = d
2 in Eq. (6.58) gives

f̂ =
(

�zz − pid2 − poD2

D2 − d2

)2

+
(√

3

(
pi − po

)
D2

D2 − d2

)2

− f 2
y = 0. (6.60)

Three forms of Eq. (6.60) are commonly used in tubular design:

6.3.4.1 First yield expressed with �eff

Chapter 10 introduces the concept of effective force (see Eq. (10.1)), an important
concept when analyzing bending and buckling. For the present, it is sufficient to note
that if Eq. (10.1) is divided by the cross-sectional area (Ao − Ai), one arrives at the first
parenthetical term in Eq. (6.60), namely

�eff = fz − (
piAi − poAo

)
Ao − Ai

= �zz − pid2 − poD2

D2 − d2 . (6.61)

Further, noting that

D2

D2 − d2 =
(D

t

)2

4
(D

t − 1
) , (6.62)

we can reexpress Eq. (6.60) as

f̂ = �2
eff +

(√
3

(D
t

)2

4
(D

t − 1
) (pi − po

))2

− f 2
y = 0. (6.63)

As indicated in Fig. 6.11, Eq. (6.63) is a circle, centered at the origin and hav-
ing radius fy. The space in which the surface is plotted has abscissa �eff and ordinate
√

3
(

D
t

)2

4
(

D
t −1

) (pi − po
)
.

The circle in Fig. 6.11 is actually very close to the circular cross-section of the yield
surface represented by Eq. (6.23), the only difference between the two circles being a

factor of
√

2
3 , with the radius of the cylinder represented by Eq. (6.23) being the smaller.

The yield surface radial metric of the circle represented by Eq. (6.63) is stretched relative
to its more general counterpart.

On the surface, the two circles differ significantly in their coordinate axes. If we
notice from Eqs. (5.51) and (5.52), however, that at r = d/2

�rr + �θθ = 2
pid2 − poD2

D2 − d2 , (6.64)

�rr − �θθ = −2

(
pi − po

)
D2

D2 − d2 , r = d
2
, (6.65)
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Figure 6.11 The surface corresponding to the von Mises yield criterion expressed in terms of effec-
tive stress.

with the help of Eqs. (6.61) and (6.62) we may rewrite Eq. (6.63) as

f̂ =
(

�zz − �rr + �θθ

2

)2

+
(

−
√

3 (�rr − �θθ)

2

)2

− f 2
y = 0. (6.66)

Now let �zz = �11 = �
p
1, �θθ = �22 = �

p
2 and �rr = �33 = �

p
3. Using Eqs. (6.19) and

(6.20), we can rewrite Eq. (6.66) as

f̂ = π2
2 + (−π1)

2 −
(√

2
3

fy

)2

= 0. (6.67)

Comparing Eqs. (6.67) and (6.63) indicates the abscissae and ordinates of the two
coordinate systems are aligned, with the respective circle radii differing by a factor of√

2
3 . Fig. 6.12 illustrates the relation between Eqs. (6.63) and (6.67), particularly at their

intersection with the π-plane. Both circles predict yield at the same state of stress—the
two circles differ in that their generating coordinate axes have different scales.

Because the circle of Fig. 6.11 is coplanar and concentric with the cross-section of
the general expression of the von Mises yield criterion, no information is lost using
Fig. 6.11’s presentation. This allows us to maintain a fully three-dimensional treatment
in a two-dimensional presentation.
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Figure 6.12 The surface corresponding to the von Mises yield criterion expressed in terms of effec-
tive stress and its relation to the intersection of the von Mises yield criterion with the π -plane.

6.3.4.2 First yield expressed with �zz + pi

As an alternative to expressing the von Mises yield surface in terms of effective stress,
algebraic manipulation of Eq. (6.60) can be rearranged to the form

f̂ = (
�zz + pi

)2 +
( (D

t

)2

2
(D

t − 1
) (pi − po

))2

−
( (D

t

)2

2
(D

t − 1
) (pi − po

))(
�zz + pi

)− f 2
y

= 0. (6.68)

As indicated in Fig. 6.13, Eq. (6.68) is an ellipse, centered at the origin. The major
axis of the ellipse makes an angle of π/4 with the abscissa. The space in which the

surface is plotted has abscissa �zz + pi and ordinate
(

D
t

)2

2
(

D
t −1

) (pi − po
)
.

Although it is less easy to see, the ellipse of Fig. 6.13 also contains complete infor-
mation regarding three-dimensional yield in a two-dimensional display.

6.3.4.3 First yield expressed with �zz

The third presentation of yield17 is particularly useful in a testing environment, and as
such has found home in both the API recommended practice for testing casing and
tubing connections [56] and the API specification for packers and bridge plugs [55]. In
both these test environments, simultaneous application of internal and external pressure

17 Some implementations of this presentation use axial force fz rather than axial stress as the abscissa [55,56].
This simply extends the horizontal axis by a factor equal to the cross-sectional area of the tube.
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Figure 6.13 The surface corresponding to the von Mises yield criterion expressed in terms of
�zz + pi.

is rare. Therefore, two half-ellipses are used to handle the separate conditions of internal
pressure only and external pressure only testing.

Consider first the case of testing with internal pressure. Setting po = 0 in Eq. (6.60)
produces

f̂ = d4 + 3D4(
D2 − d2

)2 p2
i +

(
−2�zz

d2

D2 − d2

)
pi + �2

zz − f 2
y = 0. (6.69)

Solving this quadratic equation for pi yields

pi =
−kB ±

√
k2

B − 4kAkC

2kA
, (6.70)

where

kA = k2
pi + kpi + 1, (6.71)

kB = (
1 − kpi

)
�zz, (6.72)

kC = �2
zz − f 2

y , (6.73)

kpi = D2 + d2

D2 − d2 . (6.74)
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Similarly, for the case of testing with external pressure, setting pi = 0 in Eq. (6.60)
gives

f̂ =
(

2D2

D2 − d2

)2

p2
o +

(
2�zz

D2

D2 − d2

)
po + �2

zz − f 2
y = 0. (6.75)

Solving this quadratic equation for po yields

po =
−kB ±

√
k2

B − 4kAkC

2kA
, (6.76)

where now

kA = k2
po, (6.77)

kB = kpo�zz, (6.78)

kC = �2
zz − f 2

y , (6.79)

with

kpo = 2D2

D2 − d2 . (6.80)

For �zz = fy, Eqs. (6.69) and (6.75) admit the solutions pi = 0 and po = 0, respec-
tively, implying that the two half-ellipses will maintain continuity as they approach the
�zz-axis, but their slopes will rarely be equal, since the parameters in Eqs. (6.70) and
(6.76) differ in definition and magnitude. This is illustrated in Fig. 6.14 where a typical
composite ellipse is shown.

Further, as the two half-ellipses involve a simplification to the governing equation,
the presentation of Fig. 6.14 is not fully three-dimensional as was the case with the first
two alternatives. Consider, for example, an open-ended tubing string lowered in a fluid
environment in a vertical wellbore. The von Mises yield criterion posits independence
of yield on a hydrostatic stress state. Thus one should be able to lower the tubing
indefinitely without yielding its lowermost end. And such is the case for the ellipses
in Figs. 6.11 and 6.13.18 For Fig. 6.14, however, the increasing compressive stress at
the bottom of the tubing as it is lowered will eventually “yield” the tubing, counter to
theory. The consequences of this will be discussed in Section 9.8.2 of Chapter 9.

18 At any depth, the axial force at the lower end of the tubing is fz = −p (Ao − Ai). For Fig. 6.11, �e =[
fz − p (Ai − Ao)

]
/ (Ao − Ai) = 0. For Fig. 6.13, �zz +pi = −p+p = 0. In both cases, the ordinate value,

pi − po, is zero. As the tubing is lowered into the wellbore, its coordinates in Figs. 6.11 and 6.13 remain
at the origin.
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Figure 6.14 The surface corresponding to the von Mises yield criterion expressed in terms of �zz .
The indicated locations are the connections of an upper ellipse, governed by Eq. (6.70) and applicable
to internal pressure-dominant loads, and a lower ellipse, governed by Eq. (6.76) and applicable to
external pressure-dominant loads.

6.3.4.4 A simple expression of first yield

The three preceding subsections have manipulated Eq. (6.60) to arrive at various ex-
pressions of yield at the inner radius of a tube in the absence of bending. These relations
are used extensively in detailed calculations of material yield, both in spreadsheets and
in tubular-specific software design tools. As productive as these tools are, however, they
represent a degree of complexity that may be just beyond the bounds of quick reasoning.
For example, given a state of pressures and axial force, it is not always clear in Eqs. (6.63),
(6.68) and (6.69)/(6.75) whether a change in that state—doubling the internal pressure,
for example—places one closer or further from yield. As a remedy, the current section
targets a simple expression of the von Mises yield surface that captures the essence, if
not the accuracy, of the previous expressions. It will be this simpler yield criterion to
which we will appeal in future work when we desire an explanation of tubular behavior
but do not wish to smother the answer with calculation exactness.

As a first step we replace the Lamé equations, Eqs. (5.51) and (5.52), with the
following expressions of hoop and radial stress:

�θθ = D̄
2t

(
pi − po

)
, (6.81)

�rr = 0, (6.82)
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Figure 6.15 The surface corresponding to the von Mises yield criterion expressed with approximate
stresses. Diagram (A) justifies ignoring the radial stress; Diagram (B) presents the resulting ellipse.

where D̄ = D+d
2 is the mean diameter of the tube. These relations have been shown to

be zeroth-order correct in t
D̄ [57] in an expression for virtual work of a tube loaded by

axial force and internal and external pressure. For further comfort, particularly with the
fact that the radial stress is to be ignored, consider the left-hand diagram in Fig. 6.15.

For simplicity, the tube cross-section is loaded with internal pressure only. Further,
the tube cross-section is cut to investigate the internal stresses, in particular the average19

hoop stress �̄θθ . Summing forces in the vertical direction with up designated as positive
and assuming the tube to extend 1 unit of length into the paper gives

−2�̄θθ t(1)+
∫ π

0
pi sin θ

D̄
2

dθ(1) = −2�̄θθ t(1)+pi
D̄
2

∫ π

0
sin θdθ

︸ ︷︷ ︸
=2

(1), �̄θθ = piD̄
2t

. (6.83)

The average D̄
t for casing is roughly 20; the average D̄

t for tubing is roughly 10. The
maximum absolute value of �rr in the cross-section is pi at the inner diameter. Therefore,
for typical oil well tubulars the average value of �θθ is 5–10 times the maximum value
of �rr . Ignoring �rr per Eq. (6.82) is a reasonable measure.

19 We could just as easily used the outside diameter or inside diameter in this calculation. The tube is
assumed to be thin (�θθ is constant through the thickness) so D̄ ≈ D ≈ d.
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If we substitute Eqs. (6.81) and (6.82) into Eq. (6.33) (e.g., �11 = �rr , �22 = �θθ ,
�33 = �zz, all other �ij = 0), then

�2
θθ + �2

zz − �θθ�zz − f 2
y =

((
pi − po

)
D̄

2t

)2

+ �2
zz −

(
pi − po

)
D̄

2t
�zz − f 2

y = 0. (6.84)

This is the equation of an ellipse whose major axis makes an angle of π
4 with the

abscissa. The ellipse is shown in the right-hand diagram in Fig. 6.15. From Eq. (6.84)
and Eq. (6.35) we get

�e =
√

�2
θθ + �2

zz − �θθ�zz =
√√√√((

pi − po
)
D̄

2t

)2

+ �2
zz −

(
pi − po

)
D̄

2t
�zz, (6.85)

which has the following implications:
• The upper half of the ellipse, quadrants I and II where pi − po > 0, addresses loads

tending toward internal pressure resistance or burst (Chapter 7).
• The lower half of the ellipse, quadrants III and IV where pi − po < 0, addresses loads

tending toward external pressure resistance or collapse (Chapter 8).
• The right half of the ellipse, quadrants I and IV where �zz > 0, addresses axial

tension loads.
• The left half of the ellipse, quadrants II and III where �zz < 0, addresses axial

compression loads.
• Combinations are appropriate. For example, quadrant II may be used to address the

effect of compression on internal pressure resistance.
• Usually, the object of design will be to render �e as small as possible, that is, to

distance the state of combined stress from the yield surface.
With the above bulleted orientation, Eq. (6.85) can yield immediate insights. Con-

sider a tube loaded by a pressure that is internally dominant, that is, pi − po > 0. Viewing

Eq. (6.85) in its rightmost form, the first term
((

pi−po
)
D̄

2t

)2
and the second term �2

zz are

squared and therefore always positive. The first portion of the third term
(
pi−po

)
D̄

2t is, for
the current example, positive, so that the stress state will be most damaging (i.e., high
value of �e) when �zz < 0. Stated in words, “compression lowers resistance to internal
pressure.”20

A corresponding conclusion can be reached from Eq. (6.85) for quadrant IV regard-
ing the effect of tension on collapse, i.e., “tension lowers resistance to external pressure.”
Both of these insights would be more difficult to discern if one appealed to the expres-
sion of equivalent stress involving the full Lamé equations for pressure dependence. We

20 A similar conclusion can be reached by appealing to quadrant II of Fig. 6.15. As one moves along the
abscissa in a negative direction, there is less ordinate value available before one intersects the yield surface.
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shall have occasion in future chapters to call on this section and Eqs. (6.84) and (6.85)
for aid in understanding the implications of multidimensional stress environments.

Example problem—using �e to determine yield

A tube (D = 7.000 in., t = 0.408 in.) of T95 material is loaded with:
• 5000 psi internal pressure, 1000 psi external pressure, such that the hoop stress at the

inner radius of the tube is, from Eq. (5.52), 31438 psi.
• 500000 lbf axial compression.
The cross-sectional area of the tube is 8.449 in2.

What are the values of the axial, radial and hoop stress? Has the tube yielded?
The radial stress at the inner radius is, by inspection or by Eq. (5.51), �rr = −5000psi.

The hoop stress is given in the problem statement as �θθ = 31438psi. The axial stress is
compressive, and is �zz = −500000 lbf/8.449 in2 = −59176psi.

From Eq. (6.35), the von Mises equivalent stress is

�e = [
�2

rr + �2
θθ + �2

zz − �rr�θθ − �θθ�zz − �zz�rr
] 1

2

= [
(−5000)2 + (31438)2 + (−59176)2 − (−5000)(31438)

−(31438)(−59176) − (−59176)(−5000)]
1
2 (6.86)

= 78973psi.

The von Mises equivalent stress is less than the yield stress (95000 psi), so the tube
has not yielded.

In reviewing this answer note the following:
• The radial stress at the inner radius of the tube is determined solely by the traction

on the tube’s inner surface and knows nothing of the 1000 psi external pressure.
• It would be difficult, other than performing a complete recalculation, to determine

the effect with regard to yield of increasing the internal pressure to 6000 psi.

Example problem—using the simplified �e to determine yield

Repeat the example problem of section ‘Example problem—using �e to determine
yield’ using the simple yield model of Section 6.3.4.4.

From Eq. (6.82), the radial stress is �rr = 0psi. The hoop stress is calculated from
Eq. (6.81) as

�θθ = D̄
2t

(
pi − po

) = 7.000 in. − 0.408 in.
2 × 0.408 in.

(
5000psi − 1000psi

) = 32314psi. (6.87)

The axial stress remains �zz = −59176psi.
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The simplified von Mises equivalent stress is

�e = [
�2

θθ + �2
zz − �θθ�zz

] 1
2

= [
(32314)2 + (−59176)2 − (32314)(−59176)

] 1
2 (6.88)

= 80363psi.

The von Mises equivalent stress is less than the yield stress (95000 psi), so the tube
has not yielded.

In reviewing this answer note the following:
• The hoop stress, being a single, thin cylinder quantity, is determined by the full

differential pressure on the tube cross-section.
• The error in �θθ compared to the Lamé value is 32314−31438

31438 × 100, or less than 3%.
• The error in �e compared to Section 6.85 is 80363−78973

78973 × 100, or less than 2%.
The simplified yield envelope, although not as accurate as its companions in Sec-
tions 6.3.4.1–6.3.4.3, is not wildly inaccurate.

• It is fairly easy to see from Eqs. (6.87) and (6.88) that increasing the internal pressure
to 6000 psi (a) increases the �θθ , which (b) increases �e, which (c) nudges the
multidimensional stress state closer to yield.

6.3.5 First yield of a tube in the presence of bending
In the presence of bending, and if we ignore shear stresses due to bending, Eq. (6.58) can
be rendered applicable by adding the axial stress due to bending to �zz (see Eqs. (5.101)
and (5.107)), i.e.,

�zz = �̂zz(r) = �a ± �̂b(r) = �a ± |m| r
I

, (6.89)

where �a is that portion of �zz not due to bending, �b is that portion of �zz due to
bending, m is the bending moment and I is the moment of inertia. Eq. (6.89), when
substituted into Eq. (6.58), yields

�̂2
e (r) =

(
�a ± |m| r

I
− pid2 − poD2

D2 − d2

)2

+ 3
16r4

((
pi − po

)
d2D2

D2 − d2

)2

. (6.90)

Differentiating the left-hand side of this equation with respect to r, the first term
(see Eq. (6.59)) is no longer constant across the cross-section [58]:

d�̂2
e (r)
dr

= ±2
|m|
I

(
�a ± |m| r

I
− pid2 − poD2

D2 − d2

)
− 3

4
1
r5

((
pi − po

)
d2D2

D2 − d2

)2

. (6.91)

In the absence of bending (see discussion surrounding Eq. (6.59)), the above derivative
is always nonpositive, implying �̂2

e (r) is always greatest on the inner diameter. Now,
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depending on the values of |m| and I , d�̂2
e (r)
dr can possibly vanish. To determine the

character of a possible extremum, we take the second derivative

d2�̂2
e (r)

dr2 = 2
( |m|

I

)2

+ 15
4

1
r6

((
pi − po

)
d2D2

D2 − d2

)2

≥ 0. (6.92)

The following possibilities exist for Eqs. (6.91) and (6.92):
• If pi = po, Eq. (6.91) becomes

d�̂2
e (r)
dr

= ±2
|m|
I

(
�a ± |m| r

I

)2

. (6.93)

For |m| �= 0, d�̂2
e (r)
dr vanishes at r = ∓�aI

|m| and in Eq. (6.92) d2�̂2
e (r)

dr2 is positive at the

radial location at which d�̂2
e (r)
dr vanishes implying a local minimum at that radius.

• If pi �= po, we can solve Eq. (6.91) for the value of r at which d�̂2
e (r)
dr vanishes.

Eq. (6.92), however, dictates that d�̂2
e (r)
dr be positive at the point at which d�̂2

e (r)
dr

vanishes, again implying a local minimum at that radius.
There is therefore no point in the cross-section for which d�̂2

e (r)
dr is negative. That is, there

is no d/2 < r < D/2 for which �̂e(r) is a local maximum. The maximum value must
occur at either r = d/2 or r = D/2. The conclusion to be reached from this investigation
is that, in the presence of bending, one must check four locations for the maximum
value of �̂e(r):
• r = d/2, �b = |m|r

I > 0;
• r = D/2, �b > 0;
• r = d/2, �b < 0;
• r = D/2, �b < 0.
The location at which the greatest value of �̂e(r) occurs is the location in the tube
cross-section closest to yield.

Reviewing Sections 6.3.4 and the present, Eq. (6.90)—using either �zz or �a ±
�̂b(r) = �a ± |m|r

I as the term(s) addressing axial stress—is the primary limit state for
triaxial yield used in the remainder of this book.

6.3.6 Design equation for yield in multiple dimensions
Limit state Eq. (6.60) can be rendered a design equation by the following substitu-
tions [51]:
• Replace the yield stress fy with the specified minimum yield stress fymn.
• Replace the specified wall thickness t by a wall thickness that includes the effect of

manufacturing process. Within the industry tubular standards [46], the manufactur-
ing process is permitted to produce a product whose wall thickness is kwallt, where
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kwall has a default that can be altered by an agreement of the user and manufac-
turer.21 The wall thickness does not appear in Eq. (6.60), but the inside diameter d,
which depends on t, does.22 We introduce a new variable dwall where

dwall = D − 2kwallt. (6.94)

With these two substitutions, Eq. (6.34) with Eq. (6.58) becomes23

f̂des(r) =
(

�zz − pid2
wall − poD2

D2 − d2
wall

)2

+ 3
16r4

((
pi − po

)
d2

wallD
2

D2 − d2
wall

)2

− f 2
ymn = 0. (6.95)

In the absence of bending, r = dwall
2 . In cases involving bending, Eq. (6.95) is still

applicable if we replace �zz with �a ± �̂b(r) = �a ± |m|r
I [51] and evaluate f̂des at r = dwall

2

and r = D
2 per the bulleted procedure at the end of Section 6.3.5. A positive value of f̂des

indicates yield.

6.3.6.1 Example problem—�e and the design equation
Relate Eq. (6.95) to �e.

Consider the definition of �e given in Eq. (6.35). In the absence of shear (�2
12 =

�2
23 = �2

31 = 0) and bending,

�e =
√

�2
11 + �2

22 + �2
33 − �11�22 − �22�33 − �33�11

= 1√
2

√
(�11 − �22)

2 + (�22 − �33)
2 + (�33 − �11)

2. (6.96)

Further, recall from Eqs. (5.51) and (5.52) that the Lamé equations can be written as

�rr = A − B
4r2 , (6.97)

�θθ = A + B
4r2 , (6.98)

where

A = pid2 − poD2

D2 − d2 , B =
(
pi − po

)
d2D2

D2 − d2 . (6.99)

21 For example, if the wall tolerance is – 10%, kwall = 0.90.
22 In the API standards D and t are the independent dimensions and d is derived from the formula d =

D − 2t.
23 In the substitution d → dwall leading to Eq. (6.95) only the stresses most affected by wall thinning—�rr

and �θθ —are affected. These two terms suffer directly from even a local loss of wall thickness. Axial
stress is less affected by local wall thinning since it depends on the area of the entire cross-section. For
more detail on the effect of wall thinning on axial stress see Section 15.3.2 of Chapter 15.
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In cylindrical coordinates we can set �11 = �rr , �22 = �θθ and �33 = �zz which, with
the inclusion of Eqs. (6.97)–(6.99), yields

�e = 1√
2

√(
2

B
4r2

)2

+
(

A + B
4r2 − �zz

)2

+
(

�zz − A + B
4r2

)2

= 1√
2

√
6
(

B
4r2

)2

+ 2 (�zz − A)2 (6.100)

=
√√√√(

�zz − pid2 − poD2

D2 − d2

)2

+ 3
16r4

((
pi − po

)
d2D2

D2 − d2

)2

.

With the substitution d = dwall, we recover the first two terms on the right-hand side
of Eq. (6.95), leading to the final form

f̂des(r) = �2
e − f 2

ymn = 0, d = dwall, r = dwall

2
, (6.101)

which we could have anticipated from Eq. (6.34). This form of the design equation for
triaxial yield will be useful in the discussion of radial safety factors for triaxial yield in
Section 12.9.2.1 of Chapter 12.

6.4. POSTYIELD BEHAVIOR
Consider a stress state—uniaxial or multidimensional—that has reached incipient yield
from an unloaded initial state. Then the stress state at the point of focus satisfies the
equation

f̂ (�) = 0, f̂ (�ij) = 0. (6.102)

An example of such a relation would be Eq. (6.31) (or Eq. (6.34)) for the von Mises
yield surface.

For many applications where yield represents a design limit state, we need go no fur-
ther. Our design goal is to maintain the multidimensional stress state within the confines
of Eq. (6.102), and any violation is considered unacceptable. There do exist instances,
however, when exceeding the yield criterion does not constitute a failed design. Specific
examples in tubular design are ductile rupture, the installation of expandable tubulars
and accessories such as patches and liner hangers, and the design of thermal wells. It is
those applications to which this discussion of postyield behavior is addressed.

As a first step, a definition of inelastic or plastic loading is in order. For a point in
the tubular in a state of incipient yield there exist three possible states corresponding to
the next increment of stress(es). These states view Eq. (6.102) as a surface in stress space,
and use the gradient of f̂ as a determinate of direction. For generality, we assume some
inelastic deformation has already taken place such that now
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Figure 6.16 Uniaxial stress–strain curve illustrating the decomposition of total strain into elastic
and plastic components.

f̂ (�, Ĕ(p), κw) = 0, f̂ (�ij, Ĕ(p)
ij , κw) = 0. (6.103)

Two new entities are introduced in Eq. (6.103):
• Inelastic or plastic strain. A common assumption in postyield behavior (plastic be-

havior) is that the total strain, which to now we have simply denoted strain, is the
sum of an elastic part and a plastic part, namely

Ĕ = Ĕ(e) + Ĕ(p), Ĕij = Ĕ(e)
ij + Ĕ(p)

ij , (6.104)

where here we allow the Eulerian strain24 to be typical of any strain measure.
Fig. 6.16 is an illustration of Eq. (6.104) for a uniaxial stress state. If there is no
postyield loading, there is no increase in Ĕ(p).
A relation useful in future discussions follows from the experimental work of Bridg-
man and states that the plastic portion of volume change is zero.25 For infinitesimal
strain, from Eq. (3.88)26 we obtain

dv − dV
dv

≈ dv − dV
dV

= Ĕkk = Ĕ(e)
kk , Ĕ(p)

kk = 0. (6.105)

24 Expression of the total strain as the sum of elastic and plastic strains is mathematically legitimate for
infinitesimal strain and for logarithmic strain.

25 This result is valid even at high hydrostatic pressure. See [9] for discussion and references.
26 The derivation of Eq. (3.88) was performed in cylindrical coordinates, but following a brief review

of Section 3.7.2.1 in Chapter 3 one can gather that the same conclusion will be reached in Cartesian
coordinates.



188 Elements of Oil and Gas Well Tubular Design

One immediate consequence of Eq. (6.105) is that, at least for small strains, Ĕ(p) and
its deviatoric counterpart, Ĕ(p)′

ij = Ĕ(p)
ij − 1

3δijĔ
(p)
mm, are equal.

• Work-hardening parameter. The parameter κw depends on the plastic deformation
history of the material and will assume its functionality depending on how one
models work hardening.
Returning to the subject of loading, with the stress state residing on the yield surface

(see Eq. (6.103)), subsequent behavior is determined by

˙̂f = ∂ f̂
∂�

: �̇ + ∂ f̂

∂Ĕ(p)
: ˙̆E(p) + ∂ f̂

∂κw
κ̇w,

˙̂f = ∂ f̂
∂�ij

�̇ij + ∂ f̂

∂Ĕ(p)
ij

˙̆E(p)
ij + ∂ f̂

∂κw
κ̇w, (6.106)

where the superimposed dot denotes the time rate of the marked quantity. There exist

three possible outcomes for ˙̂f :
• Unloading. Unloading from an inelastic state,27 which means returning to elastic

behavior, implies no increment in plastic strain ( ˙̆E(p) = 0) and since there is no
further inelastic deformation, κ̇w = 0, or

f̂ = 0,
˙̂f = ∂ f̂

∂�
: �̇ < 0,

˙̂f = ∂ f̂
∂�ij

�̇ij < 0. (6.107)

• Neutral loading. During neutral loading there is no further accumulation of either
plastic strain or the work-hardening parameter, but the stress state remains on the
yield surface

f̂ = 0,
˙̂f = ∂ f̂

∂�
: �̇ = 0,

˙̂f = ∂ f̂
∂�ij

�̇ij = 0. (6.108)

• Loading. During inelastic loading28 there will occur increments in both Ĕ(p) and κw.
We wish, however, to consider (as we did with unloading and neutral loading) the
effect of the stress increment only on the current yield surface. We therefore define
inelastic loading as

f̂ = 0,
˙̂f = ∂ f̂

∂�
: �̇ > 0,

˙̂f = ∂ f̂
∂�ij

�̇ij > 0. (6.109)

Provided the yield surface is formulated conveniently, the above definitions will lead to
a surface in stress space for which the stress increment vector is pointing to the interior
(unloading), to the exterior (loading) or along the surface (neutral loading).

27 For example, from point B to point F in Fig. 6.16 for uniaxial loading.
28 For example, from point A to point B in Fig. 6.16 for uniaxial loading.
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6.4.1 Work hardening
A stress state cannot penetrate the yield surface. Rather, as briefly described in Sec-
tion 6.2.2, the yield surface will translate and/or deform such that a new yield surface is
continually generated in response to continued inelastic loading. This alteration of the
yield surface involves plastic work.

Consider once more a state of stress that is coincident with the yield surface, i.e.,
a state of incipient plasticity. Following the work of Drucker [59], we imagine a small
additional increment of stress d� and corresponding strain dĔ. If Ĕ(e) is the elastic strain
recovered upon the removal of d�, then a work-hardening material is characterized by
the two relations [14], namely

d� : dĔ > 0, d�ijdĔij > 0 during loading, (6.110)

d� :
(
dĔ − dĔ(e)

)
≥ 0, d�ij

(
dĔij − dĔ(e)

ij

)
≥ 0 over a cycle. (6.111)

Eq. (6.110) states that positive work must be done during the application of d�.
Eq. (6.111) states that during the application/removal cycle for additional stress d�

the work done must be nonnegative. Using Eq. (6.104) we may also write Eq. (6.111)
as

d� : dĔ(p) ≥ 0, d�ijdĔ(p)
ij ≥ 0 over a cycle. (6.112)

6.4.2 Flow rule
Drucker’s work outlined in Section 6.4.1 has profound consequences for yield and
postyield behavior. Fung [14], following the explanation of Naghdi [60], lists and proves
the following:
• The yield surface and all subsequent loading29 (yield) surfaces must be convex.
• The increment of plastic strain corresponding to loading must be directed:

• normal to the loading surface at smooth points;
• between adjacent normals if the loading surface has a corner.30

• The rate of change of plastic strain must be a linear function of the rate of change
of the stress.

In this discussion we will use, but not prove, the above three important results.

29 Because of its close relation to the determination of postyield behavior the yield surface is some-
times called the loading surface (recall our use of the yield surface in determining loading in
Eqs. (6.107)–(6.109)). When, as assumed here, the loading surface and yield surface are identical, the
flow rule is termed “associated.” When they differ, the flow rule is termed “nonassociated.”

30 An example of a yield surface with corners is the Tresca yield surface.
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With the second of the above observations, we may now write the increment of
plastic strain that occurs during loading as

˙̆E(p) = �
∂ f̂
∂�

,
˙̆E(p)

ij = �
∂ f̂

∂�ij
, (6.113)

where � is a scalar function.

6.4.3 Hardening law
A final step in the construction of a model for postyield behavior is the declaration of
a hardening law, that is, how does the loading/yield surface respond to plastic load-
ing. Here we shall only consider the two simplest models—isotropic hardening and
kinematic hardening.

An important parameter in defining hardening laws is the plastic strain. Its presence
in such laws usually occurs in the context of work. We may write the rate of (internal)
work per unit volume during deformation as

Ẇ = � : ˙̆E = � :
( ˙̆E(e) + ˙̆E(p)

)
, Ẇ = �ij

˙̆Eij = �ij

( ˙̆E(e)
ij + ˙̆E(p)

ij

)
, (6.114)

or

Ẇ = Ẇ (e) + Ẇ (p), (6.115)

where

Ẇ (e) = � : ˙̆E(e), Ẇ (p) = � : ˙̆E(p), Ẇ (e) = �ij
˙̆E(e)

ij , Ẇ (p) = �ij
˙̆E(p)

ij . (6.116)

For future reference, we note that in instances where Eq. (6.105) is applicable the plastic
work definition can use either the stress or its deviatoric counterpart since

Ẇ (p) = � : ˙̆E(p) =
(

�′ + 1
3
I tr {�}

)
: ˙̆E(p) = �′ : ˙̆E(p),

Ẇ (p) = �ij
˙̆E(p)

ij =
(

�′
ij +

1
3
δij�mm

)
˙̆E(p)

ij = �′
ij
˙̆E(p)

ij , (6.117)

since δij
˙̆E(p)

ij = ˙̆E(p)
jj = 0.

We have already noted the convenience of the von Mises equivalent stress �e in
providing a bridge between the uniaxial stress in a mechanical test and the multidimen-
sional stress state in design (see Section 6.3.2). Similarly, in parallel to Eq. (6.36) for
stress, we can write for the plastic strain rate [9]

˙̆E(p)
e =

√
2
3

˙̆E(p)
ij

˙̆E(p)
ij , (6.118)

where Ĕ(p)
e is the equivalent plastic strain.
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Imagine a multidimensional deviatoric stress space31 in which each axis is a measure
of one of the �′

ij. The deviatoric stress �′ can therefore be visualized as a vector in

that space, as can the plastic strain rate ˙̆E(p). The quantity �′ : ˙̆E(p) (�′
ij
˙̆E(p)

ij ) becomes an
inner product32 in this multidimensional space. An alternative way of writing the inner
product of two vectors �′ and ˙̆E(p) is

∣∣�′∣∣ ∣∣∣ ˙̆E(p)
∣∣∣ cosψ , where ψ is an “angle” in this

multidimensional space and, using Eqs. (6.26) and (6.36) we get

∣∣�′∣∣ = √
�′

ij�
′
ij =

√
2J2 =

√
2
3
�e, (6.119)

and, using Eq. (6.118),

∣∣∣ ˙̆E(p)
∣∣∣ =

√ ˙̆E(p)
ij

˙̆E(p)
ij =

√
3
2

˙̆E(p)
e . (6.120)

For instances where the deviatoric stress and the plastic strain rate are collinear,33

cosψ = 1, and we may use Eqs. (6.119) and (6.120) to write the rate of plastic work as

Ẇ (p) = � : ˙̆E(p) = �′ : ˙̆E(p) = �e
˙̆E(p)

e , Ẇ (p) = �ij
˙̆E(p)

ij = �′
ij
˙̆E(p)

ij = �e
˙̆E(p)

e . (6.121)

Eq. (6.121) provides a convenient link between calculated plastic work in multidimen-
sional stress space and the experimental results of a uniaxial stress–strain curve.

6.4.3.1 Isotropic hardening

Isotropic hardening assumes neither translation nor distortion of the yield surface in
stress space. Rather, the yield surface proportionately expands to accommodate the
latest loading increment of stress. Consider, for example, the von Mises yield criterion
whose surface may be written by Eq. (6.28), where k2 performs the function of the
work-hardening parameter κw. In Section 6.3.2 we used a uniaxial tension test to set the
initial value of k2 to 1

3 f 2
y . Under the isotropic hardening assumption, loading beyond the

initial yield state will simply increase the value of fy, which aligns with uniaxial behavior
as discussed in Section 6.2.2. Subsequent to the loading, the material acts as if its yield
stress has been increased.

31 We will soon, for convenience, express the rate of plastic work in terms of deviatoric stress instead of
stress (see Eq. (6.117)).

32 The quantity �′ : ˙̆E(p) is an “inner product” as it is a generalization of the dot product for a space with
dimensions greater than three—see Footnote 2 in Section A.3.1.3 of Appendix A. The dimensions of
this space are 3×3 = 9, where we assume no benefit for the symmetry of the deviatoric stress and plastic
strain rate tensors.

33 An important example is the von Mises yield criterion—see Section 6.4.3.1, especially Eq. (6.124).
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Example problem—isotropic hardening with von Mises yield criterion

Consider a material whose yield is adequately defined by isotropic hardening of the von
Mises yield surface. Expressing the yield criterion as

f̂ = J2 − 1
3

f 2
y = 0, fy = f̂y(Ẇ (p)), (6.122)

where Ẇ (p) is given by Eq. (6.116), we perform the preliminary calculation

∂ f̂
∂�ij

= ∂ f̂
∂J2

∂J2
∂�ij

= 1
2

∂
(
�′

rs�
′
rs

)
∂�ij

= 1
2

∂
(
�rs − 1

3δrs�pp
) (

�rs − 1
3δrs�qq

)
∂�ij

=
(

δriδsj − 1
3
δrsδpiδpj

)(
�rs − 1

3
δrs�qq

)
= �ij − 1

3
δij�qq = �′

ij. (6.123)

Using this result in Eq. (6.113) gives

˙̆E(p) = ��′, ˙̆E(p)
ij = ��′

ij. (6.124)

The rate of plastic work Ẇ (p) for a von Mises material is therefore

Ẇ (p) = � : ˙̆E(p) = �′ : ˙̆E(p) = ��′ : �′, Ẇ (p) = �ij
˙̆E(p)

ij = �′
ij
˙̆E(p)

ij = ��′
ij�

′
ij. (6.125)

Recalling Eq. (6.121), we can write

Ẇ (p) = �e
˙̆E(p)

e , (6.126)

which has the important consequence that the evolution of plastic work can be deter-
mined from a uniaxial stress–strain curve. From Eqs. (6.125) and (6.126),

Ẇ (p) = ��′
ij�

′
ij = �e

˙̆E(p)
e , � = 3 ˙̆E(p)

e

2�e
, (6.127)

where we have used Eqs. (6.26) and (6.36) to recognize that �′
ij�

′
ij = 2J2 = 2

3�2
e . If we

substitute Eq. (6.127) into Eq. (6.124), then

˙̆E(p) = 3 ˙̆E(p)
e

2�e
�′, ˙̆E(p)

ij = 3 ˙̆E(p)
e

2�e
�′

ij. (6.128)

Eq. (6.128) allows us to compute the individual increments of plastic strain given a
uniaxial stress strain curve (to capture �e and ˙̆E(p)

e ) and the current value of each �′
ij. For

a specific, extended example of the application to isotropic hardening of the equations
derived in this more general example, see Section 7.3 of Chapter 7, which summarizes
the derivation of the API limit state and design equations for ductile rupture.
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6.4.3.2 Kinematic hardening
Kinematic hardening assumes neither expansion/contraction nor distortion of the yield
surface in stress space. Rather, the yield surface translates to accommodate the latest
loading increment of stress. Consider, for example, the von Mises yield criterion whose
surface may be written by Equation (6.28). In one of the more popular kinematic hard-
ening models, Ziegler’s modification to Prager’s hardening, the yield surface is written
as

Ĵ2(� − A) − 1
3

f 2
y = 0, Ĵ2(�ij − Aij) − 1

3
f 2
y = 0, (6.129)

where the initial yield stress fy remains unchanged and the translation of the centroid of
the initial yield surface A evolves according to the relation

Ȧ = Ṁ (� − A) . (6.130)

In the kinematic hardening model the yield stress changes due to translation of
the yield surface. Recalling Section 6.2.2.1, the uniaxial behavior that produces the
Bauschinger effect can be modeled with kinematic hardening. In one-dimensional stress
space the extent of the yield surface is the (algebraic) difference between yield in tension
and yield in compression. With, for example, tensile loading beyond initial yield, the
tensile yield value increases with the side effect that, in order to maintain the extent of
the yield surface constant, yield in compression is reduced.

Example problem—kinematic hardening with von Mises yield criterion

When manufacturing tubing of some high alloy steels, the work hardening accompany-
ing forming of the tube can result in a product that has a tensile axial yield stress that is
higher than its compressive axial yield stress. Consider the two-dimensional representa-
tions of the three-dimensional von Mises yield surface that have as their abscissa either
the effective stress (Section 6.3.4.1, Fig. 6.11) or the sum of the axial stress and internal
pressure (Section 6.3.4.2, Fig. 6.13). We wish to determine how these yield surfaces
should be altered to model anisotropic yield in the axial direction only. We assume the
tensile yield stress is 110000 psi and the compressive yield stress is 90000 psi.

One heuristic method of altering the yield surfaces is fairly accurate and involves
some variation of the following technique:
• Begin with a yield surface for an isotropic material with fy = 110000psi.
• Locate a new point on the abscissa to represent the compressive yield stress fy =

90000psi.
• For the entire compressive side of the yield envelope, proportionately alter each

ordinate value by the formula

ynew(xnew) = yold(xnew × fy−old

fy−new
). (6.131)
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Figure 6.17 Alteration of von Mises yield surface to accommodate axial anisotropic yield using a
heuristic method. Positive abscissa values of the yield surface are unaltered. During manufacture the
pressures vanish so both abscissas become �zz . (A) Effective stress; (B) Axial stress +pi .

For example, the new y value for a compressive stress that is one-half of compressive
yield in the current problem would be

ynew(−45000psi) = yold(−45000psi × 110000 psi
90000psi

) = yold(−55000psi), (6.132)

that is, ynew half way to compressive yield on the altered yield surface equals yold half
way to compressive yield on the original yield surface. We have essentially pushed
the isotropic compressive yield value to the anisotropic yield value, allowing the
yield surface to shift proportionately for all negative values on the abscissa. This
method is illustrated in Fig. 6.17 for the two yield expressions from Sections 6.3.4.1
and 6.3.4.2.
Let us, as an alternative to the heuristic model, seek a yield surface which results from

the application of kinematic hardening. We could repeat the calculation for plastic strain
as we did in the isotropic hardening example of Section 6.4.3.1. Our primary concern,
however, is the translation of the yield surface, so we will limit our consideration to that
aspect of the plastic deformation.

Initially, A = 0 in Eq. (6.130). Further, since during manufacturing there is no in-
ternal or external pressure, the abscissa of both of the presentations considered here
is �zz. This means that in both presentations the drawing process takes place along
the abscissa and the only nonzero component of translation is Ȧzz = Ṁ (�zz − Azz).
That is, even it we do not evaluate Ṁ , we know that in each case the translation will
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Figure 6.18 Alteration of von Mises yield surface to accommodate axial anisotropic yield using
kinematic hardening. During manufacture the pressures vanish so both abscissas become �zz . (A) Ef-
fective stress; (B) Axial stress +pi .

occur along the �zz-axis. Further, we know that (a) the shape and size of the yield
surface do not change and (b) the difference between the yield in tension and com-
pression is 110000psi − (−90000psi

) = 200000psi. Assuming we started the drawing
process with an isotropic tube, this implies the initial yield stress—both in tension and
compression—was 100000 psi. The drawing process has translated the sample 10000 psi
along the positive �zz-axis.

Fig. 6.18 compares the results of kinematic hardening with the heuristic model just
presented. In the effective stress formulation of the initial yield surface shown on the
left-hand diagram in the figure, the difference is small. The right-hand diagram indi-
cates a greater difference, particularly in the vicinity of the ordinate boundary between
quadrants 1 and 2 of the graph. Both diagrams illustrate the size-preserving translation
the yield surface undergoes under kinematic hardening beyond initial yield.



CHAPTER 7

Internal Pressure Resistance
7.1. INTRODUCTION

In almost all design calculations for tubulars, a specific limit state for internal pressure
resistance is superfluous. Rather, Chapter 6 defines a yield criterion that is applicable to
first yield of a tubular in a general load state involving internal pressure, external pressure
and axial traction, even when the axial load has a bending component (see Sections 6.3.4
(without bending) and 6.3.5 (with bending)). This more general criterion will be the
starting point for developments presented below.

There do exist, however, instances where knowledge of the resistance vis-à-vis yield
due strictly to internal pressure (or internal pressure differential) is useful. As a simple
example, a tabulation of internal pressure resistance in a rating table allows one to quickly
consider or discard candidate tubes for a known maximum surface pressure. Because of
this, our discussion will begin with special cases of the yield criterion developed in
Chapter 6 for loads dominated by internal pressure.

The use of yield as a limit state for internal pressure resistance is almost universal
within the petroleum industry. Investigation of actual rupture of a tube can be impor-
tant, however, both in failure analysis and in determining the closeness to rupture of a
particular design. These considerations will lead us to also consider ductile rupture as
treated by industry standards documents.

Finally, minimal coverage will also be given to two limit states that address the issue
of fracture toughness, an internal pressure failure mode that may be realized with the
propagation of a preexisting crack or environmental cracking. Though not covered here,
fracture is addressed in outline form in API TR 5C3 [51,61].

7.2. LIMIT STATE EQUATIONS BASED ON YIELD

Recall Eqs. (6.34) and (6.58) that lead to the limit state equation

f̂ (r) =
(

�zz − pid2 − poD2

D2 − d2

)2

+ 3
16r4

((
pi − po

)
d2D2

D2 − d2

)2

− f 2
y = 0. (7.1)

In the absence of bending, it was shown that the worst condition is always at r = d
2 ,

leading to the simpler expression (Eq. (6.60))

f̂ =
(

�zz − pid2 − poD2

D2 − d2

)2

+
(√

3

(
pi − po

)
D2

D2 − d2

)2

− f 2
y = 0. (7.2)
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Further, based on Eq. (6.58), the design equation for multidimensional yield is
Eq. (6.95), namely

f̂des(r) =
(

�zz − pid2
wall − poD2

D2 − d2
wall

)2

+ 3
16r4

((
pi − po

)
d2

wallD
2

D2 − d2
wall

)2

− f 2
ymn = 0. (7.3)

Consider the following special cases of Eqs. (7.2)–(7.3).

7.2.1 Internal pressure resistance—capped end, po = 0
Care must be taken in this derivation. If a single value such as t is used for wall thickness,
the capped end condition is equivalent to a condition of zero effective stress.1 In the
present case, however, we are dealing with two values of wall thickness. The manufac-
tured wall thickness, kwallt, is the thickness used with both the radial stress �rr and the
hoop stress �θθ in arriving at Eq. (7.3). The axial stress �zz, however, uses the specified
wall thickness2 t, i.e., fZ = π

4

(
D2 − d2

)
�zz, even for the design equation.

For the limit state equation, no differentiation exists between wall thickness, so
we may note that �eff , the first term in Eq. (7.1), vanishes. The solution for pi is
straightforward, i.e.,

pi = fy
D2 − d2

d2D2

4√
3

r2. (7.4)

The design equation cannot be treated as a special case of the above limit state
equation. Rather, we must return to Eq. (7.3) and write3

f̂ (r) =
(

pid2

D2 − d2 − pid2
wall

D2 − d2
wall

)2

+ 3
16r4

(
pid2

wallD
2

D2 − d2
wall

)2

− f 2
ymn = 0. (7.5)

We can solve Eq. (7.5) for pi, leading to the design equation

pi = fymn

(
D2 − d2

) (
D2 − d2

wall

)
D2

√(
d2 − d2

wall

)2 + 3d4
wall

16r4
(
D2 − d2

)2
, (7.6)

1 The effective stress �eff (see Chapter 10) is defined in Eq. (6.61). In a capped-end load environment the
axial force is fZ = piAi so that from Eq. (6.61) with po = 0, �eff = 0.

2 The differentiation of wall thicknesses can be traced to a desire to arrive at a deterministically reasonable
worst case stress state at the circumferential location of yield. The radial and hoop stresses, �rr and �θθ ,
respectively, are significantly impacted by a circumferentially local wall thinning. A locally thin wall, on
the other hand, has less impact on the axial stress as it is a function of the circumferential average of wall
thickness, not a local value.

3 In the first term of Eq. (7.5) note in the first parenthetical expression the use of d in the first term and
dwall in the second term. Eq. (6.66) indicates that the first term is related to �zz and the second term is
related to �rr and �θθ .
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or, at r = dwall
2 ,

pi = fymn

(
D2 − d2

) (
D2 − d2

wall

)
D2

√(
d2 − d2

wall

)2 + 3
(
D2 − d2

)2
, r = dwall

2
. (7.7)

7.2.2 Internal pressure resistance—�zz = po = 0
If both axial traction and external pressure are zero, one has an equation useful for pre-
sentation in a table as a relative measure of internal pressure resistance between candidate
tubes. Solving for pi in Eqs. (7.1)–(7.3), we arrive at the limit state

pi = fy
D2 − d2

d2

1√
3D4

16r4 + 1
, (7.8)

and the design equation

pi = fymn
D2 − d2

wall

d2
wall

1√
3D4

16r4 + 1
, (7.9)

or, at r = dwall
2 ,

pi = fymn
D2 − d2

wall√
3D4 + d4

wall

, r = dwall

2
. (7.10)

An interesting special case of Eq. (7.10) occurs for large D
t ratios. With the substitu-

tion dwall = D − 2kwallt, Eq. (7.10) becomes

pi = fymn

4 kwall t
D

[
1 −

(
kwall t

D

)]

2

√
1 − 2 kwall t

D + 6
(

kwall t
D

)2 − 8
(

kwall t
D

)3 + 4
(

kwall t
D

)4
. (7.11)

As D
t becomes large, we may drop all the kwall t

D terms that are to be compared to 1 with
the result

pi ≈ 2
kwalltfymn

D
. (7.12)

Eq. (7.12) is identical to the API historical, one-dimensional yield pressure design equa-
tion,4 sometimes associated with the acronym MIYP—minimum internal yield pressure.

4 Although identical in form, Eq. (7.12) and the API historical, one dimensional yield pressure design
equation have different pedigrees. The latter traces its origin to the Barlow equation, an expression
derived by equating the force due to internal pressure (using a free-body diagram that constitutes half of
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Figure 7.1 Comparison of expressions for minimum internal yield pressure. For all models
kwall = 0.875.

Fig. 7.1 compares the three design formulas mentioned above for minimum inter-
nal yield pressure—capped-end, fz = 0, and the historical API (Barlow) equation. The
comparison has been nondimensionalized by dividing each equation by fymn so that the
right-hand side of each formula is strictly a function of tube geometry. The internal
pressure at yield for the API historical formula is always greater than that derived from
the Lamé equations (Eqs. (7.7) and (7.10)), implying the Lamé equations are slightly
more conservative. The capped-end model has an associated tension which lowers the
von Mises equivalent stress and therefore increases the internal pressure at yield.

7.3. LIMIT STATE EQUATION BASED ON RUPTURE

The API equation for ductile rupture [51] of casing and tubing has its origin in work
by Klever [62] extending earlier work by Klever and Stewart [63].

Let the geometry of the tube be defined by its undeformed mean radius R̄ = D−t
2

and wall thickness t. As we will examine the tube undergoing large deformation prior

a tube cross section) with the resisting average hoop stress in the tube wall. The version of the formula
used by the API also assumes that the tube outside diameter can be substituted for its inside diameter, an
acceptable approximation if the tube is thin.
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to rupture, we describe force intensity with the Cauchy stress (see Chapter 4) and the
deformation with the logarithmic strain (see Section 3.5.4 of Chapter 3).

7.3.1 Preliminary definitions
The deformation is assumed to be generalized plane strain, axisymmetric so that
Eqs. (3.194)–(3.196) will be used to determine the strain. Specifically, for this analy-
sis Eq. (3.68) reduces to

F =
⎡
⎢⎣

1 + ∂ÛR
∂R 0 0

0 1 + ÛR
R 0

0 0 1 + k1

⎤
⎥⎦ =

⎡
⎢⎣

�(R) 0 0
0 �(�) 0
0 0 �(Z)

⎤
⎥⎦ , (7.13)

with

F−1 =

⎡
⎢⎢⎢⎣

(
1 + ∂ÛR

∂R

)−1
0 0

0
(
1 + ÛR

R

)−1
0

0 0
(
1 + k1

)−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣

�−1
(R) 0 0
0 �−1

(�) 0
0 0 �−1

(Z)

⎤
⎥⎦ , (7.14)

and

J =
(

1 + ∂ÛR

∂R

)(
1 + ÛR

R

)(
1 + k1

) = FrRFθ�FzZ = �(R)�(�)�(Z), (7.15)

such that

J
(
F−1

Rr

)T = FrRFθ�FzZ

FrR
= Fθ�FzZ = �(�)�(Z), (7.16)

J
(
F−1

�θ

)T = FrRFθ�FzZ

Fθ�

= FzZFrR = �(Z)�(R), (7.17)

J
(
F−1

Zz

)T = FrRFθ�FzZ

FzZ
= FrRFθ� = �(R)�(�). (7.18)

We may now compute spatial areas in terms of material areas and the deformation.
With the substitution of Eqs. (7.16)–(7.18) into Eq. (3.62),

dar = Fθ�FzZdAR = �(�)�(Z)dAR = eẼ��+ẼZZ dAR, (7.19)

daθ = FzZFrRdA� = �(Z)�(R)dA� = eẼZZ+ẼRRdA�, (7.20)

daz = FrRFθ�dAZ = �(R)�(�)dAZ = eẼRR+Ẽ��dAZ, (7.21)

where the last substitution in each of Eqs. (7.19)–(7.21) employs Eq. (3.187). These
relations will be useful in updating the Cauchy stress by expressing the current areas in
terms of the original tube dimensions.
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The tractions used in [62] are first order in t
R̄ , where R̄ is the mean radius of the

tube. Originally derived in the context of collapse (see [57]), which does not necessarily
require finite deformation theory, the relations are suitable if we account for the change
in area with deformation. Using Eq. (7.21), the axial stress is5

�zz = fz
az

= fz
eẼRR+Ẽ��AZ

= fz
2πR̄t

e−
(
ẼRR+Ẽ��

)
, (7.22)

and the effective stress6 is

�eff = feff
az

= feff
2πR̄t

e−
(
ẼRR+Ẽ��

)
, (7.23)

where

�eff = �zz − 1
2

(�θθ + �rr) . (7.24)

Due to its convenience in this analysis, �eff will be preferred to �zz in the remainder of
this discussion.

The differential pressure is related to hoop and radial stress by

�θθ − �rr = (
pi − po

) R̄
t

eẼ��−ẼRR , (7.25)

where the last factor accounts for finite changes in R̄ and t, respectively.
The radial stress is

�rr = −1
2
(
pi + po

)
, (7.26)

which is the average of its two extreme values at the inner and outer surfaces of the
tube, respectively.

5 Regarding the notation used in the ductile rupture discussion, the fact that this is a large deformation
problem fosters a small issue in notation consistency. The Cauchy stress is normally expressed relative to
a spatial coordinate system and the logarithmic strain is normally expressed relative to the material coor-
dinate system. We could legitimately select either coordinate system and express all quantities in either
upper or lower case. We choose, however, the alternative of assuming the two coordinate systems align,
which allows us to maintain lower case indices for the stress and upper case indices for the strain. Fortu-
nately, for this problem the assumed stress state is simple enough that there should be no confusion—the
indices “rr” for the stress and “RR” for the strain are in alignment, as are the upper and lower case indices
for the other two directions.

6 The effective stress was introduced in Section 6.3.4.1 of Chapter 6 and will be given detailed treatment
in Chapter 10.
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7.3.2 Constitutive relations
The total strain is assumed to be the sum of elastic and plastic contributions
(see Section 6.4 of Chapter 6). The elastic stress–strain relations are identical to
Eqs. (5.25)–(5.27) with the index substitutions 1 = r, 2 = θ and 3 = z. Even though
these relations were derived for Lagrangian strain, the fact that the elastic deformation
will only involve infinitesimal strain permits the substitution of logarithmic strain (see
Section 3.5.5 of Chapter 3). Similarly, for infinitesimal deformations the various stress
definitions used in this book are indistinguishable (see Section 4.3.3 of Chapter 4).

Uniaxial postyield stress–strain behavior is approximated with Ludwik’s model (see
Section 6.2.3.2 of Chapter 6). If we take Ludwik’s model as representative of the
stress–plastic strain relation, then the tangent modulus—the local slope of the uniax-
ial stress–total strain relation—is

Et = d�zz

dẼZZ
,

1
Et

=
d
(
Ẽ(e)

ZZ + Ẽ(p)
ZZ

)
d�zz

= 1
E

+ 1
EL

, (7.27)

where EL is given by Eq. (6.10).
For future convenience we reexpress the von Mises yield criterion (see Eq. (6.34)) in

terms of �eff and �θθ − �rr . From Eq. (6.35) with �11 = �rr , �22 = �θθ and �33 = �zz

we obtain

�2
e − f 2

y = �2
rr + �2

θθ + �2
zz − �rr�θθ − �θθ�zz − �zz�rr − f 2

y

= (�zz − �rr)
2 − (�zz − �rr) (�θθ − �rr) + (�θθ − �rr)

2 − f 2
y (7.28)

= �2
eff + 3

4
(�θθ − �rr)

2 − f 2
y = 0.

Further, due to Eq. (6.121), the rate of plastic work can be written as

Ẇ (p) = �rr
˙̃E(p)

RR + �θθ
˙̃E(p)

�� + �zz
˙̃E(p)

ZZ = �e
˙̃E(p)

e , (7.29)

where �e and Ẽ(p)
e assume the roles of �zz and ẼZZ , respectively, in Eqs. (6.9)–(6.11),

as well as in Eq. (7.27) in the current discussion.
Our problem at this point is identical to the isotropic hardening example problem in

Section 6.4.3.1 of Chapter 6. If we recognize (see Eq. (6.24)) that the deviatoric stresses
can be written as

�′
rr = 1

3
[2�rr − (�θθ + �zz)] , (7.30)

�′
θθ = 1

3
[2�θθ − (�zz + �rr)] , (7.31)

�′
zz = 1

3
[2�zz − (�rr + �θθ)] = 2

3
�eff , (7.32)
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then, using Eq. (6.128),

˙̃E(p)
RR =

˙̃E(p)
e

�e

[
�rr − 1

2
(�θθ + �zz)

]
, (7.33)

˙̃E(p)
�� =

˙̃E(p)
e

�e

[
�θθ − 1

2
(�zz + �rr)

]
, (7.34)

˙̃E(p)
ZZ =

˙̃E(p)
e

�e
�eff , (7.35)

and

˙̃E(p)
�� − ˙̃E(p)

RR = 3 ˙̃E(p)
e

2�e
(�θθ − �rr) , (7.36)

˙̃E(p)
�� + ˙̃E(p)

RR = − Ė(p)
e

�e
�eff . (7.37)

7.3.3 Rupture with multidimensional loading
Klever’s publication [62] which serves as the source for the API ductile rupture calcula-
tion derives several limit states:
• necking—commonly associated with the localization of deformation at and beyond

the maximum load in a uniaxial tension test, but possible in multidimensional load-
ing (i.e., including pressure) where the axial traction is dominant;

• rupture—the loss of internal pressure integrity in a multidimensional loading where
the pressure load is dominant;

• wrinkling—a term referring to the effect of plastic buckling of the tube as a column
when the loads render the effective stress negative;

• collapse—the loss of external pressure integrity, which is not addressed in detail
in [62].

Here we shall only address the prediction of ductile rupture.7

In rate form, Eq. (7.25) becomes

�̇θθ − �̇rr = R̄
t

[(
ṗi − ṗo

)
eẼ��−ẼRR + (

pi − po
)( ˙̃E�� − ˙̃ERR

)
eẼ��−ẼRR

]

= �θθ − �rr

pi − po

(
ṗi − ṗo

)+ (�θθ − �rr)
( ˙̃E�� − ˙̃ERR

)
, (7.38)

7 An annex to API TR 5C3 [51] offers two crack-propagation failure modes in overview form. API tubulars
are, however, typically ductile, even in the presence of a small crack, except when the material is exposed
to an unfriendly—usually hydrogen sulfide—environment.
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or

ṗi − ṗo = (
pi − po

)[ �̇θθ − �̇rr

�θθ − �rr
−

( ˙̃E�� − ˙̃ERR

)]
. (7.39)

Eq. (7.39) will vanish when pi − po reaches an extremum (i.e., ṗi − ṗo = 0), leading to
the condition

�̇θθ − �̇rr

�θθ − �rr
=

( ˙̃E�� − ˙̃ERR

)
. (7.40)

Consider a stress path in which, from an unloaded state, �eff and �θθ − �rr are
incremented proportionately, that is, at a fixed ratio kDR to each other.8 Then, for

example, �eff = kDR (�θθ − �rr) and �̇eff = kDR
(
�̇θθ − �̇rr

)
, so that �̇eff

�eff
= �̇θθ −�̇rr

�θθ −�rr
, and

from Eq. (7.28) we have

�e�̇e = �eff �̇eff + 3
4

(�θθ − �rr)
(
�̇θθ − �̇rr

)

=
(

k2
DR + 3

4

)
(�θθ − �rr)

(
�̇θθ − �̇rr

)
, (7.41)

or

�̇e

�e
=

(
k2

DR + 3
4

)
(�θθ − �rr)

(
�̇θθ − �̇rr

)
�2

e
=

(
k2

DR + 3
4

)
(�θθ − �rr)

(
�̇θθ − �̇rr

)
(
k2

DR + 3
4

)
(�θθ − �rr)

2

= �̇θθ − �̇rr

�θθ − �rr
. (7.42)

From Eq. (7.42) and Eq. (7.27), and ignoring the elastic part of the total strain as
being relatively small in a loading to rupture,

�̇θθ − �̇rr

�θθ − �rr
= �̇e

�e
= ELĖ(p)

e

�e
, (7.43)

which, along with Eq. (7.36), can be substituted into Eq. (7.40) with the result being

�e = 2�e

3 (�θθ − �rr)
EL =

2
√

k2
DR + 3

4

3
EL. (7.44)

Let (. . .)rup be the value of quantity (. . .) at the extremum condition defined by
Eq. (7.40), and let us retain kDR as the factor of proportional loading. Then from

8 The variable kDR is identical to tanφ in [62].
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Eqs. (7.44) and (6.11),9

(
E(p)

e

)
rup =

2
√

k2
DR + 3

4

3
nNR, (7.45)

and from Eq. (6.9),

(�e)rup =
⎛
⎜⎝e

2
√

k2
DR + 3

4

3

⎞
⎟⎠

nNR

fu. (7.46)

If we continue to ignore elastic strains, Eqs. (7.36) and (7.37) become10

(
E(p)

��

)
rup

−
(
E(p)

RR

)
rup

= nNR, (7.47)
(
E(p)

��

)
rup

+
(
E(p)

RR

)
rup

= −2
3

nNRkDR. (7.48)

Finally, using Eq. (7.36) (once more in its integrated rather than rate form) with
Eqs. (7.45)–(7.47) produces

(�θθ )rup − (�rr)rup = enNR fu
2

3
1+nNR

2

(
3

3 + 4k2
DR

) 1−nNR
2

, (7.49)

and from Eqs. (7.23) and (7.48),

(
�eff

)
rup = kDR

[
(�θθ )rup − (�rr)rup

] =
(
feff

)
rup

2πR̄t
e

2
3 nNRkDR , (7.50)

or
(
feff

)
rup = 2πR̄te− 2

3 nNRkDR
(
�eff

)
rup . (7.51)

The rupture differential pressure itself follows from Eq. (7.25) with Eqs. (7.47) and
(7.49) as

(
pi − po

)
rup = t

R̄
e−nNR

[
(�θθ )rup − (�rr)rup

] = t
R̄

fu
2

3
1+nNR

2

(
3

3 + 4k2
DR

) 1−nNR
2

. (7.52)

9 Eqs. (7.45) and (7.46) use the mappings Ẽzz → E(p)
e and �zz → �e. See Section 6.2.3.2 of Chapter 6.

10 Eqs. (7.36) and (7.37) are differential, or rate equations. For proportional loading, however, �e
�θθ −�rr

=√
k2
DR + 3

4 and �e
�eff

=
√

1 + 3
4k2

DR
, so that both equations can be integrated, with the results taking the

same forms as the rate equations, only with the superimposed rate symbols removed.
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For later use, an important special case of Eq. (7.25) is the capped-end rupture test when
kDR = 0, namely

(
pi − po

)
rup = t

R̄
fu

2

3
1+nNR

2

, kDR = 0. (7.53)

The work from Eq. (7.28) through Eq. (7.48) assumes yield to be defined by the
von Mises yield criterion. Klever chooses to also repeat the calculations using the Tresca
yield criterion11 (see Section 6.3.3 of Chapter 6). Summarizing the results of this second
derivation for the most pertinent facet of the Tresca yield surface, we have

(
E(p)

��

)
rup

−
(
E(p)

RR

)
rup

= nNR Tresca yield criterion, (7.54)
(
E(p)

��

)
rup

+
(
E(p)

RR

)
rup

= 0 Tresca yield criterion, (7.55)

(�θθ )rup − (�rr)rup = enNR fu

(
1
2

)nNR

Tresca yield criterion, (7.56)
(
feff

)
rup = 2πR̄t

(
�eff

)
rup Tresca yield criterion, (7.57)

(
pi − po

)
rup = t

R̄
e−nNR

[
(�θθ )rup − (�rr)rup

] = t
R̄

fu

(
1
2

)nNR

Tresca yield criterion,

(7.58)

which is also the rupture pressure according to the Tresca yield criterion for the capped-
end test.

The ductile rupture limit state is only valid in a certain region of feff –
(
pi − po

)
space.

In particular, on the high tension side when feff is the dominant load the tube will fail
axially due to necking, somewhat as if the tube and its pressure environment were a
sample in a large uniaxial tension experiment.12 We will consider this limit immediately

11 Depending on the source, experimental data on multidimensional yield often locates the yield point
between the von Mises and Tresca surfaces. In particular, Klever [62] cites the work of Steward et al.
[64] and Klever and Stewart [63] as finding the average of the von Mises and Tresca rupture pressures
to be an unbiased predictor of experiment. Positing the yield surface as the average of the two is a
reasonable gesture.

12 Why is there a differentiation between rupture and necking in this investigation when no such differ-
entiation exists for initial yield—with, for example, the von Mises yield criterion—where everywhere
on the yield surface loss of elastic behavior is not distinguished as being dominated by pressure or axial
force? The difference can be traced to the criteria used to determine rupture and necking. For rupture,
recall that the condition for the limit state (see Eq. (7.40)) follows from a search for an extremum of the
load pi − po. When (effective) tension is the dominant load we are led to search for a maximum value
of fz. By Eq. (7.22), this occurs at

˙fz = 2πR̄t

[
�̇zze

(
ẼRR+Ẽ��

)
+ �zz

( ˙̃ERR + ˙̃E��

)
e

(
ẼRR+Ẽ��

)]
= fz

[
�̇zz
�zz

+
( ˙̃ERR + ˙̃E��

)]
= 0.

The solution by Klever [62] follows a path similar to that we have detailed for rupture.
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below when discussing the design equation for ductile rupture. Both ductile rupture
and necking are limit states recognized by API TR 5C3 [51].

7.3.3.1 The design equation

The work above can be converted from a limit state calculation to a design calculation
by the following substitutions [51]:
• Replace the ultimate stress fu with the specified minimum ultimate stress fumn.
• Assume that any crack-like imperfection existing in the tube wall is coincident with

the minimum wall thickness of the tube. In the absence of a crack, the minimum
wall thickness is kwallt, where kwall is the manufacturing allowance (see Section 6.3.6
of Chapter 6). If, as is assumed in the API ductile rupture property rating, a crack-
like imperfection appears at the location of manufactured wall thickness kwallt, the
design wall thickness for ductile rupture is further diminished by two additional
parameters:
• an inspection threshold aN that corresponds to the maximum depth of a crack-

like imperfection that could go undetected by the tube inspection system;
• a so-called “burst strength factor” ka—suggested values are 1.0 for quenched and

temperated tubes with a martensitic grain structure or grades with minimum 13%
chromium and 2.0 for as-rolled and normalized tubes—which offers a measure
(which may optionally be determined experimentally) of the ductility of the tube
material.

With the above factors, the design wall thickness of the tube is

tDR = kwallt − kaaN . (7.59)

As was the case with the triaxial yield design equation, tDR is only used with the
radial and hoop stress calculations, not with calculations involving the axial stress.

• The API ductile rupture calculation uses a non-dimensional stress space where
effective force is factored by an effective force scaling factor (futs)13 and pressure
differential is factored by a scaling factor based on pressure differential (puts). The
axial force scaling factor is defined with specified dimensions

futs = 2πR̄tfumn = π (D − t) tfumn. (7.60)

The differential pressure scaling factor is defined with tDR as

puts = fumn
tDR

R̄
= 2fumn

tDR

D − tDR
. (7.61)

13 The API [51] symbol is Futs. We lower its case and use futs in order to honor this book’s symbol
convention while attempting to cause minimum disruption to the API calculation format.
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• For calculations in an industry standard, the generation and deployment of the
rupture envelope ( feff

futs
vs. pi−po

puts
) developed in the previous sections is somewhat

cumbersome. As a friendlier alternative Klever [62] simplifies the envelope with
a less complicated approximation that is constrained to fit through four important
points on the true envelope:
• pure tension (feff = fz > 0, pi − po = 0, kDR = +∞);
• pure compression (feff = fz < 0, pi − po = 0, kDR = −∞);
• capped-end rupture (feff = 0, pi − po > 0, kDR = 0);
• the intersection of the rupture and necking limit states (feff > 0, pi − po > 0,

kDR = 3
2 ).

The resulting envelope is given by the equation

(
41−nNR − 1

31−nNR

)(
feff

kBRfuts

)2

+
(

31+nNR

4

)(
pi − po

kBRputs

)2

= 1, (7.62)

where the API currently sets the bias factor kBR for necking and rupture to unity. If
we solve Eq. (7.62) for pi − po, then

pi − po︸ ︷︷ ︸
pM

= 2√
3

1+nNR
kBRputs

︸ ︷︷ ︸
kBRprefM

√√√√√√1 −
(

41−nNR − 1
31−nNR

)
︸ ︷︷ ︸

kR

(
feff

kBRfuts

)2

, (7.63)

where the underbraces indicate variable names in the API TR 5C3 [51] presenta-
tion.

• Replace the capped-end rupture pressures—both von Mises and Tresca—with ex-
pressions using tDR. The von Mises capped-end rupture pressure (Eq. (7.53)) be-
comes

prefM = 2
tDR

D − tDR
fumn

2

3
1+nNR

2

= 2

3
1+nNR

2

puts. (7.64)

Note the appearance of prefM in Eq. (7.63) for the rupture envelope. The Tresca
capped-end differential rupture pressure (Eq. (7.58)) becomes

prefT = 2
tDR

D − tDR
fumn

(
1
2

)nNR

=
(

1
2

)nNR

puts, (7.65)

where in both instances we have replaced the pressure differential pi − po with an
internal-only pressure. The effective tension can now be written as a design variable

feff = fz + poπ t (D − t) − pM
t (D − t)

tDR (D − tDR)

[π

4
(D − 2tDR)2

]
, (7.66)
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where fz is given by Eq. (7.22) without the correction for large displacement,

fz = π (D − t) t�zz, (7.67)

and pM is defined in Eq. (7.63). The formula for feff takes care not to discount the
wall thickness twice—the area for po is based on specified wall thickness.

7.3.4 Example problem—computing rupture pressure
Compute the ductile rupture pressure of a tube of 9.625 in., 53.5 lbm

ft P110 casing
(0.545 in. wall thickness) exposed to 200000 lbf compression and 1000 psi external pres-
sure. The tube material is quenched and tempered and the inspection threshold is 5%.
Assume a wall thickness tolerance factor of kwall = 0.875.

The API/ISO method for determining the ultimate resistance of a tube to an internal
fluid pressure differential is outlined in API TR 5C3 [51] and its equivalent ISO TR
10400 [65]. Given the specified outside diameter D, specified wall thickness t, specified
minimum ultimate stress fumn and corresponding characteristic value for the Ludwik’s
model nNR, applied axial traction �zz and external pressure po, the ductile rupture
resistance of a tube is calculated by the following procedure.

7.3.4.1 Perform preliminary calculations

Preliminary calculations include determination of the following:
• Ludwik’s parameter (nNR). The parameter nNR is listed for API grades in Table 6.2

[51]. For grades in which the parameter is not tabulated, Eq. (6.12) is recommended.
For the current example, from Table 6.2, nNR = 0.08.

• Design wall thickness (tDR). From Eq. (7.59)

tDR = 0.875 × 0.545 in. − 1.0 × (0.05 × 0.545 in.) = 0.450 in. (7.68)

• Scaling parameters (futs, puts). From Eqs. (7.60) and (7.61), respectively, we get

futs = π (9.625 in. − 0.545 in.)0.545 in. × 125000psi = 1943311 lbf. (7.69)

The differential pressure scaling factor is defined with tDR as

puts = 2 × 125000psi
0.450 in.

9.625 in. − 0.450 in.
= 12251psi. (7.70)

7.3.4.2 Compute von Mises and Tresca capped-end rupture pressures

From design Eqs. (7.64) and (7.65) we have

prefM = 2

3
1+0.08

2
12251psi = 13538psi, (7.71)
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prefT =
(

1
2

)0.08

12251psi = 11590psi. (7.72)

7.3.4.3 Compute the von Mises rupture pressure

With the above knowns, the von Mises rupture pressure with (effective) axial force
can now be computed by solving Eqs. (7.66) and (7.63) simultaneously to construct a
quadratic equation in pM . Let the temporary variables A, B and C be defined, respec-
tively, as

A =
(

futs

prefM

)2

+ kRk2
M , (7.73)

B = −2kRkM
[
fz + poπ t (D − t)

]
, (7.74)

C = kR
(
fz + poπ t (D − t)

)2 − (
kBRfuts

)2
, (7.75)

where kR is defined in Eq. (7.63) and kM is shorthand for the terms multiplying pM in
Eq. (7.66), namely

kM = t (D − t)
tDR (D − tDR)

[π

4
(D − 2tDR)2

]
. (7.76)

Then

pM = −B + √
B2 − 4AC
2A

. (7.77)

If we carry out the indicated operations, then

A =
(

1943311 lbf

13538psi

)2

+
(

41−0.08 − 1
31−0.08

)(
71.730 in2)2 = 25437.1 in4, (7.78)

B = −2
(

41−0.08 − 1
31−0.08

)(
71.730 in2) [−200000 lbf + 1000psi × π × 0.545 in.

× (9.625 in. − 0.545 in.)] = 2.4848801 × 107 lbf in2, (7.79)

C =
(

41−0.08 − 1
31−0.08

)[−200000 lbf + 1000psi × π × 0.545 in.

× (9.625 in. − 0.545 in.)]2 − (1 × 1943311 lbf)
2 = −3.74451 × 1012 lb2

f , (7.80)

where kR is defined in Eq. (7.63) and from Eq. (7.66) we have

kM = 0.545 in. (9.625 in. − 0.545 in.)
0.450 in. (9.625 in. − 0.450 in.)

[π

4
(9.625 in. − 2 × 0.450 in.)2

]
= 71.730 in2,

(7.81)
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thus

pM = {−2.4848801 × 107 lbf in2

+
√(

2.4848801 × 107 lbf in2)2 − 4 × 25437.1 in4 × −3.74451 × 1012 lb2
f

}

/
{
2 × 25437.1 in4 } = 11654psi. (7.82)

The effective force can now be determined from Eq. (7.66) as

feff = −200000 lbf + 1000psi × π × 0.545 in. × (9.625 in. − 0.545 in.)

− 11654psi
0.545 in. (9.625 in. − 0.545 in.)
0.450 in. (9.625 in. − 0.450 in.)

[π

4
(9.625 in. − 2 × 0.450 in.)2

]

= −1.020419 × 106 lbf. (7.83)

A check is necessary to ensure the ductile rupture limit state applies to the current
stress path. Assuming that to be the case, the final design rupture pressure is the mini-
mum of (a) the average of the rupture pressures predicted by the von Mises and Tresca
criteria and (b) the rupture pressure computed using the von Mises yield criterion.

Rupture is the applicable limit state when
(√

3
2

)1−nNR

≥ feff
futs

. (7.84)

In the current problem, feff
futs

= −1.020419 × 106 lbf
1943311 lbf

= −0.525 ≤ 0.876 =
(√

3
2

)1−0.08
, so the

rupture limit state is applicable.
The final answer for the rupture pressure is

pdr = po + min

{
pM + prefT

2
,pM

}

= 1000psi + min

{
11654psi + 11590psi

2
,11654psi

}
= 12622psi. (7.85)

7.3.5 Comments on the API ductile rupture equation
As a design implementation review of this section, the following comments are in order:
• The limit state (not design) equations presented in this discussion have proved ex-

tremely accurate in reproducing experimental results. API TR 5C3 [51] summarizes
results of 106 capped-end rupture tests with an actual-to-predicted (Eq. (7.53)) ratio
of 1.004 and coefficient of variation of 4.7%.

• Within the limits of their stated assumptions, Eqs. (7.13)–(7.37) are quite general
and could be used in an analysis of plastic loading and unloading under a variety of
stress paths under the assumption of isotropic hardening.
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• The strategy of assuming a fixed (i.e., constant kDR) relation between �eff and
�θθ − �rr for the general solution means that the modeled stress path to rupture
may not correspond to that actually experienced by the tubular in service. The as-
sumption of isotropic hardening, however, means that radial expansion of the initial
and subsequent yield surfaces is adhering to behavior that should be close to that
strategized.

• Given the ductility of current tubular materials one might expect a significant in-
crease in internal pressure resistance when choosing rupture rather than yield as a
limit state. This is not always the case, as the design equation assumption of co-
incidence between the manufactured minimum tube wall thickness kwallt and the
undetected crack-like imperfection represented by aN can counter much of the
gain associated with the ratio of fumn to fymn.

• Klever [62] offers two applications for the ductile rupture limit state in design,
both of which are applicable to tube materials for which the margin between fymn

and fumn is small—high strength steels and solid expandable tubulars. Even in these
instances, his suggestion, with which this author agrees, is that the rupture check
be in addition to, rather than in replacement of, the design check for yield. As an
addition, the ductile rupture equation has proved useful in postfailure analysis to
determine when actual loss of internal pressure should have been expected.

7.4. EFFECT OF WEAR ON INTERNAL PRESSURE RESISTANCE

Both theoretical and experimental evidence points to the importance of wall thickness
in resistance to internal pressure dominated loads. Both the API minimum internal yield
pressure (see Eq. (7.12)) and capped-end ductile rupture (see Eqs. (7.64) and (7.65))
design equations indicate a direct proportionality between (remaining) wall thickness
and internal limit pressure.

Tool joint wear14 directly impacts casing wall thickness. Further, the wear groove is
usually of sufficient circumferential extent to reduce the mitigating effect of surrounding
wall. For this reason, the impact of tool joint wear on casing internal pressure resistance
is judged linear [66]—a 13% loss of wall thickness implies a 13% loss of resistance to
internal pressure.

14 Both logic and experience suggest wear associated with logging wirelines should also impact tubular
internal pressure resistance. Unfortunately, this author is not aware of a body of experimental work that
would further justify this concern. Qualitative arguments both help and hurt. For example, with the
smaller groove associated with wireline wear one would anticipate structural support from surrounding
wall. On the other hand, the diameter of a wireline groove suggests a larger effect of stress intensity.



CHAPTER 8

External Pressure Resistance
8.1. INTRODUCTION

Internal pressure resistance (Chapter 7) is governed by the response of the material
and geometry of the cross-section—primarily embodied in the circumferential or hoop
stress—to imposed internal pressure differential. At least up to the vicinity of rupture the
response of the cross-section is stable. Collapse, on the other hand, is largely governed
by considerations of cross-sectional instability. The cross-section deforms under increas-
ing external pressure differential with the character of the deformation reflecting initial
imperfections. At a critical pressure the response of the cross-section reaches a maxi-
mum, and the cross-section buckles. Postbuckled deformation proceeds with decreasing
external differential pressure.

8.2. COLLAPSE RESISTANCE TO UNIFORM LOADING

Collapse failures can be divided into two categories—those due to uniform loading
by a fluid (differential) pressure and those due to nonuniform loading, usually by an
adjacent, mobile formation. Response of the cross-section to these differing loads is
sufficiently unique that the two cases will be considered separately. The initial discussion
concentrates on uniform pressure loading.

8.2.1 The analogy between collapse and buckling of a column
The internal/external pressure resistance of a tube cross-section has a direct analog in the
tension/compression response of a specimen in a load frame used to capture stress–strain
response. Fig. 6.1 illustrates the response of a steel solid bar specimen when loaded in
tension. The only active stress is the axial stress, and the resulting stress–strain curve
captures the behavior, including yield and ultimate stresses, of the parent material.

An additional concern arises if one attempts to load the solid bar specimen in com-
pression. As illustrated in Fig. 6.3, when loaded in compression an isotropic sample will
duplicate, with appropriate sign changes, the stress–strain response of the tension curve.
In the case of compression, however, an additional failure mode exists that is not de-
picted in Fig. 6.3. If the solid bar specimen is sufficiently slender, an imperfection in the
experimental setup—an inaccurately machined sample, offset between the clamp ends
of the test fixture—can cause the specimen to buckle as a column (see Fig. 8.1), thus
interrupting the intended purpose of the test and rendering the sample useless.

Buckling of a column can occur in one of two modes—elastic buckling or plastic
buckling. Imagine a strain gauge placed on each specimen in Fig. 8.1 to record strain
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Figure 8.1 An analogy to collapse—the buckling of a column under compression. The buckling
mode can be designated “elastic” or “plastic” depending on the value of SZZ relative to the yield stress
at the onset of buckling.

before, at the moment of, and following buckling. As the column is loaded in compres-
sion, its axial stress will increase in a negative sense. For a column that is thin relative
to its length, the resistance to buckling can be so small that at the moment of buckling
the stress in the column is less than the compressive yield stress.1 In such instances the
buckling is termed “elastic.” As the thickness of the cross-section is increased, eventually
the column’s stiffness will be such that, at the moment of buckling, the axial stress in
the column exceeds the compressive yield stress of the column material. In this case the
buckling is termed2 “plastic.”

Finally, and in anticipation of the discussion of collapse resistance, imagine a column
whose cross-section is massive relative to its length (in the extreme, think of a column
with the dimensions of a tree stump). In this case, the compressive loading necessary to

1 To be sure, once the column buckles and begins to deflect, bending stresses associated with the deflection
will add to the axial stress causing the column to yield. For the purpose of classifying the buckling,
however, we are only interested in the stress state at the instant buckling initiates.

2 Alternate terminology includes descriptors such as “inelastic” and “elasto-plastic.” The adjective “plastic”
is used here to complete the analogy with industry terminology for cross-sectional collapse.
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Figure 8.2 Collapse modes for a cross-section. The collapse mode can be designated “elastic” or “plas-
tic” depending on the value of S�� relative to the yield stress at the onset of collapse.

buckle the “column” may be so huge that substantial postyield damage precedes lateral
deflection of the column rendering it unusable as a structure prior to loss of stability.

To complete the present analogy, now consider the response of a tube cross-section
to external pressure differential as depicted in Fig. 8.2. Note the mapping:
• the load of concern changes from axial force fZ to external pressure po;
• the stress of concern changes from SZZ to3,4 S��;
• as the load (compressive force for column, external pressure for tube) is increased

the stress of significance approaches, and may exceed, the yield stress of the parent
material;

• provided the material is isotropic, the stress–strain curve itself does not change.
First consider a tubular cross-section whose wall thickness is small compared to its

diameter—in the extreme, a soft drink can. As the external pressure load on the tube is
increased, the hoop stress increases in a negative sense until the tube cross-section reaches

3 With axial loading of the column the prebuckled stress state is uniform over the cross-section. With
external pressure loading of the cross-section the prebuckled stress state is not uniform through the wall
thickness, but for the purposes of this analogy, considering an average circumferential/hoop stress is
adequate.

4 In this discussion we ignore the possible presence of axial force. Collapse in the presence of combined
loading will be discussed in Section 8.2.3.1.
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Table 8.1 Examples of elastic collapse resistance
20.000 in., 94.0 lbm

ft 13.375 in., 68.0 lbm
ft

Grade Collapse resistancea (psi) Grade Collapse resistancea (psi)
H40 520 H40 1660
J/K55 520 J/K55 1950
L/N80 520 L/N80 2260
T95 520 T95 2330
P110 520 P110 2330
Q125 520 Q125 2330
a API minimum collapse rating [51], though not all entries are API diameter, mass per length

combinations.

a state of instability (see dashed curve in Fig. 8.2), and buckling of the cross-section
initiates. If, at this moment, the representative hoop stress in the cross-section is less
than the compressive hoop yield stress,5 the collapse is termed “elastic.”

If a tube collapses elastically, that is, no portion of the cross-section has yielded, then
the only two relevant material parameters are Young’s modulus E and Poisson’s ratio ν.
The yield stress of the material does not enter the calculation for elastic collapse, and
therefore the collapse resistance is independent of yield stress.

Two examples of elastic collapse resistance behavior are presented in Table 8.1. In
the first example, 20.000 in., 94.0 lbm

ft casing, the diameter-to-thickness (D/t) ratio is so
high that, regardless of grade, the collapse resistance is 520 psi. No benefit in external
pressure resistance is afforded by the purchase of a higher grade tubular. In the second
example, 13.375 in., 68.0 lbm

ft casing, lower grades have sufficiently low yield stress that
yield in the hoop direction will occur prior to the onset of collapse. As the grade/yield
stress is increased, eventually a grade is reached where collapse initiates prior to yield.
Again, the purchase of a higher grade offers no benefit to the tube’s collapse resistance
for the higher grades.

As the thickness of the cross-section is increased, eventually the tube’s cross-sectional
stiffness will be such that, at the moment of buckling, the hoop stress in the column ex-
ceeds the compressive hoop yield stress of the column material. In this case the collapse
is termed “plastic.”

At the lower end of tubular D/t ratios exist tubulars—thicker-walled casing, many
tubing sizes—for which a third collapse resistance mode, “yield” collapse, has been
adopted by the API. In parallel to the tree stump in column buckling, these tubulars
are sufficiently thick, compared to their diameters, that the term “plastic collapse” does
not seem appropriate to the industry.6 Here we will adhere to the industry practice,

5 Usually, for low carbon steels the tensile and compressive axial yield stresses, as well as the tensile and
compressive hoop yield stresses, are all considered to be equal.

6 In reality many of these tubes simply possess cross-sections that perform on the high end of plastic collapse.
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Figure 8.3 Bifurcation and buckling. In the right-hand diagram url −urs is the difference between the
displacement of the tube along the long and short axes of the postbuckled shape.

recognizing that the limit state equation for yield collapse does not describe a stability
failure but does fall in a natural progression of behavior with decreasing D/t ratio.

8.2.2 Perfect and imperfect cross sections
In collapse studies, as in most stability studies, two approaches are employed—those that
consider instability as a bifurcation (division into two branches) from a perfect state and
those that consider instability as an amplification (and eventual overload) of an initial
imperfection.7 We describe these now, as both are used in current collapse resistance
investigations, and both can be related to the analogy to column buckling discussed in
the previous section.

Fig. 8.3 illustrates two examples of the buckling of perfect and imperfect structures.
A column loaded in compression by −fZ is considered in the left-hand diagram. If the
column is without imperfection and is loaded symmetric to its cross-section (ε = 0),
there will be no deflection of the column (δ = 0) until a critical value of −fZ is reached.
At that point, two equilibrium paths are possible. One path has the column continuing

7 The snap-through failure to be discussed is an example of a load path that does not bifurcate [67].
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Figure 8.4 Progressive ovalization leading to collapse. Snap-through buckling of the upper arch can
lead to the familiar crescent failure mode.

to resist increasing compression without deflection—the plot of −fZ vs. δ is a straight
vertical line that coincides with the ordinate. The second path, labeled in the figure
“ε = 0”, allows δ to suddenly increase unchecked as indicated by the horizontal branch
of the bifurcated equilibrium path.

Fig. 8.3 also indicates the behavior of an imperfect column or, in this case, a column
with an imperfect load. As indicated in the plots of −fZ vs. δ, if ε �= 0 the column
will begin to deflect immediately (i.e., no bifurcation), the deflection increasing with
increasing load. Depending on the value of ε the behavior of the imperfect column will
either approach the behavior of a perfect column (as ε decreases) or exhibit significant
deviation (as ε increases).

Similarly for a tube, if the tube cross-section is initially without imperfection, in-
creasing external pressure will cause the tube to axisymmetrically decrease in radial
dimension until a critical external pressure is reached. At that point, the equilibrium
path for the tube will bifurcate. One path has the tube continuing to decrease in radius
axisymmetrically—the plot of po vs. url − urs is a straight vertical line that coincides with
the ordinate. The second path, labeled in the figure “no initial ovality”, is characterized
by the tube cross-section suddenly assuming a noncircular shape as indicated by the
horizontal branch of the bifurcated equilibrium path.8

If the initial cross-sectional shape of the tubular is not perfectly circular, for example,
if there is a slight as-manufactured ovality, then bifurcation is no longer the failure path.
Consider the tube geometry in Fig. 8.4, which has a simple ovality imperfection in

8 For most well tubulars the alternate, noncircular shape is an oval.
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Figure 8.5 Recovered 16.000 in. collapse sample from Pompano platform, Gulf of Mexico [69]. Dam-
age in upper left of figure occurred while recovering sample. Copyright 2004, Society of Petroleum
Engineers Inc. Reproduced with permission of SPE. Further reproduction prohibited without permis-
sion.

its as-manufactured state.9 With increasing external pressure differential the ovality is
magnified (greatly exaggerated in both Figs. 8.3 and 8.4) until a load is reached where
the tube cross-section undergoes a form of snap-through buckling.10

In a laboratory environment the tube will normally not collapse completely, as a
seal between the sample and the test fixture will fail, thus relieving the collapse pressure
differential. In an oil well such is not the case, as evidenced by the 16.000 in. casing in
Fig. 8.5 whose ovalization continued until it reached and stalled the rotating drill string
inside. Collapse failures have been known to even propagate across threaded connections
with the resulting failure of a number of joints prior to arrest of the failure [68]. The
recovered tubular often experiences complete closure of its cross-section.

9 With modern tubular mills the ovality imperfection can be small—on the order of fractions of a percent
of the tube diameter.

10 Depending on the D/t ratio and material properties of the tube, usually only one “arch” of the oval-
ized cross-section will buckle—the half of the cross-section which is weaker due to some additional
imperfection such as, but not limited to, nonuniform wall thickness.
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8.2.2.1 Modeling collapse

The two extremes of collapse—elastic collapse and yield collapse—have been modeled
with closed form solutions. Assuming the tube to be constructed of an isotropic material
and of infinite length:
• Elastic collapse

• Bifurcation buckling. The tube is assumed to be of perfect cross-section with
constant diameter D and wall thickness t, and loaded by a uniform external
pressure. The solutions for buckling/collapse pressure pc usually assume a thin
tube ( t

D � 1). Timoshenko and Gere [70] derive the solution

p̄c = 2E
1 − ν2

(
t
D̄

)3

, (8.1)

which, with the substitutions D̄ = D − t for the mean diameter D̄ and p̄c =(
1 + t

D

)
poc for the collapse pressure p̄c acting on D̄, becomes

poc = 2E
1 − ν2

1(D
t − t

D

) (D
t − 1

)2 , (8.2)

which is tantamount to the API average elastic collapse equation [71,51]

poc = 2E
1 − ν2

1
D
t

(D
t − 1

)2 , (8.3)

under the assumption t
D � 1.

• Yield collapse
• Bifurcation buckling. The tube is assumed to be of perfect cross-section with

constant diameter D and wall thickness t, and loaded by a uniform external
pressure. Recall from the discussion in Section 8.2.1 that yield collapse is not an
actual collapse mode. Rather, most investigators obtain a yield collapse formula
by simply following the cross-section to its maximum external pressure capacity
without searching for an alternate equilibrium configuration.
The API average yield collapse equation [51] may be derived from Eq. (6.60) by
setting �zz = pi = 0 and solving for the external pressure necessary to cause first
yield at the tube inside diameter

poc = 2fy
D
t − 1(D

t

)2 . (8.4)
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By contrast, Klever and Tamano [57] derive an expression for through-wall yield
of a tube loaded with external pressure

poc = 2fy
D̄
t − 1

2(
D̄
t

)2 , (8.5)

which, with the substitution D̄ = D − t for the mean diameter D̄, becomes

poc = 2fy
D
t − 3

2(D
t − 1

)2 . (8.6)

Comparing the yield collapse expressions, the through-wall yield equation is
greater than the first yield equation by factors of 1.17, 1.08 and 1.05 for D/t
ratios of 10, 20 and 30, respectively.

Plastic collapse prediction is the more difficult of the three modes to predict in that
the collapse will occur when the cross-section has yielded. This means that the stiffness
of the tube cross-section is continually changing with incremental additions of external
pressure. Once more assuming a tube constructed of an isotropic material and having
infinite length, typical solutions include the following:
• Bifurcation buckling. This problem has been worked by Huang and Pattillo [72] for

a thin tube and includes the effect of axial traction. For �zz = pi = 0, the solution is

p̄c = 2E
(

t
D̄

)3 E
Et

− 3

E
Et

(
E
Et

− 3
)

−
[

E
Et

− (1 − 2ν)
]2 , (8.7)

which, with the substitutions D̄ = D − t for the mean diameter D̄ and p̄c =(
1 + t

D

)
poc for the collapse pressure p̄c acting on D̄, becomes

poc = 2E
D
t

(D
t − 1

)2

E
Et

− 3

E
Et

(
E
Et

− 3
)

−
[

E
Et

− (1 − 2ν)
]2 , (8.8)

where Et is the tangent modulus to a uniaxial stress–strain curve that is connected
to the isotropic work-hardening plastic deformation of the tube through the von
Mises equivalent stress (see Section 6.4.3.1 of Chapter 6).
The difficulty with this solution is evident. The tangent modulus Et is only known if
the external pressure is known, but in turn the critical value of the external pressure
depends on Et. The solution is one of trail-and-error.

• Snap-through buckling. The snap-through buckling approach to tubular collapse is
the strategy of choice for numerical solutions [69,73]. Typically, a two-dimensional
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problem is posed where the cross-section is assigned an ovality manufacturing im-
perfection11 ω, where

ω = 2
Dmax − Dmin

Dmax + Dmin
, (8.9)

where Dmax and Dmin are modeled as occurring along perpendicular axes of the
cross-section. Typical manufacturer ovalities of oil field tubulars are on the order of
fractions of a percent of Dmax+Dmin

2 .
One shortcoming of two-dimensional modeling is that it usually yields collapse
predictions that are lower than experiment. Possible explanations for this behavior
include the following:
• The chosen cross-section is assumed to be representative of the entire sample and

does not include the rotation of ovality possibly associated with passage through
rollers during manufacture—such rotation would lead to support between neigh-
boring cross-sections;

• The tube is, by nature of the two-dimensional formulation, infinite in length and
therefore insulated from the effects of end conditions in a laboratory test frame;

• The ovality measured on the test sample may not conform to the ovality defined
in Eq. (8.9), particularly with regard to the perpendicularity of the Dmax and Dmin

axes, thus rendering the numerical model nonrepresentative of the sample (i.e.,
weaker) to which it is being compared [74].

An outstanding example of numerical modeling of snap-through buckling is the
work of Toscano et al. [75] who use detailed maps of diameter and wall thickness of
samples to build three-dimensional finite element models, and then collapse test the
samples to verify the software predictions. Without bending, baseline comparisons
of predicted to measured collapse pressure (3 samples) are 1.02 (using the measured
data with no axial residual stress); in the one test where bending preceded applica-
tion of external pressure the ratio is 0.964.

8.2.3 API collapse modes
The collapse modes discussed above—elastic, plastic, yield—apply to both the limit state
equation (describing anticipated behavior for a particular sample geometry and material)
and the design equation (describing a reasonable minimum behavior using minimally
favorable geometry and material).

11 Other candidate imperfections include eccentricity (offset of the inner diameter circle of the cross-section
from the center of the outer diameter circle), wall thickness, residual stress and the external traction.
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Figure 8.6 API average collapse resistance modes.

8.2.3.1 API average collapse resistance

A summary of API average collapse resistance is presented in Fig. 8.6. For the three
collapse modes discussed above (see Section 8.2.1) the following origins can be traced
(see [51] for details):
• As discussed in Section 8.2.2.1, the average elastic collapse formula, Eq. (8.3) [71],

closely resembles a formula presented by Timoshenko and Gere [70]—the collapse
resistance is proportional to 1/ (D/t)3;

• From Section 8.2.2.1, even simple theoretical expressions for plastic collapse require
trial-and-error solution. As an alternative, the average plastic collapse formula is
empirical [71]—the collapse resistance is proportional to 1/ (D/t);

• The average yield collapse formula, Eq. (8.4), is proportional to 1/ (D/t)2.
All three equations have the form 1

xn as illustrated in Fig. 8.6. Given D, t and fy for a tube,
one must calculate all three collapse mode pressures, with the actual collapse pressure
being the smallest of the three numbers. For constant yield stress, and beginning with
thin-walled (high D/t ratio) tubulars, the applicable collapse resistance mode is elastic,
then plastic for thicker tubulars, and finally yield collapse for the thickest tubes.

External pressure resistance in the yield and plastic collapse modes—the former in-
volves incipient yield, the latter involves postyield behavior—is affected by axial traction,
with tension lowering collapse resistance and compression increasing collapse resistance.
Elastic collapse is unaffected by axial traction.12

12 Recall from the discussion of Section 8.2.1 that, aside from geometry (D/t), elastic collapse is a function
only of Young’s modulus and Poisson’s ration, neither of which is a function of axial traction.
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Figure 8.7 Simplified illustration of collapse with axial paths.

Consider Fig. 8.7, which is the lower half of the simple VME ellipse introduced
in Section 6.3.4.4 of Chapter 6, that is, the portion of the yield surface that addresses
external pressure (i.e., negative hoop stress) and axial traction. Roughly speaking, plastic
collapse in the absence of �zz is represented by the hoop stress corresponding to the
point (0,−1).13 As �zz is added to a sample its ability to support hoop stress before
yielding decreases, as does its collapse resistance. This effect is represented by the path
OA in the figure. If, instead, �zz is negative, the sample can support additional hoop
stress at yield; its collapse resistance increases. This effect14 is represented by the path
OB in the figure.15

Now consider a combination of cross-sectional geometry and material strength that
results in elastic collapse. The hoop stress in such a tube could, in the absence of �zz,
be represented by point C in the figure at its instant of collapse. As �zz is increased,
the tube’s geometry and material properties do not change, and neither does its collapse

13 This is not strictly true, even in the case of vanishing �zz. Except in the extreme case at the boundary
between elastic and plastic collapse, the average hoop stress in the cross-section will, given any amount
of work-hardening, be somewhat above yield. This implies a certain amount of plastic flow and expan-
sion/translation/distortion of the yield surface local to the point at which the yield surface is penetrated.
For the purpose of illustrating the concept of adjustment of collapse for axial stress, however, assuming
negligible alteration of the yield surface is tolerable.

14 Although the increase in collapse resistance in an axial compression environment is substantiated by
experimental evidence, common industry design practice is to ignore this benefit. If the wellbore con-
tains any deviation, associated wall friction between the tubular and its confining hole render an exact
knowledge of the axial compression value difficult.

15 These same observations are deduced from the governing equation for the simple VME ellipse,
Eq. (6.85), in Section 6.3.4.4 of Chapter 6.
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Figure 8.8 API minimum collapse resistance modes. Gray curves are average collapse curves from
Fig. 8.6; black curves are minimum collapse curves. Open circles represent collapse test data used to
arrive at the API design equations. A total of 2488 tests were used in the statistical regression analysis
employed to arrive at the plastic collapse limit state and design equations.

pressure, as suggested by path CA. If, however, �zz is increased to a value that does
not permit realization of the hoop stress corresponding to collapse without yielding the
tube, the limit of elastic collapse has been reached (point A in the figure). Any further
increase in �zz will change the collapse mode from elastic to plastic and begin to reduce
the tube’s ability to support hoop stress at yield (path AD in the figure). The collapse
resistance is decreasing with increasing �zz.

Recall that the simple VME ellipse used in the above discussion is approximate. The
actual API adjustment of collapse for axial traction uses an abscissa that includes an in-
ternal pressure term and an ordinate that is differential (collapse) pressure (see Eq. (8.10)
in Section 8.2.4 and the associated example calculation). The collapse behavior with
axial load described above, however, is still applicable provided the axial stress value is
supplemented by pi.

8.2.3.2 API minimum collapse resistance

In addition to the three limit state equations described above, the API has also provided
design equations for industry use [51]. The background of these collapse design equa-
tions is summarized in Fig. 8.8. This figure is an extension of Fig. 8.6 and includes the
average collapse resistance curves. To reduce the average collapse resistance values to
design minimum collapse values the following adjustments were applied [51]:
• No adjustment is applied for the API yield collapse mode. The formulas for average

and minimum yield collapse resistance are identical;
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• For all values of D/t the API minimum elastic collapse resistance is 75% of the API
average elastic collapse resistance;

• The API minimum plastic collapse resistance was derived from the average plastic
collapse resistance by a statistical calculation based on a 0.95 confidence level that
0.995 of the sample population meets or exceeds the minimum collapse resistance
value.
When the above adjustments to the API average collapse resistance formulas were

implemented, the elastic and plastic collapse curves no longer intersected. To rectify this
anomaly, a new minimum collapse mode—transition collapse—was introduced. The
transition collapse curve is constructed such that it “intersects the D/t value where
the average plastic collapse pressure equation gives a collapse pressure of zero and is
tangent to the minimum elastic collapse pressure. . .This equation is used to determine
minimum collapse pressures between its tangency to the elastic collapse pressure curve
and its intersection with the plastic collapse pressure curve” [51].

8.2.4 Calculating resistance to uniform external pressure
The API/ISO method for determining the resistance of a tube to an external fluid
pressure differential is documented in API TR 5C3 [51] and its counterpart ISO TR
10400 [65]. Given the specified outside diameter D, specified wall thickness t, speci-
fied minimum yield stress fymn, applied axial traction �zz and internal pressure pi, the
differential collapse pressure pc − pi of a tube is calculated by the following procedure.

8.2.4.1 Adjust yield stress for the presence of axial stress and internal pressure

As a first step in the calculation, the specified yield stress fymn is adjusted for the presence
of axial traction and internal pressure. Earlier versions of the API calculation procedure
listed a similar adjustment as last in the calculation procedure.16 This inconsistency em-
phasizes the fact that the relation between axial traction and external pressure resistance
is physically intimate. In fact, more involved collapse models [72] perform the calcula-
tion considering the effects of axial traction and external pressure simultaneously. Here,
however, the calculation flow favors the user who has no access to complex models.

The formula for adjusting yield stress for axial traction and internal pressure is17

fycom =
⎛
⎝

√
1 − 0.75

(
�zz + pi

fymn

)2

− 0.5
�zz + pi

fymn

⎞
⎠ fymn, �zz + pi ≥ 0. (8.10)

16 In the earlier editions the adjustment was applied to the collapse resistance rather than the yield stress.
17 The experimental program and analysis used to arrive at Eq. (8.10) is discussed in [76].
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Regarding the combined loading equivalent grade resulting from the adjustment for
the presence of axial traction and internal pressure, the following observations are in
order:
• Once the combined loading equivalent grade is calculated the resulting modified

yield stress fycom is treated as the yield stress in all subsequent calculations. The orig-
inal, unadjusted yield stress is no longer pertinent to the procedure.

• The adjustment to yield stress can, according to the sign of �zz + pi, either increase
or decrease the yield stress for the purpose of the remainder of the collapse calcula-
tion. API TR 5C3 [51] only applies the correction to cases where �zz + pi ≥ 0.

• Focusing on the square root term, the maximum compressive value of �zz + pi

that avoids an imaginary root(s) is �zz + pi ≥ −√
4/3fymn = −1.155fymn. That is, it is

possible within the context of the von Mises yield criterion upon which Eq. (8.10)
is based to undergo a compressive load greater than fymn without suffering collapse
(although the collapse resistance might be reduced). This feature of the correction
embodied in Eq. 8.10 is frequently ignored, and both the tension and compression
limits of the axial tension adjustment are set to fymn.

• The form of the axial stress adjustment is not totally ad hoc. Rearranging Eq. (8.10)
yields

(
fycom

fymn

)2

+ �zz + pi

fymn

fycom

fymn
+

(
�zz + pi

fymn

)2

= 1, (8.11)

which is identical in form to the ellipse presented in Fig. 6.13 (associated with
Eq. (6.68))18 with X-axis �zz+pi

fymn
and Y-axis fycom

fymn
. The ordinate in Fig. 6.13 is, from

Eq. (5.55), �θθ +pi at the inner radius of the tube. Fig. 6.13 is roughly a yield surface
in a space defined by �zz + pi and �θθ + pi. Therefore, with the understanding that
pi, though significant, is the minor variable in a collapse discussion, a rough inter-
pretation of Eq. (8.10) and the variable fycom is that, for a given �zz + pi, Eq. (8.10)
is providing a new yield stress that is equal to the hoop stress to cause yield in the
presence of �zz + pi.19

• Eq. (8.10) is applicable to collapse modes that involve inelastic deformation. It
should not be used to adjust elastic collapse for the presence of axial stress.

8.2.4.2 Calculate empirical values

The yield and elastic collapse mode formulas were derived from theoretical considera-
tions. The plastic collapse mode formula, on the other hand, is empirical and as such

18 Note the sign difference between the unsquared terms in Eqs. (8.11) and (6.68). The former’s focus is
po − pi; the latter’s focus is pi − po.

19 This is essentially the same argument that has been made in Section 8.2.3.1 of this chapter and Sec-
tion 6.3.4.4 of Chapter 6 using the simple VME ellipse.
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depends on factors which have been curve fit to collapse data to provide formula behav-
ior that best predicts the original collapse values. Five factors are to be determined—Ac,
Bc , Cc , Fc and Gc :

Ac = 2.8762 + 1.0679 × 10−6fycom + 2.1301 × 10−11f 2
ycom − 5.3132 × 10−17f 3

ycom, (8.12)

Bc = 0.026233 + 5.0609 × 10−7fycom, (8.13)

Cc = −465.93 + 0.030867fycom − 1.0483 × 10−8f 2
ycom + 3.6989 × 10−14f 3

ycom, (8.14)

Fc =
4.695 × 107

(
3Bc/Ac

2+Bc/Ac

)3

fycom

[
3Bc/Ac

2+Bc/Ac
− Bc/Ac

][
1 − 3Bc/Ac

2+Bc/Ac

]2 , (8.15)

Gc = FcBc

Ac
. (8.16)

8.2.4.3 Determine D/t values at boundaries between collapse modes

Usually in collapse calculations, the governing mode of collapse is determined by com-
puting the collapse resistance of all modes, and then taking the smallest value as the
governing mode. The API procedure is slightly different but accomplishes the same
purpose. In the API procedure formulas are provided for the D/t boundaries at which
precedence switches from one collapse mode to another. The process is twofold:
1. Calculate the D/t boundaries between the four API collapse modes.
2. Use the D/t of the tube being investigated, as it compares to the D/t boundaries,

to determine the governing collapse mode.
The formulas for the D/t boundaries between the API collapse modes are as follows:

• Boundary between yield and plastic collapse modes (D/t)yp is

(
D
t

)
yp

=
√

(Ac − 2)2 + 8
(
Bc + Cc/fycom

) + (Ac − 2)

2
(
Bc + Cc/fycom

) . (8.17)

• Boundary between plastic and transition collapse modes (D/t)pt is

(
D
t

)
pt

= fycom(Ac − Fc)

Cc + fycom(Bc − Gc)
. (8.18)

• Boundary between transition and elastic collapse modes (D/t)te is

(
D
t

)
te

= 2 + Bc/Ac

3Bc/Ac
. (8.19)
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8.2.4.4 Select appropriate collapse mode

Once the above boundaries are determined, the appropriate collapse mode for the target
D/t can be determined. For example, if the target D/t value falls between

(D
t

)
pt and(D

t

)
te, the appropriate collapse mode is the transition collapse mode. Should a target

D/t value fall exactly on the boundary between two collapse modes, either mode can
be used in the final collapse resistance calculation.

8.2.4.5 Compute collapse resistance

The formulas governing the four API collapse modes are as follows:
• Yield collapse mode, D/t ≤ (D/t)yp,

	pc = poc − pi = 2fycom
(D/t) − 1
(D/t)2 . (8.20)

• Plastic collapse mode, (D/t)yp ≤ D/t ≤ (D/t)pt,

	pc = poc − pi = fycom

[
Ac

D/t
− Bc

]
− Cc. (8.21)

• Transition collapse mode, (D/t)pt ≤ D/t ≤ (D/t)te,

	pc = poc − pi = fycom

[
Fc

D/t
− Gc

]
. (8.22)

• Elastic collapse mode, (D/t)te ≤ D/t,

	pc = poc − pi = 46.95 × 106

(D/t)
[
(D/t) − 1

]2 , (8.23)

where 	pc is the differential pressure corresponding to collapse and poc is the external
pressure corresponding to collapse. The quantity 	pc is independent of the internal
pressure pi; the quantity poc is not.

Only one of Eqs. (8.20)–(8.23) should be employed, depending on the governing
collapse mode.

8.2.4.6 Example problem—uniform external pressure

At a certain depth in a well a tube of 9.625 in., 53.5 lbm
ft P110 casing (0.545 in. wall

thickness) is subjected to an axial tension of 20000 psi. The local internal pressure is
1000 psi. Compute the collapse resistance of the tube.

The solution follows the procedure outline above.
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Adjust yield stress for the presence of axial tension and internal pressure

From Eq. (8.10) we have

fycom =
⎛
⎝

√
1 − 0.75

(
20000psi + 1000psi

110000psi

)2

− 0.5
20000psi + 1000psi

110000psi

⎞
⎠110000psi

= 97986psi. (8.24)

Calculate empirical values

The empirical values given in Eqs. (8.12)–(8.16) are

Ac = 2.8762 + 1.0679 × 10−6 (97986) + 2.1301 × 10−11 (97986)2

− 5.3132 × 10−17 (97986)3 (8.25)

= 3.135,

Bc = 0.026233 + 5.0609 × 10−7 (97986) = 0.0758, (8.26)

Cc = −465.93 + 0.030867 (97986) − 1.0483 × 10−8 (97986)2

+ 3.6989 × 10−14 (97986)3

= 2493, (8.27)

Fc =
4.695 × 107

(
3(0.0758)/(3.135)

2+0.0758/3.135

)3

97986
[

3(0.0758)/(3.135)

2+0.0758/3.135 − 0.0758/3.135
] [

1 − 3(0.0758)/(3.135)

2+0.0758/3.135

]2

= 2.036, (8.28)

Gc = (2.036)(0.0758)

3.135
= 0.0492. (8.29)

Determine D/t values at boundaries between collapse modes

The D/t boundaries between collapse modes are given by Eqs. (8.17)–(8.19),
• Boundary between yield and plastic collapse modes (D/t)yp is

(
D
t

)
yp

=
√

(3.135 − 2)2 + 8 (0.0758 + 2493/97986) + (3.135 − 2)

2 (0.0758 + 2493/97986)

= 12.76. (8.30)

• Boundary between plastic and transition collapse modes (D/t)pt is

(
D
t

)
pt

= (97986) (3.135 − 2.036)

2493 + (97986) (0.0758 − 0.0492)
= 21.13. (8.31)
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• Boundary between transition and elastic collapse modes (D/t)te is

(
D
t

)
te

= 2 + 0.0758/3.135
3(0.0758)/3.135

= 27.90. (8.32)

Select appropriate collapse mode

The target value of D/t is 9.625/0.545 = 17.66, which means the tube collapses in the
plastic collapse mode.

Compute collapse resistance in the presence of internal pressure

Using Eq. (8.21), we have

	pc = poc − pi = (97986)

[
3.135
17.66

− 0.0758
]

− 2493 = 7474psi, poc = 8474psi. (8.33)

8.2.5 Effect of length-to-diameter ratio on collapse resistance
The API collapse calculation is intended to model a long tube such as an entire joint
of casing or tubing. Instances do exist, however, when one’s interest lies in the external
pressure resistance of a tube whose length-to-diameter (L/D) ratio is small:
• Collapse testing. Given the expense and logistics associated with collapse testing a

full tubular joint, the question arises as to what length of tubular one must test to
realize essentially the same result as a long tube.

• Collapse design of polished bore receptacles (PBRs). In a casing tieback or tubing
design/installation involving a seal stem and polished bore receptacle, it is not al-
ways appropriate to maintain the two parts with complete overlap—some length of
exposed PBR may or should be exposed. From a negative viewpoint, this exposes
a part which can have lower external pressure resistance than the casing or produc-
tion tubing. From a positive viewpoint, both intuition and experiment lead one to
believe that the short exposure length of the PBR affords it collapse support from
the pieces to which it is attached or with which it has sliding contact.
The effect of length on collapse resistance has been calculated numerically in a study

by Huang and Pattillo [77,78] based on Sanders’ nonlinear shell equations [79] with
inelastic behavior addressed using the von Mises equivalent stress and mapping from a
uniaxial tension test (see Section 6.3.2 of Chapter 6). Typical results are displayed in
Figs. 8.9 and 8.10.

Fig. 8.9 illustrates the effect of work-hardening of the tube material by using Needle-
man’s model (see Section 6.2.3.1 of Chapter 6) to define uniaxial stress–strain curve
shape beyond yield. The results are plotted on a log–log scale, where the abscissa is
the ratio of sample length to its mean radius/diameter. The ordinate is dimensionless
collapse pressure.
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Figure 8.9 Effect of stress–strain curve on inelastic collapse, fy = 80000psi, D̄
t = 30 [78]. The nu-

merical values identifying individual curves are associated with the work-hardening parameter in
Needleman’s model. Copyright 2007, Society of Petroleum Engineers Inc. Reproduced with permission
of SPE. Further reproduction prohibited without permission.

The solid line in Fig. 8.9 is the solution for elastic buckling [70]. As illustrated by the
deformed cross-sections, an elastic tube will collapse with one of an infinite number of
cross-sectional mode shapes—the modes illustrated in the figure are, from right to left,
modes 2, 3 and 4, respectively—depending on the L/D ratio of the tube, with short
samples exhibiting the higher mode shapes.20 Also included in the figure are the analysis
results for a tube with material of yield stress 80000 psi. As the material work-hardening
coefficient from Needleman’s model increases (work-hardening decreases), the deviation
of the tube from elastic behavior increases.

Fig. 8.10 offers further insight into the effect of length on collapse resistance by
comparing samples with the same Needleman work-hardening parameter but differing
yield stresses. Once more, the greater the deviation from elastic behavior, in this instance
with decreasing yield stress, the lower the collapse resistance. For the lowest yield stress,
the cross-section yields even with long samples.

Of importance to the current discussion is the ratio of L/D̄ at which length no
longer has an effect on a sample’s collapse resistance. For the particular case of the
relatively thin tube used to generate Figs. 8.9 and 8.10, this occurs somewhere between
a value of L/R̄ of 20 and 30, or an L/D̄ of 10 to 15. The minimum L/D ratio for

20 Oil field tubulars have a yield stress and D/t ratio that almost always results in a mode 2 cross-section at
collapse.
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Figure 8.10 Effect of yield stress on inelastic collapse, n = 5, D̄
t = 30 [78]. Copyright 2007, Society of

Petroleum Engineers Inc. Reproduced with permission of SPE. Further reproduction prohibited with-
out permission.

collapse testing suggested by API TR 5C3 [51] is eight for sizes 9.625 in. and smaller,
seven for larger sizes.21

For PBR design, a tool such as that described here can be used to analyze the impact
of exposed, unaided length on the collapse integrity of a PBR cross-section. Inasmuch as
the limit state modeled by the analysis is bifurcation buckling of a perfect cross-section,
application of the model to a machined PBR is appropriate.

The model used to generate Figs. 8.9 and 8.10 has been demonstrated to reproduce
the results of L/D̄ collapse experiments fairly well, usually over-predicting sample col-
lapse strength [78]. The comparisons, however, were made to tubes of API casing. Simi-
lar comparisons with machined products, such as a PBR, would be expected to improve.

8.3. NONUNIFORM EXTERNAL PRESSURE

If the source of the external casing load is formation contact rather than fluid pressure,
the load will more likely be nonuniform. Instances of nonuniform external casing load
associated with formation movement include the following:
• Mobile salts [80–82];

21 The D̄/t ratio of the samples in Fig. 8.9 is more typical of larger sized tubulars implying the API may be
nonconservative in its test recommendation. From a logistical viewpoint, however, it would be difficult
to handle samples long enough to accommodate the conclusion reached from Fig. 8.9.
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Figure 8.11 Converting nonuniform loading in service into a design model.

• Reservoir compaction due to depletion, sometimes accompanied by surface/mud-
line subsidence [83–89];

• Tectonic stresses [90,91];
• Thermal processes [92].

Perhaps the most severe form of nonuniform loading—point loading where the
casing or tubing cross-section is loaded by opposing line loads rather than opposing
distributed loads—occurs when one tubular is loaded externally by another, collapsing
tubular. This often causes a cascade of collapse failures that may not be arrested until
the production tubing is damaged. Typical of this extreme nonuniform load are APB
failures, where solid evidence exists of the damage done by one collapsing tube on its
neighbor (cf. [68,69,93]).

An example of nonuniform loading from salt is illustrated in Fig. 8.11. It is often
difficult to maintain a gauge hole while drilling a mobile salt, with the result that proper
conditioning of the hole and cement placement are also complicated. Once the cement
has solidified, a location of (a) possible washout and (b) incomplete circumferential
cement coverage invites creep of salt and eventual contact with the adjacent casing.
On one side of the cross-section the salt is advancing in its preferred displacement
direction; on the other side of the cross-section the partial cement sheath reacts to the
imposed load (left-hand diagram of Fig. 8.11). The resulting external load on the casing
can be approximated by the stress distribution shown22 in the right-hand diagram of

22 The figure can be used to describe more sources than loading from a mobile formation such as salt.
A similar load distribution can be imagined, for example, for the cross-section of casing in a horizontal
wellbore penetrating a compacting reservoir.
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Figure 8.12 Selection of proposed models for nonuniform traction. In all cases the tube is assumed
to be of infinite length.

Fig. 8.11. Problems of this nature have been addressed both analytically [94,80] and
numerically [83].

8.3.1 The role of wall thickness
A number of models have been proposed to characterize the resistance of a casing
cross-section to nonuniform loading. Fig. 8.12 illustrates the behavior of several of
these models on a common plot of traction at limit load as a function of t/D ratio.
The left-hand diagram in the figure addresses forms of distributed load; the right-hand
diagram in the figure addresses forms of point loading. Displayed are the following23:
• Nester, Jenkins and Simon [94] offer two different solutions:

• Opposing unidirectional tractions, each applied to one-half of the outer sur-
face of the tubular and of uniform magnitude (see the right-hand diagram in
Fig. 8.11). The equation for first yield of a thick-walled tube using the Tresca
yield criterion is

pcn

fy
= 3.01

(
t
D

)2

. (8.34)

• Opposing line loads. The equation for first yield of a thick-walled tube using the
Tresca yield criterion is

ppt

Dfy
= 1.13

(
t
D

)2 1(
1 − t

D

) (
0.96 − 0.32 t

D

) . (8.35)

23 In some cases the author also applies a uniform pressure to either internal or external surfaces of the
cross-section. These uniform tractions are assumed in Fig. 8.12 to be of zero magnitude.
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In more general forms of both of the above equations, Nester et al. investigate the
effect of internal pressure, concluding that its effect on nonuniform load resistance is
minor (on the order of 10% for small D/t ratios and declining for larger D/t ratios).

• Cheatham and McEver [80] use curved beam theory to compute the line load
necessary to form a plastic hinge (entire cross-section yielded) of a cross-section
with no work-hardening with the result

ppt

Dfy
= 2

(
t
D

)2 1
1 − t

D

. (8.36)

In all cases in Eqs. (8.34)–(8.36) the load is proportional to
( t

D

)2. This is perhaps the
most important principle to apply in designing for nonuniform formation loading—the
most efficient mitigation is to increase the t/D ratio of the cross-section. Doubling
the yield stress doubles the cross-section’s resistance to nonuniform loading; doubling
the t/D ratio, usually by doubling the wall thickness, quadruples the cross-section’s
resistance.

8.3.2 Concentric casing
A proven construction to mitigate the effects of nonuniform cross-sectional loading is
the so-called concentric casing configuration [95]. Positive results in field installations
can be duplicated analytically [83]. The term “concentric casing” refers to a configu-
ration where one casing is run and cemented inside another casing for the purpose of
presenting an effectively greater wall thickness to the nonuniform lateral traction. The
cement is particularly important in providing the communication between the inner
and outer casings to effect the increase in wall thickness.

Most concentric installations involve creating the inner tubular by either extending
a liner lap up to the zone of concern or, if that proves impractical, running a scab
liner. Either solution may affect the well design if the mobile formation will contact
production casing. Running the second string may then, for example, limit the depth
to which gas lift mandrels may be run or may hamper the access necessary for intelligent
completion components.

Important aspects of concentric casing design include the following:
• It is not crucial that the two tubulars be of exotically high yield stress. Of primary

concern is that the outer casing be able to withstand any potential nonuniform
traction prior to the installation of the inner casing. Depending on the particular
formation and the size of the borehole, the time following the installation of the
outer casing until first contact may be a week or more. If the formation creep is
rapid, a thick-walled casing alternative may be more appropriate than concentric
strings.

• Although optimum, it is not necessary that the two tubulars be concentric. Nu-
merical simulation [96] indicates a minor (less than 10%) loss of integrity for a 75%
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Figure 8.13 Example of design for mobile salt.

eccentric cross-section. Even eccentric cross-sections provide an increase in the ef-
fective cross-sectional wall thickness.

• Although the strength of the cross-section increases with the unconfined compres-
sive strength of the cement, the sensitivity is not what one might expect. Again,
numerical simulation [96] indicates that an order of magnitude increase in cement
compressive strength increases the resistance of the cross-section to nonuniform load
by approximately 30%. It is this author’s recommendation that there be more design
focus on placement and thickening of the cement than on its strength. The crucial
issue is that the cement be present to promote communication of the two tubular
members.

8.3.3 Example problem—design of casing for formation mobility
Consider Fig. 8.13 that presents a typical problem of mobile salt design. A commonly
applied method of designing for mobile salt employs the following reasoning:
• A fairly accurate estimate of the overburden (vertical) stress gradient is 1 psi

ft .
• Given time, the creep behavior of a mobile salt will cause it to act essentially as

a fluid such that the horizontal traction it imposes on adjacent casing will have
the same magnitude as the vertical stress to which the salt is subjected. Given this
assumption and the estimate of the previous bullet, the expected traction from salt
on the casing would be 1 psi

ft . As a numerical example, if the depth of the salt being
designed against is 7000 ft, the assumed horizontal traction on the casing is 7000 psi.

• To design casing opposite the salt, one searches a table of casing performance prop-
erties for a mass/grade combination whose collapse resistance is 7000 psi.
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The above reasoning contains an inconsistency that will (a) typically lead to casing
designed opposite the salt having higher wall thickness, but (b) result in an under-
designed cross-section that, though substantial, will not be substantial enough. The
problem lies in the last bulleted item. All published tables of casing and tubing collapse
resistance with which this author is familiar are tables of resistance to uniform external
pressure, not a nonuniform traction. As an example, a failure analysis of salt-damaged
casing in the Gulf of Suez [97] illustrates casing deformation when the computed col-
lapse safety factor according to the bulleted design method above is 4.8. The last step
in the bulleted design method above is not a recommended practice for nonuniform
collapse design.

Given the unsatisfactory nature of using uniform collapse ratings to design for
nonuniform traction, the following guidelines for design are offered:
• Conversations between drilling and completions are in order, focusing on the radial

clearance available to design against the nonuniform traction. Once a radial clear-
ance is confirmed, and honoring adequate annular space for such issues as cement
placement, the maximum radial dimensions should be devoted to applying wall
thickness—either with a single, thick-walled tubular or with concentric tubulars—
to combat the external load.

• Eqs. (8.34)–(8.36) are, at a minimum, useful for ranking competing tubular candi-
dates according to their ability to resist nonuniform loading.

• If it is possible to cement outside the tubular(s) being designed, in all instances but
one24 this should be pursued. Cement outside the (outer) casing will tend to spread
the formation traction, thus lowering its severity.

• If a thick-walled casing is required, the following operational issues should be con-
sidered [96]:
• Such a nonstandard tubular may be difficult to obtain. Further, the associated

threaded connection may require qualification. A long lead time for delivery
should not be surprising.

• In wellbores with long horizontal extensions it may be difficult to run the tubular
the entire length of the extension. Torque-drag modeling is recommended.

• The bending stiffness of the thick-walled tubular may complicate its installation
through large doglegs.

• The weight of the thick-walled tubular may exceed the load bearing capacity of
the drilling rig. This problem occurs infrequently as many thick-walled tubular
strings for mobile formation mitigation are run as liners.

• In many instances it will be necessary to model the casing/formation interaction
numerically. Numerical modeling can handle complex geometric issues that are

24 If there is a possibility that the nonuniform loading is due to formation shear rather than simply
mobility—for example, loading by seismic events—a more appropriate response is to delay contact
between the formation and well tubulars.



External Pressure Resistance 241

Figure 8.14 Examination of the effect of cement channeling on the integrity of a concentric cas-
ing configuration [96]. The left-had diagram is a displaced plot of the concentric configuration after
the outer tube (7.000 in., 29.0 lbm

ft , N80) has snapped-through and displaced sufficiently to contact

the inner tubular (5.000 in., 18.0 lbm
ft , Q125). All tubes have 0.1% ovality; the unconfined compressive

strength of the cement is 1000 psi. Copyright 1995, Society of Petroleum Engineers Inc. Reproduced
with permission of SPE. Further reproduction prohibited without permission.

difficult to approach analytically. As an example, consider Fig. 8.14 which illustrates
modeling performed after the early failure of a concentric production casing string
due to formation compaction in a long extension of a horizontal well. Following the
failure, the designers began to question the potential of achieving complete cement
circumferential coverage in a long horizontal section. The figure illustrates the re-
sponse of a partially (75% coverage with channeling on high side of hole) cemented
concentric configuration to uniform external traction (response to a compaction
load would be worse).
The finite element mesh used in the analysis is presented in the left-hand diagram,
with the cement elements shaded. Due to symmetry, only half the cross-section
need be considered. As is common in finite element studies of this nature, the outer
casing is seeded with a small ovality (major axes of ellipse are horizontal and vertical)
to promote the collapse process (see discussion in Section 8.2.2).
The right-hand diagram in Fig. 8.14 plots radial displacement of the innermost
node on the outer casing (point L) in response to the application of external pres-
sure. With increasing external load, the outer tube eventually (radial displacement
≈ 0.3 in.) undergoes snap-through buckling with a rapid increase in radial displace-
ment. This first maximum for the outer tubular occurs at a load approximately 20%
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higher than the collapse load of the outer casing alone demonstrating the beneficial
effect of the cement and inner casing on even this poorly cemented cross-section.
As indicated in Fig. 8.14, the collapsing outer tubular contacts the inner tubular
and its radial displacement is temporarily arrested.25 With the reapplication of ex-
ternal pressure, however, a second maximum is reached only slightly above the first
maximum. Beyond this traction both tubes and the enclosed cement are collapsing
together. The following comparisons can be made:
• Also shown in Fig. 8.14 is the response of a fully cemented concentric configu-

ration to uniform external pressure. The loss in integrity due to the channeled
cement at the top of the horizontal wellbore is apparent.

• Not shown in the figure is the predicted collapse resistance of the 5.000 in. in-
ner string alone, which is on the order of 17000 psi. The point loading of the
5.000 in. inner tube by the 7.000 in. outer tube is so severe that one would have
been better off without the concentric configuration.

With the results of the analysis summarized in Fig. 8.14, the operator abandoned
the use of concentric casing for long horizontals, replacing the configuration with
a single, thick-walled tube. The problem of well integrity was solved but at the
expense of living with shorter horizontals due to torque-drag limitations associated
with installing the replacement casing.

8.4. EFFECT OF WEAR ON EXTERNAL PRESSURE RESISTANCE

In the case of internal pressure resistance (see Section 7.4 of Chapter 7), the structural
nature of the limit state intuitively ties resistance with wall thickness. As collapse is a
stability phenomenon with the cross-section reacting to structural imperfections, the
link between limit state and localized wall thickness loss is less obvious, but the direct
proportionality between tool joint wear and resistance is the same—a 13% loss of wall
thickness implies a 13% loss of resistance to external pressure.

Experimental evidence for the above statement is available from two separate studies.
Fig. 8.15 [99] summarizes full scale collapse tests on 9.625 in., 53.5 lbm

ft L80 casing with
0%, 25% and 50% wear, where in the latter two cases wear grooves simulating tool joint
wear were machined along the full length of each sample. The linear relation between
percent wall loss and collapse resistance is apparent. Earlier, similar results were obtained
by Kuriyama et al. [100] with 5.500 in., 17.0 lbm

ft N80 samples.

25 The drop in pressure with increasing radial deformation of the outer casing is due to the software
solution employed. This analysis was performed using the ABAQUS general purpose finite element
software (Dassault Systèmes Simulia Corp., 1301 Atwood Ave, Suite 101W, Johnston, Rhode Island,
USA 02919, https://www.3ds.com). For problems involving solutions beyond a maximum load (such as
snap-through buckling) one analysis option in ABAQUS employs a modification of the Riks algorithm
[98] which can follow an instability through the buckling load.

https://www.3ds.com
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Figure 8.15 Effect of groove-type tool joint wear on casing collapse resistance [99]. Casing
is 9.625 in., 53.5 lbm

ft L80. Inset table tabulates experimental results. Copyright 2004, Society of
Petroleum Engineers Inc. Reproduced with permission of SPE. Further reproduction prohibited with-
out permission.

Using the minimum wall thickness under the wear groove as the t parameter in the
API calculation procedure (Section 8.2.4) is not recommended for the case of groove-
type wear. Such a procedure might be appropriate for uniform wear due to, for example,
milling or severe corrosion, but in the case of tool joint wear yields overly conservative
results.



CHAPTER 9

Connections
9.1. INTRODUCTION

The most complex component of a tubular joint is the threaded connection1 used to
attached adjacent tubes [102]. The intricacies of the thread profile and sealing method
usually render any detailed investigation a candidate for numerical analysis [103–108].
Even with modern finite element techniques, the response of a connection to qualifi-
cation testing in a laboratory is not always as anticipated.

The perfect or ideal [101] connection arguably does not exist. Such a connection
would have the same cross-sectional dimensional limitations as the tube body, while
being equivalent to the tube body in both axial force and pressure integrity, a con-
dition that might be achieved by welding two tubes together, with the exception of
possible post-weld metallurgical issues at the juncture. As will become clear below, the
connection selection process usually involves a compromise between competing issues,
including cost.

In the sections to follow, the individual aspects of connection behavior are addressed
separately. Beginning with axial strength integrity, we investigate the behavior of the
threaded region under load. Various failure mechanisms characteristic of API and non-
API or proprietary thread designs are considered, along with a companion review of the
development of thread profiles.

Structural considerations are followed by the all-important performance aspect of
leak integrity. The so-called thread lubricant seal used by most of the API family of
connections is discussed, along with more sophisticated alternatives such as seal rings
and metal-to-metal seals. A clear distinction is established between the latter and a
torque shoulder.

A closing discussion of performance deals with additional aspects of connection
design such as internal flow profile and assembly. The chapter ends with a discussion of
connection qualification as performed in the industry-standard test protocol(s).

1 In this chapter we deal almost exclusively with connections where at least the pin member is machined
directly onto the tube body. For large diameter tubes, weld-on connections are often used. Such connec-
tions, although suitable for the tubulars to which they are attached, are outside the scope of this discussion.
One author [101] distinguishes these products as “connectors for pipe, not pipe connections” so as to
isolate them from the type of connections to which we limit ourselves here.
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Figure 9.1 Drawing of an API long thread and coupling casing connection illustrating key thread
elements. The root shown is for a pin thread; the crest shown is for a coupling/box thread. The taper is
exaggerated. A torque shoulder and metal-to-metal seal are not shown in the figure—see Fig. 9.3 for
these features.

9.2. ELEMENTS OF THREAD DESIGN

To facilitate the discussion to follow, Fig. 9.1 presents an API long thread connec-
tions consisting of a pin—the portion of the thread machined on the tube body—and
coupling—the portion of the connection into which the pin is screwed. If the cou-
pling is separate from the pipe body, a connection is termed “threaded and coupled”
(T&C)—see Sections 9.3.1 and 9.3.2. If the coupling is formed as part of the tube
body, a connection is termed integral—see Sections 9.3.3, 9.3.4 and 9.3.6—and the
“coupling” is termed the “box.”

The threaded region as shown in the expanded portion of Fig. 9.1 consists of a
number of defined and toleranced [109] elements:
• The crest of a single pin thread is the point, arc or surface on the thread form having

the greatest radial value; the root of a single pin thread is the point, arc or surface
having the least radial value. The crest of a single coupling/box thread is the point,
arc or surface on the thread form having the least radial value; the root of a single
coupling/box thread is the point, arc or surface having the greatest radial value.
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• Pitch is the axial distance from the crest of one thread to its neighbor. Common
units are length (i.e., the thread pitch is 0.125 in.) or number of threads per a speci-
fied length (i.e., 8 threads per inch (TPI)).

• Lead is the axial distance the thread travels in one complete rotation of the pin
relative to the coupling/box. Usually lead and pitch are equal, but thread designs
do exist where two separate spirals traverse the thread form. In this case the lead is
twice the pitch.

• Pitch diameter is the local diameter of the pitch line, a cone concentric with the
thread axis where the width of the thread groove (metal removed during machining)
and the thread body (metal remaining after machining) are equal.

• Taper is the rate of increase of pitch diameter with axial position and is usually
measured as either inches (increase in pitch line diameter) per foot (of axial distance)
or inches per inch.

• The load flank of a thread is that flank most highly loaded when the connection is
in tension. The stab flank of a thread is that flank which will normally make first
contact on assembly when the pin is inserted in the coupling or box.

• Height is the radial distance, taking due account of the taper (see Fig. 9.1), between
the root and crest of a thread.

9.3. TYPES OF THREADED CONNECTIONS

Depending on the application, threaded connections possess specific features. In most
instances, the transparency of an ideal connection is compromised in either strength or
geometry [101,110].

9.3.1 API casing connections and NUE tubing
In contrast to the proprietary threaded and coupled (T&C) connection of Section 9.3.2,
the API entries for casing2—short round thread,3 long round thread4 and buttress5 cas-
ing, and NUE6 tubing—have neither a metal-to-metal seal7 nor a torque shoulder.

2 Traditionally API has recognized a close relation between size and function, with the crossover occurring
at 4.500 in. Sizes greater than or equal to 4.500 in. are termed casing; sizes less than or equal to 4.500 in.
are termed tubing. Particularly for connections, this distinction was strong enough to prompt one con-
nection manufacturer to offer separate casing and tubing connections for 4.500 in. diameter tubes. With
the advent of high volume wells wherein the production tubing may be 7.000 in. or larger this distinction
has diminished. Remnants of the casing–tubing terminology do still exist, however, a prime example
being the API segregation of threaded connections.

3 Commonly denoted STC signifying “short thread and coupling.”
4 Commonly denoted LTC signifying “long thread and coupling.”
5 Commonly denoted BTC signifying “buttress thread and coupling.”
6 NUE signifies “nonupset end.”
7 The flank-to-flank thread contact in the threaded region is usually not designated a metal-to-metal seal.
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Figure 9.2 Drawing of generic threaded and coupled (T&C) API casing connection. The threaded
region is indicated with phantom dashed lines, with typical thread forms illustrated in profile.

There still exist, however, a number of low pressure applications suitable for API con-
nections. The majority of casing and tubing connections run worldwide are API. API
Specification 5B [109] details the tapers, thread forms and dimensions of the API offer-
ings. API Technical Report 5C3 [51] contains the formulas used to calculate axial joint
strength.

Fig. 9.2 illustrates a generic sample of such a connection. Variations on the connec-
tion shown in the figure include the following:
• The thread lubricant seal8 may be supplemented by a resilient seal ring installed in

a groove machined in the coupling.
• At least one vendor offers a variation on the API T&C round thread design with an

insert placed between the two pin ends.9 This insert can serve as a torque shoulder
to prevent excess turns when assembling the connection.

• The buttress threaded version of the API T&C connection can, in some cases, be
ordered with the next higher grade coupling attached, which in some cases increases
the joint strength of the product.10 Care should be exercised when using this option,
particularly if the intended well environment contains hydrogen sulfide.

• A special-clearance version of the buttress connection is manufactured by machining
the outside diameter of the coupling.

8 See Section 9.5.1.1 for a discussion of the suitability of classifying thread lubricant as a seal.
9 The area between the two pin ends on an API round thread connection is termed the “J” area, as this is

the letter assigned to this axial region in API Specification 5B [109].
10 The addition of increasing wall thicknesses to API tube bodies historically led to API connections for

greater tube wall thicknesses being strength-limited by the geometry of the coupling. Higher grade
coupling availability was introduced as an alternative to designing new coupling geometries for these
products.
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Figure 9.3 Drawing of generic threaded and coupled (T&C) casing and/or tubing connection. The
threaded region is indicated with phantom dashed lines, with typical thread forms illustrated in profile.
Not all offerings have the torque shoulder.

9.3.2 Threaded and coupled (T&C) connections
Threaded and coupled connections usually meet or surpass the axial tension, internal
pressure and external pressure performance properties of the tube body. In some in-
stances, even the tube’s axial compression performance can be matched. To reliably pro-
vide pressure integrity, the connection typically employs a metal-to-metal seal and/or
a resilient seal ring. The thread form usually has a negative load flank and, in some
instances, a negative stab flank. A torque shoulder is employed to limit assembly stresses.

Fig. 9.3 illustrates a generic sample of such a connection. Variations on the connec-
tion shown in the figure include the following:
• Some proprietary versions of this connection also have an external metal-to-metal

seal.
• The metal-to-metal seal may be supplemented by a resilient seal ring installed in a

groove machined in the coupling.
• More than one vendor offers a T&C connection with no metal-to-metal seal, but

with shoulders on both pin members which contact on assembly, forming a torque
shoulder which could be conceived to act as a metal-to-metal seal. Rating a torque
shoulder as a metal-to-metal seal is not recommended by this author.

• A special-clearance version of this connection is manufactured by machining the
outside diameter of the coupling.

9.3.3 Nonflush integral clearance connections
Nonflush integral11 connections are machined on tubes which have been cold formed—
expansion of the box, swaging of the pin—followed by stress relief via heat treatment.

11 The term “integral” indicates the coupling has been integrated into the tube body. One advantage of
this strategy is the removal of half the pin-to-coupling matings, theoretically reducing the possibility of
a connection leak.
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Figure 9.4 Drawing of generic integral casing connection. The threaded region is indicated with
phantom dashed lines, with typical thread forms illustrated in profile. Not all offerings have the in-
termediate torque shoulder.

These connections usually meet or surpass the internal pressure and external pressure
performance properties of the tube body. The axial tension joint efficiency of this family
falls in the range of 70–75%. The compression joint efficiency of this family is normally
low, on the order of 30–50% of the tube body, often due to the small torque shoulder
area.12 To reliably provide pressure integrity, the connection typically employs a metal-
to-metal seal. The thread form usually has a negative load flank and, in some instances,
a negative stab flank. The torque shoulder serves to limit assembly stresses.

Fig. 9.4 illustrates a generic sample of such a connection. Variations on the connec-
tion shown in the figure include the following:
• Some proprietary versions of this connection also have an external metal-to-metal

seal.
• Versions of this connection type, particularly when aimed at application as a drilling

liner, may be obtained without the metal-to-metal seal.

9.3.4 Flush integral clearance connections
Flush integral13 connections usually meet or surpass the internal pressure and, perhaps,
external pressure performance properties of the tube body. The axial tension joint ef-
ficiency of this family falls in the range of 60–65%. The compression joint efficiency
of this family is low, on the order of 30–50% of the tube body, often due to the small

12 Non-flush integral clearance connections that do not have the intermediate torque shoulder, but do
have a negative stab flank thread form, may have a compression joint efficiency that exceeds the tensile
efficiency.

13 The term “flush” indicates the connection—both pin and box—has been machined directly into the
tube body. The pin end may be cold formed.



Connections 251

Figure 9.5 Drawing of generic flush casing connection. The threaded region is indicated with phan-
tom dashed lines, with typical thread forms illustrated in profile. Not all offerings have the torque
shoulder.

torque shoulder area.14 To reliably provide pressure integrity, the connection typically
employs a metal-to-metal seal. The thread form usually has a negative load flank and,
in some instances, a negative stab flank. The torque shoulder serves to limit assembly
stresses.

Fig. 9.5 illustrates a generic sample of such a connection. Variations on the connec-
tion shown in the figure include the following:
• Some proprietary versions of this connection also have an external metal-to-metal

seal.
• Versions of this connection type, particularly when aimed at application as a drilling

liner, may be obtained without the metal-to-metal seal.

9.3.5 API upset tubing connections
The pin ends of the API EUE15 tubing connection are hot upset. API EUE is threaded
and coupled, and provides a connection with round thread having a tension joint effi-
ciency of 100%. The upset limits the number of thread recuts.

Fig. 9.6 illustrates a generic sample of such a connection. Variations on the connec-
tion shown in the figure include the following:
• The thread lubricant seal16 may be supplemented by a resilient seal ring installed in

a groove machined in the coupling.
• At least one vendor offers a variation on the API T&C round thread design with an

insert placed between the two pin ends. This insert can serve as a torque shoulder
to prevent excess turns when assembling the connection.

14 Flush integral clearance connections that do not have the intermediate torque shoulder, but do have
a negative stab flank thread form, may have a compression joint efficiency that exceeds the tensile
efficiency.

15 EUE signifies “external upset end.”
16 See Section 9.5.1.1 for a discussion of the suitability of classifying thread lubricant as a seal.
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Figure 9.6 Drawing of generic API upset tubing connection. The threaded region is indicated with
phantom dashed lines, with typical thread forms illustrated in profile.

• A special-clearance version of the EUE connection is manufactured by machining
the outside diameter of the coupling.

9.3.6 Two-step tubing and work string connections
The two-step integral connection design possesses a threaded region that is not tapered,
but rather has constant pitch diameter. Both the pin and box of the connection are upset.
Assembly torque is counteracted at the metal-to-metal seal and the torque shoulder, the
latter carrying the preponderance. In addition to its use as a tubing connection, this
connection family has gained wide use on work strings.

Fig. 9.7 illustrates a generic sample of such a connection. Variations on the connec-
tion shown in the figure include the following:
• Particularly if the tubing is coated, the small gap between the end of the pin and

the box can be filled with a seal ring.

9.4. AXIAL RESISTANCE

At the outset of the discussion of axial resistance a few definitions are in order. First, the
joint strength Rjt of a connection is its capacity to withstand axial load and is usually (an
important exception being the API family of connections) expressed by the formula

Rjt = fxAcr, (9.1)

where fx is the stress level representing the limit state and Acr is the critical cross-sectional
area corresponding to the location at which Rjt is being measured. The limit state is
reached when the stress at the critical cross-sectional area reaches the critical value fx.

The critical stress level is either the yield stress fy or the ultimate stress fu of the
connection material. A proprietary connection manufacturer’s internet and hardcopy
content may report Rjt based on one or both of these stress values. Either value is
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Figure 9.7 Drawing of generic two-step tubing and work string connection. The threaded region is
indicated with phantom dashed lines, with typical thread forms illustrated in profile.

legitimate, provided it is clearly stated. If the ultimate stress is used, its entry may be
labeled the “parting load” of the connection.

It is important that the value of fx used match one’s joint strength design factor basis.
Most operators base their joint strength design factor on connection yield. If that is
the case, then the value of fx used should be fy. Use of fu in this instance will result
in a nonconservative design, as the connection is being rated (for yield) with a higher
value than appropriate. This warning is particularly important when dealing with API
connections. API casing threaded connections have an axial resistance based on ultimate
stress, whereas most proprietary connections have an axial resistance based on yield
stress. Both API and proprietary tubing connections have an axial resistance usually
based on yield stress.

The value of Acr , the cross-sectional area at the location of yield (fx = fy) or parting
(fx = fu), is determined by the manufacturer as a result of design calculations and exper-
iment. In a well designed connection, failure in pure tension in the laboratory should
consistently occur at the axial location corresponding to Acr .

Continuing with introductory definitions, joint efficiency Ejt is the ratio of the joint
strength to the strength of the tube body Rta, expressed in percent as

Ejt = Rjt

Rta
× 100% = fxAcr

fxAs
× 100% = Acr

As
× 100%, (9.2)

where As is the cross-sectional area of the tube body.
Again, fx can take the value fy or fu in Eq. (9.2), provided it takes the same value in

both the numerator and denominator. Thus, for connections whose joint strength can
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be written in the form of Eq. (9.1), the calculation of tension joint efficiency reduces
to a calculation of areas.

Notable exceptions to the above calculations are the API threaded connections [51]:
• API round thread and buttress threaded connections have fracture strength equations

that resemble Eq. (9.1), but Acr is the minimum of a critical section area in the
coupling and a critical section area in the pin.

• API round thread also has an additional failure mode normally called jumpout, but
termed pullout in the API literature. Again, the limit state equation takes the form
of Eq. (9.1), but in this case with a slightly different meaning.

9.4.1 Example problem—joint efficiency
A nonflush integral clearance connection for 7 in., 32 lbm

ft (0.453 in. wall) T95 casing has
a manufacturer-reported critical cross-sectional area of 6.470 in2. Compute the connec-
tion’s joint strength and joint efficiency in tension, assuming the manufacturer rates his
product on yield strength.

The yield strength of API grade T95 is 95000 psi. From Eq. (9.1), the joint strength
of the connection in tension is

Rjt = 95000psi × 6.470 in2 = 614650 lbf. (9.3)

The cross-sectional area of the tube body is

As = (π/4) × [
7.0002 − (7.000 − 2 × 0.453)2] = 9.317 in2. (9.4)

The joint efficiency of the connection is, from Eq. (9.2),

Ejt = 6.470 in2

9.317 in2 × 100% = 69.4%. (9.5)

9.4.2 Example problem—yield-based API casing joint strength
API calculates tubing connection joint strength17 based on minimum yield stress fymn

[51]. API calculates casing connection joint strength18 based on minimum ultimate
stress fumn [51]. Many operators, however, base their design factor for both tubing and
casing joint strength in tension assuming the connection rating is based on yield. Provide
a reasonable procedure for expressing API casing joint strengths in terms of minimum
yield stress.

17 API tubing connections are NUE (nonupset end), EUE (external upset end) and IJ (integral joint).
18 The API casing connections considered here are STC and LTC (round thread), BTC (buttress) and XC

(extreme-line).
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All of the API formulas for casing joint strength [51] are either directly pro-
portional to fumn (i.e., Rjt = fumn × fcn(Connection geometry))19 or almost so (i.e.,
Rjt = fumn × fcn(Connection geometry) + fymn × fcn(Connection geometry)).20 Regard-
less, a reasonable approximation for yield-based API joint strength can be obtained by
multiplying the API published rating [51] by the ratio of fymn to fumn, that is,

Rjt−yield = Rjt−API
fymn

fumn
. (9.6)

For example, the fumn-based API joint strength of 9.625 in., 40.0 lbm
ft K55 (fymn =

55000psi, fumn = 95000psi, see Table 6.1) LTC casing is 561000 lbf. To compute an
fymn-based yield strength using the approximate method presented in Eq. (9.6),

Rjt−yield = 561000 lbf
55000psi
95000psi

= 324800 lbf. (9.7)

The reduction taken by K55 connections is large due to the difference between the
minimum yield and ultimate stresses for this grade.

9.4.3 Tension resistance
Of obvious concern in the selection of a threaded connection is its performance under
tension and compression, fully appreciating the possibility of bending. First, consider
axial load in the absence of bending. Fig. 9.8 depicts a connection in a vertical wellbore
under tension. Moving vertically upward from the bottom of the connection, exam-
ination of its geometry relative to the load suggests that, although at the base of the
pin all of the axial load is carried by the pin, by the time one reaches the longitudinal
center of the coupling all of the axial load will be supported by the central coupling
cross sections. The load transfer from pin to coupling occurs in the threaded region.
This transfer is complex, especially in the presence of other loads such as pressure and
bending, but can sufficiently be described for the purposes of this discussion as linear.
That is, once one has traversed upwards two-thirds of the way through the threaded
region (and recognizing the approximate nature of the linear model), the pin will have
shed two-thirds of the axial load which has been transferred to the coupling.21

The critical section area for the pin in a geometry like, or similar to, that of Fig. 9.8
is usually at the base of the pin, as it is here that the pin is most highly loaded. This is

19 Applicable to the formulas for round thread coupling and pipe thread fracture strength, buttress coupling
thread strength and extreme-line joint strength.

20 Applicable to the formulas for round thread jumpout and buttress pipe thread strength.
21 Why is the critical section area of the pin not located at the end of the pin where, due to the taper, its

cross-section is smallest? Because by the time the end of the pin is reached all of the axial load will have
been transferred to the coupling.
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Figure 9.8 Axial load transfer in a threaded connection. Although the API round thread is depicted,
the principle is similar for all casing and tubing connections. The question marks indicate that the load
transfer, although assumed linear in the discussion of this figure, is often complex.

particularly true of the API round thread depicted in the figure. As a round thread pin is
cut, the majority of the threaded region has a taper of 0.0625 in

in on the diameter [109].
As the cutting tool reaches the base of the pin, however, this taper abruptly increases as
the tool is extracted from the threading operation. This region of so-called incomplete
threads cannot be used in the load transfer as these threads are not engaged with the
coupling. As indicated in the figure, at the start of load transfer the cross-sectional area
of the pin is less than that of the tube body. Since both the first thread involved in
the load transfer and the tube body are exposed to the same axial force, the stress in
the pin must be higher than that of the tube body. In a pure tension environment the
pin threaded region will be more likely to fail than the tube body—the tension joint
efficiency of the API round thread is therefore less than 100 percent.

One solution to this shortcoming in the API round thread is to machine the pin
thread on an upset (see Section 9.3.5), with the diameter of the pin at the starting
point of load transfer at least equal to that of the tube body. This design increases the
tension joint efficiency of the API round thread connection to 100%, but not without
complications:
• The upsetting process itself adds cost to the connection manufacture;
• Once upset, the tube end must be heat treated to reduce residual stresses introduced

by the upsetting process;



Connections 257

• The number of recuts before the tube must be reupset is limited.
Nevertheless, upsetting is a recognized solution to the penalty in tension joint efficiency
associated with the API round thread design.

The API buttress thread, along with a number of proprietary threads, does not have
the manufacturing taper change described above for API round thread. The machining
tool is simply constrained to the same taper until there is no more tube body to ma-
chine.22 One might expect 100% tension joint efficiency from this process, and such is
almost, but not quite achieved. The offset in axial force due to the mean radii in the pin
and coupling induces a moment which separates the first few imperfect threads at the
base of the connection, rendering the buttress connection slightly more stressed than
the tube body.

9.4.3.1 Excursion: jumpout

In addition to the dominant over-stressed limit state described by Eq. (9.1), API round
thread can succumb to a second failure mode termed jumpout.23 The origin of jumpout
is displayed in Figs. 9.9 and 9.10. Following the discussion of Clinedinst [111], the left-
hand diagram in Fig. 9.9 focuses on one of the threads of a round thread connection.
Following assembly the load and stab flanks of the thread are exposed to approximately
equal contact tractions.24 As indicated in the right-had diagram of the figure, when the
connection is lowered into the well and subjected to tension under service, the contact
traction on the stab flank will be transferred to the load flank. Eventually, an external
axial force can be reached that results in the load flanks of the thread supporting all the
tension.

Fig. 9.10 continues the discussion by further detailing the load flank of a single thread
once all the axial tension has been transferred to that flank of the thread profile. Assume
for simplicity that contact between the pin and coupling load flanks is frictionless.25

Then the contact traction vector will be perpendicular to the surface of the thread
flank. We may therefore decompose the vector into components along the axis and
radius of the tube on which the round thread has been cut. The axial component of the
traction is that portion of the contact supporting the axial load. The radial component,
on the other hand, is acting so as to separate the pin from the coupling. With increasing
axial load, eventually the pin will yield and, due to the inelastic counterpart to Poisson’s
ratio, begin to radially shrink away from the coupling. Once this radial displacement has

22 As a consequence of this machining process one creates so-called black-crested threads—i.e., those
threads for which there is insufficient tube material left to achieve full design thread height, thus leaving
evidence of the tube outside diameter on the crest of the thread.

23 An alternate name also used by the API is pullout.
24 The loading will not be precisely equal because of the thread taper.
25 The discussion will be altered slightly, but not conceptually changed, if one includes friction.
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Figure 9.9 The origin of jumpout. Increasing tension transfers more of the thread flank contact trac-
tion to the load flank.

Figure 9.10 The mechanism of jumpout. The respective stress states promote earlier yield in the pin
than the coupling.

reached a value equal to the thread height, the pin will separate from the coupling in
the phenomenon of jumpout.

Given the amount of deformation preceding jumpout, the threads themselves are
relatively undamaged. The notable feature of a jumpout failure is the gross radial dis-
placement the pin experiences as it undergoes massive inelastic deformation in the radial
(actually circumferential) direction.
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9.4.3.2 Example problem—pin-first yielding

Fig. 9.10 depicts the stress states in the pin (plastic) and coupling (elastic) during
jumpout, which provides an explanation for why the pin member undergoes the pre-
ponderance of deformation during this failure mode.

Due to assembly and the taper of the thread profile, the pin member of an API round
thread connection will, as indicated by the traction arrows on the small pin element in
Fig. 9.10, be in hoop compression. Correspondingly, the coupling will be in hoop
tension. Due to the tensile axial load, both the pin and coupling will, as also indicated
in the figure, be exposed to axial tension. The radial stress will be enough smaller than
either axial or hoop stress that we can consider it zero in this discussion.

Recalling the discussion of yield in Section 6.3.1 of Chapter 6, closeness to yield for
a crystalline metal increases with shear. Comparing the stress states in Fig. 9.10, both
the axial and hoop stress in the coupling are positive when the connection is loaded in
tension, whereas the axial and hoop stresses in the pin have opposite signs. The tendency
to yield will be greater in the pin than the coupling, leading to the pin’s dominant role
in jumpout.

9.4.3.3 Alternate thread profiles

Compare the left-hand diagram in Fig. 9.10 with the upper-left diagram in Fig. 9.11.
Both the load and stab flanks in an API round thread have an angle with the tube radius
of 30°, this angle being the source of the radial component of the contact traction vec-
tor. Reducing this component’s influence will reduce the possibility of thread jumpout.
In this regard, notice (Fig. 9.10) that as the angle of the load flank is decreased, the mag-
nitude of the radial component of the contact traction vector also decreases. Comparing
the API round thread profile with that of, for example, API buttress (see lower-left di-
agram in Fig. 9.11) that has a load flank angle of 3°, the latter should and does render
the buttress thread less susceptible to jumpout.

Experimental data collected during the establishment of the API formulas for joint
strength [111], however, indicate that for larger diameter-to-thickness ratios even API
buttress can fail in tension due to jumpout. In fact, failure of a number of clearance cas-
ing connections possessing load flanks similar to buttress led to a joint industry project to
verify connection performance experimentally [112]. Subsequent to these experiences,
the introduction of the hook thread (see upper-right diagram in Fig. 9.11) virtually
eliminated jumpout in oil well tubulars. The hook thread has a negative load flank an-
gle which reverses the behavior of the radial component of the contact traction vector.
With a hook thread, the radial component actually serves to increase the intimacy of
contact within the threaded region.

If there is a disadvantage to the hook thread, it lies in its ability to withstand compres-
sive loads—the stab flank of a hook thread is has a positive flank angle. For this reason,
most designs incorporating a hook thread profile also include an opposing contact angle
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Figure 9.11 Alternate thread profiles. Flank angels on hook and wedge thread are typical and may
vary with an individual manufacturer.

at the torque shoulder to withstand compression (see Fig. 9.3). An alternative to assign-
ing compression resistance to the torque shoulder is the dovetail or wedge thread design,
which accommodates negative flank angles on both the load and stab flanks. This design
is particularly amenable to bending applications and has been used in the design of a
high torque tool joint [113]. The potential of both the hook and dovetail/wedge thread
forms to eliminate jumpout as a failure mode comes at the cost of increased machining
and inspection complexity.

9.4.4 Compression resistance
The axial compression resistance of a threaded connection is not always related to its
structural capacity when loaded with a negative axial force. In fact, the structural re-
sistance of a connection to compression may exceed its structural resistance to tension.
The often lower compression joint efficiency of a threaded connection can usually be
traced to a separate limit state, for example, yielding of an internal (torque) shoulder
that in itself is bad, but may also affect the pin-to-coupling relative positioning of a
metal-to-metal seal.

9.5. INTERNAL PRESSURE RESISTANCE

Most proprietary threaded connections are rated equal to the tube body in internal
pressure resistance. Many API connections are also rated at least as strong as the tube
body when exposed to internal pressure. There do exist, however, API connections
wherein the structural internal pressure resistance of the connection is less than that of
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the tube body.26 For the API buttress connection it is possible to order a “next higher
grade” coupling to once more render the tube body the weaker component of the joint
[46,51].

A corollary to a tubular’s usefulness as a conduit for fluids is its ability to contain those
fluids, separating internal and (possible) external flow streams. This not only requires
the threaded connection to maintain structural integrity (i.e., burst resistance) but also
includes an expectation of leak resistance. Leak resistance presents a peculiar design issue
in that the probability of its occurrence is difficult to predict. Leak resistance depends
not only on the design of the connection but also on the assembly procedure at the rig
site.

9.5.1 Sealing mechanisms
In the current market environment there exist three mechanisms by which leak resis-
tance is pursued—thread lubricant, seal rings and metal-to-metal seals. Each of these
alternatives, which are sometimes incorporated in a single design, will be considered in
the sections to follow.

9.5.1.1 Thread lubricant

Fig. 9.12 pictures a portion of an API round thread connection, focusing on the
0.003 in. gap [109] between the root of a pin/coupling thread and the crest on the
mating coupling/pin thread. Also shown for orientation is the centerline of the tube on
which the thread is cut.

The label 1 in Fig. 9.12 indicates that if one were to follow a pin thread root path
around the connection circumference, a spiral path exists connecting the pin roots.
Similarly, following the pin crests along the connection’s machined spiral reveals a second
path connecting the pin crests. These two paths, as they stand, represent two potential
leak paths for internal fluids.27

The standard means of closing the leak paths illustrated in Fig. 9.12 is thread com-
pound. Using a petroleum soap-constituted grease base, a thread compound carries
solids—originally soft metals such as lead, zinc, copper and graphite [114], but now
more commonly polytetrafluoroethylene (PTFE) and proprietary blends—intended to
both mitigate galling and, somewhere in the spiral potential leak path, block fluid move-

26 This phenomenon is usually a consequence of history. The API connection, when originally introduced
met or exceeded the internal pressure resistance of the tube body. With time, however, additional,
increasing wall thicknesses introduced into the API inventory favored the resistance of the tube body, as
the coupling dimensions did not change. See also Footnote 10.

27 Recalling the discussion of Section 9.4.3.1, another possible leak path exists in the API round thread
connection. Under sufficient tension, the stab flanks of the round thread can separate providing a third
avenue for fluid escape [102]. This path will also close when the tension is removed. Unfortunately, this
potential leak path is load-induced and cannot be remedied with thread lubricant.
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Figure 9.12 Dual potential leak paths in an API round thread connection.

ment. The following comments are in order regarding an interstitial thread lubricant
seal:
• If used in production tubing, the hydrocarbon based grease can be leached by chem-

ical reaction with the reservoir fluids;
• Above approximately 275–300 °F (135–150 ◦C) a standard grease base can boil off;
• In the time interval of a relatively short field pressure test, it is not possible to verify

that an effective seal in the thread root–crest gaps has been achieved.28

The above list suggests alternate sealing methods may be in order if one desires to con-
tain gas for long periods of time. Two common alternate seal strategies are considered
in the sections to follow—seal rings and metal-to-metal seals.

9.5.1.2 Seal ring

Among several topics aimed at improving API connection leak resistance reliability,
API Supplemental Requirement (SR) 13 to Specification 5CT [46] offers the user an
additional sealing mechanism in the form of a PTFE ring (with 25% fiberglass filler)
inserted in a groove cut in the coupling member of a connection (see Fig. 9.13).29

28 Consider a 7.000 in. round thread casing connection. The (axial) length of effective threads L2 =
3.715 in., multiplied by the number of threads per inch is 3.715 × 8 = 29.72 circumferences [109]. Tak-
ing the average pitch diameter to occur at L2/2, this diameter is the pitch diameter E1 = 6.90337 in.,
measured at the hand-tight plane L1 = 2.921 in. from the end of the pin, moved to L2/2. Using the
round thread taper of 0.0625 in

in , the average pitch diameter is 6.90337 − (2.921 − 3.615/2) × 0.0625 =
6.23249 in. Thus the (approximate) total leak path length of 29.72 circumferences of a 7.000 in. API
round thread is π × 6.23249 × 29.72 = 582 in., or 48.5 foot. Actual detection of a thread lubricant leak
can take a long time-24 hours has been observed in the laboratory with a buttress connection whose
leak path cross-sectional area can be larger than that of the round thread [115].

29 Seal rings are also offered as additions to proprietary thread designs.
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Figure 9.13 Seal ring groove shown as machined (lower diagram) and following assembly (upper
diagram). One or both ends of the coupling may be attached to the pin(s) at the rig site. Prior to
assembly a PTFE seal ring is inserted in each groove. Figure is not to scale.

A specific area of concern in designing or implementing a seal ring connection
is temperature. The coefficient of thermal expansion of PTFE is approximately ten
times that of steel30—confinement to a ring groove can therefore cause PTFE to induce
internal stresses in a threaded connection. Notwithstanding this behavior, seal rings have
been used with success in extreme downhole environments [117].

9.5.1.3 Metal-to-metal seal

The most popular of seals used in high pressure oil well tubular applications are
interference-activated metal-to-metal seals. The coupling/box and pin seal surfaces are
usually machined at a angle of 5–30◦ with the axis of the tube, being forced together
due to geometry interference as the connection is assembled. Higher angles raise con-
cern for maintenance of design contact pressure under tension; lower angles can increase
the possibility of galling, especially during repeated assembly. Additional independent
variables considered in the design of a metal-to-metal seal include the following:
• Contact stress distribution [118,119]. Both the maximum value of contact stress and

the character of the axial distribution of contact stress influence the ability of the
seal to prevent pressure/fluid escape or entry and accommodate leak channels of
short length.

• Surface roughness and coatings [118,119]. The inherent roughness of the machined
surface of the seal can be altered by surface treatments such as zinc or manganese
phosphate coating31 (usually applied to the coupling).

30 The coefficient of thermal expansion of unfilled PTFE is approximately 7 × 10−5 1
°F , whereas the coef-

ficient of thermal expansion of steel is approximately 7 × 10−6 1
°F . The former can be slightly reduced

by adding filler, with Hilbert and Bergström [116] quoting a reduction of approximately 12% while
noting that the coefficient of thermal expansion of PTFE varies significantly with temperature.

31 In addition to sealability, the coating is also applied to reduce galling potential.
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• Thread compound [118,119]. Although thread compound is primarily intended to
reduce friction and galling in the threaded region, evidence does exist that thread
compound on the seal surface can improve leak resistance, particularly if the size
of the solid particles in the thread compound is close to the amplitude of surface
roughness of the seal [120].

• Assembly. The act of assembling the connection will cause the pin and box/coupling
seal surfaces to interact at high interference-induced contact stresses. Local inelastic
deformation of machined peaks on the seal surface has been demonstrated to reduce
the contact pressure required to achieve a specified sealability [120,119]. Proper axial
alignment of the mating coupling/box and pin seal surfaces is crucial and is usually
controlled by the presence of a torque shoulder (cf. Figs. 9.3, 9.4, 9.5 and 9.7).

• Seal geometry [119]. Seal geometry (macroscopic shape, contact length, diameter,
interference) affects the contact stress profile—the distribution of contact stress per
axial length of seal surface—opposing release of internal fluids.
Fig. 9.14 depicts the behavior of a typical metal-to-metal seal used on a threaded

connection. The horizontal axis is internal pressure, that is, the pressure of the fluid
to be contained. The vertical axis is some measure of the contact stress profile at the
metal-to-metal seal. Depending on the character of the contacting surfaces, the contact
pressure distribution will vary—the ordinate in Fig. 9.14 is intended to represent a
peak or effective contact stress. The 45° line in the graph is the leak criterion—leak is
assumed to occur if the internal pressure exceeds the contact pressure.

When the connection is assembled on the rig floor, the interference between the
diameters of the pin and coupling seal surfaces means the two surfaces must be “forced
together” as the pin advances into the coupling—a visible change in the slope of the
torque-turn graph generated by the power tongs should be noticeable. Once fully as-
sembled, the seal is at point A in the figure.

Assume that once in service, the pressure associated with the contained fluid begins
to increase. The horizontal, dashed line originating at point A indicates that internal
pressure increase. Notice, however, that the sealing capacity of the metal-to-metal seal
is not horizontal. The same increase in internal pressure promoting a leak is also act-
ing on the inside surface of the pin—particularly in the vicinity of the metal-to-metal
seal—increasing the contact pressure between the pin and coupling seal surfaces. This is
known as self-energization and is a characteristic of many metal-to-metal seals.

The dashed line in the plot attempts to accurately display that the mapping of internal
pressure into increased contact pressure is not one-to-one—the slope of the line AB is
less than 45°. As the action of the internal pressure must be transmitted through the
metal thickness under the pin seal surface, some pressure is necessary to deform the
pin at the seal location. The degree of energization lost will depend on, among other
factors, the thickness of the pin beneath its seal surface. With each increment of internal
pressure, however, a portion of the leaking pressure increment is also transferred to resist
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Figure 9.14 Behavior of a metal-to-metal seal. The location of point A can be controlled by initial seal
interference. The slope of the line AB can be controlled by the thickness of the pin at the seal location.

the leak pressure. Eventually, a point is reached (point B in the figure) where the seal
contact pressure is less than the internal pressure, and a leak ensues.

Also included in the upper portion of the figure is a diagram of a threaded and
coupled connection possessing a metal-to-metal seal. At this point, notice the dotted
line indicating a second pin/tube body having greater wall thickness than that used in
the previous discussion. Further, assume that through analysis and testing the designer
has, with the previous wall thickness, arrived at a pin seal design considered optimum. It
may be that the best course of action—from the viewpoint of leak resistance alone—is to
machine the pin as indicated by the dotted lines, that is, to use the tube wall thickness
near the base of the pin and the optimum seal thickness near the end of the pin. If
so, and as we shall see shortly, the design may now be exposed to turbulence under
high internal fluid flow rates. Such tradeoffs as this permeate the design of a threaded
connection metal-to-metal seal. Less metal under the pin seal surface may promote
self-energization, but altering the internal profile of the connection may lead to other
issues unrelated to leak integrity.

Similarly, another means of increasing leak resistance would be to raise the value
of point A, the initial interference contact pressure. Unfortunately, this solution also
may complicate other aspects of the connection design, such as galling during assembly
and/or exposing the pin end to a (primarily hoop) stress too close to yield. Threaded
connection design is a complex process involving compromise between a number of
competing design objectives.
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9.6. EXTERNAL PRESSURE RESISTANCE

External pressure resistance is not addressed as frequently in connection design as re-
sistance to internal pressure. There do exist, however, a number of load cases (cf.
Section 12.8 of Chapter 12 and Section 15.2 of Chapter 15) in which resistance to
external pressure is desirable. The importance of such load cases to the overall string
design may suggest the need for a connection possessing an external (usually metal-to-
metal) seal.

9.7. ADDITIONAL DESIGN CONSIDERATIONS

Other attributes of casing and tubing connections worthy of consideration in design
include the following.

9.7.1 Flush internal profile
For low flow rate wells the actual velocity profile of the internal fluid may be of minor
concern. As production rate increases, however, even minor changes in internal profile
can induce turbulence in the vicinity of the connection. Such turbulence can promote
corrosion or, in the presence of produced solids, erosion to the interior, near-connection
region. For production tubing in wells whose production is primarily gas, a reasonable
flow rate at which the internal profile should cause concern is 100 mmscfd.

9.7.2 Torsional resistance
The existence of a torque shoulder enhances the structural resistance of a threaded
connection in several ways:
• Limiting axial displacement during assembly. Inasmuch as most threaded connec-

tions possess a positive thread taper,32 assembly of the connection induces a positive
hoop stress in the box/coupling and a negative hoop stress in the pin. Aside from re-
ducing the box/coupling’s resistance to a hydrogen sulfide environment, unchecked
axial engagement during assembly can increase the risk of galling. Further, thread
profiles possessing gaps on the load and stab thread flanks (as opposed to the thread
roots and crests) undergo a Poisson’s ratio induced relative axial movement during
assembly. This coupling-to-pin relative movement, common to API buttress, casts
further doubt on the leak integrity available in the threaded region. Both of these
concerns—high induced stresses and interstitial movement during assembly—are
either limited or eliminated by the presence of a torque shoulder.

• Pipe rotation. The ability to rotate the tubular string (during cementing, for exam-
ple) can positively affect the installation and survivability of a tubular. Further, work

32 Recall thread taper measures the change in thread pitch diameter as one axially traverses the threaded
region of the connection.
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strings and smaller diameter casing strings have been employed in rotary drilling
operations with success.

Both the hook thread in concert with a torque shoulder and especially the wedge
thread with its self-contained thread profile torque resistance are suitable in minimizing
the adverse effects accompanying torsion.

Notwithstanding its importance in the structural integrity of the connection, with
regard to leak integrity a torque shoulder should not be considered a metal-to-metal
seal for the following reasons:
• The machined tribological characteristics of a torque shoulder are usually different

than those of a metal-to-metal seal;
• Rig-site operations, such as stabbing the pin into the coupling/box during assem-

bly, pose a risk of (leak resistance, not structural) damage to the torque shoulder,
whereas a metal-to-metal seal with its more radially-oriented surface normal is less
susceptible.

9.8. QUALIFICATION AND TESTING

The industry is currently served by two documents to aid in standardizing the test-
ing threaded connections—“API Recommended Practice on Procedures for Testing
Casing and Tubing Connections” [56] and “ISO/PAS 12835:2013, Qualification of
Casing Connections for Thermal Wells” [121]. The former serves the majority of tubu-
lar connection applications. The latter is particularly applicable to casing used in thermal
recovery methods such as Cyclic Steam Stimulation (CSS) and Steam Assisted Gravity
Drainage (SAGD) where the connection’s service environment may involve loads be-
yond yield.

9.8.1 Brief summary of API 5C5 testing
Qualification of a threaded connection at the highest application level can be both time
consuming and expensive. The knowledge gained, on the other hand, from testing a
connection’s structural and leak resistance to one’s specific operating environment can
reduce project economic risk.

In a qualification exercise that follows API 5C5 the following activities are notewor-
thy:
• The connection sample(s) and performance properties, including a connection eval-

uation envelope33 (CEE), are supplied by the manufacturer. The CEE then defines

33 The test connection evaluation envelope is a closed two-dimensional region when plotted in a space
where the abscissa is axial tension (+) and compression (−), and the ordinate is internal (+) or external
(−) pressure. A typical connection evaluation envelope will consist of several segments, with possible
abrupt corners but is almost always convex.



268 Elements of Oil and Gas Well Tubular Design

the extent of a test load envelope34 (TLE). The manufacturer is under no obligation
to participate in the conversion of a CEE into a design envelope that the user may
employ in his design calculations.

• The number and dimensional combinations of the test sample(s) depends on the
connection application level (CAL) to which the connection design will be quali-
fied. There currently exist four CALs, with CAL IV being the most severe.

• Tests to which the connection sample(s) are subjected include the following, de-
pending on the CAL. In all tests the (pressure, axial force) load points are referenced
to the von Mises yield surface of the associated tube body. The underlying plot is
identical to that presented in Section 6.3.4.3 of Chapter 6. Brief summaries of the
test series are as follows:
• Series A—the connection sample is tested to various combinations of axial force

and internal or external pressure in all four quadrants of the axial force vs. pressure
plot.

• Series B—the connection sample is tested to various combinations of axial force,
internal pressure and bending in the upper two quadrants (i.e., no external pres-
sure) of the axial force vs. pressure plot.

• Series C—the connection sample is tested to various combinations of axial force
and internal pressure with thermal cycles in the first quadrant (i.e., no axial
compression or external pressure) of the axial force vs. pressure plot.

The Series A and B tests may be performed at room or elevated temperature. Fur-
ther, depending on the CAL, the tests may be performed with either liquid or gas
as the pressure fluid.

9.8.2 Envelope presentations for connection design
Of importance to the designer is the means by which a qualification test and its resulting
performance envelope are compared to operational loads to which the connection will
be subjected.

Fig. 9.15, an application of Fig. 6.14, has been adopted35 in two API documents as
the preferred method of presenting the axial force/pressure performance envelope for
threaded connections [56] and some tubing accessories [55]. One can, however, also use
the other two three-dimensional alternatives presented in Section 6.3.4 of Chapter 6

34 The test load envelope is derived from a manufacturer-supplied connection evaluation envelope (CEE)
and defines the extents to which the connection will actually be tested. The test load envelope is
constructed from the CEE by a calculation that scales the CEE values—along both the axial load and
pressure axes—by 80–100%, depending on the character of the sample and the conditions of the test.
“If the CEE is less than the pipe body reference envelope, it needs to be disclosed by the manufacturer
. . . whether the CEE limitation is based on material yield strength or some other factor.” [56].

35 Exception: Fig. 9.15 uses axial stress for the abscissa, whereas the referenced API documents use axial
force.
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Table 9.1 Evaluation envelope for a generic connection. The sample
connection has a yield stress of 110000 psi. The principles illustrated ap-
ply equally well to accessories. All values are in psi
Point Axial stress Pressurea Point Axial stress Pressurea

A 110000 0 E −110000 −10000
B 110000 12228 F 0 −10000
C 0 12228 G 51897 −10000
D −110000 0 H 110000 0
a A positive value incites internal pressure; a negative value indicates external pressure.

Table 9.2 Load points shown in Figs. 9.15–9.17. All values are in psi
Load point Internal pressure External pressure
Surface qualification test
Initial conditions 0 0
Positive test 10000 0
Negative test 0 10000
Bottom of string
Initial conditions 15000 15000
Positive test 25000 15000
Negative test 5000 15000

to gain additional insight into connection and accessory behavior, particularly when
(a) selecting test points in a qualification exercise and (b) translating a manufacturer’s
performance envelope from laboratory to downhole conditions. In fact, the latter two
presentation alternatives provide more physically acceptable load displays than Fig. 9.15
when downhole conditions are of concern.

It is important to state that calculations of stress and yield state are not at issue in this
section. Rather, the discussion centers on presentation, that is, proper representation
of the relative positions of the loads with respect to the performance ellipse to which
they are being compared. Consider, for example, the crude performance envelope—
representing no particular tubular connection—whose defining points are summarized
in Table 9.1.

Now review Figs. 9.15–9.17. Each figure is a duplicate of its counterpart in
Figs. 6.14, 6.13 and 6.11, respectively, with two additions. First, the connection evalua-
tion envelope values of Table 9.1 have been added to each figure. Secondly, three sample
load points—initial conditions, positive pressure test, negative pressure test—have also
been added to the figures. The load points are summarized in Table 9.2 with the symbol
× denoting a surface qualification experiment and the symbol ◦ denoting an anticipated
downhole load condition, where the downhole position is the bottom of the tubular
string.
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Figure 9.15 Connection evaluation envelope plotted with the von Mises yield criterion expressed in
terms of SZZ . The tube body ellipse is shown as a dashed curve and follows Fig. 6.14. Vertices of the
envelope labeled A–H correspond to the points in Table 9.1.

Fig. 9.15, with the exception of using axial stress rather than axial force for the
abscissa, is the API RP 5C5 [56] space in which connection evaluation tests are designed
and performed.36

There are no issues with the evaluation envelope as prepared for a laboratory en-
vironment. The “initial condition” for a laboratory experiment is one of no loading
and therefore plots at the origin of Fig. 9.15. The problem arises when comparing
the laboratory test points to the sample downhole load points. Although the differ-
ential pressures—initial conditions = 0 psi, positive test = 10000 psi, negative test
= −10000 psi—are correct, the use of axial force as the abscissa displaces the load
points to the left. For example, the initial conditions are no longer at the origin of the
coordinate axes. The performance ellipse and the downhole conditions to which it is
being compared are not reflecting the same load state.

Fig. 9.15 is accurately reflecting the variables it was asked to plot—there is nothing
wrong with the underlying calculations. Likewise, the evaluation envelope accurately
depicts the loads to which the connection was or will be tested. The issue is that the
two presentations involve loads that differ by 15000 psi hydrostatic pressure. Inasmuch

36 These axes are also employed in the API Spec 11D1 [55] presentation of an accessory envelope. Some
embodiments of this presentation may rotate the figure 90◦ counterclockwise.
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Figure 9.16 Connection evaluation envelope plotted with the von Mises yield criterion expressed in
terms of SZZ + pi. The tube body ellipse is shown as a dashed curve and follows Fig. 6.13. Vertices of
the envelope labeled A–H correspond to the points in Table 9.1.

as (a) the emphasis of the plot is material yield and (b) material yield is independent of
hydrostatic pressure, the two load states should be compatible. The fact that they are not
can, as discussed in Section 6.3.4.3 of Chapter 6, be traced to the fact that the axes of
Figs. 6.14 and 9.15 do not admit a complete picture of three-dimensional yield.

In contrast to Fig. 9.15, Figs. 9.16 and 9.17 accurately portray the relation between
the laboratory test of the connection in a surface experiment and the loads to which the
connector will be subjected in the downhole environment. The initial condition for the
downhole environment is not offset from the surface initial condition, indicating both
are benign points with respect to material yield.

Given D, t and fy, the condition of a tubular at surface conditions (initial p = 0
everywhere) and downhole conditions at the string bottom (initial p is the hydrostatic
pressure of the surrounding fluid column) will, from the perspective of yield, be the
same. This statement relies on the assumption that yield of a crystalline metal is inde-
pendent of the mean stress, which in this case is the local hydrostatic pressure. Provided a
tube at the two locations—surface and downhole—is subjected to the same increments
of pressure (above or below hydrostatic) the equivalence vis-á-vis yield will remain.
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Figure 9.17 Connection evaluation envelope plotted with the von Mises yield criterion expressed
in terms of effective stress. The tube body ellipse is shown as a dashed curve and follows Fig. 6.11.
Vertices of the envelope labeled A–H correspond to the points in Table 9.1.

Two final, qualifying comments are in order:
• For a connector the equivalence in stress state (i.e., hydrostatic) to that of the tube

body is close, but not exact. Stresses associated with assembly in the threaded region,
particularly if the thread profile is tapered, will distort the stress state applicable to
a simple tube. The presentations of Figs. 9.16 and 9.17 are still preferred. Fig. 9.15
implies that if one ran the tubular string deep enough, the bottom connection
would structurally yield in a hydrostatic state of stress.

• The advantage of Figs. 9.16 and 9.17 over Fig. 9.15 is directly related to the for-
mers’ ability to accurately capture material yield. As is the case with many casing
and tubing proprietary connections, should any portion of the part’s performance
envelope be governed by a limit state other than material yield, further adjustment
of the load vs. envelope presentation may be necessary to allow simultaneous display
of both laboratory and downhole conditions. This latter issue does not usually exist
in the case of accessories. The vast majority of assemblies and subassemblies of an
accessory are designed based on their resemblance to a thick-walled tube.



CHAPTER 9

Connections
9.1. INTRODUCTION

The most complex component of a tubular joint is the threaded connection1 used to
attached adjacent tubes [102]. The intricacies of the thread profile and sealing method
usually render any detailed investigation a candidate for numerical analysis [103–108].
Even with modern finite element techniques, the response of a connection to qualifi-
cation testing in a laboratory is not always as anticipated.

The perfect or ideal [101] connection arguably does not exist. Such a connection
would have the same cross-sectional dimensional limitations as the tube body, while
being equivalent to the tube body in both axial force and pressure integrity, a con-
dition that might be achieved by welding two tubes together, with the exception of
possible post-weld metallurgical issues at the juncture. As will become clear below, the
connection selection process usually involves a compromise between competing issues,
including cost.

In the sections to follow, the individual aspects of connection behavior are addressed
separately. Beginning with axial strength integrity, we investigate the behavior of the
threaded region under load. Various failure mechanisms characteristic of API and non-
API or proprietary thread designs are considered, along with a companion review of the
development of thread profiles.

Structural considerations are followed by the all-important performance aspect of
leak integrity. The so-called thread lubricant seal used by most of the API family of
connections is discussed, along with more sophisticated alternatives such as seal rings
and metal-to-metal seals. A clear distinction is established between the latter and a
torque shoulder.

A closing discussion of performance deals with additional aspects of connection
design such as internal flow profile and assembly. The chapter ends with a discussion of
connection qualification as performed in the industry-standard test protocol(s).

1 In this chapter we deal almost exclusively with connections where at least the pin member is machined
directly onto the tube body. For large diameter tubes, weld-on connections are often used. Such connec-
tions, although suitable for the tubulars to which they are attached, are outside the scope of this discussion.
One author [101] distinguishes these products as “connectors for pipe, not pipe connections” so as to
isolate them from the type of connections to which we limit ourselves here.
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Figure 9.1 Drawing of an API long thread and coupling casing connection illustrating key thread
elements. The root shown is for a pin thread; the crest shown is for a coupling/box thread. The taper is
exaggerated. A torque shoulder and metal-to-metal seal are not shown in the figure—see Fig. 9.3 for
these features.

9.2. ELEMENTS OF THREAD DESIGN

To facilitate the discussion to follow, Fig. 9.1 presents an API long thread connec-
tions consisting of a pin—the portion of the thread machined on the tube body—and
coupling—the portion of the connection into which the pin is screwed. If the cou-
pling is separate from the pipe body, a connection is termed “threaded and coupled”
(T&C)—see Sections 9.3.1 and 9.3.2. If the coupling is formed as part of the tube
body, a connection is termed integral—see Sections 9.3.3, 9.3.4 and 9.3.6—and the
“coupling” is termed the “box.”

The threaded region as shown in the expanded portion of Fig. 9.1 consists of a
number of defined and toleranced [109] elements:
• The crest of a single pin thread is the point, arc or surface on the thread form having

the greatest radial value; the root of a single pin thread is the point, arc or surface
having the least radial value. The crest of a single coupling/box thread is the point,
arc or surface on the thread form having the least radial value; the root of a single
coupling/box thread is the point, arc or surface having the greatest radial value.
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• Pitch is the axial distance from the crest of one thread to its neighbor. Common
units are length (i.e., the thread pitch is 0.125 in.) or number of threads per a speci-
fied length (i.e., 8 threads per inch (TPI)).

• Lead is the axial distance the thread travels in one complete rotation of the pin
relative to the coupling/box. Usually lead and pitch are equal, but thread designs
do exist where two separate spirals traverse the thread form. In this case the lead is
twice the pitch.

• Pitch diameter is the local diameter of the pitch line, a cone concentric with the
thread axis where the width of the thread groove (metal removed during machining)
and the thread body (metal remaining after machining) are equal.

• Taper is the rate of increase of pitch diameter with axial position and is usually
measured as either inches (increase in pitch line diameter) per foot (of axial distance)
or inches per inch.

• The load flank of a thread is that flank most highly loaded when the connection is
in tension. The stab flank of a thread is that flank which will normally make first
contact on assembly when the pin is inserted in the coupling or box.

• Height is the radial distance, taking due account of the taper (see Fig. 9.1), between
the root and crest of a thread.

9.3. TYPES OF THREADED CONNECTIONS

Depending on the application, threaded connections possess specific features. In most
instances, the transparency of an ideal connection is compromised in either strength or
geometry [101,110].

9.3.1 API casing connections and NUE tubing
In contrast to the proprietary threaded and coupled (T&C) connection of Section 9.3.2,
the API entries for casing2—short round thread,3 long round thread4 and buttress5 cas-
ing, and NUE6 tubing—have neither a metal-to-metal seal7 nor a torque shoulder.

2 Traditionally API has recognized a close relation between size and function, with the crossover occurring
at 4.500 in. Sizes greater than or equal to 4.500 in. are termed casing; sizes less than or equal to 4.500 in.
are termed tubing. Particularly for connections, this distinction was strong enough to prompt one con-
nection manufacturer to offer separate casing and tubing connections for 4.500 in. diameter tubes. With
the advent of high volume wells wherein the production tubing may be 7.000 in. or larger this distinction
has diminished. Remnants of the casing–tubing terminology do still exist, however, a prime example
being the API segregation of threaded connections.

3 Commonly denoted STC signifying “short thread and coupling.”
4 Commonly denoted LTC signifying “long thread and coupling.”
5 Commonly denoted BTC signifying “buttress thread and coupling.”
6 NUE signifies “nonupset end.”
7 The flank-to-flank thread contact in the threaded region is usually not designated a metal-to-metal seal.
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Figure 9.2 Drawing of generic threaded and coupled (T&C) API casing connection. The threaded
region is indicated with phantom dashed lines, with typical thread forms illustrated in profile.

There still exist, however, a number of low pressure applications suitable for API con-
nections. The majority of casing and tubing connections run worldwide are API. API
Specification 5B [109] details the tapers, thread forms and dimensions of the API offer-
ings. API Technical Report 5C3 [51] contains the formulas used to calculate axial joint
strength.

Fig. 9.2 illustrates a generic sample of such a connection. Variations on the connec-
tion shown in the figure include the following:
• The thread lubricant seal8 may be supplemented by a resilient seal ring installed in

a groove machined in the coupling.
• At least one vendor offers a variation on the API T&C round thread design with an

insert placed between the two pin ends.9 This insert can serve as a torque shoulder
to prevent excess turns when assembling the connection.

• The buttress threaded version of the API T&C connection can, in some cases, be
ordered with the next higher grade coupling attached, which in some cases increases
the joint strength of the product.10 Care should be exercised when using this option,
particularly if the intended well environment contains hydrogen sulfide.

• A special-clearance version of the buttress connection is manufactured by machining
the outside diameter of the coupling.

8 See Section 9.5.1.1 for a discussion of the suitability of classifying thread lubricant as a seal.
9 The area between the two pin ends on an API round thread connection is termed the “J” area, as this is

the letter assigned to this axial region in API Specification 5B [109].
10 The addition of increasing wall thicknesses to API tube bodies historically led to API connections for

greater tube wall thicknesses being strength-limited by the geometry of the coupling. Higher grade
coupling availability was introduced as an alternative to designing new coupling geometries for these
products.
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Figure 9.3 Drawing of generic threaded and coupled (T&C) casing and/or tubing connection. The
threaded region is indicated with phantom dashed lines, with typical thread forms illustrated in profile.
Not all offerings have the torque shoulder.

9.3.2 Threaded and coupled (T&C) connections
Threaded and coupled connections usually meet or surpass the axial tension, internal
pressure and external pressure performance properties of the tube body. In some in-
stances, even the tube’s axial compression performance can be matched. To reliably pro-
vide pressure integrity, the connection typically employs a metal-to-metal seal and/or
a resilient seal ring. The thread form usually has a negative load flank and, in some
instances, a negative stab flank. A torque shoulder is employed to limit assembly stresses.

Fig. 9.3 illustrates a generic sample of such a connection. Variations on the connec-
tion shown in the figure include the following:
• Some proprietary versions of this connection also have an external metal-to-metal

seal.
• The metal-to-metal seal may be supplemented by a resilient seal ring installed in a

groove machined in the coupling.
• More than one vendor offers a T&C connection with no metal-to-metal seal, but

with shoulders on both pin members which contact on assembly, forming a torque
shoulder which could be conceived to act as a metal-to-metal seal. Rating a torque
shoulder as a metal-to-metal seal is not recommended by this author.

• A special-clearance version of this connection is manufactured by machining the
outside diameter of the coupling.

9.3.3 Nonflush integral clearance connections
Nonflush integral11 connections are machined on tubes which have been cold formed—
expansion of the box, swaging of the pin—followed by stress relief via heat treatment.

11 The term “integral” indicates the coupling has been integrated into the tube body. One advantage of
this strategy is the removal of half the pin-to-coupling matings, theoretically reducing the possibility of
a connection leak.
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Figure 9.4 Drawing of generic integral casing connection. The threaded region is indicated with
phantom dashed lines, with typical thread forms illustrated in profile. Not all offerings have the in-
termediate torque shoulder.

These connections usually meet or surpass the internal pressure and external pressure
performance properties of the tube body. The axial tension joint efficiency of this family
falls in the range of 70–75%. The compression joint efficiency of this family is normally
low, on the order of 30–50% of the tube body, often due to the small torque shoulder
area.12 To reliably provide pressure integrity, the connection typically employs a metal-
to-metal seal. The thread form usually has a negative load flank and, in some instances,
a negative stab flank. The torque shoulder serves to limit assembly stresses.

Fig. 9.4 illustrates a generic sample of such a connection. Variations on the connec-
tion shown in the figure include the following:
• Some proprietary versions of this connection also have an external metal-to-metal

seal.
• Versions of this connection type, particularly when aimed at application as a drilling

liner, may be obtained without the metal-to-metal seal.

9.3.4 Flush integral clearance connections
Flush integral13 connections usually meet or surpass the internal pressure and, perhaps,
external pressure performance properties of the tube body. The axial tension joint ef-
ficiency of this family falls in the range of 60–65%. The compression joint efficiency
of this family is low, on the order of 30–50% of the tube body, often due to the small

12 Non-flush integral clearance connections that do not have the intermediate torque shoulder, but do
have a negative stab flank thread form, may have a compression joint efficiency that exceeds the tensile
efficiency.

13 The term “flush” indicates the connection—both pin and box—has been machined directly into the
tube body. The pin end may be cold formed.
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Figure 9.5 Drawing of generic flush casing connection. The threaded region is indicated with phan-
tom dashed lines, with typical thread forms illustrated in profile. Not all offerings have the torque
shoulder.

torque shoulder area.14 To reliably provide pressure integrity, the connection typically
employs a metal-to-metal seal. The thread form usually has a negative load flank and,
in some instances, a negative stab flank. The torque shoulder serves to limit assembly
stresses.

Fig. 9.5 illustrates a generic sample of such a connection. Variations on the connec-
tion shown in the figure include the following:
• Some proprietary versions of this connection also have an external metal-to-metal

seal.
• Versions of this connection type, particularly when aimed at application as a drilling

liner, may be obtained without the metal-to-metal seal.

9.3.5 API upset tubing connections
The pin ends of the API EUE15 tubing connection are hot upset. API EUE is threaded
and coupled, and provides a connection with round thread having a tension joint effi-
ciency of 100%. The upset limits the number of thread recuts.

Fig. 9.6 illustrates a generic sample of such a connection. Variations on the connec-
tion shown in the figure include the following:
• The thread lubricant seal16 may be supplemented by a resilient seal ring installed in

a groove machined in the coupling.
• At least one vendor offers a variation on the API T&C round thread design with an

insert placed between the two pin ends. This insert can serve as a torque shoulder
to prevent excess turns when assembling the connection.

14 Flush integral clearance connections that do not have the intermediate torque shoulder, but do have
a negative stab flank thread form, may have a compression joint efficiency that exceeds the tensile
efficiency.

15 EUE signifies “external upset end.”
16 See Section 9.5.1.1 for a discussion of the suitability of classifying thread lubricant as a seal.
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Figure 9.6 Drawing of generic API upset tubing connection. The threaded region is indicated with
phantom dashed lines, with typical thread forms illustrated in profile.

• A special-clearance version of the EUE connection is manufactured by machining
the outside diameter of the coupling.

9.3.6 Two-step tubing and work string connections
The two-step integral connection design possesses a threaded region that is not tapered,
but rather has constant pitch diameter. Both the pin and box of the connection are upset.
Assembly torque is counteracted at the metal-to-metal seal and the torque shoulder, the
latter carrying the preponderance. In addition to its use as a tubing connection, this
connection family has gained wide use on work strings.

Fig. 9.7 illustrates a generic sample of such a connection. Variations on the connec-
tion shown in the figure include the following:
• Particularly if the tubing is coated, the small gap between the end of the pin and

the box can be filled with a seal ring.

9.4. AXIAL RESISTANCE

At the outset of the discussion of axial resistance a few definitions are in order. First, the
joint strength Rjt of a connection is its capacity to withstand axial load and is usually (an
important exception being the API family of connections) expressed by the formula

Rjt = fxAcr, (9.1)

where fx is the stress level representing the limit state and Acr is the critical cross-sectional
area corresponding to the location at which Rjt is being measured. The limit state is
reached when the stress at the critical cross-sectional area reaches the critical value fx.

The critical stress level is either the yield stress fy or the ultimate stress fu of the
connection material. A proprietary connection manufacturer’s internet and hardcopy
content may report Rjt based on one or both of these stress values. Either value is
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Figure 9.7 Drawing of generic two-step tubing and work string connection. The threaded region is
indicated with phantom dashed lines, with typical thread forms illustrated in profile.

legitimate, provided it is clearly stated. If the ultimate stress is used, its entry may be
labeled the “parting load” of the connection.

It is important that the value of fx used match one’s joint strength design factor basis.
Most operators base their joint strength design factor on connection yield. If that is
the case, then the value of fx used should be fy. Use of fu in this instance will result
in a nonconservative design, as the connection is being rated (for yield) with a higher
value than appropriate. This warning is particularly important when dealing with API
connections. API casing threaded connections have an axial resistance based on ultimate
stress, whereas most proprietary connections have an axial resistance based on yield
stress. Both API and proprietary tubing connections have an axial resistance usually
based on yield stress.

The value of Acr , the cross-sectional area at the location of yield (fx = fy) or parting
(fx = fu), is determined by the manufacturer as a result of design calculations and exper-
iment. In a well designed connection, failure in pure tension in the laboratory should
consistently occur at the axial location corresponding to Acr .

Continuing with introductory definitions, joint efficiency Ejt is the ratio of the joint
strength to the strength of the tube body Rta, expressed in percent as

Ejt = Rjt

Rta
× 100% = fxAcr

fxAs
× 100% = Acr

As
× 100%, (9.2)

where As is the cross-sectional area of the tube body.
Again, fx can take the value fy or fu in Eq. (9.2), provided it takes the same value in

both the numerator and denominator. Thus, for connections whose joint strength can
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be written in the form of Eq. (9.1), the calculation of tension joint efficiency reduces
to a calculation of areas.

Notable exceptions to the above calculations are the API threaded connections [51]:
• API round thread and buttress threaded connections have fracture strength equations

that resemble Eq. (9.1), but Acr is the minimum of a critical section area in the
coupling and a critical section area in the pin.

• API round thread also has an additional failure mode normally called jumpout, but
termed pullout in the API literature. Again, the limit state equation takes the form
of Eq. (9.1), but in this case with a slightly different meaning.

9.4.1 Example problem—joint efficiency
A nonflush integral clearance connection for 7 in., 32 lbm

ft (0.453 in. wall) T95 casing has
a manufacturer-reported critical cross-sectional area of 6.470 in2. Compute the connec-
tion’s joint strength and joint efficiency in tension, assuming the manufacturer rates his
product on yield strength.

The yield strength of API grade T95 is 95000 psi. From Eq. (9.1), the joint strength
of the connection in tension is

Rjt = 95000psi × 6.470 in2 = 614650 lbf. (9.3)

The cross-sectional area of the tube body is

As = (π/4) × [
7.0002 − (7.000 − 2 × 0.453)2] = 9.317 in2. (9.4)

The joint efficiency of the connection is, from Eq. (9.2),

Ejt = 6.470 in2

9.317 in2 × 100% = 69.4%. (9.5)

9.4.2 Example problem—yield-based API casing joint strength
API calculates tubing connection joint strength17 based on minimum yield stress fymn

[51]. API calculates casing connection joint strength18 based on minimum ultimate
stress fumn [51]. Many operators, however, base their design factor for both tubing and
casing joint strength in tension assuming the connection rating is based on yield. Provide
a reasonable procedure for expressing API casing joint strengths in terms of minimum
yield stress.

17 API tubing connections are NUE (nonupset end), EUE (external upset end) and IJ (integral joint).
18 The API casing connections considered here are STC and LTC (round thread), BTC (buttress) and XC

(extreme-line).
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All of the API formulas for casing joint strength [51] are either directly pro-
portional to fumn (i.e., Rjt = fumn × fcn(Connection geometry))19 or almost so (i.e.,
Rjt = fumn × fcn(Connection geometry) + fymn × fcn(Connection geometry)).20 Regard-
less, a reasonable approximation for yield-based API joint strength can be obtained by
multiplying the API published rating [51] by the ratio of fymn to fumn, that is,

Rjt−yield = Rjt−API
fymn

fumn
. (9.6)

For example, the fumn-based API joint strength of 9.625 in., 40.0 lbm
ft K55 (fymn =

55000psi, fumn = 95000psi, see Table 6.1) LTC casing is 561000 lbf. To compute an
fymn-based yield strength using the approximate method presented in Eq. (9.6),

Rjt−yield = 561000 lbf
55000psi
95000psi

= 324800 lbf. (9.7)

The reduction taken by K55 connections is large due to the difference between the
minimum yield and ultimate stresses for this grade.

9.4.3 Tension resistance
Of obvious concern in the selection of a threaded connection is its performance under
tension and compression, fully appreciating the possibility of bending. First, consider
axial load in the absence of bending. Fig. 9.8 depicts a connection in a vertical wellbore
under tension. Moving vertically upward from the bottom of the connection, exam-
ination of its geometry relative to the load suggests that, although at the base of the
pin all of the axial load is carried by the pin, by the time one reaches the longitudinal
center of the coupling all of the axial load will be supported by the central coupling
cross sections. The load transfer from pin to coupling occurs in the threaded region.
This transfer is complex, especially in the presence of other loads such as pressure and
bending, but can sufficiently be described for the purposes of this discussion as linear.
That is, once one has traversed upwards two-thirds of the way through the threaded
region (and recognizing the approximate nature of the linear model), the pin will have
shed two-thirds of the axial load which has been transferred to the coupling.21

The critical section area for the pin in a geometry like, or similar to, that of Fig. 9.8
is usually at the base of the pin, as it is here that the pin is most highly loaded. This is

19 Applicable to the formulas for round thread coupling and pipe thread fracture strength, buttress coupling
thread strength and extreme-line joint strength.

20 Applicable to the formulas for round thread jumpout and buttress pipe thread strength.
21 Why is the critical section area of the pin not located at the end of the pin where, due to the taper, its

cross-section is smallest? Because by the time the end of the pin is reached all of the axial load will have
been transferred to the coupling.
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Figure 9.8 Axial load transfer in a threaded connection. Although the API round thread is depicted,
the principle is similar for all casing and tubing connections. The question marks indicate that the load
transfer, although assumed linear in the discussion of this figure, is often complex.

particularly true of the API round thread depicted in the figure. As a round thread pin is
cut, the majority of the threaded region has a taper of 0.0625 in

in on the diameter [109].
As the cutting tool reaches the base of the pin, however, this taper abruptly increases as
the tool is extracted from the threading operation. This region of so-called incomplete
threads cannot be used in the load transfer as these threads are not engaged with the
coupling. As indicated in the figure, at the start of load transfer the cross-sectional area
of the pin is less than that of the tube body. Since both the first thread involved in
the load transfer and the tube body are exposed to the same axial force, the stress in
the pin must be higher than that of the tube body. In a pure tension environment the
pin threaded region will be more likely to fail than the tube body—the tension joint
efficiency of the API round thread is therefore less than 100 percent.

One solution to this shortcoming in the API round thread is to machine the pin
thread on an upset (see Section 9.3.5), with the diameter of the pin at the starting
point of load transfer at least equal to that of the tube body. This design increases the
tension joint efficiency of the API round thread connection to 100%, but not without
complications:
• The upsetting process itself adds cost to the connection manufacture;
• Once upset, the tube end must be heat treated to reduce residual stresses introduced

by the upsetting process;
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• The number of recuts before the tube must be reupset is limited.
Nevertheless, upsetting is a recognized solution to the penalty in tension joint efficiency
associated with the API round thread design.

The API buttress thread, along with a number of proprietary threads, does not have
the manufacturing taper change described above for API round thread. The machining
tool is simply constrained to the same taper until there is no more tube body to ma-
chine.22 One might expect 100% tension joint efficiency from this process, and such is
almost, but not quite achieved. The offset in axial force due to the mean radii in the pin
and coupling induces a moment which separates the first few imperfect threads at the
base of the connection, rendering the buttress connection slightly more stressed than
the tube body.

9.4.3.1 Excursion: jumpout

In addition to the dominant over-stressed limit state described by Eq. (9.1), API round
thread can succumb to a second failure mode termed jumpout.23 The origin of jumpout
is displayed in Figs. 9.9 and 9.10. Following the discussion of Clinedinst [111], the left-
hand diagram in Fig. 9.9 focuses on one of the threads of a round thread connection.
Following assembly the load and stab flanks of the thread are exposed to approximately
equal contact tractions.24 As indicated in the right-had diagram of the figure, when the
connection is lowered into the well and subjected to tension under service, the contact
traction on the stab flank will be transferred to the load flank. Eventually, an external
axial force can be reached that results in the load flanks of the thread supporting all the
tension.

Fig. 9.10 continues the discussion by further detailing the load flank of a single thread
once all the axial tension has been transferred to that flank of the thread profile. Assume
for simplicity that contact between the pin and coupling load flanks is frictionless.25

Then the contact traction vector will be perpendicular to the surface of the thread
flank. We may therefore decompose the vector into components along the axis and
radius of the tube on which the round thread has been cut. The axial component of the
traction is that portion of the contact supporting the axial load. The radial component,
on the other hand, is acting so as to separate the pin from the coupling. With increasing
axial load, eventually the pin will yield and, due to the inelastic counterpart to Poisson’s
ratio, begin to radially shrink away from the coupling. Once this radial displacement has

22 As a consequence of this machining process one creates so-called black-crested threads—i.e., those
threads for which there is insufficient tube material left to achieve full design thread height, thus leaving
evidence of the tube outside diameter on the crest of the thread.

23 An alternate name also used by the API is pullout.
24 The loading will not be precisely equal because of the thread taper.
25 The discussion will be altered slightly, but not conceptually changed, if one includes friction.
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Figure 9.9 The origin of jumpout. Increasing tension transfers more of the thread flank contact trac-
tion to the load flank.

Figure 9.10 The mechanism of jumpout. The respective stress states promote earlier yield in the pin
than the coupling.

reached a value equal to the thread height, the pin will separate from the coupling in
the phenomenon of jumpout.

Given the amount of deformation preceding jumpout, the threads themselves are
relatively undamaged. The notable feature of a jumpout failure is the gross radial dis-
placement the pin experiences as it undergoes massive inelastic deformation in the radial
(actually circumferential) direction.
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9.4.3.2 Example problem—pin-first yielding

Fig. 9.10 depicts the stress states in the pin (plastic) and coupling (elastic) during
jumpout, which provides an explanation for why the pin member undergoes the pre-
ponderance of deformation during this failure mode.

Due to assembly and the taper of the thread profile, the pin member of an API round
thread connection will, as indicated by the traction arrows on the small pin element in
Fig. 9.10, be in hoop compression. Correspondingly, the coupling will be in hoop
tension. Due to the tensile axial load, both the pin and coupling will, as also indicated
in the figure, be exposed to axial tension. The radial stress will be enough smaller than
either axial or hoop stress that we can consider it zero in this discussion.

Recalling the discussion of yield in Section 6.3.1 of Chapter 6, closeness to yield for
a crystalline metal increases with shear. Comparing the stress states in Fig. 9.10, both
the axial and hoop stress in the coupling are positive when the connection is loaded in
tension, whereas the axial and hoop stresses in the pin have opposite signs. The tendency
to yield will be greater in the pin than the coupling, leading to the pin’s dominant role
in jumpout.

9.4.3.3 Alternate thread profiles

Compare the left-hand diagram in Fig. 9.10 with the upper-left diagram in Fig. 9.11.
Both the load and stab flanks in an API round thread have an angle with the tube radius
of 30°, this angle being the source of the radial component of the contact traction vec-
tor. Reducing this component’s influence will reduce the possibility of thread jumpout.
In this regard, notice (Fig. 9.10) that as the angle of the load flank is decreased, the mag-
nitude of the radial component of the contact traction vector also decreases. Comparing
the API round thread profile with that of, for example, API buttress (see lower-left di-
agram in Fig. 9.11) that has a load flank angle of 3°, the latter should and does render
the buttress thread less susceptible to jumpout.

Experimental data collected during the establishment of the API formulas for joint
strength [111], however, indicate that for larger diameter-to-thickness ratios even API
buttress can fail in tension due to jumpout. In fact, failure of a number of clearance cas-
ing connections possessing load flanks similar to buttress led to a joint industry project to
verify connection performance experimentally [112]. Subsequent to these experiences,
the introduction of the hook thread (see upper-right diagram in Fig. 9.11) virtually
eliminated jumpout in oil well tubulars. The hook thread has a negative load flank an-
gle which reverses the behavior of the radial component of the contact traction vector.
With a hook thread, the radial component actually serves to increase the intimacy of
contact within the threaded region.

If there is a disadvantage to the hook thread, it lies in its ability to withstand compres-
sive loads—the stab flank of a hook thread is has a positive flank angle. For this reason,
most designs incorporating a hook thread profile also include an opposing contact angle
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Figure 9.11 Alternate thread profiles. Flank angels on hook and wedge thread are typical and may
vary with an individual manufacturer.

at the torque shoulder to withstand compression (see Fig. 9.3). An alternative to assign-
ing compression resistance to the torque shoulder is the dovetail or wedge thread design,
which accommodates negative flank angles on both the load and stab flanks. This design
is particularly amenable to bending applications and has been used in the design of a
high torque tool joint [113]. The potential of both the hook and dovetail/wedge thread
forms to eliminate jumpout as a failure mode comes at the cost of increased machining
and inspection complexity.

9.4.4 Compression resistance
The axial compression resistance of a threaded connection is not always related to its
structural capacity when loaded with a negative axial force. In fact, the structural re-
sistance of a connection to compression may exceed its structural resistance to tension.
The often lower compression joint efficiency of a threaded connection can usually be
traced to a separate limit state, for example, yielding of an internal (torque) shoulder
that in itself is bad, but may also affect the pin-to-coupling relative positioning of a
metal-to-metal seal.

9.5. INTERNAL PRESSURE RESISTANCE

Most proprietary threaded connections are rated equal to the tube body in internal
pressure resistance. Many API connections are also rated at least as strong as the tube
body when exposed to internal pressure. There do exist, however, API connections
wherein the structural internal pressure resistance of the connection is less than that of
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the tube body.26 For the API buttress connection it is possible to order a “next higher
grade” coupling to once more render the tube body the weaker component of the joint
[46,51].

A corollary to a tubular’s usefulness as a conduit for fluids is its ability to contain those
fluids, separating internal and (possible) external flow streams. This not only requires
the threaded connection to maintain structural integrity (i.e., burst resistance) but also
includes an expectation of leak resistance. Leak resistance presents a peculiar design issue
in that the probability of its occurrence is difficult to predict. Leak resistance depends
not only on the design of the connection but also on the assembly procedure at the rig
site.

9.5.1 Sealing mechanisms
In the current market environment there exist three mechanisms by which leak resis-
tance is pursued—thread lubricant, seal rings and metal-to-metal seals. Each of these
alternatives, which are sometimes incorporated in a single design, will be considered in
the sections to follow.

9.5.1.1 Thread lubricant

Fig. 9.12 pictures a portion of an API round thread connection, focusing on the
0.003 in. gap [109] between the root of a pin/coupling thread and the crest on the
mating coupling/pin thread. Also shown for orientation is the centerline of the tube on
which the thread is cut.

The label 1 in Fig. 9.12 indicates that if one were to follow a pin thread root path
around the connection circumference, a spiral path exists connecting the pin roots.
Similarly, following the pin crests along the connection’s machined spiral reveals a second
path connecting the pin crests. These two paths, as they stand, represent two potential
leak paths for internal fluids.27

The standard means of closing the leak paths illustrated in Fig. 9.12 is thread com-
pound. Using a petroleum soap-constituted grease base, a thread compound carries
solids—originally soft metals such as lead, zinc, copper and graphite [114], but now
more commonly polytetrafluoroethylene (PTFE) and proprietary blends—intended to
both mitigate galling and, somewhere in the spiral potential leak path, block fluid move-

26 This phenomenon is usually a consequence of history. The API connection, when originally introduced
met or exceeded the internal pressure resistance of the tube body. With time, however, additional,
increasing wall thicknesses introduced into the API inventory favored the resistance of the tube body, as
the coupling dimensions did not change. See also Footnote 10.

27 Recalling the discussion of Section 9.4.3.1, another possible leak path exists in the API round thread
connection. Under sufficient tension, the stab flanks of the round thread can separate providing a third
avenue for fluid escape [102]. This path will also close when the tension is removed. Unfortunately, this
potential leak path is load-induced and cannot be remedied with thread lubricant.
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Figure 9.12 Dual potential leak paths in an API round thread connection.

ment. The following comments are in order regarding an interstitial thread lubricant
seal:
• If used in production tubing, the hydrocarbon based grease can be leached by chem-

ical reaction with the reservoir fluids;
• Above approximately 275–300 °F (135–150 ◦C) a standard grease base can boil off;
• In the time interval of a relatively short field pressure test, it is not possible to verify

that an effective seal in the thread root–crest gaps has been achieved.28

The above list suggests alternate sealing methods may be in order if one desires to con-
tain gas for long periods of time. Two common alternate seal strategies are considered
in the sections to follow—seal rings and metal-to-metal seals.

9.5.1.2 Seal ring

Among several topics aimed at improving API connection leak resistance reliability,
API Supplemental Requirement (SR) 13 to Specification 5CT [46] offers the user an
additional sealing mechanism in the form of a PTFE ring (with 25% fiberglass filler)
inserted in a groove cut in the coupling member of a connection (see Fig. 9.13).29

28 Consider a 7.000 in. round thread casing connection. The (axial) length of effective threads L2 =
3.715 in., multiplied by the number of threads per inch is 3.715 × 8 = 29.72 circumferences [109]. Tak-
ing the average pitch diameter to occur at L2/2, this diameter is the pitch diameter E1 = 6.90337 in.,
measured at the hand-tight plane L1 = 2.921 in. from the end of the pin, moved to L2/2. Using the
round thread taper of 0.0625 in

in , the average pitch diameter is 6.90337 − (2.921 − 3.615/2) × 0.0625 =
6.23249 in. Thus the (approximate) total leak path length of 29.72 circumferences of a 7.000 in. API
round thread is π × 6.23249 × 29.72 = 582 in., or 48.5 foot. Actual detection of a thread lubricant leak
can take a long time-24 hours has been observed in the laboratory with a buttress connection whose
leak path cross-sectional area can be larger than that of the round thread [115].

29 Seal rings are also offered as additions to proprietary thread designs.
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Figure 9.13 Seal ring groove shown as machined (lower diagram) and following assembly (upper
diagram). One or both ends of the coupling may be attached to the pin(s) at the rig site. Prior to
assembly a PTFE seal ring is inserted in each groove. Figure is not to scale.

A specific area of concern in designing or implementing a seal ring connection
is temperature. The coefficient of thermal expansion of PTFE is approximately ten
times that of steel30—confinement to a ring groove can therefore cause PTFE to induce
internal stresses in a threaded connection. Notwithstanding this behavior, seal rings have
been used with success in extreme downhole environments [117].

9.5.1.3 Metal-to-metal seal

The most popular of seals used in high pressure oil well tubular applications are
interference-activated metal-to-metal seals. The coupling/box and pin seal surfaces are
usually machined at a angle of 5–30◦ with the axis of the tube, being forced together
due to geometry interference as the connection is assembled. Higher angles raise con-
cern for maintenance of design contact pressure under tension; lower angles can increase
the possibility of galling, especially during repeated assembly. Additional independent
variables considered in the design of a metal-to-metal seal include the following:
• Contact stress distribution [118,119]. Both the maximum value of contact stress and

the character of the axial distribution of contact stress influence the ability of the
seal to prevent pressure/fluid escape or entry and accommodate leak channels of
short length.

• Surface roughness and coatings [118,119]. The inherent roughness of the machined
surface of the seal can be altered by surface treatments such as zinc or manganese
phosphate coating31 (usually applied to the coupling).

30 The coefficient of thermal expansion of unfilled PTFE is approximately 7 × 10−5 1
°F , whereas the coef-

ficient of thermal expansion of steel is approximately 7 × 10−6 1
°F . The former can be slightly reduced

by adding filler, with Hilbert and Bergström [116] quoting a reduction of approximately 12% while
noting that the coefficient of thermal expansion of PTFE varies significantly with temperature.

31 In addition to sealability, the coating is also applied to reduce galling potential.
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• Thread compound [118,119]. Although thread compound is primarily intended to
reduce friction and galling in the threaded region, evidence does exist that thread
compound on the seal surface can improve leak resistance, particularly if the size
of the solid particles in the thread compound is close to the amplitude of surface
roughness of the seal [120].

• Assembly. The act of assembling the connection will cause the pin and box/coupling
seal surfaces to interact at high interference-induced contact stresses. Local inelastic
deformation of machined peaks on the seal surface has been demonstrated to reduce
the contact pressure required to achieve a specified sealability [120,119]. Proper axial
alignment of the mating coupling/box and pin seal surfaces is crucial and is usually
controlled by the presence of a torque shoulder (cf. Figs. 9.3, 9.4, 9.5 and 9.7).

• Seal geometry [119]. Seal geometry (macroscopic shape, contact length, diameter,
interference) affects the contact stress profile—the distribution of contact stress per
axial length of seal surface—opposing release of internal fluids.
Fig. 9.14 depicts the behavior of a typical metal-to-metal seal used on a threaded

connection. The horizontal axis is internal pressure, that is, the pressure of the fluid
to be contained. The vertical axis is some measure of the contact stress profile at the
metal-to-metal seal. Depending on the character of the contacting surfaces, the contact
pressure distribution will vary—the ordinate in Fig. 9.14 is intended to represent a
peak or effective contact stress. The 45° line in the graph is the leak criterion—leak is
assumed to occur if the internal pressure exceeds the contact pressure.

When the connection is assembled on the rig floor, the interference between the
diameters of the pin and coupling seal surfaces means the two surfaces must be “forced
together” as the pin advances into the coupling—a visible change in the slope of the
torque-turn graph generated by the power tongs should be noticeable. Once fully as-
sembled, the seal is at point A in the figure.

Assume that once in service, the pressure associated with the contained fluid begins
to increase. The horizontal, dashed line originating at point A indicates that internal
pressure increase. Notice, however, that the sealing capacity of the metal-to-metal seal
is not horizontal. The same increase in internal pressure promoting a leak is also act-
ing on the inside surface of the pin—particularly in the vicinity of the metal-to-metal
seal—increasing the contact pressure between the pin and coupling seal surfaces. This is
known as self-energization and is a characteristic of many metal-to-metal seals.

The dashed line in the plot attempts to accurately display that the mapping of internal
pressure into increased contact pressure is not one-to-one—the slope of the line AB is
less than 45°. As the action of the internal pressure must be transmitted through the
metal thickness under the pin seal surface, some pressure is necessary to deform the
pin at the seal location. The degree of energization lost will depend on, among other
factors, the thickness of the pin beneath its seal surface. With each increment of internal
pressure, however, a portion of the leaking pressure increment is also transferred to resist
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Figure 9.14 Behavior of a metal-to-metal seal. The location of point A can be controlled by initial seal
interference. The slope of the line AB can be controlled by the thickness of the pin at the seal location.

the leak pressure. Eventually, a point is reached (point B in the figure) where the seal
contact pressure is less than the internal pressure, and a leak ensues.

Also included in the upper portion of the figure is a diagram of a threaded and
coupled connection possessing a metal-to-metal seal. At this point, notice the dotted
line indicating a second pin/tube body having greater wall thickness than that used in
the previous discussion. Further, assume that through analysis and testing the designer
has, with the previous wall thickness, arrived at a pin seal design considered optimum. It
may be that the best course of action—from the viewpoint of leak resistance alone—is to
machine the pin as indicated by the dotted lines, that is, to use the tube wall thickness
near the base of the pin and the optimum seal thickness near the end of the pin. If
so, and as we shall see shortly, the design may now be exposed to turbulence under
high internal fluid flow rates. Such tradeoffs as this permeate the design of a threaded
connection metal-to-metal seal. Less metal under the pin seal surface may promote
self-energization, but altering the internal profile of the connection may lead to other
issues unrelated to leak integrity.

Similarly, another means of increasing leak resistance would be to raise the value
of point A, the initial interference contact pressure. Unfortunately, this solution also
may complicate other aspects of the connection design, such as galling during assembly
and/or exposing the pin end to a (primarily hoop) stress too close to yield. Threaded
connection design is a complex process involving compromise between a number of
competing design objectives.
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9.6. EXTERNAL PRESSURE RESISTANCE

External pressure resistance is not addressed as frequently in connection design as re-
sistance to internal pressure. There do exist, however, a number of load cases (cf.
Section 12.8 of Chapter 12 and Section 15.2 of Chapter 15) in which resistance to
external pressure is desirable. The importance of such load cases to the overall string
design may suggest the need for a connection possessing an external (usually metal-to-
metal) seal.

9.7. ADDITIONAL DESIGN CONSIDERATIONS

Other attributes of casing and tubing connections worthy of consideration in design
include the following.

9.7.1 Flush internal profile
For low flow rate wells the actual velocity profile of the internal fluid may be of minor
concern. As production rate increases, however, even minor changes in internal profile
can induce turbulence in the vicinity of the connection. Such turbulence can promote
corrosion or, in the presence of produced solids, erosion to the interior, near-connection
region. For production tubing in wells whose production is primarily gas, a reasonable
flow rate at which the internal profile should cause concern is 100 mmscfd.

9.7.2 Torsional resistance
The existence of a torque shoulder enhances the structural resistance of a threaded
connection in several ways:
• Limiting axial displacement during assembly. Inasmuch as most threaded connec-

tions possess a positive thread taper,32 assembly of the connection induces a positive
hoop stress in the box/coupling and a negative hoop stress in the pin. Aside from re-
ducing the box/coupling’s resistance to a hydrogen sulfide environment, unchecked
axial engagement during assembly can increase the risk of galling. Further, thread
profiles possessing gaps on the load and stab thread flanks (as opposed to the thread
roots and crests) undergo a Poisson’s ratio induced relative axial movement during
assembly. This coupling-to-pin relative movement, common to API buttress, casts
further doubt on the leak integrity available in the threaded region. Both of these
concerns—high induced stresses and interstitial movement during assembly—are
either limited or eliminated by the presence of a torque shoulder.

• Pipe rotation. The ability to rotate the tubular string (during cementing, for exam-
ple) can positively affect the installation and survivability of a tubular. Further, work

32 Recall thread taper measures the change in thread pitch diameter as one axially traverses the threaded
region of the connection.
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strings and smaller diameter casing strings have been employed in rotary drilling
operations with success.

Both the hook thread in concert with a torque shoulder and especially the wedge
thread with its self-contained thread profile torque resistance are suitable in minimizing
the adverse effects accompanying torsion.

Notwithstanding its importance in the structural integrity of the connection, with
regard to leak integrity a torque shoulder should not be considered a metal-to-metal
seal for the following reasons:
• The machined tribological characteristics of a torque shoulder are usually different

than those of a metal-to-metal seal;
• Rig-site operations, such as stabbing the pin into the coupling/box during assem-

bly, pose a risk of (leak resistance, not structural) damage to the torque shoulder,
whereas a metal-to-metal seal with its more radially-oriented surface normal is less
susceptible.

9.8. QUALIFICATION AND TESTING

The industry is currently served by two documents to aid in standardizing the test-
ing threaded connections—“API Recommended Practice on Procedures for Testing
Casing and Tubing Connections” [56] and “ISO/PAS 12835:2013, Qualification of
Casing Connections for Thermal Wells” [121]. The former serves the majority of tubu-
lar connection applications. The latter is particularly applicable to casing used in thermal
recovery methods such as Cyclic Steam Stimulation (CSS) and Steam Assisted Gravity
Drainage (SAGD) where the connection’s service environment may involve loads be-
yond yield.

9.8.1 Brief summary of API 5C5 testing
Qualification of a threaded connection at the highest application level can be both time
consuming and expensive. The knowledge gained, on the other hand, from testing a
connection’s structural and leak resistance to one’s specific operating environment can
reduce project economic risk.

In a qualification exercise that follows API 5C5 the following activities are notewor-
thy:
• The connection sample(s) and performance properties, including a connection eval-

uation envelope33 (CEE), are supplied by the manufacturer. The CEE then defines

33 The test connection evaluation envelope is a closed two-dimensional region when plotted in a space
where the abscissa is axial tension (+) and compression (−), and the ordinate is internal (+) or external
(−) pressure. A typical connection evaluation envelope will consist of several segments, with possible
abrupt corners but is almost always convex.



268 Elements of Oil and Gas Well Tubular Design

the extent of a test load envelope34 (TLE). The manufacturer is under no obligation
to participate in the conversion of a CEE into a design envelope that the user may
employ in his design calculations.

• The number and dimensional combinations of the test sample(s) depends on the
connection application level (CAL) to which the connection design will be quali-
fied. There currently exist four CALs, with CAL IV being the most severe.

• Tests to which the connection sample(s) are subjected include the following, de-
pending on the CAL. In all tests the (pressure, axial force) load points are referenced
to the von Mises yield surface of the associated tube body. The underlying plot is
identical to that presented in Section 6.3.4.3 of Chapter 6. Brief summaries of the
test series are as follows:
• Series A—the connection sample is tested to various combinations of axial force

and internal or external pressure in all four quadrants of the axial force vs. pressure
plot.

• Series B—the connection sample is tested to various combinations of axial force,
internal pressure and bending in the upper two quadrants (i.e., no external pres-
sure) of the axial force vs. pressure plot.

• Series C—the connection sample is tested to various combinations of axial force
and internal pressure with thermal cycles in the first quadrant (i.e., no axial
compression or external pressure) of the axial force vs. pressure plot.

The Series A and B tests may be performed at room or elevated temperature. Fur-
ther, depending on the CAL, the tests may be performed with either liquid or gas
as the pressure fluid.

9.8.2 Envelope presentations for connection design
Of importance to the designer is the means by which a qualification test and its resulting
performance envelope are compared to operational loads to which the connection will
be subjected.

Fig. 9.15, an application of Fig. 6.14, has been adopted35 in two API documents as
the preferred method of presenting the axial force/pressure performance envelope for
threaded connections [56] and some tubing accessories [55]. One can, however, also use
the other two three-dimensional alternatives presented in Section 6.3.4 of Chapter 6

34 The test load envelope is derived from a manufacturer-supplied connection evaluation envelope (CEE)
and defines the extents to which the connection will actually be tested. The test load envelope is
constructed from the CEE by a calculation that scales the CEE values—along both the axial load and
pressure axes—by 80–100%, depending on the character of the sample and the conditions of the test.
“If the CEE is less than the pipe body reference envelope, it needs to be disclosed by the manufacturer
. . . whether the CEE limitation is based on material yield strength or some other factor.” [56].

35 Exception: Fig. 9.15 uses axial stress for the abscissa, whereas the referenced API documents use axial
force.
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Table 9.1 Evaluation envelope for a generic connection. The sample
connection has a yield stress of 110000 psi. The principles illustrated ap-
ply equally well to accessories. All values are in psi
Point Axial stress Pressurea Point Axial stress Pressurea

A 110000 0 E −110000 −10000
B 110000 12228 F 0 −10000
C 0 12228 G 51897 −10000
D −110000 0 H 110000 0
a A positive value incites internal pressure; a negative value indicates external pressure.

Table 9.2 Load points shown in Figs. 9.15–9.17. All values are in psi
Load point Internal pressure External pressure
Surface qualification test
Initial conditions 0 0
Positive test 10000 0
Negative test 0 10000
Bottom of string
Initial conditions 15000 15000
Positive test 25000 15000
Negative test 5000 15000

to gain additional insight into connection and accessory behavior, particularly when
(a) selecting test points in a qualification exercise and (b) translating a manufacturer’s
performance envelope from laboratory to downhole conditions. In fact, the latter two
presentation alternatives provide more physically acceptable load displays than Fig. 9.15
when downhole conditions are of concern.

It is important to state that calculations of stress and yield state are not at issue in this
section. Rather, the discussion centers on presentation, that is, proper representation
of the relative positions of the loads with respect to the performance ellipse to which
they are being compared. Consider, for example, the crude performance envelope—
representing no particular tubular connection—whose defining points are summarized
in Table 9.1.

Now review Figs. 9.15–9.17. Each figure is a duplicate of its counterpart in
Figs. 6.14, 6.13 and 6.11, respectively, with two additions. First, the connection evalua-
tion envelope values of Table 9.1 have been added to each figure. Secondly, three sample
load points—initial conditions, positive pressure test, negative pressure test—have also
been added to the figures. The load points are summarized in Table 9.2 with the symbol
× denoting a surface qualification experiment and the symbol ◦ denoting an anticipated
downhole load condition, where the downhole position is the bottom of the tubular
string.
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Figure 9.15 Connection evaluation envelope plotted with the von Mises yield criterion expressed in
terms of SZZ . The tube body ellipse is shown as a dashed curve and follows Fig. 6.14. Vertices of the
envelope labeled A–H correspond to the points in Table 9.1.

Fig. 9.15, with the exception of using axial stress rather than axial force for the
abscissa, is the API RP 5C5 [56] space in which connection evaluation tests are designed
and performed.36

There are no issues with the evaluation envelope as prepared for a laboratory en-
vironment. The “initial condition” for a laboratory experiment is one of no loading
and therefore plots at the origin of Fig. 9.15. The problem arises when comparing
the laboratory test points to the sample downhole load points. Although the differ-
ential pressures—initial conditions = 0 psi, positive test = 10000 psi, negative test
= −10000 psi—are correct, the use of axial force as the abscissa displaces the load
points to the left. For example, the initial conditions are no longer at the origin of the
coordinate axes. The performance ellipse and the downhole conditions to which it is
being compared are not reflecting the same load state.

Fig. 9.15 is accurately reflecting the variables it was asked to plot—there is nothing
wrong with the underlying calculations. Likewise, the evaluation envelope accurately
depicts the loads to which the connection was or will be tested. The issue is that the
two presentations involve loads that differ by 15000 psi hydrostatic pressure. Inasmuch

36 These axes are also employed in the API Spec 11D1 [55] presentation of an accessory envelope. Some
embodiments of this presentation may rotate the figure 90◦ counterclockwise.
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Figure 9.16 Connection evaluation envelope plotted with the von Mises yield criterion expressed in
terms of SZZ + pi. The tube body ellipse is shown as a dashed curve and follows Fig. 6.13. Vertices of
the envelope labeled A–H correspond to the points in Table 9.1.

as (a) the emphasis of the plot is material yield and (b) material yield is independent of
hydrostatic pressure, the two load states should be compatible. The fact that they are not
can, as discussed in Section 6.3.4.3 of Chapter 6, be traced to the fact that the axes of
Figs. 6.14 and 9.15 do not admit a complete picture of three-dimensional yield.

In contrast to Fig. 9.15, Figs. 9.16 and 9.17 accurately portray the relation between
the laboratory test of the connection in a surface experiment and the loads to which the
connector will be subjected in the downhole environment. The initial condition for the
downhole environment is not offset from the surface initial condition, indicating both
are benign points with respect to material yield.

Given D, t and fy, the condition of a tubular at surface conditions (initial p = 0
everywhere) and downhole conditions at the string bottom (initial p is the hydrostatic
pressure of the surrounding fluid column) will, from the perspective of yield, be the
same. This statement relies on the assumption that yield of a crystalline metal is inde-
pendent of the mean stress, which in this case is the local hydrostatic pressure. Provided a
tube at the two locations—surface and downhole—is subjected to the same increments
of pressure (above or below hydrostatic) the equivalence vis-á-vis yield will remain.
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Figure 9.17 Connection evaluation envelope plotted with the von Mises yield criterion expressed
in terms of effective stress. The tube body ellipse is shown as a dashed curve and follows Fig. 6.11.
Vertices of the envelope labeled A–H correspond to the points in Table 9.1.

Two final, qualifying comments are in order:
• For a connector the equivalence in stress state (i.e., hydrostatic) to that of the tube

body is close, but not exact. Stresses associated with assembly in the threaded region,
particularly if the thread profile is tapered, will distort the stress state applicable to
a simple tube. The presentations of Figs. 9.16 and 9.17 are still preferred. Fig. 9.15
implies that if one ran the tubular string deep enough, the bottom connection
would structurally yield in a hydrostatic state of stress.

• The advantage of Figs. 9.16 and 9.17 over Fig. 9.15 is directly related to the for-
mers’ ability to accurately capture material yield. As is the case with many casing
and tubing proprietary connections, should any portion of the part’s performance
envelope be governed by a limit state other than material yield, further adjustment
of the load vs. envelope presentation may be necessary to allow simultaneous display
of both laboratory and downhole conditions. This latter issue does not usually exist
in the case of accessories. The vast majority of assemblies and subassemblies of an
accessory are designed based on their resemblance to a thick-walled tube.



CHAPTER 11

Length Change and Axial Force

11.1. INTRODUCTION

Axial load resistance, in a manner similar to internal pressure resistance, is an integral
part of the triaxial yield calculation and therefore does not necessitate a separate treat-
ment. Axial load itself, however, is another matter. The axial load, once calculated, can
produce significant side effects.

A recurring calculation in tubular design involves the determination of the effect
of environmental change—internal pressure, external pressure, temperature—on the
loads to which the tubular is subjected. These changes can affect the axial traction,
and through the axial stress, affect closeness to yield (Chapter 6), resistance to internal
pressure (Chapter 7), collapse resistance (Chapter 8) and the (bending) stresses associated
with column stability (Chapter 10). The problem is one of interaction. The pressure and
temperature changes that alter the axial stress thereby alter the resistance of the tubular
to the initiating changes. In the worst case of multiple fluids and a tapered tubular string,
solution of this problem can be one of trial-and-error, particularly if column buckling is
involved. Here, we will leave those calculations to software and focus on understanding
the pertinent mechanics with simpler examples.

11.2. LENGTH CHANGE VERSUS AXIAL FORCE

Consider a weightless tube suspended vertically with its lower end free to elongate or
shorten. For reasons we shall discuss momentarily, a change in the tube’s environment—
for example, its temperature is increased—will induce a length change but no axial force.
Now consider that same tube whose lower end is constrained from axial movement. If
the same environmental change is applied to the tube, its length will not change, but an
axial force will be induced.

This behavior is embedded in equations we have already visited. Consider, for ex-
ample, the relation between stress and strain for an elastic body presented in Eq. (5.25),
reproduced here in its one-dimensional form as

Ĕ11 = 1
E

�11 + αT (T − T0) . (11.1)

In the first instance we discussed, a free body diagram will show that �11 = 0. If we
increase the temperature, then Eq. (11.1) becomes

Ĕ11 = αT (T − T0) , (11.2)

Elements of Oil and Gas Well Tubular Design
DOI: 10.1016/B978-0-12-811769-9.00011-6

Copyright © 2018 Elsevier Inc.
All rights reserved. 315

https://doi.org/10.1016/B978-0-12-811769-9.00011-6


316 Elements of Oil and Gas Well Tubular Design

so that an increase in temperature causes the tube to elongate, i.e., Ĕ11 > 0.
Now consider the second instance sighted when both ends of the tube are con-

strained. In this case, Ĕ11 = 0 and Eq. (11.1) becomes

0 = 1
E

�11 + αT (T − T0) , �11 = −αTE (T − T0) , (11.3)

and an increase in temperature causes the tube to go into compression, i.e., �11 < 0,
with no change in length.

One final point is important to future discussion. Comparing Eqs. (11.2) and (11.3),
when the tube is constrained, the stress produced in the constrained instance has the
same value as it would if we had performed the following two steps:
1. Remove the constraint at the lower end of the tube and allow the tube to elongate

(with a strain given by Eq. (11.2)), and then
2. Force the tube back to its position of no strain by applying a (compressive) stress

equal to the value given in Eq. (11.3).
That is, when a number of environmental changes are acting to alter the axial stress state
in a constrained tubular, we may compute the stress generated by first computing the
potential length change from all environmental sources and then computing the axial
traction necessary to push the tube back to a position of zero length change.

11.3. SOURCES OF LENGTH CHANGE

In computing length change, we will typically be integrating the effect of a local change
environment over the length of the tubular

�L =
∫ L2

L1

Ĕtt(s)ds, (11.4)

where Ĕtt is the normal strain along the axis of the tube. The interval L1 to L2 is an
interval in the well bounded by at least one constraint. If the other end is free, as is the
case of tubing in a polished bore receptacle, this is the sole calculation. If both ends are
constrained, as with tubing integral to or latched to a packer or with cemented casing,
determination of the length change is followed by a second calculation to determine
the axial force.

Focusing on length change only for the moment, if the strain is a linear function of
environmental parameter p, that is, Ĕtt(s) = a + bp(s), where a and b are constants, then

�L =
∫

L
Ĕtt(s)ds =

∫
L

[
a + bp(s)

]
ds = aL + b

∫
L

p(s)ds, (11.5)
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where L = L2 − L1. Since we can define the average value of a parameter that depends
on s as

p̄ = 1
L

∫
L

p(s)ds, (11.6)

using Eq. (11.6) in Eq. (11.5) gives

�L = aL + bp̄L = [
a + bp̄

]
L. (11.7)

An important limitation to the application of Eq. (11.7) involves that fact that s traces
measured depth, not vertical depth. Quantities such as temperature and pressure are
often defined by their dependence on vertical depth. To use Eq. (11.7) in a deviated
wellbore therefore requires recasting temperature/pressure as a function of measured
depth.

Of the various sources of length change/axial force change pertinent to tubular
design the following are prevalent.

11.3.1 Temperature
From Eq. (5.25), Ĕ11 = αT (T − T0) = αT�T . Assuming αT is constant, we may use
Eq. (11.7) with a = 0, b = αT and p(s) = �T(s) so that

�LT = αT�TL. (11.8)

To summarize Eq. (11.8):1

• an increase in the average temperature of an unrestrained tubular induces a length
increase, or, if the tubular is restrained at both ends, a compressive axial force;

• a decrease in the average temperature of an unrestrained tubular induces a length
decrease, or, if the tubular is restrained at both ends, a tensile axial force.

Eq. (11.8) only addresses the first half of each of the summary bullets. The constrained
conclusion was obtained from the discussion of Section 11.2.

11.3.2 Ballooning
In tubular design the term “ballooning” is associated with the effect of Poisson’s ratio
when loading a tube laterally with internal and external pressure. If we wish to examine

1 A question may arise regarding the �T term in Eq. (11.8)—does it represent change in average tem-
perature or average change in temperature? From Eq. (11.6), the change in average temperature can be
written as

�T = 1
L

[∫
L

T(s)ds −
∫

L
T0(s)ds

]
= 1

L

∫
L

[
T(s) − T0(s)

]
ds,

where the first set of integrals is the change in average T ’s and the solitary integral to the far right is the
average change in T . That is, the two expressions refer to the same quantity.
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the unrestrained length change associated solely with changes in internal and external
pressure, setting �zz = 0 in Eq. (5.53) yields

Ĕtt = −2ν

E
�pid2 − �poD2

D2 − d2 , (11.9)

and Ĕtt is linear in p(s) = �pi(s) with a = 0 and b = − 2ν
E

d2

D2−d2 and also in p(s) = �po(s)

with a = 0 and b = 2ν
E

D2

D2−d2 . Using Eq. (11.7), we can write

�LB = −2ν

E
�pid2 − �poD2

D2 − d2 L. (11.10)

To summarize Eq. (11.10):
• an increase in the average internal pressure of an unrestrained tubular induces a

length decrease, or, if the tubular is restrained at both ends, a tensile axial force;
• a decrease in the average internal pressure of an unrestrained tubular induces a length

increase, or, if the tubular is restrained at both ends, a compressive axial force;
• an increase in the average external pressure of an unrestrained tubular induces a

length increase, or, if the tubular is restrained at both ends, a compressive axial
force;

• a decrease in the average external pressure of an unrestrained tubular induces a
length decrease, or, if the tubular is restrained at both ends, a tensile axial force.

11.3.3 Shoulder
The term “shoulder” in this context refers to an area exposed due to a change in either
internal or external diameter, or both. Typical examples of shoulders are cross-overs and
the exposed cross-sectional area at the bottom of the tubular.2 Unlike the previous two
length changes, the length change due to a change in the (pressure) force on a shoulder
does not depend on change in average pressure but on change in local pressure at the
shoulder.

The governing equation for this length change shall prove useful not only here but
also later in this discussion. From Eq. (5.25) we have

Ĕtt = �L
L

= 1
E

�ft
A

, �LS = �ftL
EA

, (11.11)

where �ft is the change in axial load at the shoulder, and the A is a generic term for the
cross-sectional area. Examples of the forms Eq. (11.11) can take include the following:

2 Shoulders such as the axially exposed area of the coupling on a threaded connection are usually ignored,
since (a) the two axially exposed end areas on the top and bottom of the coupling are identical and (b) the
short length of the coupling means the two areas are exposed to essentially the same pressure change.
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• Consider a cross-over from a tube having diameters Du and du to a tube having di-
ameters Dl and dl, where the subscripts “u” and “l” stand for “upper” and “lower”,
respectively. Writing the exposed area so that positive pressure changes �pi and �po

result in an elongation of the tubulars above the cross-over

�LS =
[
�pi

(
d2

u − d2
l

) + �po
(
D2

l − D2
u

)]
L

E
(
D2

u − d2
u

) . (11.12)

• A special case of Eq. (11.12) occurs at the bottom of the string where, assuming a
close-ended string, Dl = dl = 0, and

�LS =
[
�pid2 − �poD2

]
L

E
(
D2 − d2

) , (11.13)

or, if the tube is open-ended, pi = po = p, and

�LS = �p
[
d2 − D2

]
L

E
(
D2 − d2

) = −�pL
E

. (11.14)

11.3.4 Buckling
When computing length change due to sources other than buckling, we assume a stable
tubular and integrate the tangential strain along its length. In the case of buckling, the
mechanism is similar, but the length change we pursue is actually the shortening of the
axis of the tube relative to its prebuckled state, that is, the axis about which it buckles.
Since the buckling displacement is lateral to this prebuckled axis, our goal is to uncover
the change in “axial” distance between the two ends of the tubular, which is not the
actual tangential strain in the buckled tube.

The problem is further complicated by the fact that there exist two successive config-
urations in the postbuckled state of a tubular—sinusoidal buckling and helical buckling.
Not only do all of these configurations admit a different calculation of buckling length
change, but a buckled tubular may also have a portion of its length buckled sinusoidally
and a portion buckled helically. Section 10.2.3 of Chapter 10 defines the boundaries
between these two configurations.

11.3.4.1 Length change when sinusoidally buckled
For portions of the string where fch < feff < fcs the tubular is sinusoidally buckled. In
a detailed study of sinusoidal buckling Mitchell [131,137,125] provides an answer for
the length change due to sinusoidal buckling by curve fitting numerical results. The
recommended formula is

�LBu = − r2
c

4EIweff cos θ

(−feff 2 + fcs
) (−0.3771feff 2 + 0.3668fcs

)
, (11.15)



320 Elements of Oil and Gas Well Tubular Design

where feff 2 is the effective force at the more established end of the sinusoid (the end
furthest from the neutral point), and fcs is the effective force at the point of initiation
of sinusoidal buckling. The (algebraic) minimum value feff 2 can assume is fch, at which
point the length change calculation should follow Section 11.3.4.2 addressing helical
buckling.

11.3.4.2 Length change when helically buckled

For portions of the string where feff < fch the tubular is helically buckled, and we may
eliminate the helical pitch ph from Eqs. (10.83) and (10.86) [58] as

�LBu (sh)
L

= r2
c feff
4EI

. (11.16)

For the general case when feff is a function of length along the helix,

�LBu = r2
c

4EI

∫ L2

L1

feff (sh)dsh, (11.17)

where sh is length along the buckled helical path measured from either the neutral point
(vertical well) or from the transition from a sinusoidal to a helical configuration. In most
instances, sh and the wellbore measured depth coordinate as sufficiently close that we
may consider them interchangeable.

For the global material coordinate system dZ = t · e3dsh, so that from Eq. (10.4) we
have

feff (sh) = feff 0 −
∫ sh

0
weff cos θ dsh. (11.18)

If the hole section is straight and single fluids exist inside and outside a tubular of
constant cross-section, then

feff (sh) = feff 0 − weff cos θ sh, (11.19)

and we can, using the change of variables dsh = − dfeff
weff cos θ

, rewrite Eq. (11.17) as

�LBu = − r2
c

4EIweff cos θ

∫ feff 2

feff 1

feff dfeff = −
r2
c

(
f 2
eff 2 − f 2

eff 1

)
8EIweff cos θ

. (11.20)

Eq. (11.20) is applicable to helical buckling in straight sections of hole with con-
stant tubular dimensions (and material) and with single fluids inside and outside. As
an approximation, a more complex environment can be addressed by segmenting the
wellbore into sections where Eq. (11.20) is applicable.
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11.3.5 Self-weight
This length change is rarely used as it requires a change in the disposition of the tubular
string relative to the direction of the gravity field. As the most common choice for the
initial condition in a design problem is with the tubular already installed in the wellbore,
there will be no change is its disposition to gravity. A notable exception to this rule is
a stretch calculation (see Section 11.4) when the tubular begins the calculation lying
horizontally on the rack and ends the calculation suspended in the wellbore.

From Eq. (5.112) we get

dft
ds

−κ fn +qt = d
ds

∫
As

�ttdA−κ fn +wa (t · e3) = d
ds

∫
As

�ttdA−κ fn +wa cos θ = 0, (11.21)

where we have set the weight per length of the tubular as the only contributor3 to the
distributed axial force q = wae3, and θ is the inclination of the wellbore tangent t from
downward vertical,4 i.e., cos θ ds = dZ. If we ignore the threaded connection, we can
write wa = g

gc
ρAs, but here we choose to retain wa to accommodate a specified mass per

length value.
If we use Eq. (5.101) in the first term in Eq. (11.21), then

d
ds

(∫
As

�ttdA
)

= E
d
ds

(∫
As

[
Ĕtt0(s) + yκ

]
dA

)

= E
d
ds

⎛
⎜⎜⎜⎝Ĕtt0(s)As + κ

∫
As

ydA
︸ ︷︷ ︸

=0, see Eq. (5.104)

⎞
⎟⎟⎟⎠ (11.22)

= EAs
dĔtt0(s)

ds
.

With Eq. (11.22), Eq. (11.21) becomes

EAsdĔtt0(s) − κ fnds + wa cos θ ds = 0, (11.23)

or

Ĕtt0(s) = 1
EAs

[∫
s
κ fnds − wa

∫
s
cos θ ds

]
. (11.24)

3 Ignoring axial friction as we have implies either (a) all friction is nonaxial, as is the case when rotating off
bottom, or (b) the tube/wall contact is assumed frictionless.

4 Sign convention is important and a bit confusing. If we are traveling along ds from the bottom or deeper
end of the tubular string to its top such that ds is directed in the general direction of decreasing X3 = Z,
then cos θ = dZ

ds ≤ 0. If, on the other hand, we choose to travel from the top of the tubular to its bottom,

then cos θ = dZ
ds ≥ 0 as expected.
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Table 11.1 Stretch example—initial and final states
Variable Initial Finala Change (�)
Ttop 70 70 0
Tbot 70 70 + 1.1 × 10.000

100 = 180 110
T̄ 70 70+180

2 = 125 55
ptop 0 0 0
pbot 0 0.052 × 10 × 10000 = 5200 5200
p̄ 0 0+5200

2 = 2600 2600
a 0.052 psi

ft ppg is a convenient conversion factor.

In writing Eq. (11.24) with Ĕtt0(0) = 0, we have implicitly assumed that the integration
begins at the bottom of the string. Integrating Eq. (11.24) and recognizing that (if ds is
directed “upward”) cos θ ≤ 0 yields

�LW =
∫

L
Ĕtt0(s)ds = 1

EAs

∫
L

{∫
s
κ fnds − wa�Z(s)

}
ds, (11.25)

where �Z is the change in vertical distance corresponding to s. As a simple example, if
the wellbore is straight (κ = 0) and vertical (cos θ = −1) then �Z(s) = −s and Eq. (11.25)
reduces to

�LW = wa

EAs

∫
L

s ds = waL2

2EAs
, vertical wellbore. (11.26)

11.4. EXAMPLE PROBLEM—STRETCH

A 5.500 in., 20 lbm
ft (0.361 in. wall thickness) tubing string is run in a straight, vertical

wellbore to 10000 ft—see Fig. 11.1. The tubing is run in a 10 ppg completion fluid.
The surface temperature is 70 °F and the temperature gradient is 1.1 °F

100 ft . Compute
the length change of the tubing from its horizontal position on the surface rack to its
vertical position in the wellbore.

The initial state of the tubing is its surface configuration—horizontal at 70 °F and
exposed to zero pressure. The final state of the tubing is hanging under its own weight
in the downhole pressure and temperature environment.

11.4.1 Preliminary calculations
A number of preliminary calculations are in order. In particular, the initial and final
states can be summarized as in Table 11.1. The common units chosen for this problem
are lbf, in. and °F. All entries in the table are expressed in these common units to ease
substitution in the length change formulas.

For steel γs = 0.2836 lbm
in3 , αT = 6.9 × 10−6 1

°F , E = 30 × 106 psi and ν = 0.3.
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Figure 11.1 Schematic for length change example calculation. A tubing string originally lying hori-
zontally at the well site is lowered into a vertical wellbore; T = top, B = bottom.

11.4.2 Length changes
The following length changes are pertinent to this problem.

11.4.2.1 Temperature change

The formula for length change associated with average change in temperature along the
free length of the tubular is Eq. (11.8). For the example problem, from Table 11.1 we
have

�LT = 6.9 × 10−6 1
°F

× 55 °F ×
(

12
in
ft

× 10000 ft
)

= 45.5 in. (11.27)

11.4.2.2 Ballooning

The formula for length change associated with average change in internal and external
pressure along the free length of the tubular is Eq. (11.10). For the example problem,
the internal and external pressures are equal in both the initial and final states, so that
�pi = �po = �p and Eq. (11.10) can be rewritten as

�LB = 2ν

E
�pL. (11.28)
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From Table 11.1 we obtain

�LB = 2 × 0.3
30 × 106 psi

× 2600 psi ×
(

12
in
ft

× 10000 ft
)

= 6.24 in. (11.29)

11.4.2.3 Exposed shoulder at bottom of string

The formula for length change associated with the local change in a concentrated force
acting on the tubular is Eq. (11.14). For the example problem, from Table 11.1 we have

�LS = −5200psi × (
12 in

ft × 10000 ft
)

30 × 106 psi
= −20.8 in. (11.30)

11.4.2.4 Buckling

In order for the tube to experience a length change due to buckling, the tube must be
buckled. As illustrated in Section 10.2.4.1 of Chapter 10, an open-ended tube suspended
vertically in a fluid will not buckle provided the material of the tube is denser than the
fluid in which it is suspended. Therefore

�LBu = 0. (11.31)

11.4.2.5 Self-weight

The formula for length change associated with a tube’s self-weight for a straight, vertical
wellbore is Eq. (11.26). Since we have been provided no information on a connection,
setting wa = γsAs yields

�LW = γsL2

2E
. (11.32)

For this example problem,

�LW = 0.2836 lbm
in3

(
12 in

ft × 10000 ft
)2

2 × 30 × 106 psi
= 68.1 in. (11.33)

11.4.2.6 Net length change

The net length change of the tubing string due to stretch is the algebraic sum of the
results of Eqs. (11.27), (11.29), (11.30) and (11.33), namely

�LTotal = �LT + �LB + �LS + �LW = 45.5 + 6.24 − 20.8 + 68.1 = 99.0 in. (11.34)

The following observations are pertinent to this example stretch calculation:
• As suggested in Section 11.3.5, this is the sole time in this book that the length

change due to self-weight �LW will be calculated. In all other problems involving
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changes in the pressure/temperature environment the initial condition will corre-
spond to a time after the tubular has been run into the wellbore.

• The length changes due to temperature change and ballooning, �LT and �LB,
respectively, accumulate effects that are occurring along the entire length of the
string. Their values therefore depend on averages that account for �T ’s and �p’s
occurring everywhere along the tubular.

• The ballooning length change is, at first view, slightly counterintuitive. If the same
fluid density is both inside and outside the tubular, why is there a ballooning effect?
A review of Eq. (11.10) indicates that changes in internal pressure are weighted by
d2, whereas external pressure changes are weighted by D2. Equal pressure changes
inside and outside the tubular will favor the external pressure change and result in a
lengthening of the tubular.

• The shoulder length change �LS accounts for the effects of a local external trac-
tion at the bottom of the string. It therefore uses the local pressure change at that
location, not an average.

• Reviewing the formulas used in this calculation, Eqs. (11.8), (11.28), (11.14) and
(11.32), respectively, none of these equations depends on the cross-sectional area of
the tube. That is, the calculation is actually applicable, not only to a 5.500 in., 20 lbm

ft
tubular, but to any tubular, provided the tubular is run in the same environment and
is of the same material and length.5

• A stretch table or calculator may not include the effect of temperature. In this
example calculation temperature change accounts for almost one-half the stretch of
the tubular, which suggests temperature effects should not be ignored.

11.4.2.7 Excursion—computing intermediate axial force

It will often be necessary in design calculations to compute the axial force at a depth
between the two ends of the tubular. For example, one may wish to compute axial
load to check the integrity of a threaded connection or to adjust collapse resistance for
the presence of tension. To illustrate the process, we will use the tubular in the current
stretch problem. Assume we wish to know the tension in the tubular string at a depth
of 7500 ft immediately after the string is run in the wellbore.

As preliminary calculations we need the cross-sectional area of the tube and its plain
end weight per length. The cross-sectional area is

As = π

4
[
(5.500 in.)2 − (5.500 in. − 2 × 0.361 in.)2] = 5.828 in2.

5 Often published stretch tables report a number denoted the “stretch constant” that is associated with a

particular size and wall thickness. The stretch constant is usually an expression of Eq. (11.11), �LS = ftL
EA ,

for example, in terms of inches stretched when a 1000 ft tubular is loaded with 1000 lbf.
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The plain end weight is6

wa = γsAs = 0.2836
lbf

in3 × 5.828 in2 × 12
in
ft

= 19.83
lbf

ft
.

Fig. 11.2 illustrates the calculation of intermediate axial force. We create a free body
diagram using only the portion of the tubular string we wish to examine—in this in-
stance, the lower 2500 ft. The three forces acting on the free body are:
• The force due to hydrostatic pressure acting on the shoulder (exposed area) at the

bottom of the string fbot. This is the same force used in the calculation above of
length change due to a shoulder, and its value is

fbot = pbotAs = 5200psi × 5.828 in2 = 30306 lbf. (11.35)

• The (air) weight of tubular hanging below the point of investigation

fW = waL = 19.83
lbf

ft
× 2500 ft = 49575 lbf. (11.36)

• The internal traction ft exposed when we imaginarily cut the tubular at 7500 ft to
produce the free body diagram.
Summing forces in the diagram, arbitrarily choosing up as positive, yields

ft − fW + fbot = 0, ft = fW − fbot = 49575 lbf − 30306 lbf = 19269 lbf, (11.37)

which is the axial force internal to the tubular but external to the free body diagram,
supporting the portion of the string below 7500 ft.

The answer given in Eq. (11.37) is not the answer one would get by computing the
buoyed weight of tubular string below the point of interest.7 Archimedes’ principle is
not applicable when computing the intermediate internal axial force because the entire
tubular of interest is not submerged in fluid. As indicated in Fig. 11.2, the location of
ft is internal to the tubular cross-section and therefore not exposed to fluid pressure. To
convince oneself of this point, consider a location in the string that is just a fraction of
an inch above the bottom of the tubular. We know that at that location the tubular is in
compression and the axial force is very close in value to −fbot. Yet if we were to calculate
the axial force at that same point using the buoyancy factor, the answer would be a small

6 The specified mass of a joint of 5.500 in. pipe with 0.361 in. wall thickness is 20.00 lbm
ft . The specified

value includes the weight removed to machine two pins on the tube and the weight added when a
coupling is attached. Further, when the first calculations of specified mass were made, the length of a
standard joint was 20 ft.

7 The author was first exposed to the importance of this paragraph to tubular design calculations in a class
taught by Charles M. Prentice of Prentice Training Company.
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Figure 11.2 The importance of constructing a free body diagram to compute axial force.

positive number. The only place in the string where a calculation using buoyancy factor
will provide the correct answer is the top of the string, since there the “pressure” acting
on the surface associated with ft is zero.

11.5. EXAMPLE PROBLEM—HYDRAULIC-SET PACKER

Once landed in the wellhead, the tubing of Section 11.4 with internal diameter 4.778 in.
is fixed at 9500 ft by activating the slips of a packer whose setting procedure is charac-
terized as “hydraulic-set”—see Fig. 11.3. The pressure at which the slips engage the
adjacent casing is 2500 psi; the final pressure of the packer setting sequence is 5000 psi.
The plug at which the internal pressure acts is at 9700 ft. Determine the length change
and associated increment in axial load associated with the packer setting sequence.

11.5.1 Preliminary calculations
A hydraulic setting sequence consists of setting a plug in the tubing at a depth greater
than or equal to that of the packer. The tubing is then internally pressured, activating the
packer slips and “attaching” the packer to the casing as the slips engage. Length changes
associated with activating the slips induce an incremental axial force in the tubing that
remains when the setting pressure is removed.
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Figure 11.3 Schematic for hydraulic-set packer example calculation.

For future reference, the internal cross-sectional area of the tubing is

Ai = π

4
d2 = π

4
(4.778 in.)2 = 17.930 in2, (11.38)

and the external cross-sectional area of the tubing is

Ao = π

4
D2 = π

4
(5.500 in.)2 = 23.758 in2. (11.39)

In this instance, we are only interested in the incremental changes in the state of
the tubing since it was hung in the wellhead. The initial state is therefore equivalent
to the final state in the stretch problem of Section 11.4. The final state corresponds to
the initial engagement of the packer slips when the tubing stops moving relative to the
casing. This implies that the final pressure in the packer setting sequence plays no role
in the axial force induced in the tubing. Essentially, once the packer slips engage the
tubing above the packer goes through a cycle—2500 psi → 5000 psi → 2500 psi—with
the same initial and final states. Although force increments will be generated in the
tubing above the packer during the excursion from 2500 psi to 5000 psi, those force
and length changes will be lost as the pressure returns from 5000 psi to 2500 psi. Tubing
above the packer regains the state associated with slip contact with the casing. Once
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Table 11.2 Hydraulic-set packer example—initial and final states
Variable Initial Finala Change (�)
Ttop 70 70 0
Tbot 180 180 0
T̄ 125 125 0
pi−top 0 2500 2500
pi−bot 0.052 × 10 × 9500 = 4940 4940 + 2500 = 7440 2500
p̄i 2740 4970 2500
po−top 0 0 0
po−bot 0.052 × 10 × 9500 = 4940 4940 0
p̄o 2740 2740 0
a 0.052 psi

ft ppg is a convenient conversion factor.

the setting pressure is removed, tubing below the packer returns to the state before the
packer setting operation began.

The initial and final states for this problem are summarized as in Table 11.2. The
common units chosen for this problem are lbf, in. and °F. All entries in the table are
expressed in these common units to ease substitution in the length change formulas.
The “bottom” of the string is, for this problem, 9500 ft, the depth of the packer.

11.5.2 Length changes
The following length changes are pertinent to this problem.

11.5.2.1 Ballooning

The formula for length change associated with average change in internal and external
pressure along the free length of the tubular is Eq. (11.10). From Table 11.2 we get

�LB = − 2 × 0.3
30 × 106 psi

× 2500psi × 17.930 in2

23.758 in2 − 17.930 in2 ×
(

12
in
ft

× 9500 ft
)

= −17.536 in.

(11.40)

11.5.2.2 Exposed shoulder at depth of plug

The formula for length change associated with the local change in a concentrated force
acting on the tubular is Eq. (11.11). For the example problem, the only concentrated
axial force is that due to the internal setting pressure acting on the plug at 9700 ft. From
Table 11.2 we have

�LS = 2500psi × 17.930 in2 × 12 in
ft × 9500 ft

30 × 106 psi × (
23.758 in2 − 17.930 in2

) = 29.227 in. (11.41)

Note that Eq. (11.41) uses 9500 ft for L, not 9700 ft.
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11.5.2.3 Net length change

The net length change of the tubing string above the packer due to the packer setting
procedure is the algebraic sum of the results of Eqs. (11.40) and (11.41), namely

�LTotal = �LB + �LS = −17.536 in. + 29.227 in. = 11.691 in. (11.42)

11.5.2.4 Excursion—combining ballooning and exposed shoulder effects

Examination of Eqs. (11.10) and (11.11) indicates that for the case of the hydraulic-set
packer

�Lhydraulic = �LB + �LS = −2ν

E
�piAiL
Ao − Ai

+ �piAiL
E (Ao − Ai)

= 1 − 2ν

E
�piAi

Ao − Ai
L, (11.43)

where we recognize that in this instance �pi = �pi. Since 1−2ν > 0, one should expect
an incremental tension associated with setting a hydraulic packer.

11.5.3 Incremental axial force
At this point in the packer setting sequence the internal pressure8 has been applied
with an ensuing length change of 11.691 in. As the internal pressure is lowered from
2500 psi to 0 psi the inclination of the tubing is to recover this length change. This is
not possible, however, due to the restraint of the packer slips. The effect is identical
to a scenario where, with an applied axial force, one stretches the tubing 11.691 in.
This axial force is determined by solving Eq. (11.11) for �ft, where now �ft is an axial
tension rather than a pressure applied at an internal plug

�ft = EAs�LTotal

L
, (11.44)

or

�ft = 30 × 106 psi × (
23.758 in2 − 17.930 in2

) × 11.691 in.

12 in
ft × 9500 ft

= 17930 lbf. (11.45)

This incremental tension of 17930 lbf is a permanent prestress in the tubing applicable
to the remainder of the life of the string.

8 Recall that the net effect of the packer setting sequence can be fully realized by only considering the pres-
sure necessary to initiate contact between the packer slips and the adjacent casing, i.e., restrain movement
of the packer.
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Figure 11.4 Schematic for hydrostatic-set packer example calculation.

11.6. EXAMPLE PROBLEM—HYDROSTATIC-SET PACKER

We wish to work the same problem as Section 11.5, only this time the tubing is fixed
at 9500 ft by activating the slips of a packer whose setting procedure is characterized
as “hydrostatic-set”—see Fig. 11.4. The pressure at which the slips engage the adjacent
casing is 2500 psi; the final pressure of the packer setting sequence is 5000 psi. Determine
the length change and associated increment in axial load associated with the packer
setting sequence.

11.6.1 Preliminary calculations
A hydrostatic setting sequence consists of pressuring the entire production tubing/pro-
duction casing cavity, activating the packer slips and “attaching” the packer to the casing
as the slips engage. No plug is required in the tubing. Once more, length changes as-
sociated with activating the slips induce an incremental axial force in the tubing that
remains when the setting pressure is removed.

The internal and external cross-sectional areas of the tubing are identical to those in
the calculation in Section 11.5, Ai = 17.930 in2, Ao = 23.758 in2.
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Table 11.3 Hydrostatic-set packer example—initial and final states
Variable Initial Finala Change (�)
Ttop 70 70 0
Tbot 180 180 0
T̄ 125 125 0
pi−top 0 2500 2500
pi−bot 0.052 × 10 × 9500 = 4940 4940 + 2500 = 7440 2500
p̄i 2740 4970 2500
po−top 0 2500 2500
po−bot 0.052 × 10 × 9500 = 4940 4940 + 2500 = 7440 2500
p̄o 2740 4970 2500
a 0.052 psi

ft ppg is a convenient conversion factor.

In this instance, we are only interested in the incremental changes in the state of the
tubing since it was hung in the wellhead. The initial state is, as with the hydraulic-set
packer, equivalent to the final state in the stretch problem of Section 11.4. The final
state corresponds to the initial engagement of the packer slips when the tubing stops
moving relative to the casing. In a manner similar (but not identical) to the hydraulic-set
packer, portions of the string above and below the packer traverse a cycle from setting
pressure to final pressure back to setting pressure, and any length change and axial force
associated with the setting-to-final pressure cycle disappears. Tubing above the packer
regains the state associated with slip first contact with the casing. Once the setting
pressure is removed, tubing below the packer returns to the state before the packer
setting operation began.

The initial and final states for this problem are summarized as in Table 11.3. The
common units chosen for this problem are lbf, in. and °F. All entries in the table are
expressed in these common units to ease substitution in the length change formulas.
The “bottom” of the string is, for this problem, 9500 ft, the depth of the packer.

11.6.2 Length changes
The following length changes are pertinent to this problem.

11.6.2.1 Ballooning

The formula for length change associated with average change in internal and external
pressure along the free length of the tubular is Eq. (11.10). For the example problem,
the average internal and external pressure increments are equal, so that �pi = �po = �p
and Eq. (11.10) can be rewritten as

�LB = 2ν

E
�pL. (11.46)
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From Table 11.3 we have

�LB = 2 × 0.3
30 × 106 psi

× 2500psi ×
(

12
in
ft

× 9500 ft
)

= 5.700 in. (11.47)

11.6.2.2 Exposed shoulder at bottom of tubing
The formula for length change associated with the local change in a concentrated force
acting on the tubular is Eq. (11.11). For the example problem, the only concentrated
incremental axial force is that due to the applied setting pressure9 acting at the bottom
of the tubing but transmitted undiminished to the depth of the packer, ft = −�pbotAs,
a compression. Substituting this value of ft in Eq. (11.11) yields

�LS = −�pbotL
E

. (11.48)

From Table 11.3 we get

�LS = −2500psi × 12 in
ft × 9500 ft

30 × 106 psi
= −9.500 in. (11.49)

11.6.2.3 Net length change
The net length change of the tubing string above the packer due to the packer setting
procedure is the algebraic sum of the results of Eqs. (11.47) and (11.49), namely

�LTotal = �LB + �LS = 5.700 in. − 9.500 in. = −3.800 in. (11.50)

11.6.2.4 Excursion—combining ballooning and exposed shoulder effects
Examination of Eqs. (11.46) and (11.48) indicates that for the case of the hydrostatic-set
packer

�Lhydrostatic = �LB + �LS = 2ν

E
�pL − �pbotL

E
= −1 − 2ν

E
�pL, (11.51)

where �p = �p = �pbot is the applied surface pressure. Since 1 − 2ν > 0, one should
expect an incremental compression associated with setting a hydraulic packer.

11.6.3 Incremental axial force
At this point in the packer setting sequence the pressure10 has been applied with an
ensuing length change of −3.800 in. As the pressure is lowered from 2500 psi to 0 psi the

9 Here referred to as �pbot , where �pbot = �pi−bot = �po−bot .
10 Recall that the net effect of the packer setting sequence can be fully realized by only considering the

pressure necessary to initiate contact between the packer slips and the adjacent casing, i.e., restrain
movement of the packer.
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inclination of the tubing is to recover this length change. This is not possible, however,
due to the restraint of the packer slips. The effect is identical to a scenario where, with
an applied axial force, one compresses the tubing 3.800 in. This axial force is determined
by solving Eq. (11.11) for �ft, where now �ft is an axial tension rather than a pressure
applied at an internal plug

�ft = EAs�LTotal

L
, (11.52)

or

�ft = 30 × 106 psi × (
23.758 in2 − 17.930 in2

) × (−3.800)

12 in
ft × 9500 ft

= −5828 lbf. (11.53)

This incremental compression of −5828 lbf is a permanent prestress in the tubing appli-
cable to the remainder of the life of the string.

11.6.3.1 Buckling check
The calculation in Eq. (11.53) assumes that the only length changes associated with
response of the tubing as the setting pressure is released are those due to ballooning and
shoulder force. It is important to recognize, however, that is it possible for the tubing
above a hydrostatic-set packer to be buckled when the setting pressure is released.11 The
incremental, axial restrain force calculated in Eq. (11.53) may render the effective force
at the depth of the packer negative and thus buckle the tubing.

The initial axial force at the packer depth in the tubing following landing, but prior
to setting the packer is12

ft = −0.052
psi

ft ppg
× 10.0ppg × 10000 ft × (

23.758 in2 − 17.930 in2)

+ 20.00
lbf

ft
× (10000 ft − 9500 ft) = −20306 lbf. (11.54)

Including the incremental axial force from the installation of the hydrostatic-set packer,
the axial force following packer installation is −20306 lbf − 5828 lbf = −26134 lbf and
the effective force is

feff = −26134 lbf − 0.052
psi

ft ppg
× 10.0ppg × 9500 ft

(
17.930 in2 − 23.758 in2)

= 2656 lbf. (11.55)

11 Although the lower end of the tubing will be in compression during the application of the setting pressure,
the tubing will not buckle. At all times, the internal and external pressure at the bottom of the tubing
are identical so that feff = ft − (piAi − poAo) is feff = −p(Ao − Ai) − (pAi − pAo) = 0, that is, the neutral
point is at the bottom of the string.

12 This calculation is identical to that discussed in Section 11.4.2.7.
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Since feff is positive at the packer, following the setting sequence for this packer the pro-
duction tubing will not be buckled. If the tubing were buckled at the packer, it would
be necessary to perform a (possibly trial-and-error) calculation along the following lines:
1. From Eq. (11.55) and Section 11.3.4, calculate the length due to buckling.
2. Add this buckled length to the total length change in Eq. (11.50).
3. Compute a new axial force corresponding to this length change using Eq. (11.52).
4. Use the newly calculated axial force ft to repeat the buckling check.
Repeat the above process until a suitable tolerance is reached between two successive
calculations.



CHAPTER 12

Design Loads
12.1. INTRODUCTION

To this point the focus has been on the response and resistance of a tubular to imposed
internal pressure, external pressure, temperature and axial force. Only brief attention
has been paid to the origin of such loads in an oil or gas well. The purpose of this
chapter is to bring closure to the issue of load definition by offering insight into the
well operations or environment from which a set of pressure, temperature and force
distributions may develop. Such a combination of loads is termed a load case.

Internal and external pressure are typically defined by either a surface or bottomhole
pressure and the fluid gradient that is to be, respectively, either added or subtracted
to yield a local pressure value. Both the absolute values of the internal and external
pressures and the changes they represent from a defined initial state are important.

Similarly with temperature, both the absolute value of the temperature and its
change from the initial state is considered. The former usually has a material effect,
such as lowering the yield stress of the tubular or influencing the final strength of the
cement sheath, whereas the latter is indirectly related to axial force through the tubular’s
attempt to change dimensions with the temperature change.

Axial loads may be distributed (gravity) or concentrated (e.g., overpull).
The sections to follow segregate the well tubulars into three categories—surface and

intermediate casing, production casing or production tubing. These categories serve as
boundaries in differentiating the types of loads one can expect in a tubular’s service life.
Some overlap and exceptions can be expected—for example, the lower end condition
on tubing in a so-called “tubingless” completion—but the general segregation below
seems reasonable.

The last section of the chapter discusses design and safety factors. For deterministic
design, this factor is used to emulate uncertainty in either the load or resistance side of
the design relation.

12.2. THE IMPORTANCE OF TRIAXIAL YIELD

Early designs, particularly those performed by hand, checked three tube body resistance
values—minimum internal yield pressure, axial yield and collapse resistance—and the
connection joint strength in tension. Corresponding load values of internal pressure, ex-
ternal pressure and axial load were constructed. Such an approach avoids the complexity
of multidimensional stress analysis, purposing to keep the design simple at the cost of
accuracy. Further, loads involving changes from an initial state were rarely calculated.
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From previous discussions (see Chapter 11), however, we know that changes in pres-
sure and temperature affect the axial load, and in return the axial load affects both yield
and collapse resistance. That is, the quantities of pressure, temperature and axial load
cannot be so easily separated, either on the load or the resistance side of the design
equation. As a consequence, with regard to the tube body, we may combine consid-
eration of minimum internal yield pressure and axial yield into the single limit state
of triaxial yield. This allows us to properly assess the resistance of the tubular to the
interrelated loads to which it is subjected. We no longer ask if the tubular has fallen
short of an internal pressure design requirement or of an axial design requirement, but
rather we ask if any point in the tube cross section or along the tube’s length exceeded a
three-dimensional yield limit state. Our calculations are more involved but increase the
fidelity of the design.

We mention in passing that the simultaneous consideration of internal pressure and
axial load in collapse design is also important. In the case of collapse, however, the
design calculations are significantly complicated by consideration of a multiaxial stress
state. Solution using either a spreadsheet or special-purpose software is in order.

12.3. EXPLANATION OF LOAD CASE FIGURES

The chapter contains a table summary for each of the load cases described. In viewing
the tables the following notes are pertinent:
• All tables contain a figure (cf. Table 12.1), with the left-hand diagram plotting the

internal and external pressure profiles as a function of vertical depth.
• The right-hand diagram in each figure offers a schematic of the relative location

in the well of the tubular in focus. The focus tubular is accompanied by at least
one of its neighbors. For the production tubing, this is the production casing. For
casings, usually the previous string is depicted. The focus tubular is distinguished by
its wider, shaded thickness.

• The right-hand figure always depicts an offshore installation with, in most cases, all
tubulars returning to a surface (platform) datum marked as the rotary kelly bushing
(RKB).
• For onshore wells the mean sea level (MSL) indicator should be ignored and the

mudline (ML) should be treated as the local surface of the earth.
• For subsea completions and platforms with surface wellheads, not all tubulars re-

turn to the surface datum but may be terminated in a wellhead at the mudline. In
these instances, the hydrostatic pressure plotted in the left-hand figure is usually
assumed to be trapped when the seal assembly in the subsea wellhead is activated
while landing the tubular string. A similar comment applies when using the load
case table figures to design liners—the pressure at the liner top is the hydrostatic
head of a (running) fluid column from the surface datum to the top of the liner.
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• The ordinate of the left-hand plots is simply labeled “Depth.” The fluid gradients
are depicted as constant implying the wellbore is vertical. The plots are applicable
to deviated wellbores also, provided “Depth” is interpreted as vertical depth.

• The fluid densities indicated in the left-hand plots cover the majority of well scenar-
ios but should not be taken as proscriptive. Further, most fluid pressure distributions
are linear or piecewise linear implying a static fluid column. Proper adjustments
should be made in the case of a dynamic fluid condition, for example, interior to
the production tubing for the injection and production load cases.

• When possible the tubing load cases distinguish between completion fluid—the
fluid used to perform final completion operations prior to placing the well on
production—and packer fluid—the fluid which is placed in the production tubing
annulus after the completion is installed and which remains for the life of that tubing
installation.

• Particularly for tubing, the consideration of multiple versions of a load case is com-
mon. This is usually traced to scenarios which may occur at different times in the
life of the reservoir. A tubing designer may work with tens of load cases.

12.4. DETERMINATION OF PRESSURE DISTRIBUTION

The pressure distributions plotted in the load case summary tables of this chapter depict
the pressure as a piecewise linear function of vertical depth. Depending on the com-
pressibility of the fluid(s) in the column, that simplification may not be accurate. When
necessary the simple linear distributions of the tables should be replaced by the concepts
of this section.

12.4.1 Hydrostatic pressure
A drilling fluid is a combination of (usually) water, oil and weighting solids,1,2 where
for each constituent the mass density is a function of pressure and temperature. The
density of a hydrocarbon gas phase is likewise a function of p and T .

Fig. 12.1 depicts a fluid mass at rest in a larger body of fluid. The fluid mass has
surface area S, volume V , and is exposed to traction −pn due to local pressure that is
everywhere on S directed in the opposite sense of the local normal n and body force
per unit mass bf due to gravity. Static equilibrium requires that the vector sum of all
forces acting on the fluid mass vanish

1 Completion and packer fluids are usually single-phase and therefore special cases of the discussion to
follow.

2 One can also consider chemicals as an additional constituent [138,139]. Although chemicals are ignored
here, their inclusion is a straightforward extension of the derivations presented.
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Figure 12.1 Equilibrium of a static fluid mass in a larger body of fluid. As the fluid has no shear
rigidity all pressure forces are directed (in a negative sense) along the local normal to the surface of
the mass. Although depicted with a single vector, the body force is distributed over the entire volume
occupied by the mass.

∫
V

bf ρf dV +
∫

S
p (−n)dS = 0. (12.1)

Using Gauss’s theorem for a scalar (see Footnote 11 in Chapter 5), we may convert
the surface integral to a volume integral with the result

∫
V

bf ρf dV −
∫

V
∇pdV =

∫
V

(
bf ρf − ∇p

)
dV = 0. (12.2)

If Eq. (12.2) is to remain true for all volumes, its integrand must vanish, resulting in the
partial differential equation

bf ρf − ∇p = 0. (12.3)

For the case when bf is aligned with the X3-axis, bf = ge3 and Eq. (12.3) can be
written as an ordinary differential equation

dp
dX3

= g
gc

ρf , (12.4)

where ρf = ρ̂f (p,T) and gc has been added for unit conversion (see Section 1.4.1 of
Chapter 1). Provided the functional form of ρ̂f is known, Eq. (12.4) can be (perhaps
numerically) integrated to provide pressure distribution as a function of vertical depth.
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12.4.1.1 Solids-laden liquids

For drilling and completion liquid mixtures, we will first consider variable density mix-
tures3 and then derive the simpler model of a constant density mixture as a special case.
Consider a mixture of oil, water and solids4 that is defined by the volume percentages
of the constituents at an initial state. From the conservation of mass the density/volume
relation for the oil constituent is

χOiV ρOi = (χOiV + δVO) ρOf , (12.5)

where χ is the volumetric fraction of constituent per volume V in the initial state and
the subscripts O, i and f denote oil, the initial state and the final state, respectively.
We can write similar expressions for the water (subscript W ) and solid (subscript S)
constituents, namely

χWiV ρWi = (χWiV + δVW ) ρWf , (12.6)

χSiV ρSi = (χSiV + δVS) ρSf . (12.7)

The initial density of the drilling fluid is its mass divided by its initial volume

ρi = χOiVρOi + χWiVρWi + χSiVρSi

V
= χOiρOi + χWiρWi + χSiρSi. (12.8)

The final drilling fluid density is, from Eqs. (12.5)–(12.7),

ρf = ρiV
V + δVO + δVW + δVS

= ρi

1 + δVO
V + δVW

V + δVS
V

. (12.9)

Eq. (12.9) can also be written in terms of the volume fractions and densities of the
constituents. Solving for the ratios δVO

V , δVW
V and δVS

V in Eqs. (12.5)–(12.7), and then
substituting these results into Eq. (12.9) produces

ρf = ρi

1 + χO

(
ρOi
ρOf

− 1
)

+ χW

(
ρWi
ρWf

− 1
)

+ χS

(
ρSi
ρSf

− 1
) = ρi

χO
ρOi
ρOf

+ χW
ρWi
ρWf

+ χS
ρSi
ρSf

,

(12.10)

where we have used the fact that χO + χW + χS = 1.

3 This discussion closely follows the work of Sorelle et al. [140].
4 We use oil, water and solids because they characterize a conventional drilling fluid. The derivation,

however, is independent of the particulars on the individual constituents.
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Using Eq. (12.10) in (12.4), we can determine the hydrostatic pressure between any
two vertical depths Z1 and Z2 by

∫ p2

p1

(
χO

ρOi

ρOf
+ χW

ρWi

ρWf
+ χS

ρSi

ρSf

)
dp = g

gc

∫ Z2

Z1

ρidZ. (12.11)

Integrating Eq. (12.11) and simplifying yields

χOρOi

∫ p2

p1

dp
ρOf

+ χW ρWi

∫ p2

p1

dp
ρWf

+ χSρSi

∫ p2

p1

dp
ρSf

= g
gc

ρi (Z2 − Z1) . (12.12)

Eq. (12.12) readily lends itself to several special cases.

Incompressible solid

The solids normally used in drilling fluids are much less compressible than the con-
stituent liquids. If we treat the solid component as incompressible, then ρSf = ρSi is
constant, and the last integral in Eq. (12.12) becomes

(
p2 − p1

)
χS, which simplifies

Eq. (12.12) to

(
p2 − p1

)
(1 − χO − χW ) + χOρOi

∫ p2

p1

dp
ρOf

+ χW ρWi

∫ p2

p1

dp
ρWf

= g
gc

ρi (Z2 − Z1) . (12.13)

This is the relation derived in [140]. The solid constituent still contributes to the re-
lation, but only through (a) its volumetric fraction, χS = 1 − χO − χW , and (b) ρi (see
Eq. (12.8)).

Single fluid, no solids

For the case of a compressible packer fluid, we set χO = χS = 0 (which implies χW = 1)
and change the subscript W to PF (packer fluid) to avoid confusion with the previously
discussed water constituent of a drilling fluid. Eq. (12.12) simplifies to

∫ p2

p1

dp
ρPFf

= g
gc

(Z2 − Z1) . (12.14)

Eq. (12.14) is deceptively simple. The integral still involves the density function ρPFf =
ρ̂PFf (p,T), where both p and T are functions of X3.

Incompressible constituents

If all of the fluid/solid mixture components are assumed to be incompressible, then
ρOf = ρOi, ρWf = ρWi and ρSf = ρSi are all individual constants, and the three integrals
take the form

(
p2 − p1

)
χ∗, where ∗ is O, W or S. Eq. (12.12) simplifies to

(
p2 − p1

)
(χO + χW + χS) = p2 − p1 = g

gc
ρi (Z2 − Z1) . (12.15)
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That is, the difference in pressures across Z2 − Z1 is simply the vertical depth times the
(constant) mixture density. The volumetric fractions of the constituents still contribute
to the calculation through their role in the calculation of ρi (see Eq. (12.8)).

Single incompressible fluid

This is a special case of Eq. (12.15) where χO = χS = 0 (which implies χW = 1). We
again change the subscript W to PF (packer fluid) to avoid confusion with the water
constituent. Eq. (12.15) simplifies to

p2 − p1 = g
gc

ρPF (Z2 − Z1) . (12.16)

Eq. (12.16) is used extensively in this book. The assumption of a single, incompressible
fluid allows us to retain the essence of the physics of the hydrostatic pressure calculation
for a liquid without resorting to the complexities of a numerical solution.

12.4.1.2 Gases

The equations of state of gases are sufficiently different from liquids to require a separate
treatment for the hydrostatic pressure of a gas column.

Ideal gas

Starting with the simplest equation of state—that for a perfect or ideal gas—we write

pv = RT , (12.17)

where the specific volume v is the reciprocal of density, and the individual gas constant
R has a value that depends on the units chosen (through its dependence on the universal
gas constant Ru—see Section 1.4.3 of Chapter 1) and the molecular mass M of the
gas in question. For USC units, R = Ru/M = 1545.349 lbf ft

lbm R/M, and for SI units,
R = Ru/M = 8314.472 N m

kg K/M.
If we multiply Eq. (12.17) by the mass m, then

pV = mRT , (12.18)

where V is the gas volume.
Substituting Eq. (12.17) into (12.4) and recalling that v = 1/ρ, we can write

∫ p2

p1

dp
p

= ln p
∣∣p2

p1
= ln

p2

p1
= g

gc

1
R

∫ Z2

Z1

1

T̂(Z)
dZ. (12.19)

Given the temperature distribution as a function of vertical depth, Eq. (12.19) can be
integrated to determine the pressure change between the vertical depths Z1 and Z2.
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Example problem—ideal gas hydrostatic head

Derive expressions for the hydrostatic head of a gas column for (a) a constant tempera-
ture distribution and (b) a linear temperature distribution.

For a constant temperature distribution, T̂(Z) = T in Eq. (12.19). Integrating gives

ln
p2

p1
= g

gc

1

RT
(Z2 − Z1) , p2 = p1 exp

[
g
gc

1

RT
(Z2 − Z1)

]
. (12.20)

If the temperature distribution is linear, then

T = T̂(Z) = T1 + γT (Z − Z1) , (12.21)

where γT is the temperature gradient with vertical depth. Substituting Eq. (12.21) into
(12.19) yields

ln
p2

p1
= g

gc

1
R

∫ Z2

Z1

1
T1 + γT (Z − Z1)

dZ

= g
gc

1
RγT

ln
T1 + γT (Z2 − Z1)

T1
, (12.22)

or

p2 = p1

(
1 + γT (Z2 − Z1)

T1

) g
gc

1
RγT

. (12.23)

If the temperature distribution in the gas column is piecewise liner, Eq. (12.23) can be
used repeatedly for each linear temperature segment.

We now apply Eqs. (12.20) and (12.23) to a 15000 ft vertical wellbore full of
methane. The surface (X3 = Z1) pressure and temperature are 5000 psi and 80 °F, re-
spectively, and the geostatic temperature gradient is 1.4 °F

100 ft .
The molecular mass of methane is 16.04, so R = 1545.349 lbf ft

lbm R/16.04 = 96.34 lbf ft
lbm R .

Using Eq. (1.11), T1 = 539.67R and, since Fahrenheit and Rankine temperature units
have equal increments, T2 = 539.67R + 1.4 R

100 ft × 150100 ft = 749.67R.
For the case of a constant temperature distribution, we can take the average tem-

perature as a reasonable substitute, that is, T = 539.67+749.67
2 = 644.67R. Substituting the

input values into Eq. (12.20) gives

p2 = 5000psi × exp

[
32.1740 ft

s2

32.1740 lbm ft
lbf s2

1

96.34 lbf ft
lbm R × 644.67R

× (15000 − 0) ft

]

= 6366psi. (12.24)
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For the case of a linear temperature distribution, we can substitute directly into
Eq. (12.23) to obtain

p2 = 5000psi ×
(

1 + 0.014 R
ft × (15000 − 0) ft
539.67R

) 32.1740 ft
s2

32.1740 lbm ft
lbf s2

1
96.34 lbf ft

lbm R ×0.014 R
ft

= 6380psi. (12.25)

In this particular example the difference between the constant and linear temperature
distribution assumptions is small. Depending on the specific input variable, however, the
difference could be significant.

Real gas

Eq. (12.17) is, as one might expect, not necessarily accurate for real gases. As a measure
of its inaccuracy we can introduce the so-called compressibility factor5 Zc defined by
the equation

Zc = pv
RT

. (12.26)

The compressibility factor has a value of 1 for an ideal gas and otherwise provides a
measure of deviation from ideal behavior.

Fig. 12.2 summarizes the behavior of Zc as a function of pseudoreduced pressure ppr

and temperature Tpr . The reduced properties6 of a fluid are state variables normalized
by the state variables of the fluid at its critical point. For pressure and temperature

ppr = p
pcr

, (12.27)

Tpr = T
Tcr

, (12.28)

where pcr and Tcr , respectively, are the critical7 pressure and temperature which, given

5 The conventional symbol fort the compressibility factor is Z. Since this symbol is already used for the
depth/axial coordinate in a cylindrical coordinate system, the compressibility factor is denoted Zc .

6 Hereafter we will refer to the reduced pressure and temperature as the pseudoreduced pressure and tem-
perature. The term “reduced” is appropriate for a single fluid. In the case of hydrocarbons, however, the
fluid in question is usually a mixture of a number of components. The “pseudo” reduced pressure and
temperature are calculated from an average of the component reduced pressures and temperatures, where
each component in the mixture is weighted by its mole fraction.

7 In a pressure–temperature phase diagram, phase equilibrium, for example, between liquid and gas phases,
is represented by a curve—the vapor-pressure curve—separating the coexisting liquid and gas phases. The
point in the diagram at which that curve terminates is the critical point, and the corresponding pressure



346 Elements of Oil and Gas Well Tubular Design

Figure 12.2 Compressibility factor for a real gas. Individual curves are lines of constant pseudore-
duced temperature. The particular correlation displayed is from an explicit correlation by Beggs and
Brill [141] and is plotted only for its recommended range of applicability, 1.15 ≤ Tpr ≤ 2.4, 0.2 ≤ ppr ≤
15.0.

the specific gravity of the gas, can be calculated (at least in their pseudocritical forms ppc

and Tpc—see Footnote 6) from the correlations [143] as

ppc = 756.8 − 131.07SG − 3.6SG2, (12.29)

Tpc = 169.2 + 349.5SG − 74.0SG2, (12.30)

where SG is the gas specific gravity, and the units of ppc and Tpc are psi and R, respec-
tively. The temperature Tpc , as well as T and Tcr in Eqs. (12.26) and (12.28), are absolute
temperatures.

and temperature are the critical pressure and critical temperature. At the critical point the saturated-liquid
and saturated-vapor phases are identical [142].
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Example problem—real gas hydrostatic head

Recompute the hydrostatic head of methane for the well conditions provided in sec-
tion ‘Example problem—ideal gas hydrostatic head’.

We will only perform the calculation for the case of a constant temperature dis-
tribution. Reviewing the derivation of Eq. (12.20), if Zc is assumed constant over the
calculation depth interval, we may immediately write

p2 = p1 exp

[
g
gc

1

ZcRT
(Z2 − Z1)

]
. (12.31)

The problem is still difficult since an average value of Zc depends on p2, the unknown
pressure. A spreadsheet solution would not be overwhelming, but to illustrate the pro-
cedure with hand calculations we will simply use the value of Zc at p1 and T .

The specific gravity of methane compared to air is SG = 16.04
28.95 = 0.554. Using

Eqs. (12.29) and (12.30) gives

ppc = 756.8 − 131.07 (0.554) − 3.6 (0.554)2 = 683.1psi, (12.32)

Tpc = 169.2 + 349.5 (0.554) − 74.0 (0.554)2 = 340.1R, (12.33)

so that, from Eqs. (12.27) and (12.28),

ppr = 5000
683.1

= 7.32, (12.34)

Tpr = 644.67
340.1

= 1.90. (12.35)

The correlation [141] used to generate8 Fig. 12.2 is an explicit function of ppr and
Tpr and proceeds as follows:

A = 1.39
(
Tpr − 0.92

)0.5 − 0.36Tpr − 0.101, (12.36)

E = 9
(
Tpr − 1

)
, (12.37)

B = (
0.62 − 0.23Tpr

)
ppr +

(
0.066

Tpr − 0.86
− 0.037

)
p2

pr + 0.32p6
pr

10E , (12.38)

C = 0.132 − 0.32
ln Tpr

2.303
, (12.39)

F = 0.3106 − 0.49Tpr + 0.1824T2
pr, (12.40)

8 The Beggs and Brill correlation [141] is one of several proposed to fit a figure originally generated by
Standing and Katz [144,145]. Alternatives include both implicit and explicit solutions [146]. The Beggs
and Brill correlation was chosen here because of its accuracy and the explicit nature of its solution.
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D = 10F, (12.41)

Zc = A + (1 − A) exp(−B) + CpD
pr . (12.42)

Carrying out the indicated operations in Eqs. (12.36)–(12.42), we get

A = 1.39 (1.90 − 0.92)0.5 − 0.36 × 1.90 − 0.101 = 0.589, (12.43)

E = 9 (1.90 − 1) = 8.06 (12.44)

B = (0.62 − 0.23 × 1.90)7.32 +
(

0.066
1.90 − 0.86

− 0.037
)

(7.32)2 + 0.32 (7.32)6

10E

= 2.781, (12.45)

C = 0.132 − 0.32
ln 1.90
2.303

= 0.0432, (12.46)

F = 0.3106 − 0.49 × 1.90 + 0.1824 (1.90)2 = 0.0371, (12.47)

D = 10F = 1.089, (12.48)

Zc = 0.591 + (1 − 0.591) exp(−2.758) + 0.0428 (7.32)1.092 = 0.992. (12.49)

With knowledge of Zc we may now use Eq. (12.31) to calculate the pressure at depth
Z2 for methane as a real gas, namely

p2 = 5000psi × exp

[
32.1740 ft

s2

32.1740 lbm ft
lbf s2

1

0.992 × 96.34 lbf ft
lbm R × 644.67R

× (15000 − 0) ft

]

= 6378psi, (12.50)

which is to be compared to the value 6366 psi assuming an ideal gas. As was the case
with the example problem in section ‘Example problem—ideal gas hydrostatic head’, no
conclusion regarding the closeness of answers for the real and ideal gas calculations can
be inferred from this example. A different gas, or the same gas at different conditions
can alter the calculations significantly. In this particular problem the primary differen-
tiator (compare Eqs. (12.20) and (12.31)) between the real and ideal gas models—the
compressibility factor Zc—has a value close to unity.

12.4.2 Flowing pressure
A complete treatment of flowing pressure is beyond the scope of this book. For
single phase systems—circulating mud or cement, water injection, some treatment
operations—the problem is amenable to reasonably simple hand calculations. For multi-
phase system, in particular produced hydrocarbons, the description of flow is sufficiently
complicated to warrant a separate text [147–149].
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12.5. PREINSTALLATION LOADS

Preinstallation includes all activities prior to activation of the initial state or condition.
Installing the tubular string, including accounting for potential difficulties such as a
stuck condition requiring overpull, dominates the preinstallation period. This segment
of tubular life ends when either the cement is displaced and allowed to thicken (casing)
or a packer is set (tubing).

12.5.1 All casing
Tables 12.1–12.2 define preinstallation loads for casing.

12.5.1.1 Running in hole
Running in hole (see Table 12.1) is usually performed with the tubular open-ended
with a single wellbore fluid. Floating casing may be necessary, however, due to rig
limitations or hole tortuosity. In such instances, care should be taken in to keep the
casing sufficiently full to avoid an external pressure differential that approaches the tube’s
collapse resistance.

Running in hole is typically modeled ignoring frictional drag, usually a conservative
assumption inasmuch as drag during RIH reduces the axial tension. This results in the
same axial load distribution as one would observe if the casing were rotated off bottom.

If desired, drag can be modeled for both running in hole and pulling out of hole
with currently available software:
• Simpler software typically employs the so-called soft-string model [34] and assumes

that all portions of the tubular are moving simultaneously.
• More complicated numerical software includes the bending stiffness of the tubular

[150,37] and can model stick/slip conditions everywhere along the string.
It is not uncommon to include a dynamic or shock load increment to the axial

force. The load is intended to model an instance where, while the tubular string is
being lowered, the slips are inadvertently activated causing the string to abruptly stop.
Ignoring the ramp up to and down from the running speed, typical values [17] for
running a tubular joint are on the order of 2–6 ft

s (1–2 m
s ). A detailed example addressing

the shock load is presented in subsection ‘Example problem—computing shock load’ in
Section 4.2.6.2 of Chapter 4.

12.5.1.2 Overpull
Casing overpull (see Table 12.2) can be modeled incrementally, as the string is assembled
and run in the well, or as one or more checks at depths of concern. A common worst
case analysis considers the possibility of the string being stuck just as it reaches the
bottom of the hole, and computes the overpull load as an increment above the buoyed
weight of the string.

Typical values for casing overpull are in the range 150–200 000 lbf.
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Table 12.1 Preinstallation—all casing: running in holea,b

Internal pressure External pressure Temperature
Normally, RF. If casing is
floated-in the internal profile
could be a column of air over
the fluid being intermittently
pumped to fill the casing.

RF. Density may be dif-
ferent from internal fluid.

G

Comments:
• Take care when floating a string into the hole to fill at proper intervals. If the string

becomes too light, it could buckle at the top, adding to the resistance going into the
wellbore. For large D/t ratios, a sufficiently empty string can collapse.
• A “dynamic” load may be included as an additional increment to the axial force.
• String can be open or close-ended.

a Design string has shaded cross-section.
b RF = running fluid, G = local geostatic.

12.5.2 Production tubing
Tables 12.3–12.4 define preinstallation loads for tubing.

12.5.2.1 Running in hole
Running in hole is typically modeled ignoring frictional drag, usually a conservative
assumption inasmuch as drag during RIH reduces the axial tension. See the detailed
discussion in Section 12.5.1.1.
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Table 12.2 Preinstallation—all casing: overpulla,b

Internal pressure External pressure Temperature
RF RF G

Comments:
• An additional increment of tension equal to the design overpull force is applied at

the surface.
• String is usually assumed to be open-ended, but fixed at the bottom.

a Design string has shaded cross-section.
b RF = running fluid, G = local geostatic.

12.5.2.2 Overpull

Overpull for tubing is more likely to be associated with shearing a pin associated with
the installation or retrieval of an accessory [151]. Typical values for tubing overpull (see
Table 12.4) are in the range 100–150 000 lbf.

12.6. THE INITIAL STATE FOR DESIGN CALCULATIONS

Prior to cementing (casing) or setting the packer (tubing) the individual axial loads
can be modeled as either incremental (e.g., Load Case I + 1 follows Load Case I ) or
total (e.g., each load case follows an unloaded condition). Once at least one end of the
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Table 12.3 Preinstallation—tubing: running in holea,b

Internal pressure External pressure Temperature
CF CF G

Comments:
• A “dynamic” load may be included as an additional increment to the axial force.
• String is usually open-ended.

a Design string has shaded cross-section.
b CF = completion fluid, G = local geostatic.

string is fixed, however, an initial state or initial condition is defined which replaces the
unloaded condition. One may still treat loads as incremental, but more common practice
is to refer all load cases back to the initial state or condition. Answers worked either way
should be equivalent provided frictionless elastic behavior is analyzed. If either friction
or inelastic behavior is included, the problem becomes path dependent and the answers
from an incremental solution and a total solution will no longer coincide, with the
former approach being correct.

The importance of the initial state is its use as a datum from which length changes,
or potential length changes, are calculated. At any point in the history of the tubular
its pressure and temperature environments are usually treated as input or independent
variables. The axial load, on the other hand, is dependent and fluctuates with changes
in pressure and temperature (see Chapter 11) due to the following actions:
• thermal expansion/contraction;
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Table 12.4 Preinstallation—tubing: overpulla,b

Internal pressure External pressure Temperature
CF CF G

Comments:
• An additional increment of tension equal to the design overpull force is applied at the

surface.
• String is usually assumed to be open-ended, but fixed at the bottom.

a Design string has shaded cross-section.
b CF = completion fluid, G = local geostatic.

• ballooning;
• pressure forces on exposed shoulders;
• column buckling.
The change in axial load with changes in pressure and temperature requires a datum, and
that datum is the initial state. One first calculates the initial axial force distribution in the
tubular corresponding to the initial state (see Table 12.5 for casing and Tables 12.6–12.8
for tubing). The axial force distribution for any load case is then the initial axial force
distribution plus the distribution of change in axial force due to the change in the
pressure and temperature environment from the initial state to the load case in question.
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With the introduction of concern regarding incremental loads associated with annu-
lar pressure build-up (APB) (See Section 15.2 of Chapter 15) there now exist two types
of initial state with which one must be concerned:
• For conventional load cases in which APB is not an issue, the initial state is defined

as the moment at which the cement/packer sets preventing further axial expan-
sion/contraction of the tubular. If the completion is packerless, the initial state for
the production tubing is defined by the moment at which the string is landed in the
wellhead.

• For APB calculations the initial state is defined as the time at which the annulus in
question becomes sealed.

For many wells the above two conditions coincide. For some wells, however, venting
an annulus as a well is produced may delay sealing (or constitute resealing) of an annulus
and therefore redefine the state at which an APB calculation begins.

12.6.1 Conventional design
The initial condition in conventional design is primarily tied to axial movement and
usually represents the moment in the tubular’s life at which unimpeded length change is
no longer possible. For casing this moment is fairly well defined (see Section 12.6.2). For
tubing (Section 12.6.3), the issue is less clear if the lower end of the tubing is allowed
movement, as in the case of a tubing string whose lower end consists of a seal stem
inserted into a seal bore. Even if later movement is restricted—for example, by an initial
offset from a no-go shoulder—it may be appropriate to define the tubing hang-off in
the wellhead as the initial state.

12.6.2 All casing
Inasmuch as almost all casing is cemented at its lower end, the initial condition for casing
is taken to be the moment during cement displacement at which the top cement plug
bumps,9 indicating the end of cement circulation. This definition ignores important
factors:
• Cement thickening time. The time between the end of circulation and the mo-

ment at which the cement reaches a predefined, solid-like constitution may be
hours. During that time, and depending on the local environment (open or cased
hole, local temperature and/or pore pressure and formation permeability), the hy-
drostatic head of pressure supplied by the cement column may vary. Further, there
is evidence that, at least opposite a permeable formation, the local pressure in the
cement column can with time approach local pore pressure [153].

9 Often two cement plugs are used to surround and isolate the cement slurry during placement—a bottom
plug pumped ahead of the slurry and containing a diaphragm that ruptures when it reaches the float shoe,
and a top plug that is solid [152]. The plug referred to here is the latter.
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• Temperature. The chemical reaction by which the cement slurry becomes a solid
sheath is exothermic [61]. Although cement solidification is not impossible to
model, the vagaries of input variables can affect the fidelity of such an analysis.

Given the above unknowns, it is common practice to ignore the bulleted items and
define the initial condition in the casing by the undisturbed formation temperature and
a hydrostatic calculation of pressure forces based on the fluids in the hole at the instant
cement circulation ceases.

12.6.2.1 Example problem—initial axial force in cemented casing
A 12000 ft string of casing is run in 12 ppg drilling fluid and then cemented up to
9500 ft with 15.2 ppg cement that is separated from the drilling fluid by 500 ft of a
13 ppg spacer. The cement column is pumped down the casing with 13 ppg drilling
fluid in anticipation of drilling out and beginning the next hole section. Calculate the
initial state of axial force in the casing at its bottom, assumed to be the (approximate)
location of the float collar. The casing is 9.625 in. with a wall thickness of 0.545 in.

The internal area of the casing at its lower end is

Ai = π

4
(D − 2t)2 = π

4
(9.625 in. − 2 × 0.545 in.)2 = 57.213 in2, (12.51)

and its external area is

Ao = π

4
D2 = π

4
(9.625 in.)2 = 72.760 in2. (12.52)

Assuming constant densities for all fluids, the internal and external pressures acting
at the bottom of the string are, respectively,

pi = 0.051948
psi

ft ppg
13ppg × 12000 ft = 8104psi, (12.53)

po = 0.051948
psi

ft ppg
(
12ppg × 9000 ft + 13ppg × 500 ft + 15.2ppg × 2500 ft

)
= 7922psi. (12.54)

The net axial force at the bottom of the casing (see Fig. 12.3) is therefore

fz = 8104psi × 57.213 in2 − 7922psi × 72.760 in2 = −112751 lbf. (12.55)

12.6.3 Production tubing
Three possibilities present themselves for a tubing string containing at least one packer—
mechanically-set, hydraulic-set or hydrostatic-set.

The following comments are applicable to the initial conditions for production tub-
ing:
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Table 12.5 Initial condition—casinga,b

Internal pressure External pressure Temperature
RF RF + SP + CMTc G

Comments:
• RF is a general designation for both the external and internal drilling fluids used to

install the casing (external) and chase the top cementing plug (internal). Although not
depicted in the figure, the densities of these fluids may differ.
• A spacer may be used to separate the cement from the external drilling fluid.
• All fluids in the wellbore at the moment the cement plug bumps are used in the

calculation of the initial axial force at the bottom of the casing.
• Application of surface pressure may be necessary, for example, to prevent U-tubing

of fluids if the cement float fails to hold. Since this condition is indeterminate at the
time of design, it is usually only considered as a contingency.
a Design string has shaded cross-section.
b RF = running fluid, SP = spacer, CMT = cement, G = local geostatic.
c External fluid occupies the casing below the cement float shoe.

• As they affect tubular initial conditions, packers have two components—the slips
used to anchor the packer to the adjacent production casing and a seal element
to isolate the tubing annulus from lower portions of the completion and/or the
tubing interior. The manner in which the slips and seal element are activated can
be mechanical or by two different pressurization alternatives.
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Figure 12.3 Fluids and forces used in example calculation of cemented casing initial force. γRF =
12ppg, γSP = 13ppg, γCMT = 15.2ppg, γDF = 13ppg.

• Only one of the initial conditions—mechanical, hydraulic- or hydrostatic-set packer
should be modeled (Tables 12.6–12.8).

• Tubingless completions—where the production tubing and production casing are
the same tubular string—have their initial conditions computed in a manner iden-
tical to that of production casing—see Section 12.6.2.

12.6.3.1 Mechanically-set packers

Mechanically-set packers (see Table 12.6) depend on a control line, axial force or ro-
tation to activate the slips and seal element. Once the slips and seal are activated, the
tubing may be landed in a variety of stress states. Typically, however, the act of installing
the packer in the casing does not in itself impose a permanent stress in the tubing.

12.6.3.2 Hydraulic-set packers

Hydraulic-set packers (see Table 12.7) depend on a plug set below the packer to render
the tubing a pressure chamber and allow the slips and seal element to be activated. The
setting process induces a permanent, net axial extension of the tubing which results in
an incremental axial tension associated with installation:
1. A temporary plug or dropped ball seals the tubing to internal pressure in the tail

pipe below the packer.
2. Surface tubing pressure is increased, the first landmark being the pressure necessary

to initiate contact between the slips (forced outward by the axial motion of a piston
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Table 12.6 Initial condition—tubing: mechanically-set packera,b

Internal pressure External pressure Temperature
CF/PF CF/PF (above packerc ) G

Comments:
• Incremental tension, compression or a zero axial force in the tubing may be

associated with landing the tubing following the packer installation.
• The possibility of damaging the cement/production casing interface during a

CF/PF fluid swap should be considered.
a Design string has shaded cross-section.
b CF = completion fluid, PF = packer fluid, G = local geostatic.
c Internal fluid occupies the tubing annulus below the packer.

internal to the packer) and the production casing. At the time the slips engage, the
tubing down to the tailpipe plug has:
(a) elongated due to the axially directed force of pressure on the plug;
(b) shortened due to ballooning via Poisson’s effect acting along the entire tubing

length down to the plug.
The net effect is a lengthening of the tubing down to the packer and a lengthening
of the tailpipe down to the plug. Tailpipe below the plug displaces downward but is
not stretched.

3. As the surface pressure is increased further, the slips penetrate into the wall of the
production casing. There is, however, no further downward movement of the tub-
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ing above the packer. Below the packer, the tailpipe lengthens further—again, due
to pressure on the plug minus ballooning. During this time the seal element is also
expanding against the wall of the production casing to effect the seal.

4. With the slip elements firmly seated in the production casing and the seal element
isolating the tubing annulus, the applied surface pressure is decreased to zero. In
response the tailpipe above the plug loses the stretch associated with pressurization
and returns to its length prior to the packer-setting operation.10 No axial movement
occurs above the packer.
The pressurization/depressurization cycle described above has consequences for de-

sign. As mentioned in the introduction of this section, the setting operation up to the
moment of slip/casing contact results in a net length change—plug pressure force minus
ballooning—of

�L = �ft−plugL
EAs

− 2ν

E
�piAi

As
L

= (1 − 2ν)
�piAiL

EAs
, (12.56)

or a permanently induced incremental tension of

�ft = (1 − 2ν)�piAi, (12.57)

where ν and E are Poisson’s ratio and Young’s modulus of the tubing material, respec-
tively, and Ai and As are the tubing cross-sectional area based on inside diameter and
cross-sectional area of tubing, respectively. Importantly, �pi is the setting pressure cor-
responding to step 2 of the outlined procedure, and L is the length of tubing above the
packer. The tailpipe plays no role in this calculation as its deformation is completely
recovered in the cycle. See Section 11.5 of Chapter 11 for a detailed discussion of
Eqs. (12.56) and (12.57) and an example calculation.

12.6.3.3 Hydrostatic-set packers

Hydrostatic-set packers (see Table 12.8) require pressurization of the entire tubing-
production casing chamber to allow the slips and seal element to be activated. The
setting process induces a permanent, net axial contraction of the tubing which results in
an incremental axial compression associated with installation:
1. Surface tubing and annulus pressure is increased, the first landmark being the pres-

sure necessary to initiate contact between the slips (forced outward by the axial

10 There is, of course, a small change in length of the tailpipe since it is, at the end of this process, slightly
deeper than it was before, and therefore subjected to slightly higher hydrostatic pressure. This minor
length change is ignored in the design calculation.
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Table 12.7 Initial condition—tubing: hydraulic-set packera,b

Internal pressure External pressure Temperature
Setting pressure + CF/PF CF/PF (above packerc ) G

Comments:
• An incremental tension will be induced in the tubing via the setting pressure.
• A tubing plug is required for installation.
• Hydrostatic-set packers are usually rated with two setting pressures. The lower

pressure used to set the slip elements is the value required for this load case.
• The possibility of damaging the cement/production casing interface during a

CF/PF fluid swap should be considered.
a Design string has shaded cross-section.
b CF = completion fluid, PF = packer fluid, G = local geostatic.
c Internal fluid occupies the tubing annulus below the packer.

motion of a piston internal to the packer) and the production casing. At the time
the slips engage, the tubing has:
(a) shortened due to the axially directed upward force of pressure on the lowermost

exposed cross section of the tailpipe;
(b) lengthened due to ballooning via Poisson’s effect acting along the entire length

of the tubing, both internally and externally.
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The net effect is a shortening of the tubing down to the packer and a shortening of
the tailpipe.

2. As the surface pressure is increased further, the slips penetrate into the wall of the
production casing. There is, however, no further upward movement of the tubing
above the packer. Below the packer, the tailpipe shortens further—again, due to
pressure on the end of the tailpipe partially countered by ballooning. During this
time the seal element is also expanding against the wall of the production casing to
effect the seal.

3. With the slip elements firmly seated in the production casing and the seal element
isolating the tubing annulus, the applied surface pressure is decreased to zero. In
response the tailpipe loses the contraction associated with pressurization and returns
to its length prior to the packer-setting operation.11 No axial movement occurs
above the packer.
The pressurization/depressurization cycle described above has consequences for de-

sign. As mentioned in the introduction of this section, the setting operation up to the
moment of slip/casing contact results in a net length change—exposed lower end pres-
sure force minus ballooning—of

�L = −�ft−botL
EAs

+ 2ν

E
�pAs

As
L

= − (1 − 2ν)
�pL

E
, (12.58)

or a permanently induced incremental compression of

�ft = − (1 − 2ν)�pAs, (12.59)

where ν and E are Poisson’s ratio and Young’s modulus of the tubing material, respec-
tively, and As is the cross-sectional area of tube. Importantly, �p = �pi = �po is the
setting pressure corresponding to step 1 of the outlined procedure, and L is the length
of tubing above the packer. The tailpipe plays no role in this calculation as its deforma-
tion is completely recovered in the cycle. See Section 11.6 of Chapter 11 for a detailed
discussion of Eqs. (12.58) and (12.59) and an example calculation.

The fact that �ft for a hydrostatic-set packer is negative also means that the effective
force in the tubing is lowered due to the setting operation. With hydrostatic-set packers
it is important to perform a check on the post-installation state of the tubing to de-
termine if installation results in tubing that is buckled prior to production. Again, see
Section 11.6 of Chapter 11 for a detailed discussion and example calculation.

11 There is, of course, a small change in length of the tailpipe since it is, at the end of this process, slightly
shallower than it was before, and therefore subjected to slightly lower hydrostatic pressure. This minor
length change is ignored in the design calculation.
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Table 12.8 Initial condition—tubing: hydrostatic-set packera,b

Internal pressure External pressure Temperature
Setting pressure + CF/PF Setting pressure + CF/PF G

Comments:
• An incremental compression will be induced in the tubing via the setting pressure.
• Hydrostatic-set packers are usually rated with two setting pressures. The lower

pressure used to set the slip elements is the value required for this load case.
• Residual buckling can be a by-product of installation.
• The setting pressure can represent a significant load on the production casing.
• The possibility of damaging the cement/production casing interface during a

CF/PF fluid swap should be considered.
a Design string has shaded cross-section.
b CF = completion fluid, PF = packer fluid, G = local geostatic.

12.7. INTERNAL PRESSURE DOMINANT LOADS

It is common design practice when addressing internal pressure dominant loads to work
with a single external pressure distribution and create the internal pressure differential
by applying various scenarios to the internal pressure distribution.

For casing, external pressure distributions vary across the industry and include the
following:
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• Pore pressure. Using pore pressure as the external fluid is a fairly conservative choice.
Even for the portions of the casing annulus that are not directly exposed to pore
pressure (e.g., above the shoe of the previous casing string), the annulus would
normally be filled with the drilling fluid used in the current casing’s hole section,
which should be of higher density than the pore pressure gradient.12 An exception
to this statement is the next bullet.
One scenario where pore pressure may be overly conservative is in the design of
a well drilled through a depleted reservoir. Particularly if the depleted reservoir
contained gas, the pore pressure at which the reservoir is abandoned for deeper
prospects can be extremely low.

• Degraded drilling fluid. Depending on a number of factors such as fluid chemistry,
annular clearance and temperature, the solid weighting particles in a drilling fluid
may settle with time. The degree to which this degradation occurs is, for the most
part, unknown. The most conservative form of this design assumption is to model
the drilling fluid with all solids settled, using the density of the base fluid as the
final annulus fluid density. Alternately, one might choose a reasonably low value of
degraded fluid density that is intermediate to either the initial or fully settled values.
Industry practice varies significantly on this subject.

• Combination fluid columns. It is not unusual to encounter an external fluid density
distribution that is a combination of the above. As an example, one might choose
to use pore pressure in the open hole below the previous casing shoe, and then tie
the pore pressure value at the shoe to an original fluid density column from the
previous shoe to the top of the designed string’s annulus.

• The proper external pressure to use in the cemented portion of a tieback is unclear.
In addition to variations on the options already listed, a viable, fairly conservative
option below the tieback cement top is a column of cement mix water tied to
whatever pressure has been assumed in the uncemented portion of the tieback just
above its top of cement.
For production tubing the fluid column is taken to be the packer fluid down to the

packer.

12.7.1 Surface and intermediate casing
Internal pressure dominant loads for surface and intermediate casing vary from well-
defined, controlled loads (pressure test) to loads which may depend on both subsurface
conditions and crew capabilities (well control).

12 A possible exception is underbalanced drilling.
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12.7.1.1 Pressure test

The internal surface pressure test load (see Table 12.9), although under fairly stable
operational control by the rig crew, varies widely in value and philosophic origin
across the industry for the same well conditions. Some practices target a percentage
of the minimum internal yield pressure rating of the tubular—usually between 70% and
80%—based on the related notions that (a) a load this high is sufficient to detect any
manufacturing or transportation flaws, and (b) modern tubulars are of sufficient ductil-
ity to mitigate minor flaws. Other practices tie the pressure test load to the worst of the
other anticipated internal pressure dominant load cases—usually the well control load
case—with the reasoning that, as a pressure vessel, the tubular should be tested to the
highest anticipated load to which it will be subjected.13

A crucial assumption in formulating the pressure test load is the nature/density as-
sumed for the annulus fluid. If the density of the annulus fluid is less than that of the
internal fluid, the internal pressure differential will increase with depth and have the
following two consequences:
• A tubular tested to the appropriate test pressure at the top of the string will be

overloaded at the bottom of the string.
• A tubular tested to the appropriate test pressure at the bottom of the string will be

under-tested at the top of the string.
There is no simple way out of this dilemma short of testing the string in intervals using
packers to isolate each tested zone.

An additional complication in pressure testing is the presence of liners and their
effect on the exposure of previous strings to pressure test loads (see Fig. 12.4). In most
instances, pressure testing a liner will also pressurize any strings above the liner that
have not been isolated. The need to pressure test a liner without endangering previous,
intermediate casings and/or liners may influence the timing of running a tieback. With
the tieback in place, possibly weaker upper strings may no longer be exposed to the
rigors of the test pressure applied to deeper tubulars.

12.7.1.2 Well control

Usually the determinant internal pressure dominant load case for surface and inter-
mediate casing is that of (loss of) well control (see Table 12.10). For the most severe
case, typically applied when little is known of the target overburden and reservoir, one
assumes the following:
• A gas kick has been experienced and due to unforeseen detection and crew circum-

stances total loss of control of flow from the source reservoir is experienced. The

13 Such a practice does not necessarily test the tubular to its internal yield pressure, as the tubular should
have been designed with a design factor that keeps the tubular’s stress state below yield.
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Table 12.9 Burst—all casing: pressure testa,b

Internal pressure External pressure Temperature
Test pressure + DF RF G

Comments:
• Top of cement can be above or below previous casing shoe.
• When the pressure test occurs during the infancy of the string (i.e., shortly after

waiting-on-cement) it is reasonable to counter the normal assumption for the external
pressure distribution and assume the RF to still possess its original density.
• It is extremely easy to fracture the cement sheath during a pressure test.
• DF usually equals RF for production casing.

a Design string has shaded cross-section.
b DF = drilling fluid for next hole section, RF = running fluid, G = local geostatic.

reservoir fluid is (default methane) gas which has totally filled both the open hole
above the source formation and the casing string being drilled through/designed.

• The pressure of the gas is limited by that pressure required to fracture the formation
at the shoe of the casing string being drilled through/designed.14

14 It is possible that formation fracture could occur at any depth in the open hole. Usually, however, the
current shoe is (a) a good candidate for having the lowest fracture pressure, and (b) the only depth in the
open hole where the fracture pressure is at least approximately known.
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Figure 12.4 Exposure to pressure test in the presence of a liner. In scenario (A) the casing is designed
only for its own pressure test—the next string is a full casing string which isolates the tested string
from future loads. In scenario (B) the presence of a liner (only) means that the original casing is exposed
during the liner pressure test. In scenario (C) a tieback is run before testing the liner, and the original
casing is not exposed to the liner pressure test.

• The pressure inside the casing string being drilled through/designed is therefore the
fracture pressure at its shoe minus a gas gradient to the surface.

The scenario described above is termed “Frac at shoe, gas to surface” or words to that
effect.

Frac at shoe, gas to surface is indeed a severe load case, but the consequences of
a total loss of well control often warrant its use. Nevertheless, in circumstances where
ample data is available to justify relaxing this condition, other reasonable alternatives
include the following (see Fig. 12.5):
• Pore pressure at source, gas to surface. If it can be demonstrated that none of the

formations in the open hole below the casing being designed has sufficient pressure
to fracture the formation adjacent to the casing’s shoe, then an acceptable design
alternative is to project the gas gradient from the source formation to the surface.

• Frac at shoe, liquid to surface. If it can be demonstrated that none of the formations
in the open hole below the casing being designed is gas bearing (e.g., liquid hydro-
carbon, formation brine), then an acceptable design alternative is to project a worst
case liquid gradient from the casing’s shoe to the surface.
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Table 12.10 Burst—surface and intermediate casing: well controla,b

Internal pressure External pressure Temperature
Fracture pressure at shoe –
gas gradient above

One of severalc C

Comments:
• Top of cement can be above or below previous casing shoe.
• A conservative choice for kick gas is methane.
• If this load case is modeled as a dynamic condition a suitable flow simulator should

be implemented.
a Design string has shaded cross-section.
b DF = drilling fluid for next hole section, RF = running fluid, C = circulating.
c See the discussion at the beginning of Section 12.7 for external fluid alternatives.

• Pore pressure at source, liquid to surface. If it can be demonstrated that (a) none
of the formations in the open hole below the casing being designed is gas bearing,
and (b) none of the formations in the open hole below the casing being designed
has sufficient pressure with a worst case liquid gradient to fracture the formation
adjacent to the casing’s shoe, then an acceptable design alternative is to project that
liquid’s gradient from the source formation to the surface.

• Well control procedural models. With currently available software it is possible to
model the circulation of a kick out of the wellbore, tracing the maximum pressure
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Figure 12.5 Alternative internal pressure scenarios for well control load case. Scenario A is the “Frac
at shoe, gas to surface” load case, usually the most reasonable worst case scenario, especially in the
absence of information on the overburden in the next hole section. Scenario B also uses a gas gradient
upward from the influx horizon, but the source pore pressure is insufficient to fracture the shoe of the
casing string under design. Scenario C depends on the knowledge that no gas-bearing hydrocarbon
zones exist in the next hole section, so that the kick fluid is brine or oil. Scenario D adds to scenario C
the fact that the lightest of the liquid gradients that might be projected upward from the liquid’s influx
horizon is insufficient to fracture the shoe of the casing string under design.

seen by the casing being designed as the kick migrates to the surface. Using this
alternative is best a product of a detailed conversation with one’s well control team
to ensure that worst case conditions are still properly honored.

• Well control model alternatives. Again tending toward worst case conditions, certain
scenarios involving portions of the wellbore full of either gas or drilling fluid to
roughly simulate kick migration are also used, particularly when other modeling
alternatives are not available.
As was the case with pressure testing (Section 12.7.1.1), the installation of a liner

below a previous string may influence the shoe from which the fracture pressure and
gas column depth are selected for the well control calculation. The safe alternative is to
analyze well control events for the open hole section below the casing being designed
and for all liners below that string. Again, the timing of tieback installations can affect
this calculation.
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12.7.1.3 Drill ahead

The drill ahead load (see Table 12.11) is not intended to be a determinant of either the
geometry or grade of the tube body and connection. The sole purpose of this load case
is to investigate whether the surface/intermediate casing will buckle while drilling the
next hole section due to the following:
• positive internal pressure change due to increased drilling fluid density when drilling

lower hole sections;
• positive potential (but not realized) length change due to increased circulating tem-

perature while circulating drilling fluid from greater depths.
The intent is to model actual drilling conditions in the next hole section, so the best
estimates of the density of the drilling fluid for the next hole section, the drilling fluid
in which the casing was run and the circulating temperature should be used, as opposed
to speculating on worst case values for these variables.

Should the drill ahead load case indicate the casing will buckle (usually in the vicinity
of the top of cement), a wear analysis should be performed by superimposing the cur-
vature due to buckling on any curvature due to wellbore trajectory (see Section 15.3.3
of Chapter 15). Usually this incremental curvature will be small—on the order of tenths
of a °

100 ft ( °
30 m )—due to the small radial clearance between the casing and its next outer

neighbor(s). Even this small amount, however, is sufficient to initiate or aggravate casing
wear, particularly if the interval requires extended drilling time.

As was the case with pressure testing (Section 12.7.1.1), the installation of a liner
below a previous string may influence the duration of exposure of a particular casing
string. Further, subsequent liners and their associated next hole sections15 will probably
involve increased drilling fluid densities and circulating temperatures. Again, the timing
of tieback installations can affect this calculation.

12.7.2 Production casing
12.7.2.1 Pressure test
Production casing is pressure tested. See the pressure test load case described in Sec-
tion 12.7.1.1 and Table 12.9.

12.7.2.2 Tubing leak

The tubing leak (see Table 12.12) is assumed to occur early in the productive life of
the well and near the surface. The latter assumption is not essential, as a deeper tubing
leak will migrate to the surface in a relatively rigid annulus. Both hot and cold (shut-in)
scenarios are possible as the leak could occur during a time of prolonged inactivity.

15 Liners further complicate the problem in that (a) for each liner the buckling check will have to be
performed with a new set of drilling parameters, and (b) the drilling parameters for the wear calculation
will also change for the liner’s next hole section.
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Table 12.11 Burst—surface and intermediate casing: drill aheada,b

Internal pressure External pressure Temperature
DF RF C

Comments:
• Top of cement can be above or below previous casing shoe.
• This is a column buckling check, not a design load that would affect tubular or

connection dimensions and grade.
• Use best estimate for DF, RF and C, not extremes.

a Design string has shaded cross-section.
b DF = drilling fluid for next hole section, RF = running fluid, C = circulating.

Below the packer the production casing is not endangered by this load case as the
perforations introduce only a minor differential internal pressure, if any.

12.7.2.3 Possible additional loads

Production casing may be exposed to loads associated with other tubulars, particularly
the production tubing:
• Hydrostatic-set packers (see Section 12.6.3.3 and the loads illustrated in Table 12.8)

are installed by pressurizing the entire tubing/production casing chamber. Depend-
ing on the particular packer, the production casing can be exposed to significant
internal pressure.
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Table 12.12 Burst—production casing: tubing leaka,b

Internal pressure External pressure Temperature
Shut-in tubing pressure + PF One of severalc G or P

Comments:
• Top of cement can be above or below previous casing shoe.

a Design string has shaded cross-section.
b PF = packer fluid, G = local geostatic, P = producing.
c See the discussion at the beginning of Section 12.7 for external fluid alternatives.

• Tubing annulus pressure tests (see Section 12.8.3.1 and the loads illustrated in Ta-
ble 12.21) can also load the production casing with a sizable pressure, on the order
of that associated with a tubing leak (see Section 12.7.2.2). In this case the tem-
perature is probably near geostatic so ballooning-induced tension loads may be of
particular concern.

• Tubing leaks during injection or stimulation. This load is similar to the tubing leak
load case (see Section 12.7.2.2), the primary differences being (a) the shut-in surface
pressure is replaced by the tubing surface injection or treating pressure, and (b) the
temperature distribution is that due to injection or the treatment.

• Hydraulic horsepower concerns associated with friction losses during hydraulic frac-
turing may suggest the production casing as the primary conduit for fracturing fluids
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Table 12.13 Burst—tubing: pressure testa,b

Internal pressure External pressure Temperature
Test pressure + CF PF G

Comments:
• Either the CF or the PF may be both internal and external to the tubing during the

test.
a Design string has shaded cross-section.
b CF = completion fluid, PF = packer fluid, G = local geostatic.

during a treatment. Here the production casing will be affected by both ballooning-
and temperature-induced tension increments.

12.7.3 Production tubing
Internal pressure dominant loads assume importance for production tubing design as
(a) the tubing is usually a component of the primary barrier envelope, and (b) internal
pressure loads are often highest near the top of the tubing string.

12.7.3.1 Pressure test

See the pressure test load case comments in Section 12.7.1.1 and Table 12.13. Tubing
is usually tested to a higher relative value than casing, especially if it is a component of
the primary barrier envelope.
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Table 12.14 Burst—tubing: injectiona,b

Internal pressure External pressure Temperature
Injection wellhead pressure + IF PF (above packerc ) I

Comments:
• Check for excessive tubing length change in completions involving a seal bore allow-

ing tubing movement.
• When appropriate and available, a fluid flow simulator should be used to determine

both the internal tubing pressure and complete wellbore temperature distributions.
a Design string has shaded cross-section.
b IF = injection fluid, PF = packer fluid, I = injecting.
c Internal fluid occupies the tubing annulus below the packer.

12.7.3.2 Injection

Injection (see Table 12.14) should be checked at its initiation (wellbore is cold) and
at a condition of steady state. Movement (in the presence of a seal assembly allowing
motion) or attempted movement of the tubing in the vicinity of the packer can either
unseat the tubing or damage the packer, respectively.

12.7.3.3 Production

Production (see Table 12.15) should be checked for all landmark flow conditions in the
life of the well. Of particular importance is the possibility of buckling as:
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Table 12.15 Burst—tubing: productiona,b

Internal pressure External pressure Temperature
Flowing wellhead pressure + HC PF (above packerc ) P

Comments:
• This scenario should be modeled for several landmarks in the life of the reservoir—

initial production, first water.
• When available, a software multiphase flow simulator should be used to determine

both the internal tubing pressure and complete wellbore temperature distributions.
• Check for excessive tubing length change in completions involving a seal bore allow-

ing tubing movement.
a Design string has shaded cross-section.
b PF = packer fluid, HC = reservoir fluid, P = producing.
c Internal fluid occupies the tubing annulus below the packer.

• The additional bending stresses associated with the postbuckled configuration can
yield the tubing leading to a condition of so-called “permanent corkscrewing”
wherein the tubing does not return to its original configuration when the well
is shut-in.

• Movement (in the presence of a seal assembly allowing motion) or attempted move-
ment of the tubing in the vicinity of the packer can either unseat the tubing or
damage the packer or tubing, respectively.
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Production assisted by artificial lift can complicate this load case as annulus pressure
(gas lift) or possible tubing wear (rod pump [154]) can modify the description of loads
to which the tubing is subjected.

12.7.3.4 Pump in to kill well
Killing a well through the production tubing (see Table 12.16) should be checked for at
least two operational states:
• At the beginning of the operation when the tubing temperature can be cold (de-

pending on the well operations prior to the kill) and tubing internal pressure its
highest. The combination of high internal pressure (ballooning) and low tempera-
ture may significantly affect either tubing movement or, if movement is not possible,
tubing stress.

• At the end of the operation when the pump pressure may be lower, but the wellbore
significantly cooler, particularly in its lower regions.

12.7.3.5 Shut-in
Both the hot and cold shut-in conditions are usually modeled, as both represent poten-
tial load environments in a well (see Table 12.17).

12.8. EXTERNAL PRESSURE DOMINANT LOADS
As was the case with internal pressure dominant load cases, most designers work with a
single external pressure profile and create the external pressure differential by applying
various scenarios to the internal pressure distribution.

For all casing the external fluid is usually taken to be a column of the drilling fluid in
which the casing was run. This column extends from the top of the string to the casing
shoe. That is, we assume the cement sheath to be channeled and of dual quality:
• For the purpose of arresting axial movement, the cement sheath is presumed to be

of sufficient bond with the casing that axial casing displacement is prohibited.
• For the purpose of imposing a collapse load, the cement sheath is assumed to be

channeled to such a great extent that a continuous column of the drilling fluid in
which the casing was run exists along the entire length of the string, including that
portion of the string below the top of cement.

These two seemingly contradictory assumptions—an adequate sheath to restrict axial
movement, a practically nonexistent sheath for defining a continuous collapse fluid
column—can both be reasonably pictured. Particularly for the case of axial movement
restriction, consider the experimentally verified rule-of-thumb which states that the
shear bond between the casing and cement sheath is roughly one-tenth the unconfined
compressive strength of the cement. As an example, for 9-5/8 in. casing, the surface
area for one foot of casing is π ×9.625×12, or 363 in2. Given a relatively weak cement
with 1000 psi unconfined compressive strength, the shear bond on one foot of casing
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Table 12.16 Burst—tubing: pump in to kill wella,b

Internal pressure External pressure Temperature
Shut-in tubing pressure + kill
margin + IF (start kill), steady
state pump pressure + IF (end
kill)

PF (above packerc ) I

Comments:
• Check for excessive tubing length change in completions involving a seal bore allow-

ing tubing movement.
• When appropriate and available, a fluid flow simulator should be used to determine

both the internal tubing pressure and complete wellbore temperature distributions.
a Design string has shaded cross-section.
b IF = injection fluid, PF = packer fluid, I = injecting.
c Internal fluid occupies the tubing annulus below the packer.

is 100 × 363, or 36300 lbf. The conclusion we reach is that severely channeled cement
can still prevent axial movement.

Regarding channeling and its effect on casing collapse resistance, an experimental16

and numerical study by Jammer et al. [73] indicates that imperfect, but sufficient ce-

16 See also earlier work by Evans and Harriman [155].
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Table 12.17 Burst—tubing: shut-ina,b

Internal pressure External pressure Temperature
Shut-in pressure + HC PF (above packerc ) G (cold shut-in) or P (hot

shut-in)

Comments:
• Hot shut-in represents a short term condition immediately after the well flow is

arrested.
• Cold shut-in models a well shut-in for a long period of time.
• The internal pressure determination can either proceed from the wellhead, down, or

from the perforations, up. The latter is the more natural path.
a Design string has shaded cross-section.
b PF = packer fluid, HC = reservoir fluid, G = local geostatic, P = producing.
c Internal fluid occupies the tubing annulus below the packer.

ment circumferential coverage can alter the buckling mode of the casing cross section,
thus increasing its resistance to external pressure. This increase, however, is diminished
by increasing cement void angle (particularly if the void angle exceeds 90° and/or a
micro-annulus exists between the cement and casing. A common, conservative assump-
tion in line with the second bullet above is to ignore any beneficial increase in collapse
resistance due to the cement sheath.
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One could, of course, avoid the above bulleted conundrum by assuming the density
of the cement slurry as the external fluid below the cement top. This author judges this
choice to be a bit too conservative. Further, the presence of liquid cement during the
life of a string suggests a problem that needs to be solved before this string’s installation
is considered complete.

In addition to the drilling fluid column, the casing external pressure distribution may
include a surface pressure due to annular pressure build-up. Liners and other tubulars
not hung from the surface assume the local hydrostatic pressure at the top of the string
to be trapped when the liner top packer is set, plus any potential APB pressure.

For production tubing the fluid column is taken to be the packer fluid down to
the packer. In addition, some tubing loads will assume a surface pressure applied to the
tubing, typical sources being a tubing leak and annular pressure build-up.

12.8.1 Surface and intermediate casing
Particularly for larger diameter casing, the initial condition (see Section 12.6.2 and
Table 12.5) should always be checked for collapse. The resistance of some large diameter
tubulars is so low that the external pressure differential of the cement column itself can
be sufficient to collapse the casing.

12.8.1.1 Lost circulation

The primary external pressure load for casing set in the overburden is that of lost circu-
lation (see Table 12.18). We assume that while drilling the hole section below the casing
to be designed we encounter a zone of lower than normal pore pressure. Drilling fluid
begins to exit the wellbore, lowering the internal pressure inside the casing and creating
an external differential pressure load.

In theory, and it is this worst case that is assumed, the drilling fluid level inside the
casing can drop until it reaches hydrostatic equilibrium with the pore pressure at the
point fluid is exiting the wellbore. That is, the height of the fluid column inside the
casing will be

hLC = p̂p(Z)

γf
, (12.60)

where hLC is the height of the drilling fluid (with weight density γf ) column at equilib-
rium and pp = p̂(Z) is the pore pressure as a function of vertical depth.

In reality, the fluid level will seldom drop as low as predicted for the following
reasons:
• With drilling fluid flow to the formation, the near-wellbore pore pressure will in-

crease. Assuming a Darcy-like fluid flow into the formation from the wellbore, with
the flow rate proportional to pressure gradient [156], the flow rate will decrease with
time as the pressure gradient at the wellbore wall decreases.
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Table 12.18 Collapse—surface and intermediate casing: lost circulationa,b

Internal pressure External pressure Temperature
Empty to top of DF, then DF RF G or C

Comments:
• Top of DF is determined by a hydrostatic balance between the DF column and pore

pressure at the lost circulation vertical depth.
• Conditions can be such that this load case is the same as full evacuation.

a Design string has shaded cross-section.
b DF = drilling fluid, RF = running fluid, G = local geostatic, C = circulating.

• As the height of the drilling fluid column drops, the wellbore pressure contribution
to the pressure gradient at the wellbore wall will decrease.

• Depending on the permeability of the formation and the fluid constitution, solids
in the drilling fluid will be filtered out at the wellbore wall, creating a region of
“damaged permeability”, further lowering fluid flow/loss rate.

• The factors above that lower the loss rate imply a long period of time with no one
on the rig floor detecting the loss.

The counter to the above argument is that the loss zone may be fractured, so that Darcy
flow is not the governing relation for the fluid loss rate.

As was the case with pressure testing (Section 12.7.1.1) and well control (Sec-
tion 12.7.1.2), the installation of a liner below a previous string may influence the
depth of the lost circulation zone being analyzed (see Fig. 12.6). The safe alternative is
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Figure 12.6 Calculating lost circulation in the presence of a liner. In scenario (A) the casing is de-
signed only for lost circulation while drilling the open hole immediately below that casing’s shoe. In
scenario (B) the presence of a liner (only) means that the original casing is still exposed should Lost
Circulation Zone 2 be encountered. In scenario (C) a tieback is run before drilling out the liner, and the
original casing is not exposed to the lost circulation event associated with Lost Circulation Zone 2.

to analyze lost circulation for the open hole section below the casing being designed and
for all liners below that string. As before, the timing of tieback installations can affect
this calculation.

Example problem—lost circulation load case

While drilling ahead out of 9-5/8 casing with 11.5 ppg fluid, a lost circulation zone
having a pore pressure of 5000 psi is encountered at 18000 ft. In the worst case, how far
will the fluid level inside the casing drop?

From Eq. (12.60) the height of the fluid column will be

hLC = 5000psi

11.5ppg × 0.051948 psi
ft ppg

= 8370 ft, (12.61)

where we have assumed that the local acceleration of gravity is such that 1 lbm has a
weight of 1 lbf. For the load case, the casing is assumed evacuated down to 18000 −
8370 = 9630 ft, with 11.5 ppg drilling fluid below that depth.
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Table 12.19 Collapse—surface and intermediate casing: riser margina,b

Internal pressure External pressure Temperature
SW to mudline, then DF RF G or C

Comments:
• This load case is usually pertinent to deepwater wells only.

a Design string has shaded cross-section.
b DF = drilling fluid, RF = running fluid, SW = sea water, G = local geostatic, C = circulating.

12.8.1.2 Riser margin

This load case (see Table 12.19) is applicable only to offshore wells drilled with a riser,
and usually only to wells in deepwater. The scenario assumes that during drill ahead the
drilling riser parts near the mudline. What was previously a column of drilling fluid to
the surface now becomes a mixed column of sea water to the mudline with drilling fluid
below. The severity of this load case depends on the current drilling fluid density and
the water depth. For a more detailed description of riser margin, see Section 13.3.2.5
of Chapter 13.

12.8.2 Production casing
12.8.2.1 Riser margin

Production casing may also be affected by a parted riser. See the riser margin load case
described in Section 12.8.1.2 and Table 12.19.
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Table 12.20 Collapse—production casing: packer leaka,b

Internal pressure External pressure Temperature
Empty to top of PF, then PF RF G

Comments:
• Top of PF is determined by a hydrostatic balance between the PF column and reservoir

abandonment pressure.
• Conditions can be such that this load case is the same as full evacuation.

a Design string has shaded cross-section.
b PF = packer fluid, RF = running fluid, G = local geostatic.

12.8.2.2 Packer leak

The packer leak load case for production casing (see Table 12.20) is similar to the lost
circulation load case for surface and intermediate casing. One imagines that late in the
life of the well the packer develops a leak. The level of packer fluid in the tubing annulus
can drop until it reaches a hydrostatic balance with the pressure below the packer, which
is essentially perforation pressure. The production casing therefore undergoes a loss in
internal pressure.

How low can the packer fluid level drop? As was the case with lost circulation (see
discussion in Section 12.8.1.1), this drop will depend on a number of factors related to
the elapsed time and the flow properties of the reservoir. Engineers who use this load
case assume the late-life perforation pressure to be abandonment pressure. Even for a gas
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well, whose abandonment pressure can be just hundreds of psi (a few MPa), accounting
for abandonment pressure may save one wall thickness increment in the design.

Engineers who do not consider the abandonment pressure usually design the pro-
duction casing for evacuation. This option is defendable for at least the following
reasons:
• A late-life condition of plugged perforations, if not immediately countered, can

essentially leave at least the subpacker portion of the production casing in a state of
near evacuation.

• Similarly, the use of small (able to be run inside the tubing) strings to inject nitrogen
for the purpose of gas-lifting older wells to a producing gradient has been known to
be uncontrolled to the point that the tubing and subpacker casing can be essentially
evacuated.

Either of the above scenarios, when coupled with a questionable seal at the packer, can
endanger all or at least the deeper portions of the production casing.

12.8.3 Production tubing
12.8.3.1 Annulus pressure test
The annulus pressure test (see Table 12.21) is used to test the packer and/or tubing
hanger [151]. The pressures associated with this test should also be used to generate an
internal pressure load case for the production casing. Depending on that casing’s cement
top, this test could damage the production casing cement sheath.

12.8.3.2 Production from long term shut-in
This scenario (see Table 12.22) imagines a well shut-in for a long period with a slow
tubing-to-annulus leak (tubing connection, expansion joint). Reservoir pressure is al-
lowed to migrate from the tubing to the top of the tubing annulus. The well is now
inoperative with essentially shut-in pressure on both sides of the tubing. Should the
well then be placed on production without first checking the tubing annulus pressure
the following loads immediately develop:
• the internal pressure at the top of the tubing decreases as the well is opened to

production;
• the well is relatively cool, implying maximum tension at the top of the tubing;
• the tension in the tubing reduces its collapse resistance;
• the exterior of the tubing is loaded by shut-in pressure from the leak.

This load case could, presumably, be eliminated by proper adherence to operating
procedures but has, nevertheless, occurred.

12.8.3.3 Safety valve leak
This load case (see Table 12.23) is applicable to offshore wells. One envisions the well
shut-in, with the tubing above the closed subsurface safety value (SSSV) bled to a low
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Table 12.21 Collapse—tubing: annulus pressure testa,b

Internal pressure External pressure Temperature
CF Test pressure + PF G

Comments:
• Either the CF or the PF may be both internal and external to the tubing during the

test.
• A surface pressure may also be applied internally to the tubing to mitigate possible

collapse.
a Design string has shaded cross-section.
b CF = completion fluid, PF = packer fluid, G = local geostatic.

pressure (or evacuation). The tubing develops a leak below the SSSV that can flow until
the tubing and annulus pressure equalize at the location of the leak. Above the leak the
pressure is determined by subtracting the gradient of the packer fluid. This load case
particularly endangers portions of the tubing above the SSSV.

12.8.3.4 Evacuation

The discussion of the packer leak load case for production casing (see Section 12.8.2.2)
suggests instances where the production tubing may be at or near evacuation (see Ta-
ble 12.24).
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Table 12.22 Collapse—tubing: production from long term shut-ina,b

Internal pressure External pressure Temperature
Flowing tubing pressure + HC Shut-in pressure + PF G

Comments:
• This load case is assumed to happen too early for the well to deviate from geostatic

temperature.
• When appropriate and available, a fluid flow simulator should be used to determine

the internal tubing pressure distribution.
a Design string has shaded cross-section.
b PF = packer fluid, HC = reservoir fluid, G = local geostatic.

12.9. DESIGN AND SAFETY FACTORS

Terminology is this area is author-dependent. In this book we will use a fairly common
practice and differentiate between design factor and safety factor. Consider the ratio of
resistance to load for the design equation of a particular limit state. The minimum value
of that ratio that is acceptable is the design factor. The actual value we calculate when
we compute a tubular’s resistance (given a limit state) to the imposed load (as defined
by the tables in this chapter) is the safety factor.17

17 An alternative measure to the safety factor (Resistance / Load) is safety margin defined as Resistance
minus Load.
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Table 12.23 Collapse—tubing: SSSV leaka,b

Internal pressure External pressure Temperature
Shut-in reservoir pressure at
perforations – HC

Annulus pressure + PF (above
packer)

G or P

Comments:
• Pressure under SSSV is determined by calculating from the perforations (at shut-in

conditions) up to the SSSV using a column of (shut-in) reservoir fluid.
• The pressures inside and outside the tubing at the leak location are equal.
• Above the leak the pressure, including the annulus surface pressure, is determined by

subtracting the gradient of the packer fluid.
• The pressure above the SSSV can either be determined by a vented column of reservoir

fluids, or that portion of the tubing can be assumed evacuated.
a Design string has shaded cross-section.
b PF = packer fluid, HC = reservoir fluid, G = local geostatic, P = producing.
c Internal fluid occupies the tubing annulus below the packer.

The design factor is a measure of uncertainty in a number of factors including the
following [157,158]:
• material properties (E, ν, fy, fu, degree of anisotropy);
• load values (pp, pfr , γf , detection and crew capabilities);
• tubular, connection and accessory dimensions (D, t, thread form, tolerances);
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Table 12.24 Collapse—tubing: evacuationa,b

Internal pressure External pressure Temperature
Empty PF (above packer) G or P

Comments:
• Possible causes are plugged perforations and over displacement of tubing via a nitrogen

string.
a Design string has shaded cross-section.
b PF = packer fluid, G = local geostatic, P = producing.
c Internal fluid occupies the tubing annulus below the packer.

• models used to describe both load and resistance.
Embedded in design factors are significant company historical experiences that should
be given due weight when considering a design factor change or dispensation.

There are two forms of a equation defining a limit state or failure mode. The limit
state equation itself is defined by the tubular subcommittees of the API as an “equation
which, when used with the measured geometry and material properties of a sample,
produces an estimate of the failure value of that sample” [51]. This equation purports
to be an accurate predictor of the resistance of a sample given the actual dimensions and
material of that sample. Closely related to the limit state equation is the design equation
defined as an “equation which, based on production measurements or specifications,
provides a performance property useful in design calculations” [51]. The design equa-
tion is derived from the limit state equation by choosing reasonably severe extremes
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of the dimensions and material constitution and substituting them for the otherwise
measured quantities.18

12.9.1 Conventional design and safety factors
As an example of a conventional design and safety factor, consider triaxial yield. The
limit state is defined by Eq. (6.34). In that equation (see below) the resistance is rep-
resented by the yield stress fy, and the load is measured by the von Mises equivalent
stress defined in Eq. (6.58). We render Eq. (6.34) a design equation by (a) assuming
the thinnest reasonable wall thickness from the manufacturing process and (b) using the
minimum acceptable yield strength for the material (see discussion in Section 6.3.6 in
Chapter 6). The resulting design equation is Eq. (6.95), reproduced here for further
discussion as

f̂des(r) =
(

	zz − pid2
wall − poD2

D2 − d2
wall

)2

+ 3
16r4

((
pi − po

)
d2

wallD
2

D2 − d2
wall

)2

︸ ︷︷ ︸
Load, 	2

e

− f 2
ymn︸︷︷︸

Resistance

= 0. (12.62)

As indicated in Eq. (12.62), the left-most portion of the relation is the von Mises
equivalent stress (squared) for the case of no torsion or other shear,19 where the radial
and hoop components of 	e have been evaluated at a point on the tubular where the wall
thickness is dwall, the thinnest reasonable wall thickness. The von Mises equivalent stress
is a measure of the load as applied to this location in the tube and assumes a maximum
value at a radius r that depends on the presence of bending. The minimum yield stress
fymn represents a portion of the tube with minimum strength constitution. Further, the
minimum wall thickness (maximum 	e) and minimum yield stress are assumed to be
collocated.

In the absence of bending we can evaluate Eq. (12.62) at r = dwall
2 and get

f̂des(
dwall

2
) =
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︸ ︷︷ ︸
Load, 	2

e

− f 2
ymn︸︷︷︸

Resistance

= 0. (12.63)

18 The design equation described here is for deterministic design. For probabilistic design, the design
equation is derived statistically and represents a chosen lower percentage of the probability distribution
curve of the tubular’s resistance.

19 Compare Eq. (6.35) with Eq. (6.23) and the narrative in Section 6.3.6 of Chapter 6.
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For triaxial design it is typical practice to compare the square roots of the load and
resistance terms in Eq. (12.63). The safety factor for triaxial yield is therefore

SFTriaxial = Resistance
Load

= fymn√(
	zz − pid2

wall−poD2

D2−d2
wall

)2
+ 3

((
pi−po

)
D2

D2−d2
wall

)2
. (12.64)

This relation would, of course, be more complicated if we had included bending in the
calculation of 	zz.

In applying Eq. (12.64) to any of the load cases in this chapter, one uses:
• the pessimistic dimensions (D, dwall) and strength (fymn) of the tube being evaluated;
• local values of 	zz, pi and po of the selected load case at the depth of investigation.
The resulting value for the triaxial safety factor SFTriaxial is compared to a minimum
acceptable value of SFTriaxial which is the triaxial design factor DFTriaxial, that is, for an
acceptable design we require

SFTriaxial ≥ DFTriaxial. (12.65)

Typical values of DFTriaxial are in the range 1.15–1.25, with the many operators leaning
toward the lower side of this range.20

The condition for collapse resistance is similar to that discussed for triaxial yield with
the following exceptions:
• Resistance is measured by the API minimum collapse resistance of the tube (or a

minimum value supplied by the manufacturer for proprietary tubes), suitably ad-
justed for the presence of 	zz and pi as described in Section 8.2.4 of Chapter 8;

• The material strength is still pessimistic (fymn), but the dimensions of the tube are
considered to be as specified (D, t);

• The safety factor is defined by

SFCollapse = �pc (Section 8.2.4 of Chapter 8)
po − pi (Load case)

. (12.66)

Typical values of DFCollapse are in the range 1.00–1.10, with the many operators leaning
toward the lower side of this range. The statistics of mapping average collapse resistance
to minimum collapse resistance are, for the most part, sufficiently conservative that a
large design factor has proven unnecessary.

20 Prior to the release of a version of API TR 5C3 [51] using dwall in design Eq. (12.63), the diameter
calculated using specified D and t (d = D − 2t) was used. In that previous era, triaxial design factors
tended toward the upper side of the indicated range.
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12.9.1.1 Example problem—collapse safety factor

Given the tube and axial stress and internal pressure conditions of the example collapse
calculation in Section 8.2.4.6 of Chapter 8, compute the collapse safety factor when the
external pressure is 8000 psi.

From Section 8.2.4.6 of Chapter 8, 	zz = 20000psi, pi = 1000psi, and the resulting
value of �pc = 7474psi. From Eq. (12.66) we get

SFCollapse = 7474psi
8000 − 1000 psi

= 1.07, (12.67)

which for most engineers would be acceptable when compared to the collapse resistance
design factor range of 1.00–1.10.

12.9.2 Radial design and safety factors
When considering threaded connections one can follow a procedure similar to Sec-
tion 12.9.1 for the joint strength, compressive strength and even internal and external
pressure ratings. Increasingly, however, the popularity of casing design software and the
availability of results from sophisticated test procedures [56] have led to a multidimen-
sional approach to expressing connection resistance.

The approach is similar to that used for triaxial yield. An envelope constructed by
the manufacturer in axial force/stress × differential pressure space (see Section 6.3.4.3
of Chapter 6) is used to display the resistance of the connection to combined loading.
The difference between the character of the connection envelope and the von Mises
yield surface for the tube body is that not all penetrations of the envelope necessarily
represent connection yield. Some portions of the connection envelope may be governed
by connection-specific considerations such as leak integrity.21 Other portions of the
envelope may address yield of internal shoulders rather than the critical section areas
of the pin and box members. For this reason, it is not unusual to see a connection
envelope that is continuous, but not necessarily smooth, with abrupt corners signifying
the juncture of limit states from different portions of the connection geometry.

Parallel to the advancement in connection envelopes are similar performance en-
velopes used to describe the capacity of accessories such as hangers and packers
[55]. Frequently the axes are reversed—differential pressure becomes the abscissa, axial
force/stress becomes the ordinate—but the underlying principle is the same. An attempt
is being made to characterize the resistance of the part in multidimensional load space.

21 Even in the case of leak integrity, the underlying limit state may be yield of an internal shoulder in the
connection.
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Figure 12.7 Specific connection envelope and general illustrations of radial safety factor. The left-
hand diagram could, alternatively, be an accessory performance envelope, or triaxial yield or collapse
resistance of a tube. (A) Connection envelope; (B) general envelope.

Pertinent to the above envelopes is a new view of safety factor,22 termed by Liu
and coworkers the radial safety factor [158]. The radial safety factor is an attempt to
better describe the closeness of a combined load to a multidimensional stress limit state.
Consider the two diagrams in Fig. 12.7. The left-hand diagram follows the collapse
example of [158] and illustrates the radial safety factor concept concretely in terms of
collapse of a tube body. The right-hand diagram is a generalization to other failure
modes and to other, nontubular components of a tubing or casing string.

In the left-hand diagram a performance envelope for a generic connection (solid
envelope) is compared to the von Mises yield surface for the tube body (dashed ellipse).
The connection is roughly eighty percent efficient in tension, 60% efficient in com-
pression, and over most of its upper and lower extremities displays internal and external
pressure resistance equal to the tube body.

Assume that at some location in the tubular string of which this tube-connection
combination is a part, the connection is subjected to a load with 	zz, pi and po values
corresponding to point B. If we were to approach this problem in terms of conventional
safety factors, the external pressure safety factor for the connection would be AC/AB,
which appears to be approximately 40% of the way to penetrating the connection en-
velope at point C. On the other hand, if we reasonably assume that all of the loads are

22 Thanks to Frans J. Klever, a coauthor of [158], for an informative email interchange regarding radial
safety factor.
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being applied proportionally, then it is more likely that increasing load will penetrate
the connection envelope at point L. Further, if this is the case, comparing line OB with
line OL would imply that the current load is approximately two-thirds of the way to
penetrating the connection envelope at L. The conclusion to be reached from the left-
hand diagram in Fig. 12.7 is that a conventional safety factor calculation will render a
mistaken impression of the closeness of the connection to its limit state. A safety factor
measure of OL/OB is a more meaningful measure of the connection’s loading relative
to its capacity.

The right-hand side of Fig. 12.7 generalizes the concepts presented for the connec-
tion envelope. We introduce a limit state equation Ĝ(χ) = 0 to define the condition of
our tubular structure, with Ĝ(χ) < 0 being an unacceptable state.23 The dimension of
the vector χ can, depending on the functions describing load and resistance, be large.
For this reason, only two of the coordinate axes for the limit state, χi and χi+1, have
been indicated in Fig. 12.7.

In the generalization for radial safety factor, the safety factor is expressed as χR =
SFχL. The vector χL is that portion of χ that defines the load; the vector χR is the
extension of χL out to the limit state. Both χR and χL begin at the origin.

12.9.2.1 Example problem—radial safety factor for triaxial yield

Apply the concept of radial safety factor to triaxial yield in the absence of bending.
The limit state equation is (see Eq. (12.62) with r = dwall/2)

Ĝ(	zz,pi,po,D, t,kwall, fymn) =
(

	zz − pid2
wall − poD2

D2 − d2
wall

)2

+ 3

((
pi − po

)
D2

D2 − d2
wall

)2

− f 2
ymn
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e − f 2

ymn = 0, (12.68)

where dwall = D − 2kwallt, χL =
[

	zz pi po

]T
and χS =

[
D t kwall fymn

]T
,

where χ =
[

	zz pi po D t kwall fymn

]T
. The example problem in

Section 6.3.6.1 of Chapter 6 reinforces the substitution of 	e (evaluated using d = dwall)
for the first two terms on the right-hand side of Eq. (12.68).

At a certain location s along the tubular string, χL(s) =
[

	zz(s) pi(s) po(s)
]T

. At
this location we can determine that

χR(s) = SFχL(s), (12.69)

23 The function Ĝ is sometime written as Ĝ = R̂ − Ŝ where R̂ is the resistance portion of the equation
and Ŝ is the load. We have chosen to use the more general expression Ĝ to account for the frequent
circumstance when R̂ and Ŝ may depend on some of the same variables. If load and resistance are
separated, then the limit state equation is R̂ − Ŝ = 0.
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where SF is the radial safety factor for triaxial yield. The equation implies that mul-
tiplying all the elements of χL(s) by SF will render Ĝ(	zz,pi,po,D, t,kwall, fymn) = 0.
But from Eq. (12.68) this is the same as saying 	e = fymn . Further, from Eq. (12.63),
multiplying all the elements of χL(s) by SF is identical to multiplying 	e by SF. We
conclude that the conventional safety factor for triaxial yield is, in fact, an application of
the radial safety factor, and therefore the safety factors computed from Eqs. (12.64) and
(12.69) are identical. This result lends credence to the conventional triaxial yield safety
factor as a credible means of measuring a tubular design for yield.

Liu et al. [158] also present an iterative calculation procedure for the radial safety
factor for collapse.

12.9.3 Extensions of the radial safety factor concept
Several extensions to the radial safety factor concept exist regarding both the limit state
and the definition of the radius vector.

12.9.3.1 Multiple limit states

A threaded connection or tubing accessory may have a suite of limit states to be checked,
depending on the part’s internal geometry (connection) or collection of subparts (ac-
cessory). In either case a useable generalization to the preceding discussion would be
to plot the multiple limit states and then, by projecting the load point radius, deter-
mine which limit state surface is penetrated. The concept is visualized in the left-hand
diagram of Fig. 12.8.

This concept is an extension of the calculation presented by Liu et al. [158] for
threaded connections, where the straight lines connecting individual points defining
the connection service envelope can be considered individual limit state lines/surfaces.

12.9.3.2 Nonradial load lines

Underlying the concept of radial safety factor is the assumption that between the current
load point and the resistance point, or intersection of the radial load line with the limit
state surface, the loading is increased proportionally. This assumption is reasonable. In
most instances, however, the proportionality of an individual load case has its origin not
at a state of zero load, but at the initial state for the tubular.24 Contra the implementation
of nonradial load lines is that the initial state, although usually a benign state of stress, is
not a datum of zero stress.

24 In a truly nonlinear analysis—for example, and analysis involving friction—one could argue that a better
candidate than either the state of zero load or the initial state for the tubular would be the state corre-
sponding to the previous load case. Most casing and tubing designs, however, do not consider this degree
of nonlinearity.
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Figure 12.8 Possible extensions to the concept of radial safety factor. The left-hand diagram illus-
trates multiple limit states. In the diagram the load line, if extended proportionally, will intersect the
ith limit state. The right-hand diagram illustrates nonradial load lines. The base of the load line is the
tubular string’s initial condition instead of the origin; T = top of string, B = bottom of string, C = cur-
rent location of interest in tubular string.

The right-hand diagram in Fig. 12.8 illustrates an implementation of nonradial load
lines. The dashed curve represents the initial state of the tubular in a space pertinent to
the current limit state. The solid curve is the state of the tubular under a particular load
case.



CHAPTER 13

Casing Seat Selection and Sizing

13.1. INTRODUCTION

Determination of both the lengths and diameters of the well tubular constituents is
required prior to stress analysis. Length determination is the more complicated issue
and is usually approached first.

The setting depths of various casing strings are predicated on a desire to maintain
a stable wellbore throughout well construction. Drilling fluid density helps mechani-
cally support the wellbore but is limited in selection both from above and below by
considerations related to the nature of the rock through which drilling and completion
operations must be performed. As these bounds vary continuously, a suitable drilling
fluid density at one depth may prove unacceptable elsewhere in the well trajectory. It
therefore becomes necessary to replace the porous formation wall with something more
substantial—a metal (usually steel) casing. The factors guiding the decision of casing
placement are the subject of Sections 13.2 and 13.3.

With the setting depths for the various casing strings determined, diametric siz-
ing becomes important (see Section 13.4). Sizing tubulars proceeds from the innermost
string (production tubing), outward. Sizing the tubing is the most complicated and eco-
nomically important task, followed by the sizing of the production casing. Subsequent
tubulars are primarily sized with an eye on standardization of bits and tubulars, with due
consideration given to wellbore hydraulics.

13.2. CASING SEAT SELECTION

Why is casing necessary at all? The rock formations that overlay petroleum reservoirs
possess certain weaknesses that, in the end, dictate the use of tubulars. Attempting to
overcome the inadequacies of rock as a structural component of the well by means of a
drilling fluid-filled hole leads one to address the issue of tubular string length.

13.2.1 Deficiencies of rock
It is not possible to drill a hole from the surface to the depth of a typical petroleum
reservoir in the absence of formation structural and flow considerations. Rock constitu-
tion renders it undesirable as a structural component at depth. The weaknesses of rock
fall into three categories, all of which are addressed by casing.
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13.2.1.1 Permeability

Subsurface rock contains interconnected pores through which interstitial fluids can flow
when subjected to a pressure gradient. When drilling operations first penetrate a sub-
surface formation, an equilibrium established by deposition and time is disturbed. Flow
either to or from the wellbore ensues. Under normal circumstances,1 the local pressure
in the wellbore will be slightly higher than the pressure in adjacent rock pores, and, if
anything, there is a loss of fluid to the formation.2

The presence of a filter cake associated with wellbore fluid loss to an adjacent forma-
tion can result in the phenomenon of differential sticking. If casing or a drilling tubular
comes to rest against the wellbore wall and, with time, embeds in the filter cake, the ma-
jority of the tubular circumference will be exposed to drilling fluid hydrostatic pressure
from the wellbore while the embedded portion is subjected to, at best, formation pore
pressure. A net, radially outwardly directed pressure force reinforces contact between
the tubular and the wellbore wall. The tubular can become stuck due to this differential
(wellbore vs. formation) pressure, or differentially stuck.

Aside from formation fluid interaction with the drilling fluid, introduction of the
wellbore can also initiate interaction between formations—higher pressure formations
flowing into lower pressure formations—and the exchange of (possibly) hydrocarbon
and nonhydrocarbon fluids between formations. In some instances—for example, cross-
flow between various formations in a multilayered reservoir—the fluid exchange may be
manageable. In other instances, relative permeability effects may either damage the flow
characteristics of an otherwise productive formation or, if flow is from the reservoir,
result in a loss of reserves.

If cross-flow between formations does not occur, one still must deal with the possi-
bility of formation fluids unintentionally flowing up the wellbore. Responding to loss
of well control can consume productive time that might be spent drilling. More serious
loss of well control can result in a blow-out.

The permeability of rock leading to the flow issues outlined above suggests that
a barrier to unintended flow to/from a formation is desirable, particularly for the
long-term integrity of the wellbore as a conduit for reservoir hydrocarbons. Casing,

1 Underbalanced drilling is an exception.
2 Fluid loss to the formation can be slow or decrease with time. The majority of formations overlying

petroleum reservoirs are shale, which typically has extremely low permeability. If the formation is more
permeable (sandstone, for example), loss of drilling fluid to the formation usually involves deposition
of solids in the fluid on the wall of the wellbore. This so-called filter cake has low permeability and
progressively slows fluid loss to the formation. Further, and regardless of the formation permeability, fluid
loss from the wellbore serves to lower the radial pressure gradient at the wellbore wall, thereby reducing
flow potential. Exceptions to the above scenarios include formations with large cavities to which Darcy
flow is not applicable and drilling fluid densities that are so high (or local, total rock stresses that are so
low) that the wellbore wall is fractured.
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in conjunction with an annular seal—typically cement or, less commonly, an open-hole
packer—is essential for contained hydrocarbon extraction.

13.2.1.2 Weakness under certain loads

Given the occurrences of casing deformation opposite mobile formations [95,159,160,
82,91], characterizing rock as weak seems to counter experience. The deformation of
casing by an adjacent, deforming formation is strongly tied to the manner in which the
casing is loaded (see Section 8.3 of Chapter 8) and not necessarily the inherent strength
of the rock itself.

Tension

Most rocks are weak in tension—thus the inception of the hydraulic fracturing pro-
ductivity enhancement technique. Should a particularly weak or shallow formation be
exposed to pressures from either the wellbore drilling fluid or another zone, tensile
fracture at the wall of the wellbore can result in loss of containment of wellbore fluids.

Knowledge of the fracture pressure distribution with depth is drawn from both unin-
tended (lost circulation due to fracture in offset wells) and deliberate (hydraulic fracture
treatments and minifracture measurements in offset wells, leak-off tests, regional correla-
tions) sources, all of which require subject matter expert input to be used and interpreted
properly [161]. Deliberate formation fracturing at overburden depths far removed from
a casing seat is rare.

Creep

The most pervasive instance of creep related to casing damage is the flow of a mobile salt.
Salt creep has plagued the industry worldwide [80,95,162,81,82]. Engineered solutions
vary but often involve reinforcing a conventional string either with augmented wall
thickness, or with the presence of a second string interior and cemented to the first.
Installing such solutions can impact both the length and diameter of adjacent tubulars.

In addition to mobile salts, even rock formations with substantial strength can creep
in the presence of sufficient tectonic stress [91].

Formation compaction

Particularly regarding the producing formation, pore pressure depletion during hydro-
carbon extraction can, given sufficiently weak formation rock, induce compaction
and, in severe cases, translate that compaction to the mudline, causing subsidence
[163,164,159,160,165–170,86,88,89,171]. Formation response—in the reservoir, at the
reservoir/overburden boundary, and in the overburden—can require special considera-
tions in design of both the wellbore trajectory and associated tubulars.
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13.2.1.3 Chemical sensitivity

Later discussion of the role of rock mechanics in casing seat determination will focus
on the mechanical aspects of wellbore stability. Inasmuch as the majority of overburden
rock is shale, well design is further complicated by the sensitivity of some shales to
water in the drilling fluid. Both the load and resistance sides of design are affected by
this interplay—the presence of the wellbore and the drilling fluid it contains alter the
effective stress state to which the shale is subjected, while simultaneously the reaction of
the shale to the presence of water reduces its strength [172].

13.2.2 Strategy
The intent of a drilling program is to devise a schedule of drilling fluid densities to
overcome the above-mentioned deficiencies of subsurface rock. In some instances solu-
tions to the variety of challenges rock offers may conflict. For example, underbalanced
drilling, where the drilling fluid density is purposely targeted below the adjacent pore
pressure, is an example of a solution that violates one desire (preventing pore fluids
from entering the wellbore) in order to satisfy another (counter rock constitution).
The majority of drilling activity, however, intends to counter the three deficiencies of
rock—permeability, weakness under certain loads, and chemical sensitivity. It is this
strategy that leads to the necessity of running casing.

13.3. DRILLING FLUID DENSITY CONSTRAINTS

The blank plot of Fig. 13.1 illustrates the first step in the casing seat selection process—
choosing convenient coordinate axes with which to work. In the figure, the horizontal
axis conforms to the accepted procedure of using pressure gradient, rather than pres-
sure, to record fluid and formation effects. Typical units for the abscissa are ppg, psi/ft,
and specific gravity (SG). The vertical axis is true vertical depth as many of the factors
affecting casing seat selection have some relation to a fluid column.

The drilling fluid density,3 pore pressure gradient and fracture pressure gradient are
all secant (average) gradients, as opposed to tangent (local) gradients. The drilling fluid
density (or drilling fluid pressure gradient) γf at a vertical depth of interest is the wellbore
pressure pf (Z) divided by the selected vertical depth, as measured from a reference
datum

γf = pf (Z)

Z − Z0
, (13.1)

3 In this discussion we use weight density γ rather than mass density ρ. In any of the ensuing equations
the formula γ = (

g/gc
)
ρ, where g is the local acceleration of gravity and gc is the gravitational constant,

provides a proper conversion between ρ and γ .
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Figure 13.1 Casing seat selection—choosing axes.

where Z is vertical depth and Z0 is the vertical depth to the datum. In most instances
the datum is the drill floor or rotary kelly bushing.

Similarly, the gradient of pore pressure (fracture pressure) at a vertical depth of in-
terest is the local pore pressure (fracture pressure) divided by the selected vertical depth,
as measured from a reference datum

γp = pp(Z)

Z − Z0
, (13.2)

γfr = pfr(Z)

Z − Z0
. (13.3)

The variables γf , γp and γfr have units of force per volume (e.g., ppg) or, equivalently,
pressure gradient (e.g., psi/ft).

13.3.1 Pore and fracture pressure gradients
At this point in the discussion, any drilling fluid density is acceptable at any depth. We
wish to search for constraints to the selection of fluid density based on the discussion
in Section 13.2.1 of overburden and reservoir rock. Selecting a candidate depth in
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Figure 13.2 Casing seat selection—minimum drilling fluid density constraint. At each vertical depth,
a wellbore fluid density less than the local pore pressure gradient will induce entry of formation fluid
into the wellbore.

the wellbore,4 and beginning with a high drilling fluid density, we gradually lower
the density searching for a minimum fluid density with which we are comfortable as
indicated in Fig. 13.2. Moving to the left on the abscissa, we encounter no difficulty
until our fluid density reaches a value equal to the local pressure of the fluid in the pores
of the adjacent formation. Lowering the drilling fluid density below the pore pressure
gradient creates an unfavorable pressure difference that would allow formation fluid
to enter the wellbore—under most circumstances an undesirable situation.5 We have
therefore found a minimum constraint for the wellbore fluid density. At each depth,
values of wellbore fluid density to the left of, or less than, the curve labeled “Pore
Pressure Gradient” are now unacceptable.

Given the importance of the pore pressure gradient, from where does this curve
originate? For the drilling engineer in the planning phase of a well, the source of the
pore pressure gradient curve is usually the subsurface scientist assigned to the well in
question. Depending on the locale and the age of the field in which the well is being
drilled, the following are sources and tools the subsurface scientist may use in determin-
ing the pore pressure gradient:

4 For the moment, consider the wellbore to be onshore, vertical and straight.
5 An obvious exception to this statement would be underbalanced drilling.
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Figure 13.3 Casing seat selection—maximum drilling fluid density constraint. At each vertical
depth, a wellbore fluid density greater than the local fracture pressure gradient will fracture the for-
mation and induce loss of wellbore fluid to the formation.

• empirical correlations for the region and type of deposition,
• seismic surveys, and
• drilling and production history of offset wells.

Reversing the process at the candidate depth in our wellbore, and now beginning
with a drilling fluid density equal to the acceptable minimum of the local pore pressure
gradient, we gradually increase the density searching for a maximum fluid density with
which we are comfortable, as indicated in Fig. 13.3. Moving to the right on the abscissa,
we encounter no difficulty until our fluid density reaches a value equal to the local
fracture pressure gradient of the adjacent formation. Increasing the drilling fluid density
above the fracture pressure gradient creates an unfavorable pressure difference that would
induce a (usually) vertical tensile fracture in the formation and cause loss of wellbore
fluid. We have therefore found a maximum constraint for the wellbore fluid density. At
each depth, values of wellbore fluid density to the right of, or greater than, the curve
labeled “Fracture Pressure Gradient” are now unacceptable.

The drilling engineer’s source of fracture pressure gradient is also the subsurface
scientist. As was the case with pore pressure gradient, the scientist has a number of tools
with which to construct the fracture pressure gradient curve:
• empirical correlations for the region and type of deposition,
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Figure 13.4 Casing seat selection—acceptable fluid density range. At each vertical depth, the ac-
ceptable fluid density range is bounded below by the pore pressure gradient and above by the fracture
pressure gradient.

• formation fracturing tests (see the discussion of “Tension” in Section 13.2.1.2) from
offset wells, and

• drilling and production history of offset wells.
Our knowledge at this point is summarized in Fig. 13.4. At each subsurface depth,

and according to our desire in this well to have neither entry of formation pore fluid nor
loss of wellbore fluid, we have arrived at an acceptable range of drilling fluid density.
The acceptable drilling fluid density range at each vertical depth is

γp(Z) ≤ γf (Z) ≤ γfr(Z), base constraint. (13.4)

Fig. 13.4 and Eq. (13.4), along with the extensions to follow in Section 13.3.2, express
local constraints. That is, at vertical depth Z the acceptable limits of the drilling fluid
are stated in terms of constraints at that depth. These local constraints do not mean that
the entire wellbore above depth Z is capable of supporting a column of drilling fluid
with density in the acceptable range without issue.
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13.3.2 Additional constraints
Pore and fracture pressure gradients are fundamental considerations for practically all
discussions of drilling fluid density. There exist, however, additional issues that can
further restrict the drilling fluid density, several of which are discussed below.

13.3.2.1 Uncertainty

Even if one discounts measurement and correlation error, the anticipated pore and
fracture pressure gradients will vary from wellbore to wellbore, resulting in a distribution
of values at each depth. This uncertainty can be addressed with statistics, an increasingly
popular approach aligned with design using probabilistic concepts. A less sophisticated
but popular alternative is to apply what amounts to a design factor to both pore and
fracture pressure gradient, thus narrowing the acceptable range of drilling fluid density.
Typically, either method results in shifts of the “expected value” curve by tenths of a ppg
(0.012 SG).

13.3.2.2 Surge and swab margins

The mental exercise used to construct Figs. 13.1–13.4 compares static columns of well-
bore fluid to formation pore and fracture pressure gradients. In reality, there exist times
when the fluid in the wellbore is moving, this motion being due to drilling fluid circula-
tion or, our concern in this section, pipe movement in the wellbore. The increments in
pressure above and below hydrostatic are termed surge and swab pressure, respectively.
The phenomenon has been studied extensively [17–20,173].

During well planning a drilling engineer may use one of several commercially avail-
able software tools to perform simulations of either running in hole (RIH) or pulling
out of hole (POOH) with a drill string. These modeling exercises will result in adjust-
ments to the hydrostatic fluid column on the order of tenths of a ppg (0.012 SG). It
is common practice to combine the surge and swab values with the design factor of
Section 13.3.2.1, this net shift in the pore and fracture pressure gradient curves being
on the order of 0.5 ppg (0.06 SG). Fig. 13.5 illustrates the impact of uncertainty and
surge/swab on the acceptable fluid density range.

Including uncertainty and the surge and swab margins alters the base constraint of
Eq. (13.4) to the following:

γp(Z) + γsb(Z) ≤ γf (Z) ≤ γfr(Z) − γsu(Z),
base constraint
+ surge and swab margins,

(13.5)

where the swab margin γsb(Z) and the surge margin γsu(Z) are, respectively, the surge
and swab pressures divided by the vertical depth from the datum.

Although the surge and swab margins are, in general, functions of vertical depth, in
practice these two margins are often treated as (not necessarily equal) constant values.
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Figure 13.5 Casing seat selection—adjustment of acceptable fluid density range for uncertainty
and surge/swab.

Similarly, it is not necessary that the margin of uncertainty on the pore pressure curve
be identical to its counterpart on the fracture pressure curve.

13.3.2.3 Differential sticking
From Section 13.2.1.1 the presence of a filter cake introduces the potential for differen-
tial sticking, particularly if a tubular string is maintained in a static state in the wellbore
for some length of time. There usually exists some differential sticking limit beyond
which experience in a locale has shown differential sticking to be prevalent. The dif-
ferential sticking limit is expressed as a pressure difference between the local wellbore
and pore pressures. This number can be location sensitive and is usually on the order of
2000 psi to 4000 psi (13.8 MPa to 27.6 MPa).

In accounting for differential sticking the following facts are pertinent:
• The abscissa for the pore and fracture gradient plot is pressure gradient, whereas

the differential sticking criterion is a pressure value. The adjustment to account for
differential sticking will therefore vary with vertical depth, even if the differential
sticking limit is constant.

• When comparing differential sticking to pore pressure, the unfactored (no uncer-
tainty, no swab margin) pore pressure curve is the appropriate datum. Differential
sticking and swab pressure are unrelated phenomena. One could opt to include
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the margin for uncertainty (Section 13.3.2.1), but typically the differential sticking
limit is not known that precisely. Further, using unfactored pore pressure will be
conservative, as the difference between wellbore pressure and pore pressure will be
greater.

• The potential for differential sticking is difficult to anticipate without performing
the calculation. A smaller difference between drilling fluid density and pore pres-
sure gradient may be outweighed by the fact that the difference occurs at greater
depth—the differential sticking limit is based on pressure.

• In some instances, the potential for differential sticking must be tolerated, and the
differential sticking limit ignored. If, for example, a portion of the wellbore passes
through a depleted reservoir, it may not be possible to lower the drilling fluid
density sufficiently to prevent an unfavorable difference between wellbore pressure
and pore pressure.6 Depleted zones are particularly challenging when designing for
differential sticking as pore pressure depletion affects not only the pore pressure gra-
dient but also the fracture gradient. According to the effective stress principle (see
Section 13.3.2.4 to follow, along with Appendix C), and assuming the depleting
formation behaves as a poroelastic material with constant7 overburden stress, a de-
crease in pore pressure will result in a corresponding decrease8 in fracture pressure.9

The effect of pore pressure depletion on the original pore and fracture pressure
gradients is illustrated in Fig. 13.6.
Although the pressure differential of concern is wellbore minus pore pressure, the

differential sticking limit manifests itself as a reduction in the upper limit of acceptable
fluid density. At each depth of concern, starting with the pore pressure one asks, “How
high can the drilling fluid density be without exceeding the differential sticking limit?”
This value, converted to a pressure gradient for the depth of concern, can be less than
the fracture pressure gradient at that depth, and if so, the upper limit of acceptable
drilling fluid density should be adjusted downward.

An example is shown in Fig. 13.7. At each depth, the dotted line is a calculation of
the maximum wellbore fluid pressure that, when compared to the pore pressure, is less
than the differential sticking limit.

6 Further, lowering the drilling fluid density in order to lower the risk of differential sticking may increase
the risk of a pore fluid influx when exiting the depleted zone and penetrating a formation with higher
pore pressure gradient. The potential for differential sticking, and a possible sidetrack, usually has lower
consequence than that of a well control incident, particularly in the vicinity of hydrocarbon-bearing
formations.

7 Partial support of the overburden by “arching” will lessen but not eliminate the change in total horizontal
stress.

8 The horizontal stress is negative—with pore pressure depletion it assumes a smaller negative value.
9 If the overburden stress is SV , a decrease in pore pressure of �pp will result in a corresponding decrease

in fracture pressure of (see Section C.3.1 of Appendix C) −[(1 − 2ν)/(1 − ν)] × α�pp, where 0 ≤ ν ≤ 0.5
is Poisson’s ratio and 0 ≤ α ≤ 1 is the Biot parameter.
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Figure 13.6 Casing seat selection—effect of pore pressure depletion on pore and fracture pressure
gradients.

Incorporating the differential sticking limit, the range of acceptable drilling fluid
density at any vertical depth becomes

γp(Z) + γsb(Z) ≤ γf (Z) ≤ min

{
γfr(Z) − γsu(Z)

γds(Z)
,

base constraint
+ surge and swab margins
+ differential sticking limit,

(13.6)

where

γds(Z) = γp(Z) (Z − Z0) + pds

Z − Z0
, (13.7)

with pds being the differential sticking limit.

13.3.2.4 Wellbore stability

Wellbore stability is an investigation of the structural integrity of near wellbore for-
mations under the action of initial stresses and pore pressure, and as influenced by the
drilled wellbore. Wellbore stability is also influenced by both the mechanical and chem-
ical constitution of the formation rock. Wellbore stability considerations, even for a
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Figure 13.7 Casing seat selection—adjustment of acceptable fluid density range for differential
sticking. The uncertainty and surge/swab margins (dashed lines) have been ignored for this calcu-
lation, except when determining if the upper limit of the acceptable range should be adjusted down-
ward.

straight, vertical wellbore, can dominate the determination of an acceptable drilling
fluid density schedule.

A wealth of rock mechanical literature addresses wellbore stability in the context of
the petroleum industry and other mining-related activities [174–178]. Here, we will use
simple models to discuss the underlying principles in a wellbore stability calculation,
recognizing that the acceptable drilling fluid density range resulting from such a calcu-
lation is usually performed for the drilling engineer by a rock mechanist well-versed in
both the subject and applicable modeling software.

Fig. 13.8 illustrates the stress state of a rock sample in a laboratory triaxial compres-
sion10 test.11 The sample is jacketed (lateral surface) and sealed (end surfaces12). The

10 Rock mechanists conventionally designate compressive stresses as positive. In keeping with the rest of
this text, we shall treat tensile stresses as positive, which will cause some plots to appear as axis reflections
when compared to the standard rock mechanics literature.

11 Although termed “triaxial”, the two lateral stresses are equal throughout the loading.
12 The sample ends are sealed in a so-called undrained test. If the test is executed in a drained condition,

one sample end may be vented to a constant pressure reservoir to maintain original sample pore pressure.
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Figure 13.8 Triaxial compression rock mechanical test. The left-hand figure introduces the test vari-
ables; the right-hand figure uses the results of two tests with different confining pressures to construct
a Mohr–Coulomb failure envelope. Sea and Sec as indicated are for the test with confining pressure pc1.

sample is first loaded hydrostatically (Sa = Sc)13 to a desired confining (lateral) stress.
Typically, but not necessarily,14 the sample is loaded in a drained condition, where the
loading rate is sufficiently slow to allow dissipation of any pressure generated in the
pores of the sample.

Once the desired confining pressure is reached, this pressure is held constant while
the sample is loaded axially (Sa increased in a compressive sense) by an end platen
through states of either inelastic deformation, if the confining stress is high, or brittle
failure, if the confining stress is low. In many instances related to the integrity of the
wellbore wall, the stress state is such that the confining stress is low, and the rock fails in
a brittle manner.

One of the many mathematical models used to describe the limit state of a rock
loaded at low confining stress is the Mohr–Coulomb model. The model’s name origi-
nates from the following:
• The relation between shear and normal stress on the failure plane is described by a

Coulomb-like friction model

Se
s = −μSe

n + c, (13.8)

13 We maintain the previously introduced convention (see Section 6.1 of Chapter 6) of using the Piola–
Kirchhoff (engineering) stress for stress–strain curves.

14 In a properly instrumented experiment, the pore pressure in the sample can be monitored and, if desired,
controlled, even at a value other than zero.
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where μ = tanφ, φ being the angle of internal friction. Unlike the classic Coulomb
friction model, however, the rock has a nonzero strength when the normal stress
vanishes—this is the cohesion c.

• Mohr’s circle (see Section 4.2.7.2 of Chapter 4) is used to determine the angle of
the failure plane. Executing several tests (two are shown in Fig. 13.8) at different
confining stresses, one can plot a series of Mohr’s circles and then, usually to a
reasonable approximation, draw a straight line simultaneously tangent to all the test
circles. This is the Mohr–Coulomb failure surface.
The presence of the superscript ‘e’ on the stress terms in Eq. (13.8) signifies that rock

mechanics actually deals with two types of stresses—total stresses and effective stresses.
Total stresses, usually used when defining tractions, represent the traction one would
observe if the exterior surface of the rock element in question were wrapped in a thin
membrane. The total stress therefore is a measure of the force intensity over an entire
rock surface area, including any exposed pore space. An example of total stress is the
closure stress attributed to a formation in the context of hydraulic fracturing.

Effective stresses, usually appearing in constitutive equations, are measures of the
force intensity on the granular structure of an exposed surface. Particularly for elastic
behavior, the relation between effective stress and total stress is [179]

Se = S + αppI, Se
IJ = SIJ + αppδIJ , (13.9)

where

α = 1 − Kb

Ks
, (13.10)

with Kb being the bulk modulus of the porous matrix and Ks being the bulk modulus
of the solid constituent of the matrix. In many applications, and particularly for inelastic
deformation, Kb � Ks so that α ≈ 1.

In order to transfer the discussion from the laboratory to a well, consider the state
of stress in the formation at the wellbore wall. The elastic solution to this problem,
assuming material isotropy of the formation and plane strain to be a suitable approx-
imation of the local stress state,15 is detailed in Appendix C. An example problem in
the appendix (Section C.3) illustrates that the shear stress gradient, as a function of the
density of the drilling fluid, can have two maxima—one each for low and high fluid
density. Superimposing such behavior on the plot in Fig. 13.8 suggests that the Mohr–
Coulomb failure surface can be penetrated twice, with drilling fluid densities between

15 The plane strain assumption essentially models the wellbore as penetrating an infinite solid possessing a
uniform stress state far from the hole. Major determinants—the angle of the wellbore centerline with
respect to the far field stress state, the prewellbore far field stress state itself—are assumed constant along
the wellbore.
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Figure 13.9 Stability of the wellbore wall. Within the equivalent circulating density (ECD) range ECD1
≤ Acceptable ECD ≤ ECD2 the stress state at the wellbore wall falls below the Mohr–Coulomb failure
surface indicating wellbore stability. ECD values outside this range will theoretically result in spalling
of the formation, that is, wellbore instability. SeRR and Se		 are, respectively, the effective radial and
hoop stress at the wellbore wall.

the two penetration values representing acceptable values from the wellbore stability
perspective.

This concept is illustrated in Fig. 13.9. The right-hand portion of the figure illus-
trates the change in effective stress state at the wellbore wall (Se

n,S
e
s ) with drilling fluid

density, here represented by the more general concept of equivalent circulating den-
sity16 (ECD). The dashed line representing stress state starts unacceptably outside the
boundary of the Mohr–Coulomb failure surface for some low value of ECD. As the
drilling fluid density is increased, eventually the stress state penetrates and then falls be-
low the Mohr–Coulomb boundary—the stress state is acceptable. As the drilling fluid
density is further increased, the stress state may again penetrate the Mohr–Coulomb
boundary, signaling the maximum acceptable ECD value for the current formation and
drilling conditions. Wellbore structural integrity has therefore provided a window of
drilling fluid densities to be included in the search for an overall acceptable fluid density
range.

Returning to the two ECD values bounding the acceptable range, these two values
also signify the type of failure one would expect at the wellbore wall. The example
problem in Section C.3.1 of Appendix C illustrates a vertical well in a formation whose
far field principal stresses align with the wellbore axis and its cross-section. For this
case, the left-hand portion of Fig. 13.9 illustrates one failure mode. At the wellbore
wall, the effective hoop stress will usually be greater, in a compressive sense, than

16 Equivalent circulating density is the fluid column pressure gradient that, in addition to drilling fluid
density, includes such factors as fluid wall friction.
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Figure 13.10 Effect of inclination on acceptable drilling fluid density range for inclined wellbore ex-
ample problem variables. The calculation procedure leading to this graph is discussed in Section C.3.2
of Appendix C.

the effective radial stress. The stresses acting on an element of rock at the wellbore
can be compared to the laboratory sample in Fig. 13.8. If the effective stress state
excedes the Mohr–Coulomb failure surface the rock element will fail. The dashed
lines crossing in the rock element indicate (see Fig. 13.8) planes along which fail-
ure will occur. Rock will separate from the wellbore wall, eventually leading to an
elliptically shaped hole. The spalled rock losses on the wellbore wall are termed “break-
outs.”

Given an initial in situ stress state, an important determinant of the severity of the
stress state is the inclination of the wellbore. The example problem in Section C.3.2 of
Appendix C extends the concept presented for a vertical well in Fig. 13.9 to investigate
inclination dependence. In a sample calculation summarized in Fig. C.4, reproduced
here as Fig. 13.10, the curves labeled “WS Minimum” and “WS Maximum” represent,
respectively, points ECD1 and ECD2 in Fig. 13.9. For the specific input parameters of
the sample, wellbore stability considerations replace pore pressure as the determinant of
the lower bound of the acceptable drilling fluid density range for inclinations greater
than 40◦.
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With the safe drilling fluid density range for wellbore stability included, the range of
acceptable drilling fluid density at any vertical depth becomes

max

{
γp(Z) + γsb(Z)

γwn(Z)
≤

γf (Z) ≤ min

⎧⎪⎨
⎪⎩

γfr(Z) − γsu(Z)

γds(Z)

γwx(Z)

,

base constraint
+ surge and swab margins
+ differential sticking limit
+ wellbore stability,

(13.11)

where γwn and γwx are, respectively, the minimum and maximum limits of the acceptable
ECD/drilling fluid density range from the perspective of wellbore stability.

13.3.2.5 Riser margin

Riser margin is an adjustment to the lower bound of acceptable drilling fluid density to
account for the possibility of a loss of riser integrity during offshore drilling. Fig. 13.11
illustrates the problem schematically. Pictured is an offshore drilling operation having the
pore and fracture pressure gradients and drilling fluid density illustrated in the left-hand
portion of the figure. At the vertical depth illustrated (see the dot in the figure), the
local wellbore pressure is due to a column of drilling fluid from that vertical depth to
the drill floor via the wellbore and drilling riser.

Should the drilling riser part [180], and assuming either the initial failure or subse-
quent damage as the riser falls causes a loss of pressure integrity in the vicinity of the
mudline (ML), the portion of the drilling fluid column above the mudline is replaced
by a column of air and sea water. This reduced-density fluid column will now produce
a lower hydrostatic pressure at the target depth, introducing the possibility that the local
wellbore pressure may fall below the value of the local pore pressure. Formation fluid
entry into the wellbore would ensue, control of which is compounded by the lack of
fluid control from the drill floor to the mudline. Substantial responsibility falls on the
blowout preventer (BOP) to operate as intended.

The riser margin calculation (see Aadnøy et al. [181,182]) anticipates the above sce-
nario and computes the drilling fluid density necessary to maintain a positive pressure
differential between the wellbore and adjacent pore pressure. Ignoring the pressure asso-
ciated with the air column from the datum to mean sea level (MSL), the proper balance
between local pore pressure and the pressure in the wellbore following the riser break is

γp (Z − Z0) = γsw (Zwh − ZMSL) + γf (Z − Zwh) . (13.12)
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Figure 13.11 Casing seat selection—adjustment of acceptable fluid density range for riser margin.
Before the riser break (left schematic) the local wellbore pressure gradient at a vertical depth (indicated
by a dot at the lower end of the drill string) is calculated from the drilling fluid hydrostatic pressure
measured with the drill floor as a datum. Even with a swab margin, this pressure gradient could fall
below the local pore pressure gradient if the riser is lost. If a riser margin is calculated (dotted line in
right schematic), the lower bound of the acceptable drilling fluid density range is adjusted upward
so that the wellbore pressure gradient, including the air gap and sea water depth, is still acceptable.
The uncertainty and surge/swab margins (dashed lines) have been ignored for this calculation, except
when determining if the lower limit of the acceptable range should be adjusted upward.

We may use the post-riser break balance in Eq. (13.12) to express riser margin as an
increment above the pore pressure

γrm (Z − Z0) = (
γf − γp

)
(Z − Z0)

= γf (Z − Z0) − [
γsw (Zwh − ZMSL) + γf (Z − Zwh)

]
(13.13)

= γf (Zwh − Z0) − γsw (Zwh − ZMSL) ,

where γp, γf and γrm are functions of Z. Reexpressing Eq. (13.13) as a gradient17 gives

γrm = γf − γp = γf (Zwh − Z0) − γsw (Zwh − ZMSL)

Z − Z0
. (13.14)

17 In Fig. 13.11 the dotted line corresponding to riser margin does not start at the mudline, as values of riser
margin in the vicinity of the wellhead, although physically correct, are unusably large. This feature will
decrease exponentially as the depth increases and eventually, as illustrated in the figure, may be overtaken
by the pore pressure gradient.
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Figure 13.12 Casing seat selection—adjustment of acceptable fluid density range for riser margin.
The uncertainty and surge/swab margins (dashed lines) have been ignored for this calculation, except
when determining if the lower limit of the acceptable range should be adjusted upward.

With riser margin incorporated (see Fig. 13.12), the range of acceptable drilling
fluid density at any vertical depth becomes

max

⎧⎪⎨
⎪⎩

γp(Z) + γsb(Z)

γwn(Z)

γp(Z) + γrm(Z)

≤

γf (Z) ≤ min

⎧⎪⎨
⎪⎩

γfr(Z) − γsu(Z)

γds(Z)

γwx(Z)

,

base constraint
+ surge and swab margins
+ differential sticking limit
+ wellbore stability
+ riser margin.

(13.15)

Practically, riser margin is applicable to intermediate water depths. For shallow water
depths the correction is minor; for deepwater, the correction can be so great the concept
is often neglected.
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13.3.2.6 Formation idiosyncrasies

The topics of this section are difficult to express in equation form and are usually part
of either (a) boundary constraints placed on the rest of the design or (b) amendments to
the design once an initial pass is completed.

Mobile formation

Formation movement—salt creep, tectonic displacement, compaction—that loads ad-
jacent casing in a nonuniform manner usually necessitates an abrupt change in wall
thickness to increase resistance. This change often entails either a thick-walled tubular
or a concentric casing configuration employing either a scab liner or a long liner lap.
Such an abrupt change in cross-section may affect adjacent casing setting depths.

Chemical sensitivity

Due to the sensitivity of some (particularly shale) rocks, it may be necessary to case the
open hole as soon as the subject formation is drilled. Typical drivers include wellbore
stability concerns and/or altering the drilling fluid to optimally drill subsequent hole.
Such a casing seat may, as was the case with mobile formations, alter the conventional
casing program.

13.3.2.7 Regulatory requirements

Regardless of the geomechanical and pore fluid environment, local regulatory require-
ments may specify that shallow conductor and/or surface casing strings be installed to a
certain depth for such purposes as protecting fresh water aquifers. These requirements
do not enter the constraint equation on pore and fracture pressure gradients but are
usually treated either as (a) an initial, fixed casing seat from which other calculations
begin or (b) an override, once all other casing seats have been determined.

13.3.3 Application of constraints
Once all constraints to the available drilling fluid density have been assembled, the result-
ing region of acceptable fluid density—excepting the considerations of Sections 13.3.2.6
and 13.3.2.7—will appear in the form illustrated in Fig. 13.13.

First, consider the so-called “bottom-up” method of seat determination. Starting
at the bottom of the wellbore, any of the drilling fluid densities in the range deter-
mined by—in this particular case—the curves for riser margin and differential sticking
are acceptable. Other concerns—for example, the fact that lower fluid densities usu-
ally correspond to higher rate-of-penetration—will, however, suggest that the optimum
drilling fluid density will be on the low side of the acceptable range, that is, Point 0.
Selecting Point 0 means that when the last increment of the hole is drilled the wellbore
is filled with a fluid of density corresponding to Point 0. If that is the case, however, the
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Figure 13.13 Casing seat selection—illustration of the “bottom-up” design philosophy. The accept-
able drilling fluid density range is generated with the components of Eq. (13.15).

intersection at Point 1 suggests that at Point 1, and for some distance above that point,18

we open the possibility of becoming differentially stuck. To avoid that possibility, the
formation above Point 1 should be isolated from the wellbore. That is, we should run
casing, and Point 1 becomes a casing seat depth.

The same logic can be followed up the wellbore. For example, think of drilling the
last increment of the hole section in which the casing for the seat at Point 1 will be
run. Now considering the drilling fluid density corresponding to Point 2 to be the fluid
density,19 a column of fluid with density corresponding to Point 2 would, if it filled the
wellbore to the surface, fracture the formation at Point 3. Point 3 then becomes another
casing seat depth.

The above line of reasoning can be followed to the surface, in the case of Fig. 13.13
resulting in another casing seat at Point 5, again to avoid formation fracture. With this
initial set of seats, one is then prepared to consider the effects of Sections 13.3.2.6 and
13.3.2.7 on possible adjustments to the casing seats at Points 0, 1, 3 and 5.

18 The potential of becoming differentially stuck exists from Point 1 upward, until the “Differential Stick-
ing” curve is no longer the determinant of the maximum acceptable drilling fluid density.

19 As was the case at the well depth (Point 0), any drilling fluid density between those densities correspond-
ing to Points 2 and 1 is acceptable. We favor the density at Point 2 for reasons of drilling efficiency.
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Figure 13.14 Casing seat selection—illustration of the “top-down” design philosophy. The accept-
able drilling fluid density range is generated with the components of Eq. (13.15). For comparison, the
results of the “bottom-up” design philosophy (Fig. 13.13) are included in gray.

There also exists a “top-down” approach to casing seat selection, illustrated here
in Fig. 13.14. Starting at the top of the wellbore, any of the drilling fluid densities in
the range corresponding to the uppermost vertical depth are acceptable. In this case,
one imagines starting the hole section with a fluid density corresponding to the low
end of the acceptable density range, but gradually increasing drilling fluid density with
depth. From Fig. 13.14, however, the fluid density can only be increased to a density
corresponding to Points 8 and 9 before formation fracture becomes a concern. At the
depth corresponding to Point 9 one must then set a casing string before drilling deeper.
This logic continues down the wellbore, with, in the case of Fig. 13.14, casing seats
appearing at Points 10, 12, 14 and 15 (the bottom of the wellbore).

Neither the “bottom-up” nor the “top-down” philosophy has an indisputable ad-
vantage. Both methods will often result in the same number of casing seats. It is
common, however, for the “top-down” philosophy to produce deeper casing seats,
which some engineers feel is an advantage in flexibility.

13.3.3.1 Example problem—casing seat selection
Given the pore pressure and fracture gradients of Table 13.1 and the values of 0.3, 0.2
and 0.2 ppg, respectively, for the swab margin, surge margin and design factor, do the
following:
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Table 13.1 Casing seat selection—example problem input data
Vertical deptha, ft Pore pressure gradient, ppg Fracture gradient, ppg

0 8.6 10.5
2000 8.6 11.5
4000 8.6 12.4
6000 8.6 13.2
8000 8.6 13.8

10000 8.6 14.4
11000 9.0 14.6
12000 10.0 14.9
14000 12.0 15.5
16000 12.8 16.0
18000 13.5 16.4
20000 13.7 16.5
22000 13.8 16.6

a Onshore well, negligible elevation.

1. Plot the data, both the base curves and marginal curves;
2. Perform a first pass design using the bottom-up reasoning;
3. Where appropriate, include the differential sticking limit, using 2,000 psi as a limit

on acceptable differential pressure.
Fig. 13.15 completes the work requested in item 1. The “Pore Pressure Gradient”

and “Fracture Pressure Gradient” curves are straightforward plots of the data as presented
in Table 13.1. The related curves including surge and swab margin and the design factor
representing uncertainty follow by adding 0.5 ppg to the pore pressure gradient and
subtracting 0.4 ppg from the fracture pressure gradient at each vertical depth data point.

The “Differential Sticking” curve follows from Eq. (13.7), again evaluated at each
vertical depth for which a data point is provided. For example, at 12000 ft, the calcula-
tion is

γds(Z)ppg =
γp(Z)ppg × 0.051948 psi

ft ppg (Zft − Z0ft) + pdspsi

Zft − Z0ft
× 1

0.051948 psi
ft ppg

= 10.0 × 0.051948 (12000 − 0) + 2000
12000 − 0

× 1
0.051948

(13.16)

= 13.21ppg,

where the value for γp(Z) is taken from the “Pore Pressure Gradient” curve and not
the adjustment to pore pressure for swab margin and uncertainty (see the discussion in
Section 13.3.2.3).

The acceptable fluid density region is shown shaded. The upper bound of acceptable
drilling fluid density is governed by the lesser of (factored) fracture pressure gradient and
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Figure 13.15 Casing seat example—determination of the region of acceptable fluid density. The
acceptable drilling fluid density range is generated with the components of Eq. (13.6). The “Differential
Sticking” curve was generated with Eq. (13.7).

the differential sticking limit, depending on the depth. This completes items 1 and 3 of
the problem statement.

To execute a bottom-up design (see Fig. 13.16), begin at point (14.3,22000),
the lowest acceptable drilling fluid density at the bottom of the wellbore. Drawing
a vertical construction line from that point, we discover that drilling with that fluid
density at or above 13406 ft does not fracture the wellbore but does jeopardize pipe-
in-hole, either drill pipe or casing, becoming differentially stuck. While drilling from
13406 ft to 22000 ft therefore, wellbore above that depth should be isolated. The verti-
cal depth 13406 ft corresponds to a casing point.

Determining 13406 ft as the depth of intersection of the vertical construction line
with the “Differential Sticking” curve can be accomplished by linear interpolation.20

Comparison of the abscissa of point (14.3,22000) with data used to generate the “Dif-
ferential Sticking” curve will determine between which two points the intersection lies.
For this problem, the two points on the “Differential Sticking” curve are (13.22,12000)

and (14.76,14000), where in each case the abscissa value of pressure gradient was de-

20 Usually, any character of the pore pressure gradient or fracture pressure gradient curve between data
points is sufficiently questionable to preclude any more sophisticated model of interpoint curve behavior.
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Figure 13.16 Casing seat example—illustration of the bottom-up design philosophy including a dif-
ferential sticking limit. The acceptable drilling fluid density range is generated with the components
of Eq. (13.6).

termined in the manner of Eq. (13.16). By linear interpolation,

Z = Z1 + Z2 − Z1

γ2 − γ1
× (γ − γ1)

= 12000 + 14000 − 12000
14.76 − 13.22

× (14.3 − 13.22) (13.17)

= 13403,

which differs only slightly from the value 13 406 ft, which was generated by a spread-
sheet carrying more significant digits in its internal calculations. A similar procedure,
tailor-made for a spreadsheet, can be used to determine other points of intersection in
the discussion to follow.

How is drilling conducted down to 13406 ft? We consider the acceptable drilling
fluid density range and discover a horizontal line at 13406 ft intersects the factored pore
pressure gradient at a fluid density of 11.9 ppg. If a column of fluid of this density
extends to the surface, a vertical construction line from point (11.9,13406 ft) intersects
the factored fracture pressure gradient curve at 3791 ft. As formations above this depth
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Table 13.2 Casing seat selection—example problem, summary of casing
seats following bottom-up exercise
Vertical deptha, ft Drilling fluid density, ppg Reason

3791 9.1–10.1 Formation fracture
13406 Variable–11.9 Differential sticking
22000 Variable–14.3 Well depth

a Onshore well, negligible elevation.

must be isolated when drilling the hole section below, this depth becomes an additional
casing point.

Finally, a horizontal line at 3791 ft will intersect the factored pore pressure gradient
at a fluid density of 9.1 ppg. A construction above this depth encounters no additional
intersections with the bounds of acceptable fluid density—the bottom-up analysis is
complete.

Table 13.2 summarizes the results of the exercise, offering the reason for each se-
lected casing seat. The second column in the table reports the acceptable fluid density
range for that hole section. The minimum acceptable fluid density varies through each
hole section and is limited by the factored pore pressure gradient curve or, more gen-
erally, whatever mechanism in Eq. (13.15) determines the lower bound of acceptable
drilling fluid density. The maximum acceptable fluid density in each section is either
(a) the factored fracture pressure gradient at the top of the hole section or (b) the
drilling fluid density at the previous shoe as determined by the differential sticking limit
or, more generally, whatever mechanism in Eq. (13.15) determines the upper bound of
acceptable drilling fluid density.

Table 13.2 in its present form represents a “first draft” of proposed casing seats. In
particular, the contents of Sections 13.3.2.6 and 13.3.2.7 may require additional seats,
causing the results of Table 13.2 to be revisited in the spirit of optimization.

Returning to Fig. 13.15, how would a top-down “first draft” design differ from the
results of Table 13.2? The result is shown graphically in Fig. 13.17.

To execute a top-down design (see Fig. 13.17), begin at point (10.1,0), the highest
acceptable drilling fluid density at the top of the wellbore. Drawing a vertical construc-
tion line from that point, we discover that drilling with that fluid density at or above
11600 ft (a) will not fracture shallow formations and (b) will not induce formation pore
fluid influx. Wellbore above 11,600 ft must, however, be isolated before using higher
drilling fluid densities to drill deeper. The vertical depth 11600 ft corresponds to a
casing point.

Our attention now focuses on the hole section below the casing seat at 11600 ft.
Drawing a horizontal construction line from the point (10.1,11600), the maximum
acceptable drilling fluid density in this section is dictated by the possibility of differential
sticking with a fluid density above 12.9 ppg. With this fluid density, a vertical con-
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Figure 13.17 Casing seat example—illustration of the top-down design philosophy including a dif-
ferential sticking limit. The acceptable drilling fluid density range is generated with the components
of Eq. (13.6).

struction line indicates we may drill to 15079 ft before the fluid column in the wellbore
becomes insufficient to prevent influx of formation pore fluids. The depth 15079 ft
becomes the next casing point.

Repeating the process of the preceding paragraph, the maximum drilling fluid den-
sity for the next hole section is 15.0 ppg, a fluid density sufficient to complete the well.

Table 13.3 summarizes the results of the top-down design exercise, offering the rea-
son for each selected casing seat. The second column in the table reports the maximum
acceptable fluid density for that hole section. As before, and for the mechanisms con-
sidered in this example, the minimum acceptable fluid density varies through each hole
section and is limited by the factored pore pressure gradient curve. The maximum ac-
ceptable fluid density in each section is either (a) the factored fracture pressure gradient
at the top of the hole section or (b) the drilling fluid density at the previous shoe as
determined by the differential sticking limit.

13.3.4 Kick tolerance
Having selected the casing seats based on the constraints on drilling fluid density, one
calculation remains—kick tolerance. Kick tolerance is a measure of the volume of gas,
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Table 13.3 Casing seat selection—example problem, summary of
casing seats following top-down exercise
Vertical deptha, ft Drilling fluid density, ppg Reason
11600 9.1–10.1 Pore fluid influx
15079 Variable–12.9 Pore fluid influx
22000 Variable–15.0 Well depth

a Onshore well, negligible elevation.

measured at downhole conditions, that can be circulated out of a wellbore without
fracturing the formation at the weakest point in the open hole. That is, how strong is
the open hole below the current casing seat with regard to containing a kick?

Fig. 13.18 summarizes the concept of kick tolerance in a straight, vertical wellbore.
Consider first the diagram labeled “Case 1.” We envision a kick of height h entering
the wellbore at the depth of the bit. The influx might occur at positive kick intensity,21

or it might happen at zero or small negative kick intensity. In the latter case, the influx
could be due to a swab pressure increment associated with pipe movement out of the
hole. The influx increases the pressure in the wellbore as it has density less than that
of the drilling fluid. A previously benign drilling environment might now threaten the
integrity of the wellbore as the increased wellbore pressure fractures the wellbore wall
at its weakest location. This site of weakness can be anywhere in the open hole section
but is usually taken to be just below the previous casing shoe, as this is the only location
for which one usually has a measure of formation strength (see subsection ‘Tension’ in
Section 13.2.1.2). The kick tolerance calculation determines the size of the kick for
which formation fracture can occur.

Now consider the diagram labeled “Case 2.” This figure illustrates an alternate sce-
nario when an influx originally at the bit has expanded and just reached the open hole
weak point, taken in the figure to be the previous casing shoe. It is important to recog-
nize that Case 2 is an entirely different problem from Case 1—Case 2 is not a snapshot
of the influx from Case 1 when that influx reaches the open hole weak point. To em-
phasize this caution, the Case 2 influx is included in its diagram, illustrating that, at the
bit, the two influxes differ.

The only common feature between the Case 1 and Case 2 influxes is that they
have the same height at the time their respective models are evaluated. A graphical
explanation for this equality is presented in Fig. 13.19. The graph on the right-hand
portion of the figure indicates the following:
• Both scenarios are targeted at the same weak point, Point A in the figure;
• Both scenarios have an influx entering at the same pressure, Point B in the figure;

21 Kick intensity is the difference between local formation pore pressure gradient and the drilling fluid
density in the wellbore, measured in the same units as fluid density.
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Figure 13.18 The concept of kick tolerance. Cases 1 and 2 are two scenarios, not two time snapshots
of the same scenario.

• Both scenarios have the same drilling fluid density and influx density—this fixes the
slopes of the “MW” lines and the near-vertical dashed lines representing the influx.

Constructing the “MW” and influx lines from Points A and B, the intersections of the
lines must22 produce the same influx height h. In fact, one could construct an infinite
number of scenarios, each with its influx analyzed at a particular depth, and in all these
scenarios, provided the wellbore pressure is just sufficient to fracture the formation at
the open hole section’s weak point, the influx height will be the same.

13.3.4.1 Kick tolerance calculation

The kick tolerance calculation proceeds in the following steps.

Influx height

Consider Case 1 in Fig. 13.18, recognizing that one could select Case 2 and calculate
the same height. For Case 1, there exist two ways of expressing the pressure at the open

22 The term “must” is only true in the context of the assumptions of this simple model. In actuality,
both the drilling fluid density and influx density will vary with depth in the two scenarios. Within the
assumptions of the model, however, “must” is appropriate.
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Figure 13.19 Both kick tolerance scenarios have the same influx height.

hole section weak point. First, we may simply realize that at the weak point

pmax = pfr − pDF, (13.18)

that is, the maximum realizable pressure at the weak point is the local formation fracture
pressure pfr diminished by a design factor pDF . The design factor accounts for such issues
as rig crew response time.

Alternately, we may start at the bit and work our way up to the weak point

pmax = pp − γgh − γf
(
Zbit − h − Zwp

)
. (13.19)

Starting with the pressure of the influx at the bit pp, we subtract the pressure loss through
the gas column, assuming a constant gas density γg and then the pressure loss through
the column of drilling fluid of weight density γf .

Since Eqs. (13.18) and (13.19) are both calculating pmax, we may equate the two and
solve for the unknown height

h = pfr − pDF − pp + γf
(
Zbit − Zwp

)
γf − γg

. (13.20)

As discussed above, this value of h applies to both Case 1 and Case 2.

Influx volume

As kick tolerance is expressed as a volume, the next calculation step is to convert the
influx height to a volume. Let CBHA be the annular capacity of the bottom hole assembly
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and CDP be the annular capacity of the drill pipe, both expressed in units of volume per
length. For Case 1,

Vbit = CBHAh, (13.21)

and for Case 2,

Vwp = CDPh. (13.22)

It may be that the influx in either case straddles the crossover between the BHA and
drill pipe. This complicates the calculation shown here, but the underlying principle
remains unchanged.

The volumes in Eqs. (13.21) and (13.22) are incompatible in that they reference
different depths. Common practice is to “move” the volume at the weak point to the
bit (its origin) so that both volumes have a common reference. We do this using Boyle’s
law

Vwp
∣∣
bit = Vwp

pmax

pp
. (13.23)

Comparison of volumes

With both influx scenario volume values now available at the bit, the kick tolerance
calculation can be completed by selecting the smaller of the two influx values, namely

Kick Tolerance = min

{
Vwp

∣∣
bit

Vbit
. (13.24)

Kick tolerance is an evaluation of the structural capacity of the current open hole
environment. If the kick tolerance is small, prudence may dictate altering a current
casing seat to seek a more competent environment in which to drill. Typically, an op-
erator’s drilling policy will specify increasing levels of drilling management approval for
decreasing values of an open hole section’s kick tolerance.

Example problem—kick tolerance

Consider the 12.25 in. open hole below the shoe of 13.375 in. casing at 15000 ft
(4572 m). The fracture gradient at the shoe (which happens to be the weak point)
is 12.7 ppg (1.52 SG).

While drilling ahead at 18000 ft (5486 m) with 11 ppg (1.32 SG) mud, a pore pres-
sure gradient of 12 ppg (1.44 SG) is encountered.

Assume a choke operator error of 200 psi and a gas gradient for the kick of 0.15 psi
ft .

Use 5.5 in. as the drill pipe diameter and assume 8 in. collars. The formula for annular
clearance in bbl

ft is 0.0009714 × (Hole d2 – Pipe D2) if the pipe dimensions are in inches.
Compute the following:
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• the kick tolerance;
• the kick tolerance if the mud weight equals the pore pressure (swab kick);
• qualitatively, what is the effect on kick tolerance if the hole is inclined rather than

vertical?
At the weak point, pmax is calculated from Eq. (13.18) as

pmax = 0.051948
psi

ft ppg
× 12.7ppg × 15000 ft − 200psi = 9696psi. (13.25)

For future reference, the pore pressure at the bit is

pp = 0.051948
psi

ft ppg
× 12ppg × 18000 ft = 11221psi. (13.26)

With care to maintain unit consistency, h is calculated from Eq. (13.20) as

h =
9696psi − 11221psi + 0.051948 psi

ft ppg × 11ppg × (18000 − 15000) ft

0.051948 psi
ft ppg × 11ppg − 0.15 psi

ft

= 449 ft.

(13.27)

The annular capacities opposite the collars and the drill pipe are, respectively,

CBHA = 0.0009714
(
12.252 − 8.02) = 0.0836

bbl
ft

, (13.28)

CDP = 0.0009714
(
12.252 − 5.52) = 0.1164

bbl
ft

. (13.29)

The respective volumes corresponding to the kick are therefore

Vbit = 0.0836
bbl
ft

× 449 ft = 37.5bbl (13.30)

at the bit, and

Vwp = 0.1164
bbl
ft

× 449 ft = 52.3bbl (13.31)

at the weak point, which must be “moved” to the bit

Vwp
∣∣
bit = 52.3bbl × 9696psi

11221psi
= 45.2bbl. (13.32)

Comparison of Eqs. (13.30) and (13.32) yields a kick tolerance of 37.5 bbl.
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The second part of the problem changes the drilling fluid density to equal that of
the pore pressure. Recalculating the pertinent equations with γm = 12 ppg gives

h =
9696psi − 11221psi + 0.051948 psi

ft ppg × 12ppg × (18000 − 15000) ft

0.051948 psi
ft ppg × 12ppg − 0.15 psi

ft

= 729 ft, (13.33)

Vbit = 0.0836
bbl
ft

× 729 ft = 60.9bbl, (13.34)

Vwp = 0.1164
bbl
ft

× 729 ft = 84.9bbl, (13.35)

Vwp
∣∣
bit = 84.9bbl × 9696psi

11221psi
= 73.4bbl. (13.36)

Comparison of Eqs. (13.34) and (13.36) yields a kick tolerance of 60.9 bbl.

Finally, for the case of an inclined wellbore, the height calculation, as it depends
on fluid hydrostatic heads, remains unchanged. When the height is converted to vol-
ume, however, we must now use h/ cos(inclination) instead of height to determine the
length component of the volume (Eqs. (13.30) and (13.31)). This value will always be
greater than or equal to h. For this reason, most workers treat the wellbore as vertical to
introduce a bit of conservatism into the calculation.

13.4. TUBULAR SIZING

With the casing seats now having been determined (Sections 13.3–13.3.3), including an
evaluation of the ability of the wellbore as planned to contain a kick (Section 13.3.4),
the remaining preamble to the design is diametric sizing. The well tubulars should be
sized from the inside, progressing outward.

13.4.1 Tubing sizing

The most important well tubular in the sizing exercise is the production tubing.
Fig. 13.20 illustrates the condition at the perforations where the intersection of two
curves:

• the inflow performance relation (IPR) of the reservoir, determined by the properties
of both the reservoir rock and the interstitial fluid—the flow rate increases as the
pressure at the perforations is lowered;
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Figure 13.20 Reservoir inflow performance relation. The dots in the figure indicate locations of well
operation based on the intersection of the reservoir inflow performance relation and the tubing per-
formance curve.

• the flow performance of the tubing, determined by the geometry of the tubing and
the produced fluid—above a certain minimum flow rate,23 the flow rate increases as
the pressure at the perforations increases;

determines the operating condition. In particular, all other variables being fixed, varying
the diameter of the tubing can affect this intersection and therefore the flow rate to be
expected from the well. Properly sized tubing can significantly affect the economics of
hydrocarbon recovery [151].

Tubing sizing with respect to flow economics is not normally the responsibility of
the drilling engineer. The completion engineer, on the other hand, may have significant
input, particularly if the reservoir requires artificial lift to aid production.

13.4.2 Production casing sizing
Once the production tubing is sized, communication between the drilling and comple-
tion engineers increases. A number of considerations affect the clearance between the
production tubing and production casing:

23 For low flow rates, e.g., less than that corresponding to the curve minimum, the gravitational component
of the energy balance dominates; for high flow rates, e.g., greater than that corresponding to the curve
minimum, the friction loss term in the energy balance dominates [151,183].
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• Completion accessories. Artificial lift—gas lift, electric submersible pump—may re-
quire annular space for mandrels, power fluids and power cables [151]. In deepwater
completions, the size of the subsurface safety valve often dictates the size of the pro-
duction casing at and above the valve. Control lines, chemical injection lines, gauge
lines or possible dedicated lines for fiber optics [184], along with the associated
cross-coupling protectors, are common in current well completions.

• Multiple completion. The number of tubing strings run in the production casing,
perhaps to drain stacked reservoirs, can affect the clearance to be provided by the
production casing.

• Tubing recovery. Depending on the location, providing sufficient annular space to
accommodate wash-over operations may be prudent.

• Future recompletion. It may be that the wellbore will initially be used to drain
one reservoir horizon and then, at a later date, be side-tracked to exploit another
horizon. Retention of the original production casing may be important to the
economics of the future completion. It may therefore be necessary to anticipate
having to drill through the production casing with appropriate allowance for wear,
and therefore increased wall thickness, affecting the annular clearance of the initial
completion. Such forecasting may be complicated by unknowns such as external
corrosion to the production casing during its use for the initial wellbore.

13.4.3 Surface and intermediate casing sizing
With the production casing having been sized with the types of discussion topics men-
tioned above, the sizing of the remainder of the well tubulars assumes a more proscripted
form, the two major concerns being standardization of sizes—both casing and drill
bits—and adequate cement sheath thickness. Such standardization will not result in the
least expensive well, at least not when considered in isolation. When considered in the
context of global company standardization, however, where tubulars and accessories
may be shared between different operating regions, standardization almost always results
in savings for the enterprise.

Starting with the production casing and working outward, a typical sizing exercise
next determines the appropriate hole size to contain the production casing while pro-
viding adequate annular clearance for placement and solidified strength of the cement
sheath outside the production casing. This hole diameter will be adjusted slightly such
that it corresponds to a standard bit size. One then searches for a casing diameter—
destined to be the outside tubular neighbor of the production casing—for which
reasonable wall thicknesses will accommodate the bit necessary to drill the wellbore
for the production casing. The above steps are then repeated for each successive new
casing size, proceeding from inner tubulars, outward.

Deviations from the above procedure include the following:
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• Less than standard clearance [185]. Well designs24 requiring a large number of cas-
ing strings may approach handling limits of available rigs and/or rig equipment.
Maintenance of reasonable hole and tubular size—too small may limit flow rates
for produced fluids; too large may reduce drilling efficiency—can be achieved by
reducing the annular clearance between strings while still using standard casing and
drill bits.

• Nonstandard tubulars25 [186]. Contra the comments on standardization above, us-
ing nonstandard tubular sizes in a major project or basin may be justified. Design
of a nonstandard tubular string is identical to that of a standard tubular size. The
challenge usually arises with respect to related activities such as cement placement
and cement sheath integrity. Further, the design of a close tolerance liner hanger
may prove difficult, and the qualification of specially designed clearance connections
may be required.

• Well economics. Particularly in developed basins, continuous improvement of well
designs can gravitate toward smaller holes for outer strings. In such instances, and
again, with due regard for the effects on cement placement and cement sheath
integrity, permitting less than standard clearance may be appropriate.

• Annular pressure build-up (APB) mitigation. Depending on the type of mitigation
selected to alleviate thermally induced pressure in a trapped annulus, more or less
annular clearance between casing strings may be necessary. Such consideration may
not only affect installation of the mitigator but may also influence the probability
that a previous casing shoe may be deemed open or closed. See Section 15.2 of
Chapter 15 for a discussion of APB mitigation.
A chart26 for selecting casing and bit/open hole sizes for commonly used tubu-

lars and bits is provided in Table 13.4. The left-most column of the table lists casing
outside diameters. The title rows of the remaining columns list common bit sizes or,
equivalently, confining open hole sizes. Starting with the production casing diameter

24 The pore and fracture pressure profiles for deepwater locations may require more than a half-dozen
casing strings to accommodate the narrow range of acceptable drilling fluid density. Deepwater wells are
further restricted by the usual necessities of:

• a relatively large final hole size (∼8-1/2 in. (215.95 mm)) to accommodate high volume production
and/or injection and large subsurface safety valves (∼9 in. (228.6 mm));

• a current maximum 18-3/4 in. (476.25 mm) diameter bore on the high pressure wellhead.
Most of the well tubulars must fit within these diametral limits.

25 Other alternatives to nonstandard tubulars include riserless drilling to delay the running of the high
pressure wellhead with its (current) maximum 18-3/4 in. (476.25 mm) bore, solid expandable liners and
managed pressure drilling [186].

26 A common alternative to the selection chart presented here is a graphical diagram on which the user
follows a connecting path from casing to bit to casing. Both the graphical diagram and the selection
chart provide identical information.
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as selected according to the criteria outlined previously,27 the procedure for using the
sizing selection chart is as follows:
1. Locate the production casing diameter in the left-most column. Searching to the

right along this row, find the designations “C” and “SC” to determine an appropri-
ate bit or confining open hole size in which the production casing will be installed.
• “C” designates a bit size that provides adequate clearance for running the casing

and for achieving a cement sheath of recommended thickness to provide an
isolating seal in the casing/confining hole annulus.

• “SC” designates a bit size that provides less than normal clearance for running
and cementing the casing. Special attention should be paid to cement placement
hydraulics, cement sheath integrity and sizable doglegs [185].

2. Having selected a hole size for the current casing, search the column for that bit to
determine what (previous) casing string diameters can drift that bit size while still
having adequate wall thickness to provide resistance to design loads.
• “B” designates a casing diameter which can drift the selected bit and still have

sufficient wall thickness to withstand typical design loads. The actual design
process may suggest a thicker than ordinary wall, but the “B” selection should
be adequate for most well applications.

• “SB” designates a casing diameter which, in order to drift the current bit, may
be thinner than typical inventory. Such casing may be selected if the load envi-
ronment is benign. Alternately, it may be possible to increase wall thickness by
moving to a larger outside diameter (from 13-3/8 to 13-5/8, for example).

3. The previous step results in an appropriate diameter for the next outer casing string.
At this point, the process returns to Step 1 and is repeated.

13.4.4 Example problem—tubular sizing
Assume that a sizing exercise on the production tubing, coupled with adequate consid-
eration of production tubing to production casing annular clearance, has resulted in the
decision to run 4 in. production casing. Further, assume the well in question requires
four casing seats. Using the selection chart of Table 13.4, and requiring standard clear-
ance for running and cementing all casing strings, determine the bit and casing sizes for
all strings above the production casing.

Fig. 13.21 reproduces Table 13.4, overlaying the procedure used to select the re-
maining bit and casing sizes. The table has been grayed to emphasize the size selection
procedure. The numbered items below correspond to the numbered decision paths in
the figure:
1. Starting with the row for 4 in. production casing, search arrow 1 locates a cell

containing “C” and designating a bit size for the 4 in. casing of 5.875 in., a hole size

27 A properly size production casing string assumes the production tubing has already been sized.



Table 13.4 Casing diametric sizing—selection charta,b

Casingc Bit or confining open hole size (in.)
4-3/4 5-7/8 6-1/8 6-1/2 7-7/8 8-1/2 8-3/4 9-1/2 10-5/8 12-1/4 14-3/4 17-1/2 20 22 26 33

3-1/2 C
4 SC C
4-1/2 SC C
5 SC C
5-1/2 SB SC C
6-5/8 B SB SC C
7 B SB C C
7-5/8 B B SC SC C
7-3/4 B B SC SC C
8-5/8 B SB SC C
9-5/8 B B SB SC C
9-7/8 B B SB SC C
10-3/4 B B SC C
11-3/4 B C
11-7/8 B C
13-3/8 B SC C
13-5/8 B SC C
14 B SC C
16 B SC C C C
18-5/8 SC SC C
20 B C
24 B B C
26 C
30 B C
36 B
a C = standard clearance for running and cementing casing, SC = nonstandard casing clearance, B = standard bit inside casing, SB = thinner casing wall to accommodate

bit.
b Starting with the production casing size, search horizontally for a “C” or “SC”, according to the desired annular clearance between the casing and its confining open

hole. Then read the corresponding column heading to determine the bit/confining open hole size for this casing. Search vertically in this same column for previous
casing sizes that can accommodate this bit, with either popular wall thicknesses (“B”) or thinner walls (“SB”). Having selected a previous casing size, repeat the process
to determine its bit/hole size. Continue until all casing sizes have been determined.

c Label 1 designation or outside diameter in inches.
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Figure 13.21 Casing diametric sizing—example use of selection chart. All selections use standard
clearances for running and cementing casing and standard bits that will drift normal wall thicknesses.

adequate to obtain a competent cement sheath for the near-reservoir portion of the
wellbore.

2. Knowing that the confining hole for the production casing will be drilled with a
5.875 in. bit, search arrow 2 locates a “B” in the row corresponding to 7 in. casing,
indicating that this casing can pass (drift) a 5.875 in. bit, while still retaining sufficient
wall thickness (yet to be proved by the design calculations) to meet all design loads.

3. The 7 in. casing is now the focus of the sizing exercise. Repeating the procedure in
Step 1, search arrow 3 locates a cell containing “C” and designating a bit size for
the 7 in. casing of 8.5 in.

4. In the column for the 8.5 in. bit, search arrow 4 locates a “B” in the rows cor-
responding to both 9.625 in. and 9.875 in. casing. Both drilling efficiency and
economics suggest that 9.625 in. casing is the better choice. However, should antic-
ipated drilling wear or unusually high design loads dictate, the 9.875 in. alternative
may provide more design flexibility.

5. The 9.625 in. casing is now in focus. Repeating the procedure in Step 1, search
arrow 5 locates a cell containing “C” and designating a bit size for the 9.625 in.
casing of 12.25 in.
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6. Finally, in the column for the 12.25 in. bit, search arrow 6 locates a “B” in the rows
corresponding to 13.375 in. through 14 in. casing. The smaller 13.375 in. casing
may again be the better choice, with other factors possibly suggesting the larger
diameter alternatives.



CHAPTER 14

Example Design

14.1. INTRODUCTION

This chapter is intended as a companion to Chapter 2, supplementing the formality of
the outlined design procedure with commentary on a typical design.

14.2. DESIGN PROBLEM—TUBINGLESS CASING DESIGN

A tubingless completion1 consisting of 8.625 in., 36.0 lbm
ft (0.400 in. wall) N80 surface

casing2 (9.875 in. hole) to 1600 ft and 4.500 in. casing (6.250 in. hole) to 11500 ft is to
be designed with three major loads (see Fig. 14.1) in mind:
1. Internal pressure loading from the sand-out or screen-out conditions of a hydraulic

fracturing treatment where the maximum surface pressure is 9000 psi with fracture
fluid density of 8.5 lbm

gal —see Section 12.7.3.2 of Chapter 12 and Table 12.143;
2. External pressure loading assuming plugged perforations resulting in a column of

gas to atmospheric pressure at the surface—see Section 12.8.3.4 of Chapter 12 and
Table 12.24;

3. Steady state production of gas at 2000 psi surface “tubing” pressure—see Sec-
tion 12.7.3.3 of Chapter 12 and Table 12.15.

The collapse load (i.e., plugged perforations, gas to surface) is to be simplified by assum-
ing complete internal evacuation.4 The production load is to be simplified by assuming
a constant internal pressure profile of 2000 psi along the entire string.5

These are not the only loads one would normally apply to this string—see Tables 2.7
and 2.8—but are the design-governing loads for this string and should be sufficient to
illustrate the design principles.

1 The production tubing and production casing are the same tubular string. There is no packer.
2 Assume the surface casing is run in fresh water and cemented to the surface with 15.6 lbm

gal cement. The
sole purpose of the surface casing in this problem is to provide an element of the confining hole. The
surface casing will not be stress analyzed.

3 Alternately, Section 12.7.3.1 of Chapter 12 and Table 12.13.
4 For examples of calculating the pressure of a gas column, see subsections ‘Example problem—ideal gas

hydrostatic head’ (ideal gas) and ‘Example problem—real gas hydrostatic head’ (real gas) in Section 12.4.1
of Chapter 12.

5 Normally this pressure profile, along with the temperature profile, would be the output of a (multi- or
single-phase) flow simulator.
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Figure 14.1 Load cases for tubingless design.

The 4.500 in. production casing/tubing is run in a 10.5 lbm
gal water base fluid and then

cemented to 10200 ft with a 15.6 lbm
gal slurry. The pore pressure gradient for this well is

a constant 8.6 lbm
gal from the surface.

The initial temperature profile consists of 60 °F at the surface with a 1.1 °F
100 ft tem-

perature gradient below. During the hydraulic fracture treatment it is assumed that the
entire production casing/tubing cools to the surface temperature. During production
the temperature everywhere in the production casing/tubing is assumed equal to the
bottomhole temperature.

Check the three load cases for the production casing assuming a proposed string
of 4.500 in., 13.5 lbm

ft (0.290 in. wall) P110 casing. Determine relevant tube body axial,
triaxial and collapse safety factors at (a) the top of the string and (b) the top of cement.
Investigate the selection of a threaded connection for the string.

The API minimum internal yield pressure of 4.500 in., 13.5 lbm
ft P110 casing is

12410 psi; the API minimum collapse resistance is 10680 psi. Do not include tem-
perature deration of yield strength.

For steel, ρs = 0.2836 lbm
in3 , αT = 6.9 × 10−6 1

°F , E = 30 × 106 psi and ν = 0.3.
The following comments are pertinent to this design problem statement:

• The pore and fracture pressure gradients for this type of well are usually benign—
normally pressured at roughly 8.6 lbm

gal , as stated, and with an at-depth fracture

gradient of approximately 17–18 lbm
gal . The well can usually be drilled with one fluid

density in approximately one week of calendar time. Because of the simplicity of the
subsurface pressure environment, this example skips the casing seat determination
summarized in Section 2.3 of Chapter 2 and detailed in Section 13.3 of Chapter 13.
For a detailed example of this calculation with a more complicated subsurface en-
vironment, see Section 13.3.3.1 of Chapter 13, along with subsection ‘Example
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Table 14.1 Tubingless casing design—initial and final states (temperature in °F, pressure in psi)
Variable MD Initial Frac � Evac � Prod �

Ttop 0 60 60 0 60 0 186.5 126.5
TTOC 10200 172.2 60 −112.2 172.2 0 186.5 14.3
Tbot 11500 186.5 60 −126.5 186.5 0 186.5 0
T a N/A 116.1 60 −56.1 116.1 0 186.5 70.4
pi−top 0 0 9000 9000 0 0 2000 2000
pi−TOC 10200 5569.2 13508 7939.2 0 −5569.2 2000 −3569.2
pi−bot 11500 6279.0 14083 7804.0 0 −6279.0 2000 −4279.0
pi

a N/A 2784.6 11254 8469.6 0 −2784.6 2000 −784.6
po−top 0 0 0 0 0 0 0 0
po−TOC 10200 5569.2 4561.4 −1007.8 5569.2 0 4561.4 −1007.8
po−bot 11500 6623.8 5142.8 −1481.0 6279.0 −344.8 5142.8 −1481.0
po

a N/A 2784.6 2280.7 −503.9 2784.6 0 2280.7 −503.9
a Average values are average above cement top.

problem—kick tolerance’ in Section 13.3.4.1 of Chapter 13 for calculating kick
tolerance.

• Sizing of the tubulars for this type of well (see Section 2.4 of Chapter 2 or the more
detailed discussion in Section 13.4 of Chapter 13) is a balance between managing
hydraulic horsepower during the hydraulic fracturing treatment and optimizing sub-
sequent production. The resulting size for the production casing/tubing is usually
3.500 in. or 4.500 in., with wall thickness and grade governed by the design loads.

• Use of a spreadsheet or similar tool is recommended for even a design as simple as
the current example. If, for example, after all preliminary calculations and load case
definitions the selected wall thickness or grade of tubular results in an inadequate
safety factor(s), having to only change the offending parameter with an automatic
recalculation will prove convenient.

14.2.1 Preliminary calculations
Important geometric variables for the production casing tube include Ai = 12.069 in2,
Ao = 15.904 in2, As = Ao − Ai = 3.836 in2, I = 8.538 in4, kwall = 0.875 (assumed) and
rc = 6.250 in.−4.500 in.

2 = 0.875 in. in the open hole.
We construct a spatial cylindrical coordinate system aligned with the axis of the

tubular such that (see Fig. 3.1) g3 = e3, g1 = e1, and the cylindrical angle is measured
from the positive x1-axis. The only possible bending in this problem will be column
buckling where the bending is so slight that an s coordinate along the axis of the helix
will essentially be equal to the x3 = z coordinate in the spatial system we have chosen.

Table 14.1 summarizes the pressure and temperature environment during the initial
(post-WOC) state and the three final states of interest.
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The first column lists the variable names for temperature, internal pressure and ex-
ternal pressure that will be used in the work to follow. In addition to the top and bottom
of the string, the cement top is chosen as a significant depth since it serves as a boundary
between different constraint mechanisms in the string. The second column records the
depth (in this case, only measured depth since the well is vertical). The third column
in Table 14.1 lists the values of the variables in the initial state, immediately after the
cement has thickened sufficiently to prevent axial movement.

Columns 4 and 5 in Table 14.1 summarize both the value of each problem variable
for the “Frac” load case and its change in value (�) from the initial state. For the “Frac”
load case the internal pressure is the surface pressure experienced during the sand out
over a column of the fracture fluid. The external pressure gradient is taken everywhere
to be pore pressure.

Columns 6 and 7 in Table 14.1 summarize both the value of each problem variable
for the “Evac” load case and its change in value from the initial state. For the evacuation
load case the internal pressure is nil, and the external pressure is taken as a full column
of the drilling fluid in which the casing was run—channeled cement is assumed.

Columns 8 and 9 in Table 14.1 summarize both the value of each problem variable
for the “Prod” load case and its change in value from the initial state. For the production
load case the internal pressure is 2000 psi everywhere, and the external pressure is taken
everywhere to be pore pressure.

Figs. 14.2–14.4 summarize the design temperature and pressure profiles in graphical
form.

14.2.2 Length changes
The length changes pertinent to this problem are summarized in Table 14.2. There is
a shoulder in this string—the bottom of the string—but by the time it is exposed to
the environmental changes of a load case from Table 14.1 it has been permanently fixed
beneath the cement top, so no length change will occur due to a shoulder.6

The question marks in the �LBu signify the following:
• We do not know if there will be a length change due to buckling because we do

not know if the string will buckle under this load case.
• To determine buckling in a load case, we must know feff , which depends on the

axial load fz. But fz depends on the length changes.
• The resulting strategy is as follows:

• We begin by assuming the string does not buckle under this load case.

6 This is typically true of casing designs. Unless there is a cross-over above the cement top there will not be
a length change due to a shoulder. Tubing designers, on the other hand, are continually confronted with
shoulders—cross-overs, polished bore receptacles and accessories can create a multitude of shoulders with
which the engineer must contend.
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Figure 14.2 Load case temperatures for tubingless design.

Figure 14.3 Load case pressures for tubingless design. The internal pressure for the “Evac” load case
is zero and is not shown in the graph.
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Figure 14.4 Load case differential pressures for tubingless design. The cementing condition should
always be considered as a collapse load case but is omitted here as the “Evac” load case is obviously
worse.

Table 14.2 Length change calculations necessary for current design
Load case Temperature,a �LT Ballooning,b �LB Shoulder(s),c �LS Buckling,d �LBu
Frac � � ?
Evac � ?
Prod � � ?
a Section 11.3.1 of Chapter 11.
b Section 11.3.2 of Chapter 11.
c Section 11.3.3 of Chapter 11.
d Section 11.3.4 of Chapter 11.

• We calculate the length changes between the initial condition and this load case.
From the length changes we can calculate the change (from its value in the initial
condition) in axial force and update the initial value of the axial force.

• This now allows us to determine the effective force and discover if the tubular
has buckled.
– If the tubular has not buckled, the axial load calculation for this load case is

complete.
– If the tubular has buckled, we enter a trial-and-error procedure7 where we

7 Technically, the solution should be trial-and-error for all length changes. A length change implies the
positions of all points in the string experience associated changes in pressure and temperature loading.
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first calculate �LBu and include it in the calculation of change in axial force,
then update the axial force, then redetermine the effective force. A new value
of effective force generates a new value of �LBu.

– The process is repeated until two successive answers fall within a suitable
tolerance.

For the purposes of this example problem only the calculations pertinent to the
production load case will be performed—all calculations are summarized in Table 14.3.

14.2.2.1 Temperature change

From the last column of Table 14.1 and Eq. (11.8) we get

�LT = αT�TL = 6.9 × 10−6 1
°F

× 70.4 °F × 10200 ft = 4.95 ft. (14.1)

Below the cement top there is no length change due to temperature—a local axial
force change is generated.

14.2.2.2 Ballooning

From the preliminary calculations of area and Eq. (11.10) we have

�LB = −2ν

E
�pid2 − �poD2

D2 − d2 L

= − 2 × 0.3
30 × 106 psi

−784.6psi × (3.920 in.)2 − (−503.9psi
) × (4.500 in.)2

(4.500 in.)2 − (3.920 in.)2 10200 ft

(14.2)

= 0.08 ft.

14.2.2.3 Exposed shoulder(s)

As mentioned above in the discussion of Table 14.2, there is no length change due to a
shoulder in this design. Eq. (11.11) will be used later in this problem but not in relation
to force change at a shoulder (see Section 14.2.3.1).

14.2.2.4 Column buckling

Assuming the tubular is not so severely buckled that the neutral point is above the
top of the casing string (i.e., entire string is buckled), the formula for length change
associated with column buckling is Eq. (11.20). There is, of course, no length change
due to buckling unless there is buckling. Whether or not the (vertical) string is partially

Within the bounds of the assumption of infinitesimal deformation, however, these small load changes are
usually ignored. We are required to pursue trial-and-error for buckling because even under the assumption
of infinitesimal deformation fz and feff are unknown.
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Table 14.3 Tubingless casing design—length
changes (temperature in °F, pressure in psi,
length change in foot)
Variable Frac Evac Prod

�T a −56.1b 0b 70.4b

�pi
a 8469.6b −2784.6b −784.6b

�po
a −503.9b 0b −503.9b

�LT −3.95 0 4.95
�LB −5.86 1.79 0.08

�LTotal −9.81 1.79 5.03
a Average values are average above cement top.
b From Table 14.1.

buckled can be determined by checking the value of the effective force at the cement
top. For the moment we assume no buckling has occurred and return to this issue after
the first-pass calculation of fz.

14.2.2.5 Net potential length change
The net potential length change of the production casing/tubing string is the algebraic
sum of the results of Sections 14.2.2.1–14.2.2.4, namely

�LTotal = �LT + �LB + �LS + �LBu = �LT + �LB + �LBu. (14.3)

Table 14.3 summarizes the length changes associated with the three load cases under
the assumption that no buckling has occurred.

14.2.3 Axial force distribution
The cement top distinguishes tubulars above and below with regard to how their change
in axial force is computed.

We can, however, compute the axial force for the initial condition as a single proce-
dure since this axial load is determined by the fluids in the wellbore immediately after
cement displacement. At the bottom of the string the axial force is determined by the
differential pressures of the displaced fluids on the close-ended tube (cf. Table 12.5 and
the example problem in Section 12.6.2.1 of Chapter 12, especially Fig. 12.3). With the
information provided in Table 14.1,

fz = 6279.0psi × 12.069 in2 − 6623.8psi × 15.904 in2 = −29567 lbf. (14.4)

To the above value we add the air weight of the tubular to determine8:

8 The factor g
gc

to convert lbm to lbf is
32.1740 ft

s2

32.1740 lbm ft
lbf s2

or 1 lbf
lbm

.
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• the axial force at the cement top, −29567 lbf + g
gc

13.5 lbm
ft × 1300 ft = −12017 lbf.

• the axial force at the string top, −29567 lbf + g
gc

13.5 lbm
ft × 11500 ft = 125683 lbf.

These values have been recorded in the second column of Table 14.4.

14.2.3.1 Above cement top

Given the values of �LTotal without buckling, we may now determine the associated
increment in axial load by the following reasoning (see Fig. 14.5 and detailed discussion
in Section 11.2 of Chapter 11). First, we recognize that both ends of the tubular string
are constrained in the axial direction—by the wellhead at the surface9 and by the cement
top below the surface—such that �LTotal is actually a potential length change. That is, it
is the length change that would occur if one end of the tubular were free to move. Since
the cemented tubular is actually not free to move at either end, we imagine one end of
the tubular to be free so that �LTotal is realized, and then apply a separate, incremental
axial force at the unrestrained end that is sufficient to produce a length change equal
and opposite to �LTotal. This incremental axial force is exactly the force generated by
the potential length change and is given by solving Eq. (11.11) for the incremental axial
force corresponding to −�LTotal. This incremental axial force is given by

�fz = −EAs�LTotal

L
. (14.5)

For the “Frac” load case,

�fz = −30 × 106 psi × 3.836 in2 × (−9.81 ft)
10200 ft

= 110680 lbf. (14.6)

For the “Evac” load case,

�fz = −30 × 106 psi × 3.836 in2 × (1.79 ft)
10200 ft

= −20164 lbf. (14.7)

For the “Prod” load case,

�fz = −30 × 106 psi × 3.836 in2 × (5.03 ft)
10200 ft

= −56768 lbf. (14.8)

Table 14.4 summarizes the axial force during the initial (post-WOC) state and the
three final states of interest. For each load case, all points in the tubular string above the
cement top experience the same increment in axial force—see Fig. 14.5.

Fig. 14.6 summarizes the axial force profiles in graphical form.

9 In this problem we ignore wellhead movement.
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Figure 14.5 Concept used to determine axial force change.

Table 14.4 Tubingless casing design—initial and final states of axial force (1000 lbf)
Location Initial Frac Evac Prod

Increment Total Increment Total Increment Total
Topa 125.68 110.68 236.36 −20.16 105.52 −56.77 68.91
TOC+a −12.02 110.68 98.66 −20.16 −32.18 −56.77 −68.79
TOC-b −12.02 156.19 144.17 −40.32 −52.34 −27.58 −39.60
Bottomb −29.57 171.08 141.51 −42.18 −71.74 −16.85 −46.42
a Use Section 14.2.3.1 for load case calculations.
b Use Section 14.2.3.2 for load case calculations.

14.2.3.2 Below cement top

Below the top of cement the calculation of axial force is similar, with the exception
that local, rather than average, length change potentials are important. Consider, for
example, the axial force in Eq. (14.5). The variables E and As retain their previous
meanings. The variable �LTotal, however, depends on �T , �pi and �po which, in the
limit as one considers smaller and smaller lengths of investigation, approach the local
values of �T , �pi and �po. Further, both �LT and �LB depend linearly on L, so that
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Figure 14.6 Load case axial forces for tubingless design.

we may write

�LTotal = �LT + �LB =
[
αT�T − 2ν

E
�piAi − �poAo

As

]
L, (14.9)

which, when substituted into Eq. (14.5) yields

�fz = −EAsαT�T + 2ν
(
�piAi − �poAo

)
, (14.10)

where we now use local values of �T , �pi and �po. In Eq. (14.9) �LBu is ignored as no
further buckling can occur below the cement top once the cement has solidified. The
length change due to a shoulder below the cement top (for example, a cross-over) has
no meaning, as, at least theoretically, one can come infinitesimally close to the crossover
and not experience the effect of the concentrated force.

The calculations of axial force increment below the top of cement summarized in
Table 14.4 and Fig. 14.6 were performed using Eq. (14.10).

The break in axial force distribution at the cement top for the post-initial condition
load cases is real and due to the manner in which the load is calculated above and
below the top of cement. Imagine a load case in which the only change from the initial
condition is temperature and consider two points just above and just below the cement
top. In the equation for �LTotal, the main driver for change in axial force, the only
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contributor is �LT . Just above the cement top the tubular is responding to �T , the
average of all temperature changes above the top of cement. Just below the cement
top the tubular is responding to the local temperature change �T . Since these two
temperature changes are rarely identical, we can expect a different �fz corresponding
to each and therefore a discontinuity in axial load above and below the cement top.

14.2.3.3 Excursion: buckling above the cement top

Returning to the design procedure, we now have pressures and temperatures (Ta-
ble 14.1) and axial forces (Table 14.4) corresponding to each of the load cases. The
axial forces in particular were generated with an assumption of no buckling. It is now
time to determine if that assumption was valid.

From Tables 14.1 and 14.4 we compute the effective force at the cement top for
each load case using Eq. (10.1) and the current, local values of fz, pi and po:

For “Frac” load case,

feff = fz − (
piAi − poAo

)
= 98660 lbf −

(
13508psi × 12.069 in2 − 4561.4psi × 15.904 in2) (14.11)

= 8181 lbf.

For “Evac” load case,

feff = −32180 lbf −
(
0psi × 12.069 in2 − 5569.2psi × 15.904 in2)

= 56394 lbf. (14.12)

For “Prod” load case,

feff = −68785 lbf −
(
2000psi × 12.069 in2 − 4561.4psi × 15.904 in2)

= −20376 lbf. (14.13)

In two of the load cases—“Frac” and “Evac”—the effective force at the cement top
during the load case is positive.10 The “Prod” load case, however, has feff < 0 at the
cement top, where zero is the critical buckling force for a vertical wellbore.

10 Even though pi is large for the “Frac” load case, so also is the tension associated with the low wellbore
temperature. The “Evac” load case has fz < 0 at the cement top, but this is balanced by the restoring
nature of po.
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From11 Eq. (11.20) we get

�LBu = −
r2
c

(
f 2
eff 2 − f 2

eff 1

)
8EIweff cos θ

= −
(0.875 in.)2

[
(−20376 lbf)

2 − 0
]

8 × 30 × 106 psi × 8.538 in4 × 6.388 lbf
ft

= −0.024 ft, (14.14)

where weff is given by Eq. (10.2) as

weff = g
gc

[
13.5

lbm

ft
+ 0.052

psi
ft pmpg

(
0 − 8.6pmpg × 15.904 in2)]

= 6.388
lbf

ft
. (14.15)

We are confronted with the dilemma mentioned in Section 14.2.2. The length
change due to buckling changes the axial force, which changes the effective force, which
changes the length change due to buckling. Usually behavior of this sort requires a
trial-and-error solution. In this particular example, however, the tubular string is simple
enough that the problem may be solved directly. From Eqs. (14.3) and (14.5) we obtain

�fz = −EAs�LTotal

L
= −

EAs

(
�LT + �LB − r2c f 2

eff
8EIweff

)

L
, (14.16)

or, solving for the value of fz during the load case with fz = fi + �fz,

fz − fi = −
EAs

(
�LT + �LB − r2c

[
fz−(

piAi−poAo
)]2

8EIweff

)

L
, (14.17)

and

fz = − b
2

±
√(

b
2

)2

− c, (14.18)

where

b = −
[

8Iweff L
r2
c As

+ 2
(
piAi − poAo

)]
, (14.19)

11 Eq. (14.14) uses the open hole diameter as the confining hole size. Actually, the upper 1600 ft of con-
fining hole is 7.825 in. corresponding to the inside diameter of the 8.625 in. surface casing. As will be
demonstrated below, the neutral point in this calculation is below the surface casing seat, so the calcula-
tion is correct; with more severe buckling, however, it might be necessary to consider a confining hole
of variable diameter.
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c = 8Iweff

r2
c

[
fiL
As

− E (�LT + �LB)

]
+ (

piAi − poAo
)2

. (14.20)

For this example, and using consistent force and length units of lbf and in., respec-
tively,

fz = −−1418630
2

−
√(−1418630

2

)2

− (−1.01897 × 1011)

= −68518 lbf, (14.21)

where

b = −
[

8 × 8.538 × 0.532 × 122400
0.8752 × 3.836

+ 2 (2000 × 12.069 − 4561.4 × 15.904)

]

= −1418630 lbf, (14.22)

c = 8 × 8.538 × 0.532
0.8752

[−12017 × 122400
3.836

− 30 × 106 (59.5 + 0.93)

]
+

(2000 × 12.069 − 4561.4 × 15.904)2

= −1.01897 × 1011 lb2
f . (14.23)

The corresponding length change due to buckling is

�LBu = − (0.875)2 [−68518 − (2000 × 12.069 − 4561.4 × 15.904)]2

8 × 30 × 106 × 8.538 × 6.388
= −0.0237 ft, (14.24)

and from Eq. (10.13) the distance above the cement top to the neutral point is

sn = feff
weff

= −68518 lbf −
(
2000psi × 12.069 in2 − 4561.4psi × 15.904 in2

)
6.388 lbf

ft

(14.25)

= −3148 ft,

that is, 3148 ft upward.
The following observations are in order with regard to Eq. (14.18):

• As we now have a potential (negative) length change due to buckling for the “Prod”
load case, the tension in the string has increased slightly—compare the value12 of fz
in Eq. (14.21) with the axial force at the cement top in Table 14.4.

12 For final reporting the value of fz in Eq. (14.21) should replace the previous value at the cement top in
Table 14.4.
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Table 14.5 Tubingless casing design—load case safety factors
Location Frac Evac Prod

Axiala Triaxial Collapse Axiala Triaxial Axiala Triaxial
Top 1.79 1.40 ∞ 4.00 4.00 6.15 5.76
TOC+ 4.28 1.51 1.92 −13.1 2.26 −5.45b 5.06
TOC- 2.93 1.50 1.92 −8.06 2.34 −10.66 5.20
Bottom 2.98 1.50 1.70 −5.88 2.11 −9.09 4.23
a Negative sign indicates string is in axial compression.
b Includes a bending stress of −2318 psi assumed to act over the entire cross section.

• In this problem buckling alters the value of fz only slightly. This is typical of prob-
lems involving casing buckling. The length change associated with column buckling
is typically larger in tubing problems, primarily due to the larger radial clearance for
tubing, which results in a larger �LBu and correspondingly larger effect on axial
load.

• The fact that the neutral point is in the open hole justifies our use of hole diameter
for the radial clearance in the calculation of length change due to buckling.

• The solution embodied in Eq. (14.18) rapidly gains complexity with tapered tubular
strings or more complicated temperature and/or pressure profiles and is usually
solved by less direct means than that demonstrated here.

• The fact that the production casing/tubing buckles during production does not
necessarily signify a failure. The severity of the buckling will be determined in
Section 14.2.4.

14.2.4 Safety factors
Sufficient load and resistance information is now available to calculate the safety factors
in the current problem for the three load cases in the problem statement. The calcula-
tions are summarized in Table 14.5. Individual entries in the table are discussed in the
sections to follow.

14.2.4.1 Collapse

The conventional collapse safety factor compares the API TR 5C3 [51] minimum col-
lapse resistance to the external pressure differential. Although we will, in this example,
skip the involved calculation of the effect of axial load on collapse,13 this calculation is

13 In this example design, the substantial calculation of the API minimum collapse resistance is not necessary
since, from Table 14.4, all landmark depths except the surface are in compression. As discussed in
Section 8.2.4.1 of Chapter 8 the API calculation procedure does not address corrections to the yield
stress (Eq. (8.10) for cases where �zz + pi < 0. This aligns with common design practice—one hesitates
to take advantage of a compression that may, when the string is installed, be eliminated by an operational
difficulty.)
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performed in standard tubular design software. The collapse safety factor is calculated
from

SFCollapse = API minimum collapse resistance
External pressure differential

. (14.26)

As an example calculation, the collapse safety factor at the cement top for the “Evac”
load case is

SFCollapse = 10680psi
5569.2psi − 0psi

= 1.92. (14.27)

In general there may be a discontinuity in the collapse safety factor at the cement top,
since this calculation does depend on the local axial tension.

14.2.4.2 Axial

Normally, this safety factor would not be calculated as it is embedded in the triaxial
safety factor. Since, however, we were not provided a manufacturer’s evaluation envelope
for any connection to be run on the production casing/tubing, we calculate the axial
safety factor as a rough, one-dimensional substitute for the envelope.

The conventional axial safety factor compares the API minimum pipe body yield
force to the axial force. The axial safety factor is calculated from

SFAxial = API minimum pipe body yield
Axial load

. (14.28)

As an example calculation, the axial safety factor at the string top for the “Frac” load
case is

SFAxial = 110000 psi × 3.836 in2

236360 lbf
= 1.79. (14.29)

There may be a discontinuity in the axial safety factor at the cement top, since this
calculation does depend on the local axial tension.

14.2.4.3 Triaxial

The triaxial safety factor—either conventional or radial (see Section 12.9.2.1 of Chap-
ter 12)—compares the API minimum yield stress to the von Mises equivalent stress.
Whereas the burst and axial safety factors are remnants of the early days of tubular design
when hand calculations were prevalent, the triaxial safety factor properly recognizes the
relation between the radial, hoop and axial stresses and includes their combined effect
on yield. This renders the triaxial safety factor calculation a more complicated exercise.

The triaxial safety factor is calculated from

SFTriaxial = API minimum yield stress
von Mises equivalent stress

= fymn

�e
. (14.30)
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As an example calculation we will determine the triaxial safety factor at the cement
top14 for the “Prod” load case. Recall that in this load case the production casing/tubing
is helically buckled at the cement top. The curved trajectory of the helix induces a
bending stress in the tube that is given by Eq. (10.85) as

�b = ±Drcfeff
4I

= ±4.500 in. × 0.875 in. × (−20109 lbf)

4 × 8.538 in4 = ±2318psi, (14.31)

where −20109 lbf corresponds to the new value of effective force given in Eq. (14.21)
(see the numerator in Eq. (14.25))

feff = −68518 lbf −
(
2000psi × 12.069 in2 − 4561.4psi × 15.904 in2)

= −20109 lbf. (14.32)

Since bending is present, we must calculate �e four times15:
• r = dwall/2, �zz = fz

As
+ �b = �a + �b;

• r = dwall/2, �zz = �a − �b;
• r = D/2, �zz = �a + �b;
• r = D/2, �zz = �a − �b,
where the von Mises equivalent stress is calculated using

�e =
√

�2
rr + �2

θθ + (�a ± �b)
2 − �rr�θθ − �θθ (�a ± �b) − (�a ± �b)�rr, (14.33)

where

�rr = pid2
wall − poD2

D2 − d2
wall

−
(
pi − po

)
D2d2

wall

4r2
(
D2 − d2

wall

) , (14.34)

�θθ = pid2
wall − poD2

D2 − d2
wall

+
(
pi − po

)
D2d2

wall

4r2
(
D2 − d2

wall

) . (14.35)

14 In addition to the axial force at the cement top, the axial force at the top of the string will also change
from its value in Table 14.4 and by the same amount. The new value of axial force at the top of the
string is 68910 + (−68790 + 68518) = 68638 lbf.

15 In the absence of bending, the largest value of �e always occurs at the inner radius (r = d/2), so only one
calculation of Eqs. (14.33)–(14.38) need be made—see Section 6.3.4 of Chapter 6.
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As an example, at r = dwall
2 = 4.500 in.−2×0.875×0.290 in.

2 = 3.9925 in. with positive bend-
ing stress

�rr = 2000psi × (3.9925 in.)2 − 4561.4psi × (4.500 in.)2

(4.500 in.)2 − (3.9925 in.)2

−
(
2000psi − 4561.4psi

) × (4.500 in.)2 × (3.9925 in.)2

4
( 3.9925 in.

2

)2 [
(4.500 in.)2 − (3.9925 in.)2] (14.36)

= −2000psi,

�θθ = 2000psi × (3.9925 in.)2 − 4561.4psi × (4.500 in.)2

(4.500 in.)2 − (3.9925 in.)2

+
(
2000psi − 4561.4psi

) × (4.500 in.)2 × (3.9925 in.)2

4
( 3.9925 in.

2

)2 [
(4.500 in.)2 − (3.9925 in.)2] (14.37)

= −26070psi,

and

�e =
[
(−2000)2 + (−26070)2 +

(−68518
3.836

+ 2318
)2

− (−2000) (−26070)

− (−26070)

(−68518
3.836

+ 2318
)

−
(−68518

3.836
+ 2318

)
(−2000)

] 1
2

(14.38)

= 20899psi.

The four candidate values of �e are 20899 psi (r = dwall
2 , �b > 0), 21732 psi (r = dwall

2 ,
�b < 0), 16478 psi (r = D

2 , �b > 0) and 17522 psi (r = D
2 , �b < 0), of which the second

is the largest. The triaxial safety factor is therefore

SFTriaxial = 110000
21732

= 5.06. (14.39)

There may be a discontinuity in the triaxial safety factor at the cement top, since this
calculation does depend on the local axial tension.

14.2.5 Connection selection
We have postponed consideration of the threaded connection until the tube body has
been designed. Calculations for the tube body expose the differential pressures and
axial loads associated with various load cases—key information for properly selecting a
threaded connection.

When selecting a threaded connection, we use the procedure outlined in Section 2.7
of Chapter 2. Of the concerns listed, the primary drivers for the connection selection
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Table 14.6 Tubingless casing design—load case coordinates for plot of von Mises yield surface with
connection performance envelope

Init Frac Evac Prod
x y x y x y x y

32767 0 70623 73241 27511 0 19895a 16276
2435 0 39231 72810 −8390 −45322 −18182a −20845
2435 0 51096 72810 −13646 −45322 −8324 −20845

−1430 −2806 50977 72775 −18704 −51098 −10103 −25576
a Table 14.4 value adjusted for effect of buckling.

will be (a) the hydraulic fracturing surface pressure, (b) the necessity to seal gas and
(c) cost. Regarding the last, wells of the type designed here are intended to be inex-
pensive, but because of the low permeability associated with the gas reservoir should be
capable of performing for scores of years.

We were not provided with a manufacturer’s performance envelope for any candi-
dates so we shall build our own. Our simple envelope will consist of four ratings:
• The tube body yield stress in tension, decremented by a 1.3 design factor;
• The tube body yield stress in compression, decremented by a 1.0 design factor;
• The tube body triaxial internal yield pressure, decremented by a 1.25 design factor;
• The tube body triaxial external yield pressure, decremented by a 1.25 design factor.

Of the three expressions of yield presented in Sections 6.3.4.1, 6.3.4.2 and 6.3.4.3
in Chapter 6, we will use the presentation of Section 6.3.4.2. The abscissa for this plot

is �zz + pi and the ordinate is

( (
D
t

)2

2
(

D
t −1

) (
pi − po

))
. For our tube geometry, and replacing

t with kwallt to align with the design limit state

(
D

kwall t

)2

2
(

D
kwall t

− 1
) =

( 4.500
0.875×0.29

)2

2
( 4.500

0.875×0.29 − 1
) = 8.138. (14.40)

Table 14.6, taken from data in Tables 14.1 and 14.4 (with updated values above the
cement top for the “Prod” load case in the latter—see Section 14.2.4.3), provides the
pertinent coordinates of the load cases.

Fig. 14.7 presents the results in graphical form. The load case coordinates16 from
Table 14.6 illustrate the state of the production casing/tubing for each case, with the

16 Our work is eased by the fact that in this problem we are ignoring the effect of temperature on yield
stress. Otherwise, we would have to plot a separate ellipse for each landmark depth and load case. One
way of avoiding this problem is to move the effect of temperature on yield stress to the load side of the
design equation (i.e., incorporate temperature effects in the load case coordinates) rather than to the
resistance side of the design equation as represented by the ellipse.
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point farthest to the right (highest tension) in each instance denoting the top of the
string:
• Most of the “Init” curve lies along the abscissa as the initial condition has drilling

fluid inside and out (i.e., no differential pressure), except near the bottom where
the external fluid is cement.

• The “Frac” load case is distinguished by its high internal pressure differential. The
high internal pressure and low (relative to the initial condition) temperature both
induce incremental tension in the tubular.

• In contrast to “Frac”, the “Evac” load case is characterized by a high external
pressure differential. The incremental compression experienced in this load case is
due to (negative) ballooning.

• The “Prod” curve illustrates the effect of its relatively high temperature by the
higher compression increment from the initial condition, particularly at the top of
the string.

Superimposed on the same graph are also four envelopes:
• The outermost dashed, closed ellipse is the unfactored von Mises yield criterion,

identical to Fig. 6.13 with the exception that this is a design yield surface that uses
fymn instead of fy on the abscissa and, on the ordinate, kwallt instead of t.

• Overlaying most of the tube body yield ellipse is the connection design envelope
based on our bullet-listed criteria at the beginning of this section.

• Companions to the two unfactored envelopes are also shown on the graph:
• The dashed inner ellipse is the outer ellipse diminished by a design factor of 1.25.
• The solid inner connection envelope is the design envelope diminished by the

factors presented at the beginning of this section.
The conclusion we reach is that (a) the tube body is adequate for all load cases according
to a factored von Mises triaxial design limit state, and (b) the connection is also adequate.

14.2.6 Comments on the example design
A number of simplifications were made to this example in order to focus on the funda-
mentals of the design procedure:
• Simple profiles for pressures and temperature. More complicated environmental

distributions will add complexity to the calculation, primarily by increasing the
number of landmark depths and requiring that some calculations, such as length
change, be done on a per-segment basis, where a segment is the section of tubular
between two landmarks.

• Vertical wellbore. Equating the measured and vertical depth affects the following:
• A deviated wellbore introduces bending stress into the calculation of all safety

factors. For the triaxial safety factor bending is handled through �b as was
demonstrated in Section 14.2.4.3 for the case of bending due to buckling. If
both wellbore curvature and buckling are present, the effects must be added.
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Figure 14.7 Load cases as compared to tube body (yield) and connection design envelopes. Both
factored and unfactored envelopes are displayed.

• For collapse and axial yield (if needed), the following procedure is recommended:
– Compute the maximum value of �b in the cross-section, including contribu-

tions from both well trajectory and buckling.
– Set the sign of the bending stress equal to the current sign of the axial force.
– Presume the bending stress is actually acting across the entire cross-section;

multiply �b times As to arrive at an equivalent axial force for bending that is
added to the axial force contributions from other sources.

– Use the new axial force (all other sources + bending) in determining the
collapse resistance adjusted for �zz when computing the collapse safety factor
and in determining the total axial force when computing the axial safety
factor.

The above procedure can cause anomalies—usually evidenced as a discontinuity
—in the safety factor calculation at the depth in the string where fz changes sign.
We accept this small inconvenience, which is actually offering the correct answer
under the stated assumptions, in lieu of having to resort to a three-dimensional
approach to handling bending. This simplification is particularly inviting when
considering the alternatives for analyzing the string’s threaded connections.



CHAPTER 15

Special Topics

15.1. INTRODUCTION

The topics to follow often exist outside the bounds of conventional tubular design
but nevertheless constitute key issues in a sizable number of wells. Further, a lack of
appreciation of the physics associated with these topics can lead to unanticipated issues
in wells with which they are anticipated:
• Annular pressure build-up (APB, see Section 15.2) is a failure mechanism possible

in any well but primarily pertinent to deepwater completions where one or more
annuli are inaccessible. The primary APB mitigator in onshore and shallow water
platform wells is annulus venting via a surface wellhead valve, with rare APB inci-
dents traced to lapses in operational procedure. In deepwater, an APB failure of a
single string will usually lead to loss of the entire well.

• Casing wear (see Section 15.3) is typically associated with long drilling exposure,
for example, in hard-rock locations, and with tortuous well paths. Ignoring wear
instigators, however, can result in unanticipated wall loss in practically any drill
through operation.

15.2. ANNULAR PRESSURE BUILD-UP

Annular pressure build-up1 (APB) is an example of a low-probability, high-consequence
event. As discussed below, even a well containing no APB mitigation can survive the
production environment that might cause a failure. If, however, one or more APB-
favorable events occur, the consequence is usually abandonment of the victim wellbore.

Annular pressure build-up occurs when a fluid-filled compartment in a well becomes
closed and is subsequently heated. The increase in temperature acts on the contained
fluid to cause a volume change greater than that which can be accommodated by the
boundaries of the compartment (usually a tubular-by-tubular annulus). As the compart-
ment’s boundaries resist expansion, compressibility of the fluid results in an increase in
fluid pressure. Should the induced pressure become large enough, failure of a compo-
nent of the boundary envelope—usually a casing string—can occur.

1 In the industry and literature the event described here assumes a number of names—annular pressure
build-up (APB) [68,187,184,69,188,93,189,190], trapped annulus pressure (TAP) [191–193], annular
fluid expansion (AFE) and annulus fluid heat-up [194,195], with the first two being the most common—
all of which refer to the same well failure mechanism.
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Annular pressure build-up is usually associated with high rate production wells,
that is, wells that approximately convey bottomhole reservoir temperature to the mud-
line/surface inside the tubing. The phenomenon can occur, however, in any trapped
annulus, a documented example being an APB failure associated with circulating tem-
peratures when drilling ahead from an intermediate casing string [69].

Annular pressure build-up depends on three source categories:
• the thermal and mechanical properties of the annulus fluid;
• the flexibility of the annulus boundary;
• the driving force—temperature change.

Mathematically, the interrelation of the three sources can be seen from the equation
governing the annulus fluid2

�Vf = Vf

⎛
⎝3αTf �T︸︷︷︸

Driving force︸ ︷︷ ︸
Unrestrained fluid volume change

− Cf �p︸ ︷︷ ︸
Stiffness of boundary

⎞
⎟⎠ . (15.1)

A change in temperature �T acts through the (volumetric) coefficient of thermal ex-
pansion of the fluid 3αTf to produce a volume change �Vf . This volume change is
resisted by the stiffness of the annulus boundary that, acting on the compressibility of
the fluid Cf , produces a change in pressure �p. Either a positive or negative pressure
change is possible, depending on the sign of the temperature change.

Almost all APB failures studied by this author3 have been collapse failures [68,187,
184,69,93], all of which appeared or have been proven to involve more than one tubu-
lar string. That is, an APB failure on an outer string sequentially point loads inner
casings, creating a cascade that stops with the deformation of the production tubing.
Particularly for subsea wells, the problem is complicated by the fact that the collapsing
pressure initiates in an outer annulus which cannot be readily monitored. Regarding
APB one should, at least initially, think “out and shallow.” That is, the (outer) large

2 Although Eq. (15.1) is convenient for discerning the individual contributors to APB, an alternate expres-
sion by Halal and Mitchell [191] is useful when modeling APB numerically. From the conservation of
mass we can write∫

Vf

[
ρf Aoa

]
ds =

∫
Vf

[(
ρf + �ρf

)
(Aoa + �Aoa)

]
ds ⇒

(
ρf + �ρf

)
�Aoa + �ρf Aoa = 0.

Using the above relation, the net change of the fluid volume is

�Vf =
∫

Vf

�Aoads =
∫

Vf

[
− �ρf Aoa

ρf + �ρf

]
ds,

which allows one to implicitly account for fluid thermal expansion and compressibility by tracking only
the fluid density.

3 A notable exception is [196].
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diameter strings undergoing large temperature changes from their initial states (shallow)
are particularly vulnerable to APB.

In well design, determination of APB in an annulus is complicated by the fact that
the same phenomenon can also be occurring in adjacent annuli, the latter serving to
change the effective stiffness of the target annulus’ boundary. Such calculations involve
a global numerical analysis of the well, allowing the various fluids, boundaries and
temperatures to interact. The analysis is further complicated by nonlinear dependence
of the annulus fluid thermal and mechanical properties on temperature and pressure.
Numerical calculations are strongly recommended over a simple model.

15.2.1 Nonlinear fluid behavior
As mentioned above, one complicating factor in APB calculations is the nonlinear char-
acter of the fluids residing in a typical well annulus. Even fresh water possesses sufficient
nonlinearity to render it beyond the bounds of a hand calculation.

To illustrate the nature of potential annulus fluids, consider the following simple
example chosen to isolate fluid behavior. A small bench top experiment is supposed,
consisting of a container that is rigid and capable of producing a constant, uniform
pressure and temperature environment for a fluid sample. If the container is rigid, there
is no change in volume; if the container maintains its seal there is no change in mass.
Any change in the pressure and temperature environment of the sample will therefore
occur along a path of constant density.

Fig. 15.1 presents the results of such an experiment on a fresh water sample. The
behavior of the sample is modeled using the steam tables [197]. We consider the initial
state of the fluid in our container (Point A) to be p = 2000psi, T = 40 °F. For this
condition, the initial density of the water is 8.40 lbm

gal .
Now let the container be heated 50 °F to an intermediate temperature of 90 °F.

Following a line of constant density, the pressure in the container increases by 1900 psi
to a value of 3900 psi (Point B). As a second and final step, let the temperature of the
container be increased another 50 °F to a final temperature of 140 °F. The pressure now
increases by 4300 psi to a value of 8200 psi (Point C). Although the temperature change
in the two load increments is identical, the pressure changes are dramatically different,
illustrating the danger of attempting to perform an APB calculation by hand or with a
simple spreadsheet that uses a constant value to characterize fluid behavior.

15.2.2 Low-probability, high-consequence
Fig. 15.2 illustrates a common challenge to annular pressure build-up design. The well-
bore sketch in the left-hand diagram shows the near-mudline portion of a well whose A
annulus is vented, but whose B and C annuli are closed. The design concern is possible
collapse of the intermediate casing between the B and C annuli, the string marked with
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Figure 15.1 The consequences of nonlinear fluid behavior [187]. Locations A, B and C are, respec-
tively, the initial, interim and final states of an annulus being heated by fluid production through the
tubing. Contours are in lbm

gal . Copyright 2004, Society of Petroleum Engineers Inc. Reproduced with
permission of SPE. Further reproduction prohibited without permission.

Figure 15.2 APB as a low-probability, high-consequence event. In the scenario depicted, both a
closed annulus and a leak of the production casing connection are required for a failure.
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a question. Production is expected to increase the temperature of the C annulus with
corresponding increase in pressure, thus creating a collapse load on this casing.

The objection may be raised that the casing in question is in no danger. Accompa-
nying the temperature and pressure increases in the C annulus will be similar increases
in the B annulus, thus providing an internal pressure on this casing that will resist any
collapse load from the C annulus. This objection is well-founded, were it not for the
following conditions related to the A annulus:
• The A annulus is vented so it will not experience a pressure increase during pro-

duction. There will be no additional backup for the tube or connection of the
production casing.

• The connection (one such connection is shown) on the production casing is in
jeopardy due to the additional loading accompanying APB:
• Increasing pressure in the B annulus places an incremental external pressure on

the connection;
• Increasing temperature of the production casing places an incremental compres-

sion on the casing and its connection.
Both of the above responses to APB serve to push the production casing connec-
tion into the third quadrant of its performance envelope, a quadrant in which it is
difficult for some connections to maintain leak integrity.
We are still left with the fact that an APB failure in this scenario requires (a) that

both the B and C annuli be closed and (b) the production casing connection leaks.
The consequence of such a low-probability event occurring, however, is loss of what
is probably a high-productivity well. At a minimum, design activities such as qualifying
the production casing connection (particularly with load cycling between quadrants 1
(shut-in) and 3 (production)) and APB mitigation (see Section 15.2.4) are in order.

15.2.3 APB design principles
Analysis of failures has led to several design principles useful in designing a well for APB.
All of the suggestions below will tilt the design analysis in favor of an APB failure and
do therefore generate design controversy when they indicate a well needs mitigation.
The decision to move forward with mitigation is risk-based, weighing the expense and
collateral effects of mitigators on the completion versus the consequences of losing a
well due to failure.

15.2.3.1 All shoes are closed

This principle states that, regardless of the location of the top of cement on the casing
that serves as the inner boundary for a particular annulus, that annulus is assumed closed
at the previous casing string. If the cement top has been deliberately planned to lie
above the previous casing shoe (perhaps cementing a tieback or ensuring isolation of
a hydrocarbon-bearing zone), then closure of the annulus is obvious. If, however, the
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cement top has been targeted below the previous shoe, the principle assumes that mud
settling or instability of the wellbore in the vicinity of the previous shoe will render
the annulus “closed.” Repeated informal surveys indicate that the incident rate of being
unable to pump into an annulus that was supposedly open approaches 50%.

One exception to this rule is liners having short laps with the previous string. If the
top of a liner is within 300 ft (100 m) of the previous casing shoe, this principle may be
neglected, with the following caution. The impetus for this exception is that the author
knows of no APB failure to have occurred with such short liner laps, a situation that
may be attributed to the small fluid volume in such an annulus.

In a similar vein, cementing a tieback into a polished bore receptacle is often per-
formed in such a manner that a trapped pocket of fluid could be left outside the PBR.
Again, although a small number of collapsed PBRs have been reported, the number of
incidents appears to be small and may not be directly attributable to APB.

15.2.3.2 Every annulus must stand alone

This design principle relates to the example discussed in Section 15.2.2. Consider a
tubular string that serves as the outer boundary of one annulus and the inner boundary
of another, with both annuli closed. As the well temperature increases due to produc-
tion, the annulus outside this tubular will experience an increase in pressure, thereby
exposing the tubular to a potential collapse failure. On the other hand, simultaneously
the fluid inside the tubular will experience a pressure increase which counters the pres-
sure building external to the tubular. The differential collapse pressure to which the
tubular is exposed should be small. This optimistic picture assumes that both annuli
boundaries are sufficiently robust that a leak—at a threaded connection or other seal, or
perhaps by formation fracture or the failure of a rupture disk (see subsection ‘Rupture
disks’ in Section 15.2.4.2 of this chapter)—will not occur.

The possibility of a scenario such as that described above leads a second design
principle, namely, APB from an adjacent annulus is not allowed to provide such benefit
as to reduce the differential load on a given tubular string.4 In design practice, this
principle means that when calculating the APB in one annulus the fluid column in
the adjacent inside (for collapse calculations) or outside (for MIYP/triaxial calculations)
annulus will be assumed vented so that no APB increase occurs in that annulus.

15.2.3.3 Use the hottest temperature

It is natural to assume that the hottest time in the life of the well is the first day of
full production. It may be, however, that the hottest time in the life of the well is the
first day of water production. Water has a high heat capacity and can carry significant
temperature to the shallower portions of the tubing string and, coincidentally, adjacent

4 This beneficial APB in the adjacent annulus is sometimes termed “sympathetic APB.”
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casings. When conducting an APB design, a conversation with the reservoir engineer,
asking for flow rates corresponding to landmark events in the life of the well is in order.
Each of these events should be tested in the APB simulator to ensure the most onerous
conditions are applied to the well tubulars.

15.2.3.4 Use the proper initial conditions

Section 12.6 of Chapter 12 discusses this issue in some detail. The initial state for a
conventional design calculation is usually the pressure and temperature state when the
tubular being designed has its end conditions activated, be they wellhead and cement
(casing) or wellhead and packer (tubing). By contrast, the initial state for a trapped an-
nulus calculation is the pressure and temperature state when the annulus to be analyzed
is closed. Any subsequent annulus venting or top-off of fluids that occurs necessitates a
redefinition of the initial state for future APB calculations on the subject annulus.

Further, setting some (particularly secondary) seal assemblies in a subsurface wellhead
open the possibility of a leak past the seal assembly during pressure energization and
lock-down. Should a leak past the seal assembly occur, pressure above the normally
trapped hydrostatic pressure can be imparted to the associated annulus. This pressure
becomes part of the initial condition for that annulus [68].

15.2.3.5 Use a safety factor multiplier

As discussed in previous sections, APB prediction is a complex calculation that involves
a wide variety of input:
• annular fluid properties as a function of pressure and temperature;
• tops of cement and other contributors to the stiffness of the annulus boundary;
• initial temperatures and temperature changes.
Some of the above inputs contain experimental error; other inputs rely on the accuracy
of numerical simulation.

Once more appealing to these uncertainties in the context of a low-probability,
high-consequence event, a prudent design practice is to increase all design factors using
a 1.05–1.15 multiplier to anticipate such unknowns, with the exact multiplier value
depending on one’s confidence in the data to be submitted to the APB calculation
software.

15.2.4 Mitigation
With the application of the APB design principles discussed in Section 15.2.3, at least
one annulus in a high production rate wellbore will probably be at risk of a boundary
failure—either collapse of the inner tubular boundary or triaxial yield to excess internal
pressure on the outer tubular boundary. The design response is to in some way mitigate
either the source or the effects of the pressure increment.



466 Elements of Oil and Gas Well Tubular Design

Recalling the list of APB sources in Section 15.2, we may categorize popular mitiga-
tion techniques into the same three categories—the thermal and mechanical properties
of the annulus fluid, the flexibility of the boundary and the driving force, temperature
change. Each of these categories will be considered in turn below. Before considering
these alternatives, however, one other solution should be considered. In almost all in-
stances, it is possible to conceive of a tubular wall thickness sufficient to resist the APB
internal or external load. Unfortunately, at least in the case of deepwater completions
most at risk to APB consequences, there usually is not enough space to implement this
solution to more that one tubular string. The pore and fracture pressure gradients in
deepwater are sufficiently narrow that a larger number of casing strings are in order.
Further, one is limited on the innermost diameter by the size of the subsurface safety
value—usually on the order of 9 in to 9.25 in. (228.6 mm to 234.95 mm)—and on the
outermost diameter by the 18.750 in. (476.25 mm) diameter bore on the high pressure
wellhead. Countering APB with wall thickness is a useful alternative, but one or more
of the options below may also be necessary.

15.2.4.1 Altering annulus fluid properties

One’s first thought with regard to countering APB via annulus fluid properties is to
eliminate the problem by removing the fluid; that is, by cementing the annulus through-
out and eliminating the possibility of fluid expansion. The notion is valid but carries the
risk of creating the most vulnerable of annuli should the attempt to reach the surface
not succeed. Consider Fig. 15.3 which depicts an endangered annulus (left-hand dia-
gram) which we wish to totally cement. Also shown in the figure (right-hand diagram)
are two temperature profiles—the undisturbed temperature profile which defines the
initial state of the annulus and a later temperature profile corresponding to production.
If the annulus is not cemented to surface (TOC1), the average temperature change in
the annulus driving APB is given by �T1. If an attempt is made to cement the annulus
back to the wellhead, but that attempt fails or there is cement settling in the early stages
of thickening (TOC2), then the shallowest portion of the annulus is left uncemented.
This annulus will experience an average temperature change of �T2 during production,
resulting in a higher APB than shown previously. Depending on the properties of the
fluid in the annulus and the actual values defining the initial and producing temperature
distributions, the latter state of the annulus could be undesirably worse than the former.

Designer fluids

With the realization of the importance of fluid response to temperature increase some
drilling fluid suppliers have formulated fluids specifically intended to possess a lower
dp
dT behavior. At an extreme end of such behavior has been the development of a fluid
which, at a designed temperature, undergoes polymerization, shrinking on the order of
20% [198,193].
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Figure 15.3 Cementing to surface. If an attempt to cement to surface (TOC2) fails, the remaining por-
tion of the annulus experiences an increased APB driving force due to the higher average temperature.

Foam spacer

This mitigation technique involves placing a nitrified foam spacer in the cement column
ahead of the cement and pumping the spacer in place as part of the primary cementing
operation. Once in place, the more compressible foam spacer serves as an accumulator
allowing any heated fluid in the annulus to expand without creating a significant pressure
increase. With time the foam destabilizes and the nitrogen can be expected to migrate
up the annulus [199]. Except as noted below, however, the nitrogen should still be
expected to compress accommodating fluid expansion.

Nitrified foam spacers have been successfully applied on a number of deepwater
wells. Cautions on the use of this mitigation technique include the following:
• Placement of the nitrogen spacer carries with it the same risk that is always present

in cementing. An ill conceived design, lost circulation or other issues may prevent
the cement column from being situated as intended.

• A nitrified foam spacer that is initially placed deep in an annulus, may, under desta-
bilization and subsequent migration, convey the higher pressure of the deep location
up the annulus, thus placing a high pressure, less compressible gas bubble where it
may be least desired.

• Shallow placement of a nitrified foam spacer may raise operational issues such as
introducing gas into the riser past the BOP [200].
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15.2.4.2 Altering annulus boundary flexibility

The most obvious means of altering the flexibility of the annulus boundary is to render
the annulus infinitely flexible by venting. This is usually the solution for onshore and
offshore shelf or shallow water platform wells where all annuli can be accessed from the
surface wellhead. That is not to say, however, that the possibility of an APB failure can
be eliminated [196,69]. Aside from wellhead venting, and particularly when the annulus
is not accessible, the following alternatives have been used by the industry.

Formation fracture

An obvious candidate for APB mitigation is the formation below the shoe of the casing
forming the outer boundary of the annulus of focus. Assuming this casing shoe to be
open, and planning for such a state by adequate deep placement of the cement top
for the next casing string, means that the casings forming the boundaries of the focus
annulus need only be as strong as the formation. Otherwise, sufficient pressure will cause
the formation to fracture at some point above the cement top, relieving the pressure due
to temperature increase.

The primary disadvantage of this mitigation method is that it is in direct conflict
with the design principle that “all shoes are closed” presented in Section 15.2.3.1.
Nevertheless, relying on formation fracture to alleviate APB remains a popular means
of dispensing with APB in design in some geographic locations.

Rupture disks

Rupture disks have served various parts of manufacturing for some time. Their applica-
tion to APB mitigation takes the form of a small circular frame installed in the tube wall,
and at the center of which is a machined, shallow dome-like disk intended to rupture
within a suitably narrow pressure range. The disk may be oriented with its convex side
outward (intended to rupture due to internal pressure) or inward (intended to rupture
with external pressure).

The reasoning underlying rupture disk implementation is detailed in Fig. 15.4. Sup-
pose that the well in the figure has been analyzed for the potential of an APB failure,
and the analysis indicates the 16 in. annulus to be at risk. If the possibility of an APB
failure cannot be eliminated, is it better to have the 20 in. casing rupture or the 16 in.
casing collapse? Usually, the former is preferred. If the 16 in. casing collapses, it is likely
that the collapse will cascade, successively loading interior strings and not stopping until
the production tubing is damaged. On the other hand, if the 20 in. casing ruptures, a
small amount of drilling fluid from the annulus will enter the adjacent formation, and
the annulus pressure will be relieved.

With the above comments in mind, Fig. 15.4 illustrates a typical design. The wall
thickness and grade of the 20 in. casing are chosen such that its minimum internal yield



Special Topics 469

Figure 15.4 The strategy of a rupture disk. The disk serves to narrow the statistical distribution of the
casing to which it is attached, thereby ensuring a controlled pressure and location of failure.

pressure5 (MIYP) is less than the API minimum collapse resistance of the 16 in. casing.
These two deterministic values are indicated by the ball-topped vertical lines in the
figure.

Unfortunately, the statistics of manufacturing suggest that the actual MIYP and col-
lapse resistance of the 20 in. and 16 in. casings, respectively, will more closely resemble
the short dashed and dotted lines in Fig. 15.4. This leaves open the possibility—a small
probability with large consequences—that, as indicated by the shaded region, the col-
lapse resistance of the 16 in. casing could be less than the internal pressure resistance6 of
the 20 in., the result being an APB collapse failure.

Now consider the possibility of installing an outward-acting rupture disk in the
20 in. casing. The disk, which has a significantly smaller variation in rupture pressure
than the internal pressure rating of the 20 in. tube, can be chosen with a rating higher
than the MIYP of the 20 in. casing, thus not affecting the internal pressure design of
the tube, but a more assured rating less than the collapse resistance of the 16 in. casing.
The 16 in. casing is protected from collapse without altering the internal pressure safety

5 We assume here that internal pressure design of the 20 in. casing is based on yield and not rupture.
6 This possibility is compounded by the fact that actual rupture of the 20 in. casing can occur at a pressure

significantly higher than MIYP. The 20 in. casing could yield, resulting in partial damage, but not rupture
before collapse of the 16 in. casing.
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factors of the 20 in. casing design. This feature of the rupture disk—a highly accurate
rupture pressure—is its primary attribute applicable to APB mitigation.

Syntactic foam

Syntactic foam consists of hollow glass spheres encased in a polymer that fills the inter-
stitial space. The resulting product is a solid, fairly hard structure capable of reasonable
rigors of on site handling and transport downhole. For a specific application, the spheres
are sized such that they will withstand the fluid pressure environment in which they are
placed but will collapse at a specified increment in pressure above that corresponding to
their installation state. The presence of the polymer carrier renders the foam composite
a function of temperature.7

The syntactic foam is manufactured in curved panels that may be strapped or glued
(or both) to the exterior of a casing joint, thus occupying that casing’s annulus upon
installation of the string. Usually a circumferential space is left vacant to provide an axial
flow path past the foam modules. Further, the vicinity of the connection is left vacant
to provide room for normal assembly tools.

The foam is intended to crush upon the application of sufficient external pressure,
thus, in a manner similar to the nitrified foam spacer (see subsection ‘Foam spacer’
in Section 15.2.4.1 of this chapter), syntactic foam serves as an accumulator, allowing
the less compressible annulus fluid to expand into the crushed volume with reduced
impact on annular pressure build-up. Unlike the nitrified foam spacer, the placement
of syntactic foam is more assured as it is conveyed to its target by the casing to which it
is attached. There has been some evidence of foam chunks being detached from their
panels during installation, an event that does not severely affect the performance of the
foam but has caused concern with completion engineers with respect to plugging or
interfering with downhole accessories.

Syntactic foam’s disadvantage vis-à-vis a nitrified foam spacer is that its volume loss
is irrecoverable. Imagine an instance of syntactic foam installed on intermediate casing
above that casing’s cement top, with the cement top located above the shoe of the
previous casing string. As the well is placed on production, the annulus fluid pressure
rises to the point that the foam crush pressure is reached. The foam crushes, maintaining
the annulus pressure at a reduced level. Now, however, imagine that the casing’s cement
sheath has a small leak that, during a long period of shut-in, allows local pore fluid to
slowly enter the cooled annulus, recharging it with fluid. If the well is now placed on
production again, the crushed foam cannot respond to this second incident of pressure
increase. Such a scenario as this suggests syntactic foam is used to best advantage when it

7 Imagine a syntactic foam panel at room temperature. The solid polymeric structure will impede the
transmission of applied pressure to the glass spheres. With increasing temperature, softening of the polymer
at increased temperature facilitates the transmission of the pressure to the individual spheres.
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is placed in an annulus for which there is near certainty of sealed annulus containment of
fluids. A typical annulus of this nature would be that outside a production tieback. In this
case, the leak described earlier in this paragraph is less likely due to (a) casing-in-casing
cement placement behind the tieback and (b) the presence of a liner top packer. The
use of syntactic foam for production casing also fortunately counters the fact that, as
the production tieback may be part of the well’s secondary barrier envelope, some
alternatives such as rupture disks may be unacceptable.

15.2.4.3 Lowering annulus temperature change

In some instances8 APB mitigation using the tools of the previous sections may not be
possible or practical. There remains, nevertheless, one additional mitigation option—
controlling the temperature (change) at its source (the production tubing) such that
APB loads do not occur in outer annuli. The dominant alternative in this solution
category is vacuum-insulated tubing.

Vacuum-insulated tubing

Vacuum-insulated tubing (VIT) consists of two standard tubular bodies welded to-
gether at either end, with a vacuum drawn on the annulus between the two tubes (see
Fig. 15.5). The annulus may also contain foil to aid in minimizing radiant heat transfer
and getter, a material to adsorb molecular hydrogen and maintain the vacuum. The tubes
may also be separated by a centralizing mechanism, that mechanism being designed to
work with low tube-to-tube contact so as to minimize conductive heat transfer.

One of the tubes will, at both ends, be longer than its counterpart to accommodate
a standard threaded connection. VIT has been manufactured with both the internal
tube and the external tube hosting the connection. The principal advantages of placing
the connection on the inner tube are ease in obtaining a smooth-bored flow path for
produced fluids and ease-of-access to the critical weld between the tubular bodies. The
principal advantages of placing the connection on the outer tube are greater tensile
capacity and the ease of connection assembly with standard tongs [201].

VIT mechanical design

The joining of two tubes that are separated by a vacuum presents a unique mechanical
design situation wherein all of the following apply:
• The tubes are constrained to have the same displacement at the points of mutual

attachment (i.e., the welds);
• The inner tube is thermally loaded by a temperature change that is normally much

higher than the temperature change to which the outer tube is exposed;

8 An example is the retrofitting of wells in the Marlin field following an APB failure in the first completed
producer [184].
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Figure 15.5 Sample VIT joint with threaded connection on outer tube. ©Vallourec Tube-Alloy, LLC.
All rights reserved.

• The inner tube has no external pressure backup;
• The outer tube has no internal pressure backup.
With the above constraints, Pattillo et al. [201] have derived a set of relations between
axial load and length change for VIT that are suitable for design calculations.

VIT thermal design

The threaded connection is a particularly sensitive and complex member of a VIT joint
(cf. [202,203]). The approximately one foot of uninsulated joint at the connection can
be the source of the preponderance of heat from the overall joint [187]. For this reason,
VIT is usually installed with an insulating sleeve across each connection.

Thermal design of VIT can be clarified by treating the threaded connection as a fin
[202,203] and giving due consideration for the properties of the annular fluid. Regard-
ing the latter, Fig. 15.6 [184] exhibits two annular temperature profiles during steady
production from Marlin Wells A-4 and A-6 having almost identical geometries and flow
characteristics. The data was captured using a fiber-optic distributed temperature sys-
tem. The temperature spikes every 40 ft correspond to the threaded connections that
were both internally and externally insulated, an indication of the potential for heat loss
outside the axial bounds of the VIT vacuum chamber.

At least for the (solid line) temperature profile labeled “Gelled Brine 1”, however,
the increase in temperature is confined to the vicinity of the connection. The annulus
opposite the vacuum chamber is cooler, as the gel minimizes natural convection in the
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Figure 15.6 VIT annulus temperature profiles captured from Marlin Wells A-4 and A-6 [184]. Well
A-4 (Gelled Brine 2) experiences higher annular temperatures than Well A-6 (Gelled Brine 1) due to
a lower gel-loading concentration in the former. Copyright 2004, Society of Petroleum Engineers Inc.
Reproduced with permission of SPE. Further reproduction prohibited without permission.

annulus and limits heat transfer to conduction. The second (dashed line) temperature
profile labeled “Gelled Brine 2” corresponds to a less concentrated annular gel. In this
latter instance, heat transfer from the threaded connection mobilizes the annulus fluid,
reducing both its density and viscosity. The density gradient between two connections
creates a convection cell, transferring heat behind the vacuum chamber and partially
defeating the VIT’s ability to control annulus temperature. The well corresponding
to “Gelled Brine 2” is passing more heat than its counterpart to the outer annuli,
increasing APB.

The benefit gained from the use of a gelled annulus fluid comes at the cost of possible
damage to the completion. The viscosity of the gelled fluid tends to promote transport
of any debris in the flow path, again (see subsection ‘Syntactic foam’ in Section 15.2.4.2
of this chapter) increasing the possibility of plugging or interfering with downhole
accessories.
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15.3. WEAR

The most studied aspect of casing wear is the grooved wall loss associated with rotary
drilling. The loss of wall thickness associated with wear can render a tubular string
underdesigned following installation—a time when no small correction can usually be
applied to remedy the integrity decrease.

The momentum behind casing wear technology has closely followed industry spon-
sored work conducted by Hall and coworkers [204–206] under the auspices of Maurer
Engineering, Inc., and has led to adoption by the API of the primary experimental
apparatus used to determine the all-important wear factor [207].

15.3.1 Governing equations of wear
We start with the fairly general premise that the volume per length Vw of steel removed
from a casing string by contact with a rotating drill pipe tool joint is proportional to the
frictional work done9

Vw = μk
∣∣qc

∣∣Lc

εw
, (15.2)

where μk is the kinetic coefficient of friction,
∣∣qc

∣∣ is the magnitude of the contact force
per length and εw is the specific energy of wear, i.e., the amount of energy necessary to
remove a unit volume of material per length.

The variables μk and εw are similar in that they both depend on the two surfaces
in contact and that neither is particularly easy to determine by means other than ex-
periment. In that regard, a major distinction of the Maurer team was the decision to
combine these two variables into a single variable denoted the wear factor

fw = μk

εw
. (15.3)

With the substitution of Eq. (15.3) into Eq. (15.2), the formula for material volume
removed by wear becomes

Vw = fw
∣∣qc

∣∣Lc. (15.4)

Eq. (15.4) is both important and experimenter-friendly. If one builds an apparatus such
that a tool joint can be rotated inside a length of casing with a measured contact force
per length

∣∣qc
∣∣ while one simultaneously measures the volume of steel (per length)

removed and the relative contact length Lc (rotary speed of tool joint times tool joint
circumference), the only remaining unknown in Eq. (15.4) is fw, the wear factor. Since
its inception, the Maurer apparatus has been used to record the effect of casing material,

9 See [206] for most of the equations to follow.
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Figure 15.7 Residence time for a tool joint. At point × the tool joint is simultaneously rotating—the
source of the wear groove—and advancing axially as new hole is drilled.

tool joint hard/soft banding and fluid environment on the wear factor, providing a
wealth of information with which to design for wear.

Given a suite of experimentally determined wear factors, the prediction of wear re-
quires two modeled pieces of information—the value of the contact force per length

∣∣qc
∣∣

and the time during which that force is resident at a particular casing location (used to
determine Lc). The first item, contact force, is usually computed using equations iden-
tical or similar to those used in computing torque and drag. The second item, residence
time, requires some method of accounting to record the history of drill string/casing
contact. Both items have been discussed in the open literature, cf. [206]. Each of these
contributors will be reviewed in the sections to follow.

15.3.1.1 Wear residence length

Consider Fig. 15.7 which examines a single tool joint rotating inside a casing string as
the drill string advances. The × in the figure marks the location on the casing internal
surface where wear is to be measured. Concerning length of circumferential sliding
contact between the tool joint and the casing, one can state the following:
• The residence length corresponding to one rotation is πDTJ , where DTJ is the

diameter of the tool joint;
• The number of rotations per unit time is �, usually expressed in revolutions per

minute (RPM);
• The amount of time in residence is the length of the tool joint LTJ divided by the

forward speed of the tool joint vTJ (i.e., rate of penetration).
With the above thoughts, the residence length of circumferential sliding contact of one
tool joint at a specific location on the casing internal diameter is

(Lc)TJ = πDTJ�LTJ

vTJ
. (15.5)
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The residence length in Eq. (15.5) is for a single tool joint and has the following
special cases:
• If the interval drilled is of measured length Ldr then the total number of tool joints

passing the focus point × is Ldr
Ldp

. The total residence length for all tool joints passing
a casing point of focus is therefore

(Lc)TJ−total =
πDTJ�LTJLdr

vTJLdp
, drill ahead. (15.6)

• If vTJ = 0, for example, while milling inside casing or in a laboratory experiment to
determine wear factor, then we replace the single tool joint residence time calcula-
tion τTJ = LTJ

vTJ
with the residence time τTJ so that

(Lc)TJ = πDTJ�τTJ , vTJ = 0. (15.7)

15.3.1.2 Contact force per length
At the high end of wear analysis one can explicitly model each joint of drill pipe and its
corresponding tool joint. General purpose finite element software readily lends itself to
this type of contact problem and can accommodate changes in geometry of both the drill
string and bottom-hole assembly (BHA) and the confining hole. Alternately, simpler
formulations such as the soft string model [34,42] have been successfully employed in
wear calculations.

Depending on its degree of sophistication, the numerical model used to predict drill
string behavior may not explicitly include tool joints. Alternately, as is the case with
the soft string formulation, the model may be of such a nature that all portions of the
tubular string are assumed to be in continuous contact with the confining hole, that is,
the casing. If necessary, the simplicity of the model can be reconciled with the normal
assumption that the drill pipe body is suspended between tool joints and not in contact
with the confining hole by assuming the entire contact force over the length of a drill
pipe joint is concentrated at the tool joint

(
∣∣qc

∣∣)TJ = (
∣∣qc

∣∣)pipe
Ldp

LTJ
, (15.8)

where Ldp is the average length of a joint of drill pipe, and LTJ is the length of a tool
joint. The justification of such an assumption should always be a prerequisite for its
use. One can observe in severe instances, such as drilling through buckled casing, spiral
polished patterns on the drill pipe body that are evidence of intra-tool joint contact.

15.3.1.3 Wear factor
Hall and Malloy [206] offer a detailed explanation of the experimental determination
of wear factor. We simply note here that the laboratory data can be fit to a function of



Special Topics 477

Figure 15.8 Curve fit to behavior of wear factor [206]. The sample secant line is drawn from the origin
to the point of interest on a curve.

the form

Vw = A
(
1 − e−B

(∣∣qc
∣∣Lc

)C)
, (15.9)

where A, B and C are curve fit parameters, and
∣∣qc

∣∣ and Lc are knowns from the
experiment, with Lc calculated from Eq. (15.7).10

Representative plots of Eq. (15.9) are shown in Fig. 15.8. From Eq. (15.4) the wear
factor fw is the secant (line drawn from the origin to any point) on a Vw vs.

∣∣qc
∣∣Lc curve.

From Eq. (15.9) the wear factor is not a constant, being higher in the initial stages of
wear.

For the examples illustrated in Fig. 15.8, Fig. 15.9 plots the wear factor itself as a
function of the same abscissa as Fig. 15.8. With increased work, which implies increased
wear, the wear factor approaches a constant value. Taking the limit as

∣∣qc
∣∣Lc becomes

large gives

lim
x→∞

Vw∣∣qc
∣∣Lc

= lim
x→∞

A
(
1 − e−B

(∣∣qc
∣∣Lc

)C
)

∣∣qc
∣∣Lc

. (15.10)

10 Hall and Malloy [206] include the factor
Ldp
LTJ

(see Eq. (15.8)) explicitly in their definition of Vw .
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Figure 15.9 Wear factor from curve fit of experimental data.

The additional wear associated with Eq. (15.9) renders the calculation nonlinear but
should not be ignored. The increased wear factor in the early stages of tool joint groove
development can represent a significant amount of metal loss.

15.3.2 Wear volume and wall loss
Presuming (a) the drill pipe is suspended on the tool joints11 and (b) a soft string model
or similar tool is supplying the average contact force (

∣∣qc
∣∣)pipe per length along a joint of

drill pipe, Eqs. (15.4), (15.6) and (15.8) can be combined to yield

Vw = fw(
∣∣qc

∣∣)pipeπDTJ�Ldr

vTJ
, drill ahead, (15.11)

where fw is determined by experiment, (
∣∣qc

∣∣)pipe is output from the soft string soft-
ware, DTJ reflects the tool joint geometry, and �, Ldr and vTJ are drilling parameters.
Eq. (15.11) could be used—with the drill string advanced on an incremental basis sim-
ulating drilling—to determine the accumulated wear at individual casing points for a
particular hole interval.

11 In the case of a casing-friendly “soft”-banding applied proud to the tool joint, one would assume the
drill pipe is suspended on the soft-banding.
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Figure 15.10 Calculation of wall thickness loss from wear volume. The lightly shaded area indicates
the wear volume per length Vw . The straight line chord AB is common to both the casing and tool joint.

Eq. (15.11) is elegant in its simplicity. The difficulty with the relation is that wear
is reported as a volume. For the purpose of tubular design our primary interest is loss
of wall thickness. Conversion of wear volume to depth of wear groove is a geometry
issue resolved by standard equations [208]. Fig. 15.10 illustrates the cross-section of a
tool join as it wears an inner surface of casing. The following facts are at our disposal:
• The known quantity is the shaded region that is the wear volume per length Vw.

Our desire is to know hw = hTJ − hc , that is, the amount of wall thickness lost
corresponding to Vw.

• In Fig. 15.10, the area of segment ABOA is [208]

AABOA = 1
2

(
d
2

)2

(ηc − sinηc) , ηc = 2 sin−1 AB

2
(

d
2

) , (15.12)

and the area of segment ABCA is

AABCA = 1
2

(
DTJ

2

)2 (
ηTJ − sinηTJ

)
, ηTJ = 2 sin−1 AB

2
(

DTJ
2

) , (15.13)
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where the known quantity Vw is

Vw = AABCA − AABOA = 1
2

(
DTJ

2

)2 (
ηTJ − sinηTJ

) − 1
2

(
d
2

)2

(ηc − sinηc)

= 1
2

(
DTJ

2

)2
[(

ηTJ − sinηTJ
) −

(
d

DTJ

)2

(ηc − sinηc)

]
.

(15.14)

• The unknown quantity hw is

hw = hTJ − hc =
(

DTJ

2

)(
1 − cos

ηTJ

2

)
−

(
d
2

)(
1 − cos

ηc

2

)

=
(

DTJ

2

)[(
1 − cos

ηTJ

2

)
−

(
d

DTJ

)(
1 − cos

ηc

2

)]
. (15.15)

• The angles ηc and ηTJ can be related by their common defining factor AB (see
Eqs. (15.12) and (15.13))

ηc = 2 sin−1
(

DTJ

d
sin

ηTJ

2

)
. (15.16)

The three transcendental Eqs. (15.14)–(15.16) provide the desired relation between
Vw and hw. If we substitute Eq. (15.16) into Eq. (15.14), we can solve for ηTJ . With
ηTJ known, we can solve Eq. (15.15). Or, as an alternative to the above trial-and-error
procedure, one could start with Eq. (15.16) and increment ηTJ , successively solving for
ηc (Eq. (15.16)), Vw (Eq. (15.14)) and hw (Eq. (15.15)).

An example of the latter procedure is illustrated for 9.625 in., 53.50 lbm
ft (0.545 in.

wall) casing being worn by a 6.25 in. tool joint. As was the case with wear factor (see
Section 15.3.1.3), early wear exhibits noticeable nonlinearity which disappears for wear
above approximately 30% of the wall thickness.

The calculations used to generate Fig. 15.11 can be used to address the issue of
downrating cross-sectional resistance in the presence of tool joint wear. In previous
chapters—Section 7.4 of Chapter 7 for internal pressure resistance and Section 8.4 of
Chapter 8 for collapse resistance—we noted that for both internal and external pressure
the loss in cross-sectional resistance is directly proportional to the percent of wall loss,
i.e., 8% wear results in 8% loss of internal pressure resistance and 8% loss of collapse
resistance.

We have not yet, however, addressed the effect of wear on axial resistance, particu-
larly with regard to triaxial yield.12 Insight into the reason most designers do not include

12 The effect of wear on the radial and hoop stress contributions to triaxial resistance can be addressed by
setting the factor kwall equal to the fraction of remaining wall thickness. Whether one uses the wear
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Figure 15.11 Relation between wear volume Vw and wall thickness loss hw , 9.625 in., 53.50 lbm
ft

(0.545 in. wall) casing being worn by a 6.25 in. tool joint. The left-hand ordinate measures absolute
wall thickness loss at deepest point of wear grove. The right-hand ordinate measures hw as a percent
of original wall thickness. The maximum value of Vw corresponds to a wear groove with ηTJ = 90°.

a wear effect for axial resistance is presented in Fig. 15.12. For the casing and tool joint
used in constructing the plot, a 50+% loss of wall thickness corresponds to only a 6%
loss in cross-sectional area. The effect of wear on axial resistance is less marked than it is
for the radial and hoop stress components.

The lower sensitivity of axial resistance to formation of a tool joint groove is primar-
ily applicable to the tube body. Tool joint wear in the vicinity of a threaded connection
can adversely affect the performance of a metal-to-metal seal as well as lower the critical
section area on a pin-weak connection. The latter point is particularly pertinent to flush
and nonflush clearance connections.

15.3.3 Wear of buckled casing during drill ahead
Designing casing for wear is relatively straightforward and illustrated in Fig. 15.13. As a
first pass the casing is designed without regard to wear. The output of the design is a set

effect alone as the value of kwall or multiplies the wear effect by the (normally) default 0.875 value of
kwall depends on the degree of conservatism one desires. Multiplying the wear effect by kwall instead of
unity implies that the wear groove aligns with the circumferential location of minimum wall thickness
in the cross-section.
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Figure 15.12 Relation between wear as a percentage of original wall thickness and loss of cross-
sectional area, 9.625 in., 53.50 lbm

ft (0.545 in. wall) casing being worn by a 6.25 in. tool joint. The
maximum value of wear percent corresponds to a wear groove with ηTJ = 90°.

Figure 15.13 Wear work flow for casing design.

of size, mass, grade combinations that are the constituents of the string in focus, along
with computed safety factors for each load case.

Following the trial design, the individual load cases can be scanned to determine
which load case is worst for the individual limit states of triaxial yield and collapse,
with internal yield pressure being included in the triaxial limit state.13 From these worst

13 This assumes that minimum internal yield pressure, as opposed to ductile rupture, is the operable “burst”
limit state.
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case limit states, an estimate of allowable wear that would render the computed safety
factor equal to the required design factor is determined. In both instances—collapse and
triaxial yield—a reasonable estimate of allowable wear as wall thickness loss can be made
by direct scaling of the wall thickness.

An estimate of wear can be obtained from a number of commercial software pack-
ages. Should the predicted wear exceed the allowable wear, then the following options
are available:
• Increase the casing’s resistance to wear, usually by increasing wall thickness14;
• Change drilling parameters such as rotary speed or hole trajectory;
• Decrease the wear factor by applying casing-friendly soft-banding proud to the tool

joint surface or otherwise altering the interface between the tool joint and casing
(e.g., fluid additives, wear protectors).

A recalculation of allowable vs. predicted wear is then in order.
Usually the casing curvature is assumed to be identical to that of the wellbore. If, in

addition, buckling is predicted, then the additional curvature due to the sinusoidal or
helical nature of the tubular should be included in the determination of curvature. For
the purpose of predicting wear, buckled casing in a straight wellbore will behave as if
the postbuckled configuration presents a tortured well trajectory to the drill string.

14 The increase in wall thickness may affect the outside rather than the inside diameter. For example, if it

is important to maintain a 12.250 in. drift one can substitute 88.20 lbm
ft 13.625 in. casing for 72.00 lbm

ft
13.375 in. casing.



APPENDIX A

Tensors and Tensor Notation
A.1. INTRODUCTION

A tensor is a mathematical entity which obeys certain transformation rules. This ap-
pendix reviews elementary tensor concepts and describes the notation used throughout
the main body of text.

An individual tensor component can be represented by the symbol Aabc...xyz, where
the number of subscripts necessary to distinguish the individual components1 or el-
ements of the tensor is its order. Here we consider the three orders of tensor most
applicable to the study of tubulars—scalars (zeroth order tensors), vectors (first order
tensors) and second order tensors.

A.2. ZEROTH ORDER TENSORS (SCALARS)

A scalar is a zeroth order tensor as it requires no indices to distinguish its components.
Zeroth order tensors include temperature T , pressure p and time τ . Even though such
quantities may be subscripted—pi for internal pressure, po for external pressure—these
identifying subscripts do not signify components or elements of a greater-than-zeroth
tensor, but are merely identifiers to delineate different pressures.

A.3. FIRST ORDER TENSORS (VECTORS)

A vector is a first order tensor as it can distinguish its components by a single index. First
order tensors include position x and displacement u. In three-dimensional space, for
example, the position in X1–X2–X3 space has components along each of the coordinate
axes, as does displacement.

The ith component of a vector is written vi, and the vector itself can be written (see
Fig. A.1)

v = v1e1 + v2e2 + v3e3 =
3∑

i=1

viei, (A.1)

where the eis are unit (magnitude of 1) vectors aligned with the coordinate axes and vi

is the component of v along the ith coordinate axis.

1 Almost exclusively in this manuscript the components of the tensor will, in some way, be related to a
coordinate in Euclidean space, the space of all real numbers.

485
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Figure A.1 Geometric interpretation of a vector. The intersections of the dashed lines with the coor-
dinate axes indicate the individual components of the vector. The dotted lines are provided merely as
aids in visualizing the three-dimensional figure.

A.3.1 Vector operations
Several operations on vectors are employed in the main text.

A.3.1.1 Vector addition
Addition of two vectors creates a new vector, each component of which is the sum of
the corresponding components of the original vectors. If w is the sum of the vectors u
and v then

w = u + v = (u1 + v1)e1 + (u2 + v2)e2 + (u3 + v3)e3,

wi = ui + vi, i = 1,2,3. (A.2)

Vector addition is commutative (the order of the operands can be interchanged). Fig. A.2
illustrates vector addition graphically.

Eq. (A.2) illustrates a practice which, whenever appropriate, will be followed
throughout this book. In the equation, two representations of the tensor relation are
supplied:
1. Direct notation (i.e., w = u+v), where the individual components of the tensor are

hidden. Direct notation is clean and concise, focusing on the relation in its totality.
2. Index notation (i.e., wi = ui + vi), where the focus is on individual components of

the tensor(s).
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Figure A.2 Graphic illustration of vector addition. Only the operation on the “1” component is de-
tailed.

The two extra expressions in Eq. (A.2)—(u1 + v1)e1 + (u2 + v2)e2 + (u3 + v3)e3 in the
direct relation and i = 1,2,3 in the index relation—have been included for clarity in this
early part of the discussion. They will soon be abandoned. For more on the notation
conventions used throughout the book, see Section 1.5 of Chapter 1.

A.3.1.2 Scalar multiplication

Multiplication of a vector by a scalar multiplies each component of the vector by the
scalar. If w is the product of the scalar c with the vector v, then

w = cv = cv1e1 + cv2e2 + cv3e3, wi = cvi, i = 1,2,3. (A.3)

A.3.1.3 Dot product

The dot product2 of two three-dimensional vectors a and b can be written as

a · b = a1b1 + a2b2 + a3b3 =
3∑

i=1

aibi, a · b = aibi, (A.4)

where repetition of indices indicates summation.

2 An alternate name for this operation is inner product. Strictly speaking, the inner product is a generalization
of the dot product to dimensions greater than three.
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In the rightmost portion of Eq. (A.4) the summation sign has been discarded in favor
of the abbreviated index notation. Here, repeated subscript indices such as the i in aibi

indicate summation over the range of the indices—in this case from 1 to 3.
The following properties of the dot product can be derived from the definition in

Eq. (A.4) [16]:
• it is commutative (the order of the operands can be interchanged)

a · b = b · a, aibi = biai; (A.5)

• it is distributive over vector addition

a · (b + c
)= a · b + a · c, ai

(
bi + ci

)= aibi + aici; (A.6)

• it commutes with scaling of either of its factors (the grouping of the operands with
a scalar constant k is arbitrary)

k
(
a · b)= (ka) · b = a · (kb) , k

(
aibi
)= (kai

)
bi = ai

(
kbi
)
. (A.7)

The dot product of a vector with itself is the square of the magnitude of the vector.
From Eq. (A.4)

v · v = v1v1 + v2v2 + v3v3 =
3∑

i=1

v2
i = |v|2 , v · v = vivi = |v|2 . (A.8)

An alternate form of the dot product is

a · b = |a||b| cos θ, aibi = √
aiai

√
bibi cos θ, (A.9)

where θ is the angle between the two vectors. This form of the dot product readily
admits itself to geometric interpretation as the product of the projection of one of the
vectors along the other and the magnitude of the unprojected vector—see Fig. A.3.

Example problem—vector components along axes

The geometric interpretation given Eq. (A.9) is particularly useful as a means of deter-
mining the components of a vector along coordinate axes. Recall Eq. (A.1) and assume
we wish to determine the component of v along the X2-axis. Using Eqs. (A.6) and
(A.7) and recognizing that the unit vectors along the coordinate axes are orthogonal,
ei · ej = 0 if i �= j, we get

e2 · v = e2 · (v1e1 + v2e2 + v3e3)

= v1 (e2 · e1) + v2 (e2 · e2) + v3 (e2 · e3)

= v1 (0) + v2 (1) + v3 (0) (A.10)

= v2.
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Figure A.3 Geometric interpretation of the dot product.

Figure A.4 Demonstration of the equivalence of Eqs. (A.4) and (A.9). The angle C is designated θ in
the main discussion—see Eq. (A.9).

Example problem—equivalence of Eqs. (A.4) and (A.9)

Recall from the law of cosines that if a, b and c are the lengths of the sides of a triangle
and A, B and C are the corresponding angles opposite to the sides with lengths a, b
and c, respectively, then

c2 = a2 + b2 − 2ab cos C. (A.11)

If the sides of the triangle are actually vectors a, b, and c such that (see Fig. A.4)
a = b + c, then from Eq. (A.11)

c · c = a · a + b · b − 2 |a| ∣∣b∣∣ cos C, cici = aiai + bibi − 2
√

aiai

√
bibi cos C. (A.12)

Since (see Fig. A.4) c = a − b, from the fact that the dot product is distributive over
vector addition (Eq. (A.6)), we get

c · c = (a − b
) · (a − b

)= a · a − 2a · b + b · b,

cici =
(
ai − bi

) (
ai − bi

)= aiai − 2aibi + bibi. (A.13)
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Figure A.5 Geometric interpretation of the cross product.

Comparing Eqs. (A.12) and (A.13), and using Eq. (A.8),

|a|2 − 2a · b + ∣∣b∣∣2 = |a|2 + ∣∣b∣∣2 − 2 |a| ∣∣b∣∣ cos C, a · b = |a| ∣∣b∣∣ cos C,

aiai − 2aibi + bibi = aiai + bibi − 2
√

aiai

√
bibi cos C, aibi = √

aiai

√
bibi cos C. (A.14)

Eq. (A.9) can be derived using Eq. (A.8), a special case of Eq. (A.4), the law of cosines
and the distributive property of the dot product.

A.3.1.4 Cross product

The cross product of two three-dimensional vectors3 a = aiei and b = biei can be written
as

a × b = (a2b3 − a3b2
)
e1 + (a3b1 − a1b3

)
e2 + (a1b2 − a2b1

)
e3. (A.15)

The cross product of two vectors produces a vector perpendicular to the plane con-
taining the crossed vectors and with direction determined by applying the “right-hand
rule.”4 Fig. A.5 illustrates the cross product geometrically, where c = a × b.

The following properties of the cross product can be derived from the definition in
Eq. (A.15):
• it is distributive over vector addition

a × (b + c
)= a × b + a × c. (A.16)

3 The vector cross product is only defined in three-dimensional space.
4 In Fig. A.5, imagine your right wrist at the intersection/vertex of vectors a and b with your right fingers

pointing in the direction of a. As you sweep your right hand from a to b your thumb points in the
direction of c = a × b.
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• it commutes with scaling of either of its factors (the grouping of the operands with
a constant k is arbitrary)

k
(
a × b

)= (ka)× b = a × (kb) . (A.17)

Use of the distributive and scalar multiplication properties, along with the right-hand
rule, illustrates that the definition of Eq. (A.15) follows from the cross products of the
unit vectors along the coordinate axes:

a × b = (a1e1 + a2e2 + a3e3) × (b1e1 + b2e2 + b3e3
)

= a1b1 (e1 × e1) + a1b2 (e1 × e2) + a1b3 (e1 × e3)

+ a2b1 (e2 × e1) + a2b2 (e2 × e2) + a2b3 (e2 × e3)

+ a3b1 (e3 × e1) + a3b2 (e3 × e2) + a3b3 (e3 × e3) (A.18)

= a1b2e3 + a1b3 (−e2) + a2b1 (−e3) + a2b3e1

+ a3b1e2 + a3b2 (−e1)

= (a2b3 − a3b2
)
e1 + (a3b1 − a1b3

)
e2 + (a1b2 − a2b1

)
e3.

The penultimate step in Eq. (A.18) illustrates a drastic reduction in terms from its pre-
decessor due to the fact that a × a = 0 (see Eq. (A.15)). This step also illustrates the
fact that the cross product is not commutative, that is, a × b = −b × a �= b × a (again,
a consequence of Eq. (A.15)).

The use of index notation in defining the vector cross product requires the intro-
duction of the Levi-Civita symbol5

εijk =

⎧⎪⎨
⎪⎩

1 if (i, j, k) is an even permutation of (1, 2, 3),
0 if two or more of the indices are equal,

−1 if (i, j, k) is an odd permutation of (1, 2, 3),
(A.19)

where an even permutation is any one of (1, 2, 3), (2, 3, 1) or (3, 1, 2), and an odd
permutation is any other combination of the three indices. The transition from the first
step to the second step in Eq. (A.18) illustrates how the Levi-Civita symbol enters the
index notation expression of cross product, since ei = εijkej × ek.

Consider a right-handed coordinate system with base unit vectors e1, e2 and e3,
such that a vector v is v = vrer . Then the cross product of two vectors a and b can be
written as

c = a × b = (ases) × (btet
)= asbt (es × et) , cr = εrstasbt. (A.20)

5 Also termed the permutation symbol or alternating symbol.
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An alternate form of the cross product is

a × b = |a||b| sin θ ea×b, (A.21)

where θ is the angle between the two vectors, and ea×b is a unit vector perpendicular
to the two vectors and directed according to the right-hand rule.

Example problem—computing the cross product

Given the vectors a = 1e1 + 2e2 + 3e3 and a = 4e1 − 5e2 − 6e3, compute the cross
product a × b. From the definition given in Eq. (A.15),

a × b = {[2 × (−6)] − [3 × (−5)]}e1 + {[3 × 4] − [1 × (−6)]}e2

+ {[1 × (−5)] − [2 × 4]}e3 (A.22)

= 3e1 + 18e2 − 13e3.

This vector is perpendicular to both a and b. To illustrate, we compute the dot product
of a × b with each of its parent vectors

(
a × b

) · a = (3e1 + 18e2 − 13e3) · (1e1 + 2e2 + 3e3)

= 3 + 36 − 39 = 0, (A.23)

and

(
a × b

) · b = (3e1 + 18e2 − 13e3) · (4e1 − 5e2 − 6e3)

= 12 − 90 + 78 = 0. (A.24)

Example problem—the Kronecker delta and the epsilon–delta identity

We first introduce a new symbol, the Kronecker delta

δij =
{

1 if i = j,
0 if i �= j.

(A.25)

With repeated indices indicating summation, δii = 1 + 1 + 1 = 3.
The epsilon–delta identity relates the Kronecker delta to the Levi-Civita symbol

through the equation

εijkεimn = δjmδkn − δjnδkm. (A.26)

Consider the cross product d = a × (b × c), which in index notation can be written
as

di = εijkaj
(
εkmnbmcn

)= εkijεkmnajbmcn, (A.27)
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where we have taken advantage of an even permutation (εijk = εkij) to rewrite the
first εijk. Applying the epsilon–delta identity (Eq. (A.26)),

di =
(
δimδjn − δinδjm

)
ajbmcn

= ajbicj − ajbjci (A.28)

= bi
(
ajcj
)− ci

(
ajbj
)
,

which is equivalent to the expression

d = a × (b × c) = b(a · c) − c(a · b). (A.29)

Example problem—equivalence of Eqs. (A.15) and (A.21)

We know from the discussion following Eq. (A.15) and the definition of ea×b that
both definitions produce vectors that are collinear. It only remains to show that the
magnitudes of both vectors are identical. Starting with Eq. (A.21), the quantity sin θ

can be written in terms of the dot product of a and b using Eq. (A.9) as

sin θ =
√

1 − cos2 θ =
√

1 −
( |a · b|

|a||b|
)2

= 1
|a||b|

√
|a|2|b|2 − |a · b|2,

sin θ =
√

1 − cos2 θ =
√√√√1 −

(
|aibi|√ajaj
√

bkbk

)2

= 1
√ajaj

√
bkbk

√
|aiai|bmbm| − |anbn|2.

(A.30)

Applying this relation to Eq. (A.21) gives

|a × b| = |a||b|
[

1
|a||b|

√
|a|2|b|2 − |a · b|2

]

=
√

|a|2|b|2 − |a · b|2

=
[(

a2
1 + a2

2 + a2
3

) (
b2

1 + b2
2 + b2

3

)− (a1b1 + a2b2 + a3b3
)2] 1

2

= [(a2
1b

2
2 + a2

2b
2
1 − 2a1b1a2b2

)+ (a2
2b

2
3 + a2

3b
2
2 − 2a2b2a3b3

)
(A.31)

+ (
a2

3b
2
1 + a2

1b
2
3 − 2a1b1a3b3

)] 1
2

=
√(

a2b3 − a3b2
)2 + (a3b1 − a1b3

)2 + (a1b2 − a2b1
)2

,

and similarly for the expression using index notation. Comparing this result to the
expression for |a × b|, derived using Eq. (A.15), indicates that the two definitions for
cross product–Eqs. (A.15) and (A.21)–are identical.
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A.4. SECOND ORDER TENSORS

A square matrix can be a second order tensor. Second order tensors include stress S,SIJ ,
and strain E,EIJ .

When using a matrix to manipulate tensor components, the first index of the tensor
subscript is the row location, and the second index is the column location, as illustrated
in Eq. (A.32),

T =
⎡
⎢⎣

T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤
⎥⎦ , (A.32)

that is, the component of T in the ith row and the jth column of the matrix is Tij.
The transpose of T, designated TT , refers to the matrix representation of T and is

obtained by exchanging the tensor indices

TT =
⎡
⎢⎣

T11 T21 T31

T12 T22 T32

T13 T23 T33

⎤
⎥⎦ , (A.33)

that is, TT
ij = Tji. If a tensor is symmetric, TT = T, or TT

ij = Tji = Tij.

A.4.1 Second order tensor operations
Consider the following second and first order6 tensors:

A =
⎡
⎢⎣

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎥⎦ , B =

⎡
⎢⎣

B11 B12 B13

B21 B22 B23

B31 B32 B33

⎤
⎥⎦ ,

v =
⎡
⎢⎣

v1

v2

v3

⎤
⎥⎦ , w =

⎡
⎢⎣

w1

w2

w3

⎤
⎥⎦ . (A.34)

Several operations on such tensors are employed in the main text.

A.4.1.1 Tensor addition

Addition of two tensors creates a new tensor, each component of which is the sum of
the corresponding components of the original tensors. If T is the sum of the tensors A

6 The matrix representation of a vector is a column. The matrix representation of the transpose of a vector
is a row, vT = [ v1 v2 v3

]
.
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and B, then

T = A + B =
⎡
⎢⎣

A11 + B11 A12 + B12 A13 + B13

A21 + B21 A22 + B22 A23 + B23

A31 + B31 A32 + B32 A33 + B33

⎤
⎥⎦ , Tij = Aij + Bij. (A.35)

Tensor addition is commutative (the order of the operands can be interchanged).

A.4.1.2 Scalar multiplication

Multiplication of a tensor by a scalar multiplies each component of the tensor by the
scalar. If T is the product of the scalar c with the tensor A then

T = cA =
⎡
⎢⎣

cA11 cA12 cA13

cA21 cA22 cA23

cA31 cA32 cA33

⎤
⎥⎦ , Tij = cAij. (A.36)

A.4.1.3 Tensor product

Seldom used in this book, but included here for completeness, the tensor product C of
two vectors v and w is

C = vw =
⎡
⎢⎣

v1w1 v1w2 v1w3

v2w1 v2w2 v2w3

v3w1 v3w2 v3w3

⎤
⎥⎦ , Cij = viwj. (A.37)

The tensor product of two vectors is also called a dyad.
The tensor product of two second order tensors also exists (as it does for two tensors

of any order), but this product is not employed in this book and will not be covered here.

A.4.1.4 Tensor contraction product

Contraction is the operation by which two indices are set equal, followed by performing
the resulting sum. For example, the trace7 of A in Eq. (A.34) is

I1 = tr {A} = Aii = A11 + A22 + A33. (A.38)

The tensor contraction product has designation similar to the vector dot product
(Section A.3.1.3). In index notation it corresponds to contracting the two adjacent
indices of the affected matrices. The tensor contraction product C of A and B is

7 The trace, or first invariant, of a second order tensor is the sum of its diagonal terms.
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C = A · B

=
⎡
⎢⎣

A11B11 + A12B21 + A13B31 . . . A11B13 + A12B23 + A13B33

A21B11 + A22B21 + A23B31 . . . A21B13 + A22B23 + A23B33

A31B11 + A32B21 + A33B31 . . . A31B13 + A32B23 + A33B33

⎤
⎥⎦ , (A.39)

Cij = AikBkj,

where the middle column (Ai1B12 + Ai2B22 + Ai3B32, i = 1,2,3) has been omitted for
reasons of space.

The tensor contraction product w of A and v is

w = A · v =
⎡
⎢⎣

A11v1 + A12v2 + A13v3

A21v1 + A22v2 + A23v3

A31v1 + A32v2 + A33v3

⎤
⎥⎦ , wi = Aikvk. (A.40)

Care must be exercised, however, as the tensor contraction product of v and A is unde-
fined. For the tensor contraction product to be valid, the contracted indices must be of
the same dimension. Eq. (A.40) is valid since we are contracting a 3 × 3 tensor with a
3 × 1 tensor. The operation v ·A, on the other hand, attempts adjacent indices contrac-
tion of a 3 × 1 tensor with a 3 × 3 tensor. The second order tensor can be premultiplied
by the first order tensor if, in the tensor contraction product we use the transpose of the
latter, namely

w = vT · A
= [A11v1 + A21v2 + A31v3 A12v1 + A22v2 + A32v3 A13v1 + A23v2 + A33v3

]
,

(A.41)
wi = vT

k Aki.

The following properties of the tensor contraction product can be derived from the
definition in Eq. (A.39) [16]:
• it is associative (the grouping of the operands can be interchanged)

A · (B · C) = (A · B) · C, Aij
(
BjkCkl

)= (AijBjk
)
Ckl. (A.42)

• it is distributive over vector addition

A · (B + C) = A · B + A · C, Aij
(
Bjk + Cjk

)= AijBjk + AijCjk. (A.43)

• it commutes with scaling of either of its factors (the grouping of the operands with
a scalar constant (k) is arbitrary)

k (A · B) = (kA) · B = A · (kB) , k
(
AijBjk

)= (kAij
)
Bjk = Aij

(
kBjk

)
. (A.44)

The tensor contraction product is not commutative.
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Example problem—prove (A · B)T = BT · AT

We wish to prove that the transpose of a contraction product of two tensors is the
contraction product of the two tensor transposes. Let C = A · B. Then, using index
notation,

Cij = AimBmj, CT
ij = Cji = AjmBmi. (A.45)

But AT
mj = Ajm and BT

im = Bmi, which, when applied to the second expression in
Eq. (A.45), implies

CT
ij = BT

imAT
mj, (A.46)

or CT = (A · B)T = BT · AT .
In Section A.4 we defined the transpose as the matrix representation of a second or-

der tensor obtained by exchanging the tensor indices. To continue the current example,
we introduce a stricter definition [6,209] of the transpose embodied in the equation

v · (TT · w)= (T · v) · w, viTT
ij wj = Tijvjwi, (A.47)

where T is a second order tensor, and v and w are vectors.
Let T = A · B, Tij = AimBmj. Then from Eq. (A.47),

v ·
[
(A · B)T · w

]
= (A · B · v) · w, vi

(
AimBmj

)T wj = AimBmjvjwi. (A.48)

If we apply Eq. (A.47) (twice) and the associative law (Eq. (A.42)) to the right-hand
side of Eq. (A.48) (first, B · v replaces the vector v in Eq. (A.47), then B replaces the
tensor T and AT · w replaces the vector w) and so

[
A · (B · v)

] · w = (B · v) · (AT · w)= v · [(BT · AT ) · w] ,
Aim

(
Bmjvj

)
wi =

(
Bmjvj

) (
AT

miwi
)= vj

[(
BT

jmAT
mi

)
wi

]
. (A.49)

Combining Eqs. (A.48) and (A.49) yields

v ·
[
(A · B)T · w

]
= v · [(BT · AT ) · w] , vi

(
AimBmj

)T wj = vj

[(
BT

jmAT
mi

)
wi

]
, (A.50)

or, once more, (A · B)T = BT · AT .

A.4.1.5 Tensor and matrix operations

A word is in order before leaving this section. Particularly with regard to the tensor
contraction product, the operations performed in Eqs. (A.39) and (A.41) are identical to
the operations one would perform in multiplying matrices. Although the convenience
of matrix manipulations can be used with tensors, not all matrices are tensors. Tensors
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Figure A.6 Coordinate transformation of a vector. The primed axes and base unit vectors are shown
gray to aid in distinguishing coordinates.

differ from matrices in that they obey transformation rules that a matrix may violate
[15,210].

A.5. COORDINATE TRANSFORMATION

It frequently becomes necessary to reexpress the components of a tensor in one coor-
dinate system in terms of a second coordinate system, where the relation between the
two coordinate systems is known.

A.5.1 Transformation of vectors
Consider Fig. A.6 which illustrates a vector v and two distinct coordinate systems.

According to Eq. (A.1), we can write

v = v1e1 + v2e2 + v3e3 = viei, (A.51)

or

v = v′
1e

′
1 + v′

2e
′
2 + v′

3e
′
3 = v′

ie
′
i. (A.52)

In Eqs. (A.51) and (A.52) v refers to the same vector—it is simply being referenced to
two separate coordinate systems.
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To determine the components of v in the primed coordinate system in terms of the
components of v in the unprimed system, we recall that the ith component of a vector is
the dot product of the vector with the base unit vector of the ith axis (see Section A.4),
i.e.,

v′
i = v · e′

i =
(
vjej
) · e′

i = vj
(
e′

i · ej
)
, (A.53)

where we have used Eqs. (A.5) and (A.7), respectively, to reorder and regroup terms.
Introducing the coordinate transformation matrix L gives

v′
i =
(
e′

i · ej
)
vj = Lijvj, Lij = e′

i · ej. (A.54)

The coordinate transformation matrix is not a (second order) tensor.8

Recognizing that Eq. (A.54) is valid for each component of v in the primed coor-
dinate system, we can summarize

v′ = L · v, v′
i = Lijvj, (A.55)

where v′ = v, v′ simply being v referred to in a different coordinate system. Explicitly
⎡
⎢⎣

v′
1

v′
2

v′
3

⎤
⎥⎦=

⎡
⎢⎣

L11 L12 L13

L21 L22 L23

L31 L32 L33

⎤
⎥⎦
⎡
⎢⎣

v1

v2

v3

⎤
⎥⎦=

⎡
⎢⎣

e′
1 · e1 e′

1 · e2 e′
1 · e3

e′
2 · e1 e′

2 · e2 e′
2 · e3

e′
3 · e1 e′

3 · e2 e′
3 · e3

⎤
⎥⎦
⎡
⎢⎣

v1

v2

v3

⎤
⎥⎦ , (A.56)

or, since the ei and e′
i both have a magnitude of one, from Eq. (A.9)
⎡
⎢⎣

v′
1

v′
2

v′
3

⎤
⎥⎦=

⎡
⎢⎣

cos θ1′1 cos θ1′2 cos θ1′3
cos θ2′1 cos θ2′2 cos θ2′3
cos θ3′1 cos θ3′2 cos θ3′3

⎤
⎥⎦
⎡
⎢⎣

v1

v2

v3

⎤
⎥⎦ , (A.57)

where θij is the angle between the ith primed axis and jth unprimed axis.
The inverse transformation—from the primed to the unprimed system—follows

directly from Eqs. (A.53) and (A.54) by exchanging primed and unprimed quantities,
i.e.,

vi =
(
ei · e′

j

)
v′

j = Ljiv′
j = LT

ij v′
j, (A.58)

where Lij is defined in Eq. (A.54). Again, recognizing that Eq. (A.58) is valid for each
component of v in the unprimed coordinate system,

v = LT · v′, vi = LT
ij v′

j, (A.59)

8 The matrix L maps the components of a vector in one coordinate system into the component of the
same vector in another coordinate system. The contraction product of a second order tensor and a vector
v maps v into a different vector.
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Figure A.7 A cylindrical coordinate system superimposed on the global coordinate system.

or explicitly ⎡
⎢⎣

v1

v2

v3

⎤
⎥⎦=

⎡
⎢⎣

cos θ1′1 cos θ2′1 cos θ3′1
cos θ1′2 cos θ2′2 cos θ3′2
cos θ1′3 cos θ2′3 cos θ3′3

⎤
⎥⎦
⎡
⎢⎣

v′
1

v′
2

v′
3

⎤
⎥⎦ . (A.60)

A.5.1.1 Example problem—vector components in cylindrical coordinates

Fig. A.7 is a duplicate of Fig. 3.6 in Chapter 3. We wish to express the cylindrical coor-
dinate9 (R, �, Z) components of a vector v in terms of its X1, X2 and X3 components
in the rectangular system.

Let the cylindrical coordinates be the primed system in this calculation. That is,

e′
1 = eR, e′

2 = e�, e′
3 = eZ . (A.61)

From Fig. A.7 we get

cos θ1′1 = cos θ11′ = eR · e1 = cos�,

cos θ1′2 = cos θ21′ = eR · e2 = sin�,

9 See Section 3.6 of Chapter 3 for a detailed description of the cylindrical coordinate system.
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cos θ1′3 = cos θ31′ = eR · e3 = 0,

cos θ2′1 = cos θ12′ = e� · e1 = − sin�,

cos θ2′2 = cos θ22′ = e� · e2 = cos�, (A.62)

cos θ2′3 = cos θ32′ = e� · e3 = 0,

cos θ3′1 = cos θ13′ = eZ · e1 = 0,

cos θ3′2 = cos θ23′ = eZ · e2 = 0,

cos θ3′3 = cos θ33′ = eZ · e3 = 1.

From Eq. A.57 therefore
⎡
⎢⎣

vR

v�

vZ

⎤
⎥⎦=

⎡
⎢⎣

cos� sin� 0
− sin� cos� 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣

v1

v2

v3

⎤
⎥⎦ , (A.63)

or

vR = v1 cos� + v2 sin�, v� = −v1 sin� + v2 cos�, vZ = v3. (A.64)

The appearance of the minus sign in Eqs. (A.62)–(A.64) is more clearly seen in Fig. A.8
which views the coordinate transformation from above, that is, along a line-of-sight
parallel to the X3, Z-axis.

The inverse transformation follows in similar fashion. From Eq. (A.60) we have
⎡
⎢⎣

v1

v2

v3

⎤
⎥⎦=

⎡
⎢⎣

cos� − sin� 0
sin� cos� 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣

vR

v�

vZ

⎤
⎥⎦ , (A.65)

or

v1 = vR cos� − v� sin�, v2 = vR sin� + v� cos�, vZ = v3. (A.66)

A.5.1.2 Example problem—compute LT · L
For future use, we wish to evaluate the contraction product LTL. We do so by noting
from Eq. (A.55) that

LT · v′ = LT · L · v, LT
ki v

′
i = LT

kiLijvj, (A.67)

but, from Eq. (A.59), LT · v′ = v, so

v = LT · L · v, vk = LT
kiLijvj, (A.68)

or (
I − LT · L) · v = 0,

(
δkj − LT

kiLij
)
vj = 0, (A.69)
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Figure A.8 A cylindrical coordinate system viewed down the X3, Z-axis . The vR component of v is
obtained by adding the v1 and v2 projections onto the R-axis. The v� component of v is diminished
by the v1 projection along e� .

where I is the identity matrix whose elements are 1 along its diagonal and 0 elsewhere.
We conclude that

LT · L = I, LT
kiLij = δkj, (A.70)

or, LT = L−1, where L−1 is the inverse of L, that is, the matrix which, when multiplied
by L, equals I. A matrix where LT = L−1 is termed orthogonal, as either its rows or its
columns are orthogonal unit vectors.

The same line of reasoning allows us to write v = LTv′ from Eq. (A.59), or L · v =
L · LT · v′ = v′ implying

L · LT = I, LkiLT
ij = δkj. (A.71)

A.5.2 Transformation of second order tensors
Consider the contraction product

v = T · w, vi = Tijwj, (A.72)
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where v and w are vectors and T is a second order tensor. In a second, primed coordi-
nate system, we can write

v′ = T′ · w′, v′
i = T ′

ijw
′
j, (A.73)

where v′ = v and w′ = w. In order to relate T′ to T, we make use of Eq. (A.59) to
rewrite Eq. (A.72) as

LT · v′ = T · LT · w′, LT
ij v′

j = T ′
ijLjkw′

k, (A.74)

where L is the coordinate transformation matrix defined in Eq. (A.54). Using Eq. (A.73)
on the left-hand side of Eq. (A.74) yields

LT · T′ · w′ = T · LT · w′, LT
ij T ′

jlw
′
l = T ′

ijL
T
jkw′

k. (A.75)

Premultiplying both sides of Eq. (A.75) by L, we obtain

L · LTT′ · w′ = L · T · LT · w′, LmiLT
ij T ′

jlw
′
l = LmiT ′

ijL
T
jkw′

k, (A.76)

and recalling (Section A.5.1.2) that LT = L−1 produces

(
T′ − L · T · LT ) · w′ = 0,

(
T ′

mk − LmiTijLT
jk

)
w′

k = 0, (A.77)

which leads to the conclusion

T′ = L · T · LT , T ′
mk = LmiTijLT

jk . (A.78)

A similar argument could be used to arrive at the inverse transformation relating T
to T′. Alternately, and again recalling (Section A.5.1.2) that LT = L−1, we can premul-
tiply both sides of Eq. (A.78) by LT and postmultiply both sides by L with the result

T = LT · T′ · L, Tmk = LT
miT

′
ijLjk. (A.79)

A.5.2.1 Example problem—second order tensor physical components in cylindrical
coordinates

The coordinate transformation matrix calculated in Section A.5.1.1 is unchanged. To
express the cylindrical coordinate (R, �, Z) physical components of a second order
tensor T in terms of its X1, X2 and X3 components in the rectangular system, we may,
due to Eq. (A.78), write
⎡
⎢⎣

TRR TR� TRZ

T�R T�� T�Z

TZR TZ� TZZ

⎤
⎥⎦=

⎡
⎢⎣

cos� sin� 0
− sin� cos� 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣

T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤
⎥⎦
⎡
⎢⎣

cos� − sin� 0
sin� cos� 0

0 0 1

⎤
⎥⎦ ,

(A.80)
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or, carrying out the indicated multiplications,

TRR = T11 cos2 � + (T12 + T21) sin� cos� + T22 sin2 �,

TR� = − (T11 − T22) sin� cos� + T12 cos2 � − T21 sin2 �,

TRZ = T13 cos� + T23 sin�,

T�R = − (T11 − T22) sin� cos� − T12 sin2 � + T21 cos2 �,

T�� = T11 sin2 � − (T12 + T21) sin� cos� + T22 cos2 �, (A.81)

T�Z = −T13 sin� + T23 cos�,

TZR = T31 cos� + T32 sin�,

TZ� = −T31 sin� + T32 cos�,

TZZ = T33.

If T is symmetric (TT = T, Tij = Tji), Eq. (A.81) simplifies to

TRR = T11 cos2 � + T12 sin 2� + T22 sin2 �,

TR� = − (T11 − T22) sin� cos� + T12 cos 2� = T�R,

TRZ = T13 cos� + T23 sin� = TZR,

T�� = T11 sin2 � − T12 sin 2� + T22 cos2 �, (A.82)

T�Z = −T13 sin� + T23 cos� = TZ�,

TZZ = T33.

The inverse transformation follows in a similar fashion. From Eq. (A.79),
⎡
⎢⎣

T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤
⎥⎦=

⎡
⎢⎣

cos� − sin� 0
sin� cos� 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣

TRR TR� TRZ

T�R T�� T�Z

TZR TZ� TZZ

⎤
⎥⎦
⎡
⎢⎣

cos� sin� 0
− sin� cos� 0

0 0 1

⎤
⎥⎦ ,

(A.83)

or

T11 = TRR cos2 � − (TR� + T�R) sin� cos� + T�� sin2 �,

T12 = (TRR − T��) sin� cos� + TR� cos2 � − T�R sin2 �,

T13 = TRZ cos� − T�Z sin�,

T21 = (TRR − T��) sin� cos� − TR� sin2 � + T�R cos2 �,

T22 = TRR sin2 � + (TR� + T�R) sin� cos� + T�� cos2 �, (A.84)

T23 = TRZ sin� + T�Z cos�,

T31 = TZR cos� − TZ� sin�,
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T32 = TZR sin� + TZ� cos�,

T33 = TZZ .

If T is symmetric (TT = T, TR� = T�R, T�Z = TZ�, TZR = TRZ ), Eq. (A.84) simplifies
to

T11 = TRR cos2 � − TR� sin 2� + T�� sin2 �, (A.85)

T12 = (TRR − T��) sin� cos� + TR� cos 2� = T21, (A.86)

T13 = TRZ cos� − T�Z sin� = T31, (A.87)

T22 = TRR sin2 � + TR� sin 2� + T�� cos2 �, (A.88)

T23 = TRZ sin� + T�Z cos� = T32, (A.89)

T33 = TZZ . (A.90)

A.5.2.2 Scalar invariants of second order tensors
Imagine a function of the components of a second order tensor that does not change
with coordinate transformation. Then from Eq. (A.78) the operation T′ = LTLT does
not change the value of the function. Three such invariants are illustrated below.

The first scalar invariant—trace

The first invariant, or trace, of a second order tensor is the sum of the diagonal terms

I1 = tr {T}, I1 = Tjj. (A.91)

Consider the coordinate transformation of Eq. (A.78). Employing index notation
and contracting the two indices of T,

δmkT ′
mk = δmkLmiTijLT

jk , (A.92)

or, using Eq. (A.70),

T ′
kk = LkiTijLT

jk = LT
jkLkiTij = δjiTij = Tii, (A.93)

that is, following coordinate transformation, T ′
kk = Tii.

The second scalar invariant

The second scalar invariant of a second order tensor is defined by10

I2 = 1
2
[
TrsTrs − (Tkk)

2] . (A.94)

10 As out-of-nowhere as this invariant appears, it plays a prominent role in the analysis of inelastic defor-
mation. See Chapter 6.
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Once more appealing to Eq. (A.78),

1
2
[
δmrδnsT ′

mnT
′
rs − I2

1

]= 1
2

[
δmrδnsLmiTijLT

jnLrpTpqLT
qs − I2

1

]
, (A.95)

which uses the result of the previous section on I1. Simplifying using Eq. (A.70) and
the fact that LriLrp = LT

ir Lrp = δip yields

1
2
[
T ′

rsT
′
rs − I2

1

]= 1
2

[
LriTijLT

js LrpTpqLT
qs − I2

1

]

= 1
2
[
δipδjqTijTpq − I2

1

]
(A.96)

= 1
2
[
TpqTpq − I2

1

]
.

As was the case with I1, the form and value of I2 following a coordinate transforma-
tion are unchanged.

The third scalar invariant—determinant

Of the variety of ways the determinant can be expressed, the one which meets our
current needs best is

I3 = detT, I3 = 1
6
εijkεpqrTipTjqTkr, (A.97)

where εijk, the Levi-Civita or permutation symbol, is defined in Eq. (A.19). Using
Eq. (A.78) to transform to the primed coordinate system,

1
6
εijkεpqrT ′

ipT
′
jqT

′
kr = 1

6
εijkεpqrLimTmnLT

npLjsTstLT
tq LkuTuvLT

vr , (A.98)

the left-hand side of which can be simplified if we use the identity

εijkεlmn =

∣∣∣∣∣∣∣
δil δim δin

δjl δjm δjn

δkl δkm δkn

∣∣∣∣∣∣∣
= δil

(
δjmδkn − δjnδkm

)− δim
(
δjlδkn − δjnδkl

)+ δin
(
δjlδkm − δjmδkl

)
. (A.99)

Using Eq. (A.99) in (A.98) gives

1
6
εijkεpqrT ′

ipT
′
jqT

′
kr = 1

6
[
δip
(
δjqδkr − δjrδkq

)− δiq
(
δjpδkr − δjrδkp

)
+ δir

(
δjpδkq − δjqδkp

)]
T ′

ipT
′
jqT

′
kr
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= 1
6

[
T ′

ii

(
T ′

jjT
′
kk − 3T ′

jkT
′
kj

)
+ 2T ′

pqT
′
qrT

′
rp

]
. (A.100)

= 1
6

[
I1

(
I2
1 − 3T ′

jkT
′
kj

)
+ 2T ′

pqT
′
qrT

′
rp

]
.

Now, applying the coordinate transformation,

1
6

[
I1

(
I2
1 − 3T ′

jkT
′
kj

)
+ 2T ′

pqT
′
qrT

′
rp

]
= 1

6

[
I1

(
I2
1 − 3LjpTpqLT

qkLkrTrsLT
sj

)

+2LpuTuvLT
vqLqmTmnLT

nrLrtTtwLT
wp

]

= 1
6
[
I1
(
I2
1 − 3δspδqrTpqTrs

)
(A.101)

+2δwuδvmδntTuvTmnTtw
]

= 1
6
[
I1
(
I2
1 − 3TsrTrs

)+ 2TwvTvnTnw
]
.

Comparing left and right-hand sides of Eq. (A.101), the two relations are identical. The
form and value of I3 following a coordinate transformation are unchanged.

A.5.2.3 Eigenvectors of second order tensors
Consider a vector v and a transformation such that

A · v = λv, Ajkvk = λvj, (A.102)

where λ is a scalar. If, for example, A is a coordinate transformation, Eq. (A.102) implies
that for that transformation there exists a vector v which only lengthens or contracts (by
a factor λ) when the transformation is applied. Eq. (A.102) is called the characteristic
equation of A.

Rearranging Eq. (A.102),

(A − λI) · v = 0,
(
Ajk − λδjk

)
vk = 0, (A.103)

where 0 is a vector, all of whose elements are zero, of the same dimension as v. We have
also used the fact that Iv = v, I being the identity matrix (see Section A.5.1.2).

Provided v �= 0, then one must have [16] det {A − λI} = 0, producing an nth order
polynomial in λ, some roots of which may be imaginary. The λs solving the polyno-
mial are termed characteristic values, or eigenvalues. When each λ is substituted into
Eq. (A.103), the corresponding solution of v is termed an eigenvector.

In expanded form for a 3 × 3 tensor, Eq. (A.103) is
⎡
⎢⎣

A11 − λ A12 A13

A21 A22 − λ A23

A31 A32 A33 − λ

⎤
⎥⎦
⎡
⎢⎣

v1

v2

v3

⎤
⎥⎦=

⎡
⎢⎣

0
0
0

⎤
⎥⎦ , (A.104)
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which for the case of a 3 × 3 tensor results in a cubic equation for λ which can be
written in terms of the invariants of Section A.5.2.2 [210]11

λ3 − I1λ
2 − I2λ − I3 = 0. (A.105)

11 There is a sign difference between Eq. (A.105) and the equation appearing in Segel [210] as Segel’s
definition of I2 is the negative of that given here in Eq. (A.94).



APPENDIX B

The Frenet–Serret Formulas
B.1. GOVERNING EQUATIONS

The recurring appearance of inclined and curved wellbore trajectories suggests the need
for a local coordinate system aligned with the well path. We begin with a line (i.e.,
the centerline of the wellbore) whose path can be described by the continuous and
differentiable function

p = p̂(s), pi = p̂i(s), (B.1)

where s is distance along the path. The instantaneous unit tangent vector to the path is
(see Fig. B.1)

t = t̂(s) = dp̂
ds

, ti = t̂i(s) = dp̂i

ds
. (B.2)

The unit normal vector to the path is collinear with the rate of change of the unit
tangent vector

n = n̂(s) =
dt̂
ds

| dt̂
ds |

= 1
κ

dt̂
ds

, ni = n̂i(s) = 1
κ

dt̂i
ds

, (B.3)

where the curvature κ is a measure of the rate of change of t and has units of [ra-
dians/length]. A useful expression for determining the magnitude of κ follows from
combining Eqs. (B.2) and (B.3):

κ =
∣∣∣∣dt̂ds

∣∣∣∣ =
√

dt̂
ds

· dt̂
ds

=
√

d2p̂
ds2

· d2p̂
ds2

, κ =
∣∣∣∣dt̂i
ds

∣∣∣∣ =
√

dt̂i
ds

· dt̂i
ds

=
√

d2p̂i

ds2
· d2p̂i

ds2
. (B.4)

The reciprocal of κ is the radius of curvature.
The vector triad is completed by the unit binormal vector, defined to be the third

direction in a right-handed coordinate system, namely

b = b̂(s) = t̂ × n̂, bi = εijktjnk. (B.5)

The derivative of the unit tangent vector is given in Eq. (B.3). Computing the rate
of change of n, we use the fact that if n is a unit vector, n · n = 1. Differentiating yields

n · dn
ds

= 0, ni
dni

ds
= 0, (B.6)
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Figure B.1 Illustration of tangent, normal and binormal to a space curve. The independent variable
defining the position vector p is s.

implying dn
ds is normal to n and can be written as a linear combination of unit vectors t

and b as
dn
ds

= Kt + τb,
dni

ds
= Kti + τbi, (B.7)

where both K and τ are functions of s. For b, differentiating Eq. (B.5) yields

db
ds

= d
ds

(
t̂ × n̂

) = dt̂
ds

× n̂ + t̂ × dn̂
ds

= t̂ × dn̂
ds

, (B.8)

since dt̂
ds = κn̂ by Eq. (B.3). With Eq. (B.7) substituted into Eq. (B.8),

db
ds

= t̂ × dn̂
ds

= t̂ ×
(
K t̂ + τ b̂

)
= t̂ × τ b̂ = −τ n̂,

dbi

ds
= −τni. (B.9)

Finally, returning to the unspecified variable K in Eq. (B.7), we can write

dn
ds

= Kt + τb = d
ds

(
b × t

) = db
ds

× t + b × dt
ds

, (B.10)

or, using Eqs. (B.3) and (B.9),

dn
ds

= −τn × t + b × κn = −κt + τb,
dni

ds
= −κti + τbi, (B.11)

from which, by comparing Eqs. (B.7) and (B.11), we conclude K = −κ .
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The Frenet–Serret formulas consist of the definitions of t, n and b (Eqs. (B.2), (B.3)
and (B.5), respectively) and their respective derivatives (Eqs. (B.3), (B.11) and (B.9)).

At any point along the curve p = p̂(s) there exists an instantaneous local plane de-
fined by t and n. In that plane, the instantaneous curvature of the curve is κ ; the radius
of curvature is 1/κ . The binormal vector b is normal to this t–n plane and, in general,
is itself rotating at a rate measured by the torsion −τ whose units are [radians/length].

B.2. EXAMPLE PROBLEM—INDEX NOTATION

Using index notation, we repeat the derivation of dbi/ds as performed in Eqs. (B.8)
and (B.9). In parallel with Eq. (B.8),

dbi

ds
= d

ds
εijktjnk = εijk

(
dtj
ds

nk + tj
dnk

ds

)
. (B.12)

Since, however, dti/ds = κni (Eq. (B.3)), we have

dbi

ds
= εijk

(
κnjnk + tj

dnk

ds

)
. (B.13)

The first term on the right-hand side of Eq. (B.13) is the cross product of a vector with
itself, which should vanish. Carrying out the indicated operations and ignoring terms
where j = k that are obviously zero, we find

εijknjnk = εi12n1n2 + εi13n1n3 + εi21n2n1

+ εi23n2n3 + εi31n3n1 + εi32n3n2. (B.14)

In Eq. (B.14), regardless of the value of i, four terms on the right-hand side vanish, and
the remaining two contain an even and odd permutation that cancel, confirming that
the cross product of a vector with itself is zero.

Using this result in Eq. (B.13) and recalling Eq. (B.7), we may write

dbi

ds
= εijktj

(
Ktk + τbk

) = τεijktjbk = −τni, (B.15)

where the last step recognizes that the cross product of t and b (i.e., εijktjbk) is −n.

B.3. EXAMPLE PROBLEM—MINIMUM CURVATURE USING THE
FRENET–SERRET FORMULAS

Consider a directional survey defining the trajectory of the wellbore. Each survey station
is defined by its measured depth, its (inclination) angle with respect to downward vertical
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and its (azimuth) angle with respect to North. The character of the wellbore between
two survey points is unknown.

To describe a well trajectory as a continuous curve, a number of different models
of the inter-station nature of the wellbore have been proposed. Currently, the preferred
model is that of Minimum Curvature [211,212,37].

At each survey station, the tangent vector to the well trajectory can be written
immediately from the local measurements as

t = sin θ cosφe1 + sin θ sinφe2 + cos θe3, (B.16)

where the unit vectors e1, e2 and e3 are directed along the North, East and TVD
(downward vertical) directions, respectively. The normal and binormal vectors cannot
readily be determined, as these variables depend on the rates of change of the tangent
vectors that, in turn, depend on a knowledge of the nature of the wellbore between
successive survey stations. We introduce the Minimum Curvature model that posits a
circular arc between two survey stations, the arc being defined by the tangent vectors at
the two stations.1

Fig. B.2 illustrates the Minimum Curvature model when viewed perpendicular to
the plane containing vectors t1 and t2. The binormal vector between survey stations 1
and 2 is constant and is given by

b = t1 × t2

|t1 × t2| = t1 × t2

sin�ω
, bi = εijkt1jt2k

sin�ω
. (B.17)

The normals at the two stations are respectively given by

n1 = −t1 × b, n1i = −εijkt1jbk, (B.18)

n2 = −t2 × b, n2i = −εijkt2jbk, (B.19)

or, from Eq. (B.17) (to eliminate b) and the results of Section A.24 of Appendix A,2

n1 = − cot�ωt1 + csc�ωt2, n1i = − cot�ωt1i + csc�ωt2i, (B.20)

1 The Minimum Curvature model produces a well trajectory that is continuous, but not necessarily smooth.
Consider three survey stations. Unless the three station tangent vectors are coplanar, the two Minimum
Curvature arcs associated with the unit vector pairs t1–t2 and t2–t3 will not have a continuous space
derivative (dt/ds) at station 2, their point of intersection. Both the normal vector and the curvature are
therefore undefined at this point.

2 From Eqs. (B.17) and (B.18), n1i = − 1
sin �ω

εijkεkmnt1jt1mt2n. From an even permutation of εijk
and the epsilon–delta identity (Eq. (A.26)), εijkεkmn = εkijεkmn = δimδjn − δinδjm, such that n1i =
− 1

sin �ω

(
δimδjn − δinδjm

)
t1j t1mt2n. If we carry out the indicated operations with the Kronecker delta,

n1i = − 1
sin �ω

(
t1j t1it2j − t1mt1mt2i

)
. Since t1j t2j = cos�ω and t1mt1m = 1, we conclude that n1i =

− cot�ωt1i + csc�ωt2i.
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Figure B.2 The Minimum Curvature model applied between survey stations 1 and 2. The dashed
gray circle is coplanar with tangent vectors t1 and t2. The segment of the wellbore trajectory ds be-
tween survey stations 1 and 2 subtends a circular arc whose angle at the center of the circle is �ω.

n2 = − csc�ωt1 + cot�ωt2, n2i = − csc�ωt1i + cot�ωt2i. (B.21)

Eqs. (B.17)–(B.21) are undefined if t1 and t2 are parallel, as t1 × t2 and therefore sin�ω

vanish. In this case, the two survey stations may be assumed collinear (a stronger con-
straint than simply parallel). The normal vectors n1 and n2 may be chosen from the
infinite set of unit vectors perpendicular to t1 and t2, with the binormal vector follow-
ing from Eq. (B.5).

We now know the tangent, normal and binormal (b1 = b2 = b) at both ends of the
Minimum Curvature circular arc between two successive survey stations. Further, we
know3 p1, the position vector from the survey datum to survey station 1. The torsion
τ is zero, and the (constant) inter-station curvature is

κ = −cos−1 (t1 · t2)

s2 − s1
. (B.22)

By one final exercise we can develop a means of interpolating to determine the
position of a trajectory point between two survey stations. Consider Fig. B.3 where the
measured depth s is between two survey stations, s1 ≤ s ≤ s2, and, in the t1–n1 plane,
the line Os makes an angle �α with n1.

3 The calculation is sequential, proceeding in a forward direction. The position vector of station i + 1 is
calculated using the position vector of station i, with the position vector of the first station being given.
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Figure B.3 Interpolating between two survey stations with the Minimum Curvature model.

From Figs. B.2 and B.3, the position vector to s is (see [37])

ps = p1 + 1
κ

sin�αt1 + 1
κ

(1 − cos�α)n1

= p1 + 1
κ

[sin [κ (s − s1)] t1 + {1 − cos [κ (s − s1)]}n1] . (B.23)

Differentiating Eq. (B.23) with respect to s, we have

ts =
dps
ds∣∣∣ dps
ds

∣∣∣ = cos [κ (s − s1)] t1 + sin [κ (s − s1)]n1, (B.24)

and recognizing that bs = b, we may write

ns = −ts × b = − sin [κ (s − s1)] t1 + cos [κ (s − s1)]n1. (B.25)



APPENDIX C

Stress State Around a Wellbore
C.1. INTRODUCTION

The discussion below closely follows the work of Peska and Zoback [213] as outlined
in Zoback [178]. We use S to denote the stress state in the global rectangular coor-
dinate system and � to denote the near wellbore stress in a spatial coordinate system
attached to the wellbore. The only transformations considered, however, are those be-
tween coordinate systems. This discussion is therefore only applicable to infinitesimal
deformation.

We also discuss rock mechanical effective stress that should not be confused with
either the von Mises equivalent stress �e or the deviatoric stress �′. We shall distinguish
the rock mechanical effective stress by the symbol �e. For a discussion of the rock
mechanical effective stress, see Section 13.3.2.4 of Chapter 13.

C.2. EQUATIONS FOR STRESS

Consider a global rectangular coordinate system where the X1-axis is North, the X2-axis
is East and the X3-axis is vertically down. Related to the global system is a second rect-
angular system defining the directions of the principal stresses, where the Xp1-axis aligns
with the (algebraic) maximum principal stress,1 the Xp2-axis aligns with the intermediate
principal stress, and the Xp3-axis aligns with the minimum principal stress.

Finally, consider a cylindrical (r, θ , z) coordinate system aligned with the local
tangent to the centerline of the wellbore.2 The cylindrical coordinate system can be
referenced to a third rectangular system, where in the third system the x1-axis aligns
with a radius from the wellbore centerline to the low side of the hole, the x3-axis aligns
with the wellbore centerline and the x2-axis is such that, considering unit vectors along
the three coordinate axes, g1 × g2 = g3. In the (r, θ , z) coordinate system, θ lies in the
x1–x2 plane and is measured from the x1-axis to r. The complete set of X, Xp, x and
cylindrical coordinate systems are depicted relative to each other in Fig. C.1.

1 The maximum principal stress will be the minimum principal stress if, according to the normal convention
of rock mechanics, compressive stresses are positive. Aligning the Xp3-axis with the minimum principal
stress will, in most cases, imply that the Xp3-axis most closely conforms to the global X3-axis.

2 The discussion below only applies to locally straight wellbores.
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Figure C.1 Coordinate systems for analysis of formation stresses at wellbore wall. The X coordinate
system is global and relative to the local surface of the earth. The Xp coordinate system aligns with the
principal stresses in the formation at the depth of investigation. The x coordinate system aligns with
the (assumed straight) wellbore, as does the (r, θ , z) coordinate system. The three “planes” suggest the
planes of near-horizontal stress, and are only included to help interpret the relative orientation of the
global and principal stress coordinate systems.

The far field total stress state Sp in the formation is defined3 in the Xp coordinate
system as

Sp =
⎡
⎢⎣

Sp
1 0 0

0 Sp
2 0

0 0 Sp
3

⎤
⎥⎦ , (C.1)

where 0 ≥ Sp
1 ≥ Sp

2 ≥ Sp
3, that is, Sp

3 is the maximum principal stress in a compressive
sense. We first transform these stresses to the global coordinate system using Eq. (A.79)

S = PT · Sp · P, SMk = PT
MIS

p
IjPjk. (C.2)

3 We retain the symbol Sp of the principle Piola–Kirchhoff stress of the first kind for stress states relative to
the global X and Xp coordinate systems, while we use Cauchy stress � for the stress state in the spatial
coordinate system attached to the wellbore. Recall from Section 4.3.3 of Chapter 4 that for infinitesimal
deformations the two stress tensors are indistinguishable.
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The transformation embodied in P, and as used by Peska and Zoback [213] actually
consists4 of the following three transformations:
• a rotation5 α (0 ≤ α ≤ 2π ) about the global X3-axis from the global (X1, X2, X3)

coordinate system to a global (X ′
1, X ′

2, X ′
3) coordinate system

Pα =
⎡
⎢⎣

e′
1 · e1 e′

1 · e2 e′
1 · e3

e′
2 · e1 e′

2 · e2 e′
2 · e3

e′
3 · e1 e′

3 · e2 e′
3 · e3

⎤
⎥⎦ =

⎡
⎢⎣

cosα sinα 0
− sinα cosα 0

0 0 1

⎤
⎥⎦ , (C.3)

where the ei are unit vectors along axes in the global coordinate system, and the e′
i

are unit vectors along axes in the X′ coordinate system;
• a rotation β (−π

2 ≤ β ≤ π
2 ) about the global X ′

2-axis (i.e., the global X2-axis after the
previous rotation about the global X3-axis) from the global (X ′

1, X ′
2, X ′

3) coordinate
system to a global (X ′′

1 , X ′′
2 , X ′′

3 ) coordinate system

Pβ =
⎡
⎢⎣

e′′
1 · e′

1 e′′
1 · e′

2 e′′
1 · e′

3
e′′

2 · e′
1 e′′

2 · e′
2 e′′

2 · e′
3

e′′
3 · e′

1 e′′
3 · e′

2 e′′
3 · e′

3

⎤
⎥⎦ =

⎡
⎢⎣

cosβ 0 − sinβ

0 1 0
sinβ 0 cosβ

⎤
⎥⎦ , (C.4)

where the e′
i are unit vectors along axes in the X′ coordinate system, and the e′′

i are
unit vectors along axes in the X′′ coordinate system;

• a rotation γ (0 ≤ γ ≤ 2π ) about the global X ′′
1 -axis (i.e., the global X ′

1-axis after the
two previous rotations about the global X3-axis and the global X ′

2-axis) from the
global (X ′′

1 , X ′′
2 , X ′′

3 ) coordinate system to the (Xp1, Xp2, Xp3) coordinate system

Pγ =
⎡
⎢⎣

ep
1 · e′′

1 ep
1 · e′′

2 ep
1 · e′′

3
ep

2 · e′′
1 ep

2 · e′′
2 ep

2 · e′′
3

ep
3 · e′′

1 ep
3 · e′′

2 ep
3 · e′′

3

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0
0 cosγ sinγ

0 − sinγ cosγ

⎤
⎥⎦ , (C.5)

where the e′′
i are unit vectors along axes in the X′′ coordinate system, and the ep

i

are unit vectors along axes in the principal stress coordinate system.
For the multiple transformations

PT = PαT · PβT · Pγ T , (C.6)

4 That is, the Peska and Zoback transformation is from the global coordinate system to the coordinate
system aligned with the principal stresses, and is the transpose/inverse of the transformation matrix to
express the principle stresses in the global coordinate system—compare Eq. (A.78) with Eq. (A.79). Also,
review Section A.5.1.2 of Appendix A defining an orthogonal matrix.

5 All three of the rotations discussed in this bulleted list are positive in the sense of the right-hand rule. For
example, the α rotation appears counterclockwise in the X1–X2 plane.
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or, carrying out the indicated contraction products and then taking the transpose,

PT =
⎡
⎢⎣

cosα cosβ cosα sinβ sinγ − sinα cosγ cosα sinβ cosγ + sinα sinγ

sinα cosβ sinα sinβ sinγ + cosα cosγ sinα sinβ cosγ − cosα sinγ

− sinβ cosβ sinγ cosβ cosγ

⎤
⎥⎦ . (C.7)

With the principal total stresses transformed to the global rectangular coordinate
system, we may now transform the global expression of the stress state to the rectangular
system aligned with the wellbore

�w = G · S · GT , �w
mk = GmISIjGT

jk , (C.8)

where

G =
⎡
⎢⎣

g1 · e1 g1 · e2 g1 · e3

g2 · e1 g2 · e2 g2 · e3

g3 · e1 g3 · e2 g3 · e3

⎤
⎥⎦ =

⎡
⎢⎣

− cos θ ′ cosφ − cos θ ′ sinφ sin θ ′

sinφ − cosφ 0
sin θ ′ cosφ sin θ ′ sinφ cos θ ′

⎤
⎥⎦ , (C.9)

where φ is the wellbore azimuth (i.e., the angle of the horizontal projection of the tan-
gent to the wellbore trajectory and North), and θ ′ is the wellbore inclination (a singular
exception to our normal unprimed notation for inclination). The gi are unit vectors
along axes in the wellbore coordinate system, with g3 directed along the local tangent
to the centerline of the wellbore, g1 perpendicular to g3 and directed toward the low
side of the wellbore and g2 such that g1 ×g2 = g3. The unit base vector g2 is horizontal,
lying in the e1–e2 plane.

Using Eq. (C.2) in Eq. (C.8),

�w = G · PT · Sp · P · GT , �w
rs = GrMPT

MIS
p
IjPjkGT

ks. (C.10)

In the most general case this equation is unwieldy to evaluate, but lends itself readily to
numerical evaluation.

At this point the far field total stress state Sp—originally expressed in a rectangular
coordinate system aligned with the directions of principal stress—has been re-expressed
in terms of a rectangular coordinate system aligned with the local tangent of the well-
bore. The far field total stress state is �w. Our objective, the total stress state at the
wellbore wall, can be expressed in terms of components of �w by the following rela-
tions (cf. [214,178]):

�rr = −pf ,

�θθ = �w
11 + �w

22 − 2
(
�w

11 − �w
22

)
cos 2θ − 4�w

12 sin 2θ + pf ,

�zz = �w
33 − ν

[
2

(
�w

11 − �w
22

)
cos 2θ + 4�w

12 sin 2θ
]
, (C.11)
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�θz = 2
(−�w

13 sin θ + �w
23 cos θ

)
,

�rθ = �zr = 0,

where θ is the azimuth in the x1–x2 plane measured from the direction of x1 (see
Fig. C.1).

The total stresses in Eq. (C.11) can be converted to effective stresses6 via Eq. (13.9)
in Chapter 13

�e
rr = −pf + αpp,

�e
θθ = �w

11 + �w
22 − 2

(
�w

11 − �w
22

)
cos 2θ − 4�w

12 sin 2θ + pf + αpp,

�e
zz = �w

33 − ν
[
2

(
�w

11 − �w
22

)
cos 2θ + 4�w

12 sin 2θ
] + αpp, (C.12)

�e
θz = 2

(−�w
13 sin θ + �w

23 cos θ
)
,

�e
rθ = �e

zr = 0,

where α is the Biot parameter (see Eq. (13.10)), and pf and pp are the local pressures of
the wellbore and pore fluid, respectively. We assume a filter cake on the wellbore wall
may render pf �= pp.

C.3. EXAMPLE PROBLEM—P = I

Assume a far field principle stress state that is aligned with the global coordinate system
such that Sp

1 and Sp
2 align with the X1-axis and the X2-axis, respectively, and Sp

3 aligns
with the X3-axis. Then P = I and, from Eq. (C.2), S = Sp.

C.3.1 Vertical wellbore
If the wellbore is vertical, we may arbitrarily assign the low side of the hole such that
the X1 and x1 axes coincide, implying G = I, and from Eq. (C.10), �w = Sp. Further,
let us consider the special case when the following assumptions apply:

6 Some authors [213,178] prefer expressing both S and �w in terms of their effective stress counterparts.
In such a case, Eq. (C.12) becomes

�e
rr = −pf + αpp,

�e
θθ = �we

11 + �we
22 − 2

(
�we

11 − �we
22

)
cos2θ − 4�we

12 sin 2θ + pf − αpp,

�e
zz = �we

33 − ν
[
2

(
�we

11 − �we
22

)
cos 2θ + 4�we

12 sin 2θ
]
,

�e
θz = 2

(−�we
13 sin θ + �we

23 cos θ
)
,

�e
rθ = �e

zr = 0.
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• the Biot parameter α = 1;
• the formation pore fluid has a pressure gradient of 0.45 psi

ft ;
• the vertical principal stress is the smallest in an algebraic sense, 0 ≥ Sp

1 ≥ Sp
2 > Sp

3 =
SV , and SV has a vertical gradient equal to −1 psi

ft ;
• the two horizontal principal stresses are equal, 0 ≥ Sp

1 = (SH1) = Sp
2(= SH2) > Sp

3 =
SV , and, assuming Poisson’s ration has a value of 0.2, SH1 = SH2 has a vertical
gradient of 7 [ν/(1 − ν)] × (SV + αpp) − αpp = [0.2/0.8] × (−1 + 0.45) − 0.45 or
−0.5875 psi

ft .
Under the above simplifying assumptions, Eq. (C.12) reduces to

�e
rr = −pf + pp,

�e
θθ = 2SH + pf + pp,

�e
zz = SV + pp, (C.13)

�e
θz = �e

rθ = �e
zr = 0,

where SH = SH1 = SH2. Substituting in the assumed numerical values, the stresses as
vertical gradients become

�e
rr = −pf + 0.45,

�e
θθ = −1.175 + pf + 0.45 = pf − 0.725,

�e
zz = −1 + 0.45 = −0.55, (C.14)

�e
θz = �e

rθ = �e
zr = 0.

Referencing the Mohr–Coulomb failure criterion (see Section 13.3.2.4 of Chap-
ter 13), the shear stresses in the r–θ , θ–z and z–r planes will be given by the following
equations (see Eq. (4.113) in Section 4.2.7.1 of Chapter 4):

∣∣(t(n))s
∣∣
rθ = ∣∣(�e

rr − �e
θθ

)
cos θ sin θ

∣∣ = ∣∣−2SH cos θ sin θ
∣∣ , r–θ plane,∣∣(t(n))s

∣∣
θz = ∣∣(�e

θθ − �e
zz

)
cos θ sin θ

∣∣ = ∣∣(2SH − SV )
cos θ sin θ

∣∣ , θ–z plane, (C.15)∣∣(t(n))s
∣∣
zr = ∣∣(�e

zz − �e
rr

)
cos θ sin θ

∣∣ = ∣∣(SV + pf
)

cos θ sin θ
∣∣ , z–r plane.

Fig. C.2 compares the three possible principal stress differences as gradients, elimi-
nating depth as a variable. The differences, which are proportional to shear, are plotted
as functions of drilling fluid density, and for each fluid density the maximum difference

7 This formula for estimating the horizontal stress is derived from poroelasticity assuming the sub-
surface exists in a state created by burial with no lateral deformation. Assuming isotropic elasticity,
E11 = (1/E)[Se

11 − ν(Se
22 + Se

33)] = 0, implying (1 − ν)Se
11 − νSe

33 = 0 if Se
11 = Se

22, as is the case in
this problem.
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Figure C.2 Variation of principal stress difference gradients with drilling fluid density for vertical
wellbore example problem variables.

value is noted. An immediate conclusion from the graph is that there can be two max-
ima for the shear stress. Reviewing Fig. 13.9 of Chapter 13, this suggests that one might
realize two penetrations of the Mohr–Coulomb failure surface, resulting in a range of
acceptable drilling fluid densities associated with wellbore stress considerations. This
consequence is discussed in Section 13.3.2.4 of Chapter 13.

C.3.2 Inclined wellbore
Consider now a straight (portion of a) wellbore inclined at an angle θ ′ with the global
coordinate system. We further simplify the math by assuming the azimuth of the well-
bore is north, that is, φ = 0. As specified in the problem introduction, the far field
principal stresses are aligned with the global coordinate system (i.e., P = I). For this
trajectory, G is given by Eq. (C.9) for the special case when φ = 0,

G =
⎡
⎢⎣

− cos θ ′ 0 sin θ ′

0 −1 0
sin θ ′ 0 cos θ ′

⎤
⎥⎦ . (C.16)
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Using Eq. (C.16) in Eq. (C.10) yields

�w =
⎡
⎢⎣

SH cos2 θ + SV sin2 θ 0 sin θ cos θ
(
SV − SH

)
0 SH 0

sin θ cos θ
(
SV − SH

)
0 SH sin2 θ + SV cos2 θ

⎤
⎥⎦ . (C.17)

Using the same bulleted assumptions as the vertical wellbore problem (Sec-
tion C.3.1), Eq. (C.12) reduces to

�e
rr = −pf + αpp,

�e
θθ = SH (

1 + cos2 θ
) + SV sin2 θ − 2 sin2 θ

(
SV − SH)

cos 2θ + pf + αpp,

�e
zz = SH sin2 θ + SV cos2 θ − 2ν sin2 θ

(
SV − SH)

cos 2θ + αpp, (C.18)

�e
θz = −2 sin θ cos θ

(
SV − SH)

sin θ,

�e
rθ = �e

zr = 0,

or, substituting in the assumed numerical values,

�e
rr = −pf + 0.45,

�e
θθ = −0.5875

(
1 + cos2 θ

) − sin2 θ + 0.825 sin2 θ cos 2θ + pf + 0.45,

�e
zz = −0.5875 sin2 θ − cos2 θ + 0.165 sin2 θ cos 2θ + 0.45, (C.19)

�e
θz = 0.825 sin θ cos θ sin θ,

�e
rθ = �e

zr = 0.

For a vertical wellbore (θ = 0) Eq. (C.19) reduces to Eq. (C.14). For a horizontal
wellbore (θ = π/2), Eq. (C.19) reduces to

�e
rr = −pf + 0.45,

�e
θθ = −0.5875 − 1 + 0.825 cos 2θ + pf + 0.45 = −1.1375 + 0.825 cos 2θ + pf ,

�e
zz = −0.5875 + 0.165 cos 2θ + 0.45 = −0.1375 + 0.165 cos 2θ, (C.20)

�e
θz = �e

rθ = �e
zr = 0.

Fig. C.3 compares the three possible principal stress8 differences as gradients, elim-
inating depth as a variable. The differences are plotted as functions of drilling fluid
density, and for each fluid density the maximum difference value is noted. Comparing
Fig. C.3 with Fig. C.2, the influence of the anisotropic far field stress state materializes.
It also appears that for a horizontal wellbore penetrating a formation with this stress state
the shear stresses are higher, particularly for lower drilling fluid densities. The integrity
of the horizontal wellbore is less than that of its vertical counterpart.

8 Since �e
θz = 0 in Eq. (C.20) for a horizontal wellbore, all shear stresses vanish and the stress state is

principal.
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Figure C.3 Variation of principal stress difference gradients with drilling fluid density for inclined
(horizontal) wellbore example problem variables.

What was investigated by hand calculation in Fig. C.3 can be programmed to inves-
tigate a suite of inclinations. For a given set of inputs—here we will use the inputs for
the current problem at a fixed vertical depth of 10000 ft—one loops first on inclination,
then on drilling fluid density, then around the circumference of the wellbore, to obtain
the drilling fluid densities that place the stress state just inside a specified failure crite-
rion. As suggested by the previous examination of Figs. C.2 and C.3, there will usually
be two such densities bracketing a range of densities for which drilling may proceed
without structural failure of the wellbore wall.

For this example problem, a Mohr–Coulomb failure surface having the form of
Eq. (13.8) and repeated here

�e
s = −μ�e

c + c, (C.21)

the values of 0.839 and 2500 psi were chosen for μ and c, respectively.
The results are summarized in Fig. C.4. In viewing the figure, note the following:

• The calculation for suitable drilling fluid density is expressed on the ordinate as an
equivalent circulating density to emphasize the effect of wellbore hydraulics on the
stability of the borehole.

• Four curves are presented on the graph:
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Figure C.4 Effect of inclination on acceptable drilling fluid density range for inclined wellbore ex-
ample problem variables.

• Two lines—the pore and fracture pressure gradients—are included for reference,
as it is often these two values that determine the acceptable drilling fluid density
range. The solid line representing local pore pressure gradient is drawn horizon-
tally, as inclination of the wellbore does not affect the pore pressure. The dotted
line representing local fracture pressure gradient is also drawn horizontally, al-
though this is not entirely correct. Inclination will have an effect on initiation of
a fracture at the wellbore wall.

• The remaining two curves on the graph represent the result of the programmed
iteration discussed above to determine, for each inclination, the minimum and
maximum values of drilling fluid density/ECD which can, from the perspective
of wellbore stability, be used at the specified depth without inducing failure of
the wellbore wall.

• For low values of wellbore inclination the acceptable drilling fluid density range is
governed by the two innermost curves—pore pressure and fracture pressure gradi-
ent. Wellbore stability is not an issue.

• With increasing inclination the window of acceptable fluid densities to maintain a
stable wellbore becomes smaller as the stress state of the wellbore wall is affected by
wellbore inclination. Eventually, at an inclination of approximately 40◦, the Mohr–
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Coulomb failure model predicts that, with lower drilling fluid densities, the wellbore
wall will become unstable before pore fluids enter the wellbore due to the pore
pressure exceeding the pressure of the drilling fluid. Wellbore stability is therefore
the determinant of the low end of the acceptable drilling fluid density range for
inclinations greater than 40◦.

• The behavior illustrated here is for this particular example problem. Results will
change depending on both the formation and drilling parameters and the rock
failure model selected.
Finally, and noting the character of the two wellbore stability curves in Fig. C.4,

the question arises as to whether a combination of formation and drilling parameters
could ever be such that the curves for the bounds of acceptable drilling fluid density
could intersect, implying inclinations for which no fluid density will permit drilling the
wellbore. This question must be answered in the affirmative, a published example be-
ing that of unsuccessful attempts to drill high-angle wellbores in the overburden of the
Valhall Field in the Norwegian sector of the North Sea [215]. Due to a weak reservoir
chalk, Valhall has undergone significant formation compaction with production-driven
pore pressure depletion. Responding to this compaction, the overburden at Valhall has
deformed, resulting in a degradation of strength of overburden formations thus reduc-
ing their failure envelopes. Two successive attempts to reach the flanks of the field with
wells drilled from a platform at the reservoir crest failed to reach their objective. Even-
tually, platforms were installed on the flanks of the Valhall reservoir to exploit associated
reserves.



APPENDIX D

Tables of Tubular Properties

D.1. INTRODUCTION

The tables to follow present selected tubular properties for tubes listed in the API tubing
and casing lists [46]. Interpretation of the columns is as follows:
• D—specified outside diameter in in.;
• Linear Mass—specified mass per length in lbm

ft ;
• t—specified wall thickness in in.;
• Grade—API grade designation (see Table 6.1);
• d = D − 2t in in.;
• Drift—API drift diameter in in.;
• D/t ratio of D to t;
• MIYP—the historical API one dimensional yield pressure design equation (see

Eq. (7.12)) in psi;
• �pc—API minimum collapse resistance calculated per Section 8.2.4 of Chapter 8

in psi;
• Finish—the API threaded connection(s) for this tube.
Regarding the last column entry, the inventories to follow can also be obtained with a
variety of proprietary threaded connections. When attempting to match the tube with
a connection, wall thickness may be the most reliable link as the linear mass calculation
can vary in the proprietary offerings.

527
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Table D.1 Tubing dimensions and properties
D Linear

mass
t Grade d Drift D/t MIYPa �pcb Finishc

in. lbm
ft in. in. in. psi psi

1.050 1.14 0.113 H40 0.824 0.730 9.29 7530 7680 (Y) PN
1.050 1.20 0.113 H40 0.824 0.730 9.29 7530 7680 (Y) PU
1.050 1.14 0.113 J55 0.824 0.730 9.29 10360 10560 (Y) PN
1.050 1.20 0.113 J55 0.824 0.730 9.29 10360 10560 (Y) PU
1.050 1.14 0.113 L80 0.824 0.730 9.29 15070 15370 (Y) PN
1.050 1.20 0.113 L80 0.824 0.730 9.29 15070 15370 (Y) PU
1.050 1.14 0.113 N80 0.824 0.730 9.29 15070 15370 (Y) PN
1.050 1.20 0.113 N80 0.824 0.730 9.29 15070 15370 (Y) PU
1.050 1.14 0.113 C90 0.824 0.730 9.29 16950 17290 (Y) PN
1.050 1.20 0.113 C90 0.824 0.730 9.29 16950 17290 (Y) PU
1.050 1.14 0.113 T95 0.824 0.730 9.29 17890 18250 (Y) PN
1.050 1.20 0.113 T95 0.824 0.730 9.29 17890 18250 (Y) PU
1.050 1.48 0.154 H40 0.742 0.648 6.82 10270 10010 (Y) P
1.050 1.54 0.154 H40 0.742 0.648 6.82 10270 10010 (Y) PU
1.050 1.48 0.154 J55 0.742 0.648 6.82 14120 13770 (Y) P
1.050 1.54 0.154 J55 0.742 0.648 6.82 14120 13770 (Y) PU
1.050 1.48 0.154 L80 0.742 0.648 6.82 20530 20020 (Y) P
1.050 1.54 0.154 L80 0.742 0.648 6.82 20530 20020 (Y) PU
1.050 1.48 0.154 N80 0.742 0.648 6.82 20530 20020 (Y) P
1.050 1.54 0.154 N80 0.742 0.648 6.82 20530 20020 (Y) PU
1.050 1.48 0.154 C90 0.742 0.648 6.82 23100 22530 (Y) P
1.050 1.54 0.154 C90 0.742 0.648 6.82 23100 22530 (Y) PU
1.050 1.48 0.154 T95 0.742 0.648 6.82 24380 23780 (Y) P
1.050 1.54 0.154 T95 0.742 0.648 6.82 24380 23780 (Y) PU
1.050 1.48 0.154 P110 0.742 0.648 6.82 28230 27530 (Y) P
1.050 1.54 0.154 P110 0.742 0.648 6.82 28230 27530 (Y) PU

1.315 1.70 0.133 H40 1.049 0.955 9.89 7080 7270 (Y) PN
1.315 1.80 0.133 H40 1.049 0.955 9.89 7080 7270 (Y) PU
1.315 1.72 0.133 H40 1.049 0.955 9.89 7080 7270 (Y) PI
1.315 1.70 0.133 J55 1.049 0.955 9.89 9730 10000 (Y) PN
1.315 1.80 0.133 J55 1.049 0.955 9.89 9730 10000 (Y) PU
1.315 1.72 0.133 J55 1.049 0.955 9.89 9730 10000 (Y) PI
1.315 1.70 0.133 L80 1.049 0.955 9.89 14160 14550 (Y) PN
1.315 1.80 0.133 L80 1.049 0.955 9.89 14160 14550 (Y) PU

(continued on next page)



Tables of Tubular Properties 529

Table D.1 (continued)
D Linear

mass
t Grade d Drift D/t MIYPa �pcb Finishc

in. lbm
ft in. in. in. psi psi

1.315 1.72 0.133 L80 1.049 0.955 9.89 14160 14550 (Y) PI
1.315 1.70 0.133 N80 1.049 0.955 9.89 14160 14550 (Y) PN
1.315 1.80 0.133 N80 1.049 0.955 9.89 14160 14550 (Y) PU
1.315 1.72 0.133 N80 1.049 0.955 9.89 14160 14550 (Y) PI
1.315 1.70 0.133 C90 1.049 0.955 9.89 15930 16360 (Y) PN
1.315 1.80 0.133 C90 1.049 0.955 9.89 15930 16360 (Y) PU
1.315 1.72 0.133 C90 1.049 0.955 9.89 15930 16360 (Y) PI
1.315 1.70 0.133 T95 1.049 0.955 9.89 16810 17270 (Y) PN
1.315 1.80 0.133 T95 1.049 0.955 9.89 16810 17270 (Y) PU
1.315 1.72 0.133 T95 1.049 0.955 9.89 16810 17270 (Y) PI
1.315 2.19 0.179 H40 0.957 0.863 7.35 9530 9410 (Y) P
1.315 2.24 0.179 H40 0.957 0.863 7.35 9530 9410 (Y) PU
1.315 2.19 0.179 J55 0.957 0.863 7.35 13100 12940 (Y) P
1.315 2.24 0.179 J55 0.957 0.863 7.35 13100 12940 (Y) PU
1.315 2.19 0.179 L80 0.957 0.863 7.35 19060 18810 (Y) P
1.315 2.24 0.179 L80 0.957 0.863 7.35 19060 18810 (Y) PU
1.315 2.19 0.179 N80 0.957 0.863 7.35 19060 18810 (Y) P
1.315 2.24 0.179 N80 0.957 0.863 7.35 19060 18810 (Y) PU
1.315 2.19 0.179 C90 0.957 0.863 7.35 21440 21170 (Y) P
1.315 2.24 0.179 C90 0.957 0.863 7.35 21440 21170 (Y) PU
1.315 2.19 0.179 T95 0.957 0.863 7.35 22630 22340 (Y) P
1.315 2.24 0.179 T95 0.957 0.863 7.35 22630 22340 (Y) PU
1.315 2.19 0.179 P110 0.957 0.863 7.35 26200 25870 (Y) P
1.315 2.24 0.179 P110 0.957 0.863 7.35 26200 25870 (Y) PU

1.660 2.10 0.125 H40 1.410 1.316 13.28 5270 5570 (Y) PI
1.660 2.10 0.125 J55 1.410 1.316 13.28 7250 7660 (Y) PI
1.660 2.30 0.140 H40 1.380 1.286 11.86 5900 6180 (Y) PN
1.660 2.40 0.140 H40 1.380 1.286 11.86 5900 6180 (Y) PU
1.660 2.33 0.140 H40 1.380 1.286 11.86 5900 6180 (Y) PI
1.660 2.30 0.140 J55 1.380 1.286 11.86 8120 8490 (Y) PN
1.660 2.40 0.140 J55 1.380 1.286 11.86 8120 8490 (Y) PU
1.660 2.33 0.140 J55 1.380 1.286 11.86 8120 8490 (Y) PI
1.660 2.30 0.140 L80 1.380 1.286 11.86 11810 12360 (Y) PN
1.660 2.40 0.140 L80 1.380 1.286 11.86 11810 12360 (Y) PU

(continued on next page)
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Table D.1 (continued)
D Linear

mass
t Grade d Drift D/t MIYPa �pcb Finishc

in. lbm
ft in. in. in. psi psi

1.660 2.33 0.140 L80 1.380 1.286 11.86 11810 12360 (Y) PI
1.660 2.30 0.140 N80 1.380 1.286 11.86 11810 12360 (Y) PN
1.660 2.40 0.140 N80 1.380 1.286 11.86 11810 12360 (Y) PU
1.660 2.33 0.140 N80 1.380 1.286 11.86 11810 12360 (Y) PI
1.660 2.30 0.140 C90 1.380 1.286 11.86 13280 13900 (Y) PN
1.660 2.40 0.140 C90 1.380 1.286 11.86 13280 13900 (Y) PU
1.660 2.33 0.140 C90 1.380 1.286 11.86 13280 13900 (Y) PI
1.660 2.30 0.140 T95 1.380 1.286 11.86 14020 14670 (Y) PN
1.660 2.40 0.140 T95 1.380 1.286 11.86 14020 14670 (Y) PU
1.660 2.33 0.140 T95 1.380 1.286 11.86 14020 14670 (Y) PI
1.660 3.03 0.191 H40 1.278 1.184 8.69 8050 8150 (Y) P
1.660 3.07 0.191 H40 1.278 1.184 8.69 8050 8150 (Y) PU
1.660 3.03 0.191 J55 1.278 1.184 8.69 11070 11200 (Y) P
1.660 3.07 0.191 J55 1.278 1.184 8.69 11070 11200 (Y) PU
1.660 3.03 0.191 L80 1.278 1.184 8.69 16110 16290 (Y) P
1.660 3.07 0.191 L80 1.278 1.184 8.69 16110 16290 (Y) PU
1.660 3.03 0.191 N80 1.278 1.184 8.69 16110 16290 (Y) P
1.660 3.07 0.191 N80 1.278 1.184 8.69 16110 16290 (Y) PU
1.660 3.03 0.191 C90 1.278 1.184 8.69 18120 18330 (Y) P
1.660 3.07 0.191 C90 1.278 1.184 8.69 18120 18330 (Y) PU
1.660 3.03 0.191 T95 1.278 1.184 8.69 19130 19350 (Y) P
1.660 3.07 0.191 T95 1.278 1.184 8.69 19130 19350 (Y) PU
1.660 3.03 0.191 P110 1.278 1.184 8.69 22150 22400 (Y) P
1.660 3.07 0.191 P110 1.278 1.184 8.69 22150 22400 (Y) PU

1.900 2.40 0.125 H40 1.650 1.556 15.20 4610 4920 (Y) PI
1.900 2.40 0.125 J55 1.650 1.556 15.20 6330 6640 (P) PI
1.900 2.75 0.145 H40 1.610 1.516 13.10 5340 5640 (Y) PN
1.900 2.90 0.145 H40 1.610 1.516 13.10 5340 5640 (Y) PU
1.900 2.76 0.145 H40 1.610 1.516 13.10 5340 5640 (Y) PI
1.900 2.75 0.145 J55 1.610 1.516 13.10 7350 7750 (Y) PN
1.900 2.90 0.145 J55 1.610 1.516 13.10 7350 7750 (Y) PU
1.900 2.76 0.145 J55 1.610 1.516 13.10 7350 7750 (Y) PI
1.900 2.75 0.145 L80 1.610 1.516 13.10 10680 11280 (Y) PN
1.900 2.90 0.145 L80 1.610 1.516 13.10 10680 11280 (Y) PU

(continued on next page)
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Table D.1 (continued)
D Linear

mass
t Grade d Drift D/t MIYPa �pcb Finishc

in. lbm
ft in. in. in. psi psi

1.900 2.76 0.145 L80 1.610 1.516 13.10 10680 11280 (Y) PI
1.900 2.75 0.145 N80 1.610 1.516 13.10 10680 11280 (Y) PN
1.900 2.90 0.145 N80 1.610 1.516 13.10 10680 11280 (Y) PU
1.900 2.76 0.145 N80 1.610 1.516 13.10 10680 11280 (Y) PI
1.900 2.75 0.145 C90 1.610 1.516 13.10 12020 12620 (P) PN
1.900 2.90 0.145 C90 1.610 1.516 13.10 12020 12620 (P) PU
1.900 2.76 0.145 C90 1.610 1.516 13.10 12020 12620 (P) PI
1.900 2.75 0.145 T95 1.610 1.516 13.10 12690 13190 (P) PN
1.900 2.90 0.145 T95 1.610 1.516 13.10 12690 13190 (P) PU
1.900 2.76 0.145 T95 1.610 1.516 13.10 12690 13190 (P) PI
1.900 3.65 0.200 H40 1.500 1.406 9.50 7370 7530 (Y) P
1.900 3.73 0.200 H40 1.500 1.406 9.50 7370 7530 (Y) PU
1.900 3.65 0.200 J55 1.500 1.406 9.50 10130 10360 (Y) P
1.900 3.73 0.200 J55 1.500 1.406 9.50 10130 10360 (Y) PU
1.900 3.65 0.200 L80 1.500 1.406 9.50 14740 15070 (Y) P
1.900 3.73 0.200 L80 1.500 1.406 9.50 14740 15070 (Y) PU
1.900 3.65 0.200 N80 1.500 1.406 9.50 14740 15070 (Y) P
1.900 3.73 0.200 N80 1.500 1.406 9.50 14740 15070 (Y) PU
1.900 3.65 0.200 C90 1.500 1.406 9.50 16580 16950 (Y) P
1.900 3.73 0.200 C90 1.500 1.406 9.50 16580 16950 (Y) PU
1.900 3.65 0.200 T95 1.500 1.406 9.50 17500 17890 (Y) P
1.900 3.73 0.200 T95 1.500 1.406 9.50 17500 17890 (Y) PU
1.900 3.65 0.200 P110 1.500 1.406 9.50 20260 20720 (Y) P
1.900 3.73 0.200 P110 1.500 1.406 9.50 20260 20720 (Y) PU
1.900 4.42 0.250 L80 1.400 1.306 7.60 18420 18280 (Y) P
1.900 4.42 0.250 C90 1.400 1.306 7.60 20720 20570 (Y) P
1.900 4.42 0.250 T95 1.400 1.306 7.60 21880 21710 (Y) P
1.900 5.15 0.300 L80 1.300 1.206 6.33 22110 21270 (Y) P
1.900 5.15 0.300 C90 1.300 1.206 6.33 24870 23930 (Y) P
1.900 5.15 0.300 T95 1.300 1.206 6.33 26250 25260 (Y) P

2.063 3.25 0.156 H40 1.751 1.657 13.22 5290 5590 (Y) PI
2.063 3.25 0.156 J55 1.751 1.657 13.22 7280 7690 (Y) PI
2.063 3.25 0.156 L80 1.751 1.657 13.22 10590 11180 (Y) PI
2.063 3.25 0.156 N80 1.751 1.657 13.22 10590 11180 (Y) PI

(continued on next page)
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Table D.1 (continued)
D Linear

mass
t Grade d Drift D/t MIYPa �pcb Finishc

in. lbm
ft in. in. in. psi psi

2.063 3.25 0.156 C90 1.751 1.657 13.22 11910 12420 (P) PI
2.063 3.25 0.156 T95 1.751 1.657 13.22 12570 12980 (P) PI
2.063 4.50 0.225 H40 1.613 1.519 9.17 7630 7770 (Y) P
2.063 4.50 0.225 J55 1.613 1.519 9.17 10500 10690 (Y) P
2.063 4.50 0.225 L80 1.613 1.519 9.17 15270 15550 (Y) P
2.063 4.50 0.225 N80 1.613 1.519 9.17 15270 15550 (Y) P
2.063 4.50 0.225 C90 1.613 1.519 9.17 17180 17490 (Y) P
2.063 4.50 0.225 T95 1.613 1.519 9.17 18130 18460 (Y) P
2.063 4.50 0.225 P110 1.613 1.519 9.17 20990 21380 (Y) P

2.375 4.00 0.167 H40 2.041 1.947 14.22 4920 5230 (Y) PN
2.375 4.00 0.167 J55 2.041 1.947 14.22 6770 7190 (Y) PN
2.375 4.00 0.167 L80 2.041 1.947 14.22 9840 9980 (P) PN
2.375 4.00 0.167 N80 2.041 1.947 14.22 9840 9980 (P) PN
2.375 4.00 0.167 C90 2.041 1.947 14.22 11070 10940 (P) PN
2.375 4.00 0.167 T95 2.041 1.947 14.22 11690 11410 (P) PN
2.375 4.60 0.190 H40 1.995 1.901 12.50 5600 5890 (Y) PN
2.375 4.70 0.190 H40 1.995 1.901 12.50 5600 5890 (Y) PU
2.375 4.60 0.190 J55 1.995 1.901 12.50 7700 8100 (Y) PN
2.375 4.70 0.190 J55 1.995 1.901 12.50 7700 8100 (Y) PU
2.375 4.60 0.190 L80 1.995 1.901 12.50 11200 11780 (Y) PN
2.375 4.70 0.190 L80 1.995 1.901 12.50 11200 11780 (Y) PU
2.375 4.60 0.190 N80 1.995 1.901 12.50 11200 11780 (Y) PN
2.375 4.70 0.190 N80 1.995 1.901 12.50 11200 11780 (Y) PU
2.375 4.60 0.190 C90 1.995 1.901 12.50 12600 13250 (Y) PN
2.375 4.70 0.190 C90 1.995 1.901 12.50 12600 13250 (Y) PU
2.375 4.60 0.190 T95 1.995 1.901 12.50 13300 13980 (Y) PN
2.375 4.70 0.190 T95 1.995 1.901 12.50 13300 13980 (Y) PU
2.375 4.60 0.190 P110 1.995 1.901 12.50 15400 16130 (P) PN
2.375 4.70 0.190 P110 1.995 1.901 12.50 15400 16130 (P) PU
2.375 5.80 0.254 L80 1.867 1.773 9.35 14970 15280 (Y) PN
2.375 5.95 0.254 L80 1.867 1.773 9.35 14970 15280 (Y) PU
2.375 5.80 0.254 N80 1.867 1.773 9.35 14970 15280 (Y) PN
2.375 5.95 0.254 N80 1.867 1.773 9.35 14970 15280 (Y) PU
2.375 5.80 0.254 C90 1.867 1.773 9.35 16840 17190 (Y) PN

(continued on next page)
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Table D.1 (continued)
D Linear

mass
t Grade d Drift D/t MIYPa �pcb Finishc

in. lbm
ft in. in. in. psi psi

2.375 5.95 0.254 C90 1.867 1.773 9.35 16840 17190 (Y) PU
2.375 5.80 0.254 T95 1.867 1.773 9.35 17780 18150 (Y) PN
2.375 5.95 0.254 T95 1.867 1.773 9.35 17780 18150 (Y) PU
2.375 5.80 0.254 P110 1.867 1.773 9.35 20590 21010 (Y) PN
2.375 5.95 0.254 P110 1.867 1.773 9.35 20590 21010 (Y) PU
2.375 6.60 0.295 L80 1.785 1.691 8.05 17390 17410 (Y) P
2.375 6.60 0.295 C90 1.785 1.691 8.05 19560 19580 (Y) P
2.375 6.60 0.295 T95 1.785 1.691 8.05 20650 20670 (Y) P
2.375 7.35 0.336 L80 1.703 1.609 7.07 19810 19430 (Y) P
2.375 7.45 0.336 L80 1.703 1.609 7.07 19810 19430 (Y) PU
2.375 7.35 0.336 C90 1.703 1.609 7.07 22280 21860 (Y) P
2.375 7.45 0.336 C90 1.703 1.609 7.07 22280 21860 (Y) PU
2.375 7.35 0.336 T95 1.703 1.609 7.07 23520 23080 (Y) P
2.375 7.45 0.336 T95 1.703 1.609 7.07 23520 23080 (Y) PU

2.875 6.40 0.217 H40 2.441 2.347 13.25 5280 5580 (Y) PN
2.875 6.50 0.217 H40 2.441 2.347 13.25 5280 5580 (Y) PU
2.875 6.40 0.217 J55 2.441 2.347 13.25 7260 7680 (Y) PN
2.875 6.50 0.217 J55 2.441 2.347 13.25 7260 7680 (Y) PU
2.875 6.40 0.217 L80 2.441 2.347 13.25 10570 11170 (Y) PN
2.875 6.50 0.217 L80 2.441 2.347 13.25 10570 11170 (Y) PU
2.875 6.40 0.217 N80 2.441 2.347 13.25 10570 11170 (Y) PN
2.875 6.50 0.217 N80 2.441 2.347 13.25 10570 11170 (Y) PU
2.875 6.40 0.217 C90 2.441 2.347 13.25 11890 12390 (P) PN
2.875 6.50 0.217 C90 2.441 2.347 13.25 11890 12390 (P) PU
2.875 6.40 0.217 T95 2.441 2.347 13.25 12550 12940 (P) PN
2.875 6.50 0.217 T95 2.441 2.347 13.25 12550 12940 (P) PU
2.875 6.40 0.217 P110 2.441 2.347 13.25 14530 14550 (P) PN
2.875 6.50 0.217 P110 2.441 2.347 13.25 14530 14550 (P) PU
2.875 7.80 0.276 L80 2.323 2.229 10.42 13440 13890 (Y) PN
2.875 7.90 0.276 L80 2.323 2.229 10.42 13440 13890 (Y) PU
2.875 7.80 0.276 N80 2.323 2.229 10.42 13440 13890 (Y) PN
2.875 7.90 0.276 N80 2.323 2.229 10.42 13440 13890 (Y) PU
2.875 7.80 0.276 C90 2.323 2.229 10.42 15120 15620 (Y) PN
2.875 7.90 0.276 C90 2.323 2.229 10.42 15120 15620 (Y) PU

(continued on next page)
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Table D.1 (continued)
D Linear

mass
t Grade d Drift D/t MIYPa �pcb Finishc

in. lbm
ft in. in. in. psi psi

2.875 7.80 0.276 T95 2.323 2.229 10.42 15960 16490 (Y) PN
2.875 7.90 0.276 T95 2.323 2.229 10.42 15960 16490 (Y) PU
2.875 7.80 0.276 P110 2.323 2.229 10.42 18480 19090 (Y) PN
2.875 7.90 0.276 P110 2.323 2.229 10.42 18480 19090 (Y) PU
2.875 8.60 0.308 L80 2.259 2.165 9.33 15000 15300 (Y) PN
2.875 8.70 0.308 L80 2.259 2.165 9.33 15000 15300 (Y) PU
2.875 8.60 0.308 N80 2.259 2.165 9.33 15000 15300 (Y) PN
2.875 8.70 0.308 N80 2.259 2.165 9.33 15000 15300 (Y) PU
2.875 8.60 0.308 C90 2.259 2.165 9.33 16870 17220 (Y) PN
2.875 8.70 0.308 C90 2.259 2.165 9.33 16870 17220 (Y) PU
2.875 8.60 0.308 T95 2.259 2.165 9.33 17810 18170 (Y) PN
2.875 8.70 0.308 T95 2.259 2.165 9.33 17810 18170 (Y) PU
2.875 8.60 0.308 P110 2.259 2.165 9.33 20620 21040 (Y) PN
2.875 8.70 0.308 P110 2.259 2.165 9.33 20620 21040 (Y) PU
2.875 9.35 0.340 L80 2.195 2.101 8.46 16560 16680 (Y) P
2.875 9.45 0.340 L80 2.195 2.101 8.46 16560 16680 (Y) PU
2.875 9.35 0.340 C90 2.195 2.101 8.46 18630 18770 (Y) P
2.875 9.45 0.340 C90 2.195 2.101 8.46 18630 18770 (Y) PU
2.875 9.35 0.340 T95 2.195 2.101 8.46 19660 19810 (Y) P
2.875 9.45 0.340 T95 2.195 2.101 8.46 19660 19810 (Y) PU
2.875 10.50 0.392 L80 2.091 1.997 7.33 19090 18840 (Y) P
2.875 10.50 0.392 C90 2.091 1.997 7.33 21470 21200 (Y) P
2.875 10.50 0.392 T95 2.091 1.997 7.33 22670 22370 (Y) P
2.875 11.50 0.440 L80 1.995 1.901 6.53 21430 20740 (Y) P
2.875 11.50 0.440 C90 1.995 1.901 6.53 24100 23330 (Y) P
2.875 11.50 0.440 T95 1.995 1.901 6.53 25440 24630 (Y) P

3.500 7.70 0.216 H40 3.068 2.943 16.20 4320 4630 (Y) PN
3.500 7.70 0.216 J55 3.068 2.943 16.20 5940 5970 (P) PN
3.500 7.70 0.216 L80 3.068 2.943 16.20 8640 7870 (P) PN
3.500 7.70 0.216 N80 3.068 2.943 16.20 8640 7870 (P) PN
3.500 7.70 0.216 C90 3.068 2.943 16.20 9720 8540 (P) PN
3.500 7.70 0.216 T95 3.068 2.943 16.20 10260 8850 (P) PN
3.500 9.20 0.254 H40 2.992 2.867 13.78 5080 5380 (Y) PN
3.500 9.30 0.254 H40 2.992 2.867 13.78 5080 5380 (Y) PU
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Table D.1 (continued)
D Linear

mass
t Grade d Drift D/t MIYPa �pcb Finishc

in. lbm
ft in. in. in. psi psi

3.500 9.20 0.254 J55 2.992 2.867 13.78 6990 7400 (Y) PN
3.500 9.30 0.254 J55 2.992 2.867 13.78 6990 7400 (Y) PU
3.500 9.20 0.254 L80 2.992 2.867 13.78 10160 10540 (P) PN
3.500 9.30 0.254 L80 2.992 2.867 13.78 10160 10540 (P) PU
3.500 9.20 0.254 N80 2.992 2.867 13.78 10160 10540 (P) PN
3.500 9.30 0.254 N80 2.992 2.867 13.78 10160 10540 (P) PU
3.500 9.20 0.254 C90 2.992 2.867 13.78 11430 11570 (P) PN
3.500 9.30 0.254 C90 2.992 2.867 13.78 11430 11570 (P) PU
3.500 9.20 0.254 T95 2.992 2.867 13.78 12070 12080 (P) PN
3.500 9.30 0.254 T95 2.992 2.867 13.78 12070 12080 (P) PU
3.500 9.20 0.254 P110 2.992 2.867 13.78 13970 13530 (P) PN
3.500 9.30 0.254 P110 2.992 2.867 13.78 13970 13530 (P) PU
3.500 10.20 0.289 H40 2.922 2.797 12.11 5780 6060 (Y) PN
3.500 10.20 0.289 J55 2.922 2.797 12.11 7950 8330 (Y) PN
3.500 10.20 0.289 L80 2.922 2.797 12.11 11560 12120 (Y) PN
3.500 10.20 0.289 N80 2.922 2.797 12.11 11560 12120 (Y) PN
3.500 10.20 0.289 C90 2.922 2.797 12.11 13010 13640 (Y) PN
3.500 10.20 0.289 T95 2.922 2.797 12.11 13730 14390 (Y) PN
3.500 12.70 0.375 L80 2.750 2.625 9.33 15000 15310 (Y) PN
3.500 12.95 0.375 L80 2.750 2.625 9.33 15000 15310 (Y) PU
3.500 12.70 0.375 N80 2.750 2.625 9.33 15000 15310 (Y) PN
3.500 12.95 0.375 N80 2.750 2.625 9.33 15000 15310 (Y) PU
3.500 12.70 0.375 C90 2.750 2.625 9.33 16880 17220 (Y) PN
3.500 12.95 0.375 C90 2.750 2.625 9.33 16880 17220 (Y) PU
3.500 12.70 0.375 T95 2.750 2.625 9.33 17810 18180 (Y) PN
3.500 12.95 0.375 T95 2.750 2.625 9.33 17810 18180 (Y) PU
3.500 12.70 0.375 P110 2.750 2.625 9.33 20630 21050 (Y) PN
3.500 12.95 0.375 P110 2.750 2.625 9.33 20630 21050 (Y) PU
3.500 14.30 0.430 L80 2.640 2.515 8.14 17200 17240 (Y) P
3.500 14.30 0.430 C90 2.640 2.515 8.14 19350 19400 (Y) P
3.500 14.30 0.430 T95 2.640 2.515 8.14 20430 20480 (Y) P
3.500 15.50 0.476 L80 2.548 2.423 7.35 19040 18800 (Y) P
3.500 15.50 0.476 C90 2.548 2.423 7.35 21420 21150 (Y) P
3.500 15.50 0.476 T95 2.548 2.423 7.35 22610 22330 (Y) P
3.500 17.00 0.530 L80 2.440 2.315 6.60 21200 20560 (Y) P
3.500 17.00 0.530 C90 2.440 2.315 6.60 23850 23130 (Y) P
3.500 17.00 0.530 T95 2.440 2.315 6.60 25180 24410 (Y) P

(continued on next page)
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Table D.1 (continued)
D Linear

mass
t Grade d Drift D/t MIYPa �pcb Finishc

in. lbm
ft in. in. in. psi psi

4.000 9.50 0.226 H40 3.548 3.423 17.70 3960 4050 (P) PN
4.000 9.50 0.226 J55 3.548 3.423 17.70 5440 5110 (P) PN
4.000 9.50 0.226 L80 3.548 3.423 17.70 7910 6590 (P) PN
4.000 9.50 0.226 N80 3.548 3.423 17.70 7910 6590 (P) PN
4.000 9.50 0.226 C90 3.548 3.423 17.70 8900 7080 (P) PN
4.000 9.50 0.226 T95 3.548 3.423 17.70 9390 7310 (P) PN
4.000 10.70 0.262 H40 3.476 3.351 15.27 4590 4900 (Y) P
4.000 11.00 0.262 H40 3.476 3.351 15.27 4590 4900 (Y) PU
4.000 10.70 0.262 J55 3.476 3.351 15.27 6300 6590 (P) P
4.000 11.00 0.262 J55 3.476 3.351 15.27 6300 6590 (P) PU
4.000 10.70 0.262 L80 3.476 3.351 15.27 9170 8800 (P) P
4.000 11.00 0.262 L80 3.476 3.351 15.27 9170 8800 (P) PU
4.000 10.70 0.262 N80 3.476 3.351 15.27 9170 8800 (P) P
4.000 11.00 0.262 N80 3.476 3.351 15.27 9170 8800 (P) PU
4.000 10.70 0.262 C90 3.476 3.351 15.27 10320 9600 (P) P
4.000 11.00 0.262 C90 3.476 3.351 15.27 10320 9600 (P) PU
4.000 10.70 0.262 T95 3.476 3.351 15.27 10890 9980 (P) P
4.000 11.00 0.262 T95 3.476 3.351 15.27 10890 9980 (P) PU
4.000 13.20 0.330 L80 3.340 3.215 12.12 11550 12110 (Y) P
4.000 13.20 0.330 C90 3.340 3.215 12.12 12990 13620 (Y) P
4.000 13.20 0.330 T95 3.340 3.215 12.12 13720 14380 (Y) P
4.000 16.10 0.415 L80 3.170 3.045 9.64 14530 14880 (Y) P
4.000 16.10 0.415 C90 3.170 3.045 9.64 16340 16740 (Y) P
4.000 16.10 0.415 T95 3.170 3.045 9.64 17250 17670 (Y) P
4.000 18.90 0.500 L80 3.000 2.875 8.00 17500 17500 (Y) P
4.000 18.90 0.500 C90 3.000 2.875 8.00 19690 19690 (Y) P
4.000 18.90 0.500 T95 3.000 2.875 8.00 20780 20780 (Y) P
4.000 22.20 0.610 L80 2.780 2.655 6.56 21350 20680 (Y) P
4.000 22.20 0.610 C90 2.780 2.655 6.56 24020 23260 (Y) P
4.000 22.20 0.610 T95 2.780 2.655 6.56 25350 24560 (Y) P
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Table D.1 (continued)
D Linear

mass
t Grade d Drift D/t MIYPa �pcb Finishc

in. lbm
ft in. in. in. psi psi

4.500 12.60 0.271 H40 3.958 3.833 16.61 4220 4490 (P) PN
4.500 12.75 0.271 H40 3.958 3.833 16.61 4220 4490 (P) PU
4.500 12.60 0.271 J55 3.958 3.833 16.61 5800 5730 (P) PN
4.500 12.75 0.271 J55 3.958 3.833 16.61 5800 5730 (P) PU
4.500 12.60 0.271 L80 3.958 3.833 16.61 8430 7500 (P) PN
4.500 12.75 0.271 L80 3.958 3.833 16.61 8430 7500 (P) PU
4.500 12.60 0.271 N80 3.958 3.833 16.61 8430 7500 (P) PN
4.500 12.75 0.271 N80 3.958 3.833 16.61 8430 7500 (P) PU
4.500 12.60 0.271 C90 3.958 3.833 16.61 9490 8120 (P) PN
4.500 12.75 0.271 C90 3.958 3.833 16.61 9490 8120 (P) PU
4.500 12.60 0.271 T95 3.958 3.833 16.61 10010 8410 (P) PN
4.500 12.75 0.271 T95 3.958 3.833 16.61 10010 8410 (P) PU
4.500 15.20 0.337 L80 3.826 3.701 13.35 10480 11080 (Y) P
4.500 15.20 0.337 C90 3.826 3.701 13.35 11800 12220 (P) P
4.500 15.20 0.337 T95 3.826 3.701 13.35 12450 12760 (P) P
4.500 17.00 0.380 L80 3.740 3.615 11.84 11820 12370 (Y) P
4.500 17.00 0.380 C90 3.740 3.615 11.84 13300 13920 (Y) P
4.500 17.00 0.380 T95 3.740 3.615 11.84 14040 14690 (Y) P
4.500 18.90 0.430 L80 3.640 3.515 10.47 13380 13830 (Y) P
4.500 18.90 0.430 C90 3.640 3.515 10.47 15050 15560 (Y) P
4.500 18.90 0.430 T95 3.640 3.515 10.47 15890 16420 (Y) P
4.500 21.50 0.500 L80 3.500 3.375 9.00 15560 15800 (Y) P
4.500 21.50 0.500 C90 3.500 3.375 9.00 17500 17780 (Y) P
4.500 21.50 0.500 T95 3.500 3.375 9.00 18470 18770 (Y) P
4.500 23.70 0.560 L80 3.380 3.255 8.04 17420 17430 (Y) P
4.500 23.70 0.560 C90 3.380 3.255 8.04 19600 19610 (Y) P
4.500 23.70 0.560 T95 3.380 3.255 8.04 20690 20700 (Y) P
4.500 26.10 0.630 L80 3.240 3.115 7.14 19600 19260 (Y) P
4.500 26.10 0.630 C90 3.240 3.115 7.14 22050 21670 (Y) P
4.500 26.10 0.630 T95 3.240 3.115 7.14 23280 22880 (Y) P
a Internal yield pressure according to Eq. (7.12) with kwall = 0.875.
b Collapse mode: E = elastic, T = transition, P = plastic, Y = yield.
c Finish (API connections): P = plain end, N = NUE, E = EUE, I = IJ. A wide variety of proprietary thread vendors

also offer threaded connections.
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Table D.2 Casing dimensions and properties
D Linear

mass
t Grade d Drift D/t MIYPa �pcb Finishc

in. lbm
ft in. in. in. psi psi

4.500 9.50 0.205 H40 4.090 3.965 21.95 3190 2760 (P) PS
4.500 9.50 0.205 J55 4.090 3.965 21.95 4380 3310 (P) PS
4.500 9.50 0.205 K55 4.090 3.965 21.95 4380 3310 (P) PS
4.500 9.50 0.205 M65 4.090 3.965 21.95 5180 3600 (P) PS
4.500 10.50 0.224 J55 4.052 3.927 20.09 4790 4010 (P) PSB
4.500 10.50 0.224 K55 4.052 3.927 20.09 4790 4010 (P) PSB
4.500 10.50 0.224 M65 4.052 3.927 20.09 5660 4430 (P) PSB
4.500 11.60 0.250 J55 4.000 3.875 18.00 5350 4960 (P) PSLB
4.500 11.60 0.250 K55 4.000 3.875 18.00 5350 4960 (P) PSLB
4.500 11.60 0.250 M65 4.000 3.875 18.00 6320 5560 (P) PLB
4.500 11.60 0.250 L80 4.000 3.875 18.00 7780 6350 (P) PLB
4.500 11.60 0.250 N80 4.000 3.875 18.00 7780 6350 (P) PLB
4.500 11.60 0.250 C90 4.000 3.875 18.00 8750 6820 (P) PLB
4.500 11.60 0.250 R95 4.000 3.875 18.00 9240 7030 (P) PLB
4.500 11.60 0.250 T95 4.000 3.875 18.00 9240 7030 (P) PLB
4.500 11.60 0.250 P110 4.000 3.875 18.00 10690 7580 (P) PLB
4.500 13.50 0.290 M65 3.920 3.795 15.52 7330 7310 (P) PLB
4.500 13.50 0.290 L80 3.920 3.795 15.52 9020 8540 (P) PLB
4.500 13.50 0.290 N80 3.920 3.795 15.52 9020 8540 (P) PLB
4.500 13.50 0.290 C90 3.920 3.795 15.52 10150 9300 (P) PLB
4.500 13.50 0.290 R95 3.920 3.795 15.52 10710 9660 (P) PLB
4.500 13.50 0.290 T95 3.920 3.795 15.52 10710 9660 (P) PLB
4.500 13.50 0.290 P110 3.920 3.795 15.52 12410 10690 (P) PLB
4.500 15.10 0.337 P110 3.826 3.701 13.35 14420 14340 (P) PLB
4.500 15.10 0.337 Q125 3.826 3.701 13.35 16380 15830 (P) PLB

5.000 11.50 0.220 J55 4.560 4.435 22.73 4240 3060 (P) PS
5.000 11.50 0.220 K55 4.560 4.435 22.73 4240 3060 (P) PS
5.000 11.50 0.220 M65 4.560 4.435 22.73 5010 3290 (P) PS
5.000 13.00 0.253 J55 4.494 4.369 19.76 4870 4140 (P) PSLB
5.000 13.00 0.253 K55 4.494 4.369 19.76 4870 4140 (P) PSLB
5.000 13.00 0.253 M65 4.494 4.369 19.76 5760 4590 (P) PSLB
5.000 15.00 0.296 J55 4.408 4.283 16.89 5700 5560 (P) PSLBE
5.000 15.00 0.296 K55 4.408 4.283 16.89 5700 5560 (P) PSLBE
5.000 15.00 0.296 M65 4.408 4.283 16.89 6730 6280 (P) PLB

(continued on next page)
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Table D.2 (continued)
D Linear

mass
t Grade d Drift D/t MIYPa �pcb Finishc

in. lbm
ft in. in. in. psi psi

5.000 15.00 0.296 L80 4.408 4.283 16.89 8290 7250 (P) PLBE
5.000 15.00 0.296 N80 4.408 4.283 16.89 8290 7250 (P) PLBE
5.000 15.00 0.296 C90 4.408 4.283 16.89 9320 7830 (P) PLBE
5.000 15.00 0.296 R95 4.408 4.283 16.89 9840 8110 (P) PLBE
5.000 15.00 0.296 T95 4.408 4.283 16.89 9840 8110 (P) PLBE
5.000 15.00 0.296 P110 4.408 4.283 16.89 11400 8850 (P) PLBE
5.000 18.00 0.362 M65 4.276 4.151 13.81 8240 8730 (Y) PLBE
5.000 18.00 0.362 L80 4.276 4.151 13.81 10140 10490 (P) PLB
5.000 18.00 0.362 N80 4.276 4.151 13.81 10140 10490 (P) PLBE
5.000 18.00 0.362 C90 4.276 4.151 13.81 11400 11520 (P) PLBE
5.000 18.00 0.362 R95 4.276 4.151 13.81 12040 12030 (P) PLB
5.000 18.00 0.362 T95 4.276 4.151 13.81 12040 12030 (P) PLBE
5.000 18.00 0.362 P110 4.276 4.151 13.81 13940 13470 (P) PLBE
5.000 18.00 0.362 Q125 4.276 4.151 13.81 15840 14820 (P) PLBE
5.000 21.40 0.437 M65 4.126 4.001 11.44 9940 10370 (Y) PLBE
5.000 21.40 0.437 L80 4.126 4.001 11.44 12240 12760 (Y) PLB
5.000 21.40 0.437 N80 4.126 4.001 11.44 12240 12760 (Y) PLB
5.000 21.40 0.437 C90 4.126 4.001 11.44 13770 14360 (Y) PLB
5.000 21.40 0.437 R95 4.126 4.001 11.44 14530 15150 (Y) PLB
5.000 21.40 0.437 T95 4.126 4.001 11.44 14530 15150 (Y) PLB
5.000 21.40 0.437 P110 4.126 4.001 11.44 16820 17550 (Y) PLB
5.000 21.40 0.437 Q125 4.126 4.001 11.44 19120 19940 (Y) PLB
5.000 23.20 0.478 L80 4.044 3.919 10.46 13380 13830 (Y) PLB
5.000 23.20 0.478 N80 4.044 3.919 10.46 13380 13830 (Y) PLB
5.000 23.20 0.478 C90 4.044 3.919 10.46 15060 15560 (Y) PLB
5.000 23.20 0.478 R95 4.044 3.919 10.46 15890 16430 (Y) PLB
5.000 23.20 0.478 T95 4.044 3.919 10.46 15890 16430 (Y) PLB
5.000 23.20 0.478 P110 4.044 3.919 10.46 18400 19020 (Y) PLB
5.000 23.20 0.478 Q125 4.044 3.919 10.46 20910 21620 (Y) PLB
5.000 24.10 0.500 L80 4.000 3.875 10.00 14000 14400 (Y) PLB
5.000 24.10 0.500 N80 4.000 3.875 10.00 14000 14400 (Y) PLB
5.000 24.10 0.500 C90 4.000 3.875 10.00 15750 16200 (Y) PLB
5.000 24.10 0.500 R95 4.000 3.875 10.00 16630 17100 (Y) PLB
5.000 24.10 0.500 T95 4.000 3.875 10.00 16630 17100 (Y) PLB
5.000 24.10 0.500 P110 4.000 3.875 10.00 19250 19800 (Y) PLB

(continued on next page)



540 Elements of Oil and Gas Well Tubular Design

Table D.2 (continued)
D Linear

mass
t Grade d Drift D/t MIYPa �pcb Finishc

in. lbm
ft in. in. in. psi psi

5.000 24.10 0.500 Q125 4.000 3.875 10.00 21880 22500 (Y) PLB

5.500 14.00 0.244 H40 5.012 4.887 22.54 3110 2620 (P) PS
5.500 14.00 0.244 J55 5.012 4.887 22.54 4270 3120 (P) PS
5.500 14.00 0.244 K55 5.012 4.887 22.54 4270 3120 (P) PS
5.500 14.00 0.244 M65 5.012 4.887 22.54 5050 3360 (P) PS
5.500 15.50 0.275 J55 4.950 4.825 20.00 4810 4040 (P) PSLBE
5.500 15.50 0.275 K55 4.950 4.825 20.00 4810 4040 (P) PSLBE
5.500 15.50 0.275 M65 4.950 4.825 20.00 5690 4470 (P) PS
5.500 17.00 0.304 J55 4.892 4.767 18.09 5320 4910 (P) PSLB
5.500 17.00 0.304 K55 4.892 4.767 18.09 5320 4910 (P) PSLBE
5.500 17.00 0.304 M65 4.892 4.767 18.09 6290 5500 (P) PSLBE
5.500 17.00 0.304 L80 4.892 4.767 18.09 7740 6290 (P) PLBE
5.500 17.00 0.304 C90 4.892 4.767 18.09 8710 6740 (P) PLBE
5.500 17.00 0.304 R95 4.892 4.767 18.09 9190 6940 (P) PLBE
5.500 17.00 0.304 T95 4.892 4.767 18.09 9190 6940 (P) PLBE
5.500 17.00 0.304 P110 4.892 4.767 18.09 10640 7480 (P) PLBE
5.500 20.00 0.361 M65 4.778 4.653 15.24 7470 7540 (P) PSLB
5.500 20.00 0.361 L80 4.778 4.653 15.24 9190 8830 (P) PLB
5.500 20.00 0.361 N80 4.778 4.653 15.24 9190 8830 (P) PLBE
5.500 20.00 0.361 C90 4.778 4.653 15.24 10340 9630 (P) PLBE
5.500 20.00 0.361 R95 4.778 4.653 15.24 10910 10020 (P) PLB
5.500 20.00 0.361 T95 4.778 4.653 15.24 10910 10020 (P) PLBE
5.500 20.00 0.361 P110 4.778 4.653 15.24 12640 11100 (P) PLBE
5.500 23.00 0.415 M65 4.670 4.545 13.25 8580 9070 (Y) PLB
5.500 23.00 0.415 L80 4.670 4.545 13.25 10560 11160 (Y) PLBE
5.500 23.00 0.415 N80 4.670 4.545 13.25 10560 11160 (Y) PLBE
5.500 23.00 0.415 C90 4.670 4.545 13.25 11880 12380 (P) PLBE
5.500 23.00 0.415 R95 4.670 4.545 13.25 12540 12930 (P) PLBE
5.500 23.00 0.415 P110 4.670 4.545 13.25 14530 14540 (P) PLBE
5.500 23.00 0.415 Q125 4.670 4.545 13.25 16510 16060 (P) PLBE
5.500 26.80 0.500 C90 4.500 4.375 11.00 14320 14880 (Y) PLBE
5.500 26.80 0.500 T95 4.500 4.375 11.00 15110 15700 (Y) P
5.500 29.70 0.562 C90 4.376 4.251 9.79 16090 16510 (Y) P
5.500 29.70 0.562 T95 4.376 4.251 9.79 16990 17430 (Y) P
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Table D.2 (continued)
D Linear

mass
t Grade d Drift D/t MIYPa �pcb Finishc

in. lbm
ft in. in. in. psi psi

5.500 32.60 0.625 C90 4.250 4.125 8.80 17900 18130 (Y) P
5.500 32.60 0.625 T95 4.250 4.125 8.80 18890 19140 (Y) P
5.500 35.30 0.687 C90 4.126 4.001 8.01 19670 19680 (Y) P
5.500 35.30 0.687 T95 4.126 4.001 8.01 20770 20770 (Y) P
5.500 38.00 0.750 C90 4.000 3.875 7.33 21480 21200 (Y) P
5.500 38.00 0.750 T95 4.000 3.875 7.33 22670 22380 (Y) P
5.500 40.50 0.812 C90 3.876 3.751 6.77 23250 22650 (Y) P
5.500 40.50 0.812 T95 3.876 3.751 6.77 24540 23910 (Y) P
5.500 43.10 0.875 C90 3.750 3.625 6.29 25060 24080 (Y) P
5.500 43.10 0.875 T95 3.750 3.625 6.29 26450 25420 (Y) P

6.625 20.00 0.288 H40 6.049 5.924 23.00 3040 2520 (P) PS
6.625 20.00 0.288 J55 6.049 5.924 23.00 4180 2970 (P) PSLB
6.625 20.00 0.288 K55 6.049 5.924 23.00 4180 2970 (P) PSLB
6.625 20.00 0.288 M65 6.049 5.924 23.00 4940 3190 (P) PSLB
6.625 24.00 0.352 J55 5.921 5.796 18.82 5110 4560 (P) PSLBE
6.625 24.00 0.352 K55 5.921 5.796 18.82 5110 4560 (P) PSLBE
6.625 24.00 0.352 M65 5.921 5.796 18.82 6040 5080 (P) PLB
6.625 24.00 0.352 L80 5.921 5.796 18.82 7440 5760 (P) PLBE
6.625 24.00 0.352 N80 5.921 5.796 18.82 7440 5760 (P) PLBE
6.625 24.00 0.352 C90 5.921 5.796 18.82 8370 6140 (P) PLBE
6.625 24.00 0.352 R95 5.921 5.796 18.82 8830 6310 (P) PLBE
6.625 24.00 0.352 T95 5.921 5.796 18.82 8830 6310 (P) PLBE
6.625 24.00 0.352 P110 5.921 5.796 18.82 10230 6730 (P) PLBE
6.625 28.00 0.417 M65 5.791 5.666 15.89 7160 7010 (P) PLB
6.625 28.00 0.417 L80 5.791 5.666 15.89 8810 8170 (P) PLBE
6.625 28.00 0.417 N80 5.791 5.666 15.89 8810 8170 (P) PLBE
6.625 28.00 0.417 C90 5.791 5.666 15.89 9910 8880 (P) PLBE
6.625 28.00 0.417 R95 5.791 5.666 15.89 10460 9220 (P) PLBE
6.625 28.00 0.417 T95 5.791 5.666 15.89 10460 9220 (P) PLBE
6.625 28.00 0.417 P110 5.791 5.666 15.89 12120 10160 (P) PLBE
6.625 32.00 0.475 L80 5.675 5.550 13.95 10040 10320 (P) PLBE
6.625 32.00 0.475 N80 5.675 5.550 13.95 10040 10320 (P) PLBE
6.625 32.00 0.475 C90 5.675 5.550 13.95 11290 11330 (P) PLBE
6.625 32.00 0.475 R95 5.675 5.550 13.95 11920 11820 (P) PLBE
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Table D.2 (continued)
D Linear

mass
t Grade d Drift D/t MIYPa �pcb Finishc

in. lbm
ft in. in. in. psi psi

6.625 32.00 0.475 T95 5.675 5.550 13.95 11920 11820 (P) PLBE
6.625 32.00 0.475 P110 5.675 5.550 13.95 13800 13220 (P) PLBE
6.625 32.00 0.475 Q125 5.675 5.550 13.95 15680 14540 (P) PLBE

7.000 17.00 0.231 H40 6.538 6.413 30.30 2310 1420 (T) PS
7.000 20.00 0.272 H40 6.456 6.331 25.74 2720 1970 (P) PS
7.000 20.00 0.272 J55 6.456 6.331 25.74 3740 2270 (T) PS
7.000 20.00 0.272 K55 6.456 6.331 25.74 3740 2270 (T) PS
7.000 20.00 0.272 M65 6.456 6.331 25.74 4420 2480 (T) PS
7.000 23.00 0.317 J55 6.366 6.250 22.08 4360 3270 (P) PSLBE
7.000 23.00 0.317 K55 6.366 6.250 22.08 4360 3270 (P) PSLBE
7.000 23.00 0.317 M65 6.366 6.250 22.08 5150 3540 (P) PLB
7.000 23.00 0.317 L80 6.366 6.250 22.08 6340 3830 (P) PLBE
7.000 23.00 0.317 N80 6.366 6.250 22.08 6340 3830 (P) PLBE
7.000 23.00 0.317 C90 6.366 6.250 22.08 7130 4030 (T) PLBE
7.000 23.00 0.317 R95 6.366 6.250 22.08 7530 4140 (T) PLBE
7.000 23.00 0.317 T95 6.366 6.250 22.08 7530 4140 (T) PLBE
7.000 26.00 0.362 J55 6.276 6.151 19.34 4980 4330 (P) PLBE
7.000 26.00 0.362 K55 6.276 6.151 19.34 4980 4330 (P) PSLBE
7.000 26.00 0.362 M65 6.276 6.151 19.34 5880 4810 (P) PSLBE
7.000 26.00 0.362 L80 6.276 6.151 19.34 7240 5410 (P) PLB
7.000 26.00 0.362 N80 6.276 6.151 19.34 7240 5410 (P) PLBE
7.000 26.00 0.362 C90 6.276 6.151 19.34 8150 5740 (P) PLBE
7.000 26.00 0.362 R95 6.276 6.151 19.34 8600 5890 (P) PLB
7.000 26.00 0.362 T95 6.276 6.151 19.34 8600 5890 (P) PLBE
7.000 26.00 0.362 P110 6.276 6.151 19.34 9960 6230 (P) PLBE
7.000 29.00 0.408 M65 6.184 6.059 17.16 6630 6100 (P) PLB
7.000 29.00 0.408 L80 6.184 6.059 17.16 8160 7030 (P) PLBE
7.000 29.00 0.408 N80 6.184 6.059 17.16 8160 7030 (P) PLBE
7.000 29.00 0.408 C90 6.184 6.059 17.16 9180 7580 (P) PLBE
7.000 29.00 0.408 R95 6.184 6.059 17.16 9690 7840 (P) PLBE
7.000 29.00 0.408 T95 6.184 6.059 17.16 9690 7840 (P) PLBE
7.000 29.00 0.408 P110 6.184 6.059 17.16 11220 8530 (P) PLBE
7.000 32.00 0.453 M65 6.094 6.000 15.45 7360 7360 (P) PLB
7.000 32.00 0.453 L80 6.094 6.000 15.45 9060 8600 (P) PLBE
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Table D.2 (continued)
D Linear

mass
t Grade d Drift D/t MIYPa �pcb Finishc

in. lbm
ft in. in. in. psi psi

7.000 32.00 0.453 N80 6.094 6.000 15.45 9060 8600 (P) PLBE
7.000 32.00 0.453 C90 6.094 6.000 15.45 10190 9380 (P) PLBE
7.000 32.00 0.453 R95 6.094 6.000 15.45 10760 9740 (P) PLBE
7.000 32.00 0.453 T95 6.094 6.000 15.45 10760 9740 (P) PLBE
7.000 32.00 0.453 P110 6.094 6.000 15.45 12460 10780 (P) PLBE
7.000 35.00 0.498 L80 6.004 5.879 14.06 9960 10180 (P) PLBE
7.000 35.00 0.498 N80 6.004 5.879 14.06 9960 10180 (P) PLBE
7.000 35.00 0.498 C90 6.004 5.879 14.06 11210 11170 (P) PLBE
7.000 35.00 0.498 R95 6.004 5.879 14.06 11830 11650 (P) PLBE
7.000 35.00 0.498 T95 6.004 5.879 14.06 11830 11650 (P) PLBE
7.000 35.00 0.498 P110 6.004 5.879 14.06 13700 13030 (P) PLBE
7.000 35.00 0.498 Q125 6.004 5.879 14.06 15560 14310 (P) PLBE
7.000 38.00 0.540 L80 5.920 5.795 12.96 10800 11390 (Y) PLBE
7.000 38.00 0.540 N80 5.920 5.795 12.96 10800 11390 (Y) PLBE
7.000 38.00 0.540 C90 5.920 5.795 12.96 12150 12810 (Y) PLBE
7.000 38.00 0.540 R95 5.920 5.795 12.96 12830 13430 (P) PLBE
7.000 38.00 0.540 T95 5.920 5.795 12.96 12830 13430 (P) PLBE
7.000 38.00 0.540 P110 5.920 5.795 12.96 14850 15130 (P) PLBE
7.000 38.00 0.540 Q125 5.920 5.795 12.96 16880 16740 (P) PLBE
7.000 42.70 0.625 C90 5.750 5.625 11.20 14060 14640 (Y) PLBE
7.000 42.70 0.625 T95 5.750 5.625 11.20 14840 15450 (Y) P
7.000 46.40 0.687 C90 5.626 5.501 10.19 15460 15930 (Y) P
7.000 46.40 0.687 T95 5.626 5.501 10.19 16320 16820 (Y) P
7.000 50.10 0.750 C90 5.500 5.375 9.33 16880 17220 (Y) P
7.000 50.10 0.750 T95 5.500 5.375 9.33 17810 18180 (Y) P
7.000 53.60 0.812 C90 5.376 5.251 8.62 18270 18460 (Y) P
7.000 53.60 0.812 T95 5.376 5.251 8.62 19290 19480 (Y) P
7.000 57.10 0.875 C90 5.250 5.125 8.00 19690 19690 (Y) P
7.000 57.10 0.875 T95 5.250 5.125 8.00 20780 20780 (Y) P

7.625 24.00 0.300 H40 7.025 6.900 25.42 2750 2030 (P) PS
7.625 26.40 0.328 J55 6.969 6.844 23.25 4140 2900 (P) PSLBE
7.625 26.40 0.328 K55 6.969 6.844 23.25 4140 2900 (P) PSLBE
7.625 26.40 0.328 M65 6.969 6.844 23.25 4890 3100 (P) PSLB
7.625 26.40 0.328 L80 6.969 6.844 23.25 6020 3400 (T) PLBE
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Table D.2 (continued)
D Linear

mass
t Grade d Drift D/t MIYPa �pcb Finishc

in. lbm
ft in. in. in. psi psi

7.625 26.40 0.328 N80 6.969 6.844 23.25 6020 3400 (T) PLBE
7.625 26.40 0.328 C90 6.969 6.844 23.25 6780 3610 (T) PLBE
7.625 26.40 0.328 R95 6.969 6.844 23.25 7150 3710 (T) PLBE
7.625 26.40 0.328 T95 6.969 6.844 23.25 7150 3710 (T) PLBE
7.625 29.70 0.375 M65 6.875 6.750 20.33 5590 4310 (P) PLB
7.625 29.70 0.375 L80 6.875 6.750 20.33 6890 4790 (P) PLBE
7.625 29.70 0.375 N80 6.875 6.750 20.33 6890 4790 (P) PLBE
7.625 29.70 0.375 C90 6.875 6.750 20.33 7750 5030 (P) PLBE
7.625 29.70 0.375 R95 6.875 6.750 20.33 8180 5130 (P) PLBE
7.625 29.70 0.375 T95 6.875 6.750 20.33 8180 5130 (P) PLBE
7.625 29.70 0.375 P110 6.875 6.750 20.33 9470 5350 (P) PLBE
7.625 33.70 0.430 M65 6.765 6.640 17.73 6410 5720 (P) PLB
7.625 33.70 0.430 L80 6.765 6.640 17.73 7900 6560 (P) PLBE
7.625 33.70 0.430 N80 6.765 6.640 17.73 7900 6560 (P) PLBE
7.625 33.70 0.430 C90 6.765 6.640 17.73 8880 7050 (P) PLBE
7.625 33.70 0.430 R95 6.765 6.640 17.73 9380 7280 (P) PLBE
7.625 33.70 0.430 T95 6.765 6.640 17.73 9380 7280 (P) PLBE
7.625 33.70 0.430 P110 6.765 6.640 17.73 10860 7870 (P) PLBE
7.625 39.00 0.500 L80 6.625 6.500 15.25 9180 8820 (P) PLBE
7.625 39.00 0.500 N80 6.625 6.500 15.25 9180 8820 (P) PLBE
7.625 39.00 0.500 C90 6.625 6.500 15.25 10330 9620 (P) PLBE
7.625 39.00 0.500 R95 6.625 6.500 15.25 10900 10000 (P) PLBE
7.625 39.00 0.500 T95 6.625 6.500 15.25 10900 10000 (P) PLBE
7.625 39.00 0.500 P110 6.625 6.500 15.25 12620 11080 (P) PLBE
7.625 39.00 0.500 Q125 6.625 6.500 15.25 14340 12060 (P) PLBE
7.625 42.80 0.562 L80 6.501 6.376 13.57 10320 10810 (P) PLB
7.625 42.80 0.562 N80 6.501 6.376 13.57 10320 10810 (P) PLB
7.625 42.80 0.562 C90 6.501 6.376 13.57 11610 11890 (P) PLB
7.625 42.80 0.562 R95 6.501 6.376 13.57 12250 12410 (P) PLB
7.625 42.80 0.562 T95 6.501 6.376 13.57 12250 12410 (P) PLB
7.625 42.80 0.562 P110 6.501 6.376 13.57 14190 13930 (P) PLB
7.625 42.80 0.562 Q125 6.501 6.376 13.57 16120 15350 (P) PLB
7.625 45.30 0.595 L80 6.435 6.310 12.82 10920 11510 (Y) PLB
7.625 45.30 0.595 N80 6.435 6.310 12.82 10920 11510 (Y) PLB
7.625 45.30 0.595 C90 6.435 6.310 12.82 12290 12950 (Y) PLB
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Table D.2 (continued)
D Linear

mass
t Grade d Drift D/t MIYPa �pcb Finishc

in. lbm
ft in. in. in. psi psi

7.625 45.30 0.595 R95 6.435 6.310 12.82 12970 13670 (Y) PLB
7.625 45.30 0.595 T95 6.435 6.310 12.82 12970 13670 (Y) PLB
7.625 45.30 0.595 P110 6.435 6.310 12.82 15020 15440 (P) PLB
7.625 45.30 0.595 Q125 6.435 6.310 12.82 17070 17100 (P) PLB
7.625 47.10 0.625 L80 6.375 6.250 12.20 11480 12040 (Y) PLB
7.625 47.10 0.625 N80 6.375 6.250 12.20 11480 12040 (Y) PLB
7.625 47.10 0.625 C90 6.375 6.250 12.20 12910 13540 (Y) PLB
7.625 47.10 0.625 R95 6.375 6.250 12.20 13630 14300 (Y) PLB
7.625 47.10 0.625 T95 6.375 6.250 12.20 13630 14300 (Y) PLB
7.625 47.10 0.625 P110 6.375 6.250 12.20 15780 16550 (Y) PLB
7.625 47.10 0.625 Q125 6.375 6.250 12.20 17930 18700 (P) PLB
7.625 51.20 0.687 C90 6.251 6.126 11.10 14190 14760 (Y) PLB
7.625 51.20 0.687 T95 6.251 6.126 11.10 14980 15580 (Y) P
7.625 55.30 0.750 C90 6.125 6.000 10.17 15490 15960 (Y) P
7.625 55.30 0.750 T95 6.125 6.000 10.17 16350 16850 (Y) P

7.750 46.10 0.595 L80 6.560 6.500 13.03 10750 11340 (Y) P
7.750 46.10 0.595 N80 6.560 6.500 13.03 10750 11340 (Y) P
7.750 46.10 0.595 C90 6.560 6.500 13.03 12090 12750 (P) P
7.750 46.10 0.595 R95 6.560 6.500 13.03 12760 13320 (P) P
7.750 46.10 0.595 T95 6.560 6.500 13.03 12760 13320 (P) P
7.750 46.10 0.595 P110 6.560 6.500 13.03 14780 15000 (P) P
7.750 46.10 0.595 Q125 6.560 6.500 13.03 16790 16590 (P) P

8.625 24.00 0.264 J55 8.097 7.972 32.67 2950 1370 (T) PS
8.625 24.00 0.264 K55 8.097 7.972 32.67 2950 1370 (T) PS
8.625 24.00 0.264 M65 8.097 7.972 32.67 3480 1420 (T) PS
8.625 28.00 0.304 H40 8.017 7.892 28.37 2470 1610 (T) PS
8.625 28.00 0.304 M65 8.017 7.892 28.37 4010 2020 (T) PS
8.625 32.00 0.352 H40 7.921 7.875 24.50 2860 2200 (P) PS
8.625 32.00 0.352 J55 7.921 7.875 24.50 3930 2530 (P) PSLBE
8.625 32.00 0.352 K55 7.921 7.875 24.50 3930 2530 (P) PSLBE
8.625 32.00 0.352 M65 7.921 7.875 24.50 4640 2740 (T) PSLB
8.625 36.00 0.400 J55 7.825 7.700 21.56 4460 3450 (P) PSLBE
8.625 36.00 0.400 K55 7.825 7.700 21.56 4460 3450 (P) PSLBE
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Table D.2 (continued)
D Linear

mass
t Grade d Drift D/t MIYPa �pcb Finishc

in. lbm
ft in. in. in. psi psi

8.625 36.00 0.400 M65 7.825 7.700 21.56 5280 3760 (P) PSLB
8.625 36.00 0.400 L80 7.825 7.700 21.56 6490 4100 (P) PLBE
8.625 36.00 0.400 N80 7.825 7.700 21.56 6490 4100 (P) PLBE
8.625 36.00 0.400 C90 7.825 7.700 21.56 7300 4250 (P) PLBE
8.625 36.00 0.400 R95 7.825 7.700 21.56 7710 4350 (T) PLBE
8.625 36.00 0.400 T95 7.825 7.700 21.56 7710 4350 (T) PLBE
8.625 40.00 0.450 M65 7.725 7.625 19.17 5930 4900 (P) PLBE
8.625 40.00 0.450 L80 7.725 7.625 19.17 7300 5520 (P) PLB
8.625 40.00 0.450 N80 7.725 7.625 19.17 7300 5520 (P) PLBE
8.625 40.00 0.450 C90 7.725 7.625 19.17 8220 5870 (P) PLBE
8.625 40.00 0.450 R95 7.725 7.625 19.17 8670 6020 (P) PLB
8.625 40.00 0.450 T95 7.725 7.625 19.17 8670 6020 (P) PLBE
8.625 40.00 0.450 P110 7.725 7.625 19.17 10040 6390 (P) PLBE
8.625 44.00 0.500 L80 7.625 7.500 17.25 8120 6950 (P) PLBE
8.625 44.00 0.500 N80 7.625 7.500 17.25 8120 6950 (P) PLBE
8.625 44.00 0.500 C90 7.625 7.500 17.25 9130 7490 (P) PLBE
8.625 44.00 0.500 R95 7.625 7.500 17.25 9640 7740 (P) PLBE
8.625 44.00 0.500 T95 7.625 7.500 17.25 9640 7740 (P) PLBE
8.625 44.00 0.500 P110 7.625 7.500 17.25 11160 8420 (P) PLBE
8.625 49.00 0.557 L80 7.511 7.386 15.48 9040 8570 (P) PLBE
8.625 49.00 0.557 N80 7.511 7.386 15.48 9040 8570 (P) PLBE
8.625 49.00 0.557 C90 7.511 7.386 15.48 10170 9340 (P) PLBE
8.625 49.00 0.557 R95 7.511 7.386 15.48 10740 9700 (P) PLBE
8.625 49.00 0.557 T95 7.511 7.386 15.48 10740 9700 (P) PLBE
8.625 49.00 0.557 P110 7.511 7.386 15.48 12430 10730 (P) PLBE
8.625 49.00 0.557 Q125 7.511 7.386 15.48 14130 11660 (P) PLBE

9.625 32.30 0.312 H40 9.001 8.845 30.85 2270 1370 (T) PS
9.625 36.00 0.352 H40 8.921 8.765 27.34 2560 1720 (T) PS
9.625 36.00 0.352 J55 8.921 8.765 27.34 3520 2020 (T) PSLB
9.625 36.00 0.352 K55 8.921 8.765 27.34 3520 2020 (T) PSLB
9.625 36.00 0.352 M65 8.921 8.765 27.34 4160 2190 (T) PSLB
9.625 40.00 0.395 J55 8.835 8.750 24.37 3950 2570 (P) PSLBE
9.625 40.00 0.395 K55 8.835 8.750 24.37 3950 2570 (P) PSLBE
9.625 40.00 0.395 M65 8.835 8.750 24.37 4670 2770 (T) PSLB

(continued on next page)
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Table D.2 (continued)
D Linear

mass
t Grade d Drift D/t MIYPa �pcb Finishc

in. lbm
ft in. in. in. psi psi

9.625 40.00 0.395 L80 8.835 8.750 24.37 5750 3090 (T) PLBE
9.625 40.00 0.395 N80 8.835 8.750 24.37 5750 3090 (T) PLBE
9.625 40.00 0.395 C90 8.835 8.750 24.37 6460 3260 (T) PLBE
9.625 40.00 0.395 R95 8.835 8.750 24.37 6820 3330 (T) PLBE
9.625 40.00 0.395 T95 8.835 8.750 24.37 6820 3330 (T) PLBE
9.625 43.50 0.435 M65 8.755 8.599 22.13 5140 3530 (P) PLB
9.625 43.50 0.435 L80 8.755 8.599 22.13 6330 3810 (P) PLBE
9.625 43.50 0.435 N80 8.755 8.599 22.13 6330 3810 (P) PLBE
9.625 43.50 0.435 C90 8.755 8.599 22.13 7120 4010 (T) PLBE
9.625 43.50 0.435 R95 8.755 8.599 22.13 7510 4130 (T) PLBE
9.625 43.50 0.435 T95 8.755 8.599 22.13 7510 4130 (T) PLBE
9.625 43.50 0.435 P110 8.755 8.599 22.13 8700 4420 (T) PLBE
9.625 47.00 0.472 M65 8.681 8.525 20.39 5580 4280 (P) PLB
9.625 47.00 0.472 L80 8.681 8.525 20.39 6870 4750 (P) PLBE
9.625 47.00 0.472 N80 8.681 8.525 20.39 6870 4750 (P) PLBE
9.625 47.00 0.472 C90 8.681 8.525 20.39 7720 4990 (P) PLBE
9.625 47.00 0.472 R95 8.681 8.525 20.39 8150 5090 (P) PLBE
9.625 47.00 0.472 T95 8.681 8.525 20.39 8150 5090 (P) PLBE
9.625 47.00 0.472 P110 8.681 8.525 20.39 9440 5300 (P) PLBE
9.625 47.00 0.472 Q125 8.681 8.525 20.39 10730 5630 (T) PLBE
9.625 53.50 0.545 L80 8.535 8.500 17.66 7930 6620 (P) PLBE
9.625 53.50 0.545 N80 8.535 8.500 17.66 7930 6620 (P) PLBE
9.625 53.50 0.545 C90 8.535 8.500 17.66 8920 7110 (P) PLBE
9.625 53.50 0.545 R95 8.535 8.500 17.66 9410 7340 (P) PLBE
9.625 53.50 0.545 T95 8.535 8.500 17.66 9410 7340 (P) PLBE
9.625 53.50 0.545 P110 8.535 8.500 17.66 10900 7950 (P) PLBE
9.625 53.50 0.545 Q125 8.535 8.500 17.66 12390 8440 (P) PLBE
9.625 58.40 0.595 L80 8.435 8.375 16.18 8650 7890 (P) PLB
9.625 58.40 0.595 N80 8.435 8.375 16.18 8650 7890 (P) PLB
9.625 58.40 0.595 C90 8.435 8.375 16.18 9740 8570 (P) PLB
9.625 58.40 0.595 R95 8.435 8.375 16.18 10280 8890 (P) PLB
9.625 58.40 0.595 T95 8.435 8.375 16.18 10280 8890 (P) PLB
9.625 58.40 0.595 P110 8.435 8.375 16.18 11900 9770 (P) PLB
9.625 58.40 0.595 Q125 8.435 8.375 16.18 13520 10540 (P) PLBE
9.625 59.40 0.609 C90 8.407 8.251 15.80 9970 8970 (P) PLB

(continued on next page)
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Table D.2 (continued)
D Linear

mass
t Grade d Drift D/t MIYPa �pcb Finishc

in. lbm
ft in. in. in. psi psi

9.625 59.40 0.609 T95 8.407 8.251 15.80 10520 9320 (P) P
9.625 64.90 0.672 C90 8.281 8.125 14.32 11000 10800 (P) P
9.625 64.90 0.672 T95 8.281 8.125 14.32 11610 11260 (P) P
9.625 70.30 0.734 C90 8.157 8.001 13.11 12010 12600 (P) P
9.625 70.30 0.734 T95 8.157 8.001 13.11 12680 13170 (P) P
9.625 75.60 0.797 C90 8.031 7.875 12.08 13040 13670 (Y) P
9.625 75.60 0.797 T95 8.031 7.875 12.08 13770 14430 (Y) P

10.750 32.75 0.279 H40 10.192 10.036 38.53 1820 840 (T) PS
10.750 40.50 0.350 H40 10.050 9.894 30.71 2280 1390 (T) PS
10.750 40.50 0.350 J55 10.050 9.894 30.71 3130 1580 (T) PSB
10.750 40.50 0.350 K55 10.050 9.894 30.71 3130 1580 (T) PSB
10.750 40.50 0.350 M65 10.050 9.894 30.71 3700 1670 (T) PSB
10.750 45.50 0.400 J55 9.950 9.875 26.88 3580 2090 (T) PSBE
10.750 45.50 0.400 K55 9.950 9.875 26.88 3580 2090 (T) PSBE
10.750 45.50 0.400 M65 9.950 9.875 26.88 4230 2270 (T) PSB
10.750 51.00 0.450 J55 9.850 9.694 23.89 4030 2710 (P) PSBE
10.750 51.00 0.450 K55 9.850 9.694 23.89 4030 2710 (P) PSBE
10.750 51.00 0.450 M65 9.850 9.694 23.89 4760 2870 (T) PSB
10.750 51.00 0.450 L80 9.850 9.694 23.89 5860 3220 (T) PSBE
10.750 51.00 0.450 N80 9.850 9.694 23.89 5860 3220 (T) PSBE
10.750 51.00 0.450 C90 9.850 9.694 23.89 6590 3400 (T) PSBE
10.750 51.00 0.450 R95 9.850 9.694 23.89 6960 3480 (T) PSBE
10.750 51.00 0.450 T95 9.850 9.694 23.89 6960 3480 (T) PSBE
10.750 51.00 0.450 P110 9.850 9.694 23.89 8060 3660 (T) PSBE
10.750 55.50 0.495 M65 9.760 9.625 21.72 5240 3690 (P) PSB
10.750 55.50 0.495 L80 9.760 9.625 21.72 6450 4020 (P) PSBE
10.750 55.50 0.495 N80 9.760 9.625 21.72 6450 4020 (P) PSBE
10.750 55.50 0.495 C90 9.760 9.625 21.72 7250 4160 (T) PSBE
10.750 55.50 0.495 R95 9.760 9.625 21.72 7660 4290 (T) PSBE
10.750 55.50 0.495 T95 9.760 9.625 21.72 7660 4290 (T) PSBE
10.750 55.50 0.495 P110 9.760 9.625 21.72 8860 4610 (T) PSBE
10.750 60.70 0.545 C90 9.660 9.504 19.72 7980 5460 (P) PSBE
10.750 60.70 0.545 T95 9.660 9.504 19.72 8430 5580 (P) PSBE
10.750 60.70 0.545 P110 9.660 9.504 19.72 9760 5880 (P) PSBE
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Table D.2 (continued)
D Linear

mass
t Grade d Drift D/t MIYPa �pcb Finishc

in. lbm
ft in. in. in. psi psi

10.750 60.70 0.545 Q125 9.660 9.504 19.72 11090 6070 (T) PSBE
10.750 65.70 0.595 C90 9.560 9.404 18.07 8720 6760 (P) PSBE
10.750 65.70 0.595 T95 9.560 9.404 18.07 9200 6970 (P) PSB
10.750 65.70 0.595 P110 9.560 9.404 18.07 10650 7500 (P) PSB
10.750 65.70 0.595 Q125 9.560 9.404 18.07 12110 7920 (P) PSB
10.750 73.20 0.672 C90 9.406 9.250 16.00 9850 8760 (P) PSB
10.750 73.20 0.672 T95 9.406 9.250 16.00 10390 9090 (P) P
10.750 79.20 0.734 C90 9.282 9.126 14.65 10750 10370 (P) P
10.750 79.20 0.734 T95 9.282 9.126 14.65 11350 10800 (P) P
10.750 85.30 0.797 C90 9.156 9.000 13.49 11680 12010 (P) P
10.750 85.30 0.797 T95 9.156 9.000 13.49 12330 12540 (P) P

11.750 42.00 0.333 H40 11.084 11.000 35.29 1980 1040 (T) PS
11.750 47.00 0.375 J55 11.000 10.844 31.33 3070 1510 (T) PSB
11.750 47.00 0.375 K55 11.000 10.844 31.33 3070 1510 (T) PSB
11.750 47.00 0.375 M65 11.000 10.844 31.33 3630 1590 (T) PSB
11.750 54.00 0.435 J55 10.880 10.724 27.01 3560 2070 (T) PSB
11.750 54.00 0.435 K55 10.880 10.724 27.01 3560 2070 (T) PSB
11.750 54.00 0.435 M65 10.880 10.724 27.01 4210 2250 (T) PSB
11.750 60.00 0.489 J55 10.772 10.625 24.03 4010 2670 (P) PSB
11.750 60.00 0.489 K55 10.772 10.625 24.03 4010 2670 (P) PSB
11.750 60.00 0.489 M65 10.772 10.625 24.03 4730 2840 (T) PSB
11.750 60.00 0.489 L80 10.772 10.625 24.03 5830 3180 (T) PSB
11.750 60.00 0.489 N80 10.772 10.625 24.03 5830 3180 (T) PSB
11.750 60.00 0.489 C90 10.772 10.625 24.03 6550 3360 (T) PSB
11.750 60.00 0.489 R95 10.772 10.625 24.03 6920 3440 (T) PSB
11.750 60.00 0.489 T95 10.772 10.625 24.03 6920 3440 (T) PSB
11.750 60.00 0.489 P110 10.772 10.625 24.03 8010 3610 (T) PSB
11.750 60.00 0.489 Q125 10.772 10.625 24.03 9100 3680 (T) PSB
11.750 65.00 0.534 L80 10.682 10.625 22.00 6360 3870 (P) P
11.750 65.00 0.534 N80 10.682 10.625 22.00 6360 3870 (P) P
11.750 65.00 0.534 C90 10.682 10.625 22.00 7160 4060 (T) P
11.750 65.00 0.534 R95 10.682 10.625 22.00 7560 4170 (T) P
11.750 65.00 0.534 T95 10.682 10.625 22.00 7560 4170 (T) P
11.750 65.00 0.534 P110 10.682 10.625 22.00 8750 4480 (T) P

(continued on next page)
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Table D.2 (continued)
D Linear

mass
t Grade d Drift D/t MIYPa �pcb Finishc

in. lbm
ft in. in. in. psi psi

11.750 65.00 0.534 Q125 10.682 10.625 22.00 9940 4690 (T) P
11.750 71.00 0.582 L80 10.586 10.430 20.19 6930 4880 (P) P
11.750 71.00 0.582 N80 10.586 10.430 20.19 6930 4880 (P) P
11.750 71.00 0.582 C90 10.586 10.430 20.19 7800 5130 (P) P
11.750 71.00 0.582 R95 10.586 10.430 20.19 8230 5240 (P) P
11.750 71.00 0.582 T95 10.586 10.430 20.19 8230 5240 (P) P
11.750 71.00 0.582 P110 10.586 10.430 20.19 9530 5470 (P) P
11.750 71.00 0.582 Q125 10.586 10.430 20.19 10840 5760 (T) P

13.375 48.00 0.330 H40 12.715 12.559 40.53 1730 740 (T) PS
13.375 54.50 0.380 J55 12.615 12.459 35.20 2730 1130 (T) PSB
13.375 54.50 0.380 K55 12.615 12.459 35.20 2730 1130 (T) PSB
13.375 54.50 0.380 M65 12.615 12.459 35.20 3230 1140 (E) PSB
13.375 61.00 0.430 J55 12.515 12.359 31.10 3090 1540 (T) PSB
13.375 61.00 0.430 K55 12.515 12.359 31.10 3090 1540 (T) PSB
13.375 61.00 0.430 M65 12.515 12.359 31.10 3660 1620 (T) PSB
13.375 68.00 0.480 J55 12.415 12.259 27.86 3450 1950 (T) PSB
13.375 68.00 0.480 K55 12.415 12.259 27.86 3450 1950 (T) PSB
13.375 68.00 0.480 M65 12.415 12.259 27.86 4080 2100 (T) PSB
13.375 68.00 0.480 L80 12.415 12.259 27.86 5020 2260 (T) PSB
13.375 68.00 0.480 N80 12.415 12.259 27.86 5020 2260 (T) PSB
13.375 68.00 0.480 C90 12.415 12.259 27.86 5650 2320 (T) PSB
13.375 68.00 0.480 R95 12.415 12.259 27.86 5970 2330 (T) PSB
13.375 68.00 0.480 T95 12.415 12.259 27.86 5970 2330 (T) PSB
13.375 68.00 0.480 P110 12.415 12.259 27.86 6910 2330 (E) PSB
13.375 72.00 0.514 L80 12.347 12.250 26.02 5380 2670 (T) PSB
13.375 72.00 0.514 N80 12.347 12.250 26.02 5380 2670 (T) PSB
13.375 72.00 0.514 C90 12.347 12.250 26.02 6050 2780 (T) PSB
13.375 72.00 0.514 R95 12.347 12.250 26.02 6390 2820 (T) PSB
13.375 72.00 0.514 T95 12.347 12.250 26.02 6390 2820 (T) PSB
13.375 72.00 0.514 P110 12.347 12.250 26.02 7400 2880 (T) PSB
13.375 72.00 0.514 Q125 12.347 12.250 26.02 8410 2880 (E) PSB

16.000 65.00 0.375 H40 15.250 15.062 42.67 1640 630 (E) PS
16.000 75.00 0.438 J55 15.124 14.936 36.53 2630 1020 (T) PSB
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Table D.2 (continued)
D Linear

mass
t Grade d Drift D/t MIYPa �pcb Finishc

in. lbm
ft in. in. in. psi psi

16.000 75.00 0.438 K55 15.124 14.936 36.53 2630 1020 (T) PSB
16.000 75.00 0.438 M65 15.124 14.936 36.53 3110 1020 (E) PSB
16.000 84.00 0.495 J55 15.010 14.822 32.32 2980 1410 (T) PSB
16.000 84.00 0.495 K55 15.010 14.822 32.32 2980 1410 (T) PSB
16.000 84.00 0.495 M65 15.010 14.822 32.32 3520 1460 (T) PSB
16.000 109.00 0.656 J55 14.688 14.500 24.39 3950 2560 (P) P
16.000 109.00 0.656 K55 14.688 14.500 24.39 3950 2560 (P) P
16.000 109.00 0.656 L80 14.688 14.500 24.39 5740 3080 (T) P
16.000 109.00 0.656 N80 14.688 14.500 24.39 5740 3080 (T) P
16.000 109.00 0.656 R95 14.688 14.500 24.39 6820 3320 (T) P
16.000 109.00 0.656 P110 14.688 14.500 24.39 7890 3470 (T) P
16.000 109.00 0.656 Q125 14.688 14.500 24.39 8970 3520 (T) P

18.625 87.50 0.435 H40 17.755 17.567 42.82 1630 630 (E) PS
18.625 87.50 0.435 J55 17.755 17.567 42.82 2250 630 (E) PSB
18.625 87.50 0.435 K55 17.755 17.567 42.82 2250 630 (E) PSB
18.625 87.50 0.435 M65 17.755 17.567 42.82 2660 630 (E) PSB

20.000 94.00 0.438 H40 19.124 18.936 45.66 1530 520 (E) PSL
20.000 94.00 0.438 J55 19.124 18.936 45.66 2110 520 (E) PSLB
20.000 94.00 0.438 K55 19.124 18.936 45.66 2110 520 (E) PSLB
20.000 94.00 0.438 M65 19.124 18.936 45.66 2490 520 (E) PSLB
20.000 106.50 0.500 J55 19.000 18.812 40.00 2410 770 (E) PSLB
20.000 106.50 0.500 K55 19.000 18.812 40.00 2410 770 (E) PSLB
20.000 106.50 0.500 M65 19.000 18.812 40.00 2840 770 (E) PSLB
20.000 133.00 0.635 J55 18.730 18.542 31.50 3060 1500 (T) PSLB
20.000 133.00 0.635 K55 18.730 18.542 31.50 3060 1500 (T) PSLB
a Internal yield pressure according to Eq. (7.12) with kwall = 0.875.
b Collapse mode: E = elastic, T = transition, P = plastic, Y = yield.
c Finish (API connections): P = plain end, S = STC, L = LTC, B = BTC, E = Extreme-line. A wide variety of

proprietary thread vendors also offer threaded connections.
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A
AFE, see Annular pressure build-up
Air gap, 413
American Petroleum Institute, 192, 199, 200, 204,

208, 210, 213, 218, 227, 228, 230, 233,
235, 243, 245–248, 252–255, 257,
259–262, 268, 270, 451, 527

Annular fluid expansion, see Annular pressure
build-up

Annular pressure build-up, 354, 459–461,
463–470, 473

as a low-probability, high-consequence event,
459, 461, 463

design principles, 463
all shoes are closed, 463, 468
every annulus must stand alone, 464
use a safety factor multiplier, 465
use the hottest temperature, 464
use the proper initial conditions, 465

mitigation, 463, 465, 466, 468, 471
annulus boundary flexibility, 468
annulus fluid properties, 466
annulus temperature change, 471
designer fluids, 466
foam spacer, 467, 470
formation fracture, 468
rupture disks, 468, 470
syntactic foam, 470, 471
vacuum-insulated tubing, see

Vacuum-insulated tubing
non-linear fluid behavior, 461
sources, 460

Annulus fluid heat-up, see Annular pressure
build-up

APB, see Annular pressure build-up
API, see American Petroleum Institute
Archimedes’ principle, 275, 276, 326
Artificial lift, 430
Associative operation, 496
Axial force, 280, 284, 318, 442
Axial load, 28, 29, 31, 100, 122, 197, 198, 204,

208, 217, 225–229, 260, 274, 277, 278,

285, 287, 288, 298–300, 304, 315–318,
321, 325, 326, 328–331, 333, 334, 337,
338, 440, 442, 444–447, 450–454, 457

distribution, 337
example problem, 325

Axial stress, 315, 316
Axial traction, 197, 315, 316
Axial yield, 337, 338

B
Barlow equation, 199, 200
Barrier envelope, 372
Bauschinger effect, 157, 159, 193

defined, 159
Beam equations for tube, 126

contact force, 147
Bending, 122, 141, 197, 273, 276, 277, 280, 281,

283, 290, 293, 298, 299, 301, 307, 456
moment, 299, 302
stiffness, 146

Bending stress, 298, 308, 456, 457
due to column buckling, 273, 312, 315, 453,

456
Blowout preventer, 4, 412
BOP, see Blowout preventer
Bottomhole pressure, 337
BTC, see Threaded connections, types, API

buttress thread casing
Buckling

bifurcation, 219, 220, 222, 235
column, see Column stability
snap-through, 219–221, 223, 241, 242

Buoyancy factor, 277, 290

C
CAL, see Threaded connections, qualification and

testing, connection application level
Casing

intermediate, see Intermediate casing
production, see Production casing
surface, see Surface casing

Casing seat selection, 395, 398
bottom-up method, 21, 415–421

563



564 Index

chemical sensitivity, see Rock, deficiencies as a
structure, chemical sensitivity

mobile formation, 20, 415
regulatory requirements, 20, 415
riser margin, see Riser margin
top-down method, 21, 417, 421–423

Casing wear, 307, 430, 474, 475, 479
contact force per length, 475, 476
design work flow, 482
drill ahead through buckled casing, 273, 481
effect on external pressure resistance, 242, 480
effect on internal pressure resistance, 213, 480
governing equations, 474
residence length, 475
wear factor, 474–476

defined, 474
wear volume and wall loss, 478

Cauchy deformation tensor, 40, 41, 44
defined, 41

Cauchy stress tensor, 75, 77, 83, 113–116, 157,
160, 201

CEE, see Threaded connections, qualification and
testing, connection evaluation envelope

Cement, 236, 397, 456, 467, 471
and APB mitigation, 466
between concentric casings, 238–242
float fails, 356
initial condition for casing, 354
plug bumps, 354–356
role in external fluid scenario, 375
sheath, 236, 240, 337, 375, 430, 431
thickening time, 354
top of cement, 365, 367, 370, 371, 440,

444–448, 452, 453, 468, 470
effect on APB design, 463, 464

Characteristic equation, 507
Characteristic value, see Eigenvalue
Characteristic vector, see Eigenvector
Coefficient of linear thermal stress

isotropic scalar, 119
tensor, 118

Collapse resistance, 181, 204, 215–222, 225, 228,
229, 233, 239, 242, 273, 289, 315, 325,
337, 338, 377, 389, 457, 469, 480

analogy to column buckling, 215
API average, 222, 225, 227, 228
API collapse modes, 224, 230, 231

elastic collapse mode, 218, 222, 225–231, 233
plastic collapse mode, 218, 225–232

transition collapse mode, 228, 230–233
yield collapse mode, 218, 222, 225, 227,

229–232
API minimum, 218, 227, 228, 451
design summary, 30
modeling, 222
non-uniform loading, 215, 235–240

concentric casing, 238, 240–242
design guidelines, 240
importance of wall thickness, 237
point loading, 236
thick-walled casing, 237, 238, 240, 242

uniform loading, 215, 228
example problem, 231

Column pressure
ideal gas, 343
real gas, 345

Column stability, 122, 141, 273, 275, 277, 278,
285, 442

buckling check for hydrostatic-set packer, 334
critical buckling force, 284, 285
elastic buckling, 216
plastic buckling, 204, 216
post-buckled configuration, 293, 308

helical buckling, 283, 284, 288, 293, 305,
307, 308, 310, 312, 313, 319, 320, 453

lock-up, 284
sinusoidal buckling, 283, 284, 293, 305, 307,

308, 310, 319, 320
undesirable consequences, 273

Commutative operation, 486, 488, 495
Completion fluid

defined, 339
Compressibility

fluid, 460
Compressibility factor, 346

defined, 345
Conservation of mass, 130, 131
Conservation of momentum, 128, 130, 131
Control surface, 128–130, 132

defined, 128
Control volume, 128–130, 132, 133, 135, 138

defined, 128
Coordinate system, 144, 515, 516

Cartesian, 33, 34, 36, 58, 73, 108, 187, 515–518
curvilinear, 50
cylindrical, 33, 34, 36, 50, 51, 53, 56, 67, 69,

73, 74, 84, 93, 108, 111, 123, 124, 187,
345, 439, 500, 502, 515
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defined, 50
global material, 34–38, 41–47, 50, 51, 53, 57,

73, 77, 83, 94, 113, 128, 132, 148, 160,
202, 277, 308, 320, 500, 502, 515–519, 521

polar, 51
rectangular, see Cartesian, 84
spatial, 34–36, 38, 41–47, 51, 53, 67, 70, 73, 75,

77, 78, 83, 93, 108, 114, 127, 132, 133,
160, 202, 308, 439, 515, 516

Corrosion
external, 430

Critical buckling force, 293, 307, 310
curved wellbore, 305
inclined wellbore, 304
summary, 307
vertical wellbore, 299, 448

Cross-flow, 396
CSS, see Cyclic Steam Stimulation
Curvature

due to buckling, 273, 309
wellbore, 273

Cyclic loading, 159
Cyclic Steam Stimulation, 267

D
Datum

rotary kelly bushing, 399
Deformation, 38, 77, 117, 122, 143

elastic, 117
isotropic, 117

example problem, 39, 42, 43, 46
plastic, 117

Deformation gradient, 33, 36, 44, 77, 117
cylindrical coordinates, 53
defined, 36
example problem, 38

Depleted reservoir, 363, 405
Design

by hand, 337
casing seat determination, 20, 438
deterministic, 337
importance of triaxial yield, 337
input data, 19
probabilistic, 403
sizing, 21, 439

Design equation, 192, 198, 199, 208, 210, 213,
227, 338, 385, 387, 388

Design factor, 337, 385, 386, 455
conventional, 388

collapse, 389, 390
collapse example problem, 390
triaxial yield, 388, 389

defined, 385
table of typical values, 29

Determinant, see Second order tensor, invariants, I3
Differential sticking, 20, 404, 405, 407

described, 396
Differential sticking limit, 404–406
Displacement, 33, 47, 57, 70, 144

defined, 35
Displacement gradient, 47, 144
Distributive operation, 488, 490, 496
Divergence theorem, see Gauss theorem
Drilling fluid, 341, 363, 369, 378–380, 395–397,

412
column pressure, 341

incompressible constituents, 342
incompressible solids, 342
single fluid with no solids, 342
single incompressible fluid, 343

degraded, 363
density, 369, 395, 396, 398–401, 403, 405–407,

409, 410, 412, 414–423, 431, 438, 520–523
acceptable range, 20, 21, 402–404, 407,

410–414, 416, 417, 420–422, 521, 524
defined, 398

Drilling riser, 412
Ductile rupture, 160, 197, 200, 201, 204, 205,

208, 210, 469
design summary, 30
example problem, 210

Dyad, see Tensor product

E
ECD, see Equivalent circulating density
Effective force, 131, 141, 208, 273, 274, 276–278,

283–285, 287, 292, 293, 305–307, 312,
334, 440, 442, 443, 448

derivative, 141
equivalent system, 274, 276
explained, 141, 277
extending known solutions, 281
generalized, 141
neutral point, 284, 286, 287, 290, 312, 320

defined, 284
Effective stress, 174–176, 195, 204

neutral point, 298
Effective weight, 277, 288, 289, 305–307
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neutral buoyancy, 289
Eigenvalue, 45, 507
Eigenvector, 45, 507
Elastic behavior, 151, 157
Elastic stiffness tensor, 118
Energy method, 294, 299

conservative system, 295, 296
external work, 294, 310
heat, 294
internal energy, 294, 298, 310

due to axial force, 298, 300, 310
due to bending, 299, 310

internal work, 294
kinetic energy, 294, 298
potential energy, 295, 296, 300
principle of stationary potential energy, 295
variational solution

kinetic boundary conditions, 301
natural boundary conditions, 302

Engineering stress, see Piola-Kirchhoff stress tensor,
first kind

Epsilon-delta identity, 492
Equilibrium, 122, 123, 293–298, 300–302

defined, 294
neutral stability, 298
stable, 293, 295–298

example problem, 296
unstable, 298

Equilibrium equations, see Stress, equations of
motion

Equivalent circulating density, 410, 411
Euler buckling load, 277, 278, 281
Euler column

example problem, 282
Eulerian strain tensor, 33, 38–40, 44, 46, 47, 57,

67, 75, 187
cylindrical coordinates, 67, 68, 70
defined, 44

Example tubingless design, 437
axial force distribution, 444
axial force distribution above cement top, 445
axial force distribution below cement top, 446
axial force distribution when buckling above

cement top, 448
comments, 456
length change, 440
preliminary calculations, 439
problem statement, 437
safety factors, 451

Expandable tubulars, 30, 213, 431
External pressure, 19, 23–25, 27, 30, 122, 141,

177–179, 181, 197, 199, 210, 215, 217,
220–223, 228, 241, 274, 275, 290, 323,
334, 337, 349

change, 28, 315, 317, 318, 323, 325, 329, 332,
337

differential, 24, 451, 456
distribution, 25, 26, 31, 338, 350–353, 356, 358,

360, 362, 365, 367, 370–374, 376, 377,
379, 381, 382, 384–387, 456

effect on column stability, 274, 275, 280
External pressure resistance, see Collapse resistance

F
Filter cake, 396, 404
First law of thermodynamics, 294
Floating casing string, 287
Fluid gradient, 337
Force, 77–79, 85, 86, 276–278, 285, 286

and mass, 8
body, 77–80, 85–88, 97, 110
contact, 77–80
external, 77, 79
gravitational, 77
intensity, 77, 79
internal, 79, 80

Force vector, see Traction, designation as force
vector

Formation compaction, 397
Fourier’s inequality, 294, 295
Fracture pressure, 365, 397, 404, 431

gradient, 20, 401–406, 412, 415, 438
defined, 399

Fracture toughness, 197
Free body diagram, 274, 315
Frenet-Serret formulas, 509, 511

curvature, 509, 511–513
example problem, 511
radius of curvature, 509, 511
torsion, 511

Friction, 284, 288, 349, 350, 352

G
Gas constants, 15
Gauss theorem, 130, 132, 340
Green deformation tensor, 40, 43–45

defined, 41
example problem, 42
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I
Inelastic behavior, see Yield, post-yield behavior
Inflow performance relation, 428, 429
Initial condition, 26, 28, 29, 321, 328, 332, 349,

352, 442, 444, 447, 456
design, 337

Initial state, see Load case, initial condition
Intermediate casing, 337

sizing, 430
Internal pressure, 19, 23–25, 27, 122, 141, 177,

179, 180, 182, 183, 193, 197, 199, 200,
215, 228, 229, 274, 290, 323, 327, 330,
334, 337, 338, 437, 440, 441, 456

change, 28, 315, 317, 318, 323, 325, 329, 330,
332, 337

differential, 24, 456
distribution, 25, 26, 31, 338, 350–353, 356, 358,

360, 362, 365, 367, 370–374, 376, 377,
379, 381, 382, 384–387, 456

effect on column stability, 274, 275, 281
effect on testing, 292

Internal pressure resistance, 181, 197, 199, 204,
213, 215, 242, 273, 315, 469, 480

capped end, 198
design summary, 30
no axial force, no external pressure, 199

IPR, see Inflow performance relation

J
Jacobian

defined, 49

K
Kick intensity

defined, 423
Kick tolerance, 21, 422–426

calculation, 424
comparison of volumes, 426
influx height, 423–425
influx volume, 425

defined, 423
example problem, 426

Kronecker delta, 35, 53, 492

L
Lagrangian strain tensor, 33, 38–40, 42–44, 46, 47,

67, 75
cylindrical coordinates, 50, 54, 57
defined, 42

example problem, 43
Lamé constants, 119
Lamé equations, 73, 125, 185, 200
Langrangian strain tensor, 67
Lateral buckling, see Column stability, post-buckled

configuration, sinusoidal buckling
Length change, 29, 316, 318, 319, 322–324,

327–334, 440, 442, 444–446
and related axial force, 315–317, 327, 330, 331
due to column buckling, 273
sources, 316, 442, 444

ballooning, 28, 317, 323, 325, 329, 332, 443
buckling, 28, 308, 319, 320, 324, 440, 443,

449–451
self-weight, 321, 324
shoulder, 28, 318, 324–326, 329, 333, 440,

443, 447
temperature, 28, 317, 323, 443, 448

stretch calculation example, 322
Levi-Civita symbol, 491
Limit state, 30, 151, 153, 161, 186, 260, 455
Limit state equation, 117, 184, 192, 197, 198, 204,

208, 212, 227, 235, 242, 387
Linear coefficient of thermal expansion

defined, 122
Liner, 338

defined, 5
effect on pressure test, 364, 366

Liner hanger, 431
Load case, 23, 24, 26, 28, 29, 31, 32, 439, 440,

442, 447, 449, 454, 455
casing

drill ahead, 25, 370
initial condition, 25, 354, 356, 444
initial condition example problem, 355, 444
overpull, 25, 349, 351
pre-installation, 349
pressure test, 25, 365
running in hole, 25, 349, 350

defined, 337
initial condition, 351, 352

annular pressure build-up, 354
conventional design, 354

production casing
packer leak, 25, 382
pressure test, 369
riser margin, 381
tubing leak, 25, 369, 371

production tubing
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annulus pressure test, 26, 383, 384
evacuation, 26, 384, 387, 437
initial condition, 26, 355, 358, 360, 362
injection, 26, 373, 437
overpull, 26, 351, 353
pre-installation, 350
pressure test, 26, 372, 437
production, 26, 373, 374, 437
production from long term shut-in, 26, 383,

385
pump in to kill well, 26, 375, 376
running in hole, 26, 350, 352
safety valve leak, 26, 383, 386
shut-in, 26, 375, 377

surface and intermediate casing
drill ahead, 369
lost circulation, 25, 378, 379
lost circulation example problem, 380
pressure test, 364
riser margin, 25, 381
well control, 25, 364, 367

tubingless design example, 440–448, 450–453,
455–457

Logarithmic strain tensor, 33, 38, 40, 44–47, 57,
75, 160–162, 201

cylindrical coordinates, 73
axisymmetric deformation, 74
generalized plane strain, 74
generalized plane strain, axisymmetric, 74

defined, 45
example problem, 45

Lost circulation, 397
LTC, see Threaded connections, types, API long

round thread casing

M
Mass

and force, see Force, and mass
Material derivative

defined, 129
Material force, see Force
Mean sea level, 412
Measured depth, 317
Minimum internal yield pressure, 199, 200, 337,

338, 364
MIYP, see Minimum internal yield pressure
ML, see Mudline
Mohr-Coulomb failure model, 408–411, 520, 521
Mohr’s circle, 111, 112

Moment, 77, 81, 87–89
Moment of inertia, 82
MSL, see Mean sea level
Mudline, 412
Multiple completion, 430

N
Necking

defined, 157
Notation, 16

direct, 16, 486
index, 16, 486

example problem, 511
Numerical analysis, 245

O
Ovality

defined, 224
manufactured, 220, 221, 241
measured, 224

Overpull, 349, 351

P
Packer, 273, 281, 437

hydraulic-set, 327, 330, 333, 357, 360
example problem, 327

hydrostatic-set, 331, 334, 359, 362
example problem, 331

mechanically-set, 357
open hole, 397
setting pressure, 327, 329, 331, 333, 334

Packer fluid
defined, 339

PBR, see Polished bore receptacle
Permeability, 396
Permutation symbol, see Levi-Civita symbol
Piola-Kirchhoff stress tensor, 113, 116

first kind, 113–116
example problem, 114, 157

infinitesimal deformation, 116, 516
second kind, 115

Planar isotropy, 118
Plastic behavior, see Yield, post-yield behavior
Poisson’s ratio, 120, 157, 218, 317
Polished bore receptacle, 233, 273, 464

collapse, 233
Polytetrafluoroethylene, 261–263
POOH, see Pull out of hole
Pore pressure, 354, 378, 396, 398, 400, 404–406,

411, 412, 431
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external fluid for casing load cases, 363
gradient, 20, 399–406, 412, 413, 415, 438

defined, 399
Position, 33

current, see spatial
material, 33
original, see material
spatial, 34

Post buckling
curved wellbore, 313
inclined wellbore, 312
vertical wellbore, 308

Pressure
distribution, 339
external, see External pressure
flowing, 348
hydrostatic, 339
internal, see Internal pressure

Principle of virtual work, 295
Production casing, 337, 362, 437, 462, 463, 471

sizing, 429
Production tubing, 337, 363, 437

sizing, 428
PTFE, see polytetrafluoroethylene
Pull out of hole, 349, 403
Pullout, see Threaded connections, joint strength,

jumpout

R
Right-hand rule, 490
Rigid body motion, 33
RIH, see Run in hole
Riser margin, 20, 381, 412, 414

defined, 412
RKB, see Rotary kelly bushing
ROB, see Rotate off bottom
Rock

deficiencies as a structure, 395
chemical sensitivity, 20, 398, 415
permeability, 396
weakness, 20, 397, 415

fracture, 397
sandstone, 396
shale, 396

Rotary kelly bushing, 338
Rotate off bottom, 349
Rotation, 38

defined, 33
example problem, 39, 42, 43, 46

Run in hole, 288, 349, 350, 403

S
Safety factor, 385

conventional, 388
axial, 452, 457
collapse, 389, 390, 451, 452, 457
triaxial yield, 389, 452–454, 456

defined, 385
radial, 390–392, 439

extension, 393, 394
extension to multiple limit states, 393
extension to non-radial load lines, 393
triaxial yield example problem, 392

Safety margin
defined, 385

SAGD, see Steam Assisted Gravity Drainage
Salt

creep, 235, 236, 239, 240, 397
Scab liner

defined, 6
Scalar, 485
Sea water, 412
Secant modulus, 159

defined, 153
Second order tensor, 77, 494

addition, 494
contraction

defined, 495
coordinate transformation, 502

example problem, 84, 503
inverse, 503

coordinate transformation matrix
defined, 503

eigenvectors, 507
identity

defined, 37
scalar invariants, 505, 508

I1, 505
I2, 505
I3, 506

scalar multiplication, 495, 496
symmetric

defined, 494
tensor contraction product, 495
transpose, 497

defined, 494
Self energizing seal, 264, 265
Shock load, 99
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dropped tubular, 108
Soft string model, 349, 476, 478
Specific volume

defined, 343
SSSV, see Subsurface safety valve
Standardization, 430
STC, see Threaded connections, types, API short

round thread casing
Steam Assisted Gravity Drainage, 267
Strain, 33, 39, 75, 77, 117, 118, 120, 121, 125

area change, 47, 50, 58, 113
axisymmetric, 33, 64, 71
beam

derived, 143
middle surface, 145

choosing a strain tensor, 75
generalized plane strain, 65, 71, 122, 123

axisymmetric, 66, 72
axisymmetric, infinitesimal, 66, 72

infinitesimal, 33, 40, 47, 57, 70, 100, 122,
143–145, 187, 188

axisymmetric, 65, 71, 123
physical interpretation, 58
physical interpretation (extension), 58, 60, 61
physical interpretation (shear), 61–64

plane strain, 66, 72, 123, 125
relating definitions, 46
volume change, 47, 48, 57, 58, 70

Stress, 75, 77, 79, 83–86, 117, 118, 120, 125, 132,
137, 191, 273

axisymmetric, 113, 122
basic concepts, 77
components, 83–85, 87, 94

sign convention, 83, 84
deviatoric, 167, 191

defined, 167
equations of motion, 86, 87, 97, 123

tube cross section, 122
hydrostatic, 162–164, 172, 178
mean, 162, 167

defined, 162
plane stress, 111
principal, 162–171, 515, 516, 518, 520–523

defined, 89
Stretch ratio, 47

defined, 44
Subsea wellhead, 338
Subsurface safety valve, 383
Surface casing, 337

sizing, 430
Surface pressure, 337
Surge margin, 403, 404, 407, 413, 414
Swab margin, 403, 404, 407, 413, 414
Swab pressure, 423

T
Tangent modulus, 159

defined, 153
TAP, see Annular pressure build-up
Temperature, 23, 25, 31, 117, 118, 317, 322, 325,

337, 455, 456
change, 28, 122, 315–317, 323, 325, 337
distribution, 25, 26, 322, 350–353, 356, 358,

360, 362, 365, 367, 370–374, 376, 377,
379, 381, 382, 384–387

geostatic, 355
unit conversion, 15

Tensor
first order, see Vector
zeroth order, see Scalar

Tensor and matrix operations, 497
Tensor product, 495
Threaded connections, 30, 245, 318, 321, 325,

438, 452, 454, 457, 462–464, 470–473, 481
compression joint efficiency, 250, 251, 260
critical cross-sectional area, 252, 253, 255, 256
elements, 246
external pressure resistance, 266
flush internal profile, 266
internal pressure resistance, 260, 266
joint strength, 252, 253, 255, 260, 337

defined, 252
jumpout, 254, 257–259

lead
defined, 247

pitch
defined, 247

pitch diameter, 247
defined, 247

pitch line
defined, 247

qualification and testing, 30, 267, 292, 452, 463
connection application level, 268
connection evaluation envelope, 267, 268
Series A test, 268
Series B test, 268
Series C test, 268
test load envelope, 268
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seal, 245, 261
assembly, 264
coating, 263
contact stress profile, 264
galling, 263
metal-to-metal, 245, 247, 249–252, 261–267
seal ring, 245, 248, 249, 251, 261, 262
surface roughness, 263
thread lubricant, 245, 261

stab flank
defined, 247

taper
defined, 247

tension joint efficiency, 250, 251, 254–257
defined, 253

thread crest
defined, 246

thread form, 245
API buttress, 247, 248, 254, 259, 262
API round thread, 248, 251, 254, 256, 257,

259, 261, 262
hook thread, 259
negative load flank, 249–251, 259, 260
negative stab flank, 249–251, 260
wedge thread, 260

thread height
defined, 247

thread load flank
defined, 247

thread root
defined, 246

thread taper
defined, 266

torque shoulder, 245, 247, 249–252, 267
torsional resistance, 266
types, 247

API buttress thread casing, 247, 248, 257,
259, 261

API casing, 247, 253
API EUE tubing, 251, 254
API extreme-line, 254
API IJ tubing, 254
API long round thread casing, 247
API NUE tubing, 247, 254
API short round thread casing, 247
flush integral, 250, 481
non-flush integral, 249, 481
threaded and coupled, 249
two-step tubing and work string, 252

upsetting, 251, 256
Tieback, 363, 364

defined, 6
TLE, see Threaded connections, qualification and

testing, test load envelope
TOC, see Cement, top of cement
Torque-turn graph, 264
Trace, see Second order tensor, invariants, I1
Traction, 77, 80–83, 86

average, 79–83
defined, 78
designation as force vector, 79
example problem, 81
local, 80, 81, 83, 85

from stress tensor, 85, 108, 110
Translation, 38

defined, 33
example problem, 38, 42, 43, 45

Trapped annulus pressure, see Annular pressured
build-up

Triaxial compression test, 407, 408
Trip in, see Run in hole
Trip out, see Pull out of hole
True force, see Force
True stress, see Cauchy stress tensor
Tubing

production, see Production tubing
Tubing flow performance, 429
Tubingless completion, 437

defined, 357
Tubular sizing, 428

example problem, 432
Tubular types, 2

by function, 2
conductor casing, 3
intermediate casing, 4
production casing, 4
production tubing, 5
surface casing, 3

by interval, 5
liner, 5
long string, 5
scab liner, 6
tieback, 6

U
Ultimate stress, 30, 155, 208, 252
Uncertainty, 337, 403–405
Unit conversion
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acceleration, 10
area, 8
curvature, 11
dry volume, 9
force, 12
length, 8
mass, 12
mass density, 12
pressure, 13
pressure gradient, 14
temperature, 14
velocity, 10
volumetric flow rate, 11
wet volume, 9

Unit systems, 7
Unit vector, 41, 163, 164, 299

base, 41, 50–52, 54, 67, 133, 148, 163, 165,
517, 518

defined, 36
dependence on �, 52

binormal, 509–513
normal, 78, 509, 510, 512, 513
of direction, 44
surface, 129, 132
tangent, 509, 510, 512, 513

V
Vacuum-insulated tubing, 471, 472

mechanical design, 471
thermal design, 472, 473

Vector, 485
addition, 486, 487
component, 485, 486
coordinate transformation, 498

example problem, 500
inverse, 499

coordinate transformation matrix
defined, 499

cross product, 490
distributive, 490
example problem, 492, 493
scalar multiplication, 491

dot product, 55, 68, 69, 114, 487, 495
commutative, 488
distributive, 488
example problem, 83, 488, 489
scalar multiplication, 488

dotproduct, 489
inner product, see Vector, dot product

scalar multiplication, 487
shifter tensor, 35, 36
transpose, 494, 496

Vertical depth, 317
VIT, see Vacuum-insulated tubing
VME stress, see Yield, von Mises yield criterion,

von Mises equivalent stress

W
Wash-over operation, 430
Water depth, 413
Well control, 364, 396
Wellbore

low side of hole, 515
Wellbore pressure, 405, 412, 413

gradient, 412
Wellbore stability, 20, 398, 406, 407, 411, 412

defined, 406
equations for stress, 515

Wellbore trajectory, 509, 511, 512
azimuth, 512
inclination, 511
measured depth, 511
Minimum Curvature model, 512–514

example problem, 511
survey station, 511–514
tortuosity, 293

Work, 294, 295, 297, 298

Y
Yield, 117, 122, 151, 154, 156–163, 165, 166, 168,

169, 171, 173, 175, 176, 178, 179,
182–184, 186, 189, 191–195, 197, 198,
200, 207, 218, 222, 273, 338, 452, 480

anisotropic, 193–195
design summary, 30
multiple dimensions, 184, 186, 197, 198, 207

design equation, 184, 186
pi-plane, 163–165, 171, 172, 175
post-yield behavior, 117, 151, 156–159, 186,

187, 189, 190
flow rule, 189
hardening law, 167, 190
isotropic hardening, 191, 194, 203, 212
kinematic hardening, 193, 195
loading, 187, 188
neutral loading, 188
plastic strain, 157, 160, 161, 187–192, 194
unloading, 188
work-hardening, 156, 189, 233, 234, 238
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strain space, 151
stress space, 151, 156, 165, 167
Tresca yield criterion, 169, 171–173, 189, 207,

237
uniaxial, 204

0.2% offset, 154
API definition, 154, 452
Ludwik’s model, 160, 162
Needleman’s model, 159, 160, 233, 234
stress-strain curve, 120, 151–157, 159–161,

169, 171, 187, 188, 191–193, 215, 223, 299
von Mises yield criterion, 162, 166, 167, 169,

172–176, 178, 179, 181, 186, 191–195,
203, 207, 229

expression with axial stress, 176, 179
expression with axial stress and internal

pressure, 176, 177
expression with effective stress, 174–176, 182
simple expression, 179, 180, 182, 183
von Mises equivalent stress, 181, 200, 452

with bending, 183
without bending, 173

Yield stress, 30, 153–159, 161, 166, 169, 171,
182–184, 191, 193–195, 217, 218, 228,
229, 234, 238, 252, 337, 451, 455

Yield surface, 188–191, 193–195, 456
Young’s modulus, 218

defined, 152
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