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Preface

Just two years ago, the authors published Formation Testing Pressure 
Transient and Contamination Analysis with Scrivener Publishing, focusing 
on advanced forward models and inverse solutions pertinent to modern 
interpretation and job planning. Many of the new models were exact ana-
lytical solutions. For example, the fl agship module FT-00 solved a general 
formulation allowing for anisotropic media, skin eff ects and fl owline stor-
age pressure distortions; inverse models complementing this solution were 
able to provide horizontal and vertical permeabilities at any dip angle for 
both linear liquid and nonlinear gas fl ows. We could have stopped with 
these very satisfying results, but the “bug” that haunts researchers is a ter-
rible beast which never sleeps.

Our results required steady-state pressure drop data at both source 
and observation probes, a limitation that restricted their applicability to 
medium-to-high mobility applications. For modern low-mobility reser-
voirs, this could mean hour-long wait times or more, implying low effi  -
ciencies, high costs and increasing risks of lost tools. So the authors asked, 
“Are there physical processes that take advantage of low mobilities – pro-
viding spherical permeability predictions within seconds?” Later, this took 
an even more ambitious focus. “Is it possible to predict both horizontal and 
vertical permeability, also within seconds, using only standard dual-probe 
tools?”

It is well known that fast transient drawdown-buildup methods employ-
ing single probes could, at best, provide only the “spherical permeability” 
k

h
2/3k

v
1/3. Because the two perms can vary by a factor of ten in anisotropic 

media, spherical predictions are limited in usefulness – a serious issue since 
both are crucial to hydraulic fracturing, borehole stability, and so on. A 
second equation was required to uniquely provide two numbers –  ideally, 
one that could be rapidly evaluated from early time data. We successfully 
followed one important clue. In resistivity logging, where time delays and 
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amplitude decays between transmitter and receiver coils are used to deter-
mine formation resistivity, the quantity “sin2  /R

h
  +  cos2    /R

v
” always 

appeared, where  is the dip angle. In fact, the more conductive (diff usive) 
the medium, the better the well log. Finding an estimate for “sin2  /k

h
 + 

cos2 /k
v
” would surely help predict the relative values of horizontal and 

vertical permeability for a known k
h

 2/3k
v

 1/3. Th is observation motivated us 
to develop formation testing analogies to electromagnetic logging – our 
key results are reported in Chapters 3 and 4.

Th e authors are pleased to present these important new results, and the 
present book, which completely explains the ideas, methods, equations and 
algorithms, also provides detailed calculations and applications examples. 
At the present time, we are developing sophisticated test fi xtures to validate 
our methods and calibrate new tools. Th is is surely an exciting time for 
formation tester development and for petroleum exploration well logging.

It is important to emphasize that the approaches developed here did not 
materialize overnight – they required a long-term commitment to under-
standing the fundamental physics, developing analogies between seem-
ingly diff erent disciplines like fl uid dynamics and electromagnetics, and an 
obsession with solving important problems that ultimately benefi t every-
one in society. Th e authors recognize that creative work requires continu-
ing motivation and investment in people – so our endeavors will continue, 
whether or not oil prices drop further – we won’t be the ones turning out 
the lights anytime soon.

Wilson C. Chin, Ph.D., M.I.T.
Houston, Texas

Email: wilsonchin@aol.com
Phone: (832) 483-6899
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1
Basic Ideas, Interpretation Issues

and Modeling Hierarchies

In this opening chapter, we informally introduce some of the subjects
covered in the present manuscript, a sequel to the book Formation Testing
Pressure Transient and Contamination Analysis published by the present authors
with John Wiley & Sons as recently as 2014.  While that work contained many
new materials not previously available, the present provides even more
interpretation methods, algorithms and extensions resulting from the rapid pace
of research advances achieved over the intervening two years.  The content
offered in this publication is intended to not only stimulate innovation in
pressure transient analysis, but encourage early and confident acceptance of new
approaches certain to make exploration more efficient and cost-effective.

1.1  Background and Approaches

What are formation testers?  Simply said, they are borehole logging
instruments which, when pressed against the sandface, extract or “sample”
formation fluids for detailed examination at the surface, e.g., as illustrated in
Figure 1.1.  By-products of the sampling process are flowline pressure transient
histories associated with pumping actions, which can be interrogated for
valuable information related to formation properties like mobility, permeability,
anisotropy and pore pressure.  The earliest methods, more than five decades old,
are based on well known formulas like “ks = CQ /(2 rp P)” and gave only
spherical permeabilities (subscripted by “s”).  These approaches required long
wait times for steady-state pressure drops P to develop.  Later, more flexible
approaches using Horner-type approaches were developed; while decreasing
wait times, they unfortunately required additional rock and fluid information,
i.e., porosity and compressibility, introducing inconvenience and potential error.
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The above formula, which again required steady conditions, was excellent
for high mobility formations where pressure equilibrium could be achieved in
minutes or seconds.  However, it does not apply in the presence of larger flow
line volumes when mobilities are low.  Pressures normally indicative of the
downhole flow environment are initially forced to compress or expand the fluid
cushion residing in the line so that formation characteristics are obscured or
hidden – an analogy can be made to gauging the power of a boxer’s punch with
the boxer wearing heavily padded gloves.  When flowline volume effects are
large, bearing in mind that “large” is relative and depends on unknown fluid
compressibility and mobility, measured pressures are distorted and cannot be
used to calculate properties like mobility, permeability or viscosity – the Darcy
component of pressure cannot be identified (the foregoing problem is akin to
“wellbore storage” issues in well testing).  In response to this, petroleum
engineers simply waited for flowline effects to dissipate or subside, which in
low mobility applications may require many hours.  Not only did this increase
logging time and expense, but the risk of stuck tools rose substantially.
Flowline storage problems had been accepted as inevitable until a series of
interesting breakthroughs achieved in the 1990s.

Figure 1.1.   CNOOC/COSL single and dual-probe formation testers.

In graduate school, students are taught that boundary value problems
governing physical phenomena consist of partial differential equations
constrained by boundary and initial conditions.  Solve the relevant formulation
and the problem is fully understood.  But the real problem is practical: many
important formulations cannot be solved in closed analytical form, so that any
physical insights and convenient formulas that would have been useful remain
hidden in numerical data.  And computational solutions are only partly reliable:
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“artificial viscosities” arising from truncation and round-off errors contribute to
uncertainties in permeability.  Mark Proett, the author’s colleague and friend at
Halliburton (now with Saudi Aramco), developed a “boundary condition only”
analytical approach valid at early times when storage and flow effects were
equally strong (a similar approach developed for isotropic media at Baker-
Hughes evolved to become the company’s “formation rate analysis”).

Proett’s approach is discussed in United States Patent No. 5,602,334,
“Wireline Formation Testing for Low Permeability Formations Utilizing
Pressure Transients,” awarded to M.A. Proett and M.C. Waid in February 1997.
From its Abstract, “An improved formation testing method for measuring initial
sandface pressure and formation permeability in tight zone formations
exhibiting formation permeabilities on the order of 1.0-0.001 millidarcies based
on pressure transients which occur shortly after the tester enters its pressure
buildup cycle and substantially before reaching final buildup pressure. The
method makes an estimate of formation permeability based on fluid
decompression transients which occur in the formation tester flowlines which
occur shortly after the tester begins its buildup cycle. The method further
estimates initial sandface pressure based on the change in pressure over time
shortly after beginning the buildup phase. The method of the present invention
thereby permits accurate estimates of formation permeability and initial
sandface pressure to be made relatively early in the buildup cycle, thus
substantially reducing the time required to make the pressure and permeability
measurements.”

Proett’s heuristic model, surprisingly, was extremely successful in
predicting spherical mobility and (steady) pore pressure in low mobility
environments from highly transient data.  In retrospect, this is not altogether
surprising.  Many problems in mathematical physics can be studied, at least for
initial times, without solving the complete formulation.  As a case in point,
consider classical mass-spring-damper systems: if a small mass is struck
quickly, its initial motion is completely determined by auxiliary conditions, but
only subsequently does the differential equation matter.  Similarly, in formation
testing, the differential equation would need to be solved if additional
information is required.

Motivated by this need, the lead author solved the complete anisotropic
formulation in the mid-1990s, with both flowline storage and skin effects in
closed analytical form, and demonstrated how Proett’s constant rate solution
provided the leading term of an asymptotic, low mobility expansion whose
application could be further extended.  This “exact solution” forms the basis for
Halliburton’s drawdown-buildup GeoTapTM model used in real-time mobility
and pore pressure prediction in “formation testing while drilling” (FTWD) or
Measurement While Drilling (MWD) tools.  Typical predictions require less
than one minute of test time, thus enabling higher density and more economical
well logging.
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We emphasize that the method, which assumes a single-probe tool,
provides pore pressure and spherical permeability predictions using early time
data – it does not, however, give horizontal and vertical mobility or permeability
individually – these can differ substantially in different directions, and as we
will show, their determination requires dual-probe formation testing tools.  The
success of the physics-based approach motivated a second question.  While the
new drawdown-buildup interpretation method focused on flowline storage and
flow as the dominant physical interaction, rather than avoiding storage but
having to endure long wait times, is it possible to take advantage of pressure
diffusion in such a way that test times can be significantly reduced?

This at first seems counter-intuitive because high mobilities imply rapid
pressure equilibrium – thus low values would seem to lead to long test times.
However, this conclusion is only the case if one restricts attention to constant
rate pressure drawdown processes (which are used to derive classical formulas
like “ks = CQ /(2 rp P)).” In fact, there are pumping actions for which the
opposite is true – by focusing on mechanisms that depend strongly on diffusion,
it is possible to develop fast algorithms for permeability and pore prediction.
This book provides a detailed development of new ideas and algorithms in
support of this objective and illustrates their use with numerical examples.  An
interesting comparison of old and new methods is given in Chapter 5.

Many of the formation testing ideas introduced in this book were
motivated by electromagnetic logging.  Yes, resistivity prediction in high
conductivity diffusive formations.  In electromagnetic well logging, a
transmitter broadcasts constant frequency AC waves, whose amplitude decay
and phase (that is, time) delay are recorded at neighboring coil receivers.  These
measurements are interpreted using Maxwell’s equations as the host math model
and anisotropic resistivities can be estimated – in fact, the greater the diffusion,
the higher the signal-to-noise ratio and the better the predictions.

The lead author introduced his “phase delay” approach to formation tester
mobility prediction by developing an analogy to electromagnetic logging as
follows (e.g., refer to United States Patent No. 5,672,819, “Formation
Evaluation Using Phase Shift Periodic Pressure Pulse Testing,” awarded to W.C.
Chin and M.A. Proett in September 1997).  The tester pump was taken as the
“transmitter” while a second observation probe assumed the role of the
“receiver.”  When the pump piston oscillates sinusoidally, it creates an AC wave
whose pressure amplitude and time delay can be measured at the observation
probe.  These measurements are interpreted using Darcy’s equations to give
mobility estimates, thus completing the analogy to electromagnetic logging.

Experiments performed at Halliburton were successful.  Interestingly, time
delays, in contrast to those observed in resistivity logging, are large and could be
ascertained visually from strip charts, thus reducing demands on computational
and electronic resources.  And mechanical requirements were not demanding –
pump frequencies on the order of 1 Hz were sufficient.  But many questions
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remained unanswered at the time.  Once a pressure signal leaves the pumping
probe, its fate is completely determined by the formation – the “receiver,” so to
say, “sees what it sees.”  But what happens if what it sees is poor in quality?
And what if the pump piston cannot execute pure sinusoidal waves as required
by theory, but only limited numbers of wave cycles that are, say, rectangular in
shape?  It turns out, however, that the form of the created wave can be
controlled by varying flowline volume, thus providing a means for
customization and quality control (e.g., see Chapter 9, Example 7), and that
deviations from pure sinusoids are a secondary concern (refer to Chapter 5).

At the time the work was first performed, there was little incentive to
commercialize the phase delay approach at Halliburton.  The invention applied
only to isotropic media – the required theoretical extensions to anisotropic
formations, in which the effects of dip angle would figure prominently, were not
available.  To determine isotropic permeability, the single-probe early-time
drawdown method was more cost-effective, simpler and additionally provided
pore pressure.  The phase delay approach, while elegant and interesting, required
dual-probe tools and could not give pore pressure estimates.  Now, some two
decades later, the needed generalization to anisotropic media with dip has been
completed, together with more powerful extensions to low-mobility, early-time,
drawdown-buildup methods.  The combination of the two, as we will
demonstrate in this book, allow both horizontal and vertical permeabilities – not
“spherical permeabilities” alone – to be predicted from early time data in very
low mobility formations.  These methods are discussed for the first time in print
and patent applications have been appropriately filed.  Before presenting details,
it is necessary to emphasize the limitations of idealized mathematical models
and the physical implications of their consequences.

1.2  Modeling Hierarchies

Few innovations to pressure transient interpretation appeared until the
1990s with Halliburton sponsored research.  These initial efforts, summarized in
“Advanced Permeability and Anisotropy Measurements While Testing and
Sampling in Real-Time Using a Dual Probe Formation Tester,” SPE Paper
64650, presented at the Seventh International Oil & Gas Conference and
Exhibition in Beijing by Proett, Chin and Mandal in November 2000, introduced
several avenues of research which saw subsequent development.  The first was
the low-mobility, early-time drawdown buildup method discussed earlier; the
second, a completely analytical solution to the full boundary value problem
developed by the lead author; and the third, the phase delay method, also due to
the lead author, although restricted then to isotropic media.  Difficulties with the
analytical solution, which manifested themselves only years later, would
motivate further work supported by the United States Department of Energy.
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In the two decades since the “exact solution” appeared, some two dozen
papers bearing this citation have been authored.  And given the wide
dissemination of these publications, appearing in journals and conferences
associated with the Society of Petrophysicists and Well Log Analysts (SPWLA),
the Society of Petroleum Engineers (SPE) and other organizations, it is
important to clarify now what is meant by “exact” and the significance (or lack
of) in that designation.  To understand this further, we need to understand the
difference between real-world tools and their mathematical idealizations.

Figure 1.2.   Single-probe formation tester (enlarged view).
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Figure 1.3.   Dual-probe formation tester (enlarged view).

Now, Figures 1.2 and 1.3 for single and dual-probe testers provide
exploded views showing what single and dual probe formation testers really
look like.  When lowered into the hole and pressed against the sandface, the
Darcy flow schematics given in Figure 1.4 applies.  In these diagrams, the areas
to the right of the red dashed line are taken as the flow domains; the left sides
containing the pad and borehole are ignored.  Since the resulting domains
possess right-left symmetry, the flow due to a “source” (or a “sink”) is
considered for modeling purposes.
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Ideal no-flow plane

Large 
borehole

Slim 
hole

Figure 1.4.   Piston pad pressed against the sandface.

Different source models exist which are not “created equal” by any means.
Originally, decades ago, “point sources” were assumed at which fluid literally
vanished and pressures became infinite; flowline storage and skin effects could
not be modeled.  The work of Proett, Chin and Mandal (2000) introduced
spherical and ellipsoidal sources with nonzero dimensions as shown in Figure
1.5.  Although the hardware associated with a flowline does not appear in this
figure, flowline volume is accounted for by a term in the boundary condition
formulation, as are skin effects, e.g., see Chin et al (2014).  An “exact” closed
form analytical solution for Darcy pressure, expressed in terms of complex
complementary error functions, was given in the original publications.

Figure 1.5.   Idealized spherical flow for isotropic formations,
ellipsoidal flow for transversely isotropic (anisotropic) media.
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xy

z

Figure 1.6.   Near-Wellbore, Finite-Element Simulator (NEWSTM)
from Halliburton Energy Services. *

Figure 1.7.   Dual-probe, pretest, simulation-pressure contours, 100-md isotropic
formation (to the left are 1-psi color bands, and to the right are 10-psi color
bands). *
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Figure 1.8.   Pressure contours for the first drawdown with two probes and the
second drawdown with one source probe, 100 md horizontal permeability, 0.1
kv/kh, and 10 psi color contour bands. *

Figure 1.9.   Ellipsoidal anisotropic flow, skin layer,
three-dimensional finite element, boundary conforming mesh. **

* From “New Wireline Formation Testing Tool with Advanced Sampling
Technology,” by M.A. Proett, G.N. Gilbert, W.C. Chin and M.L. Monroe, SPE
Paper 56711 presented at the 1999 SPE Annual Technical Conference and
Exhibition held in Houston, Texas, October 3-6, 1999.

** From “Advanced Dual Probe Formation Tester with Transient, Harmonic, and
Pulsed Time-Delay Testing Methods Determines Permeability, Skin, and
Anisotropy,” by M.A. Proett, W.C. Chin and B. Mandal, SPE Paper 64650
presented at the SPE International Oil and Gas Conference and Exhibition in
China held in Beijing, China, November 7-10, 2000.
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So how “exact” is exact?  Although fluids no longer vanished at a point
and pressures were no longer infinite, the finite-radius models in Figure 1.5 bore
significant physical limitations.  For example, by assuming right-left symmetry
about the red dashed line in Figure 1.4, flow perpendicular to the red line cannot
be modeled; thus, it is not possible to consider the effects of fluid invasion or
dynamic mudcake growth.  In addition, borehole size and formation tester pad
geometries cannot be studied.  Although far from ideal, it is clear that the need
for usable math models drives the assumptions behind those in Figure 1.5, but it
is now clear why formulas like “ks = CQ /(2 rp P)” contain “calibration
constants” C that conveniently lump all non-ideal effects into one single
coefficient.  We emphasize at this point that different size pads will have
different constants; furthermore, steady-state models are calibrated differently
from transient models, and high-mobility calibrations will differ from those for
low-mobility.  Hence, the development of interpretation models, in which
permeabilities are predicted from pressure transient data, is far from trivial.

Just how are calibration constants determined?  Quite simply, one needs to
have truly “exact solutions” in a physical sense.  These can be obtained
computationally using three-dimensional simulations or experimentally in test
fixtures developed for formation testing applications.  Examples of numerical
solutions from the lead author’s prior work are shown in Figures 1.6 – 1.9.
Effects include mudcake modeling, cylindrical borehole radius effects, pad
geometry influence, and so on.  Despite the apparent geometric generality, such
models are not exact in a true sense.  All numerical models, whether they are
finite difference or finite element in nature, approximate derivatives using
Taylor series and neglect higher-order terms.  This omission, together with
computer round-off errors, results in “artificial viscosity” which effectively
changes the assumed input permeabilities.  In other words, forward simulation
results will typically not correspond to the permeabilities entered into the input
box; inverse permeability predictions, for this reason, will not be correct if they
are obtained by repeatedly running a forward simulator.

Fully three-dimensional simulators such as those cited in Figures 1.6 – 1.9
are not ideal for other reasons.  First, they are difficult to set up; and second,
they require significant computation times, often hours.  As such, they are
typically not used for inverse methods or engineering trend analysis.  An
intermediate compromise between these methods and the spherical or ellipsoidal
source methods in Figure 1.5 is the axisymmetric “ring source” sketched in
Figure 1.10.  While the red vertical line of symmetry in Figures 1.4 and 1.5
disallows flow across it, thus making the modeling of fluid invasion, mudcake
growth and borehole mud pressure impossible, the annular ring at the top of
Figure 1.10, when hosted by cylindrical coordinates as suggested at the lower
sketch, does allow the specification of additional physical effects.
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Figure 1.10.   Axisymmetric ring source.

Such models allow us to address the effects of “supercharging.”  In many
modern low-mobility applications, mudcakes do not form rapidly because
filtration is inhibited by formation resistance.  Consequently, the effects of high
mud pressure are “felt” by the formation, and predicted pore pressures based on
idealized inverse models such as those assuming Figure 1.5 are not correct.
Thus, their properties must be well understood, and the development of
multiphase flow models with time-varying invasion, as discussed later in this
book, helps in this endeavor.  But ring source models, still, are approximate;
while they do allow borehole effects, pad geometries are however neglected and
“calibration constants” are still required.
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1.3  Experimental Methods and Tool Calibration

Mathematical models, we now understand, are far from perfect and their
practical use requires calibration.  The simplest, that is, “ks = CQ /(2 rp P)”
cited earlier, assumes steady-state conditions when transient flowline effects
have completely dissipated.  This formula for spherical permeability extends an
earlier result for an isotropic drawdown permeability kd = Cq /(2 rp P) where

P is the drawdown pressure, C is a flow shape factor (known colloquially as a
“fudge factor”), q is the volume flow rate,  is the liquid viscosity, and rp is an
“effective probe radius.”

For convenience, the “C/(2 rp )” is usually represented as a single number,
say kd = 5,660 q / P.  Here kd, q,  and P are expressed in md, cc/s, cp and
psi.  The constant 5,660 applies to the “standard” RFT probe (that is, “Repeat
Formation TesterTM tool offered by Schlumberger). When the “large diameter” or
the “fast-acting” probe is used, the constant should be 2,395; for the “large-area
packer,” the constant becomes 1,107 (e.g., see Schlumberger’s Log
Interpretation Principles/Applications (1989) for details).  These values are
calibration constants accounting for non-spherical effects like borehole wall
curvature and pad geometry.  We emphasize that they apply to the steady
spherical model only.  If early time transient models are used, in particular,
those where flowline effects are significant in low mobility applications, the
“Schlumberger constants” cited above do not apply and need to be determined
on a case-by-case basis.  In fact, calibration challenges grow when anisotropic
formations are targeted – the constants may vary dip angle and simple logging
solutions may prove difficult.  But short of a complete three-dimensional inverse
solution (unlikely to  be developed), the marriage of convenience formed by
simple models and practical calibration is likely to survive indefinitely.

The need for experimental single and multiphase calibration for “formation
testing while drilling” (FTWD) interpretation models was first recognized by
Halliburton during its development of GeoTapTM.  In its approach, the calibration
constant for the spherical flow models due to Proett and Chin was simply
absorbed into the definition for an “effective probe radius Reff ” where, in our
present notation, Reff = GF  Rw where GF is a “geometric factor” and Rw is the
true nozzle (or spherical well) radius.  Details are provided in “Results of
Laboratory Experiments to Simulate the Downhole Environment of Formation
Testing While Drilling,” by H. Lee (University of Texas at Austin), M. Proett
(Halliburton Energy Services), P. Weintraub (Halliburton Energy Services), J.
Fogal (NuTech Energy) and C. Torres-Verdín (University of Texas at Austin),
SPWLA 45th Annual Logging Symposium, held in Noordwijk, The Netherlands,
June 6–9, 2004, with graphics and photographs from a complementary SPWLA
2004 poster presentation.  The poster and photographs are reprinted with
permission from the Society of Petrophysicists and Well Log Analysts.
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Figure 1.11a.   Laboratory calibration facility (reprinted with permission from
the Society of Petrophysicists and Well Log Analysts (SPWLA)).
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Figure 1.11b.   Laboratory calibration facility (reprinted with permission from
the Society of Petrophysicists and Well Log Analysts (SPWLA)).
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Figure 1.12.   Experimental fixture for formation tester operation
under downhole conditions with mud and fluid invasion (reprinted with
permission from the Society of Petrophysicists and Well Log Analysts).
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Figure 1.13a.   Formation testing lab experimental fixture.

Figure 1.13b.   Core holder (includes housing, core,
probe section, rubber pad, snorkel and filter).

Figure 1.13c. Outer housing, core end view.

Figure 1.13d.   Core samples (note curvature).

From “Results of Laboratory Experiments to Simulate the Downhole Environment of Formation Testing While
Drilling,” by H. Lee, M. Proett , P. Weintraub, J. Fogal and C. Torres-Verdín, SPWLA 45th Annual Logging
Symposium, The Netherlands, June 2004, with graphics and photographs from a complementary SPWLA 2004
poster.  Reprinted with permission from the Society of Petrophysicists and Well Log Analysts.
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Figure 1.13e.   Cylinder with oil with viscosity of formation fluid.

Figure 1.13f.   Pump injects oil at constant pressure to simulate reservoir.

Figure 1.13g.   Piston for drawdown-buildup controlled by
accumulators activated by solenoid valves.

Figure 1.13h.   Mudcake formed on core surface by circulating
water-based mud (thickness is monitored and controlled).

From “Results of Laboratory Experiments to Simulate the Downhole Environment of Formation Testing While
Drilling,” by H. Lee, M. Proett , P. Weintraub, J. Fogal and C. Torres-Verdín, SPWLA 45th Annual Logging
Symposium, The Netherlands, June 2004, with graphics and photographs from a complementary SPWLA 2004
poster.  Reprinted with permission from the Society of Petrophysicists and Well Log Analysts.
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Figure 1.13i.   Mud chambers.

Figure 1.13j.   Solenoid valves control drawdown-buildup piston.

Figure 1.13k.   System pump (accumulators are
attached to solenoids and powered by system pump).

Figure 1.13l.   Hydrostatic pump (hydrostatic and formation
pressures maintained by accurate, point-operating relief valve

attached to formation and hydrostatic pumps).

From “Results of Laboratory Experiments to Simulate the Downhole Environment of Formation Testing While
Drilling,” by H. Lee, M. Proett , P. Weintraub, J. Fogal and C. Torres-Verdín, SPWLA 45th Annual Logging
Symposium, The Netherlands, June 2004, with graphics and photographs from a complementary SPWLA 2004
poster.  Reprinted with permission from the Society of Petrophysicists and Well Log Analysts.
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Figure 1.13m.   Pressure transducer (two used, one on
formation side and other on flowline side).

Figure 1.13n.   Control module.

Figure 1.13o.  Computer with graphical user interface.

Figure 1.13p.   Mother board (experiment controlled
by computer connected to mother board).

From “Results of Laboratory Experiments to Simulate the Downhole Environment of Formation Testing While
Drilling,” by H. Lee, M. Proett , P. Weintraub, J. Fogal and C. Torres-Verdín, SPWLA 45th Annual Logging
Symposium, The Netherlands, June 2004, with graphics and photographs from a complementary SPWLA 2004
poster.  Reprinted with permission from the Society of Petrophysicists and Well Log Analysts.
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The Halliburton test fixtures shown in Pages 14-20 illustrate the substantial
effort required in calibrating formation tester tools together with the early-time,
low-mobility predictive methods used.  In general, the constants so obtained will
differ from those for steady-state formulas like “ks = CQ /(2 rp P).”  A good
discussion on such methods is offered in “Concept of Geometric Factor and Its
Practical Application to Estimate Horizontal and Vertical Permeabilities,” by
Sheng, Georgi and Burge, SPE Reservoir Evaluation and Engineering Journal,
December 2006, pp. 698-707.  Again, we emphasize that the early-time
permeability prediction formulas assume single-phase flow under ideal spherical
conditions – the latter condition means that the mudcake is presumed to seal
perfectly and fluid invasion does not occur.

Of course, in many low-mobility applications, cake formation is slowed by
reduced filtration and the dynamics of mudcake growth are important – this is
particularly so in studying “supercharging” where the pressure near the sandface
is a combination of borehole and reservoir values.  In this case, how much of the
pressure measured by the formation tester "belongs” to reservoir effects is
crucial and must be studied by multiphase simulators such as those presented in
Chapters 6, 7 and 8.  These, too, must be calibrated, with laboratory based
experimental results. These had been reported in “Formation Evaluation Using
Repeated MWD Logging Measurements,” by Chin, Suresh, Holbrook, Affleck
and Robertson, presented at the SPWLA 27th Annual Logging Symposium,
Houston, TX, June 9-13, 1986, and subsequent math models were derived in the
lead author’s book Formation Invasion, with Applications to Measurement-
While-Drilling, Time Lapse Analysis and Formation Damage (Gulf Publishing,
1995).  These works drew upon experimental results from linear and radial flow
test vessels placed within Catscan imaging machines.  Under constant pressure
drop conditions, both invasion front and mudcake thickness were monitored
versus time, and analytical models were constructed using “moving boundary”
methods which allowed dynamic boundary motion.  Examples of the work are
shown below.

Figure 1.14a.   Catscan, linear test vessel with core sample.
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Figure 1.14b.   Radial flow test vessel.

Figure 1.14c.   Catscan, invasion in radial core sample.

Figure 1.14d.   Linear flow Catscans, thin dark mudcake at center
of core and invasion front at density contrast (flow, left to right).
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Figure 1.14e.   Linear flow Catscans, standard optical contrast.

Figure 1.14f.   Linear flow Catscans, enhanced contrast.
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2
Single-Phase Flow

Forward and Inverse Algorithms

Because the authors’ prior book Formation Testing: Pressure Transient and
Contamination from John Wiley & Sons is relatively new, appearing only in
2014, it is fitting to provide a concise summary of the methods and algorithms
introduced there so that the contributions of the present book can be viewed and
quickly understood in context.  The work provided in this chapter sets the stage
for the advanced drawdown-buildup and phase delay models discussed in
Chapters 3 and 4.

2.1  Overview

We describe a comprehensive set of integrated formation testing forward
and inverse analysis tools developed for wireline and “formation testing while
drilling” (FTWD) applications in hardware design and pressure transient
interpretation.  The methods, based on rigorous Darcy flow formulations, are
solved analytically in closed form whenever possible and cross-checked in
different limits to ensure physical consistency and accuracy.

The transient problem for formation tester liquid pressure response in
anisotropic media with flowline storage and skin at arbitrary dip, earlier solved
in exact, closed analytical form assuming ellipsoidal sources (using complex
complementary error functions), is used to derive exact solutions to several
inverse problems where permeabilities are sought when dip angle and source
and observation probe pressure drops are given.

First, the zero-skin forward solution is evaluated in the steady-state limit
for constant rate pumping.  Explicit inverse formulas are derived for all
horizontal and vertical permeabilities and dip angles.  With pressure drops
computed at various dip angles from the forward simulation, derived formulas
are used to predict both assumed permeabilities, demonstrating their utility in
field interpretation.  Neglect of dip angle can lead to significant errors in
anisotropy prediction.  Moreover, multi-valued inverse solutions exist: for a
given set of pressure drops, three permeability pairs are found which require
resolution from additional logging data.
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Second, the “with-skin” forward solution is evaluated at steady-state for
constant rate pumping to develop formulas relating source and observation
probe pressure drop, vertical and horizontal permeabilities and skin factor.  An
algorithm giving possible solutions for both permeabilities and skin at any dip
angle when both pressure drops are known is derived.  Because only two
pressure data points are assumed, additional logging information is needed to
render a unique determination.

Third, short-duration “pulse interactions” at the observation probe are used
to determine anisotropy (analogous to the pulses emanating from acoustic tools).
These are strongest and most advantageous at low permeabilities where
diffusion predominates.  Short pulses, high in frequency content, provide
detailed information.  Multi-pulse wave-trains with different flow rates, pulse
durations and separations enable multiple fast test suites at the rigsite without
requiring new hardware.  They are accurate, economical and reduce tool sticking
risks in tight zones.

Fourth, “phase delay” approaches for permeability prediction analogous to
electromagnetic logging methods are described.  Sinusoidal pressure transients
are created at the pumping probe.  Their amplitudes and phases are measured at
one or more observation probes.  These are interpreted using Darcy analysis
models. As with pulse interaction methods, phase delay approaches allow short-
duration tests that are economical, safe and characterized by high signal-to-noise
ratios.

Fifth, a full 3D horizontal well model for single-probe, dual-probe, dual-
packer and elongated pad tools with real mandrels in layered media is given,
with computations showing effects of azimuth and bed boundary on pressure
response and their implications on permeability prediction.  While source
models require dual-probe data for inverse application, full 3D models can be
used with single-probe FTWD tools (measuring azimuthal pressures) to provide
clues related to permeability, anisotropy and bed thickness.

Finally, real-time FTWD pore pressure and mobility prediction is
discussed.  Such problems, key to drilling safety and rapid economic evaluation,
involve transient data distorted by flowline storage effects.  Accurate predictions
are possible using a minimum of pressure data.  We develop rational polynomial
expansion methods that do not require exponential, real or complex
complementary error functions, and moreover, do not use regression or least-
squares smoothing filters that introduce diffusive assumptions beyond those
implicit in Darcy’s laws.  Rapid analysis frees microprocessor resources for
other important control and interpretation functions needed during drilling.
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2.2  Basic Model Summaries

In formation tester pressure transient analysis, two general types of
practical field applications arise, namely, “forward modeling,” in which source
and observation probe responses are sought when fluid, formation and tool
parameters are specified, and “inverse modeling,” in which kh and kv
permeabilities (and possibly pore pressure) are required when all other
parameters are given.

Forward models have been developed to a high degree of sophistication.
Almost twenty years ago, Proett and Chin (1996) published the first full three-
dimensional finite element analysis assuming realistic borehole environments
with pad, probe, mandrel, flowline storage and bedding plane effects.  These are
reviewed in Formation Testing Pressure Transient and Contamination Analysis
(Chin et al, 2014), which also cites extensions to include coupled dynamic
mudcake growth and supercharge corrections.

Chin and Proett (2005) provided finite difference models that included
multiphase miscible and immiscible effects.  In downhole sampling, the time
required to pump until clean in-situ fluids are obtained is important.  This time
scale differs from that used for pressure transient interpretation.  Figures 2.1a,b
illustrate capabilities that have been used to design new tools and interpret
transient data obtained in complicated environments.  Figure 2.1c shows Catscan
experiments in which dynamic cake growth is measured in cores with different
permeabilities.  This is important to supercharge and contamination corrections.

Figure 2.1a.   Finite element model, flow vectors near probe.

Figure 2.1b.   Pressures for drawdown with two probes (left) and one (right).
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While fully three-dimensional models are important in their own right,
they do require complicated inputs, numerical simulation expertise, not to
mention sophisticated and expensive computing environments that host high-
overhead software and long calculations.  Thus, fast methods that retain the
basic elements of the physics are desirable, particularly for field office use and
real-time downhole analysis.  A number of simpler formulations are possible.
These range from elementary point source models, which unfortunately “blow
up” at the “r = 0” origin, to finite radius models, which apply flowline storage
and skin boundary conditions at spherical source surfaces (ellipsoidal in
transversely isotropic flow).

Figure 2.1c. Catscan results (flow from top to bottom, darkening lines at center
indicate cake growth in time).

This chapter also introduces new physical concepts in pressure transient
interpretation using innovative math models first described in Chin et al (2014).
So that the ideas are clearly explained, math details are omitted in favor of
examples, although shorter summaries are offered.  For readers interested in
analytical and numerical details, reference to the book is necessary.  Several new
capabilities and modules are available and, for convenience, are referred to by a
“FT-” designation with “FT” referring to formation testing.

2.2.1 Module FT-00
This deals with exact transient liquid response in homogeneous anisotropic

media.  It solves for the unsteady Darcy pressure field about an ellipsoidal
source surface immersed in a transversely isotropic infinite homogeneous
medium allowing full skin effect and flowline storage boundary conditions.
This “nonzero radius source” model is more powerful than limited point source
approximations because it handles nearfield boundary conditions without
becoming singular at the origin as do point source models.  We emphasize that
cylindrical borehole effects and drilling fluid invasion are not directly
incorporated.
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The earlier exact analytical solution, posed in terms of the complex
complementary error function erfc(z), applied to a single drawdown or buildup
and was limited to zero dip angles.  To be effectively used for job planning and
inverse applications, such as those considered here, improvements were needed.

(1) The erfc function in most scientific software libraries does not converge
for certain ranges of complex arguments, and unfortunately, those
associated with flowline storage effects on the order of those encountered
in real formation testing tools (storage distorts pressure transients and its
understanding is important to pressure and mobility interpretation).  A
new, fast and accurate subroutine is used which converges for a much
wider range of complex arguments.  Split-second response with fourteen
digit accuracy guarantees robust and stable numerical performance.
(2) While the original work formally applied to pressures at all points, that
is, all observation points in addition to source points, in reality, the former
could not be computed because products of very large and very small
numbers were involved.  This equivalently meant that time superpositions
of different flowrates (necessary to model multirate pumping) could not be
computed accurately.  Here, instead of dealing with erfc directly, a
function of erfc, namely “exp(-z2) erfc(- i z)” where z = x + iy, is
considered, which avoids the foregoing complications.  Thus, pressures can
be computed at any observation location, and also, multirate pumping
applications can be modeled.  With this extended capability available, the
original theory was extended to include all nonzero dip angles.
(3) The model applies to liquids only and not to nonlinearly responding
gases (gas pumping introduces thermodynamics and high
compressibilities).  Work in this area is described later under FT-06, 07.
(4) The model applies to an ellipsoidal source immersed in a transversely
isotropic homogeneous medium (reducing to a spherical source in isotropic
media).  This means that there is no cylindrical borehole and there are no
layers or barriers.  By “skin effect,” we imply conventional damage
mechanisms that would be found on the surface of the assumed ellipsoidal
source.  This is physically related to the formation damage seen in drilling
mud invasion through cylindrical holes.
(5) Module FT-00 is discussed here because it is used to provide exact
pressure data needed for inverse pore pressure and permeability prediction
interpretation.  Just as important, this high level formulation provides the
foundation for our first inverse module FT-01 (solving for permeability
and anisotropy exactly) when steady dual probe pressure data is available.
FT-01 is based on rigorous math.  The equations for FT-00 are evaluated in
analytical closed form for asymptotically large times to develop formulas
for pressure response that are independent of porosity, fluid
compressibility and flowline volume.  These formulas are inverted to
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derive governing algebraic equations for kh, kv and kh/kv which can be
solved exactly in terms of source and observation probe pressure drops.
Thus, solutions to the inverse problem, which in the literature often imply
running forward simulators repeatedly, is actually solved explicitly and
exactly using non-iterative methods.  FT-01 assumes the availability of
steady-state dual probe pressure data.  This is often not the case with low
permeability formations.  For such problems, a short-time “pulse
interaction” method is developed which importantly uses FT-00 as the
primary history matching tool.  The pulse interaction method, as will be
explained, is most effective in tight formations because high levels of
diffusion cause individual pump pulses to interact strongly.  This
interaction is strongly dependent on formation anisotropy.  The pulse
interaction method is later complemented by “phase delay” and “rapid
drawdown-buildup” analyses. These methods taken together cover a broad
range of applications.

2.2.2  Module FT-01
We offer additional details related to the new steady-state inverse method.

Although the pressure response in a liquid is linear and superposition applies,
the asymptotic evaluation of that expression at large time yields nontrivial
dependencies in permeability that lead to different (but mathematically
consistent and correct) equations for kh, kv and the anisotropy kh/kv.  In fact,
cubic equations of the form kh

3 + ( )  kh + ( ) = 0, kv
3/2 + ( ) kv + ( ) = 0 and

(kh/kv) + ( ) (kh/kv)1/3 + ( ) = 0 are obtained where ( ) represents various lumped
parameters depending on pressure drops, fluid and formation properties.
Because kh generally exceeds kv, its solution is more reliable with less noise
contamination.

As is known from algebra, the polynomial kh equation may have three real
roots, or it may have one real and two complex conjugate roots.  Only positive
real solutions for kh are physically meaningful – if several real positive roots are
found, other logging data will be needed for a unique determination.  On the
other hand, negative permeabilities are not meaningful.  Small imaginary parts,
however, do not rule out the usefulness of roots (with positive real parts) since
these typically arise from the use of unequilibrated pressure data or data
inconsistent with Darcy’s equations, e.g., pad slippage, transducer calibration
and thermal effects.

2.2.3  Module FT-03

FT-00 and FT-01 derive from the same high-level mathematical source
formulation, and the forward and inverse solutions used here are “exact” in the
sense that they follow from closed form analytical solutions.  However, this does
not mean that they are exact in a physical sense.  Source solutions possess
spherical symmetries (ellipsoidal in anisotropic media) that, while elegant
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theoretically, are not representative of real tools – that is, pad nozzles mounted
on solid mandrels.  Consider a real  tester, say a single-probe FTWD tool,
logging a horizontal well in transversely isotropic media.  A top-mounted
pressure transducer will “see” essentially kv while one that is side-mounted will
see basically kh (actually, complicated functions of the two apply at any specific
azimuthal angle).  It is clear that pressure drops obtained at two different angles
can be used to determine the kh and kv provided a 3D model is available to
perform the required history matching.

This capability presently exists: as a drillstring torques and un-torques, it
winds and unwinds, taking it through a range of twist angles.  We emphasize
that, in contrast to conventional dual-probe interpretation methods assuming
axially displaced pressure measurements, it is possible to determine kh and kv
with a single-probe tool provided a 3D algorithm is used for azimuthal
interpretation.  Module FT-03 provides this capability, allowing convenient
representation for pad and packer sources, arbitrary azimuthal and axial
placement for multiple probes and modeling of bed effects.

Other FT modules will be discussed separately addressing, e.g., nonlinear
gas responses and thermodynamic effects, highly transient (as opposed to
constant or piecewise-constant multirate) pumping, two phase flow, and so on.
We digress temporarily from our basic model overview and introduce new
permeability prediction methods by way of examples before continuing.  We
begin by presenting the capabilities of the new forward simulator FT-00.

2.2.4  Forward model application, Module FT-00
We summarize the required input parameters by reproducing the software

screen shown in Figure 2.2a.  Several blocks are apparent, namely, “Fluid and
Formation Parameters,” “Tool Properties,” and “Pumping Schedule.” Figure
2.2a shows input parameters for a multi-rate pump schedule with mixed
production and injection with both long and short time durations.  This supports
constant rate pumping, pulse interaction and phase delay modeling.  Simulations
are extremely fast and typically require at most seconds.  The pump schedule
used appears in Figure 2.2b.  Source and observation probe transient pressure
responses are given in Figures 2.2c,d.  Observe the rapid equilibration in source
pressure and close correlation between it and flow rate (that is, compare Figures
2.2b and 2.2c).  At the observation probe, as is evident from Figure 2.2d, slower
equilibration and smearing due to diffusion are found.  In general, the lower the
permeability, the greater the diffusion.  This diffusion is both bad and good.  It is
“bad” when steady pressure drops are required for input into steady flow models
for permeability prediction.  However, it is “good” when specially designed
transient interpretation approaches are available.  For low permeability
formations, the dynamical interaction between short duration pressure pulses is
strong and highly dependent on anisotropy.  Also, phase delays are more
apparent and therefore useful in low mobility applications.
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Figure 2.2a.   Forward simulation assumptions.

Figure 2.2b.   Pumpout schedule, volume flow rate.

Figure 2.2c.   Source probe pressure.
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Figure 2.2d.   Observation probe pressure.

2.2.5  Inverse model application, Module FT-01

In the following run, the fluid, formation and tool parameters of Figure
2.2a are retained, except that the dip angle is changed from 0 to 45 deg and a
constant 10 cc/s pump rate is assumed for all time.  Source (left) and observation
probe (right) pressure transient responses appear in Figure 2.3a – again, observe
how diffusion slows the equilibration to steady-state just 15 cm from the source.

Figure 2.3a.  Source (bottom) and observation probe (top) pressure responses.

   Time (s)     psource (psi)   pobserv (psi)
 0.100E+02   -0.24948E+04 -0.85789E+02
 0.200E+02   -0.25001E+04 -0.91263E+02
 0.500E+02   -0.25045E+04 -0.96208E+02
 0.100E+05   -0.25116E+04 -0.10421E+03

The computed p’s (probe minus a dynamically unimportant pore
pressure) are shown above.  We now consider the inverse problem and assume
that pressure pair data (above table) are obtained from a dual probe tool.  The
input screen in Figure 2.2a assumes that the skin coefficient is S = 0; thus, the
assumptions in the software screen for FT-01 in Figure 2.3b consistently assume
zero skin.
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Figure 2.3b.   Inverse steady-state solver.

First consider our 10,000 sec (three hour) data.  Exact calculation shows
three possible solutions, namely,

Tentative permeabilities (md) ...

Complex KH root # 1:  -10.97 +   0.00 i, KV:   0.83
Complex KH root # 2:   10.07 +   0.00 i, KV:   0.99
Complex KH root # 3:    0.91 +   0.00 i, KV: 121.96

In this case, two of the roots are easily ruled out; the first kh is negative, while
the third kh is substantially less than kv.  The remaining kh and kv results, at
10.07 md and 0.99 md, are almost identical to the assumed 10 md and 1 md in
the forward simulation creating the data.  The method reproduces assumed
permeability data exactly in this calculation with non-vanishing dip.

This success is a nontrivial event.  FT-00 solves a fully transient model
(via a complex complementary error function formulation with flowline storage
and dip angle) while FT-01 solves an analytically derived polynomial equation
valid only at steady-state.  Agreement and consistency between the two
approaches ensures correct mathematics, physics and software logic.  This large
time validation case thus provides a demanding test of both models.

In field applications, one might use unsteady data that is not consistent
with the math model due to cost considerations and risks of tool sticking.  Using
ten-second pressure data in this case gives kh = 12.49 md and kv = 0.65 md.
Twenty-second data yields 11.68 and 0.74, while fifty-second data leads to
11.02 and 0.83 – all acceptable, relative to the 10 md and 1 md assumed in FT-
00.  This accuracy is possible because the formation is relatively permeable.
However, in low-mobility applications, steady conditions are almost never
realized and methods like FT-01 cannot be used.  If in the screen of Figure 2.3b
we had checked “nonzero skin,” a different less restrictive math model with
increased degrees of freedom is used.  In the present calculation, the algorithm
would return a list of possible solutions, that is, (kh, kv, S) triplets, together with
the corresponding spherical permeability ks listed at the far right of the table
below (the zero skin solution obtained above is highlighted in red).
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   kh(md)  kv(md)  S  ks(md)

    7.00   8.00  0.62  7.32
    7.00   9.00  0.63  7.61
    7.00  10.00  0.64  7.88
    8.00   5.00  0.52  6.84
    8.00   6.00  0.56  7.27
    8.00   7.00  0.59  7.65
    9.00   3.00  0.36  6.24
    9.00   4.00  0.44  6.87
   10.00   1.00  0.01  4.64
   10.00   2.00  0.21  5.85

2.2.6  Effects of dip angle
The effects of dip angle are well known physically.  For example, at zero

dip, the tester “sees” kh from all directions, while at 90 deg, it “sees” kh from left
and right, but kv from top and bottom (actually, a complicated function of both
applies at each azimuthal angle).  Since kh > kv, the measured pressure drop in a
vertical well is less than that for one that is horizontal or deviated.  As an
example, first consider the forward simulation in Figure 2.4a with zero dip angle
and a pump rate fixed at 10 cc/s for all time.  We vary dip from 0 to 90 deg with
other parameters unchanged. Source pressure responses for all runs are identical
since they depend on spherical permeability ks only, as shown in Figure 2.4b.
But, as expected, transient observation probe responses (numbered by dip angle)
vary in both magnitude and shape as seen from Figure 2.4c.  For the kh = 10 md,
kv = 1 md example here, pressure drops vary over a 200 psi range as dip angles
increase.  Again, these results are exact.

Figure 2.4a.   Constant rate pumping example.
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Figure 2.4b.  Source probe response.

Figure 2.4c.  Observation probe response versus dip angle.
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We can view the foregoing conclusions from the inverse perspective.
Suppose a deviated well were drilled at 45 degrees dip.  The 45 degree dip, zero
skin forward simulation gives large time (100,000 sec) pressure drops of 2,512
psi at the source and 104.6 psi at the distant probe; the corresponding inverse
calculation gives a consistently accurate kh = 10.02 md and kv = 1.00 md (in
agreement with permeabilities assumed in the forward FT-00 simulation).

But what if, for this measured pressure pair, the exact FT-01 inverse solver
were not available?  If the conventional industry-standard formula (implicitly
assuming zero dip) were used, one would instead calculate kh = 7.43 md and kv
= 1.81 md with a kv/kh of 0.244 versus an exact value of 0.1.  Such errors imply
grave production and economic consequences.  In the table below, inverse
calculations for permeability using FT-01 are performed with the above
pressures through a range of dips to show the significance of hole deviation.

Dip           kh           kv         kv/kh
0     7.43  1.81  0.244
30    8.35  1.44  0.172
45   10.02  1.00  0.100
60   14.13  0.50  0.035
70   20.88  0.23  0.011
80   41.89  0.06  0.001
90  424.89  0.00  0.000

2.2.7  Inverse “pulse interaction” approach using FT-00
The above inverse approach requires fully equilibrated steady pressure

drop data at source and observation probes.  In a high permeability environment,
this is not severe; as seen earlier, 20 sec data may well suffice under certain
conditions if data integrity is not an issue.  In “tight” formations, however,
steady observation probe responses may not be possible for hours or days.  Even
if rig costs were not a concern, the risks of tool sticking are – thus, one seeks
permeability prediction methods that respond to earlier time dynamic data.
Now, the use of steady formulas for permeability interpretation is an artificial
limitation used only to render the mathematics tractable.  As noted, steady
conditions are usually achievable in higher permeability formations so that such
models are sometimes useful.

But in low permeability zones, field experience and exact calculations
(using FT-00) show that source probe responses equilibrate very rapidly.  Since
they depend only on the spherical permeability ks (and not kh or kv individually),
the value of ks inferred from the source probe pressure drop is an accurate one
for interpretation purposes.  The conventional steady flow permeability formula
ks = Q /{4 Rw(P0 – Ps)} can be used which, again, only constrains the
relationship between kh and kv (here, Q is volume flow rate,  is viscosity, Rw is
effective probe radius, and “P0 – Ps” is the source probe pressure drop).
However, in order to individually quantify kh and kv, additional information is
required.  Unlike the method underlying FT-01, we will not draw upon steady-
state pressure data obtained at the observation probe.
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In the illustrative example below, a ks of 4.642 md (corresponding to our
earlier kh = 10 md, kv = 1 md and S = 0 case) is fixed throughout and
simulations are performed with different combinations of kh and kv.  Again,
source probe results for the three runs are identical, but observation probe
pressure transients are discernible from each other.  Figures 2.5a and 2.5b are
clearly different – the former is highly smeared while the pulses in the latter
remain distinct; peak pressure drops (from printed FT-00 output not shown) are
19 psi for Figure 2.5a and 159 psi for Figure 2.5b.  Again, these differences are
seen from early time transient behavior.

Observation probe pressure transient waveform shapes in Figures 2.5b and
2.5c are similar, at least on a normalized basis.  However, they are very different
in magnitude.  From printed FT-00 output, peak pressure drops are 159 psi and
787 psi, respectively. Clear differences in observation probe characteristics
suggest that permeability contrasts can be effectively examined using short
duration pulse interference rather than long time steady-state drawdown.  The
dynamical interactions are strongly dependent on anisotropy.

Under what circumstances is our “pulse interaction method” expected to
perform well?  Interestingly, the lower the permeability, the better the accuracy
– a counter-intuitive situation at odds with our experience with steady-state
methods.  The explanation is simple: at low mobilities, diffusion predominates,
so that dynamical interactions between short pulses with high frequency content
are strongest; thus, high signal-to-noise ratios are achieved for history matching.

Interference effects are most pronounced at low perms when diffusion is
dominant, precisely the field condition associated with long wait times, high rig
costs and increased risk of tool sticking.  In contrast, large time pressure
responses associated with constant rate drawdown methods only produce small
pressure drops which may not be accurately measured.  We emphasize that, at
earlier times, the effects of porosity, compressibility and flowline volume do
appear, so that calculations using different pulse types with varied durations,
amplitudes and time separations is advisable.

Additional research is presently directed at optimizing the pulse sequence
used, e.g., evaluating different combinations of pulse amplitude, width,
separation and number.  It is important to emphasize that no new hardware is
required for pulse interaction analysis.  Our FT-00 may be used in infinite
homogeneous media, but in applications where bedding plane effects are
important, the FT-03 simulator discussed later applies.  Because we are
evaluating flow differences associated with diffusion itself, it is important that
the host math model does not introduce numerical diffusion effects related to
truncation errors.  These effects, referred to as “artificial viscosity,” are most
prominent with finite difference and finite element simulators, even when
second, up to fourth order, schemes are employed.  For this reason, exact
analytical models such as FT-00 should be used to interpret pulse interactions.
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Figure 2.5a.  kh = 10 md, kv = 1 md (that is, kh > kv).

Figure 2.5b.  kh = kv = 4.642 md (that is, isotropic).

Figure 2.5c.  kh = 1 md, kv = 100.0 md (that is, kh < kv).
In this discussion, we focused on a zero skin example; space limitations

preclude similar discussions on nonzero skin results.  However, the basic ideas
and results for pulse interaction methods remain unchanged.
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2.2.8  Computational notes
We observe that short time data contain porosity, compressibility and

flowline effects. The exact solution in FT-00 is expressed in terms of the
complex complementary error function erfc(z) where z = x + iy is a complex
number (x and y are related to fluid, formation and tool parameters and here do
not represent the spatial coordinates).  In typical function evaluations, e.g., those
offered in scientific program libraries, solutions are only possible for a small
range of small imaginary values for small real values of the argument near zero,
which unfortunately limits the usefulness of our exact solutions (for large real
arguments near forty, solutions for all imaginary values are possible).  This
limitation is most serious for tool applications with flowline volumes such as
those typically encountered in logging.

Figure 2.6a.   Standard erfc(z) evaluation for x > 0, y > 0.

Figure 2.6a shows Quadrant 1 z ranges where x > 0, y > 0 for which erfc(x
+ iy) can and cannot be computed by standard (IMSL) algorithms.  The lower
left (blue) zone shows where solutions cannot be computed due to numerical
overflow, while the elevated right (green) zone highlights where solutions can
be found.  The blue zone contains parameters where flowline volume effects are
important.  Improvements are now given.

Figure 2.6b.   Improved erfc function evaluation.
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For our approach to be useful, more robust numerical evaluations are now
possible to enable a much broader range of arguments for successful calculation,
as shown in Figure 2.6b.  The far left (blue) zone still represents solutions that
cannot be computed; fortunately, the corresponding arguments do not represent
parameters often used in practical formation testing.  The far right (green)
domain indicates solutions possible using conventional approaches, while the
new and sizable middle (red) zone depicts an increased range of newly available
computations for erfc(z).  Accuracy and speed are emphasized in the method,
e.g., hundreds of evaluations per second on typical personal computers.

2.2.9  Source model limitations and more complete model

The word “exact” often used in the literature (including the author’s
publications) conveys a sense of confidence and accuracy that may not be
deserved.  As discussed in Chapter 1, “exact” refers to closed form analytical
solutions for forward and inverse models – a significant endeavor – but which
applies only to approximate source formulations of the tester.  While the source
model used, which applies boundary conditions on an ellipsoidal surface (with
nonzero minor and major radii, and which does not “blow up” as in point source
models) is useful in this regard, the model nevertheless is approximate in a
physical sense.

In other words, the model “sees” a type of spherical symmetry when, in
fact, real formation tester nozzles mounted on real mandrels “see” largely ahead
and are shielded from behind by solid material.  Thus, a real tool in an
anisotropic formation will measure different pressure responses as the
transducer is rotated azimuthally about the tool axis.  A full three-dimensional
model accounting for actual tool geometry plus bedding plane effects could be
used as a history matching tool to determine kh and kv from pressure data
collected at different angles.  Such data is possible in field practice.  Since the
drillstring torques and un-torques during operation, it winds and unwinds,
offering the opportunity to record pressures at different azimuths.

Whereas earlier examples emphasized the use of dual probe tools, the
above ideas apply to single-probe tools such as those in simple wireline and
FTWD applications.  The basic idea is simple: two pressure measurements are
need to provide two permeabilities.  These can be taken from axially or
azimuthally displaced probes, or both, as in three-probe tools.  This leads to the
question, “How can we construct a simulator capable of addressing these inverse
and job planning needs?”

Module FT-03 solves the transient Darcy partial differential equation for
transversely isotropic media on a boundary-conforming curvilinear mesh in the
cross-plane intersecting the tool.  The model is fully three-dimensional.  High
resolution is provided about the borehole using “glove tight, wrap-around” inner
meshes while those in the farfield conform to bed boundaries.  An algebraically
expanding mesh with an origin centered at the pad nozzle or oval pad, or at the
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center of a packer, provides good resolution axially.  The computational domain
appears in Figure 2.7a.  The transient equation is solved by finite difference,
forward time marching using an Alternating-Direction-Implicit (ADI) scheme
for fast speed and numerical stability.

Figure 2.7a.   Three-dimensional computational mesh.

We focus on key simulation results and consider the diagrams in Figure
2.7b.  The left two show a horizontally oriented borehole in a homogeneous
transversely isotropic formation, while the right one shows the same hole
bounded by upper and lower planes (along which pressure or no-flow conditions
may be prescribed).  Again, A “sees” essentially kh, B sees primarily kv, while
the general point C sees a complicated function of the two.  If pressure
measurements at any two of A, B or C are available, one can determine both
permeabilities by history-matching using a three-dimensional simulator such as
FT-03.

Figure 2.7b.   Borehole orientation.
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Figure 2.7c.   Azimuthal pressure response in layered media.
For our purposes, we refer to Figure 2.7c for a low perm run with typical

field parameters.  The source probe p at A is 18 psi (because the kh it “sees” is
high) while that at B is 54 psi (the kv it sees is low).  This sizable difference is
detected at the source probe and can be used to estimate anisotropy.  We
emphasize that a single-probe tool can be used to determine kh and kv provided
azimuthal measurements are taken.  Figure 2.7c shows observation probe
results, assuming that source and observation probes are in line axially (this is
not required in general simulations).  The effects of bedding plane proximity and
centralization are subtle and general conclusions cannot be made.  However, the
simulator accounts for these as they affect azimuthal transducer placement.

2.2.10  Phase delay analysis, Module FT-04
The pulse interaction method, most effective at low perms, is closely

related to our dynamical model for “phase delay” analysis.  In electromagnetic
logging, wave amplitude differences and phase delays between transmitters and
receivers are used to infer resistivity anisotropy using Maxwell’s equations.  A
simple formation testing analogy exists.  If the pump piston is operated
periodically and pressure amplitude differences and time delays are recorded
between source and observation probes, then kh and kv can be obtained from
history matching using a three-dimensional Darcy simulator. Permeability
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formulas as functions of amplitude and phase delay are given in Chin et al
(2014) for simple formations.  In general, the lower the permeability, the higher
the diffusion and the lengthier the phase delay.  Larger delays mean more
accurate time measurement and hence better predictions.

Figure 2.8a.   Layered anisotropic media with dipping tool.

The model has since been extended significantly to layered anisotropic media
for dipping tool applications, as shown in Figure 2.8a.  This complication means
that simple formulas are not available and the interpretation must be pursued
numerically.

Figure 2.8b.   Pressure response.

Figure 2.8b shows typical transient pressure responses calculated at source
(red) and observation (green) probes using the FT-04 simulator of Figure 8a.
The large amplitude decreases are typical of low permeability rocks, but small
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pressure levels at the observation probe may be difficult to measure accurately.
On the other hand, time delays are easier and more precise.  Phase delays can be
calculated using any number of models, e.g.,  our idealized source model FT-00,
the “real tool” simulator FT-03, or the “source in layered media” model in FT-
04.   We will develop the subject of phase delays in great detail in Chapter 4.

2.2.11  Drawdown-buildup, Module FT-PTA-DDBU

In deep offshore wells where pressure limits separating borehole invasion
and fracture are narrow, accurate real-time pore pressure and mobility prediction
are essential to safety.  Exact models like FT-00 provide forward analyses,
calculating transient pressures when fluid, formation and tool properties are
given.  FTWD and “pressure-while-drilling” (PWD) require fast inverse
methods that provide pore pressure for safety objectives and gradient analysis
for fluid identification, plus mobility analysis for economic and production
planning.  These predictions are needed in real-time during drilling.  Equations
that support FTWD objectives can be derived from the exact, closed form,
analytical solution underlying FT-00.   Because “while drilling” data are
typically early time (due to cost and stuck tool considerations), are often
obtained in low mobility applications, or both, derived formulas used must
account for highly transient behavior and flowline storage effects, which can
distort and mask mobility trends residing in drawdown and buildup data.

Existing methods use exponential, real or complex complementary error
functions, complicated integrals, and so on, combined with regression methods
for interpretation.  For instance, “least squares” fits are often employed, and
while reasonable, they introduce arbitrary smoothing assumptions beyond those
in Darcy’s diffusion laws.  It is essential that models invoke no additional flow
approximations.  Our inverse solution is derived using rational polynomial
expansions that reduce the computational overhead associated with
transcendental functions.  This allows more data processing to be completed in a
given time frame, thus freeing valuable microprocessor resources for other
important interpretation and downhole control functions.  Closed form analytical
solutions are derived and used, and numerical regression and chi-square
methods are never employed.

Two key models developed for “drawdown only” and “drawdown-
buildup” applications were originally reported in Chin et al (2014).  Both
methods apply to transient pressure data distorted by flowline storage effects,
and subset models (which run substantially faster for mobility prediction) are
also available when steady-state pressures can be found for higher mobility or
long test time applications.   That prior work is briefly summarized below and
much more general extensions are developed in Chapter 3 for problems with
multiple drawdowns.  Details of the mathematical derivations are also given.
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Figure 2.9a .  Nomenclature for pressure transient analysis.

Unlike conventional models, ours only require three pressure-time data points
along either drawdown or buildup curve, e.g., as shown in Figure 9a, plus
auxiliary data related to test setup.  For brevity only, we present examples using
buildup data, noting that detailed write-ups are available upon request.

Figure 2.9b .  Exact FT-00 forward simulation results from single pre-test
(note large flowline volume assumed).

In Figure 2.9b, we use our exact FT-00 forward solver to create the source
probe pressure transient data shown.  From the input screen, the pore pressure is
10,000 psi while the mobility is 0.1 md/cp.
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Figure 2.9c .  Predicted pore pressure and mobility.

Figure 2.9c displays inputs for FT-PTA-DDBU with pressures taken at 10,
15 and 20 sec.  Rapid calculation gives 9,951 psi and 0.11 md/cp, close to exact
values in Figure 2.9b.  Sensitivity analyses using other time data points yield
only small variations.  In Figure 2.9d, we create pressure data for two pre-tests
having different flow rates.

Figure 2.9d.   Exact FT-00 forward simulation pressures for
two sequential pre-tests used for input to inverse model (next page).
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Figure 2.9e .  Predictions (first pre-test).

Figure 2.9f .  Predictions (second pre-test).

Figures 2.9e and 2.9f offer predictions of 9,988 psi and 0.11 md/cp, and
9,960 and 0.11 md/cp, using first and second pre-test data, values very close to
assumed numbers on the prior page.  Again, the solutions execute rapidly, are
analytical and easily programmed, e.g., ten-fifteen lines of source code
depending on the host compiler language. Also, because no iterations are
involved, downhole computer microprocessor resources are utilized efficiently
and available for other interpretation and control functions.  Algorithms have
been completed and validated for “drawdown only” as well as buildup test
cycles – multiple drawdowns followed by buildup are considered in Chapter 3.

2.2.12  Real pumping, Module FT-06

In real-world applications, flow-rate versus time functions are never
constant or piece-wise constant.  Flow rates invariably ramp-up and down, with
such effects being more dramatic with gas pumping.  These features must be
modeled numerically and analytical methods are not possible.  Figure 2.10a
shows the interface for a liquid-gas simulator which supports flow-rate functions
that may be, for instance, trapezoidal as in Figure 2.10b unlike the piecewise
rectangular functions of Figure 2b.  Source and observation probe pressures are
also given.



SINGLE-PHASE FLOW FORWARD AND INVERSE ALGORITHMS  49

Figure 2.10a.   FT-06 liquid-gas simulator inputs.

Figure 2.10b. FT-06 pump rate and pressure solutions.
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2.2.13 Closing remarks

We have introduced new ideas in formation tester pressure modeling and
permeability interpretation.  The forward and inverse methods apply to all
service company tools, e.g., wireline or “while drilling,” in single, dual-probe or
packer operation modes.  The methods described have been cross-checked and
validated in different physical limits to ensure accuracy and consistency.
Specific attention was focused on attractive user interface design (with
automated color and  line graphics) so that convenient field use with minimal
training is possible.
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3
Advanced Drawdown and Buildup

Interpretation in Low Mobility Environments

In conventional “repeat formation tester” (that is, Schlumberger RFTTM )
applications, permeabilities are predicted using steady-state spherical flow
models for drawdown pressure.  These assume higher mobilities which allow
rapid equilibration.  When mobilities are small, however, the formulas are not
valid and detailed history matching with transient Darcy flow simulators is
required.  In our approach, fast, rigorous methods are developed using rapidly
changing early-time drawdown or buildup data which satisfactorily predict
mobility and pore pressure.  Use of early data is crucial operationally because of
reduced cost, logging time and risk of stuck tools.  We emphasize that, unlike
inverse models that repeatedly run forward models in “brute force” manner
using guessed values for permeability, ours provide direct solutions for both
permeability and pore pressure.  Large flowline volumes are permitted as are
unequally spaced points in time.  Moreover, because the algorithm is compact
and fast, it is easily adapted for downhole microprocessor use to support real-
time applications. The technique is illustrated with data from a well known
industry example.

3.1  Basic Steady Flow Model

The use of formation testers in permeability or mobility prediction is well
established and numerous methods are available for different tool designs and
operational procedures.  The flow into the RFTTM, sketched in Figure 3.1, is
typically assumed to be rapidly established and “substantially steady-state” (e.g.,
see Dussan, Auzerais and Kenyon (1994)), as indicated by the bottom arrow
(ours) in the familiar diagram of Figure 3.2.
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Figure 3.1.   Repeat formation tester (RFTTM).

Figure 3.2a.   Test procedure from U.S. Patent 5,279,153
(note flat pressure responses assuming quick equilibration)

If P is the steady drawdown pressure, C is a flow shape factor, q is the
volume flow rate,  is the liquid viscosity, and rp is an “effective probe radius,”
then the drawdown permeability can be calculated from the simple relation
given by kd = Cq /(2 rp P). For convenience, the “C/(2 rp)” is usually
represented as a single number, say kd = 5,660 q / P.  Here kd, q,  and P are
expressed in md, cc/s, cp and psi.  The constant 5,660 applies to the “standard”
RFT probe. When the “large diameter” or the “fast-acting” probe is used, the
constant should be 2,395; for the “large-area packer,” the constant becomes
1,107 (see Log Interpretation Principles/Applications (1989) for details – the
notation used in this paragraph is retained for consistency with the existing
literature and differs slightly with ours below).  These values are calibration
constants accounting for non-spherical effects like borehole wall curvature and
pad geometry.  These models have limitations, and to understand them, we
develop a general approach.  Interestingly, Figure 3.2a illustrates a “double
drawdown” – Bowles (2004), in the context of dual packers, notes that double-
drawdown tests are effective in removing the need to repeat formation tests.  As
we show in Section 3.4, Figure 3.2a data are analyzed by twice application of
“kd = Cq /(2 rp P)” since the equilibrated pressure traces are independent.  For
low mobilities, this is not possible; we develop multiple-drawdown methods  in
Section 3.3 and show how permeabilities are predicted from resulting buildups.
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3.2  Transient Spherical Flow Models

We consider the transient, compressible, Darcy flow of a liquid in a
homogeneous, isotropic medium, and study the spherically symmetric flow
produced into an idealized “spherical well” of radius Rw from an infinite
reservoir.  Unlike point sources in older studies, our pressures are never singular
at the center since unrealistic “r = 0” locations are excluded.  Our model
simulates the transient dynamics of wireline or MWD testers, where Rw is the
spherical probe radius.  When we speak of “spherical wells,” we do not imply
that flowline storage effects are absent.  In fact, a term “VC” describing the
volume and fluid compressibility product is retained in a boundary condition
applied at the spherical radius.  We summarize results for isotropic flow with
storage, and importantly, implications of the exact, closed form, analytical
solution in Chin et al (2014).  In their book, the authors also provide the exact
solution for anisotropic flow with skin effects; our shorter summary is intended
to introduce a novel inverse procedure for transient pressure drawdown and
buildup data.

3.2.1  Forward or direct analysis
We first study the problem in which pressure responses are sought when

fluid, formation and tool data are given.  Let P(r,t) represent the transient fluid
pressure, where r and t are radial and time coordinates.  Also, let P0 denote the
constant initial and farfield pore pressure of the quiescent reservoir, while , k, 
and c, respectively, refer to rock porosity, isotropic permeability, liquid viscosity
and compressibility.  Again, Rw is the spherical well radius, and we denote by V
the internal flowline volume associated with the formation tester hardware.  In
engineering applications, a geometric factor G > 0, determined through three-
dimensional finite element flow analysis or laboratory experiment, is used to
correct the spherical radius to GRw for non-ideal pad, probe and borehole
curvature effects.

This use of an “effective probe radius” rp = GRw is equivalent to the
empirical constant “C” above.  Its value may vary among manufacturers and
particular models, depending on the details of the mechanical design and
possibly fluid flow parameters; ideally, for the sake of discussion, G = 1 is often
assumed.  The value of G may be determined by applying formulas derived here
to simple experiments or field trials, as we will show later.  In addition, a
compressibility C (not to be confused with the calibration constant “C” above) is
associated with the fluid inside the flowline, which is not necessarily equal to c
in the formation.  For example, C and c may differ by a ten-fold factor due to
phase segregation effects.
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For the single-phase Darcy flow problem, we denote by Q(t) the total
volume flowrate produced by the spherical well, due to sandface production plus
flowline volume storage effects.  The initial-boundary value problem without
skin effects is completely specified by the mathematical model

2P(r,t)/ r2 + 2/r P/ r = ( c/k) P/ t (3.1)
P(r,t = 0) = P0 (3.2)

P(r = ,t) = P0 (3.3)

(4 Rw
2k/ ) P(Rw,t)/ r - VC P/ t = Q(t) (3.4)

The “4 Rw
2k/ P(Rw,t)/ r” represents the contribution to Q(t) from flow

through the sandface, arising as the product of the Darcy fluid velocity k/ P/ r
and the spherical surface area 4 Rw

2, while “VC P/ t” represents the
contribution associated with fluid expansion and decompression in the flowline.

3.2.2  Dimensionless formulation

In conventional pressure transient analyses, free parameters (typically
related to storage) are retained in normalized formulations and varied to produce
families of “type curves” for interpretation purposes.  However, a more
powerful approach enables analytical simplifications that render type curve
modeling unnecessary – general exact solutions are obtained once and for all.
To determine the governing dimensionless laws in their most fundamental form,
we introduce nondimensional italicized variables r, t, and p, respectively
normalized by the dimensional physical quantities r*, t*, and p*, that is,

r = r/r* (3.5)
t = t/t* (3.6)
p(r,t) = {P(r,t) - P0}/p* (3.7)

whose values are to be determined.  It is also convenient to assume the total
production (or injection) volume flow rate Q(t) in the form

Q(t) = Q0 F(t) (3.8)

where Q0 is a positive (or negative) reference flow rate, and the dimensionless
function F(t) is given.  For continuous constant rate drawdown or buildup, F(t) is
unity; for piecewise-constant multi-rate pumping, F(t) is represented by a
sequence of step functions.  If we now choose

r* = VC/(4 Rw
2 c) > 0 (3.9)

t* = V2C2 /(16 2Rw
4 k c) > 0 (3.10)

p* = VCQ0 /(16 2Rw
4 k c) (3.11)
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the mathematical boundary value problem can be reduced to its simplest
possible form, namely,

2p(r,t)/ r2 + 2/r p/ r = p/ t (3.12)
p(r,0) = 0 (3.13)
p( ,t) = 0 (3.14)
p(rw,t)/ r - p/ t = F(t) (3.15)

which is free of explicit parameters (e.g., type curve constants in conventional
storage boundary conditions), except for the single dimensionless radius

rw = 4 Rw
3 c/(VC)  4 (GRw)3 c/(VC) > 0 (3.16)

which appears only in the argument of Equation 3.15.  This dimensionless radius
depends on the volume related parameters c, C, and Rw only, and not transport
properties like permeability and viscosity.

3.2.3  Exact solutions for direct problem

In order to solve Equations 3.12 to 3.16, we introduce the Laplace
transform

p(r,s) = exp(-st) p(r,t) dt (3.17)
0

where s > 0 is required in order that the integral exist.  Detailed results appear in
Chin et al (2014) and are not duplicated here.  An exact solution for p can be
found taking the form

p(r,s) = - {F(s)rw
2 exp(rws1/2)}{r -1exp(-rs1/2)/{rws +rws1/2 +1} (3.18)

which applies to all values of r.  At the spherical source r = rw, the above
equation reduces to p(rw,s) = - F(s)/(s + s1/2 + rw

-1).
Constant rate pumping.  We give exact, closed-form, analytical solutions

for simple transient build-up or drawdown, which can be used to construct more
general flowrate solutions using superposition methods.  Accordingly, consider
Q(t) = Q0 F(t) = Q0 constant, taking F(t) = 1, with Q0 > 0 for production and Q0
< 0 for injection.  At the source, it follows that F(s) = 1/s and

p(rw,s) = - 1/{s (s + s1/2 + rw
-1)} (3.19)

Recourse to numerical inversion is possible, but such algorithms are highly
sensitive to discretizations in s-space and inaccurate.  Fortunately, analytical
solutions are possible.  First we observe that Equation 3.19 can be re-expressed
in simpler terms using partial fraction expansions as
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p(rw,s) = - 1/{s ( 1 + s1/2 )( 2 + s1/2 )}
= {1/( 1 - 2)}{1/(s ( 1 + s1/2 )) - 1/(s ( 2 + s1/2 ))} (3.20)

where the complex constants 1 and 2 satisfy 1 = + 1/2 -1/2 (1 - 4 rw
-1) and

2 = + 1/2 +1/2 (1 - 4 rw
-1).  If we now apply the transform-inverse relationship

1/(s (  + s1/2 )) -1 erfc(0) - -1 exp( 2t) erfc( t) and use the fact that
erfc(0) = 1, we obtain the exact real dimensionless transient source pressure as

pexact(rw,t) = {1/( 1 - 2)}{ 1
-1 - 1

-1 exp( 1
2t) erfc( 1 t)

2
-1 + 2

-1 exp( 2
2t) erfc( 2 t)} (3.21)

valid for all time and all ranges of dimensionless variables.  This applies only at
the source, but solutions for r > rw at a distant probe or any observation point are
offered in Chin et al (2014).  The “erfc” in Equation 3.21 refers to the “complex
complementary error function” with complex arguments.  Upon evaluation, both
source and observation point pressures always form real numbers as required.

In field operations, separate early, intermediate and late-time formulas are
used to predict permeability or related quantities from pressure transient
behavior.  Until now, this practice is widespread because of mathematical
difficulties in finding single exact solutions.  Unfortunately, these time regimes
are ambiguously defined – “how early is early” or “how late is late” depends on
fluid and formation properties themselves, which are, of course, unknown.  The
availability of the single mathematical expression (developed here) valid for all
time is important because it reduces interpretation uncertainties.  This can be
used to develop novel inverse procedures as we will later show.

3.2.4  Special limit solutions

Before considering the inverse problem, we demonstrate how the foregoing
solution reduces to familiar expressions in special limits.  To show that it
reduces to known conventional results at small times, we introduce power series
approximations for the exponential and complementary error functions, that is,
ex = 1 + x + 1/2 x2 + 1/6 x3 + ... and erfc(x) = 1 - 2x/  + 2x3/(3 ) + ... in the
exact solution.  This procedure yields the familiar expansion

p(rw,t)early-time from exact  = - t + 4t3/2/(3 )

+ (1-rw)t2/(2rw) + 8(rw-2)t5/2/(15rw ) + ... (3.22)

Observe that Equation 3.22 provides a formal power series solution in t
valid for small times.  If we retain the first “p(rw,t) = - t ” term only and return to
dimensional variables, we obtain the often used relationship



ADVANCED DRAWDOWN AND BUILDUP INTERPRETATION  57

P(Rw,t)early-time from exact  = P0 - Q0 t/(VC) (3.23)

This “very-early-time” solution reproduces the well known linear variation of
pressure with time; the proportionality factor depends on volume flow rate and
flowline storage effects only.  In field practice, the pressure response at very
early time is used to predict the flowline compressibility C; the volume V is
known from hardware specifications, and may vary from tool to tool, depending
on the logging application.  Dynamical or transport effects due to viscosity and
permeability are captured by retaining additional terms in Equation 3.22, but
these transport properties only become significant at later times.  Large values of
the product VC mask permeability effects at early times – thus, an interpretation
model allowing more accurate formation evaluation is invaluable.

For large times, we can approximate the complementary error function in
using the asymptotic series expansion given by erfc (x) = exp(-x2) {1 - 1/(2x2) +
...}/{x }.  Then, our exact solution reduces to

p(rw,t)late-time from exact = -rw + rw
2/ ( t) (3.24)

+ (2-rw)rw
3/(2t3/2 ) + 3rw

4(rw-1)(rw-3)/(4t5/2 ) + ...
In the late time limit, we retain the leading “p(rw,t) = -rw + rw

2/ ( t) ” terms
only and return to dimensional variables to obtain

P(Rw,t)late-time from exact = P0 - Q0 /(4 Rwk)

+ {Q0 /(4 k)} { c/( kt)} (3.25)
This late time solution is independent of flowline storage, but depends not only
on  and k, but  and c.  Equation 3.25 also reproduces the algebraic “inverse-
square-root” timewise decline in pressure.  This large-time transient behavior
forms the basis for Horner-type models which, while popular, require “ c”
estimates which are subject to error (see Chapter 5 for a more detailed
discussion). At very large times, a steady-state spherical response is found from

P(Rw,t)late-time from exact = P0 - Q0 /(4 Rwk) (3.26a)

which is essentially the conventional high mobility model, that is,

kd = Cq /(2 rp P)  (3.26b)
or

kd = 5,660 q / P (3.26c)

but without the geometric correction.  If the value of P(Rw) is known from
drawdown or buildup measurements, then this simple source-point formula can
be used to estimate the value of the isotropic permeability k.
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Other solutions can be analogously recovered.  For example, we can
approximate the Laplace transform at rw by taking

p(rw,s) = - 1/{s (s + s1/2 + rw
-1)}  - 1/{s (s + rw

-1)} (3.27)

in which case we obtain the exponential approximation
pexp (rw,t) = rw(-1 + e -t/rw)                                                                (3.28)

This has been used successfully by Halliburton in early-time transient
interpretation for tight zones, noting that flowline distortions are most severe in
this limit (see Chin et al (2014) for references). The exponential model forms
the basis for the company’s GeoTapTM early-time pressure interpretation
products.  On the other hand, we could have assumed

p(rw,s) = - 1/{s (s + s1/2 + rw
-1)}  - 1/{s (s1/2 + rw

-1)} (3.29)

in which case
pexp-erfc(rw,t) = -rw + rw exp(t/rw

2)erfc(t1/2/rw)                            (3.30)

which also satisfies initial conditions.  Large-time expansions provide solutions
similar to those in Equation 3.25.  Of course, Equation 3.21 provides a single
expression valid for all space and time although, admittedly, the foregoing
approximations involve simpler computations.

3.2.5 New inverse approach for mobility and pore pressure prediction
Inverse or “indirect” problems predict mobility or “k/ ” from pressure

measurements.  We had indicated how the steady-state spherical flow equation
has been used together with repeat formation testers.  In many low mobility
applications, however, equilibrated pressure values are not available – excessive
logging times are costly and may result in lost tools.  Thus, one naturally
inquires if early-time methods can be developed which not only determine
mobility, but also predict steady-state pore pressure, from highly transient
drawdown or buildup data.  The required procedure is straightforward.  The
pressure expression in Equation 3.21 (or any of its approximations) is first re-
expressed in physical dimensional variables and then used to create drawdown
and buildup solutions using superposition methods.  For instance, a single
drawdown-buildup sums a “positive rate” pressure solution to one for a
“negative rate” shifted forward in time; double drawdown-buildups repeat this
superposition, therefore, adding a total of four distinct solutions.  The buildup
solution begins when the second pumping cycle stops.

The physical solution in dimensional form contains three explicit
parameters related to the background hydrostatic pressure, an amplitude
proportional to pumping rate, and lastly, a parameter related to mobility.  The
pressure solution is evaluated at three points in time, thus defining “three
equations in three unknowns” which are solved by nonlinear iterative methods.
This approach yields both mobility and pore pressure, noting that highly
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transient (as well as steady) pressure inputs are permissible.  In our
implementation, unequal time separations between logging points are permitted
and pressure variations may be highly transient.  Also, “late time parameters”
such as porosity are unimportant at early times and calculations are insensitive
to any assumed values.  Our approach contrasts with conventional approaches
which require steady pressures which predict mobility only.   In the next
sections, we demonstrate how the method predicts both mobility and pore
pressure accurately over a wide range of flowline volumes – a consideration
important to modern tight zone applications utilizing increasingly large
sampling chambers.

3.3  Multiple-Drawdown Pressure Analysis (Patent Pending)

This section deals with the use of formation testing pressure transient data
to obtain isotropic or anisotropic “mobility” and, where applicable, the “pore
pressure.”  Mobility is defined as “permeability/viscosity.”  If fluid viscosity is
known from a separate measurement, then permeability can also be calculated.
In petroleum engineering, we generally have horizontal mobility and
permeability, and similarly, vertical mobility and permeability, where these
directions are taken parallel and perpendicular to the bedding plane.
Henceforth, we will only focus on mobility, but it is clear that the conclusions
refer to permeability as well.  Mobility is a measure of resistance to fluid flow,
that is, it is a quantity that is directly related to the economic viability of an oil
and gas reservoir.  A “double-drawdown pressure transient analysis” method for
formation testers is described (extendable to multiple drawdowns).  The writing
is based on work of the lead author who invented most of the prior art.  The new
approach improves on the prior art and adds extensive capabilities.

3.3.1 Background on existing models

This section explains the differences between several Halliburton early-
time models that have been published.  It is essential to understand these so that
the contributions of this chapter, which are used together with phase delay
methods in Chapter 4 to predict both horizontal and vertical permeability, can be
appreciated. U.S. Patent No. 7,059,179 awarded to Proett and Chin provided a
means to obtain permeabilities from a general math solution and considered the
complicated situation when anisotropy and skin effects both exist.

It is important that the “with skin” solution is fundamentally different from
the “no skin” solution in this chapter – the latter does not appear by “setting skin
to zero.”  This may be confusing but the math is explained in Chin et al (2014).
Essentially, the skin coefficient multiplies a high-order derivative term in the
formulation – this term alters the structure of the solution.  It is analogous to
setting mass to zero in the mass-spring-damper model – it is invalid because the
second-order time derivative in “F = ma” would be incorrectly disregarded.
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The equations cited in U.S. Patent No. 7,059,179 involved “complex
complementary error functions” that are extremely complicated and in retrospect
could not be simplified.  In the decade since the patent was awarded in 2006, no
progress has been made in making the method practical for petroleum
engineering applications.

In the earlier work of Proett, Chin and Chen, namely U.S. Patent
5,703,286, the authors use the “no skin” limit of the general solution but
consider isotropic applications only.  Even so, the mathematical expressions
contain exponentials and complex complementary error functions and are still
impractical.  However, Chin importantly later showed that it is possible to
simplify the general result in a way that is useful to low mobility reservoir
applications.  Essentially, in low mobility applications, where formation tester
flowline volume effects are likely to significantly distort pressure transient
readings, a very simple “exponential” model applies.  This is the well known
model used successfully commercially by Halliburton in its GeoTapTM

“formation testing while drilling” (FTWD) product line.  It is for a MWD/LWD
single-probe tool in which pressures are measured at the source probe while
withdrawing fluid at a constant rate and then pumping is stopped.  The model
was adapted to this so-called single “drawdown-buildup test” and used to predict
mobility and permeability.  Halliburton curve fits experimental data to this
drawdown-buildup test, a procedure which we do not need or use.

3.3.2  Extension to anisotropic, no-skin applications

The method of U.S. Patent 5,703,286 again assumes isotropic media.  To
the authors’ knowledge, the basic theory has not been extended to anisotropic,
no-skin applications.  This limit is important in real-time formation evaluation
for two reasons: skin effects are unknown initially, but further, the skin model
typically used is a crude one.  An extension was made in an internal company
memo “FTWD-Processing-Algorithms-V56a” (Chin, 2012) and Chin et al
(2014) in which the Halliburton isotropic approach is extended to anisotropic
media without skin. We will quote and use the anisotropic solution below.

Let us describe the steps needed to produce results applicable to
anisotropic early-time data in low spherical mobility applications when flowline
storage distortion effects can be important.  The method applies to data taken at
the source (pumping) probe, and can be used for wireline or MWD tools with
multiple probes.  The mathematical steps are as follows.

The isotropic formulation of U.S. Patent 5,703,286 is first extended to
anisotropic media and solved analytically using Laplace transforms in the
no-skin limit.
Two asymptotic early time solutions, namely Equations 3.31 and 3.32, are
obtained in which low mobility effects are balanced by flowline storage
effects.  Early time solutions are commercially important because they
reduce the waiting times needed to collect data.
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The first asymptotic solution obtained is an “anisotropic exponential
extension” of Halliburton’s isotropic exponential model.  The new
exponential solution is similar in mathematical structure to the isotropic
method of U.S. Patent 5,703,286 and now takes the more general form in
below where Pw is the measured pressure, P0 is the pore pressure,  is
viscosity, Q0 is volume flow rate, Rw is effective nozzle radius, V is
flowline volume, C is fluid compressibility, and kh and kv are horizontal and
vertical permeabilities, that is

Pw(t) = P0 + { Q0/(4 Rwkh
2/3kv

1/3)} 
[ – 1 + exp (– 4 Rwkh

2/3kv
1/3 t)/( VC) ] (3.31)

The second asymptotic expansion, our preferred embodiment, is a
conventional “rational polynomial expansion,” that is, a polynomial series
expansion which provides equivalent solutions to the above but at much
faster speeds.  This takes the form
Pw(t) =  an tn (3.32)
where the coefficients an are chosen to satisfy the identical boundary value
problem.  This “rational polynomial” replaces the terms in the square-
brackets of Equation 3.31. The two solutions are only slightly different.

The two no-skin solutions, for brevity, will be referred to as “the
fundamental anisotropic solution” for constant rate pumping.  The
interpretation objective is to predict both P0 and the spherical permeability
ks = kh

2/3kv
1/3 by regression fitting to either.  It is important that we formally

prove Equation 3.31 for use in Chapter 4, whereas some authors simply
replace (without justification) an isotropic permeability with kh

2/3kv
1/3.

3.3.2.1 Method 1 - Drawdown-alone test

There are different test procedures that are employed in field operations.
The first is a simple “drawdown-alone” method, in which reservoir fluid is
withdrawn by formation tester pumping at a constant rate without stopping.  If
and when steady conditions are achieved, the formula Ps = - Q / (4 ks Rw )
conventionally used in the industry can be employed to predict spherical
mobility or permeability; this is a standard procedure that has been used for
decades and its use applies to standard RFT formation testers.

If steady conditions are not possible, the fundamental anisotropic solution
is used to match measured transient data to at least three data points [t, Pw(t)]
using a numerical regression method.  The test parameters that provide the best
curve-fitting are used to calculate the spherical mobility ks and the pore pressure
P0. We emphasize that the measured data may be highly transient and are
collected at early times, typically in the first fifteen seconds of drawdown.
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In Halliburton’s isotropic method, a curve is first fitted to all the data,
typically ten points, and the properties of this curve are analyzed.  This curve fit
uses subjective criteria outside of fluid dynamics.  We believe this approach is
less accurate than direct consideration of the data.

3.3.2.2  Method 2 - Single-drawdown-single-buildup test

In this test, the pump piston is used to withdraw fluid from the formation at
a constant volume flow rate, for a fixed duration of time, and then stops.  During
fluid withdrawal, the measured pressure decreases in time – this is known as the
“drawdown.”  When pumping stops, the pressure increases in time – this is the
“buildup.”  The procedure described consists of a single drawdown followed by
a single buildup.  For the drawdown cycle, the Method 1 applies.  For the
buildup cycle, we construct a solution using our fundamental anisotropic
solution by applying the “method of superposition” to construct solutions valid
for drawdown and buildup.  The first part of the pressure solution assumes a
volume flow rate Q acting for a given amount of time.  To this solution, we add
the pressure solution with flowrate “- Q” once pumping stops (this models a
total flowrate of zero).

U.S. Patent 6,932,167 provides an example of superposition using the
isotropic exponential solution (ours uses the anisotropic exponential and rational
polynomial solutions).  The patent also describes a curve-fitting regression
analysis used to predict the isotropic mobility or permeability.  We do not use
the Halliburton procedure since we believe that curve-fitting adds a level of
uncertainty that is unwarranted.  Subjective visual judgements or those made
arbitrarily by mathematical rules not based on the flow equations introduce
uncertain error. Instead, we use at least three data points [t, Pw(t)] from actual
drawdown or buildup data, together with a regression analysis, to predict
spherical mobility and pore pressure – again, from buildup data that has not
necessarily reached steady state. Typically, data can be used from the first
fifteen-to-thirty seconds of the test.

3.3.2.3  Method 3 - Double-drawdown-single-buildup test

In certain “fluid sampling” applications, the source probe (pumping piston)
withdraws fluid at a volume flow rate Q1 for a given time duration, followed by
a more rapid withdrawal Q2 for a second time duration, and finally, followed by
stoppage of pumping.  Thus, we have two pressure drawdowns (that is, two
different decreases in time) followed by a buildup (pressure increase).  For the
first drawdown, Method 1 can be used to predict spherical mobility and pore
pressure.  These quantities can also be predicted from the buildup curve, but not
using Method 2, since we how have an additional drawdown. A new solution
must be constructed to represent the buildup. This is developed by linear
superposition again.  The first solution is the pressure solution for a flowrate Q1
acting for the first time duration.  The second solution is the pressure solution
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for flowrate Q2, which applies for the second drawdown duration. The third and
final solution, applicable to the buildup curve, assumes a net flow rate of zero
and acts for the remainder of time.  Again, the superposition process is adopted
from in mathematics.  Triple-superpositions are used to construct this buildup
solution.  As before, we use at least three data points [t, Pw(t)] from buildup data,
together with a regression analysis, to predict both spherical mobility and pore
pressure.

Figure 3.2b.   New method for multiple drawdowns.

The new method applies to double-drawdown (left) and single-drawdown
(right) of Figure 3.2b both in low mobility anisotropic applications.  Use of
“rational polynomial” solutions plus a “three data point” approach permits fast
calculation speeds useful in surface operations, but particularly important in
downhole microprocessor environments where computing resources are limited.
Our approach can be extended to any number of drawdowns by using multiple
superpositions of the “fundamental anisotropic solution.”



64 FORMATION TESTING

3.4  Forward Analysis with Illustrative Calibration

We now consider a well known example from Page 10-9 of
Schlumberger’s Log Interpretation Principles/Applications.  Data from
drawdown analyses of two pretests (with 10 cc each) show that

P1 = 2,050 psi
T1 = 15.4 sec
q1 = 10/15.4 = 0.65 cc/sec

and
P2 = 4,470 psi
T2 = 6.1 sec
q2 = 10/6.1 = 1.64 cc/sec

where the upper case T’s are defined in our Figure 3.2a (these parameters are
used later in our FT-00 screen of Figure 3.3a).  The well was drilled using mud
with a viscosity of  = 0.25 cp.  Using Equation 3.26b shows that

kd1 = 5660  0.65  0.25/2050 = 0.45 md
and

kd2 = 5660  1.64  0.25/4470 = 0.52 md
In this example, the two values of permeability agree quite well.  This
consistency indicates that, for the tests conducted, steady-state pressures were
found in both cases – reference to the log in Figure 10-19 of the above
publication does, in fact, show a “flat part” or horizontal asymptote adjacent to
the bottom arrow (ours) of our Figure 3.2a.

We now pursue a simple exercise to show that the Schlumberger data
above are consistent with our exact solver FT-00 for a properly selected
geometric factor.  For illustrative purposes, we will assume below that the
underlying formation has a permeability of about kd = 0.5 md as suggested by
the average of 0.45 and 0.52 md above.  As discussed in Chin et al (2014), the
exact solution in Equation 3.21 has been incorporated in forward analysis
software algorithm FT-00 which supports a general pump-out schedule using
linear superposition methods.  Shown in Figure 3.3a is the self-explanatory
menu for the most general case, namely, transversely isotropic flow with
flowline storage and skin – note that we have inputted the flow rates 0.65 and
1.64 cc/sec, the viscosity 0.25 cp, and two permeabilities of 0.5 md.

Entering the appropriate fluid, formation and tool parameters produces,
within a fraction of a second on Intel i5 machines, complete solutions for source
and, if applicable, multiple observation probes.  Clicking on “Simulate”
produces the “double bump” source probe drawdown response in Figure 3.3b for
the pumping schedule shown (again, note how steady-state asymptotes appear
for both tests).  By trial and error, we have selected a geometric factor G of 0.38
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which adjusts computed pressure drops seen from Figure 3.3b to the 2050 (
20,000 – 18,000) and 4470 (  20,000 – 15,100) psi values indicated in the
Schlumberger data – only a single G value is required for this fit.  Figure 3.3b
does verify that the selected simulation parameters do in fact lead to rapidly
equilibrating pressures.  Note that exact agreement is not possible because of the
approximate 0.5 md assumed; also, we indicate that the time 21.5 = 15.4 + 6.1.
Our “0.38” is analogous to the “5660” used in the above calculations.  So far, we
have only shown that our transient FT-00 formulation and the steady spherical
model are consistent in the large-time limit.  We emphasize, however, that our
FT-00 model is exact and can be used to create transient “synthetic data” valid
for any point in time.  This data is useful, as we will show, for evaluating
inverse methods.

Figure 3.3a.   Schlumberger medium-high mobility parameters.
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Figure 3.3b.   Schlumberger medium-high mobility pressure response.

3.5  Mobility and Pore Pressure Using First Drawdown Data

We now reconsider the above example but increase the viscosity from 0.25
cp to 1 cp.  For the parameters indicated, this increase is enough to eliminate the
appearance of any steady-state pressure response, so that all drawdown
pressures are highly transient.  This low-mobility effect, together with any
nonzero flowline volume, can be detrimental to formation permeability
prediction.  We will focus on the performance of the inverse method in as
flowline volume increases from “acceptable” to large values for our 1 cp fluid.

3.5.1 Run No. 1, Flowline volume 200 cc
(Software reference, pta-dd-3-run-with-rft-numbers.exe)

In this example, we consider a flowline volume of 200 cc.  This and the
calculated pressure response are shown in Figure 3.4a.  It is clear that no steady
state exists, so that Equations 3.26b and 3.26c are inapplicable.



ADVANCED DRAWDOWN AND BUILDUP INTERPRETATION  67

Figure 3.4a.   Flowline volume, 200 cc.

Clicking on “Simulate” produces the exact transient source probe pressure
response shown below (again, at 15.4 sec, the initial drawdown ceases and is
replaced by a stronger one).  We will use pressure results from 3.6, 9.9 and 14.4
sec (highlighted in red  font) as inputs to our inverse model.  This model will
attempt to recover the mobility of 0.5 md/cp and the pore pressure of 20,000 psi
assumed in the menu of Figure 3.4a.  In Runs No. 1-4, we will use drawdown
data from the very left of our pressure response curves.

EXACT FT-00 FORWARD ANALYSIS RESULTS
  Time (s)  Rate (cc/s)   Ps* (psi)
 0.000E+00  0.65000E+00  0.20000E+05
 0.900E+00  0.65000E+00  0.19084E+05
 0.180E+01  0.65000E+00  0.18275E+05
 0.270E+01  0.65000E+00  0.17559E+05
0.360E+01  0.65000E+00  0.16926E+05
 0.450E+01  0.65000E+00  0.16366E+05
 0.540E+01  0.65000E+00  0.15871E+05
 0.630E+01  0.65000E+00  0.15433E+05
 0.720E+01  0.65000E+00  0.15045E+05
 0.810E+01  0.65000E+00  0.14702E+05
 0.900E+01  0.65000E+00  0.14398E+05
0.990E+01  0.65000E+00  0.14129E+05
 0.108E+02  0.65000E+00  0.13891E+05
 0.117E+02  0.65000E+00  0.13680E+05
 0.126E+02  0.65000E+00  0.13493E+05
 0.135E+02  0.65000E+00  0.13328E+05
0.144E+02  0.65000E+00  0.13181E+05
 0.153E+02  0.65000E+00  0.13052E+05
 0.162E+02  0.16400E+01  0.11688E+05
 0.171E+02  0.16400E+01  0.10337E+05
 0.180E+02  0.16400E+01  0.91422E+04
 0.189E+02  0.16400E+01  0.80852E+04
 0.198E+02  0.16400E+01  0.71500E+04
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A superposition program was written to implement our inverse ideas.
Screen outputs with iteration history are shown below.  Convergence to 0.515
md/cp and 19,981 psi (shown in red ) was achieved and agrees well with input
values of 0.5 and 20,000.  It is worth noting that none of the input pressures used
are close to 20,000 psi.  In general, pressure data near t = 0 should not be used.
Computation time was approximately one second.

Volume flow rate (cc/s):       0.650
Pump probe, radius (cm):       0.500
Probe, geometric factor:       0.380
1st Point Time T1 (sec):       3.600
      Pressure P1 (psi):   16926.000
2nd Point Time T2 (sec):       9.900
      Pressure P2 (psi):   14129.000
1st Point Time T3 (sec):      14.400
      Pressure P3 (psi):   13181.000

    Run    Error  P0(psi)  Md/Cp
      1.  52.3 %   18532   0.009
      2.  52.0 %   18540   0.018
      3.  51.8 %   18548   0.027
      4.  51.5 %   18556   0.036
      5.  51.2 %   18564   0.044
      6.  51.0 %   18572   0.053
      7.  50.7 %   18580   0.061
      8.  50.5 %   18588   0.070
      9.  50.2 %   18596   0.078
     10.  49.9 %   18605   0.086
       .
       .
    130.   2.9 %   19911   0.511
    131.   2.4 %   19925   0.512
    132.   1.9 %   19939   0.513
    133.   1.3 %   19953   0.513
    134.   0.7 %   19967   0.514
    135.   0.2 %   19981   0.515

Stop - Program terminated.
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3.5.2 Run No. 2, Flowline volume 500 cc

Here we increase the flowline volume to 500 cc with all other parameters
unchanged.  The source probe pressure response does not show any steady
behavior at all.

Figure 3.4b.   Flowline volume, 500 cc.
EXACT FT-00 FORWARD ANALYSIS RESULTS
  Time (s)  Rate (cc/s)   Ps* (psi)
 0.000E+00  0.65000E+00  0.20000E+05
 0.900E+00  0.65000E+00  0.19620E+05
 0.180E+01  0.65000E+00  0.19258E+05
 0.270E+01  0.65000E+00  0.18913E+05
0.360E+01  0.65000E+00  0.18585E+05
 0.450E+01  0.65000E+00  0.18273E+05
 0.540E+01  0.65000E+00  0.17976E+05
 0.630E+01  0.65000E+00  0.17693E+05
 0.720E+01  0.65000E+00  0.17423E+05
 0.810E+01  0.65000E+00  0.17167E+05
 0.900E+01  0.65000E+00  0.16922E+05
0.990E+01  0.65000E+00  0.16690E+05
 0.108E+02  0.65000E+00  0.16468E+05
 0.117E+02  0.65000E+00  0.16257E+05
 0.126E+02  0.65000E+00  0.16056E+05
 0.135E+02  0.65000E+00  0.15865E+05
0.144E+02  0.65000E+00  0.15683E+05
 0.153E+02  0.65000E+00  0.15509E+05
 0.162E+02  0.16400E+01  0.14828E+05
 0.171E+02  0.16400E+01  0.14116E+05
 0.180E+02  0.16400E+01  0.13439E+05
 0.189E+02  0.16400E+01  0.12794E+05
 0.198E+02  0.16400E+01  0.12180E+05
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We again run our inverse program, as shown below.  As expected, the
pressure inputs taken at the same times as before are substantially changed.
Here, we predict 0.512 md/cp and 19,995 psi – again close to the assumed
values of 0.5 md/cp and 20,000 psi.
Volume flow rate (cc/s):       0.650
Pump probe, radius (cm):       0.500
Probe, geometric factor:       0.380
1st Point Time T1 (sec):       3.600
      Pressure P1 (psi):   18585.000
2nd Point Time T2 (sec):       9.900
      Pressure P2 (psi):   16690.000
1st Point Time T3 (sec):      14.400
      Pressure P3 (psi):   15683.000

    Run    Error  P0(psi)  Md/Cp
      1.  25.2 %   19673   0.013
      2.  24.8 %   19678   0.027
      3.  24.4 %   19684   0.040
      4.  24.0 %   19689   0.053
      5.  23.6 %   19694   0.066
      6.  23.2 %   19700   0.078
      7.  22.7 %   19705   0.091
      8.  22.3 %   19711   0.103
      9.  21.9 %   19717   0.115
     10.  21.5 %   19722   0.127
       .
       .
     50.   2.3 %   19968   0.486
     51.   1.8 %   19974   0.493
     52.   1.3 %   19981   0.499
     53.   0.7 %   19988   0.506
     54.   0.2 %   19995   0.512
Stop - Program terminated.
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3.5.3  Run No. 3, Flowline volume 1,000 cc

Here we repeat the above calculation, except that flowline volume in
increased to 1,000 cc.  Calculations again demonstrate accurate predictions
using early-time transient data.  The mobility is 0.510 md/cp as opposed to 0.5
md/cp, and the pore pressure is almost identical to the 20,000 psi assumed in the
FT-00 data generation.

Figure 3.4c.   Flowline volume, 1,000 cc.

EXACT FT-00 FORWARD ANALYSIS RESULTS
  Time (s)  Rate (cc/s)   Ps* (psi)
 0.000E+00  0.65000E+00  0.20000E+05
 0.900E+00  0.65000E+00  0.19807E+05
 0.180E+01  0.65000E+00  0.19620E+05
 0.270E+01  0.65000E+00  0.19436E+05
0.360E+01  0.65000E+00  0.19258E+05
 0.450E+01  0.65000E+00  0.19083E+05
 0.540E+01  0.65000E+00  0.18913E+05
 0.630E+01  0.65000E+00  0.18747E+05
 0.720E+01  0.65000E+00  0.18585E+05
 0.810E+01  0.65000E+00  0.18426E+05
 0.900E+01  0.65000E+00  0.18272E+05
0.990E+01  0.65000E+00  0.18122E+05
 0.108E+02  0.65000E+00  0.17975E+05
 0.117E+02  0.65000E+00  0.17831E+05
 0.126E+02  0.65000E+00  0.17691E+05
 0.135E+02  0.65000E+00  0.17555E+05
0.144E+02  0.65000E+00  0.17422E+05
 0.153E+02  0.65000E+00  0.17292E+05
 0.162E+02  0.16400E+01  0.16904E+05
 0.171E+02  0.16400E+01  0.16493E+05
 0.180E+02  0.16400E+01  0.16092E+05
 0.189E+02  0.16400E+01  0.15701E+05
 0.198E+02  0.16400E+01  0.15320E+05
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Volume flow rate (cc/s):       0.650
Pump probe, radius (cm):       0.500
Probe, geometric factor:       0.380
1st Point Time T1 (sec):       3.600
      Pressure P1 (psi):   19258.000
2nd Point Time T2 (sec):       9.900
      Pressure P2 (psi):   18122.000
1st Point Time T3 (sec):      14.400
      Pressure P3 (psi):   17422.000

    Run    Error  P0(psi)  Md/Cp
      1.  13.3 %   19910   0.022
      2.  12.8 %   19913   0.045
      3.  12.3 %   19916   0.067
      4.  11.8 %   19920   0.088
      5.  11.4 %   19923   0.110
      6.  10.9 %   19926   0.131
      7.  10.4 %   19929   0.151
      8.   9.9 %   19933   0.172
      9.   9.4 %   19936   0.192
     10.   8.9 %   19940   0.212
       .
       .
     20.   3.9 %   19974   0.396
     21.   3.3 %   19977   0.413
     22.   2.8 %   19981   0.430
     23.   2.3 %   19984   0.446
     24.   1.7 %   19988   0.463
     25.   1.2 %   19992   0.479
     26.   0.7 %   19995   0.495
     27.   0.1 %   19999   0.510

Stop - Program terminated.
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3.5.4  Run No. 4, Flowline volume 2,000 cc

Finally in Run No. 4, the flowline volume is increased to a large 2,000 cc.
Pore pressure prediction is again excellent at 19,999 psi, but mobility is still
accurate and acceptable at 0.492 md/cp, as opposed to 0.5.

Figure 3.4d.   Flowline volume, 2,000 cc.
EXACT FT-00 FORWARD ANALYSIS RESULTS
  Time (s)  Rate (cc/s)   Ps* (psi)
 0.000E+00  0.65000E+00  0.20000E+05
 0.900E+00  0.65000E+00  0.19903E+05
 0.180E+01  0.65000E+00  0.19807E+05
 0.270E+01  0.65000E+00  0.19713E+05
0.360E+01  0.65000E+00  0.19620E+05
 0.450E+01  0.65000E+00  0.19527E+05
 0.540E+01  0.65000E+00  0.19436E+05
 0.630E+01  0.65000E+00  0.19346E+05
 0.720E+01  0.65000E+00  0.19257E+05
 0.810E+01  0.65000E+00  0.19170E+05
 0.900E+01  0.65000E+00  0.19083E+05
0.990E+01  0.65000E+00  0.18997E+05
 0.108E+02  0.65000E+00  0.18913E+05
 0.117E+02  0.65000E+00  0.18829E+05
 0.126E+02  0.65000E+00  0.18746E+05
 0.135E+02  0.65000E+00  0.18665E+05
0.144E+02  0.65000E+00  0.18584E+05
 0.153E+02  0.65000E+00  0.18505E+05
 0.162E+02  0.16400E+01  0.18295E+05
 0.171E+02  0.16400E+01  0.18071E+05
 0.180E+02  0.16400E+01  0.17850E+05
 0.189E+02  0.16400E+01  0.17632E+05
 0.198E+02  0.16400E+01  0.17416E+05
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Volume flow rate (cc/s):       0.650
Pump probe, radius (cm):       0.500
Probe, geometric factor:       0.380
1st Point Time T1 (sec):       3.600
      Pressure P1 (psi):   19620.000
2nd Point Time T2 (sec):       9.900
      Pressure P2 (psi):   18997.000
1st Point Time T3 (sec):      14.400
      Pressure P3 (psi):   18584.000

    Run    Error  P0(psi)  Md/Cp
      1.   6.7 %   19977   0.041
      2.   6.2 %   19979   0.082
      3.   5.7 %   19981   0.121
      4.   5.2 %   19983   0.161
      5.   4.6 %   19984   0.200
      6.   4.1 %   19986   0.238
      7.   3.6 %   19988   0.276
      8.   3.1 %   19990   0.313
      9.   2.6 %   19992   0.350
     10.   2.0 %   19994   0.386
     11.   1.5 %   19995   0.422
     12.   1.0 %   19997   0.457
     13.   0.4 %   19999   0.492
Stop - Program terminated.

3.6  Mobility and Pore Pressure from Last Buildup Data

In Runs No. 5-8, we use the far-right buildup portion of the pressure curve
to predict mobility and pore pressure, e.g., see Figure 3.4a.  We emphasize that
our “late time” portion of the response is significantly earlier than typical times
used in Horner plots.  The model now includes four linear superpositions, but
the iterative process is identical to that for early drawdowns and only slightly
slower, typically one second per inversion on Intel i5 machines.  In the examples
below, we randomly select time points for inverse model input.

3.6.1 Run No. 5, Flowline volume 200 cc
(Software reference, pta-two-dd-2.exe)
We again assume a modest 200 cc flowline volume.  Exact pressure data

computed from FT-00 are displayed corresponding to inputs in Figure 3.4a.
Results highlighted in red  are used in our inverse model – they are taken from
the “zero flow rate” buildup portion of the table.  The inverse program now
includes two additional input parameters relative to the “early drawdown”
model, namely, the drawdown ending times for the two pumping cycles.  The
predicted values of pore pressure and mobility, namely, 19,974 psi and 0.516
md/cp, are excellent when compared to the exact values 20,000 psi and 0.5
md/cp.

  Time (s)  Rate (cc/s)   Ps* (psi)
 0.000E+00  0.65000E+00  0.20000E+05
 0.900E+00  0.65000E+00  0.19084E+05
 .
 .

 [Buildup begins at 21.5 seconds.]
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 .
 0.189E+02  0.16400E+01  0.80852E+04
 0.198E+02  0.16400E+01  0.71500E+04
 0.207E+02  0.16400E+01  0.63226E+04
 0.216E+02  0.00000E+00  0.58616E+04
 0.225E+02  0.00000E+00  0.74926E+04
 0.234E+02  0.00000E+00  0.89330E+04
 0.243E+02  0.00000E+00  0.10206E+05
 0.252E+02  0.00000E+00  0.11332E+05
 0.261E+02  0.00000E+00  0.12327E+05
 0.270E+02  0.00000E+00  0.13208E+05
0.279E+02  0.00000E+00  0.13986E+05
 0.288E+02  0.00000E+00  0.14676E+05
 0.297E+02  0.00000E+00  0.15285E+05
 0.306E+02  0.00000E+00  0.15825E+05
 0.315E+02  0.00000E+00  0.16302E+05
 0.324E+02  0.00000E+00  0.16725E+05
0.333E+02  0.00000E+00  0.17099E+05
 0.342E+02  0.00000E+00  0.17430E+05
 0.351E+02  0.00000E+00  0.17723E+05
 0.360E+02  0.00000E+00  0.17982E+05
 0.369E+02  0.00000E+00  0.18212E+05
 0.378E+02  0.00000E+00  0.18415E+05
 0.387E+02  0.00000E+00  0.18595E+05
 0.396E+02  0.00000E+00  0.18754E+05
 0.405E+02  0.00000E+00  0.18896E+05
 0.414E+02  0.00000E+00  0.19021E+05
 0.423E+02  0.00000E+00  0.19131E+05
 0.432E+02  0.00000E+00  0.19229E+05
 0.441E+02  0.00000E+00  0.19316E+05

Vol flow rate Q1 (cc/s):       0.650
Vol flow rate Q2 (cc/s):       1.640
Pump probe, radius (cm):       0.500
Probe, geometric factor:       0.380
1st drawdown ends (sec):      15.400
2nd drawdown ends (sec):      21.500
1st Point Time T1 (sec):      22.500
      Pressure P1 (psi):    7492.600
2nd Point Time T2 (sec):      27.900
      Pressure P2 (psi):   13986.000
1st Point Time T3 (sec):      33.300
      Pressure P3 (psi):   17099.000

    Run    Error  P0(psi)  Md/Cp
      1.  51.8 % 1213219   0.000
      2.  51.5 %  611986   0.000
      3.  51.3 %  411575   0.001
      4.  51.0 %  311371   0.002
      .
      .
    100.  17.7 %   23054   0.375
    110.  13.2 %   21990   0.417
    120.   8.4 %   21108   0.456
    130.   3.3 %   20365   0.494
    131.   2.7 %   20298   0.498
    132.   2.2 %   20231   0.501
    133.   1.7 %   20165   0.505
    134.   1.2 %   20101   0.508
    135.   0.6 %   20037   0.512
    136.   0.1 %   19974   0.516

Stop - Program terminated.
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3.6.2 Run No. 6, Flowline volume 500 cc
Here, the flowline volume is increased to 500 cc and Figure 3.4b applies.

Exact FT-00 source probe pressures are given below and red  values are taken as
inputs to the inverse program.  Calculated results give a pore pressure of 20,046
psi and a mobility of 0.509 md/cp, which compare favorably with known values.

Time (s)  Rate (cc/s)   Ps* (psi)
 0.000E+00  0.65000E+00  0.20000E+05
 0.900E+00  0.65000E+00  0.19620E+05
 0.180E+01  0.65000E+00  0.19258E+05
.
.
 0.189E+02  0.16400E+01  0.12794E+05
 0.198E+02  0.16400E+01  0.12180E+05
 0.207E+02  0.16400E+01  0.11595E+05
 0.216E+02  0.00000E+00  0.11147E+05
 0.225E+02  0.00000E+00  0.11572E+05
0.234E+02  0.00000E+00  0.11975E+05
 0.243E+02  0.00000E+00  0.12359E+05
 0.252E+02  0.00000E+00  0.12724E+05
 0.261E+02  0.00000E+00  0.13072E+05
 0.270E+02  0.00000E+00  0.13403E+05
 0.279E+02  0.00000E+00  0.13718E+05
 0.288E+02  0.00000E+00  0.14018E+05
 0.297E+02  0.00000E+00  0.14303E+05
0.306E+02  0.00000E+00  0.14575E+05
 0.315E+02  0.00000E+00  0.14834E+05
 0.324E+02  0.00000E+00  0.15081E+05
 0.333E+02  0.00000E+00  0.15315E+05
 0.342E+02  0.00000E+00  0.15539E+05
 0.351E+02  0.00000E+00  0.15751E+05
 0.360E+02  0.00000E+00  0.15954E+05
 0.369E+02  0.00000E+00  0.16147E+05
 0.378E+02  0.00000E+00  0.16330E+05
 0.387E+02  0.00000E+00  0.16505E+05
 0.396E+02  0.00000E+00  0.16671E+05
0.405E+02  0.00000E+00  0.16830E+05
 0.414E+02  0.00000E+00  0.16981E+05
 0.423E+02  0.00000E+00  0.17125E+05
 0.432E+02  0.00000E+00  0.17261E+05
 0.441E+02  0.00000E+00  0.17392E+05

Vol flow rate Q1 (cc/s):       0.650
Vol flow rate Q2 (cc/s):       1.640
Pump probe, radius (cm):       0.500
Probe, geometric factor:       0.380
1st drawdown ends (sec):      15.400
2nd drawdown ends (sec):      21.500
1st Point Time T1 (sec):      23.400
      Pressure P1 (psi):   11975.000
2nd Point Time T2 (sec):      30.600
      Pressure P2 (psi):   14575.000
1st Point Time T3 (sec):      40.500
      Pressure P3 (psi):   16830.000

    Run    Error  P0(psi)  Md/Cp
      1.  36.4 %  374386   0.000
     10.  31.3 %   49401   0.030
     20.  25.2 %   31361   0.106
     30.  18.6 %   25358   0.210
     40.  11.5 %   22365   0.330
     50.   3.7 %   20575   0.457
     51.   2.9 %   20434   0.470
     52.   2.1 %   20300   0.483
     53.   1.3 %   20170   0.496

54.   0.5 %   20046   0.509
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3.6.3  Run No. 7, Flowline volume 1,000 cc

Here the flowline volume is increased to 1,000 cc and Figure 3.4c applies.
The predicted values of 20,043 psi and 0.506 md/cp are again very accurate.

  Time (s)  Rate (cc/s)   Ps* (psi)
 0.000E+00  0.65000E+00  0.20000E+05
 0.900E+00  0.65000E+00  0.19807E+05
 0.180E+01  0.65000E+00  0.19620E+05
  .
  .
 0.189E+02  0.16400E+01  0.15701E+05
 0.198E+02  0.16400E+01  0.15320E+05
 0.207E+02  0.16400E+01  0.14948E+05
 0.216E+02  0.00000E+00  0.14639E+05
0.225E+02  0.00000E+00  0.14769E+05
 0.234E+02  0.00000E+00  0.14896E+05
 0.243E+02  0.00000E+00  0.15020E+05
 0.252E+02  0.00000E+00  0.15140E+05
 0.261E+02  0.00000E+00  0.15258E+05
 0.270E+02  0.00000E+00  0.15373E+05
 0.279E+02  0.00000E+00  0.15485E+05
0.288E+02  0.00000E+00  0.15594E+05
 0.297E+02  0.00000E+00  0.15701E+05
 0.306E+02  0.00000E+00  0.15805E+05
 0.315E+02  0.00000E+00  0.15906E+05
 0.324E+02  0.00000E+00  0.16005E+05
 0.333E+02  0.00000E+00  0.16102E+05
 0.342E+02  0.00000E+00  0.16196E+05
 0.351E+02  0.00000E+00  0.16288E+05
 0.360E+02  0.00000E+00  0.16378E+05
 0.369E+02  0.00000E+00  0.16465E+05
 0.378E+02  0.00000E+00  0.16550E+05
 0.387E+02  0.00000E+00  0.16634E+05
 0.396E+02  0.00000E+00  0.16715E+05
 0.405E+02  0.00000E+00  0.16795E+05
 0.414E+02  0.00000E+00  0.16872E+05
 0.423E+02  0.00000E+00  0.16948E+05
 0.432E+02  0.00000E+00  0.17021E+05
 0.441E+02  0.00000E+00  0.17093E+05

Vol flow rate Q1 (cc/s):       0.650
Vol flow rate Q2 (cc/s):       1.640
Pump probe, radius (cm):       0.500
Probe, geometric factor:       0.380
1st drawdown ends (sec):      15.400
2nd drawdown ends (sec):      21.500
1st Point Time T1 (sec):      22.500
      Pressure P1 (psi):   14769.000
2nd Point Time T2 (sec):      28.800
      Pressure P2 (psi):   15594.000
1st Point Time T3 (sec):      35.100
      Pressure P3 (psi):   16288.000

    Run    Error  P0(psi)  Md/Cp
      1.  15.3 %  146133   0.001
      5.  13.2 %   41374   0.023
     10.  10.4 %   28281   0.085
     15.   7.5 %   23918   0.180
     20.   4.6 %   21737   0.301
     25.   1.5 %   20430   0.444
     26.   0.9 %   20229   0.475
     27.   0.3 %   20043   0.506

Stop - Program terminated.
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3.6.4  Run No. 8, Flowline volume 2,000 cc
Here, the flowline volume is increased to a large 2,000 cc and Figure 3.4d

applies.  Nonetheless, the predicted 20,129 psi and 0.472 md/cp are in
reasonable agreement with the known values of 20,000 psi and 0.5 md/cp.

Time (s)  Rate (cc/s)   Ps* (psi)
 0.000E+00  0.65000E+00  0.20000E+05
 0.900E+00  0.65000E+00  0.19903E+05
 0.180E+01  0.65000E+00  0.19807E+05
  .
 0.198E+02  0.16400E+01  0.17416E+05
 0.207E+02  0.16400E+01  0.17204E+05
 0.216E+02  0.00000E+00  0.17021E+05
 0.225E+02  0.00000E+00  0.17057E+05
 0.234E+02  0.00000E+00  0.17093E+05
0.243E+02  0.00000E+00  0.17128E+05
 0.252E+02  0.00000E+00  0.17163E+05
 0.261E+02  0.00000E+00  0.17198E+05
 0.270E+02  0.00000E+00  0.17232E+05
 0.279E+02  0.00000E+00  0.17266E+05
 0.288E+02  0.00000E+00  0.17299E+05
 0.297E+02  0.00000E+00  0.17332E+05
0.306E+02  0.00000E+00  0.17364E+05
 0.315E+02  0.00000E+00  0.17397E+05
 0.324E+02  0.00000E+00  0.17428E+05
 0.333E+02  0.00000E+00  0.17460E+05
 0.342E+02  0.00000E+00  0.17490E+05
 0.351E+02  0.00000E+00  0.17521E+05
 0.360E+02  0.00000E+00  0.17551E+05
 0.369E+02  0.00000E+00  0.17581E+05
 0.378E+02  0.00000E+00  0.17610E+05
 0.387E+02  0.00000E+00  0.17639E+05
0.396E+02  0.00000E+00  0.17668E+05
 0.405E+02  0.00000E+00  0.17697E+05
 0.414E+02  0.00000E+00  0.17725E+05
 0.423E+02  0.00000E+00  0.17752E+05
 0.432E+02  0.00000E+00  0.17780E+05
 0.441E+02  0.00000E+00  0.17807E+05

Vol flow rate Q1 (cc/s):       0.650
Vol flow rate Q2 (cc/s):       1.640
Pump probe, radius (cm):       0.500
Probe, geometric factor:       0.380
1st drawdown ends (sec):      15.400
2nd drawdown ends (sec):      21.500
1st Point Time T1 (sec):      24.300
      Pressure P1 (psi):   17128.000
2nd Point Time T2 (sec):      30.600
      Pressure P2 (psi):   17364.000
1st Point Time T3 (sec):      39.600
      Pressure P3 (psi):   17668.000

    Run    Error  P0(psi)  Md/Cp
      1.   9.1 %   54706   0.003
      2.   8.4 %   35976   0.013
      3.   7.7 %   29733   0.029
      4.   7.0 %   26611   0.051
      5.   6.3 %   24738   0.078
      6.   5.6 %   23490   0.111
      7.   4.9 %   22598   0.149
      8.   4.2 %   21929   0.192
      9.   3.4 %   21409   0.239
     10.   2.7 %   20993   0.291
     11.   1.9 %   20652   0.348
     12.   1.2 %   20369   0.408
     13.   0.4 %   20129   0.472
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3.6.5  Run No. 9, Time-varying flowline volume
In this very challenging final test of the inverse drawdown method, we

create forward simulation pressure transient data using FT-07, a numerical finite
difference model for ellipsoidal sources in transversely isotropic media with
time-varying flowline storage developed in Chapter 9.  The physical
assumptions used are shown in the menu of Figure 3.5a.  The grid system was
calibrated so that the transient solution for source probe pressure was nearly
identical to that produced by exact simulator FT-00 when the flowline volume is
200 cc.  As shown below, a time-dependent flowline volume was assumed with
200 cc for the first two seconds, increasing to 5,000 cc by five seconds, and
holding at 5,000 cc thereafter.  The source solution, together with assumptions,
are plotted in Figure 3.5b.

Figure 3.5a.   Time-dependent flowline volume.
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Figure 3.5b.  Volume flow rate, flowline volume, source probe pressure.

We ran the inverse drawdown model using the transient drawdown data at 1, 2
and 4 seconds shown below.  Additional computing time relative to previous
examples was required, that is, about 1 sec total time.

C:\>pta-dd-3-run-with-rft-numbers-10000-iterations <Return>

Use decimals after all integers!

Volume flow rate (cc/s): 1.
Pump probe, radius (cm): 1.
Probe, geometric factor: 1.
1st Point Time T1 (sec): 1.
      Pressure P1 (psi): 24167.
2nd Point Time T2 (sec): 2.
      Pressure P2 (psi): 23949.
3rd Point Time T3 (sec): 4.
      Pressure P3 (psi): 23916.

    Run    Error  P0(psi)  Md/Cp

   1500.  44.5 %   25144   0.949
   1600.  37.6 %   25246   0.883
   1700.  29.9 %   25360   0.818
   1800.  21.4 %   25485   0.756
   1900.  12.0 %   25624   0.697
   2000.   1.5 %   25777   0.641
   2004.   1.0 %   25784   0.639
   2005.   0.9 %   25785   0.638
   2006.   0.8 %   25787   0.638
   2007.   0.7 %   25789   0.637
   2008.   0.6 %   25790   0.637
   2009.   0.5 %   25792   0.636
   2010.   0.4 %   25794   0.635
   2011.   0.3 %   25795   0.635
   2012.   0.1 %   25797   0.634
   2013.   0.0 %   25798   0.634
Stop - Program terminated.

The predicted pore pressure of 25,798 psi (vs 25,000) and mobility of
0.634 md/cp (vs 1.0) are reasonable, considering the fact that our inverse
drawdown model was never intended to work with large, rapidly increasing
flowline volumes.
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3.7  Tool Calibration in Low Mobility Applications

In this section, we introduce the subject of tool calibration using our early-
time, low-mobility models.  The procedures are actually very straightforward
and easily understood.

3.7.1  Steady flow model

We again revisit Figure 3.2a – also, we emphasize that the calibration
constants in this section apply only to Schlumberger RFT tools, although
surprisingly, the authors have found the equations below used indiscriminately
for tools from different manufacturers.

If P is the drawdown pressure, C is a flow shape factor, q is the volume
flow rate,  is the liquid viscosity, and rp is an “effective probe radius,” then the
drawdown permeability can be calculated from the simple relation

kd = Cq /(2 rp P) (3.26b)
For convenience, the “C/(2 rp)” is usually represented as a single number, say

kd = 5,660 q / P (3.26c)
Here kd, q,  and P are expressed in md, cc/s, cp and psi.  The constant 5,660
applies to the “standard” RFT probe. When the “large diameter” or the “fast-
acting” probe is used, the constant should be 2,395; for the “large-area packer,”
the constant becomes 1,107 (see Log Interpretation Principles/Applications
(1989) for details).  These values are calibration constants accounting for non-
spherical effects like borehole wall curvature and pad geometry.

There is nothing unique about “kd = Cq /(2 rp P),” which we emphasize
applies to medium-high permeabilities only.  The aforementioned approach is a
“recipe” and nothing more.  What if we our logging applications focus more on
low mobilities?  The problems may be more subtle: for higher mobilities,
flowline storage effects disappear quickly, but for lower mobilities, they are
always present at the early times data are recorded.  Thus, the “C” constants
obtained in the above paragraph could not be expected to apply.

3.7.2 Example 1, Calibration using early-time buildup data
Software reference, FT-PTA-DDBU

In the next several sections, we will explain how to calibrate a single-probe
formation tester tool using inverse program FT-PTA-DDBU for buildup and
also “drawdown only” methods.    We will describe them in a manner that
follows field procedures closely.  By “calibration,” we mean that
permeability/viscosity and pore pressure are known for a particular transient (or
steady) pressure response.
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We want to find the best “tool constants” to use with an inverse method so
that, in field operations when future source probe responses are obtained, the
correct mobility will be predicted (note, only is “mobility =
permeability/viscosity” is important and not permability or viscosity
individually).  Let us assume that we know that the mobility for a formation is 1
md/cp (e.g., a 1 md permeability formation containing a 1 cp viscosity liquid)
and the pore pressure is 25,000 psi.  The volume flow rate and source response
history are given in Figures 3.6a and 3.6b.  What does FT-PTA-DDBU do?  The
software inputs are shown in Figure 3.6c.

The model is very powerful and requires minimal input data.  It assumes
that liquid is withdrawn at a constant volume flow rate until a time “TEND,” at
which point drawdown ends and buildup begins.  The software uses  buildup
data.  In particular, it requires (1) the time TEND at which pumping stops in
seconds, (2) three pressure data points in time, i.e., (t1, p1), (t2, p2) and (t3, p3) in
seconds and psi, (3) the volume flow rate in cc/sec during pumping, (4) the
geometric radius (cm), and (5) the “geometric factor” which is an empirical tool
constant associated with the tool pad and borehole curvature.  The objective is to
determine the geometric factor. Once we have this calibration constant, it “stays
with the tool forever.”  Future predictions for mobility and pore pressure are
based on this and it is essential to obtain this correctly.

Now refer to the top screen of Figure 3.6c.  We enter TEND, the three
pressure data points highlighted in red in Figure 1b, the volume flow rate, and a
geometric radius of 1 cm.  Note that for the geometric factor, we try “1” in the
top screen. Clicking “Find” gives the mobility 1.64 md/cp.  This is not bad, but
it is not good compared to the known value of 1 md/cp.  Thus, in the second
screen, we try a geometric factor of 1.5.  We find that the mobility now is 1.09
md/cp.  This is much closer to the known 1 md/cp.  In the bottom screen, we try
1.75.  This gives a mobility of 0.94 md/cp. In the present example, all the pore
pressures are identical, with the 24,980 psi close to the known 25,000 psi.  It is
clear that 1.5 (or maybe a bit more,)is best.  Thus, we stop here and “keep 1.5
forever for this tool.”

Figure 3.6a.   Volume flow rate and source probe response history.
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  Time (s)  Rate (cc/s)   Ps* (psi)
 0.000E+00  0.10000E+01  0.25000E+05
 0.400E+00  0.10000E+01  0.24743E+05
 0.800E+00  0.10000E+01  0.24581E+05
 0.120E+01  0.10000E+01  0.24475E+05
 0.160E+01  0.10000E+01  0.24405E+05
 0.200E+01  0.10000E+01  0.24358E+05
 0.240E+01  0.10000E+01  0.24326E+05
 0.280E+01  0.10000E+01  0.24304E+05
 0.320E+01  0.10000E+01  0.24288E+05
 0.360E+01  0.10000E+01  0.24277E+05
 0.400E+01  0.10000E+01  0.24269E+05
 0.440E+01  0.10000E+01  0.24264E+05
 0.480E+01  0.10000E+01  0.24259E+05

Pump stops, buildup begins . . .
0.520E+01  0.00000E+00  0.24400E+05
 0.560E+01  0.00000E+00  0.24600E+05
 0.600E+01  0.00000E+00  0.24729E+05
 0.800E+01  0.00000E+00  0.24949E+05
 0.100E+02  0.00000E+00  0.24984E+05
 0.120E+02  0.00000E+00  0.24992E+05
 0.140E+02  0.00000E+00  0.24995E+05
 0.160E+02  0.00000E+00  0.24996E+05
 0.180E+02  0.00000E+00  0.24997E+05

Figure 3.6b.  Numerical values of source probe pressure versus time.

How do we know this is really the right answer?  In Figure 3.6d, we show
the assumptions used in FT-00, our exact forward simulator, used to create the
pressure transient data (in an actual field example, the data would be created by
Nature).  Notice that we assumed a 1 md permeability and a 1 cp liquid
viscosity, so that the mobility is 1 md/cp.  Also, the pore pressure was 25,000
psi.  For the present purposes, the probe radius was 1 cm and the pad geometric
factor was “1.5,” from the left middle menu, so that the “effective radius” is “1
cm  1.5” or 1.5 cm.  This 1.5 cm is exactly the value of effective radius used in
the middle screen of Figure 3.6c (note that a geometric factor of 1.6 may have
been a little better, but we will not try to make the match exact here).  Note that
the latest pressure point data taken is at 8 sec and the curve in Figure 3.6a has
not reached steady-state yet.
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Figure 3.6c.   FT-PTA-DDBU inverse method.
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Figure 3.6d.  FT-00 used to create pressure transient data, mobility of 1 md/cp.
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3.7.3  Example 2, Calibration using early time-buildup data

Now let’s try a more difficult example.  As is obvious from Figure 3.7a,
the mobility of the problem is smaller and flowline volume distortion is greater
than in Example 1.  Source probe pressure transient data is given in Figure 3.7b.
Also, we know that the mobility os 0.5 md/cp and the pore pressure is 25,000 psi
for our calibration.  We will use data from 6, 8 and 12 sec – at 12 sec, note that
steady-state has not yet been achieved.  The screens in Figure 3.7c show
predicted mobilities of 0.83, 0.56 and 0.48 md/cp, and all give pore pressures of
24,977 psi.  The best geometric factors are in the range 1.5 – 1.6.  Note from
Figure 3.7d that an effective radius of 1.5 cm (corresponding to a geometric
radius of 1 cm and a geometric factor of 1.5) was used to create the pressure
transient data.  Here, the pressure transient data was created by FT-00, but in the
field, it would be created by Nature.  It is important to emphasize that, from
Figure 3.7d, the mobility assumed was very low, taking the value of 0.5 md/cp,
and the flowline volume is very large at 600 cc.

Figure 3.7a.   Volume flow rate and source probe transient response.
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  Time (s)  Rate (cc/s)   Ps* (psi)
 0.000E+00  0.10000E+01  0.25000E+05
 0.400E+00  0.10000E+01  0.24799E+05
 0.800E+00  0.10000E+01  0.24628E+05
 0.120E+01  0.10000E+01  0.24481E+05
 0.160E+01  0.10000E+01  0.24355E+05
 0.200E+01  0.10000E+01  0.24246E+05
 0.240E+01  0.10000E+01  0.24151E+05
 0.280E+01  0.10000E+01  0.24070E+05
 0.320E+01  0.10000E+01  0.23999E+05
 0.360E+01  0.10000E+01  0.23937E+05
 0.400E+01  0.10000E+01  0.23883E+05
 0.440E+01  0.10000E+01  0.23836E+05
 0.480E+01  0.10000E+01  0.23795E+05
Pumping stops, pressure buildup starts ...
 0.520E+01  0.00000E+00  0.23864E+05
 0.560E+01  0.00000E+00  0.24018E+05
 0.600E+01  0.00000E+00  0.24149E+05
 0.640E+01  0.00000E+00  0.24261E+05
 0.680E+01  0.00000E+00  0.24357E+05
 0.720E+01  0.00000E+00  0.24440E+05
 0.760E+01  0.00000E+00  0.24511E+05
 0.800E+01  0.00000E+00  0.24573E+05
 0.840E+01  0.00000E+00  0.24626E+05
 0.880E+01  0.00000E+00  0.24673E+05
 0.920E+01  0.00000E+00  0.24713E+05
 0.960E+01  0.00000E+00  0.24748E+05
 0.100E+02  0.00000E+00  0.24778E+05
 0.104E+02  0.00000E+00  0.24805E+05
 0.108E+02  0.00000E+00  0.24828E+05
 0.112E+02  0.00000E+00  0.24848E+05
 0.116E+02  0.00000E+00  0.24865E+05
 0.120E+02  0.00000E+00  0.24881E+05
 0.124E+02  0.00000E+00  0.24894E+05
 0.128E+02  0.00000E+00  0.24906E+05
 0.132E+02  0.00000E+00  0.24916E+05
 0.136E+02  0.00000E+00  0.24925E+05
 0.140E+02  0.00000E+00  0.24933E+05
 0.144E+02  0.00000E+00  0.24940E+05
 0.148E+02  0.00000E+00  0.24946E+05
 0.152E+02  0.00000E+00  0.24952E+05
 0.156E+02  0.00000E+00  0.24956E+05
 0.160E+02  0.00000E+00  0.24961E+05
 0.164E+02  0.00000E+00  0.24964E+05
 0.168E+02  0.00000E+00  0.24968E+05
 0.172E+02  0.00000E+00  0.24971E+05
 0.176E+02  0.00000E+00  0.24973E+05
 0.180E+02  0.00000E+00  0.24976E+05
 0.184E+02  0.00000E+00  0.24978E+05
 0.188E+02  0.00000E+00  0.24980E+05
 0.192E+02  0.00000E+00  0.24981E+05
 0.196E+02  0.00000E+00  0.24983E+05

Figure 3.7b.   Numerical values of source probe pressure versus time.
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Figure 3.7c.  FT-PTA-DDBU screens with different geometric factor guesses.
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Figure 3.7d.   FT-00 assumptions, showing effective radius of 1.5 cm,
and a mobility of 0.5 md/cp.

3.7.4  Example 3, Example 1 using drawdown data

From Figure 3.6b, we have the drawdown data –
  Time (s)  Rate (cc/s)   Ps* (psi)
 0.000E+00  0.10000E+01  0.25000E+05
 0.400E+00  0.10000E+01  0.24743E+05
 0.800E+00  0.10000E+01  0.24581E+05
 0.120E+01  0.10000E+01  0.24475E+05
 0.160E+01  0.10000E+01  0.24405E+05
 0.200E+01  0.10000E+01  0.24358E+05
 0.240E+01  0.10000E+01  0.24326E+05
 0.280E+01  0.10000E+01  0.24304E+05
 0.320E+01  0.10000E+01  0.24288E+05
 0.360E+01  0.10000E+01  0.24277E+05
 0.400E+01  0.10000E+01  0.24269E+05
 0.440E+01  0.10000E+01  0.24264E+05
 0.480E+01  0.10000E+01  0.24259E+05
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We use the blue data highlighted above, and use the software “pta-dd-3-run-
with-rft-numbers-10000-iterations.exe” to find the results below (this software is
identical to “pta-dd-3-run-rft-with-numbers” except that more iterations are
performed and printed).  Suppose, at first, we did not know the geometric factor,
and took “1” as a guess.  We would obtain the following screens.

C:\>pta-dd-3-run-with-rft-numbers-10000-iterations <Return>

Volume flow rate (cc/s): 1.
Pump probe, radius (cm): 1.
Probe, geometric factor: 1.
1st Point Time T1 (sec): 1.6
      Pressure P1 (psi): 24405.
2nd Point Time T2 (sec): 2.8
      Pressure P2 (psi): 24304.
3rd Point Time T3 (sec): 4.8
      Pressure P3 (psi): 24259.

    Run    Error  P0(psi)  Md/Cp
    801.   9.9 %   24830   2.005
    802.   9.8 %   24831   2.003
    803.   9.6 %   24831   2.002
    804.   9.5 %   24832   2.000
.
.
.
    870.   0.5 %   24876   1.884
    871.   0.4 %   24876   1.882
    872.   0.3 %   24877   1.880
    873.   0.1 %   24878   1.879
    874.   0.0 % 24878   1.877
Stop - Program terminated.

Notice that we could not get a good match to 25,000 psi and 1 md/cp which are
given as original data.  Therefore, we try a geometric factor of 1.5 next.

C:\>pta-dd-3-run-with-rft-numbers-10000-iteration <Return>

Volume flow rate (cc/s): 1.
Pump probe, radius (cm): 1.
Probe, geometric factor: 1.5
1st Point Time T1 (sec): 1.6
      Pressure P1 (psi): 24405.
2nd Point Time T2 (sec): 2.8
      Pressure P2 (psi): 24304.
3rd Point Time T3 (sec): 4.8
      Pressure P3 (psi): 24259.

    Run    Error  P0(psi)  Md/Cp
    801.   9.9 %   24830   1.337
    802.   9.8 %   24831   1.336
    803.   9.6 %   24831   1.334
    804.   9.5 %   24832   1.333
    805.   9.4 %   24833   1.332
    806.   9.2 %   24833   1.331
    807.   9.1 %   24834   1.330
    808.   9.0 %   24835   1.329
    809.   8.9 %   24835   1.328
    810.   8.7 %   24836   1.326
.
.
    871.   0.4 %   24876   1.255
    872.   0.3 %   24877   1.254
    873.   0.1 %   24878   1.252
    874.   0.0 % 24878   1.251
Stop - Program terminated.
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The match to 1 md/cp is much better, so we attempt a geometric factor of 1.8
next.

C:\>pta-dd-3-run-with-rft-numbers-10000-iterations <Return>

Volume flow rate (cc/s): 1.
Pump probe, radius (cm): 1.
Probe, geometric factor: 1.8
1st Point Time T1 (sec): 1.6
      Pressure P1 (psi): 24405.
2nd Point Time T2 (sec): 2.8
      Pressure P2 (psi): 24304.
3rd Point Time T3 (sec): 4.8
      Pressure P3 (psi): 24259.

    Run    Error  P0(psi)  Md/Cp
    801.   9.9 %   24830   1.114
    802.   9.8 %   24831   1.113
    803.   9.6 %   24831   1.112
    804.   9.5 %   24832   1.111
    805.   9.4 %   24833   1.110
    806.   9.2 %   24833   1.109
.
.
    870.   0.5 %   24876   1.047
    871.   0.4 %   24876   1.046
    872.   0.3 %   24877   1.045
    873.   0.1 %   24878   1.044
    874.   0.0 % 24878   1.043
Stop - Program terminated.

Now, the 1.043 md/cp matches very well with the data of 1 md/cp, so we keep
the geometric factor of 1.8.  The assumed geometric factor of 1.8 does not agree
with the 1.5 used in FT-00 because the drawdown inverse method is
approximate while FT-00 is exact.

3.7.5  Example 4, Example 2 using drawdown data

Now, let us reconsider Example 2, but use the drawdown data obtained from
Figure 3.7b –

Time (s)  Rate (cc/s)   Ps* (psi)
 0.000E+00  0.10000E+01  0.25000E+05
 0.400E+00  0.10000E+01  0.24799E+05
0.800E+00  0.10000E+01  0.24628E+05

 0.120E+01  0.10000E+01  0.24481E+05
 0.160E+01  0.10000E+01  0.24355E+05
 0.200E+01  0.10000E+01  0.24246E+05
 0.240E+01  0.10000E+01  0.24151E+05
0.280E+01  0.10000E+01  0.24070E+05

 0.320E+01  0.10000E+01  0.23999E+05
 0.360E+01  0.10000E+01  0.23937E+05
 0.400E+01  0.10000E+01  0.23883E+05
 0.440E+01  0.10000E+01  0.23836E+05
 0.480E+01  0.10000E+01  0.23795E+05
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This example is more difficult than Example 3 because the “known” mobility of
0.5 md/cp is smaller and the flowline volume is much larger at 600 cc.  Again,
suppose we selected the wrong geometric factor as “1.”  Then, we  obtain –

C:\>pta-dd-3-run-with-rft-numbers-10000-iterations <Return>

Volume flow rate (cc/s): 1.
Pump probe, radius (cm): 1.
Probe, geometric factor: 1.
1st Point Time T1 (sec): 0.8
      Pressure P1 (psi): 24628.
2nd Point Time T2 (sec): 2.8
      Pressure P2 (psi): 24070.
3rd Point Time T3 (sec): 4.8
      Pressure P3 (psi): 23795.

    Run    Error  P0(psi)  Md/Cp
    302.   9.8 %   24964   0.754
    303.   9.7 %   24964   0.755
    304.   9.5 %   24965   0.756
    305.   9.3 %   24965   0.757
    306.   9.1 %   24966   0.759
.
    348.   1.2 %   24985   0.804
    349.   1.0 %   24985   0.805
    350.   0.8 %   24986   0.805
    351.   0.6 %   24986   0.806
    352.   0.4 %   24987   0.807
    353.   0.2 %   24987   0.808
    354.   0.0 %   24988   0.809
Stop - Program terminated.

The 0.809 md/cp is not good compared to the known 0.5 md/cp.  Thus, let us try
a geometric factor of 1.5.

C:\>pta-dd-3-run-with-rft-numbers-10000-iterations <Return>

Volume flow rate (cc/s): 1.
Pump probe, radius (cm): 1.
Probe, geometric factor: 1.5
1st Point Time T1 (sec): 0.8
      Pressure P1 (psi): 24628.
2nd Point Time T2 (sec): 2.8
      Pressure P2 (psi): 24070.
3rd Point Time T3 (sec): 4.8
      Pressure P3 (psi): 23795.

    Run    Error  P0(psi)  Md/Cp
    302.   9.8 %   24964   0.503
    303.   9.7 %   24964   0.503
    304.   9.5 %   24965   0.504
    305.   9.3 %   24965   0.505
    306.   9.1 %   24966   0.506
.
.
    350.   0.8 %   24986   0.537
    351.   0.6 %   24986   0.538
    352.   0.4 %   24987   0.538
    353.   0.2 %   24987   0.539
    354.   0.0 % 24988   0.539
Stop - Program terminated.

The geometric factor of 1.5, which agrees with the FT-00 assumption, gives a
good match of 24,988 psi and 0.539 md/cp to the known 25,000 psi and 0.5
md/cp.
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3.8  Closing Remarks

We first reviewed a well known RFT calculation method for drawdown
permeability that used steady-state spherical flow formulas (with empirically
corrected coefficients, e.g., “5,660,” “2,395” and “1,107”) together with
equilibrated pressure data.   Using this data, we calibrated our exact FT-00
model to produce the same steady drawdowns naturally, with ours additionally
being able to create synthetic transient data useful for testing different classes of
inverse models.  Then, using a new procedure requiring only three time-pressure
points (which may be unequally spaced), we showed how mobilities and pore
pressures can be predicted accurately over a wide range of flowline volumes.
The new method, based on our exact solution, permits use of early-time transient
drawdown and buildup data in low mobility applications characterized by strong
flowline effects, in contrast to conventional models which assume the exact
opposite.  The two methods presented extract fluid and formation parameters
accurately and economically using unequilibrated pressures data.  Thus, they
support rapid and economical formation evaluation and, at the same time,
significantly reduce the risk of stuck downhole tools.  Moreover, because
implementation requires just several lines of source code, the algorithm may be
incorporated in downhole formation testing tools for real-time operation.

For medium-high mobility applications, the standard industry calibration
methods used for RFT tools should be used – these are based on the steady-state
formula connecting pressure drop to permeability or mobility.  However, for
lower mobility problems with significant flowline volumes, the present FT-
PTA-DDBU and “drawdown only” methods are very powerful and should be
used.  They require minimum input information – they do not need flowline
volume, formation porosity or fluid compressibility data as a Horner-type
method would.  As shown in examples, only three pressure data points are
required along the buildup or the drawdown curve.  They may be just seconds
apart, may be arbitrarily spaced in time, and need not have reached steady-state.
We have randomly selected the pressure data points.  In field practice, there will
be “scatter” among the data, and different groups of three points may be used to
check on repeatability of the results.

In general, we use either method and vary the geometric factor to match
known mobilities and pore pressures  Once we obtain the geometric factor that
provides the correct matching, the “geometric factor is kept forever” for that
tool.  This is a very simple procedure.  Of course, the spherical or ellipsoidal
flow models used to develop FT-00 and the drawdown-buildup methods are
idealizations and not perfect.  Thus, in the calibrating, it is best to use data
obtained from similar circumstances.  For example, if logging a six-inch well in
Sand A, it is best to use data for a similar six-inch well in Sand A, if possible.
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4

Phase Delay and Amplitude Attenuation
for Mobility Prediction in Anisotropic Media with Dip *

In electromagnetic logging, resistivity is determined by evaluating receiver
amplitude attenuation or phase delay response of a sinusoidal transmitter signal
using Maxwell’s equations.  As simple as this idea sounds, its first MWD/LWD
implementation only appeared in the 1980’s with NL Sperry Sun’s introduction
of its Electromagnetic Wave ResistivityTM (EWR) tool, building on advances in
wireline induction logging.  The formation tester can be analogously used to
evaluate permeability.  A periodic pressure signal created by the pump piston is
measured at a second probe and rock properties can be deduced from waveform
changes using Darcy’s laws.  And similar to  resistivity methods employing
multiple receiver coils, attenuations and delays between multiple observation
probes can be used to determine permeability with analogous accuracy benefits.

In this chapter, methods for isotropic uniform media are motivated and
developed and then extended to anisotropic homogeneous media for tools
oriented at arbitrary dip angles.  We will demonstrate how both kh and kv can be
obtained using combined drawdown-buildup and phase delay methods; and, in
the case when  beds are thick, how two phase delay measurements taken at
different dip angles (corresponding to different bit locations while the drillstring
changes direction) likewise yield both permeabilities.  These methods assume
“one transmitter, one receiver” tools.  Additionally, we show how “multiple
receiver” (that is, multiple observation probe formation testers) can produce
more accurate results using relative receiver (observation probe) measurements,
as in electromagnetic logging.  These results are entirely exact and analytical.

*Patent pending, multiple algorithms.
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The mathematical formulation and numerical approach, together with
three-dimensional extensions for layered media, are also presented.  We note
that the phase delay approach first appeared in “Formation Evaluation Using
Phase Shift Periodic Pressure Pulse Testing,” U.S. Patent No. 5,672,819
awarded to Chin and Proett and issued Sept. 30, 1997.  This invention focused
on isotropic media only and was never implemented operationally because two
probes, one source and the second observation, were required; for the single
spherical permeability characterizing such reservoirs, it was much more
convenient using single source probe drawdown-buildup methods, such as those
discussed in the previous chapter.  In this chapter, we resurrect phase delay
methods because, it turns out, it is possible to obtain both kh and kv in
anisotropic applications.  Moreover, this can be achieved in low mobility
formations using very early time data.  The method discussed here is “patent
pending” and open to licensing opportunities.

4.1  Basic Mathematical Results

In this section, we derive basic mathematical results which support the
physical ideas introduced in this chapter.  The assumptions used and required
algebraic steps taken are clearly identified so that the conditions under which
our interpretation models apply are unambiguous.  Parallels between formation
testing and electromagnetic logging are explained and exploited throughout.

4.1.1  Isotropic model
For slightly compressible liquids in isotropic homogeneous media, the

standard model
2p/ r2 + 2/r p/ r = ( c/k) p/ t  (4.1)

applies where , , c and k are porosity, viscosity, compressibility and isotropic
permeability.  We seek separable solutions in the form

p(r,t) = P(r) exp(i t)  (4.2)

Thus, the above real partial differential equation reduces to the complex
ordinary differential equation

d2P/dr2 + 2/r dP/dr – i c/k P = 0  (4.3)

for a complex P(r).  To solve this, we assume solutions of the form

P  r -1 exp(ar) (4.4)

where “a” is a complex constant.  Then, substitution in Equation 4.3 shows that
a2 = i c/k which leads to
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a =  (1 + i) { c /(2k)} (4.5)

Hence, our pressure solution is

p(r,t)= P(r) exp(i t)

= (B/r) exp[r { c /(2k)}]exp [i( t + r { c /(2k)})]

+ (C/r) exp[-r { c /(2k)}]exp [i( t - r { c /(2k)})] (4.6)

where B and C are complex constants (it is the lumped quantity shown in blue
that is important and not any parameter individually).  The solution associated
with the B solution increases in amplitude away from the source probe and is
associated with inward propagating solutions.  Thus, we discard it, leaving

p(r,t) = (C/r) exp[-r { c /(2k)}]exp [i( t - r { c /(2k)})] (4.7)

This correctly decays for large r values away from the tool and enables outward
propagating solutions.  In fact, if we now choose the value

C = P0 rw exp(+rw { c /(2k)})exp(irw { c /(2k)}) (4.8)

where rw is the “well radius” of the spherical source or pumping probe, the
mathematical pressure solution becomes (4.9)

p(r,t) = P0 (rw/r) exp[-(r-rw) { c /(2k)}] exp [i( t-(r-rw) { c /(2k)})]

Taking the real part gives the physical solution as (4.10)

p(r,t) = P0 (rw/r) exp[-(r-rw) { c /(2k)}] cos [ t-(r-rw) { c /(2k)}]

In summary, we state the result in simplified terms.  A solution to Equation 4.1
takes the form

p(r,t) = A cos ( t – ) (4.11)

where the real quantities A and  satisfy

A = P0 (rw/r) exp[-(r-rw) { c /(2k)}] (4.12)

 = (r-rw) { c /(2k)} (4.13)

This solution describes the pressure field p(r,t) for all r; when r = rw, we
have A = P0 and  = 0 so that p(r,t) = A cos t at the source or pumping probe.
It is applicable to the so-called “spherical source” representation of the
formation testing pad shown in Figure 4.1 (the “ellipsoidal source” applies to
flows in transversely isotropic media, which will be considered next).
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Spherical versus ellipsoidal source

Figure 4.1.   Spherical source in isotropic media.

The above isotropic results are easily used to develop ideas in amplitude
attenuation and phase delay interpretation in isotropic media.  The basic
approach is simple.  Analogous to resistivity methods, we can use Equation 4.12
for amplitude analysis or Equation 4.13 for phase analysis.  If, at the observation
probe “p,” where r = rp >> rw, the pressure amplitude Ap is measured, then Ap =
P0 (rw/rp) exp[-(rp-rw) { c /(2k)}] holds and the permeability k can be
calculated from simple algebra.  On the other hand, if the phase p is measured,
then  we have p = (rp-rw) { c /(2k)} and again k is available.  As in
resistivity or electromagnetic logging, larger frequencies give improved
resolution with less depth of investigation; smaller frequencies provide less
resolution but greater depth of investigation.

4.1.2  Anisotropic equations
We can extend the foregoing ideas to anisotropic media, and in particular,

treat the important example of transversely isotropic media.  For such problems,
the effects of the dip angle  are significant.  In this case, the general Darcy
partial differential equation for homogeneous media becomes

kh ( 2p/ x2 + 2p/ y2) + kv
2p/ z2 = c p/ t (4.14)

Here kh is the horizontal permeability in the x-y plane and kv is the vertical
permeability along the perpendicular z axis.  It is desirable to solve this subject
to boundary conditions on x2 + y2 + z2 = rw

2 since this is a spherical source
surface with clear physical meaning.  However, the solution is possible only
numerically; note that computational solutions are not convenient for
interpretation since tabulated values are cumbersome to use.

Fortunately, analytical closed-form solutions can be readily adapted for
permeability interpretation following steps analogous to the isotropic derivation.
As will be obvious, we should assume

p(x,y,z,t) = P(r*,t) (4.15)
where
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r* = (x2/kh + y2/kh + z2/kv)1/2 (4.16)
Straightforward manipulations lead to

2P/ r*2 + 2/r* P/ r* = c P/ t (4.17)
which takes on a near-isotropic form similar to Equation 4.1.  An expected “k,”
not shown here, has been absorbed into the definition of r* .

Also note that, because of the form of the independent variable assumed in
Equation 4.16 (chosen to facilitate simple solutions), boundary conditions can
only be applied along surfaces of constant r* – that is, x, y and z values
satisfying rw

* = (x2/kh + y2/kh + z2/kv)1/2 where “w” now refers to the ellipsoidal
surface that has replaced our spherical well.  The physical meaning of this
ellipsoid is less clear, and unlike the sphere used in our isotropic analysis, now
depends on horizontal and vertical permeability for general deviation angles.
Thus, it is important that in the interpretation models we design, this confusion
is understood and avoided.

Following steps identical to those taken for the isotropic flow derivation,
we can write

P(r*,t) = A cos ( t – ) (4.18)

A = P0 (rw
*/r*) exp[- (r*- rw

*) { c /(2)}] (4.19)

 = (r*-rw
*) { c /(2)} (4.20)

noting that

r*
w

2 = xw
2/kh + yw

2/kh + zw
2/kv   (4.21)

r*2 = x2/kh + y2/kh + z2/kv   (4.22)

It is possible to reconsider our isotropic phase delay ideas in the context of the
anisotropic model to vertical, horizontal and deviated wells using these results.

4.1.3  Vertical well solution
For vertical wells, x = y = 0 so that the tool axis coincides with the z axis.

This leads to

P(r*,t) = A cos ( t – ) (4.23)

A = P0 (zw/z) exp[-(z-zw) { c /(2kv)}] (4.24a)

 = (z-zw) { c /(2kv)}  (4.24b)

Here and henceforth, the subscript “w” denotes “well” or the surface of the
spherical or ellipsoidal well that represents the source probe.  It is also possible,
although not necessary, to make the approximation z >> zw, in which case we
obtain the simplified results
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A  P0 (zw/z) exp[-z { c /(2kv)}] (4.25a)

 z { c /(2kv)} (4.25b)

Thus, if Az is known at the observation probe position z by measurement, then
either Equation 4.24a or 4.25a can be used to derive the vertical permeability kv.
Similarly, if z is known at z, then Equation 4.24b or 4.25b can be used to find
kv. Schematics for vertical, horizontal and general deviated wells are shown in
Figure 4.2.

x

y

z

x

y

z

Vertical (left) and horizontal (right) wells

x

y

z

Deviated well, 
0o <  < 90o

Figure 4.2.  Vertical, horizontal and deviated wells.

4.1.4  Horizontal well solution
Here we assume that x = z = 0 so that the tool axis and the y axis are

coincident.  Then, Equations 4.18 – 4.20 can be simplified and results analogous
to Equations 4.23 – 4.25 are

P(r*,t) = A cos ( t – ) (4.26)

A = P0 (yw/y) exp[-(y-yw) { c /(2kh)}] (4.27a)

 = (y-yw) { c /(2kh)} (4.27b)

and
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A  P0 (yw/y) exp[-y { c /(2kh)}] (4.28a)

 y { c /(2kh)} (4.28b)

Thus, if Ay is known at the observation probe position y, then either Equation
4.27a or 4.28a can be used to derive the horizontal permeability kh.  Similarly, if

y is known at y, then Equation 4.27b or 4.28b can be used to find kh.  Equations
4.23 – 4.25 and Equations 4.26 – 4.28 are similar in structure to Equations 4.11
– 4.13 for isotropic applications, although they apply, respectively, to kv and kh
determination.

4.1.5  Formulas for vertical and horizontal wells
For vertical and horizontal wells, simple formulas can be derived for

permeability interpretation and tool microprocessor applications.  Again, P = A
cos ( t – ) = A cos [ (t – / )], motivating us to write P = A cos (t – t)
where the time delay satisfies t = / .  If we eliminate  between this and 
L { c /(2k)}, where we have removed subscripts “h” and “v” for
convenience, and also set  = 2 f where f is the frequency in Hertz, we have the
result

k = L2 c /[4 f( t)2] (4.29)

Note that the phase angle  is large for small values of k; similarly, the
time delay t is large for smaller k’s.  This means that phase delay methods are
useful for interrogating low permeability (or more precisely, low mobility)
formations since they are easily and quickly measured.  We will offer numerical
results later which illustrate the robust nature of phase delay predictions.
Amplitude methods are less accurate.  For instance, from Equation 4.28a, two
factors contribute to amplitude reduction with distance, namely, an algebraic
“geometric spreading” that is inversely proportion to distance, and an
exponential effect related to formation effects.  It is often difficult to separate the
two effects from not-so-accurate field measurements.  As we will later show,
this problem is compounded by the fact that measurements at most employ two-
to-three pumping cycles, hardly enough to fulfill the periodicity assumptions
implicit in P = A cos ( t – ).

4.1.6  Deviated well equations
The above results for vertical and horizontal wells can be extended to

general deviated wells with dip angle .   The dip angle is 0o for vertical wells
and 90o for horizontal wells.  Note that Equation 4.29 cannot be used for general
dip angles because it assumes “  L { c /(2k)}” which applies only to
vertical and horizontal wells.  Deviated wells therefore require separate analysis.
Again, let us recall that our anisotropic results are
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P(r*,t) = A cos ( t – ) (4.18)

A = P0 (rw
*/r*) exp[- (r*- rw

*) { c /(2)}] (4.19)

 = (r*-rw
*) { c /(2)} (4.20)

Without loss of generality, we assume that the tool is straight and located
in the plane x = 0.  If the observation probe is located a length L from the source
probe, where the center of the ellipsoidal source is located at x = y = z = 0, we
can write x = 0, y = L sin , and z = L cos  where L is a reference length
parallel to the tool axis.  We seek specific results for amplitude and phase.  The
amplitude is governed by Equation 4.19, that is,

A = P0 (rw
*/r*) exp[- (r*- rw

*) { c /2}] (4.30)

with the algebraic coefficient rw
*/r* derived from the square root of

rw
*2/r*2 = (kvxw

2 + kvyw
2 + khzw

2)/(kvx2 + kvy2 + khz2)   (4.31)

having used Equations 4.21 and 4.22.  This becomes zw/z for vertical wells
(when xw = yw = 0) and yw/y for horizontal wells (when xw = zw = 0), both
independent of permeability.  For deviated angles between 0o and 90o, however,
both vertical and horizontal permeabilities remain and the coefficient rw

*/r*

remains complicated.  Note that the approximation r* >> rw* will simplify the
expression in the exponential of Equation 4.30, but rw

*/r* itself remains
problematic, at least for now.  We will deal with this later.

The phase function in Equation 4.20 is easier to work with.  We can use
the approximation r* >> rw

* to obtain usable results, that is,

= (r*-rw
*) { c /2} (4.32)

r* { c /2} (4.33)

(02/kh + L2 sin2  /kh + L2 cos2  /kv)1/2 { c /2} (4.34)

Thus, we find that

 L { c /2}{sin2  /kh + cos2  /kv}] (4.35)

which correctly reduces to  z { c /(2kv)} when  = 0o (for vertical wells)
and to   y { c /(2kh)} when  = 90o (for horizontal wells).  Again, we note
that Equation 4.18 for the pressure response can be rewritten in the form P(r*,t)
= A cos ( t – ) = A cos (t – t) where the measured time delay is t = / .
Thus, the phase delay in Equation 4.35 can be calculated from  = t = 2 f t
where f is the frequency in Hertz.
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4.1.7  Deviated well interpretation for both kh and kv

As noted, the expression for phase in deviated wells is considerably
simpler than that for amplitude.  In fact, if the phase L at the observation probe
distance L from the center of the source probe is known, then Equation 4.35
becomes

L  L { c /2} {sin2  /kh + cos2  /kv}] (4.36a)

thus providing, for the dip angle  assumed, one equation of two needed to find
both kh and kv.   There are two approaches that can be taken, emphasizing that
both apply to low mobility applications with data taken at early times.

In the first, suppose we have a thick uniform layer where the formation
tester resides in a drillstring that is turning or changing direction.  Then,
Equation 4.36a can be evaluated at two different dip angles a and b so that we
have two linearly independent equations

L,a  L { c /2} {sin2
a /kh + cos2

a /kv}] (4.36b)

L,b  L { c /2} {sin2
b /kh + cos2

b /kv}] (4.36c)

Then, Equations 4.36b and 4.36c provide two coupled equations in the two
unknown permeabilities kh and kv which can be directly solved.  The result, from
simple algebra, is

kh = (L2 c /2) (sin2
a cos2

b – sin2
b cos2

a) /( a
2 cos2

b – b
2 cos2

a)
(4.36d)

kv = (L2 c /2) (sin2
a cos2

b – sin2
b cos2

a) /( b
2 sin2

a – a
2 sin2

b)
(4.36e)

We emphasize that Equations 4.36d and 4.36e represent two equations obtained
at different dip angles and that the layer is assumed to be thick enough to allow
measurements to be taken as the drillstring changes direction.  As a check,
setting a = 0o and b = 90o, and conversely, lead to the simpler formulas derived
earlier.

Of course, in thin geological layers, it is not physically possible from a
drilling perspective to have a second equation at the same logging point as in
Equations 4.36b and 4.36c for different dip angles – thus, having “two equations
in two unknowns” as indicated above cannot be done.  However, we can still
obtain vertical and horizontal permeabilities as follows.  Separately in this book,
we developed a single-probe, drawdown-buildup method for low mobility
applications which used early-time pressure transient data – we will refer to this
as our “DDBU” method.  We use this together with the phase delay approach.
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In this second approach, we return to Equation 4.36a, which provides a
relationship connecting kh and kv for measured values of the phase L and dip
angle .  To determine horizontal and vertical permeabilities uniquely, a second
constraint is needed.  This is provided by DDBU models in which the spherical
permeability ks is predicted from early time pressure transient data, so that we
know ks = kh

2/3kv
1/3.   Combining this with Equation 4.36a leads to relationships

for the horizontal and vertical permeabilities kh and kv, namely,

cos2  kh
3 – {2  L

2ks
3/(L2 c )} kh + sin2  ks

3 = 0 (4.36f)

tan2  kv
3/2 – {2  L

2ks
3/2/(L2 c  cos2 )} kv + ks

3/2 = 0 (4.36g)

tan2  – {2  L
2ks/(L2 c  cos2 )} 2/3 + 1 = 0 (4.36h)

where

 = kv/kh  (4.36i)

represents the so-called “anisotropy” or anisotropy ratio.  The foregoing are
cubic polynomial equations for kh , kv

1/2 and 1/3 which can be solved exactly
from standard algebraic formulas.  Different equations apply in different
situations.  In some situations, it may be preferable to work first with kh if it is
typically larger, as it would provide greater numerical accuracy.  Once Equation
4.36f is solved, the vertical permeability can be obtained from ks = kh

2/3kv
1/3 or

Equation 4.36a.  Similar comments apply to Equations 4.36 g and 4.36h.  We
importantly emphasize that in obtaining ks using our drawdown-buildup
methods, we also predict the pore pressure from early time data.

Also note that deviated well applications are associated with multiple
permeability solutions for the same set of input parameters.  Cubic equations
provide two types of solutions, namely, (i) all real roots (some of which may be
negative), and (ii) complex roots (with one real and one conjugate pair).  Input
data contaminated by noise, e.g., loose pads, sand in nozzle throats, bubbly
solutions, and so on, may lead to false imaginary parts, and calculated solutions
must be interpreted with care.  We emphasize that this method requires a dual-
probe tool because phase delay measurements are required.

In contrast to the dual-probe, steady-state pressure drop method described
in Chapter 6 of the formation testing book of Chin et al (2014), which in
practice requires higher mobilities, the present method is ideally suited to low
mobilities (steady-states in low permeability formations may require hours of
wait time for equilibration).  DDBU was designed for low mobility applications.
And in the present phase delay approach, the lower the permeability, the larger
the time delay and easier the measurement is made.  Thus, the lower the
mobility, the better the signal-to-noise ratio, and the more accurate the
predictions for both permeabilities.
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Note that Equations 4.33 and 4.34 for amplitude, together with the DDBU
model, can also be used to develop an analogous “two-equation, two unknown”
system, however, this would be prone to inaccuracy since the values of xw, yw
and zw may be difficult to determine in practice.

4.1.8  Two-observation-probe models
In resistivity or electromagnetic logging, two methods are available for

resistivity prediction.  In the first, amplitude attenuation and phase delay are
measured at a receiver displaced from a transmitter that broadcasts sinusoidal
signals.  The readings are interpreted using models developed from Maxwell’s
equations.  In the second approach, two receivers are introduced; amplitude
ratios and phase delays relative to the two receivers only are used for
interpretation.  This approach provides at least two benefits.  Amplitude
attenuation due to conductivity or formation effects, which when measured
relative to the transmitter, which are typically “buried” in the rapidly decaying
algebraic field associated with geometric spreading.  This large source of error is
eliminated by using two closer receivers.  Also, the use of closely spaced
receivers provides less sensitivity to larger scale heterogeneities in the borehole,
and thus, allows for increased local accuracy.

We expect similar advantages in analogous “two-receiver” or “two
observation probe” approaches for formation testing.  Such a tool will have one
source (pumping) probe and (at least) two passive observation probes. However,
these do not require their own hydraulic pad thrusters, a requirement which
would complicate mechanical design. The simple mechanical approach
suggested in Figure 4.3 consists of an elongated pad driven by a single hydraulic
thruster that presses the pad against the borehole wall.  The pad, in turn, contains
two ports which independently measure pressure by means of pressure
transducers separated by several inches.  Finally, for all of the methods
discussed so far, the use constant frequency test frequencies is assumed.  A
simple question arises – in measuring time delay, how does the receiver “know”
when a signal begins and ends?  This is easily solved by transmitting a constant
frequency signal and having its initial amplitude suddenly change to a different
level.  This creates a “marker” signaling when the test signal departs the
transmitter.  When the observation probe “sees” this marker, the elapsed time
recorded would be the required time delay (that is, the “clock starts running”
when the transmitter sends its first signals).
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Formation tester tool body

Source (pumping) probe 
@ fixed frequency

Two observation probes 
measure amplitude ratio 

and phase delay

Single hydraulic thrust unit, 
two pressure transducers

Figure 4.3.  Simple “two-receiver” observation probe.

Single-frequency-signal, 
amplitude change identifies t = 0 
for observation probe

t

P

Figure 4.4.   Transmitter “marker” signal defines instant of departure.

To obtain usable results for our “two observation probe” or “two receiver”
approach, we can use the approximation r* >> rw* to simplify previously
derived mathematical expressions; that is, both observation probes are assumed
to be far from the source pumping probe.  In this case, Equation 4.33 for
amplitude becomes

A  P0 (rw
*/r*) exp[- r* { c /2}] (4.37)

Now suppose that two measurements, A1 at r1
* and A2 at r2

*, are available.  Then
we can write

A1  P0 (rw
*/r1

*) exp[- r1
* { c /2}] (4.38)

A2  P0 (rw
*/r2

*) exp[- r2
* { c /2}] (4.39)

Dividing Equation 4.38 by 4.39, we obtain
A1/A2 = r2

*/r1
* exp [(r2

* - r1
*) { c /2}] (4.40)

which is independent of P0, and importantly, does not depend on the “ellipsoidal
well radius” rw whose physical meaning is not clear. Next we observe from
Equation 4.22 that r2

* = L2 (sin2  /kh + cos2  /kv) and r1
* = L1 (sin2  /kh +

cos2  /kv).  It follows that
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A1/A2 = (L2/L1) exp [(L2 -L1) [{ c /2}{sin2  /kh+cos2  /kv}]] (4.41)

Equation 4.41 provides one of the equations needed in a “two equations, two
unknowns” solution; the second is obtained from a DDBU test, in which the
spherical permeability ks is measured, thereby constraining ks = kh

2/3kv
1/2.

To derive a complementary equation for phase, one might use Equation
4.20, again assuming that r* >> rw

*.  This yields 1 = r1
* [{ } and 2 = r2

* [{ }
which, on division, leads to 1/ 2 = L1/L2 – this merely affirms that phase is
linearly proportional to distance from the transmitter but otherwise no additional
information is gained.  The key lies in the calculation of phase differences
between observation probes.  This leads, using Equations 4.20 and 4.22 together
with the definition of dip angle, to the simple relationship

2- 1 = (L2 - L1) [{ c /2}{sin2  /kh+cos2  /kv}] (4.42)

This provides one of the equations needed in a “two equations, two unknowns”
solution; as before, the second is obtained from a DDBU test, in which the
spherical permeability ks is measured, thereby constraining ks = kh

2/3kv
1/2.

Finally, throughout our analysis, we have emphasized the differences between kh
and kv – that is, the importance of anisotropy.  Often, a second equation (say,
using DDBU techniques) may not be available; in this case, one may replace
both permeabilities by a single “keff,” or “effective permeability” which provides
order-of-magnitude estimates.  However, we caution against this usage since
horizontal and vertical permeability values may differ greatly.

4.2  Numerical Examples and Typical Results

So far, we have demonstrated how phase delay methods provide simple,
fast and elegant alternatives to steady-state methods for permeability prediction
in “low mobility” applications.  However, we have not yet considered “how low
is low” and also the pumping frequencies needed to excite the formation.  Are
these frequencies doable mechanically?  Are they 10 Hz, 100 Hz . . . or perhaps
1,000 Hz?  Also, the periodicity assumption behind “cos t” requires infinitely
acting sinusoidal action – in practice, however, one can hope at best for two-to-
three pump cycles which may not be perfect sinusoids.  Numerical simulations
have been defined to address these questions and representative results are
described pointing to the practicality of the method.  Both simple and more
complicated examples are described that address these issues.
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4.2.1  Example 1, Parameter estimates

The isotropic model in Equation 4.13 can be used to estimate the
mechanical frequencies needed for low mobility applications.  Again, because
the governing equations are identical in form, this also applies to vertical and
horizontal wells in transversely isotropic media.  We have written two simple
programs using our phase delay formula, namely, “phase-delay-estimates” and
“phase-delay-permeability-calculation” to provide quick answers.  These
modules, based on a closed form solution, require no iteration, and results from
typical simulations are shown in Figures 4.5a,b.

C:\phase-delay-estimates <Return>

Permeability ........... (md):  1.
Porosity .......... (decimal): 0.2
Viscosity .............. (cp): 1.
Compressibility ..... (1/psi): 0.000003
Probe separation ....... (cm): 15.
Frequency .............. (Hz): 0.5

Phase delay ............(deg): 0.1010E+03
Phase delay ........... (rad): 0.1763E+01
Time delay ............ (sec): 0.5611E+00

Figure 4.5a.   Estimating time delays for given parameters.

C:\phase-delay-permeability-calculation <Return>

Probe separation ....... (cm): 15.
Porosity .......... (decimal): 0.2
Viscosity .............. (cp): 1.
Compressibility ..... (1/psi): 0.000003
Frequency .............. (Hz): 0.5
Time delay ............ (sec): 0.5611

Permeability ........... (md): 0.1000E+01
Phase delay  .......... (rad): 0.1763E+01
Phase delay ........... (deg): 0.1010E+03

Figure 4.5b.   Predicting permeability from time delay.

The two programs provide consistent results.  The numbers chosen for the
calculations indicate that a mobility of 1 md/cp is adequately resolved by a
pump piston frequency of 0.5 Hz, which is very doable in hardware.  Moreover,
the not-too-small time delay of 0.5611 sec between dual probes with typical
fifteen cm separation should be obtainable accurately – in contrast to the
extremely small delays found in resistivity logging.  The method is also practical
from a sampling perspective.  In present formation testing tools, pressures are
measured every 0.25 sec, too slow to characterize transients in high mobility
formations.  However, this rate is useful for time delay measurements since
piston pump cycles occur over durations of approximately one second.  These
numbers provide “ballpark estimates” that also apply to anisotropic situations.
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4.2.2  Example 2, Surface plots

Again, let us consider an isotropic uniform medium characterized by a
permeability k and a porosity .  The liquid viscosity and compressibility are 
and c.  The action of the formation tester piston was modeled as a sinusoidally
pulsating pressure source with strength Po, radius rw and frequency .  Then, at
any distant radial position r > rw, the transient pressure response satisfies the
exact solution p(r,t) = A cos ( t – ) where A and  are the “amplitude” and
“phase delay” functions at r given by A = Po (rw/r) exp [– (r – rw) { c /(2k)}]
and  = (r – rw) { c /(2k)}.  At the source position r = rw, we note that
p(rw,t) = Po cos( t), the assumed form of the pressure excitation.  But at r > rw, a
phase delay is found that is proportional to the product of probe separation and

{ c /(2k)}. For example, low permeabilities and high viscosities result in
large phase shifts.  As formation and fluid parameters are fixed, the excitation
frequency  can be used to control depth of investigation in a manner consistent
with hardware sampling rates.

Figure 4.6.   Amplitude (left) and phase delay (right) versus r and .

In Figure 4.6, typical amplitude and phase delay plots versus r and  are
shown.  However, the analytical phase result can also be used to determine
permeability when all other parameters are known – expressions for formation
properties are easily derived, e.g., c/k = (2/ ){ /(r-rw)}2.  Note that k can also
be determined from amplitude measurements.  However, these may be more
prone to error than timing measurements since the attenuation field due to a
weak exponential decay can be embedded in a more rapidly falling “1/r”
associated with spherical geometric spreading.  Amplitude measurements may
also be undesirable for another reason.  In practice, it is not possible to create a
perfect sinusoid, and in fact, only two-to-three wave cycles would be taken (this
is hardly periodic).  The amplitudes for these cycles (created for a constant rate
function) will vary significantly rendering amplitude data of little use. For this
reason, phase-based permeability predictions may be more accurate and
desirable.  .
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4.2.3  Example 3, Sinusoidal excitation

In this example, we follow the method of Figure 4.4 and define a constant
frequency pump excitation with multiple amplitudes as shown at the bottom of
Figure 4.7a.  Strictly speaking, this is not a periodic signal, however, the
intention is clear; the amplitude change is introduced only to provide a reference
for measurement so that delays can be counted easily.  The required pressure
transient responses can be calculated from forward simulators FT-06 or FT-07.
These are finite difference algorithms that allow numerical definition of volume
flow rate versus time functions.  The assumed parameters for the simulation are
shown more clearly in Figure 4.7b.  Importantly, note that the mobility is 1 md/1
cp or 1 md/cp.

To determine the time delay, we focus on the clearly discernible first group
of small amplitude waves, and in particular, the center crest.   The the circled
values, we find that the time at the source probe is 3.8 sec while the time at the
observation is 4.4 sec, yielding a time delay of 4.4 – 3.8 or 0.6 sec.  Using one of
the software programs discussed above, we find

C:\phase-delay-permeability-calculation <Return>

Probe separation ....... (cm):  15.
Porosity .......... (decimal):  0.2
Viscosity .............. (cp):  1.
Compressibility ..... (1/psi):  0.000003
Frequency .............. (Hz):  0.5
Time delay ............ (sec):  0.6

Permeability ........... (md): 0.8745E+00 (very close to 1 md)
Phase delay  .......... (rad):   0.1885E+01
Phase delay ........... (deg):   0.1080E+03

We find that the calculated 0.8745 md permeability is close to the known
value of 1 md.  Again, the pressure data was created from FT-06 (or
equivalently FT-07) both of which are approximate numerical simulators.  From
Figure 4.7c, it is obvious that using amplitude-based methods is not desirable
since these functions drift considerably.  The flow rate in Figure 4.7a, defined by
a single frequency, but with amplitude changes taken at distinct intervals (in
fact, every three cycles), is important for another reason.  At very low
mobilities, phase delays with  > 360o may be large; using a single amplitude
will not allow convenient phase delay measurement because it is difficult to
distinguish one cycle from another.  When amplitudes are “stepped” as shown,
monitoring software used by the observation probe can count the number of
360o transitions that have transpired, so that delays associated with this “phase
wrapping” can be measured with minimal error.  Of course, since  is
proportional to 1/2, phase wrapping may be avoided by decreasing frequency;
this allows, at the same time, increased depth of penetration of the pressure
signal so that a greater portion of the formation is sampled.
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Figure 4.7a.   Constant frequency pump excitation.
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Figure 4.7b.   Input data and exploded view.

Figure 4.7c.   Source and observation probe pressure.
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4.2.4  Example 4, Rectangular wave excitation

In practical mechanical design, it is often not possible to pump exactly
with sinusoidal precision.  We consider an example showing phase delay results
in one such instance.  Recall that the underlying theory was derived assuming
pressure disturbances which are proportional to exp (i t), that is, that they are
perfect sinusoids.  In practice, one can hope for two-to-three wave cycles at best
that may not be perfectly sinusoidal.  In the input screen for exact forward
simulator FT-00 in Figure 4.8a, a pump schedule having three wave cycles in six
seconds, or a frequency of 0.5 Hz, was formed from sequences of rectangular
functions.  Such functions are hardly representative of theoretical Fourier
components and it is instructive to understand the consequences.  To ensure
numerical accuracy, we used FT-00 because it provides an exact solution that is
not compromised by sharp transitions in the flow rate functions.  Also, note that
the mobility is a low 0.1 md/1 cp or 0.1 md/cp.  Calculated results in Figure 4.8b
show that both amplitude functions at source and observation probes drift
considerably and are not useful for computation.  As in the foregoing example,
we therefore turn to time delay measurements.  Interestingly, examine the two
circled points located at the midpoints of the pumping cycles.  The time delay,
obtained visually, is clearly “4-3” or 1 sec.  What does this imply?  We use a
software program discussed previously, that is,
C:\phase-delay-permeability-calculation <Return>

Probe separation ....... (cm): 15.
Porosity .......... (decimal): 0.2
Viscosity .............. (cp): 1.
Compressibility ..... (1/psi):  0.000003
Frequency .............. (Hz): 0.5
Time delay ............ (sec): 1.

Permeability ........... (md): 0.3148E+00
Phase delay  .......... (rad): 0.3142E+01
Phase delay ........... (deg): 0.1800E+03

The calculated permeability of 0.3148 md, compared to the known input
value of 0.1 md, is not bad, and acceptable when judged against present field
logging standards. The discrepancy arises from two effects, namely, the length
of the short duration test, and the use of rectangular as opposed to sinusoidal
functions.  These problems can be corrected by mechanical design.
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Figure 4.8a.   Square wave assumptions and pressure responses.
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Figure 4.8b.   Pressure responses, exploded view.

4.2.5  Example 5, Permeability prediction at general dip angles

In the calculations below, we demonstrate the numerical consistency of
three software programs highlighted in red.  The first two are isotropic models
developed previously.  We choose “random non-zero” numbers and make sure
the two are consistent in everything, whether or not needed now, since internal
quantities may be needed later.  Perfect consistency is seen for the two isotropic
codes.

C:\phase-delay-estimates <Return>

Permeability ........... (md):  1.234
Porosity .......... (decimal):  0.2
Viscosity .............. (cp):  1.1
Compressibility ..... (1/psi):  0.0000034
Probe separation ....... (cm):  15.
Frequency .............. (Hz):  1.2

Phase delay ............(deg):   0.1573E+03
Phase delay ........... (rad):   0.2745E+01
Time delay ............ (sec):   0.3640E+00

C:\phase-delay-permeability-calculation <Return>

Probe separation ....... (cm):  15.
Porosity .......... (decimal):  0.2
Viscosity .............. (cp):  1.1
Compressibility ..... (1/psi):  0.0000034
Frequency .............. (Hz):  1.2
Time delay ............ (sec):  0.3640

Permeability ........... (md):   0.1234E+01
Phase delay  .......... (rad):   0.2744E+01
Phase delay ........... (deg):   0.1572E+03
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Next, we evaluate the cubic code “phase-delay-nonlinear.exe” for
transversely isotropic media with any nonzero dip angle solving Equations 4.36f
– 4.36i.  We enter the above parameters as inputs, and in the first case, take a
zero (that is, 0.01 deg) dip angle.  Comparing outputs from all three programs
shows everything is consistent.  In particular, the second “2” root (highlighted in
red) gives the isotropic permeability assumed in the two simpler programs.

C:\phase-delay-nonlinear (Return>

Probe separation ......... (cm):  15.
Porosity ............ (decimal):  0.2
Viscosity ................ (cp):  1.1
Compressibility ....... (1/psi):  0.0000034
Frequency ................ (Hz):  1.2
Time delay .............. (sec):  0.3640
Spherical permeability ... (md):  1.234
Dip angle ............... (deg):  0.01

Dip angle ............... (rad):  0.1745E-03
Phase delay ............. (rad):  0.2744E+01
Phase delay ............. (deg):  0.1572E+03

KH1 = -0.1234E+01 md, KV1 =  0.1234E+01 md
Caution:  KH permeability is negative

KH2 =  0.1234E+01 md, KV2 =  0.1234E+01 md

KH3 = -0.2429E-05 md, KV3 =  0.3186E+12 md
Caution:  KH permeability is negative

Again, it is important to have recovered the isotropic permeability of 1.234
md.  Additionally, there are two (unrealistic) negative kh roots cited in the
warning.  In the next evaluation, we consider the horizontal well limit (with 89.8
deg) and we similarly recover the isotropic permeability as required (root “3”).
However, we also obtain an additional anisotropic solution with high horizontal
and very low vertical permeability.

C:\phase-delay-nonlinear (Return>

Probe separation ......... (cm):  15.
Porosity ............ (decimal):  0.2
Viscosity ................ (cp):  1.1
Compressibility ....... (1/psi):  0.0000034
Frequency ................ (Hz):  1.2
Time delay .............. (sec):  0.3640
Spherical permeability ... (md):  1.234
Dip angle ............... (deg):  89.8

Dip angle ............... (rad):   0.1567E+01
Phase delay ............. (rad):   0.2744E+01
Phase delay ............. (deg):   0.1572E+03

KH1 = -0.3541E+03 md, KV1 =  0.1499E-04 md
Caution:  KH permeability is negative
KH2 =  0.3529E+03 md, KV2 =  0.1509E-04 md Additional solution.
KH3 =  0.1234E+01 md, KV3 =  0.1235E+01 md
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Finally, we consider the same data but at 45 deg. We recover the isotropic
solution in “root 2,” but as before, obtain an additional anisotropic permeability
set in “root 3” that satisfies the input data.

C:\phase-delay-nonlinear (Return>

Numbers must have decimals ...

Probe separation ......... (cm):  15.
Porosity ............ (decimal):  0.2
Viscosity ................ (cp):  1.1
Compressibility ....... (1/psi):  0.0000034
Frequency ................ (Hz):  1.2
Time delay .............. (sec):  0.3640
Spherical permeability ... (md):  1.234
Dip angle ............... (deg):  45.

Dip angle ............... (rad):   0.7854E+00 ok
Phase delay ............. (rad):   0.2744E+01
Phase delay ............. (deg):   0.1572E+03

KH1 = -0.1996E+01 md, KV1 =  0.4714E+00 md
Caution:  KH permeability is negative

KH2 =  0.1234E+01 md, KV2 =  0.1235E+01 md

KH3 =  0.7627E+00 md, KV3 =  0.3230E+01 md Additional solution.

4.2.6  Example 6, Solution for a random input

In the three above examples using the “anisotropic, dip angle” algorithm,
we recovered the isotropic permeability of “1.234 md” for dip angles 0o+, 90o-
and 45o, and in addition, found other roots for permeability.  Our recovering
isotropic permeabilities was expected, of course, because we used data created
from the isotropic model; thus, the foregoing cases served as validations for the
more complicated anisotropic model.  Now, let us repeat the above example, but
change only the input for measured time delay from 0.3640 sec to 0.5 sec.  In
this sense, we have a “random” data set for which there is no reason to suspect
isotropic properties.

C:\phase-delay-nonlinear <Return>

Probe separation ......... (cm):  15.
Porosity ............ (decimal):  0.2
Viscosity ................ (cp):  1.1
Compressibility ....... (1/psi):  0.0000034
Frequency ................ (Hz):  1.2
Time delay .............. (sec):  0.5
Spherical permeability ... (md):  1.234
Dip angle ............... (deg):  45.

Dip angle ............... (rad):  0.7854E+00
Phase delay ............. (rad):  0.3770E+01
Phase delay ............. (deg):  0.2160E+03
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KH1 = -0.2546E+01 md, KV1 =  0.2898E+00 md
Caution:  KH permeability is negative

KH2 =  0.2213E+01 md, KV2 =  0.3838E+00 md

KH3 =  0.3335E+00 md, KV3 =  0.1690E+02 md

Stop - Program terminated.

In fact, the above results give three real roots, one negative, one with kh >
kv > 0 and the last with 0 < kh < kv.  The latter two represent anisotropic
formations and both are possible permeability solutions that are consistent with
the phase delay inputs.  The correct choice, of course, requires additional
logging data or other qualitative judgement.

4.3  Layered Model Formulation

In this investigation, the above capabilities are extended to transversely
isotropic media with any number of layers and to tools with arbitrary dip angle
and source-to-observation probe separation.  These extensions require a three-
dimensional numerical modeling and interpretation approach.  In order to
develop the mathematical formulation clearly, we will restrict the discussion to a
single layer at first and then introduce the extensions needed to model multiple
layers.  Ultimately, the layered system represented by Figure 4.2 will be
addressed, where “s” and “o” denote source and observation probes respectively.

4.3.1 Homogeneous medium, basic mathematical ideas
Let us consider a transversely isotropic formation with a horizontal

permeability kh in the x and y directions and a vertical permeability kv in the z
direction.  Also, let  be the porosity,  be the viscosity of the assumed liquid
and c be its compressibility.  Then, the transient response in time satisfies

kh ( 2p/ x2 + 2p/ y2) + kv
2p/ z2 = c p/ t   (4.43)

When formation tester pistons pump fluids in general, drawdown and buildup
transients are created – pressure responses not only depend on rock and fluid
properties, but also on flowline storage parameters.
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Figure 4.9.   Layered anisotropic medium with dipping tool.

If, on the other hand, a sinusoidal pressure transient is assumed to exist at
the source probe, e.g., an actual oscillatory disturbance or a harmonic
component resolved from Fourier analysis, then flowline storage does not affect
the propagation of this transient toward the observation probe – although it will
affect the efficiency with which the signal is generated.  With this view of the
physics, the time response of the pressure signal at distant points is likewise
sinusoidal, but with a time or phase delay that depends on formation properties
and pumping frequency .  This allows us to represent pressure as

p(x,y,z,t) = P(x,y,z) ei t  (4.44)
Here, p(x,y,z,t) and the steady P(x,y,z) may be complex, but real parts are taken
as the relevant physical quantities.  This analysis approach is common in
harmonic analyses used in electrical engineering.  For instance, the pressure at a
source point “s” may be written in the form

p(xs,ys,zs,t) = P(xs,ys,zs) ei t = Ps ei t  (4.45)

where Ps is real, so that the assumed excitation is Ps cos t and “i” is the
imaginary number.  The response at an observation point “o” is therefore the
real part of

p(xo,yo,zo,t) = P(xo,yo,zo) ei t = Po ei t = (Po
r + i Po

i ) ei t  (4.46)

or simply “Po
r cos t – Po

i sin t.”  In a highly permeable medium, the phase
delay vanishes, that is, Po

i = 0.  However, the real amplitude Po
r does not reduce

to Ps because “1/r” geometric spreading reduces the intensity of the signal.
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4.3.2 Boundary value problem for complex pressure
Our objective is a robust, rapid and stable numerical solution for P(x,y,z)

everywhere in the flow domain.  When Equation 4.44 is substituted in Equation
4.43 and all ei ts cancel, we obtain the complex linear model

kh( 2P/ x2 + 2P/ y2) + kv
2P/ z2 = i c P     (4.47)

representing two linearly coupled partial differential equations for Pr and Pi.
The latter, associated with phase delay, vanishes for high permeabilities or low
values of the product c .

Note that, in obtaining Equation 4.47, all coefficients have been assumed
as constant and not dependent on pressure so that the exponentials drop out –
thus, the phase delay model presented in this chapter applies to liquids only.
Nonlinear phase delays and amplitude attenuations for gases with varying
compressibility are also possible, of course, but these must be modeled using
transient numerical methods – the three-dimensional model in Chapter 7 and the
two-dimensional numerical model of Chapter 8 can be used as applicable.  Now,
Equation 4.47 is solved subject to

P(xs,ys,zs) = Ps (constant)  (4.48)
P  0 as x2 + y2 + z2  (4.49)  

where P is the dynamic pressure measured about steady-state conditions.  The
solutions to Equations 4.47 to 4.49 for homogeneous media lead to pure
ellipsoidal flow, and in particular, to the analytical solutions given previously.
In dealing with layered media, ellipsoidal flow cannot be assumed at the outset,
and numerical techniques for homogeneous media that can be extended three-
dimensionally to layered applications must be developed.

4.3.3 Iterative numerical solution to general formulation

The finite difference method will be used to solve Equation 4.47.  We
approximate the pressure at nodal intersections defined by the discretized grids
x1, x2, x3, . . . , ximax, y1, y2, . . . , yjmax and z1, z2, . . . , zkmax in Figure 4.10.  For
example, the partial derivative P/ x at (x3, y8, z15) is simply given by the
algebraic expression {P(x4, y8, z15) – P(x2, y8, z15)}/(x4 – x2) or (P4,8,15 –
P2,8,15)/(x4 – x2).  If this procedure is carried out for Equation 4.47, the resulting
difference formula can be rewritten as
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 [(zk+1 – zk-1)(zk – zk-1)] –1 Pi,j,k-1 (4.50)

– [{1/(zk+1 – zk) + 1/(zk – zk-1)}/(zk+1 – zk-1)
      + (kh/kv) {1/(xi+1 – xi) + 1/(xi – xi-1)}/(xi+1 – xi-1)

+ (kh/kv) {1/(yj+1 – yj) + 1/(yj – yj-1)}/(yj+1 – yj-1)} + i c /(2kv)] Pi,j,k

+ [(zk+1 – zk-1)(zk+1 – zk)] – 1 Pi,j,k+1 =

– (kh/kv)  [ {Pi+1,j,k/(xi+1 – xi) + Pi-1,j,k/(xi – xi-1)}/(xi+1 – xi-1)
+ {Pi,j+1,k/(yj+1 – yj) + Pi,j-1,k/(yj – yj-1)}/(yj+1 – yj-1)]

xi

yj

zk

k = 1

k = ka

k = kb

k = kmax

j = 1 j = jmax

i = imax

i = 1

(is,js,ks)

(io,jo,ko)

Source

Observer

Figure 4.10.   Discretized grid system.

4.3.4 Successive line over relaxation procedure
Before we explain why Equation 4.50 was constructed, we describe its use

in obtaining solutions.  To do so, we initialize P(x,y,z) to a first guess, which can
be taken as zero (thus, satisfying farfield conditions).  Now, focus our attention
on any vertical line with frozen (i,j) values and write Equation 4.50 for k = 2, 3, .
. . , kmax-1, thus yielding kmax – 2 equations for kmax variables.  If Pi,j,1 = 0 and
Pi,j,kmax = 0 are invoked, a tridiagonal system of coupled algebraic equations of
order kmax is obtained, requiring O(3kmax) operations to invert.  This procedure is
repeated for all (i,j) values, with latest values of Pi,j,k always used to evaluate the
right of Equation 4.50.  Note that Equation 4.48 applies at the source point.
When all (i,j) values are considered, one “sweep” of the three-dimensional
flowfield is said to be completed.  This sweeping is repeated until P(x,y,z) no
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longer changes, at which time the solution converges.  This “successive line
over relaxation” (SLOR) process yields results that are consistent with the
solutions of Proett, Chin and Mandal (2000) and the homogeneous anisotropic
medium model in the previous section.

4.3.5 Advantages of the scheme
The finite difference model used for our SLOR model was taken in the

form Ak Pi,j,k-1 + Bk Pi,j,k + Ck Pi,j,k+1 = Wk which contains at most three
unknowns per equation – such tridiagonal equations are efficiently inverted.
Importantly, the absolute value of the middle diagonal exceeds the sum of those
in its side-bands, and more particularly so, if kh >> kv.   This diagonal
dominance enhances the numerical stability and rapid convergence properties of
the iterations.  For this reason, the “Ak Pi,j,k-1 + Bk Pi,j,k + Ck Pi,j,k+1 = Wk” with
varying “k” and not its complementary forms using i and j indexes was used.

Importantly, the iterative algorithm converges for any initial guess, even
unrealistic ones, e.g., Pi,j,k = i2 + 5 + 21 jk (Chin, 2002).  However, a guess close
to a solution will result in rapid convergence.  Thus, the pressure solution for
one set of formation properties can be saved to initialize other close solutions in
order to minimize computation times – an important feature when numerous
sequential simulations must be performed to support inverse applications.

4.3.6 Extensions to multiple layers
The above method applies to uniform media, however, it is clear that it

also applies to different layers with different properties.  Now, Equation 4.14
holds for field points but not at layer interfaces where rock properties change
discontinuously.  At interfaces, we instead invoke continuity of normal velocity
and continuity of pressure.  For example, let k* be the index corresponding to a
bed interface; then, as usual, k* + 1 and k* – 1 are indexes just above and below.
However, we also need to introduce two other vertical locations, k*

+ and k*
–

which are infinitesimally above and below k*, as indicated in Figure 4.4.

k*+
k*-k*

k*+1

k*-1

Figure 4.11.   Layer interface details.
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Continuity of normal velocity requires (kv P/ z) |+ = (kv P/ z)|– at k = k*,
or kv

+(Pi,j,k* +1 – Pi,j,k*+)/(zk* +1 – zk*) = kv
– (Pi,j,k* – – Pi,j,k* –1)/(zk*  – zk* –1), where

Pi,j,k*+ and Pi,j,k* – denote pressures infinitesimally above and below k*.  These
need not be equal if k* supports pressure differences, e.g., as for shale streaks.
When the interface consists of sand, the two are equal and we set Pi,j,k*+ = Pi,j,k*–
= Pi,j,k* .  In this limit, continuity of normal velocity and pressure imply that

{ kv
–/(zk*  – zk* –1)} Pi,j,k* –1 (4.15)

– { kv
+/(zk* +1 – zk*) + kv

–/(zk*  – zk* –1)} Pi,j,k* + {kv
+/(zk* +1 – zk*)} Pi,j,k* +1 = 0

Like Equation 4.14, this differencing is tridiagonal and diagonally
dominant.  When all the field and interfacial points have been represented by
equations, a large system of complex coupled unknowns is obtained and
iteratively solved as outlined without direct recourse to lengthy Gaussian
elimination.  The method is rapidly convergent and numerically stable, e.g., a 25

 25  25 system with over 30,000 complex unknowns converges in seconds on
typical personal computers – thus, numerous forward calculations can be
performed in support of inverse applications.  Note that each field point
represents a passive observation probe.  The line joining it and the source point
gives the probe separation while its inclination provides the dip angle.

4.3.7 Extensions to complete formation heterogeneity
For simplicity, we described our model assuming that formation properties

are constant within layers.  However, they often are variable with space – and
certainly the case once a more complete understanding of the reservoir is
available.  When this is the case, terms containing products of spatial derivatives
of permeability and first-order derivatives of pressure appear together with
variable porosities.  Obvious modifications to the governing equations can be
derived and the more general model has been coded and successfully tested.

4.4  Phase Delay Software Interface

Our phase delay capabilities are hosted by the input screen in Figure 4.12,
where white boxes are reserved for data entry.  For brevity, only the interface for
homogeneous media is discussed and examples are limited to such applications.
The diagram reminds users of the coordinate conventions assumed.  At the left,
gridblock sizes and indexes are selected, as are source and observation probe
properties.  As these change, automatic calculated results for probe separation
and dip angle appear in the opaque boxes.  Overall dimensions shown in bold
font in the diagram also change automatically as gridblock sizes and indexes
change.  Formation properties include layer permeabilities and porosities, bed
interface indexes, viscosity and compressibility; excitation characteristics
include source probe peak-to-peak pressure and frequency. The source code
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implementing our pressure solution algorithm was written in Fortran.  Its
executable is called by a Windows-based front-end developed using Visual
Basic which conveniently processes input data.  Output color contour and line
plots are developed in C-code, which is executed by both Fortran and Visual
Basic programs.

Figure 4.12.   Windows-based program interface.

Once appropriate values are selected, the user – who does not require
experience with programming or computational methods – clicks “Simulate” to
automatically perform equation setup, matrix solution, all post-processing and
output displays.  For the parameters in Figure 4.12, the answer screens in
Figures 4.13, 4.14 and 4.15 appear once a “Done simulating …” message box is
acknowledged – typical simulations require just seconds on personal computers.

Figure 4.13.   Rotatable plot of (P r 2 + P i 2) versus x and y for given layer.
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Figure 4.14.   Phase delay plot (-100 to +100 psi for source pressure).

Figure 4.15.   Output text summaries.
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4.4.1 Output file notes

In this section, we briefly describe the screen shots visually captured above.

  Figure 4.13 plots (P r 2 + P i 2) versus x and y for the selected layer.  It
represents the absolute magnitude of pressure and measures amplitude
changes due to geometric spreading and diffusion.  The default view can
be translated and rotated as desired.  Plots for other quantities, e.g., the
ratio Pi/Pr, the phase angle tan-1 Pi/Pr or the amplitude ratio between source
and observation probes, are easily added by modifying source code logic.

  Figure 4.14 plots “pressure versus time” for source (red) and observation
(green) probes.  Note the much smaller magnitudes found for the
observation probe.  Time delays are read from intersections of these curves
at the horizontal axes. For this run, the delays are small; nonetheless,
amplitude changes are large, geometric divergence being the cause.

  Figure 4.15 displays input parameters, detailed ASCII file listings versus x
and y for all z values, for real and imaginary pressures, absolute
magnitude, amplitude attenuation and phase delay.

4.4.2 Special user features
Additional features are incorporated into the graphical interface and are briefly
summarized.

  Figures 4.13, 4.14 and 4.15 can be individually recalled by clicking the
“3D Plots,” “Transients,” and “Summary” buttons in Figure 4.12

  When source and observation probe locations change, or when grid sizes
are altered, probe separations and dip angles are automatically calculated
and displayed in the opaque boxes at the bottom left of Figure 4.12.

 When the observation probe falls outside the computational box, an error
message appears and asks for revised data.
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4.5  Detailed Phase Delay Results in Layered Anisotropic Media

Here, we perform representative calculations of engineering interest and
elaborate on computed results, demonstrating important features of the model.
We begin with the input of Figure 4.12, but modified so that all six
permeabilities are a large 1,000 md.  In this range, phase delays should be small
and this is confirmed in Figure 4.16a (both curves intersect the time axis at the
same locations, so that the phase delay is minimal).

Figure 4.16a.   Very high 1,000 md run.

Next, we reduce all six isotropic permeabilities to 100 md, 10 md and 1 md,
with results shown in Figures 4.16b, 4.16c and 4.16d, respectively.

Figure 4.16b.   High 100 md run.
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Figure 4.16c.   Moderate 10 md run.

Figure 4.16d.   Low 1 md run.

For the isotropic runs considered above, only the lumped parameter
c /k enters, so that it is not necessary to repeat calculations with other

variables changed.  The results for 1,000 md and 100 md are almost identical –
phase delays are minimal because there is little diffusion and the amplitude
change from source to observation probe is entirely due to geometric spreading.
The results for 10 md and 1 md show significant differences.  Here, time shifts
are clearly evident even visually.  The additional amplitude decays arise from
strong diffusion.  If our source and observation probes are further displaced,
distant amplitudes would be reduced and phase delays would increase.

We next provide results for more complicated layering schemes.  In
Figures 4.17a to 4.17d, assumed horizontal versus vertical permeability
distributions are displayed along with computed time delays.  For brevity, the
remaining parameters are not changed, but we note that only the lumped
parameters c  and “permeability/porosity” are important in the analysis.
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Figure 4.17a.   Isotropic run, high permeability middle layer.

Figure 4.17b.   Isotropic run, low permeability middle layer.

Figure 4.17c.   Anisotropic run, high permeability middle layer.
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Figure 4.17d.   Anisotropic run, low permeability middle layer.

In the next example, we fix all formation and fluid properties in the input
screens of Figures 4.18a to 4.18c, noting that a layered anisotropic permeability
distribution is assumed.  As in the above examples, Figure 4.18a models a
vertical tool with a source-to-observation probe separation of two inches.  On
the other hand, Figure 4.18b models the response of the same tool oriented
horizontally – calculated amplitudes are larger although phase responses are
similar (input dip angle is changed by editing the observation probe indexes).

Lastly, we determined the response at 45o dip by changing probe indexes
and modifying gridblock sizes to maintain the desired two-inch probe
separation.  The amplitude response, shown in Figure 4.18c, falls between those
of Figures 4.18a and 4.18b, as expected.  Computation times for all simulations
reported were less than five seconds.

Figure 4.18a.   Vertical tool (0o dip) in layered anisotropic medium.
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Figure 4.18b.   Horizontal tool (90o dip) in layered anisotropic medium.

Figure 4.18c.   Deviated tool (45o dip) in layered anisotropic medium.

In the next example, we move with the formation tester as it progresses
vertically downward through a three-layer formation, taking a well logging
perspective.  We consider the isotropic layering in Figure 4.19a and a 1 Hz
oscillation frequency.  From Figure 4.19a, the upper interface index is kb = 16.
From Figure 4.19b, the source probe is positioned at k = 17 while the
observation probe is found at k = 19 – thus, the dual probe system lies entirely in
the upper layer while the probe separation is 6 inches.  The corresponding
source and observation probe pressure traces are shown in Figure 4.19b.  In
Figure 4.19c, the source probe is found in the middle low permeability layer
with k = 15 while the observation probe is positioned above the interface in the
higher permeability layer at k = 17.  The ten-fold reduction in permeability
clearly decreases the amplitude response at the observation probe.  In our Figure
4.19d, the formation tester is moved toward the center of the layer, so that the
dual probe system is entirely within that layer.  The larger time shift in our
Figure 4.19d due to lower effective permeability relative to that in Figure 4.19b
is clearly evident – pointing to the success of the method in resolving
permeability contrasts between layers.
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Figure 4.19a.   Isotropic three-layer system.

Figure 4.19b.   Dual probe system entirely in top layer.

Figure 4.19c.   Source in middle layer, observation probe outside.
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Figure 4.19d.   Dual probe system entirely in middle layer.

In this final example, we consider the three-layer formation described in
Figure 4.20a.  Both source (ks = 9) and observation (ko = 15) probes are located
within the middle layer (6 < k < 16).  The green observation probe response for
the assumed probe frequency of 10 Hz is shown at the left of Figure 4.20b.  The
response at the right assumes the same parameters, but the source frequency is
decreased to 0.5 Hz.  These two examples show that different responses are
obtained.  In practice, as the formation tester traverses past different layers,
multiple frequencies can be used to probe the background geology.  Rapid
history matching, possible because the computational model is extremely fast,
allows similarly rapid identification of layer properties.

Figure 4.20a.   Three layer example.
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Figure 4.20b.   Observation probe responses at 10 Hz (left) and 0.5 Hz (right).

4.6  Typical Experimental Results

Here we provide experimental results obtained with the linear core sample
conceptually shown in Figure 4.21, instrumented with four pressure transducers
separated by six inch distances.  Pressure traces are shown at the right.  The
sudden change in pulsing amplitude is used to “mark” an initial time so that
subsequent time delays can be measured.  The initial questions raised when
phase delay methods were first posed are several.  “What frequencies can be
used?”  “Are the delays detectable and what level of electronic signal processing
support is required?”  “Is the method doable with existing formation testing
pumps?”  It turns out that frequencies in the range of 0.25 – 10 Hz lead to time
delays that are visually detectable and can be easily implemented mechanically.
Very rarely in engineering do all factors play so satisfactorily.

Figure 4.21.   Actual strip chart, t delay visually seen.
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Detailed strip chart results for 0.5, 1 and 2 Hz are given in Figures 4.22a,
4.22b and 4.22c below.  Note how pressure amplitudes decrease going down the
page, that is, as the pressure transducer distances increase from the piston pump.
Time delays may be discerned which are in the one second range.

Figure 4.22a.   Frequency 0.5 Hz, note amplitude attenuation with distance.
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Figure 4.22b.   Frequency 1 Hz, note amplitude attenuation with distance.
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Figure 4.22c.   Frequency 2 Hz, note amplitude attenuation with distance.
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4.7  Closing Remarks – Extensions and Additional Applications

We have developed exact analytical results for phase delay interpretation
in homogeneous anisotropic media at any dip angle and shown how it is possible
to obtain both horizontal and vertical permeabilities for low mobility
applications at early times.  Also, a three-dimensional Darcy flow simulator
capable of modeling compressible liquids in multilayer anisotropic formations is
developed for more complicated interpretation questions.  A formation tester
creates sinusoidal pressure pulses at the source probe and changes to amplitude
and phase are calculated at all other observation points – thus, solutions are
provided for all probe separations and tool dip angles.  The iterative algorithm,
which is robust and stable, converges rapidly.  Grid block systems ranging from
20 20 20 to 30 30 30 require at most five seconds on typical personal
computers.  The simulation engine can be used within nested do-loops to
perform numerous forward runs in support of inverse applications.

Various improvements to the numerical model are possible.  We note that
our finite difference equations are developed for variable xi, yj and zk grids.
However, the Visual Basic interface for convenience assumed constant grids
with different x, y and z values permitted.  In general, this is not a
requirement – the Fortran source code supports any variable grid system defined
by the user although, of course, additional software must be developed to create
and view these grids.  And while the program is written for three layers, any
number of layers may be added.  Additional models can be created from our
Fortran source code.  For example, in the derivation leading to Equation 4.15,
the difference model that invokes continuity of normal velocity and pressure
across horizontal interfaces can be modified to handle other effects – shale
streaks (which support pressure discontinuities) can be modeled by allowing
Pi,j,k*+  Pi,j,k*– at selected nodal locations.  Chin (2002) explains how effects like
fractures and shales can be included in matching conditions.  Other model
permutations include (i) changes to farfield boundary conditions, e.g., solid
barriers, aquifer drives, (ii) extensions to heterogeneous media, and (iii)
reformulation using cylindrical coordinates to account for borehole effects.
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5
Four Permeability Prediction Methods

Having discussed permeability prediction in all its mathematical detail in
prior chapters, it is useful to “take a step back” to review some basic capabilities
through examples.  We start with two conventional models and discuss their
assumptions.  Previously we showed how the spherical source solution can be
expanded in the form

P(Rw,t)late-time from exact = P0 - Q0 /(4 Rwk)

+ {Q0 /(4 k)} { c/( kt)} (2.25)

This late time solution is independent of flowline storage, and depends not only
on  and k, but also the porosity  and fluid compressibility c.  Equation 2.25
also illustrate an algebraic “inverse-square-root” timewise decline in pressure.
This large-time transient behavior forms the basis for Horner-type models
which, while popular, require additional “ c” estimates which introduce the
possibility of error. At very large times, a steady-state spherical response is
found from

P(Rw,t)late-time from exact = P0 - Q0 /(4 Rwk) (2.26a)

which is essentially the well known “ks = CQ /(2 rp P)” used conventionally
but without the geometric correction.  If the value of P(Rw) is known from
drawdown or buildup measurements, then this simple source-point formula can
be used to estimate the value of the isotropic permeability k (our more general
derivation of Chapter 2 shows that, in the no-skin limit, k can be replaced by
kh

2/3kv
1/3 in transversely isotropic media).
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The Horner type approach conventionally used also derives from the
foregoing result.  In Equation 2.25, a drawdown with a constant volume flow
rate of Q0 starts at t = 0.  Now we wish to stop pumping at t = t*.  To completely
terminate the flow, the negative of the flow rate must be added.  Thus, for t > t*,
we have the superposition

P(Rw,t) = P0- Q0 /(4 Rwk) + {Q0 /(4 k)} { c/( kt)}

+ Q0 /(4 Rwk) - {Q0 /(4 k)} { c/( k(t-t*))} (5.1)
or

P(Rw,t) = P0 + {Q0 /(4 k)} { c/( k)} {1/ t – 1/  (t - t*)} (5.2)

If we view the last factor on the right of Equation 5.2 as a function of time,
say  = 1/ t – 1/  (t - t*), then we can certainly write

P(Rw, ) = P0 + {Q0 /(4 k)} { c/( k)}  (5.3)

By plotting P versus , a straight-line is obtained and the permeability k or the
mobility k/  can be obtained from the slope.  There are several drawbacks with
this interpretation procedure.  Note the porosity  and the fluid compressibility c
must be known, which necessarily invites uncertainty and error.  Also, the fact
that flowline storage does not appear in the equation used indicates that the
method requires sufficiently large times.

These factors indicate that neither the “ks = CQ /(2 rp P)” approach nor
the Horner method are as robust as our low mobility, early-time drawdown and
drawdown-buildup prediction methods which operate in the presence of high
flowline volumes.  We also add that these methods additionally provide pore
pressure from highly transient unequilibrated data.  The fast logging speeds
enabled by these single-probe techniques imply reduced costs, higher resolution,
plus the option to perform rapid and detailed pressure gradient plots for
hydrocarbon and abnormal zone determination.

By contrast, the phase delay approach requires dual-probes as well as
estimates for the product c, and does not offer pore pressure.  At first, these
may appear as strong disadvantages – and they are is phase delays are used
along.  However, the important distinction is this.  From Equation 4.35, the
delay provides a direct measure of the quantity “sin2  /kh + cos2  /kv”

 L { c /2}{sin2  /kh + cos2  /kv}] (4.35)

while drawdown-only and drawdown-buildup methods procide measures of the
spherical permeability kh

2/3kv
1/3.  Thus, the two resulting equations for kh and kv

provide predictions for both horizontal and vertical permeability.  These are
useful in hydraulic fracturing, production planning and rock stress analysis.
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5.1  Steady-State Drawdown Example

In this exercise, we evaluate the steady-state drawdown permeability
prediction approach using exact forward pressure data from our FT-00
simulator.  The input assumptions are shown in Figure 5.1a and exact transient
source probe results are displayed in Figures 5.1b and 5.1c.

Figure 5.1a.   FT-00 input assumptions.

Figure 5.1b.   Exact transient source probe results.
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DEFINITIONS
 Time ... Elapsed time (sec)
 Rate ... Drawdown flow rate (cc/s)
 Ps* .... Source pressure with hydrostatic (psi)
 Pr* .... Observation pressure with hydrostatic (psi)
 Ps** ... Source pressure, no hydrostatic (psi)
 Pr** ... Observation pressure, no hydrostatic (psi)

          NOTE: Ps* or Pr* < 0 means volume flow
          rate cannot be achieved in practice

  Time (s)  Rate (cc/s)   Ps* (psi)    Pr* (psi)    Ps**(psi)    Pr**(psi)    Pr**/Ps**
 0.000E+00  0.10000E+01  0.25000E+05  0.25000E+05  0.00000E+00  0.00000E+00  -----------

 0.501E+01  0.10000E+01  0.20748E+05  0.24735E+05 -0.42520E+04 -0.26470E+03  0.62254E-01

 0.100E+02  0.10000E+01  0.18167E+05  0.24527E+05 -0.68328E+04 -0.47276E+03  0.69191E-01

 0.200E+02  0.10000E+01  0.15548E+05  0.24387E+05 -0.94516E+04 -0.61295E+03  0.64852E-01

 0.301E+02  0.10000E+01  0.14481E+05  0.24352E+05 -0.10519E+05 -0.64829E+03  0.61629E-01

 0.401E+02  0.10000E+01  0.14021E+05  0.24340E+05 -0.10979E+05 -0.65988E+03  0.60103E-01

 0.501E+02  0.10000E+01  0.13809E+05  0.24334E+05 -0.11191E+05 -0.66582E+03  0.59495E-01

 0.601E+02  0.10000E+01  0.13702E+05  0.24330E+05 -0.11298E+05 -0.67040E+03  0.59340E-01

 0.702E+02  0.10000E+01  0.13643E+05  0.24325E+05 -0.11357E+05 -0.67459E+03  0.59400E-01

 0.802E+02  0.10000E+01  0.13607E+05  0.24321E+05 -0.11393E+05 -0.67854E+03  0.59556E-01

 0.902E+02  0.10000E+01  0.13582E+05  0.24318E+05 -0.11418E+05 -0.68223E+03  0.59749E-01

 0.100E+03  0.10000E+01  0.13564E+05  0.24314E+05 -0.11436E+05 -0.68565E+03  0.59953E-01

Figure 5.1c.   Numerical pressure responses.

A simple program was written for Equation 2.26a and is denoted by FT-13.
What are the predicted permeabilities using this steady-state approach?  The
times in Figure 5.1c are listed in seconds. If one minute data is used, we find
that P = 25,000 – 13,600 = 11,400 psi, and a permeability of 0.102 md is
obtained, comparing very favorably with the 0.1 md assumed in Figure 5.1a.  On
the other hand, if we use 30 sec data, we find that p = 25,000 – 14,481 =
10,519 psi and we obtain 0.111 md.  Finally, if we use 10 sec data, then p =
25,000 – 18,167 = 6,833 psi and we find 0.171 md with a 71% error..
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5.2  Early-Time, Low-Mobility Drawdown-Buildup

Here we evaluate the early-time, low-mobility drawdown-buildup
approach.  Figure 5.2a shows inputs assumed in our exact forward pressure
simulator FT-00.  Note that we have a very low 0.1 md/cp mobility and also an
extremely short drawdown time of 1 sec.  The calculated source probe response
is shown in Figure 5.2b and tabulated results are given in Figure 5.2c.

Figure 5.2a.   FT-00 input parameters.
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Figure 5.2b.   Drawdown-buildup pressure response.

NOTE: Ps* or Pr* < 0 means volume flow
rate cannot be achieved in practice

  Time (s)  Rate (cc/s)   Ps* (psi)    Pr* (psi)    Ps**(psi)    Pr**(psi)    Pr**/Ps**

Drawdown
 0.000E+00  0.10000E+01  0.25000E+05  0.25000E+05  0.00000E+00  0.00000E+00  -----------
 0.339E+00  0.10000E+01  0.24634E+05  0.25000E+05 -0.36614E+03 -0.62553E-03  0.17085E-05
 0.678E+00  0.10000E+01  0.24283E+05  0.25000E+05 -0.71715E+03 -0.49757E+00  0.69382E-03

Buildup
 0.102E+01  0.00000E+00  0.23964E+05  0.24995E+05 -0.10361E+04 -0.49642E+01  0.47910E-02
 0.136E+01  0.00000E+00  0.24004E+05  0.24984E+05 -0.99636E+03 -0.16208E+02  0.16267E-01
 0.169E+01  0.00000E+00  0.24040E+05  0.24967E+05 -0.95993E+03 -0.32989E+02  0.34366E-01
 0.203E+01  0.00000E+00  0.24074E+05 0.24950E+05 -0.92567E+03 -0.49814E+02  0.53814E-01
 0.237E+01  0.00000E+00  0.24107E+05  0.24938E+05 -0.89318E+03 -0.62302E+02  0.69753E-01
 0.271E+01  0.00000E+00  0.24138E+05  0.24930E+05 -0.86222E+03 -0.69932E+02  0.81107E-01
 0.305E+01  0.00000E+00  0.24167E+05  0.24926E+05 -0.83263E+03 -0.73725E+02  0.88545E-01
 0.339E+01  0.00000E+00  0.24196E+05  0.24925E+05 -0.80429E+03 -0.74841E+02  0.93053E-01
 0.373E+01  0.00000E+00  0.24223E+05  0.24926E+05 -0.77711E+03 -0.74197E+02  0.95478E-01
 0.407E+01  0.00000E+00  0.24249E+05 0.24928E+05 -0.75101E+03 -0.72439E+02  0.96455E-01
 0.441E+01  0.00000E+00  0.24274E+05  0.24930E+05 -0.72592E+03 -0.70006E+02  0.96438E-01
 0.475E+01  0.00000E+00  0.24298E+05  0.24933E+05 -0.70180E+03 -0.67191E+02  0.95742E-01
 0.508E+01  0.00000E+00  0.24321E+05  0.24936E+05 -0.67858E+03 -0.64186E+02  0.94589E-01
 0.542E+01  0.00000E+00  0.24344E+05  0.24939E+05 -0.65622E+03 -0.61117E+02  0.93134E-01
 0.576E+01  0.00000E+00  0.24365E+05  0.24942E+05 -0.63469E+03 -0.58064E+02  0.91484E-01
 0.610E+01  0.00000E+00  0.24386E+05 0.24945E+05 -0.61393E+03 -0.55080E+02  0.89716E-01
 0.644E+01  0.00000E+00  0.24406E+05  0.24948E+05 -0.59393E+03 -0.52195E+02  0.87882E-01
 0.678E+01  0.00000E+00  0.24425E+05  0.24951E+05 -0.57464E+03 -0.49430E+02  0.86019E-01
 0.712E+01  0.00000E+00  0.24444E+05  0.24953E+05 -0.55603E+03 -0.46793E+02  0.84154E-01
 0.746E+01  0.00000E+00  0.24462E+05  0.24956E+05 -0.53808E+03 -0.44287E+02  0.82306E-01
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 0.780E+01  0.00000E+00  0.24479E+05  0.24958E+05 -0.52076E+03 -0.41914E+02  0.80486E-01
 0.814E+01  0.00000E+00  0.24496E+05  0.24960E+05 -0.50404E+03 -0.39669E+02  0.78703E-01
 0.847E+01  0.00000E+00  0.24512E+05  0.24962E+05 -0.48790E+03 -0.37550E+02  0.76962E-01
 0.881E+01  0.00000E+00  0.24528E+05  0.24964E+05 -0.47232E+03 -0.35550E+02  0.75267E-01
 0.915E+01  0.00000E+00  0.24543E+05  0.24966E+05 -0.45727E+03 -0.33664E+02  0.73620E-01
 0.949E+01  0.00000E+00  0.24557E+05  0.24968E+05 -0.44274E+03 -0.31886E+02  0.72021E-01
 0.983E+01  0.00000E+00  0.24571E+05  0.24970E+05 -0.42870E+03 -0.30211E+02  0.70471E-01
 0.102E+02  0.00000E+00  0.24585E+05  0.24971E+05 -0.41513E+03 -0.28631E+02  0.68968E-01
 0.105E+02  0.00000E+00  0.24598E+05  0.24973E+05 -0.40203E+03 -0.27142E+02  0.67512E-01
 0.108E+02  0.00000E+00  0.24611E+05  0.24974E+05 -0.38937E+03 -0.25738E+02  0.66102E-01
 0.112E+02  0.00000E+00  0.24623E+05  0.24976E+05 -0.37713E+03 -0.24414E+02  0.64736E-01
 0.115E+02  0.00000E+00  0.24635E+05  0.24977E+05 -0.36530E+03 -0.23165E+02  0.63413E-01
 0.119E+02  0.00000E+00  0.24646E+05  0.24978E+05 -0.35387E+03 -0.21986E+02  0.62130E-01
 0.122E+02  0.00000E+00  0.24657E+05  0.24979E+05 -0.34282E+03 -0.20873E+02  0.60888E-01
 0.125E+02  0.00000E+00  0.24668E+05  0.24980E+05 -0.33213E+03 -0.19823E+02  0.59683E-01
 0.129E+02  0.00000E+00  0.24678E+05  0.24981E+05 -0.32180E+03 -0.18830E+02  0.58515E-01
 0.132E+02  0.00000E+00  0.24688E+05  0.24982E+05 -0.31181E+03 -0.17892E+02  0.57383E-01
 0.136E+02  0.00000E+00  0.24698E+05  0.24983E+05 -0.30215E+03 -0.17006E+02  0.56284E-01
 0.139E+02  0.00000E+00  0.24707E+05  0.24984E+05 -0.29280E+03 -0.16168E+02  0.55217E-01
 0.142E+02  0.00000E+00  0.24716E+05  0.24985E+05 -0.28376E+03 -0.15375E+02  0.54181E-01
 0.146E+02  0.00000E+00  0.24725E+05  0.24985E+05 -0.27502E+03 -0.14624E+02  0.53175E-01
 0.149E+02  0.00000E+00  0.24733E+05  0.24986E+05 -0.26657E+03 -0.13914E+02  0.52198E-01
 0.153E+02  0.00000E+00  0.24742E+05  0.24987E+05 -0.25839E+03 -0.13242E+02  0.51248E-01
 0.156E+02  0.00000E+00  0.24750E+05  0.24987E+05 -0.25047E+03 -0.12605E+02  0.50325E-01
 0.159E+02  0.00000E+00  0.24757E+05  0.24988E+05 -0.24281E+03 -0.12002E+02  0.49427E-01
 0.163E+02  0.00000E+00  0.24765E+05  0.24989E+05 -0.23540E+03 -0.11430E+02  0.48554E-01
 0.166E+02  0.00000E+00  0.24772E+05  0.24989E+05 -0.22823E+03 -0.10888E+02  0.47704E-01
 0.169E+02  0.00000E+00  0.24779E+05  0.24990E+05 -0.22129E+03 -0.10374E+02  0.46877E-01
 0.173E+02  0.00000E+00  0.24785E+05  0.24990E+05 -0.21458E+03 -0.98860E+01  0.46072E-01
 0.176E+02  0.00000E+00  0.24792E+05  0.24991E+05 -0.20808E+03 -0.94235E+01  0.45288E-01
 0.180E+02  0.00000E+00  0.24798E+05  0.24991E+05 -0.20179E+03 -0.89846E+01  0.44525E-01
 0.183E+02  0.00000E+00  0.24804E+05  0.24991E+05 -0.19570E+03 -0.85680E+01  0.43782E-01
 0.186E+02  0.00000E+00  0.24810E+05  0.24992E+05 -0.18980E+03 -0.81725E+01  0.43058E-01
 0.190E+02  0.00000E+00  0.24816E+05  0.24992E+05 -0.18410E+03 -0.77970E+01  0.42352E-01
 0.193E+02  0.00000E+00  0.24821E+05  0.24993E+05 -0.17857E+03 -0.74403E+01  0.41665E-01
 0.197E+02  0.00000E+00  0.24827E+05  0.24993E+05 -0.17323E+03 -0.71014E+01  0.40995E-01

Figure 5.2c.   Tabulated results.

In Figure 5.2d, the program FT-PTA-DDBU.EXE for early-time, low-
mobility buildup data was used together with the red buildup data in Figure 5.2c.
Very good predictions were obtained, namely, 24,947 psi versus 25,000 psi, and
0.12 md/cp versus 0.1 md/cp assumed.

Figure 5.2d.   Mobility prediction using buildup data.
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5.3  Early-Time, Low-Mobility Drawdown Approach

In this exercise, we reconsider the example in the prior section and use
drawdown data only.  Recall that our drawdown time was deliberately chosen to
be extremely short in order to test the robustness of the calculations.  The
software implementing the work of Chapter 2, “pta-dd-3-run-with-rft-
numbers.exe,” is used below.

C:\pta-dd-3-run-with-rft-numbers <Return>

Volume flow rate (cc/s): 1.
Pump probe, radius (cm): 1.
Probe, geometric factor: 1.
1st Point Time T1 (sec): 0.000
      Pressure P1 (psi): 25000.
2nd Point Time T2 (sec): 0.339
      Pressure P2 (psi): 24634.
3rd Point Time T3 (sec): 0.678
      Pressure P3 (psi): 24283.

The iteration history is selectively given below, with a total computing time of
less than one second.  Given the extremely short duration of the data interval,
the predicted mobility of 0.133 md/cp is surprisingly good compared with the
inputted value of 0.1 md/cp.

    Run    Error  P0(psi)  Md/Cp
      1.   4.1 %   25000   0.001
      2.   4.0 %   25000   0.002
.
.
     40.   2.8 %   25000   0.044
     50.   2.5 %   25000   0.055
     60.   2.1 %   25000   0.066
     70.   1.8 %   25000   0.077
     80.   1.5 %   25000   0.087
     90.   1.1 %   25000   0.098
    100.   0.8 %   25000   0.109
    110.   0.5 %   25000   0.119
    120.   0.1 %   25000   0.130
    121.   0.1 %   25000   0.131
    122.   0.0 %   25000   0.132
    123.   0.0 %   25000 0.133

Stop - Program terminated.
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5.4  Phase Delay, Non-Ideal Rectangular Flow Excitation

In practical mechanical design, it is often not possible to pump exactly
with sinusoidal precision.  We consider an example showing phase delay results
in one such instance.  Recall that the underlying theory was derived assuming
pressure disturbances which are proportional to exp (i t), that is, that they are
perfect sinusoids.  Typically, one can hope for two-to-three wave cycles at best
that may not be perfectly sinusoidal.  In the input screen for exact forward
simulator FT-00 in Figure 5.3a, a pump schedule having three wave cycles in six
seconds, or a frequency of 0.5 Hz, was formed from sequences of rectangular
flow rate functions.  Such functions are hardly representative of theoretical
Fourier components and it is instructive to understand the consequences.  To
ensure numerical accuracy, we used FT-00 because it provides exact solutions
that are not compromised by sharp transitions in the flow rate functions.  Also,
note that the mobility is extremely low at 0.1 md/1 cp or 0.1 md/cp.  Calculated
results in Figure 5.3b show that both amplitude functions at source and
observation probes drift considerably and are not useful for computation.  As in
the foregoing example, we therefore turn to time delay measurements.
Interestingly, examine the two circled points located at the midpoints of the
pumping cycles.  The time delay, obtained visually, is clearly “4-3” or 1 sec.
What does this imply?  We use a software program discussed previously and
obtain the results below.
C:\phase-delay-permeability-calculation <Return>

Probe separation ....... (cm): 15.
Porosity .......... (decimal): 0.2
Viscosity .............. (cp): 1.
Compressibility ..... (1/psi):  0.000003
Frequency .............. (Hz): 0.5
Time delay ............ (sec): 1.

Permeability ........... (md): 0.3148E+00
Phase delay  .......... (rad): 0.3142E+01
Phase delay ........... (deg): 0.1800E+03

The calculated permeability of 0.3148 md, compared to the known input
value of 0.1 md, is not bad, and acceptable when judged against present field
logging standards. The discrepancy arises from two effects, namely, the length
of the short duration test, and the use of rectangular as opposed to sinusoidal
functions.  These problems can be corrected by mechanical design.
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Figure 5.3a.   Square wave assumptions and pressure responses.
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Figure 5.3b.   Pressure responses, exploded view.

The foregoing examples demonstrate a degree of robustness in our
drawdown-only, drawdown-buildup and phase delay approaches to permeability
or mobility prediction that are lacking from classical steady-state and Horner
type methods.  Although much work remains in taking the methods to
commercialization, the authors are confident that with improvements to
mechanical design, e.g., more precise flow rate feedback and control, the ability
to provide both kh and kv at early times in low mobility environments will be a
reality.  While theory and numerical computations suggest that the methods,
based on spherical and ellipsoidal source models, are physically sound, non-
ideal effects related to pad geometry and borehole curvature do need to be
considered.  Toward this end, a formation testing experimental fixture similar to
the one discussed in Chapter 1 is under design and construction to evaluate the
new methods and calibrate engineered tools.
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6
Multiphase Flow with Inertial Effects

Water-based muds invade oil-bearing formations during drilling.  This
immiscible cylindrical invading flow depends on relative permeability and
capillary pressure.  Although the invasion can be described using basic reservoir
engineering principles, unlike conventional reservoir flow models, a growing
mudcake that is dynamically coupled to the flow within the reservoir controls
this invasion.  This coupling is especially significant when formation
permeabilities are low. The formation tester withdraws fluid from the cylindrical
invaded zone after supercharging invasion has begun.  But now, the tester tool
itself induces a local ellipsoidal (anisotropic) flow superposed on the cylindrical
one.  The resulting highly nonlinear combined flow is solved with special
boundary conditions involving pump rate, skin effects, flow line storage and
transient mudcake growth.  When oil-based muds invade oil formations, similar
physical mechanisms are at work.  However, relative permeability and capillary
pressure are no longer the controlling parameters.  Instead, molecular diffusion
becomes important.  Nonetheless, immiscible and miscible flows share common
features.  In both cases, a governing transient partial differential equation for
pressure must be solved; this is coupled to convective-diffusion equations for
saturation (in the case of immiscible flow) and concentration (for miscible flow).
When the first models for these phenomena appeared in the work of Chin and
Proett (2005), conventional Darcy formulations assuming low-speed flow
sufficed.  In recent applications, pumping speeds have increased significantly
that the prior models require changes to handle inertial effects.  In this chapter,
the earlier work is extended to include Forchheimer type flow extensions.
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We first present a general immiscible formulation for vertical well flow in
multi-layered anisotropic heterogeneous media.  The time-dependent, coupled
pressure-saturation field is solved by numerical “IMPES” (implicit pressure –
explicit saturation) methods.  The formulation does not assume constant density
flow.  Rather, the fluids are compressible and the model allows pressure
transient interpretation.  The simulator forms the basis for new interpretation
methods in which heterogeneities and properties like relative permeability may
be obtained from measurements.

Outputs are spatial “snapshots” of pressure and oil saturation fields as they
vary in time.  A “movie mode” software option replays changes in time.  One
useful line plot displays oil saturation at the probe versus time, giving the time
needed to pump a good oil sample and the quality of that sample.  Calculations
show that wait times needed for clean samples with little filtrate are short for
low permeability mudcakes – for more permeable cakes, invasion is strong and
wait times are longer.  A corresponding probe pressure versus time plot reveals a
different time scale that depends on compressibility and phase redistribution.
This is useful in pressure transient permeability prediction.

Modifications to the formulation are also given which allow miscible flow
simulation involving various combinations of fluids, e.g., fresh water versus
brine, and oil base mud invading formations containing oil.  For instance, the
level of contamination by oil base muds at the probe versus time can be
computed once basic diffusion coefficients are estimated.  All mathematical
models, numerical formulations and solution methods, and computed outputs
and practical applications, are described in detail for both immiscible and
miscible job planning simulators in the vertical well context for single-probe,
dual-probe and straddle packer nozzles.  The models integrate pressure transient
analysis and contamination prediction methodologies.

6.1  Physical Problem Description

Although both immiscible and miscible problems are considered, each
satisfying a very unique and different partial differential equation (PDE) model,
they share common physical flow characteristics that we discuss first.  The latter
descriptions are important to our development of boundary conditions.

6.1.1  The physical problem

We consider the axisymmetric problem in Figure 6.1 for a three-layer
formation.  Initially, high pressure mud from the newly drilled borehole invades
the formation and forms a mudcake that grows with time.  In a homogeneous
medium, the flow would be cylindrical; however, when multiple layers are
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present, significant vertical cross-flow can occur after pumping begins when
permeability contrasts are moderate or high (this cross-flow is permitted in our
general formulation).  At some point in time, a single-probe formation tester
begins to withdraw fluid from the formation and terminates after a given period
while supercharging invasion continues at a slower rate.  This withdrawal is
associated with a pressure drawdown and buildup – importantly, the fluid
initially withdrawn will be contaminated by mud filtrate while later time fluid is
more representative of the formation fluid.  The pressure measured by the probe
is not the true formation pressure, but a combined pressure partly characteristic
of the high pressure in the borehole.  How the detected pressure is allocated
between borehole and formation effects will affect pore pressure and
permeability interpretation.  For example, without understanding that invasion is
continually present, an unrealistically high pore pressure may be predicted.

Formation
tester pumping

Growing
mudcake
and
invasion

Flowline
volume

r

z
Sandface

Figure 6.1.   Single-probe supercharging and pumping model.
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6.1.2  Job planning considerations

Two important operational questions arise.  First, how long should the tool
remain in place so that the recorded pressure transient curve can yield
meaningful permeability and anisotropy information – without risking a stuck
tool?  And second, how long must pumping continue in order to obtain a clean
sample, when various mud and formation properties can be estimated?  These
time scales are generally different.  The answers to these basic questions are all
but simple.  In contamination applications, mixing time scales depend on
whether the flow is immiscible or miscible.  Different types of information are
required.  If the wellbore fluid is water and it invades an oil sand, fluid and
formation properties like capillary pressure and relative permeability should be
approximately known.  Alternatively, if an oil-base mud invades an oil reservoir,
an estimate of the anisotropic diffusion coefficients that control concentration
changes of the fluids should be available.  Thus, clear differences are associated
with the immiscible or miscible nature of the flow.  The role of a job planning
simulator is crucial in permeability interpretation and fluid sampling.

In pressure interpretation, the pressure sensed by the tester probe represents
formation effects only if the borehole wall is perfectly sealed by mudcake.
However, this is never the case: the probe also senses the high pressure
associated with the well.  This supercharging of the formation may lead to
erroneously high pore pressure predictions and incorrect permeabilities.  The
simulator is used to determine how much of the measured pressure is pertinent
to actual formation evaluation and determines the true permeability associated
with this pressure level.

In the fluid sampling application, the simulator is used to determine what
percentage of the collected fluid represents uncontaminated fluid.  Clearly, the
longer the formation is pumped, the cleaner will be the fluid.  However, it is also
conceivable that an uncontaminated sample is never possible, e.g., if mudcake
never builds to sufficient thickness or if it is not impermeable enough.  For such
problems, the role of the job planning simulator is invaluable.  In both
immiscible and immiscible problems, the dynamic coupling between growing
mudcake and reservoir flow is important.

We emphasize the differences between the present work and the
comprehensive model in Proett, Chin and Mandal (2000).  That paper provided
an exact, closed form, analytical solution to a formulation where the tester is
modeled as non-zero radius source surface, that is, a spherical well in an
isotropic formation and an ellipsoidal one in anisotropic media.  Flowline
storage, skin effects and general pumpout rates were permitted.  However, a
single phase fluid was assumed, so that contamination studies were not
supported.  Thus, while the results were “exact” in a mathematical sense, they
are not completely descriptive of the actual downhole physics.
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Furthermore, supercharging was not considered because a cylindrical
borehole allowing invasion was not modeled.  But the results are useful in
pressure transient analyses and for providing permeability estimates.  The earlier
work, because it does not allow borehole invasion, is more applicable to wireline
formation testing where the mudcake has sealed the sandface.  The present
model, because it permits borehole invasion, is applicable to both wireline and
formation-testing-while-drilling (or, “FTWD”) applications.

6.1.3  Modeling challenges

So far, we have spoken only qualitatively about overall fluid movement
and mudcake growth.  But, within the reservoir itself, predicting fluid species
redistribution is complicated to the extent that different physical mechanisms are
at work.  In elementary single-phase flows, a single pressure differential
equation applies – for example, the classical Laplace and heat equations apply in
isotropic formations.

However, in immiscible flows, the pressure field associated with Darcy’s
law depends on relative permeabilities and capillary pressures which vary as
local water saturation changes – pressure and saturation fields are governed by
nonlinearly coupled PDEs.  In miscible flows, relative concentrations vary with
space and time and affect local fluid viscosity – the viscosity is controlled by a
mixing law that depends on local concentrations.  The governing pressure
equation is dynamically coupled to an equation for concentration – one that is
controlled by both by anisotropic diffusion and Darcy velocity convection.

Not only are the differential equations difficult to solve.  The geometry of
the flow domain affects the outcome of all job planning recommendations.  We
have assumed an axisymmetric flow – valid for vertical wells only – and noted
the cylindrical nature of the problem.  But this is only true initially.  When the
tester starts pumping, significant geometric changes are found locally at the
probe – our model accounts for cylindrical flows with embedded ellipsoidal
source zones.  That is, the local probe flow is spherical or ellipsoidal
accordingly as the problem is isotropic or anisotropic.  In problems with
borehole invasion, the tester’s probe nozzle – modeled here as a ring source (as
explained in Chapter 1) that admits flow from all directions – induces a
complicated three-dimensional streamline pattern which is nonlinearly
superposed over the supercharging cylindrical flow.  As general as this may
seem, the model in Figure 6.1 does not apply to deviated and horizontal wells,
which introduce additional complications.  For example, consider a formation
with kh >> kv.  In a vertical well, the tool would “see” a high kh from all
directions, so that the pressure drop for a prescribed pumping rate is low.  In a
horizontal well, for the same pumping rate, a tool situated far from any shales
would see both kh and the smaller kv, and the resulting pressure drop is higher.
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In a deviated well, of course, the pressure drop will fall somewhere
between the vertical and horizontal well extremes.  And when shale boundaries
are close to the probe, sizable interference effects are anticipated.  Precise
geometric modeling of borehole, shale and nozzle boundary shapes is necessary
– for such problems, even the simplest fluid flow models are 3D.
6.1.4  Simulation objectives

We return to the problem in Figure 6.1.  Because the flow is axisymmetric,
that is, two-dimensional – it can be described by radial and vertical coordinates r
and z since azimuthal variations around the well do not exist.  Then, whether the
flow is immiscible or miscible, we focus on two output fields at any given
instant in time – the pressure distribution in the r-z plane and its complementary
contamination profile as in Figure 6.2.

Pressure profile
Saturation or

concentration profile

Lo
w

H
ig

h
H

ig
h

H
ig

h

Sa
nd

fa
ce

Sa
nd

fa
ce

Ra
di

al
 fa

rfi
el

d

Ra
di

al
 fa

rfi
el

d

H
ig

h

Lo
w

Lo
w

V
ar

ie
s

r r

z z

Figure 6.2.  Pressure and contamination profiles in r-z plane.

Our simulations produce detailed color plots as suggested by Figure 6.2.
The pressure diagram shows low pressure at the probe, assumed to be
withdrawing formation fluid; at the same time, high supercharge pressure due to
invading mud are found at either sides of the probe.  Not shown are streamline
reversals associated with the contaminant flow: fluid that invades the formation
must turn and eventually enter the probe.

The contaminant diagram at the right of Figure 6.2 emphasizes, again for
the three-layer formation assumed in our analysis, that high values of oil
saturation are found in the radial farfield for immiscible flows – with high
formation fluid concentrations in the case of miscible flows.  At the sandface,
low levels are identified with areas exposed to the mudcake.  At the probe,
saturations and concentrations are low initially and hopefully high eventually –
however, there is no guarantee that uncontaminated samples are always or even
sometimes possible.  In the presence of substantial invasion, clean samples may
be impossible to obtain regardless of pumping time.
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Job planning simulators help to maximize sample quality by suggesting
optimal mud parameters and pump rates and schedules.  Thus, in addition to
Figure 6.2, a line plot such as that suggested by Figure 6.3 is also important to
job planning.  By “sample quality,” we mean oil saturation in the case of water-
base muds invading oil formations, and formation fluid concentration when oil-
base muds invade oil formations.  The petrophysicist and drilling engineer both
require the time t* at which sample quality becomes acceptable, e.g., 90% to
95%, as suggested by the solid line.  However, as noted, it is also possible that
sample quality remains poor for a given set of mud, reservoir fluid, and
formation and tool parameters – in this case, the job planning simulator might be
used to identify positive changes that might be effected by using heavier mud
and different pumping rates.  Complementary to Figure 6.3 would be the
pressure drawdown and buildup curve needed for permeability and anisotropy
interpretation.

t

Sample Quality
1

t*

Figure 6.3.   Sample quality versus time.

6.1.5  Modeling overview
With our physical explanations complete, we next summarize the

mathematical and algorithmic formulations used in developing our immiscible
and miscible flow simulators.  Our exposition focuses on how different
computational methodologies and physical models have been combined to
provide unique capabilities important to formation testing job planning. The
reservoir engineering fundamentals presented here, by necessity, are brief;
however, for more detailed explanations, especially with regard to numerical
modeling, the reader is referred to Peaceman (1977), Aziz and Settari (1979) and
Chin (2002).  The plan for this section is as follows – we begin with a summary
of the mathematical formulation.

First, the partial differential equation (PDEs) for immiscible two-phase
flow are derived, emphasizing in particular the compressibility of both fluid
phases; the equations, therefore, allow us to study both mixing effects and
pressure transient interpretation with a single self-consistent physical model.
Second, finite difference modeling and advanced “alternating-direction-implicit”
(ADI) methods are introduced, which allow rapid, robust and convenient
simulation capabilities at rigsites and field offices using standard personal
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computers.  Third, boundary conditions describing (i) mudcake growth and
dynamic coupling with the reservoir, (ii) pumpout modeling with flowline
storage and skin damage, and (iii) dual probe and straddle packer source logic,
are derived.  This work is followed by extensions to miscible flow analysis, in
which original viscosities no longer retain their identity: pressure and fluid
concentration fields are coupled by a mixing law satisfied by the evolving
viscosity distribution.  Following our discussions on math and numerical
formulation, we summarize software features deemed essential to successful use
of the job planning simulator in field applications.  Finally, representative
calculations are presented that demonstrate operational usage of the software –
these include a gamut of rigsite interpretation and job planning functions.  The
simulator developed here will be used to support a number of new formation
evaluation endeavors, which will be introduced in our concluding remarks.
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6.2  Immiscible Flow Formulation

In this section, a concise summary for partial differential equation
development, boundary condition modeling and numerical solution methods is
offered.  Also offered are suggested references for readers interested in
additional details.  Let r and z denote the (horizontal) radial and vertical
coordinates, and krw, krn, kzw and kzn represent r-wetting, r-nonwetting, z-wetting
and z-nonwetting permeabilities, respectively.  If Kr(r,z) and Kz(r,z) are absolute
permeabilities in the r and z directions, and kw and kn are wetting and nonwetting
relative permeabilities expressed as functions of the water saturation Sw, we can
write  krw = Kr kw(Sw), krn = Kr kn(Sw), kzw = Kz kw(Sw) and kzn = Kz kn(Sw).

The Darcy formulas for momentum conservation at low Reynolds numbers
are vzw = – (kzw/ w) ( pw/ z + wg), vzn = – (kzn/ n) ( pn/ z + ng), vrw = –
(krw/ w) pw/ r and vrn = – (krn/ n) pn/ r.  Here, p,  and  represent pressure,
density and viscosity, respectively, with g being the acceleration due to gravity.
In reservoir flow, it is convenient to introduce the functions f(Sw) =
(kw/ w)/(kw/ w + kn/ n) and h(Sw) = (kw/ w)(kn/ n)/(kw/ w + kn/ n).  The pressures
pw(r,z,t) and pn(r,z,t) of  the wetting and non-wetting phases are often not
directly used.  They are replaced by an alternative pair, the capillary pressure pc
= pn – pw and the average pressure pavg = ½ (pn + pw).  Figure 6.4 gives typical
immiscible flow  properties, showing that dpc(Sw)/dSw < 0 and df/dSw > 0.  We
further assume that pavg >> pc.

Sw Sw

pc f

Figure 6.4.   Typical immiscible flow functions.

In immiscible flow, two saturations exist, a water saturation Sw(r,z,t) and
an oil saturation So(r,z,t), whose values are connected by Sw + Sn = 1.  When
volume changes are important, as in pressure transient analysis, fluid
compressibilities cw and cn are required in addition to the properties previously
introduced.  Analysis of the governing equations shows that these act in concert
through the “total compressibility” defined here by ct = -1 d /dpavg + cwSw +
cnSn.  This represents the expected saturation-weighted compressibility,
corrected by a compaction term in which changes to the porosity  with pressure
are accounted for.
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Pressure transients and saturation or concentration changes operate on
different time scales, e.g., shapes of drawdown-buildup pressure curves depend
mostly on compressibility, while times needed for uncontaminated samples
depend mostly on relative permeabilities, capillary pressures and diffusion
coefficients.  Under the assumptions stated, the partial differential equations that
follow from mass conservation for average pressure and water saturation are,
namely,

[(kzn/ n + kzw/ w) pavg/ z]/ z (6.1)
+ [(krn/ n + krw/ w) pavg/ r]/ r
+ r -1 (krn/ n + krw/ w) pavg/ r =
= ct pavg/ t – g { nkzn/ n + wkzw/ w}/ z

Sw/ t + vztf ’ Sw/ z + vrtf ’ Sw/ r = (6.2)
   – KzhPc

’ 2Sw/ z2 – KrhPc
’ 2Sw/ r2

– (KzhPc
’)/ z Sw/ z – (KrhPc

’)/ r Sw/ r
– r-1 KrhPc

’ Sw/ r
– [gKzh( n – w)]/ z + ctf pavg/ t

where vzt = – (kzn/ n + kzw/ w) pavg/ z – ( nkzn/ n + wkzw/ w) g, vrt = – (krn/ n +
krw/ w) pavg/ r and (’) primes denote ordinary derivatives with respect to Sw.

6.2.1  Finite difference solution
Equations 6.1 and 6.2 are partial differential equations: they are coupled,

multidimensional, nonlinear and time-dependent – and difficult to solve.
Analytical methods are not applicable, and numerical methods, e.g., finite
element, finite volume or finite difference, must be used.  We focus, in this
paper, on the latter methods.  Finite difference methods are easily summarized.
Consider the heat equation vt(x,t) = vxx + vyy.  It is convenient to introduce
discretized spatial meshes, say “x1, x2, x3 . . . ximax” representing x and “y1, y2 . . .
yjmax” representing y, and correspondingly, “t1, t2, t3 . . . tnmax” for time.  The
value of v for any x = xi and y = yj at time t = tn is denoted by vn

i,j.  If x, y and t
discretizations are separated by constant values x, y and t, respectively, the
value of, say, vxx at (xi,yj,tn), for instance, is given by the central difference
operation vxx|ni,j = (vn

i-1,j – 2vn
i,j + vn

i+1,j)/ x2.
Now, how might such discretizations be employed in solving the heat

equation?  At any (xi,yj,tn+1), this partial differential equation might be
approximated by (vn+1

i,j – vn
i,j)/ t = (vn

i-1,j – 2vn
i,j + vn

i+1,j)/ x2 + (vn
i,j-1 – 2vn

i,j +
vn

i,j+1)/ y2.  This can be solved simply and explicitly as “vn+1
i,j = . . .” where all

right-side terms are evaluated at the previous nth time step.  Starting with
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suitable initial conditions, the overall solution can be advanced in time at each
point in space without matrix solution.  This “explicit” method, while
conveniently programmed, is numerically unstable and not often used.

zi

rj

j = 1 2 jmax

i = 1

iprobe

imax

Gravity

Figure 6.5.   Variable finite difference grid.

On the other hand, if we assumed (vn+1
i,j – vn

i,j)/ t = (vn+1
i-1,j – 2vn+1

i,j +
vn+1

i+1,j)/ x2 + (vn+1
i,j-1 – 2vn+1

i,j + vn+1
i,j+1)/ y2 and evaluated this finite difference

approximation at all points in the computational domain, it is clear that all the
unknowns will be coupled by simultaneous equations.  The resulting “implicit”
method, because the coefficient matrix is not sparse, requires extensive
computational resources for matrix inversion – especially since the inversion
must be performed at each time step.  However, the method is useful because it
is stable: larger time steps can be used and these allow rapid practical solutions.

6.2.2  Formation tester application

The problem solving Equations 6.1 and 6.2 requires resources so
significant that classical implicit methods are impractical.  Thus, we turn to
implicit methods known as “alternating-direction-implicit” schemes.  While the
previous scheme leads to dense matrixes, ADI methods make use of much
simpler matrixes that can be quickly inverted.  These are discussed in Peaceman
and Rachford (1962) for rectangular flow domains – the model of Chow, Ho and
Fong (1997) for axisymmetric problems is identical to that used here.

Consider Equation 6.1 in the form p/ t = ( p/ z)/ z + ( p/ r)/ r +
/r p/ r + G.  In addition to two time levels “n” and “n+1,” an intermediate

time level t* halfway between tn and tn+1 is introduced.  Equation 6.3 advances
“n” level values to “*,” while Equation 6.4 advances “*” level values to “n+1.”

     (p*
i,j – pn

i,j)/( t/2) =  (6.3)
( p*/ z)/ z + ( pn/ r)/ r + /r pn/ r + Gn

     (pn+1
i,j – p*

i,j)/( t/2) =  (6.4)
( p*/ z)/ z + ( pn+1/ r)/ r + /r pn+1/ r
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To see that this sequence is self-consistent, simply add the two equations to
obtain (pn+1

i,j – pn
i,j)/ t = ( p*/ z)/ z + (  ½(pn + pn+1)/ r)/ r + /r  ½(pn +

pn+1)/ r + Gn.  Since p* = ½ (pn + pn+1), this is just the 2nd order accurate
approximation to the partial differential equation.

Radial sweep

[( i-1 + i)/{(zi – zi-1)(zi+1 – zi-1)}] p*
i-1,j (6.5)

– [( i-1 + i)/{(zi – zi-1)(zi+1 – zi-1)} + ( i + i+1)/
   {(zi+1 – zi)(zi+1 – zi-1)} + 2/ t] p*

i,j

+ [( i + i+1)/{(zi+1 – zi)(zi+1 – zi-1)}] p*i+1,j =
= –2 pn

i,j/ t – ( j/rj) (pn
i,j+1 – pn

i,j-1)/(rj+1 – rj-1) + Gn

– ( j + j+1)(pn
i,j+1 – pn

i,j)/{(rj+1 – rj)(rj+1 – rj-1)}
+ ( j-1 + j)(pn

i,j – pn
i,j-1)/{(rj – rj-1)(rj+1 – rj-1)}

Vertical sweep

[( j-1 + j)/{(rj – rj-1)(rj+1 – rj-1)} (6.6)
– j/{rj(rj+1 – rj-1)} pn+1

i,j-1

– [( j-1 + j)/{(rj – rj-1)(rj+1 – rj-1)}
+  ( j + j+1)/{(rj+1 – rj)(rj+1 – rj-1)} + 2/ t ] pn+1

i,j

+ [ ( j + j+1)/{(rj+1 – rj)(rj+1 – rj-1)} + j/{rj(rj+1 – rj-1)}] pn+1
i,j+1

= – 2 p*
i,j/ t – ( i + i+1)(p*

i+1,j – p*
i,j)/{(zi+1 – zi)(zi+1 – zi-1)}

+ ( i-1 + i)(p*
i,j – p*

i-1,j)/{(zi – zi-1)(zi+1 – zi-1)}

The advantages offered by Equations 6.3 and 6.4 are more clearly seen if
we expand the right sides using the central difference operator used previously,
leading to Equations 6.5 and 6.6.  Let us suppose that starting initial conditions
for p(r,z,0) are available.  To advance the solution a single time step t,
Equation 6.5 is “swept” once across the computational box in Figure 6.5.

Specifically, the far left value “j” is fixed and Equation 6.5 is written for all
internal “i” nodal values.  The resulting equations, supplemented by boundary
conditions at the top and bottom, are solved.  This procedure is repeated
recursively for higher values of “j” to the right, until an entire “radial sweep” is
completed.  This is followed by a similar “vertical sweep” using Equation 6.6,
supplemented by boundary conditions at the left and right.  When both sweeps
are completed, the spatial pressure solution has been incremented one step in
time – numerous multiple steps, of course, are needed to simulate the pumping
process and the diffusion of pressure signals from source to observation probes.
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Careful examination of Equations 6.5 and 6.6 shows that the equations are
“tridiagonal” in form, that is, the coefficient matrices contain but three
diagonals, allowing rapid inversion.  Moreover, the matrices are “diagonally
dominant” – the higher magnitude of the center relative to the side terms along
each row promotes numerical stability and leads to robust computations.  In
summary, ADI integrations are rapid, robust, easily programmed and
maintained.  Again, our problem is immiscible, involving coupled pressure and
saturation fields.  The coefficients of Equation 6.1 for pavg(r,z,t) are evaluated
using latest available values of Sw and implicit ADI integrations are used to
update average pressures everywhere.  Once these are obtained, they are used to
evaluate the coefficients of the saturation model in Equation 6.2.

The equation for Sw is solved using the explicit method described earlier
(Sw is applied away from the probe, while Sw/ r = 0 applies at the probe, at the
sandface).  For this reason, our approach is an “implicit pressure – explicit
saturation” or “IMPES” method.  This is used in many reservoir flow simulators
and provides a cost-effective alternative to fully implicit methods.  We have
completed our discussion of PDEs and their solution methods.  We now turn to
the boundary conditions that constrain the problem.  These are several in variety,
namely, initial conditions (already described physically), farfield conditions
(fixed pore pressure and specified fluid saturation or concentration), pressure
and velocity continuity at layer interfaces – plus key models that we describe in
greater detail next.  These involve, specifically, (i) mudcake growth and
dynamic coupling to tight formations, (ii) flowrate modeling including flowline
storage and skin effects for single-probe tools, and (iii) subtleties related to dual
probe and straddle packer modeling.

6.2.3  Mudcake growth and formation coupling at sandface
Proper modeling of mud invasion at the borehole wall is critical: its high

pressures mask true formation pressure and also contaminate the fluid pumped
by the tester  probe.  Accurate supercharge modeling and forward simulation is
important to pore pressure and permeability prediction. Catscan experiments
were reported in Chin et al (1986) in which quantitative measurements were
made of mudcake thickness and invasion front displacement in linear and radial
core samples.  Typical results are shown in Figure 6.6.  Consider, for example,
the bottom right photo taken at large times relative to that at the top left.  The
fluid moves from left to right.  It deposits a (black) mudcake at the surface of the
linear core, positioned near the middle of the photograph.  To the right of the
mudcake, the light colored filtrate is seen to displace the darker fluid originally
present in the sample.
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Figure 6.6.   Catscans showing cake growth in time.
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Figure 6.7.   Cylindrical radial interfaces.

The results of detailed linear and radial flow experiments led to the
mudcake model in Chin (1995, 2002) used here.  In immiscible flow, radial
velocity matching at the cake and formation interface is approximated by
(kcake/ bh) p/ r |cake  {krw(Sw)/ w + krn(Sw)/ n} pavg/ r if capillary pressure is
neglected – in miscible flows, the right curly { } bracket is replaced by the rock
mobility at the sandface as viscosity is affected by concentration changes.  This
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boundary condition allows fluid responsible for solids deposition in the cake to
invade and supercharge the formation.  We assume that mudcake thickness is
thin compared with the borehole radius so that a linear growth model applies.
Thus, the radial pressure gradient satisfies p/ r |cake  {pmud –
pavg(z,Rwell,t)}/(Rcake – Rwell), where Rcake and Rwell are radial values at the cake-
mud interface and the sandface, with Rcake(t) decreasing continually with time as
the mudcake thickens.

The “dxc/dt = – {fs/[(1 – fs )(1 – c )]} |vn|” dynamic mudcake growth
model in Chin (1995) relates the rate of thickness increase to the solid fraction
fs, the porosity c and normal fluid velocity vn.  In radial single phase flow, this
translates to Rwell – Rcake = {fs t/[(1 – fs)(1 – c)]} (kcake/ bh)(pn

i,1 – pmud)/(Rwell –
Rcake).  A limiting value of “Rwell – Rcake” is applied, i.e., an equilibrium
thickness no larger than 0.2 inches, to model the erosive effects of dynamic
filtration (see Figures 6.5 and 6.7 for nomenclature).  This cake model is used to
evaluate the radial velocity matching condition

  {(kcake/ bh)(R2 – Rwell)/[(krw(Sw) / w (6.7)
  + krn(Sw) / n)j=1(Rwell – Rcake)]} (pi,1 – pmud) = pi,2 – pi,1

rewritten for two-phase flow. Two forms are required for ADI implementation
since different matrix structures are obtained in radial versus vertical sweeps.  In
the first, we have [1 + { }] pi,1 – pi,2 = { } pmud – in the second, pi,1 = [pi,2 + { }
pmud]/[1 + { }].  These reduce to pi,1 = pi,2 if { } = 0, applicable when kcake = 0 for
a perfectly sealed borehole.  On the other hand, we obtain pi,1 = pmud if { } .
This limit applies to kcake >> kn and kw – that is, a mudcake does not exist, with
the formation undergoing massive invasion.

6.2.4  Pumpout model for single-probe pad nozzles

In simple pumping without flowline storage and skin effects, we write
(Ak/ ) p/ r = Q where A is the cross-sectional probe area exposed to the flow,
k is the permeability,  is the viscosity and Q is the volume flow rate.  Since
p/ r = (p2 – p1)/(R2 – R1), the probe pressure update formula is p1 = p2 – Q (R2

– R1)/(Ak).  The formula for ellipsoidal sources in infinite uniform media is
given in Proett, Chin and Mandal (2000) and used to derive exact solutions for
pressure transient analysis.  As noted, the earlier work does not model
cylindrical supercharging invasion.  When simultaneous invasion at the borehole
is important, cylindrical coordinates must be used.  Detailed three-dimensional
finite element analysis shows that a ring source model of the tester probe is
appropriate, providing the required axisymmetry and allowing both vertical and
radial fluid movement toward the probe (see Chapter 1).
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The single phase extension to “(Ak/ ) p/ r = Q” is (Ak/ ) p/ r – VC
p/ t + VCSRwell

2p/ r t = Q(t).  This can be discretized in the form
  pn

iprobe,1 = {1 + VCSRwell/(Ak t)} pn
iprobe,2/   (6.8)

 {1 + VC R/(Ak t) + VCSRwell/(Ak t)}
 + {- Qn R/(Ak) + VC Rpn-1

iprobe,1/
 (Ak t) – VCSRwell(pn-1

iprobe,2 – pn-1
iprobe,1)}

  /{1 + VC R/(Ak t) + VCSRwell/(Ak t)}

where R = R2 – Rwell, R1 = Rwell, A is the source surface area, k is the radial
permeability associated with the velocity entering the probe, S is the skin factor,
V is flowline volume and C is flowline compressibility.  In miscible flow, the
viscosity is a time-dependent function of concentration.  In immiscible flow,
“k/ ” is replaced by “{krw(Sw) / w + krn(Sw) / n}j=1.”  This boundary condition is
applied at the single area element representing the nozzle.  All of the above
terms contain the flowline storage parameter “VC” with the exception of
“ Qn R/(Ak).”  When this term is small, e.g., for large permeabilities or small
volume flow rates, this pumpout boundary condition and computed results can
be controlled by flowline storage noise.

6.2.5  Dual probe and packer surface logic

We have given pumpout boundary conditions for single-probe pad nozzles
requiring only a single area element representation.  For such probes, a simple
balance between Darcy flow, flowline volume expansion, skin resistance and
total flow rate suffices.  But other nozzles are used in tester operations.  For
example, dual probes are used to increase pumping efficiency and reduce
pumpout times, while straddle packer nozzles are used in unconsolidated and
naturally fractured formations to enhance fluid withdrawal. Both are shown in
Figure 6.8 acting in a multilayered formation.

Dual probe nozzles Packer nozzle surface

Figure 6.8.   Dual probe and straddle packer models.
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There are important physical differences between the single-probe
pumpout model and the one required here.  For dual probes and packers,
multiple source (or sink) elements are open to the same pressure reservoir.  Only
the total volume flow rate can be controlled – thus, because each element may
“see” different layer permeabilities, the velocity at each element is generally
different.  This is shown conceptually in Figure 8 where different size velocity
vectors are used.  In the context of packer modeling, the “uniform flux” model
used by other investigators is incorrect.  We have explained why this is so in
layered media.  However, it is wrong even in uniform media.  Chin (1993, 2002)
demonstrates analytically, using exact singular integral equation methods for
steady flows, that velocities are in fact singular at the ends of line point source
distributions with prescribed constant pressures – also, velocities along the
source distribution are variable.

The correct boundary condition formulation is easily stated: total volume
flow rate is specified subject to the condition that pressures are same among all
surface elements – this pressure, itself an unknown, will vary with time in a
manner consistent with flowline storage and skin effects.  The arguments for this
rule were given in Chin (1993, 2002) in the context of horizontal and
multilateral well modeling and apply here.  The left diagram of Figure 6.8 shows
how different pump rates will be found at the dual probes of a formation tester
residing across different layers.  Measured differences in volume flow rate –
interpreted using numerical fluid flow models – can be used to infer contrasts in
interlayer permeability.

Now we formulate the boundary condition for the entire dual probe array
and packer surface.  For brevity, we give the skin-free derivation.  Only the
radial permeability (denoted “kr”) contributes to fluid influx.  The volume flux is
the product of the Darcy velocity (kr/ )source p/ r source and the cylindrical area
element A.  Now, the first term on the left of  Ai(kr

i,1/ )(pn
i,2 – pn

i,1)/ R – VC
(pn

pk – pn-1
pk)/ t = Q(tn) = Qn represents the sum of all surface source point

contributions where “i” is the vertical index.  The “VC” term describes storage
effects, Q is the total volume flow rate, while the “pk” subscript refers to packer
and dual probe pressures.  Note that pn

i,1 is equal to pn
pk, a (time-dependent)

hydrostatic pressure which does not depend on position.  Thus, we solve for pn
pk

explicitly to find

    pn
pk = {– Qn + VCpn-1

pk/ t (6.9)
+ (Aikr

i,1pn
i,2/( R)} /{VC/ t + Aikr

i,1/( R)}

where R = r2 – r1, which applies to a full time step t = tn – tn-1.  In our ADI
implementation, sweeps are taken from tn-1 to t* and t* to tn – this boundary
condition is rewritten for each sweep with t replaced by t/2.  Equation 6.9
applies to single-phase flow.  The required changes for immiscible and miscible
flow noted for single-probe problems also apply here.
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6.3 Miscible Flow Formulation

So far, we have discussed the pressure partial differential equation for
immiscible flow and its coupled solution with water saturation.  The boundary
condition derivations given above also apply to miscible flows.  We therefore
complete our discussion by focusing on the governing equations for miscible
flow.  Let us introduce  = kz /( c) and  = kr /( c), where kz(r,z) and kr(r,z)
are absolute vertical and radial permeabilities, (r,z) is porosity, and c(r,z,t) and

 are fluid compressibility and viscosity.  The governing pressure equation for
Darcy flow is p/ t = ( p/ z)/ z + ( p/ r)/ r + /r p/ r.  This is identical
in form to the equation for immiscible flow, so that the same ADI algorithm and
software can be used.  But there is one crucial difference.  The viscosity (r,z,t)
of the miscibly mixed fluid varies with space and time.  It is here assumed to
depend on the empirical Todd and Longstaff (1972) viscosity mixing model

 = mud formation/(C mud
1/4 + (1 – C) formation

1/4)4 (6.10)

where C(r,z,t) is formation fluid concentration in rock pore spaces.  If mud never
invades the reservoir, C remains at unity and  = formation – but if mud
completely displaces formation fluid, then C = 0 and  = mud.  In our work,
“1/4” and “4” are actually replaced with the more flexible “1/n” and “n.”

Like Darcy pressure, concentration is also diffusive – but it satisfies a
model more complicated than the heat equation.  In sedimentary formations,
anisotropic diffusion coefficients z and r in the vertical and radial directions
apply, whose values depend on the pore structure of the rock formation.  In
addition to diffusion, fluid is convected by the local velocities vz = – (kz / )
p/ z and vr = – (kr / ) p/ r.  In cylindrical radial coordinates, concentration

C(r,z,t) varies like

C/ t + vz C/ z + vr C/ r (6.11)
 = z

2C/ z2 + r ( 2C/ r2 + r -1 C/ r)

as shown in Chin (1995).  Both pressure and concentration equations are
coupled – they are solved subject to the supercharging invasion equations, the
pad or packer pumping model, and the farfield and matching auxiliary
conditions previously discussed.  As with the pressure equation, an ADI
procedure is used to solve for the concentration C(r,z,t).  In particular,
corresponding to Equations 6.3 and 6.4, we now have Equations 6.12 and 6.13,
which are differenced as shown in Equations 6.14 and 6.15.  Equation 6.11 is
solved with C applied away from the probe and C/ r = 0 at the probe along the
sandface.  The sweeping processes described earlier apply here.
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(C*
i,j – Cn

i,j)/( t/2) = ( z/ ) z
2C*

i,j – (vz / ) zC*
i,j +   (6.12)

( r/ ) r
2Cn

i,j – (vr /  – r /( r j)) r Cn
i,j

(Cn+1
i,j – C*

i,j)/( t/2) = ( z/ ) z
2C*

i,j – (vz / ) zC*
i,j + (6.13)

( r/ ) r
2Cn+1

i,j – (vr /  – r /( r j)) rCn+1
i,j

Radial sweep

[(2 z/ )/{(zi – zi-1)(zi+1 – zi-1)} + (vz / )/(zi+1 – zi-1)] C*
i-1,j  (6.14)

[– (2 z/ ) [1/{(zi – zi-1)(zi+1 – zi-1)}

+ 1/{(zi+1 – zi)(zi+1 – zi-1)}] – 2/ t] C*
i,j

+ [(2 z/ )/{(zi+1 – zi)(zi+1 – zi-1)} - (vz / )/(zi+1 – zi-1)] C*
i+1,j  =

= – 2 Cn
i,j/ t + (vr /  – r /( r j))(Cn

i,j+1 – Cn
i,j-1)/(rj+1 – rj-1)

– (2 r/ )[Cn
i,j-1/{(rj – rj-1)(rj+1 – rj-1)}+Cn

i,j+1/{(rj+1 – rj)(rj+1 – rj-1)}

– Cn
i,j {1/{(rj – rj-1)(rj+1 – rj-1)} + 1/{(rj+1 – rj)(rj+1 – rj-1)}}]

Vertical sweep
[(2 r/ )/{(rj – rj-1)(rj+1 – rj-1)} + (vr /  – r /( r j))/(rj+1 – rj-1)] Cn+1

i,j-1 (6.15)

+ [– (2 r/ )[1/{(rj – rj-1)(rj+1 – rj-1)}

+ 1/{(rj+1 – rj)(rj+1 – rj-1)} – 2/ t] Cn+1
i,j

+ [(2 r/ )/{(rj+1 – rj)(rj+1 – rj-1)} – (vr /  – r /( r j))/(rj+1 – rj-1)] Cn+1
i,j+1 =

= – 2 C*
i,j/ t + (vz / )(C*

i+1,j – C*
i-1,j)/(zi+1 – zi-1)

– (2 z/ ) [C*
i-1,j/{(zi – zi-1)(zi+1 – zi-1)} + C*

i+1,j/{(zi+1 – zi)(zi+1 – zi-1)}

– C*
i,j {1/{(zi – zi-1)(zi+1 – zi-1)} + 1/{(zi+1 – zi)(zi+1 – zi-1)}}]

6.4  Inertial Effects with Forchheimer Corrections

The partial differential equations and their numerical implementation in
Sections 6.1 – 6.3 are developed for conventional low-speed Darcy flows with
small Reynolds numbers.  With formation tester pumping speeds increasing in
recent years, the effects of inertial must now be included.  We now present the
required modifications following Forchheimer (1901).

6.4.1  Governing differential equations
Let w, u and v represent velocities in the z, r and  directions in a circular

cylindrical coordinate system, and let t,  and  denote time, mass density and
porosity.  Then, conservation of mass requires that
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( )/ t +  ( w)/ z + 1/r  (r u)/ r + 1/r  ( v)/  = 0 (6.16)

We wish to re-express this law for high-velocity, slightly compressible,
liquid Darcy flows.  For now, let us consider one-dimensional motion in the
radial “r” (or horizontal) direction.  If kr,  and p are horizontal permeability,
viscosity and pressure, then the conventional Darcy equation “– p/ r = u /kr”
must be replaced by Forchheimer’s law “ – p/ r = u /kr + un,” where  is a
turbulence or inertial factor and the exponent n is generally taken as 2 (e.g., see
Muskat (1937)).  In other words,

– p/ r = u /kr + u2  (6.17)

First, note that the radial term in Equation 6.16 can be expressed as

1/r  (r u)/ r = u/r + u/ r + u / r
= u/r + u/ r + u / p p/ r
= u/r + (– kr/ p/ r – kr/ u2)/ r – kr/  ( p/ r + u2 )

/ p p/ r
= u/r –  (kr/ p/ r)/ r – (kr/ ) ( / p) ( p/ r)2

+ high-order-terms

where it is assumed that compressibility effects are more significant than inertial
ones, that is, the derivative of the u2 term and the product / p are small.  In
this limit,

1/r  (r u)/ r u/r –  (kr/ p/ r)/ r – (kr/ ) ( / p) ( p/ r)2

( /r){ – (kr/ ) p/ r– (kr/ ) u2 } –  (kr/ p/ r)/ r –
(kr/ )  (1/ )( / p) ( p/ r)2

( /r){ – (kr/ ) p/ r– (kr/ ) u2 } –  (kr/ p/ r)/ r –
(kr/ ) cf ( p/ r)2

where we have introduced the fluid compressibility

cf = (1/ )( / p)T  (6.18)

with the subscript “T” denoting an isothermal process.  In the small correction
term “ u2,” we consistently approximate the radial velocity using u = – (kr / )
p/ r.  When this is done,

1/r  (r u)/ r –  (kr/ p/ r)/ r – { kr /( r)} p/ r – ( kr/ ) {cf +
k2/(r 2)} ( p/ r)2       (6.19)

Second, we observe that the transient term in Equation (1) can be re-
written as
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( )/ t = / t + / t

= / p p/ t + / p p/ t

= / p) p/ t + (1/ / p) p/ t

= cf p/ t + cr p/ t

= c p/ t

where we have introduced the rock and total compressibilities

cr 1/ ) ( / p)T  (6.21)

c = cf + cr (6.22)

Third, we consider the remaining terms  ( w)/ z and 1/r  ( v)/  in
Equation 6.16.  In vertical-well formation testing applications, the borehole is
represented by lines of constant “r,” and liquid is pumped horizontally so that
the radial velocity u satisfies |u| >> |v| and |u| >> |w|.  That is, near the nozzle, u
is largest while v and w are vanishingly small as fluid turns into the nozzle,
while u undergoes sudden starts and stops in the drawdown-buildup process.
Thus, corrections analogous to those developed for 1/r  (r u)/ r are not
necessary and the usual Darcy representations suffice.  Ignoring changes due to
compressibility and inertia, we have

 ( w)/ z  –  (kz/ p/ z) / z  (6.23)

1/r  ( v)/  – /r2  (kr / p/ ) /  (6.24)

where kz is the vertical permeability.  Substitution of Equations 6.19, 6.20, 6.23
and 6.24 in Equation 6.16 yields the required extended pressure partial
differential equation for slightly compressible liquids in transversely isotropic
media with weak inertial corrections, that is,

 (kz/ p/ z) / z +  (kr/ p/ r)/ r + {kr/( r)} p/ r + (kr/ ) {cf +

k2/(r 2)} ( p/ r)2 + 1/r2  (kr / p/ ) / = c p/ t

6.4.2  Pumpout boundary condition

Equation 6.25 is solved with boundary conditions relating the total volume
flow rate Q(t) to the pressure gradient p/ r.  If A denotes the cross-sectional
area of the source probe nozzle, the equation Q = – Au =  + Akr / p/ r is often
used for simple pumpout modeling when flowline volume and compressibility
effects are unimportant.  However, this is rarely the case, especially in low
mobility environments.
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Chin and Proett (2005) or Chin (2014) instead show that (Akr/ ) p/ r –
VC p/ t + VCSRwell

2p/ r t = Q(t) where S is the skin factor, V is flowline
volume and C represents fluid compressibility in the lines.  To extend its validity
to our classes of problems, we consider Equation 6.17 in the form u = – (kr / )
p/ r – (kr / ) u2  – (kr / ) p/ r – (kr / ) {(kr / ) ( p/ r) }2 so that Au  –

(Akr / ) p/ r – A (kr / )3 ( p/ r)2.  Hence, we find that

(Akr / ) p/ r + A (kr / )3 ( p/ r)2 – VC p/ t + VCSRwell
2p/ r t = Q(t) 

(6.26)

Note that we have used the small  approximation

u = – (kr / ) p/ r –  (kr / )3 ( p/ r)2   (6.27)

At steady state, and additionally, when skin effects are ignored, the pumpout
condition can be written in the form Q = – uA = A(kr / ) p/ r + A  (kr / )3

( p/ r)2.  Inversion using the quadratic formula gives an explicit expression for
p/ r, namely,

p/ r = – { Q /(krA)}[1 + kr Q/(A )]  (6.28)

This shows that the radial pressure gradient is changed by the amount
“kr Q/(A )” shown.  Also, note that Equation 6.26 contains inertial corrections
only, since properties related to compressibility (that is, derivatives with respect
to pressure) do not appear in “Q = – Au.”

6.4.3  Boundary value problem summary

In summary, we solve the transient diffusive partial differential equation in
Equation 6.29a subject to the pumpout condition in Equation 6.29b derived
above, namely,

 (kz/ p/ z) / z +  (kr/ p/ r)/ r + {kr/( r)} p/ r + (kr/ ) {cf +
k2/(r 2)} ( p/ r)2 + 1/r2  (kr / p/ ) / = c p/ t (6.29a)

(Akr / ) p/ r + A (kr / )3 ( p/ r)2 – VC p/ t + VCSRwell
2p/ r t = Q(t) 

(6.29b)

The model of Chin and Proett (2005) or Chin (2014), which is linear in
pressure, now contains the nonlinear corrections (kr/ ) {cf + k2/(r 2)} ( p/ r)2

and A (kr / )3 ( p/ r)2 shown in blue.  Thus, the “alternating-direction-implicit”
(or, ADI) solution scheme based on tridiagonal linear inversion, originally
developed in Chin (1993, 2002) must be replaced by a more complicated local
linearization method.  In addition to Equation 6.29b, dynamically coupled
mudcake growth constraints on fluid invasion at the sandface, as derived in Chin
(1995), are used, as are regularity conditions at infinity and quiescent flow
conditions initially.
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A word on numerical stability, which largely depends on the differential
equation itself, is in order. The term “{kr/( r)} p/ r + (kr/ ) {cf + k2/(r 2)}
( p/ r)2” replaces the “kr/( r) p/ r” in the conventional formulation. Absolutely
convergent factorizations are available to solve baseline equations like 2p/ z2 +

2p/ r2 = p/ t.  The addition of an axisymmetric “ + 1/r p/ r” term can be
shown to stabilize numerical calculations while a negative sign would prove
destabilizing. The multiplier to kr/  can be re-expressed as r {cf +
( k2)/(r 2) p/ r} p/ r.  In formation testing applications, liquids are typically
withdrawn from the formation, so that p/ r > 0.  Thus, the modifier “{cf +
( k2)/(r 2) p/ r,” like “ + 1/r,” is positive, and hence stabilizing. Calculated
results are provided in Chapters 7 and 8 next.
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7
Multiphase Flow –

Miscible Mixing Clean-Up Examples
The discussions of Chapter 6 focused on mathematical modeling and

numerical solution.  The design of a job planning simulator that is useful in field
and rigsite computations requires features that provide convenient input
parameter definition and output display.  These include (1) automatic variable
time-stepping for increased computing speed, (2) multi-rate pumping schedule
to model multiple pump rates and non-ideal pump effects, (3) color displays to
report invasion, pressure and supercharging effects while simulating, (4) plots of
pressure versus time and contamination versus time at all source and distant
observation probes, (5) surface and contour plots of relevant flow properties, (6)
user-friendly and intuitive Windows interfaces, and so on.  We emphasize that
the miscible flow simulators in Chin and Proett (2005) and Chin et al (2014)
have been completely rewritten to incorporate nonlinear Forchheimer effects
and new results are reported here.  This work required changes to the equation
solver to increase computing speed and numerical stability.  A strong impetus
for the new work was found in new tools like Schlumberger’s SaturnTM tester
which operates at very high flow rates.  This tool contains four “elongated pads”
placed about the circumference and the flow is closely axisymmetric as assumed
in our math model.  New miscible results are reported here and a number of
earlier examples have been re-run.  However, the complementary immiscible
model is still in development and progress will be reported at a later date.

7.1  Overview Capabilities

Because there are literally dozens of input parameters, and because the
governing equations are extremely complicated, no general conclusions can be
drawn from the limited number of simulations presented here.  However, the
results shown are representative of typical results that are physically expected.
We will therefore dwell less on the particular input parameters and more on the
way qualitative calculated results are consistent with expected downhole
phenomena.  We will focus on general capabilities and applications for which
our job planning software was designed for.
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7.1.1  Example 1, Single probe, infinite anisotropic media

For this first simulation, we describe our graphical output results in detail
and explain their potential uses and implications.  Once all input quantities are
saved and the “Simulate” button in the user interface is clicked, interactive
displays of pressure and oil saturation (or formation fluid concentration) field
are displayed periodically in time.  Consider Figure 7.1.1a, which contains two
field plots, with pressure at the left and concentration at the right for a miscible
run (for immiscible runs, concentration plots are replaced by oil saturations).
For each of the diagrams in Figure 7.1.1a, the left vertical side corresponds to
the sandface at the borehole wall – the right side corresponds to the radial
farfield.  The top and bottom horizontal lines coincide with the top and bottom
of the reservoir.  Therefore, these cross-sections display computed solutions in
the r-z plane for the axisymmetric formulation considered in this paper.

The left pressure plot is uniform vertically, indicating identical pressure
profiles at all z stations.  The red at the left represents high mud pressure,
relative to the lower blue formation pressure at the right. The right concentration
plot again indicates a purely radial flow without z variations.   Invading blue
mud is displacing red formation fluid.  The multicolored zones between blue and
red in either case represent events in the diffusive mixing zone.  Cylindrical
radial invasion occurs while drilling.  Sometimes the invasion time is short – at
other times, it can exceed a day.  For long invasion times, it is not necessary to
simulate extraordinarily long – we equivalently model the invasion associated
with a higher permeability mud for a shorter time.  Equivalence formulas are
given in Chin (1995, 2002).  The relatively short times in Figures 7.1a and 7.1b
mimic twenty-four hour invasion.  Note how the effects of mud pressure and
filtrate invasion are deeper at “1 min” than at “0.33 sec,” as expected physically.

At some point in time designated by the user, the formation tester starts
pumping – it can extract fluid from or inject fluid into the reservoir according to
a multi-rate schedule.  The left pressure plot in Figure 7.1.1c shows the effects
of fluid withdrawal, that is, typical fluid sampling performed, in this case, by a
single centered nozzle (in general, single, dual and straddle packer probes are
permitted, which can be located arbitrarily along the sandface).  The left side of
the pressure plot in Figure 7.1.1c shows a blue-green area associated with the
low pressure at the nozzle.  Above and below this zone are red colored pressures
which indicate higher pressures associated with supercharging – that is, as the
nozzle withdraws fluid, high pressure mud invades the formation through the
mudcake.  Not shown in the pressure plot are reverse flow streamlines that
would mark filtrate pumping by the formation tester nozzle.
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Figure 7.1.1a.  Pressure-concentration profiles, 0.33 sec.

Figure 7.1.1b.  Pressure-concentration profiles, 1.00 min.

The right plot in Figure 7.1.1c displays the corresponding concentration
profile.  The blue zone represents the mud filtrate that has  penetrated the
formation – it is now deeper than that shown in Figure 7.1.1b.  Figures 7.1.1d
and 7.1.1e illustrate similar phenomena at later times.  Again, note the high
supercharge pressures above and below the nozzle, indicating continuing filtrate
invasion while the tester nozzle attempts to extract a clean sample.  Whether or
not this is possible for the input parameters assumed is one question the
simulation addresses.  There are several related objectives.  Is a clean sample
possible?  If so, how long must the formation be pumped?  If not, how might
mud properties and weight to changed?  The time scale for adequate clean-up is
different from that for pressure transient interpretation.  How long must be tool
stay in place to ensure good pressure data for permeability and anisotropy
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prediction – without risking a stuck tool?  Good pressure data for permeability
prediction, of course, can be obtained even when mud filtrate has not been
flushed.  Thus, for tools that do not collect samples (e.g., formation-testing-
while-drilling tools), the job planning simulator can be used to study pressure
transients – while, for wireline formation testers, the simulator serves dual
clean-up and pressure transient objectives.

Figure 7.1.1c.  Pressure-concentration profiles, 3.33 min.

The left plot of Figure 7.1.1c indicates probe presence because its low (blue-
green) pressures contrast strongly with the high (red) ones due to supercharging.
At the right, a small green zone associated with the probe is embedded in the
blue filtrate – this small zone is not red because the fluid is still contaminated.
The variable meshes used allow high resolution simulations near the probe.

Figure 7.1.1d.  Pressure-concentration profiles, 3.67 min.
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Figure 7.1.1e.  Pressure-concentration profiles, 5.67 min.

At the end of the simulation – a point in time defined by the user, the
pressure-concentration screens shown above may be played back in the
software’s “movie mode.”  This playback feature enhances the field engineer’s
physical intuition about the formation under consideration.  In addition, three
line graphs automatically appear that conveniently summarize computed results
at source and observation probes.  Figure 7.1.1f displays the concentration of
formation fluid at the source probe.  For the input parameters assumed in the
present simulation, the results are not encouraging (we will show more
optimistic results later).  At first, the concentration is zero because the nozzle is
not pumping.  Once pumping commences, the formation fluid concentration
increases to a maximum of 0.3 or 30% – not quite the 90-95% that is deemed
adequate by petrophysicists.

There may be several reasons for low dilute levels.  Figures 7.1.1a–7.1.1e
show high levels of supercharge pressure while the nozzle is pumping – our
nozzle may, in fact, be pumping filtrate just entering the formation.  But even if
not, it is possible that rapid diffusion between filtrate and formation fluid –
encouraged by the particular pore structure in the rock – mixes the two quickly
in a detrimental manner.  One purpose of the job planning simulator is to
identify the reasons for sample contamination and to recommend fixes.

Figure 7.1.1g displays the pressure drawdown and buildup calculated for
the input parameters assumed.  Pressure transient predictions are always
checked against exact analytical results to ensure that spatial and time grid
parameters yield accurate results.  In our case, the complex complementary error
function solution of Proett, Chin and Mandal (2000) was used.  This solution
assumes a pure spherical (ellipsoidal) source model, so that fluid invasion at the
borehole wall is not modeled.  Assumed meshes were therefore calibrated
against exact results for a perfectly sealed borehole.
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Figure 7.1.1f.  Formation fluid concentration at source probe.

That our job planning simulator models both fluid mixing and pressure
transient analysis (due to fluid compressibilities) is desirable because it is
convenient – but more important, both objectives are accomplished using the
same software, thus reducing the uncertainties associated with using multiple
simulators.  In addition, because the same equations as those in reservoir
engineering are used here, the same software can be used for reservoir
engineering production predictions by sealing the borehole, expanding the flow
domain to field scale, and lowering the borehole pressure to those characteristic
of production scenarios.

Figure 7.1.1g.  Source probe pressure transient history.
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Finally, as shown in Figure 7.1.1h, the software also produces pressure
transient outputs at any observation probe location defined by the user.  We
emphasize that it is not necessary to have an observation probe in the tool to use
the software model – that is, the software can be used with single-nozzle tool
FTWD applications to ascertain depth of investigation or penetration.  Of
course, in dual probe applications, the use of pressure drops available at source
and observation probes enables prediction of horizontal and vertical
permeability.  For the present simulation, it is of interest to note the high level of
diffusion in Figure 7.1.1h relative to that in Figure 7.1.1g.  Such indicators are
useful in ascertaining the probability of success that might be achieved in so-
called “mini-DST” applications.  The observation probe can be chosen at any
distance from the source probe, e.g., seven inches or ten feet.

Figure 7.1.1h. Observation probe pressure transient history.

7.1.2  Example 2, Single probe, three layer medium
In this second simulation, we describe a situation without the upper-lower

symmetries obtained earlier.  Here the formation consists of three layers, with
the lowest porosity layer at the top.  Before pumping, there is strong cylindrical
radial filtrate invasion into the formation, as is evident from the right-side plot of
Figure 7.1.2a.  The left-side pressure plot shows a small blue zone marking the
lower pressures realized at the nozzle.  That the entire plot is a single color
indicates relatively little pressure variation otherwise, characteristic of the low
permeabilities assumed.
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Figure 7.1.2a.  Initial pumping, highly invaded upper zone.

Figure 7.1.2b gives pressure-concentration plots at a later point in time.
The concentration plot shows continuing strong invasion in the low porosity
layer.  The pressure plot, with the high color contrast and the strong red zones
above and below the probe along the sandface (left vertical boundary) indicates
strong supercharging.  The formation tester probe will measure high pressures,
but the high values characterize more the high pressure in the mud than the pore
pressure in the rock.

Figure 7.1.2b.   Supercharging seen in left pressure plot.

The pressure-concentration behavior noted for Figure 7.1.2b continues with
increased intensity in Figure 7.1.2c.  In all the runs shown thus far, note our use
of variable spatial grids in the radial and vertical directions.  Internal software
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logic also activates variable time gridding, enabling large time steps when flow
gradients are small and smaller time steps when they are large.  For example,
smaller time steps are selected whenever a change in flow rate is imposed;
higher grid densities are always selected near nozzles.

Figure 7.1.2c.  Continued supercharging and invasion.

7.1.3  Example 3,  Dual probe pumping, three layer medium

In this example, we consider a three layer medium again – the higher
permeabilities here allow stronger pressure penetration as seen in the left
pressure plot of Figure 7.1.3a.

Figure 7.1.3a.  Initial cylindrical invasion before pumping.
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Pumping has initiated in Figure 7.1.3b.  The two small blue areas in the left
pressure plot mark the low pressure zones associated with two pumping nozzles.
The two small red areas in the right concentration plot mark the high formation
fluid concentrations associated with continued pumping.  From Figure 7.1.3c, at
large times pumping has ceased and supercharging at the sandface is evident
from the left red pressure zones.

Figure 7.1.3b.  Dual probe pumping initiated.

Figure 7.1.3c.  Supercharging evident at large times.
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7.1.4  Example 4,  Straddle packer pumping

So far we have demonstrated how pumpouts using single probe and dual
probe nozzles can be realistically simulated.  In many field situations,
particularly in unconsolidated sands and naturally fractured formations, pad
nozzles may not be effective in reliably contacting producing zones.  In such
applications, straddle packer nozzles are employed.  Whereas pad nozzles “see”
a single point along the borehole wall, packer nozzles see axial extents that may
be several feet in length and then pump from all azimuthal directions.  Because
they are associated with pump rates that may reach 1 gpm, they offer good depth
of investigation and strong signal propagation – thus they are extremely useful
in so-called “mini-DST” applications that seek to determine permeability over
larger spatial scales than those normally possible with pad-type tools.

Again, we consider a layered region that is initially invaded by mud
filtrate.  The left pressure plot in Figure 7.1.4a shows an elongated low pressure
zone associated with the length of the straddle packer.  The nonuniform vertical
pressure variations indicate that the radial flux into the tool is not uniform –
computational evidence that “uniform flux” pumping models are not correct
even the packer resides entirely within a uniform layer.  The formation fluid
concentration plot in Figure 7.1.4b highlights the continuing invasion of mud
filtrate into the near-sandface rock.

The pressure plots in Figures 7.4c and 7.4d highlight the strong impact on
local flow exerted by the straddle packer nozzle.  Its long vertical extent allows
it to withdraw large amounts of fluid into the tool.  The low pressures at the
bottom and bottom-right of the formation unfortunately encourage stronger
invasion at the top, an effect clearly seen in the concentration plot of Figure
7.1.4d.  Not shown are computed pressure plots along various tool stations.  As
noted earlier, while our algorithm allows nonuniform radial flux along the length
of the tool, pressures along it do not vary although they do vary with time.
Pressures fields away from the packer are deeper than they are for pad type
nozzles because of the higher pump rates utilized.
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Figure 7.1.4a.  Initial pumping of cylindrical invaded region.

Figure 7.1.4b.  Continued straddle packer pumping.
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Figure 7.1.4c.  Strong lateral pumping.

Figure 7.1.4d.  Lower formation strongly affected.

7.1.5  Example 5,  Formation fluid viscosity imaging

Our field examples apply to shallow wells drilled with an oil base mud.
Inputs are representative of typical downhole conditions, but due to space
limitations, only key parameters and qualitative results are summarized.  We
asked if differences in formation fluid viscosity are detectable through pressure
responses.  Mud viscosity is fixed at 1 cp, while formation fluid viscosity is
taken as 1, 3 and 5 cp for top, middle and bottom calculations in Figure 7.1.5.
As expected, pressure drops increase going downward for source and distant
probes.
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Figure 7.1.5.  Source and observation probe pressures.

The source probe response is interesting.  At the top left, the minimum
pressure bottoms out as a flat line – both viscosities are 1 cp.  In the middle and
bottom left figures, where formation fluid viscosities exceed mud viscosity,
minimum pressures decrease with time because flow resistance at the probe
increases with time (average viscosity increases due to miscible mixing).

7.1.6  Example 6,  Contamination modeling
“Formation fluid concentration (or saturation) vs time” plots at the source

probe indicate changing contamination levels.  In Figure 7.1.6, plots starting
with the upper left and proceeding counterclockwise show typical
concentrations increasing as fluid diffusion decreases – diffusion strongly
affects sample quality.
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Figure 7.1.6.  Source probe formation fluid concentration.

The upper left figure shows poor 30% sample quality obtained soon after
pumping; when pumping stops, this decreases continuously as invasion
continues.  The upper right shows good 90% quality.  Sample quality improves
with decreasing mudcake permeability or well pressure.  The simulator is used
in job planning to test “what-if” scenarios controlled by numerous parameters.

7.1.7  Example 7,  Multi-rate pumping simulation

Figure 7.1.7a shows three constant-rate pumping intervals separated by
two quiescent periods over a thirty minute period.  The red curve gives source
probe pressure response and shows decreasing values with time (due to
increasing viscosity at the probe as low mud and higher formation viscosity
fluids mix).

Figure 7.1.7a.  Field log, multirate flow and pressure.
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Figure 7.1.7b.  Source and observation probe simulation.

The field source probe response of Figure 7.1.7a is successfully simulated
at the left of Figure 7.1.7b, requiring about two minutes on typical personal
computers. The observation probe response appears at the right.  Both indicate
that viscosity increases during transient mixing are detectable from time-varying
pressure data.

We have provided an overview of validation and field examples illustrating
our mathematical and numerical approach – and have shown that they predict
events that are consistent with the physics.  In particular, we have developed a
reservoir engineering approach to model formation testing in borehole
environments with dynamic mudcake growth and supercharging. The
simulators, useful in permeability prediction from pressure transient analysis and
contamination studies, are invaluable in inverse applications for horizontal and
vertical permeabilities.

They are also important in job planning.  For example, if formation
properties are approximately known, what flow rates and sequences are needed
for detectable signals at the observation probe?  What mudcake properties are
required for effective sealing to overcome supercharging problems?  What is the
depth of investigation and the vertical resolution associated with a particular
flowrate?  This work applies to vertical wells in layered media and is restricted
to zero dip angle – it assumes that the permeability in a plane perpendicular to
the well axis does not vary azimuthally.  This does not mean that the model
cannot be used for deviated and horizontal wells where both permeabilities
change about the well.  For example, one can always study worst case events by
considering an isotropic uniform medium controlled by the lower of kh and kv.
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7.2  Source Code and User Interface Improvements

The multiphase simulators of Chin and Proett (2005) have changed
substantially and, for completeness, we describe key modifications.  We address
the user data input panel, key modifications to the source code engine, and
typical color output plots.

7.2.1  User data input panel

Originally, all input boxes were placed on a single software screen, as
shown in Figure 7.2.1.  Users were required to enter vast amounts of data,
comprising of physical properties, boundary conditions and grid generation
variables.  As one would expect, few combinations actually led to usable
solutions, so that the simulation experience was less than ideal.  Major rework
has led to the modular menu system in Figures 7.2.2a and 7.2.2b.

Figure 7.2.1.  Original user interface.
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Figure 7.2.2a.  New program structure (high level).

Figure 7.2.2b.   Modularized submenus (low level).

In particular, the high-level control menu in Figure 7.2.2a opens any
number of lower-level submenus, as shown in Figure 7.2.2b, each focusing on a
particular function.  Typical menus include “formation fluid properties,” “layer
properties,” “mudcake parameters,” “source probe type,” “boundary
conditions,” “pumping schedules” and numerical gridding parameters.  When a
user has developed a meaningful simulation, he is provided the option to save
that run and re-run the model at any time – or run changes to that simulation
defined by editing one or more of the input screens in Figure 7.2.2b. This allows
him to build a useful library of simulations for future use, accessible through
database calls under “File Open.”  Compressed data files can now be shared by
users working from different locations and color graphics plots and movies are
always recreated “on the fly” to conserve disk storage space and to reduce file
transmit times.  These comments apply to miscible and immiscible simulators.
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7.2.2  Source code engine changes

Key to the new work are inertial corrections of the Forchheimer type in
order to account for rapid pumping speeds.  The changes to the numerical
formulation are nontrivial.  As discussed in Chapter 6, the pressure equation is
solved by an alternating-direction-implicit (ADI) approach, requiring sweeping
in both radial and vertical directions, while the concentration or saturation
equation is solved by an explicit method.  The red logic is replaced by
complicated blue terms involving the Forchheimer constant “FORCH” as noted.
In addition, faster run times were achieved using the analytical invasion models
developed in the formation invasion book of Chin (1995).

C     TRANSIENT CONCENTRATION **EXPLICIT** INTEGRATION
C
      DO 800  I=2,IMAXM1
      DO 800  J=2,JMAXM1
C     Concentration derivatives, Equation # 81
      CNIJ   =   CNOLD(I,J  )
      DCDR   =  (CNOLD(I,J+1) - CNOLD(I,J-1))/R3(J)
      D2CDR2 = ((CNOLD(I,J+1) - CNIJ        )/R4(J)
     1        - (CNIJ         - CNOLD(I,J-1))/R5(J))/R6(J)
      DCDZ   =  (CNOLD(I+1,J) - CNOLD(I-1,J))/Z3(I)
      D2CDZ2 = ((CNOLD(I+1,J) - CNIJ        )/Z4(I)
     1        - (CNIJ         - CNOLD(I-1,J))/Z5(I))/Z6(I)
C     Bracket terms other than POR dCN/dt in Equation # 81
C     Old logic ...
C     BRACKS = - VTZ(I,J)*DCDZ
C    1         - VTR(I,J)*DCDR
C    2         + EPSZ*D2CDZ2  + EPSR*(D2CDR2 + DCDR/R(J))
C
C     New extended multiphase logic ...
      IF(J.GT.1.AND.J.LT.JMAX) THEN
      DPDRTMP = (POLD(I,J+1)-POLD(I,J-1))/R3(J)
      VTR(I,J) = -MR(I,J)*DPDRTMP-FORCH*MR(I,J)**3*DPDRTMP**2
      ENDIF
      IF(J.EQ.1) THEN
      DPDRTMP = -MR(I,J)*(POLD(I,2)-POLD(I,1))/(R(2)-R(1))
      VTR(I,J) = -MR(I,J)*DPDRTMP-FORCH*MR(I,J)**3*DPDRTMP**2
      ENDIF
      IF(J.EQ.JMAX) THEN
      DPDRTMP = -MR(I,J)*(POLD(I,JMAX)-POLD(I,JMAXM1))/
     1          (R(JMAX)-R(JMAXM1))
      VTR(I,J) = -MR(I,J)*DPDRTMP-FORCH*MR(I,J)**3*DPDRTMP**2
      ENDIF
C
      BRACKS = - VTZ(I,J)*DCDZ
     1         - VTR(I,J)*DCDR
     2         + EPSZ*D2CDZ2  + EPSR*(D2CDR2 + DCDR/R(J))
C
      DTBPOR = DELTAT/PORMID
      IF(I.GE.IMIDT) DTBPOR = DELTAT/PORTOP
      IF(I.LE.IMIDB) DTBPOR = DELTAT/PORBOT
      CNNEW(I,J) = CNIJ + BRACKS*DTBPOR
 800  CONTINUE
C

Figure 7.2.3a.  Forchheimer changes to explicit concentration solver.
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C     IMPLICIT ADI PRESSURE SOLVER
C
C     SWEEP # 1 in radial direction (assumes first half of DELTAT)
      DO 760 J=2,JMAXM1
      DO 750 I=2,IMAXM1
      AA(I) =  (AL(I-1,J) + AL(I  ,J))/(Z5(I)*Z3(I))
      CC(I) =  (AL(I  ,J) + AL(I+1,J))/(Z4(I)*Z3(I))
      BB(I) =  -AA(I) -CC(I) -2./DELTAT
C
C     Old logic, commented out ...
C     WW(I) =  -2.*POLD(I,J)/DELTAT
C    1            -(BT(I,J)/R(J))*(POLD(I,J+1)-POLD(I,J-1))/R3(J)
C    2-(BT(I,J  ) + BT(I,J+1))*(POLD(I,J+1)-POLD(I,J  ))/(R4(J)*R3(J))
C    3+(BT(I,J-1) + BT(I,J  ))*(POLD(I,J  )-POLD(I,J-1))/(R5(J)*R3(J))
C
C     Extended multiphase logic, new ...
      PORCMP  = PORMID*COMP
      IF(I.GE.IMIDT) PORCMP  = PORTOP*COMP
      IF(I.LE.IMIDB) PORCMP  = PORBOT*COMP
      WW(I) =  -2.*POLD(I,J)/DELTAT
     1            -(BT(I,J)/R(J))*(POLD(I,J+1)-POLD(I,J-1))/R3(J)
     2            - BT(I,J)*((POLD(I,J+1)-POLD(I,J-1))/R3(J))**2
     3                     *(COMP + FORCH*PORCMP**2*BT(I,J)**2/R(J))
     4-(BT(I,J  ) + BT(I,J+1))*(POLD(I,J+1)-POLD(I,J  ))/(R4(J)*R3(J))
     5+(BT(I,J-1) + BT(I,J  ))*(POLD(I,J  )-POLD(I,J-1))/(R5(J)*R3(J))
750 CONTINUE
.
.
.

C     SWEEP #2 in vertical direction
      DO 780 I=2,IMAXM1
      DO 770 J=2,JMAXM1
C     Old logic ...
C     AA(J) = (BT(I,J-1)+BT(I,J  ))/(R5(J)*R3(J)) - BT(I,J)/(R(J)*R3(J))
C     CC(J) = (BT(I,  J)+BT(I,J+1))/(R4(J)*R3(J)) + BT(I,J)/(R(J)*R3(J))
C     BB(J) = -AA(J) -CC(J) -2./DELTAT
C     WW(J) = -2.*PSTAR(I,J)/DELTAT
C    1-(AL(I  ,J) + AL(I+1,J))*(PSTAR(I+1,J)-PSTAR(I,J  ))/(Z4(I)*Z3(I))
C    2+(AL(I-1,J) + AL(I  ,J))*(PSTAR(I,J  )-PSTAR(I-1,J))/(Z5(I)*Z3(I))
C
C     New extended multiphase logic ...
C     Note, only single compressibility for two like miscible fluids used
      PORCMP  = PORMID*COMP
      IF(I.GE.IMIDT) PORCMP  = PORTOP*COMP
      IF(I.LE.IMIDB) PORCMP  = PORBOT*COMP
      PGRADOLD = (POLD(I,J+1)-POLD(I,J-1))/R3(J)
      AA(J)=(BT(I,J-1)+BT(I,J  ))/(R5(J)*R3(J)) - (BT(I,J)/(R(J)*R3(J)))
     1*(1.+R(J)*(COMP+FORCH*PORCMP**2*BT(I,J)**2/R(J))*PGRADOLD)
      CC(J)=(BT(I,  J)+BT(I,J+1))/(R4(J)*R3(J)) + (BT(I,J)/(R(J)*R3(J)))
     1*(1.+R(J)*(COMP+FORCH*PORCMP**2*BT(I,J)**2/R(J))*PGRADOLD)
      BB(J) = -AA(J) -CC(J) -2./DELTAT
      WW(J) = -2.*PSTAR(I,J)/DELTAT
     1-(AL(I  ,J) + AL(I+1,J))*(PSTAR(I+1,J)-PSTAR(I,J  ))/(Z4(I)*Z3(I))
     2+(AL(I-1,J) + AL(I  ,J))*(PSTAR(I,J  )-PSTAR(I-1,J))/(Z5(I)*Z3(I))
C
770 CONTINUE

Figure 7.2.3b.  Forchheimer modifications to implicit pressure solver.
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7.2.3  Output color graphics

Color displays for time-varying pressure and concentration fields such as
those in Section 7.1 were originally written in Fortran and did not offer flexible
viewing options.  However, because computing demands were low, the logic
was reused to create movie playbacks which show how pressure and
concentration fields evolve in time.  This enhances an engineering
understanding of flow interactions and aids in supercharge interpretation.

Figure 7.2.4.  Movie display frame
(pressure left, concentration middle, lithology right).

Clicking “Observation Probe” in Figure 7.2.2a brings up the general
observation probe post-processing menu shown in Figure 7.2.5a.  This post-
processor reads the entire array of results computed by the simulator.  At the top
of the menu is an information box that displays the vertical extent of the z grid
and the location of the source.  The user is allowed to enter any “observation
value” z into the input box at the top right.  The internal algorithm then
internally interpolates values for pressure, concentration, pressure derivative and
concentration derivative at the desired z location from computed values at
nodes.  The results are plotted against time, with three plotting options available.
These are “pumping only,” “invasion only,” and “both.”  This observation probe
post-processor can also be used with source points.  This post-processing option
is useful in planning mini-DST tests.

Clicking on “Answer Menu” brings up the menu shown in Figure 7.2.5b.
The first five source probe items represent the line graphs available in various
examples discussed in this chapter.  Results for line plots are stored on the hard
drive and can always be accessed from this menu.  The “Observation and Source
Probe” item invokes the menu shown in Figure 7.2.82.  The present menu
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importantly plots spatial field results, as noted on the bottom half of the
calculator in Figure 7.2.5b.  Movies and text output files can be accessed.
However, it is also possible to plot P(r,z) and C(r,z) at the ending time in
different types of color plots.  Various plotting capabilities for pressure and
concentration are illustrated without further comment  in Figures 7.2.6a – 7.2.6h.

Figure 7.2.5a.  Observation probe post-processing menu.

Figure 7.2.5b.   Answer menu.
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Figure 7.2.6a.  Stationary pressure surface plot.

Figure 7.2.6b.   Stationary pressure contour plot.

Figure 7.2.6c.  Movable pressure plot, default view.
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Figure 7.2.6d.   Movable pressure plot, a different view
(use mouse to rotate and translate figure).

Figure 7.2.6e.  Stationary concentration surface plot.

Figure 7.2.6f.  Stationary concentration contour plot.
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Figure 7.2.6g.  Movable concentration plot, default view.

Figure 7.2.6h.   Movable concentration plot, a different view
(use mouse to rotate and translate figure).
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7.3  Detailed Applications

In this section, we will illustrate different applications for our miscible
multiphase job planning simulator.  We will examine the effects of probe type,
e.g., single, dual and packer nozzles, explore the consequences of diffusive
mixing on clean-up, and provide examples for invasion versus pumping.
Simulation runs are introduced in the order of increasing complexity in order to
explain the physics clearly.

7.3.1.  Run No. 1, Clean-up, single-probe, uniform medium
We consider formation clean-up about a single-probe tool in a uniform

medium.  The seven sub-menu inputs defining the run appear in Figure 7.3.1.

Figure 7.3.1.  Seven submenus for input parameter definition.

We first summarize the physical assumptions behind the above simulation.
The problem is shown schematically in Figure 7.3.2.  At first, the borehole
undergoes pure cylindrical radial invasion with dynamic mudcake buildup as
indicated at the left – an actual wellbore with nonzero radius is assumed, and as
will be demonstrated later, the (vertical) borehole can traverse up to three
horizontal layers each having different thicknesses and formation properties.
The color diagrams to the right of Figure 7.3.2 display complementary pressure
P(r,z,t) and “contamination” or “concentration” C(r,z,t) profiles frozen at a time
t, where r is the radial coordinate, z is the vertical coordinate.
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Figure 7.3.2.  General problem definition – initial cylindrical invasion.

Figure 7.3.3.  Pumping begins (single-probe, left, elongated pad, right).
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The complete physical picture requires both P and C descriptors since
these are coupled, and both are, in turn, dynamically coupled to mudcake
growth.  For pressure plots, red indicates high pressure while blue indicates low;
for concentration plots, blue indicates “dirty” (filtrate) while red indicates
“clean” (formation fluid).  These twin pictures are displayed periodically during
the simulations.  Prior to pumping by the formation tester, of course, we expect
purely cylindrical radial behavior.

At a time prescribed by the user, the formation tester will commence
pumping.  In Figure 7.3.3, a single-probe tool is shown at the left – the red
arrows indicate fluid withdrawal by the tool while the blue arrows indicate
continual invasion into the formation (an elongated probe is shown at the right
for comparison, whose properties will be considered in later runs).  The
pressure-concentration profiles shown in Figure 7.3.2 will now change by virtue
of this localized pumping.  Low pressure will be evident at the pumping probes
while high pressure will be evident along the borehole walls adjacent to the
probes due to continuing invasion – this effect is known as “supercharging.”
The pressure calculated at the probes (and measured in reality by the tool) is a
combination of wellbore mud pressure and formation pore pressure.  One
purpose of this present simulator is to explore the complicated relationship
between measured probe pressure, borehole mud pressure and distant pore
pressure.  How much of the measured pressure is the pore pressure?  Using
incorrect pressure inputs in our inverse permeability methods will, of course,
lead to errors in formation evaluation results.

Figure 7.3.4a.  Pressure-concentration-lithology display (61 min).
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We now describe the sequence of events observed on screen.  During
simulations, a status screen appears that indicates that cylindrical invasion is
proceeding – the physical time and the percentage of the simulation completed
are displayed.  A series of r-z color screen displays appears periodically at pre-
set time intervals.  Consider, for example, Figure 7.3.4a, which displays cross-
sectional results at time t = 61.68 min.  The left-most pressure plot is uniform in
color indicating that the pressure is almost constant throughout since a very low
permeability mudcake has been assumed – in later examples, greater color
variations showing the effects of supercharging will be evident.  The left side of
each color diagram represents the borehole sandface while the right side
represents farfield radial infinity as suggested in Figure 7.3.2.  The top and
bottom of each box correspond to the top and bottom of the reservoir.  The
center concentration plot indicates invasion, with blue filtrate at the left
(borehole sidewall) and red reservoir fluid at the right.  The right-most plot will,
in simulations involving more than one layer, display lithology and layer
thicknesses; for simulations in uniform media, it can be ignored.

Figure 7.3.4b.   Later time cylindrical radial invasion (211 min).

At 211 minutes, Figure 7.3.4b indicates that invasion has proceeded
beyond that shown in Figure 7.3.4a, although from the history of color displays
(not shown) the rate of radial invasion has slowed.  This occurs because
mudcake is dynamically building and slows the invasion rate – geometric
spreading also contributes to the slower radial penetration.  Once formation
tester pumping starts, the computer status screen reflects that fact by indicating
“pumping started,” together with the elapsed physical time and percentage done.
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Figure 7.3.4c.  Single-probe pumping (312 min).
Figure 7.3.4c shows the onset of pumping for the single-probe tool

assumed.  The left-most pressure plots shows a small blue low-pressure zone
associated with the probe nozzle, while the center concentration plot shows an
orange zone of contaminated fluid being withdrawn into the probe (this orange
is a mixture of blue filtrate and red formation fluid).  With time, the orange zone
will – hopefully – turn into a completely red zone.  There is, however, no
guarantee that this will occur; for example, this is physically not possible if the
mudcake is too permeable or if excessive diffusion is present in the formation
fluid.  Figures 7.3.4d and 7.3.4e display two additional screen dumps at later
instants in time for comparison.

Figure 7.3.4d.   Middle-time pumping result (324 min).
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Figure 7.3.4e.  Later time pumping result (340 min).

Figure 7.3.4f.  Pumping ceases, but invasion continues (397 min).

In Figure 7.3.4f, the blue low-pressure zone at the nozzle has disappeared
because the probe has stopped pumping (refer to the “Simulation Time
Parameters” pump schedule in Figure 7.3.1).  Again, the pressure plot is a single
color because the reservoir pressure is almost uniform on account of low
mudcake permeabilities – actually, a slight pressure variation exists but it cannot
be resolved by the coarse color palette used to paint the screen –  palette
refinement is planned for software upgrades.
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Although pumping has stopped, invasion continues through the mudcake –
eventually, the “dent” seen in the central figure would equalize and tend toward
a pure cylindrical radial pattern.  When the simulation is completed and the last
color screen has been displayed, five line plots of practical importance in
pressure transient analysis (for permeability prediction) and contamination
monitoring appear.  Figure 7.3.4g shows the plot for pressure obtained at the
source probe.  Notice that, despite the high 100 md permeabilities assumed in
the “Layer Properties” menu of Figure 7.3.1, the pressure trace has not yet
“bottomed out” after almost 100 minutes as would be expected on the basis of
single-phase flow.  In fact, it appears that the source probe pressure is
continuing its decline and that a steady response is nowhere in sight.

We remind the reader that the present simulator is designed to model two
fluids with miscible mixing, although it will model single phase fluids if the two
have equal initial viscosities.  In the present example, the filtrate viscosity is 1
cp while the formation fluid viscosity is 5 cp.  An initial five hour (300 minute)
invasion has allowed low viscosity fluid to invade into the near-wellbore rock.
Once formation tester pumping starts, we expect the usual pressure decline
behavior – in this case, pressure decreases while the initially pumped filtrate is
replaced by much more viscous formation oil.  This presence of more and more
viscous oil accounts for the continually decreasing pressure – the downward
slope of this curve is an indicator that cleaning of the formation is ongoing.  We
emphasize, that while cleaning is in progress, the fluid is multiphase in nature so
that the pressure transient curves cannot be interpreted for permeability using
ideal single phase flow models.  The present simulator must be used in pressure
history matching whenever two-phase miscible mixing is involved.  By “source
probe pressure,” we refer to the actual pressure at the source probe.  This term
also refers to the pressures at dual probe tools, which are identical since they are
open to the same hydraulic reservoir; it additionally refers to the pressure along
the axial extent of a dual packer, which must be constant.

The cleaning nature of the flow is directly apparent from Figure 7.3.4h,
which gives the complementary coupled solution for concentration or
contamination.  When the well is first drilled, the concentration is 1.0 indicating
pure formation fluid at the sandface.  After five hours (refer to the pumping
schedule in Figure 7.3.1) or 300 minutes, invasion has degraded the local fluid
quality to such an extent that concentration is a low 0.24.  Once pumping starts,
the filtrate is removed and gradually replaced by formation oil.  Figure 7.3.4h
shows that, in about ninety minutes, the concentration at the source probe has
increased to about 95%, which can also be interpreted as 5% contamination.
Once pumping stops, the concentration at the probe location falls because
continuing invasion from areas adjacent to it contaminates the local fluid.
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Figure 7.3.4g.  Single-probe tool source pressure.

Figure 7.3.4h.   Single-probe tool source concentration.

Figure 7.3.4i.   Single-probe tool source viscosity.
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Figure 7.3.4i displays the mixture viscosity obtained at the source probe.
Initially, from the ”Mudcake Properties” and “Formation Fluid Properties”
menus in Figure 7.3.1, we had assumed 5 cp for the formation fluid viscosity
and 1 cp for the mud filtrate viscosity.  The 5 cp adjacent to the well decreases
rapidly to about 1.4 cp after five hours.  Once pumping starts, the viscosity at the
probe recovers to 4.5 cp before falling due to pumping stoppage.  It is possible
that additional pumping may improve the viscosity recovery.  However, in any
physical application, there is no guarantee that continual pumping implies
continual cleaning.  For example, when the diffusion level in the formation is
high or when the mudcake is relatively permeable, the formation may be
irreversibly contaminated and no amount of pumping can produce clean fluid.
This simulator was designed to model such events and plan against their
occurrence in the field.

From the “Pumpout Schedule” in the “Simulation Time Parameters” menu
in Figure 7.3.1, we had chosen, for simplicity, a volume flow rate of 5 cc/s over
ninety minutes.  The volume flow rate specified in the menu is the total rate for
the combined clean and dirty fluid: we cannot control the relative portions of
dirty versus clean fluid ultimately pumped – the percentages are obtained from
the simulation and cannot be prescribed a priori.  In Figure 7.3.4j, the red total
volume flow rate versus time plotted is back-calculated from the Darcy pressure
field and not just the inputted number – that the red lines shows “5” exactly
indicates that the second-order accurate numerical method is accurate indeed.
The green line shows the volume flow rate associated with the dirty filtrate – at
first, the amount of contaminated fluid pumped is great, but this is ultimately
replaced by clean formation fluid.  The gray line displays the volume flow rate
associated with the formation fluid.  At any instant in time, the sum of the green
and gray flow rates equals that shown by the red.

Figure 7.3.4j.   Single-probe source volume flow rate.
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Figure 7.3.4k.   Single-probe source cumulative volume.

Figure 7.3.4k displays the time integrals of the corresponding rate curves
in Figure 7.3.4j.  Consider, for example, the red line for the cumulative pumped
volume for the combined dirty and clean fluids.  The “5 cc/s” assumed over
ninety minutes yields a total of “5 cc/s  90  60 sec” or 27,000 cc as shown at
the end of the pumping cycle.  The gray line identifies the portion associated
with formation fluids while the green line represents dirty mud filtrate.  It is
important to notice that, in general, the green line in the cumulative volume plot
is not linear – its curvature is dictated by combined diffusion and borehole
curvature (or geometric spreading) effects.  The color “pressure versus
concentration” plots, the five line plots and the DOS status screens appear
automatically and do not require any special setup procedures or user
commands.  By “concentration” and “viscosity,” we mean the average values for
dual probe tools and center values for dual packer tools.

7.3.2.  Run No. 2, Clean-up, dual-probe, uniform medium

Now, we consider clean-up for a dual-probe tool in uniform media, for
which our sub-menu inputs appear in Figure 7.3.5a, which should be compared
with Figure 7.3.1 – only the inputs in the “Source Probe Properties” menu at the
bottom left have changed.  For now, we wish to point out the qualitative
differences between single and dual probe tools.  For brevity, only several run-
time screens are shown.  A typical color “pressure-concentration” plot while
pumping is shown in Figure 7.3.5b.  The two blue zones in the left-most
pressure plot above correspond to the two source probes, while the two mixed
color regions in the middle concentration plot indicate that mixed fluid (that is,
partly between blue and red) is to be found near both probes.



210 FORMATION TESTING

Figure 7.3.5a.  Dual probe assumptions.

Figure 7.3.5b.   Dual probe pressure-concentration fields (304 min).

The pressure probe line plot in Figure 7.3.5c is very informative.  Recall
that, for the single-probe run, the minimum pressure achieved was 21,850 psi.
In the present simulation, which assumes an identical volume flow rate
schedule, the minimum pressure is about 21,925 psi, which is greater than that
obtained for the single-probe run.  This is correct and expected physically
because the same flow rate is now pumped through two nozzles having greater
total area, resulting in less pressure drawdown.  The reader is cautioned,
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however, from placing too much emphasis on the exact pressure difference of 75
psi, since the two runs were performed on slightly different grids.  Figures
7.3.5d,e,f,g display the corresponding contamination, viscosity, flow rate and
cumulative volume results.  For dual-probe runs, contamination and viscosity
are average values obtained for the two probes.  Rates and cumulative volumes
refer to combined production from both probes.

Figure 7.3.5c.  Dual-probe source pressure.

Figure 7.3.5d.   Dual-probe average concentration.
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Figure 7.3.5e.  Dual-probe average viscosity.

Figure 7.3.5f.  Dual-probe combined volume flow rate.

Figure 7.3.5g.  Dual-probe cumulative volume production.
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7.3.3.  Run No. 3, Clean-up, elongated pad, uniform medium

Finally, to complete this first suite of three clean-up examples, we run an
“elongated pad” clean-up simulation (“elongated pad,” “oval pad” and “straddle
packer” are used synonymously in this book since all are long in the axial
direction).  If the previous “ANS” file already exists, we can click on it and
“recall old input menus for editing” as explained earlier.  Once the required data
is loaded, we can “Open All Menus” if desired, or we can open the only menu
that has changed, in this case via the menu item in Figure 7.3.6a, leading to the
input screen in Figure 7.3.6b.

Figure 7.3.6a.  Opening the source probe menu.

Figure 7.3.6b.   Source probe menu.

The above menu shows that we have selected the “Straddle packer” probe
option, which also models “oval pad” and “elongated sources.”  The packer
axial length to 9.5 inches.  If we now select “Options > Simulate,” the following
example “pressure-concentration” color screens for the reservoir cross-section
are obtained.  Figures 7.3.6c,d,e clearly show the increased domain of influence
and depth of investigation exerted by the more elongated source.  The front text
box, again, indicates the filename of the ANS simulation under consideration.  It
is important to observe wider color contrasts than those obtained previously.
This is consistent with rapid flow changes due to increased pumping rate.
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Figure 7.3.6c.  Elongated pad pumping (301 min).

Figure 7.3.6d.   Elongated pad pumping (311 min).
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Figure 7.3.6e.  Elongated pad pumping (377 min).

Figure 7.3.6f.  Elongated pad source pressure.
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Figure 7.3.6g.  Elongated pad concentration (center value).

Figure 7.3.6h.   Elongated pad viscosity (center value).
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Figure 7.3.6i.   Elongated pad volume flow rate.

Figure 7.3.6j.   Elongated pad cumulative volume.

Note that all three runs considered so far assume the same volume flow
rate pumping schedule.  This was done for illustrative purposes, in order to show
that computed pressures are physically realistic when comparing different runs
with different types of probes but identical flow rates.  It is instructive to recall
the minimum pressures obtained in our two previous runs.  For the single probe
tool, we had a minimum of 21,850 psi – this pressure is low because all of the
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formation fluid is forced to travel through a single probe.  When we replaced the
single-probe tool with a dual probe tool, the increase in pumping area meant that
an intense drawdown was not needed – in fact, a higher value of 21,925 psi
sufficed.  The use of an elongated pad, with a further significant increase in
pumping area and its accompanying reduced resistance to flow allows a still
higher source probe pressure, in this case 21,975 psi.  We emphasize that
slightly different grid systems are used for different probe types, so that the
numbers should not be interpreted too literally; however, the order-of-magnitude
pressure differences seen from run to run are qualitatively (and probably, to
some degree, quantitatively) correct.

It is of interest to compare the concentration history of Figure 7.3.4h to that
in Figure 7.3.6g above.  In the former, source probe concentration decreases as
filtrate invasion initially contaminates the formation; then, the concentration
rebounds toward unity, and then rapidly falls when pumping stops and invasion
continues.  This late-time drop-off is less apparent for the oval pad run, as seen
from Figure 7.3.6g – no rapid concentration drop-off is apparent at all.  One
would attribute this to the rapid cleaning allowed by oval pad pumping.  More
clean formation fluid replaces the dirty fluid removed by the pumping action,
and the effect of continuing invasion through the relatively impermeable
mudcake is less.  Figures 7.3.6h,i,j provide the corresponding viscosity, flow
rate and cumulative volume curves.

7.3.4.  Run No. 4, A minimal invasion example

We close our discussions with several derivative calculations based on the
“elongated pad” menus that are already open (these menus are “opened”
whether or not they are visible).  These additional examples illustrate the power
and versatility of the user interface developed for the simulator and also indicate
the physical correctness of the simulations. To perform our first derivative
calculation, we “Open All Menus” so that the submenus corresponding to the
run just completed appear on screen.  In the “Simulation Time Parameters”
submenu, we reduce the “Invasion time before pumping (hrs)” from five hours
to 0.25 hours or fifteen minutes.  This choice might simulate a formation testing
while drilling application, e.g., a field scenario with very rapid drilling rates of
penetration.  The complete menus are shown in Figure 7.3.7a.
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Figure 7.3.7a.  A “formation testing while drilling” run with minimal invasion.

The computed results are very instructive.  Figure 7.3.7b shows a typical
“pressure-concentration” color screen obtained during the simulation.  The
pressure transient shown in Figure 7.3.7c, instead of continually decreasing as in
the foregoing three runs, more or less equilibrates quickly and then actually
increases.  This occurs because, in this instance, the fluid in the overall
neighborhood of the elongated pad – which is 9.5 inches in extent – is becoming
less viscous due to invasion by lower viscosity filtrate.  This will not be evident
from Figure 7.3.7d, which gives viscosities at the center of the pad – viscosities
near the ends of the pad are much lower due to less adequate cleaning.  Figures
7.3.7d and 7.3.7e show that, in this example with minimal filtrate invasion due
to the relatively impermeable mudcake, that the cleanup process is very efficient
– the reservoir fluid (with a viscosity of 5 cp and a concentration of 1) is
recovered quickly.  Figures 7.3.7f and 7.3.7g indicate that the fluid pumped is
largely reservoir fluid.
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Figure 7.3.7b.   A “formation testing while drilling” simulation (102 min).

Figure 7.3.7c.  A “formation testing while drilling” simulation.
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Figure 7.3.7d.   A “formation testing while drilling” simulation.

Figure 7.3.7e.  A “formation testing while drilling” simulation.
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Figure 7.3.7f.  A “formation testing while drilling” simulation.

Figure 7.3.7g.  A “formation testing while drilling” simulation.

7.3.5.  Run No. 5, A single-phase fluid, constant viscosity example
In the present run, we make one change to the input assumptions of the

previous simulation – the formation fluid viscosity is changed to 1 cp, so that it
is identical to that of the mud filtrate.  Thus, this run applies to a single-phase
fluid.  We caution that this simulator models the pumping in the presence of a
borehole with nonzero radius – thus, the model is inherently different from
idealized analytical models that assume purely spherical isotropic (or ellipsoidal,
in the case of transversely isotropic media) flow and hence no borehole.
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Both models are only consistent in the limit of extremely large borehole
radii.  This run was designed to verify the statement made in the previous run,
explaining why the pressure curve turned upward slightly with time – again, we
argued that the increase in pressure was due to decreased viscosity arising from
filtrate invasion at the ends of the elongated pad.  In this run, we emphasize that
we have the same elongated pad source and that all other parameters remain
unchanged, as indicated in Figure 7.3.8a.  The pressure trace obtained at the end
of the simulation is shown in Figure 7.3.8b.  The bottom-out pressure of
21,993.5 psi is higher than the 21,970 psi obtained in Figure 7.3.7c because the
constant viscosity of 1 cp here is much less than the average mixture viscosity of
the previous run.  The trace, aside from some minor numerical oscillation, is
horizontal with time, as it should be in a high 100 md permeability formation.

Figure 7.3.8a.  A constant viscosity run.

Figure 7.3.8b.   A constant viscosity run.
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7.3.6.  Run No. 6, A low-permeability “supercharging” example

We now modify the above example by decreasing all formation
permeability values from 100 md to 1 md.  Also, we increase the mudcake
permeability from 0.00001 md to 0.001 md.  This example demonstrates the
effects of invasion in low permeability reservoirs – in other words, we wish to
observe “supercharging” as it evolves dynamically.  The assumed menus are
shown in Figure 7.3.9a.

Figure 7.3.9a.  A low permeability “supercharging” example.

This is a rather interesting run.  Unlike the previous simulations in which
our color pressure plots possessed more or less uniform red pressures, with only
a small blue zone near the source probe, the pressure plots obtained here are
much more colorful.  Figure 7.3.9b displays the initial pressure and
concentration fields associated with purely cylindrical radial invasion before
pumping commences.  Figures 7.3.9c and 7.3.9d display solutions obtained at
two later instants in time.

The pressure plots are especially significant.  While the probe is naturally
associated with a low-pressure blue zone, it is of interest to observe the higher
red pressures obtained adjacent to the probe along the sidewall of the well.  This
high pressure is indicative of “supercharging,” that is, the high pressure resident
in the borehole mud.  The pressure measured by the tool in practice, and that
calculated by the present simulator, is a combination of the pressure based on
the mud pressure and the formation pore pressure.
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Figure 7.3.9b.   A low permeability “supercharging” example (1.67 min).

Figure 7.3.9c.  A low permeability “supercharging” example (55 min).

Figure 7.3.9d.   A low permeability “supercharging” example (95 min).
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The probe does not read formation pore pressure – the present simulator
can be used to assist in proper extrapolation of pore pressure from measured
readings.  These figures also demonstrate that pressure variations and actual
fluid invasion occur on different time scales.  Pressure equilibrates much more
rapidly while invasion is ongoing.  In a way, this is expected for two reasons.
First, the steady-state pressure distribution in an all-oil formation is identical to
that in an all-water formation, and is independent of viscosity – and second,
invasion will occur even in a “water-water” situation even without fluid
changes.  At the end of the simulation, the line plots discussed earlier appear
automatically, but for brevity they are not reproduced here.

7.3.7.  Run No., A three-layer simulation
We now reduce all formation permeabilities to 0.1 md; also, instead of the

porosity taking the value of 0.2 in all three layers, we assume 0.1 in the middle
layer.  Our simulation assumptions are given in Figure 7.3.10a.  Notice that we
have changed our original permeabilities by several orders of magnitude.  Also,
the elongated pad is not centered in the grid.  This decreased porosity implies
more rapid invasion in the middle layer relative to the upper and lower layers.
Together with the pumping that is occurring in this layer, a number of rapidly
varying flow events are simultaneously evolving.  Nonetheless, the simulator
performs the required calculations with a high degree of numerical stability.
This, together with the rapid middle layer invasion, is clearly seen in the time
sequence of snapshots shown in Figures 7.3.10b,c,d,e.  The diagrams at the far
right of these figures indicate the relative heights associated with various layers.
The present simulator, as is evident from the “Layer Properties” menu, permits
arbitrary layer heights and formation properties.  This concludes our discussion
of diffusive miscible flow simulations.
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Figure 7.3.10a.  Three layer run.

Figure 7.3.10b.   Three layer cylindrical invasion before pumping (3 min).



228 FORMATION TESTING

Figure 7.3.10c.   Pumping in three-layer formation (18 min).

Figure 7.3.10d.   Pumping in three-layer formation (83 min).

Figure 7.3.10e.   Pumping in three-layer formation (105 min).
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8
Time-Varying Flowline Volume

Large formation tester flowline volumes will distort pressure signals in low
mobility environments, and transient Darcy pressures will be masked by
mechanical compression and expansion effects that predicted permeabilities and
pore pressures may not be accurate.  Moreover, for inverse applications
requiring observation probe data, predictive integrity may be compromised:
signals can be simply bad or unmeasurable.  Thus, we ask, “Is there a way to
‘tune’ the source probe pressure so that the overall prediction process is
significantly improved?”  The answer is, “Yes.”  Just as one tunes a radio or
television to optimize reception, a formation tester can be tuned to optimize
reception at one or more observation probes.  A numerical simulator allowing
for time-varying flowline volume is required, of course; it can be used to study
how this reception can be improved and later incorporated in feedback and
control electronics.  In this chapter, the required algorithm is developed and
different applications for flowline control are explored.  Although this book
emphasizes the key role of closed form analytical models whenever possible, the
problem addressed in this chapter, because of its inherent difficulty, requires a
computational approach.  Why?

Simple analogy.  Suppose one were to calculate the area of a circle, but
did not have access to a calculator and the exact formula A = R2.  An
approximation might be the number of one-inch squares that fit within the
perimeter; even better, half-inch or quarter inch squares might be used.  Then
again, why not rectangles or equilateral triangles?  The particular choice and
grid density define the “numerical algorithm,” whose quality is determined by
agreement with the exact solution.  In our formation testing forward simulation
work, the FT-00 algorithm provides one such exact “ R2” solution.  Although it
is based on complicated “complex complementary error functions with complex
arguments” which require numerical evaluation, the calculated solution is exact
in an absolute sense.
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Certain physical assumptions are taken, e.g., liquid, single-phase flow,
constant flowline volume, ellipsoidal flow for transversely isotropic problems,
and so on, but those of a numerical character are also used.  In the case of our
FT-00, we assume “piecewise constant” volume flow rates, that is, time intervals
are characterized by flow rates that are constant, although that constant may
vary from interval to interval.  This assumption was made to enable exact,
closed form, analytical solutions based on superposition methods that are useful
for uncompromised results – results important to accurate forward modeling or
in validating approximate inverse methods.

Algorithm FT-06, introduced in Chin et al (2014), on the other hand, is a
numerical finite difference scheme that provides approximate solutions.
However, it is highly flexible.  For instance, (1) it can be used to model any type
of time-dependent flow rate variation (pumping schedules may be triangular,
trapezoidal, or even inputted as a numerical file, and (2) nonlinear gas transients
are also permitted, since linear superposition methods are not used.  In the same
way that our use of rectangles or triangles in determining area must be
“calibrated” by using an exact formula, FT-06 must be calibrated against FT-00
before first use in any application.  Now, FT-06 was developed for constant
flowline volumes that do not change in time.  In this chapter, we envision time-
varying flowline volumes, and on, our objective will be development of a
numerically stable method to model such effects.  The required calibration of
FT-06 to FT-00 is discussed in the earlier book; here, algorithm FT-06 is
extended to handle arbitrary changes that may be effected by mechanical
volume controls.

8.1  Transient Anisotropic Formulation for Ellipsoidal Source

In this section, the equations governing transient linear liquid nonlinear gas
flows are considered for formation tester applications. We will also solve the
general problem using numerical finite difference integration schemes.

8.1.1  Formulation for liquids and gases
For slightly compressible, single-phase liquids in Darcy flow, the linear

partial differential equation kv
2P/ z2 + kh ( 2P/ x2 + 2P/ y2 ) = c P/ t

applies.  When transient flows of gases are considered, this equation no longer
holds.  In the general case, Chin (2002) shows that

{kx(x,y,z)/ Pm+1/ x}/ x + {ky(x,y,z)/ Pm+1/ y}/ y

+ {kz(x,y,z)/ Pm+1/ z}/ z = c* Pm+1/ t       (8.1)

where P(x,y,z,t) represents pressure with t denoting time and x, y and z the
spatial coordinates.  Here  is the viscosity,  is the porosity, and kx, ky and kz
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are permeabilities in the x, y and z directions.  The dimensionless gas exponent
“m” characterizes background thermodynamic conditions.  It takes on the values

m = 1, for isothermal expansion
     = Cv/Cp, specific heat ratio for adiabatic expansion
     = 0, for constant volume processes
     = , for constant pressure processes                                        (8.2)

The asterisked quantity

c* =  m/P(x,y,z,t)                                                                      (8.3)
plays the role of a compressibility and has dimensions of compressibility – in
fact, we will show that it physically is the gas compressibility for an equivalent
liquid to be defined later.  However, its dependence on pressure renders
Equation 8.1 nonlinear and therefore not amenable to analytical solution.

The above system must be solved together with additional constraints.  The
required initial and farfield auxiliary conditions are, respectively, P(x,y,z,0) = P0

and P(x,y,z,t) = P0 as x2 + y2 + z2  with P0 being the pore pressure.  To
complete the boundary value problem specification, pumpout conditions
imposed at an effective ellipsoidal source surface  must be prescribed.  We
assume a transversely isotropic medium, with constant horizontal and vertical
permeabilities kh = kx = ky and kv = kz.  As in Chin (2014), we take  in the form

x2/kh + y2/kh + z2/kv = Rw
2 /(kh

2/3kv
1/3) (8.4)

where Rw is a dimensional “effective ellipsoidal radius,” which reduces to the
spherical radius in “x2 + y2 + z2 = Rw

2” for isotropic flows (where Rw would be
a true radius).  Its exact value is determined empirically using laboratory or field
data, and will, of course, depend on pad geometry, borehole curvature and so on.

In general, the pumpout boundary condition applied on the surface  can
be expressed in the form

     – q n dS – VC P/ t = Q(t) (8.5)

where q is the Darcy velocity vector, dS is a differential surface area, n is the
unit normal to dS, the area represents the entire closed surface, and Q(t) is the
prescribed total volume flow rate (the effects of skin damage at the nozzle, not
modeled in the above relationship, will be discussed separately).

Equation 8.5 expresses volume conservation at the source.  The VC P/ t
term models the effects of flowline storage, i.e., the compression and expansion
of fluid already within the formation tester hardware, where V is the flowline
volume and C is the compressibility of the fluid within the lines, not necessarily
equal to the formation fluid compressibility c.  In practical applications, C may
also be time-dependent – additionally, flowline composition may be affected by
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condensation, fluid segregation, phase changes and other physical effects
occurring within the flowline.

The closed surface integral at the left of Equation 8.5 represents the Darcy
flow contribution to the total volume flowrate, e.g., (k/ ) P/ r  4 Rw

2 in a
spherically symmetric isotropic flow.  In this expression, P/ r would represent
the pressure derivative with respect to the radial coordinate r and 4 Rw

2 would
represent the spherical surface area at the source radius Rw through which the
velocity (k/ ) P/ r flows.  However, the integral takes a much more
complicated structure in anisotropic media.  In transversely isotropic media, the
more general Darcy velocity takes the non-symmetric form

q = – (kh/ ) P/ x i – (kh/ ) P/ y j – (kv/ ) P/ z k (8.6)

where i, j and k are unit vectors in the x, y and z directions – to complicate
matters, only the velocity flux normal to the ellipsoidal surface in Equation 8.4
contributes to Q(t) – making the integral in Equation 8.5 somewhat unwieldy.

8.1.2  Similarity transform
Although Equations 8.1 to 8.6 are correct, they are not immediately useful

for analysis.  To simplify the appearance of the general formulation, we
introduce the dimensionless radial variable

r* = {x2/kh + y2/kh + z2/kv}1/2 (8.7)

Then, since kv
2/ z2 + kh ( 2/ x2 + 2/ y2 ) = 2/ r* 2 + 2/r* / r* holds,

Equation 8.1 takes on a spherically symmetric form given by Equation 8.8,
where we have additionally assumed that  is constant (in field practice, slight
variations of  with P may be handled by using average values) in order to
render mathematical simplifications.

Less obvious is the structure of the integral in Equation 8.5.  However, the
detailed analysis given in Chapter 5 of Chin (2014), which also applies to gas
flows without change, leads to the complementary spherically symmetric
boundary condition given by Equations 8.8 and 8.8.  The complete boundary
value problem can then be succinctly summarized, that is,

2Pm+1/ r* 2 + 2/r* Pm+1/ r* = c* Pm+1/ t  (8.8)
(4 Rw

2 kv
1/6 kh

1/3 / )  ( P/ r*)w - VC P/ t = Q(t) along (8.9)

P(x,y,z,0) = P0 (8.10)
P(x,y,z,t) = P0 as x2 + y2 + z2  (8.11)

Note that the partial differential equation in Equation 8.8, so far containing both
dimensional and nondimensional variables, is one for the function Pm+1 – the
coefficients shown arise from our use of Equation 8.7.  Also note that the Rw in
Equation 8.9 refers to the ellipsoidal surface in Equation 8.4.  We further
observe that Equation 8.9 does not include skin effects (the inclusion of skin
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effects would introduce a term proportional to 2P/ r t on the left-hand-side).
The above model assumes zero skin effects – skin is later considered
numerically in Equation 8.19.

8.1.3  Transient flow numerical modeling
We wish to develop a method suitable for both liquids and gases.  But for

nonlinear gas flows, linear superposition methods applicable to liquids cannot be
used.  Some authors linearize pressure-dependent coefficients about “suitable”
average values.  Such practices introduce uncertainties that are difficult to
quantify.  In the final analysis, a direct numerical solution of the transient
equations is required.  There are many strategies to pursue, each offering unique
advantages as well as disadvantages.  In this section, we assume transversely
isotropic formations that are infinite in extent – that is, we assume that time
scales are short enough (or dissipation strong enough) that the effects of lateral
boundaries associated with beds and bedding planes are negligibly small.  This
is a reasonable assumption for formation testers, since net volumes pumped are
not large but relatively small.

When this is the case, the dimensionless radial variable introduced in
Equation 8.7, namely, r* = {x2/kh + y2/kh + z2/kv}1/2, again provides the natural
means to describe pressure phenomena, and again the boundary value problem
described by Equations 8.8 to 8.11 applies.  Of course, solutions must now be
obtained numerically by direct time integration.  Ideally, it is best to draw upon
existing stable methods developed for transient liquid flows, e.g., as developed
in Chin (2002) – and fortunately, this practical alternative is possible.

In order to pursue this strategy, we observe that the second derivative of
the function f m+1 can be expanded in the form

d2fm+1/dr2 = (m+1) [fm d2f/dr2 + mfm-1(df/dr)2]  (m+1)fm d2f/dr2 (8.12)

where the small quadratic term is negligible compared to other O(1) terms (also
note that dfm+1/dr = (m+1)fm df/dr).  This is the conventional assumption used in
deriving Equations 8.1 and 8.8 for both spherical and cylindrical flows.
Therefore, we can consistently apply Equation 8.12 and replace Equation 8.8 by

2P/ r*2 + 2/r* P/ r* = c* P/ t  (8.13)
Equation 8.13 is interesting in its own right, taking the form of the

differential equation for liquid Darcy flow without “m” appearing explicitly –
except by way of the pressure-dependent c* = m/P in Equation 8.3.  In other
words, the flow of a gas behaves like the flow of a linear liquid but with a
pressure-dependent compressibility to leading order.  This “local linearization” –
not a real linearization at all – arises in other areas of continuum mechanics, for
example, high-speed aerodynamics, nonlinear elasticity, and so on.

When formation porosity and permeabilities are both fixed, the lumped
parameter “ c*” is the only one that distinguishes liquid from gas diffusion.  On
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this basis, we might ask, “How diffusive is a typical liquid relative to a typical
gas?”  For water,  = 1 cp and c = 0.000003 psi-1, so that c = 0.000003 cp/psi –
but for an isothermal gas, one might have m = 1,  = 0.01 cp, P = 5,000 psi,
leading to c* = (0.01 cp)(1)/(5,000 psi) or 0.000002 cp/psi.  Thus, the two
flows are comparable – assuming, again, the same porosity and permeabilities.
However, this is not to say that linear superposition methods are applicable to
gas modeling – they are not.

8.1.4  Finite difference equation
Because Equation 8.13 is nonlinear, classical analysis methods employing

Laplace transforms and superposition integrals cannot be used.  In this section,
an implicit finite difference integration algorithm is developed.  Finite difference
models replace the continuum space of r by the discretized space r1, r2, r3 and so
on, and similarly the time space of t by t1, t2, t3 and so on.  In general, P(r,t) is
approximated by P(ri,tn) or simply Pi,n.

Consider, for example, a continuous function f(r) with continuous first and
second derivatives as shown in Figure 8.1.  Now, from the definition of the
derivative, it is clear that

df/dr|i = (fi+1 – fi-1)/(ri+1 – ri-1) (8.14)

Figure 8.1.   Finite difference discretization.
Then, twice application of Equation 8.14 leads to

d2f/dr2|i = 2 (fi+1 – fi) /{(ri+1 – ri) (ri+1 – ri-1)} (8.15)
– 2 (fi – fi-1) /{(ri – ri-1) (ri+1 – ri-1)}

Equations 8.14 and 8.15 evaluate derivatives at “i” using function values to the
left and right, and for this reason, represent “central difference” approximations.
For the same mesh, such are more accurate than backward or forward difference
schemes based on one-sided evaluations.  Equation 8.13 contains both space and
time derivatives.  Consider the present time level tn.  If the spatial terms are
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approximated at the (n-1)th time level and P/ t is represented by the backward
difference (Pi,n – Pi,n-1)/ t, where the time step t may vary with time, an explicit
formula for Pi,n can be obtained in terms of quantities given earlier.  This
“explicit” method, yielding a formula amenable to simple pocket calculator
analysis, is extremely unstable numerically and is almost never used in practice.

Instead, we approximate all spatial derivatives at the present nth time level.
Then the use of Equations 8.14 and 8.15 in 8.13 leads to, upon some
rearrangement, a finite difference representation of the form

[1/(r*
i – r*

i-1)  – 1/r*
i] Pi-1,n (8.16)

– [1/(r*
i+1 – r*

i) + 1/(r*
i – r*

i-1) + c*(r*
i+1 – r*

i-1)/(2 t)] Pi,n

+ [1/(r*
i+1 – r*

i) + 1/r*
i] Pi+1,n

= – c*(r*
i+1 – r*

i-1)Pi,n-1/(2 t)

8.1.5 Boundary conditions –
flowline storage with and without skin effects

We now turn to the zero skin pumpout boundary condition (4 Rw
2 kv

1/6

kh
1/3 / )  ( P/ r*)w – VC P/ t = Q(t) in Equation 8.9, which we emphasize is

physically applied at the actual ellipsoidal surface

x2/kh + y2/kh + z2/kv = Rw
2/(kv

1/3kh
2/3) (8.17)

and not at a virtual origin.  In terms of the dimensionless radius r* in our
Equation 8.7, Equation 8.17 takes the form x2/kh + y2/kh + z2/kv = r*

w
2 where

r*
w = Rw/(kv

1/6kh
1/3).

How is this interpreted and used?  For simplicity, first consider an isotropic
flow with a permeability k – Equation 8.17 would describe the sphere x2 + y2 +
z2 = Rw

2 where Rw is an actual radius, while the dimensionless radius would take
on the value r*

w = Rw/k1/2.  In other words, the dimensionless domain is defined
on Rw/k1/2  r* <  while the dimensional time domain would be defined on the
range 0  t < .

For an anisotropic problem, the dimensional Rw would represent an
effective radius determined empirically using laboratory or field data.  The
dimensionless radius r*

w = Rw/(kv
1/6kh

1/3) is calculated from available
permeabilities.  Then the dimensionless domain Rw/(kv

1/6kh
1/3)  r* <  is the one

selected for finite difference computation.  Once P(r*,t) is computationally
available, source point values are obtained at r*

w = Rw/(kv
1/6kh

1/3) while
pressures at the observation probe are found at r* = L {sin2 /kh + cos2  /kv}1/2

where L is the probe separation and  is the dip angle (this is derived later).
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Now consider actual discretizations.  If i = 1 denotes the surface of the
ellipsoid in Equation 8.17, so that i = 2 is the node external to i = 1, our
Equation 8.9 can be differenced as

- [( )/(r2 – r1) + VC/ t] P1,n + ( )/(r2 – r1) P2,n = - VCP1,n-1/ t + Qn (8.18a)

where ( ) denotes (4 Rw
2 kv

1/6 kh
1/3 / ) and Qn = Q(tn).  The initial and farfield

conditions in Equations 8.10 and 8.11 become, respectively,
Pi,1 = P0   (8.18b)
Pimax,n = P0   (8.18c)

where i = imax is a sufficiently large index corresponding to farfield locations
which – owing to Darcy diffusion – are unlikely to be affected by pump actions.

If skin effects are completely ignored, the boundary condition is given by
Equation 8.9, that is, (4 Rw

2 kv
1/6 kh

1/3/ ) P/ r* – VC P/ t = Q(t), where P is
the sandface pressure.  When skin is to be accounted for, with S being the
dimensionless skin factor, there exists an additional pressure drop through the
surface resistance.  If P again denotes sandface pressure, the source pressure
boundary condition takes the form

 (4 Rw
2 kv

1/6 kh
1/3/ ) P/ r* – VC P/ t (8.19)

+ {RwVCS/(kv
1/6 kh

1/3)} 2P/ t r* = Q(t)

with an additional second-order mixed derivative term.  The pressure inside the
tool, that is, the pressure within the source (external to the reservoir) is
computed from

Pw = P – {RwS/(kv
1/6 kh

1/3)} P/ r* (8.20)
Equation 8.20 does not apply at the observation probe.

8.1.6  Detailed time integration scheme
The numerical integration of Equation 8.13 is straightforwardly performed.

The state of the reservoir initially is described by Equation 8.18b for n = 1.
Consider the next time step n = 2 and write Equation 8.16 for the internal nodes
i = 2, 3, 4, . . . , imax-1 to obtain imax-2 equations in imax unknowns.  Two
additional constraints are offered by Equations 8.18a and 8.18c.  Each of the
equations in the resulting coefficient matrix contains at most three unknowns.
Such tridiagonal equations are very efficiently inverted.  For example, a matrix
with N unknowns requires O(3N) arithmetic operations for inversion versus,
say, O(N3) for Gaussian elimination.

Once the inversion is accomplished, transient pressure solutions are
available for n = 2, and the process is repeated for n = 3 and so on.  Explicit
schemes, as we have noted, are unstable and lead to unusable solutions.  In
contrast, the integration of Equation 8.16 is stable and allows larger time steps.
This stability arises from the diagonal dominance of the scheme developed here
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– that is, the absolute value of the middle diagonal exceeds the sum of the
absolute values of the sidebands.

Equation 8.18a applies to skin-free problems.  When the influence of skin
cannot be ignored, stable numerical time integrations are achieved by computing
the second-order mixed derivative in Equation 8.19 using the formula 2P/ t r*

= (P2,n – P2,n-1 – P1,n + P1,n-1)/{(r*
2 – r*

1) t} at the sandface i = 1 and time t = tn.

8.1.7  Observation probe response
The pressure response at the source probe does not depend on dip angle –

it is, of course, a function of all other fluid, formation and tool properties
discussed so far.  Observation probe response depends on probe separation L
and dip angle , e.g., see Figure 8.2. In our finite difference calculations, the
dimensional pressure P(r*,t) in Equation 8.13 is stored as an output array file.  It
can be interrogated for pressure values for all values of L and .   The required r*

is found by setting x2 + y2 = L2 sin2  and z = L cos  in Equation 8.7 to produce
r* = L {sin2 /kh + cos2  /kv}1/2.  If this value does not coincide with a spatial
node, its associated pressure can be obtained by linear interpolation of pressure
values obtained at the observation point’s left and right pressure values.

Figure 8.2.   Dip angle  in transversely isotropic media.
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8.2  FT-06 Software Interface and Example Calculations

A powerful Windows-based graphical user interface has been designed to
host several simulation models and analytical limits developed.  The numerical
transient gas and liquid solver screen menu system is displayed in Figure 8.3a,
showing text boxes for fundamental input parameters.  Again, FT-06 applies to
constant flowline volumes which do not change in time – extensions to FT-07
for time-varying problems are discussed later.  The volume flowrate schedule
shown at the right, easily edited by the user, can be displayed on-screen by
clicking “Display.”  Note that both continuous and discontinuous rates, which
can be positive and negative, can be inputted in any order to model very general
operating conditions.

Figure 8.3b emphasizes that both (nonlinear) gas and (linear) liquid
transient responses are handled by two program codes incorporated within the
simulator.  The default selection chooses “liquid.”  If this is changed to “gas,” a
message screen appears that suggests typical values of the thermodynamic
exponent needed to model variable compressibility appropriately.  If the user
returns to “liquid,” a reminder appears which gives the constant compressibility
assumed by water.  Note how the label of the corresponding input boxes
alternates between “Dimensionless exponent M” and “Compressibility (1/psi).”

Very often, it is inconvenient to construct rate schedules at the keyboard –
very complicated transients, in fact, cannot be inputted.  Previously stored
schedules representing fully transient rates, e.g., created by other compiled
programs, spreadsheet routines or actual tool production profiles, may be stored
on the hard drive for use in subsequent applications.  Entire ASCII file libraries
of rate schedules can be created following simple rules and stored for future use.
This option is activated by checking “Read transient flow rate from file” at the
bottom right of the input screen, as shown in Figure 8.3c.  Discontinuous
piecewise constant rates are used in conventional tester applications to model
step changes, while continuous rates, e.g., the triangular or trapezoidal functions,
can be used to model gas pumping or non-ideal pump piston effects.  Short or
long periodic flowrates, for instance, can be used to facilitate “pulse interaction”
inverse analysis, e.g., see Chin et al (2014) or “phase delay” permeability
prediction (see Chapter 4 for details) in a completely nonlinear setting.

Checking this box overrides the displayed schedule, causing two messages
to appear.  The first reminds the user that the on-screen schedule will be ignored,
while the second informs him that fine time increments of 0.01 sec between flow
rate entries are (and must be) assumed for all stored rate files.  Figure 8.3d
displays the list box that appears once the “read file” option is selected.  The
desired rate is chosen by clicking on the appropriate “rte” file previously
constructed and named by the user.  This produces the flow rate display shown.
Clicking on “Select” activates the selection for simulation purposes.
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The double-pulse displayed, incidentally, is used in powerful source-to-
observation-probe “phase delay” studies which assess permeability in tight
formations. Additional simulation options are possible.  These include, for
example, time-dependent flowline compressibilities that model liquid-gas phase
segregation within the tool, initial spatial grid selections adjacent to the spherical
source, more complicated viscosity functions, and so on.

Again, all gas integrations involve a nonlinear partial differential equation
with pressure-dependent compressibilities.  Figure 8.3e illustrates one example
of an extended user interface developed recently.  Unlike the basic model shown
in Figure 8.3a, the extension allows users to (1) specify the spherical
permeability ks and the anisotropy kv/kh instead of kv and kh – text labels, as
shown, automatically change when different options are selected, (2) define the
initial finite difference spatial grid as a percentage of the spherical (ellipsoidal)
radius, and (3) prescribe a dimensionless geometric factor to model changes to
source radius as they would depend on borehole size, pad dimensions and so on.

Figure 8.3a.   User interface, transient gas and liquid solver.
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Figure 8.3b.   Applicability to gas and liquid flows.

Figure 8.3c.   Selecting “read flow rate from file.”
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Figure 8.3d.   Flowrate list box and example stored entry.
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Figure 8.3e.   Extended interface (below, alternate permeability option).

Figure 8.4a gives results for a simple constant rate drawdown-buildup test,
a flowrate assumption suitable for liquid pumping.  As noted earlier, gases do
not displace immediately with piston motion, since they compress before the
onset of motion.  Thus, there is inherent delay – the rate assumption in our
Figure 8.4b is more realistic and the corresponding pressure response is shown
(a trapezoidal assumption is just as easily inputted).  In Figure 8.4c, by contrast,
gas is initially withdrawn and subsequently injected into the formation.

In each of these runs, time steps of 0.1 sec are assumed over a 100 sec
simulation.  All source probe response points are plotted, with the smoothness of
the line plots highlighting the stability of the implicit scheme.  Figure 8.5 shows
interpolated pressure values at a distant observation probe, plotted for the entire
time history of the simulation.  All of the prior examples assume negligible skin
effects.  In Figure 8.6, transient source probe liquid pressure responses are given
for three values of the dimensionless skin coefficient S, namely, S = 0, 1 and 10,
for the flowrate schedule shown.  The results provide an indication of the added
pressure drop associated with pumping fluid through a skin resistance.  Required
integration times are about one second on typical personal computers for a one-
hundred node variable spatial mesh system.
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Figure 8.4a.   Source probe response, simple drawdown and buildup.

Figure 8.4b.   Source probe response, triangular pump rate function.

Figure 8.4c.   Source probe, gas withdrawal followed by injection.

Figure 8.5.   Observation probe at 10 cm, large pressure diffusion.
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Figure 8.6.   Effect of nonzero skin at the source probe.

8.3  Time-Varying Flowline Volume Model

In our model for time-varying flowline volume, the constant V is replaced
by a user-specified function of time V(t).  The modified finite difference
algorithm must be designed so that the numerical integrations are stable despite
rapid time variations.  If the spatial terms are approximated at the (n-1)th time
level and P/ t is represented by the backward difference (Pi,n – Pi,n-1)/ t, where
the time step t may vary with time, an explicit formula for Pi,n can be obtained
in terms of quantities given earlier.  This “explicit” method, yielding a formula
amenable to simple pocket calculator analysis, is extremely unstable numerically
and is almost never used in practice.  Instead, we approximate all spatial
derivatives at the present nth time level, thus yielding a set of “implicit”
equations that must be inverted by tridiagonal matrix solvers.  Similarly, we
evaluate V(t) at t = tn using V(tn) or Vn.  The diagonally dominant nature of the
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three-band equation system provides sufficient numerical stability to render
even rapid changes in V(t) stable, thus leading to useful computational results.
This simulator supports hardware design applications and software interpretation
development, e.g., use of variable flowline changes in time to shape pulses for
easier detection in phase delay methods.  We now compare FT-06 to FT-07.

8.3.1 Example 1, Software calibration

We again emphasize that FT-00 provides an exact analytical solution to the
general formulation posed, whereas FT-06 and FT-07 solve the problem
numerically and approximately but with fewer engineering restrictions.  In order
to establish confidence in any application, the exact and computational models
must be “calibrated” at an agreed upon point.   Figure 8.7a displays software
input screens for FT-00 and FT-06 set up to solve identical physical problems.

In general, one cannot expect numerical solutions to agree with exact ones
for any choice of grid.  In Figure 8.7a, note the presence of a “Grid Parameters”
menu with three adjustable inputs, that is, spatial grid expansion rate, initial
spatial grid size, and time step.  Typically, accuracy requires that all of these
variables be small in some sense, in order to reduce numerical truncation errors.
Following these guidelines, some trial-and-error allows us to match source
probe pressure transient responses, say, and when this is achieved, changes in
other FT-06 input parameters may be undertaken with confidence.  Note that it
is generally not possible to match everything.  For instance, matching source
response may lead to differences in observation probe behavior, and vice-versa.
The objectives will depend on the application and are defined by the user.
Figure 8.7a illustrates one example where FT-00 and FT-06 both produce nearly
identical source probe responses, as shown in Figures 8.7b and 8.7c.

Still another modeling category arises when flowline volumes are not
constant but variable.  For example, sampling chambers may fill-up or empty
liquids or gases, mechanical valves may open or shut in time, and so on.  As a
practical matter, we address the question, “What types of  transient pressure
responses are created which can be analyzed by inverse methods to provide
useful predictions for mobility and pore pressure – and, in particular, using
early-time data when mobilities are low and flowline volumes are large?  For
this purpose, a modified version of FT-06 was developed to handle flowline
volumes that may change arbitrarily in time, which we label as FT-07.  This
required special numerical operators that acted stably when large changes in
flowline volume are executed over short time intervals.  The basic FT-07 menu
is identical to that for FT-06, as shown in Figure 8.7d, except for one difference:
at the bottom, a constant flowline volume input box is replaced by a “Setup”
button.  When this button is pressed, the graphical user menu shown appears and
a fairly general flowline history can be defined.
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Figure 8.7a.   FT-00 (lower) and FT-06 (upper) screens
solving identical physical problem.
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Figure 8.7b.   FT-00 source probe pressure

Figure 8.7c.   FT-06 source probe pressure

Clicking “Solve,” as before, automatically creates tabulated solutions and
line plots for transient source and observation probe responses, assumed volume
flow rate history, as well as time-dependent flowline volume.  In Figure 8.7e, we
simply re-ran the “200 cc” simulations already considered, simply to show that a
solution identical to that for FT-06 is obtained.  However, in Figures 8.7f and
8.7g we assume a drastically different flowline volume with substantial changes
in time.  The absence of “wiggles” demonstrates that we have computed the
solutions stably.
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Figure 8.7d.   FT-06 and FT-07 differences.
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Figure 8.7e.  FT-07 source probe pressure (200 cc flowline volume)
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Figure 8.7f.   FT-07 source probe pressure (highly variable flowline volume)
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Figure 8.7g.   FT-07 volume flow rate and flowline volume variations
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8.3.2  Example 2, Simple interpretation using numerical pressure data

In this second example, we use numerical model FT-07 to create the source
probe pressure transient response for a flowline volume of 1000 cc.  We wish to
determine if the information in the transient curve can be interrogated to predict
mobility and pore pressure under the present low mobility, early-time, transient
environment.  We could have used the more exact FT-00 solver to address this
question, however, we use FT-07 because ultimately we will ask the same
question for time-dependent flowline volumes.

Figure 8.8a.   Constant flowline volume of 1,000 cc.
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Figure 8.8b.  Numerical solutions.
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Both FT-06 and FT-07 solutions are tabulated and plotted as indicated
earlier.  Figure 8.8b shows the numerical solution obtained for the inputs in
Figure 8.8a.  The first column gives elapsed time in seconds, the second
provides volume flow rate in cc/s, while the third lists the pressure obtained at
the source probe.  Now, we turn to a prior algorithm, namely “pta-dd-3-run-
with-rft-numbers.exe” developed to predict mobility and pore pressure from the
initial drawdown history for a low mobility application using only three-point
{t,p(t)} data.  The algorithm is discussed in Chapter 3, however, the screen
dumps showing assumptions and history yield the following results using data
from 1, 2 and 4 seconds –

C:\pta-dd-3-run-with-rft-numbers-500-iterations <Return>

Use decimals after all integers!

Volume flow rate (cc/s): 1.
Pump probe, radius (cm): 1.
Probe, geometric factor: 1.
1st Point Time T1 (sec): 1.
      Pressure P1 (psi): 24716.
2nd Point Time T2 (sec): 2.
      Pressure P2 (psi): 24503.
3rd Point Time T3 (sec): 4.
      Pressure P3 (psi): 24223.

    Run    Error  P0(psi)  Md/Cp
      1.  34.2 %   24929   0.006
     20.  32.3 %   24933   0.109
     30.  31.3 %   24935   0.161
     40.  30.2 %   24937   0.211
     50.  29.2 %   24939   0.260
     75.  26.5 %   24945   0.376
    100.  23.7 %   24951   0.483
    125.  20.9 %   24957   0.581
    150.  17.9 %   24963   0.672
    175.  14.9 %   24969   0.755
    200.  11.7 %   24976   0.832
    225.   8.5 %   24982   0.902
    250.   5.1 %   24989   0.966
    275.   1.6 %   24996   1.024
    280.   0.9 %   24997   1.035
    281.   0.8 %   24998   1.037
    282.   0.7 %   24998   1.039
    283.   0.5 %   24998   1.041
    284.   0.4 %   24998   1.043
    285.   0.2 %   24999   1.045
    286.   0.1 % 24999   1.047
Stop - Program terminated.

From Figure 8.8a, the assumed mobility is 1 md/1 cp or 1 md/cp while the
pore pressure is 25,000 psi.  At 286 iterations, requiring approximately 1 second
of computation on Intel Core i5 machines, the converged values of 1.047 md/cp
and 24,999 psi are extremely good. This shows that the numerically calculated
pressures are reliable and represent physically viable solutions.
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8.3.3  Example 3, Simple interpretation using numerical pressure data

Here we re-run above example with a flowline volume of 2000 cc, all
parameters otherwise unchanged.

Figure 8.9a.   Constant flowline volume of 2,000 cc.
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Here we increase the flowline volume to 2,000 cc, again using FT-07 to
create forward simulation solutions.  The inverse solution history is shown
below, together with time and pressure inputs obtained from the tabulated file.

C:\pta-dd-3-run-with-rft-numbers <Return>

Use decimals after all integers!

Volume flow rate (cc/s): 1.
Pump probe, radius (cm): 1.
Probe, geometric factor: 1.
1st Point Time T1 (sec): 1.
      Pressure P1 (psi): 24846.
2nd Point Time T2 (sec): 2.
      Pressure P2 (psi): 24713.
3rd Point Time T3 (sec): 4.
      Pressure P3 (psi): 24499.

    Run    Error  P0(psi)  Md/Cp
      1.  19.4 %   24979   0.009
     20.  17.1 %   24981   0.174
     40.  14.6 %   24984   0.338
     60.  12.0 %   24987   0.492
     80.   9.4 %   24990   0.637
    100.   6.6 %   24992   0.773
    120.   3.9 %   24995   0.900
    140.   1.0 %   24998   1.020
    141.   0.8 %   24999   1.025
    142.   0.7 %   24999   1.031
    143.   0.6 %   24999   1.037
    144.   0.4 %   24999   1.042
    145.   0.3 %   24999   1.048
    146.   0.1 %   24999   1.054
Stop - Program terminated.

Again, the predicted 1.054 md/cp and 24,999 psi agree extremely well with
inputted FT-07 values.  This shows that the numerically calculated pressures are
reliable and represent physically viable solutions.
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8.3.4  Example 4, Simple interpretation using low permeability data

Here we re-run the “2,000 cc” case in Example 3, but reduce permeability
ten-fold.  Now, the inputted mobility is 0.1 md/cp, while the prediction gives
0.128 md/cp – a very acceptable value.

Figure 8.10a.   Large constant flowline volume, extremely low mobility.
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C:\pta-dd-3-run-with-rft-numbers <Return>

Use decimals after all integers!

Volume flow rate (cc/s): 1.
Pump probe, radius (cm): 1.
Probe, geometric factor: 1.
1st Point Time T1 (sec): 1.
      Pressure P1 (psi): 24835.
2nd Point Time T2 (sec): 2.
      Pressure P2 (psi): 24672.
3rd Point Time T3 (sec): 4.
      Pressure P3 (psi): 24355.

    Run    Error  P0(psi)  Md/Cp
      1.   2.6 %   24998   0.007
      5.   2.0 %   24998   0.036
     10.   1.3 %   24999   0.072
     15.   0.6 %   25000   0.107
     16.   0.4 %   25000   0.114
     17.   0.3 %   25000   0.121
     18.   0.1 %   25000   0.128 very good
Stop - Program terminated.

8.3.5  Example 5, Simple interpretation using numerical pressure data

We re-run the foregoing example which assumed an extremely low
permeability, but now, assume a rapidly increasing flowline volume that quickly
reaches 5,000 cc.  Calculated results for this unusual flowline history are shown
below.  We were motivated by the following challenge: what does it take to
deliberately “crash” our inverse method?  In this extreme example, our pore
pressure of 28,726 psi over-predicts the exact value by more than 3,000 psi,
while the mobility of 0.172 md/cp is not too different from the assumed 0.1
md/cp value.  More work is in progress to test the limits of our inverse method
under highly transient conditions.
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Figure 8.11a.   Rapidly increasing flowline volume, very low
permeability and source probe response.
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Figure 8.11b.   Volume flow rate and flowline volume plots.
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C:\pta-dd-3-run-with-rft-numbers-10000-iterations <Return>

Volume flow rate (cc/s): 1.
Pump probe, radius (cm): 1.
Probe, geometric factor: 1.
1st Point Time T1 (sec): 1.
      Pressure P1 (psi): 23491.
2nd Point Time T2 (sec): 2.
      Pressure P2 (psi): 22205.
3rd Point Time T3 (sec): 4.
      Pressure P3 (psi): 21812.

    Run    Error  P0(psi)  Md/Cp

    900.  46.6 %   26654   0.224
    950.  43.0 %   26816   0.220
    976.  41.1 %   26903   0.218
   1000.  39.3 %   26986   0.216
   1050.  35.3 %   27165   0.211
   1092.  31.8 %   27323   0.207
   1100.  31.1 %   27354   0.206
   1200.  22.0 %   27760   0.195
   1300.  11.9 %   28209   0.184
   1400.   0.6 %   28706   0.172
   1401.   0.5 %   28711   0.172
   1402.   0.3 %   28716   0.172
   1403.   0.2 %   28721   0.172
   1404.   0.1 %   28726 0.172
Stop - Program terminated.
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8.3.6  Example 6, Simple interpretation using numerical pressure data

In Example 5, a mobility of 0.1 md/cp was selected for inverse evaluation;
here, we increase it to 1 md/cp to observe anticipated improvements. Again,
from Figure 8.12a, note that flowline volume is highly transient during the first
five seconds. The prediction of 25,798 psi and a mobility of  0.634 md/cp is
acceptable, close to the assumed 25,000 psi and 1 md/cp.

Figure 8.12a.   Mobility, 1 md/cp evaluation.
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Figure 8.12b.  Volume flow rate, flowline volume, source probe pressure.

C:\pta-dd-3-run-with-rft-numbers-10000-iterations <Return>

Volume flow rate (cc/s): 1.
Pump probe, radius (cm): 1.
Probe, geometric factor: 1.
1st Point Time T1 (sec): 1.
      Pressure P1 (psi): 24167.
2nd Point Time T2 (sec): 2.
      Pressure P2 (psi): 23949.
3rd Point Time T3 (sec): 4.
      Pressure P3 (psi): 23916.

    Run    Error  P0(psi)  Md/Cp

   1500.  44.5 %   25144   0.949
   1600.  37.6 %   25246   0.883
   1700.  29.9 %   25360   0.818
   1800.  21.4 %   25485   0.756
   1900.  12.0 %   25624   0.697
   2000.   1.5 %   25777   0.641
   2004.   1.0 %   25784   0.639
   2005.   0.9 %   25785   0.638
   2006.   0.8 %   25787   0.638
   2007.   0.7 %   25789   0.637
   2008.   0.6 %   25790   0.637
   2009.   0.5 %   25792   0.636
   2010.   0.4 %   25794   0.635
   2011.   0.3 %   25795   0.635
   2012.   0.1 %   25797   0.634
   2013.   0.0 %   25798  0.634 (not bad, close to 25000 and 1 md/cp)
Stop - Program terminated.
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8.3.6  Example 7, Enhancing phase delay detection in very low
permeability environments

This example represents the most important application of the time-varying
flowline algorithm and addresses phase delay detection in very low mobility
environments.  We will first give an example where a useful pressure signal
cannot be found at all at the observation probe, that is, consider a mobility of 0.1
md/cp with a constant flowline volume of 1,000 cc.  The relevant data are
presented in Figures 8.13a and 8.13b.  On the other hand, if the flowline volume
were constant at 10 cc, Figures 8.13d and 8.13d indicate that a measurable phase
is possible.  Figure 8.13e shows a flowline volume that dynamically decreases
from 1,000 cc to 10 cc in fifteen seconds.  In Figure 8.13f, we find that the
observation probe pressure reappears and provides time data for phase analysis.

Figure 8.13a.   Very large flowline volume of 1,000 cc.
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Figure 8.13b.  No measurable pressure at observation probe (bottom).
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Figure 8.13c.   Very small flowline volume of 10 cc.
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Figure 8.13d.   Detectable phase signal at observation probe (bottom).
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Figure 8.13e.   Time-varying flowline volume.
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Figure 8.13f.   Detectable phase at observation probe (bottom).
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9
Closing Remarks

Our book Formation Testing: Pressure Transient and Contamination
Analysis, published as recently as 2014, aside from exact forward models like
FT-00 for pressure analysis and fully numerical multiphase approaches for
clean-up investigations, focused on inverse models that predicted permeabilities
when steady-state pressure drops at source and observation probes were
available.  In fact, we developed exact analytical models for both liquids and
gases at general dip angles – and successfully showed how horizontal and
vertical permeabilities could be predicted – that were consistent with the
assumptions used to create the synthetic pressure data.  That work, while very
important, applied only to medium-high mobility applications where pressure
equilibrates rapidly.  We could have stopped with that research, but we didn’t.
One strong benefit in having good theoreticians interact with experienced
hardware designers is the synergy that develops when both parties are attuned to
the needs of the commercial marketplace.

And in our case, having celebrated a decade-long partnership, and getting
to know and understand each other well, this led to the resolution of several
longstanding questions that plagued modern low-mobility well logging.  How
can we quickly predict spherical permeabilities using drawdown data?  Buildup
pressures?  Double-drawdown and buildup data?  And even more perplexing,
how can we quickly predict both horizontal and vertical permeabilities using
standard dual-probe tools?  By “quickly,” we meant really quick: seconds
instead of minutes, whereas the previous norm had been many minutes and even
hours.  And so, we invented advanced phase delay methods.  When this suffered
at extremely low mobilities, we developed time-varying flowline models that
help us automatically “fine tune” our tools to produce sharper observable pulses.
To handle high pumping speeds, we revisited earlier multiphase models and
added inertial Forchheimer corrections.  At this writing, experimental test
fixtures that help us calibrate new tools to our software models are being
designed and built.  As always, CNOOC/COSL management has allowed us
open access to its people and technology.  In the following pages, we share some
of our thoughts with our readers – showing that people develop technology.
And they continue in these endeavors even with oil prices in free fall.
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Figure 9.1.   Dual-probe formation tester.

Figure 9.2.   Single-probe tool, calibration.
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Figure 9.3.   Tool assembly.
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Figure 9.4.   Tool assembly.
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Figure 9.5.   COSL test well in Beijing, formation tester being lowered.
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Figure 9.6.   Evaluating the dual-probe formation tester.
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Figure 9.7.   Chin, Zhuang, Feng and Zhou discussing phase delay.

Figure 9.8.   Software performance on Microsoft Surface 3 tablet.
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Figure 9.9.   Formation tester with multiple observation probes (top),
analogous to resistivity tool with multiple receiver coils.
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Figure 9.10.   Zhou rehearses talk for Middle East petroleum conference.

Figure 9.11.   Chin explains how FT-06 and FT-07 model non-ideal pumping.
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Figure 9.12.   Chief Engineer Feng with CAD drawings and layout.

Figure 9.13.   More discussions and presentations.
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Figure 9.14.   COSL seminar at Stratamagnetic Software’s Houston offices (top)
– Zhuang and Chin discuss progress at the day’s end (bottom).
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