SECOMD EDMTHOM with NEW \& UPDATED MATERIAL

All the Formulas You Need to Solve Drilling and Production Problems

Norton J. Lapeyrouse

Formulas and Calculations for Drilling, Production, and Workover

Second Edition

Formulas and Calculations for Drilling, Production, and Workover

Second Edition

Norton J. Lapeyrouse

\section*{| \mathbf{G} | \mathbf{P} |
| :---: | :---: |
| \mathbf{P} | |}

Gulf Professional Publishing an imprint of Elsevier Science

Gulf Professional Publishing is an imprint of Elsevier Science.
Copyright © 2002, Elsevier Science (USA). All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Recognizing the importance of preserving what has been written, Elsevier-Science prints its books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data

Lapeyrouse, Norton J.
Formulas and calculations for drilling, production, and workover /
Norton J. Lapeyrouse.-2nd ed.
p. cm .

Includes index.
ISBN 0-7506-7452-0

1. Oil wells-Management-Mathematics. I. Title.

TN871 L287 2002
622'.3382-dc21
2002074579

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.
The publisher offers special discounts on bulk orders of this book.
For information, please contact:
Manager of Special Sales
Elsevier Science
200 Wheeler Road
Burlington, MA 01803
Tel: 781-313-4700
Fax: 781-221-1615
For information on all Gulf publications available, contact our World
Wide Web home page at: http://www.gulfpp.com
1098765432
Printed in the United States of America

Contents

PREFACE vii
1 BASIC FORMULAS 1Pressure Gradient 1. Hydrostatic Pressure 3. Converting Pressure intoMud Weight 4. Specific Gravity 5. Equivalent Circulating Density 6.Maximum Allowable Mud Weight 7. Pump Output 7. AnnularVelocity 9. Capacity Formulas 12. Control Drilling 19. BuoyancyFactor 20. Hydrostatic Pressure Decrease When Pulling Pipe out ofthe Hole 20. Loss of Overbalance Due to Falling Mud Level 22.Formation Temperature 24. Hydraulic Horsepower 25. Drill Pipe/DrillCollar Calculations 25. Pump Pressure/Pump Stroke Relationship 27.Cost per Foot 28. Temperature Conversion Formulas 29.
2 BASIC CALCULATIONS 31
Volumes and Strokes 31. Slug Calculations 33. AccumulatorCapacity 37. Bulk Density of Cuttings 41. Drill String Design(Limitations) 42. Ton-Mile Calculations 44. Cementing Calculations 47.Weighted Cement Calculations 53. Calculations for the Number ofSacks of Cement Required 54. Calculations for the Number of Feet toBe Cemented 57. Setting a Balanced Cement Plug 61. DifferentialHydrostatic Pressure Between Cement in the Annulus and Mud Insidethe Casing 65. Hydraulicing Casing 66. Depth of a Washout 70. LostReturns-Loss of Overbalance 71. Stuck Pipe Calculations 72.Calculations Required for Spotting Pills 75. Pressure Required toBreak Circulation 79.
3 DRILLING FLUIDS 81
Increase Mud Density 81. Dilution 85. Mixing Fluids of Different Densities 86. Oil-Based Mud Calculations 87. Solids Analysis 91. SolidsFractions 95. Dilution of Mud System 96. Displacement-Barrels ofWater/Slurry Required 97. Evaluation of Hydrocyclone 97. Evaluationof Centrifuge 99.
4 PRESSURE CONTROL 103
Kill Sheets and Related Calculations 103. Prerecorded Information 115. Kick Analysis 124. Pressure Analysis 137.Stripping/Snubbing Calculations 139. Subsea Considerations 144.Workover Operations 153. Controlling Gas Migration 157. GasLubrication 159. Annular Stripping Procedures 161.
5 ENGINEERING CALCULATIONS 165
Bit Nozzle Selection-Optimized Hydraulics 165. HydraulicsAnalysis 169. Critical Annular Velocity and Critical Flow Rate 173."d" Exponent 174. Cuttings Slip Velocity 175. Surge and SwabPressures 179. Equivalent Circulation Density 187. Fracture GradientDetermination-Surface Application 190. Fracture GradientDetermination--Subsea Application 194. Directional DrillingCalculations 197. Miscellaneous Equations and Calculations 203.
APPENDIX A 209
APPENDIX B 217
INDEX 221

Preface

Over the last several years, hundreds of oilfield personnel have told me that they have enjoyed this book. Some use it as a secondary reference source; others use it as their primary source for formulas and calculations; still others use it to reduce the volume of materials they must carry to the rig floor or job site.

Regardless of the reason people use it, the primary purpose of the book is to provide a convenient source of reference to those people who don't use formulas and calculations on a regular basis.

In the preface to the first edition, I made reference to a driller who carried a briefcase full of books with him each time he went to the rig floor. I also mentioned a drilling supervisor who carried two briefcases of books. This book should reduce the number of books each of them needs to perform his job.

This book is still intended to serve oilfield workers for the entirety of their careers. I have added several formulas and calculations, some in English field units and some in Metric units. I have also added the Volumetric Procedure, the Lubricate and Bleed Procedure (both Volume and Pressure Method), and stripping procedures (both the Strip and Bleed Procedure and the Combined Stripping and Volumetric Procedure).

This book has been designed for convenience. It will occupy very little space in anyone's briefcase. It has a spiral binding so it will lay flat and stay open on a desk. The Table of Contents and the Index make looking up formulas and calculations quick and easy. Examples are used throughout to make the formulas as easy as possible to understand and work, and often exact words are used rather than symbols.

This book is dedicated to the thousands of oilfield hands worldwide who have to use formulas and calculations, whether on a daily basis or once or twice a year, and who have problems remembering them. This book should make their jobs a little easier.

CHAPTER ONE

Basic Formulas

Pressure Gradient

Pressure gradient, psi/ft, using mud weight, ppg

$\mathrm{psi} / \mathrm{ft}=\operatorname{mud}$ weight, $\mathrm{ppg} \times 0.052$
Example: 12.0ppg fluid
$\mathrm{psi} / \mathrm{ft}=12.0 \mathrm{ppg} \times 0.052$
$\mathrm{psi} / \mathrm{ft}=0.624$
Pressure gradient, psi/ft, using mud weight, $\mathbf{l b / f t} \mathbf{t}^{\mathbf{3}}$
$\mathrm{psi} / \mathrm{ft}=\mathrm{mud}$ weight, $\mathrm{lb} / \mathrm{ft}^{3} \times 0.006944$
Example: $100 \mathrm{lb} / \mathrm{ft}^{3}$ fluid
$\mathrm{psi} / \mathrm{ft}=100 \mathrm{lb} / \mathrm{ft}^{3} \times 0.006944$
$\mathrm{psi} / \mathrm{ft}=0.6944$

OR
$\mathrm{psi} / \mathrm{ft}=\mathrm{mud}$ weight, $\mathrm{Ib} / \mathrm{ft}^{3} \div 144$
Example: $100 \mathrm{lb} / \mathrm{ft}^{3}$ fluid
$\mathrm{psi} / \mathrm{ft}=100 \mathrm{lb} / \mathrm{ft}^{3} \div 144$
$\mathrm{psi} / \mathrm{ft}=0.6944$
Pressure gradient, psi/ft, using mud weight, specific gravity (SG)
$\mathrm{psi} / \mathrm{ft}=$ mud weight, $\mathrm{SG} \times 0.433$
Example: 1.0SG fluid
$\mathrm{psi} / \mathrm{ft}=1.0 \mathrm{SG} \times 0.433$
$\mathrm{psi} / \mathrm{ft}=0.433$

Metric calculations

Pressure gradient, bar $/ \mathrm{m}=$ drilling fluid density $\mathrm{kg} / \mathrm{l} \times 0.0981$
Pressure gradient, bar $/ 10 \mathrm{~m}=$ drilling fluid density $\mathrm{kg} / \mathrm{l} \times 0.981$

S.I. units calculations

Pressure gradient, $\mathrm{kPa} / \mathrm{m}=$ drilling fluid density, $\mathrm{kg} / \mathrm{m}^{3} \div 102$

Convert pressure gradient, psi/ft, to mud weight, ppg
ppg $=$ pressure gradient, $\mathrm{psi} / \mathrm{ft} \div 0.052$
Example: $0.4992 \mathrm{psi} / \mathrm{ft}$
$\mathrm{ppg}=0.4992 \mathrm{psi} / \mathrm{ft} \div 0.052$
$\mathrm{ppg}=9.6$

Convert pressure gradient, psi/ft, to mud weight, $\mathbf{l b / f t}{ }^{3}$
$\mathrm{lb} / \mathrm{ft}^{3}=$ pressure gradient, psi/ft $\div 0.006944$
Example: $0.6944 \mathrm{psi} / \mathrm{ft}$
$\mathrm{lb} / \mathrm{ft}^{3}=0.6944 \mathrm{psi} / \mathrm{ft} \div 0.006944$
$\mathrm{lb} / \mathrm{ft}^{3}=100$

Convert pressure gradient, psi/ft, to mud weight, SG

$\mathrm{SG}=$ pressure gradient, $\mathrm{psi} / \mathrm{ft} \div 0.433$
Example: $0.433 \mathrm{psi} / \mathrm{ft}$
$\mathrm{SG}=0.433 \mathrm{psi} / \mathrm{ft} \div 0.433$
$\mathrm{SG}=1.0$

Metric calculations

Drilling fluid density, $\mathrm{kg} / \mathrm{l}=$ pressure gradient, bar $/ \mathrm{m} \div 0.0981$
Drilling fluid density, $\mathrm{kg} / \mathrm{l}=$ pressure gradient, bar $/ 10 \mathrm{~m} \div 0.981$

S.I. units calculations

Drilling fluid density. $\mathrm{kg} / \mathrm{m}^{3}=$ pressure gradient, $\mathrm{kPa} / \mathrm{m} \times 102$

Hydrostatic Pressure (HP)

Hydrostatic pressure using ppg and feet as the units of measure

$\mathrm{HP}=$ mud weight, $\mathrm{ppg} \times 0.052 \times$ true vertical depth (TVD), ft

$\mathrm{HP}=13.5 \mathrm{ppg} \times 0.052 \times 12,000 \mathrm{ft}$
$\mathrm{HP}=8424 \mathrm{psi}$

Hydrostatic pressure, psi, using pressure gradient, psi/ft

$\mathrm{HP}=\mathrm{psi} / \mathrm{ft} \times$ true vertical depth, ft
Example: pressure gradient $=0.624 \mathrm{psi} / \mathrm{ft}$
true vertical depth $=8500 \mathrm{ft}$
$\mathrm{HP}=0.624 \mathrm{psi} / \mathrm{ft} \times 8500 \mathrm{ft}$
$\mathrm{HP}=5304 \mathrm{psi}$

Hydrostatic pressure, psi, using mud weight, lb/ft ${ }^{3}$

$\mathrm{HP}=\mathrm{mud}$ weight, $\mathrm{lb} / \mathrm{ft}^{3} \times 0.006944 \times \mathrm{TVD}, \mathrm{ft}$
Example: mud weight $\quad=901 \mathrm{~b} / \mathrm{ft}^{3}$
true vertical depth $=7500 \mathrm{ft}$
$\mathrm{HP}=90 \mathrm{lb} / \mathrm{ft}^{3} \times 0.006944 \times 7500 \mathrm{ft}$
$\mathrm{HP}=4687 \mathrm{psi}$
Hydrostatic pressure, psi, using meters as unit of depth
$H P=$ mud weight, $\mathrm{ppg} \times 0.052 \times \mathrm{TVD}, \mathrm{m} \times 3.281$
Example: mud weight $\quad=12.2 \mathrm{ppg}$ true vertical depth $=3700$ meters

$$
\begin{aligned}
& \mathrm{HP}=12.2 \mathrm{ppg} \times 0.052 \times 3700 \times 3.281 \\
& \mathrm{HP}=7701 \mathrm{psi}
\end{aligned}
$$

Metric calculations

S.I. units calculations

$\begin{aligned} & \text { Hydrostatic } \\ & \text { pressure, } \mathrm{kPa}\end{aligned}=\frac{\text { drilling fluid density, } \mathrm{kg} / \mathrm{m}^{3}}{102} \times$ true vertical depth, m

Converting Pressure into Mud Weight

Convert pressure, psi, into mud weight, ppg, using feet as the unit of measure

Mud weight, $\mathrm{ppg}=$ pressure, $\mathrm{psi} \div 0.052 \div \mathrm{TVD}, \mathrm{ft}$

$$
\begin{aligned}
& \text { Example: } \begin{array}{ll}
\text { pressure } & =2600 \mathrm{psi} \\
\text { true vertical depth } & =5000 \mathrm{ft} \\
\text { Mud, ppg } & =2600 \mathrm{psi} \div 0.052 \div 5000 \mathrm{ft} \\
\text { Mud } & =10.0 \mathrm{ppg}
\end{array}
\end{aligned}
$$

Convert pressure, psi, into mud weight, ppg, using meters as the unit of measure

Mud weight, $\mathrm{ppg}=$ pressure, $\mathrm{psi} \div 0.052 \div \mathrm{TVD}, \mathrm{m} \div 3.281$

$$
\text { Mud wt, ppg }=3583 \mathrm{psi} \div 0.052 \div 2000 \mathrm{~m} \div 3.281
$$

$$
\text { Mud wt }=10.5 \mathrm{ppg}
$$

$$
\begin{aligned}
& \text { Example: pressure } \quad=3583 \mathrm{psi} \\
& \text { true vertical depth }=2000 \text { meters }
\end{aligned}
$$

Metric calculations

$\underset{\text { fluid density, } \mathrm{kg} \text { l }}{\text { Equivalent drilling }}=\underset{\text { bar }}{\text { pressure, }} \div 0.0981 \div \begin{aligned} & \text { true vertical } \\ & \text { depth, } \mathrm{m}\end{aligned}$

S.I. units calculations

$\underset{\text { fluid density, } \mathrm{kg} / \mathrm{m}^{3}}{\text { Equivalent drilling }}=\underset{\mathrm{kPa}}{\text { pressure, }} \times 102 \div \stackrel{\text { true vertical }}{\text { depth, } \mathrm{m}}$

Specific Gravity (SG)

Specific gravity using mud weight, ppg
$\mathrm{SG}=$ mud weight, $\mathrm{ppg} \div 8.33$
Example: 15.0ppg fluid
$\mathrm{SG}=15.0 \mathrm{ppg} \div 8.33$
$\mathrm{SG}=1.8$

Specific gravity using pressure gradient, psi/ft

$\mathrm{SG}=$ pressure gradient, $\mathrm{psi} / \mathrm{ft} \div 0.433$
Example: pressure gradient $=0.624 \mathrm{psi} / \mathrm{ft}$
$\mathrm{SG}=0.624 \mathrm{psi} / \mathrm{ft} \div 0.433$
$\mathrm{SG}=1.44$

Specific gravity using mud weight, $\mathrm{lb} / \mathrm{ft}^{3}$
$\mathrm{SG}=$ mud weight, $\mathrm{lb} / \mathrm{ft}^{3} \div 62.4$
Example: mud weight $=120 \mathrm{lb} / \mathrm{ft}^{3}$
$\mathrm{SG}=120 \mathrm{lb} / \mathrm{ft}^{3} \div 62.4$
$\mathrm{SG}=1.92$

Convert specific gravity to mud weight, ppg

Mud weight, $\mathrm{ppg}=$ specific gravity $\times 8.33$
Example: specific gravity $=1.80$
Mud wt, ppg $=1.80 \times 8.33$
Mud wt $=15.0 \mathrm{ppg}$

Convert specific gravity to pressure gradient, psi/ft

$\mathrm{psi} / \mathrm{ft}=$ specific gravity $\times 0.433$
Example: specific gravity $=1.44$
$\mathrm{psi} / \mathrm{ft}=1.44 \times 0.433$
$\mathrm{psi} / \mathrm{ft}=0.624$

Convert specific gravity to mud weight, lb/ft ${ }^{3}$

$\mathrm{lb} / \mathrm{ft}^{3}=$ specific gravity $\times 62.4$
Example: specific gravity $=1.92$
$\mathrm{lb} / \mathrm{ft}^{3}=1.92 \times 62.4$
$\mathrm{lb} / \mathrm{ft}^{3}=120$

Equivalent Circulating Density (ECD), ppg

$\mathrm{ECD}, \mathrm{ppg}=\left(\begin{array}{l}\text { annular } \\ \text { pressure } \\ \text { loss, psi }\end{array}\right) \div 0.052 \div \mathrm{TVD}, \mathrm{ft}+\binom{$ mud weight }{ in use, ppg }
Example: annular pressure loss $=200 \mathrm{psi}$
true vertical depth $\quad=10,000 \mathrm{ft}$
mud weight $\quad=9.6 \mathrm{ppg}$
$\mathrm{ECD}, \mathrm{ppg}=200 \mathrm{psi} \div 0.052 \div 10,000 \mathrm{ft}+9.6 \mathrm{ppg}$
$\mathrm{ECD}=10.0 \mathrm{ppg}$

Metric calculation

$\underset{\text { fluid density, } \mathrm{kg} / \mathrm{l}}{\text { Equivalent driling }}=\underset{\text { loss, bar }}{\text { annular pressure }} \div 0.0981 \div \mathrm{TVD}, \mathrm{m}+\mathrm{mud} \mathrm{wt}, \mathrm{kg} / \mathrm{l}$

S.I. units calculations

$\begin{aligned} & \text { Equivalent circulating } \\ & \text { density, } \mathrm{kg} / \mathrm{l}\end{aligned}=\frac{\text { annular pressure loss, } \mathrm{kPa} \times 102}{\text { TVD, } \mathrm{m}}+\operatorname{mud}$ density, kg / m

Maximum Allowable Mud Weight from Leak-off Test Data

$$
\begin{aligned}
& \text { ppg }=\binom{\text { leak-off }}{\text { pressure, psi }} \div 0.052 \div\binom{\text { casing shoe }}{\mathrm{TVD}, \mathrm{ft}}+\binom{\text { mud weight, }}{\mathrm{ppg}} \\
& \begin{aligned}
& \text { Example: leak-off test pressure }=1140 \mathrm{psi} \\
& \text { casing shoe TVD }=4000 \mathrm{ft} \\
& \text { mud weight }
\end{aligned} \\
& =10.0 \mathrm{ppg}
\end{aligned} \quad \begin{aligned}
& \mathrm{ppg}=1140 \mathrm{psi} \div 0.052 \div 4000 \mathrm{ft}+10.0 \mathrm{ppg} \\
& \mathrm{ppg}=15.48
\end{aligned}
$$

Pump Output (PO)

Triplex Pump

Formula 1

$\mathrm{PO}, \mathrm{bbl} / \mathrm{stk}=0.000243 \times\binom{\text { liner }}{\text { diameter, in } .}^{2} \times\binom{$ stroke }{ length, in.}

Example: Determine the pump output, bbl/stk, at 100% efficiency for a 7 -in. by $12-\mathrm{in}$. triplex pump:

PO@ $100 \%=0.000243 \times 7^{2} \times 12$
$\mathrm{PO} @ 100 \%=0.142884 \mathrm{bbl} / \mathrm{stk}$

Adjust the pump output for 95% efficiency:

8 Formulas and Calculations

Decimal equivalent $=95 \div 100=0.95$
PO@ $95 \%=0.142884 \mathrm{bbl} / \mathrm{stk} \times 0.95$
PO@95\% = 0.13574bbl/stk

Formula 2

$\mathrm{PO}, \mathrm{gpm}=\left[3\left(\mathrm{D}^{2} \times 0.7854\right) \mathrm{S}\right] 0.00411 \times \mathrm{SPM}$
where $\mathrm{D}=$ liner diameter, in.
$\mathrm{S}=$ stroke length, in.
$\mathrm{SPM}=$ strokes per minute
Example: Determine the pump output, gpm, for a 7 -in. by 12 -in. triplex pump at 80 strokes per minute:
$\mathrm{PO}, \mathrm{gpm}=\left[3\left(7^{2} \times 0.7854\right) 12\right] 0.00411 \times 80$
$\mathrm{PO}, \mathrm{gpm}=1385.4456 \times 0.00411 \times 80$
$\mathrm{PO}=455.5 \mathrm{gpm}$

Duplex Pump

Formula 1

$$
\begin{aligned}
0.000324 \times\binom{\text { liner }}{\text { diameter, in. }}^{2} \times\binom{\text { stroke }}{\text { length, in. }} & =\ldots \mathrm{bbl} / \mathrm{stk} \\
-0.000162 \times\binom{\text { rod }}{\text { diameter, in. }}^{2} \times\binom{\text { stroke }}{\text { length, in. }} & = \\
\text { pump output } @ 100 \% \text { eff } & =
\end{aligned}
$$

Example: Determine the output, $\mathrm{bbl} / \mathrm{stk}$, of a $5-1 / 2 \mathrm{in}$. by 14 -in. duplex pump at 100% efficiency. Rod diameter $=2.0 \mathrm{in}$.:
$0.000324 \times 5.5^{2} \times 14=0.137214 \mathrm{bbl} /$ stk
$-0.000162 \times 2.0^{2} \times 14=0.009072 \mathrm{bbl} /$ stk
Pump output @ 100% eff $=0.128142 \mathrm{bbl} /$ stk
Adjust pump output for 85% efficiency:
Decimal equivalent $=85 \div 100=0.85$
$\mathrm{PO} @ 85 \%=0.128142 \mathrm{bbl} / \mathrm{stk} \times 0.85$
$\mathrm{PO} @ 85 \%=0.10892 \mathrm{bbl} / \mathrm{stk}$

Formula 2

$\mathrm{PO}, \mathrm{bbl} / \mathrm{stk}=0.000162 \times \mathrm{S}\left[2(\mathrm{D})^{2}-\mathrm{d}^{2}\right]$
where $S=$ stroke length, in.
$\mathrm{D}=$ liner diameter, in.
$\mathrm{d}=\operatorname{rod}$ diameter, in.
Example: Determine the output, bbl/stk, of a $5-1 / 2-\mathrm{in}$. by $14-\mathrm{in}$. duplex pump @ 100% efficiency. Rod diameter $=2.0 \mathrm{in}$.:
$\mathrm{PO} @ 100 \%=0.000162 \times 14 \times\left[2(5.5)^{2}-2^{2}\right]$
$\mathrm{PO} @ 100 \%=0.000162 \times 14 \times 56.5$
$\mathrm{PO} @ 100 \%=0.128142 \mathrm{bbl} / \mathrm{stk}$
Adjust pump output for 85% efficiency:
$\mathrm{PO} @ 85 \%=0.128142 \mathrm{bbl} / \mathrm{stk} \times 0.85$
$\mathrm{PO} @ 85 \%=0.10892 \mathrm{bbl} / \mathrm{stk}$

Metric calculation

Pump output, liter/min $=$ pump output. liter/stk \times pump speed. spm

S.I. units calculation

Pump output, $\mathrm{m}^{3} / \mathrm{min}=$ pump output, liter $/ \mathrm{st} k \times$ pump speed, spm

Annular Velocity (AV)

Annular velocity (AV), ft/min

Formula 1

$\mathrm{AV}=$ pump output, $\mathrm{bbl} / \mathrm{min} \div$ annular capacity, $\mathrm{bbl} / \mathrm{ft}$

Example: pump output $=12.6 \mathrm{bbl} / \mathrm{min}$
annular capacity $=0.1261 \mathrm{bbl} / \mathrm{ft}$
$\mathrm{AV}=12.6 \mathrm{bbl} / \mathrm{min} \div 0.1261 \mathrm{bbl} / \mathrm{ft}$
$\mathrm{AV}=99.92 \mathrm{ft} / \mathrm{min}$

Formula 2

$\mathrm{AV}, \mathrm{ft} / \mathrm{min}=\frac{24.5 \times \mathrm{Q}}{\mathrm{Dh}^{2}-\mathrm{Dp}^{2}}$
where $\mathrm{Q}=$ circulation rate, gpm
$\mathrm{Dh}=$ inside diameter of casing or hole size, in.
$\mathrm{Dp}=$ outside diameter of pipe, tubing or collars, in.
Example: pump output $=530 \mathrm{gpm}$
hole size $\quad=12-1 / 4 \mathrm{in}$.
pipe $O D=4-1 / 2 \mathrm{in}$.
$\mathrm{AV}=\frac{24.5 \times 530}{12.25^{2}-4.5^{2}}$
$\mathrm{AV}=\frac{12,985}{129.8125}$
$\mathrm{AV}=100 \mathrm{ft} / \mathrm{min}$

Formula 3

$\mathrm{AV}, \mathrm{ft} / \mathrm{min}=\frac{\mathrm{PO}, \mathrm{bbl} / \mathrm{min} \times 1029.4}{\mathrm{Dh}^{2}-\mathrm{Dp}^{2}}$
Example: pump output $=12.6 \mathrm{bbl} / \mathrm{min}$
hole size $=12-1 / 4 \mathrm{in}$.
pipe OD $=4-1 / 2 \mathrm{in}$.
$\mathrm{AV}=\frac{12.6 \mathrm{bb} 1 / \mathrm{min} \times 1029.4}{12.25^{2}-4.5^{2}}$
$\mathrm{AV}=\frac{12970.44}{129.8125}$
$\mathrm{AV}=99.92 \mathrm{ft} / \mathrm{min}$

Annular velocity (AV), ft/sec

$$
\begin{aligned}
& \mathrm{AV}, \mathrm{ft} / \mathrm{sec}=\frac{17.16 \times \mathrm{PO}, \mathrm{bbl} / \mathrm{min}}{\mathrm{Dh}^{2}-\mathrm{Dp}^{2}} \\
& \text { Example: pump output }=12.6 \mathrm{bbl} / \mathrm{min} \\
& \begin{array}{l}
\text { hole size } \\
\text { pipe } \mathrm{OD} \\
=12-1 / 4 \mathrm{in} .
\end{array} \\
& \mathrm{AV}=\frac{17.1 / 2 \mathrm{in} .}{12.25^{2}-4.5^{2}} \\
& \mathrm{AV}=\frac{216.216}{129.8125} \\
& \mathrm{AV}=1.6656 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

Metric calculations

Annular velocity, $\mathrm{m} / \mathrm{min}=$ pump output, liter $/ \mathrm{min} \div$ annular volume, $1 / \mathrm{m}$
Annular velocity, $\mathrm{m} / \mathrm{sec}=$ pump output, liter $/ \mathrm{min} \div 60 \div$ annular volume, $1 / \mathrm{m}$

S.I. units calculations

Annular velocity, $\mathrm{m} / \mathrm{min}=$ pump output, $\mathrm{m}^{3} / \mathrm{min} \div$ annular volume, $\mathrm{m}^{3} / \mathrm{m}$

Pump output, gpm, required for a desired annular velocity, ft/min

Pump output, $g p m=\frac{\mathrm{AV}, \mathrm{ft} / \min \left(\mathrm{Dh}^{2}-\mathrm{DP}^{2}\right)}{24.5}$
where $\mathrm{AV}=$ desired annular velocity, $\mathrm{ft} / \mathrm{min}$
$\mathrm{Dh}=$ inside diameter of casing or hole size, in.
$\mathrm{Dp}=$ outside diameter of pipe, tubing or collars, in.

$$
\begin{aligned}
& \text { Example: } \begin{aligned}
\begin{array}{ll}
\text { desired annular velocity } & = \\
\text { hole size } \\
\text { pipe OD } \\
& =120 \mathrm{ft} / \mathrm{min} \\
& =4-1 / 4 \mathrm{in} .
\end{array} \\
\mathrm{PO}=\frac{120\left(12.25^{2}-4.5^{2}\right)}{24.5}
\end{aligned}
\end{aligned}
$$

$\mathrm{PO}=\frac{120 \times 129.8125}{24.5}$
$\mathrm{PO}=\frac{15,577.5}{24.5}$
$\mathrm{PO}=635.8 \mathrm{gpm}$

Strokes per minute (SPM) required for a given annular velocity $\mathrm{SPM}=\frac{\text { annular velocity, } \mathrm{ft} / \min \times \text { annular capacity, } \mathrm{bb} / \mathrm{ft}}{\text { pump output, bbl/stk }}$

Example: annular velocity $=120 \mathrm{ft} / \mathrm{min}$

$$
\text { annular capacity }=0.1261 \mathrm{bbl} / \mathrm{ft}
$$

$\mathrm{Dh} \quad=12-1 / 4 \mathrm{in}$.
Dp $\quad=4-1 / 2 \mathrm{in}$.
pump output $=0.136 \mathrm{bbl} / \mathrm{stk}$
$\mathrm{SPM}=\frac{120 \mathrm{ft} / \mathrm{min} \times 0.126 \mathrm{lbbl} / \mathrm{ft}}{0.136 \mathrm{bbl} / \mathrm{stk}}$
SPM $=\frac{15.132}{0.136}$
SPM $=111.3$

Capacity Formulas

Annular capacity between casing or hole and drill pipe, tubing, or casing
a) Annular capacity, $\mathrm{bbl} / \mathrm{ft}=\frac{\mathrm{Dh}^{2}-\mathrm{Dp}^{2}}{1029.4}$

Example: Hole size $(\mathrm{Dh}) \quad=12-1 / 4 \mathrm{in}$.
Drill pipe $\mathrm{OD}(\mathrm{Dp})=5.0 \mathrm{in}$.
Annular capacity, $\mathrm{bbVft}=\frac{12.25^{2}-5.0^{2}}{1029.4}$
Annular capacity $\quad=0.12149 \mathrm{bbl} / \mathrm{ft}$
b) Annular capacity, $\mathrm{ft} / \mathrm{bbl}=\frac{1029.4}{\left(\mathrm{Dh}^{2}-\mathrm{Dp}^{2}\right)}$

Example: Hole size (Dh) $\quad=12-1 / 4 \mathrm{in}$.
Drill pipe $O D(D p)=5.0 \mathrm{in}$.
Annular capacity, $\mathrm{ft} / \mathrm{bbl}=\frac{1029.4}{\left(12.25^{2}-5.0^{2}\right)}$
Annular capacity $\quad=8.23 \mathrm{ft} / \mathrm{bbl}$
c) Annular capacity, gal/ft $=\frac{\mathrm{Dh}^{2}-\mathrm{Dp}^{2}}{24.51}$

Example: Hole size (Dh) $\quad=12-1 / 4 \mathrm{in}$.
Drill pipe $O D(D p)=5.0 \mathrm{in}$.
Annular capacity, gal/ft $=\frac{12.25^{2}-5.0^{2}}{24.51}$
Annular capacity $\quad=5.1 \mathrm{gal} / \mathrm{ft}$
d) Annular capacity, $\mathrm{ft} / \mathrm{gal}=\frac{24.51}{\left(\mathrm{Dh}^{2}-\mathrm{Dp}^{2}\right)}$

Example: Hole size (Dh) $\quad=12-1 / 4 \mathrm{in}$.
Drill pipe $O D(D p)=5.0 \mathrm{in}$.
Annular capacity, $\mathrm{ft} / \mathrm{gal}=\frac{24.51}{\left(12.25^{2}-5.0^{2}\right)}$
Annular capacity $\quad=0.19598 \mathrm{ft} / \mathrm{gal}$
e) Annular capacity, $\mathrm{ft}^{3} / \mathrm{linft}=\frac{\mathrm{Dh}^{2}-\mathrm{Dp}^{2}}{183.35}$

Example: Hole size (Dh) $\quad=12-1 / 4 \mathrm{in}$.
Drill pipe $O D(D p)=5.0 \mathrm{in}$.
Annular capacity, $\mathrm{ft}^{3} / \mathrm{linft}=\frac{12.25^{2}-5.0^{2}}{183.35}$
Annular capacity $\quad=0.682097 \mathrm{ft}^{3} / \mathrm{linft}$
f) Annular capacity, $\operatorname{linft} \mathrm{ft}^{3}=\frac{183.35}{\left(\mathrm{Dh}^{2}-\mathrm{Dp}^{2}\right)}$

Example: Hole size (Dh) $\quad=12-1 / 4 \mathrm{in}$.
Drill pipe OD $(\mathrm{Dp})=5.0 \mathrm{in}$.
Annular capacity, $\operatorname{linft} / \mathrm{ft}^{3}=\frac{183.35}{\left(12.25^{2}-5.0^{2}\right)}$
Annular capacity $\quad=1.466 \operatorname{linft} / \mathrm{ft}^{3}$

Annular capacity between casing and multiple strings of tubing

a) Annular capacity between casing and multiple strings of tubing, $\mathrm{bbl} / \mathrm{ft}$:

Annular capacity, bbl/ft $=\frac{\mathrm{Dh}^{2}-\left[\left(\mathrm{T}_{1}\right)^{2}+\left(\mathrm{T}_{2}\right)^{2}\right]}{1029.4}$

Example: Using two strings of tubing of same size:

$$
\begin{array}{ll}
\mathrm{Dh}=\text { casing }-7.0 \mathrm{in}-29 \mathrm{lb} / \mathrm{ft} & \mathrm{ID}=6.184 \mathrm{in} \\
\mathrm{~T}_{1}=\text { tubing No. } 1-2-3 / 8 \mathrm{in} . & O D=2.375 \mathrm{in} \\
\mathrm{~T}_{2}=\text { tubing No. } 2-2-3 / 8 \mathrm{in} . & O D=2.375 \mathrm{in} .
\end{array}
$$

Annular capacity, $\mathrm{bbl} / \mathrm{ft}=\frac{6.184^{2}-\left(2.375^{2}+2.375^{2}\right)}{1029.4}$
Annular capacity, $\mathrm{bbl} / \mathrm{ft}=\frac{38.24-11.28}{1029.4}$
Annular capacity $\quad=0.02619 \mathrm{bb} / \mathrm{ft}$
b) Annular capacity between casing and multiple strings of tubing, $\mathrm{ft} / \mathrm{bbl}$:

Annular capacity, $\mathrm{ft} / \mathrm{bbl}=\frac{1029.4}{\mathrm{Dh}^{2}-\left[\left(\mathrm{T}_{1}\right)^{2}+\left(\mathrm{T}_{2}\right)^{2}\right]}$
Example: Using two strings of tubing of same size:

$$
\begin{array}{ll}
\mathrm{Dh}=\text { casing }-7.0 \mathrm{in} .-29 \mathrm{lb} / \mathrm{ft} & \mathrm{ID}=6.184 \mathrm{in} . \\
\mathrm{T}_{1}=\text { tubing No. } 1-2-3 / 8 \mathrm{in} . & O D=2.375 \mathrm{in} . \\
\mathrm{T}_{2}=\text { tubing No. } 2-2-3 / 8 \mathrm{in} . & O D=2.375 \mathrm{in} .
\end{array}
$$

Annular capacity, $\mathrm{ft} / \mathrm{bbl}=\frac{1029.4}{6.184^{2}-\left(2.375^{2}+2.375^{2}\right)}$

Annular capacity, $\mathrm{ft} / \mathrm{bbl}=\frac{1029.4}{38.24-11.28}$
Annular capacity $\quad=38.1816 \mathrm{ft} / \mathrm{bbl}$
c) Annular capacity between casing and multiple strings of tubing, gal/ft:

Annular capacity, gal/ft $=\frac{\mathrm{Dh}^{2}-\left[\left(\mathrm{T}_{1}\right)^{2}+\left(\mathrm{T}_{2}\right)^{2}\right]}{24.51}$

Example: Using two tubing strings of different size:

$$
\begin{array}{ll}
\mathrm{Dh}=\text { casing }-7.0 \mathrm{in}-29 \mathrm{lb} / \mathrm{ft} & \mathrm{ID}=6.184 \mathrm{in} . \\
\mathrm{T}_{1}=\text { tubing No. } 1-2-3 / 8 \mathrm{in} . & O D=2.375 \mathrm{in} . \\
\mathrm{T}_{2}=\text { tubing No. } 2-3-1 / 2 \mathrm{in} . & O D=3.5 \mathrm{in} .
\end{array}
$$

Annular capacity, gal/ft $=\frac{6.184^{2}-\left(2.375^{2}+3.5^{2}\right)}{24.51}$
Annular capacity, gal/ft $=\frac{38.24-17.89}{24.51}$
Annular capacity $\quad=0.8302733 \mathrm{gal} / \mathrm{ft}$
d) Annular capacity between casing and multiple strings of tubing, ft/gal:

Annular capacity, ft /gal $=\frac{24.51}{\mathrm{Dh}^{2}-\left[\left(\mathrm{T}_{1}\right)^{2}+\left(\mathrm{T}_{2}\right)^{2}\right]}$
Example: Using two tubing strings of different sizes:

$$
\begin{array}{ll}
\mathrm{Dh}=\text { casing }-7.0 \mathrm{in} .-29 \mathrm{lb} / \mathrm{ft} & \mathrm{ID}=6.184 \mathrm{in} . \\
\mathrm{T}_{1}=\text { tubing No. } 1-2-3 / 8 \mathrm{in} . & O D=2.375 \mathrm{in} . \\
\mathrm{T}_{2}=\text { tubing No. } 2-3-1 / 2 \mathrm{in} . & \mathrm{OD}=3.5 \mathrm{in} .
\end{array}
$$

Annular capacity, $\mathrm{ft} / \mathrm{gal}=\frac{24.51}{6.184^{2}-\left(2.375^{2}+3.5^{2}\right)}$
Annular capacity, $\mathrm{ft} / \mathrm{gal}=\frac{24.51}{38.24-17.89}$
Annular capacity $\quad=1.2044226 \mathrm{ft} / \mathrm{gal}$

16

e) Annular capacity between casing and multiple strings of tubing, $\mathrm{ft}^{3} / \mathrm{linft}$:

Annular capacity, $\mathrm{ft}^{3} / \mathrm{linft}=\frac{\mathrm{Dh}^{2}-\left[\left(\mathrm{T}_{1}\right)^{2}+\left(\mathrm{T}_{2}\right)^{2}\right]}{183.35}$
Example: Using three strings of tubing:

$$
\begin{array}{ll}
\mathrm{Dh}=\text { casing }-5-5 / 8 \mathrm{in} .-47 \mathrm{lb} / \mathrm{ft} & \text { ID }=8.681 \mathrm{in} . \\
\mathrm{T}_{1}=\text { tubing No. } 1-3-1 / 2 \mathrm{in} . & O D=3.5 \mathrm{in} . \\
\mathrm{T}_{2}=\text { tubing No. 2-3-1/2in. } & O D=3.5 \mathrm{in} . \\
\mathrm{T}_{3}=\text { tubing No. 3-3-1/2in. } & \mathrm{OD}=3.5 \mathrm{in} .
\end{array}
$$

Annular capacity

$$
=\frac{8.681^{2}-\left(3.5^{2}+3.5^{2}+3.5^{2}\right)}{183.35}
$$

Annular capacity, $\mathrm{ft}^{3} / \mathrm{linft}=\frac{183.35}{75.359-36.75}$
Annular capacity $\quad=0.2105795 \mathrm{ft}^{3} / \mathrm{linft}$
f) Annular capacity between casing and multiple strings of tubing, linft $/ \mathrm{t}^{3}$:

Annular capacity, linft/ft ${ }^{3}=\frac{183.35}{\mathrm{Dh}^{2}-\left[\left(\mathrm{T}_{1}\right)^{2}+\left(\mathrm{T}_{2}\right)^{2}\right]}$
Example: Using three strings tubing of same size:

$$
\begin{array}{ll}
\mathrm{Dh}=\text { casing }-9-5 / 8 \mathrm{in} .-47 \mathrm{ib} / \mathrm{ft} & \mathrm{ID}=8.681 \mathrm{in} . \\
\mathrm{T}_{1}=\text { tubing No. } 1-3-1 / 2 \mathrm{in} . & \mathrm{OD}=3.5 \mathrm{in.} . \\
\mathrm{T}_{2}=\text { tubing No. 2-3-1/2in. } & \mathrm{OD}=3.5 \mathrm{in} . \\
\mathrm{T}_{3}=\text { tubing No. 3-3-1/2in. } & \mathrm{OD}=3.5 \mathrm{in} .
\end{array}
$$

Annular capacity

$$
=\frac{183.35}{8.681^{2}-\left(3.5^{2}+3.5^{2}+3.5^{2}\right)}
$$

Annular capacity, linft/ft ${ }^{3}=\frac{183.35}{75.359-36.75}$
Annular capacity $\quad=4.7487993 \operatorname{linft} t \mathrm{ft}^{3}$

Capacity of tubulars and open hole: drill pipe, drill collars, tubing, casing, hole, and any cylindrical object
a) Capacity, bbVft $=\frac{\mathrm{ID}, \text { in. }{ }^{2}}{1029.4}$

Example: Determine the capacity, $\mathrm{bbl} / \mathrm{ft}$, of a $12-1 / 4 \mathrm{in}$. hole:
Capacity, bbl/ft $=\frac{12.25^{2}}{1029.4}$
Capacity $\quad=0.1457766 \mathrm{bbl} / \mathrm{ft}$
b) Capacity, $\mathrm{ft} / \mathrm{bbl}=\frac{1029.4}{\mathrm{Dh}^{2}}$

Example: Determine the capacity, $\mathrm{ft} / \mathrm{bbl}$, of $12-1 / 4 \mathrm{in}$. hole:
Capacity, $\mathrm{ft} / \mathrm{bbl}=\frac{1029.4}{12.25^{2}}$
Capacity $\quad=6.8598 \mathrm{ft} / \mathrm{bbl}$
c) Capacity, gal/ft $=\frac{\mathrm{ID}, \mathrm{in} .^{2}}{24.51}$

Example: Determine the capacity, gal/ft, of $8-1 / 2 \mathrm{in}$. hole:
Capacity, gal/ft $=\frac{8.5^{2}}{24.51}$
Capacity $\quad=2.9477764 \mathrm{gal} / \mathrm{ft}$
d) Capacity, ft/gal $=\frac{24.51}{\mathrm{ID}, \mathrm{in}^{2}}$

Example: Determine the capacity, $\mathrm{ft} / \mathrm{gal}$, of $8-1 / 2 \mathrm{in}$. hole:
Capacity, $\mathrm{ft} / \mathrm{gal}=\frac{24.51}{8.5^{2}}$
Capacity $\quad=0.3392 \mathrm{ft} / \mathrm{gal}$
e) Capacity, $\mathrm{ft}^{3} / \mathrm{linft}=\frac{\mathrm{ID}^{2}}{183.35}$

Example: Determine the capacity, $\mathrm{ft}^{3} / \mathrm{linft}$, for a 6.0 in . hole:
Capacity, $\mathrm{ft}^{3} /$ linft $=\frac{6.0^{2}}{183.35}$

Capacity $\quad=0.1963 \mathrm{ft}^{3} / \mathrm{linft}$
f) Capacity, linft/ft ${ }^{3}=\frac{183.35}{I D, \text { in. }^{2}}$

Example: Determine the capacity, linft $/ \mathrm{ft}^{3}$, for a 6.0 in . hole:
Capacity, linft/ft ${ }^{3}=\frac{183.35}{6.0^{2}}$
Capacity $\quad=5.09305 l i n f t / f t^{3}$

Amount of cuttings drilled per foot of hole drilled

a) BARRELS of cuttings drilled per foot of hole drilled:

$$
\text { Barrels }=\frac{\mathrm{Dh}^{2}}{1029.4}(1-\% \text { porosity })
$$

Example: Determine the number of barrels of cuttings drilled for one foot of $12-1 / 4$ in.-hole drilled with 20% (0.20) porosity:

Barrels $=\frac{12.25^{2}}{1029.4}(1-0.20)$
Barrels $=0.1457766 \times 0.80$
Barrels $=0.1166213$
b) CUBIC FEET of cuttings drilled per foot of hole drilled:

Cubic feet $=\frac{\mathrm{Dh}^{2}}{144} \times 0.7854(1-\%$ porosity $)$
Example: Determine the cubic feet of cuttings drilled for one foot of 12-1/4 in. hole with $20 \%(0.20)$ porosity:

Cubic feet $=\frac{12.25^{2}}{144} \times 0.7854(1-0.20)$
Cubic feet $=\frac{150.0626}{144} \times 0.7854 \times 0.80$
Cubic feet $=0.6547727$
c) Total solids generated:

$$
\mathrm{W}_{\mathrm{cg}}=350 \mathrm{Ch} \times \mathrm{L}(1-\mathrm{P}) \mathrm{SG}
$$

where $\mathrm{W}_{\mathrm{cg}}=$ solids generated, pounds
$\mathrm{Ch}=$ capacity of hole, $\mathrm{bbl} / \mathrm{ft}$
$\mathrm{L}=$ footage drilled, ft
$\mathrm{SG}=$ specific gravity of cuttings
$\mathrm{P}=$ porosity, $\%$
Example: Determine the total pounds of solids generated in drilling 100 ft of a $12-1 / 4 \mathrm{in}$. hole $(0.1458 \mathrm{bbl} / \mathrm{ft})$. Specific gravity of cuttings $=2.40 \mathrm{gm} / \mathrm{cc}$. Porosity $=20 \%$.
$W_{\text {cg }}=350 \times 0.1458 \times 100(1-0.20) \times 2.4$
$W_{\mathrm{cg}}=9797.26$ pounds

Control Drilling

Maximum drilling rate (MDR), ft/hr, when drilling large diameter holes (14-3/4 in. and larger)

$\mathrm{MDR}, \mathrm{ft} / \mathrm{hr}=\frac{67 \times\left(\begin{array}{l}\text { mud wt } \\ \text { out, } \mathrm{ppg}\end{array}-\begin{array}{l}\text { mud wt } \\ \text { in, } \mathrm{ppg}\end{array}\right) \times\binom{\text { circulation }}{\text { rate, } \mathrm{gpm}}}{\mathrm{Dh}^{2}}$
Example: Determine the MDR, $\mathrm{ft} / \mathrm{hr}$, necessary to keep the mud weight coming out at 9.7 ppg at the flow line:

Data: Mud weight in $=9.0 \mathrm{ppg}$
Circulation rate $=530 \mathrm{gpm}$
Hole size $\quad=17-1 / 2 \mathrm{in}$.
MDR. $\mathrm{ft} / \mathrm{hr}=\frac{67(9.7-9.0) 530}{17.5^{2}}$
$\mathrm{MDR}, \mathrm{ft} / \mathrm{hr}=\frac{67 \times 0.7 \times 530}{306.25}$
$\mathrm{MDR}, \mathrm{ft} / \mathrm{hr}=\frac{24,857}{306.25}$
$\mathrm{MDR}=81.16 \mathrm{ft} / \mathrm{hr}$

Buoyancy Factor (BF)

Buoyancy factor using mud weight, ppg

$\mathrm{BF}=\frac{65.5-\text { mud weight, ppg }}{65.5}$
Example: Determine the buoyancy factor for a 15.0 ppg fluid:

$$
\begin{aligned}
& \mathrm{BF}=\frac{65.5-15.0}{65.5} \\
& \mathrm{BF}=0.77099
\end{aligned}
$$

Buoyancy factor using mud weight, $\mathbf{l b / f t}{ }^{3}$

$\mathrm{BF}=\frac{489-\text { mud weight, } \mathrm{lb} / \mathrm{ft}^{3}}{489}$
Example: Determine the buoyancy factor for a $120 \mathrm{lb} / \mathrm{ft}^{3}$ fluid:

$$
\mathrm{BF}=\frac{489-120}{489}
$$

$$
\mathrm{BF}=0.7546
$$

Hydrostatic Pressure (HP)
 Decrease When Pulling Pipe out of the Hole

When pulling DRY pipe

Step 1

Barrels
displaced
:---
of stands
pulled
:---
$\mathrm{bbl} / \mathrm{ft}$

Step 2

$\left.\underset{\text { decrease }}{\mathrm{HP}, \mathrm{psi}}=\frac{\text { barrels displaced }}{\left(\begin{array}{ll}\text { casing } & \text { pipe } \\ \text { capacity, } & - \text { displacement, } \\ \text { bbl } / \mathrm{ft} & \mathrm{bbl} / \mathrm{ft}\end{array}\right)} \times 0.052 \times \begin{array}{l}\text { mud }\end{array}\right)$

Example: Determine the hydrostatic pressure decrease when pulling DRY pipe out of the hole:

Number of stands pulled $=5$
Average length per stand $=92 \mathrm{ft}$
Pipe displacement $\quad=0.0075 \mathrm{bbl} / \mathrm{ft}$
Casing capacity $\quad=0.0773 \mathrm{bbl} / \mathrm{ft}$
Mud weight $\quad=11.5 \mathrm{ppg}$

Step 1

$\underset{\text { displaced }}{\text { Barrels }}=5$ stands $\times 92 \mathrm{ft} / \mathrm{std} \times 0.0075 \mathrm{bbl} / \mathrm{ft}$
Barrels
displaced $=3.45$

Step 2
$\begin{aligned} & \text { HP, } \mathrm{psi} \\ & \text { decrease }\end{aligned}=\frac{3.45 \text { barrels }}{\binom{0.0773-0.0075}{\mathrm{bbl} / \mathrm{ft} \quad \mathrm{bbl} / \mathrm{ft}}} \times 0.052 \times 11.5 \mathrm{ppg}$
$\begin{aligned} & \mathrm{HP}, \mathrm{psi} \\ & \text { decrease }\end{aligned}=\frac{3.45 \text { barrels }}{0.0698} \times 0.052 \times 11.5 \mathrm{ppg}$
HP
decrease $=29.56 \mathrm{psi}$

When pulling WET pipe

Step 1

$\begin{array}{ll}\text { Barrels } \\ \text { displaced }\end{array}=\begin{gathered}\text { number } \\ \text { of stands } \\ \text { pulled }\end{gathered} \quad \begin{gathered}\text { average } \\ \text { length per } \\ \text { stand, } \mathrm{ft}\end{gathered} \times\left(\begin{array}{c}\text { pipe disp., bbl/ft } \\ + \\ \text { pipe cap., bbl/ft }\end{array}\right)$

Step 2

$\mathbf{H P}, \mathbf{p s i}=\frac{\text { barrels displaced }}{\left(\begin{array}{l}\text { casing } \\ \text { capacity, } \\ \text { bbl/ft }\end{array}\right)-\left(\begin{array}{c}\text { pipe disp., bbl/ft } \\ + \\ \text { pipe cap., bbl/ft }\end{array}\right)} \times 0.052 \times \begin{aligned} & \text { mud } \\ & \text { weight, ppg }\end{aligned}$

Example: Determine the hydrostatic pressure decrease when pulling WET pipe out of the hole:

Number of stands pulled $=5$
Average length per stand $=92 \mathrm{ft}$
Pipe displacement
$=0.0075 \mathrm{bbl} / \mathrm{ft}$
Pipe capacity
$=0.01776 \mathrm{bbl} / \mathrm{ft}$
Casing capacity $\quad=0.0773 \mathrm{bbl} / \mathrm{ft}$
Mud weight $\quad=11.5 \mathrm{ppg}$

Step 1

$\begin{aligned} & \text { Barrels } \\ & \text { displaced }\end{aligned}=5$ stands $\times 92 \mathrm{ft} / \mathrm{std} \times\left(\begin{array}{c}0.0075 \mathrm{bbl} / \mathrm{ft} \\ + \\ 0.01776 \mathrm{bbl} / \mathrm{ft}\end{array}\right)$
Barrels
displaced $=11.6196$

Step 2

$$
\begin{aligned}
& \mathrm{HP}, \mathrm{psi} \\
& \text { decrease }
\end{aligned}=\frac{11.6196 \text { barrels }}{\binom{0.0773}{\mathrm{bbl} / \mathrm{ft}}-\left(\begin{array}{c}
0.0075 \mathrm{bbl} / \mathrm{ft} \\
+ \\
0.01776 \mathrm{bbl} / \mathrm{ft}
\end{array}\right)} \times 0.052 \times 11.5 \mathrm{ppg}
$$

$\underset{\text { decrease }}{\mathrm{HP}, \mathrm{psi}}=\frac{11.6196}{0.05204} \times 0.052 \times 11.5 \mathrm{ppg}$
$\underset{\text { decrease }}{\mathrm{HP}}=133.52 \mathrm{psi}$
Loss of Overbalance Due to Falling Mud Level
Feet of pipe pulled DRY to lost overbalance
Feet $=\frac{\text { overbalance, psi (casing cap. }- \text { pipe disp., bbl/ft })}{\text { mud } w t ., p p g \times 0.052 \times \text { pipe disp., bbl/ft }}$
Example: Determine the FEET of DRY pipe that must be pulled to lose the overbalance using the following data:

Amount of overbalance $=150 \mathrm{psi}$
Casing capacity
$=0.0773 \mathrm{bbl} / \mathrm{ft}$
Pipe displacement $\quad=0.0075 \mathrm{bbl} / \mathrm{ft}$
Mud weight $\quad=11.5 \mathrm{ppg}$
$\mathrm{Ft}=\frac{150 \mathrm{psi}(0.0773-0.0075)}{11.5 \mathrm{ppg} \times 0.052 \times 0.0075}$
$\mathrm{Ft}=\frac{10.47}{0.004485}$
$\mathrm{Ft}=2334$

Feet of pipe pulled WET to lose overbalance

Feet $=\frac{\text { overbalance, } \mathrm{psi} \times(\text { casing cap. }- \text { pipe cap. }- \text { pipe disp. })}{\text { mud wt., ppg } \times 0.052 \times(\text { pipe cap. }+ \text { pipe disp., bbl/ft })}$
Example: Determine the feet of WET pipe that must be pulled to lose the overbalance using the following data:
Amount of overbalance $=150 \mathrm{psi}$
Casing capacity
$=0.0773 \mathrm{bbl} / \mathrm{ft}$
Pipe capacity
$=0.01776 \mathrm{bbl} / \mathrm{ft}$
Pipe displacement $\quad=0.0075 \mathrm{bbl} / \mathrm{ft}$
Mud weight $\quad=11.5 \mathrm{ppg}$
Feet $=\frac{150 \mathrm{psi} \times(0.0073-0.01776-0.0075 \mathrm{bbl} / \mathrm{ft})}{11.5 \mathrm{ppg} \times 0.052(0.01776+0.0075 \mathrm{bbl} / \mathrm{ft})}$
Feet $=\frac{150 \mathrm{psi} \times 0.05204}{11.5 \mathrm{ppg} \times 0.052 \times 0.02526}$
Feet $=\frac{7.806}{0.0151054}$
Feet $=516.8$

Metric calculations

 $\begin{aligned} & \begin{array}{l}\text { Pressure drop per } \\ \text { meter tripping } \\ \text { dry pipe, bar } / \mathrm{m}\end{array}\end{aligned}=\frac{\begin{array}{l}\text { drilling fluid } \\ \text { density, } \mathrm{kg} / \mathrm{l}\end{array} \times \begin{array}{l}\text { metal displacement, } \times 0.0981 \\ \mathrm{~lm}\end{array}}{\begin{array}{l}\text { casing capacity, } \\ \mathrm{l} / \mathrm{m}\end{array}, \begin{array}{l}\text { metal displacement, } \\ \mathrm{l} / \mathrm{m}\end{array}}$$\begin{aligned} & \begin{array}{l}\text { Pressure drop per } \\ \text { meter tripping } \\ \text { dry pipe, bar } / \mathrm{m}\end{array}\end{aligned}=\frac{\begin{array}{l}\text { drilling fluid } \\ \text { density, bar } / \mathrm{m}\end{array}}{\text { casing capacity, }} \times \begin{aligned} & \text { metal displacement, }\end{aligned} \times 0.0981$
$\underset{\substack{\text { Pressure drop per } \\ \text { meter tripping }}}{\text { annular capacity, } 1 / \mathrm{m}}=\frac{\begin{array}{l}\text { drilling fluid } \\ \text { density, kg/l }\end{array} \times\left(\begin{array}{c}\text { metal disp., } 1 / \mathrm{m} \\ + \\ \text { pipe capacity }, 1 / \mathrm{m}\end{array}\right) \times 0.0981}{\text { anne }}$ wet pipe, bar/m

$=\frac{$| drilling fluid |
| :--- |
| density, bar $/ \mathrm{m}$ |\(\times\left(\begin{array}{c}metal disp., 1 / \mathrm{m}

+

pipe capacity, 1 / \mathrm{m}\end{array}\right)}{\mathrm{annular} capacity,}\)
$\begin{aligned} & \text { Level drop for } \\ & \text { POOH drill collars }\end{aligned}=\frac{\text { length of drill collars, } m \times \text { metal disp., } 1 / \mathrm{m}}{\text { casing capacity, } 1 / \mathrm{m}}$

S.I. units calculations

$\begin{aligned} & \begin{array}{l}\text { Pressure drop per } \\ \text { meter tripping } \\ \text { dry pipe, } \mathrm{kPa} / \mathrm{m}\end{array}\end{aligned}=\frac{\begin{array}{l}\text { drilling fluid } \\ \text { density, } \mathrm{kg} / \mathrm{m}^{3}\end{array} \times \begin{array}{l}\text { metal disp., } \\ \mathrm{m}^{3} / \mathrm{m}\end{array}}{\text { casing capacity, }-\begin{array}{l}\text { metal disp., } \\ \mathrm{m}^{3} / \mathrm{m}\end{array} \mathrm{m}^{3 / \mathrm{m}}}$
$\begin{aligned} & \text { Pressure drop per } \\ & \begin{array}{l}\text { meter tripping } \\ \text { wet pipe, } \mathrm{kPa} / \mathrm{m}\end{array}\end{aligned}=\frac{\begin{array}{l}\text { drilling fluid } \\ \text { density, }{\mathrm{kg} / \mathrm{m}^{3}}^{2}\end{array} \times\left(\begin{array}{c}\text { metal disp., } \mathrm{m}^{3} / \mathrm{m} \\ + \\ \text { pipe capacity, } \mathrm{m}^{3} / \mathrm{m}\end{array}\right)}{\begin{array}{l}\text { annular capacity, } \times 102 \\ \mathrm{~m}^{3} / \mathrm{m}\end{array}}$
$\begin{aligned} & \text { Level drop for } \mathrm{POOH} \\ & \text { drill collars, } \mathrm{m}\end{aligned}=\frac{\text { length of drill collars, } \mathrm{m} \times \text { metal disp., } \mathrm{m}^{3 / \mathrm{m}}}{\text { casing capacity, } \mathrm{m}^{3} / \mathrm{m}}$

Formation Temperature (FT)

$\mathrm{FT},{ }^{\circ} \mathrm{F}=\left(\begin{array}{l}\text { ambient } \\ \text { surface } \\ \text { temperature, }{ }^{\circ} \mathrm{F}\end{array}\right)+\binom{$ temperature }{ increase ${ }^{\circ} \mathrm{F}$ per ft of depth $\times \mathrm{TVD}, \mathrm{ft}}$

Example: If the temperature increase in a specific area is $0.012^{\circ} \mathrm{F} / \mathrm{ft}$ of depth and the ambient surface temperature is $70^{\circ} \mathrm{F}$, determine the estimated formation temperature at a TVD of $15,000 \mathrm{ft}$:
$\mathrm{FT},{ }^{\circ} \mathrm{F}=70^{\circ} \mathrm{F}+\left(0.012^{\circ} \mathrm{F} / \mathrm{ft} \times 15,000 \mathrm{ft}\right)$
$\mathrm{FT},{ }^{\circ} \mathrm{F}=70^{\circ} \mathrm{F}+180^{\circ} \mathrm{F}$
FT $\quad=250^{\circ} \mathrm{F}$ (estimated formation temperature)

Hydraulic Horsepower (HHP)

$$
\mathrm{HHP}=\frac{\mathrm{P} \times \mathrm{Q}}{1714}
$$

where HHP = hydraulic horsepower
$\mathbf{P}=$ circulating pressure, psi
$\mathrm{Q}=$ circulating rate, gpm

Example: circulating pressure $=2950 \mathrm{psi}$ circulating rate $=520 \mathrm{gpm}$
$\mathrm{HHP}=\frac{2950 \times 520}{1714}$
$\mathrm{HHP}=\frac{1,534,000}{1714}$
$\mathrm{HHP}=894.98$

Drill Pipe/Drill Collar Calculations

Capacities, bbl/ft, displacement, bbl/ft, and weight, lb/ft, can be calculated from the following formulas:

Capacity, $\mathrm{bbl} / \mathrm{ft}=\frac{\mathrm{ID}, \mathrm{in} .^{2}}{1029.4}$
Displacement, $\mathrm{bbl} / \mathrm{ft}=\frac{\mathrm{OD}, \mathrm{in}^{2}-\mathrm{ID}, \mathrm{in} .^{2}}{1029.4}$
Weight, $\mathrm{lb} / \mathrm{ft}=$ displacement, $\mathrm{bbl} / \mathrm{ft} \times 2747 \mathrm{lb} / \mathrm{bbl}$

Example: Determine the capacity, $\mathrm{bbl} / \mathrm{ft}$, displacement, $\mathrm{bbl} / \mathrm{ft}$, and weight, $\mathrm{lb} / \mathrm{ft}$, for the following:

Drill collar $O D=8.0$ in.
Drill collar ID $=2-13 / 16 \mathrm{in}$.
Convert $13 / 16$ to decimal equivalent:
$13 \div 16=0.8125$
a) Capacity, bbl/ft $=\frac{2.8125^{2}}{1029.4}$

Capacity $\quad=0.007684 \mathrm{bbl} / \mathrm{ft}$
b) Displacement, bbl/ft $=\frac{8.0^{2}-2.8125^{2}}{1029.4}$

Displacement, bblft $=\frac{56.089844}{1029.4}$
Displacement $\quad=0.0544879 \mathrm{bbl} / \mathrm{ft}$
c) Weight, $\mathrm{lb} / \mathrm{ft}=0.0544879 \mathrm{bbl} / \mathrm{ft} \times 2747 \mathrm{lb} / \mathrm{bbl}$

Weight $=149.678 \mathrm{lb} / \mathrm{ft}$

Rule of thumb formulas

Weight, lb/ft, for REGULAR DRILL COLLARS can be approximated using the following formula:

Weight, lb/ft $=\left(\mathrm{OD}, \mathrm{in}^{2}-\mathrm{ID}, \mathrm{in} .^{2}\right) 2.66$
Example: Regular drill collars
Drill collar OD $=8.0 \mathrm{in}$.
Drill collar ID $=2-13 / 16 \mathrm{in}$.
Decimal equivalent $=2.8125 \mathrm{in}$.
Weight, $\mathrm{lb} / \mathrm{ft}=\left(8.0^{2}-2.8125^{2}\right) 2.66$
Weight, $\mathrm{lb} / \mathrm{ft}=56.089844 \times 2.66$
Weight $=149.19898 \mathrm{lb} / \mathrm{ft}$
Weight, Ib/ft, for SPIRAL DRILL COLLARS can be approximated using the following formula:

Weight, lb/ft $=\left(\mathrm{OD}, \mathrm{in} .^{2}-\mathrm{ID}, \mathrm{in} .^{2}\right) 2.56$

Example: Spiral drill collars
Drill collar $\mathrm{OD}=8.0 \mathrm{in}$.
Drill collar ID $\quad=2-13 / 16 \mathrm{in}$.
Decimal equivalent $=2.8125 \mathrm{in}$.
Weight, $\mathrm{lb} / \mathrm{ft}=\left(8.0^{2}-2.8125^{2}\right) 2.56$
Weight, $\mathrm{lb} / \mathrm{ft}=56.089844 \times 2.56$
Weight $=143.59 \mathrm{lb} / \mathrm{ft}$

Pump Pressure/Pump Stroke Relationship (Also Called the Roughneck's Formula)

Basic formula

$\begin{aligned} & \text { New circulating } \\ & \text { pressure, psi }\end{aligned}=\begin{aligned} & \text { present } \\ & \text { circulating } \\ & \text { pressure, } \mathrm{psi}\end{aligned} \times\left(\frac{\text { new pump rate, } \mathrm{spm}}{\text { old pump rate, } \mathrm{spm}}\right)^{2}$
Example: Determine the new circulating pressure, psi using the following data:

Present circulating pressure $=1800 \mathrm{psi}$
Old pump rate $\quad=60 \mathrm{spm}$
New pump rate $\quad=30 \mathrm{spm}$
$\begin{aligned} & \text { New circulating } \\ & \text { pressure, psi }\end{aligned}=1800 \mathrm{psi}\left(\frac{30 \mathrm{spm}}{60 \mathrm{spm}}\right)^{2}$
New circulating $=1800 \mathrm{psi} \times 0.25$
pressure, psi
New circulating $=450 \mathrm{psi}$
pressure

Determination of exact factor in above equation

The above formula is an approximation because the factor " ${ }^{\prime 2}$ " is a roundedoff number. To determine the exact factor, obtain two pressure readings at different pump rates and use the following formula:

$$
\text { Factor }=\frac{\log (\text { pressure } 1 \div \text { pressure } 2)}{\log (\text { pump rate } 1 \div \text { pump rate } 2)}
$$

Example: Pressure 1 = 2500psi @ 315 gpm Pressure $2=450 \mathrm{psi} @ 120 \mathrm{gpm}$
Factor $=\frac{\log (2500 \mathrm{psi} \div 450 \mathrm{psi})}{\log (315 \mathrm{gpm} \div 120 \mathrm{gpm})}$
Factor $=\frac{\log (5.5555556)}{\log (2.625)}$
Factor $=1.7768$

Example: Same example as above but with correct factor:
$\begin{aligned} & \text { New circulating } \\ & \text { pressure, psi }\end{aligned}=1800 \mathrm{psi}\left(\frac{30 \mathrm{spm}}{60 \mathrm{spm}}\right)^{1.7768}$
$\begin{aligned} & \text { New circulating } \\ & \text { pressure, } \mathrm{psi}\end{aligned}=1800 \mathrm{psi} \times 0.2918299$
$\begin{aligned} & \text { New circulating } \\ & \text { pressure }\end{aligned}=525 \mathrm{psi}$

Metric calculation

$\begin{aligned} & \text { new pump pressure with } \\ & \text { new pump strokes, bar }\end{aligned}=\begin{aligned} & \text { current } \\ & \text { pressure, bar }\end{aligned} \times\left(\frac{\text { new SPM }}{\text { old SPM }}\right)^{2}$

S.I. units calculation

$\begin{aligned} & \text { new pump pressure } \text { with } \\ & \text { new pump strokes, } \mathrm{kPa}\end{aligned}=\begin{aligned} & \text { current } \\ & \text { pressure, } \mathrm{kPa}\end{aligned} \times\left(\frac{\text { new } \mathrm{SPM}}{\text { old } \mathrm{SPM}}\right)^{2}$

Cost per Foot

$C_{T}=\frac{B+C_{R}(t+T)}{F}$
Example: Determine the drilling cost $\left(\mathrm{C}_{\mathrm{T}}\right)$, dollars per foot, using the following data:

Bit cost (B)	$=\$ 2500$
Rig cost $\left(\mathrm{C}_{\mathrm{R}}\right)$	$=\$ 900 /$ hour
Rotating time (T)	$=65$ hours
Round trip time (T)	$=6$ hours
(for depth- $10,000 \mathrm{ft})$	
Footage per bit (F)	$=1300 \mathrm{ft}$

$C_{T}=\frac{2500+900(65+6)}{1300}$
$C_{T}=\frac{66,400}{1300}$
$C_{T}=\$ 51.08$ per foot

Temperature Conversion Formulas

Convert temperature, ${ }^{\circ}$ Fahrenheit (F) to ${ }^{\circ}$ Centigrade or Celsius (C)

$$
{ }^{\circ} \mathrm{C}=\frac{\left({ }^{\circ} \mathrm{F}-32\right) 5}{9} \mathrm{OR}^{\circ} \mathrm{C}={ }^{\circ} \mathrm{F}-32 \times 0.5556
$$

Example: Convert $95^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$:
${ }^{\circ} \mathrm{C}=\frac{(95-32) 5}{9} \mathrm{OR}^{\circ} \mathrm{C}=95-32 \times 0.5556$
${ }^{\circ} \mathrm{C}=35 \quad{ }^{\circ} \mathrm{C}=35$
Convert temperature, ${ }^{\circ}$ Centigrade or Celsius (C) to ${ }^{\circ}$ Fahrenheit
${ }^{\circ} \mathrm{F}=\frac{\left({ }^{\circ} \mathrm{C} \times 9\right)}{5}+32 \mathrm{OR}{ }^{\circ} \mathrm{F}={ }^{\circ} \mathrm{C} \times 1.8+32$
Example: Convert $24^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$
${ }^{\circ} \mathrm{F}=\frac{(24 \times 9)}{5}+32 \mathrm{OR}^{\circ} \mathrm{F}=24 \times 1.8+32$
${ }^{\circ} \mathrm{F}=75.2 \quad{ }^{\circ} \mathrm{F}=75.2$
Convert temperature, ${ }^{\circ}$ Centigrade, Celsius (C) to ${ }^{\circ}$ Kelvin (K)
${ }^{\circ} \mathrm{K}={ }^{\circ} \mathrm{C}+273.16$

30 Formulas and Calculations

Example: Convert $35^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{K}$:
${ }^{\circ} \mathrm{K}=35+273.16$
${ }^{\circ} \mathrm{K}=308.16$

Convert temperature, ${ }^{\circ}$ Fahrenheit (F) to ${ }^{\circ}$ Rankine (R)

${ }^{\circ} \mathrm{R}={ }^{\circ} \mathrm{F}+459.69$

Example: Convert $260^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{R}$:
${ }^{\circ} \mathrm{R}=260+459.69$
${ }^{\circ} \mathrm{R}=719.69$

Rule of thumb formulas for temperature conversion

a) Convert ${ }^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}={ }^{\circ} \mathrm{F}-30 \div 2$

Example: Convert $95^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$:
${ }^{\circ} \mathrm{C}=95-30 \div 2$
${ }^{\circ} \mathrm{C}=32.5$
b) Convert ${ }^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$
${ }^{\circ} \mathrm{F}={ }^{\circ} \mathrm{C}+{ }^{\circ} \mathrm{C}+30$
Example: Convert $24^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$:
${ }^{\circ} \mathrm{F}=24+24+30$
${ }^{\circ} \mathrm{F}=78$

CHAPTER TWO

Basic Calculations

Volumes and Strokes

Drill string volume, barrels

Barrels $=\frac{\mathrm{ID}, \text { in. } .^{2}}{1029.4} \times$ pipe length, ft

Annular volume, barrels
Barrels $=\frac{\text { Dh, in. }{ }^{2}-\mathrm{Dp}, \text { in. } .^{2}}{1029.4}$

Strokes to displace: drill string, annulus, and total circulation from kelly to shale shaker

Strokes $=$ barrels \div pump output, bbl/stk
Example: Determine volumes and strokes for the following:
Drill pipe - $5.0 \mathrm{in} .-19.5 \mathrm{lb} / \mathrm{ft}$
Inside diameter $=4.276 \mathrm{in}$.
Length
$=9400 \mathrm{ft}$
Drill collars-8.0in. OD
Inside diameter $=3.0 \mathrm{in}$.
Length $\quad=600 \mathrm{ft}$
Casing-13-3/8 in.-54.5lb/ft
Inside diameter $\quad=12.615 \mathrm{in}$
Setting depth $\quad=4500 \mathrm{ft}$
Pump data-7in. by 12 in . triplex

Efficiency
$=95 \%$
Pump output
Hole size
$=12-1 / 4 \mathrm{in}$.

32 Formulas and Calculations

Drill string volume

a) Drill pipe volume, bbl:

Barrels $=\frac{4.276^{2}}{1029.4} \times 9400 \mathrm{ft}$
Barrels $=0.01776 \times 9400 \mathrm{ft}$
Barrels $=166.94$
b) Drill collar volume, bbl:

Barrels $=\frac{3.0^{2}}{1029.4} \times 600 \mathrm{ft}$
Barrels $=0.0087 \times 600 \mathrm{ft}$
Barrels $=5.24$
c) Total drill string volume:

Total drill string vol, $\mathrm{bbl}=166.94 \mathrm{bbl}+5.24 \mathrm{bbl}$
Total drill string vol $\quad=172.18 \mathrm{bbl}$

Annular volume

a) Drill collar/open hole:

Barrels $=\frac{12.25^{2}-8.0^{2}}{1029.4} \times 600 \mathrm{ft}$
Barrels $=0.0836 \times 600 \mathrm{ft}$
Barrels $=50.16$
b) Drill pipe/open hole:

Barrels $=\frac{12.25^{2}-5.0^{2}}{1029.4} \times 4900 \mathrm{f}$
Barrels $=0.12149 \times 4900 \mathrm{ft}$
Barrels $=595.3$
c) Drill pipe/cased hole:

Barrels $=\frac{12.615^{2}-5.0^{2}}{1029.4} \times 4500 \mathrm{ft}$
Barrels $=0.130307 \times 4500 \mathrm{ft}$
Barrels $=586.38$
d) Total annular volume:

Total annular vol $=50.16+595.3+586.38$
Total annular vol $=1231.84$ barrels

Strokes

a) Surface-to-bit strokes:

Strokes $=$ drill string volume, $\mathrm{bbl} \div$ pump output, $\mathrm{bbl} / \mathrm{stk}$
Surface-to-bit strokes $=172.16 \mathrm{bbl} \div 0.136 \mathrm{bbl} / \mathrm{stk}$
Surface-to-bit strokes $=1266$
b) Bit-to-surface (or bottoms-up) strokes:

Strokes $=$ annular volume, bbl \div pump output, bbl/stk
Bit-to-surface strokes $=1231.84 \mathrm{bbl} \div 0.136 \mathrm{bbl} /$ stk
Bit-to-surface strokes $=9058$
c) Total strokes required to pump from the kelly to the shale shaker:

Strokes $=$ drill string vol, bbl + annular vol, bbl \div pump output, $\mathrm{bbl} /$ stk
Total strokes $=(172.16+1231.84) \div 0.136$
Total strokes $=1404 \div 0.136$
Total strokes $=10,324$

Slug Calculations

Barrels of slug required for a desired length of dry pipe

Step 1

Hydrostatic pressure required to give desired drop inside drill pipe:
$\mathrm{HP}, \mathrm{psi}=$ mud $w t, \mathrm{ppg} \times 0.052 \times \mathrm{ft}$ of dry pipe

Step 2

Difference in pressure gradient between slug weight and mud weight: $\mathrm{psi} / \mathrm{ft}=(\mathrm{slug} \mathrm{wt}, \mathrm{ppg}-\mathrm{mud} \mathrm{wt}, \mathrm{ppg}) \times 0.052$

Step 3

Length of slug in drill pipe:
Slug length, $\mathrm{ft}=$ pressure, $\mathrm{psi} \div \underset{\text { pressure gradient, } \mathrm{psi} / \mathrm{ft}}{\text { difference in }}$

Step 4

Volume of slug, barrels:
Slug vol, $\mathrm{bbl}=$ slug length, $\mathrm{ft} \times \begin{aligned} & \text { drill pipe } \\ & \text { capacity, } \mathrm{bbl} / \mathrm{ft}\end{aligned}$
Example: Determine the barrels of slug required for the following:
Desired length of dry pipe (2 stands) $=184 \mathrm{ft}$
Mud weight $\quad=12.2 \mathrm{ppg}$
Slug weight $\quad=13.2 \mathrm{ppg}$
Drill pipe capacity $\quad=0.01422 \mathrm{bbl} / \mathrm{ft}$
4-1/2in.-16.61b/ft

Step 1

Hydrostatic pressure required:

$$
\begin{aligned}
& \text { HP, } \mathrm{psi}=12.2 \mathrm{ppg} \times 0.052 \times 184 \mathrm{ft} \\
& \mathrm{HP} \quad=117 \mathrm{psi}
\end{aligned}
$$

Step 2

Difference in pressure gradient, $\mathrm{psi} / \mathrm{ft}$:

$$
\mathrm{psi} / \mathrm{ft}=(13.2 \mathrm{ppg}-12.2 \mathrm{ppg}) \times 0.052
$$

$\mathrm{psi} / \mathrm{ft}=0.052$

Step 3

Length of slug in drill pipe, ft :
Slug length, $\mathrm{ft}=117 \mathrm{psi} \div 0.052$
Slug length $=2250 \mathrm{ft}$

Step 4

Volume of slug, bbl:
Slug vol, $\mathrm{bbl}=2250 \mathrm{ft} \times 0.01422 \mathrm{bbl} / \mathrm{ft}$
Slug vol $=32.0 \mathrm{bbl}$

Weight of slug required for a desired length of dry pipe with a set volume of slug

Step 1

Length of slug in drill pipe, ft :
Slug length, $\mathrm{ft}=$ slug vol, $\mathrm{bbl} \div$ drill pipe capacity, $\mathrm{bbl} / \mathrm{ft}$

Step 2

Hydrostatic pressure required to give desired drop inside drill pipe:
HP, psi $=$ mud wt, ppg $\times 0.052 \times \mathrm{ft}$ of dry pipe

Step 3

Weight of slug, ppg:
Slug wt, $\mathrm{ppg}=\mathrm{HP}, \mathrm{psi} \div 0.052 \div$ slug length, $\mathrm{ft}+$ mud $w \mathrm{t}$, ppg
Example: Determine the weight of slug required for the following:
Desired length of dry pipe (2 stands) $=184 \mathrm{ft}$
Mud weight $\quad=12.2 \mathrm{ppg}$
Volume of slug

$$
=25 \mathrm{bbl}
$$

Drill pipe capacity

$$
=0.01422 \mathrm{bbl} / \mathrm{ft}
$$

$4-1 / 2 \mathrm{in}$. $-16.6 \mathrm{lb} / \mathrm{ft}$

Step 1

Length of slug in drill pipe, ft :
Slug length, $\mathrm{ft}=25 \mathrm{bbl} \div 0.01422 \mathrm{bbl} / \mathrm{ft}$
Slug length $=1758 \mathrm{ft}$

Step 2

Hydrostatic pressure required:
$\mathrm{HP}, \mathrm{psi}=12.2 \mathrm{ppg} \times 0.052 \times 184 \mathrm{ft}$
$\mathrm{HP}=117 \mathrm{psi}$

Step 3

Weight of slug, ppg:
Slug wt, ppg $=117 \mathrm{psi} \div 0.052 \div 1758 \mathrm{ft}+12.2 \mathrm{ppg}$
Slug wt, ppg $=1.3 \mathrm{ppg}+12.2 \mathrm{ppg}$
Slug wt $\quad=13.5 \mathrm{ppg}$
Volume, height, and pressure gained because of slug:
a) Volume gained in mud pits after slug is pumped, due to U-tubing:

Vol, $\mathrm{bbl}=\mathrm{ft}$ of dry pipe \times drill pipe capacity, bbl/ft
b) Height, ft, that the slug would occupy in annulus:

Height, $\mathrm{ft}=$ annulus vol, $\mathrm{ft} / \mathrm{bbl} \times$ slug vol, bbl
c) Hydrostatic pressure gained in annulus because of slug: $\mathrm{HP}, \mathrm{psi}=\begin{aligned} & \text { height of slug } \\ & \text { in annulus, } \mathrm{ft}\end{aligned} \times \begin{aligned} & \text { difference in gradient, psi/ft } \\ & \text { between slug wt and mud wt }\end{aligned}$

Example: Feet of dry pipe (2 stands)
Slug volume

$$
=184 \mathrm{ft}
$$

Slug weight
$=32.4 \mathrm{bbl}$
Mud weight
$=13.2 \mathrm{ppg}$
Drill pipe capacity
$=12.2 \mathrm{ppg}$
$4-1 / 2 \mathrm{in}$. $-16.61 \mathrm{~b} / \mathrm{ft}$
Annulus volume ($8-1 / 2 \mathrm{in}$. by $4-1 / 2 \mathrm{in}$. $)=19.8 \mathrm{ft} / \mathrm{bbl}$
a) Volume gained in mud pits after slug is pumped due to U-tubing:

Vol, $\mathrm{bbl}=184 \mathrm{ft} \times 0.01422 \mathrm{bbl} / \mathrm{ft}$
$\mathrm{Vol}=2.62 \mathrm{bbl}$
b) Height, ft , that the slug would occupy in the annulus:

Height, $\mathrm{ft}=19.8 \mathrm{ft} / \mathrm{bbl} \times 32.4 \mathrm{bbl}$
Height $=641.5 \mathrm{ft}$
c) Hydrostatic pressure gained in annulus because of slug:

HP, psi $=641.5 \mathrm{ft}(13.2-12.2) \times 0.05$:
$\mathrm{HP}, \mathrm{psi}=641.5 \mathrm{ft} \times 0.052$
$\mathrm{HP}=33.4 \mathrm{psi}$

English units calculation

Barrels gained pumping slug, bbl
$=($ bbl slug pumped \times slug $\mathrm{wt}, \mathrm{ppg} \div$ mud wt, ppg $)-\mathrm{bbl}$ slug
Example: Determine the number of barrels of mud gained due to pumping the slug and determine the feet of dry pipe.

Mud weight
$=12.6 \mathrm{ppg}$
Slug weight $\quad=14.2 \mathrm{ppg}$
Barrels of slug pumped $=25$ barrels
Drill pipe capacity $\quad=0.01776 \mathrm{bbl} / \mathrm{ft}$
Barrels gained $=(25 \mathrm{bbl} \times 14.2 \mathrm{ppg} \div 12.6 \mathrm{ppg})-25 \mathrm{bbl}$

$$
\begin{aligned}
& =28.175-25 \\
& =3.175 \mathrm{bbl}
\end{aligned}
$$

Determine the feet of dry pipe after pumping the slug.
Feet of dry pipe $=3.175 \mathrm{bbl} \div 0.01776 \mathrm{bbl} / \mathrm{ft}$

$$
=179 \text { feet }
$$

Metric calculation

$\begin{aligned} & \text { liters gained } \\ & \text { pumping slug }\end{aligned}=($ liter slug pumped \times slug $\mathrm{wt}, \mathrm{kg} / \mathrm{l} \div$ mud $\mathrm{wt}, \mathrm{kg} / \mathrm{l})-$ liter slug

S. I. units calculation

m^{3} gained pumping slug $=\left(\mathrm{m}^{3}\right.$ slug pumped \times slug $\left.w \mathrm{t}, \mathrm{kg} / \mathrm{m}^{3}\right)-\mathrm{m}^{3}$ slug

Accumulator Capacity-Useable Volume per Bottle

Useable Volume per Bottle

NOTE: The following will be used as guidelines:

Volume per bottle
$=10 \mathrm{gal}$
Pre-charge pressure
Minimum pressure remaining
after activation
Pressure gradient of hydraulic fluid $=0.445 \mathrm{psi} / \mathrm{ft}$
Maximum pressure
$=3000 \mathrm{psi}$

Boyle's Law for ideal gases will be adjusted and used as follows:

$$
P_{1} V_{1}=P_{2} V_{2}
$$

Surface application

Step 1

Determie hydraulic fluid necessary to increase pressure from pre-charge to minimum:

$$
\begin{aligned}
& \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \\
& 1000 \mathrm{psi} \times 10 \mathrm{gal}=1200 \mathrm{psi} \times \mathrm{V}_{2} \\
& \frac{10,000}{1200}=\mathrm{V}_{2}
\end{aligned}
$$

$$
\mathrm{V}_{2}=8.33 \text { The nitrogen has been compressed from } 10.0 \mathrm{gal}
$$ to 8.33 gal .

$10.0-8.33=1.67 \mathrm{gal}$ of hydraulic fluid per bottle.
NOTE: This is dead hydraulic fluid. The pressure must not drop below this minimum value.

Step 2

Determine hydraulic fluid necessary to increase pressure from pre-charge to maximum:

$$
\begin{aligned}
& \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \\
& 1000 \mathrm{psi} \times 10 \mathrm{gals}=3000 \mathrm{psi} \times \mathrm{V}_{2} \\
& \frac{10,000}{3000}=\mathrm{V}_{2} \\
& \mathrm{~V}_{2}=3.33 \text { The nitrogen has been compressed from } 10 \mathrm{gal} \\
& \text { to } 3.33 \text { gal. }
\end{aligned}
$$

$10.0-3.33=6.67 \mathrm{gal}$ of hydraulic fluid per bottle.

Step 3

Determine useable volume per bottle:

```
Useable \(=\) Total hydraulic \(\quad\) Dead hydraulic
vol/bottle fluid/bottle - fluid/bottle
Useable
\(\mathrm{vol} / \mathrm{bottle}=6.67-1.67\)
Useable
\(\mathrm{vol} / \mathrm{bottle}=5.0\) gallons
```


English units

$\begin{aligned} & \text { Volume delivered, } \\ & \text { gallons }\end{aligned}=\begin{aligned} & \text { bottle capacity, } \\ & \text { gals }\end{aligned} \times\left(\frac{\text { precharge, } \mathrm{psi}}{\text { final, } \mathrm{psi}}\right)-\left(\frac{\text { precharge, } \mathrm{psi}}{\text { system, } \mathrm{psi}}\right)$
Example: Determine the amount of usable hydraulic fluid delivered from a 20 -gallon bottle:
Precharge pressure $=1000 \mathrm{psi}$
System pressure $=3000 \mathrm{psi}$
Final pressure $\quad=1200 \mathrm{psi}$
Volume delivered, gallons $=20$ gallons $\times\left(\frac{1000 \mathrm{psi}}{1200 \mathrm{psi}}\right)-\left(\frac{1000 \mathrm{psi}}{3000 \mathrm{psi}}\right)$

$$
\begin{aligned}
& =20 \text { gallons } \times(0.833-0.333) \\
& =20 \text { gallons } \times 0.5 \\
& =10 \text { gallons }
\end{aligned}
$$

Subsea applications

In subsea applications the hydrostatic pressure exerted by the hydraulic fluid must be compensated for in the calculations:

Example: Same guidelines as in surface applications:
Water depth $\quad=1000 \mathrm{ft}$
Hydrostatic pressure of hydraulic fluid $=445 \mathrm{psi}$

Step 1

Adjust all pressures for the hydrostatic pressure of the hydraulic fluid:
Pre-charge pressure $=1000 \mathrm{psi}+445 \mathrm{psi}=1445 \mathrm{psi}$
Minimum pressure $=1200 \mathrm{psi}+445 \mathrm{psi}=1645 \mathrm{psi}$
Maximum pressure $=3000 \mathrm{psi}+445 \mathrm{psi}=3445 \mathrm{psi}$

Step 2

Determine hydraulic fluid necessary to increase pressure from pre-charge to minimum:

$$
\begin{aligned}
& \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \\
& 1445 \mathrm{psi} \times 10=1645 \times \mathrm{V}_{2} \\
& \frac{14,560}{1645}=\mathrm{V}_{2} \\
& \mathrm{~V}_{2}=8.78 \mathrm{gal} \\
& 10.0-8.78=1.22 \mathrm{gal} \text { of dead hydraulic fluid }
\end{aligned}
$$

Step 3

Determine hydraulic fluid necessary to increase pressure from pre-charge to maximum:

$$
\begin{aligned}
1445 \mathrm{psi} \times 10 & =3445 \mathrm{psi} \times \mathrm{V}_{2} \\
\frac{14,450}{3445} & =\mathrm{V}_{2} \\
\mathrm{~V}_{2} & =4.19 \mathrm{gal}
\end{aligned}
$$

$10.0-4.19=5.81 \mathrm{gal}$ of hydraulic fluid per bottle.

Step 4

Determine useable fluid volume per bottle:
Useable $=$ total hydraulic _ dead hydraulic
$\mathrm{vol} / \mathrm{bottle}=$ fluid/bottle ${ }^{-}$fluid/bottle
$\begin{aligned} & \text { Useable } \\ & \text { vol/bottle }\end{aligned}=5.81-1.22$
Useable
$\mathrm{vol} / \mathrm{bottle}=4.59$ gallons

Accumulator pre-charge pressure

The following is a method of measuring the average accumulator pre-charge pressure by operating the unit with the charge pumps switched off:

$$
\mathrm{P}, \mathrm{psi}=\frac{\text { vol removed, } \mathrm{bbl}}{\text { total acc. vol, } \mathrm{bbl}} \times\left(\frac{\mathrm{Pf} \times \mathrm{Ps}}{\mathrm{Ps}-\mathrm{Pf}}\right)
$$

where $\mathrm{P}=$ average pre-charge pressure, psi
$\mathrm{Pf}=$ final accumulator pressure, psi
$\mathrm{Ps}_{\mathrm{s}}=$ starting accumulator pressure, psi
Example: Determine the average accumulator pre-charge pressure using the following data:

Starting accumulator pressure $(\mathrm{Ps})=3000 \mathrm{psi}$
Final accumulator pressure $(\mathrm{Pf})=2200 \mathrm{psi}$
Volume of fluid removed $\quad=20 \mathrm{gal}$
Total accumulator volume $\quad=180 \mathrm{gal}$
$\mathrm{P}, \mathrm{psi}=\frac{20}{180} \times\left(\frac{2200 \times 3000}{3000-2200}\right)$
$\mathbf{P}, \mathrm{psi}=0.1111 \times\left(\frac{6,600,000}{800}\right)$
$\mathbf{P}, \mathrm{psi}=0.1111 \times 8250$
$\mathrm{P} \quad=917 \mathrm{psi}$
Bulk Density of Cuttings (Using Mud Balance)

Procedure:

1. Cuttings must be washed free of mud. In an oil mud, diesel oil can be used instead of water.
2. Set mud balance at 8.33 ppg .
3. Fill the mud balance with cuttings until a balance is obtained with the lid in place.
4. Remove lid, fill cup with water (cuttings included), replace lid, and dry outside of mud balance.
5. Move counterweight to obtain new balance.

The specific gravity of the cuttings is calculated as follows:

$$
\mathrm{SG}=\frac{1}{2-(0.12 \times \mathrm{Rw})}
$$

where $\mathrm{SG}=$ specific gravity of cuttings--bulk density $\mathrm{Rw}=$ resulting weight with cuttings plus water, ppg

Example: $\mathrm{Rw}=13.8 \mathrm{ppg}$. Determine the bulk density of cuttings:
$S G=\frac{1}{2-(0.12 \times 13.8)}$
$\mathrm{SG}=\frac{1}{0.344}$
$\mathrm{SG}=2.91$

Drill String Design (Limitations)

The following will be determined:
Length of bottomhole assembly (BHA) necessary for a desired weight on bit (WOB).

Feet of drill pipe that can be used with a specific bottomhole assembly (BHA).

1. Length of bottomhole assembly necessary for a desired weight on bit:

Length, $\mathrm{ft}=\frac{\text { WOB } \times \mathrm{f}}{\mathrm{Wdc} \times \mathrm{BF}}$
where $\mathrm{WOB}=$ desired weight to be used while drilling
f = safety factor to place neutral point in drill collars
$\mathrm{Wdc}=$ drill collar weight, $\mathrm{lb} / \mathrm{ft}$
BF = buoyancy factor
Example: Desired WOB while drilling $=50,000 \mathrm{lb}$
Safety factor $\quad=15 \%$
Mud weight $\quad=12.0 \mathrm{ppg}$
Drill collar weight $\quad=147 \mathrm{lb} / \mathrm{ft}$ 8 in. OD-3in. ID

Solution: a) Buoyancy factor (BF):
$\mathrm{BF}=\frac{65.5-12.0 \mathrm{ppg}}{65.5}$
$\mathrm{BF}=0.8168$
b) Length of bottomhole assembly necessary:

Length, $\mathrm{ft}=\frac{50,000 \times 1.15}{147 \times 0.8168}$
Length, $\mathrm{ft}=\frac{57,500}{120.0696}$
Length $=479 \mathrm{ft}$

2. Feet of drill pipe that can be used with a specific bottomhole assembly (BHA)

NOTE: Obtain tensile strength for new pipe from cementing handbook or other source.
a) Determine buoyancy factor:

$$
\mathrm{BF}=\frac{65.5-\text { mud weight, ppg }}{65.5}
$$

b) Determine maximum length of drill pipe that can be run into the hole with a specific bottomhole assembly:

$$
\text { Length }_{\max }=\frac{[(\mathrm{T} \times \mathrm{f})-\mathrm{MOP}-\mathrm{Wbha}] \times \mathrm{BF}}{\mathrm{Wdp}}
$$

where $\mathrm{T}=$ tensile strength, lb for new pipe
$\mathrm{f} \quad=$ safety factor to correct new pipe to no. 2 pipe
MOP = margin of overpull
$\mathrm{Wbha}=\mathrm{BHA}$ weight in air, $\mathrm{lb} / \mathrm{ft}$
$\mathrm{Wdp}=$ drill pipe weight in air, $\mathrm{lb} / \mathrm{ft}$, including tool joint
$\mathrm{BF}=$ buoyancy factor
c) Determine total depth that can be reached with a specific bottomhole assembly:

Total depth, $\mathrm{ft}=$ length $_{\text {max }}+$ BHA length

$$
\text { Example: } \begin{aligned}
& \text { Drill pipe }(5.0 \mathrm{in} .)=21.87 \mathrm{lb} / \mathrm{ft}-\text { Grade } \mathrm{G} \\
& \text { Tensile strength }=554,000 \mathrm{lb} \\
& \text { BHA weight in air }=50,000 \mathrm{lb} \\
& \text { BHA length }=500 \mathrm{ft} \\
& \text { Desired overpull }=100,000 \mathrm{lb} \\
& \text { Mud weight }=13.5 \mathrm{ppg} \\
& \text { Safety factor }=10 \%
\end{aligned}
$$

a) Buoyancy factor:
$\mathrm{BF}=\frac{65.5-13.5}{65.5}$
$\mathrm{BF}=0.7939$
b) Maximum length of drill pipe that can be run into the hole:

Length $_{\text {max }}=\frac{[(554,000 \times 0.90)-100,000-50,000] \times 0.7639}{21.87}$
Length $_{\text {max }}=\frac{276,754}{21.87}$
Length $_{\text {max }}=12,655 \mathrm{ft}$
c) Total depth that can be reached with this BHA and this drill pipe:
Total depth, $\mathrm{ft}=12,655 \mathrm{ft}+500 \mathrm{ft}$
Total depth $=13,155 \mathrm{ft}$

Ton-Mile (TM) Calculations

All types of ton-mile service should be calculated and recorded in order to obtain a true picture of the total service received from the rotary drilling line. These include:

1. Round trip ton-miles
2. Drilling or "connection" ton-miles
3. Coring ton-miles
4. Ton-miles setting casing
5. Short-trip ton-miles

Round trip ton-miles ($\mathbf{R T}_{\mathbf{T M}}$)

$$
\mathrm{RT}_{\mathrm{TM}}=\frac{\mathrm{Wp} \times \mathrm{D} \times(\mathrm{Lp}+\mathrm{D})+(2 \times \mathrm{D})(2 \times \mathrm{Wb}+\mathrm{Wc})}{5280 \times 2000}
$$

where $\mathrm{RT}_{\mathrm{TM}}=$ round trip ton-miles
$\mathrm{Wp}=$ buoyed weight of drill pipe, $1 \mathrm{l} / \mathrm{ft}$
D $=$ depth of hole, ft
$\mathrm{Lp}=$ length of one stand of drill pipe, (ave), ft
$\mathrm{Wb}=$ weight of traveling block assembly, lb
Wc = buoyed weight of drill collars in mud minus the buoyed weight of the same length of drill pipe, lb
$2000=$ number of pounds in one ton $5280=$ number of feet in one mile

Example: Round trip ton-miles

Mud weight	$=9.6 \mathrm{ppg}$
Measured depth	$=4000 \mathrm{ft}$
Drill pipe weight	$=13.3 \mathrm{lb} / \mathrm{ft}$
Drill collar weight	$=831 \mathrm{~b} / \mathrm{ft}$
Drill collar length	$=300 \mathrm{ft}$
Traveling block assembly	$=15,000 \mathrm{lb}$

Average length of one stand $=60 \mathrm{ft}$ (double)
Solution: a) Buoyancy factor:
$\mathrm{BF}=65.5-9.6$ ppg. $\div 65.5$
$\mathrm{BF}=0.8534$
b) Buoyed weight of drill pipe in mud, $\mathrm{lb} / \mathrm{ft}(\mathrm{Wp})$:
$\mathrm{Wp}=13.3 \mathrm{lb} / \mathrm{ft} \times 0.8534$
$\mathrm{Wp}=11.35 \mathrm{lb} / \mathrm{ft}$
c) Buoyed weight of drill collars in mud minus the buoyed weight of the same length of drill pipe, $\mathrm{lb}(\mathrm{Wc})$:
$\mathrm{Wc}=(300 \times 83 \times 0.8534)-(300 \times 13.3 \times 0.8534)$
$\mathrm{Wc}=21,250-3405$
$\mathrm{Wc}=17,845 \mathrm{lb}$
Round trip ton-miles $=$

$$
\begin{aligned}
& \frac{11.35 \times 4000 \times(60+4000)+(2 \times 4000) \times(2 \times 15,000+17,845)}{5280 \times 2000} \\
& \mathrm{RT}_{\mathrm{TM}}=\frac{11.35 \times 4000 \times 4060+8000 \times(30,000+17,845)}{5280 \times 2000} \\
& \mathrm{RT}_{\mathrm{TM}}=\frac{11.35 \times 4000 \times 4060+8000 \times 47,845}{10,560,000}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{RT}_{\mathrm{TM}}=\frac{1.843208+3.827608}{10,560,000} \\
& \mathrm{RT}_{\mathrm{TM}}=53.7
\end{aligned}
$$

Drilling or "connection" ton-miles

The ton-miles of work performed in drilling operations is expressed in terms of work performed in making round trips. These are the actual ton-miles of work involved in drilling down the length of a section of drill pipe (usually approximately 30 ft) plus picking up, connecting, and starting to drill with the next section.

To determine connection or drilling ton-miles, take 3 times (ton-miles for current round trip minus ton-miles for previous round trip):

$$
\mathrm{Td}=3\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)
$$

where $\mathrm{Td}=$ drilling or "connection" ton-miles
$\mathrm{T}_{2}=$ ton-miles for one round trip-depth where drilling stopped before coming out of hole.
$T_{1}=$ ton-miles for one round trip-depth where drilling started.
Example: Ton-miles for trip @ $4600 \mathrm{ft}=64.6$
Ton-miles for trip @ $4000 \mathrm{ft}=53.7$

$$
\begin{aligned}
& \mathrm{Td}=3 \times(64.6-53.7) \\
& \mathrm{Td}=3 \times 10.9 \\
& \mathrm{Td}=32.7 \text { ton-miles }
\end{aligned}
$$

Ton-miles during coring operations

The ton-miles of work performed in coring operations, as for drilling operations, is expressed in terms of work performed in making round trips.
To determine ton-miles while coring, take 2 times ton-miles for one round trip at the depth where coring stopped minus ton-miles for one round trip at the depth where coring began:
$\mathrm{Tc}=2\left(\mathrm{~T}_{4}-\mathrm{T}_{3}\right)$
where $\mathrm{Tc}=$ ton-miles while coring
$\mathrm{T}_{4}=$ ton-miles for one round trip-depth where coring stopped before coming out of hole
$\mathrm{T}_{3}=$ ton-miles for one round trip-depth where coring started after going in hole

Ton-miles setting casing

The calculations of the ton-miles for the operation of setting casing should be determined as for drill pipe, but with the buoyed weight of the casing being used, and with the result being multiplied by one-half, because setting casing is a one-way ($1 / 2$ round trip) operation. Ton-miles for setting casing can be determined from the following formula:

$$
\mathrm{Tc}=\frac{\mathrm{Wp} \times \mathrm{D} \times(\mathrm{Lcs}+\mathrm{D})+\mathrm{D} \times \mathrm{Wb}}{5280 \times 2000} \times 0.5
$$

where $\mathrm{Tc}=$ ton-miles setting casing
$\mathrm{W} p=$ buoyed weight of casing, $\mathrm{lb} / \mathrm{ft}$
Lcs $=$ length of one joint of casing, ft
$\mathrm{Wb}=$ weight of traveling block assembly, lb

Ton-miles while making short trip

The ton-miles of work performed in short trip operations is also expressed in terms of round trips. Analysis shows that the ton-miles of work done in making a short trip is equal to the difference in round trip ton-miles for the two depths in question.

$$
\mathrm{Tst}=\mathrm{T}_{6}-\mathrm{T}_{5}
$$

where Tst $=$ ton-miles for short trip
$\mathrm{T}_{6}=$ ton-miles for one round trip at the deeper depth, the depth of the bit before starting the short trip.
$T_{5}=$ ton-miles for one round trip at the shallower depth, the depth that the bit is pulled up to.

Cementing Calculations

Cement additive calculations

a) Weight of additive per sack of cement:

Weight, $\mathrm{lb}=$ percent of additive $\times 94 \mathrm{lb} / \mathrm{sk}$
b) Total water requirement, gal/sk, of cement:

Water, gal/sk $=\begin{aligned} & \text { Cement water } \\ & \text { requirement, gal/sk }\end{aligned}+\begin{aligned} & \text { Additive water } \\ & \text { requirement, gal/sk }\end{aligned}$
c) Volume of slurry, gal/sk:

$$
\begin{aligned}
\text { Vol gal/sk }= & \frac{94 \mathrm{lb}}{\mathrm{SG} \text { of cement } \times 8.33 \mathrm{lb} / \mathrm{gal}} \\
& +\frac{\text { weight of additive, } \mathrm{lb}}{\text { SG of additive } \times 8.33 \mathrm{lb} / \mathrm{gal}} \\
& + \text { water volume, gal }
\end{aligned}
$$

d) Slurry yield, $\mathrm{ft}^{3} / \mathrm{sk}$:

Yield, $\mathrm{ft}^{3} / \mathrm{sk}=\frac{\text { vol of slurry, gal/sk }}{7.48 \mathrm{gal} / \mathrm{ft}^{3}}$
e) Slurry density, lb/gal:

Density, $\mathrm{lb} / \mathrm{gal}=\frac{94+\mathrm{wt} \text { of additive }+(8.33 \times \mathrm{vol} \text { of water } / \mathrm{sk})}{\text { vol of slurry }, \mathrm{gal} / \mathrm{sk}}$
Example: Class A cement plus 4% bentonite using normal mixing water:
Determine the following:
Amount of bentonite to add
Total water requirements
Slurry yield
Slurry weight

1) Weight of additive:

Weight, lb/sk $=0.04 \times 94 \mathrm{lb} / \mathrm{sk}$
Weight $\quad=3.76 \mathrm{lb} / \mathrm{sk}$
2) Total water requirement:

Water $=5.1$ (cement) +2.6 (bentonite)
Water $=7.7 \mathrm{gal} / \mathrm{sk}$ of cement
3) Volume of slurry:
$\mathrm{Vol}, \mathrm{gal} / \mathrm{sk}=\frac{94}{3.14 \times 8.33}+\frac{3.76}{2.65 \times 8.33}+7.7$
$\mathrm{Vol}, \mathrm{gal} / \mathrm{sk}=3.5938+0.1703+7.7$
$\mathrm{Vol}=11.46 \mathrm{gal} / \mathrm{sk}$
4) Slurry yield, $\mathrm{ft}^{3} / \mathrm{sk}$:

Yield, $\mathrm{ft}^{3} / \mathrm{sk}=11.46 \mathrm{gal} / \mathrm{sk} \div 7.48 \mathrm{gal} / \mathrm{ft}^{3}$
Yield $\quad=1.53 \mathrm{ft}^{3} / \mathrm{sk}$
5) Slurry density, lb/gal:

Density, lb/gal $=\frac{94+3.76+(8.33 \times 7.7)}{11.46}$
Density, $\mathrm{lb} / \mathrm{gal}=\frac{161.90}{11.46}$
Density $\quad=14.13 \mathrm{lb} / \mathrm{gal}$

Water requirements

a) Weight of materials, lb/sk:

Weight, $\mathrm{lb} /$ sk $=94+(8.33 \times$ vol of water, gal $)+(\%$ of additive $\times 94)$
b) Volume of slurry, gal/sk:
$\mathrm{Vol}, \mathrm{gal} / \mathrm{sk}=\frac{94 \mathrm{lb} / \mathrm{sk}}{\mathrm{SG} \times 8.33}+\frac{\mathrm{wt} \text { of additive, } \mathrm{lb} / \mathrm{sk}}{\mathrm{SG} \times 8.33}+$ water vol, gal
c) Water requirement using material balance equation:
$D_{1} V_{1}=D_{2} V_{2}$

Example: Class H cement plus 6% bentonite to be mixed at $14.0 \mathrm{lb} / \mathrm{gal}$. Specific gravity of bentonite $=2.65$.

Determine the following:
Bentonite requirement, lb/sk
Water requirement, gal/sk
Slurry yield, $\mathrm{ft}^{3} / \mathrm{sk}$
Check slurry weight, lb/gal

1) Weight of materials, $\mathrm{lb} / \mathrm{sk}$:

Weight, $1 \mathrm{~b} / \mathrm{sk}=94+(0.06 \times 94)+\left(8.33 \times{ }^{\prime \prime} \mathrm{y}\right.$ " $)$
Weight, $\mathrm{lb} / \mathrm{sk}=94+5.64+8.33 " \mathrm{y}$ "
Weight $\quad=99.64+8.33 " y$ "

50 Formulas and Calculations

2) Volume of slurry, gal/sk:

Vol, gal/sk $=\frac{94}{3.14 \times 8.33}+\frac{5.64}{2.65 \times 8.33}+" \mathrm{y}$ "
$\mathrm{Vol}, \mathrm{gal} / \mathrm{sk}=3.6+0.26+" \mathrm{y}$ "
$\mathrm{Vol}, \mathrm{gal} / \mathrm{sk}=3.86+$ " y "
3) Water requirement using material balance equation:

$$
\begin{aligned}
99.64+8.33 " y " & =(3.86+" y ") \times 14.0 \\
99.64+8.33 " y " & =54.04+14.0 \times y " \\
99.64-54.04 & =14.0{ }^{\prime} y ",-8.33 " y " \\
45.6 & =5.67 " y " \\
45.6 \div 5.67 & =\text { "y" } \\
8.0 & =\text { " } y " \text { "Thus, water requirement }=8.0 \mathrm{gal} / \mathrm{sk} \text { of cement }
\end{aligned}
$$

4) Slurry yield, $\mathrm{ft}^{3} / \mathrm{sk}$:

Yield, $\mathrm{ft}^{3} / \mathrm{sk}=\frac{3.6+0.26+8.0}{7.48}$
Yield, $\mathrm{ft}^{3} / \mathrm{sk}=\frac{11.86}{7.48}$
Yield $\quad=1.59 \mathrm{ft}^{3} / \mathrm{sk}$
5) Check slurry density, lb/gal:

Density, lb/gal $=\frac{94+5.64+(8.33 \times 8.0)}{11.86}$
Density, $\mathrm{lb} / \mathrm{gal}=\frac{166.28}{11.86}$
Density $\quad=14.01 \mathrm{~b} / \mathrm{gal}$

Field cement additive calculations

When bentonite is to be pre-hydrated, the amount of bentonite added is calculated based on the total amount of mixing water used.
Cement program: 240 sk cement; slurry density $=13.8 \mathrm{ppg}$;
$8.6 \mathrm{gal} / \mathrm{sk}$ mixing water; 1.5% bentonite to be pre-hydrated:
a) Volume of mixing water, gal:

Volume $=240 \mathrm{sk} \times 8.6 \mathrm{gal} / \mathrm{sk}$
Volume $=2064 \mathrm{gal}$
b) Total weight, lb , of mixing water:

Weight $=2064 \mathrm{gal} \times 8.33 \mathrm{lb} / \mathrm{gal}$
Weight $=17,193 \mathrm{lb}$
c) Bentonite requirement, lb :

Bentonite $=17,193 \mathrm{lb} \times 0.015 \%$
Bentonite $=257.89 \mathrm{lb}$
Other additives are calculated based on the weight of the cement:
Cement program: 240 sk cement; 0.5% Halad; 0.40% CFR-2:
a) Weight of cement:

Weight $=240$ sk $\times 94 \mathrm{lb} / \mathrm{sk}$
Weight $=22,5601 \mathrm{~b}$
b) Halad $=0.5 \%$

Halad $=22,560 \mathrm{lb} \times 0.005$
Halad $=112.8 \mathrm{lb}$
c) CFR-2 $=0.40 \%$

CFR-2 $=22,560 \mathrm{lb} \times 0.004$
CFR-2 $=90.24 \mathrm{lb}$

Table 2-1
Water Requirements and Specific Gravity of Common Cement Additives

Material	Water Requirement gal/94 lb/sk	Specific Gravity
API Class Cement		
Class A \& B	5.2	3.14
Class C	6.3	3.14
Class D \& E	4.3	3.14
Class G	5.0	3.14
Class H	$4.3-5.2$	3.14
Chem Comp Cement	6.3	3.14

Table 2-1 (continued)

Material	Water Requirement gal/94 lb/sk	Specific Gravity
Attapulgite	1.3/2\% in cement	2.89
Cement Fondu	4.5	3.23
Lumnite Cement	4.5	3.20
Trinity Lite-weight Cement	9.7	2.80
Bentonite	1.3/2\% in cement	2.65
Calcium Carbonate Powder	0	1.96
Calcium Chloride	0	1.96
Cal-Seal (Gypsum Cement)	4.5	2.70
CFR-1	0	1.63
CFR-2	0	1.30
D-Air-1	0	1.35
D-Air-2	0	1.005
Diacel A	0	2.62
Diacel D	3.3-7.4/10\% in cement	2.10
Diacel LWL	0 (up to 0.7\%)	1.36
	0.8:1/1\% in cement	
Gilsonite	$2 / 50-\mathrm{lb} / \mathrm{ft}^{3}$	1.07
Halad-9	$\begin{gathered} 0 \text { (up to } 5 \%) 0.4-0.5 \\ \text { over } 5 \% \end{gathered}$	1.22
Halad 14	0	1.31
HR-4	0	1.56
HR-5	0	1.41
HR-7	0	1.30
HR-12	0	1.22
HR-15	0	1.57
Hydrated Lime	14.4	2.20
Hydromite	2.82	2.15
Iron Carbonate	0	3.70
LA-2 Latex	0.8	1.10
NF-D	0	1.30
Perlite regular	$4 / 8 \mathrm{lb} / \mathrm{ft}^{3}$	2.20
Perlite 6	$6 / 38 \mathrm{lb} / \mathrm{ft}^{3}$	-
Pozmix A	4.6-5.0	2.46
Salt (NaCl)	0	2.17
Sand Ottawa	0	2.63
Silica flour	1.6/35\% in cement	2.63
Coarse silica	0	2.63
Spacer sperse	0	1.32
Spacer mix (liquid)	0	0.932
Tuf Additive No. 1	0	1.23
Tuf Additive No. 2	0	0.88
Tuf Plug	0	1.28

Weighted Cement Calculations

Amount of high density additive required per sack of cement to achieve a required cement slurry density

$$
\mathrm{x}=\frac{\left(\frac{\mathrm{wt} \times 11.207983}{\mathrm{SGc}}\right)+(\mathrm{wt} \times \mathrm{CW})-94-(8.33 \times \mathrm{CW})}{\left(1+\frac{\mathrm{AW}}{100}\right)-\left(\frac{\mathrm{wt}}{\mathrm{SGa} \times 8.33}\right)-\left(\mathrm{wt}+\frac{\mathrm{AW}}{100}\right)}
$$

where $\mathrm{x}=$ additive required, pounds per sack of cement
$\mathrm{Wt}=$ required slurry density, lb/gal
$\mathrm{SGc}=$ specific gravity of cement
$\mathrm{CW}=$ water requirement of cement
AW = water requirement of additive
$\mathrm{SGa}=$ specific gravity of additive

Additive	Water Requirement gal/94 lb/sk	Specific Gravity
Hematite	0.34	5.02
Ilmenite	0	4.67
Barite	2.5	4.23
Sand	0	2.63
API Cements	5.2	3.14
\quad Class A \& B	6.3	3.14
Class C	4.3	3.14
Class D, E, F, H	5.0	3.14
Class G		

Example: Determine how much hematite, $\mathrm{lb} / \mathrm{sk}$ of cement would be required to increase the density of Class H cement to $17.5 \mathrm{lb} / \mathrm{gal}$:

Water requirement of cement $=4.3 \mathrm{gal} / \mathrm{sk}$
Water requirement of additive (hematite) $=0.34 \mathrm{gal} / \mathrm{sk}$
Specific gravity of cement $=3.14$
Specific gravity of additive (hematite) $=5.02$
Solution:

$$
x=\frac{\left(\frac{17.5 \times 11.207983}{3.14}\right)+(17.5 \times 4.3)-94-(8.33 \times 4.3)}{\left(1+\frac{0.34}{100}\right)-\left(\frac{17.5}{5.02 \times 8.33}\right)-\left(17.5 \times \frac{0.34}{100}\right)}
$$

54 Formulas and Calculations

$$
\begin{aligned}
& x=\frac{62.4649+75.25-94-35.819}{1.0034-0.418494-0.0595} \\
& x=\frac{7.8959}{0.525406} \\
& x=15.1 \mathrm{lb} \text { of hematite per sk of cement used }
\end{aligned}
$$

Calculations for the Number of Sacks of Cement Required

If the number of feet to be cemented is known, use the following:

Step 1

Determine the following capacities:
a) Annular capacity, $\mathrm{ft}^{3} / \mathrm{ft}$:

Annular capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\frac{\mathrm{Dh}, \mathrm{in} .^{2}-\mathrm{Dp}, \mathrm{in}^{2}{ }^{2}}{183.35}$
b) Casing capacity, $\mathrm{ft}^{3} / \mathrm{ft}$:

Casing capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\frac{\mathrm{ID}, \text { in. }^{2}}{183.35}$
c) Casing capacity, $\mathrm{bbl} / \mathrm{ft}$:

Casing capacity, $\mathrm{bbl} / \mathrm{ft}=\frac{\mathrm{ID}, \text { in. }^{2}}{1029.4}$

Step 2

Determine the number of sacks of LEAD or FILLER cement required:

Step 3

Determine the number of sacks of TAIL or NEAT cement required:

fect	annular yield, $\mathrm{ft}^{3} / \mathrm{sk}$
$\text { required }=\text { to be }$	$\times \text { capacity, } \times \text { excess } \div \frac{\text { yield, } \mathrm{ft}^{\prime} / \mathrm{sk}}{\text { TAIL cement }}$

Sacks
$\begin{gathered}\text { required } \\ \text { casing }\end{gathered}=\begin{aligned} & \text { no. of feet } \\ & \text { between float } \\ & \text { collar } \& \text { shoe }\end{aligned} \times \underset{\mathrm{ft}^{3} / \mathrm{ft}}{\text { casing }} \quad$
Total Sacks of TAIL cement required:
Sacks $=$ sacks required in annulus + sacks required in casing

Step 4

Determine the casing capacity down to the float collar:
$\begin{aligned} & \text { Casing } \\ & \text { capacity, } \mathrm{bbl}\end{aligned}=$ casing capacity, $\mathrm{bb} / / \mathrm{ft} \times \begin{aligned} & \text { feet of casing } \\ & \text { to the float collar }\end{aligned}$

Step 5

Determine the number of strokes required to bump the plug:
Strokes $=$ casing capacity, $\mathrm{bbl} \div$ pump output, $\mathrm{bbl} /$ stk
Example: From the data listed below determine the following:

1. How many sacks of LEAD cement will be required?
2. How many sacks of TAIL cement will be required?
3. How many barrels of mud will be required to bump the plug?
4. How many strokes will be required to bump the top plug?

Data: Casing setting depth $\quad=3000 \mathrm{ft}$
Hole size $=17-1 / 2 \mathrm{in}$.
Casing- $54.5 \mathrm{lb} / \mathrm{ft} \quad=13-3 / 8 \mathrm{in}$.
Casing ID $\quad=12.615 \mathrm{in}$.
Float collar (number of feet above shoe) $=44 \mathrm{ft}$
Pump ($5-1 / 2$ in. by 14 in. duplex $@ 90 \%$ eff) $=0.112 \mathrm{bbl} / \mathrm{stk}$
Cement program: LEAD cement ($13.8 \mathrm{lb} / \mathrm{gal}$) $=2000 \mathrm{ft}$ slurry yield $\quad=1.59 \mathrm{ft}^{3} / \mathrm{sk}$
TAIL cement $(15.8 \mathrm{lb} / \mathrm{gal})=1000 \mathrm{ft}$ slurry yield $\quad=1.15 \mathrm{ft}^{3} / \mathrm{sk}$
Excess volume $=50 \%$

56 Formulas and Calculations

Step 1

Determine the following capacities:
a) Annular capacity, $\mathrm{ft}^{3} / \mathrm{ft}$:

Annular capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\frac{17.5^{2}-13.375^{2}}{183.35}$
Annular capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\frac{127.35938}{183.35}$
Annular capacity $\quad=0.6946 \mathrm{ft}^{3} / \mathrm{ft}$
b) Casing capacity, $\mathrm{ft}^{3} / \mathrm{ft}$:

Casing capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\frac{12.615^{2}}{183.35}$
Casing capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\frac{159.13823}{183.35}$
Casing capacity $\quad=0.8679 \mathrm{ft}^{3} / \mathrm{ft}$
c) Casing capacity, $\mathrm{bbl} / \mathrm{ft}$:

Casing capacity, $\mathrm{bbl} / \mathrm{ft}=\frac{12.615^{2}}{1029.4}$
Casing capacity, $\mathrm{bbl} / \mathrm{ft}=\frac{159.13823}{1029.4}$
Casing capacity $\quad=0.1545 \mathrm{bbl} / \mathrm{ft}$

Step 2

Determine the number of sacks of LEAD or FILLER cement required:
Sacks required $=2000 \mathrm{ft} \times 0.6946 \mathrm{ft}^{3} / \mathrm{ft} \times 1.50 \div 1.59 \mathrm{ft}^{3} / \mathrm{sk}$
Sacks required $=1311$

Step 3

Determine the number of sacks of TAIL or NEAT cement required:

Sacks required annulus $=1000 \mathrm{ft} \times 0.6946 \mathrm{ft}^{3} / \mathrm{ft} \times 1.50 \div 1.15 \mathrm{ft}^{3} / \mathrm{sk}$
Sacks required annulus $=906$
Sacks required casing $=44 \mathrm{ft} \times 0.8679 \mathrm{ft}^{3} / \mathrm{ft} \div 1.15 \mathrm{ft}^{3} / \mathrm{sk}$
Sacks required casing $=33$
Total sacks of TAIL cement required:
Sacks $=906+33$
Sacks $=939$

Step 4

Determine the barrels of mud required to bump the top plug:
Casing capacity, $\mathrm{bbl}=(3000 \mathrm{ft}-44 \mathrm{ft}) \times 0.1545 \mathrm{bbl} / \mathrm{ft}$
Casing capacity $=456.7 \mathrm{bbl}$

Step 5

Determine the number of strokes required to bump the top plug:
Strokes $=456.7 \mathrm{bbl} \div 0.112 \mathrm{bbl} / \mathrm{stk}$
Strokes $=4078$

Calculations for the Number of Feet to Be Cemented

If the number of sacks of cement is known, use the following:

Step 1

Determine the following capacities:
a) Annular capacity, $\mathrm{ft}^{3} / \mathrm{ft}$:

Annular capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\frac{\mathrm{Dh}, \mathrm{in}^{2}-\mathrm{Dp}, \mathrm{in}^{2} .^{2}}{183.35}$
b) Casing capacity, $\mathrm{ft}^{3} / \mathrm{ft}$:

Casing capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\frac{\mathrm{ID}, \mathrm{in}^{2}}{183.35}$

Step 2

Determine the slurry volume, ft^{3}
Slurry $=$ number of sacks of \times slurry yield,
vol, $\mathrm{ft}^{3}=$ cement to be used ${ }^{\times} \mathrm{ft}^{3} / \mathrm{sk}$

Step 3

Determine the amount of cement, ft^{3}, to be left in casing:
$\begin{aligned} & \text { Cement in } \\ & \text { casing, } \mathrm{ft}^{3}\end{aligned}=\left(\begin{array}{l}\text { feet of } \\ \text { casing }\end{array}-\begin{array}{l}\text { setting depth of } \\ \text { cementing tool, } \mathrm{ft}\end{array}\right) \times\binom{$ casing }{ capacity, $\mathrm{ft}^{3} / \mathrm{ft}}$

Step 4

Determine the height of cement in the annulus-feet of cement:
Feet $=\left(\begin{array}{lr}\text { slurry } & \text { cement } \\ \text { vol, } & - \text { remaining in } \\ \mathrm{ft}^{3} & \text { casing, } \mathrm{ft}^{3}\end{array}\right)+\left(\begin{array}{l}\text { annular } \\ \text { capacity, } \\ \mathrm{ft}^{3} / \mathrm{ft}\end{array}\right) \div$ excess

Step 5

Determine the depth of the top of the cement in the annulus:
Depth, $\mathrm{ft}=\begin{aligned} & \text { casing setting } \\ & \text { depth, } \mathrm{ft}\end{aligned}-\begin{aligned} & \mathrm{ft} \text { of cement } \\ & \text { in annulus }\end{aligned}$

Step 6

Determine the number of barrels of mud required to displace the cement:
Barrels $=\begin{aligned} & \mathrm{ft} \text { of } \\ & \text { drill pipe }\end{aligned} \times \begin{aligned} & \text { drill pipe capacity }, \\ & \mathrm{bbl} / \mathrm{ft}\end{aligned}$

Step 7

Determine the number of strokes required to displace the cement:
Strokes $=\begin{aligned} & \text { bbl required to } \\ & \text { displace cement }\end{aligned} \div \underset{\text { bbl/stk }}{\text { pump output, }}$

Example: From the data listed below, determine the following:

1. Height, ft , of the cement in the annulus
2. Amount, ft^{3}, of the cement in the casing
3. Depth, ft , of the top of the cement in the annulus
4. Number of barrels of mud required to displace the cement
5. Number of strokes required to displace the cement

Data: Casing setting depth
$=3000 \mathrm{ft}$
Hole size $=17-1 / 2 \mathrm{in}$.
Casing-54.5lb/ft $=13-3 / 8 \mathrm{in}$.
Casing ID $\quad=12.615 \mathrm{in}$.
Drill pipe ($5.0 \mathrm{in} .-19.5 \mathrm{lb} / \mathrm{ft}$) $\quad=0.01776 \mathrm{bbl} / \mathrm{ft}$
Pump (7 in . by 12 in . triplex @ 95% eff.) $=0.136 \mathrm{bbl} / \mathrm{stk}$
Cementing tool (number of feet above shoe) $=100 \mathrm{ft}$
Cementing program: NEAT cement $=500 \mathrm{sk}$
Slurry yield $=1.15 \mathrm{ft}^{3} / \mathrm{sk}$
Excess volume $=50 \%$

Step 1

Determine the following capacities:
a) Annular capacity between casing and hole, $\mathrm{ft}^{3} / \mathrm{ft}$:

Annular capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\frac{17.5^{2}-13.375^{2}}{183.35}$
Annular capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\frac{127.35938}{183.35}$
Annular capacity $\quad=0.6946 \mathrm{ft}^{3} / \mathrm{ft}$
b) Casing capacity, $\mathrm{ft}^{3} / \mathrm{ft}$:

Casing capacity, $\mathrm{ft}^{3} \mathrm{ft}=\frac{12.615^{2}}{183.35}$
Casing capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\frac{159.13823}{183.35}$
Casing capacity $\quad=0.8679 \mathrm{ft}^{3} / \mathrm{ft}$

60 Formulas and Calculations

Step 2
Determine the slurry volume, ft^{3} :
Slurry vol, $\mathrm{ft}^{3}=500 \mathrm{sk} \times 1.15 \mathrm{ft}^{3} / \mathrm{sk}$
Slurry vol $=575 \mathrm{ft}^{3}$

Step 3

Determine the amount of cement, ft^{3}, to be left in the casing:
Cement in casing, $\mathrm{ft}^{3}=(3000 \mathrm{ft}-2900 \mathrm{ft}) \times 0.8679 \mathrm{ft}^{3} / \mathrm{ft}$
Cement in casing, $\mathrm{ft}^{3}=86.79 \mathrm{ft}^{3}$

Step 4

Determine the height of the cement in the annulus-feet of cement:
Feet $=\left(575 \mathrm{ft}^{3}-86.79 \mathrm{ft}^{3}\right) \div 0.6946 \mathrm{ft}^{3} / \mathrm{ft} \div 1.50$
Feet $=468.58$

Step 5

Determine the depth of the top of the cement in the annulus
Depth $=3000 \mathrm{ft}-468.58 \mathrm{ft}$
Depth $=2531.42 \mathrm{ft}$

Step 6

Determine the number of barrels of mud required to displace the cement:
Barrels $=2900 \mathrm{ft} \times 0.01776 \mathrm{bbl} / \mathrm{ft}$
Barrels $=51.5$

Step 7

Determine the number of strokes required to displace the cement:
Strokes $=51.5 \mathrm{bbl} \div 0.136 \mathrm{bbl} / \mathrm{stk}$
Strokes $=379$

Setting a Balanced Cement Plug

Step 1

Determine the following capacities:
a) Annular capacity, $\mathrm{ft}^{3} / \mathrm{ft}$, between pipe or tubing and hole or casing:

Annular capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\frac{\mathrm{Dh}, \mathrm{in.}^{2}-\mathrm{Dp}, \text { in. }{ }^{2}}{183.35}$
b) Annular capacity, $\mathrm{ft} / \mathrm{bbl}$, between pipe or tubing and hole or casing:

Annular capacity, $\mathrm{ft} / \mathrm{bbl}=\frac{1029.4}{\mathrm{Dh}, \mathrm{in}^{2}-\mathrm{Dp}, \mathrm{in}^{2}{ }^{2}}$
c) Hole or casing capacity, $\mathrm{ft}^{3} / \mathrm{ft}^{\text {t }}$

Hole or capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\frac{\mathrm{ID}, \text { in. }^{2}}{183.35}$
d) Drill pipe or tubing capacity, $\mathrm{ft}^{3} / \mathrm{ft}$:

Drill pipe or tubing capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\frac{\mathrm{ID}, \mathrm{in}^{2}{ }^{2}}{183.35}$
e) Drill pipe or tubing capacity, $\mathrm{bbl} / \mathrm{ft}$:

Drill pipe or tubing capacity, $\mathrm{bbl} / \mathrm{ft}=\frac{\mathrm{ID}, \mathrm{in}^{2}}{1029.4}$

Step 2

Determine the number of SACKS of cement required for a given length of plug, OR determine the FEET of plug for a given number of sacks of cement:
a) Determine the number of SACKS of cement required for a given length of plug:

NOTE: If no excess is to be used, omit the excess step.
OR
b) Determine the number of FEET of plug for a given number of sacks of cement:

NOTE: If no excess is to be used, omit the excess step.

Step 3

Determine the spacer volume (usually water), bbl, to be pumped behind the slurry to balance the plug:

$$
\underset{\mathrm{St} / \mathrm{bbl}}{\text { Spacer }}=\underset{\text { capacity }}{\text { annular }} \div \text { excess } \times \underset{\text { spacer }}{\text { vol ahead, bbl }} \times \begin{aligned}
& \text { pipe or } \\
& \text { tubing } \\
& \text { capacity }, \\
& \mathrm{bbl} / \mathrm{ft}
\end{aligned}
$$

NOTE: if no excess is to be used, omit the excess step.

Step 4

Determine the plug length, ft , before the pipe is withdrawn:

Plug			
length,$=$	sacks		
of	slurry	annular	yield,
cement	$\mathrm{ft}^{3} / \mathrm{sk}$	$\mathrm{ft}^{3} / \mathrm{ft}$	pipe or tubing
ft			

NOTE: If no excess is to be used, omit the excess step.

Step 5

Determine the fluid volume, bbl, required to spot the plug:

$$
\mathrm{Vol}, \mathrm{bbl}=\begin{aligned}
& \text { length } \\
& \text { of pipe } \\
& \text { or tubing, } \\
& \mathrm{ft}
\end{aligned} \quad-\quad \begin{array}{llll}
\text { plug } \\
\mathrm{ft} & \mathrm{ft} & \begin{array}{l}
\text { pipe or } \\
\text { tubing }
\end{array} & \begin{array}{l}
\text { spacer vol } \\
\text { capacity, } \\
\mathrm{bbl} / \mathrm{ft}
\end{array}
\end{array}
$$

Example 1: A 300 ft plug is to be placed at a depth of 5000 ft . The open hole size is $8-1 / 2 \mathrm{in}$. and the drill pipe is $3-1 / 2 \mathrm{in}-13.3 \mathrm{lb} / \mathrm{ft}$; ID- 2.764 in . Ten barrels of water are to be pumped ahead of the slurry. Use a slurry yield of $1.15 \mathrm{ft}^{3} / \mathrm{sk}$. Use 25% as excess slurry volume:

Determine the following:

1. Number of sacks of cement required
2. Volume of water to be pumped behind the slurry to balance the plug
3. Plug length before the pipe is withdrawn
4. Amount of mud required to spot the plug plus the spacer behind the plug

Step 1

Determined the following capacities:
a) Annular capacity between drill pipe and hole, $\mathrm{ft}^{3} / \mathrm{ft}$;

Annular capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\frac{8.5^{2}-3.5^{2}}{183.35}$
Annular capacity $\quad=0.3272 \mathrm{ft}^{3} / \mathrm{ft}$
b) Annular capacity between drill pipe and hole, $\mathrm{ft} / \mathrm{bbl}$:

Annular capacity, $\mathrm{ft} / \mathrm{bbl}=\frac{1029.4}{8.5^{2}-3.5^{2}}$
Annular capacity $\quad=17.1569 \mathrm{ft} / \mathrm{bbl}$
c) Hole capacity, $\mathrm{ft}^{3} / \mathrm{ft}$:

Hole capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\frac{8.5^{2}}{183.35}$
Hole capacity $\quad=0.3941 \mathrm{ft}^{3} / \mathrm{ft}$
d) Drill pipe capacity, bbl/ft:

Drill pipe capacity, $\mathrm{bbl} / \mathrm{ft}=\frac{2.764^{2}}{1029.4}$
Drill pipe capacity $\quad=0.00742 \mathrm{bbl} / \mathrm{ft}$

64 Formulas and Calculations

e) Drill pipe capacity, $\mathrm{ft}^{3} / \mathrm{ft}$:

Drill pipe capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\frac{2.764^{2}}{183.35}$
Drill pipe capacity $\quad=0.0417 \mathrm{ft}^{3} / \mathrm{ft}$

Step 2

Determine the number of sacks of cement required:
Sacks of cement $=300 \mathrm{ft} \times 0.3941 \mathrm{ft}^{3} / \mathrm{ft} \times 1.25 \div 1.15 \mathrm{ft}^{3} / \mathrm{sk}$
Sacks of cement $=129$

Step 3

Determine the spacer volume (water), bbl, to be pumped behind the slurry to balance the plug:

Spacer vol, $\mathrm{bbl}=17.1569 \mathrm{ft} / \mathrm{bbl} \div 1.25 \times 10 \mathrm{bbl} \times 0.00742 \mathrm{bbl} / \mathrm{ft}$
Spacer vol $=1.018 \mathrm{bbl}$

Step 4

Determine the plug length, ft , before the pipe is withdrawn:

$$
\begin{aligned}
& \text { Plug length, } \mathrm{ft}=\left(\begin{array}{l}
129 \\
\mathrm{sk}
\end{array} \times \begin{array}{l}
1.15 \\
\mathrm{ft}^{3} / \mathrm{sk}
\end{array}\right) \div\left(\begin{array}{l}
0.3272 \\
\mathrm{ft}^{3} / \mathrm{ft}
\end{array} \times 1.25+\begin{array}{l}
0.0417 \\
\mathrm{ft}^{3} / \mathrm{ft}
\end{array}\right) \\
& \text { Plug length, } \mathrm{ft}=148.35 \mathrm{ft}^{3} \div 0.4507 \mathrm{ft}^{3} / \mathrm{ft} \\
& \text { Plug length }=329 \mathrm{ft}
\end{aligned}
$$

Step 5

Determine the fluid volume, bbl, required to spot the plug:
Vol, $\mathrm{bbl}=[(5000 \mathrm{ft}-329 \mathrm{ft}) \times 0.00742 \mathrm{bbl} / \mathrm{ft}]-1.0 \mathrm{bbl}$
$\mathrm{Vol}, \mathrm{bbl}=34.66 \mathrm{bbl}-1.0 \mathrm{bbl}$
Volume $=33.6 \mathrm{bbl}$

Example 2: Determine the number of FEET of plug for a given number of SACKS of cement:

A cement plug with 100 sk of cement is to be used in an 8 $1 / 2 \mathrm{in}$, hole. Use $1.15 \mathrm{ft}^{3} / \mathrm{sk}$ for the cement slurry yield. The capacity of $8-1 / 2 \mathrm{in}$. hole $=0.3941 \mathrm{ft}^{3} / \mathrm{ft}$. Use 50% as excess slurry volume:

Feet $=100 \mathrm{sk} \times 1.15 \mathrm{ft}^{3} / \mathrm{sk} \div 0.3941 \mathrm{ft}^{3} / \mathrm{ft} \div 1.50$
Feet $=194.5$

Differential Hydrostatic Pressure Between Cement in the Annulus and Mud Inside the Casing

1. Determine the hydrostatic pressure exerted by the cement and any mud remaining in the annulus.
2. Determine the hydrostatic pressure exerted by the mud and cement remaining in the casing.
3. Determine the differential pressure.

Example: $9-5 / 8 \mathrm{in}$. casing - $43.5 \mathrm{lb} / \mathrm{ft}$ in $12-1 / 4 \mathrm{in}$. hole:
Well depth
$=8000 \mathrm{ft}$
Cementing program:
LEAD slurry $\quad 2000 \mathrm{ft} \quad=13.8 \mathrm{lb} / \mathrm{gal}$
TAIL slurry $\quad 1000 \mathrm{ft} \quad=15.8 \mathrm{lb} / \mathrm{gal}$
Mud weight $\quad=10.01 \mathrm{~b} / \mathrm{gal}$
Float collar (No. of feet above shoe) $=44 \mathrm{ft}$

Determine the total hydrostatic pressure of cement and mud in the annulus

a) Hydrostatic pressure of mud in annulus:

$$
\begin{aligned}
& \mathrm{HP}, \mathrm{psi}=10.0 \mathrm{lb} / \mathrm{gal} \times 0.052 \times 5000 \mathrm{ft} \\
& \mathrm{HP} \quad=2600 \mathrm{psi}
\end{aligned}
$$

b) Hydrostatic pressure of LEAD cement:

$$
\begin{aligned}
\mathrm{HP}, \mathrm{psi} & =13.8 \mathrm{lb} / \text { gal } \times 0.052 \times 2000 \mathrm{ft} \\
\mathrm{HP} & =1435 \mathrm{psi}
\end{aligned}
$$

66 Formulas and Calculations

c) Hydrostatic pressure of TAIL cement:

$$
\begin{aligned}
& \mathrm{HP}, \mathrm{psi}=15.8 \mathrm{lb} / \mathrm{gal} \times 0.052 \times 1000 \mathrm{ft} \\
& \mathrm{HP} \quad=822 \mathrm{psi}
\end{aligned}
$$

d) Total hydrostatic pressure in annulus:
$\mathrm{psi}=2600 \mathrm{psi}+1435 \mathrm{psi}+822 \mathrm{psi}$
$\mathrm{psi}=4857$

Determine the total pressure inside the casing

a) Pressure exerted by the mud:

$$
\begin{aligned}
& \mathrm{HP}, \mathrm{psi}=10.0 \mathrm{lb} / \mathrm{gal} \times 0.052 \times(8000 \mathrm{ft}-44 \mathrm{ft}) \\
& \mathrm{HP}=4137 \mathrm{psi}
\end{aligned}
$$

b) Pressure exerted by the cement:
$\mathrm{HP}, \mathrm{psi}=15.8 \mathrm{lb} / \mathrm{gal} \times 0.052 \times 44 \mathrm{ft}$
$\mathrm{HP}=36 \mathrm{psi}$
c) Total pressure inside the casing:

$$
\begin{aligned}
& \mathrm{psi}=4137 \mathrm{psi}+36 \mathrm{psi} \\
& \mathrm{psi}=4173
\end{aligned}
$$

Differential pressure

$P_{D}=4857 \mathrm{psi}-4173 \mathrm{psi}$
$P_{D}=684 \mathrm{psi}$

Hydraulicing Casing

These calculations will determine if the casing will hydraulic out (move upward) when cementing

Determine the difference in pressure gradient, psi/ft, between the cement and the mud

$$
\mathrm{psi} / \mathrm{ft}=(\text { cement } w \mathrm{t}, \mathrm{ppg}-\mathrm{mud} \mathrm{wt}, \mathrm{ppg}) \times 0.052
$$

Determine the differential pressure (DP) between the cement and the mud
$\mathrm{DP}, \mathrm{psi}=\begin{aligned} & \text { difference in } \\ & \text { pressure gradients, } \mathrm{psi} / \mathrm{ft}\end{aligned} \times$ casing length, ft
Determine the area, $s q$ in., below the shoe
Area, sq in. $=$ casing diameter, in. ${ }^{2} \times 0.7854$
Determine the Upward Force (F), lb. This is the weight, total force, acting at the bottom of the shoe

Force, $\mathrm{lb}=$ area, sq in. $\times \begin{aligned} & \text { differential pressure } \\ & \text { between cement and mud, } \mathrm{psi}\end{aligned}$
Determine the Downward Force (W), Ib. This is the weight of the casing

Weight, $\mathrm{lb}=$ casing $\mathrm{wt}, \mathrm{lb} / \mathrm{ft} \times$ length, $\mathrm{ft} \times$ buoyancy factor
Determine the difference in force, lb
Differential force, $\mathrm{lb}=$ upward force, lb - downward force, lb

Pressure required to balance the forces so that the casing will not hydraulic out (move upward)
$\mathrm{psi}=$ force, $\mathrm{lb} \div$ area, sq in.
Mud weight increase to balance pressure
Mud wt, ppg $=\begin{aligned} & \text { pressure required } \\ & \text { to balance forces, } \mathrm{psi}\end{aligned} \div 0.052 \div$ casing length, ft
New mud weight, ppg
Mud wt, ppg $=$ mud wt increase, ppg \div mud wt, ppg

Check the forces with the new mud weight

a) $\mathrm{psi} / \mathrm{ft}=($ cement $w t, p p g-\operatorname{mud} w t, p p g) \times 0.052$
b) $\mathrm{psi}=$ difference in pressure gradients, psi/ft \times casing length, ft
c) Upward force, $\mathrm{lb}=$ pressure, $\mathrm{psi} \times$ area, sq in.
d) Difference in $=$ upward force, $\mathrm{lb}-$ downward force, lb
force, lb

$$
\text { Example: } \begin{aligned}
\text { Casing size } & =133 / 8 \mathrm{in} .54 \mathrm{lb} / \mathrm{ft} \\
\text { Cement weight } & =15.8 \mathrm{ppg} \\
\text { Mud weight } & =8.8 \mathrm{ppg} \\
\text { Buoyancy factor } & =0.8656 \\
\text { Well depth } & =164 \mathrm{ft}(50 \mathrm{~m})
\end{aligned}
$$

Determine the difference in pressure gradient, psi/ft, between the cement and the mud

```
psi/ft = (15.8-8.8) × 0.052
psi/ft = 0.364
```

Determine the differential pressure between the cement and the mud

$$
\begin{aligned}
& \mathrm{psi}=0.364 \mathrm{psi} / \mathrm{ft} \times 164 \mathrm{ft} \\
& \mathrm{psi}=60
\end{aligned}
$$

Determine the area, $\mathbf{s q} \mathbf{i n}$., below the shoe

$$
\begin{aligned}
\text { area, } \mathrm{sq} \text { in. } & =13.375^{2} \times 0.7854 \\
\text { area, } \quad & =140.5 \mathrm{sq} \mathrm{in.}
\end{aligned}
$$

Determine the upward force. This is the total force acting at the bottom of the shoe

Force, $\mathrm{lb}=140.5 \mathrm{sq} \mathrm{in} . \times 60 \mathrm{psi}$
Force $=8430 \mathrm{lb}$

Determine the downward force. This is the weight of casing
Weight, $\mathrm{lb}=54.5 \mathrm{lb} / \mathrm{ft} \times 164 \mathrm{ft} \times 0.8656$
Weight $=7737 \mathrm{lb}$

Determine the difference in force, lb

Differential force, $\mathrm{lb}=$ downward force, lb - upward force, lb
Differential force, $\mathrm{lb}=7737 \mathrm{lb}-8430 \mathrm{lb}$
Differential force $=-693 \mathrm{lb}$
Therefore: Unless the casing is tied down or stuck, it could hydraulic out (move upward).

Pressure required to balance the forces so that the casing will not hydraulic out (move upward)

$\mathrm{psi}=693 \mathrm{lb} \div 140.5 \mathrm{sq} \mathrm{in}$.
$\mathrm{psi}=4.9$

Mud weight increase to balance pressure

Mud wt, ppg $=4.9 \mathrm{psi} \div 0.052 \div 164 \mathrm{ft}$
Mud wt $\quad=0.57 \mathrm{ppg}$

New mud weight, ppg

New mud wt, ppg $=8.8 \mathrm{ppg}+0.6 \mathrm{ppg}$
New mud wt $\quad=9.4 \mathrm{ppg}$

Check the forces with the new mud weight

a) $\mathrm{psi} / \mathrm{ft}=(15.8-9.4) \times 0.052$
$\mathrm{psi} / \mathrm{ft}=0.3328$
b) $\mathrm{psi}=0.3328 \mathrm{psi} / \mathrm{ft} \times 164 \mathrm{ft}$
$\mathrm{psi}=54.58$
c) Upward force, $\mathrm{lb}=54.58 \mathrm{psi} \times 140.5 \mathrm{sq} \mathrm{in}$.

Upward force $=7668 \mathrm{lb}$
d) Differential $=$ downward force - upward force force, lb

7737 lb
7668 lb
Differential $=+69 \mathrm{lb}$ force

Depth of a Washout

Method 1

Pump soft line or other plugging material down the drill pipe and note how many strokes are required before the pump pressure increases.

$$
\begin{aligned}
& \text { Example: Drill pipe }=3-1 / 2 \mathrm{in} .-13.3 \mathrm{lb} / \mathrm{ft} \\
& \text { capacity }=0.00742 \mathrm{bbl} / \mathrm{ft} \\
& \text { Pump output }=0.112 \mathrm{bbl} / \mathrm{stk}(5-1 / 2 \mathrm{in} \text {. by } 14 \mathrm{in} \text {. duplex } \\
& \text { (a) } 90 \% \text { efficiency) }
\end{aligned}
$$

NOTE: A pressure increase was noted after 360 strokes.

$$
\begin{aligned}
& \begin{array}{l}
\text { Depth of } \\
\text { washout, } \mathrm{ft}
\end{array}=360 \mathrm{stk} \times 0.112 \mathrm{bbl} / \mathrm{stk} \div 0.00742 \mathrm{bbl} / \mathrm{ft} \\
& \begin{array}{l}
\text { Depth of } \\
\text { washout }
\end{array}=5434 \mathrm{ft}
\end{aligned}
$$

Method 2

Pump some material that will go through the washout, up the annulus and over the shale shaker. This material must be of the type that can be easily observed as it comes across the shaker. Examples: carbide, corn starch, glass beads, brightly colored paint, etc.

$$
\left.\begin{array}{l}
\begin{array}{l}
\text { Depth of } \\
\text { washout, } \mathrm{ft}
\end{array}=\begin{array}{c}
\text { strokes } \\
\text { required }
\end{array} \\
\begin{array}{rl}
\text { pump } \\
\text { output, } \\
\mathrm{bbl} / \mathrm{stk}
\end{array} \div\left(\begin{array}{c}
\text { drill pipe } \\
\text { capacity, bbl/ft } \\
+ \\
\text { annular capacity, bbl/ft }
\end{array}\right.
\end{array}\right)
$$

NOTE: The material pumped down the drill pipe came over the shaker after 2680 strokes.

Drill pipe capacity plus annular capacity:

$$
0.00742 \mathrm{bbl} / \mathrm{ft}+0.0583 \mathrm{bbl} / \mathrm{ft}=0.0657 \mathrm{bbl} / \mathrm{ft}
$$

Depth of
washout, $\mathrm{ft}=2680 \mathrm{stk} \times 0.112 \mathrm{bbl} / \mathrm{stk} \div 0.0657 \mathrm{bbl} / \mathrm{ft}$
$\begin{aligned} & \text { Depth of } \\ & \text { washout }\end{aligned}=4569 \mathrm{ft}$

Lost Returns-Loss of Overbalance

Number of feet of water in annulus

Feet $=$ water added, $\mathrm{bbl} \div$ annular capacity, $\mathrm{bbl} / \mathrm{ft}$

Bottomhole (BHP) pressure reduction
$\begin{aligned} & \mathrm{BHP} \\ & \text { decrease, } \mathrm{psi}\end{aligned}=\left(\begin{array}{l}\text { mud } \mathrm{wt}, \\ \mathrm{ppg}\end{array} \quad \begin{array}{l}\mathrm{wt} \text { of } \\ \text { water, } \mathrm{ppg}\end{array}\right) \times 0.052 \times\binom{\mathrm{ft}$ of }{ water added }

Equivalent mud weight at TD

EMW, ppg $=$ mud wt, ppg $-($ BHP decrease, $\mathrm{psi} \div 0.052 \div \mathrm{TVD}, \mathrm{ft})$

$$
\begin{aligned}
& \text { Example: Mud weight } \quad=12.5 \mathrm{ppg} \\
& \text { Weight of water }=8.33 \mathrm{ppg} \\
& \text { TVD } \quad=10,000 \mathrm{ft} \\
& \text { Annular capacity }=0.1279 \mathrm{bbl} / \mathrm{ft}(12-1 / 4 \times 5.0 \mathrm{in} \text {.) } \\
& \text { Water added }=150 \mathrm{bbl} \text { required to fill annulus }
\end{aligned}
$$

Number of feet of water in annulus

Feet $=150 \mathrm{bbl} \div 0.1279 \mathrm{bbl} / \mathrm{ft}$
Feet $=1173$

Bottomhole pressure decrease

BHP decrease, $\mathrm{psi}=(12.5 \mathrm{ppg}-8.33 \mathrm{ppg}) \times 0.052 \times 1173 \mathrm{ft}$
BHP decrease $=254 \mathrm{psi}$

72 Formulas and Calculations

Equivalent mud weight at TD

EMW, ppg $=12.5-(254 \mathrm{psi} \div 0.052 \div 10,000 \mathrm{ft})$
EMW $=12.0 \mathrm{ppg}$

Stuck Pipe Calculations

Determine the feet of free pipe and the free point constant

Method 1

The depth at which the pipe is stuck and the number of feet of free pipe can be estimated by the drill pipe stretch table below and the following formula.

Table 2-2
Drill Pipe Stretch Table

ID, in.	Nominal Weight, lb/ft	ID, in.	Wall Area, sqin.	Stretch Constant in/1000 lb /1000 ft	Free Point constant
2-3/8	4.85	1.995	1.304	0.30675	3260.0
	6.65	1.815	1.843	0.21704	4607.7
2-7/8	6.85	2.241	1.812	0.22075	4530.0
	10.40	2.151	2.858	0.13996	7145.0
3-1/2	9.50	2.992	2.590	0.15444	6475.0
	13.30	2.764	3.621	0.11047	9052.5
	15.50	2.602	4.304	0.09294	10760.0
4.0	11.85	3.476	3.077	0.13000	7692.5
	14.00	3.340	3.805	0.10512	9512.5
4-1/2	13.75	3.958	3.600	0.11111	9000.0
	16.60	3.826	4.407	0.09076	11017.5
	18.10	3.754	4.836	0.08271	12090.0
	20.00	3.640	5.498	0.07275	13745.0
5.0	16.25	4.408	4.374	0.09145	10935.0
	19.50	4.276	5.275	0.07583	13187.5
5-1/2	21.90	4.778	5.828	0.06863	14570.0
	24.70	4.670	6.630	0.06033	16575.0
6-5/8	25.20	5.965	6.526	0.06129	16315.0

$\begin{aligned} & \text { Feet of } \\ & \text { free pipe }\end{aligned}=\frac{\text { stretch, in. } \times \text { free point constant }}{\text { pull force in thousands of pounds }}$

Example: $3-1 / 2 \mathrm{in} .13 .30 \mathrm{lb} / \mathrm{ft}$ drill pipe 20 in . of stretch with $35,000 \mathrm{lb}$ of pull force

From drill pipe stretch table:
Free point constant $=9052.5$ for $3-1 / 2 \mathrm{in}$. drill pipe $13.30 \mathrm{lb} / \mathrm{ft}$
$\begin{aligned} & \text { Feet of } \\ & \text { free pipe }\end{aligned}=\frac{20 \mathrm{in} . \times 9052.5}{35}$
Feet of
free pipe $=5173 \mathrm{ft}$

Determine free point constant (FPC)

The free point constant can be determined for any type of steel drill pipe if the outside diameter, in., and inside diameter, in., are known:
$\mathrm{FPC}=\mathrm{A}_{S} \times 2500$
where $A_{S}=$ pipe wall cross sectional area, sq in.
Example 1: From the drill pipe stretch table:
$4-1 / 2 \mathrm{in}$. drill pipe $16.6 \mathrm{lb} / \mathrm{ft}-\mathrm{ID}=3.826 \mathrm{in}$.
$\mathrm{FPC}=\left(4.5^{2}-3.826^{2} \times 0.7854\right) \times 2500$
$\mathrm{FPC}=4.407 \times 2500$
$\mathrm{FPC}=11,017.5$

Example 2: Determine the free point constant and the depth the pipe is stuck using the following data:
$2-3 / 8 \mathrm{in}$. tubing- $6.5 \mathrm{lb} / \mathrm{ft}-\mathrm{ID}=2.441 \mathrm{in}$.
25 in . of stretch with $20,000 \mathrm{lb}$ of pull force
a) Determine free point constant (FPC):
$\mathrm{FPC}=\left(2.875^{2}-2.441^{2} \times 0.7854\right) \times 2500$
$\mathrm{FPC}=1.820 \times 2500$
$\mathrm{FPC}=4530$

74 Formulas and Calculations

b) Determine the depth of stuck pipe:
$\begin{aligned} & \text { Feet of } \\ & \text { free pipe }\end{aligned}=\frac{25 \mathrm{in} . \times 4530}{20}$
Feet of
free pipe $=5663 \mathrm{ft}$

Method 2

Free pipe, $\mathrm{ft}=\frac{735,294 \times \mathrm{e} \times \mathrm{Wdp}}{\text { differential pull, } \mathrm{lb}}$
where $\mathrm{e}=$ pipe stretch, in.
Wdp = drill pipe weight, lb/ft (plain end)
Plain end weight, $\mathrm{lb} / \mathrm{ft}$, is the weight of drill pipe excluding tool joints:
Weight, $\mathrm{lb} / \mathrm{ft}=2.67 \times$ pipe OD , in. ${ }^{2}-$ pipe; ID, in. ${ }^{2}$
Example: Determine the feet of free pipe using the following data:
5.0 in . drill pipe; ID-4.276 in.; $19.5 \mathrm{lb} / \mathrm{ft}$

Differential stretch of pipe $=24 \mathrm{in}$.
Differential pull to obtain stretch $=30,000 \mathrm{lb}$
Weight, $\mathrm{lb} / \mathrm{ft}=2.67 \times\left(5.0^{2}-4.276^{2}\right)$
Weight $\quad=17.93 \mathrm{lb} / \mathrm{ft}$
Free pipe, $\mathrm{ft}=\frac{735,294 \times 24 \times 17.93}{30,000}$
Free pipe $=10,547 \mathrm{ft}$

Determine the height, ft, of unweighted spotting fluid that will balance formation pressure in the annulus:

a) Determine the difference in pressure gradient, psi/ft, between the mud weight and the spotting fluid:
$\mathrm{psi} / \mathrm{ft}=($ mud wt, $\mathrm{ppg}-$ spotting fluid $\mathrm{wt}, \mathrm{ppg}) \times 0.052$
b) Determine the height, ft , of unweighted spotting fluid that will balance formation pressure in the annulus:
Height, $\mathrm{ft}=\begin{aligned} & \text { amount of } \\ & \text { overbalance, } \mathrm{psi}\end{aligned} \div \begin{aligned} & \text { difference in } \\ & \text { pressure gradient, } \mathrm{psi} / \mathrm{ft}\end{aligned}$

Example: Use the following data to determine the height, ft , of spotting fluid that will balance formation pressure in the annulus:

Data: Mud weight $\quad=11.2 \mathrm{ppg}$
Weight of spotting fluid $=7.0 \mathrm{ppg}$
Amount of overbalance $=225.0 \mathrm{psi}$
a) Difference in pressure gradient, psi/ft:
$\mathrm{psi} / \mathrm{ft}=(11.2 \mathrm{ppg}-7.0 \mathrm{ppg}) \times 0.052$
$\mathrm{psi} / \mathrm{ft}=0.2184$
b) Determine the height, ft, of unweighted spotting fluid that will balance formation pressure in the annulus:

Height, $\mathrm{ft}=225 \mathrm{psi} \div 0.2184 \mathrm{psi} / \mathrm{ft}$
Height $=1030 \mathrm{ft}$

Therefore: Less than 1030 ft of spotting fluid should be used to maintain a safety factor that will prevent a kick or blowout.

Calculations Required for Spotting Pills

The following will be determined:
a) Barrels of spotting fluid (pill) required
b) Pump strokes required to spot the pill

Step 1

Determine the annular capacity, $\mathrm{bbl} / \mathrm{ft}$, for drill pipe and drill collars in the annulus:

Annular capacity, $\mathrm{bbl} / \mathrm{ft}=\frac{\mathrm{Dh}, \mathrm{in}^{2}-\mathrm{Dp}, \text { in. }^{2}}{1029.4}$

Step 2

Determine the volume of pill required in the annulus:
Vol, $\mathrm{bbl}=$ annular cap., $\mathrm{bbl} / \mathrm{ft} \times$ section length, $\mathrm{ft} \times$ washout factor

Step 3

Determine total volume, bbl, of spotting fluid (pill) required:
Barrels $=$ Barrels required in annulus plus barrels to be left in drill string

Step 4

Determine drill string capacity, bbl:
Barrels $=$ drill pipe/drill collar capacity, bbl/ft \times length, ft

Step 5

Determine strokes required to pump pill:
Strokes $=$ vol of pill, $\mathrm{bbl} \div$ pump output, bbl/stk

Step 6

Determine number of barrels required to chase pill:
Barrels $=\begin{aligned} & \text { drill string } \\ & \text { vol, } \mathrm{bbl}\end{aligned} \quad \begin{aligned} & \text { vol left in drill } \\ & \text { string, } \mathrm{bbl}\end{aligned}$

Step 7

Determine strokes required to chase pill:

$$
\text { Strokes }=\begin{aligned}
& \text { bbl required } \\
& \text { to chase pill }
\end{aligned} \div \begin{aligned}
& \text { pump } \\
& \text { output, } \\
& \text { bbl/stk }
\end{aligned} \quad \begin{aligned}
& \text { strokes required } \\
& \text { surface system }
\end{aligned}
$$

Step 8

Total strokes required to spot the pill:
Total strokes $=\begin{aligned} & \text { strokes required } \\ & \text { to pump pill }\end{aligned}+\begin{aligned} & \text { strokes required } \\ & \text { to chase pill }\end{aligned}$
Example: Drill collars are differentially stuck. Use the following data to spot an oil-based pill around the drill collars plus 200 ft (optional) above the collars. Leave 24 bbl in the drill string:

```
Data: well depth \(\quad=10,000 \mathrm{ft}\)
    Hole diameter \(=8-1 / 2 \mathrm{in}\).
    Washout factor \(=20 \%\)
    Drill pipe \(\quad=5.0 \mathrm{in}-19.5 \mathrm{lb} / \mathrm{ft}\)
    capacity \(\quad=0.01776 \mathrm{bbl} / \mathrm{ft}\)
    length \(\quad=9400 \mathrm{ft}\)
    Drill collars \(=6-1 / 2 \mathrm{in} . \mathrm{OD} \times 2-1 / 2 \mathrm{in}\). ID
    capacity \(\quad=0.0061 \mathrm{bb} / / \mathrm{ft}\)
    length \(\quad=600 \mathrm{ft}\)
Pump output \(=0.117 \mathrm{bbl} / \mathrm{stk}\)
```

Strokes required to displace surface system from suction tank to the drill pipe $=80$ stk.

Step 1

Annular capacity around drill pipe and drill collars:
a) Annular capacity around drill collars:

Annular capacity, $\mathrm{bbl} / \mathrm{ft}=\frac{8.5^{2}-6.5^{2}}{1029.4}$
Annular capacity $\quad=0.02914 \mathrm{bb} / \mathrm{ft}$
b) Annular capacity around drill pipe:

Annular capacity, bbl/ft $=\frac{8.5^{2}-5.0^{2}}{1029.4}$
Annular capacity $\quad=0.0459 \mathrm{bbl} / \mathrm{ft}$

Step 2

Determine total volume of pill required in annulus:
a) Volume opposite drill collars:

$$
\begin{aligned}
\mathrm{Vol}, \mathrm{bbl} & =0.02914 \mathrm{bbl} / \mathrm{ft} \times 600 \mathrm{ft} \times 1.20 \\
\mathrm{Vol} & =21.0 \mathrm{bbl}
\end{aligned}
$$

b) Volume opposite drill pipe:

$$
\begin{aligned}
\mathrm{Vol}, \mathrm{bbl} & =0.0459 \mathrm{bbl} / \mathrm{ft} \times 200 \mathrm{ft} \times 1.20 \\
\mathrm{Vol} & =11.0 \mathrm{bbl}
\end{aligned}
$$

c) Total volume, bbl, required in annulus:
$\mathrm{Vol}, \mathrm{bbl}=21.0 \mathrm{bbl}+11.0 \mathrm{bbl}$
$\mathrm{Vol}=32.0 \mathrm{bbl}$

Step 3

Total bbl of spotting fluid (pill) required:
Barrels $=32.0 \mathrm{bbl}$ (annulus) +24.0 bbl (drill pipe)
Barrels $=56.0 \mathrm{bbl}$

Step 4

Determine drill string capacity:
a) Drill collar capacity, bbl:

Capacity, $\mathrm{bbl}=0.0062 \mathrm{bbl} / \mathrm{ft} \times 600 \mathrm{ft}$
Capacity $=3.72 \mathrm{bbl}$
b) Drill pipe capacity, bbl:

Capacity, $\mathrm{bbl}=0.01776 \mathrm{bbl} / \mathrm{ft} \times 9400 \mathrm{ft}$
Capacity $\quad=166.94 \mathrm{bbl}$
c) Total drill string capacity, bbl:

Capacity, $\mathrm{bbl}=3.72 \mathrm{bbl}+166.94 \mathrm{bbl}$
Capacity $=170.6 \mathrm{bbl}$

Step 5

Determine strokes required to pump pill:
Strokes $=56 \mathrm{bbl} \div 0.117 \mathrm{bbl} / \mathrm{stk}$
Strokes $=479$

Step 6

Determine bbl required to chase pill:
Barrels $=170.6 \mathrm{bbl}-24 \mathrm{bbl}$
Barrels $=146.6$

Step 7

Determine strokes required to chase pill:
Strokes $=146.6 \mathrm{bbl} \div 0.117 \mathrm{bbl} / \mathrm{stk}+80$ stk
Strokes $=1333$

Step 8
Determine strokes required to spot the pill:
Total strokes $=479+1333$
Total strokes $=1812$

Pressure Required to Break Circulation

Pressure required to overcome the mud's gel strength inside the drill string

$$
\text { Pgs }=(y \div 300 \div d) L
$$

where Pgs = pressure required to break gel strength, psi
$\mathrm{y}=10 \mathrm{~min}$ gel strength of drilling fluid, $\mathrm{lb} / 100 \mathrm{sq} \mathrm{ft}$
d = inside diameter of drill pipe, in.
$\mathrm{L}=$ length of drill string, ft
Example:

$$
\begin{aligned}
\mathrm{y} & =101 \mathrm{~b} / 100 \mathrm{sq} \mathrm{ft} \\
\mathrm{~d} & =4.276 \mathrm{in} . \\
\mathrm{L} & =12,000 \mathrm{ft}
\end{aligned}
$$

$$
\mathrm{Pgs}=(10 \div 300 \div 4.276) 12,000 \mathrm{ft}
$$

$$
\text { Pgs }=0.007795 \times 12,000 \mathrm{ft}
$$

$$
\mathrm{Pgs}=93.5 \mathrm{psi}
$$

Therefore, approximately 94 psi would be required to break circulation.

Pressure required to overcome the mud's gel strength in the annulus
Pgs $=\mathrm{y} \div[300(\mathrm{Dh}$, in. -Dp, in. $)] \times \mathrm{L}$

```
where Pgs = pressure required to break gel strength, psi
    \(\mathrm{L}=\) length of drill string, ft
    \(\mathrm{y}=10 \mathrm{~min}\). gel strength of drilling fluid, \(\mathrm{lb} / 100 \mathrm{sq} \mathrm{ft}\)
    Dh \(=\) hole diameter, in.
    Dp \(=\) pipe diameter, in.
Example: \(\mathrm{L}=12,000 \mathrm{ft}\)
    \(\mathrm{y}=10 \mathrm{lb} / 100 \mathrm{sq} \mathrm{ft}\)
    \(\mathrm{Dh}=12-1 / 4 \mathrm{in}\).
    \(D p=5.0 \mathrm{in}\).
Pgs \(=10 \div[300 \times(12.25-5.0)] \times 12,000 \mathrm{ft}\)
Pgs \(=10 \div 2175 \times 12,000 \mathrm{ft}\)
\(\operatorname{Pgs}=55.2 \mathrm{psi}\)
```

Therefore, approximately 55 psi would be required to break circulation.

References

API Specification for Oil-Well Cements and Cement Additives, American Petroleum Institute, New York, N.Y., 1972.
Chenevert, Martin E. and Reuven Hollo, T1-59 Drilling Engineering Manual, PennWell Publishing Company, Tulsa, 1981.
Crammer Jr., John L., Basic Drilling Engineering Manual, PennWell Publishing Company, Tulsa, 1983.
Drilling Manual, International Association of Drilling Contractors, Houston, Texas, 1982.
Murchison, Bill, Murchison Drilling Schools Operations Drilling Technology and Well Control Manual, Albuquerque, New Mexico.
Oil-Well Cements and Cement Additives, API Specification 10A, December 1979.

CHAPTER THREE

Drilling Fluids

Increase Mud Density

Mud weight, ppg, increase with barite (average specific gravity of barite-4.2)

Barite, sk/100bbl $=\frac{1470\left(\mathrm{~W}_{2}-\mathrm{W}_{1}\right)}{35-\mathrm{W}_{2}}$
Example: Determine the number of sacks of barite required to increase the density of 100 bbl of $12.0 \mathrm{ppg}\left(\mathrm{W}_{1}\right)$ mud to $14.0 \mathrm{ppg}\left(\mathrm{W}_{2}\right)$:

Barite, $\mathrm{sk} / 100 \mathrm{bbl}=\frac{1470(14.0-12.0)}{35-14.0}$
Barite, $\mathrm{sk} / 100 \mathrm{bbl}=\frac{2940}{21.0}$
Barite $\quad=140 \mathrm{sk} / 100 \mathrm{bbl}$

Metric calculation

Barite, $\mathrm{kg} / \mathrm{m}^{3}=\frac{\text { (kill fluid density, } \mathrm{kg} / \mathrm{l}-\text { original fluid density, } \mathrm{kg} / \text {) } \times 4.2}{4.2-\text { kill fluid density, } \mathrm{kg} / \mathrm{l}}$
Barite, $\mathrm{kg} / \mathrm{m}^{3}=\frac{\text { (kill fluid density, } \mathrm{kg} / \mathrm{l}-\text { original fluid density, } \mathrm{kg} / \mathrm{l}) \times 4200}{4.2-\text { kill fluid density, } \mathrm{kg} / \mathrm{l}}$

S.I. units calculation

Barite, $\mathrm{kg} / \mathrm{m}^{3}=\frac{\binom{\text { kill fluid density, } \mathrm{kg} / \mathrm{m}^{3}-}{\text { original fluid density } \mathrm{kg} / \mathrm{m}^{3}} \times 4200}{4200-\text { kill fluid density, } \mathrm{kg} / \mathrm{m}^{3}}$

Volume increase, bbl, due to mud weight increase with barite

Volume increase, per $100 \mathrm{bbl}=\frac{100\left(\mathrm{~W}_{2}-\mathrm{W}_{1}\right)}{35-\mathrm{W}_{2}}$
Example: Determine the volume increase when increasing the density from $12.0 \mathrm{ppg}\left(\mathrm{W}_{1}\right)$ to $14.0 \mathrm{ppg}\left(\mathrm{W}_{2}\right)$:

Volume increase, per $100 \mathrm{bbl}=\frac{100(14.0-12.0)}{35-14.0}$
Volume increase, per $100 \mathrm{bbl}=\frac{200}{21}$
Volume increase $\quad=9.52 \mathrm{bbl}$ per 100 bbl

Starting volume, bbl, of original mud weight required to yield a

 predetermined final volume of desired mud weight with bariteStarting volume, $\mathrm{bbl}=\frac{\mathrm{V}_{\mathrm{F}}\left(35-\mathrm{W}_{2}\right)}{35-\mathrm{W}_{1}}$
Example: Determine the starting volume, bbl, of $12.0 \mathrm{ppg}\left(\mathrm{W}_{1}\right)$ mud required to achieve $100 \mathrm{bbl}\left(\mathrm{V}_{\mathrm{F}}\right)$ of $14.0 \mathrm{ppg}\left(\mathrm{W}_{2}\right)$ mud with barite:
Starting volume, $\mathrm{bbl}=\frac{100(35-14.0)}{35-12.0}$
Starting volume, bbl $=\frac{2100}{23}$
Starting volume $\quad=91.3 \mathrm{bbl}$

Mud weight increase with calcium carbonate (SG-2.7)

NOTE: The maximum practical mud weight attainable with calcium carbonate is 14.0 ppg .

Sacks $/ 100 \mathrm{bbl}=\frac{945\left(\mathrm{~W}_{2}-\mathrm{W}_{1}\right)}{22.5-\mathrm{W}_{2}}$
Example: Determine the number of sacks of calcium carbonate/100 bbl required to increase the density from $12.0 \mathrm{ppg}\left(\mathrm{W}_{1}\right)$ to 13.0 ppg $\left(W_{2}\right)$:

Sacks $/ 100 \mathrm{bbl}=\frac{945(13.0-12.0)}{22.5-13.0}$
Sacks $/ 100 \mathrm{bbl}=\frac{945}{9.5}$
Sacks $/ 100 \mathrm{bbl}=99.5$

Volume increase, bbl, due to mud weight increase with calcium carbonate

Volume increase, per $100 \mathrm{bbl}=\frac{100\left(\mathrm{~W}_{2}-\mathrm{W}_{1}\right)}{22.5-\mathrm{W}_{2}}$
Example: Determine the volume increase, bbl/ 100 bbl , when increasing the density from $12.0 \mathrm{ppg}\left(\mathrm{W}_{1}\right)$ to $13.0 \mathrm{ppg}\left(\mathrm{W}_{2}\right)$:
Volume increase, per $100 \mathrm{bbl}=\frac{100(13.0-12.0)}{22.5-13.0}$
Volume increase, per $100 \mathrm{bbl}=\frac{100}{9.5}$
Volume increase $\quad=10.53 \mathrm{bbl}$ per 100 bbl

Starting volume, bbl, of original mud weight required to yield a predetermined final volume of desired mud weight with calcium carbonate

Starting volume, $\mathrm{bbl}=\frac{\mathrm{V}_{\mathrm{F}}\left(22.5-\mathrm{W}_{2}\right)}{22.5-\mathrm{W}_{1}}$
Example: Determine the starting volume, bbl, of $12.0 \mathrm{ppg}\left(\mathrm{W}_{1}\right)$ mud required to achieve $100 \mathrm{bbl}\left(\mathrm{V}_{\mathrm{F}}\right)$ of $13.0 \mathrm{ppg}\left(\mathrm{W}_{2}\right)$ mud with calcium carbonate:

Starting volume, $\mathrm{bbl}=\frac{100(22.5-13.0)}{22.5-12.0}$
Starting volume, $\mathrm{bbl}=\frac{950}{10.5}$
Starting volume $\quad=90.5 \mathrm{bbl}$

Mud weight increase with hematite (SG-4.8)

$\underset{\mathrm{sk} / 100 \mathrm{bbl}}{\text { Hematite, }}=\frac{1680\left(\mathrm{~W}_{2}-\mathrm{W}_{1}\right)}{40-\mathrm{W}_{2}}$
Example: Determine the hematite, $\mathrm{sk} / 100 \mathrm{bbl}$, required to increase the density of 100 bbl of $12.0 \mathrm{ppg}\left(\mathrm{W}_{1}\right)$ to $14.0 \mathrm{ppg}\left(\mathrm{W}_{2}\right)$:
$\underset{\text { sk } / 100 \mathrm{bbl}}{\mathrm{Hematite}}=\frac{1680(14.0-12.0)}{40-14.0}$
$\underset{\mathrm{sk} / 100 \mathrm{bbl}}{\mathrm{Hematite}}=\frac{3360}{26}$
Hematite $=129.2 \mathrm{sk} / 100 \mathrm{bbl}$

Volume increase, bbl, due to mud weight increase with hematite

$\begin{aligned} & \text { Volume increase, } \\ & \text { per } 100 \mathrm{bbl}\end{aligned}=\frac{100\left(\mathrm{~W}_{2}-\mathrm{W}_{1}\right)}{40-\mathrm{W}_{2}}$
Example: Determine the volume increase, $\mathrm{bbl} / 100 \mathrm{bbl}$, when increasing the density from $12.0 \mathrm{ppg}\left(\mathrm{W}_{1}\right)$ to $14.0 \mathrm{ppg}\left(\mathrm{W}_{2}\right)$:
$\begin{aligned} & \text { Volume increase, } \\ & \text { per } 100 \mathrm{bbl}\end{aligned}=\frac{100(14.0-12.0)}{40-14.0}$
$\begin{aligned} & \text { Volume increase, } \\ & \text { per } 100 \mathrm{bbl}\end{aligned}=\frac{200}{26}$
Volume increase $=7.7 \mathrm{bbl}$ per 100 bbl

Starting volume, bbl, of original mud weight required to yield a predetermined final volume of desired mud weight with hematite

Starting volume, $\mathrm{bbl}=\frac{\mathrm{V}_{\mathrm{F}}\left(40-\mathrm{W}_{2}\right)}{40-\mathrm{W}_{1}}$
Example: Determine the starting volume, bbl, of $12.0 \mathrm{ppg}\left(\mathbf{W}_{1}\right)$ mud required to achieve $100 \mathrm{bbl}\left(\mathrm{V}_{\mathrm{F}}\right)$ of $14.0 \mathrm{ppg}\left(\mathrm{W}_{2}\right)$ mud with hematite:

Starting volume, $\mathrm{bbl}=\frac{100(40-14.0)}{40-12.0}$
Starting volume, $\mathrm{bbl}=\frac{2600}{28}$
Starting volume $=92.9 \mathrm{bbl}$

Dilution

Mud weight reduction with water

Water, $\mathrm{bbl}=\frac{\mathrm{V}_{1}\left(\mathrm{~W}_{1}-\mathrm{W}_{2}\right)}{\mathrm{W}_{2}-\mathrm{D}_{\mathrm{W}}}$
Example: Determine the number of barrels of water weighing 8.33 ppg $\left(\mathrm{D}_{\mathrm{W}}\right)$ required to reduce $100 \mathrm{bbl}\left(\mathrm{V}_{1}\right)$ of $14.0 \mathrm{ppg}\left(\mathrm{W}_{1}\right)$ to 12.0ppg (W_{2}):

Water, $\mathrm{bbl}=\frac{100(14.0-12.0)}{12.0-8.33}$
Water, $\mathrm{bbl}=\frac{2000}{3.67}$
Water $=54.5 \mathrm{bbl}$
Mud weight reduction with diesel oil
Diesel, $\mathrm{bbl}=\frac{\mathrm{V}_{1}\left(\mathrm{~W}_{1}-\mathrm{W}_{2}\right)}{\mathrm{W}_{2}-\mathrm{D}_{\mathrm{W}}}$
Example: Determine the number of barrels of diesel weighing 7.0 ppg $\left(\mathrm{D}_{\mathrm{w}}\right)$ required to reduce $100 \mathrm{bbl}\left(\mathrm{V}_{1}\right)$ of $14.0 \mathrm{ppg}\left(\mathrm{W}_{1}\right)$ mud to 12.0ppg $\left(\mathrm{W}_{2}\right)$:

Diesel, $\mathrm{bbl}=\frac{100(14.0-12.0)}{12.0-7.0}$
Diesel, $\mathrm{bbl}=\frac{200}{5.0}$
Diesel $=40 \mathrm{bbl}$

Mixing Fluids of Different Densities

Formula: $\left(\mathrm{V}_{1} \mathrm{D}_{1}\right)+\left(\mathrm{V}_{2} \mathrm{D}_{2}\right)=\mathrm{V}_{\mathrm{F}} \mathrm{D}_{\mathrm{F}}$
where $\mathrm{V}_{1}=$ volume of fluid 1 (bbl, gal, etc.)
$\mathrm{D}_{1}=$ density of fluid $1\left(\mathrm{ppg}, \mathrm{lb} / \mathrm{ft}^{3}\right.$, etc.)
$\mathrm{V}_{2}=$ volume of fluid 2 (bbl, gal, etc.)
$\mathrm{D}_{2}=$ density of fluid $2\left(\mathrm{ppg}, \mathrm{lb} / \mathrm{ft}^{3}\right.$, etc.)
$\mathrm{V}_{\mathrm{F}}=$ volume of final fluid mix
$\mathrm{D}_{\mathrm{F}}=$ density of final fluid mix
Example 1: A limit is placed on the desired volume:
Determine the volume of 11.0 ppg mud and 14.0 ppg mud required to build 300 bbl of 11.5 ppg mud:

Given: 400 bbl of 11.0 ppg mud on hand, and 400 bbl of 14.0 ppg mud on hand

Solution: let $\quad \mathrm{V}_{1}=\mathrm{bbl}$ of 11.0 ppg mud
$V_{2}=\mathrm{bbl}$ of 14.0 ppg mud
then a) $V_{1}+V_{2}=300 \mathrm{bbl}$
b) (11.0) $\mathrm{V}_{1}+(14.0) \mathrm{V}_{2}=(11.5)(300)$

Multiply Equation A by the density of the lowest mud weight ($\mathrm{D}_{1}=$ 11.0 ppg) and subtract the result from Equation B:
b) $(11.0)\left(V_{1}\right)+(14.0)\left(V_{2}\right)=3450$

- a) $\frac{(11.0)\left(\mathrm{V}_{1}\right)+(11.0)\left(\mathrm{V}_{2}\right)=3300}{0}(3.0)\left(\mathrm{V}_{2}\right)=150$
$3 \mathrm{~V}_{2}=150$

$$
V_{2}=\frac{150}{3}
$$

$$
\mathrm{V}_{2}=50
$$

Therefore: $\mathrm{V}_{2}=50 \mathrm{bbl}$ of 14.0 ppg mud
$\mathrm{V}_{1}+\mathrm{V}_{2}=300 \mathrm{bbl}$
$\mathrm{V}_{1}=300-50$
$\mathrm{V}_{1} \quad=250 \mathrm{bbl}$ of 11.0 ppg mud
Check: $\mathrm{V}_{1}=50 \mathrm{bbl}$

$$
\mathrm{D}_{1}=14.0 \mathrm{ppg}
$$

$$
\mathrm{V}_{2}=150 \mathrm{bbl}
$$

$$
\begin{aligned}
& \mathrm{D}_{2}=11.0 \mathrm{ppg} \\
& \mathrm{~V}_{\mathrm{F}}=300 \mathrm{bbl} \\
& D_{F}=\text { final density, ppg } \\
& (50)(14.0)+(250)(11.0)=300 D_{F} \\
& 700+2750=300 \mathrm{D}_{\mathrm{F}} \\
& 3450=300 D_{F} \\
& 3450 \div 300=\mathrm{D}_{\mathrm{F}} \\
& 11.5 \mathrm{ppg}=\mathrm{D}_{\mathrm{F}}
\end{aligned}
$$

Example 2: No limit is placed on volume:
Determine the density and volume when the following two muds are mixed together:

Given: 400 bbl of 11.0 ppg mud, and 400 bbl of 14.0 ppg mud

Solution: let $\mathrm{V}_{1}=\mathrm{bbl}$ of 11.0 ppg mud
$\mathrm{D}_{1}=$ density of 11.0 ppg mud
$\mathrm{V}_{2}=\mathrm{bbl}$ of 14.0 ppg mud
$\mathrm{D}_{2}=$ density of 14.0 ppg mud
$\mathrm{V}_{\mathrm{F}}=$ final volume, bbl
$D_{F}=$ final density, ppg
Formula: $\left(\mathrm{V}_{1} \mathrm{D}_{1}\right)+\left(\mathrm{V}_{2} \mathrm{D}_{2}\right)=\mathrm{V}_{\mathrm{F}} \mathrm{D}_{\mathrm{F}}$
$(400)(11.0)+(400)(14.0)=800 \mathrm{D}_{\mathrm{F}}$
$400+5600=800 \mathrm{D}_{\mathrm{F}}$
$10,000=800 \mathrm{D}_{\mathrm{F}}$
$10,000 \div 800=\mathrm{D}_{\mathrm{F}}$
$12.5 \mathrm{ppg}=\mathrm{D}_{\mathrm{F}}$
Therefore: final volume $=800 \mathrm{bbl}$
final density $=12.5 \mathrm{ppg}$

Oil-Based Mud Calculations

Density of oil/water mixture being used
$\left(V_{1}\right)\left(D_{1}\right)+\left(V_{2}\right)\left(D_{2}\right)=\left(V_{1}+V_{2}\right) D_{F}$
Example: If the oil/water (o/w) ratio is $75 / 25\left(75 \%\right.$ oil, V_{1}, and 25% water, V_{2}), the following material balance is set up:

NOTE: The weight of diesel oil, $\mathrm{D}_{1}=7.0 \mathrm{ppg}$ The weight of water, $\mathrm{D}_{2}=8.33 \mathrm{ppg}$

$$
\begin{aligned}
(0.75)(7.0)+(0.25)(8.33) & =(0.75+0.25) \mathrm{D}_{\mathrm{F}} \\
5.25+2.0825 & =1.0 \mathrm{D}_{\mathrm{F}} \\
7.33 & =\mathrm{D}_{\mathrm{F}}
\end{aligned}
$$

Therefore: The density of the oil/water mixture $=7.33 \mathrm{ppg}$

Starting volume of liquid (oil plus water) required to prepare a desired volume of mud
$\mathrm{SV}=\frac{35-\mathrm{W}_{2}}{35-\mathrm{W}_{1}} \times \mathrm{DV}$
where $\mathrm{SV}=$ starting volume, bbl
$\mathrm{W}_{1}=$ initial density of oil/water mixture, ppg
$\mathrm{W}_{2}=$ desired density, ppg
$\mathrm{DV}=$ desired volume, bbl
Example: $\mathrm{W}_{1}=7.33 \mathrm{ppg}(\mathrm{o} / \mathrm{w}$ ratio $-75 / 25)$

$$
\mathrm{W}_{2}=16.0 \mathrm{ppg}
$$

$$
\mathrm{D}_{\mathrm{V}}=100 \mathrm{bbl}
$$

Solution: $\mathrm{SV}=\frac{35-16}{35-7.33} \times 100$

$$
\begin{aligned}
& \mathrm{SV}=\frac{19}{27.67} \times 100 \\
& \mathrm{SV}=0.68666 \times 100 \\
& \mathrm{SV}=68.7 \mathrm{bbl}
\end{aligned}
$$

Oil/water ratio from retort data

Obtain the percent-by-volume oil and percent-by-volume water from retort analysis or mud still analysis. Using the data obtained, the oil/water ratio is calculated as follows:
a) $\begin{aligned} & \% \text { oil in } \\ & \text { liquid phase }\end{aligned}=\frac{\% \text { by vol oil }}{\% \text { by vol oil }+\% \text { by vol water }} \times 100$
$\begin{aligned} & \text { b) } \% \text { water in } \\ & \text { liquid phase }\end{aligned}=\frac{\% \text { by vol water }}{\% \text { by vol oil }+\% \text { by vol water }} \times 100$
c) Result: The oil/water ratio is reported as the percent oil and the percent water.

$$
\text { Example: Retort annalysis: } \begin{aligned}
\% \text { by volume oil } & =51 \\
\% \text { by volume water } & =17 \\
\% \text { by volume solids } & =32
\end{aligned}
$$

Solution: a) $\%$ oil in liquid phase $=\frac{51}{51 \times 17} \times 100$
$\%$ oil in liquid phase $=75$
b) $\%$ water in liquid phase $=\frac{17}{51+17} \times 100$
$\%$ water in liquid phase $=25$
c) Result: Therefore, the oil/water ratio is reported as $75 / 25$: 75% oil and 25% water.

Changing oil/water ratio

NOTE: If the oil/water ratio is to be increased, add oil; if it is to be decreased, add water.

Retort analysis: \% by volume oil $=51$
$\%$ by volume water $=17$
$\%$ by volume solids $=32$
The oil/water ratio is $75 / 25$.

Example 1: Increase the oil/water ratio to $80 / 20$:

In 100 bbl of this mud, there are 68 bbl of liquid (oil plus water). To increase the oil/water ratio, add oil. The total liquid volume will be increased by the volume of the oil added, but the water volume will not change. The 17 bbl of water now in the mud represents 25% of the liquid volume, but it will represent only 20% of the new liquid volume.

Therefore: let $\mathrm{x}=$ final liquid volume
then, $0.20 \mathrm{x}=17$

$$
\begin{aligned}
& x=17 \div 0.20 \\
& x=85 \mathrm{bbl}
\end{aligned}
$$

The new liquid volume $=85 \mathrm{bbl}$
Barrels of oil to be added:
Oil, $\mathrm{bbl}=$ new liquid vol - original liquid vol
Oil, $\mathrm{bbl}=85-68$
Oil $\quad=17 \mathrm{bbl}$ oil per 100 bbl of mud
Check the calculations. If the calculated amount of liquid is added, what will be the resulting oil/water ratio?
$\begin{aligned} & \% \text { oil in } \\ & \text { liquid phase }\end{aligned}=\frac{\text { original vol oil }+ \text { new vol oil }}{\text { original liquid oil }+ \text { new oil added }} \times 100$
$\begin{aligned} & \% \text { oil in } \\ & \text { liquid phase }\end{aligned}=\frac{51+17}{68+17} \times 100$
$\%$ oil in
liquid phase $=80$
$\%$ water would then be: $100-80=20$
Therefore: The new oil/water ratio would be $80 / 20$.
Example 2: Change the oil/water ratio to $70 / 30$:
As in Example 1, there are 68 bbl of liquid in 100 bbl of this mud. In this case, however, water will be added and the volume of oil will remain constant. The 51 bbl of oil represents 75% of the original liquid volume and 70% of the final volume:

Therefore: let $\mathrm{x}=$ final liquid volume
then, $0.70 \mathrm{x}=51$

$$
\begin{aligned}
& \mathrm{x}=51 \div 0.70 \\
& \mathrm{x}=73 \mathrm{bbl}
\end{aligned}
$$

The new liquid volume $=73 \mathrm{bbl}$

Barrels of water to be added:
Water, $\mathrm{bbl}=$ new liquid vol - original liquid vol
Water, $\mathrm{bbl}=73-68$
Water $=5 \mathrm{bbl}$ of water per 100 bbl of mud
Check the calculations. If the calculated amount of water is added, what will be the resulting oil/water ratio?
$\begin{aligned} & \% \text { water in } \\ & \text { liquid phase }\end{aligned}=\frac{17+5}{68+5} \times 100$
$\%$ water in
liquid phase $=30$
\% water in
liquid phase $=100-30=70$
Therefore, the new oil/water ratio would be $70 / 30$.

Solids Analysis

Basic solids analysis calculations

NOTE: Steps 1-4 are performed on high salt content muds. For low chloride muds begin with Step 5.

Step 1

Percent-by-volume saltwater (SW)

$$
\mathbf{S W}=\left(5.88 \times 10^{-8}\right) \times\left[(\mathrm{ppm} \mathrm{CI})^{1.2}+1\right] \times \% \text { by vol water }
$$

Step 2

Percent-by-volume suspended solids (SS)
$\mathrm{SS}=100-\%$ by vol oil $-\%$ by vol SW

Step 3

Average specific gravity of saltwater (ASGsw)

$$
\text { ASGsw }=(\text { ppm CI })^{0.95} \times\left(1.94 \times 10^{-6}\right)+1
$$

Step 4

Average specific gravity of solids (ASG)

$$
\mathrm{ASG}=\frac{(12 \times \mathrm{MW})-(\% \text { by vol SW } \times \text { ASGsw })-(0.84 \times \% \text { by vol oil })}{\mathrm{SS}}
$$

Step 5

Average specific gravity of solids (ASG)

$$
\mathrm{ASG}=\frac{(12 \times \mathrm{MW})-\% \text { by vol water }-\% \text { by vol oil }}{\% \text { by vol solids }}
$$

Step 6

Percent-by-volume low gravity solids (LGS)
$\mathrm{LGS}=\frac{\% \text { by volume solids } \times(4.2-\mathrm{ASG})}{1.6}$

Step 7

Percent-by-volume barite
Barite, $\%$ by vol $=\%$ by vol solids $-\%$ by vol LGS

Step 8

Pounds-per-barrel barite
Barite, $\mathrm{lb} / \mathrm{bbl}=\%$ by vol barite $\times 14.71$

Step 9

Bentonite determination
If cation exchange capacity (CEC)/methylene blue test (MBT) of shale and mud are KNOWN:
a) Bentonite, lb/bbl:

$$
=\frac{1}{1-\left(\frac{S}{65}\right)} \times\left(M-9 \times \frac{S}{65}\right) \times \% \text { by vol LGS }
$$

where $S=C E C$ of shale
$\mathrm{M}=\mathrm{CEC}$ of mud
b) Bentonite, $\%$ by volume:

Bent, $\%$ by vol $=$ bentonite, $\mathrm{lb} / \mathrm{bbl} \div 9.1$
If the cation exchange capacity (CEC)/methylene blue (MBT) of SHALE is UNKNOWN:
a) Bentonite, $\%$ by volume $=\frac{M-\% \text { by volume } L G S}{8}$ where $\mathrm{M}=\mathrm{CEC}$ of mud
b) Bentonite, $\mathrm{lb} / \mathrm{bbl}=$ bentonite, $\%$ by vol $\times 9.1$

Step 10

Drilled solids, \% by volume
Drilled solids, $\%$ by vol $=$ LGS, $\%$ by vol - bent, $\%$ by vol

Step 11

Drilled solids, $\mathrm{lb} / \mathrm{bbl}$
Drilled solids, $\mathrm{lb} / \mathrm{bbl}=$ drilled solids, $\%$ by vol $\times 9.1$

Example: Mud weight $=16.0 \mathrm{ppg}$
Chlorides $\quad=73,000 \mathrm{ppm}$
CEC of mud $=30 \mathrm{lb} / \mathrm{bbl}$
CEC of shale $=7 \mathrm{lb} / \mathrm{bbl}$
Rector Analysis:
water $\quad=57.0 \%$ by volume
oil $\quad=7.5 \%$ by volume
solids $\quad=35.5 \%$ by volume

1. Percent by volume saltwater (SW)

$$
\begin{aligned}
& \mathrm{SW}=\left[\left(5.88 \times 10^{-8}\right)(73,000)^{1.2}+1\right] \times 57 \\
& \mathrm{SW}=\left[\left(5.88^{-8} \times 685468.39\right)+1\right] \times 57 \\
& \mathrm{SW}=(0.0403055+1) \times 57 \\
& \mathrm{SW}=59.2974 \text { percent by volume }
\end{aligned}
$$

94 Formulas and Calculations

2. Percent by volume suspended solids (SS)
$\mathrm{SS}=100-7.5-59.2974$
$S S=33.2026$ percent by volume
3. Average specific gravity of saltwater (ASGsw)

ASGsw $=\left[(73,000)^{0.95}\left(1.94 \times 10^{-6}\right)\right]+1$
ASGsw $=\left(41,701.984 \times 1.94^{-6}\right)+1$
ASGsw $=0.0809018+1$
ASGsw $=1.0809$
4. Average specific gravity of solids (ASG)
$\mathrm{ASG}=\frac{(12 \times 16)-(59.2974 \times 1.0809)-(0.84 \times 7.5)}{33.2026}$
$\mathrm{ASG}=\frac{121.60544}{33.2026}$
$\mathrm{ASG}=3.6625$
5. Because a high chloride example is being used, Step 5 is omitted.
6. Percent by volume low gravity solids (LGS)

LGS $=\frac{33.2026 \times(4.2-3.6625)}{1.6}$
LGS $=11.154$ percent by volume
7. Percent by volume barite

Barite, $\%$ by volume $=33.2026-11.154$
Barite $\quad=22.0486 \%$ by volume
8. Barite, $\mathrm{lb} / \mathrm{bbl}$

Barite, $\mathrm{lb} / \mathrm{bbl}=22.0486 \times 14.71$
Barite $\quad=324.3349 \mathrm{lb} / \mathrm{bbl}$
9. Bentonite determination
a) $\mathrm{lb} / \mathrm{bbl}=\frac{1}{1-\left(\frac{7}{65}\right)} \times\left(30-9 \times \frac{7}{65}\right) \times 11.154$
$\mathrm{lb} / \mathrm{bbl}=1.1206897 \times 2.2615385 \times 11.154$
Bent $=28.26965 \mathrm{lb} / \mathrm{bb}$
b) Bentonite, $\%$ by volume

Bent, $\%$ by vol $=28.2696 \div 9.1$
Bent $\quad=3.10655 \%$ by vol
10. Drilled solids, percent by volume

Drilled solids, $\%$ by vol $=11.154-3.10655$
Drilled solids $\quad=8.047 \%$ by vol
11. Drilled solids, pounds per barrel

Drilled solids, $\mathrm{lb} / \mathrm{bbl}=8.047 \times 9.1$
Drilled solids $\quad=73.2277 \mathrm{lb} / \mathrm{bbl}$

Solids Fractions

Maximum recommended solids fractions (SF)

$\mathrm{SF}=(2.917 \times \mathrm{MW})-14.17$

Maximum recommended low gravity solids (LGS)

$\mathrm{LGS}=\left\{\frac{\mathrm{SF}}{100}-\left[0.3125 \times\left(\frac{\mathrm{MW}}{8.33}-1\right)\right]\right\} \times 200$
where $\mathrm{SF}=$ maximum recommended solids fractions, \% by vol
$\mathrm{MW}=$ mud weight, ppg
LGS $=$ maximum recommended low gravity solids, $\%$ by vol
Example: Mud weight $=14.0 \mathrm{ppg}$
Determine: Maximum recommended solids, \% by volume
Low gravity solids fraction, \% by volume
Maximum recommended solids fractions (SF), \% by volume:
$S F=(2.917 \times 14.0)-14.17$
$\mathrm{SF}=40.838-14.17$
$S F=26.67 \%$ by volume

Low gravity solids (LGS), \% by volume:
LGS $=\left\{\frac{26.67}{100}-\left[0.3125 \times\left(\frac{14.0}{8.33}-1\right)\right]\right\} \times 200$
LGS $=0.2667-(0.3125 \times 0.6807) \times 200$
LGS $=(0.2667-0.2127) \times 200$
LGS $=0.054 \times 200$
LGS $=10.8 \%$ by volume

Dilution of Mud System

$V w m=\frac{V m(F c t-F c o p)}{\text { Fcop }- \text { Fca }}$
where Vwm $=$ barrels of dilution water or mud required
$\mathrm{Vm}=$ barrels of mud in circulating system
Fct = percent low gravity solids in system
Fcop $=$ percent total optimum low gravity solids desired
Fca = percent low gravity solids (bentonite and/or chemicals added)

Example: 1000 bbl of mud in system. Total LGS $=6 \%$. Reduce solids to 4%. Dilute with water:
$V w m=\frac{1000(6-4)}{4}$
$V w m=\frac{2000}{4}$
$\mathrm{V} w \mathrm{~m}=500 \mathrm{bbl}$
If dilution is done with a 2% bentonite slurry, the total would be:
$V w m=\frac{1000(6-4)}{4}$
$\mathrm{Vwm}=\frac{2000}{2}$
$\mathrm{Vwm}=1000 \mathrm{bbl}$

Displacement-Barrels of Water/Slurry Required

$V w m=\frac{V m(F c t-F c o p)}{\text { Fct }- \text { Fca }}$
where Vwm $=$ barrels of mud to be jetted and water or slurry to be added to maintain constant circulating volume:

Example: 1000 bbl in mud system. Total LGS $=6 \%$. Reduce solids to 4\%:
$\mathrm{Vwm}=\frac{1000(6-4)}{6}$
$\mathrm{Vwm}=\frac{2000}{6}$
Vwm $=333 \mathrm{bbl}$

If displacement is done by adding 2% bentonite slurry, the total volume would be:
$\mathrm{Vwm}=\frac{1000(6-4)}{6-2}$
$V_{w m}=\frac{2000}{4}$
$V w m=500 \mathrm{bbl}$

Evaluation of Hydrocyclone

Determine the mass of solids (for an unweighted mud) and the volume of water discarded by one cone of a hydrocyclone (desander or desilter):

Volume fraction of solids (SF):

$$
\mathrm{SF}=\frac{\mathrm{MW}-8.22}{13.37}
$$

Mass rate of solids (MS):
$\mathrm{MS}=19,530 \times \mathrm{SF} \times \frac{\mathrm{V}}{\mathrm{T}}$
Volume rate of water (WR)
$\mathrm{WR}=900(1-\mathrm{SF}) \frac{\mathrm{V}}{\mathrm{T}}$
where $\mathrm{SF}=$ fraction percentage of solids
MW = average density of discarded mud, ppg
$\mathrm{MS}=$ mass rate of solids removed by one cone of a hydrocyclone, $\mathrm{lb} / \mathrm{hr}$
$\mathrm{V}=$ volume of slurry sample collected, quarts
$\mathrm{T}=$ time to collect slurry sample, seconds
$\mathrm{WR}=$ volume of water ejected by one cone of a hydrocyclone, gal/hr

Example: Average weight of slurry sample collected $=16.0 \mathrm{ppg}$
Sample collected in 45 seconds
Volume of slurry sample collected $=2$ quarts
a) Volume fraction of solids:
$\mathrm{SF}=\frac{16.0-8.33}{13.37}$
$\mathrm{SF}=0.5737$
b) Mass rate of solids:

MS $=19,530 \times 0.5737 \times \frac{2}{45}$
$\mathrm{MS}=11,204.36 \times 0.0444$
$\mathrm{MS}=497.97 \mathrm{lb} / \mathrm{hr}$
c) Volume rate of water:
$\mathrm{WR}=900(1-0.5737) \frac{2}{45}$
$\mathrm{WR}=900 \times 0.4263 \times 0.0444$
$\mathrm{WR}=17.0 \mathrm{gal} / \mathrm{hr}$

Evaluation of Centrifuge

a) Underflow mud volume:

$$
\mathrm{QU}=\frac{[\mathrm{QM} \times(\mathrm{MW}-\mathrm{PO})]-[\mathrm{QW} \times(\mathrm{PO}-\mathrm{PW})]}{\mathrm{PU}-\mathrm{PO}}
$$

b) Fraction of old mud in underflow:

$$
\mathrm{FU}=\frac{35-\mathrm{PU}}{35-\mathrm{MW}+\left(\frac{\mathrm{QW}}{\mathrm{QM}}\right) \times(35-\mathrm{PW})}
$$

c) Mass rate of clay:

$$
\mathrm{QC}=\frac{\mathrm{CC} \times[\mathrm{QM}-(\mathrm{QU} \times \mathrm{FU})]}{42}
$$

d) Mass rate of additives:

$$
\mathrm{QC}=\frac{\mathrm{CD} \times[\mathrm{QM}-(\mathrm{QU} \times \mathrm{FU})]}{42}
$$

e) Water flow rate into mixing pit:

$$
\mathrm{QP}=\frac{\begin{array}{c}
{[\mathrm{QM} \times(35-\mathrm{MW})]-[\mathrm{QU} \times(35-\mathrm{PU})]} \\
-(0.6129 \times \mathrm{QC})-(0.6129 \times \mathrm{QD})
\end{array}}{35-\mathrm{PW}}
$$

f) Mass rate for API barite:

$$
\mathrm{QB}=\mathrm{QM}-\mathrm{QU}-\mathrm{QP}-\frac{\mathrm{QC}}{21.7}-\frac{\mathrm{QD}}{21.7} \times 35
$$

where $\mathrm{MW}=$ mud density into centrifuge, ppg
$\mathrm{QM}=\mathrm{mud}$ volume into centrifuge, $\mathrm{gal} / \mathrm{min}$
$\mathrm{PW}=$ dilution water density, ppg
QW = dilution water volume, gal/min
PU = underflow mud density, ppg
PO = overflow mud density, ppg
$\mathrm{CC}=$ clay content in mud, lb/bbl
$\mathrm{CD}=$ additive content in mud, $\mathrm{lb} / \mathrm{bbl}$
$\mathrm{QU}=$ underflow mud volume, gal/min
$\mathrm{FU}=$ fraction of old mud in underflow
$\mathrm{QC}=$ mass rate of clay, $\mathrm{lb} / \mathrm{min}$
$\mathrm{QD}=$ mass rate of additives, $\mathrm{lb} / \mathrm{min}$
QP = water flow rate into mixing pit, gal/min
$\mathrm{QB}=$ mass rate of API barite, $\mathrm{lb} / \mathrm{min}$
Example: Mud density into centrifuge (MW) $=16.2 \mathrm{ppg}$
Mud volume into centrifuge $(\mathrm{QM})=16.5 \mathrm{gal} / \mathrm{min}$
Dilution water density (PW) $\quad=8.34 \mathrm{ppg}$
Dilution water volume $(\mathrm{QW}) \quad=10.5 \mathrm{gal} / \mathrm{min}$
Underflow mud density (PU) $\quad=23.4 \mathrm{ppg}$
Overflow mud density (PO) $\quad=9.3 \mathrm{ppg}$
Clay content of mud (CC) $\quad=22.5 \mathrm{lb} / \mathrm{bbl}$
Additive content of mud (CD) $=6 \mathrm{lb} / \mathrm{bbl}$
Determine: Flow rate of underflow
Volume fraction of old mud in the underfiow
Mass rate of clay into mixing pit
Mass rate of additives into mixing pit Water flow rate into mixing pit Mass rate of API barite into mixing pit
a) Underflow mud volume, gal/min:

$$
\mathrm{QU}=\frac{[16.5 \times(16.2-9.3)]-[10.5 \times(9.3-8.34)]}{23.4-9.3}
$$

$$
\mathrm{QU}=\frac{113.85-10.08}{14.1}
$$

$\mathrm{QU}=7.4 \mathrm{gal} / \mathrm{min}$
b) Volume fraction of old mud in the underflow:

$$
\begin{aligned}
& \mathrm{FU}=\frac{35-23.4}{35-16.2+\left[\frac{10.5}{16.5} \times(35-8.34)\right]} \\
& \mathrm{FU}=\frac{11.6}{18.8+(0.63636 \times 26.66)} \\
& \mathrm{FU}=0.324 \%
\end{aligned}
$$

c) Mass rate of clay into mixing pit, $\mathrm{lb} / \mathrm{min}$:
$\mathrm{QC}=\frac{22.5 \times[16.5-(7.4 \times 0.324)]}{42}$
$\mathrm{QC}=\frac{22.5 \times 14.1}{42}$
$\mathrm{QC}=7.55 \mathrm{lb} / \mathrm{min}$
d) Mass rate of additives into mixing pit, $\mathrm{lb} / \mathrm{min}$:
$\mathrm{QD}=\frac{6 \times[16.5-(7.4 \times 0.324)]}{42}$
$\mathrm{QD}=\frac{6 \times 14.1}{42}$
$\mathrm{QD}=2.01 \mathrm{lb} / \mathrm{min}$
e) Water flow into mixing pit, gal/min:
$\mathrm{QP}=[16.5 \times(35-16.2)]-[7.4 \times(35-23.4)]$
$-(0.6129 \times 7.55)-(0.6129 \times 2) \div(35-8.34)$
$\mathrm{QP}=\frac{310.2-85.84-4.627-1.226}{26.66}$
$\mathrm{QP}=\frac{218.507}{26.66}$
$\mathrm{QP}=8.20 \mathrm{gal} / \mathrm{min}$
f) Mass rate of API barite into mixing pit, $\mathrm{lb} / \mathrm{min}$:
$\mathrm{QB}=16.5-7.4-8.20-\frac{7.55}{21.7}-\frac{2.01}{21.7} \times 35$
$\mathrm{QB}=16.5-7.4-8.20-0.348-0.0926 \times 35$
$\mathrm{QB}=0.4594 \times 35$
$\mathrm{QB}=16.079 \mathrm{lb} / \mathrm{min}$

References

Chenevert, Martin E., and Reuven Hollo, TI-59 Drilling Engineering Manual, PennWell Publishing Company, Tulsa, 1981.
Crammer Jr., John L. Basic Drilling Engineering Manual, PennWell Publishing Company, Tulsa, 1982.
Manual of Drilling Fluids Technology, Baroid Division, N.L. Petroleum Services, Houston, Texas, 1979.
Mud Facts Engineering Handbook, Milchem Incorporated, Houston, Texas, 1984.

CHAPTER FOUR

Pressure Control

Kill Sheets and Related Calculations

Normal kill sheet

Prerecorded data

Original mud weight (OMW) ppg
Measured depth (MD) ft
Kill rate pressure (KRP)

\qquad
psi@
spm
Kill rate pressure (KRP) \qquad psi@ spm
Drill string volume
Drill pipe capacity$\mathrm{bbl} / \mathrm{ft} \times$
\qquad length, $\mathrm{ft}=$ \qquad bblDrill pipe capacitybbl/ft \times
\qquad length, $\mathrm{ft}=$ \qquad bbl
Drill collar capacity
\qquad bbl/ft \times \qquad length, $\mathrm{ft}=$ \qquad bblTotal drill string volume
\qquad bbl

Annular volume

Drill collar/open hole Capacity \qquad $\mathrm{bbl} / \mathrm{ft} \times$ \qquad length, $\mathrm{ft}=$ \qquad bblDrill pipe/open holeCapacity
\qquad $\mathrm{bbl} / \mathrm{ft} \times$ \qquad length, $\mathrm{ft}=$ \qquad bbl
Drill pipe/casingCapacity
\qquad $\mathrm{bbl} / \mathrm{ft} \times$ \qquad length, $\mathrm{ft}=$ \qquad bbl
Total barrels in open hole bbl
Total annular volume bbl

Pump data

Pump output \qquad bbl/stk@ \qquad \% efficiency

Surface to bit strokes:
Drill string \qquad $\mathrm{bbl} \div$ \qquad pump output, volume $\mathrm{bbl} / \mathrm{stk}=$ \qquad stk

Bit to casing shoe strokes:
Open hole \qquad bbl \div \qquad pump output, volume $\mathrm{bbl} /$ stk $=$ \qquad stk

Bit to surface strokes:
Annulus \qquad bbl \div \qquad pump output, volume $\mathrm{bbl} /$ stk = \qquad stk

Maximum allowable shut-in casing pressure:
Leak-off test \qquad psi, using \qquad ppg mud weight
@ casing setting depth of \qquad TVD

Kick data

\qquad
SIDPP psi
\qquad
SICP psi
Pit gain bbl
True vertical depth ft

Calculations

Kill weight mud (KWM)

$=$ SIDPP \qquad psi $\div 0.052 \div$ TVD \qquad $\mathrm{ft}+\mathrm{OMW}$ \qquad ppg $=$ \qquad ppg

Initial circulating pressure (ICP)

$$
=\text { SIDPP }
$$

\qquad $\mathrm{psi}+\mathrm{KRP}$ \qquad psi $=$ \qquad psi

Final circulating pressure (FCP)
$=\mathrm{KWM}$ \qquad ppg \times KRP \qquad psi \div OMW \qquad ppg $=$ \qquad psi

Psi/stroke

ICP \qquad psi - FCP \qquad psi \div strokes to bit \qquad = \qquad psi/stk

Example: Use the following data and fill out a kill sheet:

Shut-in drill pipe pressure	$=480 \mathrm{psi}$
Shut-in casing pressure	$=600 \mathrm{psi}$
Pit volume gain	$=35 \mathrm{bbl}$
True vertical depth	$=10,000 \mathrm{ft}$

Calculations

Drill string volume:
Drill pipe capacity
$0.01776 \mathrm{bbl} / \mathrm{ft} \times 9925 \mathrm{ft} \quad=176.27 \mathrm{bbl}$

HWDP capacity
$0.00883 \mathrm{bbl} / \mathrm{ft} \times 240 \mathrm{ft}=2.12 \mathrm{bbl}$
Drill collar capacity
$0.0087 \mathrm{bbl} / \mathrm{ft} \times 360 \mathrm{ft}$
Total drill string volume
$=3.13 \mathrm{bbl}$
$=181.5 \mathrm{bbl}$

Annular volume:

Drill collar/open hole
$0.0836 \mathrm{bbl} / \mathrm{ft} \times 360 \mathrm{ft}=30.1 \mathrm{bbl}$

Drill pipe/open hole
$0.1215 \mathrm{bbl} / \mathrm{ft} \times 6165 \mathrm{f}$
$=749.05 \mathrm{bbl}$

Drill pipe/casing

$0.1303 \mathrm{bbl} / \mathrm{ft} \times 4000 \mathrm{ft}$	$=\frac{521.2 \mathrm{bbl}}{}$
Total annular volume	
$\mathbf{1 3 0 0 . 3 5 b b l}$	

Strokes to bit:

Drill string volume $181.5 \mathrm{bbl} \div 0.136 \mathrm{bbl} /$ stk
Strokes to bit
$=1335$ stk

Bit-to-casing strokes:

Open-hole volume $=779.15 \mathrm{bbl} \div 0.136 \mathrm{bbl} / \mathrm{stk}$
Bit-to-casing strokes
$=5729$ stk
Bit-to-surface strokes:
Annular volume $=1300.35 \mathrm{bbl} \div 0.136 \mathrm{bbl} / \mathrm{stk}$
Bit-to-surface strokes
$=9561$ stk
Kill weight mud (KWM)

$$
480 \mathrm{psi} \div 0.052 \div 10,000 \mathrm{ft}+9.6 \mathrm{ppg} \quad=10.5 \mathrm{ppg}
$$

Initial circulating pressure (ICP)

$$
480 \mathrm{psi} \div 1000 \mathrm{psi} \quad=1480 \mathrm{psi}
$$

Final circulating pressure (FCP)
$10.5 \mathrm{ppg} \times 1000 \mathrm{psi} \div 9.6 \mathrm{ppg}$
$=\quad 1094 \mathrm{psi}$

Pressure chart
Strokes to bit $=1335 \div 10=133.5$
Therefore, strokes will increase by 133.5 per line:
Pressure Chart

133.5 rounded up	Strokes	Pressure
	0	
	134	
	267	
$+133.5=$	401	
$+133.5=$	534	
$+133.5=$	668	
$+133.5=$	801	
$+133.5=$	935	
$+133.5=$	1068	
+ $133.5=$	1202	
+ $133.5=$	1335	

Pressure

ICP (1480) psi $-\mathrm{FCP}(1094) \div 10=38.6 \mathrm{psi}$
Therefore, the pressure will decrease by 38.6 psi per line.

	Pressure Chart		
	Strokes	Pressure	
	0	1480	$<\mathrm{ICP}$
$1480-38.6=$		1441	
$-38.6=$		1403	
- $38.6=$		1364	
- $38.6=$		1326	
$-38.6=$		1287	
$-38.6=$		1248	
$-38.6=$		1210	
$-38.6=$		1171	
$-38.6=$		1133	
$-38.6=$		1094	$<\mathrm{FCP}$

Trip margin (TM)

$\mathrm{TM}=$ Yield point $\div 11.7(\mathrm{Dh}$, in. -Dp, in. $)$
Example: Yield point $=10 \mathrm{lb} / 100 \mathrm{sqft} ; \mathrm{Dh}=8.5 \mathrm{in} . ; \mathrm{Dp}=4.5 \mathrm{in}$.

$$
\begin{aligned}
& \mathrm{TM}=10 \div 11.7(8.5-4.5) \\
& \mathrm{TM}=0.2 \mathrm{ppg}
\end{aligned}
$$

Determine psi/stk

$$
\mathrm{psi} / \mathrm{stk}=\frac{\mathrm{ICP}-\mathrm{FCP}}{\text { strokes to bit }}
$$

Example: Using the kill sheet just completed, adjust the pressure chart to read in increments that are easy to read on pressure gauges. Example: 50 psi :

Data: Initial circulating pressure $=1480 \mathrm{psi}$ Final circulating pressure $=1094$ psi
Strokes to bit

$$
=1335 \mathrm{psi}
$$

psi $/$ stk $=\frac{1480-1094}{1335}$
$\mathrm{psi} / \mathrm{stk}=0.2891$
The pressure side of the chart will appear as follows:

Pressure Chart

Strokes	Pressure
0	1480
	1450
	1400
	1350
	1300
	1250
	1200
	1150
	1094

Adjust the strokes as necessary.
For line 2: How many strokes will be required to decrease the pressure from 1480 psi to 1450 psi?

1480 psi -1450 psi $=30$ psi
$30 \mathrm{psi} \div 0.2891 \mathrm{psi} / \mathrm{stk}=104$ strokes
For lines 3 to 7 : How many strokes will be required to decrease the pressure by 50 psi increments?
$50 \mathrm{psi} \div 0.2891 \mathrm{psi} / \mathrm{stk}=173$ strokes

Therefore, the new pressure chart will appear as follows:

Pressure Chart

	Strokes	Pressure
	0	1480
104	104	1450
$104+173=$	277	1400
$+173=$	450	1350
$+173=$	623	1300
$+173=$	796	1250
$+173=$	969	1200
$\begin{aligned} & +173= \\ & +173= \end{aligned}$	1142	1150
	1315	1100
	1335	1094

Kill sheet with a tapered string

$\underset{\text { psi @ }}{\text { strokes }}=I C P-\left[\left(\frac{\text { DPL }}{\text { DSL }}\right) \times(\mathrm{ICP}-\mathrm{FCP})\right]$
Note: Whenever a kick is taken with a tapered drill string in the hole, interim pressures should be calculated for a) the length of large drill pipe (DPL) and b) the length of large drill pipe plus the length of small drill pipe.

Example: Drill pipe 1: $5.0 \mathrm{in} .-19.5 \mathrm{lb} / \mathrm{ft}$

$$
\begin{aligned}
& \text { capacity } \\
& =0.01776 \mathrm{bbl} / \mathrm{ft} \\
& \text { length } \\
& =7000 \mathrm{ft} \\
& \text { Drill pipe } 2: 3-1 / 2 \mathrm{in} \text {. }-13.3 \mathrm{lb} / \mathrm{ft} \\
& =0.0074 \mathrm{bbl} / \mathrm{ft} \\
& \text { length } \\
& =6000 \mathrm{ft} \\
& \text { Drill collars: } 41 / 2 \mathrm{in} \text {.-OD } \times 1-1 / 2 \mathrm{in} \text {. ID } \\
& \text { capacity } \\
& \text { length } \\
& \text { Pump output } \\
& =0.0022 \mathrm{bbl} / \mathrm{ft} \\
& =2000 \mathrm{ft} \\
& =0.117 \mathrm{bbl} / \mathrm{stk}
\end{aligned}
$$

Step 1

Determine strokes:

$$
\begin{array}{lr}
7000 \mathrm{ft} \times 0.01776 \mathrm{bbl} / \mathrm{ft} \div 0.117 \mathrm{bbl} / \mathrm{stk}= & 1063 \\
6000 \mathrm{ft} \times 0.00742 \mathrm{bbl} / \mathrm{ft} \div 0.117 \mathrm{bbl} / \mathrm{stk}= & 381 \\
2000 \mathrm{ft} \times 0.0022 \mathrm{bbl} / \mathrm{ft} \div 0.117 \mathrm{bbl} / \mathrm{stk}= & 38
\end{array}
$$

$$
\text { Total strokes }=1482
$$

Data from kill sheet

Initial drill pipe circulating pressure $(\mathrm{ICP})=1780 \mathrm{psi}$
Final drill pipe circulating pressure $(\mathrm{FCP})=1067 \mathrm{psi}$

Step 2

Determine interim pressure for the 5.0 in . drill pipe at 1063 strokes:

$$
\begin{aligned}
\begin{array}{ll}
\mathrm{psi@} \\
\text { 1063 } \\
\text { strokes }
\end{array} & =1780-\left[\left(\frac{7000}{15,000}\right) \times(1780-1067)\right] \\
& =1780-(0.4666 \times 713) \\
& =1780-333 \\
& =1447 \mathrm{psi}
\end{aligned}
$$

Step 3

Determine interim pressure for 5.0 in. plus $3-1 / 2$ in. drill pipe $(1063+381)=$ 1444 strokes:

$$
\begin{aligned}
\begin{array}{l}
\text { psi@ } \\
\begin{array}{l}
1444 \\
\text { strokes }
\end{array}
\end{array} & =1780-\left[\left(\frac{13,000}{15,000}\right) \times(1780-1067)\right] \\
& =1780-(0.86666 \times 713) \\
& =1780-618 \\
& =1162 \mathrm{psi}
\end{aligned}
$$

Step 4

Plot data on graph paper:

Figure 4-1. Data from kill sheet.

Note: After pumping 1062 strokes, if a straight line would have been plotted, the well would have been underbalanced by 178 psi.

Kill sheet for a highly deviated well

Whenever a kick is taken in a highly deviated well, the circulating pressure can be excessive when the kill weight mud gets to the kick-off point (KOP). If the pressure is excessive, the pressure schedule should be divided into two sections: 1) from surface to KOP, and 2) from KOP to TD. The following calculations are used:

Determine strokes from surface to KOP:
Strokes $=\begin{aligned} & \text { drill pipe } \\ & \text { capacity, } \mathrm{bbl} / \mathrm{ft}\end{aligned} \times \begin{aligned} & \text { measured depth }\end{aligned} \underset{\text { to KOP, } \mathrm{ft}}{\text { pump output },}$
Determine strokes from KOP to TD:
Strokes $=\underset{\text { capacity, bbl/ft }}{\text { drill string }} \times \begin{aligned} & \text { measured depth } \\ & \text { to } \mathrm{TD}, \mathrm{ft}\end{aligned} \div \underset{\mathrm{bbl} / \mathrm{stk}}{\text { pump output, }}$

Kill weight mud:

$$
\mathrm{KWM}=\mathrm{SIDPP} \div 0.052 \div \mathrm{TVD}+\mathrm{OMW}
$$

Initial circulating pressure:

$$
\mathrm{ICP}=\mathrm{SIDPP}+\mathrm{KRP}
$$

Final circulating pressure:

$$
\mathrm{FCP}=\mathrm{KWM} \times \mathrm{KRP} \div \mathrm{OMW}
$$

Hydrostatic pressure increase from surface to KOP:

$$
\mathrm{psi}=(\mathrm{KWM}-\mathrm{OMW}) \times 0.052 \times \mathrm{TVD} @ \mathrm{KOP}
$$

Friction pressure increase to KOP:
$\mathrm{FP}=(\mathrm{FCP}-\mathrm{KRP}) \times \mathrm{MD} @ \mathrm{KOP} \div \mathrm{MD} @ \mathrm{TD}$
Circulating pressure when KWM gets to KOP:
$\mathrm{CP} @ \mathrm{KOP}=\mathrm{ICP}-\mathrm{HP}$ increase to $\mathrm{KOP}+\begin{aligned} & \text { friction pressure } \\ & \text { increase, } 1\end{aligned}$

Note: At this point, compare this circulating pressure to the value obtained when using a regular kill sheet.

> Example: Original mud weight (OMW) $\quad=9.6 \mathrm{ppg}$
> Measured depth (MD) $=15,000 \mathrm{ft}$
> Measured depth@KOP =5000 ft
> True vertical depth @ KOP $\quad=5000 \mathrm{ft}$
> Kill rate pressure (KRP) @ $30 \mathrm{spm}=600 \mathrm{psi}$
> Pump output $=0.136 \mathrm{bbl} /$ stk
> Drill pipe capacity $\quad=0.01776 \mathrm{bbl} / \mathrm{ft}$
> Shut-in drill pipe pressure $($ SIDPP $)=800 \mathrm{psi}$
> True vertical depth (TVD) $\quad=10,000 \mathrm{ft}$

Solution:
Strokes from surface to KOP:
Strokes $=0.01776 \mathrm{bbl} / \mathrm{ft} \times 5000 \mathrm{ft} \div 0.136 \mathrm{bbl} / \mathrm{stk}$
Strokes $=653$

114 Formulas and Calculations

Strokes from KOP to TD:
Strokes $=0.01776 \mathrm{bbl} / \mathrm{ft} \times 10,000 \mathrm{ft} \div 0.136 \mathrm{bbl} /$ stk
Strokes $=1306$
Total strokes from surface to bit:
Surface to bit strokes $=653+1306$
Surface to bit strokes $=1959$
Kill weight mud (KWM):
$\mathrm{KWM}=800 \mathrm{psi} \div 0.052 \div 10,000 \mathrm{ft}+9.6 \mathrm{ppg}$
$K W M=11.1 \mathrm{ppg}$
Initial circulating pressure (ICP):
$\mathrm{ICP}=800 \mathrm{psi}+600 \mathrm{psi}$
ICP $=1400 \mathrm{psi}$
Final circulating pressure (FCP):
$\mathrm{FCP}=11.1 \mathrm{ppg} \times 600 \mathrm{psi} \div 9.6 \mathrm{ppg}$
$\mathrm{FCP}=694 \mathrm{psi}$
Hydrostatic pressure increase from surface to KOP:
$\mathrm{HPi}=(11.1-9.6) \times 0.052 \times 5000$
$\mathrm{HPi}=390 \mathrm{psi}$
Friction pressure increase to TD:
$\mathrm{FP}=(694-600) \times 5000 \div 15,000$
$\mathrm{FP}=31 \mathrm{psi}$
Circulating pressure when KWM gets to KOP:
$C P=1400-390+31$
CP = 1041 psi
Compare this circulating pressure to the value obtained when using a regular kill sheet:
psi/stk $=1400-694 \div 1959$
$\mathrm{psi} / \mathrm{st} \mathrm{k}=0.36$
$0.36 \mathrm{psi} / \mathrm{stk} \times 653$ strokes $=235 \mathrm{psi}$
$1400-235=1165 \mathrm{psi}$

Using a regular kill sheet, the circulating drill pipe pressure would be 1165 psi . The adjusted pressure chart would have 1041 psi on the drill pipe gauge. This represents 124 psi difference in pressure, which would also be observed on the annulus (casing) side. If the difference in pressure at the KOP is 100 psi or greater, then the adjusted pressure chart should be used to minimize the chances of losing circulation.

The chart below graphically illustrates the difference:

Figure 4-2. Adjusted pressure chart.

Prerecorded Information

Maximum anticipated surface pressure

Two methods are commonly used to determine maximum anticipated surface pressure:

Method 1: Use when assuming the maximum formation pressure is from TD:

Step 1

Determine maximum formation pressure (FPmax):
FP max $=\left(\begin{array}{lr}\text { maximum } & \text { safety } \\ \text { mud wt to } & \text { factor, } \\ \text { be used, ppg } & \text { ppg }\end{array}\right) \times 0.052 \times\left(\begin{array}{l}\text { total } \\ \text { depth, } \\ \mathrm{ft}\end{array}\right)$

Step 2

Assuming 100% of the mud is blown out of the hole, determine the hydrostatic pressure in the wellbore:

Note: 70% to 80% of mud being blown out is sometimes used instead of 100%.

HPgas $=$ gas gradient, $\mathrm{psi} / \mathrm{ft} \times$ total depth, ft

Step 3

Determine maximum anticipated surface pressure (MASP):
MASP $=$ FPmax - HPgas
Example: Proposed total depth $\quad=12,000 \mathrm{ft}$
Maximum mud weight to be used in drilling well $\quad=12.0 \mathrm{ppg}$
Safety factor $\quad=4.0 \mathrm{ppg}$
Gas gradient $\quad=0.12 \mathrm{psi} / \mathrm{ft}$
Assume that 100% of mud is blown out of well.

Step 1

FPmax $=(12.0+4.0) \times 0.052 \times 12,000 \mathrm{ft}$
FPmax $=9984 \mathrm{psi}$

Step 2

HPgas $=0.12 \times 12,000 \mathrm{ft}$
HPgas $=1440 \mathrm{psi}$

Step 3

MASP $=9984-1440$
MASP $=8544 \mathrm{psi}$

Method 2: Use when assuming the maximum pressure in the wellbore is attained when the formation at the shoe fractures:

Step 1

Determine fracture pressure, psi:
$\begin{aligned} & \text { Fracture } \\ & \text { pressure, } \\ & \mathrm{psi}\end{aligned}=\left(\begin{array}{ll}\text { estimated } & \text { safety } \\ \text { fracture } & \text { sactor, } \\ \text { gradient, } & +\mathrm{facto} \\ \mathrm{ppg} & \mathrm{ppg}\end{array}\right) \times 0.052 \times\left(\begin{array}{l}\text { casing } \\ \text { shoe } \\ \text { TVD, } \\ \mathrm{ft}\end{array}\right)$
Note: A safety factor is added to ensure the formation fractures before BOP pressure rating is exceeded.

Step 2

Determine the hydrostatic pressure of gas in the wellbore (HPgas):
HPgas $=$ gas gradient, psi/ft \times casing shoe TVD, ft

Step 3

Determine the maximum anticipated surface pressure (MASP), psi:

$$
\text { Example: } \begin{aligned}
\text { Proposed casing setting depth } & =4000 \mathrm{ft} \\
\text { Estimated fracture gradient } & =14.2 \mathrm{ppg} \\
\text { Safety factor } & =1.0 \mathrm{ppg} \\
\text { Gas gradient } & =0.12 \mathrm{psi} / \mathrm{ft}
\end{aligned}
$$

Assume 100% of mud is blown out of the hole.

Step 1

$\begin{aligned} & \text { Fracture } \\ & \text { pressure, psi }\end{aligned}=(14.2+1.0) \times 0.052 \times 4000 \mathrm{ft}$
$\underset{\text { pressure }}{\text { Fracture }}=3162 \mathrm{psi}$

Step 2

HPgas $=0.12 \times 4000 \mathrm{ft}$
HPgas $=480 \mathrm{psi}$

Step 3

MASP $=3162-480$
MASP $=2682 \mathrm{psi}$

Sizing diverter lines

Determine diverter line inside diameter, in., equal to the area between the inside diameter of the casing and the outside diameter of drill pipe in use:

Diverter line ID, in. $=\sqrt{{D h^{2}}^{2}-D p^{2}}$

Example:

Casing-13-3/8in. $-\mathrm{J}-55-61 \mathrm{lb} / \mathrm{ft} \mathrm{ID}=12.515 \mathrm{in}$.
Drill pipe- $19.5 \mathrm{lb} / \mathrm{ft}$ OD $=5.0 \mathrm{in}$.
Determine the diverter line inside diameter that will equal the area between the casing and drill pipe:
Diverter line ID, in. $=\sqrt{12.515^{2}-5.0^{2}}$
Diverter line ID $=11.47 \mathrm{in}$.

Formation pressure tests

Two methods of testing:

- Equivalent mud weight test
- Leak-off test

Precautions to be undertaken before testing:

1. Circulate and condition the mud to ensure the mud weight is consistent throughout the system.
2. Change the pressure gauge (if possible) to a smaller increment gauge so a more accurate measure can be determined.
3. Shut-in the well.
4. Begin pumping at a very slow rate- $1 / 4$ to $1 / 2 \mathrm{bbl} / \mathrm{min}$.
5. Monitor pressure, time, and barrels pumped.
6. Some operators may use different procedures in running this test; others may include:
a. Increasing the pressure by 100 psi increments, waiting for a few minutes, then increasing by another 100 psi , and so on, until either the equivalent mud weight or leak-off is achieved.
b. Some operators prefer not pumping against a closed system. They prefer to circulate through the choke and increase back pressure by slowly closing the choke. In this method, the annular pressure loss should be calculated and added to the test pressure results.

Testing to an equivalent mud weight:

1) This test is used primarily on development wells where the maximum mud weight that will be used to drill the next interval is known.
2) Determine the equivalent test mud weight, ppg. Two methods are normally used.

Method 1: Add a value to the maximum mud weight that is needed to drill the interval.

Example: Maximum mud weight necesary to drill the next interval $=11.5$ ppg plus safety factor $=1.0 \mathrm{ppg}$
$\begin{aligned} & \text { Equivalent test } \\ & \text { mud weight, ppg }\end{aligned}=\binom{$ maximum mud }{ weight, ppg }$+\binom{$ safety }{ factor, ppg }
Equivalent test $=11.5 \mathrm{ppg}+1.0 \mathrm{ppg}$
mud weight
$\begin{aligned} & \text { Equivalent test } \\ & \text { mud weight }\end{aligned}=12.5 \mathrm{ppg}$
Method 2: Subtract a value from the estimated fracture gradient for the depth of the casing shoe.
$\begin{aligned} & \text { Equivalent test } \\ & \text { mud weight }\end{aligned}=\binom{$ estimated fracture }{ gradient, ppg }$-\binom{$ safety }{ factor }
Example: Estimated formation fracture gradient $=14.2$ ppg. Safety factor $=1.0 \mathrm{ppg}$
$\begin{aligned} & \text { Equivalent test } \\ & \text { mud weight }\end{aligned}=14.2 \mathrm{ppg}-1.0 \mathrm{ppg}$
Determine surface pressure to be used:

Example:

Mud weight $\quad=9.2 \mathrm{ppg}$
Casing shoe TVD $\quad=4000 \mathrm{ft}$
Equivalent test mud weight $=13.2 \mathrm{ppg}$

Solution: Surface pressure $=(13.2-9.2) \times 0.052 \times 4000 \mathrm{ft}$ Surface pressure $=832 \mathrm{psi}$

Testing to leak-off text:

1) This test is used primarily on wildcat or exploratory wells or where the actual fracture is not known.
2) Determine the estimated fracture gradient from a "Fracture Gradient Chart."
3) Determine the estimated leak-off pressure.
$\begin{aligned} & \text { Estimated } \\ & \begin{array}{l}\text { leak-off } \\ \text { pressure }\end{array}\end{aligned}=\left(\begin{array}{lr}\text { estimated } & \text { mud wt } \\ \text { fracture } & - \text { in use }, \\ \text { gradient } & \mathrm{ppg}\end{array}\right) \times 0.052 \times\left(\begin{array}{l}\text { casing } \\ \text { seat } \\ \text { TVD, } \mathrm{ft}\end{array}\right)$

Example: Mud weight $\quad=9.6 \mathrm{ppg}$
Casing shoe TVD $\quad=4000 \mathrm{ft}$
Estimated fracture gradient $=14.4 \mathrm{ppg}$
Solution: Estimated
leak-off $=(14.4-9.6) \times 0.052 \times 4000 \mathrm{ft}$
pressure

$$
=4.8 \times 0.052 \times 4000
$$

Estimated
leak-off $=998 \mathrm{psi}$
pressure

Maximum allowable mud weight from leak-off test data

$\begin{aligned} & \text { Max allowable } \\ & \text { mud weight, ppg }\end{aligned}=\left(\begin{array}{l}\text { leak-off } \\ \text { pressure }, \\ \mathrm{psi}\end{array}\right) \div 0.052 \div\left(\begin{array}{l}\text { casing } \\ \text { shoe } \\ \text { TVD, } \mathrm{ft}\end{array}\right)+\left(\begin{array}{l}\text { mud wt } \\ \text { in use }, \\ \mathrm{ppg}\end{array}\right)$
Example: Determine the maximum allowable mud weight, ppg, using the following data:
Leak-off pressure $=1040 \mathrm{psi}$
Casing shoe TVD $=4000 \mathrm{ft}$
Mud weight in use $=10.0 \mathrm{ppg}$

Max allowable
mud weight, ppg
$=1040 \div 0.052 \div 4000+10.0$

Max allowable
mud weight, $\mathrm{ppg}=15.0 \mathrm{ppg}$

Maximum allowable shut-in casing pressure (MASICP) also called maximum allowable shut-in annular pressure (MASP):

MASICP $=\left(\begin{array}{lc}\text { maximum } & \text { mud } w t \\ \text { allowable } & - \text { in use } \\ \text { mud wt. } \mathrm{ppg} & \text { ppg }\end{array}\right) \times 0.052 \times\left(\begin{array}{l}\text { casing } \\ \text { show } \\ \text { TVD, } \mathrm{ft}\end{array}\right)$
Example: Determine the maximum allowable shut-in casing pressure using the following data:

Maximum allowable mud weight $=15.0 \mathrm{ppg}$
Mud weight in use $\quad=12.2 \mathrm{ppg}$
Casing shoe TVD $=4000 \mathrm{ft}$
MASICP $=(15.0-12.2) \times 0.052 \times 4000 \mathrm{ft}$
MASICP $=582 \mathrm{psi}$

Kick tolerance factor (KTF)

$\mathrm{KTF}=\left(\begin{array}{ll}\text { casing } & \text { well } \\ \text { shoe } & \div \text { depth } \\ \text { TVD, } \mathrm{ft} & \text { TVD, } \mathrm{ft}\end{array}\right) \times\left(\begin{array}{ll}\text { maximum } & \text { mud wt } \\ \text { allowable } & - \text { in use, } \\ \text { mud wt, ppg } & \text { ppg }\end{array}\right)$
Example: Determine the kick tolerance factor (KTF) using the following data:

Maximum allowable mud weight $=14.2 \mathrm{ppg}$ (from leak-off test data)
Mud weight in use $\quad=10.0 \mathrm{ppg}$
Casing shoe TVD $\quad=4000 \mathrm{ft}$
Well depth TVD $\quad=10,000 \mathrm{ft}$
$\mathrm{KTF}=(4000 \mathrm{ft} \div 10,000 \mathrm{ft}) \times(14.2 \mathrm{ppg}-10.0 \mathrm{ppg})$
$\mathrm{KTF}=1.68 \mathrm{ppg}$

Maximum surface pressure from kick tolerance data

$\begin{aligned} & \begin{array}{l}\text { Maximum } \\ \text { surface } \\ \text { pressure }\end{array}\end{aligned}=\begin{aligned} & \text { kick tolerance } \\ & \text { factor, } \mathrm{ppg}\end{aligned} \times 0.052 \times \mathrm{TVD}, \mathrm{ft}$
Example: Determine the maximum surface pressure, psi, using the following data:

Maximum
surface $=1.68 \mathrm{ppg} \times 0.052 \times 10,000 \mathrm{ft}$
pressure
Maximum
surface $\quad=874 \mathrm{psi}$
pressure
Maximum formation pressure (FP) that can be controlled when shutting-in a well

| Maximum
 FP,
 psi |
| :--- |\(=\left(\begin{array}{lr}kick \& mud wt

tolerance \& + in use,

factor, ppg \& ppg\end{array}\right) \times 0.052 \times \mathrm{TVD}, \mathrm{ft}\)

Example: Determine the maximum formation pressure (FP) that can be controlled when shutting-in a well, using the following data:

Data: Kick tolerance factor $=1.68 \mathrm{ppg}$ Mud weight $\quad=10.0 \mathrm{ppg}$ True vertical depth $=10,000 \mathrm{ft}$
$\begin{aligned} & \text { Maximum } \\ & \mathrm{FP}, \mathrm{psi}\end{aligned}=(1.68 \mathrm{ppg}+10.0 \mathrm{ppg}) \times 0.052 \times 10,000 \mathrm{ft}$
Maximum FP $=6074 \mathrm{psi}$
Maximum influx height possible to equal maximum allowable shut-in casing pressure (MASICP)
$\begin{aligned} & \text { Influx } \\ & \text { height, } \mathrm{ft}\end{aligned}=$ MASICP, psi $\div\left(\begin{array}{ll}\text { gradient } & \text { influx } \\ \text { of mud wt } & -\operatorname{gradient} \\ \text { in use, } & \text { psi/ft } \\ \text { pis } / \mathrm{ft} & \end{array}\right)$

Example: Determine the influx height, ft , necessary to equal the maximum allowable shut-in casing pressure (MASICP), using the following data:

Data: Maximum allowable shut-in casing pressure $=874 \mathrm{psi}$
Mud gradient $(10.0 \mathrm{ppg} \times 0.052) \quad=0.52 \mathrm{psi} / \mathrm{ft}$
Gradient of influx $\quad=0.12 \mathrm{psi} / \mathrm{ft}$
Influx height $=874 \mathrm{psi} \div(0.52 \mathrm{psi} / \mathrm{ft}-0.12 \mathrm{psi} / \mathrm{ft})$
Influx height $=2185 \mathrm{ft}$

Maximum influx, barrels to equal maximum allowable shut-in casing pressure (MASICP)

Example:

Maximum influx height to equal MASICP $=2185 \mathrm{ft}$ (from above example)
Annular capacity - drill collars/open hole $=0.0836 \mathrm{bbl} / \mathrm{ft}$ (12-1/4 in. $\times 8.0$ in.)
Drill collar length $\quad=500 \mathrm{ft}$
Annular capacity - drill pipe/open hole $\quad=0.1215 \mathrm{bbl} / \mathrm{ft}$ (12-1/4in. $\times 5.0 \mathrm{in}$.)

Step 1

Determine the number of barrels opposite drill collars:
Barrels $=0.0836 \mathrm{bb} / \mathrm{ft} \times 500 \mathrm{ft}$
Barrcls $=41.8$

Step 2

Determine the number of barrels opposite drill pipe:
Influx height, ft, opposite drill pipe:
$\mathrm{ft}=2185 \mathrm{ft}-500 \mathrm{ft}$
$\mathrm{ft}=1685$
Barrels opposite drill pipe:
Barrels $=1685 \mathrm{ft} \times 0.1215 \mathrm{bbl} / \mathrm{ft}$
Barrels $=204.7$

Step 3

Determine maximum influx, bbl, to equal maximum allowable shut-in casing pressure:

Maximum influx $=41.8 \mathrm{bbl}+204.7 \mathrm{bbl}$
Maximum influx $=246.5 \mathrm{bbl}$

Adjusting maximum allowable shut-in casing pressure for an increase in mud weight

MASICP $=\mathrm{P}_{\mathrm{L}}-\left[\mathrm{D} \times\left(\operatorname{mud} \mathrm{wt}_{2}-\operatorname{mud} w t_{1}\right)\right] 0.052$
where MASICP = maximum allowable shut-in casing (annulus) pressure, psi
$\mathrm{P}_{\mathrm{L}} \quad=$ leak-off pressure, psi
$\mathrm{D} \quad=$ true vertical depth to casing shoe, ft
Mud wt $t_{2}=$ new mud wt, ppg
Mud wt $t_{1}=$ original mud wt, ppg
Example: Leak-off pressure at casing setting depth (TVD) of 4000 ft was
1040 psi with 10.0 ppg in use. Determine the maximum allowable shut-in casing pressure with a mud weight of 12.5 ppg :

MASICP $=1040 \mathrm{psi}-[4000 \times(12.5-10.0) 0.052]$
MASICP $=1040 \mathrm{psi}-520$
MASICP $=520 \mathrm{psi}$

Kick Analysis

Formation pressure (FP) with the well shut-in on a kick

FP, psi $=$ SIDPP, $\mathrm{psi}+[$ mud $w t, \mathrm{ppg} \times 0.052 \times \mathrm{TVD}, \mathrm{ft})$
Example: Determine the formation pressure using the following data:
Shut-in drill pipe pressure $=500 \mathrm{psi}$
Mud weight in drill pipe $=9.6 \mathrm{ppg}$
True vertical depth $\quad=10,000 \mathrm{ft}$

$$
\begin{aligned}
& \mathrm{FP}, \mathrm{psi}=500 \mathrm{psi}+(9.6 \mathrm{ppg} \times 0.052 \times 10,000 \mathrm{ft}) \\
& \mathrm{FP}, \mathrm{psi}=500 \mathrm{psi}+4992 \mathrm{psi} \\
& \mathrm{FP} \quad=5492 \mathrm{psi}
\end{aligned}
$$

Bottomhole pressure (BHP) with the well shut-in on a kick

BHP, psi $=$ SIDPP, $\mathrm{psi}+($ mud $w t, p p g \times 0.052 \times$ TVD, ft$)$
Example: Determine the bottomhole pressure (BHP) with the well shutin on a kick:

Shut-in drill pipe pressure $=500 \mathrm{psi}$
Mud weight in drill pipe $=9.6 \mathrm{ppg}$
True vertical depth $\quad=10,000 \mathrm{ft}$
$\mathrm{BHP}, \mathrm{psi}=500 \mathrm{psi}+(9.6 \mathrm{ppg} \times 0.052 \times 10,000 \mathrm{ft})$
$\mathrm{BHP}, \mathrm{psi}=500 \mathrm{psi}+4992 \mathrm{psi}$
$\mathrm{BHP}=5492 \mathrm{psi}$

Shut-in drill pipe pressure (SIDPP)

formation
SIDPP, psi $=$ pressure,$\quad-($ mud wt, $p p g \times 0.052 \times \mathrm{TVD}, \mathrm{ft})$
psi
Example: Determine the shut-in drill pipe pressure using the following data:

Formation pressure $\quad=12,480 \mathrm{psi}$
Mud weight in drill pipe $=15.0 \mathrm{ppg}$
True vertical depth $=15,000 \mathrm{ft}$
SIDPP, psi $=12,480 \mathrm{psi}-(15.0 \mathrm{ppg} \times 0.052 \times 15,000 \mathrm{ft})$
SIDPP, psi $=12,480 \mathrm{psi}-11,700 \mathrm{psi}$
SIDPP $=780 \mathrm{psi}$

Shut-in casing pressure (SICP)

$\mathrm{SICP}=\left(\begin{array}{l}\text { formation } \\ \text { pressure, } \\ \text { psi }\end{array}\right)-\left(\begin{array}{ll}\text { HP of } & \text { HP of } \\ \text { mud in } & \text { influx in } \\ \text { annulus, psi } & \text { annulus, psi }\end{array}\right)$
Example: Determine the shut-in casing pressure using the following data:
Formation pressure $\quad=12,480 \mathrm{psi}$
Mud weight in annulus $=15.0 \mathrm{ppg}$
Feet of mud in annulus $=14,600 \mathrm{ft}$
Influx gradient $\quad=0.12 \mathrm{psi} / \mathrm{ft}$
Feet of influx in annulus $=400 \mathrm{ft}$

SICP, psi $=12,480-[(15.0 \times 0.052 \times 14,600)+(0.12 \times 400)]$
SICP, psi $=12,480-11,388+48$
$\operatorname{SICP}=1044 \mathrm{psi}$

Height, ft, of influx

$\begin{aligned} & \text { Height of } \\ & \text { influx, } \mathrm{ft}\end{aligned}=\underset{\mathrm{bbl}}{\text { pit gain, }} \div \underset{\mathrm{bbl} / \mathrm{ft}}{\text { annular capacity, }}$
Example 1: Determine the height, ft, of the influx using the following data:
Pit gain $\quad=20 \mathrm{bbl}$
Annular capacity - $\mathrm{DC} / \mathrm{OH}=0.02914 \mathrm{bbl} / \mathrm{ft}$
$(\mathrm{Dh}=8.5 \mathrm{in} .-\mathrm{Dp}=6.5)$
$\begin{aligned} & \text { Height of } \\ & \text { influx, } \mathrm{ft}\end{aligned}=20 \mathrm{bbl} \div 0.02914 \mathrm{bbl} / \mathrm{ft}$
$\underset{\text { influx }}{\text { Height of }}=686 \mathrm{ft}$

Example 2: Determine the height, ft, of the influx using the following data:
Pit gain $\quad=20 \mathrm{bbl}$
Hole size $\quad=8.5$ in.
Drill collar OD $=6.5 \mathrm{in}$.
Drill collar length $=450 \mathrm{ft}$
Drill pipe OD $=5.0 \mathrm{in}$.
Determine annular capacity, $\mathrm{bbl} / \mathrm{ft}$, for $\mathrm{DC} / \mathrm{OH}$:
Annular capacity, $\mathrm{bbl} / \mathrm{ft}=\frac{8.5^{2}-6.5^{2}}{1029.4}$
Annular capacity $\quad=0.02914 \mathrm{bbl} / \mathrm{ft}$
Determine the number of barrels opposite the drill collars:
Barrels $=$ length of collars \times annular capacity
Barrels $=450 \mathrm{ft} \times 0.02914 \mathrm{bbl} / \mathrm{ft}$
Barrels $=13.1$

Determine annular capacity, $\mathrm{bbl} / \mathrm{ft}$, opposite drill pipe:
Annular capacity, $\mathrm{bb} / \mathrm{ft}=\frac{8.5^{2}-5.0^{2}}{1029.4}$
Annular capacity $\quad=0.0459 \mathrm{bbl} / \mathrm{ft}$
Determine barrels of influx opposite drill pipe:
Barrels = pit gain, bbl - barrels opposite drill collars
Barrels $=20 \mathrm{bbl}-13.1 \mathrm{bbl}$
Barrels $=6.9$
Determine height of influx opposite drill pipe:
Height, $\mathrm{ft}=6.9 \mathrm{bbl} \div 0.0459 \mathrm{bbl} / \mathrm{ft}$
Height $=150 \mathrm{ft}$
Determine the total height of the influx:
Height, $\mathrm{ft}=450 \mathrm{ft}+150 \mathrm{ft}$
Height $=600 \mathrm{ft}$

Estimated type of influx

$\begin{aligned} & \text { Influx } \\ & \text { weight, ppg }\end{aligned}=$ mud wt, ppg $-\left(\frac{\text { SICP }- \text { SIDPP }}{\begin{array}{l}\text { height of } \\ \text { influx, } \mathrm{ft}\end{array} \times 0.052}\right)$
then: $1-3 \mathrm{ppg}=$ gas kick
$4-6 \mathrm{ppg}=$ oil kick or combination
7-9 ppg = saltwater kick
Example: Determine the type of the influx using the following data:
Shut-in casing pressure $=1044 \mathrm{psi}$
Shut-in drill pipe pressure $=780 \mathrm{psi}$
Height of influx $\quad=400 \mathrm{ft}$
Mud weight $\quad=15.0 \mathrm{ppg}$
$\begin{aligned} & \text { Influx } \\ & \text { weight, ppg }\end{aligned}=15.0 \mathrm{ppg}-\frac{1044-780}{400 \times 0.052}$

$$
=15.0 \mathrm{ppg}-\frac{264}{20.8}
$$

Influx
weight
$=2.31 \mathrm{ppg}$

128

Therefore, the influx is probably "gas."

Gas migration in a shut-in well

Estimating the rate of gas migration, $\mathrm{ft} / \mathrm{hr}$:
$\mathrm{Vg}=12 \mathrm{e}^{(-0.077(\text { mud } \mathrm{wt}, \mathrm{ppg})}$
$\mathrm{Vg}=$ rate of gas migration, $\mathrm{ft} / \mathrm{hr}$
Example: Determine the estimated rate of gas migration using a mud weight of 11.0 ppg :
$\mathrm{Vg}=12 \mathrm{e}^{(-0.37)(11.0 \mathrm{ppg})}$
$\mathrm{Vg}=12 \mathrm{e}^{(-4.07)}$
$\mathrm{Vg}=0.205 \mathrm{ft} / \mathrm{sec}$
$\mathrm{Vg}=0.205 \mathrm{ft} / \mathrm{sec} \times 60 \mathrm{sec} / \mathrm{min}$
$\mathrm{Vg}=12.3 \mathrm{ft} / \mathrm{min} \times 60 \mathrm{~min} / \mathrm{hr}$
$\mathrm{Vg}=738 \mathrm{ft} / \mathrm{hr}$
Determining the actual rate of gas migration after a well has been shut-in on a kick:
$\begin{aligned} & \begin{array}{l}\text { Rate of gas } \\ \text { migration, } \\ \mathrm{ft} / \mathrm{hr}\end{array}\end{aligned}=\left(\begin{array}{l}\text { increase } \\ \text { in casing } \\ \text { pressure, } \\ \mathrm{psi} / \mathrm{hr}\end{array}\right) \div\left(\begin{array}{l}\text { pressure gradient } \\ \text { of mud weight in } \\ \text { use, psi/ft }\end{array}\right)$
Example: Determine the rate of gas migration with the following data:
Stabilized shut-in casing pressure $=500 \mathrm{psi}$
SICP after one hour $\quad=700 \mathrm{psi}$
Mud weight $\quad=12.0 \mathrm{ppg}$
Pressure gradient for 12.0 ppg mud $=0.624 \mathrm{psi} / \mathrm{ft}$
Rate of gas migration, $\mathrm{ft} / \mathrm{hr} \quad=200 \mathrm{psi} / \mathrm{hr} \div 0.624 \mathrm{psi} / \mathrm{ft}$
Rate of gas migration $\quad=320.5 \mathrm{ft} / \mathrm{hr}$

Metric calculation

Migration rate, $\mathrm{m} / \mathrm{hr}=\frac{\text { increase in casing pressure, } \mathrm{bar} / \mathrm{hr}}{\text { drilling fluid density, } \mathrm{kg} / \mathrm{l} \times 0.0981}$

S.I. units calculation

Migration rate, $\mathrm{m} / \mathrm{hr}=\frac{\text { increase in casing pressure, } \mathrm{kPa} / \mathrm{hr} \times 102}{\text { drilling fluid density, } \mathrm{kg} / \mathrm{m}^{3}}$

Hydrostatic pressure decrease at TD caused by gas-cut mud

Method 1:

Example: Determine the hydrostatic pressure decrease caused by gas-cut mud using the following data:

Weight of uncut mud $=18.0 \mathrm{ppg}$
Weight of gas-cut mud $=9.0 \mathrm{ppg}$
HP decrease, $\mathrm{psi}=\frac{100 \times(18.0 \mathrm{ppg}-9.0 \mathrm{ppg})}{9.0 \mathrm{ppg}}$
HP decrease $\quad=100 \mathrm{psi}$

Method 2:

$$
P=(M G \div C) V
$$

where $\mathbf{P}=$ reduction in bottomhole pressure, psi
MG $=$ mud gradient, psi/ft
$\mathrm{C}=$ annular volume, $\mathrm{bbl} / \mathrm{ft}$
$\mathrm{V}=$ pit gain, bbl
Example: $\mathrm{MG}=0.624 \mathrm{psi} / \mathrm{ft}$

$$
\begin{aligned}
& \mathrm{C}=0.0459 \mathrm{bbl} / \mathrm{ft}(\mathrm{Dh}=8.5 \mathrm{in} . ; \mathrm{Dp}=5.0 \mathrm{in} .) \\
& \mathrm{V} \\
& =20 \mathrm{bbl}
\end{aligned}
$$

Solution: $\mathrm{P}=(0.624 \mathrm{psi} / \mathrm{ft} \div 0.0459 \mathrm{bbl} / \mathrm{ft}) 20$
$\mathrm{P}=13.59 \times 20$

$$
\mathrm{P}=271.9 \mathrm{psi}
$$

Maximum surface pressure from a gas kick in a water-base mud

$$
\text { MSPgk }=0.2 \sqrt{\frac{\mathbf{P} \times V \times \mathrm{KWM}}{\mathrm{C}}}
$$

where MSPgk = maximum surface pressure resulting from a gas kick in a water-base mud

$$
\mathbf{P} \quad=\text { formation pressure, } \mathrm{psi}
$$

$\mathrm{V} \quad=$ pit gain, bbl
$K W M=$ kill weight mud, ppg
$\mathrm{C} \quad=$ annular capacity, bbl/ft

$$
\begin{aligned}
& \text { Example: } \mathrm{P} \quad=12,480 \mathrm{psi} \\
& \mathrm{~V}=20 \mathrm{bbl} \\
& K W M=16.0 \mathrm{ppg} \\
& \mathrm{C} \quad=0.0505 \mathrm{bbl} / \mathrm{ft}(\mathrm{Dh}=8.5 \mathrm{in} . \times \mathrm{Dp}=4.5 \mathrm{in} .)
\end{aligned}
$$

Solution:

$$
\begin{aligned}
\text { MSPgk } & =0.2 \sqrt{\frac{12,480 \times 20 \times 16.0}{0.0505}} \\
& =0.2 \sqrt{79,081,188} \\
& =0.2 \times 8892.76 \\
\text { MSPgk } & =1779 \mathrm{psi}
\end{aligned}
$$

Maximum pit gain from gas kick in a water-base mud

MPGgk $=4 \sqrt{\frac{\mathrm{P} \times \mathrm{V} \times \mathrm{C}}{\mathrm{KWM}}}$
where MPGgk = maximum pit gain resulting from a gas kick in a water-base mud
P = formation pressure, psi
$\mathrm{V} \quad=$ original pit gain, bbl
$\mathrm{C} \quad=$ annular capacity, bbl/ft
$K W M=$ kill weight mud, ppg

$$
\begin{aligned}
\text { Example: }: & =12,480 \mathrm{psi} \\
\mathrm{~V} & =20 \mathrm{bbl} \\
\mathrm{C} & =0.0505 \mathrm{bbl} / \mathrm{ft}(8.5 \mathrm{in} . \times 4.5 \mathrm{in} .) \\
\mathrm{KWM} & =16.0 \mathrm{ppg}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
\text { MPGgk } & =4 \sqrt{\frac{12,480 \times 20 \times 0.0505}{16.0}} \\
& =4 \sqrt{787.8} \\
& =4 \times 28.068 \\
\text { MPGgk } & =112.3 \mathrm{bbl}
\end{aligned}
$$

Maximum pressures when circulating out a kick (Moore equations)

The following equations will be used:

1. Determine formation pressure, psi:

$$
\mathrm{Pb}=\mathrm{SIDP}+(\operatorname{mud} \mathrm{wt}, \mathrm{ppg} \times 0.052 \times \mathrm{TVD}, \mathrm{ft})
$$

2. Determine the height of the influx, ft :
$\mathrm{hi}=$ pit gain, $\mathrm{bbl} \div$ annular capacity, $\mathrm{bb} / / \mathrm{ft}$
3. Determine pressure exerted by the influx, psi:

$$
\mathrm{Pi}=\mathrm{Pb}-[\mathrm{Pm}(\mathrm{D}-\mathrm{X})+\mathrm{SICP}]
$$

4. Determine gradient of influx. $\mathrm{psi} / \mathrm{ft}$:

$$
\mathrm{Ci}=\mathrm{Pi} \div \mathrm{hi}
$$

5. Determine Temperature, ${ }^{\circ} \mathrm{R}$, at depth of interest:

$$
\mathrm{Tdi}=70^{\circ} \mathrm{F}+\left(0.012^{\circ} \mathrm{F} / \mathrm{ft} . \times \mathrm{Di}\right)+46
$$

6. Determine A for unweighted mud:

$$
A=P b-[P m(D-X)-P i]
$$

7. Determine pressure at depth of interest:
$\mathrm{Pdi}=\frac{\mathrm{A}}{2}+\left(\frac{\mathrm{A}^{2}}{4}+\frac{\mathrm{pm} \mathrm{Pb} \mathrm{Zdi} \mathrm{T}}{} \mathrm{R}^{\circ} \mathrm{di} \mathrm{hi}\right)^{1 / 2}$
8. Determine kill weight mud, ppg:
$\mathrm{KWM}, \mathrm{ppg}=\mathrm{SIDPP} \div 0.052 \div \mathrm{TVD}, \mathrm{ft}+\mathrm{OMW}, \mathrm{ppg}$

132

9. Determine gradient of kill weight mud, $\mathrm{psi} / \mathrm{ft}$:
$\mathrm{pKWM}=\mathrm{KWM}, \mathrm{ppg} \times 0.052$
10. Determine FEET that drill string volume will occupy in the annulus:
$\mathrm{Di}=$ drill string vol, bbl \div annular capacity, bbl/ft
11. Determine A for weighted mud:
$\mathrm{A}=\mathrm{Pb}-[\mathrm{pm}(\mathrm{D}-\mathrm{X})-\mathrm{Pi}]+[\mathrm{Di}(\mathrm{pKWM}-\mathrm{pm})]$
Example: Assumed conditions:

Well depth	$=10,000 \mathrm{ft}$
Surface casing	
Casing ID	$=9-5 / 8 \mathrm{in}$. @ 2500 ft
\quad capacity	
Hole size	
Drill pipe	
Drill collar OD	
\quad length	
Mud weight	

Fracture gradient @ $2500 \mathrm{ft}=0.73 \mathrm{psi} / \mathrm{ft}(14.04 \mathrm{ppg})$

Mud volumes:

$8-1 / 2 \mathrm{in}$. hole	$=0.07 \mathrm{bbl} / \mathrm{ft}$
$8-1 / 2 \mathrm{in}$. hole $\times 4-1 / 2 \mathrm{in}$. drill pipe	$=0.05 \mathrm{bbl} / \mathrm{ft}$
$8-1 / 2 \mathrm{in}$. hole $\times 6-1 / 4 \mathrm{in}$. drill collars	$=0.032 \mathrm{bbl} / \mathrm{ft}$
8.921 in. casing $\times 4-1 / 2 \mathrm{in}$. drill pipe	$=0.057 \mathrm{bbl} / \mathrm{ft}$
Drill pipe capacity	$=0.014 \mathrm{bbl} / \mathrm{ft}$
Drill collar capacity	$=0.007 \mathrm{bbl} / \mathrm{ft}$
Supercompressibility factor (Z)	$=1.0$

The well kicks and the following information is recorded:
SIDP $=260 \mathrm{psi}$
SICP $=500 \mathrm{psi}$
Pit gain $=20 \mathrm{bbl}$
Determine the following:
Maximum pressure at shoe with drillers method Maximum pressure at surface with drillers method

Maximum pressure at shoe with wait and weight method Maximum pressure at surface with wait and weight method

Determine maximum pressure at shoe with drillers method:

1. Determine formation pressure:
$\mathrm{Pb}=260 \mathrm{psi}+(9.6 \mathrm{ppg} \times 0.052 \times 10,000 \mathrm{ft})$
$\mathrm{Pb}=5252 \mathrm{psi}$
2. Determine height of influx at TD:
$\mathrm{hi}=20 \mathrm{bbl} \div 0.032 \mathrm{bbl} / \mathrm{ft}$
$\mathrm{hi}=625 \mathrm{ft}$
3. Determine pressure exerted by influx at TD:
$\mathrm{Pi}=5252 \mathrm{psi}-[0.4992 \mathrm{psi} / \mathrm{ft}(10,000-625)+500]$
$\mathrm{Pi}=5252 \mathrm{psi}-[4680 \mathrm{psi}+500]$
$\mathrm{Pi}=5252 \mathrm{psi}-5180 \mathrm{psi}$
$\mathrm{Pi}=72 \mathrm{psi}$
4. Determine gradient of influx at TD:
$\mathrm{Ci}=72 \mathrm{psi} \div 625 \mathrm{ft}$
$\mathrm{Ci}=0.1152 \mathrm{psi} / \mathrm{ft}$
5. Determine height and pressure of influx around drill pipe:
$\mathrm{h}=20 \mathrm{bbl} \div 0.05 \mathrm{bbl} / \mathrm{ft}$
$\mathrm{h}=400 \mathrm{ft}$
$\mathrm{Pi}=0.1152 \mathrm{psi} / \mathrm{ft} \times 400 \mathrm{ft}$
$\mathrm{Pi}=46 \mathrm{psi}$
6. Determine $\mathrm{T}^{\circ} \mathrm{R}$ at TD and at shoe:
$\mathrm{T}{ }^{\circ} \mathrm{R} @ 10,000 \mathrm{ft}=70+(0.012 \times 10,000)+460$
$=70+120+460$
$\mathrm{T}^{\circ} \mathrm{R} @ 10,000 \mathrm{ft}=650$
$\mathrm{T}^{\circ} \mathrm{R} @ 2500 \mathrm{ft}=70+(0.012 \times 2500)+460$
$=70+30+460$
T ${ }^{\circ} \mathrm{R} @ 2500 \mathrm{ft}=560$
7. Determine $\mathrm{A}:$
$\mathrm{A}=5252 \mathrm{psi}-[0.4992(10,000-2500)+46]$
$\mathrm{A}=5252 \mathrm{psi}-(3744-46)$
$\mathrm{A}=1462 \mathrm{psi}$
8. Determine maximum pressure at shoe with drillers method:

$$
\begin{aligned}
P_{2500} & =\frac{1462}{2}+\left[\frac{1462^{2}}{4}+\frac{(0.4992)(5252)(1)(560)(400)}{(1)(650)}\right]^{1 / 2} \\
& =731+(534,361+903,512)^{1 / 2} \\
& =731+1199 \\
P_{2500} & =1930 \mathrm{psi}
\end{aligned}
$$

Determine maximum pressure at surface with drillers method:

1. Determine A:

$$
\begin{aligned}
& \mathrm{A}=5252-[0.4992(10,000)+46] \\
& \mathrm{A}=5252-(4992+46) \\
& \mathrm{A}=214 \mathrm{psi}
\end{aligned}
$$

2. Determine maximum pressure at surface with drillers method:

$$
\begin{aligned}
\text { Ps } & =\frac{214}{2}+\left[\frac{214^{2}}{4}+\frac{(0.4992)(5252)(530)(400)}{(650)}\right]^{1 / 2} \\
& =107+(11,449+855,109)^{1 / 2} \\
& =107+931 \\
\text { Ps } & =1038 \mathrm{psi}
\end{aligned}
$$

Determine maximum pressure at shoe with wait and weight method:

1. Determine kill weight mud:

KWM, ppg $=260 \mathrm{psi} \div 0.052 \div 10,000 \mathrm{ft}+9.6 \mathrm{ppg}$
$\mathrm{KWM}, \mathrm{ppg}=10.1 \mathrm{ppg}$
2. Determine gradient (pm), psi/ft for KWM:
$\mathrm{pm}=10.1 \mathrm{ppg} \times 0.052$
$\mathrm{pm}=0.5252 \mathrm{psi} / \mathrm{ft}$
3. Determine internal volume of drill string:

Drill pipe vol $=0.014 \mathrm{bbl} / \mathrm{ft} \times 9375 \mathrm{ft}=131.25 \mathrm{bbl}$
Drill collar vol $=0.007 \mathrm{bbl} / \mathrm{ft} \times 625 \mathrm{ft}=4.375 \mathrm{bbl}$
Total drill string volume $\quad=135.625 \mathrm{bbl}$
4. Determine FEET drill string volume occupies in annulus:
$\mathrm{Di}=135.625 \mathrm{bbl} \div 0.05 \mathrm{bbl} / \mathrm{ft}$
$\mathrm{Di}=2712.5$
5. Determine A:

```
\(A=5252-[0.5252(10,000-2500)-46)+(2715.2(0.5252-0.4992)]\)
\(A=5252-(3939-46)+70.6\)
\(A=1337.5\)
```

6. Determine maximum pressure at shoe with wait and weight method:

$$
\begin{aligned}
P_{2500} & =\frac{1337.5}{2}+\left[\frac{1337.5^{2}}{4}+\frac{(0.5252)(5252)(1)(560)(400)}{(1)(650)}\right]^{1 / 2} \\
& =668.75+(447,226+950,569.98)^{1 / 2} \\
& =668.75+1182.28 \\
& =1851 \mathrm{psi}
\end{aligned}
$$

Determine maximum pressure at surface with wait and weight method:

1. Determine A :

$$
\begin{aligned}
& A=5252-[0.5252(10,000)-46]+[2712.5(0.5252-0.4992)] \\
& A=5252-(5252-46)+70.525 \\
& A=24.5
\end{aligned}
$$

2. Determine maximum pressure at surface with wait and weight method:

$$
\begin{aligned}
\text { Ps } & =\frac{24.5}{2}+\left[\frac{24.5^{2}}{4}+\frac{(0.5252)(5252)(1)(560)(400)}{(1)(650)}\right]^{1 / 2} \\
& =12.25+(150.0625+95069.98)^{1 / 2} \\
& =12.25+975.049 \\
\text { Ps } & =987 \mathrm{psi}
\end{aligned}
$$

Nomenclature:

A = pressure at top of gas bubble, psi
$\mathrm{Ci}=$ gradient of influx, psi/ft
D $\quad=$ total depth, ft
Di $\quad=$ feet in annulus occupied by drill string volume
hi $\quad=$ height of influx, ft
MW = mud weight, ppg
$\mathrm{Pb}=$ formation pressure, psi
Pdi $=$ pressure at depth of interest, psi
Ps = pressure at surface, psi
$\mathrm{Pi} \quad=$ pressure exerted by influx, psi
$\mathrm{pKWM}=$ pressure gradient of kill weight mud, ppg
$\mathrm{pm} \quad=$ pressure gradient of mud weight in use, ppg
$\mathrm{T}^{\circ} \mathrm{F}=$ temperature, degrees Fahrenheit, at depth of interest
$\mathrm{T}^{\circ} \mathrm{R}=$ temperature, degrees Rankine, at depth of interest
SIDP = shut-in drill pipe pressure, psi
SICP $=$ shut-in casing pressure, psi
$\mathrm{X}=$ depth of interest, ft
$\mathrm{Zb} \quad=$ gas supercompressibility factor TD
Zdi = gas supercompressibility factor at depth of interest

Gas flow into the wellbore

Flow rate into the wellbore increases as wellbore depth through a gas sand increases:

$$
\mathrm{Q}=0.007 \times \mathrm{md} \times \mathrm{Dp} \times \mathrm{L} \div \mathfrak{u} \times \ln (\mathrm{Re} \div \mathrm{Rw}) 1440
$$

where $\mathrm{Q}=$ flow rate, $\mathrm{bbl} / \mathrm{min}$
$\mathrm{md}=$ permeability, millidarcys
$\mathrm{Dp}=$ pressure differential, psi
L = length of section open to wellbore, ft
$\mathrm{u}=$ viscosity of intruding gas, centipoise
$\mathrm{Re}=$ radius of drainage, ft
$\mathrm{Rw}=$ radius of wellbore, ft
Example: $\mathrm{md}=200 \mathrm{md}$

$$
\mathrm{Dp}=624 \mathrm{psi}
$$

$$
\mathrm{L}=20 \mathrm{ft}
$$

$$
\bar{u}=0.3 \mathrm{cp}
$$

$$
\ln (\mathrm{Re} \div \mathrm{Rw})=2.0
$$

$$
\begin{aligned}
& \mathrm{Q}=0.007 \times 200 \times 624 \times 20 \div 0.3 \times 2.0 \times 1440 \\
& \mathrm{Q}=20 \mathrm{bbl} / \mathrm{min}
\end{aligned}
$$

Therefore: If one minute is required to shut-in the well, a pit gain of 20 bbl occurs in addition to the gain incurred while drilling the $20-\mathrm{ft}$ section.

Pressure Analysis

Gas expansion equations

Basic gas laws:

$$
P_{1} V_{1} \div T_{1}=P_{2} V_{2} \div T_{2}
$$

where $\mathrm{P}_{1}=$ formation pressure, psi
$\mathrm{P}_{2}=$ hydrostatic pressure at the surface or any depth in the wellbore, psi
$\mathrm{V}_{1}=$ original pit gain, bbl
$\mathrm{V}_{2}=$ gas volume at surface or at any depth of interest, bbl
$\mathrm{T}_{1}=$ temperature of formation fluid, degrees Rankine (${ }^{\circ} \mathrm{R}={ }^{\circ} \mathrm{F}+460$)
$\mathrm{T}_{2}=$ temperature at surface or at any depth of interest, degrees Rankine

Basis gas law plus compressibility factor:

$$
P_{1} V_{1} \div T_{1} Z_{1}=P_{2} V_{2} \div T_{2} Z_{2}
$$

where $Z_{1}=$ compressibility factor under pressure in formation, dimensionless
$\mathrm{Z}_{2}=$ compressibility factor at the surface or at any depth of interest, dimensionless

Shortened gas expansion equation:

$$
P_{1} V_{1}=P_{2} V_{2}
$$

where $P_{1}=$ formation pressure, psi
$\mathrm{P}_{2}=$ hydrostatic pressure plus atmospheric pressure (14.7 psi), psi
$\mathrm{V}_{1}=$ original pit gain, bbl
$\mathrm{V}_{2}=$ gas volume at surface or at any depth of interest. bbl

Hydrostatic pressure exerted by each barrel of mud in the casing

With pipe in the wellbore:

$$
\mathrm{psi} / \mathrm{bbl}=\frac{1029.4}{\mathrm{Dh}^{2}-\mathrm{Dp}^{2}} \times 0.052 \times \mathrm{mud} \mathrm{wt}, \mathrm{ppg}
$$

Example: $\mathrm{Dh}-9-5 / 8 \mathrm{in}$. casing $-43.5 \mathrm{lb} / \mathrm{ft}=8.755 \mathrm{in}$. ID

$$
\text { Dp } \quad=5.0 \mathrm{in} . \mathrm{OD}
$$

Mud weight $\quad=10.5 \mathrm{ppg}$
$\mathrm{psi} / \mathrm{bbl}=\frac{1029.4}{8.755^{2}-5.0^{2}} \times 0.052 \times 10.5 \mathrm{ppg}$
$\mathrm{psi} / \mathrm{bbl}=19.93029 \times 0.052 \times 10.5 \mathrm{ppg}$
$\mathrm{psi} / \mathrm{bbl}=10.88$
With no pipe in the wellbore:
$\mathrm{psi} / \mathrm{bbl}=\frac{1029.4}{\mathrm{ID}^{2}} \times 0.052 \times$ mud wt ppg
Example: $\mathrm{Dh}-9-5 / 8 \mathrm{in}$. casing $-43.5 \mathrm{lb} / \mathrm{ft}=8.755 \mathrm{in}$. ID Mud weight $=10.5 \mathrm{ppg}$
$\mathrm{psi} / \mathrm{bbl}=\frac{1029.4}{8.755^{2}} \times 0.052 \times 10.5 \mathrm{ppg}$
$\mathrm{psi} / \mathrm{bbl}=13.429872 \times 0.052 \times 10.5 \mathrm{ppg}$
$\mathrm{psi} / \mathrm{bbl}=7.33$

Surface pressure during drill stem tests

Determine formation pressure:

$$
\mathrm{psi}=\stackrel{\text { formation pressure }}{\text { equivalent mud wt, } \mathrm{ppg}} \times 0.052 \times \mathrm{TVD}, \mathrm{ft}
$$

Determine oil hydrostatic pressure:
$\mathrm{psi}=$ oil specific gravity $\times 0.052 \times \mathrm{TVD}, \mathrm{ft}$

Determine surface pressure:
Surface $=$ formation - oil hydrostatic
pressure, psi pressure, psi pressure, psi
Example: Oil bearing sand at $12,500 \mathrm{ft}$ with a formation pressure equivalent to 13.5 ppg . If the specific gravity of the oil is 0.5 , what will be the static surface pressure during a drill stem test?

Determine formation pressure, psi:
$\mathrm{FP}, \mathrm{psi}=13.5 \mathrm{ppg} \times 0.052 \times 12,500 \mathrm{ft}$
$\mathrm{FP}=8775 \mathrm{psi}$
Determine oil hydrostatic pressure:
$\mathrm{psi}=(0.5 \times 8.33) \times 0.052 \times 12,500 \mathrm{ft}$
$\mathrm{psi}=2707$
Determine surface pressure:
Surface pressure, $\mathrm{psi}=8775 \mathrm{psi}-2707 \mathrm{psi}$
Surface pressure $=6068 \mathrm{psi}$

Stripping/Snubbing Calculations

Breakover point between stripping and snubbing

Example: Use the following data to determine the breakover point:
DATA: Mud weight $\quad=12.5 \mathrm{ppg}$
Drill collars ($6-1 / 4 \mathrm{in} .-2-13 / 16 \mathrm{in}$. $)=83 \mathrm{lb} / \mathrm{ft}$
Length of drill collars $=276 \mathrm{ft}$
Drill pipe $\quad=5.0 \mathrm{in}$.
Drill pipe weight $\quad=19.5 \mathrm{lb} / \mathrm{ft}$
Shut-in casing pressure $\quad=2400 \mathrm{psi}$
Buoyancy factor $=0.8092$
Determine the force, lb , created by wellbore pressure on 6-1/4 in. drill collars:
Force, $\mathrm{lb}=\left(\begin{array}{l}\text { pipe or } \\ \text { collar } \\ \mathrm{OD}, \mathrm{in}\end{array}\right)^{2} \times 0.7854 \times\binom{$ wellbore }{ pressure, psi }

140 Formulas and Calculations

Force, $\mathrm{lb}=6.25^{2} \times 0.7854 \times 2400 \mathrm{psi}$
Force $=73,631 \mathrm{lb}$

Determine the weight, lb , of the drill collars:
$\mathrm{Wt}, \mathrm{lb}=\underset{\text { weight, } \mathrm{lb} / \mathrm{ft}}{\text { drill collar }} \times \begin{aligned} & \text { drill collar } \\ & \text { length, } \mathrm{ft}\end{aligned} \times \begin{aligned} & \text { buoyancy } \\ & \text { factor }\end{aligned}$
$\mathrm{Wt}, \mathrm{lb}=83 \mathrm{lb} / \mathrm{ft} \times 276 \mathrm{ft} \times 0.8092$
$\mathrm{Wt}, \mathrm{lb}=18,537 \mathrm{lb}$

Additional weight required from drill pipe:
$\begin{aligned} & \text { Drill pipe } \\ & \text { weight, } \mathrm{lb}\end{aligned} \begin{gathered}\text { force created } \\ \text { by wellbore } \\ \text { pressure, } \mathrm{lb}\end{gathered}-\begin{gathered}\text { drill collar } \\ \text { weight, } \mathrm{lb}\end{gathered}$
$\begin{aligned} & \text { Drill pipe } \\ & \text { weight, } \mathrm{lb}\end{aligned}=73,631 \mathrm{lb}-18,537 \mathrm{lb}$
$\begin{aligned} & \text { Drill pipe } \\ & \text { weight, } \mathrm{lb}\end{aligned}=55,094 \mathrm{lb}$

Length of drill pipe required to reach breakover point:
$\begin{aligned} & \text { Drill pipe } \\ & \text { length, } \mathrm{ft}\end{aligned}=\left(\begin{array}{l}\text { required } \\ \text { drill pipe } \\ \text { weight, } \mathrm{lb}\end{array}\right) \div\left(\begin{array}{ll}\text { drill pipe } & \text { buoyancy } \\ \text { weight, } & \times \begin{array}{l}\text { factor } \\ \mathrm{lb} / \mathrm{ft}\end{array}\end{array}\right)$
$\begin{aligned} & \text { Drill pipe } \\ & \text { length, } \mathrm{ft}\end{aligned}=55,094 \mathrm{lb} \div(19.5 \mathrm{lb} / \mathrm{ft} \times 0.8092)$
$\underset{\text { length, } \mathrm{ft}}{\text { Drill pipe }}=3492 \mathrm{ft}$

Length of drill string required to reach breakover point:
Drill string $=$ drill collar + drill pipe
length, $\mathrm{ft}{ }^{=}$length, $\mathrm{ft}{ }^{+}$length, ft
$\underset{\text { length, } \mathrm{ft}}{\text { Drill string }}=276 \mathrm{ft}+3492 \mathrm{ft}$
$\underset{\text { length }}{\text { Drill string }}=3768 \mathrm{ft}$
length

Minimum surface pressure before stripping is possible

$\begin{aligned} & \text { Minimum surface } \\ & \text { pressure, psi }\end{aligned}=\binom{$ weight of one }{ stand of collars, lb}$\div\binom{$ area of drill }{ collars, sq in}

Example: Drill collars-8.0in. OD $\times 3.0 \mathrm{in} . \mathrm{ID}=147 \mathrm{lb} / \mathrm{ft}$ Length of one stand $\quad=92 \mathrm{ft}$
$\begin{aligned} & \text { Minimum surface } \\ & \text { pressure, psi }\end{aligned}=(147 \mathrm{lb} / \mathrm{ft} \times 92 \mathrm{ft}) \div\left(8^{2} \times 0.7854\right)$
Minimum surface $=13,524 \div 50.2656$ sq in.
pressure, psi
$\underset{\text { pressure }}{\text { Minimum surface }}=269 \mathrm{psi}$

Height gain from stripping into influx

Height, $\mathrm{ft}=\frac{\mathrm{L}(\mathrm{Cdp}+\mathrm{Ddp})}{\mathrm{Ca}}$
where $\mathrm{L} \quad=$ length of pipe stripped, ft
$\mathrm{Cdp}=$ capacity of drill pipe, drill collars, or tubing, $\mathrm{bbl} / \mathrm{ft}$
$\mathrm{Ddp}=$ displacement of drill pipe, drill collars, or tubing, bbl/ft
$\mathrm{Ca}=$ annular capacity, $\mathrm{bbl} / \mathrm{ft}$
Example: If 300 ft of 5.0 in . drill pipe $-19.5 \mathrm{lb} / \mathrm{ft}$ is stripped into an influx in a $12-1 / 4 \mathrm{in}$. hole, determine the height, ft , gained:

DATA: Drill pipe capacity $\quad=0.01776 \mathrm{bbl} / \mathrm{ft}$
Drill pipe displacement $=0.00755 \mathrm{bbl} / \mathrm{ft}$
Length drill pipe stripped $=300 \mathrm{ft}$
Annular capacity $\quad=0.1215 \mathrm{bbl} / \mathrm{ft}$
Solution: Height, $\mathrm{ft}=\frac{300(0.01776+0.00755)}{0.1215}$
Height $=62.5 \mathrm{ft}$

Casing pressure increase from stripping into influx

$$
\begin{aligned}
\mathrm{psi}=\binom{\text { gain in }}{\text { height, } \mathrm{ft}} \times\left(\begin{array}{l}
\text { gradient of } \\
\text { mud, } \mathrm{psi} / \mathrm{ft}
\end{array}-\begin{array}{l}
\text { gradient of } \\
\text { influx, } \mathrm{psi} / \mathrm{ft}
\end{array}\right) & \\
& =62.5 \mathrm{ft} \\
\text { Example: } \text { Gain in height } & =0.65 \mathrm{psi} / \mathrm{ft} \\
\text { Gradient of mud }(12.5 \mathrm{ppg} \times 0.052) & =0.12 \mathrm{psi} / \mathrm{ft}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{psi}=62.5 \mathrm{ft} \times(0.65-0.12) \\
& \mathrm{psi}=33 \mathrm{psi}
\end{aligned}
$$

Volume of mud that must be bled to maintain constant bottomhole pressure with a gas bubble rising

With pipe in the hole:

$$
\text { Vmud }=\frac{\mathrm{Dp} \times \mathrm{Ca}}{\text { gradient of mud, psi/ft }}
$$

where Vmud $=$ volume of mud, bbl, that must be bled to maintain constant bottomhole pressure with a gas bubble rising.
$\mathrm{Dp}=$ incremental pressure steps that the casing pressure will be allowed to increase.
$\mathrm{Ca}=$ annular capacity, bbl/ft
Example: Casing pressure increase per step $=100 \mathrm{psi}$ Gradient of mud $(13.5 \mathrm{ppg} \times 0.052)=0.70 \mathrm{psi} / \mathrm{ft}$ Annular capacity $\quad=0.1215 \mathrm{bbl} / \mathrm{ft}$ ($\mathrm{Dh}=12-1 / 4 \mathrm{in} . ; \mathrm{Dp}=5.0 \mathrm{in}$.)

$$
\mathrm{Vmud}=\frac{100 \mathrm{psi} \times 0.1215 \mathrm{bbl} / \mathrm{ft}}{0.702 \mathrm{psi} / \mathrm{ft}}
$$

$$
\mathrm{Vmud}=17.3 \mathrm{bbl}
$$

With no pipe in hole:

$$
\mathrm{Vmud}=\frac{\mathrm{Dp} \times \mathrm{Ch}}{\text { Gradient of mud, } \mathrm{psi} / \mathrm{ft}}
$$

where $\mathrm{Ch}=$ hole size or casing ID, in.

Example: Casing pressure increase per step $=100 \mathrm{psi}$ Gradient of mud ($13.5 \mathrm{ppg} \times 0.052$) $=0.702 \mathrm{psi} / \mathrm{ft}$
Hole capacity (12-1/4in.) $\quad=0.1458 \mathrm{bbl} / \mathrm{ft}$
$\mathrm{Vmud}=\frac{100 \mathrm{psi} \times 0.1458 \mathrm{bbl} / \mathrm{ft}}{0.702 \mathrm{psi} / \mathrm{ft}}$
$\mathrm{Vmud}=20.77 \mathrm{bbl}$

Maximum Allowable Surface Pressure (MASP) governed by the formation

MASP, psi $=\left(\begin{array}{ll}\text { maximum } & \text { mud wt, } \\ \text { allowable } & - \text { in use, }, \\ \text { mud wt, ppg } & \text { ppg }\end{array}\right) \begin{gathered}\text { casing } \\ 0.052 \times \text { shoe } \\ \text { TVD, } \mathrm{ft}\end{gathered}$
Example: Maximum allowable mud weight $=15.0 \mathrm{ppg}$ (from leak-off test data)
Mud weight $\quad=12.0 \mathrm{ppg}$
Casing seat TVD $\quad=8000 \mathrm{ft}$
MASP, psi $=(15.0-12.0) \times 0.052 \times 8000$
MASP $=1248 \mathrm{psi}$

Maximum Allowable Surface Pressure (MASP) governed by casing burst pressure

MASP $=\left(\begin{array}{ll}\text { casing } & \\ \text { burst } & \text { safety } \\ \text { pressure, } & \times \begin{array}{ll}\text { factor } \\ \text { psi }\end{array}\end{array}\right)-\left(\begin{array}{ll}\text { mud wt } & \begin{array}{c}\text { mud wt } \\ \text { mu use }\end{array} \\ \text { outside } \\ \text { ppg } & \text { casing, } \\ \text { ppg }\end{array}\right) \times 0.052 \times\left(\begin{array}{l}\text { casing } \\ \text { shoe } \\ \text { TVD, ft }\end{array}\right)$
Example: Casing-10-3/4in.- $51 \mathrm{lb} / \mathrm{ft} \mathrm{N-80}$
Casing burst pressure $\quad=6070 \mathrm{psi}$
Casing setting depth $\quad=8000 \mathrm{ft}$
Mud weight behind casing $\quad=9.4 \mathrm{ppg}$
Mud weight in use $\quad=12.0 \mathrm{ppg}$
Casing safety factor $=80 \%$
MASP $=(6070 \times 80 \%)-[(12.0-9.4) \times 0.052 \times 8000]$
MASP $=4856 \times(2.6 \times 0.052 \times 8000)$
MASP $=3774 \mathrm{psi}$

Subsea Considerations

Casing pressure decrease when bringing well on choke

When bringing the well on choke with a subsea stack, the casing pressure (annulus pressure) must be allowed to decrease by the amount of choke line pressure loss (friction pressure):
$\begin{aligned} & \begin{array}{l}\text { Reduced } \\ \text { casing } \\ \text { pressure, } \mathrm{psi}\end{array}\end{aligned}=\left(\begin{array}{l}\text { shut-in } \\ \text { casing } \\ \text { pressure, } \mathrm{psi}\end{array}\right)-\binom{$ choke line }{ pressure loss, psi}
Example: Shut-in casing (annulus) pressure $($ SICP $)=800 \mathrm{psi}$
Choke line pressure loss (CLPL) $\quad=300 \mathrm{psi}$
$\begin{aligned} & \text { Reduced casing } \\ & \text { pressure, psi }\end{aligned}=800 \mathrm{psi}-300 \mathrm{psi}$
Reduced casing $=500 \mathrm{psi}$
pressure

Pressure chart for bringing well on choke

Pressure/stroke relationship is not linear. When bringing the well on choke, to maintain a constant bottomhole pressure, the following chart should be used:

Line 1: Reset stroke counter to " 0 " $=$
Line 2: $1 / 2$ stroke rate $=50 \times .5=$
Line 3: $3 / 4$ stroke rate $=50 \times .75=$
Line 4: $7 / 8$ stroke rate $=50 \times .875=$
Line 5: Kill rate speed $=$
Pressure Chart

Strokes	Pressure
0	
25	
38	
44	
50	

Strokes side:
Example: kill rate speed $=50 \mathrm{spm}$
Pressure side:
Example: Shut-in casing pressure (SICP) $=800 \mathrm{psi}$
Choke line pressure loss $($ CLPL $)=300 \mathrm{psi}$

Divide choke line pressure loss (CLPL) by 4 , because there are 4 steps on the chart:

$$
\mathrm{psi} / \mathrm{line}=\frac{(\mathrm{CLPL}) 300 \mathrm{psi}}{4}=75 \mathrm{psi}
$$

Pressure Chart

Line 1: Shut-in casing pressure, $\mathrm{psi}=$ Line 2: Subtract 75 psi from Line $1=$ Line 3: Subtract 75 psi from Line $2=$ Line 4: Subtract 75 psi from Line $3=$ Line 5: Reduced casing pressure =

Strokes	Pressure
	800
	725
	650
	575
	500

Maximum allowable mud weight, ppg, subsea stack as derived from leak-off test data

Maximum
allowable mud weight, ppg

test

pressure

\mathrm{psi}\end{array}\right) \div 0.052 \div\left($$
\begin{array}{l}\mathrm{TVD}, \mathrm{ft} \\
\mathrm{RKB} \text { to } \\
\text { casing shoe }\end{array}
$$\right)+\left($$
\begin{array}{l}\text { mud wt } \\
\text { in use } \\
\mathrm{ppg}\end{array}
$$\right)\).

Example: Leak-off test pressure $\quad=800 \mathrm{psi}$
TVD from rotary bushing to casing shoe $=4000 \mathrm{ft}$
Mud weight in use $\quad=9.2 \mathrm{ppg}$
$\begin{aligned} & \text { Maximum allowable } \\ & \text { mud weight, ppg }\end{aligned}=800 \div 0.052 \div 4000+9.2$
Maximum allowable $=13.0 \mathrm{ppg}$
mud weight

Maximum allowable shut-in casing (annulus) pressure
MASICP $=\left(\begin{array}{lc}\text { maximum } & \text { mud wt } \\ \text { allowable } & - \text { in use }, \\ \text { mud wt, ppg } & \mathrm{ppg}\end{array}\right) \times 0.052 \times\left(\begin{array}{l}\mathrm{TVD}, \mathrm{ft} \\ \mathrm{RKB} \text { to } \\ \text { casing shoe }\end{array}\right)$

Example: Maximum allowable mud weight	$=13.3 \mathrm{ppg}$
Mud weight in use	$=11.5 \mathrm{ppg}$
TVD from rotary kelly bushing	
to casing shoe	$=4000 \mathrm{ft}$

MASICP $=(13.3 \mathrm{ppg}-11.5 \mathrm{ppg}) \times 0.052 \times 4000 \mathrm{ft}$
MASICP $=374$

Casing burst pressure-subsea stack

Step 1

Determine the internal yield pressure of the casing from the "Dimensions and Strengths" section of cement company's service handbook.

Step 2

Correct internal yield pressure for safety factor. Some operators use 80%; some use 75%, and others use 70% :
$\underset{\text { yield pressure, } \mathrm{psi}}{\text { Correct internal }}=\binom{$ internal yield }{ pressure, psi}$\times \mathrm{SF}$

Step 3

Determine the hydrostatic pressure of the mud in use:
NOTE: The depth is from the rotary kelly bushing (RKB) to the mud line and includes the air gap plus the depth of seawater.
$\mathrm{HP}, \mathrm{psi}=\binom{$ mud weight }{ in use, ppg}$\times 0.052 \times\binom{$ TVD, ft from }{ RKB to mud line }

Step 4

Determine the hydrostatic pressure exerted by the seawater:
HPsw $=$ seawater weight, $\mathrm{ppg} \times 0.052 \times$ depth of seawater, ft

Step 5

Determine casing burst pressure (CBP):

Example: Determine the casing burst pressure, subsea stack, using the following data:

DATA: Mud weight $\quad=10.0 \mathrm{ppg}$
Weight of seawater $\quad=8.7 \mathrm{ppg}$
Air gap
$=50 \mathrm{ft}$
Water depth $\quad=1500 \mathrm{ft}$
Correction (safety) factor $=80 \%$

Step 1

Determine the internal yield pressure of the casing from the "Dimension and Strengths" section of a cement company handbook:

9-5/8" casing - C-75, $53.5 \mathrm{lb} / \mathrm{ft}$
Internal yield pressure $=7430 \mathrm{psi}$

Step 2

Correct internal yield pressure for safety factor:
Corrected internal $=7430 \mathrm{psi} \times 0.80$
yield pressure
Corrected internal $=5944 \mathrm{psi}$
yield pressure

Step 3

Determine the hydrostatic pressure exerted by the mud in use:

$$
\begin{aligned}
& \mathrm{HP} \text { of mud, } \mathrm{psi}=10.0 \mathrm{ppg} \times 0.052 \times(50 \mathrm{ft}+1500 \mathrm{ft}) \\
& \mathrm{HP} \text { of mud }=806 \mathrm{psi}
\end{aligned}
$$

Step 4

Determine the hydrostatic pressure exerted by the seawater:

$$
\begin{aligned}
& \mathrm{HPsw}=8.7 \mathrm{ppg} \times 0.052 \times 1500 \mathrm{ft} \\
& \mathrm{HPsw}=679 \mathrm{psi}
\end{aligned}
$$

Step 5

Determine the casing burst pressure:
$\begin{aligned} & \text { Casing burst } \\ & \text { pressure, } \mathrm{psi}\end{aligned}=5944 \mathrm{psi}-806 \mathrm{psi}+679 \mathrm{psi}$
$\underset{\text { pressure }}{\text { Casing burst }}=5817 \mathrm{psi}$

Calculate Choke Line Pressure Loss (CLPL), psi

$$
\text { CLPL }=\frac{0.000061 \times \text { MW, ppg } \times \text { length, } \mathrm{ft} \times \mathrm{GPM}^{1.86}}{\text { choke line ID, in. }{ }^{4.86}}
$$

Example: Determine the choke line pressure loss (CLPL), psi, using the following data:

DATA: Mud weight $\quad=14.0 \mathrm{ppg}$
Choke line length $=2000 \mathrm{ft}$
Circulation rate $=225 \mathrm{gpm}$
Choke line ID $=2.5 \mathrm{in}$.
$\mathrm{CLPL}=\frac{0.000061 \times 14.0 \mathrm{ppg} \times 2000 \mathrm{ft} \times 225^{1.86}}{2.5^{4.86}}$
CLPL $=\frac{40,508.611}{85.899066}$
CLPL $=471.58 \mathrm{psi}$

Velocity, ft/min, through the choke line

$\mathrm{V}, \mathrm{ft} / \mathrm{min}=\frac{24.5 \times \mathrm{gpm}}{\mathrm{ID}, \mathrm{in}^{2}{ }^{2}}$

Example: Determine the velocity, $\mathrm{ft} / \mathrm{min}$, through the choke line using the following data:

Data: Circulation rate $=225 \mathrm{gpm}$
Choke line ID $=2.5$ in.
$\mathrm{V}, \mathrm{ft} / \mathrm{min}=\frac{24.5 \times 225}{2.5^{2}}$
$\mathrm{V} \quad=882 \mathrm{ft} / \mathrm{min}$

Adjusting choke line pressure loss for a higher mud weight

New CLPL $=\frac{\text { higher mud wt, ppg } \times \text { CLPL }}{\text { old mud weight, ppg }}$
Example: Use the following data to determine the new estimated choke line pressure loss:

Data: Old mud weight $\quad=13.5 \mathrm{ppg}$
New mud weight $\quad=15.0 \mathrm{ppg}$
Old choke line pressure loss $=300 \mathrm{psi}$
New CLPL $=\frac{15.0 \mathrm{ppg} \times 300 \mathrm{psi}}{13.5 \mathrm{ppg}}$
New CLPL $=333.33 \mathrm{psi}$

Minimum conductor casing setting depth

Example: Using the following data, determine the minimum setting depth of the conductor casing below the seabed:

$$
\begin{array}{ll}
\text { Data: Water depth } & =450 \mathrm{ft} \\
\text { Gradient of seawater } & =0.445 \mathrm{psi} / \mathrm{ft} \\
\text { Air gap } & =60 \mathrm{ft} \\
\text { Formation fracture gradient } & =0.68 \mathrm{psi} / \mathrm{ft} \\
\text { Maximum mud weight (to be used while } & \\
\text { drilling this interval) } & =9.0 \mathrm{ppg}
\end{array}
$$

Step 1

Determine formation fracture pressure:

$$
\begin{aligned}
\mathrm{psi} & =(450 \times 0.445)+(0.68 \times " \mathrm{y} ") \\
\mathrm{psi} & =200.25+0.68 " \mathrm{y} \text { " }
\end{aligned}
$$

Step 2

Determine hydrostatic pressure of mud column:
psi $=90 \mathrm{ppg} \times 0.052 \times(60+450+" \mathrm{y}$ " $)$
psi $=[9.0 \times 0.052 \times(60+450)]+\left(9.0 \times 0.052 \times{ }^{\prime} \mathrm{y}\right.$ ")
$\mathrm{psi}=238.68+0.468^{"} \mathrm{y}$ "

Step 3

Minimum conductor casing setting depth:

$$
\begin{aligned}
200.25+0.68 " y " & =238.68+0.468 " \mathrm{y} " \\
0.68 " \mathrm{y} "-0.468 " \mathrm{y} " & =238.68-200.25 \\
0.212 " \mathrm{y} " & =38.43 \\
" y " & =\frac{38.43}{0.212} \\
" y " & =181.3 \mathrm{ft}
\end{aligned}
$$

Therefore, the minimum conductor casing setting depth is 181.3 ft below the seabed.

Maximum mud weight with returns back to rig floor

Example: Using the following data, determine the maximum mud weight that can be used with returns back to the rig floor:

Data: Depths
Air gap $\quad=75 \mathrm{ft}$
Water depth $\quad=600 \mathrm{ft}$
Conductor casing set at $=1225 \mathrm{ft}$ RKB
Seawater gradient $\quad=0.445 \mathrm{psi} / \mathrm{ft}$
Formation fracture gradient $=0.58 \mathrm{psi} / \mathrm{ft}$

Step 1

Determine total pressure at casing seat:
$\mathrm{psi}=[0.58(1225-600-75)]+(0.445 \times 600)$
psi $=319+267$
$\mathrm{psi}=586$

Step 2

Determine maximum mud weight:
Max mud wt $=586 \mathrm{psi} \div 0.052 \div 1225 \mathrm{ft}$
Max mud wt $=9.2 \mathrm{ppg}$

Reduction in bottomhole pressure if riser is disconnected

Example: Use the following data and determine the reduction in bottomhole pressure if the riser is disconnected:

Date: Air gap $\quad=75 \mathrm{ft}$
Water depth $=700 \mathrm{ft}$
Seawater gradient $=0.445 \mathrm{psi} / \mathrm{ft}$
Well depth $\quad=2020 \mathrm{ft}$ RKB
Mud weight $\quad=9.0 \mathrm{ppg}$

Step 1

Determine bottomhole pressure:
$\mathrm{BHP}=9.0 \mathrm{ppg} \times 0.052 \times 2020 \mathrm{ft}$
$\mathrm{BHP}=945.4 \mathrm{psi}$

Step 2

Determine bottomhole pressure with riser disconnected:
$\mathrm{BHP}=(0.445 \times 700)+[9.0 \times 0.052 \times(2020-700-75)]$
$\mathrm{BHP}=311.5+582.7$
BHP $=894.2 \mathrm{psi}$

Step 3

Determine bottomhole pressure reduction:
BHP reduction $=945.4 \mathrm{psi}-894.2 \mathrm{psi}$
BHP reduction $=51.2 \mathrm{psi}$

Bottomhole pressure when circulating out a kick

Example: Use the following data and determine the bottomhole pressure when circulating out a kick:

Data: Total depth—RKB	$=13,500 \mathrm{ft}$
Height of gas kick in casing	$=1200 \mathrm{ft}$
Gas gradient	$=0.12 \mathrm{psi} / \mathrm{ft}$
Original mud weight	$=12.0 \mathrm{ppg}$
Kill weight mud	$=12.7 \mathrm{ppg}$
Pressure loss in annulus	$=75 \mathrm{psi}$
Choke line pressure loss	$=220 \mathrm{psi}$

Air gap	$=75 \mathrm{ft}$
Water depth	$=1500 \mathrm{ft}$
Annulus (casing) pressure	$=631 \mathrm{psi}$
Original mud in casing below gas	$=5500 \mathrm{ft}$

Step 1

Hydrostatic pressure in choke line:
$\mathrm{psi}=12.0 \mathrm{ppg} \times 0.052 \times(1500+75)$
$\mathrm{psi}=982.8$

Step 2

Hydrostatic pressure exerted by gas influx:
$\mathrm{psi}=0.12 \mathrm{psi} / \mathrm{ft} \times 1200 \mathrm{ft}$
$\mathrm{psi}=144$

Step 3

Hydrostatic pressure of original mud below gas influx:
$\mathrm{psi}=12.0 \mathrm{ppg} \times 0.052 \times 5500 \mathrm{ft}$
$\mathrm{psi}=3432$

Step 4

Hydrostatic pressure of kill weight mud:

```
psi}=12.7\textrm{ppg}\times0.052\times(13,500-5500-1200-1500-75
psi = 12.7 ppg }\times0.052\times522
psi = 3450.59
```


Step 5

Bottomhole pressure while circulating out a kick:

Pressure in choke line
$=982.8 \mathrm{psi}$
Pressure of gas influx
Original mud below gas in casing
Kill weight mud
Annulus (casing) pressure
Choke line pressure loss
Annular pressure loss
Bottomhole pressure while circulating out a kick $=\frac{75 \mathrm{psi}}{8914.4} \mathrm{psi}$

Workover Operations

NOTE: The following procedures and calculations are more commonly used in workover operations, but at times they are used in drilling operations.

Bullheading

Bullheading is a term used to describe killing the well by forcing formation fluids back into the formation. This involves pumping kill weight fluid down the tubing and, in some cases, down the casing.

The bullheading method of killing a well is primarily used in the following situations:
a) Tubing in the well with a packer set. No communication exists between tubing and annulus.
b) Tubing in the well, influx in the annulus, and for some reason, cannot circulate through the tubing.
c) No tubing in the well. Influx in the casing. Bullheading is simplest, fastest, and safest method to use to kill the well.

NOTE: Tubing could be well off bottom also.
d) In drilling operations, bullheading has been used successfully in areas where hydrogen sulfide is a possibility.

Example calculations involved in bullheading operations:
Using the information given below, calculations will be performed to kill the well by bullheading. The example calculations will pertain to "a" above:

DATA: Depth of perforations	$=6480 \mathrm{ft}$
Fracture gradient	$=0.862 \mathrm{psi} / \mathrm{ft}$
Formation pressure gradient	$=0.401 \mathrm{psi} / \mathrm{ft}$
Tubing hydrostatic pressure (THP)	$=326 \mathrm{psi}$
Shut-in tubing pressure	$=2000 \mathrm{psi}$
Tubing	$=2-7 / 8 \mathrm{in} .-6.5 \mathrm{lb} / \mathrm{ft}$
Tubing capacity	$=0.00579 \mathrm{bbl} / \mathrm{ft}$
Tubing internal yield pressure	$=7260 \mathrm{psi}$
Kill fluid density	$=8.4 \mathrm{ppg}$

NOTE: Determine the best pump rate to use. The pump rate must exceed the rate of gas bubble migration up the tubing. The rate of gas bubble migration, $\mathrm{ft} / \mathrm{hr}$, in a shut-in well can be determined by the following formula:
$\begin{aligned} & \text { Rate of gas } \\ & \text { migration, } \mathrm{ft} / \mathrm{hr}\end{aligned}=\binom{$ increase in pressure }{$\mathrm{per} / \mathrm{hr}, \mathrm{psi}} \div\binom{$ completion fluid }{ gradient, $\mathrm{psi} / \mathrm{ft}}$

Solution:
Calculate the maximum allowable tubing (surface) pressure (MATP) for formation fracture:
a) MATP, initial, with influx in the tubing:

MATP, initial $=\left(\begin{array}{ll}\text { fracture } & \text { depth of } \\ \text { gradient, } & \times \text { perforations, } \\ \mathrm{psi} / \mathrm{ft} & \mathrm{ft}\end{array}\right)-\left(\begin{array}{l}\text { tubing } \\ \text { hydrostatic } \\ \text { pressure, } \mathrm{psi}\end{array}\right)$
MATP, initial $=(0.862 \mathrm{psi} / \mathrm{ft} \times 6480 \mathrm{ft})-326 \mathrm{psi}$
MATP, initial $=5586 \mathrm{psi}-326 \mathrm{psi}$
MATP, initial $=5260 \mathrm{psi}$
b) MATP, final, with kill fluid in tubing:

MATP, final $=\left(\begin{array}{ll}\text { fracture } & \text { depth of } \\ \text { gradient, } & \times \text { perforations, } \\ \mathrm{psi} / \mathrm{ft} & \mathrm{ft}\end{array}\right)-\left(\begin{array}{l}\text { tubing } \\ \text { hydrostatic } \\ \text { pressure, } \mathrm{psi}\end{array}\right)$
MATP, final $=(0.862 \times 6480)-(8.4 \times 0.052 \times 6480)$
MATP, final $=5586 \mathrm{psi}-2830 \mathrm{psi}$
MATP, final $=2756 \mathrm{psi}$
Determine tubing capacity:
Tubing capacity, $\mathrm{bbl}=$ tubing length, $\mathrm{ft} \times$ tubing capacity, $\mathrm{bb} / / \mathrm{ft}$
Tubing capacity, $\mathrm{bbl}=6480 \mathrm{ft} \times 0.00579 \mathrm{bbl} / \mathrm{ft}$
Tubing capacity $=37.5 \mathrm{bbl}$

Plot these values as shown below:

BARRELS PUMPED
Figure 4-3. Tubing pressure profile.

Lubricate and bleed

The lubricate and bleed method involves alternately pumping a kill fluid into the tubing (or into the casing if there is no tubing in the well), allowing the kill fluid to fall, then bleeding off a volume of gas until kill fluid reaches the choke. As each volume of kill fluid is pumped into the tubing, the SITP should decrease by a calculated value until the well is eventually killed.

This method is often used for two reasons: 1) shut-in pressures approach the rated working pressure of the wellhead or tubing and dynamic pumping pressure may exceed the limits, as in the case of bullheading, and 2) either to completely kill the well or lower the SITP to a value where other kill methods can be safely employed without exceeding rated limits.

This method can also be applied when the wellbore or perforations are plugged, rendering bullheading useless. In this case, the well can be killed without the use of tubing or snubbing small diameter tubing.

Users should be aware that the lubricate and bleed method is often a very time consuming process, whereas another method may kill the well more quickly. The following is an example of a typical lubricate and bleed kill procedure.

Calculations:
Calculate the expected pressure reduction for each barrel of kill fluid pumped:
$\mathrm{psi} / \mathrm{bbl}=$ tubing capacity, $\mathrm{ft} / \mathrm{bbl} \times 0.052 \times$ kill weight fluid, ppg
$\mathrm{psi} / \mathrm{bbl}=172.76 \mathrm{ft} / \mathrm{bbl} \times 0.052 \times 9.0 \mathrm{ppg}$
$\mathrm{psi} / \mathrm{bbl}=80.85$
For each barrel pumped, the SITP will be reduced by 80.85 psi .
Calculate tubing capacity, bbl , to the perforations:
$\mathrm{bbl}=$ tubing capacity, $\mathrm{bbl} / \mathrm{ft} \times$ depth to perforations, ft
$\mathrm{bbl}=0.00579 \mathrm{bbl} / \mathrm{ft} \times 6450 \mathrm{ft}$
$\mathrm{bbl}=37.3 \mathrm{bbl}$
Procedure:

1. Rig up all surface equipment including pumps and gas flare lines.
2. Record SITP and SICP.
3. Open the choke to allow gas to escape from the well and momentarily reduce the SITP.
4. Close the choke and pump in 9.0 ppg brine until the tubing pressure reaches 2830 psi.
5. Wait for a period of time to allow the brine to fall in the tubing. This period will range from $1 / 4$ to 1 hour depending on gas density, pressure, and tubing size.
6. Open the choke and bleed gas until 9.0 ppg brine begins to escape.
7. Close the choke and pump in 9.0 ppg brine water.
8. Continue the process until a low level, safe working pressure is attained.

A certain amount of time is required for the kill fluid to fall down the tubing after the pumping stops. The actual waiting time is needed not to allow fluid to fall, but rather, for gas to migrate up through the kill fluid. Gas migrates at rates of 1000 to $2000 \mathrm{ft} / \mathrm{hr}$. Therefore considerable time is required for fluid to fall or migrate to 6500 ft . Therefore, after pumping, it is important to wait several minutes before bleeding gas to prevent bleeding off kill fluid through the choke.

Controlling Gas Migration

Gas migration can occur when a well is shut in on a gas kick. It is indicated by a uniform increase in both the SIDPP and SICP. If the influx is allowed to migrate without expanding, pressures will increase everywhere in the wellbore. If it is ignored it can cause formation damage and mud losses. The worst-case scenario would be an underground blowout.

Gas migration can be controlled using two methods:

- Drill Pipe pressure method
- Volumetric method

Drill pipe pressure method

English units

This is a constant bottom hole pressure method of well control, and it is the simplest method. In order to use this method, the bit must be on bottom with no float in the string.

Procedure:

1. Allow the SIDPP to increase by a safety margin: $50-100 \mathrm{psi}$. This is the lower limit. The SIDPP must not be allowed to decrease below this level.
2. Next, allow the drill pipe pressure to further increase by another $50-$ 100 psi . This is the upper limit.
3. Open the choke and bleed fluid out of the well until the drill pipe pressure drops to the lower limit.
4. Repeat steps 2 and 3 until circulation is possible or the gas migrates to the top of the well.

Metric units

Procedure:

1. Allow the SIDPP to increase by a safety margin: $350-1400 \mathrm{kPa}$. This is the lower limit.
2. Next, allow the drill pipe pressure to further increase by another $350-$ 1400 kPa . This is the upper limit.
3. Open the choke, and bleed mud out of the well until the drill pipe pressure drops to the lower limit value.
4. Repeat steps 2 and 3 until circulation is possible or the gas migrates to the top of the well.

Volumetric method of gas migration

English units

Procedure:

1. Select a safety margin, Ps, and a working pressure, Pw. Recommended: $P s=100 \mathrm{psi} ; \mathrm{Pw}=100 \mathrm{psi}$.
2. Calculate the hydrostatic pressure per barrel of mud, $\mathrm{Hp} / \mathrm{bbl}$:
$\mathrm{Hp} / \mathrm{bbl}=$ mud gradient, $\mathrm{psi} / \mathrm{ft} \div$ annular capacity, bbl/ft
3. Calculate the volume to bleed each cycle:

Volume, bbl to bleed each cycle $=\mathrm{Pw} \div \mathrm{Hp} / \mathrm{bbl}$
4. Allow the shut in casing pressure to increase by Ps without bleeding from the well.
5. Allow the shut in casing pressure to further increase by Pw without bleeding from the well.
6. Maintain casing pressure constant by bleeding small volumes of mud from the well until total mud bled equals the correct volume to bleed per cycle.
7. Repeat steps 5 and 6 until another procedure is implemented or all gas is at the surface.

Metric units

Procedure:

1. Select a safety margin, Ps, and a working pressure, Pw. Recommended:

$$
\mathrm{Ps}=700 \mathrm{kPa} ; \mathrm{Pw}=700 \mathrm{kPa}
$$

2. Calculate the hydrostatic pressure increase per m^{3} of mud.
$\mathrm{Hp} / \mathrm{m}^{3}=$ mud gradient, $\mathrm{kPa} / \mathrm{m} \div$ annular capacity, $\mathrm{m}^{3} / \mathrm{m}$
3. Calculate the volume to bleed per cycle:

Volume, $\mathrm{m}=\mathrm{Pw} \div \mathrm{Hp} / \mathrm{m}^{3}$
4. Allow shut in casing pressure to increase by Ps without bleeding mud from the well.
5. Allow the shut in casing pressure to further increase by Pw without bleeding mud from the well.
6. Maintain constant casing pressure by bleeding small volumes of mud from the well until total mud bled from the well equals correct volume to bleed per cycle.
7. Repeat steps 5 and 6 until another procedure is implemented or all gas is at the surface.

Gas Lubrication

Gas lubrication is the process of removing gas from beneath the BOP stack while maintaining constant bottom hole pressure. Lubrication is best suited for surface stacks, but the dynamic gas lubrication procedure can be used to vent gas from beneath a subsea stack.

Lubrication can be used to reduce pressures or to remove gas from beneath a surface stack prior to stripping or after implementing the Volumetric Procedure for controlling gas migration. The volume of mud lubricated into the well must be accurately measured.

Gas lubrication-volume method

English units

Procedure:

1. Select a range of working pressure, $\mathbf{P w}$. Recommended $\mathbf{P w}=100-200$ psi.
2. Calculate the hydrostatic pressure increase in the upper annulus per bbl of lube mud:
$\mathrm{Hp} / \mathrm{bbl}=$ mud gradient \div annular capacity
3. Pump lube mud through the kill line to increase the casing pressure by the working pressure range, Pw.
4. Measure the trip tank and calculate the hydrostatic pressure increase of the mud lubricated for this cycle.
5. Wait 10 to 30 minutes for the mud to lubricate through the gas.
6. Bleed "dry" gas from the choke to reduce the casing pressure by the hydrostatic pressure increase plus the working pressure range.
7. Repeat steps 3 through 6 until lubrication is complete.

Metric units

Procedure:

1. Select a working pressure range, Pw . Recommended $\mathrm{Pw}=700-1400 \mathrm{kPa}$.
2. Calculate the hydrostatic pressure increase in the upper annulus per m^{3} of lube mud:
$\mathrm{Hp} / \mathrm{m}^{3}=$ mud gradient \div annular capacity
3. Pump lube mud through kill line to increase casing pressure by working pressure range, Pw .
4. Measure the trip tank and calculate the hydrostatic pressure increase of the mud lubricated for this cycle.
5. Wait 10 to 30 minutes for the mud to "lubricate" through the gas.
6. Bleed "dry" gas from the choke to reduce the casing pressure by the hydrostatic pressure increase plus the working pressure range.
7. Repeat steps 3 through 6 until lubrication is complete.

Gas lubrication-pressure method

Because of its simplicity, the pressure method is the preferred method of gas lubrication. However, it is only applicable when the mud weight being lubricated is sufficient to kill the well, as in the case of a swabbed influx. The pressure method is also the only accurate method whenever the formation is "taking" fluid, as is the case for most completed wellbores and whenever seepage loss is occurring.

The pressure method of gas lubrication utilizes the following formula:

$$
\mathbf{P}_{3}=\mathbf{P}_{1}^{2} \div \mathbf{P}_{2}
$$

Where: $P_{1}=$ original shut in pressure
$\mathrm{P}_{2}=$ pressure increase due to pumping lubricating fluid into the wellbore (increase is due to compression)
$\mathrm{P}_{3}=$ pressure to bleed down after adding the hydrostatic of the lubricating fluid

Procedure:

1. Select a working pressure range, Pw . Recommended $\mathrm{Pw}=50-100 \mathrm{psi}$.
2. Pump lubricating fluid through the kill line to increase the casing pressure by the working pressure, Pw.
3. Allow the pressure to stabilize. The pressure may drop by a substantial amount.
4. Calculate the pressure to bleed down to by using the formula above.
5. Repeat steps 2 through 4 until all the gas is lubricated out of the well.

Annular Stripping Procedures

Strip and bleed procedure

Application: Appropriate when stripping 30 stands or less or when gas migration is not a problem.

Procedure:

1. Strip the first stand with the choke closed to allow the casing pressure to increase. NOTE: Do not allow the casing pressure to rise above the maximum allowable surface pressure derived from the most recent leakoff test.
2. Bleed enough volume to allow the casing pressure to decrease to a safety margin of $100-200 \mathrm{psi}$ above the original shut in casing pressure.
3. Continue to strip pipe with the choke closed unless the casing pressure approaches the maximum allowable surface pressure. If the casing pressure approaches the maximum allowable surface pressure, then bleed volume as the pipe is being stripped to minimize the casing pressure.
4. Once the bit is back on bottom, utilize the Driller's Method to circulate the influx out of the well.

Combined stripping/volumetric procedure

Application: Procedure to use when gas migration is a factor. Gas is allowed to expand while stripping. Mud is bled into a trip tank and then closed end
displacement into a smaller stripping tank. Trip tank measures gas expansion similar to volumetric method. Pressure is stepped up as in the volumetric method.

Worksheet:

1. Select a working pressure, Pw . Recommended $\mathrm{Pw}=50-100 \mathrm{psi}$.
2. Calculate the hydrostatic pressure:
$\mathrm{Hp} / \mathrm{bbl}=$ pressure gradient, $\mathrm{psi} / \mathrm{ft} \div$ upper annular capacity, $\mathrm{bbl} / \mathrm{ft}$
3. Calculate influx length in the open hole:
$\mathrm{L}_{1}=$ influx volume, $\mathrm{bbl} \div$ open hole capacity, $\mathrm{bbl} / \mathrm{ft}$
4. Calculate influx length after the BHA has penetrated the influx:
$\mathrm{L}_{2}=$ influx volume, $\mathrm{bbl} \div$ annular capacity (drill collars/open hole), $\mathrm{bbl} / \mathrm{ft}$
5. Calculate the pressure increase due to bubble penetration, Ps:
$\mathrm{Ps}=\left(\mathrm{L}_{2}-\mathrm{L}_{1}\right) \times($ gradient of mud, $\mathrm{psi} / \mathrm{ft}-0.1 \mathrm{psi} / \mathrm{ft})$
6. Calculate the Pchoke values:

Pchoke $_{1}=\mathrm{SICP}+\mathrm{PW}+\mathrm{PS}_{\mathrm{S}}$
Pchoke $_{2}=$ Pchoke $_{1}+\mathrm{Pw}$
Pchoke $_{3}=$ Pchoke $_{2}+\mathrm{Pw}$
7. Calculate the incremental volume (Vm) of hydrostatic equal to Pw in the upper annulus:
$\mathrm{Vm}=\mathrm{Pw} \div \mathrm{Hp} / \mathrm{bbl}$

Procedure:

1. Strip in the first stand with the choke closed until the casing pressure reaches Pchoke ${ }_{1}$.
2. As the driller strips the pipe, the choke operator should open the choke and bleed mud, being careful to hold the casing pressure at Pchoke ${ }_{1}$.
3. With the stand down, close the choke. Bleed the closed end displacement volume from the trip tank to the stripping tank.
4. Repeat steps 2 and 3 above, stripping stands until Vm accumulates in the trip tank.
5. Allow casing pressure to climb to the next Pchoke level.
6. Continue stripping, repeating steps 2 through 4 at the new Pchoke value.
7. When the bit is on the bottom, kill the well with the Driller's Method.

References

Adams, Neal, Well Control Problems and Solutions, PennWell Publishing Company, Tulsa, OK, 1980.
Adams, Neal, Workover Well Control, PennWell Publishing Company, Tulsa, OK, 1984.
Goldsmith, Riley, Why Gas Cut Mud Is Not Always a Serious Problem, World Oil, Oct. 1972.
Grayson, Richard and Fred S. Mueller, Pressure Drop Calculations For a Deviated Wellbore, Well Control Trainers Roundtable, April 1991.
Petex, Practical Well Control; Petroleum Extension Service University of Texas, Austin, Tx, 1982.
Well Control Manual, Baroid Division, N.L. Petroleum Services, Houston, Texas.
Various Well Control Schools/Courses/Manuals
NL Baroid, Houston, Texas
USL Petroleum Training Service, Lafayette, La.
Prentice \& Records Enterprises, Inc., Lafayette, La.
Milchem Well Control, Houston, Texas
Petroleum Extension Service, Univ. of Texas, Houston, Texas
Aberdeen Well Control School, Gene Wilson, Aberdeen, Scotland

CHAPTER FIVE

Engineering Calculations

Bit Nozzle Selection-Optimized Hydraulics

These series of formulas will determine the correct jet sizes when optimizing for jet impact or hydraulic horsepower and optimum flow rate for two or three nozzles.

1. Nozzle area, sqin.:

Nozzle area, sq in. $=\frac{\mathrm{N}_{1}^{2}+\mathrm{N}_{2}^{2}+\mathrm{N}_{3}^{2}}{1303.8}$
2. Bit nozzle pressure loss, psi (Pb):

$$
\mathrm{Pb}=\frac{\mathrm{gpm}^{2} \times \mathrm{MW}, \mathrm{ppg}}{10,858 \times \text { nozzle area }, \mathrm{sq} \mathrm{in} .^{2}}
$$

3. Total pressure losses except bit nozzle pressure loss, psi (Pc):
$\mathrm{Pc}_{1} \& \mathrm{Pc}_{2}=\begin{aligned} & \text { circulating } \\ & \text { pressure, psi }\end{aligned}-\begin{aligned} & \text { bit nozzle } \\ & \text { pressure Loss, psi }\end{aligned}$
4. Determine slope of line M :

$$
\mathbf{M}=\frac{\log \left(\mathrm{Pc}_{1} \div \mathrm{Pc}_{2}\right)}{\log \left(\mathrm{Q}_{1} \div \mathrm{Q}_{2}\right)}
$$

5. Optimum pressure losses (Popt)
a) For impact force:

$$
\text { Popt }=\frac{2}{M+2} \times \operatorname{Pmax}
$$

b) For hydraulic horsepower:

$$
\text { Popt }=\frac{1}{M+1} \times P \max
$$

6. For optimum flow rate (Qopt):
a) For impact force:

Qopt, gpm $=\left(\frac{\text { Popt }}{\text { Pmax }}\right)^{1+\mathrm{M}} \times$ Q1
b) For hydraulic horsepower:

Qopt, gpm $=\left(\frac{\text { Popt }}{\mathrm{Pmax}^{\text {max }}}\right)^{1 \mathrm{i} \mathrm{M}} \times \mathrm{Q} 1$
7. To determine pressure at the bit (Pb) :

$$
\mathrm{Pb}=\mathrm{Pmax}-\mathrm{Popt}
$$

8. To determine nozzle area, sqin.:

Nozzle area, sq in. $=\sqrt{\frac{\mathrm{Qopt}^{2} \times \mathrm{MW}, \mathrm{ppg}}{10,858 \times \text { Pmax }}}$
9. To determine nozzles, 32 nd in. for three nozzles:

$$
\text { Nozzles }=\sqrt{\frac{\text { nozzle area, sq in. }}{3 \times 0.7854}} \times 32
$$

10. To determine nozzles, 32 nd in. for two nozzles:

$$
\text { Nozzles }=\sqrt{\frac{\text { nozzle area, sq in. }}{2 \times 0.7854}} \times 32
$$

Example: Optimize bit hydraulics on a well with the following:
Select the proper jet sizes for impact force and hydraulic horsepower for two jets and three jets:

DATA: Mud weight $\quad=13.0 \mathrm{ppg}$ Jet sizes $\quad=17-17-17$
Maximum surface pressure $=3000 \mathrm{psi}$
Pump pressure $1=3000 \mathrm{psi}$
Pump rate $1=420 \mathrm{gpm}$
Pump pressure $2=1300 \mathrm{psi}$
Pump rate $2=275 \mathrm{gpm}$

1. Nozzle area, sqin.:

Nozzle area, sq in. $=\frac{17^{2}+17^{2}+17^{2}}{1303.8}$

Nozzle area, sq in. $=0.664979$
2. Bit nozzle pressure loss, psi (Pb) :

$$
\begin{aligned}
\mathrm{Pb}_{1} & =\frac{420^{2} \times 13.0}{10,858 \times 0.664979^{2}} \\
\mathrm{~Pb}_{1} & =478 \mathrm{psi} \\
\mathrm{~Pb}_{2} & =\frac{275^{2} \times 13.0}{10.858 \times 0.664979^{2}} \\
\mathrm{~Pb}_{2} & =205 \mathrm{psi}
\end{aligned}
$$

3. Total pressure losses except bit nozzle pressure loss (Pc), psi:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{C}_{1}}=3000 \mathrm{psi}-478 \mathrm{psi} \\
& \mathrm{Pc}_{1}=2522 \mathrm{psi} \\
& \mathrm{Pc}_{2}=1300 \mathrm{psi}-205 \mathrm{psi} \\
& \mathrm{Pc}_{2}=1095 \mathrm{psi}
\end{aligned}
$$

4. Determine slope of line (M):

$$
\begin{aligned}
& M=\frac{\log (2522 \div 1095)}{\log (420 \div 275)} \\
& M=\frac{0.3623309}{0.1839166} \\
& M=1.97
\end{aligned}
$$

5. Determine optimum pressure losses, psi (Popt):
a) For impact force:

$$
\begin{aligned}
& \text { Popt }=\frac{2}{1.97+2} \times 3000 \\
& \text { Popt }=1511 \mathrm{psi}
\end{aligned}
$$

b) For hydraulic horsepower:

$$
\begin{aligned}
& \text { Popt }=\frac{1}{1.97+1} \times 3000 \\
& \text { Popt }=1010 \mathrm{psi}
\end{aligned}
$$

6. Determine optimum flow rate (Qopt):
a) For impact force:

$$
\text { Qopt, gpm }=\left(\frac{1511}{3000}\right)^{1+1.97} \times 420
$$

Qopt $=297 \mathrm{gpm}$
b) For hydraulic horsepower:

Qopt, gpm $=\left(\frac{1010}{3000}\right)^{1 \div 1.97} \times 420$
Qopt $=242 \mathrm{gpm}$
7. Determine pressure losses at the bit (Pb) :
a) For impact force:

$$
\begin{aligned}
& \mathrm{Pb}=3000 \mathrm{psi}-1511 \mathrm{psi} \\
& \mathrm{~Pb}=1489 \mathrm{psi}
\end{aligned}
$$

b) For hydraulic horsepower:
$\mathrm{Pb}=3000 \mathrm{psi}-1010 \mathrm{psi}$
$\mathrm{Pb}=1990 \mathrm{psi}$
8. Determine nozzle area, sqin.:
a) For impact force:

Nozzle area, sq in. $=\sqrt{\frac{297^{2} \times 13.0}{10,858 \times 1489}}$
Nozzle area, sq in. $=\sqrt{0.070927}$
Nozzle area $\quad=0.26632 \mathrm{sqin}$.
b) For hydraulic horsepower:

Nozzle area, sq in. $=\sqrt{\frac{242^{2} \times 13.0}{10,858 \times 1990}}$
Nozzle area, sq in. $=\sqrt{0.03523}$
Nozzle area $\quad=0.1877$ sqin.
9. Determine nozzle size, 32 nd in.:
a) For impact force:

$$
\begin{aligned}
& \text { Nozzles }=\sqrt{\frac{0.26632}{3 \times 0.7854}} \times 32 \\
& \text { Nozzles }=10.76
\end{aligned}
$$

b) For hydraulic horsepower:

$$
\text { Nozzles }=\sqrt{\frac{0.1877}{3 \times 0.7854}} \times 32
$$

Nozzles $=9.03$
NOTE: Usually the nozzle size will have a decimal fraction. The fraction times 3 will determine how many nozzles should be larger than that calculated.
a) For impact force:
$0.76 \times 3=2.28$ rounded to 2
so: 1 jet $=10 / 32$ nds
2 jets $=11 / 32 \mathrm{nds}$
b) For hydraulic horsepower:
$0.03 \times 3=0.09$ rounded to 0
so: 3 jets $=9 / 32$ nd in.
10. Determine nozzles, 32nd in. for two nozzles:
a) For impact force:

$$
\begin{aligned}
& \text { Nozzles }=\sqrt{\frac{0.26632}{2 \times 0.7854}} \times 32 \\
& \text { Nozzles }=13.18 \text { sq in. }
\end{aligned}
$$

b) For hydraulic horsepower:

$$
\begin{aligned}
& \text { Nozzles }=\sqrt{\frac{0.1877}{2 \times 0.7854}} \times 32 \\
& \text { Nozzles }=11.06 \text { sq in. }
\end{aligned}
$$

Hydraulics Analysis

This sequence of calculations is designed to quickly and accurately analyze various parameters of existing bit hydraulics.

1. Annular velocity, $\mathrm{ft} / \mathrm{min}(\mathrm{AV})$:

$$
\mathrm{AV}=\frac{24.5 \times \mathrm{Q}}{\mathrm{Dh}^{2}-\mathrm{Dp}^{2}}
$$

2. Jet nozzle pressure loss, psi $(\mathbf{P b})$:

$$
\mathrm{Pb}=\frac{156.5 \times \mathrm{Q}^{2} \times \mathrm{MW}}{\left[\left(\mathrm{~N}_{1}\right)^{2}+\left(\mathrm{N}_{2}\right)^{2}+\left(\mathrm{N}_{3}\right)^{2}\right]^{2}}
$$

3. System hydraulic horsepower available (Sys HHP):

$$
\text { SysHHP }=\frac{\text { surface, } \mathrm{psi} \times \mathrm{Q}}{1714}
$$

4. Hydraulic horsepower at bit (HHPb):

$$
\mathrm{HHPb}=\frac{\mathrm{Q} \times \mathrm{Pb}}{1714}
$$

5. Hydraulic horsepower per square inch of bit diameter:
$\mathrm{HHPb} / \mathrm{sq}$ in. $=\frac{\mathrm{HHPb} \times 1.27}{\text { bit size }}$
6. Percent pressure loss at bit (\% psib):

$$
\% \mathrm{psib}=\frac{\mathrm{Pb}}{\text { surface, } \mathrm{psi}} \times 100
$$

7. Jet velocity, $\mathrm{ft} / \mathrm{sec}(\mathrm{Vn})$:

$$
\mathrm{Vn}=\frac{417.2 \times \mathrm{Q}}{\left(\mathrm{~N}_{1}\right)^{2}+\left(\mathrm{N}_{2}\right)^{2}+\left(\mathrm{N}_{3}\right)^{2}}
$$

8. Impact force, lb , at bit (IF):

$$
\mathrm{IF}=\frac{(\mathrm{MW})(\mathrm{Vn})(\mathrm{Q})}{1930}
$$

9. Impact force per square inch of bit area (IF/sq in.):
$\mathrm{IF} / \mathrm{sq}$ in. $=\frac{\mathrm{IF} \times 1.27}{\text { bit size }{ }^{2}}$

Nomenclature:

$\mathrm{AV} \quad=$ annular velocity, $\mathrm{ft} / \mathrm{min}$
$\mathrm{Q} \quad=$ circulation rate, gpm
Dh $\quad=$ hole diameter, in.
Dp $\quad=$ pipe or collar O.D., in.
MW $=$ mud weight, ppg
$\mathrm{N}_{1}, \mathrm{~N}_{2} ; \mathrm{N}_{3}=$ jet nozzle sizes, 32 nd in.
$\mathrm{Pb} \quad=$ bit nozzle pressure loss, psi
HHP = hydraulic horsepower at bit
Vn $\quad=$ jet velocity, ft/sec
IF $\quad=$ impact force, 1 lb
IF/sq in. = impact force $\mathrm{lb} / \mathrm{sq}$ in. of bit diameter
Example: Mub weight $\quad=12.0 \mathrm{ppg}$
Circulation rate $=520 \mathrm{gpm}$
Nozzle size $1=12-32 \mathrm{nd} / \mathrm{in}$.
Nozzle size $2=12-32 \mathrm{nd} / \mathrm{in}$.
Nozzle size $3=12-32 \mathrm{nd} / \mathrm{in}$.
Hole size $\quad=12-1 / 4 \mathrm{in}$.
Drill pipe OD $=5.0 \mathrm{in}$.
Surface pressure $=3000 \mathrm{psi}$

1. Annular velocity, $\mathrm{ft} / \mathrm{min}$:
$\mathrm{AV}=\frac{24.5 \times 520}{12.25^{2}-5.0^{2}}$
$\mathrm{AV}=\frac{12,740}{125.0625}$
$A V=102 \mathrm{ft} / \mathrm{min}$
2. Jet nozzle pressure loss:
$\mathrm{Pb}=\frac{156.5 \times 520^{2} \times 12.0}{\left(12^{2}+12^{2}+12^{2}\right)^{2}}$
$\mathrm{Pb}=2721 \mathrm{psi}$
3. System hydraulic horsepower available:

Sys HHP $=\frac{3000 \times 520}{1714}$
Sys HHP $=910$

172 Formulas and Calculations

4. Hydraulic horsepower at bit:
$\mathrm{HHPb}=\frac{2721 \times 520}{1714}$
$\mathrm{HHPb}=826$
5. Hydraulic horsepower per square inch of bit area:
$\mathrm{HHp} / \mathrm{sq}$ in. $=\frac{826 \times 1.27}{12.25^{2}}$
$\mathrm{HHP} / \mathrm{sq}$ in. $=6.99$
6. Percent pressure loss at bit:
$\% \mathrm{psib}=\frac{2721}{3000} \times 100$
$\% \mathrm{psib}=90.7$
7. Jet velocity, ft/sec:
$\mathrm{Vn}=\frac{417.2 \times 520}{12^{2}+12^{2}+12^{2}}$
$\mathrm{Vn}=\frac{216,944}{432}$
$\mathrm{Vn}=502 \mathrm{ft} / \mathrm{sec}$
8. Impact force, lb :
$\mathrm{IF}=\frac{12.0 \times 502 \times 520}{1930}$
$\mathrm{IF}=1623 \mathrm{lb}$
9. Impact force per square inch of bit area:
$\mathrm{IF} /$ sq in. $=\frac{1623 \times 1.27}{12.25^{2}}$
$\mathrm{IF} / \mathrm{sq}$ in. $=13.7$

Critical Annular Velocity and Critical Flow Rate

1. Determine n :

$$
\mathrm{n}=3.32 \log \frac{\theta 600}{\theta 300}
$$

2. Determine K:
$K=\frac{\theta 600}{1022^{n}}$
3. Determine x :
$\mathrm{x}=\frac{81,600(\mathrm{Kp})(\mathrm{n})^{0.387}}{(\mathrm{Dh}-\mathrm{Dp})^{\mathrm{n}} \mathrm{MW}}$
4. Determine critical annular velocity:
$A V c=(x)^{1 \div 2-n}$
5. Determine critical flow rate:

$$
\mathrm{GPMc}=\frac{\mathrm{AVc}\left(\mathrm{Dh}^{2}-\mathrm{Dp}^{2}\right)}{24.5}
$$

Nomenclature:

$\mathrm{n} \quad=$ dimensionless
$\mathrm{K} \quad=$ dimensionless
$\mathrm{x}=$ dimensionless
$\theta 600=600$ viscometer dial reading
$\theta 300=300$ viscometer dial reading
$\mathrm{Dh}=$ hole diameter, in.
$\mathrm{Dp}=$ pipe or collar OD, in.
MW = mud weight, ppg
$\mathrm{AV} \mathrm{c}=$ critical annular velocity, $\mathrm{ft} / \mathrm{min}$
GPMc = critical flow rate, gpm
Example: Mud weight $=14.0 \mathrm{ppg}$
$\theta 600=64$
$\theta 300=37$
Hole diameter $=8.5 \mathrm{in}$.
Pipe OD $=7.0 \mathrm{in}$.

1. Determine n :
$\mathrm{n}=3.32 \log \frac{64}{37}$
$\mathrm{n}=0.79$
2. Determine K:
$K=\frac{64}{1022^{0.79}}$
$\mathrm{K}=0.2684$
3. Determine x :

$$
\begin{aligned}
& x=\frac{81,600(0.2684)(0.79)^{0.387}}{8.5-7^{0.79} \times 14.0} \\
& x=\frac{19,967.413}{19.2859} \\
& x=1035
\end{aligned}
$$

4. Determine critical annular velocity:
$\mathrm{AVc}=(1035)^{1+(2-0.79)}$
$\mathrm{AVc}=(1035)^{0.8264}$
$A V c=310 \mathrm{ft} / \mathrm{min}$
5. Determine critical flow rate:

GPMc $=\frac{310\left(8.5^{2}-7.0^{2}\right)}{24.5}$
GPMc $=294 \mathrm{gpm}$

The " d " exponent is derived from the general drilling equation:

$$
\mathrm{R} \div \mathrm{N}=\mathrm{a}\left(\mathrm{~W}^{\mathrm{d}} \div \mathrm{D}\right)
$$

where $\mathrm{R}=$ penetration rate
$\mathrm{N}=$ rotary speed, rpm
$\mathrm{a}=\mathrm{a}$ constant, dimensionless
$\mathrm{W}=$ weight on bit, lb
$\mathrm{d}=$ exponent in general drilling equation, dimensionless
"d" exponent equation:

$$
" d "=\log (R \div 60 N) \div \log (12 W \div 1000 \mathrm{D})
$$

where $\mathrm{d}=\mathrm{d}$ exponent, dimensionless
$\mathrm{R}=$ penetration rate, $\mathrm{ft} / \mathrm{hr}$
$\mathrm{N}=$ rotary speed, rpm
$\mathrm{W}=$ weight on bit, $1,000 \mathrm{lb}$
$\mathrm{D}=$ bit size, in.
Example: $\mathrm{R}=30 \mathrm{ft} / \mathrm{hr}$
$\mathrm{N}=120 \mathrm{rpm}$
$W=35,000 \mathrm{lb}$
$D=8.5 \mathrm{in}$.
Solution: $\mathrm{d}=\log [30 \div(60 \times 120)] \div \log [(12 \times 35) \div(1000 \times 8.5)]$
$\mathrm{d}=\log (30 \div 7200) \div \log (420 \div 8500)$
$\mathrm{d}=\log 0.0042 \div \log 0.0494$
$\mathrm{d}=-2.377 \div-1.306$
$\mathrm{d}=1.82$

Corrected "d" exponent:
The "d" exponent is influenced by mud weight variations, so modifications have to be made to correct for changes in mud weight:

$$
\mathrm{d}_{\mathrm{c}}=\mathrm{d}\left(M W_{1} \div M W_{2}\right)
$$

where de $=$ corrected "d" exponent
$\mathrm{MW}_{1}=$ normal mud weight -9.0 ppg
$\mathrm{MW}_{2}=$ actual mud weight, ppg

$$
\text { Example: } \begin{aligned}
\mathrm{d} & =1.64 \\
& \mathrm{MW}=9.0 \mathrm{ppg} \\
& \text { MW2 }
\end{aligned}=12.7 \mathrm{ppg} .
$$

Solution: $\mathrm{d}_{\mathrm{c}}=1.64(9.0 \div 12.7)$
$\mathrm{d}_{\mathrm{c}}=1.64 \times 0.71$
$\mathrm{d}_{\mathrm{c}}=1.16$

Cuttings Slip Velocity

These calculations provide the slip velocity of a cutting of a specific size and weight in a given fluid. The annular velocity and the cutting net rise velocity are also calculated.

Method 1

Annular velocity, $\mathrm{ft} / \mathrm{min}$:

$$
\mathrm{AV}=\frac{24.5 \times \mathrm{Q}}{\mathrm{Dh}^{2}-\mathrm{Dp}^{2}}
$$

Cuttings slip velocity, $\mathrm{ft} / \mathrm{min}$:

$$
\mathrm{Vs}=0.45\left(\frac{\mathrm{PV}}{(\mathrm{MW})(\mathrm{Dp})}\right)\left[\sqrt{\frac{36,800}{\left(\frac{\mathrm{PV}}{(\mathrm{MW})(\mathrm{Dp})}\right)^{2}} \times(\mathrm{Dp})\left(\frac{\mathrm{DenP}}{\mathrm{MW}}-1\right)+1^{-1}}\right]
$$

where Vs $=$ slip velocity, $\mathrm{ft} / \mathrm{min}$
$\mathrm{PV}=$ plastic viscosity, cps
MW = mud weight, ppg
Dp = diameter of particle, in.
DenP $=$ density of particle, ppg
Example: Using the following data, determine the annular velocity, $\mathrm{ft} / \mathrm{min}$; the cuttings slip velocity, $\mathrm{ft} / \mathrm{min}$, and the cutting net rise velocity, $\mathrm{ft} / \mathrm{min}$:

> DATA: Mud weight $\quad=11.0 \mathrm{ppg}$
> Plastic viscosity $\quad=13 \mathrm{cps}$
> Diameter of particle $=0.25 \mathrm{in}$.
> Density of particle $=22 \mathrm{ppg}$
> Flow rate $\quad=520 \mathrm{gpm}$
> Diameter of hole $=12-1 / 4 \mathrm{in}$.
> Drill pipe OD $\quad=5.0 \mathrm{in}$.

Annular velocity, $\mathrm{ft} / \mathrm{min}$:

$$
\begin{aligned}
& \mathrm{AV}=\frac{24.5 \times 520}{12.25^{2}-5.0^{2}} \\
& \mathrm{AV}=102 \mathrm{ft} / \mathrm{min}
\end{aligned}
$$

Cuttings slip velocity, ft/min:

$$
\mathrm{Vs}=0.45\left(\frac{13}{11 \times 0.25}\right)\left[\sqrt{\frac{36,800}{\left(\frac{13}{11 \times 0.25}\right)^{2}} \times 0.25\left(\frac{22}{11}-1\right)+1^{-1}}\right]
$$

$$
\begin{aligned}
& \mathrm{Vs}=0.45[4.727]\left[\sqrt{\frac{36,800}{[4.727]^{2}} \times 0.25 \times 1+1}-1\right] \\
& \mathrm{Vs}=2.12715(\sqrt{412.68639}-1) \\
& \mathrm{Vs}=2.12715 \times 19.3146 \\
& \mathrm{Vs}=41.085 \mathrm{ft} / \mathrm{min}
\end{aligned}
$$

Cuttings net rise velocity:
Annular velocity $\quad=102 \mathrm{ft} / \mathrm{min}$
Cuttings slip velocity $\quad=-41 \mathrm{ft} / \mathrm{min}$
Cuttings net rise velocity $=\overline{61 \mathrm{ft} / \mathrm{min}}$

Method 2

1. Determine n :
$\mathrm{n}=3.32 \log \frac{\theta 600}{\theta 300}$
2. Determine K :
$K=\frac{\theta 300}{511^{n}}$
3. Determine annular velocity, $\mathrm{ft} / \mathrm{min}$:

$$
v=\frac{24.5 \times Q}{D^{2}-D p^{2}}
$$

4. Determine viscosity (μ) :

$$
\mu=\left(\frac{2.4 \mathrm{v}}{\mathrm{Dh}-\mathrm{Dp}} \times \frac{2 \mathrm{n}+1}{3 \mathrm{n}}\right)^{\mathrm{n}} \times\left(\frac{200 \mathrm{~K}(\mathrm{Dh}-\mathrm{Dp})}{\mathrm{v}}\right)
$$

5. Slip velocity (Vs), $\mathrm{ft} / \mathrm{min}$:

$$
\mathrm{Vs}=\frac{(\text { DensP }-\mathrm{MW})^{0.667} \times 175 \times \text { DiaP }}{\mathrm{MW}^{0.333} \times \mu^{0.333}}
$$

Nomenclature:

$\mathrm{n} \quad=$ dimensionless
$\mathrm{K}=$ dimensionless
$\theta 600=600$ viscometer dial reading
$\theta 300=300$ viscometer dial reading
Q = circulation rate, gpm
Dh = hole diameter, in.
Dp = pipe or collar OD, in.
$\mathrm{v} \quad=$ annular velocity, $\mathrm{ft} / \mathrm{min}$
$\mu \quad=$ mud viscosity, cps
DensP = cutting density, ppg
DiaP = cutting diameter, in.
Example: Using the data listed below, determine the annular velocity, cuttings slip velocity, and the cutting net rise velocity:

DATA: Mud weight $\quad=11.0 \mathrm{ppg}$ Plastic viscosity $\quad=13 \mathrm{cps}$ Yield point $\quad=10 \mathrm{lb} / 100 \mathrm{sq} \mathrm{ft}$
Diameter of particle $=0.25 \mathrm{in}$.
Density of particle $=22.0 \mathrm{ppg}$
Hole diameter $\quad=12.25 \mathrm{in}$.
Drill pipe OD $\quad=5.0 \mathrm{in}$
Circulation rate $=520 \mathrm{gpm}$

1. Determine n :
$n=3.32 \log \frac{36}{23}$
$\mathrm{n}=0.64599$
2. Determine K:
$\mathrm{K}=\frac{23}{511^{0.64599}}$
$\mathrm{K}=0.4094$
3. Determine annular velocity, ft/min:

$$
\begin{aligned}
& v=\frac{24.5 \times 520}{12.25^{2}-5.0^{2}} \\
& v=\frac{12,740}{125.06} \\
& v=102 \mathrm{ft} / \mathrm{min}
\end{aligned}
$$

4. Determine mud viscosity, cps:

$$
\begin{aligned}
& \mu=\left(\frac{2.4 \times 102}{12.25-5.0} \times \frac{2(0.64599)+1}{3 \times 0.64599}\right)^{0.64599} \times\left(\frac{200 \times 0.4094 \times(12.25-5)}{102}\right) \\
& \mu=\left(\frac{244.8}{7.25} \times \frac{2.92}{1.938}\right)^{0.64599} \times \frac{593.63}{102} \\
& \mu=(33.76 \times 1.1827)^{0.64599} \times 5.82 \\
& \mu=10.82 \times 5.82 \\
& \mu=63 \mathrm{cps}
\end{aligned}
$$

5. Determine cuttings slip velocity, $\mathrm{ft} / \mathrm{min}$:
$\mathrm{Vs}=\frac{(22-11)^{0.667} \times 175 \times 0.25}{11^{0.333} \times 63^{0.333}}$
$\mathrm{Vs}=\frac{4.95 \times 175 \times 0.25}{2.222 \times 3.97}$
$\mathrm{Vs}=\frac{216.56}{8.82}$
$\mathrm{Vs}=24.55 \mathrm{ft} / \mathrm{min}$
6. Determine cuttings net rise velocity, $\mathrm{ft} / \mathrm{min}$:

Annular velocity $\quad=102 \mathrm{ft} / \mathrm{min}$
Cuttings slip velocity $\quad=-24.55 \mathrm{ft} / \mathrm{min}$
Cuttings net rise velocity $=77.45 \mathrm{ft} / \mathrm{min}$

Method 1

1. Determine n :
$\mathrm{n}=3.32 \log \frac{\theta 600}{\theta 300}$
2. Determine K:
$K=\frac{\theta 300}{511^{n}}$
3. Determine velocity, $\mathrm{ft} / \mathrm{min}$:

For plugged flow:
$v=\left[0.45+\frac{\mathrm{Dp}^{2}}{\mathrm{Dh}^{2}-\mathrm{Dp}^{2}}\right] \mathrm{Vp}$
For open pipe:

$$
v=\left[0.45+\frac{D p^{2}-D i^{2}}{D h^{2}-D p^{2}+D i^{2}}\right] V p
$$

4. Maximum pipe velocity:
$\mathrm{Vm}=1.5 \times \mathrm{v}$
5. Determine pressure losses:
$\operatorname{Ps}=\left(\frac{2.4 \mathrm{Vm}}{\mathrm{Dh}-\mathrm{Dp}} \times \frac{2 \mathrm{n}+1}{3 \mathrm{n}}\right)^{\mathrm{n}} \times \frac{\mathrm{KL}}{300(\mathrm{Dh}-\mathrm{Dp})}$

Nomenclature:

$\mathrm{n} \quad=$ dimensionless
$\mathrm{K}=$ dimensionless
$\theta 600=600$ viscometer dial reading
$\theta 300=300$ viscometer dial reading
$\mathrm{v} \quad=$ fluid velocity, $\mathrm{ft} / \mathrm{min}$
$\mathrm{Vp}=$ pipe velocity, ft/min
$\mathrm{Vm}=$ maximum pipe velocity, $\mathrm{ft} / \mathrm{min}$
Ps = pressure loss, psi
$\mathrm{L}=$ pipe length, ft
$\mathrm{Dh}=$ hole diameter, in.
$D p=$ drill pipe or drill collar OD, in.
$\mathrm{Di}=$ drill pipe or drill collar ID, in.
Example 1: Determine surge pressure for plugged pipe:

Date: Well depth
$=15,000 \mathrm{ft}$
Hole size
$=7-7 / 8 \mathrm{in}$.
Drill pipe OD
$=4-1 / 2 \mathrm{in}$.
Drill pipe ID
$=3.82 \mathrm{in}$.
Drill collar
$=6-1 / 4^{\prime \prime}$ O.D. $\times 2-3 / 4^{\prime \prime}$ ID
Drill collar length
$=700 \mathrm{ft}$
Mud weight
$=15.0 \mathrm{ppg}$

Viscometer readings:

$\theta 600$	$=140$
$\theta 300$	$=80$
Average pipe running speed	$=270 \mathrm{ft} / \mathrm{min}$

1. Determine n :

$$
\begin{aligned}
& \mathrm{n}=3.32 \log \frac{140}{80} \\
& \mathrm{n}=0.8069
\end{aligned}
$$

2. Determine K :
$K=\frac{80}{511^{0.8069}}$
$\mathrm{K}=0.522$
3. Determine velocity, $\mathrm{ft} / \mathrm{min}$:
$V=\left[0.45+\frac{(4.5)^{2}}{7.875^{2}-4.5^{2}}\right] 270$
$V=(0.45+0.484) 270$
$\mathrm{V}=252 \mathrm{ft} / \mathrm{min}$
4. Determine maximum pipe velocity, $\mathrm{ft} / \mathrm{min}$:
$\mathrm{Vm}=252 \times 1.5$
$\mathrm{Vm}=378 \mathrm{ft} / \mathrm{min}$
5. Determine pressure loss, psi:

$$
\begin{aligned}
& P_{\mathrm{S}}=\left[\frac{2.4 \times 378}{7.875-4.5} \times \frac{2(0.8069)+1}{3(0.8069)}\right]^{0.8069} \times \frac{(0.522)(14,300)}{300(7.875-4.5)} \\
& P_{\mathrm{S}}=(268.8 \times 1.1798)^{0.8069} \times \frac{7464.6}{1012.5} \\
& \mathrm{P}_{\mathrm{S}}=97.098 \times 7.37 \\
& \mathrm{Ps}_{\mathrm{s}}=716 \text { psi surge pressure }
\end{aligned}
$$

Therefore, this pressure is added to the hydrostatic pressure of the mud in the wellbore.

If, however, the swab pressure is desired, this pressure would be subtracted from the hydrostatic pressure.

Example 2: Determine surge pressure for open pipe:

1. Determine velocity, $\mathrm{ft} / \mathrm{min}$:

$$
\begin{aligned}
& v=\left[0.45+\frac{4.5^{2}-3.82^{2}}{7.875^{2}-4.5^{2}+3.82^{2}}\right] 270 \\
& v=\left(0.45+\frac{5.66}{56.4}\right) 270 \\
& v=(0.45+0.100) 270 \\
& v=149 \mathrm{ft} / \mathrm{min}
\end{aligned}
$$

2. Maximum pipe velocity, ft/min:

$$
\mathrm{Vm}=149 \times 1.5
$$

$\mathrm{Vm}=224 \mathrm{ft} / \mathrm{min}$
3. Pressure loss, psi:

$$
\begin{aligned}
& \mathrm{Ps}=\left[\frac{2.4 \times 224}{7.875-4.5} \times \frac{2(0.8069)+1}{3(0.8069)}\right]^{0.8069} \times \frac{(0.522)(14,300)}{300(7.875-4.5)} \\
& \mathrm{Ps}=(159.29 \times 1.0798)^{0.8069} \times \frac{7464.6}{1012.5} \\
& \mathrm{Ps}_{\mathrm{s}}=63.66 \times 7.37 \\
& \mathrm{Ps}_{\mathrm{s}}=469 \mathrm{psi} \text { surge pressure }
\end{aligned}
$$

Therefore, this pressure would be added to the hydrostatic pressure of the mud in the wellbore.

If, however, the swab pressure is desired, this pressure would be subtracted from the hydrostatic pressure of the mud in the wellbore.

Method 2

Surge and swab pressures
Assume: 1) Plugged pipe
2) Laminar flow around drill pipe
3) Turbulent flow around drill collars

These calculations outline the procedure and calculations necessary to determine the increase or decrease in equivalent mud weight (bottomhole pressure) due to pressure surges caused by pulling or running pipe. These calculations assume that the end of the pipe is plugged (as in running casing with a float shoe or drill pipe with bit and jet nozzles in place), not open-ended.
A. Surge pressure around drill pipe:

1. Estimated annular fluid velocity (v) around drill pipe:

$$
\mathrm{v}=\left[0.45+\frac{\mathrm{Dp}^{2}}{\mathrm{Dh}^{2}-\mathrm{Dp}^{2}}\right] \mathrm{Vp}_{\mathrm{p}}
$$

2. Maximum pipe velocity (Vm):
$\mathrm{Vm}=\mathrm{v} \times 1.5$
3. Calculate n :

$$
n=3.32 \log \frac{\theta 600}{\theta 300}
$$

4. Calculate K :

$$
K=\frac{\theta 300}{511^{\mathrm{n}}}
$$

5. Calculate the shear rate (Ym) of the mud moving around the pipe:
$\mathrm{Ym}=\frac{2.4 \times \mathrm{Vm}}{\mathrm{Dh}-\mathrm{Dp}}$
6. Calculate the shear stress (T) of the mud moving around the pipe: $\mathrm{T}=\mathrm{K}(\mathrm{Ym})^{\mathrm{n}}$
7. Calculate the pressure (Ps) decrease for the interval:
$\mathrm{Ps}=\frac{3.33 \mathrm{~T}}{\mathrm{Dh}-\mathrm{Dp}} \times \frac{\mathrm{L}}{1000}$
B. Surge pressure around drill collars:
8. Calculate the estimated annular fluid velocity (v) around the drill collars:
$\mathrm{v}=\left[0.45+\frac{\mathrm{Dp}^{2}}{\mathrm{Dh}^{2}-\mathrm{Dp}^{2}}\right] \mathrm{Vp}$
9. Calculate maximum pipe velocity (Vm) :
$\mathrm{Vm}=\mathrm{v} \times 1.5$
10. Convert the equivalent velocity of the mud due to pipe movement to equivalent flowrate (Q) :

$$
\mathrm{Q}=\frac{\mathrm{Vm}\left[(\mathrm{Dh})^{2}-(\mathrm{Dp})^{2}\right]}{24.5}
$$

4. Calculate the pressure loss for each interval (Ps):

$$
\mathrm{Ps}=\frac{0.000077 \times \mathrm{MW}^{0.8} \times \mathrm{Q}^{1.8} \times \mathrm{PV}^{0.2} \times \mathrm{L}}{(\mathrm{Dh}-\mathrm{Dp})^{3} \times(\mathrm{Dh}+\mathrm{Dp})^{1.8}}
$$

C. Total surge pressures converted to mud weight:

Total surge (or swab) pressures:
$\mathrm{psi}=\operatorname{Ps}($ drill pipe $)+\operatorname{Ps}($ drill collars $)$
D. If surge pressure is desired:
$\mathrm{SP}, \mathrm{ppg}=\mathrm{Ps} \div 0.052 \div \mathrm{TVD}, \mathrm{ft}$ " + " MW, ppg
E. If swab pressure is desired:
$\mathrm{SP}, \mathrm{ppg}=\mathrm{Ps} \div 0.052 \div$ TVD, ft "-"MW, ppg

Example: Determine both the surge and swab pressure for the data listed below:

Data: Mud weight $\quad=15.0 \mathrm{ppg}$
Plastic viscosity $\quad=60 \mathrm{cps}$
Yield point $\quad=20 \mathrm{lb} / 100 \mathrm{sq} \mathrm{ft}$
Hole diameter $\quad=7.7 / 8 \mathrm{in}$.
Drill pipe OD $\quad=4-1 / 2 \mathrm{in}$.
Drill pipe length $=14,300 \mathrm{ft}$
Drill collar OD $=6-1 / 4 \mathrm{in}$.
Drill collar length $=700 \mathrm{ft}$
Pipe running speed $=270 \mathrm{ft} / \mathrm{min}$

A. Around drill pipe:

1. Calculate annular fluid velocity (v) around drill pipe:

$$
\begin{aligned}
& v=\left[0.45+\frac{(4.5)^{2}}{7.875^{2}-4.5^{2}}\right] 270 \\
& v=[0.45+0.4848] 270 \\
& v=253 \mathrm{ft} / \mathrm{min}
\end{aligned}
$$

2. Calculate maximum pipe velocity (Vm):
$\mathrm{Vm}=253 \times 1.5$
$\mathrm{Vm}=379 \mathrm{ft} / \mathrm{min}$
NOTE: Determine n and K from the plastic viscosity and yield point as follows:

$$
\begin{aligned}
& P V+Y P=\theta 300 \text { reading } \\
& \theta 300 \text { reading }+P V=\theta 600 \text { reading }
\end{aligned}
$$

$$
\begin{aligned}
\text { Example: } & \mathrm{PV}=60 \\
& \mathrm{YP}=20 \\
& 60+20=80(\theta 300 \text { reading }) \\
& 80+60=140(\theta 600 \text { reading })
\end{aligned}
$$

3. Calculate n :

$$
\begin{aligned}
& \mathrm{n}=3.32 \log 80 \frac{140}{80} \\
& \mathrm{n}=0.8069
\end{aligned}
$$

4. Calculate K:

$$
\begin{aligned}
\mathrm{K} & =\frac{80}{511^{0.8069}} \\
\mathrm{~K} & =0.522
\end{aligned}
$$

5. Calculate the shear rate (Ym) of the mud moving around the pipe:

$$
\begin{aligned}
Y \mathrm{~m} & =\frac{2.4 \times 379}{(7.875-4.5)} \\
\mathrm{Ym} & =269.5
\end{aligned}
$$

6. Calculate the shear stress (T) of the mud moving around the pipe:

$$
\begin{aligned}
& \mathrm{T}=0.522(269.5)^{0.8069} \\
& \mathrm{~T}=0.522 \times 91.457 \\
& \mathrm{~T}=47.74
\end{aligned}
$$

7. Calculate the pressure decrease (Ps) for the interval:
$P_{s}=\frac{3.33(47.7)}{(7.875-4.5)} \times \frac{14,300}{1000}$
$\mathrm{Ps}_{\mathrm{s}}=47.064 \times 14.3$
$\mathrm{Ps}=673 \mathrm{psi}$
B. Around drill collars:
8. Calculate the estimated annular fluid velocity (v) around the drill collars:
$v=\left[0.45+\frac{6.25^{2}}{7.875^{2}-6.25^{2}}\right] 270$
$v=(0.45+1.70) 270$
$v=581 \mathrm{ft} / \mathrm{min}$
9. Calculate maximum pipe velocity (Vm):
$\mathrm{Vm}=581 \times 1.5$
$\mathrm{Vm}=871.54 \mathrm{ft} / \mathrm{min}$
10. Convert the equivalent velocity of the mud due to pipe movement to equivalent flowrate (Q) :
$\mathrm{Q}=\frac{871.54\left(7.875^{2}-6.25^{2}\right)}{24.5}$
$\mathrm{Q}=\frac{20,004.567}{24.5}$
$\mathrm{Q}=816.5$
11. Calculate the pressure loss (Ps) for the interval:
$P_{s}=\frac{0.000077 \times 15^{0.8} \times 816^{1.8} \times 60^{0.2} \times 700}{(7.875-6.25)^{3} \times(7.875+6.25)^{1.8}}$
$P_{s}=\frac{185,837.9}{504.126}$
$\mathrm{Ps}=368.6 \mathrm{psi}$
C. Total pressures:
$\mathrm{psi}=672.9 \mathrm{psi}+368.6 \mathrm{psi}$
$\mathrm{psi}=1041.5 \mathrm{psi}$
D. Pressure converted to mud weight, ppg:
$\mathrm{ppg}=1041.5 \mathrm{psi} \div 0.052 \div 15,000 \mathrm{ft}$
$\mathrm{ppg}=1.34$
E. If surge pressure is desired:

Surge pressure, $\mathrm{ppg}=15.0 \mathrm{ppg}+1.34 \mathrm{ppg}$
Surge pressure $=16.34 \mathrm{ppg}$
F. If swab pressure is desired:

Swab pressure, ppg $=15.0 \mathrm{ppg}-1.34 \mathrm{ppg}$
Swab pressure $=13.66 \mathrm{ppg}$

Equivalent Circulation Density (ECD)

1. Determine n :
$n=3.32 \log \frac{\theta 600}{\theta 300}$
2. Determine K :
$K=\frac{\theta 300}{51]^{\mathrm{n}}}$
3. Determine annular velocity (v), $\mathrm{ft} / \mathrm{min}$:

$$
v=\frac{24.5 \times Q}{D h^{2}-D p^{2}}
$$

4. Determine critical velocity (Vc) , $\mathrm{ft} / \mathrm{min}$:

$$
\mathrm{Vc}=\left(\frac{3.878 \times 10^{4} \times \mathrm{K}}{\mathrm{MW}}\right)^{\frac{1}{2-n}} \times\left(\frac{2.4}{\mathrm{Dh}-\mathrm{Dp}} \times \frac{2 \mathrm{n}+1}{3 \mathrm{n}}\right)^{\frac{\mathrm{n}}{2-\mathrm{n}}}
$$

5. Pressure loss for laminar flow (Ps). psi:

$$
P_{s}=\left(\frac{2.4 v}{D h-D p} \times \frac{2 n+1}{3 n}\right)^{n} \times \frac{K L}{300(D h-D p)}
$$

6. Pressure loss for turbulent flow (Ps), psi:

$$
\mathrm{Ps}=\frac{7.7 \times 10^{-5} \times \mathrm{MW}^{0.8} \times \mathrm{Q}^{1.8} \times \mathrm{PV}^{0.2} \times \mathrm{L}}{(\mathrm{Dh}-\mathrm{Dp})^{3} \times(\mathrm{Dh}+\mathrm{Dp})^{1.8}}
$$

7. Determine equivalent circulating density (ECD), ppg:
$\mathrm{ECD}, \mathrm{ppg}=\mathrm{Ps} \div 0.052 \div \mathrm{TVD}, \mathrm{ft}+\mathrm{OMW}, \mathrm{ppg}$
Example: Equivalent circulating density (ECD), ppg:

Date: Mud weight $\quad=12.5 \mathrm{ppg}$
Plastic viscosity $=24 \mathrm{cps}$
Yield point $\quad=12 \mathrm{lb} / 100 \mathrm{sqft}$
Circulation rate $\quad=400 \mathrm{gpm}$
Hole diameter $\quad=8.5 \mathrm{in}$.
Drill pipe OD $\quad=5.0 \mathrm{in}$.
Drill pipe length $=11,300 \mathrm{ft}$
Drill collar OD $=6.5 \mathrm{in}$.
Drill collar length $=700 \mathrm{ft}$
True vertical depth $=12,000 \mathrm{ft}$

NOTE: If $\theta 600$ and $\theta 300$ viscometer dial readings are unknown, they may be obtained from the plastic viscosity and yield point as follows:
$24+12=36 \quad$ Thus, 36 is the $\theta 300$ reading.
$36+24=60 \quad$ Thus, 60 is the 0600 reading.

1. Determine n :

$$
\begin{aligned}
& \mathrm{n}=3.32 \log \frac{60}{36} \\
& \mathrm{n}=0.7365
\end{aligned}
$$

2. Determine K :

$$
\begin{aligned}
& \mathrm{K}=\frac{36}{511^{0.7365}} \\
& \mathrm{~K}=0.3644
\end{aligned}
$$

3a. Determine annular velocity (v), $\mathrm{ft} / \mathrm{min}$, around drill pipe:

$$
\begin{aligned}
& v=\frac{24.5 \times 400}{8.5^{2}-5.0^{2}} \\
& v=207 \mathrm{ft} / \mathrm{min}
\end{aligned}
$$

3b. Determine annular velocity (v), ft/min, around drill collars:

$$
\begin{aligned}
& v=\frac{24.5 \times 400}{8.5^{2}-6.5^{2}} \\
& v=327 \mathrm{ft} / \mathrm{min}
\end{aligned}
$$

4a. Determine critical velocity (Vc) , $\mathrm{ft} / \mathrm{min}$, around drill pipe:

$$
\begin{aligned}
& \mathrm{Vc}=\left(\frac{3.878 \times 10^{4} \times .3644}{12.5}\right)^{\frac{1}{2-.7365}} \times\left(\frac{2.4}{8.5-5} \times \frac{2(.7365)+1}{3(.7365)}\right)^{\frac{.7365}{2-.7365}} \\
& \mathrm{Vc}=(1130.5)^{0.791} \times(0.76749)^{0.5829} \\
& \mathrm{Vc}=260 \times 0.857 \\
& \mathrm{Vc}=223 \mathrm{ft} / \mathrm{min}
\end{aligned}
$$

4b. Determine critical velocity (Vc), $\mathrm{ft} / \mathrm{min}$, around drill collars:

$$
\begin{aligned}
& \mathrm{Vc}=\left(\frac{3.878 \times 10^{4} \times .3644}{12.5}\right)^{\frac{1}{2-.7365}} \times\left(\frac{2.4}{8.5-6.5} \times \frac{2(.7365)+1}{3(.7365)}\right)^{\frac{.7365}{2-.7365}} \\
& \mathrm{Vc}=(1130.5)^{0.79]} \times(1.343)^{0.5829} \\
& \mathrm{Vc}=260 \times 1.18756 \\
& \mathrm{Vc}=309 \mathrm{ft} / \mathrm{min}
\end{aligned}
$$

Therefore:
Drill pipe: $207 \mathrm{ft} / \mathrm{min}(\mathrm{v})$ is less than $223 \mathrm{ft} / \mathrm{min}(\mathrm{Vc})$, Laminar flow, so use Equation 5 for pressure loss.
Drill collars: $327 \mathrm{ft} / \mathrm{min}(\mathrm{v})$ is greater than $309 \mathrm{ft} / \mathrm{min}(\mathrm{Vc})$ turbulent flow, so use Equation 6 for pressure loss.
5. Pressure loss opposite drill pipe:

$$
P_{S}=\left[\frac{2.4 \times 207}{8.5-5.0} \times \frac{2(.7365)+1}{3(.7365)}\right]^{.7365} \times \frac{.3644 \times 11,300}{300(8.5-5.0)}
$$

$$
\begin{aligned}
& P_{\mathrm{S}}=(141.9 \times 1.11926)^{0.7365} \times 3.9216 \\
& \mathrm{Ps}_{\mathrm{s}}=41.78 \times 3.9216 \\
& \mathrm{Ps}_{\mathrm{s}}=163.8 \mathrm{psi}
\end{aligned}
$$

6. Pressure loss opposite drill collars:

$$
\begin{aligned}
& \text { Ps }=\frac{7.7 \times 10^{-5} \times 12.5^{0.8} \times 400^{1.8} \times 24^{0.2} \times 700}{(8.5-6.5)^{3} \times(8.5+6.5)^{1.8}} \\
& \text { Ps }=\frac{37,056.7}{8 \times 130.9} \\
& P_{s}=35.4 \mathrm{psi}
\end{aligned}
$$

Total pressure losses:

$$
\begin{aligned}
& \mathrm{psi}=163.8 \mathrm{psi}+35.4 \mathrm{psi} \\
& \mathrm{psi}=199.2 \mathrm{psi}
\end{aligned}
$$

7. Determine equivalent circulating density (ECD), ppg:
$\mathrm{ECD}, \mathrm{ppg}=199.2 \mathrm{psi} \div 0.052 \div 12,000 \mathrm{ft}+12.5 \mathrm{ppg}$
$\mathrm{ECD}=12.82 \mathrm{ppg}$

Fracture Gradient Determination-Surface Application

Method 1: Matthews and Kelly Method

$F=P / D+K i \sigma / D$
where $\mathrm{F}=$ fracture gradient, $\mathrm{psi} / \mathrm{ft}$
$\mathbf{P}=$ formation pore pressure, psi
$\sigma=$ matrix stress at point of interest, psi
$\mathrm{D}=$ depth at point of interest, TVD, ft
$\mathrm{Ki}=$ matrix stress coefficient, dimensionless
Procedure:

1. Obtain formation pore pressure, \mathbf{P}, from electric logs, density measurements, or mud logging personnel.
2. Assume $1.0 \mathrm{psi} / \mathrm{ft}$ as overburden pressure (S) and calculate σ as follows: $\sigma=\mathrm{S}-\mathrm{P}$
3. Determine the depth for determining Ki by:

$$
\mathrm{D}=\frac{\sigma}{0.535}
$$

4. From Matrix Stress Coefficient chart. determine K:

Figure 5-1. Matrix stress coefficient chart.

192 Formulas and Calculations

5. Determine fracture gradient, $\mathrm{psi} / \mathrm{ft}$:

$$
F=\frac{P}{D}+K i \times \frac{\sigma}{D}
$$

6. Determine fracture pressure, psi:
$\mathrm{F}, \mathrm{psi}=\mathrm{F} \times \mathrm{D}$
7. Determine maximum mud density, ppg:
$\mathrm{MW}, \mathrm{ppg}=\frac{\mathrm{F}}{0.052}$

Example: Casing setting depth $=12,000 \mathrm{ft}$
Formation pore pressure $=12.0 \mathrm{ppg}$ (Louisiana Gulf Coast)

1. $\mathrm{P}=12.0 \mathrm{ppg} \times 0.052 \times 12,000 \mathrm{ft}$
$\mathrm{P}=7488 \mathrm{psi}$
2. $\sigma=12,000 \mathrm{psi}-7488 \mathrm{psi}$
$\sigma=4512 \mathrm{psi}$
3. $\mathrm{D}=\frac{4512 \mathrm{psi}}{0.535}$
$D=8434 \mathrm{ft}$
4. From chart $=\mathrm{Ki}=0.79 \mathrm{psi} / \mathrm{ft}$
5. $\mathrm{F}=\frac{7488}{12,000}+0.79 \times \frac{4512}{12,000}$
$\mathrm{F}=0.624 \mathrm{psi} / \mathrm{ft}+0.297 \mathrm{psi} / \mathrm{ft}$
$\mathrm{F}=0.92 \mathrm{psi} / \mathrm{ft}$
6. Fracture pressure, $\mathrm{psi}=0.92 \mathrm{psi} / \mathrm{ft} \times 12,000 \mathrm{ft}$

Fracture pressure $\quad=11,040 \mathrm{psi}$
7. Maximum mud density, $\mathrm{ppg}=\frac{0.92 \mathrm{psi} / \mathrm{ft}}{0.052}$

Maximum mud density $\quad=17.69 \mathrm{ppg}$

Method 2: Ben Eaton Method

$$
F=\left(\frac{S}{D}-\frac{P f}{D}\right) \times\left(\frac{y}{1-y}\right)+\left(\frac{P f}{D}\right)
$$

where $\mathrm{S} / \mathrm{D}=$ overburden gradient, psi/ft
$\mathrm{Pf} / \mathrm{D}=$ formation pressure gradient at depth of interest, psi/ft
y $=$ Poisson's ratio
Procedure:

1. Obtain overburden gradient from "Overburden Stree Gradient Chart."
2. Obtain formation pressure gradient from electric logs, density measurements, or logging operations.
3. Obtain Poisson's ratio from "Poisson's Ratio Chart."
4. Determine fracture gradient using above equation.
5. Determine fracture pressure, psi:

$$
\mathrm{psi}=\mathrm{F} \times \mathrm{D}
$$

6. Determine maximum mud density, ppg:
$\mathrm{ppg}=\frac{\mathrm{F}}{0.052}$

Example: Casing setting depth $=12,000 \mathrm{ft}$ Formation pore pressure $=12.0 \mathrm{ppg}$

1. Determine S / D from chart $=$ depth $=12,000 \mathrm{ft}$ $\mathrm{S} / \mathrm{D}=0.96 \mathrm{psi} / \mathrm{ft}$
2. $\mathrm{Pf} / \mathrm{D}=12.0 \mathrm{ppg} \times 0.052=0.624 \mathrm{psi} / \mathrm{ft}$
3. Poisson's Ratio from chart $=0.47 \mathrm{psi} / \mathrm{ft}$
4. Determine fracture gradient:

$$
\begin{aligned}
& F=(0.96-0.6243)\left(\frac{0.47}{1-0.47}\right)+0.624 \\
& F=0.336 \times 0.88679+0.624 \\
& F=0.29796+0.624 \\
& F=0.92 \mathrm{psi} / \mathrm{ft}
\end{aligned}
$$

5. Determine fracture pressure:

$$
\begin{aligned}
& \mathrm{psi}=0.92 \mathrm{psi} / \mathrm{ft} \times 12,000 \mathrm{ft} \\
& \mathrm{psi}=11,040
\end{aligned}
$$

6. Determine maximum mud denisty:
$\mathrm{pg}=\frac{0.92 \mathrm{psi} / \mathrm{ft}}{0.052}$
ppg $=17.69$

Fracture Gradient Determination-Subsea Applications

In offshore drilling operations, it is necessary to correct the calculated fracture gradient for the effect of water depth and flowline height (air gap) above mean sea level. The following procedure can be used:

> Example: Air gap
> Density of seawater
> Water depth
> $=100 \mathrm{ft}$
> Feet of casing below mudline $=4000 \mathrm{ft}$

Procedure:

1. Convert water to equivalent land area, ft :
a) Determine the hydrostatic pressure of the seawater:

$$
\begin{aligned}
& \mathrm{HPsw}=8.9 \mathrm{ppg} \times 0.052 \times 2000 \mathrm{ft} \\
& \mathrm{HPsw}=926 \mathrm{psi}
\end{aligned}
$$

b) From Eaton's Overburden Stress Chart, determine the overburden stress gradient from mean sea level to casing setting depth:
From chart: Enter chart at 6000 ft on left; intersect curved line and read overburden gradient at bottom of chart:

Overburden stress gradient $=0.92 \mathrm{psi} / \mathrm{ft}$
c) Determine equivalent land area, ft :

Equivalent feet $=\frac{926 \mathrm{psi}}{0.92 \mathrm{psi} / \mathrm{ft}}$
Equivalent feet $=1006$

Figure 5-2. Eaton's overburden stress chart.
2. Determine depth for fracture gradient determination:

Depth, $\mathrm{ft}=4000 \mathrm{ft}+1006 \mathrm{ft}$
Depth $=5006 \mathrm{ft}$
3. Using Eaton's Fracture Gradient Chart, determine the fracture gradient at a depth of 5006 ft :

From chart: Enter chart at a depth of 5006 ft ; intersect the 9.0 ppg line; then proceed up and read the fracture gradient at the top of the chart:

Fracture gradient $=14.7 \mathrm{ppg}$
4. Determine the fracture pressure:

$$
\begin{aligned}
& \mathrm{psi}=14.7 \mathrm{ppg} \times 0.052 \times 5006 \mathrm{ft} \\
& \mathrm{psi}=3827
\end{aligned}
$$

5. Convert the fracture gradient relative to the flowline:
$\mathrm{Fc}=3827 \mathrm{psi} \div 0.052 \div 6100 \mathrm{ft}$
$\mathrm{Fc}=12.06 \mathrm{ppg}$
where Fc is the fracture gradient, corrected for water depth, and air gap.

Figure 5-3. Eaton's fracture gradient chart.

Directional Drilling Calculations

Directional survey calculations

The following are the two most commonly used methods to calculate directional surveys:

1. Angle Averaging Method

$$
\begin{aligned}
& \text { North }=M D \times \sin \frac{(\mathrm{Il}+\mathrm{I} 2)}{2} \times \cos \frac{(\mathrm{A} 1+\mathrm{A} 2)}{2} \\
& \text { East }=M D \times \sin \frac{(\mathrm{II}+\mathrm{I} 2)}{2} \times \sin \frac{(\mathrm{Al}+\mathrm{A} 2)}{2} \\
& \text { Vert }=M D \times \cos \frac{(\mathrm{II}+\mathrm{I} 2)}{2}
\end{aligned}
$$

2. Radius of Curvature Method

$$
\begin{aligned}
& \text { North }=\frac{M D(\cos I 1-\cos I 2)(\sin A 2-\sin A 1)}{(I 2-I 1)(A 2-A 1)} \\
& \text { East }=\frac{M D(\cos I 1-\cos I 2)(\cos A 1-\cos A 2)}{(I 2-I 1)(A 2-A 1)} \\
& \text { Vert }=\frac{M D(\sin I 2-\sin I 1)}{(I 2-I 1)}
\end{aligned}
$$

where MD = course length between surveys in measured depth, ft
$\mathrm{I}_{1}, \mathrm{I}_{2}=$ inclination (angle) at upper and lower surveys, degrees
$\mathrm{A}_{1}, \mathrm{~A}_{2}=$ direction at upper and lower surveys
Example: Use the Angle Averaging Method and the Radius of Curvature Method to calculate the following surveys:

Depth, ft	7482	7782
Inclination, degrees	4	8
Azimuth, degrees	10	35

Angle Averaging Method:

$$
\begin{aligned}
\text { North } & =300 \times \sin \frac{(4+8)}{2} \times \cos \frac{(10+35)}{2} \\
& =300 \times \sin (6) \times \cos (22.5) \\
& =300 \times .104528 \times .923879 \\
\text { North } & =28.97 \mathrm{ft} \\
\text { East } & =300 \times \sin \frac{(4+8)}{2} \times \sin \frac{(10+35)}{2} \\
& =300 \times \sin (6) \times \sin (22.5) \\
& =300 \times .104528 \times .38268 \\
\text { East } & =12.0 \mathrm{ft} \\
\text { Vert } & =300 \times \cos \frac{(4+8)}{2} \\
& =300 \times \cos (6) \\
& =300 \times .99452 \\
\text { Vert } & =298.35 \mathrm{ft}
\end{aligned}
$$

Radius of Curvature Method:

$$
\begin{aligned}
\text { North } & =\frac{300(\cos 4-\cos 8)(\sin 35-\sin 10)}{(8-4)(35-10)} \\
& =\frac{300(.99756-.990268)(.57357-.173648)}{4 \times 25} \\
& =\frac{.874629}{100} \\
& =0.008746 \times 57.3^{2}
\end{aligned}
$$

North $=28.56 \mathrm{ft}$
East $=\frac{300(\cos 4-\cos 8)(\cos 10-\cos 35)}{(8-4)(35-10)}$

$$
=\frac{300(.99756-.99026)(.9848-.81915)}{4 \times 25}
$$

$$
\begin{aligned}
& =\frac{300(.0073)(.16565)}{100} \\
& =\frac{0.36277}{100} \\
& =0.0036277 \times 57.3^{2} \\
\text { East } & =11.91 \mathrm{ft} \\
\text { Vert } & =\frac{300(\sin 8-\sin 4)}{(8-4)} \\
& =\frac{300(.13917 \times .069756)}{4} \\
& =\frac{300 \times .069414}{4} \\
& =5.20605 \times 57.3 \\
\text { Vert } & =298.3 \mathrm{ft}
\end{aligned}
$$

Deviation/departure calculation

Deviation is defined as departure of the wellbore from the vertical, measured by the horizontal distance from the rotary table to the target. The amount of deviation is a function of the drift angle (inclination) and hole depth.

The following diagram illustrates how to determine the deviation/departure:

Figure 5-4. Deviation/Departure.

To calculate the deviation/departure (CD), ft :
$\mathrm{CD}, \mathrm{ft}=\sin \mathrm{I} \times \mathrm{BD}$
Example: Kick off point (KOP) is a distance 2000 ft from the surface. MD is 8000 ft . Hole angle (inclination) is 20 degrees. Therefore the distance from KOP to $\mathrm{MD}=6000 \mathrm{ft}(\mathrm{BD})$:
$\mathrm{CD}, \mathrm{ft}=\sin 20 \times 6000 \mathrm{ft}$

$$
=0.342 \times 6000 \mathrm{ft}
$$

$\mathrm{CD}=2052 \mathrm{ft}$
From this calculation, the measured depth (MD) is 2052 ft away from vertical.

Dogleg severity calculation

Method 1

Dogleg severity (DLS) is usually given in degrees $/ 100 \mathrm{ft}$. The following formula provides dogleg severity in degrees $/ 100 \mathrm{ft}$ and is based on the Radius of Curvature Method:

$$
\text { DLS }=\left\{\cos ^{-1}[(\cos \mathrm{Il} \times \cos \mathrm{I} 2)+(\sin \mathrm{I} 1 \times \sin \mathrm{I} 2) \times \cos (\mathrm{A} 2-\mathrm{A} 1)]\right\} \times \frac{100}{\mathrm{CL}}
$$

For metric calculation, substitute $\times \frac{30}{\mathrm{CL}}$
where DLS = dogleg severity, degrees $/ 100 \mathrm{ft}$
CL = course length, distance between survey points, ft
I1, I2 = inclination (angle) at upper and lower surveys, ft
A1, A2 = direction at upper and lower surveys, degrees
${ }^{\wedge}$ Azimuth $=$ azimuth change between surveys, degrees

Example:

Survey 1

Survey 2

Depth, ft	4231	4262
Inclination, degrees	13.5	14.7
Azimuth, degrees	N 10 E	N 19 E

DLS $=\left\{\cos ^{-1}[(\cos 13.5 \times \cos 14.7)+(\sin 13.5 \times \sin 14.7 \times \cos (19-10)]\} \times \frac{100}{31}\right.$
DLS $=\left\{\cos ^{-1}[(.9723699 \times .9672677)\right.$

$$
+(.2334453 \times .2537579 \times .9876883)]\} \times \frac{100}{31}
$$

$\mathrm{DLS}=\left\{\cos ^{-1}[(.940542)+(.0585092)]\right\} \times \frac{100}{31}$
DLS $=2.4960847 \times \frac{100}{31}$
$\mathrm{DLS}=8.051886$ degrees $/ 100 \mathrm{ft}$

Method 2

This method of calculating dogleg severity is based on the tangential method:

$$
\mathrm{DLS}=\frac{100}{\mathrm{~L}[(\sin \mathrm{I} 1 \times \sin \mathrm{I} 2)(\sin \mathrm{A} 1 \times \sin \mathrm{A} 2+\cos \mathrm{A} 1 \times \cos \mathrm{A} 2)+\cos 11 \times \cos \mathrm{I} 2]}
$$

where DLS = dogleg severity, degrees $/ 100 \mathrm{ft}$
$\mathrm{L} \quad=$ course length, ft
I1, I2 = inclination (angle) at upper and lower surveys, degrees
$\mathrm{A} 1, \mathrm{~A} 2=$ direction at upper and lower surveys, degrees
Example:

Survey 1

Depth	4231	4262
Inclination, degrees	13.5	14.7
Azimuth, degrees	N 10 E	N 19 E

Dogleg severity $=$
$\frac{100}{31[(\sin 13.5 \times \sin 14.7)(\sin 10 \times \sin 19)+(\cos 10 \times \cos 19)+(\cos 13.5 \times \cos 14.7)]}$
DLS $=\frac{100}{30.969}$
DLS $=3.229$ degrees $/ 100 \mathrm{ft}$

Available weight on bit in directional wells

A directionally drilled well requires that a correction be made in total drill collar weight because only a portion of the total weight will be available to the bit:

$$
\mathrm{P}=\mathrm{W} \times \cos \mathrm{I}
$$

where P = partial weight available for bit
$\cos =\operatorname{cosine}$
I = degrees inclination (angle)
$\mathrm{W}=$ total weight of collars
Example: W $=45,000 \mathrm{lb}$
$I=25$ degrees
$\mathbf{P}=45,000 \times \cos 25$
$\mathrm{P}=45,000 \times 0.9063$
$\mathrm{P}=40,7841 \mathrm{~b}$

Thus, the available weight on bit is $40,784 \mathrm{lb}$.

Determining true vertical depth

The following is a simple method of correcting for the TVD on directional wells. This calculation will provide the approximate TVD interval corresponding to the measured interval and is generally accurate enough for any pressure calculations. At the next survey, the TVD should be corrected to correspond to the directional driller's calculated true vertical depth:

$$
\mathrm{TVD}_{2}=\cos \mathrm{I} \times \mathrm{CL}+\mathrm{TVD}_{1}
$$

where $\mathrm{TVD}_{2}=$ new true vertical depth, ft
$\cos =$ cosine
CL = course length-number of feet since last survey
$\mathrm{TVD}_{1}=$ last true vertical depth, ft
Example: TVD (last survey) $=8500 \mathrm{ft}$
Deviation angle $=40$ degrees
Course length $=30 \mathrm{ft}$

Solution: $\mathrm{TVD}_{2}=\cos 40 \times 30 \mathrm{ft}+8500 \mathrm{ft}$
$\mathrm{TVD}_{2}=0.766 \times 30 \mathrm{ft}+8500 \mathrm{ft}$
$\mathrm{TVD}_{2}=22.98 \mathrm{ft}+8500 \mathrm{ft}$
$\mathrm{TVD}_{2}=8522.98 \mathrm{ft}$

Miscellaneous Equations and Calculations

Surface Equipment Pressure Losses

$\mathrm{SEpl}=\mathrm{C} \times \mathrm{MW} \times\left(\frac{\mathrm{Q}}{100}\right)^{1.86}$
where $\mathrm{SEpl}=$ surface equipment pressure loss, psi
C = friction factor for type of surface equipment
$\mathrm{W}=$ mud weight, ppg
$\mathrm{Q}=$ circulation rate, gpm

Type of Surface Equipment	C
1	1.0
2	0.36
3	0.22
4	0.15

Example: Surface equipment type $=3$
$\mathrm{C} \quad=0.22$
Mud weight $\quad=11.8 \mathrm{ppg}$
Circulation rate $\quad=350 \mathrm{gpm}$
$\mathrm{SEpl}=0.22 \times 11.8 \times\left(\frac{350}{100}\right)^{1.86}$
$\mathrm{SEpl}=2.596 \times(3.5)^{1.86}$
$\mathrm{SEpl}=2.596 \times 10.279372$
$\mathrm{SEpl}=26.69 \mathrm{psi}$

Drill stem bore pressure losses

$\mathrm{P}=\frac{0.000061 \times \mathrm{MW} \times \mathrm{L} \times \mathrm{Q}^{1.86}}{\mathrm{~d}^{4.86}}$
where $\mathrm{P} \quad=$ drill stem bore pressure losses, psi
$\mathrm{MW}=$ mudweigh, ppg
$\mathrm{L}=$ length of pipe, ft
$\mathrm{Q}=$ circulation rate, gpm
$\mathrm{d} \quad=$ inside diameter, in.

$$
\begin{aligned}
\text { Example: } & \text { Mud weight }=10.9 \mathrm{ppg} \\
& \text { Length of pipe }=6500 \mathrm{ft} \\
& \text { Circulation rate }=350 \mathrm{gpm} \\
& \text { Drill pipe ID }=4.276 \mathrm{in} . \\
& \mathbf{P}=\frac{0.000061 \times 10.9 \times 6500 \times(350)^{1.86}}{4.2766^{4.86}} \\
& \mathrm{P}=\frac{4.32185 \times 53,946.909}{1166.3884} \\
& \mathrm{P}=199.89 \mathrm{psi}
\end{aligned}
$$

Annular pressure losses

$$
\mathrm{P}=\frac{\left(1.4327 \times 10^{-7}\right) \times \mathrm{MW} \times \mathbf{L} \times \mathrm{V}^{2}}{\mathrm{Dh}-\mathrm{Dp}}
$$

where $\mathbf{P}=$ annular pressure losses, psi
MW = mud weight, ppg
$\mathrm{L}=$ length, ft
$\mathrm{V}=$ annular velocity, $\mathrm{ft} / \mathrm{min}$
$\mathrm{Dh}=$ hole or casing ID, in.
$\mathrm{Dp}=$ drill pipe or drill collar OD, in.
Example: Mud weight $=12.5 \mathrm{ppg}$
Length $\quad=6500 \mathrm{ft}$
Circulation rate $=350 \mathrm{gpm}$
Hole size $\quad=8.5$ in.
Drill pipe $O D=5.0 \mathrm{in}$.
Determine annular velocity, $\mathrm{ft} / \mathrm{min}$:

$$
\mathrm{v}=\frac{24.5 \times 350}{8.5^{2}-5.0^{2}}
$$

$$
\begin{aligned}
& v=\frac{8575}{47.25} \\
& v=181 \mathrm{ft} / \mathrm{min}
\end{aligned}
$$

Determine annular pressure losses, psi:

$$
\begin{aligned}
& \mathrm{P}=\frac{\left(1.4327 \times 10^{-7}\right) \times 12.5 \times 6500 \times 181^{2}}{8.5-5.0} \\
& \mathrm{P}=\frac{381.36}{3.5} \\
& \mathrm{P}=108.96 \mathrm{psi}
\end{aligned}
$$

Pressure loss through common pipe fittings

$$
\mathrm{P}=\frac{\mathrm{K} \times \mathrm{MW} \times \mathrm{Q}^{2}}{12,031 \times \mathrm{A}^{2}}
$$

where $\mathbf{P} \quad=$ pressure loss through common pipe fittings
$\mathrm{K}=$ loss coefficient (See chart below)
MW = weight of fluid, ppg
Q = circulation rate, gpm
$\mathrm{A}=$ area of pipe, sqin.

List of Loss Coefficients (K)

$K=0.42$ for 45 degree ELL
$\mathrm{K}=0.90$ for 90 degree ELL
$\mathrm{K}=1.80$ for tee
$K=2.20$ for return bend
$K=0.19$ for open gate valve
$\mathrm{K}=0.85$ for open butterfly valve

Example: K $=0.90$ for 90 degree ELL
$\mathrm{MW}=8.33 \mathrm{ppg}$ (water)
$\mathrm{Q}=100 \mathrm{gpm}$
$\mathrm{A}=12.5664 \mathrm{sq}$. in. (4.0 in. ID pipe)
$\mathbf{P}=\frac{0.90 \times 8.33 \times 100^{2}}{12,031 \times 12.5664^{2}}$

$$
\begin{aligned}
& P=\frac{74,970}{1,899,868.3} \\
& P=0.03946 \mathrm{psi}
\end{aligned}
$$

Minimum flowrate for PDC bits

Minimum flowrate, $\mathrm{gpm}=12.72 \times$ bit diameter, in. ${ }^{1.47}$
Example: Determine the minimum flowrate for a $12-1 / 4 \mathrm{in}$. PDC bit:
Minimum flowrate, $\mathrm{gpm}=12.72 \times 12.25^{1.47}$
Minimum flowrate, $\mathrm{gpm}=12.72 \times 39.77$
Minimum flowrate $\quad=505.87 \mathrm{gpm}$

Critical RPM: RPM to avoid due to excessive vibration (accurate to approximately 15%)

Critical $\mathrm{RPM}=\frac{33,055}{\mathrm{~L}, \mathrm{ft}^{2}} \times \sqrt{\mathrm{OD}, \mathrm{in}^{2}+\mathrm{ID}, \mathrm{in} .^{2}}$
Example: L = length of one joint of drill pipe $=31 \mathrm{ft}$
$\mathrm{OD}=$ drill pipe outside diameter $=5.0 \mathrm{in}$.
$\mathrm{ID}=$ drill pipe inside diameter $\quad=4.276 \mathrm{in}$.
Critical $\mathrm{RPM}=\frac{33,055}{31^{2}} \times \sqrt{5.0^{2}+4.276^{2}}$
Critical RPM $=\frac{33,055}{961} \times \sqrt{43.284}$
Critical RPM $=34.3965 \times 6.579$
Critical $\mathrm{RPM}=226.296$
NOTE: As a rule of thumb, for 5.0 in. drill pipe, do not exceed 200 RPM at any depth.

References

Adams, Neal and Tommy Charrier, Drilling Engineering: A Complete Well Planning Approach, PennWell Publishing Company, Tulsa, 1985.
Chenevert, Martin E., and Reuven Hollo, T1-59 Drilling Engineering Manual, Penn Well Publishing Company, Tulsa, 1981.

Christman, Stan S., "Offshore Fracture Gradients," $J P T$, August 1973.
Craig, J. T. and B. V. Randall, "Directional Survey Calculations," Petroleum Engineer, March 1976.
Crammer Jr., John L., Basic Drilling Engineering Manual, PennWell Publishing Company, Tulsa, 1982.
Eaton, B. A. "Francture Gradient Prediction and Its Application in Oilfield Operations," JPT, October, 1969.
Jordan, J. R., and O. J. Shirley, "Application of Drilling Performance Data to Overpressure Detection," $J P T$, Nov. 1966.
Kendal, W. A., and W. C. Goins, "Design and Operations of Jet Bit Programs for Maximum Hydraulic Horsepower, Impact Force, or Jet Velocity," Transactions of AIME, 1960.
Matthews, W. R. and J. Kelly, "How to Predict Formation Pressure and Fracture Gradient," Oil and Gas Journal, February 20, 1967.
Moore, P. L., Drilling Practices Manual, PennWell Publishing Company, Tulsa, 1974.
Mud Facts Engineering Handbook, Milchem Incorporated, Houston, Texas, 1984.

Rehn, B. and R. McClendon, "Measurement of Formation Pressure from Drilling Data," SPE Paper 3601, AIME Annual fall Meeting, New Orleans, La., 1971.
Scott, Kenneth F., "A New Practical Approach to Rotary Drilling Hydraulics," SPE Paper No. 3530, New Orleans, La., 1971.

APPENDIX A

Table A-1
DRILL PIPE CAPACITY AND DISPLACEMENT (English System)

Size OD in.	Size ID in.	WEIGHT lb/ft	CAPACITY bbl/ft	DISPLACEMENT bbl/ft
$2-3 / 8$	1.815	6.65	0.00320	0.00279
$2-7 / 8$	2.150	10.40	0.00449	0.00354
$3-1 / 2$	2.764	13.30	0.00742	0.00448
$3-1 / 2$	2.602	15.50	0.00658	0.00532
4	3.340	14.00	0.01084	0.00471
$4-1 / 2$	3.826	16.60	0.01422	0.00545
$4-1 / 2$	3.640	20.00	0.01287	0.00680
5	4.276	19.50	0.01766	0.00652
5	4.214	20.50	0.01730	0.00704
$5-1 / 2$	4.778	21.90	0.02218	0.00721
$5-1 / 2$	4.670	24.70	0.02119	0.00820
$5-9 / 16$	4.859	22.20	0.02294	0.00712
$6-5 / 8$	5.9625	25.20	0.03456	0.00807

Table A-2
HEAVY WEIGHT DRILL PIPE AND DISPLACEMENT

Size OD in.	Size ID in.	WEIGHT lb/ft	CAPACITY bbl/ft	DISPLACEMENT bbl/ft
$3-1 / 2$	2.0625	25.3	0.00421	0.00921
4	2.25625	29.7	0.00645	0.01082
$4-1 / 2$	2.75	41.0	0.00743	0.01493
5	3.0	49.3	0.00883	0.01796

Additional capacities, bbl/ft, displacements, bbl/ft and weight, lb/ft can be determined from the following:

$$
\text { Capacity, } \mathrm{bbl} / \mathrm{ft}=\frac{\mathrm{ID}, \mathrm{in}^{2}{ }^{2}}{1029.4}
$$

Displacement, bbl/ft $=\frac{\text { Dh, in. }-\mathrm{Dp}, \mathrm{in.}^{2}}{1029.4}$
Weight, lb/ft $=$ Displacement, $\mathrm{bbl} / \mathrm{ft} \times 2747 \mathrm{lb} / \mathrm{bbl}$
Table A-3
DRILL PIPE CAPACITY AND DISPLACEMENT (Metric System)

Size OD in.	Size ID in.	WEIGHT lb/ft	CAPACITY Ltrs/ft	DISPLACEMENT Ltrs/ft
$2-3 / 8$	1.815	6.65	1.67	1.19
$2-7 / 8$	2.150	10.40	2.34	1.85
$3-1 / 2$	2.764	13.30	3.87	2.34
$3-1 / 2$	2.602	15.50	3.43	2.78
4	3.340	14.00	5.65	2.45
$4-1 / 2$	3.826	16.60	7.42	2.84
$4-1 / 2$	3.640	20.00	6.71	3.55
5	4.276	19.50	9.27	3.40
5	4.214	20.50	9.00	3.67
$5-1 / 2$	4.778	21.90	11.57	3.76
$5-1 / 2$	4.670	24.70	11.05	4.28
$5-9 / 16$	4.859	22.20	11.96	3.72
$\mathbf{6 - 5 / 8}$	5.965	25.20	18.03	4.21

Tank Capacity Determinations

Rectangular tanks with flat bottoms

Volume, $\mathrm{bbl}=\frac{\text { length, } \mathrm{ft} \times \text { width, } \mathrm{ft} \times \text { depth, } \mathrm{ft}}{5.61}$

Example 1: Determine the total capacity of a rectangular tank with flat bottom using the following data:

Length $=30 \mathrm{ft}$
Width $=10 \mathrm{ft}$
Depth $=8 \mathrm{ft}$
Volume, $\mathrm{bbl}=\frac{30 \mathrm{ft} \times 10 \mathrm{ft} \times 8 \mathrm{ft}}{5.61}$
Volume, bbl $=\frac{2400}{5.61}$
Volume $\quad=427.84 \mathrm{bbl}$
Example 2: Determine the capacity of this same tank with only $5-1 / 2 \mathrm{ft}$ of fluid in it:

Volume, $\mathrm{bbl}=\frac{30 \mathrm{ft} \times 10 \mathrm{ft} \times 5.5 \mathrm{ft}}{5.61}$
Volume, $\mathrm{bbl}=\frac{1650}{5.61}$
Volume $=294.12 \mathrm{bbl}$

Rectangular tanks with sloping sides:

side

Volume, $\mathrm{bbl}=\frac{\text { length, } \mathrm{ft} \times\left[\text { depth, } \mathrm{ft}\left(\text { width }_{1}+\text { width }_{2}\right)\right]}{5.62}$

Example: Determine the total tank capacity using the following data:
Length $\quad=30 \mathrm{ft}$
Width $_{1}$ (top) $=10 \mathrm{ft}$
Width $_{2}$ (bottom) $=6 \mathrm{ft}$
Depth $\quad=8 \mathrm{ft}$

Table A-4
DRILL COLLAR CAPACITY AND DISPLACEMENT

	$\begin{aligned} & \text { I.D. } \\ & \text { Capacity } \end{aligned}$	$\begin{gathered} 11 / 2^{\prime \prime} \\ .0022 \end{gathered}$	$\begin{aligned} & 13 I_{4}^{\prime \prime} \\ & .0030 \end{aligned}$	$\begin{gathered} \mathbf{2}^{\prime \prime} \\ .0039 \end{gathered}$	$\begin{aligned} & 2^{1} / /^{\prime \prime} \\ & .0049 \end{aligned}$	$\begin{gathered} 2^{1} I_{2}^{\prime \prime \prime} \\ .0061 \end{gathered}$	$\begin{gathered} 2^{3} I_{4}^{\prime \prime} \\ .0073 \end{gathered}$	$\begin{gathered} 3^{\prime \prime} \\ .0087 \end{gathered}$	$\begin{gathered} 3 I_{4}^{\prime \prime} \\ .0103 \end{gathered}$	$\begin{gathered} 3^{1} I_{2}^{\prime \prime} \\ .0119 \end{gathered}$	$\begin{aligned} & 3^{3} /_{4}^{\prime \prime} \\ & .0137 \end{aligned}$	$\begin{gathered} 4^{\prime \prime} \\ .0155 \end{gathered}$	$\begin{aligned} & 4^{1} l_{4}^{\prime \prime} \\ & .0175 \end{aligned}$
O.D.	\#/ft	36.7	34.5	32.0	29.2	-	-	-	-	-	-	-	-
$4 \prime$	Disp.	. 0133	. 0125	. 0116	. 0106	-	-	-	-	-	-	-	-
$4^{1 / /_{4}^{\prime \prime}}$	\#/ft	42.2	40.0	37.5	34.7	-	-	-	-	-	-	-	-
	Disp.	. 0153	. 0145	. 0136	. 0126	-	-	-	-	-	-	-	-
$4^{1} / 2^{\prime \prime}$	\#/ft	48.1	45.9	43.4	40.6	-	-	-	--	-	-	-	
	Disp.	. 0175	. 0167	. 0158	. 0148	-	-	-	-	-	-	-	-
$4^{3} / 4^{\prime \prime}$	\#/ft	54.3	52.1	49.5	46.8	43.6	-	-	-	-	-	-	-
	Disp.	. 0197	. 0189	. 0180	. 0170	. 0159	-	-	-	-	-	-	
$5^{\prime \prime}$	\#/ft	60.8	58.6	56.3	53.3	50.1	-	-	-	-	-	-	-
	Disp.	. 0221	. 0213	. 0214	. 0194	. 0182	-	-	-	-	-	-	-
$5^{1 / 4 \prime}$	\#/ft	67.6	65.4	62.9	60.1	56.9	53.4	-	-	-	-	-	-
	Disp.	. 0246	. 0238	. 0229	. 0219	. 0207	. 0194	-	-	-	-	-	-
$5^{1 / 2 \prime \prime}$	\#/ft	74.8	72.6	70.5	67.3	64.1	60.6	56.8	-	-	-	-	-
	Disp.	. 0272	. 0264	. 0255	. 0245	. 0233	. 0221	. 0207	-	-	-	-	-
$5^{3} / 4^{\prime \prime}$	\#/ft	82.3	80.1	77.6	74.8	71.6	68.1	64.3	-	-	-	-	-
	Disp.	. 0299	. 0291	. 0282	. 0272	. 0261	. 2048	. 0234	-	-	-	-	-
$6^{\prime \prime}$	\#/ft	90.1	87.9	85.4	82.6	79.4	75.9	72.1	67.9	63.4	-	-	-
	Disp.	. 0328	. 0320	. 0311	. 0301	. 0289	. 0276	. 0262	. 0247	. 0231	-	-	-
$6^{1 / 4}$	\#/ft	98.0	95.8	93.3	90.5	87.3	83.8	80.0	75.8	71.3	-	-	-
	Disp.	. 0356	. 0349	. 0339	. 0329	. 0318	. 0305	. 0291	. 0276	. 0259	-	-	-

$61 / 2^{\prime \prime}$	\#/ft	107.0	104.8	102.3	99.5	96.3	92.8	89.0	84.8	80.3	-		
	Disp.	. 0389	. 0381	. 0372	. 0362	. 0350	. 0338	. 0324	. 0308	. 0292	-	-	-
$63 / 4{ }^{\prime \prime}$	\#/ft	116.0	113.8	111.3	108.5	105.3	101.8	98.0	93.8	89.3	-	-	-
	Disp.	. 0422	. 0414	. 0405	. 0395	. 0383	. 0370	. 0356	. 0341	. 0325			
$7^{\prime \prime}$	\#/ft	125.0	122.8	120.3	117.5	114.3	110.8	107.0	102.8	98.3	93.4	88.3	-
	Disp.	. 0455	. 0447	. 0438	. 0427	. 0416	. 0403	. 0389	. 0374	. 0358	. 0340	. 0321	
71/4	\#/ft	134.0	131.8	129.3	126.5	123.3	119.8	116.0	111.8	107.3	102.4	97.3	
	Disp.	. 0487	. 0479	. 0470	. 0460	. 0449	. 0436	. 0422	. 0407	. 0390	. 0372	. 0354	-
$71 / 2$	\#/ft	144.0	141.8	139.3	136.5	133.3	129.8	126.0	121.8	117.3	112.4	107.3	-
	Disp.	. 0524	. 0516	. 0507	. 0497	. 0485	. 0472	. 0458	. 0443	. 0427	. 0409	. 0390	-
$73 / 4{ }^{\prime \prime}$	\#/ft	154.0	151.8	149.3	146.5	143.3	139.8	136.0	131.8	127.3	122.4	117.3	-
	Disp.	. 0560	. 0552	. 0543	. 0533	. 0521	. 0509	. 0495	. 0479	. 0463	. 0445	. 0427	
$8^{\prime \prime}$	\#/ft	165.0	162.8	160.3	157.5	154.3	150.8	147.0	142.8	138.3	133.4	123.3	122.8
	Disp.	. 0600	. 0592	. 0583	0.573	. 0561	. 0549	. 0535	. 0520	. 0503	. 0485	. 0467	. 0447
$81 / 4$	\#/ft	176.0	173.8	171.3	168.5	165.3	161.8	158.0	153.8	149.3	144.4	139.3	133.8
	Disp.	. 0640	. 0632	. 0623	. 0613	. 0601	. 0589	. 0575	. 0560	. 0543	. 0525	. 0507	. 0487
$81 / 2^{\prime \prime}$	\#/ft	187.0	184.8	182.3	179.5	176.3	172.8	169.0	164.8	160.3	155.4	150.3	144.8
	Disp.	. 0680	.06;2	. 0663	0.653	. 0641	. 0629	. 0615	. 0600	. 0583	. 0565	. 0547	. 0527
$8^{3 / 4}{ }^{\prime \prime}$	\#/ft	199.0	106.8	194.3	191.5	188.3	194.8	181.0	176.8	172.3	167.4	162.3	156.8
	Disp.	. 0724	0.716	. 0707	0.697	. 0685	. 0672	. 0658	. 0613	. 0697	. 0609	. 0590	. 0570
$9^{\prime \prime}$	\#/ft	210.2	268.0	205.6	202.7	199.6	196.0	192.2	188.0	183.5	178.7	173.5	168.0
	Disp.	. 0765	. 0757	. 0748	0.738	. 0726	. 0714	. 0700	. 0685	. 0668	. 0651	. 0632	. 0612
$10^{\prime \prime}$	\#/ft	260.9	258.8	256.3	253.4	250.3	246.8	242.9	238.8	234.3	229.4	224.2	118.7
	Disp.	. 0950	. 0942	. 0933	. 0923	. 0911	. 0898	. 0884	. 0869	. 0853	. 0835	. 0816	. 0796

Volume, $\mathrm{bbl}=\frac{30 \mathrm{ft} \times[8 \mathrm{ft} \times(10 \mathrm{ft}+6 \mathrm{ft})]}{5.62}$
Volume, $\mathrm{bbl}=\frac{30 \mathrm{ft} \times 128}{5.62}$
Volume $\quad=683.3 \mathrm{bbl}$

Circular cylindrical tanks:

side

Volume, $\mathrm{bbl}=\frac{3.14 \times \mathrm{r}^{2} \times \text { height, } \mathrm{ft}}{5.61}$

Example: Determine the total capacity of a cylindrical tank with the following dimensions:
Height $=15 \mathrm{ft}$
Diameter $=10 \mathrm{ft}$
NOTE: The radius (r) is one half of the diameter:
$r=\frac{10}{2}=5$
Volume, $\mathrm{bbl}=\frac{3.14 \times 5 \mathrm{ft}^{2} \times 15 \mathrm{ft}}{5.61}$
Volume, $\mathrm{bbl}=\frac{1177.5}{5.61}$
Volume $\quad=209.89 \mathrm{bbl}$

Tapered cylindrical tanks:

a) Volume of cylindrical section:
$\mathrm{Vc}=0.1781 \times 3.14 \times \mathrm{r}_{\mathrm{c}}{ }^{2} \times \mathrm{h}_{\mathrm{c}}$
b) Volume of tapered section:

$$
V \mathrm{t}=0.059 \times 3.14 \times \mathrm{h}_{\mathrm{t}} \times\left(\mathrm{r}_{\mathrm{c}}^{2}+\mathrm{r}_{\mathrm{b}}^{2}+\mathrm{r}_{\mathrm{b}} \mathrm{r}_{\mathrm{c}}\right)
$$

where $\mathrm{V}_{\mathrm{c}}=$ volume of cylindrical section, bbl
$\mathrm{r}_{\mathrm{c}}=$ radius of cylindrical section, ft
$\mathrm{h}_{\mathrm{c}}=$ height of cylindrical section, ft
$\mathrm{V}_{\mathrm{t}}=$ volume of tapered section, bbl
$h_{t}=$ height of tapered section, ft
$\mathrm{r}_{\mathrm{b}}=$ radius at bottom, ft
Example: Determine the total volume of a cylindrical tank with the following dimensions:

Height of cylindrical section $=5.0 \mathrm{ft}$
Radius of cylindrical section $=6.0 \mathrm{ft}$
Height of tapered section $=10.0 \mathrm{ft}$
Radius at bottom $\quad=1.0 \mathrm{ft}$
Solution:
a) Volume of the cylindrical section:
$V_{c}=0.1781 \times 3.14 \times 6.0^{2} \times 5.0$
$\mathrm{V}_{\mathrm{c}}=100.66 \mathrm{bbl}$
b) Volume of tapered section:
$\mathrm{V}_{\mathrm{t}}=0.059 \times 3.14 \times 10 \mathrm{ft} . \times\left(6^{2}+1^{2}+1 \times 6\right)$
$V_{t}=1.8526(36+1+6)$
$\mathrm{V}_{\mathrm{t}}=1.8526 \times 43$
$\mathrm{V}_{\mathrm{t}}=79.66 \mathrm{bbl}$
c) Total volume:
$\mathrm{bbl}=100.66 \mathrm{bbl}+79.66 \mathrm{bbl}$
$\mathrm{bbl}=180.32$

Horizontal cylindrical tank:

a) Total tank capacity:

Volume, $\mathrm{bbl}=\frac{3.14 \times \mathrm{r}^{2} \times \mathrm{L}(7.48)}{42}$
b) Partial volume:

$$
\text { Vol, } \mathrm{ft}^{3}=\mathrm{L}\left[0.017453 \times \mathrm{r}^{2} \times \cos ^{-1}\left(\frac{\mathrm{r}-\mathrm{h}}{\mathrm{r}}\right)-\sqrt{2 \mathrm{hr}-\mathrm{h}^{2}}(\mathrm{r}-\mathrm{h})\right]
$$

Example 1: Determine the total volume of the following tank:
Length $=30 \mathrm{ft}$
Radius $=4 \mathrm{ft}$
a) Total tank capacity:

Volume, $\mathrm{bbl}=\frac{3.14 \times 4^{2} \times 30 \times 7.48}{48}$
Volume, $\mathrm{bbl}=\frac{11,273.856}{48}$
Volume $\quad=234.87 \mathrm{bbl}$
Example 2: Determine the volume if there are only 2 feet of fluid in this tank: $(\mathrm{h}=2 \mathrm{ft})$

Volume, $\mathrm{ft}^{3}=30\left[0.017453 \times 4^{2} \times \cos ^{-1}\left(\frac{4-2}{4}\right)-\sqrt{2 \times 2 \times 4-2^{2}} \times(4-2)\right]$
Volume, $\mathrm{ft}^{3}=30\left[0.279248 \times \cos ^{-1}(0.5)-\sqrt{12} \times(2)\right]$
Volume, $\mathrm{ft}^{3}=30(0.279248 \times 60-3.464 \times 2)$
Volume, $\mathrm{ft}^{3}=30 \times 9.827$
Volume $=294 \mathrm{ft}^{3}$
To convert volume, ft^{3}, to barrels, multiply by 0.1781 .
To convert volume, ft^{3}, to gallons, multiply by 7.4805 .
Therefore, 2 feet of fluid in this tank would result in:
Volume, $\mathrm{bbl}=294 \mathrm{ft}^{3} \times 0.1781$
Volume $=52.36 \mathrm{bbl}$
NOTE: This is only applicable until the tank is half full $(\mathrm{r}-\mathrm{h})$. After that, calculate total volume of the tank and subtract the empty space. The empty space can be calculated by $\mathrm{h}=$ height of empty space.

APPENDIX B

Conversion Factors

TO CONVERT
FROM TO MULTIPLY BY

	Area	
Square inches	Square centimeters	6.45
Square inches	Square millimeters	645.2
Square centimeters	Square inches	0.155
Square millimeters	Square inches	1.55×10^{-3}
	Circulation Rate	
Barrels $/ \mathrm{min}$	Gallons $/ \mathrm{min}$	42.0
Cubic feet $/ \mathrm{min}$	Cubic meters $/ \mathrm{sec}$	4.72×10^{-4}
Cubic feet $/ \mathrm{min}$	Gallons $/ \mathrm{min}$	7.48
Cubic feet $/ \mathrm{min}$	Liters $/ \mathrm{min}$	28.32
Cubic meters $/ \mathrm{sec}$	Gallons $/ \mathrm{min}$	15,850
Cubic meters $/ \mathrm{sec}$	Cubic feet $/ \mathrm{min}$	2118
Cubic meters $/ \mathrm{sec}$	Liters $/ \mathrm{min}$	60,000
Gallons $/ \mathrm{min}$	Barrels $/ \mathrm{min}$	0.0238
Gallons $/ \mathrm{min}$	Cubic feet $/ \mathrm{min}$	0.134
Gallons $/ \mathrm{min}$	Liters $/ \mathrm{min}$	3.79
Gallons $/ \mathrm{min}$	Cubic meters $/ \mathrm{sec}$	6.309×10^{-5}
Liters $/ \mathrm{min}$	Cubic meters $/ \mathrm{sec}$	1.667×10^{-5}
Liters $/ \mathrm{min}$	Cubic feet $/ \mathrm{min}$	0.0353
Liters $/ \mathrm{min}$	Gallons $/ \mathrm{min}$	0.264

Impact Force

Pounds	Dynes	4.45×10^{5}
Pounds	Kilograms	0.454
Pounds	Newtons	4.448
Dynes	Pounds	2.25×10^{-6}

TO CONVERT FROM		MULTIPLY
Kilograms	Pounds	2.20
Newtons	Pounds	0.2248
	Length	
Feet	Meters	0.305
Inches	Millimeters	25.40
Inches	Centimeters	2.54
Centimeters	Inches	0.394
Millimeters	Inches	0.03937
Meters	Feet	3.281

Mud Weight

Pounds/gallon	Pounds $/ \mathrm{cu} \mathrm{ft}$	7.48
Pounds/gallon	Specific gravity	0.120
Pounds/gallon	Grams $/ \mathrm{cu} \mathrm{cm}$	0.1198
Grams/cu cm	Pounds/gallon	8.347
Pounds $/ \mathrm{ft}$	Pounds $/$ gallon	0.134
Specific gravity	Pounds/gallon	8.34

Power

Horsepower	Horsepower (metric)	1.014
Horsepower	Kilowatts	0.746
Horsepower	Foot pounds/sec	550
Horsepower (metric)	Horsepower	0.986
Horsepower (metric)	Foot pounds/sec	542.5
Kilowatts	Horsepower	1.341
Foot pounds/sec	Horsepower	0.00181

Presssure

Atmospheres	Pounds $/ \mathrm{sq}$ in.	14.696
Atmospheres	Kgs $/ \mathrm{sq} \mathrm{cm}$	1.033
Atmospheres	Pascals	1.013×10^{5}
Kilograms $/ \mathrm{sq} \mathrm{cm}$	Atmospheres	0.9678
Kilograms $/ \mathrm{sq} \mathrm{cm}$	Pounds $/ \mathrm{sq}$ in.	14.223
Kilograms $/ \mathrm{sq} \mathrm{cm}$	Atmospheres	0.9678

$\begin{gathered} \text { TO CONVERT } \\ \text { FROM } \end{gathered}$	TO	MULTIPLY BY
Pounds/sq in.	Atmospheres	0.0680
Pounds/sq in.	Kgs./sq cm	0.0703
Pounds/sq in.	Pascals	6.894×10^{3}
Velocity		
Feet/sec	Meters/sec	0.305
Feet/min	Meters/sec	5.08×10^{-3}
Meters/sec	Feet/min	196.8
Meters/sec	Feet/sec	3.28
Volume		
Barrels	Gallons	42
Cubic centimeters	Cubic feet	3.531×10^{-5}
Cubic centimeters	Cubic inches	0.06102
Cubic centimeters	Cubic meters	10^{-6}
Cubic centimeters	Gallons	2.642×10^{-4}
Cubic centimeters	Liters	0.001
Cubic feet	Cubic centimeters	28,320
Cubic feet	Cubic inches	1728
Cubic feet	Cubic meters	0.02832
Cubic feet	Gallons	7.48
Cubic feet	Liters	28.32
Cubic inches	Cubic centimeters	16.39
Cubic inches	Cubic feet	5.787×10^{-4}
Cubic inches	Cubic meters	1.639×10^{-5}
Cubic inches	Gallons	4.329×10^{-3}
Cubic inches	Liters	0.01639
Cubic meters	Cubic centimeters	10^{6}
Cubic meters	Cubic feet	35.31
Cubic meters	Gallons	264.2
Gallons	Barrels	0.0238
Gallons	Cubic centimeters	3785
Gallons	Cubic feet	0.1337
Gallons	Cubic inches	231
Gallons	Cubic meters	3.785×10^{-3}
Gallons	Liters	3.785
Weight		
Pounds	Tons (metric)	4.535×10^{-4}
Tons (metric)	Pounds	2205
Tons (metric)	Kilograms	1000

Index

Accumulator
capacity subsea system, 39,40
capacity surface system, $37,38,39$
pre-charge pressure, 40, 41
Annular capacity
between casing and multiple
between casing or hole and drill pipe, tubing, or casing, 12, 13, 14
strings of tubing, $14,15,16,17,18$
Annular velocity
critical, 173, 174
determine, $9,10,11$
metric, 11
pump output required, 11
SPM required, 12
Bit nozzle selection, 165, 166, 167, 168, 169
Bottomhole assembly, length necessary for a desired weight on bit, 42, 43, 44
Buoyancy factor, 20, 42, 43, 44
Capacity
annular, 12, 13, 14, 15, 16
inside, 16, 17, 18, 25, 26, 27

Cementing calculations
additive calculations, 47, 48, 49, 50
balanced cement plug, 61, 62, 63 . 64
common cement additives, 51, 52 , 53
differential pressure, 65, 66
number of feet to be cemented, 57 , $58,59,60$
sacks required, $54,55,56,57$
water requirements, $48,49,50,51$
weighted cement calculations, 53 , 54
Centrifuge, evaluation, $99,100,101$
Control drilling, 19
Cost per foot, 28, 29
Conversion factors
area, 217
circulation rate, 217
impact force, 217
length, 218
mud weight, 218
power, 218
pressure, 218
velocity, 219
volume, 219
weight. 219

Cuttings
amount drilled, 18, 19
bulk density, 41, 42
slip velocity, 175, 176, 177, 178, 179
"d" exponent, 174, 175
Density
equivalent circulating, 6, 7, 187, $188,189,190$
metric, 7
Directional drilling
available weight on bit, 202
deviation/departure, 199, 200
dogleg severity, 200, 201
survey calculations, 197, 198, 199
true vertical depth, 202
Displacement, drill collar, 25, 26
Diverter lines, 118
Drill collar, capacity and
displacement, 212, 213
Drill pipe
capacity and displacement, 209, 210
heavy weight, 209
Drill string
critical, 206
design, 42, 43, 44
Drilling fluids
dilution, 85
increase density, $81,82,83,84,85$
increase starting volume, 82,83 , 88
metric, 81
mixing fluids of different densities, 86, 87
oil-based muds changing oil/water ratio, 88,89 , 90, 91
density of mixture, 87,88
starting volume to prepare, 88
Equivalent mud weight, 118, 119, 120

Flowrate, minimum for PDC bits, 206
Fracture gradient
Ben Eaton method, 193, 194
Matthews and Kelly method, 190, 191, 192
subsea applications, 194, 195, 196
Gas migration, 128
Hydraulic, horsepower, 25
Hydraulic analysis, 169, 170, 171, 172
Hydraulicing casing, 66, 67, 68
Hydrocyclone, evaluation, 97, 98
Hydrostatic pressure decrease
gas cut mud, 129
tripping pipe, 20, 21, 22
Kick
maximum pit gain, 130, 131
maximum pressure when circulating, $124,131,132,133$, 134, 135, 136
maximum surface pressure, 129 , 130

Leak-off test
MASICP, 121
maximum allowable mud weight from, $7,118,119,120,121$

Overbalance
loss of, 22, 23
lost returns, 71, 72
metric, 23, 24

Pressure

adjusting pump rate, 27,28
analysis, gas expansion, 137
breaking circulation, 79, 80
drill stem tests, surface pressures, 138, 139
exerted by mud in
casing, 138
tests, 118, 119, 120
gradient
convert, 2
determine, 1, 2
metric, 2,3
hydrostatic
convert, 4, 5
determine, 3, 4
metric, 4,5
maximum anticipated surface, 115. 116, 117, 122
metric, 28
Pressure losses
annular, 204
drill stem bore, 203
pipe fittings, 205
surface equipment, 203
Pump output
duplex, 8, 9
metric, 9
triplex, 7,8
Slug calculations, 33, 34, 35, 36
metric, 37
Solids
analysis, $91,92,93,94,95$
dilution, 96
displacement, 97
fractions, 95, 96
generated, 18, 19
Specific gravity
convert, 6
determine, 5
Stripping/snubbing
breakover point, 139, 140
casing pressure increase from stripping into influx, 142
height gain from stripping into influx, 141
maximum allowable surface
pressures, 143
maximum surface pressure before stripping, 141
volume of mud to bleed. 142
Strokes, to displace, 31, 32, 33
Stuck pipe
determining free point, 72, 73, 74
height of spotting fluids, 74
spotting pills, $75,76,77,78,79$
Surge and swab pressures, 179, 180, 181, 182, 183, 184, 185, 186, 187

Tank capacity determinations, 210 , 211, 214, 215, 216
Temperature
conversion, 29, 30
determine, 24,25
Ton-mile calculations
coring operations, 46
drilling or connection, 46
round trip, $44,45,46$
setting casing, 47
short trip, 47
Volume
annular, 32, 33, 103, 104, 106
drill string, $31,32,103,104,106$
Washout, depth of, 70, 71
Weight
calculate $\mathrm{lb} / \mathrm{ft}, 25,26$
maximum allowable mud, 7
rule of thumb, 26,27
Well control
bottomhole pressure, 125
final circulating pressure, 104, 107, 113, 114
formation pressure
maximum, 122
shut-in on kick, 124
gas migration, 128

Well control (continued)
metric, 128
influx
maximum height, $122,123,126$, 127
type, 127, 128
initial circulating pressure, 104, 107, 113, 114
kick
gas flow into wellbore, 136, 137
maximum pit gain, 130, 131
maximum surface pressure, 115 , $116,117,131,132,133,134$, 135, 136
tolerance
factor, 121
maximum surface pressure from, 122, 129
kill sheets
highly deviated well, 112, 113, 114, 115
normal, 103, 104, 105, 106, 107, $108,109,110$
tapered string, $110,111,112$
kill weight mud, 104, 107, 113
MASICP, 121, 123, 124
maximum anticipated surface pressure, 115, 116, 117
psi/stroke, 104, 108, 109, 110
shut-in casing pressure, 125,126
shut-in drill pipe pressure, 125
sizing diverter lines, 118
subsea well control
BHP when circulating kick, 151, 152
bringing well on choke, 144, 145
casing burst pressure, 146, 147, 148
choke line
adjusting for higher weight, 149
pressure loss, 148
velocity through, 148
maximum allowable mud weight, 145
maximum allowable shut-in casing pressure, $145,146,147$, 148
maximum mud weight with returns back to rig floor, 150
minimum conductor casing setting depth, 149,150
riser disconnected, 151
trip margin, 108
Workover operations
annular stripping procedures
combined stripping/volumetric procedure, 161, 162
strip and bleed procedure, 161
bullheading, 153, 154, 155
controlling gas migration
drill pipe pressure method, 157
metric, 158, 159
volumetric method, 158,159
gas lubrication
metric, 159,160
pressure method, 160, 161
volume method, 159, 160
lubricate and bleed, 155, 156

Formulas and Calculations for Drilling, Production, and Workover

SECOND EDITION

Norton J. Lapeyrouse
Consultant, Randy Smith Training Solutions

- The "must have" resource for calculating exact formulas when on location
- New and updated material includes metric conversion tables
- Easy-to-understand example calculations are provided throughout
"The author's statement that, 'this handy book gives you all the formulas and calculations you are likely to need in drilling operations' is justified due to the completeness and easy use of the information.... The entire format has clearly been made with the user in mind."
-Applied Mechanics Reviews (Review of the first edition)

The most complete manual of its kind, Formulas and Calculations for Drilling, Production, and Workover has been updated to include metric conversion tables. Separate chapters deal with calculations for drilling fluids, pressure control, hydraulics, and much more. Example calculations are provided throughout.

Presented in an easy-to-use, step-by-step order, Formulas and Calculations is a quick reference for day-to-day work out on the rig. It also serves as a handy study guide for drilling and well control certification courses. Virtually all the mathematics required on a drilling rig is here in one convenient source, including formulas for pressure gradient, specific gravity, pump
output, annular velocity, buoyancy factor, volume and stroke, slug weight, drill string design, cementing, depth of washout, bulk density of cuttings, and stuck pipe.

Norton J. Lapeyrouse is a technical training instructor in oilfield courses with international experience. He has developed numerous training programs, courses, and manuals for supervisory and field personnel. He is currently employed by Randy Smith Training Solutions and teaches technical training courses at their Houston location.

Related titles:

Composition and Properties of Drilling and Completion Fluids, Fifth Edition H.C.H. Darley and George R. Gray ISBN: 087201147 X, Hardcover, 644 pp.

Shale Shaker and Drilling Fluids Systems: Techniques and Technology for Improving Solids Control Management American Association of Drilling Engineers
ISBN: 0884159485, Hardcover, 300 pp.
Reservoir Engineering Handbook, Second Edition
Tarek Ahmed
ISBN: 0884157709, Hardcover, 1186 pp.

