ROLL NO.

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Max Time: 120 Mins
Weightage: 40 \%

ENDTERM FINAL EXAMINATION

I Semester AY 2017-18
Course: CSE 202 DIGITAL DESIGN
19 DECEMBER 2017

Instructions:

i. Write legibly
ii. Scientific and non-programmable calculators are permitted

Part A

[4 Q x $10 \mathrm{M}=40$ Marks]

1. Enumerate the design steps in combination logic, and design a circuit with three inputs $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and outputs A, B and C. When the binary inputs is $4,5,6$ or 7 the binary output is two less than the input and when the input binary input is $0,1,2$,or 3 the binary output is one greater than the input.
2. Enlist the steps in analysis process of combinational logic and describe with suitable example.
3. What is multiplexer? Simplify the Boolean function using $8: 1$ multiplexer $f(a b c d)=\sum m(1,3,4,11,12,13,14,15)$ and write the logic diagram.
4. What is the difference between flip flop and latch? Write characteristic table and excitation table for SR, JK, D and T flip flop

Part B

[2 Q x 8 M= 16 Marks]
5. Design $32: 1$ multiplexer using only using $8: 1$ multiplexer and one $4: 1$ multiplexer.
6. What is demultiplexer? Design using decoder and external gates
$\mathrm{F} 1(\mathrm{abc})=\sum \mathrm{m}(2,4,6,7)$ and $\mathrm{F} 2(\mathrm{abc})=\sum \mathrm{m}(1,3,5,7)$

Part C

7. Design a sequential logic using JK flip flop with the following transition when $\mathbf{x}=\mathbf{1}$, $\mathbf{1 1} \rightarrow \mathbf{0 0} \rightarrow \mathbf{1 0} \rightarrow \mathbf{0 1} \rightarrow \mathbf{1 1}$, and the sequential logic will remain in same state when $\mathbf{x}=\mathbf{0}$. Assume state 11 as initial state and 01 as final state. Output is 1 at final state and 0 at all other states.
8. Analyze the clocked synchronous sequential logic give below

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

TEST 2

I Semester AY 2017-2018
Course: CSE 202 Digital Design

Instructions:

i. Write legibly
ii. Scientific and non programmable calculators are permitted

Part A

1. Define the terms Prime Implicants \& Essential Prime Implicants. $\quad \mathbf{2 M}$
2. With neat logic diagram, truth table \& output expressions explain
a) Binary Half Subtractor
b) Binary Full Adder

Part B

3. Simplify the Boolean function using K-MAP
$\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum \mathrm{m}(0,1,3,5,8,9,12,14,15)+\sum \mathrm{d}(2,11,13) \quad \mathbf{5 M}$
4. Explain the steps involved in Quine McCluskey method to find Essential. $\mathbf{5 M}$

Prime Implicants. Also explain how step- 1 is carried out to find Prime Implicants.
5. Simplify the Boolean function using K-MAP and find the output expression for
$\operatorname{POS}\left(\mathrm{f}^{\prime}\right) . \quad \mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e})=\quad \sum \mathrm{m}(0,2,4,5,9,10,14,16,24)+\sum \mathrm{d}(19,21,30)$

Part C

6. Simplify the Boolean Function using Quine McCluskey method.
$\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e})=\quad \sum \mathrm{m}(0,1,2,5,6,7,8,12,15,16,21,23,24,26,29,30,31)$
