HANDBOOK OF
 ELECTRONICS FORMULAS, SYMBOLS AND
 DEFINITIONS

HANDBOOK OF ELECTRONICS FORMULAS, SYMBOLS
 AND DEFINITIONS

Second Edition

John R. Brand

Copyright © 1992 by Van Nostrand Reinhold
Softcover reprint of the hardcover 1st edition 1992

Library of Congress Catalog Card Number 91-30692

All rights reserved. Certain portions of this work $@ 1979$ by Van Nostrand Reinhold. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means --graphic, electronic, or mechanical, including photocopying, recording, taping, or informational storage and retrieval systems -- without written permission of the publisher

Manufactured in the United States of America
Published by Van Nostrand Reinhold
115 Fifth Avenue
New York, New York 10003
Chapman and Hall
2-6 Boundary Row
London, SE 1 8HN
Thomas Nelson Australia
102 Dodds Street
South Melbourne 3205
Victoria, Australia
Nelson Canada
1120 Birchmount Road
Scarborough, Ontario M1K 5G4, Canada
$\begin{array}{lllllllllll}16 & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 \\ 5 & 4 & 3 & 2\end{array}$

Library of Congress Cataloging-in-Publication Data

Brand, John R.
Handbook of electronics formulas, symbols, and definitions/ John R. Brand. -- 2nd ed.
p. cm.

1. Electronics--Handbooks, manuals, etc. I. Title.

TK7825.B73 1991
$621.381-\mathrm{dc} 20$ 91-30692
CIP

PREFACE

The Handbook of Electronics Formulas, Symbols and Definitions has been compiled for engineers, technicians, armed forces personnel, commercial operators, students, hobbyists, and all others who have some knowledge of electronic terms, symbols, and theory.

The author's intention has been to provide:
A small, light reference book that may be easily carried in an attaché case or kept in a desk drawer for easy access.
A source for the majority of all electronic formulas, symbols, and definitions needed or desired for today's passive and active analog circuit technology.
A format in which a desired formula may be located almost instantly without the use of an index, in the desired transposition, and in sufficiently parenthesized linear form for direct use with any scientific calculator.
Sufficient information, alternate methods, approximations, schematic diagrams, and/or footnotes in such a manner so that technicians and hobbyists may understand and use the majority of the formulas, and that is acceptable and equally useful to engineers and others very knowledgeable in the field.

INTRODUCTION

All formulas in this Handbook use only the basic units of all terms. It is especially easy in this age of scientific calculators to convert to and from basic units.

Formulas in all sections are listed alphabetically by symbol with the exception of applicable passive circuit symbols, where, for a given resultant, all series circuit formulas are listed first, followed by parallel and complex circuit formulas.

If the symbol for an electronic term is unknown, a liberally cross-referenced listing of electronic terms and their corresponding symbols may be found in the appendix.

Symbols of all reactive magnitude terms in formulas have been consistently given the signs conventionally associated with them to maintain capacitive or inductive identity. In rectangular quantities, this also allows identification of the complex number as representing a series equivalent impedance/ voltage or a parallel equivalent admittance/current.

To prevent possible confusion, all symbols representing vector quantities in polar or rectangular form have been printed in boldface.

A number of formulas have the potential to develop a zero divisor. Conventional mathematics prohibits a division by zero, and calculators will overflow if this is attempted. However, formulas noted © allow the manual conversion of the reciprocal of zero to infinity and the reciprocal of infinity to zero. Division by zero in formulas noted ${ }^{\otimes}$ is prohibited.

Textbooks conventionally use italic (slanted) type for quantity symbols and roman (upright) type for unit symbols. However, this Handbook follows the example of almost all technical manuals, using roman type for both quantity and unit symbols.

ACKNOWLEDGMENTS

Much of the material in this Handbook is based upon a small loose-leaf notebook containing formulas and other reference material compiled over many years. With the passage of time, the sources of this material have become unknown. It is impossible therefore to list and give the proper credit.

Special thanks are due to my wife and family for their understanding and acceptance of long periods of neglect, without which this book would not have been possible.

CONTENTS

Preface iii
Introduction v
Section 1 Passive Circuits
1.1 English Letters 1
1.2 Greek Letters 185
Section 2 Transistors
2.1 Static Conditions 201
2.2 Small Signal Conditions 221
Section 3 Operational Amplifiers
3.1 Symbols and Definitions 253
3.2 Formulas and Circuits 277
Appendix
A Table of 5\% Value Ratios 363
B Table of $1 \%, 0.5 \%, 0.25 \%$ and 0.1% Standard Values 369
C Electronics Terms and their Corresponding Symbols 371

SECTION ONE

> PASSIVE CIRCUITS

> 1.1 ENGLISH LETTERS

A
 Ampere, Amplification etc.

A = Symbol for ampere.
A = Basic unit of electric current.
A = Coulombs per second.
$A=6.24 \cdot 10^{18}$ elementary charges per second (electrons or holes).
$\mathrm{A}=$ Unit often used with multiplier prefixes.
$\mathrm{pA}=10^{-12} \mathrm{~A}, \mathrm{nA}=10^{-9} \mathrm{~A}, \mu \mathrm{~A}=10^{-6} \mathrm{~A}$ $\mathrm{mA}=10^{-3} \mathrm{~A}, \mathrm{kA}=10^{3} \mathrm{~A}$, etc.
$\mathbf{A}=$ Symbol for area. Area is measured in various unit such as $\mathrm{in}^{2}, \mathrm{ft}^{2}, \mathrm{~cm}^{2}, \mathrm{~m}^{2}$ etc.
$\mathrm{Ah}=$ Symbol for ampere-hours. One ampere-hour equals 3600 coulomb (C).

At or $\mathbf{A}=$ Symbol for ampere turn, the SI unit of magnetomotive force.
$A_{i}=$ Symbol for current amplification.
See-Active Circuits
$\mathrm{A}_{\mathrm{v}}=$ Symbol for voltage amplification.
See-Active Circuits.
$\mathrm{a}=$ Symbol for atto. A multiplier preflx for 10^{-18}.
$a=$ Substitute for greek letter alpha. (Not recommended)
See- α
$\mathrm{a}=$ Not recommended as a quantity symbol.

B

Susceptance

Definitions

B = Symbol for susceptance
$\mathrm{B}=$ The ease with which an alternating current of a given frequency at a given potential flows in a circuit containing only pure capacitive and/or inductive elements. The imaginary part of admittance. The reciprocal of reactance in any purely reactive circuit. The reciprocal of a pure reactance in parallel with other elements.
B = Magnitude of susceptance measured in mho (old) or siemens (new). Siemens (\mathbf{S}) and mho (Ω^{-1}) are equal.
$B=|B|=B_{\text {absolute value }}=B_{\text {magnitude }}$
$\mathbf{B}=$ Complete description of susceptance
$B=B / \pm 90^{\circ}=0 \pm j B=0-(\pm B) j$
$\mathbf{B}_{\mathrm{C}}=$ Capacitive susceptance
$B_{C}=B /+90^{\circ}=0+j B=0-(-B) j$
$\mathbf{B}_{\mathbf{L}}=$ Inductive susceptance
$B_{L}=B /-90^{\circ}=0-j B=0-(+B) j$
$\mathrm{B}_{\mathrm{C}}=\mathrm{B}$ magnitude identified as capacitive
$B_{L}=B$ magnitude identified as inductive
$-\mathrm{B}=\mathrm{B}$ magnitude "given" the sign usually associated with capacitive quantities. $-\mathrm{B}=\mathrm{B}_{\mathrm{C}}$
$+\mathrm{B}=\mathrm{B}$ magnitude "given" the sign usually associated with inductive quantities. $+B=B_{L}$
$\pm \mathrm{B}=$ Identification of B as capacitive or inductive in many formulas.
$\pm B=$ Identification of B as capacitive or inductive in the resultant of all formulas in this handbook.

Susceptance, Series Circuits		$\stackrel{\text { E. }}{\substack{\text { - }}}$
$\mathrm{B}_{\mathrm{C}}=-\mathrm{X}_{\mathrm{C}} /\left(\mathrm{X}_{\mathrm{C}}^{2}+\mathrm{R}_{\mathrm{s}}^{2}\right)$	(1) (2) (3)	$\mathrm{R}_{\mathrm{s}}, \mathrm{X}_{\mathrm{C}}$
$B_{L}=X_{L} /\left(X_{L}^{2}+R_{s}^{2}\right)$	(1) (2) (3)	$\mathrm{R}_{\mathrm{s}}, \mathrm{X}_{\mathrm{L}}$
$\pm B= \pm X_{s} /\left(X_{s}^{2}+R_{s}^{2}\right)$	(1) (2) (3)	$\mathrm{R}_{\mathrm{s}}, \pm \mathrm{X}_{\mathrm{s}}$
$\mathrm{B}_{\mathrm{C}}=-\mathrm{X}_{\mathrm{C}} / \mathrm{Z}^{2}$	(1) (2) (3)	X_{C}, Z
$\mathrm{B}_{\mathrm{L}}=\mathrm{X}_{\mathrm{L}} / \mathrm{Z}^{2}$	(1) (2) (3)	X_{L}, Z
$\pm \mathrm{B}= \pm \mathrm{X}_{\mathrm{s}} / \mathrm{Z}^{2}$	(1) (2) (3)	$\pm X_{s}, \mathrm{Z}$
$\pm \mathrm{B}=-\mathrm{Y}\left[\sin \left(\pm \theta_{\mathrm{Y}}\right)\right]$	$\begin{array}{\|l\|} \hline \text { (1) (2) (3) } \\ \text { (4) (13) } \end{array}$	$\mathrm{Y}, \pm \theta_{\mathrm{Y}}$
$\pm \mathrm{B}=\left[\sin \left(\pm \theta_{\mathrm{z}}\right)\right] / \mathrm{Z}$	$\begin{aligned} & \text { (1) (2) (3) } \\ & \text { (4) (1) } \end{aligned}$	$\mathrm{Z}, \pm \theta_{\mathrm{z}}$

B Notes:

(1) B IS INTRINSICALLY A PARALLEL CIRCUIT QUANTITY. B DERIVED FROM A SERIES CIRCUIT IS THE EQUIVALENT PARALLEL CIRCUIT REACTANCE IN RECIPROCAL FORM.
(2) $\mathrm{R}_{\mathrm{s}}=$ Series $\mathrm{R}, \mathrm{X}_{\mathrm{s}}=$ Series \mathbf{X}.
(3) B and X are magnitudes, however both B and X have been "given" the signs usually associated with capacitive and inductive quantities. B_{C} therefore "equals" - B, B_{L} "equals" $+\mathbf{B}, \mathbf{X}_{C}$ "equals" $-\mathbf{X}$ and X_{L} "equals" +X . This allows direct identification of a reactive quantity derived from any formula in this handbook.
(4) The form ($\pm \theta$) is used as a reminder that the sign of the phase angle determines the sign of B and therefore the identity of B as either capacitive or inductive.

Susceptance, Parallel Circuits		E.
$\begin{aligned} \left(B_{C}\right)_{t} & =\left(-B_{C}\right)_{1}+\left(-B_{C}\right)_{2} \cdots+\left(-B_{C}\right)_{n} \\ -B_{t} & =\left(-B_{1}\right)+\left(-B_{2}\right) \cdots+\left(-B_{n}\right) \end{aligned}$	(3)	$\begin{aligned} & \mathrm{B}_{\mathrm{C}} \\ & -\mathrm{B} \end{aligned}$
$\begin{aligned} \left(B_{L}\right)_{t} & =\left(B_{L}\right)_{1}+\left(B_{L}\right)_{2} \cdots+\left(B_{L}\right)_{n} \\ +B_{t} & =\left(+B_{1}\right)+\left(+B_{2}\right) \cdots+\left(+B_{n}\right) \end{aligned}$	(3)	$\begin{aligned} & \mathrm{B}_{\mathrm{L}} \\ & +\mathrm{B} \end{aligned}$
$\left(B_{C}\right)_{t}=-\omega\left(C_{1}+C_{2} \cdots+C_{n}\right)$	(3) (5) (10)	C
$\left(B_{L}\right)_{t}=\omega^{-1}\left(L_{1}^{-1}+L_{2}^{-1} \cdots+L_{n}^{-1}\right)$	$\begin{aligned} & \text { (3) (5) } \\ & \text { (6) (10) } \end{aligned}$	L
$\begin{aligned} \left(B_{C}\right)_{t} & =\left(-X_{C}\right)_{1}^{-1}+\left(-X_{C}\right)_{2}^{-1} \cdots+\left(-X_{C}\right)_{n}^{-1} \\ -B_{t} & =\left(-X_{1}\right)^{-1}+\left(-X_{2}\right)^{-1} \cdots+\left(-X_{n}\right)^{-1} \end{aligned}$	(3) (6) (1)	$\begin{aligned} & \mathrm{X}_{\mathrm{C}} \\ & -\mathrm{X} \end{aligned}$
$\begin{aligned} \left(B_{L}\right)_{t} & =\left(+X_{L}\right)_{1}^{-1}+\left(+X_{L}\right)_{2}^{-1} \cdots+\left(+X_{L}\right)_{n}^{-1} \\ +B_{t} & =\left(+X_{1}\right)^{-1}+\left(+X_{2}\right)^{-1} \cdots+\left(+X_{n}\right)^{-1} \end{aligned}$	(3) (6) (1)	$\begin{aligned} & \mathrm{X}_{\mathrm{L}} \\ & +\mathrm{X} \end{aligned}$
$\begin{aligned} &\|B\|= \text { The magnitude of the imaginary } \\ & \text { part of } \mathbf{Y}_{\text {RECT }} \\ & \pm B= \text { The imaginary part of } Y_{\text {RECT }} \\ & \text { multiplied by }-j \text {. } \end{aligned}$	$\begin{aligned} & \text { (3) } 7 \\ & \text { (8) } 9 \end{aligned}$	$\begin{aligned} & \mathbf{Y} \\ & \text { RECT } \end{aligned}$

B Notes:

(5) $\omega=2 \pi \mathrm{f}=$ angular velocity
(6) $\mathrm{x}^{-1}=1 / \mathrm{x}$
(7) $\mathbf{Y}_{\text {RECT }}=G \pm j|B|=G-j(\pm B)=G-(\pm B) j$
(8) $|\mathrm{B}|=$ magnitude of B without knowledge of vectorial direction. $|\mathrm{B}|$ therefore cannot be identified as either capacitive or inductive.
(9) $(-\mathrm{j}) \cdot(-\mathrm{j})=+1, \quad(-\mathrm{j}) \cdot(+\mathrm{j})=-1$
(10) $(\mathrm{x})_{\mathrm{t}}=$ total $\mathrm{x}=$ equivalent x

Susceptance, Parallel Circuits		$\underset{\sim}{\text { E® }}$
$\begin{aligned} & \pm B_{t}=B_{L}-B_{C} \\ & \pm B_{t}=\left(\pm B_{1}\right)+\left(\pm B_{2}\right) \cdots+\left(\pm B_{n}\right) \end{aligned}$	$\begin{aligned} & \text { (3) } \\ & \text { (1) } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{B}_{\mathrm{C}}, \mathrm{~B}_{\mathrm{L}} \\ & -\mathrm{B},+\mathrm{B} \end{aligned}\right.$
$\begin{aligned} & \pm B_{t}=(\omega L)^{-1}-(\omega C) \\ & \pm B_{t}=\left(\omega L_{1}\right)^{-1}-\left(\omega C_{1}\right)+\left(\omega L_{2}\right)^{-1}-\left(\omega C_{2}\right)- \end{aligned}$	$\begin{array}{lll} \text { (3) } & \text { (5) } \\ \text { © (1) } \end{array}$	C L
$\|\mathrm{B}\|=\sqrt{\mathrm{Y}^{2}-\mathrm{G}^{2}}$	(8)	G, Y
$\pm \mathrm{B}=-\mathrm{G}\left[\tan \left(\pm \theta_{\mathrm{Y}}\right)\right]$	(3) (4)	G, $\theta_{\mathbf{Y}}$
$\|\mathrm{B}\|=\sqrt{\mathrm{Z}^{-2}-\mathrm{R}^{-2}}$	$\begin{gathered} \text { (8) (11) } \\ \hline \end{gathered}$	$\mathrm{R}_{\mathrm{p}}, \mathrm{Z}$
$\pm \mathrm{B}=\left[\tan \left(\pm \theta_{\mathrm{Z}}\right)\right] / \mathrm{R}$	$\text { (3) (4) }^{(12)}$	$\mathrm{R}_{\mathrm{p}}, \theta_{\mathrm{z}}$
$\begin{aligned} & \pm B_{t}=X_{L}^{-1}-X_{C}^{-1} \\ & \pm B_{t}=\left(\pm X_{1}\right)^{-1}+\left(\pm X_{2}\right)^{-1} \cdots+\left(\pm X_{n}\right)^{-1} \end{aligned}$	$\begin{gathered} \text { (3) (6) } \\ \text { (1) } \end{gathered}$	$\begin{aligned} & \mathrm{X}_{\mathrm{C}}, \mathrm{X}_{\mathrm{L}} \\ & -\mathrm{X}+\mathrm{X} \end{aligned}$
$\pm \mathrm{B}=-\mathrm{Y}\left[\sin \left(\pm \theta_{\mathbf{Y}}\right)\right]$	${\underset{i}{(3)}}^{(4)}$	$\mathbf{Y}, \theta_{\mathbf{Y}}$
$\pm \mathrm{B}=\left[\sin \left(\pm \theta_{\mathrm{z}}\right)\right] / \mathrm{Z}$	(3) (4)	$\mathrm{Z}, \theta_{\mathrm{Z}}$

B Notes:

(11) $x^{-2}=1 / x^{2}$
(12) $\mathrm{R}_{\mathrm{p}}=$ parallel resistance
(13) If the admittance (Y) or the impedance (Z) and the associated phase angle ($\theta_{\mathbf{Y}}$ or $\theta_{\mathbf{Z}}$) are known, it is immaterial if the circuit configuration (i.e., series or parallel) is unknown.

3 dB Down
 Bandwidth
 BW
 Bandwidth

BW = Symbol for bandwidth
Other symbols for or abbreviations of bandwidth include: $B, \bar{B},\left(f_{2}-f_{1}\right), B . W ., \overline{B W}, B W_{-3} d B$
$\mathrm{BW}=$ The difference between the two frequencies of a continuous frequency band where the output has fallen to one half power. (-3 dB is very close to one half power)
$B W=$ Bandwidth expressed in hertz (Hz).
$B W=\left(f_{2}-f_{1}\right)-3 d B$
$B W=f_{r} / Q$
$B W=\left(f_{r} R\right) / X_{L(@ f r}$

$B W=R /(2 \pi L)$

$$
f_{r}=(2 \pi \sqrt{L C})^{-1}
$$

$B W=\left(f_{2}-f_{1}\right)_{-3 d B}$
$B W=f_{r} / Q$
$B W=\left(f_{r} X_{C(@ f r)}\right) / R$

$B W=(2 \pi R C)^{-1}$

$$
f_{r}=(2 \pi \sqrt{L C})^{-1}
$$

$\mathrm{BW}_{(\mathrm{Av}=1)}$-See-Active Circuits, Opamp
$\overline{\mathrm{BW}}=$ Average bandwidth. Effective noise bandwidth. See also-BW Active Circuits, Opamp

BW Notes:

See-Q for frequency to bandwidth ratio.
See-D for bandwidth to frequency ratio.
See also-d Active Circuits.

\square
 Capacitance etc. Definitions

$C=$ The symbol for capacitance.
$\mathbf{C}=1$. In a system of conductors and dielectric or in a capacitor, that property which permits the storage of electrical energy.
2. The property which determines the quantity of electric charge at a given potential.
3. In a system of conductors (plates) and dielectric (insulator) or in a capacitor, the ratio of the quantity of electric charge to the potential developed.

C = Capacitance (also known as capacity) measured in farad (F) units unless noted.
[This extremely large unit is very seldom used except in formulas. The resultant of all capacitance formulas should be converted to more practical units such as microfarads ($\mu \mathrm{F}$) or picofarads (pF)]
$\mathrm{C} \approx 7 \mathrm{pF}$ per sq in of parallel plates separated by $\frac{1}{32}$ in of air.
C $=$ The symbol for capacitor on part lists and schematics.
$\mathrm{C}=$ The symbol for coulomb (unit of quantity of charge) (Seldom used in electronics)
$c=$ Obsolete symbol for cycles per second. [Use hertz (Hz)]
$\mathrm{c}=$ The symbol for the velocity of light or electromagnetic waves (physics). (Not recommended. Use v for velocity in electronics)

Capacitance, Series Circuits		$\xrightarrow[\text { E. }]{\text { E. }}$
$\mathrm{C}_{\mathrm{t}}=\left(\mathrm{C}_{1}^{-1}+\mathrm{C}_{2}^{-1} \cdots+\mathrm{C}_{\mathrm{n}}^{-1}\right)^{-1}$	(1)	C
$\mathrm{C}_{\mathrm{x}}=\left(\mathrm{C}_{\mathrm{t}}^{-1}-\mathrm{C}_{1}^{-1}\right)^{-1}$	(2)	
$\mathrm{C}_{\mathrm{t}}=\omega^{-1}\left[\left(\mathrm{X}_{\mathrm{C}}\right)_{1}+\left(\mathrm{X}_{\mathrm{C}}\right)_{2} \cdots+\left(\mathrm{X}_{\mathrm{C}}\right)_{\mathrm{n}}\right]^{-1}$	(1) (2)	X_{C}
$\mathrm{C}_{t}=-\omega^{-1}\left[\left(-X_{1}\right)+\left(-X_{2}\right) \cdots+\left(-X_{n}\right)\right]^{-1}$	(3)	-X
$\mathrm{C}=\mathrm{D} /\left(\omega \mathrm{R}_{\mathrm{s}}\right) \quad \begin{aligned} & \text { Series reactive element } \\ & \text { must be capacitive } \end{aligned}$	(1) (2)	D R_{s}
$C=\left(\omega R_{s} Q\right)^{-1} \quad \begin{aligned} & \text { Series reactive element } \\ & \text { must be capacitive } . \end{aligned}$	(1) (2)	Q R_{s}
$\mathrm{C}=\left[-\omega \mathrm{R}_{\mathrm{s}}\left(\tan \theta_{\mathrm{Z}}\right)\right]^{-1} \quad \begin{aligned} & \theta_{\mathrm{Z}} \text { must be } \\ & \text { negative }\end{aligned}$	(1) (2)	$\mathrm{R}_{\mathrm{s}} \theta_{\mathrm{Z}}$
$C=\left[-\omega \mathrm{Z}\left(\sin \theta_{\mathrm{Z}}\right)\right]^{-1} \quad \begin{aligned} & \theta_{\mathrm{Z}} \text { must be } \\ & \text { negative }\end{aligned}$	(1) (2)	$\mathrm{Z} \theta_{\mathrm{Z}}$
Series to Parallel Conversion $C_{p}=\left[\left(\omega^{2} R_{s}^{2} C_{s}\right)+C_{s}^{-1}\right]^{-1}$	$\begin{gathered} \hline \text { (1) (2) } \\ \text { (4) } \end{gathered}$	$\mathrm{C}_{\mathrm{s}} \mathrm{R}_{\mathrm{s}}$

C Notes:

(1) $\mathbf{C}=$ Capacitance, $\mathbf{D}=$ Dissipation Factor, $\mathbf{Q}=$ Quality Factor, $\mathbf{R}=$ Resistance, X_{C} and $-\mathrm{X}=$ Capacitive Reactance, $\mathrm{Z}=$ Impedance, $\boldsymbol{\theta}=$ Phase Angle, $\boldsymbol{\omega}=$ Angular Velocity
Subscripts: $\mathrm{C}=$ capacitive, $\mathrm{n}=$ any number, $\mathrm{p}=$ parallel, $\mathrm{s}=$ series, $t=$ total or equivalent, $x=$ unknown
(2) $x^{-1}=1 / x, \quad \omega=2 \pi f$
(3) B and X are magnitudes, however both B and X are often "given" the signs usually associated with capacitive and inductive quantities. In all formulas in this handbook $-\mathrm{B}=\mathrm{B}_{\mathrm{C}},-\mathrm{X}=\mathrm{X}_{\mathrm{C}},+\mathrm{B}=\mathrm{B}_{\mathrm{L}}$ and $+\mathrm{X}=\mathrm{X}_{\mathrm{L}}$
(4) Equivalent capacitance varies with frequency.

Capacitance, Parallel Circuits		$\underset{\text { E }}{\underline{\text { E }}}$
$C_{t}=\left[\left(B_{C}\right)_{1}+\left(B_{C}\right)_{2} \cdots+\left(B_{C}\right)_{n}\right] / \omega$	(1) (2)	B_{C}
$C_{t}=\left[\left(-B_{1}\right)+\left(-B_{2}\right) \cdots+\left(-B_{n}\right)\right] /-\omega$	(3) (5)	-B
$C_{t}=C_{1}+C_{2} \cdots+C_{n}$	(1)	C
$C_{t}=\left[\left(X_{C}\right)_{1}^{-1}+\left(X_{C}\right)_{2}^{-1} \cdots+\left(X_{C}\right)_{n}^{-1}\right] / \omega$	(1) (2)	$\mathrm{X}_{\mathbf{C}}$
$C_{t}=\left[\left(-X_{1}\right)^{-1}+\left(-X_{2}\right)^{-1} \cdots+\left(-X_{n}\right)^{-1}\right] /-\omega$	(3)	-X
$C_{p}=\left(\omega R_{p} D\right)^{-1} \quad \begin{aligned} & \text { Parallel reactive element } \\ & \text { known to be capacitive } \end{aligned}$	(1) (2)	$\mathrm{D}, \mathrm{R}_{\mathrm{p}}$
$C_{p}=\left[G\left(\tan \theta_{Y}\right)\right] / \omega \quad \begin{aligned} & \theta_{Y} \text { must be } \\ & \text { positive }\end{aligned}$	(1) (2) (5)	$\mathrm{G}, \theta_{\mathbf{Y}}$
$\mathrm{C}_{\mathrm{p}}=\mathrm{Q} /\left(\omega \mathrm{R}_{\mathrm{p}}\right)$ Parallel reactive element known to be capacitive	(1) (2)	Q R_{p}
$\mathrm{C}_{\mathrm{p}}=\left(\tan \theta_{\mathrm{Z}}\right) /\left(-\omega \mathrm{R}_{\mathrm{p}}\right) \quad \begin{aligned} & \theta_{\mathrm{Z}} \text { must be } \\ & \text { negative }\end{aligned}$	(1) (2)	$\mathrm{R}_{\mathrm{p}}, \theta_{\mathrm{Z}}$
$C_{p}=\left[Y\left(\sin \theta_{Y}\right)\right] / \omega \quad \begin{aligned} & \theta_{Y} \text { must be } \\ & \text { positive }\end{aligned}$	(1) (2) (5)	$\mathbf{Y}, \theta_{\mathbf{Y}}$
$\mathrm{C}_{\mathrm{p}}=\left(\sin \theta_{\mathrm{Z}}\right) /(-\omega \mathrm{Z}) \quad \begin{aligned} & \theta_{\mathrm{Z}} \text { must be } \\ & \text { negative }\end{aligned}$	(1) (2)	$\mathrm{Z}, \theta_{\mathrm{Z}}$
$\mathrm{C}_{\mathrm{p}}=\left[\mathrm{I}_{\mathrm{t}}\left(\sin \theta_{\mathrm{I}}\right) /(\omega \mathrm{E})\right]^{\begin{array}{l}\text { d must be } \\ \text { positive }\end{array}}$	(1) (2) (5)	E I $\theta_{\text {I }}$
Parallel to Series Conversion $C_{s}=\left(\omega^{2} C_{p} R_{p}^{2}\right)^{-1}+C_{p}$	(1) (2) (4)	$\mathrm{C}_{\mathrm{p}} \mathrm{R}_{\mathrm{p}}$

C Notes: (5) $\mathrm{B}=$ Susceptance, $\mathrm{E}=\mathrm{rms}$ Voltage, $\mathrm{G}=$ Conductance, $\mathrm{I}=$ rms Current, $\mathrm{Y}=$ Admittance

Capacitance Misc. Formulas		$\underset{\text { E }}{\text { E }}$
$C_{r}=\left(\omega^{2} L\right)^{-1} \quad \begin{aligned} & \text { C required for resonance. } \\ & \text { Series or parallel circuits } \end{aligned}$	(2) (6)	L
$\begin{array}{ll}C=Q / E & \begin{array}{l}C \text { required for a charge } \\ \text { of } Q \text { coulombs }\end{array}\end{array}$	(6)	E, Q
$C=Q^{2} /(2 W) \quad \begin{gathered} \mathrm{W}=\text { work equiv. stored } \\ \text { energy in watt } / \mathrm{sec} \\ \mathrm{Q}=\text { charge in coulombs } \end{gathered}$	(6)	Q, W
$\begin{array}{ll} \mathrm{C}=\mathrm{T} / \mathrm{R} & \begin{array}{l} \text { C required for time con }- \\ \text { stant } \mathrm{T} \text { and resistor } \mathrm{R} \end{array} \end{array}$	(6)	R, T
$\begin{array}{ll} \mathrm{C}=(\mathrm{It}) / \mathrm{E} & \begin{array}{l} \mathrm{I}=\text { constant current } \\ \mathrm{E}=\text { voltage change after time } \mathrm{t} \end{array} \end{array}$	(6)	C, E I

Capacitance of two parallel plates (conductors) separated by an insulator (dielectric)
$\mathrm{C}=(\mathrm{Ak}) /(4.45 \mathrm{~d})$ approx. pF
$A=$ Useful area of each plate in square inches
$\mathrm{d}=$ Spacing or distance between plates in inches
$\mathrm{k}=$ Dielectric constant (Air = 1)
Capacitance of concentric cylinders (e.g., coaxial cable)
$\mathrm{C}=(7.354 \mathrm{k}) /[\log (\mathrm{D} / \mathrm{d})] \mathrm{pF}$ per foot length
$\mathrm{D}=$ inside diameter of outside cylinder (inches)
$\mathrm{d}=$ outside diameter of inside cylinder (inches)
$\mathbf{k}=$ dielectric constant of material between cylinders ($\operatorname{Air}=1$)

C Notes:
(6) $\mathrm{C}_{\mathrm{r}}=$ Resonant Capacitance, $\mathrm{E}=\mathrm{dc}$ Voltage, $\mathrm{I}=\mathrm{dc}$ Current, $\mathrm{L}=$ Inductance, $\mathrm{Q}=$ Charge in coulombs, $\mathrm{t}=$ Time in sec., $\mathrm{T}=$ Time Constant, $\mathrm{W}=$ Work in joules

Dissipation Factor Definitions

$\mathrm{D}=$ The symbol for dissipation factor
$\mathrm{D}=1$. The ratio of energy dissipated to the energy stored in dielectric material, in certain electric elements, or in certain electric structures.
2. The inverse of the quality factor Q. (also known as the storage or merit factor)
3. In certain electric elements or structures, the absolute value of the cotangent of the phase angle of the alternating current with respect to the voltage, the voltage with respect to the alternating current, the impedance, or the admittance.
$\mathrm{D}=\mathrm{A}$ factor which usually has a numerical value of from zero to one and is expressed in either decimal or percentage form.
$\mathrm{D}=\mathrm{A}$ factor most commonly associated with capacitor specifications or measurements, however may be used in all Q factor applications.
$\mathrm{D} \simeq$ Power factor when $\mathrm{D}<.1$
$\mathrm{D}=\mathrm{A}$ factor which is very useful for the calculation of equivalent series resistance. $\left(\mathrm{R}_{\mathrm{s}}=\mathrm{DX} \mathrm{C}_{\mathrm{C}}=\mathrm{D} /(\omega \mathrm{C})=\mathrm{DX} \mathrm{L}_{\mathrm{L}}=\mathrm{D} \omega \mathrm{L}\right)$

D Notes:

(1) $\mathrm{B}=$ Susceptance, $\mathrm{C}=$ Capacitance, $\mathrm{G}=$ Conductance, $\mathrm{L}=$ Inductance, $\mathrm{Q}=$ Storage Factor, Quality Factor or Merit Factor, $\mathrm{R}=$ Resistance, $\mathrm{X}=$ Reactance, $\mathrm{Y}=$ Admittance, $\mathrm{Z}=$ Impedance, $\theta=$ Phase Angle, $\omega=$ Angular Velocity
Subscripts: $p=$ parallel, $s=$ series
(2) $\omega=2 \pi \mathrm{f}, \quad \mathrm{x}^{-1}=1 / \mathrm{x}, \quad \mathrm{x}^{-\frac{1}{2}}=1 / \sqrt{\mathrm{x}}, \quad \mathrm{x}^{-2}=1 / \mathrm{x}^{2}$
(3) Not valid for LC circuits.

| | | |
| :--- | :---: | :--- | :--- |
| Dissipation Factor, | | |
| Series Circuits | | |

D Notes:
(4) X_{s} may be X_{C} or X_{L} but not $\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)$
(5) B may be B_{C} or B_{L} but not $\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right.$)
(6) $\operatorname{cotan} x=1 /(\tan x)$
(7) $\mathrm{D}_{\mathrm{r}}=$ Dissipation Factor at Resonance,
$\mathrm{X}_{\mathrm{C}}=$ Capacitive Reactance,
$\mathrm{X}_{\mathrm{L}}=$ Inductive Reactance
(8) If the resultant under the radical sign is negative, a mistake has occurred.

Dissipation Factor, Parallel Circuits		$\underset{\sim}{\text { E }}$
$\mathrm{D}=1 / \mathrm{Q}$	(1)	Q
$\mathrm{D}=\operatorname{cotan} \theta \quad$ Exception (3)	(1) (6)	θ
$\mathrm{D}=\mathrm{G} / \mathrm{B}$	(1) (5)	B G
$\mathrm{D}=\sqrt{(\mathrm{Y} / \mathrm{B})^{2}-1}$	(1) (5) (8)	B Y
$\mathrm{D}=\left(\mathrm{R}_{\mathrm{p}} \omega \mathrm{C}_{\mathrm{p}}\right)^{-1}$	(1) (2)	$C_{p} R_{p}$
$\mathrm{D}=\sqrt{\left[\mathrm{Y} /\left(\omega \mathrm{C}_{\mathrm{p}}\right)\right]^{2}-1}$	(1) (2) (8)	$\mathrm{C}_{\mathrm{p}} \mathrm{Y}$
$\mathrm{D}=\sqrt{\left(\mathrm{Z} \omega \mathrm{C}_{\mathrm{p}}\right)^{-2}-1}$	(1) (2) (8)	$\mathrm{C}_{\mathrm{p}} \mathrm{Z}$
$\mathrm{D}=\left[(\mathrm{Y} / \mathrm{G})^{2}-1\right]^{-\frac{1}{2}} \quad$ Exception (3)	(1) (2) (8)	G Y
$D=\left(\omega L_{p}\right) / R_{p}$	(1) (2)	$L_{p} \quad R_{p}$
$\mathrm{D}=\sqrt{\left(\mathrm{Y} \omega \mathrm{L}_{\mathrm{p}}\right)^{2}-1}$	(1) (2) (8)	$L_{p} Y$
$D=\sqrt{\left[\left(\omega L_{p}\right) / Z\right]^{2}-1}$	(1) (2) (8)	$L_{p} Z$
$D=X_{p} / R_{p}$	(1) (4)	$\mathrm{R}_{\mathrm{p}} \mathrm{X}_{\mathrm{p}}$
$D=\left[\left(R_{p} / Z\right)^{2}-1\right]^{-\frac{1}{2}} \quad$ Exception (3)	(1) (2) (8)	$R_{p} Z$
$\mathrm{D}=\sqrt{\left(\mathrm{X}_{\mathrm{p}} / \mathrm{Z}\right)^{2}-1}$	(1) (4) (8)	$X_{p} \mathrm{Z}$

Decibel
Definitions and
Formulas
$\mathrm{dB}=$ The symbol for decibel
$\mathrm{dB}=1$. The standard logarithmic unit for expressing power gain or loss.
2. One tenth of a bel. (The basic bel unit is very seldom used)
3. A power ratio only-according to the original definition and to a few purists.
4. A commonly used convenient unit for expressing voltage and current ratios. See-dB Note 2

Formulas for Definitions 1, 2, \& 3
$\mathrm{dB}=10 \log \left(\mathrm{P}_{\mathrm{o}} / \mathrm{P}_{\mathrm{i}}\right)$
$\mathrm{dB}=20 \log \left(\mathrm{E}_{\mathrm{o}} / \mathrm{E}_{\mathrm{i}}\right) \quad$ only when $\quad\left(\mathrm{Z}_{\mathrm{o}} / \theta_{\mathrm{o}}\right)=\left(\mathrm{Z}_{\mathrm{i}} / \theta_{\mathrm{i}}\right)$
$\mathrm{dB}=20 \log \left(\mathrm{I}_{\mathrm{o}} / \mathrm{I}_{\mathrm{i}}\right) \quad$ only when $\quad\left(\mathrm{Z}_{\mathrm{o}} / \theta_{\mathrm{o}}\right)=\left(\mathrm{Z}_{\mathrm{i}} / \theta_{\theta_{i}}\right)$
$\mathrm{dB}=20 \log \left[\left(\mathrm{E}_{\mathrm{o}} \sqrt{\mathrm{Z}_{\mathrm{i}} \cos \theta_{\mathrm{i}}}\right) /\left(\mathrm{E}_{\mathrm{i}} \sqrt{\mathrm{Z}_{\mathrm{o}} \cos \theta_{\mathrm{o}}}\right)\right]$
$\mathrm{dB}=20 \log \left[\left(\mathrm{I}_{\mathrm{o}} \sqrt{\mathrm{Z}_{\mathrm{o}} \cos \theta_{\mathrm{o}}}\right) /\left(\mathrm{I}_{\mathrm{i}} \sqrt{\mathrm{Z}_{\mathrm{i}} \cos \theta_{\mathrm{i}}}\right)\right]$
Formulas for Definition 4
$\mathrm{dB}=10 \log \left(\mathrm{P}_{\mathrm{o}} / \mathrm{P}_{\mathrm{i}}\right)$
$\mathrm{dB}=20 \log \left(\mathrm{E}_{\mathrm{o}} / \mathrm{E}_{\mathrm{i}}\right)$
$\mathrm{dB}=20, \log \left(\mathrm{I}_{\mathrm{o}} / \mathrm{I}_{\mathbf{i}}\right)$

dB Notes:

(1) $\log =$ logarithm to the base $10, \mathrm{P}=$ Power, $\mathrm{E}=\mathrm{rms}$ Voltage, $\mathrm{I}=\mathrm{rms}$ Current, $\theta=$ Phase Angle, Subscripts: $i=$ Input, $o=$ Output
(2) When using definition 4°, it should be stated as dB voltage or current gain or loss, dB apparent power gain or loss, etc. \cdots, not as dB gain or loss or as dB power gain or loss.
(B) See also-dBm notes, dB editorial-opamp
$\mathrm{dBm}=$ Symbol for decibels referenced to one milliwatt.
$\mathrm{dBm}=$ Power level expressed in decibels above or below one milliwatt.
$\mathrm{dBm}=\mathrm{L}_{\mathrm{P}(\mathrm{mW})}$
$\mathrm{dBm}=\mathrm{V} . \mathrm{U}$. (volume units) (sinewave only)
$\mathrm{dBm}=10(\log \mathrm{P})+30$
$\mathrm{dBm}=10[\log (1000 \mathrm{P})]$
$\mathrm{dBm}=10\left[\log \left(\mathrm{E}^{2} / \mathrm{R}\right)\right]+30$
$\mathrm{dBm}=10\left[\log \left(\mathrm{I}^{2} \mathrm{R}\right)\right]+30$
$\mathrm{dBm}=10[\log (\mathrm{EI} \cos \theta)]+30$
$\mathrm{dBm}=10\left[\log \left(\mathrm{I}^{2} \mathrm{Z} \cos \theta\right)\right]+30$
$\mathrm{dBm}=10\left(\log \left[\left(\mathrm{E}^{2} \cos \theta\right) / \mathrm{Z}\right]\right)+30$
$\mathrm{dBm}=10\left[\log \left(\mathrm{E}^{2} Y \cos \theta\right)\right]+30$
dBm Notes:
(1) $\mathrm{P}=$ Power, $\mathrm{E}=\mathrm{dc}$ or rms Voltage, $\mathrm{I}=\mathrm{dc}$ or rms Current, $\mathrm{Y}=$ Admittance, $\mathrm{Z}=$ Impedance, $\theta=$ Phase Angle, $\cos =\operatorname{cosine}, \log =$ Logarithm to the base 10 .
(2) When using a calculator to obtain the log of a number smaller than one, the value of both the characteristic and the mantissa are likely to be different than the value obtained from log tables. The calculator value will have both a negative characteristic and a negative mantissa. This is the correct value to use. (Log tables always have a positive mantissa)

E
 Voltage
 Definitions

$$
\begin{aligned}
\mathrm{E}= & \text { Symbol for electromotive force (emf) } \\
& \text { (emf is more commonly called voltage or potential) } \\
\mathrm{E}= & \text { The electric force which causes current to flow through } \\
& \text { a conductor. } \\
\mathrm{E}= & \text { Potential measured in volts }(\mathrm{V}) \\
\mathrm{E}= & \mathrm{E}_{\mathrm{dc}} \text { or }\left|\mathrm{E}_{\mathrm{rms}}\right| \\
\mathrm{E}= & \text { Complete description of voltage } \\
\mathrm{E}= & \mathrm{E}_{\mathrm{POLAR}}=\mathrm{E}_{\mathrm{RECTANGULAR}} \\
\mathrm{E}= & \mathrm{E} / \theta_{\mathrm{E}}=\mathrm{E}_{\mathrm{R}}+\left(\pm \mathrm{E}_{\mathrm{X}}\right) \mathrm{j} \\
\mathrm{E}_{\mathrm{R}}= & \mathrm{E} / 0^{\circ}=\mathrm{E}_{\mathrm{R}}+0 \mathrm{j} \\
\mathrm{E}_{\mathrm{C}}= & \mathrm{E} /-90^{\circ}=0+\left(-\mathrm{E}_{\mathrm{X}}\right) \mathrm{j}=0-\mathrm{j} \mathrm{E}_{\mathbf{X}} \\
\mathrm{E}_{\mathrm{L}}= & \mathrm{E} /+90^{\circ}=0+\left(+\mathrm{E}_{\mathrm{X}}\right) \mathrm{j}=0+\mathrm{j} \mathrm{E}_{\mathbf{X}} \\
\mathrm{E}_{\mathrm{R}}= & \mathrm{E}_{\text {magnitude }} \text { identified as resistive or real } \\
\mathrm{E}_{\mathrm{C}}= & \mathrm{E}_{\text {magnitude }} \text { identified as capacitive } \\
\mathrm{E}_{\mathrm{L}}= & \mathrm{E}_{\text {magnitude }} \text { identified as inductive } \\
-\mathrm{E}_{\mathrm{X}}= & \mathrm{E}_{\mathrm{C}} \text { "given" the sign associated with capacitive } \\
& \text { quantities. } \\
+\mathrm{E}_{\mathrm{X}}= & \mathrm{E}_{\mathrm{L}} \text { "given" the sign associated with inductive } \\
& \text { quantities. } \\
\pm \mathrm{E}_{\mathrm{X}}= & \text { Identification of } \mathrm{E}_{\mathrm{X}} \text { as capacitive or inductive in the } \\
& \text { resultant of many formulas. } \\
\mathrm{e}= & \text { The instantaneous value of voltage }
\end{aligned}
$$

Note: The symbol V is also used for voltage and predominates in active circuits. See-V, Active Circuits
$\left.\begin{array}{l|l|l|l|l}\hline & & \\ \text { Voltage, } \\ \text { DC Circuits }\end{array}\right)$

Transient Voltages,

 Voltage Ratios
e E

$\begin{array}{ll} \mathrm{e}_{\mathrm{C}}=\mathrm{E}\left[1-\left(\epsilon^{-1}\right)^{\frac{\mathrm{t}}{\mathrm{RC}}}\right] & (\mathrm{E}=\text { Applied Voltage }) \\ \mathrm{e}_{\mathrm{C}}=.6321 \mathrm{E} & \text { when } \\ \mathrm{t}=\mathrm{RC}(1 \text { time constant }) \\ \mathrm{e}_{\mathrm{C}}=(\mathrm{It}) / \mathrm{C} & (\mathrm{I}=\text { constant current }) \end{array}$	Capacitor Voltage During Charge thru Resistor
$\mathrm{e}_{\mathrm{C}}=\mathrm{E} / \epsilon^{\frac{\mathrm{t}}{\mathrm{RC}}}$ $(\mathrm{E}=$ Initial Cap. Voltage $)$ $\mathrm{e}_{\mathrm{C}}=.3679 \mathrm{E} \quad$ when $\mathrm{t}=\mathrm{RC}(1$ time constant $)$ $\left.\mathrm{e}_{\mathrm{C}}=\mathrm{E}-[\mathrm{IIt}) / \mathrm{C}\right]$ $(\mathrm{I}=$ constant current $)$	Capacitor Voltage During Discharge thru Resistor
$\begin{array}{lc} \mathrm{e}_{\mathrm{L}}=\mathrm{E} / \epsilon^{\frac{\mathrm{Rt}}{\mathrm{~L}}} & (\mathrm{E}=\text { Applied Voltage }) \\ \mathrm{e}_{\mathrm{L}}=.3679 \mathrm{E} & \text { when } \mathrm{t}=\mathrm{L} / \mathrm{R}(1 \text { time constant }) \end{array}$	Inductor Voltage During Energization thru Resistor
$e_{L}=-L(d i / d t) \quad\left[\begin{array}{l}(\mathrm{di} / \mathrm{dt})=\text { rate of current change } \\ \text { in (ampere/seconds) }\end{array}\right]$	Inductor Voltage Developed By Current Change
$\mathrm{E}=\mathrm{Q} / \mathrm{C} \quad(\mathrm{Q}=$ Charge in coulombs)	Voltage Developed by Electric Charge
$\begin{aligned} & \mathrm{E}_{\mathrm{av}}=[(2 \sqrt{2}) / \pi] \mathrm{E}_{\mathrm{rms}}=.9003 \mathrm{E}_{\mathrm{rms}} \\ & \mathrm{E}_{\mathrm{av}}=(2 / \pi) \mathrm{E}_{\text {peak }} \quad=.6366 \mathrm{E}_{\text {peak }} \end{aligned}$	
$\mathrm{E}_{\text {peak }}=(\sqrt{2}) \mathrm{E}_{\mathrm{rms}} \quad=1.414 \mathrm{E}_{\mathrm{rms}}$	O!
$\mathrm{E}_{\mathrm{p}-\mathrm{p}}=(2 \sqrt{2}) \mathrm{E}_{\mathrm{rms}} \quad=2.828 \mathrm{E}_{\mathrm{rms}}$	$\stackrel{\ddot{\sim}}{\stackrel{\sim}{\mathbf{o}}}$
$\mathrm{E}_{\mathrm{rms}}=[\pi /(2 \sqrt{2})] \mathrm{E}_{\mathrm{av}}=1.111 \mathrm{E}_{\mathrm{av}}$	-
$E_{\text {rms }}=E_{\text {eff }}$	$\stackrel{\circ}{\circ}$
$\mathrm{E}_{\text {rms }}=(1 / \sqrt{2}) \mathrm{E}_{\text {peak }} \quad=.7071 \mathrm{E}_{\text {peak }}$	
$\mathrm{E}_{\text {rms }}=[1 /(2 \sqrt{2})] \mathrm{E}_{\mathrm{p}-\mathrm{p}}=.3535 \mathrm{E}_{\mathrm{p}-\mathrm{p}}$	

Notes

E Notes:

(1) General

B = Susceptance (6), C = Capacitance, e = Instantaneous Voltage, E = Voltage Magnitude or DC Voltage (6), E = Magnitude and Phase Angle of Voltage, $\mathrm{f}=$ Frequency, $\mathrm{G}=$ Conductance, $\mathrm{I}=$ Current, $j=$ Imaginary Number (3), $L=$ Inductance, $P=$ Power, $Q=$ Quantity of Electrical Charge, $\mathrm{R}=$ Resistance, $\mathrm{X}=$ Reactance (6), $\mathrm{Y}=$ Admittance, $\mathrm{Z}=$ Impedance, $\epsilon=$ Base of Natural Logarithms (3), $\pi=$ Ratio of Circumference to diameter of a circle (3), $\theta=$ Phase Angle (6), $\omega=$ Angular Velocity (3)
(2) Subscripts
$\mathrm{C}=$ capacitive, $\mathrm{E}=$ voltage, $\mathrm{I}=$ current, $\mathrm{L}=$ inductive, $\mathrm{n}=$ any number, $o=$ output, $p=$ parallel circuit, $r=$ (of or at) resonance, $s=$ series circuit, $t=$ total or equivalent, $X=$ reactive, $Y=$ admittance, $\mathrm{Z}=$ impedance
(3) Constants
$\mathrm{j}=\mathrm{i} \mathrm{j}=\sqrt{-1} \mathrm{j}=90^{\circ}$ multiplier, $\epsilon=2.718+\quad \epsilon^{-1}=.36788-, \pi=$ 3.1416- $2 \pi=6.2832-, \omega=2 \pi f \quad \omega=6.2832 f$
(4) Algebra
$x^{-1}=1 / x, \quad x^{-2}=1 / x^{2}, \quad x^{\frac{1}{2}}=\sqrt{x}, \quad x^{-\frac{1}{2}}=1 / \sqrt{x}, \quad x^{\frac{-1}{2}}=1 / \sqrt{x}$,
$|x|=$ absolute value or magnitude of x
(5) Trigonometry
$\sin =\operatorname{sine}, \cos =$ cosine, $\tan =$ tangent, $\tan ^{-1}=\operatorname{arc}$ tangent
(6) Reminders
$\pm \theta$--- use the sign of the phase angle
$\pm X$-- - \mathbf{X} identifies X as capacitive (X_{C})
+X identifies X as inductive $\left(\mathrm{X}_{\mathrm{L}}\right)$
$\pm B---B$ identifies B as capacitive (B_{C})
$+B$ identifies B as inductive (B_{L})
$\pm E_{X} \cdots-E_{X}$ identifies E_{X} as capacitive (E_{C})
$+E_{\mathbf{X}}$ identifies $\mathbf{E}_{\mathbf{X}}$ as inductive ($\mathbf{E}_{\mathbf{L}}$)

Voltage, Series Circuits		$\stackrel{\text { E. }}{\substack{\text { ¢ }}}$
$\begin{aligned} & \left(E_{C}\right)_{t}=\left(E_{C}\right)_{1}+\left(E_{C}\right)_{2} \cdots+\left(E_{C}\right)_{n} \\ & \left(E_{L}\right)_{t}=\left(E_{L}\right)_{1}+\left(E_{L}\right)_{2} \cdots+\left(E_{L}\right)_{n} \\ & \left(E_{R}\right)_{t}=\left(E_{R}\right)_{1}+\left(E_{R}\right)_{2} \cdots+\left(E_{R}\right)_{n} \end{aligned}$	(1) (2)	$\begin{aligned} & \mathrm{E}_{\mathrm{C}} \\ & \mathrm{E}_{\mathrm{L}} \\ & \mathrm{E}_{\mathrm{R}} \end{aligned}$
$\begin{aligned} & \left(\pm E_{X}\right)_{t}=\left(E_{L}\right)_{1}-\left(E_{C}\right)_{1}+\left(E_{L}\right)_{2}-\left(E_{C}\right)_{2} \\ & \left(\pm E_{X}\right)_{t}=\left(\pm E_{1}\right)+\left(\pm E_{2}\right) \cdots+\left(\pm E_{n}\right) \end{aligned}$	(1) (2) ©	$\begin{array}{ll} \hline E_{C} & E_{L} \\ -E_{X} & +E_{X} \\ \hline \end{array}$
$\begin{aligned} & \mathrm{E}_{\mathrm{t}}=\sqrt{\mathrm{E}_{\mathrm{R}}^{2}+\mathrm{E}_{\mathrm{C}}^{2}} \\ & \mathrm{E}_{\mathrm{t}}=\sqrt{\mathrm{E}_{\mathrm{R}}^{2}+\mathrm{E}_{\mathrm{L}}^{2}} \end{aligned}$	(1) (2)	$\begin{array}{ll} \mathrm{E}_{\mathrm{C}} & \mathrm{E}_{\mathrm{R}} \\ \mathrm{E}_{\mathrm{L}} & \mathrm{E}_{\mathrm{R}} \end{array}$
$\left(\mathrm{E}_{\mathrm{C}}\right)_{t}=\mathrm{I} \omega^{-1}\left(\mathrm{C}_{1}^{-1}+\mathrm{C}_{2}^{-1} \cdots+\mathrm{C}_{n}^{-1}\right)$	$\begin{aligned} & \text { (1) (2) } \\ & \text { (3) (4) } \end{aligned}$	I C
$\left(\mathrm{E}_{L_{1}}\right)_{t}=\mathrm{I} \omega\left(\mathrm{L}_{1}+\mathrm{L}_{2} \cdots+\mathrm{L}_{\mathrm{n}}\right)$	(1) (2) (3)	I L
$\left(E_{R}\right)_{t}=I\left(R_{1}+R_{2} \cdots+R_{n}\right)$	(1) (2)	I R
$\begin{aligned} \left(\mathrm{E}_{\mathrm{C}}\right)_{\mathrm{t}} & =\mathrm{I}\left[\left(\mathrm{X}_{\mathrm{C}}\right)_{1}+\left(\mathrm{X}_{\mathrm{C}}\right)_{2} \cdots+\left(\mathrm{X}_{\mathrm{C}}\right)_{\mathrm{n}}\right] \\ \left(-\mathrm{E}_{\mathrm{X}}\right)_{\mathrm{t}} & =\mathrm{I}\left[\left(-\mathrm{X}_{1}\right)+\left(-\mathrm{X}_{2}\right) \cdots+\left(-\mathrm{X}_{\mathrm{n}}\right)\right] \end{aligned}$	$\begin{gathered} \text { (1) (2) } \\ \text { (6) } \end{gathered}$	$\begin{array}{ll} \text { I } X_{C} \\ I & -X \end{array}$
$\begin{aligned} \left(\mathrm{E}_{L}\right)_{t} & =\mathrm{I}\left[\left(\mathrm{X}_{L}\right)_{1}+\left(\mathrm{X}_{L}\right)_{2} \cdots+\left(X_{L}\right)_{n}\right] \\ \left(+E_{X}\right)_{t} & =I\left[\left(+X_{1}\right)+\left(+X_{2}\right) \cdots+\left(+X_{n}\right)\right] \end{aligned}$	$\begin{gathered} \text { (1) (2) } \\ \text { (6) } \end{gathered}$	$\begin{array}{ll} \mathrm{I} \mathrm{X}_{\mathrm{L}} \\ \mathrm{I}+\mathrm{X} \end{array}$
$\mathrm{E}=\mathrm{IZ}$	(1)	I Z

Additional E magnitude formulas are included in E formulas starting on page 27.

Voltage, Parallel Circuits		$\stackrel{\text { E. }}{\text { E. }}$
$\mathrm{E}=\mathrm{I}_{\mathrm{t}} /\left[\left(\mathrm{B}_{\mathrm{C}}\right)_{1}+\left(\mathrm{B}_{\mathrm{C}}\right)_{2} \cdots+\left(\mathrm{B}_{\mathrm{C}}\right)_{n}\right]$	(1) (2)	$\mathrm{I}_{\mathrm{t}} \mathrm{B}_{\mathrm{C}}$
$\mathrm{E}=\left\|\mathrm{I}_{\mathrm{t}} /\left[\left(-\mathrm{B}_{1}\right)+\left(-\mathrm{B}_{2}\right) \cdots+\left(-\mathrm{B}_{\mathrm{n}}\right)\right]\right\|$	(4) (6)	$\mathrm{I}_{\mathrm{t}}-\mathrm{B}$
$\mathrm{E}=\mathrm{I}_{\mathrm{t}} /\left[\left(\mathrm{B}_{L}\right)_{1}+\left(B_{L}\right)_{2} \cdots+\left(B_{L}\right)_{n}\right]$	(1) (2)	
$E=I_{t} /\left[\left(+B_{1}\right)+\left(+B_{2}\right) \cdots+\left(+B_{n}\right)\right]$	©	$I_{t}+B$
$\mathrm{E}=\left\|\mathrm{I}_{\mathrm{t}} /\left[\left(\pm \mathrm{B}_{1}\right)+\left(\pm \mathrm{B}_{2}\right) \cdots+\left(\pm \mathrm{B}_{\mathrm{n}}\right)\right]\right\|$	$\begin{array}{lll} \hline \text { (1) (2) } \\ \text { (4) } & \text { (2) } \end{array}$	$\mathrm{I}_{\mathrm{t}} \pm \mathrm{B}$
$E=I_{t} /\left[\omega\left(C_{1}+C_{2} \cdots+C_{n}\right)\right]$	$\begin{array}{\|c} \hline \text { (1) (2) } \\ \text { (3) } \end{array}$	$\mathrm{I}_{\mathrm{t}} \mathrm{C}_{\mathrm{p}}$
$\mathrm{E}=\mathrm{I}_{\mathrm{t}} /\left(\mathrm{G}_{1}+\mathrm{G}_{2} \cdots+\mathrm{G}_{\mathrm{n}}\right)$	(1) (2)	$\mathrm{I}_{\mathrm{t}} \mathrm{G}$
$\mathrm{E}=\mathrm{I}_{\mathrm{t}} \omega\left[\left(\mathrm{L}_{\mathrm{p}}\right)_{1}^{-1}+\left(\mathrm{L}_{\mathrm{p}}\right)_{2}^{-1} \cdots+\left(\mathrm{L}_{\mathrm{p}}\right)_{n}^{-1}\right]^{-1}$	$\begin{array}{ll} \hline \text { (1) (2) } \\ \text { (3) (4) } \end{array}$	$I_{t} L_{p}$
$E=I_{t}\left[\left(R_{p}\right)_{1}^{-1}+\left(R_{p}\right)_{2}^{-1} \cdots+\left(R_{p}\right)_{n}^{-1}\right]^{-1}$	$\text { (1) (2) }^{(4)}$	$I_{t} R_{p}$
$\mathrm{E}=\mathrm{I}_{\mathrm{t}}\left[\left(\mathrm{X}_{\mathrm{C}}\right)_{1}^{-1}+\left(\mathrm{X}_{\mathrm{C}}\right)_{2}^{-1} \cdots+\left(\mathrm{X}_{\mathrm{C}}\right)_{n}^{-1}\right]^{-1}$	(1) (2)	$\mathrm{I}_{\mathrm{t}} \mathrm{X}_{\mathrm{C}}$
$\mathrm{E}=\left\|\mathrm{I}_{\mathrm{t}}\left[\left(-\mathrm{X}_{\mathrm{p}}\right)_{1}^{-1}+\left(-\mathrm{X}_{\mathrm{p}}\right)_{2}^{-1} \cdots+\left(-\mathrm{X}_{\mathrm{p}}\right)_{\mathrm{n}}^{-1}\right]^{-1}\right\|$		$I_{t}-X_{p}$
$\mathrm{E}=\mathrm{I}_{\mathrm{t}}\left[\left(\mathrm{X}_{\mathrm{L}}\right)_{1}^{-1}+\left(\mathrm{X}_{\mathrm{L}}\right)_{2}^{-1} \cdots+\left(\mathrm{X}_{\mathrm{L}}\right)_{\mathrm{n}}^{-1}\right]^{-1}$	(1) (2)	$\mathrm{I}_{\mathrm{t}} \mathrm{X}_{\mathrm{L}}$
$E=I_{t}\left[\left(+X_{p}\right)_{1}^{-1}+\left(+X_{p}\right)_{2}^{-1} \cdots+\left(+X_{p}\right)_{n}^{-1}\right]^{-1}$	(4) ©	
$\mathrm{E}=\left\|\mathrm{I}_{\mathrm{t}}\left[\left(\pm \mathrm{X}_{\mathrm{p}}\right)_{1}^{-1}+\left(\pm \mathrm{X}_{\mathrm{p}}\right)_{2}^{-1} \cdots+\left(\pm \mathrm{X}_{\mathrm{p}}\right)_{\mathrm{n}}^{-1}\right]^{-1}\right\|$	$\begin{array}{ll} \text { (1) (2) } \\ \text { (4) } \end{array}$	$\mathrm{I}_{\mathrm{t}} \pm \mathrm{X}_{\mathrm{p}}$
$\mathrm{E}=\mathrm{I} / \mathrm{Y}$	(1)	I Y
$\mathrm{E}=\mathrm{IZ}$	(1)	I Z

	Complex Voltages, Series \& Differential

E

Voltage \& Phase Important Notes

1. It should be understood by the reader that the phase angle of voltage and current is the same one and only phase angle of a circuit or of a circuit element. The fact that current leads the voltage while the voltage lags the current in an inductive circuit means only that the signs of the voltage and current phase angles are different.
2. In a given circuit, the phase angle of voltage, current, impedance and admittance is the same one and only phase angle. The signs of the angle is the only difference. $\pm \theta_{\mathrm{E}}=$ $-\left(\pm \theta_{\mathrm{I}}\right)= \pm \theta_{\mathrm{Z}}=-\left(\pm \theta_{\mathrm{Y}}\right)$.
3. The voltage phase angle uses the current phase angle as a reference $\left(0^{\circ}\right)$ while the current phase angle uses the voltage phase angle as a reference $\left(0^{\circ}\right)$. Due to this fact, if the voltage phase angle is expressed, the current phase angle is 0° and if the current phase angle is expressed, the voltage phase angle is 0°. It should be obvious that the voltage and current phase angles cannot be used at the same time.
4. The same applies to rectangular form voltage and current. Rectangular form current cannot have an imaginary (reactive) component when the rectangular form voltage has an imaginary (reactive) component. The reverse, obviously, is also true.
5. Due to this confusing situation and the high probability of error, the author DOES NOT RECOMMEND THE USE OF POLAR OR RECTANGULAR FORM VOLTAGE OR CURRENT WHERE EACH USES THE OTHER AS A REFERENCE. THE USE OF THE GENERATOR AS THE PHASE REFERENCE IS RECOMMENDED.
6. The following polar and rectangular form voltage formulas are listed for reference only. Proceed to the E_{o} and vector algebra E_{o} formulas.

Voltage \＆Phase， Series Circuits

Resistive \＆Reactive

Voltages
In Series
$E=$ The magnitude and phase angle of the voltage de－ veloped by current through a series circuit．（ $\theta_{\mathrm{I}}=0^{\circ}$ ） See also－θ
$E_{\text {POLAR }}=E \angle \pm \theta_{E}$
$\mathbf{E}_{\text {RECT }}=1$ ．The 0° and $\pm 90^{\circ}$ voltages which have a resul－ tant equal to $E_{\text {polar }}$ ．
2．The voltages developed by current through series resistance and net reactance．
$E_{\text {RECT }}=E_{R}+\left(\pm E_{X}\right) j$
$E_{\text {RECT }}=\left(E \cos \theta_{E}\right)+\left[E \sin \left(\pm \theta_{E}\right)\right] j$

	管 ${ }^{2}$	$\stackrel{1}{1}$
$\mathrm{E}_{\text {POLAR }}=\sqrt{\mathrm{E}_{\mathrm{R}}^{2}+\mathrm{E}_{\mathrm{C}}^{2}} / \tan ^{-1}\left(-\mathrm{E}_{\mathrm{C}} / \mathrm{E}_{\mathrm{R}}\right)$	（1）（2）	U
$\mathrm{E}_{\text {RECT }}=\mathrm{E}_{\mathrm{R}}-\mathrm{jE}$ C	（3）（5）	（1）
$\mathrm{E}_{\text {POLAR }}=\sqrt{\mathrm{E}_{\mathrm{R}}^{2}+\mathrm{E}_{\mathrm{L}}^{2}} / \tan ^{-1}\left(\mathrm{E}_{\mathrm{L}} / \mathrm{E}_{\mathrm{R}}\right)$	（1）（2）	（1）
$\mathrm{E}_{\text {RECT }}=\mathrm{E}_{\mathrm{R}}+\mathrm{jE}$ L	（3）（5）	（x）
	（1）（2）	$\stackrel{\rightharpoonup}{x}$
$E_{\text {POLAR }}=\sqrt{E_{R}^{2}+E_{\text {Xc }}^{2}}$	（3）（5）	以
$E_{\text {RECT }}=E_{R}+\left(-E_{X}\right) j$	（6）	以
	（1）（2）	$\stackrel{\rightharpoonup}{x}$
$E_{\text {POLAR }}=\sqrt{E_{R}^{2}}+E_{X L}^{2} / \tan ^{-1}\left(+E_{X} / E_{R}\right)$	（3）（5）	以
$E_{R E C T}=E_{R}+\left(+E_{X}\right) j$	（6）	ハ̛1
$\mathrm{E}_{\text {POLAR }}=\sqrt{\mathrm{E}_{\mathrm{R}}^{2}+\left(\mathrm{E}_{\mathrm{L}}-\mathrm{E}_{\mathrm{C}}\right)^{2}} / \tan ^{-1}\left[\left(\mathrm{E}_{\mathrm{L}}-\mathrm{E}_{\mathrm{C}}\right) / \mathrm{E}_{\mathrm{R}}\right]$	（1）（2）	4
$E_{\text {RECT }}=E_{R}+\left(E_{L}-E_{C}\right) j$	（3）（5）	u
$E_{\text {RECT }}=E_{R}+\left(\pm E_{X}\right) j$	（6）	๙̛1

Voltage and Phase, Series Circuits		$\stackrel{\text { E }}{\stackrel{\text { E }}{ \pm}}$
$\begin{aligned} \mathrm{E} & =\mathrm{I} \sqrt{\mathrm{R}^{2}+(\omega \mathrm{C})^{-2}} \\ \theta_{\mathrm{E}} & =\tan ^{-1}(\omega \mathrm{CR})^{-1} \end{aligned}$	$\begin{aligned} & \text { (1) (2) (3) } \\ & \text { (4) (5) } \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & 0 \end{aligned}$
$\begin{aligned} \mathrm{E} & =\mathrm{I} \sqrt{\mathrm{R}^{2}+(\omega \mathrm{L})^{2}} \\ \theta_{\mathrm{E}} & =\tan ^{-1}[(\omega \mathrm{~L}) / \mathrm{R}] \end{aligned}$	$\begin{aligned} & \text { (1) (2) } \\ & \text { (3) © } \end{aligned}$	$\begin{aligned} & \stackrel{4}{2} \\ & \end{aligned}$
$\begin{aligned} \mathrm{E} & =\mathrm{P} /\left(\mathrm{I} \cos \theta_{\mathrm{Z}}\right) \\ \theta_{\mathbf{E}} & = \pm \theta_{\mathrm{Z}}=-\left(\pm \theta_{\mathrm{I}}\right) \end{aligned}$	$\begin{aligned} & \text { (1) © } \\ & \text { (5) © } \end{aligned}$	+ + \sim \sim
$\begin{aligned} \mathbf{E} & =(\mathrm{IR}) /(\cos \theta) \\ \theta_{\mathbf{E}} & = \pm \theta_{\mathbf{Z}}=-\left(\pm \theta_{\mathrm{I}}\right) \end{aligned}$	$\begin{aligned} & \text { (1) (2) } \\ & \text { (5) (6) } \end{aligned}$	+ + \square -1
$\begin{aligned} \mathbf{E} & =\|(\mathrm{IX}) /(\sin \theta)\| \\ \theta_{\mathbf{E}} & = \pm \theta_{\mathbf{Z}}=-\left(\pm \theta_{\mathrm{I}}\right) \end{aligned}$	$\begin{gathered} \text { (1) (2) (4) } \\ \text { (5) (6) } \end{gathered}$	$\frac{8}{+1}$
$\begin{aligned} \mathrm{E} & =\mathrm{IZ} \\ \theta_{\mathbf{E}} & = \pm \theta_{\mathrm{Z}}=-\left(\pm \theta_{\mathrm{I}}\right) \end{aligned}$	(1) (2) (6)	+ + \sim
$\begin{aligned} \mathrm{E} & =\mathrm{I} \sqrt{\mathrm{R}^{2}+\left[(\omega \mathrm{L})-(\omega \mathrm{C})^{-1}\right]^{2}} \\ \theta_{\mathrm{E}} & =\tan ^{-1}\left(\left[(\omega \mathrm{~L})-(\omega \mathrm{C})^{-1}\right] / \mathrm{R}\right) \end{aligned}$	$\begin{aligned} & \text { (1) (2) } \\ & \text { (3) (5) } \end{aligned}$	$\xrightarrow{\sim}$
$\begin{aligned} \mathrm{E} & =\mathrm{I} \sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}} \\ \theta_{\mathrm{E}} & =\tan ^{-1}\left[\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right) / \mathrm{R}\right] \end{aligned}$	(1) (2) (3)	

See previous page for definitions, $E_{\text {POLAR }}$ and $\mathbf{E}_{\text {RECT }}$

Voltage and Phase, Parallel Circuits

Voltage and Phase
 When a parallel circuit
 is driven by a current source

$E=$ The magnitude and phase angle of the voltage developed by the total current through a parallel circuit. $\left(\theta_{I R}=0^{\circ}\right)$ See also- θ
$E_{\text {POLAR }}=E \angle \pm \theta_{E}$
$\mathrm{E}_{\text {RECT }}=1$. The 0° and $\pm 90^{\circ}$ voltages which have a resultant equal to $E_{\text {POLAR }}$.
2. The series equivalent voltages of a parallel circuit.
3. The voltages developed by current through the series equivalent of a parallel circuit.

$\begin{aligned} & E_{\text {RECT }}=\left(E \cos \theta_{E}\right)+\left[E \sin \left(\pm \theta_{E}\right)\right] j \\ & E_{R E C T}=\left(E_{R}\right)_{s}+\left[\left(\pm E_{X}\right)_{s}\right] j \end{aligned}$		E
$\begin{aligned} \mathrm{E} & =\mathrm{I}_{\mathrm{t}} / \sqrt{\mathrm{G}^{2}+\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right)^{2}} \\ \theta_{\mathrm{E}} & =\tan ^{-1}\left[\left(\mathrm{~B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right) / \mathrm{G}\right] \end{aligned}$	$\begin{aligned} & \text { (1) (2) } \\ & \text { (5) (6) } \end{aligned}$	\cup M +1 \square
$\begin{aligned} \mathrm{E} & =\left\|\left(\mathrm{I}_{\mathrm{t}} \sin \theta\right) /\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right)\right\| \\ \theta_{\mathrm{E}} & =-\left(\pm \theta_{\mathrm{I}}\right)=-\left(\pm \theta_{\mathrm{Y}}\right) \end{aligned}$	$\begin{gathered} \text { (1) (2) (5) } \\ \text { (6) (7) } \end{gathered}$	∞ +1 ∞ +1 -
$\begin{aligned} E & =I_{t} / \sqrt{R^{-2}+\left[(\omega L)^{-1}-(\omega C)\right]^{2}} \\ \theta_{E} & =\tan ^{-1}\left(R\left[(\omega L)^{-1}-(\omega C)\right]\right) \end{aligned}$	$\begin{gathered} \text { (1) (2) (3) } \\ \text { (4) (5) } \end{gathered}$	
$\begin{aligned} \mathrm{E} & =\left\|\left(\mathrm{I}_{\mathrm{t}} \sin \theta\right) /\left[(\omega \mathrm{L})^{-1}-(\omega \mathrm{C})\right]\right\| \\ \theta_{\mathrm{E}} & = \pm \theta_{\mathrm{Z}}=-\left(\pm \theta_{\mathrm{I}}\right)=-\left(\pm \theta_{\mathrm{Y}}\right) \end{aligned}$	$\begin{gathered} \text { (1) (2) (3) } \\ \text { (4) (6) } \end{gathered}$	+
$\begin{aligned} \mathrm{E} & =\left\|\left(\mathrm{I}_{\mathrm{t}} \cos \theta\right) / \mathrm{G}\right\| \\ \theta_{\mathrm{E}} & =-\left(\pm \theta_{\mathrm{I}}\right)=-\left(\pm \theta_{\mathrm{Y}}\right)= \pm \theta_{\mathrm{Z}} \end{aligned}$	$\left\lvert\, \begin{gathered} \text { (1) (2) (4) } \\ \text { (5) (6) } \end{gathered}\right.$	+ +1 \vdots \pm

Voltage and Phase, Parallel Circuits With Current Source		$\stackrel{\text { E }}{\text { E }}$
$\begin{aligned} E & =\mathrm{Z} \sqrt{\mathrm{I}_{\mathrm{R}}^{2}+\left(\mathrm{I}_{\mathbf{X}_{\mathrm{L}}}-\mathrm{I}_{\mathbf{X}_{\mathrm{c}}}\right)^{2}} \\ \theta_{\mathrm{E}} & =\tan ^{-1}\left[\left(\mathrm{I}_{\mathbf{X}_{\mathrm{L}}}-\mathrm{I}_{\mathbf{X}_{\mathrm{c}}}\right) / \mathrm{I}_{\mathrm{R}}\right] \end{aligned}$	$\begin{aligned} & \text { (1) (2) } \\ & \text { (5) (6) } \end{aligned}$	$\underset{\sim}{\text { N }}$
$\begin{aligned} E & =I_{t} \sqrt{R^{-2}+\left(X_{L}^{-1}-X_{C}^{-1}\right)^{2}} \\ \theta_{E} & =\tan ^{-1}\left[R\left(X_{L}^{-1}-X_{C}^{-1}\right)\right] \end{aligned}$	$\begin{gathered} \text { (1) (2) (4) } \\ \text { (3) (6) } \end{gathered}$	$\begin{aligned} & \times \\ & +1 \\ & \propto \\ & \sim \\ & \sim \end{aligned}$
$\begin{aligned} \mathrm{E} & =\left(\mathrm{I}_{\mathrm{t}} \mathrm{R}\right) \cos \theta \\ \theta_{\mathrm{E}} & = \pm \theta_{\mathrm{Z}}=-\left(\pm \theta_{\mathrm{I}}\right)=-\left(\pm \theta_{\mathrm{Y}}\right) \end{aligned}$	$\begin{aligned} & \text { (1) (2) } \\ & \text { (5) (6) } \end{aligned}$	$\begin{aligned} & \Phi \\ & +1 \\ & \propto \\ & \sim \end{aligned}$
$\begin{aligned} \mathbf{E} & =\left\|\mathbf{I}_{\mathbf{t}} \sin \theta /\left(\mathbf{X}_{\mathbf{L}}^{-1}-\mathbf{X}_{\mathbf{C}}^{-1}\right)\right\| \\ \theta_{\mathbf{E}} & = \pm \theta_{\mathbf{Z}}=-\left(\pm \theta_{\mathrm{I}}\right)=-\left(\pm \theta_{\mathbf{Y}}\right) \end{aligned}$	$\begin{array}{ccc} \text { (1) (2) (3) } \\ \text { (4) (5) (6) } \\ \text { (7) } \end{array}$	+ + + + \square
$\begin{aligned} \mathrm{E} & =\mathrm{I}_{\mathrm{t}} / \mathrm{Y} \\ \theta_{\mathrm{E}} & =-\left(\pm \theta_{\mathrm{Y}}\right) \end{aligned}$	$\begin{gathered} \text { (1) (2) } \\ \text { (6) } \end{gathered}$	¢ + +1 λ \square
$\begin{aligned} \mathrm{E} & =\mathrm{I}_{\mathrm{t}} \mathrm{Z} \\ \theta_{\mathrm{E}} & = \pm \theta_{\mathrm{Z}} \end{aligned}$	$\begin{gathered} \text { (1) (2) } \\ \text { (6) } \end{gathered}$	N + + N \boldsymbol{N}
$\begin{aligned} \mathrm{E} & =\mathrm{P} /\left(\mathrm{I}_{\mathrm{t}} \cos \theta\right) \\ \theta_{\mathrm{E}} & =-\left(\pm \theta_{\mathrm{I}}\right)= \pm \theta_{\mathrm{Z}} \end{aligned}$	(1) (2) (5) (6)	$\begin{aligned} & \Phi \\ & +1 \\ & \sim \\ & \sim \end{aligned}$
$\begin{aligned} \mathrm{E} & =\sqrt{(\mathrm{PZ}) /(\cos \theta)} \\ \theta_{\mathrm{E}} & = \pm \theta_{\mathrm{Z}}=-\left(\pm \theta_{\mathrm{I}}\right) \end{aligned}$	$\begin{aligned} & \text { (1) (2) } \\ & \text { (5) (6) } \end{aligned}$	+ +1 N \sim

See previous page for definitions, E POLAR , and E $_{\text {RECT }}$.

Complex Voltages, Series \& Differential	Terms
$\begin{aligned} \mathrm{E}_{\mathrm{t}}= & \sqrt{\left(\mathrm{E}_{\mathrm{R}}\right)_{t}^{2}+\left(\mathrm{E}_{\mathrm{X}}\right)_{t}^{2}} \\ \theta_{t}= & \tan ^{-1}\left[\left(\pm \mathrm{E}_{\mathrm{X}}\right)_{t} /\left(\mathrm{E}_{\mathrm{R}}\right)_{\mathrm{t}}\right] \\ \left(\mathrm{E}_{\mathrm{R}}\right)_{\mathrm{t}}= & \left(\mathrm{E}_{1} \cos \theta_{1}\right)+\left(\mathrm{E}_{2} \cos \theta_{2}\right) \cdots \\ & +\left(\mathrm{E}_{\mathrm{n}} \cos \theta_{\mathrm{n}}\right) \\ \left(\pm \mathrm{E}_{\mathrm{X}}\right)_{\mathrm{t}}= & {\left[\mathrm{E}_{1} \sin \left(\pm \theta_{1}\right)\right]+\left[\mathrm{E}_{2} \sin \left(\pm \theta_{2}\right)\right] \cdots } \\ & +\left[E_{n} \sin \left(\pm \theta_{n}\right)\right] \end{aligned}$	$\begin{aligned} & \mathrm{E}_{1} / \theta_{1} \\ & \mathrm{E}_{2} / \theta_{2} \\ & \mathrm{E}_{\mathrm{n}} / \theta_{\mathrm{n}} \end{aligned}$
$\begin{aligned} \mathrm{E}_{\mathrm{t}} & =\sqrt{\left(\mathrm{E}_{\mathrm{R}}\right)_{\mathrm{t}}^{2}+\left(\mathrm{E}_{\mathrm{X}}\right)_{t}^{2}} \\ \theta_{\mathrm{t}} & =\tan ^{-1}\left[\left(\pm \mathrm{E}_{\mathrm{X}}\right)_{\mathrm{t}} /\left(\mathrm{E}_{\mathrm{R}}\right)_{\mathrm{t}}\right] \\ \left(\mathrm{E}_{\mathrm{R}}\right)_{\mathrm{t}} & =\left(\mathrm{E}_{1} \cos \theta_{1}\right)-\left(\mathrm{E}_{2} \cos \theta_{2}\right) \\ \left(\pm \mathrm{E}_{\mathrm{X}}\right)_{\mathrm{t}} & =\left[\mathrm{E}_{1} \sin \left(\pm \theta_{1}\right)\right]-\left[\mathrm{E}_{2} \sin \left(\pm \theta_{2}\right)\right] \end{aligned}$	$\begin{aligned} & \mathrm{E}_{1} / \theta_{1} \\ & \mathrm{E}_{2} / \theta_{2} \\ & \text { Differential } \end{aligned}$
$\begin{aligned} &\left(E_{\text {RECT }}\right)_{t}=\left(E_{\text {RECT }}\right)_{1}+\left(E_{\text {RECT }}\right)_{2} \cdots+\left(E_{\text {RECT }}\right)_{n} \\ & E_{\text {RECT }}= E_{R} \pm j E_{X}=E_{R}+\left(\pm E_{X}\right) j \\ &\left(E_{\text {RECT }}\right)_{t}= {\left[\left(E_{R}\right)_{1}+\left(E_{R}\right)_{2} \cdots+\left(E_{R}\right)_{n}\right] } \\ &+\left[\left(\pm E_{X}\right)_{1}+\left(\pm E_{X}\right)_{2} \cdots+\left(\pm E_{X}\right)_{n}\right] j \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & \left(\mathrm{E}_{\mathrm{RECT}}\right)_{1} \\ & \left(\mathrm{E}_{\mathrm{RECT}}\right)_{2} \\ & \left(\mathrm{E}_{\mathrm{RECT}}\right)_{\mathrm{n}} \end{aligned}\right.$
$\begin{aligned} &\left(E_{\text {RECT }}\right)_{t}=\left(E_{\text {RECT }}\right)_{1}-\left(E_{\text {RECT }}\right)_{2} \\ & E_{\text {RECT }}= E_{R} \pm j E_{X}=E_{R}+\left(\pm E_{X}\right) j \\ &\left(E_{\text {RECT }}\right)_{t}=\left[\left(E_{R}\right)_{1}-\left(E_{R}\right)_{2}\right] \\ &+\left[\left(\pm E_{X}\right)_{1}-\left(\pm E_{X}\right)_{2}\right] j \\ & \hline \end{aligned}$	$\left(\mathrm{E}_{\mathrm{RECT}}\right)_{1}$ $\left(\mathrm{E}_{\mathrm{RECT}}\right)_{2}$ Differential

E Notes:

(1) $\mathrm{E} / \theta_{\mathrm{E}}=\mathrm{E}_{\text {POLAR }}$
(2) $\mathrm{E}_{\mathrm{R}}=\mathrm{E}_{0^{\circ}}=+\mathrm{E}=$ "Real" numbers $\left(-\mathrm{E}_{\mathrm{R}}=\mathrm{E}_{180^{\circ}}\right)$
(3) $\mathrm{E}=|\mathrm{E}|=\mathrm{E}_{\text {polar magnitude, }} \pm \mathrm{E}_{\mathrm{X}}=\mathrm{E}_{ \pm 90^{\circ}}$
(4) $+\mathrm{E}_{\mathrm{X}}=\mathrm{E}_{+90^{\circ}}=\mathrm{E}_{\mathrm{L}}=\mathrm{E} \sin (+\theta)$
(5) $-\mathrm{E}_{\mathrm{X}}=\mathrm{E}_{-90^{\circ}}=\mathrm{E}_{\mathrm{C}}=\mathrm{E} \sin (-\theta)$
\qquad
Output
Voltage \& Phase
$\mathrm{E}_{\mathrm{o}}=\mathrm{E}_{\mathrm{g}}\left[\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)+1\right]^{-1}$
$\mathrm{E}_{\mathrm{o}}=\left(\mathrm{E}_{\mathrm{g}} \mathrm{R}_{2}\right) /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$
$\theta_{\mathrm{Eo}}=\theta_{\mathrm{Eg}}=0^{\circ}$$\quad \xrightarrow[\mathrm{E}]{ }$
$E_{o}=\left(E_{g} R\right) / \sqrt{R^{2}+X_{C}^{2}}$
$\mathrm{E}_{\mathrm{o}}=\mathrm{E}_{\mathrm{g}}\left(\cos \theta_{\mathrm{Zi}}\right)$

$\theta_{\text {Eo }}=-\left(-\theta_{Z_{i}}\right)=\tan ^{-1}\left(\mathrm{X}_{\mathrm{C}} / \mathrm{R}\right)$
(E_{o} Leads E_{g})
$E_{o}=\left(E_{g} R\right) / \sqrt{R^{2}+X_{L}^{2}}$
$E_{o}=E_{g}\left(\cos \theta_{Z_{i}}\right)$

$\theta_{\mathrm{Eo}}=-\left(+\theta_{\mathrm{Zi}_{\mathrm{i}}}\right)=\tan ^{-1}-\left(\mathrm{X}_{\mathrm{L}} / \mathrm{R}\right)$
(E_{o} Lags E_{g})

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{o}}=\left(\mathrm{E}_{\mathrm{g}} \mathrm{X}_{\mathrm{C}}\right) / \sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{C}}^{2}} \\
& \mathrm{E}_{\mathrm{o}}=\left|\mathrm{E}_{\mathrm{g}}\left(\sin \theta_{\mathrm{Zi}}\right)\right| \\
& \theta_{\mathrm{E} \text { o }}=-\left(-\theta_{\mathrm{Zi}}\right)-90^{\circ}=\left[\tan ^{-1}\left(\mathrm{X}_{\mathrm{C}} / \mathrm{R}\right)\right]-90^{\circ} \quad\left(\mathrm{E}_{\mathrm{o}} \text { Lags }\right)
\end{aligned}
$$

E_{o} Notes:
(1) $\mathbf{E}_{\mathrm{g}}=$ Generator voltage, $\mathrm{Z}_{\mathrm{i}}=$ Input impedance, $\theta_{\mathrm{Eo}}=$ Phase angle of output voltage
(2) $\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}, \mathrm{X}_{\mathrm{C}}=(\omega \mathrm{C})^{-1}, \omega=2 \pi f$
(3) $\mathrm{x}^{-1}=1 / \mathrm{x}, \mathrm{x}^{-2}=1 / \mathrm{x}^{2}, \mathrm{x}^{\frac{1}{2}}=\sqrt{\mathrm{x}}, \mathrm{x}^{-\frac{1}{2}}=1 / \sqrt{\mathrm{x}}$
(4) $\tan ^{-1}=\operatorname{arc}$ tangent, sin $=$ sine, $\cos =$ cosine

E_{0}

Output
 Voltage \& Phase

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{o}}=\left(\mathrm{E}_{\mathrm{g}} \mathrm{X}_{\mathrm{L}}\right) / \sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}^{2}} \\
& \mathrm{E}_{\mathrm{o}}=\left|\mathrm{E}_{\mathrm{g}}\left(\sin \theta_{\mathrm{Z}_{\mathrm{i}}}\right)\right| \\
& \theta_{\text {Eo }}=-\left(+\theta_{Z_{i}}\right)+90^{\circ}=90^{\circ}-\left[\tan ^{-1}\left(\mathrm{X}_{\mathrm{L}} / \mathrm{R}\right)\right] \\
& \theta_{\text {Eo }} \text { Leads } \theta_{\text {Eg }} \\
& \begin{array}{l}
\mathrm{E}_{\mathrm{o}}=\left(\mathrm{E}_{\mathrm{g}} \mathrm{R}\right) / \sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}} \mathrm{E}_{\mathrm{o}}=\mathrm{E}_{\mathrm{g}}\left(\cos \theta_{\mathrm{Zi}}\right)
\end{array} \\
& \theta_{\text {Eo }}=-\left(\pm \theta_{Z_{i}}\right)=\tan ^{-1}\left[\left(X_{C}-X_{L}\right) / R\right]=0^{\circ} @ f_{r} \\
& \theta_{\text {Eo }}=0^{\circ} @ \mathrm{f}_{\mathrm{r}} \text {, near }+90^{\circ} @ \mathrm{vlf} \text {, near }-90^{\circ} @ \mathrm{vhf} \\
& \mathrm{E}_{\mathrm{o}}=\left(\mathrm{E}_{\mathrm{g}} \mathrm{X}_{\mathrm{C}}\right) / \sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}} \\
& \theta_{\text {Eo }}=-\left(\pm \theta_{Z_{i}}\right)-90^{\circ}=\left(\tan ^{-1}\left[\left(X_{C}-X_{L}\right) / R\right]\right)-90^{\circ} \\
& \theta_{\text {Eo }}=-90^{\circ} @ \mathrm{f}_{\mathrm{r}} \text {, near } 0^{\circ} @ \text { vlf, near }-180^{\circ} @ \text { vhf } \\
& \mathrm{E}_{\mathrm{o}}=\left(\mathrm{E}_{\mathrm{g}} \mathrm{X}_{\mathrm{L}}\right) / \sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}} \\
& \theta_{\mathrm{Eo}}=+90^{\circ}-\left(\pm \theta_{\mathrm{Zi}}\right)=90^{\circ}-\left(\tan ^{-1}\left[\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right) / \mathrm{R}\right]\right) \\
& \theta_{\text {Eo }}=+90^{\circ} @ \mathrm{f}_{\mathrm{r}} \text {, near } 0^{\circ} @ \text { vhf, near } 180^{\circ} @ \text { vlf }
\end{aligned}
$$

LCR Filter Networks

Output

Voltage \& Phase

$$
\begin{aligned}
\mathrm{E}_{\mathrm{o}} & =\left(\mathrm{E}_{\mathrm{g}} \mathrm{R}\right) / \mathrm{Z}_{\mathrm{i}} \\
\mathrm{E}_{\mathrm{o}} & =\mathrm{E}_{\mathrm{g}}\left(\cos \theta_{\mathrm{Zi}}\right) \\
\theta_{\mathrm{Eo}} & =-\left(\pm \theta_{\mathrm{Zi}}\right)
\end{aligned}
$$

$$
\text { where } \begin{aligned}
Z_{i} & =\sqrt{R^{2}+\left(X_{L}^{-1}-X_{C}^{-1}\right)^{-2}} \\
\theta_{Z_{i}} & =\tan ^{-1}\left[R\left(X_{C}^{-1}-X_{L}^{-1}\right)\right]^{-1}
\end{aligned}
$$

$\theta_{\text {Lo }}=0^{\circ} @ \mathrm{f}_{\mathrm{r}}$, Lags $\theta_{\text {Eg }}$ below f_{r}, Leads $\theta_{\text {Eg }}$ above f_{r}
$\mathrm{E}_{\mathrm{o}}=\left(\mathrm{E}_{\mathrm{g}} \mathrm{X}_{\mathrm{C}}\right)\left[\mathrm{R}_{\mathrm{s}}^{2}+\left(\mathrm{X}_{\mathrm{Ls}}-\mathrm{X}_{\mathrm{C}}\right)^{2}\right]^{-\frac{1}{2}}$
$\theta_{\mathbf{E o}}=\boldsymbol{\theta}_{\mathbf{X c}}-\boldsymbol{\theta}_{\mathbf{Z i}}$
$\theta_{\text {Lo }}=\left(-90^{\circ}\right)-\left(\pm \theta_{Z_{i}}\right)$

$\theta_{E o}=\left(-90^{\circ}\right)-\left(\tan ^{-1}\left[\left(\mathrm{X}_{\mathrm{Ls}}-\mathrm{X}_{\mathrm{C}}\right) / \mathrm{R}_{\mathrm{s}}\right]\right)$ where $\quad R_{s}=\left[\left(R / X_{L}^{2}\right)+R^{-1}\right]^{-1}$

$$
X_{L s}=\left[\left(X_{L} / R^{2}\right)+X_{L}^{-1}\right]^{-1}
$$

$$
\mathrm{E}_{\mathrm{o}}=\left(\mathrm{E}_{\mathrm{g}} \mathrm{X}_{\mathrm{L}}\right)\left[\mathrm{R}_{\mathrm{s}}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{Cs}}\right)^{2}\right]^{-\frac{1}{2}}
$$

$$
\boldsymbol{\theta}_{\mathbf{E o}}=\boldsymbol{\theta}_{\mathbf{X}_{\mathbf{L}}}-\boldsymbol{\theta}_{\mathbf{Z i}}
$$

$$
\theta_{\mathrm{Eo}}=+90^{\circ}-\left(\pm \theta_{\mathrm{Zi}}\right)
$$

$$
\theta_{\mathrm{Eo}}=+90^{\circ}-\left(\tan ^{-1}\left[\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{Cs}}\right) / \mathrm{R}_{\mathrm{s}}\right]\right)
$$

$$
\text { where } \quad R_{s}=\left[\left(R / X_{C}^{2}\right)+R^{-1}\right]^{-1}
$$

$$
X_{C s}=\left[\left(X_{C} / R^{2}\right)+X_{C}^{-1}\right]^{-1}
$$

LCR Filter

Networks

Ed

Output
 Voltage \& Phase

where $\quad Z_{i}=\sqrt{R^{2}+\left(X_{L}^{-1}-X_{C}^{-1}\right)^{-2}}$ (1)

$$
\theta_{Z_{i}}=\tan ^{-1}\left[R\left(X_{L}^{-1}-X_{C}^{-1}\right)\right]^{-1}
$$

$\theta_{\text {ED }}=0^{\circ} @ f_{r}$, Leads $\theta_{\text {Eg }}$ below f_{r}, Lags $\theta_{\text {Eg }}$ above f_{r}
$\mathrm{E}_{\mathrm{o}}=\left(\mathrm{E}_{\mathrm{g}} \mathrm{Z}_{2}\right) / \mathrm{Z}_{\mathrm{i}}$

$\theta_{\mathrm{Eo}}=\boldsymbol{\theta}_{\mathbf{Z 2}}-\boldsymbol{\theta}_{\mathbf{Z i}}$
$Z_{i}=\left[R_{s}^{2}+\left(X_{L}-X_{C s}\right)^{2}\right]^{\frac{1}{2}}, \theta_{Z_{i}}=\tan ^{-1}\left[\left(X_{L}-X_{C s}\right) / R_{s}\right]$
$\mathrm{Z}_{2}=\left(\mathrm{R}^{-2}+\mathrm{X}_{\mathrm{C}}^{-2}\right)^{-\frac{1}{2}}, \theta_{\mathrm{Z} 2}=\tan ^{-1}\left(\mathrm{R} / \mathrm{X}_{\mathrm{C}}\right)$
where $\quad R_{s}=\left[\left(R / X_{C}^{2}\right)+R^{-1}\right]^{-1}$

$$
X_{C s}=\left[\left(X_{C} / R^{2}\right)+X_{C}^{-1}\right]^{-1}
$$

$$
\begin{aligned}
E_{o} & =\left(E_{g} Z_{2}\right) / Z_{i} \\
\theta_{E o} & =\theta_{Z 2}-\theta_{Z i}
\end{aligned}
$$

$$
\mathrm{Z}_{\mathrm{i}}=\left[\mathrm{R}_{\mathrm{s}}^{2}+\left(\mathrm{X}_{\mathrm{Ls}}-\mathrm{X}_{\mathrm{C}}\right)^{2}\right]^{\frac{1}{2}}, \theta_{\mathrm{Z}_{\mathrm{i}}}=\tan ^{-1}\left[\left(\mathrm{X}_{\mathrm{Ls}}-\mathrm{X}_{\mathrm{C}}\right) / \mathrm{R}_{\mathrm{s}}\right]
$$

$$
\mathrm{Z}_{2}=\left(\mathrm{R}^{-2}+\mathrm{X}_{\mathrm{L}}^{-2}\right)^{-\frac{1}{2}}, \theta_{\mathrm{Z} 2}=\tan ^{-1}\left(\mathrm{R} / \mathrm{X}_{\mathrm{L}}\right)
$$

$$
\text { where } \quad R_{s}=\left[\left(R / X_{L}^{2}\right)+R^{-1}\right]^{-1}
$$

$$
X_{L s}=\left[\left(X_{L} / R^{2}\right)+X_{L}^{-1}\right]^{-1}
$$

LCR Filter
 Networks

Output
 Voltage \& Phase

$\theta_{\text {Eo }}=0^{\circ} @ f_{r}$, Lags $\theta_{\text {Eg }}$ below f_{r}, Leads $\theta_{\text {Eg }}$ above f_{r}

$$
\begin{aligned}
E_{o} & =\left(E_{g} Z_{2}\right) / Z_{i} \\
\theta_{E o} & =\theta_{Z 2}-\theta_{Z i} \\
\theta_{E o} & =\left(-\theta_{Z 2}\right)-\left(\pm \theta_{Z i}\right)
\end{aligned}
$$

where $\quad Z_{i}=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$

$$
\begin{aligned}
\theta_{\mathrm{Zi}_{\mathrm{i}}} & =\tan ^{-1}\left[\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right) / \mathrm{R}\right] \\
\mathrm{Z}_{2} & =\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{C}}^{2}}, \theta_{\mathrm{Z} 2}=\tan ^{-1}\left(-\mathrm{X}_{\mathrm{C}} / \mathrm{R}\right)
\end{aligned}
$$

$$
\begin{aligned}
E_{o} & =\left(E_{g} Z_{2}\right) / Z_{i} \\
\theta_{E 0} & =\theta_{Z 2}-\theta_{Z \mathbf{i}} \\
\theta_{E o} & =\left(+\theta_{Z 2}\right)-\left(\pm \theta_{Z i}\right)
\end{aligned}
$$

where $\quad Z_{i}=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$

$$
\theta_{Z_{i}}=\tan ^{-1}\left[\left(X_{L}-X_{C}\right) / R\right]
$$

$$
\mathrm{Z}_{2}=\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}^{2}}, \theta_{\mathrm{Z} 2}=\tan ^{-1}\left(\mathrm{X}_{\mathrm{L}} / \mathrm{R}\right)
$$

$$
\begin{aligned}
& E_{o}=\left[E_{g}\left(X_{L}-X_{C}\right)\right] / Z_{i} \\
& \mathrm{E}_{\mathrm{o}}=\left|\mathrm{E}_{\mathrm{g}}\left(\sin \theta_{\mathrm{Z}_{\mathbf{i}}}\right)\right| \\
& \theta_{\text {Eo }}= \pm 90^{\circ}-\left(\pm \theta_{Z_{i}}\right) \\
& \text { where } \quad Z_{i}=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \\
& \theta_{Z_{i}}=\tan ^{-1}\left[\left(X_{L}-X_{C}\right) / R\right]
\end{aligned}
$$

Er
 Output
 Voltage \& Phase

$$
\begin{aligned}
E_{o} & =\left(E_{g} Z_{2}\right) / Z_{i} \\
\theta_{E o} & =\theta_{Z 2}-\theta_{Z i} \\
\theta_{E o} & =\left(-\theta_{Z 2}\right)-\left(-\theta_{Z i}\right)
\end{aligned}
$$

where $\quad Z_{i}=\sqrt{\left(R_{1}+R_{2}\right)^{2}+X_{C}^{2}}$

$$
\begin{aligned}
\theta_{Z i} & =\tan ^{-1}\left[-X_{C} /\left(R_{1}+R_{2}\right)\right] \\
Z_{2} & =\sqrt{R_{2}^{2}+X_{C}^{2}}, \theta_{Z 2}=\tan ^{-1}\left(-X_{C} / R_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
E_{o} & =\left(E_{g} Z_{2}\right) / Z_{i} \\
\theta_{E o} & =\theta_{Z 2}-\theta_{Z i} \\
\theta_{E o} & =\left(+\theta_{Z 2}\right)-\left(+\theta_{Z i}\right)
\end{aligned}
$$

where $\quad Z_{i}=\sqrt{\left(R_{1}+R_{2}\right)^{2}+X_{L}^{2}}$

$$
\begin{aligned}
\theta_{\mathrm{Zi}} & =\tan ^{-1}\left[\mathrm{X}_{\mathrm{L}} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right] \\
\mathrm{Z}_{2} & =\sqrt{\mathrm{R}_{2}^{2}+\mathrm{X}_{\mathrm{L}}^{2}}, \theta_{\mathrm{Z} 2}=\tan ^{-1}\left(\mathrm{X}_{\mathrm{L}} / \mathrm{R}_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
E_{o} & =\left(E_{g} Z_{2}\right) / Z_{i} \\
\theta_{E o} & =\theta_{Z 2}-\theta_{Z i}
\end{aligned}
$$

$$
E_{0}=\left[E_{g}\left(R_{2}^{-2}+X_{C 2}^{-2}\right)^{-\frac{1}{2}}\right] /\left[\left(R_{1}+R_{2 s}\right)^{2}+\left(X_{C 1}^{-1}+X_{C 2 s}^{-1}\right)^{-2}\right]^{\frac{1}{2}}
$$

$$
\theta_{\mathrm{Eo}}=\left[\tan ^{-1}\left(\mathrm{R}_{2} /-\mathrm{X}_{\mathrm{C} 2}\right)\right]-\left(\tan ^{-1}\left[\left(\mathrm{R}_{1}+\mathrm{R}_{2 \mathrm{~s}}\right) /-\left(\mathrm{X}_{\mathrm{C} 1}^{-1}+\mathrm{X}_{\mathrm{C} 2 \mathrm{~s}}^{-1}\right]\right)\right.
$$

$$
\text { where } \quad R_{2 s}=\left[\left(R_{2} / X_{C 2}^{2}\right)+R_{2}^{-1}\right]^{-1}
$$

$$
X_{\mathrm{C} 2 \mathrm{~s}}=\left[\left(\mathrm{X}_{\mathrm{C} 2} / \mathrm{R}_{2}^{2}\right)+\mathrm{X}_{\mathrm{C} 2}^{-1}\right]^{-1}
$$

Networks

Driven By
Current Source

$\square 0$
 Output
 Voltage \& Phase

$$
\begin{aligned}
\mathrm{E}_{\mathrm{o}} & =\mathrm{I}_{\mathrm{g}} \mathrm{R} \\
\theta_{\mathrm{Eo}} & =0^{\circ}
\end{aligned}
$$

$E_{o}=I_{g} X_{C}$
$\theta_{\text {Eo }}=-90^{\circ}\left(\theta_{\text {Eo }}\right.$ Lags $\left.\theta_{\text {Ig }}\right)$

E_{o}	$=\mathrm{I}_{\mathrm{g}} \mathrm{X}_{\mathrm{L}}$
θ_{Eo}	$=+90^{\circ}\left(\theta_{\mathrm{Eo}}\right.$ Leads $\left.\theta_{\mathrm{Ig}}\right)$

$$
\begin{aligned}
E_{o} & =I_{g} Z \\
E_{o} & =I_{g} \sqrt{R^{2}+X_{C}^{2}} \\
\theta_{E O} & =\left(-\theta_{Z}\right)=\tan ^{-1}\left(-X_{C} / R\right)
\end{aligned}
$$

$\theta_{\text {Eo }}$ Lags $\theta_{\text {Ig }}$

$$
E_{o}=I_{g} Z
$$

$$
E_{o}=I_{g} \sqrt{R^{2}+X_{L}^{2}}
$$

$$
\theta_{E o}=\left(+\theta_{Z}\right)=\tan ^{-1}\left(X_{L} / R\right)
$$

$$
\theta_{\text {Eo }} \text { Leads } \theta_{\text {Ig }}
$$

Note: $-\infty-=$ Infinite impedance alternating current source

Networks

Driven By
Current Source

0

Output
Voltage \& Phase

$$
\begin{aligned}
E_{o} & =I_{g} Z \\
E_{o} & =I_{g}\left(R^{-2}+X_{C}^{-2}\right)^{-\frac{1}{2}} \\
\theta_{E O} & =+\left(-\theta_{Z}\right)=\tan ^{-1}\left(R /-X_{C}\right)
\end{aligned}
$$

$\boldsymbol{\theta}_{\text {Lo }}$ Lags $\boldsymbol{\theta}_{\text {lg }}$

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{o}}=\mathrm{I}_{\mathrm{g}} \mathrm{Z} \\
& \mathrm{E}_{\mathrm{o}}=\mathrm{I}_{\mathrm{g}}\left(\mathrm{R}^{-2}+\mathrm{X}_{\mathrm{L}}^{-2}\right)^{-\frac{1}{2}} \\
& \theta_{\text {Et }}=+\left(+\theta_{\mathrm{Z}}\right)=\tan ^{-1}\left(\mathrm{R} / \mathrm{X}_{\mathrm{L}}\right) \\
& \theta_{\text {ED }} \text { Leads } \theta_{\mathrm{Ig}}
\end{aligned}
$$

$$
\begin{aligned}
E_{o} & =I_{g} Z \\
\theta_{E o} & =+\left(\pm \theta_{Z}\right)
\end{aligned}
$$

$$
E_{o}=I_{g}\left[R^{-2}+\left(X_{L}^{-1}-X_{C}^{-1}\right)^{2}\right]^{-\frac{1}{2}}=I_{g} R @ f_{r}
$$

$$
\theta_{\mathrm{EO}}=\tan ^{-1}\left[\mathrm{R}\left(\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right)\right]
$$

$$
\begin{aligned}
\mathrm{E}_{\mathrm{O}} & =\mathrm{I}_{\mathrm{g}} \mathrm{Z} \\
\theta_{\mathrm{EO}} & =+\left(\pm \theta_{\mathrm{Z}}\right) \\
\mathrm{E}_{\mathrm{o}} & =\mathrm{I}_{\mathrm{g}} \sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}} \\
\theta_{\mathrm{Eo}} & =\tan ^{-1}\left[\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right) / \mathrm{R}\right]
\end{aligned}
$$

Networks

Driven By
Current Source

Output
 Voltage \& Phase

$$
\begin{aligned}
\mathrm{E}_{\mathrm{O}} & =\mathrm{I}_{\mathrm{g}} \mathrm{Z} \\
\theta_{\mathrm{Eo}} & = \pm \theta_{\mathrm{Z}} \\
\mathrm{E}_{\mathrm{o}} & =\mathrm{I}_{\mathrm{g}}\left[\mathrm{R}^{-2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{-2}\right]^{-\frac{1}{2}} \\
\theta_{\mathrm{Eo}} & =\tan ^{-1}\left[\mathrm{R} /\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)\right] \\
\mathrm{E}_{\mathrm{O}} & =\mathrm{I}_{\mathrm{g}} \mathrm{Z} \\
\theta_{\mathrm{Eo}} & = \pm \theta_{\mathrm{Z}}= \pm 90^{\circ} \\
\mathrm{E}_{\mathrm{o}} & =\left|\mathrm{I}_{\mathrm{g}}\left[\mathrm{X}_{\mathrm{C} 1}^{-1}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C} 2}\right)^{-1}\right]^{-1}\right|
\end{aligned}
$$

$$
\begin{aligned}
E_{o} & =I_{g} Z \\
\theta_{E o} & = \pm \theta_{Z}= \pm 90^{\circ} \\
E_{o} & =\left|I_{g}\left[X_{L 1}^{-1}+\left(X_{L 2}-X_{C}\right)^{-1}\right]^{-1}\right|
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}_{\mathrm{o}} & =\left(\mathrm{I}_{\mathrm{g}} \mathrm{Z}_{\mathrm{i}} \mathrm{X}_{\mathrm{C} 2}\right) /\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C} 2}\right) \\
\theta_{\mathrm{Eo}} & =\left(\pm \theta_{\mathrm{Z}_{\mathrm{i}}}\right)+\left(-90^{\circ}\right)-\left(\pm 90^{\circ}\right) \\
\mathrm{E}_{\mathrm{o}} & =\mathrm{I}_{\mathrm{g}} /\left[\mathrm{X}_{\mathrm{C} 1}^{-1}+\mathrm{X}_{\mathrm{C} 2}^{-1}-\left(\mathrm{X}_{\mathrm{L}} / \mathrm{X}_{\mathrm{C} 1} \mathrm{X}_{\mathrm{C} 2}\right)\right]
\end{aligned}
$$

See also-Z complex circuits, \mathbf{Y} complex circuits
Note (d)
If the reciprocal of zero is presented, $\mathbf{E}_{\mathbf{o}}=\infty$.

Voltage

Vector Algebra

Vector Algebra AC Ohms Law

$$
\begin{aligned}
\mathrm{E}_{\mathrm{g}} & =\mathrm{E}_{\mathrm{g}} / 0^{\circ} \text { or } \mathrm{I}_{\mathrm{g}}=\mathrm{I}_{\mathrm{g}} / 0^{\circ} \\
\mathrm{E} & =\mathrm{I}_{\mathrm{g}} \mathrm{Z}=\mathrm{I}_{\mathrm{g}} \mathrm{Z} / 0^{\circ}+\theta_{\mathrm{Z}}= \pm \theta_{\mathrm{Z}} \\
\mathrm{I} & =\mathrm{E}_{\mathrm{g}} / \mathrm{Z}=\mathrm{E}_{\mathrm{g}} / \mathrm{Z} / 0^{\circ}-\theta_{\mathrm{Z}}=-\left(\pm \theta_{\mathrm{Z}}\right) \\
\mathrm{Z} & =\mathrm{E}_{\mathrm{g}} / \mathrm{I}=\mathrm{E}_{\mathrm{g}} / \mathrm{I} / 0^{\circ}-\theta_{\mathrm{I}}=-\left(\pm \theta_{\mathrm{I}}\right) \\
\mathrm{Z} & =\mathrm{E} / \mathrm{I}_{\mathrm{g}}=\mathrm{E} / \mathrm{I}_{\mathrm{g}} / \theta_{\mathrm{E}}-0^{\circ}= \pm \theta_{\mathrm{E}}
\end{aligned}
$$

Addition and Subtraction of Rect. Quantities

$$
\begin{aligned}
& E_{1}+E_{2}=E_{1 \text { (RECT.) }}+E_{2 \text { (RECT.) }} \\
& =\left[E_{R}+\left(\pm E_{X}\right) j\right]_{1}+\left[E_{R}+\left(\pm E_{X}\right) j\right]_{2} \\
& =\left[\left(E_{R}\right)_{1}+\left(E_{R}\right)_{2}\right]+\left[\left(\pm E_{X}\right)_{1}+\left(\pm E_{X}\right)_{2}\right] j \\
& E_{1}-E_{2}=\left[\left(E_{R}\right)_{1}-\left(E_{R}\right)_{2}\right]+\left[\left(\pm E_{X}\right)_{1}-\left(\pm E_{X}\right)_{2}\right] j \\
& \left|+E_{X}\right|=E_{L} \quad\left|-E_{X}\right|=E_{C} \\
& I_{1}+I_{2}=I_{1 \text { (RECT) }}+I_{2 \text { (RECT.) }} \\
& =\left[I_{R}-\left(\pm I_{X}\right) j\right]_{1}+\left[I_{R}-\left(\pm I_{X}\right) j\right]_{2} \\
& =\left[\left(\mathrm{I}_{\mathrm{R}}\right)_{1}+\left(\mathrm{I}_{\mathrm{R}}\right)_{2}\right]-\left[\left(\pm \mathrm{I}_{\mathrm{X}}\right)_{1}+\left(\pm \mathrm{I}_{\mathrm{X}}\right)_{2}\right] \mathrm{j} \\
& I_{1}-I_{2}=\left[\left(I_{R}\right)_{1}-\left(I_{R}\right)_{2}\right]-\left[\left(\pm I_{X}\right)_{1}-\left(\pm I_{X}\right)_{2}\right] j \\
& \left|+I_{X}\right|=I_{L} \quad\left|-I_{X}\right|=I_{C}
\end{aligned}
$$

Note: The rectangular current of a series circuit represents current through an equivalent parallel circuit.
Note: See $\mathbf{Z}_{\text {RECT }}$ for addition and subtraction of impedance

E。

Output Voltage Vector Algebra

$$
\begin{aligned}
& I_{g}=I_{g} / 0^{\circ} \quad E_{g}=I_{g} Z_{i} \\
& Z_{i}=\left[Z_{3}^{-1}+\left(Z_{2}+Z_{1}\right)^{-1}\right]^{-1} \\
& Z_{o}=\left[Z_{1}^{-1}+\left(Z_{2}+Z_{3}\right)^{-1}\right]^{-1} \\
& Y_{o}=Y_{1}+\left(Y_{2}^{-1}+Y_{3}^{-1}\right)^{-1} \\
& E_{o}=I_{g} Z_{1}\left[1-\left(Z_{i} / Z_{3}\right)\right] \\
& \hline
\end{aligned}
$$

Output Voltage

Vector Algebra

$$
\begin{aligned}
& E_{g}=E_{g} / 0^{\circ} \quad I_{g}=E_{g} / Z_{i} \\
& Z_{i}=Z_{4}+\left[Z_{3}^{-1}+\left(Z_{2}+Z_{1}\right)^{-1}\right]^{-1} \\
& Z_{o}=\left(Z_{1}^{-1}+\left[Z_{2}+\left(Z_{3}^{-1}+Z_{4}^{-1}\right)^{-1}\right]^{-1}\right)^{-1} \\
& Y_{o}=Y_{1}+\left[Y_{2}^{-1}+\left(Y_{3}+Y_{4}\right)^{-1}\right]^{-1} \\
& E_{o}=E_{g}\left[1-\left(Z_{4} / Z_{i}\right)\right] /\left[\left(Z_{2} / Z_{1}\right)+1\right]
\end{aligned}
$$

$$
\begin{aligned}
& I_{g}=I_{g} / 0^{\circ} \quad E_{g}=I_{g} Z_{i} \\
& Z_{i}=\left[Z_{5}^{-1}+\left(Z_{4}+\left[Z_{3}^{-1}+\left(Z_{2}+Z_{1}\right)^{-1}\right]^{-1}\right)^{-1}\right]-1 \\
& Z_{o}=\left[Z_{1}^{-1}+\left(Z_{2}+\left[Z_{3}^{-1}+\left(Z_{2}+Z_{1}\right)^{-1}\right]^{-1}\right)^{-1}\right]^{-1} \\
& Y_{o}=Y_{1}+\left(Y_{2}^{-1}+\left[Y_{3}+\left(Y_{2}^{-1}+Y_{1}^{-1}\right)^{-1}\right]^{-1}\right)^{-1} \\
& E_{o}=\left[I_{g}\left(Z_{i}-Z_{4}\right)\right] /\left[\left(Z_{2} / Z_{1}\right)+1\right]
\end{aligned}
$$

Output
 Voltage
 0

Current Source to Voltage Source Conversion

$\mathrm{E}_{\mathrm{g}}=\mathrm{I}_{\mathrm{g}} \mathrm{Z}_{1}$
$\theta_{\mathrm{Eg}}=\theta_{\mathrm{Ig}}=0^{\circ}$
$Z_{2}=Z_{1}$ at all frequencies
$E_{o 2}=E_{o 1}$ at all frequencies
Voltage Source to Current Source Conversion

$I_{g}=E_{g} / Z_{2}$
$\theta_{\mathrm{Ig}}=\theta_{\mathrm{Eg}}=0^{\circ}$
$\mathbf{Z}_{1}=\mathbf{Z}_{2}$ at all frequencies
$\mathbf{E}_{\mathbf{0 1}}=\mathrm{E}_{\mathbf{0} 2}$ at all frequencies
Note: \mathbf{E}_{o} may be loaded in any manner and the two outputs although changed will remain equal to each other.

$\square \mathrm{N} \quad \begin{aligned} & \text { Noise } \\ & \text { Voltage }\end{aligned}$

$\mathrm{e}_{\mathrm{N}(\mathrm{th})}=$ Thermal noise (white noise) voltage of resistance.
(Other symbols of thermal noise voltage include E_{N},
$E_{T H}, E_{N(T H)}, e_{n}, e_{N(T H)}, e_{N(\sqrt{\sim})}, e_{N(\sqrt{H})}, V_{N}, V_{N(T H)}$
etc)
Note: Thermal noise voltage is always rms voltage regard-
less of symbol used.
$\mathrm{e}_{\mathrm{N}(\mathrm{th})}=\sqrt{4 \mathrm{kT} \mathrm{K}_{\mathrm{K}} \mathrm{R} \overline{\mathrm{BW}}}$
$\mathrm{k}=$ Boltzmann constant $\left(1.38 \cdot 10^{-23} \mathrm{~J} /{ }^{\circ} \mathrm{K}\right)$
$\mathrm{T}_{\mathrm{K}}=$ Temperature in Kelvin.
$\left({ }^{\circ} \mathrm{C}+273.15\right)$
BW = Noise bandwidth in hertz.
(Noise measured with infinite attenuation of
frequencies outside of bandwidth)
$\mathrm{e}_{\mathrm{N}(\sqrt{\mathrm{Hz}})}=$ Thermal noise per hertz. (per root hertz)
$\mathrm{e}_{\mathrm{N}(\sqrt{\mathrm{Hz}})}=1.283 \cdot 10^{-10} \sqrt{\mathrm{R}} @ 25^{\circ} \mathrm{C}$ and 1 Hz bandwidth
$\mathrm{E}_{\mathrm{N}(\mathrm{EX})}=$ The noise ($1 / \mathrm{f}$ noise) voltage (rms) of a resistor in
excess of thermal noise.
$\mathrm{E}_{\mathrm{N}(\mathrm{EX})}=$ Resistor excess noise voltage (rms) in microvolts
per volt of dc voltage drop per decade of frequency.
$\mathrm{E}_{\mathrm{N}(\mathrm{EX})}=10^{-6} \mathrm{E}_{\mathrm{dc}}\left[\log ^{-1}(\overline{\mathrm{NI}} / 20)\right]$
$\mathrm{NI}=$ Noise Index in dB (a specification)
$\mathrm{NI}=+10$ to $-20 \mathrm{~dB} \quad$ (carbon composition)
$\mathrm{NI}=-10$ to -25 dB (carbon film)
$\mathrm{NI}=-15$ to $-40 \mathrm{~dB} \quad$ (metal film or wirewound)
E_{N} Note: $\log ^{-1}=$ antilog ${ }_{10}$

f

Femto, Frequency

$\mathrm{f}=$ Symbol for femto.
$\mathrm{f}=\mathrm{A}$ multiplier prefix meaning 10^{-15} unit.
$\mathrm{f}=$ Symbol for frequency.
$\mathrm{f}=$ The number of complete cycles per second of alternating current, sound, electromagnetic radiation, vibrations or certain other periodic events.
$\mathrm{f}=$ Frequency measured in hertz (Hz). (old cps)
$\mathrm{f}_{\mathrm{c}}=$ Crossover or cutoff frequency. (3 dB down)
$f_{o}=$ Oscillation, output or reference frequency.
$f_{r}=$ Frequency of resonance.
$\mathrm{f}=1 / \mathrm{t}$ ($\mathrm{t}=$ time of one cycle)
$\mathrm{f}=\mathrm{v} / \boldsymbol{\lambda}$
Sound in Air
$\mathrm{f} \approx 1136 / \lambda$ (λ in feet, $@ 25^{\circ} \mathrm{C}$)
$\mathrm{f} \approx 346.3 / \lambda$ (λ in meters, $@ 25^{\circ} \mathrm{C}$)
Electromagnetic waves including radio frequency and light in air or vacuum.
$\mathrm{f} \approx\left(9.83 \cdot 10^{8}\right) / \lambda(\lambda$ in feet $)$
$\mathrm{f} \approx\left(3 \cdot 10^{8}\right) / \lambda$ (λ in meters)
$\mathrm{f}=1 /\left(2 \pi \mathrm{X}_{\mathrm{C}} \mathrm{C}\right)$
$\mathrm{f}=\mathrm{X}_{\mathrm{L}} /(2 \pi \mathrm{~L})$
Notes: $\mathbf{X}=$ reactance, $\mathbf{v}=$ velocity, $\lambda=$ wavelength, $\mathbf{C}=$ Capacitance, $\mathrm{L}=$ Inductance

f_{c} Notes:
(1) $\mathbf{C}=$ Capacitance, $\mathrm{E}=\mathrm{rms}$ Voltage Magnitude, $\mathrm{E}=$ Polar or Rectangular form of Voltage, $I=$ rms Current Magnitude, $L=$ Inductance, $\mathbf{R}=$ Resistance, $\mathbf{X}=$ Reactance, $\mathbf{Z}=$ Polar or Rectangular form of Impedance

f_{c}

Crossover Frequency

$$
\begin{aligned}
& f_{c}=(\sqrt{2} \pi C R)^{-1} \\
& f_{c}=\frac{R}{2 \pi L \sqrt{2}}
\end{aligned}
$$

$$
\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}=\mathrm{R} / \sqrt{2} \quad \text { when } \quad \mathrm{f}=\mathrm{f}_{\mathrm{c}}
$$

$$
Z=R, \quad\left(E_{l f}+E_{h f}\right)=E_{g} \quad \text { when } \quad f=0 \text { to } \infty
$$

$L=R /\left(2 \pi f_{c} \sqrt{2}\right), \quad C=\left(\sqrt{2} \pi f_{c} R\right)^{-1}$

$$
\mathrm{L}=\mathrm{R} /\left(2 \pi \mathrm{f}_{\mathrm{c}} \sqrt{2}\right), \quad \mathrm{C}=\left(\sqrt{2} \pi \mathrm{f}_{\mathrm{c}} \mathrm{R}\right)^{-1}
$$

$$
\mathrm{E}_{\mathrm{C}(\max)}=\mathrm{E}_{\mathrm{L}(\max)}=1.029 \mathrm{E}_{\mathrm{g}}
$$

$$
\mathrm{I}_{\mathrm{L}(\max)}=\mathrm{I}_{\mathrm{C}(\max)}=1.272\left(\mathrm{E}_{\mathrm{g}} / \mathrm{R}\right)
$$

3 dB Down
Frequency

Cutoff
Frequency
$f_{c}=(2 \pi C R)^{-1}$

$f_{c}=R /(2 \pi L)$

f_{c} Notes:
(2) $\mathrm{E}_{\mathrm{C}}=$ Capacitor voltage, $\mathrm{E}_{\mathrm{g}}=$ Generator voltage, $\mathrm{E}_{\mathrm{L}}=$ Inductor voltage, $\mathrm{E}_{\mathrm{hf}}=$ High freq. voltage, $\mathrm{E}_{\mathrm{lf}}=$ Low freq. voltage, $\mathrm{I}_{\mathrm{C}}=$ Capacitor current, $\mathrm{I}_{\mathrm{L}}=$ Inductor current
(3) $\mathrm{x}^{-1}=1 / \mathrm{x}$
(4) $\pi=3.1416, \sqrt{2}=1.414,2 \pi=6.2832, \sqrt{2} \pi=4.443$

Exponential
 Horn Formulas

$\mathrm{f}_{\mathrm{FC}}=$ Symbol for flare cutoff frequency.
$\mathrm{f}_{\mathrm{FC}}=\mathrm{In}$ an exponential horn of infinite length, the frequency below which no energy is coupled through the horn.
$\mathrm{f}_{\mathrm{FC}}=.5$ to .8 of the lowest frequency of interest in the usual exponential horn.
$\mathrm{f}_{\mathrm{FC}}=\mathrm{v} /\left(18.13 \ell_{2 \mathrm{~A}}\right)$
$f_{F C}=v /\left(18.13 \sqrt{\ell_{2 d}}\right)$
$\mathrm{f}_{\mathrm{FC}}=\mathrm{v} /\left(18.13 \sqrt{\ell_{2 \mathrm{r}}}\right)$
$\mathrm{f}_{\mathrm{FC}}=(\mathrm{mv}) /(4 \pi)$
f_{FC} Notes:
$\ell_{2 A}, \ell_{2 d}, \ell_{2 r}=$ Length between points on the horn center line of double cross sectional area, double diameter, and double radius respectively.
$\mathrm{m}=$ Flare constant $=.6931 / \ell_{2 \mathrm{~A}}=.6931 / \sqrt{\ell_{2 \mathrm{~d}}}$
$\mathrm{v}=$ Velocity of sound $\approx 13,630 \mathrm{in} . / \mathrm{sec}, 1136 \mathrm{ft} / \mathrm{sec}, 346.3$ meters $/ \mathrm{sec}$, $34,630 \mathrm{~cm} / \mathrm{sec}$ at $25^{\circ} \mathrm{C}$
$\mathbf{f}^{\prime}=$ The lowest frequency of "satisfactory" horn loading due to area of horn mouth.
$f^{\prime}=$ Frequency at which:

1. Mouth diameter equals $\frac{1}{4}$ wavelength
2. Mouth circumference equals one wavelength
3. Mouth diameter equals $\frac{1}{3}$ wavelength
4. Mouth diameter equals $\frac{1}{2}$ wavelength
5. Mouth diameter equals $\frac{2}{3}$ wavelength

Low frequency horns are almost always compromised to use criteria 1,2 or 3 . Wavelength-See λ

Frequency of Oscillation or Output	
$f_{o} \approx(2 \pi R C \sqrt{6})^{-1}$	(Phase Shift Oscillator with three equal RC stages. May be phase lead or phase lag type)
$\mathrm{f}_{\mathrm{o}} \approx\left(2 \pi \mathrm{R}_{1} \mathrm{C}_{1}\right)^{-1}$	(Wein Bridge Oscillator) (when $\mathrm{R}_{1} \mathrm{C}_{1}=\mathrm{R}_{2} \mathrm{C}_{2}$) See-Active Circuits
Output frequency of a electromechanical generator	
	Resonant Frequency Definitions
$f_{r}=$ Symbol for frequency of resonance. $f_{r}=1$. The frequency at which the circuit acts as a pure resistance. In a series circuit, the frequency at which the impedance is lowest. In a parallel circuit, the frequency at which the impedance is highest. 2. The frequency at which the inductive reactance equals the capacitive reactance.	
Note: Definition 2 is commonly used due to simpler mathematics, but in many low Q circuits, it is a poor approximation. When Q is high, the difference between the definitions is negligible.	

Ideal C \& L

$$
\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}, \quad \mathrm{Q}=\infty
$$

$$
\mathrm{f}_{\mathrm{r}}=(2 \pi \sqrt{\mathrm{LC}})^{-1} \quad \text { Def. } 1 \& 2
$$

$$
@ f_{r} \quad Z=R
$$

@ f_{r} Def. 1 @ f_{r}
$Z=\left[\left(R / X_{L}^{2}\right)+R^{-1}\right]^{-1} \quad Z \approx X_{L}^{2} / R$
$\theta_{\mathrm{Z}}=0^{\circ}$

$$
X_{C}=\left[\left(X_{L} / R^{2}\right)+X_{L}^{-1}\right]^{-1} \quad X_{C} \approx X_{L}
$$

$$
\mathrm{Q}=\mathrm{X}_{\mathrm{C}}\left[\left(\mathrm{R} / \mathrm{X}_{\mathrm{L}}^{2}\right)+\mathrm{R}^{-1}\right] \quad \mathrm{Q} \approx \mathrm{R} / \mathrm{X}_{\mathrm{L}}
$$

f_{r} Notes:

(1) $\mathrm{C}=$ Capacitance, $\mathrm{L}=$ Inductance, $\mathrm{Q}=$ " Q " Factor, $\mathrm{R}=$ Resistance, $\mathbf{R}_{\mathbf{C}}=$ Resistance in capacitive circuit, $\mathbf{R}_{\mathbf{L}}=$ Resistance in inductive circuit, $X_{C}=$ Capacitive reactance, $X_{L}=$ Inductive reactance, $Z=$ Impedance, $\theta_{\mathrm{Z}}=$ Phase angle of impedance

Series Resonant
Frequency

Resonant Frequency, Series Resonance
$\mathrm{f}_{\mathrm{r}}=\sqrt{(\mathrm{LC})^{-1}-(\mathrm{CR})^{-2}} /(2 \pi) \quad$ Def. 1
exception $=\sqrt{-\mathbf{x}}$

$$
\mathrm{f}_{\mathrm{r}} \approx(2 \pi \sqrt{\mathrm{LC}})^{-1}
$$

@ f_{r} Definition 1

$Z=\left[\left(R / X_{C}^{2}\right)+R^{-1}\right]^{-1} \quad Z \approx X_{C}^{2} / R$
$\theta_{\mathrm{Z}}=0^{\circ}$
$X_{L}=\left[\left(X_{C} / R^{2}\right)+X_{C}^{-1}\right]^{-1} \quad X_{L} \approx X_{C}$
$\mathrm{Q}=\mathrm{X}_{\mathrm{L}}\left[\left(\mathrm{R} / \mathrm{X}_{\mathrm{C}}^{2}\right)+\mathrm{R}^{-1}\right] \quad \mathrm{Q} \approx \mathrm{R} / \mathrm{X}_{\mathrm{C}}$
$f_{r}=\sqrt{\left[\left(R_{C}^{2} C\right)^{-1}-L^{-1}\right] /\left[\left(L / R_{L}^{2}\right)-C\right]} /(2 \pi) \quad$ Def. 1

$$
\mathrm{f}_{\mathrm{r}} \approx(2 \pi \sqrt{L C})^{-1}
$$

@ f_{r} (Definition 1)

$$
\begin{aligned}
& \mathrm{Z}=\left[\left(\mathrm{R}_{\mathrm{C}} / \mathrm{X}_{\mathrm{C}}^{2}\right)+\mathrm{R}_{\mathrm{C}}^{-1}\right]^{-1}+\left[\left(\mathrm{R}_{\mathrm{L}} / \mathrm{X}_{\mathrm{L}}^{2}\right)+\mathrm{R}_{\mathrm{L}}^{-1}\right]^{-1} \\
& \theta_{\mathrm{Z}}=0^{\circ} \\
& {\left[\left(\mathrm{X}_{\mathrm{L}} / \mathrm{R}_{\mathrm{L}}^{2}\right)+\mathrm{X}_{\mathrm{L}}^{-1}\right]=\left[\left(\mathrm{X}_{\mathrm{C}} / \mathrm{R}_{\mathrm{C}}^{2}\right)+\mathrm{X}_{\mathrm{C}}^{-1}\right] } \\
& \mathrm{Q} \approx\left[\mathrm{X}_{\mathrm{L}}\left(\mathrm{R}_{\mathrm{L}}^{-1}+\mathrm{R}_{\mathrm{C}}^{-1}\right)\right]^{-1}
\end{aligned}
$$

f_{r} Notes:
(2) $\mathrm{x}^{-1}=1 / \mathrm{x}, \mathrm{x}^{\frac{1}{2}}=\sqrt{\mathrm{x}}, \mathrm{x}^{-\frac{1}{2}}=1 / \sqrt{\mathrm{x}}, \mathrm{x}^{-2}=1 / \mathrm{x}^{2}$
(3) Def. $1=f_{r}$ Definition $1\left(\max\right.$ or $\min Z$ plus $\theta Z=0^{\circ}$)
(4) $\omega_{r}=$ Resonant angular velocity $=2 \pi f_{r}$
(5) $\mathbf{L}_{\mathbf{p}}, \mathbf{R}_{\mathbf{C p}}, \mathbf{R}_{\mathbf{L p}}=$ Parallel equivalent quantities of series quantities

See also-Q, Z, Y

@ $f_{r} \quad$ Definition 1
Resonant Frequency,
Frequency Parallel Resonance

$\theta_{\mathrm{Z}}=0^{\circ}$
$\mathrm{Z}=\left(\mathrm{X}_{\mathrm{C}}^{2} / \mathrm{R}\right)+\mathrm{R} \quad \mathrm{Z} \approx \mathrm{X}_{\mathrm{C}}^{2} / \mathrm{R}$
$X_{L}=\left(R^{2} / X_{C}\right)+X_{C} \quad X_{L} \approx X_{C}$
$Q=\left[\left(X_{C}^{2} / R\right)+R\right] / X_{L} \quad Q \approx X_{C} / R$
$\left.f_{r}=\sqrt{\left[C^{-1}-\left(R_{L}^{2} / L\right)\right] /[L}-\left(R_{C}^{2} C\right)\right] /(2 \pi) \quad$ Def. 1

$$
f_{r} \approx(2 \pi \sqrt{L C})^{-1}
$$

$@ f_{r} \quad$ Definition 1

$$
\begin{aligned}
& \theta_{\mathrm{Z}}=0^{\circ} \\
& \mathrm{Z}=\left(\left[\left(\mathrm{X}_{\mathrm{C}}^{2} / \mathrm{R}_{\mathrm{C}}\right)+\mathrm{R}_{\mathrm{C}}\right]^{-1}+\left[\left(\mathrm{X}_{\mathrm{L}}^{2} / \mathrm{R}_{\mathrm{L}}\right)+\mathrm{R}_{\mathrm{L}}\right]^{-1}\right)^{-1} \\
& {\left[\left(\mathrm{R}_{\mathrm{C}}^{2} / \mathrm{X}_{\mathrm{C}}\right)+\mathrm{X}_{\mathrm{C}}\right]=\left[\left(\mathrm{R}_{\mathrm{L}}^{2} / \mathrm{X}_{\mathrm{L}}\right)+\mathrm{X}_{\mathrm{L}}\right] \quad \mathrm{X}_{\mathrm{C}} \approx \mathrm{X}_{\mathrm{L}} } \\
& \mathrm{Q} \approx\left[\omega_{\mathrm{r}} \mathrm{~L}_{\mathrm{p}}\left(\mathrm{R}_{\mathrm{Lp}}^{-1}+\mathrm{R}_{\mathrm{Cp}}^{-1}\right)\right]^{-1} \\
& \mathrm{Q} \approx \sqrt{\mathrm{~L} /\left[\mathrm{C}\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{C}}\right)^{2}\right] /(2 \pi)} \\
& \mathrm{Q} \approx \mathrm{X}_{\mathrm{C}} /\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{C}}\right)
\end{aligned}
$$

Pipe Notes:
(1) $\mathbf{A}=$ Cross sectional inside area of pipe
d = Inside diameter of pipe
$\ell=$ Length of pipe
$\mathrm{v}=$ Velocity of sound in air
(2) $v \simeq 13630$ inches per second @ $25^{\circ} \mathrm{C}$
$v \simeq 1136$ feet per second @ $25^{\circ} \mathrm{C}$
$\mathrm{v} \simeq 346.3$ meters per second @ $25^{\circ} \mathrm{C}$
(3) Also has secondary resonances @ $2 f_{r}, 3 f_{r}, 4 f_{r}, 5 f_{r}$, etc.
(4) Also has secondary resonances @ $3 f_{r}, 5 f_{r}, 7 f_{r}$, etc.
(5) A, d, ℓ and v must all use the same unit of linear measure

Frequency of Acoustical Resonance		
$\begin{aligned} & \hline \mathrm{f}_{\mathrm{r}}= 2070\left[\mathrm{~A} / \mathrm{V}^{2}\right]^{\frac{1}{4}} \\ & \mathrm{f}_{\mathrm{r}}= 1948.7 \sqrt{\mathrm{~d} / \mathrm{V}} \\ & \mathrm{~V}=\mathrm{d}\left[1948.7 / \mathrm{f}_{\mathrm{r}}\right]^{2} \\ & \mathrm{~d}=\mathrm{V}\left[\mathrm{f}_{\mathrm{r}} / 1948.7\right]^{2} \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (5) } \\ & \text { (6) } \end{aligned}$	
$\mathrm{f}_{\mathrm{r}} \approx 1424 \sqrt{\mathrm{~d} / \mathrm{V}}$ (Assuming speaker $\mathrm{V} \approx \mathrm{d}\left[1424 / \mathrm{f}_{\mathrm{r}}\right]^{2}$ resonance is much $\mathrm{d} \approx \mathrm{V}\left[\mathrm{f}_{\mathrm{r}} / 1424\right]^{2}$ lower than box resonance $)$	$\begin{aligned} & \text { (2) } \\ & \text { (6) } \end{aligned}$	
$\begin{gathered} \mathrm{f}_{\mathrm{r}} \approx 2070\left[\left(.285 \mathrm{~A}_{1}+\mathrm{A}_{2}\right) / \mathrm{V}^{2}\right]^{\frac{1}{4}} \\ \mathrm{~V} \approx\left[2070^{2} \sqrt{.285 \mathrm{~A}_{1}+\mathrm{A}_{2}}\right] / \mathrm{f}_{\mathrm{r}}^{2} \\ \mathrm{~A}_{2} \approx\left[\mathrm{~V}^{2}\left(\mathrm{f}_{\mathrm{r}} / 2070\right)^{4}\right]-.285 \mathrm{~A}_{1} \end{gathered}$	$\begin{aligned} & \text { (3) } \\ & \text { © } \\ & \text { © } \end{aligned}$	
$\begin{gathered} \left.\mathrm{f}_{\mathrm{r}} \approx 1713 / \sqrt{\left(.85 \mathrm{~d}_{2}+\ell\right)\left[\left(\mathrm{V}_{1} / \mathrm{d}_{2}^{2}\right)-(.25 \pi \ell)\right.}\right] \\ \ell \approx\left[\left(1913 \mathrm{~d}_{2}\right)^{2} /\left(\mathrm{f}_{\mathrm{r}}^{2} \mathrm{~V}_{2}\right)\right]-.85 \mathrm{~d}_{2} \\ \hline \end{gathered}$	$\begin{aligned} & \text { ④ } \\ & \text { © } \end{aligned}$	

Cabinet Notes:

(1) $\mathrm{A}=$ Area of opening (port), $\mathrm{d}=$ Diameter of opening (port), $\mathrm{V}=$ Internal volume of sphere.
(2) $d=$ Diameter of speaker opening, $V=$ Internal volume of cabinet (neglect speaker volume)
(3) $\mathbf{A}_{\mathbf{1}}=$ Area of speaker opening, $\mathbf{A}_{\mathbf{2}}=$ Area of port, $\mathrm{V}=$ Internal volume of cabinet (neglect speaker volume)
(4) $\mathrm{d}_{\mathbf{2}}=$ Diameter of speaker opening and duct opening, $\mathrm{V}_{\mathbf{1}}=$ Internal volume of cabinet including duct volume. $\mathbf{V}_{\mathbf{2}}=$ Internal cabinet volume excluding duct, $\ell=$ Duct length.
(5) $x^{\frac{1}{4}}=\sqrt{\sqrt{x}}, x^{4}=\left(x^{2}\right)^{2}$
(6) $\mathrm{A}, \mathrm{d}, \mathrm{\ell}$ and V must all use the same unit of linear measure.

F

Farad, Force etc

$\mathrm{F}=$ Symbol for farad.
$\mathrm{F}=$ Basic unit of capacitance.
$\mathrm{F}=$ Capacitance required to store one coulomb of charge at one volt potential.
F = Extremely large unit. Seldom used without a prefix symbol.
$\mathrm{F}=\mu \mathrm{F} \cdot 10^{6} \quad$ (Typewriter-use $u \mathrm{~F}$)
$\mathrm{F}=\mathrm{nF} \cdot 10^{9} \quad$ (just coming into usage in USA)
$\mathrm{F}=\mathrm{pF} \cdot 10^{12} \quad(\mu \mu \mathrm{~F}$ is not recommended $)$
Note: The prefix symbol m (milli) should not be used with F due to long time previous use of m with F to indicate microfarads.

F = Symbol for magnetic, electrostatic and mechanical force.
$\mathrm{F}=$ Magnetomotive force when units are in gilberts or ampere turns [gilbert $=1.257$ ampere turns (At)]
$\mathrm{F}=\phi \mathcal{R}$ where $\phi=$ total flux and $\mathcal{R}=$ reluctance
Repulsive Electrostatic Force
$\mathrm{F}=9 \cdot 10^{9}\left[\mathrm{Q}_{1} \mathrm{Q}_{2} / \mathrm{d}^{2}\right]$ dynes
$\mathrm{Q}_{1}, \mathrm{Q}_{2}=$ charge in coulombs on two bodies
$\mathrm{d}=$ distance in cm separating two bodies
${ }^{\circ} \mathrm{F}=$ Symbol for degrees Fahrenheit.
${ }^{\circ} \mathrm{F}=$ Unit of temperature. (USA)
F, F_{n}-See-NF (Noise Figure)
F_{p}-See-pf (Power Factor)

g G
 Conductance Definitions and DC Formulas, Mutual Conductance

$\mathrm{G}=$ Symbol for conductance.
$\mathrm{G}=$ The ease with which direct current flows in a circuit at a given potential. The ease with which alternating current at a given potential flows in a purely resistive circuit. The reciprocal of resistance in any purely resistive circuit. The reciprocal of a pure resistance in parallel with other elements. The real part of admittance. The reciprocal of the equivalent parallel circuit resistance in a series circuit.
$\mathrm{G}=$ Conductance in units of siemens (\mathbf{S}). [old unit mho (Ω^{-1} or \mho) is still common usage in USA]
$\mathrm{G}=\mathrm{A}$ parallel circuit quantity which may be used as easily in parallel circuits as resistance is used in series circuits.

$\mathrm{G}=\mathrm{R}^{-1} \angle 0^{\circ}$ in terms of polar impedance.		
$\mathrm{G}=1 / \mathrm{R}$		$\stackrel{\text { \% }}{\square}$
$\mathrm{G}=\mathrm{I} / \mathrm{E}$		
$\mathrm{G}=\mathrm{P} / \mathrm{E}^{2}$		
$\mathrm{G}=\mathrm{I}^{2} / \mathrm{P}$		
$\mathrm{G}_{\mathrm{t}}=\left(\mathrm{R}_{1}+\mathrm{R}_{2} \cdots+\mathrm{R}_{\mathrm{n}}\right)^{-1}$	Series Circuits	O
$\mathrm{G}_{\mathrm{t}}=\mathrm{G}_{1}+\mathrm{G}_{2} \cdots+\mathrm{G}_{\mathrm{n}}$	Parallel Circuits	
$\mathrm{G}_{\mathrm{t}}=\mathrm{R}_{1}^{-1}+\mathrm{R}^{-1} \cdots+\mathrm{R}_{\mathrm{n}}^{-1}$	Parallel Circuits	
$\mathrm{g}_{\mathrm{m}}=$ Symbol for mutual See-Active Circuits	nductance or	

$\mathrm{g}_{\mathrm{m}}=\Delta \mathrm{I}_{\mathrm{p}} / \Delta \mathrm{E}_{\mathrm{g}} \quad$ (Vacuum Tubes)

Conductance, Series Circuits		¢
$G=\left(R_{1}+R_{2} \cdots+R_{n}\right)^{-1}$	(1) (2)	R
$\mathrm{G}=\mathrm{R} /\left[\mathrm{R}^{2}+(\omega \mathrm{C})^{-2}\right]$	(1) (2) (3)	C R
$\mathrm{G}=\left(\omega \mathrm{CZ}^{2}\right)^{-1}$	(1) (2) (3)	C Z
$\mathrm{G}=\omega \mathrm{C}(\sin \theta)^{2}$	$\begin{aligned} & \text { (1) (3) } \\ & \text { (4) (7) } \end{aligned}$	C θ
$\mathrm{G}=\mathrm{I} / \mathrm{E}_{\mathrm{R}}$	(1) (5)	$\mathrm{E}_{\mathrm{R}} \mathrm{I}$
$\mathrm{G}=\mathrm{P} / \mathrm{E}_{\mathrm{R}}^{2}$	(1) (5)	$\mathrm{E}_{\mathrm{R}} \mathrm{P}$
$\mathrm{G}=\mathrm{I}^{2} / \mathrm{P}$	(1)	I P
$\mathrm{G}=\mathrm{R} /\left[\mathrm{R}^{2}+(\omega \mathrm{L})^{2}\right]$	(1) (3)	L \quad R
$\mathrm{G}=(\omega \mathrm{L}) / \mathrm{Z}^{2}$	(1) (3)	L Z
$\mathrm{G}=(\sin \theta)^{2} /(\omega \mathrm{L})$	$\begin{aligned} & \text { (1) (3) } \\ & \text { (4) } \end{aligned}$	L θ

G Notes:

(1) G IS INTRINSICALLY A PARALLEL CIRCUIT QUANTITY. G DERIVED FROM A SERIES CIRCUIT IS THE EQUIVALENT PARALLEL CIRCUIT RESISTANCE IN RECIPROCAL FORM.
(2) $\mathrm{x}^{-1}=1 / \mathrm{x}, \mathrm{x}^{-2}=1 / \mathrm{x}^{2}$
(3) $\omega=2 \pi \mathrm{f}=6.283 \mathrm{f}=$ angular velocity
(4) \sin, eos, $\tan =\mathrm{abbr}$. for sine, cosine and tangent
(5) $\mathrm{E}_{\mathrm{R}}=$ Voltage developed by a resistance
(6) $|\mathbf{x}|=$ Absolute value of $\mathrm{x}=$ Magnitude of x
(7) θ may be $\theta_{E}, \theta_{\mathrm{I}}, \theta_{\mathrm{Y}}$ or θ_{Z}, B may be B_{C} or $\mathrm{B}_{\mathrm{L}}, \mathrm{X}$ may be X_{C} or X_{L}

Conductance, Series Circuits		E E
$\mathrm{G}=\mathrm{R} /\left[\mathrm{R}^{2}+\mathrm{X}_{\mathrm{C}}^{2}\right]$	(1)	¢
$\mathrm{G}=\mathrm{X}_{\mathrm{C}} / \mathrm{Z}^{2}$	(1)	N
$\mathrm{G}=\left(\sin \theta_{\mathrm{Z}}\right)^{\mathbf{2}} / \mathrm{X}_{\mathrm{C}}$	(1) (4) (7)	-
$\mathrm{G}=\mathrm{R} /\left[\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}^{2}\right]$	(1)	$\xrightarrow{4}$
$\mathrm{G}=\mathrm{X}_{\mathrm{L}} / \mathrm{Z}^{2}$	(1)	N \times \times
$\mathrm{G}=(\sin \theta)^{2} / \mathrm{X}_{\mathrm{L}}$	(1) (4) (7)	+
$\mathrm{G}=\mathrm{R} /\left(\mathrm{R}^{2}+\left[(\omega \mathrm{L})-(\omega \mathrm{C})^{-1}\right]^{2}\right)$	(1) (2) (3)	$\xrightarrow{\sim}$
$G=\left\|\left[(\omega L)-(\omega C)^{-1}\right] / Z^{2}\right\|$	$\begin{aligned} & \text { (1) (2) } \\ & \text { (3) (6) } \end{aligned}$	N \sim
$G=\left\|(\sin \theta)^{2} /\left[(\omega L)-(\omega C)^{-1}\right]\right\|$	$\left\|\begin{array}{lll} 1+1) & (2) & 3 \\ 4 & \text { (6) } & 7 \end{array}\right\|$	-
$\mathrm{G}=\mathrm{R} /\left[\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}\right]$	(1)	$\begin{aligned} & x^{\prime \prime} \\ & \chi^{n} \\ & \hline \end{aligned}$
$\mathrm{G}=\left\|\left(\mathrm{X}_{\mathbf{L}}-\mathrm{X}_{\mathbf{C}}\right) / \mathbf{Z}^{\mathbf{2}}\right\|$	(1) (6)	$\begin{aligned} & \dot{x}^{\prime} \\ & \hat{x}^{N} \\ & \hline \end{aligned}$
$\mathrm{G}=\left\|(\sin \theta)^{\mathbf{2}} /\left(\mathbf{X}_{\mathbf{L}}-\mathrm{X}_{\mathbf{C}}\right)\right\|$	$\begin{aligned} & \text { (1) © } \\ & \text { (6) (1) } \end{aligned}$	$\begin{aligned} & \dot{x}_{0}^{\prime} \\ & \hat{x}^{0} \end{aligned}$

Conductance, Parallel Circuits		$\stackrel{\text { E. }}{\substack{\text { E }}}$
$\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2} \cdots+\mathrm{G}_{\mathrm{n}}$	(8)	G
$\mathrm{G}=\mathrm{R}_{1}^{-1}+\mathrm{R}_{2}^{-1} \cdots+\mathrm{R}_{n}^{-1}$	(2) (8)	R
$\mathrm{G}=\sqrt{\mathrm{Y}^{2}-\mathrm{B}^{2}}$	(9)	B Y
$\mathrm{G}=\sqrt{\mathrm{Z}^{-2}-\mathrm{B}^{2}}$	(2) (9)	B Z
$\mathrm{G}=\|\mathrm{B} /(\tan \theta)\|$	(4) (6) (7)	B θ
$\mathrm{G}=\sqrt{Y^{2}-(\omega \mathrm{C})^{2}}$	(3) (9)	C Y
$\mathrm{G}=\sqrt{\mathrm{Z}^{-2}-(\omega \mathrm{C})^{2}}$	(2) (3) (9)	C Z
$\mathrm{G}=\|(\omega \mathrm{C}) /(\tan \theta)\|$	$\begin{aligned} & \text { (3) (4) } \\ & \text { (6) (2) } \end{aligned}$	C θ
$\mathrm{G}=\mathrm{P} / \mathrm{E}^{2}$		E P
$\mathrm{G}=\sqrt{\mathrm{Y}^{2}-(\omega \mathrm{L})^{-2}}$	(2) (3) (9)	L Y
$\mathrm{G}=\sqrt{\mathrm{Z}^{-2}-(\omega \mathrm{L})^{-2}}$	(2) (3) (9)	L Z
$\mathrm{G}=\left\|[(\omega \mathrm{L})(\tan \theta)]^{-1}\right\|$	$\begin{aligned} & \text { (3) (4) } \\ & \text { (4) (2) } \end{aligned}$	L θ
$\mathrm{G}=\sqrt{\mathrm{Y}^{2}-\mathrm{X}^{-2}}$	(2) (7) (9)	X Y
$\mathrm{G}=\sqrt{\mathrm{Z}^{-2}-\mathrm{X}^{-2}}$	(2) (7) (9)	X Z

Conductance, Parallel Circuits		$\underset{\sim}{\text { E. }}$
$\mathrm{G}=\left\|[\mathrm{X}(\tan \theta)]^{-1}\right\|$	(2) (4) (7)	X θ
$\mathrm{G}=\mathrm{Y}(\cos \theta)$	(4) (7)	Y θ
$\mathrm{G}=(\cos \theta) / \mathrm{Z}$	(4) (7)	Z θ
$\mathrm{G}=\sqrt{\mathrm{Y}^{2}-\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right)^{2}}$	(9)	$\mathrm{B}_{\mathrm{C}} \mathrm{B}_{\mathrm{L}} \mathrm{Y}$
$\mathrm{G}=\sqrt{\mathrm{Z}^{-2}-\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right)^{2}}$	(2) (9)	$\mathrm{B}_{\mathrm{C}} \mathrm{B}_{\mathrm{L}} \mathrm{Z}$
$\mathrm{G}=\left\|\left(\mathrm{B}_{\mathbf{L}}-\mathbf{B}_{\mathrm{C}}\right) /(\tan \theta)\right\|$	(4) (6) (7)	$\mathrm{B}_{\mathrm{C}} \mathrm{B}_{\mathrm{L}} \theta$
$\mathrm{G}=\sqrt{\mathrm{Y}^{2}-\left[(\omega \mathrm{L})^{-1}-(\omega \mathrm{C})\right]^{2}}$	(2) (3) (9)	C L Y
$\mathrm{G}=\sqrt{\mathrm{Z}^{-2}-\left[(\omega \mathrm{L})^{-1}-(\omega \mathrm{C})\right]^{2}}$	(2) (3) (9)	C L Z
$\mathrm{G}=\left\|\left[(\omega \mathrm{L})^{-1}-(\omega \mathrm{C})\right] /(\tan \theta)\right\|$		C L $\boldsymbol{\theta}$
$\mathrm{G}=\sqrt{\mathrm{Y}^{2}-\left(\mathrm{X}_{L}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right)^{2}}$	(2) (2)	$\mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}} \mathrm{Y}$
$\mathrm{G}=\sqrt{\mathrm{Z}^{-2}-\left(\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right)^{2}}$	(2) (9)	$\mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}} \mathrm{Z}$
$\mathbf{G}=\left\|\left(\mathbf{X}_{\mathbf{L}}{ }^{1}-\mathbf{X}_{\mathbf{C}}^{-1}\right) /(\tan \theta)\right\|$	(2) (4)	$\mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}} \boldsymbol{\theta}$

G Notes:

(8) In a purely parallel circuit, the values of parallel reactances are not relevant to the value of \mathbf{G}.
(9) A negative resultant under the radical sign indicates an error.
$\mathrm{H}=$ Symbol for henry.
$\mathrm{H}=$ Basic unit of inductance.
$\mathrm{H}=$ The inductance which develops one volt from current changing at the rate of one ampere per second.
$\mathrm{H}=\mathrm{mH} \cdot 10^{3}$
$\mathrm{H}=\mu \mathrm{H} \cdot 10^{6}$
$\mathrm{H}=$ Symbol for magnetic field strength.
H = Magnetomotive force per unit length.
Magnetizing force.
Magnetic intensity.
$\mathrm{H}=$ Gilberts per centimeter (CGS Oersteds).
$\mathrm{H}=$ Ampere turns per meter (SI A/m).
$\mathrm{H}=\mathrm{Fl}$ where $\mathrm{F}=$ magnetomotive force
$\ell=$ length of magnetic path
$\mathrm{H}=\mathrm{B} / \mu \quad$ where $\mathrm{B}=$ magnetic flux density
$\mu=$ permeability
$\mathrm{H}=\mathrm{B}$ when magnetic path is air
$\mathrm{H}=\mathrm{B}$ when permeability $(\mu)=1$
Ampere turns per inch $=.495$ Oersteds
Oersteds $=2.02$ Ampere turns per inch

Hybrid Parameter, Height,

Hour

$\mathrm{h}=$ Symbol for hybrid parameter.
See-Active Circuits
$\mathrm{h}=$ Symbol for height.
$\mathrm{h}=$ Symbol for hour.
$\mathrm{h}=$ Symbol for planck's constant.
$\mathrm{Hz}=$ Symbol for hertz.
$\mathrm{Hz}=$ The basic unit of frequency equal to one cycle per second.
$\mathrm{Hz}=$ Unit often used with multiplier prefixes.
$\mathrm{kHz}=10^{3}$ Hertz (kilohertz)
$\mathrm{MHz}=10^{6} \mathrm{Hertz}$ (megahertz)
$\mathrm{GHz}=10^{9}$ Hertz (gigahertz)
$\mathrm{Hz}=\mathrm{cps}=\mathrm{c} / \mathrm{s}$
$\mathrm{Hz}=360^{\circ}$ per second
$\mathrm{Hz}=2 \pi$ radians per second
$\mathrm{Hz}=$ Vectorial revolutions per second.

Current
 Definitions

> I = Symbol for electric current.
> $\mathrm{I}=1$. The movement of electrons through a conductor.
> 2. The rate of flow of electric charge.
> $\mathrm{I}=$ Current in amperes (A). (Coulombs per sec.)
> $\mathrm{I}= \pm \mathrm{I}_{\mathrm{dc}}$ or $\mathrm{I}_{\mathrm{ac}(\text { effective) }}$
> $\mathrm{I}_{\text {eff }}=\mathrm{I}_{\mathrm{rms}}$
> $\mathrm{I}_{\mathrm{ac}}=|\mathrm{I}|=\mathrm{I}_{\mathrm{absolute} \text { value }}=\mathrm{I}_{\text {magnitude }}$
> $\theta_{\mathrm{I}}=$ Phase angle of alternating current.
> $\mathrm{I}=$ Complete description of alternating current.
> $I=I_{\text {POLAR }}$ or $I_{\text {RECTANGULAR }}\left(I_{\text {POLAR }}=I_{\text {RECT }}\right)$
> $I_{\text {POLAR }}=I / \theta_{\text {I }}=$ Vectorial current
> $I_{\text {RECT }}=\left(\pm I_{R} \pm I_{X} j\right)=$ Complex number current where $\pm \mathrm{I}_{\mathrm{R}}=$ Current through a real or an equiv. parallel circuit resistance and
> where $\pm \mathrm{I}_{\mathrm{X}}=$ Current through a real or an equivalent parallel circuit reactance.
> $\mathbf{I}_{\mathrm{RECT}}=$ Complex number form of current which expresses the 0° or 180° and the $+90^{\circ}$ or -90° vectors which have a resultant vector equal to $I_{\text {POLAR }}$.
> $\mathbf{I}_{\text {RECT }}=\mathrm{I}_{\mathrm{R}}-\left(\pm \mathrm{I}_{\mathrm{X}}\right) \mathrm{j}$ in this handbook (one exception) whereby $+\mathrm{I}_{\mathrm{X}}$ identifies I_{X} as inductive and $-\mathrm{I}_{\mathrm{X}}$ identifies I_{X} as capacitive.
> $\mathrm{I}_{\mathrm{RECT}}=$ Mathematical equivalent of resistive and reactive currents in parallel regardless of actual circuit configuration.
$\mathrm{i}=$ Instantaneous value of current. (exception: $\mathrm{i}_{\mathrm{N}}=$ rms noise current)

$I=E G$	¢¢¢O
$I=P / E$	
$\mathrm{I}=\mathrm{E} / \mathrm{R}$	
$\mathrm{I}=\sqrt{\mathrm{P} / \mathrm{R}}$	
$I=P_{1} / E_{1}=P_{2} / E_{2}=P_{n} / E_{n}$	皆
$\begin{aligned} & I=E_{1} / R_{1}=E_{2} / R_{2}=E_{n} / R_{n} \\ & I=\left(E_{1}+E_{2} \cdots+E_{n}\right) /\left(R_{1}+R_{2} \cdots+R_{n}\right) \end{aligned}$	
$I=\sqrt{P_{1} / R_{1}}=\sqrt{P_{2} / R_{2}}=\sqrt{P_{n} / R_{n}}$	
$\mathrm{I}=\sqrt{\left(\mathrm{P}_{1}+\mathrm{P}_{2} \cdots+\mathrm{P}_{\mathrm{n}}\right) /\left(\mathrm{R}_{1}+\mathrm{R}_{2} \cdots+\mathrm{R}_{\mathrm{n}}\right)}$	
$\mathrm{I}_{\mathrm{t}}=\mathrm{I}_{1}+\mathrm{I}_{2} \cdots+\mathrm{I}_{n}$	毞
$I_{t}=E G_{t}=E\left(G_{1}+G_{2} \cdots+G_{n}\right)$	
$I_{t}=P_{t} / E=\left(P_{1}+P_{2} \cdots+P_{n}\right) / E$	
$I_{t}=E\left(R_{1}^{-1}+R_{2}^{-1} \cdots+R_{n}^{-1}\right)$	
$I_{t}=\sqrt{P_{t} G_{t}}$	
$I_{t}=\sqrt{P_{t}\left(R_{1}^{-1}+R_{2}^{-1} \cdots+R_{n}^{-1}\right)}$	

I Notes:
(1) General
$\mathrm{B}=$ Susceptance, $\mathbf{C}=$ Capacitance, $\mathrm{e}=$ Instantaneous Voltage, $\mathrm{E}=$ Voltage (dc or rms), $f=$ Frequency, $G=$ Conductance, $i=$ Instantaneous Current, $\mathrm{I}=$ Current (dc or rms), $\mathrm{L}=$ Inductance, $\mathrm{P}=$ Power, $\mathbf{Q}=$ Quantity of Electric Charge, $\mathrm{Q}=\mathrm{Quality}$ or Q Factor, $\mathrm{R}=$ Resistance, $\mathrm{t}=$ Time, $\mathrm{T}=$ Time Constant, $\mathrm{X}=$ Reactance, $\mathrm{Y}=$ Admittance, $\mathrm{Z}=$ Impedance, $\epsilon=$ Base of Natural Logarithms, $\theta=$ Phase Angle,-Continued on page 67

Transient Currents, Current Ratios

$\mathrm{I}=\mathrm{Q} / \mathrm{t} \quad$ (I produced by charge Q for tsec.$)$	
$\begin{array}{ll} \hline \mathrm{i}=(\mathrm{E} / \mathrm{R})\left(\epsilon^{\frac{-\mathrm{t}}{\mathrm{RC}}}\right) & (\mathrm{E}=\text { Applied voltage }) \\ \mathrm{i}=.36788(\mathrm{E} / \mathrm{R}) @ \mathrm{t}=\mathrm{RC} \text { (one time constant) } \\ \mathrm{I}=\left(\mathrm{e}_{\mathrm{C}} \mathrm{C}\right) / \mathrm{t} & \text { (constant current) } \end{array}$	
$\begin{aligned} & i=(E / R)\left(\epsilon^{\frac{-t}{\mathrm{RC}}}\right) \quad(\mathrm{E}=\text { Initial voltage }) \\ & \mathrm{i}=.36788(\mathrm{E} / \mathrm{R}) @ \mathrm{t}=\mathrm{RC} \text { (one time constant) } \\ & \mathrm{I}=\left(\mathrm{E}-\mathrm{e}_{\mathrm{C}}\right)(\mathrm{C} / \mathrm{t}) \quad \text { (constant current) } \end{aligned}$	
$\begin{array}{ll} \mathrm{i}=(\mathrm{E} / \mathrm{R})\left(1-\epsilon^{\frac{-\mathrm{Rt}}{\mathrm{~L}}}\right) & (\mathrm{E}=\text { Applied Voltage) } \\ \mathrm{i}=.6321(\mathrm{E} / \mathrm{R}) @ \mathrm{t}=\mathrm{L} / \mathrm{R} & \text { (one time constant) } \end{array}$	
$I_{p-p}=(2 \sqrt{2}) \mathrm{I}_{\mathrm{rms}} \quad=2.828 \mathrm{I}_{\mathrm{rms}}$	\%
$\mathrm{I}_{\text {peak }}=(\sqrt{2}) \mathrm{I}_{\mathrm{rms}} \quad=1.414 \mathrm{I}_{\mathrm{rms}}$	
$I_{a v}=[(2 \sqrt{2}) / \pi] I_{r m s}=.9003 I_{\mathrm{rms}}$	
$\mathrm{I}_{\mathrm{av}}=(2 / \pi) \mathrm{I}_{\text {peak }} \quad=.6366 \mathrm{I}_{\mathrm{rms}}$	
$\mathrm{I}_{\mathrm{rms}}=[\pi /(2 \sqrt{2})] \mathrm{I}_{\mathrm{av}}=1.111 \mathrm{I}_{\mathrm{av}}$	
$\mathrm{I}_{\mathrm{rms}}=$ effective current $=$ dc equiv. current	
$\mathrm{I}_{\text {rms }}=(1 / \sqrt{2}) \mathrm{I}_{\text {peak }}=.707 \mathrm{I}_{\text {peak }}$	
$\mathrm{I}_{\mathrm{rms}}=[1 /(2 \sqrt{2})] \mathrm{I}_{\mathrm{p}-\mathrm{p}}=.3535 \mathrm{I}_{\mathrm{p}-\mathrm{p}}$	

I Notes:
(1) Continued
$\pi=$ Circumference to Diameter Ratio, $\omega=$ Angular Velocity or Angular Frequency.

Series Circuit Current		$\stackrel{\text { E. }}{\substack{\text { E }}}$
$\mathrm{I}=\mathrm{E}_{\mathrm{C}} \omega \mathrm{C}$	(1) (2) (3)	$\mathrm{E}_{\mathrm{C}} \mathrm{C}$
$\mathrm{I}=\mathrm{E}_{\mathrm{L}} /(\omega \mathrm{L})$	(1) (2) (3)	$\mathrm{E}_{\mathrm{L}} \mathrm{L}$
$\mathrm{I}=\mathrm{E}_{\mathrm{R}} / \mathrm{R}$	(1) (2)	$\mathrm{E}_{\mathrm{R}} \mathrm{R}$
$\underline{I}=\mathrm{E}_{\mathrm{C}} / \mathrm{X}_{\mathrm{C}}$	(1) (2)	$\mathrm{E}_{\mathrm{C}} \mathrm{X}_{\mathrm{C}}$
$\mathrm{I}=\mathrm{E}_{\mathrm{L}} / \mathrm{X}_{\mathrm{L}}$	(1) (2)	$\mathrm{E}_{\mathrm{L}} \mathrm{X}_{\mathrm{L}}$
$\mathrm{I}=\mathrm{E} Y$	(1)	E Y
$\mathrm{I}=\mathrm{E} / \mathrm{Z}$	(1)	E Z
$\mathrm{I}=\sqrt{\mathrm{P} / \mathrm{R}}$	(1)	P R
$\mathrm{I}=\mathrm{P} /(\mathrm{E} \cos \theta)$	(1) (5)	E P θ
$\mathrm{I}=(\mathrm{E} \cos \theta) / \mathrm{R}$	(1) (5)	ER θ
$\mathrm{I}=\mathrm{E} / \sqrt{R^{2}+\left[(\omega \mathrm{L})-(\omega \mathrm{C})^{-1}\right]^{2}}$	(1) (3)	E CL R
$\mathrm{I}=\mathrm{E} / \sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}$	(1) (2)	$E X_{C} X_{L} \mathrm{R}$
$\mathrm{I}=\sqrt{\mathrm{P} /(\mathrm{Z} \cos \theta)}$	(1) (5)	P Z θ

1 Notes:

(2) Subscripts
$\mathrm{C}=$ capacitive, $\mathrm{E}=$ voltage, $\mathrm{g}=$ generator, $\mathrm{I}=$ current $\mathrm{L}=$ inductive,
$\mathrm{n}=$ any number, $\mathrm{o}=$ output, $\mathrm{p}=$ parallel, $\mathrm{R}=$ resistive, $\mathrm{s}=$ series, $t=$ total or equivalent, $X=$ reactive, $Y=$ admittance, $Z=$ impedance Constants
$\mathrm{j}=\sqrt{-1},=90^{\circ}$ multiplier, $=$ mathematical $\mathrm{i}, \epsilon=2.718, \epsilon^{-1}=$ $.36788, \pi=3.1416,2 \pi=6.2832, \omega=2 \pi f$
(4) Algebra
$x^{-1}=1 / x, x^{-2}=1 / x^{2}, x^{\frac{1}{2}}=\sqrt{x}, x^{-\frac{1}{2}}=1 / \sqrt{x}, x^{(-y / z)}=1 / x^{(y / z)}$, $|x|=$ absolute value or magnitude of x

Current, Paraliel Circuits		$\stackrel{\text { E }}{\text { E. }}$
$\mathrm{I}_{\mathrm{t}}=\mathrm{E}\left(\mathrm{B}_{\mathrm{C} 1}+\mathrm{B}_{\mathrm{C} 2} \cdots+\mathrm{B}_{\mathrm{Cn}}\right)$	(1) (2)	E B ${ }_{C}$
$\mathrm{I}_{\mathrm{t}}=\mathrm{E}\left(\mathrm{B}_{\mathrm{L} 1}+\mathrm{B}_{\mathrm{L} 2} \cdots+\mathrm{B}_{\mathrm{Ln}}\right)$	(1) (2)	E B_{L}
$\mathrm{I}_{\mathrm{t}}=\mathrm{E} \omega\left(\mathrm{C}_{1}+\mathrm{C}_{2} \cdots+\mathrm{C}_{\mathrm{n}}\right)$	(1) (2) (3)	E C
$\mathrm{I}_{\mathrm{t}}=\mathrm{E}\left(\mathrm{G}_{1}+\mathrm{G}_{2} \cdots+\mathrm{G}_{\mathrm{n}}\right)$	(1) (2)	E G
$\mathrm{I}_{\mathrm{t}}=\left[\mathrm{E}\left(\mathrm{L}_{1}^{-1}+\mathrm{L}_{2}^{-1} \cdots+\mathrm{L}_{\mathrm{n}}^{-1}\right)\right] / \omega$	$\begin{array}{ll} \text { (1) (2) } \\ \text { (3) (4) } \end{array}$	E L
$\mathrm{I}_{\mathrm{t}}=\mathrm{E}\left(\mathrm{R}_{1}^{-1}+\mathrm{R}_{2}^{-1} \cdots+\mathrm{R}_{n}^{-1}\right)$	(1) (2) (4)	ER
$\mathrm{I}_{\mathrm{t}}=\mathrm{E}\left(\mathrm{X}_{\mathrm{Cl}_{1}}^{-1}+\mathrm{X}_{\mathrm{C} 2}^{-1} \cdots+\mathrm{X}_{\mathrm{Cn}}^{-1}\right)$	(1) (2) (4)	$\mathrm{E} \mathrm{X}_{\mathrm{C}}$
$\mathrm{I}_{\mathrm{t}}=\mathrm{E}\left(\mathrm{X}_{\mathrm{L}}^{-1}+\mathrm{X}_{\mathrm{L} 2}^{-1} \cdots+\mathrm{X}_{\mathrm{L}}^{-1}\right)$	(1) (2) (4)	$\mathrm{E} \mathrm{X}_{\mathrm{L}}$
$\mathrm{I}=\mathrm{EY}$	(1)	E Y
$\mathrm{I}=\mathrm{E} / \mathrm{Z}$	(1)	E Z
$\mathrm{I}=\mathrm{E}\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right)$	(1) (2)	$\mathrm{E} \mathrm{B}_{\mathrm{C}} \mathrm{B}_{\mathrm{L}}$
$\mathrm{I}=\mathrm{E}\left(\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right)$	(1) (2) (4)	$\mathrm{EX} \mathrm{K}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}}$
$\mathrm{I}=\mathrm{E} \sqrt{\mathrm{G}^{2}+\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right)^{2}}$	(1) (2)	$E B_{C} B_{L} \mathrm{G}$
$\mathrm{I}=\mathrm{E} \sqrt{\mathrm{R}^{-2}+\left(\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right)^{2}}$	(1) (2) (4)	E $\mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}} \mathrm{R}$

I Notes:

(5) Trigonometry
$\sin =$ sine, $\cos =$ cosine, $\tan =$ tangent, $\tan ^{-1}=\operatorname{arc}$ tangent
(6) Reminders
$\pm \theta$-- use the sign of the phase angle
$\pm X, \pm B, \pm I_{X} \cdots$-identifies X, B and I_{X} as capacitive or inductive $-\mathrm{X},-\mathrm{B},-\mathrm{I}_{\mathrm{X}}$ are capacitive $+\mathrm{X},+\mathrm{B}, \mathrm{II}_{\mathrm{X}}$ are inductive
Division by zero is prohibited

I
 Current \& Phase Important Notes

1. It should be understood that the phase angle of voltage, current, impedance and admittance is the same, one and only, phase angle in a given circuit. The fact that the sign of the voltage or impedance phase angle differs from the sign of the current or admittance phase angle means only that if the current leads the voltage, the voltage must lag the current by the same angle.
2. $\pm \theta_{\mathrm{I}}=-\left(\pm \theta_{\mathrm{E}}\right)=-\left(\pm \theta_{\mathrm{Z}}\right)= \pm \theta_{\mathrm{Y}}$
3. When using the phase angle of impedance (or admittance), a phase angle always exists when the circuit is reactive. The phase angle of voltage and current however can only exist for one of the two at the same time. When the voltage phase angle exists, the current phase angle must be 0° and when the current phase angle exists, the voltage phase angle must be 0°. This is explained by the fact the voltage uses the current as a reference and the current uses the voltage as a reference.
4. The same situation exists with voltage and current in rectangular form. When "imaginary" current exists, the voltage must be $E / 0^{\circ}$ or $E+j 0$ and when "imaginary" voltage exists, the current must be $I / 0^{\circ}$ or $I+j 0$.
5. For practical problems, the best method of minimizing confusion and errors is to use the phase angle of the generator as the 0° reference. If the generator is a current source, the phase angle of the total current is always 0° and if the generator is a voltage source, the phase angle of the total voltage is always 0°.

Note: The rectangular current of a series circuit driven by a voltage source represents the currents through an equivalent parallel circuit. The rectangular voltage of a parallel circuit driven by a current source represents the voltages across elements of the equivalent series circuit.

$I_{\text {RECT }}$ Series Circuit Definitions \& Formulas

Current \& Phase, Series Circuits

I = The magnitude and phase angle of the current developed by a voltage applied to a circuit. ($\theta_{\mathbf{E}_{\mathbf{g}}}=0^{\circ}$) See also- θ
$I_{\text {POLAR }}=I / \pm \theta_{\mathrm{I}}=\mathrm{I} /-(\pm \theta \mathrm{z})$
$\mathrm{I}_{\text {RECT }}=1$. The 0° and $\pm 90^{\circ}$ currents which produce a resultant equal to I POLAR.
2. The current through resistance and net reactance in parallel.
3. The current through the parallel equivalent resistance and net reactance of a series circuit.
(Note: Only one current is possible in a series circuit.)
$\mathbf{I}_{\text {RECT }}=\mathrm{I}_{\mathbf{R}}-\left(\pm \mathrm{I}_{\mathrm{X}}\right) \mathrm{j}$
$I_{\text {RECT }}=\left[I \cos \theta_{I}\right]-\left[-I \sin \left(\pm \theta_{I}\right)\right] j$
$I_{\text {RECT }}=\left[I \cos \theta_{\mathrm{Z}}\right]-\left[I \sin \left(\pm \theta_{\mathrm{Z}}\right)\right] \mathrm{j}$
Note: The above rectangular form is strongly recommended for most uses. The negative sign will always identify the complex quantity as current or admittance and as a parallel equivalent quantity. The use of θ_{Z} eliminates the double change of signs often needed and maintains the identity of the reactive quantity at all times.
Note: The rectangular form of current has been used by some as a substitute for rectangular admittance ($\mathrm{Y}_{\text {RECT }}$) for solving series circuits in parallel. It should be noted that if the assumed voltage is one, $\mathbf{I}_{\text {RECT }}$ and $\mathbf{Y}_{\text {RECT }}$ are identical in meaning and method except for the names of the quantities. When $E=1 / 0^{\circ}, I_{\text {POLAR }}=Y_{\text {POLAR }}, I_{\text {RECT }}=$ $\boldsymbol{Y}_{\text {RECT }}, \mathrm{I}_{\mathrm{R}}=\mathrm{G}, \mathrm{I}_{\mathrm{C}}=\mathrm{B}_{\mathrm{C}}, \mathrm{I}_{\mathrm{L}}=\mathrm{B}_{\mathrm{L}},-\mathrm{I}_{\mathrm{X}}=-\mathrm{B},+\mathrm{I}_{\mathrm{X}}=+\mathrm{B}$ and $\pm \mathrm{I}_{\mathrm{X}}= \pm \mathbf{B}$.
Note: Use formulas on following page to obtain IPOLAR then convert to $I_{\text {RECT }}$ using above formulas.

$I_{\text {POLAR }}$ and $I_{\text {RECT }}$ Series Circuits

Current \& Phase, Series Circuits

All Series Circuit I Formulas

$\begin{aligned} I_{\text {POLAR }} & =I / \pm \theta_{\mathrm{I}} \\ \mathrm{I}_{\text {POLAR }} & =\mathrm{I} /-\left(\pm \theta_{\mathrm{Z}}\right) \\ \mathrm{I}_{\mathrm{RECT}} & =\left[\mathrm{I} \cos \theta_{\mathrm{z}}\right]-\left[\mathrm{I} \sin \left(\pm \theta_{\mathrm{Z}}\right)\right] j \\ I_{R} & =I \cos \theta_{\mathrm{Z}} \end{aligned}$			
$\begin{aligned} \mathrm{I}_{\mathrm{C}} & =\left\|\mathrm{I} \sin \left(-\theta_{\mathrm{Z}}\right)\right\| \quad\left(\mathrm{I}_{\mathrm{C}}=-\mathrm{I}_{\mathrm{X}}\right) \\ \mathrm{I}_{\mathrm{L}} & =\mathrm{I} \sin \left(+\theta_{\mathrm{Z}}\right) \quad\left(\mathrm{I}_{\mathrm{L}}=+\mathrm{I}_{\mathrm{X}}\right) \\ \pm \mathrm{I}_{\mathrm{X}} & =\mathrm{I} \sin \left(\pm \theta_{\mathrm{Z}}\right) \\ \mathrm{I}_{\mathrm{RECT}} & =\mathrm{I}_{\mathrm{R}}-\left(\pm \mathrm{I}_{\mathrm{X}}\right) \mathrm{j} \end{aligned}$			$\underset{\text { E.0 }}{\text { E }}$
$\mathrm{I}=\mathrm{P} /\left(\mathrm{E} \cos \theta_{\mathrm{Z}}\right)$		(1) (2) (5)	N N ¢
$\mathrm{I}=\left(\mathrm{E} \cos \theta_{\mathrm{Z}}\right) / \mathrm{R}$		(1) (2) (5)	
$\mathrm{I}=\mathrm{E} / \mathrm{Z}$		(1)	N N mat
$\begin{aligned} \mathrm{I}= & \mathrm{E} / \sqrt{\mathrm{R}^{2}+\left[(\omega \mathrm{L})-(\omega \mathrm{C})^{-1}\right]^{2}} \\ & \pm \theta_{\mathrm{Z}}=\tan ^{-1}\left[(\omega \mathrm{~L})-(\omega \mathrm{C})^{-1}\right] / \mathrm{R} \end{aligned}$		$\left\|\begin{array}{lll} 1 & (2) & 3 \\ (4) & 3 & (3) \end{array}\right\|$	\sim 4 4 4
$\begin{aligned} \mathrm{I}= & \mathrm{E} / \sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}} \\ & \pm \theta_{\mathrm{Z}}=\tan ^{-1}\left[\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right) / \mathrm{R}\right] \end{aligned}$		$\begin{aligned} & \text { (1) (2) } \\ & \text { (5) (2) } \end{aligned}$	a x ¢ x an
$\mathrm{I}=\left\|\left(\mathrm{E} \sin \theta_{\mathrm{Z}}\right) /\left(\mathbf{X}_{\mathbf{L}}-\mathrm{X}_{\mathbf{C}}\right)\right\|$		$\left\lvert\, \begin{gathered} \text { (1) (2) (4) } \\ \text { (5) } \end{gathered}\right.$	

Current \& Phase, Parallel Circuits

Resistive \& Reactive
 Currents
 In Parallel

I = The magnitude and phase angle of the current developed by the application of voltage to a parallel circuit. $\left(\theta_{\mathrm{E}}=0^{\circ}\right)$
$I_{\text {POLAR }}=I / \theta_{\mathrm{I}}=\mathrm{I} / \theta_{\mathrm{Y}}=\mathrm{I} /-\left(\pm \theta_{\mathrm{Z}}\right)$
$I_{\text {RECT }}=1$. The 0° and $\pm 90^{\circ}$ currents which have a resultant equal to $\mathrm{I}_{\text {POLAR }}$.
2. The resistive current and the reactive current in parallel.
$\mathrm{I}_{\text {RECT }}=\mathrm{I}_{\mathrm{R}}-\left(\pm \mathrm{I}_{\mathrm{X}}\right) \mathrm{j}=\left[\mathrm{I} \cos \theta_{\mathrm{Z}}\right]-\left[\mathrm{I} \sin \left(\pm \theta_{\mathrm{Z}}\right)\right] \mathrm{j}$
$\mathrm{I}_{\text {RECT }}=\left[\mathrm{I} \cos \theta_{\mathrm{I}}\right]+\left[\mathrm{I} \sin \left(\pm \theta_{\mathrm{I}}\right)\right] \mathrm{j}$
$I_{\text {RECT }}=\left[I \cos \theta_{\mathrm{Y}}\right]+\left[I \sin \left(\pm \theta_{\mathrm{Y}}\right)\right] j$

		E!
$\mathrm{I}=(\mathrm{EG}) /\left(\cos \theta_{\mathrm{Y}}\right)$	(1) (2) (5)	E G θ_{Y}
$\mathrm{I}=\mathrm{P} /\left(\mathrm{E} \cos \theta_{\mathrm{Z}}\right)$	(1) (2) (5)	$\mathrm{EP} \theta_{\mathrm{Z}}$
$\mathrm{I}=\mathrm{E} /\left(\mathrm{R} \cos \theta_{\mathrm{Z}}\right)$	(1) (2) (5)	ER θ_{Z}
$\mathrm{I}=\mathrm{EY}$	(1)	EY θ_{Y}
$\mathrm{I}=\mathrm{E} / \mathrm{Z}$	(1)	$\mathrm{E} Z \theta_{Z}$
$\begin{aligned} \mathrm{I} & =\sqrt{\mathrm{I}_{\mathrm{R}}^{2}+\left(\mathrm{I}_{\mathrm{L}}-\mathrm{I}_{\mathrm{C}}\right)^{2}} \\ \pm \theta_{\mathrm{I}} & =\tan ^{-1}\left[-\left(\mathrm{I}_{\mathrm{L}}-\mathrm{I}_{\mathrm{C}}\right) / \mathrm{I}_{\mathrm{R}}\right] \end{aligned}$	$\begin{aligned} & \text { (1) (2) } \\ & \text { (5) (6) } \end{aligned}$	$\mathrm{I}_{\mathrm{R}} \mathrm{I}_{\mathrm{C}} \mathrm{I}_{\mathrm{L}}$
$\mathrm{I}=\sqrt{\mathrm{P} /\left(\mathrm{Z} \cos \theta_{\mathrm{Z}}\right)}$	(1) (2) (5)	P Z θ_{Z}

Current \& Phase, Parallel Circuits		$\stackrel{\text { E. }}{ \pm}$
$\begin{aligned} \mathrm{I} & =\mathrm{E} \sqrt{\mathrm{G}^{2}+\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right)^{2}} \\ \pm \theta_{\mathrm{I}} & =\tan ^{-1}\left[-\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right) / \mathrm{G}\right] \end{aligned}$	$\begin{aligned} & \text { (1) (2) } \\ & \text { (5) (6) } \end{aligned}$	$\begin{aligned} & \text { M } \\ & \text { M } \\ & \text { M } \end{aligned}$
$\begin{aligned} \mathrm{I} & =\left\|\left[\mathrm{E}\left(\mathrm{~B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right)\right] /\left(\sin \theta_{\mathrm{Y}}\right)\right\| \\ \pm \theta_{\mathrm{I}} & = \pm \theta_{\mathrm{Y}} \end{aligned}$	$\begin{aligned} & \text { (1) (2) } \\ & \text { (5) © } \\ & \otimes \end{aligned}$	
$\begin{aligned} \mathrm{I} & =\mathrm{E} \sqrt{\mathrm{R}^{-2}+\left[(\omega \mathrm{L})^{-1}-(\omega \mathrm{C})\right]^{2}} \\ \pm \theta_{\mathrm{I}} & =\tan ^{-1}\left(-\mathrm{R}\left[(\omega \mathrm{~L})^{-1}-(\omega \mathrm{C})\right]\right) \end{aligned}$	$\begin{array}{ll} \text { (1) (2) } \\ \text { (3) } \\ \text { (3) } \\ \hline \end{array}$	~1
$\begin{aligned} \mathrm{I} & =\left(\mathrm{E}\left[(\omega \mathrm{~L})^{-1}-(\omega \mathrm{C})\right]\right) /\left(\sin \theta_{\mathrm{Z}}\right) \\ \pm \theta_{\mathrm{I}} & =-\left(\pm \theta_{\mathrm{Z}}\right) \end{aligned}$	$$	N \sim 0 0 \square
$\begin{aligned} \mathrm{I} & =\mathrm{E} \sqrt{\mathrm{R}^{-2}+\left(\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right)^{2}} \\ \pm \theta_{\mathrm{I}} & =\tan ^{-1}\left[-\mathrm{R}\left(\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right)\right] \end{aligned}$	$\begin{aligned} & \text { (1) (2) } \\ & \text { (4) (5) } \\ & \text { (6) } \end{aligned}$	$\xrightarrow{4}$
$\begin{aligned} \mathrm{I} & =\left[\mathrm{E}\left(\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right)\right] /\left[\sin \theta_{\mathrm{Z}}\right] \\ \pm \theta_{\mathrm{I}} & =-\left(\pm \theta_{\mathrm{Z}}\right) \end{aligned}$	$\begin{array}{ll} \text { (1) (2) } \\ \text { (4) } & (5) \\ (6) \end{array}$	N

Parallel Complex
 Currents,
 Procedure Method

Terms $-I_{1} / \pm \theta_{1}, I_{2} \not \pm \theta_{2}, \cdots I_{n} \not \pm \theta_{n}$
Procedure for those who are uncomfortable when working with rectangular form currents. Maintains positive identity of reactive currents.

Procedure:

1. Convert each $\mathrm{I} / \pm \theta_{\mathrm{I}}$ to its equivalent parallel resistive current from:

$$
\mathrm{I}_{\mathrm{R}_{\mathrm{p}}}=\mathrm{I} \cos \theta_{\mathrm{I}}
$$

2. $\left(\mathrm{I}_{\mathrm{R}_{\mathrm{p}}}\right)_{\mathrm{t}}=\left(\mathrm{I}_{\mathrm{R}_{\mathrm{p}}}\right)_{1}+\left(\mathrm{I}_{\mathrm{R}_{\mathrm{p}}}\right)_{2} \cdots+\left(\mathrm{I}_{\mathrm{R}_{\mathrm{p}}}\right)_{\mathrm{n}}$
3. Convert each $I \angle \pm \theta_{I}$ with a negative angle to its equivalent parallel inductive current from:

$$
\mathbf{I}_{\mathbf{L}_{\mathrm{p}}}=\mathbf{I} \sin \left|-\theta_{\mathrm{I}}\right|
$$

4. $\left(\mathrm{I}_{L_{p}}\right)_{t}=\left(\mathrm{I}_{\mathrm{L}_{\mathrm{p}}}\right)_{1}+\left(\mathrm{I}_{\mathrm{L}_{\mathrm{p}}}\right)_{2} \cdots+\left(\mathrm{I}_{\mathrm{L}_{\mathrm{p}}}\right)_{n}$
5. Convert each $\mathrm{I} \not \pm \theta_{\mathrm{I}}$ with a positive angle to its equivalent parallel capacitive current from:

$$
\mathrm{I}_{\mathrm{C}_{\mathrm{p}}}=I \sin \left(+\theta_{\mathrm{I}}\right)
$$

6. $\left(\mathrm{I}_{\mathrm{C}_{\mathrm{p}}}\right)_{\mathrm{t}}=\left(\mathrm{I}_{\mathrm{C}_{\mathrm{p}}}\right)_{1}+\left(\mathrm{I}_{\mathrm{C}_{\mathrm{p}}}\right)_{2} \cdots+\left(\mathrm{I}_{\mathrm{C}_{\mathrm{p}}}\right)_{\mathrm{n}}$
7. Convert totals back to a single polar form current from:

$$
\begin{gathered}
\mathrm{I}_{\mathrm{t}}=\sqrt{\left(\mathrm{I}_{\mathrm{R}_{\mathrm{p}}}\right)_{\mathrm{t}}^{2}+\left[\left(\mathrm{I}_{\mathrm{L}_{\mathrm{p}}}\right)_{\mathrm{t}}-\left(\mathrm{I}_{\mathrm{C}_{\mathrm{p}}}\right)_{\mathrm{t}}\right]^{2}} \\
\pm \theta_{\mathrm{I}_{\mathrm{t}}}
\end{gathered} \tan ^{-1}\left(-\left[\left(\mathrm{I}_{\mathrm{L}_{\mathrm{p}}}\right)_{\mathrm{t}}-\left(\mathrm{I}_{\mathrm{C}_{\mathrm{p}}}\right)_{\mathrm{t}}\right] /\left[\mathrm{I}_{\mathrm{R}_{\mathrm{p}}}\right]_{\mathrm{t}}\right) \quad .
$$

Formula Method	Complex Currents, Sum \& Differential

$\left.\begin{array}{rl}\hline \begin{array}{l}\text { Current and } \\ \text { Phase, Complex } \\ \text { Circuits }\end{array} & \begin{array}{l}\text { Vector Algebra } \\ \text { and/or } \\ \text { Rectangular } \\ \text { Form Method }\end{array} \\ \hline \mathrm{I}_{\text {POLAR }} & =\left(\mathrm{E}_{\text {POLAR }}\right) /\left(\mathrm{Z}_{\text {POLAR }}\right) \\ \mathrm{I} / \theta_{\mathrm{I}} & =\left(\mathrm{E} / \theta_{\mathrm{E}}\right) /\left(\mathrm{Z} / \theta_{\mathrm{Z}}\right) \\ \mathrm{I} & =\mathrm{E}_{\mathrm{g}} / \mathrm{Z}, \quad \theta_{\mathrm{I}}=0^{\circ}-\theta_{\mathrm{Z}}\end{array}\right)$

0
 Output
 Current \& Phase

$$
\begin{aligned}
I_{o} & =I_{g} /\left[\left(R_{2} / R_{1}\right)+1\right] \\
\theta_{I_{o}} & =\theta_{Z}=0^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
I_{o} & =I_{g} /\left[R \sqrt{R^{-2}+X_{C}^{-2}}\right] \\
\theta_{I_{o}} & =\theta_{Z}=\tan ^{-1}\left(R /-X_{C}\right)
\end{aligned}
$$

$I_{o}=I_{g} /\left[R \sqrt{R^{-2}+X_{L}^{-2}}\right]$
$\theta_{I_{o}}=\theta_{Z}=\tan ^{-1}\left(R /+X_{L}\right)$

$$
\begin{aligned}
I_{o} & =I_{g} /\left[X_{C} \sqrt{R^{-2}+X_{C}^{-2}}\right] \\
\theta_{I_{o}} & =\theta_{Z}+90^{\circ} \\
\theta_{I_{o}} & =\left[\tan ^{-1}\left(R /-X_{C}\right)\right]+90^{\circ}
\end{aligned}
$$

$I_{o}=I_{g} /\left[X_{L} \sqrt{R^{-2}+X_{L}^{-2}}\right]$
$\theta_{I_{o}}=\theta_{Z}-90^{\circ}$
$\theta_{\mathrm{I}_{\mathrm{o}}}=\left[\tan ^{-1}\left(\mathrm{R} /+\mathrm{X}_{\mathrm{L}}\right)\right]-90^{\circ}$

Note: $-\infty-=$ Infinite impedance current source
Output
Current \& Phase

Io

Output

Current \& Phase

$$
\begin{aligned}
\mathrm{I}_{\mathrm{o}} & =\left(\mathrm{I}_{\mathrm{g}} \mathrm{Z}\right) /\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right) \\
\theta_{\mathrm{I}_{\mathrm{o}}} & =\theta_{\mathrm{Z}}-\left(\pm 90^{\circ}\right) \\
\mathrm{I}_{\mathrm{o}} & =\mathrm{I}_{\mathrm{g}} /\left[\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right) \sqrt{\mathrm{R}^{-2}+}\right. \\
\theta_{\mathrm{I}_{\mathrm{o}}} & =\left(\tan ^{-1}\left[\mathrm{R} /\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)\right]\right) \\
\hline \mathrm{I}_{\mathrm{o}} & =\mathrm{E}_{\mathrm{g}} / \mathrm{R} \\
\theta_{\mathrm{I}_{\mathrm{o}}} & =0^{\circ} \\
\mathrm{I}_{\mathrm{o}} & =\mathrm{E}_{\mathrm{g}} / \mathrm{X}_{\mathrm{C}} \\
\theta_{\mathrm{I}_{\mathrm{o}}} & =-\left(-90^{\circ}\right)=+90^{\circ} \\
\mathrm{I}_{\mathrm{o}} & =\mathrm{E}_{\mathrm{g}} / \mathrm{X}_{\mathrm{L}} \\
\theta_{\mathrm{I}_{\mathrm{o}}} & =-\left(+90^{\circ}\right)=-90^{\circ} \\
\hline \mathrm{I}_{\mathrm{o}} & =\mathrm{E}_{\mathrm{g}} / \mathrm{Z} \\
\theta_{\mathrm{I}_{\mathrm{o}}} & =-\left(\pm \theta_{\mathrm{Z}}\right) \\
\mathrm{I}_{\mathrm{o}} & =\mathrm{E}_{\mathrm{g}} / \sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}} \\
\theta_{\mathrm{I}_{\mathrm{o}}} & =\tan ^{-1}\left[-\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right) / \mathrm{R}\right]
\end{aligned}
$$

$$
I_{o}=I_{g} /\left[\left(X_{L}-X_{C}\right) \sqrt{R^{-2}+\left(X_{L}-X_{C}\right)^{-2}}\right]
$$

$$
\theta_{\mathrm{I}_{\mathrm{o}}}=\left(\tan ^{-1}\left[\mathrm{R} /\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)\right]\right)-\left(\pm 90^{\circ}\right)
$$

CURRENT
 Vector Algebra

Vector Algebra AC Ohms Law

$$
\begin{aligned}
\mathrm{E}_{\mathrm{g}} & =\mathrm{E}_{\mathrm{g}} / 0^{\circ} \text { or } \mathrm{I}_{\mathrm{g}}=\mathrm{I}_{\mathrm{g}} / 0^{\circ} \\
\mathrm{I} & =\mathrm{E}_{\mathrm{g}} / \mathbf{Z}=\mathrm{E}_{\mathrm{g}} / \mathrm{Z} / 0^{\circ}-\theta_{\mathrm{Z}}=-\left(\pm \theta_{\mathrm{Z}}\right) \\
\mathrm{E} & =\mathrm{I}_{\mathrm{g}} \mathrm{Z}=\mathrm{I}_{\mathrm{g}} \mathrm{Z} / 0^{\circ}+\theta_{\mathrm{Z}}= \pm \theta_{\mathbf{Z}} \\
\mathrm{Z} & =\mathrm{E}_{\mathrm{g}} / \mathrm{I}=\mathrm{E}_{\mathrm{g}} / \mathrm{I} / 0^{\circ}-\theta_{\mathrm{I}}=-\left(\pm \theta_{\mathrm{I}}\right) \\
\mathbf{Z} & =\mathrm{E} / \mathrm{I}_{\mathrm{g}}=\mathrm{E} / \mathrm{I}_{\mathrm{g}} / \theta_{\mathrm{E}}-0^{\circ}= \pm \theta_{\mathrm{E}}
\end{aligned}
$$

Addition and Subtraction of Rect. Quantities
(See also - $\mathbf{Z}_{\text {RECT }}$, Addition and Subtraction)

$$
\begin{aligned}
\mathbf{I}_{1}+I_{2}= & \left.I_{1(\text { RECT })}+I_{2(R E C T}\right) \\
= & {\left[I_{R}-\left(\pm I_{X}\right) j\right]_{1}+\left[I_{R}-\left(\pm I_{X}\right) j\right]_{2} } \\
= & {\left[\left(I_{R}\right)_{1}+\left(I_{R}\right)_{2}\right]-\left[\left(\pm I_{X}\right)_{1}+\left(\pm I_{X}\right)_{2}\right] j } \\
I_{1}-I_{2}= & {\left[\left(I_{R}\right)_{1}-\left(I_{R}\right)_{2}\right]-\left[\left(\pm I_{X}\right)_{1}-\left(\pm I_{X}\right)_{2}\right] j } \\
& \left|+I_{X}\right|=I_{L} \quad\left|-I_{X}\right|=I_{C}
\end{aligned}
$$

$$
\begin{aligned}
E_{1}+E_{2}= & \left.E_{1(\text { RECT })}+E_{2(R E C T}\right) \\
= & {\left[E_{R}+\left(\pm E_{X}\right) j\right]_{1}+\left[E_{R}+\left(\pm E_{X}\right) j\right]_{2} } \\
= & {\left[\left(E_{R}\right)_{1}+\left(E_{R}\right)_{2}\right]+\left[\left(\pm E_{X}\right)_{1}+\left(\pm E_{X}\right)_{2}\right] j } \\
E_{1}-E_{2}= & {\left[\left(E_{R}\right)_{1}-\left(E_{R}\right)_{2}\right]+\left[\left(\pm E_{X}\right)_{1}-\left(\pm E_{X}\right)_{2}\right] j } \\
& \left|+E_{X}\right|=E_{L} \quad\left|-E_{X}\right|=E_{C}
\end{aligned}
$$

Note: The rectangular current of a series circuit represents current through an equivalent parallel circuit. The rectangular voltage of a parallel circuit represents voltage across elements of an equivalent series circuit.

IVA Notes:
(1) $\mathbf{E}_{\mathrm{g}}=$ Generator voltage $\quad \mathbf{E}_{\mathbf{O}}=$ Output voltage
$I_{g}=$ Generator current $\quad I_{o}=$ Output current
$Z_{i}=$ Input impedance $\quad Z_{0}=$ Output impedance

IVA Notes:
(2) $\mathrm{Z}, \mathrm{Z}_{1}, \mathrm{Z}_{2}, \mathrm{Z}_{3}, \mathrm{Z}_{4}$ and Z_{5} may represent resistances, capacitances, inductances, series circuits, parallel circuits, unknown circuits or any combination.
(3) All mathematical operations involving addition or subtraction must be performed in rectangular form. It is recommended that all mathematical operations involving multiplication or division be performed in polar form.
See also - Z, Vector Algebra See -Z to Z^{-1} Conversion

Thermal Noise Current

$\mathrm{i}_{\mathrm{N}(\mathrm{th})}=$ Symbol for thermal noise current. (other symbols for thermal noise current are $\mathrm{I}_{\mathrm{N}}, \mathrm{I}_{\mathrm{TH}}$, $\mathrm{I}_{\mathrm{N}(\mathrm{TH}), \mathrm{i}_{\mathrm{N}}, \mathrm{i}_{\text {th }} \text { etc) }}$
$\mathrm{i}_{\mathrm{N}(\mathrm{th})}=$ Thermal noise (white noise) current of resistance. (thermal noise current is always rms current regardless of symbol)
$\mathrm{i}_{\mathrm{N}(\mathrm{th})}=\sqrt{\left(4 \mathrm{kT}_{\mathrm{K}} \overline{\mathrm{BW}}\right) / \mathrm{R}}$ $\mathrm{k}=$ Boltzmann constant $\left(1.38 \cdot 10^{-23} \mathrm{~J} /{ }^{\circ} \mathrm{K}\right)$
$\mathrm{T}_{\mathrm{K}}=$ Temperature in Kelvin $\quad\left({ }^{\circ} \mathrm{C}+273.15\right)$
$\mathbf{R}=$ Resistance generating thermal noise.
BW = Noise bandwidth in hertz. (Bandwidth with zero noise contribution from frequencies outside of bandwidth. SeeActive Circuits, Opamp, $\mathrm{BW}_{\text {NOISE }}$ for correction factors for noise measurement with standard filters.)
$\mathrm{i}_{\mathrm{N}(\sqrt{\mathrm{H} z)}}=$ Symbol for noise current per root hertz. [formerly called root cycle $(\sqrt{\sim})$]
$\mathrm{i}_{\mathrm{N}(\mathrm{th})(\sqrt{\mathrm{Hz})}} \simeq 1.287 \cdot 10^{-10} \sqrt{1 / \mathrm{R}}$ @ room temperature $\left(\mathrm{BW}_{\text {NOISE }}=1 \mathrm{~Hz}\right)$

Note: Above formulas do not include the excess noise current of resistors (that noise developed by dc voltage applied to resistors). Excess noise is $1 / \mathrm{f}$ noise and may be of significance at frequencies below 1 KHz .

j J

Imaginary Number, Joules
$\mathrm{j}=$ Symbol for $\sqrt{-1}$
$j=$ The imaginary unit of electrical complex numbers. The basic imaginary component of electrical rectangular form quantities. A unit identical to the mathematical imaginary unit i. A 90° indicator. A 90° multiplier. A mathematical quantity which rotates a number from the x axis (real numbers) to the y axis (imaginary numbers).
$\mathrm{j}=$ The imaginary unit used in all electronic calculations (instead of the mathematical unit i) to avoid confusion with the symbol for electrical current I or i.

$$
\begin{aligned}
& \mathrm{j}=\sqrt{-1} \\
&-\mathrm{j}=-\sqrt{-1} \\
&=1 \angle+90^{\circ} \\
& \mathrm{j}^{2}=-1 \quad=1 \angle \pm 180^{\circ} \\
&-\mathrm{j}^{2}=+1 \quad \text { or } \\
&=1 \angle+180^{\circ} \\
& \mathrm{j}^{3}=-\mathrm{j} \quad \\
& \mathrm{j}^{\circ}=1 \angle-90^{\circ} \\
& \mathrm{j}^{4}=+1 \quad \text { or } \\
&=1 \angle+270^{\circ} \\
& \hline
\end{aligned}
$$

$\mathrm{J}=$ Symbol for joules
$\mathrm{J}=\mathrm{A}$ unit of work or work equivalent energy.
$\mathrm{J}=\mathrm{A}$ unit of work equivalent to $1 \mathrm{watt} \cdot$ second.
$\mathrm{J}=\mathrm{A}$ unit of work equal to .7376 foot \cdot pounds.
$\mathrm{J}=\mathrm{A}$ unit of work equal to $.102 \mathrm{~kg} \cdot$ meters or $10^{7} \mathrm{ergs}$ (dyne • centimeters).
$\mathrm{J}=\mathrm{A}$ unit of work equivalent to $9.478 \cdot 10^{-4} \mathrm{Btu}$.
$\mathrm{k}=$ Symbol for coupling coefficient
(Capital K is sometimes used)
$\mathrm{k}=$ The ratio of mutual inductance to the square root of the product of the primary and the secondary inductances. The equivalent coupling coefficient provided by a discrete coupling element between two otherwise independent circuits.

$$
\begin{aligned}
& k=M / \sqrt{L_{1} L_{2}} \\
& k=\omega_{0}^{2} M \sqrt{C_{1} C_{2}}
\end{aligned}
$$

$k=L_{M}\left[\left(L_{M}+L_{1}\right)\left(L_{M}+L_{2}\right)\right]^{-\frac{1}{2}}$
$\mathrm{k}=\omega_{0}^{2} \mathrm{~L}_{\mathrm{M}} \sqrt{\mathrm{C}_{1} \mathrm{C}_{2}}$
$\mathrm{k} \approx \mathrm{L}_{\mathrm{M}} / \sqrt{\mathrm{L}_{1} \mathrm{~L}_{2}}$

$\mathrm{k}=-\left(\left(\mathrm{C}_{1} \mathrm{C}_{2}\right) /\left[\left(\mathrm{C}_{\mathrm{M}}+\mathrm{C}_{1}\right)\left(\mathrm{C}_{\mathrm{M}}+\mathrm{C}_{2}\right)\right]\right)^{\frac{1}{2}}$
$\mathrm{k}=-\left[\left(\mathrm{X}_{\mathrm{C}_{1}} \mathrm{X}_{\mathrm{C}_{\mathrm{M}}}^{-1}\right)+1\right]^{-1}{ }_{\mathrm{C}_{1}}{ }^{\text {when }} \mathrm{C}_{2}$
$\mathrm{k} \approx-\sqrt{\mathrm{C}_{1} \mathrm{C}_{2}} / \mathrm{C}_{\mathrm{M}}$

$\mathrm{k}=-\left[\left(\mathrm{C}_{1} / \mathrm{C}_{\mathrm{M}}\right)+1\right]^{-1}{ }_{\mathrm{C}_{1}=\mathrm{C}_{2}}^{\text {when }}$
$\mathrm{k}=-\mathrm{C}_{\mathrm{M}} / \sqrt{\left(\mathrm{C}_{\mathrm{M}}+\mathrm{C}_{1}\right)\left(\mathrm{C}_{\mathrm{M}}+\mathrm{C}_{2}\right)}$

Note: Circuits exhibit double peaks above critical coupling.

Inductance Definitions

$\mathrm{L}=$ Symbol for inductance. (self inductance)
$\mathrm{L}=\mathrm{In}$ an inductor, in a coil, in a transformer, in a conductor or in any circuit where a varying electric current is flowing; that property which induces voltage in the same circuit from the varying magnetic field at a polarity which opposes the change of electric current.

Note that RC circuits and active circuit "inductances" which produce a lagging current do not meet the above definition and therefore cannot always perform in the same manner.
$\mathrm{L}=$ Inductance in henry (H) units.
Note that the basic unit is of convenient size for audio frequencies, but that millihenries (mH) and microhenries $(\mu \mathrm{H})$ are more convenient at higher frequencies.
$\mathrm{L}=$ The symbol for an inductor on parts lists and schematics.
$\mathrm{L}=$ The symbol for inductive when used as a subscript.
$\mathrm{L}=$ One henry when a current change of one ampere per second develops one volt.
$\mathrm{L}_{\mathrm{M}}=$ Mutual Inductance
(The symbol for mutual inductance is also M)
$\mathrm{L}_{\mathrm{s}}=$ Series Circuit Inductance
$\mathrm{L}_{\mathrm{p}}=$ Parallel Circuit Inductance
$\ell=$ Symbol for length
lf = Abbreviation for low frequency

Inductance, Series Circuits		$\stackrel{\text { E゙J }}{\substack{\text { ® }}}$
$\begin{aligned} \mathrm{L}_{\mathrm{t}} & =\mathrm{L}_{1}+\mathrm{L}_{2} \cdots+\mathrm{L}_{\mathrm{n}} \\ \mathrm{~L}_{2} & =\mathrm{L}_{\mathrm{t}}-\mathrm{L}_{1} \end{aligned}$	(1)	L
$\begin{aligned} & L_{t}=\left[\left(X_{L}\right)_{1}+\left(X_{L}\right)_{2} \cdots+\left(X_{L}\right)_{n}\right] / \omega \\ & L_{t}=\left[\left(+X_{1}\right)+\left(+X_{2}\right) \cdots+\left(+X_{n}\right)\right] / \omega \end{aligned}$	(1)	$\begin{aligned} & X_{L} \\ & +X \end{aligned}$
$\mathrm{L}=\mathrm{R} /(\omega \mathrm{D}) \begin{aligned} & \text { Series reactive element } \\ & \text { must be inductive } \end{aligned}$	(1)	D R
$\mathrm{L}=(\mathrm{QR}) / \omega \quad \begin{aligned} & \text { Series reactive element } \\ & \text { must be inductive } \end{aligned}$	(1)	Q R
$\mathrm{L}=\left(\mathrm{R} \tan \theta_{\mathrm{Z}}\right) / \omega \quad \begin{aligned} & \theta_{\mathrm{Z}} \text { must be a } \\ & \text { positive angle }\end{aligned}$	(1)	R θ_{Z}
$\mathrm{L}=\left(\mathrm{Z} \sin \theta_{\mathrm{Z}}\right) / \omega \quad \begin{aligned} & \theta_{\mathrm{Z}} \text { must be a } \\ & \text { positive angle }\end{aligned}$	(1)	$\mathrm{Z} \theta_{\mathrm{Z}}$
Series to Parallel Conversion $\begin{aligned} & L_{p}=\left[R_{s}^{2} /\left(\omega^{2} L_{s}\right)\right]+\left(R_{s} / \omega\right) \\ & L_{p}=\left[\omega\left(Z^{-1} \sin \theta_{Z}\right)\right]^{-1} \\ & \begin{array}{ll} & \left(\theta_{Z}\right. \text { must be } \\ \text { positive }) \end{array} \end{aligned}$	(1) (2)	$L_{s} R_{s}$ Z θ_{Z}

L Notes:

(1) $\mathrm{B}_{\mathrm{L}}=$ Inductive susceptance, $+\mathrm{B}=$ Inductive susceptance, $\mathrm{C}=$ Capacitance, $\mathrm{D}=$ Dissipation Factor, $\mathrm{E}=\mathrm{rms}$ Voltage, $\mathrm{e}=$ Instantaneous voltage, $I=$ Current, $L_{M}=$ Mutual inductance, $L_{p}=$ Parallel circuit inductance, $\mathrm{L}_{\mathrm{s}}=$ Series circuit inductance, $\ell=$ Length, $M=$ Mutual Inductance, $\mathrm{N}=$ Number of turns, n (subscript) = Any number, $\mathrm{Q}=$ Quality, Merit or Storage Factor, $\mathrm{R}=$ Resistance, $\mathrm{r}=$ Radius, $\mathrm{T}=$ Time constant, $\mathrm{W}=$ Work, $\mathrm{X}_{\mathrm{L}}=$ Inductive reactance, $+\mathrm{X}=\mathrm{In}-$ ductive reactance, $\mathrm{Y}=$ Admittance, $\mathrm{Z}=$ Impedance, $\theta=$ Phase angle, $\omega=$ Angular velocity $=2 \pi \mathrm{f}, \mathrm{di} / \mathrm{dt}=$ Current rate of change.
(2) $x^{-1}=1 / x,|x|=A b s o l u t e ~ v a l u e ~ o r ~ m a g n i t u d e ~ o f ~ x ~$

Inductance, Parallel Circuits		$\stackrel{\text { E }}{\text { E }}$
$L_{t}=\left[\omega\left(B_{L 1}+B_{L 2} \cdots+B_{L n}\right)\right]^{-1}$	(1)	B_{L}
$L_{t}=\omega^{-1}\left[\left(+B_{1}\right)+\left(+B_{2}\right) \cdots+\left(+B_{n}\right)\right]^{-1}$	(2)	+B
$\mathrm{L}_{\mathrm{t}}=\left[\mathrm{L}_{1}^{-1}+\mathrm{L}_{2}^{-1} \cdots+\mathrm{L}_{\mathrm{n}}^{-1}\right]^{-1}$	(1) (2)	L
$L_{t}=\omega^{-1}\left[\left(X_{L}^{-1}\right)_{t}+\left(X_{L}^{-1}\right)_{2} \cdots+\left(X_{L}^{-1}\right)_{n}\right]^{-1}$	(1)	X_{L}
$L_{t}=\omega^{-1}\left[\left(+X_{1}^{-1}\right)+\left(+X_{2}^{-1}\right) \cdots+\left(+X_{n}^{-1}\right)\right]^{-1}$	(2)	+X
$\mathrm{L}=(\mathrm{DR}) / \omega \quad \begin{aligned} & \text { Parallel reactive element } \\ & \text { must be inductive } \end{aligned}$	(1)	D R_{p}
$\mathrm{L}=\left\|\left[\omega \mathrm{G}\left(\tan \theta_{\mathrm{Y}}\right)\right]^{-1}\right\| \begin{aligned} & \theta_{\mathrm{Y}} \text { must be a } \\ & \text { negative angle }\end{aligned}$	(1) (2)	G θ_{Y}
$L=R /(\omega Q)$ Parallel reactive element must be inductive	(1)	Q R
$\mathrm{L}=\mathrm{R} /\left(\omega \tan \theta_{\mathrm{Z}}\right) \quad \begin{aligned} & \theta_{\mathrm{Z}} \text { must be a } \\ & \text { positive angle }\end{aligned}$	(1)	R $\boldsymbol{\theta}_{\mathrm{Z}}$
$L=\left[\omega Y \sin \left\|\theta_{\mathbf{Y}}\right\|^{-1} \quad \begin{array}{l}\theta_{\mathbf{Y}} \text { must be a } \\ \text { negative angle }\end{array}\right.$	(1) (2)	Y $\theta_{\mathbf{Y}}$
$\mathrm{L}=\mathrm{Z} /\left(\omega \sin \theta_{\mathrm{Z}}\right) \quad \begin{array}{ll}\theta_{\mathrm{Z}} \text { must be a } \\ \text { positive angle }\end{array}$	(1)	$\mathrm{Z} \boldsymbol{\theta}_{\mathbf{Z}}$
$\mathrm{L}=\mathrm{E} /\left(\omega \mathrm{I} \sin \left\|\theta_{\mathrm{I}}\right\|\right) \quad \begin{aligned} & \theta_{\mathrm{I}} \text { must be a } \\ & \text { negative angle }\end{aligned}$	(1) (2)	E I $\theta_{\text {I }}$
Parallel to Series Conversion $\begin{aligned} & L_{s}=\left[\left(\omega^{2} L_{p} / R^{2}\right)+L_{p}^{-1}\right]^{-1} \\ & L_{s}=\left(Z \sin \theta_{Z}\right) / \omega \quad\left(\theta_{Z} \text { must be positive }\right) \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (2) } \end{aligned}$	$\begin{array}{ll} \mathbf{L}_{\mathbf{p}} & \mathbf{R}_{\mathrm{p}} \\ \mathrm{Z} & \theta_{\mathrm{Z}} \end{array}$

Inductance, Misc. Formulas		$\underset{\text { E. }}{\substack{\text { ® }}}$
$\mathrm{L}=1 /\left(\omega \mathrm{B}_{\mathrm{L}}\right)$	(1)	B_{L}
$L_{r}=1 /\left(\omega^{2} \mathrm{C}\right)$ $L_{r}=\mathrm{X}_{\mathrm{C}} / \omega$	(1)	$\begin{aligned} & \mathrm{C} \\ & \mathrm{X}_{\mathrm{C}} \end{aligned}$
$\mathrm{L}=\mathrm{X}_{\mathrm{L}} / \omega$	(1)	X_{L}
$L=(2 W) / I^{2} \quad \begin{aligned} & (W=\text { Work equivalent } \\ & \text { stored energy }) \end{aligned}$	(1)	I W
$\mathrm{L}=\mathrm{R} / \mathrm{T} \quad(\mathrm{T}=$ time constant)	(1)	R T
$L=-e /(d i / d t) \quad e=\text { instantaneous voltage }$ $\mathrm{di} / \mathrm{dt}=$ rate of change in ampere/seconds	(1)	e $\frac{\mathrm{di}}{\mathrm{dt}}$
$\mathrm{L} \approx(\mathrm{rN})^{2} /(9 \mathrm{r}+10 \ell)$ when magnetic path is air $r=$ radius to center of winding $\mathrm{N}=$ number of turns $\ell=$ length of winding	(1)	$\ell \mathrm{Nr}$
Coupled Series Inductances $\begin{array}{ll} L_{t}=L_{1}+L_{2}+2 M & \text { (fields aiding) } \\ L_{t}=L_{1}+L_{2}-2 M & \text { (fields opposing) } \end{array}$	(1)	$\mathrm{L}_{1} \mathrm{~L}_{2} \mathrm{M}$
Coupled Parallel Inductances $L_{t}=\left[\left(L_{1}-M\right)^{-1}+\left(L_{2}-M\right)^{-1}\right]^{-1}$ (fields opposing)	(1)	$\mathrm{L}_{1} \mathrm{~L}_{2} \mathrm{M}$

M

Mega, Mutual Inductance

$\mathbf{M}=$ Symbol for mega (also meg).
$\mathbf{M}=$ A prefix meaning one million. A multiplier prefix used to indicate 10^{6} units.

Typical uses in electronics include megahertz (MHz), megawatt (MW), megavolt (MV) and megohm (M Ω).

Note: Megohm is often contracted to Meg and $\mathrm{M} \Omega$ is often contracted to M.
$\mathbf{M}=$ Symbol for mutual inductance (The symbol L_{M} is also used)
$\mathbf{M}=$ The equivalent inductance common to both the primary and secondary windings of a transformer. In a circuit with two discrete inductors coupled by magnetic field interaction, the equivalent inductance common to both inductors.
$M=k \sqrt{L_{p} L_{s}}$
$\mathrm{M}=\mathrm{kN}_{\mathrm{p}} \mathrm{N}_{\mathrm{s}}$
$M=\left(L_{t a}-L_{t o}\right) / 4$
M Notes:
$\mathrm{k}=$ Coefficient of coupling.
$\mathbf{L}_{\mathbf{p}}=$ Primary inductance.
$L_{s}=$ Secondary inductance.
$\mathrm{L}_{\mathbf{t a}}=$ Total inductance with primary and secondary windings connected series aiding.
$\mathbf{L}_{\text {to }}=$ Total inductance with primary and secondary windings connected series opposing.
$\mathrm{N}_{\mathrm{p}}=$ Number of primary turns.
$\mathrm{N}_{\mathrm{s}}=$ Number of secondary turns.

m

Flare Constant, Exponential Horns
$\mathrm{m}=$ Symbol for flare constant (flaring constant)
$\mathrm{m}=\mathrm{In}$ acoustical horns, a constant used in formulas to determine the area, diameter or radius at any distance from the throat, e.g., $A=A_{0} \epsilon^{m x}$ or $S=S_{o} \epsilon^{m x}$. In an exponential horn of infinite length, a constant used in formulas to determine the frequency (flare cutoff frequency f_{FC}) below which no energy is coupled through the horn.
$\mathrm{m}=$ Flare constant expressed in units of inverse inches, inverse feet, inverse meters, etc.

$$
\begin{aligned}
& \mathrm{m}=.6931 / \ell_{2 \mathrm{~A}} \\
& \mathrm{~m}=.6931 / \sqrt{\ell_{2 \mathrm{~d}}} \\
& \mathrm{~m}=\sqrt{.4804 / \ell_{2 \mathrm{~d}}} \\
& \mathrm{~m}=\sqrt{.4804 / \ell_{2 \mathrm{r}}} \\
& \mathrm{~m}=\left(2.3025 / \ell_{\mathrm{T}-\mathrm{M}}\right)\left[\log \left(\mathrm{A}_{\mathrm{M}} / \mathrm{A}_{\mathrm{o}}\right)\right] \\
& \mathrm{m}=\left(4.605 / \ell_{\mathrm{T}-\mathrm{M}}\right)\left[\log \left(\mathrm{d}_{\mathrm{M}} / \mathrm{d}_{\mathrm{o}}\right)\right] \\
& \mathrm{m}=(4 \pi) / \lambda_{\mathrm{FC}} \\
& \mathrm{~m}=\left(4 \pi \mathrm{f}_{\mathrm{FC}}\right) / \mathrm{v}
\end{aligned}
$$

m Notes:
$\ell_{2 A}, \ell_{2 d}, \ell_{2 r}=$ Length between centerline points of double area, diameter and radius respectively. ${ }^{\ell_{T-M}}=$ Throat to mouth length. $\mathbf{A}, \mathrm{A}_{\mathbf{M}}$, $\mathbf{A}_{\mathbf{o}}, \mathbf{A}_{\mathbf{x}}=$ Area, Area of mouth, throat and at distance \mathbf{x} from throat respectively. d_{o} and $\mathrm{d}_{\mathrm{M}}=$ Throat and mouth diameter. f_{FC} and $\lambda_{\mathrm{FC}}=$ Flare cutoff frequency and wavelength. $\epsilon=$ Base of natural logarithms $=$ 2.718. $v=$ Velocity of sound $\simeq 13630 \mathrm{in} / \mathrm{sec}, 1136 \mathrm{ft} / \mathrm{sec}$ or 346.3 meters/sec@ $25^{\circ} \mathrm{C}$

nN

Nano, Number, Newton, Neper

$\mathrm{n}=$ Symbol for nano
$\mathrm{n}=$ Prefix symbol meaning 10^{-9} unit. One thousandth of a millionth unit.

Typical usage includes nanoamp (nA), nanovolt (nV), nanowatt (nW) and nanosecond (ns).
$\mathrm{n}=$ Symbol for an indefinite number
$\mathrm{N}=$ Symbol for number, number of turns, etc.
N = A pure number. Symbol for seldom used quantities where the natural symbol is in recognized use for another quantity. $\mathrm{N}_{\mathrm{p}}=$ Number of turns of primary winding of a transformer. $\mathrm{N}_{\mathrm{s}}=$ Number of turns of secondary winding of a transformer. $\mathrm{N}_{\mathrm{pp}}=$ Number of pairs of poles in a motor or generator.

$$
\begin{aligned}
N_{p} & =\left(E_{p} N_{s}\right) / E_{s} & & N_{s}=\left(E_{s} N_{p}\right) / E_{p} \\
N_{p} & =\left(I_{s} N_{s}\right) / I_{p} & & N_{s}=\left(I_{p} N_{p}\right) / I_{s} \\
N_{L 1} & =N_{L t} \sqrt{L_{1} / L_{t}} & & \text { (Tapped inductor turns) } \\
N_{p} & =N_{s} \sqrt{Z_{p} / Z_{s}} & & N_{s}=N_{p} \sqrt{Z_{s} / Z_{p}}
\end{aligned}
$$

$$
\mathrm{N}_{\mathrm{Z}_{1}}=\mathrm{N}_{\mathrm{Zt}} \sqrt{\mathrm{Z}_{1} / \mathrm{Z}_{\mathrm{t}}} \quad \text { (Tapped secondary turns) }
$$

$$
\mathrm{N}_{\mathrm{pp}}=\mathrm{f} / \mathrm{RPS} \quad \text { (Pairs of poles in a generator or sync. motor) }
$$

$$
\mathrm{N}=\text { Symbol for newton } \quad \text { (SI unit of force) }
$$

$$
N_{p}=\text { Symbol for neper } \quad \text { (logarithmic ratio unit) }
$$

$$
N_{p}=\ln \sqrt{P_{2} / P_{1}}=8.686 \mathrm{~dB}
$$

$$
N_{p}=\ln \left(E_{2} / E_{1}\right) \quad=\ln \left(I_{2} / I_{1}\right) \quad \text { when impedances are equal }
$$

NF NI Noise Index

$\mathrm{NF}=$ Symbol for noise figure . (noise figure is also known as noise factor)
$\mathrm{NF}=$ The ratio in decibels of device output noise to ideal device output noise with all conditions of operation specified.

See-Active Circuits
$\mathrm{NI}=$ Symbol for noise index.
$\mathrm{NI}=$ The ratio, in decibels, of rms microvolts of excess noise in a decade of frequency, to the dc voltage applied to a resistor.
$\mathrm{NI}=$ Noise index expressed in decibels (dB).
$\mathrm{NI}=20\left(\log \left[\left(10^{6} \mathrm{E}_{\mathrm{N}(\mathrm{EX})}\right) /\left(\mathrm{V}_{\mathrm{dc}}\right)\right]\right)$
$\mathrm{NI}=20\left(\log \left[\frac{(\text { excess noise in microvolts rms) }}{\text { (applied dc voltage) }}\right]\right)$
$\mathrm{NI}=-20$ to +10 dB carbon composition
$\mathrm{NI}=-25$ to -10 dB carbon film
$\mathrm{NI}=-40$ to -15 dB metal film
$\mathrm{NI}=-40$ to -15 dB wire wound
Notes:
(1) Excess noise is noise in excess of thermal noise.
(2) Excess noise is $1 / \mathrm{f}$ noise while thermal noise has equal output at all frequencies. (white noise)
(3) $\left(\mathrm{E}_{\mathrm{N}}\right)_{\mathrm{EX}}=\sqrt{\left(\mathrm{E}_{\mathrm{N}}\right)_{\mathrm{t}}^{2}-\left(\mathrm{E}_{\mathrm{N}}\right)_{\text {th }}^{2}}$ (all voltages rms)

Subscript Only Zero and Letter 0

$\mathrm{O}, \mathrm{o}=$	Subscript symbol for output, open circuit, zero time,
	zero current, characteristic, etc.
$\mathrm{o}=$	Output in $\mathrm{E}_{\mathrm{o}}, \mathrm{I}_{\mathrm{o}}, \mathrm{P}_{\mathrm{o}}, \mathrm{h}_{\mathrm{ob}}, \mathrm{h}_{\mathrm{oe}}, \mathrm{h}_{\mathrm{oc}}$
$\mathrm{o}=$	Output in $\mathrm{C}_{\mathrm{ob}}, \mathrm{g}_{\mathrm{os}}, \mathrm{P}_{\mathrm{ob}}, \mathrm{P}_{\mathrm{ob}}, \mathrm{Y}_{\mathrm{oc}}, \mathrm{Y}_{\mathrm{os}}$
$\mathrm{o}=$	Output in $\mathrm{C}_{\mathrm{obo}}$ and $\mathrm{C}_{\mathrm{oeo}}($ first o$)$
$\mathrm{o}=$	Open circuit in $\mathrm{C}_{\mathrm{obo}}$ and $\mathrm{C}_{\mathrm{oeo}}($ last o$)$
$\mathrm{o}=$	Open circuit in $\mathrm{C}_{\mathrm{ibo}}, \mathrm{C}_{\mathrm{ieo}}$
$\mathrm{O}=$	Open circuit in $\mathrm{BV}_{\mathrm{CBO}}, \mathrm{BV}_{\mathrm{EBO}}, \mathrm{LV}_{\mathrm{CEO}}$
$\mathrm{O}=$	Open circuit in $\mathrm{I}_{\mathrm{CO}}, \mathrm{I}_{\mathrm{CBO}}, \mathrm{I}_{\mathrm{CEO}}, \mathrm{I}_{\mathrm{EBO}}$
$\mathrm{O}=$	Open circuit in $\mathrm{V}_{\mathrm{CBO}}, \mathrm{V}_{\mathrm{CEO}}, \mathrm{V}_{\mathrm{EBO}}$
$\mathrm{O}=$	Characteristic (impedance) in Z_{O}
$\mathrm{O}=$	Oscillation (frequency) in f_{O}
$\mathrm{o}=$	Resonant (frequency) in $\mathrm{f}_{\mathrm{o}}\left(\mathrm{f}_{\mathrm{r}}\right.$ is preferred)
$\mathrm{o}=$	Center (frequency of passband) in f_{o} and ω_{o}
$\mathrm{o}=$	Initial (at zero time) in E_{o}, etc.

Definitions

Definitions

P = Symbol for power
$\mathrm{P}=$ The rate at which energy is utilized to produce work. The rate at which work is done. The rate at which electrical energy is transformed to another form of energy such as heat, light, radiation, sound, mechanical work, potential energy in any form or any combination of any of the forms of energy.
$\mathbf{P}=$ Electrical power expressed or measured in watts (W)

Power is also expressed in dBm , microwatts $(\mu \mathrm{W})$, milliwatts (mW), kilowatts (kW), megawatts (MW), etc.
$P_{\text {peak }}=$ Instantaneous peak power
$P=$ Effective or average power
$P=E_{d c} \cdot I_{d c}=E_{r m s} \cdot I_{r m s} \quad$ (pure resistances only)
$P \neq E_{\text {average }} \cdot I_{\text {average }}$
$P_{\text {sinewave }}=$ Power produced by sinewave voltage and current, not the waveshape of the power. (Power waveshapes are rarely used except for rectangular waves where the waveshapes of power, voltage and current are identical.)
$P_{a c}=P_{d c}$ in heating effect and all other transformations of electrical energy
$P=$ Zero in all purely reactive circuits
$P=$ Zero when the phase angle of the current with respect to the voltage equals $\pm 90^{\circ}$

Power, DC Circuits

Power, DC Circuits

$P_{t}=P_{1}+P_{2} \cdots+P_{n}$	
$P=E^{2} G$	
$P=E I$	
$P=E^{2} / R$	
$P=I^{2} / G$	
$P=I^{2} R$	
$P_{t}=P_{1}+P_{2} \cdots+P_{n}$	
$P_{t}=\left[\left(E_{R}\right)_{1}+\left(E_{R}\right)_{2} \cdots+\left(E_{R}\right)_{n}\right] I$	
$P_{t}=\left[\left(E_{R}\right)_{1}+\left(E_{R}\right)_{2} \cdots+\left(E_{R}\right)_{n}\right]^{2} /\left(R_{t}\right)$	
$P_{t}=E^{2} /\left(R_{1}+R_{2} \cdots+R_{n}\right)$	
$P_{t}=I^{2}\left(R_{1}+R_{2} \cdots+R_{n}\right)$	
$P_{t}=P_{1}+P_{2} \cdots+P_{n}$	
$P_{t}=E^{2}\left(G_{1}+G_{2} \cdots+G_{n}\right)$	
$P_{t}=E\left(I_{1}+I_{2} \cdots+I_{n}\right)$	
$P_{t}=E^{2}\left(R_{1}^{-1}+R_{2}^{-1} \cdots+R_{n}^{-1}\right)$	
$P_{t}=I_{t}^{2} /\left(G_{1}+G_{2} \cdots+G_{n}\right)$	
$P_{t}=I_{t}^{2} /\left(R_{1}^{-1}+R_{2}^{-1} \cdots+R_{n}^{-1}\right)$	

Note: $\mathrm{G}=1 / \mathrm{R}$ in all dc circuits

Power Ratios, Misc. Formulas

$\mathrm{P}_{\text {peak }}=\left(\mathrm{E}_{\mathrm{R}}\right)_{\text {peak }} \cdot\left(\mathrm{I}_{\text {peak }}\right)$	
$P_{\text {peak }}=\left(E_{R}\right)_{\text {peak }}^{2} / R$	
$\mathrm{P}_{\text {peak }}=\left(\mathrm{I}_{\text {peak }}\right)^{\mathbf{2}} \mathrm{R}$	(all series circuits)
$\mathrm{P}_{\text {peak }}=2 \mathrm{P}_{\text {average }}$	(sinewave)
$\mathrm{P}_{\text {peak }}=\mathrm{P}_{\text {average }}$	(squarewave)
$\mathrm{P}_{\text {square }}=2 \mathrm{P}_{\text {sine }}$	(with same $\mathrm{E}_{\text {peak }}$ or $\mathrm{I}_{\text {peak }}$)
$\mathrm{P}=\left(\mathrm{CE}^{2}\right) /(2 \mathrm{t})$	Power from a capacitor charge for time t)
$\mathrm{P}=\mathrm{W} / \mathrm{t}$	($\mathrm{W}=$ Work equivalent energy in joules or watt-seconds)
$\mathrm{P}=\left(\mathrm{LI}^{2}\right) /(2 \mathrm{t})$	(Power for time t from energy stored in the field of an inductance)
$\mathbf{P}_{\text {TH }}=$ Thermal noise power (any value resistance)	
$\mathrm{P}_{\text {TH }}=\mathrm{K}_{\mathrm{B}} \mathrm{T}_{\mathrm{K}} \mathrm{BW}$	(Available $\mathrm{P}_{\mathbf{T H}}=\mathrm{P}_{\mathbf{T H}} / 4$)
$\begin{aligned} & \mathrm{K}_{\mathrm{B}}=\text { Boltzmans constant }=1.38 \cdot 10^{-23} \mathrm{~J} /{ }^{\circ} \mathrm{K} \\ & \mathrm{~T}_{\mathrm{K}}=\text { Kelvin temperature, } \mathrm{BW}=\text { Bandwidth } \end{aligned}$	
PWL $=$ Power level in (acoustic) watts.	
$\begin{aligned} \mathrm{PWL}= & \overline{\mathrm{SPL}}+[20(\log \mathrm{r})]+.5 \mathrm{~dB}=\mathrm{dB} \text { above } 10^{-12} \text { watt } \\ & (\text { Freefield conditions }) \overline{\mathrm{SPL}}=\text { Sound pressure level } \\ & \text { in dB above } 20 \mu \mathrm{~N} / \mathrm{m}^{2}, \mathrm{r}=\text { distance in feet } \end{aligned}$	

Power from Dissipation or Q Factor	$\stackrel{\text { E. }}{\text { E. }}$	
$\mathrm{P}=\mathrm{EI} \cos \left(\tan ^{-1} \mathrm{D}^{-1}\right)$	E I D	
$\mathrm{P}=\mathrm{EI} \cos \left(\tan ^{-1} \mathrm{Q}\right)$	E I Q	
$\mathrm{P}=\left[\mathrm{E}^{2} \cos \left(\tan ^{-1} \mathrm{D}^{-1}\right)\right] / \mathrm{Z}$	E Z D	
$\mathrm{P}=\left[\mathrm{E}^{2} \cos \left(\tan ^{-1} \mathrm{Q}\right)\right] / \mathrm{Z}$	E Z Q	
$\mathrm{P}=\mathrm{I}^{2} \mathrm{Z} \cos \left(\tan ^{-1} \mathrm{D}^{-1}\right)$	I Z D	
$\mathrm{P}=\mathrm{I}^{2} \mathrm{Z} \cos \left(\tan ^{-1} \mathrm{Q}\right)$	I Z Q	
$\mathrm{P}=\left[\mathrm{E} \cos \left(\tan ^{-1} \mathrm{D}^{-1}\right)\right]^{2} /\left[\mathrm{D}(\omega \mathrm{C})^{-1}\right]$	E C D	
$\mathrm{P}=\mathrm{Q}(\omega \mathrm{L})^{-1}\left[\mathrm{E} \cos \left(\tan ^{-1} \mathrm{Q}\right)\right]^{2}$	E L Q	
$\mathrm{P}=\mathrm{I}^{2} \mathrm{D}(\omega \mathrm{C})^{-1}$	I C D	
$\mathrm{P}=\left(\mathrm{I}^{2} \omega \mathrm{~L}\right) / \mathrm{Q}$	I L Q	
$\mathrm{P}=\mathrm{E}^{2} \mathrm{D} \omega \mathrm{C}$	E C D	
$\mathrm{P}=\mathrm{E}^{2} /(\mathrm{Q} \omega \mathrm{L})$	E L Q	
$\mathrm{P}=\left[\mathrm{I} \cos \left(\tan ^{-1} \mathrm{D}^{-1}\right)\right]^{2} /(\omega \mathrm{CD})$	I C D	
$\mathrm{P}=\omega \mathrm{LQ}\left[\mathrm{I} \cos \left(\tan ^{-1} \mathrm{Q}\right)\right]^{2}$	I L Q	

Power, Series Circuits		$\xrightarrow{\text { E. }}$
$\mathrm{P}_{\mathrm{t}}=\mathrm{P}_{1}+\mathrm{P}_{2} \cdots+\mathrm{P}_{\mathrm{n}}$	(1) (2)	P
$P_{t}=I\left[\left(E_{R}\right)_{1}+\left(E_{R}\right)_{2} \cdots+\left(E_{R}\right)_{n}\right]$	(1) (2)	$E_{R} I$
$P_{t}=\left[\left(E_{R}\right)_{1}+\left(E_{R}\right)_{2} \cdots+\left(E_{R}\right)_{n}\right]^{2} / R_{t}$	(1) (2)	$E_{R} R$
$\mathrm{P}_{\mathrm{t}}=\mathrm{I}^{2}\left(\mathrm{R}_{1}+\mathrm{R}_{2} \cdots+\mathrm{R}_{\mathrm{n}}\right)$	(1) (2)	I R
$\mathrm{P}=\mathrm{EI} \mathrm{pf}$	(1)	E I pf
$\mathbf{P}=\mathrm{EI} \cos \theta_{\mathrm{I}}$	(1) (2)	E I $\theta_{\text {I }}$
$\mathrm{P}=(\mathrm{Epf})^{2} / \mathrm{R}$	(1)	ER pf
$\mathrm{P}=\left(\mathrm{E} \cos \theta_{\mathrm{Z}}\right)^{2} / \mathrm{R}$	(1) (2)	ER $\theta_{\text {Z }}$
$\mathrm{P}=\left(\mathrm{E}^{2} \mathrm{pf}\right) / \mathrm{Z}$	(1)	E Z pf
$\mathbf{P}=\left(\mathrm{E}^{2} \cos \theta_{\mathrm{Z}}\right) / \mathrm{Z}$	(1) (2)	$\mathrm{E} \mathrm{Z} \theta_{\mathrm{Z}}$

P Notes:

(1) $\mathrm{B}_{\mathrm{C}}=$ Capacitive susceptance, $\mathrm{B}_{\mathrm{L}}=$ Inductive susceptance, $\mathrm{C}=$ Capacitance, $\mathrm{D}=$ Dissipation Factor, $\mathrm{E}=\mathrm{rms}$ or dc Voltage, $\mathrm{E}_{\text {peak }}=$ Instantaneous peak voltage, $G=$ Conductance, $I=$ rms or direct current, $\mathrm{I}_{\text {peak }}=$ Instantaneous peak current, $\mathrm{L}=$ Inductance, $\mathrm{pf}=$ Power Factor, $\mathrm{Q}=$ Quality, Merit or Storage Factor, $\mathrm{R}=$ Resistance, $\mathrm{t}=$ Time, $\mathrm{W}=$ Work, $\mathrm{X}=$ Reactance, $\mathrm{Y}=$ Admittance, $\mathrm{Z}=$ Impedance, $\theta=$ Phase angle, $\omega=$ Angular velocity $=2 \pi \mathrm{f}$, tan $=$ tangent, $\sin =\operatorname{sine}, \cos =$ cosine

Power， Series Circuits		$\underset{\text { E゙ }}{\text { ¢ }}$
$\mathrm{P}=\mathrm{I}^{2} \mathrm{Z}$ pf	（1）	台
$\mathrm{P}=\mathrm{I}^{2} \mathrm{Z} \cos \theta_{\mathrm{Z}}$	（1）（2）	N N \sim N
$P=\left(E Z^{-1}\right)^{2} \sqrt{Z^{2}-\left[(\omega L)-(\omega C)^{-1}\right]^{2}}$	（1）（3）	N \vdots M
$\mathrm{P}=\left(\mathrm{EZ}^{-1}\right)^{2} \sqrt{\mathrm{Z}^{2}-\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}$	（1）（2） （3）	込
$P=\left\|(E \mathrm{pf})^{2}\left[\tan \left(\cos ^{-1} \mathrm{pf}\right)\right]\left[(\omega \mathrm{L})-(\omega \mathrm{C})^{-1}\right]^{-1}\right\|$	$\begin{array}{ll} 1+3 \\ 4 & (4) \end{array}$	可乐
$\mathbf{P}=\left[\left(\mathrm{E} \cos \theta_{\mathrm{Z}}\right)^{2}\left(\tan \theta_{\mathrm{Z}}\right)\right] /\left[(\omega \mathrm{L})-(\omega \mathrm{C})^{-1}\right]$	$\begin{array}{ll} 1(1) \\ 3 & (2) \\ \hline \end{array}$	－19
$P=\left\|(E \mathrm{pf})^{2}\left[\tan \left(\cos ^{-1} \mathrm{pf}\right)\right]\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{-1}\right\|$	$\begin{array}{cc} 1(2) \\ (3) \\ 8 \end{array}$	（
$\mathrm{P}=\left[\left(\mathrm{E} \cos \theta_{\mathrm{Z}}\right)^{2}\left(\tan \theta_{\mathrm{Z}}\right)\right] /\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)$	（1）（2）	（20N ${ }^{\text {a }}$
$P=I^{2} \sqrt{Z^{2}-\left[(\omega L)-(\omega C)^{-1}\right]^{2}}$	（1）（3）	N - -
$\mathrm{P}=\mathrm{I}^{2} \sqrt{\mathrm{Z}^{2}-\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}$	（1）（2）	
$\mathbf{P}=\left\|\left[\mathrm{I}^{2}\left(\mathrm{X}_{\mathbf{L}}-\mathrm{X}_{\mathrm{C}}\right)\right] /\left(\tan \theta_{\mathrm{Z}}\right)\right\|$	（1）（2）	（1）

Power, Parallel Circuits		$\underset{\text { En }}{\substack{\text { E }}}$
$P_{t}=P_{1}+P_{2} \cdots+P_{n}$	(1) (2)	P
$\mathrm{P}=\mathrm{E}^{2}\left(\mathrm{G}_{1}+\mathrm{G}_{2} \cdots+\mathrm{G}_{\mathrm{n}}\right)$	(1) (2)	E G
$\mathrm{P}=\mathrm{E}^{2}\left(\mathrm{R}_{1}^{-1}+\mathrm{R}_{2}^{-1} \cdots+\mathrm{R}^{-1}\right)$	(1) (2) (3)	ER
$P=\left(I_{G}\right)_{t}^{2} /\left(G_{1}+G_{2} \cdots+G_{n}\right)$	(1) (2)	$I_{G} \mathrm{G}$
$\mathrm{P}=\left(\mathrm{I}_{\mathrm{R}}\right)_{t}^{2}\left(\mathrm{R}_{1}^{-1}+\mathrm{R}_{2}^{-1} \cdots+\mathrm{R}_{\mathrm{n}}^{-1}\right)^{-1}$	$\begin{gathered} \text { (1) (2) } \\ \text { (3) } \end{gathered}$	$I_{R} R$
$\mathrm{P}=\mathrm{EI}_{\mathrm{t}} \mathrm{pf}$	(1) (2)	$E I_{t} \mathrm{pf}$
$\mathrm{P}=\mathrm{EI}_{t} \cos \theta_{\mathrm{I}}$	(1) (2)	EIt $\theta_{\text {I }}$
$\mathrm{P}=\mathrm{E}^{2} \mathrm{Y} \mathrm{pf}$	(1)	EY pf
$\mathrm{P}=\mathrm{E}^{2} \mathrm{Y} \cos \theta_{Y}$	(1) (2)	E Y θ_{Y}
$\mathrm{P}=\left(\mathrm{E}^{2} \mathrm{pf}\right) / \mathrm{Z}$	(1)	E Z pf
$\mathbf{P}=\left(\mathrm{E}^{2} \cos \theta_{\mathrm{Z}}\right) / \mathrm{Z}$	(1) (2)	$\mathrm{E} \mathrm{Z} \theta_{\mathrm{Z}}$

P Notes:

(2) Subscripts $C=$ capacitive, $E=$ voltage,$G=$ conductance,$I=$ current, $\mathrm{L}=$ inductive, $\mathrm{n}=$ any number, $\mathrm{R}=$ resistive, $\mathrm{t}=$ total or equivalent, $\mathrm{X}=$ reactive, $\mathrm{Y}=$ admittance, $\mathrm{Z}=$ impedance
(3) $\mathrm{x}^{-1}=1 / \mathrm{x}, \mathrm{x}^{-2}=1 / \mathrm{x}^{2},|\mathrm{x}|=$ Absolute value or magnitude of x
(4) $\tan ^{-1}=\operatorname{arc}$ tangent $\cos ^{-1}=\operatorname{arc}$ cosine

Power, Parallel Circuits		¢
$\bar{P}=\left(\mathrm{I}_{t}^{2} \mathrm{pf}\right) / \mathrm{Y}$	(1)	$\mathrm{I}_{\mathrm{t}} \mathrm{Y} \mathrm{pf}$
$\mathrm{P}=\left(\mathrm{I}_{\mathbf{t}}^{2} \cos \theta_{\mathrm{Y}}\right) / \mathrm{Y}$	(1) (2)	$I_{t} Y \theta_{Y}$
$\mathrm{P}=\mathrm{I}_{\mathrm{t}}^{2} \mathrm{Z} \mathrm{pf}$	(1) (2)	$\mathrm{I}_{\mathrm{t}} \mathrm{Z}$ pf
$\underline{\mathbf{P}=\mathrm{I}_{\mathbf{t}}^{2} \mathrm{Z} \cos \theta_{\mathrm{Z}}}$	(1) (2)	$I_{t} Z \theta_{Z}$
$\mathrm{P}=\mathrm{E}^{2} \sqrt{\mathrm{Y}^{2}-\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right)^{2}}$	(1) (2)	$\begin{aligned} & \mathrm{EB}_{\mathrm{C}} \\ & \mathrm{~B}_{\mathrm{L}} \mathrm{Y} \end{aligned}$
$P=E^{2} \sqrt{Z^{-2}-\left[(\omega L)^{-1}-(\omega \mathrm{C})\right]^{2}}$	(1) (3)	$\begin{gathered} \mathrm{ECL} \\ \mathrm{Z} \end{gathered}$
$\mathrm{P}=\mathrm{E}^{2} \sqrt{\mathrm{Z}^{-2}-\left(\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right)^{2}}$	$\begin{array}{\|c\|} \hline \text { (1) (2) } \\ \hline \end{array}$	$\begin{aligned} & E X_{C} \\ & X_{L} Z \end{aligned}$
$\mathrm{P}=\left\|\left[\mathrm{E}^{2}\left(\mathrm{~B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right)\right] /\left[\tan \left(\cos ^{-1} \mathrm{pf}\right)\right]\right\|$	$\begin{array}{\|c\|c\|} \hline \text { (1) (2) } \\ \begin{array}{c} 3 \\ \hline \end{array} \\ \hline \otimes \\ \hline \end{array}$	$\begin{aligned} & E B_{C} \\ & B_{L} \mathrm{pf} \end{aligned}$
$\mathbf{P}=\left\|\left[\mathbf{E}^{2}\left(\mathbf{B}_{\mathbf{L}}-\mathbf{B}_{\mathrm{C}}\right)\right] /\left(\tan \theta_{\mathrm{Y}}\right)\right\|$	$\begin{aligned} & \hline(1) \\ & \hline \text { (3) } \end{aligned}$	$\begin{aligned} & \mathbf{E ~ B}_{\mathbf{C}} \\ & \mathbf{B}_{\mathrm{L}} \theta_{\mathrm{Y}} \end{aligned}$
$P=\left\|E^{2}\left[(\omega L)^{-1}-(\omega \mathrm{C})\right]\left[\tan \left(\cos ^{-1} \mathrm{pf}\right)\right]^{-1}\right\|$	$\begin{array}{\|c\|c\|} \hline 1(1) \\ \hline 3(4) \\ \hline \otimes \\ \hline \end{array}$	$\begin{gathered} \text { E CL } \\ \text { pf } \end{gathered}$
$\mathrm{P}=\left\|\mathrm{E}^{2}\left[(\omega \mathrm{~L})^{-1}-(\omega \mathrm{C})\right]\left[\tan \theta_{\mathrm{Z}}\right]^{-1}\right\|$	$\begin{array}{\|ll\|} \hline 1+12 \\ (3) & \otimes \\ \hline \end{array}$	$\begin{gathered} \mathrm{ECL} \\ \theta_{\mathrm{Z}} \end{gathered}$

P Notes: \otimes Division by zero, tangent of $\pm 90^{\circ}$ and purely reactive circuits are prohibited.

Power, Parallel Circuits		$\underset{\sim}{\text { E }}$
$P=\left\|\left[\mathrm{E}^{2}\left(\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right)\right] /\left[\tan \left(\cos ^{-1} \mathrm{pf}\right)\right]\right\|$	$\begin{gathered} \text { (1) (2) } \\ \begin{array}{c} 3 \\ 8 \end{array}+ \\ \otimes \end{gathered}$	$\begin{aligned} & \mathrm{E} \mathrm{X}_{\mathrm{C}} \\ & \mathrm{X}_{\mathrm{L}} \mathrm{pf} \end{aligned}$
$\mathrm{P}=\left\|\mathrm{E}^{2}\left(\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right)\left(\tan \theta_{\mathrm{Z}}\right)^{-1}\right\|$	$\begin{array}{ll} 11 & (2) \\ (3) & \end{array}$	$\begin{aligned} & \text { E X }_{C} \\ & \mathrm{X}_{\mathrm{L}} \theta_{\mathrm{Z}} \end{aligned}$
$P=\left(I_{t} Y^{-1}\right)^{2} \sqrt{Y^{2}-\left(B_{L}-B_{C}\right)^{2}}$	$\begin{array}{\|c} \hline \text { (1) (2) } \\ \text { (3) } \end{array}$	$\begin{aligned} & I B_{C} \\ & B_{L} Y \end{aligned}$
$P=\left(I_{t} Z\right)^{2} \sqrt{Z^{-2}-\left[(\omega L)^{-1}-(\omega \mathrm{C})\right]^{2}}$	$\begin{array}{\|c} \text { (1) (2) } \\ \text { (3) } \end{array}$	I CL Z
$\mathrm{P}=\left(\mathrm{I}_{\mathrm{t}} \mathrm{Z}\right)^{2} \sqrt{\mathrm{Z}^{-2}-\left(\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right)^{2}}$	(1) (2) (3)	$\begin{aligned} & \mathrm{I} \mathrm{X}_{\mathrm{C}} \\ & \mathrm{X}_{\mathrm{L}} \mathrm{Z} \end{aligned}$
$\mathrm{P}=\left\|\left[(\mathrm{I} \mathrm{pf})^{2} \tan \left(\cos ^{-1} \mathrm{pf}\right)\right] /\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right)\right\|$	$\begin{gathered} 1(1) \\ (3) \\ 8 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{I} \mathrm{~B}_{\mathrm{C}} \\ & \mathrm{~B}_{\mathrm{L}} \mathrm{pf} \end{aligned}$
$\mathbf{P}=\left\|\left[\left(\mathrm{I} \cos \theta_{\mathrm{Y}}\right)^{2} \tan \theta_{\mathrm{Y}}\right] /\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right)\right\|$	$\begin{array}{\|ll} \hline 1 & (2) \\ 3 & 8 \end{array}$	$\begin{aligned} & \text { I } B_{C} \\ & \mathrm{~B}_{\mathrm{L}} \theta_{\mathrm{Y}} \end{aligned}$
$\mathrm{P}=\left\|\left[(\mathrm{I} \mathrm{pf})^{2} \tan \left(\cos ^{-1} \mathrm{pf}\right)\right] /\left[(\omega \mathrm{L})^{-1}-(\omega \mathrm{C})\right]\right\|$	$\left\lvert\, \begin{array}{ll} \text { (1) (3) } \\ \text { (4) } & 8 \end{array}\right.$	I CL pf
$\mathbf{P}=\left\|\left[\left(\mathrm{I} \cos \theta_{\mathrm{Z}}\right)^{2} \tan \theta_{\mathrm{Z}}\right] /\left[(\omega \mathrm{L})^{-1}-(\omega \mathrm{C})\right]\right\|$	$\begin{array}{ll} \text { (1) (2) } \\ (3) & 8 \end{array}$	$\mathrm{ICL} \theta_{\mathrm{Z}}$
$\mathrm{P}=\left\|\left[(\mathrm{I} \mathrm{pf})^{2} \tan \left(\cos ^{-1} \mathrm{pf}\right)\right] /\left(\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right)\right\|$	$\left.\begin{array}{cc} 1 & (2) \\ (3) & (4) \\ \otimes \end{array} \right\rvert\,$	IX_{C}
$\mathrm{P}=\left\|\left[\left(\mathrm{I} \cos \theta_{\mathrm{Z}}\right)^{2} \tan \theta_{\mathrm{Z}}\right] /\left(\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right)\right\|$	$\begin{array}{ll} 1 \\ 1) & (2) \\ (3) & 8 \end{array}$	$\begin{aligned} & \mathrm{I} \mathrm{X}_{\mathrm{C}} \\ & \mathrm{X}_{\mathrm{L}} \theta_{\mathrm{Z}} \end{aligned}$

\bigcirc PT $\begin{aligned} & \text { Pico, } \\ & \text { Power Factor }\end{aligned}$

$\mathrm{p}=$ Symbol for pico (pronounced peeko).
$\mathrm{p}=$ Prefix symbol meaning 10^{-12} unit. Replaces old $\mu \mu$ prefix.
Typical usage includes picofarad (pF), picosecond (ps), picoampere (pA), and picowatt (pW).

PF = Symbol for power factor.
$\mathrm{pf}=$ Symbol for power factor. (other symbols for power factor include: $\mathrm{F}_{\mathrm{p}}, \cos \theta, \mathrm{PF}$, P.F. and p.f.)
$\mathrm{pf}=$ The ratio of actual power of an alternating current to apparent power. The ratio of power in watts to voltamperes. The cosine of the phase angle of alternating current with respect to the voltage.
$\mathrm{pf}=$ Power factor expressed as a decimal or as a percentage.
$\mathrm{pf} \simeq$ The inverse of Q factor when $\mathrm{Q}>7$
$\mathrm{pf}=\mathrm{A}$ measurement more often than a calculation.
$\mathrm{pf}=$ The cosine of the phase angle when the angle is positive or negative, when the phase angle is current with respect to voltage or voltage with respect to current and when the angle represents the phase of impedance or admittance.
$\mathrm{pf}=\mathrm{A}$ decimal number between zero and one, or a percentage between 0 and 100.
pf = One in purely resistive circuits and zero in purely reactive circuits
$\mathrm{pf}=$ The ratio of resistance to impedance

Power Factor, Series Circuits		$\underset{\substack{\text { E } \\ \text { ¢ }}}{\text { - }}$
$\mathrm{pf}=\cos \theta \quad\left(\theta=\theta_{\mathrm{E}}, \theta_{\mathrm{I}}\right.$ or $\left.\theta_{\mathrm{Z}}\right)$	(1)	θ
$\mathrm{pf}=\mathrm{R} / \mathrm{Z}$	(1)	R Z
$\mathrm{pf}=\left(\mathrm{R}^{-2}\left[(\omega \mathrm{~L})-(\omega \mathrm{C})^{-1}\right]^{2}+1\right)^{-\frac{1}{2}}$	(1) (2)	C L R
$\mathrm{pf}=\sqrt{1-\left(\left[(\omega L)-(\omega C)^{-1}\right] / \mathrm{Z}\right)^{2}}$	(1) (2)	C L Z
$\mathrm{pf}=\mathrm{P} /(\mathrm{EI})$	(1)	E I P
$\mathrm{pf}=(\mathrm{RI}) / \mathrm{E}$	(1)	EIR
$\mathrm{pf}=(\mathrm{PZ}) / \mathrm{E}^{2}$	(1)	E P Z
pf $=\mathrm{P} /\left(\mathrm{I}^{2} \mathrm{Z}\right)$	(1)	I P Z
$\mathrm{pf}=\left(\left[\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right) / \mathrm{R}\right]^{2}+1\right)^{-\frac{1}{2}}$	(1) (2)	$\mathrm{R} \mathrm{X}_{\mathbf{C}} \mathrm{X}_{\mathrm{L}}$
$\mathrm{pf}=\sqrt{1-\left[\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right) / \mathrm{Z}\right]^{2}}$	(1)	$\mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}} \mathrm{Z}$

pf Notes:
(1) $B_{C}=$ Capacitive Susceptance, $B_{L}=$ Inductive Susceptance, $C=$ Capacitance, $E=$ rms Voltage, $G=$ Conductance, $I=r m s$ Current, $\mathrm{L}=$ Inductance, $\mathrm{P}=$ Power, $\mathrm{R}=$ Resistance, $\mathrm{R}_{\mathrm{p}}=$ Parallel Resistance, $\mathrm{X}_{\mathrm{C}}=$ Capacitive Reactance, $\mathrm{X}_{\mathrm{L}}=$ Inductive Reactance, $\mathrm{Y}=$ Admittance, $\mathrm{Z}=$ Impedance, $\theta=$ Phase Angle, $\omega=$ Angular Velocity $\omega=2 \pi \mathrm{f}$

Power Factor, Parallel Circuits		$\underset{\text { E. }}{\substack{\text { ¢ }}}$
$\mathrm{pf}=\cos \theta \quad\left(\theta=\theta_{\mathbf{E}}, \theta_{\mathrm{I}}, \theta_{\mathbf{Y}} \quad\right.$ or $\left.\theta_{\mathbf{Z}}\right)$	(1)	θ
pf $=\mathrm{G} / \mathrm{Y}$	(1)	G Y
$\mathrm{pf}=\mathrm{Z} / \mathrm{R}_{\mathrm{p}}$	(1)	$\mathrm{R}_{\mathrm{p}} \mathrm{Z}$
$\mathrm{pf}=\left(\left[\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right) / \mathrm{G}\right]^{2}+1\right)^{-\frac{1}{2}}$	(1) (2)	$B_{C} B_{L} \mathrm{G}$
$\mathrm{pf}=\sqrt{1-\left[\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right) / \mathrm{Y}\right]^{2}}$	(1)	$B_{C} B_{L} Y$
$\mathrm{pf}=(\mathrm{EG}) / \mathrm{I}$	(1)	E I G
$\mathrm{pf}=\mathrm{P} /(\mathrm{EI})$	(1)	E I P
pf $=\mathrm{E} /\left(\mathrm{IR}_{\mathrm{p}}\right.$)	(1)	E I R $\mathrm{p}^{\text {p }}$
pf = $(\mathrm{PZ}) / \mathrm{E}^{2}$	(1)	E P Z
$\mathrm{pf}=\left(\left[\mathrm{R}_{\mathrm{p}}\left(\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right)\right]^{2}+1\right)^{-\frac{1}{2}}$	(1) (2)	$\mathrm{R}_{\mathrm{p}} \mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}}$
$\left.\mathrm{pf}=\sqrt{1-[\mathrm{Z}}\left(\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right)\right]^{2}$	(1)	$\mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}} \mathrm{Z}$
pf Notes: (2) $x^{-1}=1 / x, x^{-2}=1 / x^{2}, x^{-\frac{1}{2}}=1 / \sqrt{x}, \cos =$ cosine		

Q Factor, Quality Factor

Q = Symbol for Q Factor, Merit Factor, Storage Factor, Energy Factor, Magnification Factor and Quality Factor. (All names refer to the same factor. "Q" Factor is preferred)
$Q=1$. The ratio of energy stored to the energy dissipated in inductors, coils, tuned circuits, and transformers. (Dissipation Factor which is the inverse of \mathbf{Q} is commonly used for capacitors and dielectrics).
2. The tangent of the phase angle of alternating current with respect to the voltage in inductors.
3. In inductors at a given frequency, the ratio of reactance to the equivalent series resistance.
$\mathrm{Q}=\mathrm{A}$ number from zero to infinity. (usually between 10 and 100)

Q = A factor used to calculate equivalent series or parallel resistance and a factor used to predict the voltage or current magnification of LC resonant circuits.

Real or Equivalent Resistance in Series with Reactance $\begin{aligned} & \mathrm{Q}=\left(\omega \mathrm{L}_{\mathrm{s}}\right) / \mathrm{R}_{\mathrm{s}} \\ & \mathrm{Q}=\left(\mathrm{X}_{\mathrm{L}}\right)_{\mathrm{s}} / \mathrm{R}_{\mathrm{s}} \end{aligned}$	Real or Equivalent Resistance in Parallel with Reactance $\begin{aligned} & \mathrm{Q}=\mathrm{R}_{\mathrm{p}} /\left(\omega \mathrm{L}_{\mathrm{p}}\right) \\ & \mathrm{Q}=\mathrm{R}_{\mathrm{p}} /\left(\mathrm{X}_{\mathrm{L}}\right)_{\mathrm{p}} \end{aligned}$	
$\begin{aligned} & \mathrm{Q}=1 / \mathrm{D}_{\mathrm{s}} \\ & \mathrm{Q}=1 /\left(\omega \mathrm{C}_{\mathrm{s}} \mathrm{R}_{\mathrm{s}}\right) \\ & \mathrm{Q}=\left(\mathrm{X}_{\mathrm{C}}\right)_{\mathrm{s}} / \mathrm{R}_{\mathrm{s}} \end{aligned}$	$\begin{aligned} & \mathrm{Q}=1 / \mathrm{D}_{\mathrm{p}} \\ & \mathrm{Q}=\omega \mathrm{C}_{\mathrm{p}} \mathrm{R}_{\mathrm{p}} \\ & \mathrm{Q}=\mathrm{R}_{\mathrm{p}} /\left(\mathrm{X}_{\mathrm{C}}\right)_{\mathrm{p}} \end{aligned}$	

Inductors or
Capacitors in
Series or Parallel
Q Factor

Note: For series circuits $C, D, L \& Q$ must be $C_{s}, D_{s}, L_{s} \& Q_{s}$. For parallel circuits $C, D, L \& Q$ must be $C_{p}, D_{p}, L_{p} \& Q_{p}$. See Q Notes (3) \& (4)

Series Resonant
Circuits

Resonant Circuit

 Q Factor$\mathrm{Q}=\infty$

$$
\begin{aligned}
& Z=0, \quad B W=0 \\
& f_{r}=(2 \pi \sqrt{L C})^{-1}
\end{aligned}
$$

$\mathrm{Q}=\left(\mathrm{Q}_{\mathrm{s}}^{-1}+\mathrm{D}_{\mathrm{s}}\right)^{-1}$
$\mathrm{Q}=\mathrm{f}_{\mathrm{r}} /\left(\mathrm{f}_{2}-\mathrm{f}_{1}\right)_{-3 \mathrm{~dB}}$
$f_{r}=(2 \pi \sqrt{L C})^{-1}$

$\mathrm{Q}=\mathrm{L} /(\mathrm{R} \sqrt{\mathrm{LC}})$
$\mathrm{Q}=\left(2 \pi \mathrm{f}_{\mathrm{r}} \mathrm{L}\right) / \mathrm{R}$

$Q=f_{r} /\left(f_{2}=f_{1}\right)_{-3 d B}$
$f_{r}=(2 \pi \sqrt{L C})^{-1}$
$Q=\sqrt{\mathrm{LC}}\left[(\mathrm{RC})^{-1}+(\mathrm{R} / \mathrm{L})\right]$
$Q \approx \sqrt{L C} /(C R)$
$Q=\left(f_{r}\right)_{D E F .1} /\left(f_{2}-f_{1}\right)_{-3 d B}$

$$
\left(\mathrm{f}_{\mathrm{r}}\right)_{\text {DEF. } 1}=\left[(\mathrm{LC})-(\mathrm{L} / \mathrm{R})^{2}\right]^{-\frac{t}{2}} /(2 \pi)
$$

Q Notes: (1) BW = Bandwidth, $\mathrm{C}=$ Capacitance, $\mathrm{D}=$ Dissipation Factor, $f_{r}=$ Frequency of Resonance, $L=$ Inductance, $R=$ Resistance, X = Reactance

Series Resonant Circuits

Resonant Circuit Q Factor

$$
\begin{aligned}
\mathrm{Q}= & {[(\mathrm{RC})+(\mathrm{L} / \mathrm{R})] / \sqrt{\mathrm{LC}} } \\
\mathrm{Q} \approx & \mathrm{~L} /(\mathrm{R} \sqrt{\mathrm{LC}}) \\
\mathrm{Q}= & \left(\mathrm{f}_{\mathrm{r}}\right)_{\text {DEF. } 1} /\left(\mathrm{f}_{2}-\mathrm{f}_{1}\right)_{-3 \mathrm{~dB}} \\
& \left(\mathrm{f}_{\mathrm{r}}\right)_{\text {DEF. } 1}=\left[(\mathrm{LC})^{-1}-(\mathrm{CR})^{-2}\right]^{\frac{1}{2}} /(2 \pi)
\end{aligned}
$$

$\mathrm{Q}=\left[\mathrm{Q}_{\mathrm{s}}^{-1}+\mathrm{D}_{\mathrm{s}}+\left(\mathrm{R} \sqrt{\mathrm{L}_{\mathrm{s}} \mathrm{C}_{\mathrm{s}}} / \mathrm{L}\right)\right]^{-1}$
$\mathrm{Q}=\mathrm{L} /\left[\sqrt{\mathrm{L}_{\mathrm{s}} \mathrm{C}_{\mathrm{s}}}\left(\mathrm{R}+\mathrm{r}_{\mathrm{Ls}}+\mathrm{r}_{\mathrm{Cs}}\right)\right]$
$Q=f_{r} /\left(f_{2}-f_{1}\right)_{-3 d B}$
$f_{r}=\left(2 \pi \sqrt{L_{s} C_{s}}\right)^{-1}$
$r_{L}=\left(\omega_{r} L_{s}\right) / Q_{s}, \quad r_{C}=D_{s} / \omega_{r} C_{s}$

Note (3)
$\mathrm{Q}=\left[\omega_{\mathrm{r}} \mathrm{L}_{\mathrm{s}} /\left(\mathrm{R}_{\mathrm{Ls}}+\mathrm{R}_{\mathrm{Cs}}\right)\right]$ Note (8)

$\mathrm{Q}=\left(\mathrm{f}_{\mathrm{r}}\right)_{\mathrm{DEF} .1} /\left(\mathrm{f}_{2}-\mathrm{f}_{1}\right)_{-3 \mathrm{~dB}}$
$\left(\mathrm{f}_{\mathrm{r}}\right)_{\text {DEF. } 1}=\sqrt{\left[\left(\mathrm{R}_{\mathrm{C}}^{2} \mathrm{C}\right)^{-1}-\mathrm{L}^{-1}\right] /\left[\left(\mathrm{L} / \mathrm{R}_{\mathrm{L}}^{2}\right)-\mathrm{C}\right]} /(2 \pi)$
Q Notes:
(1) Cont. $\pi=3.1416, \omega=$ Angular Velocity ($2 \pi \mathrm{f}$) $\omega_{\mathrm{r}}=$ Resonant Angular Velocity ($2 \pi \mathrm{f}_{\mathrm{r}}$)
(2) $x^{-1}=1 / x, x^{\frac{1}{2}}=\sqrt{x}, x^{-\frac{1}{2}}=1 / \sqrt{x}$
(3) $\mathrm{D}, \mathrm{Q}, \mathrm{L}$ and C do not have exactly the same value when capacitors and inductors are measured in the parallel mode. $\mathrm{L}_{\mathrm{s}} \mathrm{C}_{\mathrm{s}}, \mathrm{D}_{\mathrm{s}} \mathrm{Q}_{\mathrm{s}}=$ Series mode.

Parallel

Resonant Circuits

Resonant Circuit Q Factor
$\mathrm{Q}=\infty$

$$
\begin{aligned}
& Z=\infty, \quad B W=0 \\
& f_{r}=(2 \pi \sqrt{L C})^{-1}
\end{aligned}
$$

Note (4)
$\mathrm{Q}=\left(\mathrm{Q}_{\mathrm{p}}^{-1}+\mathrm{D}_{\mathrm{p}}\right)^{-1}$ Note (5)
$Q=f_{r} /\left(f_{2}-f_{1}\right)_{-3 d B}$
$\mathrm{f}_{\mathrm{r}}=\left(2 \pi \sqrt{\mathrm{~L}_{\mathrm{p}} \mathrm{C}_{\mathrm{p}}}\right)^{-1}$

Note ©

$$
Q=(R \sqrt{L C}) / L
$$

$$
\mathrm{Q}=\mathrm{R} /\left(2 \pi \mathrm{f}_{\mathrm{r}} \mathrm{~L}\right)
$$

$$
\mathrm{Q}=\mathrm{f}_{\mathrm{r}} /\left(\mathrm{f}_{2}-\mathrm{f}_{1}\right)_{-3 \mathrm{~dB}}=\mathrm{f}_{\mathrm{r}} / \mathrm{BW}
$$

$$
f_{r}=(2 \pi \sqrt{L C})^{-1}
$$

$\mathrm{Q}=\sqrt{\left(\mathrm{L} / \mathrm{CR}^{2}\right)-1}$ exception $=\sqrt{-\mathrm{x}}$
$\mathrm{Q}=\mathrm{f}_{\mathrm{r}} /\left(\mathrm{f}_{2}-\mathrm{f}_{1}\right)_{-3 \mathrm{~dB}}=\mathrm{f}_{\mathrm{r}} / \mathrm{BW}$

$$
\begin{aligned}
\left(\mathrm{f}_{\mathrm{r}}\right)_{\text {DEF. } 1}= & \sqrt{(\mathrm{LC})^{-1}-(\mathrm{R} / \mathrm{L})^{2}} /(2 \pi) \\
& \text { exception }=\sqrt{-\mathrm{x}}
\end{aligned}
$$

Q Notes:
(4) $\mathrm{D}, \mathrm{Q}, \mathrm{L}$ and C do not have exactly the same value when measured in the series mode. $\mathrm{D}_{\mathrm{p}}, \mathrm{Q}_{\mathrm{p}}, \mathrm{L}_{\mathrm{p}}$ and $\mathrm{C}_{\mathrm{p}}=$ parallel mode.

Parallel
 Resonant Circuits

Resonant Circuit Q Factor

Q Notes:

(5) $C_{p}, D_{p}, L_{p} \& Q_{p}=$ Parallel or equivalent parallel values. C_{s}, D_{s}, L_{s} $\& Q_{s}=$ Series or equivalent series values.
(6) $r_{s}=$ Equivalent series resistance derived from Q_{s} or $D_{s} . \quad r_{p}=$ Equivalent parallel resistance derived from Q_{p} or D_{p}.
(7) Def. $1=$ Resonant frequency definition 1. - See $f_{r} . \quad\left(f_{2}-f_{1}\right)_{-3 d B}=$ 3 dB down bandwidth (half power)
(8) $L_{s}=$ Equivalent series inductance, $R_{L s}=$ Equivalent series resistance of inductor resistor. $\mathrm{R}_{\mathrm{Cs}}=$ Equivalent series resistance of capacitor resistor.
(9) $\mathbf{L}_{\mathbf{p}}, \mathbf{R}_{\mathbf{C p}} \& \mathbf{R}_{\mathbf{L p}}=$ Parallel equivalent of series quantities.

Q q
 Electric Charge

$\mathrm{Q}=$ Symbol for quantity of electric charge
Q = Quantity of electric charge. The amount of excess electrons or the amount of holes (deficiency of electrons).
Q = Electric charge expressed in coulomb (C) units. (Many in electronics feel uncomfortable in using the symbol \mathbf{C} for coulombs since the unit symbol C (coulombs) is seldom used and the capacitance symbol (C) is often used)
$\mathrm{Q}=$ Electric charge in units equal to $6.242 \cdot 10^{18}$ electrons
$\mathrm{Q}=$ The product of current and time in ampere \cdot seconds
$\mathrm{Q}=\mathrm{CE}$
$\mathrm{Q}=\mathrm{I} \mathrm{t}$
$\mathrm{Q}=(2 \mathrm{~W}) / \mathrm{E} \quad(\mathrm{W}=$ work equivalent energy in joules or watt$Q=\sqrt{2 \mathrm{CW}} \quad$ seconds)

Charge of capacitor C, t seconds after application of voltage E to series RC circuit.
$\mathrm{Q}=\mathrm{EC}\left[1-\epsilon^{\frac{-t}{\mathrm{RC}}}\right](\epsilon=\ln$ base $=2.71828)$
$\mathrm{Q}=$ Schematic Symbol for transistor. See - Active circuits
$\mathrm{q}=$ The electric charge of one electron or $1.6 \cdot 10^{-19}$ coulombs. (symbol e is also used for q)

Notes:

$\mathrm{x}^{(-\mathrm{y} / \mathrm{z})}=\left(\mathrm{x}^{-1}\right)^{(\mathrm{y} / \mathrm{z})}=\sqrt[z]{\left(\mathrm{x}^{-1}\right)^{\mathbf{y}}}$
(your scientific calculator will perform correctly with a negative exponent)

Definitions and Notes

Definitions and Notes

$\mathbf{R}=$ Symbol for resistance
$R=$ That property which opposes the flow of electric current by the transformation of electrical energy into heat or other forms of energy. The total opposition to the flow of direct current at a given voltage. The non-reactive part of the total opposition to alternating current of a given voltage. The real part of impedance. The reciprocal of conductance in purely resistive or in dc circuits.
$\mathrm{R}=$ Resistance in units of ohms $(\Omega) .(\Omega=$ Greek letter capital omega) $\mathrm{k} \Omega=1000$ ohms, $\mathrm{M} \Omega=1,000,000$ ohms. $\mathrm{k} \Omega$ is often contracted to K and $M \Omega$ is often contracted to M.
$\mathbf{R}=$ Parts list symbol for resistor.
$\mathbf{R}=\mathbf{R} / 0^{\circ}$ in terms of polar impedance
$R=R+j 0$ in terms of rectangular impedance

R Notes:

(1) $\mathrm{B}=$ Susceptance, $\mathrm{C}=$ Capacitance, $\mathrm{D}=$ Dissipation Factor, $\mathrm{E}=\mathrm{dc}$ or rms voltage, $\mathrm{f}=$ Frequency, $\mathrm{G}=$ Conductance, $\mathrm{I}=\mathrm{rms}$ or direct current, $\mathrm{L}=$ Inductance, $\mathrm{P}=$ Power, $\mathrm{Q}=$ Quality Factor, $\mathrm{X}=$ Reactance, $\mathrm{Y}=$ Admittance, $\mathrm{Z}=$ Impedance, $\Delta=$ Delta, $\theta=$ Phase Angle, $\pi=$ Pi, $\omega=$ Angular Velocity, $\Omega=\mathbf{O h m}$
(2) Subscripts:
$\mathrm{C}=$ capacitive, $\mathrm{E}=$ voltage, $\mathrm{I}=$ current, $\mathrm{L}=$ inductive, $\mathrm{n}=$ any number, $p=$ parallel circuit, $r=$ resonant, $R=$ resistive, $s=$ series circuit, $t=$ total or equivalent, $x=u n k n o w n, Y=$ admittance, $Z=$ impedance $1,2,3=$ first, second, third, $A, B, C=$ first, second, third counterparts

Resistance, DC Circuits	$\xrightarrow[\text { E゙® }]{\text { - }}$	
$\begin{aligned} R_{t} & =R_{1}+R_{2} \cdots+R_{n} \\ R_{x} & =R_{t}-R_{1} \end{aligned}$	R	
$\mathrm{R}_{\mathrm{t}}=\left[\left(\mathrm{E}_{\mathrm{R}}\right)_{1}+\left(\mathrm{E}_{\mathrm{R}}\right)_{2} \cdots+\left(\mathrm{E}_{\mathrm{R}}\right)_{\mathrm{n}}\right] / \mathrm{I}$	E I	-
$\begin{aligned} & R_{t}=\left(E_{R}\right)_{t}^{2} /\left(P_{1}+P_{2} \cdots+P_{n}\right) \\ & R_{t}=\left[\left(E_{R}\right)_{1}+\left(E_{R}\right)_{2} \cdots+\left(E_{R}\right)_{n}\right]^{2} / P_{t} \end{aligned}$	E P	\%
$\mathrm{R}_{\mathrm{t}}=\left(\mathrm{P}_{1}+\mathrm{P}_{2} \cdots+\mathrm{P}_{\mathrm{n}}\right) / \mathrm{I}^{2}$	I P	
$\mathrm{R}_{\mathrm{t}}=\left(\mathrm{G}_{1}+\mathrm{G}_{2} \cdots+\mathrm{G}_{\mathrm{n}}\right)^{-1}$	G	
$\begin{aligned} & \mathrm{R}_{\mathrm{t}}=\left(\mathrm{R}_{1} \mathrm{R}_{2}\right) /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \\ & \mathrm{R}_{\mathrm{t}}=\left(\mathrm{R}_{1}^{-1}+\mathrm{R}_{2}^{-1} \cdots+\mathrm{R}_{n}^{-1}\right)^{-1} \\ & \mathrm{R}_{\mathrm{x}}=\left(\mathrm{R}_{1} \mathrm{R}_{\mathrm{t}}\right) /\left(\mathrm{R}_{1}-\mathrm{R}_{\mathrm{t}}\right) \\ & \mathrm{R}_{\mathrm{x}}=\left(\mathrm{R}_{\mathrm{t}}^{-1}-\mathrm{R}_{1}^{-1}\right)^{-1} \end{aligned}$	R	\%
$\mathrm{R}_{\mathrm{t}}=\mathrm{E} /\left[\left(\mathrm{I}_{\mathrm{R}}\right)_{1}+\left(\mathrm{I}_{\mathrm{R}}\right)_{2} \cdots+\left(\mathrm{I}_{\mathrm{R}}\right)_{\mathrm{n}}\right]$	E I	-
$\mathrm{R}_{\mathrm{t}}=\mathrm{E}^{2} /\left(\mathrm{P}_{1}+\mathrm{P}_{2} \cdots+\mathrm{P}_{\mathrm{n}}\right)$	E P	
$\mathrm{R}_{\mathrm{t}}=\mathrm{P}_{\mathrm{t}} /\left[\left(\mathrm{I}_{\mathrm{R}}\right)_{1}+\left(\mathrm{I}_{\mathrm{R}}\right)_{2} \cdots+\left(\mathrm{I}_{\mathrm{R}}\right)_{\mathrm{n}}\right]^{2}$	I P	
R Notes:		
(3) $\sin =$ sine, $\cos =$ cosine, $\tan =$ tangent (4) $\mathrm{x}^{-1}=1 / \mathrm{x}, \mathrm{x}^{-2}=1 / \mathrm{x}^{2}, \mathrm{x}^{-\frac{1}{2}}=1 / \sqrt{\mathrm{x}}$		

Equivalent
Resistance
from D and Q
REQU\|V.
Equivalent Resistance

$\begin{aligned} \mathbf{R}_{\mathbf{s}}= & \text { Equiv. Series } \\ & \text { Resistance } \end{aligned}$	$\begin{aligned} & \mathbf{R}_{\mathbf{p}}= \text { Equiv. Parallel } \\ & \text { Resistance } \end{aligned}$	$\stackrel{\text { E. }}{\stackrel{\text { E }}{\bullet}}$
$\mathrm{R}_{\mathrm{s}}=\mathrm{D} /(\omega \mathrm{C})$	$\mathrm{R}_{\mathrm{p}}=(\omega \mathrm{CD})^{-1}$	D C
$\mathrm{R}_{\mathrm{s}}=\omega \mathrm{LD}$	$\mathrm{R}_{\mathrm{p}}=(\omega \mathrm{L}) / \mathrm{D}$	D L
$\mathrm{R}_{\mathrm{s}}=\mathrm{X}_{\mathrm{C}} \mathrm{D}$	$\mathrm{R}_{\mathrm{p}}=\mathrm{X}_{\mathrm{C}} / \mathrm{D}$	D X_{C}
$\mathrm{R}_{\mathrm{s}}=\mathrm{X}_{\mathrm{L}} \mathrm{D}$	$\mathrm{R}_{\mathrm{p}}=\mathrm{X}_{\mathrm{L}} / \mathrm{D}$	D X_{L}
$\mathrm{R}_{\mathrm{s}}=(\omega \mathrm{CQ})^{-1}$	$\mathrm{R}_{\mathrm{p}}=\omega \mathrm{CQ}$	Q C
$\mathrm{R}_{\mathrm{s}}=(\omega \mathrm{L}) / \mathrm{Q}$	$\mathrm{R}_{\mathrm{p}}=\mathrm{Q} /(\omega \mathrm{L})$	Q L
$\mathrm{R}_{\mathrm{s}}=\mathrm{X}_{\mathrm{C}} / \mathrm{Q}$	$\mathrm{R}_{\mathrm{p}}=\mathrm{Q} / \mathrm{X}_{\mathrm{C}}$	Q X_{C}
$\mathrm{R}_{\mathrm{s}}=\mathrm{X}_{\mathrm{L}} / \mathrm{Q}$	$\mathrm{R}_{\mathrm{p}}=\mathrm{Q} / \mathrm{X}_{\mathrm{L}}$	Q X_{L}
Series Resonant Circuits	Parallel Resonant Circuits	
$\begin{aligned} \mathrm{R}_{\mathrm{s}}= & {\left[\mathrm{D}_{\mathrm{C}} /\left(2 \pi \mathrm{f}_{\mathrm{r}} \mathrm{C}\right)\right] } \\ & +\left[\left(2 \pi \mathrm{f}_{\mathrm{r}} \mathrm{~L}\right) / \mathrm{Q}_{\mathrm{L}}\right] \end{aligned}$	$\begin{aligned} \mathrm{R}_{\mathrm{p}}= & \left(\left[2 \pi \mathrm{f}_{\mathrm{r}} \mathrm{CD}_{\mathrm{C}}\right]\right. \\ & \left.+\left[\left(2 \pi \mathrm{f}_{\mathrm{r}} \mathrm{~L}\right) / \mathrm{Q}_{\mathrm{L}}\right]\right)^{-1} \end{aligned}$	$\begin{array}{ll} \mathrm{D} & \mathrm{Q} \\ \mathrm{C} & \mathrm{~L} \end{array}$
$\begin{aligned} R_{s}= & {\left[D_{C} X_{C\left(@ f_{r}\right)}\right] } \\ & +\left[\left(X_{L\left(@ f_{r}\right)}\right) / Q_{L}\right] \end{aligned}$	$\begin{aligned} \mathrm{R}_{\mathrm{p}}= & \left(\left[\mathrm{D} / \mathrm{X}_{\mathrm{C}\left(@ \mathrm{f}_{\mathrm{r}}\right)}\right]\right. \\ & \left.+\left[\left(\mathrm{X}_{\mathrm{L}\left(\mathrm{e}_{\mathrm{r}}\right)}\right) / \mathrm{Q}_{\mathrm{L}}\right]\right)^{-1} \end{aligned}$	$\begin{aligned} & \mathrm{D} Q \\ & \mathbf{X}_{\mathrm{C}} \quad \mathbf{x}_{\mathrm{L}} \end{aligned}$

Special Note: $f_{r}=(2 \pi \sqrt{L C})^{-1}$

Resistance, Series AC Circuits		$\stackrel{\text { E }}{\substack{\text { E }}}$
$\begin{aligned} & R_{t}=R_{1}+R_{2} \cdots+R_{n} \\ & R_{x}=R_{t}-R_{1} \end{aligned}$	(2)	R
$\mathrm{R}=\sqrt{\mathrm{Z}^{2}-(\omega \mathrm{C})^{-2}}$	(1) (4) (7)	C Z
$\mathrm{R}=\left\|\left[\tan \theta_{\mathrm{Z}}(\omega \mathrm{C})\right]^{-1}\right\|$	$\begin{aligned} & \text { (1) (2) (3) } \\ & \text { (4) © } \\ & \hline 15 \end{aligned}$	C θ_{z}
$\mathrm{R}=\mathrm{E}_{\mathrm{R}} / \mathrm{I}$	(1) (2)	$\mathrm{E}_{\mathrm{R}} \mathrm{I}$
$\mathrm{R}=\mathrm{E}_{\mathrm{R}}^{2} / \mathrm{P}$	(1) (2)	$\mathrm{E}_{\mathrm{R}} \mathrm{P}$
$\mathrm{R}=\mathrm{P} / \mathrm{I}^{2}$	(1)	I P
$\mathrm{R}=\sqrt{\mathrm{Z}^{2}-(\omega \mathrm{L})^{2}}$	(1) (7)	L Z
$\mathrm{R}=(\omega \mathrm{L}) /\left(\tan \theta_{\mathrm{Z}}\right)$	(1) (2) (3) (7)	$\mathrm{L} \theta_{\mathrm{z}}$
$\mathrm{R}=\sqrt{\mathrm{Z}^{2}-\mathrm{X}_{\mathrm{C}}^{2}}$	(1) (2)	$\mathrm{X}_{\mathrm{C}} \mathrm{Z}$
$\mathrm{R}=\left\|\mathrm{X}_{\mathrm{C}} /\left(\tan \theta_{\mathrm{Z}}\right)\right\|$	(1) (2) (3) (3)	$\mathrm{X}_{\mathrm{C}} \theta_{\mathrm{z}}$
$\mathrm{R}=\sqrt{\mathrm{Z}^{2}-\mathrm{X}_{\mathrm{L}}^{2}}$	(1) (2)	$\mathrm{X}_{\mathrm{L}} \quad \mathrm{Z}$
$\mathrm{R}=\mathrm{X}_{\mathrm{L}} /\left(\tan \theta_{\mathrm{Z}}\right)$	(1) (2) (3)	$\mathrm{X}_{\mathrm{L}} \theta_{\mathrm{Z}}$
$\mathrm{R}=\mathrm{Z} \cos \theta_{\mathrm{Z}}$	(1) (2) (3)	$\mathrm{Z} \theta_{\mathrm{Z}}$
R Notes: (5) $\|x\|=$ absolute value or		

Resistance, Series AC Circuits		E.
$\mathrm{R}=\sqrt{\mathrm{Z}^{2}-\left[(\omega \mathrm{L})-(\omega \mathrm{C})^{-1}\right]^{2}}$	(1) (4) (7)	C L Z
$\mathbf{R}=\left\|\left[(\omega \mathrm{L})-(\omega \mathrm{C})^{-1}\right] /\left(\tan \theta_{\mathrm{Z}}\right)\right\|$		C L θ_{z}
$\mathrm{R}=\left(\mathrm{E} \cos \theta_{\mathrm{I}}\right) / \mathrm{I}$	(1) (2) (3)	E I $\theta_{\text {I }}$
$\mathrm{R}=\left(\mathrm{E}_{\mathrm{t}} \cos \theta_{\mathrm{I}}\right)^{2} / \mathrm{P}$	(1) (2) (3)	E_{t} P $\theta_{\text {I }}$
$\mathrm{R}=\sqrt{\mathrm{Z}^{2}-\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}$	(1) (2)	$\mathrm{X}_{\mathrm{C}} \quad \mathrm{X}_{\mathrm{L}} \quad \mathrm{Z}$
$\mathrm{R}=\left\|\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right) /\left(\tan \mathrm{\theta}_{\mathrm{Z}}\right)\right\|$		$\mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}} \quad \theta_{\mathrm{Z}}$
Series to Parallel Conversion $\begin{aligned} & \mathrm{R}_{\mathrm{p}}=\mathrm{Z} /\left(\cos \theta_{\mathrm{Z}}\right) \\ & \mathrm{R}_{\mathrm{p}}=\left[\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)_{\mathrm{s}}^{2} / \mathrm{R}_{\mathrm{s}}\right]+\mathrm{R}_{\mathrm{s}} \end{aligned}$	$\begin{gathered} \text { (1) (2) } \\ (3) \end{gathered}$	$\left\lvert\, \begin{array}{lll} \mathrm{Z} & \theta_{\mathrm{Z}} \\ \mathrm{X}_{\mathrm{C}} & \mathrm{X}_{\mathrm{L}} & \mathrm{R} \end{array}\right.$

R Notes:
(6) Phase angle may be θ_{Z} or θ_{Y} also $\theta_{\mathrm{E}}-\theta_{\mathrm{I}}$ or $\theta_{\mathrm{I}}-\theta_{\mathrm{E}}$
\otimes Division by zero at resonance prohibited $\left(\tan 0^{\circ}=0\right)$
(7) $\omega=2 \pi \mathrm{f}$

Resistance, Parallel AC Circuits	$\begin{aligned} & \frac{0}{0} \\ & \frac{\tilde{0}}{0} \\ & \frac{0}{0} \\ & \frac{0}{2} \\ & \frac{0}{4} \\ & 2 \end{aligned}$	$\stackrel{\text { E }}{\substack{\text { ¢ }}}$
$\begin{aligned} \mathrm{R} & =1 / \mathrm{G} \\ \mathrm{R}_{\mathrm{t}} & =\left(\mathrm{G}_{1}+\mathrm{G}_{2} \cdots \mathrm{G}_{\mathrm{n}}\right)^{-1} \\ \mathrm{R}_{\mathrm{x}} & =\left(\mathrm{G}_{\mathrm{t}}-\mathrm{G}_{1}\right)^{-1} \end{aligned}$	(1) (2) (4)	G
$\begin{aligned} & R_{t}=\left(R_{1} R_{2}\right) /\left(R_{1}+R_{2}\right) \\ & R_{t}=\left(R_{1}^{-1}+R_{2}^{-1}\right)^{-1} \\ & R_{t}=\left(R_{1}^{-1}+R_{2}^{-1} \cdots+R_{n}^{-1}\right)^{-1} \\ & R_{x}=\left(R_{1} R_{t}\right) /\left(R_{1}-R_{t}\right) \\ & R_{x}=\left(R_{t}^{-1}-R_{1}^{-1}\right)^{-1} \end{aligned}$	(1) (2) (4)	R
$\mathrm{R}=\left[\mathrm{Y}^{2}-\mathrm{B}^{2}\right]^{-\frac{1}{2}}$	(1) (4)	B Y
$\mathrm{R}=\|(\tan \theta) / \mathrm{B}\|$	(1) (3) (5)	B θ
$\mathrm{R}=\left[\mathrm{Y}^{2}-(\omega \mathrm{C})^{2}\right]^{-\frac{1}{2}}$	(1) (4) (7)	C Y
$\mathrm{R}=\left[\mathrm{Z}^{-2}-(\omega \mathrm{C})^{2}\right]^{-\frac{1}{2}}$	(1) (4) (7)	C Z
$\mathrm{R}=\|(\tan \theta) /(\omega \mathrm{C})\|$	(1) (3) (5) (7)	C θ
$\mathrm{R}=\mathrm{E} / \mathrm{I}_{\mathrm{R}}$	(1) (2)	$E I_{R}$
$\mathrm{R}=\mathrm{E}^{2} / \mathrm{P}$	(1)	E P
$\mathrm{R}=\mathrm{P} / \mathrm{I}_{\mathrm{R}}^{2}$	(1) (2)	$I_{R} \quad P$

Resistance, Parallel AC Circuits		$\stackrel{\text { E }}{\text { E }}$
$\mathrm{R}=\left[\mathrm{Y}^{2}-(\omega L)^{-2}\right]^{-\frac{1}{2}}$	(1) (4) (7)	L Y
$\mathrm{R}=\left[\mathrm{Z}^{-2}-(\omega \mathrm{L})^{-2}\right]^{-\frac{1}{2}}$	(1) (4) (7)	L Z
$\mathbf{R}=\|\omega \mathrm{L}(\tan \theta)\|$	$\begin{gathered} \text { (1) (3) } \\ \text { (5) (6) (7) } \end{gathered}$	L θ
$\mathrm{R}=\left[\mathrm{Z}^{-2}-\mathrm{X}^{-2}\right]^{-\frac{1}{2}}$	(1) (4)	X Z
$\mathbf{R}=\|\mathbf{X}(\tan \theta)\|$	(1) (3) (5) (6)	X θ
$\mathrm{R}=\left[\mathrm{Y} \cos \theta_{\mathrm{Y}}\right]^{-1}$	(1) (2) (3) (4)	$\mathrm{Y} \theta_{\mathrm{Y}}$
$\mathrm{R}=\mathrm{Z} /\left(\cos \theta_{\mathrm{Z}}\right)$	(1) (2) (3) \otimes	$\mathrm{Z} \boldsymbol{\theta}_{\mathrm{Z}}$
$\mathrm{R}=\left[\mathrm{Y}^{2}-\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right)^{2}\right]^{-\frac{1}{2}}$	(1) (2) (4)	$B_{C} \quad B_{L} Y$
$\mathbf{R}=\left\|(\tan \theta) /\left(\mathbf{B}_{\mathrm{L}}-\mathbf{B}_{\mathrm{C}}\right)\right\|$	$\begin{gathered} \text { (1) (2) (3) } \\ \text { (5) } \otimes \end{gathered}$	$\mathrm{B}_{\mathrm{C}} \mathrm{B}_{\mathrm{L}} \boldsymbol{\theta}$
$\mathrm{R}=\left(\mathrm{Y}^{2}-\left[(\omega L)^{-1}-(\omega \mathrm{C})\right]^{2}\right)^{-\frac{1}{2}}$	(1) (4) (7)	C L Y
$R=\left(Z^{-2}-\left[(\omega L)^{-1}-(\omega C)\right]^{2}\right)^{-\frac{1}{2}}$	(1) (4) (7)	C L Z
$\mathrm{R}=\left\|(\tan \theta) /\left[(\omega \mathrm{L})^{-1}-(\omega \mathrm{C})\right]\right\|$	$\begin{aligned} & \text { (1) } \mathbf{3}^{(4)} \\ & \text { (5) } \\ & \hline 7 \end{aligned}$	C L θ

Resistance, Parallel AC Circuits		$\stackrel{\text { E. }}{\text { E. }}$
$\mathrm{R}=\mathrm{EI}_{\mathbf{t}}(\cos \theta)$	(1) (2) (3) (6)	E $\mathrm{I}_{\mathrm{t}} \boldsymbol{\theta}$
$\mathbf{R}=\mathbf{P} /\left[\mathbf{I}_{\mathbf{t}}(\cos \theta)\right]$	(1) (2) (3) (6)	$\mathrm{I}_{\mathrm{t}} \mathrm{P} \boldsymbol{\theta}$
$\mathrm{R}=\left[\mathrm{Z}^{-2}-\left(\mathrm{X}_{\mathbf{L}}^{-1}-\mathrm{X}_{\mathbf{C}}^{-1}\right)^{2}\right]^{-\frac{1}{2}}$	(1) (2) (4)	$\mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathbf{L}} \quad \mathbf{Z}$
$\mathbf{R}=\left\|(\tan \theta) /\left(\mathbf{X}_{\mathbf{L}}^{-1}-\mathrm{X}_{\mathbf{C}}^{-1}\right)\right\|$	$\begin{aligned} & \text { (1) (2) (3) (4) } \\ & \text { (3) © } \otimes \text { a } \end{aligned}$	$\mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}}{ }^{\boldsymbol{\theta}}$
Series Equivalent Resistance of a Parallel Circuit. [Parallel to Series Conversion (Transformation)]		$\stackrel{\text { E. }}{\text { ¢ }}$
$\mathbf{R}_{\mathbf{s}}=\left(\cos \theta_{\mathbf{Y}}\right) / \mathrm{Y}$	(1) (2) (3)	$\mathbf{Y} \boldsymbol{\theta}_{\mathbf{Y}}$
$\mathbf{R}_{\mathbf{s}}=\mathrm{Z} \cos \theta_{\mathrm{Z}}$	(1) (2) (3)	$\mathrm{Z} \theta_{\mathrm{Z}}$
$\mathrm{R}_{\mathrm{s}}=\mathrm{G} /\left[\mathrm{G}^{2}+\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right)^{2}\right]$	(1) (2)	$B_{C} B_{L} \mathrm{G}$
$\mathrm{R}_{\mathrm{s}}=\left[\mathrm{R}_{\mathrm{p}}\left(\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right)^{2}+\mathrm{R}_{\mathrm{p}}^{-1}\right]^{-1}$	(1) (2) (4)	$\mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}} \mathbf{R}$

Series Circuits in Parallel

$$
\begin{aligned}
\mathrm{R}_{\mathrm{t}}= & {\left[\left(\mathrm{R}_{1}+\mathrm{R}_{2} \cdots+\mathrm{R}_{\mathrm{n}}\right)_{1}^{-1}+\left(\mathrm{R}_{1}+\mathrm{R}_{2} \cdots+\mathrm{R}_{\mathrm{n}}\right)_{2}^{-1} \cdots\right.} \\
& \left.+\left(\mathrm{R}_{1}+\mathrm{R}_{2} \cdots+\mathrm{R}_{\mathrm{n}}\right)_{\mathrm{n}}^{-1}\right]^{-1}
\end{aligned}
$$

Parallel Circuits in Series

$$
\begin{aligned}
\mathrm{R}_{\mathrm{t}}= & \left(\mathrm{R}_{1}^{-1}+\mathrm{R}_{2}^{-1} \cdots+\mathrm{R}_{n}^{-1}\right)_{1}^{-1}+\left(\mathrm{R}_{1}^{-1}+\mathrm{R}_{2}^{-1} \cdots+\mathrm{R}_{\mathrm{n}}^{-1}\right)_{2}^{-1} \cdots \\
& +\left(\mathrm{R}_{1}^{-1}+\mathrm{R}_{2}^{-1} \cdots+\mathrm{R}_{n}^{-1}\right)_{\mathrm{n}}^{-1}
\end{aligned}
$$

π section to T section Transformation

$\mathrm{R}_{1}=\left(\mathrm{R}_{\mathrm{A}} \mathrm{R}_{\mathrm{B}}\right) /\left(\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}+\mathrm{R}_{\mathrm{C}}\right)$	Notes Applicable to this page (1) (2) (4)
$\mathrm{R}_{2}=\left(\mathrm{R}_{\mathrm{B}} \mathrm{R}_{\mathrm{C}}\right) /\left(\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}+\mathrm{R}_{\mathrm{C}}\right)$	
$\mathrm{R}_{3}=\left(\mathrm{R}_{\mathrm{A}} \mathrm{R}_{\mathrm{C}}\right) /\left(\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}+\mathrm{R}_{\mathrm{C}}\right)$	
$\mathrm{R}_{\mathrm{A}}=\left[\left(\mathrm{R}_{1} \mathrm{R}_{2}\right)+\left(\mathrm{R}_{2} \mathrm{R}_{3}\right)+\left(\mathrm{R}_{1} \mathrm{R}_{3}\right)\right] / \mathrm{R}_{2}$	Y to Δ
$\mathrm{R}_{\mathrm{B}}=\left[\left(\mathrm{R}_{1} \mathrm{R}_{2}\right)+\left(\mathrm{R}_{2} \mathrm{R}_{3}\right)+\left(\mathrm{R}_{1} \mathrm{R}_{3}\right)\right] / \mathrm{R}_{3}$	or
$\mathrm{R}_{\mathrm{C}}=\left[\left(\mathrm{R}_{1} \mathrm{R}_{2}\right)+\left(\mathrm{R}_{2} \mathrm{R}_{3}\right)+\left(\mathrm{R}_{1} \mathrm{R}_{3}\right)\right] / \mathrm{R}_{1}$	T to π

Second

s S

 Siemen$s=$ Symbol for second
s = Basic unit of time. 9192631770 transitions between the two hyperfine levels of the ground state of the cesium-133 atom.
$\mathrm{s}=10^{12} \mathrm{ps}, 10^{9} \mathrm{~ns}, 10^{6} \mu \mathrm{~s}$ and $10^{3} \mathrm{~ms}$
$s=1 / 3600$ of an angular degree (decimals preferred)
$\mathrm{s}=$ Symbol for spacing
$\mathrm{S}=$ Symbol for siemens
S = Basic SI unit of conductance (G), susceptance (B) and admittance (Y) [The mho (Ω^{-1} or \mho) predominates for this unit in the USA]
$S=$ The reciprocal of resistance
$\mathrm{S}=1 / \Omega=\mathrm{mho}$
$\mathrm{S}=$ Abbreviation of signal (Sig is preferred).
$\mathrm{S}=$ Symbol for standing wave ratio. (not recommended-use SWR or VSWR)
$\mathrm{S}=$ Symbol for cross-sectional area. (the preferred symbol is A)
$\mathrm{s}=$ Subscript symbol for series and secondary
$\mathrm{s}=$ Subscript symbol for source and short-circuited

t

Time Definitions and Formulas

$t=$ Symbol for time.
$t=$ The duration of an event.
$\mathrm{t}=$ Time measured in seconds. (s or sec.) [time is expressed in picoseconds (ps), nanoseconds (ns), microseconds ($\mu \mathrm{s}$), milliseconds (ms), seconds (s), minutes (min.), hours (hr) etc]
$t=1 / \mathrm{f} \quad$ Duration of one complete cycle of a periodic wave or of a periodic event.
$\mathrm{t}=(\mathrm{CE}) / \mathrm{I}$
Time required to charge capacitance \mathbf{C} to voltage E with current I .

$\mathrm{t}=\mathrm{Q} / \mathrm{I}$
 Time required to accumulate charge Q in a capacitance with current I.

Time required to charge capacitance \mathbf{C} to voltage e through resistance R from source voltage E.
$\mathrm{t}=-\mathrm{RC}(\ln [1-(\mathrm{e} / \mathrm{E})])$
Time required to discharge capacitance \mathbf{C} through resistance R from voltage E to voltage e .
$\mathrm{t}=\mathrm{RC}[\ln (\mathrm{E} / \mathrm{e})]$
Time after application of voltage E to series inductance L and resistance R for current to rise from zero to current i.
$\mathrm{t}=-\mathrm{LR}^{-1}\left(\ln \left[1-\left(\mathrm{iRE}^{-1}\right)\right]\right)$
t Notes:
$x^{-1}=1 / x, \ln (x)=\log _{\epsilon}(x)$

Temperature, Telsa, Tera

t = Symbol for "customary" temperature (int'l).
$\mathrm{T}=$ Symbol for Kelvin temperature (int'l).
$\mathrm{T}=$ Symbol for temperature (USA common usage).
$\mathrm{T}_{\mathrm{C}}=$ Symbol for temperature in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$.
$\mathrm{T}_{\mathrm{F}}=$ Symbol for temperature in degrees Fahrenheit $\left({ }^{\circ} \mathrm{F}\right)$.
$\mathrm{T}_{\mathrm{K}}=$ Symbol for temperature in Kelvin (K).
$\mathrm{T}_{\mathrm{C}}=\left(\mathrm{T}_{\mathrm{F}}-32\right) / 1.8$
$\mathrm{T}_{\mathrm{C}}=\mathrm{T}_{\mathrm{K}}-273.15$
$\mathrm{T}_{\mathrm{F}}=1.8 \mathrm{~T}_{\mathrm{C}}+32$
$\mathrm{T}_{\mathrm{F}}=1.8 \mathrm{~T}_{\mathrm{K}}-459.67$
$\mathrm{T}_{\mathrm{K}}=\mathrm{T}_{\mathrm{C}}+273.15$
$\mathrm{T}_{\mathrm{K}}={ }^{\circ} \mathrm{C}$ above absolute zero
Temperature determination of copper wire and copper wire windings by resistance measurement.

$$
\mathrm{T}_{2}=\left[\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)\left(\mathrm{T}_{1}+234.5\right)\right]-234.5
$$

$\mathrm{R}_{1}=$ Resistance at known temperature T_{1}
$\mathbf{R}_{\mathbf{2}}=$ Resistance at unknown temperature T_{2}
$\mathrm{T}_{1}, \mathrm{~T}_{2}=$ Temperature in ${ }^{\circ} \mathrm{C}$
$\mathrm{T}=$ Symbol for telsa [SI unit of magnetic flux density (magnetic induction)]
$\mathrm{T}=$ Symbol for tera (unit prefix meaning 10^{12} units)

T TC
 Time Constant, Temperature Coefficient

T = Symbol for time constant. [other symbols include: t_{C}, Tc, TC, RC, script greek letter tau (τ) etc.]
$\mathrm{T}=1$. The time required for a capacitance to discharge through a resistance to 36.8% of the initial voltage or for the current to fall to 36.8% of the initial current.
2. The time required for a capacitance to charge through a resistance to 63.2% of the final voltage or for the current to fall to 36.8% of the initial current.
3. The time required for the voltage developed by cutoff of current through an inductor to fall to 36.8% of the maximum value.
4. The time required after application of voltage for the current through a series connected inductance and resistance to rise to 63.2% of the final value. [The exact values of 36.8% and 63.2% are $100 \epsilon^{-1}$ and $\left.100\left(1-\epsilon^{-1}\right)\right]$
$\mathrm{T}=\mathrm{RC}$ also $(\mathrm{M} \Omega) \cdot(\mu \mathrm{F})$
$\mathrm{T}=\mathrm{L} / \mathrm{R}$
TC $=$ Symbol for temperature coefficient (other symbols include α)
TC $=$ In circuit elements or materials, a factor used to determine the changes in characteristics with changes in its temperature.
TC = A factor in decimal, percentage or parts per million form per degree temperature change. (temperature coefficient is almost always in ${ }^{\circ} \mathrm{C}$)

Notes.

$\epsilon=$ Base of natural logarithms (2.71828 --), $\epsilon^{-1}=1 / \epsilon$. One part per million $=.0001 \%$.

\| Mu Substitute, Unit

$u=$ Typewritten substitute for greek letter mu (μ) See- μ
$\mathbf{u}, \mathrm{U}=$ Abbreviation of unit, ultra, etc.

Velocity
$\mathbf{v}=$ Symbol for velocity
$\mathbf{v}=$ Rate of motion in a given direction. A vector quantity having both magnitude (speed) and direction with respect to a reference.
$\mathbf{v}=$ Velocity measured in various linear units per second.
$v=\mathrm{f} \lambda \quad(\mathrm{f}=$ frequency,$\lambda=$ wavelength $)$
Velocity of sound in air
$\mathrm{v} \simeq\left(1051+1.1 \mathrm{~T}_{\mathrm{F}}\right) \mathrm{ft} / \mathrm{sec}$. $\quad\left(1136 @ 77^{\circ} \mathrm{F}\right)$
$\mathrm{v} \simeq\left(331.4+.6 \mathrm{~T}_{\mathrm{C}}\right)$ meters $/ \mathrm{sec} . \quad\left(346.3 @ 25^{\circ} \mathrm{C}\right)$
Velocity of sound in fresh water
$\mathrm{v}=1557-\left[.245\left(74-\mathrm{T}_{\mathrm{C}}\right)\right]$ meters $/ \mathrm{sec}$.
Velocity of electromagnetic waves in vacuum. (including light)
$\mathrm{v}=2.997925 \cdot 10^{8} \mathrm{~m} / \mathrm{s} \quad$ (use symbol c for light)
$\mathrm{V}=$ Symbol for volt (unit of electromotive force)
$\mathrm{V}=$ Symbol for electromotive force
(See-E for passive circuits. See also-V in active circuit sections)
$\mathrm{V}=$ The basic unit of electromotive force, potential or voltage. The electric force required to develop a current of one ampere in a circuit with an impedance of one ohm.
$\mathrm{V}=$ Unit often used with multiplier prefixes

$$
\begin{array}{ll}
\mu \mathrm{V}=10^{-6} \mathrm{~V} & \mathrm{mV}=10^{-3} \mathrm{~V} \\
\mathrm{kV}=10^{3} \mathrm{~V} & \mathrm{MV}=10^{6} \mathrm{~V}
\end{array}
$$

$\mathrm{V}= \pm \mathrm{V}_{\mathrm{dc}}$ or $\mathrm{V}_{\mathrm{rms} \text { (magnitude) }} \quad$ (exceptions noted)
$\mathbf{V}_{\mathrm{BE}}, \mathbf{V}_{\mathrm{CC}}, \mathbf{V}_{\mathbf{C E}}$, etc.-See Active Circuits
$\mathrm{V}=$ Symbol for volume (cubic content)
$\mathrm{V}=$ The amount of space in three dimensions.
$\mathrm{V}=$ Volume measured in various units such as cubic inches (in ${ }^{3}$), cubic feet (ft^{3}), cubic centimeters (cm^{3}), cubic meters (m^{3}), etc.

Volume required for Helmholtz resonator. (ported hollow sphere or box)
$V=d\left[1948.7 / \mathrm{f}_{\mathrm{r}}\right]^{2} \quad$ (d in x units, V in x^{3} units)
$\mathrm{d}=$ diameter of port.
$f_{r}=$ frequency of resonance in hertz

W
 Watt,
 Work,
 Energy

$\mathrm{W}=$ Symbol for watt .
$\mathrm{W}=$ Basic unit of electric power. A unit of power equal to a current of one ampere through a resistance of one ohm. ($\mathrm{P}=\mathrm{I}^{2} \mathrm{R}$)
$\mathrm{W}=$ Unit often used with multiplier prefixes
$\mu \mathrm{W}=10^{-6}$ Watts $\mathrm{mW}=10^{-3}$ Watts
$\mathrm{kW}=10^{3}$ Watts $\quad \mathrm{MW}=10^{6} \mathrm{~W}$ atts
$\mathrm{W}=$ Symbol for work.
$\mathrm{W}=$ Symbol for energy. (Energy is potential work.) (The energy symbol E is rarely used in electronics thus avoiding confusion with emf symbol E.)
$\mathrm{W}=$ The product of power and time.
$\mathrm{W}=$ Work or energy in joule (J) units in electronics. (joules $=$ watts • seconds) Other units include kilowatt hour (kWh), foot-pound (ft • lbf), erg (erg) etc.

Energy stored in a capacitor charge
$\mathrm{W}=.5 \mathrm{CE}^{2}$
$W=Q^{2} /(2 C)$
$\mathrm{W}=.5 \mathrm{QE}$
$\mathrm{W}=.5 \mathrm{LI}^{2} \quad$ Energy stored in the field of an inductance.

Definitions

$X=$ Symbol for reactance
$X=$ That property of inductances and capacitances which opposes the flow of alternating current by storage of electrical energy. The imaginary part of impedance. The reciprocal of susceptance in purely parallel circuits. The non-resistive part of the total opposition to the flow of alternating current.
$X=$ Reactance expressed in ohm (Ω) units.
$\mathbf{X}=\mathbf{X}_{\text {magnitude }}$
$X_{C}=$ Magnitude of capacitive reactance
$X_{L}=$ Magnitude of inductive reactance

- $X=$ Reactance identified as capacitive, not a real negative quantity.
$+X=$ Reactance identified as inductive, not a real positive quantity.
$-X=|-X|=X_{C}$
$+X=|+X|=X_{L}$
$\mathbf{X}=$ Complete description of reactance
$X_{C}=X_{C} /-90^{\circ}$ in terms of polar impedance
$X_{L}=X_{L} /+90^{\circ}$ in terms of polar impedance
$X_{C}=0-j X_{C}=0+\left(-X_{C}\right) j \quad$ (rectangular impedance)
$X_{L}=0+j X_{L}=0+\left(+X_{L}\right) j \quad$ (rectangular impedance)
Note that in $\left(-X_{C}\right) j$ and $\left(+X_{L}\right) j, X_{C}$ and X_{L} have become real negative and positive quantities with the same signs that are assigned to the magnitude quantities.

Reactance, General and Misc.		
$\begin{aligned} X_{C} & =(\omega \mathrm{C})^{-1}=1 /(2 \pi \mathrm{fC}) \\ \mathrm{X}_{\mathrm{L}} & =\omega \mathrm{L}=2 \pi \mathrm{fL} \\ \mathrm{X} & =\mathrm{R}_{\mathrm{s}} / \mathrm{D} \\ \mathrm{X} & =\mathrm{R}_{\mathrm{s}} \mathrm{Q} \\ \mathrm{X} & =\mathrm{Z} \text { when } \mathrm{R}_{\mathrm{s}}=0 \\ \mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}} & = \pm \mathrm{X} \\ \|+\mathrm{X}\| & =\mathrm{X}_{\mathrm{L}} \\ \|-\mathrm{X}\| & =\mathrm{X}_{\mathrm{C}} \\ \mathrm{X}_{\mathrm{L}}-X_{C} & =0 @ \text { resonance } \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (2) } \\ & \text { (3) } \\ & \text { (5) } \end{aligned}$	
$\begin{aligned} \mathrm{X}_{\mathrm{C}} & =\mathrm{B}_{\mathrm{C}}^{-1}=1 / \mathrm{B}_{\mathrm{C}} \\ \mathrm{X}_{\mathrm{L}} & =\mathrm{B}_{\mathrm{L}}^{-1}=1 / \mathrm{B}_{\mathrm{L}} \\ \mathrm{X}_{\mathrm{C}} & =(\omega \mathrm{C})^{-1}=1 /(2 \pi \mathrm{fC}) \\ \mathrm{X}_{\mathrm{L}} & =\omega \mathrm{L}=2 \pi \mathrm{fL} \\ \mathrm{X} & =\mathrm{R}_{\mathrm{p}} \mathrm{D} \\ \mathrm{X} & =\mathrm{Q} / \mathrm{R}_{\mathrm{p}} \\ \mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1} & = \pm \mathrm{X}_{\mathrm{p}}^{-1}= \pm \mathrm{B} \\ \left\|+\mathrm{X}_{\mathrm{p}}^{-1}\right\| & =\mathrm{X}_{\mathrm{L}}^{-1}=\mathrm{B}_{\mathrm{L}} \\ \left\|-\mathrm{X}_{\mathrm{p}}^{-1}\right\| & =\mathrm{X}_{\mathrm{C}}^{-1}=\mathrm{B}_{\mathrm{C}} \\ {\left[\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right]^{-1} } & =\infty @ \text { resonance } \end{aligned}$	(1) (2) (3) (5) (d)	

Reactance, Series Circuits		$\stackrel{\text { E }}{\text { E. }}$
$\begin{aligned} \left(X_{C}\right)_{t} & =\omega^{-1}\left(C_{1}^{-1}+C_{2}^{-1} \cdots+C_{n}^{-1}\right) \\ -X_{t} & =\omega^{-1}\left(C_{1}^{-1}+C_{2}^{-1} \cdots+C_{n}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { (1) (2) } \\ & \text { (3) (5) } \end{aligned}$	C
$\begin{aligned} \left(X_{L}\right)_{t} & =\omega\left(L_{1}+L_{2} \cdots+L_{n}\right) \\ +X_{t} & =\omega\left(L_{1}+L_{2} \cdots+L_{n}\right) \end{aligned}$	$\begin{aligned} & \text { (1) (2) } \\ & \text { (3) (3) } \end{aligned}$	L
$\begin{gathered} \left(X_{C}\right)_{t}=\left(X_{C}\right)_{1}+\left(X_{C}\right)_{2} \cdots+\left(X_{C}\right)_{n} \\ -X_{t}=\left(-X_{1}\right)+\left(-X_{2}\right) \cdots+\left(-X_{n}\right) \end{gathered}$	$\begin{aligned} & \text { (1) (2) } \\ & \text { (3) (3) } \end{aligned}$	$\begin{aligned} & \mathbf{x}_{\mathbf{C}} \\ & -\mathbf{X} \end{aligned}$
$\begin{gathered} \left(X_{L}\right)_{t}=\left(X_{L}\right)_{1}+\left(X_{L}\right)_{2} \cdots+\left(X_{L}\right)_{n} \\ +X_{t}=\left(+X_{1}\right)+\left(+X_{2}\right) \cdots+\left(+X_{n}\right) \end{gathered}$	$\begin{aligned} & \text { (1) (2) } \\ & \text { (3) (5) } \end{aligned}$	$\begin{aligned} & \mathrm{X}_{\mathrm{L}} \\ & +\mathrm{X} \end{aligned}$
$\pm X=(\omega L)-(\omega \mathrm{C})^{-1}$	(1) (3) (5)	C L
$\|\mathrm{X}\|=\sqrt{\mathrm{Z}^{2}-\mathrm{R}^{2}}$	(1) (3)	R Z
$\pm \mathrm{X}=\mathrm{R}\left[\tan \left(\pm \theta_{\mathrm{Z}}\right)\right]$	$\begin{aligned} & \text { (1) (2) } \\ & \text { (4) (3) } \end{aligned}$	R $\theta_{\text {z }}$
$\pm \mathrm{X}=\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}$	(1) (2) (3)	$\mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}}$
$\pm \mathrm{X}=\mathrm{Z}\left[\sin \left(\pm \theta_{\mathrm{Z}}\right)\right]$	$\begin{aligned} & \text { (1) (2) } \\ & \text { (4) (3) } \end{aligned}$	$\mathrm{Z} \theta_{\mathrm{Z}}$

Reactance, Series Circuits		$\stackrel{\text { E }}{\substack{\text { ¢ }}}$
$\|\mathrm{X}\|=\sqrt{(\mathrm{E} / \mathrm{I})^{2}-\left(\mathrm{P} / \mathrm{I}^{2}\right)^{2}}$	(1) (3)	E I P
$\|\mathrm{X}\|=\sqrt{(\mathrm{E} / \mathrm{I})^{2}-\mathrm{R}^{2}}$	(1) (3)	E I R
$\pm \mathrm{X}=(\mathrm{E} / \mathrm{I})\left[-\sin \left(\pm \theta_{\mathrm{I}}\right)\right]$	$\begin{aligned} & \text { (1) (2) } \\ & \text { (4) (5) } \end{aligned}$	E I $\theta_{\text {I }}$
$\pm \mathrm{X}=\mathrm{P}^{-1}(\mathrm{E} \cos \theta)^{2}\left[\tan \left(\pm \theta_{\mathrm{Z}}\right)\right]$	$\begin{array}{\|l\|l\|} \hline 1)(2) & (3) \\ 4 & (5) \\ \hline \end{array}$	E P θ_{Z}
$\|\mathrm{X}\|=\sqrt{\mathrm{Z}^{2}-\left(\mathrm{P} / \mathrm{I}^{2}\right)^{2}}$	(1) (3)	I P Z
$\pm \mathrm{X}=\left(\mathrm{P} / \mathrm{I}^{2}\right)\left[-\tan \left(\pm \theta_{\mathrm{I}}\right)\right]$	$\begin{aligned} & \text { (1) (2) } \\ & \text { (4) (5) } \end{aligned}$	I P $\theta_{\text {I }}$
Series to Parallel Conversion $\pm \mathrm{X}_{\mathrm{p}}=\mathrm{Z}\left[\sin \left(\pm \theta_{\mathrm{Z}}\right)\right]^{-1}$	$\begin{gathered} \text { (1) (2) (4) } \\ \text { (5) (1) } \end{gathered}$	Z $\theta_{\mathbf{Z}}$
$\pm X_{p}= \pm X_{s}^{-1}\left(\pm X_{s}^{2}+R_{s}^{2}\right)$	$\begin{aligned} & \text { (1) (2) (4) } \\ & \text { (5) (4) } \end{aligned}$	$\mathrm{R}_{\mathrm{s}} \pm \mathrm{X}_{\mathrm{s}}$

Reactance, Parallel Reactive Elements		$\underset{\text { E }}{\substack{\text { E }}}$
$\begin{aligned} & \left(X_{C}\right)_{t}=\left[\left(B_{C}\right)_{1}+\left(B_{C}\right)_{2} \cdots+\left(B_{C}\right)_{n}\right]^{-1} \\ & \left(X_{C}\right)_{t}=\left[\left(-B_{1}\right)+\left(-B_{2}\right) \cdots+\left(-B_{n}\right)\right]^{-1} \end{aligned}$	(1) (2)	$\begin{aligned} & \mathrm{B}_{\mathrm{C}} \\ & -\mathrm{B} \end{aligned}$
$\begin{aligned} & \left(X_{L}\right)_{t}=\left[\left(B_{L}\right)_{1}+\left(B_{L}\right)_{2} \cdots+\left(B_{L}\right)_{n}\right]^{-1} \\ & \left(X_{L}\right)_{t}=\left[\left(+B_{1}\right)+\left(+B_{2}\right) \cdots+\left(+B_{n}\right)\right]^{-1} \end{aligned}$	(1) (2) (3)	$\begin{aligned} & \mathrm{B}_{\mathrm{L}} \\ & +\mathrm{B} \end{aligned}$
$\left(X_{C}\right)_{t}=\left[\omega\left(C_{1}+C_{2} \cdots+C_{n}\right)\right]^{-1}$	$\begin{gathered} \text { (1) (2) } \\ \text { (3) } \end{gathered}$	C
$\left(\mathrm{X}_{\mathrm{L}}\right)_{\mathrm{t}}=\left[\omega^{-1}\left(\mathrm{~L}_{1}^{-1}+\mathrm{L}_{2}^{-1} \cdots+\mathrm{L}_{\mathrm{n}}^{-1}\right)\right]^{-1}$	$\begin{gathered} \text { (1) (2) } \\ \text { (3) } \end{gathered}$	L
$\begin{aligned} & \left(X_{C}\right)_{t}=\left[\left(X_{C}\right)_{1}^{-1}+\left(X_{C}\right)_{2}^{-1} \cdots+\left(X_{C}\right)_{n}^{-1}\right]^{-1} \\ & \left(X_{C}\right)_{t}=\left[\left(-X_{1}\right)^{-1}+\left(-X_{2}\right)^{-1} \cdots+\left(-X_{n}\right)^{-1}\right]^{-1} \end{aligned}$	$\begin{gathered} \text { (1) (2) } \\ \text { (3) } \end{gathered}$	$\begin{aligned} & X_{C} \\ & -X \end{aligned}$
$\begin{aligned} & \left(X_{L}\right)_{t}=\left[\left(X_{L}\right)_{1}^{-1}+\left(X_{L}\right)_{2}^{-1} \cdots+\left(X_{L}\right)_{n}^{-1}\right]^{-1} \\ & \left(X_{L}\right)_{t}=\left[\left(+X_{1}\right)^{-1}+\left(+X_{2}\right)^{-1} \cdots+\left(+X_{n}\right)^{-1}\right]^{-1} \end{aligned}$	(1) (2) (3)	$\begin{aligned} & X_{L} \\ & +X \end{aligned}$
$\pm X=\left[B_{L}-B_{C}\right]^{-1}$	$\begin{array}{cc} 1(1) \\ \text { (3) (2) } \\ \text { (d) } \end{array}$	$B_{C} B_{L}$
$\pm X=\left[(\omega L)^{-1}-(\omega \mathrm{C})\right]^{-1}$	$\begin{array}{cc} \text { (1) (2) } \\ \text { (3) (5) } \\ \text { (b) } \end{array}$	C L
$\pm \mathrm{X}=\left[\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right]^{-1}$	$\begin{array}{cc} 1)^{(2)} \\ \text { (3) (5) } \\ \text { (d) } \end{array}$	$\mathbf{X}_{\mathbf{C}} \mathrm{X}_{L}$

Reactance, Parallel Circuits		$\underset{\text { E. }}{\substack{\text { ¹ }}}$
$\|\mathrm{X}\|=\left[\mathrm{Y}^{2}-\mathrm{G}^{2}\right]^{-\frac{1}{2}}$	(1) (3)	G Y
$\pm \mathrm{X}=\left[-\mathrm{G} \tan \left(\pm \theta_{\mathrm{Y}}\right)\right]^{-1}$	$\left\|\begin{array}{lll} \text { (1) (2) (3) } \\ \text { (4) (3) (1) } \end{array}\right\|$	$\mathrm{G} \theta_{\mathrm{Y}}$
$\|\mathrm{X}\|=\left[\mathrm{Z}^{-2}-\mathrm{R}^{-2}\right]^{-\frac{1}{2}}$	(1) (3)	R Z
$\pm \mathrm{X}=\mathrm{R}\left[\tan \left(\pm \theta_{\mathrm{Z}}\right)\right]^{-1}$	$\left\|\begin{array}{lll} \text { (1) (2) (3) } \\ \text { (4) (5) (1) } \end{array}\right\|$	$\mathrm{R} \theta_{\mathrm{Z}}$
$\pm \mathrm{X}=\left[-\mathrm{Y} \sin \left(\pm \theta_{\mathrm{Y}}\right)\right]^{-1}$	$\begin{array}{lll} \hline 1) & \text { (2) (3) } \\ \text { (4) (5) (1) } \end{array}$	$\mathrm{Y} \theta_{\mathrm{Y}}$
$\pm \mathrm{X}=\left[\mathrm{Z}^{-1} \sin \left(\pm \theta_{\mathrm{Z}}\right)\right]^{-1}$	$\left\|\begin{array}{lll} \text { (1) (2) (3) } \\ \text { (4) (5) (4) } \end{array}\right\|$	$\mathrm{Z} \theta_{\mathrm{Z}}$
$\|\mathrm{X}\|=\left[(\mathrm{I} / \mathrm{E})^{2}-\mathrm{G}^{2}\right]^{-\frac{1}{2}}$	(1) (3)	E I G
$\pm \mathrm{X}=\mathrm{E}\left[\mathrm{I}_{\mathrm{L}}-\mathrm{I}_{\mathrm{C}}\right]^{-1}$	$\begin{array}{\|l\|} \hline \text { (1) (2) (3) } \\ \text { (5) (d) } \end{array}$	$E I_{C} I_{L}$
$\|\mathrm{X}\|=\left[(\mathrm{I} / \mathrm{E})^{2}-\mathrm{R}^{-2}\right]^{-\frac{1}{2}}$	(1) (3)	E I R
$\pm \mathrm{X}=-\mathrm{E}\left[\mathrm{I} \sin \left(\pm \theta_{\mathrm{I}}\right)\right]^{-1}$	$\begin{array}{\|l\|} \hline \text { (1) (2) (3) } \\ \text { (5) (1) } \end{array}$	E I $\theta_{\text {I }}$

Reactance, Parallel Circuits		$\stackrel{\text { E }}{\text { E }}$
$\|X\|=\left[Z^{-2}-\left(P / E^{2}\right)^{2}\right]^{-\frac{1}{2}}$	(1) (3)	E P Z
$\pm X=\left(E^{2} / P\right)\left[\tan \left(\pm \theta_{Z}\right)\right]^{-1}$	$\begin{array}{\|l\|l\|} \hline 1) & (2) \\ \hline 4) & (5) \\ \hline \end{array}$	E P θ_{Z}
Parallel to Series Conversion $\begin{aligned} & \pm X_{s}=Z\left[\sin \left(\pm \theta_{Z}\right)\right] \\ & \pm \mathbf{X}_{s}=\left[\left(\pm \mathbf{X}_{p} / R_{p}^{2}\right)+\left(\pm X_{p}\right)^{-1}\right]^{-1} \end{aligned}$	$\left\lvert\, \begin{array}{lll} \text { (1) © (3) } \\ \text { (4) (3) © } \end{array}\right.$	$\begin{aligned} & \mathbf{Z} \theta_{\mathbf{Z}} \\ & \mathbf{R}_{\mathbf{p}} \pm \mathbf{X}_{\mathbf{p}} \\ & \hline \end{aligned}$

X Notes:
(1) General: $\mathrm{B}=$ Susceptance, $\mathrm{C}=$ Capacitance, $\mathrm{D}=$ Dissipation factor, $\mathrm{E}=$ Voltage, $\mathrm{f}=$ Frequency, $\mathrm{G}=$ Conductance, $\mathrm{I}=$ Current, $\mathrm{L}=$ Inductance, $\mathrm{P}=$ Power, $\mathrm{Q}=\mathrm{Q}$ factor, $\mathrm{R}=$ Resistance, $\mathrm{X}=$ Reactance, $\mathrm{Y}=$ Admittance, $\mathrm{Z}=$ Impedance, $\theta=$ Phase angle, $\omega=$ Angular velocity, $\omega=2 \pi \mathrm{f}, \omega=6.283 \cdots \mathrm{f}$
(2) Subscripts:
$\mathrm{c}=$ Capacitive, $\mathrm{E}=$ Voltage, $\mathrm{I}=$ Current, $\mathrm{L}=$ Inductive, $\mathrm{n}=$ Any number, $p=$ Parallel circuit, $R=$ Resistive, $s=$ Series circuit, $t=$ Total or equiv., $\mathrm{X}=$ Reactive, $\mathrm{Y}=$ Admittance, $\mathrm{Z}=$ Impedance
(3) Mathematics:
$x^{-1}=1 / x, x^{-2}=1 / x^{2}, x^{\frac{1}{2}}=\sqrt{x}, x^{-\frac{1}{2}}=1 / \sqrt{x},|x|=$ Magnitude of x, $\infty=$ Infinite
(4) $\tan =$ tangent, $\sin =$ sine, $\cos =$ cosine, $\tan ^{-1}=\operatorname{arc}$ tangent, $\sin ^{-1}=$ arc sine
(5) Reminders:
$\pm B, \pm X, \pm \theta$ - use the sign of the quantity.
$|+B|=B_{L},|-B|=B_{C},|+X|=X_{L},|-X|=X_{C}$.
$+\theta_{\mathrm{Z}}=$ Inductive circuit, $-\theta_{\mathrm{Z}}=$ Capacitive circuit.
(d) The reciprocal of zero may be manually converted to infinity. $\infty \cdot x=\infty$ when $x \neq 0, \infty / x=\infty$ when $x \neq \infty$ The reciprocal of infinity may be manually converted to zero. $0 \cdot x=0$ when $x \neq \infty, 0 / x=0$ when $x \neq 0$
\otimes Division by zero is prohibited.

Admittance

Definitions
$\mathrm{Y}=$ Symbol for admittance
$\mathrm{Y}=$ The total ease of alternating current flow at a given frequency and voltage. The reciprocal of impeddance. A quantity which in rectangular form is as useful for parallel circuits as impedance is for series circuits. The resultant of conductance and susceptance in parallel. The resultant of reciprocal resistance and reciprocal reactance in parallel.
$\mathrm{Y}=$ Admittance expressed in siemens (S) or mho (Ω^{-1}) units.
$\mathrm{Y}=|\mathrm{Y}|=\mathrm{Y}_{\text {MAGNITUDE }}$
$\theta_{\mathbf{Y}}=$ Phase angle of admittance
$\mathbf{Y}_{\text {POLAR }}=\mathrm{Y} / \pm \theta_{\mathbf{Y}}=\mathrm{Z}^{-1} /-\left(\pm \theta_{\mathrm{Z}}\right)$
$Y_{\text {RECT }}=G-(\pm B) j=R_{p}^{-1}-\left(\pm X_{p}^{-1}\right) j$
$\mathbf{Y}_{\text {RECT }}=1$. The rectangular form of admittance
2. The complex number form of admittance
3. The mathematical equivalent of conductance (G) and susceptance (B) in parallel
4. The mathematical equivalent of reciprocal resistance (R^{-1}) and reciprocal reactance (X^{-1}) in parallel.
$\mathbf{Y}_{\text {RECT }}=$ An easy method of transforming a series circuit to a parallel equivalent circuit.
$\mathbf{Y}_{\text {RECT }}=$ Complex quantity used to solve problems involving complex parallel circuits.
$\mathbf{Y}_{\text {RECT }}=A$ quantity that is identical to rectangular assumed current when the assumed voltage is one.

Notes

Y Notes:

(1) General:

(2) Subscripts:
$\mathrm{C}=$ capacitive $\quad \mathrm{E}=$ voltage $\quad \mathrm{I}=$ current
L = inductive
$\mathrm{n}=$ any number
p = parallel circuit
R = resistive
$\mathrm{s}=$ series circuit
$t=$ total or equiv.
$X=$ reactive
$\mathbf{Y}=$ admittance
$Z=$ impedance
(3) Constants:
$j=\sqrt{-1}=$ mathematical $i=90^{\circ}$ multiplier
$\epsilon=2.718 \cdots \quad \epsilon^{-1}=.36788 \cdots$
$\pi=3.1416$
$\omega=2 \pi \mathrm{f}$

$$
2 \pi=6.283 \ldots
$$

$$
\omega=6.283 \cdots \mathrm{f}
$$

(4) Algebra:
$x^{-1}=1 / x$
$x^{-\frac{1}{2}}=1 / \sqrt{x}$
$x^{-2}=1 / x^{2}$
$x^{\frac{1}{2}}=\sqrt{x}$
$|x|=$ absolute value or magnitude of x
(5) Trigonometry:

\sin	$=\sin$	\cos	$=\operatorname{cosine}$			
$\sin ^{-1}$	$=\operatorname{arcsine}$	$\cos ^{-1}$	$=\operatorname{arc}$ cosine	\quad	tan	$=$ tangent
---:	:---					
	$=\operatorname{arc}$ tangent					

(6) Reminders:
$\pm \theta$.-. Use the sign of the angle
$\pm \mathbf{X}, \pm \mathrm{I}_{\mathbf{X}}, \pm \mathrm{E}_{\mathbf{X}}, \pm$ B $\cdots+$ identifies the quantity as inductive

- identifies the quantity as capacitive
(As terms in formulas, these quantities must be used as real positive or negative quantities)
(7) Cosine θ :

The cosine of either a positive or a negative angle is positive, therefore, $\cos \theta_{Z}=\cos \theta_{Y}=\cos \theta_{E}=\cos \theta_{I}$

Admittance, Series Circuits		$\stackrel{\text { E }}{\substack{\text { E }}}$
$\mathrm{Y}=\mathrm{Z}^{-1}=1 / \mathrm{Z}$	(1) (4)	Z
$Y=\left(R^{2}+\left[(\omega L)-(\omega C)^{-1}\right]^{2}\right)^{-\frac{1}{2}}$	(1) (3) (4)	CL R
$\mathrm{Y}=\left\|(\sin \theta) /\left[(\omega \mathrm{L})-(\omega \mathrm{C})^{-1}\right]\right\|$	$\left\|\begin{array}{lll} 1+3 & (4) \\ (5) & 7 & \otimes \end{array}\right\|$	CL θ
$\mathrm{Y}=\mathrm{I} / \mathrm{E}$	(1)	E I
$\mathrm{Y}=\left[\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}\right]^{-\frac{1}{2}}$	(1) (2) (4)	$\mathrm{R} \mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}}$
$\mathrm{Y}=(\cos \theta) / \mathrm{R}$	(1) (5) (7)	$\mathrm{R} \theta$
$\mathrm{Y}=\left\|(\sin \theta) /\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)\right\|$	$\begin{gathered} \text { (1) (2) (3) } \\ 17) ~ \end{gathered}$	$\mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}}{ }^{\theta}$
$\mathrm{Y}=\mathrm{P} /\left(\mathrm{E}^{2} \cos \theta\right)$	(1) (5) (7)	E P θ
$\mathrm{Y}=\left(\mathrm{I}^{2} \cos \theta\right) / \mathrm{P}$	(1) (5) (7)	I P θ

Y Notes:

(d) The reciprocal of zero may be manually converted to infinity. $\infty \cdot x=\infty$ when $x \neq 0, \infty / x=\infty$ when $x \neq \infty$
The reciprocal of infinity may be manually converted to zero. $0 \cdot x=0$ when $x \neq \infty, 0 / x=0$ when $x \neq 0$
\otimes Division by zero is prohibited. A zero divisor will occur at resonance and/or in purely reactive circuits.

Admittance, Parallel Circuits		$\stackrel{\text { E. }}{\substack{\text { E }}}$
$\mathrm{Y}=\mathrm{Z}^{-1}=1 / \mathrm{Z}$	(1) (4)	Z
$\mathrm{Y}=\sqrt{\mathrm{G}^{2}+\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right)^{2}}$	(1) (2)	$\mathrm{B}_{\mathrm{C}} \mathrm{B}_{\mathrm{L}} \mathrm{G}$
$\mathbf{Y}=\left\|\left(\mathbf{B}_{\mathbf{L}}-\mathbf{B}_{\mathbf{C}}\right) /\left(\sin \theta_{\mathbf{Y}}\right)\right\|$		$\mathrm{B}_{\mathrm{C}} \mathrm{B}_{\mathrm{L}} \theta_{\mathrm{Y}}$
$\mathrm{Y}=\sqrt{\mathrm{R}^{-2}+\left[(\omega \mathrm{L})^{-1}-(\omega \mathrm{C})\right]^{2}}$	(1) (3) (4)	CL R
$\mathrm{Y}=\left\|\left[(\omega \mathrm{L})^{-1}-(\omega \mathrm{C})\right] /\left(\sin \theta_{\mathrm{Z}}\right)\right\|$	$\left\|\begin{array}{lll} \text { (1) (2) (3) } \\ (4) & \text { (3) } \\ \hline \end{array}\right\|$	CL θ_{z}
$\mathrm{Y}=\mathrm{I} / \mathrm{E}$	(1)	E I
$\mathbf{Y}=\left\|\mathrm{G} /\left(\cos \theta_{\mathbf{Y}}\right)\right\|$	(1) (2) (4)	G $\theta_{\mathbf{Y}}$
$\mathrm{Y}=\sqrt{\mathrm{R}^{-2}+\left(\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right)^{2}}$	(1) (2) (4)	$\mathrm{R} \mathrm{X} \mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}}$
$\mathrm{Y}=\left[\mathrm{R} \cos \theta_{\mathrm{Z}}\right]^{-1}$	$\begin{aligned} & \text { (1) (2) } \\ & \text { (4) (3) } \end{aligned}$	R θ_{z}
$\mathrm{Y}=\mathrm{P} /\left(\mathrm{E}^{2} \cos \theta_{\mathrm{Z}}\right)$	(1) (2) (3)	P E θ_{z}
$\mathrm{Y}=\left(\mathrm{I}_{\mathrm{t}}^{2} \cos \theta_{\mathrm{Z}}\right) / \mathrm{P}$	(1) (2) (5)	I_{t} P θ_{z}

Admittance and Phase, Series Circuits

Series Circuit Polar Admittance Formulas

$$
\mathbf{Y}_{\text {POLAR }}=\mathrm{Y} / \pm \theta_{\mathbf{Y}}=\mathrm{Z}^{-1} /-\left(\pm \theta_{\mathrm{Z}}\right)
$$

Polar Impedance is Preferred

Series Circuit Rectangular Admittance Formulas

Special Note: Rectangular admittance is intrinsically a parallel circuit quantity. The rectangular admittance of a series circuit is the mathematical equivalent of reciprocal resistance and reciprocal reactance in parallel.

$$
\begin{aligned}
\mathbf{Y}_{\text {RECT }}= & \mathrm{G}-(\pm \mathrm{B}) \mathrm{j} \quad \text { where } \quad|+\mathrm{B}|=\mathrm{B}_{\mathrm{L}}, \\
\mathbf{Y}_{\mathrm{RECT}}= & |-\mathrm{B}|=\mathrm{R}_{\mathrm{C}}-1 \\
\mathbf{Y}_{\mathrm{RECT}}= & {\left.\left[\pm \mathrm{X}^{-1}\right) \mathrm{Y} \cos \theta_{\mathrm{Y}}\right]-\left(\mathrm{Y} \sin \left[-\left(\pm \theta_{\mathrm{Y}}\right)\right]\right) \mathrm{j} } \\
\mathbf{Y}_{\mathrm{RECT}}= & {\left[\mathrm{Z}^{-1} \cos \theta_{\mathrm{Z}}\right]-\left[\mathrm{Z}^{-1} \sin \left(\pm \theta_{\mathrm{Z}}\right)\right] \mathrm{j} } \\
& \mathrm{G}=\mathrm{R}_{\mathrm{p}}^{-1}=\mathrm{Y} \cos \theta_{\mathrm{Y}}=\mathrm{Z}^{-1} \cos \theta_{\mathrm{Z}} \quad \text { Note © } \\
& \pm \mathrm{B}=\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}=\mathrm{X}_{\mathrm{L}_{\mathrm{p}}}^{-1}-\mathrm{X}_{\mathrm{C}_{\mathrm{p}}}^{-1} \\
& \pm \mathrm{B}=\mathrm{Y} \sin \left[-\left(\pm \theta_{\mathrm{Y}}\right)\right]=\mathrm{Z}^{-1} \sin \left(\pm \theta_{\mathrm{Z}}\right)
\end{aligned}
$$

Note: Rectangular admittance is identical to rectangular current produced by a voltage of one except for the names of quantities. When $\mathrm{E}=1, \mathrm{I}_{\text {POLAR }}=\mathbf{Y}_{\text {POLAR }}, \mathrm{I}_{\text {RECT }}=\mathbf{Y}_{\text {RECT }}, \mathrm{I}_{\mathrm{R}}=\mathrm{G}, \mathrm{I}_{X_{L}}=\mathrm{B}_{\mathrm{L}}, \mathrm{I}_{\mathbf{X}_{\mathrm{C}}}=$ $\mathrm{B}_{\mathrm{C}}, \pm \mathrm{I}_{\mathrm{X}}= \pm \mathrm{B}$.
Note: The use of $\mathbf{Y}_{\text {POLAR }}$ is not recommended unless used as a means of identification of a parallel quantity. Convert directly from $\mathbf{Z P O L A R}$ to $\mathbf{Y}_{\text {RECT }}$
See also-Z, θ, G and B

Admittance and Phase, Series Circuits		E
$\begin{aligned} Y= & \left(R^{2}+\left[(\omega \mathrm{L})-(\omega \mathrm{C})^{-1}\right]^{2}\right)^{-\frac{1}{2}} \\ \angle \pm \theta_{\mathrm{Y}}= & \tan ^{-1}\left(-\left[(\omega \mathrm{L})-(\omega \mathrm{C})^{-1}\right] / \mathrm{R}\right) \\ \mathbf{Y}_{\mathrm{RECT}}= & \mathrm{G}-(\pm \mathrm{B}) \mathrm{j} \\ \mathrm{G}= & {\left[\left(\pm \mathrm{X}_{\mathrm{s}}^{2} / \mathrm{R}_{\mathrm{s}}\right)+\mathrm{R}_{\mathrm{s}}\right]^{-1} } \\ \pm & \pm \mathrm{B}=\left[\left(\mathrm{R}_{\mathrm{s}}^{2} / \pm \mathrm{X}_{\mathrm{s}}\right)+\left(\pm \mathrm{X}_{\mathrm{s}}\right)\right]^{-1} \\ & \pm X_{\mathrm{s}}=\left(\omega \mathrm{L}_{\mathrm{s}}\right)-\left(\omega \mathrm{C}_{\mathrm{s}}\right)^{-1} \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (2) } \\ & \text { (3) } \\ & \text { (4) } \\ & \text { (5) } \\ & \text { (6) } \\ & \text { (1) } \end{aligned}$	$\begin{aligned} & \boldsymbol{a} \\ & \boldsymbol{u} \end{aligned}$
$\begin{aligned} & Y= {\left[R^{2}+\left(X_{L}-X_{C}\right)^{2}\right]^{-\frac{1}{2}} } \\ & \angle \pm \theta_{Y}= \tan ^{-1}\left[-\left(X_{L}-X_{C}\right) / R\right] \\ & \mathbf{Y}_{\text {RECT }}= R_{p}^{-1}-\left(\pm X_{p}^{-1}\right) j \\ & R_{p}^{-1}=R_{s} /\left[R_{s}^{2}+\left(\pm X_{s}\right)^{2}\right] \\ & \pm X_{p}^{-1}= \\ & \pm X_{s} /\left[\left(\pm X_{s}\right)^{2}+R_{s}^{2}\right] \\ & \pm X_{s}=X_{L}-X_{C} \end{aligned}$	(1) (2) (3) (4) (5) (6) (d)	$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$
$\begin{aligned} & \mathrm{Y}= \mathrm{Z}^{-1}, \quad \angle \pm \theta_{\mathrm{Y}}=-(\pm \theta \mathrm{Z}) \\ & \mathrm{Y}_{\text {RECT }}= \mathrm{G}-(\pm \mathrm{B}) \mathrm{j} \\ & \mathrm{G}=\mathrm{Z}^{-1} \cos \theta_{\mathrm{Z}} \\ & \pm \mathrm{B}=\mathrm{Z}^{-1} \sin \left(\pm \theta_{\mathrm{Z}}\right) \end{aligned}$	(1) (2) (3) (4) (5) (6)	N +1 N

Admittance and Phase, Parallel Circuits	$\begin{aligned} \mathbf{Y}_{\text {POLAR }} & =\mathrm{Y} / \pm \theta_{\mathrm{Y}} \\ \mathbf{Y}_{\text {RECT }} & =\mathrm{G}-(\pm \mathrm{B}) \mathrm{j} \end{aligned}$	
Note: $G=R_{p}^{-1}, \quad \pm \mathrm{B}=\left(\mathrm{X}_{\mathrm{L}}\right)_{\mathrm{p}}^{-1}-\left(\mathrm{X}_{\mathrm{C}}\right)_{\mathrm{p}}^{-1}$ (1) $Y \mathrm{Y}=\sqrt{\mathrm{G}^{2}+\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right)^{2}}$		$\underset{\substack{\text { E } \\ \text { E } \\ \bullet \\-\\ \hline}}{ }$
$\begin{aligned} \pm \theta_{\mathrm{Y}} & =\tan ^{-1}\left[-\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right) / \mathrm{G}\right] \\ \mathbf{Y}_{\mathrm{RECT}} & =\mathrm{G}-\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right) \mathrm{j} \end{aligned}$	$\begin{aligned} & \text { (1) (2) } \\ & \text { (5) (6) } \end{aligned}$	
$\begin{aligned} \pm \theta_{\mathrm{Y}} & =\sin ^{-1}\left[-\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right) / \mathrm{Y}\right] \\ \mathbf{Y}_{\mathrm{RECT}} & =\sqrt{\mathrm{Y}^{2}-\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right)^{2}}-\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right) \mathrm{j} \end{aligned}$	$\begin{aligned} & \text { (1) (2) } \\ & \text { (5) } \end{aligned}$	$\begin{aligned} & \lambda \\ & \nu \\ & \nu \\ & \nu \end{aligned}$
$\begin{aligned} \mathrm{Y}= & \left\|\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right) /\left(\sin \theta_{\mathbf{Y}}\right)\right\| \\ \mathbf{Y}_{\text {RECT }}= & \left(-\left(\mathrm{B}_{\mathrm{L}}-\mathbf{B}_{\mathrm{C}}\right) /\left[\tan \left(\pm \theta_{\mathrm{Y}}\right)\right]\right) \\ & -\left(\mathrm{B}_{\mathrm{L}}-\mathbf{B}_{\mathrm{C}}\right) \mathrm{j} \end{aligned}$	$\begin{gathered} \text { (1) (2) } \\ \text { (5) (6) } \\ \otimes \end{gathered}$	$\begin{aligned} & \text { o } \\ & \text { ص } \\ & \text { ص } \end{aligned}$
$\begin{aligned} \mathrm{Y} & =\sqrt{\mathrm{R}^{-2}+\left[(\omega \mathrm{L})^{-1}-(\omega \mathrm{C})\right]^{2}} \\ \pm \theta_{\mathrm{Y}} & =\tan ^{-1}\left(\mathrm{R}\left[(\omega \mathrm{~L})^{-1}-(\omega \mathrm{C})\right]\right) \\ \mathbf{Y}_{\mathrm{RECT}} & =\mathrm{R}^{-1}-\left[(\omega \mathrm{L})^{-1}-(\omega \mathrm{C})\right] \mathrm{j} \end{aligned}$	$\begin{array}{ll} \text { (1) } & \text { (2) } \\ \text { (3) } & \text { (4) } \\ \text { (5) } & \text { (6) } \end{array}$	$\begin{aligned} & \sim \\ & \sim \end{aligned}$
$\begin{aligned} \mathrm{Y}= & \mathrm{Z}^{-1} \\ \pm \theta_{\mathrm{Y}}= & \sin ^{-1}\left(-\mathrm{Z}\left[(\omega \mathrm{~L})^{-1}-(\omega \mathrm{C})\right]\right) \\ \mathbf{Y}_{\mathrm{RECT}}= & \sqrt{\mathrm{Z}^{-2}-\left[(\omega \mathrm{L})^{-1}-(\omega \mathrm{C})\right]^{2}} \\ & -\left[(\omega \mathrm{L})^{-1}-(\omega \mathrm{C})\right] \mathrm{j} \end{aligned}$	$\begin{array}{ll} \text { (1) } & \text { (2) } \\ \text { (3) (4) } \\ \text { (5) } & \end{array}$	$\begin{aligned} & N \\ & \sim \\ & \sim \end{aligned}$

Admittance and Phase, Parallel Circuits$\begin{aligned} \mathbf{Y}_{\mathrm{POLAR}} & =\mathrm{Y} / \pm \theta_{\mathbf{Y}} \\ \mathbf{Y}_{\text {RECT }} & =\mathrm{G}-(\pm \mathrm{B}) \mathrm{j} \end{aligned}$		
Note: $\mathrm{G}=\mathrm{R}_{\mathrm{p}}^{-1}, \pm \mathrm{B}=\left(\mathrm{X}_{\mathrm{L}}\right)_{\mathrm{p}}^{-1}-\left(\mathrm{X}_{\mathrm{C}}\right)_{\mathrm{p}}^{-1}$ ($\stackrel{\text { E. }}{\text { E. }}$
$\mathrm{Y}=\left\|\left[(\omega \mathrm{L})^{-1}-(\omega \mathrm{C})\right] /\left(\sin \theta_{\mathrm{Y}}\right)\right\|$		
$\begin{aligned} \mathbf{Y}_{\mathbf{R E C T}}= & \left(-\left[(\omega \mathrm{L})^{-1}-(\omega \mathrm{C})\right] /\left[\tan \left(\pm \theta_{\mathbf{Y}}\right)\right]\right) \\ & -\left[(\omega \mathrm{L})^{-1}-(\omega \mathrm{C})\right] \mathrm{j} \end{aligned}$	$\begin{array}{\|cc\|} \hline \text { (1) } & 2 \\ (3) & 4 \\ \text { (5) } & 6 \\ \otimes & \\ \hline \end{array}$	® 0 0
$\begin{aligned} \mathrm{Y} & =\mathrm{G} /\left(\cos \theta_{\mathrm{Y}}\right) \\ \mathbf{Y}_{\mathrm{RECT}} & =\mathrm{G}-\left[-\mathrm{G} \tan \left(\pm \theta_{\mathrm{Y}}\right)\right] \mathrm{j} \end{aligned}$	$\left\|\begin{array}{ll} 1 & 1 \\ 1 \\ \text { (3) } \\ \hline \end{array}\right\|$	ò 0
$\begin{aligned} \mathrm{Y} & =\sqrt{\mathrm{R}^{-2}+\left(\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right)^{2}} \\ \pm \theta_{\mathrm{Y}} & =\tan ^{-1}\left[-\mathrm{R}\left(\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right)\right] \\ \mathbf{Y}_{\mathrm{REC}} & =\mathrm{R}^{-1}-\left(\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right) \mathrm{j} \end{aligned}$		x ¢ \times \times
$\begin{aligned} \mathbf{Y} & =\left[\mathrm{R} \cos \theta_{\mathrm{Z}}\right]^{-1} \pm \theta_{\mathbf{Y}}=-\left(\pm \theta_{\mathrm{Z}}\right) \\ \mathbf{Y}_{\mathrm{RECT}} & =\mathrm{R}^{-1}-\left[\mathrm{R}^{-1} \tan \left(\pm \theta_{\mathrm{Z}}\right)\right] \mathrm{j} \end{aligned}$		$\stackrel{\text { N }}{ }$
$\begin{aligned} \mathrm{Y} & =\mathrm{Z}^{-1} \\ \pm \theta_{\mathrm{Y}} & =\sin ^{-1}\left[-\mathrm{Z}\left(\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right)\right] \\ \mathbf{Y}_{\mathrm{RECT}} & =\sqrt{\mathrm{Z}^{-2}-\left(\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right)^{2}}-\left(\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right) \mathrm{j} \end{aligned}$		N - - U \times

| Admittance | $Y_{\text {POLAR }}=Y / \pm \theta_{Y}$ |
| :--- | :--- | :--- |
| and Phase, | $\mathbf{Y}_{\text {RECT }}=G-(\pm B) j$ |

Note: $\mathrm{G}=\mathrm{R}_{\mathrm{p}}^{-1}, \pm \mathrm{B}=\left(\mathrm{X}_{\mathrm{L}}\right)_{\mathrm{p}}^{-1}-\left(\mathrm{X}_{\mathrm{C}}\right)_{\mathrm{p}}^{-1}$ (©)		$\stackrel{\text { E. }}{\substack{\text { E }}}$
$\mathbf{Y}=\left\|\left(\mathbf{X}_{\mathbf{L}}^{-1}-\mathbf{X}_{\mathbf{C}}^{-1}\right) /\left(\sin \theta_{\mathrm{Z}}\right)\right\|$		
$\mathbf{Y}_{\text {RECT }}=\left(\left[\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right] /\left[\tan \left(\pm \theta_{\mathrm{Z}}\right)\right]\right)$	(1) (2)	$\stackrel{N}{8}$
	(4) (5)	x
	(6) 8	-
$\mathbf{Y}_{\text {RECT }}=\left[\mathrm{Y} \cos \theta_{\mathrm{Y}}\right]-\left[-\mathrm{Y} \sin \left(\pm \theta_{\mathrm{Y}}\right)\right] \mathrm{j}$	(1) (2)	${ }_{0}{ }^{\circ}$
$\begin{aligned} \mathrm{Y} & =\mathrm{Z}^{-1}, \quad \pm \theta_{\mathrm{Y}}=-\left(\pm \theta_{\mathrm{Z}}\right) \\ \mathbf{Y}_{\mathrm{RECT}} & =\left[\mathrm{Z}^{-1} \cos \theta_{\mathrm{Z}}\right]-\left[\mathrm{Z}^{-1} \sin \left(\pm \theta_{\mathrm{Z}}\right)\right] \mathrm{j} \end{aligned}$		
	(4) (5)	${ }^{N}$
	(6)	N
$\begin{aligned} \mathrm{Y} & =\mathrm{I}_{\mathbf{t}} / \mathrm{E}, \quad \pm \theta_{\mathrm{Y}}=-\left(\pm \theta_{\mathrm{Z}}\right) \\ \mathbf{Y}_{\text {RECT }} & =\left[\left(\mathrm{I}_{\mathbf{t}} / \mathrm{E}\right) \cos \theta_{\mathrm{Z}}\right]-\left[\left(\mathrm{I}_{\mathbf{t}} / \mathrm{E}\right) \sin \left(\pm \theta_{\mathrm{Z}}\right)\right] \mathrm{j} \end{aligned}$	(1) (2)	$\stackrel{N}{*}$
	(5) (6)	-
$\begin{aligned} \mathrm{Y} & =\mathrm{P} /\left(\mathrm{E}^{2} \cos \theta_{\mathrm{Z}}\right), \quad \pm \theta_{\mathrm{Y}}=-\left(\pm \theta_{\mathrm{Z}}\right) \\ \mathbf{Y}_{\mathrm{RECT}} & =\left(\mathrm{P} / \mathrm{E}^{2}\right)-\left[\left(\mathrm{P} / \mathrm{E}^{2}\right) \tan \left(\pm \theta_{\mathrm{Z}}\right)\right] \mathrm{j} \end{aligned}$	(1) (2)	${ }^{\text {N }}$
	(5) (6)	~1
$\begin{aligned} \mathrm{Y} & =\left(\mathrm{I}_{\mathrm{t}}^{2} \cos \theta_{\mathrm{Z}}\right) / \mathrm{P}, \quad \pm \theta_{\mathrm{Y}}=-\left(\pm \theta_{\mathrm{Z}}\right) \\ \mathbf{Y}_{\mathrm{RECT}} & =\left[\left(\mathrm{I}_{\mathrm{t}} \cos \theta_{\mathrm{Z}}\right)^{2} / \mathrm{P}\right]-\left[\mathrm{Y} \sin \left(\pm \theta_{\mathrm{Z}}\right)\right] \mathrm{j} \end{aligned}$	(1) (2)	$\stackrel{N}{*}$
	(5) ©	R

Parallel Complex Network Admittance

Note: $\mathbf{Y}_{\text {RECT }}=\mathbf{G}-(\pm \mathbf{B}) \mathbf{j}$ The sign of $(\pm B) j$ is real.	$\stackrel{\text { E }}{\text { E }}$
$\begin{aligned} \left(Y_{\text {RECT }}\right)_{t}= & \left(Y_{\text {RECT }}\right)_{1}+\left(Y_{\text {RECT }}\right)_{2} \cdots+\left(Y_{\text {RECT }}\right)_{n} \\ & G_{t}=G_{1}+G_{2} \cdots+G_{n} \\ & \pm B_{t}= \pm B_{1} \pm B_{2} \cdots \pm B_{n} \\ \left(Y_{\text {RECT }}\right)_{t}= & G_{t}-\left(\pm B_{t}\right) j \end{aligned}$	$\left\lvert\, \begin{aligned} & \left(\mathrm{Y}_{\mathrm{RECT}}\right)_{1} \\ & \left(\mathrm{Y}_{\mathrm{RECT}}\right)_{2} \\ & \left(\mathrm{Y}_{\mathrm{RECT}}\right)_{\mathrm{n}} \end{aligned}\right.$

$\mathbf{Y}_{\text {RECT }}$ Procedure applies to any circuit in parallel with others.

1. Convert each series and each parallel circuit to polar impedance using applicable formulas.
2. Convert each polar impedance to rectangular admittance from:
$\mathbf{Y}_{\text {RECT }}=\left[\cos \theta_{\mathbf{Z}} / \mathrm{Z}\right]-\left[\sin \left(\pm \theta_{\mathrm{Z}}\right) / \mathrm{Z}\right] \mathrm{j}$
3. The quantities inside the brackets represent G and $\pm \mathrm{B}$. Maintain the sign of B inside brackets. Do not simplify to $\pm \mathrm{jB}$.
4. Algebraically sum all \pm B quantities. Sum all G quantities.
5. Convert to total polar impedance if desired from:

$$
\begin{aligned}
Z_{t} & =\left[G_{t}^{2}+\left(\pm B_{t}\right)^{2}\right]^{-\frac{1}{2}} \\
\left(\pm \theta_{Z}\right)_{t} & =\tan ^{-1}\left[\left(\pm B_{t}\right) / G_{t}\right]
\end{aligned}
$$

Conversions To Rectangular Admittance

$Y_{\text {RECT }}$

$\mathbf{Z}_{\text {POLAR }}$ To $\mathbf{Y}_{\text {RECT }}$

$\mathbf{Z}_{\text {POLAR }}=\mathrm{Z} / \pm \theta_{\mathrm{Z}}, \quad \mathbf{Y}_{\text {RECT }}=\mathrm{G}-(\pm \mathrm{B}) \mathrm{j}$
$\mathbf{Y}_{\text {RECT }}=\left[\mathrm{Z}^{-1} \cos \theta_{\mathrm{Z}}\right]-\left[\mathrm{Z}^{-1} \sin \left(\pm \theta_{\mathrm{Z}}\right)\right] \mathrm{j}$
$\mathbf{Z}_{\text {RECT }}$ To $\mathbf{Y}_{\text {RECT }}$
$\mathbf{Z}_{\text {RECT }}=R_{s}+\left(\pm X_{s}\right) j, \quad Y_{\text {RECT }}=G-(\pm B) j$
$Y_{\text {RECT }}=\left[R_{s} /\left(\pm X_{s}^{2}+R_{s}^{2}\right)\right]-\left[\pm X_{s} /\left(\pm X_{s}^{2}+R_{s}^{2}\right)\right] j$
Series R and X To $\mathrm{Y}_{\text {Rect }}$
$R_{s}=$ Series $R_{t}, \quad \pm X_{s}=$ Series $\left(X_{L}-X_{C}\right)_{t}$
$Y_{\text {RECT }}=\left[R_{s} /\left(\pm X_{s}^{2}+R_{s}^{2}\right)\right]-\left[\pm X_{s} /\left(\pm X_{s}^{2}+R_{s}^{2}\right)\right] j$
Parallel R and X To $\mathrm{Y}_{\text {RECT }}$
$R_{p}=$ Parallel $R_{t}, \quad \pm X_{p}=\operatorname{Parallel}\left(X_{L}^{-1}-X_{C}^{-1}\right)_{t}^{-1}$
$Y_{\text {RECT }}=\left(R_{p}\right)_{t}^{-1}-\left(\pm X_{p}\right)_{t}^{-1} j$ Note @
$\mathbf{Y}_{\text {POLAR }}$ To $\mathbf{Y}_{\text {RECT }}$
$\mathbf{Y}_{\text {POLAR }}=\mathrm{Y} / \pm \theta_{\mathbf{Y}}, \quad \mathbf{Y}_{\text {RECT }}=\mathbf{G}-(\pm \mathrm{B}) \mathrm{j}$
$\mathbf{Y}_{\text {RECT }}=\left[\mathrm{Y} \cos \theta_{\mathrm{Y}}\right]-\left[-\mathrm{Y} \sin \left(\pm \theta_{\mathrm{Y}}\right)\right] \mathrm{j}$

Conversions

From
Rectangular Admittance

$Y_{\text {ReCt }}$

$\mathbf{Y}_{\text {RECT }}$ To $Z_{\text {POLAR }}$
$\mathbf{Y}_{\text {RECT }}=\mathrm{G}-(\pm \mathrm{B}) \mathrm{j}, \quad \mathrm{Z}_{\text {POLAR }}=\mathrm{Z} / \pm \theta_{\mathrm{Z}}$
$Z_{\text {POLAR }}=\left[G^{2}+(\pm B)^{2}\right]^{-\frac{1}{2}} / \tan ^{-1}[\pm B / G]$
$\mathbf{Y}_{\text {RECT }}$ To $\mathbf{Z}_{\text {RECT }}$
$\mathbf{Y}_{\text {RECT }}=\mathbf{G}-(\pm B) \mathbf{j}, \quad Z_{\text {RECT }}=R_{s}+\left(\pm X_{s}\right) j$
$Z_{\text {RECT }}=\left[G /\left(\pm B^{2}+G^{2}\right)\right]+\left[\pm B /\left(\pm B^{2}+G^{2}\right)\right] j$
$\mathbf{Y}_{\text {Rect }}$ To $\mathbf{Y}_{\text {POLAR }}$
$\mathbf{Y}_{\text {RECT }}=\mathbf{G}-(\pm B) \mathrm{j}, \quad \mathbf{Y}_{\text {POLAR }}=\mathbf{Y} / \pm \theta_{\mathbf{Y}}$
$\boldsymbol{Y}_{\text {POLAR }}=\sqrt{G^{2}+(\pm B)^{2}} / \tan ^{-1}[-(\pm B / G)]$
$\mathbf{Y}_{\text {Rect }}$ To Equiv. Series R and \mathbf{X}
$\mathbf{Y}_{\text {RECT }}=\mathbf{G}-(\pm \mathrm{B}) \mathrm{j}$
$R_{s}=G /\left(\pm B^{2}+G^{2}\right), \quad \pm X_{s}= \pm B /\left(\pm B^{2}+G^{2}\right)$
$\left|-X_{s}\right|=X_{C}, \quad\left|+X_{s}\right|=X_{L}$
$\mathbf{Y}_{\text {RECT }}$ To Equiv. Parallel \mathbf{R} and \mathbf{X}
$\mathbf{Y}_{\text {RECT }}=G-(\pm B) j$

$$
R_{p}=G^{-1}, \quad \pm X_{p}= \pm B^{-1}
$$

$\left|-X_{p}\right|=X_{C}, \quad\left|+X_{p}\right|=X_{C}$
Note (a)

ADMITTANCE
Vector Algebra

Vector Algebra AC Ohms Law

$$
\begin{aligned}
& \mathbf{E}_{\mathrm{g}}=\mathrm{E}_{\mathrm{g}} / 0^{\circ} \text { or } \mathrm{I}_{\mathrm{g}}=\mathrm{I}_{\mathrm{g}} / 0^{\circ} \quad\left(1=1 / 0^{\circ}\right) \\
& \mathbf{E}=\mathrm{I}_{\mathrm{g}} / \mathbf{Y}=\mathrm{I}_{\mathrm{g}} / \mathrm{Y} / 0^{\circ}-\theta_{\mathrm{Y}}=-\left(\pm \theta_{\mathrm{Y}}\right) \\
& \mathbf{I}=\mathrm{E}_{\mathrm{g}} \mathrm{Y}=\mathrm{E}_{\mathrm{g}} \mathrm{Y} / 0^{\circ}+\theta_{\mathrm{Y}}= \pm \theta_{\mathrm{Y}} \\
& \mathbf{Y}=1 / \mathrm{Z}=1 / \mathrm{Z} / 0^{\circ}-\theta_{\mathrm{Z}}=-\left(\pm \theta_{\mathrm{Z}}\right) \\
& \mathbf{Y}=\mathrm{I} / \mathrm{E}_{\mathrm{g}}=\mathrm{I} / \mathrm{E}_{\mathrm{g}} / \theta_{\mathrm{I}}-0^{\circ}= \pm \theta_{\mathrm{I}} \\
& \mathbf{Y}=\mathrm{I}_{\mathrm{g}} / \mathrm{E}=\mathrm{I}_{\mathrm{g}} / \mathrm{E} / 0^{\circ}-\theta_{\mathrm{E}}=-\left(\pm \theta_{\mathrm{E}}\right) \\
& \mathbf{Z}=1 / \mathbf{Y}=1 / \mathrm{Y} / 0^{\circ}-\theta_{\mathrm{Y}}=-\left(\pm \theta_{\mathrm{Y}}\right) \\
& \hline
\end{aligned}
$$

Addition and Subtraction of Rectangular Admittance

$$
\begin{aligned}
Y_{1}+Y_{2}= & Y_{1(\text { RECT })}+Y_{2(\text { RECT })} \\
= & {[G-(\pm B) j]_{1}+[G-(\pm B) j]_{2} } \\
= & {\left[G_{1}+G_{2}\right]-\left[\left(\pm B_{1}\right)+\left(\pm B_{2}\right)\right] j } \\
Y_{1}-Y_{2}= & {\left[G_{1}-G_{2}\right]-\left[\left(\pm B_{1}\right)-\left(\pm B_{2}\right)\right] j } \\
& G_{t}=\left(R_{p}^{-1}\right)_{t} \\
& \pm B_{t}=\left(\pm X_{p}^{-1}\right)_{t} \\
& |-B|=B_{C} \quad|+B|=B_{L} \\
& B_{C}=\left(X_{C}\right)_{p}^{-1} \quad B_{L}=\left(X_{L}\right)_{p}^{-1} \quad \text { Note @ }
\end{aligned}
$$

See also-Z, Vector Algebra
See also-B, G, θ

Y_{VA} Notes:
(1) Admittance is a complex quantity requiring the mathematical operations of addition and subtraction to be performed in rectangular form. Rectangular form quantities may be multiplied like other binomials except that $j^{2}=-1$. Reciprocals or other division by rectangular form quantities requires the divisor to be rationalized by multiplication of both the divisor and the dividend by the conjugate of the divisor. (The conjugate of $\mathrm{G}-\mathrm{Bj}$ is $\mathrm{G}+\mathrm{Bj}$). When using a calculator, it is easier to convert rectangular quantities to polar form for multiplication and division then reconverting to rectangular form for addition and subtraction.

$Y_{\text {VA }}$ Notes:
(2) B_{C} or $-\mathrm{B}=$ Capacitive Susceptance, B_{L} or $+\mathrm{B}=$ Inductive Susceptance, $\mathrm{E}_{\mathrm{g}}=$ Generator Voltage $*, \mathrm{E}_{\mathrm{o}}=$ Output Voltage $*, \mathrm{G}=$ Conductance (Parallel Circuit Reciprocal Resistance), $\mathbf{I g}_{\mathrm{g}}=$ Generator Current $*$, $\mathrm{I}_{\mathrm{o}}=$ Output Current $*, \mathrm{R}_{\mathrm{p}}^{-1}=$ Parallel Circuit Reciprocal Resistance (Conductance), $\pm \mathbf{X}_{\mathbf{p}}^{-1}=$ Parallel Circuit Reciprocal Reactance (Susceptance), $\mathbf{Y}_{\mathbf{i}}=$ Input Admittance $*, \mathbf{Y}_{\mathbf{o}}=$ Output Admittance $*, \mathbf{Z}_{\mathbf{i}}=$ Input Impedance $*, \mathbf{Z}_{\mathbf{o}}=$ Output Impedance $*$, * $=$ Vector (Phasor) characteristic.

z

Impedance
 Definitions

```
Z = Symbol for impedance
\(\mathrm{Z}=\) The total opposition to the flow of alternating current of a given frequency. A complex quantity having components of resistance and reactance. The ratio of applied alternating voltage to the alternating current flow through a circuit.
\(\mathrm{Z}=\) Impedance expressed in ohm ( \(\Omega\) ) units.
\(\mathrm{Z}=\mathrm{Z}_{\text {MAGNITUDE }}=|\mathrm{Z}|\)
\(\theta_{\mathrm{Z}}=\) Phase angle of impedance
\(\mathbf{Z}=\) Complete description of impedance which includes both magnitude and phase angle information.
\(\mathbf{Z}_{\text {POLAR }}=\) Polar form of impedance \(=\mathbf{Z} / \pm \theta \mathrm{Z}\)
\(\mathbf{Z}_{\text {POLAR }}=\) The vectorial resultant of resistance ( \(0^{\circ}\) ) and reactance ( \(\pm 90^{\circ}\) ).
\(\mathbf{Z}_{\text {RECT }}=\) Rectangular form of impedance or the complex number form of impedance.
\(\mathbf{Z}_{\text {RECT }}=\) The \(0^{\circ}\) (resistance) and \(\pm 90^{\circ}\) (reactance) vectors in complex number form which have a resultant equal to polar impedance.
\(\mathbf{Z}_{\text {RECT }}=\) The mathematical equivalent of resistance and reactance in series. (The series equivalent of a parallel circuit)
\(Z_{\text {RECT }}=R \pm j X=R+( \pm X) j=R+\left(X_{L}-X_{C}\right) j\) where \(|+X|=X_{L}\) and \(|-X|=X_{C}\)
\(\left(Z_{\text {RECT }}\right)^{-1}=Y_{\text {RECT }}=G-( \pm B) j=R_{p}^{-1}-\left( \pm X_{p}^{-1}\right) j\)
\(\left(\mathbf{Z}_{\text {RECT }}\right)^{-1}=\mathbf{A}\) parallel equivalent circuit. See \(-\mathbf{Y}_{\text {RECT }}\)
```

Impedance, Series Circuits		$\underset{\text { E. }}{\text { ¢ }}$
$\mathrm{Z}=\sqrt{\mathrm{R}^{2}+\left[(\omega \mathrm{L})-(\omega \mathrm{C})^{-1}\right]^{2}}$	(1) (4) (7)	CL R
$\mathrm{Z}=\left\|\left[(\omega \mathrm{L})-(\omega \mathrm{C})^{-1}\right] /\left(\sin \theta_{\mathrm{Z}}\right)\right\|$	$\begin{aligned} & \text { (1) © (2) © } \\ & \text { (4) } \\ & \hline(7) \end{aligned}$	CL θ_{z}
$\mathrm{Z}=\mathrm{E} / \mathrm{I}$	(1)	E I
$\mathrm{Z}=\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}$	(1) (3)	$\mathrm{R} \mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}}$
$\mathrm{Z}=\mathrm{R} /\left(\cos \theta_{\mathrm{Z}}\right)$	(1) (2) (3)	$\mathrm{R} \theta_{\mathrm{Z}}$
$\mathrm{Z}=\left\|\left(\mathrm{X}_{\mathbf{L}}-\mathrm{X}_{\mathrm{C}}\right) /\left(\sin \theta_{\mathrm{Z}}\right)\right\|$	(1) (2) (3) \otimes	$\mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}} \theta_{\mathrm{Z}}$
$\mathrm{Z}=\sqrt{\mathrm{E}_{\mathrm{R}}^{2}+\left(\mathrm{E}_{\mathrm{L}}-\mathrm{E}_{\mathrm{C}}\right)^{2}} / \mathrm{I}$	(1) (3)	$\mathrm{E}_{\mathrm{R}} \mathrm{E}_{\mathrm{C}} \mathrm{E}_{\mathrm{L}} \mathrm{I}$
$\mathrm{Z}=\left(\mathrm{E}^{2} \cos \theta_{\mathrm{E}}\right) / \mathrm{P}$	(1) (2) (3)	E P $\boldsymbol{\theta}_{\mathrm{E}}$
$\mathrm{Z}=\mathrm{P} /\left(\mathrm{I}^{2} \cos \theta_{\mathrm{I}}\right)$	(1) (2) (3)	I P $\theta_{\text {I }}$

Z Notes:

(1) $\mathbf{B}=$ Susceptance, $\mathbf{C}=$ Capacitance, $\mathbf{E}=\mathrm{rms}$ Voltage, $\mathbf{G}=$ Conductance, $\mathrm{I}=\mathrm{rms}$ Current, $\mathrm{L}=$ Inductance, $\mathrm{P}=$ Power, $\mathrm{R}=$ Resistance, $\mathrm{X}=$ Reactance, $\mathrm{Y}=$ Admittance, $\mathrm{Z}=$ Impedance, $\theta=$ Phase angle, $\omega=$ Angular velocity

Impedance, Parallel Circuits		$\underset{\text { E. }}{\substack{\text { E }}}$
$\mathrm{Z}=\mathrm{Y}^{-1}=1 / \mathrm{Y}$	(1) (4)	Y
$\mathrm{Z}=\left[\mathrm{G}^{2}+\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right)^{2}\right]^{-\frac{1}{2}}$	(1) (3) (4)	$B_{C} B_{L} \quad \mathrm{G}$
$\mathrm{Z}=\left\|\left(\sin \theta_{\mathrm{Y}}\right) /\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right)\right\|$	(1) (2) (3) \otimes	$\mathrm{B}_{\mathrm{C}} \mathrm{B}_{\mathrm{L}} \theta_{\mathrm{Y}}$
$\mathrm{Z}=\left(\mathrm{R}^{-2}+\left[(\omega \mathrm{L})^{-1}-(\omega \mathrm{C})\right]^{2}\right)^{-\frac{1}{2}}$	(1) (4) (7)	CL R
$\mathrm{Z}=\left\|\left(\sin \theta_{\mathrm{Z}}\right) /\left[(\omega \mathrm{L})^{-1}-(\omega \mathrm{C})\right]\right\|$	$\begin{array}{lll} \hline(1) & (2) \\ \text { (4) } & (3) \\ \hline \end{array}$	CL θ_{z}
$\mathrm{Z}=\mathrm{E} / \mathrm{I}$	(1)	E I
$\mathrm{Z}=\left(\cos \theta_{\mathrm{Y}}\right) / \mathrm{G}$	(1) (2) (3)	G θ_{Y}
$\mathrm{Z}=\left[\mathrm{R}^{-2}+\left(\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right)^{2}\right]^{-\frac{1}{2}}$	(1) (3) (4)	$\mathrm{R} \mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}}$
$\mathrm{Z}=\mathrm{R} \cos \theta_{\mathrm{Z}}$	(1) (2) (3)	$\mathrm{R} \theta_{\mathrm{z}}$
$\mathrm{Z}=\left\|\left(\sin \theta_{\mathrm{Z}}\right) /\left(\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathbf{C}}^{-1}\right)\right\|$	$\begin{gathered} \text { (1) (2) (3) } \\ \text { (4) } \otimes 8 \end{gathered}$	$\mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}} \quad \theta_{\mathrm{Z}}$

Z Notes:
(2) $\cos =\operatorname{cosine}, \sin =$ sine, tan $=$ tangent, $\cos ^{-1}=\operatorname{arc} \operatorname{cosine}, \sin ^{-1}=$ arc sine, $\tan ^{-1}=$ arc tangent

Impedance and Phase, Single Elements		$\underset{\text { E. }}{\substack{\text { ¢ }}}$
$\begin{aligned} \mathrm{Z}_{\text {POLAR }} & =\mathrm{B}_{\mathrm{C}}^{-1} /-90^{\circ}=\left\|-\mathrm{B}^{-1}\right\| \angle-90^{\circ} \\ \mathrm{Z}_{\text {RECT }} & =0+\left(-\mathrm{B}^{-1}\right) \mathrm{j} \end{aligned}$	$\begin{gathered} \text { (1) (3) (4) } \\ \text { (5) (7) } \end{gathered}$	B_{C} or -B
$\begin{aligned} Z_{\text {POLAR }} & =B_{L}^{-1} \angle+90^{\circ}=\left\|+B^{-1}\right\| \angle+90^{\circ} \\ Z_{\text {RECT }} & =0+\left(+B^{-1}\right) j \end{aligned}$	$\begin{gathered} \text { (1) (3) (4) } \\ \text { (5) (7) } \end{gathered}$	B_{L} or $+B$
$\begin{aligned} Z_{\text {POLAR }} & =(\omega \mathrm{C})^{-1} /-90^{\circ} \\ Z_{\text {RECT }} & =0+(-\omega C)^{-1} j \end{aligned}$	(1) (4) (7)	C
$\begin{aligned} Z_{\text {POLAR }} & =G^{-1} / 0^{\circ} \\ Z_{\text {RECT }} & =G^{-1}+0 j \end{aligned}$	$\begin{array}{ll} \text { (1) (4) } \\ \text { (6) } \end{array}$	G
$\begin{aligned} \mathrm{Z}_{\text {POLAR }} & =(\omega \mathrm{L}) \angle+90^{\circ} \\ Z_{\text {RECT }} & =0+(+\omega \mathrm{L}) \mathrm{j} \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (7) } \end{aligned}$	L
$\begin{aligned} \mathrm{Z}_{\text {POLAR }} & =\mathrm{R} / 0^{\circ} \\ \mathrm{Z}_{\mathrm{RECT}} & =\mathrm{R}+0 \mathrm{j} \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (7) } \end{aligned}$	R
$\begin{aligned} \mathrm{Z}_{\text {POLAR }} & =X_{C} /-90^{\circ}=\|-X\| /-90^{\circ} \\ Z_{\text {RECT }} & =0+(-X) j \end{aligned}$	(1) (3) (7)	X_{C} or -X
$\begin{aligned} \mathrm{Z}_{\text {POLAR }} & =\mathrm{X}_{\mathrm{L}} \angle+90^{\circ}=\|+\mathrm{X}\| \angle+90^{\circ} \\ \mathrm{Z}_{\text {RECT }} & =0+(+\mathrm{X}) \mathrm{j} \end{aligned}$	(1) (3) (7)	X_{L} or +X

Z Notes:
(3) Subscripts $c=$ capacitive, $E=$ voltage, $I=$ current, $L=$ inductive, $\mathrm{n}=$ any number, $\mathrm{p}=$ parallel circuit, $\mathrm{s}=$ series circuit, $\mathrm{t}=$ total or equivalent, $Y=$ admittance, $Z=$ impedance

$\begin{aligned} & \hline \mathrm{z} / \theta_{\mathrm{z}} \\ & \begin{array}{l} \text { Impedance, } \\ \text { Series } \\ \text { Circuits } \end{array} \end{aligned} \mathrm{POLAR}$		¢
$\begin{aligned} Z & =\sqrt{R^{2}+\left[(\omega L)-(\omega C)^{-1}\right]^{2}} \\ \pm \theta_{Z} & =\tan ^{-1}\left(\left[(\omega L)-(\omega \mathrm{C})^{-1}\right] / R\right) \end{aligned}$	$\begin{array}{lll} 1(1) & (2) \\ (4) & (7) \\ \hline \end{array}$	CL R
$\pm \theta_{\mathrm{Z}}=\sin ^{-1}\left(\left[(\omega \mathrm{~L})-(\omega \mathrm{C})^{-1}\right] / \mathrm{Z}\right)$	$\begin{array}{lll} \text { (1) (2) (3) } \\ \text { (4) (7) } \end{array}$	CL Z
$\mathrm{Z}=\left\|\left[(\omega \mathrm{L})-(\omega \mathrm{C})^{-1}\right] /\left(\sin \theta_{\mathrm{Z}}\right)\right\|$	$\begin{aligned} & \text { (1) (2) (3) } \\ & \text { (4) (7) } \end{aligned}$	CL $\theta_{\text {z }}$
$\begin{aligned} \mathrm{Z} & =\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}} \\ \pm \theta_{\mathrm{Z}} & =\tan ^{-1}\left[\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right) / \mathrm{R}\right] \end{aligned}$	$\begin{array}{ll} 1(1) & (2) \\ (3) & 8 \end{array}$	$\mathrm{R} \mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}}$
$\left\|\theta_{Z}\right\|=\tan ^{-1}\left[\sqrt{Z^{2}-R^{2}} / \mathrm{R}\right]$	(1) (2) (3) (4)	R Z

Z Notes:

(4) $x^{-1}=1 / x, x^{\frac{1}{2}}=\sqrt{x}, x^{-2}=1 / x^{2}, x^{-\frac{1}{2}}=1 / \sqrt{x},|x|=x$ magnitude or the absolute value of x
(5) Series resistance must equal zero.
(6) Series reactance must equal zero.
(7) $\omega=2 \pi \mathrm{f} \approx 6.28 \mathrm{f}$ ($\mathrm{f}=$ frequency), $\mathrm{j}=\sqrt{-1}=$ mathematical $\mathrm{i}=90^{\circ}$ multiplier $=$ imaginary quantity $=y$ axis quantity $=$ reactive quantity
(8) Reminders: $\pm \theta$-Use the sign of the phase angle $\pm X, \pm B$-treat the signs as real in all calculations except when converting to $\mathrm{X}_{\mathrm{L}}, \mathrm{X}_{\mathrm{C}}$, B_{L} or B_{C}.
The signs of $\pm X$ and $\pm B$ identify these reactive quantities as inductive or capacitive.
$|+X|=X_{L}, \quad|-X|=X_{C}, \quad|+B|=B_{L}, \quad|-B|=B_{C}$
X_{L}, X_{C}, B_{L} and B_{C} are magnitudes, while $\pm X$ and $\pm B$ as used in formulas are "real" quantities.

$\begin{aligned} & \hline \mathrm{z} / \theta_{\mathrm{z}} \\ & \begin{array}{l} \text { Impedance, } \\ \text { Series } \\ \text { Circuits } \end{array} \\ & \hline \mathrm{POL} \end{aligned}$		E.E.
$\mathrm{Z}=\mathrm{R} /\left(\cos \theta_{\mathrm{Z}}\right)$	(1) (2) (3)	R θ_{z}
$\pm \theta_{\mathrm{Z}}=\sin ^{-1}\left[\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right) / \mathrm{Z}\right]$	$\begin{array}{ll} \text { (1) (2) } \\ \text { (3) } \end{array}$	$\mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}} \mathbf{Z}$
$\mathrm{Z}=\left\|\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right) /\left(\sin \theta_{\mathrm{Z}}\right)\right\|$	(1) (2) (3) \otimes	$\mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}} \theta_{\mathrm{Z}}$
$\begin{aligned} \mathrm{Z} & =\mathrm{E} / \mathrm{I} \\ \pm \theta_{\mathrm{Z}} & = \pm \theta_{\mathrm{E}} \end{aligned}$	$\begin{array}{ll} 1(1) & 3 \\ \text { (8) } \end{array}$	E I θ_{E}
$\begin{aligned} \mathrm{Z} & =\sqrt{\mathrm{E}_{\mathrm{R}}^{2}+\left(\mathrm{E}_{\mathrm{L}}-\mathrm{E}_{\mathrm{C}}\right)^{2}} / \mathrm{I} \\ \pm \theta_{\mathrm{Z}} & =\tan ^{-1}\left[\left(\mathrm{E}_{\mathrm{L}}-\mathrm{E}_{\mathrm{C}}\right) / \mathrm{E}_{\mathrm{R}}\right] \end{aligned}$	$\begin{aligned} & \text { (1) (2) } \\ & \text { (3) (8) } \end{aligned}$	$\mathrm{E}_{\mathrm{C}} \mathrm{E}_{\mathrm{L}} \quad \mathrm{E}_{\mathrm{R}} \mathrm{I}$
$\begin{aligned} \mathrm{Z} & =\left(\mathrm{E}^{2} \cos \theta_{\mathrm{E}}\right) / \mathrm{P} \\ \pm \theta_{\mathrm{Z}} & = \pm \theta_{\mathrm{E}} \end{aligned}$	$\begin{array}{ccc} \text { (1) } & \text { (2) } & \text { (3) } \\ \text { (8) } & \text { (9) } \end{array}$	E P $\boldsymbol{\theta}_{\mathrm{E}}$

(9) The phase angle of Z, Y, I and $E\left(\theta_{Z}, \theta_{Y}, \theta_{I}\right.$ and $\left.\theta_{E}\right)$ in a given circuit represent the same one and only one phase angle. $\pm \theta_{\mathrm{Z}}= \pm \theta_{\mathrm{E}}=$ $-\left(\pm \theta_{Y}\right)=-\left(\pm \theta_{\mathrm{I}}\right)$. The author does not recommend this use of $\theta_{\mathbf{E}}$ and θ_{I} where each uses the other as the reference phase. The author uses the generator E_{g} or I_{g} as the reference. See also- $\boldsymbol{\theta}$

$\begin{aligned} & \mathrm{z} / \theta_{\mathrm{z}} \\ & \begin{array}{l} \text { Impedance, } \\ \text { Parallel } \\ \text { Circiuts } \end{array} \end{aligned} \mathrm{POLAR}$		$\stackrel{\text { E. }}{\substack{0 \\-1}}$
$\begin{aligned} \mathrm{Z} & =\left[\mathrm{G}^{2}+\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right)^{2}\right]^{-\frac{1}{2}} \\ \pm \theta_{\mathrm{Z}} & =\tan ^{-1}\left[\left(\mathrm{~B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right) / \mathrm{G}\right] \end{aligned}$	$\begin{gathered} \text { (1) (2) © (3) } \\ \text { (4) (8) } \end{gathered}$	$\mathrm{B}_{\mathrm{C}} \mathrm{B}_{\mathrm{L}} \mathrm{G}$
$\begin{aligned} \mathrm{Z} & =\mathrm{Y}^{-1} \\ \pm \theta_{\mathrm{Z}} & =\sin ^{-1}\left[\left(\mathrm{~B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right) / \mathrm{Y}\right] \end{aligned}$	$\begin{gathered} \text { (1) (2) ③ } \\ \text { (4) © } \end{gathered}$	$\mathrm{B}_{\mathrm{C}} \mathrm{B}_{\mathrm{L}} \mathrm{Y}$
$\begin{aligned} \mathrm{Z} & =\left\|\left(\sin \theta_{\mathrm{Y}}\right) /\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right)\right\| \\ \pm \theta_{\mathrm{Z}} & =-\left(\pm \theta_{\mathrm{Y}}\right) \end{aligned}$	$\begin{array}{lll} (1) & (2) \\ (4) & (8) \\ \hline \end{array}$	$\mathrm{B}_{\mathrm{C}} \mathrm{B}_{\mathrm{L}} \theta_{\mathrm{Y}}$
$\begin{aligned} \mathrm{Z} & =\left(\mathrm{R}^{-2}+\left[(\omega \mathrm{L})^{-1}-(\omega \mathrm{C})\right]^{2}\right)^{-\frac{1}{2}} \\ \pm \theta_{\mathrm{Z}} & =\tan ^{-1}\left(\mathrm{R}\left[(\omega \mathrm{~L})^{-1}-(\omega \mathrm{C})\right]\right) \end{aligned}$	$\left.\begin{array}{lll} \text { (1) } & \text { (2) } \\ \text { (4) } \\ \hline \end{array}\right) \text { (8) }$	CL R
$\begin{aligned} & \quad \pm \mathrm{X}_{\mathrm{p}}=\left[(\omega \mathrm{L})^{-1}-(\omega \mathrm{C})\right]^{-1} \\ & \pm \theta_{\mathrm{Z}}= \sin ^{-1}\left[\mathrm{Z} / \pm \mathrm{X}_{\mathrm{p}}\right] \end{aligned}$		CL Z
$\mathrm{Z}=\left\|\left(\sin \theta_{\mathrm{Z}}\right) /\left[(\omega \mathrm{L})^{-1}-(\omega \mathrm{C})\right]\right\|$	$\begin{array}{lll} \text { (1) } \\ \text { (4) } & \text { (7) } & (3) \\ \hline \end{array}$	CL θ_{z}
$\begin{aligned} \mathrm{Z} & =\left(\cos \theta_{\mathrm{Y}}\right) / \mathrm{G} \\ \pm \theta_{\mathrm{Z}} & =-\left(\pm \theta_{\mathrm{Y}}\right) \end{aligned}$	$\begin{aligned} & 1)_{1}^{2} \\ & \text { (3) } \end{aligned}$	G θ_{Y}

$\begin{aligned} & \mathrm{Z} / \theta \mathrm{z} \\ & \begin{array}{l} \text { Impedance, } \\ \text { Parallel } \\ \text { Circuits } \end{array} \\ & \mathrm{ZOQ} \end{aligned}$		$\stackrel{\text { E. }}{\text { E. }}$
$\mathrm{Z}=\mathrm{R} \cos \theta_{\mathrm{Z}}$	(1) (2) (3)	R θ_{Z}
$\mathrm{Z}=\left\|\left(\sin \theta_{\mathrm{Z}}\right) /\left(\mathrm{X}_{\mathrm{L}}^{-1}-\mathrm{X}_{\mathrm{C}}^{-1}\right)\right\|$		$\mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}} \quad \theta_{\mathrm{Z}}$
$\begin{aligned} \mathrm{Z} & =\mathrm{Y}^{-1} \\ \pm \theta_{\mathrm{Z}} & =-\left(\pm \theta_{\mathrm{Y}}\right) \end{aligned}$	(1) (3) ${ }^{(8)}$	Y θ_{Y}
$\begin{aligned} \mathrm{Z} & =\mathrm{E} / \sqrt{\mathrm{I}_{\mathrm{R}}^{2}+\left(\mathrm{I}_{\mathrm{L}}-\mathrm{I}_{\mathrm{C}}\right)^{2}} \\ \pm \theta_{\mathrm{Z}} & =\tan ^{-1}\left[\left(\mathrm{I}_{\mathrm{L}}-\mathrm{I}_{\mathrm{C}}\right) / \mathrm{I}_{\mathrm{R}}\right] \end{aligned}$	$\begin{gathered} \text { (1) (2) } \\ \text { (3) }_{8}^{88} \text { (9) } \end{gathered}$	$E \quad I_{R} I_{C} I_{L}$
$\begin{aligned} \mathrm{Z} & =\mathrm{E} / \mathrm{I} \\ \pm \theta_{\mathrm{Z}} & =-\left(\pm \theta_{\mathrm{I}}\right) \end{aligned}$	$\begin{array}{ll} 1(1) & (3) \\ \text { (8) } & \text { (9) } \end{array}$	E I $\theta_{\text {I }}$

Z Notes:

(d) Mathematics and calculators do not allow a division by zero or infinity. In formulas noted (d) however, the reciprocal of zero may be manually converted to infinity and the reciprocal of infinity may be manually converted to zero. The following additional manual operations may also be performed as required:
$\mathrm{x} \cdot \infty=\infty$ when $\mathrm{x} \neq 0, \quad \mathrm{x} / \infty=0$ when $\mathrm{x} \neq \infty$
$\mathrm{x} \cdot 0=0$ when $\mathrm{x} \neq \infty, \quad \mathrm{x} / 0=\infty$ when $\mathrm{x} \neq 0$
$0^{x}=0$ when $x \neq 0, \quad \infty^{x}=\infty$ when $x \neq 0$
Calculators require the substitution of a very small number such as 10^{-30} for zero and of a very large number such as 10^{30} for infinity to perform these operations. All very small resultants must then be accepted as zero and all very large resultants must be accepted as infinity. Extreme care must be exercised to avoid accidental violation of the listed exceptions whenever more than one zero and/or infinity appear in the same formula. The arc tangent of infinity may be obtained from a calculator by also substituting a very large number for infinity.
\otimes Division by zero is prohibited. At circuit resonance, a zero divisor and a zero dividend will be presented. The division of zero by zero is always prohibited.

Polar Impedances In Series $\begin{aligned} & Z_{t}=\left\{\left(\left[Z_{1} \cos \left(\theta_{Z}\right)_{1}\right]+\left[Z_{2} \cos \left(\theta_{Z}\right)_{2}\right] \cdots+\left[Z_{n} \cos \left(\theta_{Z}\right)_{n}\right]\right)^{2}\right. \\ &\left.+\left(\left[Z_{1} \sin \left(\pm \theta_{Z}\right)_{1}\right]+\left[Z_{2} \sin \left(\pm \theta_{Z}\right)_{2}\right] \cdots+\left[Z_{n} \sin \left(\pm \theta_{Z}\right)_{n}\right]\right)^{2}\right\}^{\frac{1}{2}} \\ & \pm \theta_{Z_{t}}= \tan ^{-1}\left[\frac{\left(\left[Z_{1} \sin \left(\pm \theta_{Z}\right)_{1}\right]+\left[Z_{2} \sin \left(\pm \theta_{z}\right)_{2}\right] \cdots+\left[Z_{n} \sin \left(\pm \theta_{Z}\right)_{n}\right]\right)}{\left(\left[Z_{1} \cos \left(\theta_{Z}\right)_{1}\right]+\left[Z_{2} \cos \left(\theta_{z}\right)_{2}\right] \cdots+\left[Z_{n} \cos \left(\theta_{z}\right)_{n}\right]\right)}\right] \end{aligned}$	
Unknown Series Impedance $\begin{aligned} \mathrm{Z}_{\mathrm{x}} & =\sqrt{\left(\left[\mathrm{Z}_{\mathrm{t}} \cos \left(\theta_{\mathrm{z}}\right)_{\mathrm{t}}\right]-\left[\mathrm{Z}_{1} \cos \left(\theta_{\mathrm{z}}\right)_{1}\right]\right)^{2}+\left(\left[\mathrm{Z}_{\mathrm{t}} \sin \left(\pm \theta_{\mathrm{z}}\right)_{\mathrm{t}}\right]-\left[\mathrm{Z}_{1} \sin \left(\pm \theta_{\mathrm{Z}}\right)_{1}\right]\right)^{2}} \\ \pm \theta_{\mathrm{Z}_{\mathrm{x}}} & =\tan ^{-1}\left[\left(\left[\mathrm{Z}_{\mathrm{t}} \sin \left(\pm \theta_{\mathrm{z}}\right)_{\mathrm{t}}\right]-\left[\mathrm{Z}_{1} \sin \left(\pm \theta_{\mathrm{z}}\right)_{1}\right]\right) /\left(\left[\mathrm{Z}_{\mathrm{t}} \cos \left(\theta_{\mathrm{z}}\right)_{\mathrm{t}}\right]-\left[\mathrm{Z}_{1} \cos \left(\theta_{\mathrm{Z}_{1}}\right]\right)\right]\right. \end{aligned}$	

Polar Impedances in Parallel	
Unknown Parallel Polar Impedance	

z

Parallel Circuits In Series, Procedure Method

Procedure:

1. Convert each parallel circuit to polar form impedances using $\mathbf{Z}_{\text {POLAR }}$, parallel circuit formulas.
2. Convert each polar impedance to equivalent series resistance and reactance from:
$\mathrm{R}_{\mathrm{s}}=\mathrm{Z} \cos \theta_{\mathrm{Z}} \quad \pm \mathrm{X}_{\mathrm{s}}=\mathrm{Z} \sin \left(\pm \theta_{\mathrm{Z}}\right)$
[If your calculator has the polar to rectangular conversion feature ($\mathrm{P}-\mathrm{R}$), enter $\mathrm{Z}_{\text {POLAR }}$ as the polar coordinates. The calculator x axis output is R_{s} and the calculator y axis output is $\pm X_{s}$]
3. Sum all R_{s} quantities and algebraically sum all $\pm X_{s}$ quantities.
[If your calculator has multiple memories, sum all R_{s} quantities into one memory and all $\pm \mathrm{X}_{\mathrm{s}}$ quantities into a second memory.]
4. Convert the total equivalent series resistance and the total equivalent series reactance to total polar impedance from:

$$
\begin{aligned}
Z_{t} & =\sqrt{\left(R_{s}\right)_{t}^{2}+\left(\pm X_{s}\right)_{t}^{2}} \\
\left(\pm \theta_{Z}\right)_{t} & =\tan ^{-1}\left[\left(\pm X_{s}\right)_{t} /\left(R_{s}\right)_{t}\right]
\end{aligned}
$$

[If your calculator has the rectangular to polar conversion feature (R-P), enter $\left(R_{s}\right)_{t}$ as the x coordinate and $\left(\pm X_{s}\right)_{t}$ as the y coordinate. Calculator output will be polar impedance coordinates]

z

Series Circuits

In Parallel,

 Procedure Method
Procedure:

1. Convert each series circuit to polar form impedance using $\mathbf{Z}_{\text {POLAR }}$, series circuit formulas.
2. Convert each polar impedance to equivalent parallel reciprocal resistance and equivalent parallel reciprocal reactance. [Note: parallel reciprocal resistance is also known as conductance (G) and parallel reciprocal reactance is also known as susceptance (B)]

$$
\begin{gathered}
\mathrm{R}_{\mathrm{p}}^{-1}=\mathrm{G}=\mathrm{Z}^{-1} \cos \theta_{\mathrm{Z}} \\
\pm \mathrm{X}_{\mathrm{p}}^{-1}= \pm \mathrm{B}=\mathrm{Z}^{-1} \sin \left(\pm \theta_{\mathrm{Z}}\right)
\end{gathered}
$$

[If your calculator has the polar to rectangular conversion feature, enter \mathbf{Z}^{-1} and $\pm \theta_{Z}$ as the polar coordinates. The calculator x coordinate output is $\mathrm{R}_{\mathrm{p}}^{-1}$ or G and the calculator y coordinate output is $\pm \mathrm{X}_{\mathrm{p}}^{-1}$ or $\pm \mathrm{B}$.]
3. Sum all $R_{p}^{-1}(G)$ quantities and algebraically sum all $\pm X_{p}^{-1}$ $(\pm B)$ quantities.
[If your calculator has multiple memories, sum all $\mathrm{R}_{\mathrm{p}}^{-1}$ (G) quantities into one memory and sum all $\pm \mathrm{X}_{\mathrm{p}}^{-1}(\pm \mathrm{B})$ quantities into a second memory.]
4. Convert the total equivalent parallel reciprocal resistance $\left[\left(R_{p}^{-1}\right)_{t}\right.$ or $\left.G_{t}\right]$ and the total equivalent parallel reciprocal reactance $\left[\left(\pm X_{p}^{-1}\right)_{t}\right.$ or $\left.\pm B_{t}\right]$ to total polar impedance from:

$$
Z_{t}=1 / \sqrt{G_{t}^{2}+\left(\pm B_{t}\right)^{2}}
$$

$\left(\pm \theta_{Z}\right)_{t}=\tan ^{-1}\left[\pm B_{t} / G_{t}\right]$
[If your calculator has the rectangular to polar conversion feature (R-P), enter G_{t} as the x coordinate and $\pm B_{t}$ as the y coordinate. Calculator output will be $\mathrm{Z}^{-1}\left(\pm \theta_{\mathrm{Z}}\right)$. Convert the magnitude to Z with the $1 / \mathrm{x}$ key]

See also - Note (d)

Polar Impedance
Definitions and
Vector Algebra

$Z_{\text {POLAR }}$

$Z_{\text {POLAR }}=Z / \pm \theta Z$
$Z=$ Magnitude of impedance
$\pm \theta_{\mathrm{Z}}=$ "Phase" angle of impedance
$\pm \theta_{\mathrm{Z}}=$ The vectorial resultant angle when the magnitude of series resistance is placed at 0°, the magnitude of inductive reactance is placed at $+90^{\circ}$ and the magnitude of capacitive reactance is placed at -90°.
$\pm \theta_{Z}=$ That angle which has a tangent equal to the series reactance divided by the series resistance; the reactance having a positive sign if inductive and a negative sign if capacitive.
$\mathbf{Z}_{\text {POLAR }}=$ Impedance in a form where multiplication and division operations may be performed almost as easily as with ordinary numbers. (vector algebra)
$\left(Z_{\text {POLAR }}\right)_{1} \cdot\left(Z_{\text {POLAR }}\right)_{2}=Z_{1} Z_{2} /\left(\pm \theta_{Z}\right)_{1}+\left(\pm \theta_{Z}\right)_{2}$
$\left(Z_{\text {POLAR }}\right)_{1} /\left(Z_{\text {POLAR }}\right)_{2}=Z_{1} / Z_{2} /\left(\pm \theta_{Z}\right)_{1}-\left(\pm \theta_{Z}\right)_{2}$
$E_{\text {POLAR }}=I\left(Z_{\text {POLAR }}\right)=I Z / 0^{\circ}+\left(\pm \theta_{Z}\right)$
$I_{\text {POLAR }}=E /\left(Z_{\text {POLAR }}\right)=E / Z / 0^{\circ}-\left(\pm \theta_{Z}\right)$
$Y_{\text {POLAR }}=1 /\left(Z_{\text {POLAR }}\right)=1 / Z / 0^{\circ}-\left(\pm \theta_{Z}\right)$
$\pm \theta_{\mathrm{Z}}= \pm \theta_{\mathrm{E}}=-\left(\pm \theta_{\mathrm{I}}\right)=-\left(\pm \theta_{\mathrm{Y}}\right)$
$Z_{\text {POLAR }}=$ The form used most often as the final resultant when simplifying complex circuits. It is equally "correct" however for the final resultant to be $\mathbf{Z}_{\text {RECT., }} \mathbf{Y}_{\text {POLAR }}$ or $\mathbf{Y}_{\text {RECT. }}$. Both forms of \mathbf{Z} are series equivalent while both forms of Y are parallel equivalent.
$Z_{\text {POLAR }}=Z_{\text {RECT }}=\left[Y_{\text {POLAR }}\right]^{-1}=\left[Y_{\text {RECT }}\right]^{-1}$

Rectangular Impedance Definitions, Sum and Difference

$\mathrm{Z}_{\text {RECT }}=\mathrm{R}_{\mathrm{s}}+\left(\pm \mathrm{X}_{\mathrm{s}}\right) \mathrm{j}$ $\mathrm{R}_{\mathrm{s}}=$ Actual or equivalent total series resistance
$\pm \mathrm{X}_{\mathrm{s}}=$ Actual or equivalent net series reactance where:
$+X^{\mid+X_{s}} \mid=X_{L}$ and $\left|-X_{s}\right|=X_{C}$ $\pm X_{s}=X_{L}-X_{C}$
$\mathbf{Z}_{\text {RECT }}=R_{s}+\left(\pm X_{s}\right) j$ regardless of actual circuit configuration. The rectangular impedance of a parallel circuit represents the equivalent series circuit.(Note: Equivalent circuit values will vary with frequency.)
$\mathbf{Z}_{\text {RECT }}=$ Impedance in a form where multiple impedances in series may be summed as easily as multiple resistances and multiple reactances in series. The series connected impedances may be any combination of individual series, parallel and unknown circuits.
$\left[Z_{\text {RECT }}\right]_{\text {TOTAL }}=$ The sum of the resistive quantities and the algebraic sum of the reactive quantities.
$\mathbf{Z}_{\text {RECT }}=$ The form necessary to perform any mathematical operation involving the addition or subtraction of impedances.
$\mathbf{Z}_{\text {RECT }}=$ The form used by some for all mathematical operations and for the final resultant. (Not recommended. Use $\mathbf{Z}_{\text {POLAR }}$ for all multiplication and division and for the final resultant)
$\mathbf{Z}_{\text {RECT }}$ may be converted (transformed) at any time to $\mathbf{Z}_{\text {POLAR }}$ or $\left[Z_{\mathrm{RECT}}\right]^{-1}$ using the appropriate formula. $\left(\left[Z_{\text {RECT }}\right]^{-1}=\mathbf{Y}_{\text {RECT }}\right)$
$\mathbf{Z}_{\text {RECT }}=\mathbf{Z}_{\text {POLAR }}=\left[\mathbf{Y}_{\text {POLAR }}\right]^{-1}=\left[Y_{\text {RECT }}\right]^{-1}$

$Z_{\text {RECT }}$

Rectangular Impedance Notes

1. This handbook contains no circuit elements to $\mathbf{Z}_{\text {RECT }}$ direct formulas. It is intended that all simple circuits should be converted to polar impedance and then converted as necessary to and from $Z_{\text {RECT }}$ and $\left[Z_{\text {RECT }}\right]^{-1}$.
2. The author apologizes to readers with good working knowledge of $\mathbf{Y}_{\text {RECT }}$ for the use of $\left[Z_{\text {RECT }}\right]^{-1}$, however $\mathbf{Y}_{\text {RECT }}$ is a necessary part of this section, $\left[\mathbf{Z}_{\mathrm{RECT}}\right]^{-1}$ fits the format better and many engineers as well as most technicians are very uncomfortable with $\mathbf{Y}_{\text {RECT }}$.
3. The use of $\left[\mathbf{Z}_{\text {POLAR }}\right]^{-1}$ or $\mathbf{Y}_{\text {POLAR }}$ is not recommended. Do not confuse yourself or others by continually changing the signs of the angles. Convert directly from $\mathbf{Z}_{\text {POLAR }}$ to $\mathrm{Y}_{\text {RECT }}$.
4. Use the rectangular forms $R_{s}+\left(\pm X_{s}\right) j$ and $G-(\pm B) j$ as shown and do not simplify. The plus sign will identify the complex quantity as impedance or voltage and as a series equivalent quantity while the minus sign identifies the complex quantity as reciprocal impedance, admittance or current and also as a parallel equivalent quantity. Note also that in this form the sign of the reactive quantity within the parentheses is real and does not change during inversions. This maintains identification of the reactive quantity as inductive (+) or as capacitive ($(-)$ at all times.
5. If any reader is uncomfortable with all rectangular quantities, direct conversion of series resistive and series reactive quantities to equivalent parallel reciprocal resistive and reciprocal reactive quantities is recommended. This conversion and its reverse allows the simplification of any series, parallel or series-parallel combination of impedances to a single impedance. This method is as fast as any other and there is less chance of error.

Reciprocal Rectangular Impedance Definitions, Sum and Difference

$\left[Z_{\text {RECT }}\right]^{-1}=\left[R_{s}+\left(\pm X_{s}\right) j\right]^{-1}=R_{p}^{-1}-\left(\pm X_{p}^{-1}\right) j$
The reciprocal of $\mathbf{Z}_{\text {RECT }}$. (intrinsically a series or series equivalent quantity) is intrinsically a parallel or parallel equivalent quantity.
$\left[\mathbf{Z}_{\text {RECT }}\right]^{-1}=\mathbf{Y}_{\text {RECT }}=$ Rectangular admittance
$\mathbf{Y}_{\text {RECT }}=\mathrm{G}-(\pm \mathrm{B}) \mathrm{j}$ See also- $\mathbf{Y}_{\text {RECT }}$
$\mathrm{G}=$ Total parallel conductance or the equivalent parallel conductance
$\pm \mathrm{B}=$ Total parallel susceptance or the equivalent parallel susceptance where:
$\pm B=B_{L}-B_{C}, \quad|-B|=B_{C}$
$\left[Z_{\text {RECT }}\right]^{-1}=R_{p}^{-1}-\left(\pm X_{p}^{-1}\right) j$ regardless of actual circuit configuration. The rectangular admittance of a series circuit represents the equivalent parallel circuit with the resistance and reactance in reciprocal form. (Note: Equiv. circuit values vary with freq.)
$\left[Z_{\text {RECT }}\right]^{-1}=$ Reciprocal impedance in a form where complex quantities in parallel may be simplified as easily as multiple resistances and multiple reactances in series. The complex quantities in parallel may represent any combination of individual series, parallel or unknown circuit configurations.
$\left[Z_{\text {RECT }}\right]_{\text {TOTAL }}^{-1}=$ The sum of the reciprocal resistances and the algebraic sum of the reciprocal reactances.
$\left[Z_{\text {RECT }}\right]^{-1}$ may be inverted back to rectangular or polar impedance at any time using the appropriate formula.

$$
\left[Z_{\text {RECT }}\right]^{-1}=\left[Z_{\text {POLAR }}\right]^{-1}=\mathbf{Y}_{\text {RECT }}=\mathbf{Y}_{\text {POLAR }}
$$

See also - Note (d)

$Z_{\text {RECT }}$

Rectangular Impedances In Series

$\left[\mathbf{Z}_{\text {RECT }}\right]_{\text {TOTAL }}=\left[\mathbf{Z}_{\text {RECT }}\right]_{1}+\left[\mathbf{Z}_{\text {RECT }}\right]_{2} \cdots+\left[\mathbf{Z}_{\text {RECT }}\right]_{\text {n }}$
Note: Rectangular impedance represents equivalent series resistance and reactance, however the actual circuit configuration may be series, parallel or unknown.

The first number in the rectangular impedance quantity is equivalent series resistance, the real part of impedance, the 0° component of impedance or the x axis coordinate of impedance.
The second number in the rectangular impedance quantity represents equivalent series reactance, the imaginary part of impedance, the $\pm 90^{\circ}$ component of impedance or the y axis coordinate of impedance.
When summing rectangular impedances, all resistive ($\mathbf{R}_{\mathbf{s}}$) components and all reactive ($\pm \mathrm{X}_{\mathrm{s}}$) components must be summed separately. The reactive components ($\pm \mathrm{X}_{\mathrm{s}}$) must also be summed algebraically. (Use the rectangular form $R_{s}+\left(\pm X_{s}\right) j$ not $\left.R_{s} \pm j X_{s}\right)$

$\left[\mathrm{Z}_{\text {RECT }}\right]_{1}$	$=\left(\mathrm{R}_{\mathrm{s}}\right)_{1}$	$+\left(\pm \mathrm{X}_{\mathrm{s}}\right)_{1}$	j
$\left[\mathrm{Z}_{\text {RECT }}\right]_{2}$	$=\left(\mathrm{R}_{\mathrm{s}}\right)_{2}$	$+\left(\pm \mathrm{X}_{\mathrm{s}}\right)_{2}$	j
$\left[\mathrm{Z}_{\text {RECT }}\right]_{\mathrm{n}}$	$=\left(\mathrm{R}_{\mathrm{s}}\right)_{\mathrm{n}}$	$+\left(\pm \mathrm{X}_{\mathrm{s}}\right)_{\mathrm{n}}$	j
$\left[\mathrm{Z}_{\text {RECT }}\right]_{\text {TOTAL }}$	$=\left(\mathrm{R}_{\mathrm{s}}\right)_{\text {TOTAL }}+\left(\pm \mathrm{X}_{\mathrm{s}}\right)_{\text {TOTAL }} \mathrm{j}$		
Note: $\mathrm{Z}_{\text {POLAR }}$	$=\sqrt{\left(\mathrm{R}_{\mathrm{s}}\right)_{\mathrm{t}}^{2}+\left(\pm \mathrm{X}_{\mathrm{s}}\right)_{\mathrm{t}}^{2} / \tan ^{-1}\left[\left(\pm \mathrm{X}_{\mathrm{s}}\right)_{\mathrm{t}} /\left(\mathrm{R}_{\mathrm{s}}\right)_{\mathrm{t}}\right]}$		
$\mathrm{Z}_{\text {RECT }}$	$=\left[\mathrm{Z} \cos \theta_{\mathrm{Z}}\right]+\left[\mathrm{Z} \sin \left(\pm \theta_{\mathrm{Z}}\right)\right] \mathrm{j}$		

Reciprocal Rectangular Impedances In Parallel

$$
\begin{aligned}
& {\left[Z_{\text {RECT }}\right]_{\mathfrak{t}}^{-1}=\left[Z_{\text {RECT }}\right]_{1}^{-1}+\left[Z_{\text {RECT }}\right]_{2}^{-1} \cdots+\left[Z_{\text {RECT }}\right]_{n}^{-1}} \\
& {\left[Z_{\text {RECT }}\right]^{-1}=Y_{\text {RECT }}} \\
& {\left[\mathbf{Y}_{\text {RECT }}\right]_{\mathbf{t}}=\left[\mathbf{Y}_{\text {RECT }}\right]_{\mathbf{1}}+\left[\mathbf{Y}_{\text {RECT }}\right]_{2} \cdots+\left[\mathbf{Y}_{\text {RECT }}\right]_{\mathbf{n}}} \\
& {\left[Z_{\text {RECT }}\right]^{-1}=R_{p}^{-1}-\left(\pm X_{p}^{-1}\right) j} \\
& \mathbf{Y}_{\text {RECT }}=G-(\pm B) j \\
& G=R_{p}^{-1}, \quad \pm B= \pm X_{p}^{-1} \\
& \text { Note: } \quad \mathrm{Z}_{\text {POLAR }}=\left[\mathrm{G}_{\mathrm{t}}^{2}+\left(\pm \mathrm{B}_{\mathrm{t}}\right)^{2}\right]^{-\frac{1}{2}} / \tan ^{-1}\left[\pm \mathrm{B}_{\mathrm{t}} / \mathrm{G}_{\mathrm{t}}\right] \\
& {\left[Z_{\mathrm{RECT}}\right]^{-1}=\left[\mathrm{Z}^{-1} \cos \theta_{\mathrm{Z}}\right]-\left[\mathrm{Z}^{-1} \sin \left(\pm \theta_{\mathrm{Z}}\right)\right] \mathrm{j}} \\
& \text { See also - Note (d) }
\end{aligned}
$$

Conversions From Polar Impedance
$\mathbf{Z}_{\text {POLAR }}$ To $\mathbf{Z}_{\text {RECT }}$
$\mathbf{z}_{\text {RECT }}=\left[\mathrm{Z} \cos \theta_{z}\right]+\left[\mathrm{Z} \sin \left(\pm \theta_{\mathrm{z}}\right)\right] \mathrm{j}$
$\mathbf{Z}_{\text {POLAR }}$ To $\mathbf{Y}_{\text {RECT }}$ or $\left[\mathbf{Z}_{\text {RECT }}\right]^{-1}$
$Y_{\text {RECT }}=G-(\pm B) j=R_{p}^{-1}-\left(\pm X_{p}^{-1}\right) j$
$\mathbf{Y}_{\text {RECT }}=\left[\mathrm{Z}^{-1} \cos \theta_{\mathrm{Z}}\right]-\left[\mathrm{Z}^{-1} \sin \left(\pm \theta_{\mathrm{Z}}\right)\right] \mathrm{j}$
$\left[\mathbf{Z}_{\text {RECT }}\right]^{-1}=\mathbf{Y}_{\text {RECT }}$

$$
\begin{aligned}
& \mathrm{Z}_{\text {POLAR }} \text { To } \mathrm{Y}_{\text {POLAR }} \\
& \mathrm{Y}_{\mathrm{POLAR}}=\mathrm{Z}^{-1} /-(\pm \theta \mathrm{z})
\end{aligned}
$$

$\mathbf{Z}_{\text {Polar }}$ To Series R and X

$$
\begin{array}{rr}
\mathrm{R}_{\mathrm{s}}=\mathrm{Z} \cos \theta_{\mathrm{Z}} & \pm \mathrm{X}_{\mathrm{s}}=\mathrm{Z} \sin \left(\pm \theta_{\mathrm{Z}}\right) \\
\left|+\mathrm{X}_{\mathrm{s}}\right|=\mathrm{X}_{\mathrm{L}} & \left|-\mathrm{X}_{\mathrm{s}}\right|=\mathrm{X}_{\mathrm{C}} \\
\hline
\end{array}
$$

$\mathbf{Z}_{\text {poLar }}$ To Parallel R and X

$$
\begin{array}{cc}
\mathrm{R}_{\mathrm{p}}=\mathrm{Z} /\left(\cos \theta_{\mathrm{Z}}\right) & \pm \mathrm{X}_{\mathrm{p}}=\mathrm{Z} /\left[\sin \left(\pm \theta_{\mathrm{Z}}\right)\right] \\
\left|+\mathrm{X}_{\mathrm{p}}\right|=\mathrm{X}_{\mathrm{L}} & \left|-\mathrm{X}_{\mathrm{p}}\right|=\mathrm{X}_{\mathrm{C}}
\end{array}
$$

See also - Note © ${ }^{(1)}$

Conversion To Polar Impedance

Equiv. Series R and X To $\mathbf{Z}_{\text {POLAR }}$

$$
\begin{aligned}
\mathrm{Z} & =\sqrt{\mathrm{R}_{\mathrm{s}}^{2}+\left(\pm \mathrm{X}_{\mathrm{s}}\right)^{2}} \\
\pm \theta_{\mathrm{Z}} & =\tan ^{-1}\left[\pm \mathrm{X}_{\mathrm{s}} / \mathrm{R}_{\mathrm{s}}\right]
\end{aligned}
$$

Equiv. Parallel R and X To $\mathbf{Z}_{\text {polar }}$

$$
\begin{aligned}
Z & =\left[R_{p}^{-2}+\left(\pm X_{p}\right)^{-2}\right]^{-\frac{1}{2}} \\
\pm \theta_{Z} & =\tan ^{-1}\left[R_{p} / \pm X_{p}\right]
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{Z}_{\text {RECT }} \text { To } Z_{\text {POLAR }} \\
\mathbf{Z}_{\text {RECT }}=R_{s}+\left(\pm X_{s}\right) j \\
Z=\sqrt{R_{s}^{2}+\left(\pm X_{s}\right)^{2}} \\
\pm \theta_{Z}=\tan ^{-1}\left[\pm X_{s} / R_{s}\right] \\
{\left[\mathbf{Z}_{\text {RECT }}\right]^{-1} \text { or } \mathbf{Y}_{\text {RECT }} \text { To } \mathbf{Z}_{\text {POLAR }}} \\
{\left[Z_{\text {RECT }}\right]^{-1}=Y_{\text {RECT }}=G-(\pm B) j} \\
=R_{p}^{-1}-\left(\pm X_{p}^{-1}\right) j \\
Z=\left[G^{2}+(\pm B)^{2}\right]^{-\frac{1}{2}} \quad \\
\pm \theta_{Z}=\tan ^{-1}[\pm B / G]
\end{gathered}
$$

See also - Note ©
$\mathbf{Z}_{\text {RECT }}$ To $Z_{\text {POLAR }}$
$\mathbf{Z}_{\text {RECT }}=R_{s}+\left(\pm X_{s}\right) j$
$\mathbf{Z}_{\text {POLAR }}=\sqrt{R_{s}^{2}+\left(\pm X_{s}\right)^{2}} \angle \tan ^{-1}\left[\pm X_{s} / R_{s}\right]$
$\mathbf{Z}_{\text {RECT }}$ To $\mathbf{Y}_{\text {POLAR }}$

$$
Z_{\text {RECT }}=R_{s}+\left(\pm X_{s}\right) j
$$

$$
\mathbf{Y}_{\text {POLAR }}=\left[R_{s}^{2}+\left(\pm X_{s}\right)^{2}\right]^{-\frac{1}{2}} / \tan ^{-1}\left[-\left(\pm X_{s} / R_{s}\right)\right]
$$

$$
Z_{\text {RECT }} \text { To } Y_{\text {RECT }} \text { or }\left[Z_{\text {RECT }}\right]^{-1}
$$

$$
Z_{\text {RECT }}=R_{s}+\left(\pm X_{s}\right) j
$$

$$
\mathbf{Y}_{\text {RECT }}=G-(\pm B) j=\left[Z_{\text {RECT }}\right]^{-1}=R_{p}^{-1}-\left(\pm X_{p}^{-1}\right) j
$$

$$
Y_{R E C T}=\left[R_{s} /\left(\pm X_{s}^{2}+R_{s}^{2}\right)\right]-\left[\pm X_{s} /\left(\pm X_{s}^{2}+R_{s}^{2}\right)\right] j
$$

$\mathbf{Z}_{\text {RECT }}$ To Equiv. Parallel R and X

$$
Z_{\text {RECT }}=R_{s}+\left(\pm X_{s}\right) j
$$

$$
\begin{aligned}
R_{p}= & \left(\pm X_{s}^{2}+R_{s}^{2}\right) / R_{s} \\
\pm X_{p}= & \left(\pm X_{s}^{2}+R_{s}^{2}\right) / \pm X_{s} \\
& \left|+X_{p}\right|=X_{L} \quad\left|-X_{p}\right|=X_{C}
\end{aligned}
$$

See also - Note (d)

Conversions To
Rectangular
Impedance

$\mathbf{Z}_{\text {RECT }}$

Conversions

$$
\begin{aligned}
& \mathbf{Z}_{\text {POLAR }} \text { To } \mathbf{Z}_{\text {RECT }} \\
& Z_{\text {POLAR }}=\mathbf{Z} / \pm \theta_{\mathrm{Z}} \\
& \mathrm{Z}_{\mathrm{RECT}}=\left[\mathrm{Z} \cos \theta_{\mathrm{Z}}\right]+\left[\mathrm{Z} \sin \left(\pm \theta_{\mathrm{Z}}\right)\right] \mathrm{j} \\
& \mathbf{Y}_{\text {POLAR }} \text { To } \mathbf{Z}_{\text {RECT }} \\
& Y_{\text {POLAR }}=Y \not \pm \theta_{\mathrm{Y}} \\
& \mathbf{Z}_{\text {RECT }}=\left[\mathrm{Y}^{-1} \cos \theta_{\mathrm{Y}}\right]+\left[-\mathrm{Y}^{-1} \sin \left(\pm \theta_{\mathrm{Y}}\right)\right] \mathrm{j} \\
& \mathbf{Y}_{\text {RECT }} \text { or }\left[\mathbf{Z}_{\text {RECT }}\right]^{-1} \text { To } \mathbf{Z}_{\text {RECT }} \\
& \mathbf{Y}_{\text {RECT }}=\mathbf{G - (\pm B) j} \\
& Z_{\text {RECT }}=\left[G /\left(\pm B^{2}+G^{2}\right)\right]+\left[\pm B /\left(\pm B^{2}+G^{2}\right)\right] j \\
& \text { Series } \mathrm{R} \text { and } \mathrm{X} \text { To } \mathbf{Z}_{\text {RECT }} \\
& \mathbf{Z}_{\text {RECT }}=R_{s}+\left(\pm X_{s}\right) j \\
& \text { Parallel } \mathrm{R} \text { and } \mathrm{X} \text { To } \mathbf{Z}_{\text {RECT }} \\
& Z_{\text {RECT }}=\left[\left(R_{p} / \pm X_{p}^{2}\right)+R_{p}^{-1}\right]^{-1}+\left[\left(\pm X_{p} / R_{p}^{2}\right)+\left(\pm X_{p}^{-1}\right)\right]^{-1} j \\
& \mathrm{G} \text { and } \mathrm{B} \text { to } \mathrm{Z}_{\text {RECT }} \\
& Z_{\text {RECT }}=\left[G /\left(\pm B^{2}+G^{2}\right)\right]+\left[\pm B /\left(\pm B^{2}+G^{2}\right)\right] j \\
& \text { See also - Note (d) }
\end{aligned}
$$

Conversion From
Reciprocal
Rectangular Impedance

$\left[Z_{\text {RECT }}\right]^{-1}$

$\left[_{\mathbf{Z}_{\text {RECT }}}\right]^{-1}$ or $\mathbf{Y}_{\text {RECT }}$ To $\mathbf{Z}_{\text {POLAR }}$
$\left[\mathbf{Z}_{\mathrm{RECT}}\right]^{-1}=\mathbf{Y}_{\text {RECT }}=\mathrm{G}-(\pm \mathrm{B}) \mathrm{j}$
$Z_{\text {POLAR }}=\left[G^{2}+(\pm B)^{2}\right]^{-\frac{1}{2}} / \tan ^{-1}[\pm B / G]$
$\left[\mathbf{Z}_{\text {RECT }}\right]^{-1}$ or $\mathbf{Y}_{\text {RECT }}$ To $\mathbf{Z}_{\text {RECT }}$
$\left[Z_{\text {RECT }}\right]^{-1}=Y_{\text {RECT }}=G-(\pm B) j$
$\mathrm{Z}_{\text {RECT }}=\left[\mathrm{G} /\left(\pm \mathrm{B}^{2}+\mathrm{G}^{2}\right)\right]+\left[\pm \mathrm{B} /\left(\pm \mathrm{B}^{2}+\mathrm{G}^{2}\right)\right] \mathrm{j}$
$\left[\mathbf{Z}_{\text {RECT }}\right]^{-1}$ or $\mathbf{Y}_{\text {RECT }}$ To $\mathbf{Y}_{\text {POLAR }}$
$\left[\mathbf{Z}_{\text {RECT }}\right]^{-1}=\mathbf{Y}_{\text {RECT }}=G-(\pm B) j$
$\mathrm{Y}_{\text {POLAR }}=\sqrt{\mathrm{G}^{2}+(\pm \mathrm{B})^{2}} / \tan ^{-1}[-(\pm \mathrm{B} / \mathrm{G})]$
$\left[Z_{\text {RECT }}\right]^{-1}$ or $\mathbf{Y}_{\text {RECT }}$ To Equiv. Series R and X
$\left[\mathbf{Z}_{\text {RECT }}\right]^{-1}=\mathbf{Y}_{\text {RECT }}=G-(\pm B) j$
$\mathrm{R}_{\mathrm{s}}=\mathrm{G} /\left(\pm \mathrm{B}^{2}+\mathrm{G}^{2}\right) \quad \pm \mathrm{X}_{\mathrm{s}}= \pm \mathrm{B} /\left(\pm \mathrm{B}^{2}+\mathrm{G}^{2}\right)$
$\left[\mathbf{Z}_{\text {RECT }}\right]^{-1}$ or $\mathbf{Y}_{\text {RECT }}$ To Equiv. Parallel R and X
$\left[Z_{\text {RECT }}\right]^{-1}=Y_{\text {RECT }}=G-(\pm B) j$
$\mathrm{R}_{\mathrm{p}}=\mathrm{G}^{-1} \quad \pm \mathrm{X}_{\mathrm{p}}= \pm \mathrm{B}^{-1}$
See also - Note (d)

Conversions To

Reciprocal

Rectangular Impedance $\left[Z_{\text {RECT }}\right]^{-1}$
$\mathbf{Z}_{\text {POLAR }}$ To $\mathbf{Y}_{\text {RECT }}$ or $\left[\mathbf{Z}_{\text {RECT }}\right]^{-1}$

$$
\mathbf{Z}_{\text {POLAR }}=\mathbf{Z} / \pm \theta_{\mathrm{Z}}
$$

$\left[Z_{\text {RECT }}\right]^{-1}=Y_{\text {RECT }}=G-(\pm B) j$
$\left[\mathbf{Z}_{\mathrm{RECT}}\right]^{-1}=\left[\mathrm{Z}^{-1} \cos \theta_{\mathrm{Z}}\right]-\left[\mathrm{Z}^{-1} \sin \left(\pm \theta_{\mathrm{Z}}\right)\right] \mathrm{j}$
$Z_{\text {RECT }}$ To $\mathbf{Y}_{\text {RECT }}$ or $\left[Z_{\text {RECT }}\right]^{-1}$

$$
Z_{\text {RECT }}=R_{s}+\left(\pm X_{s}\right) j
$$

$\left[Z_{\text {RECT }}\right]^{-1}=Y_{\text {RECT }}=G-(\pm B) j$
$\left[Z_{\text {RECT }}\right]^{-1}=\left[R_{s} /\left(\pm X_{s}^{2}+R_{s}^{2}\right)\right]-\left[\pm X_{s} /\left(\pm X_{s}^{2}+R_{s}^{2}\right)\right] j$
Series R and X To $\mathbf{Y}_{\text {RECT }}$ or $\left[Z_{\text {RECT }}\right]^{-1}$
$\left[Z_{\text {RECT }}\right]^{-1}=Y_{\text {RECT }}=G-(\pm B) j$
$\left[Z_{\text {RECT }}\right]^{-1}=\left[R_{s} /\left(\pm X_{s}^{2}+R_{s}^{2}\right)\right]-\left[\pm X_{s} /\left(\pm X_{s}^{2}+R_{s}^{2}\right)\right] j$
Parallel R and X To $\mathbf{Y}_{\text {RECT }}$ or $\left[\mathbf{Z}_{\text {RECT }}\right]^{-1}$
$\left[Z_{\text {RECT }}\right]^{-1}=R_{p}^{-1}-\left(\pm X_{p}^{-1}\right) j$
$\mathbf{Y}_{\text {POLAR }}$ To $\mathbf{Y}_{\text {RECT }}$ or $\left[Z_{\text {RECT }}\right]^{-1}$
$\left[\mathbf{Z}_{\mathrm{RECT}}\right]^{-1}=\left[\mathrm{Y} \cos \theta_{\mathrm{Y}}\right]-\left[-\mathrm{Y} \sin \left(\pm \theta_{\mathrm{Y}}\right)\right] \mathrm{j}$
See also - Note (d)

z

Rules of Vector Algebra

$$
\begin{aligned}
Z_{1} \cdot Z_{2} & =Z_{1} Z_{2} /\left(\pm \theta_{Z}\right)_{1}+\left(\pm \theta_{Z}\right)_{2} \\
Z_{1} / Z_{2} & =Z_{1} / Z_{2} /\left(\pm \theta_{Z}\right)_{1}-\left(\pm \theta_{Z}\right)_{2} \\
(+1) \cdot Z & =Z / 0^{\circ}+\left(\pm \theta_{Z}\right)= \pm \theta_{Z} \\
(+1) / Z & =1 / Z / 0^{\circ}-\left(\pm \theta_{Z}\right)=-\left(\pm \theta_{Z}\right) \\
Z_{1}+Z_{2} & =\left[Z_{\text {RECT }}\right]_{1}+\left[Z_{\text {RECT }}\right]_{2} \\
Z_{1}+Z_{2} & =\left[R_{s}+\left(\pm X_{s}\right) j\right]_{1}+\left[R_{s}+\left(\pm X_{s}\right) j\right]_{2} \\
Z_{1}+Z_{2} & =\left[\left(R_{s}\right)_{1}+\left(R_{s}\right)_{2}\right]+\left[\left(\pm X_{s}\right)_{1}+\left(\pm X_{s}\right)_{2}\right] j \\
Z_{1}-Z_{2} & =\left[\left(R_{s}\right)_{1}-\left(R_{s}\right)_{2}\right]+\left[\left(\pm X_{s}\right)_{1}-\left(\pm X_{s}\right)_{2}\right] j \\
Z+(+1) & =\left[R_{s}+1\right]+\left[\pm X_{s}\right] j \\
Z-(+1) & =\left[R_{s}-1\right]+\left[\pm X_{s}\right] j \\
Z_{1}^{-1}+Z_{2}^{-1} & =\left[Z_{R E C T}\right]_{1}^{-1}+\left[Z_{R E C T}\right]_{2}^{-1} \\
Z_{1}^{-1}+Z_{2}^{-1} & =\left[Y_{\text {RECT }}\right]_{1}+\left[Y_{\text {RECT }}\right]_{2} \\
Z_{1}^{-1}+Z_{2}^{-1} & =[G-(\pm B) j]_{1}+\left[G-(\pm B)_{j}\right]_{2} \\
Z_{1}^{-1}+Z_{2}^{-1} & =\left[G_{1}+G_{2}\right]-\left[(\pm B)_{1}+(\pm B)_{2}\right] j \\
Z_{1}^{-1}-Z_{2}^{-1} & =\left[G_{1}-G_{2}\right]-\left[(\pm B)_{1}-(\pm B)_{2}\right] j \\
Z^{-1}+(+1) & =[G+1]-[\pm B] j \\
Z^{-1}-(+1) & =[G-1]-[\pm B] j
\end{aligned}
$$

See-Z Conversion Formulas

Z Notes:
VA-1 Impedance is a complex quantity requiring the mathematical operation of addition and subtraction to be performed in rectangular form while multiplication and division operations are usually performed in polar form by treating the phase angle as an exponent. Impedances in rectangular form may be multiplied like other binomials, division however requires the divisor to be rationalized by multiplying the divisor and the dividend by the conjugate of the divisor (the conjugate of $\mathbf{R}_{s}+X_{s} \mathbf{j}=\mathbf{R}_{s}-X_{s} \mathbf{j}$). To eliminate this lengthy calculation, it is recommended that all multiplication and division be performed in polar form.

Input IMPEDANCE Vector Algebra	
$\begin{aligned} & E_{g}=E_{g} / 0^{\circ} \\ & Z_{i}=Z \\ & I_{o}=E_{g} / Z \end{aligned}$	VA-1 VA-2 VA-3 VA-5
$\begin{aligned} & I_{g}=I_{g} / 0^{\circ} \\ & Z_{i}=\left[Z_{1}^{-1}+Z_{2}^{-1}\right]^{-1} \\ & E_{g}=I_{g} Z_{i} \\ & I_{o}=\left(I_{g} Z_{i}\right) / Z_{i} \end{aligned}$	VA-1 VA-2 VA-3 VA-4 VA-5
$\begin{aligned} & E_{g}=\mathrm{E} / 0^{\circ} \\ & \mathrm{Z}_{\mathrm{i}}=\mathrm{Z}_{3}+\left[\mathrm{Z}_{2}^{-1}+\mathrm{Z}_{1}^{-1}\right]^{-1} \\ & \mathrm{I}_{\mathrm{g}}=\mathrm{E}_{\mathrm{g}} / Z_{\mathrm{i}} \\ & \mathrm{I}_{\mathrm{o}}=\mathrm{E}_{\mathrm{g}} /\left(\mathrm{Z}_{\mathrm{i}}\left[\left(\mathrm{Z}_{1} / Z_{2}\right)+1\right]\right) \end{aligned}$	VA-1 VA-2 VA-3 VA-4 VA-5
Z Notes: $\begin{array}{rlrl} \text { VA- } 2 & \mathrm{E}_{\mathrm{g}} & =\text { Generator voltage } & \mathrm{E}_{\mathrm{o}}=\text { Output voltage } \\ \mathrm{I}_{\mathrm{g}} & =\text { Generator current } & \mathrm{I}_{\mathrm{o}}=\text { Output current } \\ \mathrm{Y}_{\mathrm{o}} & =\text { Output admittance } & \mathrm{Y}_{\mathrm{t}}=\text { Total admittance } \\ \mathrm{Z}_{\mathrm{i}} & =\text { Input impedance } & \mathrm{Z}_{\mathrm{o}}=\text { Output impedance } \\ \mathrm{Z}_{\mathrm{t}} & =\text { Total or Equivalent impedance } \end{array}$	

Input IMPEDANCE Vector Algebra	
$\begin{aligned} & I_{g}=I_{g} / 0^{\circ} \\ & Z_{i}=\left(Z_{4}^{-1}+\left[Z_{3}+\left(Z_{2}^{-1}+Z_{1}^{-1}\right)^{-1}\right]^{-1}\right)^{-1} \\ & E_{g}=I_{g} Z_{i} \\ & I_{o}=I_{g}\left[1-\left(Z_{i} / Z_{4}\right)\right] /\left[\left(Z_{1} / Z_{2}\right)+1\right] \end{aligned}$	VA-1 VA-2 VA-3 VA-4 VA-5
$\begin{aligned} & E_{g}=\mathrm{E} / 0^{\circ} \\ & Z_{i}=Z_{5}+\left(Z_{4}^{-1}+\left[Z_{3}+\left(Z_{2}^{-1}+Z_{1}^{-1}\right)^{-1}\right]^{-1}\right)^{-1} \\ & I_{g}=E_{g} / Z_{i} \\ & I_{o}=I_{g}\left(1-\left[\left(Z_{i}-Z_{5}\right) / Z_{4}\right]\right) /\left[\left(Z_{1} / Z_{2}\right)+1\right] \end{aligned}$	VA-1 VA-2 VA-3 VA-4 VA-5

Z Notes:
VA-3 Impedances $Z, Z_{1}, Z_{2}, Z_{3}, Z_{4}$ and Z_{5} may represent any resistance, reactance, series circuit, parallel circuit, unknown circuit or any circuit regardless of complexity or configuration.
VA-4 $\mathrm{Z}^{-1}=1 / \mathrm{Z}=\mathrm{Y}, \mathrm{Y}^{-1}=1 / \mathrm{Y}=\mathrm{Z}$
VA-5 $Z, Z_{i}, Z_{0}, Y, Y_{0}, I_{0}$ and E_{0} all will vary with frequency except purely resistive circuits.
IMPEDANCE
Vector
Algebra

z

IMPEDANCE
 Δ to Y Conversion

Delta (Δ) to Wye (Y) or Reverse Conversion $\mathrm{Pi}(\pi)$ section to Tee (T) section or reverse

Transformation
Δ or π section
Y or T section

$$
\begin{aligned}
& \mathbf{z}_{1}=\left(\mathbf{z}_{\mathrm{A}} \mathbf{z}_{\mathrm{B}}\right) /\left[\mathbf{z}_{\mathrm{A}}+\mathbf{z}_{\mathrm{B}}+\mathbf{z}_{\mathrm{C}}\right] \\
& \mathbf{z}_{2}=\left(\mathbf{z}_{\mathrm{B}} \mathbf{z}_{\mathrm{C}}\right) /\left[\mathbf{z}_{\mathrm{A}}+\mathbf{z}_{\mathrm{B}}+\mathbf{z}_{\mathrm{C}}\right] \\
& \mathbf{z}_{3}=\left(\mathbf{z}_{\mathrm{A}} \mathbf{z}_{\mathrm{C}}\right) /\left[\mathbf{z}_{\mathrm{A}}+\mathbf{z}_{\mathrm{B}}+\mathbf{z}_{\mathrm{C}}\right] \\
& \mathbf{z}_{\mathrm{A}}=\left[\left(\mathbf{z}_{1} \mathbf{z}_{2}\right)+\left(\mathbf{z}_{2} \mathbf{z}_{3}\right)+\left(\mathbf{z}_{1} \mathbf{z}_{3}\right)\right] / \mathbf{z}_{2} \\
& \mathbf{z}_{\mathrm{B}}=\left[\left(\mathbf{z}_{1} \mathbf{z}_{2}\right)+\left(\mathbf{z}_{2} \mathbf{z}_{3}\right)+\left(\mathbf{Z}_{1} \mathbf{z}_{3}\right)\right] / \mathbf{z}_{3} \\
& \mathbf{z}_{\mathrm{C}}=\left[\left(\mathbf{z}_{1} \mathbf{z}_{2}\right)+\left(\mathbf{z}_{2} \mathbf{z}_{3}\right)+\left(\mathbf{z}_{1} \mathbf{z}_{3}\right)\right] / \mathbf{z}_{1}
\end{aligned}
$$

Page Notes:

1. Technically, delta and wye diagrams should be drawn with only three terminals.
2. Convert all impedances and intermediate solutions to both polar and rectangular form. Perform all addition in rectangular form. Perform all multiplication and division in polar form.

PASSIVE CIRCUITS

SECTION 1.2
 GREEK
 LETTERS

Spelling and Pronunciation	$\alpha+0 \omega$			Greek Alphabet	
	$\begin{array}{\|c\|} \hline \text { Small } \\ \text { (Script) } \end{array}$	$\begin{array}{\|c\|} \hline \text { Large } \\ \text { (Capital) } \end{array}$	Spelling and Pronunciation	$\begin{array}{\|c} \hline \text { Small } \\ \text { (Script) } \end{array}$	$\begin{array}{\|c\|} \hline \text { Large } \\ \text { (Capital) } \\ \hline \end{array}$
alpha (al'fa)	α	A	$\begin{aligned} & \mathrm{nu} \\ & (\mathrm{n} \overline{\mathrm{u}}) \end{aligned}$	ν	N
beta (bā'ta)	β	B	$\left(\begin{array}{l} \mathrm{xi} \\ (\mathrm{zi} \overline{\mathrm{i}}) \end{array}\right.$	ξ	Ξ
gamma (gam'a)	γ	Γ	$\begin{aligned} & \text { omicron } \\ & \text { (omi kron' } \\ & \frac{0^{\prime} \mathbf{m i}^{\prime} \mathrm{m}_{\text {kron' }}}{} \end{aligned}$	0	0
delta (del'ta)	δ	Δ	$\left\lvert\, \begin{aligned} & \mathrm{pi} \\ & (\mathrm{pi}) \end{aligned}\right.$	π	II
epsilon (ep'sa lon')	ϵ	E	$\begin{aligned} & \text { rho } \\ & (\mathrm{r} \overline{\mathrm{o}}) \end{aligned}$	ρ	P
zeta (zā'ta)	ζ	Z	$\begin{aligned} & \text { sigma } \\ & \left(\text { sig'ma }^{\prime}\right) \end{aligned}$	σs	Σ
eta (\bar{a}^{\prime} ta)	η	H	$\left\|\begin{array}{l} \text { tau } \\ \text { (tou or taw) } \\ \text { (ou as in out) } \end{array}\right\|$	τ	T
theta (thā'ta)	θ	Θ	$\begin{aligned} & \text { upsilon } \\ & \text { (up'sa lon') } \end{aligned}$	v	Υ
$\begin{aligned} & \text { iota } \\ & \text { (iō ta) } \end{aligned}$	ι	I	$\left\lvert\, \begin{aligned} & \text { phi } \\ & (\mathrm{fi} \text { or } \mathrm{fe}) \end{aligned}\right.$	ϕ	Φ
kappa (kap'a)	κ	K	$\begin{aligned} & \text { chi } \\ & (\mathrm{ki}) \end{aligned}$	χ	X
$\begin{aligned} & \text { lambda } \\ & \left(\text { lam'da }^{\prime}\right) \end{aligned}$	λ	Λ	$\left(\begin{array}{l} \mathrm{psi} \\ (\mathrm{sin}) \end{array}\right.$	ψ	Ψ
$\left.\mathrm{mu}_{(\mathrm{mu}}^{\mathrm{u}}\right)$	μ	M	$\begin{aligned} & \text { omega } \\ & \left(\overline{0} \mathrm{meg}^{\prime} \mathrm{a}\right. \\ & \left.\overline{\mathrm{o}} \mathrm{me}^{\prime} \mathrm{ga}\right) \\ & \hline \end{aligned}$	ω	Ω
Note: For obvious reasons, capital Greek letters A B E Z H I K M N O P T X are not used as electronic symbols.					

α to η

Greek Letters
$\alpha=$ Symbol for many different passive circuit quantities but no standardization has been achieved. See also-Active Circuits
$\beta=$ Symbol for many different passive circuit quantities but no standardization has been achieved. See also-Active Circuits
$\gamma=$ Symbol seldom used in electronics. Used for conductivity (G) in other fields.
$\delta=$ Symbol for loss angle.
$\delta=$ Ninety degrees minus the absolute value of the phase angle.
$\delta=90^{\circ}-|\theta|$
$\delta=\tan ^{-1} \mathrm{D}$
Note: The dissipation factor (D) of capacitors is specified by most USA manufacturers but the loss angle (δ) or the tangent of the loss angle $(\tan \delta)$ is specified by most foreign manufacturers.
$\Delta=$ Symbol for increment or decrement. (Still used for vacuum tubes, but small signal parameters such as h_{fe} are used for semiconductors.)
$\epsilon=$ Symbol for the base of natural logarithms.
$\epsilon=2.718281828 \cdots \quad \epsilon^{-1}=.3678794412 \cdots$
$\zeta=$ Seldom used and no standardization of meaning.
$\eta=$ Efficiency. See also-Active Circuits

θ

Phase Angle Definitions

$\theta=$ Symbol for phase angle .
Note: Phi (ϕ) and other greek letters are also used as symbols for phase angle.
$\theta=1$. The angular difference in phase between a quantity and a reference.
2. The phase angle of voltage, current, impedance or admittance with respect to a reference.
3. The phase angle of voltage, current, impedance or admittance with respect to the phase angle of current, voltage, resistance or conductance.
4. The phase angle of voltage or impedance with respect to the phase angle of total current or with respect to 0°.
5. The phase angle of current or admittance with respect to the phase angle of total voltage or with respect to 0°.
$\theta=$ Phase angle measured and expressed in:

1. Decimal degrees
$360^{\circ}=$ one cycle or one revolution
2. Degrees, minutes, seconds
$1^{\circ}=60^{\prime \prime}$ (minutes)
$1^{\prime}=60^{\prime \prime}$ (seconds)
3. Radians
2π radians $=$ one cycle or one revolution
4. Grads

400 grads $=$ one cycle or one revolution
$\theta=0^{\circ}$ when voltage and current are in phase. 0° when circuit is or acts as a pure resistance or conductance.
$\theta= \pm 90^{\circ}$ when circuit is or acts as a pure reactance or susceptance.
$\theta=+90^{\circ}$ to -90° for all two terminal networks when θ is angle of total voltage, total current, total impedance or total admittance.

θ

$+\theta=$ Leading phase angle. Counterclockwise rotation of a vector. Earlier in time than 0°.
$-\theta=$ Lagging phase angle. Clockwise rotation of a vector. Later in time than 0°.
$\theta_{\mathrm{E}}=1$. The difference in phase between the total voltage and the total current when the phase angle of the total current is placed at 0°.
2. The angular difference in phase between the total voltage and the current source. $\left(\mathrm{I}_{\mathrm{g}}=\mathrm{I}_{\mathrm{g}} \angle 0^{\circ}=+\mathrm{I}_{\mathrm{g}}\right.$ unless noted)
$\theta_{\text {Eo }}=$ Output voltage phase with respect to the phase of the voltage or current input. (Voltage or current generator E_{g} or $\mathrm{I}_{\mathrm{g}}=0^{\circ}$)
$\theta_{\mathrm{I}}=1$. The angular difference in phase between the total current and the total voltage when the phase angle of the total voltage is placed at 0°.
2. The angular difference in phase between the total current and the voltage source. $\left(\mathrm{E}_{\mathrm{g}}=\mathrm{E}_{\mathrm{g}} \angle 0^{\circ}=+\mathrm{E}_{\mathrm{g}}\right.$ unless noted)
$\theta_{\text {Io }}=$ Output current phase with respect to the phase of the voltage or current input. (Input phase $=0^{\circ}$ unless noted)

[^0]
θ

Phase Angle Definitions
$\theta_{\mathbf{Y}}=1$. The angular difference between the admittance and the conductance of a circuit. (The angle of conductance $\mathrm{G}=0^{\circ}$)
2. The same angle as impedance except with opposite sign.
3. The same angle as the phase angle of the total current when the phase angle of total voltage is placed at 0°.
$\theta_{\mathrm{Z}}=1$. The angular difference between the impedance and the resistance of a circuit. (The angle of resistance $\mathrm{R}=0^{\circ}$)
2. The same angle as the admittance except with opposite sign.
3. The same angle as the phase angle of the total voltage when the phase angle of total current is placed at 0°.
$\pm \theta_{\mathrm{E}}=-\left(\pm \theta_{\mathrm{I}}\right)$ but both may not coexist.
$\pm \theta_{\mathrm{I}}=-\left(\pm \theta_{\mathrm{E}}\right)$ but both may not coexist.
$\pm \theta_{\mathbf{Y}}=-\left(\pm \theta_{\mathrm{Z}}\right)\left[\mathrm{Y} / \pm \theta_{\mathbf{Y}}=\mathrm{Z}^{-1} /-\left(\pm \theta_{\mathrm{Z}}\right)\right]$
$\pm \theta_{\mathrm{Z}}=-\left(\pm \theta_{\mathrm{Y}}\right)\left[\mathrm{Z} / \pm \theta_{\mathrm{Z}}=\mathrm{Y}^{-1} /-\left(\pm \theta_{\mathrm{Y}}\right)\right]$
$\pm \theta_{\mathrm{E}}=-\left(\pm \theta_{\mathrm{I}}\right)=-\left(\pm \theta_{\mathrm{Y}}\right)= \pm \theta_{\mathrm{Z}}$ in all two terminal networks where the phase angle of either the total voltage or the total current is placed at 0°. (It should be understood that reactance, a component of impedance, is the cause of the difference in phase between the voltage and the current, that $\theta_{\mathrm{E}}, \theta_{\mathrm{I}}, \theta_{\mathrm{Y}}$ and θ_{Z} are the same one and only phase angle from different reference points, that only one may be used at any one time and that if \mathbf{Z} or \mathbf{Y} appears as a term in a formula the other term must be $\mathrm{E} / 0^{\circ}$ or $\mathrm{I} / 0^{\circ}$.)

θ

 Definitions$+\theta_{\mathrm{E}}=$ Inductive circuit phase angle of voltage
$-\theta_{\mathrm{E}}=$ Capacitive circuit phase angle of voltage
$+\theta_{\mathrm{I}}=$ Capacitive circuit phase angle of current
$-\theta_{\mathrm{I}}=$ Inductive circuit phase angle of current
$+\theta_{\mathrm{Y}}=$ Capacitive circuit phase angle of admittance
$-\theta_{\mathrm{Y}}=$ Inductive circuit phase angle of admittance
$+\theta_{\mathrm{Z}}=$ Inductive circuit phase angle of impedance
$-\theta_{\mathrm{Z}}=$ Capacitive circuit phase angle of impedance

$$
\begin{array}{rlr}
\theta_{\mathrm{B}_{\mathrm{C}}}=+90^{\circ} & \theta_{\mathrm{B}_{\mathrm{L}}}=-90^{\circ} & \\
\theta_{\mathrm{E}_{\mathrm{C}}}=-90^{\circ} & \theta_{\mathrm{E}_{\mathrm{L}}}=+90^{\circ} & \theta_{\mathrm{E}_{\mathrm{R}}}=0^{\circ} \\
\theta_{\mathrm{G}}=0^{\circ} & & \\
\theta_{\mathrm{I}_{\mathrm{C}}}=+90^{\circ} & \theta_{\mathrm{I}_{\mathrm{L}}}=-90^{\circ} & \theta_{\mathrm{I}_{\mathrm{R}}}=0^{\circ} \\
\theta_{\mathrm{R}}=0^{\circ} & & \\
\theta_{\mathrm{X}_{\mathrm{C}}}=-90^{\circ} & \theta_{\mathrm{X}_{\mathrm{L}}}=+90^{\circ} &
\end{array}
$$

$$
+270^{\circ}=-90^{\circ}, \quad-270^{\circ}=+90^{\circ}, \quad \pm 360^{\circ}=0^{\circ}
$$

$$
\begin{aligned}
& 1 / 0^{\circ}=+1=1+0_{j} \\
& 1 \angle+90^{\circ}=\sqrt{-1}=0+1_{j} \\
& 1 /-90^{\circ}=-\sqrt{-1}=0-1_{\mathrm{j}} \\
& 1 \angle \pm 180^{\circ}=-1 \quad=-1+0_{j}
\end{aligned}
$$

Phase Angle, Series Circuits	$\underset{\text { E. }}{\substack{\text { ® }}}$
$\left\|\theta_{\mathrm{E}}\right\|=\left\|\theta_{\mathrm{I}}\right\|=\left\|\theta_{\mathrm{Y}}\right\|=\left\|\theta_{\mathrm{Z}}\right\|=\tan ^{-1}\left[\mathrm{D}^{-1}\right]$	$\mathrm{D}_{\text {s }}$
$\left\|\theta_{\mathrm{E}}\right\|=\left\|\theta_{\mathrm{I}}\right\|=\left\|\theta_{\mathrm{Y}}\right\|=\left\|\theta_{\mathrm{Z}}\right\|=\tan ^{-1} \mathrm{Q}$	Q_{s}
$\pm \theta_{\mathrm{E}}= \pm \theta_{\mathrm{Z}}=\tan ^{-1}\left[\pm \mathrm{E}_{\mathrm{X}} / \mathrm{E}_{\mathrm{R}}\right]$	$\mathrm{E}_{\mathrm{R}} \pm \mathrm{E}_{\mathrm{X}}$
$\pm \theta_{\mathrm{E}}= \pm \theta_{\mathrm{Z}}=\tan ^{-1}[\pm \mathrm{X} / \mathrm{R}]$	$\mathrm{R} \pm \mathrm{X}$
$\left\|\theta_{\mathrm{E}}\right\|=\left\|\theta_{\mathrm{I}}\right\|=\left\|\theta_{\mathrm{Y}}\right\|=\left\|\theta_{\mathrm{Z}}\right\|=\cos ^{-1}[\mathrm{R} / \mathrm{Z}]$	R Z
$\pm \theta_{\mathrm{E}}= \pm \theta_{\mathrm{Z}}=\sin ^{-1}[\pm \mathrm{X} / \mathrm{Z}]$	\pm X Z
$\pm \theta_{\mathrm{E}}= \pm \theta_{\mathrm{Z}}=\tan ^{-1}\left[\left(\mathrm{E}_{\mathrm{L}}-\mathrm{E}_{\mathrm{C}}\right) / \mathrm{E}_{\mathrm{R}}\right]$	$\mathrm{E}_{\mathrm{R}} \mathrm{E}_{\mathrm{C}} \mathrm{E}_{\mathrm{L}}$
$\pm \theta_{\mathrm{E}}= \pm \theta_{\mathrm{Z}}=\tan ^{-1}\left[\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right) / \mathrm{R}\right]$	$\mathrm{R} \mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}}$
$\pm \theta_{\mathrm{E}}= \pm \theta_{\mathrm{Z}}=\sin ^{-1}\left[\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right) / \mathrm{Z}\right]$	$\mathrm{X}_{\mathrm{C}} \mathrm{X}_{\mathrm{L}} \mathrm{Z}$
$\begin{aligned} \left(\pm \theta_{\mathrm{Z}}\right)_{\mathrm{t}}= & \tan ^{-1}\left[\left(\pm \mathrm{X}_{\mathrm{s}}\right)_{\mathrm{t}} /\left(\mathrm{R}_{\mathrm{s}}\right)_{\mathrm{t}}\right] \\ & \left(\pm \mathrm{X}_{\mathrm{s}}\right)_{\mathrm{t}}=\left[\mathrm{Z}_{1} \sin \left(\pm \theta_{1}\right)\right]+\left[\mathrm{Z}_{2} \sin \left(\pm \theta_{2}\right)\right] \\ & \left(\mathrm{R}_{\mathrm{s}}\right)_{\mathrm{t}}=\left(\mathrm{Z}_{1} \cos \theta_{1}\right)+\left(\mathrm{Z}_{2} \cos \theta_{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{Z}_{1} / \pm \theta_{1} \\ & \mathrm{Z}_{2} \angle \pm \theta_{2} \end{aligned}$

Phase Angle,

Parallel Circuits

$\left\|\theta_{\mathrm{E}}\right\|=\left\|\theta_{\mathrm{I}}\right\|=\left\|\theta_{\mathrm{Y}}\right\|=\left\|\theta_{\mathrm{Z}}\right\|=\tan ^{-1}\left[\mathrm{D}^{-1}\right]$	D_{p}
$\left\|\theta_{\mathrm{E}}\right\|=\left\|\theta_{\mathrm{I}}\right\|=\left\|\theta_{\mathrm{Y}}\right\|=\left\|\theta_{\mathrm{Z}}\right\|=\tan ^{-1} \mathrm{Q}$	Q_{p}
$\pm \theta_{\mathrm{Y}}= \pm \theta_{\mathrm{I}}=\tan ^{-1}[-(\pm \mathrm{B}) / \mathrm{G}]$	$\pm \mathrm{B} \mathrm{G}$
$\pm \theta_{\mathrm{Y}}= \pm \theta_{\mathrm{I}}=\sin ^{-1}[-(\pm \mathrm{B}) / \mathrm{Y}]$	$\pm \mathrm{B} \mathrm{Y}$
$\pm \theta_{\mathrm{I}}= \pm \theta_{\mathrm{Y}}=\tan ^{-1}\left[-\left(\pm \mathrm{I}_{\mathrm{X}}\right) / \mathrm{I}_{\mathrm{R}}\right]$	$\pm \mathrm{I}_{\mathrm{X}} \mathrm{I}_{\mathrm{R}}$
$\left\|\theta_{\mathrm{E}}\right\|=\left\|\theta_{\mathrm{I}}\right\|=\left\|\theta_{\mathrm{Y}}\right\|=\left\|\theta_{\mathrm{Z}}\right\|=\cos ^{-1}[\mathrm{G} / \mathrm{Y}]$	G Y
$\pm \theta_{\mathrm{Z}}= \pm \theta_{\mathrm{E}}=\tan ^{-1}\left[\mathrm{R}_{\mathrm{p}} / \pm \mathrm{X}_{\mathrm{p}}\right]$	$\mathrm{R} \pm \mathrm{X}$
$\left\|\theta_{\mathrm{E}}\right\|=\left\|\theta_{\mathrm{I}}\right\|=\left\|\theta_{\mathrm{Y}}\right\|=\left\|\theta_{\mathrm{Z}}\right\|=\cos ^{-1}\left[\mathrm{Z} / \mathrm{R}_{\mathrm{p}}\right]$	R Z
$\pm \theta_{\mathrm{Z}}= \pm \theta_{\mathrm{E}}=\sin ^{-1}\left[\mathrm{Z} / \pm \mathrm{X}_{\mathrm{p}}\right]$	$\pm \mathrm{X} \mathrm{Z}$

Page Notes: $|+\mathrm{B}|=\mathrm{B}_{\mathrm{L}}=\left(\mathrm{X}_{\mathrm{L}}^{-1}\right)_{\mathrm{p}}$
$|-\mathrm{B}|=\mathrm{B}_{\mathrm{C}}=\left(\mathrm{X}_{\mathrm{C}}^{-1}\right)_{\mathrm{p}}$
$\left|+X_{p}\right|=\left(X_{L}\right)_{p}=B_{L}^{-1}$
$\left|-X_{p}\right|=\left(X_{C}\right)_{p}=B_{C}^{-1}$

Phase Angle, Parallel Circuits	
$\pm \theta_{\mathrm{Y}}=$	$\tan ^{-1}\left[-\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{C}}\right) / \mathrm{G}\right]$

$\iota=$ Seldom as a symbol due to similarity to english letter i .
$\kappa=$ Seldom as a symbol due to similarity to english letter k .

Wavelength Definitions \& Formulas
$\lambda=$ Symbol for wavelength.
$\lambda=1$. In a periodic wave, the distance between points of corresponding phase of two consecutive cycles.
2. The length of one complete cycle of a periodic wave.
$\lambda=$ Wavelength measured and expressed in various units of distance such as inches, feet, centimeters or meters.
$\lambda=\mathrm{v} / \mathrm{f}$ where v is the velocity of the wave in the medium through which it is traveling. $f=$ frequency of wave. Note: In physics, the symbol c is used for the velocity of light.

Wavelength of Sound in Air
$\lambda \approx 1136 / \mathrm{f}$ feet @ $25^{\circ} \mathrm{C}$
$\lambda \approx 346.3 / \mathrm{f}$ meters @ $25^{\circ} \mathrm{C}$
$\lambda \simeq\left(1051+1.1 \mathrm{~T}_{\mathrm{F}}\right) / \mathrm{f}$ feet @ std pressure
$\lambda \simeq\left(331.3+.6 \mathrm{~T}_{\mathrm{C}}\right) / \mathrm{f} \quad$ meters @ std pressure

Wavelength of Electromagnetic Waves
$\lambda \approx\left(9.8 \cdot 10^{8}\right) / \mathrm{f}$ feet
$\lambda \approx\left(3 \cdot 10^{8}\right) / \mathrm{f} \quad$ meters
$\lambda=\left(2.99793 \cdot 10^{8}\right) / \mathrm{f}$ meters (in vacuum)

Resonant
Angular Velocity

$$
\begin{aligned}
& \omega_{\mathrm{r}}= \sqrt{(\mathrm{LC})^{-1}-(\mathrm{CR})^{-2}} \sqrt{-\mathrm{x}} \text { exception } \\
& \mathrm{f}_{\mathrm{r}} \text { definition } 1 \\
& \omega_{\mathrm{r}} \approx \sqrt{(\mathrm{LC})^{-1}}
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{\mathrm{r}}= \sqrt{\left[\left(\mathrm{R}_{\mathrm{C}}^{2} \mathrm{C}\right)^{-1}-\mathrm{L}^{-1}\right] /\left[\left(\mathrm{L} / \mathrm{R}_{\mathrm{L}}^{2}\right)-\mathrm{C}\right]} \sqrt{-\mathrm{x}} \text { exception } \\
& \mathrm{f}_{\mathrm{r}} \text { definition } 1 \\
& \omega_{\mathrm{r}} \approx \sqrt{(\mathrm{LC})^{-1}}
\end{aligned}
$$

$$
\omega_{\mathrm{r}}=\sqrt{(\mathrm{LC})^{-1}-(\mathrm{R} / \mathrm{L})^{2}} \quad \sqrt{-\mathrm{x}} \text { exception }
$$

$$
\mathrm{f}_{\mathrm{r}} \text { definition } 1
$$

$$
\omega_{\mathrm{r}} \approx \sqrt{(\mathrm{LC})^{-1}}
$$

$$
\omega_{\mathrm{r}}=\left[(\mathrm{LC})-(\mathrm{CR})^{2}\right]^{-\frac{1}{2}} \quad(-\mathrm{x})^{-\frac{1}{2}} \text { exception }
$$

$$
\mathrm{f}_{\mathrm{r}} \text { definition } 1
$$

$$
\omega_{\mathrm{r}} \approx \sqrt{(\mathrm{LC})^{-1}}
$$

$$
\omega_{\mathrm{r}}=\sqrt{\left[\mathrm{C}^{-1}-\left(\mathrm{R}_{\mathrm{L}}^{2} / \mathrm{L}\right)\right] /\left[\mathrm{L}-\mathrm{R}_{\mathrm{C}}^{2} \mathrm{C}\right]}
$$

$$
\mathrm{f}_{\mathrm{r}} \text { definition } 1 \sqrt{-\mathrm{x}} \text { exception }
$$

$$
\omega_{\mathrm{r}} \approx \sqrt{(\mathrm{LC})^{-1}}
$$

Ω

Ohm Definitions

$\Omega=$ Symbol for ohm .
$\Omega=1$. The basic unit of resistance, reactance and impedance.
2. That resistance which will develop a current of one ampere from an applied potential of one volt.
3. That reactance or impedance which will develop a steady state rms current of one ampere from an applied sinewave potential of one volt rms.
4. The resistance of a uniform column of mercury 106.3 cm long weighing 14.4521 g at a temperature of $0^{\circ} \mathrm{C}$.
$\Omega=$ Unit often used with multiplier prefixes.
$\mu \Omega=10^{-6}$ ohms
$\mathrm{m} \Omega=10^{-3}$ ohms
$\mathrm{k} \Omega=10^{3}$ ohms
$\mathrm{M} \Omega=10^{6}$ ohms
$\mathrm{G} \Omega=10^{9} \mathrm{ohms}$
$\mathrm{T} \Omega=10^{12} \mathrm{ohms}$
Note: $\mathrm{k} \Omega$ is frequently contracted to K $\mathrm{M} \Omega$ is frequently contracted to M Megohm is frequently contracted to Meg
$\Omega=$ A real (positive or 0°) quantity when a unit of resistance.
$\Omega=$ A magnitude or a complex quantity when a unit of reactance or impedance.

SECTION TWO

TRANSISTORS

$$
\begin{array}{ll}
2.1 & \text { STATIC (DC) } \\
\text { CONDITIONS }
\end{array}
$$

A to E
 DC Transistor Symbol Definitions

```
    \(\bar{a}-\) See \(-\mathrm{h}_{\mathrm{FB}}\) or \(\bar{\alpha}\)
\(A_{\mathbf{I}}=\) Static current amplification (seldom used)
\(A_{V}=\) Static voltage amplification (seldom used)
\(B V_{\text {CBO }}-S e e-V_{(B R) C B O}\)
BV CEO - See- \(\mathrm{V}_{\text {CEO (SUS) }}\)
BV CER - See-V CER (SUS)
\(B V_{\text {CES }}-S e e-V_{\text {CES (SUS) }}\)
\(\mathrm{BV}_{\mathrm{CEV}}-\mathrm{See}-\mathrm{V}_{\mathrm{CEV}}\) (SUS)
\(\mathrm{BV}_{\text {CEX }}-\mathrm{See}-\mathrm{V}_{\text {CEX }}\) (SUS)
\(B V_{\text {Ebo }}-\) See \(-V_{(B R) E b o}\)
    E-See-V for dc transistor voltages
    See also-V, Opamp
    See also-E, Passive Circuits
```

 \(E=\) The original symbol for the electric force originally
 known as electromotive force. This force is now known
 as voltage, potential or potential difference. The volt-
 age symbol E has been superseded by V for dc tran-
 sistor voltages and for all operational amplifier voltages.
 \(\mathrm{E}_{\mathrm{S} / \mathrm{b}}-\left(\right.\) second breakdown energy) See \(-\mathrm{I}_{\mathrm{S} / \mathrm{b}}\)
 Note: The term second breakdown energy ($\mathrm{E}_{\mathrm{S} / \mathrm{b}}$) has never been appropriate for static transistor conditions since continuous power at any level converts to infinite energy.

$?$

Static (DC)
 Hybrid
 Parameters

$h_{\mathrm{FB}}=$ Seldom used common-base static forward-current transfer ratio.
$\mathrm{h}_{\mathrm{FB}}=\mathrm{DC}$ alpha $(\bar{\alpha})$
$\mathrm{h}_{\mathrm{FB}}=\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{E}}$
$\mathrm{h}_{\mathrm{FB}}=\mathrm{h}_{\mathrm{FE}} /\left(\mathrm{h}_{\mathrm{FE}}+1\right)$
$\mathrm{h}_{\mathrm{FE}}=$ Common-emitter static forward-current transfer ratio at a specified collector current, collector voltage and junction temperature.
$h_{\mathrm{FE}}=\mathrm{DC}$ beta $(\bar{\beta})$
$h_{F E}=I_{C} / I_{B}$
$\mathrm{h}_{\mathrm{FE}}=\left(\mathrm{I}_{\mathrm{E}} / \mathrm{I}_{\mathrm{B}}\right)-1$
$\mathrm{h}_{\mathrm{FE}}=\left[\left(\mathrm{I}_{\mathrm{E}} / \mathrm{I}_{\mathrm{C}}\right)-1\right]^{-1}$
$\mathrm{h}_{\mathrm{FE}(\mathrm{INV})}=$ Seldom used h_{FE} when collector and emitter leads are interchanged.
$\mathrm{h}_{\text {IE }}=$ Seldom used common-emitter static input resistance.

h Notes:

The DC counterparts of $h_{f c}, h_{i b}, h_{o b}, h_{o c}, h_{o e}, h_{r b}, h_{r c}$, and $h_{r e}$ are very seldom used.
$h_{\text {FE }}$ usually has a different value than $h_{f e}$ measured under the same conditions.
$\mathrm{h}_{\text {IE }}$ and $\mathrm{h}_{\text {IB }}$ will have a much higher value than their small signal counterparts measured under the same conditions.

[^1]

$\begin{array}{l\|l\|l\|l} \begin{array}{l} \text { Static (DC) } \\ \text { Transistor } \\ \text { Currents } \end{array} & \text { B } & \text { C } & \text { E } \end{array}$	
$\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{C}} / \mathrm{h}_{\mathrm{FE}}$	(4)
$\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{E}} /\left(\mathrm{h}_{\mathrm{FE}}+1\right)$	(5)
$\mathrm{I}_{\mathrm{B}}=\mathrm{V}_{\mathrm{BE}} / \mathrm{h}_{\text {IE }}$	(6)
$\mathrm{I}_{\mathrm{B}} \approx\left[\log ^{-1}\left(\mathrm{~V}_{\mathrm{BE}} / .06\right)\right] /\left(10^{13} \mathrm{~h}_{\mathrm{FE}}\right)$	(7)
$\mathrm{I}_{\mathrm{C}}=\mathrm{h}_{\mathrm{FE}} \mathrm{I}_{\mathrm{B}}$	(4)
$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{E}}-\mathrm{I}_{\mathrm{B}}$,
$\mathrm{I}_{\mathrm{C}}=\left(\mathrm{h}_{\mathrm{FE}} \mathrm{V}_{\mathrm{BE}}\right) / \mathrm{h}_{\text {IE }}$	(6)
$\mathrm{I}_{\mathrm{C}} \approx\left[\log ^{-1}\left(\mathrm{~V}_{\mathrm{BE}} / .06\right)\right]\left(5 \cdot 10^{-16} \mathrm{~h}_{\mathrm{FE}}\right)$	(7)
$\mathrm{I}_{\mathrm{C}} \approx 10^{-13}\left[\log ^{-1}\left(\mathrm{~V}_{\mathrm{BE}} / .06\right)\right]$	-
$\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{B}}$	(4)
$\mathrm{I}_{\mathrm{E}}=\left(\mathrm{h}_{\mathrm{FE}}+1\right) \mathrm{I}_{\mathrm{B}}$	(5)
$\mathrm{I}_{\mathrm{E}}=\left[\mathrm{V}_{\mathrm{BE}}\left(\mathrm{h}_{\mathrm{FE}}+1\right)\right] / \mathrm{h}_{\text {IE }}$	(6)
$\mathrm{I}_{\mathrm{E}} \approx\left(5 \cdot 10^{-16}\right)\left(\mathrm{h}_{\mathrm{FE}}+1\right)\left[\log ^{-1}\left(\mathrm{~V}_{\mathrm{BE}} / .06\right)\right]$	(7)

I Notes:

(1) The subscript of I_{C} is a capital letter for DC. It is often difficult to distinguish between a capital and a lower case C subscript. I_{c} (lower case) is rms collector current and i_{C} (upper case) is instantaneous total collector current.

I Notes:

(2) The standard specified temperature is $25^{\circ} \mathrm{C}$
(3) Transistor leakage currents have a temperature dependent component and a voltage dependent component.
(4) $\mathrm{h}_{\mathrm{FE}}, \mathrm{V}_{\mathrm{BE}}$ and h_{IE} are temperature, current and voltage dependent.
(5) $\log x=\log _{10} x, \log ^{-1} x=\operatorname{antilog} x=10^{x}$

Static (DC) Transistor Currents	
$\begin{aligned} \mathrm{I}_{\mathrm{E}}= & \left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BE}}\right) /\left(\mathrm{R}_{1}+\left[\mathrm{R}_{3} /\left(\mathrm{h}_{\mathrm{FE}}+1\right)\right]\right) \\ & \mathrm{V}_{\mathrm{BE}} \approx .06\left[\log \left(10^{13} \mathrm{I}_{\mathrm{C}}\right)\right] \approx .6 \\ \mathrm{I}_{\mathrm{B}}= & \mathrm{I}_{\mathrm{E}} /\left(\mathrm{h}_{\mathrm{FE}}+1\right) \\ \mathrm{I}_{\mathrm{C}}= & \mathrm{I}_{\mathrm{E}}-\mathrm{I}_{\mathrm{B}} \\ \mathrm{I}_{\mathrm{CC}}= & \mathrm{I}_{\mathrm{E}} \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (2) } \\ & \text { (3) } \\ & \text { (4) } \\ & \text { (5) } \\ & \text { (6) } \\ & \text { (7) } \end{aligned}$
$\begin{aligned} \mathrm{I}_{\mathrm{E}}= & \left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BE}}\right) /\left(\mathrm{R}_{1}+\mathrm{R}_{5}+\left[\mathrm{R}_{3} /\left(\mathrm{h}_{\mathrm{FE}}+1\right)\right]\right) \\ & \mathrm{V}_{\mathrm{BE}} \approx .06\left[\log \left(10^{13} \mathrm{I}_{\mathrm{C}}\right)\right] \approx .6 \\ \mathrm{I}_{\mathrm{B}}= & \mathrm{I}_{\mathrm{E}} /\left(\mathrm{h}_{\mathrm{FE}}+1\right) \\ \mathrm{I}_{\mathrm{C}}= & \mathrm{I}_{\mathrm{E}}-\mathrm{I}_{\mathrm{B}} \\ \mathrm{I}_{\mathrm{CC}}= & \mathrm{I}_{\mathrm{E}} \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (2) } \\ & \text { (3) } \\ & \text { (4) } \\ & \text { (5) } \\ & \text { (6) } \\ & (7) \end{aligned}$
$\begin{aligned} \mathrm{I}_{\mathrm{C}}= & {\left[\mathrm{V}_{\mathrm{CC}}-\left(\mathrm{V}_{\mathrm{BE}} \mathrm{R}_{\mathrm{X}}\right)\right] /\left(\mathrm{R}_{1}+\left[\left(\mathrm{R}_{1}+\mathrm{R}_{3}\right) / \mathrm{h}_{\mathrm{FE}}\right]\right) } \\ & \mathrm{V}_{\mathrm{BE}} \approx .06\left[\log \left(10^{13} \mathrm{I}_{\mathrm{C}}\right)\right] \approx .6 \\ & \mathrm{R}_{\mathrm{X}}=\left[\left(\mathrm{R}_{1}+\mathrm{R}_{3}\right) / \mathrm{R}_{4}\right]+1 \\ \mathrm{I}_{\mathrm{B}}= & \mathrm{I}_{\mathrm{C}} / \mathrm{h}_{\mathrm{FE}} \\ \mathrm{I}_{\mathrm{E}}= & \mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{B}} \\ \mathrm{I}_{\mathrm{CC}}= & \mathrm{I}_{\mathrm{E}}+\left(\mathrm{V}_{\mathrm{BE}} / \mathrm{R}_{4}\right) \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (2) } \\ & \text { (3) } \\ & \text { (4) } \\ & \text { (5) } \\ & \text { (6) } \\ & (7) \end{aligned}$

I Notes:

(6) "Exact formulas" apply to silicon, germanium, npn, pnp, small signal and power transistors. (Exact formulas are not really exact since h_{FE} will vary somewhat with collector current, collector voltage and temperature.)
(7) The V_{BE} of silicon transistors varies with temperature at the rate of approximately -2.2 mV per ${ }^{\circ} \mathrm{C}$.

Static (DC)
 Transistor
 Currents

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}= {\left[\mathrm{V}_{\mathrm{CC}}-\left(\mathrm{V}_{\mathrm{BE}} \mathrm{R}_{\mathrm{X} 1}\right)\right] /\left[\mathrm{R}_{\mathrm{X} 2}+\left(\mathrm{R}_{\mathrm{X} 3} / \mathrm{h}_{\mathrm{FE}}\right)\right] } \\
& \mathrm{V}_{\mathrm{BE}} \approx .06\left[\log \left(10^{13} \mathrm{I}_{\mathrm{C}}\right)\right] \approx .6 \\
& \mathrm{R}_{\mathrm{X} 1}=\left(\mathrm{R}_{1} \mathrm{G}_{4}\right)+\left(\mathrm{R}_{3} \mathrm{G}_{4}\right)+1 \\
& \mathrm{R}_{\mathrm{X} 2}=\left(\mathrm{R}_{1} \mathrm{R}_{5} \mathrm{G}_{4}\right)+\left(\mathrm{R}_{3} \mathrm{R}_{5} \mathrm{G}_{4}\right)+\mathrm{R}_{1}+\mathrm{R}_{5} \\
& \mathrm{R}_{\mathrm{X} 3}=\mathrm{R}_{\mathrm{X} 2}+\mathrm{R}_{3} \\
& \mathrm{R}_{1}=\mathrm{R}_{1 \mathrm{~A}}+\mathrm{R}_{1 \mathrm{~B}} \\
& \mathrm{G}_{4}=1 / \mathrm{R}_{4} \\
& \mathrm{I}_{\mathrm{B}}= \mathrm{I}_{\mathrm{C}} / \mathrm{h}_{\mathrm{FE}} \\
& \mathrm{I}_{\mathrm{E}}= \mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{B}} \\
& \mathrm{I}_{\mathrm{CC}}= \mathrm{I}_{\mathrm{E}}+\left[\left(\mathrm{I}_{\mathrm{E}} \mathrm{R}_{5}+\mathrm{V}_{\mathrm{BE}}\right) / \mathrm{R}_{4}\right] \\
& \mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{CC}}-\left(\mathrm{I}_{\mathrm{CC}} \mathrm{R}_{1 \mathrm{~A}}\right)-\left(\mathrm{I}_{\mathrm{C}} \mathrm{R}_{11}\right)
\end{aligned}
$$

Page Notes.

1. $R_{1 A}, R_{1 B}, G_{4}, R_{5}$ and/or R_{11} may equal zero.
2. R_{4} must be manually converted to G_{4} since conventional mathematics and calculators will not allow division by zero or infinity.
3. \mathbf{R}_{4} may equal infinity. When $\mathbf{R}_{4}=\infty, \mathrm{G}_{\mathbf{4}}=0$.
4. Reverse power supply polarity and emitter arrow for pnp transistors.
5. The effect of varying collector voltage upon collector current has been assumed to be negligible.

L to r
 Static (DC)
 Definitions

$\mathrm{LV}_{\text {CEO }}-\mathrm{See}-\mathrm{V}_{\text {CEO (SUS) }}$
$\mathrm{LV}_{\text {CER }}-\mathrm{See}-\mathrm{V}_{\text {CER (SUS) }}$
$L V_{\text {CES }}-S e e-V_{\text {CES }}$ (SUS)
$\mathrm{LV}_{\mathrm{CEV}}$ - See- $\mathrm{V}_{\text {CEV (SUS) }}$
$\mathrm{LV}_{\text {CEX }}-$ See $-\mathrm{V}_{\text {CEX (SUS) }}$
$\mathrm{n}=$ Region of transistor where electrons are the majority carriers.
$\mathrm{npn}=$ Transistor type having two n regions and one p region. (positive polarity V_{CC} and V_{BB})
$\mathrm{p}=$ Region of transistor where holes are the majority carriers.
$\mathrm{pnp}=$ Transistor type having two p regions and one n region. (negative polarity V_{CC} and V_{BB})
$\mathrm{P}_{\mathrm{C}}=$ Collector power dissipation
$\mathrm{P}_{\mathrm{C}}=\mathrm{V}_{\mathrm{CE}} \mathrm{I}_{\mathrm{C}}$
$P_{D}=$ Device power dissipation. See $-P_{T}$
$\mathrm{P}_{\mathrm{T}}=$ Total power dissipation of transistor.
$\mathrm{P}_{\mathrm{T}}=\left(\mathrm{V}_{\mathrm{CE}} \mathrm{I}_{\mathrm{C}}\right)+\left(\mathrm{V}_{\mathrm{BE}} \mathrm{I}_{\mathrm{B}}\right)$
$r_{B}=T$ equivalent static internal series base resistance.
$\mathrm{r}_{\mathrm{C}}=\mathrm{T}$ equivalent static internal series collector resistance.
$\mathrm{r}_{\mathrm{E}}=\mathrm{T}$ equivalent static internal series emitter resistance.
$\mathrm{r}_{\mathrm{CE}(\mathrm{SAT})}=$ Collector to emitter saturation resistance.

R_{θ}

Thermal
Resistance
$\mathrm{R}_{\boldsymbol{\theta}}=$ Symbol for thermal resistance. (old symbol was θ)
$\mathrm{R}_{\theta}=1$. The opposition to the transfer of thermal energy which develops an increase in temperature at the thermal energy source.
2. The ratio of temperature rise in degrees Celsius to the power dissipated in watts.
$\mathrm{R}_{\theta \mathrm{CA}}=$ Case to ambient (usually air) thermal resistance. (formerly $\theta_{\mathrm{C}-\mathrm{A}}$ or θ_{CA}).
$\mathrm{R}_{\theta \mathrm{CS}}=$ Case to (heat) sink thermal resistance. (formerly $\theta_{\mathrm{C}-\mathrm{S}}$ or θ_{CS})
$\mathrm{R}_{\theta \mathrm{JA}}=$ Junction to ambient (usually air) thermal resistance. (formerly $\theta_{\mathrm{J}-\mathrm{A}}$ or θ_{JA})
$\mathrm{R}_{\theta \mathrm{JC}}=$ Junction to case thermal resistance. (formerly $\theta_{\mathrm{J}-\mathrm{C}}$ or θ_{JC})
$\mathrm{R}_{\theta \mathrm{JT}}=$ Junction to tab thermal resistance. (formerly $\theta_{\mathrm{J}-\mathrm{T}}$ or θ_{JT})
$\mathrm{R}_{\theta S \mathrm{~A}}=($ Heat) sink to ambient (usually air) thermal resistance.
(formerly $\theta_{\mathrm{S}-\mathrm{A}}$ or θ_{SA})
$\mathrm{R}_{\theta \mathrm{TS}}=\mathrm{Tab}$ to (heat) sink thermal resistance. (formerly $\theta_{\mathrm{T}-\mathrm{S}}$ or θ_{TS})
$\mathrm{R}_{\boldsymbol{\theta}}=$ Thermal resistance expressed in ${ }^{\circ} \mathrm{C}$ per watt.

$$
\begin{array}{ll}
\hline R_{\theta x y}=\left(T_{y}-T_{x}\right) / P & T=\text { Temperature in }{ }^{\circ} \mathrm{C} \\
& P=\text { Power in watts }
\end{array}
$$

$\mathrm{R}_{\theta \mathrm{JA}} \approx\left(\mathrm{T}_{\mathrm{J}}-\mathrm{T}_{\mathrm{A}}\right) /\left(\mathrm{V}_{\mathrm{CE}} \mathrm{I}_{\mathrm{C}}\right)$
$\mathrm{R}_{\theta \mathrm{JA}}=\left(\mathrm{T}_{\mathrm{J}}-\mathrm{T}_{\mathrm{A}}\right) /\left[\left(\mathrm{V}_{\mathrm{CE}} \mathrm{I}_{\mathrm{C}}\right)+\left(\mathrm{V}_{\mathrm{BE}} \mathrm{I}_{\mathrm{B}}\right)\right]$
$\mathbf{R}_{\theta \mathrm{JA}}=\mathbf{R}_{\boldsymbol{\theta} \mathrm{JC}}+\mathrm{R}_{\theta \mathrm{CS}}+\mathrm{R}_{\theta \mathrm{SA}}$

$\square \rightarrow \begin{aligned} & \text { DC or } \\ & \text { Static } \\ & \text { Definitions }\end{aligned}$

```
\(R_{B}=\) External series base resistance.
\(R_{C}=\) External series collector resistance.
\(\mathrm{R}_{\mathrm{E}}=\) External series emitter resistance.
\(\mathrm{R}_{\mathrm{L}}=\) Load resistance.
\(\mathrm{R}_{\mathrm{S}}=\) Source resistance.
\(R_{B C}-\) See \(-R_{C B}\)
\(\mathrm{R}_{\mathrm{BE}}=\) External base to emitter resistance.
\(\mathrm{R}_{\mathrm{CB}}=\) External collector to base resistance.
\(\mathrm{R}_{\mathrm{CE}}=\) External collector to emitter resistance.
\(R_{E B}-\) See \(-R_{B E}\)
\(\mathrm{R}_{\mathrm{EC}}-\) See- \(\mathrm{R}_{\mathrm{CE}}\)
\(\mathrm{T}_{\mathrm{A}}=\) Ambient temperature.
\(\mathrm{T}_{\mathrm{C}}=\) Case temperature. ( \(\mathrm{T}_{\mathrm{C}}\) meaning "temperature in \({ }^{\circ} \mathrm{C}\) " is not used for semiconductors since temperature is given in \({ }^{\circ} \mathrm{C}\) unless noted.)
\(\mathrm{T}_{\mathrm{J}}=\) Junction temperature.
\(T_{J}=T_{A}+\left(P_{t} R_{\theta J A}\right)\)
\(\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\left[\mathrm{P}_{\mathrm{t}}\left(\mathrm{R}_{\theta \mathrm{SA}}+\mathrm{R}_{\theta \mathrm{CS}}+\mathrm{R}_{\theta \mathrm{JC}}\right)\right]\)
\(\mathrm{T}_{\mathrm{L}}=\) Lead temperature.
\(\mathrm{T}_{\mathrm{S}}=\) (Heat) sink temperature.
\(\mathrm{T}_{\mathrm{T}}=\mathrm{Tab}\) temperature.
\(\mathrm{T}_{\mathrm{STG}}=\) Storage temperature .
```

$\left.\begin{array}{rl}\hline & \\ \mathrm{V}_{\mathrm{B}}= & \text { Base voltage. } \\ \mathrm{V}_{\mathrm{BB}}= & \text { Base supply voltage. } \\ \mathrm{V}_{\mathrm{BC}}- & \text { See- } \mathrm{V}_{\mathrm{CB}} \\ \text { Voltage Symbol } \\ \text { Definitions }\end{array}\right]$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CEO}}-\mathrm{See}-\mathrm{V}_{\mathrm{CEO}} \text { (SUS) } \\
& \mathrm{V}_{\text {CEO(SUS) }}=\text { Collector to emitter sustaining voltage with base } \\
& \text { open. } \\
& \mathrm{V}_{\mathrm{CER}} \text { - See- } \mathrm{V}_{\text {CER(SUS) }} \\
& \mathrm{V}_{\text {CER(SUS) }}=\text { Collector to emitter sustaining voltage with } \\
& \text { specified base to emitter resistance. } \\
& \mathrm{V}_{\mathrm{CES}}-\mathrm{See}-\mathrm{V}_{\mathrm{CES}(\mathrm{SUS})} \\
& \mathrm{V}_{\text {CES(SUS) }}=\text { Collector to emitter sustaining voltage with base } \\
& \text { to emitter short-circuit. } \\
& \mathrm{V}_{\mathrm{CEV}} \text { - See- } \mathrm{V}_{\mathrm{CEV} \text { (SUS) }} \\
& \mathrm{V}_{\mathrm{CEV} \text { (SUS) }}=\text { Collector to emitter sustaining voltage with } \\
& \text { specified base to emitter voltage. } \\
& \mathrm{V}_{\mathrm{CEX}}-\mathrm{See}-\mathrm{V}_{\mathrm{CEX}} \text { (SUS) } \\
& \mathrm{V}_{\mathrm{CEX}(\text { SUS })}=\text { Collector to emitter sustaining voltage with } \\
& \text { specified base to emitter circuit. } \\
& \mathrm{V}_{\mathrm{E}}=\text { Emitter voltage. } \\
& V_{E B}=\text { Emitter to base reverse bias voltage. } \\
& \mathrm{V}_{\text {Ebo }}-\mathrm{See}-\mathrm{V}_{(\mathrm{BR}) \mathrm{Ebo}} \\
& V_{E E}=\text { Emitter supply voltage. } \\
& \mathrm{V}_{\mathrm{RT}}=\text { Reach through voltage (certain old transistors } \\
& \text { only). }
\end{aligned}
$$

Note:

Collector to emitter breakdown voltage of almost all present production transistors is measured at a current above the negative resistance region where the voltage is sustained over a wide range of current and is therefore called sustaining voltage.

DC Transistor Voltages	器
$\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{CC}}-\left(\left[\mathrm{R}_{1} \mathrm{~h}_{\mathrm{FE}}\left(\mathrm{V}_{\mathrm{X}}-\mathrm{V}_{\mathrm{BE}}\right)\right] /\left[\mathrm{R}_{\mathrm{X}}+\mathrm{R}_{\mathbf{5}}\left(\mathrm{h}_{\mathrm{FE}}+1\right)\right]\right)$	
$\mathrm{V}_{\mathrm{E}}=\left[\mathrm{V}_{\mathrm{X}}-\mathrm{V}_{\mathrm{BE}}\right] /\left(\mathrm{R}_{\mathrm{X}} /\left[\mathrm{R}_{5}\left(\mathrm{~h}_{\mathrm{FE}}+1\right)\right]\right)$	I-(1)
$\begin{aligned} & \mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{E}}+\mathrm{V}_{\mathrm{BE}} \approx \mathrm{~V}_{\mathrm{E}}+.6 \\ & \mathrm{~V}_{\mathrm{BE}} \approx .06\left[\log \left(10^{13} \mathrm{I}_{\mathrm{C}}\right)\right] \approx .6 \\ & \mathrm{~V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{CC}} /\left[\left(\mathrm{R}_{2} / \mathrm{R}_{4}\right)+1\right] \\ & \mathrm{R}_{\mathrm{X}}=\left[\mathrm{R}_{2}^{-1}+\mathrm{R}_{4}^{-1}\right]^{-1} \end{aligned}$	$\begin{aligned} & \text { I-® } \\ & \text { I-4 } \\ & \text { I-(3) } \\ & \text { I-® } \\ & \text { I-(1) } \end{aligned}$
	$\begin{aligned} & \text { I-(1) } \\ & \text { I-(2) } \\ & \text { I-(3) } \\ & \text { I-4 } \\ & \text { I-(5) } \\ & \text { I-(6) } \\ & \text { I-(} \end{aligned}$

α to θ

$\alpha=$ Greek script letter alpha.
$\bar{\alpha}=$ Static (DC) alpha.
Note: Although "DC alpha" is still verbalized, the equivalent hybrid parameter symbol $h_{\text {FB }}$ has almost completely superceeded $\bar{\alpha}$ as the accepted written symbol. See-h hb
$\bar{\alpha}=h_{\mathrm{FB}}$
$\bar{\alpha}=$ Common base static forward current transfer ratio. Seeh_{FB}
Note: $\bar{\alpha}$ and h_{FB} are seldom used with modern transistors since specifications are in the common emitter form h_{FE}.
$\bar{\alpha}=\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{E}}=\mathrm{h}_{\mathrm{FE}} /\left(\mathrm{h}_{\mathrm{FE}}+1\right)$
$\bar{\alpha}=\left(\mathrm{h}_{\mathrm{FE}} \mathrm{I}_{\mathrm{B}}\right) / \mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{C}} /\left[\mathrm{I}_{\mathrm{B}}\left(\mathrm{h}_{\mathrm{FE}}+1\right)\right]$
$\beta=$ Greek script letter beta.
$\bar{\beta}=$ Static (DC) beta.
Note: DC beta is often verbalized, but the equivalent hybrid parameter symbol h_{FE} is used on all specifications and most other written or printed usage. See-h ${ }_{\text {FE }}$
$\bar{\beta}=h_{\mathrm{FE}}$
$\bar{\beta}=$ Common emitter static forward current transfer ratio at specified $\mathrm{I}_{\mathrm{C}}, \mathrm{V}_{\mathrm{CE}}$ and T_{J}. See- h_{FE}
$\bar{\beta}=\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}=\left(\mathrm{I}_{\mathrm{E}} / \mathrm{I}_{\mathrm{B}}\right)-1=\left[\left(\mathrm{I}_{\mathrm{E}} / \mathrm{I}_{\mathrm{C}}\right)-1\right]^{-1}$
$\bar{\beta}=\left[\bar{\alpha}^{-1}-1\right]^{-1}=\left[\mathrm{h}_{\mathrm{FB}}^{-1}-1\right]^{-1}$
$\theta=$ Greek letter theta $=$ Obsolete symbol for thermal resistance. See-R ${ }_{\theta}$

TRANSISTORS

SECTION 2.2

Small Signal Conditions

a to C
 Small-Signal Low Frequency Definitions

$a=$ Substitute symbol for α (not recommended)
$\mathrm{A}_{\mathrm{i}}=$ Small-signal current amplification. (small-signal current gain)
$A_{i}=$ The ratio of output current to input current
$\mathbf{A}_{\mathrm{i}}=\boldsymbol{\alpha}=\mathrm{h}_{\mathrm{fb}}$ when circuit is common base with output ac shorted.
$\mathrm{A}_{\mathrm{i}}=\beta=\mathrm{h}_{\mathrm{fe}} \quad$ when circuit is common emitter with output ac shorted.
$A_{v}=$ Small-signal voltage amplification. (small-signal voltage gain)
$\mathbf{A}_{\mathbf{v}}=$ The ratio of output voltage to input voltage
$\mathrm{C}_{\mathrm{c}}=$ Collector to case capacitance.
$\mathrm{C}_{\mathrm{b} \text { ' }}=$ Collector to base feedback capacitance.
$\mathrm{C}_{\mathrm{cb}}=$ Collector to base feedback capacitance.
C_{ob} - See-C $\mathrm{C}_{\text {obo }}$
$\mathrm{C}_{\text {oe }}$ - See-C $\mathrm{C}_{\text {oeo }}$
$\mathrm{C}_{\mathrm{ibo}}=$ Common base open-circuit input capacitance.
$\mathrm{C}_{\text {ieo }}=$ Common emitter open-circuit input capacitance.
$\mathrm{C}_{\text {obo }}=$ Common base open-circuit output capacitance.
$\mathrm{C}_{\text {oeo }}=$ Common emitter open-circuit output capacitance.

Small-Signal Low-Frequency Common BaseA_{i}Current Amplification	
$\begin{aligned} & \mathrm{A}_{\mathrm{i}}=\mathrm{i}_{\mathrm{o}} / \mathrm{i}_{\mathrm{g}} \\ & \mathrm{~A}_{\mathrm{i}}=\mathrm{i}_{\mathrm{c}} / \mathrm{i}_{\mathrm{e}} \\ & \mathrm{~A}_{\mathrm{i}}=\alpha \text { (alpha) } \\ & \mathrm{A}_{\mathrm{i}}=\mathrm{h}_{\mathrm{fb}} \\ & \mathrm{~A}_{\mathrm{i}}=\mathrm{h}_{\mathrm{fe}} /\left(\mathrm{h}_{\mathrm{fe}}+1\right) \\ & \mathrm{A}_{\mathrm{i}} \simeq 1 \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (3) } \\ & \text { (4) } \\ & \text { © } \\ & \text { (6) } \end{aligned}$
$\begin{aligned} A_{i}= & i_{o} / i_{g} \\ A_{i}= & i_{c} / i_{e} \\ A_{i} \approx & 1 \\ A_{i} \simeq & {\left[h_{\left.h_{f e}^{e}\left(h_{o e} R_{L}+1\right)+1\right]^{-1}} \begin{array}{rl} i_{\mathrm{e}} \rightarrow \\ & (\text { accuracy typically }>4 \text { digits }) \end{array}\right.} \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (3) } \\ & \text { (4) } \\ & \text { © } \\ & \text { (6) } \end{aligned}$
$\begin{aligned} & A_{i}=i_{o} / i_{\mathrm{g}} \\ & \mathrm{~A}_{\mathrm{i}}=\mathrm{i}_{\mathrm{c}} / \mathrm{i}_{\mathrm{e}} \\ & \mathrm{~A}_{\mathrm{i}} \approx 1 \end{aligned}$ $\mathrm{A}_{\mathrm{i}} \simeq\left[\mathrm{~h}_{\mathrm{fc}}^{-1}\left(\mathrm{~h}_{\mathrm{oe}} \mathrm{R}_{\mathrm{L}}+1\right)+1\right]^{-1}$	$\begin{aligned} & \text { (1) } \\ & \text { (3) } \\ & \text { (4) } \\ & \text { (5) } \\ & (6) \end{aligned}$
A Notes: (1) $-\infty$ - is the graphic symbol for an alternating curren (infinite impedance) or any very high impedance signal so	erator

| Small-Signal
 Low Frequency
 Common Collector |
| :--- | :--- |

A Notes:
(2) - - is the graphic symbol for an ac voltage generator (zero impedance) or any very low impedance signal source.
(3) Formulas apply to silicon, germanium, npn and pnp bipolar transistors. Emitter arrows and the power supply polarity (if shown) must be reversed for pnp transistors.
(4) Small-signal parameters will vary with temperature as well as with dc bias currents and voltages.
(5) Small-signal parameters if specified by the manufacturer seldom have maximum or minimum limits and may vary widely. The relationships of parameters, however, will hold very closely to the formulas.

Small-Signal Low Frequency Common Emitter	
$\begin{aligned} & \mathrm{A}_{\mathrm{i}}=\mathrm{i}_{\mathrm{o}} / \mathrm{i}_{\mathrm{g}}=\mathrm{i}_{\mathrm{c}} / \mathrm{i}_{\mathrm{b}} \\ & \mathrm{~A}_{\mathrm{i}}=\beta(\text { beta }) \\ & \mathrm{A}_{\mathrm{i}}=\mathrm{h}_{\mathrm{fe}} \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (3) } \\ & \text { (4) } \\ & (5) \end{aligned}$ ©
$\begin{aligned} & \mathrm{A}_{\mathrm{i}}=\mathrm{i}_{\mathrm{o}} / \mathrm{i}_{\mathrm{g}}=\mathrm{i}_{\mathrm{c}} / \mathrm{i}_{\mathrm{b}} \\ & \mathrm{~A}_{\mathrm{i}} \approx \mathrm{~h}_{\mathrm{fe}} \\ & \mathrm{~A}_{\mathrm{i}}=\mathrm{h}_{\mathrm{fe}} /\left[\mathrm{h}_{\mathrm{oe}} \mathrm{R}_{\mathrm{L}}+1\right] \end{aligned}$	(1) (3) (4) (5) (6)
$\begin{aligned} & A_{i}=\mathrm{i}_{\mathrm{o}} / \mathrm{i}_{\mathrm{g}}=\mathrm{i}_{\mathrm{c}} / \mathrm{i}_{\mathrm{b}} \\ & \mathrm{~A}_{\mathrm{i}} \approx \mathrm{~h}_{\mathrm{fe}} \\ & A_{i} \simeq \mathrm{~h}_{\mathrm{fe}} /\left[\mathrm{h}_{\mathrm{oe}}\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{E}}\right)+1\right] \\ & A_{i}=\left[\mathrm{h}_{\mathrm{fe}}-\mathrm{h}_{\mathrm{oe}} \mathrm{R}_{\mathrm{E}}\right] /\left[\mathrm{h}_{\mathrm{oe}}\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{E}}\right)+1\right] \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (3) } \\ & \text { (4) } \\ & \text { (5) } \\ & \text { (6) } \end{aligned}$
	$\begin{aligned} & \text { (1) } \\ & \text { (3) } \\ & \text { (4) } \\ & \text { (5) } \\ & \text { (6) } \end{aligned}$

Small-Signal
Low Frequency
Common Base

Small-Signal Low Frequency Common Collector Voltage Amplification	
$\begin{aligned} & A_{v}=e_{o} / e_{g} \\ & A_{v}=e_{e} / e_{b} \\ & A_{v} \simeq 1 \end{aligned}$ $A_{v}=\left[h_{i e}\left(h_{\mathrm{oe}}+\mathrm{R}_{\mathrm{L}}^{-1}\right)\left(\mathrm{h}_{\mathrm{fe}}+1\right)^{-1}-\mathrm{h}_{\mathrm{re}}+1\right]^{-1}$	$\begin{aligned} & \text { (2) } \\ & \text { (3) } \\ & \text { (4) } \\ & \text { (5) } \\ & \text { (6) } \end{aligned}$
$\begin{aligned} & \mathrm{A}_{\mathrm{v}}=\mathrm{e}_{\mathrm{o}} / \mathrm{e}_{\mathrm{g}} \\ & \mathrm{~A}_{\mathrm{v}} \approx 1 \\ & \mathrm{~A}_{\mathbf{v}} \simeq 1 \end{aligned}$ $\text { when } R_{g} \ll\left(\text { hfe } R_{L}\right)$ $\text { and } R_{L}^{b} \gg\left(h_{\mathrm{re}} / \mathrm{h}_{\mathrm{oe}}\right)$ $A_{v}=\left(\left[\left(h_{i e}+R_{g}\right)\left(h_{\mathrm{oe}}+R_{\mathrm{L}}^{-1}\right)\left(h_{\mathrm{fe}}+1\right)^{-1}\right]-\mathrm{h}_{\mathrm{re}}+1\right)^{-1}$	$\begin{aligned} & \text { (2) } \\ & \text { (3) } \\ & \text { (4) } \\ & \text { (5) } \\ & 6 \end{aligned}$
$\begin{aligned} A_{v}= & e_{0} / e_{g} \\ A_{v} \approx & 1 \\ A_{v}= & \left(\text { Common emitter } A_{v}\right) \\ & \cdot R_{L}\left(h_{f e}^{-1}+1\right) R_{L 2}^{-1} \end{aligned}$ See-Common emitter formulas	$\begin{aligned} & \text { (2) } \\ & \text { (3) } \\ & \text { (4) } \\ & \text { (5) } \\ & \text { (6) } \end{aligned}$

A Notes:
(6) Most small-signal parameters are drastically different from the dc parameters due to the nonlinear nature of transistors. A diode or transistor junction which develops .6 volts from 1 mA forward current has a dc resistance of 600 ohms according to ohms law,

Small-Signal Low Frequency Common Emitter A_{V} Voltage Amplification	
$\begin{aligned} & A_{v}=e_{o} / e_{g} \\ & A_{v} \approx 37 I_{C} R_{L} \\ & A_{v} \simeq\left(h_{f e} R_{L}\right) / h_{i e} \\ & A_{v}=\left[h_{i e} h_{f e}^{-1}\left(R_{L}^{-1}+h_{o e}\right)-h_{r e}\right]^{-1} \end{aligned}$	$\begin{aligned} & \text { (2) } \\ & \text { (3) } \\ & \text { (4) } \\ & \text { (5) } \\ & \text { (6) } \end{aligned}$
	(2) (3) (4) (5) (6)
$\begin{aligned} A_{\mathrm{v}}= & e_{\mathrm{o}} / \mathrm{e}_{\mathrm{g}} \\ A_{\mathrm{v}} \approx & \mathrm{R}_{\mathrm{L}} / \mathrm{R}_{\mathrm{E}} \\ \mathbf{A}_{\mathrm{v}} \simeq & \left(h_{\mathrm{he}} \mathrm{R}_{\mathrm{L}}\right) /\left[\mathrm{h}_{\mathrm{ie}}+\left(\mathrm{h}_{\mathrm{fe}} \mathrm{R}_{\mathrm{E}}\right)\right] \\ A_{\mathrm{v}}= & {\left[\mathrm{h}_{\mathrm{fe}}^{-1} \mathrm{~h}_{\mathrm{ie}}\left(\mathrm{R}_{\mathrm{L}}^{-1}+\mathrm{h}_{\mathrm{oe}}^{\prime}\right)\right.} \\ & \left.+\mathrm{R}_{\mathrm{E}} \mathrm{R}_{\mathrm{L}}^{-1}\left(\mathrm{~h}_{\mathrm{fe}}+1\right)+\mathrm{h}_{\mathrm{fe}}^{-1} \mathrm{~h}_{\mathrm{oe}}^{\prime}-\mathrm{h}_{\mathrm{re}}\right]^{-1} \\ & \mathrm{~h}_{\mathrm{oe}}^{\prime}=\left(\mathrm{R}_{\mathrm{E}}+\mathrm{h}_{\mathrm{oe}}^{-1}\right)^{-1} \end{aligned}$	(2) (3) (4) (5) (6)

A Notes:
(6) Cont. but if a small ac signal is superimposed upon the dc and measured, the ac resistance will be found to be about 26 ohms. This small-signal resistance (r) is often verbally expressed as impedance (z), but admittance (y) is used at frequencies where internal capacitances are significant.

Small-Signal Low Frequency Common EmitterA_{V}Voltage Amplification	
	$\begin{aligned} & (2) \\ & \sqrt[3]{3} \\ & (4) \\ & \sqrt[(5)]{(6)} \end{aligned}$
$\begin{aligned} & A_{v}=e_{o} / e_{g} \\ & A_{v} \approx 38 I_{C}\left(R_{L}^{-1}+R_{F}^{-1}\right)^{-1} \\ & A_{v} \simeq h_{i e}^{-1}\left[h_{\mathrm{fe}_{\mathrm{e}}}\left(R_{\mathrm{L}}^{-1}+R_{F}^{-1}\right)^{-1}\right] \\ & A_{v}=\left(h_{i e} h_{f e}^{-1}\left[R_{L}^{-1}+R_{F}^{-1}+h_{o e}\right]-h_{\mathrm{re}}\right)^{-1} \end{aligned}$	$\begin{aligned} & \text { (2) } \\ & \text { ③ } \\ & \text { (4) } \\ & \text { (5) } \\ & \text { (6) } \end{aligned}$
	$\begin{aligned} & \text { (2) } \\ & \sqrt[3]{3} \\ & \text { 44) } \\ & \text { ③ } \\ & \sqrt[6]{2} \end{aligned}$

Small-SignalLow FrequencyCommon Emitter $\quad A_{V}$Voltage Amplification	
$A_{v}=e_{o} / e_{g}$	
$A_{v}=\left(\left[R_{B X} h_{f e}^{-1}\left(R_{L}^{-1}+G_{C X}\right)\right]+\right.$	$\begin{aligned} & \text { (2) } \\ & \text { (3) } \end{aligned}$
$\begin{aligned} & \left.+R_{E X} h_{f e}^{-1}\left[G_{C X}+R_{L}^{-1}\left(h_{f e}+1\right)\right]\right)^{-1} \\ & \quad r_{e}=h_{r e} h_{o e}^{-1} \end{aligned}$	(4) (5) (6)
$\begin{aligned} & r_{\mathrm{c}}=\mathrm{h}_{\mathrm{oe}}^{-1}\left(\mathrm{~h}_{\mathrm{fe}}+1\right) \\ & \mathrm{r}_{\mathrm{b}}=\mathrm{h}_{\mathrm{ie}}-\left[\mathrm{h}_{\mathrm{re}} \mathrm{~h}_{\mathrm{oe}}^{-1}\left(\mathrm{~h}_{\mathrm{fe}}+1\right)\right] \end{aligned}$	
$R_{B X}=R_{g}+\left[\left(R_{F} r_{b}\right)\left(R_{F}+r_{b}+r_{c}\right)^{-1}\right]$	
$R_{E X}=R_{E}+r_{e}+\frac{\left[\left(r_{b}+r_{c}\right)\left(R_{F}+r_{b}+r_{c}\right)^{-1}\right]}{\left(h_{f e}+1\right)}$	
$\mathrm{R}_{\mathbf{C X}}=\left(\mathrm{R}_{\mathrm{F}} \mathrm{r}_{\mathrm{c}}\right)\left(\mathrm{R}_{\mathrm{F}}+\mathrm{r}_{\mathrm{b}}+\mathrm{r}_{\mathrm{c}}\right)^{-1}$	
$\mathrm{G}_{\mathrm{CX}}=\left(\left[\mathrm{R}_{\mathrm{CX}}\left(\mathrm{h}_{\mathrm{fe}}+1\right)^{-1}\right]+\mathrm{R}_{\mathrm{EX}}\right)^{-1}$	

$$
\begin{aligned}
& e=\text { Symbol for emitter. (small signal subscript) } \\
& e=\text { Small-signal voltage. (rms or instantaneous) } \\
& e_{b}= \text { Small-signal base voltage. } \\
& e_{c}=\text { Small-signal collector voltage. } \\
& e_{e}= \text { Small-signal emitter voltage. } \\
& e_{g}= \text { Generator voltage. } \\
& e_{i}=\text { Input voltage. } \\
& e_{N}= \text { Noise voltage (rms). } \\
& e_{N}= \text { Thermal noise voltage or equivalent input total } \\
& \text { transistor noise voltage. } \\
& e_{N(\sqrt{H z})}= \text { Noise voltage per root hertz. } \\
& \text { (BW = } 1 \text { Hz or } e_{N} / \sqrt{B W} \text { for white noise) } \\
& e_{N(s)}= \text { Transistor shot noise (white noise) voltage. } \\
& e_{N(t h)}= \text { Thermal noise voltage. (white noise voltage of an } \\
& \text { ideal resistance at a specified temperature) } \\
& e_{N(T R)}= \text { Transistor noise voltage. } \\
& e_{N(1 / f)}= 1 / f \text { noise voltage of a transistor. (Resistor } 1 / \mathrm{f} \text { noise } \\
& \text { is known as excess or current noise) } \\
& e_{o}= \text { Output voltage. } \\
& e_{p}= \text { Peak voltage. } \\
& e_{s}-\text { See- } e_{N(s) .} \\
& e_{t}= \text { Total or equivalent voltage. } \\
& e_{1 / f}- \text { See-e } e_{N(1 / f) .}
\end{aligned}
$$

$\begin{aligned} e_{b} & =i_{g} h_{i e} \\ e_{c} & =0 \end{aligned}$	(1) (2) (3) (4) (5)
	(1) (2) (3) (4) (5)
$\begin{aligned} \mathrm{e}_{\mathrm{b}}= & e_{\mathrm{g}} \\ \mathrm{e}_{\mathrm{c}} \simeq & -37 \mathrm{I}_{\mathrm{C}} \mathrm{e}_{\mathrm{g}} \mathrm{R}_{\mathrm{L}} \\ & \text { when } \quad A_{v}<50 \\ e_{\mathrm{c}}= & -e_{\mathrm{g}} \mathrm{~A}_{\mathrm{v}} \quad \text { See- } A_{v} \end{aligned}$	$\begin{aligned} & \text { (2) } \\ & \text { (3) } \\ & \text { (4) } \\ & \text { (5) } \end{aligned}$ ©
	$\begin{aligned} & \text { (2) } \\ & \text { (3) } \\ & \text { (4) } \\ & \text { (5) } \end{aligned}$

e Notes:
(1) - - is the graphic symbol for an alternating current generator. (an infinite impedance signal source)
(2) Transistors must be biased into an active region.
(3) Approximations apply to high beta silicon small-signal transistors while exact formulas apply to all bipolar transistors.

$\begin{aligned} e_{b}= & e_{g} \\ e_{c} \simeq & -\left(e_{g} R_{L}\right) / R_{E} \\ & \text { when } R_{E} \gg\left(37 I_{C}\right)^{-1} \\ e_{c}= & -e_{g} A_{v} \text { See }-A_{v} \\ e_{e} \simeq & e_{b} \text { when } R_{E} \gg\left(37 I_{C}\right)^{-1} \end{aligned}$	(2) (3) (4) (5) (6)
$\begin{aligned} & e_{b} \simeq e_{g} /\left[R_{S}\left(R_{B}^{-1}+h_{i e}^{-1}\right)+1\right] \\ & e_{b}=e_{g} /\left[R_{S}\left(R_{B}^{-1}+Z_{i}^{-1}\right)+1\right] \\ & e_{c} \simeq-37 I_{C} e_{b} R_{L} \\ & e_{c}=-e_{b} A_{v} \quad \text { See }-A_{v}, Z_{i} \\ & e_{e}=0 \end{aligned}$	$\begin{aligned} & \text { (2) } \\ & \text { (3) } \\ & \text { (4) } \\ & \text { (5 } \end{aligned}$
$\begin{aligned} & e_{b}=e_{g} \\ & e_{c} \simeq-\left(e_{g} h_{f e}\right)\left[h_{i e}\left(R_{C}^{-1}+R_{L}^{-1}\right)\right]^{-1} \\ & e_{c}=-\left(e_{g} A_{i}\right)\left[Z_{i}\left(R_{C}^{-1}+R_{L}^{-1}\right)\right]^{-1} \\ & e_{e}=0 \\ & e_{o}=e_{c} \end{aligned}$	$\begin{aligned} & \text { (2) } \\ & \text { (3) } \\ & \text { (4) } \\ & \text { (5) } \\ & 6 \end{aligned}$

e Notes:
(4) Formulas apply to pnp transistors as well as the npn transistors shown. Reverse emitter arrow and power supply polarity for pnp transistors.
(5) Transistor parameters will vary with collector voltage and temperature as well as collector current.
(6) The resistance of base bias resistors must be included in all calculations where the generator source resistance is of significance.

e_{N}
 Noise Voltage

$$
\begin{aligned}
& e_{N(t h)}=\sqrt{4 K_{B} T_{K} R_{S} \overline{B W}} \quad \text { Thermal noise voltage } \\
& \left(\mathrm{e}_{\mathrm{N}(\sqrt{\mathrm{~Hz}})}\right) \text { th }=\sqrt{4 \mathrm{~K}_{\mathrm{B}} \mathrm{~T}_{\mathrm{K}} \mathrm{R}_{\mathrm{S}}} \quad \text { Thermal noise voltage per root hertz } \\
& e_{N(s)}=r_{e} \sqrt{2 q I_{B} \overline{B W}} \quad \text { Transistor shot noise (white noise) } \\
& \left(e_{N(\sqrt{H z})}\right) s=r_{e} \sqrt{2 q_{B}} \quad \text { Transistor shot noise per root hertz } \\
& e_{N(1 / f)}=\sqrt{\left(e_{N}\right)_{T R}^{2}-\left(e_{N}\right)_{s}^{2}} \quad \text { Both same bandwidth } \\
& \left(e_{N}\right)_{T R}=\sqrt{\left(e_{N}\right)_{s}^{2}+\left(e_{N}\right)_{1 / f}^{2}} \quad \text { Both same bandwidth }
\end{aligned}
$$

Total Equivalent Input Noise Voltage

$$
\left(e_{N}\right)_{t}=\left(\left[R_{S}\left(i_{N}\right)_{T R}\right]^{2}+\left(e_{N}\right)_{T R}^{2}+\left(e_{N}\right)_{t h}^{2}\right)^{\frac{1}{2}}
$$

(all same BW)

Wideband Total Noise Voltage Output

$$
\begin{aligned}
e_{N(\text { OUT })}= & A_{v}\left(\left[R_{S}\left(i_{N}\right)_{T R}\right]^{2}+\left(e_{N}\right)_{T R}^{2}+\left(e_{N}\right)_{t h}^{2}\right)^{\frac{1}{2}} \\
& \text { (all same } B W)
\end{aligned}
$$

Total Spot Noise Voltage Output
$e_{N(\text { OUT })}=A_{v}\left(\left[R_{S}\left(i_{N}\right)_{T R}\right]^{2}+\left(e_{N}\right)_{T R}^{2}+4 K_{S} T_{K} R_{S}\right)^{\frac{1}{2}}$
all noise terms are for 1 Hz BW at same frequency
e_{N} Notes: $\mathrm{K}_{\mathrm{B}}=$ Boltzmann constant ($1.38 \cdot 10^{-23} \mathrm{~J} / \mathrm{K}$); $\mathrm{T}_{\mathrm{K}}=$ Kelvin temperature $\left({ }^{\circ} \mathrm{C}+273.15\right) ; q=$ Charge of electron ($1.6 \cdot 10^{-19}$); BW = Bandwidth, See-Opamp, BW NOISE; $r_{e}=$ Internal transistor dynamic emitter resistance; $\mathrm{r}_{\mathrm{e}} \approx .027 / \mathrm{I}_{\mathrm{C}} ;\left({ }^{(}{ }_{\mathrm{N}}\right)_{\mathrm{TR}}=$ Transistor noise current equivalent input); $A_{v}=$ stage voltage amplification; $I_{B}, I_{C}=d c$ base and collector currents.

F to 9 Small-Signal Definitions

[^2]
$h_{f b} h_{f c} h_{f e}$
 Small-Signal
 Forward
 Current
 Ratios

$\mathrm{h}_{\mathrm{fb}}=$ Common base small-signal forward current transfer ratio with output ac shorted.
$\mathrm{h}_{\mathrm{fb}}=$ Small signal alpha (α)
$\mathrm{h}_{\mathrm{fb}}=\mathrm{i}_{\mathrm{c}} / \mathrm{i}_{\mathrm{e}}$
$\mathrm{h}_{\mathrm{fb}}=\mathrm{h}_{\mathrm{fe}} /\left(\mathrm{h}_{\mathrm{fe}}+1\right)$
$\mathrm{h}_{\mathrm{fc}}=$ Common collector (emitter follower) small-signal forward current transfer ratio with output ac shorted.
$\mathrm{h}_{\mathrm{fc}}=\mathrm{i}_{\mathrm{e}} / \mathrm{i}_{\mathrm{b}}$
$\mathrm{h}_{\mathrm{fc}}=\mathrm{h}_{\mathrm{fe}}+1$
$\mathrm{h}_{\mathrm{fe}}=$ Common emitter small-signal forward current transfer ratio with output ac shorted.
$\mathrm{h}_{\mathrm{fe}}=$ Small-signal beta (β).
$\mathrm{h}_{\mathrm{fe}}=\mathrm{i}_{\mathrm{c}} / \mathrm{i}_{\mathrm{b}}$
$\mathrm{h}_{\mathrm{fe}}=\alpha /(1-\alpha)$
$\mathrm{h}_{\mathrm{fe}}=\mathrm{h}_{\mathrm{fb}} /\left(1-\mathrm{h}_{\mathrm{fb}}\right)$
$\mathrm{h}_{\mathrm{fe}}=\mathrm{h}_{\mathrm{fc}}-1$
$\mathrm{h}_{\mathrm{fe}}=\mathrm{h}_{\mathrm{fb}} \mathrm{h}_{\mathrm{fc}}$
$\mathrm{h}_{\mathrm{fe}}=$ Common emitter current gain when output is ac shorted.
$\mathrm{h}_{\mathrm{fe}}=\left(\mathrm{i}_{\mathrm{c}} \mathrm{h}_{\mathrm{ie}}\right) / \mathrm{e}_{\mathrm{be}}$ when output is ac shorted.

Rib Ric Rie $_{\text {ice }}^{\text {Small-Signal }} \begin{aligned} & \text { Input } \\ & \text { Impedance }\end{aligned}$

$\mathrm{h}_{\mathrm{ib}}=$ Common base small-signal input impedance with output ac shorted.
$h_{i b}=e_{e} / i_{e}$
$\mathrm{h}_{\mathrm{ib}}=\mathrm{h}_{\mathrm{ie}} /\left(\mathrm{h}_{\mathrm{fe}}+1\right)$
$h_{i b}=r_{e}+\left[r_{b} /\left(h_{f e}+1\right)\right]$
$h_{\mathrm{ib}} \approx 1 /\left(37 \mathrm{I}_{\mathrm{C}}\right)$
$\mathrm{h}_{\mathrm{ic}}=$ Common collector (emitter follower) small-signal input impedance with output ac shorted.
$h_{i c}=h_{i e} \quad$ (since emitter is ac shorted)
$\mathrm{h}_{\mathrm{ie}}=$ Common emitter small-signal input impedance with output ac shorted.
$h_{i e}=e_{b} / i_{b}$
$h_{i e}=h_{i c}$
$\mathrm{h}_{\mathrm{ie}}=\mathrm{h}_{\mathrm{ib}}\left(\mathrm{h}_{\mathrm{fe}}+1\right)$
$\mathrm{h}_{\mathrm{ie}}=\mathrm{r}_{\mathrm{b}}+\mathrm{r}_{\mathrm{e}}\left(\mathrm{h}_{\mathrm{fe}}+1\right)$
$\mathrm{h}_{\mathrm{ie}} \approx \mathrm{h}_{\mathrm{fe}} /\left(37 \mathrm{I}_{\mathrm{C}}\right)$
$\mathrm{h}_{\mathrm{ie}} \simeq\left(26.7 \mathrm{~h}_{\mathrm{fe}}\right) /\left(1000 \mathrm{I}_{\mathrm{C}}\right)^{.78}$
Approximations apply to small-signal silicon transistors.

$\mathrm{h}_{\mathrm{ob}}=$ Common base small-signal output admittance with input ac open-circuited.
$h_{o b}=i_{c} / e_{c} \quad$ when emitter is ac open-circuited (constant current emitter supply)
$h_{o b}=y_{o b} \quad$ ($y_{o b}$ is generally used at high frequencies)
$\mathrm{h}_{\mathrm{ob}} \simeq \mathrm{h}_{\mathrm{oe}} /\left(\mathrm{h}_{\mathrm{fe}}+1\right)$
$h_{\mathrm{ob}}=\mathrm{r}_{\mathrm{c}}+\mathrm{r}_{\mathrm{b}}$
$h_{\mathrm{ob}}=\left(\left[\mathrm{h}_{\mathrm{oe}}^{-1}\left(\mathrm{~h}_{\mathrm{fe}}+1\right)\right]+\left[\mathrm{h}_{\mathrm{ie}}-\mathrm{h}_{\mathrm{re}} \mathrm{h}_{\mathrm{oe}}^{-1}\left(\mathrm{~h}_{\mathrm{fe}}+1\right)\right]\right)^{-1}$
$h_{o c}=$ Common collector (emitter follower) small-signal output admittance with input ac open-circuited.
$h_{o c}=h_{o e} \quad$ (since input is open-circuited)
$\mathrm{h}_{\mathrm{oe}}=$ Common emitter small-signal output admittance with input ac open-circuited.
$h_{o e}=i_{c} / e_{c} \quad$ when base is ac open-circuited (constant current base supply)
$h_{o e}=y_{o e} \quad$ ($y_{o e}$ is generally used at high frequencies)
$h_{\mathrm{oe}}=\mathrm{h}_{\mathrm{oc}}$
$h_{\mathrm{oe}}=\left(\mathrm{h}_{\mathrm{fe}}+1\right) / \mathrm{r}_{\mathrm{c}}$
$\mathrm{h}_{\mathrm{oe}} \approx 20 \mu \mathrm{~S} \quad(50 \mathrm{k} \Omega)^{-1} \quad$ when $\mathrm{I}_{\mathrm{C}} \approx 1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}>5 \mathrm{~V}$, $\mathrm{T} \approx 25^{\circ} \mathrm{C}$

Rrb Rre Rre $\begin{aligned} & \text { Small-Signal } \\ & \text { Reverse } \\ & \text { Voltage Ratios }\end{aligned}$

$h_{r b}=$ Common base small-signal reverse voltage transfer ratio with input ac open-circuited.
$h_{r b}=e_{e} / e_{c} \quad$ when emitter is ac open-circuited (constant current emitter supply)
$h_{r b}=r_{b} /\left(r_{b}+r_{c}\right)$
$h_{r b} \simeq\left[h_{i e} h_{o e}\left(h_{f e}+1\right)^{-1}\right]-h_{r e}$
$h_{r b}=\left[\left(\left[h_{i e} h_{\mathrm{oe}}\left(h_{\mathrm{fe}}+1\right)^{-1}\right]-h_{\mathrm{re}}\right)^{-1}+1\right]^{-1}$
$\mathrm{h}_{\mathrm{rc}}=$ Common collector small-signal reverse voltage transfer ratio with input ac open-circuited.
$\mathrm{h}_{\mathrm{rc}}=1-\mathrm{h}_{\mathrm{re}}$
$\mathrm{h}_{\mathrm{re}}=$ Common emitter small-signal reverse voltage transfer ratio with input ac open-circuited.
$h_{r e}=e_{b} / e_{c} \quad$ when base is ac open-circuited (constant current base supply)
$h_{r e}=r_{e} h_{o e}$
$h_{r e}=\left[r_{e}\left(h_{f e}+1\right)\right] / r_{c}$
$\mathrm{h}_{\mathrm{re}} \approx 1.33 \cdot 10^{-6} \mathrm{~h}_{\mathrm{fe}}$ when $\mathrm{I}_{\mathrm{C}} \approx 1 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{CE}}>5 \mathrm{~V}$
Note: h_{re} is very V_{CE} sensitive at low voltage. h_{re} typically is very nonlinear over large variations of I_{C}.

Small-Signal
Current Definitions
See also-I, Passive Circuits
$\mathrm{i}=$ Small-signal current.
$\mathrm{i}_{\mathrm{b}}=$ Small-signal base current.
$\mathrm{i}_{\mathbf{c}}=$ Small-signal collector current.
$\mathrm{i}_{\mathrm{e}}=$ Small-signal emitter current.
$\mathrm{i}_{\mathrm{g}}=$ Small-signal generator (source) current.
$\mathrm{i}_{\mathrm{in}}=$ Small-signal input current
$\mathrm{i}_{\mathrm{N}}=$ Noise current.
i_{N} (TRANSISTOR) $=$ That portion of the input equivalent inter-
\quad nal transistor noise which is proportional
\quad to the external resistance in shunt with the
\quad input (source resistance)

i Notes:
(1) - - is the graphic symbol for an infinite impedance alternating current generator. (any very high impedance source)
(2) Transistors must be biased into an active region.
(3) Approximations apply to high beta small-signal silicon transistors. Exact formulas apply to all bipolar transistors.

i Notes:
(4) All formulas apply to pnp transistors as well as the npn transistors shown. Reverse emitter arrow and power supply polarity for pnp transistors.
(5) Transistor parameters will vary with collector voltage and temperature as well as with collector current.
(6) The resistance of base bias resistors must be included properly in all calculations where the signal source resistance is of significance.
$\mathrm{NF}=$ Symbol for noise figure (also known as noise factor) (other symbols include F and F_{N})
$\mathrm{NF}=1$. The ratio (usually in decibels) of the output signal-to-noise power to the input signal-to-noise power.
2. The ratio in decibels of the total output noise to that portion of the output noise generated thermally by the input termination resistance.
$\mathrm{NF}=20\left[\log \left(\mathrm{e}_{\mathrm{ni}} / \mathrm{e}_{\mathrm{nR}}{ }^{\prime}\right)\right]$
$\mathrm{NF}=20\left(\log \left[\mathrm{e}_{\mathrm{no}} /\left(\mathrm{e}_{\mathrm{nR}}{ }^{\prime} \mathrm{A}_{\mathrm{v}}\right)\right]\right)$
where $e_{n R^{\prime}}=e_{n R} /\left[\left(R_{S} / r_{i}\right)+1\right]$
and $\quad e_{n R}=\sqrt{4 K_{B} T_{K} \overline{B W}}$
See also $-\mathrm{e}_{\mathrm{N} \text { (out) }}$ and $\mathrm{BW}_{\text {NOISE }}$, Opamp
NF Notes:
(1) $\mathbf{A}_{\mathbf{V}}=$ Voltage amplification, $\overline{\mathrm{BW}}=$ Average bandwidth (rms bandwidth), $e_{n i}=$ Input equivalent total noise voltage, $e_{n o}=$ Output noise voltage, $e_{n R}=$ Thermal noise voltage of source resistance, $\mathrm{K}_{\mathrm{B}}=$ Boltzmann constant ($1.38 \cdot 10^{-23} \mathrm{~J} /{ }^{\circ} \mathrm{K}$), $\mathrm{r}_{\mathrm{i}}=$ Transistor input resistance, $\mathrm{R}_{\mathrm{S}}=$ Source resistance (the total effective resistance presented to the transistor input), $\mathrm{T}_{\mathbf{K}}=$ Kelvin temperature (${ }^{\circ} \mathrm{C}+273.15$), log = Base 10 logarithm.
(2) The standard noise temperature (T_{N}) of the source resistance is $290 \mathrm{~K}\left(16.85^{\circ} \mathrm{C}\right)$ if unspecified.
See also - e_{N} Notes

V V
 Definitions

$\mathrm{V}=$ The unit symbol for volt. See-V, Passive Circuits
$\mathrm{V}=$ The quantity symbol for voltage.
See-V, Static (dc) Parameters
See also-V, Opamp
Note: A definite trend exists towards the elimination of E and e as symbols for voltage. At present, E and e predominate in passive circuits, V and v predominate in operational amplifiers, V has superseded E in dc transistor parameters and e predominates for ac transistor parameters.

$$
\begin{aligned}
& \mathrm{v}=\text { Symbol for small signal voltage. } \\
& \text { See-e See also-V, Opamp } \\
& v_{b}-\text { See- } e_{b} \\
& \mathrm{v}_{\mathrm{c}}-\mathrm{See}-\mathrm{e}_{\mathrm{c}} \\
& \mathrm{v}_{\mathrm{e}}-\text { See- } \mathrm{e}_{\mathrm{e}} \\
& \mathrm{v}_{\mathrm{g}}-\text { See- } \mathrm{e}_{\mathrm{g}} \\
& v_{i}-\text { See- } \mathrm{e}_{\mathbf{i}} \\
& \mathrm{v}_{\mathrm{N}}-\text { See- } \mathrm{e}_{\mathbf{N}} \quad\left(\mathrm{V}_{\mathbf{N}}-\right.\text { See-V, Opamp) } \\
& \mathrm{v}_{\mathrm{o}} \text {-See- } \mathrm{e}_{\mathrm{o}} \\
& \mathbf{v}_{\mathrm{p}}-\text { See- } \mathrm{e}_{\mathrm{p}} \\
& v_{s}-\text { See-e }{ }_{N(s)} \\
& v_{t}-\text { See- } e_{t} \\
& \mathbf{v}_{1 / \mathrm{f}}-\operatorname{See}-\mathrm{e}_{\mathrm{N}(1 / \mathrm{f})}
\end{aligned}
$$

Small Signal Low Frequency Input Common Base Impedance	
$\begin{aligned} & Z_{i} \approx 1 /\left(37 I_{C}\right) \\ & Z_{i}=r_{e}+r_{b}\left(h_{f e}+1\right)^{-1} \\ & Z_{i}=h_{i b} \\ & Z_{i}=h_{i e} /\left(h_{f e}+1\right) \end{aligned}$	$\begin{aligned} & \text { (3) } \\ & \text { (4) } \\ & \text { (5) } \\ & \text { (6) } \\ & \text { (9) } \end{aligned}$
$\mathrm{Z}_{\mathrm{i}} \approx 1 /\left(37 \mathrm{I}_{\mathrm{C}}\right)$ (when $A_{v}<50$) $\begin{aligned} \mathrm{Z}_{\mathrm{i}} \simeq & \mathrm{~h}_{\mathrm{ie}} /\left(\mathrm{h}_{\mathrm{fe}}+1\right) \\ & \quad\left(\text { when } \quad \mathrm{A}_{\mathrm{v}}>50\right) \end{aligned}$ $\mathrm{Z}_{\mathrm{i}}=\left(\mathrm{h}_{\mathrm{oe}} \mathrm{R}_{\mathrm{L}}+1\right) /\left(\mathrm{h}_{\mathrm{oe}} \mathrm{R}_{\mathrm{L}}+1+\mathrm{h}_{\mathrm{fe}}\right)$	$\begin{aligned} & \text { (3) } \\ & \text { (4) } \\ & \text { (5) } \\ & \text { (6) } \\ & (8) \\ & (9 \end{aligned}$
Small Signal Low Frequency Input Common Collector Impedance	
$\mathrm{Z}_{\mathrm{i}} \approx \mathrm{~h}_{\mathrm{fe}} \mathrm{R}_{\mathrm{L}}$ $\mathrm{Z}_{\mathrm{i}} \simeq \mathrm{~h}_{\mathrm{ie}}+\mathrm{R}_{\mathrm{L}}\left(\mathrm{~h}_{\mathrm{fe}}+1\right)$ $\mathrm{Z}_{\mathrm{i}}=\mathrm{h}_{\mathrm{ie}}+\left[\left(\mathrm{h}_{\mathrm{fe}}+1\right) /\left(\mathrm{h}_{\mathrm{oe}}+\mathrm{R}_{\mathrm{L}}^{-1}\right)\right]$	(3) (4) (5) (6) (8) (9)

$Z_{\text {NOTES }}$

Z Notes:

(1) - - is the graphic symbol for an infinite impedance alternating current generator. (an ac current source) In practice, any very high impedance source of current may be substituted.
(2) - - is the graphic symbol for a zero impedance signal generator. (an ac voltage source) In practice, any very low impedance signal source may be substituted.
(3) Approximations apply to high beta, small signal, silicon transistors. Exact formulas apply to all bipolar transistors.
(4) Formulas apply to pnp as well as the npn transistors shown. Reverse emitter arrow and power supply polarity for pnp transistors.
(5) All internal dynamic resistances ($\mathrm{r}_{\mathrm{b}}, \mathrm{r}_{\mathbf{c}}, \mathrm{r}_{\mathrm{e}}$) vary with operating conditions. Primarily, r_{e} varies with emitter current while r_{c} varies primarily with temperature and collector voltage. Usually, r_{b} is assumed to be a non-varying resistance.
(6) All biasing resistors connected in shunt with an input are effectively in parallel with the input impedance. The equivalent resistance of all parallel quantities must be used in all calculations where the source resistance becomes significant. $\mathrm{Z}_{\mathrm{i}}^{\prime}=\left(\mathrm{Z}_{\mathrm{i}(\mathrm{R})}^{-1}+\mathrm{R}_{1}^{-1}+\mathrm{R}_{2}^{-1}\right)^{-1}$
(7) $\mathrm{x}^{-1}=1 / \mathrm{x}$
(8) In the usual circuit where the collector is capacitor coupled to a load, the series collector resistor and the load resistance are effectively in parallel and the net parallel resistance should be used in all ac calculations. $\mathrm{R}_{\mathrm{L}}=\left(\mathrm{R}_{1}^{-1}+\mathrm{R}_{2}^{-1}\right)^{-1}$
(9) Base biasing is not shown but transistors must be biased into an active region.
(10) Collector bias and base bias circuits are not shown, however the transistors must be biased into an active region.

Small-Signal Low Frequency Common Emitter Input Impedance	
$\begin{aligned} & Z_{i} \approx h_{f e} /\left(37 I_{\mathrm{C}}\right) \\ & \mathrm{Z}_{\mathrm{i}}=\mathrm{r}_{\mathrm{b}}+\mathrm{r}_{\mathrm{c}}\left(\mathrm{~h}_{\mathrm{fe}}+1\right) \\ & \mathrm{Z}_{\mathrm{i}}=\mathrm{h}_{\mathrm{ie}} \end{aligned}$	③ ④ ③ © ©
$\begin{aligned} \mathrm{Z}_{\mathrm{i}} \approx & \mathrm{~h}_{\mathrm{fe}} /\left(37 \mathrm{I}_{\mathrm{C}}\right) \\ & \left(\text { when } A_{\mathrm{v}}<50\right) \\ \mathrm{Z}_{\mathrm{i}} \simeq & \mathrm{~h}_{\mathrm{ie}} \\ & \left(\text { when } A_{v}<50\right) \\ \mathrm{Z}_{\mathrm{i}}= & \mathrm{h}_{\mathrm{ie}}+\mathrm{h}_{\mathrm{re}} \mathrm{~h}_{\mathrm{fe}} \mathrm{~h}_{\mathrm{oe}}^{-1}\left[\left(\mathrm{R}_{\mathrm{L}} \mathrm{~h}_{\mathrm{oe}}^{-1}+1\right)^{-1}-1\right] \end{aligned}$	③ ④ © © (7) (8) (9)
$\mathrm{Z}_{\mathrm{i}} \approx \mathrm{~h}_{\mathrm{fe}}\left[\left(37 \mathrm{I}_{\mathrm{C}}\right)^{-1}+\mathrm{R}_{\mathrm{E}}\right]$ (when $A_{v}<50$) $\begin{aligned} & \mathrm{Z}_{\mathrm{i}} \simeq \mathrm{~h}_{\mathrm{ie}}+\mathrm{h}_{\mathrm{fe}} \mathrm{R}_{\mathrm{E}} \\ & \mathrm{Z}_{\mathrm{i}}=\frac{\left[\left(\mathrm{h}_{\mathrm{fe}}+1\right)\left(\mathrm{R}_{\mathrm{E}}+\mathrm{r}_{\mathrm{e}}\right)\right]}{\left(\left[\mathrm{h}_{\mathrm{fe}}^{-1}\left(\mathrm{r}_{\mathrm{c}} \mathrm{R}_{\mathrm{L}}^{-1}+1\right)+1\right]^{-1}+1\right)} \\ & \mathrm{r}_{\mathrm{b}}=\mathrm{h}_{\mathrm{ie}}-\mathrm{h}_{\mathrm{re}} \mathrm{~h}_{\mathrm{oe}}^{-1}\left(\mathrm{~h}_{\mathrm{fe}}+1\right) \\ & \mathrm{r}_{\mathrm{c}}=\mathrm{h}_{\mathrm{oe}}^{-1}\left(\mathrm{~h}_{\mathrm{fe}}+1\right) \\ & \mathrm{r}_{\mathrm{e}}=\mathrm{h}_{\mathrm{re}} \mathrm{~h}_{\mathrm{oe}}^{-1} \end{aligned}$	③ ④ ③ (6) (7) (8) (9

Small-Signal Low Frequency Common Base Output Impedance	
$\begin{aligned} & \mathrm{Z}_{\mathrm{o}} \simeq\left(\mathrm{~h}_{\mathrm{fe}}+1\right) / \mathrm{h}_{\mathrm{oe}} \\ & \mathrm{Z}_{\mathrm{o}}=\mathrm{r}_{\mathrm{c}}+\mathrm{r}_{\mathrm{b}} \\ & \mathrm{Z}_{\mathrm{o}}=1 / \mathrm{h}_{\mathrm{ob}} \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (3) } \\ & \text { (4) } \\ & \text { (5) } \\ & \text { (6) } \\ & (7) \end{aligned}$
$\mathrm{Z}_{\mathrm{o}}=\left(\left[\mathrm{h}_{\mathrm{oe}}^{-1}\left(\mathrm{~h}_{\mathrm{fe}}+1\right)\right]+\left[\mathrm{h}_{\mathrm{ie}}-\mathrm{h}_{\mathrm{re}} \mathrm{h}_{\mathrm{oe}}^{-1}\left(\mathrm{~h}_{\mathrm{fe}}+1\right)\right]\right)^{-1}$	(1)
$\mathrm{Z}_{\mathrm{o}} \approx 200 \mathrm{k} \Omega$ $\text { (when } \mathrm{I}_{\mathrm{C}} \approx 1 \mathrm{~mA} \text {) }$ $\begin{aligned} & \mathrm{Z}_{\mathrm{o}} \simeq \mathrm{~h}_{\mathrm{oe}}^{-1}+\mathrm{h}_{\mathrm{oc}}^{-1}\left(50 \mathrm{I}_{\mathrm{C}} \mathrm{~h}_{\mathrm{ie}} \mathrm{~h}_{\mathrm{fe}}^{-1}-1\right)^{-1} \mathrm{O}_{\mathrm{c}} \\ & \mathrm{Z}_{\mathrm{o}}=\mathrm{h}_{\mathrm{oe}}^{-1}\left(\left[\left(\mathrm{~h}_{\mathrm{ie}} \mathrm{~h}_{\mathrm{oe}} / \mathrm{h}_{\mathrm{fe}} \mathrm{~h}_{\mathrm{re}}\right)-1\right]^{-1}+1\right) \end{aligned}$	$\begin{aligned} & \text { (2) } \\ & \text { (3) } \\ & \text { (4) } \\ & \text { (5) } \\ & \text { (6) } \\ & \text { (7) } \\ & \text { (10) } \end{aligned}$
$\begin{aligned} Z_{o}< & R_{B}+\left(h_{f e} / h_{o e}\right) \\ Z_{o}= & h_{o e}^{-1}+h_{f e} h_{o e}^{-1}\left(\left[\left(R_{B}+r_{b}\right) /\left(R_{g}+r_{e}\right)\right]+1\right)^{-1} \\ r_{e} & =h_{r e} h_{o e}^{-1} \\ r_{b} & =h_{i e}-r_{e}\left(h_{f e}+1\right) \end{aligned}$	$\begin{aligned} & \text { (2) } \\ & \text { (3) } \\ & \text { (4) } \\ & \text { (5) } \\ & \text { (6) } \\ & \text { (7) } \\ & \text { (10) } \end{aligned}$

Small-Signal Low Frequency Output Common Collector Impedance	
	$\begin{aligned} & \text { (1) } \\ & \text { (3) } \\ & \text { (4) } \\ & \text { (5) } \\ & \text { (6) } \\ & \text { (10) } \end{aligned}$
$\begin{aligned} & \mathrm{Z}_{\mathrm{o}} \approx 1 /\left(37 \mathrm{I}_{\mathrm{C}}\right) \\ & \mathrm{Z}_{\mathrm{o}} \simeq \mathrm{~h}_{\mathrm{ie}} / \mathrm{h}_{\mathrm{fe}} \\ & \mathrm{Z}_{\mathrm{o}}=\mathrm{r}_{\mathrm{e}}+\mathrm{r}_{\mathrm{b}}\left(\mathrm{~h}_{\mathrm{fe}}+1\right)^{-1} \\ & \mathrm{Z}_{\mathrm{o}}=\mathrm{h}_{\mathrm{ie}} /\left(\mathrm{h}_{\mathrm{fe}}+1\right) \end{aligned}$	(2) (3) (4) (5) (6) (7) (10)
$\begin{aligned} & \mathrm{Z}_{\mathrm{o}} \approx\left(37 \mathrm{I}_{\mathrm{C}}\right)^{-1}+\left(\mathrm{R}_{\mathrm{g}} / \mathrm{h}_{\mathrm{fe}}\right) \\ & \mathrm{Z}_{\mathrm{o}} \simeq\left(\mathrm{R}_{\mathrm{g}}+\mathrm{h}_{\mathrm{ie}}\right) / \mathrm{h}_{\mathrm{fe}} \\ & \mathrm{Z}_{\mathrm{o}}=\mathrm{r}_{\mathrm{e}}+\left[\left(\mathrm{R}_{\mathrm{g}}+\mathrm{r}_{\mathrm{b}}\right) /\left(\mathrm{h}_{\mathrm{fe}}+1\right)\right] \\ & \mathrm{Z}_{\mathrm{o}}=\left(\mathrm{h}_{\mathrm{ie}}+\mathrm{R}_{\mathrm{g}}\right) /\left(\mathrm{h}_{\mathrm{fe}}+1\right) \end{aligned}$	(2) (3) (4) (5) (6) (7) (10)

$\alpha \beta$

Small-Signal

 Current Ratios$\alpha=$ Greek script letter alpha.
$\alpha=$ Symbol for small signal common base forward current transfer ratio with output ac shorted.
Note: Although alpha predominates as the "oral symbol," the equivalent hybrid parameter $h_{f b}$ has almost completed superseded α as the accepted written symbol. See $-\mathrm{h}_{\mathrm{fb}}$
$\alpha=h_{\mathrm{fb}}$
$\alpha=\mathrm{h}_{\mathrm{fe}} /\left(\mathrm{h}_{\mathrm{fe}}+1\right)$ or $\left(\mathrm{h}_{\mathrm{fe}}^{-1}+1\right)^{-1}$
$\alpha=i_{c} / i_{e}$ when e_{c} and $e_{b}=0$
$\alpha \simeq 1$
$\alpha<1 \quad$ exception-very early point contact transistors
$\beta=$ Greek script letter beta.
$\beta=$ Symbol for small signal common emitter forward current transfer ratio with output ac shorted.
Note: Although beta predominates as the "oral symbol," the equivalent hybrid parameter h_{fe} has almost completely superseded β as the accepted written symbol. See $-\mathrm{h}_{\mathrm{fe}}$
$\beta=\mathrm{h}_{\mathrm{fe}}$
$\beta=i_{c} / i_{b}$ when e_{c} and $e_{e}=0$
$\beta=\left(i_{c} h_{i e}\right) / e_{b}$ when e_{c} and $e_{e}=0$
$\beta=\mathrm{h}_{\mathrm{fb}} /\left(\mathrm{h}_{\mathrm{fb}}-1\right)$ or $\left(\mathrm{h}_{\mathrm{fb}}^{-1}-1\right)^{-1}$
$\beta=\left(i_{e} / i_{b}\right)-1=\left[\left(i_{e} / i_{c}\right)-1\right]^{-1}$

SECTION

THREE

OPERATIONAL

AMPLIFIERS

$$
3.1 \text { DEFINITIONS }
$$

Opamp

Symbol
Definitions

[^3]
A B
 Opamp
 Symbol Definitions

$\mathrm{A}_{\text {vcl }}=$ Small-signal closed-loop voltage amplification. The small-signal voltage gain of an operational amplifier stage with inverse feedback applied. See alsoA_{V}
$\mathrm{A}_{\mathrm{vo}}=$ Midband voltage amplification. The voltage amplification at the midband or reference frequency (f_{0})
$\mathrm{A}_{\mathrm{VD}}=$ Differential voltage amplification
$\mathrm{A}_{\text {voL }}=$ Large-signal open-loop voltage amplification. The large-signal voltage gain of an operational amplifier before application of inverse feedback.
$\mathrm{A}_{\text {vol }}=$ Small-signal open-loop voltage amplification. The small-signal voltage gain of an operational amplifier (opamp) before application of inverse feedback.
B $=$ See-BW, See also -B, Passive Circuits.
$\mathrm{B}_{1}=$ See $-\mathrm{BW}_{\left(\mathrm{A}_{\mathrm{v}}=1\right)}$
$\mathrm{B}_{\mathrm{OM}}=$ Maximum output swing bandwidth.
$\mathrm{BW}=$ Bandwidth
$\mathrm{BW}_{(-3 \mathrm{~dB})}=$ Half power or 3 dB down bandwidth
$B W_{(-3 \mathrm{~dB})}=f_{0} / Q$ (bandpass filters)
$\mathrm{BW}_{\left(\mathbf{A}_{\mathrm{V}}=1\right)}=$ Unity gain bandwidth. The range of frequencies within which the open-loop voltage amplification is greater than unity. Unity gain bandwidth is also known as gain-bandwidth product but, is only approximately equal to actual gain-bandwidth product. (See-GBW, f_{T}). The unity-gain bandwidth is equal to the product of the small-signal closed-loop voltage amplification ($\mathrm{A}_{\mathrm{vcl}}$) and the closed-loop flat-response bandwidth only when the open-loop voltage gain is inversely proportional to frequency in the frequency range between the top bandpass frequency and the unity-gain frequency.

$B W_{\text {NOISE }}$

Noise Bandwidth

$\mathrm{BW}_{\text {NOISE }}=$ Bandwidth used to compute noise output. (other symbols include: $\overline{\mathrm{B}}, \mathrm{B}, \mathrm{BW}, \mathrm{BW}_{\mathrm{n}}$)
$\mathrm{BW}_{\text {NOISE }}=$ Noise bandwidth with zero noise contribution from frequencies above or below bandwidth limits
$\mathrm{BW}_{\text {NOISE }}=$ Noise bandwidth measured with filters having nearly rectangular response curves. ("cliff" or "brick wall" filters)

Effective Noise Bandwidth from zero to the 3 dB Down Frequency using Butterworth Filters
$\mathrm{BW}_{\text {NOISE }}=1.57 \mathrm{BW}_{-3 \mathrm{~dB}} \quad 6 \mathrm{~dB}$ per octave filter
$\mathrm{BW}_{\text {NOISE }}=1.11 \mathrm{BW}_{-3 \mathrm{~dB}} \quad 12 \mathrm{~dB}$ per octave filter
$\mathrm{BW}_{\text {NOISE }}=1.05 \mathrm{BW}_{-3 \mathrm{~dB}} \quad 18 \mathrm{~dB}$ per octave filter
$\mathrm{BW}_{\text {NOISE }}=1.025 \mathrm{BW}_{-3 \mathrm{~dB}} \quad 24 \mathrm{~dB}$ per octave filter
$\mathrm{BW}_{\text {NOISE }}=\mathrm{BW}_{-3 \mathrm{~dB}} \quad \infty \mathrm{~dB}$ per octave filter

```
Notes:
6 dB per octave = 20 dB per decade
(first order filter)
12 dB per octave = 40 dB per decade
(second order filter)
dB per decade = 3.333 (dB per octave)
dB per octave = . 3 (dB per decade)
```


B C D
 Opamp
 Symbol Definitions

$\mathrm{BW}_{\left(\mathrm{A}_{\mathrm{v}}=1\right)}=\left[\mathrm{A}_{\mathrm{vcl}}\right] /\left[\mathrm{BW}_{\mathrm{cl}}\right]$
$\mathrm{BW}_{\mathrm{cl}}=$ Small signal flat response bandwidth.
$B W_{c l} \simeq\left[B W_{\left(A_{v}=1\right)}\right] / A_{\text {vcl }}$
$\mathrm{BW}_{\text {NOISE }}-$ See preceding page
$\mathrm{BW}_{\mathrm{p}}=$ Power bandwidth. See also-PBW
$\mathrm{BW}_{\mathrm{p}}=\mathrm{SR} /\left[\pi \mathrm{V}_{\text {opp }}\right]$
$\mathrm{C}_{\mathrm{B}}=$ Bypass capacitor. Bootstrap capacitor.
$\mathrm{C}_{\mathrm{C}}=$ Coupling capacitor.
$\mathrm{C}_{\mathrm{I}}, \mathrm{C}_{\mathrm{i}}, \mathrm{C}_{\text {IN }}, \mathrm{C}_{\text {in }}=$ Input capacitance.
CMRR = Common mode rejection ratio. The ratio of differential voltage gain to common mode voltage gain.
$\mathrm{C}_{\mathrm{O}}, \mathrm{C}_{\mathrm{o}}, \mathrm{C}_{\text {out }}=$ Output capacitance .
$\mathrm{C}_{\mathrm{p}}=$ Parallel capacitance.
$\mathrm{C}_{\mathrm{T}}, \mathrm{C}_{\mathrm{t}}=$ Total capacitance.
D - See-THD
$\mathrm{d}=$ Damping factor. (other symbols include α and δ) The reciprocal of the Q factor in most applications. A symbol used in high and low pass filter formulas where the 3 dB down definition of Q factor is not applicable. Note: Nearly everyone understands the meaning of Q factor regardless of the difficulty with an all encompassing definition. See-Q
$\mathrm{d}=1 / \mathrm{Q}$

D E
 Opamp
 Symbol
 Definitions

$$
\begin{aligned}
\mathrm{dB}= & \text { Decibel. A logarithmic ratio of power, voltage or } \\
& \text { current. See-dB editorial on preceding page. See } \\
& \text { also- } \mathrm{dB}, \text { Passive Circuits } \\
\mathrm{dB}= & 10\left[\log \left(\mathrm{P}_{\mathrm{o}} / \mathrm{P}_{\mathrm{i}}\right)\right] \\
\mathrm{dB}= & 20\left[\log \left(\mathrm{~V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{i}}\right)\right] \\
\mathrm{dB}= & 20\left[\log \left(\mathrm{I}_{\mathrm{o}} / \mathrm{I}_{\mathrm{in}}\right)\right] \\
\mathrm{dBf}= & \text { Power in decibels referenced to one femtowatt. } \\
& \left(\mathrm{fW}=10^{-15} \mathrm{~W}\right)
\end{aligned}
$$

$\mathrm{dBm}=$ Power in decibels referenced to one milliwatt.
$\mathrm{dB}_{\mathrm{re}}-$ See- $\mathrm{dB}_{\text {REF }}$
$\mathrm{dB}_{\text {REF }}=$ Reference level in decibels.
$\mathrm{dBV}=1$. Voltage in decibels referenced to 1 volt rms.
2. Voltage ratio in decibels. (not recommended)

E-See-V See also-E, Passive Circuits
e-See-V See also-e, Transistors and e, Passive Circuits
$e_{g}, e_{i}, e_{\text {in }}-$ See $-V_{g}, V_{i}, V_{s}$
$E_{N}, E_{n}, e_{N}, e_{n}$ etc-See- V_{n}

- See also- e_{N}, NF, Transistors
- See also- E_{N}, NI, Passive Circuits

Note:

The transition from \mathbf{E} to V as the quantity symbol for voltage is complete in this opamp section. The symbol E was used exclusively in the passive circuit section while the transistor section used V for dc voltages only. It is expected that eventually the symbol \mathbf{V} will replace E for all electronic usage.

F G
 Opamp
 Symbol
 Definitions

```
            \(\mathrm{F}=\) Noise factor. Noise factor is also known as noise
                figure (NF). F may represent the average or the spot
                noise factor. See-NF, Transistors
\(\overline{\mathrm{F}}=\) Average noise factor.
\(\mathrm{f}_{1}-\mathrm{See}-\mathrm{B} 1, \mathrm{BW}_{\left(\mathrm{A}_{\mathrm{v}}=1\right)}\)
\(F(f)=\) Spot noise factor.
    \(\mathrm{f}_{\mathrm{c}}=\) Cutoff frequency. The frequency at which the out-
        put falls to one-half power or 3 dB down from
        maximum.
\(\mathrm{f}_{\mathrm{IN}}, \mathrm{f}_{\text {in }}=\) Input frequency
    \(\mathrm{f}_{\mathrm{o}}=\) Reference, center, midband, resonant, oscillation or
        output frequency.
    \(f_{p}=\) Frequency of pole. (poles and zeros)
    \(\mathrm{f}_{\mathrm{r}}=\) Resonant frequency.
    \(\mathrm{f}_{\mathrm{T}}, \mathrm{f}_{\mathrm{t}}=\) Unity gain frequency. The frequency at which the
        open-loop voltage gain falls to unity. Has exactly
        the same meaning as \(B W_{\left(A_{v}=1\right)}\) in all integrated
        circuit opamps. See-BW \({ }_{\left(A_{V}\right.}=1\) )
    \(\mathrm{f}_{\mathrm{z}}=\) Frequency of zero. (poles and zeros)
    G = Conductance See-G, Passive Circuits
    GBW = Gain-bandwidth product. The product of the small
        signal voltage amplification ( \(\mathbf{A}_{\mathbf{v}}\) ) and the bandwidth
        (BW). See-BW \(\left(A_{A_{v}}=1\right)\)
    \(\mathrm{GBW} \simeq\) or \(=\mathrm{BW}_{\left(\mathrm{A}_{\mathrm{V}}=1\right)}\) or \(\mathrm{f}_{\mathrm{T}}\)
        Depending upon the exact definition.
```


GHI

Opamp

Symbol Definitions

[^4]| |
| :---: |
| $\mathbf{I}_{\mathrm{IO}}=$ Input offset current. The difference between the bias currents into the two input terminals of an opamp with the output at zero volts.
 $\left\|I_{I O}\right\|=$ The magnitude of input offset current. See also $-I_{I O}$
 $I_{n}=$ Device equivalent-input noise current. That component of device total equivalent-input noise which varies with the external source resistance and therefore is properly represented by an infinite impedance current source in parallel with the input terminals. $\begin{aligned} & I_{n}=\sqrt{I_{n s}^{2}+I_{n f}^{2}} \\ & i_{n}=\text { See }-I_{n} \end{aligned}$
 $\mathrm{I}_{\mathrm{nf}}=$ Device equivalent-input $1 / \mathrm{f}$ noise current. That part of I_{n} which has a spectral density which is inversely proportional to frequency.
 $I_{n R}=$ Thermal (white) noise current of resistance See- I_{N}, Passive Circuits
 $\mathrm{I}_{\mathrm{ns}}=$ Device equivalent-input shot (white) noise current.
 $\mathrm{I}_{\mathrm{O}}=$ Large signal output current.
 $I_{o}=$ Small signal output current.
 $\mathrm{I}_{\mathrm{O}_{+}}=$Large signal positive swing output current.
 $\mathrm{I}_{\mathbf{O}-}=$ Large signal negative swing output current.
 $\mathrm{I}_{\mathrm{OPP}}=$ Peak to peak output current.
 $\mathrm{I}_{\mathrm{OS}}=$ Short-circuit output current. The maximum output current available from the device with the output shorted to ground or either supply. |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

$\mathrm{I}_{\mathrm{P}}=$	Large signal peak current
$\mathrm{I}_{\mathrm{p}}, \mathrm{I}_{\mathrm{pk}}, \mathrm{I}_{\mathrm{peak}}=$	Small signal peak current
$\mathrm{I}_{\mathbf{s}}=$	1. Source current. See- $\mathrm{I}_{\mathrm{g}}, \mathrm{I}_{\mathrm{in}}$
	2. Shot noise current. See- I_{ns}

LM N
 Opamp
 Symbol
 Definitions

$\mathrm{L}=1$. Inductance. See-L, Passive Circuits
2. Level. Signal level in decibels with respect to a noted reference level.

$$
\begin{aligned}
& \text { mAdc }= \text { Direct current milliampere. } \\
& \text { MAG }= \text { Maximum available (power) gain. } \\
& \text { MUF }= \text { Maximum usable frequency. } \\
& \mathrm{mW} /{ }^{\circ} \mathrm{C}= \text { Milliwatt per degree Celsius. } \\
& \mathrm{M} \Omega, \mathrm{M}= \text { Megohm } \\
& \hline \mathrm{N}= \text { 1. Noise. See also- } \mathrm{V}_{\mathrm{n}}, \mathrm{I}_{\mathrm{n}} . \\
& \text { 2. Noise power. See- } \mathrm{P}_{\mathrm{N}}, \text { Passive Circuits } \\
& \text {. Number. A pure number or a ratio. } \\
& \mathrm{NF}- \text { See-F, See also-NF, Transistors } \\
& \mathrm{NI}- \text { See-NI, } \mathrm{E}_{\mathrm{N}(\mathrm{EX})}, \text { Passive Circuits. } \\
& \mathrm{N}_{\mathrm{P}}- \text { See- }-\mathrm{P}_{\mathrm{N}}, \text { Passive Circuits } \\
& \mathrm{N}_{\mathrm{th}}- \text { See- } \mathrm{P}_{\mathrm{N}}, \text { Passive Circuits, See also- } \mathrm{V}_{\mathrm{nR}} \\
& \mathrm{nV} / \sqrt{\mathrm{Hz}}, \mathrm{nV} /(\mathrm{Hz})^{\frac{1}{2}}, \mathrm{nV} / \sqrt{\sim}= \\
& \text { Nanovolts per hertz or nanovolts per root hertz or } \\
& \text { nanovolts per root cycle. The spot noise voltage in } \\
& \text { nanovolts. The noise voltage in nanovolts for a band- } \\
& \text { width of one hertz at a specified frequency. } \\
& \mathrm{nV} / \sqrt{\mathrm{Hz}}=\left(\mathrm{V}_{\mathrm{n}(\mathrm{nV})}\right) / \sqrt{\mathrm{BW}} \\
& \text { only when the noise voltage has constant spectral } \\
& \text { density. (only when the noise voltage is white noise) }
\end{aligned}
$$

$\square \square$
 Opamp
 Symbol
 Definitions

```
os, OS = Overshoot
\(P_{C}=1\). (Device) power consumption.
2. Collector power dissipation. See \(-\mathbf{P}_{\mathrm{C}}\), Transistors
\(P_{D}=1\). Device power dissipation
2. Power dissipation.
PF, p.f. \(=\) Power factor. See-pf, Passive Circuits
\(\mathrm{pF}=\) Picofarad. ( \(10^{-12}\) farad)
\(\mathrm{P}_{\mathrm{i}}, \mathrm{P}_{\mathrm{IN}}, \mathrm{P}_{\mathrm{in}}=\) Input power.
\(\mathbf{P}_{\mathrm{N}}=\) Noise power. See \(-\mathrm{P}_{\mathrm{N}}\), Passive Circuits.
\(\mathrm{P}_{\mathrm{o}}=\) Output power.
PSRR = Power supply rejection ratio. The absolute value of the ratio of the change in input offset voltage to the change in power supply voltage producing it. This ratio is usually in \(\mu \mathrm{V} / \mathrm{V}\) or in dB . When all are given in decibels and disregarding the sign of the decibel ratio, \(\mathrm{K}_{\mathrm{SVR}}, \mathrm{K}_{\mathrm{SVS}}\), PSS, PSRR, VSRR, \(\left|\Delta \mathrm{V}_{\mathrm{CC}} / \Delta \mathrm{V}_{\text {IO }}\right|\) and \(\left|\Delta \mathrm{V}_{\text {IO }} / \Delta \mathrm{V}_{\mathrm{CC}}\right|\) are all equal. It is hoped that the industry will soon standardize on only one of these symbols.
\(P_{\text {SRR }}=\) See-PSRR
PSS = Power supply sensitivity. See-PSRR
PSS \(\pm\)-See-PSS
PSS+ = Positive power supply sensitivity. See-PSRR
PSS- = Negative power supply sensitivity. See-PSRR
\(\mathrm{P}_{\mathrm{T}}, \mathrm{P}_{\mathrm{t}}, \mathrm{P}_{\text {tot }}=\) Total power.
```


QR
 Opamp
 Symbol
 Definitions

$\mathbf{Q}=\mathbf{Q}$ factor. In simple bandpass filters, the ratio of the resonant frequency to the 3 dB down bandwidth. In highpass or lowpass filters where the 3 dB down definition is not applicable, the reciprocal of the damping factor (d). See also-Q, Passive Circuits.

Note: The \mathbf{Q} factor is also known as the merit, quality, storage, magnification and energy factor. There is no known simple definition of Q which will encompass all of the applications. The general meaning of the term appears to be understood but the exact meaning, except in a few applications, is open to interpretation.
Q $=1 / \mathrm{d}$
$Q=f_{o} / B W_{(-3 d B)}$
$Q=f_{r} / B W_{(-3 d B)}$
$\mathrm{Q}_{\mathrm{L}}=$ Loaded Q factor.
$\mathbf{Q}_{\mathbf{o}}=\mathbf{Q}$ factor at center or reference frequency (f_{o}).
$\mathrm{Q}_{\mathrm{u}}=$ Unloaded Q factor.
R = Resistance See-R, Passive Circuits
$r=$ Small signal (dynamic) resistance. Any resistance of a semiconductor device which may be non-linear and therefore produce a different value between dc and small signal measurements.
$\mathbf{R}_{\mathbf{F}}=$ Feedback Resistor
$\mathbf{R}_{\mathbf{g}}=$ Generator resistance. See $-\mathbf{R}_{\mathrm{S}}$

R

Opamp

Symbol
Definitions
$\mathrm{R}_{\mathrm{I}}=1$. Input resistor. (Not recommended)
2. Large signal input resistance. (Not recom-
mended)
$\mathbf{R}_{\mathbf{i}}=$ Small signal input resistance. See also $-\mathbf{Z}_{\mathbf{i}}$
$r_{i}=$ Device small signal input resistance.
$\mathrm{r}_{\mathrm{id}}=$ Device differential input resistance.
$\mathrm{R}_{\mathrm{IN}}=$ Large signal input resistance.
$\mathbf{R}_{\text {in }}-$ See- $\mathbf{R}_{\mathbf{i}}$
$r_{\text {in }}-$ See $-r_{i}$
$\mathrm{R}_{\mathrm{L}}=$ Load resistance.
$\mathrm{R}_{\mathrm{O}}=$ Large signal output resistance.
$\mathbf{R}_{\mathbf{o}}=$ Small signal output resistance. See also $-\mathbf{Z}_{\mathbf{o}}$
$r_{0}=$ Device small signal output resistance.
$\mathrm{R}_{\mathrm{OPT}}=$ Optimum resistance. e.g. $\mathrm{R}_{\mathrm{S}(\mathrm{OPT})}=\mathrm{V}_{\mathrm{n}} / \mathrm{I}_{\mathrm{n}}$
$\mathbf{R}_{\text {OUT }}, \mathbf{R}_{\text {out }}-$ See- $\mathbf{R}_{\mathbf{O}}, \mathbf{R}_{\text {o }}$
$\mathrm{R}_{\mathbf{P}}, \mathrm{R}_{\mathrm{p}}=$ Parallel resistance.
$r_{p}=$ Dynamic plate resistance (vacuum tube) (anode
resistance (r_{a}) is also used).
$\mathrm{R}_{\mathrm{S}}=$ Source resistance.
$\mathrm{R}_{\mathrm{s}}=$ Series resistance.
$R_{T}, R_{t}=$ Total resistance.
$\mathrm{R}_{\mathrm{th}}-\mathrm{See}-\mathrm{R}_{\boldsymbol{\theta}}$, Transistors
$\mathrm{R}_{\theta}-\mathrm{See}-\mathrm{R}_{\theta}$, Transistors

ST
 Opamp
 Symbol Definitions

$S=1$. Sensitivity .
2. Signal. See-sig
$s=$ Laplace transform function.
S+ - See-PSS +
S- - See-PSS-
S \pm - See-k ${ }_{\text {SVS }}$, PSRR, PSS
sig $=$ Signal. Any electrical, visual, audible or other indication used to convey information.
$\mathrm{S} / \mathrm{N}=$ Signal to noise ratio.
SR = Slew rate. The closed-loop average-time rate-ofchange of output voltage for a step-signal input. A specification used to determine the maximum combination of frequency and peak-to-peak output signal without the distortion associated with rise and fall time.
$\mathrm{SR}=\pi \mathrm{PBW} \mathrm{V}_{\mathrm{OPP}}$
$\mathrm{SR}_{\left(\mathrm{A}_{\mathbf{V}}=1\right)}=$ Slew rate when closed-loop voltage amplification is unity.
$\mathrm{T}=1$. Temperature. $\left({ }^{\circ} \mathrm{C}\right.$ unless noted)
2. Time constant. See-T, Passive Circuits
3. Time. See-t
4. Loop gain. ($\mathrm{A}_{\text {vol }} / \mathrm{A}_{\mathrm{VCL}}$)
$t=1$. Time. Time or period in seconds
2. Temperature. See-T
$\mathrm{T}_{\mathrm{A}}=$ Ambient temperature. The average temperature of the air in the immediate vicinity of the device.
TC = Temperature coefficient.
$\mathrm{T}_{\mathrm{C}}=$ Case temperature.

7

Opamp
 Symbol
 Definitions

$\mathrm{TC}_{\text {IIO }}=$ Temperature coefficient of input offset current. The ratio of the change in input offset voltage to the change in free-air temperature when averaged over a specified temperature range.

$$
\mathrm{TC}_{\mathrm{IIO}}=\left|\left[\left(\mathrm{I}_{\mathrm{IO}}\right)_{1}-\left(\mathrm{I}_{\mathrm{IO}}\right)_{2}\right] /\left[\left(\mathrm{T}_{\mathrm{A}}\right)_{1}-\left(\mathrm{T}_{\mathrm{A}}\right)_{2}\right]\right|
$$

$\mathbf{T C}_{\text {VIO }}=$ Temperature coefficient of input offset voltage. The ratio of the change in input offset voltage to the change in free-air temperature when averaged over a specified temperature range.

$$
\mathrm{TC}_{\mathrm{VIO}}=\left|\left[\left(\mathrm{V}_{\mathrm{IO}}\right)_{1}-\left(\mathrm{V}_{\mathrm{IO}}\right)_{2}\right] /\left[\left(\mathrm{T}_{\mathrm{A}}\right)_{1}-\left(\mathrm{T}_{\mathrm{A}}\right)_{2}\right]\right|
$$

$\mathrm{t}_{\mathrm{f}}=$ Fall time. The time required for the trailing edge of an output pulse to fall from 90% to 10% of the final voltage in response to a step function pulse at the input.
THD $=$ Total harmonic distortion.
THD $=\sqrt{V_{2}^{2}+V_{3}^{2} \cdots+V_{n}^{2}} / V_{1}$ where V_{1} is a sine-wave input signal (fundamental) and V_{2} through V_{n} are the $2^{\text {nd }}$ through $\mathrm{n}^{\text {th }}$ harmonic respectively.
$\mathrm{T}_{\text {high }}=$ High temperature .
$\mathrm{T}_{\mathrm{K}}=$ Kelvin temperature. $\left({ }^{\circ} \mathrm{C}+273.15\right)$
$\mathrm{T}_{\mathrm{L}}=$ Lead temperature.
$\mathrm{T}_{\text {low }}=$ Low temperature.
$\mathrm{t}_{\mathrm{os}}=$ Time of output short-circuit.
$\mathrm{t}_{\mathrm{p}}, \mathrm{t}_{\mathrm{pd}}=$ Pulse duration
$\mathrm{t}_{\text {PLH }}-$ See- $\mathbf{t}_{\mathbf{r}}$

TUV
 Opamp
 Symbol
 Definitions

[^5]

Opamp Symbol Definitions

$\mathrm{V}_{\mathrm{n}}=1$. Any rms noise voltage
2. The equivalent-input rms noise voltage of that part of the device total noise which is independent of source resistance.
Notes:

1. The other parts of total equivalent-input noise voltage $\left(\mathrm{V}_{\mathbf{n i}}\right)$ are the voltages developed by device noise current through the source resistance and that developed thermally by the source resistance.
2. Noise voltages vary with bandwidth. Wide band noise may be any bandwidth but is usually specified for a 10.7 kHz bandwidth. Narrow-band noise voltages are for a bandwidth of 1 Hz and usually are specified in $\mathrm{nV} .(\mathrm{nV} / \sqrt{\mathrm{Hz}})$
$\overline{v_{n}^{2}}=$ The mean square noise voltage
$V_{\mathrm{nf}}=1 / \mathrm{frms}$ noise voltage
$\mathrm{V}_{\mathrm{ng}}=$ Generator (noise generator) rms noise voltage
$\mathbf{V}_{\mathrm{ni}}=$ The total equivalent input rms noise voltage
$V_{n i}=V_{n o} / A_{v}$
$V_{n i}=\sqrt{B W\left(V_{n}^{2}+I_{n} R_{S}+4 K_{B} T_{K} R_{S}\right)} \quad$ See-BW ${ }_{\text {NOISE }}$
$V_{\text {no }}=$ The total output rms noise voltage
$\mathbf{V}_{\mathrm{no}}=\mathrm{A}_{\mathbf{v}} \mathbf{V}_{\mathrm{ni}}$
$\mathrm{V}_{\mathrm{nR}}=$ Source resistance $\left(\mathrm{R}_{\mathrm{S}}\right)$ rms thermal noise voltage.
$\mathrm{V}_{\mathrm{ns}}=1$. Device rms shot noise voltage
3. $\mathrm{See}-\mathrm{V}_{\mathrm{nR}}$
$\mathrm{V}_{\mathrm{nt}}=1$. Any rms thermal noise voltage
4. $\mathrm{See}-\mathrm{V}_{\mathrm{nR}}$
$\mathbf{V}_{\mathbf{n T}}=$ Device total equivalent-input rms noise voltage including V_{n} and ($I_{n} R_{S}$)

V Z
 Opamp
 Symbol
 Definitions

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{OR}}=\text { Output voltage range. } \\
& V_{\text {OUT }} \text {-See- } \mathbf{V O}_{\mathbf{O}} \\
& \mathbf{V}_{\mathrm{p}}, \mathrm{~V}_{\mathrm{pk}}, \mathrm{~V}_{\text {peak }}=\text { Peak voltage. } \\
& V_{p-p}=\text { Peak to peak voltage. } \\
& \mathrm{V}_{\mathrm{PS}}=\text { Power supply voltage } \text {. } \\
& \mathrm{V}_{\mathrm{Q}}=\text { Quiescent voltage. } \\
& V_{S}=1 . \text { Signal voltage } \\
& \text { 2. Source voltage } \\
& \text { 3. Supply voltage } \\
& +\mathrm{V}_{\mathrm{S}}, \mathrm{~V}_{\mathrm{S}}{ }^{+}=\text {Positive polarity supply voltage. } \\
& -V_{S}, V_{\mathbf{S}^{-}}=\text {Negative polarity supply voltage. } \\
& Z_{i}=\text { Small signal closed-loop input impedance. } \\
& z_{i}=\text { Device small signal open-loop input impedance. } \\
& \mathbf{Z}_{\mathbf{i}^{+}}=\text {Small signal closed-loop non-inverting input impedance. } \\
& Z_{\mathrm{i}^{+}}=\left(\mathrm{r}_{\mathrm{i}} \mathrm{~A}_{\mathrm{vol}}\right) / \mathrm{A}_{\mathrm{vcl}} \\
& Z_{i-}=\text { Small signal closed-loop inverting input impedance. } \\
& Z_{i-} \simeq \text { Series input resistor } R \text {. } \\
& \mathbf{Z}_{\mathbf{i}-}=\mathbf{R}+\left[\mathbf{R}_{\mathbf{F}} /\left(\mathrm{A}_{\text {vol }}+1\right)\right] \\
& \mathrm{z}_{\mathrm{ic}}=\text { Device common mode input impedance. The parallel } \\
& \text { sum of the small signal open-loop impedance between } \\
& \text { each input terminal and ground. }
\end{aligned}
$$

Z to Ω

Opamp
Symbol Definitions

$$
\begin{aligned}
& \mathrm{z}_{\mathrm{id}}=\text { Device differential input impedance. } \\
& \mathrm{Z}_{\mathrm{o}}=\text { Small signal closed-loop output impedance. } \\
& \mathrm{Z}_{\mathrm{o}}=\mathrm{z}_{\mathrm{o}} /\left[\left(\mathrm{A}_{\text {VOL }} / \mathrm{A}_{\mathrm{VCL}}\right)+1\right] \\
& \mathrm{z}_{\mathrm{o}}=\text { Device small signal output impedance. } \\
& \mathrm{z}_{\mathrm{od}}=\text { Differential output impedance. (opamps with differen- } \\
& \text { tial output) }
\end{aligned}
$$

OPERATIONAL AMPLIFIERS

SECTION 3.2 FORMULAS
AND
CIRCUITS

DC or Audio	AMPLIFIER	Large or Small
Frequency	CURRENT	Signal

$$
\begin{aligned}
& A_{i}=i_{o} / i_{i n} \\
& A_{i}=-R_{F} / R_{L} \\
& e_{o}=-i_{i n} R_{F}
\end{aligned}
$$

$A_{i}=i_{o} / i_{\text {in }}$
$A_{i}=R_{1} / R_{L}$
$e_{o}=i_{\text {in }} R_{1}$

A_{i}	$=i_{o} / i_{i n}$
A_{i}	$=\left(R_{1} / R_{L}\right)\left(R_{F} / R_{B}+1\right)$
e_{o}	$=i_{i n} R_{1}\left(R_{F} / R_{B}+1\right)$

NEGATIVE RESISTANCE CURRENT AMPLIFIER When $R_{1} R_{B} / R_{F} R_{L}-1>0$: $A_{i}=1+\left(R_{1} R_{B} / R_{F} R_{L}-1\right)^{-1}$
$\mathrm{i}_{\mathrm{o}}=\mathrm{i}_{\mathrm{in}}+\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}} \mathrm{R}_{1}$
$\mathrm{e}_{\mathrm{o}}=\mathrm{R}_{\mathrm{L}}\left(\mathrm{i}_{\mathrm{in}}+\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}} \mathrm{R}_{1}\right)$

Constant DC

Current
Variable \mathbf{R}_{L} and/or Voltage

AMPLIFIER CURRENT OUTPUT

Precision HV Current Sources

1/2 LM358
Opamp

$\mathrm{Q}_{1}=\mathrm{VN} 2410 \mathrm{M}$ for $\mathrm{V}_{2} \leq 200 \mathrm{~V}$
and up to
$\mathrm{P}_{\mathrm{D}(\mathrm{Q} 1)}=\mathrm{I}_{0} \mathrm{~V}_{2}-\mathrm{I}_{0}^{2}\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{1}\right)$
$\mathrm{P}_{\mathrm{D}}=.75 \mathrm{~W}$
$R_{L \text { (MIN) }}=V_{2} / I_{0}-\left(P_{D(\text { MAX })} / I_{0}^{2}\right)-R_{1}$
$\mathrm{V}_{2(\text { MAX })}=\mathrm{P}_{\mathrm{D}(\mathrm{MAX})} /\left[\mathrm{I}_{0}+\mathrm{I}_{0}\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{1}\right)\right]$
($\mathrm{P}_{\mathrm{D}} \leq 12 \mathrm{~W}$
when
$\mathrm{Q}_{1}=\mathrm{VN} 2406 \mathrm{D}$ with heatsink)

Example
Opamp $=1 / 2$ LM358
$\mathrm{Q}_{1}=$ MJE350 (Heatsink)
$\mathrm{Q}_{2}=\mathrm{VN} 2410 \mathrm{~L}$
$V_{2}=150$
$\mathrm{I}_{0}=\mathrm{V}_{\text {in }} / \mathrm{R}_{1}$

$P_{D\left(Q_{1}\right)}=I_{0} V_{2}-I_{0}^{2}\left(R_{L}+R_{1}\right)$
$R_{\mathrm{L}(\mathrm{MIN})}=\mathrm{V}_{2} / \mathrm{I}_{0}-\left(\mathrm{P}_{\mathrm{D}(\mathrm{MAX})} / \mathrm{I}_{0}^{2}\right)-\mathrm{R}_{1}$
$\mathrm{V}_{2(\text { MAX })}=\mathrm{P}_{\mathrm{D}(\mathrm{MAX})} /\left[\mathrm{I}_{0}+\mathrm{I}_{0}\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{1}\right)\right]$

DC or Audio

AMPLIFIER CURRENT OUTPUT

Large or Small Signal

Bilateral

Current Source
$\mathrm{i}_{\mathrm{o}}=-1 \mathrm{~mA}$ per volt input with values shown

Oscillation may occur when $\mathrm{R}_{\mathrm{L}}>27 \mathrm{~K}$ (worst case 1% tolerance resistors)

$\mathrm{Z}_{0}=\mathrm{R}_{0} /\left(1-\left[\left(\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}}+1\right) /\left(\mathrm{R}_{1} / \mathrm{R}_{2}+1\right)\right]\right)$
$\left(+Z_{0}\right.$ and $-Z_{0}$ are both valid when $\left.R_{L}<-Z_{0}\right)$
When $\mathrm{R}_{1}=\mathrm{R}_{\mathrm{F}}$ and $\mathrm{R}_{2}=\mathrm{R}_{\mathrm{B}}$:
$i_{o}=-e_{i n} R_{F} / R_{0} R_{B}, A_{V}=-R_{L} R_{F} / R_{0} R_{B}, Z_{O}=\infty$
$\mathrm{i}_{\mathrm{o}}=-2 \mathrm{~mA}$ per volt input with values shown Oscillation may occur when $\mathrm{R}_{\mathrm{L}}>13.9 \mathrm{~K}$ (worst $\mathrm{e}_{\text {in }}$ case 1% tolerance resistors)

$\mathrm{Z}_{0}=\left[\mathrm{R}_{0}\left(\mathrm{R}_{1} / \mathrm{R}_{2}+1\right)\right] /\left(\left[\left(\mathrm{R}_{0}+\mathrm{R}_{1}\right) / \mathrm{R}_{2}\right]-\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}}\right)$
$\left(+Z_{0}\right.$ and $-Z_{0}$ are both valid when $\left.R_{L}<-Z_{0}\right)$
When $\mathrm{R}_{1}+\mathrm{R}_{0}=\mathrm{R}_{\mathrm{F}}$ and $\mathrm{R}_{2}=\mathrm{R}_{\mathrm{B}}$:
$i_{o}=-e_{i n} R_{F} / R_{0} R_{B}, A_{V}=-R_{L} R_{F} / R_{0} R_{B}, Z_{0}=\infty$
Recommended opamp $=1 / 2$ NE5532 for up to 25 mA peak output current

Low Frequency Input Impedance

AMPLIFIER INPUT

$$
\mathrm{Z}_{\mathrm{i}} \simeq \mathrm{R}_{\mathrm{B}}
$$

$$
\begin{aligned}
& Z_{i}=R_{B}+\left[R_{F} /\left(A_{\text {VOL }}+1\right)\right] \\
& Z_{i}=R_{B}+\left[R_{F} /\left(\left[\log ^{-1}\left(A_{\text {VOL }(\mathrm{dB})} / 20\right)\right]+1\right)\right]
\end{aligned}
$$

$Z_{i} \simeq\left[r_{i} A_{\text {VOL }}\right] / A_{\text {VCL }}$
$Z_{i}=\frac{r_{i}\left(A_{\text {VOL }}+1\right)}{\left(R_{F} / R_{B}\right)+1}$
$Z_{i}=r_{i}\left(\log ^{-1}\left[\left(A_{\operatorname{VOL}(d B)}-A_{V C L}(\mathrm{~dB})\right) / 20\right]+1\right)$
$A_{V C L}(\mathrm{~dB})=20\left(\log \left[\left(\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}}\right)+1\right]\right)$
See Also-Amplifier, Voltage, Negative Resistance

AMPLIFIER OUTPUT IMPEDANCE

 z_{0}

$$
\begin{aligned}
Z_{o} \simeq & \left(r_{o} A_{V C L}\right) / A_{V O L} \\
Z_{o}= & \frac{r_{o}}{\left(A_{V O L} / A_{V C L}\right)+1} \\
Z_{o} \simeq & \left(r_{o} R_{F}\right) /\left(R_{B} A_{V O L}\right) \\
Z_{o}= & \frac{r_{0}}{\left[\left(R_{B} A_{V O L}\right) / R_{F}\right]+1} \\
& A_{V O L}=\log ^{-1}\left[A_{V O L(d B)} / 20\right]
\end{aligned}
$$

See Also-Amplifier, Current Output

DC or Audio	AMPLIFIER	Large or Small
Frequency	VOLTAGE	Signal

BALANCED TO
UNBALANCED
$A_{V}=-R_{F} / R_{B}$
when $R_{1}=R_{B}$ and $R_{2}=R_{F}$

BALANCED TO BALANCED

$$
A_{V}=-2 R_{F} / R_{B}
$$ when $\mathbf{R}_{1}=\mathrm{R}_{\mathrm{B}}$,

$\mathrm{R}_{2}=\mathrm{R}_{\mathrm{F}}$ and $\mathrm{R}_{3}=\mathrm{R}_{4}$

$A_{V_{1}}=-R_{F} / R_{B}$

$$
\begin{aligned}
\mathrm{A}_{\mathrm{V} 2} & =1+\left[\mathrm { R } _ { \mathrm { F } } \left(\mathrm{R}_{\mathrm{B}}^{-1}+\right.\right. \\
\mathrm{V}_{0} & =\mathrm{V}_{2} \mathrm{~A}_{\mathrm{V} 2}-\mathrm{V}_{1} \mathrm{~A}_{\mathrm{V}_{1}}
\end{aligned}
$$

when V_{1} and V_{2} are same freq. \& phase
$\left|V_{0}\right|=\sqrt{\left(V_{1} A_{V_{1}}\right)^{2}+\left(V_{2} A_{V_{2}}\right)^{2}}$ when V_{1} and V_{2} are different frequencies and $\mathrm{V}_{0}, \mathrm{~V}_{1}$ and $\mathrm{V}_{2}=\mathrm{V}_{\mathrm{rms}}$
TWO-PHASE LEVEL CONTROL
$\mathrm{A}_{\mathrm{V}}=0$ at pot center
$A_{V}=-1$ at $C W$ pot.

$\mathrm{A}_{\mathrm{V}}=+1$ at CCW pot.

$A_{V}=-\left(\left[\left(R_{B}+R_{B} / A_{\text {VOL }}\right) / R_{F}\right]+A_{\text {voL }}^{-1}\right)^{-1}$ where $A_{\text {vOL }}=A_{\text {voL }}$ at A_{V} freq.
$A_{V}=-V_{0} / V_{S}$
$A_{V}=-R_{F} /\left(R_{S}+R_{B}\right)$
when $\mathrm{A}_{\text {voL }}>\mathrm{A}_{\mathrm{v}}$

$Z_{\text {in }}=R_{B}$ when $A_{\text {voL }}>A_{V}$
POSITIVE AND NEGATIVE FEEDBACK (decreases input impedance)
$A_{V}=-V_{o} / V_{\text {in }}$

$A_{V}=-\left[1+\left(R_{1} / R_{2}\right)\right] /\left[\left(R_{1} R_{B} / R_{F} R_{2}\right)-1\right]$
when $\left(\mathrm{R}_{1} \mathrm{R}_{\mathrm{B}} / \mathrm{R}_{\mathrm{F}} \mathrm{R}_{2}\right)-1>0$
and $\mathrm{A}_{\text {voL }} \gg \mathrm{A}_{\mathrm{V}}$
$A_{V}=-V_{o} / V_{i n}$

$\mathrm{A}_{\mathrm{V}}=-\left[\mathrm{R}_{2}+\mathrm{R}_{3}+\left(\mathrm{R}_{2} \mathrm{R}_{3} / \mathrm{R}_{4}\right)\right] / \mathrm{R}_{1}$ when $\mathrm{A}_{\text {voL }} \gg \mathrm{A}_{\mathrm{V}}$

Negative Impedance

AMPLIFIER VOLTAGE NEGATIVE RESISTANCE
 Two-Way Amplifier

Negative Immittance

When $\left[\mathbf{R}_{1} \mathbf{R}_{\mathrm{B}}\left(\mathrm{R}_{\mathrm{S}}^{-1}+\mathrm{R}_{\mathrm{L}}^{-1}\right) / \mathrm{R}_{\mathrm{F}}\right]-1>0$:
$A_{V}=\left[1+R_{S}\left(R_{L}^{-1}-R_{F} / R_{B} R_{1}\right)\right]^{-1}$
$Z_{i n}=R_{S}+\left(R_{L}^{-1}-R_{F} / R_{B} R_{1}\right)^{-1}$
$Z_{o}=\left(R_{L}^{-1}+R_{S}^{-1}-R_{F} / R_{B} R_{1}\right)^{-1}$

DC or Audio Frequency

AMPLIFIER VOLTAGE NON-INVERTING
 Large or Small Signal

$\begin{aligned} Z_{\text {in }} & =R_{\text {in }}\left(1+A_{\text {voL }} / A_{v}\right) \\ Z_{o} & =R_{o} /\left(1+A_{\text {voL }} / A_{v}\right)\end{aligned}$

$A_{V}=1+R_{F} / R_{B}$ when $A_{\text {voL }}>A_{V}$
$A_{V}=1+\left(\left[\left(R_{B}+R_{B} / A_{\text {vOL }}\right) / R_{F}\right]+A_{\text {vOL }}^{-1}\right)^{-1}$
($\mathrm{A}_{\text {voL }}$ at A_{V} freq.)
INFINITE INPUT IMPEDANCE
$Z_{\text {in }} \simeq \infty \quad$ when $R_{1} \ll A_{\text {voL }} R_{\text {in }}$
$Z_{\text {in }}=\left(A_{\text {voL }}+1\right) R_{\text {in }}$
$A_{v}=1$ when $f_{\text {max }} \ll$ GBW

NEGATIVE INPUT IMPEDANCE
When ($\mathrm{R}_{1} \mathrm{R}_{\mathrm{B}} / \mathrm{R}_{\mathrm{F}} \mathrm{R}_{2}$) $-1>0$ and $A_{\text {vol }}>A_{V}$:
$Z_{\text {in }}=R_{2}-\left(R_{1} R_{B} / R_{F}\right)$

$A_{V}=1+\left(\left[1+\left(R_{1} / R_{2}\right)\right] /\left[\left(R_{1} R_{B} / R_{F} R_{2}\right)-1\right]\right)$

$A_{V}=V_{o} / V_{\text {in }}$
$\left.\left.\mathrm{R}_{4}\right)\right] / \mathrm{R}_{1}$ when $\mathrm{A}_{\text {voL }} \gg \mathrm{A}_{\mathrm{v}}$

AMPLIFIER VOLTAGE SUMMING

Large or Small Signal
$A_{V_{1}}=-R_{F} / R_{1}$
$A_{V 2}=-R_{F} / R_{2}$
$A_{V N}=-R_{F} / R_{N}$
$V_{0}=\sqrt{\left(V_{1} A_{V_{1}}\right)^{2}+\left(V_{2} A_{V 2}\right)^{2} \cdots+\left(V_{N} A_{V N}\right)^{2}}$
\quad where V_{0}, V_{1}, V_{2} and $V_{N}=V_{\text {rms }}$

Minimum required peak to peak capability $=4 \sqrt{2} V_{0 \text { rms(MAX) }}$ Input to input isolation $=20 \log \left[\left(\mathrm{~A}_{\text {voL }} / \mathrm{A}_{\mathrm{v}}\right) \mathrm{R}_{\mathrm{in}(\text { (OPAMP) }}\right] \mathrm{dB}$ when inputs driven from current source
Input to input isolation $\simeq \infty \mathrm{dB}$ when inputs driven from opamp sources.

BANDWIDTH

 GENERAL$\mathrm{BW}=\mathrm{BW}_{-3 \mathrm{~dB}}=$ Half-power or 3 dB down bandwidth unless otherwise specified
(half power $=-3.0103 \mathrm{~dB}$).
AMPLIFIER BANDWIDTH
$B W \simeq\left(\mathrm{~B}_{1} \sqrt{2}\right) /\left(\mathrm{A}_{\mathrm{vcl}}\right)$
$B W \simeq\left(R_{B} B_{1} \sqrt{2}\right) / R_{F}$

See Also-Opamp, Power bandwidth

BANDPASS FILTER BANDWIDTH

$B W=f_{2(-3 d B)}-f_{1(-3 d B)}, f_{0}=Q B W, f_{0} \approx f_{1}+B W / 2$
$B W=f_{0} / Q, f_{1}=-B W / 2+\sqrt{B W^{2} / 4+f_{0}^{2}}, f_{2}=f_{1}+B W$

$$
\mathrm{f}_{1} \approx \mathrm{f}_{0}-\mathrm{BW} / 2, \mathrm{f}_{2} \approx \mathrm{f}_{0}+\mathrm{BW} / 2
$$

BANDPASS FILTER

$$
\begin{aligned}
\mathrm{BW}= & \left(\pi \mathrm{CR}_{2}\right)^{-1} \\
& \mathrm{f}_{0}=\left[2 \pi \mathrm{C} \sqrt{\mathrm{R}_{1} \mathrm{R}_{2}}\right]^{-1} \\
& \mathrm{~A}_{\mathrm{vo}}=\mathrm{R}_{2} / 2 \mathrm{R}_{1} \\
& \mathrm{Q}=\sqrt{\mathrm{R}_{2} / 4 \mathrm{R}_{1}}
\end{aligned}
$$

See Also-Filter, Bandpass

COMPARATOR WITH AND WITHOUT HYSTERESIS

INVERTING

WITH HYSTERESIS

$$
\left(\mathrm{V}_{\mathrm{in}}\right)_{\mathrm{th}}=\mathrm{V}_{\mathrm{ref}} /\left(\mathrm{R}_{1} / \mathrm{R}_{2}+1\right)
$$

NON-INVERTING

WITH HYSTERESIS

$\mathrm{V}_{\mathrm{ref}}=\left(\mathrm{V}_{\mathrm{in}}\right)_{\mathrm{th}}\left(\mathrm{R}_{1} / \mathrm{R}_{2}+1\right)$

Add diode in series with \mathbf{R}_{2} for unidirectional hysteresis
HIGHEST-INPUT-LEVEL ONE-OF-N CIRCUIT (HIGHEST OF $+.5 \mathrm{TO}+10 \mathrm{~V}_{\mathrm{dc}}$ INPUTS HAS ONLY OUTPUT)

Opamps $=1 / 2$ LM358 or $1 / 4$ LM324
NPN transistors $=2 \mathrm{~N} 2222$ etc, PNP transistors $=2 \mathrm{~N} 2907$ etc Hysterisis from 330 K resistors minimizes hunting

DETECTOR PEAK

POSITIVE PEAK DETECTOR

DOUBLE ENDED LIMIT OR FULL-WAVE PEAK DETECTOR

FULL-WAVE PEAK DETECTOR

$\mathrm{V}_{\mathrm{o}(\mathrm{MAX})}$ when $\mathrm{V}_{\mathrm{in}} \geq 1 \mathrm{~V}_{\mathrm{p} \text {-p }}$ sinewave Sensitivity may be decreased by decreasing R_{1}

See Also-Comparator and Rectifier

INDUCTOR

 ACTIVE$$
\begin{gathered}
\mathrm{L}=\mathrm{C}_{1} \mathrm{R}_{1}\left(\mathrm{R}_{2}-\mathrm{R}_{1}\right) \\
\mathrm{Q}=2 \pi \mathrm{f}_{0} \mathrm{C}_{1}\left(\mathrm{R}_{2}-\mathrm{R}_{1}\right) \\
\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{1}, \quad \mathrm{R}_{\mathrm{P}}=\mathrm{R}_{2} \\
\underbrace{\mathrm{R}_{\mathrm{S}}}_{\underbrace{\mathrm{R}_{\mathrm{P}}}_{\text {evee }}} \underbrace{}_{\underbrace{}_{\mathrm{L}}}
\end{gathered}
$$

equivalent
When $\mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{B}}$ and $\mathrm{R}=\mathrm{R}_{1}$:
$\mathrm{L}=\mathrm{R}_{1} \mathrm{RC}$
$\mathrm{Q}=\infty \quad$ (Reduce the value of R_{1} slightly if necessary to prevent oscillation)

When $\mathrm{C}_{1}=\mathrm{C}_{2}$ and $\mathrm{R}_{2}=\mathrm{R}_{3}$:
$\mathrm{L}=\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}=1 \mathrm{H}$ with values shown
$\mathrm{Q}=\infty$
Due to component tolerances, oscillation may occur when connected to a high Q external circuit.

With only a high Q capacitor connected to the L input and R_{3} tweaked to the edge of oscillation, circuit Q is very close to infinite.

FILTER
 ALLPASS
 (PHASE SHIFTER)
 Unity Gain All Frequencies

Output phase is relative to other outputs; not to input

FILTER BANDPASS BIQUAD

Simplified
Formulas

VARIABLE FREQUENCY, CONSTANT BANDWIDTH BIQUAD BANDPASS FILTER

$$
\mathrm{A}_{\mathrm{vo}}=1
$$

Opamp $=3 / 4$ TL084 or equiv.
$\mathrm{f}_{0}=100$ to 1000 Hz
$.022 \mu \mathrm{~F}$ caps are 5% low D such as polystyrene or NPO
$B W_{-3 \mathrm{~dB}}=40 \mathrm{~Hz}$
10 K pot is 5% multiturn

FILTER
 BANDPASS MULTIPLE FEEDBACK

$$
\begin{aligned}
\mathrm{f}_{0} & =\left[2 \pi \mathrm{C} \sqrt{\mathrm{R}_{1} \mathrm{R}_{2}}\right]^{-1} \\
\mathrm{~A}_{\mathrm{vo}} & =\mathrm{R}_{2} / 2 \mathrm{R}_{1}, \mathrm{R}_{2} / \mathrm{R}_{1}=2 \mathrm{~A}_{\mathrm{Vo}} \\
\mathrm{Q} & =\sqrt{\mathrm{R}_{2} / 4 \mathrm{R}_{1}} \\
\mathrm{R}_{2} / \mathrm{R}_{1}=4 \mathrm{Q}^{2} & \mathrm{e}_{\mathrm{e}}
\end{aligned}
$$

Without compensation, a Q of 10 is maximum for results within 5% of formula. At a Q of 5 , an f_{0} of 5 kHz is maximum for the same accuracy. When typical Mylar capacitors are used, a Q of 7.5 is maximum for 5% accuracy.

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{vo}}=\mathrm{R}_{2} / 2 \mathrm{R}_{1 \mathrm{~B}} \\
& f_{0}=\left[2 \pi C \sqrt{R_{2} /\left(R_{1 A}^{-1}+R_{1 B}^{-1}\right)}\right]^{-1} \\
& \mathrm{Q}=\sqrt{\mathrm{R}_{2}\left(\mathrm{R}_{1 \mathrm{~A}}^{-1}+\mathrm{R}_{1 \mathrm{~B}}^{-1}\right) / 4} \quad \mathrm{~A}_{\mathrm{Vo}}=\left(\mathrm{R}_{2} / 2 \mathrm{R}_{1}\right)+1 \\
& \mathrm{R}_{2}=2 \mathrm{Q} /\left(2 \pi \mathrm{f}_{0} \mathrm{C}\right) \\
& \left|A_{\mathbf{v}}\right|_{\text {vif }}=\left|A_{\text {vhf }}\right|=1 \\
& \mathrm{R}_{1 \mathrm{~B}}=\mathrm{R}_{2} / 2 \mathrm{~A}_{\mathrm{vo}} \\
& \mathrm{Q} \simeq \sqrt{\mathrm{R}_{2} / 4 \mathrm{R}_{1}} \\
& \mathrm{R}_{1 \mathrm{~A}}=\mathrm{R}_{2} /\left(4 \mathrm{Q}^{2}-2 \mathrm{~A}_{\mathrm{vo}}\right) \\
& \mathrm{f}_{0}=\left[2 \pi \mathrm{C} \sqrt{\mathrm{R}_{1} \mathrm{R}_{2}}\right]^{-1}
\end{aligned}
$$

	FILTER	Variable
Second Order	BANDPASS	Frequency

CONSTANT Q

Tuning Range ≈ 100 to 1000 Hz

$$
\begin{aligned}
\mathrm{Q} & =7.4 \\
\mathrm{~A}_{\mathrm{vo}} & =1
\end{aligned}
$$

CONSTANT BANDWIDTH

Tuning Range $=>400$ to $<1000 \mathrm{~Hz}$

$$
\begin{aligned}
\mathrm{BW}_{-3 \mathrm{~dB}} & =150 \mathrm{~Hz} \text { at } 400 \mathrm{~Hz}(\mathrm{Q}=2.7) \\
\mathrm{BW}_{-3 \mathrm{~dB}} & =150 \mathrm{~Hz} \text { at } 1000 \mathrm{~Hz}(\mathrm{Q}=6.7) \\
\mathrm{A}_{\mathrm{vO}} & =1
\end{aligned}
$$

See Also-Filter, Bandpass, High $\mathrm{f}_{0} \mathrm{Q}$

General and High $\mathrm{f}_{0} \mathrm{O}$

$$
\begin{aligned}
& \mathrm{f}_{0}=\left[2 \pi \mathrm{R} \sqrt{\mathrm{C}_{1} \mathrm{C}_{2}}\right]^{-1} \\
& \mathrm{~A}_{\mathrm{vo}}=\mathrm{C}_{1} / 2 \mathrm{C}_{2}=2 \mathrm{Q}^{2} \\
& \mathrm{Q}=\sqrt{\mathrm{C}_{1} / 4 \mathrm{C}_{2}} \\
&\left|\mathrm{e}_{\mathrm{out}} / \mathrm{e}_{\mathrm{in}}\right|_{\mathrm{dB}}=20 \log \left[2 \mathrm{Q}^{2} / \sqrt{\left.1+\mathrm{Q}^{2}\left[\left(\mathrm{f} / \mathrm{f}_{0}\right)-\left(\mathrm{f}_{0} / \mathrm{f}\right)\right]^{2}\right]}\right.
\end{aligned}
$$

Type II MFB bandpass filters are capable of Qs of 50 or greater without compensation. Opamp GBW however, affects frequency. A GBW/ $\mathrm{f}_{0} \mathrm{Q}$ of 30 develops $\approx-5 \%$ frequency error. Uncompensated filters require capacitors with "Q"s of ≥ 100 circuit Q .

Opamp $=1 / 2$ LF353 and \quad Opamp $=1 / 2$ LF353 measured $\mathrm{f}_{0}=20.4 \mathrm{kHz}=-7 \%$
Capacitors $=$ Polystyrene and NPO ceramic

Positive feedback not needed when $.22 \mu \mathrm{~F}$ capacitor is polystyrene or polypropylene

Second Order

FILTER
 BANDPASS STATE VARIABLE

$\mathrm{A}_{\mathrm{vo}}=\mathrm{H}_{\mathrm{OBP}}=\mathrm{R}_{4} / \mathrm{R}_{\mathbf{3}}$

$$
\begin{aligned}
& f_{0}=\sqrt{R_{6} /\left(R_{5} 4 \pi^{2} R_{1} R_{2} C_{1} C_{2}\right)} \\
& Q=\left[\left(1+R_{4} / R_{3}+R_{4} / R_{0}\right) \sqrt{\left(R_{1} R_{6} C_{1}\right) /\left(R_{2} R_{5} C_{2}\right)}\right] /
\end{aligned}
$$

$$
\left(1+R_{6} / R_{5}\right)
$$

$\left|e_{\text {out }} / e_{\text {in }}\right|_{\text {dB }}=20 \log \left[R_{4} /\left(R_{3} \sqrt{1+Q^{2}\left[\left(f / f_{0}\right)-\left(f_{0} / f\right)\right]^{2}}\right)\right]$
When $\mathrm{R}_{1}=\mathrm{R}_{2}, \mathrm{C}_{1}=\mathrm{C}_{2}$ and $\mathrm{R}_{5}=\mathrm{R}_{6}$:
$A_{\text {VO }}=H_{\text {OBP }}=R_{4} / R_{3}, f_{0}=\left(2 \pi R_{1} C_{1}\right)^{-1}, R_{1}=\left(2 \pi f_{0} C_{1}\right)^{-1}$
$\mathrm{Q}=\left(1+\mathrm{R}_{4} / \mathrm{R}_{3}+\mathrm{R}_{4} / \mathrm{R}_{0}\right) / 2, \mathrm{R}_{0}=\mathrm{R}_{4} /\left(2 \mathrm{Q}-\mathrm{R}_{4} / \mathrm{R}_{3}-1\right)$

Example

Let $\mathrm{A}_{\mathrm{vo}}=1, \mathrm{f}_{0}=1000 \mathrm{~Hz}$ and $\mathrm{Q}=21$
Let $\mathrm{C}_{1}=\mathrm{C}_{2}=.01 \mu \mathrm{~F}, \mathrm{R}_{1}=\mathrm{R}_{2}=\left(2 \pi \mathrm{f}_{0} \mathrm{C}\right)^{-1}=15.915 \mathrm{~K}$
$\mathbf{R}_{4}=\mathbf{R}_{3}, \mathbf{R}_{5}=\mathbf{R}_{6}$-Let $\mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}, \mathbf{R}_{4}, \mathrm{R}_{5}$ and $\mathrm{R}_{6}=15.8 \mathrm{~K}$
$\mathbf{R}_{0}=\mathbf{R}_{4} /\left(2 \mathrm{Q}-\mathbf{R}_{4} / \mathbf{R}_{\mathbf{3}}-1\right)=395 \Omega$-Use 392Ω
Check using standard resistor values
$A_{\text {vo }}=1, \quad f_{0}=1007 \mathrm{~Hz}, \quad Q=21.2$
See Also - Filter, Bandpass, High $f_{0} Q$

FILTER
 Second Order STATE VARIABLE
 Variable Frequency

CONSTANT Q

Tuning Range $=200$ to 2000 Hz minimum
$\mathrm{A}_{\mathrm{vo}}=1, \quad \mathrm{Q}=25.4, \quad\left(\mathrm{e}_{\mathrm{out}}\right)_{\mathrm{p}-\mathrm{p}}=\left(\mathrm{V}_{\mathrm{S}}-2.5\right)$ maximum
Opamps $=3 / 4$ TL084, $\quad .01 \mu$ F Caps $=$ Polystyrene
SINGLE POT, MIN ΔQ, MAX $\left(e_{o u t}\right)_{p-p}$

Tuning Range $=1000$ to 2000 Hz minimum
$\mathrm{Q}=19.9$ at 1000 Hz to 25.7 at 2000 Hz
$\mathrm{A}_{\mathrm{vo}}=1, \quad\left(\mathrm{e}_{\mathrm{out}}\right)_{\mathrm{p}-\mathrm{p}}=\left(\mathrm{V}_{\mathrm{s}}-2.5\right)$ maximum
Opamps $=3 / 4$ TL084, \quad Capacitors $=5 \%$ Polystyrene
See Also-Filter, Bandpass, High $f_{0} \mathrm{Q}$

Tuning Range $=1000$ to 2000 Hz minimum $\mathrm{BW}=80$ at $1000 \mathrm{~Hz}(\mathrm{Q}=12.5), \quad=80$ at $2000 \mathrm{~Hz}(\mathrm{Q}=25)$
$\mathrm{A}_{\mathrm{vo}}=1, \quad\left(\mathrm{e}_{\mathrm{out}}\right)_{\mathrm{p}-\mathrm{p}}=\left(\mathrm{V}_{\mathrm{S}}-2.5\right)$ maximum
Opamps $=3 / 4$ TL084, Capacitors $=5 \%$ Polystyrene
Q INVERSELY PROPORTIONAL TO FREQUENCY

Tuning Range $=1000$ to 2000 Hz minimum
$\mathrm{Q}=25$ at 1000 Hz to 12.5 at 2000 Hz
$\mathrm{A}_{\mathrm{vo}}=1, \quad\left(\mathrm{e}_{\mathrm{out}}\right)_{\mathrm{p}-\mathrm{p}}=\left(\mathrm{V}_{\mathrm{s}}-2.5\right)$ maximum
Opamps $=3 / 4$ TL084, \quad Capacitors $=5 \%$ Polystyrene

See Also-Filter, Bandpass, High f_{0} Q

FILTER BANDPASS, STATE VARIABLE HIGH $\mathrm{f}_{0} \mathrm{Q}$ COMPENSATION

State variable filter formulas accurately describe operation with ideal components. When both the resonant frequency and the Q are low, the error caused by ordinary components is negligible (exception: electrolytic capacitors).

With ideal opamps, capacitors with a $\mathrm{Q}\left(\mathrm{D}^{-1}\right)$ of 40 filter Q will cause a 5% formula error. A filter with a Q of 50 would therefore require capacitors with a Q of 2000 or greater (polystyrene or polypropylene) unless compensated.

With ideal capacitors, opamps having a gain-bandwidth product (GBW) or unity-gain bandwidth (B_{1}) of $150 \mathrm{f}_{0} \mathrm{Q}$ will also cause up to 5% formula error. A filter with an f_{0} of 1000 Hz and a Q of 20 requires opamps with a B_{1} of 3 MHz or greater for 5% maximum error unless compensated.

The effect of low capacitor Q is to decrease filter Q and gain however the effect of low opamp B_{1} is to increase Q and gain, and to decrease f_{0}. The effect of low opamp B_{1} almost always dominates and compensation may be required.

Low opamp B_{1} causes excess loop phase lag, therefore compensation consists of adding phase-lead components to eliminate or reduce this excess. The phase-lead required cannot be accurately obtained from opamp data books since GBW or B_{1} and phase shift are given as typical with no minimum or maximum. High $f_{0} Q$ filters therefore may require "tweaking" or adjustable compensation if very accurate results are required.

The most accurate method of compensation adjustment is to shortcircuit the Q determining resistor R_{0} and adjust compensation to the edge of oscillation. A less accurate but usually satisfactory method is adjustment of compensation to obtain calculated gain.

Compensation methods include very small capacitors in parallel with tuning resistors, very low value resistors in series with tuning capacitors and near 90° RC "positive" feedback. This last method allows the use of a wide range of RC values and provides the best overall accuracy.

Compensation need only be applied to one of the three state variable opamp stages and the third stage is the best choice. Third-stage compensation only is shown on the following page.

FILTER
BANDPASS, STATE VARIABLE HIGH $f_{0} \mathbf{Q}$ COMPENSATION

STATE VARIABLE BANDPASS FILTER

$\mathrm{C}_{\mathrm{C}} \approx .8 /\left(\mathrm{B}_{1} \mathrm{R}\right)$

$R_{C} \approx\left(6 f_{0} R\right) / B_{1}$

$\mathrm{R}_{\mathrm{C}} \mathrm{C}_{\mathrm{C}} \approx .8 / \mathrm{B}_{1}$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{C}} \approx .8 /\left(\mathrm{B}_{1} \mathrm{C}_{\mathrm{C}}\right) \\
& \mathrm{C}_{\mathrm{C}} \approx .8 /\left(\mathrm{B}_{1} \mathrm{R}_{\mathrm{C}}\right)
\end{aligned}
$$

Variable Compensation

Short R_{0} and tweak R_{C} or C_{C} to the edge of oscillation for best general formula accuracy. This also compensates for capacitor Q .

FILTER BANDPASS STATE VARIABLE TYPE II
 Simplified Formulas

$\mathrm{A}_{\mathrm{VO}}=\mathrm{H}_{\mathrm{OBP}}=\mathrm{QR}_{2} / \mathrm{R}_{1}=\left(\mathrm{R}_{5} / \mathrm{R}_{4}+1\right) /\left(2 \mathrm{R}_{1} / \mathrm{R}_{2}+1\right)$
$\mathrm{f}_{0}=(2 \pi \mathrm{RC})^{-1}, \quad \mathrm{R}=\left(2 \pi \mathrm{f}_{0} \mathrm{C}\right)^{-1}$
$\mathrm{Q}=\left(\mathbf{R}_{5} / \mathbf{R}_{4}+1\right) /\left(\mathbf{R}_{2} / \mathbf{R}_{1}+2\right)$,
$\begin{aligned} & R_{5} / R_{4}=Q\left(R_{2} / R_{1}+2\right)-1 \\ & \mid e_{\text {out }} / e_{\text {in }}\left.\right|_{d B}=20 \log \left[\mathrm{QR}_{2} /\left(R_{1} \sqrt{1+\mathrm{Q}^{2}\left[\left(\mathrm{f} / \mathrm{f}_{0}\right)-\left(\mathrm{f}_{0} / \mathrm{f}\right)\right]^{2}}\right)\right]\end{aligned}$
When $\mathrm{R}_{1}=\mathrm{R}_{2}$:
$A_{\text {vo }}=Q, \quad Q=\left(R_{5} / R_{4}+1\right) / 3, \quad R_{5} / R_{4}=3 Q-1$,
$f_{0}=(2 \pi R C)^{-1}$

$\mathrm{f}_{0}=1007 \mathrm{~Hz}, \quad \mathrm{Q}=20.1, \quad \mathrm{~A}_{\text {vo }}=1.0$
Opamps $=3 / 4$ LF347, $.01 \mu \mathrm{~F}$ Caps $=5 \%$ Polystyrene
See Also-Filter, Bandpass, High $f_{0} Q$

Symmetrical
Two Pole BPF

FILTER BANDPASS UNIVERSAL

Fourth Order General Formulas

$$
\left|\mathrm{A}_{\mathrm{VC}}\right|_{\mathrm{dB}}=20 \log \left[\left(\mathrm{f}_{\mathrm{OLP}} / \mathrm{f}_{\mathrm{OHP}}\right) /\left(\mathrm{f}_{\mathrm{OLP}} / \mathrm{f}_{\mathrm{OHP}}+\mathrm{f}_{\mathrm{OHP}} / \mathrm{f}_{\mathrm{OLP}}+\mathrm{d}^{2}-2\right)\right]
$$

when $f_{\text {OLP }} \geq f_{\text {OHP }} \quad\left(A_{V C}=A_{V}\right.$ at PB center frequency)
The response of TYPE I and TYPE II filters are equal when:
$f_{O H P}=f_{01}, \quad f_{\text {OLP }}=f_{02}, \quad d=1 / Q, \quad f_{\text {OLP }} \geq f_{\text {OHP }} \quad$ and $\left(\mathrm{A}_{\mathrm{VO}}\right)_{\text {TYPEI }}^{2}=\mathrm{Q}^{2} \mathrm{f}_{02} / \mathrm{f}_{01}$.

Normalized for gain, TYPE I and TYPE II formulas may be used interchangeably.

FILTER HIGHPASS MULTIPLE FEEDBACK

Unity Gain Equal Capacitor

$\left|A_{v h f}\right|=1, \quad\left|A_{v f o}\right|=d^{-1}$
$f_{0}=\left[2 \pi C \sqrt{R_{1} R_{2}}\right]^{-1}, \quad R_{1}=d /\left(6 \pi f_{0} C\right)$
$d=\sqrt{9 R_{1} / R_{2}}, \quad R_{2}=9 R_{1} / d^{2}, \quad R_{2} / R_{1}=3 / d^{2}$
$f_{c}=f_{0} / \sqrt{a+\sqrt{a^{2}+1}}, \quad f_{0}=f_{c} \sqrt{a+\sqrt{a^{2}+1}}$ where $a=1-d^{2} / 2$
$\mathrm{f}_{\mathrm{pk}}=\mathrm{f}_{0} / \sqrt{1-\mathrm{d}^{2} / 2}$
when $\mathrm{d}<\sqrt{2}$
(no peak when $\mathrm{d} \geq \sqrt{2}$)
$\left|A_{v p k}\right|_{d B}=20 \log \left[2 / d \sqrt{4-d^{2}}\right] \quad$ when $d<\sqrt{2}$
$\left|e_{\text {out }} / e_{\text {in }}\right|_{d B}=20 \log \left[\sqrt{\left.\left(f_{0} / f\right)^{4}+\left(f_{0} / f\right)^{2}\left(d^{2}-2\right)+1\right]^{-1}}\right.$
$\left(\theta_{\mathrm{e}}\right)_{\text {out }}-\left(\theta_{\mathrm{e}}\right)_{\text {in }}=\left[\tan ^{-1}\left(\mathrm{~d} /\left[\left(\mathrm{f} / \mathrm{f}_{0}\right)-\left(\mathrm{f}_{\mathrm{o}} / \mathrm{f}\right)\right]\right)\right] \pm 180^{\circ}$

Choose f_{c}, d, C
$f_{0}=f_{c} \sqrt{a+\sqrt{a^{2}+1}}$
$\left(a=1-d^{2} / 2\right)$
$\mathrm{R}_{1}=\mathrm{d} /\left(6 \pi \mathrm{f}_{0} \mathrm{C}\right)$
$R_{2}=9 R_{1} / d^{2}$
Check with practical values

$$
\begin{array}{rlrl}
d=\sqrt{9 R_{1} / R_{2}} & & d=1.409(\simeq \sqrt{2}) \\
f_{0}= & {\left[2 \pi C \sqrt{R_{1} R_{2}}\right]^{-1}} & f_{0}=996.7 \mathrm{~Hz} \\
f_{c}=f_{0} / \sqrt{a+\sqrt{a^{2}+1}} & & f_{c}=993.0 \mathrm{~Hz} \\
& \left(a=1-d^{2} / 2\right) & &
\end{array}
$$

Butterworth example
Let $\mathrm{d}=\sqrt{2}$
Let $\mathrm{f}_{\mathrm{c}}=1000 \mathrm{~Hz}$
Let $\mathrm{C}=.01 \mu \mathrm{~F}$
$\mathrm{R}_{1}=7.503 \mathrm{~K}$-Use 7.50 K
$\mathrm{R}_{2}=33.76 \mathrm{~K}$-Use 34.0 K

Second Order
 12 dB/Octave

FILTER
 HIGHPASS
 Gain \neq Unity
 MULTIPLE FEEDBACK
 $\mathrm{C}_{2}=\mathrm{C}_{3}$ Formulas

$\left|\mathrm{A}_{\mathrm{v}}\right|=\mathrm{C}_{1} / \mathrm{C}, \quad\left|\mathrm{A}_{\mathrm{vfo}}\right|=\mathrm{C}_{1} / \mathrm{Cd}$
$f_{0}=\left[2 \pi C \sqrt{ } R_{1} R_{2}\right]^{-1}, \quad R_{1}=d /\left[\left(A_{v}+2\right)\left(2 \pi f_{0} C\right)\right]$
$\mathrm{d}=\sqrt{\mathrm{R}_{1} / \mathrm{R}_{2}}\left(\mathrm{C}_{1} / \mathrm{C}+2\right), \quad \mathrm{R}_{2}=\left(\mathrm{A}_{\mathrm{v}}+2\right) /\left(2 \pi \mathrm{f}_{0} \mathrm{Cd}\right)$
$f_{c}=f_{0} / \sqrt{a+\sqrt{a^{2}+1}}, \quad f_{0}=f_{c} \sqrt{a+\sqrt{a^{2}+1}}$
where $a=1-d^{2} / 2$
$\mathrm{f}_{\mathrm{pk}}=\mathrm{f}_{0} / \sqrt{1-\mathrm{d}^{2} / 2} \quad$ when $\mathrm{d}<\sqrt{2}$
(no peak when $\mathrm{d} \geq \sqrt{2}$)
$\left|\mathrm{A}_{\mathrm{vpk}}\right|_{\mathrm{dB}}=20 \log \left(2 \mathrm{C}_{1} /\left[\mathrm{Cd} \sqrt{4-\mathrm{d}^{2} / 2}\right]\right) \quad$ when $\mathrm{d}<\sqrt{2}$
$\left|\mathrm{e}_{\mathrm{out}} / \mathrm{e}_{\mathrm{in}}\right|_{\mathrm{dB}}=20 \log \left(\mathrm{C}_{1} /\left[\mathrm{C} \sqrt{\left(\mathrm{f}_{0} / \mathrm{f}\right)^{4}+\left(\mathrm{f}_{\mathrm{o}} / \mathrm{f}\right)^{2}\left(\mathrm{~d}^{2}-2\right)+1}\right]\right)$
$\left(\theta_{\mathrm{e}}\right)_{\text {out }}-\left(\theta_{\mathrm{e}}\right)_{\text {in }}=\left[\tan ^{-1}\left(\mathrm{~d} /\left[\left(\mathrm{f} / \mathrm{f}_{0}\right)-\left(\mathrm{f}_{0} / \mathrm{f}\right)\right]\right)\right] \pm 180^{\circ}$

Choose A_{V}, d, f_{0}, C
$\mathrm{C}_{1}=\mathrm{A}_{\mathrm{v}} \mathrm{C}$
$\mathrm{R}_{1}=\mathrm{d} /\left[\left(\mathrm{A}_{\mathrm{v}}+2\right)\left(2 \pi \mathrm{f}_{0} \mathrm{C}\right)\right]$
$R_{2}=\left(A_{v}+2\right) /\left(2 \pi f_{0} C d\right)$
$\mathrm{C}=.01 \mu \mathrm{~F}$
example, 1000 Hz Butterworth
Let $A_{v}=10, d=\sqrt{2}$, and
$\mathrm{C}_{1}=.1 \mu \mathrm{~F}$
$\mathrm{R}_{1}=1.876 \mathrm{~K}$-Use 1.87 K
$\mathrm{R}_{2}=135.0 \mathrm{~K}$-Use 133 K

Check with practical values
$\mathrm{f}_{0}=\left[2 \pi \mathrm{C} \sqrt{\mathrm{R}_{1} \mathrm{R}_{2}}\right]^{-1}$
$\mathrm{f}_{\mathrm{o}}=1009 \mathrm{~Hz}$
$d=\left[C_{1} / C_{2}+2\right] \sqrt{R_{1} / R_{2}}$
$\mathrm{d}=1.423(\simeq \sqrt{2})$
$f_{c}=f_{0} / \sqrt{a+\sqrt{a^{2}+1}}, \quad f_{c}=1015 \mathrm{~Hz}$,
$\mathrm{A}_{\mathrm{v}}=\mathrm{C}_{1} / \mathrm{C}$
$\mathrm{A}_{\mathrm{v}}=10$

Second Order

 $12 \mathrm{~dB} /$ Octave
FILTER
 HIGHPASS MULTIPLE FEEDBACK

RESPONSE	d	$\mathrm{R}_{2} / \mathrm{R}_{1}$	$\mathrm{f}_{\mathrm{c}} / \mathrm{f}_{\mathrm{o}}$	R_{1}	R_{2}
Bessel (Best transient)	1.732	3.000	1.272	.7344 a	2.203 a
Butterworth (Flattest)	1.414	4.500	1.000	.4714 a	2.121 a
.1 dB Peak Chebyshev	1.303	5.300	.9276	.4029 a	2.136 a
.5 dB Peak Chebyshev	1.158	6.714	.8504	.3282 a	2.204 a
1 dB Peak Chebyshev	1.045	8.234	.8028	.2798 a	2.304 a
2 dB Peak Chebyshev	.8860	11.46	.7500	.2215 a	2.539 a
3dB Peak Chebyshev	.7665	15.32	.7197	.1839 a	2.817 a

$\mathrm{a}=\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{C}\right)^{-1}$
$\left|\mathrm{A}_{\mathrm{v}}\right|_{\mathrm{vhf}}=1=0 \mathrm{~dB}$
$\left|A_{\text {vpk }}\right|_{d B}=20 \log \left[2 /\left(d \sqrt{4-d^{2}}\right)\right]$
$\left|A_{\text {vfo }}\right|_{\mathrm{dB}}=20 \log \mathrm{~d}^{-1}, \quad \mathrm{f}_{0}=\left[2 \pi \mathrm{C} \sqrt{\mathrm{R}_{1} \mathrm{R}_{2}}\right]^{-1}$
$\left|\mathrm{A}_{\mathrm{vfc}}\right|=\sqrt{1 / 2}$
$\left|\mathrm{A}_{\mathrm{vfc}}\right|_{\mathrm{dB}}=20 \log \sqrt{1 / 2}=-3.0103 \mathrm{~dB}$
$\left|e_{\text {out }} / \mathrm{e}_{\text {in }}\right|_{\mathrm{dB}}=20 \log \left[\sqrt{\left(\mathrm{f}_{0} / \mathrm{f}\right)^{4}+\left(\mathrm{f}_{0} / \mathrm{f}\right)^{2}\left(\mathrm{~d}^{2}-2\right)+1}\right]^{-1}$
$\left|\mathrm{e}_{\text {out }} / \mathrm{e}_{\mathrm{in}}\right|_{\mathrm{dB}}=20 \log \left[\sqrt{1+\left(\mathrm{f}_{0} / \mathrm{f}\right)^{4}}\right]^{-1} \quad$ (Butterworth)

FILTER HIGHPASS
 Third Order Butterworth

Butterworth Response

$$
\begin{aligned}
\mathrm{R}_{1} & =.4074 /\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{C}\right) \\
\mathrm{R}_{2} & =.4742 /\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{C}\right) \\
\mathrm{R}_{3} & =5.177 /\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{C}\right) \\
\mathrm{f}_{\mathrm{c}} & =\mathrm{f}_{0}=\left[2 \pi \mathrm{C}\left(\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{R}_{3}\right)^{\frac{1}{3}}\right]^{-1} \\
\left|\mathrm{e}_{\mathrm{out}} / \mathrm{e}_{\text {in }}\right|_{\mathrm{dB}} & =20 \log \left[\sqrt{\left(\mathrm{f}_{0} / \mathrm{f}\right)^{6}+1}\right]^{-1}
\end{aligned}
$$

example
Let $f_{c}=1000 \mathrm{~Hz}$
Let $\mathrm{C}=.0068 \mu \mathrm{~F}$

$$
\mathrm{C} / 2=.0034 \mu \mathrm{~F} \text {-use } .0033 \mu \mathrm{~F}
$$

$$
\mathrm{R}_{1}=9.535 \mathrm{~K}-\text { use } 9.53 \mathrm{~K}
$$

$$
\mathrm{R}_{2}=11.10 \mathrm{~K} \text {-use } 11.0 \mathrm{~K}
$$

$$
\mathrm{R}_{3}=121.2 \mathrm{~K} \text {-use } 121 \mathrm{~K}
$$

$$
\mathrm{f}_{\mathrm{c}}=1004 \mathrm{~Hz}
$$

$\mathrm{A}_{\mathrm{v}}=.97=-.26 \mathrm{~dB}$

Independent Gain	FILTER	Third Order
HIGHPASS	TB/Octave	MULTIPLE FEEDBACK

$\left|A_{v}\right|_{\text {vhf }}=R_{2} / R_{1}$

RESPONSE	R_{1}	R_{3}	R_{4}	$\mathrm{f}_{\mathrm{b}} / \mathrm{f}_{\mathrm{c}}$	ϵ
Bessel	1.323 a	.6983 a	3.001 a	-	-
Butterworth	1.000 a	.3333 a	3.000 a	-	-
.1 dB Dip Chebyshev	.6979 a	.2656 a	4.2985 a	1.3890	.15262
.5 dB Dip Chebyshev	.5366 a	.1789 a	4.686 a	1.1675	.34931
1 dB Dip Chebyshev	.4514 a	.1505 a	5.513 a	1.0948	.50885
2 dB Dip Chebyshev	.3572 a	.1191 a	6.978 a	1.0327	.76479
3 dB Dip Chebyshev	.2985 a	.09951 a	8.428 a	1.0003	.99763

$\mathrm{a}=\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{C}\right)^{-1}$
$f_{c}=$ Cutoff, corner or half-power frequency
$\left|A_{\text {vfc }}\right|=R_{2} /\left(R_{1} \sqrt{2}\right)$
$f_{b}=$ Rippleband-edge frequency. e.g. The lower 1 dB down frequency in a highpass 1 dB Chebyshev filter
$\mathrm{f}_{\text {dip }}=2 \mathrm{f}_{\mathrm{b}}, \quad\left|\mathrm{A}_{\mathrm{v}}\right|_{\text {dip }}=\left|\mathrm{A}_{\text {vfb }}\right| \quad$ (Chebyshev)
$\left|\mathrm{A}_{\mathrm{vpk}}\right|=\left|\mathrm{A}_{\mathrm{v}}\right|_{\mathrm{vhf}}=\mathrm{R}_{2} / \mathrm{R}_{1}, \quad \mathrm{f}_{\mathrm{pk}}=1.155 \mathrm{f}_{\mathrm{b}} \quad$ (Chebyshev)
$\left|\mathrm{e}_{\text {out }} / \mathrm{e}_{\text {in }}\right|_{\mathrm{dB}}=20 \log \left[\mathrm{R}_{2} /\left(\mathrm{R}_{1} \sqrt{1+\epsilon^{2}\left[4\left(\mathrm{f}_{\mathrm{b}} / \mathrm{f}\right)^{3}-3\left(\mathrm{f}_{\mathrm{b}} / \mathrm{f}\right)\right]^{2}}\right)\right]$
(Chebyshev)
$\left|e_{\text {out }} / e_{\text {in }}\right|_{d B}=20 \log \left(R_{2} /\left[R_{1} \sqrt{\left(f_{c} / f\right)^{6}+1}\right]\right)$
(Butterworth)
Unity Gain
$24 \mathrm{~dB} /$ Octave

FILTER HIGHPASS MULTIPLE FEEDBACK

Fourth Order Equal Capacitor

$\mathrm{a}=\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{C}\right)^{-1}$
$\mathrm{f}_{\mathrm{c}}=\mathrm{f}_{-3.01 \mathrm{~dB}} \quad$ (Bessel and Butterworth)
$f_{c}=$ Frequency of 3.01 dB down from $\left|\mathrm{A}_{\mathrm{vpk}}\right|$
(Chebyshev)
$f_{b}=$ Rippleband-edge frequency. The lowest frequency of $A_{v}=0 \mathrm{~dB}$. e.g. The lower $\left(\mathrm{A}_{\mathrm{vpk}}\right.$ -1 dB) in a 1 dB highpass Chebyshev filter. (Chebyshev)

$$
\begin{aligned}
\left|\mathrm{A}_{\mathrm{vpk}}\right|= & +1 \mathrm{~dB} \text { in a } 1 \mathrm{~dB} \text { filter, }+2 \mathrm{~dB} \text { in a } 2 \mathrm{~dB} \text { filter } \\
& \text { etc } \text { (Chebyshev) }
\end{aligned}
$$

$$
\begin{aligned}
\left|\mathrm{A}_{\mathrm{vhf}}\right| & =\left|\mathrm{A}_{\mathrm{v}}\right|_{\text {dip }}=\left|\mathrm{A}_{\text {vf }}\right|=1=0 \mathrm{~dB} \\
\mathrm{f}_{\mathrm{pk}} & =1.082 \mathrm{f}_{\mathrm{b}} \text { and } 2.612 \mathrm{f}_{\mathrm{b}}, \quad \mathrm{f}_{\text {dip }}=1.414 \mathrm{f}_{\mathrm{b}} \\
\left|\mathrm{e}_{\text {out }} / \mathrm{e}_{\mathrm{in}}\right|_{\mathrm{dB}} & =20 \log \left(\sqrt{1+\left(\mathrm{f}_{\mathrm{c}} / \mathrm{f}\right)^{8}}\right)^{-1} \quad \text { (Butterworth) }
\end{aligned}
$$

FILTER
 HIGHPASS SALLEN-KEY (1)

$$
\begin{aligned}
& \left|A_{\mathrm{vhf}}\right|=1+\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}}, \quad\left|\mathrm{~A}_{\mathrm{vfo}}\right|=\left(1+\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}}\right) / \mathrm{d} \\
& \left|\mathrm{~A}_{\mathrm{vpk}}\right|_{\mathrm{dB}}=20 \log \left(\left[2\left(1+\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}}\right)\right] /\left[\mathrm{d} \sqrt{4-\mathrm{d}^{2} / 2}\right]\right)
\end{aligned}
$$

$$
\text { when } \mathrm{d}<\sqrt{2}
$$

$$
\mathrm{d}=\left[\left(\mathrm{R}_{1} / \mathrm{R}_{2}\right)\left(\mathrm{C}_{1} / \mathrm{C}_{2}+1\right)-\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}}\right] / \sqrt{\left(\mathrm{R}_{1} / \mathrm{R}_{2}\right)\left(\mathrm{C}_{1} / \mathrm{C}_{2}\right)}
$$

$$
f_{c}=f_{0} / \sqrt{a+\sqrt{a^{2}+1}}, \quad f_{0}=f_{c} \sqrt{a+\sqrt{a^{2}+1}}
$$

$$
\text { where } a=1-d^{2} / 2
$$

$\mathrm{f}_{0}=\left[2 \pi \sqrt{\mathbf{R}_{1} \mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}}\right]^{-1}, \quad \mathrm{R}_{1}=\left[\left(2 \pi \mathrm{f}_{0}\right)^{2} \mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}\right]^{-1}$
$\mathrm{f}_{\mathrm{pk}}=\mathrm{f}_{0} / \sqrt{1-\mathrm{d}^{2} / 2}$ when $\mathrm{d}<\sqrt{2}$ (no peak when $\mathrm{d} \geq \sqrt{2}$)
$\left|\mathrm{e}_{\mathrm{out}} / \mathrm{e}_{\text {in }}\right|_{\mathrm{dB}}=$
$20 \log \left(\left[1+R_{F} / R_{B}\right] / \sqrt{\left(f_{0} / f\right)^{4}+\left(f_{0} / f\right)^{2}\left(d^{2}-2\right)+1}\right)$
$\left(\theta_{\mathrm{eo}}-\theta_{\mathrm{ei}}\right)=\tan ^{-1}\left(\mathrm{~d} /\left[\left(\mathrm{f} / \mathrm{f}_{0}\right)-\left(\mathrm{f}_{0} / \mathrm{f}\right)\right]\right)$
$\left(A_{V}\right)_{R Q D}=\left(R_{1} / R_{2}\right)\left(C_{1} / C_{2}+1\right)+1-d \sqrt{\left(R_{1} / R_{2}\right)\left(C_{1} / C_{2}\right)}$
$\left(R_{F} / R_{B}\right)=\left(R_{1} / R_{2}\right)\left(C_{1} / C_{2}+1\right)-d \sqrt{\left(R_{1} / R_{2}\right)\left(C_{1} / C_{2}\right)}$
$\left(R_{1} / R_{2}\right)=\left[b+\sqrt{b^{2}-4 a c}\right] / 2 a$
where $\mathrm{a}=\mathrm{C}_{1} / \mathrm{C}_{2}+\mathrm{C}_{2} / \mathrm{C}_{1}+2, \quad \mathrm{c}=\left(\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}}\right)^{2}\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)$,

$$
\mathrm{b}=\left(2 \mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}}\right)\left(\mathrm{C}_{2} / \mathrm{C}_{1}+1\right)+\mathrm{d}^{2}
$$

$\left(C_{1} / C_{2}\right)=\left[b \pm \sqrt{b^{2}-4 a c}\right] / 2 a$
where $a=R_{1} / R_{2}$,
$\mathrm{b}=2 \mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}}-2 \mathrm{R}_{1} / \mathrm{R}_{2}+\mathrm{d}^{2}$,
$c=R_{1} / R_{2}+\left(R_{F} / R_{B}\right)^{2}\left(R_{2} / R_{1}\right)-2 R_{F} / R_{B}$
Notes: (1) Sallen-Key filters are also known as single feedback, voltage controlled voltage source and VCVS.

Second Order
 12 dB/Octave

FILTER
 HIGHPASS SALLEN-KEY

Equal Capacitor Simplified Formulas

$\left|A_{\text {vhf }}\right|=1+R_{F} / R_{B}, \quad\left|A_{\text {vfo }}\right|=\left(1+R_{F} / R_{B}\right) / d$
$\left|A_{v p k}\right|_{d B}=20 \log \left(\left[2\left(1+R_{F} / R_{B}\right)\right] /\left[d \sqrt{4-\mathrm{d}^{2}}\right]\right)$
$d=\left[2 R_{1} / R_{2}-R_{F} / R_{B}\right] / \sqrt{R_{1} / R_{2}} \quad$ when $d<\sqrt{2}$
$f_{c}=f_{0} / \sqrt{a+\sqrt{a^{2}+1}}, \quad f_{0}=f_{c} \sqrt{a+\sqrt{a^{2}+1}}$ where $a=1-d^{2} / 2$
$f_{p k}=f_{0} / \sqrt{1-d^{2} / 2} \quad$ when $d<\sqrt{2}$ (no peak when $d \geq \sqrt{2}$)
$\left(R_{1} / R_{2}\right)=\left[4 R_{F} / R_{B}+d^{2}+\sqrt{d^{4}+8 d^{2} R_{F} / R_{B}}\right] / 8$
$\mathbf{R}_{2}=\left[\sqrt{\left(\mathrm{R}_{1} / \mathrm{R}_{2}\right)}\left(2 \pi \mathrm{f}_{0} \mathrm{C}\right)\right]^{-1}$
$\left(R_{F} / R_{B}\right)=2 R_{1} / R_{2}-d \sqrt{R_{1} / R_{2}}, \quad\left(R_{F} / R_{B}\right)=A_{V}-1$
$\left|\mathrm{e}_{\text {out }} / \mathrm{e}_{\text {in }}\right|_{\mathrm{dB}}=$

$$
20 \log \left(\left[1+R_{F} / R_{B}\right] / \sqrt{\left(f_{0} / f\right)^{4}+\left(f_{0} / f\right)^{2}\left(d^{2}-2\right)+1}\right)
$$

$\left(\theta_{\text {eo }}-\theta_{\mathrm{ei}}\right)=\tan ^{-1}\left(\mathrm{~d} /\left[\left(\mathrm{f} / \mathrm{f}_{0}\right)-\left(\mathrm{f}_{0} / \mathrm{f}\right)\right]\right)$
Example-Let $\mathrm{f}_{\mathrm{c}}=800 \mathrm{~Hz}, \mathrm{~A}_{\mathrm{v}}=10, \mathrm{~d}=1$ and $\mathrm{C}=.01 \mu \mathrm{~F}$
$\left(R_{F} / R_{B}\right)=A_{V}-1=9$
Let $\mathrm{R}_{\mathrm{F}}=10.2 \mathrm{~K}, \mathrm{R}_{\mathrm{B}}=1.13 \mathrm{~K}, \mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}}=9.0265$
$\left(R_{1} / R_{2}\right)=\left[4 R_{F} / R_{B}+d^{2}+\sqrt{d^{4}+8 d^{2} R_{F} / R_{B}}\right] / 8=5.7078$
$f_{0}=f_{c} \sqrt{\left(1-d^{2} / 2\right)+\sqrt{\left(1-d^{2} / 2\right)^{2}+1}}=1018 \mathrm{~Hz}$
$\mathrm{R}_{2}=\left[\sqrt{\left(\mathrm{R}_{1} / \mathrm{R}_{2}\right)}\left(2 \pi \mathrm{f}_{0} \mathrm{C}\right)\right]^{-1}=6.55 \mathrm{~K}$-use 6.65 K
$\mathbf{R}_{1}=\mathbf{R}_{2}\left(\mathrm{R}_{1} / \mathrm{R}_{2}\right)=38.0 \mathrm{~K}$-use 38.3 K
Check using chosen practical values
$\mathrm{d}=1.038, \mathrm{f}_{0}=997.3 \mathrm{~Hz}, \quad \mathrm{f}_{\mathrm{c}}=798.0 \mathrm{~Hz}$,
$\mathrm{A}_{\mathbf{v}}=10.03, \quad \mathrm{~A}_{\mathrm{vpk}}=21.15 \mathrm{~dB}$

FILTER
 HIGHPASS SALLEN-KEY

Unity Gain Equal Capacitor

$\left|\mathrm{A}_{\text {vhf }}\right|=1, \quad\left|\mathrm{~A}_{\text {vfo }}\right|=\mathrm{d}^{-1}$
$\left|A_{v p k}\right|_{\mathrm{dB}}=20 \log \left[2 / \mathrm{d} \sqrt{4-\mathrm{d}^{2}}\right] \quad$ when $\mathrm{d}<\sqrt{2}$
$\mathrm{d}=\sqrt{4 \mathrm{R}_{1} / \mathrm{R}_{2}}, \quad \mathrm{~d}=4 \pi \mathrm{f}_{0} \mathrm{CR}_{1}, \quad \mathrm{~d}=\left(\pi \mathrm{f}_{0} \mathrm{CR}_{2}\right)^{-1}$
$f_{c}=f_{0} / \sqrt{a+\sqrt{a^{2}+1}}, \quad f_{0}=f_{c} \sqrt{a+\sqrt{a^{2}+1}}$ where $a=1-d^{2} / 2$
$\mathrm{f}_{\mathrm{pk}}=\mathrm{f}_{0} / \sqrt{1-\mathrm{d}^{2} / 2}$ when $\mathrm{d}<\sqrt{2}($ no peak when $\mathrm{d} \geq \sqrt{2}$)
$f_{0}=\left[2 \pi C \sqrt{R_{1} R_{2}}\right]^{-1}, \quad f_{0}=d /\left(4 \pi R_{1} C\right), \quad f_{0}=\left(\pi R_{2} C d\right)^{-1}$
$\left(R_{1} / R_{2}\right)=d^{2} / 4, \quad R_{1}=d /\left(4 \pi f_{0} C\right), \quad R_{2}=\left(4 \pi f_{0} C d\right)^{-1}$
$\left|e_{\text {out }} / \mathrm{e}_{\text {in }}\right|_{\text {dB }}=20 \log \left[\sqrt{\left(\mathrm{f}_{0} / \mathrm{f}\right)^{4}+\left(\mathrm{f}_{0} / \mathrm{f}\right)^{2}\left(\mathrm{~d}^{2}-2\right)+1}\right]^{-1}$
$\left(\theta_{\mathrm{eo}}-\theta_{\mathrm{ei}}\right)=\tan ^{-1}\left(\mathrm{~d} /\left[\left(\mathrm{f} / \mathrm{f}_{0}\right)-\left(\mathrm{f}_{0} / \mathrm{f}\right)\right]\right)$
Example: Let $\mathrm{f}_{\mathrm{c}}=1000 \mathrm{~Hz}, \mathrm{c}=.01 \mu \mathrm{~F}$ and $\mathrm{d}=\sqrt{2}$
(Butterworth)
$f_{0}=f_{c} \sqrt{\left(1-d^{2} / 2\right)+\sqrt{\left(1-d^{2} / 2\right)+1}}=f_{c}=1000 \mathrm{~Hz}$
$\mathrm{R}_{1}=\mathrm{d} /\left(4 \pi \mathrm{f}_{0} \mathrm{C}\right)=11.25 \mathrm{~K}$-use 11.3 K
$\mathrm{R}_{2}=\left(\pi \mathrm{f}_{0} \mathrm{Cd}\right)^{-1}=22.51 \mathrm{~K}$-use 22.6 K
Check using chosen practical values
$\mathrm{f}_{0}=\left[2 \pi \mathrm{C} \sqrt{\mathrm{R}_{1} \mathrm{R}_{2}}\right]^{-1}=995.9 \mathrm{~Hz}$,
$\mathrm{d}=\sqrt{4 \mathrm{R}_{1} / \mathrm{R}_{2}}=1.414=\sqrt{2}$,
$\mathrm{f}_{\mathrm{c}}=\mathrm{f}_{0}=995.9 \mathrm{~Hz}, \quad\left|\mathrm{~A}_{\text {vfo }}\right|=\mathrm{d}^{-1}=.7071=-3.010 \mathrm{~dB}$
Second Order
$12 \mathrm{~dB} /$ Octave

FILTER
 HIGHPASS
 SALLEN-KEY

Unity Gain
Equal Capacitor

RESPONSE	d	$\mathrm{f}_{\mathrm{c}} / \mathrm{f}_{0}$	$\mathrm{R}_{2} / \mathrm{R}_{1}$	R_{1}	R_{2}
Bessel	1.732	1.272	1.333	1.102 a	1.469 a
Butterworth	1.414	1.000	2.000	.7071 a	1.414 a
.1 dB Peak Chebyshev	1.303	.9276	2.355	.6043 a	1.424 a
.5 dB Peak Chebyshev	1.158	.8504	3.455	.4924 a	1.469 a
1 dB Peak Chebyshev	1.045	.8028	3.660	.4195 a	1.536 a
2 dB Peak Chebyshev	.8860	.7500	5.095	.3323 a	1.693 a
3 dB Peak Chebyshev	.7665	.7197	6.809	.2758 a	1.878 a

$\mathrm{a}=\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{C}\right)^{-1}$
$\left|\mathrm{A}_{\text {vhf }}\right|=1, \quad\left|\mathrm{~A}_{\text {vfo }}\right|=\mathrm{d}^{-1}, \quad\left|\mathrm{~A}_{\text {vfc }}\right|=1 / \sqrt{2}$
$\left|A_{v p k}\right|_{d B}=20 \log \left(2 /\left[d \sqrt{4-d^{2}}\right]\right) \quad$ when $d<\sqrt{2}$
$\mathrm{f}_{\mathrm{pk}}=\mathrm{f}_{0} / \sqrt{1-\mathrm{d}^{2} / 2}=\left[2 \pi \mathrm{C} \sqrt{\mathrm{R}_{1} \mathrm{R}_{2}\left(1-\mathrm{d}^{2} / 2\right)}\right]^{-1}$
$\left|e_{\text {out }} / e_{\text {in }}\right|_{d B}=20 \log \left[\sqrt{\left(f_{0} / f\right)^{4}+\left(f_{0} / f\right)^{2}\left(d^{2}-2\right)+1}\right]^{-1}$
$\left|e_{\text {out }} / e_{\text {in }}\right|_{d B}=20 \log \left[\sqrt{1+\left(f_{0} / f\right)^{4}}\right]^{-1} \quad$ Butterworth only
Check: $f_{0}=\left[2 \pi C \sqrt{R_{1} R_{2}}\right]^{-1}, \quad d=\sqrt{4 R_{1} / R_{2}}$
$f_{c}=f_{0} / \sqrt{b+\sqrt{b^{2}+1}}$ where $b=1-2 R_{1} / R_{2}$

Second Order $12 \mathrm{~dB} /$ Octave

FILTER HIGHPASS SALLEN-KEY

Free Gain

$\mathrm{R}_{1}=\mathrm{R}_{2}, \mathrm{C}_{1}=\mathrm{C}_{2}$

Unity Gain
18 dB/Octave

FILTER HIGHPASS SINGLE FEEDBACK

RESPONSE	\mathbf{R}_{1}	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$	$\mathrm{f}_{\mathbf{b}} / \mathbf{f}_{\mathbf{c}}$	$\boldsymbol{\epsilon}$
Bessel	1.012 a	.7027 a	3.940 a	-	-
Butterworth	.7184 a	.2820 a	4.941 a	-	-
.1 dB Dip Chebyshev	.5479 a	.1503 a	7.435 a	1.3890	.15262
.5 dB Dip Chebyshev	.4444 a	.08905 a	11.17 a	1.1675	.34931
1 dB Dip Chebyshev	.3896 a	.06180 a	15.56 a	1.0948	.50885
2 dB Dip Chebyshev	.3212 a	.03595 a	25.69 a	1.0327	.76479
3 dB Dip Chebyshev	.2756 a	.02303 a	39.48 a	1.0003	.99763

$\mathrm{a}=\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{C}\right)^{-1}$
$f_{c}=$ Cutoff, corner or half-power frequency $=f_{-3.01 \mathrm{~dB}}$
$f_{b}=$ Rippleband-edge frequency e.g. The lower $f_{-1 \mathrm{~dB}}$ in a 1 dB dip highpass Chebyshev filter
$\left|\mathrm{A}_{\text {vid }}\right|_{\text {dip }}=\left|\mathrm{A}_{\text {vfb }}\right|, \quad\left|\mathrm{A}_{\text {vpk }}\right|=\left|\mathrm{A}_{\text {vhf }}\right|=1 \quad$ (Chebyshev)
$\mathrm{f}_{\mathrm{dip}}=2 \mathrm{f}_{\mathrm{b}}, \quad \mathrm{f}_{\mathrm{pk}}=1.155 \mathrm{f}_{\mathrm{b}} \quad$ (Chebyshev)
$\left|\mathrm{e}_{\text {out }} / \mathrm{e}_{\text {in }}\right|_{\mathrm{dB}}=20 \log \left(\sqrt{1+\epsilon^{2}\left[4\left(\mathrm{f}_{\mathrm{b}} / \mathrm{f}\right)^{3}-3\left(\mathrm{f}_{\mathrm{b}} / \mathrm{f}\right)\right]^{2}}\right)^{-1}$
(Chebyshev)
$\left|e_{\text {out }} / e_{\text {in }}\right|_{d B}=20 \log \left[\sqrt{\left(f_{c} / f\right)^{6}+1}\right]^{-1} \quad$ (Butterworth)

FILTER
 HIGHPASS SINGLE FEEDBACK

Third Order Equal Resistor

Butterworth Response

$$
\left.\begin{array}{rl}
\left|\mathrm{A}_{\text {vhf }}\right| & =2, \quad\left|\mathrm{~A}_{\text {vfc }}\right|=\sqrt{2} \\
\mathrm{C}_{1} & =.6390 /\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{R}\right) \\
\mathrm{C}_{2} & =.6805 /\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{R}\right) \\
\mathrm{C}_{3} & =2.300 /\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{R}\right) \\
\mathrm{f}_{\mathrm{c}} & =\left[2 \pi \mathrm{R}\left(\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}\right)^{\frac{1}{2}}\right]^{-1} \\
\left|\mathrm{e}_{\text {out }} / \mathrm{e}_{\text {in }}\right|_{\mathrm{dB}} & =20 \log \left[2 / \sqrt{\left(\mathrm{f}_{\mathrm{c}} / \mathrm{f}\right.}\right)^{6}+1
\end{array}\right]
$$

1 dB Dip Chebyshev Response
$\left|A_{\text {vhf }}\right|=\left|A_{\text {vpk }}\right|=6 \mathrm{~dB}, \quad\left|\mathrm{~A}_{\text {vfb }}\right|=5 \mathrm{~dB}, \quad\left|\mathrm{~A}_{\text {vfc }}\right|=3 \mathrm{~dB}$
$f_{b}=$ Rippleband Edge $=$ Lower 1 dB down frequency
$\mathrm{C}_{1}=.4395 /\left(2 \pi \mathrm{f}_{\mathrm{b}} \mathrm{R}\right), \quad \mathrm{C}_{1}=.4014 /\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{R}\right)$
$\mathrm{C}_{2}=.2744 /\left(2 \pi \mathrm{f}_{\mathrm{b}} \mathrm{R}\right), \quad \mathrm{C}_{2}=.2506 /\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{R}\right)$
$\mathrm{C}_{3}=4.073 /\left(2 \pi \mathrm{f}_{\mathrm{b}} \mathrm{R}\right), \quad \mathrm{C}_{3}=3.720 /\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{R}\right)$
$\mathrm{f}_{\mathrm{b}}=.7890 /\left[2 \pi \mathrm{R}\left(\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}\right)^{\frac{1}{2}}\right]$
$\mathrm{f}_{\mathrm{c}}=.7206 /\left[2 \pi \mathrm{R}\left(\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}\right)^{\frac{1}{2}}\right]$
$\mathrm{f}_{-1 \mathrm{~dB}}=1.000 \mathrm{f}_{\mathrm{b}}$ and $2.000 \mathrm{f}_{\mathrm{b}}$
$\mathrm{f}_{\mathrm{c}}=.9133 \mathrm{f}_{\mathrm{b}}, \quad \mathrm{f}_{\mathrm{b}}=1.095 \mathrm{f}_{\mathrm{c}}$
$\left|\mathrm{e}_{\text {out }} / \mathrm{e}_{\text {in }}\right|_{\mathrm{dB}}=20 \log \left[2 / \sqrt{1+.25893\left[4\left(\mathrm{f}_{\mathrm{b}} / \mathrm{f}\right)^{3}-3\left(\mathrm{f}_{\mathrm{b}} / \mathrm{f}\right)\right]^{2}}\right]$

Second Order $12 \mathrm{~dB} /$ Octave

FILTER HIGHPASS
 General and
 Simplified Formulas

TYPE I STATE VARIABLE

$\left|\mathrm{A}_{\mathrm{vhf}}\right|=\mathrm{H}_{\mathrm{OHP}}=\left(1+\mathrm{R}_{6} / \mathrm{R}_{5}\right) /\left(1+\mathrm{R}_{3} / \mathrm{R}_{0}+\mathrm{R}_{3} / \mathrm{R}_{4}\right)$
$d=\left(1+\mathbf{R}_{6} / \mathbf{R}_{5}\right) /\left[\left(1+\mathbf{R}_{4} / \mathbf{R}_{3}+\mathbf{R}_{4} / \mathbf{R}_{0}\right)\right.$

$$
\left.\sqrt{\left(\mathrm{R}_{1} \mathrm{R}_{6} \mathrm{C}_{1}\right) /\left(\mathrm{R}_{2} \mathrm{R}_{5} \mathrm{C}_{2}\right)}\right]
$$

$\mathrm{f}_{0}=\sqrt{ } \mathrm{R}_{6} /\left(\mathrm{R}_{5} 4 \pi^{2} \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}\right)$
When $\mathrm{R}_{1}=\mathrm{R}_{2}, \mathrm{C}_{1}=\mathrm{C}_{2}$ and $\mathrm{R}_{5}=\mathrm{R}_{6}$:
$\left|\mathrm{A}_{\text {vhf }}\right|=\mathrm{H}_{\mathrm{OHP}}=\mathrm{R}_{4} / \mathrm{R}_{3}, \mathrm{f}_{0}=\left(2 \pi \mathrm{R}_{1} \mathrm{C}_{1}\right)^{-1}, \mathrm{R}_{1}=\left(2 \pi \mathrm{f}_{0} \mathrm{C}_{1}\right)^{-1}$
$\mathrm{d}=2 /\left(1+\mathrm{R}_{4} / \mathrm{R}_{3}+\mathrm{R}_{4} / \mathrm{R}_{0}\right), \quad \mathbf{R}_{0}=\mathbf{R}_{4} /\left(2 / \mathrm{d}-\mathbf{R}_{4} / \mathbf{R}_{3}-1\right)$
TYPE II STATE VARIABLE

$\left|\mathrm{A}_{\mathrm{vhf}}\right|=\mathrm{H}_{\mathrm{OHP}}=\mathrm{d}^{-1}=\left(\mathrm{R}_{4} / \mathrm{R}_{3}+1\right) / 3$
$\mathrm{d}=3 /\left(\mathrm{R}_{4} / \mathrm{R}_{3}+1\right), \quad \mathbf{R}_{4}=\mathrm{R}_{\mathbf{3}}(3 / \mathrm{d}-1)$
$\mathrm{f}_{0}=\left(2 \pi \mathrm{R}_{1} \mathrm{C}\right)^{-1}, \quad \mathrm{R}_{1}=\left(2 \pi \mathrm{f}_{0} \mathrm{C}\right)^{-1}$

See Also-FILTER, UNIVERSAL, STATE VARIABLE

Second Order
 12 dB/Octave

FILTER
 LOWPASS BIQUAD

General and
 Simplified Formulas

$\left|A_{v}\right|_{\text {vif }}=R_{4} / R_{3}$

$$
f_{0}=\sqrt{R_{6} /\left(R_{5} 4 \pi^{2} R_{1} R_{2} C_{1} C_{2}\right)}
$$

$$
d=\left(2 \pi f_{0} R_{4} C_{1}\right)^{-1}
$$

$$
f_{c}=f_{0} \sqrt{a+\sqrt{a^{2}+1}} \quad \text { where } a=1-d^{2} / 2
$$

$$
f_{0}=f_{c} / \sqrt{a+\sqrt{a^{2}+1}} \quad \text { where } a=1-d^{2} / 2
$$

When $\mathrm{R}_{1}=\mathrm{R}_{2}, \mathrm{C}_{1}=\mathrm{C}_{2}$ and $\mathrm{R}_{5}=\mathrm{R}_{6}$:
$\mathrm{f}_{0}=\left(2 \pi \mathrm{R}_{1} \mathrm{C}_{1}\right)^{-1}, \quad \mathrm{R}_{1}=\left(2 \pi \mathrm{f}_{0} \mathrm{C}_{1}\right)^{-1}$
example where $\mathrm{R}_{1}=\mathrm{R}_{2}, \mathrm{C}_{1}=\mathrm{C}_{2}$ and $\mathrm{R}_{5}=\mathrm{R}_{6}$
Let $A_{v}=1, f_{c}=1000 \mathrm{~Hz}$, Bessel response $(d=1.732)$ and $\mathrm{C}_{1}=.01 \mu \mathrm{~F}$

$$
\mathrm{f}_{0}=\mathrm{f}_{\mathrm{c}} / \sqrt{\left(1-\mathrm{d}^{2} / 2\right)+\sqrt{\left(1-\mathrm{d}^{2} / 2\right)^{2}+1}}=1272 \mathrm{~Hz}
$$

$$
\mathbf{R}_{1}=\left(2 \pi \mathrm{f}_{0} \mathrm{C}_{1}\right)^{-1}=12.51 \mathrm{~K} \text {-Use } 12.4 \mathrm{~K}
$$

$$
\mathrm{R}_{2}=\mathrm{R}_{1} / \mathrm{d}=7.16 \mathrm{~K}-\text { Use } 7.15 \mathrm{~K}, \mathrm{R}_{3}=\mathrm{R}_{4} / \mathrm{A}_{\mathrm{v}}=7.15 \mathrm{~K}
$$

Check: $\mathrm{f}_{0}=\left(2 \pi \mathrm{R}_{1} \mathrm{C}_{1}\right)^{-1}=1283.5 \mathrm{~Hz}$

$$
\begin{aligned}
d & =\left(2 \pi f_{0} R_{4} C_{1}\right)^{-1}=1.734 \\
f_{c} & =f_{0} \sqrt{\left(1-d^{2} / 2\right)+\sqrt{\left(1-d^{2} / 2\right)^{2}+1}}=1007 \mathrm{~Hz} \\
A_{V} & =1
\end{aligned}
$$

See Also-FILTER, UNIVERSAL, BIQUAD

FILTER
 LOWPASS
 MULTIPLE FEEDBACK

Check using chosen values
$\left|A_{\text {vif }}\right|=10, \quad f_{0}=1003 \mathrm{~Hz}, \quad d=1.002, \quad f_{c}=1275 \mathrm{~Hz}$, $\left|A_{\text {vfo }}\right|=9.985$

Second Order 12 dB/Octave

FILTER
 LOWPASS MULTIPLE FEEDBACK
 Unity Gain
 Std. Cap. Values

$\left|A_{\text {vif }}\right|=R / R=1, \quad\left|A_{\text {vfo }}\right|=d^{-1}$
$\mathrm{d}=\sqrt{\left(\mathrm{RR}_{3} \mathrm{C}_{2} / \mathrm{C}_{1}\right)\left(2 / \mathrm{R}+\mathrm{R}_{3}^{-1}\right)^{2}}, \mathrm{f}_{0}=\left[2 \pi \sqrt{\mathrm{RR}_{3} \mathrm{C}_{1} \mathrm{C}_{2}}\right]^{-1}$
$f_{c}=f_{0} \sqrt{a+\sqrt{a^{2}+1}}, \quad f_{0}=f_{c} / \sqrt{a+\sqrt{a^{2}+1}}$
where $\mathrm{a}=1-\mathrm{d}^{2} / 2$
when $\mathrm{d}<\sqrt{2}$
(no peak when $\mathrm{d} \geq \sqrt{2}$)
$\left|A_{\text {vpk }}\right|_{\mathrm{dB}}=20 \log \left(2 /\left[\mathrm{d} \sqrt{4-\mathrm{d}^{2}}\right]\right) \quad$ when $\mathrm{d}<\sqrt{2}$
$\left|\mathrm{e}_{\text {out }} / \mathrm{e}_{\text {in }}\right|_{\mathrm{dB}}=20 \log \left[\sqrt{\left(\mathrm{f} / \mathrm{f}_{0}\right)^{4}+\left(\mathrm{f} / \mathrm{f}_{0}\right)^{2}\left(\mathrm{~d}^{2}-2\right)+1}\right]^{-1}$
$\left(\theta_{\mathrm{eo}}-\theta_{\mathrm{ei}}\right)=\left[\tan ^{-1}\left(\mathrm{~d} /\left[\left(\mathrm{f}_{0} / \mathrm{f}\right)-\left(\mathrm{f} / \mathrm{f}_{0}\right)\right]\right)\right] \pm 180^{\circ}$
Example and Design Formulas
Let $\mathrm{d}=\sqrt{2}$ (Butterworth) and $\mathrm{f}_{\mathrm{c}}=1000 \mathrm{~Hz}$,
$f_{0}=f_{c}$ when $d=\sqrt{2}$
$\mathrm{C}_{2} \approx(1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}) \mathrm{d} / \mathrm{f}_{0}, \mathrm{C}_{2} \approx .0014 \mu \mathrm{~F}$ to $.014 \mu \mathrm{~F}$-use

$$
\begin{aligned}
& \mathrm{R}_{3}=\sqrt{\left[\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-16}\right] / 8} /\left[2 \pi \mathrm{f}_{0} \sqrt{\mathrm{C}_{1} \mathrm{C}_{2}}\right] \\
& \text { where } \mathrm{b}=\mathrm{d}^{2} \mathrm{C}_{1} / \mathrm{C}_{2}-4 \\
& \mathrm{R}_{3}=16.54 \mathrm{~K} \text {-use } 16.5 \mathrm{~K} \\
& \mathrm{R}=\left[\left(2 \pi \mathrm{f}_{0}\right)^{2} \mathrm{R}_{3} \mathrm{C}_{1} \mathrm{C}_{2}\right]^{-1} \quad \mathrm{R}=14.81 \mathrm{~K} \text {-use } 14.7 \mathrm{~K}
\end{aligned}
$$

Check using chosen values
$\left|\mathrm{A}_{\text {viff }}\right|=1, \quad \mathrm{f}_{0}=1005 \mathrm{~Hz}, \quad \mathrm{~d}=1.416, \quad \mathrm{f}_{\mathrm{c}}=1004 \mathrm{~Hz}$

Second Order
 $12 \mathrm{~dB} /$ Octave

FILTER LOWPASS
 Unity Gain MULTIPLE FEEDBACK
 Equal Resistor

$\left|A_{\text {vif }}\right|=1, \quad\left|A_{\text {vfo }}\right|=d^{-1}$
$\mathrm{d}=\sqrt{9 \mathrm{C}_{2} / \mathrm{C}_{1}}, \quad \mathrm{C}_{1}=3 /\left(2 \pi \mathrm{f}_{0} \mathrm{Rd}\right), \quad \mathrm{C}_{2}=\mathrm{d} /\left(6 \pi \mathrm{f}_{0} \mathrm{R}\right)$
$\mathrm{f}_{0}=\left[2 \pi \mathrm{R} \sqrt{\mathrm{C}_{1} \mathrm{C}_{2}}\right]^{-1}, \quad \mathrm{C}_{1}=\left[\mathrm{C}_{2}\left(2 \pi \mathrm{f}_{0} \mathrm{R}\right)^{2}\right]^{-1}$,
$\mathrm{C}_{2}=\left[\mathrm{C}_{1}\left(2 \pi \mathrm{f}_{0} \mathrm{R}\right)^{2}\right]^{-1}$
$f_{c}=f_{0} \sqrt{a+\sqrt{a^{2}+1}}, \quad f_{0}=f_{c} / \sqrt{a+\sqrt{a^{2}+1}}$
where $a=1-d^{2} / 2$
$\mathrm{f}_{\mathrm{pk}}=\mathrm{f}_{0} \sqrt{1-\mathrm{d}^{2} / 2} \quad$ when $\mathrm{d}<\sqrt{2}$
(no peak when $\mathrm{d} \geq \sqrt{2}$)
$\left|\mathrm{A}_{\mathrm{vpk}}\right|_{\mathrm{dB}}=20 \log \left(2 /\left[\mathrm{d} \sqrt{4-\mathrm{d}^{2}}\right]\right) \quad$ when $\mathrm{d}<\sqrt{2}$
$\left|\mathrm{e}_{\text {out }} / \mathrm{e}_{\text {in }}\right|_{\mathrm{dB}}=20 \log \left[\sqrt{\left(\mathrm{f} / \mathrm{f}_{0}\right)^{4}+\left(\mathrm{f} / \mathrm{f}_{0}\right)^{2}\left(\mathrm{~d}^{2}-2\right)+1}\right]^{-1}$
$\left(\theta_{\mathrm{eo}}-\theta_{\mathrm{ei}}\right)=\left[\tan ^{-1}\left(\mathrm{~d} /\left[\left(\mathrm{f}_{\mathrm{o}} / \mathrm{f}\right)-\left(\mathrm{f} / \mathrm{f}_{0}\right)\right]\right)\right] \pm 180^{\circ}$
Design Formulas and Example
Let $\mathrm{d}=\sqrt{2}$ (Butterworth) and $\mathrm{f}_{\mathrm{c}}=1000 \mathrm{~Hz}$
Choose C_{1}, C_{2} for $C_{1} / C_{2} \simeq 9 / d^{2}$ ratio-use $C_{1}=.015 \mu \mathrm{~F}$, $\mathrm{C}_{2}=.0033 \mu \mathrm{~F}$
$f_{0}=f_{c} / \sqrt{a+\sqrt{a^{2}+1}}$ where $a=1-d^{2} / 2, f_{0}=1000 \mathrm{~Hz}$
$\mathrm{R}=\left[2 \pi \mathrm{f}_{0} \sqrt{\mathrm{C}_{1} \mathrm{C}_{2}}\right]^{-1}, \mathrm{R}=22.6 \mathrm{~K}$-use 22.6 K
Check using chosen values
$\mathrm{f}_{0}=\left[2 \pi \mathrm{R} \sqrt{\mathrm{C}_{1} \mathrm{C}_{2}}\right]^{-1}=1001 \mathrm{~Hz}, \quad \mathrm{~d}=\sqrt{9 \mathrm{C}_{2} / \mathrm{C}_{1}}=1.407$
$\mathrm{f}_{\mathrm{c}}=1006 \mathrm{~Hz}, \quad \mathrm{f}_{\mathrm{pk}}=100.1 \mathrm{~Hz}, \quad \mathrm{~A}_{\mathrm{vpk}}=.0004 \mathrm{~dB}$

$18 \mathrm{~dB} /$ Octave
 Butterworth

FILTER
 LOWPASS MULTIPLE FEEDBACK

Third Order Unity Gain

Butterworth Response

$$
\begin{aligned}
\mathrm{C}_{1} & =2.455 /\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{R}\right) \\
\mathrm{C}_{2} & =2.109 /\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{R}\right) \\
\mathrm{C}_{3} & =.1931 /\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{R}\right) \\
\mathrm{f}_{\mathrm{c}} & =\left[2 \pi \mathrm{R}\left(\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}\right)^{\frac{1}{2}}\right]^{-1}
\end{aligned}
$$

$$
\left|\mathrm{A}_{\mathrm{v} \mid \mathrm{vlf}}=1, \quad\right| \mathrm{A}_{\mathrm{vfo}} \mid=\sqrt{.5}=-3.01 \mathrm{~dB}
$$

$$
\left|\mathrm{e}_{\mathrm{out}} / \mathrm{e}_{\mathrm{in}}\right|_{\mathrm{dB}}=20 \log \left[\sqrt{\left(\mathrm{f} / \mathrm{f}_{0}\right)^{6}+1}\right]^{-1}
$$

1000 Hz Example

$$
\begin{aligned}
\mathrm{R} & =10 \mathrm{~K} \\
\mathrm{C}_{1} & =.039 \mu \mathrm{~F} \\
\mathrm{C}_{2} & =.033 \mu \mathrm{~F} \\
\mathrm{C}_{3} & =.003 \mu \mathrm{~F} \\
\mathrm{f}_{\mathrm{c}} & =1015 \mathrm{~Hz}
\end{aligned}
$$

$$
\left|e_{\text {out }} / \mathrm{e}_{\text {in }}\right|=-18 \mathrm{~dB} \text { at } 2 \mathrm{f}_{0}=-60 \mathrm{~dB} \text { at } 10 \mathrm{f}_{0}
$$

Independent Gain	FILTER	Third Order
18dB/Octave	MULTIPLE FEEDBACK	Std. Cap. Values

$\mathrm{a}=\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{C}_{1}\right)^{-1}$
(C_{1} may be chosen to be the same value as C_{2})
$\mathrm{b}=\underset{\substack{\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{C}_{2}\right)^{-1} \\ \text { value } \mathrm{C}_{3}}}{\left(\text { Choose } \mathrm{C}_{2} \text { to be } .001, .01, .1 \text { etc for std. }\right.}$
$f_{c}=$ Cutoff, corner, half-power or $R_{2} / R_{1}-\sqrt{1 / 2}$ frequency
$f_{b}=$ Rippleband-edge frequency e.g. The upper $R_{2} / R_{1}-1 d B$ frequency in a 1 dB lowpass Chebyshev filter
$\left|A_{v}\right|_{\text {dip }}=\left|A_{\text {vfb }}\right|, \quad\left|A_{\text {vpk }}\right|=\left|A_{v}\right|_{\text {vif }} \quad$ (Chebyshev)
$\mathrm{f}_{\text {dip }}=\mathrm{f}_{\mathrm{b}} / 2, \quad \mathrm{f}_{\mathrm{pk}}=.8660 \mathrm{f}_{\mathrm{b}} \quad$ (Chebyshev)
$\left|e_{\text {out }} / e_{\text {in }}\right|_{d B}=20 \log \left(R_{2} /\left[R_{1} \sqrt{1+\left(f / f_{c}\right)^{6}}\right]\right) \quad$ (Butterworth)

```
Second Order
12 dB/Octave
```


FILTER
 LOWPASS SALLEN-KEY

$\left|A_{\text {vif }}\right|=1+R_{F} / R_{B}, \quad\left|A_{\text {veo }}\right|=\left(1+R_{F} / R_{B}\right) / d$,
$\left|\mathrm{A}_{\text {vfc }}\right|=\left(1+\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}}\right) / \sqrt{2}$
$\mathrm{d}=\left[\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)\left(\mathrm{R}_{2} / \mathrm{R}_{1}+1\right)-\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}}\right] / \sqrt{\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)}$
$f_{0}=\left[2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}\right]^{-1}, \quad R_{1} R_{2} C_{1} C_{2}=\left[\left(2 \pi f_{0}\right)^{2}\right]^{-1}$
$f_{c}=f_{0} \sqrt{a+\sqrt{a^{2}+1}}, \quad f_{0}=f_{c} / \sqrt{a+\sqrt{a^{2}+1}}$ where $a=1-d^{2} / 2$
$\mathrm{f}_{\mathrm{pk}}=\mathrm{f}_{0} \sqrt{1-\mathrm{d}^{2} / 2}, \quad \mathrm{f}_{0}=\mathrm{f}_{\mathrm{pk}} / \sqrt{1-\mathrm{d}^{2} / 2} \quad$ when $\mathrm{d}<\sqrt{2}$
$\left|A_{\text {vpk }}\right|_{\mathrm{dB}}=20 \log \left[2\left(1+\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}}\right) / \mathrm{d} \sqrt{4-\mathrm{d}^{2}}\right]$ when $\mathrm{d}<\sqrt{2}$ $\left|\mathrm{e}_{\text {out }} / \mathrm{e}_{\text {in }}\right|_{\text {dB }}$

$$
=20 \log \left[\left(1+\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}}\right) / \sqrt{\left(\mathrm{f} / \mathrm{f}_{0}\right)^{4}+\left(\mathrm{f} / \mathrm{f}_{0}\right)^{2}\left(\mathrm{~d}^{2}-2\right)+1}\right]
$$

$$
\left(\theta_{\mathrm{eo}}-\theta_{\mathrm{ei}}\right)=\tan ^{-1}\left(\mathrm{~d} /\left[\left(\mathrm{f}_{\mathrm{o}} / \mathrm{f}\right)-\left(\mathrm{f} / \mathrm{f}_{\mathrm{o}}\right)\right]\right)
$$

$$
\left(C_{2} / C_{1}\right)=\left[b+\sqrt{b^{2}-4 a c}\right] / 2 a
$$

$$
\text { where } \mathrm{a}=\mathrm{R}_{2} / \mathrm{R}_{1}+\mathrm{R}_{1} / \mathrm{R}_{2}+2
$$

$$
\mathrm{b}=\left(2 \mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}}\right)\left(1+\mathrm{R}_{1} / \mathrm{R}_{2}\right)+\mathrm{d}^{2}
$$

$$
c=\left(R_{F} / R_{B}\right)^{2}\left(R_{1} / R_{2}\right)
$$

$$
\left(\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}}\right)=\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)\left(\mathrm{R}_{2} / \mathrm{R}_{1}+1\right)-\mathrm{d} \sqrt{\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)}
$$

$$
\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)=\left[\mathrm{b}+\sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}\right] / 2 \mathrm{a}
$$

$$
\text { where } \mathrm{a}=\mathrm{C}_{2} / \mathrm{C}_{1}, \quad \mathrm{~b}=2 \mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}}+\mathrm{d}^{2}-2 \mathrm{C}_{2} / \mathrm{C}_{1}
$$

$$
\mathrm{c}=\mathrm{C}_{2} / \mathrm{C}_{1}-2 \mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}}+\left(\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}}\right)^{2}\left(\mathrm{C}_{1} / \mathrm{C}_{2}\right)
$$

(1) Sallen-Key filters are also known as single feedback, voltage controlled voltage source and VCVS filters.

FILTER
 LOWPASS SALLEN-KEY

Unity Gain
Std. Cap. Values

$\left|\mathrm{A}_{\mathrm{vlf}}\right|=1, \quad\left|\mathrm{~A}_{\text {vfo }}\right|=1 / \mathrm{d}, \quad\left|\mathrm{A}_{\text {vfc }}\right|=1 / \sqrt{2}$
$\mathrm{d}=\sqrt{\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)\left(\mathrm{R}_{2} / \mathrm{R}_{1}+\mathrm{R}_{1} / \mathrm{R}_{2}+2\right)}$
$f_{0}=\left[2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}\right]^{-1}$
$f_{c}=f_{0} \sqrt{a+\sqrt{a^{2}+1}}, \quad f_{0}=f_{c} / \sqrt{a+\sqrt{a^{2}+1}}$
where $a=1-d^{2} / 2$
$\mathrm{f}_{\mathrm{pk}}=\mathrm{f}_{0} \sqrt{1-\mathrm{d}^{2} / 2} \quad$ when $\mathrm{d}<\sqrt{2}$
(no peak when $\mathrm{d} \geq \sqrt{2}$)
$\left|A_{\text {vpk }}\right|_{\mathrm{dB}}=20 \log \left[2 / \mathrm{d} \sqrt{4-\mathrm{d}^{2}}\right] \quad$ when $\mathrm{d}<\sqrt{2}$
$\left|\mathrm{e}_{\text {out }} / \mathrm{e}_{\text {in }}\right|_{\mathrm{dB}}=20 \log \left[\sqrt{\left(\mathrm{f} / \mathrm{f}_{0}\right)^{4}+\left(\mathrm{f} / \mathrm{f}_{0}\right)^{2}\left(\mathrm{~d}^{2}-2\right)+1}\right]^{-1}$
$\left(\theta_{\text {eo }}-\theta_{\text {ei }}\right)=\tan ^{-1}\left(\mathrm{~d} /\left[\left(\mathrm{f}_{0} / \mathrm{f}\right)-\left(\mathrm{f} / \mathrm{f}_{0}\right)\right]\right)$
Design Formulas and Example
Let $\mathrm{f}_{\mathrm{c}}=1000 \mathrm{~Hz}$ and $\mathrm{A}_{\mathrm{vpk}}=1 \mathrm{~dB}$
$\mathrm{d}=\left(2-\left[4-\left(4 /\left[\log ^{-1}\left(\mathrm{~A}_{\mathrm{vpk}}\right)_{\mathrm{dB}} / 20\right]^{2}\right)\right]^{\frac{1}{2}}\right)^{\frac{1}{2}}, \quad \mathrm{~d}=1.045$
$\mathrm{f}_{0}=\mathrm{f}_{\mathrm{c}} / \sqrt{\left(1-\mathrm{d}^{2} / 2\right)+\sqrt{\left(1-\mathrm{d}^{2} / 2\right)^{2}+1}}, \quad \mathrm{f}_{0}=802.8 \mathrm{~Hz}$
$\mathrm{C}_{2} \approx(4 \mu \mathrm{~F})\left(\mathrm{d} / \mathrm{f}_{0}\right), \mathrm{C}_{2} \approx .0042 \mu \mathrm{~F}$-use $.0047 \mu \mathrm{~F}$
$\mathrm{C}_{1} \geq 4 \mathrm{C}_{2} / \mathrm{d}^{2}, \mathrm{C}_{1} \geq .0172$-use $.022 \mu \mathrm{~F}$
$\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)=\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-1} \quad$ where $\mathrm{b}=\mathrm{d}^{2} \mathrm{C}_{1} / 2 \mathrm{C}_{2}-1$,
$\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)=2.748$
$\mathrm{R}_{1}=\left[2 \pi \mathrm{f}_{0} \sqrt{\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right) \mathrm{C}_{1} \mathrm{C}_{2}}\right]^{-1}, \mathrm{R}_{1}=11.76 \mathrm{~K}$-use 11.8 K
$\mathrm{R}_{2}=\mathrm{R}_{1}\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right), \mathrm{R}_{2}=32.4 \mathrm{~K}$-use 32.4 K
Check: $\mathrm{d}=1.045, \mathrm{f}_{0}=800.5 \mathrm{~Hz}, \mathrm{f}_{\mathrm{c}}=997.4 \mathrm{~Hz}, \mathrm{~A}_{\mathrm{vpk}}=1.0 \mathrm{~dB}$

FILTER
 LOWPASS SALLEN-KEY

$\left|\mathrm{A}_{\text {vif }}\right|=2, \quad\left|\mathrm{~A}_{\text {vfo }}\right|=2 / \mathrm{d}, \quad\left|\mathrm{A}_{\text {vfc }}\right|=2 / \sqrt{2}$
$\mathrm{d}=\sqrt{\mathrm{R}_{2} / \mathrm{R}_{1}}, \quad \mathrm{R}_{2} / \mathrm{R}_{1}=\mathrm{d}^{2}$
$f_{0}=\left[2 \pi C \sqrt{R_{1} R_{2}}\right]^{-1}$
$f_{c}=f_{0} \sqrt{a+\sqrt{a^{2}+1}}$ where $a=1-d^{2} / 2$
$\mathrm{R}_{1}=\left[2 \pi \mathrm{f}_{0} \mathrm{Cd}\right]^{-1}$
$\mathrm{R}_{2}=\mathrm{d} /\left(2 \pi \mathrm{f}_{0} \mathrm{C}\right)$
$\mathrm{f}_{\mathrm{pk}}=\mathrm{f}_{0} \sqrt{1-\mathrm{d}^{2} / 2}$ when $\mathrm{d}<\sqrt{2}$
(no peak when $\mathrm{d} \geq \sqrt{2}$)
$\left|A_{\mathrm{vpk}}\right|_{\mathrm{dB}}=20 \log \left[4 / \mathrm{d} \sqrt{4-\mathrm{d}^{2}}\right] \quad$ when $\mathrm{d}<\sqrt{2}$
$\left|\mathrm{e}_{\text {out }} / \mathrm{e}_{\text {in }}\right|_{\mathrm{dB}}=20 \log \left[2 / \sqrt{\left(\mathrm{f} / \mathrm{f}_{0}\right)^{4}+\left(\mathrm{f} / \mathrm{f}_{0}\right)^{2}\left(\mathrm{~d}^{2}-2\right)+1}\right]$
$\left(\theta_{\text {eo }}-\theta_{\text {ei }}\right)=\tan ^{-1}\left(\mathrm{~d} /\left[\left(\mathrm{f}_{0} / \mathrm{f}\right)-\left(\mathrm{f} / \mathrm{f}_{0}\right)\right]\right)$
Design Formulas and Example
Let $\mathrm{f}_{\mathrm{c}}=1000 \mathrm{~Hz}, \mathrm{~d}=1.158(.5 \mathrm{~dB}$ peak $)$ and $\mathrm{R}=10 \mathrm{~K}$
$\mathrm{f}_{0}=\mathrm{f}_{\mathrm{c}} / \sqrt{\left(1-\mathrm{d}^{2} / 2\right)+\sqrt{\left(1-\mathrm{d}^{2} / 2\right)^{2}+1}}, \quad \mathrm{f}_{0}=850.4 \mathrm{~Hz}$
$\mathrm{C} \approx(10 \mu \mathrm{~F}) / \mathrm{f}_{0}, \mathrm{C} \approx .012 \mu \mathrm{~F}$-use $.01 \mu \mathrm{~F}$
$\mathrm{R}_{1}=\left[2 \pi \mathrm{f}_{0} \mathrm{Cd}\right]^{-1}, \mathrm{R}_{1}=16.2 \mathrm{~K}$-use 16.2 K
$\mathrm{R}_{2}=\mathrm{R}_{1} \mathrm{~d}^{2}, \mathrm{R}_{2}=21.7 \mathrm{~K}$-use 21.5 K
Check: $\mathrm{f}_{0}=852.8 \mathrm{~Hz}, \mathrm{f}_{\mathrm{c}}=1003 \mathrm{~Hz}, \mathrm{~d}=1.152, \mathrm{~A}_{\mathrm{vpk}}=6.54 \mathrm{~dB}$

FILTER LOWPASS SALLEN-KEY

$\left|A_{\text {vif }}\right|=1+R_{F} / R_{B}, \quad\left|A_{\text {vfo }}\right|=\left(1+R_{F} / R_{B}\right) / d$,
$\left|A_{\text {vfc }}\right|=\left(1+R_{F} / R_{B}\right) / \sqrt{2}$
$\mathrm{d}=2-\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}}$
$\mathrm{f}_{0}=[2 \pi \mathrm{RC}]^{-1}$
$f_{c}=f_{0} \sqrt{a+\sqrt{a^{2}+1}}, \quad f_{0}=f_{c} / \sqrt{a+\sqrt{a^{2}+1}}$
where $a=1-d^{2} / 2$
$\mathrm{f}_{\mathrm{pk}}=\mathrm{f}_{0} \sqrt{1-\mathrm{d}^{2} / 2} \quad$ when $\mathrm{d}<\sqrt{2}$
(no peak when $d \geq \sqrt{2}$)
$\left|A_{\text {vpk }}\right|_{\mathrm{dB}}=20 \log \left[2\left(1+\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}}\right) / \mathrm{d} \sqrt{4-\mathrm{d}^{2}}\right]$
when $\mathrm{d}<\sqrt{2}$
$\left|\mathrm{e}_{\text {out }} / \mathrm{e}_{\text {in }}\right|_{\mathrm{dB}}=20 \log$

$$
\left[\left(1+\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}}\right) / \sqrt{\left(\mathrm{f} / \mathrm{f}_{0}\right)^{4}+\left(\mathrm{f} / \mathrm{f}_{0}\right)^{2}\left(\mathrm{~d}^{2}-2\right)+1}\right]
$$

RESPONSE	$\mathrm{A}_{\mathbf{v}}$	$\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathbf{B}}$	d	f_{c}
Bessel (Best Delay)	1.268	.2679	1.732	$.7861 \mathrm{f}_{\mathrm{o}}$
Compromise	1.435	.4349	1.565	$.8945 \mathrm{f}_{\mathrm{o}}$
Butterworth (Flattest)	1.586	.5858	1.414	$1.000 \mathrm{f}_{\mathrm{o}}$
.1 dB Peak Chebyshev	1.697	.6968	1.303	$1.078 \mathrm{f}_{\mathrm{o}}$
.5 dB Peak Chebyshev	1.842	.8422	1.158	$1.176 \mathrm{f}_{\mathrm{o}}$
1 dB Peak Chebyshev	1.955	.9545	1.045	$1.246 \mathrm{f}_{\mathrm{o}}$
2 dB Peak Chebyshev	2.114	1.114	.8860	$1.333 \mathrm{f}_{\mathrm{o}}$
3 dB Peak Chebyshev	2.234	1.234	.7665	$1.389 \mathrm{f}_{\mathrm{o}}$

FILTER LOWPASS SINGLE FEEDBACK

Third Order Equal Resistor

RESPONSE	C_{1}	C_{2}	C_{3}	$\mathrm{f}_{\mathrm{b}} / \mathrm{f}_{\mathrm{c}}$	$\mathrm{f}_{\mathrm{c}} / \mathrm{f}_{\mathrm{b}}$	ϵ
Bessel	.9680a	1.423a	.2538a	-	-	-
Butterworth	1.392a	3.546a	.2024a	-	-	-
. 1 dB Chebyshev	1.825 a	6.653a	.1345a	. 7199	1.3890	. 15262
. 5 dB Chebyshev	2.250a	11.23a	.08950a	. 8565	1.1675	. 34931
1 dB Chebyshev	2.567 a	16.18a	.06428a	. 9134	1.0948	. 50885
2 db Chebyshev	3.113a	27.82a	.03892a	. 9683	1.0327	. 76479
3 dB Chebyshev	3.629a	43.42a	.02533a	. 9997	1.0003	. 99763

$\mathrm{a}=\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{R}\right)^{-1}$
$f_{c}=$ Cutoff, corner or half power frequency $=f_{-3.01 \mathrm{~dB}}$
$f_{b}=$ Rippleband-edge frequency. e.g. The upper $-1 d B$ frequency in a 1 dB Chebyshev lowpass filter
$f_{\text {dip }}=f_{b} / 2, \quad\left|A_{v}\right|_{\text {dip }}=\left|A_{\text {vfb }}\right|, \quad\left|A_{\text {vpk }}\right|=1 \quad$ (Chebyshev)
$\mathrm{f}_{\mathrm{pk}}=.8660 \mathrm{f}_{\mathrm{b}} \quad$ (Chebyshev)
$\left|e_{\text {out }} / e_{\text {in }}\right|_{\text {dB }}=20 \log \left(\sqrt{1+\epsilon^{2}\left[4\left(f / f_{b}\right)^{3}-3\left(f / f_{b}\right)\right]^{2}}\right)^{-1}$
(Chebyshev)
$\left|\mathrm{e}_{\text {out }} / \mathrm{e}_{\text {in }}\right|_{\mathrm{dB}}=20 \log \left[\sqrt{\left(\mathrm{f} / \mathrm{f}_{\mathrm{c}}\right)^{6}+1}\right]^{-1} \quad$ (Butterworth)

FILTER
 LOWPASS SINGLE FEEDBACK

Third Order Equal Capacitor

Butterworth Response
$R_{F}=R_{B}, \quad\left|A_{v}\right|_{v i f}=2, \quad\left|A_{v f c}\right|=\sqrt{2}$
$\mathrm{R}_{1}=1.565 /\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{C}\right)$
$\mathrm{R}_{2}=1.469 /\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{C}\right)$
$\mathrm{R}_{3}=.4348 /\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{C}\right)$
$f_{c}=\left[2 \pi C\left(R_{1} R_{2} R_{3}\right)^{\frac{1}{2}}\right]^{-1}$
$\left|e_{\text {out }} / e_{\text {in }}\right|_{d B}=20 \log \left[2 / \sqrt{\left(f / f_{c}\right)^{6}+1}\right] \quad f_{c}=1000 \mathrm{~Hz}$

1 dB Dip Chebyshev Response, $\mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{B}}$
$\left|A_{v}\right|_{\mathrm{vif}}=\left|\mathrm{A}_{\mathrm{vpk}}\right|=6 \mathrm{~dB}, \quad\left|\mathrm{~A}_{\mathrm{vfc}}\right|=3 \mathrm{~dB}, \quad\left|\mathrm{~A}_{\mathrm{vfb}}\right|=5 \mathrm{~dB}$
$\mathrm{f}_{\mathrm{b}}=$ Rippleband Edge $=$ Upper 1 dB down frequency
$\mathrm{R}_{1}=2.275 /\left(2 \pi \mathrm{f}_{\mathrm{b}} \mathrm{C}\right), \quad \mathrm{R}_{1}=2.491 /\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{C}\right)$
$\mathrm{R}_{2}=3.644 /\left(2 \pi \mathrm{f}_{\mathrm{b}} \mathrm{C}\right), \quad \mathrm{R}_{2}=3.990 /\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{C}\right)$
$\mathrm{R}_{3}=.2455 /\left(2 \pi \mathrm{f}_{\mathrm{b}} \mathrm{C}\right), \quad \mathrm{R}_{3}=.2688 /\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{C}\right)$
$\mathrm{f}_{\mathrm{b}}=1.267 /\left[2 \pi \mathrm{C}\left(\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{R}_{3}\right)^{\frac{1}{2}}\right], \quad \mathrm{f}_{\mathrm{c}}=1.387 /\left[2 \pi \mathrm{C}\left(\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{R}_{3}\right)^{\frac{1}{3}}\right]$
$\mathrm{f}_{+5 \mathrm{~dB}}=1.000 \mathrm{f}_{\mathrm{b}}$ and $.5000 \mathrm{f}_{\mathrm{b}}=.9134 \mathrm{f}_{\mathrm{c}}$ and $.4567 \mathrm{f}_{\mathrm{c}}$
$\mathrm{f}_{\mathrm{c}}=1.095 \mathrm{f}_{\mathrm{b}}, \quad \mathrm{f}_{\mathrm{b}}=.9134 \mathrm{f}_{\mathrm{c}}$
$\left.\underline{\mid e_{\text {out }} / e_{\text {in }}}\right|_{d B}=20 \log \left[2 / \sqrt{1+.25893\left[4\left(f / f_{\mathrm{b}}\right)^{3}-3\left(\mathrm{f} / \mathrm{f}_{\mathrm{b}}\right)\right]^{2}}\right]$

Gain = Two
$18 \mathrm{~dB} /$ Octave

FILTER LOWPASS SINGLE FEEDBACK

Third Order Equal Capacitor

RESPONSE	R_{1}	R_{2}	R_{3}	$\mathrm{f}_{\mathrm{b}} / \mathrm{f}_{\mathrm{c}}$	ϵ
Bessel	.7561 a	.4774 a	.9996 a	-	-
Butterworth	1.000 a	1.000 a	1.000 a	-	-
.1 dB Dip Chebyshev	1.433 a	1.433 a	.7969 a	.7199	.15262
.5 dB Dip Chebyshev	1.864 a	1.864 a	.6402 a	.8565	.34931
1 dB Dip Chebyshev	2.215 a	2.215 a	.5442 a	.9134	.50885
2 dB Dip Chebyshev	2.799 a	2.799 a	.4299 a	.9683	.76479
3 dB Dip Chebyshev	3.349 a	3.349 a	.3560 a	.9997	.99763

$\mathrm{a}=\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{C}\right)^{-1}$
$\mathrm{f}_{\mathrm{c}}=$ Cutoff, corner, half-power or 3.01 dB down frequency
$f_{b}=$ Rippleband-edge frequency. e.g. The upper 1 dB down frequency in a lowpass 1 dB Chebyshev filter
$\left|A_{v}\right|_{\text {dip }}=\left|A_{\text {vfb }}\right|, \quad\left|A_{\text {vpk }}\right|=\left|A_{v}\right|_{\text {vif }}=2 \quad$ (Chebyshev)
$f_{\text {dip }}=f_{b} / 2, \quad f_{p k}=.8660 f_{b} \quad$ (Chebyshev response)
$\left|\mathrm{e}_{\text {out }} / \mathrm{e}_{\text {in }}\right|_{\mathrm{dB}}=20 \log \left(2 / \sqrt{1+\epsilon^{2}\left[4\left(\mathrm{f} / \mathrm{f}_{\mathrm{b}}\right)^{3}-3\left(\mathrm{f} / \mathrm{f}_{\mathrm{b}}\right)\right]^{2}}\right)$
(Chebyshev)
$\left|e_{\text {out }} / e_{\text {in }}\right|_{d B}=20 \log \left(2 / \sqrt{1+\left(f / f_{c}\right)^{6}}\right) \quad$ (Butterworth)

Free Gain 24 dB/Octave

FILTER LOWPASS SINGLE FEEDBACK

Fourth Order Equal Capacitor

	\mathbf{R}_{1}	$\mathbf{R}_{3} / \mathbf{R}_{2}$	\mathbf{R}_{4}	$\mathbf{R}_{6} / \mathbf{R}_{5}$	$\left\|\mathbf{A}_{\mathbf{v}}\right\| \mathbf{v i f}$	$\mathrm{f}_{\mathrm{b}} / \mathbf{f}_{\mathbf{c}}$
Bessel	.6993 a	.084	.6234 a	.759	5.6 dB	-
Butterworth	1.000 a	.154	1.000 a	1.235	8.2 dB	-
.1 dB Chebyshev	1.537 a	.384	1.052 a	1.542	10.9 dB	.8243
.5 dB Chebyshev	1.831 a	.582	1.060 a	1.660	12.5 dB	.9148
1 dB Chebyshev	1.992 a	.725	1.060 a	1.719	13.4 dB	.9497
2 dB Chebyshev	2.164 a	.924	1.057 a	1.782	14.6 dB	.9820
3 dB Chebyshev	2.259 a	1.07	1.052 a	1.821	15.3 dB	.99985

$\mathrm{a}=\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{C}\right)^{-1}$
$\mathrm{f}_{\mathrm{c}}=$ Cutoff, corner, half-power or 3.01 dB down frequency
$f_{b}=$ Rippleband-edge frequency. The highest frequency where gain equals $\left|\mathrm{A}_{\mathrm{v}}\right|_{\text {vif }}$ (Chebyshev)
$\left|A_{\text {vpk }}\right|=\left|A_{v}\right|_{\text {vif }}+1 \mathrm{~dB}$ in a 1 dB filter, $\left|\mathrm{A}_{\mathbf{v}}\right|_{\text {vif }}+2 \mathrm{~dB}$ in a 2 dB filter etc. (Chebyshev)
$\left|A_{v}\right|_{\text {vif }}=\left|A_{v}\right|_{\text {dip }}=\left|A_{\text {vfb }}\right| \quad$ (Chebyshev)
$\mathrm{f}_{\mathrm{pk}}=.9242 \mathrm{f}_{\mathrm{b}}$ and $.3828 \mathrm{f}_{\mathrm{b}}, \quad \mathrm{f}_{\mathrm{dip}}=.7071 \mathrm{f}_{\mathrm{b}} \quad$ (Chebyshev)

FILTER
 NOTCH
 ACTIVE INDUCTOR

High 0
Series Shunt

$\mathrm{A}_{\mathrm{V}(\mathrm{N})} \simeq 1$ except near notch frequency
$\left|\mathrm{A}_{\mathrm{vo}}\right|_{\mathrm{BP}} \simeq 1, \quad \mid \mathrm{A}_{\text {voln }}<-50 \mathrm{~dB}$
$\mathrm{f}_{0(\mathrm{~N})}=\mathrm{f}_{0(\mathrm{BP})}=2175 \mathrm{~Hz}$
$\mathrm{Q}_{\mathrm{BP}} \simeq 21.5$
$\mathrm{BW}_{\mathrm{BP}} \simeq 101 \mathrm{~Hz}$
$\mathrm{BW}_{\mathrm{N}(-3 \mathrm{~dB})} \simeq 101 \mathrm{~Hz}, \quad \mathrm{BW}_{\mathrm{N}(-20 \mathrm{~dB})} \simeq 7 \mathrm{~Hz}$,
$\mathrm{BW}_{\mathrm{N}(-30 \mathrm{~dB})} \simeq 3 \mathrm{~Hz}$
When $\mathrm{R}_{2} \mathrm{C}_{2}=\mathrm{R}_{3} \mathrm{C}_{3}$:
$\mathrm{f}_{0}=\left[2 \pi \sqrt{\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{R}_{1} \mathrm{R}_{2}}\right]^{-1}$
$\mathrm{Q}=\left(2 \pi \mathrm{f}_{0} \mathrm{R}_{4} \mathrm{C}_{1}\right)^{-1}$
$A_{V(N)}=\left(R_{3} / R_{2}\right)\left(R_{6} / R_{5}+1\right) \quad$ except near notch frequency
$\mathrm{L}=\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}_{2}$

FILTER NOTCH ALLPASS

Unity Gain
Except Near f_{N}

$f_{N}=(2 \pi R C)^{-1} \simeq 5000 \mathrm{~Hz}$
$\left(4 \tan ^{-1} X_{c} / R=180^{\circ}\right.$ at 5000 Hz$)$
$\left|\mathrm{A}_{\mathrm{v}}\right|_{\text {NOTCH }}<-40 \mathrm{~dB}, \quad \mathrm{BW}_{\mathrm{N}(-40 \mathrm{~dB})}<10 \mathrm{~Hz}$, $\mathrm{BW}_{\mathrm{N}(-3 \mathrm{~dB})} \simeq 3000 \mathrm{~Hz}$
$\left|\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\text {in }}\right|=1 \quad$ except near f_{N}

$\mathrm{f}_{\mathrm{N}}=(2 \pi \mathrm{RC})^{-1} \simeq 10 \mathrm{kHz}$
$\left|\mathrm{A}_{\mathrm{V}}\right|_{\text {NOTCH }}<-40 \mathrm{~dB}, \quad \mathrm{BW}_{\mathrm{N}(-40 \mathrm{~dB})}<5 \mathrm{~Hz}$,
$\mathrm{BW}_{\mathrm{N}(-3 \mathrm{~dB})} \simeq 1000 \mathrm{~Hz}$
$\underline{\left|V_{0} / V_{\text {in }}\right|=1 \quad \text { except near } f_{N}}$

FILTER
 NOTCH MULTIPLE FEEDBACK
 Unity Gain Except Near f_{N}

$\mid A_{\text {vol }}=-40 \mathrm{~dB}, \quad \mathrm{BW}_{\mathrm{N}(-40 \mathrm{~dB})}<1 \mathrm{~Hz}$
$\mathrm{BW}_{\mathrm{N}(-3 \mathrm{~dB})} \simeq 135 \mathrm{~Hz}$
$\left|\mathrm{A}_{\mathrm{vo}}\right|_{\mathrm{BP}}=\mathrm{R}_{2} / 2 \mathrm{R}_{1 \mathrm{~B}}$
$\mathrm{f}_{0(\mathrm{BP})}=\mathrm{f}_{\mathrm{O}(\mathrm{N})}=\left[2 \pi \mathrm{C} \sqrt{\mathrm{R}_{2} /\left(\mathrm{R}_{1 \mathrm{~A}}^{-1}+\mathrm{R}_{1 \mathrm{~B}}^{-1}\right)}\right]^{-1}=1 \mathrm{kHz}$
$\mathrm{Q}_{\mathrm{BP}}=\sqrt{\mathrm{R}_{2} /\left[4\left(\mathrm{R}_{1 \mathrm{~A}}+\mathrm{R}_{1 \mathrm{~B}}\right)\right]} \simeq 7.4$
$\left|\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\text {in }}\right|_{\mathrm{N}}=\mathrm{R}_{2} / 2 \mathrm{R}_{1 \mathrm{~B}}=1$ except near f_{N}

$\left|\mathrm{A}_{\mathrm{V}}\right|_{\text {NOTCH }}<-40 \mathrm{~dB}, \quad \mathrm{BW}_{\mathrm{N}(-40 \mathrm{~dB})}<1 \mathrm{~Hz}$
$\mathrm{BW}_{\mathrm{N}(-3 \mathrm{~dB})} \simeq 140 \mathrm{~Hz}$
$\mathrm{f}_{0(\mathrm{~N})}=\mathrm{f}_{0(\mathrm{BP})}=\left[2 \pi \mathrm{C} \sqrt{\mathrm{R}_{2} /\left(\mathrm{R}_{1 \mathrm{~A}}^{-1}+\mathrm{R}_{1 \mathrm{~B}}^{-1}\right)}\right]^{-1}=4 \mathrm{kHz}$
$\mathrm{Q}_{\mathrm{BP}}=\sqrt{\mathrm{R}_{2} /\left[4\left(\mathrm{R}_{1 \mathrm{~A}}+\mathrm{R}_{1 \mathrm{~B}}\right)\right]} \simeq 28.9$
$\left|\mathrm{A}_{\text {vol }}\right|_{\mathrm{BP}}=\mathrm{R}_{2} / 2 \mathrm{R}_{1 \mathrm{~B}} \simeq 1$
$\left|\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\text {in }}\right|_{\mathrm{N}}=\mathrm{R}_{2} / 2 \mathrm{R}_{1 \mathrm{~B}} \simeq 1$ except near f_{N}

FILTER NOTCH STATE VARIABLE
 Unity Gain
 Except Near f_{N}

Opamps $=1$, LF347 \quad Capacitors $=$ polystyrene

$\left|\mathrm{A}_{\mathrm{v}}\right|_{\text {NOTCH }}<-40 \mathrm{~dB}, \quad\left(\mathrm{BW}_{\mathrm{N}}\right)_{-40 \mathrm{~dB}}<.5 \mathrm{~Hz}$ $\left(\mathrm{BW}_{\mathrm{N}}\right)_{-3 \mathrm{~dB}} \simeq 50 \mathrm{~Hz}$
$\left|A_{\text {Vo }}\right|_{B P}=R_{4} / R_{3} \simeq 1, \quad f_{B P}=f_{N}=(2 \pi R C)^{-1}=1000 \mathrm{~Hz}$
$\mathrm{Q}_{\mathrm{BP}}=\left(1+\mathrm{R}_{4} / \mathrm{R}_{3}+\mathrm{R}_{4} / \mathrm{R}_{0}\right) / 2 \simeq 20.2$
$\left|\mathbf{A}_{\mathbf{v}}\right|_{\mathbf{N}}=1$ except near f_{N}
Opamps $=1$, LF347 \quad Capacitors $=5 \%$ polystyrene

$\mid \mathrm{A}_{\text {vol }}^{\text {Notch }}<1<-40 \mathrm{~dB}$, Notch BW - $40 \mathrm{~dB}<1 \mathrm{~Hz}$
Notch $\mathrm{BW}_{-3 \mathrm{~dB}} \simeq 100 \mathrm{~Hz}$
$\left|A_{\text {vol }}\right|_{B P}=R_{4} / R_{3} \simeq 1, \quad f_{B P}=f_{N}=(2 \pi R C)^{-1}=2000 \mathrm{~Hz}$
$\mathrm{Q}_{\mathrm{BP}}=\left(1+\mathrm{R}_{4} / \mathrm{R}_{3}+\mathrm{R}_{4} / \mathrm{R}_{0}\right) / 2 \simeq 20.2$
$\left|\mathrm{A}_{\mathrm{V}}\right|_{\text {NOTCH }}=1$ except near f_{N}

FILTER UNIVERSAL STATE VARIABLE

$\mathrm{f}_{\mathrm{OHP}}=\mathrm{f}_{\mathrm{OBP}}=\mathrm{f}_{\mathrm{OLP}}=[2 \pi \mathrm{RC}]^{-1}$
$\left|\mathrm{A}_{\text {vhrf }}\right|_{\mathbf{H P}}=\left|\mathrm{A}_{\text {vo }}\right|_{\mathbf{B P}}=\left|\mathrm{A}_{\text {vif }}\right|_{\mathrm{LP}}=\mathrm{R}_{\mathbf{4}} / \mathrm{R}_{\mathbf{3}}$
$\mathrm{d}_{\mathrm{HP}}=\mathrm{Q}_{\mathrm{BP}}^{-1}=\mathrm{d}_{\mathrm{LP}}=2 /\left(1+\mathrm{R}_{4} / \mathrm{R}_{3}+\mathrm{R}_{4} / \mathrm{R}_{0}\right)$
$\mathrm{R}_{0}=\mathrm{R}_{4} /\left(2 / \mathrm{d}-\mathrm{R}_{4} / \mathrm{R}_{3}-1\right)$
$\left|\mathrm{A}_{\text {Vol }}\right|_{\text {HP }}=\left|\mathrm{A}_{\text {Vol }}\right|_{\text {LP }}=\mathrm{R}_{4} / \mathrm{R}_{3} \mathrm{~d}$
$\left|\mathrm{e}_{\mathrm{o}} / \mathrm{e}_{\mathrm{in}}\right|_{\text {HP }}=20 \log$

$$
\left[R_{4} /\left(R_{3} \sqrt{\left(f_{0} / f\right)^{4}+\left(f_{0} / f\right)^{2}\left(d^{2}-2\right)+1}\right)\right] d B
$$

$\left|\mathrm{e}_{\mathrm{o}} / \mathrm{e}_{\mathrm{in}}\right|_{\mathrm{BP}}=20 \log \left[\mathrm{R}_{4} /\left(\mathrm{R}_{3} \sqrt{1+\mathrm{Q}^{2}\left[\left(\mathrm{f} / \mathrm{f}_{0}\right)-\left(\mathrm{f}_{0} / \mathrm{f}\right)\right]^{2}}\right)\right] \mathrm{dB}$
$\left|e_{o} / e_{\text {in }}\right|_{\text {LP }}=20 \log$

$$
\left[R_{4} /\left(R_{3} \sqrt{\left(f / f_{0}\right)^{4}+\left(f / f_{0}\right)^{2}\left(d^{2}-2\right)+1}\right)\right] d B
$$

Example
Let $\mathrm{A}_{\mathrm{v}}=1, \mathrm{f}_{0}=1000 \mathrm{~Hz}$ and $\mathrm{d}=1$
Let $\mathrm{C}=.01 \mu \mathrm{~F}, \mathrm{R}=\left[2 \pi \mathrm{f}_{0} \mathrm{C}\right]^{-1}=15.9 \mathrm{~K}$-Use 15.8 K
Let $\mathrm{R}_{3}=15.8 \mathrm{~K}, \mathrm{R}_{4}=\mathrm{A}_{\mathbf{V}} \mathrm{R}_{3}=15.8 \mathrm{~K}$
$R_{0}=R_{4} /\left(2 / d-R_{4} / R_{3}-1\right)=\infty$-delete R_{0}
Check: $A_{v}=1, f_{0}=1007 \mathrm{~Hz}, \mathrm{~d}=1$

LATCH
 (BISTABLE MULTIVIBRATOR)

ONE OF N LATCH
(LAST OPERATED ONLY)

Opamps $=1 / 2$ LM358 or 1/4 LM324,
Diodes $=1 \mathrm{~N} 914$ or 1N4148
$\mathrm{V}_{\mathrm{R}}=+\mathrm{V} / 2 \quad$ (Capacitors unnecessary with clean wiring)

MULTIVIBRATOR ASTABLE SEE-OSCILLATOR, SQUAREWAVE

MULTIVIBRATOR
 BISTABLE
 SEE-LATCH

MULTIVIBRATOR MONOSTABLE SEE-ONE-SHOT

General Opamp Section Notes

1. - is the graphic symbol for an infinite impedance alternating current generator (an ac current source). In practice, any very high impedance source of current.
2. - - is the graphic symbol for a zero impedance signal generator (an ac voltage source). In practice, any very low impedance and low resistance source of voltage.
3. A negative resultant for A_{v} or V_{o} indicates that a phase inversion has taken place (output 180° out of phase with the input).
4. 6 dB per octave equals 20 dB per decade, 12 dB per octave equals 40 dB per decade etc.
5. $|x|=$ the magnitude or the absolute value of x.
6. $\log x=\log _{10} x, \log ^{-1} x=\operatorname{antilog}_{10} x=10^{x}$.
7. $x^{-1}=1 / x, x^{\frac{1}{2}}=\sqrt{x}$.
8. Source resistance, if significant, must be considered as an additional resistance in series with circuit input.
9. When supply voltage connections are not shown, a split supply is assumed with V_{CC} positive with respect to common (ground) and V_{EE} negative with respect to common (ground).

ONE-SHOT
 (MONOSTABLE MULTIVIBRATOR)

Opamp = 1/2 LM358

Diodes $=$ 1N4148

$\mathrm{t}_{\mathrm{on}}=-\mathrm{RC}\left(\ln \left[1-\left(\mathrm{R}_{1} / \mathrm{R}_{2}+1\right)^{-1}\right]\right)$
$\mathrm{t}_{\mathrm{on}}=\mathrm{RC}$ when $\mathrm{R}_{2} / \mathrm{R}_{1}=1.72$

Opamp = 1/2 LM358

Diodes $=$ 1N4148

$\mathrm{t}_{\mathrm{on}}=2 \mathrm{RC}\left(\ln \left[\mathrm{V}_{\mathrm{o}(\mathrm{MAX})} / 2 \mathrm{~V}_{\mathrm{R}}\right]\right)$

$$
\left(\mathrm{V}_{\mathrm{o}(\mathrm{MAX})} \simeq \mathrm{V}_{\mathrm{CC}}-1.2 \text { when } \mathrm{I}_{\mathrm{o}} \leq 1 \mathrm{~mA}\right)
$$

$\mathrm{t}_{\mathrm{on}}=2 \mathrm{RC}$ when $\mathrm{V}_{\mathrm{R}}=.184 \mathrm{~V}_{\mathrm{o}(\mathrm{MAX})}$
For use as a pulse stretcher or off-delay circuit, short the $.001 \mu \mathrm{~F}$ capacitor.

OPAMP
 BIASING
 DUAL TO SINGLE SUPPLY CONVERSION

All of the above circuits have identical performance when the same "split supply" or "single supply" opamp is used.

SPLIT SUPPLY LPF

CONVERSION TO SINGLE SUPPLY

All general purpose opamp inputs must have dc continuity to a dc voltage source, to ground or to an opamp output.

OPAMP
 BIASING SINGLE SUPPLY

Add capacitor \mathbf{C} unless $+\mathrm{V}_{\mathrm{CC}}$ is well filtered.
$\mathrm{V}_{\mathrm{O}(\mathrm{DC})}=\mathrm{V}_{\mathrm{CC}} / 2$ when $\mathrm{R}_{1}=\mathrm{R}_{2}$
$\mathrm{V}_{\mathrm{O}(\mathrm{DC})}=\mathrm{V}_{\mathrm{CC}} /\left[\left(\mathrm{R}_{1} / \mathrm{R}_{2}\right)+1\right]$
$V_{O(A C)}=-A_{V} V_{S}$
$V_{O(A C)}=-\left(V_{S} R_{F}\right) /\left(R_{B}+R_{S}\right)$

$\mathrm{V}_{\mathrm{O}(\mathrm{DC})}=\mathrm{V}_{\mathrm{CC}} / 2$ when $\mathrm{R}_{1}=\mathrm{R}_{2}$
$\mathrm{V}_{\mathrm{O}(\mathrm{DC})}=\mathrm{V}_{\mathrm{CC}} /\left[\left(\mathrm{R}_{1} / \mathrm{R}_{2}\right)+1\right]$
$\mathrm{V}_{\mathrm{O}(\mathrm{AC})} \approx \mathrm{A}_{\mathrm{V}} \mathrm{V}_{\mathrm{S}}$
$\mathrm{V}_{\mathrm{O}(\mathrm{AC})}=\mathrm{V}_{\mathrm{S}}\left[\left(\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}}\right)+1\right] /\left[\mathrm{R}_{\mathrm{S}}\left(\mathrm{R}_{1}^{-1}+\mathrm{R}_{2}^{-1}\right)+1\right]$
Note: $+\mathrm{V}_{\mathrm{CC}}$ to R_{1} must be well filtered. If R_{S} is low, such as the output impedance of another opamp stage, a large coupling capacitor (C_{2}) may provide proper filtering.

OPAMP BIASING SINGLE SUPPLY

$V_{\mathrm{O}(\mathrm{DC})}=+\mathrm{V}_{\mathrm{BB}} \pm \mathrm{V}_{\mathrm{OO}} \quad$ See- V_{OO}
$V_{O(A C)}=A_{V} V_{S}$
$\mathrm{V}_{\mathrm{O}(\mathrm{AC})}=\mathrm{V}_{\mathrm{S}}\left[\left(\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}}\right)+1\right] /\left[\left(\mathrm{R}_{\mathrm{S}} / \mathrm{R}_{1}\right)+1\right]$

$\mathrm{V}_{\mathrm{O}(\mathrm{DC})}=\left(\mathrm{V}_{2}\left[\left(\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{1}\right)+1\right]\right)-\left[\mathrm{V}_{1}\left(\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{1}\right) \pm \mathrm{V}_{\mathrm{OO}}\right]$
$\mathrm{V}_{\mathrm{O}(\mathrm{AC})}=\mathrm{A}_{\mathrm{V}} \mathrm{V}_{\mathrm{S}}$
$V_{O(A C)}=V_{S}\left[R_{F} /\left(R_{B}+R_{S}\right)\right]$
Note: V_{R} is typically set to $\mathrm{V}_{\mathrm{CC}} / 2$, but maximum output before clipping is obtained when $\mathrm{V}_{\mathrm{R}} \simeq\left[\left(\mathrm{V}_{\mathrm{CC}}-1.8\right) / 2\right]+1.2$ for standard opamps and when $\mathrm{V}_{\mathrm{R}} \simeq\left[\left(\mathrm{V}_{\mathrm{CC}}-1.8\right) / 2\right]+.6$ for "single supply" opamps.

OPAMP
 NOISE VOLTAGE EQUIVALENT INPUT

$V_{\mathrm{ni}}=\mathrm{V}_{\mathrm{no}} / \mathrm{A}_{\mathbf{v}}$
$\mathbf{V}_{\mathbf{n i}}=$ Total equivalent input rms noise voltage including:

1. Device equivalent input noise voltage $\left(V_{n}\right)$
2. The product of the device equivalent input noise current ($\mathrm{I}_{\mathbf{n}}$) and the sum of the effective source resistances at both inputs.
3. The thermal noise voltage (V_{nR}) of the effective source resistances at both inputs.
Note: All three noise voltages have components of $1 / \mathrm{f}$ noise as well as constant spectral density (white) noise. The device white noise component is shot noise and the white noise of resistance is thermal noise. The $1 / \mathrm{f}$ noise of resistances is excess noise or current noise. White noise voltage may be easily calculated from a spot noise voltage by multiplying by the square root of the noise bandwidth but $1 / \mathrm{f}$ noise or noise having a significant $1 / \mathrm{f}$ noise component must be averaged over the total bandwidth by the rms method. $1 / \mathrm{f}$ noise is usually neglected at frequencies above 1 kHz and is often assumed to have straight line response between the 100 Hz and 1 KHz spot noise measurement points.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{ni}}=\mathrm{V}_{\mathrm{no}} \text { when } \mathrm{A}_{\mathrm{v}}=1 \\
& \mathrm{~V}_{\mathrm{ni}}=\sqrt{\mathrm{BW}\left[\mathrm{~V}_{\mathrm{n}}^{2}+\mathrm{I}_{\mathrm{n}}^{2} \mathrm{R}_{\mathrm{S}}^{2}+4 \mathrm{~K}_{\mathrm{B}} \mathrm{~T}_{\mathrm{K}} \mathrm{R}_{\mathrm{S}}\right]} \\
& \\
& \mathrm{K}_{\mathrm{B}}=1.38 \cdot 10^{-23} \\
& \mathrm{~T}_{\mathrm{K}}={ }^{\circ} \mathrm{C}+273.15
\end{aligned}
$$

OPAMP
 NOISE VOLTAGE EQUIVALENT INPUT

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{ni}}=\mathrm{V}_{\mathrm{no}} / \mathrm{A}_{\mathrm{v}} \\
& \mathrm{~V}_{\mathrm{ni}}=\sqrt{\mathrm{BW}\left[\mathrm{~V}_{1}^{2}+\mathrm{V}_{2}^{2}+\mathrm{V}_{3}^{2}\right]} \text { where } \quad \mathrm{V}_{1}
\end{aligned}=\mathrm{V}_{\mathrm{n}} \mathrm{~V}
$$

OPAMP
 NOISE VOLTAGE OUTPUT

$$
\begin{aligned}
\mathrm{V}_{\mathrm{no}}= & A_{v} \sqrt{\overline{\mathrm{BW}}} \\
& \cdot \sqrt{\mathrm{~V}_{\mathrm{n}}^{2}+\left(\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{\mathrm{B}}\right)^{2}\left(\mathrm{I}_{\mathrm{n}}^{2}+4 \mathrm{kT} T_{\mathrm{K}} \mathrm{R}_{\mathrm{F}}^{-1}\right)+4 \mathrm{k}_{\mathrm{B}} \mathrm{~T}_{\mathrm{K}}\left(\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{\mathrm{B}}\right)} \\
\mathrm{V}_{\mathrm{n}}= & \text { Equivalent input spot noise voltage of opamp at a } \\
& \text { given frequency. (usually given in } \mathrm{nV} / \sqrt{\mathrm{Hz}} \text { at } \\
& 1 \mathrm{kHz} \text {) }
\end{aligned}
$$

$\mathrm{I}_{\mathrm{n}}=$ Equivalent input spot noise current of opamp at a given frequency. (usually given in $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ at 1 kHz)
$\mathrm{k}_{\mathrm{B}}=$ Boltzmann constant
$\mathrm{k}_{\mathrm{B}}=1.38 \cdot 10^{-23} \mathrm{~J} /{ }^{\circ} \mathrm{K}$
$\mathrm{T}_{\mathrm{K}}=$ Temperature in Kelvin
$\mathrm{T}_{\mathrm{K}}={ }^{\circ} \mathrm{C}+273.15$
$\mathrm{A}_{\mathrm{v}}=$ Closed loop circuit voltage amplification ($\mathrm{A}_{\mathbf{v c l}}$ or $\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{S}}$)
$A_{v}=R_{F} /\left(R_{S}+R_{B}\right)$
$\mathrm{R}_{\mathrm{S}}=$ Source resistance
Notes:
Formula does not include opamp 1/f noise. (opamp 1/f noise usually is insignificant above 1 kHz)
Formula includes thermal noise of all external resistances, but does not include resistor excess noise (current noise or $1 / \mathrm{f}$ resistor noise)
Noise measurements require a bandwidth correction factor for all except rectangular response curves. See-BW NOISE definition page 257

OPAMP
 NOISE VOLTAGE OUTPUT

Let $\mathrm{BW}=10 \mathrm{kHz}$
Let $\mathrm{T} \approx 27^{\circ} \mathrm{C}$

$$
V_{n o}=100 \sqrt{V_{n}^{2}+I_{n}^{2} R_{S}^{2}+1.656 \cdot 10^{-20} R_{S}}
$$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{no}}= & \mathrm{A}_{\mathrm{v}} \sqrt{\overline{\mathrm{BW}}} \sqrt{\mathrm{~V}_{\mathrm{n}}^{2}+\mathrm{I}_{\mathrm{n}}^{2}\left(\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{\mathrm{X}}\right)^{2}+4 \mathrm{k}_{\mathrm{B}} \mathrm{~T}_{\mathrm{K}} \mathrm{R}_{\mathrm{S}}} \\
\mathrm{~V}_{\mathrm{n}}= & \text { Equivalent input spot noise voltage of opamp at a } \\
& \text { given frequency. (usually given in } \mathrm{nV} / \sqrt{\mathrm{Hz}} \text { at } \\
& 1 \mathrm{kHz}) \\
\mathrm{I}_{\mathrm{n}}= & \text { Equivalent input spot noise current of opamp at a } \\
& \text { given frequency. (usually given in pA/ } \sqrt{\mathrm{Hz}} \text { at } \\
& 1 \mathrm{kHz}) \\
\mathrm{T}_{\mathrm{K}}= & \text { Kelvin temperature }\left({ }^{\circ} \mathrm{C}+273.15\right) \\
\mathrm{k}_{\mathrm{B}}= & \text { Boltzmann's constant }\left(1.38 \cdot 10^{-23}\right) \\
\mathrm{R}_{\mathrm{X}}= & \mathrm{R}_{\mathrm{F}} \| \mathrm{R}_{\mathrm{B}}=\left(\mathrm{R}_{\mathrm{F}}^{-1}+\mathrm{R}_{\mathrm{B}}^{-1}\right)^{-1} \\
\mathrm{~A}_{\mathrm{V}}= & \left(\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{B}}\right)+1
\end{aligned}
$$

See-Preceding page notes

OPAMP OUTPUT OFFSET VOLTAGE

Output Offset Voltage

(input voltage(s) $=0$)

Output from input offset voltage (V_{10}) only

$$
\left(I_{I O}=0, I_{I B}=0\right)
$$

$$
V_{O O}=V_{I O}\left(A_{V}+1\right)
$$

$$
V_{O O}=V_{1 O}\left[\left(R_{2} / R_{1}\right)+1\right]
$$

Output from input offset current (I_{10}) only

$$
\left(V_{1 O}=0, R_{3}=\left[R_{1}^{-1}+R_{2}^{-1}\right]^{-1}\right)
$$

$\mathbf{V}_{\mathrm{OO}}=\mathrm{I}_{\mathbf{I O}} \mathrm{R}_{\mathbf{3}}\left(\mathrm{A}_{\mathrm{V}}+1\right)$
$\mathbf{V}_{\mathrm{OO}}=\mathrm{I}_{\mathbf{I O}} \mathbf{R}_{\mathbf{3}}\left[\left(\mathbf{R}_{2} / \mathbf{R}_{\mathbf{1}}\right)+1\right]$
Output from bias current (I_{IB}) only

$$
\left(I_{10}=0, V_{10}=0\right)
$$

$V_{O O}=I_{I B}\left[R_{3}\left(A_{V}+1\right)-R_{2}\right]$
$\mathbf{V}_{\mathrm{OO}}=\mathrm{I}_{\mathrm{IB}}\left[\mathbf{R}_{\mathbf{3}}\left(\mathbf{R}_{\mathbf{2}} / \mathbf{R}_{\mathbf{1}}+\mathbf{1}\right)-\mathbf{R}_{\mathbf{2}}\right]$
Total Output Offset Voltage

$$
\begin{aligned}
\mathbf{V}_{O O}= & {\left[V_{I O}\left(A_{V}+1\right)\right]+I_{I B}\left[\mathbf{R}_{3}\left(A_{V}+1\right)-R_{2}\right] } \\
& \pm\left[\mathbf{I}_{1 O} \mathbf{R}_{3}\left(A_{V}+1\right)\right]
\end{aligned}
$$

OPAMP
 OUTPUT VOLTAGE MAXIMUM PEAK TO PEAK

$V_{\mathrm{OM}(\mathrm{p}-\mathrm{p})}=\mathrm{SR} /(2 \pi \mathrm{f})$
when V_{o} is limited only by slew rate
$\mathrm{V}_{\mathrm{OM}(\mathrm{p}-\mathrm{p})}=$ Total supply voltage minus 1.8
when V_{o} is limited only by supply voltage and $\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{~K}$. Symmetrical clipping at $\mathrm{V}_{\mathrm{OM}(\mathrm{p}-\mathrm{p})}$ is obtained only when the output has been dc biased to the mid-point between $\mathrm{V}_{\mathrm{OH}(\mathrm{SAT})}$ and $\mathrm{V}_{\mathrm{OL}(\mathrm{SAT})}$. This mid-point voltage is not $\mathrm{V}_{\mathrm{CC}} / 2$ in single supply circuits but $\simeq\left[\left(\mathrm{V}_{\mathrm{CC}}-1.8\right) / 2\right]+1.2 \mathrm{~V}$ for "split supply" opamps and $\simeq\left[\left(\mathrm{V}_{\mathrm{CC}}-1.8\right) / 2\right]+$.6 V for "single supply" opamps.

Note: A sinewave input signal is transferred into a triangular wave output signal by the effects of SR at outputs above SR limited $V_{\mathrm{OM}(\mathrm{p}-\mathrm{p})}$

Resistor R_{F} is effectively in parallel with the output load resistance R_{L}

OPAMP POWER
 PBW BANDWIDTH

PBW $=$ In circuits where the low limit bandwidth is zero, the maximum frequency which may be used at a specified peak-to-peak output without the distortion (e.g. a sinewave becoming triangular) associated with slew rate (SR)

$$
\begin{aligned}
\mathrm{PBW} & =\mathrm{SR} /\left(\pi \mathrm{V}_{\mathrm{opp}}\right) \\
\mathrm{f}_{(\mathrm{MAX})} & =\mathrm{SR} /\left(\pi \mathrm{V}_{\mathrm{opp}}\right) \\
\mathrm{V}_{\mathrm{opp}(\mathrm{MAX})} & =\mathrm{SR} /\left(\pi \mathrm{f}_{(\mathrm{MAX})}\right) \\
\mathrm{SR}_{(\mathrm{MIN})} & =\pi \mathrm{f}_{(\mathrm{MAX})} \mathrm{V}_{\mathrm{opp}(\mathrm{MAX})}
\end{aligned}
$$

See Also-Opamp, SR
Opamp, $\mathrm{V}_{\text {opp }}$

OSCILLATOR SINEWAVE BIQUAD

$\mathrm{f}_{0}=[2 \pi \mathrm{RC}]^{-1}, \quad \mathrm{Q}=\mathrm{R}_{\mathrm{Q}}\left(2 \pi \mathrm{f}_{0} \mathrm{C}\right)$
$\mathrm{V}_{\mathrm{op}-\mathrm{p}} \simeq 1.15\left(\mathrm{~V}_{\mathrm{CC}}-2\right) \mathrm{R}_{\mathrm{Q}} / \mathrm{R}_{\mathrm{V}}, \quad \mathrm{THD}_{\%} \simeq 100 / \mathrm{Q}$

See Also-Filter, Bandpass, High Q
See Also-Filter, Bandpass, Biquad
VERY WIDE RANGE BIQUAD SINEWAVE OSCILLATOR

Min. Tuning Range $=300$ to 4000 Hz
$V_{o} \approx 3 V_{\mathrm{p}-\mathrm{p}}$
Quad Opamp IC

$$
=\text { LF347 }
$$

.0022 and .022 Capacitors
See Also-Filter, Bandpass, Biquad
$=5 \%$ NPO Ceramic

OSCILLATOR SINEWAVE mISCELLANEOUS

WEIN BRIDGE OSCILLATOR

$\mathrm{f}_{0}=[2 \pi \mathrm{RC}]^{-1} \simeq 1000 \mathrm{~Hz}$
$\mathrm{V}_{\mathrm{o}} \approx 2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ (Very sensitive to tolerances)

$\mathrm{V}_{\mathrm{o}} \approx 2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \quad$ (Very sensitive to tolerances)

OSCILLATOR SINEWAVE MULTIPLE FEEDBACK

Low
 Distortion

Opamp $=1 / 2$ LF353
Capacitors $=5 \%$ Mylar
Diodes $=1 \mathrm{~N} 4148$
$\mathrm{f}_{0}=\left[2 \pi \mathrm{C} \sqrt{\mathrm{R}_{1} \mathrm{R}_{2}}\right]^{-1}$

$\mathrm{V}_{\mathrm{op}-\mathrm{p}} \simeq\left[\left(\mathrm{R}_{2} / 2 \mathrm{R}_{1}\right)+1\right] /\left(\mathrm{R}_{4} / \mathrm{R}_{3}+1\right)$
$\Delta \mathrm{V}_{\text {op-p }} \approx-.04 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$
$\underline{\left(R_{1} / 2 R_{2}+1\right)>\left[1+\left(R_{4}+R_{5}\right) / R_{3}\right] \text { for oscillation }}$
Opamp $=$ LF353
Capacitors $=$ 5\% Polystyrene
$\mathrm{R}_{4}, \mathrm{C}_{3}$ unnecessary when:
$\left(\mathrm{A}_{\mathrm{vOL}}\right)_{\mathrm{dc}} \mathrm{V}_{\mathrm{IO}}<3$

$\mathrm{f}_{0}=\left[2 \pi \mathrm{C} \sqrt{\mathrm{R}_{1} \mathrm{R}_{2}}\right]^{-1} \simeq 850$ to 1350 Hz
$\mathrm{V}_{\mathrm{op-p}} \simeq\left(\mathrm{R}_{3} / 2 \mathrm{R}_{2}\right)\left[1.25\left(\mathrm{~V}_{\mathrm{SAT}(\mathrm{HIGH})}-\mathrm{V}_{\mathrm{SAT}(\text { LOW })}\right)\right] \simeq 4.4$
$\mathrm{A}_{\text {voL }}>2 \mathrm{R}_{2} / \mathrm{R}_{3}$ for oscillation

See Also-Filter, Bandpass, Multiple Feedback

OSCILLATOR SINEWAVE MULTIPHASE

THREE PHASE SINEWAVE OSCILLATOR

Power Supply $= \pm 5 \mathrm{~V}$
$\mathrm{f}_{0}=\sqrt{3} /(4 \pi \mathrm{RC}) \simeq 1000 \mathrm{~Hz}$
$\mathrm{V}_{\mathrm{o}} \approx 3 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
FOUR PHASE SINEWAVE OSCILLATOR
Opamp IC
= TL084
Capacitors
$=5 \%$ Mylar
Diodes
$=1$ N4148
Power Supply $= \pm 5 \mathrm{~V}$

$\mathrm{f}_{0}=[2 \pi \mathrm{RC}]^{-1} \simeq 500 \mathrm{~Hz}$
$\mathrm{V}_{\mathrm{o}} \approx 3 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$

OSCILLATOR
 SINEWAVE STATE VARIABLE

$\mathrm{f}_{0}=[2 \pi \mathrm{RC}]^{-1}, \quad \mathrm{Q}=\left(1+\mathrm{R}_{4} / \mathrm{R}_{3}+\mathrm{R}_{4} / \mathrm{R}_{0}\right) / 2$
$\mathrm{V}_{\mathrm{op}-\mathrm{p}} \simeq 1.15 \mathrm{~V}_{\mathrm{o}(\mathrm{SQR})} \mathrm{R}_{4} / \mathrm{R}_{3}, \quad \mathrm{THD}_{\%} \simeq 100 / \mathrm{Q}$
$\mathrm{V}_{\mathrm{op}-\mathrm{p}(\mathrm{SQR})} \simeq\left|\mathrm{V}_{\mathrm{CC}}\right|+\left|\mathrm{V}_{\mathrm{EE}}\right|-2$

WIDE RANGE STATE VARIABLE
 SINEWAVE OSCILLATOR

Min. Tuning Range $=600$ to 3000 Hz
$\mathrm{V}_{\mathrm{op}-\mathrm{p}} \approx 2, \quad \mathrm{~V}_{\mathrm{op}-\mathrm{p}(\mathrm{SQR})} \simeq 10$
Quad Opamp IC = TL064

See Also-Filter, Bandpass, State Variable

OSCILLATOR PULSE

When $\mathrm{V}_{\mathrm{R}}=\left[\left(\mathrm{V}_{\mathrm{SAT}}\right)_{\mathrm{H}}+\left(\mathrm{V}_{\mathrm{SAT}}\right)_{\mathrm{L}}\right] / 2$:

$\mathrm{f}_{0} \simeq\left(-\mathrm{C}\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right)\left[\ln \left(1-\left[\left(\mathrm{R}_{1} / 2 \mathrm{R}_{2}\right)+1\right]^{-1}\right)\right]\right)^{-1}$
$\mathrm{t}_{\mathrm{vOH}} \simeq-\mathrm{CR}_{3}\left[\ln \left(1-\left[\left(\mathrm{R}_{1} / 2 \mathrm{R}_{2}\right)+1\right]^{-1}\right)\right]$
$\mathrm{V}_{\mathrm{op}-\mathrm{p}}=\left(\mathrm{V}_{\mathrm{SAT}}\right)_{\mathrm{H}}-\left(\mathrm{V}_{\mathrm{SAT}}\right)_{\mathrm{L}} \simeq \mathrm{V}_{\mathrm{CC}}-2$
when R_{3}, R_{4} and $R_{L}>30 K$
$\mathrm{f}_{0} \simeq 1000 \mathrm{~Hz}$
$\mathrm{V}_{\text {op-p }} \approx 10, \quad D \mathrm{~F}_{\mathrm{H}} \approx 1 \%$
Opamp $=$ TL082 etc
(Transpose R_{5} and R_{6} when using LM358)

When V_{R} is mid-sat and $R_{1}>R_{2}$:

$\mathrm{f}_{0} \simeq \mathrm{R}_{1} /\left[2 \mathrm{R}_{2} \mathrm{C}\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right)\right]$
$\mathrm{t}_{\mathrm{VOH}} \simeq\left(2 \mathrm{R}_{2} \mathrm{CR}_{3}\right) / \mathrm{R}_{1}$
$t_{\text {voL }} \simeq\left(2 R_{2} \mathrm{CR}_{4}\right) / \mathrm{R}_{1}$
$\mathrm{V}_{\mathrm{op}-\mathrm{p}}=\left(\mathrm{V}_{\mathrm{SAT}}\right)_{\mathrm{H}}-\left(\mathrm{V}_{\mathrm{SAT}}\right)_{\mathrm{L}} \simeq \mathrm{V}_{\mathrm{CC}}-2$
when R_{3}, R_{4} and $R_{L}>30 K$

OSCILLATOR
 SAWTOOTH

When $\mathrm{R}_{1}>\mathrm{R}_{2}$ and $\mathrm{V}_{\mathrm{R}}=\left[\left(\mathrm{V}_{\mathrm{SAT}}\right)_{\mathrm{H}}+\left(\mathrm{V}_{\mathrm{SAT}}\right)_{\mathrm{L}}\right] / 2$:
$\mathrm{f}_{0} \simeq\left(\mathrm{R}_{1} / 2 \mathrm{R}_{2}\right) /(\mathrm{RC})$
$\mathrm{V}_{\mathrm{op}-\mathrm{p}}=\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)\left[\left(\mathrm{V}_{\mathrm{SAT}}\right)_{\mathrm{H}}-\left(\mathrm{V}_{\mathrm{SAT}}\right)_{\mathrm{L}}\right] \simeq\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)\left(\mathrm{V}_{\mathrm{CC}}-2\right)$
VARIABLE RISE TIME SAWTOOTH OSCILLATOR

When $\mathrm{R}_{1}>\mathrm{R}_{2}$ and $\mathrm{V}_{\mathrm{R}}=\left[\left(\mathrm{V}_{\mathrm{SAT}}\right)_{\mathrm{H}}+\left(\mathrm{V}_{\mathrm{SAT}}\right)_{\mathrm{L}}\right] / 2$:
$\mathrm{f}_{0} \simeq \mathrm{R}_{1} /\left[2 \mathrm{R}_{2} \mathrm{C}\left(\mathrm{R}+\mathrm{R}_{3}\right)\right]$
$\mathrm{t}_{\mathrm{r}} \simeq\left(\mathrm{R}_{2} \mathrm{R}_{3} \mathrm{C}\right) / \mathrm{R}_{1}$
$\mathrm{V}_{\mathrm{op}-\mathrm{p}}=\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)\left[\left(\mathrm{V}_{\mathrm{SAT}}\right)_{\mathrm{H}}-\left(\mathrm{V}_{\mathrm{SAT}}\right)_{\mathrm{L}}\right] \simeq\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)\left(\mathrm{V}_{\mathrm{CC}}-2\right)$

OSCILLATOR SQUAREWAVE

When V_{R} is centered between high and low saturation voltages, V_{o} is symmetrical ($\mathrm{DF}=50 \%$) and:
$f_{0}=\left(-2 R C\left[\ln \left(1-\left[\left(R_{1} / 2 R_{2}\right)+1\right]^{-1}\right]\right)^{-1}\right.$
$\mathrm{f}_{0} \simeq(2.2 \mathrm{RC})^{-1}$ when $\mathrm{R}_{1}=\mathrm{R}_{2}$
$\underline{\mathrm{V}_{\text {op-p }}=\left(\mathrm{V}_{\mathrm{SAT}}\right)_{\mathrm{H}}-\left(\mathrm{V}_{\mathrm{SAT}}\right)_{\mathrm{L}}, \quad \simeq \mathrm{V}_{\mathrm{CC}}-2 \text { when } \mathrm{R}_{\mathrm{L}}>10 \mathrm{~K} .}$
Tuning Range
30 to 1100 Hz min.
$\mathrm{V}_{\mathrm{op}-\mathrm{p}} \approx 10$
Opamp $=$ TL082 etc
(Tranpose R_{3} and R_{4} when using LM358)

When V_{R} is mid-sat and $R_{1}>R_{2}$:
$\mathrm{f}_{0}=\left(\mathrm{R}_{1} / 4 \mathrm{R}_{2}\right) /(\mathrm{RC})$
$\mathrm{V}_{\mathrm{op}-\mathrm{p}} \simeq \mathrm{V}_{\mathrm{CC}}-2$ when $\mathrm{R}_{\mathrm{L}}>10 \mathrm{~K}$
V_{o} is symmetrical when V_{R} is mid-sat

See Also-Oscillator, Sinewave, State Variable

OSCILLATOR TRIANGULAR WAVE

Tuning Range $=$ 15 to 500 Hz min.

$$
\mathrm{V}_{\mathrm{op}-\mathrm{p}} \simeq 5
$$

Opamp $=$ TL82 etc

(Transpose R_{3} and R_{4} when using "single supply" opamps)

When $\mathrm{R}_{1}>\mathrm{R}_{2}$ and $\mathrm{V}_{\mathrm{R}}=\left[\left(\mathrm{V}_{\mathrm{SAT}}\right)_{\mathrm{H}}+\left(\mathrm{V}_{\mathrm{SAT}}\right)_{\mathrm{L}}\right] / 2$:
$\mathrm{f}_{0}=\left(\mathrm{R}_{1} / 4 \mathrm{R}_{2}\right) /(\mathrm{RC})$
$\mathrm{V}_{\mathrm{op}-\mathrm{p}}=\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)\left[\left(\mathrm{V}_{\mathrm{SAT}}\right)_{\mathrm{H}}-\left(\mathrm{V}_{\mathrm{SAT}}\right)_{\mathrm{L}}\right], \quad \simeq\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)\left(\mathrm{V}_{\mathrm{CC}}-2\right)$
V_{o} is symmetrical when $\mathrm{V}_{\mathrm{R}}=\left[\left(\mathrm{V}_{\mathrm{SAT}}\right)_{\mathrm{H}}+\left(\mathrm{V}_{\mathrm{SAT}}\right)_{\mathrm{L}}\right] / 2$

$$
\simeq \mathrm{V}_{\mathrm{CC}} / 2+.2 \simeq \mathrm{~V}_{\mathrm{CC}} / 2-.2
$$

when "single supply" opamps are used. e.g. LM358

RECTIFIER

 PRECISION

FULL WAVE WITH INTEGRATOR

$$
\begin{aligned}
\left(V_{o}\right)_{d c} & =\left(V_{i n}\right)_{a v} R_{F} / 4 R \\
t_{r} & =R C \\
t_{f} & =R_{F} C
\end{aligned}
$$

APPENDIX A RATIOS AVAILABLE FROM 5\% COMPONENT VALUES

5% Component Values	
$* * 10$	$* * 33$
11	36
$* 12$	$* 39$
13	43
$* * 15$	$* * 47$
16	51
$* 18$	$* 56$
20	62
$* * 22$	$* * 68$
24	75
$* 27$	$* 82$
30	91
** are also 10% and 20% values	
* are also 10% values	

Above values are available over the range of .1 ohm to 10 megohms in resistors.
5% capacitor values are not as available and demand a much greater premium than resistors and are not recommended. Resistor values may be changed to accept 20% value (not 20% tolerance) capacitors in almost all RC circuits. 10% tolerance capacitors and 5% tolerance resistors (7.5% overall) are recommended for most applications.

RATIOS ${ }^{\text {ancmam }}$ Value Ratios

Ratio	Values	Ratio	Values	Ratio	Values
9.38	$150 / 16$	8.24	$750 / 91$	6.96	$390 / 56$
9.23	$120 / 13$	8.23	$510 / 62$	6.94	$430 / 62$
9.23	$360 / 39$	8.20	$82 / 10$	6.92	$270 / 39$
9.22	$470 / 51$	8.18	$180 / 22$	6.91	$470 / 68$
9.17	$110 / 12$	8.18	$270 / 33$	6.88	$110 / 16$
9.17	$220 / 24$	8.15	$220 / 27$	6.83	$82 / 12$
9.17	$330 / 36$	8.13	$130 / 16$	6.83	$560 / 82$
9.15	$430 / 47$	8.00	$120 / 15$	6.82	$75 / 11$
9.15	$750 / 82$	8.00	$160 / 20$	6.82	$150 / 22$
9.12	$620 / 68$	8.00	$240 / 30$	6.81	$620 / 91$
9.11	$510 / 56$	7.69	$100 / 13$	6.80	$68 / 10$
9.10	$91 / 10$	7.69	$300 / 39$	6.80	$510 / 75$
9.09	$100 / 11$	7.68	$430 / 56$	6.67	$100 / 15$
9.09	$200 / 22$	7.67	$330 / 43$	6.67	$120 / 18$
9.09	$300 / 33$	7.66	$360 / 47$	6.67	$160 / 24$
9.07	$390 / 43$	7.65	$390 / 51$	6.67	$180 / 27$
9.07	$680 / 75$	7.58	$91 / 12$	6.67	$200 / 30$
9.03	$560 / 62$	7.58	$470 / 62$	6.67	$220 / 33$
9.01	$820 / 91$	7.56	$620 / 82$	6.67	$240 / 36$
9.00	$180 / 20$	7.50	$75 / 10$	6.50	$130 / 20$
9.00	$270 / 30$	7.50	$120 / 16$	6.47	$330 / 51$
8.89	$160 / 18$	7.50	$150 / 20$	6.43	$360 / 56$
8.89	$240 / 27$	7.50	$180 / 24$	6.38	$300 / 47$
8.67	$130 / 15$	7.50	$270 / 36$	6.32	$430 / 68$
8.46	$110 / 13$	7.50	$510 / 68$	6.31	$82 / 13$
8.46	$330 / 39$	7.47	$560 / 75$	6.29	$390 / 62$
8.43	$430 / 51$	7.47	$680 / 91$	6.28	$270 / 43$
8.39	$470 / 56$	7.45	$82 / 11$	6.27	$470 / 75$
8.37	$360 / 43$	7.41	$200 / 27$	6.25	$75 / 12$
8.33	$100 / 12$	7.33	$110 / 15$	6.25	$100 / 16$
8.33	$150 / 18$	7.33	$220 / 30$	6.25	$150 / 24$
8.33	$200 / 24$	7.27	$160 / 22$	6.22	$510 / 82$
8.33	$300 / 36$	7.27	$240 / 33$	6.20	$62 / 10$
8.30	$390 / 47$	7.22	$130 / 18$	6.18	$68 / 11$
8.29	$680 / 82$	7.06	$360 / 51$	6.15	$240 / 39$
8.27	$91 / 11$	7.02	$330 / 47$	6.15	$560 / 91$
8.27	$620 / 75$	7.00	$91 / 13$	6.11	$110 / 18$
8.24	$560 / 68$	6.98	$300 / 43$	6.11	$220 / 36$

RATIOS ${ }^{2 \pi m}$
 Value Ratios

Ratio	Values	Ratio	Values	Ratio	Values
6.07	$91 / 15$	5.16	$470 / 91$	4.41	$300 / 68$
6.06	$200 / 33$	5.13	$200 / 39$	4.40	$330 / 75$
6.00	$120 / 20$	5.13	$82 / 16$	4.39	$360 / 82$
6.00	$180 / 30$	5.12	$220 / 43$	4.35	$270 / 62$
5.93	$160 / 27$	5.11	$240 / 47$	4.33	$130 / 30$
5.91	$130 / 22$	5.10	$51 / 10$	4.31	$56 / 13$
5.89	$330 / 56$	5.09	$56 / 11$	4.31	$220 / 51$
5.88	$300 / 51$	5.06	$91 / 18$	4.30	$43 / 10$
5.81	$360 / 62$	5.00	$75 / 15$	4.29	$240 / 56$
5.77	$75 / 13$	5.00	$100 / 20$	4.29	$390 / 91$
5.74	$270 / 47$	5.00	$110 / 22$	4.27	$47 / 11$
5.74	$390 / 68$	5.00	$120 / 24$	4.26	$200 / 47$
5.73	$430 / 75$	5.00	$150 / 30$	4.25	$51 / 12$
5.73	$470 / 82$	5.00	$180 / 36$	4.25	$68 / 16$
5.69	$91 / 16$	4.85	$160 / 33$	4.19	$180 / 43$
5.67	$68 / 12$	4.85	$330 / 68$	4.17	$75 / 18$
5.64	$62 / 11$	4.84	$300 / 62$	4.17	$100 / 24$
5.64	$220 / 39$	4.82	$270 / 56$	4.17	$150 / 36$
5.60	$56 / 10$	4.81	$130 / 27$	4.14	$91 / 22$
5.60	$510 / 91$	4.80	$360 / 75$	4.13	$62 / 15$
5.58	$240 / 43$	4.77	$62 / 13$	4.10	$82 / 20$
5.56	$100 / 18$	4.76	$390 / 82$	4.10	$160 / 39$
5.56	$150 / 27$	4.71	$240 / 51$	4.07	$110 / 27$
5.56	$200 / 36$	4.70	$47 / 10$	4.02	$330 / 82$
5.50	$110 / 20$	4.69	$75 / 16$	4.00	$120 / 30$
5.47	$82 / 15$	4.68	$220 / 47$	4.00	$300 / 75$
5.45	$120 / 22$	4.67	$56 / 12$	3.97	$270 / 68$
5.45	$180 / 33$	4.65	$200 / 43$	3.96	$360 / 91$
5.42	$130 / 24$	4.64	$51 / 11$	3.94	$130 / 33$
5.36	$300 / 56$	4.62	$180 / 39$	3.93	$220 / 56$
5.33	$160 / 30$	4.58	$110 / 24$	3.92	$47 / 12$
5.32	$330 / 62$	4.56	$82 / 18$	3.92	$51 / 13$
5.29	$270 / 51$	4.55	$91 / 20$	3.92	$200 / 51$
5.29	$360 / 68$	4.55	$100 / 22$	3.91	$43 / 11$
5.24	$430 / 82$	4.55	$150 / 33$	3.90	$39 / 10$
5.23	$68 / 13$	4.53	$68 / 15$	3.88	$62 / 16$
5.20	$390 / 75$	4.44	$120 / 27$	3.87	$240 / 62$
5.17	$62 / 12$	4.44	$160 / 36$	3.85	$150 / 39$

RATIOS $=$ Value Ratios

Ratio	Values	Ratio	Values	Ratio	Values
3.83	$180 / 47$	3.29	$270 / 82$	2.80	$56 / 20$
3.79	$91 / 24$	3.27	$36 / 11$	2.79	$120 / 43$
3.78	$68 / 18$	3.25	$39 / 12$	2.78	$75 / 27$
3.75	$75 / 20$	3.24	$220 / 68$	2.78	$100 / 36$
3.73	$56 / 15$	3.23	$200 / 62$	2.77	$36 / 13$
3.73	$82 / 22$	3.21	$180 / 56$	2.77	$130 / 47$
3.72	$160 / 43$	3.20	$240 / 75$	2.76	$91 / 33$
3.70	$100 / 27$	3.19	$150 / 47$	2.75	$33 / 12$
3.67	$110 / 30$	3.18	$51 / 16$	2.73	$30 / 11$
3.66	$300 / 82$	3.14	$160 / 51$	2.73	$82 / 30$
3.64	$120 / 33$	3.13	$47 / 15$	2.70	$27 / 10$
3.63	$330 / 91$	3.13	$75 / 24$	2.69	$43 / 16$
3.62	$47 / 13$	3.11	$56 / 18$	2.68	$150 / 56$
3.61	$130 / 36$	3.10	$62 / 20$	2.68	$220 / 82$
3.60	$36 / 10$	3.09	$68 / 22$	2.67	$200 / 75$
3.60	$270 / 75$	3.08	$120 / 39$	2.65	$180 / 68$
3.58	$43 / 12$	3.06	$110 / 36$	2.64	$240 / 91$
3.57	$200 / 56$	3.04	$82 / 27$	2.61	$47 / 18$
3.55	$39 / 11$	3.03	$91 / 30$	2.60	$39 / 15$
3.55	$220 / 62$	3.03	$100 / 33$	2.58	$62 / 24$
3.53	$180 / 51$	3.02	$130 / 43$	2.58	$160 / 62$
3.53	$240 / 68$	3.00	$30 / 10$	2.56	$100 / 39$
3.50	$56 / 16$	3.00	$33 / 11$	2.56	$110 / 43$
3.49	$150 / 43$	3.00	$36 / 12$	2.55	$51 / 20$
3.44	$62 / 18$	3.00	$39 / 13$	2.55	$56 / 22$
3.42	$82 / 144$	2.97	$270 / 91$	2.55	$120 / 47$
3.41	$75 / 22$	2.94	$47 / 16$	2.55	$130 / 51$
3.40	$51 / 15$	2.94	$150 / 51$	2.54	$33 / 13$
3.40	$68 / 20$	2.94	$200 / 68$	2.53	$91 / 36$
3.40	$160 / 47$	2.93	$220 / 75$	2.52	$68 / 27$
3.37	$91 / 27$	2.93	$240 / 82$	2.50	$30 / 12$
3.33	$100 / 30$	2.90	$180 / 62$	2.50	$75 / 30$
3.33	$110 / 33$	2.87	$43 / 15$	2.48	$82 / 33$
3.33	$120 / 36$	2.86	$160 / 56$	2.45	$27 / 11$
3.33	$130 / 39$	2.83	$51 / 18$	2.44	$39 / 16$
3.31	$43 / 13$	2.83	$68 / 24$	2.44	$200 / 82$
3.30	$33 / 10$	2.82	$62 / 22$	2.42	$150 / 62$
3.30	$300 / 91$	2.82	$110 / 39$	2.42	$220 / 91$

RATIOS ${ }^{2 \times 2 \times m}$

Ratio	Values	Ratio	Values	Ratio	Values
2.40	$24 / 10$	2.08	$75 / 36$	1.78	$91 / 51$
2.40	$36 / 15$	2.07	$56 / 27$	1.77	$39 / 22$
2.40	$180 / 75$	2.07	$62 / 30$	1.77	$110 / 62$
2.39	$43 / 18$	2.06	$33 / 16$	1.76	$120 / 68$
2.35	$47 / 20$	2.06	$68 / 33$	1.76	$160 / 91$
2.35	$120 / 51$	2.00	$20 / 10$	1.74	$47 / 27$
2.35	$160 / 68$	2.00	$22 / 11$	1.74	$68 / 39$
2.34	$110 / 47$	2.00	$24 / 12$	1.74	$75 / 43$
2.33	$56 / 24$	2.00	$30 / 15$	1.74	$82 / 47$
2.33	$91 / 39$	2.00	$36 / 18$	1.73	$130 / 75$
2.33	$100 / 43$	2.00	$150 / 75$	1.72	$62 / 36$
2.32	$51 / 22$	1.98	$180 / 91$	1.70	$51 / 30$
2.32	$130 / 56$	1.96	$47 / 24$	1.70	$56 / 33$
2.31	$30 / 13$	1.96	$100 / 51$	1.69	$22 / 13$
2.30	$62 / 27$	1.96	$110 / 56$	1.69	$27 / 16$
2.28	$82 / 36$	1.95	$39 / 20$	1.67	$20 / 12$
2.27	$68 / 30$	1.95	$43 / 22$	1.67	$30 / 18$
2.27	$75 / 33$	1.95	$160 / 82$	1.65	$33 / 20$
2.25	$27 / 12$	1.94	$91 / 47$	1.65	$150 / 91$
2.25	$36 / 16$	1.94	$120 / 62$	1.64	$18 / 11$
2.21	$150 / 68$	1.92	$75 / 39$	1.64	$36 / 22$
2.20	$22 / 10$	1.91	$130 / 68$	1.63	$39 / 24$
2.20	$33 / 15$	1.91	$82 / 43$	1.63	$91 / 56$
2.20	$180 / 82$	1.89	$51 / 27$	1.62	$110 / 68$
2.20	$200 / 91$	1.89	$68 / 36$	1.61	$82 / 51$
2.18	$24 / 11$	1.88	$30 / 16$	1.61	$100 / 62$
2.17	$39 / 18$	1.88	$62 / 33$	1.60	$16 / 10$
2.16	$110 / 51$	1.87	$56 / 30$	1.60	$24 / 15$
2.15	$43 / 20$	1.85	$24 / 13$	1.60	$75 / 47$
2.14	$47 / 22$	1.83	$22 / 12$	1.60	$120 / 75$
2.14	$120 / 56$	1.83	$33 / 18$	1.59	$43 / 27$
2.13	$51 / 24$	1.83	$150 / 82$	1.59	$62 / 39$
2.13	$100 / 47$	1.82	$20 / 11$	1.59	$130 / 82$
2.13	$160 / 75$	1.80	$18 / 10$	1.58	$68 / 43$
2.12	$91 / 43$	1.80	$27 / 15$	1.57	$47 / 30$
2.10	$82 / 39$	1.80	$36 / 20$	1.56	$56 / 36$
2.10	$130 / 62$	1.79	$43 / 24$	1.55	$51 / 33$
2.08	$27 / 13$	1.79	$100 / 56$	1.54	$20 / 13$

RATIOS

Ratio	Values	Ratio	Values	Ratio	Values
1.50	$15 / 10$	1.32	$62 / 47$	1.11	$62 / 56$
1.50	$18 / 12$	1.32	$82 / 62$	1.11	$91 / 82$
1.50	$24 / 16$	1.32	$120 / 91$	1.10	$11 / 10$
1.50	$27 / 18$	1.31	$47 / 36$	1.10	$22 / 20$
1.50	$30 / 20$	1.31	$51 / 39$	1.10	$33 / 30$
1.50	$33 / 22$	1.30	$13 / 10$	1.10	$43 / 39$
1.50	$36 / 24$	1.30	$39 / 30$	1.10	$56 / 51$
1.47	$22 / 15$	1.30	$43 / 33$	1.10	$68 / 62$
1.47	$75 / 51$	1.30	$56 / 43$	1.10	$75 / 68$
1.47	$91 / 62$	1.25	$15 / 12$	1.10	$100 / 91$
1.47	$100 / 68$	1.25	$20 / 16$	1.09	$12 / 11$
1.47	$110 / 75$	1.25	$30 / 24$	1.09	$24 / 22$
1.46	$82 / 56$	1.23	$16 / 13$	1.09	$36 / 33$
1.46	$120 / 82$	1.23	$27 / 22$	1.09	$47 / 43$
1.45	$16 / 11$	1.22	$22 / 18$	1.09	$51 / 47$
1.45	$68 / 47$	1.22	$33 / 27$	1.09	$82 / 75$
1.44	$39 / 27$	1.22	$62 / 51$	1.08	$13 / 12$
1.44	$56 / 39$	1.22	$100 / 82$	1.08	$39 / 36$
1.44	$62 / 43$	1.21	$47 / 39$	1.07	$16 / 15$
1.43	$43 / 30$	1.21	$68 / 56$		
1.43	$130 / 91$	1.21	$75 / 62$	1.00	ALL
1.42	$47 / 33$	1.21	$82 / 68$		
1.42	$51 / 36$	1.21	$91 / 75$		This listing of all
1.38	$18 / 13$	1.21	$110 / 91$	ph	
1.38	$22 / 16$	1.20	$12 / 10$	possible ratios	
1.38	$33 / 24$	1.20	$18 / 15$	between 10 and	
1.36	$15 / 111$	1.20	$24 / 20$	1 may also be	
1.36	$30 / 22$	1.20	$36 / 30$	used for all other	
1.35	$27 / 20$	1.19	$43 / 36$	possible ratios by	
1.34	$75 / 56$	1.19	$51 / 43$	moving the proper	
1.34	$91 / 68$	1.19	$56 / 47$	decimal points.	
1.34	$110 / 82$	1.18	$13 / 11$		
1.33	$16 / 12$	1.18	$39 / 33$		
1.33	$20 / 15$	1.15	$15 / 13$		
1.33	$24 / 18$	1.13	$18 / 16$		
1.33	$36 / 27$	1.13	$27 / 24$		
1.33	$68 / 51$	1.11	$20 / 18$		
1.33	$100 / 75$	1.11	$30 / 27$		

APPENDIX B

STANDARD 1\%, 0.5\%, 0.25\% AND 0.1\% VALUES

1% VALUES

$\begin{array}{llllllllllllllllll}10.0 & 10.2 & 10.5 & 10.7 & 11.0 & 11.3 & 11.5 & 11.8 & 12.1 & 12.4 & 12.7 & 13.0\end{array}$ $\begin{array}{llllllllllllllllllll}13.3 & 13.7 & 14.0 & 14.3 & 14.7 & 15.0 & 15.4 & 15.8 & 16.2 & 16.5 & 16.9 & 17.4\end{array}$ $\begin{array}{llllllllllllllllllllllll}17.8 & 18.2 & 18.7 & 19.1 & 19.6 & 20.0 & 20.5 & 21.0 & 21.5 & 22.1 & 22.6 & 23.2\end{array}$ $\begin{array}{llllllllllll}23.7 & 24.3 & 24.9 & 25.5 & 26.1 & 26.7 & 27.4 & 28.0 & 28.7 & 29.4 & 30.1 & 30.9\end{array}$ 31.632 .433 .234 .034 .835 .736 .537 .438 .339 .240 .241 .2 42.243 .244 .245 .246 .447 .548 .749 .951 .152 .353 .654 .9 $56.257 .659 .060 .461 .963 .464 .966 .568 .1 \quad 69.871 .573 .2$ 75.076 .878 .780 .682 .584 .586 .688 .790 .993 .195 .397 .6

$0.1 \%, 0.25 \%$ AND 0.5% VALUES

$\begin{array}{lllllllllllllllllll}10.0 & 10.1 & 10.2 & 10.4 & 10.5 & 10.6 & 10.7 & 10.9 & 11.0 & 11.1 & 11.3 & 11.4\end{array}$ $\begin{array}{llllllllllllllll}11.5 & 11.7 & 11.8 & 12.0 & 12.1 & 12.3 & 12.4 & 12.6 & 12.7 & 12.9 & 13.0 & 13.2\end{array}$ $\begin{array}{llllllllllllllll}13.3 & 13.5 & 13.7 & 13.8 & 14.0 & 14.2 & 14.3 & 14.5 & 14.7 & 14.9 & 15.0 & 15.2\end{array}$ $\begin{array}{lllllllllllllllllll}15.4 & 15.6 & 15.8 & 16.0 & 16.2 & 16.4 & 16.5 & 16.7 & 16.9 & 17.2 & 17.4 & 17.6\end{array}$ $\begin{array}{lllllllllllllllllllll}17.8 & 18.0 & 18.2 & 18.4 & 18.7 & 18.9 & 19.1 & 19.3 & 19.6 & 19.8 & 20.0 & 20.3\end{array}$ $\begin{array}{llllllllllllll}20.5 & 20.8 & 21.0 & 21.3 & 21.5 & 21.8 & 22.1 & 22.3 & 22.6 & 22.9 & 23.2 & 23.4\end{array}$ $\begin{array}{lllllllllll}23.7 & 24.0 & 24.3 & 24.6 & 24.9 & 25.2 & 25.5 & 25.8 & 26.1 & 26.4 & 26.7\end{array} 27.1$ 27.427 .728 .028 .428 .729 .129 .429 .830 .130 .530 .931 .2 31.632 .032 .432 .833 .233 .634 .034 .434 .835 .235 .736 .1 36.537 .037 .437 .938 .338 .839 .239 .740 .240 .741 .241 .7 42.242 .743 .243 .744 .244 .845 .345 .946 .447 .047 .548 .1 48.749 .349 .950 .551 .151 .752 .353 .053 .654 .254 .955 .6 56.256 .957 .658 .359 .059 .760 .461 .261 .962 .663 .464 .2 $\begin{array}{lllllllll}64.9 & 65.7 & 66.5 & 67.3 & 68.1 & 69.0 & 69.8 & 70.6 & 71.5 \\ 72.3 & 73.2 & 74.1\end{array}$ 75.075 .976 .877 .778 .779 .680 .681 .682 .583 .584 .585 .6 86.687 .688 .789 .890 .992 .093 .194 .295 .396 .597 .698 .8

APPENDIX C

ELECTRONICS TERMS AND THEIR SYMBOLS
This is an alphabetical listing of passive, bipolar-transistor and operational-amplifier (opamp) linear-circuit electronics terms with their corresponding symbols. Included also, are selected electronic, magnetic, acoustic, electrical, mechanical, mathematical and physical terms with their corresponding symbol, abbreviation, sign or acronym.

An attempt has been made to include present common usage (USA), traditional and recognized standard symbols, however, the preferred symbol (listed last) is often the author's projection of present trend, personal preference or arbitrary selection and does not necessarily represent an accepted industry standard.

This listing is intended as a reference source of electronics symbols, but may also be used to locate formulas having unfamiliar resultant symbols. It should be noted, however, that several different symbols may be shown for a given term and that the last-listed symbol is not always the one used in the formula and definition sections, since the last-listed symbol may be the author's projection of present trend.

Textbooks and scientific journals conventionally use italic (slanted) type for quantity symbols, however, this handbook follows the example of almost all technical manuals where roman (upright) type is used for both quantity and unit symbols. Unit symbols are clearly indicated as such in this appendix.

Common electronics abbreviations should be written without periods and generally in lower case letters as listed, however, certain abbreviations are capitalized and certain others are capitalized when used as a noun.

An asterisk is used to indicate schematic letter symbols.
No attempt has been made to include terms or symbols associated with computing systems, control systems, digital systems, digital devices, non-linear circuits, non-linear devices, vacuum tubes or field effect transistors.

a	admittance
	input $\quad Y_{i n}, Y_{i}$
absolute temperature	magnitude $\quad\|\mathbf{Y}\|, \mathbf{Y}$
(quantity) $\quad \mathrm{T}, \mathrm{T}_{\mathrm{K}}$	output $\mathbf{Y}_{\mathbf{o}}$
(unit)	, Y
$\underset{\text { See also-magnitude }}{\text { absolute value (of } \mathrm{x})} \quad\|\mathrm{x}\|$	admittance, transistor (hybrid parameters)
absolute zero temperature	output
T_{0}	base $h_{\text {ob }}$
acceleration, angular $\quad \alpha$	mmon collector $h_{o c}$
eleration, linear	
acoustic	(y parameters)
	common base
tenuation coefficient	rward transfer $\quad y_{f b}$
damping coefficient	input $y_{\text {ib }}$
frequency f	tput $\mathrm{y}_{\text {ob }}$
impedance $\quad \mathrm{Z}_{\mathrm{a}}$	$y_{\text {re }}$
loudness level $\quad L_{N}$	common
mechanical impedance Z_{m}	ansfer $\quad y_{\text {fe }}$
period T	input $y_{\text {ie }}$
resonant frequency f_{r}	output $\mathrm{y}_{\text {oe }}$
reverberation time $\mathrm{T}, \mathrm{T}_{60}$	y_{re}
sound power	alpha (Greek letter)
sound power level	alpha, transistor
PWL, $\mathrm{L}_{\mathbf{P}}$	small signal $\quad \alpha, \mathrm{h}_{\mathrm{fb}}$
sound pressure $\quad \mathbf{P}$	static (dc) $\quad \bar{\alpha}, \mathrm{h}_{\mathrm{FB}}$
sound pressure level	alpha cutoff frequency $\mathrm{f}_{\alpha \mathrm{b}}$
SPL, L_{p}	alternating current AC, ac
sound velocity $\quad \mathrm{c}, \mathrm{v}$	ambient temperature $\mathrm{t}_{\mathrm{A}}, \mathrm{T}_{\mathrm{A}}$
specific impedance $\quad Z_{\text {s }}$	American wire gage AWG
wavelength λ	ampere (unit) A
	ampere-hour (unit) A $\cdot \mathrm{h}, \mathrm{Ah}$

ampere-squared-seconds (unit)	angle, solid $\quad \Omega$
$\mathrm{I}^{2} \mathrm{t}$	angular frequency ω
ampere-turn (unit of	angular velocity ω
magnetomotive force)	antilogarithm (of x)
A $\cdot \mathrm{t}, \mathrm{A}, \mathrm{At}$	base $10 \quad \mathrm{lg}^{-1}, 10^{\mathrm{x}}, \log ^{-1}$
ampere per meter (un	base $\epsilon \quad \mathrm{e}^{\mathrm{x}}, \epsilon^{\mathrm{x}}, \ln ^{-1}$
agnetic field strength)	common $\lg ^{-1}, 10^{x}, \log ^{-1}$
At/m, A/m	natural $\mathrm{e}^{\mathrm{x}}, \epsilon^{\mathrm{x}}, \ln ^{-1}$
amplification	antiresonant frequency f_{o}, f_{r}
(quantity) A	apparent power
(unit) dg, (numeric), dB	(quantity) $\quad \mathrm{S}, \mathrm{P}_{\mathrm{s}}, \mathrm{VA}$
See also-gain	(unit) VA
plification,	approximately equal to \approx
dc or large signa	arc cosine $\quad \arccos , \cos ^{-1}$
rrent $\mathbf{A}_{\mathbf{I}}$	hyperbolic arcosh, $\cosh ^{-1}$
power (gain) $\quad \mathrm{G}_{\mathrm{P}}$	arc cosecant arcsec, sec ${ }^{-1}$
voltage $\quad A_{V}$	hyperbolic arsech, sech $^{-1}$
small signal current	arc cotangent arccot, $\cot ^{-1}$ hyperbolic arcoth, coth ${ }^{-1}$
power (gain) $\quad \mathbf{G}_{\mathbf{p}}$	arc secant $\quad \operatorname{arcsec}, \mathrm{sec}^{-1}$
voltage $\mathbf{A}_{\mathbf{v}}$	hyperbolic arsech, sech $^{-1}$
amplification factor (vacuum tube)	arc sine $\quad \arcsin , \sin ^{-1}$
mplitude modulation AM	arc tangent $\arctan , \tan ^{-1}$
angle, loss $\quad \delta$	hyperbolic artanh, $\tanh ^{-1}$
angle, phase $\quad \phi, \theta$	area \mathbf{A}
admittance $\quad \theta_{\mathbf{Y}}$	area, cross-sectional S, A
current $\theta_{\text {I }}$	atmosphere atm
impedance θ_{Z}	attenuation coefficient α
voltage $\quad \phi_{\mathrm{E}}, \phi_{\mathrm{V}}, \theta_{\mathrm{E}}, \theta_{\mathrm{V}}$	atto (unit prefix for 10^{-18}) a
angle, phase margin	audio frequency a-f
$\phi_{\mathrm{m}}, \theta_{\mathrm{m}}$	automatic frequency
angle, plane $\quad \phi, \theta$	control AFC

breakdown voltage	c
ansistor)	capacitance C
lector-to-base	parallel $\quad \mathrm{C}_{\mathrm{P}}, \mathrm{C}_{\mathrm{p}}$
open	$\mathrm{C}_{\mathrm{o}}, \mathrm{C}_{\mathrm{r}}$
$\mathrm{BV}_{\text {CBO }}, \mathrm{V}_{(\mathrm{BR}) \text { CBO }}$	series $\quad \mathrm{C}_{\mathrm{S}}, \mathrm{C}_{\text {s }}$
collector-to-emitter	capacitance, transistor
base-emitter	allector-to-base $\quad \mathbf{C b b}^{\text {c }}$
circuit	llector-to-case $\quad \mathrm{C}_{\mathrm{c}}$
$\mathrm{CEX}^{\text {, }} \mathrm{V}_{\text {CEX (SUS) }}$	emitter-to-base $\quad \mathrm{C}_{\text {eb }}$
	feedback $\quad \mathbf{C r B}, \mathrm{C}_{\mathrm{b}^{\prime} \mathbf{c}}$
$\mathrm{BV}_{\text {CER }}, \mathrm{V}_{\text {CER (SUS) }}$	input, common base $\mathrm{C}_{\mathbf{i b}}$
ort	output, common base C_{ob}
$\mathrm{BV}_{\text {CES }}, \mathrm{V}_{\text {CES(SUS }}$	open circuit $\quad \mathrm{C}_{\text {obo }}$
voltage	capacitive
$\mathrm{BV}_{\text {CEV }}, \mathrm{V}_{\text {CEV (SUS) }}$	current $\quad-\mathrm{I}_{\mathbf{X}}, \mathrm{I}_{\mathbf{C}}$
base open	reactance $\quad-\mathrm{X}, \mathrm{X}_{\mathrm{C}}$
$\mathrm{BV}_{\text {CEO }}, \mathrm{V}_{\text {CEO(SUS) }}$	susceptance $\quad-\mathrm{B}, \mathrm{B}_{\mathrm{C}}$
emitter-to-base, collector open	
BV ${ }_{\text {Ebo }}, \mathrm{V}_{\text {(BR)Ebo }}$	
breadth (width) b	bootstrap ${ }^{\text {a }}$
British thermal unit Btu	bypass C_{B}
broadband	coupling C_{C}
se current	feedback $\quad \mathrm{C}_{\mathrm{FB}}, \mathrm{C}_{\mathrm{F}}$
noise voltage	carrier frequency f_{c}
$E_{N}, \overline{E_{n}}, \overline{e_{n}}, \overline{V_{n}}$	case temperature $\quad t_{C}, T_{C}$
voltage gain,	cathode-ray tube CRT
common emitter transistor	Celsius temperature (quantity) to ${ }^{\circ} \mathrm{t}, \mathrm{T}_{\mathrm{C}}$
Brown and Sharpe wire gauge	(unit) ${ }^{\circ}{ }^{\circ} \mathrm{C}$
(American wire gage) AWG	cent ϕ
*bypass capacitor C_{B}	centi (unit prefix for 10^{-2}) c centigrade See-Celsius

centimeter (unit) cm cubic (unit) cm^{3} square (unit) cm^{2}	collector resistance (transistor) external
centimeter-gram-second (unit system) cgs, CGS	internal, T equiv. collector supply voltage
characteristic impedance Z_{O}	(transistor, op amp) $\mathbf{V}_{\mathbf{C C}}$
charge, electric $\quad \mathbf{Q}$	collector voltage
charge, elementary (charge of electro	ransistor)
closed-loop voltage	static (dc) $\quad \mathrm{V}_{\mathrm{C}}$
amplification (op amp)	common base (transistor)
$\mathbf{A}_{\mathbf{v C L}}, \mathbf{A}_{\mathbf{V}}$	forward current
	transfer ratio $h_{f b}$ put impedance $h_{i b}$
coupling	output admittance $h_{\text {ob }}$
mping	reverse voltage
temperature $\quad \alpha$, TC	nsfer ratio $\quad h_{r b}$
* collector (transistor) C	common collector (transistor)
collector current (transistor)	forward current
nall signal $\quad I_{c}$	h_{fc}
static (dc) I_{C}	put impedance $\quad h_{i c}$
collector cutoff current	output admittance $h_{\text {oc }}$ reverse voltage
$\mathrm{I}_{\text {CEO }}$	nsfer ratio $\quad h_{\text {rc }}$
-emitter	common emitter (transistor)
	orward current ratio
ICER	all signal $\quad \mathrm{h}_{\mathrm{fe}}$
I_{C}	static (dc) $\quad \mathrm{h}_{\text {FE }}$
voltage $\quad \mathrm{I}_{\text {CEV }}$	put impedance $\quad \mathrm{h}_{\mathrm{ie}}$
collector dissipation	output impedance $\quad h_{\text {oe }}$
P_{C}	erse voltage
collector efficiency (transistor)	transfer ratio $\quad h_{\text {re }}$

crossover frequency $\mathbf{f}_{\mathbf{c}}$ wavelength $\boldsymbol{\lambda}_{\mathbf{c}}$	current second breakdown vector (phasor)
cubic units	current, opamp
centimeter cm^{3}	bias I_{B}
foot cu ft, ft^{3}	device
inch $\quad \mathrm{cu} \mathrm{in}, \mathrm{in}^{3}$	negative supply
meter m^{3}	$\mathbf{I}-, \mathbf{I}_{\mathbf{D}-}, \mathbf{I}_{\mathbf{E E}}$
yard \quad cuyd, yd^{3}	non-inverting input
current	grounded $\mathrm{I}_{\text {DG }}$
alternating $\quad \mathrm{I}_{\mathrm{AC}}, \mathrm{I}_{\mathrm{ac}}, \mathrm{I}$	open $\mathrm{I}_{\text {DO }}$
average I_{av}	positive supply
capacitive $\quad+\mathrm{j} \mathrm{I}_{\mathrm{X}}, \mathrm{I}_{\mathrm{C}}$	$\mathrm{I}+, \mathrm{I}_{\mathrm{D}+}, \mathrm{I}_{\mathrm{CC}}$
direct $\quad I_{D C}, I_{\text {dc }}, I$	input
effective $\quad I_{\text {eff }}, I_{\text {rms }}, I$	bias $\mathrm{I}_{\text {I }}$
generator $\quad \mathrm{I}_{\mathrm{g}}$	offset $\mathrm{I}_{\text {IO }}$
inductive $\quad-\mathrm{jI}_{X}, \mathrm{I}_{\mathrm{L}}$	signal $\quad I_{\text {IN }}, \mathrm{I}_{\text {in }}$
input $\quad I_{i n}, I_{i}$	noise, equivalent input
instantaneous i	$\mathbf{1 / f} \quad \mathrm{Inf}$
lagging $\quad-\mathrm{jI}_{\mathbf{X}}$	device $\quad I_{n}$
leading $+\mathrm{j} \mathrm{I}_{\mathbf{X}}$	shot $\mathrm{I}_{\text {ns }}$
magnitude I	noise, thermal noise of
noise $\quad i_{N}, I_{N}, i_{n}, I_{n}$	input resistance $\quad \mathrm{I}_{\mathrm{nR}}$
output	output
small signal $\quad I_{0}$	large-signal I_{0}
large signal $\quad \mathrm{I}_{0}$	maximum I_{OM}
peak $\quad \mathrm{I}_{\mathrm{pk}}, \mathrm{i}_{\mathrm{p}}, \mathrm{I}_{\mathrm{p}}$	negative swing $\quad \mathrm{I}_{\mathrm{O}}$
peak-to-peak $\quad \mathrm{I}_{\mathrm{p}-\mathrm{p}}$	peak-to-peak $\mathrm{I}_{\text {OPP }}$
phasor $\overrightarrow{\mathbf{I}}, \mathbf{l}$	positive swing $\mathrm{I}_{\mathrm{O}+}$
polar form IPOLAR	shorted $\mathrm{I}_{\text {OS }}$
rectangular form $\mathbf{I}_{\text {RECT }}$	small-signal I_{0}
root-mean-square $\mathrm{I}_{\mathrm{rms}}, \mathrm{I}$	

current, transistor	decibel (ratio unit for power,
base, small-signal $\quad I_{b}$	voltage and current)
e, static (dc) $\quad \mathrm{I}_{\mathrm{B}}$	decibel level See-level
ector, small-signal $\quad \mathrm{I}_{\mathrm{c}}$	decilog dg
lector, static (dc) I_{C}	decimal point
itter, small-signal $\quad \mathrm{I}_{\mathrm{e}}$	degree
mitter, static (dc) $\quad \mathrm{I}_{\mathrm{E}}$	deka (unit prefix for 10) da
current, transistor	(rare in USA) delay time
base-emitte	delta (Greek letter)
$\mathrm{I}_{\text {cex }}$	capital Δ
CER	script
rted I_{C}	depth
age $\quad \mathrm{I}_{\text {CEV }}$	device under test DUT
nt	diameter
emitter	in, ID
collector open $\mathrm{I}_{\text {EBO }}$	outside $\quad \mathrm{d}_{\mathrm{o}}, \mathrm{d}_{\text {out }}, \mathrm{OD}$
customary temperature	dielectric constant $\quad \mathrm{k}, \mathrm{k}_{\mathrm{d}}$
cu	dissipation
ular frequency $\quad \omega_{c}$	ollector (transistor) $\mathbf{P}_{\mathbf{C}}$
gular velocity $\quad \omega_{c}$	evice $\quad P_{D}$
equency f_{c}	er $P_{\text {d }}$
wavelength λ_{c}	, P_{T}
cycle, duty	dissipation factor $\quad \mathbf{D}$
See-duty factor	distance d
cles per second cps, c/	distortion
See also-hertz	termodulation IM, IMD
	total harmonic THD
	direct current DC, dc
damping coefficien	double pole (switch)
damping factor $\quad \alpha, \delta, \mathrm{d}$	double throw DPDT
deci (unit prefix for 10^{-1}) d	single throw DPST
	drain See-FET literature

duty cycle See-duty factor	emitter (transistor)
	*capacitor $\mathbf{C E}^{\text {e }}$
duty factor $\quad \mathrm{F}_{\mathrm{D}}, \mathrm{D}, \mathrm{DF}, \mathrm{df}$	istance, external $\quad \mathbf{R}_{\mathbf{E}}$
dynamic resistance	sistance, internal
e-vaccum tube literature	S
so-internal small-	static (dc) re_{E}
tance (transistor	*emitter resistor $\quad \mathrm{R}_{\mathbf{E}}$
and opamp) dyne (CGS unit) dyn	second breakdown $\mathrm{e}, \mathrm{E}, \mathrm{W}$ $\mathrm{E}_{\mathrm{S} / \mathrm{b}}$
e	epsilon (Greek letter) $\quad \in, \epsilon$
	equal approxim
	identically
$\text { eff }, \bar{B}$	F
current (ac)	,
$\mathrm{I}_{\text {eff }}, \mathrm{I}_{\mathrm{rms}}, \mathrm{I}$	equivalent (of x)
power $\quad \mathbf{P}$	quiv, $\mathrm{x}_{\mathrm{T}}, \mathrm{x}_{\mathrm{t}}, \mathrm{x}=$
diated power ERP	Note: The resultant of
voltage (ac)	ormulas is the equivalent uantity.
See also-equivalent and total	equivalent series resistance ESR
efficien	erg (CGS unit) erg
electric charge Q	eta (Greek letter)
electromotive force	exa (unit prefix for 10^{18}) E
emf, E, V	excess noise voltage
See also-voltage elementary charge (charge of electron)	$\mathrm{E}_{\mathrm{EX}}, \mathrm{E}_{\mathrm{N}(\mathrm{EX})}, \mathrm{v}_{\mathrm{nR}(\mathrm{EX})}$
*emitter (transistor) E	δ, d
breakdown voltage	dissipation \quad D
BV $\mathrm{Ebo}, \mathrm{V}_{(\mathrm{Br}) \text { ebo }}$	ergy See-quality
	flare (flaring)

factor magnification	flux density, magnetic (quantity)
See-quality	(unit) G, T
merit See-quality	flux, total magnetic
noise (transistor)	(quantity) $\quad \Phi, \phi$
(noise figure) $\mathrm{F}, \mathrm{NF}, \mathrm{F}_{\mathrm{n}}$	(unit) Mx, Wb
power $\quad \cos \theta, \mathrm{PF}, \mathrm{pf}, \mathrm{F}_{\mathrm{P}}$	foot (unit) \quad, ft
Q \mathbf{Q}	cubic (unit) cu ft, ft^{3}
quality \quad Q	square (unit) sq $\mathrm{ft}, \mathrm{ft}^{2}$
storage See-quality	force
Fahrenheit temperature	electromotive emf, E, V
(quantity) $\quad t, t^{\circ} F, T_{{ }^{\circ}}$	magnetizing See-
	agnetic
fall time $\quad \mathrm{t}_{\mathbf{f}}$	strength
farad (unit) F	magnetomotive
feedback	(quantity) $\quad \mathrm{F}, \mathcal{F}, \mathrm{F}_{\mathrm{m}}$
* capacitor $\quad \mathrm{C}_{\mathrm{FB}}, \mathrm{C}_{\mathrm{F}}$	(unit) A•t, A, At
* $\begin{array}{lr}\text { resistor } & \mathrm{R}_{\mathrm{FB}}, \mathrm{R}_{\mathrm{F}} \\ \text { transfer ratio } & \beta\end{array}$	mechanical (quantity)
femto (unit prefix for 10^{-15})	(unit) $\mathrm{kgf}, \mathrm{lbf}, \mathrm{N}$
f	forward current
field effect transistor FET	(semiconductor) $\quad \mathrm{I}_{\mathrm{F}}$
field strength, electric	forward current
(quantity) E	transfer ratio
(unit) V / m	ommon base $\quad \mathrm{h}_{\mathrm{fb}}$
field strength, magnetic	common collector $\quad h_{\text {fc }}$
(quantity) $\quad \mathrm{H}, \mathrm{H}$	common emitter
(unit) $\mathrm{Oe}, \mathrm{At} / \mathrm{m}, \mathrm{A} / \mathrm{m}$	small-signal $\quad h_{f e}$
figure, noise (transistor)	static (dc) $\quad \mathrm{h}_{\mathrm{FE}}$
(noise factor) F,NF, F n	forward transfer
flare (acoustic horn)	admittance
cutoff frequency $\quad \mathrm{f}_{\mathrm{FC}}$	common base $\quad y_{f b}$
factor $\quad F_{F}, \mathrm{~m}$	common emitter $\quad y_{\text {fe }}$

gamma (Greek letter) gate See-FET literature	high frequency extremely ($30-300 \mathrm{GHz}$)
gauss (CGS unit) G	
generator current $\mathrm{i}_{\mathrm{g}}, \mathrm{I}_{\mathrm{g}}$	super ($3-30 \mathrm{GHz}$)
generator voltage $e_{g}, \mathrm{E}_{\mathrm{g}}, \mathrm{V}_{\mathrm{g}}$	ultra ($300 \mathrm{MHz-3} \mathrm{GHz}$)
$\begin{aligned} & \text { giga (unit prefix for } 10^{9} \text {) } \quad \dot{G} \\ & \text { (pronouced jiga) } \end{aligned}$	very ($30-300 \mathrm{MHz}$) vhf
gilbert (CGS unit) $\quad \mathbf{G b}$	horn, acoustic
gram (CGS unit)	flare cutoff
gravitational	frequency $f_{0}, f_{c}, \mathrm{f}_{\mathrm{FC}}$
acceleration g	flaring factor $\quad \mathrm{F}_{\mathrm{F}}, \mathrm{m}$
ration	lowest frequency for
standard $\mathrm{g}_{\mathbf{n}}$ constant G	satisfactory loading horsepower (unit)
greater than (x) $>x$	hour (unit)
not	hour, ampere (unit)
or equal to	Ah
grid See-vacuum tube	hybrid parameter (transistor)
literature	forward current ratio small signal common base
harmonic distortion, THD total	common collector $\quad h_{f \mathrm{c}}$ common emitter $\quad h_{f e}$
heater See-vacuum tube literature	static (dc) common emitter $\quad h_{\text {FE }}$
heatsink temperature $\mathrm{t}_{\mathbf{S}}, \mathrm{T}_{\mathbf{S}}$	hybrid paramet
hecto (unit prefix for 10^{2})	ansistor)
(rare USA) h	input impedance
height $\quad \mathrm{h}$	mmon base $\quad h_{i b}$
henry (unit) $\quad \mathrm{H}$	mmon collector $\mathrm{h}_{\text {ic }}$
hertz (unit) Hz	common emitter $\quad \mathbf{h i e}_{\mathbf{i e}}$
high frequency ($3-30 \mathrm{MHz}$)	
hf	

inch (unit) in cubic (unit) $c u$ in, in^{3} square (unit) sq in, in ${ }^{2}$	$\begin{array}{cc}\begin{array}{c}\text { input capacitance } \\ \text { transistor } \\ \text { common base }\end{array} & C_{i n}, C_{i n}, C_{i} \\ & \end{array}$
increment Δ	mmon emitter
indefinite number	$\mathrm{C}_{\text {ie }}, \mathrm{C}_{\text {ieo }}$
index, noise NI	input equivalent noise
inductance	(opamp and transistor)
M	current i_{n}, I_{n}
$\mathbf{L}_{\mathbf{P}}, \mathrm{L}_{\mathrm{p}}$	tal $e_{n i}, V_{n i}$
nary L_{p}	voltage $\quad e_{n}, V_{n}$
L_{r}	input frequency $\quad f_{i}, f_{\text {in }}$
ondary L_{s}	input impedance
series $\quad \mathrm{L}_{\mathrm{S}}, \mathrm{L}_{\mathrm{s}}$	opamp $\quad \mathrm{z}_{\text {in }}, \mathrm{z}_{\mathbf{i}}$
induction, magnetic See-magnetic field strength	common mode $\quad \mathrm{z}_{\text {ic }}$
	input impedance, transistor common base
induct	common collector $\quad h_{i c}$
ent $\quad-\mathrm{jI}_{\mathrm{X}},+\mathrm{I}_{\mathrm{X}}, \mathrm{I}_{L}$	mmon emitter $\quad h_{\text {ie }}$
ctance $\quad+\mathrm{X}, \mathrm{X}_{\mathrm{L}}$	high frequency $\quad \mathbf{z i e}_{\text {ie }}$
susceptance $\quad-\mathrm{jB},+\mathrm{B}, \mathrm{B}_{\mathrm{L}}$	low frequency $\quad r_{i e}$
$+E_{X},+V_{X}, E_{L}, V_{L}$	input offset current (opamp)
nductor	input offset voltage
*inductor, mutual $\quad \mathrm{L}_{\mathrm{M}}$	(opamp) V_{10}
infinity	input power $\quad \mathbf{P}_{\text {in }}, \mathbf{P}_{\mathbf{i}}$
infra-red IR	input resistance $\quad \mathbf{R}_{\mathbf{i n}}, \mathbf{R}_{\mathbf{i}}$
input admittance	opamp $\mathbf{R}_{\mathbf{i}}, \mathrm{r}_{\mathbf{i}}$
common base common emitter	$\begin{aligned} & \text { different } \\ & \text { transistor } \end{aligned}$
	common bas
	$\begin{gathered} \mathbf{R}_{\mathbf{i b}}, \operatorname{Re}\left(\mathbf{h}_{\mathbf{i b}}\right), \mathrm{r}_{\mathbf{i b}} \\ \text { commonemitter } \\ \mathbf{R}_{\mathbf{i e}}, \operatorname{Re}\left(\mathbf{h}_{\mathbf{i e}}\right), \mathrm{r}_{\mathbf{i e}} \end{gathered}$

instantaneous current i peak current $i_{p k}, i_{p}$ peak power $p_{p k}, P_{p k}$ peak voltage	kelvin temperature (thermodynamic temperature) $\quad \mathbf{T}, \mathbf{T}_{\mathbf{K}}$ kilo (unit prefix for 10^{3}) K, k knot(unit)
power $\mathrm{e}_{\mathrm{pk}}, \mathrm{e}_{\mathrm{p}}, \mathrm{v}_{\mathrm{pk}}, \mathrm{v}_{\mathrm{p}}$ voltage e, v	lambda (Greek letter)
*integrated circuit IC	capital $\quad \Lambda$
ermediate frequency i-f	script λ
IM	lead temperature $\quad t_{L}, \mathrm{~T}_{L}$
ermodulation distortion	leakage coefficient $\quad \sigma$
IM, IMD	leakage current I_{L}
internal resistance, opamp input $\mathrm{R}_{\mathrm{i}}, \mathrm{r}_{\mathrm{i}}$ output $\mathrm{R}_{\mathrm{o}}, \mathrm{r}_{\mathrm{o}}$	transistor See-cutoff current leakage inductance $\quad \mathrm{L}$'s, l_{s}
ternal resistance, transistor	
equivalent)	secondary $\quad \mathrm{L}$'s, l_{s}
r_{b}	length ℓ
ector r_{c}	less than (x) $<x$
emitter $\quad r_{e}$	or equal to $<x$
intrinsic standoff ratio	not ${ }^{\text {dx }}$
on transistor) η	level (in decibels)
inverse See-arc, negative reciprocal or reverse	$\begin{aligned} & \text { current } \\ & \text { ref. } 1 \mathrm{pA} \end{aligned} \quad \mathrm{~L}_{\mathrm{I} / \mathrm{pA}}$
j	power
vy	$\mathrm{L}_{\mathrm{P} / \mathrm{fW}}$
	nd
joule (unit) W•s, Ws, J	ref. $1 \mathrm{pW} \quad \mathrm{PWL}, \mathrm{L}_{\mathrm{P} / \mathrm{pW}}$
k	sound pressure
kelvin (unit) K	SPL, $\mathrm{L}_{\mathrm{p} / 20 \mu \mathrm{~Pa}}$


```level (in decibels) voltage ref. 1V dBV, LV/v ref. 1V ( p-p dBv, LV/vp-p```	magnetic flux    (quantity)    (unit) $\boldsymbol{\Phi}, \phi$   magnetic flux density
light amplification by	(quantity) $\quad \mathrm{B}$
stimulated emission of	(unit) G, T
radiation LASER, laser	(magnetic) permeability
light dependent resistor LDR	(quantity) $\quad \mu$
light emitting diode LED	(unit) G/Oe, (numeric)
line (of magnetic flux) (unit)	(magnetic) reluctance
See-Maxwell	(quantity) $\quad \mathrm{R}, \mathcal{R}$
liter (unit) $\quad 1, \ell, \mathrm{~L}$	(unit) $\quad \mathrm{A} / \mathrm{Wb}, \mathrm{At} / \mathrm{Wb}$
load admittance $\quad \mathrm{Y}_{\mathbf{L}}$	magnetizing force
load impedance $\quad \mathrm{Z}_{\mathrm{L}}$	See-magnetic
load resistance $\quad \mathrm{R}_{\mathrm{L}}$	field strength
${ }^{*}$ load resistor $\quad \mathrm{R}_{\mathrm{L}}$	magnetomotive force
loaded Q $\mathrm{Q}_{\mathrm{L}}$	(quantity) $\quad \mathcal{F}, \mathrm{F}, \mathrm{F}_{\mathrm{m}}$
logarithm	(unit) $\mathrm{A} \cdot \mathrm{t}, \mathrm{A}, \mathrm{At}$
base $10 \quad \mathrm{lg}, \log _{10}, \log$	magnitude (of x ) $\mathrm{x}^{\text {a }}$
$\log _{\epsilon}, \ln$	magnitude of
common $\quad \mathrm{lg}, \log _{10}, \log$	dmittance $\quad\|\mathrm{Y}\|, \mathrm{Y}$
natural $\quad \log _{\epsilon}, \ln$	capacitive reactance $\mathrm{X}_{\mathrm{C}}$
loss angle	capacitive susceptance $\mathrm{B}_{\mathrm{C}}$
lot tolerance percent	current $\|I\|, \mathrm{I}$
defective LTPD	impedance $\quad\|\mathrm{Z}\|, \mathrm{Z}$
low frequency	inductive reactance $\mathrm{X}_{\mathrm{L}}$
ry vlf	ductive susceptance $\mathrm{B}_{\mathrm{L}}$
m	input offset current (opamp) $\left\|\mathrm{I}_{\mathrm{IO}}\right\|, \mathrm{I}_{\mathrm{IO}}$
etic field strength	input offset voltage
(quantity) $\quad \mathrm{H}, \mathrm{H}$	(opamp) $\left\|\mathrm{V}_{\mathrm{IO}}\right\|, \mathrm{V}_{\mathrm{IO}}$
(unit)	actance X
$\mathrm{Gb} / \mathrm{cm}, \mathrm{Oe}, \mathrm{At} / \mathrm{m}, \mathrm{A} / \mathrm{m}$	susceptance


magnitude of   voltage $\quad\|\mathrm{E}\|,\|\mathrm{V}\|, \mathrm{E}, \mathrm{V}$ magnification factor   (Q factor or quality factor)		medium frequency ( $300 \mathrm{kHz}-3 \mathrm{MHz}$ )
		mega (unit prefix for $10^{6}$ )
		merit factor
		See also-quality factor
margin, gain margin, phase mark See-sign		meter (unit)
		cubic (unit) $\mathrm{m}^{3}$
		square (unit) $\mathrm{m}^{2}$
mass		mho (unit) mho, $S, \mho, \Omega^{-1}$
maximum (device)		See also-se
ailable gain	MAG	micro (unit prefix for
put	-	mile (unit)
-to-peak		square (unit)
output swing bandwidth		mile per hour (unit)
	$\mathrm{B}_{\text {OM }}$	
output voltag	$\mathrm{V}_{\text {OM }}$	milli (unit prefix for $10^{-3}$ ) m
usable frequency	MUF	milli-inch (unit)
axwell (CGS unit)	Mx	mode, common
mean-time-between-		jection CMR
failures	F	rejection ratio CMRR
mean-time-to-f	MTTF	mouth area (acoustic horn)
		$S_{M}, A_{M}$
	MTTFF	mu (Greek
mechanic		*mutual capacit
	$\eta$	mutual conductance $\quad \mathrm{gm}_{\mathrm{m}}$
ergy	E, W	(transconductance)
	F	transistor
ped	$\mathrm{Z}_{\mathrm{m}}$	ommon emitter $\mathrm{gme}^{\text {m }}$
	P	large-signal $\mathrm{Gme}_{\text {me }}, \mathrm{g}_{\mathrm{ME}}$
pressure	p	mutual inductance
to	T	*mutual induc
work	W	mutual impedance $\quad \mathrm{Z}_{\mathrm{M}}$


nano (unit prefix for $10^{-9}$ ) $n$ naperian logarithm $\quad \log _{\epsilon}$, ln	```noise, excess (quantity) E```
tural logarithm $\quad \log _{\epsilon}, \ln$	(unit) $\quad \mu \mathrm{V} / \mathrm{V}_{\mathrm{dc}}$
natural resonant frequency	noise factor (quantity) $F, N F, F_{n}$
negative $\quad-$	(unit) dB
gative quantity	noise figur
See-specific quantity	See-noise factor
"negative reactance" - X , $\mathrm{X}_{\mathrm{C}}$	noise index
negative supply (opamp	uantity) NI
or npn transistor)	(unit) dB
rrent	noise power $\quad N, P_{n}$
voltage $\mathrm{V}_{\mathrm{EE}}$	noise, resistance
neper (power ratio unit) Np	See-thermal noise
parallel susceptance	noise temperature $\quad \mathrm{T}_{\mathrm{N}}$
$\left(\mathrm{B}_{L}-\mathrm{B}_{\mathrm{C}}\right), \pm \mathrm{B}$	noise, therm
et series reactance $\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right), \pm \mathrm{X}$	$\begin{array}{lr} \text { current } & \mathrm{i}_{\mathrm{N}}, \mathrm{I}_{\mathrm{n}(\mathrm{th})}, \mathrm{I}_{\mathrm{nR}} \\ \text { por } & \mathrm{N}_{\mathrm{th}}, \mathrm{P}_{\mathrm{n}(\mathrm{th})}, \mathrm{P}_{\mathrm{nR}} \end{array}$
eutralizing capacitor $\quad \mathrm{C}_{\mathrm{N}}$	voltage $\mathrm{e}_{\mathrm{N}}, \mathrm{E}_{\mathrm{n}(\mathrm{th})}, \mathrm{V}_{\mathrm{nR}}$
newton (unit) N	noise voltage
no connection NC	average (broadband)
noise current average	$\operatorname{spot}(1 \mathrm{~Hz} B W) \quad e_{n}, \overline{e_{n}}, \overline{E_{n}}, \overline{V_{n}}$
$\quad \overline{i_{n}}, \overline{I_{n}}$	$\begin{aligned} & e_{\mathrm{n}}, \mathrm{~V}_{\mathrm{n}}, \mathrm{e}_{\mathrm{n} / \sqrt{\mathrm{Hz}}}, V_{\mathrm{n} / \sqrt{\mathrm{Hz}}} \\ & \text { noise voltage, device } \end{aligned}$
$i_{n}, I_{n}, I_{n / \sqrt{H z}}$	equivalent input
noise current, device equivalent input average (broadband) $\overline{i_{n}}, \overline{I_{n}}$ spot ( 1 Hz BW )$i_{n}, I_{n}, I_{n / \sqrt{H z}}$	average (broadband)
	$\begin{array}{rr}  & e_{n}, V_{n}, E_{n}, e_{n}, V_{n} \\ \text { shot } & e_{s}, e_{n s}, V_{n s} \end{array}$
	(1 Hz BW)
	$e_{n}, V_{n}, e_{n / \sqrt{H z}}, V_{n / \sqrt{H z}}$



output impedance	peak voltage
circuit $\mathrm{Z}_{0}$	$\mathrm{e}_{\mathrm{pk}}, \mathrm{e}_{\mathrm{p}}, \mathrm{E}_{\mathrm{pk}}, \mathrm{E}_{\mathrm{p}}, \mathrm{V}_{\mathrm{pk}}, \mathrm{V}_{\mathrm{p}}$
$\mathrm{z}_{0}$	peak-to-peak
transistor $\mathrm{z}_{\mathbf{o}}$	current
See also-output	voltage $\quad \mathrm{E}_{\mathrm{p}-\mathrm{p}}, \mathrm{V}_{\mathrm{p}-\mathrm{p}}$
admittance	peak-to-peak (opamp)
output power $\mathbf{P}_{\mathbf{o}}$	current $\mathrm{I}_{\text {OPP }}$
output resistance	voltage $\quad \mathrm{V}_{\text {OPP }}$
ircuit $\mathrm{R}_{\mathrm{o}}$	percent $\quad \%$
amp $\mathrm{R}_{\mathrm{o}}, \mathrm{r}_{\mathrm{o}}$	period
transistor $\mathrm{r}_{\mathrm{o}}$	period, time
See also-output	permeability (magnetic)
uctance	permeance (magnetic)
output voltage $\quad \mathrm{E}_{\mathrm{o}}, \mathrm{V}_{\mathrm{o}}$	permittivity
output voltage, opamp	(dielectric constant) $\mathrm{k}, \mathrm{k}_{\mathrm{d}}$
maximum (peak) $\mathrm{V}_{\mathrm{O}}$	peta (unit prefix for $10^{15}$ ) P
peak-to-peak $\mathrm{V}_{\text {OPP }}$	phase angle $\quad \phi, \theta$
overshoot OS, os	admittance $\quad \phi_{\mathrm{Y}}, \theta_{\mathrm{Y}}$
p	
parallel	voltage $\phi_{\mathrm{E}}, \phi_{\mathrm{V}}, \theta_{\mathrm{E}}, \theta_{\mathrm{V}}$
acitance $\quad C_{P}$	phase margin $\phi_{\mathrm{m}}, \theta_{\mathrm{m}}$
impedance $\quad \mathrm{Z}_{\mathrm{p}}, \mathrm{Z}_{\mathrm{p}}$	phasor quantities
ductance $\quad L_{p}, L_{p}$	admittanc
resistance $\quad \mathbf{R}_{\mathbf{P}}, \mathrm{R}_{\mathrm{p}}$	$\mathbf{Y}_{\text {POLAR }}$
parameters, hybrid	rectangular $\quad \mathbf{Y}_{\text {RECT }}$
See-hybrid parameters	current
ssband voltage	lar $\mathrm{I}_{\text {POLAR }}$
amplification $\quad \mathrm{A}_{\mathrm{vo}}$	rectangular $\mathbf{I}_{\text {RECT }}$
eak current $\quad I_{p k}, i_{p}, I_{p}$	impedance
eak inverse voltage PIV	polar $\quad \mathbf{Z}_{\text {POLAR }}$
eak reverse voltage PRV	rectangular $\quad \mathbf{Z}_{\text {RECT }}$
peak power $\quad \mathrm{p}, \mathrm{P}_{\mathrm{pk}}, \mathrm{P}_{\mathrm{p}}$	


phasor quantities    voltage E, V   polar $\mathbf{E}_{\text {POLAR }}$   rectangular $\mathbf{E}_{\text {RECT }}$	potential See-voltage   pound (unit)   pound per square inch psi power
phi (Greek letter) $\phi$	power amplifier PA
pi (Greek letter) $\pi$	power factor $\cos \theta, \mathrm{PF}, \mathrm{pf}, \mathrm{F}_{\mathrm{P}}$
pico (unit prefix for $10^{-12}$ )   (pronounced "peeko")   p	power gain $G_{P}$ transistor, large-signal
Planck constant plate See-vacuum tube literature	common base $\quad \mathrm{G}_{\mathrm{PB}}$ common emitter $\quad \mathrm{G}_{\mathrm{PE}}$ transistor, small signal
*plug (male connector) P	common base $\quad \mathrm{G}_{\mathrm{pb}}$
polar admittance $\mathrm{Y} / \theta_{\mathbf{Y}}, \mathbf{Y}_{\mathrm{POLAR}}$	common emitter $G_{p e}$   power, device $P_{D}$
current $\quad \mathrm{I} / \theta_{\mathrm{I}}, \mathrm{I}_{\text {POLAR }}$	power dissipation $\quad P_{D}$
impedance $\mathrm{Z} / \theta_{\mathrm{Z}}, \mathrm{Z}_{\text {POLAR }}$	power, effective radiated
voltage $\quad \mathrm{E} / \theta_{\mathrm{E}}, \mathrm{E}_{\text {POLAR }}$	ERP   power input $\mathbf{P}_{\mathrm{in}}, \mathrm{P}_{\mathrm{i}}$
$\mathrm{V} / \theta_{\mathrm{V}}, \mathrm{V}_{\text {POLAR }}$	power level (quantity)
pole frequency (poles and zeros) $\mathbf{f}_{\mathbf{p}}$	$\begin{array}{lr} \text { reference } 1 \mathrm{fW} & \mathrm{~L}_{\mathrm{P} / \mathrm{fW}} \\ \text { reference } 1 \mathrm{~mW} & \mathrm{~L}_{\mathrm{P} / \mathrm{mW}} \end{array}$
positive	power level (unit)
positive quantities	reference $1 \mathrm{fW} \quad \mathrm{dBf}$
See-specific quantity	reference $1 \mathrm{~mW} \quad \mathrm{dBm}$
positive supply, opamp	power level, acoustic
current $\quad \mathrm{I}_{\mathrm{D}+}, \mathrm{I}_{\mathrm{CC}}$	reference 1 pW PWL, $\mathrm{L}_{\mathrm{P} / \mathrm{pW}}$
voltage $\quad \mathrm{V}_{\mathrm{D}+}, \mathrm{V}_{\mathrm{CC}}$	power output $\mathrm{P}_{\text {out }}, \mathrm{P}_{\mathrm{o}}$
positive supply, transistor	power, radiated $\quad \mathbf{P}_{\mathbf{R}}$
npn	power ratio (unit) dB
current $\quad \mathrm{I}_{\mathrm{CC}}$	power, signal $\quad \mathrm{S}, \mathrm{P}_{\text {s }}$
voltage $\quad \mathrm{V}_{\mathrm{CC}}$	power, total $\quad \mathbf{P}_{\mathrm{T}}, \mathrm{P}_{\mathbf{t}}$
pnp	
current $\mathrm{I}_{\text {EE }}$	
voltage $\quad \mathrm{V}_{\mathrm{EE}}$	



```ratio (unit) current, voltage or power (numeric), dB other (numeric)```	real part of transistor admittance common base forward transfer
ratio, power supply rejection (opamp) PSRR	$\begin{aligned} & \operatorname{Re}\left(y_{f b}\right), g_{f b} \\ & \operatorname{Re}\left(y_{i b}\right), g_{i b} \end{aligned}$
ratio, transistor	outp
forward current transfe small signal	$\operatorname{Re}\left(h_{o b}\right), \operatorname{Re}\left(y_{o b}\right), g_{o b}$ reverse transfer
mmon base $\quad h_{f b}$	grb
n collector $\quad \mathrm{h}_{\mathrm{f}}$	common emitter
ic (dc)	($\mathrm{yfe}_{\mathrm{fe}}$), g_{fe}
common emitter ratio, transistor	input output $\operatorname{Re}\left(y_{i e}\right), g_{i e}$
ltage transfer	
mon base	reverse transfer
mon collector	$\operatorname{Re}\left(y_{\text {re }}\right), \mathrm{g}_{\mathrm{re}}$
mmon emitter	rectangular form
ratio, turns $\quad \mathrm{n}, \mathrm{N}_{\text {p }}$	dmittance $\quad \mathrm{Y}_{\text {RECT }}$
reactance X	rrent $\quad \mathbf{I}_{\text {RECT }}$
-X, X_{C}	impedance $\quad \mathbf{Z}_{\text {RECT }}$
active $\quad+X, X_{L}$	voltage $\mathbf{E}_{\text {RECT }}, \mathbf{V}_{\text {RECT }}$
P	reference $\quad \mathrm{re}$, re
series $\quad \pm \mathrm{X}_{\mathbf{S}}, \mathrm{X}_{\text {s }}$	ngular frequency ω_{0}
	angular velocity
current $\pm \mathrm{I}_{\mathbf{X}}, \mathrm{I}_{\mathbf{X}}$	urrent
	frequency $f_{\text {o }}$
voltage $\pm \mathrm{E}_{\mathbf{X}}, \pm \mathrm{V}_{\mathbf{X}}, \mathrm{E}_{\mathbf{X}}, \mathrm{V}_{\mathbf{X}}$	voltage $\quad E_{\text {ref }}, \mathrm{V}_{\text {ref }}$
real part of (x) $\quad \operatorname{Re}(\mathrm{x})$	reluctance (magnetic) $\quad R$
	reluctivity (magnetic) $\quad v, \mu^{-1}$

$\begin{aligned} & \text { signs and marks } \\ & \text { equal to }\end{aligned} \quad=\quad \begin{gathered}\text { signs and marks } \\ \text { number }\end{gathered}$			
approximately	\approx	octothorp	\#
congruently	\cong	paragraph	I
identically	\equiv	parallel	11
not	$\not \equiv$	parentheses	()
nearly	\simeq	partial differential	д
not	\neq, \neq	percent	\%
very nearly	\fallingdotseq, \cong	period	
equivalent	$\hat{0}$	plus	+
exclamation mark	!	plus or minus	\pm, \pm
factorial	!	positive	+
greater than	>	positive or negative	\pm \#
not	$>$	pound	\#
or equal to	\geq, \geqq	prime	
hyphen		double (second)	
inch	"	triple (third)	
infinity	∞	proportion	
integral	\int	proportional, directly	y
less than	$<$	question mark	?
not	*	quotation marks "	" ", " "
or equal to	\leq, \leqq	radical sign	$\sqrt{ }$
macron	-	ratio	
mean value	-	second	
minute		sectional symbol	§
minus	-	semicolon	
multiplication	X,	solidus	1
negative	-	subtraction	-
not		therefore	.
equal to	$\neq \neq$	tilde	\sim
greater than	\downarrow	varies as	\propto
identical	$\not \equiv$	viculum	-
less than	*	virgule	/
		signal	S, sig

static transistor parameter	t
See-specific parameter	tangent
rage	hyperbolic tanh
See-quality factor	tau (Greek letter)
m $\boldsymbol{\Sigma}$	television TV
summation $\boldsymbol{\Sigma}$	temp
super high frequency shf	ambient $\quad t_{A}, T_{A}$
supply voltage sensitivity	case $t_{\text {c }}, \mathrm{T}_{\mathrm{C}}$
(opamp) PSS, $\mathrm{k}_{\text {Svs }}$	Celsius $t_{\text {c }}, \mathrm{t}, \mathrm{T}_{\mathrm{C}}, \mathrm{T}$
susceptance $\quad \mathrm{B}$	centigrade
capacitive $\quad \mathbf{B}_{C}$	See-Celsius
ductive $\quad \mathrm{B}_{\mathbf{L}}$	coefficient $\quad \alpha$, TC
susceptance, transistor	Fahrenheit $\quad t, t_{F}, \mathrm{~T}_{\mathrm{F}}$
aginary part	junction $t_{j}, \mathrm{~T}_{\mathbf{J}}$
y parameters)	Kelvin \quad T, T_{K}
common base	lead t_{L}, T_{L}
forward transfer	noise $\quad T_{n}, \mathrm{~T}_{\mathrm{N}}$
$\mathrm{ffb}, \pm \mathrm{b}_{\mathrm{fb}}, \mathrm{b}_{\mathrm{fb}}$	sink (heat) $t_{\text {S }}, \mathrm{T}_{\mathrm{S}}$
input $\pm \mathrm{jb}_{\mathrm{ib}}, \pm \mathrm{b}_{\mathrm{ib}}, \mathrm{b}_{\mathrm{ib}}$	tab ${ }^{t_{T}}, \mathrm{~T}_{\text {T }}$
output $\pm \mathrm{jb}_{\mathrm{ob}}, \pm \mathrm{b}_{\text {ob }}, \mathrm{b}_{\text {ob }}$	tera (unit prefix for $10{ }^{12}$) T
reverse transfer	tesla (magnetic unit) T
$\pm \mathrm{jb}_{\mathrm{rb}}, \pm \mathrm{b}_{\mathrm{rb}}, \mathrm{b}_{\mathrm{rb}}$	thermal conductance $\quad \mathrm{G}_{\boldsymbol{\theta}}$
common emitter	thermal conductivity λ
forward transfer	thermal noise
$\pm{ }^{ \pm} \mathrm{jb}_{\mathrm{fe}}, \pm \mathrm{b}_{\text {fe }}, \mathrm{b}_{\text {fe }}$	See-noise
input $\pm \mathrm{jb}_{\mathrm{ie}}, \pm \mathrm{b}_{\text {ie }}, \mathrm{b}_{\text {ie }}$	thermal resistance $\quad \theta, \mathrm{R}_{\boldsymbol{\theta}}$
output $\pm \mathrm{j} \mathrm{b}_{\text {oe }}, \pm \mathrm{b}_{\text {oe }}, \mathrm{b}_{\text {oe }}$	theta (Greek letter)
rse transfer	capital
$\pm \mathrm{jb}_{\mathrm{re}}, \pm \mathrm{b}_{\mathrm{re}}, \mathrm{b}_{\mathrm{re}}$	script
tage	
See-voltage	throat area
*switch S, SW	(acoustic horn) S_{0}, A_{0}
	time

time constant $\quad \tau, T$	*transformer
time, delay $\quad t_{d}$	*transistor \quad Q, TR
time, fall $t_{\text {f }}$	transistor parameters
time of one cycle T	See-specific parameter
time,	transistor-under-test TUT
T	transmission loss
ase propagation $\quad t_{\phi}$	attenuation)
lse duration t_{p}	quantity)
rise t_{r}	(unit) (numeric), dB
reverberation $\mathrm{T}_{\mathrm{RVB}}, \mathrm{T}, \mathrm{T}_{60}$	*tube, vacuum V
storage $\quad \mathrm{T}_{\mathrm{S}}, \mathrm{t}_{\mathrm{S}}, \mathrm{t}_{\text {STG }}$	$\operatorname{turn}(\mathrm{s}) \mathrm{n}, \mathrm{N}$
total ${ }^{\text {TOT }}$	ampere (magnetic unit)
torque T	A $\cdot \mathbf{t , A}, \mathbf{A}$
total (also meaning effective	primary ${ }^{\text {c }}$
or equivalent)	ratio $\quad \mathrm{n}, \mathrm{N}_{\mathrm{p} / \mathrm{s}}$
admittance $\quad Y_{T}, Y_{t}$	secondary $\quad \mathrm{N}_{s}$
capacitance $\quad \mathrm{C}_{\mathrm{T}}, \mathrm{C}_{\mathrm{t}}$	
conductance $\quad G_{T}, \mathrm{G}_{\mathrm{t}}$	u
current $\mathrm{I}_{\mathrm{T}}, \mathrm{I}_{\mathrm{t}}$	equency
dissipation $\quad \mathbf{P}_{\mathbf{t}}, \mathbf{P}_{\mathbf{T}}$	tra-violet UV
harmonic distortion THD	unijunction (transistor) UJT
impedance $\quad Z_{T}, Z_{t}$	unipolar transistor
inductance $\quad L_{T}, L_{t}$	(field effect transistor)
power $\quad P_{t}, \mathrm{P}_{\mathrm{T}}$	FET
resistance $\quad R_{T}, \mathbf{R}_{t}$	unknown
ceptance $\quad B_{T}, B_{t}$	capacitance C_{x}
me $t_{\text {TOT }}$	urrent $\mathrm{I}_{\mathbf{x}}$
voltage $\quad E_{T}, V_{T}, E_{t}, V_{t}$	mpedance Z_{x}
ransadmittance	ductance
See-admittance	sistance R_{x}
gm_{m}	tage $\quad E_{x}, V_{x}$
See also-mutual conductance	unloaded Q ($\mathrm{Q}_{\mathbf{u}}$

	voltage (quantity)
*vacuum tube vacuum tube voltmeter	average $\mathrm{E}_{\mathrm{av}}, \mathrm{V}_{\mathrm{av}}$ capacitive $\mathrm{E}_{\mathrm{C}}, \mathrm{V}_{\mathrm{C}}$
VTVM	dc $\quad \mathrm{E}_{\mathrm{dc}}, \mathrm{V}_{\mathrm{dc}}$
variable frequency oscillator	effective $\mathrm{E}_{\mathrm{rms}}, \mathrm{V}_{\mathrm{rms}}, \mathrm{E}, \mathrm{V}$ gain (amplification)
vector See also-phasor	$\mathrm{A}_{\mathbf{v}}, \mathrm{A}_{\mathbf{v}}$
admittance $\quad \mathbf{Y}$	
	ductive $\quad \mathrm{E}_{\mathrm{L}}, \mathrm{V}_{\mathrm{L}}$
dance	input $\quad \mathrm{E}_{\mathrm{in}}, \mathrm{V}_{\mathrm{in}}, \mathrm{E}_{\mathrm{i}}, \mathrm{V}_{\mathrm{i}}$
Itage E, V	instantaneous $\quad e, v$
velocity See also-speed	peak e_{p}, \mathbf{v}_{p}
ntity)	vel
(unit) ft/s, m/s	tput $\mathrm{E}_{\mathrm{o}}, \mathrm{V}_{\mathrm{o}}$
velocity of light	peak $\quad \mathrm{E}_{\mathrm{pk}}, \mathrm{V}_{\mathrm{pk}}, \mathrm{E}_{\mathrm{p}} . \mathrm{V}_{\mathrm{p}}$
See-speed	peak-to-peak $\mathrm{E}_{\mathrm{p} \text {-p }}, \mathrm{V}_{\mathrm{p} \text {-p }}$
velocity of sound c, v	polar $\quad \mathrm{E} / \theta_{\mathrm{E}}, \mathbf{E}_{\text {POLAR }}$
very high frequency ($30-300 \mathrm{MHz}$)	Volar
very low frequency	pply $\mathrm{E}_{\mathrm{PS}}, \mathrm{V}_{\mathrm{PS}}$
very low frequency	$\mathrm{E}_{\mathrm{p}}, \mathrm{V}_{\mathrm{p}}$
ry nearly equal to	rectangular
video cassette	
CR	$\mathrm{E}_{\mathrm{R}}, \mathrm{V}_{\mathrm{R}}$
volt (unit) V	ms, E, V
ac VAC, V AC, V ac,	$\mathrm{E}_{\mathrm{S}}, \mathrm{V}_{S}$
average $\quad \mathrm{V}$ av	voltage controll
dc VDC, V DC, V dc	VCO
peak V_{pk}	voltage controlle
peak-to-peak $\quad \mathrm{V}_{\mathrm{p}}$	VCR
root-mean-square $\quad \mathrm{V}_{\text {rms }}$	voltage controlled
ac (quantity) amplification $\mathrm{E}_{\mathrm{ac}}, \mathrm{V}_{\mathrm{ac}}$ $\mathbf{A}_{\mathrm{V}}, \mathbf{A}_{\mathrm{v}}$	voltage source VCVS


	```voltage, transistor breakdown base-emitter resistance \(\mathrm{BV}_{\text {CER }}, \mathrm{V}_{\text {CER(SUS) }}\) base-emitter short \(\mathrm{BV}_{\text {CES }}, \mathrm{V}_{\text {CES(SUS) }}\) base open \(\mathrm{BV}_{\mathrm{CEO}}, \mathrm{V}_{\text {CEO(SUS) }}\) emitter-to-base collector open \(\mathrm{BV}_{\text {EbO }}, \mathrm{V}_{\text {(BR)EBO }}\) voltage, transistor, sustaining \(\quad \mathrm{LV}, \mathrm{V}_{\text {(SUS) }}\) collector-to-mitter base-emitter resistance \(\mathrm{LV}_{\text {CER }}, \mathrm{V}_{\text {CER(SUS) }}\) base-emitter short \(\mathrm{LV}_{\text {CES }}, \mathrm{V}_{\text {CES(SUS) }}\) base-mitter voltage \(\mathrm{LV}_{\mathrm{CEV}}, \mathrm{V}_{\mathrm{CEV}(\mathrm{SUS})}\) base open voltage, working \(\mathrm{LV}_{\text {CEO }}, \mathrm{V}_{\text {CEO(SUS) }}\) voltampere (apparant power) (quantity) \(\quad \mathrm{S}, \mathrm{P}_{\mathrm{s}}\), VA (unit) VA volt-ohm meter VOM volume (cubic content) volume unit (similar to dBm) vu, VU```



The concise, easy-to-use, pocket guide to today's passive and active analog circuit technology.

## HANDBOOK OF ELECTRONICS FORMULAS, SYMBOLS, AND DEFINITIONS

Second Edition
By John R. Brand
Get instant access to thousands of electronics formulas, symbols, and definitions that relate to modern passive and active analog circuit technology-all in this convenient guide. Designed so that you can find information quickly and without using an index, the Handbook is extensive enough to serve as a desktop resource-yet small enough for you to take on the job or carry in your briefcase.

Clearly rendered with schematic illustrations, the Handbook fully covers transistors, in both static and small signal conditions. An entirely new section on operational amplifiers (Op Amps) is organized by type, rather than alphabetically, to speed you to information even faster. Eighty new diagrams and equation pairs represent a wide range of popular filter configurations.

You'll find detailed coverage of passive circuits, including series, parallel, and complex circuit formulas-along with additional information on impedance, admittance, susceptance, bandwidth, inductance, Q factor, and much more.

The new edition of this popular resource will be welcomed by engineers, technicians, commercial operators, students, hobbyists, and everyone concerned with electronics formulas, terms, and symbols.

## About the Author:

John R. Brand has worked for over 30 years as a working manager in engineering departments in major companies. He has served as Director of Research and Development and as Director of Engineering, and has been issued 23 U.S. patents.


[^0]:    Page Note: The phase angles of $\mathbf{E}$ and I may be confusing. To prevent confusion, always calculate polar impedance first and then assign zero degrees to the signal source. If the signal source is a voltage generator, $\theta_{\mathrm{I}}=-\theta_{\mathrm{Z}}$ and if the signal source is a current generator, $\theta_{\mathrm{E}}=\theta_{\mathrm{Z}}$. Use vector algebra to determine the phase angles of circuit voltages and/or currents. e.g., when a voltage source is connected to a series circuit, $\theta_{\mathrm{I}}=-\theta_{\mathrm{Z}}, \theta_{\mathrm{E}_{\mathrm{R}}}=\theta_{\mathrm{I}}, \theta_{\mathrm{E}_{\mathrm{L}}}=\theta_{\mathrm{I}}+90^{\circ}, \theta_{\mathrm{E}_{\mathrm{C}}}=\theta_{\mathrm{I}}-90^{\circ}, \theta_{\mathbf{E}_{\mathrm{t}}}=0^{\circ}$.

[^1]:    $\mathrm{I}_{\mathrm{B}}=\mathrm{DC}$ base current.
    $\mathrm{I}_{\mathrm{C}}=\mathrm{DC}$ collector current. See-I Note (1)
    $\mathrm{I}_{\mathrm{E}}=\mathrm{DC}$ emitter current.
    $\mathrm{I}_{\mathrm{BB}}=$ Base supply current.
    $\mathrm{I}_{\mathrm{CC}}=$ Collector supply current.
    $\mathrm{I}_{\mathrm{CO}}-$ See-I $\mathrm{I}_{\mathrm{CbO}}$
    $\mathrm{I}_{\mathrm{EE}}=$ Emitter supply current.
    $\mathrm{I}_{\mathrm{EO}}-\mathrm{See}-\mathrm{I}_{\text {Ebo }}$
    $\mathrm{I}_{\mathrm{CBO}}=\mathrm{DC}$ collector to base leakage current at a specified voltage and temperature with emitter open. (2) (3)
    $\mathrm{I}_{\mathrm{CEO}}=\mathrm{DC}$ collector to emitter leakage current at a specified voltage and temperature with base open. (2) (3)
    $\mathrm{I}_{\mathrm{CER}}=\mathrm{DC}$ collector to emitter leakage current at a specified voltage and temperature with a specified base to emitter resistance. See-I Notes (2) (3)
    $\mathrm{I}_{\mathrm{CES}}=\mathrm{DC}$ collector to emitter leakage current at a specified voltage and temperature with the base and emitter shorted. See-I Notes (2) (3)
    $\mathrm{I}_{\mathrm{CEV}}=\mathrm{DC}$ collector to emitter leakage current at a specified voltage and temperature with a specified base to emitter reverse bias voltage. See-I Notes (2) (3)
    $\mathrm{I}_{\mathrm{CEX}}=\mathrm{DC}$ collector to emitter leakage current at a specified voltage and temperature with a specified base to emitter circuit. See-I Notes (2) (3)
    $\mathrm{I}_{\mathrm{EBO}}=\mathrm{DC}$ base to emitter reverse bias leakage current at a specified voltage and temperature with open collector. See-I Notes (2) (3)

[^2]:    F - See-NF, See also-F, Passive Circuits
    $\mathrm{F}_{\mathrm{N}}$ - See-NF
    $f_{c}=$ Symbol for cutoff frequency. (The half power or 3 dB down frequency)
    See-f $f_{c}$, Opamps
    $\mathrm{f}_{\mathrm{T}}=$ Gain-bandwidth product. The frequency at which the common emitter small-signal forward current transfer ratio falls to unity. (dc biased for large signal)
    $f_{t}=$ Same as $f_{T}$ except biased for small-signal.
    $f_{\alpha b}-$ See $-f_{\text {hfb }}$
    $f_{\text {de }}-$ See-f $\mathrm{f}_{\text {hfe }}$
    $\mathrm{f}_{\mathrm{hfb}}=$ Common base small-signal forward current transfer ratio cutoff frequency with output ac shorted.
    $\mathrm{f}_{\text {hfe }}=$ Common emitter small-signal forward current transfer ratio cutoff frequency with output ac shorted.
    $\mathrm{G}_{\mathrm{pb}}=$ Common base small-signal average power gain.
    $\mathrm{G}_{\mathrm{pe}}=$ Common emitter small-signal average power gain.
    $\mathrm{G}_{\mathrm{pe}(\text { conv })}=$ Common emitter conversion gain.
    $\mathrm{g}_{\mathrm{me}}=$ Common emitter small-signal transconductance.

[^3]:    A-See-Av
    $\alpha-$ See- $\alpha$ (alpha)
    $\mathrm{A}_{\mathrm{CL}}$-See-A $\mathbf{A C L}^{\text {VCL }}$
    $\mathrm{A}_{\text {DIFF }}-\mathrm{See}-\mathrm{A}_{\text {VD }}$
    $\mathrm{A}_{\text {(fo) }}-\mathrm{See}-\mathrm{A}_{\mathrm{vo}}$
    $\mathrm{A}_{\mathrm{I}}=$ Large signal current amplification (gain). Also dc current gain in direct coupled circuits.
    $\mathbf{A}_{\mathbf{i}}=$ Small signal current amplification (gain).
    $\mathrm{A}_{\mathrm{IAC}}=$ Alternating current amplification (gain).
    $\mathrm{A}_{\text {IDC }}=$ Direct current amplification (gain).
    $\mathbf{A}_{\mathbf{m}}=$ Gain margin. The reciprocal of the open-loop voltage amplification at the lowest frequency at which the open-loop phase shift is such that the output is in phase with the inverting input. See also $-\boldsymbol{\theta}_{\mathrm{m}}$
    $\mathrm{A}_{\mathrm{o}}-\mathrm{See}-\mathrm{A}_{\mathrm{vo}}$
    $\mathrm{A}_{\mathrm{OL}}$ - $\mathrm{See}-\mathrm{A}_{\text {VOL }}$
    $\mathbf{A}_{\mathbf{V}}=$ Large signal voltage amplification (gain). Also dc voltage gain in direct coupled circuits.
    $\mathbf{A}_{\mathbf{v}}=$ Small signal voltage amplification (gain).
    $A_{\text {VAC }}=A C$ voltage amplification (gain).
    $\mathbf{A}_{\text {VD }}=$ Large signal differential voltage amplification (gain).
    $A_{\text {VDC }}=\mathrm{DC}$ voltage amplification (gain).
    $A_{\text {VCL }}=$ Large signal closed-loop voltage amplification. The large signal voltage gain of an opamp stage with inverse feedback. Applies also to dc voltage gain in direct coupled circuits. This symbol is used in place of $A_{V}$ only when the meaning would otherwise be confusing. See also-A $\mathbf{V}_{\mathbf{V}}$

[^4]:    $\mathrm{G}_{\mathrm{m}}=$ Large-signal forward transconductance.
    $\mathrm{g}_{\mathrm{m}}=$ Small-signal forward transconductance.
    $\mathrm{G}_{\mathrm{P}}=$ Large-signal power gain.
    $\mathrm{G}_{\mathrm{p}}=$ Small-signal power gain.
    $G_{v}=$ Voltage gain. See also $A_{v}$
    $\mathrm{H}_{\mathrm{o}}=$ Passband gain.
    I $+=$ Positive dc supply current
    I- = Negative dc supply current
    $\mathrm{I}_{\mathrm{A}}=$ Amplifier dc supply current
    $\mathrm{I}_{\mathrm{ABC}}=$ Amplifier bias current.
    $I_{B}=$ Bias current
    $I_{C C}=$ Positive dc supply current
    $I_{D}=$ Device dc supply current
    $\mathrm{I}_{\mathrm{D}+}=$ Device positive dc supply current
    $I_{D-}=$ Device negative dc supply current.
    $I_{D G}=$ Non-inverting input grounded current.
    $I_{D O}=$ Non-inverting input open current.
    $\mathrm{I}_{\mathrm{EE}}=$ Device negative dc supply current.
    $\mathrm{I}_{\mathrm{g}}=$ Small-signal generator (source) current.
    $\mathrm{I}_{\mathrm{IB}}=$ Input bias current
    $\mathrm{I}_{\text {IN }}, \mathrm{I}_{\text {in }}=$ Input signal current

[^5]:    $t_{r}=$ Rise time. The time required for an output voltage step to rise from $10 \%$ to $90 \%$ of the final value.
    $t_{\text {setlg }}=$ Settling time. See $-t_{\text {tot }}$
    $\mathrm{T}_{\mathrm{stg}}=$ Storage temperature .
    $\mathbf{t}_{\text {THL }}$-See- $\mathrm{t}_{\mathbf{f}}$
    $t_{\text {tot }}=$ Total response time. (Settling time) The time between a step-function change of the input signal level and the instant at which the magnitude of the output signal reaches for the last time a specified level range.
    $\mathrm{U}=$ Teletypewriter or computer printer substitute for Greek letter mu ( $\mu$ ).
    $\mathrm{u}=$ Typewriter substitute for Greek letter mu $(\mu)$.
    $\mathrm{V}=$ Symbol for the voltage quantity as well as for the volt unit.
    $\mathrm{V}_{\mathrm{A}}=\mathrm{DC}$ or rms large signal voltage.
    $\mathrm{V}_{\mathrm{a}}=$ Small signal rms signal voltage.
    $\mathbf{v}_{\mathrm{A}}=$ Instantaneous large signal voltage.
    $\mathbf{v}_{\mathbf{a}}=$ Instantaneous small signal voltage.
    $+\mathrm{V}=$ Any positive dc voltage.
    $-\mathrm{V}=$ Any negative dc voltage.
    $\mathrm{V}+=$ Positive polarity power supply voltage.

