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PREFACE 
 

 

Chapter 1 presents modeling of low-salinity waterflood with temperature-dependent 

geochemical reactions for heavy oil carbonate reservoirs. It investigates the feasibility of 

thermal low-salinity waterflood in heavy oil reservoir. Sensitivity study has also been 

performed to capture the uncertainty originated from deployment of the process in a 

thermally-conductive reservoir. This study suggests careful evaluation of heat loss before 

deploying hot low-salinity waterflood process. 

Chapter 2 presents SAGD (Steam Assisted Gravity Drainage) history from numerical 

modeling point of view. In this chapter, the path from its inchoate state to the present 

condition has been traced mentioning the more outstanding studies conducted. The 

application of a new technology has been stated in the SAGD process to both reduce the 

operational costs and improve the whole process’s efficiency. 

Chapter 3 evaluates oil production optimization via optimum artificial lift design. The 

results of this study enable us to compare the gas lift method with electric submersible pump 

(ESP) method and the optimum and the best option can be selected. 

Chapter 4 presents the need and basic technical aspects of emulsification technology in 

reducing viscosity and flow property of heavy oil. Moreover, attractive properties of 

PolyVinyl Alcohol (PVA) and few research efforts on its suitability as an emulsifying agent 

in heavy and extra-heavy oil emulsification are reviewed.  

In Chapters 5 and 6, asphaltenes chemistry and scaling equations for asphaltene 

precipitation modeling are reviewed. The topic of asphaltene is too hard to be explained and 

reviewed in two chapters. Nevertheless, a big effort has been made to sum up all important 

aspects. It is expected that the latter two chapters provide better understanding of asphaltene 

precipitation associated with oil and heavy oil industry.  

Chapters 7 to 15 report applications of artificial intelligence (AI) and data mining 

techniques in upstream of oil and heavy oil industry:  

Chapter 7 presents an AI model for estimating wax deposition in crude oil system. The 

results are successfully compared with two previously reported models.  

Chapter 8 presents three different AI models for prediction of well testing parameters 

(permeability, skin factor and reservoir initial pressure) for naturally fractured oil reservoirs. 

Well testing is an interpretation technique during which pressure of a well is recorded with 

respect to time to estimate reservoir and well parameters which are essential to reservoir 

characterization and management.  
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Chapter 9 examines the application of AI technique for predicting well productivity 

index (PI) for horizontal oil wells. Data obtained from flow and pressure unsteady tests nearly 

at insitu reservoir conditions can be used to determine the productivity index. Reservoir 

productivity index of wells can be considered as one of the most important parameters in 

determining the economic value of a reservoir. Productivity index of wells accompanying 

with certain reservoir parameters plays an important role in the evaluation of oil and heavy oil 

reserves.  

Chapter 10 evaluates petro-physical properties (porosity and permeability) of carbonate 

oil reservoirs using various AI techniques. Accurate determination of petro-physical 

properties plays an important role in reservoir engineering calculations.  

Chapters 11 to 15 report applications of AI and data mining in drilling engineering 

calculations: 

Chapter 11 presents prediction and elimination of drill string sticking which is a 

frequently occurring and risk-prone problem during drilling operation that imposes rises to 

the drilling cost of operations. Developing reliable and new predictive tools for minimizing 

drill string stuck is therefore of great interest in drilling engineering and can be used in 

drilling operation design. 

Chapter 12 presents an integrated lost circulation prediction in drilling operation as lost 

circulation is one of the most important issues that oil industry challenges with. Throughout 

drilling operation, cementing job or moving down the drilling pipes, great pressure of drilling 

fluid causes an over balance pressure on reservoir, hence the drilling fluid penetrates the 

reservoir and is wasted. When the total loss happens, drilling pipes may stuck and make some 

incredible issues. In this situation, it is better to know how drilling fluid moves and how much 

loss occurs, and then predict loss severity and add proper drilling fluid contents. Several 

obtainable factors affect circulation loss while drilling. In this chapter, operational parameters 

of an oilfield were used to predict the mud loss severity.  

Chapters 13 and 14 present applications of AI methods in optimization and 

improvement of drilling penetration rate in oil fields. The advantage of the latter methods 

than the other drilling improvement methods is consideration of all effective parameters on 

drilling operation and being accurate, comprehensive, and easy application. 

Chapter 15 reports a reliable method for estimating the drilling fluid density in the mud 

technology as accurate knowledge of the drilling fluid densitiy is important in many drilling 

engineering calculations.  
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ABSTRACT 
 

Enhancing oil mobility and drainage by thermal process in heavy oil reservoirs has 

been well understood for increased oil recovery. Carbonate reservoirs naturally tend to 

have high residual oil saturation due to wettability and heterogeneity. Combined with 

thermal process, low-salinity waterflood (LSWF) has become a promising EOR 

candidate for heavy oil carbonate reservoirs. The LSWF is cost-effective over tertiary 

EOR and has been reported to reduce residual oil saturation. The LSWF effect inherently 

involves thermal sensitivity because wettability modification effect behind LSWF 

mechanism is attributed to temperature-dependent geochemical reactions in oil-brine-

mineral system. 

Spatial and temporal variations of temperature in the reservoir provide various levels 

of mineral dissolution, aqueous reaction, and ion exchange determining various levels of 

wettability modification as well as oil mobility. In consideration of thermal effect on 

geochemical reactions, this study has investigated the feasibility of thermal LSWF in 

heavy oil reservoir. Sensitivity study has captured the uncertainty when the process has 

been deployed in a thermally-conductive reservoir. 
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INTRODUCTION 
 

The most common enhanced oil recovery (EOR) technology subject to heavy oil 

reservoirs is thermal method. Thermal recovery produces oil by heating viscous-oil reservoir 

(Oseterloh and Jones 2003; Ramlal et al. 2004). The heat is transported into reservoir by the 

injection of hot fluids such as steam or hot water. Though most of thermal recovery methods 

provide heat through steam, the steam injection is not feasible or economical under certain 

conditions. Hot water flood is closer to conventional waterflood than any other thermal 

recoveries in its operation and is comparatively simple process (Farouq Ali 1974). Hot water 

generated on the surface is injected into reservoirs and enhances oil mobility to flow easily to 

producer. Messner and Stelling (1990) have provided the feasibility of hot waterflood 

combined with steam injection in the field. Goodyear et al. (1996) have assessed the 

application of hot waterflood in heavy oil (up to 400 cp) reservoir through numerical 

simulation. Hot wateflood process has lower energy injection rates than steam injection and 

energy transport to reservoir becomes less. The lower estimated ultimate recovery due to less 

transported energy into reservoir may be overcome through hybrid process with another EOR 

method. 

One of possible EOR methods is low-salinity waterflood (LSWF) because of high 

potential to modify wettability alteration in carbonate reservoirs. Even though reservoir is in 

high temperature condition, LSWF has provided improved oil recovery through imbibition 

tests in chalk (Zhang et al. 2007). Advantages of LSWF have been recognized through 

substantial experiments. Zhang and Morrow (2006) have conducted a number of experiments 

to reveal mechanism responsible for LSWF effect. Lager et al. (2008) have suggested 

necessary condition to observe improved oil recovery in sandstone. However, an exact 

mechanism behind LSWF in sandstone is still controversial. Among hypothetical mechanisms, 

wettability modification toward water wetness has explained the observed LSWF effects 

through experimental studies (Jadhunandan and Morrow 1995; Tang and Morrow 1999). For 

carbonate reservoirs, the observation of modified water wetness due to cationic surfactants 

dissolved in seawater, which is catalyzed by sulfate ion presented in SW (Zhang et al. 2006). 

It has encouraged to investigate similar conceptual LSWF named smart water, modification 

of ion composition of the injected fluid (Standnes et al., 2002; Austad et al. 2008). Well-

known successful case is the Ekofisk in the North Sea. The fractured chalk reservoir has been 

flooded by seawater for about 25 years with great success. Lager et al. (2008) and Austad et 

al. (2010) have illustrated the wettability alteration is originated from chemical reaction in 

crude oil-brine-rock system for both sandstone and carbonate reservoirs. It has triggered 

LSWF modeling to combine geochemistry covering mineral dissolution/precipitation, 

aqueous reaction, and ion exchange (Cuong et al. 2013). The geochemistry-coupled LSWF 

has been recognized as a great option to integrate with other EOR methods, hot waterflood in 

this study. 

Investigations between thermal effect and wettability modification attributed to 

geochemistry have been conducted under various temperature conditions. Strand et al. (2006) 

has investigated seawater injection experiment in chalk and recorded effluent concentration  

of Ca2+ and SO4
2- at various temperatures. As temperature increases, effluent of both 

components has been retarded. Another experiments (Zhang et al. 2007) have investigated 

temperature effect on effluent concentration of Ca2+and Mg2+. It has revealed Ca2+ has 
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stronger tendency to remain in chalk core over Mg2+ at 20C and vice versa at 130C. 

Imbibition experiments were performed to investigate how Ca2+, Mg2+, and SO4
2- influence 

oil production at different temperatures. Different oil productions have been resulted 

according to composition of injecting fluid at different temperatures. No matter what 

composition injection fluid has, higher temperature has provided increased oil recovery. 

Despite of substantial experiments with respect to the influence of thermal energy n 

LSWF effects in carbonate reservoirs, the investigation of thermal low salinity waterflood  

or hot LSWF has not been thoroughly assessed for improving oil production. This study  

has assessed synergetic effects contributing to wettability modification and mobility control 

during hot LSWF in carbonate reservoirs. This study also covers the investigation of 

improved LSWF effects due to transported thermal energy and sensitivity study of the process 

in conductive reservoirs. 

 

 

BASIC THEORY 
 

Modeling hot LSWF covers multi-phase and multi-component transport involving non-

isothermal condition as well as geochemical reactions. Geochemical reactions considered in 

this study are aqueous reaction, mineral dissolution/precipitation, and ion exchange. Hot 

waterflood requires the solution of energy balance equation to define temperature of reservoir 

at each time. The calculated equilibrium temperature at specific time influences geochemical 

reaction by controlling equilibrium constant of geochemical reactions as well as oil mobility. 

In aqueous reactions, the composition of aqueous phase is determined to reach 

thermodynamic equilibrium state at specific temperature. This reaction is faster than mineral 

dissolution/precipitation explained later. At equilibrium, reaction quotient, aka ion activity 

product (IAP) becomes equal to equilibrium constant as follows: 

 

0,   eqKQ  (1) 
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where   represents aqueous reaction; 
,eqK  the equilibrium constant at specific temperature; 

Q  the IAP; k  the component; R  the gas constant; T  the temperature; 
aqn  the number of 

aqueous components and gases components; 
fG  the Gibbs free energy for each species; 

ka  

the activity; 
,kv  the stoichiometry coefficients of aqueous reaction. 

The activity is the adjusted concentration of ions in solutions to consider electrostatics 

interacting between ions. It is the function of molality or molarity of ions using activity  
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coefficients. Commonly, three models covering Davies model, B-dot model, and Pitzer’s 

model are applied to predict activity coefficients. These models account for temperature effect 

on ion activity as well. For diluted solution, first two models are more appropriate than 

Pitzer’s model. In this study, B-dot model, modified Debye-Hückel model, is used as 

calculated below: 
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where 
k  is the activity coefficient; 

km  the molality; 
A , 

B , and B  the temperature 

dependent coefficients; I  the ionic strength; 
ka  the ion-size parameter; 

kz  the charge number 

of ion. 

In addition to temperature-dependent activity, temperature effect reflected in aqueous 

reaction has been introduced through equilibrium constant. It is calculated with analytical 

expression as follows: 
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where 
1A , 

2A , 
3A , 

4A , and 
5A  are the fitting parameters. 

Participating minerals in target carbonate reservoirs are mainly comprised of calcite and 

dolomite. Calcite and dolomite dissolution and precipitation are heterogeneous and non-

equilibrium reactions and represented in below: 

 
  3

2 HCOCaHCalcite  

 
  2

3

2 Mg2HCOCa2HDolomite  

 

The mineral reactions are relatively slow reactions, taking place at a significantly smaller 

rate than the transport processes that redistribute components. The kinetic reaction for 

dissolution or precipitation of minerals follows the rate law suggested by Bethke (1996): 
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where   represents mineral type, calcite or dolomite; 
r  the reaction rate; 

k  the reaction 

rate constant; 
Â  the reactive surface area of mineral; 

,eqK  the solubility product constant at 

specific temperature; 
Q  the ion activity product which is analogous to ion activity product in 

aqueous reaction and calculated as follows: 
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where ,kv  is the stoichiometric coefficients of mineral reaction. 

Mineral dissolution/precipitation become the formation/consumption of aqueous species. 

The rate of mineral reactions is related to rate of aqueous species change. It is determined 

with reaction rate and stoichiometric coefficients as represented below: 

 

 rvkk ,,   (10) 

 

where 
 ,k

 is the reaction rate of formation/consumption of component. 

In mineral dissolution/precipitation, temperature change affects solubility product 

constant, 
,eqK  as well as activity. The solubility product constant determined with 

polynomial equation, which is analogous to aqueous reaction. Kinetic reaction rate is also 

highly influenced by the temperature. This follows Arrhenius equation to adjust reaction rate 

constant as follows: 
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where 
k  is reaction rate constant at reference temperature; 

aE  the activation energy; 
T  the 

reference temperature. 

Divalent cations and anions (Ca2+, Mg2+, and SO4
2-) are observed to interact with 

carbonate rock surface through NMR experiments (Kwak et al. 2014). 

It is modeled with reversible ion exchange reaction. Similar to aqueous and mineral 

reactions, chemical equilibrium constants define equilibrium composition in aqueous and 

solid phases. The chemical equilibrium constant in ion exchange widely referred to selectivity 

coefficient, which is function of activity. Related ion exchange reactions and selectivity 

coefficients are represented below: 
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where X  represents carbonate rock surface; 
Ca

NaK  and 
Mg

NaK  the selectivity coefficients. 

 

 

MODELING 
 

Non-isothermal multi-phases and multi-components transport simulation has conducted 

with GEM developed by CMG. Oil property modeling is provided by WINPROP. To find 

unknown relative permeability curves before and after wettability modifications, history 

matching process has been conducted with CMOST. Sensitivity study to analyse uncertainty 

of hot LSWF has been also carried out with CMOST. 

 

 

Description of Coreflood Experiment 
 

Gachuz-Muro and Sohrabi (2014) have investigated the performance of smart water for 

heavy oil carbonate reservoir under high temperature (92C). Smart water is 10 times diluted 

seawater, which comes from Gulf of Mexico. The experiments cover imbibition test for six 

cores and coreflood for four cores. Only limestone 6 coreflood experiment is considered in 

this study because it provides improved oil production due to smart water injection. 

Description of smart water, formation water and core are represented in Tables 1 and 2. 

For oil modelling, Gachuz-Muro and Sohrabi (2013) provided data in a range of 

temperature. The oil viscosity data from 20C to 115C is represented in Figure 1. However, 

the density of oil is only evaluated at 20C with 14.12API. Because WINPROP hardly 

understands API directly, reference water density is required. No information of water 

density is represented in a series of the referred studies. 
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Table 1. Brine composition 

 

 
Formation water 

(mg/l) 
Seawater (mg/l) 

 

10 times diluted seawater 

(mg/l) 

 

Na+ 9,614.97 11,429.38 1,142.93 

Ca2+ 320.36 429.60 42.96 

Mg2+ 218.94 1,361.60 136.16 

K+ - 351.10 35.11 

Ba2+ - 0.01 - 

Sr2+ - 8.37 0.83 

Cl- 15,117.25 20,040.00 2,004.00 

SO4
2- 550.63 3,500.00 350.00 

HCO3
- 1,135.9 47.58 4.75 

pH 8.01 7.80 7.20 

Gachuz-Muro and Sohrabi, 2014. 

 

Table 2. Core properties 

 

Length 

(cm) 

Diameter 

(cm) 
Porosity 

Pore volume 

(ml) 

Permeability 

(mD) 

 

Initial water 

saturation 

15.2 

 
2.52 0.2064 15.55 19.40 0.3213 

Gachuz-Muro and Sohrabi, 2014. 

 

GWB developed by The Geochemist’s Workbench has calculated density of water with 

formation water composition and it is 1.025g/cm3. Despite of insufficient density data in 

reservoir temperature, one-dimensional coreflooding, neglecting gravity force, places 

importance on viscosity rather than density. After matching density data at only 20C, 

modified-Pedersen model has been applied to match viscosity data in a range of temperature. 

To reduce matching error between modelling and experiment data, viscosity data from 65 to 

115C are covered, around mainly ambient reservoir temperature (92C). Regressed viscosity 

data is represented in Figure 1. 

 

 

RESULT 
 

In LSWF experiment, 10 times diluted seawater injection follows seawater injection. To 

find unknown relative permeability curves, history matching process proceeds to match 

production data. Injection rate is assumed to be 0.0001525 m3/day, which is in the range  

of typical displacement rate (Gupta et al., 2011). Based on the injection rate, relative 

permeability curves before and after low salinity water injection are determined. Matching 

relative permeability curve has taken Corey type into account. History matching to oil 

production is represented to Figure 2. 
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Figure 1. Experimental and regressed data of temperature-dependent oil viscosity (Gachuz-Muro and 

Sohrabi, 2013). 

 

 

Figure 2. History matched oil production in coreflood. 
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(a) Before    (b) After 

Figure 3. Estimated relative permeability curves before and after LSWF through history matching 

process. 

Relative permeability curves before and after low salinity water injection is drawn and 

also shown in Figure 3. 

 

 

LSWF (92C) 
 

In this study, ion exchange of Ca2+ to carbonate rock surface is assumed to be responsible 

for wettability modification. The amount of adsorbed ion on carbonate rock surface is 

calculated with equivalent fraction of ion, which is equivalent to concentration. At the end of 

seawater and LSWF, equivalent fractions of Ca2+ are represented in Figure 4. 

As low salinity water is injected, equivalent fraction increases and changes water-wetness 

of reservoir. The LSWF have caused the increase of equivalent fractions of Ca2+, 

approximately by 300% and resulted in additional oil recovery as much as 15% due to 

wettability modification, as shown in Figure 5. The end point of oil has been estimated to be 

unity due to low oil mobility in not only seawater injection, but LSWF. However, end point 

of water becomes to a third and 8% of residual oil saturation gains mobility due to LSWF. To 

verify pronounced wettability alteration effects on mainly end point of water and residual oil 

saturation, sensitivity study has evaluated Corey parameters to distinguish sensitive factors in 

heavy oil core model. Reduced quadratic proxy model has been constructed and evaluated as 

shown in Figure 6. Experimental designs, which are subject to sensitivity study, have been 

chosen in history matching process accompanying acceptable error. It also has concluded 

residual oil saturation is primary sensitive factor and next one is end point of water. 

 

 

Hot LSWF (115C) 
 

As confirmed with Figure 3, 35% and 27% of oil barely mobile in seawater injection and 

LSWF. 
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Figure 4. Profile of equivalent fraction of Ca2+ after seawater injection and LSWF. 

 

 

Figure 5. History of oil recovery factor of LSWF and hot LSWF with and without heat loss. 

However, higher than the residual oil saturations, 62% and 47% of oil have remained due 

to unfavorable mobility of oil in seawater injection and LSWF. To overcome this problem 

arising in heavy oil production, hot waterflood supplements oil mobility to flow easily. 

Measured viscosity data up to 115C is regressed in Figure 1 and reflected in this model. 

LSWF following seawater injections with temperature of 92C and 115C have been 

compared. 
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Figure 6. Results of sensitivity study for LSWF with respect to Corey parameters. 

Hot LSWF has reduced oil viscosity up to approximately 45 cp, which is very low 

compared to 111.7 cp in LSWF with temperature of 92C. In comparisons between seawater 

injections at 92C and 115C, hot seawater injection has contributed to 5.6% increase of oil 

recovery over seawater injection with temperature of 92C. After hot seawater injection, 

successive hot LSWF has recovered additional oil up to 7.2% as well. As mentioned before, 

thermal energy influences not only oil viscosity reduction but also geochemical reaction to 

control wettability modification level. The improvement of oil production has come from 

both effects. In the seawater injection, increase of oil production due to thermal effect is 

mainly responsible for viscosity reduction. Negligible increase of the equivalent fraction of 

Ca2+ in hot seawater injection changes negligible wetness of reservoirs. However, in LSWF, 

thermal energy significantly increases the equivalent fraction, as shown in Figure 7, up to 

about 17% over LSWF with temperature of 92C. This increase has attributed to significant 

temperature-induced mineral dissolution in LSWF. Overall 200% more dissolution of 

minerals considerably produces potential ion exchangeable Ca2+ due to high temperature in 

LSWF as shown Figure 8. 

This approximately contributes to 1.6% increase of oil recovery while viscosity reduction 

effect involves 5.6% of additional oil recovery. The 1.6% increase is meaningful because 

generally conventional LSWF has been reported to enhance oil recovery up to about 10-20%. 

In this heavy oil simulation, this increase corresponds to 10% of improvement of original 

non-thermal LSWF, 15% increment of oil recovery. This highly potential hot LSWF has risk 

to overestimate oil production. 

The conductive reservoir loses internal heat to overlying/underlying layers through 

mainly convection and conduction. This coreflood model considers only heat loss due to 

conduction and production with assumption of perfectly sealed by surrounding hypothetical 

shale. Thermal properties of reservoir and surrounding shale are listed in Table 3. Heat loss to 

underlying/overlying layers is calculated through analytical solution using method of 

Vinsome and Westerveld (1980). 
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Figure 7. Profile of equivalent fraction of Ca2+ of LSWF and hot LSWF after 30 pore volume injection. 

 

Table 3. Thermal properties of reservoir and shale 

 

Reservoir 

Density (kg/m3) 2,450 

Heat capacity (J/kg/K) 968.7347 

Thermal conductivity (J/m/s/K) 2.3971 

Shale 

Density (kg/m3) 1,995 

Heat capacity (J/kg/K) 1,214.2 

Thermal conductivity (J/m/s/K) 0.88 

 

Figure 9 has shown temperature distribution after 30 PV injection in hot LSWF and 

corresponding oil viscosity and saturation. Heat loss mitigates thermal effects, lowering oil 

viscosity and promoting mineral dissolution. The overall mineral dissolution has been 

reduced as much as 58% compared to non-heat loss case as shown in Figure 8. Spatial 

variation of temperature in reservoir produces various levels of thermal effects spatially. In 

the vicinity of injector, reducing residual oil saturation, end point of water, and oil viscosity 

due to thermal energy are still effective. Still high viscosity and oil-wetness where is far  

from injector aggravates production. Because viscosity and wettability alteration level near 

producer is more important than injector to determine production, the final oil recovery is 

limit to only about 55%, compared to 60% in no heat loss case as shown in Figure 5. 

Regardless of heat loss, the hot LSWF is still more effective than LSWF with temperature of 

92C, 1.8% increase. 

The productivity of hot LSWF substantially depends on thermal properties of reservoir 

and shale. Sensitivity study with respect to thermal properties is necessary to analyse an 

accurate production of hot LSWF. Variance-based Sobol’s analysis has evaluated sensitive 

factors influencing heat loss represented in Figure 10. 



Modeling of Low-Salinity Waterflood … 13 

 

Figure 8. History of mineral dissolution of LSWF and hot LSWF with and without heat loss. 

 

 

Figure 9. Results of hot LSWF considering heat loss after 30 pore volume injection. 
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Figure 10. Results of variance-based Sobol’s sensitivity study. 

 

 

Figure 11. Heterogeneous permeability of pilot-scaled reservoir. 

Following the results, shale properties are more important factor than reservoir properties 

to determine the oil production of hot LSWF. Density, thermal conductivity, and heat 

capacity of shale are factors to define thermal diffusivity of shale. 

 

 

Application in Pilot-Scaled Reservoir 
 

The performance of hot LSWF is evaluated in pilot-scaled reservoir. The target 

heterogeneous reservoir has pore volume as 1.80215105 m3; porosity as 0.20065; oil volume 
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as 1.22312105 m3; temperature as 92C and is represented in Figure 11. Without seawater 

injection, LSWF with temperature of 92C and 120C has been deployed into heavy oil 

reservoirs. This simulation is set to be constant injection to compare oil production, 

quantitatively, under same condition. 

Oil recovery for both processes is represented Figure 12. For 10 years, LSWF recovers 

approximately 31% of OOIP. Hot LSWF improves oil recovery up to 40% in spite of heat 

loss to overlying/underlying formations. The reasons of the remarkable improvement are 

viscosity reduction and dominant mineral dissolution controlling wettability modification 

levels. Figure 13 describes the profile of oil viscosity in LSWF and hot LSWF. In the LSWF, 

high pressurized zone near injector, oil viscosity arises up to 283 cp. In contrast, hot LSWF 

reduces viscosity significantly near injector corresponding to about 45 cp. This effect leads to 

favorable conditions for injectivity as well as oil production. Injectivity is another problem 

arising in heavy oil production. Figure 14 illustrates bottom-hole pressure at injector. Less 

required viscous force to displace oil reduces the bottom-hole pressure up to 20%. As well as 

advantages near injector, oil around producer becomes less viscous due to water breakthrough 

involving high thermal energy. As indicated in coreflood study, oil viscosity near producer 

significantly determines production. 

With benefits of reduced oil viscosity, wettability of reservoir has become modified, 

significantly, in hot LSWF. 

Ion exchange of Ca2+ has become accelerated, as shown in Figure 15, because of thermal 

energy. The mineral dissolution near injector is dominant. Overall dissolved minerals are 

more in hot LSWF than in LSWF up to about 19% as shown in Figure 16. Figure 17 describes 

history results of hot LSWF. With increase of mineral dissolution and decrease of Ca2+ 

production, decrease of Ca2+ in aqueous phase indicates increase of ion exchange of Ca2+. 

 

 

Figure 12. History of oil recovery for LSWF and hot LSWF in pilot-scaled reservoirs. 
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Figure 13. Profile of oil viscosity for LSWF and hot LSWF in pilot-scaled reservoirs after 10 years. 

 

 

Figure 14. History of injector bottom-hole pressure for LSWF and hot LSWF in pilot-scaled reservoirs. 

By 2 years, Ca2+ continuously adsorbs to carbonate surface. This leads to the increase of 

oil rate. After 2 years, Ca2+ in aqueous phase, which mainly comes from mineral dissolution, 

exceeds the capacity of ion exchangeable of Ca2+ in swept zone at reservoir condition and has 

started to be produced with significant increase of water production. Many studies have 

reported that LSWF induces reservoir conditions to be basic condition meaning pH increases. 
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In this simulation, LSWF increases pH of reservoir up to 10, while initial pH was 8.1. 

Thermal energy dissolves more minerals and produces carbonic acid. This has contributed to 

decrease of pH as shown in Figure 18. However, generally, LSWF combined process 

increases pH of reservoir. 

 

 

Figure 15. Profile of equivalent fraction of Ca2+ for LSWF and hot LSWF in pilot-scaled reservoirs 

after 10 years. 

 

 

Figure 16. History of mineral dissolution of LSWF and hot LSWF in pilot-scaled reservoir. 
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Figure 17. History of hot LSWF in pilot-scaled reservoir. 

 

 

Figure 18. Profile of pH for LSWF and hot LSWF in pilot-scaled reservoirs after 10 years. 

 

CONCLUSION 
 

Hot LSWF definitely has mobility control effect through modification of viscosity and 

wettability as synergetic effect. This study evaluates the influence of thermal energy on 

LSWF effects in heavy oil carbonate reservoirs. Wettability modification is sensitive to 
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thermal energy, so that thermal energy influences on both viscosity of oil and wettability 

modification level. Thermal energy enhances mineral dissolution to provide ion exchangeable 

of Ca2+ and enhances supplementary wettability alteration except for non-thermal LSWF 

effect. These effects become dominant near injection. The synergetic effects have appeared to 

be enhanced oil production as well as improved injectivity. More dissolved minerals  

have produced carbonate acid and it slightly reduces pH in reservoirs. However, hot  

LSWF still elevates pH compared to initial pH condition. The characteristic of thermal 

dependent oil viscosity and wettability modification levels requires to consider heat loss  

to overlying/underlying layers. Thermal properties of shale control heat loss and determine 

degree of oil viscosity reduction and wettability modification. This study provides feasibility 

of hot LSWF process in heavy oil reservoirs and suggests careful evaluation of heat loss 

before deploying hot LSWF. 
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ABSTRACT 
 

This chapter is aimed at delivering a terse review of the SAGD process history with 

the main focus on the modeling/mathematical aspect. Since when this reportedly 

beneficial technique was introduced, many modifications have been applied to its 

mathematical modeling, making it more accurate each time. Semi-analytical models 

seemed to ease and expedite the solution procedures as new assumptions were made to 

better formulate the problem. The revolutionary path from its inchoate state to the present 

closer-to-reality condition has been traced in this chapter, mentioning the more 

outstanding studies conducted. Geometry of the process has constantly been updated 

along their corresponding mathematical formulas. Accordingly, the better the simulation 

of steam-oil interface, the more accurate the predictive models become. At the end, the 
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application of a new technology has been stated in the SAGD process to both reduce the 

operational costs and improve the whole process’s efficiency. 

 

Keywords: SAGD process, oil-steam interface, steam chamber, semi-analytical models, 

thermal method, Enhanced Oil Recovery (EOR) 

 

 

NOMENCLATURE 
 

𝑎 Coefficient of velocity 

b Coefficient of horizontal distance 

C Scale coefficient 

CR Specific heat of formation 

H Height of reservoir  

K Permeability of reservoir bed 

 
Relative permeability of oil 

 Thermal conductivity of formation 

L Interface length 

Ls Latent heat of steam 

m Viscosity coefficient 

MR Formation heat capacity 

 
Peclet number 

qo Dead oil drainage rate 

 Heat content of formation 

𝑄𝑖𝑛𝑗
́  Rate of Latent heat injection 

𝑄𝑙𝑜𝑠𝑠
́  Rate of energy loss through overburden 

𝑄𝑅  Enthalpy required to heat oil ahead of the interface 

𝑄𝑅
́  Enthalpy rate required to heat oil ahead of the interface 

𝑄𝑠
́  Steam injection rate 

𝑄𝑠𝑧
́  Enthalpy rate needed for expansion of steam chamber 

r Coordinate in cylindrical system 

 
Constant interface coordinate 

 
Dimensionless steam zone radius 

 Dimensionless radius 

∆𝑆𝑜 Initial oil minus residual oil saturation of system  

SOR Steam-Oil ratio 

t Time 

 
Dimensionless temperature  

 Temperature of reservoir 

 Temperature of steam 

∆𝑇 Temperature difference between steam and virgin oil temperature  

U Interface velocity 
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𝑈𝑚 Maximum horizontal velocity 

𝑈𝑣 Velocity perpendicular to the steam chamber edge 

WS Half-width of steam chamber 

x Horizontal distance from wells 

X Steam quality 

 

 

Greek Symbols 
 

𝛼 Thermal diffusivity of reservoir 

 Coordinate parallel to interface 

 Porosity 

𝜃 Angle of interface respect to horizontal  

𝜇 Dynamic oil viscosity 

𝜈  Kinematic oil viscosity 

𝜈𝑜𝑠 Kinematic oil viscosity at steam temperature 

𝜌 Density  

𝜌𝑅 Density of formation 

𝜌𝑜 Density of oil 

𝜌𝑤 Density of water 

 Heat penetration depth 

𝜉 Coordinate perpendicular to interface 

 

 

INTRODUCTION 
 

Heavy oil and Bitumen do have a naturally low tendency to move under pressure draw 

down brought about after pay zone completion and perforation. Already having received 

enough attention and research, Enhanced Oil Recovery (EOR) and Improved Oil Recovery 

(IOR) methods are thus well-known to raise the recovery to significant values. In-situ 

methods have proven reliable in practice. 

Heavy oil reservoirs producing under gravity drainage reportedly can reach high 

recoveries [1, 2] which is mostly influenced by oil mobility [2]. One of the most effective 

ways to alter this parameter is employing thermal methods. According to the literature, 

thermally heated reservoirs act under gravity drainage which can contribute to significantly 

grow the recovery [3-6]. 

As one of the most important and popular methods to refer to is the steam injection 

method that tends to lower the heavy oil viscosity so as for it to move more readily toward the 

producing well. Obviously, the main problem facing petroleum engineers when dealing with 

heavy oil reservoirs by in-situ methods is that bitumen is immobile at reservoir conditions. To 

overcome this, either heating the bitumen or diluting it using a proper solvent might look 

vital. Then, the major challenge for applying either of them is clarifying the appropriate way 

of introducing the heat or the solvent to the bitumen in a practically acceptable manner. For 

instance, injecting hot steam into a reservoir to heat the hard-to-move heavy oil is useless in 

practice unless the supplied pressure exceeds that of formation resistance and a set of  

 







Aria Rahimbakhsh, Morteza Sabeti, Amir H Mohammadi et al. 24 

fractures are created. Long ago, this method was exploited in Canadian reservoirs, for 

instance, and production from the same well hot steam with a pressure above formation 

fracture was injected through looked commercially promising [7]. Of course, cyclic steam 

injection used to be widely used in 1980s, but its efficiency proved not high enough as it 

could only contact a small fraction of the reservoir [8]. 

The steam assisted gravity drainage (SAGD) process lies among the most promising 

strategies for producing from extra-heavy oil and bitumen reservoirs. This common technique 

includes two horizontal wells completed in the pay zone, one above another. The one 

completed at the top of the reservoir is called the injector, through which hot steam is injected 

into the reservoir and the other, completed at the bottom of the pay zone, plays the role of a 

heated oil producer. Figure 1 gives a simple representative of a SAGD process. 

However, there are a number of well configurations for such a process such as a vertical 

injection well and a horizontal producing well, or that including more than two wells. As 

mentioned, the most common arrangement is the one indicated in Figure 1. 

 

 

Figure 1. Schematic of a SAGD process. 

The SAGD process usually begins with several months of steam circulation in either of 

the upper and lower horizontal wells so that a strong and clear communication between two 

boreholes is established. Thereafter, the upper well turns to steam injection and the lower well 

becomes a production well. As steam finds its way into the formation, it affects the region 

around the injector and the heat transfer mechanisms (mostly conduction) eases the 

downward flow of oil and results in the growth of the steam chamber. 

Upon steam injection in the reservoir, a steam chamber is formed. As injection proceeds, 

this chamber enlarges and moves upwards and sidewise. After reaching the top of the 

reservoir in a relatively short span, the only direction will be toward reservoir boundaries and 

this sidewise expansion has been considered as responsible for heavy oil production. Figure 2 

represents the indication of how the steam chamber is created in the reservoir once injection 

begins. 

 



SAGD History from Modeling Point of View 25 

 

Figure 2. Steam chamber formation after Butler [7]. 

Mathematical modeling of the process in the beginning, when the steam chamber is 

enlarging upward and oil flows downward, looks very difficult due to great instability of the 

interface during this phase of the process. Its instability is attributed to severe viscous and 

gravity fingering that occurs within the counter current displacement of heavy oil by hot 

steam. 

Several authors have proposed different models for the SAGD process since this method 

was first introduced, each considering a set of assumptions. Though, simulation of such a 

complicated process requires extensive studies taking into account many factors from steady 

or unsteady conditions, rate and amount of steam injection, reservoir height considerations 

and the shape of steam chamber to geomechanical effects [7, 9-17]. 

The base theory was focused on the rate at which the chamber moves sideways since this 

was expected to be the limiting factor [7]. It was firstly assumed by the researchers that the 

initial steam chamber acted as a vertical plane from the well, reaching the top of the steam 

chamber and that was intended to spread sideways. The initial chamber, as early researchers 

deemed, could be viewed as a fracture created above the horizontal well, filled with hot 

steam.  

In practice, it is believed that the steam chamber moves along the reservoir giving off 

heat to the heavy oil surrounding it and causes a remarkable reduction in its viscosity. Heated 

oil then moves along the steam-oil interface toward the production well at the reservoir base. 

On the other hand, the hot steam in the chamber is condensed and like the heated oil slips 

downward to reach the perforations. Hence, condensed steam and heated oil are produced 

together in the SAGD process. The question might rise here that, why does the heated oil 

immediately ahead of the interface move along the interface and not vertically downward?  

To answer, one should be aware that an oil element ahead of the interface has a much 

lower viscosity than that below it as the latter is yet to receive heat from the hot chamber. As 

a result, it cannot move as readily as the heated oil and with the same pace. Considering the 

common law that always the path with the lowest resistance is chosen, after being heated, the 

oil will move downward along the tilted interface to be produced. This has been assumed by 

many [7, 8, 18]. Figure 3 depicts this issue. 

 



Aria Rahimbakhsh, Morteza Sabeti, Amir H Mohammadi et al. 26 

 

Figure 3. Steam-oil tilted interface after Pooladi-Darvish et al. [6]. 

Of great importance is employing the heat transfer mechanisms and their corresponding 

equations. However, experimental works have proven somehow that conduction is by far the 

dominant mechanism for heat transfer from the chamber to the virgin oil ahead of the 

interface [7]. Along with it, temperature distribution equation is a main factor showing the 

effect of steam chamber’s temperature on viscosity, interface velocity and consequently the 

production rate. 

As a stunning work by Butler proposed in 1985 [7], the case under study involved using 

an extended horizontal well at the bottom of the steam chamber. Horizontal wells, better than 

vertical ones, are considered to cause a more efficient contribution as the increased drainage 

rate corresponding to their extended length provides a major advantage. Having observed the 

geometry of steam chamber at his experimental work, he released the first mathematical 

model for estimating oil production rate in the SAGD process. Later on, many authors made 

several practical modifications to the initial model and published their works. This chapter 

provides a review on the progress of this process during recent decades and represents the 

current challenges as well as the latest inventions introduced to this useful industry. 

 

 

HISTORY OF RESERVOIR MODELING APPLYING THE SAGD METHOD 
 

Generally, simulation of a reservoir in a SAGD process culminates in two methods: The 

first method of simulating arises from some tedious numerical calculations, which a wide 

range of equations and conditions must be used so that researchers could find logical results 

[10]. Prevalently, commercial software in the petroleum engineering field takes the advantage 

of this method in its structures. It is believed that thanks to summing up all governing 

equations including all transform phenomena expressions and thermodynamic equations of 

state, numerical method would fulfill accurate results in various EOR manners [10, 19, 20]. 

However, the significant drawback which numerical methods almost have is its inabilities to 

converge on final results in a short time [19]. This weakness impelled researchers to find 

another way. Consequently, petroleum engineers have always been pursuing an alternative as 

a second method to tailor this issue. In the analytical method, the SAGD process has been 

tried to be adapted with main in-situ mechanisms and processes happening during the oil 
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recovery operation. As a result, several simplified assumptions have usually been considered 

by researchers to obtain an equation to estimate the oil production rate. Analytical methods 

lead to pretty accurate outcomes in a flash and to do so, they do not require a lot of raw data 

about reservoirs. Hence, the advantage of analytical methods largely outweighs the 

disadvantage of numerical method in the SAGD process [21].  

Following this section, important semi-analytical models which had a significant impact 

on reservoir modeling during SAGD operation have been briefly delineated.  

 

 

Original Model 
 

An original theory presented equations that were written for a small part of the interface, 

as Figure 4 demonstrates [18]. The steam chamber was assumed to be at a constant 

temperature, Ts, just as the interface was considered so. Heat was assumed to be transferred 

into the oil that was at a lower temperature through this interface by conduction. Moreover, 

steady state condition was believed to exist for the temperature distribution beyond an 

interface expanding at a constant velocity, U. 

 

 

Figure 4. Interface segment [18]. 

The temperature distribution is given [7] by 

 

𝑇∗ =
𝑇−𝑇𝑟

𝑇𝑠−𝑇𝑟
= 𝑒𝑥𝑝(−

𝑈𝜉

𝛼
) (1) 

 

Based on this, the viscosity is,  

 
𝜐𝑠

𝜐
= (

𝑇−𝑇𝑟

𝑇𝑠−𝑇𝑟
)𝑚 (2) 

 

It has been shown that the value of m is dependent on viscosity-temperature 

characteristics of oil as well as steam and reservoir’s temperature [22]. Hence, 
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 (3) 

 

Also, from Darcy’s law, the flow within in element will be 

 

 (4) 

 

After integration, the oil drainage from at a point of interface can be presented as a 

function of velocity U and angle θ as 

 

 (5) 

 

Combining this relation with material balance equations would yield interface curves 

(Figure 5 shows interface curves.) and the relation below for oil production as below [18]. 

 

 (6) 

 

As it is well-known today, the steam chamber is almost fixed near the production well 

and what is presented in the above curve contradicts it. In a noble work in 1985 [7], Butler 

attempted to modify this theory to allow a fixed bottom of the chamber. 

The main problem associated with the original theory was assuming a steady state 

condition for the temperature distribution. Of course, this assumption holds in the center of 

the chamber but fails at the ends. 

 

 

Figure 5. Interface curves [7]. 
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Butler’s Model- a Linear Interface 
 

Butler in his study imagined the interface as a number of moving elements which could 

endure changes in their width as the process continued. Each was assumed a straight line 

behind which the depth of heat penetration would be calculated at every step. 

Considering the relation below for the amount of heat behind a part of interface having an 

area of A [7], 

 

 (7) 

 

and introducing a new parameter, γ, to represent heat penetration, one might find 

 

 (8) 

Considering all processes at steady state conditions, Butler [7] reached the below 

equation to express the flow: 

 

 (9) 

 

As a net result of heat conduction to the oil ahead of the interface and the heat left in the 

reservoir, the differential heat equation was found to be as below 

 

 (10) 

 

or, 

 

 (11) 

 

The temperature gradient for both moving (constant U, 
𝑑𝛾

𝑑𝑡
= 0) and stationary (𝑇 = 𝑇𝑟 at 

t=0) interfaces were, respectively, represented as 

 

 (12) 
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and 

 

 (13) 

 

As can be seen, temperature gradient is inversely proportional to the heat penetration 

depth in either of the cases. Considering the temperature gradient to move between these two 

extreme cases, one might find 

 

 (14) 

 

Substituting in the differential heat equation will yield 

 

 (15) 

 

 

Figure 6. Relation between drainage rate and interface movement [7]. 

Introducing dimensionless parameters for oil drainage rate, temperature and frontal 

velocity, he obtained several useful results such as computing the relationship between 

drainage rate and the interface movement (Figures 6 and 7). 

The amount of heat needed to provide can be known as the sum of three values. One to 

heat the steam chamber and oil drained with it, one to heat the reservoir and finally, one that 
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is lost by means of conduction to the overburden. These quantities are introduced in 

dimensionless forms for ease of mathematical manipulation. With regard to the steam-oil 

interface movement in dimensionless scales, Figure 8 represents the oil drainage rate in 

dimensionless coordinates as well as the three heat values. As can be seen, before a 

dimensionless time of about 0.2, the interface does not move greatly but as the rate of heat 

transfer is so high in the beginning of the process (dimensionless time of about 0.2), the oil 

production rate reaches its pinnacle and then slows down as heat transfer rate falls. 

 

 

Figure 7. Position of interface [8]. 

 

Figure 8. Production rate and cumulative heat distribution [8]. 
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It must be noted that B3 is a dimensionless parameter that depends on reservoir 

characteristics. In fact, petrophysical parameters are grouped together to form a dimensionless 

factor. 

 

 (16) 

 

However, he did research on a number of other matters including well confinement, 

which he claimed to increase the thermal efficiency through reducing the steam override. In 

fact, a closer well spacing will lead to higher thermal efficiency. Besides, three mass transfer 

mechanisms are known to impede the providing of steam to the advancing ends of the 

chamber; the counter-current condensate flow from the upper boundary layer, presence of 

considerable liquid saturations in the capillary layer just above the drainage surface and non-

condensable gases that make a barrier against mass transfer. 

 

 

Reis’s Model- an Inverted Triangle 
 

In two successive works in 1992 and 1993, Reis proposed two models for the SAGD 

process considering linear and radial geometries e.g., for horizontal and vertical wells, 

respectively. In his first work, considering the linear geometry for horizontal wells, he 

imagined the steam chamber to be so much an inverted triangle with its vortex being pivoted 

to the production well at the bottom of the pay zone. The grounds for his work was the same 

as Butler’s i.e., the energy balance and total amount of heat required was the sum of three 

portions.  

 

 (17) 

 

The first term on the right hand side of the above equation shows the heat required to be 

given to the steam zone, the second represents the amount needed to preheat the formation 

ahead of the interface under his study and the last is the amount of heat lost to the overburden. 

Figure 9 represents Reis’s proposed interface shape. 

Having proceeded on the same premise as Butler, he had in hand the same equation for 

oil production rate 

 

 (18) 

 

His work differed when he tried to relate this rate to the geometry of an inverted triangle 

through a material balance. According to him, the drainage rate along the oil-steam interface 

would be equal to a time derivative of steam zone cross-sectional area. Hence, 
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𝑞𝑜 =
𝑑

𝑑𝑡
[𝜑∆𝑆𝑜𝐻𝑊𝑠] (19) 

 

Considering the fact that the derivative of steam chamber’s with respect to time is 

proportional to the maximum interface velocity as shown in below: 

 

 (20) 

 

Figure 9. An inverted triangle shape for steam chamber after Reis (1992). 

The drainage rate and the cumulative production will accordingly be computed by the 

following relations: 

 

 (21) 

 

 (22) 

 

But the cumulative production from material balance is found to be 

 

 (23) 

 

Combining the two latter formulas, the width of the steam chamber is determined as a 

function of time 
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 (24) 

 

Also, the angle of the steam zone interface can readily be understood as 

 

 (25) 

 

Reis assumed the temperature distribution to be 

 

𝑇∗ = 𝑒𝑥𝑝(−
𝑈𝜉

𝛼
) (26) 

 

which shows it as a function of interface velocity. But this equation has some shortcomings as 

U tends to zero at the bottom. Another limitation for using the latter relation for the 

temperature profile of the oil-steam interface is that it is based on constant velocity while in 

practice U changes both in magnitude and direction. However, observations by Chung and 

Butler [12] revealed that temperature profile remains almost constant with time and is 

independent of position and hence velocity. Thus, temperature profiles can be measured 

through the same previous equation 

 

𝑇∗ =
𝑇−𝑇𝑟

𝑇𝑠−𝑇𝑟
= 𝑒𝑥𝑝(−

𝑈𝜉

𝛼
) (27) 

 

After some mathematical procedures, they found the maximum interface velocity as 

 

 (28) 

 

Also, each of the three heat measures contributing to the total heat required were found as 

 

 (29) 
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The first, second and third equation represent the amount of heat required to be injected 

into the steam zone, the amount stored ahead of the oil-steam interface in the formation and 

the amount given off to the overburden, respectively. Hence, total heat injection will be 

 

 (32) 

 

Similar to the oil drainage rate formula, this injection applies merely to one side of the 

chamber and to get the total amount, they must be doubled both. 

One noteworthy factor in a SAGD process assessment is the steam-oil ratio (SOR). It is 

found after dividing the total steam injection rate by the production rate. Thus, 

 

 (33) 

 

Figure 10 depicts SOR for the example under consideration in Reis’s study. As obvious, 

SOR goes high almost linearly to above 8 in a period of 10 years. Reis did not validate this 

model for angles below 30 and using it, one must be on the alert. 

 

 

Figure 10. SOR for Reis's example [8]. 

 

Reis’s Model- an Inverted Conical Interface 
 

Nearly a year after, Reis conducted a similar study on radial geometry and obtained 

promising results after assuming a conical shape for the steam-oil chamber [11]. To solely 
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give a brief mention of his findings, below are presented some more demanding aspects of his 

research. 

He used the so-called single well injection/production streamflood (SIPS) or the vertical 

HASDrive process [23, 24]. Neglecting his mathematical manipulations here, he found the 

below relationship for the oil drainage rate 

 

 (34) 

 

Where, geometrical parameters in the above equation have been presented in Figure 11 

and Rs is the cone radius found by 

 

 

Figure 11. Schematic of a vertical injection/production well and the steam chamber [11]. 

 (35) 

 

This equation can be reduced to the proceeding form for all times and locations but the 

early time and near the bottom of the steam chamber where conduction dominates. 

 

 (36) 

 

Also, the maximum interface velocity is 
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In an alert observation, Reis found this relation to connect the temperature to that 

calculated in his previous work. 

 

 (38) 

 

For a SAGD process in a radial geometry the profile of temperature ahead of the steam 

zone, is reported to be expressed as 

 

 (39) 

 

Finally, he offered the formula for the steam oil ratio as 

 

 (40) 

 

As can be seen from Figure 12, SOR is initially at a high value since the drainage area is 

small. It then falls to its minimum after about a year and rises almost linearly to figures as 

large as 9 within 10 years. It has to be pointed out that this SOR is just slightly greater than 

that in the linear geometry, hence proving promising.  

 

 

Figure 12. SOR and angle for a SAGD process vs. time [11]. 
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After a long time, the interface angle drops to about 15 degrees and at angles this low, 

conductive heat losses will increase. Thus, immense care must be taken when this model at 

low angles. 

 

 

Introduction of HIM 
 

In 1995, Pooladi-Darvish et al. [6] suggested a new semi-analytical model using the Heat 

Integral Method (HIM) to approximate a 2D heat transfer in the formation. He conducted his 

studies employing the cylindrical coordinates and finally proved his work as predicting high 

production rates and a sweep efficiency [6]. In his work, he took account of both moving 

interface and the unsteady state condition. As was corroborated earlier in this chapter, they 

claimed that the two mechanisms responsible for the heat transfer are convection and 

conduction with the latter playing the major role. Most of the proposed models thus far either 

neglected the impact of the mobile interface or consider a steady state condition for the 

process, which refer to two extremes. The effect of moving interface can be neglected when it 

is moving very slowly while a steady state holds when it moves very fast. This work 

considers both effects. 

As other investigators [7, 8], Pooladi-Darvish assumed flow of heated oil due to 

conduction parallel to the interface. In their paper, they developed a semi-analytical model 

that predicts gravity driven oil flow backed by heat conduction ahead of a steam-oil interface. 

They found the shape of the interface as a part of the solution, and thus, it was not known in 

priori. The non-linear partial differential equation (PDE), expressing the heat conduction 

beyond a moving interface, was transformed with the aid of the Heat Integral Method (HIM) 

to a first order ordinary differential equation (ODE). The latter was combined with Darcy’s 

law and an equation of state (EOS) to forecast the oil rate. Having made a number of 

assumptions such as incompressible fluids, a constant pressure inside the chamber, 

considering only steam to be the only phase flowing behind the interface and describing the 

heat transfer in the oil zone by a 1D equation, they developed their model. They looked at the 

problem as a combination of heat and fluid flow problem and studied each one separately. 

The equation below shows the 1D heat transfer equation in the reservoir and ahead of the 

interface. 

 

 (41) 

 

But, 

 

 (42) 

 

which shows the radius as variable with time. 
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And this helps to handle the moving steam-oil interface as stationary. Thus, the 1D heat 

transfer equation can be rewritten as 

 

 (44) 

 

This non-linear PDE can be transformed to an ODE that can be readily solved by 

numerical methods such as that proposed by Runge Kutta. For mathematical simplifications 

the dimensionless variables are introduced as 

 

 

 

 

 (45) 

 

And the latter equation in the dimensionless form is 

 

 (46) 

 

Employing HIM to find solutions for processes of non-isothermal oil flow regarding 

conduction mechanism was embarked on by some authors in 1990s [25, 26]. They used a 

polynomial to express the unsteady-state temperature distribution beyond of the oil-steam 

interface as 

 

 (47) 

 

Which then, considering no effect ahead of the heat transfer penetration depth and thus a 

value of zero for θ and all its derivatives with respect to  in those regions, can be written as 

 

 (48) 

Using the suitable boundary conditions, they obtained 
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 (49) 

 

This formula is the 1D HIM solution to the heat transfer in the reservoir. The 2D heat 

transfer equation can be described as 

 

 (50) 

 

where a variable interface velocity exists, as well as cases of small wellbore radius, the 1D 

representation showed poor accuracy. Considering the fluid flow problem, they found 

 

 (51) 

 

This determines the oil rate as a function of a number of dynamic variables and fixed 

rock and fluid properties. Experimental data backed their offered method. 

Of course, it is compulsory to mention that the HIM solution usually underestimates the 

temperature distribution in cases of small steam zone radius. This is because the HIM solution 

suits better the situations in which conduction dominates the heat transfer while in occasions 

of small radius (at the bottom), a large and effective convective mechanism is existent. It 

must be mentioned that they studied more than what is briefly presented here. 

During time, several authors focused on improving the simulating models and considered 

other important factors such as geomechanics, reservoir height and new steam chamber 

geometries [9, 14, 16, 27-31]. 

 

 

Geomechanics Effect on SAGD 
 

A problem with many of the developed models was that they tended to solve the hydro-

thermal equations, ignoring the important role of the geomechanics. In other words, the 

physics of this process was totally ignored and the reason why these simulations mostly failed 

to predict the real reservoir under SAGD process became more lucid as researchers began to 

note geomechanics effects. Several authors have thus far asserted the essence of taking into 

account the effect of geomechanics on the SAGD process [32-34]. 

However, computing the characteristics of geomechanical reservoir models is roughly 

time-consuming and thus, models that consider only the most important parameters would be 

of great value. In 2009, Azad et al. offered an introduced geomechanics to a Butler’s SAGD 

model [35]. 

As the first modification to the old model proposed by Reis, they managed to incorporate 

the heterogeneity of permeability through assumption of an elliptical anisotropy, as depicted 

Figure 13. 
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Figure 13. Elliptical permeability anisotropy, after Azad et al. [35]. 

Assuming kh=nkv=ko and based on Figure 13, the permeability value at any arbitrary 

angle θ will be 

 (52) 

 

In their work, Azad et al. proposed a new predictive model in derivation of which 

heterogeneity and corrected integral bounds were considered. They obtained 

 

 (53) 

 

that when combined with the new permeability formula, yields 

 

 (54) 

 

From material balance, the relation between velocity and oil rate is 

 

 (55) 

 

In formulas above, 𝜌o represents oil density, 𝜇o shows oil viscosity at steam temperature, 

α is the reservoir thermal diffusivity, 𝜑  is the reservoir porosity and 𝛥𝑆 o presents the 

difference between initial and residual oil saturation. 

To introduce geomechanics to the flow simulation, a linearly moving shear zone is 

deemed to exist ahead of the steam chamber and the whole model is taken as in equilibrium. 

The linear movement of the layer mentioned above is exhibited in Figure 14. 
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Figure 14. Moving shear zone in geomechanical model of SAGD [35]. 

Thermal stress comes into existence as a result of the difference between steam 

temperature and that lying behind the interface in the reservoir. 𝛥𝑇 , the maximum 

temperature difference, is depicted by L-bar on Figure 15. 

With the help of thermo-static theory, the average thermal stress exerted on a specific 

wedge can be mathematically expressed as 

 

 (56) 

 

Having calculated this, equations pertaining to x and y-direction force equilibriums as 

well as Mohr-Coulomb’s failure criteria are exploited to reach the geomechanical solution. 

 

 (57) 

 

The last equation may be used to calculate the force brought about by the SAGD thermal 

process on the wedge (its edge). At each time step, a unique shear zone exists where the total 

volumetric strain happens. Using this procedure allows for a deformation boundary condition 

to be determined, and having computed the total reservoir expansion, obtaining the average 

volumetric strain would thereafter be of no significant difficulty as the boundary of expansion 

is known. 
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To find reservoir’s total expansion, occurring as a result of steam injection, they modified 

the primitive model suggested by Wong and Lau in 2006 [36]. 

 

 (58) 

 

In these formulas, the total volume equals the volume of injected steam, Vs, thermal 

expansion corresponding to the latent heat, VLH, volume change because of cooling of the 

injected fluid is Vh, and the drained oil from the reservoir is demonstrated by Vp. Also, qs is 

the steam injection rate, 𝛥𝑡 specifies time differential, 𝛥𝑇’ shows the temperature difference 

at the equilibrium condition, 𝛼 𝑠/ 𝛼 𝑜/𝛼𝑤  , respectively, represent thermal expansion 

coefficient pertaining sand, oil and water, and finally, 𝑐𝑠/𝑐𝑜/𝑐𝑤 are heat capacity values of 

solid grains, oil, and water. 

The volumetric changes cause permeability and porosity to change. Below are new 

formulas to calculate them 

 

 (59) 

 

 

Figure 15. Effective forces exerted on a specific wedge [35]. 
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Figure 16. Azad et al. algorithm for involving geomechanics of reservoir formation in the Reis model 

[35]. 

To see how geomechanics influence the solution process, consider the flowchart by Azad 

et al. [35] in Figure 16 as, accordingly, the volumetric strain modifies porosity and 

permeability values for each critical shear zone. Comparing their results with available 

numerical data enunciated an excellent coincidence for cumulative production figures as well 

as an acceptable agreement for the steam injected. 

 

 

Effect of Drainage Height on SAGD 
 

Our knowledge of this commercially beneficiary technique is mostly founded on 

simplified assumptions and models that often lack acceptable assessment of all influential 

parameters and thus, constant modifications are being made to get better and more reliable 

predictive models. In 2009, Heidari et al. investigated the effect of drainage height and 

permeability as their multiplication (kH) appears in drainage formulas and some important 

dimensionless numbers (for instance, the Rayleigh number, B3 etc.) and is hence, of interest 

[14]. The results of their work showed good agreement with experimental production data 

reported earlier by Chung et al. in 1988 [12]. Their predictive semi-analytical model 

suggested that increasing permeability and drainage height both have a similar effect on the 

production rate; they tend to increase it. But increasing permeability tends to raise the 

drainage rate immediately while the other needs some time to exert its influence, as depicted 

in Figure 17. 

However, several simulator runs revealed that the initial rate will not be affected by 

changing the drainage height. An interesting point is that keeping the product kH constant 

while changing each k and H tends to alter the performance. If we imagine that model 1 has a 

permeability value twice as large as the base model and a drainage height half of that, and 

inversely, model 2 has a height twice as large and a permeability value half of the base model, 

Figure 18 then gives the comparison between their production rates. 
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Figure 17. Effect of drainage height and permeability changes on production rate [14]. 

 

Figure 18. Effect of varying drainage height and permeability on production rate while keeping the 

product kH fixed [14]. 

 

Latest SAGD Simulation Modifications 
 

This section focuses on more recent modifications made to SAGD simulation as well as a 

new technique to increase its efficiency. The geometry of the process has constantly been 

updated since Butler introduced a linear expansion of the steam chamber in 1985 [7] and 

several authors tended to propose geometries that would yield more accurate predictions as 

well as better coincidence with available field data. In 2012, Azad et al. proposed a circular 

geometry for sidewise expansion of the steam chamber [9], for instance. According to their 



Aria Rahimbakhsh, Morteza Sabeti, Amir H Mohammadi et al. 46 

findings, there exists a close agreement between circular geometry model outcomes and the 

experimental laboratory data which reveals two important aspects of their model. First, their 

offered model refuses to predict constant oil rate unlike many other previous models and is 

capable of following the oil production variations and second, in contrast to one-directional 

models, it can predict the results of a real SAGD process. Also, other previous methods fail to 

give a good history match for the SOR while this model looks promising in this area. The 

great match of their outcomes’ model with either experimental or numerical data has been 

presented in Figure 19 and Figure 20. 

Wei et al., in 2014, considered a shape between an inverted triangle and a symmetric 

parabola and showed that the steam injection rate is the dominant factor determining the 

steam chamber shape [17]. In 2016, Sabeti et al. assumed an exponential geometry for the oil-

steam sidewise growth and modeled the steam chamber as below. 

 

𝑓(𝑥) = 𝐶[1 − 𝑒−𝑏𝑥] (60) 

 

with C and b being coefficients that determine the curvature of the oil-steam interface at any 

moment. As part of the solution they found the interface length by 

 

= ∫ √1 + (𝑓′(𝑥))
2

𝑑𝑥
𝑥

0

= ∫ √1 + (𝐶𝑏𝑒−𝑏𝑥)2 𝑑𝑥
𝑥

0

= 

=
1

2𝑏
[2 ln(1 + √1 + 𝐶2𝑏2𝑒−2𝑏𝑥) − 2(1 + √1 + 𝐶2𝑏2𝑒−2𝑏𝑥) − ln(𝐶2𝑏2𝑒−2𝑏𝑥)]

0

𝑥
 (61) 

 

They reached the below-represented formula to express the oil drainage rate 

 

 (62) 

 

which, as indicated, is a multiplication of two linear and curved assumptions for the interface. 

They also found the total energy to be injected as 

 

𝑄𝑖𝑛𝑗
́ = 𝑀𝑅∆𝑇 [𝑈𝑚 ((𝐻 − 𝐶) −

𝐻

ln(1−
𝐻

𝐶
)
) +

𝛼

𝑎

𝑑(
𝐿

𝑈𝑚𝑠𝑖𝑛𝜃
)

𝑑𝑡
+ 2√

𝛼

𝜋
𝑈𝑚. √𝑡] (63) 

 

Figure 21 shows how steam injection and production rates predicted by their model excel 

that by previous models. 
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𝐿 

 

Figure 19. The results of circular geometry model vs. previous data [9]. 

 

Figure 20. SOR history match by Reis and circular model vs. available data [9]. 

 

Figure 21. Comparison of steam injection and production rates between previous works and Sabeti et 

al. model [16]. 
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ONGOING SAGD ISSUES 
 

Among many contributions to further improve the SAGD process, one looks more 

demanding at the time. The application of Inflow Control Valves (ICVs) and Inflow Control 

Devices (ICDs) [37] has proved promising in horizontal wells during the past recent years. 

Implementing such devices in SAGD wells can be of magnificent usefulness especially in 

steam injection wells since the ability to inject the steam through desired zones prevents 

excessive heat losses and the process becomes further economical. 

Reservoir heterogeneity around the horizontal wellbores brings several difficulty and 

losses to the process and inflow devices can help achieve better process efficiency. According 

to a number of authors, using ICDs can lower the SOR, result in more cumulative oil 

production, avoid steam breakthrough, reach effective steam distribution in the reservoir, 

improve recovery factors and so on [37-40]. By the way, this technology is still young and 

needs time to show all it has to offer. 

 

 

CONCLUSION 
 

A brief but lucid review of the SAGD process since its onset has been given in this 

chapter. Obviously, the keystone set by Butler was to endure modifications both from the 

geometrical point of view and the mathematical procedure. Fortunately, experimental and 

field data were available and this allowed for relatively satisfying model evaluations once one 

was proposed. During time, several authors tied to go deeper and scrutinize the process in 

order for more accurate simulations to be made and hence, year after year, model updates 

were promulgated. However, the trend has not ceased as semi-analytical models keep 

improving. 

Of many factors affecting the process efficiency, the global preference has been to 

consider the most important ones that have immediate effects on the process. As a result, 

formation permeability, height, mathematical manipulations and geomechanics have been 

taken into account and studied as well as the geometry of the problem. The last considerable 

model is that presented in a work by Sabeti et al. in 2016 where an exponential geometry has 

been assumed for the steam chamber sidewise expansion. 

Finally, among the new technologies introduced to the SAGD process, applying inflow 

control devices was named as it has shown a potential to remarkably enhance the efficiency 

through effective injection power and also to make it more economical as the amount of heat 

loss can be significantly lowered. 
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ABSTRACT 
 

During the production of hydrocarbon under natural depletion, reservoir energy is 

recognized as the cause of fluid flowing into the well and producing in the surface. By 

producing from reservoir and decreasing pressure, natural production declines and 

eventually stops. Artificial Lift methods are needed when bottomhole pressure is not 

enough as to bring up the oil to the surface. This study presents optimization of the 

production conditions of a well by using artificial lift method. For this purpose, single 

well model is created to predict future production conditions in the well drainage area and 

the recommended optimum production conditions. In the next steps, we will try to 

present an optimal scenario for continuous production of intended well with evaluation of 

the parameters affecting artificial lift methods. Application of ESPs (Electric Submersible 

Pump) is also studied and compared with gas lift method. Finally, considering the 

technical and economic aspects of each method, different approaches are compared to 

determine the optimum production scenario via artificial lift designs. The results of this 
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study show that both gas lift and ESP are able to achieve the desired well flow rate in the 

studied field. However, in terms of initial cost and net present value of the project, gas lift 

is more economical. 

 

Keywords: optimum production, artificial lift, gas lift, electric submersible pump (ESP), cost 

 

 

INTRODUCTION 
 

Application of artificial lift techniques is a common practice of oil well production. The 

new main challenge for a field is optimal selection of lift technique for each well or for an 

entire field. Wrong decision can cause high production cost [1]. 

In this communication, the application of artificial lift techniques in an oil field in south 

west of Iran is investigated. Two practical techniques for this field are gas lift and electric 

submersible pump (ESP). For this purpose, 3 wells of the oil field A are studied  . Based on the 

current understanding in this filed, the reservoirs are relatively heterogeneous with medium to 

poor properties in the Bangestan oil reservoirs. The support from the aquifer is expected to be 

very limited and the main reservoir energy is fluid expansion. Therefore, a rapid pressure 

decline will take place in the well drainage area as a result of oil production. The reservoir 

fluids in upper zones are heavy and together with high drawdown of the wells will result in a 

low flowing well head pressure. This will necessitate using artificial lift for maintaining the 

expected potential of the wells. 

Many parameters are involved in a successful artificial lift operation. This study is an 

attempt to specify these parameters in such a way that the production and the operation’s net 

present values are maximized. According to the recommended reservoir development plan, 

the initially allocated daily oil production rate for each well in field A is up to about 2000 

B/d. The disadvantage of gas lift is the high investment on building up gas lift equipment  

on the surface. The advantage of gas lift is simple operation and management. For ESP, 

compared with gas lift, the initial investment is relative low and ESP can also be rented from 

ESP manufacturer. The workover and operating cost is more than gas lift. The results of this 

study will enable us to compare the gas lift with ESP and finally, the optimum and best option 

will be selected. 

 

 

PVT Model 
 

The well models in this work are prepared by PROSPER software. The first step in  

the simulation procedure of the well models is to construct a PVT model for the reservoir 

fluid [2]. 

The Black oil PVT model is used for well fluids in this study. When both basic fluid data 

and some PVT laboratory measurements are available, the program can modify the black oil 

model correlations to the measured lab data [2]. 

According to the correlation parameters, the best correlations fitted with measured data 

are identified for studied wells. 
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Table 1. Best overall fit correlation of PVT models 

 

 A-02 A-03 A-04 

𝑃𝑏 , 𝑅𝑠 , 𝐵𝑜 Glaso Standing Standing 

Oil viscosity Beal et al Beal et al Beal et al 

 

Table 2. Summary of well data 

 

 Well-02 Well-03 Well-04 

IPR model PI entry PI entry PI entry 

Reservoir pressure (psia) 4950 4200 4200 

Reservoir temperature (℉) 214 208 208 

Water cut, % 0 0 0 

Total GOR, (scf/STB) 308 200 157 

k , md 4.3 8.7 11.3 

Oil gravity 20 22 22 

Gas specific gravity 1.8 1.15 1.7 

TVD, m 3250 2972 2800 

Casing ID (in) 6.105 6.105 6.105 

Tubing ID (in) 4.5 4.5 4.5 

Productivity index (STB/day/psi) 0.68 0.71 0.85 

Wellhead pressure , psi 214 208 208 

Rate , STB/D 126 510 396 

 

 

VLP Matching 
 

PROSPER uses a non-linear regression to tune the VLP correlations to best match with 

the measured data [3]. Parameters of software found very much close to unity with Fancher 

Brown correlation for current well test data of well A-02. 

 

Table 3. Best match correlations for VLP of wells 

 

Well Best match correlation 

Well #02 Fancher Brown 1.24 1.00 

Well #03 Beggs and Brill 1.04 1.00 

Well #04 Duns and Ros Original 1.04 1.00 

 

 

IPR Matching 
 

This step ensures that PROSPER model can reproduce the well test. When the desired 

correlation is selected, in this step the IPR is tuned so that the intersection of VLP and IPR 

fits to the well test rate measurements [3]. 
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Gas Lift Design 
 

To design gas lift in studied wells, there are a number of parameters that must be selected 

optimally. For this purpose, a series of system analysis are performed to consider the effects 

of these parameters and select optimum values for them. 

 

 

Figure 1. Plot of measured GOR data and best matched correlation for well A-02. 

 

Figure 2. Plot of measured 𝑩𝒐 data and best matched correlation for well A-02. 
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Figure 3. Plot of measured viscosity data and best matched correlation for well A-02. 

Table 4. Data comparison for well A-02 

 

 Well #02 Well #03 Well #04 

 Liquid rate (STB/D) BHP (psia) Liquid rate 

(STB/D) 

BHP (psia) Liquid rate 

(STB/D) 

BHP (psia) 

Well test Data 120.0 4779.41 183.0 4074.13 173.0 3996.89 

Prosper Data 115.5 4780.15 185.6 4074.06 172.5 3997.01 

Deviation (%) -3.75 0.015587 1.4 -0.001815 -0.26491 0.0029857 

 

 

Figure 4. Best matched correlation and measured data of well A-02. 
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Figure 5. Effect of gas injection pressure on GLPC in well A-02. 

 

Gas Injection Pressure 
 

The surface gas injection pressure has a direct impact on gas-lift performance because of 

its effect on the injection depth. Increasing the surface injection pressure allows for deeper 

gas injection. However, once the gas is injected at the end of the tubing string, an increase in 

the injection pressure will not benefit for gas-lift operation. This effect is illustrated in Figure 

5 where the results corresponding to injection pressures from 2000, 2200 and 2400 psig 

coincide. As a result, increasing the injection pressure beyond 2000 psig only increases the 

compression cost. 

 

 

Injection Gas Characteristics  
 

As shown in the Figure 6, at a constant gas injection rate, the higher the gas specific 

gravity, the lower the oil production rate. Although by the increase in gas specific gravity, the 

injection depth can be increased and consequently increased the oil production but on the 

other hand will cause an increase in the bottom hole pressure which decreases the production 

rate. According to this analysis, an injection gas with specific gravity of 0.8 is selected for gas 

lift design. 
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Figure 6. Effect of injected gas specific gravity on GLPC in well A-02. 

 

Tubing Diameter 
 

In determining the size of tubing installed in a gas lift well, it is important to consider the 

producing capabilities of the reservoir. Improperly sized tubing (either too large or too small) 

can result in a gas lift installation that will produce at less than maximum fluid rate. Referring 

to Figure 7, it can be seen that definite increases in fluid production rate can be obtained with 

larger tubing sizes. It can be concluded that the best selection for the size of tubing is 4.5 in. 

 

 

Figure 7. Effect of tubing inside diameter on GLPC in well A-02. 
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Design Input Data 
 

According to the input parameters determined in previous sections and some other 

parameters, gas lift can be designed. Desired pressure drop across valves of 150 psi is entered 

to ensure the well and gas injection system stability. From well test data, a static gradient of 

0.376 psi/ft is assumed as the load fluid before gas lift start. Minimum spacing between 

valves is set to 60 m and also maximum injection depth for each well is set.  

 

 

Figure 8. Gas lift performance curve for well A-02. 

Table 5. Result of the gas lift design 

 

 A-02 A-03 A-04 

Optimum gas injection rate (MMSCF/D) 6 5.5 7.5 

Maximum production rate (STB/D)/D) 2500 2204 2340 

desired liquid rate  

(STB/D)   
2000 2000 2000 

Injected gas rate for desired liquid rate 

(MMSCF/D) 
1.25 2.3 1.2 
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Figure 9. Gas lift performance curve for well A-03. 

 

ELECTRICAL SUBMERSIBLE PUMP DESIGN 
 

First step in design of ESP installation using PROSPER is entering some input data for 

studied wells. These are listed in the Table 6. 

After selecting each pump from database of the software, it can be displayed the design 

operating point superimposed on the pump performance curve and check which pump has the 

operating point close to the best efficiency line. 

Once a pump has been selected, the pump efficiency is known and the motor power 

requirement can be calculated. When the motor power and voltage have been determined, a 

suitable cable must be selected. 

The operating point should lie between the minimum and maximum operating range of 

the pump performance curve to ensure an acceptable run life. As shown in the figure for well 

A-02 the operating points of future conditions falls in operating range of the pump and close 

to the best efficiency line. Selected pump needs 584 stages and will require 178 HP at the 

design rate. 

 

Table 6. ESP design input data 

 
 A-02  A-03 A-04 

Pump Depth (Measured) (m) 2000 1200 2000 

Operating Frequency (Hertz) 50 50 50 

Maximum Pump OD (inches) 5.7 9 6.105 

Length Of Cable (m) 2030 1230 2030 

Gas Separator Efficiency (%) 80 0 0 

Design Rate (STB/day) 2000 2000 2000 

Top Node Pressure (psig) 200 200 200 
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Figure 10. Gas lift performance curve for well A-04. 

Table 7. Result of the ESP design 

 
 A-02 A-03 A-04 

Design Rate (STB/day) 2000 2000 2000 

Number Of Stages 584 180 175 

Power Required (hp) 179.19 60.0964 111.15 

 

Table 8. Detailed gas lift installation costs 

 
Item Description Unit Unite price 

(1000$) 

No. of units Total cost 

(million $) 

Total cost for 

one well 

(million $) 

1 Work over Job 900 3 2.7000 0.9 

2 Gas lift valve No 2.5 5 0.0125 0.0041 

3 Packer No 100 3 0.3000 0.1000 

4 Gas lift station Hp 3.5 701 2.4535 0.8178 

5 Gas lift ring in-km 10 54 0.5400 0.18 

6 Ten years overhaul Job 66 10 2.0000 0.666 

7 Power kwh 0.0001 45814800 9.302 3.1 

8 Power network Kw ………. 523 0.0182 0.006 

Total cost 17.3262 5.774 
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ECONOMICAL EVALUATION 
 

Before making a final decision a thorough economical analysis should be performed. As 

previously mentioned, it is the profitability of a project that has to be the final decision 

criteria. In this section, the value of each project through its entire lifetime taking capital and 

operating costs into account. These estimations can give a good indication of the project 

magnitude. The numbers vary depending on different parameters such as interest rate and 

operating company. 

 

Table 9. Detailed ESP installation costs 

 
Item Description Unit Unite price 

(1000$) 

No. of units Total cost 

(million $) 

Total cost  

for one well 

(million $) 

1 Work over Job 900 9 8.10000 2.7000 

2 Pump string No 550 9 4.95000 1.6500 

3 Power Kwh 0.0001 29959200 6.08283 2.0276 

4 Power network 
Km 77.523887 9 0.69870 0.2329 

Kwh ….. 342 0.01174 0.0039 

5 Wellhead modification No 150 3 0.4500 0.1500 

Total cost 20.2932 6.7644 

 

GAS LIFT INSTALLATION COST 
 

The gas lift installation cost for wells which are studied in this project along 10 years 

duration is shown in Table 3. 

 

 

ESP INSTALLATION COST 
 

Costs of operating an ESP installation is shown in Table 4. 

 

 

PROJECT PROFITABILITY 
 

In this section, the previous economic results are used to consider the profitability 

evaluation of the projects. There are several methods to evaluate the profitability of projects. 

The Net present value (N.P.V.) method is used here. In this method, the valuation of all the 

project costs and revenues are based on the year 2016 and the interest rate of 15%. The total 

production rate that is obtained from implementation of gas lift and ESP methods in the 

studied wells is 6000 stb/d. It is required to forecast the production rate of each method in the 

coming years. For this purpose, according to the reservoir condition, an average reservoir 

pressure drop of 50 psi per year is assumed. Accordingly, the production of each method is 

anticipated for future years and income of projects is determined for next 10-year duration. 

These income is determined based on 50 percent of oil sale revenue and oil price of 70$ per 

barrel. 
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Figure 11. Pump performance curve of well A-02. 

 

Figure 12. ESP design results of well A-02. 

Table 10. Annual cost and revenue of ESP project from 2016 to 2026 (million $) 

 
YEAR Total 

operating cost 

Capital 

cost 

Total cost (operating + 

capital)  

cumulative 

cost 

Oil sale 

revenue  

50% Oil sale 

revenue  

Net revenue  

2016 0 8.810 8.810 8.810 0 0 -8.810 

2017 0.300 0 0.300 9.110 124.480 62.240 61.940 

2018 0.345 0 0.345 9.455 121.822 60.911 60.567 

2019 0.396 0 0.396 9.851 119.165 59.583 59.186 

2020 1.824 0 1.824 11.675 116.457 58.228 56.404 

2021 0.524 0 0.524 12.199 113.749 56.874 56.350 

2022 0.603 0 0.603 12.802 111.015 55.507 54.905 

2023 0.693 0 0.693 13.495 108.255 54.128 53.435 

2024 3.191 0 3.191 16.686 105.522 52.761 49.570 

2025 0.916 0 0.916 17.602 102.711 51.356 50.439 

2026 1.054 0 18.656 100.028 50.014 50.014 48.960 
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Table 11. Annual cost and revenue of gas lift project from 2016 to 2026 (million $) 

 
YEAR Total 

operating cost 

Capital cost Total cost 

(operating + 

capital) 

cumulative cost Oil sale 

revenue 

50% Oil sale 

revenue 

Net revenue 

2016 0 6.024 6.024 6.024 0 0 -6.024 

2017 0.556 0 0.556 6.58 125.093 62.546 61.9904 

2018 0.64 0 0.64 7.22 122.896 61.448 60.80775 

2019 0.736 0 0.736 7.956 120.749 60.375 59.63865 

2020 0.846 0 0.846 8.802 118.526 59.263 58.41723 

2021 0.973 0 0.973 9.775 116.304 58.152 57.1788 

2022 1.119 0 1.119 10.894 114.030 57.015 55.89583 

2023 1.287 0 1.287 12.181 111.756 55.878 54.59085 

2024 1.48 0 1.48 13.66 109.635 54.818 53.33753 

2025 1.702 0 1.702 15.362 107.463 53.732 52.02965 

2026 1.957 0 1.957 17.319 105.189 52.595 50.638 

 

 

CONCLUSION 
 

According to the results of this study, a total gas of 4.75 MMscf/day at the high pressure 

of 2000 psig can increase the total production of these three wells from 1032 to 6000 stb/day. 

Furthermore, the total power of 350 HP is required to run ESP for these wells to achieve the 

same oil production rate as that is considered in gas lift design. For this field, both gas lift and 

ESP are able to achieve the desired flow rate from these wells. But, both in terms of initial 

cost and net present value of the project, gas lift is more economical. The initial and operating 

costs shown are relative and may change with different cost of procurement, electricity price, 

number of wells or different operating company. Since the costs of each method are relatively 

close together, changing any of these parameters may alter the preferred method.  
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ABSTRACT 
 

Heavy and extra-heavy oils represent important energy resources and have 

contributed significantly to the world energy supply. Emulsification technology 

(specifically, formation of oil-in-water emulsion) has been considered an innovative 

approach to reduce the high viscosity of heavy oil and subsequently cut production and 

transportation costs. However, resolution of emulsion remains a costly task. A promising 

solution to this problem is the use of polyvinyl alcohol (PVA) in dispersing heavy oil 

particle in aqueous solution to form emulsion which is easy to resolve thereby nullifying 

the need for expensive demulsification process. Although PVA has been used in many 

industrial applications due to its excellent properties, applications in heavy oil recovery 

and transportation have not received adequate attentions. In this article, the basic 

technical aspects of emulsification technology in reducing viscosity and improving flow 

property of heavy oil are presented. Moreover, properties of PVA and few research 

efforts on its suitability as an emulsifying agent in heavy and extra-heavy oil 
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emulsification are reviewed. This is with the aim of creating further awareness on the use 

of the chemical to solve heavy oil flow problems.  

 

 

1. INTRODUCTION 
 

The need for continuous energy provisions is unavoidable due to increasing world energy 

consumption. As shown in Figure 1, continuous increase in the world energy consumption 

from 549 quadrillion Btu in 2012 to 815 quadrillion Btu in 2040 has been forecasted (U.S. 

EIA, 2016). Therefore, various energy resources including the unconventional hydrocarbons, 

and renewable biobased ones have been considered as suitable alternatives to the popular 

conventional hydrocarbons such as crude oil.    

Crude oil as an energy source plays critical roles in the world energy supply and the 

global economy at large (Elraies and Tan, 2012). Presently, the unconventional source  

of crude oil including heavy oil, extra heavy oil (bitumen), and shale oil have become 

significantly important due to their relative abundance (see Figure 2). About six trillion 

barrels of these resources are deposited in different locations worldwide with more than 2 

trillion barrels oil equivalent of natural bitumen available in Canada (Clark et al., 2007). The 

reserves of natural bitumen (extra-heavy oil) and heavy oil, deposited in the south-western 

region of Nigeria have been estimated as well over 38 billion barrel oil equivalent.  

 

 

Figure 1. Projection of world total energy consumption, reference case 2012 – 2040 (Adapted from: US 

EIA, May, 2016). 

However, the intrinsic high viscosity (and associated difficulties in recovery and 

production) compounded with the current regime of low price oil (Figure 3) has negatively 
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affected different stake holders in the heavy oil and bitumen production industries. 

Accordingly, concerns have recently been raised that the popular thermal fluid injection 

processes of bitumen recovery including the steam assisted gravity drainage (SAGD) may no 

more be economically sustainable considering the high cost of steam generation and continual 

fall in oil prices (WHOC, 2016). Therefore, a holistic approach to tackling these challenges is 

essentially to cut production cost.  

 

 

Figure 2. Total world oil reserves.  

 

Figure 3. Crude oil prices 1861 – 2015 (BP statistical review of world energy, 2016). 

An innovative means of solving viscosity problem and subsequently increasing 

production with relatively lower cost is the application of emulsification technology 
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(specifically, formation of oil-in-water emulsion) in enhanced recovery of heavy oil (Fletcher 

et al., 2012; Nguyen and Balsamo, 2013; Alade et al., 2016a; Alade et al., 2016b) and 

pipeline transportation (dos Santos et al., 2011; Martinez-Palou et al., 2011). Dispersion of 

heavy oil particle in water as oil-in-water emulsion assisted with surfactants has been viewed 

as an efficient technology for both in-situ and ex-situ viscosity reduction of heavy oil (Al-

Roomi et al., 2004; Ashrafizadeh and Kamran, 2010; dos-Santos et al., 2011; Martinez-Palou 

et al., 2011; Fletcher et al., 2012; Nguyen and Balsamo, 2013; Martinez-Palou et al., 2015; 

Alade et al., 2016a). At lower processing cost, emulsification technology offers advantages 

such as viscosity reduction as low as 50 mPa.s (dos-Santos et al., 2011; Martinez-Palou et al., 

2011) and reduction in the pipe corrosion (e.g., in the crudes with high sulfur content) since 

water is the continuous phase and crude oil has no contact with the pipe wall (Ashrafizadeh 

and Kamran, 2010).  

 

 

2. DEFINITION AND ORIGIN OF HIGH VISCOSITY OF HEAVY OIL 
 

2.1. Definition and Categorization 
 

The generic term heavy oil has been arbitrarily used to describe both the heavy oils that 

require thermal stimulation of recovery from the reservoir and the bitumen (or extra-heavy 

oil) in bituminous sand formations (see Figure 4) from which the heavy bituminous material 

is recovered by mining operation (Speight, 2006). In addition, bitumen has generally been 

defined as an involatile, adhesive and waterproofing material derived from crude petroleum 

(as vacuum residue), or present in natural asphalt, which is completely or nearly completely 

soluble in toluene, and very viscous or nearly solid at ambient temperatures (Lesueur, 2009; 

Redelius, 2015).  

Furthermore, petroleum and the equivalent term crude oils generally include various 

materials consisting of mixtures of hydrocarbons and other compounds containing variable 

amounts of sulfur, nitrogen, and oxygen, which may vary widely in volatility, specific 

gravity, and viscosity (Speight, 2006). This may exists as gas at normal temperatures and 

pressures (composed of small hydrocarbon molecules), or as liquids at normal temperatures 

and pressures, when it is composed of larger hydrocarbon molecules (McCain, 1990). The 

liquid petroleum is chemically classified based on the structure of the dominant molecules in 

the mixture. As an overall descriptor, the chemical nature of the crude oil is generally 

described as paraffinic, naphthenic or aromatic if a majority of saturate, cyclic or aromatic 

structures, respectively, are present (Speight, 2006). Consequently, the combinations of the 

terms paraffinic, naphthenic, aromatic, and asphaltic have been used in categorizing them 

(McCain, 1990). Moreover, various systems of classifications based on different standpoints 

including hydrocarbon resource, chemical composition, correlation index (CI – developed by 

the U.D. Bureau of Mines), viscosity, density, API gravity, carbon distribution, viscosity-

gravity constant (VGC),  
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Figure 4. Sample of oil (tar) sand containing bitumen.  

UOP Characterization Factor (K – calculated from API gravity and distillation or 

viscosity data), pour point etc. have been used in categorising crude oil. The viscosity can be 

related with temperature using viscosity-temperature models such as the Arrhenius equation 

defined as given in Eqn. 1. 

 

𝜇(𝑇) =  𝜇(𝑜)𝑒𝑥𝑝 (
𝐸𝑎

𝑅𝑇
) (1) 

 

where 𝜇(𝑇) is the viscosity (mPas) at temperature, T (K), 𝜇(𝑜) is a coefficient which can be 

derived from the experimental data, Ea is the activation energy (kJ/mol), and R is the 

universal gas constant (8.3144598 Jmol-1K-1).  

The American Petroleum Institute (API) gravity is defined using Eqn. 2 as: 

 

𝐴𝑃𝐼 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 =  
141.5

𝑆.𝐺,𝑎𝑡 60𝑜𝐹
− 131.5  (2) 

 

Thus, as illustrated in Figure 5, the conventional light crude oil has viscosity of 10 – 100 

mPas at the reservoir temperature and pressure, and greater than 20o API gravity. Crude oil is 

categorized as heavy oil if they have the viscosity between 103 – 105 mPas, and lower than 

20o API, and are referred to as extra heavy oil or bitumen if it has lower than 10o API with the 

viscosity of up to 106 mPas or greater at the reservoir conditions.  

 

 

Figure 5. Classification of crude oil according to the API gravity and viscosity. Adapted from Speight 

(2006).  

 
Gravity, 

o

API          35                    20                  15                  10     

Bitumen 
film Water envelope  

(clay fines and others 
minerals) 

Sand grains 



Olalekan S. Alade, Kyuro Sasaki and Bayonile Ademodi et al. 72 

 

Figure 6. Simplified representation of the fraction of petroleum. Adapted from Lesueur (2009). 

 

Figure 7. Possible structure of asphaltene showing sulphur and Nitrogen containing compounds 

(http://mansoori.people.uic.edu/Asphaltene.Molecule_html). 

 

2.2. Origin of High Viscosity of Heavy Oil 
 

The high viscosity and low API gravity of heavy oils (including bitumen) are due to the 

presence of high concentration of asphaltene as well as a relative low proportion of low 

molecular weight compounds which represent lack of light ends (Lesueur, 2009; Martinez-

Palou et al., 2011). Generally, fractionation of crude oil using specific solvent leads to 

 

Feedstock 

Insolubles 

N-Heptane 

Deasphaltened Oil 

Benzene or 

Insolubles Asphaltenes 

Carbon disulphide or Pyridine 

Carbenes (Solubles) Carbenes (Insolubles) 

Silica or Alumina 

Resins (Polars) Aromatics Saturates 

(3) Benzene-methanol (2) Benzene or Toluene (1) Heptane 



Polyvinyl Alcohol (PVA) as an Emulsifying Agent for Viscosity Reduction … 73 

identification of four main chemical families: saturates, aromatics, resins, asphaltenes 

(SARA) as shown in Figure 6.  

Asphaltene molecules (Figure 7) are the heaviest and most aromatic, polar fraction of a 

crude oil and constitute a class of substances defined on the basis of their solubility in organic 

solvents i.e., they are soluble in toluene but insoluble in alkanes such as n-pentane (Saniere et 

al., 2004). In addition, the more viscous crude oils are characterized by the presence of metal-

containing constituents, notably those compounds that contain vanadium and nickel, in 

significant amounts up to several thousand parts per million and can have serious 

consequences during their processing in the refinery and other uses (Speight, 2006; Clark et 

al., 2007).  

 

 

3. EMULSION AND EMULSIFICATION PROCESS AS RELATED TO  

THE PETROLEUM INDUSTRIES 
 

3.1. Basic Concept of Emulsification and Types of Emulsion 
 

Emulsion is basically a liquid-liquid colloidal system in which particles of one liquid is 

dispersed in the other (Shaw, 2003). Colloid science concerns systems in which one or more 

of the components has at least one dimension within the nanometre (10-9 m) to micrometre 

(l0-6 m) range, i.e., it concerns, in the main, systems containing large molecules and/or small 

particles. The major examples of colloidal system are listed in Table 1.  

The technological and economic importance of emulsification process and/or emulsion in 

the food, chemical, pharmaceutical and petroleum industries cannot be underestimated (Pal, 

1994b; Badolato et al., 2008; Abdel-Raouf, 2012; Wong et al., 2015). Emulsification is a 

collective process which involves formation, characterization, and application of emulsion. 

There is originally the presence of interfacial barrier (known as the interfacial tension – IFT) 

which prevents mixing of two immiscible liquids. 

 

Table 1. Practical Examples of Colloidal Disperse Systems (Shaw, 2003) 

 

Dispersed phase 

(particle) 

Dispersed 

Medium 

Name of system  Example 

Liquid Gas Liquid aerosol Fog, liquid sprays 

Solid Gas Solid aerosol Smoke, dust 

Gas Liquid Foam Foam on soap solutions 

Liquid Liquid Emulsion Milk, mayonnaise 

Solid Liquid 

Sol, colloidal 

solutions 

Au sol, Agl sol, 

toothpaste 

Gas Solid Solid foam Expanded polystyrene 

Liquid Solid Solid emulsion Opal, pearl 

Solid Solid Solid suspension Pigmented plastics 
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Essentially, the formation of emulsions needs an energy input, which is traditionally 

achieved through shaking, stirring or some other kind of intensive dynamic and/or static 

mixing processes (Bennion et al., 1993; Hasan et al., 2010) and is aided by surface active 

substance (i.e., surfactants) which assists in lowering the IFT and stabilizes particles of the 

dispersed medium (Clausse et al., 2005; Fradette et al. 2007).  

Emulsification by mechanical agitation, illustrated in Figure 8a, can be defined, 

according to the volume specific energy input or the energy density Ev to form emulsion, as 

the ratio of energy input E per unit homogenized volume of the system – Eqn. 3 (Gingras, et 

al., 2005; Jochen, 2008).  

 

𝐸𝑣 =  
𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑝𝑢𝑡 𝐸

ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑖𝑧𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 𝑉
=  

𝑃𝑤

�̇�
  (3) 

 

where Ev is the specific energy (Jm-3), E is energy input (J), V is the volume (m3), Pw is the 

power consumption (W) and �̇� is the volumetric flow rate (m3s-1).  

The average particle diameter (x) is related to the specific energy as given in Eqn. 4. 

 

𝑥3,4 = 𝛼(𝐸𝑣)𝛽  (4) 

 

where 𝑥3,4 is the volume mean diameter of particle (μm), α, and β are the constants depending 

on the system.  

Comprehensive reports on emulsion types, usefulness (Pal, 1994a and 1994b; Martinez-

Palou et al., 2011; Abdel-Raouf, 2012) and the categories of desirable and undesirable ones in 

the petroleum industry are listed in Table 2. As illustrated in Figure 8b, the popularly reported 

types of emulsion encountered in the petroleum industry includes oil-in-water (O/W), water-

in-oil (W/O), and complex ones (water-in-oil-in-water (W/O/W), water-in-oil-in-oil 

(W/O/O) etc.) (Pal, 1994a and 1994b; Martinez-Palou et al., 2011). Usually, during the 

production of crude oil, due to mixing force (shearing, turbulence or surface contact between 

the oil and liquid phases) and the presence of the natural surface active substances (such as 

asphaltene and resin in the crude oil), and clay, an undesirable water-in-oil emulsion is mostly 

formed in the reservoir or in the flow line (Antes et al., 2015; Martínez-Palou et al., 2015; 

Wong et al., 2015; Wen et al., 2016). An oil-in-water (O/W) emulsion is a liquid-liquid 

colloidal system in which the particles of oil are dispersed in continuous water phase. On the 

other hand, water-in-oil (W/O) emulsion contains water molecules dispersed in a continuous 

oil phase. While W/O (and complex forms of emulsion) is usually associated with crude oil 

production where mixing occurs or during the EOR method using thermal fluid (steam) which 

subsequently leads to increased viscosity (Bennion et al., 1993; Al-Bahlani and Babadagli, 

2009), the O/W emulsion leads to reduction in apparent viscosity of the original oil (due to 

the presence of continuous water phase) and is desirable in both heavy oil production and 

long distance pipeline transportation of heavy oil including bitumen (Martínez-Palou et al., 

2011; Alade et al., 2016a and 2016b).  
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Figure 8a. Oil-water emulsification of process using mechanical agitation. 

 

Figure 8b. Types of emulsion 

It should however be noted that several factors including oil/water ratio, types and 

concentration surfactants, chemistry of the crude oil, homogenization system, chemistry of 

the aqueous phase etc. affect the types and behaviour of emulsion. 

 

 

3.2. Emulsification in the Aspect of Heavy Oil Transportation 
 

High viscosity, which leads to poor mobility and relatively low recovery efficiency, is by 

far the major hurdle facing production and transportation of heavy oil (Barrufet and 

Setiadarma, 2003; Nabipour et al., 2007; Abdurahman et al., 2012). Therefore, transportation 

of heavy oil has become a complex and highly technical operation (Hasan et al., 2010). This 

is due to the advancement in recovery methods which has subsequently increased heavy oil 

production and the need to transport the recovered oil refinery. Pipeline transportation is 

considered the cheapest and safest means of transporting heavy oil to the refinery or the point 

where it will be needed for other utilization. Three general approaches have been considered 

for pipeline transportation of heavy and extra heavy oil: (a) viscosity reduction which 
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includes dilution with other substances, formation of an oil-in-water emulsion, increasing 

and/or conserving oil's temperature by heating and depressing crude oil's pour point, (b) drag 

minimization and (c) in-situ oil upgrading (Martinez-Palou et al., 2011). 

However, several factors including cost of energy, logistic and compatibility problems, 

are the challenges facing the thermal and diluents methods. In addition, for field production to 

be transported by pipeline using a diluent, two pipelines would be required (one for the oil 

and one for the diluent). Therefore, in the recent times, transport of viscous crudes as oil-in-

water (O/W) emulsions is one of the newest alternatives in the pipeline transportation 

techniques (Al-Room et al., 2004; Ashrafizadeh and Kamran, 2010). Emulsification 

technology has received major attention in long distance transportation of heavy oil due to 

cheaper cost and operability. Through emulsification method, crude oil-in-water emulsions 

can reach a viscosity as low as 50mPas, and most pipeline operations of heavy oil are limited 

to viscosity values up to 400mPas (Rimmer et al., 1992; Nunez et al., 1996; Martinez-Palou et 

al., 2011; dos-Santos et al., 2011). Moreover, this method offers advantages such as 

effectiveness in the transportation of crude oils with viscosities higher than 1000 cP 

especially in cold regions and reduction in the pipe corrosion (e.g., in the crudes with high 

sulfur content) since water is the continuous phase and crude oil has no contact with the pipe 

wall (Ashrafizadeh and Kamran, 2010; dos-Santos et al., 2011). Also, restarting a pipeline 

after an emergency shutdown and re-emulsification of oil may not pose major problems 

(Simon and Poynter, 1970). Reported field application of this technology includes the 

Orimulsion® process developed by PDVSA (Petróleos de Venezuela) in the eighties and 

commercialized by its filial Bitumenes Orinoco S.A. (Salager et al., 2001). Similarly, 

technical viability of emulsion transportation of heavy oil has been demonstrated in an 

Indonesian pipeline in 1963 and in a 13 mile long, 8 inch diameter, pipeline in California 

(Ahmed et al., 1999; Ashrafizadeh and Kamran, 2010). Figure 9a is the schematic illustration 

of pipeline transportation of heavy oil as oil-in-water emulsion.  

 

 

Figure 9a. Simplified flow diagram for heavy oil emulsification for long distance pipeline 

transportation. 
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hybrids involve injection of steam, and chemical additives (including solvents and 

surfactants) into the heavy oil reservoir for the purpose of reducing the viscosity and 

increasing mobility (Bennion et al., 1993; Yamazaki et al., 1994; Al-Bahlani and Babadagli, 

2009). During these processes, the thermal energy possessed by the liquid is transferred to the 

oil insitu. Thus, emulsification occurs through the reduction of interfacial barrier between the 

thermal liquid and oil; thereby causing dispersion of the liquid particles into the oil phase 

stabilized by the natural emulsion stabilizers (the asphaltene and resin) present in the oil.  

In addition, emulsification can be assisted by the shearing force essentially generated as  

result of movement of oil and the fluid through the pores space of the reservoir rock 

(Mohammadzadeh and Chatzis, 2010).  

Usually, the steam injection methods lead to the formation of highly viscous water-in-oil 

emulsion which exhibit higher viscosity than the original oil. This however depends on other 

factors such as oil-water ratio, and other prevailing reservoir conditions (Bennion et al., 1993; 

Al-Bahlani and Babadagli, 2009; Alade et al., 2016c).  

On the other hand, chemical flooding using alkaline solutions (sodium hydroxide and 

carbonates) and surfactants leads to in-situ emulsification (formation of oil-in-water 

emulsion) as a result of the chemical reactions accompanied by mass at the oil/water interface 

and low transient dynamic interfacial tension (Gholap et al., 2004; Liu et al., 2007; Dong et 

al., 2009; Chen et al., 2013; Sheng, 2015). And since the lower API gravity crude oils 

generally have a higher content of natural petroleum acids, spontaneous emulsification can be 

triggered by the interaction between the alkaline solution and the natural acids in heavy oils 

(Dong et al., 2009). Pore-scale emulsification process in heavy oil reservoir due to thermal 

fluid injection and/or surfactant is illustrated in Figure 9b. 

 

 

Figure 9b. Illustration of pore scale insitu emulsification in EOR.  
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Emulsion stability and viscosity are the most important properties of practical 

applications in EOR and pipeline transportation (Salager et al., 2001; Shaw, 2003; dos-Santos 
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et al., 2011; Fletcher et al., 2012; Abdurahman et al., 2012; Nguyen and Balsamo, 2013). 

These properties are however governed by many variables including temperature, 

composition of emulsion and particle morphology (Hasan et al., 2010). Notably, the particle 

morphology including particle size and distribution is a critical factor affecting the stability 

and rheological behaviour of complex fluid such as heavy oil or bitumen emulsions.  

Furthermore, the particle morphology of an emulsion majorly affects emulsion 

destabilization process. As illustrated in Figure 10, the forces that contribute to destabilization 

of an emulsion include gravitational force, sedimentation or creaming, coalescence, 

flocculation, Ostwald ripening, and phase inversion (Taylor, 1998; Fingas, 2005; Badolato et 

al., 2008; Kang et al., 2012; Yang et al., 2013). These forces also depend on other factors 

such as the type and concentration of surfactants, chemistry of the crude oil and its physical 

properties, interfacial activities, temperature, phase ratio (Fingas, 2005; Badolato et al., 2008; 

Al-Sabagh et al., 2013). Moreover, the particle size of emulsion is affected by several 

emulsification variables including the energy input during mixing (mixing speed and time of 

mixing), type of mixer, oil composition, oil-water ratio, type and concentration of surfactant 

or surface active agent present, and formation temperature (Al-Roomi et al., 2004; Dong et 

al., 2009; Hasan et al., 2010; Fan et al., 2010; dos-Santos et al., 2011).  

 

 

Figure 10. Emulsion destabilisation and separation processes. Adapted from Taylor (1998). 

The two most popular moment means that have been used in calculating the size of 

particles including emulsions are given in Eqns. 5 and 6 (Holdich, 2002; Richardson et al., 

2002; Rawle, 2016):  
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1.  Surface Area Moment (D[3,2]): Sauter Mean Diameter 

 𝐷[3,2] =  
∑ 𝑑3

∑ 𝑑2 (5) 

 

2.  Volume or Mass Moment Mean (D[4,3]): De Brouckere Mean Diameter 

𝐷[4,3] =  
∑ 𝑑4

∑ 𝑑3 (6) 

 

In addition, based on method of emulsification, emulsion should contain drops of similar 

or very different sizes, with the associated variety in statistical distribution categorized as 

monodispersed or polydispersed, symmetrical or asymmetrical, unimodal or polymodal 

(Salager et al., 2001). The Lognormal probability density function (Eqn. 7) is one of the most 

widely used statistical expressions of size distribution of particles. A typical particle size 

distribution curve fitted to the lognormal probability density function (PDF) is shown in 

Figure 11. 

 

𝑓(𝑥) =  
1

𝑥𝜎√2𝜋
𝑒− (𝑙𝑛(𝑥)−𝜔)2

2𝜎2   (7) 

 

 

Figure 11. A typical particle size distribution curve fitted to the lognormal probability density function 

(PDF). 

 

4. POLYVINYL ALCOHOL AS A SURFACTANT 
 

4.1. Role of Surfactants or Emulsifying Agents 
 

Ordinarily, homogenization of two immiscible liquids, without the inclusion of 

emulsifying agent or stabilizer, does not produce a stable emulsion due to particle 
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coalescence. Thus, stability is enhanced with the use of a stabilizer or emulsifier which can be 

either a surface-active materials (surfactants), naturally occurring materials (crude oil natural 

acids – naphthenic acids, asphaltene and resins) or finely divided solids such as clay (see 

Figure 12). Surfactant lowers the interfacial tension between the two phases and/or form an 

adsorbed film around the dispersed droplets (typical of asphaltene and resin stabilized water-

heavy oil emulsion) thereby assists in preventing coagulation and coalescence (Shaw, 2003).  

Surfactants form a unique class of chemical compound which acts as surface active agent 

and is characterized by the tendency to absorb at surfaces and interfaces between two 

immiscible phases (Salager, 2002; Holmberg et al., 2003; Schramm et al., 2003; Shaw, 2003). 

Through this action, it lowers the free energy at the phase boundary (the interfacial surface 

tension - IFT), thereby breaking the barrier between the immiscible fluids; allows mixing and 

stabilizes the dispersed particles. 

A simple structural description has been used to define a surfactant. As shown in Figure 

13a and 13b, surfactant molecules as an amphiphilic compound consist of a hydrophilic part 

(water soluble part) and a hydrophobic (water insoluble part). In the simplest terms, it 

contains at least one non-polar group and one polar (or ionic) group. The unique surface 

active properties of aqueous surfactant solutions can be ascribed to the presence of a 

hydrophilic head group and a hydrophobic chain (or tail) in the molecule. The polar or ionic 

head group usually interacts strongly with an aqueous environment, in which case it is 

solvated via dipole–dipole or ion–dipole interactions. Accordingly, surfactants are categorised 

into different groups depending on the nature of the polar head group (Schramm et al., 2003).  

 

 

Figure 12. Stabilisation of emulsions by finely divided solids - clay (a) preferential wetting by water 

leading to an O/W emulsion; (b) preferential wetting by oil leading to a W/O emulsion. Adapted from 

Shaw (2003).  

 

                              

Figure 13a. Surfactant molecules as an amphiphilic compound. 
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The four major classes of surfactants based on their dissociation in water is shown in 

Figure 14. Anionic surfactants are the most commonly used surfactants and account for about 

50% of the world production. They are dissociated in water in an amphiphilic anion, and a 

cation, which is in general an alkaline metal (Na+, K+) or a quaternary ammonium. On the 

other hand, cationic surfactants are dissociated in water into an amphiphilic cation and an 

anion, most often of the halogen type. Thus, ionic surfactants (anionic and cationic) are 

affected by the solution chemistry including the salinity (and types of salt) and pH. The third 

type is the non-ionic surfactants whose hydrophilic group is of a non-dissociable type and 

thus do not ionize in aqueous solution. Therefore, they are not affected by the environment of 

the system in which they are applied. Other classes of surfactants include amphoteric or 

zwitterionic surfactants and the polymeric surfactants. The amphoteric or zwitterionic 

surfactants refers to a single surfactant molecule which exhibits both anionic and cationic 

dissociations while the polymeric surfactants are the group of surface active polymers 

including PVA, which result from the association of one or several macromolecular structures 

exhibiting hydrophilic and lipophilic characters, either as separated blocks or as grafts 

(Salager, 2002; Schramm et al., 2003).  

 

Figure 13b. Simplified action of surfactant.  

 

4.2. Desirability of PVA in Forming Heavy Oil-in-Water Emulsion  

for Viscosity Reduction 
 

Several ionic and non-ionic surfactants have been used to reduce the viscosity of heavy 

oil by forming oil-in-water emulsion (Brooks and Richmond, 1994; Al-Room et al., 2004; 

Hassan et al., 2010; dos Santos et al., 2011; Abdurahman et al., 2012; Schulz et al., 2016). 

However, emulsions formed with the low molecular weight surfactants have been difficult to 

break, and thus limiting their application in the field (Flecther et al., 2012; Nguyen and 

Balsamo, 2013). Although, various technological advancements including development of 

chemical demulsifier, electrical demulsification system, gravitational system, thermal 

separation system and their combinations have been proposed and employed in breaking 

petroleum emulsions, these methods are known to be expensive.  

Therefore, the application of certain hydrophilic polymeric surfactants such as Poly vinyl 

alcohol (PVA) in producing moderately stable oil-in-water emulsion which is easier to 

resolve compared to the low molecular weight surfactants is an attractive solution to this 

problem (Fletcher et al., 2012; Nguyen and Balsamo, 2013). PVA has been used in forming 
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oil-in-water emulsion with low stability and significant reduction in viscosity of original 

heavy oil (Flecther et al., 2012; Nguyen and Balsamo, 2013; Alade et al., 2016a and 2016b). 

PVA and other polymeric surfactants have also been used in enhanced oil recovery as 

solution thickeners and/or emulsifier (Son et al., 2015; Raffa et al., 2016).  

 

 

Figure 14. Types of surfactants. Adapted from Schramm et al., (2003). 

 

4.3. Chemical Property of PVA  

 

Polyvinyl alcohols are hydrophilic (water soluble) polymers manufactured by alcoholysis 

of polyvinyl acetate. PVA has a relatively simple structure with a pendant hydroxyl group 

(Figure 15a); and is produced by the polymerization of vinyl acetate to polyvinyl acetate 

(PVAc), followed by hydrolysis of PVAc which is subsequently polymerized to PVA. Figure 

15b illustrates the chemical reaction for synthesis of PVA. 

 

4.3.1. Computational Modeling of PVA 

Motivation for the use of PVA was shown through the use of molecular modelling, the 

chemical properties of poly-vinyl alcohol, PVA was compared with that of poly-vinyl phenol, 

PVP. Geometry optimizations and vibrational analyses of polymer PVA was performed using 

the Gaussian09 software. B3LYP functional was employed with a 6-31G (d) basis set. 

Attractive and repulsive forces between interacting atoms and molecules, due to their 

electropositive and electronegative properties, were explained through electrostatic potential 

energies. The electrostatic potential for PVA was color-mapped based on the electron density 
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distribution (Figure 16a). The color map shows the electrostatic potential energy (in hartrees) 

for the various colors. The red end of the spectrum shows regions of highest stability for a 

positive test charge (more favorable to interactions), magenta/blue show the regions of least 

stability for a positive test charge (less favorable to interactions). The negative characteristic 

electrostatic potential, represented in red color, are reactive as they are rich in electrons (–OH 

functionalities).  
 

 

Figure 15a. Chemical structure of Polyvinyl Alcohol. 

 

Figure 15b. Chemical structure of Polyvinyl Alcohol. 

 

Figure 16a. Electrostatic potential on electron density of polyvinyl alcohol (PVA)-Inset structure of 

PVA. Red colour indicate regions which have the highest negative domain. 
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The strength of a dipole interaction depends on the size of each dipole, dipole energies 

and on their relative orientation. A molecule (polymer) with a permanent dipole moment will 

induce a dipole moment in a second molecule that is located nearby in space, and this 

phenomenon is known as polarization (Kim et al. 2006). Polar molecules (a functional 

polymer and heavy oil containing polar compounds), do interact through dipole-dipole 

intermolecular forces and hydrogen bonds. The extent of charge separation within the 

polymer, PVA, is characterized by its dipole moment which also explains their nature of 

polarity. Polarity prompted by dipole moment brings about a number of physical properties 

some of which are solubility (wettability), surface tension and boiling points (Kim et al. 

2006). The dipole of poly-vinyl phenol and poly vinyl alcohol increases in the order of 

polyvinyl phenol (1.5630 Debye) < polyvinyl alcohol (1.5634 Debye). Polyvinyl alcohol 

presented a higher dipole moment when compared with polyvinyl phenol, and this confirms 

that the polymer shows better wettability properties from a neighbouring polar molecule. 

 

4.3.2. Orbital Energies 

Interaction between atoms or molecules happens most likely between the HOMO of one 

molecule and the LUMO of the other molecule. The amount of energy required to add or 

remove electrons in a molecule can be obtained from the HOMO and LUMO energy values. 

HOMO characterizes the nucleophilicity of a species, i.e., its tendency to donate an electron, 

while LUMO characterizes the electrophilicity of a species, i.e., its tendency to receive an 

electron (Hizaddin et al. 2013). 

 

Figure 16b. HOMO and LUMO locations of polyvinyl alcohol (PVA) unit: (a) HOMO and (b) LUMO.  

Optimized geometries of polyvinyl alcohol showing HOMO and LUMO positions are 

presented in Figures 16b. Polymers with low HOMO energy values indicate a molecule with 

better electron donor and high ionization potential, while polymers with higher LUMO 

energy shows a molecule with high electron affinity, i.e., better electron acceptor. The 

HOMO and LUMO properties of PVA is -0.26154 a.u. and 0.07656 a.u. respectively as 

compared to PVP which has HOMO and LUMO values of PVA is -0.21398 a.u. and -0.00041 

a.u. respectively. The optimization energies of PVA and PVP -9.7 × 104 and -26.7 × 104 

kcal/mol respectively and this confirms that PVA has a slightly higher energy which confirm 

higher compactness/firmness as compared to PVP (Isarankura et al. 2008). 

A B
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4.4. Unique Properties of PVA and Applications  
 

PVA is the world’s largest volume synthetic polymer produced for its many excellent 

physical and chemical properties that has led to broad practical and industrial applications 

(Gholap et al., 2004; Jelinska et al., 2010). Different grades of PVA are synthesized  

according to different degrees of polymerization and hydrolysis, which are controlled in  

the polymerization and the saponification processes respectively. In an overview, the 

characteristics properties of PVA are affected by the degree of polymerization (DP) and the 

degree of hydrolysis (DH). It has been reported that the solubility decreases with increasing 

DP and DH, while PVA solution viscosity increases with increasing DP and DH. The strength 

of PVA film increases with increasing DP and DH, while the emulsifying capacity (including 

emulsion stability) increases with increasing DP and decreases with increasing DH 

(www.denka.co.jp; www.kuraray-poval.com).  

Furthermore, PVA has numerous desirable properties including water solubility, adhesion 

strength, mechanical strength, gas barrier and aging resistance, biocompatibility and 

biodegradability, thermo-stability, chemical resistance and film forming ability, low fouling 

potential, pH stability, high polar character, good mechanical properties and easy 

processability (Biehn and Ernsberger, 1948; Coker, 1957; Gholap et al., 2004; Jelinska et al., 

2010; Fletcher et al., 2012; Nguyen and Balsamo, 2013; Raffa et al., 2016), it has therefore 

been greatly applied in several such as pharmaceuticals, medicine and medical sciences, 

environmental engineering, and engineering materials in general, Moreover, PVA being a 

non-ionic hydrophilic polymer (with non-dissociable –OH group) functions as a surface 

active substance (an emulsifying agent) by lowering the interfacial tensions of solution. 

Besides, PVA is tolerant to substantial concentrations of electrolytes (particularly acids), 

compatibility with other emulsifying agents, salinity of water, and other chemicals such as 

wax crystal modifiers, pour point depressants, and corrosion inhibitors (Biehn and 

Ernsberger, 1948; Coker, 1957; Fletcher et al., 2012; Nguyen and Balsamo, 2013; Alade et 

al., 2016a and 2016b).  

 

 

4.5. Reports from Recent Application of PVA in Heavy and Extra-Heavy  

Oil Emulsification for Viscosity Reduction  
 

Hitherto, in the aspect of heavy oil emulsification, the most desirable advantage of PVA 

application is the formation of emulsion which is easier to resolve compared to the low 

molecular weight surfactants (Fletcher et al., 2012). Other benefits include cost (PVA is 

relatively cheap), tolerance to salinity and electrolytes, reusability, and biodegradability.  

Apart from very few reports (Biehn and Ernsberger, 1948; Coker, 1957), on the use of 

PVA as an emulsifying agent, application of PVA as a surfactant in heavy oil emulsification 

is relatively new. Comparison of emulsification property of PVA with other emulsifying 

agents such as soaps, sulfated alcohols, and sulfonated compounds had been investigated by 

Biehn and Ernsberger (1948). PVA was used as a surfactant to aid the dispersion of mineral 

oils, vegetable oils, and other organic liquids. The ability of PVA to reduce the IFT of the 

mineral oil employed (Nujol) was fairly compared to other emulsifying compounds. The 

effect of PVA on the surface tension was found to be dependent of the degree of hydrolysis. 

The solution of partially hydrolysed PVA resulted into lower IFT compared to the completely 
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hydrolysed solution. Ability to emulsify was basically quantified in terms of droplet size of 

emulsion. It was reported that the effective concentration of PVA was found to be 0.5% or 

greater depending on the total formulation; and at 0.1% or less, PVA was less effective for 

emulsification. In addition, there was insignificant differences in the size of the droplets due 

to the degree of hydrolysis. The stability of emulsions was observed to be dependent of  

the type of the dispersed phase, concentration of PVA, and its combination with other 

emulsifying agents, degree of hydrolysis, and the pH of solutions. The effectiveness of PVA 

was confirmed, depending on the degree of hydrolysis, over a wide pH range. However, the 

stability of emulsion was adversely affected by the presence of salt. Similarly, PVA has also 

been reported to perform excellently as an emulsifying agent in vinyl polymerizations to 

prepare fine particle lattices of polystyrene, poly vinyl chloride, and butadiene-copolymer 

(Coker, 1957). Other attractive performance is the ease of operability of the system involving 

PVA in emulsification. This includes direct use of dry PVA powder (eliminating the need 

first stage preparation of the solution); and possibility of low mechanical agitation in forming 

oil-in-water emulsion using aqueous solution of PVA (Biehn and Ernsberger, 1948). 

Recently, with the objective of reducing the viscosity, PVA has been used in preparing 

oil-in-water emulsion for heavy and extra-heavy oil emulsification (Tobin, 2005; Fletcher et 

al., 2012; Nguyen and Balsamo, 2013; Alade et al., 2016a and 2016d). Heavy and extra-heavy 

oils with original viscosities of 13400 mPa.s at 25oC (Nguyen and Balsamo, 2013), ≈100000  

and ≈1000000 mPa.s at 35oC (Alade et al., 2016a and 2016b), 9700 – 1.4 x 106 mPa.s (at 

20oC) and 1.4 x 106 at 25oC (Fletcher et al., 2012) have been dispersed as oil-in-water 

emulsions (50 - 75% oil contents) in the aqueous solution containing 1000 – 5000 ppm of 

PVA (with or without brine concentration as high as ≈70000ppm TDS). The results reported 

from these investigations showed that less – moderately stable emulsions were formed 

(depending on the method of preparation, particle size, salinity and storage conditions); and 

viscosity reduction up to ≈99% was reported. In addition, compatibility of PVA with caustic 

solution and thermal tolerance (≈175oC) were confirmed.  

 

 

CONCLUSION 
 

An expository discussion has been presented on the potential application of PVA as  

an emulsifier in forming heavy oil-in-water emulsion. The current negative impact of low  

price oil on the production of the highly viscous crude oil can be mitigated through 

application of alternative cost-reduction technology such as emulsification in EOR and 

pipeline transportation. PVA is a cheap, highly water soluble and biodegradable polymeric 

surfactant which had attracted many industrial applications due to its excellent physical and 

chemical properties. Successful emulsification of heavy and extra-heavy oil as oil-in-water 

emulsion with significant viscosity reduction and flow properties assisted by PVA as an 

emulsifier (under favorable conditions of mixing) has been reported. Compared to typical 

emulsions formed using the low molecular weight surfactants, emulsions formed using PVA 

has been found to be less stable therefore eliminating the need for expensive separation 

process. 

However, research effort on the applicability of the chemical (most especially for insitu 

emulsification of heavy and extra-heavy oils and pipeline transportation) has not attracted 
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adequate attentions. It is therefore suggested that further research efforts on PVA and heavy 

oil emulsification should look into practical applications such as development of process for 

insitu emulsification through injection of PVA into the reservoir, thermodynamic properties 

of PVA under typical reservoir conditions, and process optimization with the focus of 

expanding the range of applicability of PVA in both pipeline transportation and heavy oil 

recovery.  
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ABSTRACT 
 

Depleting conventional oil reservoirs, people of the world today are in need of 

exploiting other resources as a substitution to obviate their daily requirements for energy. 

One of the well-known resources being currently under exploitation is unconventional 

reservoir beds or so-called heavy oils. Unlike conventional ones, heavy oils unfortunately 

contain a wide range of problematic components such as asphaltenes. Asphaltenes are 

somehow unclear and undefined materials, which a large number of researchers have 

been scrutinized their entities day in, day out. This controversial subject has a lot of 

literatures, each of which has a different point of view about asphaltene. Therefore, it can 

be expected that naïve or even educated researchers get overwhelmed when they are on 

the point of asphaltene study. To mitigate its challenge, a big effort was made to sum up 

all facts and theories about asphaltene. In this communication, it was tried to delineate the 

contents of the chapter in a simple way so that no one encounters complicate and 

ambiguous concepts. In this work, asphaltene is introduced initially; then, other 

significant information about asphaltene’s molecular weight, proposed chemical 

structures and chemical components are eluded, respectively. Afterwards, the difference 
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between various heavy compounds such as asphaltene, resin and wax is clarified in detail. 

In the end, five-cases-model’s classification is illustrated. Such models are typically 

utilized for predicting the asphaltene phase behavior as well as the amount of asphaltene 

precipitation when crude oils are exposed to external changes.  

 

Keywords: asphaltene precipitation, molecular weight, chemical structure, resin, asphaltene 

phase behavior, thermodynamic model 

 

 

1. INTRODUCTION 
 

A lot of people consider petroleum as a hydrocarbon that consists of hydrogen and 

carbon, but it has been proven that the effective components in the physical and chemical 

properties of petroleum contain heteroatoms. Most heteroatoms including nonmetals, e.g., 

nitrogen, oxygen and sulfur; and problematic metals, e.g., nickel and vanadium, have been 

concentrated in asphaltene fraction of oil [1] although their concentration in various aromatic 

and heavy fractions is quite small. 

In terms of geological maturation and petroleum generation, asphaltenes are partially 

matured kerogens, as shown in Figure 1. Kerogens originates from biomolecules, such as 

amino-acids, sugars, lipids and phenols in diagenesis stage of transformation of organic 

matter to hydrocarbon [2]. Asphaltene fraction found in bitumen, coal and lightest to heaviest 

oils but gas and retrograde gas reservoirs are free of that. 

 

 

Figure 1. Asphaltene position in kerogen maturation diagram. H/C vs. O/C atomic ratios [12]. 



An Introduction to Asphaltenes Chemistry 95 

Asphaltenes are complex and poorly understood fraction; and have a high polarity and 

coking tendency. They are no-distillable fraction of crude oils. Their tendency toward 

cogging pipes in petroleum refineries has caused asphaltenes to be known as “the cholesterol 

of petroleum”. In fact, asphaltenes naturally do not make any troubles as long as they are 

stable. Any changes in temperature, pressure and oil compositions during enhanced oil 

recovery (EOR) processes; or mixing the oil with diluents or other oils; and during 

stimulation treatments with acid may disturb their chemical stabilities, and then result in their 

precipitation and deposition [3-5]. Generally, pressure and composition have major effects 

while temperature’s effect is minor. 

As seen the earlier paragraphs, it is obvious that the subject of asphaltene is too hard to be 

explained concisely in just one chapter. However, a tremendously big effort was made to sum 

up all important asphaltene aspects as a review in following headings. Needless to say that, 

for more information about a specific subject about asphaltene, you should refer to other 

papers as well. 

 

 

2. ASPHALTENE DEFINITION 
 

Asphaltenes in residues are dark brown to black friable solids that have no definite 

melting point, and when they are heated, usually intumesce, then decompose leaving their 

carbonaceous residues. Asphaltenes are a fraction (or a part) of heavy oils and bitumens that 

are soluble in light aromatics and cyclic solvents (e.g., toluene, benzene); and carbon 

disulfide and chloroform (or other chlorinated hydrogen solvents) but insoluble in light 

normal alkanes (e.g., nC5, nC6, nC7); and carbon dioxide [6-7]. In ASTM D-3279/90 (IP 

143/90) approach, asphaltene is also defined on the base of solubility.  

 

 

3. FACTORS INFLUENCING AMOUNT AND  

COMPOSITION OF PRECIPITATED ASPHALTENE 
 

There are several important parameters that influence amount and composition of 

asphaltene precipitation, some of which are presented in the following paragraphs: 

 

 

3.1. Solvent Type 
 

Adding solvents with different contents to a crude oil having an asphaltene fraction can 

cause various amounts of asphaltene precipitation. As a rule of thumb, the more carbon 

numbers a solvent has, the lower value of precipitation asphaltene it makes. However, the 

amount of precipitated asphaltene decreases till n-C7 solvent, and then for a higher carbon 

number than n-C7 its decrease is negligible (Figure 2). To meticulously consider the types of 

used precipitant culminating in an asphaltene precipitation in a mixture, Speight et al. 

proposed to name asphaltene precipitation by its precipitant, for instance, nC5-asphaltenes, 

nC6-asphaltenes, nC7-asphaltenes and so on. These reserchers indicated the direct relation 

between the aromaticity degree of asphaltene precipitation with the carbon number of their 
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applied solvents. They showed that by increasing the carbon number of used solvents, the 

aromaticity degree of precipitated asphaltene increases, or in other words, the H/C ratio of 

asphaltene decreases. On the other hand, its molecular weight increases by increasing carbon 

number of precipitants (Figure 3) [7]. Titration with n-C7 usually results in higher N/C, O/C 

and S/C ratios in precipitated asphaltene. That means crude oil initially has been had a lot of 

N, O and S elements [3]. 

 

 

Figure 2. Amount of precipitated asphaltene for different paraffin precipitant [6]. 

 

Figure 3. Aromaticity degree (H/C) and molecular weight of asphaltenes vs. carbon number of 

precipitant [7]. 
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Table 1. Solvent-Oil ratio of standard methods for asphaltene precipitation [8] 

 

 
 

 

3.2. Solvent-Crude Oil Volume Ratio 
 

At different references for each of solvents, an optimum solvent-oil ratio has been 

proposed for precipitating asphaltene from oil. This means that any ratios less than the 

optimum values lead to losing some asphaltene content of oil, which results in an incorrect 

chemical analyzing of asphaltene molecules. On the other hand, adding an extra solvent is 

useless as well. Therefore, for practical usage of solvents in order for researchers could 

advance their investigations, Speight [8] has tabulated the optimum value of solvent-oil ratios 

taking advantage of some literatures [4-5, 9-12]. This classification has been presented in 

Table 1. 

 

 

3.3. Temperature 
 

At high temperatures, about from 200 to 600°C (typically at T > 350°C), asphaltenes are 

degraded and yield carbon and volatile products. At temperatures higher than 350 °C, CS2 

(carbon disulfide) is an important compound as gaseous by-products of asphaltenes [11]. 

Asphaltene solubility and temperature are in an inverse relationship [6]. It should be 

mentioned that analysis of samples that have been endured such high temperatures are 

somehow misleading, for example, samples prepared from a reservoir after in-situ 

combustion is hard to scrutinize. 

 

 

3.4. Solvent (Precipitant) – Oil (Sample) Contact Time 
 

Speight et al. did experiments to survey the role of this factor, and their results are shown 

in Figure 4 [7]. According to their studies, required time for precipitated asphaltene to be 

stabilized is about 8 hours. In order to ensure the reproducibility of asphaltene content of 

samples, contact times should be counted till 12-16 hours. On the other hand, for contact 

times longer than 16 hours, resins will be adsorbed on isolated asphaltenes’ surface; 

consequently, it introduces a severe condition for instructors to remove the adsorbed resins 

from the asphaltene surface; and eventually, the adsorption diminishes the accuracy of 

measurements. 
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Figure 4. Amount of asphaltene precipitation vs. solvent-sample contact time [7]. 

 

Figure 5. Burial depth of oil vs. oil percent of crude oil [13]. 

 

3.5. Origin of Crude Oil or Bitumen 
 

Initial composition and molecular weight of carbonaceous source; and sedimentation’s 

and oxidation’s environment have a major effect on nature of asphaltenes. Koots and Speight 

surveyed the effects of burial depth and API gravity of oil on asphaltics (i.e., asphaltenes plus 

reins) content of oil (Figure 5 and 6) [13]. It was cited by Ancheyta et al. [14] that Speight 
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and coworkers [15] also studied the effect of geographic region and depth of oil zone on the 

API and quality of produced oil. These two factors affect the content and properties of 

separated asphaltene from the crude oil. As shown in Figure 7, Ancheyta et al. have presented 

schematically the effect of API gravity on asphaltene content of crude oil samples from 

difference references [14]. 

 

 

Figure 6. API gravity effect on asphaltic content of crude oil [13]. 

 

Figure 7. Asphaltene content of different crude oil [14]. 
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To ensure the stability of separated asphaltene drawn from oil phase using the titration 

approach, Speight suggested to employ the following parameters [8]: 

 

Use either n-pentane or n-heptane (preferentially n-heptane)  

Solvent-oil ratios should be greater than 30ml:1g 

8-10 hours is suitable for contact time of solvent-oil 

To reach better results, try to conduct the precipitation sequence in three times to remove 

any adsorbed low molecular resins from asphaltene fraction. The precipitation 

sequence involves dissolution of asphaltene constituents in benzene or toluene (10 ml 

per gm asphaltene) followed by addition of hydrocarbon (50 ml precipitant per ml 

toluene or benzene) to solution.  

 

 

4. SARA ANALYSIS 
 

Economically, the effectiveness of an EOR process depends on the crude oil composition 

of a reservoir bed. Crude oil mixture usually contains from the lightest to heaviest 

components. Many analytical methods using chromatography have been applied for better 

knowing of its compounds. It should be noted that the amount of derived information from 

every chromatographic separation depends on the detectors used in experiments [16]. 

 

 

4.1. Analytical Group Analysis Methods [17] 
 

 PONA (Paraffins, Olefins, Naphthalene and Aromatics). 

 PIONA (Paraffins, Iso-Paraffins, Olefins, Naphthalene and Aromatics). 

 PNA (Paraffins, Naphthalene, and Aromatics). 

 PINA (Paraffins, Iso-Paraffins, Naphthalene and Aromatics). 

 SARA (Saturates, Aromatics, Resins, and Asphaltenes). 

 PIN (n-Paraffins, Iso-Paraffins and Naphthalene). Further fractionation of Saturate 

fraction of SARA analysis into PIN [18]. 

 USBM–API (U.S. Bureau of Mines- American Petroleum Institute): Acids, Bases, 

Neutral Nitrogen compounds, Saturates, and (mono-, di-, and poly-  ( Aromatic 

compounds. 

 Multi-dimensional (Hybrid) techniques: These types are a combination of two or 

more chromatograph techniques mentioned above for gaining further information 

about individual components of each chemical fractions. 

 

Due to huge global demands of fuel energies, requests for more oil production either by 

new sources’ exploitation such as oil shale or applying enhanced oil recovery process are 

raising every year. More oil production has been associated with reducing oil quality and oil 

API gravity [19]. Thus, characterization of heavy end of the crude oil is an important issue 

today. One of the group type analysis methods that has been presented for separating heavy 

crudes is SARA analysis [20-21]. According to this method, crude oil is classified into four 

main chemical classes based on solubility, polarizability and polarity. 
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4.2. Fractions Separated During SARA Analysis 
 

 The letters in SARA stands for Saturates, Aromatics, Resins and Asphaltenes. 

 Saturates: This fraction includes the straight or branched saturated hydrocarbon 

chains (paraffins and iso-paraffins respectively) and also cyclic saturated 

hydrocarbons (cyclo-paraffins), e.g., cyclo-pentane. 

 Aromatics: Hydrocarbons with one or more unsaturated ring structures; i.e., one or 

more benzene’s structures or its derivatives. 

 Resins and Asphaltenes: These groups primarily are a subclass of aromatics although 

some resin molecules may contain only naphthalene’s structures. Resins and 

asphaltenes are the most polar components of petroleum. Additionally, they are large 

molecules with 3 to 10 or more ring structures per molecule. 

 

SARA analysis is being used for heavy oils, including vacuum distillates, atmospheric 

and vacuum residues, bitumens and asphalts that their light end losses are minimal. 

Conventional crude oils can be topped to T > 270°C prior to SARA analysis so as to reduce 

light end losses at subsequent separations and let T < 270°C distillates to be analyzed by other 

methods, usually GC-MS method [22]. Heavy or bio graded crude oils with few light ends 

can be analyzed directly without losing considerable light end components. 

 

 

4.3. Techniques for SARA Separation and Analysis 
 

These approaches can be subdivided into three types: 

 

4.3.1. Gravimetric Adsorption Chromatography 

It was first presented by Jewell et al. [21] as the founders of SARA fractions separation. 

This technique is also known as ASTM D2007 method or open column (glass column) clay-

gel adsorption chromatography method. In ordinary column chromatography, the gravity 

force is an agent of passing mobile phase (solvent and liquid) through column, and there is no 

any pressurizing of mobile phase in this technique. In addition, stationary phase usually is 

activated silica gel or aluminum oxide. ASTM D2007 usually combines with ASTM D1319 

and ASTM D6560 [23]. ASTM D1319 uses a fluorescent indicator for quantification of 

saturates, olefins, and aromatics in lighter fraction of crude oil. ASTM D6560 is used for 

precipitating and quantify heavier fraction of crude oil (n-heptane insoluble). The deasphalted 

remained oil is further fractionated by ASTM D2007. This combination presented here is a 

very preparative useful method for a large volume of a sample and solvent. It should be noted 

that the mentioned technique needs intrinsically a large amount of time and sample (and 

solvent) for its operation, which it can be named as two important disadvantages of this 

technique. Besides, it does not usually yield pure fractions of each group, and the cross 

contamination causes considerable inaccuracies in the results [24]. 
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4.3.2. High Pressure (or Performace) Liquid Chromatography (HPLC) 

Suatoni and Swab [25] proposed using of automated high pressure liquid chromatography 

column in oil industry, as it is a rapid analytical analysis of feedstock. This method requires 

small amount of sample compared with open column chromatography. 

Its instruments typically include: I) a sampler for injection sample to column, II) a pump 

to pass pressurized (50-350 bar) mobile phase -solvent containing the sample mixture- 

thorough column and III) a detector. 

HPLC is faster, more producible and more readily automated than open column 

technique; and also, it is applicable for all boiling ranges. Both techniques, open (normal) 

column and HPLC column techniques have been utilized for analyzing of deasphalted 

samples or maltenes (Figure 8). Additionally, only saturates and aromatic fractions are eluted 

and quantified with both methods and resin fraction is back-flushed and quantified 

gravimetrically. Therefore, both preparative techniques face a difficult procedure for sample 

preparing. 

 

4.3.2.1. Evaluation of Different Detectors for HPLC Technique [26] 

 

4.3.2.1.1. Refractive Index Detector (RID) 

This detector measures the refractive index of an analyte relative to the solvent. Suatoni 

and Swab [25] claimed that HPLC column is applicable for all boiling ranges and for 

different samples, but at first, its refractive index detector must be calibrated. Needless to say 

that, calibration of refractive index detector (RID) is really a tedious work to do. 

 

4.3.2.1.2. Flame Ionization Detector (FID) 

Although flame ionization detector (FID) is the best in gas chromatography particularly 

for organic volatile species in gases, in the presence of "heteroatoms", such as oxygen and 

sulfur, the detector performance is reduced. Also, it is associated with noise problems and 

reproducibility of analysis for heavy end of oil. Because an interface must be used to remove 

the mobile phase first. Afterwards, solvent must be removed and solute must be transported to 

FID. Doing this procedure makes errors in the SARA analysis. 

 

 

Figure 8. Two step SARA fractionation analysis [31]. 
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4.3.2.1.3. Tracor 945 LC-FID 

Pearson and Gharfeh [26] evaluated the Tracor 945 LC-FID [27] as a detector in HPLC 

for quantification. They concluded Tracor 945 LC-FID is having better performance than the 

former. The newest study about SARA analysis with HPLC method returns to the work of 

Bissada et al. [28]. They proposed a novel automated multidimensional high performance (or 

pressure) liquid chromatography (AMD-HPLC). 

 

4.3.3. Thin Layer Chromatography (TLC) with FID [29] 

Although HPLC technique is faster and more reproducible than normal column, both 

normal and high pressure liquid column are applicable for de-asphalted samples. In addition, 

because of general characteristics of these preparative methods, they have rather low accuracy 

and precision for analyzing a small volume of sample [30]. A severe shortcoming of  

most HPLC approaches is the difficulty in obtaining accurate response factors applicable to 

different distillate products. Unfortunately, accuracy can be compromised when these 

response factors are used to analyze hydro treated and hydrocracked materials having the 

same boiling range [16].  

TLC method is a rapid and inexpensive analysis method for various mixtures. In TLC 

method, adsorbent material such as silica gel, aluminum oxide is packed on a sheet instead of 

a column and has been activated. For quantification in TCL method, a flame ionization 

detector (FID) is used. Combination of TLC with FID is known as Iatroscan technology that 

has a pretty high accuracy. 

 

4.3.3.1. TLC-FID Advantages [23, 31] 

1. It can be applied to whole crude oils without de-asphalting and an extensive sample 

preparation. SARA fractions can also be obtained simultaneously by means of this 

method. 

2. It is the fastest and lowest cost; plus, can be conducted in a straightforward manner. 

3. It has a high precise and needs very small amounts of sample and solvent. 

4. Multiple samples can be analyzed simultaneously. 

 

4.3.3.2. TLC-FID Disadvantage 

Bisht et al. [23] have mentioned two main problems of TLC-FID method from various 

references: 

 

1. Calibration and standardization for each fraction must be performed using the most 

representative pure. This work is required because the FID response is not uniform 

for all components even within individual fractions [32-35].  

2. This technique is just useful for high boiling fractions’ temperature. Because lighter 

and volatile materials get lost during spotting the layer, elution, drying and analysis 

[9, 34]. 

 

TLC-FID is utilized widely in different fields, such as biology, medicine, pharmacy and 

oil industry. A comprehensive study related to TLC-FID was published by Ranny [36]. 
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5. DIFFERENCES BETWEEN ASPHALTENE AND  

OTHER HEAVY FRACTIONS OF A CRUDE OIL 
 

There is a close relationship between asphaltenes, resins and higher molecular weight 

aromatic hydrocarbons in crude oils. Heavy aromatics are gradually oxidized and transformed 

to resins. By continuing oxidizing, resins will be transformed to asphaltenes [13].  

 

 

5.1. Resins 
 

 Resins are the most polar end of SAR series (Maltenes) even though they are less 

polar than asphaltenes. They usually contain heteroatoms similar to asphaltenes. 

 Resins have lower molecular weight than asphaltenes, and also variation of resins’ 

molecular weight’s range is narrower with respect to asphaltenes’ range. 

 Resins have chemical structures similar to asphaltenes’ but in much smaller size. 

 Ring systems in asphaltenes are more complex than resins’ ones. 

 Resins have surrounded asphaltene molecules either through electron-pair donor–

acceptor forces or through hydrogen bonding forces and bring about asphaltene’s 

stability [12]. Therefore, adding more resin results in somewhat more asphaltene 

stability (Figure 9). 

 Resins are a portion of maltenes that are absorbed by activated surface of materials, 

such as silica or alumina (aluminum oxide). 

 In contrast to asphaltenes, resins are soluble in n-pentane and n-heptane. 

 Liquefied petroleum gases, such as methane, ethane, propane diluents will precipitate 

more materials, because they precipitate both resins and asphaltenes. Commercially, 

propane is used in processing petroleum residues for asphaltene constituents and 

resin constituents [8]. Precipitated solid with liquid propane is called propane 

asphalt. 

 Resins cannot associate and peptize asphaltenes from another crude oil source and 

disperse them as a colloid. It returns to the assumption of association of resins with 

asphaltenes in the manner of an electron-pair donor-acceptor system [13]. 

 Based on an experimental evidence, Wu et al. postulated that asphaltene molecules 

can associate with either themselves or resin chains whereas resin chains cannot 

associate with themselves [37]. It is related to the different number of association 

sites on each of them. 

 Asphaltenes consist primarily of propagators (molecules with multiple active sites for 

association). Resins, which are well-known to affect asphaltene association, consist 

primarily of terminators (molecules with only one active site) [38]. 

 

 

5.2. Petroleum Wax (So-Called Wax) 
 

 Petroleum Wax is composed entirely of paraffins with a carbon number typically 

greater than 18. In other words, they are made of saturate (PIN) fraction of oil [39]. 
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Figure 9. Asphaltene peptized by resins [63]. 

 Wax is solid at ambient temperature and it melts by heating. 

 Asphaltene and wax precipitation and deposition are two independent processes. 

Actually, temperature, pressure and composition changes have different effects on 

these two processes. For example, pressure increase causes CPT (Cloud Point 

Temperature) in crude oil to be raised, and eventually culminates in more wax 

precipitation while pressure increase may cause or prevent of asphaltene precipitation 

[40]. 

 Wax deposition phenomenon is severely a temperature-dependent material. 

Temperature increase reduces wax precipitation (Figure 10) while temperature has a 

minor effect on asphaltene stability, and its change may cause or prevent of 

asphaltene precipitation. 

 Asphaltene precipitation occurs typically at high pressures and temperatures. It 

means that asphaltene precipitation occurs earlier than wax deposition (Figure 10).  

 Adding a light hydrocarbon to a crude oil reduces wax creation while excess light 

hydrocarbon makes an impact on asphaltene precipitation. Besides, adding a little 

amount of polar solvent can strongly affect asphaltene stability while such addition 

has a negligible effect on wax deposition. 

 Precipitated asphaltene and wax are different in composition. Precipitated asphaltene 

is mainly composed of asphaltenes, resins and other aromatics while created wax is 

free of them. 

 

Furthermore, it should be pointed out, cloud point and pour point of petroleum are  

two important parameters for controlling of wax deposition phenomena. When temperature  

is reduced during transportation through pipelines, waxes freeze out of crude oil and  

form crystals. Formed crystals have two structures, depending on their compositions. a) 

Macrocrystalline: composed of (n-/i-) paraffins, (usually < C40), b) Microcrystalline: 
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composed of naphthalenes (usually >C40). Unlike their apparent names, the Microcrystalline 

groups include more material varieties having more carbon numbers. 

 

 

Figure 10. Pressure-temperature phase diagram for asphaltene and wax [22]. 

Usually separated asphaltene fraction with SARA separation methods consists of a  

high concentration of microcrystalline waxes (>C40) that bring about a misinterpretation  

of geochemical characteristics of asphaltene fraction as well as total wax composition. 

Additionally, for phase behavior modeling of waxes and asphaltenes; we need to know an 

accurate indication of the wax and asphaltene content of oil. Misleading and ambiguous 

results will be obtained if fractions are cross-contaminated [41]. 

 

 

6. ASPHALTENE PRECIPITATION PROBLEMS 
 

Asphaltenes molecules and precipitated solid particles of asphaltenes are not problematic 

by themselves, they need to be aggregated to be a troublemaker [42]. Asphaltene deposition 

problem may occur in porous media (formation), tubing’s wall, transportation lines, end of 

deadlines that are closed, separation and transportation facilities. As soon as asphaltenes 

precipitate in separators; they may deposit on the bottom of the separators or they may act as 

a stabilizer of oil-water emulsions. If the latter occurs, oil water separation will be severely 

cumbersome. 

Asphaltene existence makes catalysts inactive in refinement processes by depositing on 

their surfaces [43]. Asphaltene deposition on minerals’ surfaces inside reservoir, specially 

near wells, will block pores, throats or even may change wettability of reservoirs to oil wet 

inevitably. Happening so, it decreases oil mobility. Asphaltene deposition during production 

or EOR processes reduces production rate and oil recovery significantly. Sometimes, 

asphaltene deposition’s damage to production well or reservoir is irrecoverable. This may 

cause to lose completely the well. Inside pipelines, they gradually block the paths, so it is why 

asphaltene is known as “cholesterol of petroleum”. 
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7. CHEMICAL COMPOSITION OF ASPHALTENES 
 

Asphaltenes are a complex oil fraction that primarily consist of carbon, hydrogen, 

oxygen, nitrogen and sulfur, as well as trace amounts of iron, vanadium and nickel. 

Heteroatoms in asphaltenes can be found in the following forms (Table 2) [44]: 

 

Table 2. Typical functional groups present in asphaltene molecules 

 

 

 

 

 

Primary Amin 

(Nitrogen) 

Secondary Amin 

(Nitrogen) 

Tertiary Amin 

(Nitrogen) 
Pyridine (Nitrogen)  

 

 

 

 

Pyrrole 

(Nitrogen) 

Amide (Nitrogen 

and Oxygen) 
Carboxyl (Oxygen) Phenol (Oxygen) 

 

 

 

 
Ketone 

(Oxygen) 

Benzothio-phene 

(Sulfur) 
Thiophene 

Porphyrin (Nitrogen, Oxygen and 

Iron) 

 

 Hetero-aromatic compounds whose sulfur presents in benzothiophene rings, and 

nitrogen presents in pyrrole and pyridine rings. 

 Bi or polyfunctional molecules whose nitrogen presents in amines and amides, and 

oxygen presents in such groups as ketones, phenols and carboxylic acids. 

 Metals, for example, nickel and vanadium are placed alongside pyrrole nitrogen 

atoms in porphyrin ring structures. 

 

Briefly, the N, S and O atoms are placed in associated functional groups such as acids, 

ketones, thiophenes, pyridines, and porphyrins [38]. Moreover, it was reported that the 

concentration of nickel and vanadium in asphaltenes increases linearly as API gravity of 

crudes increases [45]. 
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Depending upon Speight’s studies [17], Kokal and Sayegh [3] summarized variation 

ranges of heteroatoms and their proportions from 57 different asphaltenes from 8 countries as 

follows. 

 

O: 0.3-4.9%  

S: 0.3-10.3%  

N: 0.6-3.3% 

O/C: 0.003-0.045 

S/C: 0.001-0.045 

N/C: 0.007-0.023 

 

Using studies of Speight and Moschopedis [46], Kokal and Sayegh [3] also reported the 

carbon and hydrogen content of different isolated asphaltenes with n-heptane as follows: 

 

C: 82 ± 2% 

H: 8.1 ± 0.7% 

 

Isolated asphaltenes using n-pentane have more hydrogen percents (higher H/C ratio) 

because lighter solvents bring about more precipitation of lighter compounds with higher 

paraffinic degrees.  

 

 

8. CHEMICAL STRUCTURE OF ASPHALTENES 
 

Asphaltenes have not been defined exactly like to methane, ethane or any other known 

species. Asphaltenes are defined on the basis of their solubility class as a fraction of oil. In 

fact, they are polydisperse in nature. Thereby, we cannot attribute an exact expression or 

define a clear chemical structure for this fraction. There are a few physical and chemical 

based methods to find out the structures of asphaltene, resin and other heavy species in crude 

oil. These methods are as follows: 

 

 Physical based methods: X-ray diffraction, mass spectroscopy, ESR spectroscopy1, 

NMR spectroscopy2, GPC3, IR Spectroscopy4, ultra-centrifugation, vapor pressure 

osmometry 

 Chemical based methods: Oxidation, Hydrogenation.  

 

Some researchers have proposed structural models in order to account for the structural 

elements of asphaltenes. 

 

                                                        
1 Electron Spin Resonance Spectroscopy. 
2 Nuclear Magnetic Resonance Spectroscopy. 
3 Gel Permeation Chromatography. 
4 Infrared spectroscopy. 
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Figure 11. Archipelago structural model for asphaltenes [47]. 

 

Figure 12. Continental (hand like) structural model for asphaltenes [48-49]. 
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8.1. Archipelago Model 
 

This structural model for asphaltenes has been proposed by Murgich et al. [47]. 

According to this model, each molecule is made from maximum 10 small poly aromtaic 

hydrocarbons (PAH) that have been linked through aliphatic or sulfids bridge (Figure 11). 

This model is also called multi-aromatic core or multi-island model. 

 

 

8.2. Continental Model 
 

As sketched in Figure 12, to illustrate this model, Groenzin, Mullins and coworkers 

proposed a very large aromatic hydrocarbon that is surrounded with alkyl (aliphatic) branches 

[48-49]. In this model, that is also known as condensed aromatic cluster model, lower 

molecular weights for asphaltenes are estimated. 

 

 

8.3. Modified Yen (Mullins-Yen) Model 
 

It is the newest and most popular structural model. As it has been shown in Figure 13, the 

advantage of the modified Yen model [50] is its high ability to describe the hierarchical of 

cluster formation clearly. For light oils, this model considers asphaltene molecule as a  

single, moderately large poly-aromatic hydrocarbon (PAH) with peripheral alkyls. Some 

observations indicate in stable black oils, asphaltenes as nano-aggregates are dispersed 

throughout of their oil phase. This model also assumes that in stable black oils nano-

aggregates are formed by cumulating of six numbers of asphaltene molecules comprised by a 

single disordered stack and peripheral alkyls interiorly and exteriorly, respectively. 

Furthermore, in unstable heavy oils which have higher asphaltene content, clusters can be 

formed by about eight piece of nano-aggregates [51]. This model has provided a framework 

for a tremendous number of studies to be conducted for asphaltene’s entity. 

 

 

Figure 13. Modified Yen model [50]. 
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9. MOLECULAR WEIGHT 
 

Generally, asphaltenes have a high apparent molecular weight. Asphaltene’s  

molecular weight depends on solvent’s polarity and asphaltene’s concentration, temperature, 

measurement technique and conditions. The absolute value of the asphaltene molecular 

weight is not important. What is essential in chemical engineering is the average and 

distribution of asphaltene’s molecular weight [52].  

Different ranges for molecular weight of asphaltene have been reported since asphaltenes 

tend to associate in the presence of non-polar (poorer) solvents and at low temperature. Due 

to polydispersity and self-association behavior of asphaltenes, their molecular weight depends 

on both temperature and concentration [53]. Asphaltene association may be due to hydrogen 

bonding and/or formation of charge-transfer complexes [54]. By using an additive to prevent 

asphaltenes from association or using high polar solvent such as pyridine their molecular 

weight falls into the range of 2000 ± 500 [8, 55-56]. 

Different techniques used to estimate the molecular weight of asphaltene include vapor 

pressure osmometry (VPO), viscometry, boiling point elevation, freezing point depression, 

light scattering, gel permeation chromatography (GPC), florescence depolarization, 

ultracentrifuge, and electron microscope studies. Amongst these methods, GPC and VPO are 

the most widely employed ones. Molecular weight range of asphaltenes with different 

methods has been tabulated by Dickie and Yen [57] and also summarized by Groenzin and 

Mullins [48]. 

Vazquez and Mansoori [58] obtained molecular weight distribution for n-C5, n-C6 and n-

C7-separated asphaltene fraction with gel permeable chromatography. They observed that 

molecular weight distribution function for all the three types asphaltenes are bimodal (Figure 

14). 

 

 

Figure 14. Molecular distribution function for all three n-(C5, C6 and C7) asphaltene [58]. 
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10. STABILITY OF ASPHALTENE 
 

Stability of asphaltene content of crude oil is independent of the amount and properties of 

asphaltene in the oil. Unexpectedly, asphaltene content of light crude oil is more apt to 

instability because light crude oils contain more light normal alkane (precipitant) and have 

lower asphaltene solubility. Therefore, light crude oils have a greater likelihood of asphaltene 

destabilization [59] whereas heavy crude oil’s asphaltenes are less likely to cause problems 

because they contain plenty of intermediate components that cause asphaltenes to be stable. 

Asphaltene’s stability entirely depends on temperature, pressure, composition and shear 

rate. Change of these factors may be induced by a variety of processes, including primary 

depletion during primary oil recovery, injection of natural gas or carbon dioxide, thermal 

recovery, acidizing treatments and commingled production of incompatible fluids [60]. 

 

 

11. THERMODYNAMIC MODELS FOR PREDICTION OF  

ASPHALTENE STABILITY AND INSTABILITY 
 

In the phase diagram, the region that asphaltene precipitates is called Asphaltene 

Precipitation Envelop (APE). Out of the APE region, asphaltene is stable in the crude oil. 

This region is limited to the upper and the lower onset pressure. The asphaltene precipitation 

phenomena can be controlled by analyzing and modeling asphaltene phase behavior in crude 

oil. 

Traditionally, there are two points of view for behavior of asphaltene content in crude oil 

[61], known as solubility or lyophilic model [62] and colloidal or lyophobic model [63]. In 

the first point of view, asphaltenes are considered to be dissolved in oil and form a real 

solution and its precipitation is fully reversible. According to this view, asphaltene 

precipitation is due to reduction of solvent power. In the second point of view, asphaltene’s 

molecules are assumed as suspended solid particles, which are peptized by resins. Existence 

of balance between adsorbed resins on the surface of asphaltene colloids and resins in the 

surrounding medium controls asphaltene stability. By adding any solvents that lead to lower 

resin concentration in oil phase, according to the Fick’s law, resins are separated from 

asphaltene’s surface and diffuse to oil phase. Afterwards, de-resined asphaltenes stick 

together and agglomerated asphaltenes are deposited. Apart above simple classification, 

Mohammadi and coworkers classified thermodynamic models for asphaltene behavior in oil 

to 5 classes as follows [64-65]: 

 

1. Activity coefficient-based models 

2. Equation of State (EOS) based models 

3. Colloidal/Micellization models 

4. Scaling laws, mathematical correlations and intelligent models 

5. Association models 
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11.1. Activity Coefficient-Based Models 
 

These models are based on regular solution or polymer solution theories [65]. 

Subramanian et al. [66] reviewed the most popular solution theories in their study. Simplest 

solution theory is regular solution theory. This solution has a moderately divergence from 

ideal solution. This theory attempts to explain solution non-ideality in terms of physical 

intermolecular interactions. A regular solution has the same ideal entropy of formation which 

is shown in Eq. (1). It is worth mentioning that for establishment of this equality (left-hand 

side of Eq. (1)), solution has to contain a random distribution of constituents. On the other 

hand, enthalpy of formation of the regular solution is non-zero unlike ideal solution (it means 

enthalpy has a value similar Eq. (2)). 

Volume of regular solution is also equal to the sum of the volume of each constituent 

similar to the ideal solution. 

 

Δ𝑆𝑚 𝑖𝑑𝑒𝑎𝑙 
= Δ𝑆𝑚 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

=  −𝑛𝑅(x1 ln(x1) + x2 ln(x2)) (1) 

 

Δ𝐻𝑚 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
= 𝛽x1x2 (2) 

 

Δ𝐺𝑚𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
= Δ𝐻𝑚𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

− 𝑇Δ𝑆𝑚𝑖𝑑𝑒𝑎𝑙
 (3) 

 

1 and 2 subscripts denote mixture′s constituents 

x: mole fraction  

n: mole number of all constituents of mixture  

𝛽: interaction parameter 

 

Flory and Huggins were the first to calculate the entropy of mixing of long-chain 

molecules with the assumption that each segment of long-chain molecule occupies one site of 

the lattice similar to a molecule of the solvent. Namely, each segment of polymer chain has 

the same size of solvent molecule. They proposed the polymer-solvent interaction parameter, 

χ, as a dimensionless quantity that characterizes the difference between the solvent-polymer 

interaction energy and solvent-solvent interaction energy. Thus, a good solvent has a low 

Flory-Huggins interaction parameter’s value, χ. This model was first developed for polymer 

solutions only, but was modified later by researchers such as Mohammadi, Nikookar and 

others [62, 65, 67-72] so as to determine the effects of pressure and composition on the onset 

conditions and the amounts of the precipitations, and was thus applied to materials other than 

polymer solutions. The expression for the Gibbs energy of the Flory-Huggins’s solution is 

given by: 

 

Δ𝐺𝑚𝐹𝑙𝑜𝑟𝑦 𝐻𝑢𝑔𝑔𝑖𝑛𝑠
=  𝑛𝑅𝑇(x1 ln(𝜙1) + x2 ln(𝜙2)) +  𝑛x1𝜙2χ (4) 

 

1 𝑎𝑛𝑑 2 subscripts denote solvent and polymer, respectively  

x: mole fraction  

𝜙: volume fraction 

𝑉: 𝑣𝑜𝑙𝑢𝑚𝑒  

χ: Flory interaction parameter for solvent − polymer pair  
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If the polymer’s segment number is equal to one, then the volume fraction will be equal 

to the mole fraction. Interaction parameter used in regular solution and Flory-Huggins theory 

can be calculated from solubility parameter via the Scatchard and Hildebrand’s correlations 

[73-74]. 

One of the most prevalent models in this category is the Flory-Huggins model proposed 

by Hirschberg [62].  

Models based on Flory-Huggins polymer solution theory assume either the precipitated 

phase consists of pure asphaltene or the precipitated phase consists of asphaltene and non-

asphaltene components and the oil phase is free of asphaltene. This model may not be helpful 

for the conditions where the interaction parameter χ  is near 0.5 and may require some 

modifications. Following that, Mohammadi and Richon [67] proposed a developed version of 

Flory-Huggins theory based model in which asphaltene is composed of a pseudo-component, 

whereby the precipitated and the oil phases could be comprised of asphaltene and 

nonasphaltene components. They showed that the existing traditional Flory–Huggins based 

models are specific cases of the developed model. 

Another drawback of the Flory Huggins theory is that it has been derived for 

homogeneous polymer chain of uniform molecular weight (constant segment number) in a 

single uniform solvent. Unfortunately, this theory also ignores the free volume in lattice 

theory. 

For heterogeneous polymer solution, Scott and Magat [75] extended Flory-Huggins 

theory to apply that for a polymer mixture of varying segment numbers. Their versatile theory 

is known as statistical mechanical Scott and Magat theory.  

 

 

11.2. Equation of State (EOS) Models 
 

This category includes models that use an equation of state for prediction of asphaltene 

stability in crude oils. Based on what equation of state is used, this class is divided into three 

subclasses: 

 

11.2.1. Cubic Equation of State 

This type of equation of state has physical parameters, such as critical temperature, 

critical pressure and acentric factor. As a result, they just consider the physical or van der 

Waals interactions of materials. A famous model for estimating asphaltene phase behavior 

that uses a cubic EOS was proposed by Nghiem and Coombe [76]. Nghiem and Coombe 

divided the heaviest pseudo component of crude oil, typically C32+, into two parts; non-

precipitated component, C32A+, and precipitated component, C32B+ (as seen from Eq. 5). 

When asphaltene is stable, the amount of C32A+ is equal to C32+. By decreasing asphaltene 

stability, some amounts of C32A+ are converted to C32B+. Nghiem’s model is known as 

solid model. This model considers asphaltene as a single-component solid phase that is in 

equilibrium with liquid phase. The prevalent EOSs used in oil industries and commercial 

simulators like CMG are cubic type, such as Peng-Robinson and Soave-Redlich-Kwong cubic 

equation of state. The major drawback of these cubic EOSs is their inaccuracy in prediction of 

fluid phase behaviors of materials containing complex and vastly different size molecules 

[77]. 
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C32+mole fraction = 𝐶32𝐴+𝑚𝑜𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 𝐶32𝐵+𝑚𝑜𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (5) 

 

11.2.2. Cubic Plus Association Equation of State (CPA-EOS) Based Model 

These equations of state consist of two terms, one term for considering physical 

interactions, which is intrinsically a cubic equation of state (normally PR or SRK cubic EOS), 

and another for considering association interactions [78]. The distribution of two mentioned 

terms as molecular interactions has been shown in Eq. 6. 

 

Z = Zph + 𝑍𝑐ℎ (6) 

 

Firoozabadi and Li [61] applied the CPA equation of state for studying asphaltene 

precipitation of live oils involving pure components, pseudo-hydrocarbon components and 

hydrocarbon residues. They used liquid-liquid phase equilibrium for upper part of APE 

(between upper onset pressure and bubble point curve) and implemented a vapor-liquid-liquid 

phase equilibrium for lower part of APE (between lower onset pressure and bubble point 

curve) in their defined pressure-temperature phase diagram. Shirani et al. [79] modeled 

asphaltene precipitation for three different live oils. They also utilized CPA equation of state 

due to association nature of asphaltenes. For more information about CPA equation of state 

please refer to the book written by Kontogeorgis et al. [80]. 

 

11.2.3. SAFT Equation of State Based Model 

SAFT equation of state is a statistical thermodynamic based EOS. This equation is 

derived using first order perturbation theory of Wertheim (TPT1) by Chapman et al. [81]. 

SAFT EOS is expressed by Helmholtz free energy. In original SAFT EOS, a hard sphere 

system was used as a reference system in order to add any physical or chemical perturbations. 

Eq. 7 demonstrates the three main components of residual Helmholtz free energy in SAFT 

equation of state. 

 

𝑎𝑟𝑒𝑠 = 𝑎𝑠𝑒𝑔 + 𝑎𝑐ℎ + 𝑎𝑎𝑠𝑠 (7) 

 

In the above equation, 𝑎  and res represent the reduced and residual Helmholtz free 

energy, respectively. The seg, ch, ass superscripts denote segment, chain and association 

contribution of residual Helmholtz free energy, respectively. 

Normally, a SAFT-type equation of state has three parameters for non-associating 

compounds and two more parameters for associating compounds. These parameters can be 

found by fitting the model with saturated liquid density and vapor pressure data, and the 

exactness of the predicted parameters is normally expressed in AAD percent (Average 

Absolute Deviation).  

David et al. modeled asphaltene phase behavior in a model live oil (mixture of nC7-

asphaltene, toluene and methane) and in a recombined oil (stack tank oil with its separator 

gas) utilizing SAFT EOS [82]. They determined SAFT parameters for asphaltene by means of 

precipitation data prepared from oil titration with n-alkanes at the ambient temperature. David 

et al. assumed that in the asphaltic crude oil, polar-polar interactions are negligible and 

molecular size and van der Waals interactions dominate asphaltene phase behavior. Although 

they ignored association term in their SAFT equation of state, they finally observed there is a 
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good agreement between predicted bubble points and asphaltene instability of their SAFT 

model against experimental data. 

Tabatabaei-Nejad and Khodapanah [83] developed other SAFT model to predict the 

lower and upper onset pressure during asphaltene precipitation, and compared their results 

against CMG simulator to show accuracy of the presented model with respect to the solid 

model. 

Gross and Sadowski [84] considered hard chain as a reference system and applied 

perturbation to this system and derived PC-SAFT version. This model works better than 

original SAFT model for modeling of asphaltene phase behavior [77, 85-87].  

Gonzalez et al. [86] used PC-SAFT equation of state to predict the onset of asphaltene 

precipitation with a simple and recombined live oil during pressure depletion as well as light 

gas injection (CO2, N2, CH4 and C2H6) in an oil reservoir. They determined PC-SAFT 

parameters for pure components by fitting the model with saturated liquid density and vapor 

pressure data, and parameters of pseudo-components were estimated from molecular weight 

based on correlations. 

Sabeti et al. [85] set up a model based on PC-SAFT to estimate the amount of asphaltene 

precipitation in a fluid under various temperatures, pressures and in presence of different 

solvents. In so doing, they chose a fairly new approach in order to use a minimum number of 

physically relevant parameters for estimating asphaltene precipitation during solvent injection 

in vapor-liquid-quasi liquid state. The only inputs were pseudo-components and PC-SAFT 

parameters in their asphaltene model. It should be mentioned that the method of estimating 

asphaltene precipitation was similar to that employed by the solid model with the main 

difference that PC-SAFT equations were used instead of cubic EOSs; as a result, the need to 

find the adjustable volume shift when using the cubic EOSs was obviated.  

 

 

11.3. Colloidal/Micellization Models 
 

Colloidal and micellization models consider asphaltene as a lyophobic constituent. In this 

category, for evaluating asphaltene precipitation, oil constituents are divided into polar and 

non-polar groups. Polar group consists of polar polyromantic components that may also 

contain heteroatoms. In fact, this group is the end of heavy and nonvolatile fraction of crude 

oil and can be subdivided to resins and asphaltenes’ subdivisions. Nonpolar group includes 

(iso/normal) paraffins, naphthalenes or cyclo paraffins and intermediate molecular weight 

aromatics [40]. 

 

11.3.1. Colloidal Model 

Leontaritis and Mansoori [63] on the base of this premise that asphaltene’s molecules are 

dispersed in crude oil as suspended particles, proposed colloidal model for asphaltene phase 

behavior. In this way, resins could be adsorbed on the asphaltene surface, and make them be 

stable. Thus, resins must exist in the crude oil in order for asphaltenes remain stable. 

Basically, this model supposes a thermodynamic equilibrium exists between the resins in oil 

phase and the resins adsorbed on the colloidal asphaltene surfaces. 

In the colloidal model, with adding poorer solvents in the crude oil the asphaltene 

instability grows. To put it in another way, by injecting diluents into the oil, resin’s 

concentration in the oil is reduced, and according to the first Fick’s law defined in Eq. 8, as 
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the concentration gradient of resin’s molecules in the oil phase and on the asphaltene’s 

surface is changed, resin’s molecules will be desorbed from asphaltene’s surface and will 

diffuse into the oil phase. On the other hand, adding any toluene solvents into the crude oil 

ahead of asphaltene agglomeration and flocculation, will reverse asphaltenes and resins 

toward their stable conditions in colloidal form. Reversibility of the asphaltene’s precipitation 

is a controversial issue which was discussed in detail by Ashoori et al. [88]. 

 

J = −D(
δC

δx
+ 

δC

δy
+ 

δC

δz
) (8) 

 

J : Diffusion Flux (mol/(Length2Time1)) 

D : Diffusivity or Diffusion Coefficient 
δC

δx
, 

δC

δx
 and 

δC

δx
 : concentration gradient in x, y and z direction, respectively. 

 

11.3.2. Micellization Model 

Although colloidal model is pretty famous, Firoozabadi and coworkers perused 

differences between asphaltene and wax properties; therefore, they deduced that colloidal 

model initially presented for wax precipitation is not appropriate for asphaltene, and proposed 

another model for asphaltene precipitation namely micellization model. In this model, 

asphaltene precipitation is evaluated for liquid-liquid system. The first liquid phase was 

supposed to be the heavier phase -precipitated phase in liquid state- that is composed of 

resin’s and asphaltene’s molecules. The second liquid phase was considered as the lighter one 

that contains all constituents of crude oil and resin’s and molecule’s monomers as well. 

Assuming so, asphaltenes and resins can exist in both liquid phases in micellization model 

[40, 89]. This model is based on the stabilization of asphaltene micelles beside resin 

molecules, and takes into account the aggregation and micellization natures of asphaltene and 

resin components [37, 40, 90-91]. 

In the micellization model, the amount of and also the composition of each phase are 

calculated based on the fact that the Gibbs free energy of the system must be minimal. In 

contrast to colloidal model, micelle’s size can be changed depending upon the temperature of 

media. A micelle is composed of a core or kernel containing n1 molecules of asphaltene and a 

shell consisting of n2 resins’ molecules. Sometimes, for the Gibbs free energy of the system to 

be its minimal amount, solvents molecules need to coat micelles shell and to create a 

solvation shell. 

The standard Gibbs free energy of the system that is being shown with 𝐺𝑚
00 represents  

the discrepancy between standard Gibbs free energy (standard refers to infinite dilution of  

the solvent) among n1 molecules of asphaltene in the micelle’s core and among n2 resin’s 

molecules in the micelle’s shell. 

 

Δ𝐺𝑚
00 = 𝜇𝑚

∗ − 𝑛1 𝜇1𝑎
∗ − 𝑛2 𝜇1𝑟

∗  (9) 

 

Δ𝐺𝑚
00: standard Gibbs free energy of the system 

𝜇𝑚
∗ : Standard chemical potential of the solvent 

𝜇1𝑎
∗ : Standard chemical potential of asphaltene’s monomers 

𝜇1𝑟
∗ : Standard chemical potential of resin’s monomers 
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n1: number of asphaltene’s molecules in micelle’s core 

n2: number of resin’s molecules in micelle’s shell. 

 

 

11.4. Scaling Equation, Mathematical Correlations and Intelligent Models 
 

Rassamdana and coworkers [92-93] developed a polynomial equation of third order as a 

scaling equation with two adjustable parameters to determine amounts of asphaltene 

precipitations against titration with n-alkanes. Years later, Mohammadi et al. [94] applied a 

mathematical method based on the Leverage approach in order to improve precipitation 

prediction in comparison with Rassamdana works. Ashoori et al. [95] used an artificial neural 

network (ANN) to compare output results of ANN in comparison with the scaling equation 

method. Although the study showed promising results, it should be considered that their ANN 

method requires numerous data sets so that it is robust enough to lead into reliable outcomes. 

Zendehboudi and coworkers [96-97] promoted the ANN model by optimizing that by ICA 

method and designed a model which was capable of estimating the amount of asphaltene 

precipitation and bubble point pressure for a crude oil at conditions of enhanced oil recovery. 

For this purpose, they used their experimental results in a wide range of pressure, temperature 

and amount of injected solvent for training of ANN. They finally proved that the ICA-ANN 

model brings more convincing outcomes compared to other mathematical models with an 

average error percentage less than 5% for estimating the amount of asphaltene precipitation 

and the bubble point pressure. 

Mohammadi and coworkers [64, 98] could predict asphaltene contents, the upper and 

lower asphaltene onset pressures using the LSSVM method. Generally, the LSSVM and ANN 

strategy are similar in which they both require experimental data for training set and testing 

set. However, the LSSVM needs two adjustable parameters for producing an equivalent 

function. Therefore, the authors used experimental data of oils from the Middle East region in 

order to obtain the two adjoining constants and estimate asphaltene precipitation accurately. 

Apart from that, Chamkalani et al. [99-100] developed a program code using the LSSVM 

strategy to create relationships between the SARA fractions and refractive index (RI) values 

so that they could improve the accuracy of previous results presented by themselves. Here, RI 

represents the speed of light in a studied substance. In their developed simulator, the SARA 

fractions data and reservoir conditions were the input variables and RI was the output result. 

Eventually, they applied the stability criteria introduced by Fan et al. [101] in the simulator in 

order to monitor the asphaltene stability region in crude oil samples. These mathematical 

models, similar to ANN, also require numerous data sets in order to be reliable and efficient 

and not to be limited over a specified range of performance. 

 

 

11.5. Association Models 
 

Agrawala and Yarranton proposed an asphaltene self-association model in a manner 

analogous to polymerization process. They considered linear polymerization type for 

simplicity, and then, eluded that polymerization in three-dimensional manner will give better 

results [38]. 
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This model’s category considers association interaction of asphaltenes in its mathematical 

calculations, so all equations of state, such as SAFT and CPA, containing association 

interaction terms can take the advantage of Agrawala’s and Yarranton’s theory.  

 

 

CONCLUSION 
 

As mentioned earlier, asphaltene deposition is one of the big challenges in today's  

oil industries. The aim of this essay was to show wide ranges of viewpoints indicated by 

many researchers. Asphaltene definition, factors affecting asphaltene precipitation, methods 

for SARA analysis, proposed compositions and structures of asphaltenes and finally 

thermodynamic models for prediction asphaltene stability are cases in point that were briefly 

introduced throughout of this manuscript. The enormous subjects presented here show loads 

of people are scrutinizing asphaltene from modeling and experimental views. As it was 

pointed out, some numerical models are on the basis of polymers and some investigators 

made an attempt to adapt the models to asphaltene conditions. It means, overcoming 

asphaltene challenges requires versatile information about different branches of science. 

Not only is the accuracy of methods important, but other parameters such as the required 

volume of samples and amount of time are also vital in heavy components analyses. For 

example, although open column chromatography method is an accurate manner for SARA 

analysis, the vast amounts of crude oil and solvent expose researchers to many difficulties. As 

another example, PC-SAFT models for predicting the amount of asphaltene precipitation are 

too time consuming for a wide reservoir even thought they are promising tools in asphaltene 

phase behavior estimations. In brief, what was demonstrated here is a superficial claim from a 

deep ocean of asphaltene, so it was suggested for apprehending more detail knowledge study 

of other papers.  
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ABSTRACT 
 

Over the last decades, modeling asphaltene precipitation has been extensively 

conducted by many researchers. Among different models proposed for the prediction of 

asphaltene precipitation, scaling equation models have received much attention. The 

advantages of these models over the other models include no requirement to asphaltene 

properties and simple mathematical formulations. In these models, by fitting a limited set 

of experimental data, it is possible to predict asphaltene precipitation behavior at other 

conditions. Rassamdana et al. developed the first scaling equations based on an Iranian 
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crude oil sample. Afterward, several scaling equations have been proposed for predicting 

the amount of asphaltene precipitations at different conditions. In this study, all of the 

available scaling equations are reviewed. These equations are categorized into two groups 

as: the models developed for asphaltene precipitation titration data; the models developed 

for asphaltene precipitation during natural depletion of reservoir. Moreover, experimental 

measurements of asphaltene precipitation data are associated with many uncertainties; 

therefore, the quality of asphaltene precipitation data is discussed based on statistical 

models such as leverage approach. In this method, both quantitative and qualitative 

analyses are performed to check the reliability of the models and to find the suspected 

data points. This study provides a new insight into asphaltene precipitation modeling 

through scaling equations. 

 

Keywords: asphaltene precipitation, scaling equation, modeling, prediction, assessment 

 

 

1. INTRODUCTION 
 

Asphlatene is one of the most important ingredients of crude oil and is known  

as an association of various colloidal particles and macromolecules [1]. Asphlatene would 

precipitate by changing the pressure, temperature and composition of crude oil [2].There is no 

need to point out that precipitation of crude oil may result in many problems in reservoirs, 

and in facilities and equipment during production [1, 3-8]. Asphaltene precipitation models, 

based on study of Mohammadi et al. [9],are classified into five main groups, including 

‘association’ models, ‘equation of state (EoS)’ based models, ‘scaling laws,’ ‘activity 

coefficient’ based models and ‘colloidal/micellization’ models [10-12]. The advanced 

equation of state models have been developed based on the models of Ting et al. [13], Wu et 

al. [14, 15], Christensen et al. [16], Buenrostro-Gonzalez et al. [17], Tabatabaei-Nejad and 

Khodapanah [18] Gonzalez et al. [19] and Vafaie-Sefti and Mousavi-Dehghani [20],Nikookar 

et al. [21] and thedeveloped PR and SRK EoS’s. A more applicable form of Flory-Huggins 

equation was developed later by Mohammadi and Richon [22]. A new thermodynamic model 

for asphaltene deposition was recently developed in which the Flory- Huggins solution  

theory is combined with the chemical theory of association solution. In this modeling 

approach, precipitation process is known to be reversible. Hirschberg model[1] is based on 

the assumption that asphaltene is the only precipitating phase, while Cimino et al. [23] model 

is based on the assumption that non-asphaltene components are also present in the 

precipitating phase. Scaling equations based models have been much attended during the last 

two decades. The simplicity of scaling models is that asphaltene properties are not required 

for the modeling [24]. The first scaling equation was developed by Rassamdana et al. [24] at 

constant temperature with exponents Z and Z’. The effect of composition and temperature 

was studied by Hu and Guo [25] to predict the onset and amount of the precipitated 

asphaltene. This method was applied for core flooding experiments and the amount of 

precipitated asphaltene was measured. Rassamdana et al. [24]equation was modified and a 

new scaling equation was developed by Soulgani et al. [26] for live oil at various 

temperatures and pressures. Moreover, the model was optimized by adding some physical 

properties including onset pressure, critical temperature and bubble point pressure. Manshad 

et al. [27]model was developed by including temperature, pressure, dilution ratio and 
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molecular weight to determine the onset of asphaltene precipitation and total amount of it by 

using various solvents.  

Over the last decades, artificial neural networks have been developed, which require large 

sets of data to develop a model with many adjustable parameters [28]. Deficiencies of these 

models include uncertainties and over fitting and under fitting of data. Least square support 

vector machine (LSSVM) is another technique for solving complex and nonlinear problems 

with more accurate results in comparison to other existing intelligent methods. Hemmati-

Sarapardeh et al. [29] recently applied this method to predict the amount of asphaltene 

precipitation during natural depletion. Some other models based on scaling laws can be found 

in the literature [30-32].This chapter is divided into three parts: models based on asphaltene 

precipitation titration data; models based on asphaltene precipitation during natural depletion 

of reservoir; and quality of the experimental data. 

 

 

2. SCALING EQUATIONS FOR ASPHALTENE  

PRECIPITATION TITRATION DATA 
 

Scaling equations are effective methods for correctly predicting asphaltene precipitation 

data. Rassamdana et al. [24] developed the first scaling equation using the following 

parameters, including solvent to crude oil ratio (R), solvent molecular (M) and weight percent 

of the precipitated asphaltene (W): 

 

ZM

R
X   

(1) 

'ZR

W
Y   

(2) 

 

Z and Z' are the fitting parameters. The scaling equation would be of the following form: 

 
3

3

2

210 XAXAXAAY  ; (X ≥ XC) (3) 

 

Hu, Y-F. et al. [33] studied the application of scaling equations for asphaltene 

precipitation. Their samples were form Suffield, Ventura [1] and Lindbergh [34]oil fields. 

The universality of the exponents was studied using this data. The variables applied in this 

method include asphaltene weight percent (W), dilution ratio (R) and solvent molecular 

weight (M). These variables were combined with Rassamdana [24, 35] model to reach to the 

following forms: 

 
zX R M  (Z = const.) (4) 

 
'zY W M  (Z’ = const.) (5) 

 

The scaling equation was introduced by using the following polynomial: 
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2 3

1 2 3 4Y A A X A X A X     (X ≥ Xc) (6) 

 

Xc is the amount of X at asphaltene onset pressure. The exponents of this equation should be 

tuned carefully. The universality of the exponents and their ranges were first examined. The 

results showed that the best predicted values were obtained at a constant value of -2 for Z’, 

and by adjusting the Z value to map the precipitation values of different n-alkanes into a 

single curve. The optimum values for Z were then obtained. For n-alkanes larger than C5, the 

results were promising as shown in Figures 1-3. These curves are presented by the following 

polynomials:  

 
2 368.01 293.68 581.25 30.18Y X X X    ; (Z = 0.50) 

 
2 38.12 77.72 255.64 5.50Y X X X    ; (Z = 0.30) 

 
2 33.45 9.27 20.48 0.077Y X X X    ; (Z = 0.25) (7) 

 

This model was compared with Hirschberg [1]model in which the asphaltene molar 

volume is a function of molecular weight and oil composition, and solubility parameter is 

only a function of oil composition.  

The results were in good agreement with the experimental data set for n-alkanes. The 

dilution ratio effect was predicted accurately. The best results were obtained for C6, C8, and 

C10as reported in Figure 4. 

The effect of temperature and molecular weight of n-alkane precipitants on asphaltene 

precipitation was studied by Hu and Guo [25] using Caoqiao crude oil sample. The amount of 

asphaltene for this oil sample was determined at different temperatures. Using scaling 

equations, the exponent Z’ led to a constant value of -2 and the value of Z was reported as a 

function of oil composition in the range of 0.1 < Z < 0.5 [24, 33, 35-38]. 

 

 
Figure 1. (Continued) 
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Figure 1.a. Comparison of the calculated and experimental asphaltene precipitation data for n-alkane-

Suffield crude oil system. b Similar to Figure 1.a, excluding n-C5 precipitation data from the regression 

[33]. 

 

 

Figure2.a. Comparison of calculated asphaltene precipitation with experimental data for n-alkane–

Lindbergh crude oil system.b Similar plotting with (a) with n-C precipitation data excluded from the 

regression [33] 
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Figure 3.a. Comparison of calculated asphaltene precipitation with experimental data for the n-alkane–

Ventura crude oil system.b Similar plotting with (a) excluded n-C precipitation data from regression 

[33] 

 

Figure 4. Comparison of calculated asphaltene precipitation with experimental data for w x n-alkane–

Lindbergh crude oil system [33]. 
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2.1. Application of Genetic Algorithm in Scaling Equations 
 

Application of the new techniques for developing scaling equations would result in robust 

outcomes for predicting asphaltene precipitation. Asoodeh M., et al. [39] developed a  

new scaling equation using hybrid genetic algorithm-pattern search tool for asphaltene 

precipitation. Genetic algorithm (GA) is an optimization tool, which has been applied in 

various fields of science and engineering. This method has been optimized by integration with 

the pattern search tool method. In this technique, one needs to search for a set of points 

around the chromosomes and the mesh is set up by adding these points to a pattern, which is a 

set of vectors. A point with a better fitness score is substituted with the current point and the 

operators are employed for the new chromosome.  

To develop a new scaling equation, the values of constant parameters should be modified. 

To do this, a hybrid GA-pattern model was developed to obtain the best values. To define the 

eight constants based on the divide-and-counter principle, the problem was broken into 

smaller parts and each part was solved separately. Using the first fitness function, the values 

of Z, C1, C2 and Z’ were obtained using the following equations: 

 

1

( )( )

( 1)

N

i i

i

x y

x x y y

R
N S S



 





 (8) 

 

1
1

1
FF

R



 (9) 

 

R denotes the correction coefficient. FF1 is the first fitness function. N represents the 

number of data points and S denotes the standard deviation. The correlation coefficient 

between the experimental and predicted values of precipitated asphaltene using this technique 

is presented in Figure 5. The following equations are obtained by using the GA-PS tool. 
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 (10) 

 

The second fitness function is introduced for the next step to minimize the coefficients B0 to 

B3 as follows: 
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       (11) 

 

This would result in the following polynomial function: 

 
2 37.0030360 207741013 2008260917 3.17 20y x x e x       (12) 
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The obtained values are reported in Table 1. 

 

Table 1. Extracted parameters by the hybrid GA-PS technique for scaling equation [39] 

 

C1 C2 Z Z’ 

2.767754 -0.006873 0.494010 -0.850510 

B0 B1 B2 B3 

-7.003036 207741012.923998 20082609170 -3.167861e+20 

 

 

Figure 5.Crossplot showing correlation coefficient between the measured asphaltene amounts and 

predictions of GA-PS-based scaling equation[39]. 

 

Figure 6. Relative error of the GA-PS-based scaling equation’s predictions versus precipitated 

asphaltene amounts [39]. 

The comparison between the experimental and predicted values of precipitated asphaltene 

using this technique is presented in Figure 6. 

The relative errors for precipitated asphaltene values are depicted in Figure 7. The results 

show that the model is highly reliable for the values of asphaltene precipitation more than 2. 
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Ashoori et al. [40] studied an asphaltenic crude oil from the Southwest Iran reservoir. The 

experiments were conducted at atmospheric pressure and were compared with different 

scaling equations by Rassamdana and Sahimi [35] and the one by Hu and Guo [25]. The 

results are depicted in Figures 8and 9. As it is obvious, for the samples with large values of 

Rv (Solvent to oil dilution ratio), the results are in good agreement but for the values less than 

4, this method leads to inappropriate results. 

 

 

Figure 7. Collapse of the experimental data into a single curve using Rassamdana et al.[24] scaling 

equation.[40] 

 

 

Figure 8. Collapse of the experimental data into a single curve using Hu and Guo [25] scaling 

equation.[40] 
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Figure 9. Collapse of our experimental data onto a single curve using our scaling equation at low values 

of dilution ratios, Rv, up to 7 and also greater than 7 [40] 

Table 2. Comparison of standard deviation, R2 and MSE  

between the GA-PS based scaling equation and the previous works [39] 

 

Model Standard Deviation R2 RMSE 

Rassamdana et al. [24] 0.3327 0.9570 0.11080 

Hu and Guo [25] 0.3102 0.9630 0.09321 

Ashoori et al. [40] 0.2743 0.9830 0.08562 

GA-PS based scaling equation [39] 0.2294 0.9907 0.05235 

 

As a result, the scaling equations were represented as follows: 

 

/ ( . )n z

v wX R T M
 

 

'/ z

t vY W R  (13) 

 

The exponent n would change between 0.1 and 0.25, and the values of Z and Z’ exponents 

were0.25 and -2, respectively. This leads to the collapse of all experimental data into a single 

curve for all Rv ranges up to 20. The results are depicted in Figure 9. The scaling function is 

of the following form: 

 
2 39.768 122.5 267.5 0.049Y x x x    (X ≥ Xc) (14) 

 

Moreover, the results of genetic algorithm pattern search (GA-PS) based scaling equation 

are compared with the studies of Ashoori et al. [40], Hu and Guo [25] and Rassamdana et al. 

[24]. The results show the superiority of the GA-PS based method over the existing 

algorithms as reported in Table 2. RMSE denotes the root mean square error using the 

following formula, which was used as optimization objective function in this study: 
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2.2. Support Vector Machine [32] 
 

Support vector machine (SVM) is a method for mapping the input data from a specified 

space into a higher m-dimensional space for determining the best regression function. This 

function has the following form [41, 42]: 

 

1

( , ) ( )
m

j j

j

f x g x b 


   (16) 

 

The results of this method are evaluated for asphaltene precipitation data for the training 

and validation data. The optimized parameters are reported in Table 3. To assess SVM 

efficiency, its correlation coefficient and error distribution were analyzed. Figure 10 

represents the cross plot of the measured and predicted values for asphaltene precipitation 

The value of prediction coefficient for SVM is 0.997 that verifies the reliable 

performance of this method. The SVM performance is compared to the other existing models 

using the statistical parameters. The results are reported in Table 4. As it is obvious, the 

results of SVM technique are more accurate in comparison to the other existing models. 

 

Table 3. Results of statistical analysis of measured and predicted asphaltene amounts 

for the training and validation data sets [32] 

 

Data set 

Mean of target set 

(measured 

asphaltene amount) 

Mean of predicted set 

(predicted asphaltene 

amount) 

Variance in measured 

asphaltene amount 

set 

Residual variance 

after SVR model 

Training set 4.785666 4.742195 1.560983 0.004589 

Validation set 4.785666 4.777019 0.3893282 0.008737 

 

 

Figure 10. Cross plot showing the correlation coefficient between the measured and SVM predicted 

asphaltene amount [32]. 
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Table 4. Comparison of standard deviation, R2 and MSE of the constructed SVM model 

with the previous works [32] 

 

Model Error Standard Deviation R2 MSE 

Rassamdana et al. [24] 0.3327 0.957 0.1108 

Hu and Guo [25] 0.3102 0.963 .09321 

Ashoori et al. [40] 0.2743 0.983 .08562 

SVM [32] 0.1554 0.997 0.258 

 

 

2.3. Artificial Neural Network Model 
 

A neural network could be trained to perform a certain action by adjusting the weight and 

bias elements. These elements work in parallel. The network is adjusted by comparing the 

target and the output until the outputs are matched [43]. There are different configurations of 

artificial neural networks (ANNs). Some networks are classified as feed forward neural 

network while others are named recurrent networks. A feed-forward neural network is 

depicted in Figure 11 with a single hidden layer for a multiple input single output (MISO) 

system. Moreover, on the basis of model learning, they are classified into supervised and self-

organized training systems [44, 45]. On the other hand, multilayer perceptron (MLP) network 

is trained by adapting the synaptic weights using a back propagation technique. The input 

neuron to MLP model is multiplied by a weight factor, and the results are added to the bias 

term. Finally, a non-linear mathematical operation is performed by an activation function. 

The network output is compared to the desired network value [46]. Some additional linear 

weights may also be added to facilitate the network convergence. The training steps of the 

MLP network are represented in Figure 12. This is applied for training different single hidden 

layers which all are a part of MLP network.  

Radial basis function (RBF) and Adaptive Linear Neuron (ADALINE) are the others. 

Wang et al. [47] represented that feed-forward neural network using two hidden layers is 

capable of approximating non-linear basis functions.  

 

 

Figure 11.Architecture of the three-layered feed-forward neural network with a single hidden layer for a 

MISO system [40]. 
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Figure 12.Training steps of MLP network [40]. 

For the case of asphaltene precipitation studies, experimental data were applied for 

training a single hidden layer with the learning algorithm represented in Figure 13. The values 

of dilution ratio, temperature and molecular weight were the input variables and the target 

data was the precipitated amount of asphaltene. 35% of the data were kept as the testing set to 

evaluate the capability of this technique. The comparative results between the model 

predictions and experimental data in the training and testing sets are illustrated in Figures 14 

and 15. 

The deviation of the ANN model predictions from the experimental data is less than that 

of the other scaling methods for asphaltene precipitation. This information is reported in 

Table 5. 
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Figure 13. Comparison of predicted values of asphaltene precipitation by the proposed ANN model and 

experimental data for the training set [40]. 

 

 

Figure 14. Comparison of predicted values of asphaltene precipitation by the proposed ANN model and 

experimental data for the testing set [40]. 

Table 5. Comparison of the deviation of predicted values obtained by ANN and the 

deviation of results obtained by the scaling equations [40] 

 

Model Rassamdana et al. [24] Hu and Guo [25] Ashoori et al. [40] ANN model [40] 

  16.94 16.51 9.78 5.03 

  0.188 0.183 0.109 0.056 

 

where   is the relative absolute deviation and   denotes the average relative absolute 

deviation. 
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Figure 15. Collapse of our experimental data into a single curve using our scaling equation at different 

values of dilution ratios, Rv [40] 

 

2.4. Fuzzy Logic Model 
 

Asoodeh et al. [48] applied the fuzzy tuning approach for the scaling equations, which is 

called fuzzy tuning of scaling equations (FTSE). This approach compensates the effect of 

underestimation and overestimation of fuzzy rules. This approach breaks the whole model 

into small spaces and solves each of them separately. The results are obtained by aggregation 

of all of the outputs. The input functions are introduced as follows: 

 
2 2( ) exp( ( ) 2 )i Ri RiR R m     

 
2 2( ) exp( ( ) 2 )i Hi HiH H m     

 
2 2( ) exp( ( ) 2 )i Ai AiA A m     (17) 

 

where  denotes the membership degree. m and  denote the mean and standard deviations 

and i expresses the rule number. Each rule is represented as follows: 

 

( ) ( ) ( )i i i iR H A       (18) 

 

As a result, the output membership function (OMF) would be represented as follows: 

 

1 2 3 4i i i i iOMF R H A        (19) 
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Figure 16.Cross plot showing the correlation coefficient between the measured and FTSE predicted 

asphaltene amounts [48]. 

 

 

Figure 17.Comparison between the predicted values by different intelligent methods, and MSE and 

correlation coefficient. R, H, and A refer to Rassamdana et al. [24] Hu and Guo [25], and Ashoori et al. 

[40] models, and FTSE modeling [48] respectively. 

Finally, the precipitated amount of asphaltene has the following form: 
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The cross plot of the measured and predicted amount of asphaltene precipitation is 

depicted in Figure 16 and the value of R2 is equal to 0.993. This indicates that the developed 

method leads to promising results.  

The values of correlation coefficient are also compared with the other existing scaling 

models in Figure 17, which denotes that the developed technique leads to more satisfying 

results in comparison to the individual scaling equations. 
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2.5. Least Square Support Vector Machine 
 

Hemmati-Sarapardeh et al. [49]developed a new method for estimation of asphaltene 

precipitation using a large data bank of asphaltene precipitation under a wide range of 

thermodynamic conditions and various crude oil types. In their study, least square support 

vector machine (LSSVM) was optimized with a stochastic algorithm named coupled 

simulated annealing (CSA) to model asphaltene precipitation. 

The data sets were divided into four groups as follows: 

 

Model 1: Systems with nC5 to nC7 as solvent and Rv ≤ 5 

Model 2: Systems with nC8 to nC12 as solvent and Rv ≤ 5 

Model 3: Systems with nC5 to nC7 as solvent and Rv > 5 

Model 4: Systems with nC8 to nC12 as solvent and Rv > 5 

 

The optimized parameters of the model are reported in Table 6. The accuracy of the 

models is a function of solvent type and solvent to oil ratio with the following order: 

 

Model 4 > Model 3 > Model 2 > Model 1 

 

The statistical parameters of the model in different solvents are reported in Table 7 

denoting the satisfactory predictions of the model. 

 

Table 6. The solvent to oil ratio and type of n-alkane precipitants for each model  

as well as the optimum values of the models’ parameters [49] 

 

Model Name Solvent to oil 

ratio(Rv) 

n-alkane precipitant Model parameters 

  
Model 1 Rv ≤ 5 nC5-nC6-nC7 0.0945 15.5057 

Model 2 Rv ≤ 5 nC8 to nC12 0.7584 4908.5657 

Model 3 Rv> 5 nC5-nC6-nC7 0.1051 199.4735 

Model 4 Rv> 5 nC8 to nC12 1.5008 5517.3495 

 

Table 7. Statistical parameters of the proposed models in different  

n-alkane precipitants [49] 

n-alkane precipitant Point Numbers APRE, % AAPRE, % SD 

nC5 61 -1.20 11.74 0.19 

nC6 70 -3.60 12.07 0.18 

nC7 70 -3.25 13.50 0.21 

nC8 38 2.27 10.57 0.14 

nC9 25 0.62 3.33 0.04 

nC10 38 -0.56 3.80 0.05 

nC12 23 -1.16 8.50 0.13 

 

 

2 
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Table 8. Statistical parameters of the proposed models in this study  

and previously published models for determination of asphaltene precipitation [49] 

Model APRE, % AAPRE, % SD 

Rassamdana et al. [24] 14.89 43.42 0.76 

Hu and Guo [25] -1.52 27.13 0.54 

Ashoori et al. [40] -9.80 21.88 0.55 

This study [49] -1.53 9.46 0.17 

 

The proposed technique is compared with the other existing models in Table 8. The 

average absolute relative error (AAPRE) in this study is 9.45%, which is the smallest in 

comparison to the other existing models. The AAPRE is calculated as follows: 
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Ei represents the relative deviation of the predicted values of the model from the experimental 

data: 
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3. SCALING EQUATIONS FOR ASPHALTENE PRECIPITATION DUE  

TO NATURAL DEPLETION AND GAS INJECTION 
 

Roshanaei Zadeh et al. [50] studied asphaltene precipitation due to gas injection and 

investigated the different effects of gas type, temperature, pressure and concentration on 

asphaltene instability. A new scaling equation was developed for reservoirs with and without 

gas injection. The inputs in this modeling approach were reservoir temperature, pressure, 

sample bubble point pressure, molecular weight and mole percent of the injected gas. The 

equations are in the following forms: 

 

m

z n

R
X

M T
  (23) 

 

'Z

m

w
Y

R
  

where, 

 

 

 



Scaling Equations for Asphaltene Precipitation Modeling 145 

2( 1)bP
h

P
mR e R

 

   (24) 

 

M represents the injected gas molecular weight, W denotes the asphaltene weight percent, 

and P and Pb express the pressure and the bubble point pressure, respectively. T and R 

indicate the temperature and ratio of the injected gas to weight of the crude oil. Various data 

sets were collected for gas injection [50]. The polynomial that locates all of the data into a 

single line has the following form for methane injection data. 

 
623 1080099.04831.03877.3  XXXY  (25) 

 

Figure 18 shows the results for the case of methane injection. This new scaling equation 

predicts asphaltene instability independent of asphaltene properties. The optimum value of Z 

was reported 0.11 in this work. Since h has a considerable influence on precipitation, tuning 

this parameter is very important, which is 7 for the case of CO2 and methane, and 1 for 

nitrogen injection. According to the previous studies, the effect of temperature is negligible in 

comparison to other variables at different reservoir pressures. This scaling equation is 

applicable for dynamic conditions of the reservoir as well. The results for the case of nitrogen 

injection are depicted in Figure 19. 

Kord and Ayatollahi [51] studied precipitation of asphaltene in live oil during natural 

depletion. As the developed scaling model of Rassamdana et al. [24, 35] and its generalized 

form presented by Hu et al. [33] are applicable only for dead oil systems, this method was 

extended to live oils. 

For live oil systems, asphaltene deposition mechanism is different. Precipitation 

mechanism and asphaltene state change from soluble to colloidal state at a specific point. 

Considering the effect of pressure, five different variables were combined and the scaling 

parameters were introduced as follows: 

 

( )

n

Zb

b

Z

P P
GOR

P
X

T




   

 

'( ) zb

c b

W P P
Y

W P


 

             

(26) 

 

Where P and Pb are pressure and bubble point pressure, respectively. GOR represents the gas 

oil ratio. W denotes the value of deposited asphaltene, T expresses the temperature, and Wc is 

the total amount of asphaltene in the crude oil system. The exponents of Z, Z’ and Z” are 

correlated using the experimental data. The results depicted in Figure 20 show that the phase 

stability and the regions for asphaltene precipitation are well predicted. 
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Figure 18. Collapse of methane injection data into a 3rd order polynomial [50] 

 

 

Figure 19. Collapse of nitrogen injection data into a 3rd order polynomial [50] 
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Figure 20. Prediction of asphaltene precipitation envelope by scaling equation in comparison with the 

experimental data of test crude No. 5[51] 

 

Table 9. Relative error (%) of different models for prediction of test crude No. 5 

precipitation [51]  

 

Pressure (MPa) FH model MFH model Solid model Scaling model 

31.03 43.39 58.39 3.02 0.08 

24.13 16.12 40.86 2.61 0.45 

17.24 8.35 24.14 2.53 0.67 

10.34 22.79 14.97 2.19 0.28 

6.89 12.57 25.93 1.76 0.10 

5.52 8.39 29.89 2.19 0.82 

 

As the thermodynamic models have deficiencies in predicting the amount of asphaltene 

precipitation, the scaling equations are introduced and applied. For the case of live oil at 

constant pressure, the values of Z and Z’ are 0.2 and 2, respectively. The average error values 

are presented in Table 9 in which a good agreement is observed between the results of the 

model and experimental values. 
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Behbahani et al. [52] developed a modified scaling equation for pressure depletion and 

gas injection cases for live oil. The bottom hole live oil characteristics were analyzed to find 

the best model configuration based on the following equations: 
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where GOR is the gas to oil ratio, RRA denotes the ratio of resin to asphaltene, Pb and Ponset are 

the bubble and onset pressures respectively, and WA represents the amount of asphaltene in 

the live oil. The experimental data of literature indicate a good performance for the new 

equations as depicted in Figures 21 and 22 for above and below the saturation pressures, 

respectively [52]. 

 

Figure 21. Collapse of experimental data into a single scaling curve for below saturation pressure [51] 

 

Figure 22. Collapse of experimental data into a single scaling curve for above saturation pressure [51] 
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Table 10. Correlation parameters for the proposed scaling model [52] 

 

Adjusted parameter P ≤ Pb P ≥ Pb 

Z 0.78 2.50 

Z’ 0.34 0.34 

Z” 0.92 0.81 

A 0.35 -0.09 

B -6.91 0.62 

 

Table 11. Correlation parameters for PC-SAFT and Flory-Huggins models [52] 

 

Adjusted parameter Saturates Aromatics ± 

resins 

Asphaltenes 

m 6.213 6.0174 29.8 

(A) 3.625 3.5950 4.215 

 /k (K) 257.400 289.7000 391.3 

 (MPa)0.5   19.20 

Molar Volume (m3/kg mol)   0.60 

 

 

Figure 23. Comparison between the performance of the proposed scaling model and other studies in 

correlating the asphaltene precipitation weight percent, and the experimental data of the bottom hole 

live oil [52] 

The values of Z, Z,’ and Z” were optimized for pressure depletion and gas injection tests. 

The values of asphaltene precipitation parameters are reported in Table 10. In addition, these 

values are stated in Table 11 for the PC-SAFT and Flory-Huggins models. 

The comparison of the results for the correlated precipitation weight percent during 

pressure depletion tests are reported in Figure 23 for the current study. 

Table 12 reports the relative deviation of the asphaltene precipitation weight percent from 

experimental data and the proposed scaling equation. The results reveal that the present 

scaling equation offers better results in comparison to the previously published scaling 



/ k
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models [52]. The values for R2 in the present model and previous scaling equation are 0.986 

and 0.962, respectively. The promising point of this model was its independency from 

molecular weight and density. The same results are also achievable for the case of gas 

injection. The sensitivity analysis indicated that the developed scaling equation is a strong 

function of gas-oil ratio and resin to asphaltene ratio.  

Khaksar et al. [53] also applied fuzzy logic, neural networks and genetic algorithms in 

live and tank crude oil systems. The results indicated that neural network could optimize the 

fuzzy systems and lead to better results in terms of fuzzy logic asphaltene modeling. The 

average error in this case was reported 1.6953%. The most sensible parameters were 

introduced as asphaltene content, pressure and molar percent of C1 through C3. The 

correlation coefficient value was reported 0.99271 as shown in Table 13. 

The fuzzy logic and the neural network models were then optimized by hybrid genetic 

algorithm-pattern search engine to improve the model efficiency. The results were compared 

to the open literature sources as shown in Figure 24. 

 

Table 12. Deviation of the correlated asphaltene precipitation weight percent  

from their experimental results by the modified scaling model and studied 

thermodynamic models [52] 

Pressure 

(MPa) 
Deviation of asphaltene precipitation weight percent (%) 

 
Proposed scaling 

model 
PC-SAFT Solid model 

Flory-Huggins 

model 
Scaling model 

36 .06 0.54 2.86 38.12 0.12 

30 .09 0.42 3.21 25.48 0.11 

25 0.32 0.34 3.06 28.92 0.41 

22 0.28 0.37 2.28 18.56 0.51 

18 0.38 0.21 1.95 22.38 0.85 

12 0.18 0.35 1.65 15.29 0.32 

8 0.23 0.13 2.08 10.87 0.76 

5 0.51 0.12 1.75 7.25 0.91 

 

Table 13. Fitness and R2 values for the training, validation and testing sets 

of genetic algorithm [53] 

Statistical parameter Best program Best team 

Training fitness 0.335040 0.005489 

Validation fitness 0.228420 0.013637 

T. V. fitness 0.015645 0.009563 

Testing fitness 0.814538 0.401313 

Training R2 0.99979 0.9998 

Validation R2 0.9995 0.99965 

T&V R2 0.99965 0.99973 

Testing R2 0.98034 0.99271 
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Figure 24. Cross-plots showing the correlation coefficient between measured and predicted asphaltene 

amounts by (a) fuzzy logic, (b) optimized fuzzy logic, (c) neural network (d) optimized neural network, 

and (e) committee machine (final model). This figure shows optimized models (b and d) perform better 

than non-optimized models (a and c). Eventually, committee machine (e) performs better than all other 

individual models (a–d) [31]. 

Table 14. Comparison between different models developed in this study and one of the 

best scaling equation models proposed by Hu and Guo [25]using the concepts of 

correlation coefficient and mean square error. [31] 

 

Model Correlation coefficient Mean square error 

Hu and Guo [25] 0.964 0.693960 

Committee machine 0.990 0.027180 

Fuzzy logic 0.971 0.081950 

Optimized fuzzy logic 0.974 0.042112 

Neural network 0.954 0.044460 

Optimized neural network 0.979 0.031857 
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Various models are compared in terms of correlation coefficient and mean square error in 

Table 14. It is obvious that committee machine method results in more accurate outputs in 

comparison to the other stated methods. 

Khaksar et al. [53] developed a new scaling equation considering reservoir pressure using 

genetic algorithm. This method is mostly applicable in predicting the onset and amount of 

asphaltene precipitation during gas injection for EOR processes. The results showed that they 

are in good agreement with experimental data. The variables are introduced as follows: 
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Table 15. Constant parameters of the new scaling equation [27] 

  

Z C1 C2 C3 C4 

0.1 3.9409 1.0642 -0.0376 0.0773 

 

Table 16. Adjusted parameters of the new scaling equation [27]  

 

 a0 a1 a2 a3 

Oil 1 984.7977 960.9863 961.4814 793.3274 

Oil 2 959.3549 976.8057 960.2316 911.0102 

Oil 3 987.3159 938.7081 959.9271 991.6694 

Oil 4 415.4045 847.8503 975.5652 959.9207 

Ashoori et al. [40] experimental data 995.7975 434.9802 31.8433 -3.6041 

Hu et al. [33] experimental data 933.7990 -111.0590 63.0079 -3.0380 

Our experimental data 233.7105 256.5287 0.2193 -0.9219 
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Table 17. Static precipitation, test results of oil 1 experimental data [27]  

 

R, mL/g Pressure, Bar Temperature, 0C Molecular weight of 

solvent 

Wexp, % Wexp %, scaling 

equation 

0.053361 206.4422 100 42.5 0.738 0.0025 

0.160082 206.4422 100 42.5 0.578 0.0087 

0.053361 1 15.55556 42.5 14.97 4.0130 

0.106721 1 15.55556 42.5 15.61 5.0300 

0.213442 1 15.55556 42.5 15.14 5.0724 

0.145274 206.4422 100 24.8 0.656 0.0242 

0.290548 206.4422 100 24.8 0.807 0.0534 

0.145274 1 15.55556 24.8 16.36 7.1385 

0.290548 1 15.55556 24.8 15.69 7.3497 

0.213442 206.4422 100 42.5 0.697 0.0120 

0.072637 1 15.55556 24.8 15.71 11.0590 

0.160082 1 15.55556 42.5 14.52 10.0498 

0.072637 206.4422 100 24.8 0.699 0.0110 

0.217911 206.4422 100 24.8 0.797 0.384 

0.106721 1 15.55556 42.5 15.61 11.0300 

0.106721 206.4422 100 42.5 0.726 0.0054 

 

Constant parameters of the scaling equations resulted from the experimental data are 

reported in Tables 15 and 16. The unknowns are obtained by using the experimental data and 

genetic algorithm. 

The static precipitation test results for one of the oil samples are reported in Table 17 

showing a good agreement between the experimental data and the scaling model. 

 

  

4. QUALITY OF ASPHALTENE PRECIPITATION  

TITRATION DATA 

In order to detect the applicability domain of the proposed CSA-LSSVM models, 

Hemmati-Sarapardeh et al. [49] employed the Leverage approach in which the data residuals, 

Hat matrix and William plot are applied for detection of suspected data. More details about 

this approach can be found in the original paper[49]. As indicated in Figure 25 to 28, most of 

the data points are located within the applicability domain of the proposed models. Four 

outlier data points used from Ashoori et al. [40] were detected for model 1. For model 2, one 

data point was found to be a good high leverage data point, which was used from Hu and Guo 

[25] and one data point was found to be an outlier from the data sets of Rassamdana et al. 

[24]. Three data points were found to be outliers in model 3, two of which were used from the 

data banks of Ashoori et al. [40] and one from Hu and Guo [25].Two data outliers were 

detected for model 4, which were collected from the data banks of Rassamdana et al. [24] and 

Hu and Guo [25]. All of these suspected data points are reported in Table 18. The results of 

leverage approach indicate that all the four proposed models are statistically valid and only a 

few data points are outside of the applicability domain of these models. 
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Figure 25. Williams plot of model 1 identifying the applicability domain and suspected data points [49] 

 

 

Figure 26. Williams plot of model 2 identifying the applicability domain and suspected data points [49] 

 

Figure 27. Williams plot of model 3 identifying the applicability domain and suspected data points [49] 
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Table 18. The doubtful experimental data based on the Leverage approach [49] 

 
Ref. n-alkane 

precipitant 

T, °C Rv(mL/g) asphaltene 

(wt%)- Exp. 

asphaltene 

(wt%)-model 

hat Standardized 

residuals 

[40] n-C5 30 5.00 5.83 3.50 0.040 -3.58 

[40] n-C5 50 5.00 5.16 2.90 0.047 -3.49 

[40] n-C5 30 10.00 9.25 6.50 0.009 -4.17 

[40] n-C6 30 5.00 5.03 2.98 0.035 -3.14 

[40] n-C6 30 10.00 8.13 5.94 0.019 -3.34 

[25] n-C6 65 20.00 4.02 6.03 0.033 3.10 

[40] n-C7 30 5.00 4.80 2.42 0.034 -3.65 

[24] n-C8 25 2.94 2.48 1.95 0.015 -4.22 

[25] n-C8 65 3.60 0.12 0.14 0.244 0.18 

[24] n-C10 25 10.00 2.99 3.50 0.025 3.43 

[25] n-C12 50 10.60 2.85 2.26 0.041 -3.94 

 

 

Figure 28. Williams plot of model 4 identifying the applicability domain and suspected data points [49] 

 

CONCLUSIONS 
 

In this chapter, asphaltene precipitation models for live and dead oil were reviewed using 

different scaling equations. These equations have no requirement to the properties of 

asphaltene and have simple mathematical formulations. All of the proposed scaling equations 

have been reviewed and the priority of them has been discussed over each other. In the 

category of asphaltene titration data, before developing the support vector machines, genetic 

algorithm based scaling equations resulted in the best results in terms of R2. After developing 

the support vector machine, better results were obtained in comparison to the previously 

developed techniques.  

For the case of natural depletion or gas injection, some scaling equations have been 

developed in which Roshanaei Zadeh et al. [50] developed a scaling equation for the case of 

gas injection independent of asphaltene properties. The results were in good agreement with 

experimental data. Kord and Ayatollahi [51] developed a scaling equation in the case of 
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natural depletion and its standard deviation was compared to the other existing 

thermodynamic models. This method resulted in more accurate results in comparison to the 

other models. Khaksar et al. [53] also applied fuzzy logic, neural networks and genetic 

algorithms in live and tank crude oil systems and reported the correlation coefficient of 

0.99271. The model efficiency was then improved by hybrid genetic algorithm-pattern search 

engine.  

The applicability domain of the proposed LSSVM models was studied by Hemmati-

Sarapardeh et al. [49]. In this method, data residuals, Hat matrix and William plot were 

applied for detection of suspected data. The data bank of all previously studies were selected 

to compare the asphaltene precipitation data. They also showed that LSSVM method 

outperforms all of the existing models in terms of validity and accuracy at various 

temperatures, solvent types and dilution ratios. The applicability domain of the models was 

determined using the Leverage approach. All of the studied data were valid and only 3.3% of 

the data points were outliers.  

This study provides a new insight toward asphaltene precipitation modeling through the 

scaling equations.  
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ABSTRACT 
 

Deposition of wax as a crude oil component is one of the major problems in the 

crude oil production and transportation. Changes in crude oil thermodynamics conditions 

such as pressure, temperature and composition cause this problem. Accurate prediction of 

wax deposition is therefore important. There are several methods such as experimental 

approach, thermodynamics models and correlations for determination of wax deposition. 

In this communication, we have developed a feed forward artificial neural network 

optimized by particle swarm optimization method to estimate the amount of wax 

deposition in crude oil system. In this model, oil composition, pressure, temperature and 
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oil specific gravity are considered as input parameters to neural network and the amount 

of wax deposition is regarded as output parameter. 94 experimental data sets of 8 

different crude oil samples were used to develop the model. Comparing the performance 

and results of the algorithm developed in this work with multi solid thermodynamic 

model and the Genetic Programming Neural Network algorithm proves the performance 

and accuracy of the model developed in this study.  

 

Keywords: wax deposition; paraffin; crude oil; artificial neural network; particle swarm 

optimization; Genetic Programming Neural Network; multi solid thermodynamic model 

 

 

INTRODUCTION  
 

Petroleum waxes are typically heavy paraffinic contents of crude oil and consist of C20-

C60 (even heavier) hydrocarbon ranges [1, 2]. Wax deposition as one of major problems in 

petroleum industry causes the plugging of production facilities, well bores and transportation 

pipelines and decreases the efficiency of oil production [3-5]. Temperature reduction is 

regarded as one of main reasons for wax formation and deposition, because wax solubility  

in crude oil decreases as the temperature decreases [6-8]. Temperature, pressure, oil 

composition, laminar and turbulent flow regime [9-12], pipe roughness [13-15] and gas-oil 

ratio [16, 17] affect wax deposition.  

Accurate prediction of wax deposition amount is therefore important [4]. There are 

several methods like experimental approach, thermodynamics models and correlations for 

estimating wax deposition. 

Different thermodynamic models have been developed for this purpose [18, 19]. 

However, the results of the latter models are not very accurate in comparison with 

experimental results. Multi-solid phase model as a thermodynamics method is commonly 

used in the literature [5]. Lira-Galeana et al. [20] proposed a multi-solid (MS) wax model, in 

which each solid phase is not mixed with other solid phases and is considered as a pure 

component. Won [21] developed a thermodynamic model on the basis of vapor-liquid-solid 

phase equlibria for prediction of wax deposition. He considerd wax phase as an non- 

ideal solution similar to liquid phase. Burger et al. [22] developed a widely accepted 

thermodynamic model in which crude oil is dissolved in a mixture of ether and acetone. 

Valinejad and Solaimany Nazar [23] worked experimentally on three waxy crude oils to 

determine wax deposition potential during laminar flow in a pipeline. An empirical model 

was developed by Kelechukwu et al. [24] for prediction wax deposition in oil production 

systems and the performance of this model was acceptable in comparison with the laboratory 

measurement. Akbarzadeh and Zougari [25] proposed a novel approach for modeling wax 

deposition in fluid flows. The mechanism of particle diffusion/deposition was introduced as 

the most important mechanism in wax deposition at the realistic transport conditions. One of 

the most recent approaches for prediction of wax deposition is neural network algorithm. 

Khaksar and Ashoori [26] proposed a model based on Genetic Programming Neural Network 

(GPNN) for prediction of wax deposition and their model performance and accuracy was 

better than a thermodynamic model studied in their work.  

In the present work, PSO (particle swarm optimization) was used as an optimizing 

algorithm to train feed-forward artificial neural network (ANN) for estimating amount of wax 
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deposition as a function of pressure, temperature, oil composition and oil specific gravity. 

Comparison of performance and accuracy of the model with multi-solid thermodynamic 

model and Genetic Programming Neural Network algorithm indicates that the current 

developed model is more accurate and acceptable for prediction of Wax deposition amount. 

 

 

ARTIFICIAL NEURAL NETWORK  
 

Neural networks have been used in various fields of science and engineering for 

approximation of complex systems [27]. These computational algorithms provide a reliable 

model of nonlinear and complex systems by data gathering, learning, recognizing, organizing 

and generalizing, using inputs and outputs data sets [28]. There are different approaches for 

designing a neural network, multilayered feed forward is one of the best methods for this 

design. In this work, three layered feed forward neural networks with back propagation 

algorithm were used for nonlinear functions approximation with high accuracy. Data 

preprocessing, network training and style choosing steps must be followed for achieving a 

perfect network for the model construction [29, 30]. Training process as a step in achieving 

accurate network is done by changing the weight of node connections for achieving the 

network output that is closer to actual values. At the first, data sets are preprocessed, and then 

data bank is divided into three types; training, validating and testing. Training data is used for 

network training, validating set is for checking model accuracy and the testing data is for 

determination of model strength [31]. Figure 1 shows structural design of three layer feed-

forward ANNs. 

 

 

Figure 1. Structural design of a typical feed-forward ANN. 
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PARTICLE SWARM OPTIMIZATION 
 

In 1995, the Particle Swarm Optimization approach as an optimization procedure was 

proposed by Eberhart and Kennedy [32]. This algorithm like the simulated annealing (SA) 

[33] and the genetic algorithm (GA) [34] tries to achieve the global optimum for nonlinear 

systems. In this algorithm, particles are accidentally distributed over the space for getting the 

goal of converging to the global optimum and each particles group have the chance of being a 

solution for optimization objective. Particles examine the space and continue paths of their 

position to reach global optimum solution. Personal best value and global best value were 

called by Kennedy and Eberhart [35] pBest and gBest, respectively. A best solution achieved 

by a particle is the pBest and and the best solution obtained by global optimization in PSO 

algorithm is the gBest. 

In PSO algorithm, with the ‘m’ number of particles, the position of 𝑚𝑡ℎ  particle is 

labeled by 𝑋𝑚  = {𝑋𝑚1, 𝑋𝑚2,….,𝑋𝑚𝑁}, where 𝑋𝑚𝑗  is the value of 𝑗𝑡ℎ  coordinate in the N 

dimensional space. 𝑃𝑚 = {𝑃𝑚1, 𝑃𝑚2, . . ., 𝑃𝑚𝑁} is the best visited position of the 𝑚𝑡ℎ particles 

and G = {G1, G2,…,GN} is the best experience of all the particles in this algorithm. 𝑉𝑃 = {𝑉𝑃1, 

𝑉𝑃2,…,𝑉𝑃𝑁} is the set of the particles velocity as the change rate in particle position. At any 

iteration step, particle position changes according to its velocity. According to N-coordinate 

velocity and on the basis of Equation 1, particle ‘m’ changes its position. In Equation 1, effect 

of previous velocities on the present velocity is controlled by the  called inertia weight 

factor.  

 

 (1) 

 

Positive constants b1 and b2 are responsible for acceleration of particles towards best 

position of the solution space called learning factors. In Equation 1, rand (0, 1) is a function 

that is used for generation of a random number between 0 and 1 [36]. 

Maximum number of iterations is defined by the user and the PSO algorithm stops when 

reaches the maximum steps. At any iteration steps, the inertia weight is updated by using the 

equation:  

 

      (2) 

 

where 𝑖𝑚𝑎𝑥 is the maximum steps of iterations,  is called the inertia weight in each 

iteration step and  and  are the minimum and maximum inertia weights. 

The values of  = 0.4 and  = 0.9 are the suitable amounts in researches [37]. 

 

 

RESULTS AND DISCUSSION  
 

In this study, PSO algorithm was used for weight training of multilayer feed forward 

network and for achieving the best network training procedure and fast convergence. The 

number of network weights is the same as the particles dimension number and series of 
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weights is determined based on the position of a particular particle, the range of [-1,1] is the 

network initial weights range [32, 37]. 

We have developed the PSO-based ANN model for estimation of wax deposition amount 

(weight), using 9 input parameters (mole percentage of (C1- C3), mole percentage of (C4-

C7), mole percentage of (C8- C15), mole percentage of (C16- C22), mole percentage of 

(C23- C29), mole percentage of (C30+), oil specific gravity, temperature, pressure) and 

amount of wax deposition as desired output as indicated in Figure 2. In this work, we have 

used 94 experimental data sets from 8 different crude oil samples and after data 

preprocessing, 87 data sets were chosen for network training. Maximum and minimum values 

of temperature, pressure, oil composition and properties are shown in Table 1.  

Figure 3 indicates the ANN-PSO algorithm flowchart. As mentioned earlier, PSO is used 

in this model to examine and find the best solutions among solution space and after 

construction of the neural network, randomly particles initialize with an appropriate 

population size. Particle position and velocity are updated at any iteration step so weights of 

neural networks are updated, then by determination of fitness function of ANN corresponding 

to each weight of the particle pBest and gBest are updated. 

In each step, this procedure will continue until final iteration where stopping condition 

will be achieved and the best global solution is obtained then predicted values of the network 

are reported as an output results. 

By running the neural network by using different neuron numbers and layers, the best 

performance was achieved by 4-8-4-1 as the best structure (4 input units, 8 hidden neurons in 

first layer, 4 hidden neurons in second layer, 1output neuron). 

 

 

Figure 2. ANN inputs for estimating of wax deposition amount. 
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Table 1. Crude oil samples characterization information 

 

Information Minimum Maximum 

Wax deposition (Wt%) 0 13 

Temperature (K) 230 313.15 

Pressure (bar) 1 1 

Specific gravity 0.872 0.963 

Composition (mole%)   

C1-C3 0.218 2.127 

C4-C7 3.057 30.952 

C8-C15 33.468 49.791 

C16-C22 16.029 57.335 

C23-C29 6.974 10 

C30+ 8.177 13.23 

 

 

Figure 3. Flow chart for PSO-based ANN model. 
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Performance of data sets in various steps of network construction is shown in Figures 4-

6. Figures 7 and 8 show the scatter plot of model prediction results with experimental values. 

Sensitivity analysis of the model and inputs, as independent variables dependency to output 

variable was checked using @Risk (2011) software and correlation coefficient determines the 

sensitivity analysis. As the correlations between any output and input parameters are higher, 

that input has more influence on the prediction of the output value. In Figure 9, it is shown 

that temperature has the most influence on the wax deposition amount. 

The performance of the developed model was further checked by the parameter of 

Average Absolute Relative Errors (AARE). 

 

𝐴𝐴𝑅𝐸 =  ∑(𝑎𝑏𝑠(𝑌 − 𝑋)/𝑋)/𝑁       (3) 

 

where 𝑌 is the predicted amount of wax deposition and 𝑋 is the experimental amount. The 

model accuracy will increase as 𝐴𝐴𝑅𝐸 approaches to zero and the network error  

will decrease. Table 2 indicates that the present model is more accurate than multi-solid 

thermodynamic model and Genetic Programming Neural Network algorithm. 

 

 

Figure 4. Netwok performance in data training. 
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Figure 5. Netwok performance in data validating. 

 

Figure 6. Netwok performance in data testing. 
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Figure 7. Scatter plot of the model prediction values versus the measured value. 

 

Figure 8. Comparison of the model prediction values with the measured values. 
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Figure 9. Impact of input variables on wax deposition amount. 

Table 1. Crude oil samples characterization information 

 

Information Minimum Maximum 

Wax deposition (Wt%) 0 13 

Temperature (K) 230 313.15 

Pressure (bar) 1 1 

Specific gravity 0.872 0.963 

Composition (mole%)   

C1-C3 0.218 2.127 

C4-C7 3.057 30.952 

C8-C15 33.468 49.791 

C16-C22 16.029 57.335 

C23-C29 6.974 10 

C30+ 8.177 13.23 

 

 

CONCLUSION 
 

In this study, we have developed a feed forward artificial neural network model 

optimized by particle swarm optimization algorithm (namely PSO-based ANN model) for 

estimating wax deposition amount in crude oil system. This model is based on 94 

experimental data sets of 8 different crude oil samples. The model uses 9 input parameters 

(mole percentage of (C1- C3), mole percentage of (C4-C7), mole percentage of (C8- C15), 

mole percentage of (C16- C22), mole percentage of (C23- C29), mole percentage of (C30+), 

oil specific gravity, temperature, pressure) and wax deposition amount is regarded as its 

output. It has been shown that the model is more accurate in comparison with multi-solid 

thermodynamic model and GPNN model for estimation of wax deposition amount. 
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ABSTRACT 
 

Many diverse methods are available to calculate reservoir or well related parameters 

for the purpose of reservoir characterization and management amongst of which ANNs 

have shown to be very promising. In this study, three different ANN models including 

MLP, MLP optimized with GA and MLP optimized with PSO have been developed to 

predict permeability, skin factor and reservoir initial pressure. Comparison of each model 
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with Horner method based on correlation coefficient (R) or mean square error (MSE) 

suggests MLP-PSO algorithm is more robust and efficient. Estimated aforementioned 

parameters based on MLP-PSO model are then compared with those evaluated based on 

Horner method. Acceptable error values illustrate that MLP-PSO can be used in the 

absence of enough buildup well testing data which is less costly and time consuming. 

 

Keywords: well testing, reservoir characterization, permeability, initial reservoir pressure, 

skin factor 

 

 

NOMENCLATURE 
 

R  Correlation coefficient 

MSE Mean square error 

ANNs artificial neural networks 

GA  Genetic Algorithm 

PSO Particle Swarm Optimization 

K  Permeability, md 

  Porosity, fraction 

  Viscosity, cp 

  Shut-in pressure, hr 

  Producing time, hr 

  False pressure, psi 

rw  Well bore radius, ft  

ct  Total compressibility, psi-1 

h  Formation thickness, ft 

  Formation volume factor, RB/STB 

q  Flow rate, STB/D 

m  Slope of Linear Portion of Horner plot, Psi/Cycle 

 

 

INTRODUCTION 
 

One of the most challenging subjects in petroleum industry management is reservoir 

characterization owing to the fact that there may exist many restricted and unreliable data. 

The primary objectives of reservoir characterization are reservoir modeling and simulation, 

enhanced oil recovery techniques, predicting different reservoir scenarios and determination 

of remaining recoverable oil while the latter is the most significant one. Amongst the usual 

methods that reservoir characterization utilizes to obtain many different data are well logging, 

well testing, geology, core analysis, seismic and geostatistics by which four different overall 

components are specified including drive mechanism, architecture (such as permeability and 

porosity), fluid type and dominant flow direction [1-3]. 

Well testing is an interpretation technique during which pressure of a well is recorded 

with respect to time to estimate some reservoir and well parameters such as permeability, skin 
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effect, reservoir initial pressure and reservoir boundaries which are essential to reservoir 

characterization and management [4]. The most frequent approaches in well testing technique 

used in petroleum industry are draw-down and build-up tests. In a build-up test, downhole 

pressure increasingly tends to the reservoir average pressure for a certain shut-in period of 

well, whereas in a simplest form of a draw-dawn test in which flow rate is kept constant, the 

well is allowed to flow and the pressure falls [5-7]. 

Application of pressure build-up well tests was first introduced in 1937 by Muskat in 

which the pressure behavior with time was utilized by extrapolation technique to estimate 

initial reservoir pressure, however due to excluding fluid compressibility impacts, this  

method did not give appropriate answers [8]. Later on, effects of fluid compressibility was 

incorporated in well testing by Miller et al. in 1950 to predict permeability and reservoir 

pressure from build-up test data [9]. The first analytical equation for build-up tests 

investigation was proposed by Horner for completed wells in under saturated reservoirs. 

Having divided the pressure behavior into three main time regions namely, early time, middle 

time and late time regions, a graphical method was proposed by Horner which used only the 

middle time region and put the other two regions aside. In the middle time region (which 

begins 1.5 log cycles after the end of early time region), the semi log plot of (Pws) versus (

pt t

t

 


) gives a straight line, where tp, t  and pws are producing time, shut-in period time and 

wellbore shut-in pressure [10]. The slope and the intercept of the line with the pressure axis 

are used to calculate the permeability and the skin effect. 

Many diverse techniques have been utilized effectively by several petroleum engineers to 

work out petroleum complications including MRI, Micro-wave and ANNs (Artificial Neural 

Networks) [11, 12]. One of the modern approaches which incorporates input/output data in a 

parametric modeling way as opposed to systematic methods is to use ANNs [11, 13]. 

Different applications of ANNs in distinctive areas of oil and gas engineering includes well 

testing, well logging, PVT properties of crude oils, seismic interpretation and EOR processes 

[12-16]. As an example, an artificial intelligence network optimized by particle swarm 

optimization (PSO) has been recently developed which predicts asphaltene precipitation as a 

function of temperature, pressure, solvent molecular weight, oil composition, solvent mole 

percent, oil specific gravity, and asphaltene content. The developed model is more accurate in 

comparison with previous models [17]. 

Application of ANNs in well testing analysis involves data saving, noise filtering, 

optimization problems and estimation of sampled functions in which no analytical solution 

can be applied. In other words, these petroleum engineering problems for which conventional 

older methods did not have any adequate answer for can now be solved by ANNs [12]. 

Earliest incorporation of ANNs in well testing interpretation dates back to 1990 when model 

step of well-test interpretation was identified to determine reservoir model and its parameters 

by Artificial Intelligence based on the pressure-derivative data [18]. Al-Kaabi and Lee (1990) 

presented an Artificial Neural Network approach for recognition of well-test interpretation 

model adopted from derivative plot. In their model, existing of systematic noise in data 

resulted in poor results, however it was tolerable with random noise [19]. Allian and Houze 

(1992) implemented a practical AI (Artificial Intelligence) module coupled with a symbolic 

approach for identification of well testing models and estimation of its parameters by use of 

pressure data [20]. Later, Guyaguler et al. (2001) demonstrated a regression method along 

with Genetic Algorithm (GA) wherein inaccurate selection of reservoir model was reduced 
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which led to be robust and effective in noisy pressure transient tests [21]. Jeirani and Mohebbi 

(2006) recommended a model based on Artificial Neural Network to calculate reservoir 

parameters such as permeability, initial pressure and skin factor of reservoirs. Their method 

was cost-effective and was claimed to be applicable for a wide range of reservoirs [11]. 

Vaferi et al. (2011) suggested an automatic approach in line with Artificial Neural Network  

in order to recognize reservoir model from drawdown data applicable to both single and 

double porosity under different late time conditions. Utilizing MLP (feed-forward multi-layer 

perceptron) structure, real reservoir models were successfully detected based on noisy 

pressure derivative data [22]. Ghaffarian et al. (2014) worked out model identification of 

different types of gas condensate reservoirs including different boundary conditions based on 

two MLP structures incorporating buildup tests data [23]. 

As mentioned earlier, knowing permeability, skin factor and pressure of reservoirs are  

of utmost significance for petroleum engineers owing to the fact that they are vitally  

needed for conducting pressure maintenance programs, well efficiency determination, effects 

of formation damage on hydrocarbon production, different EOR processes and reserves 

estimation [23]. Buildup tests are expensive for petroleum companies since it requires the 

wells to be shut in for a certain period of time and therefore leads to production loss. As an 

example, carrying out buildup tests for reservoir characterization in Alaska by BP company in 

1991 resulted in $1.3 loss [24]. 

In this work, an ANN-based methodology composed of MLP, MLP optimized with GA 

and PSO were developed and results are compared with each other as well as actual results 

from Horner model. The overall objective of this study is therefore to utilize newly developed 

efficient and cost-effective approach based on ANN to predict permeability, skin factor and 

initial pressure of single porosity reservoir without having enough buildup tests. 

 

 

OVERVIEW OF ARTIFICIAL INTELLIGENCE 
 

Overview of MLP Artificial Neural Networks 
 

Artificial neural networks have proven to be promising techniques through the estimation 

of nonlinear complex functions and extracting the best correlation among the parameters in 

many different branches of science and engineering fields [17, 25-29]. ANN models can be 

best described as mathematical structures comprising many simple processing units called 

neurons which are capable of mapping an input space into an output space by regression 

method [30-32]. In the view of accomplishing these tasks, some particular algorithms are 

utilized to train neural networks via modifying input weights so that calculated output values 

approach actual outputs adequately [31]. This workaround is simply called an optimization 

process. Outline of an optimization process includes network training, testing the quality of 

the learned network and extending this network to new data. For this purpose, data sets are 

categorized into training, validating and testing types [17, 33].  

Many approaches have been suggested to design and optimize neural networks including 

multilayer perception (MLP) trained with back propagation algorithm [34, 35]. MLPs which 

are based on feed forward neural networks, involve three different types of vectors namely an 

input layer, at least one hidden layer and an output layer, each of which having a number of 
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neurons [36]. The number of neurons in output layer can be equal to the number of 

parameters required to be approximated and number of neurons in hidden layer may be 

specified according to a trial and error method during the learning process until the best 

solution is achieved [37, 38]. Since neurons of consecutive layers are connected to each other, 

a possible nonlinear relationship might exist between input and output layers. Training 

algorithms such as back propagation (BP) are normally utilized in MLPs so that a hidden 

correlation in the form of nonlinear function between several inputs and output are 

appropriately calculated. The mechanism under which BP algorithm works is error-correction 

which means weights are modified only when the error has already propagated backward, 

however, several issues have been reported associated with this algorithm including 

inefficiency and slow convergence. Therefore, a number of modifications such as Marguardt-

Levenberg which is a combination of Gauss-Newton nonlinear regression and gradient 

descent methods have been suggested to overcome such aforementioned problems [39-41].  

As part of this study, MLP ANN coupled with back propagation and Marguardt-

Levenberg learning algorithms have been utilized in which network weights are adjusted in 

order to increase the rate of performance function reduction which is inverse of distribution of 

errors [42-44].  

 

 

Overview of Genetic Algorithm (GA) 
 

GAs are computational models which have been first proposed by Holland, and are based 

on Darwinian evolutionary theory, applicable to optimize complex functions. The basic 

evolution processes found in nature such as crossover, mutation, reproduction and survival of 

the fittest are the primary properties of GA algorithm behavior [40, 45].  

In this algorithm, individual solutions are selected based on stochastic process with the 

aim of better overall performance. A fitness function is then used to evaluate each solution 

after which developed solutions will be estimated. Therefore, the search space will evolve in 

the direction in which the optimal solution is reached [46]. Genetic Operators which are based 

on probabilistic rules are utilized in order to adjust the genetic information until a new set  

of individual solutions (also referred to as population) is formed. This process continues  

until a final population is reached based on a stopping criteria, hence making it an iterative 

process [45].  

 

 

Overview of PSO 
 

PSO was first proposed by Eberhart and Kennedy as a population-based stochastic 

optimization process in which the overall objective is to find the global optimum of some 

multidimensional nonlinear functions [17, 47, 48]. This algorithm has been applied in various 

aspects of petroleum engineering and has been reported to be effective [33, 48-52]. 

The global optimum of a system is converged due to randomly distribution of different 

particles over the search space. For this goal of converging, two parameters of gBest and 

pBest were introduced by Eberhart and Kennedy which mean the best solution gained by 

global optimization and a best solution obtained by a particle respectively [17]. 
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Assume “k” number of particles is used in this algorithm wherein kth particle position is 

shown by the vector Xk = {Xk1, Xk2, Xk3, …, XkN}. jth coordinate value in the N dimensional 

space is shown by Xkj. The best visited position of the kth particles and the best result  

of all existing particles are noted by vectors Pk={Pk1, Pk2,…, PkN} and G={G1, G2, …, GN}, 

respectively. At every iteration, each particle changes its position according to its apparent 

velocity, Vp= {Vp1, Vp2,…, VpN} and the new position is obtained based on the following 

equation; 

 
1

1 2(0,1)( ) (0,1)( )i i

Nk NK NK NK N NKv v Arand P X A rand G X       (1) 

 

wherein   is the inertia factor which controls and updates the new velocity based on the 

former velocity values. For the goal of particles acceleration toward the best coordination 

existing in the search space, positive learning factors including A1 and A2 have been 

introduced to the above equation. Rand (0,1) is a function which generates random numbers 

between 0 and 1 in the search space. 

Mostly, as the iteration number increases, the inertia factor decreases which is 

mathematically represented as follows: 

 

 (2) 

 

In which max , min , i  and maxi  are the maximum value of inertia factor, minimum 

value of inertia factor, current and maximum number of iterations used in the PSO, 

respectively. Empirical investigations suggest the appropriate values of 0.4 and 0.9 for min

and max , respectively [17].  

 

 

Case Study 
 

This study was done on three different wells in a southern Iranian naturally fractured 

carbonate oil field. Three wells in the same reservoir and adequately spaced from each other 

were selected; other wells were very distant apart and were neglected for this study. Table 1 

shows wells and reservoir parameters used in this study. The shut-in time and the cumulative 

production time were sorted as pt p

p

 


 and used as the ANN input, and the shut-in pressures 

(Pws) corresponding to shut-in times were used as the output of the network. Figure 1 shows 

the Horner plot of the three wells for which the ANN has been run on. 

 

 

Data Analysis 
 

max min
max

max

*i i
i

 
 

 
  

 



Efficient Estimation of Well Testing Parameters … 181 

93, 85 and 95 build-up data sets were available with respect to the three wells. The data 

were normalized between 0 and 1 first, 70% of the data were used for learning, 15% for 

validation and 15% for testing. There was no noise in the pressure-time data for the three 

wells and therefore they had the required quality to be used in the ANN, with (  as the 

input and Pws as the output. Figure 2 shows the fitness functions for the three data sets 

presented in Figure 1. MLP was optimized by GA and PSO in order to minimize the errors. 

Figures 3 and 4 show the results of the network learning in which a good agreement exists 

with the pressure build-up data. The results of the best GA and PSO tests are shown in 

Figures 5 and 6. 

 

 

Figure 1. Horner plot of the data of the well 1 (a), well 2 (b), well 3 (c). 

 

Table 1. Well and reservoir parameters 

 

Well 3 Test Well 2 Test Well1 Test Parameter 

13 16.3 12 Matrix porosity )%(  

2.94 2.136 3 (Well bore) in Radius 

87 81.6 89 Average oil saturation )%( 

128 137 327 (h net) Reservoir thickness 

1.69 1.827 1.61 Oil formation volume factor (Bo) 

0.312 0.32 0.22 Oil viscosity (cp) 

1.362E-5 1.54E-5 1.362E-5 Oil compressibility Co (1/psi) 
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1.681E-5 1.567E-5 2.1579E-5 Total compressibility Ct (1/ psi) 

 

 

Figure 2. Fitness functions (input and output for learning, validation and test), with normalized MLP for 

(a) well 1, (b) well 2 and (c) well 3.  

 

 

Figure 3. Results of learning, MLP optimized with GA for (a) well 1, (b) well 2 and (c) well 3. 

 

 

Figure 4. Results of learning, MLP optimized with PSO for (a) well 1, (b) well 2 and (c) well 3. 
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Figure 5. Results of testing the MLP optimized with GA for (a) well 1, (b) well 2 and (c) well 3. 

 

Figure 6. Results of testing the MLP optimized with PSO for (a) well 1, (b) well 2 and (c) well 3. 

 

Methodology 
 

Utilizing error back propagation algorithm, Horner time pt p

p

 



 was used as the input to 

the ANN and the downhole shut-in pressure (Pws) as the output. A two-layer hidden layer was 

used, which showed better results in comparison with single-layer and three-layer ones. 

Nevertheless, applying more than three layers decreases the performance of the network since 

in this case the networks tends to save he data. The program code was written in two files in 

order to analyze the learning process. The stages and methods of developing the ANNs 

include the following; 

 

a) Evaluating the effect of the input parameters as the first step in developing an 

efficient artificial intelligence. For instance, over-introducing data into the network 

caused an over-size of the network, and hence, decreased the rate of learning. To 

specify suitable input parameters, networks of different input configurations were 

tried and the input parameters with the most effect on the results were selected.  

b) In order to accelerate the learning process and assure that every parameter receives 

equal consideration from the network to improve the overall performance of the 

network, the data were preprocessed prior to introduction into the network. The input 

parameters had high values which decreased the recognition rate of the network, 

therefore the data were normalized between 0 and 1 using Equation 3 to cope with 

this problem.  
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min

max min

X X
Xn

X X





 (3) 

 

where X is the one dimensional data vector and Xn is he normalized value of X.  

 

c) Data categorization: 70% of the data were used as learning data, 15% as validation 

and 15% as network test data.  

d) Network structure design: the number of neurons in the input and output layers 

equals to the number of input and output data, respectively and the number of 

neurons in the intermediate layer was obtained by trial and error.  

e) Learning process: in three methods, the learning data were used to prevent the 

preprocessing problems, the number of cycles was unknown before execution, and 

the learning algorithm stopped as soon as the errors exceeded the limits.  

f) Validation: These sets of data were introduced after learning (MLP) and the results 

were compared with the actual data, consistency of these was used as a criterion of 

universalization. The network validity was verified in parallel with learning and as 

soon as the error on validation data rose, learning was stopped. Furthermore, if the 

mean square error reaches the determined value learning will again stop.  

g) Test: This step is specific to back propagation networks. In these networks, this error 

was controlled after each cycle by the test data in order to stop learning in case of 

error growth and to prevent the network from saving the learning data.  

 

In this study, MLP ANNs and MLP optimized with GA and MLP optimized with PSO 

were used and the results were compared with each other using two indices; correlation 

coefficient (R, it should be mentioned that in some references it is shown as R2) and mean 

square error (MSE) defined as follows [53-55]: 

 

a) Correlation coefficient is a dimensionless value ranging between 0 and 1, and is 

calculated through either of the following equations; 
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b) The following equation represents MSE; 
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 (6) 

 

where Rn is the actual observed value, En is the calculated value; n is the number of data to 

learn the network. The weights have to be varied to decrease the MSE or increase the R to 

reach the best fitness. 

 

Table 2. Comparison of the best results for R and MSE using MLP  

and MLP optimized with GA and PSO in well 1 

 

MLP optimized with PSO MLP optimized with GA MLP Parameter 

0.99837 0.99969 0.98432 Total R 

0.00011245 2.1206E-5 0.001253 Total MSE 

0.99887 0.99981 0.97541 Learning R 

8.7187E-5 1.6138E-5 0.0076541 Learning MSE 

0.99874 0.99971 0.99433 Validation R 

0.00017974 4.0027E-5 0.0036888 Validation MSE 

0.99776 0.99810 0.94405 Test R 

0.00016242 2.5919E-5 0.0010808 Test MSE 

 

Table 3. Comparison of the best results for R and MSE using MLP  

and MLP optimized with GA and PSO in well 2 

 

MLP optimized with PSO MLP optimized with GA MLP Parameter 

0.99991 0.99887 0.98345 Total R 

5.8971E-6 7.8534E-5 0.0011778 Total MSE 

0.99993 0.99916 0.98533 Learning R 

6.2575E-6 6.0757E-5 0.0011808 Learning MSE 

0.99964 0.99899 0.98028 Validation R 

5.5276E-6 5.3763E-5 0.00089797 Validation MSE 

0.99753 0.99871 0.98126 Test R 

4.63067E-6 0.00018399 0.0014442 Test MSE 

 

Table 4. Comparison of the best results for R and MSE using MLP  

and MLP optimized with GA and PSO in well 3 

 

MLP optimized with PSO MLP optimized with GA MLP Parameter 

0.99999 0.99916 0.98429 Total R 

4.0444E-7 5.6924E-5 0.0021753 Total MSE 

1.00000 0.99936 0.99449 Learning R 

1.6975E-8 3.2802E-5 0.00094923 Learning MSE 

0.99996 0.99923 0.98279 Validation R 

2.2425E-5 4.0293E-5 0.0095191 Validation MSE 

0.99999 0.99968 0.94922 Test R 

2.6406E-6 0.00018899 0.00069919 Test MSE 
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Table 5. Comparison of actual Pi’s by Horner and MLP-PSO models 

 

Error % Actual Horner Pi (psi) ANN Pi (psi) Well 

0.18  8539.7 8524.40 Well 1 

0.22 8690.5 8671.56 Well 2 

-0.30 8328.3 8353.46 Well 3 

 

Table 6. Comparison of Horner line slope (m) by actual  

and MLP-PSO models 

 

Error % Actual Horner Slope ANN Horner Slope Well 

0.03 77.892 77.8654 Well 1 

0.00 138.196 138.192 Well 2 

-0.13 20.9041 20.931 Well 3 

 

Table 7. Comparison of permeability’s from Horner model  

by actual data and MLP-PSO results 

 

Error % Actual data Horner Permeability 

(k) (md) 

ANN results Horner 

permeability (k) (md) 

Well 

-0.05 43.75 43.77 Well 1 

-0.06 15.56 15.57 Well 2 

0.12 165.8 165.6 Well 3 

 

Correlation coefficient (R) and MSE were used to compare Horner method results and 

ANN results. R ranges between 0 and 1, whose best value is 1 and MSE best value is 0. The 

values of R and MSE obtained with MLP optimized by GA and PSO are listed in Tables 2 -4. 

Horner model was used for estimating the initial pressure (Pi), permeability (K) and skin 

effect (s), that is for both actual and ANN, a straight line was passed through the data falling 

1.5 cycles after the wellbore storage(early time) region on the semi-log plot of Pws versus 

Horner time and this line was extended to intersect the Pws axis, the intercept will be the Pi 

[18]. Table 5 shows a comparison of the actual initial pressures and those obtained from 

ANN.  

Having obtained the slope of the line (m) in both actual Horner model and ANN model 

(Table 6), permeabilities were calculated by Equation 7, using the data provided in Table 1, 

the comparison of the results is shown in Table 7.  

 

 (7) 

 

Skin factors were calculated by Equation 8 for both ANN models and Horner model 

again using the data from Table 1; 

 

162.6 oq B
K

mh
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 (8) 

Table 8. Skin effects by Horner model for actual data and MLP-PSO 

 

Error % Skin factor by Actual data Horner model Skin factor by ANN Well 

4.82 13.67 13.01 Well 1 

4.67 11.644 11.10 Well 2 

2.56 24.64 24.01 Well 3 

 

In which P* is obtained from the following equation. 

 

 (9) 

 

 

RESULTS AND DISCUSSION 
 

MLP, MLP optimized with GA and MLP optimized with PSO models have been 

separately developed using three different sets of pressure buildup tests for which Horner 

plots are represented in Figure 1. Figures 3-4 show the results of the network learning and 

according to fitness functions in Figure 2, there is a good agreement between actual pressure 

data and those obtained by ANN models which means presenting a good fitness with the 

pressure build-up data; hence, it can be concluded that the networks have been well learned 

enough to be used to estimate the initial pressure, permeability and the skin factor in a 

reservoir. The results of the best GA and PSO tests are shown in Figures 5-6. 

Three different ANN models have been compared based on two indices namely R and 

MSE for all three wells, as mentioned earlier. Results of Table 2 suggest MLP optimized by 

GA is more accurate that two other developed ANNs for well number 1 owing to the fact it 

has a more acceptable R or MSE values. Nevertheless, MLP optimized with PSO is slightly 

different from MLP with GA in this well. For well numbers two and three, however, MLP 

optimized with PSO gives more adequate results compared to other ANNs based on values of 

R or MSE displayed in Tables 3-4. It can be seen that MLP optimized with PSO can be more 

effective compared to MLP and MLP optimized with GA.  

Due to high performance of MLP optimized with PSO, its computed parameters of initial 

pressure, Horner line slope, permeability and skin factor have been judged against those of 

Horner model for all wells and results along with their error values are presented in Tables 5-

8. Because of adequate error values, only a limited set of data by pressure buildup tests can be 

incorporated with MLP-PSO to extend more data needed to achieve reservoir well testing 

parameters which will lead to a less time and cost consuming tool.  

 

 

CONCLUSION 
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In this study, ANN-based models of MLP, MLP-GA and MLP-PSO have been developed 

to predict reservoir well testing parameters including initial reservoir pressure, permeability 

and skin factor. Based on the obtained results for the case study, MLP-PSO algorithm is more 

efficient than the two other models. Buildup tests technique of well testing parameter 

calculation is both time consuming and costly; therefore, in the absence of sufficient buildup 

test data, MLP-PSO algorithm can be utilized to accurately estimate reservoir parameters 

which accelerates the calculation and reduces time and operating costs simultaneously. 
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ABSTRACT 
 

For development and evaluation of oil fields, having enough information about 

hydrocarbon reservoirs is necessary, in other words, set various parameters in the 

evaluation of reservoir rock and fluid are important in hydrocarbon reservoirs. Reservoir 

productivity index (PI) of wells can be considered as one of the most important 

parameters in determining the economic value of a reservoir. Productivity index of wells 

accompanying with certain reservoir parameters plays an important role in the evaluation 

of oil reserves. The main objective of this study was to utilize a non-linear model called 

artificial neural networks to predict reservoir parameters. Data for the various stages of 

learning and assessment networks were divided into three categories of training, 

validation, and testing. After the data processing network, 70% of them were placed for 

education, 15% for validation, and 15% for the MLP experiments. The results show that 

neural network with two hidden layer simulators does best in terms of simulation. 

 

Keywords: well productivity index, well testing, permeability, porosity, data mining, model 
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1. INTRODUCTION 
 

Well testing is one of the most important branches of reservoir engineering which can 

play an essential role in studying the parameters of a reservoir. Determination of productivity 

index (PI) of reservoir is one of the main purposes of petroleum engineering. Data obtained 

from flow and pressure unsteady tests nearly at in situ reservoir conditions can be used to 

determine the productivity index [1-7]. 

The most important point to be considered is increasing production with a minimal cost 

in the exploitation of the reservoirs and productivity index is an effective factor to decide on 

the economical drilling [8]. Therefore, understanding the related phenomena and measuring 

the variables affecting productivity index are necessary [9]. Productivity index, j, represents 

the relation between different variables, mathematically illustrated in equation (1): 

 

( )wf r D

q kh
j

p p p s 
 

 
  (1) 

 

This correlation expresses what imperative and possible is for a production engineer. At 

first, 
Dp  (dimensionless pressure, where 

Dp  = ln e

w

r

r
) depends on physical model that 

organizes well flow regime. A particular reservoir with special parameters and physical 

qualifications, permeability k, reservoir thickness h that their data can be obtained from 

balance wells [9], [10] and contains a fluid with B (formation volume factor) and   

(viscosity), s (skin factor) which is the only variable that can be adjusted. A positive value of 

skin factor (s) that is caused by damage and reduction of permeability around the wellbore 

[11] can be eliminated and decreased though matrix stimulation. On the other hand, a 

negatively skin factor is achieved, when the permeability of the formation, k , is less than 

that of around the well, 
skink , and it can be imposed by an effective hydraulic fracturing 

[10]. Therefore, productivity index can be improved by stimulation [9]. The skin factor is 

defined as; 
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  (2) 

 

where k  = permeability of the formation, md. 
skink  = permeability of the skin zone, md. 

Production engineers are always interested in improving productivity index by 

optimization of flow rate from bottom hole to the surface. Well performance evaluation is a 

primary and essential goal of engineers. The three currently available major tools that are 

used for well performance are as follows: 

 

1. Considering the flow path from bottom hole to the production unit and measure the 

rate-versus-pressure drop. 
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2. Well testing 

3. Production logging 

 

Petroleum engineers focus on flow system with available analytic data for optimization to 

enhance productivity. However, the estimation of productivity indices of reservoir is not 

accurate because the currently available models and tools are not very reliable and accurate 

[1], therefore, reservoir engineering experts are always trying to find appropriate and accurate 

tools for calculating accurately the horizontal and vertical well’s productivity indices and 

organize industrial and economical possible studies before drilling the wells which is 

expensive. In traditional methods for estimating the parameters of the well and the reservoir, 

the relationship between the parameters, often with one or multiple linear regressions, or even 

sometimes non-linear multiple regressions (Like Gaussian process regression models) are 

examined and in most cases mathematical relationship is used to predict the parameters. Since 

the mathematical relationship between input parameters such as permeability and independent 

variables (i.e., data from various logs) are unknown, complex and often non-linear methods, 

using linear regression and non-linear approximation will lead to errors in results. The results 

of the nonlinear regression models depend on mathematical models, implemented processes, 

and the type of input variables, especially if they have a large variance [1]. To determine the 

parameters, a new approach is required with high accuracy and low time and money 

consuming. Hence, an alternative method to determine the parameters is to use artificial 

intelligence and machine learning approaches [2]. 

 

 

2. AN OVERVIEW OF ARTIFICIAL INTELLIGENCE METHODS 
 

Artificial intelligence is the science of making intelligent machines and programs. In 

general, investigation of the requirements for computational tasks such as perception, 

reasoning, and learning systems for such acts is called artificial intelligence. Data mining is 

defined as a branch of artificial intelligence as a set of methods to get data from a data set into 

a meaningful outcome. Artificial neural network works as a data mining method inspired by a 

mammal, particularly a human brain [3]. The main similarities between artificial neural 

networks and human brains are as follows: 

 

1. The data processing system using neural structures or neurons 

2. Determination of both networks, connections between neurons 

3. The formation of both behaviors from simple computational tools with high 

coherence 

 

 

2.1. Multilayer Perceptron Networks (MLP) 
 

Multi-layer perceptron networks are one of the most widely used types of networking 

foreword artificial network models in modeling and prediction of productivity index for 

petroleum industry. In MLP, each neuron in each layer is connected to all neurons of the 

previous layer that are also called quite related networks. The framework of each neuron 
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network includes: inputs, weights, biases, the aggregator function activation function, and the 

output [4]. The network has three layers of input, middle or high (single or multi-layer), and 

the output. Neurons can use different stimulus functions to produce output that the most 

common of them are a logarithm sigmoid, tangent sigmoid function and linear actuator. The 

network that we have used has two layers, the first layer is the sigmoid, and the second layer 

is linear. This kind of two-layer network is used widely in Back propagation networks [4]. 

 

 

2.2. Method of Genetic Algorithm Optimization (GA) and Its Combination 

with Artificial Neural Network 
 

GA method is a learning method based on biological evolution that was introduced in 

1975 by John Holland. In this way, a large collection of possible solutions puts foreword. 

Each solution is evaluated using a fitness function, and then the number of solutions produced 

is new solutions, which are developed solutions. Thus, the search space will evolve in the 

direction in which the optimal solution is reached [6] (If one selects the correct input 

parameters to this method will give a good answer). Using this algorithm, a lot of 

optimization problems that are not solved by standard algorithms optimization, can be solved. 

Among the issues, the objective function that is discontinuous, non-differentiable, stochastic, 

or highly nonlinear can be cited. The basic principles governing genetic algorithms can be 

expressed as follows [6]: 

 

1. Form the initial population of random solutions and coding solutions as 

chromosomes. 

2. Evaluate responses and select the appropriate response using a probabilistic rule 

selection, the selected solutions are called parents. 

3. Create new solutions with law enforcement a couple of jumps on the parents for the 

next generation. 

 

The generation process of gradual evolution and improvement of the solutions will 

continue. 

 

 

2.3. Particle Swarm Optimization Algorithm (PSO) and Its Combination 

with Artificial Neural Network 
 

PSO algorithm is a meta-heuristic optimization algorithm modeled by Aybrhart in 1995 

based on a group of birds flying slow motion [7]. In general, we can say that an algorithm of 

particle swarm optimization algorithm mimicking the behavior of animal societies to process 

knowledge society. The algorithm is one of the most successful algorithms in the context of 

continuous and discrete optimization. In this algorithm, each answer of question is modeled 

like a particle that has proportion and amount. Normally, since a method based on the 

combined action of the population, there is no answer and there is rapid convergence. In 

general, the PSO works based on movement and intelligence of particle and uses the concept 

of intelligence and social interaction for solving optimization problems [7]. 
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In the present work, the following criteria were used to select the best method: 

 

1. The correlation coefficient is a dimensionless quantity, which varies from 0 to 1, 

where 1 is the best value; and it is determined through equation 1 or obtained from 

the coefficient of determination i.e., formula 2. 

 

R =
∑ [(En−(∑ En)/nn

n=1 )(Rn−(∑ Rn)/n)]n
n=1

n
n=1

√∑ (En−(∑ En)/nn
n=1 )2  ∑ (Rn−(∑ Rn)/n)n

n=1
2n

n=1
n
n=1

   (1) 

 

 R2 =
∑ [(En−(∑ Rn)/nn

n=1 )]n
n=1

2

∑ [(Rn−(∑ Rn)/nn
n=1 )]n

n=1
2   (2) 

 

2. The error can be expressed using different methods of expression; one of these 

methods is mean square error (MSE), which is expressed by the formula (3). Its 

optimal value is zero. 

 

ε(n) = MSE =
∑ (En−Rn)2n

n=1

n
  (3) 

 

In the above equations, Rn and En are values of actual observations and estimated, 

respectively, and n is the number of data for network training. 

 

 

3. RESULTS AND DISCUSSION 
 

To obtain flow rate (the output of neural network used in this section), the pressure and 

temperature data of a well, located in South West of Iran were used. More information is 

available upon request to the authors. 

 

 

3.1. Data Analyzing and Procedures and Methods of Creating Anns 
 

To study the PI using ANNs (MLP), the data of flow rate and pressure of an oil field in 

the South West of Iran was used, as mentioned earlier. The data of pressure and flow rate are 

used, respectively, as input and output (with units used in Darcy’s equation) of neural 

network [8]. Darcy’s equation is expressed by equation 4. 

 
q

A
=  

K

μ
 
∆P

L
  (4) 

 

In this equation, q, A, K, μ, ΔP, and L are: rate, area, permeability, the pressure 

difference, and the length of the porous medium, respectively. The steps of ANN creation are 

given below in details: 

 

A) Knowing the effect of input parameters is the first step to create an artificial 

intelligence method. Introduction of numerous high numbers of inputs makes the site 
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of neural network larger and retards the speed of learning education. The 

determination of appropriate parameters was carried out through the different 

combination of networks and selection of inputs with high efficiency. 

B) Before entering data in ANNs, a pre – process has been implemented to investigate 

whether or not any parameter receives the same attention and works recognition 

speed between different numbers. Data have been normalized using the following 

relation (5): 

 

XN = 
X − MinX) 

(MaxX − MinX)
   (5) 

 

where X is a 1-dimensional vector, and XN is normalized X. 

 

C) From all available data, 70% for learning, 15% for validation, and 15% for (testing) 

were used in MLP method. 

D) In order to create network’s structure, the number of hidden layers and existed 

neuron in each layer should be determined. The number of input and output neurons 

is the same number of input and output parameters. The general method of hidden or 

intermediate neurons is used by try and error. 

E) In order to prevent pre-processing defects, data of learning were used in all methods. 

The number of cycles in each network was unknown and as soon as errors in data of 

learning began to increase, learning algorithm was stopped. 

F) After learning, a set of data is presented to MLP network, and the produced results 

are compared with real data, then the match of these data was used as a criterion of 

extension. The validation of network was evaluated during education (learning) and 

the moment that error on validation data starts increasing, the network educating 

stops (If MSE reaches the predicted value, it will stop too). 

G) Examination: this step is just for back – propagating networks. In these networks, the 

errors are controlled after ending of each cycle. 

 

 

3.2. Modeling Using MLP Network 
 

In order to predict well productivity index, 326 data of a well located in South West of 

Iran (over a year) were used, that 228, 49, and 49 of the latter data were used in the training, 

validation, and testing steps, respectively. The best R and MSE normalized values obtained 

from MLP were optimized by PSO and GA algorithms that can be seen in Table 1. In each 

case, the total data, the training data, and the data used in the validation and test steps are 

given in Figure 1. The results of the test for all three modes MLP, MLP combined with PSO, 

and MLP with GA are shown in Figure 2. Combining weights and bias for prediction of flow 

properties of layers {1, 3, 4, 2} for the best MLP combined with GA are given in Tables 2  

to 6. 
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Table 1. Comparison of the best R and MSE values for normalized PI by MLP  

and optimized MLP using different methods 

 

MLP optimized with 

PSO 

MLP optimized with 

GA 

MLP Parameter 

0.94744 0.95071 0.88026 R (Total data) 

0.001152 0.001049 0.009808 MSE (Total data) 

0.94187 0.94552 0.904060 R (Learning data) 

0.001107 0.001099 0.020598 MSE (Learning data) 

0.95147 0.98094 0.87978 R (Validation data) 

0.002009 0.000715 0.010056 MSE (Validation data) 

0.96739 0.93132 0.92355 R (Testing data) 

0.005042 0.001148 0.008892 MSE (Testing data) 

 

Table 2. Weight for the best mode (MLP combined with GA) in the first layer 

 

5.4107 

-5.2398 

-5.2308 

3.4407 

 

 

Figure 1. Comparison of Best R normalized rate (horizontal axis) and predicted normalized rate 

(vertical axis) MLP network with GA optimization method. 
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Table 3. Weights for the best case (MLP combined with GA) in the second layer 

 

-0.0841 -0.2715 1.6752 0.6124 

1.6952 -0.7589 -1.8217 -0.1771 

1.6019 -0.7578 2.5075 -0.7206 

 

Table 4. Weight for the best case (MLP combined with GA) in the output layer 

 

-0.674 0.5114 -0.4304 

In addition, the output weight is 0.9169. 

 

Table 5. Biasing for the best case (MLP combined with GA) in the first layer 

 

-5.269 

1.389 

-3.186 

7.777 

 

Table 6. Bias for best case (MLP combined with GA) in the second layer 

 

1.645 

0.0262 

1.269 

In addition, the output bias is 0.5283. 

 

 

 

Figure 2. Results of the test of real data, the horizontal axis, the predicted data, vertical axis, MLP 

combined with PSO (a), using MLP (b) and MLP methods combined with GA (c), respectively. 
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It should be mentioned that as MLP back-propagation algorithm has been used in neural 

network modeling, we used two layers in the hidden layer (comparing with single- and three 

hidden layer; it shows better results). However, studies have shown that more than three 

layers of hidden layer cause a slight reduction in network performance, since in this case; the 

system will start to memorize the data. 

 

 

CONCLUSION 
 

Using artificial neural networks is an easy method for modeling reservoir parameters 

especially as it does not require sophisticated mathematical models. The most important issue 

in the use of these methods is the appropriate choice of learning algorithms. Also, the use of 

artificial neural network approach does not require any prior knowledge of the ingredients of 

the rocks or fluid filling cavities in rocks. Since in this method, input layer neurons are a 

function of the factors affecting output, the selection of input variables that need to be acted is 

the most influential factors on outputs. Using this method and integration with appropriate 

optimization algorithms of GA and PSO for predicting productivity index of well is a good 

practice. Also, significant savings in time and costs are created. In general, it can be said with 

regard to the application of neural networks in case of obtaining the proper relationship 

between the data is very difficult. The factors influencing the output of neural network are 

selecting the appropriate validation data sets training and testing the network. In case of 

distribution of data in these three categories, the modeling can be reached faster and with 

greater accuracy. 
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ABSTRACT 
 

Petro-physical properties like porosity and permeability play an important role in 

petroleum reserves evaluation. Permeability indicates fluid flow ability in rock reservoir's 

pore spaces. The methods of core analysis, well testing and empirical correlations are 

normally used to measure/estimate petro-physical properties. The conventional methods 

of core analysis and well testing are time consuming and expensive. Furthermore, the 

latter data may not be provided for every well. On the other hand, empirical correlations 

are used for special cases and may not be accurate for every situation. Thus, developing a 

reliable method for estimating petro-physical properties based on well logging data could 

be significant as well logging data are provided almost for every well. An alternative 

method for evaluating petro-physical properties is data mining and artificial intelligence 
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and machine learning techniques. In this communication, the method of data mining has 

been applied to estimate reservoir permeability and porosity using petro-physical data. 

First, the data were normalized and then horizontal and vertical permeabilities and 

porosities of an Iranian carbonate oil field were calculated using geophysical data and the 

methods of Multiple Layer Perceptron Neural Network (MLP-NN) and Radial Bias 

Function Neural Network (RBF-NN). Particle Swarm Optimization (PSO) and Genetic 

Algorithm (GA) were used for optimizing the NN parameters. Comparison of the results 

shows that combination of MLP and RBF with PSO or GA yields satisfactory results.  

 

Keywords: porosity, permeability, MLP-NN, RBF-NN, Particle Swarm Optimization (PSO), 

Genetic Algorithm (GA) 

 

 

1. INTRODUCTION 
 

Hydrocarbon reservoirs are one of the main sources of energy in the world. Developing 

these reservoirs is important due to reduction of oil reserves. From reservoir properties, 

permeability is difficult to measure in comparison with water saturation and porosity [1-9]. 

Permeability and porosity are normally measured by direct costly experimental methods of 

core analysis and well tests, which are exact but not accurate to describe all the reservoir 

layering and heterogeneities [1-9]. So that, the results are limited to a special rock and layer 

and are not continues plots for reservoir applications [1-9]. Therefore, development of 

precise, inexpensive, less time – consuming predictive methods for evaluation of permeability 

and porosity based on well logging data is of great interest [1-9]. The latter can be achieved 

by using artificial intelligence, machine learning and data mining methods [1-9]. Among 

them, Artificial Neural Networks (ANN) have been widely used in petroleum industry [2]. 

ANNs have been developed based on the neural system of the animals and human, and 

consists of units called neuron [10-18]. ANN has been inspired from the complicated 

structure of the mammals’, human’s, brain neural system where information is saved and 

processed to solve problems by a network of millions of interconnected neurons [10-18]. 

From mathematics point of view, ANNs are composed of multiple layers, through the first of 

which the information enters the network, then comes the intermediate layers (hidden layers) 

whose number may vary depending upon the nature of the problem, they take the role of 

processing the data and the connection between input and output [10-18]. Here, the data are 

analyzed, weighted, processed, coded, etc. and finally passed to the last layer, namely output 

layer [10-18]. Hence, one may say the output is a combination of inputs, weights, bias and the 

hidden layer elements [10-18]. 

In the present study, Multilayer Perceptron Networks (MLP) and Radial Basis Function 

(RBF) Neural Networks were applied for modeling purpose. The latter were used along with 

Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) algorithms which are 

described briefly in the followings: 
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2. MODEL 
 

2.1. Multilayer Perceptron Networks (MLP) 
 

MPLs are of the most frequently applied feed-forward ANNs for modeling in petroleum 

industry [10-18]. In MLP, every neuron in every layer is connected to neurons in the 

preceding layer, such networks are known as completely interconnected layers [10-18]. Here, 

the network is first produced with one hidden layer and in case of malfunction the number of 

layer will be increased, however, the number of layers has to be the smallest possible since 

the system will be apt to over fitting oscillation if the number of layers is greater than a 

certain value and it will begin to preserve the data instead of analyzing them, thereby, errors 

high will rise. To prevent this cross, cross validation is used [1-18].  

 

 

2.2. Radial Basis Function Neural Networks (RBF) 
 

These networks need more neurons compared with standard feed-forward networks with 

error backpropagation, however, such networks can be learned in a shorter time than feed-

forward networks. RBFs serve well when there is a great deal of input available, they are of 

the feed-forward type and their structure is like MLPs [10-18]. This network maps an N 

dimensional input pattern into a Z dimensional output patter using the adjacent layer nodes 

[10-18]. The inputs of each neuron are different from the others in RBFs, the inputs to the 

transfer function are equal to the distance vector between the weights and the inputs are 

multiplied by the bias [10-18].  

 

 

2.3. Genetic Algorithm Optimization (GA) 
 

This method provides a large set of possible solutions, each of which is analyzed with a 

crossover function, then a number of the solutions create new solutions that cause evolution 

of solutions, accordingly the process proceeds to the desired solution [10-18]. This method 

has shown to be effective since the input parameters are adequately selected [10-18].  

 

 

2.4. Particle Swarm Optimization (PSO) 
 

PSO is one of the most successful algorithms in discrete and continuous optimization 

where every solution is modeled as a particle of magnitude and correspondence (or similarity) 

[10-18]. Since it is a method population based and there is no solution combination in it, it 

normally converges fast [10-18]. In general, PSO operates based upon the intelligence and 

interaction of the particles and uses the concept of social interactions to solve optimization 

problems [10-18].  

In the present work, correlation coefficient (R) and mean square error (MSE) have been 

used for the models evaluations:  
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a. Correlation coefficient is a dimensionless value ranging between 0 and 1, and is 

calculated through either of the following equations (1), (2):  

 

𝑅 =
∑ [(𝐸𝑛−(∑ 𝐸𝑛)/𝑛𝑛

𝑛=1 )(𝑅𝑛−(∑ 𝑅𝑛)/𝑛)]𝑛
𝑛=1

𝑛
𝑛=1

√∑ (𝐸𝑛−(∑ 𝐸𝑛)/𝑛𝑛
𝑛=1 )

2
 ∑ (𝑅𝑛−(∑ 𝑅𝑛)/𝑛)𝑛

𝑛=1
2𝑛

𝑛=1
𝑛
𝑛=1

   (1) 

 

 𝑅2 =
∑ [(𝐸𝑛−(∑ 𝑅𝑛)/𝑛𝑛

𝑛=1 )]𝑛
𝑛=1

2

∑ [(𝑅𝑛−(∑ 𝑅𝑛)/𝑛𝑛
𝑛=1 )]𝑛

𝑛=1
2   (2) 

 

b. The following equation denotes MSE (3): 

 

𝜀(𝑛) = 𝑀𝑆𝐸 =
∑ (𝐸𝑛−𝑅𝑛)2𝑛

𝑛=1

𝑛
   (3) 

 

where Rn is the actual observed value, En is the calculated value, m is the number of data to 

learn the network. The weights have to be varied to decrease the error or increase the R to 

reach the best fitness [12].  

 

 

3. CASE STUDY 
 

One of the south-western Iranian oil fields was selected for this study. The data show that 

the reservoir is layered and heterogeneous. A great number of wells with an acceptable 

amount of data were available in this field whose most influential collection was used in this 

study. Four adequately spaced wells were selected from which vertical and horizontal cores 

were available, and other wells which were too far from these wells were neglected in this 

study.  

For porosity modeling, the ANN inputs include the following logs: SGR, CGR, DT, ILD, 

Density, NPHI, Caliper and Depth. The outputs include the porosities of the vertical and 

horizontal cores.  

For permeability modeling, the ANN inputs include: 

 

 Spectral Gamma Ray (SGR) for lithology evaluation including shale regions. 

 Electrical Resistivity (Rt) for determining water saturation. 

 Water saturation data for indicating permeable zones. 

 Effective or secondary porosity for finding the relation between porosity and 

permeability. Shale, Dolomite, Anhydrite and calcite are types of lithology. Caliper's 

data are used for showing well diameter: Depth logs are used for determining  

the effect of over burden pressure. The outputs include vertical and horizontal 

permeability. 
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3.1. Data Analysis and ANN Building Methods 
 

The log and core data in the selected wells had good consistency, besides the cores had 

good quality to be used in ANN. The method and stages for building the ANNs are as follows 

[10-18]: 

 

a) The first step is to characterize the effect of the input parameters. Overpopulating the 

input data caused an oversize of the ANN and hence decelerated the learning process. 

Therefore, networks with different input configurations were used and those inputs of 

most influence on the efficiency of the results were selected.  

b) Before introducing the inputs into the network, preprocessing the data in order to 

assure that the input parameters receive equal attention from the network contributes 

to improving the overall efficiency of the network. The input values were mostly 

large, this reduced the recognition rate of the network, and therefore the data were 

normalized to fall in the interval between 0 and 1 using equation (4).  

 

Xn = 
(x − MinX) 

(MaxX − MinX)
   (4)  

 

where X is the magnitude of the one dimensional vector of the data, Xn is the normalized 

value of X.  

 

c) Categorizing the data: Among all the data (petrophysical data, horizontal and vertical 

core data), 70% were used as training data, 15% as validation and 15% as test data in 

MLP, whereas in RBF 70% of the data were used as training data and the remaining 

30% were used to test/verify the network.  

d) Network structure design: In order to build the network structure, the number of 

hidden layers as well as the number of neurons in each layer had to be determined. 

The number of neurons in the input and output layer were the number of input and 

output parameters respectively, the number of neurons in the intermediate layers was 

obtained by trial and error. 

e) Learning: To prevent preprocessing, the learning data set were used, the number of 

cycles in each network was unknown before execution and as soon as the error in the 

learning data grew the learning algorithm stopped.  

f) Validation: This series of data were introduced into the network after learning (only 

MLP) and the produced results were compared with the actual values of horizontal 

and vertical porosities and permeabilities, the consistency of these two sets of values 

was used as a criterion to universalizability of the network.  

g) Test/Verification: This stage is applicable to only back propagating networks, here 

the errors were controlled after each cycle ended and in order to stop the learning 

algorithm and prevent the data network to save the learning in case the error in 

learning grew beyond the required accuracy. Weka, Matlab, Excel and Neuro 

Solution softwares were used here.  
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4. RESULTS AND DISCUSSION  
 

4.1. MLP Method for Porosity Prediction 
 

Considering its applicability in prediction problems and its capability in generalizing the 

results, feed-forward MLP was used for vertical and horizontal porosity predictions. The 

MLP includes 8 inputs in the input layer, 2 hidden layers and finally the output layer which 

yield the results of the calculations. Different hidden layers with different neurons were tried 

and the best of which turned out to be those of greater R and smaller MSE in the two layers. 

Tangent sigmoid technique (Tansig) was used for introduction to the hidden layer and pure 

line (Purelin) was used to pass from the hidden layer to the output layer. For pure MLP, 

Levenberg-Marquardt back propagation was used due to its fast convergence in small to 

medium size networks. A number of 212 horizontal porosity data were available whose 148, 

32 and 32 numbers where applied in training, validation and test, respectively. Besides, from 

the 190 vertical porosity data, 132, 29 and 29 numbers of them were accordingly used in 

testing, validation and test phases. The best R and MSE values and normalized values for 

horizontal and vertical porosity obtained from MLP and MLP optimized by GA and PSO are 

listed in Tables 1 and 2, respectively. Furthermore, Tables 3 and 4 show the best R and MSE 

obtained with MLP optimized by GA and normalized horizontal and vertical porosities for 

two layer MLP forms, respectively. It is worth mentioning that in single-layer and 3-layer 

perceptron the correlation coefficients were smaller and the MSE is greater compared with 2-

layer perceptron, thus they were ignored to be presented here. Figure 1 presents a comparison 

of normalized actual and predicted vertical and horizontal values at R values (highest value) 

and MSE values (lowest) in the best prediction mode that is combination of MLP and GA, 

including the cases of total data, data used for learning, validation and test. Figure 2, for 

instance, shows the performance curve of the best normalized MLP network combined with 

GA for predicting porosities of horizontal and vertical cores. Figures 3 and 4 show 

comparisons of correlation coefficient (R) using (pure) MLP, MLP optimized by PSO and 

MLP optimized by GA for horizontal and vertical cores, respectively. As can be observed, 

satisfactory agreements are achieved when using MLP optimized by PSO and MLP optimized 

by GA. 

 

Table 1. Comparison of the best R and MSE values for horizontal core porosities, 

normalized by pure MLP (Levenberg-Marquardt learning)  

and MLP optimized by GA and PSO 

 

MLP optimized with PSO MLP optimized with GA MLP Parameter 

0.96912 0.99591 0.95715 R (Total data) 

0.0038276 0.00038082 0.0039098 MSE (Total data) 

0.98268 0.99689 0.96564 R (Learning data) 

0.0012266 0.00031946 0.0035528 MSE (Learning data) 

0.96386 0.99313 0.8652 R (Validation data) 

0.0017712 0.00075073 0.0064069 MSE (Validation data) 

0.98392 0.99023 0.9245 R (Testing data) 

0.0019726 0.0002949 0.0030632 MSE (Testing data) 
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Table 2. Comparison of the best R and MSE values for vertical core porosities, 

normalized by pure MLP (Levenberg-Marquardt learning)  

and MLP optimized by GA and PSO 

 

MLP optimized with PSO MLP optimized with GA MLP Parameter 

0.98813 0.99507 0.96262 R (Total data) 

0.00050951 0.00021173 0.00076555 MSE (Total data) 

0.99000 0.99496 0.96968 R (Learning data) 

0.00037344 0.00018985 0.00055004 MSE (Learning data) 

0.96707 0.99043 0.94108 R (Validation data) 

0.00089356 0.00025433 0.001369 MSE (Validation data) 

0.98136 0.9989 0.96693 R (Testing data) 

0.00074352 0.0002687 0.01143 MSE (Testing data) 

 

 

Figure 1. The best R in actual normalized porosity (Horizontal axis) vs. that in normalized porosity 

predicted by MLP optimized by GA (vertical axis). (a) Horizontal cores, (b) Vertical cores. 
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Figure 2. Performance curve for normalized MLP optimized by GA. (a) Horizontal core, (b) Vertical 

core.  

 

 

Figure 3. Comparison of correlation coefficient (R) in horizontal core. (a) MLP, (b) Optimized by PSO, 

(c) Optimized by GA. 

 

 

Figure 4. Comparison of correlation coefficient (R) in vertical core. (a) MLP, (b) Optimized by PSO, 

(c) Optimized by GA. 
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Table 3. The results of applications of different two-layer  

normalized perceptron configurations with GA optimization  

for horizontal core porosity prediction in test data (15 of the total data) 
 

MSE R No. of neurons in two layer config. No. of Networks 

0.0012405 0.98901 [2 2] 1 

0.00189204 0.98367 [4 3] 2 

0.0002949 0.99023 [5 4] 3 

0.00095807 0.89718 [8 6] 4 

0.001659 0.90804 [10 11] 5 

0.00091356 0.92315 [15 15] 6 

 

 

4.2. RBF Method for Porosity Prediction 
 

As mentioned earlier, these networks operate well when there is a large amount of input 

data. Since there is no validation stage in such networks in analogy with MLP networks, RBF 

uses a radial mechanism which enables it to have a better interpretation when there is large 

amount of input [16]. The same data as in MLP where used here: 212 horizontal core 

porosities of which 149 ones were used in learning stage and the rest were used for testing, as 

well as 190 vertical core porosities 133 of which were used in learning stage and the rest were 

used for testing. Tables 5 and 6 show the best normalized R and MSE values for horizontal 

and vertical porosities obtained by RBF and RBF optimized by different techniques. As can 

be seen, the combination of RBF and PSO yields the highest R and lowest MSE. Figure 5 

presents a comparison of the best R values for actual porosities and those predicted in test 

data by normalized RBF and optimized by PSO for horizontal and vertical cores. As can be 

seen, satisfactory agreements are achieved.  

 

Table 5. Comparison of the best R and MSE values for vertical core porosities, 

normalized by pure RBF (Levenberg-Marquardt learning)  

and RBF optimized by GA and PSO 

 

RBF optimized by PSO RBF Optimized by GA RBF Parameter 

0.98388 0.96715 0.89976 R (Total data) 

0.0015553 0.0039891 0.011355 MSE (Total data) 

1.000 1.000 1.000 R (Learning data) 

1.0104E-17 4.078E-17 9.58E-17 MSE (Learning data) 

0.93132 0.92585 0.76411 R (Testing data) 

0.005152 0.0091216 0.037547 MSE (Testing data) 

 

 

4.3. MLP Method for Permeability Prediction 
 

The method of MLP was used for vertical and horizontal permeability predictions due to 

its application and its high ability. Eleven inputs (for each permeability) were entered in input 

layer network. There were two hidden layers for getting data and one output (again for each 

permeability). We tested different hidden layers with different neurons and we found out that 
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the best architecture has two layers. The sigmoid tangent (Tansig) activation function for 

hidden layer inputs and linear (purelin) for hidden layer output were used. Back propagation 

(BP) and Levenberg-Marquardt algorithm were used for network learning with average to 

small size due to fair convergence. From 248 data, 174, 37, 37 of them were used in training, 

validation and examination. Average square error for the methods of single layer and three-

layer perceptron were greater than two- layer perceptron (Correlation index was smaller) and 

thus, the result of two-layer were only considered here. The best values of R and MSE were 

obtained for (pure) MLP, and MLP optimized by PSO and GA algorithms which are reported 

in Tables 7 and 8 for horizontal and vertical permeabilities, respectively. In Tables 9 and 10, 

the results of employing different designs, two-layer perceptron normalized and optimized 

using GA to predict the horizontal and vertical permeabilities (for the 15% test) are shown. 

Figures 6 and 7 show comparisons of the actual permeability correlation coefficient and 

predicted permeability with normalized data using (pure) MLP and MLP optimized with PSO 

and GA for the horizontal and vertical permeabilities, respectively. Figure 8 illustrates 

comparisons of the normalized correlation coefficient of the real permeability and predicted 

permeability and normalized using MLP optimized by GA for horizontal and vertical 

permeabilities. Normalized MLP network efficiency plot at its best condition is given in 

Figure 9. Figure 10 shows the effect of the input parameters used in the training to estimate 

horizontal and vertical permeabilities. In overall, satisfactory agreements are achieved using 

this modeling approach. 

 

Table 6. Comparison of the best R and MSE values for vertical core porosities, 

normalized by pure RBF (Levenberg-Marquardt learning)  

and RBF optimized by GA and PSO 

 

RBF optimized by PSO RBF Optimized by GA RBF Parameter 

0.99507 0.98159 0.91203 R (Total data) 

0.00026875 0.00089621 0.0017469 MSE (Total data) 

1.000 1.000 1.000 R (Learning data) 

2.8039E-18 7.6805E-18 9.996E-18 MSE (Learning data) 

0.98184 0.9652 0.80169 R (Testing data) 

0.00089582 0.0010366 0.0027804 MSE (Testing data) 

 

 

Figure 5. Comparison of R in normalized actual core porosities and those predicted by RBF optimized 

by PSO for test data. (a) Horizontal core, (b) Vertical core. 
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Table 7. Comparison of the best results for R and MSE using MLP optimized by GA 

and PSO for horizontal permeability 

 

MLP optimized with PSO MLP optimized with GA MLP Parameter 

0.99449 0.99281 0.97002 R (Total data) 

0.00032517 0.00042422 0.0017569 MSE (Total data) 

0.99628 0.99185 0.97881 R (Learning data) 

0.00020979 0.00045699 0.0011322 MSE (Learning data) 

0.98389 0.99248 0.97501 R (Validation data) 

0.00097193 0.0005864 0.0015745 MSE (Validation data) 

0.99719 0.99808 0.94171 R (Testing data) 

0.000221 0.000342 0.0048768 MSE (Testing data) 

 

Table 8. Comparison of the best results for R and MSE using MLP optimized by GA 

and PSO for vertical permeability 
 

MLP optimized with PSO MLP optimized with GA MLP Parameter 

0.98552 0.9976 0.94537 R (Total data) 

0.00085198 0.000071422 0.0015893 MSE (Total data) 

0.98672 0.99828 0.95251 R (Learning data) 

0.00072373 0.000044505 0.0011938 MSE (Learning data) 

0.98445 0.98832 0.94905 R (Validation data) 

0.0015823 0.00016801 0.00044481 MSE (Validation data) 

0.98162 0.99843 0.93273 R (Testing data) 

0.00072477 0.000096852 0.0045932 MSE (Testing data) 

 

Table 9. The results of employing different designs, two-layer perceptron normalized 

and optimized using GA (Education Network type Levenberg-Marquardt) to predict  

the horizontal permeability (for the 15% test) 

 

MSE R No. of neurons in two layer config. No. of Networks 

0.003510 0.9318 [2 2] 1 

0.0017312 0.97622 [3 3] 2 

0.000342 0.99808 [4 3] 3 

0.0073574 0.81939 [7 9] 4 

0.003615 0.9289 [10 10] 5 

0.50869 0.84072 [14 13] 6 

0.0078198 0.903 [15 15] 7 

 

Table 10. The results of employing different designs, two-layer perceptron normalized 

and optimized using GA (Education Network type Levenberg-Marquardt) to predict  

the vertical permeability (for the 15% test) 
 

MSE R No. of neurons in two layer config. No. of Networks 

0.0015503 0.94678 [2 2] 1 

0.00096852 0.99843 [3 3] 2 

0.00098235 0.97037 [4 3] 3 

0.0012449 0.93789 [7 9] 4 

0.004963 0.9581 [10 10] 5 

0.002528 0.85665 [14 13] 6 

0.009444 0.95427 [15 15] 7 

0.009444 0.95427 [15 15] 8 
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4.4. RBF Method for Permeability Prediction 
 

As mentioned earlier, these networks works better when many input parameters are 

provided [16]. In this method, the validation part is omitted [16]. RBF uses a radial structure 

that has a beer consistency when number of inputs increases [16]. We used the same  

number of 248 data (174 for learning and 74 for examination for vertical and horizontal 

permeabilities. The best magnitudes (normalized) R, MSE from RBF (Levenberg-Marquardt) 

and RBF optimized with different methods are reported in Tables 11 and 12 for horizontal 

and vertical permeabilities, respectively. Comparison of the best R (higher) and MSE 

(smallest) for horizontal and vertical permeabilities and the predicted values using normalized 

MLP for test data are presented in Figure 11. The results show that the methods of MLP 

(optimized with PSO and GA) and RBF yield acceptable results. However, for RBF method, 

validation part has been omitted. 

 

  
 

 

Figure 6. Comparison of the correlation coefficient and also the predicted permeability (vertical axis) 

with normalized data for horizontal permeability. (a) MLP, (b) MLP combined with PSO and (c) MLP 

combined with GA. 
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Figure 7. Comparison of the correlation coefficient and also the predicted permeability (vertical axis) 

with normalized data for vertical permeability. (a) MLP, (b) MLP combined with PSO and (c) MLP 

combined with GA. 

 

Figure 8. (Continued) 
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Figure 8. Comparison of the normalized correlation coefficient of the real permeability (horizontal axis) 

and predicted permeability and normalized (vertical axis) using MLP (optimized by GA) for (a) 

horizontal Permeability and (b) vertical permeability (where the network training Type Levenberg-

Marquardt). 

 

Figure 9. Plot of normalized MLP network performance for (a) horizontal permeability and (b) vertical 

permeability.  
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Figure 10. The effect of the input parameters used in the neural network training to estimate horizontal 

(a) permeability and (b) vertical permeability.  

  

Figure 11. Comparison of the correlation coefficient and also the predicted permeability (vertical axis) 

using RBF method with normalized test data for (a) horizontal permeability and (b) vertical 

permeability.  
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Table 11. Comparison of the best values of R and MSE for normalized horizontal 

permeability data obtained from RBF  

(Education Network type Levenberg-Marquardt) 

 

RBF Parameter 

0.99366 R (Total data) 

0.00037785 MSE (Total data) 

1.00 R (Learning data) 

6.6118E-25 MSE (Learning data 

0.98456 R (Testing data) 

0.0012663 MSE (Testing data) 

 

Table 12. Comparison of the best values of R and MSE for normalized vertical 

permeability data obtained from RBF  

(Education Network type Levenberg-Marquardt) 

 

RBF Parameter 

0.99247 R (Total data) 

0.00023136 MSE (Total data) 

1.00 R (Learning data) 

2.96866E-25 MSE (Learning data) 

0.98244 R (Testing data) 

0.00077538 MSE (Testing data) 

 

 

CONCLUSION 
 

ANNs do not need complicated mathematical models, the important point is to select the 

adequate learning algorithm [10-18]. Furthermore, in ANN there is no need to know the rock 

lithology or the fluid filling the pores. Since the input layer neurons are functions of these 

parameters affecting the output, the input variables have to be selected so as to include the 

majority of parameters affecting the outputs, here the vertical and horizontal core porosities 

and permeabilities. ANN is a fast and effective technique to predict porosity and permeability 

in comparison with time consuming and costly laboratory techniques. The nonporous spots of 

the rock can be distinguished by logs and the results of this study to estimate horizontal and 

vertical porosity and permeability show that ANN can be an effective technique for prediction 

of reservoir parameters not only porosity and permeability but also its potential in reservoir 

studies. By both artificial intelligence techniques used in this work for normalized data,  

the best results were those obtained from MLP and RBF combined with GA and PSO 

optimization. Results show that MLP and RBF, if combined with optimization technique, 

deliver acceptable results for vertical and horizontal porosity and permeability predictions for 

the studied reservoir.  
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ABSTRACT 
 

Drill string stuck is a frequently occurring and risk-prone problem during drilling 

operation which imposes rises to the drilling cost of operations. Minimizing drill string 

stuck, today, is of priority in drilling engineering and has attracted attention as an 

important goal in drilling operation design. Currently, drilling engineers apply old and 

experimental methods and practices to prevent stuck drill string, by which it is hard  

to predict the nonlinear behavior of this challenge. Artificial neural networks are a  

new technique of solving engineering problems which are capable of simultaneous 

introduction of all effective parameters into account, nevertheless, they can learn and 

extend models directly from actual field data. In this work, two models have been 

designed using data from 33 wells in Maroun field. The first was developed to predict 

                                                        
* Corresponding Author E-mail: a.h.m@irgcp.fr and amir_h_mohammadi@yahoo.com. 



Hojat Toreifi, Abbas Khaksar Manshad, Habib Rostami et al. 222 

stuck drill string (mechanical and pressure differential) by multilayer perceptron neural 

network optimized by open source development model algorithm (ODMA). The second 

model was developed using multilayer perceptron neural network optimized by particle 

swarm optimization algorithm, then to solve the differential pressure-stuck pipe the 

compound genetic-particle swarm algorithm was used. The high accuracy of these two 

models to predict stuck pipe motivates to utilize them both in well design and while 

operation. Analysis of the obtained models in conjunction with engineering judgments 

allows preventing stuck drill string by optimizing the influential parameters. 

 

Keywords: drill string stuck, mechanical sticking, differential pressure sticking, drilling, 

artificial neural network (ANN) 

 
 

NOMENCLATURE 
 

Acronyms 
 

ROP rate of Penetration 

ANN annulus Diameter 

WOB Weight on Bit 

MF Vis mud filtrate viscosity 

PV plastic viscosity 

YP yield point 

Initial Gel initial gel strength 

10 Min Gel 10 min gel strength 

DC MT drill collar metrage 

RPN rotation per minute 

 

 

Variables 
 

 Position of ith particle 

 Velocity of ith particle 

𝐶1, 𝐶2 Trust factor 

𝑟𝑎𝑛𝑑 Random number 

R Correlation coefficient 

R2 Coefficient of determination 

MSE Mean square error  

RMSE Rote mean square error 

 

 

1. INTRODUCTION 
 

Drill pipe sticking can be simply defined as downhole forces that prevent the pipe from 

rotation or pulling out of well. It is divided into two classes, mechanical and pressure 

differential sticking. In pressure differential sticking rotation and up and down movement of 

ix
iv
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the pipe is not possible but the mud can still circulate, whereas in mechanical sticking mud 

cannot circulate [1]. In case of a stuck drill pipe, immediate efforts should be put to free the 

pipe and drive the drilling operation ahead. 

One of the conventional techniques to free the stuck pipe is to increase the tension 

upward and overload downward which is costly and time consuming, however in normal 

cases results in freeing the stuck pipe. In cases where not possible to free the pipe, the 

sticking problem is more stressed and the only way is to cut the drill string or to back-off the 

pipe by wireline free-point-indicator pack-off operations. In such severe cases, therefore, the 

drilled well usually has to be plugged up to the stuck point and deviated to continue the 

drilling operation, hence, the drilling plan has to be completely changed, thereby imposing 

additional cost and time consumption. In off-shore operations, stuck drill string can raise the 

costs of developing a well up to 30%, therefore a fundamental solution to predict and prevent 

this problem will be very requisite in terms of costs and time [2].  

In the past, multivariable statistical analysis techniques and pipe sticking tests simulated 

with different drilling fluids were used to investigate and analyze pressure differential 

sticking conditions. Differentiating sticking types, the need to eliminating much data due to 

their dispersion and searching for the suitable technique were the essentials of most statistical 

correlations and techniques, much time and cost is required for pipe sticking simulation 

experiments on the other. Research on pipe sticking began in 1950. Kingsborough and 

Hempking worked on static analysis of pipe sticking based on drilling parameters, their work 

was based on comparison between wells in which stuck pipe occurred and those stuck-free 

(1985) [3]. That is they compared the parameters of the two classes and planed the drilling 

operations consistent with the parameters of stuck-free wells. They studied 121 parameters in 

131 cases of stuck pipe in Mexico drilling operations and predicted the probability of stuck-

pipe in nearby drilling operations. And, in 1994, Beigler and Kuhn investigated this problem 

by developing a data bank for 22 drilling parameters from 73 stuck-free wells and 54 wells 

experiencing stuck pipe in Gulf of Mexico [4]. They could not only predict the probability of 

pipe sticking, but could characterize its mechanism. These two works served as the basis for 

early analogical techniques. Howard and Glover, in 1994, could improve the pipe sticking 

prediction models by statistical techniques [5]. This work was conducted by testing 100 wells 

in Gulf of Mexico, the obtained models served for stuck-pipe prevention as well as for stuck-

pipe freeing operations.  

Application of artificial neural network for drill string sticking prediction was first  

tried by Halliburton in 2006 on pressure differential sticking in Gulf of Mexico [6]. Various 

parameters such as mud properties, downhole assembly configurations, formation properties, 

etc. play role in pipe sticking. Obtaining the interaction and correlation between the 

parameters contributing to pipe sticking takes a great deal of elaboration, artificial 

intelligence techniques are adequately capable of interpreting the complicated correlation of 

the multiple parameters in pipe sticking [7]. Using artificial intelligence methods in petroleum 

research becomes an emerging trend [21], [22]. In this study, a new model was developed for 

predicting and eliminating drill string sticking with artificial neural network and optimization 

algorithms. This method helps to predict and prevent pipe sticking by optimizing and 

improving the drilling parameters.  
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2. GEOGRAPHICAL LOCATION AND STRUCTURAL  

CHARACTERISTICS OF MAROUN OILFIELD 
 

Maroun oilfield is located on the south of Northern Dezful syncline in line with Aghajari 

and Ramin anticlines. This large field was explored in 1963 by 2-D seismic survey and the 

presence of hydrocarbons in its Asmari reservoir was confirmed by drilling the first well. This 

field, in its Asmari reservoir, is 67km long and on average 5.5 km wide, the width ranges 

between 3.5 and 7 km. Geographically, this field is surrounded by Ramin field on the north, 

Koupal on the east, Shadegan and Ahwaz on the west and north-west and by Ramshir field on 

the south. Structurally, Maroun oil field is a long and narrow anticline with a northwest-

southeast extension on the central and western part and northeast-southwest extension on its 

eastern end. Asmari formation is composed of deep marine sediments in the lowermost layer, 

semi-deep deposits in the mid layers and shallow sediments in the topmost layer. The altitude 

difference between the crest and the deepest water-oil contact in Asmari formation is 2000 

meters. The dip of the flanks varies along the anticline, its symmetric on the eastern parts, 

asymmetric on the west to the central parts, steepest dip 70°. Figure 1 shows the geographical 

location of Maroun field. Figure 2 shows the well locations in Maroun field. 

 

 

Figure 1. Moroun filed geographical orientation in south west of Iran. 
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Figure 2. Wells locations in Maroun oil field. 

 

3. ARTIFICIAL NEURAL NETWORK 
 

Artificial neural networks are massively parallel distributed processing units known  

as neurons. These simple neurons have certain performance characteristics in common with 

biological neurons. Neural networks are capable of learning in order to recognize, classify, 

and generalize different systems. They are data-driven models that learn by examples 

presented to them. A typical neural network consists of three layers of neurons called input, 

hidden, and output layers. A neuron takes input values, which are multiplied by connection 

weights, from the proceeding neurons and adds them up with a value called bias and feeds 

them to its transfer function to produce results. 

The majority of ANN’s solutions have been trained with supervision. In this mode, the 

output of an ANN is compared to the desired output. Weights and biases, which are usually 

randomly set at the start, are then adjusted by a learning function in a manner such that the 

next iteration would result in a closer match between the desired and the network’s output. 

The learning function works to minimize the current errors of all processing elements. During 

the training process, modifying the weights and biases continues by applying the same 

training data set until an acceptable network accuracy is reached [8]. 
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4. METHAHEURISTIC OPTIMIZATION ALGORITHMS 
 

In the last two decades, there has been a growing interest in evolutionary and swarm 

computing, which has inspired new ways for solving optimization problems. In contrast to 

traditional optimization methods, which emphasize accurate and exact computation, but may 

fall down on achieving the global optimum, evolutionary computation provides a more robust 

and efficient approach for solving complex real-world problems [9, 10]. Among existing 

evolutionary algorithms, the best-known branch is the genetic algorithm (GA). GA is a 

stochastic search procedure based on the mechanics of natural selection, genetics and 

evolution [11 - 13].  

Compared with GA, PSO has some attractive characteristics. It has memory, so 

knowledge of good solutions is retained by all the particles; whereas in GA, previous 

knowledge of the problem is discarded once the population changes. It has constructive 

cooperation between particles; that is, particles in the swarm share information among 

themselves. To date, PSO has been successfully applied to optimizing various continuous 

nonlinear functions in practice [14]. 

Hybridization of evolutionary algorithms with local search has been investigated in many 

studies [15, 16]. Such a hybrid is often referred to as a mimetic algorithm. In the case at hand, 

we will combine two global optimization algorithms, i.e., GA and PSO, as PSO and GA both 

work with an initial population of solutions and combining the searching abilities of both 

methods seems to be a reasonable approach. Taking advantage of the compensatory property 

of GA and PSO, we propose a new algorithm that combines the evolutionary natures of both 

(denoted as GA-PSO). 

Another swarm based optimization algorithm is Imperialist Competitive Algorithm (ICA) 

present in reference [20]. ICA is inspired by competition of imperialist countries to find 

global optima and solve the problems by simulation of the imperialist and colonies behaviors. 

Thus, it is a social inspired algorithm. 

The most recent optimization algorithm is Open Source Development Model Algorithm 

(ODMA) [23]. It is a novel swarm-evolutionary metaheuristic optimizer inspired by open 

source development model and communities in such a way that each potential solution is 

considered as a software, and by evolution of the softwares, better solutions of the function 

that should be optimized are searched. 

 

 

4.1. Genetic Algorithms (GA) 
 

The discovery of genetic algorithms (GA) was dated to the 1960s by Holland and further 

described by Goldberg [11]. GA is a randomized global search technique that solves problems 

by imitating processes observed from natural evolution. Based on the survival and 

reproduction of the fittest, GA continually exploits new and better solutions without any pre-

assumptions, such as continuity and unimodality. GA has been successfully adopted in many 

complex optimization problems and shows its merits over traditional optimization methods, 

especially when the system under study has multiple local optimum solutions. 

GA evolves a population of candidate solutions. Each solution is normally coded as a 

binary string called a chromosome. The fitness of each chromosome is then evaluated using a 
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performance function after the chromosome has been decoded. Upon completion of the 

evaluation, a biased roulette wheel is used to randomly select pairs of better chromosomes to 

undergo such genetic operations as crossover and mutation that mimic nature. Should the 

newly produced chromosomes turn out to be stronger than the weaker ones from the previous 

generation, they will replace these weaker chromosomes. This evolution process continues 

until the stopping criteria are reached. 

A real-coded GA uses a vector of floating-point numbers instead of 0’s and 1’s for 

implementing chromosome encoding. The crossover operator of a real-coded GA is 

constructed by borrowing the concept of linear combination of vectors from the area of 

convex set theory. The random mutation operator proposed for real-coded GA operates on the 

gene by introducing into it a perturbation that is a random number in the range of 0–1 in the 

feature’s domain. With some modifications of the genetic operators, the real-coded GA has 

resulted in better performance than the binary coded GA for continuous problems [17]. 

 

 

4.2. Particle Swarm Optimization (PSO) 
 

Particle swarm optimization (PSO) is one of the swarm optimization techniques 

developed by Eberhart and Kennedy [12]. PSO concept is based on a metaphor of social 

interaction such as bird flocking and fish schooling. The particles, which are potential 

solutions in the PSO algorithm, fly around in the multidimensional search space and the 

positions of individual particles are adjusted according to its previous best position, and the 

neighborhood best or the global best. Since all particles in PSO are kept as members of the 

population throughout the course of the searching process, PSO is the only evolutionary 

algorithm that does not implement survival of the fittest. As simple and economic in concept 

and computational cost, PSO has shown to successfully optimize a wide range of continuous 

optimization problems [18, 19]. 

 

 

4.3. Open Source Development Model Algorithm (ODMA) 
 

Open source and proprietary closed are two kinds of software development methods  

[23]. Opening the source code enables a self-enhancing diversity of production plan, 

communication approach, and interactive communities. Generally, open source refers to a 

program in which the source code is available to the general public for use and/or 

modification from its original design. Open source code is normally created as a collaborative 

effort in which programmers improve the code and share the development within the 

community. 

ODMA is presented according to analogy of open source software development [23]. As 

the most meta-heuristic algorithms, ODMA aims to search solution space of a given function.  

In analogy to open source development model and community, ODMA considers each 

point in the solution space of the given function as open source software. Each considered 

software (point in the solution space) evolves over time by open source development 

mechanism such as employing features of leading softwares (point which have more optimum 

solutions) and forking from leading project. Over time, some softwares become leading or 

show to be promising and some of them can not develop enough; the latter ones are deleted 
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from the list of the softwares (the corresponding points in search space are deleted and do not 

processed any more). 

The general steps of the ODMA algorithm are as follows: 

 

 All softwares are initialized in random position in solution space. 

 Each point in the solution space of a given function is considered as open source 

software.  

 All softwares are evolved over time to get better position in the solution space 

according to the open source development mechanism (current top k softwares 

(points) are called leading softwares and the other points with the most progress are 

called promising softwares). 

 The softwares with the least progress are removed after each iteration from the 

solution space and are not processed any longer. 

 Some softwares are forked from leading softwares to exploit around them, and to 

explore the solution space. The forked softwares inherit some features of their base 

software. 

 

 

4.4. Hybrid Genetic Algorithm and Particle Swarm Optimization 
 

Figure 3 depicts the schematic representation of the hybrid GA-PSO. As can be seen, GA 

and PSO both work with the same initial population. When solving an N dimensional 

problem, the hybrid approach takes 4N individuals that are randomly generated. These 

individuals may be regarded as chromosomes in the case of GA, or as particles in the case of 

PSO. The 4N individuals are sorted by fitness, and the top 2N individuals are fed into the 

real-coded GA to create 2N new individuals by crossover and mutation operations, as shown 

in Figure 3. The crossover operator of the real-coded GA is implemented by borrowing the 

concept of linear combination of two vectors, which represent two individuals in our 

algorithm, with a 100% crossover probability. The random mutation operator proposed for the 

real-coded GA is to modify an individual with a random number in the problem’s domain 

with a 20% probability. The effect of mutation rate is discussed in Section 4.1. The new 2N 

individuals created from real-coded GA are used to adjust the remaining 2N particles by the 

PSO method. The procedure of adjusting the 2N particles in the PSO method involves 

selection of the global best particle, selection of the neighborhood best particles, and finally 

velocity updates. The global best particle of the population is determined according to the 

sorted fitness values. The neighborhood best particles are selected by first evenly dividing the 

2N particles into N neighborhoods and designating the particle with the better fitness value in 

each neighborhood as the neighborhood best particle. By Eqs. (5) and (6), velocity and 

position updates for each of the 2N particles are then carried out. The result is sorted in 

preparation for repeating the entire run. The hybrid algorithm, which is described in the four 

stages, terminates when it satisfies a convergence criterion that is based on the standard 

deviation of the objective function values of N + 1 best individuals of the population. It is 

defined as follows: 
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Figure 3. Schematic representation of the GA-PSO hybrid. ( ) Associated with the GA operation. 

( ) Associated with the PSO operation. 
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   and  = 1×10−4 . Research regarding the parameter 

settings in the hybrid GA-PSO algorithm bears further scrutiny. 

 

4.4.1. Initialization 

Generate a population of size 4N for an N-dimensional problem. Repeat. 

 

4.4.2. Evaluation and Ranking 

Evaluate the fitness of each of the 4N individuals. Rank them on the basis of the fitness 

values. 

 

4.4.3. GA Method 

Apply real-coded GA operators (crossover and mutation) to the top 2N individuals and 

create other 2N individuals. 

 

4.4.3.1. (Selection) 

From the population, select the 2N best individuals according to fitness. 
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4.4.3.2. (100% Crossover) 

Using the 2N best individuals, apply two-parent crossover to update the best 2N 

individuals by the following equations. 

 

10 1 1 0 1'

i i ix Uniform( , )x ( Uniform( , ))x     𝑖 = 1,2, … ,2𝑁 + 1  (2) 

 

10 1 1 0 1'

i ix Uniform( , )x ( Uniform( , ))x    𝑖 = 2𝑁  (3) 

 

4.4.3.3. (20% Mutation) 

Apply mutation with a 20% mutation probability to the best 2N updated chromosomes 

according to the equation below: 

 

0 1'

k kx x rand N( , )     (4) 

 

4.4.4. PSO method 

Apply PSO operators (velocity and position updates) for updating the 2N individuals with 

worst fitness. 

 

4.4.4.1. (Updates) 

The particles velocities and positions are updated by the following equations: 

 

1 2
new old old old

id id id id gi idv w v c rand(p x ) c rand(p x )          (5) 

 

new old new

id id idx x v    (6) 

 

where 1c  and 2c = 2 and . Equation (5) illustrates that the new 

velocity for each individual particle is updated according to its previous velocity ( idv ), the 

best location in the neighborhood about the particle ( idp ) and the global best location ( gdp ). 

A particle’s velocity in each dimension is clamped to a maximum velocity ( maxv ) and the 

maximum velocity maxv  is set to a certain fraction of the range of the search space in each 

dimension. Equation (6) shows how each particle’s position ( idx ) is updated during the 

search in the solution space. Until the termination criterion is reached. 

 

 

4.5. Imperialist Competitive Algorithm (ICA) 
 

ICA is another new and well-accepted metaheuristic algorithm. Like PSO and GA, ICA 

starts with an initial population (countries). Some of the most powerful (with the best fitness 

values) are selected as imperialists and the rest of countries and colonies of them. The 

[0.5 rand/ 2.0]w  
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colonies are divided among imperialists in the initial population. Then these colonies move 

toward their corresponding imperialists [20].  

Then the imperialistic competition is done among the empires. Any empire (Imperialist 

and the relevant colonies) which is not able to succeed in this competition (can not find good 

optimization points) will be eliminated. The competition gradually results in an increase in 

the power of powerful empires and a decrease in the power of weaker empires. By iteratively 

continuing the competition the most power full imperialist dominates all the countries. In the 

other words, the best solution in the solution space will be found. 

 

 

5. METHODOLOGY AND RESULTS 
 

Two models were developed using artificial neural networks in this work. In the first 

model, regarding that a considerable number of pipe sticking cases faced in Maroun field 

were of mechanical type, we decided to develop a model able to predict and solve both pipe 

sticking types first. In order to develop comprehensive model for predicting and diagnosing 

pipe sticking type, all the influential parameters had to be considered and taken into account. 

In this model, geographical coordinates (geographical east and north), present depth, rate of 

penetration, formation properties, open hole length, clearance between pipe and wellbore 

wall, weight on bit, drill string RPM, annular velocity of mud, mud pressure, mud cake 

viscosity, solid content of mud, mud salinity, mud plastic viscosity, mud yield point, initial 

mud resistance, mud resistance after 10 minutes and drill string length were considered as 

input parameters and sticking type was considered as output of the network (0, 0.5 and 1 for 

no sticking, pressure differential sticking and mechanical sticking respectively). We should 

note that layering and thickness of layers changes very slowly by geographical changes in the 

field (Figure 2). Thus, we can use geographical coordination of drilled wells as a feature to 

predict the behavior of other wells in the same field.  

MLP optimized by ODMA has the best performance for the first problem. The neural 

network has a [8 4 1] structure (8 neurons in the first hidden layer, 4 in the second hidden 

layer and 1neuron in the output layer), with Tansig and Poorline transfer function and 

Trainlim function.  

The parameters of ODMA for optimizing the network are as follows: population size is 

25, 5, 10, 0.9, 3k p s    and 1000 iterations. 

From 950 data sets (input and output), 874 sets associated with 33 wells, 86 sets of which 

represented sticking problem, were used in the modeling after eliminating the illogical data 

resulting from machine record error or human error. After normalizing, 60% of the data were 

used for learning, 15% for validation and remaining 25% for testing the network. The ranges 

of the parameters have been listed in Table 1.  

We should note that by increasing the number of epochs, chance of memorization of the 

model increases. To control this phenomenon we use validation mechanism. The most 

accurate model is resulted using 1000 epochs. In this model, mean square error of training 

data and validation data are 0.00385 and 0.0051, respectively (Table 2). The remained 25% of 

data used as test data for evaluation of generalizability of the model. Table 3 and Figure 5 

show the results. Mean square error of model on the test data is 0.00462. Figure 4 and Figure 

5 show correlation of the predicted values with actual measured values. Correlation 
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coefficient and coefficient of determination of cross validation and test stages are 0.978, 

0.958 and 0.992, 0.984, respectively. 

Table 4 shows performance of MLP optimized by ODMA in comparison with the other 

methods. As it can be seen, MLP optimized by ODMA outperforms the others. 

 

Table 1. The ranges of the parameters used in modeling 

 

Range Parameter 

[1887105 – 1935965] 

[1005701 – 1054298] 

[164.04 – 17388.45] 

[0 – 173.59] 

[10 – 95] 

[1.64 – 8989.5] 

[0.095 – 1.355] 

[0 - 80] 

[0 - 208] 

[23.5 – 4523.7] 

[0 - 100] 

[0 - 490000] 

[0 - 62] 

[0 - 120] 

[0 - 105] 

[0 - 18] 

[0 - 22] 

[9 - 282] 

[0 - 200] 

[0 - 1] 

East 

North 

Press Depth (ft) 

Rate Of Penetration (ft/hr) 

Formation 

Open Hole (ft) 

Annulus (ft) 

Weight On Bit (lb) 

Annulus Velocity (ft/s) 

Mud Pressure (psi) 

Mud Filtrate Viscosity (cp) 

Salt (ppm) 

Ret Solid (%) 

Plastic Viscosity (cp) 

Yield Point (cp) 

Initial Gel (lb/100ft2)  

10 Min Gel (lb/100ft2) 

Drill collar metrage (m) 

RPM (rpm) 

Stuck  

 

Table 2. MLP&ODMA network learning and validation results 

 

Best Network Train Cross Validation 
Epoch 1000 1000 
Minimum MSE 0.00385 0.0051 
Final MSE 0.00385 0.0051 

 

Table 3. MLP&ODMA network test results 

 

Best Network Test 
MSE 0.00462 
R 0.992 

 

Table 4. Comparison of performance of the methods for the first problem (mechanical 

and pressure differential sticking) 

 

Network MSE R 𝐑𝟐 

MLP and ODMA 0.00462 0.992 0.984 

Support Vector Machine (SVM)  0.0362 0.978 0.956 

MLP-PSO-GA 0.0052 0.96 0.92 

MLP-PSO 0.048 0.91 0.83 

MLP-GA 0.095 0.86 0.74 
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Figure 4. Correlation coefficient of MLP&ODMA network in the cross validation stage. 

 

Figure 5. Correlation coefficient of MLP&ODMA network in the test stage. 

 
 

6.1.2 6.1.1 

  
6.1.4 6.1.3 

Figure 6.1. Results of multilayer perceptron neural network learning. 

Figure 6. (Continued) 
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6.2.2 6.2.1 

  
6.2.4 6.2.3 

Figure 6.2. Results of multilayer perceptron neural network validation. 

  
6.3.2 6.3.1 

  
6.3.4 6.3.3 

Figure 6.3. Results of multilayer perceptron neural network test. 

Figure 6. Results of learning, validation and test of multilayer perceptron neural network optimized by 

PSO algorithm (on each sub-figure, the first figure compares the network output with the actual results, 

the second shows the correlation coefficient (R), the third shows the MSE and the forth presents the 

error distribution).  
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Table 5. The results of the multilayer perceptron neural network retest 

 

 
Network type 

MLP MLP-GA MLP-PSO MLP-GAPSO MLP-ICA 

Actual value Predicted value 

0 0.2 0.12 0.069 0.15 0.02 

1 0.79 0.66 0.996 0.99 0.59 

1 0.83 0.91 0.951 0.89 0.67 

0 0.36 0.09 0.004 0.66 0.05 

 

The second model was developed to predict and solve pressure differential sticking; the 

mechanically stuck pipe data were not used in this model. Pressure differential sticking can be 

prevented and solved by improving the influential parameters. As the first step, a feed-

forward multilayer perceptron neural network, optimized with particle swarm algorithm 

(PSO), was developed. The neural network has a [8 4 1] structure (8 neurons in the first 

hidden layer, 4 in the second hidden layer and 1neuron in the output layer), with Tansig and 

Poorline transfer function and Trainlim function. In the PSO, the population size is 25 and the 

values of the parameters c1 and c2 equal 2. PSO was used to choose the optimized weight 

values and to increase the correlation coefficient of the neural network as a result. To improve 

the performance of the model the data were normalized in to fall in the interval of 0 to 1, here 

the pressure differential sticking data will be presented by 1 and sticking-free data by 0. The 

results associated with network learning, validation and test are shown, respectively, in 

Figures 6.1, 6.2 and 6.3.  

Each figure presents four kinds of information. The first one is comparison of predicted 

values and actual measured values. The second results are correlation coefficient of the 

predicted and measured values. The third part shows mean square error and root mean square 

error of the predictions. The fourth subfigure shows distribution of errors. We should note 

that closer values of error distribution to zero shows better training of the neural network. 

To verify the accuracy and performance of the model, it was again tested with the data 

not used in developing the model and the results of this test (retest) have been shown in Table 

5. To build the model, we evaluated the ANN optimized with ICA, GA, PSO and GA-PSO. 

As it can be seen, MLP neural network optimized by GA-PSO shows the best performance 

(Table 5). 

Compound GA-PSO was utilized to obtain the optimum values of the parameters, which 

is much more efficient than singular use of these algorithms. In the optimization, it is allowed 

to vary such parameters as weight on bit, drill string rotational speed (RPM), rate of 

penetration, open hole length, mud annular velocity and mud pressure, while formation type, 

geographical coordinates (orientation) and present depth have to be fixed. Using compound 

GA-PSO algorithm, network input parameter optimization was performed separately for each 

well in each formation having pipe sticking experience. The optimization results for 

parameters effective in pressure differential pipe sticking are presented in Table 6.  

In order to ascertain the drill string sticking elimination, the optimized values and the 

fixed values of different points in the well were introduced into the network as input. The 

outputs are indicative of no sticking, that is sticking elimination. The optimized parameters 

test results are given in Table 7. As can be seen, the best way to eliminate differential 

pressure-stuck pipe is to use multilayer perceptron optimized by GA-PSO. It means that using 

this method we can prevent differential pressure-stuck pipe.   



 

Table 6. The results of compound GA-PSO optimization of the parameters 

 
Variable parameters  Fixed parameters 
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305000 

 

180 

 

88 

 

9 

 

7 

 

14 

 

8 

 

17 

 

36 

 

1331.7 

 

85 

 

30 

 

0.5 

 

7063 

 

4.068 
Present value 

E = 1907895 

N = 1028947 

D = 2308 

10 

 

292142 

 

397 

 

610 

 

25 

 

10 

 

26 

 

72 

 

36 

 

60 

 

2048 

 

175.7 

 

5 

 

0.5 

 

6683 

 

32.5 
Value optimized 

 

308000 

 

80 

 

88 

 

6 

 

5 

 

11 

 

9 

 

18 

 

36 

 

1340 

 

74 

 

25 

 

0.5 

 

7109 

 

3.084 

Present value E =1907895 

N = 1028947 

D = 2322  

308000 

 

80 

 

88 

 

6 

 

5 

 

11 

 

9 

 

18 

 

36 

 

1340 

 

74 

 

25 

 

0.5 

 

7109 

 

3.1 

Value optimized 

 

315000 

 

180 

 

88 

 

5 

 

3 

 

8 

 

19 

 

24 

 

43 

 

1774 

 

78 

 

30 

 

0.5 

 

8527 

 

9.94 

Present value E = 1891929 

N = 1041403 

D = 2744 
15 

 

279921 

 

187 

 

446 

 

14 

 

15 

 

26 

 

103 

 

48 

 

38 

 

1126 

 

100.7 

 

11 

 

0.2 

 

15.4 

 

9.87 

Value optimized 

 

320000 

 

150 

  

88 

 

3 

 

2 

 

8 

 

21 

 

25 

 

44 

 

1859 

 

65 

 

45 

 

0.5 

 

8569 

 

3.6 

Present value E = 1891929 

N = 1041403 

D = 2757 

20 

 

405574 

 

617 

 

492 

 

18 

 

18 

 

31 

 

95 

 

8 

 

75 

 

1138 

 

98.5 

 

42 

 

0.5 

 

5055 

 

26 

Value optimized 

 

315000 

 

180 

 

88 

 

5 

 

4 

 

15 

 

25 

 

27 

 

43 

 

1873 

 

73 

 

20 

 

0.5 

 

8182 

 

7.9 

Present value E = 1897982 

N = 1035439 

D = 2641  

167223 

 

335 

 

666 

 

31 

 

11 

 

69 

 

61 

 

29 

 

64 

 

493 

 

191.7 

 

8 

 

0.4 

 

7828 

 

20 

Value optimized 

 

320000 

 

180 

 

190 

 

7 

 

5 

 

20 

 

59 

 

40 

 

58 

 

2684 

 

108 

 

30 

 

0.2 

 

629 

 

9.18 

Present value E = 1902807 

N = 1036403 

D = 2860 
23 

 

272414 

 

408 

 

482 

 

21 

 

7 

 

30 

 

44 

 

42 

 

59 

 

403 

 

192.6 

 

18 

 

0.6 

 

8923 

 

24.9 

Value optimized 

 

 

 

 

 



 

Variable parameters  Fixed parameters 

S
A

IT
 

R
P

M
 

D
C

 M
T

 

1
0
 M

IN
  

G
el

 

In
it

ia
l 

G
el

 

Y
P

 

P
V

 

R
et

 S
o
li

d
 

M
F

 V
is

 

M
u
d

  

P
re

ss
u

re
 

A
n

n
u

lu
s 

V
el

o
ci

ty
 

W
O

B
 

A
N

N
 

O
p

en
 H

o
le

 

R
O

P
 

G
eo

g
ra

p
h
ic

 

co
o

rd
in

at
es

 

an
d

 d
ep

th
 

F
o

rm
at

io
n
 

 

330000 

 

80 

 

554 

 

4 

 

2 

 

7 

 

13 

 

5 

 

38 

 

1584 

 

180 

 

15 

 

0.2 

 

287 

 

13.8 

Present value E = 1907895 

N = 1028947 

D = 3863 
45 

 

262966 

 

427 

 

42 

 

29 

 

13 

 

38 

 

51 

 

23 

 

73 

 

1099 

 

208 

 

5 

 

0.5 

 

5131 

 

29 

Value optimized 

 

343000 

 

150 

 

643 

 

3 

 

2 

 

6 

 

14 

 

8 

 

40 

 

1592 

 

179 

 

20 

 

0.2 

 

1163 

 

9.18 

Present value E = 1911491 

N = 1023859 
D = 3817 

45 
 

254883 

 

333 

 

465 

 

23 

 

13 

 

12 

 

80 

 

27.5 

 

72 

 

2247 

 

125 

 

7 

 

0.5 

 

6847 

 

27.9 

Value optimized 

 

325000 

 

0 

 

184 

 

4 

 

3 

 

11 

  

30 

 

12 

 

60 

 

1531 

 

46 

 

15 

 

0.3 

 

2431 

 

4.9 

Present value E = 1915702 

N = 1015000 
D = 3103 

55 
 

219188 

 

194 

 

495 

 

24 

 

12 

 

67 

 

36 

 

26 

 

69 

 

1848 

 

172 

 

13 

 

0.5 

 

8038 

 

29.2 

Value optimized 

 

415000 

 

70 

 

640 

 

6 

  

5 

 

14 

 

27 

 

12 

 

48 

 

1808 

 

93 

 

20 

 

0.1 

 

739.8 

 

4.9 

Present value E = 1908772 

N = 1022719 
D = 3663 

65 

 

183676 

 

407 

 

449 

 

28 

 

14 

 

35 

 

61 

 

36 

 

67 

 

2011 

 

150 

 

11 

 

0.4 

 

8835 

 

31.8 

Value optimized 

 

440000 

 

170 

 

371 

 

4 

 

3 

 

10 

 

19 

 

20 

 

40 

 

2371 

 

117 

 

30 

 

0.3 

 

6305 

 

2.95 

Present value E = 1921140 

N = 1013070 
D = 4212  

227992 

 

358 

 

462 

 

22 

 

16 

 

36 

 

62 

 

32 

 

56 

 

1720 

 

188 

 

5 

 

0.5 

 

6397 

 

25.6 

Value optimized 

 

440000 

 

75 

 

643 

 

8 

 

7 

 

12 

 

40 

 

37 

 

48 

 

4310 

 

143 

 

12 

 

0.2 

 

2534 

 

5.6 

Present value E = 1920921 

N = 1012193 
D = 5166.5 

85 
 

43310 

 

17 

 

265 

 

34 

 

11 

 

63 

 

77 

 

40 

 

56 

 

469 

 

210 

 

8 

 

0.4 

 

941 

 

18 

Value optimized 

 
300000 

 
50 

 
462 

 
2 

 
1 

 
7 

 
14 

 
28 

 
38 

 
2531 

 
172 

 
15 

 
0.2 

 
12 

 
4.26 

Present value E = 1905439 
N = 1027193 

D = 3310.7 
95 

 

244055 

 

453 

 

548 

 

25 

 

12 

 

28 

 

54 

 

30 

 

72 

 

2114 

 

141 

 

8 

 

0.4 

 

656 

 

29.5 

Value optimized 

 

 

 

 



 

Table 7. Results of testing the optimization algorithm by the neural network 
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Table 8. Comparison of the performance of the optimization algorithms 

 

Optimization Algorithm Present value Model Output 

ICA 

1 0 

1 0.35 

1 0.55 

PSO 

1 0.79 

1 0.82 

1 0.65 

GA 

1 0.85 

1 0.99 

1 0.71 

GA and PSO 

1 0.93 

1 0.95 

1 1.06 

 

 

CONCLUSION 
 

1. The model presented for predicting and eliminating drill string sticking can predict 

mechanical and pressure differential pipe sticking both before and while drilling with 

very low costs.  

2. In this method, by predicting the pipe sticking conditions, drilling engineers can 

eliminate the pressure differential sticking, hence, costs and operations associated 

with freeing the drill string can be eliminated which will in turn reduce rig costs and 

days.  

3. MLP optimized by ODMA predicts mechanical and pressure differential sticking 

more accurate than the other methods. 

4. Results show that Artificial Intelligence Techniques, ANNs and compound GA-PSO, 

are very efficient and accurate tools to predict stuck pipe and effective in drilling 

operation planning.  

5. Besides, such conventional practices as avoiding long waiting while operation, 

continuous mud monitoring to check its properties and changes, trying to used the 

least possible mud solid content, using suitable wellbore stability additives and 

reducing drill string shakes to prevent key chain formation are also much 

recommended.  

6. The developed model is based on Maroun oil field and to generalize the model to the 

other fields; we should retrain the model with the data of themselves with the same 

methodology explained in this study.  
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ABSTRACT 
 

Lost circulation is one of the most important issues that oil industry challenges with. 

Throughout drilling operation, cementing job or moving down the drilling pipes, great 

pressure of drilling fluid causes an over balance pressure on reservoir, so the drilling fluid 

penetrates the reservoir and is wasted. When the total loss happens, drilling pipes may 

stuck and make some incredible issues. One solution to this problem is under balance 

drilling. But many countries cannot drill with this method, because of financial problems 

or lack of technology. In this situation, it is better to know how drilling fluid moves and 

how much loss occurs, and then predict loss severity and add proper drilling fluid 

contents. Several obtainable factors affect circulation loss while drilling. This actually 

makes analytical modeling of loss circulation so complicated. Hereby, employing 
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Support Vector Machine (SVM) can be a leeway with proven capability and accuracy. In 

this communication, operational parameters of one of the Middle Eastern oilfields were 

used to predict the mud loss severity along different sectors of this oilfield. Also, in this 

study cross validations and comparison with artificial neural network were applied. 

 

Keywords: lost circulation, drilling, virtual intelligence, support vector machine, model 

 

 

1. INTRODUCTION 
 

Lost circulation is the most economical issue in drilling operation because of cost of mud 

losses and plugging in the throats. This phenomenon will have some consequences such as 

well instability, kick and blow out (Suyan et al., 2009). The amount of mud loss can vary 

from slow in consolidated formations to rapid in high permeable and fractured formations 

(Rojas et al., 1998). It will be much considerable when using heavy mud. Without adding 

plugging and bridging materials or loss circulation materials (LCMs) to drilling fluid, huge 

volume of mud may waste to the formation before it can be detected on surface, especially in 

fractured and unconsolidated formations (Moazzeni et al., 2013).  

Circulation loss can be classified in different ways. One of these classifications has three 

groups with respect to the rate of loss: seepage loss (1-10 bbl/hr), partial loss (10-500 bbl/hr) 

and complete loss (500 bbl/hr) (Pilevari et al., 2002). In another classification, if the total loss 

is between 6 to 470 barrels or it takes less than 48hr to be treated by either increasing mud 

viscosity or increasing small amount of LCMs to the mud, it will be called minor loss. And 

when total loss is greater than 470 barrels or the time of treatment is greater than 48hr, it is 

called severe loss (Moazzeni et al., 2010). 

In low rates, the loss will occur when dynamic bottom hole pressure exceeds minimum 

horizontal stress. When the bottom hole pressure goes up the horizontal stress will be 

increased (Economides et al., 1998, Charlez 1999). In the case of complete loss, the pressure 

of drilling fluid is enough to break down the wellbore wall. In this situation, rheological 

behavior of drilling fluid strongly affects the rate and the volume of loss (Majidi et al., 2008).  

Parameters that affect loss circulation can be divided into two groups: formation 

parameters and operational parameters. Some parameters like formation pressure, fracture 

gradient and permeability distribution are formation parameters. Pump pressure, flow rate and 

drilling fluid properties are some examples of operational parameters. Some other effective 

parameters are wellbore and drill string geometry, mud rheology, sealing capacity of the 

drilling mud, hole cleaning efficiency (Burgoyne et al., 1991) and local stress field. These 

parameters have an interrelation with each other, so two big problems will occur. First, the 

analytical solution will be so difficult since we have more than one varying parameter, and 

second, the cost of investigations and removing the lost fluid will be too high. Thus, virtual 

intelligence machines are a good choice for predicting the loss circulation before drilling. 

Previously, Sanfilippo et al., (1997), Lietard et al., (1999) and Majidi et al., (2008), each 

separately, developed models on drilling fluid circulation. Sanfilippo et al., (1997) developed 

a model in a non-deformable fracture of constant width with impermeable walls for 

Newtonian mud and then they modified their model for estimation of fracture aperture from 

drilling data. But there is a big problem in using this model. Most common drilling fluids are 

not Newtonian, so this model cannot be applied for them. Lietard et al., (1999) developed 
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their model for diffusion of drilling fluids to the single fracture. In this model, Darcy’s law is 

combined with Bingham plastic model and the invaded zone radius is derived for different 

effective parameters versus time. Then, by curve fitting from results of real mud data, fracture 

aperture can be obtained (Moazzeni et al., 2009). Majidi et al., (2008) developed a theoretical 

model based on the work of Hemphill et al., (1993) on realistic rheological behavior of 

drilling fluids like Yield-Power-Law (YPL).  

Above models explain the essential role of drilling fluid rheology on lost circulation in 

fractured reservoirs. These models cannot consider location of wells along the field. In the 

present work, according to Support Vector Machine (SVM) algorithm, a subset of above 

parameters is used for prediction of lost circulation. The parameters are selected using an 

attribute selection process. 

 

 

2. MODELING APPROACH 
 

Several models have been developed for prediction of drilling fluid invasion by 

combination of Darcy’s law and drilling fluid properties. Mud rheology is the most important 

parameter on controlling drilling fluid invasion. Some models can predict mud rheology 

properties using bottom hole data. Another important parameter is intensity in addition to 

fracture aperture which must be considered to predict lost circulation. Unfortunately, recent 

models have not considered that. Therefore, in this paper, Maroun oilfield in Middle East is 

just selected because of presence of a highly fractured oil bearing zone which suffers from 

severe loss especially as oil production diminishes its pressure. Data from over 30 wells are 

used for evaluation of loss circulation. Since loss circulation is governed by very complicated 

and interrelated parameters, SVM modeling approach is used to predict the amount of mud 

loss quantitatively, and then interpretation of network-based mud loss is qualitatively done 

using neural network approach.  

 

 

3. MODEL DEVELOPMENT 
 

By developing computers and virtual machines lots of problems that cannot be solved by 

conventional analytical manner are solved. Recent machine learning and data mining tools  

are used to one or more attributes of “reason” such as generalization, discovery, association, 

and abstraction (Eberhart et al., 1996). To do this, support vector machine, artificial neural 

network, evolutionary programming and fuzzy logic are some useful examples of virtual 

machines. Integrating of these tools with conventional manners and of course with each other 

can be very useful in solving challenging problems perfectly (Mohaghegh et al., 2000). 

 

 

3.1. Support Vector Machine 
 

Support vector machines are based on training linear learning machines in the kernel-

induced feature spaces, while respecting the insights provided by the generalization theory, 

and exploiting the optimization theory (Cristianini and Taylor 2000).  
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So drilling process must be classified to seepage, partial and complete lost circulation. 

But the problem is a ternary classification. Thus, a three class SVM is used. The basic support 

vector machines are binary classifiers which can categorize the target property (i.e., amount 

of lost circulation) into two classes. Hence, two classifiers should be generalized to three 

classifiers. The approach presented by Hastie and Tibshirani (1998) used to do this 

classification. The input of the model is the data from reservoir, drilling tools and drilling 

fluid materials, while the output is the prediction of the amount of loss circulation.  

 

3.1.1. Linear Learning Machines 

Binary classification using SVM is performed by using a real-valued function 

( ), : nf X f R R  in such a way that the input 1( ,..., )nX x x   is assigned to the positive class 

(+1) if ( ) 0f X   and otherwise to the negative class. If ( )f X  is a linear function, it can be 

written as  

 

1

( ) .
n

i i

i

f X W X b w x b


    
  (1) 

 

where nW R  and b R . If the convention sgn(0)  is adjusted, then sgn( ( ))f X  is a decisive 

rule to determine the class (+1 or -1) of the input data. In this way, there is a hyper plane in 
nR R  space, which separates instances of the two classes.  

 

3.1.2. Kernel-Induced Feature Spaces 

Computational power of linear learning machines is very limited (Minsky and Papert 

1969). Kernel representation is a solution, which projects the data into a high dimensional 

feature space to increase the computational power of the linear learning machines. Therefore, 

the main idea of the kernel technique is to map input data to a higher dimensional space 

(feature space) in such a way that the projected data in the new space could be separated by a 

hyper plane (linearly) and then using a linear learning machine in the resulted space.  

 

3.1.3. Generalization Theory 

Another ingredient of support vector machines is generalization theory, which guides to 

control prediction error of the models. Some theoretical results give upper bounds for 

prediction error of unseen data in classification models. In this subsection, upper bounds will 

be reviewed.  

As Vapnik and Chervonenkis presented the first bout, let H be a hypothesis space having 

VC dimension d . For any probability distribution on ( , )P X y  on { 1, 1}X    , with probability 

1   over random training set S , any hypothesis f H  makes k errors on S  no more than  

 

2 2 4
( ) ( log log )p s

k el
err f d

l l d 
    (d l ).  (2) 

 

In the mentioned error bound, l is number of training samples, e is base of the natural 

logarithm. VC dimension d  is Vapnik and Chervonenkis dimension that for hyper planes is 
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at most equal to the dimensionality of the input space or number of attributes of the dataset 

(Vapnik and Chervonenkis 1964), (Vapnik and Chervonenkis 1971), (Cristianini and Taylor 

2000). However, note that the presented bound usually is not tight and typically observed 

errors are much lower.  

 

3.1.4. Optimization Theory 

Optimization problem is finding the best separating surface in the feature space or finding 

maximum and minimum values of a function with given constraints, which is an ingredient of 

support vector machine. 

In this section, soft margin support vector machine is used to find the best separating 

hyper plane. Thus, for solving optimization problem, , ,
1

1
min

2

l
T

i
w b

i

w w C





   subjects to 

( ( ) ) 1 , 0, 1,...,T

i i i iy w x b i l       . Therefore, optimization techniques can be 

applied to find the best separating hyperplane in the feature space. 

 

3.1.5. Reducing Ternary SVM to Binary SVM 

Several solutions have been proposed for using binary SVM classifiers to classify a 

multiclass problem (i.e., a problem with k classes, where k is more than two). Using lots of 

classes will reduce the multiclass problem to a set of binary problems. For instance, the 

simplest approach is to create one binary problem for each of the k classes. Hence, for each 

sample the given learning algorithm is applied to a binary problem. In this binary problem, all 

examples that were already labeled, are just considered as positive examples when all other 

examples considered negative ones, so k hypotheses must be combined. This is called the 

one-against-all approach (Allwein, Schapire and Singer, 2000). 

Another approach that is used in the present work, was suggested by Hastie and 

Tibshirani (1998), and should be used as the given binary learning algorithm to distinguish 

each pair of k classes.  

Therefore, for each sample, a classification using a binary SVM is applied to determine if 

it is categorized into seepage. Then, the same sample is tested against partial loss and finally 

against total loss. If the sample lies in only one class, then it is recognized as the member of 

that class, otherwise the class with highest margin will be selected. 

 

 

3.2. Feature Selection 
 

Feature selection is the process of finding a subset of features of the original data set with 

the most impact on target property (Hall 1999). For having a feature selection, all possible 

subsets of the mentioned features are incrementally searched. Then the relation between each 

subset and the target property is found by using:  
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where zcr  is the relation between the features of the selected subset and the target property, 

k  is the number of features of the selected subset, zir  is the average of the correlations 

between features of selected subset and lost circulation and iir  is the average inter-correlation 

between features of selected subset.  

Now the subset with highest correlation should be selected as lost circulation class (Hall 

1999).  

Original data set includes the following features: 

 

 Present driller depth of well in the day of study 

 Present depth of well from sea level in the day of study 

 Well trajectory (North and East direction in each data point of well path) 

 Drilling time in the considered day 

 Length of open hole section at the end of the day of study 

 Asmari formation top from ground surface (Based on UGC data) 

 Bit size (Exposure area) 

 Average pump flow rate 

 Average pump discharge pressure 

 Mud weight 

 Solid percent of drilling fluid obtained from retort solid equipment 

 Achieved from rotational viscometer 

 Mud filtrate loss gained from API filter press device 

 Mud volume lost the day before the day of study 

 Mud volume lost two days before the day of study 

 Rock physical properties like porosity (Sonic log, Neutron porosity and bulk 

density), 

 Rock type (Gamma Ray and Photo Electric Factor) and permeability of the interval 

 Minimum horizontal stress profile 

 

Based on the above feature selection algorithm, the following subset is selected as the 

results of the feature selection process: 

 

 Well trajectory (North and East direction in each data point of well path) 

 Mud volume lost in the day before the day of study 

 Mud volume lost in two days before the day of study 

 

The selected features show that previous behavior of the system is the best indicator of its 

current behavior.  

 

 

4. RESULTS AND DISCUSSION 
 

10 folds stratified classification selected to train and test the developed model. 

Furthermore, there are the following classes to determine the volume of lost circulations: 
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 Seepage loss when loss is less than 10 bbl/day (negligible). 

 Partial loss when it is between 10 and 100 bbl/day.  

 Complete loss when it is more than 100 bbl/day. 

By using these classes, the model would be able to report the results qualitatively rather 

than quantitatively.  

Radial Basis Function (RBF) kernel (Buhmann 2003) was used to map data to a feature 

space. RBF kernel was just used with the following equation for ( , )k x x   to map input data to 

the feature space from training input ( )x  and test input ( )x  : 

 
2( , )( , ) x x x xk x x e          (4) 

 

where ,X Y   is dot product of X and Y . The different values of α influence the model 

accuracy. Figure 1 shows the effect of different values of α on accuracy of model in terms of 

correct classification. 

 

Table 1. Classification performance of the model 

 

Correctly Classified Instances 79.5  %  

Incorrectly Classified Instances  20.5  %  

 

Table 2. Confusion matrix of the model on test data 

 

Class True Positive Rate False Positive Rate Precision Recall ROC Area 

Seepage 0.862 0.144 0.841 0.862 0.859 

Partial loss 0.728 0.095 0.771 0.728 0.816 

Complete loss 0.744 0.081 0.728 0.744 0.832 

Weighted Avg.  0.795  0.115 0.794 0.795 0.84 

 

Table 3. Comparison of the performance of the model with a previously published work 

(Moazzeni et al., 2009) 

 

Correctly Classified Instances by our model 79.57%  

Correctly Classified Instances by (Moazzeni et. al. 2009) 76  %  

Correctly Classified Instances by artificial neural network based on selected attributes. 78.3% 

 

Table 4. Weights of connections between nodes of input layer and nodes of hidden layer 

in the developed neural netwrok based on selected attributes 

 

 Node 1 Node 2 Node 3 Node 4 Node 5 

Easting 4.087 0.263 -3.846 -3.428 3.115 

Northing 4.874 -0.571 2.912 -4.834 4.709 

Last Day -20.719 -21.161 -2.994 14.858 6.144 

Two Last day 2.138 0.076 -7.534 -0.096 4.029 

Bias -9.959 -19.387 -11.358 7.155 -1.211 
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Table 5. Weights of connections between nodes of hidden layer and nodes output layer 

in developed neural netwrok based on selected attributes 

 

 Seepage Partial Lost Complete Lost 

Node 1 3.255 1.620 -5.135 

Node 2 4.196 -5.251 0.611 

Node 3 1.851 -1.795 -1.688 

Node 4 -6.561 -4.274 -0.617 

Node 5 -6.022 -5.196 -3.854 

Bias -5.715 1.439 2.332 

 

Table 1 shows the performance of the model. It seems that the model predicts loss 

circulation behavior correctly on about 80 percent of cases. Table 2 shows confusion matrix 

of the model. This table also confirms the performance of the model represented by Table 1. 

 

 

Figure 1. Effect of different α values on accuracy of the model. 
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Figure 2. The topology of the developed neural network based on selected attributes. All nodes of 

hidden layer and outputs are sigmoid. 

Table 3 compares the performance of the model with a work reported by (Moazzeni et. 

al. 2009). They used a neural network based model to predict lost circulation. Besides, both 

models were tested using the same data set.  

An artificial neural network model (Figure 2, Tables 4 and 5) was developed based on 

selected attributes. The performance of this model is reported in Table 3. As can be seen, 

using selected attributes increases performance of the neural network. Thus, results show that 

support vector machine based model outperforms the previous model as well as the trained 

neural network based on selected attributes, in term of classification precision.  

 

 

CONCLUSION AND RECOMMENDATION 
 

1. A methodology was proposed for prediction of lost circulation in any coordinates of 

field using operational and geological data. 

2. Proposed methodology is based on multiclass support vector machine and its ability 

to solve complicated problems was proven. 

3. Before developing the support vector machine model, we did some preprocessing on 

the dataset including feature selection. The results show that the best indicator for 

predicting lost circulation in a drilling operation is its previous behavior in previous 

days. 

4. The most common drilling problem is lost circulation, especially in fractured 

formations. 

5. Lost circulation is governed by numerous factors that make finding analytical 

solution with acceptable accuracy very difficult or impossible. 

6. Support vector machine is recommended while dealing with different interrelated 

parameters (like lost circulation). 

7. The results are just for the field under study and should not be used for another field 

even nearby ones. 
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ABSTRACT 
 

In drilling operation, the penetration rate depends on the factors such as the type of 

bit, formation properties, weight on bit (WOB), rotation per minute (RPM), and mud 

properties. We have used multi–layer perception (MLP) neural networks for optimization 

of drilling operation. The two models using neural networks have been developed for 

determining the type of bit and rate of penetration (ROP), then the inputs of the second 

model were optimized by the genetic algorithm (GA) to access maximum rate of 

penetration. To predict the type of bit and penetration rate in testing phase, the correlation 

coefficients were obtained 0.98 and 0.96, respectively, which show the capability of the 

aforementioned model in optimizing drilling operation. 
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NOMENCLATURE 
 

 
Angel correction factor 

 
Average size of particles, in  

ESV = Corrected speed 

MW = Density of drilling mud, PPG 

 
Density of drilling particles, PPG 

 
Diagonal of particles, in 

 
Inclination angel of well from vertical position, degree 

MSE = Mean Square Error 

 
Mud density, PPG 

 
Mud weight correction factor 

 
Outside diagonal of the drilling pipe, in 

 Outward viscosity, cp 

 
Particle size correction factor  

PV = Plastic viscosity, cp 

ROP = Rate of penetration, ft/sec 

 
The diagonal of well, in 

 
The minimum speed of needed mud, ft/sec 

 
The speed of retail transfer, ft/sec 

 
The speed of vibration, ft/sec 

 

 

INTRODUCTION 
 

Analysis of field data is the main element of cost reduction and the improvement of 

drilling operation as well as the development of the tools of field data analysis is considered 

as a way of developing and improving drilling operation.  

The two approaches, mechanical specific energy and the models of drilling penetration 

speed are used for optimization. The mechanical specific energy is referred to the amount of 

work needed for a certain volume of rock to be drilled. The concept of specific energy was 

first introduced by Teale (1985). 

 

angleC 

50cutD 

enpD 

pD 

angle 

mud 

mwC 

pipeD 

a 

sizeC 

holeD 

minV 

cutV 

slipV 



Optimization of Drilling Penetration Rate in Oil Fields … 257 

  (1) 

 

where the WOB is the weight on the bit in pounds (lb), RPM is the rotation of drilling bit per 

minute (rev/min), ROP is rate of penetration in foot per har (ft/hr), D is the diameter in foot 

(ft), and SE is the Specific Energy. Rabia et al. (1985) only used three drilling parameters for 

evaluating the SE in rock drilling. These parameters were the weight on bit, speed of drilling 

bit, and the torque of bit. 

A drilling model includes equations for penetration rate and bit erosion. There are 

numerous models in this field that have been used to relate the various parameters involving 

in the process of drilling on penetration rate. These models use important drilling parameters 

such as weight on bit and the rotation speed of drillstring for evaluation and prediction of the 

performance. 

The Bourgoyne and Young (1974) model excels among all introduced models, because it 

includes almost all the formation parameters and drilling variables. 

One of the newest models of drilling is utilization of artificial neural networks. Bilgsue et 

al. (2000) used the neural network for choosing bit in which the drilling parameters were 

used, however, formation parameters which play an important role in choosing bit were not 

considered. 

Yilmaze et al. (2002), developed this model using the compressive strength average of 

formation, however, he only worked on bit selection and did not investigate evaluation of the 

optimal values of drilling parameters and how to increase drilling penetration rate. Edalatkhah 

et al. (2010), determined appropriate drill bit and also improved drilling penetration rate. In 

this communication, a method is introduced using artificial neural networks and genetic 

algorithms. 

Initially, in this method, the appropriate bit is chosen by comparing the performance of 

different bit in drilling the wells of an oil field, to access the maximum penetration rate. Then, 

to achieve the maximum drilling penetration rate, a model is first constructed to predict the 

penetration rate, and secondly, the optimal values of the drilling parameters are calculated 

using genetic algorithm. Using this method, the appropriate bit and other parameters can be 

determined in order to achieve the maximum penetration rate. Increasing the amount of 

penetration rate and determining mud properties, optimal values of the weight on bit, and the 

rotation speed of drill string result in decreasing the costs as well as the time of drilling 

operation.  

In the present work, in addition to increasing the accuracy of the model (using and 

comparing optimization algorithms and different neural networks and using the best 

algorithm and neural network in optimizing and modeling), we have tried to develop a more 

comprehensive model that includes all the effective parameters on drilling operations. 

 

 

MODEL 
 

Neural networks are parallel processing systems used for recognizing very complicated 

patterns among data. An artificial neural network is an information processing system that has 

some features common to biologic neural networks. Therefore, each network has been formed 

WOB RPMSE ,...............................................................................................................
D ROP
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from a collection of neurons that are arranged in particular. The main part of a neural network 

is the neurons and the connection lines between them (Demuth et al., 2007). One type of 

neural network is perception which is available as a single–layer perception and multi–layer 

perception (MLP). Perception neural networks are categorized within feed forward neural 

networks. Single–layer perception can classify separated linear problems and for complicated 

matters, it is necessary to use a greater number of layers (Demuth et al., 2007). MLP network 

consists of an input layer, one or more hidden layers and an output layer. In this structure, the 

neurons in one layer are connected to all neurons of the next layer which will finally form a 

network with complete connections (Demuth et al., 2007).  

To reduce computational burden and determine suitable value of variables (weights and 

biases), optimization algorithms that have specific ability in this domain should be applied. 

For optimizing, the Genetic Algorithms (GA) has been used in this study. Genetic Algorithm 

is a population based algorithm that has proven to be successful in solving difficult 

optimization problems. A genetic algorithm for solving a problem, produces a large collection 

of possible methods. Each of these methods is evaluated using a coordination function. Then, 

a few numbers of the best solutions result in making new solutions. Thus, the search space 

will evolve in direction that reaches the optimal solution. If selection of parameters is correct, 

this method can perform effective (Demuth et al., 2007). 

 

 

Oil Field 
 

Ahwaz oil field is in Khuzestan province in southwest of Iran. This field includes 

anticline with the length of 67 and width of 6 square kilometers that is nearby Ramin (from 

the north), Maroom (field from the east), Shadegan and Mansoori (from the south) and Ab 

Teymour and Sousangerd (from the west). This field that contains the trend of north-west 

south-east is parallel to the Zagros mountain range. This field consists of three reservoirs 

namely Asmari, Bangestan, and Khami. Asmari reservoir contains the section of sandstone of 

Ahwaz. Bangestan reservoir is made of limestone, shale and anhydrite with less porosity than 

the Asmari and Khami reservoirs. From the reservoirs of Asmari and Bangestan, almost 800 

thousand barrels are extracted per day. The amount of the residual oil in Bangestan reservoir 

is 31 billion barrels and the amount of the extractable oil is 4.3 billion barrels. Also, the 

amount of cumulative production has been announced 935 million barrels. The Bangestan 

reservoir consists of two major reservoirs named Ilam and Sarvak. At this moment in time, 

the production rate of Ilam and Sarvak reservoirs are 12 and 88 percent, respectively. 

 

 

METHODOLOGY AND RESULTS 
 

To have a comprehensive and pervasive model in choosing bit and determining the 

penetration rate, it is needed to consider all the parameters affecting drilling operations. With 

regard to the effect of the drilling mud on the penetration rate, drilling mud characteristics 

have also been considered as input parameters of the neural networks. In current studies, two 

models were developed using neural network. 
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The first model, since the drilling bit has a significant effect on the rate of penetration and 

can be, the main parameter for improving the penetration rate, a separated model has been 

made for choosing the drilling bit. In this model, size of bit, total flow area (TFA), drilling 

interval, depth in, depth out, weight on bit, rotation per minute of drilling string, rate of 

penetration, mud circulation rate, pressure, mud plastic viscosity, and average unconfined 

compressive strength of formation (UCS) are inputs for ANN and the output is the type of 

drilling bit based on IADC code.  

The best developed neural network for the first model is the feed forward multi-layer 

perception neural network with the instruction of [4 1] (4-hiden layers and an output layer) 

and the transporting functions of tansig and poorlinand and the educating function of trainlim. 

Among 332 collections of data (input/output) and after removing illogical data which were 

the indicator of machines or human error, 299 data collection related to 10 different wells 

were used in training, cross validation and network testing.70 percent of data put into work 

for training, 15 percent for cross validation and 15 percent for network testing. The range of 

the used parameters is listed in Table. 1. Figure 1 illustrates the correlation coefficient neural 

network model to predict the drill bit.  

 

Table 1. The range of the parameters used in modeling 

 

Parameter Range 

Weight on bit (1000lb) 

Rotation speed of drill string (rev/min) 

Total flow area (𝒊𝒏𝟐) 

Plastic viscosity (cp) 

Pump pressure (psi) 

Mud circulation rate (gpm) 

Input depth (ft) 

Bit size (in) 

Drilling interval (ft) 

Rate of penetration (ft/hr)  

Unconfined compressive strength (psi) 

10-80 

20-220 

0.3-1.533 

2.5-75.93 

312.5-3328.57 

116.7-1000 

187-10657 

8.5-17.5 

3.28-4706.8 

0.95-86.56 

826.72-25969.66 

 

 

Figure 1a. Result of training the neural network model to forecast the drill bit. 
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Eventually, to ensure the accuracy and punctuality of the main network constructed, we 

have tested the model by unused data in which the results support the high accuracy of the 

model. These results are illustrated in Table. 2. Therefore, to assess the usability of the model 

in choosing the bit for the other oil fields, it has been tested by the drilling data of Maroon, 

Mansouri and Koopal fields. However, the results were not good. Using this model, we can 

predict an appropriate drilling bit, which is providing the desired penetration rate. This model 

can only be used for the Ahwaz oil field. 

All the parameters were derived during drilling operations, except unconfined 

compressive strength of formation that is calculated using experimental correlation and 

logging operation. Based on statistical analysis on laboratory data, below equations were 

derived with acceptable accuracy for carbonate rocks: 

 

 (2)  

 

  (3)  

 

where UCS is rock strength (MPa) and Δtc is sonic wave travel time (μs/ft) and Ø is porosity. 

Nabaei et al. (2010). 

 

 

Figure 1b. Result of testing the neural network model to forecast the drill bit. 

Table 2. Three test samples of the model for determining the type of the drilling bit, 

using the unused data in modeling 

 

The nearest IADC code Predict code Bit Type (IADC code) 

3.2.2 3.2.0 3.2.2 

2.2.3 2.4.6 2.2.3 

1.1.1 1.0.9 1.1.1 

 

The second model, for predicting and achieving to the maximum drilling penetration rate, 

the second model is made. To begin with, the feed forward multilayer perception neural 

9 541292 047 .UCS . e , ..........................................................................................................

9 541292 047 .UCS . e , ..........................................................................................................
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network with the instruction of [11 1] (11 hidden layers and one output layer) is developed 

with the transition functions of tansig and poorlin and the training function of trainlim. In this 

model, the type of bit is the input parameter and the penetration rate is the target and the 

output of the model for predicting and optimizing. The results of training and test of the 

neural network model are illustrated in the Figures 2a and 2b, respectively. For assessing the 

accuracy and validity of the model, it was tested by Ahvaz field data, which had not been 

used in modeling. The results illustrated in Table. 3 showing the high accuracy of the model. 

Then to evaluate the usability of the model for the oil fields, it was tested by the drilling data 

of Maroon, Mansoori, and Koopal fields in which the accuracy of the model for these fields 

are 0.603, 0.848, and 0.898, respectively. 

 

Table 3. Three test samples of the model for determining the type of the drilling bit 

using the unused data in modeling 

 

MSE 
(ft

hr
) ROPPredict    (ft

hr
) ROPReal   

Filed 

7.39 52.9 61.83 Ahwaz 

0.005 34.5 34.6 Ahwaz 

0.11 9.28 10.36 Ahwaz 

 

Table 4. Value and the range of the fixed and valuable parameters  

in different parts of well 

 

Variable parameters ranges Fixed parameter Bit size (in) 

Bit Type: [1,18-27] 

WOB (1000Ib) = [15-80] 

RPM (rev/min) = [100-200] 

TFA(𝑖𝑛2) = [0.589-1.553] 

PV (cp) = [2.5-29] 

Pump pressure (Psi) = [312.5-2900] 

Pump output (gpm) = [332.86-1000] 

: 187( ft )Depth in 

: 4982( ft )Drill interval 

Unconfined compressive 

strength (psi) : 6381.7 

17.5 

Bit Type : [1,8,11-17] 

WOB (1000Ib) = [10-45] 

RPM (rev/min) = [40-220] 

TFA(𝑖𝑛2) = [0.3-1.203] 

PV (cp) = [20.5-75.93] 

Pump pressure (Psi) = [491.67-3327.57] 

Pump output (gpm) = [225-650] 

: 5169( ft )Depth in 

: 3608( ft )Drill interval 

Unconfined compressive 

strength (psi) : 12460.3 

12.25 

Bit Type : [1-10,12] 

WOB (1000Ib) = [10-50] 

RPM (rev/min) = [20-190] 

TFA(𝑖𝑛2) = [0.451-1.491] 

PV (cp) = [4.25-64] 

Pump pressure (Psi) = [450-1633.33] 

Pump output (gpm) = [116.67-515] 

: 8777( ft )Depth in 

: 3352( ft )Drill interval 

Unconfined compressive 

strength (psi) : 13549.54 

8.5 
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Table 5. The values of the optimized parameters in different parts of well 

 

Pump 

output 

(gpm) 

Pump 

pressure (Psi) 

PV 

(cp) 

TFA (𝒊𝒏𝟐) RPM 

(rev/min) 

WOB 

(1000Ib) 

ROP 

(ft/hr) 

Bit Type Bit Type 

(IADC) 

Hole  

size 

451 1225 15 0.88 198 22 93.8 HC606 M323 17.5 

346 1550 40 1.15 170 35 45 DSX819 M422 12.25 

480 1730 28 0.81 180 40 40.24 G536XL M323 8.5 

 

 

Figure 2a. Result of training the neural network model to predict the penetration rate of drilling. 

 

 

Figure 2b. Result of testing the neural network model to estimate the penetration rate of drilling. 

According to well profile, the optimizing of bit selection and the other input parameters 

must be done in three different well intervals. For the process of optimization, changes are 

allowed in the parameters such as the weight on the bit, drilling string rotation, total flow 

area, mud circulation rate, and in the pressure while, the size of the bit and the unconfined 

compressive strength of the formation must be kept fixed. The range of the variable parameter 

and the fixed parameter values in different parts of the well are illustrated in Table. 4. For 

optimizing the penetration rate function, we have used the genetic algorithm as satisfactory 

results are obtained. Using the genetic algorithm as a powerful tool, optimization of the 

penetration rate in each part of the well for each individual bit is performed separately. As 
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illustrated in Table 4, the domain of the variable input and fixed parameters are changed in 

different parts of the well. This difference is due to the difference in the well geometry and 

limitation in mud circulation flow for cleaning and, prevention from pipe sticking. Optimizing 

the penetration rate function takes place via the genetic algorithm in the population size of  

20, the scale function of rank, the selection function of stochastic uniform, mutation function 

of Gaussian and the crossover function of scattered. The results taken from optimizing 

parameters for reading to the maximum penetration rate are illustrated in Table. 5 and  

Figure 3. 

 

 

Figure 3a. Optimized results are drilling parameters by genetic algorithms in size17.5.  

 

Figure 3b. Optimized results are drilling parameters by genetic algorithms in size 12.25.  
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Figure 3c. Optimized results are drilling parameters by genetic algorithms in size 8.5.  

 

 

DISCUSSION 
 

The general observed trend in all well sections represent a decrease in ROP verses depth. 

This is due to the fact that the average compressive strength grows while depth increases. 

Comparing the optimized penetration rate with the maximum actual penetration rate shows its 

significant increase. The cause of low penetration rate in the size 8.5 inches well, is using of 

inappropriate bits, that out of the eleven bit used, 6 types are useable for the soft formation 

and 4 types for the soft-to–average formations. According to the unconfined compressive 

strength of the formation (13549.054psi), the formation are the average ones that only one 

type of bit, and that in average range, exists among the used bits. Now, the result of 

optimizing must be operationally assessed whether they are usable in operation or not.  

 

 

1. Drilling Bit 
 

The selected bit in each size must have the ability to drilling formation, for this reason, 

we put the bits under assessment for unconfined compressive strength. The results are 

illustrated in Table. 6. 
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Table 6. Assessment of the selected drilling bit 

 

Unconfined compressive 

strength of the proposed 

bit (psi) 

Unconfined compressive 

strength of formation (psi) 

Bit type Selected 

bit 

Bit 

Size 

14000 6381.7 HC606 M323 17.5 

24000 12460.3 DSX819 M422 12.25 

14000 13549.54 G536XL M323 8.5 

 

 

2. Rate of Penetration and Mud Circulation Rate 
 

Using the optimum penetration rate may cause some problems. One of the predictable 

problems is drilling bit sticking caused by inappropriate well cleaning. For an appropriate 

cleaning; the speed of mud flow in annulus must be in a level that takes over the speed of 

mud vibration. For calculations of mud velocity in annulus and mud slippage velocity, the 

following formulas are used. 

 

Mud velocity in Annulus 

 

  (3) 

 

Mud slippage velocity in vertical and mostly –vertical. Lapeyrouse and Nortoned (2002). 

 

  (4) 

 

Mud slippage velocity in pointed wells Mirhaj et al. (2007). 

 

  (5) 

 

  (6) 

 

  (7) 

 

  (8) 

 

ann 2 2

24.5 Q
V ,.....................................................................................................

D Dhole pipe






enp
s p2p

p

DPV 36800V 0.45 ( )[ D ( 1 ) 1 1 ], ...........................
MW D PV MW( )

MW D

     




min cut slipV V V ,.............................................................................................................. 

cut
pipe 2

hole

1V , ....................................................................
D 17.82[ 1 ( ) ] ( 0.685 )
D ROP



  

slip angle size mwV ESV C C C ,...................................................................................   

2
angle angle angleC 0.0052 0.0002 0.2 , ....................................................................    
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  (9) 

 

  (10) 

 

  (11) 

 

Table 7. The results of calculations 

 

Annulus 

velocity 

(ft/sec) 

Slip velocity 

(ft/sec) 

Average 

flow rate 

(gpm) 

Optimal flow rate 

operation (gpm) 

Maximum 

ROP 

(ft/hr) 

ROP (ft/hr) Bit Size 

3.89 1.8 868.5 450 86.56 93.8 17.5 

2.99 1.01 519.69 446 21.58 45 12.25 

4.15 2.66 329.8 500 21.06 40.24 8.5 

 

The results of calculations are illustrated in Table 7. As can be seen in Table 7, the 

velocity of the optimized mud is faster than the slippage velocity in each of three parts of 

well, therefore, well cleaning is well done. On the other hand, using this amount of the mud 

flow causes lower energy consumption by the pump. We can observe this energy reduction by 

comparing optimal flow rate with mud flow rate average in operations. These results show 

that even though the penetration rate of drilling has got a significant growth in new 

conditions, the optimal flow rate is less than the amount of the rate used in drilling conditions. 

 

 

3. Pump Pressure and Total Flow Area 
 

Outlet pump pressure is another parameter that appropriate determination of it causes 

boost to drilling operation and reduction of the costs. Low pump pressure cannot dominate 

the pressure drop produced through the drill string and result in inappropriate bottom hole 

cleaning. On the other hand, too much high pump pressure causes consumption of more fuel 

and correspondingly results in going up the costs of drilling. For assessing pressure drop 

through the length of drillstring, we used Hydraulic Calculator software. The results are 

shown in Table. 8. As can be seen, the range of pressure drop is less than the amount of the 

pump optimal pressure and also, the optimal pump pressure is less than the average amount of 

the pump operational pressure. 

It is certain that the more hydraulic ability of the bit, the higher weight on the bit can be 

applied that result in increasing the penetration rate. As can be seen, the most pressure drop 

and as a result the most hydraulic power is produced among drilling string in the proposed 

bits with the optimized total flow area that indicates an appropriate choice in bit and total 

flow area. As shown in Table. 8, the ratio of the bit hydraulic power to the pump hydraulic 

power in the 12.25 size of well is low and it can be considered as one reason of drilling 

penetration rate reduction in this size. 

 

 

size 50cutC 1.02 D 1.27 ,............................................................................................   

mw mudC 1 0.333 ( 8.65 ), .....................................................................................   

aESV 0.0052 3.1 , ....................................................................................................  
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Table 8. Assessment of mud pump pressure and the optimized cross- flow 

 

b

p

HP
50

HP
 

Hydraulic 

power bit 

(HP) 

Hydraulic 

power pump 

(HP) 

TFA 

(𝑖𝑛.2) 

Pressure drop 

during the drill 

string (psi) 

Optimal 

pump 

pressure 

(psi) 

Average 

pump 

pressure 

(psi) 

Hole Size 

)in(

 

0.63 122 193.6 0.88 735.8 1225 1994.14 17.5 

0.18 30.18 171.59 1.15 850 1550 1961 12.25 

0.508 231 455 0.81 1626 1730 967 8.5 

 

 

4. Weight on Bit and the Rotation Speed of the Drill String 
 

The more weight on the bit and the rotation speed of drill string, the more penetration rate 

occurs. Of course, they must be chosen in a way that cause increasing of the penetration rate 

and also not make any problem for the drilling operation. Too much increase of the weight on 

the bit and the rotation speed of the drill string, in addition to a damage and shorten the life of 

bit, may cause a drilling bit sticking. However, as observed in the assessing part of the 

penetration rate, the problem of bottom hole cleaning won't be made. On the other hand, the 

maximum weight on the bit and the rotation speed of drilling bit which chosen bits can resist 

are illustrated in Table 9. 

It Shows that the drilling bits have no problem regarding this and also, with using the 

optimal total flow area of the pumps, the bit hydraulic power includes more than half of the 

hydraulic power of total mud. Then application of the maximum weight on the bit in 

operations is possible. The amount of the weight and the tolerable rotation speed of the 

selected bits are illustrated in Table 9. 

 

Table 9. Assessment of the weight on the bit and the optimized rotation of  

the drill string 

 

Tolerable RPM 

(rev/min) 

Optimal RPM 

(rev/min) 

Tolerable WOB Optimal WOB 

(1000Ib) 

Bit Type Bit Type 

IADC Code 

Hole Size 

(in) 

60-260 198 25-180 22 HC606 M323 17.5 

60-260 170 30-140 35 DSX819 M422 12.25 

60-260 180 25-100 40 G536XL M323 8.5 

 

 

5. Mud Viscosity 
 

The amount of the drilling mud viscosity must be in a level that can suspend large solid 

particles if there are any. On the other hand, too much amount of viscosity lessen the 

operation of the bottom hole cleaning. Due to increasing hydraulic pressure drop among pipes 

path and decreasing the bit hydraulic power. Increasing the bottom hole pressure and the 

formation damage cause loss circulation. Therefore, we should select the appropriate 

viscosity according to the characteristics of the formation, bit and optimizing the drilling 
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parameters like weight on bit, the rotation speed of the drillstring, and the hydraulic system of 

the bit. 

 

 

CONCLUSION 
 

1) The observations and results show that the artificial neural network methods are 

applicable and safe. Testing the models of bit selection and optimizing the 

penetration rate using unused data in modeling show that this method has high 

accuracy. 

2) Assessment of the optimization results using software and the experimented formulas 

show that the values of the optimized parameters are in fact usable and won't make 

any problem in drilling operation and using the optimal parameters result cost 

savings and minimizing time overruns on drilling projects. 

3) Since the drilling bit has a significant effect on rate of penetration, a separated model 

providing the appropriate bit based on the penetration rate, was produced. 

4) The application of bit selection model and predicting the penetration rate of Ahwaz 

oil field result high errors even for adjacent fields. Therefore, these models may not 

be recommended for the other oil fields. 

5) The advantage of this model than the other drilling improvement methods is 

consideration of all effective parameters on drilling operation and being accurate, 

comprehensive, and easy application. 

 

 

METRIC CONVERSION FACTORS 
 

Cp × 1.0 E − 03 = Pa·s 

Ft × 3.048 E − 01 = m 

In. × 2.54 E + 00 = cm 

In2 × 6.451 6 E + 00 = cm2 

Ibm × 4.535 924 E − 01 = kg 

Hp × 7.460 43 E − 01 = Kw 

Psi × 6.894 757 E + 00 = kPa 

Degree (angle) × 1 .745 329 E – 02 = radian (rad) 

Ibm/gal (U.S. liquid) × 1.198 264 E+02 = kilogram per metel3 (kg/m3) 

Ft/s × 3.048 E – 01 = meter per second (m/s) 

Ft/hr × 8.466 667 E – 05 = meter per second (m/s) 

Gal (U.S. liquid)/min × 6.309020 E – 05 = meter3 per second (m3/s) 
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ABSTRACT 
 

One of the main challenges in drilling operations is optimizing and improving rate of 

penetration (ROP). Low values of the rate of penetration result in loss of rig time and 

increase the drilling cost. There are too many parameters intervening in rate of 

penetration. Therefore, developing a logical relationship between them to assist in rate of 

penetration prediction is necessary. In such a case, artificial neural networks have proven 

to be helpful in recognizing the complex relationship between variables. In this 

communication, a multilayer perceptron (MLP) neural network and optimized multilayer 

perceptron neural networks with differential algorithms were used to predict the 

penetration rate. The best performance is corresponding to the optimized multilayer 

perceptron neural network by a hybrid of particle swarm optimization (PSA) and genetic 

algorithm (GA) with a correlation coefficient of 0.98. Optimization process is achieved 

by using controllable and affecting parameters on penetration rate, such as weight on bit, 

rotation per minute, bit type, hydraulics and drilling fluid properties. The optimum values 

                                                        
* Corresponding Author E-mail: amir_h_mohammadi@yahoo.com AND a.h.m@irgcp.fr. 
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of effecting parameters for increasing the penetration rate were calculated. Review of 

optimum results show that the proposed method is efficient and can be used for saving 

drilling costs. 

 

Keywords: drilling, penetration rate, ROP, MLP neural network, Genetic Algorithm (GA), 

Particle Swarm Optimization (PSA) 

 

 

1. INTRODUCTION 
 

Analysis of field data is the main element of cost reduction and the improvement of 

drilling operation. The development of the tools of field data analysis is considered as a way 

of developing and improving drilling operation. The two approaches, mechanical specific 

energy (SE) and the models of rate of penetration (ROP) are typically used for optimization. 

The mechanical specific energy is referred to the amount of work needed for a certain volume 

of rock to be drilled. The concept of specific energy was first introduced by Teale [1]. 

 

WOB RPMSE
D ROP




 (1) 

 

where the WOB is the weight on the bit (Ib), RPM is the rotation of drilling bit per minute 

(rev/min), ROP is rate of penetration (ft/hr) and D is the diameter (ft). Rabia only used three 

drilling parameters for evaluating the SE in rock drilling. These parameters were the WOB, 

RPM, and the torque of bit [2]. A drilling model includes equations for ROP and bit erosion. 

There are numerous models in this field that have been used to relate the various parameters 

involving in the process of drilling on ROP. These models use important drilling parameters 

such as WOB and the RPM for evaluation and prediction of the performance. The Bourgoyne 

and Young model excels among all introduced models, because it includes almost all the 

formation parameters and drilling variables [3]. 

 

ROP f f f f f f f f       
1 2 3 4 5 6 7 8  (2) 

 

The 1f  and 8f  express operations relationship between the ROP and effective variables. 

One of the newest models of drilling is utilization of artificial neural networks (ANNs). 

Bilgsue used the ANN for choosing bit in which the drilling parameters were used, however, 

formation parameters which play an important role in choosing bit were not considered [4]. 

Yilmaze et al. developed a model using the compressive strength average of formation, 

however, they only worked on bit selection and did not investigate evaluation of the optimal 

values of drilling parameters and how to increase ROP [5]. In the present work, a method is 

presented to predict and improve the penetration rate by ANN and particle swarm 

optimization (PSO) and genetic (GA) algorithms. 
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2. MULTILAYER PERCEPTRON (MLP) NEURAL NETWORK 
 

One of the simplest, yet most effective arrangements proposed for use in real nerves 

modeling is MLP neural network that consists of an input layer, one or more hidden layers 

and an output layer. In MLP ANN, all the neurons in one layer are connected to all neurons of 

the next layer. This arrangement will form a network with a complete connection. A 

schematic description of this architecture is presented in Figure 1. In a MLP neural network, 

the next m-dimensional input vector x is related to n-dimensional output vector y as follows: 

 

l l l l l o o o l l
y f (w f (w f (...f (w x b ))... b ) b )

   
      

1 1 2 1
 (3) 

 

In this regard, l represents the number of hidden layers of the network, 
lw , the weights 

coefficients matrices corresponding to l layer, lb
 
the bias vector of l layer and lf  shows the 

transfer function of l layer and o variables are shown with subtitles in the output layer is 

corresponds to output layer.  

Basically, there are two types of supervised and unsupervised learning. It is clear that a 

supervised learning approach, desired output for each training inputs is presented, while the 

output of the unsupervised learning methods, is not presented. MLP neural network is a kind 

of supervised learning method [6]. 

 

 

Figure 1. A schematic description of MLP network with two hidden layers.  
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According to both Figure 1 and the above formulation, it is obvious that there is a huge 

computational burden in MLP neural network. Therefore, very likely the network is trapped 

in the local minima if a lot of noisy data and local learning algorithm are available. Hence, to 

reduce computational burden and determine suitable value of variables (weights and biases), 

optimization algorithms that have specific ability in this domain can be applied. One of these 

algorithms is PSO-GA which is explained below.  

 

 

3. PSO-GA HYBRID ALGORITHM 
 

GA and PSO are both population based algorithms that have proven to be successful in 

solving very difficult optimization problems [7]. However, both models have strengths and 

weaknesses. The PSO algorithm is conceptually simple and can be implemented in a few 

lines of code. PSOs also have memory, whereas in a GA if an individual is not selected the 

information contained by that individual is lost. In PSO, the collaborative group interactions 

enhance the search for an optimal solution, whereas GAs have trouble finding an exact 

solution and are best at reaching a global region. However, without a selection operator PSOs 

may waste resources on a poor individual that is stuck in a poor region of the search space. 

Comparisons between GA and PSOs have been performed by both Eberhart [8] and Angeline 

et al. [9] and both studies suggested that a hybrid of the standard GA and PSO models would 

lead to a very effective search strategy. The standard PSO algorithm may not be flexible 

enough for practical applications particularly when the problem to be tackled is complicated, 

conflicting and multitasking. Means for modifying the PSO structure, fitness function, and 

PSO operators are sought in order to meet the design requirements. In the present work, we 

propose a hybrid PSO-GA algorithm combining the strengths of PSO and GA to enhance the 

search process in the QoS multicast problem. The hybrid algorithm combines the standard 

velocity and position update rules of PSOs with the ideas of selection, crossover and mutation 

from GAs. The population update concept can be easily understood thinking that a part of the 

individuals are the same of the previous generation but moved on the solution space by PSO. 

The remaining individuals are substituted by new generated ones by means of GA operators. 

This kind of updating results in a more natural evolution, where individuals not only improve 

their scores for natural selection of the fitness, or for good-knowledge sharing, but for both of 

them at the same time. 

The main objective of the proposed algorithm is to design an adjustable technique that 

makes it possible to optimize the performance of the PSO-GA hybrid. Two driving 

parameters are added in the hybrid algorithm to give preference to either PSO or GA. The 

PSO velocity vector is multiplied by an influence term λ ∈ [0: 1.0]. When this term is set to 0 

the PSO has no effect on the population, when set to 1 the PSO runs as the standard PSO. For 

intermediate values the PSO functions normally, but the size of the steps taken by the 

particles is reduced. The GAs selection operator has a replacement term ψ ∈ [0: 1.0] which 

determines how many individuals in the population get replaced and crossed over in the 

current generation. When the ψ = 0 no individuals/particles are selected for crossover or 

mutation and the GA has no effect on the population. When the ψ = 1 the entire population is 

replaced in the generation. First, the hybrid algorithm performs the standard velocity and 

position update rules, with the influence term. The top (population size *(1 – ψ)) individuals, 



Improvement of Drilling Penetration Rate in Oil Fields … 275 

based on fitness, are copied into the new population. Selection, crossover and mutation then 

occur on the appropriate number of individuals determined by the replacement term to fill the 

remainder of the population. The flowchart of the proposed PSO-GA algorithm is shown in 

Figure 2. 

 

 

Figure 2. Flow-chart of the PSO-GA Hybrid Algorithm. 

Table 1. Statistical description of the used data in this study for both input and output 

 

Parameter Unit Min. Max. St. Dev Median Average Q (1) Q (2) Q (3) 

WOB 1000Ib 10 80 13.6 30 31.11 22 30 40 

RPM Rev/min 20 220 53.64 160 136.56 80 160 180 

TFA 𝒊𝒏𝟐  0.3 1.55 0.256 0.72 0.782 0.59 0.72 0.97 

MW Pcf 54.83 147.33 28.26 74 88.54 67.5 74 113.33 

PV Cp 2.5 75.9 18.65 21.33 24.76 7.36 21.33 37.5 

𝑷𝒑  Psi 312.5 3328.6 757.22 1528.95 1506.3 866.67 1528.95 2137.5 
  

Gpm 116.7 1000 258.91 490 532.01 310 490 826.67 

𝑫𝒊𝒏  Ft 0 10650 2591 6360 6216.32 4943 6360 8357.44 

𝑫𝒐𝒖𝒕  Ft 1378 12129.4 2348 7086.44 7352.45 5550.25 7086.4 8880 

Bit Type IADC 

Code 

100 423 112.27 100 151.3 100 100 114 

Bit Size In 8.5 17.5 3.83 12.25 12.25 8.5 12.25 17.5 

UCS Psi 5407 34128 2416.35 16012.3 15107.26 14659 16018 16142.8 

ROP ft/hr 0.95 86.56 14.17 9.5 13 4.03 9.54 15 
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In later evolution stage of PSO algorithm, the convergence speed becomes significantly 

slower. At the same time, after the algorithm converges to a certain precision, it cannot 

optimize anymore. In order to maintain the algorithm diversity, improve the search 

performance and avoid PSO algorithm plunged into local optimum, we propose to join the 

crossover and mutation operator together.  

This algorithm was used to optimize in two parts. In part of prediction, the ROP was used 

to improve the performance of MLP neural network, and in optimizing part the ROP was 

applied to obtain the optimum values of effective parameters on the ROP. Optimizing the 

MLP neural network and ROP functions takes place via the PSO-GA in the population size of 

50, Maximum Number of Iteration of 50, Maximum Number of sub-Iteration for PSO of 10, 

Maximum Number of Sub-Iteration for GA of 5. PSO Parameters: phi1 = 2.05, phi2 = 2.05, 

phi = phi1 + phi2, chi = 2/(phi1 - 2 + sqrt (phi^2 - 4 * phi)), ω = chi, c1 = phi1 * chi,  

c2 = phi2 * chi. GA Parameters: Crossover Percentage = 0.7, Number of Parents = 36, 

Mutation Percentage = 0.2, Number of Mutants = 10. 

 

 

4. CASE STUDY 
 

The studied oil field is located in the southwest of Iran. This field has an anticline 

structure and nearly considered as the last part of Zagros folding region. According to the 

obtained geological setting and the available data, this field can be classified as a structural 

and heterogonous field. Survey data show that due to the high heterogeneity in this field, 

traditional and conventional methods cannot predict the ROP well. Generally, for accurate 

predicting and improving the drilling ROP, one should consider all impact parameters. In this 

study, drilling bit, formation properties, drilling parameters and drilling mud properties as 

effective parameters are considered. Statistical analysis of the parameters values is given in 

Table 1. 

 

 

5. METHODOLOGY AND RESULTS 
 

For predicting the drilling ROP, we have used MLP neural network and optimized MLP 

neural network by different algorithms. Since MLP neural network is the most commonly 

used ANN in petroleum engineering, its performance by GA, PSO and PSO-GA hybrid 

algorithms was studied and the best combination was used to predict the penetration rate. 

In this model, size of bit, bit type, total flow area (TFA), depth in ( ), depth out (

), WOB, RPM, pump output rate ( ), pump pressure ( ), plastic viscosity (PV), mud 

weight (MW) and average unconfined compressive strength (UCS) of formation are 

considered the inputs for ANN and the output is the ROP. Among 308 data sets (input and 

output), after removal of suspicious data, 299 data sets for 10 wells were used to construct a 

neural network. 

The datasets were divided randomly into three distinct subsets consisting of training, 

validation and testing. The proportions of each of these subsets were 70%, 15% and 15% of 

whole of the data. In this study, two criteria were used to stop the training phase, minimum 

inD outD

pQ pP
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mean square error (MSE) and validation data. In the first criterion, the training will be 

stopped if its MSE reaches a predefined MSE. Also, based on the second criterion (validation 

dataset) and for preventing from overfitting, when the error of validation dataset was 

increased, then the training will be stopped. In other words, the validation dataset is given to 

network along with its training to ensure that the network is not memorizing the training data 

(generalizing) and is able to predict the other data finely. Therefore, anywhere in training 

phase when validation error is increased, there is no need to continue the training. Due to 

intrinsic dispersion of dataset and in order to help the network to be converged faster, the 

available data was normalized into [0: 1.0] [10].  

 

 

5.1. Modeling 
 

5.1.1. MLP 

Multilayer perceptron is one of the most well studied architectures with several 

advantages in ANN, as mentioned earlier [11]. Therefore, in this study, we have employed 

this architecture to model ROP problem. Normally, finding an appropriate network in this 

architecture is based on a trial and error method. In other words, one should test different 

neurons with different layers. Then, based on the training and testing error, it is possible to 

reach a good enough structure. 

The best architecture for MLP was found to be [8 5 1] (8 neurons in the first hidden layer, 

5 neurons in the second hidden layer, and a neuron in the outer layer). Actually, this 

architecture yields the minimum MSE and maximum correlation coefficient. In this study, we 

have used Tansig and Purelin transfer functions for hidden layers and output layer of neural 

network, respectively. The MSE and correlation coefficient for testing dataset were 0.0033 

and 0.89, respectively. The results of MLP networks performance are presented in Figure 3 

and 4 and Table 2. 

 

 

Figure 3. Correlation coefficient of MLP network in the test stage. 
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Figure 4. Comparison of the estimated values by MLP and the real ROP. 

 

Table 2. Comparison of MLP and optimized MLP neural networks  

with different optimization algorithm 

 

Network MSE R 𝑅2  

MLP 0.0033 0.89 0.79 

MLP-GA 0.00325 0.93 0.86 

MLP-PSO 0.00307 0.96 0.92 

MLP-PSO-GA 0.00027 0.98 0.96 

 

The ROP can be predicted with good accuracy using perceptron neural network. 

However, for high values, the accuracy of network is not satisfactory. Therefore, optimization 

algorithms can be used to improve the applicability of neural networks.  

 

5.1.2. Training of MLP with PSO-GA (MLP-PSO-GA) 

One of the major problems in neural networks, especially MLP, is time demanding 

computations of multilayer weights. One of the useful and new methods for finding optimum 

value in a search space is optimization algorithms. In this section, GA, PSO and PSO-GA 

algorithms were used for network training and the best performance was found due with PSO-

GA hybrid algorithm. PSO-GA hybrid algorithm has wide application areas, which is more 

useful in problems where the search space is large, complex or poorly understood, also when 

traditional search methods fail or no mathematical analysis is available. The steps of the 

method used to train the MLP using PSO-GA hybrid algorithm is described in Figure 5. The 

error and correction coefficient for calculating ROP are 0.00027 and 0.98, respectively. 

Figure 6 and 7 and Table 2 show the performance of this model. 

It is clear that PSO-GA-MLP network has a performance much higher than other neural 

networks.  
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Table 3. Value and the range of the fixed and valuable parameters  

in different parts of well 

 

Variable parameters ranges Fixed parameter Bit size (in) 

Bit Type : [111 - 323] 

WOB (1000Ib) = [15 - 80] 

RPM (rev/min) = [100 - 200] 

TFA(𝑖𝑛2) = [0.589 - 1.55] 

MW (pcf) = [54.83 – 96.67] 

PV (cp) = [2.5 - 29] 

𝑃𝑝 (Psi) = [312.5 - 2900] 

𝑄𝑝 (gpm) = [332.86 - 1000]  

: 0( )𝐷𝑖𝑛  

: 7140.56( )𝐷𝑜𝑢𝑡  

UCS (psi) : 6381.7 

17.5 

Bit Type : [214 - 423] 

WOB (1000Ib) = [10 - 45] 

RPM (rev/min) = [40 - 220] 

TFA(𝑖𝑛2) = [0.3 - 1.203] 

MW (pcf) = [102.5 – 147.33] 

PV (cp) = [20.5 - 75.9] 

𝑃𝑝 (Psi) = [491.67 – 3328.6] 

𝑄𝑝 (gpm) = [225 - 650] 

: 4711.72( )𝐷𝑖𝑛   

: 8796.96( )𝐷𝑜𝑢𝑡   

 UCS (psi) : 12460.3 

12.25 

Bit Type : [135 – 323] 

WOB (1000Ib) = [10 - 50] 

RPM (rev/min) = [20 - 190] 

TFA(𝑖𝑛2) = [0.451 - 1.491] 

MW (pcf) = [63 – 113.33] 

PV (cp) = [4.25 - 64] 

𝑃𝑝 (Psi) = [450 - 1633.33] 

𝑄𝑝 (gpm) = [116.7 - 515] 

: 7727.68( )𝐷𝑖𝑛   

: 12129.44( )𝐷𝑜𝑢𝑡   

 UCS (psi) : 13549.54 

8.5 

 

 

6. OPTIMIZATION OF DRILLING ROP 
 

According to well profile, optimization of the input parameters must be done in three 

different well sizes. For the process of optimization, changes are allowed in the parameters 

such as WOB, RPM, TFA, pQ  and pP  while, the size of the bit and the UCS must be kept 

fixed. The range of the variable parameter and the fixed parameter values in different parts of 

the well are reported in Table 3.  

To obtain optimal values for the parameters, the PSO-GA hybrid algorithm was used. 

Using this algorithm as a powerful tool, optimization of the ROP in each part of the well is 

performed separately. As illustrated in Table 3, the domain of the variable input and fixed 

parameters are changed in different parts of the well. This difference is due to the difference 

in the well geometry and limitation in mud circulation flow for cleaning and, prevention from 

pipe sticking. The results taken from optimizing parameters for reading to the maximum 

penetration rate are illustrated in Table 4. 
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Table 4. The values of the optimized parameters in three parts of well 

 

Fixed Parameters Variable parameters (Optimized Value) B
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17.5 0 7140.56 63817 22 198 0.88 68.82 15 1225 451 M 323 93.8 

12.25 5169 8779 12460.3 35 170 1.15 109.51 40 1550 346 M 422 45 

8.5 6970 12129.4 13549.54 40 180 0.81 74.08 28 1730 480 M 323 40.24 

 

 

Figure 5. Flowchart of the MLP neural network training by particle swarm optimization and genetic 

hybrid algorithm. 

 

 

Figure 6. Correlation coefficient of MLP-PSO-GA network in the test stage. 
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Figure 7. Comparison of the estimated values by MLP-PSO-GA and the real ROP. 

 

7. DISCUSSION ON THE RESULTS 
 

The general observed trend in all well sections represent a decrease in ROP verses depth. 

This is due to the fact that the average compressive strength grows while depth increases. 

Comparing the optimized penetration rate with the maximum actual penetration rate shows its 

significant increase. The cause of low ROP in the size 8.5 inches well is because of using 

inappropriate bits that out of the eleven bit used, 6 types are useable for the soft formation  

and 4 types for the soft-to-average formations. According to the UCS of the formation 

(13549.054psi), the formation is the average ones that only one type of bit, and that in 

average range, exists among the used bits. Now, the result of optimizing must be 

operationally assessed whether they are usable in operation or not. 

 

 

7.1. Drilling Bit 
 

The selected bit in each size must have the ability to drilling formation, for this reason, 

we put the bits under assessment for UCS. The results are illustrated in Table 5.  

 

Table 5. Assessment of the selected drilling bit in the three hole sizes 

 

Unconfined compressive 

strength of the proposed bit (psi) 

Unconfined compressive 

strength of formation (psi) 

Bit type Selected bit Bit 

Size 

14000 6381.7 HC606 M323 17.5 

24000 12460.3 DSX819 M422 12.25 

14000 13549.54 G536XL M323 8.5 
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Table 6. Assessment of the optimized ROP in the three hole sizes 

 

Annulus velocity 

(ft/sec)  

Slip velocity 

(ft/sec) 

Maximum ROP 

(ft/hr) 

ROP (ft/hr) Hole Size 

3.89 1.8 86.56 93.8 17.5 

2.99 1.01 21.58 45 12.25 

4.15 2.66 21.06 40.24 8.5 

 

 

7.2. Drilling ROP 
 

Using the optimum penetration rate may cause some problems. One of the predictable 

problems is drilling bit sticking caused by inappropriate well cleaning. For an appropriate 

cleaning; the speed of mud flow in annulus must be in a level that takes over the speed of 

mud vibration. For calculations of mud velocity in annulus and mud slippage velocity, the 

following formulas are used: 

Mud velocity in Annulus: 

 

ann

. Q
V

D D
hole pipe




2 2

24 5
 (4) 

 

Mud slippage velocity in vertical and mostly – vertical [12]: 

 

enp

s p
p

p

DPVV . ( )[ D ( ) ]
MW D PV MW( )

MW D

     



2

368000 45 1 1 1
 (5) 

 

Mud slippage velocity in pointed wells [13]: 

 

min cut slip
V V V   (6) 

 

cut
pipe

hole

V
D .[( ( ) ) ( . )]
D ROP



  2

1

17 821 0 685

 (7) 

 

slip angle size mw
V ESV C C C     (8) 

 

angle angle angle
C . . .    2

0 0052 0 0002 0 2  (9) 

 

size cut
C . D .   

50
1 02 1 27  (10) 
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mw mud
C . ( . )   1 0 333 8 65  (11) 

 

a
ESV . .  0 0052 3 1  (12) 

 

where the minV  is minimum speed of needed mud (ft/sec), cutV  is speed of retail transfer 

(ft/sec), slipV
 
is speed of vibration (ft/sec), angleC

 
is angel correction factor, sizeC is particle 

size correction factor, mwC is mud weight correction factor, ESV is corrected speed, pipeD is 

outside diagonal of the drilling pipe (in), holeD is the diagonal of well (in), angle
 
is 

inclination angel of well from vertical position (degree), 50cutD  is average size of particles 

(in), mud
 
is mud density (PPG), a  is outward viscosity (cp), enpD

 
is density of drilling 

particles (PPG), pD
 
is diagonal of particles (in) and MW is density of drilling mud (PPG). 

The results of calculations are illustrated in Table 6. As can be seen, the velocity of the 

optimized mud is faster than the slippage velocity in each of three parts of well, therefore, 

well cleaning is well done. As a result, there will not be bit floundering in the three sections 

by using the ROP and flow rate recommended by optimization results. 

 

 

CONCLUSION 
 

1. A methodology was proposed for prediction of ROP in any depth of field using 

operational and geological data. 

2. ROP is governed by numerous factors that make finding analytical solution with 

acceptable accuracy very difficult or impossible. 

3. A new method was carried out for prediction and optimization of ROP using hybrid 

PSO and GA algorithm and MLP network. 

4. Results show that MLP ANN optimized with PSO-GA hybrid algorithm is a very 

efficient and accurate tool to predict ROP and is effective in drilling operation 

planning.  

5. Assessment of the optimization results shows that the values of the optimized 

parameters are in fact usable and will not make any problem in drilling operation and 

using the optimal parameters results in cost savings and minimizing time for drilling 

projects. 

6. The advantage of this model over other drilling improvement methods is 

consideration of all effective parameters on drilling operation and being accurate, 

comprehensive, and easy application. 
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ABSTRACT 
 

Appropriate execution of drilling operation, in particular for high pressure and high 

temperature wells, requires accurate knowledge of behavior of the drilling fluid density 

as a function of pressure and temperature. In this communication, a novel mathematical-

based approach is presented to develop a reliable model for predict the density of four 

drilling fluid including water-based, oil-based, Colloidal Gas Aphron (CGA) and 

synthetic. To pursue our objective, a predictive model is proposed using a robust soft 

computing approach namely least square support vector machine (LSSVM) modeling 

optimized with coupled simulated annealing (CSA) optimization tool. Moreover, 

leverage approach, in which the statistical Hat matrix, Williams plot, and the residuals of 

the model results lead to identification of the probable outliers, has been applied. It is 

found that all of the experimental data seem to be reliable and only a few percent of them 

are out of applicability domain of the developed models for drilling fluid density. The 
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obtained results demonstrate that the developed CSA-LSSVM model is rapid, reliable, 

and efficient to estimate the density of four aforementioned drilling fluids. 

 

Keywords: density prediction, drilling fluid, least square support vector machine, coupled 

simulated annealing, crude oil 

 

 

1. INTRODUCTION 
 

In general, drilling fluids are complex heterogeneous mixtures of various types of 

chemical additives and base fluids that must remain stable over a range of pressure and 

temperature conditions. The drilling fluid density is a fundamental parameter for calculating 

wellbore pressure, and also is of crucial importance for the success of drilling and completion 

operations (Wang et al., 2012). Moreover, the effective drilling fluid density is directly 

concerned with the downhole variations in temperature and pressure and thus, is a very 

important part of drilling engineering (Karstad and Aadnoy, 1998). By the reducing in 

exploitable reserves from shallow horizons, deeper exploration activity is increasing (Ram 

Babu, 1998). In high temperature and high pressure (HTHP) wells, as drilling operation 

progresses for deep wells and thus the total vertical depth (TVD) increases, the density of 

drilling fluid will be changed with increasing temperature and pressure (Babu, 1996; 

Isambourg et al., 1996; Karstad and Aadnoy, 1998). 

As mentioned above, as the TVD increases, there is an increase in the bottom-hole 

temperature, as well as the hydrostatic head of the mud column in the HTHP wells. These two 

factors have opposing influences on equivalent circulating density (ECD). The increased 

hydrostatic head causes increase in the ECD due to compression. On the other hand, the 

increase in temperature causes a decrease in the ECD due to thermal expansion. It is most 

often assumed that these two impacts cancel each other out (Harris, 2004). This is not always 

the case, especially in HTHP wells. 

The accurate density behavior of a drilling fluid at HTHP can be obtained only through 

actual measurements (Wang et al., 2012). Consequently, these measurements require special 

equipment along with expensive, difficult and time-consuming procedures. Moreover, it is 

difficult to obtain a large data set that covers the entire range of pressure and temperature 

under bottom-hole conditions in order to achieve an accurate estimation. Therefore, 

introducing a rapid, robust and accurate technique than the aforementioned measurements is 

necessary. Recently, intelligent techniques such as Support Vector Machines (SVMs) have 

increasingly gained attention in solving complex classification and regression problems. The 

SVM strategy has been successfully utilized to several different applications in petroleum and 

natural engineering such as PVT properties estimation, gas properties prediction, porosity and 

permeability determination, etc. (Kamari et al., 2014a; Kamari et al., 2015a; Kamari et al., 

2014b; Kamari et al., 2015b). Least Square Support Vector Machine (LSSVM) is a variant 

and modified version of SVM (Suykens and Vandewalle, 1999), which implements the 

equality constraints to replace the original convex quadratic programming problem (Wang et 

al., 2010). 

In this work, more than 880 datasets including various types of mud, initial density, 

pressure and temperature have been gathered from the literatures (Demirdal and Cunha, 2007; 

McMordie et al., 1982; Osman and Aggour, 2003). In the next step, to obtain the most 
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efficient model the data points including inputs and their corresponding outputs randomly 

split in to three sub-sets: 80% have been utilized for developing the new model and the 10% 

and 10% have been used for validating and testing phases, respectively. The proposed 

strategy utilizes LSSVM to construct nonlinear modeling. Besides, a novel feature selection 

mechanism based on Coupled Simulated Annealing (CSA) optimization for tuning the 

optimal parameter has been applied. Moreover, statistical and graphical error analyses are 

conducted to establish the adequacy and accuracy of CSA-LSSVM model. 

 

 

2. MODEL DEVELOPMENT 
 

2.1. Data Gathering 
 

The applicability, reliability and accuracy of any model normally associated to the 

comprehensiveness and validity of the employed data set for their development (Gharagheizi, 

2009; Gharagheizi et al., 2008; Mohammadi and Richon, 2008; Scalabrin et al., 2006; 

Taghanaki et al., 2013). As previously mentioned, to estimate drilling fluid density, it is 

important to take into account the effects of temperature and pressure on fluid. Moreover, 

unlike the empirical methods which ignore the impact of drilling fluid type on the density at 

HTHP, to an accurate estimation type of mud is selected as input parameter in this work. 

Therefore, in this study, density of drilling fluid will be estimated based on experimental data 

reported in the literatures (Demirdal and Cunha, 2007; McMordie et al., 1982; Osman and 

Aggour, 2003) at various types of mud with different initial surface densities, temperatures 

and pressures. Statistical distributions of the data are summarized in Table 1 for water-based 

and oil-based, Colloidal Gas Aphron (CGA) and synthetic drilling fluids. As it is clearly seen 

in in Table 1 the data points cover a large and comprehensive range of densities at pressure 

and temperature for four types of drilling fluids. Moreover, as can be seen in Table 1, the oil-

based mud has more density than water-based mud in same temperature and pressure. 

 

 

2.2. Support Vector Machine Strategy 
 

The Support Vector Machine (SVM) has been identified as a consistent and effective 

strategy proposed from the machine-learning community (Eslamimanesh et al., 2012; 

Suykens and Vandewalle, 1999). A SVM is a tool for a set of related supervised learning 

techniques which analyze data and recognize patterns and also are utilized for regression 

analysis. On the basis of SVM primary formulations any function f(x) can be regressed as 

follow(Suykens et al., 2002): 

 

  (1) 

 

where  is transposed output layer vector,  represents the kernel function, and  

stands for the bias. The input of the model, x, is of a dimension N × n in which N and n 

express the number of data points and number of input parameters, respectively (In case of 

bwxf T  (x))( 

Tw )(x b
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training set, N may be regarded as the number of training set data points). Vapnik proposed 

minimization of the following cost function in order to calculate w and b (Suykens et al., 

2002): 

 

  (2) 

 

Table 1. Descriptive statistics of data set for water-based, oil-based, CGA, and synthetic 

drilling fluids 

 

Parameter Unit Min. Avg. Max 

Water-Based Drilling Fluid 

Initial Density g/cm3 1.318155 1.71 2.156980228 

Pressure Mpa 0.101325 34.38 96.601325 

Temperature K 294.2611 392.55 477.5944444 

Density at Pressure and 

Temperature 

g/cm3 1.149191 1.63 2.19892151 

Oil-Based Drilling Fluid 

Initial Density g/cm3 1.318155 1.71 2.156980228 

Pressure Mpa 0.101325 34.38 96.601325 

Temperature K 294.2611 392.55 477.5944444 

Density at Pressure and 

Temperature 

g/cm3 1.1839425 1.67 2.212103056 

CGA Drilling Fluid 

Initial Density g/cm3 0.85 1.00 1.15 

Pressure Mpa 1 10.50 20 

Temperature K 303.15 353.15 403.15 

Density at Pressure and 

Temperature 

g/cm3 0.780282 1.07 1.37571 

Synthetic Drilling Fluid 

Initial Density g/cm3 0.7520671 0.76 0.781905333 

Pressure Mpa 0.020252 48.64 96.98939286 

Temperature K 298.15 373.15 448.15 

Density at Pressure and 

Temperature 

g/cm3 0.6292642 0.74 0.834601558 

 

To satisfy constraints: 

 

  (3) 

 

where  stand for kth data point input, and kth data point output, respectively. The ε 

denotes the fixed precision of the function approximation. The  and  are slack 
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variables. It should be considered that if we choose a small ε to develop a very accurate 

model, some data points may be outside of the ε precision. Consequently, this issue may 

result in infeasible solution. As a result, one should use slack parameters to determine the 

allowed margin of error. The  in Eq. (2) is considered as the tuning parameter of the 

SVM which determines the amount of the deviation from the desired ε. In other word, one of 

the tuning parameters of the SVM is c. To minimize the cost function illustrated in Eq. (2) 

along with its constraints defined in Eq. (3), one should use the Lagrangian for this problem 

as follows (Suykens et al., 2002): 

 

  (4) 

 

  (4a) 

 

  (4b) 

 

where ak and ak* denote Lagrangin multipliers. Eventually, the final form of the SVM is 

obtained as follows: 

 

  (5) 

 

To solve the problem and find , one should solve a quadratic programming 

problem which is immensely difficult. Later, Suykens and Vandewalle (Pelckmans et al., 

2002; Suykens and Vandewalle, 1999) developed the least square modification of the SVM 

(LSSVM) to facilitate the original SVM method. In the proposed LSSVM approach, Suykens 

and Vandewalle (Pelckmans et al., 2002; Suykens and Vandewalle, 1999) reformulated the 

SVM as follows (Suykens et al., 2002): 

 

  (6) 

 

Subjected to the following constraint: 

 

  (7) 

 

where γ is tuning parameter in LSSVM method and ek represents the error variable. The 

Lagrangian for this problem is as follows: 
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  (8) 

 

where  are Lagrangian multipliers. The derivatives of Eq. (8) should be equated to zero in 

order to solve the problem. Thus, the following equations are obtained: 

 

  (9) 

 

Eq. (9) indicates that there are 2N + 2 equations and 2N + 2 unknown parameters 

. Thus, the parameters of LSSVM can be obtained by solving the system 

of equations defined in Eq. (9) (Suykens et al., 2002). 

As stated earlier, the LSSVM has a tuning parameter . Since, either of the LSSVM and 

SVM are kernel-based technique, we should consider the parameters of the kernel functions 

as other tuning parameters. In case of RBF kernel function: 

 

  (10) 

 

The other tuning parameter is . Therefore, in LSSVM algorithm with RBF kernel 

function, there is two tuning parameters which should be achieved by minimization of the 

deviation of the LSSVM model from experimental values (Suykens et al., 2002). 

 

 

4. RESULTS AND DISCUSSION 
 

Drilling fluid type, initial density, temperature and pressure have been considered as 

correlating parameters of density of drilling fluid. As previously mentioned, the optimum 

values of the LSSVM parameters consist of γ and σ2 have been evaluated using CSA. The 

optimized values of CSA-LSSVM models are 102.4870 and 9115303629.8906 for σ2 and γ, 

respectively. The numbers of reported digits of the two aforementioned parameters are 

normally obtained through sensitivity analysis of the overall error of the optimization 

procedure (Gharagheizi, 2007). 

Table 5 summaries the statistical parameters of the developed model involving squared 

correlation coefficients (R2), average absolute relative deviations (AARDs), standard 

deviation errors STD, and root mean square errors (RMSEs). A comparison between the 
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represented/predicted drilling fluid density values and the experimental values are illustrated 

in Figures 1 and 2. Figure 1 illustrates the scatter diagram that compares experimental density 

versus CSA-LSSVM model outputs. A tight cloud of points about 45 line for training, 

validation and testing data sets show the robustness of the developed model. The obtained 

results indicate that excellent agreement exists between the prediction of CSA-LSSVM and 

the experimental data. Moreover, Figure 2 represents the error distribution of the developed 

CSA-LSSVM model for prediction of drilling fluid density. This figure confirms that the 

proposed CSA-LSSVM model has the small error range and the low scatter around the zero 

error. These results display that the major advantage of CSA-LSSVM method is appropriate 

capability for modeling nonlinear properties. 

 

 

Figure 1. Comparison between the results of the developed model and the data base values. 

Table 2. Statistical Parameters of the developed CSA-LSSVM model to determine  

the drilling fluid density 

 

Statistical Parameter Value 

 Training Set 

R2 0.999 

Average absolute relative deviation 0.1 

Standard deviation error 0.002 

Root mean square error 0.002 

N 708 

 Validation Set 

R2 0.999 

Average absolute relative deviation 0.1 

Standard deviation error 0.002 
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Table 2. (Continued) 

 

Statistical Parameter Value 

Root mean square error 0.002 

N 88 

 Test Set 

R2 0.999 

Average absolute relative deviation 0.1 

Standard deviation error 0.002 

Root mean square error 0.002 

N 88 

 Total 

R2 0.999 

Average absolute relative deviation 0.1 

Standard deviation error 0.002 

Root mean square error 0.002 

Ne 88 

 

 

Figure 2. Relative deviations of the drilling fluid density values obtained by the proposed model from 

data base values. 

Outlier detection (or diagnostics) is of much importance in proposing the mathematical 

models (Mohammadi et al., 2012a; Mohammadi et al., 2012b). Detection of outlier is to 

recognize of individual datum (or groups of data) that may differ from the bulk of the data 

present in a databank (Gramatica, 2007; Mohammadi et al., 2012a; Mohammadi et al., 2012b; 

Rousseeuw and Leroy, 2005). Consequently, there is indeed a necessity to evaluate the 

available experimental data for drilling fluid density data, since uncertainties affect the 

estimation capability of the proposed CSA-LSSVM model. Therefore, we have implemented 

the Leverage Value Statistics technique (Goodall, 1993; Gramatica, 2007). The Graphical 
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detection of the suspended data or outliers is undertaken through sketching the Williams plot 

on the basis of the calculated H values (Mohammadi et al., 2012a; Mohammadi et al., 2012b). 

A detailed definition of computational procedure and equations of this technique can be found 

elsewhere (Mohammadi et al., 2012a; Mohammadi et al., 2012b). The Williams plot has been 

sketched in Figure 3 for the obtained results using the CSA-LSSVM model. Existence of the 

majority of data points in the ranges 0  H  0.01696 and -3 displays that the 

implemented models are statistically valid and correct. Moreover, it indicates that the whole 

data except one in the dataset are located within the applicability domains of the implemented 

models. Therefore, there are only a few points in the datasets which is within this domain and 

consequently we can state it as probable doubtful datum. 

 

 

CONCLUSION 
 

In this study, least square support vector machine technique as a supervised learning 

method based on coupled simulated annealing has been proposed in order to predict the 

density of various types of drilling fluids. In actuality, the method employed a hybrid CSA-

LSSVM approach for optimizing the model parameters. The results illustrated that SVM-

based (LSSVM) method with the CSA-based parameters tuning approach, introduced in this 

work, can result in excellent generalization and can be advantageously used for prediction of 

drilling fluid density. Furthermore, the CSA-LSSVM model can easily be utilized in any 

reservoir simulation software and provides superior accuracy and performance for drilling 

fluid density estimation than previous correlations and analytical methods. 

 

 

Figure 3. Detection of the probable doubtful data and the applicability domain of the developed CSA-

LSSVM model. 
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