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PREFACE
Digitalization of oil and gas operations started several decades ago using

supervisory control and data acquisition (SCADA) systems to gather data

on high-cost producing assets, such as offshore, and to replace electrome-

chanical paper chart recorders. In the last decade—driven by some key tech-

nology trends, such as reduced costs for sensors and data storage (Big Data)

and ubiquitous communication—the industry is seeing more

implementations of what we all know as the digital oil field (DOF). In gen-

eral, DOF refers to acquiring high-frequency data, even streaming real-time

data, and using that data to increase production efficiency, reduce down-

time, implement field-wide efficiencies, and optimize reservoir recovery

and management.

While DOF implementations are increasing, as of 2017, the oil and gas

(O&G) industry still faces many challenges to achieving full implementation

of and maximum value from DOF solutions. Many different industries—

such as mobile communications, medical, computers, social media, retail,

and industries, such as airlines—report that more than 70% of previously

manual processes are now automated and connected in real time to data-

driven solutions or the Internet of things (IoT), leading to faster responses

and increased operational efficiency. But surveys and news articles from

the O&G industry suggest that less than 25% of all firms surveyed are con-

nected to real-time operational data, and the percentage of operating wells

that have digital real-time data is less than 10%.

Early on, many O&G firms thought that the DOF was simply “IT”

(information technology) or “data management.”While we now know that

DOF is so much more, the low numbers from these survey results led us to

believe that many companies are still struggling to figure out how to imple-

ment DOF solutions and realize the promise of its value to operations and

business.

We have been fortunate to work on some ground-breaking DOF pro-

jects that have delivered on the operational and business performance results.

These projects leveraged technology and related cost breakthroughs in areas

such as sensors, wireless connectivity, storage, computations, data analytics,

process engineering, and automation and control.

We were motivated to write this book to share our experiences in

implementing such solutions, and in identifying and overcoming the many
xi



xii Preface
challenges faced when implementing DOF solutions in inherently complex

O&G operations.

Our work on and knowledge of the DOF began in the mid-2000s. In

2010–13, as part of an extensive team from Halliburton, we worked on a

multi-vendor project for Kuwait Oil Company (KOC) called the Kuwait

Intelligent Digital Oil Field (KwIDF). The KwIDF project developed

state-of-the-industry, real-time data acquisition, and automated production

workflows to KOC. KOC and key members of the project team docu-

mented the project and its accomplishments by publishing more than 15

technical papers through the Society of Petroleum Engineers (SPE); in

2013, the KwIDF project won the ADIPEC (Abu Dhabi International

Petroleum Exhibition and Conference) best-technology award. We

acknowledge Kuwait Oil Company’s management leadership on KwIDF.

Since our KwIDF experience, we have continued to contribute to,

enhance, and develop DOF solutions in our respective positions for com-

panies and projects around the world, including several Middle East fields

and in North America in the Permian, Unita, San Joaquin, mid-Continent,

and Eagle Ford areas. These projects contributed real value to their respec-

tive operators.

Intelligent Digital Oil and Gas Fields: Concepts, Collaboration, and Right-time

Decisions draws on our collective and diverse experience to deliver to readers

a roadmap through key areas and related issues and challenges of DOF

implementations. Chapter 1 sets the stage by providing historical context

for details discussed in later chapters, and ending with a summary of some

milestone DOF projects and their respective achievements in asset value

and financial indicators, serving as incentive to overcome the technical com-

plexities of DOF systems and reach the value.

The book introduces the new age of digital O&G technology and pro-

cess components, discussing new sensors (SCADA), well mechanics (such as

downhole valves), data analytics and models for dealing with a barrage of

data, and changes in the way professionals collaborate and make decisions.

The book covers topics such as downhole sensors, artificial lift, production

surveillance, production optimization, automation, smart wells, integrated

reservoir management, and collaboration and change management

processes.

The book takes readers on a journey starting at the well level, that is,

through instrumentation and measurement for real-time data acquisition,

and then provides practical information on analytics on the real-time data.

Artificial intelligence techniques provide insights from the data. We discuss
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workflows on well production decisions from the perspective of “smart,”

automated and model-based decisions for optimizing production. The jour-

ney then moves from the well to the “integrated asset” by detailing how

companies use integrated asset models to manage assets (reservoirs) within

a DOF context. From model to practice, new ways to operate smart wells

enable optimizing an asset. The book also describes collaborative systems

and ways of working and how companies are transitioning their work forces

to use the technology to make more optimal decisions.

We providemany examples and lessons learned from various case studies,

which create a reference that can help managers, engineers, operations, and

IT professionals understand specifics on how to filter data, address analytics,

and link workflows across the production value chain—that is, its people,

processes, and technologies—thereby enabling teams to make better deci-

sions with more certainty and reduced risk.

The DOF started as a small and expensive technology investment. But as

the broader information and communication technologies have emerged

and costs have plummeted, the O&G industry and DOF systems are leverag-

ing those advances—such as Big Data, ubiquitous communication and

lowered costs of DOF sensors and technologies—for significant value.

Today large and small O&G companies can use this quickly evolving tech-

nology to achieve real value, and it may be more important now than ever.

With data volumes and complexity increasing and operating environments

and budgets becoming more challenging, engineers and managers are

pressed to keep up with infrastructures that are more complex and turn their

data into optimized operations and profitable decisions.

This book provides extensive references for further reading and a final

chapter on the next-generation DOF. Use it as a reference to help transform

engineering workflows and data analytics into successfully delivered O&G

projects.

Gustavo Carvajal

Sr. Reservoir Engineer at BP America

Marko Maucec

Petroleum Engineering Specialist at Saudi Aramco

Stan Cullick

Engineering Advisor, Rare Petro Technologies, Inc. and CEO,

Greenway Energy Transformations, LLC
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World energy demand is expected grow from about 550 quadrillion

(Q) BTU in 2012 to 850QBTU in 2040 according to 2016 projections from

the International Energy Agency (IEA). As can be seen from Fig. 1.1,

although renewables will grow by a large percentage, petroleum-based

liquids (oil) and natural gas will continue to be the largest contributors to

energy utilization by the world’s population, representing about 55% of

the total. Since any current oil and gas production naturally declines, the

continued growth of petroleum fuels will be made possible only by leaps

forward in technology in finding, drilling, and producing those resources

more efficiently and economically. One of the great stories in oil and gas
igent Digital Oil and Gas Fields © 2018 Elsevier Inc.
://doi.org/10.1016/B978-0-12-804642-5.00001-3 All rights reserved.
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Fig. 1.1 World energy consumption by energy type [International Energy Outlook 2016,
Report Number: DOE/EIA-0484(2016). Projection of 46% increase over base 2012].

2 Intelligent Digital Oil and Gas Fields
production is the industry’s implementation of new digital technologies that

increase production for less unit cost. This “revolution” of the “digital oil

field” (DOF) is the subject of this book.

An oil or gas production field is a value chain of a well drilled into a

subterranean rock formation from which oil or gas flows to perforations in

the well, and then up the well through various chokes and valves to surface

pipelines and treatment facilities and ultimately to a sales terminal or tank.

Fig. 1.2A is an offshore complex of wellheads and production facilities, and

Fig. 1.2B illustrates a complex of pipes from an offshore complex to wellheads

on a sea floor, which connect to wells drilled miles under the seafloor to an oil

reservoir. Fig. 1.2C illustrates wellheads on an onshore complex which uses

pumps to lift the oil. For each of these situations, there are numerousmeasure-

ments that enable the operations and production personnel to monitor and

improve the production (Fig. 1.2D). These measurements include pressures,

temperatures, flow rates, power, vibration, and many more to be discussed in

this book. DOF is the application of state-of-the-art technology for sensors,

data communication, data analytics, collaboration, and decision making,

throughout the value chain of completions, wells, pumps, pipes, chokes,

compressors, treatment facilities, etc. to increase production at lower cost.

This book leads through the journey of how DOF came to be, the state

of DOF today, best practices that can be employed in your own professional

work—whether management, operations, or production—and a view of



(A) (B)

(C) (D)

Fig. 1.2 (A) Offshore oil production platform, (B) subsea well production template,
(C) onshore production from artificial lifted wells, and (D) operations center.

3Introduction to Digital Oil and Gas Field Systems
what will be possible in the near future. This chapter provides an introduc-

tion to DOF and the subsequent topics to be covered.

1.1 WHAT IS A DIGITAL OIL AND GAS FIELD?

When many people first hear the term digital oil field they visualize
things such as computer displays where you can drag-and-drop digital

objects and push buttons to monitor and automate the equipment used in

oil and gas field operations. This common vision most definitely describes

the interface for a DOF system. But behind the crystal screens are many

sensors, cables, circuits, electronic switches, logic algorithms, and com-

puters, which are integrated with the specialized instrumentation and

equipment—below ground and on the surface—required to run oil and

gas fields. This sophisticated collection of technology is further integrated

with processes and people into a single system that allows people to interface

with the computer technology to optimize the operations of oil and gas

fields. It is this collection of technology, processes, and people into an intel-

ligent system that we refer to as the DOF.

DOF systems are commonly known for the promise of delivering the

right data, to the right people, at the right time for effective asset decision
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making that supports a company’s objectives in terms of maximizing hydro-

carbon recovery and improving operational efficiency. Several common

definitions from the literature include the ones listed below:

• “Digital oil field is an umbrella term for technology-centric solutions

that allow companies to leverage limited resources. For instance, such

technology can help employees to more quickly and accurately analyze

the growing volumes of data generated by increasingly sophisticated

engineering technologies (Steinhubl et al., 2008).”

• Saputelli et al. (2013) have defined DOF as “the orchestration of disci-

plines, data, engineering applications, and workflow integration tools

supported by digital automation, which may involve field instrumenta-

tion, telemetry, automation, data management, integrated production

models, workflow automation, visualization, collaboration environ-

ments, and predictive analytics.”

• “A digital oil field is defined by how a petroleum business deploys its

technology, people, and processes to support optimizing hydrocarbon

production, improving operational safety, protecting the environment,

maximizing, and discovering reserves in addition to maintaining a

competitive edge.” (istore https://www.istore.com/).
We define a digital oil field implementation as a technology system that integrates
high-volume data acquisition and transmission in real time for using data in oper-
ations centers, distributed computer systems, and mobile technologies. From these
destinations, data are reproduced in virtual models and visualized in a cross-
discipline collaborative environment by automated workflows, machine-to-machine
communication, intelligent agents, and predictive analytic systems. An integrated
DOF approach enables a company to maintain its oil and gas operations at optimal
and safe operating conditions and ultimately maximize financial potential with min-
imum human intervention.

Fig. 1.3 depicts the most important elements of a DOF system.

1.2 DOF KEY TECHNOLOGIES

Many in the industry would argue that DOF began in the early 1980s
with the introduction of SCADA (supervisory control and data acquisition)

systems in oil and gas production. Those first programs were analog systems

with charts that were manually read and interpreted by people. The term

DOF is more appropriately associated with introduction of digital sensors,

https://www.istore.com
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data communication, and computation the mid-1990s, which was followed

by an evolution of data and computation in the 2000s. In the mid-2010s, we

argue that DOF is in adolescence, with growing “big data” technologies,

increasing automation and intelligence being applied, introduction of

collaboration decision centers, and emphasis on work processes.

But a golden era of DOF—with sensors on all relevant equipment

mobility of applications, intelligence in automation, and automated optimi-

zation of production and field management in real time—is on the horizon

in the coming years and decades. We can say with confidence that the

coming decade will introduce exciting new advancements. Let us take a look

at some of the key technologies that were crucial to getting us this far and

will be crucial to achieving this golden age of DOF systems.

What we now know as the Internet began through a partnership

between the military, universities, and private corporations known as the

ARPANET (Isaacson, 2014). Isaacson (2014) provides a history of the full

development. The government-sponsored ARAPNET of the early 1960s

eventually enabled multiple computer connections using packet switching

and distributed network hubs. ARAPNET went from strictly government,

to a network of academic institutions in late 1960s, to a commercial enter-

prise and a standard protocol (IP/TCP) in the mid-1970s. By the late 1980s

the Internet began connecting the world and, with standard Internet proto-

cols (IP), enabled DOF systems to connect sensors throughout the oil and

gas value chain to centralized, distributed, and mobile computers.
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At the start of the new millennium, more than one-third of the total

global population used mobile phones transmitting an astronomical record

of 180 exabytes in data such as text, pictures/videos (low resolution), and

audio. In 2007, smartphones (iOS and Android) were launched, officially

ending the analog era, and open many windows into cyberspace and

hand-held portable devices (not a desktop computer).

In the last 10years, the era of cloud computing—where data are stored in a

repository data center to maintain structure, organize, and process and are

accessed through public or private networks—has become endemic. Today,

the common expression for the immense data size with exponential expan-

sion is big data, a reference to the fact that massive volumes of digital data

are not only stored but beyond that the data represent interconnected

sources and the data are actually analyzed (by machine learning, neural net-

works, and process statistics) in real time to enable a multitude of business

decisions and transactions. These systems rely on sharing of resources to

achieve data coherence and economy of scale.

With a global network and massive amounts of data available, both

consumers and businesses want access to all of that with more than just a

hand-held device. The Internet of Things (IoT) (Fig. 1.4) is the term used

to describe connecting a series of devices integrated with electronic,

software, and sensors to the Internet to allow sensing and controlling

remotely any object such as home alarm, doors, heating and cooling system,

cars, etc. In 2015, Cisco announced that more than 99% of total objects in

the physical world are still not connected to the Internet (Evans, 2012). They

predict that by 2020, 37 billion “smart things” will be connected to the

Internet. A Wall Street Journal article (Kessler, 2015) described how

ever-smaller technology will have revolutionary new applications such as

releasing sensors into blood streams to detect disease, sensors on glasses

projecting directly to the eye’s retina, 3D printing of equipment, construc-

tion sites customized in real time, and having thousands of sensors in oil wells

miles below the ground.

Sensors in oil and gas wells, pipelines, processing equipment, and com-

pressors are becoming much less expensive for the hardware, data transmis-

sion, communication, and their deployment compared with systems just a

few years ago. Data acquisition that used to require expensive instruments,

terminals and panels, communication lines, and slow transmission can now

be done for a fraction of price, equipment footprint, and data limits. Thus

technology advancements were key to enabling the DOF a reality, as you

will see in the following chapters.
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1.3 THE EVOLUTION OF DOF

Beginning in the mid-1990s a series of key projects defines the
evolution of DOF systems. This section introduces these projects and their

respective highlights with regard to the oil and gas operations that DOF

technologies have been applied to. Tables 1.1–1.9 in Section 1.8 summarize

each of these projects including the value reported by the operator (which is

discussed in this section).

In 1996, Statoil and the Norway Scientific Council (Norwegian Oil

Industry Association, 2006) developed a program called integrated opera-

tions (IO) to exploit deeper subsea fields under a new information and

communication technology program with goals to

• achieve zero environmental accidents,

• minimize human intervention and exposure to high-risk and remote

areas, and

• maximize monetary value for the company.

In 1998, Shell and WellDynamics (Ballengooijen, 2007) introduced the

concept of smart wells by installing a series of remote-controlled downhole

control valve (choke) devices and monitoring production in real time. Later,

the project was expanded, including production operation from multiple

reservoir and operational complex activities, which are referred to as Smart

Fields.

In 2000, BP (Reddick et al., 2008) made a significant advancement in

DOF for production optimization when the company invested heavily in

fiber communications and established advanced collaborative environments,

with monitoring centers based onshore that enabled experts to work directly

with offshore operations personnel using real-time information in a program

called Field of the Future.

From 2006 to 2011, Conoco Phillips initiated its IO (integrated opera-

tions) program in the North Sea and Norwegian continental shelf (Digital

Energy Journal, 2006). The program focused on operations, an engineering

toolkit, and data management. For selected assets the operations staff put

all artificial-lift wells on SCADA, constructed an integrated operations cen-

ter (IOC), and instituted workflows for alarm management, tank manage-

ment, visualization, and cost optimization. Data management consisted of

ensuring a wellhead record and transition from distributed data systems to

a single “source of truth” system. The IO program introduced management

by exception and tracking of well performance against a plan, which was
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charted and displayed in the IOC. The IOC was also equipped to control

wells and facilities. The IOCs enabled proactive management and addressed

issues such as production bottlenecks.

In 2005, Chevron rolled out its I-Field program (Oran et al., 2008).

For the San Joaquin Valley Business Unit in California, I-Field projects

included collaborative environments (decision support centers, DSC), remote

collaboration and visualization, and standardization. The DOF system yielded

increases in crewefficiency, better integrationof office and field activities, opti-

mization of steam systems, surveillance of well events, and a pattern-exception

tool. For its Agbami development inNigeria (Sankaran et al., 2010; Ibeh et al.,

2015), Chevron implemented intelligent well completions, management by

exception, improved collaboration, standardization and centralized analytics,

and increased focus on safety and environmental risks. The full DOF imple-

mentation in Agbami was a critical success factor in the reliability of intelli-

gent wells and minimizing interventions (Ibeh et al., 2015). The Agbami

DOF system uses downhole sensors, DSC, and sophisticated data capture

and satellite communications. DOF has also been critical for surveillance and

flow assurance. In conjunction, a production optimization and reservoir

management solution was deployed (Paulo et al., 2011) with well test valida-

tion, well rate estimation, and data analytics components.

In 2010, the Kuwait Oil Company (KOC) launched the Kuwait Intel-

ligent Digital Field (KwIDF) programwith three pilot projects (Dashti et al.,

2012; Ershaghi and Al-Abbassi, 2012), one of the most ambitious in the

industry, using state-of-the-art communications, sensor devices, collabora-

tion centers, and automated engineering workflows. The KwIDF vision was

to achieve IO for measurement, model, and control of oil field assets, where

informed decisions are made effectively and consistently in a collaborative

work environment for production and reservoir management. Al-Abbasi

et al. (2013) described that DOF is designed to help asset teams meet these

challenges, a new generation of petroleum workflow automation integrates

real-time data with asset models, helping team members to collaborate so

that they can analyze data better and more fully understand the asset prob-

lems. They called this program intelligent workflows or smart flows.

This approach is cutting edge but also more complex. The complexity is

addressed with the use of artificial intelligence technology, such as proxy

models and neural networks, coupled with a visualization engine to provide

an effective visual data-mining tool. The objective of their workflow automa-

tion is to provide integrated solutions to asset opportunities and guide the ope-

rations with instructions based on smart analysis and integrated visualization.
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Saudi Aramco’s first use of an intelligent field program (I-Field), started

in 2006 with its Haradh III Increment project, which included multilateral

wells equipped with smart completions and real-time data (Al-Hutheli et al.,

2012). The program objectives include the following:

• enhancing recoverable HC through in-time intervention and real-time

full-field optimization,

• enhancing HSE through remote monitoring and intervention, and

• reducing operation costs by minimizing manual supervision and

intervention.

As of 2010 (Abdul-Karim et al., 2010) Saudi Aramco had 19 intelligent fields

in operation, with a goal to implement the intelligent field concept in all of

its upstream operations by 2017, so it can better understand reservoirs and

improve.

1.4 DOF OPERATIONAL LEVELS AND LAYERS

We categorize DOF implementations using the following criteria:
• Are oil wells and related facilities installed with sensors and telemetry?

• What is the level and sophistication of process automation?

• What main type(s) of engineering activity is requested (monitoring,

diagnostic, and optimization)?

• What type of working environment is required?

Fig. 1.5 shows how the operational levels of an oil and gas (O&G) business

unit impact the major goals of O&G operations.

The pyramid has four layers, with the lowest level of manual processes,

increasing to automation, real-time operation center (RTOC), and ultima-

tely DOF. The pyramid also has three vertical axes that represent the key

performance indicators (KPIs) as automation increases toward a true DOF

implementation; these KPIs are improvements in production uptime, and

team and process efficiencies. The efficiency is a value relative to the manual

process. Note that other factors are hiding as human intervention and col-

laboration, where we assume that manual processes are executed completely

by human action (i.e., little to no automation) and collaboration is minimal.

In practice, any given O&G operation may operate at several of these

levels simultaneously, depending on factors such as the age and size of an

operation or asset. For example, older land-based operations may be

completely or mostly manual. Newer operations may have more automa-

tion, perhaps some SCADA or partially automated with some sensors and

other newer or offshore facilities (where risks and costs are inherently
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higher) may be fully automated with many sensors. Below is a description of

the four levels in Fig. 1.5.

Manual process level: This is the initial reference point, which assumes a

fully manual process. The data are not being acquired in real time. Basic sur-

face sensors [pressure (P), temperature (T), and volume (V)] are used, and

readings are recorded and annotated by people when they visit the operation

site. Production well tests are conducted periodically, on demand. The data

are exchanged between different disciplines by email or in a repository of

shared folders. The engineering workflows are performed manually by each

discipline (in silos, no integration). Monitoring is performed monthly and

diagnostic and optimization is performed randomly (2–3 times a year).

Communication is by phone, email, and meetings. Asset team collaboration

is low.

Automation level: The real-time data is gathered only from basic surface

sensors (P, T), and the information is gathered using wireless technology.

Production well tests are taken monthly or on demand. Data are centralized

in a SCADA/historian storage center using industry-standard protocols.

Some engineering workflows are automated. Monitoring is performed

daily, while diagnostic and optimization processes can be performed

monthly. Team discussions of production issues are conducted in meetings

and situation rooms. Collaboration starts to improve.

RTOC level: Most surface locations in a field have real-time sensors,

including flow meters. For wells without flow meters, virtual metering is

used for the entire field that can provide production data for individual

wells. Data are sent using wireless or WiMAX technologies (to support

high-volume data traffic). The data are centralized in the SCADA/historian

storage center using the industry standard protocols. Most engineering

workflows are automated, with advanced algorithms to provide alarms

and alerts. Monitoring is performed in real time, while diagnostic and opti-

mization can be performed weekly or monthly. The operation includes a

dedicated real-time operations center, with dedicated staff. Collaboration

is significant but not optimal. Communication with field operations staff

is via cell phone and by texting.

DOF level: The operations is exactly the same as an RTOC; however,

most engineering workflows are intelligent and with predictive capability

to generate advice and guidance. Monitoring is performed in real time with

exception-based surveillance, while diagnostic and optimization could be

performed daily with an advisory system to prevent production downtime.

There is a dedicated collaboration working environment (CWE) with
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dedicated staff and complete workflow mobile communication with field

operations staff. Collaboration reaches very high levels with synergy

between disciplines. Communication with field operations staff is via

closed-circuit TV, video, and chatting.

1.5 MAIN COMPONENTS OF THE DOF

Holland (2012) described three major and essential components for
DOF adoption: (1) work processes, (2) technology architecture, and (3)

organization (people). These three major components aim in one direction

to achieve a company’s vision and strategy goals, measures, and incentives.

As any large project, DOF is a confluence of people, technology, and pro-

cess. The main components are then overlaid in what we call the core of

DOF (Fig. 1.6), which has five main areas that must be fully synchronized

to implement a successful DOF solution: sensing and control, data manage-

ment, workflow automation, visualization, and collaboration.
1.5.1 Instrumentation, Remote Sensing, and Telemetry of Real-
Time Processes

This area focuses on the equipment and technology in the physical oil and

gas operations, both on the surface and downhole, required for telemetry,

the remote collection and transmission of data required to monitor, opti-

mize, and automate operations. The wellhead includes a series of mechanical

or electronic devices (gauges) to measure in real-time pressure, temperature,

fluids, and other special data such as chemicals, solids detection, and radia-

tion (Fig. 1.7). Downhole locations are equipped with another family of

sensors specially designed to work in high-temperature and high-pressure

conditions. Sensors are connected to electrical cables that send analog pulses

to a control panel located close to the wellhead.

The control panel consists of many hardware components for the analog-

to-digital signal conversion. A key component includes remote terminal

units (RTU) and programmable logic controllers (PLC), which perform

similar functions. They are connected to sensors with cables, and they send

digital data to the transmission hardware using wireless equipment that

includes Ethernet, switchboards, WiMAX (microwave signals), and routers

all connected to a CPU, which is often powered by a solar panel. The router

sends the digital data to SCADA as shown in Fig. 1.8.

Chapter 2 describes of these equipment in detail.
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1.5.2 Data Management and Data Transmission
Located in the SCADA terminal, real-time signals from the field are

gathered by cellular modems and sent to a family of servers. The servers

use multiplex software to organize and store the data in different struc-

tured layers under a series of information technology (IT) industry pro-

tocols. The software that does this data collection and aggregation is

referred to as a historian, which accumulates time data, Boolean events,

and alarms in a database, which can be used for many visualization solu-

tions. The data are previously QA/QCed, cleaned, and conditioned using

a series of algorithms (data reduction, wavelet filtration, and missing data

interpolation) that filters the data from signal abnormalities such as noise,

spikes, outliers, and frozen data. The historian commonly feeds a repos-

itory or master database, such as the Structured Query Language (SQL) or

Oracle. Other types of data—such as mechanical equipment, interven-

tions, tubing scans, gyro scans—are unstructured and stored in well files

are well databases.

Chapter 3 discusses these and other processes and key concepts for DOF

data management, including

• data architecture, data storage, and cloud servers;

• data QA/QC, conditioning, and cleansing; and

• alert and alarm management.
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1.5.3 Workflow Automation
Traditionally, geoscientists and various engineering disciplines (produc-

tion, reservoir, facilities, etc.) spent considerable time gathering data from

disparate sources for input into their mostly manual workflows. Engineers

generally use models developed in commercial software applications to

reproduce the oil production process. However, even these software models

required complex manual workflows that consumed engineers’ time, for

example: collecting data from different sources (spreadsheet, text, tables,

figures, historian, etc.); filtering data from noise; performing repetitive,

error-prone tasks to update models (e.g., manual data entry); reconciling

the data and calibrating the model; and running different scenarios of the

model.

Workflow automation uses high-level programming language routines

to connect these manual processes, so that models can be automatically

populated and updated. Automation is just part of the DOF requirement

for workflow construction. DOF solutions also require that engineering

workflows are intelligent enough to capture in real time alarms and alerts

to generate prompt actions, update engineering applications, and deliver

right-time monitoring, diagnostics, and process optimization that deliver

operations guidance at the field level.

Moreover, the workflows should have a predictive character and capa-

bility to foresee future operations issues. For these complex tasks, DOF

workflows must include sophisticated language program, like artificial

intelligence components such as pattern recognition, fuzzy logic, neural

networks, proxy models, and optimization supported with advanced multi-

variate statistical analysis that can generate reliable short- and long-term

forecasting. Chapter 4 discusses the concepts of these data analytics.

Chapter 5 discusses the main components of workflow automation,

which includes these key concepts:

• Workflow (WF) foundation and philosophy.

• WF types, such as single, integrated, automated, smart.

• Workflow focus including well-centric, task-centric, KPI-centric, and

facility-centric.

• Factors that control WFs, such as data- versus model-driven WFs.

• Physical models such as empirical, analytical, and numerical models to

serve data reconciliation.

• Virtual models such as virtual metering system when actual metering is

not available.
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• Predictive models for statistical analysis and intelligent components.

• Cognitive advising such as exception-based management, knowledge

capture, and continuous improvement.
1.5.4 User Interfaces and Visualization
Real-time operations centers (RTOC) have traditionally had large screens

with dashboards with various graphs, charts, tables, and gauges displayed

with real-time data on primarily desktop applications. The newest genera-

tion of DOF implementations have displays that go beyond traditional

dashboards, and include highly interactive dynamic and map-based, multi-

dimensional (color, size, type elements) displays on Web portals and mobile

infrastructure. The displays are fit-for-purpose, focused on individual roles

and comprehensive. The user interfaces (UI) display not only the basic data,

but also the diagnostics and analytics related to operational actions. The

visuals engage and stimulate engineers into collaborative processes. The

UIs are designed to guide engineers through a workflow, with automated

access and use for all the relevant data (Fig. 1.9). The DOF UIs should be

designed with the following features:

• efficient data reload, and data refresh,

• intuitive graphical design, self-explained, auto-flow, no manual

requested for simple task,

• GIS map-based feature set,
Fig. 1.9 DOF systems have user interfaces that bring together data from multiple
sources and display it across multiple devices such as high-end computer monitors, tab-
lets, and smartphones.
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• simple and concise with the ability to clear the UI of ambiguous and

redundant data,

• interactive to provide advisory control and recommendation for future

actions.

• ability for data mining and infographics to show results of clustering,

correlation, and data classification. Ability to show results in multi-

dimensional maps, plots, and graphics, and

• mobile UI to access data at anytime, anywhere, and from any

device (smartphone, tablet, laptops workstation, collaborative work

environment).

Traditional operation centers with multiple large monitors were initially

designed to monitor a single engineering focus (e.g., drilling or facility oper-

ations) and were staffed by appropriate discipline experts. DOF is evolving

into new physical spaces called collaboration work environments (CWE) or deci-

sion support centers (DSC), which are designed for collaboration frommultiple

disciplines using fit-for-purpose workflow visuals that integrate across an

operational value chain. These spaces can be categorized (depending on

their business operations) as meeting rooms, situation rooms, RTOC,

and CWE (which is typically considered the most advanced). The visuali-

zation requirements for monitors and screens are to display in real time, mul-

tiple sources of raw and processed data.

Chapter 8 discusses the requirements for successful visualization, inclu-

ding the following:

• Hardware such as computers or high-performance computers (clusters),

servers, fiber optics, Ethernet, large-screen high-definition (HD) mon-

itors, cameras, projectors, communications, etc.

• Internet with broadband to allow fast emailing, real-time messaging,

screen sharing, and videoconferencing.

• Collaborative workspace to allow open visualization with easy-access

personal monitors for closer (re)view of a large screen’s contents.
1.5.5 Collaboration and People Organization
Traditionally, disciplines involved in the reservoir management value chain,

worked in discipline silos, multiple manual data handoffs, use of different

systems, and inefficient communication. A successful DOF system requires

collaboration among all the disciplines involved in this value chain, includ-

ing those professionals in remote locations. Technology today allows video-

conferences with all team members regardless of their geographic location.
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Fig. 1.10 shows how a traditional, siloed organization can be transformed

into collaborative teams.

Collaboration implies being connected with the operation center,

engaged in an open dialogue, contributing to the discussion, cooperating

with others to find solutions, and communicating the results. However,

the main organizational challenge is adequately preparing the team for the

changes that occur during the transition to and implementation of DOF

systems. In this sense, oil and gas organizations must establish training and

change management plans, for both newer and more experienced profes-

sionals, to acquire the necessary skills for working in a DOF environment.

Chapter 8 discusses the tasks and programs required to prepare properly the

work teams; these include:

• Identify skill sets and define roles and responsibilities for all professionals

and staff, not only in their own disciplines but also their contributions in

the collaboration arena.

• Provide mentoring and coaching by experienced professionals.

• Establish a clear and effective chain of command.

• Establish and maintain a high-performance, professional environment,

and to specify the appropriate behavior for working in the new environ-

ment (e.g., cooperative, respectful of other opinions, etc.).

• Recognize the need to manage stress, particularly for 24/7 real-time

emergencies, and to manage different temperaments and across different

cultures.

• Establish clear processes to mitigate and manage risks.

• Set clear processes and goals for change management, asset transforma-

tion, and continuous improvement.
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1.6 THE VALUE OF A DOF IMPLEMENTATION

1.6.1 Industry Challenges

Upstream oil and gas is characterized by intense competition for acreage,

capital, and markets; so all hydrocarbon producers must focus on production

efficiency. Oil prices are volatile and the costs for extraction typically

increase in more challenging environments, such as deep water and arctic

locations and unconventional resources (e.g., shale oil and gas).Mature fields

also require intense focus on operating efficiency.

Environmental concerns are paramount in many locations such as the

arctic regions, deep water, and urbanized areas. Thus, there is potential

for remote operations with less labor. Even with volatile oil prices, the

world demand is poised to increase at a rate of 0.25% a year, which

requires an increase equivalent supply of 200M STB/d of crude per year.

This increased demand requires new development and production

activity.

In the quest for a better balance between complying with environment

policies and meeting the world oil demand, the oil and gas industry faces

strategic challenges in these areas:

• complex operations: complexity within a single asset offshore, multi-

ple wells, multiple possible points of failure, well operations, well

interventions, completions, and logging occurring miles below the

ground;

• potential for significant Health, Safety, and Environment (HSE) impacts:

inherently dangerous operations (complex machinery in remote envi-

ronments), high risk to people; if an event occurs negative impact to

the environment);

• global energy demand versus cost to produce;

• reducing human intervention at operation;

• transforming, sometimes high risk, oil operations into modern

technology-driven ones;

• renovating the sluggish and reactive oil operations into faster response to

the undesired events, with better prediction of malfunctioning by using

an automated process;

• improving cross-discipline communication and collaboration; and

• management by exception to reduce intervention costs, labor, and

EH&S impacts.
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1.6.2 How DOF Systems Address Challenges and Add Value
The best-in-class DOF projects deliver hard and soft cost-benefit analysis

for DOF implementation against key performance metrics. For example,

reducing operational costs by a certain percentage, decreasing downtime

by a certain percentage, increasing staff efficiencies, managing by exception,

optimizing production rates by a certain percentage (artificial lift), and

optimizing facility operations. There are tangible and nontangible metrics,

which can used to evaluate the DOF investment and performance:

With tangible metrics or key performance indicators, the DOF seeks to

maximize:

1. Reduce risks and minimize exposure of operators and professionals

assisting in a workplace injury. The ultimate objective is achieving the

“zero accident” performance. This is invaluable.

2. Increase production uptime or uplift.
a. Monitor reservoir decline rate or water-flooding process. While

DOF will not increase the well production over its maximum

production potential, the asset team can monitor in real time if

the oil decline rate diverges from the expected engineering calcula-

tion (plan). Moreover, with downhole equipment, DOF can detect

on time water breakthrough to control well production.

b. Detect real-time production and rate deviation from plan. In fields

with more than 50 wells and using artificial lift, operators need to go

up and above to visit locally all the wells in a day. Probably, one-third

total wells are shutting down or producing under expected value.

There is not time for operators to realize which wells have trouble-

shooting. With DOF, the operator can visualize that the troubled

wells are in trouble and react with the remedy plan.

c. Determine opportunities to increase production. Real-time data

integrated with reservoir, production, and geological models can

reveal information that are hidden by simple monitoring of

production data.
3. Increase work process efficiency.
a. Data can be sent in real time to the operation center. Troubleshoot-

ing can be anticipated that is proactive by analyzing the signal

behavior.

b. Data are stored in a structured and organized manner in operations

database using a standard industrial process, whereas in the manual

process the data are saved on personal backup units.
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c. The automation process boosts the entire manual workflow orders of

magnitude compared with baseline performance, reducing human

error and miscalculations.
4. Increase staff/team efficiency.
a. Today between 60% and 80% of engineers are spending their time

in data collection and management. Why not engage machines in

performing this tedious and error-prone task and dedicate the engi-

neering time for identifying short- and long-term opportunities?

b. Allow more time spent in troubleshooting, addressing performance

issues, and generating in right time rapid diagnostic and present

short-term opportunities.

c. Manage by exception with automated advisories ensuring that the

staff addresses issues based on value and key performance criteria

and in the most efficient order

d. Focus on long-term opportunities.
5. Decrease other operational costs

Intangible metrics:

• Better collaboration and cooperation among professional disciplines.

• Proactive addressing of operational issuesless reactive

• Increasing teamwork motivation

• Fast engagement and identification (ownership but with governance)

with company goals.

1.6.3 DOF Benchmarks Across the World
This section provides examples of some of the business value generated by

the DOF projects discussed earlier in this chapter and are summarized in

Tables 1.1–1.9. Fig. 1.11 illustrates that since the late 1990s many companies

including IOCs, NOCs, and independent E&Ps have implemented DOF

around the world. Tables 1.1–1.9 provide a summary of the characteristics

for a survey of DOF projects.

1.6.3.1 Smart Fields
To quantify the added value of its Smart Field program, Shell impleme-

nted a rigorous value assessment (Van den Berg et al., 2010) based on

conservative estimation and calculation rules. The assessment included

50 Shell assets worldwide, evaluating the impact for 12months (in 2009).

The categories evaluated during the test were smart wells, well optimization,

facilities optimization, remote/automated operations, and team efficiency
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improvements. The assessment quantified an overall benefit of $5 per oil

barrel when the crude oil price was $30 per STB. The Smart Field program

contributed to an additional production of 70,000STB/d. Reduction in

capital expenditure (CAPEX)was estimated at $800million. After successful

implementation of the Smart field program, Shell implemented worldwide

an integrated production system model (IPSM) that models and tracks pro-

duction problems, such as pipeline bottlenecking, well with solid intake,

erosional choke, electric submersible pump (ESP) downtime, and separator

pressure issues.
1.6.3.2 Field of the Future
BP (2017a,b) stated that in 2007 its Field of the Future (FoF) program deli-

vered between 30 and 50MBOE/D of gross production. BP has installed

1750km of submarine fiber optic cable, linking its subsea wells to its world-

wide operations. The company has set up a dedicated big data and analytics

innovation laboratory in its Center for High-Performance Computing

(CHPC) in Houston. BP also has invested significant engineering effort

and CAPEX to apply digital technologies to model hydrocarbon flow in

its Gulf of Mexico (GoM) facilities to add more production at lower cost

per barrel. BP’s Model-Based Operational Support (MBOS) program uses

real-time surveillance to identify ways of enhancing operating performance;

for example, the giant Thunder Horse field in the GoM monitors the

buildup of harmful asphaltenes, so that this problem can be mitigated, sig-

nificantly reducing costly blockages in wells and risers. Sophisticated digital

optimization technology is also being used to overcome a common industry

problem—unstable flow in pipelines and risers, known as slugging, which

can cause platforms to be temporarily shut down. BP’s slug controller tech-

nology uses real-time measurements and complex algorithms to identify

slugs as they form and automatically adjusts choke settings to stabilize flow

without stopping production. In this way, costly manual interventions can

be avoided and production stabilized.
1.6.3.3 KwIDF Program
After the successful implementation of three major DOF systems, KOC

did an 18-month evaluation of the value added by its intelligent systems.

Al-Jasmi et al. (2013) and Yunus et al. (2014) reported a significant oil

gain of 8% per day, per well by increasing water injection by up to

14 MSTB of water in a total area of 60 wells, in wells subjected to a
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pattern of waterflooding process. In 12months, it was monetized for a

total of 720 MSTB at $90 per barrel. More important, its intelligent sys-

tem could predict with acceptable accuracy ESP wells with developing

production problems. Jamal et al. (2013), Al-Enezi et al. (2013), and

Al-Mutawa et al. (2013) reported that combining proactive and reactive

actions—such as increase/decrease of ESP frequency and choke setting,

cleaning wells, and shutting in temporary wells—KOC achieved an aver-

age of 37% gain in oil production with just 10 actions per well. The total

oil was almost 4 MSTB/d with a cumulative production of 756 MSTB in

12months. Moreover, KOC reported in Al-Jasmi et al. (2013) that the

time to analyze one well with production issues was reduced from

7.3h to only 1.6h, thereby improving individual and team efficiency.

No cost or financial information was reported; however, with these signi-

ficant oil gains, we believe the operator should have an important reduc-

tion in OPEX.
1.6.3.4 Statoil’s Integrated Operations
With its IO program, Statoil has realized that the real-time transfer of data

over great distances can be used to eliminate the physical distance between

installations at sea and support organizations onshore, between professional

groups, and internally between the company and its suppliers. A report by

Jones (2010) identifies these benefits of IO: improved HSE performance,

more efficient drilling operations, better placement of wells, improved

production optimization and oil recovery, better reservoir and production

control and monitoring of equipment, more efficient maintenance, and

increased regularity (production uptime). The benefits have been accounted

with 3%–5% increased production, 20%–40% reduction in production

losses, and 15%–30% reduction in operating and maintenance costs. In a

2007 report, the NorwegianOil Industry Association (2007) anticipated that

the program might generate an incremental US$41 billion of net present

value (NPV).
1.6.3.5 I-Fields
In its I-Field program, Chevron uses developments in sensors, monitoring,

and optimization tools that anticipate and plan based onwhat is happening in

real time and continually adjusts to operating conditions. Chevron estimates

that its I-Field program has contributed to increases in output and reductions

in operating costs by 2%–8% (Meyer, 2010).
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1.6.3.6 I-Field Practices
Saudi Aramco has been achieving tangible and intangible benefits from

the implementation of its I-Field practices. The benefits are directly

related to optimizing operating costs, field performance, and safety records

(Abdul-Karim et al., 2010). For example, Al-Malki et al. (2008) report that a

better understanding of reservoir pressure communication during preinjection

stages results in in-time optimum water injection management in new incre-

ments, using real-time reservoir management. The I-Field process in the Abu

Hadriyah, Fadhili, and Khursaniyah fields (AFK) helped to reduce planned

preinjection requirements by 14% from the planned volume, over 3months,

by adjusting the injection rates in the 11 reservoirs in AFK (Al-Khamis et al.,

2009). Additional tangible benefits of I-Field implementation include:

• Significant acceleration of evaluation of extremely complex early inter-

reservoir communication in the Khurais giant field, between the reser-

voirs ArabD and Hanifa, now completed in matter of weeks, not years.

• Minimized well interventions, enhanced work efficiency, and timely

response to production deviations that resulted in an annual fourfold

reduction in wireline jobs to collect flowing bottom-hole pressure

(FBHP) and static bottom-hole pressure (SBHP) data (Al-Arnaout and

Al-Zahrani, 2008).

• Providing quality assurance for crude properties of a blend mixture from

AFK’s 11 reservoirs crude grades at all times (Al-Khamis et al., 2009).

• Enabling a balanced approach in generating data acquisition programs

and field-strategic surveillance masterplans.

1.6.3.7 COP’s Integrated Operations
Conoco Phillips had specific targets, established and tracked KPIs, and

performed evaluations against baselines of its IO program. For its plunger

lift operations, evaluations estimated that annual spending was reduced by

39% in 2012 versus its 2009 baseline (Krushell, 2015). This reduction was

achieved through a centralized management system, smart logic control,

an improved maintenance strategy, and enhanced scrutiny and optimization

of well down procedures. For its intervention processes, the company

reported a 29% reduction in spending for 2012 versus a 2010 baseline,

which resulted from reducing swabbing activity and rod pump downtime

or failure activity and implementing a downhole defect-elimination

process. Other value was captured from improvements or changes in tank

management, operations reporting, trucking logistics, issue tracking, and

data management, and faster communications, which resulted in increased

uptime and production.
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1.7 FINANCIAL POTENTIAL OF A DOF IMPLEMENTATION

Companies must evaluate the economic potential of a DOF imple-
mentation. The spectrum of investment ranges with the size of a company

and its assets: from large international and national companies, to mid-size

companies, to even small independents. Costs can range from tens of mil-

lions of dollars for the largest assets, to a few million dollars for smaller assets,

depending on the sensors, communication networks, IT and database,

decision-support requirements, and analytical tools.

The following exercise is a prototype to estimate the value and financial

return of a DOF implementation for a 20-year timeframe, for a mid-size,

onshore field.
1.7.1 Field Description Example
This exercise assumes an onshore field of 100 wells with a daily production

of 20 MSTB of crude oil (30 API), 10 MSTB of water, 20 million SCF

of gas, and total recoverable hydrocarbon in situ of 100 million STB.

The reservoir is submitted to water injection flooding and the wells produce

using ESPs. The oil decline rate is estimated to be 10% annually. This is a

new installation, not a retrofit of existing well controls and other equipment.

The operator wants to achieve these goals with a DOF implementation:

• reduce the frequency of well shutdown per month

• increase the oil uplift and decrease oil decline

• delay the water breakthrough and manage water production efficiently
1.7.2 Cost Estimates
These cost estimates are based on price lists from several business cases

presented by Cisco, IBM, and Honeywell. Fig. 1.12 shows a breakdown

of capital investment costs. For an implementation to reach the goals stated

above, an operator would need to upgrade 100 wellheads with controls

panels, actuators, choke setting, cables, and pressure and temperature gauges,

WiMAX, routers, sensors, and fiber optic cables, with a total cost estimate of

$35 million. Additionally, the operator would need to revamp the data

center; integrate data streams from the field to the repository center; build

servers, CPUs, and cluster with enough data storage for 20years; and con-

struct a collaborative working environment (CWE), with an estimated total

cost of $10 million. To generate new automated workflows and purchase
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Fig. 1.12 Initial capital investment for a DOF system for an onshore oil field of 100 wells.
All currency amounts in US dollars.
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software and applications would cost an additional of $5 million. The total

$50 million investment, divided by 100 wells is a well cost of $500,000 to

build a comprehensive DOF system.

1.7.3 Economic Parameters
The economic parameters for this example include a 20-year timeframe,

with fixed prices of oil at $40 per barrel and gas $2.75 per MSCF, a fixed

interest rate of 5%, and depreciation of 10% annually. The operating

expenses are estimated at $15 per barrel (including salary and wages). The

revenue obtained from DOF implementation is estimated by calculating

the difference between the annual oil production profiles using a DOF

system compared with the production profiles without a DOF system,

which is shown in Fig. 1.13.

It is assumed that using a DOF system, ESP downtime has decreased by

70% and also using reservoir analysis, the early water breakthrough has been

delayed for more than several months by controlling the water injection.

Therefore, it could increase the oil rate by 12%, compared with an oil profile

without a DOF implementation.

The initial 50-million dollar CAPEX investment is spent in the first

year (red bar). Given this analysis and an oil price of $40.0, the producer

can anticipate a total benefit of $88.6 million over 20years. The NPV is

estimated at $64 million and the internal rate of return (IRR) is 22%, when
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Fig. 1.13 Example of an economic cost estimate and potential ROI of a DOF
implementation.
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the bank rate is 15% and the return on investment (ROI) is 177%; it is $1.7
gained per $1.0 spent on the project. In Fig. 1.13, the breakeven point is

observed at 4.2years, and the operator can expect substantial economic

growth in the following 16years for a cumulative ROI of around 177%,

showing that the DOF implementation could bring significant benefits to

the company.

This economic analysis is only an exercise to illustrate the potential bene-

fit of DOF implementation. The costs used here were from older sources.

Professionals seeking to do a cost-benefit analysis should seek the current

cost estimates and consider the current market and economic conditions

and forecasts.

1.8 TABLES SUMMARIZING MAJOR DOF PROJECTS

Tables 1.1–1.9 summarize how companies around the world are
implementing major DOF programs, one company per table. The table

heading identifies the company, its program name, the first year it reported

on its program; the information is from published papers and presenta-

tions. Each table has these columns: “DOF Vision and Goals” describes

the objective and vision of each company’s DOF implementation;

“Operations Applied To” includes categories such as drilling, production,

operation, production optimization, completions and reservoir engineering;



Table 1.1 DOF Industry Benchmarks for Project: Statoil, Integrated Operation Offshore Real-Time Operations Center (1996) Norway, North
Sea, for Fields: Various Fields in the North Sea (Offshore)

DOF Vision or Goals
Operations
Applied to

Production
Components and
Solutions DOF Best Practices

Automated
Workflow Best
Practices

Operational
Results and
Notional
Economics

• Zero environmental

accident

• Minimization of

human exposure to

risky and remote areas

• Maximizing monetary

value for the company.

• Production

• Drilling

• Completion

• Reservoir

• Surface field

facility

• Wellhead and

networks

• Wellbore and

smart wells

• Reservoir and

geological

formation

• Completion

activity

• Monitoring dril-

ling equipment

• Wireless

communication

• Internet, TCP/IP,

routers, RTU,

and PLC

• Database

• Smart wells; ICV/

ICD valves

• Downhole cables

and fiber optic

• Distributed temper-

ature and acoustic

sensors (DTS, DAS)

• High-performance

computers

• 3D–4D imaging and

acoustic signal

• Remote operating

center

• Screen and

computers

• Alert and

alarm by

exception

• Automated

workflows

• Data reconcil-

iation and

validation

• Data analytic

and predictive

tools.

• Artificial

intelligence

• Integrated

visualization

• Integrated sur-

face and sub-

surface models

• Multivariable

analysis

• Optimization

None is reported

• Real-time pro-

duction monitor-

ing and

visualization

• Real time drilling

and completion

• Production analy-

sis, control, and

diagnostic

• Production

optimization

• Planning and

scheduling



Table 1.2 DOF Industry Benchmarks for Project: Shell E&P, Smart Fields (1998), for Fields: Mark I Nelson Field, North Sea and Worldwide: US, West
Africa, Europe/Russia, Middle East, Asia Pacific

DOF Vision or
Goals

Operations Applied
to

Production Components and
Solutions

DOF Best
Practices

Automated
Workflow Best
Practices

Operational Results and
Notional Economics

• Monitoring

of well

production

• Hydrocarbon

allocation

• Forecasting

production

• Optimizing

production

system

• Production

optimization

• Drilling

optimization

• Brown and

green fields

Wellheads, actuators, ancillary

equipment, snake wells, flow

lines, and platforms

• Real-time

well moni-

toring and

optimization

• Real-time

well test

using field-

ware

Well Test

• RT process

historian

• Data acquisi-

tion and

control

• Architecture

security

• Additional

oil-through-

gas lift

optimization

• CWE

• Advanced

alarming

• Closed-loop

reservoir model-

ing using Petex

Software

• Integrated

visualization

• Accelerated

system

• Implementation

methodology for

integrated asset

management

• In-house statisti-

cal and data-

driven

modeling.

• Exception-based

multivariant

alarming

• Closed-loop

reservoir model-

ing using Petex

Software

• Integrated

visualization

• Optimized gas lift

• Increased oil

through production

by 15%

• Delayed water

breakthrough

(Brunei) by 2 years

• Increased operation

reliability by several

percent

• Reduced manual

data by 4h per day

• Increased efficiency

through automatic

data transfer by 2h

per day.

• Improved opera-

tions uptime and

reduced production

deferment

• Smart field value is

based on analysis of

50 assets through

2009: $5 billion.

• Clamp-on measurements,

wireless transmission

• Production modeling using

integrated modeling software

• Decision/execution done

through a collaborative work

environment (CWE)

• Smart wells using downhole

control valves and pressure

downhole gauges, and sur-

face control systems.

• Integrity monitoring

• Rotating Equipment

monitoring

• Remote Operations

• RT surveillance
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Table 1.3 DOF Industry Benchmarks for Project: BP, Field of the Future (2000), for Locations: North Sea (UK Sector), Shelf (Norway Sector), Angola (Offshore),
Kurdistan, Indonesia (Offshore), Trinidad and Tobago, Gulf of Mexico

DOF Vision or
Goals

Operations
Applied To

Production
Components and
Solution DOF Best Practices Automated Workflow Best Practices

Operational
Results and
Notional Economic

• Provide the

ability to know

in real time,

equipment sta-

tus, and opti-

mization

opportunities

across the pro-

duction, from

the reservoir to

the wells, facil-

ity, and export.

• Optimize pro-

duction opera-

tions by using a

sophisticated

analytic model,

updated with

real-time data.

• Drilling and

production

operations

• Facility

monitoring

• Real-time

production

surveillance

• High reliable

sensors, develop-

ing, adopting, and

integrating new

sensor technolo-

gies and transmit-

ting applications.

• State-of-the-art

equipment for

translating insight

into foresight

through predic-

tive capabilities

and advanced

visualization.

Their main

solution is

delineated as:

measurement,

transmission,

analysis,

interaction and

control.

• Use a series of con-

trollers for well

downhole and sur-

face. Use fiber optic

cable to assure the

connectivity

between the well

downhole and

offices.

• Use a series of

world-class analyzers

to generate model

and integrate and

manage large vol-

umes of information

(big data).

• Create a family of

screen interfaces to

facilitate rapid

understanding of

complex informa-

tion, which allows

better decisions to

be made faster.

• Use both open/

shut-in loop control

to execute remote

interventions at the

right time.

Implemented using the following branch

name:

• 22 DOF workflows for facility, pro-

duction operation, and well

surveillance.

• Production management advisor, a

system that allows monitoring well

performance in real time, while per-

forming alert and alarm by exception.

Uses data mining and predictive

analytics.

• Operation advisor, a system that

allows managing risk proactively,

creating alerts for future problems

based on expert rules. Monitoring

operating envelopes for erosion and

corrosion issues.

• Well advisor, a system that boosts well

efficiency, thereby reducing nonpro-

ductive time and improving the life of

well integrity.

Digitalization of

upstream business

has impacted a

significant and

growing

proportion of

production and

routine support for

more than 80% of

the 100 top field

producers,

showing

improvement is

achieved through

Operating

efficiency,

optimized

production,

reduced risk, and

the ability to make

better decisions

more quickly.



Table 1.4 DOF Industry Benchmarks for Project: Chevron, i-field (2005), for Locations: Nigeria (Agbami Field and Others), US (Permian Basin),
North Sea (Offshore), Australia (offshore), Canada, Angola

DOF Vision or
Goals

Operations
Applied to

Production Components
and Solutions

DOF Best
Practices

Automated Workflow Best
Practices

Operational Results
and Notional
Economics

• Maintain

plateau

production

from

remote/

offshore

areas.

• Produce

multiple

zones

through a

common

wellbore.

• Improve

reliability

and quality

assurance

• Enhance

health,

safety, and

environ-

ment per-

formance

(HSE)

• Facilities

• Production

optimization

• RT drilling

optimization.

• Jumpers, flow lines,

risers, manifolds

• Subsea trees and

wellheads

• Downhole equipment

with lower

completions

• Intelligent well com-

pletions (IWC)

equipment (densi-

tometers, flowmeters,

inflow control valves

• Software (Microsoft,

multitiered, service-

oriented architecture)

• Data collection and

federation enabled

data and application

integration, visualiza-

tion, and logical

modeling

• Real-time data syn-

chronization system

• IWC at wells

• Subsea

instrumentation

• Integrated

and

multifunctio-

nal team

approach to

problem

solving.

• Robust IT

architecture

and support

model.

• Proactive

system health

monitoring

and

maintenance.

• Routine sur-

veillance and

operation of

wells within

constraints.

• LPO

monitoring

• Compression

system

monitoring.

• 33 DOF workflows

facilities, production,

reservoir engineering,

and field operations.

• i-Connect system an

integrated diverse data

sources and application

through open standards

and common platform.

• i-DOT system an inte-

grated Diatomite

Operations—day-to-day

planning and execution

of thermal diatomite

operations.

• CiSoft—Sponsor for

Center for Interactive

Smart Oilfield Technol-

ogies (continuous educa-

tional program).

• 98% reduction

in engineer’s

NPT/

• Significant

time-savings

and HSE

benefits.

• Low-/mid-/

high-

incremental

IWC reserve

gain per well

of 5/10/18

MMSTBO.

• Saved over

$500MM-based

on proactive

real-time

optimization

workflows.

• Optimization of

well-rates

gained 50,000

BOPD

(Agbami).

• LPO avoidance

saved $10 MM

first year.
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Table 1.5 DOF Industry Benchmarks for Project: Saudi Aramco, I-Field (2006), for Fields: Qatif, Haradh-III, Khurais Complex

DOF Vision or
Goals

Operations
Applied to

Production Components
and Solutions

DOF Best
Practices

Automated
Workflow Best
Practices

Operational Results and
Notional Economics

• Enhance

recoverable

hydrocarbon

through

in-time

intervention

and full-field

optimization

• Enhance

HSE perfor-

mance

through

remote mon-

itoring and

intervention

• Reduce

operation

costs by

reducing

manual

supervision

and

intervention

• Production

and drilling

optimization

• Geosteering

• Real-time

reservoir

management

• Water and

gas injection

• Operations

and

maintenance

• Wellheads

• Flow lines

• Facilities

• Downhole

instrumentation

• Supply chain solution

• Multiphase flow meters

• Smart electric submers-

ible pump (ESP) systems

• Downhole monitoring

systems

• Remote-control

capabilities

• Smart-ready completions

(ICV/ICD)

• ESP with variable-speed

drives (VSD) and pressure

sensors

• Integrated visualization

and engineering systems

• Permanent down-hole

monitoring systems

• RTU with SCADA

• Real-time corrosion

monitoring

• Real-time

actions: fast,

strategic and

Portfolio

interventions

• Layered

implementa-

tion architec-

ture: surveil-

lance, inte-

gration, opti-

mization, and

innovation

• Data quality

control and

validation

• Process

automation

• Workflow inte-

gration (data

and

applications)

• Collaboration

• Knowledge

capture

• Decision

optimization

• Interoperability

and openness

• Reduced planned

downtime and

deferral for water

injection process

and preinjection

requirements by

14% from the

planned volume

• Reduced well

interventions four

fold, enhanced work

efficiency and timely

response to produc-

tion deviations

• Optimized operat-

ing costs, field per-

formance, and safety

records

• Accelerated the

evaluation of

extremely complex,

early inter-reservoir

communication in

Khurais giant field

(now completed in

weeks, not years)
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Table 1.6 DOF Industry Benchmarks for Project: Linn Energy-Berry Petroleum, Reservoir Surveillance Initiative (2012–15), for Fields: (North
America) San Joaquin Valley, Mid-Continent Gas; Permian and Uinta Basin

DOF Vision and Goals
Operations
Applied to

Production
Components and
Solution DOF Best Practices

Automated
Workflow Best
Practices

Operational Results
and Notional
Economics

• Maximize oil

production

• Minimize and

mitigate

downtime

• Reduce well

failures

• Manage risk of

steam surface

expressions

• Production

• Heavy oil

• Steam

injection

• Gas

management

Wellheads, flow lines,

and compressors

Steam generators,

rod pumps.

• Collaboration and

control centers per

asset

• Mobile

communications

• Fewer wells down

• Increased produc-

tion and steam

efficiency

• Reduced com-

pressor

bottlenecks.

• Faster decisions

• Surveillance: tilt

meters, deviation

surveys, mechani-

cal integrity; rod

pump dynacards,

completion, P, T,

multiphase rates.

• Data management

• Real-time rod

pump and plunger

lift dynacard

surveillance
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Table 1.7 DOF Industry Benchmarks for Project: Conoco, Integrated Operations (2006), Fields: Eagle Ford, Western Canada, Permian

DOF Vision or
Goals

Operations
Applied to

Production
Components and
Solutions DOF Best Practices

Automated Workflow
Best Practices

Operational Results and
Notional Economic

• Intervention

• Production

• Cost

reduction

Production • Wells, facilities,

and artificial lift.

• Plunger lift, rod

pumps, facilities,

centralized collab-

oration centers,

well automation,

and opportunity

identification

• Alarm

management

• Collaboration

centers

• Change management

and training

• Management by

exception

• Central well control

• 24/7 operational

surveillance

• Pro-active

management.

• Reduced well failures

• Increased uptime

• Improved

communication

• Reduced costs
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Table 1.8 DOF Industry Benchmarks for Project: Kuwait Oil Company, KwIDF (2010) Fields: Lower Burgan, Sabriyah and Gas Field
DOF Vision or
Goals

Operations
Applied to

Production Components
and Solutions DOF Best Practices

Automated Workflow
Best Practices

Operational Results and
Notional Economics

• Improve pro-

duction uptime

• Manage the

water break-

through due to

water injection

• Detect proac-

tively produc-

tion

abnormalities

Production

and

reservoir

focused

workflows

Wellhead and

downhole (DH)

wellbore.

• Collaboration

and decision-

support center

• Multiphase

flow meters

• Variable-

speed drives

on ESPs

• A total of 12 Digital

Oilfield Program

with more than

10 workflows.

• Technical

workflows: well

performance, well

surveillance, and

well test manage-

ment, reporting, gas

lift optimization,

ESP optimization

• Semipredictive

workflows to detect

water encroachment

and production

decline

• Improved oil pro-

duction by 8% per

day per well, by

increasing the water

injection by 30%

MSTB of water in a

total area of 60 wells

• Realized an increase

of 37% in overall oil

production in just

10 actions/well using

proactive actions.

• Increased team effi-

ciency by reducing

the time to analyze a

single well from 7.3h

to only 1.6h

• 12-month monetized

value: 720 MSTB of

hydrocarbon for an

estimated value of

t$90 billion

• Instrumented well-

head with real-time

sensors, RTU sys-

tem, Wi-max, and

solar panels

• Wellhead with

Coriolis meters and

multiphase flow

meters for well test

wells only.

• Variable-speed

drives on electric

submersible pumps

(ESP)

• Downhole pressure

and temperature

gauges for ESP wells

• Operational data-

base and

management

• In-house technical

software workflows

• Collaboration and

control center

37
Introduction

to
D
igitalO

iland
G
as

Field
System

s



Table 1.9 DOF Industry Benchmarks for Project: Digital Integrated Field Management (GeDIG), Petrobras Fields: Corporate Program for all
Petrobras-Operated Fields

DOF Vision or
Goals

Operations
Applied To

Production
Components

DOF Best Practices
Automated Workflow
Best Practices

Operational Results and
Notional EconomicsSolution

• Digital inte-

grated field

management

across all

Petrobras

operations

• Production

losses

• Real-time

surveillance

• Maintenance

• Operations

centers

• Well

instrumentation

• Collaboration

centers

• Automated

workflows

• Various artificial

lift mechanics

• Collaboration

• Focus on peo-

ple, process,

and technology

model

• Automated techni-

cal workflows

• Surveillance and

operations

dashboards

• Analytics

• Integration of well

models

• Emphasize change

management

• Increased production

efficiencies,

• Increased recovery

factors

• Improved opera-

tional efficiency
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39Introduction to Digital Oil and Gas Field Systems
“Production Components and Solutions” identifies the main components

and solutions; “DOF Best Practice” refers to advanced hardware and

software tools used; “Automated Workflow Best Practices” refers to those

software features that allow the automation and the implementation of

smart components; “Operational Results and Notional Economic” refers

to the available public information with respect to value added by the

DOF implementation.
REFERENCES
Abdul-Karim, A., AL-Dhubaib, T., Elrafie, E., Alamoudi, M.O., 2010. Overview of Saudi

Aramco’s Intelligent Field Program. Society of Petroleum Engineers. SPE-129706-MS
https://doi.org/10.2118/129706-MS.

Al-Abbasi, A., Al-Jasmi, A., Nasr, H., Carvajal, G., Vanish, D., Wang, F., Cullick, A.S., Md
Adnan, F., Urrutia, K., Betancourt, D., Villamizar, M., 2013. Enabling numerical
simulation and real-time production data to monitor water-flooding indicators.
In: Paper SPE 163811 presented at the SPE Digital Energy Conference, TheWoodland,
TX, March 5–7 https://doi.org/10.2118/163811-MS.

Al-Arnaout, I.H., Al-Zahrani, R., 2008. Production Engineering Experience with the First
I-Field Implemented in Saudi Aramco at Haradh-III, Transforming Vision to Reality.
Society of Petroleum Engineers. SPE-112216-MS https://doi.org/10.2118/112216-
MS.

Al-Enezi, B.A., Al-Mufarej, M., Anthony, E.R., Moricca, G., Kain, J., Saputelli, L.A., 2013.
Value Generated Through AutomatedWorkflowsUsing Digital Oilfield Concepts: Case
Study. Society of Petroleum Engineers. SPE-167327-MS https://doi.org/10.2118/
167327-MS.

Al-Hutheli, A.H., Al-Ajmi, F.A., Al-Shamrani, S.S., Abitrabi, A.N., et al., 2012. Maximi-
zing the Value of Intelligent Field: Experience and Prospective. Society of Petroleum
Engineers. SPE-150116-MS https://doi.org/10.2118/150116-MS.

Al-Jasmi, A., Goel, H.K., Al-Abbasi, A., Nasr, H., Velasquez, G., Carvajal, G., Cullick, A.,
Rodriguez, J., 2013. Maximizing the value of real-time operations for diagnostic and
optimization at the right time.Paper SPE 163696 presented at the SPE Digital Energy
Conference, The Woodland, Texas, 05–07 March.

Al-Khamis, M., Zorbalas, K., Al-Matouq, H., Almahamed, S., 2009. Revitalization of old
asset oil fields into I-fields. In: SPE Saudi Arabia Section Technical Symposium,
Al-Khobar, Saudi Arabia, May 9–11 SPE-126067-MS https://doi.org/10.2118/
126067-MS.

Al-Malki, S., Buraikan, M.M., Abdulmohsin, R.A., Ahyed, R., Housam Al-Hamzani, H.,
2008. I-Field Capabilities EnableOptimizingWater Injection Strategies in Saudi Arabian
Newly DevelopedOil Fields. Society of Petroleum Engineers. SPE-120835-MS https://
doi.org/10.2118/120835-MS.

Al-Mutawa, S.A., Saleem, E., Anthony, E., Moricca, G., Kain, J., Saputelli, L., 2013.
Digital Oilfield Technologies Enhance Production in ESP Wells. Society of Petroleum
Engineers. SPE-167352-MS https://doi.org/10.2118/167352-MS.

Ballengooijen, v.J., 2007. Smart Field Programme Manager. The Shell Fields Technology
Journey. The Hague, Netherland.

BP, 2017a. Digital Technology. http://www.bp.com/en/global/corporate/technology/
technology-now/digital-technology.html.

BP, 2017b. Field of the Future. BP.http://www.bp.com/en/global/corporate/technology/
technology-now/digital-technology.html.

https://doi.org/10.2118/129706-MS
https://doi.org/10.2118/163811-MS
https://doi.org/10.2118/112216-MS
https://doi.org/10.2118/112216-MS
https://doi.org/10.2118/167327-MS
https://doi.org/10.2118/167327-MS
https://doi.org/10.2118/150116-MS
http://refhub.elsevier.com/B978-0-12-804642-5.00001-3/rf0030
http://refhub.elsevier.com/B978-0-12-804642-5.00001-3/rf0030
http://refhub.elsevier.com/B978-0-12-804642-5.00001-3/rf0030
http://refhub.elsevier.com/B978-0-12-804642-5.00001-3/rf0030
https://doi.org/10.2118/126067-MS
https://doi.org/10.2118/126067-MS
https://doi.org/10.2118/120835-MS
https://doi.org/10.2118/120835-MS
https://doi.org/10.2118/167352-MS
http://refhub.elsevier.com/B978-0-12-804642-5.00001-3/rf0045
http://refhub.elsevier.com/B978-0-12-804642-5.00001-3/rf0045
http://www.bp.com/en/global/corporate/technology/technology-now/digital-technology.html
http://www.bp.com/en/global/corporate/technology/technology-now/digital-technology.html
http://www.bp.com/en/global/corporate/technology/technology-now/digital-technology.html
http://www.bp.com/en/global/corporate/technology/technology-now/digital-technology.html


40 Intelligent Digital Oil and Gas Fields
Dashti, Q., Al-Jasmi, A.K., AlQaoud, B., Ali, Z., Bonilla, J.C.G., 2012. Digital Oilfield
Implementation in High Pressure and High Temperature Sour Environments:
KOC Challenges and Guidelines. Society of Petroleum Engineers. SPE-149758-MS
https://doi.org/10.2118/149758-MS.

Digital Energy Journal, 2006. Integrated operations at ConocoPhillips. Available from:
http://www.digitalenergyjournal.com/n/Integrated_operations_at_ConocoPhillips/
081eabce.aspx.

Ershaghi, I., Al-Abbassi, A., 2012. A Perspective for a National Oil Company to Transition
from Traditional Organizational Management to a Digital Culture. Society of Petroleum
Engineers. Paper SPE 150219-MS https://doi.org/10.2118/150219-MS.

Evans, D., 2012. How the Internet of Everything Will Change the World…for the Better
#IoE [Infographic]. http://blogs.cisco.com/ioe/how-the-internet-of-everything-will-
change-the-worldfor-the-better-infographic.

Holland, D., 2012. Exploiting the Digital Oilfield: 15 Requirements for Business Value, cor-
porate edition Xlibris Corporation LLC, Bloomington, IN.

Ibeh, C., Awotiku, O., Ledegerber, A., Ugah, I., Awonuga, K., 2015. The Agbami Digital
Oilfield Solution and Reliability Assessment of Intelligent Well Completions. Offshore
Technology Conference. OTC-25690-MS https://doi.org/10.4043/25690-MS.

Isaacson, W., 2014. The Innovators: How a Group of Hackers, Geniuses, and Geeks Created
the Digital Revolution. Simon and Schuster, Camp Hill, PA.

Jamal, M.A.-R., Al-Mufarej, M., Al-mutawa, M., Anthony, E., Chetri, H., Singh, S., et al.,
2013. Effective Well Management in Sabriyah Intelligent Digital Oilfield. Society of
Petroleum Engineers. SPE-167273-MS https://doi.org/10.2118/167273-MS.

Jones, S., 2010. The economic value of integrated operations. In: ABB article of Oil and
Gas Petrochemical. Available from: https://library.e.abb.com/public/7cc9654e734
fde2dc1257b0900361b07/Integrated_operationsUS.pdf.

Kessler, A., 2015. Shrinking tech means room at the top. https://www.wsj.com/articles/
shrinking-tech-means-room-at-the-top-1451345558 Wall Street J., December 28.
Available from:.

Krushell, G., 2015. Integrated operations at ConocoPhillips.Presented at the Data Driven
Production Optimization Conference, Houston, TX, 16–17 June 2015.

Meyer, M., 2010. Today-value in any part of the cycle, plenary address 1.Presented at the
SPE Intelligent Energy Conference and Exhibition, Utrecht, Netherlands, 23–25March
2010.

Norwegian Oil Industry Association (Oljeindustriens Landsforening (OLF)), 2006. Potential
value of Integrated Operations on the Norwegian Shelf. http://www02.abb.com/
global/seitp/seitp161.nsf/0/19ff7687080e051dc125718b004b1caa/$file/060521
+Potential+value+of+Integrated+Operations+on+the+Norwegian+Shelf%5B1%5D.
pdf.

Norwegian Oil Industry Association and POSC Caesar Association, 2007. Integrated
Operations and the Oil and Gas Ontology. (accessed 06.05.09).

Oran, K., Brink, J., Ouimette, J., 2008. Implementation Results for Chevron’s i-field in
San Joaquin Valley, California. Society of Petroleum Engineers. SPE-112260-MS
https://doi.org/10.2118/112260-MS.

Paulo, J., Taylor, D.A., Isichei, O., King, M., Singh, G., 2011. Transforming Operations
with Real Time Production Optimization and Reservoir Management: Case History
Offshore Angola. Society of Petroleum Engineers. SPE-143730-MS https://doi.org/
10.2118/143730-MS.

Reddick, C., Castro, A., Pannett, I., Perry, J., Dickens, J., Carl Sisk, C., et al., 2008. BP’s
Field of the Future Program: Delivering Success. Society of Petroleum Engineers.
SPE-112194-MS https://doi.org/10.2118/112194-MS.

https://doi.org/10.2118/149758-MS
http://www.digitalenergyjournal.com/n/Integrated_operations_at_ConocoPhillips/081eabce.aspx
http://www.digitalenergyjournal.com/n/Integrated_operations_at_ConocoPhillips/081eabce.aspx
https://doi.org/10.2118/150219-MS
http://blogs.cisco.com/ioe/how-the-internet-of-everything-will-change-the-worldfor-the-better-infographic
http://blogs.cisco.com/ioe/how-the-internet-of-everything-will-change-the-worldfor-the-better-infographic
http://refhub.elsevier.com/B978-0-12-804642-5.00001-3/rf0075
http://refhub.elsevier.com/B978-0-12-804642-5.00001-3/rf0075
https://doi.org/10.4043/25690-MS
http://refhub.elsevier.com/B978-0-12-804642-5.00001-3/rf0085
http://refhub.elsevier.com/B978-0-12-804642-5.00001-3/rf0085
https://doi.org/10.2118/167273-MS
https://library.e.abb.com/public/7cc9654e734fde2dc1257b0900361b07/Integrated_operationsUS.pdf
https://library.e.abb.com/public/7cc9654e734fde2dc1257b0900361b07/Integrated_operationsUS.pdf
https://www.wsj.com/articles/shrinking-tech-means-room-at-the-top-1451345558
https://www.wsj.com/articles/shrinking-tech-means-room-at-the-top-1451345558
http://refhub.elsevier.com/B978-0-12-804642-5.00001-3/rf0095
http://refhub.elsevier.com/B978-0-12-804642-5.00001-3/rf0095
http://refhub.elsevier.com/B978-0-12-804642-5.00001-3/rf0100
http://refhub.elsevier.com/B978-0-12-804642-5.00001-3/rf0100
http://refhub.elsevier.com/B978-0-12-804642-5.00001-3/rf0100
http://www02.abb.com/global/seitp/seitp161.nsf/0/19ff7687080e051dc125718b004b1caa/$file/060521+Potential+value+of+Integrated+Operations+on+the+Norwegian+Shelf%5B1%5D.pdf
http://www02.abb.com/global/seitp/seitp161.nsf/0/19ff7687080e051dc125718b004b1caa/$file/060521+Potential+value+of+Integrated+Operations+on+the+Norwegian+Shelf%5B1%5D.pdf
http://www02.abb.com/global/seitp/seitp161.nsf/0/19ff7687080e051dc125718b004b1caa/$file/060521+Potential+value+of+Integrated+Operations+on+the+Norwegian+Shelf%5B1%5D.pdf
http://www02.abb.com/global/seitp/seitp161.nsf/0/19ff7687080e051dc125718b004b1caa/$file/060521+Potential+value+of+Integrated+Operations+on+the+Norwegian+Shelf%5B1%5D.pdf
http://www02.abb.com/global/seitp/seitp161.nsf/0/19ff7687080e051dc125718b004b1caa/$file/060521+Potential+value+of+Integrated+Operations+on+the+Norwegian+Shelf%5B1%5D.pdf
http://refhub.elsevier.com/B978-0-12-804642-5.00001-3/rf0110
http://refhub.elsevier.com/B978-0-12-804642-5.00001-3/rf0110
https://doi.org/10.2118/112260-MS
https://doi.org/10.2118/143730-MS
https://doi.org/10.2118/143730-MS
https://doi.org/10.2118/112194-MS


41Introduction to Digital Oil and Gas Field Systems
Sankaran, S., Olise,M.,Meinert, D., Awasthi, A., 2010. Realizing Value from Implementing
I-Field in a Deepwater Greenfield in Offshore Nigeria Development. Society of
Petroleum Engineers. SPE-12769-MS https://doi.org/10.2118/127691-MS.

Saputelli, L., Bravo, C., Nikolaou, M., Lopez, C., Cramer, R., Mochizuki, S., et al., 2013.
Best Practices and Lessons Learned after 10 Years of Digital Oilfield (DOF)
Implementations. Society of Petroleum Engineers. SPE-16726-MS https://doi.org/
10.2118/167269-MS.

Steinhubl, A., Klimchuk, G., Click, C., Morawski, P., 2008. Unleashing Productivity:
The Digital Oil Field Advantage. https://www.strategyand.pwc.com/media/file/
UnleashingProductivity.pdf.

Van den Berg, F., Perrons, R.K.,Moore, I., Schut, G., 2010. Business Value From Intelligent
Fields. Society of Petroleum Engineers. SPE-128245-MS https://doi.org/10.2118/
128245-MS.

Yunus, K., Chetri, H., Saputelli, L., 2014. Waterflooding Optimization and its impact using
Intelligent Digital Oilfield (iDOF) Smart Workflow Processes: A Pilot Study in Sabriyah
Mauddud, North Kuwait. International Petroleum Technology Conference.
IPTC-17315-MS https://doi.org/10.2523/IPTC-17315-MS.

FURTHER READING
IBM Institute for Business Value, 2010. Oil and Gas 2030: Meeting the Growing Demands

for Energy in the Coming Decades. p. 12.https://www-935.ibm.com/services/
multimedia/GBE03376USEN.pdf.

iStore, 2015. Digital Oilfield Solution. Istore Co..https://www.istore.com/Overview.html
US Department of Energy, 2010. Predictive Maintenance. http://www1.eere.energy.gov/

femp/program/om_predictive.html (accessed 01/2012).
US Energy Information Administration, 2016. EIA projects 48% increase in world energy

consumption by 2040. In: Today in Energy.http://www.eia.gov/todayinenergy/
detail.php?id¼26212.

https://doi.org/10.2118/127691-MS
https://doi.org/10.2118/167269-MS
https://doi.org/10.2118/167269-MS
https://www.strategyand.pwc.com/media/file/UnleashingProductivity.pdf
https://www.strategyand.pwc.com/media/file/UnleashingProductivity.pdf
https://doi.org/10.2118/128245-MS
https://doi.org/10.2118/128245-MS
https://doi.org/10.2523/IPTC-17315-MS
https://www-935.ibm.com/services/multimedia/GBE03376USEN.pdf
https://www-935.ibm.com/services/multimedia/GBE03376USEN.pdf
https://www.istore.com/Overview.html
http://www1.eere.energy.gov/femp/program/om_predictive.html
http://www1.eere.energy.gov/femp/program/om_predictive.html
http://www.eia.gov/todayinenergy/detail.php?id=26212
http://www.eia.gov/todayinenergy/detail.php?id=26212
http://www.eia.gov/todayinenergy/detail.php?id=26212


CHAPTER TWO
Instrumentation and
Measurement
Contents

2.1 Instrumentations for Measurement: Gauges and Flowmeters 44
Ack
Refe

Intell
https
2.1.1 Surfaces Gauges 44
2.1.2 Downhole Gauges 45
2.1.3 Surface Flowmeters 46
2.2 Control Technology by Field Types 60

2.2.1 General Control Technologies 60
2.2.2 Mature Assets 63
2.2.3 Deepwater Platforms and Floating Production Storage and Offloading 63
2.2.4 Unconventional Assets 64
2.3 Data Gathering and SCADA Architecture 65

2.3.1 Well-Location Data Gathering and Telemetry 65
2.3.2 Field Control Devices 66
2.3.3 SCADA and Distributed Control System 67
2.4 Special Note on Cybersecurity 68

2.4.1 An Overview of Cyber-Attacks in O&G Companies 68
2.4.2 Cybersecurity Challenges in DOF Systems 69
2.4.3 The Actors, Their Motivation, and Kinds of Attacks 70
2.4.4 Addressing Cybersecurity Challenges 73
2.4.5 The Future on Cybersecurity 73
nowledgments 73
rences 74
her Reading 74
Furt

One primary reason for the recent proliferation of DOF systems is the pro-

liferation of DOF infrastructure. As instrumentation, well control systems

and supervisory control and data acquisition (SCADA) have advanced

and become less expensive, and therefore they are applied more broadly

throughout the oil field. As they become more broadly applied, then more

data and control is available to use in surveillance, automation, and optimi-

zation activities, which are the hallmark of DOF systems.

Chapter 1, Section 1.5.1 presents the elements of the architecture of

instrumentation, remote sensing, and telemetry of real-time processes
igent Digital Oil and Gas Fields © 2018 Elsevier Inc.
://doi.org/10.1016/B978-0-12-804642-5.00002-5 All rights reserved.
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(Fig. 1.7), and Section 1.5.2 presents data management and data transmission

(Fig. 1.8) for SCADA systems. This chapter presents the details of the prev-

ailing trends for well instrumentation, wellhead control, and SCADA sys-

tems. It first presents some general trends in each category and is further

organized into how these systems are being applied in different asset types.

The chapter investigates mature fields, deepwater platforms and floating

production storage and offloading (FPSO) systems, and unconventional

assets. Although DOF systems are being applied across all oil field

activities—from geology and reservoir to drilling, to completions, and

finally production—this chapter focuses on production.

Although there are very interesting advances in the areas of database and

enterprise IT—for example, data lakes, in-memory data architectures, and

open-system analytics to name a few—those technologies are discussed in

Chapter 4. In addition, the unique hardware for safety shutdown systems

is not presented here. Instead, the hardware and software from the instru-

ments through data historians are discussed. The asset control network dis-

cussed here includes field instrumentation, field control devices, telemetry,

SCADA systems, and data historians.

Engineers and operators engaged in companies implementing DOF sys-

tems have become very familiar with the growth of these systems in oil field

operations and are conversant with data-driven production tools. With the

concomitant growth of Big Data (Chapter 4) and mobile systems (Chapter 8),

field operators and engineers can connect to the field sensor and control sys-

tems from multiple systems, for example, networked computers, tablets,

phones, etc. from any location to make near real-time decisions.

2.1 INSTRUMENTATIONS FOR MEASUREMENT:
GAUGES AND FLOWMETERS
The most important aspect in any DOF systems and automated

workflows is to be able to measure well performance in real time. Pressure

and temperature gauges and flowmeter and pump measurements are crucial

for DOF workflows.
2.1.1 Surfaces Gauges
The most important real-time measurements are surface pressure and tem-

perature. Fig. 2.1 shows a complete set of surface gauges, sensors, and devices

useful for DOF operations.



Fig. 2.1 The whole set of gauges, sensors, and meters required for real-time DOF. The
figure shows surface and downhole gauges with surface remote-controlled valve and
ICVs. An artificial list system is also added; note that the wells can be equipped with
GL or ESP but rarely both.
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The following are the essential data required for surface monitoring:

• Tubing head pressure (THP) and tubing head temperature (THT)

gauges, if wells flow through tubing.

• Casing head pressure (CHP) and THT gauges, if wells flow through cas-

ing or annular area, including gas lift in shallow well completions.

• Flowline pressure (FLP) and flowline temperature (FLT).
2.1.2 Downhole Gauges
In dry and wet gas wells, downhole gauges are not required because a two-

phase flow correlation (such as that of Gray, 1978; Beggs and Brill, 1973) can

be used to estimate the bottom-hole flowing pressure with acceptable accu-

racy. However, when a multiphase flow occurs and produces gas, vapor, oil,

gas-in-solution, and water, then downhole pressure and temperature gauges

can generate tremendous value to DOF workflows to measure well and res-

ervoir performance. Moreover, during well shut-in periods, the downhole

gauges can capture the essential data to perform a pressure transient analysis

(PTA) to estimate the static reservoir pressure (p*), reservoir conductivity
(k.h), and skin factor (S).

To be able to measure performance and optimize lift, then wells with

artificial lifts must have all necessary gauges installed. In wells using electrical
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submergible pumps (ESP), generally the ESP is equipped with a downhole

intake pressure gauge (inlet before the ESP’s motor) and a discharge pressure

(outlet after the ESP’s motor) plus the motor temperature. Gas lift (GL) wells

are equipped with a downhole gas valve, which use differential pressure to

estimate the gas injected and the flowing pressure at the tubing. In natural

flow wells, we recommend setting up gauges at the end of tubing with a

packer; the information is transmitted using electrical cables. Fig. 2.1 shows

an example of downhole gauges, sensors, and devices useful for DOF oper-

ations. Internal control valves (ICV) are included in this figure; ICV devices

are explained in Chapter 7.

2.1.3 Surface Flowmeters
One extremely important trend used at all asset types is the increase in indi-

vidual well measurement—especially in flowmeter technologies. Any

instruments that provide real-time accurate measurements of well produc-

tion liberate many DOF workflows. There are three ways to develop well

flow rate: direct measurement, direct calculation, or virtual measurement

using analytic or empirical models. Now operations workflows do not have

to depend first on an allocation workflow, which has different objectives and

requirements than most operations activities. Comprehensive work on

multiphase flow is described by Falcone et al. (2009).

Themost commonmeansofmeasurement is to install a separator followed

by individual component flowmeters. Flowmeters have improved beyond

the typical orifice plate meters and their prices have fallen. It is very common

to findCoriolismeters used for oil orwater flows.Orifice platesworkwell for

gas flows. Turbine or Venturi types are also commonly deployed. A major

benefit of the Coriolis type, which uses principles of mechanics of fluid flow

in a vibrating tube, is that it measures fluid density along with rate so that the

operator can tell if gas or even water is flowing along with the oil measured.

However, flow rate instruments have two disadvantages. First, their use

requires a dedicated process to ensure that the meter is calibrated and fit for

use as the well production declines. For example, Coriolis meters do not

perform well at low turndowns and at high gas volume fraction (GVF),

and orifice plates need to be changed to fit the flow rate range throughout

a well’s life cycle. The second disadvantage is that to use separate meters on

each fluid stream, one or more separators must be installed. Separators are

expensive to purchase and maintain. However many old or even low rate

wells are now using individual fluid meters.

Another alternative to separators and individual fluid meters is a three-

phase meter. Technologies for these meters are rapidly progressing and
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include nuclear and sonic-type meters (nonintrusive devices). As with

Coriolis meters, pricing has become reasonable for many applications.

2.1.3.1 Types of Fluid properties Measured Over Time and Why
Falcone et al. (2009) described five essential parameters measured (sepa-

rately) by flowmeters:

• Meters that measure fluid flow velocity (v). This category includes classical

intrusive meters that have spinners or turbines. A flow passing through

the vane of the devicemoves the spinner; the rate of spin per time is mea-

sured to calculate the volumetric flow. Turbine, spinner, or vortex

meters are the most common devices that measure the total flow veloc-

ity. Most fluids have multiple components (liquid, gas, etc.) The main

way to improve precision and accuracy of these devices is to homogenize

the fluids and measure total fluid velocity. Under this regime, a turbine

meter can measure the total fluid velocity of the mixture but it cannot

measure the fluid density.

• Meters that measure density (ρ). Nonintrusive devices based on ultrasonic,

electrical impedance, or particular atomic constituents can measure the

mean density of a fluid on a section of a pipe. This category includes

γ-ray adsorption or neutron interrogation. These devices measure the

void fraction of the gas and the liquid, but it cannot measure fluid

velocity.

• Meters that measure mass flow (ρ.v). These devices use a flexible tube

that measures the amount of mass passing through a u-shaped pipe,

causing vibrations; the vibration is converted into total mass flow.

This category includes Coriolis meters and true mass flowmeters

(TMFM).

• Meters that measure momentum (ρ.v2). The product of mass flux

(density * velocity) and fluid flow velocity is defined as fluid momen-

tum, or the force of a fluid in motion. This category includes traditional

intrusive pressure-drop devices, such as orifices, Venturi, nozzles, etc.

The pressure drop is measured directly between the inlet and outlet pres-

sure points.

• Meters that measure chemical or atomic elements (H2, C2, O2). This category

includes electrical, mechanical, acoustical, hydraulic, or atomic devices

that, depending on their physical principles, measure the concentration

and velocity of atomic elements such as hydrogen, carbon, and oxygen.

For example, infrared spectroscopy water cut device measures the

volumetric proportion of oil in a mixture of oil and water by running

a beam of infrared light that is absorbed by oil fluid.
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2.1.3.2 Flowmeters: Principles of Measurement
The basic types of meters are based on different measurement principles such

as differential pressure, velocity flow, positive displacement, mass flow, and

elemental analysis (ultrasonic, electromagnetic, thermals, radioactive, etc.).

Differential pressure meter. The most traditional meter used by the oil and

gas (O&G) industry, this meter measures the pressure drop over an orifice

inserted into the flow current. Engineers use the Bernoulli equation to esti-

mate the pressure drop, which is a function of the square flow speed mul-

tiplied by fluid density:

Δp¼ ρ∗v2

2
(2.1)

where Δp is the pressure difference measured at the orifice between two

points in psi; ρ is the fluid density in lbs/ft3, and v is the flow velocity in

ft/s.

The typical devices using this principle are orifice plates, flow nozzles,

Venturi tubes, and rotameters. Fig. 2.2A shows a typical example of a Ven-

turi meter and Fig. 2.2B gives an example of an orifice meter.

Velocity flowmeter:Measures the flow velocity by counting the number of

spins per unit of time (e.g., rotation, revolutions, or spinning per second) and

is multiplied by the cross-sectional area of the pipe:

v¼Q

A
¼#spins= πr2

� �
(2.2)

whereQ is the flow rate in ft3/s; A is the cross-sectional area of a pipe in ft2;

and v is the flow velocity in ft/s. The typical devices using this principle are

turbine meters, vortex flowmeters, and spinner meters. Fig. 2.3 shows an

example of a typical turbine meter showing spin and sensors.
D1

P1 P2

D0Q

r2

V2

V1

Flow

r1

1

2

(A) (B)
Fig. 2.2 (A) A Venturi meter showing inlet pressure at point 1 and outlet pressure at
point 2. (B) An orifice meter showing differential pressure after orifice reduction D0.



Sensor

Spinner

Flow

Fig. 2.3 An example of a turbine meter showing the spinner rotating in the direction of
the flow.
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Positive displacement meter: A series of synchronized gears or rotors is

moved by the flow current, which displaces a known volume of fluid over

time. The rotations of the rotors are proportional to the volume of the fluid

being displaced over a time period. This category includes reciprocal pistons,

gear meters, and rotary vane meters. This meter is widely used to measure

water in houses. Fig. 2.4 shows rotors synchronized to each other in a piston.

Mass flow meter: Measures directly the mass (molecular weight) passing

through a u-shaped tube. The flow mass is a physical property measured

independently of its pressure, density, viscosity, and temperature. Com-

monly, the O&G industry uses a Coriolis mass flow device, which uses

the Coriolis principles to measure the quantity of mass moving through

the u-shaped tubes that generate a vibration with angular harmonic oscilla-

tion; the degree of oscillation is a direct measure of the mass flow. This cat-

egory also includes thermal flowmeters, which measure the thermal

conductivity of the fluid, which is directly proportional to the mass flow.

Fig. 2.5 shows an example of a Coriolis meter.
Fig. 2.4 An example of a positive displacement meter.



Vibrating flow tube

Twist
angle

End view of flow tube
showing twist

Twist
angle

Fluid forces reacting to
vibration of flow tube

Fluid
force

Flow

Flow Fluid
force

Fig. 2.5 An example of a Coriolis meter. Once the flows pass through the tube, it starts
to vibrate and twist. The twist angle is proportional to mass flows.
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Fig. 2.6 X-ray or γ-ray attenuation or neutron interrogation devices showing beams
received by a detector.
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Elemental analysis meter. According to Falcone et al. (2009), this meter

measures the concentration and velocity of individual atomic elements, such

as oxygen, hydrogen, and carbon. The main element types are acoustic,

electromagnetic, γ- and X-ray attenuation, neutron interrogations, micro-

wave attenuation, and infrared spectroscopy. Fig. 2.6 shows a nonintrusive

elemental meter using X-ray, γ-ray, or neutron source devices to detect the

amount of oxygen and hydrogen atoms in the flow.

2.1.3.3 Criteria for Choosing a Flowmeter
• Precision and accuracy of the measurement.

• A meter’s operating envelope.

• What are the main fluids produced from the reservoir? Water, gas free,

gas in solution, oil vaporized, oil free of gas, heavy oil, water with gas

bubble, etc.
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• Calibration and maintenance: How often must the meter be calibrated?

• Gas void fraction: How much represent the fraction of gas or oil volume

in the pipe through time?

• Cost versus values.

• Government acceptance and health, safety and environmental issues.

• A meter’s position before or after a separation system.

2.1.3.4 Key Factors to Consider in Flowmeter Selection
Turndown ratio (TR). TR is the ratio of the maximum observed peak rate

divided by the minimum observed rate in a period of time, TR¼Qmax/

Qmin. It represents the rangeability of the instrument: the higher the num-

ber, the better range of sampling. If you have a well producing with slugging

patterns, showing intermittent high/low rate in <1h, then it requires a

meter with high TR, above 10:1.

Flowmeter location. Onshore, traditional meters (mass flow, flow rate, and

differential pressure meters) are used after the separation system (low pres-

sure). In this situation, it is very important to evaluate the flow regime and

pattern. Offshore, multiphase flowmeters (MPFM)might be used before the

separation systems.

Single-phase versus and multiphase flows.Gas is compressible and the density

changes significantly with changes in pressure, even when the change is low.

Liquids are considered incompressible and, in general, densities (oil and

water) do not change with pressure. If the pressure of a wet gas system

increases, the density of the gas will increase but liquid density remains

almost the same. Compositional fluids such as volatile O&G condensate,

change fluid composition with pressure. To distinguish the fraction of phases

on the flow rate (oil, water, and gas) requires flowmeter technologies to

quantify the volume fraction of each phase. The engineers need to know

if the fluids in a particular zone are flowing in single or multiple phases,

because it will change the type of meter needed.

Flow regimes and patterns. Flowmeters generally are placed between the

wellhead and the separation system or immediately after the separation sys-

tem. At this stage, fluids are governed by gravitational or kinetic forces. The

flow pattern depends on the volume of each phase, vapor and liquid prop-

erties, and the pressure and velocity of each phase. Therefore, the phases can

be distributed along the horizontal pipe in many sections and in many ways,

which is shown in Fig. 2.7 with a description below the figure.

• Stratified or wavily stratified flow takes place at low pressure, gas, and liquid

flow at different velocities; the surface between the liquid and the gas are
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separated clearly. Several parameters are used to distinguish between

single- and multiphase flows. After flow rate, one of the most imprecise

properties to be measured is the fraction of gas, oil, and water in a hor-

izontal pipe. Graham (2014) described that the fraction of gas occupied

in a pipe is called the gas void factor (eg), which has been one of the main

factors to consider for flowmeter design. In fluid dynamics, production

engineers use three parameters to distinguish between single- and

multiphase flows, such as the gas void fraction, GVF, and multiphase

parameters, as described below:
2 The first calculation is gas void fraction (eg), which is calculated using

the area of the pipe occupied by gas divided by the total cross-

sectional area of the pipe (Fig. 2.8). The eg method assumes that

the fluids flow at a low velocity (laminar) and that gas and liquid

travel at different velocities. When eg is higher than 0.70, it is con-

sidered gas single phase (dry gas or wet gas), a value of between 0.4
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Fig. 2.8 A cross-section of the pipe showing a stratified flow pattern with calculated gas,
oil, and water void fractions with the corresponding gas, oil, and water volume fractions.
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and 0.7 is defined as multiphase flow (gas condensate, volatile oil,

water cut over 30%). Below 0.3 could be considered liquid single

phase (black oil with low gas/oil ratio (GOR), heavy oil, high water

cut >70%).

2 Another important factor is gas volume fraction (GVFvol), which is

estimated as the ratio of the total gas flow to the total rates of water,

oil, and gas. The eg and GVFvol are unequal and different levels of

thresholds. When GVFvol is higher than 0.90, it is considered gas

single phase (dry gas or wet gas), between 0.5 and 0.89 is defined

as multiphase flow (gas condensate, volatile oil, water cut over

30%). Below 0.5 could be considered as liquid single phase;

however, GVFvol and GVFarea are related through the following

expression 2.5:
If gas and liquid travel at different velocities:

Vr¼Vg�Vl slip velocityð Þ (2.3)

So slip ratio can be calculated as:

k¼Vg=Vl (2.4)

Assuming that the gas velocity is five times the liquid velocity, then k¼5.0

and the fraction of gas occupied in the pipe is eg¼0.8.

The GVFvol is

GVFvol ¼ e∗k

1� e+ e∗k
(2.5)

GVFvol¼95% and the fluid is gas single phase.
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Fig. 2.8 shows an example of a pipe flowing three phases with a void gas

fraction eg of 0.50, oil 0.15, and water 0.35. The corresponding gas, oil, and

water volume factor is also shown.

2 The Lockhart-Martinelli parameter (χ) can be calculated from the mass

flow rate or volumetric flow rate of liquid and gas and the density of the

fluids, which is a dimensionless number. The parameter helps to define

the wetness or liquid loading of the gas using the following range: A wet

gas flow has a value of between 0.0 and 0.3, and values above 0.3 are

defined usually as multiphase flows.

x¼Qliq

Qgas

ffiffiffiffiffiffiffi
ρgas
ρliq

s
(2.6)

In summary:
Phase

Gas void
factor (eg)
Gas volume
factor (GVF)
Lockhart-Martinelli
parameter (χ)
Gas single phase

(wet gas)
>0.7
 >0.9
 <0.3
Multiphase flow
 0.4–0.69
 0.5–0.89
 0.31–0.61

Liquid single phase
 <0.3
 <0.5
 >0.62
• Intermittent flow (plugging and slugging) occurs when gas flows in slugging

or intermittently (not continuously), and liquid dominates the total void

fraction. Liquids have moderate high velocity and gases have low veloc-

ity. This is a more frequent flow before separation, it normally occurs in a

black oil system with low GOR.

• Bubble flow occurs at a high liquid velocity and is characterized by gas

bubbles floating over a continuous liquid phase. Here the multiphase

flowmeter (MPFM) works with high accuracy.

• Annular flow occurs at high gas and liquid velocities and with a significant

viscosity contrast between the gas and the liquid (μg/μliq). The gas flows
in the central core of the pipe and liquid flows as a film on pipe walls.

• Mist flowoccurswhen the gas velocity and thedensity increase, and then the

liquid becomes entrained as droplets in the gas flow.A portion of the liquid

travels on the pipe’s wall, and another portion flows suspended by the gas

flow. This flow is predominant in gas condensate and volatile oil systems.
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Fluid current homogenization:This condition occurs when the state of the fluid

is closer to one single phase because of the mechanical principles. After sep-

aration at low pressure and low velocity, fluids can be separated, stratified, or

producing in a slug pattern. Some meters, especially turbines, cannot distin-

guish between gas and oil. Furthermore, at this condition the turndown can

change from 1.0 to 100 in minutes. To reduce this effect, mixers are used to

blend the gas, oil, and water; therefore, the liquid and gas travel at the same

mean velocity (Vliq¼Vg). The slip velocity is 1.0; in this condition, fluid

properties of the mixed fluids are a single value of viscosity, density, etc.

Homogenization allows turbine meters to measure fluid velocity with high

accuracy. Fig. 2.9 shows how a mixer can homogenize several fluids.

Separation system and efficiency: Well-location and gathering center oper-

ation use two- and three-phase separation equipment. After the separator

outlet, it is expected that the wellhead pressure drops by >60%; under this

condition, the flow regime could be a stratified pattern flowing at a laminar

flow regime. In this state, the flowmeter measures the flow with acceptable

accuracy. Three-phase separators are the most efficient devices to separate

water and gas from oil. In non-water production reservoirs, a two-phase

separator could be a good choice, but when the condensate or volatile oil

flow simultaneously with water, the total liquid production may represent

significant amounts of volume (GVF<0.5). A three-phase separation system

could be the best choice to measure oil, water, and gas separately. Generally,

after the separation outlet an orifice meter is used to measure the gas rate; at

the oil and water outlet, a turbine meter could be the most economical and

reliable choice. For a two-phase separation system, an infrared water cut

meter combined with a turbine meter is generally the right choice. The

net oil can be estimated by the total liquid measured from the liquid meter

times the water cut value of the water cut meter. Fig. 2.10 shows the best
Gas

Oil

Water

Fig. 2.9 A cross-section of the pipe showing how a stratified flow pattern can be
homogenized using a mixing tool.
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location of flowmeters after a separation system. AMPFM is used before the

separator inlet.
2.1.3.5 Hybrid Single-Phase Flowmeters (Possible Combinations)
Flowmeters can be used in many possible combinations. Appropriate con-

figurations depend on the properties to be measured (velocity, density, pres-

sure drop, mass flow, and/or chemical element) and the separator design.

Falcone et al. (2014) describe three main ways to combine meters: (1)

homogenization, test measurement, and separation (techniques depending

on homogenization); (2) techniques that measure bulk flow (do not depend

on homogenization); and (3) techniques based on flow separation. The

flowmeter can be combined as described below:

• Homogenization, test measurement, and separations: Except for MPFMs,

single-property flowmeters have major issues with measurement under
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non-homogenized condition; therefore, a mixer device must be used to

equalize the flow velocity and estimate the mixture density. The follow-

ing equipment combinations can be used before a separation system, but

this configuration requires human intervention and constant device

calibration:
2 Two densitometers plus velocity: requires a meter to measure total

velocity (turbine), a densitometer to measure mixture density, and

second, a densitometer to measure oil phase density at the separation

test system. Additionally, oil, water, and gas-phase voids can be esti-

mated with a mathematical procedure. This is a less expensive option

but sometimes is not practical. This option cannot measure the

gas rate.

2 Velocity plus momentum requires one meter to measure the total

velocity and an orifice meter (differential pressure) to measure the

gas rate. This is also an inexpensive option; however, it cannot mea-

sure the phase densities and cannot distinguish oil from water.

2 Momentum plus density: Gas rate flow and fluid average density can

be obtained, but need another densitometer after the separator to

measure oil density. A Venturi meter can measure the fluid momen-

tum (ρ.v2), and a densitometer can measure density of the total fluid.

Use a mathematical calculation to get fluid velocity (v).

2 Interrogation rays plus mass flow: Using a Coriolis meter, the total

flow rate can be estimated with high precision. This meter combined

with a neutron interrogation or infrared ray can estimate water cut in

the bulk current and therefore quantify the oil and water rate. How-

ever, this option does not measure the gas rate, and it can be very

expensive and inaccurate if GVF is higher than 0.8.
• Non-homogenization, measurement, and separations: generally placed before

a separation system. The fluid components flow at different velocities, so

the phase velocity must be measured separately as well as volumetric

composition and its respective density (no mixture). This scenario

requires quite expensive devices and sometimes environmentally sensi-

tive sources, such as neutron interrogation, to calculate the amount of

oxygen and hydrogen present in the flow current, in addition to a pulse

neutron activation to measure both oxygen and hydrocarbon atomic

velocities. Additionally, a γ densitometer is required to measure the mix-

ture density fluid. The MPFM falls under these categories:
2 Bulk flow phases plus phase velocity.

2 Phase density and water cut.
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• Flow after separation system: This system measures oil and water directly at

the tank; gas is measured using an orifice meter. Important measurements

are derived from this data including the gas-oil ratio (GOR), the water

cut (ratio of water to liquid), and liquid-gas ratio (LGR). Frequently, oil

and water density are measured using centrifuge principles, and gas den-

sity is measured using correlations.

2.1.3.6 Multiphase Flowmeter
A multiphase flowmeter is an alternative to separators and individual fluid

meters is a three-phase meter. MPFM removes the need and expense of a

separator and three individual flowmeters and replaces that equipment with

a single, but more expensive, single meter. The technology for these types of

meters is rapidly progressing, including nuclear and sonic-type meters. As

with Coriolis meters, pricing has become reasonable for many applications.

AnMPFM is generally placed after the wellhead and before a separation sys-

tem, which allows for better MPFM utilization than placing it after the sep-

aration system. To allow gravity to separate the phases and generate uniform

bubble flow pattern, the MPFM should be set up in a vertical upflow posi-

tion. Fig. 2.11 shows the main components of an MPFM, which are listed

below:

• Venturi meter measures the total mass flow and bulk velocity by differ-

ential pressure.

• Dual-energy γ-ray densitometers or neutron interrogation is a detector

to measure phase fraction and mixture density and features. This non-

intrusive device directly measures the density of a mixed fluid. It is able

to separate the liquid from the gas phase by measuring the atomic veloc-

ities of oxygen and hydrogen.

• Infrared meter is an electronic detector that measures the capacitance of

water in an oil-dominated flow. Also a nonintrusive device, it estimates

the water cut or the amount of fraction of water volume in the total

liquid.

• Inductance and capacitance meters are electronic devices that measure

water conductivity and resistivity, respectively.

• Gas composition meter estimates the percentage of hydrocarbon com-

position (e.g., C1, C2, C3 up to C7+) in a gas stream.

A new generation of MPFM can also measure other critical properties, such

as solution pH, water salinity, wax content in oil, gas gravity, and oil gravity;

estimate the flow regime; and calculate Reynolds, Bond, and gravity num-

bers, and the solid content in fluids.
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Direct Flow Estimation
Direct estimation methods include compressor volumetric estimation for gas

rates and tank level variance for liquids. However, these methods quickly

lose their accuracy when multiple wells are combined to feed tanks or com-

pressors. Requires a lot of allocation and calculation processes to improve

accuracy.

Virtual Flow Estimation
Where instruments and direct estimation are not possible or economic, vir-

tual estimation can be used. Virtual estimation can be done using real-time

nodal analysis or using a data method—like a neural network—based on his-

torical well tests.
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For these methods to work requires real-time data readings for pressure

and temperatures, so one must install instruments to gather necessary data.

Instrumentation is discussed in Chapter 5.
2.1.3.7 Flowmeter Selection
DOF workflows can provide significant value to justify the investment in

accurate flow measurement of all phases and sometimes even compositions.

Flowmeters should not be selected on cost or price, but on the accuracy

needed to support the value-added workflows. Table 2.1 summarizes the

factors for selecting flowmeter devices based on: principles of measurement,

property to be measured, reservoir fluid most applicable, GOR range of

operation, water cut range of operation, accuracy as a function of flow rate,

turndown maximum and minimum reading rates, and vendor tolerance.
2.2 CONTROL TECHNOLOGY BY FIELD TYPES

2.2.1 General Control Technologies

The most important control technology for realizing the maximum benefits

of the DOF is remote or autonomous means for controlling a well. The best

example of this technology is the automatic choke.

An automatic choke lets you remotely adjust the flow in a well—from

complete shutdown to restart and nearly every setting in between. This

capability can be useful in many operating situations; for example, wells

can be curtailed or shut down when problems arise in production facility

equipment, then, when the problem is solved, remotely restarted. Many

operators are adding these chokes as standard equipment, especially for rap-

idly declining wells where the chokes can be adjusted remotely as rates

decline and wells can be easily set up with intermittent flow to support

field-wide capacity management.

Other important automatic technologies are for artificial lifts. Gas-lift

valves need to be highly accurate (not on-off ) regulatory valves. Electric

submersible pumps (ESP) should have adjustable frequency drives, and

rod pumps should have pump-off controllers and remote-activated speed

adjustments.

This section provides recommendations for use of these technologies for

some important types of fields.



Table 2.1 A Summary of the Most Important Factors for Selecting a Flowmeter

Flowmeter
Principles of
Measurement

Property
Measured

Reservoir
Fluid
Applicability

GOR
(Mscf/Bls)

Water
Cut
(%)

Accuracy
Flow Fate (Mscf/d)
10, 100, 1000, 10,000,… 1e6 Turndown Tolerance

Orifice plates Differential

pressure

(all intrusive)

Pressure

drop and

momentum

(ρ �v2)

Dry gas

Wet gas

Gas

condensate

>20 <10 5:1 �2% less 4% of

total rate

(if no water)

Flow nozzle >100 <5 5:1

Venturi tubes >5 0–100 10:1 �1% less 5% of

total rate

(if no water)

Rotameter >10 <10 12:1

Turbine meter Velocity meter

(all intrusive)

Fluid velocity

(v)

Black oil

w/low

GOR

1.0<GOR

<3.0

0–100 100:1 �0.25% of total

rate

(if homogenized)

Vortex meter High GOR

Dry/wet

gas

>5.0 <30 10:1 �1% of total rate

Continued



Table 2.1 A Summary of the Most Important Factors for Selecting a Flowmeter—cont’d

Flowmeter
Principles of
Measurement

Property
Measured

Reservoir
Fluid
Applicability

GOR
(Mscf/Bls)

Water
Cut
(%)

Accuracy
Flow Fate (Mscf/d)
10, 100, 1000, 10,000,… 1e6 Turndown Tolerance

Reciprocal piston Positive

displacement

meter

(intrusive)

Volume

displaced in a

cell (flow rate,

Q)

Black oil

Heavy oil

<3.0 0–100 70:1

Disk

Rotary vane

Coriolis meter Mass flowmeter Mass flow rate

(mf)

Black oil low

GOR

Heavy oil

<5.0 0–100 100:1 �0.05% less 0.5%

of total rate

(if low GOR)

Multiphase meter

+Venturi

+Ultrasonic

+Electromagnetic

Differential

pressure

Densitometer

Flowmeter

Pressure drop

Gas particles

Water cut

Multiphase

flows plus:

• Salinity

• Density

• Flow

regime

0.1–1000 0–100 100:1 �0.02% less 0.5%

of total

(before

separation)
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2.2.2 Mature Assets
Mature assets are a special challenge for DOF projects because of older oil

field technology and lack of basic computer and technology infrastructure

(compared with the current standards). These older assets may not support

the instrumentation and automation that characterizes DOF systems. How-

ever, these assets may have enough hydrocarbon-producing life to warrant

the cost of retrofitting them with wellsite controls and automation.

The cost of sensors and infrastructure (for additional discussion, see

Chapter 9) is certainly a key obstacle. Wells are instrumented with pressure

and temperature sensors to support virtual flowmeters (Chapter 5) and arti-

ficial lift unit operations. High-rate wells in large mature fields (such as in the

Middle East) can often easily support downhole instrumentation and full

SCADA control platforms. For example, the KwIDF projects in Kuwait

supported MPFMs in a water injection area (Al-Abbasi et al., 2013).

In remote fields with large well counts but low rates, the trend is to use

local control facilities, which operate with solar-charged batteries and have

either WiMax or cell phone telecommunications. Furthermore, because

most of these mature wells require artificial lift (e.g., rod pump, ESPs,

and others), pump manufacturers offer pump-control packages that can

be used independently or that can be integrated with SCADA.
2.2.3 Deepwater Platforms and Floating Production Storage
and Offloading

These assets typically have high-volume wells and fields with considerable

infrastructure from the initial capital deployment. These assets usually oper-

ate like a refinery or petrochemical plant with full distributed control systems

(DCS) and onboard control rooms. Considerable instrumentation is

installed on the surface systems, subsea wellheads, and downhole.

Three evolving trends help these assets apply DOF. First is the applica-

tion of downhole temperature and pressure instruments used in each well.

This technology is becoming more common place as it has become less

expensive and more reliable. These instruments—together with nodal

analysis—allow users to perform real-time well surveillance and optimiza-

tion workflows.

One considerable limitation to applying DOF workflows in these fields

has been their relative isolation from support groups. Although the opera-

tions group is onboard the facility, the engineering and analysis teams are

usually onshore. These onshore groups have been limited in their ability
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to perform real-time workflows because there can be a considerable time lag

to get the data from the remote facility. Further, because getting the data to

shore is so slow, only limited amounts are moved at reasonable speeds, with

the remainder coming on in a “batch” overnight. Many companies are now

laying fiber optic cables to alleviate the lag and improve bandwidth. Some

locations are even moving toward satellite communications (Fig. 2.13) to

improve data communication and asset collaboration. Companies are

employing collaborative work environments for production operations

onshore to monitor and control in real time (Chapter 8).

Another evolving trend for these assets is the increased power of DCS

and historian systems. These systems regularly have the capability to deploy

multivariable control and predictive analytics hosted directly on the control

platform.
2.2.4 Unconventional Assets
Unconventional assets are uniquely fit for the DOF. These assets are newer

fields with many wells that are drilled and produced from centralized pads, so

more DOF infrastructure can be applied economically. The well production

does not lend itself to traditional modeling and field planning tools, like res-

ervoir models and nodal analysis, but data-driven models can be used appro-

priately to manage wells. For example, unconventional wells move rapidly

through their life cycle, going from natural flow to artificial lift in months.

This means unconventional fields have more data available and need more

data-driven workflows. As these fields are developed on multi-well pads, a

high degree of instrumentation can be centrally installed and the asset can

have local control capability. Most equipment has solar panels to drive

long-life batteries. They use produced gas to power valves and instruments,

and have some local control devices.

Local control devices have becomemuchmore powerful and easy to use.

Remote terminal units (RTU) with embedded control capability are widely

applied. A newer technology, programmable logic controllers (PLC), is

quite powerful yet easily programmed and is being used more frequently

in unconventional assets. PLCs can now be programmed with graphical-

based languages (as opposed to the old ladder logic) and can include

advanced capabilities, such as supporting multivariable predictive control

of devices without requiring a gateway-connected computer.

Wells in these assets typically have some form of well pad separation and

flow measurement as described. They typically include tubing, casing, and
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flow-line pressures and at least flow-line temperature instruments. It is also

very common for these wells to support automatic valves including wellhead

chokes. The automatic remote-activated chokes facilitate supervisory con-

trol and optimization. Multiple operators use the automated chokes for

intermittent well control or for automated curtailment and restart of wells,

to balance production with facility constraints, such as when a compressor

goes down.

As unconventional wells progress through their life cycles, they move

onto artificial lift. Gas lift, plunger lift, rod pumps, and some ESPs are used.

All of these are being installed with local-control elements that can be

remotely operated. Operators commonly have the ability to set gas lift rates,

pump speeds, or pump-off controls from field collaboration centers, without

going to the well site. Real-time data-capture technology (e.g., a product

from OSI called PI, one of the data historian software available in the mar-

ket) can be used stand-alone or integrated with SCADA systems to control,

analyze, and optimize multiple lift types. As stated above, unconventional

assets rely heavily on data-driven workflows because traditional modeling

tools do not fully apply. As these are usually high well-count assets, there

are large volumes of data to analyze. SCADA and historian systems are

now embedding predictive analytics tools into their platforms. Additionally,

OSI’s PI application framework translates the traditional SCADA/DCS tag-

based data model into a virtual one so that users can get right to the data they

need with logical names instead of tag names. These systems, with their

added security and robustness, give more power to the process control net-

work and operations staff, instead of moving that processing into the enter-

prise IT architecture.
2.3 DATA GATHERING AND SCADA ARCHITECTURE

2.3.1 Well-Location Data Gathering and Telemetry

The two main ways to gather and communicate data are wired and wireless.

Localized well and control facilities, such as offshore platforms, typically use

a wired structure. Scattered, large well-count assets, like the unconventional

ones, generally used a wireless strategy. Fig. 2.12 shows a well location with

an RTU controller, wireless equipment, and an Ethernet switchboard.

The main issue for DOF systems is that larger volumes and increased

frequency of data needs to be gathered and transferred to the control loca-

tion. For medium-sized offshore and land-based assets, these requirements
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commonly mean the use of fiber-optic cable to the optimization and col-

laboration centers. Most of the other means have too much latency or

subsampling to enable DOF workflows. Widely scattered assets, like the

shale plays, require some wireless technology. Although commercial

cell-modem communication is getting more affordable, the variability of

plans makes it difficult to fit into a DOF strategy. Therefore, it is most

common to see radio-frequency towers used for DOF assets. This area

of technology is rapidly evolving so the DOF best practices will be chang-

ing very soon.

The IT infrastructure for data gathering is commonly a data historian.

This software provides both a data and hardware gateway between the

more-secure local control site and the enterprise IT-based DOF systems.
2.3.2 Field Control Devices
While DOF workflows require more data to be communicated up to the

enterprise servers and systems, more control and processing power is being

pushed to the well pad. It is now very rare to find simple RTU-type units on

the well site (as shown in Fig. 2.12). Almost all DOF assets use remote oper-

ation centers (ROC) at least. A new version of old technology is the

reemergence of PLCs. PLCs have tremendous programming capability

and are commonly used in high-frequency manufacturing. These are very
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robust and stable devices, which are now easily programmed as discussed

above (see Section 2.2.4).
2.3.3 SCADA and Distributed Control System
Most modern production platforms and FPSOs use distributed control sys-

tems (DCS). Most modern unconventional assets are installing simpler

SCADA systems. Many assets are using a generic SCADA system, such as

those applied in other industries (e.g., manufacturing). Others are electing

to deploy a domain-specific SCADA/control platform—especially on arti-

ficial lift wells—or even two systems to meet their needs.

SCADA systems are now in their fourth generation. The first generation

was “monolithic,” the second generation was “distributed,” the third gen-

eration is “networked,” (as shown in Fig. 2.13) and the fourth generation is

the Internet of Things (IoT) generation. Recent SCADA systems are less

expensive to maintain while reporting in almost real time. The current

recent technology uses open-system protocols and is cloud based. We do

not know of any O&G asset currently using a cloud-based SCADA system,

but there are many industrial water-conditioning plants using such systems.

We think O&G will not be far behind.

Most SCADA or DCS systems with DOF integration technologies are

displayed in control rooms to enable collaboration like shown below.
Fig. 2.13 SCADA architecture example showing data transmitted from RTU/PLC well
side to a SCADA system.
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However, most modern SCADA and DOF platforms need to have some

mobile capability as that is becoming critical for all land-based operations.

2.4 SPECIAL NOTE ON CYBERSECURITY

The growth of remote systems that communicate sensitive data from
production operations along with the growing occurrences and risks of

hacking of communication networks has increased the focus on security

for O&G DOF operations and systems. Before the implementation of the

digital or connected oil fields, the industry had to face mainly traditional

threats, such as natural hazards, human errors, physical attacks to humans

and property. Now with the growth of connected sensors, instrumentation,

and control systems throughout fields and systems of data connections

through cell signals, WiMax, satellites, and cloud servers that contain

vital commercial and proprietary data, the O&G industry faces the same

cyber threats as any other global industry. Hence, the security of these sys-

tems becomes an important aspect of both the O&G industry and the

policymakers.
2.4.1 An Overview of Cyber-Attacks in O&G Companies
Like every major company in the world with an IT infrastructure, compa-

nies in the O&G industry are fighting against cyber-attacks and their resul-

tant costs. In 2004, 2700 businesses dealing with critical infrastructure had

>13 million cybercrime incidents that were estimated to cost them more

than $288 million USD and 150,000h of downtime (Rantala, 2004).

Many major companies in the upstream industry have felt the impact of

cyber-attacks including Saudi Aramco, RasGas (Qatar), and Chevron. Tra-

ditionally, the goals of cyber intrusions have been to steal intellectual prop-

erty, business tactics, and information. However, the attack on Saudi

Aramco also showed evidence that the aim was to cause physical disruption

to the O&G supply chain (Clayton and Segal, 2013).

Cyber threats to O&G companies present a complex and increasingly

difficult challenge for the companies, security organizations (governmental

and industry), and the public, who may be impacted by such disruptions

(e.g., to supply). These attacks are becoming increasingly sophisticated

and more difficult to detect, deter and defend against, and the perpetrators

are less “lone wolves” and more organized experts of both state-sponsored

and self-organized groups. Incidents related to Stuxnet and Shamoom
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cyber-attacks on energy industry targets appear to be of this nature ((Bronk,

2014; Persons, 2014).

The increasing number of threats and vulnerabilities has warranted

industry practitioners, leaders, and policymakers to raise awareness, develop,

deploy, and manage solutions to reduce the risk and ensure uninterrupted

operations of O&G industry assets.
2.4.2 Cybersecurity Challenges in DOF Systems
DOF vulnerabilities encompass all the vulnerabilities related to IT systems,

software, networks, communication, and data systems. The US government

Cybersecurity Framework (NIST, 2014) provides a great starting point to

understand all aspects of cybersecurity related to DOF systems. The frame-

work has five major steps:

• Identify all threats, actors, and their motivation.

• Set up protective measures against known threats.

• Implement all possible means of detection of vulnerabilities, attacks, and

attackers.

• Defend against intrusions by analyzing the sources and their impact.

• After any incident, recover and bring systems back to pristine condition.

Before ubiquitous Internet connectivity, the systems controlling operational

processes on the rig, oil field, refinery, or pipeline were closed systems.

Now, these control systems operate in an open network environment that

makes them vulnerable to potential threats. The need for an open network is

required to increase productivity, automated communications from the field

to the office or remote control centers, and perform a broad range of elec-

tronic transactions (NPC, 2001).

The vulnerabilities in upstream O&G industry include the ones listed

below.

• Physical security: Drilling operations are mostly in remote locations,

where a large number of resources (equipment, computing systems, sen-

sors, people, etc.) are located. The mere fact that these locations are

remote makes them more vulnerable.

• Intelligent sensors and devices: Across the upstream O&G life cycle, a

large number of intelligent devices are involved in managing all the

aspects of operations (drilling, production, etc.). As evident from some

recent incidents, these intelligent devices become an entry point for

attacks in the network that can cause disruption in the operation of

the O&G field.
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• Lifetime of equipment: The lifetime of the equipment, tools with built-

in communication channels have a much longer life than IT systems, and

as a result can become incompatible with the new IT system leaving

holes for attackers to get into the systems and network.

• Machine-to-machine communication: The communication between

sensors and devices in control systems is vulnerable to data spoofing that

can lead to unpredictable behavior of the device and create a domino

effect in an operational environment.

• Communication networks: Many communication channels are now

available, including traditional WiFi, Bluetooth, protocols like Zigbee

and others. While there are standards on how to use these protocols,

there are no industry-wide standards and thus provides a mechanism

for someone to exploit gaps in updates in these protocols.

• Traditional Internet Protocol: While the Internet Protocol (IP) has

existed for a long time, vulnerabilities like denial of service (DoS) attacks

are getting sophisticated, larger, and more frequent, because they are

hard for anyone to predict. The increased connectivity of field systems

through the IP increases the chances of attacks like DoS.

• Globally distributed stakeholders: Typical O&G field operations use

large, diverse teams of company staff, vendors, and contractors who

are globally distributed and who have varied degrees of training and

experience. Weak communication between stakeholders can lead to

bad decisions that could leave vulnerabilities to increases in the threat

of insider attacks.
2.4.3 The Actors, Their Motivation, and Kinds of Attacks
Irrespective of known and unknown vulnerabilities, it is good to understand

the main category of attackers and the motivation of these actors.

Intellectually curious: These non-malicious attackers take it as a hobby to

solve challenges associated with vulnerabilities they discover accidently or

from published reports by various cybersecurity industry experts. While

such attackers have no malice, their activity could lead to disaster for

O&G industry operations.

Former employees: If disgruntled or turned rogue, former employees can

sabotage a business based on what they learned about system vulnerabilities

while being employees.
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Disgruntled insiders: These attackers can be difficult to detect and stop.

They exploit the vulnerabilities either for financial gain or to sabotage the

business.

Competitors: While it is not prevalent in the O&G industry, O&G is a

very competitive industry. Competitor businesses try to gain access to the

intellectual property, business secrets, and financial information.

Nation-state actors:With the explosion of organized hacker activities, the

various organized groups supported by their country’s governing regimes

have started to attack O&G industry targets, motivated by many factors.

Terrorist organizations: Their goal is to create collateral damage on a large

scale, and an attack on O&G industry falls in that category, because any

impact on O&G production can affect millions of people worldwide.

The motivation is sabotaging nations, governments, and businesses.

Criminal syndicates: Their goal is to damage in all possible ways, including

stealing intellectual property, financial data and information, and even laun-

dering money.

The O&G industry faces many different kinds of attacks. The degree,

size, and complexity depend on various factors in digital, smart, or intelligent

field systems. The known major threats that industry faces are the following.

Botnet: A botnet is a collection of compromised computer systems, also

referred to as zombies that are in full control of a cybercriminal known as

botmaster, who is engaged in malicious attacks and more likely unlawful

activities. Botnets have been a growing threat as they can significantly affect

the operations of O&G industry.

Phishing and Email spamming: This threat is about getting credentials of

legitimate system users using deception tactics by the attacker. Typically,

a link is embedded in an email or other electronic communication, whereby

the link might look very legitimate to the reader. However, when someone

clicks the link, it takes him/her to a site the attacker controls and collects the

user’s information. Later, the hacker uses that information for various other

high-level attacks to the systems, networks, or accounts of the legitimate

users. For O&G industry, phishing emails are targeted mainly at mid-level

managers.

Malware and spyware:Malware and spyware are software, applications, or

programs designed to gather information from computer/computing

devices without the awareness of the legitimate user of the system. One

of the reasons for this threat is the exponential growth of malware signature

in cyberspace and the increasing sophistication of malware software. In

2010, Symantec reported >280 million malware signatures compared with
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just 3 million in 2009. The Shamoom malware incident of August 2012 is

one of the most significant cyber-attacks directed against the industry giant

Saudi Aramco. Shamoom quickly deleted digital content on hard disks and it

is estimated that >30,000 computers systems were affected (Roberts, 2012;

Mills, 2013).

Virus: A virus is a program that propagates itself from one comput-

ing device to another with the legitimate user’s unknowing authorizat-

ion or intervention. The damage done by a virus is unforeseen and

unpredictable as each of the virus is designed for specific activity and pur-

pose and can range from misleading the users to do a certain activity to

destroying completely the computing device itself. The virus is embed-

ded in an email, or documents that are shared such as photos and videos.

If a virus-infected file is shared through a physical storage drive like a

USB flash drive, the virus can spread even without omnipresent connec-

tivity. The threat of viruses for the O&G industry is the same as for other

industries.

Worm: Like a virus, a worm moves from one computing device to

another and keeps a record of the previous computing environment it

was in, thus providing the attackers a trail of information of the systems.

These are self-replicating programs unlike viruses, which are fixed but

spread due to some human intervention.

Denial of Service (DoS): DoS attack is an incident in which a business’s

computing systems are unable to fulfill the service requests that are being

requested, because its computing resources are overloaded. Typically, this

happens when an attacker creates a massive amount of service requests aimed

at a particular service with an aim of bringing down the service, such that the

computing system both become overloaded in various resources available to

it and is unable to take any more legitimate requests. DOS is one of the hard-

est kinds of attack to predict and prevent.

SCADA attack: As mentioned above, SCADA systems are the heart of

O&G industry operations, so its security is crucial. Typically, SCADA

transactions are done without close security at the source; thus, the inter-

ceptors can read and use for their benefits. In addition, devices in SCADA

systems have very limited memory and bandwidth for storing and

implementing authentication solutions, so as a result may allow for injec-

tion of requests that can create havoc for field operations. SCADA systems

have evolved to become a decentralized series of interconnected networks

and thus become more vulnerable. If SCADA systems are attacked and

infiltrated, the result could be damage to various assets deployed on the
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DOF systems, leading to a shutdown or physical disruption, which can

result in economic loss, injury or loss of human life, and environmental

impact.
2.4.4 Addressing Cybersecurity Challenges
TheO&G industry is engaging in multiple tactics to defend against and deter

these challenges. For example, automated testing of SCADA protocols uses

well-designed tests that can simulate real-world conditions and allows IT

professionals to view the limitations and vulnerabilities of devices in the

SCADA system and network. From a policy approach, the industry needs

to adopt and implement risk assessment methodologies that encompass all

systems, interdependencies, and all aspects of cybersecurity. Each company

or organization should adopt a comprehensive cybersecurity strategy and

framework that is adapted to the operational priorities of the business. More

importantly, the O&G industry needs to build industry-wide standards for

cybersecurity for digital oil fields, smart fields, and intelligent fields, through

cooperation and sharing best practices used in their respective companies. Of

course, the industry needs to implement a continuous monitoring of all

aspects of vulnerabilities, actors, activities, threats, and leverage emerging

technologies like Big Data and artificial intelligence to mitigate risks associ-

ated with cybersecurity.
2.4.5 The Future on Cybersecurity
As more instrumentation, local control, and advanced SCADA features are

installed in O&G assets of all types, DOF systems must become more

advanced and natively include cybersecurity capabilities. As technology

advances, prices fall, making it easier to include security at all necessary loca-

tions and levels in a DOF system.

It appears the IoT trends will be to place more local control and optimi-

zation capability at the well site. Further, the SCADA data is moving to

cloud storage. Several companies already offer cloud-based SCADA. This

allows SCADA to scale easily both in terms of more field assets and also

in terms of more real-time control and optimization. It also becomes more

affordable to maintain because IT groups can then “bundle” support of

SCADA with the necessary security with all other enterprise systems.
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All digital oil field (DOF) systems generate high-frequency data from mul-

tiple sensors from most sources in the field. These sensors communicate

through the SCADA systems, remote terminal units (RTU), and data his-

torians with multiple corporate data systems as described in Chapter 2.

It does not matter if the workflow is for surveillance, regulation,

reporting, optimization, or control; timely and accurate data is absolutely

required. However, the requirements for what constitutes “timely” and

“accurate” can vary widely for these workflows, depending on their nature

and urgency. For example, gas lift flow regulation requires sub-minute fre-

quency and highly precise indication of flow and valve position, while gas lift

optimization may require only the valve position and likely needs only

hourly or daily indications of gas lift volume and oil production volume.

Thus, DOF workflows have differing requirements for high-frequency data

and some may use lower frequency data. The data may be acquired at
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different frequencies from different sources; fit-for-purpose and some high-

frequency data may be processed through time-series averaging processes.

Additionally, user trust and acceptance of DOF systems can be severely

limited by bad or questionable data. It is imperative to manage effectively the

DOF system data, which is especially difficult because of the large number of

data sources and databases involved. Solid data management procedures are

necessary but cannot keep up with all data values at all times. Engineers and

decision makers depend on data having the highest quality; that is, data that

has been processed by data validation, filtering, and conditioning proce-

dures. The IT department, SCADA specialists, and instrumentation special-

ists are often tasked with ensuring the data quality. Rather than counting on

each database to perform its own data management appropriate to DOF, it is

best to implement a DOF-based data validation and conditioning system,

across the entire DOF implementation.

This chapter presents the major features of such a system, which includes:

(1) data processing, (2) basic error detection, conditioning, and alerting, (3)

well and equipment status detection, (4) advanced validation, and (5)

workflow-based conditioning. This chapter is a condensed tutorial on

how to validate and condition data appropriately for DOF systems. The pro-

cess flow of the chapter is summarized in Fig. 3.1, which has the main steps

for a DOF data validation and conditioning system. One can also refer to a

myriad of specialty material on signal processing (e.g., Vetterli et al., 2014)

which is not covered here.

3.1 DOF SYSTEM DATA VALIDATION
AND MANAGEMENT
All integrated systems use three primary levels of data: raw instrument

data, calculated data, and asset hierarchy data. Examples of instrument data

are temperature, pressure, and flow. Calculated data can be allocations or

forecast data. Asset hierarchy data includes the organization of wells to

routes, or facilities, water injectors to producers, etc.

The first step in a data validation and conditioning (DV&C) management

system is to check basic data transfer protocols and individual high-priority data

feeds for all data types. There are two main levels at which data are checked.

First, the instrument data should be checked. All critical instruments, for

example, temperature, pressure, and flow rates, should undergo a range and

freeze check. Since a DOF system typically has hundreds to thousands of

data types, also referred to as data tags, this is a large task that should be
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automated, but there must be some manual checks. It is important that this

task be done for the integrated database of all the data (see Chapters 1 and 2),

so one is checking the data after it has been through all of the transfer and

load processes. Note that it is relatively common for DOF systems to receive

polling and job status information from SCADA and other source databases.

This information is very helpful but often insufficient to assess the data qual-

ity. If the instrument reading is out of range, high or low, or if the data is

frozen and has not moved within a tolerance for a considerable time, then

something is wrong. It may be the instrument itself or there may be a prob-

lem with the transfer, but something is wrong. Most calculated data can be

checked this way too.

Second, at the other extreme of data checks is to look at high-level data,

instead of individual instruments, which should include both manual and

automated data checks. The best practice is to have two ways to look at

the data manually: trends and grids (maps). The trends data display should

show 7-day aggregated information on route sub-asset, facility, or other

organizations. The grid display should visualize all wells for the asset, then

the 10 or so most important values for the well. This list should include some
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non-SCADA information like the producing type. A user can quickly look

through these pages every day for a few minutes and find problems quickly.

A special type of manual data check should occur when a well or equip-

ment is first brought into the system or needs some particular analysis. There

should be a special query available that lists all data for only that well/equip-

ment. Until a user has manually validated all of this data, the well stays in

quarantine and should not be added into the DOF system. The user who

does this analysis and makes this decision needs to be a field person with

domain expertise. Only when the data is confirmed to be accurate should

this well be added into the system.

The automated checks should not rely on poll times or communica-

tion checks. The best method is to look at data in ways that conform and

test against physical reality. For example, it would be very unlikely that a

route would have a rate totalizer that decreased during the day, or that

daily volumes should not change during the day. If some quantities fluc-

tuate, that might indicate either direct individual equipment values are

changing or that the numbers of wells in a route or other organization

are changing, which is not likely. In these situations, automated alerts

can be issued.

Once the data is found to be suspect either at an individual or aggregated

level, it needs to be flagged to the user or a ticket created for resolution. As

soon as one of the above data checks fails, the user interface should indicate

the issue, for example, stoplight-type indicators are common. As soon as the

data becomes suspect, a yellow color is displayed; after time has elapsed with-

out resolution, then the stoplight turns red. The time between yellow and

red is generally determined by the update time required by the fastest

workflow. For example, if that is a daily workflow, then it could be 4 to

8h between a yellow and a red alert.

Finally, each individual reading should be minimally conditioned at this

stage, whichmeans two things: first, if the data fails the range or freeze check,

then the last good value is held, and second, a small filter is applied to remove

high-frequency noise.We recommend this be a digital implementation of an

exponential average filter and not a moving average.
3.1.1 Data Processing
Typical surface pressure, temperature, and flow rate sensors capture data

values at 1 s or higher intervals. Data are transferred through the system using

an RTU or PLC to a SCADA environment, then on to a data historian
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application. Depending on the storage data duration and storage size, the

data historian software is set up to capture data with specific acquisition rates

(seconds, minute, hours); internally, the application performs a series of cal-

culations performing the following tasks:

• Transform electronic signal to physical data types (e.g., pressure, temper-

ature, rates, power, friction, choke settings, etc.).

• Convert raw data to specific units (e.g., psia, °F and Mscf/s, or bbl/day).

• Clean and filter bad data, data spikes, out-of-range data, and frozen data.

• Identify and replace missing data with rules, imputation, or

reconciliation.

• Down sample raw data in single data points, for example, 60 s in 1min,

60min in 1h, etc., through time series averaging.

• Summarize high-frequency data to statistical values over lower

frequencies.

• Aggregate missing data or replace information for misleading data

through statistical interpolation.

3.2 BASIC SYSTEM FOR CLEANSING, FILTERING,
ALERTING, AND CONDITIONING
In a real-time process, data quality is a common and persistent issue,

and it takes time to repair or to replace the information. Typical problems

include the following.

• Missing data: Most of the time this occurs when connection is lost

between SCADA and RTU systems. This generally happens in hostile

environments, with extremely low or high temperatures, or winds at

high velocity. The lost signal appears as a gap in the data (null value)

or as a “frozen” data point (flat line).

• Data out of range: Occasionally signal errors can occur in remote systems

or metering systems, such as non-calibrated meters equipment like ori-

fice gas meters or turbine meters, which result in values that are out of

range of the reasonable or acceptable range.

• Frozen data occur when a data value is repeated several times due to mal-

function of electrical equipment or no transmission. To avoid null or

zero values, the system automatically repeats the previous value. Most

of the time this is an issue related to the programming language of

PLC or RTU devices.

• Data spike is a natural error signal that is outside the manufacturer’s

tolerance; it is random, occurs infrequently, and is typically caused by
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external factors, such as power interruption or sensor error. When

the RTU or transmitter signal is malfunctioning, data spiking can

increase. Often, data spikes can be mistaken for gas or oil wells flowing

with slugging conditions. The two can be distinguished because data

spikes occur with high frequency (every second), whereas the spiking

behavior in a slugging well occurs with lower frequency (over several

minutes).

• Data do not follow any physical behavior; a signal or multiple signals do

not correspond to physical requirements. For example, gas rate is a func-

tion of pressure response, so when gas rate increases, by definition pres-

sure should decrease and vice versa. When the well is completed and

shut-in (gas rate¼0.0), the tubing pressure builds up in proportion to

static reservoir pressure. So if one obtains in case of a reading that does

not accurately reflect these known physical conditions, it’s probably an

error.

The above conditions relate to the sensor signal or SCADA. But engineers

must learn to distinguish between these types of problems and data that may

actually be alerting them to real issues in the production system.

Fig. 3.2 shows a plot with gas production and surface pressure. The data is

logged every minute for a 24-h period. The plot shows several of the data

situations described above: data spikes, missing data, gas rate out-of-range

without pressure unchanged, frozen gas rate, and sometimes zero, when

pressure is similar to the gas rate above zero.
3.2.1 Data Validation System Architecture
The data validation process can be considered part of the overall data

quality control (DQC), involving both raw and processed data. Produc-

tion DQC is defined as all those operational procedures that are being

used routinely to ensure the reliability of monitored data. It consists of

an examination of data to detect errors, so that data may be corrected,

filtered, or deleted. Quality control of raw data is performed to eliminate

errors of measuring devices such as sensor malfunction, instability, and

interference, to reduce potential corruption of processed data. These

procedures should be done as close to the source as the data allows. In

conventional practice, a first level of these practices is often done in

the historian software. But some companies perform the quality checks

once data have been communicated from the historian to a database.

This second option often leads to quality issues and uncertainty about data
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quality. Many modern sensors in SCADA systems have built-in function-

ality for signal processing at the measurement location, that is, “at the

source”.

Multiple possible checks are listed below.
3.2.1.1 Rate of Change, Spike Detection, and Value Hold
This algorithm includes a test and a valid value setting procedure to correct

data spikes. If the test passes, then the current value is passed along. If the test

fails, then the last good available value is held for a specific period and an alert

is generated for the engineers. The test takes the current value and a user-

entered tolerance to check if the current value has spiked and will set the

output value according to the following logic (pseudo-code):

If ROC_test¼ off , then skip this test

Y tð Þ ¼ If ABS X tð Þ �X t�1ð Þ
� �

>Tolerance, then error and set alarmð Þ,else x tð Þ,
and set alarm and counter ¼ 0:0

Y tð Þ ¼ If Y tð Þ ¼ error, thenY t�1ð Þ else Y tð Þ,and increment counter
If counter > user limit reset Y tð Þ ¼ error

t is time stamp
3.2.1.2 Out-Of-Range Detection and Value Clip
This algorithm includes a test and a valid value setting procedure. If the test

passes, then the current value is passed along. If the test fails, the current value

is reset to a valid higher or lower value. This test does not assume the tag has

gone bad but that the reading has gone out of range. That is why the value is

not set to bad but reset to a value clipped to the nearest maximum or min-

imum of the acceptable range limits. The over-range (OFR) test should

catch an instrument failure due to an over-range value failure, because a

failure should cause an immediate spike. The test takes the current value

and a user-entered minimum, maximum, high-clip, and low-clip value.

The logic is:

If OFR_test¼ off , then skip this test

Y tð Þ ¼X tð Þ>Max then clip above value and set alarm,else X tð Þand set alarm¼ 0

Y tð Þ ¼X tð Þ<Min then clip below value and set alarmelseX tð Þand set alarm¼ 0
3.2.1.3 Freeze Detection and Value Hold
This algorithm includes a test and a valid value setting procedure. If the

test passes, then the current value is passed along. If the test fails, the last
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good value is held for a specific number of cycles. The test takes the current

value and a user-entered tolerance and window to check if the current

value has frozen and will set the output value according to the following

logic:

If FRZ_test¼ off , then skip this test

Y tð Þ ¼ If ABS X tð Þ �X t�1ð Þ
� �

> tolerance for“timewindow”, then

error and set alarmð Þ,elseX tð Þand set alarm and counter¼ 0:0
Y tð Þ ¼ If Y tð Þ ¼ error, thenY t�1ð Þ else Y tð Þ,and increment counter
If counter> user limit reset Y tð Þ ¼ error
3.2.1.4 Statistical Detection and Value Hold
This algorithm includes a test and a valid value setting procedure. This test is

used to detect a fast-cycle instrument drift. The first step is to calculate the sig-

nal’s mean and standard deviation (σ) over a time window in the past. The test

algorithmchecks if thecurrent signal valueexceeds themean�3 times the stan-

darddeviation. If the test passes, then the current value is passed along. If the test

fails, then the last goodvalue isheld fora specificnumberofcycles.The test takes

the current value and a user-entered window for statistical calculations. The

calculation logic for statistical process control (SPC):

If SPC_test¼ off , then skip this test

MeanX ¼Mean x, time windowð Þ and σx¼ σ x, time , windowð Þ
Y tð Þ ¼ If X tð Þ>Meanx +3�σx then error and set alarm,else x tð Þ,and set alarm¼ 0:0

Y tð Þ ¼ If X tð Þ<Meanx�3�σx then error and set alarm,else x tð Þ,and set alarm¼ 0:0

Y tð Þ ¼ If Y tð Þ ¼ error, then Y t�1ð Þ else Y tð Þ,and increment counter
If counter > user limit reset Y tð Þ ¼ error
3.2.1.5 Filtering
The data conditioning system uses a simple exponential moving average or

low-pass filter. The filter takes a filter constant, in time, the current data

reading, and the last filtered result to calculate the current filtered result

according to the following algorithm:

Y tð Þ ¼ 1�Cf �Y t�1ð Þ +Cf �X and

Cf ¼ 1�Exp ts=að Þ

where ts is the time window and a is the user entered filter time constant.

Other averaging schemes or filter transforms may be used by operators.
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3.2.2 Advanced Validation Techniques
The basic validation described above is meant to keep bad data (regardless of

cause) from corrupting DOF databases. Advanced data validation is meant to

detect particular problems with data. The problems could be bad meters,

poor operation of surface facilities, abnormal operating conditions, etc.

These techniques make considerable use of fundamental production attri-

butes, statistics, and model-based methods.

After basic single-variable validation, it is common to look at multivar-

iable calculations with respect to fundamental laws of production. As the use

of flow rate meters is increasing dramatically in many assets, it is crucial that

these meters are calibrated for precision and accuracy. Just because they read

a number and are not frozen does not mean the results are good. Operators

spendmany hours chasing suspect meter data. Many automatedmethods can

be used to check meter accuracy as well. For example, mass balances are

commonly used in calculations as checks. In addition, volume or flow ratios,

like gas–oil ratio or water cuts, should not shift drastically in a short time. If

they do, it is likely a metering issue. A metering issue could be due to the

meter itself needing calibration or it could be due to the separation equip-

ment not operating correctly; for example, water gets carried over with the

oil channel and is measured as oil. Again, these checks determine that a prob-

lem exists and approximately where it is but may not directly identify the

specific cause. The ratios described here necessarily use data for the well sta-

tus required. For example, these tests should not use data when the well is

down or not at steady state.

Another common practice is to use SPC practices. There are two rea-

sons to perform these checks: to detect a shift in (a) the process itself or

(b) bad data. Although it is beyond the scope of this book to present

SPC, many texts explain it. The basic rules make use of a long-term aver-

age or mean and the signal standard deviation. For example, you can cal-

culate a 7- to 30-day moving average and standard deviation. Note that

these calculations should use the status signals described above (the average

and standard deviation should only use data from when the well is up or in

steady state). The rules for abnormal process behavior are applied under

these conditions:

• if the current data (daily average) is beyond the average � 3 standard

deviations;

• if the last 2 daily averages are beyond the long-term average� 2 standard

deviations;
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• if the last 3 daily averages are beyond the long-term average � a single

standard deviation; and

• or if the last 5–7 daily averages on one side of the long-term average or

the other.

These rules are based on the statistical fact that less than 5% of normal process

variation should be beyond 3-day standard deviations. As the well behavior

does move over time, these calculations need to be monitored and may need

to be changed over time as the well changes. Furthermore, any time a large

variation occurs—for example, 10–15 times standard deviation—then the

data is likely bad.

3.2.3 Model-Based Validation Methods
The final type of the technology used to detect bad data is model-based

methods, which include two types: first principles or artificial intelligence

(AI). Any component that can be modeled with a first-principles technology

can be set up to have a value predicted from the model that is also measured

for comparison. Then you can look for deviations between the model-based

value and the actual reading from the instrument. Of course, deviations

could be due to either a model issue or a measurement issue. Further analysis

is necessary to determine the exact cause. AI can also be used to detect bad

data or process changes that may be due to bad data. Self-organized neural

networks or k-means clustering can be used as fault detectors. Furthermore,

they can be used with very large amounts of data. The AI methodology is to

download data and cleanse all bad data for the data set. Then train the cluster

on the good data. When the cluster algorithm is implemented in real time, it

issues an alarm if any data pattern is observed to be outside of the trained

cluster.

3.2.4 Data Replacement Techniques
If data validation routines detect bad or missing data, values may need to

be “created” to fill the gaps. For DOF, it is imperative to work with

continuous (and often high-frequency) data; most of the automated

engineering workflows (Chapter 5) work with continuous data, for

example, pressure and rates. In cases for which pressure or rates are miss-

ing or marked as bad data, the workflow should replace or populate this

unreadable data with alternative available source data. In our experience,

we believe there are several levels of complexity to replace or fill in data,

for example:
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• Level 1: Simple averaging (summarizing).

• Level 2: Extrapolation, data follows trend and tendencies.

• Level 3: Replace by data-driven analytics, for example, artificial intelli-

gent components (Chapter 4).

• Level 4: Replace data through physics-based calculation. Using an engi-

neering model-based physics to replace pressure in build-up time or

to replace flow rates data using virtual metering system (covered in

Chapters 5 and 6).

Our experience in several projects is that replacing data with models often

presents challenges (Al-Jasmi et al., 2013a,b; Rebeschini et al., 2013). For

example, in one water flood that had multiphase flowmeters (MPFMs)

and real-time artificial lift data, we used different processes to aggregate data.

These included artificial neural networks (ANN), fuzzy logic (FzL), well-

performance evaluation (analytic flow analysis), a one-dimensional (1D)

analytical model, and 3D numerical models. We learned that there is not

a single, reliable, and confident data aggregation process for all cases.

A fit-for-purpose model should be determined for each situation and can

depend on the reservoir drive mechanism, state of flowing condition and

flow regime, artificial lift type, and fluid types.

In the water flood example, we found that using ANN to estimate short-

term production was effective but that predicting water cut or oil rate after

water breakthrough could introduce errors. The best approach is to train the

ANNwith a physical model. A 3D physical model cannot be used to replace

real-time data directly (month vs. minutes), but engineers can understand

that training the ANN to predict the water breakthrough depends on his-

torical data and reservoir properties. The most important factors are:

• Wells producing below or above dew or bubble point pressures.

• Water fromwater flooding or an aquifer breaking through into the wells.

• Reservoir flow regimes (radial, bilinear, transitional, boundary

dominated).

• Flow conditions (steady, pseudo-steady, and -unsteady states).

• Well loading up or well flowing in critical conditions.

Fig. 3.3 shows eight different cases to replace or fill in real-time data. Pres-

sure, gas, or oil rates and water cut are shown versus a period of 7days. The

replaced data is shown by dotted lines. The plot describes the following:

• Fig 3.3A shows a well producing under pseudo-steady-state condition.

The pressure depletes (dp/dt¼constant), the water rate is near constant,

and the total gas rate declines with time. The rate data gap could be

reasonably replaced by using simple statistic (averaging).
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• Fig 3.3B shows a well in unsteady state condition with constant water

rate. The data is replaced by an extrapolation/interpolation approach.

• Fig 3.3C shows a well response from changing the choke size with con-

stant water cut. The gas-rate data can be replaced by using a predictor

such as a trained ANN, FzL, or nodal analysis, before and after changing

the choke size.

• Fig 3.3D shows a well during a test with different pump frequencies,

from low to high frequencies, increasing oil rate, and decreasing flowing

bottom-hole pressure (fBHP). In this case, the fBHP is missing, so a 1D

analytical model calibrated with reservoir properties can replace the

fBHP data.

• Fig 3.3E shows a well with declining oil rate. fBHP is approximately

constant because water injection maintains the reservoir pressure. Water

breakthrough increases water cut from 20% to 40%; so in this situation, a

3D numerical model could be the best tool to replace data. An ANN can

be trained with a 3D numerical model to predict water and oil rate data

instantaneously, as observed in Fig. 3.7F.

• Fig 3.3G shows an unconventional well (low permeability) fractured

with slick water, as observed water produces first at high volume, and

gas increases and then decreases when a boundary condition is hit.

Gas rate and water could be replaced between flow regimes with rate

transient analysis (RTA) type curves.

• Fig 3.3H shows a scenario where a well produces under critical

condition or water loading up; in this case replacing data is a challenge

and might not be practical or appropriate.
3.2.5 Data Reconciliation
Production reconciliation is a data process and statistical method to calculate

a final production value when two or more different sources and measure-

ments are available. In DOF systems, it is common that two or three meters

can easily mismatch and that not all devices or methods measure production

correctly at all times. Quite often, the dispatcher and receiver have a signif-

icant discrepancy in fluid readings. Owing to these conditions, the DOF sys-

tems require reconciliation methods to correct input data and generate

unique readable, cleaned-up, and validated output information. Reconcil-

iation is used to match fluids (e.g., gas, water, and oil) but rarely pressure.

Like any other statistical method, the reconciliation process can match only

the data within the preset limit, tolerance, and uncertainty values. The limits
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of reconciliation are that it can only solve mismatches when there is pressure

fluctuation, mass or density variations, water cut changes, temperature

change, etc. Reconciliation cannot be used when an abnormal situation

occurs, such as the pipeline leakage, pumpwear, pump blockage, equipment

failure, bottleneck in pipeline, etc., which must be attended to immediately.
3.2.5.1 Reconciliation Method: Example
An oil well is equipped with a Coriolis meter measuring in real-time liquid

rate (Well C). The Coriolis meter has a tolerance of 10%; the average liquid

rate inWell C is 850bbl/d; the total uncertainty is�85bbl/d.Well B is pro-

ducing 1300bbl/d using a trained virtual meter. The production engineer

mentions that the confidence interval is 6% because physics-based calibra-

tion was used to calibrate the virtual metering; therefore, the total uncer-

tainty is �78bbl/d. Both wells are measured to a portal-mobile MPFM,

which has a tolerance of 3%. The total sum of independent points is

2150bbl/d, but the MPFM measures 2265bbl/d (+115bbl/d above the

manual sum). Fig. 3.4 describes the wells.

The method describes:
Fig.
and
Uncertainty calculation (Ut): Ut¼y� (1� %Tol) .
3.4 Data reconciliation method with three points of measurement: coriolis, virtual,
multiphase flowmeters.



Tab
Met
The

Wel

A

B

C

B+

Imb

(

Yie

90 Intelligent Digital Oil and Gas Fields
Standard deviation (σ): σ¼Ut/2

Initial balance (Bal): A-B-C¼0

Yield between B and C: Y¼B/C

Penalty of measurement (Pm): Pm¼ y�i �yi
� �

σ

� �2
Objective function (f(y)) minimization of the total penalties:

fy¼
Pn

i¼1

y�i � yi
� �

σ

� �2
¼ 0:0
where

• yi is the initial measurement at point A, B, or C using the flow rate tool,

either device or calculations.

• yi* is the measurement at point A, B, or C after reconciliation.

• %Tol is the manufacture tolerance in percentage.

• Ut is the uncertainty calculation of measurement

• Y is the yield between points B and C

• σ is the standard deviation calculated as the half value of the uncertainty.

• Bal is the initial balance in the total sum of the independent measure-

ments, which should be 0.0. If the total sum is different than 0.0, then

we need reconciliation.

• Pm is the penalty function of the measurement or device.

• f(y) is the total objective function, which should be minimized to 0.0 if

condition of Bal¼0.0.

Table 3.1 shows the final values after reconciliation.Note thatCoriolis has been

affected by +116bbl/d (14% error), virtual meter by �103bbl/d (8% error),
le 3.1 Reconciliation Method Among a Coriolis Meter Setup in Well C, A Virtual
er Setup inWell B, and the Total FluidMeasured in Point AWith AnMPFM (Note That
re is a Mismatch Between the MPFM and Other Meters)

l Flowmeter

Measured
Flow Rate
(Bls/d)

Uncertainty
Ut (95%
Confidence)

Standard
Deviation

Reconciled
Value
(Bls/d)

Penalty,
PM

Measurement
Error (%)

MPFM 2265 68 34.0 2163 8.9 �4

Virtual

meter

1300 78 39.0 1197 6.9 �8

Coriolis

meter

850 85 42.5 966 7.5 +14

C 2150 Objective function—minimize

penalty➜
23.3

alance

A-B-C)

�115 Imbalance after reconciliation➜ 0.0

ld Y¼B/C 57 New yield % 55.3



91Data Filtering and Conditioning
whereasMPFMis affectedby�102bbl/d (4%error).Thenext step is to review

with the production engineer why virtual metering has a mismatch of 8% and

acceptable error should be below5%.Additionally, theCoriolismeter needs to

be calibrated or checked for the mass and density of the fluid.

We recommend the use of reconciliation processes for daily production

monitoring and equipment surveillance. Table 3.1 shows how a Coriolis

meter can be uncalibrated and a virtual meter untrained, which results in

data mismatch relative to test measurement. The ultimate impact would

be misallocation of the produced fluids from the sales tank back to the wells.

3.3 CONDITIONING

After the data have been validated and replaced, if necessary, they can
be conditioned appropriately for specific workflows. There are two types of

conditioning used in data applications for streaming real-time data: noise fil-

ters and statistical calculations for use in specific workflows. Implementation

of these techniques is the key to keep workflows from becoming over-

whelmed with too much data. It is best to custom-fit the conditioning

methods to the specific workflows of interest. Most SCADA systems, histo-

rians, or databases have statistical tools to condition data. Three types of con-

ditioning are described below, which apply to most DOF projects: down

sampling from the high-frequency data; summation into daily, monthly,

and other specific times; and special status indicators appropriate for DOF

workflows.
3.3.1 The Level of Rate Acquisition (Data Frequency)
Pressure, temperature, and flow rates data can be acquired every second or

more if data storage is available. Often that level of data sampling is not

required, as discussed below. Production, completion, geologist, and reser-

voir engineers are the ultimate end users of the data and must decide on the

requirements. Houze et al. (2017) describe how data can be classified into

low and high frequencies (as described in the points below). However,

we classify data depending on the acquisition rate, with a modified summary

presented in Table 3.2.

• Low-frequency data. Gas, water, and oil rates can be taken daily and pres-

sure can be taken an average of 24h; thereafter, the data can be summa-

rized to weekly, monthly, quarterly, and annually. This category

includes well test processes that measure to the separator and tanks the



Table 3.2 Raw Data Frequency and Down Sampling Data for Production and Reservoir
Engineering Studies

Raw Data Natural Data Frequency
Down Sampling
and Summarizing

Engineer Study and
Evaluation

CHP, THP,

FLP

Qg, Qo,

Qw, DTS

Every second for

orifice, Venturi, and

temperature-pressure

gauges, etc.

Few seconds for

turbine, vortex

meters

Few minutes for

Coriolis and MPF

meters

Few seconds Real-time production

and pump

monitoring; flow

profiles

1min Generate warning

message if pump

values are deviated

1h Generate alarm if

production issues

persist for >1h

1day Well performance

(nodal analysis),

RTA, DCA, etc.

1week

1month DCA, MBE, 3D

numerical model,

economic analysis

1year Financial calculations

Downhole

BHP-BHT

Deciseconds No down

sampling

1h

PTA

RTA

Downhole

DAS

Deciseconds Fracture diagnostics;

proppant

placement;

multiphase flow in

tubing

With contributions from Doug Johnson.
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total rates of the day and are used for allocation and decline curve analysis

(DCA). Wellhead pressure is taken before and at the end of the test.

• Intermediate frequency data. The pressure, temperature, gas, oil, water rate

data are taken every hour and then summarized to daily averages. In this

category, the hourly to daily formats are suitable to perform RTA, allo-

cation, and early time DCA, which depends strongly on independent

measurement of oil, water, and gas per hour. In at intermediate frequen-

cies, the data relies rely on constant calibration of pressure gauges and

flowmeters.
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• High-frequency data. The gas, water, and oil rates can be taken every sec-

ond for real-time and DOF operations. Somemeters need more than15 s

to measure the rate, such as Coriolis and MPFM. Orifice and venturi

meters can measure the fluid in seconds or continuously. Vortex and tur-

bine meters depend on the velocity of spinners, generally in a few sec-

onds. Downhole memory pressure sensors can take the pressure signal

every decisecond (1/10 s); this high-frequency rate is needed to identify

the early time properties in a pressure transient analysis (PTA) test, such

as the wellbore storage coefficient, skin factors, etc. Others are fiber optic

distributed temperature sensing (DTS) systems.

• High-definition data. Data that stream at terabytes per minute, such as

fiber optic distributed acoustic sensing (DAS) and wellbore

acoustics/μ-seismic data.

Fig. 3.5 depicts the data storage for a real-time database, a 24-h production

test database, and an extra-large database designed for seismic and fiber optic

information. All the data are stored and compressed in a master data bank.

A second step is used to clean up, detect spikes, filter and condition data and

restructure data in a different SQL data table. Depending on the final engi-

neering purpose, the data will be organized and downsampled in seconds,

minutes, hours, days, and months and then summarized depending on

the final utilization. For example, PTA data tables are stored in deciseconds,

RTA in hours, DCA in days, well test performance (nodal analysis) in hours

to days, and numerical model, material balance equation (MBE), econom-

ical analysis and financial calculation in days to months.
3.3.2 Down Sampling Raw Data
The data is frequently reduced, filtered, or simply downsampled to manage

the data for engineering purposes. In signal processing, this is called

“decimation” and is commonly used for PTA orRTA to reduce the pressure

signal data by 10:1 or so versus the raw data. Down sampling is a technique of

data processing that reduces the data frequency from seconds to minutes to

hours while preserving the main signal changes, variations, and physical

meaning of the data. Fig. 3.6 shows an illustration of the data downsampling

process, for an example RTA analysis.; note that data in seconds are down-

sampled to hours. Fig. 3A is a plot of the 1-s data taken over a 24-h period;

Fig. 3B illustrates the data being both cleansed of out-of-range and spikes

and downsampled; and Fig. 3C shows the downsampled data at 1 h intervals

for the day.



Fig. 3.5 Data storage and data frequency showing databases for real-time data, 24-h production test data, and extra-large database (e.g., for
seismic data). All high-frequency data are stored and compressed in a master data bank. A second step is shown to reorganize the data in
different SQL data tables for different engineering analyses or workflows.
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Fig. 3.6 Illustration of data down sampling. (A) Gas rate in 24h with high-frequency data shows many data spikes and out-of-range values;
(B) filter and condition data and then reduce to be sampled at 1 h per day (C).
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Fig. 3.7 Examples of a surface pressure response for 6days showing data utilization for
PTA (A) and RTA (B) analyses. Note that for PTA pressure, the surface pressure spikes are
essential for build-up analysis whereas for RTA, these data spikes should be cleaned up.
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Down sampling strongly depends on the final user’s purpose, that is, how

the data will be used.When the data are used for PTA, down sampling is not

required. When the wells are shut in, the casing head pressure (CHP) signal

responds like a spiked signal; in this situation, the algorithm should be smart

enough to capture the signals when the well is shut-in or a physical event

occurs in the well. Fig. 3.7 uses the same high-frequency data (every second)

for a period of 7days. The oil well had six unexpected flow interruptions,

including when the well was shut-in during that time. CHP builds up gen-

erating important data for PTA, and the pressure peaks should not be cleaned

up and should be stored in the database as raw data. The same information

could be used for RTA in this situation, that is, flowing CHP or BHP (fluid

rates >0.0) should be cleaned up and filtered of those pressures spikes.

Fig 3.7A shows the real-time surface pressures during a shut-in time for

PTA and Fig 3.7B shows the same data filtered for RTA evaluation.
3.3.3 Summarizing From Raw Data
Summary calculations based on statistics (average, mean, and standard devi-

ation) are used to convert high-frequency data to lower frequencies, such as

hourly, daily, and monthly average data. In statistics, we usually calculate the

simple arithmetic mean, the statistical dispersion of the data using standard

deviation, and shape of the tendency using kurtosis. The users commonly

simply sum rate over 24h and divide by 24. This method can introduce
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many errors because spikes and frozen data are included in the average. Cal-

culating statistics on the corrected data, the result smooths out higher fre-

quency noise and thus provides better estimates within the summary time

windows. Fig. 3.8 shows an example of gas and oil rate for a full year that

is measured at custody transfer and tank, respectively. The top chart

(A) shows that the gas and oil rates are measured every hour. The total

cumulative oil from using flowmeters and applying a shrinkage factor is

135,455bbl, compared with the total oil sold at dispatch of 132,401bbl,

for an error of 2%. The middle plot (B) shows gas and oil rates summarized

per day using statistics; the total cumulative oil is 130,000bbl compared with

the tank which is 132,400bbl, for an error of 1.8%. The bottom plot

(C) shows gas and oil rates summarized per month; note that the total oil

error is 3% and the cumulative gas could be up to 10%. The conclusion: data

summarized using proper statistics can bemore accurate comparedwith real-

time measurement at custody transfer.

3.3.4 Well and Equipment Status Detection Required
for Sampling

After the basic data validation is completed and before data are used for any

calculations (like daily averages), it is critical to detect well and equipment

states. The most basic of these states is if the well or equipment is online or

not. Down well data should not be included in data averages for engineering

workflows. Examples of states that need to be captured are:

• Well up/down

• Well on test

• Well in high-/low-pressure state

• Well intermittent flow

• Well on lift

• Flare on pilot or flaring

• Compressors/pump up/down

Again the purpose of these states is to provide a downtime status or other

equipment state for calculations and conditioning algorithms.With this infor-

mation, only data relevant to each workflow will be sent to that workflow.

Downtime coding only needs downtime data and gas lift optimization only

requiresdatawhenthewell is flowingandongas lift. Further,welloptimization

can disregard times when the well may be curtailed due to facility constraints.

The well up/down status likely needs special attention. Wells can shut

down fairly fast and valve positions, rates, or pressures can detect this shut-

down. When a well starts, it is a dynamic process and involves several



Fig. 3.8 Converting hourly gas and oil rates (A) to daily (B) andmonthly averages (C) using statistics. Observe the error between dispatch and
tank data compared with real-time measurements (A and B). Also, compare the error from meter data versus sales data.
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production periods or status conditions, each of which may need to be

detected; the most important periods or status conditions are “flowing”

and “steady state.” Other status conditions may be tracked, but these are

the most important. Flowing simply means that the well is open for flow.

Steady state always takes some time to develop after the well is flowing.

There may be a ramping of the choke, lift has to be established, and the

“flush flow” has to subside—ormaybe the well is loaded and does not imme-

diately flow. In any case, it typically takes some time before the well is truly

“up.” Many workflows should only use the steady-state data, so it is impor-

tant to determine when this occurs after startup.

3.4 CONCLUSIONS

“It is all about the data!” We have heard this mantra throughout the
industry from managers and engineers on all types of projects and fields.

They recognize that the quality of their decisions is only as good as the data

quality, consistency, and at the required frequency for the analyses and deci-

sions they need to make. Data problems are inherent in any system and with

the advent of DOF high-frequency data, these issues can be more problem-

atic. This chapter presents a primer on how to manage sensor data streams

and to recognize data issues from the instruments, and how to treat that raw

data to generate quality, validated data. All of the techniques can be deployed

“inline” and in real time and do not need to be run in batch mode after the

data are collected. The following chapters show how to use data to make

engineering decisions in production and reservoir workflows.
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4.1 INTRODUCTION

As asset yields become harder to assess, extract, and forecast, oil and gas
operating companies and service providers must enable real-time decision-

making to better predict business outcomes that drive higher efficiencies and

utilization to achieve improved bottom-line results and profitability. With

the continued worldwide expansion of the digital oil field (DOF), the explo-

ration and production (E&P) industry is rapidly becoming an information-

and data-driven business.

If we accept the prediction that the DOF market will exceed $30 billion

by 2020 (Markets andMarkets, 2015) along with exponential growth in vol-

ume and complexity of acquired data, the E&P industry needs to rapidly

adopt the new generation of digital transformation, technology, and pro-

cesses that include the following:
igent Digital Oil and Gas Fields © 2018 Elsevier Inc.
://doi.org/10.1016/B978-0-12-804642-5.00004-9 All rights reserved.
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102 Intelligent Digital Oil and Gas Fields
• Implementation of large-scale, Big Data-driven advanced analytics, inte-

grated into role-centric, relevant time workflows.

• Delivery of holistic ability for capture, classification, integration, and

interpretation of all the relevant and disparate data sources (geological,

engineering, production, equipment, performance, etc.), regardless of

the origin or structure.

• The ability to understand advanced analytical trends and correlation

models to quickly and efficiently unlock the “hidden” knowledge from

all data sets—from small data to large scale and complex data as well as

from historic repositories and databases or from fast streaming data.

DOF systems have been used in the E&P industry for several decades and have

been commonly known for delivering on the promise of getting the right data,

to the right users, and at the right time, for effective asset decision-making,

maximized recovery, and improved operational efficiency. However, the

expansionofBigData, evolutionof the Internetof things (IoT)and integration

of intelligent, virtual sensors requires rapid transformation to an evolving con-

cept of data-driven DOF systems. These trends introduce challenges in the

areas of DOF system architecture, data architecture, and data analytics and

invite the following questions, which this chapter aims to answer:

• What data architecture is needed in the data-driven DOF to accommo-

date the ever-increasing demand to leverage the real-time sensor data,

that is, the IoT, across the asset?

• If real-time analytics are a must, what are the challenges related to the

quality of sensor data and its integration with the historical data for

closed-loop analytics and how do we overcome them?

• Howwill disparate streaming data and even unstructured data, regardless

of structure and origin, be integrated and analyzed and how will it be

used in real-time automation systems monitor and act?

• What place does data analytics have in the DOF and how can data-driven

models be seamlessly positioned and integrated with the physics models?

Data integration is the first step to use data generated by various sources.

It is the common notion that the engineers spend up to 70% of their time

searching for data, performing data QA/QC, and reformatting data for ana-

lytics andmodeling routines.Moreover, engineers spend anywhere between

10 and 20 working days manually collecting performance data for annual

reservoir performance reviews. The complexity of data types by activity,

incumbent in data-driven DOF operations is captured in Table 4.1.

In a DOF environment, data integration must occur quickly to generate

value, but this requirement creates challenges as data volumes grow and vary



Table 4.1 Classification of Data Types by Activity, Incumbent in Data-Driven DOF
Operations
Activity Data Types

Production optimization Production data, real-time data (pressure,

temperature, choke settings, gas injection flow,

pump parameters), well models

Well intervention Production data, well logs, geological maps, down-

hole surveys, well files and PVT (pressure,

volume, temperature) data

Field development planning Production data, time-lapse seismic and coring data,

down-hole measurements, geological maps, well

logs and tests, and PVT data

Artificial lift Pump parameters in real time, pump type, and

configuration

Processing of multi-format

data

Seismic data (SEG-Y and SEG-Z formats) and well

log data (LIS and LAS formats)

Acquisition of fiber optic

sensing (FOS) data

Permanent reservoir monitoring, distributed

acoustic sensing (DAS), distributed temperature

sensing (DTS)

Acquisition of conventional

data

Seismic, reservoir, log, flow, completion, relational,

intervention, lab, reservoir, and production

Acquisition of streaming data DTS/DAS and real-time data

Archiving of unstructured

data

Well files, field development reports, drilling

records, core Images, external studies,

completion, and workover reports

103Components of Artificial Intelligence and Data Analytics
with time. This integration requirement means that the data infrastructure and

architecture must be defined and configured before rolling out the DOF pro-

gram, supported with strong information management and indexing of data.

Table 4.2 shows a decision-support framework for determining the busi-

ness value for data integration. With the assumption that we begin from

nonintegrated data, interpret the table as follows:

• No data integration is needed if the amount of data is <100TB, associ-

ated Health, Safety, and Environment (HSE) risk is zero, investment in

data management is less than $10 million, predicted uncertainty reduc-

tion via integration is less than two points, no associated professional ser-

vice automation (PSA), the project has reached the end of license and

portfolio size exceeds more than the 10 biggest assets.

• Otherwise the business decision should be taken to pursue data integra-

tion; however different combinations of decision attributes from

Table 4.2 are also viable. For example, one possibility is to track the value



Table 4.2 Decision Support Framework for Business Value of Data Integration

Quantity HSE/Risk Finance
Uncertainty
Reduction Contract

Project
Timeline Portfolio Size

No

integration

0–100TB 0% Change <$10
Million

<2 Points No PSA

associated

End of license >10 biggest

assets

Integration Above

100TB

>1% Change >$10
Million

>2 Points PSA associated Early stage 2 biggest assets
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of data integration to examine when an authorization for expenditure

(AFE) was created, and then perform history matching against previous

costs and revenue to see if any added value has been created.
4.1.1 Artificial Intelligence: Overview of State of the Art in E&P
Artificial intelligence (AI) techniques have been used in the E&P industry

since the early 1970s (Bravo et al., 2014). After several decades of R&D

and focused implementation—through smart wells, intelligent fields, expert

systems and real-time analysis, and interpretation of large-scale data for pro-

cess optimization—AI is nowmaturing in E&P. A literature search indicates

that there is no unique consensus on AI techniques commonly used in the

E&P community; however, artificial neural networks (ANNs), fuzzy-cluster

analysis, evolutionary (genetic) algorithms, genetic optimization, and fuzzy

inference analysis appear to have had a predominant role in applications in

reservoir modeling and simulation, production and drilling optimization,

drilling automation, and process control (Braswell, 2013). For example,

Mohaghegh (2005) combines most of the aforementioned AI techniques

under integrated intelligent systems, dividing them into four main catego-

ries: fully data driven (e.g., developing synthetic well logs), fully rule based

(e.g., well-log interpretation), optimization (e.g., history matching), and

data/knowledge fusion (e.g., candidate-well selection).

However, with the recent expansion of intensively harvesting the

hyper-dimensional, complex, fast/streaming, and Big Data from oil and

gas assets, AI techniques are increasingly seen as compatible with the

methods of predictive data analytics. Recently, the term artificial intelligence

and predictive analytics (AIPA) was coined (Bravo et al., 2014), which puts AI

techniques into a broader context of techniques for data and business ana-

lytics, data mining, process control, automation and optimization, and

advanced visualization. Bravo et al. (2014) provide a comprehensive sum-

mary of AIPA families and techniques, captured in Table 4.3. Selected AIPA

techniques are described later in this chapter.

While the E&P industry is systematically heading toward comprehensive

model integration between static, dynamic, surface and the entire produc-

tion systems, AI is already being deployed to identify model inconsistencies,

narrow model, and process uncertainties; improve forecasts and option

assessment; mitigate risks; and support better decision-making. Moreover,

with the worldwide implementation of DOF programs, the application of

AIPA techniques is also increasing.



Table 4.3 Summary of AIPA Families and Techniques.
Family Specific Technique

Computational intelligence Neural networks

Fuzzy systems

Evolutionary computation

Data mining

Rule-based case reasoning Bayesian networks

Expert systems

Automatic process control Classical

Robust

Adaptive

Intelligent

Stochastic

Workflow automation

Proxy models Surrogate models

Top-down models

Virtual environments

From Bravo, C., Saputelli, L., Rivas, F., P�erez, A.G., Nikolaou, M., Zangl, G., et al., 2014. State of the
Art of Artificial Intelligence and Predictive Analytics in the E&P Industry: A Technology Survey. SPE
150314-PA, https://doi.org/10.2118/150314-PA.
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In 2009, the Society of Petroleum Engineers (SPE) (the E&P flagship

professional organization) have established the AIPA subcommittee, within

its Digital Energy Technical Section, with the mission of promoting the

development and application of AIPA techniques in the oil and gas industry.

With increasing interest and uptake of AIPA technologies in oil and gas, in

2011, the subcommittee was promoted to a new technical section, named

Petroleum Data-Driven Analytics (PD2A). Bravo et al. (2014) have con-

ducted a comprehensive technology survey that provides the state of the

art of AIPA use in the oil and gas industry.

According to approximately 75% of respondents, management of large

volumes of data remains a major challenge of the E&P industry, mostly

because of the lack of integration in IT management and analysis. While

automated process control is perceived as the most productive and mature

AIPA technology in DOF programs worldwide, Fig. 4.1 indicates that data

mining, neural networks, workflow automation, fuzzy logic, and expert sys-

tems are the most recognized AIPA applications.

In particular, data mining appears to be the most familiar AIPA technol-

ogy, mostly in areas of data management and integration, data filtering,

cleansing and imputation, and information search.

https://doi.org/10.2118/150314-PA
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Fig. 4.1 Professional awareness of AIPA technologies in oil and gas industry. Numbers
are given in percent (%). (Modified from Bravo, C., Saputelli, L., Rivas, F., P�erez, A.G.,
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On the other hand, statistical and machine learning (ML) techniques

[which is one of the fastest growing technical fields and in the core of AI

and evidence-based decision-making data science in health care, manu-

facturing, education, financial modeling, policing, marketing, and even

social networking (Jordan and Mitchell, 2015)] remain relatively under-

utilized in E&P. The results of the survey suggest that the reasons for this

underutilization may be attributed mostly to the relative obscureness and

advanced technical concepts of ML, with the limited sources of informa-

tion available for engineers and geoscientists; however, the situation is

improving.

Lochmann and Brown (2016) further argue that the concepts of

“intelligent energy,” which largely encompass the methods and techniques

of AIPA, have reached a strategic inflection point (SIP) in the oil and gas

industry as “numerous case studies have documented new ways of working

and more-than 10-folds improvement to individual productivity, demon-

strating that new, more-effective ways of operating oil and gas assets are

possible and practical.”

https://doi.org/10.2118/150314-PA
https://doi.org/10.2118/150314-PA
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4.1.2 Data Analytics: Descriptive, Diagnostic, Predictive,
Prescriptive, and Cognitive

In today’s data-intensive world, four types of analytics are available to help

companies better harness the value of information (VOI) and knowledge

hidden in data. Gartner provides an excellent example of classification of dif-

ferent types of analytics from the perspective of added value and related

complexity of implementation and use, where Laney (2012) distinguishes

between four main concepts of analytics (Fig. 4.2): descriptive, diagnostic,

predictive, and prescriptive.

• Descriptive analytics is an approach to help us understand and answer the

question “what happened?” during a given past period and verify

whether or not a campaign or an action was successful. It is based on sim-

ple parameters such as number of trials or repetitions of a certain job.

>90% of companies today (oil and gas and other industries) use this type

of very basic analytics. However, even when using simpler, descriptive

analytics, the data must be explored, visualized, comprehended, and
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Fig. 4.2 Four different types of data analytics from the perspective of added value vs.
related complexity of implementation. The red box was added to capture predictive
and prescriptive types of data analytics that are frequently associated with the
so-called cognitive analytics. (Modified from Laney, D., 2012. Information, Economics,
Big Data and the Art of the Possible With Analytics. Presentation by Gartner Inc., https://
www-01.ibm.com/events/wwe/grp/grp037.nsf/vLookupPDFs/Gartner_Doug-%20Analytics/
$file/Gartner_Doug-%20Analytics.pdf.)

https://www-01.ibm.com/events/wwe/grp/grp037.nsf/vLookupPDFs/Gartner_Doug-%20Analytics/$file/Gartner_Doug-%20Analytics.pdf
https://www-01.ibm.com/events/wwe/grp/grp037.nsf/vLookupPDFs/Gartner_Doug-%20Analytics/$file/Gartner_Doug-%20Analytics.pdf
https://www-01.ibm.com/events/wwe/grp/grp037.nsf/vLookupPDFs/Gartner_Doug-%20Analytics/$file/Gartner_Doug-%20Analytics.pdf
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interpreted in the decision-making process. Analyzing large data sets is

inefficient and useless without powerful visualization tools and tech-

niques (explained further in Section 4.2.3). Hence, descriptive analytics

leverages heavily the concepts of exploratory data analysis (EDA)

(Gelman and Hill, 2007; Seltman, 2015), which integrates advanced

and interactive charting and graphing with concepts of univariate statis-

tics (e.g., plotting statistical distributions and modes, such as histograms,

distributions, mean, variance, confidence intervals, etc.), bivariate statis-

tics (e.g., cross plots, Q-Q plots, box plots, R2, covariance statistics, and

spatial variogram-based analysis) and multivariate statistics or analysis

(MVA) (Tabachnick and Fidell, 2013), which combines analytical and

visualization techniques such as principal component analysis (PCA),

factor analysis, multidimensional scaling (MDS), or data clustering.

• Diagnostic analytics helps us determine the “root cause” of certain out-

comes. While traditional key performance indicators (KPI) can provide

a quantitative measure of performance, getting additional insight into

“why something happened” requires diagnostic business intelligence

tools. However, diagnostic analytics is laborious and frequently bur-

dened with hindsight bias (choosing data that matches results); it pro-

vides an improved understanding of a limited piece of the problem

we want to solve. For example, we can build an analytics dashboard

for providing information on the root-cause analysis of electric submers-

ible pump (ESP) failure events. The dashboard could show the basic lin-

ear causal relationships among variables; however, it would fall short in

capturing complex nonlinear variable correlations. Studies show that

<10% of companies surveyed do this type of analysis on occasion, and

<5% do so consistently.

The next two classes or types of data analytics are usually the ones referred to

by the technical and business analytics experts as the analytics types that can

really provide the insight and foresight into how to drive the technical and

business decisions forward. Predictive and prescriptive analytics are consid-

ered branches of the so-called cognitive analytics, because they combine ele-

ments, methods, and tools of cognitive science, such as AI, statistical

inference, ML, and multimodal deep learning (DL) of visual, language,

and knowledge recommendations.

• Predictive analytics provides the ability to use data (structured and unstruc-

tured) to derive patterns and forecast future events and outcomes

with mathematical certainty. It helps us discover hidden, nonintuitive

patterns in Big Data and understand complex causal relationships and
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correlations, mostly of a highly nonlinear nature (see Table 4.3 for a clas-

sification of the main tools and techniques gathered under the umbrella

of AIPA). Examples of predictive analytic implementations include

modeling, equipment operations, production trends, reservoir dyna-

mics, and asset failure predictions to minimize downtime. Financial

predictive algorithms compute expected response and ROI for work-

overs, pump changes, injection rate modifications, drilling plans, and

alternative completion parameters. However, recent surveys indicate

that less than1% of companies surveyed have actually deployed predic-

tive analytics. The ones who have found extremely encouraging results

that have added significant values to their businesses.

• Prescriptive analytics apply the outcomes and insights of predictive analyt-

ics and turn them into actionable foresights by applying advanced process

optimization methods. Accurate predictions help us understand the

actions to be taken tomaximize good outcomes andminimize or prevent

potentially bad outcomes. Examples of prescriptive analytics include

alerts (e.g., opportunities, abnormalities, and data problems), recom-

mendations (e.g., the workover to perform next, when to stimulate a

well, optimal injection rates throughout a waterflood, or where to drill),

and optimization (e.g., capital allocation, investment, and risk manage-

ment). Currently, R&D in predictive analytics for E&P is cutting edge;

for example, a recent breakthrough includes a novel data—physics par-

adigm in modeling and optimization of oil and gas assets (Sarma and

Leport, 2016).

To conclude this section, we propose a schematic example of a modular

advanced data analytics workflow for the E&P industry, where components

of individual analytics domains, from descriptive to prescriptive, merge into

a collaborative synergy (Fig. 4.3). The workflow consists of five modules and

begins with the database management module, which includes data acqui-

sition (i.e., data from smart sensors/IoT, etc.), integration [i.e., subsurface

(geological and geophysical), drilling and completions, production, stimula-

tion, operations], and aggregation for the purposes of statistical analysis.

Module 2 combines data exploration steps that include EDA, with uni-,

bi-, and multivariate statistical analysis, and examination of the most impor-

tant variables for the predictive model. Module 2 also combines missing

data and outlier analysis and temporal/spatial smoothing, which is often

overlooked in the data preparation phase. Techniques like data imputation

[e.g., multivariate imputation by chain equations (MICE) (van Buuren and

Groothuis-Oudshoorn, 2011)] or interpolation [e.g., regression methods

(such as LOESS/LOWESS), kriging, etc.] can be considered.



DATA EXPLORATION
MISSING DATA

OUTLIERS

DATA RELATIONS

MODEL DIAGNOSTICS
VALIDATION
QUANTIFICATION

INTERPRETATION
VISUALIZATION

42

DATABASE
ACQUISITION

INTEGRATION

AGGREGATION

MACHINE LEARNING
MODEL

OPTIMIZATION

3 51

Fig. 4.3 Proposed modular advanced data analytics workflow for the E&P industry,
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The workflow continues with Modules 3 and 4, which combine selec-

tion and building the predictive analytics (e.g., ML) model (for ML model

selection, see Section 4.2) as well as validation, quantification, interpreta-

tion, and visualization of results. The workflow ends with Module 5 and

the prescriptive analytics phase, where the results of the predictive model

provide an input for a nonlinear optimization, where certain KPIs can be

defined as minimization [e.g., cycle time or nonproductive time (NPT)]

or maximization (e.g., production, rate of penetration (ROP)) problems

via a suitable objective/cost function [e.g., in sparse equations and least

square (LSQR) form]. The benefits of deploying advanced data analytics

workflow in the modular form are as follows:

• A project can grow in functionality by adding project files for tasks.

• Intellectual property (IP) can be modularized within individual project

files, which makes collaboration easier.

• Modularizing promotes functionality reuse, unit tests, easier

documentation, etc.

4.1.3 Big Data in E&P: Concepts and Platforms
E&P operations have traditionally generated large volumes of data; how-

ever, with the advent of “smart operations” and DOF projects, the E&P

industry is now producing extreme volumes, at exponentially higher rates

than ever before. Today’s operations generate terabytes and petabytes of

data, at extremely large volumes, speeds, and acquisition frequencies from

multiple sources and domains, such as geophysical, geological, engineering,

production, surveillance, maintenance, etc. The E&P industry is quite liter-

ally experiencing data and information overload; it needs a focus and
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dedicated approach to transform these vast volumes of data into decisions, to

devise processes to transform information into knowledge (Fig. 4.4).

However, according to recent studies and reports in Alain Charles

(2015), the oil and gas industry has been using only 1% of the data it gen-

erates; which means that 99% of acquired data remains to be exploited to

generate business value. With the evolution of the Big Data paradigm,

E&P companies are focusing on mining value from this data, with the main

objective of “getting value from all data by leveraging emerging technolo-

gies and pattern-based techniques for innovation, strategy, faster and better

decisions” (Davis, 2015). Moreover, we increasingly hear the E&P industry

saying that Big Data is now the new oil.

The gradual shift of the E&P industry to digital data-driven technology

in oil fields is expected to improve the productivity of pipeline operation and

safety by 30% (Alain Charles, 2015). Another striking example for potential

improvements is in the pump performance. If globally, the industry

improved pump performance and efficiency by even 1%, it could increase

oil production by half a million barrels per day and generate an additional

$19 billion of revenue per year. Moreover, the global oil and gas industry

is facing major challenges where improved data analytics could help, for

example, extraction costs are rising and the market has been affected by a

dramatic drop in oil prices and the turbulent state of international politics,

which adds to the uncertainty in exploration and drilling for new reserves.

To help address these and other challenges, key companies in E&P are

looking to Big Data in search of maximum optimization at minimum cost.

Fig. 4.5 shows the main areas of interaction between attributes of Big Data

analytics and E&P business segments with the most potential to add value.

In the current literature, experts usually refer to Big Data in terms of “the

Vs.” Brul�e (2013) and Davies (2014) categorize Big Data in terms of 3 Vs—

volume, velocity, and variety. The Oil Review (2015) considers 4 Vs, by

adding value, and Davis (2015) goes a few steps further and defines 7 Vs

as the 7 pillars of Big Data, which include the following:

• Volume: this component of Big Data addresses massive quantities of

acquired data, rising from terabytes to petabytes. Traditionally, the data

are collected and loaded into data warehouses. With Big Data, the focus
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is to extract, load, and transform. The new paradigm is to collect and load

data into the Apache Hadoop open source database (Ghemawat et al.,

2003; Handy, 2015), which enables distributed processing of large data

sets on clusters and servers, without extensive transformation into a rela-

tional database model for further analysis.

• Velocity: this component relates to the understanding that the acquired

data are no longer data at rest (or static) and adopting new methods

for data in motion (e.g., streaming or fast data) to analyze data in real

time. Not all data received in real time need real-time analysis. However,

some (e.g., real-time alerts for operational efficiency and failure diagnos-

tics) need real-time adaptive analytics with stream computing and

support of massively parallel-processing databases (Brul�e, 2009) and

low-latency data-flow architecture (Brul�e, 2013).
• Variety: BigData consist of structured and unstructured data.While struc-

tured data are generally in digital form, acquired by sensors (e.g.,

temperature, pressure, fluid flow), theunstructured (no format) data come

in the form of text files, well files, field development reports, drilling

records, etc. (see Table 4.1) and requires specific types of text analytics

(down into Boolean operands) to extract information at large scales.

• Veracity: this component relates to the accurateness and correctness of

data. In circumstances of the first 3 Vs, confusion can arise because of

incomplete (and sometimes obscure) definitions of how true and trust-

worthy are the data?

• Virtual (data): this component of Big Data enables the E&P industry to

generate abstracted and integrated information in real time, from dispa-

rate sources, and send it to multiple applications and users. The virtual

data centers/servers are easier to build and consume (than traditional data

stores), and require much less effort to maintain.
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• Variability: this Big Data attribute can occur in each of the other six pil-

lars. The range of variability (not to be confused with the more widely

adopted uncertainty) depends on the stage of an E&P program under

consideration as a function of time, location, or some other measured

parameter. Moreover, Begg et al. (2014) refer uncertainty to not know-

ing the value (or answer) of some quantity and define variability as the

multiple values the quantity has at different locations, times or instances.

• Value: this attribute clearly represents the most important component of

Big Data, measured in monetary or nonmonetary capacity.

In the transcript of a recent survey by Accenture and Microsoft, focusing on

2016 E&P digital trends, Holsman and Richards (2016) have reported that

almost 90% of responding E&P companies, despite the industry downturn,

plan to maintain or increase investments in digital technologies, predomi-

nantly in Big Data-powered analytics, the IoT, and cloud-enabled mobility.

However, though the survey results indicate that more than half of respon-

dent believe that digital technologies have added significant value to their

businesses, the general impression is that Big Data analytics are still being

widely underutilized in the oil and gas industry. Although identified as a

key capability that E&P needs to leverage, only 13% of survey respondents

felt that their companies had mature analytics capabilities, and almost two-

thirds said that their companies would be investing in analytics over the next

years to close the gap.

Traditionally, the E&P industry-standard approach for data analysis has

been heavily leveraging mainstream spreadsheet-based tools and basic,

macro- or script-enabled workflow automation. With the new paradigm

of Big Data and the associated complexity as outlined previously in the

description of the 7 Vs, the traditional data analysis tools and techniques

quickly become suboptimal, due to intricate, nonlinear, multivariate, and

nonintuitive root-cause data relationships that affect decision-making.

At SPE Forum series event, “Next Generation of Smart Reservoir

Management: The Eminent Role of Big Data Analytics,” held in 2016 in

Dubai, UAE, the authors have concluded that sustainable transformation

of E&P businesses to fully harness the potential of Big Data requires scalable

data analytics with cognitive abilities, like massively distributed data mining

and machine and statistical learning, with little or no human supervision.

This is briefly addressed in the following sections. An efficient implementa-

tion of Big Data analytics can only be enabled by the innovative IT and data

management solutions that allow access to all data, all the time, and by all

stakeholders. This type of access increasingly being provided through the

implementation of flexible, open data management architectures such as
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Apache Hadoop (Ghemawat et al., 2003; Handy, 2015) or NoSQL

(Pokorny, 2011), distributed on platforms such as Cloudera, Hortonworks

and MapReduce (Dean and Ghemawat, 2008) or Apache Spark.

Recently, an overwhelming amount of literature has been published

about Big Data concepts. Two publications that we recommend include

“Harness the Power of Big Data” by Zikopoulos et al. (2013) and Harness

Oil and Gas Big Data with Analytics: Optimize Exploration and Production with

Data Driven Models by Holdaway (2014).
4.2 INTELLIGENT DATA ANALYTICS
AND VISUALIZATION
4.2.1 Data Mining

Data mining (DM) is a knowledge discovery from large quantities of data.

The process derives its name from the similarity between searching for valu-

able business information in a large database, containing terabytes or even

petabytes of data, and mining a mountain for a vein of valuable ore. Tech-

nically, the term refers to the process of extracting useful models and patterns

that are (Leskovec et al., 2014)

• valid (i.e., contain new data with some certainty),

• useful (i.e., add value and enable people to take related actions),

• unexpected (i.e., nonobvious and nonintuitive, spurring the “aha!”

moment), and

• understandable (i.e., humans should be able to interpret and analyze them).

Data mining as a discipline overlaps with database systems, statistics, and

ML, and, as such, the complexity when dealing with data in data mining

applications can be graphically represented as shown in Fig. 4.6.

As data come in a variety of modalities, formats, and ontologies—from

structured, unstructured, static to streaming, descriptive to Boolean—this

infers that for successful data mining, the data need to be properly collected,

stored, and managed. Ideally, these tasks would be performed continuously

by the data operators; however, in reality (as is frequently the case in the E&P

industry), the data presented for mining is imperfect, with missing, illogical,

and nonphysical values that require extensive QA/QC processing, with

missing data interpolation and imputation (van Buuren and Groothuis-

Oudshoorn, 2011).

Historically, statisticians were the first to use the term “data mining,”

ironically focusing primarily on the attempts to extract the information that

was not supported by the data. However, with the evolution of statistical
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modeling and high-performance computing (HPC), modern data mining is

largely extracting data models or patterns that can sometimes be the sum-

mary of the data or even the set of most extreme features of the data.

The data mining tasks are mainly classified into the following:

• Descriptive methods: where automated and intelligent tools discover pre-

viously unknown human-interpretable patterns that describe the data.
– Example: data clustering of reservoir parameters to identify sweet

spots for new drilling campaigns (Roth et al., 2013).
• Predictive methods: where automated systems [e.g., recommendation sys-

tem (Leskovec et al., 2014; Jordan and Mitchell, 2015)] and models use

certain variables (predictors) to predict unknown future values, trends, or

behavior of other (response) variables.
– Example: well production prediction and optimization (Zhong et al.,

2015) or equipment predictive maintenance, both based on histori-

cally recorded data.
• Root-cause analysis: where automated tools are used to identify roots and

causes of a system’s faults and problems, mostly based on the analysis of

historical categorical, continuous, and temporal data.
– Example: down-time or job-paused time analysis of hydraulic fractur-

ing, well artificial lift, or well stimulation equipment (Maucec

et al., 2015).
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Although the data mining is rapidly gaining rightful popularity—particularly

in conjunction with Big Data analytics, where DOF applications are cer-

tainly not an exception—a caveat related to the risk that a data mining analyst

may discover patterns that are meaningless, because they are not supported

by the data exists. Consequently, this effect, the statisticians call Bonferroni’s

Principle (Leskovec et al., 2014), may, for example, generate statistical arti-

facts rather than evidence of the conducted search and lead to unrealistic pre-

dictive models. The solution comes in the form of the Bonferroni

correction, when several dependent or independent statistical tests are being

performed simultaneously on a single data set.
4.2.2 Statistical and Machine Learning
Although the terms statistical learning andML differ by name, they are quite

similar, and, in fact, both types of learning are inseparably intertwined. Sta-

tistical learning refers to the set of tools formodeling and understanding com-

plex and large-scale data sets, such as Big Data. It is a fairly recently developed

area of statistics and largely complements the developments in computer sci-

ences (e.g., advanced data management and cloud computing) and ML. ML

addresses thequestionof “howtobuild computers that improveautomatically

through experience” (Jordan and Mitchell, 2015). This section gives a brief

overview of the coreMLmethods and outlines some trends and prospects for

future developments. It summarizes the most popular ML techniques, high-

lights its threemain paradigms, and provides characteristic examples. AsML is

becoming increasingly popular in the E&P industry, a few successful applica-

tions relevant to the DOF are presented in Section 4.3.

Conceptually, ML algorithms can be viewed as navigating through a

large domain of candidate programs to identify a program that optimizes

a specified performance metric or objective. The application of ML algo-

rithms varies greatly depending on the nature of the problem, for example,

through use of decision trees, mathematical functions, optimization, etc.

However, with the vast amount of Big Data, it is imperative that the

common denominator of ML techniques appropriate for DOF applica-

tions become highly scalable solutions which support the platforms of

the cloud and HPC, real-time analytics, and the rapidly expanding IoT,

all with robust and resilient cybersecurity mechanisms (see Chapter 2,

Instrumentation and Measurement). For more information see The Elements

of Statistical Learning: Data Mining, Inference and Prediction by Hastie et al.

(2011), An Introduction to Statistical learning: with applications in R by
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James et al. (2014), and Jump-start Machine Learning in R: Apply Machine

Learning with R Now by Brownlee (2014). The latter two references focus

specifically on applications of the ML algorithms and techniques in pro-

gramming language R, which has become a de facto standard for statistical

computing (The R Foundation, 2017).

ML methods can be classified into three main paradigms: supervised

learning, unsupervised learning, and reinforcement learning (RL) (Jordan

and Mitchell, 2015), which are summarized below and in Table 4.4.

• Supervised learning. Let us assume anML systemwith a set of input param-

eters (xi; i¼1,…,n), called predictors and associated output/measured var-

iables called the responses (yi). The supervised learning system generally

yields its prediction via a learned mapping function f(x), which produces

an output yi for each xi or a probability distribution p(y jx). The objective
is to design and fit a model that finds a relation between the response and

predictors, with the objective of accurately predicting the response for

future observations (predictions or forecasts). In supervised learning,

response variables are usually characterized as quantitative (also referred

to as continuous) or qualitative (also known as categorical). It is a common

practice in data science to refer to problems with a quantitative response

as regression problems and to those with a categorical response as classification

problems. A variant of regression and classification methods are the

so-called tree-based methods. These methods work on the principle of

segmenting the predictor space into a number of simple regions. Tomake

a prediction for a given observation, the tree-based methods usually use

statistical moments such as mean or variance. As the set of splitting rules

to segment the predictor space can be conveniently represented as a tree, it

visually makes the decision process significantly easier; these types of

approaches are also referred to as decision trees methods.

• Unsupervised learning addresses more challenging situations, where for

every observation i¼1,…,n, one finds a vector of measurements xi
but no associated response yi. Hence, it is not possible to fit a linear

regression model because there is no response variable to predict. In such

conditions, finding a solution is less transparent and the approach is

referred to as unsupervised. The two main classes of unsupervised learning

methods are the cluster analysis or clustering and the so-called dimensionality

reduction methods. The objective of cluster analysis is to determine, on

the basis of variables or parameters x1,…, xn, whether these observations

can be classified into relatively distinct groups called clusters and if there is

a possibility to represent individual clusters with their single



Table 4.4 Summary of the Most Popular Methods and Classifiers in ML, as
Representative of the Three Main Paradigms Described Previously, With Some
Suggested References for Further Reading

ML Paradigm

ML Family

Suggested
Reading

Type of
Problem Technique

Supervised

learning

Regression Linear regression (LR)

• Ordinary least squares

• Stepwise and moving LR

Penalized LR

• Ridge LR

• Elastic nets

Nonlinear regression

• Multivariate adaptive regres-

sion splines (MARS)

• Support vector machine

(SVM)

• K-nearest neighbor

• Neural network (NN)

Decision trees for regression

• Classification and regression

trees (CART)

• Conditional decision trees

• Bagging CART

• Random forest (RF)

• Gradient boosted machine

(GBM)

Hastie et al.

(2011)

James et al.

(2014)

Leskovec

et al. (2014)

Brownlee

(2014)

Classification Linear classification

• Logistic regression

• Discriminant analysis

Nonlinear classification

• Mixture, regularized, qua-

dratic and flexible discrimi-

nant analysis

• Support vector machine

(SVM)

• K-nearest neighbor

• Naive Bayes

Nonlinear classification with

decision trees

• Classification and regression

trees (CART)

• Bootstrapped aggregation

(Bagging) CART

• Random forest (RF)

• Gradient boosted machine

(GBM)

Continued

119Components of Artificial Intelligence and Data Analytics



Table 4.4 Summary of the Most Popular Methods and Classifiers in ML, as
Representative of the Three Main Paradigms Described Previously, With Some
Suggested References for Further Reading—cont’d

ML Paradigm

ML Family

Suggested
Reading

Type of
Problem Technique

Unsupervised

learning

Clustering • K-means

• Hierarchical

James et al.

(2014)

Hastie et al.

(2011)

Leskovec

et al. (2014)

Dimension

reduction

• Principal component analysis

(PCA)

• Factor analysis

• Multidimensional scaling

(MDS)

Tabachnick

and Fidell

(2013)

Reinforcement

learning

• Markov decision process

(MDP)

Sutton and

Barto

(1998)
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representative elements, called centroids. With dimensionality reduction

methods on the other hand, the analyst is aiming to represent the com-

plex numerical model with a reduced or compressed set of (principal)

components (usually referred to as eigenvalues and eigenvectors), which

can still adequately represent the observation domain x1, …, xn, while

significantly reducing the computational effort and complexity. The

clustering and dimensionality reductionmethods often fall under the cat-

egory of MVA methods (Tabachnick and Fidell, 2013).

• RL is a paradigm where the information available in the training of the

ML model can be viewed as a cross-section between supervised and

unsupervised learning. The RL methods usually leverage the ideas

and algorithms from the area of control theory (e.g., optimal, robust con-

trol, closed-loop control, and variance reduction). The mathematical

foundation of ML methods represents Markov decision processes

(MDP), similar to Markov chains and its Monte Carlo approximations.

The complexity of these techniques goes beyond the scope of this book;

to learn more, see Sutton and Barto (1998).
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It is interesting to note that in the applications of advanced data analytics, a

small number of methods always seem to perform better than most others.

This phenomenon has been documented for classification problems

(Fernandez-Delgado et al., 2014) in a study that combined 179 classifiers

from 17 families, while using 121 data sets. In petroleum engineering and

geoscience applications that largely pertain to DOF architecture as well,

many of Big Data problems involve regression. However, it seems like

the same set of methods always outperform others: (artificial) neural net-

work, support vector machine (SVM), and random forest. Depending on

the nature of the application, some of these methods are more suitable than

others, but only rarely does the user need to look outside of this suite to more

exotic methods. Section 4.3 briefly captures some of the prominent appli-

cations of data analytics from the E&P domain, pertaining to DOF projects.

Although the field of ML is a relatively young one, it is rapidly growing.

One of the emerging trends in ML is the so-called recommendation systems

(Leskovec et al., 2014; Jordan and Mitchell, 2015), applications that involve

predicting user responses to different options. One genre of recommenda-

tion systems is the area of collaborative filtering, which recommends items or

actions based on similarity measures between the users and/or items. Such a

paradigm naturally appeals to the concept of DOF, which is by definition a

collaborative environment [e.g., real-time operation center (RTOC)],

where oilfield operators work with advanced sensor- and data-driven

technology.

Maybe the future ofML techniques for DOF and data-driven E&P oper-

ations is hidden in the analogy to natural learning systems. As envisioned by

Jordan and Mitchell (2015), this concept suggests the idea of team-based,

mixed-initiative learning. In a nutshell, since the current ML systems mostly

operate in isolation to analyze given data, people often work in teams to col-

lect and analyze data, by bringing together a variety of expertise and perspec-

tives when solving particularly complex and difficult problems (e.g., large-

scale integrated reservoir studies). Perhaps in the next-generation DOF, new

ML methods will work collaboratively with oil and gas field operators to

extract andmine deep knowledge and subtle statistical regularities frommas-

sive data sets (Big Data) acquired at extreme velocities and frequencies by

smart IoT sensors, to generate intelligent real-time operational decisions.

For completeness and to facilitate easier understanding of the applications

presented in Section 4.3, we present a quick overview of the mentionedML

techniques.
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4.2.2.1 Artificial Neural Network
ANNs are ML systems based on the workings of the brain, which is known

to consist of a massively interconnected system of neurons that do sensory

processing, control motor functions, and engage in patterns of thought.

ANNs are “trained” by a large number of input patterns that cause them

to “learn” from the experience from the bottom-up approach. The structure

of a neural network is usually drawn as a hierarchy of layers (input, hidden,

and output) in which nodes (representing neurons) are connected by arcs

(see Fig. 4.8A). The arithmetic value of any node is equal to the sum of

the values of the preceding nodes each multiplied by the weight of the con-

necting arc, called the activation function:

yi¼Σwijxj (4.1)

where yi is the value of the ith node, xi the value of the jth node of the

preceding layer, and wij is the weight associated with the arch that connects

the two nodes. The output node is governed by the activation function

and a threshold that determines the initiation of output. In simpler net-

works, a node fires and passes output when the node value, yi, exceeds

a given threshold value, U. The firing state of a node is either 1 or 0,

determined by whether the activation, a, is positive or negative, where

(Fig 4.7A)

a¼ yi�U (4.2)
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Fig. 4.7 Control of the firing of a neural network node by an activation function using:
(A) threshold value determination of positive activation and (B) sigmoidal function,
where the value of t influences the relative rate of activation. (Modified from Doveton,
J.H., 1994. Geologic Log Analysis Using Computer Methods. AAPG Special Volumes.)
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More recent networks commonly use a sigmoidal function to model the

transfer between input and output signals (Fig 4.7B):

P¼ 1

1+ e
�a
t

(4.3)

where P is the probability of the node firing, t a constant that determines the

function steepness, and a is the activation node. The steepness of the acti-

vation function determines whether most of the input is transferred through

the nodes, or whether the output is only initiated by stronger inputs. This

feature attempts to imitate the behavior of real neurons, which often tend to

be either active or inactive.

A basic model often uses three layers of nodes (Fig 4.8A): the input layer

receives the data, the middle (hidden) layer draws stimulation from the input

layer, and transmits onward to the final output layer, which is the result of

the system. In “training” the network, a set of patterns is repeatedly pres-

ented and the weights of the arcs are modified such that the output makes

a better match with a desired result. The “training” is usually accomplished

by backward propagation of errors through the network that distributes the

difference between the desired result and the actual output as small incre-

mental adjustments in the interconnection weights. The process is gradual

and iterative, until the weights converge to an equilibrium setting and

the network is trained. The speed of the training is controlled by a learning

rate set by the user. If too high, the network learns quickly, but the weights

may oscillate with an unstable solution. Very slow learning rates ensure a

smoother passage to stability but may take excessive computing time.

At the end of the training, an unknown pattern can be entered for pur-

poses of classification or regression (prediction) as outlined in previous sections.

Fig 4.8B presents an example of an input-output model for application of

ANNs developed for the optimization of hydraulic fracturing in unconven-

tional gas reservoirs (Temizel et al., 2015).

4.2.2.2 Support Vector Machine
The SVM is widely perceived as one of the most powerful classification

“out-of-the-box” learning tools. It has been developed in the area of com-

puter science in the early 1990s and has recently been receiving more and

more attention in the widest range of engineering fields, mostly because

of the advent of Big Data applications. According to James et al. (2014),

the SVM is a generalization of a simple and intuitive classifier called a max-

imum margin classifier, which unfortunately cannot be applied to most data
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sets because it requires the classes to be separable by a linear boundary. The

support vector classifier is an extension of a maximum margin classifier that

can be applied to a broader range of problems. Finally, the SVM is a further

extension and next-generation support vector classifier and can accommo-

date nonlinear class boundaries. These three terms are often loosely and

interchangeably used, but it is important to distinguish between them when

deploying the SVM method.

The mathematical details behind the derivation of both the maximum

margin classifier and the support vector classifier are beyond the scope of this

book; for more information see James et al. (2014) and Leskovec et al.

(2014). However, the main difference between the support vector classifier

and the SVM, as a matter of our interest, is shown in Fig. 4.9. Let us assume
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Fig. 4.9 Illustrative performance comparison of support vector classifier and the SVM
on a nonlinear classification: (A) observation data arranged in two classes, colored
in red and blue, (B) relatively poor classification performance of support vector classifier
due to defined linear boundaries, (C) significantly better fitting classification using SVM
with third-order polynomial kernel, and (D) superior fitting classification using SVMwith
the radial basis kernel. (With permission from James, G., Witten, D., Hastie, T., Tibshirani, R.,
2014. An Introduction to Statistical Learning with Applications in R. Springer, NY.)



126 Intelligent Digital Oil and Gas Fields
we are solving a classification problem where the observation data fall into

two classes, colored in pink and blue in Fig. 4.9A. The support vector clas-

sifier seeks the linear boundary between the two classes of observed data

points and thus performs quite poorly (Fig. 4.9B).

When applying the SVM method, which is an extension of support

vector classifier, the classification feature space is rearranged in a specific

way using nonlinear functions, that is, kernels. If then, an SVMwith a poly-

nomial kernel of the third degree is applied to the nonlinear distribution of

data points as shown in Fig. 4.9A; the result is the significantly better fitting

classification presented in Fig. 4.9C, which renders better decisions.

Furthermore, if instead, the SVM is applied with the radial basis kernel,

the classification/decision boundary is captured even more accurately

(Fig. 4.9D).

When applied to statistical regression problems, the SVM method is

referred to as support vector regression (SVR). Both techniques are closely

related and only applied to a different class of problems. In the case of SVR,

the regression function usually has the form (Zhong et al., 2015)

f xð Þ¼ y¼
XN
i¼1

α∗i �αið Þ vtix+1
� �p

+ b (4.4)

where v1,…, vN areN support vectors and b, p, αi, and αi
∗ are the parameters

of the model, which are optimized with respect to ε-insensitive loss (Zhong
et al., 2015). During the parameter estimation, the N support vectors are

selected from the data training set. Similar to the nature of classification

problems, solve the nonlinear regression with the application of kernel func-

tion. For information, the radial basis kernel function (as mentioned previ-

ously for classification) acquires the form:

K vi, xð Þ¼ exp �γ vi�xj j2� �
(4.5)

4.2.2.3 Random Forest
Random forest (RF) is an ensembleMLmethod that constructs a large num-

ber of uncorrelated decision trees based on averaging random selection of

predictor variables. For in-depth introduction into the concept of decision

trees, see James et al. (2014). In their fundamental formulation, decision trees

have proven to be very successful in solving classification problems of statis-

tical learning; however, they are less efficient for nonlinear regression.
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Various techniques have been introduced by statisticians to improve upon

statistical learning capabilities of decision trees, like bootstrap aggregation

or bagging (James et al., 2014); however, while bagging dramatically

improves the prediction accuracy of decision trees, it comes at the expense

of interpretability.

The RF approach provides an improvement over the bagged trees by

de-correlating the trees, which reduces the variance when the trees are

averaged. When building decision trees (they are generated in parallel), each

time a split in the tree is considered and a random selection of m predictors is

chosen as a subset of split candidates from the full set of predictors. Hence, as

the new selection of m predictors is generated at each split, and one typically

chooses m� ffiffiffi
p

p
, which means that the number of predictors considered at

each split (m) is approximately equal to the square root of the total number of

predictors, p.

The predictor variables for RF method can be of any type: numerical,

categorical, continuous, or discrete. The method automatically includes

interaction among the predictor variables in the model because of the hier-

archical structure of trees. The fact that the RF trees are insensitive to

skewed distributions (i.e., do not require mapping into normal score

domains), outliers, and missing values (i.e., data imputation methods are less

required), they are considered as one of the most efficient “of-the-shelf”

predictive ML techniques.
4.2.3 Visualization and Interactivity
This section presents a summary and examples of selected diagrams, graphs,

and images for qualitative and quantitative visualization of primarily predic-

tive analytics, pertaining to statistical learning andML and multivariate anal-

ysis (Fig. 4.10).

We did not have room to include examples for visualization of descrip-

tive analytics (e.g., EDAwith uni- and bivariate statistics, such as histograms,

statistical distributions, box plots, QQ-plots, cross-plots, and correlation/

covariance). For more information on these, see Gelman and Hill (2007)

and Seltman (2015).

Fig. 4.11 shows example of interactive analytical dashboard visualization

for DOF applications. The figure adds the Tornado chart (ranking impor-

tance of predictor variable in terms of response variable) and the receiver

operating characteristics (ROC) (sensitivity of the binary classifier to false

alarm probability) to the list of selected visualization options.
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(E) (F)

Fig. 4.10, Cont’d (F) MDS: quantification of uncertainty in reservoir models with ranking. (Part C: with permission from: https://www.blue-granite.
com/blog/supply-chain-insights-with-advanced-analytics-fuzzy-clustering. Part D: with permission from: https://exchange.ai/downloads/teapot-
dome-voronoi-chart/. Part E: with permission from Zhong, M., Schuetter, J., Mishra, S., LaFolette, R.F., 2015. Do Data Mining Methods Matter?:
A Wolfcamp Shale Case Study. SPE-173334-MS, https://doi.org/10.2118/173334-MS. Part F: with permission from Caers, J., 2011. Modeling Uncertainty
in the Earth Sciences. John Wiley & Sons, Ltd, Chichester, UK.)
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Fig. 4.11 Example of interactive data analytics dashboard for the prediction of fracture screen-out occurrences using classification tree
analysis.
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4.3 APPLICATIONS TO DIGITAL OIL AND GAS FIELDS

4.3.1 Machine Learning and Predictive Analytics

This section presents a few state-of-the-art and emerging applications of data

mining and ML with predictive analytics in the E&P industry. The focus is

on the applications of production optimization because they correlate more

firmly with the data-driven reservoir management and are significant areas of

application in DOF systems.

Mohaghegh et al. (2015) have introduced the concept of surrogate res-

ervoir models (SRM) as a “smart” proxy for numerical reservoir simulation

models. The SRM is an ensemble of multiple ML technologies, including

pattern recognition and intelligent agents, which are trained to learn and

consequently mimic the behavior of fluid flow physics using data generated

by a numerical simulation model; however, SRMs run at extremely high

speeds and complete the simulation run in a fraction of a second.

Mohaghegh et al. (2015) have deployed the SRMs to increase field produc-

tion and optimize choke size schedule—all without drilling new wells.

Bravo et al. (2014) have defined intelligent agents as computational sys-

tems comprising multiple active components that are capable of making

decisions and taking actions autonomously. The intelligent agents are suited

to processing large amounts of data in distributed environments and can also

communicate and collaborate with each other to reach common objectives.

For example, Zangl et al. (2011) have used intelligent agents in the form of

self-learning expert systems to construct a holistic workflow for autonomous

history matching. Fig. 4.12 (from Zangl et al., 2011) demonstrates a sche-

matic of a hierarchical learning exercise of a history matching agent that,

instead of accomplishing the change of state in sequential manner, splits a

complex task (minimizing the Objective) into a set of isolated and repeatable

subtasks executed at different layers of corrective actions.

In an SPE webinar, Saputelli (2015) has presented several varieties of

supervised and unsupervised ML techniques (see Table 4.4) with optimiza-

tion as emerging trends of predictive and prescriptive data analytics applica-

tions in E&P. However, ANNs are also being used in innovative

applications. For example, Shirangi (2012) have built fast proxy models

by combining ANNs and SVRmodels to solve a robust production optimi-

zation problem and used unsupervised ML (k-means clustering and MDS;

see Table 4.4) to select an optimal set of representative reservoir model real-

izations. Recently, ANNs are being actively used in a variation known as a
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Fig. 4.12 Examples of a hierarchical learning exercise composed of intelligent agents to
perform autonomous history matching. (Modified from Zangl, G., Al-Kinani, A.,
Stundner, M., 2011. Holistic Workflow for Autonomous History Matching using Intelligent
Agents: A Conceptual Approach. SPE-143842-MS, https://doi.org/10.2118/143842-MS.)
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Kohonen self-organizing map (SOM) (Fig. 4.13); it is referred to as a map

because it assumes a topological structure among its cluster units and effec-

tively maps cluster weights wij1, wij2 …, wijn to input data vector x1, …, xn
and generates output data vector y1, …, yn.

Roy et al. (2013) are also using SOMs for supervised and unsupervised

multi-attribute facies analysis in seismic stratigraphy, and Zangl and
Input vector

Weights vector

Output vector

Y=(y1, y2, ... , yn)

X=(x1, x2, ... , xn)

wij=(wij1, wij2, ... , wijn)

Fig. 4.13 A rendering of Kohonen self-organizing model architecture. (Modified from
Magomedov, B., 2006. Self-Organizing Feature Maps (Kohonen Maps), https://www.
codeproject.com/Articles/16273/Self-Organizing-Feature-Maps-Kohonen-maps.)

https://www.codeproject.com/Articles/16273/Self-Organizing-Feature-Maps-Kohonen-maps
https://www.codeproject.com/Articles/16273/Self-Organizing-Feature-Maps-Kohonen-maps
https://doi.org/10.2118/143842-MS
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Stundner (2007) and Dossary et al. (2016) use SOMs to explore and identify

regions in reservoir simulation models, based on geological signatures and/

or (dis)similarities. Such SOM models condition geology to reservoir flow

dynamics and reduce simulation model computational requirements for

inversion and assisted history matching (AHM) with minimal engineering

effort. They propose an algorithm that stems from the original Kohonen

algorithm but is redesigned to fit reservoir simulation data. As such, the algo-

rithm is optimized for 3D spatial maps, rather than 2D data considered by the

original Kohonen. The data “discovers” the underlying map rather than

adapting to it, and the similarity metric is not the minimum distance Euclid-

ean norm, but the model transmissibility.

The algorithm optimizes on the desired number of regions in the

simulation model and reduces the complexity of the property matrix size

in the AHM process by several orders of magnitude, which is crucial when

using CPU time and resource-intensive model-inversion techniques.

Fig. 4.14 shows examples of regionalized properties or a reservoir simula-

tion model as a function of iterative progression of the proposed algorithm.

We conclude this section by highlighting E&P applications that use a

specific, rapidly emerging field of ML, the so-called deep learning (DL).
Fig. 4.14 Examples of regionalized properties or reservoir simulation model as a func-
tion of expanding random seeds when sampling with the proposed algorithm. (With
permission from Dossary, M., Al-Turki, A., Harbi, B., 2016. Self-Organizing Maps for Regions
Exploring and Identification Based on Geological Signatures, Similarities and Anomalies.
SPE-182827-MS, https://doi.org/10.2118/182827-MS.)

https://doi.org/10.2118/182827-MS
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The DL approach—also known as the deep structured learning or hierarchi-

cal learning—is new and at the forefront of ML research. The main idea is to

move ML closer to its AI roots. An example of a DL technique is a deep

neural network (DNN), which combines a multilayer network with mul-

tiple hidden layers organized into a graph or network (Fig. 4.15), compared

with the “classic” NN with a single feed-forward “hidden” layer (see Fig.

4.8A). The main advantage of a DNN over a classic, single-layer NN is

the ability to abstract high-level data from extremely complex data sets.

For more information on DL and DNN see Goodfellow et al. (2016).

It is encouraging to see that the concepts of DL and DNN have recently

started to find their way into E&P research and development, production

optimization, and predictive modeling. Crnkovic-Friis and Erlandson

(2015) train DNNs to learn the relationships between the geological param-

eters of nonconventional reservoirs (e.g., thickness, porosity, water satura-

tion, vitrinite reflectance, total organic carbon, brittleness, etc.) and average

estimated ultimate recovery (EUR) of an asset.

The DNN model was trained, validated, and tested on a region in the

Eagle Ford shale and has included both oil and dry gas wells. The DNN

model significantly outperforms both volumetric estimates and type-curve

region averages in terms of EUR prediction. However, the most important

advantage over traditional decline/type-curve analysis is probably that the

DNN model requires geological data only, which means the model can

be used in the exploration stage. In contrast, type-curve analysis requires

production data to predict EUR, which is only available after a region

has been producing for a while.
Input layer Output layer

Hidden layer 3

Hidden layer 2

Hidden layer 1

Fig. 4.15 Schematic of a DNN architecture with three hidden layers.
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4.3.2 Data Mining, Multivariate, Root-Cause,
and Performance Analysis

As a statistical discipline, DM has been used for more than half a century, and

has become more applicable and widely used with the emergence of Big

Data. Interestingly, one of the fastest tracks in DM development is now seen

in the areas of social networking, recommendation systems, and online com-

merce, which are permanently exposed to enormous volumes of generated

data subject to analysis, interpretation, and decision-making (Leskovec et al.,

2014; Hallac et al., 2015). In E&P, it seems like more systematic use of DM

techniques correlates with the diminishing availability of conventional

hydrocarbon resources and the rise of unconventional reservoirs (e.g., shale

plays) as the main source of oil and gas.

Numerous publications on the use of DM in the oil and gas industry have

emerged in recent years. Moreover, Bravo et al. (2014) have reported that

DMranks among the highestWeb-searched termwithinAIPA technologies.

This section briefly summarizes a few recent applications that apply nonlinear

multivariate prediction, classification, and root-cause analysis.

Zhong et al. (2015) and Gao and Gao (2013) have cross-evaluated and

compared standard univariate linear regression, multivariate adaptive regres-

sion splines (MARS) with fewmore advancedML techniques, such as SVM,

RF, and gradient boosted machine (GBM) to predict the production quality

and optimization of almost 500 unconventional wells in both the Permian

Basin and Eagle Ford Shale, respectively. Predictor variables include a wide

range of categorical and continuous operational and completion well data,

such as surface location, architecture (operator, well azimuth, angle, length),

stimulation details (fracture fluid, proppant amount, etc.), as well as geolog-

ical data such as permeability, porosity, viscosity, and other metrics. The

production metrics in both studies included a wide range of oil production,

accumulated over various periods. To compare the predictive performance

of different methods, Zhong et al. (2015) have adopted two objective met-

rics: the average absolute error (AAE) and mean squared error (MSE). In

addition, they have evaluated the tolerances of individual ML methods

for missing values, as one of the most common issues in real-world data sets.

In terms of overall quality of the predictive fit measured by AAE and MSE,

the RF demonstrated the best performance, which is in line with earlier

observations explained in Section 4.2.2.

Another frequently used DM technique for multivariate nonlinear pre-

dictions is decision trees. For example, Maucec et al. (2015) have deployed

classification and regression tree (CART) analysis to investigate whether,
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from existing well-treatment data, it is possible to find patterns and signifi-

cant variables that affect the extreme values of pumping job-pause time

(JPT) in a particular region, and what is the most critical value causing frac-

ture screen outs. They performed four case studies on a database that

included data from 200,000 fracturing and data-acquisition jobs from all

over North America, since 2004. The data in the database included: com-

pilation of general well and job information; job-level summary data;

pumping schedule stage-level summary data; pumping schedule individual

stage data, which included additives, wellbore and completion data, event

log data, and equipment data. When mining such complex and extensive

databases, the dependencies and correlations among the variables are mostly

nonlinear, hidden, and highly nonintuitive. By failing to address such intri-

cate data root-cause relations, frustration can occur when the well opera-

tional conditions are thought to be understood but unexpected behavior

occurs. This can lead to severe under-performance and economic failure

of individual wells, even though the generic data indicates identical forma-

tions, similar geologic conditions, and similar completion techniques, as

“similar” wells performed significantly better. Similar high dependence

on the nonlinear intra-variable effects and potentially negative consequences

on the optimization of hydraulic fracturing jobs in shale plays are also

reported by Cipolla (2015).

To address the matter Maucec et al. (2015) have built classification trees

to predict occurrences of fracture screen outs [as categorical response vari-

ables (Fig. 4.16)] and regression trees to predict the JPT as a continuous

variable.

They used k-fold cross-validation to assess the misclassification probabil-

ity for the classification tree and MSE for the regression tree (Fig. 4.17) and

performed pruning to optimize the tree depth. In addition, they introduce

CART enhancements (Maucec et al., 2012, 2013) by mapping the data

points normal (mean¼0; variance¼1) domain using normal score trans-

form (NST) and kernel k-means clustering to identify the variability of cor-

related variables and further reduce the sample size. Both enhancements

were found to improve the root-cause prediction capability of decision trees

by reducing the mean prediction error.

Further examples of predictive modeling with decision trees can be

found in Singh (2015) where they are used for root-cause identification

and production diagnostics of gas wells with plunger lift and in Schuetter

et al. (2015) for production optimization in unconventional reservoirs.
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variate Analysis and Data Mining of Well Stimulation Data Using Classification and Regression Tree with Enhanced Interpretation and Prediction
Capabilities. SPE-166472-PA, https://doi.org/10.2118/166472-PA.)
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Fig. 4.17 Use of cross-validation in decision tree analysis: (A) Example of cross-validation performed on a regression tree with 113 terminal
nodes, with 8 nodes as the optimal point, (B) conceptual representation of k-fold cross-validation where k¼4; enhancements of CART root-
cause prediction capability, (C) NST mapping of JPT variable before building regression tree, and (D) 3D rendering of five clusters after apply-
ing kernel k-means clustering on JPT data set. (Parts A and D: with permission from Maucec, M., Singh, A.P., Bhattacharya, S., Yarus, J., Fulton, D.,
Orth, J., 2015. Multivariate Analysis and Data Mining of Well Stimulation Data Using Classification and Regression Tree with Enhanced Interpre-
tation and Prediction Capabilities. SPE-166472-PA, https://doi.org/10.2118/166472-PA.)
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4.3.3 Event Diagnostics and Failure Analysis
As the applications of Big Data and predictive modeling are rapidly expan-

ding in E&P, they are being used in predictive maintenance, event diag-

nostics, and failure analysis of a wide range of equipment in oil and gas

operations, mainly for drilling and artificial lift (e.g., ESPs) and rotating

equipment diagnostics (e.g., compressors and turbines).

The term failure analysis basically stems from the branch of MA, called

survival analysis (Tabachnick and Fidell, 2013), which is a set of data-driven

statistical techniques (e.g., data mining) for analyzing the length of time until

something happens (i.e., an unplanned event) and for determining if that

time differs for different groups of samples or for groups subjected to differ-

ent treatments. For example, in medical settings, survival analysis is used to

determine the time course of various medical conditions and whether dif-

ferent modes of treatments produce changes over time. In industries such as

oil and gas, such analysis is referred to as failure analysis, and it is used to

determine time until failure of a specific equipment part and whether parts

manufactured differently have different rates of failure.

Mirani and Samuel (2016) have presented data analytics-basedworkflows

for monitoring and mitigating drill-string failures caused by tool vibrations.

The proposed workflow integrates the modified vibration stability plot with

the data analytics tool to predict drill-string failures caused by torsional and

lateral vibration. In drilling operations, the modified stability plot provides

optimum operating parameters—including weight on bit (WOB), revolu-

tions per minute (RPM), and ROP—to minimize vibration. However,

the actual real-time generated drilling parameters are not always optimum.

Mirani and Samuel (2016) have used the deviation of real-time parameters

from optimum values and the tools of unsupervised statistical learning

(i.e., data clustering) to calculate deviation vectors, representative of themisfit

from theoptimumpoint.Thederived stability clusters are thenused for quan-

titative failuremitigation.Moreover, they address the question of, “how long

can drilling operations be performed if the measured data remains outside

of stability cluster before tool failure occurs.” The data-driven calculation

of the cumulative vibration risk index provides a more sound technique

for risk quantification.

Kale et al. (2015) have proposed another application for optimizing

operational performance and failure prevention management of drilling sys-

tems using real-time data and predictive analytics. They have proposed the

framework and algorithms for constructing data-driven component life

models to optimize operational efficiency and extend the life of a drilling
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system. The objective is to minimize the overall life cycle cost of tools,

which includes the cost of maintenance and cost of failure. The optimization

variables are maintenance intervals and operational parameters such as RPM,

WOB, and ROP. Kale et al. (2015) have integrated qualification test data,

operational data, drilling dynamics, and historical FRACAS (Failure

reporting analysis and corrective action system) information withmathemat-

ical and statistical models—such as a proportional hazard model, cumulative

damage model, characteristic life function and maximum likelihood estima-

tion, and outlier detection—to predict the time to failure of critical compo-

nents. They validated the proposed methods to optimize maintenance

intervals of a rotary steerable system with and without a motor.

Popa et al. (2008) have introduced a case-based reasoning (CBR)

(Montani and Jain, 2010) approach for well failure diagnostics and planning.

The CBR is basically a problem-solving expert system that derives knowl-

edge and expertise from a library of historic cases, rather than from classical

encoded rules. The data used in CBR systems usually represents the knowl-

edge, experience, and thought process that the user would exercise in, for

example, a well intervention event. Fig. 4.18 shows a diagram of a generic

CBR process, adapted from Aamodt and Plaza (1994). Popa et al. (2008)

have applied the CBR process to improve sanded/seized well intervention

planning. They have demonstrated the significance and unique advantage of

CBR tools over other ML methods such as NNs, through efficient
New case

Retrieve
case

Reuse
historical case

Revise
solution

Retain
case

Similar
cases

Case–based
reasoning
knowledge

domain

Learned
case

Learned
solution

Rules

Proposed
solution

Fig. 4.18 CBR process. Modules highlighted in yellow represent actions in the workflow.
(Modified from Popa, A., Popa, C., Malamma, M., Hicks, J., 2008. Case-Based Reasoning
Approach for Well Failure Diagnostics and Planning. SPE 114229, https://doi.org/10.
2118/114229-MS.)

https://doi.org/10.2118/114229-MS
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integration of reactive and proactive dynamic data from nearly 5000 well

intervention events in a 3-year period, focusing on sanded/seized failure

events.

Last but not least, we touch on the application of predictive modeling to

fault/failure analytics of ESPs, which are currently the fastest growing

artificial-lift pumping technology, deployed across about 15%–20% of oil

fields worldwide. However, ESP performance is often observed to decline

gradually and reach a point of service interruption because of factors such as

high gas volumes, high temperature, and corrosion. Numerous workflows

have been implemented to monitor ESP performance and suggest action in

case of a failure. However, most such workflows are reactive in nature,

where action is taken after the failure event. Recently, the E&P industry

has seen an emerging trend of deploying down-hole sensors for real-time

surveillance of parameters impacting ESP performance, with an opportunity

to predict and prevent ESP failures using data analytics. Such data-driven

models would, for example, use the following ESP performance data: his-

torical data with time series values for critical parameters, maintenance logs

and calibration data, and operational specifications of the ESPs. Applying

analytics to this type of available data provides the ability to rank the ESPs

for priority attention based on fault analysis and then recommend appropri-

ate maintenance (repair, rehab, or replace).

For example, Gupta et al. (2015) have proposed a three-stage workflow

based on statistical MVA to detect and diagnose impending problems with

ESP operation. In the first stage, the key operational variables (decision vari-

ables) affecting ESP performance are identified and evaluated. They devel-

oped a hybrid monitoring-intervention model based on a robust PCA,

which triggers an alarm if the operational attribute under surveillance

exceeds the normal operating range predicted by the model. The second

stage involves principles of diagnostic analytics (see Fig. 4.2) aiming at the

potential cause that led to the failure. To better understand the root cause

and take appropriate action, an importance/sensitivity model (see tornado

chart in Fig. 4.11) was built to assess the contribution of the various decision

variables toward failures and rank them according to these contributions.

The third stage of the proposed workflow involves elements of prescriptive

analytics (see Fig. 4.2) and suggesting preventive actions. Such data-driven

workflows enable building an ESP health monitoring plot (Fig. 4.19), which

visualizes the principal components obtained from the model output, cap-

turing observed variances within specific confidence interval limits. Trends

or patterns during normal operation are identified and correlated to either



Fig. 4.19 A data analytics-driven workflow can generate an ESP healthmonitoring plot to predict and identify potential problems before they
occur. (With permission from Gupta, S., Nikolaou, M., Saputelli, L., Panjwani, S., 2015 Applying Predictive Analytics to Detect and Diagnose
Impending Problems in Electric Submersible Pumps Used for Lifting Oil From Wellbores. Paper 419054, Presented at AIChE Annual Meeting, Salt
Lake City, UT, USA, Nov. 8–13, 2015, https://aiche.confex.com/aiche/2015/webprogram/ataglance.html.)
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satisfactory operation or observed malfunction. This correlation and knowl-

edge enables a shift toward proactive ESP monitoring to predict and identify

potential problems long before they occur thereby reducing intervention

costs and optimizing production.
4.3.4 Real-Time Analytics on Streaming Data
This chapter concludes by describing a few trends and applications in the

area of data analytics that have the potential to transform E&P in the era

of Big Data and high-performance cloud computing. Traditionally, opera-

tors have collected massive amounts of data from equipment, fields and

assets, and daily operations. Mostly the data are stored and archived, then

processed and analyzed as required. Such traditional workflows result

in deterministic analytics and passive surveillance. However, SAS (2015),

a leading analytics and software company, believes that three technologieswill

radically overhaul operational capabilities in the oil and gas sector: the IoT,

event streaming processing, and prescriptive analytics. Synergistically, these

technologies have the potential to rapidly deliver key operational insights

and make analytics tools available and impactful “at the point and at the time

of decision” by embedding analytics into decision-making and operational

processes. The key to implementing ESP technologies lies in enabling con-

textual and situational analytics “on the fly”—in ultra-speed, ultra-low-

latency environments—which creates a technological inflection point for

the next-generation remote-control operations. However, we need to note:

at this evolutionary stage of fast data and streaming analytics, E&P operations

still do not benefit from “real real-time” analytics (i.e., seconds, milliseconds,

microseconds), but rather operate at “near real time,” approximately several

seconds and more—much more when recovering from infrastructure faults.

The concept of stream processing computation or stream computing con-

sists of assimilating data readings from the collections of software or hardware

sensors in stream form (i.e., as series of sequences or continuous queries),

analyzing the data “on the fly,” and producing actionable results, preferably

in real- or at the right time.

In current E&P practice, one area that benefits most from event stream-

ing processing and prescriptive analytics is drilling operations. Despite

the arguments that drilling analytics are not yet oriented toward automati-

cally maintaining the knowledge base through “near real time” updates,

Staveley and Thow (2010) have reported that enabling the results in

“near real time” is considered to be highly valuable because it provides
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the capability to develop, monitor, and optimize drilling KPIs—such as

cycle time, NPT, and ROP—to lower overall costs and to identify key con-

tributors to rig performance (rig, personnel/process, wired drill pipe, equip-

ment, vendors, etc.). They further emphasized that the additional high value

of real-time data in a drilling knowledge base enable current drilling param-

eters to be displayed next to offset values, along with any other data in a sin-

gle collaborative workspace, which is updated automatically and in real time

and requires minimal manipulation by drilling engineers.

In another paper, Brul�e (2013) has introduced a new paradigm for

analyzing massive amounts of data, (semi)structured and unstructured, at

ultrahigh speeds and frequencies, for Big Data analytics and continuous

model updating in E&P. This new paradigm is based on a real-time adaptive

analytics and data-flow architecture, which combines stream computing

(Fig. 4.20), Hadoop/NoSQL, and Map/Reduce, and massive parallel

processing data warehouses (MPP DW). As indicated in Fig. 4.20, stream

computing applications are (or can be) represented as data-flow network

graphs (Leskovec et al., 2014) composed of operators, interconnected by

streams. The external data feeds can, for example, represent high-resolution

imagery, IoT sensor readings, stream of headline news, or market informa-

tion, such as securities and commodities. The operators implement algo-

rithms for data analysis, such as parsing, filtering, imputation, feature

extraction, and classification.

The E&P version of the IoT represents a complex network of sensors and

control and automation systems in oil and gas field operations. For example,

drilling surveillance, analysis, and optimization vibrational and acoustic data
High-resolution
imagery

Operator

Stream

IoT sensor
readings

Headline news

Market
information

Fig. 4.20 Stream computing applies to high-volume and high-velocity data, whether
structured, semi-structured or unstructured. (Modified from Brul�e, M.R., 2013. Big Data
in E&P: Real-Time Adaptive Analytics and Data-Flow Architecture. SPE-163721–MS,
https://doi.org/10.2118/163721-MS.)

https://doi.org/10.2118/163721-MS
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acquired using emerging sensing technology like distributed acoustic sensors

(DAS) or distributed temperature sensors (DTS), which can record events

every 1/10 of a second and transmit using down-hole optical couplings.

It is worth emphasizing that stream computing does not provide the models

needed by E&P. Rather it provides the new concept of computing infra-

structure where the data is being generated without concern of scalability,

complexity, or bandwidth, and integrated into real-time drilling and pro-

duction automation and optimization models.
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5.1 INTRODUCTION TO PROCESS CONTROL

Process control is an engineering mechanism that uses continuous
monitoring of an industrial process’ operational variables (e.g., temperature,

pressure, chemical content) and algorithms and then uses that information to

adjust variables to reach product output specifications and objectives. Pro-

cess control can be a partially or fully automated system capable of

maintaining a consistent product output.

Any industrial process loop requires measurement, comparison of data

against set points, and continuous adjustments. Systems can be closed feed-

back or open control. Fig. 5.1 shows a typical feedback system for a fluid

tank in the oil industry. Typically, a tank used to store fluids is a closed sys-

tem where a process variable is measured (process fluids in...), compared to a

set point (a maximum allowable level in the tank), and action is taken by a

controller to correct deviation from set point. An error signal is generated

when the signal value overcomes the set point, and the controller sends a

signal to adjust the position of the valve setting (open or close) until the mea-

sured fluid has the minimum specification required for this process.

The main components of a control-loop process can be generalized as

follows:

• Sensors: electronic or mechanical devices that send signals to

transmitters.

• Transmitters: electronic devices that send different types of signals to

controllers. A transmitter can send a small current through a set of wires.

Signal types are categorized as follows:
Fig.
a pe
� Analog: continuously varying physical quantity. The most common

standard electrical signal is a 4–20mA current signal.

� Digital: discrete values that are combined to represent a diagnostic.

� Pneumatic or differential pressure: using pumped pressure to activate

the controller.
Controller

Flow transmitter

Valve

100

50

10Process fluids in

Process fluids out

Max level

FT

5.1 Main components of a control-loop system. In this example, the level of fluid in
troleum tank is controlled by a valve and level controller.
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� Controllers: electronic devices with complex electronic systems and

algorithms that operate the controller to act autonomously. Control-

lers are categorized as
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(1) On or off activation, for example, a valve setting that has only

two operational positions either open (100%) or closed (0%).

(2) Multiple discrete set points.
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� Continuous: automatically compares the value of the input

variable to the set point to determine if an error exists. If an

error is detected, the controller adjusts its output according

to parameters that were set up in the controller.

� Fuzzy controllers: the valve settings follow an adaptive/var-

iable scheme of values. Soft, fuzzy areas of switch control are

particularly suitable for systems with high state uncertainty.
To achieve continuous control requires a combination of control modes,

which are listed and described below; we believe that continuous control

is an essential component of digital oil field (DOF) systems. Table 5.1

compares the advantages and disadvantages of each mode.
ntages and Disadvantages of Control Modes
Advantages Disadvantages

Inexpensive and simple

to install

Operating differential may be outside

the process requirement

Accurate at the point of

control

Requires manual intervention

) Simple and stable High initial deviation from set point

Easy to install Offset occurs near the set point

No sustained offset Requires time to overcome instability

Very precise compared to

other control modes

Possible increased overshoot on

startup

Stable Requires time to calibrate

Rapid response to

changes; accurate

Some offset

Best control Complex to set up the entire system

manually, but electronic controllers

allow full automation of a system

Minimum offset and

overshoot

Sometimes expensive
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Fig. 5.2 Chart comparing the performance of a valve being operated in four different
control modes—proportional, integral, on/off, and derivative—to adjust pressure from
125 to 115psi, versus response time.
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• Proportional (P): the valves and controller are adjusted in different grades

based on the change in the measured value from the set point. For exam-

ple, if a piece of equipment reaches a certain set point, a controller could

close a valve by 25%.

• Integral (I): operates at a rate proportional to the magnitude of the input

steps.

• Derivative (D): delivers proportional increase or decrease of a variable set

as a function of time. Rate action is a function of the change speed.

• Combinations: the best option for oil industry processes and DOF sys-

tems. Generally, a combination of P and I is the best option, because

integral allows rapid changes on slope and proportional reduces the off-

sets. Fig. 5.2 shows a pressure change versus time in response to different

control modes.

5.2 PREPARATION OF AUTOMATED
WORKFLOWS FOR E&P
Many exploration and production workflows require engineers to

coordinate data flows between several different applications. Studies have

shown (Al-Jasmi et al., 2013a,b,c) that engineers spend between 50% and

70% of their time gathering, formatting, and translating data to be used



Motivation
(Define

business goals)

Process to be
automated

(Identify
repetitive tasks)

Select the
technology

(toolkits & CPU)
Decion making

Define
business

metric

Fig. 5.3 The five main steps to build an automated workflow.
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for different engineering applications. Automated workflows not only

reduce the valuable time that an engineer must spend doing repetitive,

data-preparation tasks, but they also ensure consistency in methods, reduce

the probability of input errors, and create a repository of lessons learned and

best practices. By definition an automated workflow is a synchronized inte-

gration of people, processes, and technology. Fig. 5.3 shows the main steps

to build an automated workflow.

5.2.1 Motivation for Automating E&P Workflows
Manual workflows require multiple manual interactions with varied data

sources, analytical calculations, and process models. Engineers often work

from static electronic forms (e.g., reports, pdf, word processing files and

spreadsheets, etc.) that require human data entry and reentry and have mul-

tiple related (but offline of the actual data) communications by email, for

example, to clarify content or approve next steps. In contrast, an automated

workflow integrates client application and/or Web-based dynamic elec-

tronic forms, business processes, engineering analytics and modeling, a com-

mon data model repository (which can automatically access various data

sources), and a self-service workflow application into a comprehensive sys-

tem that does not require interventions by staff and managers. Fig. 5.4 shows

that manual workflows are much less efficient and are prone to errors.

Al-Jasmi et al. (2013a,b,c) quantified a comparison between manual pro-

cesses and automated processes to evaluate and optimize the performance

of a well for electric submersible pumps (ESPs) and gas lift (GL), to model

the artificial lift and optimize the lift performance. On average, the manual

process required 7.2h per well of an expert’s (e.g., senior engineer) time,

whereas the automated workflow required 1.6h per well, by a staff produc-

tion engineer (PE) (less experienced than an expert) with less risk of data or

model errors.

5.2.2 What Kinds of E&P Engineering Processes
Should be Automated?

Workflow automation should focus on any tasks that can be done much

more efficiently by computers than by people. For example, computing



Fig. 5.4 Main challenges of a manual workflow compared to the benefits of an auto-
mated workflow.
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oil losses and gains for a field with 100 wells or more could require a person

to enter values manually into a spreadsheet or database calculator 3 h or

more. Alternately, an engineer could use a spreadsheet or other software

coupled directly with a historian (which gathers the necessary production

data) and uses a batch-allocation process to reduce the total time consider-

ably. However, using cloud services, data analytics, and high-performance

computer power, this process can be fully automated and calculated contin-

uously and in real time.

From our collective professional experience, most E&P workflows can

be seamlessly automated, particularly those workflows related to production

monitoring and surveillance, diagnostic and analysis of production events,
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production optimization, and forecasting. Automation can be facilitated by a

common platform for a data model that consolidates data sources and by a

toolkit (commercial or customized technical software) that provides analytic

diagnostics and optimization.

Examples of Automated Processes or Candidate Processes for Automation.

Repetitive tasks that require minimum engineering support are as

follows:

• Continuous asset surveillance:
– well status (flowing, injection, and shut-in) and production uptime

– data cleansing and high-level data filtering

– estimation of production gains and losses against daily and monthly

targets

– production back-allocation

– real-time KPI production monitoring

– priority updating of well tests

– artificial lift status and operational parameters

– event notification

• Asset optimization:
– capacity constraint and operating envelope

– flow assurance and well integrity
Repetitive tasks that require engineering support are as follows:

• Diagnostics and analysis:
� filtering and conditioning data using statistical approaches

� data validation and reconciliation of physical models

� well rate virtual metering-based model (which includes multiphase

flow and well and flow interval allocation)

� well test validation and well model updates

� well integrity and failure analysis

� curve-fitting decline- and type-curve analysis

� rate and pressure transient analysis
• Optimization:
� weekly production optimization and short-term forecasts (e.g.,

1–7day ahead) including GL, electro-submersible pump (ESP), and

progressive cavity pump (PCP), Rod Pump (RP), and other artificial

lift methods

� monthly production optimization and long-term forecasts (>7days)

� production back-allocation and production and injection mass-

balance management
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Repetitive tasks that require engineering support and include smart analytics are as

follows:

• Forecast (prediction) analysis:
� intelligent alarming by exception-based surveillance

� event recognition and diagnosis

� identification and tracking of well production opportunities

� short-term failure detection of artificial lift (ESP, GL, RP) including

early detection of unexpected water production (after water

injection)

� predictive advisory short-term forecasts

� production optimization and long-term forecasts (>30days)

� production and injection management.
5.2.3 Software Components of an E&P Workflow
Automated workflows are a series of processes programmed using a comput-

ing language that is capable of executing logical and calculation instructions

with minimum human intervention. Saputelli et al. (2013) in a classical

paper have showed the best practices in DOF in the last 10years. They

showed a series of technologies which gave origin to the modern integrated

analysis. Fig. 5.5 shows the main steps of an automated engineering

workflow which include: (1) store information in a database, (2) filter and

condition (cleanse) data and extract high-frequency and average data, and

(3) send data to the various models and applications in the workflow, which

can include both data-driven models and physical models. Fig. 5.5 highlights

the importance of these key elements.

Database. Accessibility to data through a database is the starting point of

any automated workflow. For production workflows, a database is config-

ured to link data from different data sources (which include data from dif-

ferent time frames and/or frequencies), select and organize data, and send it

to technology for filtering and conditioning.

Filtering technology. Mathematical algorithms programmed either in

stand-alone orWeb-based applications are required to perform data filtering

and cleansing (which was discussed in Chapter 3). Many factors, such as sig-

nal problems, data transfer, weather/environmental problems, instrument

errors, and human interruptions, contribute to errors in the raw data.

The filtering process is programmed to remove erroneous data and outliers

and provide representative values of the data during the time period of eval-

uation. When the data is received, cleaned up, and post-processed, the main

output is an average value of raw data—that is, production rate (Q), pressure
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(P), and temperature (T)—at a specified frequency. These values are auto-

matically stored and then sent to various engineering software applications.

Engineer applications. Fig. 5.5 shows the main options used by engineers:

data-driven models and physical models. Data-driven models (which were

discussed in Chapter 4) are executed using statistics, data mining, data ana-

lytics, and application of intelligent components to make decisions, with

emphasis on amore qualitative approach. To generate accurately meaningful

trends and tendencies, data-drivenmodels need thousands to millions of data

points. Physical models, on the other hand, use physical laws and equations

that represent production processes and require only a few data points or

averages (e.g., daily or monthly data) to generate results.
5.2.4 Modeling the Decision-Making Process
An automated workflow for decision-making should be designed in the

same way as any cognitive process; that is, observe, understand (analyze),

act, and learn. Bravo et al. (2012) have shown that artificial intelligent com-

ponent can be the key to enrich the cognitive factor in workflow automa-

tion. To assure optimal asset performance, automated workflows include the

key phases shown in Fig. 5.6 and described below.

Monitor in real time. Display data time series on a dashboard, with high-

definition screens, to show the performance of production over time. Plot

and graphical design are set up with a series of rules, with predefined monthly,

weekly, ordaily targets, andmaximumandminimumallowableor target values.

Rules are used to estimate absolute differences between actual and target values.

Diagnose and analyze. Once exceeded any maximum or minimum allow-

able values, the system automatically diagnoses and classifies any events,

anomalies, or malfunctions. The workflows can be enriched with fuzzy logic

or pattern recognition to allow engineers to be able to differentiate from

abnormal situation, equipment failures, or data errors.

Recommend and act. The oil industry has decades of accumulated field

experience; thus, engineers know how to act in any specific well issue. Even
Monitor
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Fig. 5.6 Key phases in a decision-making process.
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though each well behaves differently than others, the troubleshooting and

remediation process could be unique or slightly different for each situation.

Well issues, mechanical malfunctions, electronic equipment failures, or any

well anomalies have a recommended action plan. Engineers use supporting

tools—such as process models, statistical analysis, data mining technology,

expert systems, pattern recognition, neural network tools, physical models,

as well as knowledge bases of best practices and lessons learned. The auto-

mated workflow should be integrated with these process models to capture

knowledge and create rule expert system.

Learn and improve. The final step in an optimal DOF decision-making pro-

cess is to measure, analyze, and improve the action plan. We believe that all

aspects of a decision-making process—monitoring, analysis, actions, and most

importantly, thepositiveornegative results—shouldberecorded.Withcurrent

technology, recording the action plan is easy. The challenge is how to process

the recorded analysis and results, and then incorporate the learnings to update

the automatic decision-making process. Even today no consistent technology

exists to capitalize on lessons learned without human intervention.
5.2.5 Automated Workflow Levels of Complexity or Maturity
Brule et al. (2008) describe five levels of workflow automation maturity and

where the E&P industry is for each of those levels:

• Level 1: Reporting what has happened: reporting systems, common-

place in E&P.

• Level 2: Analyzing why something happened: ad hoc queries, KPIs,

gaining popularity in E&P.

• Level 3: Predicting what will happen or why something might happen:

analytical modeling, full-physics models, and integrated asset manage-

ment (IAM) in E&P (see Chapter 6).

• Level 4: Operationalizing what is happening: continuous update,

time-sensitive queries, and in-database analytics on “billions of rows

of data—Big Data.”

• Level 5: Real-time decision-making to make things happen: actionable

data-driven real-time optimization. Early success with event-driven

closed-loop IAM in E&P.

Today, many technology companies have reached levels 4 and 5 of maturity;

for example, Google, Yahoo, Intel, Facebook, Boeing, Intuit, Amazon,

eBay, T-Mobile, ATT, and others. For many large oil and gas companies,

levels 4 and 5 are the goals for their DOF automation; however, barriers to
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achieving these levels include process cost and lack of the right level of

expertise in IT to implement the DOF solutions which have hindered

digitation in the oil field with only 1% of production data reaching people

to make decisions (The Economist, 2017). Unfortunately, today as a whole,

the E&P industry is somewhere between levels 1 and 2, with some semi-

predictive capabilities (level 4) in certain operational areas, such as, gas-lift

optimization, ESP, plunger lift, and fracture operations, through the use

of full-physics models coupled in a closed-loop IAM optimizer.

On the basis of the degree of smart components (logical solutions with-

out human intervention) and the complexity of the process to integrate and

orchestrate data types (categorical, logical, numerical, integer, and string),

workflows can be classified as four different types and can be grouped as illus-

trated in Table 5.2 which shows that for each workflow level, its data fre-

quency, primary tasks, collaboration, and integration with other disciplines,

physical model associated with the task, and types of actions:

• manual (100% human intervention)

• semiautomated

• automated:
� controlled by human operators and

� autonomous
• smart workflows (up to 20% human intervention; enable decision):
� self-controlled

� cognitive and self-trained
Fig. 5.7 depicts a production plot versus time to show the benefit of DOF

implementation at different level of complexity of automated workflows.

The production profile, depicted with red line represents a manual or

semiautomated process (A) without any form of DOF implementation,

all the processes are offline, engineers make decisions to change operation

settings, the production is affected by excessive downtime and the response

time is longer than 24h. The second system in Fig. 5.7 is the automated but

nonoptimized system (B). The process is online and generates rapid diagnos-

tics. The engineers maintain the control, but the behavior of the system is

not sustained. The third system is the automated and optimized system (C).

The process is fully connected to IOT and coupled to many software appli-

cations to allow optimization in real time; however, the operational settings

are controlled and supervised by the engineers. The most sophisticated level

is the automated, optimized, and self-controlled (autonomous or supervised)

system (D), which generates sustainable production gains.



Table 5.2 Level of Complexities of an Automated Workflow
Level Workflow Data Frequency Tasks and Activities Integration Model Actions

Manual Monthly or on

demand

Send data through email

system or printing report

Production data in

silos

II

Semi-automated

(What happened)

Daily to

monthly

Report and describe: Perform

production KPI. Compare

actuals to targets

Pass data automatically from

A to B processes

Production data in

silos

Data-info Reactive with

delays. No

action, only

informing

III.A

Automated

(controlled;Why

did it happen?)

Hour to daily Diagnosing and analyzing:

looking for causes why

actual production is

different from targets. Data

is synchronized between

A and B

Value chain process,

A affects B but

B does not

affect A

Logical model

(if A¼B and

B>C,

then…)

Reactive. Manual

actions. Needs

approvals

III.B

Automated

(autonomous, (What

will happen?)

Hour to daily Predicting: Predict short term

production behavior using

statistic on single object data

Production,

reservoir and

geologist

integrated to find

causes

Physic model:

using app to

calculate

value

Proactive, using

physics to

predict 1–7days
ahead

IV.A

Smart

(self-control)

Real time Predicting and Advising: Predict

long term production

behavior using
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5.2.6 The Ten Essential Steps to Build the Back End
of an Automated Workflow

In software architecture the back end is defined as a task incorporated as

algorithm in a programming script or language which is able to automate

the entire workflow process, that is, from A to Z. The back end process

also is focused on data transmission, data transformation, data security and

accessibility, and backup system. Fig. 5.8 describes the 10 most important

steps to design the back end of an automated workflow using a web user

interface (UI).
Step 1: Understand the current manual process. Ideally, existing manual pro-

cesses will be documented. But if not, then it is critical to first document

them because it will be very difficult to automate a process until under-

standing how engineers execute current state process. It is very important

to specify the purpose, inputs, outputs/results, dependencies, decisions,

and process flow. The most useful way to document a process is a flow

chart, which shows objects and actions, and an organigram, which shows



Fig. 5.8 The most important steps to build the back end of an automated workflow.
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related organizations that perform the tasks. These graphical tools are not

only vital to help identify the critical path, decision points required for

the output or the result, but also to help identify problems and bottle-

necks, which it will aim to resolve by automation.

Step 2: Quantify and measure KPIs for the manual processes. Measure time,

quality, and quantity of the results, accuracy, and repeatability and com-

pare it with KPIs for the desired goals of your organization. (After the

process has been automated you might look to improve it by looking

at the goals of competitors or world-class benchmark performance.)

The KPIs can be visualized using different types of gauges, charts, and

bar graphs to show engineers how well the system is doing against

defined targets.

Step 3: Break down the activities and prepare to reengineer the whole process.

Separate the process into subtasks and set up KPIs for each one. Identify

ownership and custodian for each task. Understand the main input in

terms of data frequency and logical rules. A swim lane diagram can be

useful tool for capturing the data from your analysis. It is important

to break down the main activities into subtasks and who (what role

or organization) performs each task.
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Step 4: Reorganize the workflow. Reorganize the workflow focusing on

tasks that deliver business values in terms of engineering time and quality.

Avoid redundant activities and subtasks with many approval steps.

Step 5: Build a conceptual model. Prepare a preliminary design in a flow-

chart of the workflows, highlighting the main input, engineering pro-

cess, output, technical applications, and ownership. This is sometimes

referred to as functional design.

Step 6: Detail design for the UIs and tool selection. Workflows are made

accessible through high-end and visually appealing UIs and user naviga-

tion. Web-based workflow is the best technology to generate the visu-

alization for the workflows. To build Web pages, designers can build a

series of bluesheets showing the detailed process flow, results, perfor-

mance metrics, and statistical data enriched with graphical plots,

charts, etc.

Step 7: Scripting and programing. There are several technologies available

for programming the workflow automatically, sometimes referred to as a

“workflow engine.” For the authors, the most important criteria to

choose the right technology that allow easy, intuitive, and fast interface

with the user.

Step 8: Test and debug. This step is one of the most important phases dur-

ing workflow design and commonly is omitted. In those workflows

requesting multiple activities and coupling with several stand-alone

applications, comprehensive test protocols followed by debugging will

save considerable amount of time and wasted effort ultimately.

Step 9: Implement. The implementation process should assure that the UI

can be visualized from multiple devices including PC, mobile phones,

laptops, and tablets.

Step 10: Quantify and measure KPIs for the automated processes. Compare the

new KPI with step number 2 and show values of improvement.
5.2.7 Foundations of a Smart Workflow
The most effective DOF systems should be designed with advanced auto-

mated workflows. Such workflows must be capable of capturing and

retaining a company’s “knowledge capital” and applying this knowledge

to generate faster and more efficient operational solutions. These workflows

must also have access to all technical data and technical applications in a uni-

fied environment and accelerate repeatable activities based on consistent

rules. The difference between an advanced and a smartworkflow is the degree
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of “cognition” programmed into the workflow and the capacity for reason-

ing beyond the physical laws that have been programmed into the workflow.

Scientists have introduced a series of soft computing techniques (neural net-

works, fuzzy logic, pattern recognition, etc.) to help workflows improve

efficiency and include a level of smartness in the process. However, these

techniques require a significant amount of human development and

debugging to implement (as discussed in Chapter 4). Soft-computing tech-

niques are difficult to initially implement in automated workflows, but once

implemented they enable the workflows to move frommerely automated to

smart and then truly advanced by doing human functions such as “learn” and

acquire “expert” knowledge. Al-Abbasi et al. (2013) and Al-Jasmi et al.

(2013a) suggest that the following pillars should be considered during the

design of smart workflows:
Knowledge capture. The benefit of knowledge capture is to standardize

processes and assure that recurring tasks are done consistently, without

fail, and include monthly best practices capable of improving asset per-

formance. Knowledge capture is also important to transfer knowledge

from subject matter experts (SMEs) to less experienced engineers. Skin

factor increasing with time in oil wells or preliminary values of pump

wear factor after 2years of production are typical examples of knowledge

captures. Workflows can be designed to show smart tips that help less

experienced personnel understand why data relates to a physical law

or that data is out of acceptable range.

Continuous improvement or “Kaizen.” A smart workflow will continue to

improve and learn if it can recognize patterns in the data and knowledge

that it captures. Artificial intelligence systems can recognize patterns in

operational variables and predict behaviors, which result in continuous

process improvements. Today, technology can generate a self-trained

neural network. However, when new events happen, the neural net-

work must be tuned; therefore, there is no complete set of soft computer

with a full awareness process.

Multidisciplinary collaboration. Smart workflows should be designed for a

high degree of collaboration among disciplines along the E&P value

chain, such as subsurface, reservoir, production, operations, drilling,

and surface facilities.Whenworking in the system, each discipline should

contribute to the main goal and help overcome the complexity of oper-

ational problems. Smart workflows use technologies that can support

intensive, high-traffic, cross-discipline data flows, information sharing,

and knowledge integration.
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IT-agnostic solutions. Technology changes so fast that there is often not

time to debug an entire workflow. Ideally, smart workflows should be

defined independent of the applications or commercial software and sys-

tems used to implement them. Al-Abbasi et al. (2013) explains that a

well-defined DOF program allows technology to change without signif-

icant impact to the structure or performance of the whole solution.

Asset team engagement. As smart workflows are highly automated and can

execute quickly, a potential problem can bemaintaining people’s interest

and engagement within the system. Ultimately, the goal of smart

workflows is to provide a more effective working environment for asset

teams, allowing better communication and analysis to solve operational

problems. Al-Abbasi et al. (2013) have described key success factors for

keeping people engaged, which includes making sure workflows meet

asset team expectations and finding mechanisms to integrate people into

daily activities such as daily operational meeting, design of fracture, or

drilling the lateral section of a well. New workflows inevitably change

the way teams work; all team members must be brought into the pro-

gram early and should be pretrained to manage the high-stress environ-

ment of real-time operations.
Additional details on these topics can be found in Chapter 8.
5.3 VIRTUAL MULTIPHASE FLOW METERING-BASED
MODEL
A virtual multiphase flow (virtual flow meter, VFM) metering-based

model is an engineering production model that computes multiphase vol-

umes based on pressure and temperature data. Typically, most oil wells (since

about the 1990s) are equipped with pressure and temperature gauges to cap-

ture frequent readings (e.g., every minute), but production rates are only

measured monthly or less frequently with separator tests. Physical

multiphase flowmeters are very useful and provide significant value to mon-

itor multiphase production in real time, particularly in wells with high pro-

duction rates where immediately identifying important changes in pressure

is crucial. However, these meters are very expensive, and require extensive

pressure-volume-temperature (PVT) data and frequent calibration.

Virtual metering is a mathematical model that continuously computes

the three-phase flow (water, gas, and oil) rates based on primary real-time

data, such as surface and down-hole pressure and temperature, and chokes
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valve sizes. VFMmodels are used and reconciled in three zones of operation

(beginning at the surface): the wellhead and choke, the well trajectory and

wellbore, and the near wellbore-reservoir area.
5.3.1 VFM Physical Models
Choke models. This is the first level of calculation for a VFM model. The

chokemodel is used to determine the flows through a choke or orifice under

both critical and subcritical flows. The model uses flow-dynamic equations

such as Gilbert (1954), Ros (1960), and Perkins (1993) models to predict and

back allocate the total liquid or gas. Eq. (5.1) is a generalized expression of

Gilbert correlation as follows:

1

QL�Surf

¼ a1�THP�GORa2

d

64

� �a3 (5.1)

where QL-Surf is the total liquid rate at surface condition in STB/d; oil rate

can be calculated by multiplying the water cut (WC) ratio with total liquid;

THP the tubing head pressure in psi; GOR the gas-oil ratio in SCF/STB, d

the current choke size over 64 in.; a1, a2, and a3 are the multiphase flow coef-

ficients taken from different correlations shown in Table 5.3.

Rastoin et al. (1997) have simulated these equations to match rate and

observed <13% average error and 17% in standard deviation, when using

these expressions under subcritical conditions. They have reported that

Perking has the best performance compared to Gilbert (1954) mechanistic

models.

Wellbore model. This zone of the system is required to estimate total pres-

sure drop and fluid vertical lift performance (VLP) from the perforation

intervals in the wellbore to the wellhead. Starting at the perforation holes

and ending at the choke position, the information needed to estimate the

VLP are: well trajectories [defined bymeasured depth (MD) and true vertical

depth (TVD)], tubing diameter and roughness, geothermal gradient, GOR,

and liquid-gas ration (LGR). Nearly 65% of total reservoir energy losses can

occur in the wellbore while lifting the oil to the surface. The best equation to
Table 5.3 Multiphase Flow Coefficients From Various Correlations
Correlation a1 a2 a3

Gilbert 3.86�10�3 0.546 1.89

Ros 4.26�10�3 0.500 2.00
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represent energy loss is by using the relationship between kinetic, gravita-

tional, and viscous/frictional forces as given in Eq. (5.2):

dp

dL
¼ g

32:2
ρ sinθ+

ρv

32:2

dv

dL
+
f ρv2

2gcd
(5.2)

where dp/dL is the total pressure losses from a node at a perforation to a node

at the surface in psi/ft.; g the gravitational acceleration in ft./s2; ρ the density
of the mixed fluid in lbm/ft3; θ the wellbore angle; v the fluid velocity across
the tubing in ft./s; f the Moody friction factor (dimensionless); d the internal

tubing diameter in inches; and dv/dL is the velocity differential per length.

In absence of down-hole pressure gauges, the most important parameter

determined by VLP is the flowing bottom-hole pressure (BHP). If we

assume a fixed THP, then the BHP is calculated as a function of rate.

Near-wellbore reservoir model. The most common method for modeling

this zone is use of the IPR, which calculates the flow rates at bottom-hole,

assuming a constant reservoir-pressure-boundary condition. The expression

estimates the ability of the reservoir to deliver fluids to the wellbore using

Eq. (5.3):

PI ¼ Qtot

Pe� fBHP

(5.3)

where PI is productivity index in STB/psi;Qtot the total fluid rates at surface

conditions in STB/d; Pe the reservoir pressure in psi at the boundary of the

reservoir; and fBHP is the flowing BHP in psi at the middle of the

perforations.

Numerical and analytical models can predict with high accuracy the well

inflow (PI). However, it is time consuming and normally petroleum engi-

neers use well performance software to estimate the PI.
5.3.2 Building Blocks
The IPRandVLPcurves can be integrated into a single plot showing fBHP as a

function of flow rates (Fig. 5.9). The intersection of the curves indicates the

operating point of the currentwell production in terms of total liquid rate, gas

rate, and THP. The IPR/VLP models are calibrated using flow tests at sep-

arator conditions approximately every month or quarter; the flow test mea-

sures oil and water at a tank and gas using an orifice. With this known

production value set point and THP, the fBHP is estimated using the VLP

model and extrapolating the down-hole pressure at the perforations. Tomeet
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at an operating point, the VLP model must match the IPR model. For daily

operations and in the absence ofwell tests, the chokemodel is used to estimate

the flow rate at a givenGOR,WC, and THP. The IPRmodel computes the

fBHP based on the rate estimated in the choke model (assuming constant res-

ervoir pressure, WC and GOR from the latest available well test).

5.3.3 Self-Maintaining VFM for a Nonstationary Process
The VFM physical models are based on steady-state condition; it assumes

that GOR, reservoir pressure, and WC do not change during the time of

evaluation. This calculation is a snapshot of the current behavior or situation.

The DOF systems use computational software within a workflow to auto-

matically repeat this task every day, hourly, and even each minute. If the

THP changes with respect to the latest THP, the automated workflow

can be activated to compute the current production performance. If it is

a stationary process, the workflow can run without errors. If reservoir
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pressure depletes over time and reaches the saturation (fluid bubble point or

dew point) pressure, then the situation is more complex. The workflow

should be intelligent enough to predict the dew or bubble point pressure

and detect significant changes in GOR and WCs that could affect fBHP.

Industry’s best practice is to perform periodic well testing to calibrate the

values of VFM against the measured collection system. The well tests are

usually conducted from skid-mounted separator units, commonly scheduled

once every 1–3months per well. However, in DOF systems, well testing

should be scheduled based on an automated well test priority ranking using

real-time data and well events to determine if a well should be tested by

exception.

An automated workflow is needed to auto-calibrate the VFM, so that the

VFM can output production data in real time even if the well is not tested.

This workflow is designed to

� Detect automatically the well testing event (using GPS in the mobile tes-

ter truck or pressure detection in separator test).

� Capture real-time (24h) gas, oil, and water volumes, and temperature

and pressure data.

� Clean and filter the data from frozen, out-of-range, flagged, and other

signal abnormalities.

� Estimate average values during 24h.

� Feed data into the well performance software.

� Perform model calculations and estimate rates and calculate errors

between measured and calculated rate and fBHP.

� Provide historical comparisons with previous well tests and VFM

models.

� Provide guidance on whether test data is valid based on model adjust-

ment and errors.

� Adjust models to reduce error, if any, by changing coefficient and time-

dependent factors such as PI, skin, and other coefficient correlations, for

example, a1, a2, a3, P1, P2, etc., and change stationary data.

� Estimate rate and fBHP using calibrated data up to the next well test.

For example, in an unconventional gas well, the gas flow meter data and gas

flow from the VFM were compared to measure the relative error with

changes in choke size. Fig. 5.10 shows the daily gas rate reading for a

multiphase flow meter, nonstationary VFM, stationary VFM, and well test.

The gas flow meter was also compared with well test data, with three

changes in choke size, from 24/64 in. to 32/64 in. to 48/64 in. The non-

stationary VFM responds quickly to the pressure changes; the regular
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VFM (based on constant BHP pressure) just predicts new rates and stays flat

until new changes in pressure. The error between the flow meter and the

well test is 2%, whereas the error between the regular and nonstationary

VFMs is 8% and 6%, respectively.

The relative error of the VFM is calculated in the histogram shown in

Fig. 5.11. The statistical distribution shows that 81.5% of total gas readings

were in the range of �8%, which is an acceptable value. The table in Fig.

5.11 shows that the average error could be about �5; the main reason for

mismatch could be attributed to one of the following: (1) reading the wrong

THP data (+0.55), (2) adjustment of the multiphase flow correlation coef-

ficient (+0.35), or (3) flowing under loading effect (�0.25).

Using public data we have classified this information for different kinds

of hydrocarbon fluids and found that the most complex fluid to be measured

with a multiphase flowmeter and VFM is gas condensate (error�16%), par-

ticularly for those wells with fBHP below dew point pressure. One of the pos-

sible factors that affect the misreading in gas condensate is the lack of PVT or

equation-of-state (EoS) calibrations. In an oil system (�8%), the common

error factors are data problems and flowing the well under critical condition.

For a heavy oil system, reading gas rate is a common problem (error�13%);

heavy oil wells produce with slugging flow regimes (difficult to lift oil to the

surface) make it difficult for sensors and VFM readings to correctly calculate

the values of gas volume.
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Fig. 5.12 plots relative errors between a flowmeter with a well test (WT)

and a VFM with a WT. Fig. 5.12A shows the results of a VFM and a flow-

meter, which has a correlation factor of 0.80. These results are because of the

highest points observed in the blue square. Those points are attributed to the

fact that VFM responds quickly to changes in pressure, whereas, the flow

meter measures the flow instabilities during choke changes. Fig. 5.12B

shows the VFM relative error to the WT versus the FM relative error to

the WT. From this plot, we can make the following conclusions:

• VFM and FM relative errors compared to WTs are positive (quadrant I,

Fig. 5.12B). We can infer that the WT is wrong, or both the FM and

VFM need calibration. There are points beyond the 15% error radius;

both the VFM and FM are reading high rates compared with the

WT. These points beyond the error radius are attributed to the rates after

changing the choke; however, to avoid ambiguities, the WT must be

repeated.

• VFM negative and FM positive (quadrant II). In this quadrant, few

points are observed. The VFM needs to calibrate the multiphase flow

equation coefficient or PVT data. The plaque orifice needs to be cali-

brated and the FM needs better tuning.

• VFM and FM are both negative (quadrant III). The WT value is greater

than the FM reading and the VFM calculation. The WT must be

repeated.

• VFM is positive and FM negative compared to the WT (quadrant IV).

Repeat the WT, or calibrate both the FM and VFM. These values are

very common when the gas flow is under critical conditions.
5.3.4 Benefits and Disadvantages of Using VFM
If economics allow, it is better to have flow meters on each well. However,

VFM offers several benefits such as

• Monitors in real-time multiphase flow gas, oil, and water for all wells in a

field.

• Allows operators and engineers to be prepared and react quickly to

events, to reduce production downtime.

• Reduces the cost of installing and maintaining multiphase flow meters.

Well-tuned VFM software with sufficient data can achieve similar or

better results than physical equipment which may drift from calibration.

• Achieves faster and direct production-allocation process compared with

typical back-allocation systems which have larger errors.
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The disadvantages of using a VFM based on a physical model are that it can-

not predict unexpected events, memorize previous events, or learn from

previous experience. If changes in pressure, GOR, and water cut are signif-

icant, we suggest using an approach that integrates physical and artificial neu-

ral network (ANN)models. Use the ANN as a VFM in real time, and use the

physical model (updated monthly with test data) to calibrate the ANN.

5.3.5 VFM Based on Artificial Intelligence Models
In KwIDF program (Al-Abbasi et al., 2013), we led a team that designed and

applied a series of automated workflows using AI to provide a VFM model,

with the ultimate goals of filling in missing data, estimating instantaneous

flow rates, and predicting flow rate, WC, and GOR for 7, 15, and 30days

ahead of current production. The work was published in Al-Jasmi et al.

(2013b) and Rebeschini et al. (2013).

These automated workflows are built to predict 30days of production for

gas and ESP artificial lift systems. The workflows use a script to collect the

previous 90days of real-time data (7.7E+6 data points per property) for

these properties: THP; ESP pump frequency; casing head pressure

(CHP); pump discharge pressure (PDP); pump intake pressure (PIP), motor

temperature (MT), and amperage for ESP wells; and CHP, THP, and GL

injection volumes for GL wells. The data are stored in a central data base

and filtered to prepare average daily calculations. The average values are

updated into a well-performance model to train the ANN application sub-

routine. The ANN uses a radial basis function (RBF) algorithm as an acti-

vation function, and the data input in the ANN are saved as text files. The

ANN subroutine checks any changes to detect possible well events, such as

changes in pump frequency or gas injection volume. The output is used to

predict the next day’s liquid rate and WC. The challenge was presented

when the author tried to predict for 7+ days ahead. To boost the calculation,

we introduced Taylor’s theorem, for time series regression analysis, to trend

backward and forward sampling time; in this particular analysis, we selected

�7 and �14days backward and +7, +14, +21, and +30days ahead of

production data. The Taylor’s theorem is given with Eq. (5.4):

f xð Þ¼ f að Þ+ f 0 að Þ x� að Þ+ f 00 að Þ
2!

x� að Þ2

+
f 000 að Þ
3!

x� að Þ3 +⋯+
f n að Þ
n!

x� að Þn +⋯
(5.4)

where a is time (t) in days and x is t–1.
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To validate the output of the ANN, the workflow is preset with an inter-

nal correlation coefficient (R2) that rejects and accepts the computed liquid

rate or water cut. The automated workflow was proved in the following

events or production scenarios:

• Replicate and populate daily production data when pressure, tempera-

ture, and production signals are missing.

• Provide ESP production data when data transmission is frozen or elec-

trical power is shut down.

• Generated on-demand sensitivity analyses by changing pump frequency

and GL volume.

The prediction results were acceptable out for 20days (Fig. 5.13). The ANN

responds well within acceptable accuracy to changes in THPwith pump fre-

quency and THP with gas-lift injection. The ANN was found to be an

excellent tool to populate missing data from production history and a useful

tool to provide on-demand sensitivities for changes in THP. The ANN pro-

actively predicts the liquid rate and water cut for the next 20days. However,

the ANN cannot predict water cut with acceptable accuracy; the water cut

results sometimes appear illogical or do not follow the water-cut history

trend. The main reason for this failure is that the incremental water cut is

not due to changes in frequency or gas volume but is more related to water

injection. We conclude that the ANN is powerful tool to be used as a VFM

to measure oil and gas, but should not be relied on to predict oil, gas, and

water beyond 20days. The ANN could predict short-term production

(<30days) with 90% confidence.
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Fig. 5.13 Correlation coefficient for VFM based on an ANN. Oil rate can be predicted
with 90% confidence up to 20days. WC is unpredictable using an ANN.
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5.4 SMART PRODUCTION SURVEILLANCE FOR DAILY
OPERATIONS
During the last decade, traditional production monitoring has been

done using stand-alone applications that require extensive training and a

step-by-step processes, which can be tedious and time consuming. These

commercial applications display a series of UIs showing Cartesian plots, time

series plots, pie/bar graphics, and geographical maps and tables to organize

production data. The applications provide excellent solutions for monthly

decisions, but in today’s DOF we use real-time data. The benefit of using

real-time data is to reduce production downtime as much as possible.

Two or three days of production losses can mean hundreds of barrels of

oil; reducing or preventing production downtime can affect 1%–2% of

the total financial impact of a company. Schotanus et al. (2013) have gen-

erated a production deferments reports driven by exception-based surveil-

lance process by recommending a series of associated well remedial actions

which have resulted in an 8% production gain.

Smart production surveillance is a continuous real-time operation that

monitorswell surface and down-hole data, helped by predictive tools to fore-

see upcoming events or unexpected production performance issues, such as

early water or gas breakthrough. Smart production surveillance uses a series

of UIs enriched with iterative plots, infographic data, maps, and custom lay-

outs that generate actions and recommendations, and pulls up the data

required for further analysis. Al-Abbasi et al. (2013) has defined smart pro-

duction surveillance as an advanced workflow that helps control production

and provides surveillance in real time, at various monitoring levels and Al-

Jasmi et al. (2013c) developed a series of UIs that allowmonitoring, generate

alarms, provide diagnostic, and production prediction generation all-in-one.

The main functions of a smart production workflow summarized in

Fig. 5.14 are as follows: (1) monitor production data, (2) use filtering and

conditioning to calculate average and representative values, (3) calculate

the production KPIs compared with targets and goals, (4) generate quick

diagnostics based on analytical/numerical models, (5) generate short-term
Monitor

production
data

Filter and
condition data

Calculate

KPls, prod
losses and
downtime

Quick
diagnostic

Production
performance

Short term
predictions

Actions and
lessons

Fig. 5.14 Main steps of a smart production surveillance workflow.
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prediction based on analytical models, and finally (6) generate actions, les-

sons learned, and recommendations to improve field operation.
5.4.1 Business Model
Smart production surveillance workflows should be built to focus on: (1)

controlling, mitigating, and reducing those factors that influence production

downtime and total production losses and (2) improving team productivity

and process efficiency. The surveillance dashboard enables a management-

by-exception approach that significantly improves performance. Main fac-

tors that can impact net present value (NPV) and internal rate of return

(IRR) include underperforming wells, ESP, GL, PCP, compression, and

other facilities that are down, poor data quality, and nonproductive time

(NPT) team member. Figs. 5.15 and 5.16 show field-level KPIs and

well-level KPIs that can be monitored and improved by smart surveillance

to improve business model performance.
5.4.2 Main Components of Smart Production Surveillance
The main components of smart production surveillance include the

following:

• Sensors: Surface sensors measuring pressure and temperature are required.

Production rate or multiphase flow metering are desired, if economics

allow; however, a VFM should be an essential tool for each well.

Down-hole equipment (ESP/GL/ICV) could help to record flowing

bottom-hole pressure and temperature in real time.
Fig. 5.16 Well-level KPIs used as the main metrics to measure business model
performance.
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Fig. 5.15 Field-level KPIs that contribute to business model performance.
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• Filtering and conditioning algorithms: It is referred to as doing data prepara-

tion using algorithms. Analytical models, such as IPR and Vogel equa-

tions, need a single, representative, and average model of the day/week/

month or the time period of evaluation. For this, the cleansing algo-

rithms are used to clean data up from data spikes, frozen or missing data,

system errors, typos, etc.

• Well performance model (steady-state condition): Examples include the diag-

nostic model discussed in this section. Any spreadsheet, Web-based, and

stand-alone application can be used to compute the flowing condition of

a well and estimate the IPR and VLP. This calculation can be executed

into the workflow, daily or weekly. The IPR real-time calculation does

not have a logical basis because fluctuations in both pressure and flow rate

(due to changes in flow regimes, liquid loading, and solid obstructions)

can generate misleading results in the IPR calculation.

• Model-based analytics (data driven): The prediction section can be built

using an ANN and fuzzy logic techniques to predict 1 to about 30days

of production performance. Alternatively, type curve, DCA, and other

curve-fitting methods can help predict production performance with

acceptable error and, more importantly, generate immediate actions to

prevent high water cut and diagnose underperforming wells.

• Tracking actions and well events using expert systems, pattern recogni-

tion, and predictive advisory tools.
5.4.3 UI Dashboard and Layout
The dashboard and layout should include important information affecting

the current operations, and it should be concise and well organized so that

managers, supervisor, engineers, and technician can easily read and decipher

the displayed information. First, display a geographical information system

(GIS) with latitude and longitude of well surface locations. This data can be

combined with daily production of both water and oil, and displayed as a pie

chart. In the background, display the total cumulative oil or gas to mimic the

drainage area extrapolated at reservoir conditions with active links to the

well and field data, along with metrics on well events including downtime.

The dashboard also has queries to alarm and alert management by exception.

Fig. 5.17 shows a typical dashboard showing a GIS map with production

data and infographic plots. In the middle of the screen, gas, oil, and water

production plots versus time are shown with their respective forecasting.



Fig. 5.17 Full field dashboard of a smart workflow showing production prediction and well events.
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Well level dashboard. Fig. 5.18 shows a typical dashboard for an individual

well presenting a well schematic with real-time data for pressure, tempera-

ture and, if available, fluid rate. Connected to this well schematic, the pro-

duction plot versus the latest 30days is plotted highlighting the maximum

and minimum allowable values (derived from reservoir studies at the max-

imum bottom-hole drawdown pressure) and the minimum production that

satisfies the economic evaluation. KPI indicators are shown at the top right,

and the operating point is calculated from the IPR model, with VLP from

the VFM. The bottom right displays the forecast derived from the ANN and

trained with probabilistic analysis showing three production forecasts (p10,

p50, and p90).
5.4.4 What Should Smart Production Surveillance Do?
The following list summarizes the major capabilities and characteristics of a

smart production surveillance system:

• Manage a large spectrum of real-time production and pressure data.

Approximately manages hundreds of millions of data points in a day

(e.g., every minute for 100 wells with 40 tags, each in a field is >150

million points per day).

• Use VFM to compute flow rate for all wells. Delete spikes, frozen, out-

of-range data, and populate missing data with physical (logical) informa-

tion using well performance (nodal analysis) or ANN.

• Manage by exception using smart alarms and alerts generated during the

real-time monitoring. Smart alarms filter and rank sensor notifications

and well events for redundancy, production impact, and intervention

requirements with visual cues so that team members can proactively

respond to the most critical production problems in a logical sequence.

• Compute the most important KPIs and other indicators compared to

monthly goals and targets. Generate advice based on expert rules.

• Use traffic-light colors as visual cues: red those values in critical condi-

tion, yellow values near or over/under the minimum and maximum

allowable values, green for those values reaching goals and targets, and

blue for those values that are optimized.

• Use up and down arrows to indicate that current production is increasing

or decreasing with respect to the last data point.

• The UI should have a highly intuitive design and be interactive enough

to allow engineers to introduce their feedback and customize their

layout.



Fig. 5.18 Well dashboard of a smart workflow showing how to integrate real-time KPIs, data analytics, and analytical models in a single layout.
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• Use ANNs to predict short-term (+1, +3, +5, +7, +15, +30days) pro-

duction forecasts and couple with probabilistic analysis.

• Use fuzzy logic and pattern recognition to predict equipment

malfunctions and generate actions to prevent and avoid production

downtime for ESP, GL, PCP, RPs, etc.

• Use pattern recognition with expert rules to build a knowledge-capture

system and generate solutions for troubleshooting and well remediation.

• Track actions and automatically identify well events, that is, automati-

cally recognize that a well test has started by understanding the pressure

buildup without human intervention, or identifying a rig or workover

intervention.

5.5 WELL TEST VALIDATION AND PRODUCTION
PERFORMANCE IN RIGHT TIME
Well test validation is a crucial component of production perfor-

mance, particularly for wells without a multiphase flow meter (MPFM)

and that depend only on physical models, which must be tuned frequently.

If operations and facilities allow it, well tests should be conducted at least

once per month. For best results, the test must be performed with three

or more choke valve or frequency changes for a period of 24h or until sta-

bility of surface pressure is reached.

The test can be conducted using a portable MPFM (integrated with

GPS) or a dedicated flow line test system. The system measures in real-time

wellhead pressure, wellhead temperature, fluid rates, choke size, amperage,

voltage, frequency, and GL injected volume. With the common RTU sys-

tem, the signals are sent to a gathering center.

Workflow automation is recommended to collect data, estimate an aver-

age value flow rate, update the nodal analysis model, and generate recom-

mendations for the virtual meter. Basically, the workflow should run every

day when a flow test is performed. At a minimum, the workflow should per-

form the following tasks and may also perform others:

• Collect, filter, and clean up the data during the flow periods.

• Automatically identify the flow period by changes in choke settings and

measure the response on pressure and rates.

• Automatically identify if the test is running at stable condition (δp/δt¼ 0).

• Estimate average properties of gas, oil, GOR, water rates, and pressure

for each individual flow period with the corresponding 2σ and 3σ stan-

dard deviation.
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• Transform the wellhead pressure to down-hole pressure using correlated

multiphase flow equations (e.g., Duns and Ross).

• Update the well performance analysis (nodal analysis) with average

values and build the IPR test. Depending on the model, reservoir pres-

sure, skin, and permeability are known parameters.

• Tune the model-tuning and multiphase flow equations and update.
5.5.1 Key Performance Indicators for Well Tests
Well flowing above critical condition. In gas and gas condensate wells, Turner and

Coleman equations are generally used to estimate the critical gas rate (Qgc).

The ratio of the current gas rate divided by the critical gas rate (Qg/Qgc)

should be used as a KPI and should be >1.0, which indicates that the well

has no issues with liquid loading and production slugging. The test could be

performed at a higher rate over the Qgc.

Well flowing at stable condition after each flow. When the pump frequency or

choke setting is changed, the changes in pressure over time (δp/δt) should be
equal to zero (steady-state flow or a constant (pseudo-steady state). How-

ever, when δp/δt>0.0, the flow is unsteady state and changes to the choke

setting should be performed until steady state is reached. Fig. 5.19 shows a

prototype of the most important KPIs to monitor a well test in real time.

In 2013, Al-Jasmi et al. (2013d) developed a fully automated workflow

that helps engineers analyze well performance with a well test in just 95min

per well, whereas, the typical manual process took up to 5.3h per well. This

change reduced NPT from 5h/well to just 5min/well (on average) and

increased the time that engineers had to collaborate on more complex

issues from a few minutes to 60min. In this particular multitask workflow,
Fig. 5.19 A typical dashboard for a well test validation, which shows gas rate and CHP
versus time and choke size. Critical flow passes the check point if the value is >1.0, and
stability passes check point if it is>0.0 or is constant with time. Gas rate and CHP errors
are computed against the physical models.
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the engineers can update the nodal analysis model and compare the result

with the previous available test analysis and identify significant changes in

IPR or VLP. On the basis of our work on this project, we know that the

automated workflow can tune the model parameters until the acceptable

error is below 10% between the observed gas rate and fBHP, versus simulated

gas rate and fBHP. This workflow displays the multiphase flow equation

through time in an iterative GIS map, which shows several wells with dif-

ferent correlations. Ultimately, the physical model is used to validate the well

test. If the well test data matches the well model with an error <10%, test is

considered validated and accepted; otherwise, the test is rejected andmust be

repeated.

However, this automated workflow requires the integration of machine

learning to memorize previous tuning steps and to be consistent throughout

the production history. Normally, the tuning process uses basic equations,

such as Vogel, Darcy, or flow parameters such as c and n factors to calibrate

the IPR curve. The PEs should have the reservoir pressure, skin, and matrix

permeability data; however, if this data is not available, the engineers can

change these properties until there is a minimum error, but sometime these

changes are meaningless. To avoid meaningless changes, machine learning

canbeused tomemorize the changes in reservoir pressureduring the reservoir

depletion or provide this value frommaterial balance and numerical models.

The diagnostics provided by the automated workflows need to be

reinforced with expert rules analysis, fuzzy logic, and management-by-

exception rules. These techniques improve diagnostics of the well trouble-

shooting and provide accurate recommendations for further action, for

example:

• If the stability check KPI is>0.0, the expert rule recommendation could

be to reduce the choke size and stop the test.

• If data is frozen, then generate an alarm.

• If WC or GOR increases with a multi-rate test, then suggest the best

choke size.

• If gas rate and fBHP do not match, then tune the multiphase flow

correlation.

5.6 DIAGNOSTICS AND PROACTIVE WELL
OPTIMIZATION WITH A WELL ANALYSIS MODEL
Diagnostics and well optimization are routine activities performed

daily by PEs. This section describes typical diagnostics and procedures
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for optimizing well operations during the construction of an automated

production workflow.

Diagnostic actions use the best average surface production and pressure

data (from the well test data described in Section 5.4), transform the surface

pressure to down-hole data, and then estimate the well productivity index

relationship (IPR). The IPR curve is the main tool that a PE uses to evaluate

well deliverability. Next, the PE must understand liquid lift performance;

the choke setting, GOR, tubing size, depth of end of tubing, and frequency

are the preliminary data needed to build the multiphase flow equation and

finally the VLP curve. The diagnostic and troubleshooting can be classified

depending on if the well is operating under natural flow or the artificial lift

method used such as GL, ESP, or PCP.
5.6.1 Natural Flow

Input: The essential data for natural flow diagnostics are THP, choke size,

and water, oil, and gas meters. In the absence of an MPFM, VFM val-

idated periodically with well tests are required to evaluate the diagnostic

in natural flow wells.

Constraints: Minimum allowable fBHP, pressure drop, maximum velocity

to avoid early water breakthrough or sand screen out, maximum rate to

avoid conning or cresting, and maximum fBHP to avoid fracture pressure.

KPI: Typical KPIs used for diagnostic are: downtime production, differ-

ence with maximum allowable.

Output: Productivity index values (IPR), skin factor, AOF, k*h, and
estimation of reservoir pressure.

Control: Choke size.

Typical diagnostic:

• Pressure drop increasing due to fast reservoir depletion or additional

skin generated by solids production.

• Well flowing under slugging state due to flow regime changing to

critical condition.

• Oil rate drops due to early water breakthrough.
5.6.2 ESP and PCP Systems
A modern ESP system is equipped with panel control and a variable speed

drive (VSD), which is connected down-hole to the well through electrical

cables with sensors capable of reading discharge pressure (PDP),
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intake pressure (PIP), motor temperature (MT), and many other operating

data. These components are shown in Fig. 5.20.
Fig.
in r
Input: WHP, THP, water, oil, and gas meters. Frequency, amperage,

voltage, and choke size are the traditional surface data observed in the

control panel. PIP, PDP, and MT are the down-hole data read directly
5.20 ESP diagram showing the most important components useful for monitoring
eal time.
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in the control panel. In the absence of an MPFM, VFM validated peri-

odically with a well test are required to evaluate the diagnostic in wells

with ESP or PCP systems.

Constraints: Minimum allowable fBHP, pressure drop, maximum velocity

to avoid early water breakthrough or sand screen out, maximum rate to

avoid coning or cresting, maximum fBHP to avoid fracture pressure, and

maximum operating frequency.

KPI: Typical KPIs used for diagnostic are: pump wear factor, gas inter-

ference, chance of tubing leak, viscous effect in pump, and solid plugged

intake.

Output: Pump head, liquid rate, pressure drop in pump, and pressure

drop in reservoir.

Control: Pump frequency and choke size.
5.6.3 Diagnostic Procedure
The value of diagnostics in real time is to prevent additional workovers or

well interventions. Real-time diagnostics could be the most effective process

to identify pump degradation and impairment in the life of a well. The full

diagnostic process should include the following processes:

Alarm system: Generate a primary data set withminimum,maximum, and

average values and monitor in real time values that exceed the threshold

ranges. Validate if monitoring values are persistent in the next 24h and apply

filtering algorithms to clean false data.

Diagnostics based on a nodal analysis model: The average production and

pump data are sent online to a preexisting well model, which is calibrated

with the latest well test information, pump design, well trajectory, PVT data,

and completion schematic.

Automated model analysis: The model is updated with the latest 24-h

(week, month) average of real-time data, such as pressure and temperature

data, THP, THT, PIP, PDP, PITMT, flow data, WC, gas rate, and oil rate.

ESP model tuning is performed online daily by comparing the model and

sensor data.

Model match: Fig. 5.21 shows a typical ESP pump gradient showing

fBHP, PIP, PDP, and THP for a well model and sensors. The model com-

putes different values between the calculated and the modelled data. The

tuning process is matched by changing pump wear factor, multiphase

correlation friction factors, multiphase correlation gravitational factor,

and productivity index. In cases where the system cannot find a solution
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(unmatched process), a quick diagnostic should be provided, for

example:

• Misfit between VFM and test rate is high. Suggestion: check the produc-

tivity index or conduct a buildup test to evaluate the current reservoir

pressure and skin factor.

• Misfit between PDP-PIPModel and PDP-PIPSensor. Review the wear fac-

tor of the pump. Check changes with fluid viscosity and API.

• Misfit between calculated and extrapolated PIP and fBHP. Calibrate the

multiphase flow correlation, friction, and gravitational parameters.

5.6.4 Smart Diagnostics
The traditional ESP/PCP diagnostics in real time uses a physical model to

evaluate the range of operations that are commonly designed for steady-state

condition, where reservoir pressure is not changing. A smart diagnostic not

only uses artificial components such as fuzzy logic and neural networks to

predict in advance any ESP/PCP troubleshooting or malfunctioning of

pumps, but also uses field statistical data and expert rules to generate optimi-

zation in real time. Working with Al-Jasmi et al. (2013e), a fuzzy logic algo-

rithm was created to predict pump malfunction for 7, 15, 30, and 90days

ahead of current production. The fuzzy logic was combined with expert rule

to diagnose and rank the following pump conditions:

• pump wear factor,

• solid plugged intake,

• gas interference and blocking,
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• tubing leak,

• viscous fluids friction,

• electrical issue.

They linked these conditions to the signal of the pump using the matrix illus-

trated in Table 5.4.

By definition, fuzzy logic techniques assume that all the conditions could

occur without exception but in different levels or degree. However, to cal-

ibrate the fuzzy logic, ESP experts use weight factors to assign important

contributions of developing signs: it is to alert that a pump malfunctioning

is in progress. In other words, the ESP experts assign arbitrary but relative

weight values per condition. For example:
Signal
Condition
Table 5.4 Mat
Intake
Pressure
rix to Link S
Current
Amperage
ignal Conditio
Motor
Temperature
ns to Contributi
Pressure
Discharge
ng Factors
Liquid
Rate
Total
Gas

interference
0.2
 0.25
 0.1
 0.25
 0.2
 1.0
The expert considers that if signals such as intake pressure, current amperage,

pressure discharge, and liquid rate decrease and MT increases, it is inferred

that “gas interference” condition can occur with a 20% chance affected by

intake pressure, 25% chance affected by current amperage, 10% chance by

MT, 25% by pressure discharge, and 20% by liquid rate. The results are mul-

tiplied by the expected � signal. If a signal does not behave as expected, the

value is rejected. It only sums those signals that follow the pattern. The cal-

culation is repeated for other conditions at different times. The condition

that gets the maximum index closest to 1.0 or larger than 0.63 is used as

the most likely index, between 0.33 and 0.63 is used as a possible condition,

and between 0.0 and 0.33 is assigned as unlikely and discarded from the

action plan. Table 5.5 shows an example of a calculation for gas interference.



Table 5.5 Example of a Calculation for Gas Interference
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The results are shown in a real-time dashboard in the DOF operation

center accompanied by suggested actions. For example, if the most likely

event is gas interference, the suggested action is to reduce the choke size

to increase the fBHP.
5.6.5 Artificial Lift Optimization
The previous sections have covered the surveillance and diagnostics for

VFM. The automated workflow utilizes those to provide advisories on

new operating conditions to optimize the operations for optimal produc-

tion. The well performance models are built in many commercial software

applications and the models are calibrated with production tests. The opti-

mization model should first be adjusted for previous cases. Generally, well

performance commercial software has interactive functions that allow per-

forming history matches and sensitivity analyses with different operating

points for choke size, pump frequency, line pressure, etc. The general steps

to generate an optimization to improve the production of ESP as an example

are as follows:

• Model the ESP actual operating point. We recommend using an average of

the last 24h of production data (pressure, production, and temperature).

• Verify if the electrical power and electrical current conditions are working properly.

Determine if the pump can handle more energy consumption, if the

motor can generate the required power to run the pump, and if the cable

is designed to provide electrical current to the motor.

• Evaluate the actual condition of production and pressure, and plot the operating

point of the pump envelop. Fig. 5.21 shows the ESP envelope for a well with

3–1/2 in. OD tubing size. Check if the operating point is above the min-

imum operating point or below the maximum operating point.
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• Optimize in real time. The well performance model is run for many cases,

automatically changing both frequency and choke size (if setup with a

choke setting). All the cases are run for the available power and electrical

current condition (current stable). The most likely points are plotted

within the pump envelope (the rest are discarded). The optimum point

is highlighted in blue to show the point that is most efficient, shortest,

and consumes the least energy.

Fig. 5.22 shows pump head (ft) versus total liquid rates (STB/d) for tubing

size of 3–1/2 in. The envelope is limited by the pump maximum and min-

imum operating lines (in red) and an efficiency line (green). Frequency lines

are observed from 40 to 60Hz. The chart shows 10 points of possible sce-

narios where production can increase. However, the algorithm is designed

to find the shortest path, with less power consumption, and production

increase without decreasing the fBHP. The path shown in Fig. 5.22 shows

two segments: (1) decrease fBHP by reducing the choke size and (2) increase

the pump frequency from 42 to 46Hz to increase production up to 620

STB/d.

Other artificial lift systems, for example, RP, PCP, or GL have analogous

optimization procedures supported by DOF systems.
Fig. 5.22 ESP head plot showing the ESP envelope for 40, 50, and 60Hz of running oper-
ation. The real-time operating point is running near the efficiency pump line and com-
puted optimum point (blue). >10 points (red) are highlighted as possible changes to
increase production or improve pump efficiency.
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5.7 ADVISORY AND TRACKING ACTIONS

Improved accountability is one of the most important components to
improve capital efficiency and reduce cycle time. Logging events and

recording actions in a database is an essential component to more effective

workflows, that is, tracking actions. The insight here is to measure and

record input, actions, and outcomes. However, oil companies (like other

large complex companies) struggle to manage many data sources, multiple

applications, duplication of information, and many layers of communica-

tions. To avoid this system complexity, DOF systems are enriched with

dashboards to display alarms, alerts, and a list of tickets performed by other

engineering workflows. A comprehensive model published in Al-Jasmi et al.

(2013f ) shows the basis of a fully automated, closed-loop integrated

workflow in which, after the proper personnel approvals, the system is able

to automatically record the operational changes.

On the basis of our own experience, we believe that the best way for

operations personnel to manage actions is by opening and closing tickets

in a managed system environment. The ticket can be generated using a well

ID and ranked by priority and a ticket’s current status. Depending on the

level of authority and degree of empowerment, team members can be orga-

nized, for example, as monitoring team, engineering team, and operation

team. It is critical that all well operational events, changes, and interventions

be recorded in a managed data environment.

The main steps of a tracking action workflow can be summarized as follows:

1. Collect and manage alarms and alerts. Discard alarms that do not exceed

the thresholds.

2. Classify and group alarms and alerts depending on the volume of produc-

tion lost compared to the plan, oil or gas deferral, water increase, GOR

increase, approaching the critical gas rate, or critical drawdown.

3. Generate ticket and assign team responsibility with follow-up actions.

Categorize the tickets by well ID and order of importance for the

organization.

4. Submit the ticket to the engineering team to evaluate if production

underperforms using physical models. Use the workflow to generate

diagnostics and production opportunities.

5. When the engineering team finds an issue or opportunities, the ticket is

transmitted to the operation team to execute actions.

6. The monitoring team closes and stores the tickets.
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7. Supervisors and managers review the ticket status KPIs on their

dashboard.

Ticketing and flow process:

1. The monitoring team ranks the number of issues, alarms, and alerts and

decides to generate tickets with comments and follow-up actions.

2. The engineering team receives an email or alert on their mobile app with

actions to diagnose and evaluate the current performance of the well.

Provide recommendations and assign tasks to the operation team. The

monitoring team receives the ticket back and sends it to the

operation team.

3. The operation team completes the activity by performing a well opera-

tion, such as changing the ESP frequency, choke size, valve for GL injec-

tion, and separation system line or RP condition. The monitoring team

receives an automated notification that the changes have been executed

and the operations team verifies.

4. The monitoring team:
� Verifies the changes of the physical settings and storage of the events

in data system.

� Verifies that changes in surface pressure, rates, and temperature have

been observed (in case of any unresponsive action).

� Confirms with the operation team that action has been executed.
5. The monitoring team closes the tickets.
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Digital oil field (DOF) systems conventionally have focused on wells, pro-

duction, and operations. However, DOF is expanding its footprint into field

decisions and management. Thus, to optimize production and recovery,

production system models are increasingly being integrated with reservoir

models. DOF systems now deploy three-dimensional (3D)-coupled subsur-

face and surface models that, when calibrated (i.e., history matched), provide

short- and long-term forecasts of asset production and performance. The

main objective of this chapter is to give an overview of the modern inte-

grated asset modeling (IAMod) practices and outline techniques and

workflows for optimization and decision-driven forecasts of DOF systems

that is integrated asset management (IAM), including model and data uncer-

tainty. In Section 1.5 of Chapter 1, we introduced the concept of optimi-

zation process in DOF. The optimization process is related to the area of

real-time production optimization for artificial lift (GL, ESP, PCP, etc.)

and also applied to maximize the company indicators such as NPV, IRR,
igent Digital Oil and Gas Fields © 2018 Elsevier Inc.
://doi.org/10.1016/B978-0-12-804642-5.00006-2 All rights reserved.
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or recovery factor. In this chapter, we discuss the techniques applied for his-

tory matching the production data and an overview on coupling subsurface

and surface models.

This chapter introduces the engineering principles and technology con-

cepts of IAMod, and optimization and the use of the models for IAM. The

IAMod developments were introduced in the E&P industry in the early

2000s (Liao and Stein, 2002), combining subsurface models with surface

production facilities and networks. They are now becoming a standard

means of modeling entire oil and gas assets with the objective to optimize

existing facilities and to plan enhancements to production (wells and

facilities).

To date, many operators have developed their own IAMods (Toby, 2014

and references therein); however, the ultimate benefits of such models and

particularly their business-added value have not been fully realized. The

underlying reasons may stem from the inherent complexity of the state-of-

the-art IA models, which makes for challenging model calibration (history

matching) that leads to uncertainty in the models and their forecasts

(Maucec et al., 2011). Thus, there is an added challenge that is attributed

to the fact that the modern IAMods now integrate advanced uncertainty

and riskmanagement (URM)principles,which—particularlywhen deployed

in large-scale, full-field studies—require substantial computational resources

(Dzuyba et al., 2012; Maucec et al., 2017). While the integration of URM

concepts in IAM processes enhances their operational applicability and excel-

lence, it also adds to the challenge of quantitatively evaluating various devel-

opment and economic scenarios. Moreover, the integration of URM and

IAMod ultimately leads to integrated asset management—a decision-driven

reservoir optimization, which in open technical literature is interchangeably

(and sometimes confusingly) associated with the same acronym IAM.
6.1 INTRODUCTION TO IAM AND OPTIMIZATION

Before introducing the principles of IAMod and optimization, let us
look briefly at the notation and abbreviation patterns that one will encounter

in the open technical literature, for example, in the publications of the Soci-

ety of Petroleum Engineers (SPE).

In this work, the integrated asset model or modeling is “IAMod,” while

integrated asset management is “IAM”. This notation is incorporated in

Fig. 6.1, which outlines the framework for a holistic IAM. The reservoir
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simulationmodel represents a starting point and one of the input modules for

an IAMod. A reservoir model integrates the reservoir geological model, rock

and fluid properties, fluid flow model with recovery mechanisms, drilling

and well completions, and the production history. The concept of IAMod

introduces multiple model realizations as a result of uncertainty quantifica-

tion and modeling, integration with process and surface facilities, and pipe-

line networks and economic exploitation models.

With integration of information and data management, strategic plan-

ning with risk and opportunity assessment and decision analysis—all in

the frameworks of stochastic scenario management and optimization—

IAM concepts are being used more often. They are now becoming a stan-

dard way of modeling entire oil and gas facilities with a view to optimizing

existing facilities or developing new ones, as well as applying them to daily

development, operations, and maintenance decisions.

6.2 OPTIMIZATION APPROACHES

In 2011,New Technology Magazine (Cope, 2011), David Millar, senior
vice-president, reservoir optimization, SPT Group stated, “Currently opti-

mization is applied to perhaps 10% of oil and gas modeling scenarios.

I foresee that within a decade the majority of modeling cases will use

optimization.”With the aggressive expansion of IAM projects andDOF ini-

tiatives, process optimization techniques are rapidly gaining ground in the

oil and gas industry. Over the past several years, many new software tools
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and optimization methods have emerged and have been deployed in assets

worldwide. For example, the implementation of top-down reservoir models

(TDRM) (Williams et al., 2004) has been proven to add 20% to the net pre-

sent value (NPV) and has proven significantly more efficient than themanual

history-matching process, when applied to the optimization of the carbonate

reservoir in the North Sea. While manual history matching gave very poor

results due to >80 variables/parameters, the TDRM approach produced an

acceptable match in less than a month and showed 50 million to 150 million

more barrels of oil than the manual approach (Cope, 2011). Moreover, the

use of a multipurpose environment for parallel optimization (MEPO)

(Schulze-Riegert et al., 2001) has helped operators analyze—in half a

day—hundreds of operating scenarios and proposed the NPV range solu-

tions with the worst case of $13 million and the best case of $27 million

(Cope, 2011). In addition, numerous oil and gas optimization studies have

recently been published in the literature and deployed for these purposes:

• Dynamic optimization of waterflooding with smart wells using optimal

control theory, a gradient-based optimization technique (Brouwer and

Jansen, 2002; Brouwer et al., 2004) and adjoint-based optimal control

(Sarma et al., 2006, 2008; Suwartadi et al., 2011).

• Waterflood performance management and optimization using data-

driven predictive analytics from capacitance resistance models (CRM)

for rapid characterization of inter-well connectivity and continuous

update of injection rates to maximize oil production and recovery

(Kansao et al., 2017).

• Multiobjective optimization with applications to model calibration and

uncertainty quantification (Schulze-Riegert et al., 2007).

• Closed-loop production optimization and management using robust,

constrained optimization of short- and long-term NPV (Wang et al.,

2007; Chen et al., 2012) and ensemble-based optimization, using data

assimilation techniques (Chen et al., 2009).

• Real-time optimization and proactive control of waterflood perfor-

mance in intelligent wells, equipped by wellbore pressure and temper-

ature sensors and inflow control valves (ICVs) (Temizel et al., 2015) and

real-time reservoir management using multiscale adaptive optimization

and control (Saputelli et al., 2006).

• Top-down intelligent reservoirmodeling (TDIRM) (Gomez et al., 2009),

which integrates traditional reservoir engineering analysis with artificial

intelligence and data mining [artificial neural networks (ANNs), fuzzy sets]

to predict reservoir performance and optimize development strategies.
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Recent developments of optimization methods can be mainly divided into

deterministic and heuristic approaches. Deterministic approaches leverage

analytical properties of the problem and generate a sequence of points that

converge to a global optimal solution. Heuristic (often referred to as prob-

abilistic or stochastic) approaches are perceived to be more flexible and

efficient than deterministic methods; however, they tend to be more

computationally demanding most often since the probability of finding

the global solution decreases when the problem size increases.

Prevalent deterministic optimization approaches are linear program-

ming, mixed-integer linear programming (MILP), nonlinear programming,

and mixed-integer nonlinear programming (MINLP). The application of

linear programming in the oil and gas industry is to a large extent a matter

of the past with publications dating back to the late 1990s (Eeg and Herring,

1997), because they are most effective in solving (rather scarce) linear opti-

mization problems. One of the most comprehensive IAMplanning solutions

developed using MILP was by Iyer et al. (1998), which proposes planning

and scheduling of investment and operation in offshore oil-field facilities by

the rigorous incorporation of nonlinear reservoir performance, surface pres-

sure constraints, and drilling rig resource constraints. Iyer et al. (1998) intro-

duce a tractable MILP model with several thousand binary variables and

sequential model decomposition strategy by the (dis)aggregation of time

periods and wells.

However, nonlinear programming and particularly MINLP can provide

general tools for solving optimization problems to obtain a global or an

approximately global optimum and are still actively pursued, for example,

in well-spacing optimization by maximizing NPV (John and Onjekonwu,

2010) and for generalized field development optimization in terms of

well-drilling locations and corresponding (time-varying) controls (Isebor

et al., 2014).

The rest of this section briefly reviews the mainstream optimization

approaches in exploration and production (E&P). For a comprehensive

overview of different optimization methodologies for decision making in

intelligent DOF, see Echeverria Ciaurri et al. (2012). For a technology sur-

vey of real-time optimization of offshore oil and gas production systems, see

Bieker et al. (2006). Temizel et al. (2014) outline the most prevalent advan-

tages and drawbacks of optimization techniques in real-time production

optimization of intelligent fields. Finally, for a comprehensive general

review of optimization techniques we recommend the encyclopedia of

optimization (Floudas and Pardalos, 2009) as an excellent resource.
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6.2.1 Single- vs. Multiobjective Optimization
Amathematical optimizationproblemessentially combines three components:

• objective or cost function,

• optimization constraints, and

• control variables.

The objective of optimization is to determine a feasible combination of opti-

mization (control) variables within the boundaries of defined constraints that

maximizes or minimizes the objective or cost function of choice.

Based on the nature of the search for an optimal value of the objective

function, the optimization problems can be classified as a single- or a mul-

tiobjective optimization problem. An example of a single-objective optimi-

zation is finding an extrema, a minimum, or maximum, of a nonlinear

convex problem, such as a quadratic function. A common oil and gas opti-

mization problem is (dynamic) model calibration or history matching,

which seeks a least-square fit of reservoir simulation response to the observed

or measured data. The misfit objective functionQ is represented as (Ferraro

and Verga, 2009):

Q¼
Xn
i¼1

R2
i (6.1)

with Ri¼wi(Xm�Xo)i defined as a residual, where Xm, Xo, and wi corre-

spond to the model data (reservoir simulation response), observed (mea-

sured) data (e.g., pressures, fluid rates, gas-oil ratio) and the weighting

factor, respectively.

The optimization problem can be approached as a single-objective

optimization in which an aggregate of all the quantities to be matched are

grouped into a single, joint objective function, or as a multiobjective

optimization approach, which usually considers two or more different

objectives, addressed separately during the optimization process. Mathe-

matically, the single-objective optimization is defined as (Hutahaean

et al., 2015)

minimize f xð Þ
subject to hlk� xk� huk
x¼ x1, x2,…, xk,…, xNf g

(6.2)

where x¼{x1,x2,…,xk,…,xN} is the vector of the N variables in the

parameterization and hk
l and hk

u, respectively, correspond to the lower and
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upper boundaries of each variable. A geometric representation of objective

functions for single-objective optimization problem is given in Fig. 6.2.

In production optimization problems, the NPV is generally used as an

objective or cost function Q, subject to maximization. Following Wang

et al. (2009) and Suwartadi et al. (2011) the NPV is mathematically formu-

lated as

Q¼
XN
n¼1

XNprod

j¼1

roq
n
o, j� rwq

n
w, j

1+ bð Þtn
� �

�
XNinj

l¼1

rw, injq
n
inj, l

" #
4 tn (6.3)

whereN is total number of reservoir simulation time-steps,Nprod is the total

number of producing wells, Ninj is the total number of injectors, ro is the oil

revenue (USD/STB), rw is the water production cost (USD/STB), rw,inj is

the water injection cost (USD/STB), qo,j
n and qw,j

n are average oil and water

production rates of the jth producer (STB/D) over the nth time-step,

respectively, qinj,l
n is the average injection rate of injector l (STB/D) over

the nth time-step, b is the annual interest rate (%), tn is the cumulative time

up to the nth time-step (year), and 4 tn is the time interval of the nth time-

step (day). A detailed review and evaluation of different types of objective

functions in production optimization and history matching workflows is

given in Mata-Lima (2011).

Traditionally, the solution of the maximizingNPV in oil and gas produc-

tion optimization has been through applying optimal control theory

(Brouwer and Jansen, 2002). The literature mainly refers to two categories

of algorithms used to solve this problem:

• Gradient-based algorithms, where the gradients are derived from the

adjoint method (Brouwer et al., 2004; Sarma et al., 2006, 2008;
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Alpak et al., 2015; Ramirez et al., 2017). In optimal control theory the

dynamic system, which usually corresponds to a nonlinear operator such

as finite-difference reservoir simulator, is introduced in the objective

function along with optimization constraints with a set of Lagrangian

multipliers, λ(n). In Lagrangian notation, the modified NPV objective

function (see Eq. 6.2) now becomes

Q
�¼

XN�1

n¼1

Q nð Þ+ λ n+1ð ÞTg nð Þ (6.4)
where n corresponds to the time-step of the simulation performed with

reservoir simulator g(n). The steepest descent (Brouwer et al., 2004) or

steepest ascent (Wang et al., 2009) method can be used to update the

estimates of the optimal control vector. For example, Sarma et al.

(2006) demonstrate that the approach is quite efficient and can render

a 70% increase in cumulative oil production in open-loop implemen-

tation and a 60% increase in closed-loop implementation. However,

a disadvantage of the adjoint approach is that it requires explicit

knowledge of the model equations as well as extensive programming

to implement the equations.
• Gradient-free algorithms, where solving the optimization problem is inde-

pendent of the model equations used and does not require implementa-

tion of adjoint equations. They can be beneficial when large-scale

distributed computing resources are scarce or not available and when

the optimization problem suggests using many starting points.

Lorentzen et al. (2006) develop a gradient-free approach using

ensemble-based statistics, more specifically ensemble Kalman filter

(EnKF) to optimize the NPV and total cumulative oil production. In

addition, Wang et al. (2002) use the partial enumeration method

(PEM), a discrete nongradient-based method, and Isebor et al. (2014)

use particle swarm optimization (PSO) with mesh-adaptive direct search

(PSO-MADS) for NPV optimization. Echeverria Ciaurri et al. (2011)

use derivative-free (i.e., noninvasive, blackbox) metaheuristic methods

(e.g., PSO) for optimization of oilfield operations, specifically the well

choke settings.

In the last decade, powered by the rapid evolution of high-performance dis-

tributed and parallel computing (HPC), the multiobjective optimization is

being used more often in the oil and gas industry. The multioptimization

problem generally consists of addressing two or more different, and usually
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conflicting, cost functions. An example of conflicting objective functions is an

NPV of an asset, of which exploitation is considered as an “opportunity”, and

somemeasure of the risk, associated with that exploitation (Echeverria Ciaurri

et al., 2012). Such optimization problems involving multiple conflicting

objectives are often addressed by “aggregating the objectives into a scalar func-

tion and solving the resulting single-objective optimization problem”

(Schulze-Riegert et al., 2007). In multiobjective optimization, the selection

of weights corresponding to specific components of single objective function

(see Eq. 6.1) is omitted by splitting the objective function into several com-

ponents, which are optimized simultaneously. The objective function now

takes the form F(x)¼{f1(x), f2(x),…, fk(x),…, fM(x)} and the optimization

problem is defined as (Schulze-Riegert et al., 2007; Hutahaean et al., 2015)

minimizeF xð Þ
subject to hlk� xk� huk
x¼ x1, x2,…, xk,…, xNf g

(6.5)

where F(x) :ℜN!ℜM,x¼{x1,x2,…,xk,…,xN} is the vector of theN var-

iables in the parameterization,M is the number of objectives, and hk
l and hk

u,

respectively, correspond to the lower and upper boundaries of each variable.

In contrast to single-objective optimization, the task now becomes find-

ing a set of optimal solutions, also referred to as the Pareto optimal set, usu-

ally represented as a Pareto front (Fig. 6.3). Because different objectives in

multiobjective optimization are not comparable, the concept of Dominance

and Pareto optimality applies (Hutahaean et al., 2015). Fig. 6.3 shows this

concept, while Fig. 6.4 gives an example of the objective space behavior

for several iterations of a history-matching workflow, which combines

the joint misfit minimization of field watercut and field static pressure, using

the multiobjective genetic algorithm (MOGA) (Kam et al., 2016; Ferraro

and Verga, 2009) with the population of 40 model realizations and by

parameterizing reservoir permeability and water saturation.

Despite the success the multiobjective algorithms have demonstrated in

optimization problems, such as history matching of reservoir simulation

models, their performance is known to reduce substantially when the num-

ber of objectives in multiobjective function exceeds three. Hutahaean et al.

(2017) refer to such problems as many-objective problems (MaOP), where

Pareto-based algorithms become significantly less effective in discriminating

between solutions. This compromises the concepts of Dominance and

Pareto optimality as well as the convergence of the search procedure.

Hutahaean et al. (2017) identify various possible conflicts between the
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objectives (direct, min-max, and nonparametric) and propose a nonpara-

metric, conflict-based objective grouping to obtain faster and more robust

history matches with better quality.
6.2.2 Local vs. Global Optimization
Specifically when solving multiobjective optimization problems, the selec-

tion of optimization technologies based on the nature of search for an

optimal cost function value becomes highly relevant and sets the distinc-

tion between the local and global optimization. Note that the literature

frequently prefers the term “global search” over “global optimization.”

The reason for this preference is that “…finding the global optimum in

practical situations where the cost function is relatively time demanding

and the number of optimization variables is larger than few tens is an

extremely arduous (and virtually impossible in most cases) task. Hence,

at most we can aspire is to search globally…” (Echeverria Ciaurri

et al., 2012).

https://doi.org/10.2118/105313-MS
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Fig. 6.4 Behavior of the two-component objective space in a history matching-
workflow using the multiobjective genetic algorithm (MOGA) as a function of a number
of minimization iterations.
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The main attributes of local optimization methods can be summarized as

follows:

• they generally seek a local solution and depend on derivatives of the cost

function and constraints;

• the solution is not guaranteed to have the lowest objective (when min-

imization) or the highest objective (when maximization) among all the

feasible points;

• they can be solved relatively easily, because they require the differentia-

bility of the objective and constraints;

• they require initial guess (estimate); and

• they are frequently supported by a solid convergence theory.



Fig. 6.5 Example of a complexmultiobjective function for global search or optimization.
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There are some cases (e.g., convex problems; see Fig. 6.2) where the local

extrema found will in fact represent the global extrema; however, large-scale

reservoir models with complex wells and facility networks usually render

complex, multiobjective optimization problems. Fig. 6.5 illustrates an

example of one such multiobjective cost function (such as the NPV of res-

ervoir system).

As indicated, it combines several stagnation points, false optima, and

suboptimal (local) solutions, all markedly different from the global objec-

tive, that is, maximized NPV. The complexity of multiobjective problems

will drive engineers, as well as local optimization techniques, to stop the

search once they have found a “plausible” solution. The global optimiza-

tion (or search) on the other hand can identify multiple solutions to a

range of engineering problems before reaching the global optimal solu-

tion. Attempts have been made to use the multistart methods combined

with local optimization to generate multiple solutions with some degree

of global search (Basu et al., 2016) or to deploy advanced proxy-based

methods like Hamiltonian Markov chain Monte Carlo (McMC)

(Mohamed et al., 2010a; Goodwin, 2015; Goodwin et al., 2017), surro-

gate reservoir models as smart proxies (Mohaghegh et al., 2015), and

physics-based, data-driven models (Klie, 2015) to provide faster solutions

to global optimization problems.
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6.2.2.1 Stochastic or (Meta) Heuristic Optimization
The majority of global search/optimization methods in one way or another

leverage stochastic/(meta)heuristic algorithms (Ombach, 2014) to explore

large-scale optimization space, to reduce the probability of being trapped

in the local solution that does not satisfy the global cost function, and to

quantify the uncertainty of parameters in the sampled domain (Mohamed

et al., 2010a). Many global search/optimization algorithms belong to the

group of population-based methods described in great detail in Hajizadeh

(2011) for improved history matching and uncertainty quantification in

petroleum reservoirs. Echeverria Ciaurri et al. (2012) provide a condensed

list of the main characteristics of population-based methods:

• Multiple points [i.e., solutions (see Fig. 6.4 for MOGA application)] are

evaluated in every global search iteration.

• Unlike in pattern-search methods, these points are not clearly structured

and can be, from iteration to iteration, rearranged with a much larger

degree of flexibility.

• There are no theoretical results or empirical rules of thumb that recom-

mend the population size for a given optimization problem, but it can be

anticipated that the larger the size, the more globally the search space is

explored. This is of course under the assumption that the space of opti-

mization variables has been parameterized with sufficient degree of var-

iability to allow a robust uncertainty quantification.

• Consistent with the above observation, if the population size is very

small (compared to the number of optimization variables) the impact

of these population-based methods will be locally confined.

A variety of stochastic/(meta)heuristic global search methods have recently

emerged in applications to reservoir characterization (Compan et al., 2016)

or production optimization, which are summarized in Table 6.1. The table

lists a selected number of (meta)heuristic optimization methods with asso-

ciated engineering application and relevant references.

6.2.3 Optimization Under Uncertainty
The process of optimizing reservoir performance under the assumption that

all the system variables are deterministically known is relatively straightfor-

ward. However, with the presence of physical and financial uncertainties the

problem is elevated to optimization with risk-managed, decision-making

focus. According toMcVay and Dossary (2014), the value of “reliably quan-

tifying uncertainty is reducing or eliminating both expected disappointment

(ED), when realizing an NPV is substantially less than estimated NPV, and



Table 6.1 Selected (Meta)heuristic Optimization Methods With Main
Applications

Metaheuristic Technique
Optimization
Application Reference

Evolutionary

algorithms

(EA)

Single pareto

evolutionary

algorithms

(SPEA)

Computer-assisted

history

matching

(AHM)

Ferraro and Verga (2009)

Genetic

algorithms

(GA)

Field development

and production

strategy

optimization

Sambo et al. (2016) and

Gomez et al. (2009)

Evolution

strategies (ES)

Well-placement

optimization

Bouzarkouna et al. (2013)

Multiobjective

genetic

algorithms

(MOGA)

AHM

Well-control

strategy

Kam et al. (2016) and Fu

and Wen (2017)

Multi-island

genetic

algorithms

(MIGA)

Reactive and

proactive

control for smart

wells

Carvajal et al. (2014)

Hybrid Genetic

Algorithms

(HGA)a

Production

strategy

optimization

Salam et al. (2015)

Support vector

machine

(SVM)

optimized by

GA

Injection

allocation

optimization

Li et al. (2016)

Particle swarm optimization

(PSO)

AHM Arnold et al. (2016) and

Mohamed et al. (2010b)

Drilling

optimization

Self et al. (2016)

Well-placement

and well-pattern

optimization

Jesmani et al. (2015) and

Onwunalu and

Durlofsky (2011)

Closed-loop field

development

optimizationb

Shirangi and Durlofsky

(2015)

Ant colony optimization (ACO) AHM Hajizadeh et al. (2009)

Simulated annealing (SA) Well-scheduling

and placement

optimization

Beckner and Song (1995)
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Table 6.1 Selected (Meta)heuristic Optimization Methods With Main
Applications—cont’d

Metaheuristic Technique
Optimization
Application Reference

Markov chain Monte Carlo

(McMC)

AHM Schulze-Riegert et al.

(2016), Maucec et al.

(2007, 2011, 2013a,b),

and Olalotiti-Lawal and

Datta-Gupta (2015)c

Reservoir

description and

forecasting

Li and Reynolds (2017)

Prediction

uncertainty

quantification

Fillacier et al. (2014) and

Goodwin et al. (2017)d

Differential evolution (DE) AHM Hajizadeh et al. (2010) and

Olalotiti-Lawal and

Datta-Gupta (2015)c

Tabu search (TS) and scatter

search (SS)

Multiple-field

scheduling

optimization

Cullick et al. (2003)

Project portfolio

optimization

April et al. (2003)

Well-placement

optimization

Cullick et al. (2006)

AHM Yang et al. (2007)

Artificial lift

optimization

Vasquez et al. (2001)e

aHGA: hybrid technique of GA and ANNs.
bPSO-MADS: hybrid technique of PSO and mesh adaptive direct search (MADS).
cDEMC: hybrid technique of differential evolution (DE) and McMC.
dHMcMC: Hamiltonian McMC.
eGATS: hybrid technique of GA and Tabu search (TS).
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expected decision error (EDE), through selecting the wrong projects”.

McVay and Dossary (2014) present a new framework for assessing the

impact of overconfidence and directional bias on portfolio or asset perfor-

mance. They further report that for moderate amounts of overconfidence

and optimism, the ED amounted to 30%–35% of NPV for analyzed portfo-

lios and optimization cases, which can profoundly affect the asset perfor-

mance. In even broader context, Allen (2017) describes handling risk and

uncertainty in portfolio and/or asset production forecasting. He builds on

portfolio optimization under uncertainty and introduces sequencing of

uncertainty and aggregation of risk as fundamental components in an asset’s

production vulnerability and associated risk management.
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Themanymodel and asset parameters of IAMod and IAMworkflows are

uncertain. This uncertainty introduces a new level of complexity in the opti-

mization process, because optimization functions and/or constraints are no

longer deterministic functions but probabilistic/stochastic distributions.

However, if statistical principles are considered, the optimization frame-

works as discussed above can be modified to incorporate stochastic func-

tions. In reservoir characterization, an example of uncertainty

quantification may represent a set (ensemble) of model realizations, each

of them honoring a set of historic data. In retrospect, a stochastic production

optimization problem may represent maximization of expected NPV over

all available realizations. Note that the statistical nature of such a problem

will render the mean (expected) NPV value with associated confidence

intervals; however, the optimization will require many reservoir flow sim-

ulations and may be prohibitively time consuming. Echeverria Ciaurri et al.

(2012) propose the approach of retrospective optimization (RO), which

replaces a stochastic optimization problem by a sequence of optimization

problems where constraining statistics are approximated with gradually

increasing levels of quality.

An alternative approach is the use of stochastic programming (SP)

(Nemirovski et al., 2009) where the optimization problem with objective

function F0(x) formulates as follows:

minimize F0 xð Þ¼Ef0 x,ωð Þ
subject to F i xð Þ¼Efi x,ωð Þ� 0, i¼ 1,…,m

(6.6)

where E represents the expected value operator on objective and constrain

functions fi(x,ω), which depend on x and ω, optimization and random vari-

ables, respectively. The value of ω is not known, but its distribution is and

the goal is to select x so that constraints are satisfied on average or with high

probability and the objective is minimized on average or with high proba-

bility. The stochastic constraint E f(x)<0 is classified as a standard quadratic

inequality.

It is interesting to note that neither RO nor SP are markedly represented

in the area of oil and gas production optimization problems. However, the

E&P industry has been rapidly adopting a complementary ensemble-based

approach to assisted history matching (AHM) with uncertainty, using for

example Bayesian inversion techniques such as ensemble Kalman filter

(EnKF) (Evensen, 1994), ensemble smoother with multiple data assimilation

(ES-MDA) (Emerick and Reynolds, 2013), or sequential, Markov-chain
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Monte Carlo (McMC) (Maucec et al., 2007, 2011, 2013a,b). These tech-

niques are outlined in more detail in later sections.

In 2001, Begg et al. (2001) outlined the need for a holistic, integrated

approach to assess and manage the impact of uncertainties for the optimiza-

tion of oil and gas assets and investment decision-making. They proposed

the concept of a stochastic integrated asset model (SIAM) embedded in a

decision-support system. While the SIAM ties to a classical domain models

via a simulation engine (reservoir simulator) as a key component to quantify

uncertainties and their nonlinear behavior, the new components of the

workflow-like scenario analysis, real options thinking/valuation, value of

flexibility, and decision optimization are introduced. In following years,

the E&P industry has adopted and applied a variety of approaches to asset

production optimization with uncertainty:

• Bailey et al. (2004) introduced the workflow for NPV optimization

under uncertainty through the utility function Fλ¼μ�λσ, where μ
and σ are the mean and standard deviation of the collection of N

individual appropriately sampled NPV realizations, and λ represents

the risk-aversion factor. The utility function Fλ implies a maximiza-

tion of NPV under the constraint of the variable-importance mini-

mization of its standard deviation, depending on the user’s own risk

preference.

• Cullick et al. (2004) designed an optimization system that consists of

three workflows: an outer optimization workflow (outer loop), an inner

scenario and uncertainty-management-simulation workflow (inner

loop), and a dispatcher for distributed computing. The optimizer uses

(meta)heuristic search methods and is validated with three problems

of asset optimization: intuitive solution, nonintuitive solution without

uncertainty, and solution with URM.

• Sarma et al. (2005) introduced a closed-loop production optimization

under uncertainty with polynomial chaos expansion for an efficient

uncertainty propagation and validated the workflow in real-time optimi-

zation of NPV for the reservoir-under-waterflood regime, production

constraints, and uncertain subsurface characterization.

• Liu and Reynolds (2015) use multiobjective optimization [weighted

sum (WS) and normal boundary intersection (NBI)] for jointly maximiz-

ing the expectation and minimizing the risk by solving a max-min prob-

lem and applying it to a well-placement optimization and optimal well

control. Here, the concept of minimizing the risk simply refers to

“maximizing the minimum value life-cycle NPV”.
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• Shirangi and Durlofsky (2015) developed and apply a methodology for

closed-loop field development (CLFD) under geological uncertainty.

A multilevel hybrid optimization, combining metaheuristic techniques

PSO with mesh adaptive direct search (MADS), is validated for simul-

taneous and sequential field development with maximizing NPV as

the objective function. They further propose enhancements in the form

of bi-objective optimization with minimizing the risk objective while

maximizing the expected performance.

• Arnold et al. (2016) propose a comprehensive, field full lifetime

workflow for uncertainty propagation and rigorous optimization of

decision-making under uncertainty, applied to assets with naturally frac-

tured reservoirs. They use the design of experiments (DoE) to perform

sensitivity analyses and distance-based multidimensional scaling (MDS)

to identify and dynamically rank (Maucec et al., 2011) the model can-

didates, multipoint statistics (MPS) to generate updates of the discrete

fracture network (DFN) models in the field appraisal phase, the multi-

objective PSO (MOPSO) for history matching and in development, his-

tory matching and Naı̈ve Bayes (NA-Bayes) for unbiased estimation of

uncertainty for forecasting and reservoir management phases of the field

lifetime. This novel attempt at technology integration results in <5000

reservoir simulation iterations to attain a robust set of decisions for a

complete field lifetime.

6.3 ADVANCED MODEL CALIBRATION WITH ASSISTED
HISTORY MATCHING
The calibration of reservoir simulation models to dynamic field pro-

duction data, commonly referred to as dynamic data integration or history

matching, is perceived as one of the most time-consuming engineering pro-

cesses in reservoir validation. In a New Technology Magazine article (Cope,

2011), Maucec stated, “History matching must be considered as a bridge

between the reservoir modeling and reservoir simulation.” Traditionally,

reservoir models were manually reconciled with production data, using

good engineering judgment and following workflows based on many years

of experience.

The main disadvantage of the manual history-matching process is that

it disengages the reservoir simulation model from the geological model

and, many times, fails in adequate quantification of reservoir uncertainty.

As a result, manual history matching frequently leads to unrealistic,
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nongeological and nonphysical features in the reservoir model. Moreover,

the lessons learned are not properly applied to create a realistic reservoir

model, and the perceived “history-matched” models are of low predictive

value.

As reservoirs and assets mature and data acquisition and processing

methods evolve and become more sophisticated, the acquired reservoir data

grow substantially in terms of quantity and complexity. Particularly with the

expansion of DOF projects that use automated and data-driven IAMod and

IAM workflows, the need to solve large-scale, high-resolution modeling

problems, quantify the inherent model uncertainty for more reliable predic-

tion, and optimize their performance are becoming prevalent in the E&P

industry. The challenges resulting from integrating multiple scales of data

with uncertainties in physical parameters and processes make imperative

the use of efficient model parameterization, advanced inversion and optimi-

zation algorithms, with utilization rapidly evolving HPC architectures.

Within the last three decades, the oil industry has gained traction in

developing and implementing stochastic, population-based algorithms in

reservoir characterization and simulation workflows. The applications of

simulated annealing (SA), an algorithm that was originally developed for

solving combinatorial optimization problems, first emerged in the oil and

gas industry in the early 1990s in areas from stochastic reservoir modeling

to optimization of well-scheduling and -placement (Deutsch and Journel,

1994; Ouenes et al., 1994) and have endured through the introduction of

advanced SA algorithms, such as very fast simulated annealing (VFSA), with

recent expansion of unconventional exploration (Sui et al., 2014).

Another important advance in oil and gas stochastic modeling was the

introduction of techniques for the design of experiments (DoE), which

was originally developed in agriculture in the late 1920s (Salsburg, 2001).

DoEmodeling has been primarily used for the rapid quantification of uncer-

tainty using proxy models with response surface analysis (RSA) and various

forms of designs (e.g., latin hypercube, Box-Behnken, etc.) in AHM

(Cullick et al., 2004; Alpak et al., 2013), sensitivity analyses (Fillacier et al.,

2014), and risk evaluation (Sazonov et al., 2015). In the early 2000s the

E&P industry started to see an expansion of ensemble-based, Bayesian infer-

ence and model inversion, using, for example, the evolutionary algorithms

(Schulze-Riegert and Ghedan, 2007), the ensemble Kalman filter (EnKF)

(Evensen, 2009), and recently a complementary data assimilation approach,

the ensemble smoother (ES) and multiple data assimilation (MDA) by

Emerick and Reynolds (2012, 2013) and Maucec et al. (2016, 2017) and
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the EnKF coupled with the streamline sensitivity-based covariance localiza-

tion (Arroyo et al., 2008). Several techniques and workflows have been

successfully developed in this area, such as methods based on sequential

(or random-walk) McMC, originally developed in the areas of statistical

physics (Neal, 1993).

The McMCmethod is arguably the most rigorous statistical approach to

sample from the stationary Bayesian distribution; however, when deployed

in direct simulation, it imposes a high computational cost. To improve the

performance of the McMC method, several enhancements were proposed,

based on a two-step proposal of jointly sampling the model and data variables

(Oliver, 1996), by constraining the proxy models using the streamline

sensitivities (Efendiev et al., 2005; Ma et al., 2006; Maucec et al., 2007,

2013a,b) or by coupling with adjoint methods (Schulze-Riegert et al.,

2016). These techniques enhance the sampling efficiency of the McMC

method and make it applicable for the inversion of large-scale reservoir

models without sacrificing scientific rigor.

Recently, Goodwin (2015) proposed an alternative to random-walk

McMC, namely Hamiltonian McMC techniques which progress rapidly

through the sampled space but require derivatives of likelihood that can

be efficiently implemented with proxy models. In parallel, the development

of AHM tools and approaches has also evolved toward “smart” proxy

models in the form of surogate reservoir models (SRM) (Mohaghegh

et al., 2015) and increasingly popular (meta)heuristic methods, such as

PSO (Mohamed et al., 2010a) and differential evolution (Hajizadeh et al.,

2010). Moreover, developments in the area of AHM are also leading toward

joint inversion of the production and time-lapse seismic data, where the

attributes of four-dimensional (4D) seismic inversion (e.g., water saturation)

can provide spatially rich information on the fluid flow dynamics within

subsurface reservoirs (van Essen et al., 2012; Jin et al., 2012). While the

resulting reservoir model updates exhibit a considerable improvement in

matching the saturation distribution in the field, the potential drawback is

the dependence on the inversion data from 4D seismic surveys, which are

difficult and expensive to obtain.

This section continues with a review of modern model calibration and

inversion techniques and then describes the E&P industry’s prevalent model

parameterization, AHM, and finally outlines a few applications of IAM

wokflows. For further reading, Schulze-Riegert and Ghedan (2007),

Oliver and Chen (2011), and Rwenchungura et al. (2011), among others,

provide comprehensive overviews of recent advancements made in the area
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of reservoir AHM, while Hajizadeh (2011) gives a very comprehensive

review of the evolution of history matching over the last 50years.
6.3.1 Model Parameterization and Dimensionality Reduction
Dynamic calibration of reservoir models is an ill-posed and potentially unsta-

ble inverse problem, where many probable solutions can satisfy the posed

objective function. This approach often requires a re-definition of subsur-

face spatial properties into parameter groups that provide a tool for problem

regularization and make the inversion problem computationally tractable.

Such techniques are commonly referred to as “parameterization techniques”

and in their applications to history matching and model calibration their

goal is primarily to replace the original set of unknown spatially discretized

reservoir properties with a reduced (lower-dimensional) number of para-

meters while retaining minimum possible loss of information density in rep-

resenting the most representative features of the reservoir model.

An example is a parameterization of the depositional system and under-

lying facies distribution to strategically group the most dominant flow units

while retaining the inherent spatial heterogeneity and continuity that drive

the reservoir connectivity. Bhark et al. (2011) provide an in-depth review of

the most prevalent model parameterization techniques, while Hutahaean

et al. (2015) and Al-Shamma et al. (2015) study their impact on the objective

choices with implications to simulation model history matching.

Zonation (and its adaptive variants) has traditionally been used in petro-

leum applications for adjusting reservoir model static properties like poros-

ity, permeability, and transmissibility. Herewith, however, we briefly

present the subspace and low-rank approximation methods that provide

the basis for multiscale parameterization based on linear transformation

for applications in AHM and optimization. In brief, the methods of linear

transformation map the spatial parameters (i.e., reservoir parameters, like

porosity or permeability, subject to parameterization) from the

“parameter domain” to the transformed, low-rank (i.e., low dimension)

“feature domain”, where parameter estimation and model updating can

be performed in a more efficient manner. Using an orthogonal transform,

the discrete spatial variable u is mapped to the transform domain as

(Bhark et al., 2011).

v¼ΦTu,u¼Φv (6.7)
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where vector u has a dimension of m�1 (m¼discretization of the reservoir

parameter, that is, the total number of representative grid cells) and the col-

umn vector v is the nt-length spectrum of transform coefficients. The nt col-

umns of the transform basis Φ represent the discrete basis functions with

length of m. The main objective of parameterization is to reduce the param-

eter dimension, that is, the dimension of vector v, with a compact/truncated

representation ofΦ that contains only a few basis functions that are still able

to capture relevant model spatial information. Schematically, the parameter-

ization by linear transformation mapping is presented in Fig. 6.6, while

Table 6.2 lists the prevalent subspace model parameterization methods
x3

x

x2

x=F−1(f )

f=F(x)

f
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Fig. 6.6 Schematic representation of mapping from the parameter space to the feature
domain.

Table 6.2 Selected (Meta)heuristic Optimization Methods With Main Applications
Parameterization
Technique Reference

Singular value

decomposition (SVD)

Yanai et al. (2011)

Karhunen-Loeve

transform (KLT)

Newman (1996) and Jafarpour and McLaughlin (2007)

Fourier-space filter

expansion

Maucec et al. (2007)

Principal component

analysis (PCA)

Honorio et al. (2015), Kang et al. (2015), and Chen et al.

(2014)

Discrete cosine transform

(DCT)

Jafarpour and McLaughlin (2007, 2009) and Maucec

et al. (2011, 2013a,b)

Grid-connectivity

transform (GCT)

Bhark et al. (2011), Kang et al. (2014), and Kam et al.

(2016)

Multidimensional scaling

(MDS)

Scheidt and Caers (2009), Maucec et al. (2011, 2013a,b),

and Arnold et al. (2016)

Note: Parameterization techniques SVD, KLT, and PCA are occasionally commonly referred to as proper
orthogonal decomposition (POD) techniques.
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applied to petroleum studies. The reader is encouraged to consider listed ref-

erences for further mathematical detail.
6.3.2 Bayesian Inference and Updating
History matching is a highly nonlinear and ill-posed inverse problem. This

means that depending on the prior information, a set of nonunique solutions

can be obtained that honor both the prior constraints and conditioned data

with associated uncertainty. To assess the uncertainty in estimated reservoir

parameters, one needs to sample the parameters of the posterior distribution.

The Bayesian method provides a very efficient framework to perform this

operation.

Using the Bayes’ formula, the posterior distribution (i.e., the probability

of occurrence of model parameter m (simulated) given the data d [observed

or measured)] can be represented as proportional to the product of the like-

lihood function and a prior probability distribution of the reservoir model:

pm|d mj dð Þ¼ pd|m djmð Þpm mð Þ
pd dð Þ (6.8)

where pmjd(m jd), pdjm(d jm), and pm(m) represent the posterior, likeli-

hood, and prior probability distribution, respectively. The normalization

factor pd(d) represents the probability associated with the data. It is indepen-

dent of the model parameters and is usually treated as a constant.

The Bayesian formulation of objective function combines observed data

with the prior geological information. It is assumed that the “prior model”

parameters follow amulti-Gaussian probability density function (pdf ) with a

prior covariance matrix of reservoir model parameters, CM. Therefore, its

pdf, pm(m), is given by

pm mð Þ¼ 1

2πð ÞM=2
CMj j1=2

exp �1

2
m�m0
� �T

C�1
M m�m0
� �� �

(6.9)

This distribution is centered around the prior mean m0. The “likelihood

function,” defined as the conditional probability density function of the data

given the parameters pd|m(d jm) is calculated using

pd|m djmð Þ¼ 1

2πð ÞN=2
Cdj j1=2

exp �1

2
d�g mð Þð ÞTC�1

d d�g mð Þð Þ
� �

(6.10)
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where CD is the data covariance matrix. The relationship between the data

and the model parameters is expressed as a nonlinear function that maps the

model parameters into the data space, d5g[m], where d is the data vector

with N observations representing the output of the model, m is a vector of

sizeMwhose elements are the model parameters, and g is the forward model

operator, a function that relates the model parameters to the output. For

history-matching problems, g represents the reservoir simulator.

Using Bayes’ inference (Eq. 6.8), the posterior pdf can be defined as

follows:

pm|d mj dð Þ∝ exp �O mð Þ½ � (6.11)

where O(m) represents the Bayesian OF in multi-Gaussian notation:

O mð Þ¼ 1

2
d�g mð Þð ÞTC�1

d d�g mð Þð Þ+ 1

2
m�m0
� �T

C�1
M m�m0
� �

(6.12)

The first right-hand term of Eq. 6.12 represents the data misfit term (mis-

match between observed data and simulated response), while the second

right-hand term corresponds to a regularization term, usually represented

by the prior/known geomodel. The result of minimizing the O(m) (Eq.

6.12) is called the Maximum-A-Posteriori (MAP) estimate because it rep-

resents the most likely posterior model. The set of parameters m that min-

imizes O(m) is the most probable estimate.

The goal of the Bayesian approach is to derive a statistical distribution

for the model parameters via posterior distribution, constrained through

the prior distribution. Because the reservoir history-matching problem is

an inverse problem, its solution renders multiple plausible models (i.e.,

multiple realizations), and the consequence of nonlinearity is that one

must resort to an iterative solution. The MAP estimate is often insufficient

because it does not provide the uncertainty quantification in the posterior

model. As a solution, Kitanidis (1995) and Oliver et al. (1996) introduced

the randomized maximum likelihood (RML) method which provides a

theoretically rigorous approach to sample from the posterior distribution

but holds only for linear Gaussian problems, which are seldom the case

for reservoir simulation model inversion. Several alternative approaches

for a rigorous sampling from posterior distribution for nonlinear problems

have been proposed, such as traditional Markov chain Monte Carlo

(McMC) (Neal, 1993), its multistage implementation with enhancements
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of convergence efficiency (Efendiev et al., 2005), and the variant using

sampling from the streamline-sensitivity constrained proxy model

(Maucec et al., 2007, 2011, 2013a,b; Ma et al., 2006). The multistage

McMC approach still satisfies the necessary detailed-balance condition

to sample from the equilibrium (i.e., stationary or posterior) distribution

(Maucec et al., 2007) and significantly faster convergence, which can be

monitored via, for example, maximum entropy condition (Maucec et al.,

2007; Bratvold et al., 2010) or by using multivariate potential scale reduc-

tion factor (MPSRF) (Li and Reynolds, 2017).

The McMC algorithm is designed to rigorously sample from the poste-

rior distribution; its drawback lies in the reliance on the specification of the

prior model statistics and also the computational cost in exploring the pos-

terior distribution when the number of parameters is large. When realistic

field conditions are considered, the number of parameters of the prior model

expands dramatically (i.e., �106). Computation of the prior term of the

objective function then becomes highly demanding and time consuming,

particularly due to inversion of the prior covariance matrixCM. To maintain

acceptable computation effort, the AHM algorithms have to resort to model

parameterization techniques as outlined in Table 6.2. For example, Maucec

et al. (2007) introduce the approach where parameterization and model

reduction on a covariance matrix CM is performed using SVD, and new

model realizations are generated in the wave-number domain by a simple

convolution of zero-mean independently distributed entries (white noise)

with an appropriate Fourier linear filter. Jafarpour and McLaughlin

(2007) introduce the application of the discrete cosine transform (DCT),

an industry standard for image compression (e.g., the JPEG format) in res-

ervoir model inversion and history matching, while Maucec and Cullick

(2015) and Maucec (2016) develop a DCT-based approach for rapid gener-

ation of model updates in wave-number domain with applications to AHM

(Maucec et al., 2011, 2013a,b).
6.3.3 Data Assimilation
One of the most popular data assimilation approaches in petroleum and

groundwater applications is Ensemble Kalman Filter (EnKF), introduced

in the early 1990s (Evensen, 1994) for forecasting error statistics. The EnKF

was first deployed for solving history match reservoir simulation problems by

Nævdal et al. (2003). It approaches the AHM optimization (minimization)

problem by solving the Bayesian form of the objective functionO(m) in the
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multi-Gaussian notation (see Eq. 6.12) using the iterative Gauss-Newton

method (Le et al. 2015):

mi+ 1¼mi�βi mi�mpr

� �
+ CMG

T
i

� �
GiCMG

T
i +CD

� 	�1
n

g mi
� ��dobs�Gi m

i�mpr

� �� 	o (6.13)

where i is the iteration index, βi is the iteration step-size in the search direc-

tion, andGi is the sensitivitymatrix atmi. The termCMG
T[GCMG

T+CD]
-1

is usually referred to as theKalmangain.Thecovariance terms in the ensemble

update of Eq. (6.13) usually satisfy approximations eCMD�CMG andeCDD�GCMG
T, where eCMD corresponds to the cross-variance between

the vector of model parameters m and the vector of predicted data d, whileeCDD is the auto-covariance matrix of the predicted data.

While EnKF is generally considered as a robust, efficient, and

easy-to-implement tool for sequential data assimilation and uncertainty

quantification, the main disadvantages of the method are the Gaussian

approximation applied in the model update scheme and the suboptimal

performance in terms of assimilation convergence when the relations

between the (reservoir) model parameters and the data predicted by

the forward estimator (e.g., reservoir simulator) are highly nonlinear.

These issues may lead to a well-known problem of ensemble collapse,

which is particularly evident for small ensemble sizes (Jafarpour and

McLaughlin, 2009). Variants of ensemble design and update have been

developed to alleviate these issues through more efficient handling of

model constraints with Kernel-based EnKF (Sarma and Chen, 2011) as

well as introduction of subspace EnKF and ES with Kernel PCA param-

eterization (Sarma and Chen, 2013). The ES also fits the category of

ensemble-based data-assimilation methods but, in comparison to EnKF,

which updates both model parameters and the states of the system, the

ES is an alternative data assimilation method that computes the update

of global reservoir model parameters in real time, by assimilating all data

simultaneously. The ES was originally proposed by van Leeuwen and

Evensen (1996) in an application with an ocean circulation model.

Skjervheim et al. (2011) and Chen and Oliver, 2013 describe recent

applications of ES for AHM of reservoir simulation models.

Emerick and Reynolds (2012, 2013) further propose the ES with the

multiple data assimilation (ES-MDA) algorithm, which repeats the ES
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procedure several times on the same multiple observed data. Recently, the

ES-MDA algorithms have been successfully deployed to integrated uncer-

tainty analysis to render more robust field development decisions (Hegstad

and Sætrom, 2014), reservoir modeling with integration of drill-stem (DST)

data (Sætrom et al., 2016), AHM and rigorous uncertainty quantification in

high-resolution model of a naturally fractured reservoir (Maucec et al.,

2016), as well as for the AHM with uncertainty of a large-scale, dual

porosity-dual permeability (DPDP) integrated reservoir model (IRM)

(Maucec et al., 2017) powered by a massive parallel processing simulation

platform.
6.3.4 Closed-Loop Model Updating
Closed-loop (reservoir or asset) model updating integrates the principles of

(optimal) control theory and closed-loop optimization with (multiple) data

assimilation into a workflow for reservoir optimization in terms of recovery

or financial measures over the life of the reservoir using periodic, near real-

time updates. A closed-loop controller operates with a so-called negative

feedback loop that dynamically compares the system output with the refer-

ence point using sensor systems. The measured difference is channeled into a

control device that dynamically applies the change to adjust the system input

so it better matches its output.

In oil and gas exploration, the concepts of closed-loopmodel updating in

a variety of workflows for reservoir management are presented in the open

literature under different names, however, with quite similar objectives as

stated above. Wang et al. (2007), Jansen et al. (2009), Chen et al. (2012),

Barros et al. (2015), and Sampaio Pinto et al. (2015) introduce closed-loop res-

ervoir management (CLoReM) (Fig. 6.7). Saputelli et al. (2006) and Sarma et al.

(2005, 2006) refer to the similar principles of optimal control and model

updating as real-time reservoir management. Dilib and Jackson (2013) describe

it as a closed-loop production optimization. Oberwinkler and Stundner (2005)

and Bieker et al. (2006) refer to the workflow as real-time production optimi-

zation, Saputelli et al. (2003) refer to it as self-learning reservoir management,

while Hanea et al. (2015) present the development and implementation

of the fast model update (FMU) workflow.

Frequently, the closed-loop model updating workflows as outlined

above integrate the principles of performing direct modifications of the static

geomodel parameters by the dynamic simulation modeling to perform the

geologically consistent model update and optimization using the computer-
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assisted history matching (AHM) techniques under uncertainty. The objec-

tive of so-called “big-loop workflows” (Wiluweit et al., 2015; Kumar et al.,

2017) is to generate reservoir simulation models that adequately quantify

multiparameter static and dynamic uncertainties with associated risks and

to render better predictive value for the field and asset development plan-

ning. Fig. 6.8 shows a schematic representation of a big-loop workflow.

6.4 OPTIMIZATION OF MODERN DOF ASSETS

This section outlines examples and applications of optimizing DOF
assets using IAM workflows that integrate subsurface reservoir models

and surface production network models. With rapidly expanding asset com-

plexity driven by the size of the models and vast amounts of acquired and

processed data, the major challenge of IAM still represents the coupling

of the dynamic reservoir simulation model and the surface facilities into a

single, integrated platform that allows the simultaneous simulation of the

entire oil and gas system, “all in-one” and forecasts the asset’s performance

for the purpose of management.

The modern DOF system requires state-of-the art systems integration

that can, for example, diagnose and address the operational challenges such

https://doi.org/10.2118/119098-MS


Fig. 6.8 Schematic representation of the big-loop conceptual workflow.
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as monitor pressure distribution between subsurface and surface, identify

system bottlenecks and backpressures, understand system constraints, man-

age mixing of fluids, and enable flow assurance (Ursini et al., 2010). In addi-

tion, the state-of-the-art IAM system should incorporate technologies to

quantify effectively model uncertainties to provide an optimization and

decision-making framework for managing the asset under uncertainty.

In practice, the modern IAM workflows can be classified in several cat-

egories that mainly differ in how the subsurface modeling applications com-

municate with surface network systems in terms of process automation, level

of user interactivity, and the types of application coupling. These systems are

applied to a variety of different field applications: oil, gas, stacked pay, mul-

tiple reservoirs, offshore and onshore fields, compositional and black oil, and

different recovery processes:

• Flow table coupling. This workflow uses the tables of flowing bottom-hole

pressure (BHP) as a function of flow rate for varying parameters such as

gas-oil ratio (GOR), wellhead pressure (WHP), water cut (WCUT), lift

gas, and pressure-volume-temperature (PVT) properties for interpola-

tion by well models. The tables are set up to capture liquid rate changes

with pump frequency or gas lift rate. The simulators use each well table



226 Intelligent Digital Oil and Gas Fields
during the entire life span of thewell or completion event (e.g., depletion

period and artificial lift completion). The simulator can run quickly but

may sacrifice some accuracy related to production rate changes.

• Static coupling. This workflow uses a priori generation of reservoir per-

formance tables comprising oil, gas, and water production rate forecasts

over the desired time horizon for all production wells, by executing the

reservoir model independently, and then providing the predicted rates as

boundary conditions for the time-dependent execution of the surface

models. Fig. 6.9 shows an example of a workflow with static coupling.

This is the most commonly used couplingmode by operators today but is

less accurate than dynamic coupling.

• Dynamic coupling (loose coupling). The reservoir and surface models are

executed synchronously. At every time step, the reservoir model first

predicts the production rates, which are then used by the surface models

to generate the well boundaries for the execution of the reservoir model

at the subsequent time step. The surface model predicts the flowing

BHP (fBHP) (based on surface pressure) and the predicted value is

imposed over the value to the simulator as a starting point for the

convergence iteration. The simulator calculates a sandface pressure

which meets the fBHP with an acceptable error. Fig. 6.10 shows an

example of a workflow with dynamic (loose) coupling.

• Tight iterative coupling. Extends the dynamic coupling method described

above to a more rigorous solution through an iterative approach. At

every time step, the solution iterates between the pressure and flow

boundaries at the sandface or at the wellhead, until convergence is

achieved when the predicted pressure error between the two simulators
Fig. 6.9 An example of IAM workflow with static coupling of reservoir simulation and
surface network models.
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remains below a specified threshold. This coupling mode requires exten-

sive computational hardware and CPU time. In our experience, using

static coupling, a black oil reservoir model with 10 wells (20years of his-

tory) and using 8 CPU processors could run up to 10min, dynamic cou-

pling will run 100min, and tight coupling could run >1000min. Of

course as technology improves the computational time decreases. A few

examples of coupled simulators appear in the following: Fleming and

Wang, 2017; Vanderheyden et al., 2016; and Khedr et al., 2012.

Fig. 6.11 compares production forecasts of oil, gas, and water rates generated

by static and dynamic coupling of a reservoir simulator and a surface network

system. As indicated, the production forecasts (e.g., oil, gas, and water rates)

generated by dynamic coupling may be significantly different from the fore-

casts generated by the static coupling, based on the use of traditional rate

forecast tables. The primary advantage of the dynamic coupling over static

coupling is that the integrated reservoir simulation model is dynamically

updated to reflect the constraints imposed by field operations over time.

The value of dynamically incorporating the effect of changing surface

conditions on the reservoir model is that the solution generates a more real-

istic and accurate physical model of actual field constraints. As observed in

Fig. 6.12, the simulation results using static coupling is slightly off from
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historical data, particularly at the beginning of the field exploitation. The

effect of surface constraints on the predicted production forecast is more

pronounced when:

• the field is producing at or near capacity,

• field operating conditions are changing, or

• the simulation is over an extended duration.

The step forward in development of modern IAM workflows is the intro-

duction of tight iterative coupling between the subsurface model and surface

network workflow components; Fig. 6.12 shows an example. One novel

aspect of this IAM workflow is the seamless integration of components,

in the green-shaded rectangle, which are:

• Data aggregation. This module provides services for gathering and sum-

marizing the data along with techniques for data quality assurance and

quality control (QA/QC), in preparation for (statistical) analysis. Such

techniques may include data cleaning and manipulation with removal

of statistical outliers, imputation, and interpolation of missing

data, etc.

• Visualization. This module provides data visualization in real time, which

may include forecast, profiles, trends, and vertical flow performance

(VFP) data. The visualization may have color maps of saturation, pres-

sure, and composition, contours, and/or streamlines or flow vectors.

• Workflow process controller. This module provides interface and control

platform for dynamic coupling between reservoir simulation models

and surface network models. This workflow is designed to control well

operations such as those using artificial lift pumps, automated surface

chokes, downhole ICVs, etc. It also includes recovery process manage-

ment such as water, gas, or chemical injection. Note that the production

predictions are ultimately used in surface processing and economic

models, which are not covered in detail here.

The value of deploying the IAM workflow with tight iterative coupling is

significant; the workflow:

• Improves the integration efficiency by streamlining processes across mul-

tiple disciplines (reservoir, production, facilities, planning).

• Creates a more realistic production forecast prediction for planning and

economics.

• Serves as an efficient, robust, flexible subsurface-to-surface integration

building block for subsequent production optimization workflows;

whatever event happens at surface affects the reservoir condition and

vice versa.



231Integrated Asset Management and Optimization Workflows
• Facilitates development of “institutionalized” and “standardized” auto-

mated workflows.

• Serves as the integration platform where models can be executed and

saved to a database for later retrieval, comparison, analysis, and

decision-making.
6.4.1 Applications of IAM and Associated Work Processes
This section outlines a few examples of applications of IAMod workflows

and practices and their transformation to management and optimization

of large-scale assets. The primary objective of an IAM process is to formulate

an optimized, cost-effective development plan. This objective is primarily

achieved through the integration of realistic and variable production profiles

and taking into account the impact of system backpressure and real-time

changes in the operating conditions. Moreover, the IAM practice acts to

quantify and reduce uncertainty in the design data in terms of planned pro-

duction for facility maintenance and future upgrading and replacements.

Last but not the least, the IAM framework provides a platform for an effi-

cient and timely production optimization under different development

schemes. When an IAMod workflow is deployed within a broader frame-

work that involves monitoring, analysis, and decision-making to optimize

business-performance results and key indicators, the IAMod transforms

the operation to integrated asset management (IAM).

In Al Marzouqi et al. (2016), the IAM framework is defined as a

“collection of building blocks, processes, and workflows from surveillance

strategy to opportunity generation and execution monitoring.” The IAM is

not only the simulation technologies discussed so far in this section, but also

the multidiscipline interactions and processes that use the technology effec-

tively for decision-making. Thus, based on the experience and lessons

learned in implementing IAM practices across an operator’s assets in a

2-year period, Al Marzouqi et al. (2016) present a complex framework of

6 blocks, 18 processes, and 29 workflows. The operational benefits are seen

through shortening the learning curves of new employees, increased pro-

ductivity, more efficient key performance indicator (KPI) validation, and

improved consistency of deliverables, where process standardization plays

a major role. In this analogy, for example, the implementation of detailed

responsible-accountable-consulted-informed (RACI) charts/matrices is

warranted to properly manage human potential and understand complex

relationships and governance across the organization and disciplines.
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This type of effort is required to assign stakeholders who are responsible for

the execution of assignments, to assure accountability, and to secure sustain-

ability of collaborative DOF projects.

Many operators as well as service providers consider data IAM architec-

ture as another pillar in support of DOF assets. For end users, the IAM

framework should provide a transparent, easy-to-use user interface for

defining and executing a variety of workflows from reservoir simulation

to economic evaluation and optimization (Soma et al., 2006). At the same

time, from the software implementation perspective, the IAM framework

should facilitate the seamless interaction of diverse and independent appli-

cations that are responsible for various tasks in the workflow. To emphasize

the relevance of data architecture, Soma et al. (2006) and Kozman (2004)

highlight data composition, abstraction and federation, and visual aggrega-

tion as vital building blocks in a service-oriented IAM architecture.

Khedr et al. (2009) present the IAMworkflow for optimizing large-scale

artificial lift (AL) and enhanced oil recovery (EOR) strategies to one of the

largest offshore fields in the world, covering an areal extent of 1200km2.

The field combines three major reservoirs that produce from approximately

450 single- and dual-string wells. The field was initially developed with

peripheral waterflooding strategy, and then converted into a five-spot pat-

tern water-injection scheme. The development plan combines intensive

infill drilling and applications of AL and EOR to different reservoir areas,

including water injection (WI), water alternate gas (WAG), and gas injection

(GI).

The deployed IAM platform couples industry-standard, domain-specific

reservoir and surface network simulation applications using an explicit net-

work balancing algorithm (Ghorayeb et al., 2003) that is well suited for solv-

ing optimization problems with a large number of wells (>500). The IAM

coupling platform uses a general-purpose workflow process controller

(WPC) that supports various coupling schemes, where the purpose of a pro-

cess controller is to keep an external network balanced with reservoir

simulation(s) as the reservoir conditions evolve:

• Tight, iteratively lagged coupling scheme, when the network couples to a sin-

gle reservoir model: The coupling points may be individual well tubing

heads or well groups. The simulator determines the pressure drop from

the well bottom hole to the tubing head using the precalculated VFP

tables. The list of coupling points may be extended to include the well

bottom hole. Fig. 6.12 shows an example of generic tight, iterative
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coupling workflow.When interfacing with parallel and distributed com-

puting systems, the controller carries dual functionality:
Fig.
with
200
Fac
– Constructs the message packets and forwards them to the distributed

system annex which contains a set of parallel virtual machine (PVM)

system calls to communicate with the running PVM daemon.

– Communicates with the network and reservoir simulator through an

open interface, which contains the PVM connectivity and controls

the communication between the host computers.
Fig. 6.13 shows an example of a tight coupling architecture extended with

PVM connectivity.

• Loose-coupling scheme, at specific time intervals, when two or more reser-

voir simulators are coupled to a network with common global con-

straints: The workflow allocates global production and injection

targets to the principal groups of surface networks at the start of each syn-

chronization step. When the synchronization steps overlap with the res-

ervoir simulation time-steps, the loose-coupling scheme becomes an

explicit-coupling scheme.

• Explicit coupling, when the balancing between reservoir simulator and

surface network is performed exactly at the start of each simulation

time-step. Fig. 6.10 above shows an example of an explicit-coupling

scheme.

The IAMworkflow was deployed and extensively validated in five scenarios

(Khedr et al., 2009) according to the business plan constraints that mandate
6.13 Architecture of the coupled reservoir simulation and surface network system
PVM connectivity. (Modified from Ghorayeb, K., Holmes, J., Torrens, R., Grewal, B.,

3. A General Purpose Controller for Coupling Multiple Reservoir Simulations and Surface
ility Networks. SPE-79702-MS. https://doi.org/10.2118/79702-MS.)

https://doi.org/10.2118/79702-MS
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an increase of 50% in daily field production over a 6-year period. When the

increase has been achieved, the requirement is to maintain the plateau for

25 years before the field is allowed to go into decline. The validation process

demonstrated that the IAM approach to modeling subsurface and surface

components is crucial, particularly when more than one reservoir with dif-

ferent potentials share a common surface facility. For example, the study

indicates that the large-scale WAG/GI application to wells producing

through wellhead towers and extensive pipeline networks would be imprac-

tical to maintain the plateau. On the other hand, a new island-concept facil-

ity design represents a viable and sustainable mitigation strategy. The results

of the IAMprocess have thus helped tomake better decisions and reduce risk

for commissioning a new facility layout and optimize the AL and displace-

ment mechanisms.

Recently, Carvajal et al. (2010) introduced a holistic automated

workflow for reservoir production optimization. They deploy a stochastic

MIGA optimization algorithm and propose a novel definition of the opti-

mum point, a so-called holistic point, which represents an enhancement of

a traditional global optimum point: while the latter corresponds to optimi-

zation design where one or more modes can violate optimization con-

straints, the holistic optimum point honors all optimization constraints

and renders no violations. The holistic optimization workflow is applied

to two optimization problems: (a) fracture modeling and optimization

(FMO), where multiobjective function is defined to maximize NPV and

gas production rate and to minimize the fracture job costs and

(b) reservoir development under uncertainty (RDU), where the optimiza-

tion corresponds to a history matching problem to minimize the misfit in

field-level reservoir pressure by parameterizing aquifer properties, such as

aquifer permeability and thickness, outer/inner radius, and water

encroachment angle. The schematic rendering of FMO and RDU holistic

optimization workflows is given in Fig. 6.14.

The holistic FMOworkflow integrates fracture design with well and res-

ervoir modeling and clearly demonstrates the holistic optimal point in

approx. 120 iterations of MIGA optimization. The holistic RDUworkflow

integrates material balance, well, and reservoir simulation in uncertainty

quantification scheme, does not reach a holistic optimal point, despite per-

formed 2600 MIGA iterations; however, it still captures comprehensive risk

and uncertainty information and increases the confidence in production

profiles for the field development plan and initial reserves estimation.
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Strobel et al. (2012) further advance the holistic optimization approach to

enable agile and responsive automation of hydraulic fracture design study

using the Microsoft Upstream Reference Architecture (MURA) initiative

to standardize IT tasks while Carvajal et al. (2016) develop an advanced

holistic workflow for the optimization of complex fracture network

(CFN) properties by integrating production data profiles, standard well

completion and stimulation properties, micro-seismic information and

real-time information from fiber optics such as distributed temperature sen-

sors (DTS) and distributed acoustic sensors (DAS) to estimate the geo-

mechanical parameters that affect the fracture geometry and productivity.

https://doi.org/10.2118/130205-MS
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6.4.2 Challenges and Ways Forward
In the last decade, IAM frameworks have evolved from being a promising

approach for the systematic management of oil and gas assets to sophisticated

and complex workflows that have delivered value in assets worldwide, facil-

itating high-level optimization and decision support in real-time operational

domains. However, IAM process and workflows may involve considerable

engineer time, human resources, and computer services, and thus it may take

several weeks to find a global optimum solution. Bottom-line, there are sev-

eral types of optimization techniques but these may not be completely acces-

sible or unified and thus require a lot of knowledge before implementing.

With active expansion and implementation of DOF operations, IAM prac-

tices are now transforming into computationally and operationally intensive

environments that involve “continuous series of decisions based on multiple

criteria including safety, environmental policy, component reliability, effi-

cient capital and operating expenditures and revenue” (Zhang et al., 2006).

However, challenges still exist that must be addressed before IAM

workflows become mainstream components of DOF operations. Here’s

what we see as the top five challenges:

1. The engineering and management organizations need to efficiently

adapt the advanced modeling and analysis IAMod environments where

the relevant groups and teams will have access to all the data and models

at all times.

2. The IAM framework requires a substantial effort and multidisciplinary

expertise to develop high quality and accurate models for the field life

cycle. Organizations must validate the value of IAM investment and

resource utilization toward field performance. Most of the oil and gas

operating companies are still overly compartmentalized in their opera-

tional and business models to facilitate an efficient execution of IAM

workflows. As emphasized in Cosentino (2001), the process of integrat-

ing different disciplines to perform an integrated reservoir study, requires

a “change of focus.” An example of a successful IAM practice that lever-

ages and deploys the studies decision synergy (SDS) can be found in

Elrafie et al. (2010). This practice represents an efficient unification plat-

form that improves the quality of reservoir modeling through the cross-

discipline integration of geology, characterization, engineering, history

matching, and prediction. The benefits from its execution are gained

through improved reserve quantification and optimized field develop-

ment planning decisions.

3. The data required to build integrated asset models are often stored in dis-

parate locations, are in structured and unstructured formats, are not
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linked to a common database, span long production and acquisition

times, and have not been adequately and consistently quality checked.

4. For large-scale IAM projects, the reservoir simulation run times can still

represent a major bottleneck. The fine-scale integrated reservoir simula-

tionmodels can easily exceed 100million grid cells. Evenwhen upscaled,

the model size usually remains well above a few tens of millions grid cells.

As recently indicated in Maucec et al. (2017), an ensemble-based uncer-

tainty quantification (UQ) and AHMworkflow alone, embedded in the

large-scale IAM project (grid-size: approximately 34 million cells;

24 uncertainty scenarios; production period: approximately 55years)

can easily require the simulation model to run sequentially over

20–30h, using thousands ofCPUcores. Ideally, theUQ-IAMworkflows

in large-scale IAM projects will be executed on dedicated HPC frame-

works, which in practice can be frequently difficult to achieve.

5. Last but not the least, demonstrating the value of IAM application in

large-scale mature fields can sometimes be quite challenging. IAM in

mature fields can be considered to have less analytical value because of

lowering operating surface pressures, already existing facilities, known

well performance, and well-described subsurface geology. However,

when applied to mature fields, the IAMworkflows can aid in more accu-

rate estimation of the remaining reserves, reduce risks through better

understanding of the interaction between subsurface and surface, indi-

cate real opportunities for optimization scenarios, and facilitate better

decisions for field development planning or well operations.

The push toward the DOF of the future will require a new generation of

IAM workflows that seamlessly integrate the plethora of software tools

for modeling, simulation, prediction, and optimization of an asset’s perfor-

mance. Moreover, the next-generation IAM must be able to operate under

the extreme conditions of integrating unprecedented complexity of data in

terms of the volume and transfer speed. And finally, teams will have to orga-

nize in new ways around the processes.

We have investigated several IAM concepts that may be considered the

future of IAMworkflows for DOF applications. Zhang et al. (2006) describe

the model-based framework for oil production forecasting and optimiza-

tion. Some of the key objectives of the proposed design are: generic, reus-

able, and flexible IAM framework architecture; adoption of a variety of assets

and workflows; centralization and transparency of a common database; uni-

fication of information that handles the disparity in data formats; tool inte-

gration through loose coupling; and standards-based implementation.

Zhang et al. (2006) propose the use of domain-specific modeling language
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based on Unified Modeling Language (UML), which provides a common,

standardized vocabulary for domain experts to define and understand the

asset model. In the framework of UML, they propose a template tool to pro-

vide the scenario management with a mechanism to automatically configure

and invoke the forecasting tool for a particular scenario with underlying

uncertainty modeling.

Bravo et al. (2011) further acknowledge that the challenges in resource

negotiation, ineffective communication language, and delayed decision-

making protocols can have a deteriorating effect on the execution of

today’s IAM workflows. They propose addressing these challenges by

implementing distributed artificial intelligence (AI)-based architecture,

designed for automated production management, which they call an inte-

grated production management architecture (IPMA). The IPMA frame-

work has three layers (see Fig. 6.15):

• Connectivity layer: defines data acquisition, treatment, and interpretation

mechanisms.

• Semantic layer: consists of an ontological framework that facilitates effec-

tive information interchange between production applications. An

ontological framework provides a robust and evolving vocabulary that
Fig. 6.15 Integrated production management architecture (IPMA). (Modified from
Bravo, C., Saputelli, L., Castro. J.A., Rios, A., Rivas, F., Aguilar-Martin, J., 2011. Automation
of the Oilfield Asset via an Artificial Intelligence (AI)-Based Integrated Production Manage-
ment Architecture (IPMA). SPE-144334-MS. https://doi.org/10.2118/144334-MS.)

https://doi.org/10.2118/144334-MS


Fig. 6.16 Example of an oil production data ontology definition: generic framework of
relationships.
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combines terms (or nodes) and relationships that connect the terms/

nodes. An ontological framework is usually represented in the form

of a directed acyclic graph. Ontology evolves with new knowledge and

technology and poses no need for update schema, database revisions, etc.

Fig. 6.16 shows an example of a production data ontology framework.

• Management layer: defines intelligent workflow automation mechanisms

based on AI techniques and oilfield multiagent systems (MAS) (Bravo

et al., 2011) that describe the dialog relations between processes, produc-

tion unit agents, and service agents.

Bravo et al. (2011) deploy and validate the IPMA workflow on a virtual

oilfield, based on a commercial integrated production model and history-

matched data. The experimental oilfield has three reservoirs, eight oil wells

and one flow station. The simulation results proved the efficient integral per-

formance of IPMA layers and provided an effective solution to the produc-

tion optimization problem. The benefits of IPMA architecture are seen

through:

• Standardized mechanism to communicate the process state information

sources.

• Introduction and formulation of an oil and gas production data ontology

for the information exchange between production applications.

• Decrease in information search time.

• Deployment of a flexible mechanism for business-process automation.
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This chapter introduces concepts associated with smart well technology and

its application to maximize the oil-recovery factor and improve financial

indicators. In 1997, the first successful “smart well” was installed in a well

in the Norwegian sector of the North Sea. What made the well “smart”?

The completion incorporated permanently installed, down-hole pressure

and temperature measurements integrated with remotely controlled,

high-fidelity flow-control valves. Konopczynski and Ajayi (2008) stated that
igent Digital Oil and Gas Fields © 2018 Elsevier Inc.
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this event marked the genesis of the intelligent well era. (Note: “Smart well”

and “intelligent well” are used interchangeably.)

Over the past decade, the use of intelligent well technology in many geo-

graphic regions has “crossed the technology adoption chasm,” as oil and gas

producers are increasingly using this technology in field developments to

improve reservoir management, which is the main benefit that intelligent

well technology delivers. Current technical challenges focus on new and

modified mechanical systems for the valve configurations and alternatives

such as interval control devices and the control strategies to operate the

mechanics for optimal reservoir management such as water or gas

breakthrough. This chapter explains technical aspects of optimizing oil

production with smart wells.
7.1 INTRODUCTION TO SMART WELLS

A smart well can be defined as a well that uses mechanical devices,
which allow control on pressure and rates down-hole, to optimize produc-

tion performance and ultimately improve oil reservoir recovery. The smart

wells are installed with down-hole devices, that is, mechanical and electronic

equipment that enables operators to control the wells remotely, without

intervention using rigs or coiled tubing. A fundamental type of equipment

used in smart wells is a down-hole mechanical valve called an interval

control valve (ICV), which is preset with orifices with different hole sizes.

The ICV is activated using an electronic pulse connected to an electrical

cable embedded with a feedthrough packer. Fig. 7.1 shows the main

components of a smart well.

During 2016, a total of 2200 wells had been completed with installations

of flow-control devices (with andwithout sensing). Ajayi and Konopczynski

(2008) compiled the value of smart wells frommany fields around the world.

They concluded that 9% of total oil recovery could be added by a single
Fig. 7.1 Main components of a smart well.
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smart well. They reported that up to 25% oil-recovery factor could be added

by full field implementation of smart wells. The demonstrated economic

value generated by smart wells includes the following.

• Saudi Aramco: A maximum reservoir contact project using multilateral

wells in South Shaybah Field. The project features a multibranch well

with a total of 12km of drilled holes using five segments controlled with

ICVs. The well produced 12,000 b/d when compared with a traditional

horizontal well of 1km producing 3000 b/d.

• Statoil: A subsea water alternating gas (WAG) project using 10 wells to

inject gas and water, alternating mode, in the Snorre B Field. The water

and gas breakthrough were delayed by 6months, on average, per pro-

ducer well, keeping production plateau for longer time than expected

without smart wells. The ICVs were installed to control water injection;

whereas gas injection was controlled by time.

• Kuwait Oil Company (KOC): Onshore stacked multilateral wells with

an ICV per branch and 20 internal control devices (ICD) in theMinagish

Field. The well had 5000 ft lateral section for each branch using an ICV

port per lateral. The water cut was reduced from 75% to 25% in a mature

water-flooded reservoir.

The main components of a smart well (Fig. 7.2) can be generalized as

follows:

• Down-hole flow-control devices: this category can be grouped as a series

of valves such as ICVs, which are remote-controlled mechanism with

variable orifice size, and ICDs, which are preset mechanisms with fixed

orifices.

• Down-hole sensors: electronic or mechanical devices that send signals to

the transmitters.

• Transmitters: electronic devices that send different signals to the

controllers.

• Isolation packers.
Fig. 7.2 Main components of a generic smart well, packer to isolate section, sensors,
and interval control valve (ICV).
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7.2 TYPES OF DOWN-HOLE VALVES

Service companies have created different types of control valves,
which are classified based on their structure and main functions. The main

categories include passive, autonomous passive, and reactive-actionable

valves, which are all explained in this section.

7.2.1 Passive Valves
This classification includes ICDs, which restrict flow by creating additional

flow rate-dependent pressure drops. The ICD generates an equalized pressure

drop across the horizontal section avoiding early water- or gas-flow break-

through. The ICD is preinstalled at the surface with the completion jewelry;

once installed the orifices cannot be adjusted through time. It is called

“passive” because there is no adjustment available on the orifice geometry.

However, the potential benefit of an ICD is that this mechanism creates a

homogenous pressure drop, equalizing the flowing bottom-hole pressure

across the lateral length. Fig. 7.3 shows a schematic example of an oil well

completion with and without ICDs which illustrates the reduction of gas

or water coning by equalizing pressure distribution along the lateral.

7.2.2 Autonomous Passive Valves
A relatively new breakthrough technology developed by different service

companies, the autonomous ICD (AICD) was created to bypass the water

and gas by using centrifugation principle or differential density. This new

tool is a self-regulating flow control device capable of controlling the fluids

flowing through internal discs. Fig. 7.4 shows an example of an AICD,

which shows oil and water flowing together through the ICD orifice; grav-

ity and differential density cause oil to go directly to the outlet of the ICD,
Fig. 7.3 Comparison of water or gas front with or without ICD completion.



Fig. 7.4 Mathematical model representation of fluidic diode ICD (prototype of an AICD)
with oil and water flowing through the internal orifice. Left figure shows water flowing
at high velocity and high differential pressure. Right figure shows oil flowing at low
velocity and low differential pressure. Note water flow takes larger pathway (inner circle)
whereas oil takes shorter path. The experiment was carried out only single phase. (Taken
from Greci, S., Least, B., Tayloe, G., 2014. Testing results: erosion testing confirms the reli-
ability of the fluidic diode type autonomous inflow control device. In: SPE-172077-MS.
https://doi.org/10.2118/172077-MS, with permission.)
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whereas water goes around in each inner circle (longer path) and thus the

mass flow rate of water is restricted. Greci et al. (2014) have carried out

single-phase experiment by passing water or oil through internal orifice at

different pressure drop showing changes in flow paths (Fig. 7.4).
7.2.3 Reactive-Actionable Valves
This category includes the ICV, which allows down-hole control of the well

flowby turning a valve on or off, or by gradually controlling the choke size posi-

tion.Generally, an ICVcanbe configured through function, actuation, and size.

ICV function:

• Binary mode (on or off ). Each segment of a well could be 100% closed or

100% open.

• Discrete multi-position: the most typical ICV. The device is set up with

a movable collar, orifice (with different sizes), and static nozzle.

• High resolution with infinite variability: provides variable flow control

(choking) with a customizable flow trim element. This flow trim ele-

ment, along with pressure and temperature measurements, enables the

calculation of accurate flow estimates. There are an infinite number of

choke size positions between fully closed and its maximum open orifice

position that can be chosen remotely by an operator.

ICV actuation:

• direct mechanical actuation (hydraulic balanced)

• hydraulic-spring return
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• electric hydraulics

• mechanical override facility

ICV size:

• completion casing size for 6–1/2 in., 5–1/2 in., 4–1/2 in., and 3–1/2 in.
• hydraulic-spring return

• electric hydraulics

• mechanical override facility
7.3 SURFACE DATA ACQUISITION AND CONTROL

The down-hole equipment integrated by cables, connectors, gauges,
and terminators are connected through the tubing to the control panel at the

well surface. Fig. 7.5 shows the main configuration to acquire data and con-

trol ICV position for supervisory control and data acquisition (SCADA).

The control panel receives pressure and temperature data in real time for

the well segments completed with ICVs. Inside the control panel, the

RTU sends the pressure and temperature signal to a SCADA system. Pro-

duction engineers utilize a flow rate-based model and infer which segment is

flowing, water, oil, or gas. Engineers decide which valve needs to be grad-

ually controlled and send back a signal to the control panel to change the

down-hole choke size.
Fig. 7.5 Surface data acquisition and control using smart wells with ICV control.
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7.4 SMART WELL APPLICATIONS

Control inflow of gas and water fluids: One of the main objectives of smart
wells is to control the early water or gas breakthrough for primary or sec-

ondary recovery. Horizontal wells are ideal candidates because water or

gas is mainly produced at the heel of well (due to the high-pressure drop).

An ICV or ICD helps reduce the pressure drop or at least equalize the pres-

sure across the lateral section. Water or gas can be controlled through time

per segment in the lateral section.

Control commingling wells: Produce multiple zones to produce vertical

wells. Smart wells enable exploitation of uneconomical production (one

well per interval) and acceleration of reserves. It is a practice that is very well

accepted by many national oil companies (NOC). The reserves per each res-

ervoir can be drained using one common wellbore but controlled indepen-

dently by using an ICV and packer per interval, as shown in Fig. 7.6. Any

individual layer that has water or gas breakthrough can be shut off or

controlled, which maintains overall oil cut.

Auto-gas lift injection: A gas interval zone in the upper section and oil in a

lower section can easily be completed using smart wells. An ICV can be set

up in the upper layers to control the necessary gas volume to lift the oil to the

surface. Also, the water zone in the upper section can be reinjected to the

lower section (with the oil) to reenergize the reservoir zone; this method is

called a controlled water-dump flood. Fig. 7.7 (left) shows typical examples

of auto-gas lift controlled at the surface.

EOR/IOR optimization: This is an area where smart wells could have a

significant contribution to increase the oil-recovery factor. With an
Fig. 7.6 Application of a smart well used to produce independent reservoir layers; the
production from each layer is commingled and produced through a single well.



Fig. 7.7 (Left) Application of smart wells using the auto-gas lift injection; the gas in the
upper section is controlled to lift oil through the tubing. (Right) An application of smart
wells for an EOR process.
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appropriate design, the ICVs are set up to control the contribution per seg-

ment in the lateral, particularly for those intervals with high permeability.

The ICV orifice can be reduced or shutoff to avoid excessive water/gas pro-

duction, or, using an optimized 3D reservoir model, to predict water break-

through and then control the choke size to prevent the early water

breakthrough without well intervention.

Another important application is using ICVs in well injectors. It has been

demonstrated that smart wells can distribute the total water distribution to

focus the injection in upswept zones. Fig. 7.7 (right) shows how an ICV can

be used to maximize the oil displacement from the bottom to the top by

injecting water to the bottom or gas to top using this technique.

Monitoring production in real time: Smart wells equipped with pressure and

temperature sensors can analyze pressure losses, manage sandface pressure,

and minimize the shut-in period for pressure buildup tests, and instanta-

neously capture data for unplanned well shut-in. As a result, smart wells help

to reduce production downtime and accelerate production. Completion

intervals with high water cut or GOR (unwanted) can be turned off

temporarily or permanently.

7.5 SMART WELL PERFORMANCE

Usually, oil companies use production logging tools (PLTs) to evalu-
ate and calibrate ICV valves. However, the cost of running a PLT in hor-

izontal wells is so expensive that sometimes a virtual alternative is used—one



Table 7.1 Smart Well Experiment Showing Production Test Closing and Opening Three
Valves per Experimental Design (Test No. Shaded Column Header)

Smart Well
Test

Regular 
Test Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Online 100% 

Open

Duration, h 24 4 4 4 4 4 4 24

Interval 1 On On On Off Off Off On On

Interval 2 On On Off On Off On Off On

Interval 3 On Off On On On Off Off On

Oil STB/d

Water Bbls/d

Gas Mscf/d

Qo 1,500 

Qw 600 

Qg 2,000

Qo 1,250 

Qw 300 

Qg 1,680

Qo 800 

Qw 300 

Qg 1,066

Qo 600 

Qw 500 

Qg 1,366

Qo 350 

Qw 320

Qg 480

Qo 820 

Qw 380 

Qg 1,020

Qo 560 

Qw 150 

Qg 728

Qo 1,450

Qw 640

Qg 1,780

Total Liquid
STB/d

2,100 1,550 1,100 1,040 670 1,200 710 2,090
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that requires implementing practical production tests using real-time data

(such as pressure and temperature data) to evaluate dynamic wellbore and

reservoir parameters (time-dependent properties), such as water saturation

or pressure depletion. For these cases, we provide a technique to substitute

a typical PLT with virtual PLT data, which is described in this section.
7.5.1 Production Test for Smart Wells
An experiment in an oil well in the Middle East with reservoir pressure

almost constant (because of water injection) was used to diagnose the pro-

duction influx per interval and detect offensive intervals in high water cut.

The oil well produced 2100 STB/d of liquid, 1500 STB/d of oil, with a

water cut of 28%. The water cut in the well suddenly increased from

10% to 28% in less than 30days. The test was conducted with an experimen-

tal design of full-open (on) and full-closed (off ) valve options on three inter-

vals as described in Table 7.1 (where each column is a test protocol for the

valves, shaded). The test duration per phase was 4h per period (until pressure

stabilized) for a total of 24h.

Table 7.1 shows that interval 2 has the highest water rate with a water cut

of 32% (380/1200, Test 4) and interval 1 has a 21% water cut. The test

reveals that the intervals do not behave equally when production is

commingled or producing alone: it is a case of “1+1 6¼2”. When the inter-

vals produce in commingle mode, the flowing bottom-hole pressure is dom-

inated by that interval with less pressure drop (Pr � Pwf). This test is

frequently used to provide additional well performance analysis and

evaluate matrix conductivity (kh), skin factor (S), and static bottom-hole
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pressure (Pe
∗) in each segment. Also the test can be useful to calibrate a virtual

PLT data.

7.5.2 Virtual PLT
Wireline PLTs are mechanical and electronical devices, such as turbines or

spinners, which rotate at the fluid flow velocity. The PLT is used to register

the fluid velocity and the fluid pressure and temperature per interval. The

tool is calibrated using PVT data and down-hole tubular data to estimate

the fluid flux per interval. The tools are frequently logged to measure the

influx per interval and identify intervals with unwanted fluids or intervals

with very low production targets (Fig. 7.8). Running a PLT in a horizontal

section can be an expensive and risky operation. Smart wells are commonly

equipped with pressure and temperature gauges at each ICV, which can

reduce the number of well interventions needed to run PLTs. In this sce-

nario, a steady-state hydraulic simulator can be used to evaluate the velocity,

pressure drop, and production influx per interval and therefore identify the

flow regime to create a virtual PLT based on a physical model. In this sense,

the model should be set up with rock and PVT properties across the lateral
34
00

35
00

36
00

37
00

38
00

39
00

40
00

Fig. 7.8 Representation of a virtual PLT in a horizontal well.
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section. More importantly, the hydraulic simulator should be capable of

computing the effect of the ICV by using a valve flow coefficient (Cv) that

has been measured in lab tests for multi- and single-phase flow.

To simulate and reproduce physical models that interact with smart well

completions, an automated model-calibration workflow that optimizes

down-hole valve settings for maximized oil-recovery factor can be devel-

oped. In short, such an automated workflow enables reactive and proactive

decisions to control unwanted production (water/gas, solids, fines, etc.)

from the smart well. The objective of this workflow is to allow the data

exchange and iteration between subsurface and surface models—such as

the reservoir simulator, hydraulic completions, and nodal wellbore and net-

work analysis—and to periodically update the regional/stor reservoir model

associated with the drainage area of the smart well completion. Moreover,

the workflow is required to model a semi-analytical wellbore model to per-

form the optimization of vertical lift performance (VLP). Such a workflow

needs to facilitate the following engineering functionalities:

• Receive, update, and allocate the real-time production data from the

remote-controlled system.

• Perform multilevel matching and calibration of a history-matched

simulation model with observed pressures and rates at the smart well

completion interval, well tubing, and surface production.

• Execute reactive control by optimizing the down-hole valve setting in

response to local data and predicted short-term fluids behavior.

• Execute proactive control by optimizing the down-hole valve settings at

multiple intervals to maximize oil recovery using both local nodal

properties and simulated predictions.

An example of an automated workflow for smart well calibration is given in

Fig. 7.9.

Dynamic calibration of a simulation model with observed pressures and

rates at the smart well completion level (i.e., per individual segment of the

ICV) is enabled through design, integration, and reconciliation of a virtual

PLT profile, which represents a probability distribution of a parameterized

reservoir property (such as permeability, water saturation, etc.). Such a dis-

tribution is derived as discrete conditional probability of reservoir property

(m) given the fluid flow rate (f ) per perforation interval (i) of the ICV

segment (s) of a smart well (w) as expressed in Eq. (7.1):

emw
s, i|f ¼Prob M ¼ m̂w

s j F ¼ f
� �¼Prob F ¼ f \M ¼ m̂w

s

� �
Prob F ¼ fð Þ (7.1)



Fig. 7.9 Example of an automated workflow for smart well calibration by generating a
virtual PLT profile.
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where M and F correspond to overall sampling domains of the reservoir

model property and fluid flow, respectively. The m̂ symbol corresponds

to the average (mean) value of model property m in Eq. (7.2). The sample

from such conditional distribution, corresponding to “New Model Property

Sample” in Fig. 7.9 becomes proportional to the fluid flow density in the

ICV segment:

emw
s, i∝

X
i, s

fi�Δið Þ
F� I

(7.2)

where Δ i corresponds to the width of perforation interval i and I is the total

width of perforations per ICV segment. An optimization algorithm
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iteratively samples emw
s, i and minimizes the misfit between the dynamic smart

well response and the observed production profile (e.g., water cut, pressure,

GOR) that renders, for example, the modeled liquid rate profile that

matches the well completion profile from the ICV segmentation. By further

calculating the water flow rates per ICV segment, any type of water flooding

optimization can be facilitated. To quantify the uncertainty in the smart well

model response (i.e., the virtual PLT profile), the optimization method can

further be integrated into multiple stochastic realizations of reservoir

properties.

7.6 SMART WELL MODELING AND CONTROL

For wellbore modeling, the oil and gas well deliverability per segment
can be calculated using inflow and outflow well performance analysis. Most

of the commercial simulators can reproduce the effect of an ICV in a

wellbore. Konopczynski and Ajayi (2004) have described the fundamental

concepts to evaluate the well performance for single- or multiple-zone res-

ervoirs using ICVs. The IPR and Vogel expressions can be easily used under

the same assumptions that are used under radial and Darcy’s flow conditions.

We show a methodology to estimate ICV performance as follows:

• Estimate maximum well rate potential from an IPR/Vogel model.

• Productivity index, PI¼Q/(Pres � Pwf).

• Calculate the pressure drop across the choke (Pout � Pin) required deliv-

ering the expected rate reduction/increase.

• Determine the flow trim characteristic by lab testing the flow coefficient

at each choke position of pressure drop.

• Carry out in the lab the mechanical design of the flow trim for the desired

well behavior.

The Perkins model (1993) is the most applicable equation to predict the

subcritical pressure drop across a valve using Eq. (7.3):

Pout�Pin¼ �Q� Qj j�ρ

Cv�Cv�ρwstd
¼C� γmix�Qtot

ffiffiffiffiffiffi
1

Cv

r
(7.3)

where

Pout is the flowing BHP at the outlet (psi) of the ICV,

Pin is the flowing BHP at the inlet of the valve (psi),

C is the conversion factor,

Q is the total fluids in USG/min,
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ρ is the fluid density of the mixture phases (lbm/ft3),

Cv is the flow coefficient in USgal/(min psi0.5) (which is measured in the lab

of the service provider),

ρwstd is the water density measured at standard condition in lbm/ft3, and

γ is the liquid gradient of the mixed fluids.

The Cv performance is represented by a choke valve opening versus flow

rate table determined at lab condition using compressible fluid at high

temperature and pressure. Fig. 7.10 shows a pressure drop versus oil flow

rate delivered by an ICV flowing oil fluid at 2600psi and 200°F in tubing

size of 3–1/2 in., oil API of 30 and gas gravity of 0.81.Cv values are observed
in each position (Pos).
7.6.1 Single-Zone Control Analysis Using an ICV
The results of the Perkins equation at different pressure drops across the

valve were superimposed on the IPR and VLP plot showed in Fig. 7.11.

The values of the pressure differentials may be considered at discrete flow

rates as a fraction of the maximum flow rate, such as 20%, 40%, 60%,

etc., and the operating points at the perforation node are represented by

the corresponding points labeled A, B, C, D, E, and F. The number of dis-

crete positions corresponds to set positions of the flow control valve.

Konopczynski and Ajayi (2004) referred to these as attenuated IPR curves.
7.6.2 Multiple-Zone Control Analysis Using ICVs
The process for multiple-zone intervals is very similar to the process for a

single zone. However, the main limitation is that the process assumes that

all zones have the same reservoir pressure, fluid composition, and bubble

point. Another important assumption is that the Cv flow coefficient and

devices are equal for all zones. They established two methods to estimate

the pressure across the valve:

• Constant pressure. This method assumes that only the flow fromZone A is

modulated while the production from all other zones is maintained at a

constant rate. To satisfy this constraint, the flowing bottom-hole pressure

must be held at a constant value.

• Independent flow. This method assumes that the fluids flow only from the

zone of interest through tubing and the other zones are shut-in; it is sim-

ilar to the single-zone method.

For this particular example, Konopczynski andAjayi (2004) used a tubing size

of 5–1/2 in. to independently flow in five zones, with IPs that vary between

3.4 and 7 b/d/psi at a surface wellhead pressure of 150psi. Fig. 7.12 (left)
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shows the IPR curves for individual zone and the combined IPR for

commingled unrestricted production. If the operating objective is to main-

tain constant flow at Zones 1, 3, and 4, and to restrict flow inZone 2% to 40%

of unconstrained flow, then the flowing bottom-hole pressure must be

restored to the original pressure. Controlling the valve in Zone 2, the atten-

uated IPR curve for Zone 2, with a flow control valve setting of 40%,

is shown in Fig. 7.12, along with the unrestricted IPR curves of the

other zones.
7.6.3 Coupling Wellbore and Gridded Simulators to Model ICVs
Wells with ICVs can be modeled using commercial well performance soft-

ware coupled with a 3D numerical model. The numerical model simulators

use a finite difference three-phase simulator, which has been described

widely (Coats et al., 2004; Shiralkar et al., 2005). The simulator has a

gridded-cell wellbore and network tubular models that are connected to

“wellnodes” and linked by “connection.” Valve connections are between

well nodes for tubing and annulus sections. Fig. 7.13 shows a smart well
Fig. 7.13 Schematic representation of a smart well showing wellbore nodes connected
to reservoir cells. (A) Mechanical configuration for three interval control valves.
(B) Schematic for representing the mechanical configuration in a reservoir or well sim-
ulator using wellbore nodes coupled to reservoir cells.
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schematic with a representation of coupling wellbore nodes with reservoir

cells. It is recommended to set up an ICV valve per reservoir cell; in those

scenarios where the cell is bigger than the segment where the ICV is com-

pleted, it is suggested to create a local grid refinement (LGR) to connect one

cell with one segment.

The Perkins equation (7.3) is coupled with the numerical models with a

surface-network capability assuming that these parameters are known: molar

rates of hydrocarbon components, water rate at stock tank conditions,

temperature at the outlet of the valve (used in flash calculations), valve

control, and the flow valve coefficient profile. The simulator solves the pres-

sure equation across the valve with the following procedure solution

algorithms:

• Determine the number of hydrocarbon phases and the compositions and

compressibility factors of each phase using the phase-equilibrium

calculation.

• Determine the densities of oil, gas, and water phases (flash calculations).

• Determine the specified type of mass rate.

• Calculate density of the fluid mixture.

• Compute interpolation values of valve coefficient as described in

Section 7.6.

• Determine the pressure differential across the valve.

Fig. 7.13 shows a schematic representation of how the fluids flow through

the ICV, the reservoir produces through perforated casing to the annulus,

and valves control flow from the annulus into the tubing contained inside

the casing. Annular flow in the casing is blocked by packers and between

three perforated sections of the wellbore.

The VLP of the wells could be represented using hydraulic tables from

nodal analysis or any industry-standard analytic multiphase flow correlation

(e.g., Beggs and Brill, Hagedorn and Brown, etc.), which can be applied to

the connection between ICV nodes and the vertical section of the wellbore.

The VLP is required to complete the surface calculation of production rate

and pressure, and to estimate the pressure drop across the vertical section.
7.6.4 Modeling ICDs for Oil Wells
The ICDs are designed to control the down-hole flow distribution by cre-

ating a frictional pressure drop across the orifice; it is the ICD that acts as

setting up several chokes in front of the casing. This device is created to

reduce the pressure drop at the heel of a horizontal well or reduce the
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pressure drop in front of a high-permeability segment in the horizontal sec-

tion, equalizing the pressure drop along the horizontal section. As a result of

this reduction in pressure drop, the ICDs can reduce the early water or gas

breakthrough (preferably at the heel) and thus increase the oil-recovery fac-

tor. There are different types of ICDs, for example, channel, nozzle, orifice,

helix tube, and hybrid. The most common types applied in the oil field are

the nozzle and helix.

Henriksen et al. (2006) and later on Zhu and Hill (2008) have demon-

strated the importance of ICDs in high-permeability reservoirs and also

demonstrated that the main control property is the pressure-friction losses

generated across the ICD valve. To model the subcritical pressure drop

across an ICD, the following expressions (Eqs. 7.4, 7.5) can be used:

Pout�Pin¼C�ρmix

2
� q

A�Cv

h i2
(7.4)

ρmix¼water:vol�ρw + oil:vol�ρo + gas:vol�ρg (7.5)

where

C is the conversion factor,

Pout is the flowing BHP at the outlet in psi,

Pin is the flowing BHP at the inlet of the ICD in psi,

q is the total flow rate of fluids in ft3/s,

ρmix is the fluid density of the mixture phases at pressure and temperature in

lbm/ft3,

Cv is the flow coefficient in USgal/(minpsi0.5) (which is measured in the lab

of service provider),

ρo, ρw, and ρg are the oil, water, and gas densities at pressure and temperature

in lbm/ft3,

water.vol, oil.vol, and gas.vol are the volume fractions of the phases in the

wellbore at time t, and

A is the cross-sectional area of the ICD in ft2.

Henriksen et al. (2005) and Birchenko (2010) have demonstrated in their

field and simulation studies, respectively, that the permeability distribution

along the horizontal trajectory is the most important parameter to design

ICD types, and determine the number of ICDs required along the horizon-

tal wellbore and the number of packers required. By generating a pressure

drop by using appropriate packer spacing with ICDs, the flow velocity is

reduced, which results in longer sustained oil production before water

and gas breakthrough to the wellbore. They concluded that ICDs could
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delay the water breakthrough compared with an open-hole completion.

Daneshy et al. (2010) and Twerda et al. (2011) have conducted research

on ICDs and determined that they are excellent tools to control water con-

ing in water flooding. In fact, their research based on simulation study found

that ICD use leads to an increased oil-recovery factor, but not necessarily to

increased net present value (NPV) or internal rate of return (IRR). They

also found that ICDs do not work properly in gas coning or low permeability

reservoirs for their cases.

Carvajal et al. (2013a,b) have shown the impact of ICD completions

coupled with a 3D gridded, three-phase flow numerical model applied in

a horizontal well with permeability variation among 1, 100, 10, 1, and

100 md. They simulated one horizontal well producer of 3000 ft with

40 ICDs segmented into five regions, isolated with swell packers. The objec-

tive was to reduce the water cut and delay the water breakthrough from an

active bottom aquifer. The simulation results are shown in Fig. 7.14, which

compare an open-hole completion with an ICD completion.

The results show that water breakthrough occurred earlier in the open-

hole completion at 500th day; whereas, with an ICD completion, the water

breakthrough occurred at 630th day. Moreover, the waterfront using the
Fig. 7.14 Vertical cross section (XZ) along a west lateral section of a multilateral well
showing the water saturation front at different time steps for an open-hole completion
(left) and ICD completion (right). (Taken with permission from SPE 164815.)
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ICD is equalized along the horizontal section, which results in an excellent

oil-sweep efficacy from the oil-water contact (OWC) to the wellbore.
7.6.5 Modeling AICDs for Oil Wells
As mentioned in Section 7.2.2, AICD is the newest family of ICDs that

are self-regulating fluidic diodes capable of restricting the flow of fluids

based mainly on differential densities and viscosities. Contrasting with

an ICD, which generates high-flow restriction for heavy oil, the AICD

can sometimes be more feasible in restricting water and gas than a tradi-

tional ICD, which is attributed mainly to the differential density. One of

the main benefits of AICDs is that it can generate spontaneous changes in

fluid flow restriction without control lines, moving parts, or download

mechanical or electrical devices for well intervention and moving

choke size.

In some laboratory experiments with single-phase flow (oil or water),

Least et al. (2012, 2013) showed for the first time the performance of AICDs

using oil fluids from 3 to 200 cPs. They found that the pressure drop across

an AICD valve could be governed by the ratio of fluid density and viscosity

compared with calibrated density and viscosity of the fluid tested at the lab.

To model the subcritical pressure drop across an AICD, the following

equations can be used:

Pout�Pin¼X�ρ2mix

ρstd
� μstd

μmix

� �β
� qα (7.6)

ρmix¼water:vol�ρw + oil:vol�ρo + gas:vol�ρg (7.7)

where

Pout is the flowing BHP at the outlet in psi,

Pin is the flowing BHP at the inlet of the valve in psi,

q is the total flow rate of fluids in ft3/s,

ρmix is the fluid density of the mixture phases at pressure and temperature in

lbm/ft3,

ρstd is the fluid density measured at laboratory condition used for calibration

proposes in lbm/ft3,

ρo, ρw, ρg is the oil, water, and gas densities at pressure and temperature in

lbm/ft3,

μmix is the mixture fluid viscosity calculated at the average of (Pout � Pin) in

cP, μstd is the fluid viscosity measured at laboratory condition used for

calibration proposes in cP,
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μo, μw, and μg are the oil, water, and gas viscosities at pressure and temper-

ature in cP,

water.vol, oil.vol, and gas.vol are the volume fractions of the phases in the

wellbore at time t,

X is the device strength parameter, which is measured during the calibration

process in psi/(lb/ft3 ft3),

β is the viscosity exponent measured during the calibration in the lab

(dimensionless), and

α is the rate-dependent exponent measured during the calibration in the lab

(dimensionless).

Carvajal and Torres (2014) have shown the impact of an AICD comple-

tion coupled with a 3D-gridded, three-phase flow numerical model applied

in a horizontal well with three different oil viscosities: 1, 10, and 100cP.

They found that an AICD does not have a significant impact on the produc-

tion for those cases with oil viscosity below 1cP or viscosity close to water

viscosity. However, they found that in a scenario with a viscosity ratio two

times more than water viscosity, the AICD had a significant impact on oil

recovery. They simulated one horizontal well producer of 5000 ft with an

injector horizontal well in a reservoir of 10cP oil viscosity and permeability

variation between 1 and 100 md. The model was set up with 40 AICDs (a

grid block per AICD, grid block size¼20 ft). The simulation results are

shown in Fig. 7.15 comparing an open-hole completion with an AICD

and a full producer completion with an AICD.

The producer well and the injector are separated by a distance of 3km.

The water breaks through the producer at 380days after the first water injec-

tion. In both cases, the water breakthrough time is the same; water arrived at

the middle of the lateral. Therefore, the AICD does not contribute signif-

icantly in delaying the water breakthrough. However, before day 1500 of

production, using streamline simulation, the water is deviated and bypassed

the wellbore, whereas oil was directly injected into the wellbore, following

exactly the same physics principles of kinematic differences between fluids

(ρo.μw/ρw.μo).
Finally, they found that using AICDs, the oil-recovery factor was

increased by 20%, and water is significantly reduced from 60% to 20%, com-

pared with an open-hole completion. More than 20% increment was

observed after water breakthrough. The AICD had a significant impact

on controlling water after water breakthrough. Nevertheless, we believe

that the best combination is to set up both an ICD and an AICD, which

could reduce the water breakthrough time.



Fig. 7.15 Aerial section of a 3D numerical model showing a pair of horizontal wells
(producer-injector). (Left) Injecting water without an AICD and (right) 40 AICDs plus
packers. (From Carvajal, G., Torres, M., 2014. Coupling AICD to a wellbore and numerical
model simulation. In: Presentation About AICD Progress. Presented at the Novel Techniques
for Reservoir Management, SPE, Frontier of Technology—Reservoir Technology Forum Held
in New Mexico, USA, November 4–9.)
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7.7 OPTIMIZING FIELD PRODUCTION WITH SMART
WELLS
Optimizing smart wells is practically a new science that requires a

series of engineering tools (software and hardware) to evaluate and compute

the effect of valve settings over production. The best way to optimize pro-

duction performance with a smart well is to couple a wellbore hydraulic well

performance simulator with a 3D gridded numerical model. Ajayi and

Konopczynski (2003), Elmsallati and Davies (2005), and Nikolaou et al.

(2006) are among the first references found to predict and optimize ICV

performance in a single well, compared with conventional completions.

Saputelli et al. (2009) have presented the first surface-well model con-

nected to a full field numerical simulator; this paper describes a process to

optimize long-term economic return in oil reservoirs with water flooding

by optimizing the number of wells, usability of ICV valves, and operating
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schedules. They found that by systematically optimizing the ICV setting in

injector and producer wells, the ultimate oil recovery was improved 3% by

reducing water injection by 8%, and economic value (NPV) was improved

2.3 times, compared with conventional completions.
7.7.1 Control Modes
The “best way” to optimize smart wells depends strongly on a company’s

philosophy of reservoir management. When controlling the choke size,

the oil industry refers to this as reactive and proactive operations (Jansen,

2001; Kharghoria et al., 2002). With increasing use of 4D seismic, passive

control is also another type of choke control. These three control modes

are summarized and distinguished below.

• Reactive control. If the GOR or water cut (wc%) exceeds its target max-

imum allowable production during a period of time, the ICVs are con-

trolled to reduce GOR or wc%, or at least to prevent further increase in

wc% until the target is reached. The philosophy is based purely on obser-

vation and reaction; if something happens, then the ICVs are changed. It

is the most frequently used control method. However, because of the

restriction, this control often results in poor oil-sweep efficiency, and

in certain regions of the reservoir, the oil could be bypassed and not dra-

ined well (Essen et al., 2010). In this control, the essential toolkits or soft-

ware may be well surveillance, production monitoring, and nodal

analysis.

• Proactive control. On the basis of the prediction of the GOR or wc% pro-

duction profile, the value of ICV settings are anticipated and set up

before the water or gas breakthrough occurs at the well. It is believed

that the gas or water flooding (either from injection or gas cap/aquifer)

is still away from the wellbore at some distance between the wellbore and

the reservoir. The philosophy is based on trusted reservoir data or a

physics-based reservoir model (i.e., 3D numerical simulator or 1D ana-

lytical application). If the reservoir is very well characterized in terms of

fluid-rock properties and the 3D numerical model can capture the main

heterogeneities, then proactive control can maximize the oil-sweep effi-

ciency. However, this control is sometimes found to be impractical com-

pared with reactive control, because of the time it takes to run the batch

process and integrating geological and reservoir data.

• Passive control. 4D time-lapsed seismic processes a seismic signal to inter-

pret the signal attributes and to capture water movement during water
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injection at different time steps (preferably every 4months). This capa-

bility means that the waterfront location between wells can now be esti-

mated and thus water breakthrough can be delayed with high accuracy,

compared with proactive control. The ICV settings can be changed

depending on the waterfront movement. For example, when the water-

front is approaching the wellbore, the ICV in the segment can be

completely off, which maximizes the oil-sweep efficiency. The philos-

ophy is based on trusted 4D seismic processing and interpretation, and

how the 3D numerical model captures the seismic data. Passive control

is the most sophisticated control because it can be used at the right time

with the right tool. However, the use of 4D seismic and this control is

very expensive and requires extensive seismic data and interpretation.

Cullick and Sukkestad (2010) have modeled smart wells by applying ICVs in

complex well architectures including multilaterals wells. They compared the

production performance by using a well completion without an ICV (open-

hole completion), reactive control (fixed policy), and proactive control

(optimized policy). Fig. 7.16 shows the results of different control modes.

The fixed policy is an optimization technique that runs the simulationmodel

and checks water cut value in each simulation’s time step against the thresh-

old. If the threshold is met or exceeded (e.g., 80% of water cut), the valve

setting is reduced by one unit. The process is continued until the ICV is fully

closed. With the optimized policy, a set of threshold ranges and increment

sets are provided and they are used as optimizer to control the 3D numerical

model. The optimizer seeks a combination of triggers and increments that

maximizes the oil-recovery factor while it reduces both water production

and injection. Each valve has its own best threshold trigger water cut and
Fig. 7.16 Production profiles for no ICV, reactive (fixed policy), and proactive (optimized
policy) controls in a horizontal well with three ICVs. (Taken with permission from SPE
126246.)
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increment range, which generates a different setting history for each ICV.

The results are shown in Fig. 7.16, where you can clearly see that using

an optimized policy, the oil-recovery factor yields the highest oil produc-

tion. The authors have reported that oil increased by 67% and water

decreased by 47%, compared with no ICV completion.

In the Sabriyah-Mauddud Formation in North Kuwait, a horizontal smart

well with five ICVs was installed in the field. Using the same approach pres-

ented by Cullick and Sukkestad (2010) and Carvajal et al. (2013a,b) showed a

procedure to capture the main heterogeneity of the reservoir model, such as

permeability high street. They created an automated process to couple real-

time data, the reservoir model, and the surface system. The flow coefficient

for 10 opening apertures of ICVs were set up in the simulator, and the opti-

mizer changed the valve settings while the oil-recovery factor was maximized

under the condition of maximum reservoir voidage replacement of 80%.

The optimizer coupled with the numerical model ran more than 100

possible combinations. When the objective function was reached, a global

optimum point was determined as the best solution. They found that the

best combination of ICV settings, year by year, is as shown in Fig. 7.17.

The optimizer started with 100% open (position 10 out of 10), but noted

that the valve position does not change monotonically; the valves open

and close until the optimizer satisfies the best solution for the objective func-

tion. For example, valves 1, 3, 4, and 5 changes every year, but valve 2 does

not change periodically. This difference is because of the high permeability

street found in segments 1, 3, 4, and 5. The study concluded that by con-

verting conventional wells to smart wells in the entire field in this reservoir

under water injection, the oil-recovery factor is increased by 52% (incre-

ment) compared with conventional completions. Moreover, this approach

stabilized the oil plateau for more than 5 years, while the water cut was going

up and down with the ICV settings.
7.8 SMART IMPROVED OIL RECOVERY/ENHANCED
OIL RECOVERY MANAGEMENT
Improved oil recovery (IOR) is a technical process that injects natural

gas or water into the reservoir to increase oil reserves beyond the primary

recovery or natural forces of the reservoir. Enhanced oil recovery (EOR)

is defined by the US Department of Energy as a series of techniques using

special fluids to increase the oil-recovery factor beyond the IOR process;



Fig. 7.17 Production profiles without ICV and proactive controls in a horizontal well with five ICVs (from Carvajal et al. 2013a,b). The plot
compared a base case (BC) without ICV for both oil rate and water cut profiles with oil rate and water cut with ICV. The base case (without
ICV) water cut progressively increases with time while oil is declined. Although using ICV, the water cut is controlled between 0.3 and 0.4, the
oil rate production is almost flat. (Taken with permission from SPE 164814.)
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regularly the range of improvement is between 30% and 60%. IOR/EOR

has are divided three main categories: thermal fluids (steams and in situ com-

bustion), chemical fluids (alkaline, polymers, and surfactants), and gas injec-

tion (CO2, N2, and fuel gas).

Use of EOR/IORmethods began in the 1950s, but the 1970s saw a dra-

matic increase in IOR implementation. During the 1980s and 1990s, oil

companies used cased-hole logs, PLTs, pressure transient tests (PTT), and

down-hole pressure gauges to evaluate the water and gas injection fronts.

All of these techniques monitor production response, well to well (point

to point), and are logged in the well sporadically over time (once per year)

but are unable to predict water or gas breakthrough with accuracy. There-

fore, the control mode was generally reactive and rarely proactive. The vol-

umes of data managed by these tools do not exceed the kilobytes/days.

Modern EOR/IOR processes include a series of technology, hardware,

and software specially designed for this operation, which allows real-time

data capture of massive volumes of data (e.g., megabyte of data per minute).

Using fiber optic cable in horizontal wells, temperature, pressure, and strain

can be monitored and logged at every meter, detecting with high precision

and on time, the segment of the well that is being invaded with unwanted or

injected fluids. Some examples of these technologies include the following:

• Real-time use of a series of chemical, thermal, and ultrasonic sensors to

monitor fluid chemical properties, such as liquid pH, chlorides, solids,

minerals, ions, cations, temperature, stream quality (x%), wax,

asphaltene, proppant, sand, tracers, etc.

• Down-hole fiber optics. These technologies include: (1) distributed

temperature sensing (DTS), which captures several megabytes/day to

register fluid temperature behind the casing along the horizontal and

has been recently applied to monitor hydraulic fracturing and (2) distrib-

ute acoustic sensing (DAS), which collects terabytes/day to register strain

sensing along the horizontal section.

• 4D time-lapsed seismic, micro-seismic, cross-well seismic, and vertical

seismic profiling.

The combination of ICVs/ICDs with any of the above technologies has

generated unprecedented information and analysis that was previously

impossible to decipher because of data-processing technology limitations

(Regtien, 2010; Clark et al., 2010). Smart IOR/EOR could be defined

as a process that uses a series of smart components and automated function-

alities, which cover the full DOF chain, including remote sensing, data

acquisition, workflow automation, visualization, and collaboration (where
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decisions are made for ICV control). Themain difference between smart and

traditional IOR/EOR processes is that smart EOR uses:

• Massive subsurface (fiber optic or seismic) data streaming to monitor the

frontal advance of injected fluids (water or steam).

• ICVs to control the well at down-hole condition, which allows better

oil-sweep efficiency by focusing water, steam, or gas in the upswept/

bypassed reservoir segments.

• Coupled surface, wellbore, and 3D reservoir models in simulators to

generate scenarios to prevent early water, steam, or gas breakthrough

to the producer wells.

7.8.1 WAG Injection Process
TheWAG process is designed to improve sweep efficiency in order to reduce

residual oil saturation after conventional water or gas injection and to control

early water or gas breakthrough to producerwells. Depending on the fluid and

rock types, viscosity, and wettability, water is injected into the reservoir for

2–6months, followed by gas, and the cycle is repeated. Simultaneous water

and gas (SWAG) injection is a variation where water and gas are injected

simultaneously through the same tubing. Fig. 7.18 shows a traditional WAG

process: water is injected into the reservoir followed by a slug of gas, and the

process is repeated until water cut or GOR exceeds the economic limits.

For horizontal wells with lateral sections longer than 3000 ft, controlling

the injection point is difficult due to the Toe-Heel Effect, which refers to

most injection water going into the first �1000 ft of the lateral, leaving

the rest of the lateral with limited to no injection. Operators sometimes

use down-hole control valves such as ICDs or ICVs to distribute the

injection flow across the lateral section.

7.8.1.1 WAG Process With ICV
Carvajal et al. (2015) have proposed a continuous injection of water and gas

slugs, injecting water through production casing and gas through tubing
Fig. 7.18 Traditional WAG process using vertical wells.
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while selecting the optimum injection points for water and gas individually

along the well lateral. ICVs and a new mechanical well configuration are

used to enable this continuous injection. The process is called WAGCV.

They set up a numerical model with the new ICV design by injecting gas

and water at different locations in the lateral. These results show that the

proposed process should improve oil recovery significantly compared to

traditional WAG, because:

• Residual oil saturation is significantly reduced in all regions due to more

homogenous oil sweep.

• Water and/or gas breakthrough is substantially delayed.

• As a result, oil-recovery factor increases more than 5% over

traditional WAG.

The well uses two strings, where water is injected through casing and gas

through tubing. The well uses a unique combination of down-hole valves,

sleeves, packers, and fiber optic equipment. Down-hole valves and sleeves

are automatically activated on or off to coordinate the multi-injection

points. The times to activate specific injection points are defined by the opti-

mizer software, which estimates fluid injection volumes (for gas, water, or

both) and slug locations in the reservoir over time.

For illustrative purposes, a reservoir with high heterogeneity in perme-

ability between 10 and 150 md (Fig. 7.19) was set up in a 3D numerical sim-

ulator that predicts the production profiles of water, gas, and oil. Horizontal

wells, an injector and a producer 3000 ft apart, are configured in the model,

each well with 4000 ft laterals.

The process modeled is described as follows:

A. Water is injected into the reservoir for a long period of time

(Fig. 7.19A). Immediately water starts channeling into the high perme-

ability regions, that is, Regions 1 and 3. All valves are 100% open.

B. After several numerical simulation iterations, the optimizer determines

that a slug of gas should be injected through tubing into Region 1 with a

specified slug size and specified daily rate (Fig. 7.19B). The gas slug is

injected through tubing into Region 1, while water is injected

across the rest of the lateral section. The sleeve in Region 1 is shut

off, allowing gas injection through the tubing and blocking water injec-

tion in Region 1. Water continues to be injected into the rest of the

lateral section.

C. After a period of time, the optimizer determines that additional slugs of

gas should be injected through tubing intoRegions 1, 3, and 5 at specific

volumes and injection rates as shown in Fig. 7.19C. The gas slugs are



Fig. 7.19 (A) Initial injection of a slug of water controlled by the ICVs. (B) Initial injection
of a slug of gas in Region 1 while water is injected across the lateral section.
(C) Multipoint injection commences in Regions 1, 3, and 5, while water is continuously
injected into Regions 2 and 4. (D) The workflow process showing the new properties.
(Taken with permission from EAGE white paper 2214-4609.)
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injected through tubing into Regions 1, 3, and 5, while water continues

to be injected into Regions 2 and 4. Sleeves in Region 1, 3, and 5 are

shut off to allow gas to be injected through tubing and block water

injection into these regions.

D. The process is repeated in multiple cycles (Fig. 7.19D) to maximize the

oil-recovery factor and minimize either wc% or GOR. Part of the

objective is to reduce the residual oil saturation (Sor) after water injec-

tion into each region, delay early water or gas breakthrough, and

achieve homogenous oil drainage across the reservoir. The process ends

once wc% or GOR reaches the maximum production limit established

by the operator.
7.8.1.2 WAGCV Numerical Simulation
The 3D reservoir simulation model was built with 1.4 million cells; it is a

high-resolution reservoir model that covers a pilot area of one producer

and one injector well, both horizontal. A black-oil fluid model was used

with viscosity and oil density variation from the crest to the flanks of the

geological structure. The reservoir sector was segmented into five regions.
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For comparison withWAGCV, three processes that can help to increase res-

ervoir recovery beyond primary depletion were selected: gas injection,

water flooding, and traditional WAG.

In a separate exercise, the gas and water injection rates were optimized

to determine the best rate of injection for gas and water, while the tradi-

tional WAG was optimized by changing the slug ratio with time. The

WAG exercise showed that the best combination is 6months of injecting

water at 10,000 STB/D, followed by 6months of injecting gas at

10 MMscf/D. In WAGCV, each region was set up with an ICV that

controlled the injection rate. Oil rate and cumulative oil versus time

are displayed in Fig. 7.20.

The oil rate profile for the gas injection scenario (purple line) shows a

moderate plateau of 4500 STB/D for almost 2years, with a total cumulative

oil of 12.5 million bbl in 15years. The oil rate profile for the water injection

scenario (blue line) exhibits the longest plateau, but the decline rate is sharp

compared with the other scenarios, so the cumulative oil by water injection

is approximately the same as for gas injection: 12.2 million bbl. The tradi-

tional WAG process follows the water injection profile, but production goes

up and down (red dotted line) at a controlled decline rate for 10years, after

which production drops sharply. The total cumulative oil is 16 million bbl,

3.5 million bbl more than classic injection whereas WAGCV technique

(green line) offers a better production profile, maintaining a slow decline rate

for almost 10years. The total cumulative oil improves to 18.0 million bbl,
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2.0 million bbl (13%) more than the traditional WAG process and 5.5 mil-

lion (44%)more than gas or water injection. Fig. 7.21 shows water cut versus

time for the four processes.

This new approach uses an advanced optimization technique that pro-

actively simulates (using 3D numerical simulation) where and when to inject

the required slug. The results demonstrate that when using this kind of EOR

injection, oil recovery can be enhanced by 5% compared with the traditional

WAG process and 15% compared with classical water injection. The simu-

lation showed that water cut is reduced significantly and GOR is kept very

low, helping to extend the life of the reservoir production.
7.8.2 Thermal Monitoring
In heavy oils, high-viscosity reservoir in Canada, Shell patented the idea of

using ICVs with a steam-assisted gravity drainage (SAGD) process. SAGD

(Butler and Stephens, 1981) has been implemented since the 1990s,

improving the oil-recovery factor in the area of steam chamber generation

compared with traditional continuous steam flooding injection. The main

problem with SAGD is the difficulty in controlling the fingering of steam

chambers, which causes an abrupt steam breakthrough to the producer

wells. To control the steam chamber growth, Clark et al. (2010) have used

four ICVs spaced at 200m each in the steam injector wells. They also used

full EOR closed-loop reservoir management tools, which incorporated

seismic thermal response, fiber optic, and full-equipped wells with both

pressure and temperature gauges to monitor in real time the deviation
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in stream quality, pressure, and volume. Their objective was to demon-

strate the technical feasibility of using ICVs in a high-temperature envi-

ronment. They demonstrated that ICVs help to improve the steam

injection conformance to heat up the cooler zone (bypassed by steam)

and control the steam chamber growth homogeneously across the hori-

zontal section.

Fig. 7.22 shows a combination of the modern reservoir monitoring tech-

niques to control steam chambers. The seismic thermal response can be

observed in the top figure, the DTS data profile for both injector and pro-

ducer in themiddle, and the injectivity data through the ICVs in the bottom.

It clearly shows that DTS and injectivity data (from ICV) confirmed con-

formance problems of excessive steam volume in zone C which have been

suggested early by seismic thermal response.
7.8.3 Automated EOR/Chemical Process
Injecting chemical products such as alkaline, polymers, surfactants, and low-

salinity solutions into the reservoir are processes that improve the oil

https://doi.org/10.2118/136034-MS
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recovery reserves extraction by altering reservoir wettability, oil displace-

ment mechanism, and residual oil saturation. However, chemical processes

have had technical and economic challenges to widespread utilization. By

implementing automation (DOF) principles, chemical EOR should gain

efficacy as described in this section. By definition, the alkaline is a base

(i.e., soap) that easily dissolves in water, and the solution base has a pH

greater than 7.0. In the oil industry, the alkaline solution has been used

to reduce the interfacial tension (IFT) of the remaining oil in situ, altering

the original rock wettability and generating a reduction in the residual oil

saturation (Sorw) after the primary water injection. Polymers are a large chain

of molecules (synthetic or natural) that if injected with the water injection

process can increase both the viscosity and the density of the water. The

polymers are used to reduce the water mobility (ρw/μw) in the formation

and therefore generate a uniform sweep efficiency displacing oil. Surfactants

(also called micelle) are organic compounds that reduce the IFT between

different fluids (oil-water); surfactants are used as emulsions or foam agents

to absorb the oil phase and generate miscible displacement (one fluid)

between oil and water. These three types of chemical injection can also

be mixed, designated as ASP (alkaline, surfactant, and polymers injection).

The sequence of injection, slug size, total volume, chemical concentration,

brine concentration, and injection rate depend on reservoir property distri-

butions across the field.

The chemical injection strongly depends on dominant forces governing

the reservoir; these are viscous, gravity, and capillary forces. The reduction

of interfacial forces and residual oil saturation can be explained using the cap-

illary number expression.

Nc ¼ Qw�μw
A�σ� cosθ

(7.8)

where μ is the displacing fluid,Qw is the displacing Darcy flow rate, θ is the
contact angle between oil and water, and σ is the IFT between the displacing

fluid and the displaced fluid (oil).

In the situation where gravity has a significant component between

forces, the potential gradient between the displacing and displaced fluids

generates gravitational forces dominated by the density differences

(oil-water) but countered by capillary effect; the bond number or buoyancy

factor can be expressed as.
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NB ¼ k� g�Δρ
σ

(7.9)

where k is reservoir permeability, g is the relative gravity of the Earth, Δρ is
the density difference between the displacing fluid and the displaced fluid

(oil), and σ is the IFT between the displacing fluid and the displaced

fluid (oil).

The ASP injection provides a series of challenges: mainly to optimize the

fluid injection at reservoir scale. Fadili et al. (2009) described that the main

issues related to injecting ASP in any forms can be: (a) to control the solution

viscosity over time, (b) non-Newtonian behavior, (c) matrix permeability

reduction due to the absorption of the polymers to the formation,

(d) capillary de-saturation effect due to fast decrease in IFT, (e) significant

losses of chemical component due to the adsorption of the rock, particularly

clays and carbonates, and (f ) fast chemical degradation.

For DOF, Fadili et al. (2009) suggest that automated EOR projects

should be designed to monitor the chemical within the reservoir and be able

to adapt quickly to the injection and production schedule automatically.

This could be the key element in optimizing the EOR operations. Early

water breakthrough of the ASP injection means poor oil-sweep efficiency.

Therefore, it requires a series of down-hole completion equipment, such as

ICVs, ICDs, and packers to control the water influx, or permanent moni-

toring tools, such as 4D seismic to monitor the waterfront. However in an

ASP project, it is more important to measure in real time all properties that

are measured in the lab, but tested at the field.

Chemical properties of the water injection—for example, chlorides,

ions, pH, viscosity, density (specific water) properties—can be sampled at

the injection stream and compared with production flowback after the sep-

aration system, including the emulsion meters, which can be used to mea-

sure the quantity of emulsion in oil after the surfactant injection. Tank levels

for alkaline, surfactant, polymers, and salt products can be monitored and

surveyed daily and generate alarms and alerts in the case of troubleshooting.

Fig. 7.23 shows a prototype of an ASP injection. Tanks, pumps,

cyclones, filters, and turbines at the EOR treatments can be automated

and set up with PLC or RTU units to monitor status, injection rate, pres-

sure, temperature, and equipment performance (power consumption). Sig-

nals are sent in real time using WiFi-WiMAX to a SCADA center. The

injection system is set up with preliminary values as follows:

• pH set up to 9.5 (alkaline injection to reduce the IFT in oil-wet reservoir).



Fig. 7.23 Examples of automated ASP injection showing real-time sensors to monitor pH, chlorides, viscosity, temperature, and pressure at
different levels of injection and production chains.
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• Chlorides of 10,000ppm, the required water salinity to generate an opti-

mum balance for the surfactant injection and reduce its absorption level

to the rock.

• Water viscosity of 3.5cP, the required viscosity for the polymer cocktail

to displace the oil with an appropriate mobility ratio less than 10.0

(kro/μo � krw/μw).
• Surface temperature of around 90°F, the maximum temperature to

reduce the polymer degradation.

Fig. 7.23 also shows chemical sensors setup at the oil and water treatment in

the separation system. Before the water breakthrough, it is expected

that produced water from the well formation has original chemical

levels such as pH of approximately 6.0, chlorides of approximately

25,000–35,000ppm, viscosity of around 1.0cP, and no emulsions or

micro-emulsion formed in oils. After breakthrough, it is essential to monitor

and survey the trend and tendency of pH, ions, chlorides, emulsions, and

water/oil viscosity through time in producer wells.

Chemical sensors and a 3D numerical model coupled with an optimizer

should be integrated to improve the injection and maximize the oil-

recovery factor, while reducing ASP costs. A numerical model performs

calculations on gravity, viscosity, and capillary forces. The injection can

be adapted and controlled by

• Changing the ICV choke size.

• Monitoring the chemical propagation into the reservoir using

preexisting or observed wells.

• Using traditional production behavior, that is, water cut%, GOR, and

chemical tracers for ASP and by comparing with chemical sensors shown

in Fig. 7.23.

The optimization process should aim to optimize the required injected pore

volume (PV) of ASP agents (generally PV can reach a value of 1–2 at

reservoir condition) to maximize the oil production (the barrels of oil per

$/pound of ASP are incremental) by changing

• Optimum size of the chemical slug.

• Rate of injection.

• Mixed, sequential, or alternated alkaline, surfactant, polymers, or all.
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The previous chapters have presented a suite of technologies related to the

digital oil field (DOF) and pointed to examples of industry investment in

sensor, communication, and automation technologies. However, technol-

ogy is only part of the requirements for effective DOF that is only a quarter

of the whole of DOF components (see lower left vertex in Fig. 8.1). Baken

(2016a,b) correctly points out that the rate of return on DOF investments in

technology is limited to less than 25%; 75% of expected value can only be

achieved through the implementation of DOF with respect to work pro-

cesses, competency, and role transition and how people work and collabo-

rate using technology that is the upper and right vertices in Fig. 8.1.

Ultimately, the three components defined by these triangles must be fully

integrated through collaborative work processes. Section 1.5 introduced

the collaboration and work processes as critical components of DOF. This

chapter presents details on challenges in delivering high value through
igent Digital Oil and Gas Fields © 2018 Elsevier Inc.
://doi.org/10.1016/B978-0-12-804642-5.00008-6 All rights reserved.
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Fig. 8.1 Value from DOF requires integration of people, process, and technology
through collaboration.
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high-performing teams in DOF, and then discusses the value chain of com-

ponents and characteristics for the success in change management and collab-

oration. These components are: (1) the physical space, the collaborative work

environment (CWE) and associatedmobile technology; (2) team composition

and roles; (3) interskill and team collaboration through change management

and work processes; and (4) competency development and sustainability.

8.1 TRANSITION TO DOF

The companies have approached a transition to DOF in a variety of
ways. We have found that a systematic approach is crucial to make DOF

work so that it adds significant value. In referring back to the survey of com-

panies listed in Section 1.8, we see a spectrum of approaches to plan and

implementDOF,which include: (1) top-down: a corporate dictate endorsed

by executive management and often driven by a centralized R&D,



Table 8.1 Approaches for a New Corporate DOF Initiative
Category Attributes Pros Challenges

Top-

down

Executive

management or

central technology

or IT plan a DOF

strategy for the

company and dictate

its take-up.

• Management

endorsement

• Budget allocated

• Good tech support

from centralized

functions

• Bureaucracy delays

implementation

• Lots of reporting

“up the chain”

• Central tech or IT

solutions do not

meet the practical

needs of assets

Bottom-

up

Individual asset or

business unit decides

to implement DOF

components.

• Fast-track projects

• Focus on exact

needs and get quick

value

• Budget

• Disconnect with

other assets; hin-

ders full integration

and consistency for

systems

Hybrid Business unit-driven

strategy and

supported by

technology and IT

functions; exec

management may

endorse.

• Projects driven by

needs of asset and

yet have endorse-

ment, support and

budget from exec

and central tech

functions

• Ensure corporate

standards rule so

multiple assets can

coordinate/inte-

grate systems

• Staying focused

• Integration across

assets
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engineering and/or IT departments; (2) bottom-up: a business unit or asset

take initiative and demonstrate value on its production and this success gains

adherents throughout the corporation; and (3) hybrid: executive manage-

ment endorses DOF as a concept and provides some “seed funding” but

allows asset units to take initiative on pilot projects and implementation.

Whatever approach is taken in any given company, DOF implementation

requires careful planning. A hybrid (flexible) approach is often most effective

and illustrated with an example below. Table 8.1 summarizes these appro-

aches and some of the pros and challenges of each.

8.1.1 Planning a DOF Implementation
The flow chart (Fig. 8.2) provides a planning process that we have used in a

several companies with business units to facilitate the planning and



Fig. 8.2 Facilitated planning for a DOF implementation.
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implementation of DOF projects. The process follows a hybrid approach

discussed in the previous section and is in part based on Eldred et al.

(2015). It relies primarily on a business unit or asset levelwith executive spon-

sorship and central IT or R&D support. A facilitator works with all the stake-

holders to identify thekey value drivers for transitionof“current state”processes to

those of aDOF-enabled “future state.” In contrast to a “top-down” approach,

the stakeholders, that is, management, production, reservoir, and operations,

first define their current state through a survey, white-board sessions, and

interviews. The interviews are conducted as listening sessions to garner infor-

mationoneach stakeholder’s needswith typical questions such as “what keeps

you up at night?,” “walk us through a typical day at work,” “what issues, if

solved, would make you more successful?,” etc. This process is followed

by a focus on what new technology, work processes, roles, and integration

could deliver in value either incrementally or as a step change from the

“current state,” that is, what a “future state” could deliver.

A ranking process of “future state” processes leads to “low-hanging fruit”

projects that have potential to deliver very high value in a short period with

relatively little cost. By doing a ranking, these projects develop buy-in and a

common purpose and stimulate the management and asset team to ulti-

mately support long-term, more complex, and potentially more costly com-

ponents of DOF.
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Fig. 8.3 shows an example from an asset which used the process described

and identified its current state as one of essentially supervisory control and

data acquisition (SCADA) and alarm monitoring. They developed a vision

and then a plan for a progression of DOF phases. The first phase, “low hang-

ing fruit,” included automating alarm management and then a phased pro-

gression to ever more complex utilization of the sensor data, management by

exception, and ultimately integrated operations with proactive actions.

The value of DOF is enabled by collaboration, ultimately how personnel

work. Collaboration has been documented as a “must” to add value (Gilman

and Kuhn, 2012). Gilman and Kuhn (2012) states that collaboration is not a

stand-alone solution but a key enabler. They present a collaboration matu-

rity model. The following is an example of how maturity was planned in

stages by one operator.

A large independent oil company planned its transition for unconven-

tional field operations as a series of phases along the lines of the above sche-

matic. A phased approach enables an asset to make incremental additions to

the value of the asset, learning by doing, gain credibility in the organization,

and justify incremental expenditures on things such as a collaboration room

(Section 8.2), well instrumentation, well controls, and role transition and

training (see below). The details of each of the four phases are described

below:
Fig. 8.3 DOF progression plan, from current state to collaborative integrated opera-
tions. (Photos with permission from SPE and ConocoPhillips.)
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Phase 1: Enable pump by exception

• data integrity and cleanup

• production surveillance operations with basic dashboard and rationalized

reporting

• production surveillance engineering dashboard for well surveillance

• alarm rationalization

• basic intelligent alarms and data validation and conditioning

• basic well pad automation evaluation

• collaboration evaluation

Phase 2: Enable integrated production operations

• advanced integrated production operations (IPO) dashboards

• automated well review by exception and by well priority and make well

review on demand

• alerts for wells producing or not

• automated downtime code analysis and volumes

• intelligent alarms (leaks, predictive maintenance)

• in-line/real-time data validation, cleanup, and conditioning (SCADA

data, PVT, and BTU calculations)

• field notes/text notes system upgrade and rationalization

• ticket system for field interventions

• basic well pad regulatory control (choke, gas lift)

Phase 3: Enable collaborative optimization

• collaboration protocols established

• virtual metering in place

• advanced, automated well reviews

• target setting (subsurface collaboration)

• automated gas lift optimization/opportunity notifications with predic-

tive analytics suggestions and data-driven models

• automated rod pump optimization/opportunity notifications with pre-

dictive analytics suggestions and data driven models

• flare management

• facilities automation

• advanced human–machine interface (HMI) design

Phase 4: Enable (or at least work toward) “closed-loop” asset optimiza-

tion including production, operations, and reservoir

• closed-loop optimal regulation and capacity management

• facility scheduling and balancing

• daily route optimization

• integrated field planning and delivery

• production downtime sheltering



Table 8.2 An Example of KPIs for a DOF Implementation With an Operations Center

Category
Establish Baseline
Benchmark

Metric:
Targets and Actuals for Future Period

Downtime Deferment; mean time to

re-establish production

Reduced deferment: reduced mean

time to reestablish production

HSE Operator miles traveled

per week

Reduced miles and vehicle

maintenance

HSE Engineer miles traveled

per week

Reduced miles and vehicle

maintenance

HSE Flare issues Flare compliance and time on flare

Operating

Expense

$/BOE $/BOE vs. baseline

Operations Number wells per staff Number of wells per staff KPI

Production Oil production rate

Production Oil production rate Enhancement from optimizing gas lift

Production Oil production rate Enhancement from reduced offset

frac deferments

Production Rod pump caused

deferments

Reduced mechanical and workover

downtime deferments

Well

reviews

Number per week By exception and opportunity: real

time, number per day
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8.1.2 Key Performance Metrics for DOF Implementation
A critical aspect of planning is to establish performance metrics and how they

will be tracked. Each implementation requires a set of metrics for each phase.

Table 8.2 illustrates an example (which could be for Phase 1 for a project

implementation as described above) which provides a baseline and targets

to be tracked for the production and DOF implementation.
8.2 COLLABORATIVE WORK ENVIRONMENT

This section describes key aspects of a CWE, which include the phys-
ical space, the value of collaborative work processes, and the role of mobility.

It also provides some examples of collaboration and mobility in practice.
8.2.1 Physical Space
Traditional operation centers with multiple large monitors were initially

designed to monitor a single engineering focus (e.g., drilling or facility oper-

ations) and were staffed by the appropriate discipline experts. The DOF is

evolving into new physical spaces called collaborative work environments
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(CWEs) or decision support centers (DSC), which are designed for collab-

oration from multiple disciplines using fit-for-purpose workflow visualiza-

tion that integrate across an operational value chain. These spaces can be

categorized (depending on their business operations) as meeting rooms, sit-

uation rooms, real-time operation centers (RTOC), and CWE (which is

typically considered the most advanced). The visualization requirements

for monitors and screens to display in real time, and multiple sources of

raw and processed data were presented in Chapter 1.

For the KwIDF project, Kuwait Oil Company had two large collabora-

tion rooms (Al-Jasmi et al., 2013). The paper has a schematic diagram of the

extensive center in Ahmadi, which has two large collaboration areas and a

strategy team room, which can be opened or divided by motorized retract-

able walls. Each area has multiple large flat panel touch-enabled screens for

displaying real-time data from multiple data sources, for example, artificial

lift, production allocation, pressures, temperatures, flow rates, power units,

etc. Multiple desks have networked, motorized adjustable displays. KwIDF

for the North Kuwait asset is intended to monitor, diagnose, and operate

from these centers and be staffed by multidiscipline teams (Al-Jasmi et al.,

2013). As a somewhat different approach, Shell established fit-for-purpose

centers throughout the company as summarized in Table 8.3 (Van den

Berg et al., 2014; Van den Berg et al., 2015a,b). Van den Berg et al.

(2015a,b) describe the fit-for-purpose centers summarized in Table 8.3

and illustrated in Fig. 8.4.

Goodwin et al. (2010) have reported that BP’s advanced collaborative

environment (ACE) programs required significant expenditure but provide

significant benefits (Section 8.2.2). ACEs were established around the world

for BP assets and included onshore operations support centers for offshore

operations, including centers for the Gulf of Mexico, UK North sea sector,

Trinidad and Tobago, and Azerbaijan. A common thread was that the cen-

ters had the communication, videoconferencing, and collaborative work

areas so that multidiscipline teams could make decisions in real time on a

variety of producing operations.

From reading descriptions of the KOC’s KwIDF, BP, and Shell collab-

orative centers, one might conclude that implementing a CWE means large

expenditures, even in millions of dollars for dedicated large centers.

However, in our experiences working with small and mid-sized indepen-

dent operators and the fact that equipment costs continue to decrease, a

CWE can be designed at a relatively low cost, depending on the objective



Table 8.3 Summary of Shell’s Suite of Collaboration Centers (Van den Berg et al., 2014)
Center Primary Function Decision or Output

Real Time

Surveillance

Centers

Remote real-time monitoring of

wells across assets. Automated

analytics of issues

Generate and evaluate alerts

that require actions by

other personnel

Equipment

Surveillance

Environments 24/7 monitoring of

equipment, e.g., rotating

equipment evaluated by

experts

Alert onsite staff

to equipment

issues

Integrated

Operations

Centers

Integration of core field team with

other teams, e.g., maintenance,

procurement, subsurface, etc.

Align and coordinate

activities for cross-

function decisions

Development

CWEs

Integrate production and

development activities;

collaborate across locations

Optimize development

planning

Fig. 8.4 Collaborative work environment work zone and associated decision support
meeting room. (From Van Den Berg, F.G., McCallum, G.A.R., Wallace, S., 2015. Collaborative
Working in Shell—Value Achieved, More to Follow. SPE 176787. https://doi.org/10.2118/
176787-MS used with permission from SPE.)
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and scope of the work to be performed. In our experience with five

implementations in three companies for North America assets, a CWE

can be achieved at a cost (in the period 2012–16) of $75,000–$300,000
to set up a room with large panel screens and dedicated terminals, servers,

and communication equipment. Gilman and Kuhn (2012) point out that

significant upfront investment in facilities and infrastructure is not really

needed to effectuate collaboration. Costs are lowering and distributed staff

can work effectively in addition to being colocated.

https://doi.org/10.2118/176787-MS
https://doi.org/10.2118/176787-MS
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8.2.2 Value of Collaborative Work Processes
Chapter 1 discussed the value for various companies for implementingDOF.

For collaborative work specifically, there are examples of significant value

added. For example, Van den Berg et al. (2014) documents quantifiable ben-

efits for seven assets. Each asset tracks specific KPIs, including tangible ben-

efits such as increased production, reduced deferment, man hours saved,

improved HSE, less travel, and intangible benefits such as increased motiva-

tion, improved communication, and increased trust. In one asset, produc-

tion increased overall by 3% and time to bring wells back online from

down events improved by 50%. The paper emphasizes that new ways of

working enable the real-time technology but this requires effective training

and coaching.

Van den Berg et al. (2015b, 2016) have reported that Shell has imple-

mented CWEs in the majority of Shell’s assets, covering 55% of its produc-

tion. Shell deployed these on a global scale and simultaneously provided

training. A few examples of high value added outcome are (Van den Berg

et al., 2015b): (1) an offshore green field with an onshore control center:

an increase in production equivalent to 10 thousand barrels of oil, 1500 engi-

neer hours saved, significant travel and offshore time saved; (2) brownfield:

210 a reduction in deferment equivalent to 210 thousand barrels of oil, field

lost production avoided and avoidance of process shutdown, and reduced

operation expenses (OPEX). Additional case studies are provided in Van

den Berg et al. (2015a, 2016).

Goodwin et al. (2010) have reported on BP’s ACEs “… have been

shown to generate improvements to BP’s business performance.” Asset

teams “altered ways of working and organizational structures.” Benefits

reported included: increased production, lower costs, and improved safety.

One specific example reported was a 1% operating efficiency improvement

of an Azerbaijan asset. In theNa Kika operations center, they reported docu-

mented gains of $1M per month. Key value addition was also associated

with the so-called soft benefits such as improvements in working culture,

team participation, and collaboration.

Al-Jasmi et al. (2013) present a detailed case study of how collaboration

leads tomore efficient and effective decisions for an artificial lift optimization

decision. In this example, a multidiscipline asset team consisting of surveil-

lance, production, and reservoir engineers and management were able to

make a decision from real-time data and advanced analytic models to opti-

mize wells and prevent downtime by interacting and collaborating in the
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“smart” analytic workflows. The asset team interacted to understand pump

performance, fluid characteristics, pressures, and PVT conditions to quickly

make the best decision on a well to increase production within safe operating

boundaries. A production engineer recommended changing electric sub-

mersible pump (ESP) frequency and tubing head pressure (THP) using

real-time data and an analytic model to obtain a substantial increase in the

production from a well. A reservoir engineer was able to validate the rec-

ommendation with respect to reservoir support pressure from nearby water

injection and a facility engineer checked the flow assurance. Al-Jasmi et al.

(2013) documented how smart workflows saved significant engineering

time for effective decisions.

Collaborative working has evolved beyond production and surveillance

processes, and now includes new mobility and visualization technologies

and supports the drive to reduce costs as described in the next section.

8.2.3 Mobility
Operations are being automated as much as possible to make changes in the

field remotely, for example, choke settings, power settings, variable speed

drives, etc. However, human intervention is required when mechanical

or electrical systems fail. Mobile devices, smart phones and tablets, enable

collaboration to go beyond the office and to accompany field personnel

wherever they may be. Operations can gain significant value by increasing

well uptime by using real-time data to direct field personnel to where they

are needed most on facilities and wells, to address downtime events (man-

agement by exception)l, and, more so in the future, to act proactively on

systems to prevent predicted events. Van den Berg et al. (2015a,b) compared

explicitly a “before” and “after” implementation of mobile devices for field

personnel. In their study, 10 tasks typically done by a field operator, which

included multiple manual actions on information, were reduced to just two

operations using mobile communications.

Figs. 8.5 and 8.6 illustrate (before and after) a similar process that was

implemented in an unconventional field by several operators in 2015 and

2016. Before management by exception and mobile devices were fully inte-

grated, a field operator (pumper, electrician, chemical specialist, workover

supervisor, etc.) had to check into a field office each morning to review a list

of wells for particular intervention that day, for example, rod pulls, ESP

restart, plunger reset. The policy was to visit all wells on a route in a day to

check on any other condition or situation (Fig. 8.5). During the day, the



Morning: go to field.
Mobile device has

dashboard of ranked
well interventions in

logical order.

Event and well intervention
actions recorded directly
on device onto corporate

data base. Call, email, text
Operations Center. GIS
tracks and records route

When route
complete,

travel home

Fig. 8.6 Effective mobile communication in enhancing collaboration and action in field,
process with DOF implementation: mobile device dashboard directs field personnel to
wells requiring attention and event data can be recorded directly.

Fig. 8.5 Communication process before DOF: field personnel must go to the office to
review systems, visit wells to determine issues, and return to office to input event data.
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operations centerwould text the field personnelwith any new alerts or alarms

on awell requiring them tomake unscheduled stops, which could disrupt the

route. Also, a pumper had to visit the well initially to determine if a different

technician (such as an electrician, chemical expert, mechanic, HSE expert, or

production technician) should be contacted. At the end of the day, the field

person would check in at the office to submit any reports and to enter event

items onto the company’s production or well database in the office.
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WithDOF field surveillance andmanagement by exception and priority,

the personnel can focus on the wells that require the most attention and

those that are impacting the production the most (Fig. 8.6). Alerts are ratio-

nalized and then ranked by value of intervention (i.e., the lost production),

taking into account intervention and workover costs. The alert and alarm

dashboard(s) are visible on a mobile device so that the appropriate (based

on skill and proximity) personnel can be directed to the most valuable wells,

in a logical order and depending on the severity of the situation. Any inter-

vention activity can be logged directly into a production or well database

from the mobile device. The location of the vehicle is tracked via GPS into

a GIS map visible to the operators and logged into a data base. Analytics can

be performed on the travel time, history, and time at well locations for each

activity.

Companies get significant value from transition to a DOF-assisted

mobile work process, including the following:

• Reduces well downtime. In the first 2 months, one field experienced an

almost 30% improvement.

• Reduces operator interaction with lower value wells and increase time

on higher potential wells.

• Increases safety through significant reduction in vehicle miles and

on-road time (often in rural, hazardous areas), one business unit experi-

enced almost 25% decrease in “vehicle miles-road time” when

transitioning to a “by-exception” approach.

• Enables more proactive well maintenance decisions.

• Enables more productivity for operations center staff who can focus on

the most important alerts.
8.2.4 Examples: Collaboration and Mobility in Practice
Permian Basin artificial lift. A field in the Permian Basin was experiencing

unacceptable downtime and intervention costs for their vertical wells on

rod pumps. The wells had pump controllers and real-time data (dynacard,

strokes per minute, power diagnostics, etc.) were stored on a contractor’s

server, but the data was not available online within the company. Generally,

data from previous day’s event reports (e.g., gyro runs, chemical treatments,

tubing and rod scan inspections, etc.) were on separate data folders and phys-

ical reports. Eachmorning the production engineers would manually down-

load all the data onto their desktops and then port the data into spreadsheets

so they could analyze report data to prepare for the 8a.m. “pull meeting.”
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Supervisor, engineers, and pumpers would convene in the main office and

field office to review wells requiring intervention and plan the day’s routes

for field personnel to then work on the routes.

The company automated the communication and data analytics from the

contractor’s server and moved all the data folders onto a dashboard available

on all computers in the company and on mobile devices (electronic tablets).

All stakeholders were able to see the wells identified for the day’s action and

reasons for the downtime or events. This new way of working meant that

the supervisor and engineer could collaborate and issue ticket instructions to

pumpers directly over mobile phones and tablets. After the system was in

place, the asset reported a 30% improvement in efficiency for downtime

and intervention metrics. Production engineers and supervisors were able

to spend more time on higher value activity, and pumpers were focused

on the well requirements as described above (Fig. 8.6).

Rocky Mountain oil production. An oil field in the central Rocky Moun-

tains had unacceptable downtime in winter months from freezing of the

low-pressure gas lines at gathering junctions, which caused the wells to

shut-in upstream. Each morning in the field office, field personnel reviewed

the electronic field measurements (EFM) of temperature and pressure in

flow lines and compressor stations. However, the data were not integrated

and could not be analyzed together, so it was not efficient to pinpoint exact

locations of bottlenecks. This situationmeans that to locate bottlenecks, field

personnel had to drive to a number of potential sites over a large geographic

area using gravel roads in the mountains (like the scenario in Fig. 8.5). Under

these rugged and slow conditions, it often took 2days to get a well back

online.

The solution was a new dashboard (Fig. 8.7) with automated data inte-

gration and analytics of the EFM to identify bottlenecks in real time. Wells

were color coded by time-dependent status based on variations in flow rate,

static pressure, and pressure change analytics, including rate of change in a

sensor-measured value. Data validation and conditioning were applied on

the real-time data (as described in Chapter 3). The dashboard also displayed

compressor pressures and flow, power efficiency, and capacity and sent real-

time notifications to supervisors and field personnel to address the wells the

same day (similarly to Fig. 8.6).

San Joaquin Valley cyclic steam production of heavy oil. Eldred et al. (2015)

describes a San Joaquin Valley California cyclic steam project; hundreds

of wells were being cycled on steam on varying cycles of injection, soak,

and production. In addition, the shallow production and induced fractures



Fig. 8.7 Rocky Mountain surveillance dashboard for pressure analytics on bottlenecks in remote mountain wells.
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led to a risk of surface events and well failures. The management of the sys-

tem required real-time production/injection pressure and temperature data

analytics for each well and analysis of surface tilt meter surveys. A key chal-

lenge was that much of this analysis was done manually: each morning

(7days per week), a production engineer was tasked with analyzing pdf

and spreadsheet reports and comparing it with the production and injection

data used to issue daily instructions on wells to direct field personnel.

The solution was an integrated system that displayed all the tilt meter,

fracture diagnostics, production, and injection data in one dashboard

(Eldred et al., 2015, Fig. 8.8). All stakeholders could then see all the data

in a unified environment. Production engineers, reservoir engineers, super-

visors, and field personnel collaborated on decisions on cycles; the decisions

were not dependent on a single engineer’s view at 6a.m., but benefited from

collaborative decisions from the stakeholders using real-time data through-

out the day (see next section). As in the other example, field personnel could

focus on the wells that required attention and do it more frequently (each

half-day). The asset reduced risk of well failure and maintained production

more consistently.
8.3 MANAGEMENT OF CHANGE

8.3.1 Collaboration in Practice: “A Day in the Life”

of a DOF Operation
Section 1.5 of Chapter 1 discussed how traditionally, disciplines involved in

the reservoir management value chain worked in discipline silos, with mul-

tiple manual data handoffs, use of different systems, and inefficient commu-

nication. Fig. 1.10 shows how a traditional organization of discipline silos

can be transformed into collaborative teams. Al-Jasmi et al. (2013) describe

how a work team in a CWE makes a decision in real time to change a well

operation (artificial lift pump settings) to increase oil rate.

WithDOF, data is produced continuously and in real time. DOF systems

deliver continuous automated analytics of data and a continuous need for all

the asset teammembers, production, and operations, to collaborate and inter-

act on decisions that drive value. For example, consider an operation with

more than 1000 wells on artificial lift with treatment facilities for gas, oil,

and water that must be produced with minimum downtime, maximum

hydrocarbon production, and zeroHSE incidents. Fig. 8.9 shows an example

of activity that continued on an operation throughout a 24-h period.



Fig. 8.8 San Joaquin Valley cyclic steam operation dashboard. (From Eldred, F., Cullick, S.A., Purwar, S., Arcot, S., Lenzsch, C., 2015. A Small Oper-
ator’s Implementation of a Digital Oil-Field Initiative. SPE-173404-MS. https://doi.org/10.2118/173404-MS used with permission from SPE.)
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Fig. 8.9 Example of activities in a 24-h DOF operational setting.
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Figs. 8.10 and 8.11 show the combination of automated and manual

activities that can occur among the disciplines that interact with the raw data

and analytics, and that communicate with each other from and to a CWE,

offices, and the field (mobile) tomake impactful decisions throughout theday.

8.3.2 Change Management: High-Performance Teams
Business and industry literature consistently emphasizes the importance of

“people” over “technology.” That is, without a change in management pro-

cess focusing on team formation and dynamics with role clarity that has been

planned and implemented, technology investments (e.g., for a collaboration

center and other technical investments for well control, hardware/software,

etc.) will most likely not achieve the expected value. Fig. 8.12 shows a

model based on Tuckman (2016) and Tuckman and Jensen (1997) on the

effectiveness of team’s progress over time, assuming good leadership and

management support. Teams go through stages of formation, objective set-

ting, establishing relationships and role responsibilities, and ultimately to

high effectiveness as a team, which Tuckman refers to as forming, storming,

norming, performing, and adjourning, respectively. Over time, identifica-

tion as an individual declines in relative importance as individuals identify

more with the team, which results in improved team performance.

Lyden and Zernigue (2014) present an extensive case study from Chev-

ron for building an effective team for a DOF solution project, in part based

on the Tuckmanmodel (Tuckman and Jensen, 1997). They summarized the



Fig. 8.10 Collaboration activities address downtime alarms, gas lift, and rod pump opportunities.
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Fig. 8.11 Facilities optimization team addresses off-spec product specifications (e.g., pressure RVP) and uptime.
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Fig. 8.12 Model of how teams progress over time to high effectiveness through step-
wise facilitation. (Based on Tuckman, B., 2016, MindTools. www.mindtools.com.)
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effort with “transportable lessons” for success, which include: (1) to share

accountability, team members must have clear alignment and full commit-

ment to organizational or project goals; (2) team’s behavioral expectations

must be clearly defined and reinforced by management; (3) a team’s

decision-making authority and process requirements must be clearly

defined; (4) teams must know rules for keeping each other informed and

how to interact across distance; (5) the skills required for each specific team

must be clearly defined and developed (“monitor and coach”); and (6) cel-

ebrate success and assimilate new members effectively.
8.3.2.1 Competency Development
For many decades, the oil and gas industry has provided staff development

opportunities which have included formal courses, external and internal,

mentoring, diverse job changes, apprentice situations, etc. Industry has in

place formal processes for learning and competency evaluation. However,

intelligent DOF puts a premium on these learning opportunities and compe-

tency development for engineering quality, data analytics, and collaborative

work processes. This section discusses examples of learning management

(training), competency management, and their synergy, which is often

thought of as knowledge management (KM).

A global leader in oil and gas training, development, and competency

management defines competency as “as set of defined and observable skills,

knowledge, abilities, and behaviors required to perform a specific job”

(IHRDC, 2014). The first part of this definition, “skills” and “knowledge”

http://www.mindtools.com
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relates to specific job skills that are acquired through on-the-job learning,

mentoring, and formalized training.

Virtually for all companies skill development is a high priority for their

staff. Skill development, including training courses, has traditionally had a

discipline focus. DOF requires additional multi- and cross-discipline train-

ing for multidiscipline skills and collaboration behaviors. In addition, some

new DOF roles often require staff to experience a “role transition”—which

are changes in a traditional role (e.g., production engineer) in a DOF envi-

ronment. This section describes a training template, a competency model,

and an example of a role transition.

The delivery of training ranges from in-house courses to external pro-

viders such as professional societies (SPE, AAPG, SPWLA) and commercial

companies, such as IHRDC and PetroSkills.

We recommend that each company, through the annual review process,

take a comprehensive approach to planning skill development that includes

both traditional discipline-specific skills and additional requirements for

DOF. Fig. 8.13 shows an example of competency list that one management

planned to have for one North American asset’s operation center personnel.
Fig. 8.13 Example of transition of competency requirements for an operations super-
visor for DOF/CWE deployment.



Training roadmap: Provide managers and technical professionals a structured

road map for training to meet Corporate needs

Company needs (first level) Basic:

•

•

•

•

Foundation:

Intermediate:

Specialized:

Designed for both technical and business oriented professionals who
are either new to the upstream oil and gas industry or experienced in
one part, but could benefit from a wider point of view.

Designed for individuals who have applied the skill taught in the basic
course or those with at least some awareness of basic engineering
and operations.

Designed for individuals who require practical familiarity and 
fundamental insight of the course material. The user desires to put
foundational skills into action with an emphasis on active learning
and solving problems at a higher level.

Designed for individuals who have completed an intermediate course
covering a similar topic or comparable training. courses are focused
on a discipline specialty catered to experienced individuals that desire
a mastering of skill who are going into or working within a
specialized technical area.

Professional discipline (second level)

Course discipline (third level)

Vendor (fourth level)

Courses (fifth level)

Workflow hierarchy Course level definition

Fig. 8.14 Example HR training dashboard and roadmap for staff to research and select
appropriate training courses.
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Before implementing DOF and CWE, the asset team worked with and

needed to understand and operate systems related to SCADA, artificial lift

wells, and the processing plant equipment. The implementation of DOF

required additional skills and knowledge as shown in the figure.

To support and facilitate training, one company provides a learningman-

agement system (LMS) dashboard with links to corporate-approved training

courses and resources. Fig. 8.14 illustrates this dashboard configured to the

specific needs of the company as identified annually by management. The

example focuses on reservoir, production, completions, facilities, and some

field operations. The dashboard enables staff to navigate a hierarchy of

courses to quickly link to many resource sites to find training best suited

for them and to communicate with their management. This dashboard

has direct links to more than 20 external sites for specific courses and a hier-

archy for competency levels to guide the staff in course selection and out-

comes. The first page of the dashboard (Fig. 8.14) has all the main discipline

areas that are linked to groups of courses and competency levels. Figs. 8.15

and 8.16 show the course options if a user selects artificial lift, followed by

selection of Production Operations and Production Engineering Basics.

8.3.2.2 Competency Management
The LMS supports the individual staff member and the direct or immediate

supervisor in planning an employee’s formal training. An important
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Fig. 8.15 Artificial lift options highlighted for training courses.

Fig. 8.16 Artificial lift specific links to training courses.
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complement to the LMS is the competency management system (CMS),

which is a corporate system that maps technical disciplines and experience

levels with the competencies that are appropriate for that level and ties those

to experience and any formal training (LMS). As defined above, competency

is “as set of defined and observable skills, knowledge, abilities, and behaviors

required to perform a specific job” (IHRDC, 2014). CMS is a system to

manage each company’s competency model. CMS as software dashboards

are available commercially (e.g., IHRDC and PetroSkills), professional soci-

eties (SPE and SEG), and also some companies have their own.
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A CMS has a series of competency levels with required skills for each

discipline. A CMS might be more specific for the specific needs of a given

business unit or geographic area, for example, unconventional onshore,

deep water offshore, mature field, improved recovery, etc. For DOF, com-

panies have introduced new competency requirements related to commu-

nication and collaboration. Different entities may use somewhat different

nomenclature to define level requirements for their competency model.

Table 8.4 presents a set of attributes associated with one company’s model

with three levels: foundational, proficient, and mastery. Other companies

often have a variation with four levels so as to have granularity between

intermediate application and skilled application. A CMS should have reports

for management to track their organization’s progress in training and expe-

rience goals and within the context of the levels expected, and for individual

staff to plan and track progress.
Table 8.4 Definitions for Competency Levels

Foundational (awareness and basic)

• May not have had opportunity to use skill on a project

• Has basic understanding of topic area

• Has demonstrated skill at minimum level

• Able to provide basic assistance

• Has close supervision

Proficient (intermediate or skilled application)

• Able to describe task and process

• Can perform routine activities with limited supervision

• Recognizes when to elevate/consult on complex situations to more experi-

enced resources

• Understands impacts on related systems and processes

• Can identify abnormal situations

• May supervise others in direct tasks

• Able to participate in peer reviews

Role model (mastery)

• Thorough understanding of topic or process

• Regarded as expert in field

• Able to troubleshoot and train others

• May manage a team to execute integrated work, that is, can coordinate work

activities

• Establishes trusted advisor status with management, partners, vendors

• Plans integrated activities for teams

• Resource for peer reviews
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The SPE has partnered with IHRDC to offer a competency manage-

ment tool (CMT), which has an individualized dashboard to identify learn-

ing gaps, a plan of action, and progress toward the goals. The dashboard is a

valuable tool for both individual staff members and management. The CMT

has 41 competency areas and 8 job functions: Production Engineering and

Operations; Project and Facilities Engineering; Business Development

(Operating Company); Supply Chain; Health, Safety and Environment;

Business Development (Service Companies); Subsurface; and Engineering

(Entry Level).

8.3.2.3 Knowledge Management
KM refers to systems and processes that store, organize, and retrieve knowl-

edge to improve the efficiency of collaboration for learning teams. KM tools

help companies capture and manage knowledge and integrate knowledge

and experience within the operational systems.

Gilman and Kuhn (2012) describe a KM process wherein the system cap-

tures correlations between actions and their results frommultiple asset teams.

The system can correlate similar situations to help users “explore previous

events, issues and solutions” to relate to a current situation in the field.

David (2016) describes a comprehensive KM system that enables

employees to leverage collective knowledge and experience of experts.

The systems allow employees to discuss the strategy, methodology, and

use cases in establishing a collaborative KM foundation. The system features

that enable this collaborative foundation include an integrated knowledge

base, KMworkflows, virtual community of practices, data analytics, and col-

laboration tools to embed knowledge as part of routine operational

workflows.

8.3.2.4 Team Synergy, Behaviors, and Role Transition
Chapter 1, Section 1.6 discussed that, although helping build successful and

effective teams is vital for DOF, it’s just a part of the DOF change manage-

ment challenge. For maximum effectiveness of DOF teams (i.e., gains in

operational efficiency and output), teams working in DOF environments

need to be liberated, authorized, stimulated, and pampered. This type of

change involves many other stakeholders around the core business and

has consequences for the organization (the way work is structured and orga-

nized) and for the way they are managed (leadership and culture), which is

fundamentally different from existing traditional ways based on siloed sep-

aration of disciplines. High-performance teams do not just happen by
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management making assignments (Fig. 8.12). Teams go through a process of

training, facilitation, and experience that transforms the way they work and a

resultant high achievement. Fig. 8.12 presented a model of how teams pro-

gress from Tuckman and Jensen (1997). Gilman and Kuhn (2012) discuss

how team dynamics and synergy affect DOF implementation and value

creation.

Transition to DOF from a current state often involves changing the way

specific decisions are made and that may require a transition in staff roles.

Staff training and competency have been discussed above, and working col-

laboratively in a team is critical to success. People often have to learn a new

way of working (Gilman and Kuhn, 2012; Goodwin et al., 2010; Van den

Berg et al., 2016), which requires management support, coaching, and train-

ing as appropriate. Even with these resources, in some cases, some people

cannot (or do not) transition well to this new way of working.

An example is the North American unconventional field operation.

Current state: The company had three field offices, each with a control room

and staff roles approximating those in Fig. 8.17; the control room served as a

“coordinator” of daily activity for the production technicians and field oper-

ators and a had a dotted line reporting relationship with the production engi-

neer. To transition to a DOF (“future state”) the Asset planned to move to a

program of intervention by exception and opportunity identification by

implementing capabilities such as intelligent alarms, automation of well

reviews, downtime alerts, automated event recording including lockouts,

and basic well controls, which required changes in roles for operators, both

in field and control room, and for production tech and engineer.
Control room operator
"Intelligence"

Production tech
"Optimizer"

Field operator
"Hands On"

Production engineer
"Strategizer"

Well performance optimization HES and policy compliance
(Lockouts)

Failure analysis
Artificial lift design
AFE/Cost responsibility
Wellwork project management
Workover priority
Location: Central and field office

Facility & daily task oversight
Well site surveillance
Contractor oversight
Location: Morning office meeting;
visit each well

Artificial lift diagnostics
Well failure diagnostics
Location: Office with trips to
field

Alarm diagnosis
Production entry
Diagnostics on facility process issues
Communicate via text with field operators
Coordinates facility and well issues

Coordination

Fig. 8.17 Current roles/assignments for a North American unconventional field
operation.
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Planning for DOF technology thus led to newwork roles and tasks. First,

the multiple control rooms were consolidated with data automation, which

enabled fewer manual diagnoses and provided a single point of contact. The

control roomoperator and field operator roleswere enhancedwith a rotation

plan andnewpromotional opportunities.New training and skill reviewswere

planned. The control room also could function as a collaboration center

because the production tech and production engineer would be colocated.

Many reports were automated that previously had manual steps. These

included well events, down volumes, actual versus targets, quality assurance,

well downtime alerts, action logs, well status lists, flare alerts, lockout histo-

ries, rig moves, and more. Intelligent alarming enabled the control room

supervisor and operators to focus field activity on the most value-adding

activity. This approach requires a change in the way of working, that is,

to be more proactive in diagnosing issues and looking for optimization

opportunities, which requires more in-depth knowledge of facility equip-

ment, artificial lift, etc. Production techs were taking on more to optimize

artificial lift tactically so that the production engineers could become more

strategic and work field economics.
8.4 CONCLUSION

Many companies have implemented collaborative working environ-
ments, from comprehensive, state-of-the-art centralized rooms to smaller

and less expensive venues. Each approach is a move toward a new way of

working that can help companies realize significant improvements in safety,

efficiency, and operational and economic performance. However, to cap-

ture and maximize the value from investment in DOF technology, collab-

oration and management of change are essential. Companies are

implementing new ways of working, helping to train and transition staff

from traditional roles to modern roles where people are more proactive,

engaged and collaborating in the day-to-day work of the DOF.
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The oil and gas (O&G) industry is transforming rapidly and digital technol-

ogies are a considerable factor in that transformation (Nyquist, 2016;Murray

and Neill, 2017). However, the changes coming over the next few years

have significant potential for even bigger step changes. McAvey (2017),

VP for Oil and Gas at Gartner in an interview for Pipeline Magazine, indi-

cated that momentum is picking up for DOF and stated “…results from

Gartner’s 2017 global CIO survey show that oil and gas companies expect
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to increase their spending on digitalisation to 28% of their IT budget in 2018

from 19% in 2016… While companies are still focused on preserving cash

flow, the high-impact nature of digitalisation is proving so attractive that

companies want to spend money on it…” (Pipeline Staff, 2017). In another

example, in a 2017 World Oil article Exxon Mobil’s chief computational

scientist is quoted as saying, the “oil patch’s digital transformation will be

comparable to horizontal drilling’s tech revolution” (Endress, 2017) (which,

of course, was the game-changing technology that enabled the shale gas rev-

olution, among other major industry achievements). Furthermore, the

report states that “…he predicts the digitalization of oilfield equipment

and operations will continue for the foreseeable future, due to future com-

petitive advantages and untold economic value” (Endress, 2017).

This final chapter highlights a few of the exciting technologies that are in

development or are being envisioned for the digital oil field (DOF) of the

future.

Chapters 1–8 present DOF technology and processes that today are state

of the art and have been documented in the technical literature. It is impos-

sible for anyone to know all that is coming in the near future. So we have

enlisted some help from some industry experts to provide their insights for

technologies they see for the future and highlight a few technical areas that

will impact O&G production. Our panel includes company CEOs, engi-

neers, and scientists in companies ranging from large national and interna-

tional to midsize independent oil companies and service providers.

We hope these chapters have led you to the conclusion that

implementing DOF has the potential to transform O&G companies, to

allow them to manage their operations and businesses more efficiently.

However, through 2017, it is estimated that less than 25% of all companies

(national and international oil companies and service companies) have

applied or introduced DOF concepts in many of their internal processes.

Only 10% of the total process and workflows are actually automated. We

can argue that this low implementation rate is due to lack of experience

and a slow approach to making internal process changes.

A number of exploration and production (E&P) companies have estab-

lished that the main priorities of DOF investment can be classified as follows:

• improving people’s safety in high-risk areas and protecting process

security;

• cybersecurity, data protection, and data sharing;

• expanded connectivity and communication across the fields, operation

centers, well locations, separator batteries, tank farms, office, and

terminals;
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• unlimited, clear, and clean data collection and sharing across the organi-

zation, which is well protected against cyber-attacks;

• easy application of automated processes to reduce cost over existing

manual processes;

• improved efficiency in sensors, equipment, devices for real-time control;

• enhanced production levels by reducing production downtime through

the adoption of data modeling and software solutions that aid decision-

making.

This chapter highlights the following topics for the industry’s intelligent

DOF of the future. Fig. 9.1 illustrates how these technologies and processes

will continue to add value in future DOF implementations as they disrupt

current practice and technology:

• ubiquitous sensors, that is, the industrial Internet of things (IIoT),

• data everywhere or Big Data,

• next generation of analytics,

• automation and remote operations,

• knowledge everywhere, knowledge capture, and management,

• integrated reservoir management,

• collaboration, mobility, remote operations, and machine-human

interface.

9.1 UBIQUITOUS SENSORS (IIoT)

Experts predict that the number of connected devices is increasing from
about 23 billion in 2015 to more than 50 billion in 2020 (Cisco, 2013),
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and that stored data in 2020 will be 40 zettabytes (40 billion terabytes). For

the O&G industry, however, Mahdavi (2017) says that the industry seems

uncertain about how to integrate IoT for optimal business impact. He goes

on to say that adoption of IoT-enabled analytics in the consumer space, for

example, where retailers have so much data and can analyze it so quickly

they can predict buyer behavior in real time, has created an expectation

by some in O&G that digitalization would also enable real-time proactive

decisions. He indicates that the DOF has progressed by enabling collabora-

tion across geographies and through real-time centers, but it has not fulfilled

the promise of transformative performance in terms of value delivered.

Mahdavi reinforces the report by McAvey (2017) that business transforma-

tion is possible by fully integrating the systems “from the sand face to their

back-end IT and financial systems.” BSquare (2017) says “in fact, IoT tech-

nology creates an entirely new asset: information about these crucial ele-

ments of their businesses,” and goes on to say “through the establishment

of comprehensive, data-driven predictive insights, O&G companies can

employ sophisticated rules and machine learning to constantly adapt and

tune expensive assets in real-time using trend analysis.”

In an interview, Anthony McDaniels of Rare Petro Technologies noted

that in 2012, a surveillance device that cost USD 10,000 and took 6 months

for design, decision, power, communications, and installation can, in 2017,

be installed for less than USD 300. The cost for a field data device has gone

from $5 per megabyte (MB) to USD 0.03 per MB. Even mature fields with

lower production can now justify using surveillance equipment and obtain

value with the analytics available. New technology for miniaturization of the

power source, wireless communication, and polymer protection enables use

of downhole sensors, which could not be considered in the past.

Chris Lenzsch of Dell-EMC spoke about the increase of software-

defined sensors (that is edge sensors), more IT integration with the data

by users, and increased automation. People will use data that are close to

the measurement sources. With edge sensors and data on the cloud, there

is an increasing focus on data security. The sensors themselves require

built-in security. In the future, DOF systems will be increasingly closed loop

with control over decisions and action. People interacting with systems sim-

ply to move and manipulate data, for example, between file systems, spread-

sheets, reports, data warehouse, etc., will disappear; Lenzsch states, “Today

the industry is 70% data manipulation and 30% decisions; in the future, the

percentages will be reversed at the least.” E&P data will move to the Cloud

so that data are “ubiquitous whenever, whatever you want for collaboration
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and remote operations,” Lenzsch predicts. He also referred to howTotal just

put a robot on a topside in the North Sea—automatically doing what many

people were doing before. Lenzsch also indicated that breakthroughs in

hardware are leading to 10� greater storage every 3 years—end-memory

flash solid state is now terabytes andwill bemany TB in the near future. Solid

state is replacing discs for fast data retrieval and backup, and analytics will be

running from a “mother ship” hub that will communicate with multiple

devices and will feed models to interacting “edge” sensors.

From the viewpoint of Mohammad Askar of the Advanced Research

Center (EXPEC ARC) at Saudi Aramco, the future of O&G operations

is through a fully automated self-learning and auto-optimizing system using

a variety of sensors, remote sensing devices, and a wildly creative commu-

nicative network. Imagine a network of sensors distributed intelligently

everywhere in the field, above and underground, around and far from the

wellbore, while drilling and post-flowing the wells, during operation, etc.

Included with these sensors are another line of remote-sensing devices that

sense far in advance (examples include water encroachment before it hap-

pens, loss circulation, and all sorts of other operational issues that might

arise). Such information (or big data) is acquired in real time, fed to a storage

system (cloud drive) that is linked to a high-performance computing system.

The simulator will run thousands of realizations in real time, and the results

are sent to a smart, self-deciding system, loaded with specific operational sce-

narios to instruct, for example, choke valves (to control which well contrib-

utes to production while keeping water cut low, etc.) and downhole flow

control valves (to control or shut down laterals that are either producing

too much water or about to) through remote sensing.

The future of sensors is very bright also in the area of production surveil-

lance systems. According to ARC, in Saudi Aramco, one goal is to put the

whole field under continuous and real-time deep surveillance, in the most

efficient and cost-effective way, through such enabling technologies. This

means more data points of different types at various locations, at the surface

and downhole. It is only controllable and changeable if one can measure it

better in real time. Imagine if one can see what is going on for a whole field

or section of the field all at once and in real time!

The new generation of sensors can be enabled by new generations of

microprocessor chips. Mims (2017a,b,c) reports on companies like Apple,

Nvidia, Intel, and others that are “breakingMoore’s Law” with task-specific

chips. They move software and applications from the CPU and build the

calculations into the chips so that the work can be done many times faster



326 Intelligent Digital Oil and Gas Fields
without needing to miniaturize continually the circuits. These new chips

enable image processing, image recognition, self-driving cars, virtual reality

(VR), and artificial intelligence.
9.1.1 Nanosensors
Nanotechnology refers to miniaturizing technology to a nanoscale so that it

can be used in remote places where conventional sensors do not work, like

deep in reservoirs. Naturally, O&G operations have plenty of situations

where nanotechnologies can be used and will benefit DOF solutions.

Fig. 9.2 shows nanosensor film used in high-pressure/temperature pipes.

The film nanosensors help visualize the pressure gradient from point to point

as they communicate the data to the operations.

Will nanorobots (or nanobots) as machines or designed chemicals be a

reality for DOF solutions in the next 5–10 years? In an interview, Askar from
Saudi Aramco states, “ResBots are a reality today!” As a research program in

EXPEC ARC, the ResBots program started about 8 years ago, with a suite

of technologies being developed in-house, to address various existing field

challenges, such as: tracing well connectivity, in situ sensing the progression

of a waterflood front in real time, in situ determination of the remaining oil

saturation, and direct interventions through targeted or on-demand delivery

of oil field chemicals to predetermined locations deep in the formation. The

idea is to investigate effective ways to access areas far beyond the wellbore

region, for sensing and/or intervention purposes.

The industry is always looking to develop technologies to better under-

stand/characterize reservoirs or to alter specific subsurface areas (plug,

change IFT, or wettability) for better performance. Nano-based solutions

in O&G are attractive because: (a) miniaturizing materials to nanoscale gives

us the ability, at least physically, to access tiny rock pores (where
THP
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Fig. 9.2 A flow line after the wellhead covered by a film of nanosensors detecting in real
time the pressure gradient from the wellhead to the outlet point (separator). The red
area means high pressure near the wellhead and valve, whereas the light blue color
means low-pressure values.
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hydrocarbon exists) and (b) manipulating matter at that scale will enable us to

access surfaces by nanomaterials that would not be possible otherwise. In the

future, the idea is to develop fully functional and steerable nanomaterials

(called nanoagents) that are capable of traversing the rock formation by

harvesting their own energy (maybe from the fluid flow or heat of the res-

ervoir), reporting about the reservoir properties, and supporting discovery

procedures and oil recovery processes. These nanoagents could store the

information in a variety of ways including a detectable change in their opti-

cal properties, chemical signatures, etc. Once recovered at the surface,

nanoagents can be interpreted by engineers and scientists. For some

nanoagent templates, progress has been made beyond lab testing. For exam-

ple, model templates of nanobased tracers (e.g., A-Dots and advanced

tracers) have been deployed in the field in cross-producing wells, an

industry-first cross-well field tests.

Autonomous, self-controlling, human-free transportation is becoming

the future of civil and cargo transportation. Will the O&G industry see a

similar trend toward the autonomous control and automation of technology

platforms for future DOF systems? The question was posed to Vasily

Demyanov, associate professor at Heriot-Watt University’s Institute of

Petroleum, who responds that the technology for remote and autonomous

sensing has improved considerably in recent years from the breakthrough in

scale miniaturization of the monitoring instrumentation. Micro- and nano-

scale sensors are now being developedwith a current level of technology that

reveals new distinct properties of materials, including 2D films. Implemen-

tation of such monitoring technology would enrich and make a step change

for DOFmonitoring. The target here is to collect cheap and abundant infor-

mation about what is going on in the reservoir and how it responds to

interventions.

9.2 DATA EVERYWHERE

Raed Abdalla, CEO of Evinsys, a DOF solution provider, says that the
next generation is really going to be in three areas: (1) Data: data will be pro-

vided faster, and more real time, but there will be growing need for security

because of so many connected devices.We have a real gap right now for data

and networks. (2) Data use: there is a drive for analytics and predictive ana-

lytics and to store and track the data and predictions. (3) Management of

connected devices: there is no holistic system to manage many inter-

connected devices, that is, monitor and report on the health of devices,
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quality of data, calibration, etc. He goes on to say that we will see a lot of

changes and innovation, such as smart sensors with self-calibration, self-

diagnostics, and self-diagnostics on the connectivity with other sensors,

and edge devices with analytics and collaboration. An important question

is: how much intelligence to put into each edge device with more intelli-

gence which feeds the cloud? There will be a lot of innovation in intelli-

gence in the edge devices for what data are actually transmitted to cloud

for storage. Predictive analytics is also coming in a big way for equipment

failure, scheduled maintenance, production analysis, and empowering

O&G operations to move beyond reaction.

Fig. 9.3 shows a schematic of how the data will be acquired and displayed

everywhere. The concept of “data lake” is being introduced to the data eco-

system. Currently, O&G companies mostly have data warehouses and struc-

tured and relational data for their master data stores, which have developed

over several decades. Transactional industries are transitioning to new archi-

tectures for Big Data and IIoT. A data lake stores data, both structured and

unstructured, in a form close to its native state, along with metadata char-

acteristics. This approach enables a muchmore flexible system for data access

by the many applications, analytics, machine learning, visualization, integra-

tion, etc. that need to access it. Seamless data will be required for the inte-

grated reservoir management discussed later.

Abdalla went on to discuss how the new generation will use much more

intuitive technology (software), simple to learn, with no training courses,

that is mostly self-guiding workflows. New platforms have “self-protecting”

workflows that alert or prevent users from making mistakes. “Apps” will be

sources for users to build their own workflows or use existing ones with ana-

lytics, for example, predictive maintenance and artificial lift optimization.

Currently, there is a gap to define protocols and standards across vendors.

IIoT needs a more structured protocol so devices can communicate with

each other, rather than one way to the cloud or data storage. Open standard

across companies will enable sensors (with “smarts”) to communicate among

themselves.

9.3 NEXT-GENERATION ANALYTICS

Kunal Dutta-Roy and Senthil Arcot of Technical Toolboxes, Inc.
(a global provider of integrated and cloud-based pipeline software and con-

sulting) describe how they see the future of analytics for artificial lift. Pumps

and well equipment will be monitored like a car, informing their owner that
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oil change or service is needed. There will be no reason for a middleman to

make assessments and decisions. Different devices are connected to run a

field operation; today, devices have to communicate “up” to a central device

or dashboard, but in the future there will be an ecosystem of different end

devices communicating with each other by common standards for an open

environment. Reaching this vision has some challenges: production opera-

tions have not kept up with standards and security might be an issue. The

first to market with standards may drive the competition to join in. Main-

tenance will be recorded in real time and also will guide additional actions.

All data will be captured in a knowledge system.

Drones and nanosensors will be used to monitor system leaks.

Nanosensors are available now for leak detection; and like all newer tech-

nology, prices are declining quickly, nearly 100 times less than a few years

ago. Sensors will provide the basis for analytical, data-driven, and modeling

solutions. Sensors make modeling (machine learning) more reliable, and will

eventually be used in multiple system end points to build models.

Use of a single data lake (as described above) means one integrated data

source for an operating asset, which will finally drive movement away from

the domain silos that have plagued the industry for decades. Humans will

interact and make decisions at a more integrated level. Solutions will be built

as services—data as service, analysis as service, visualization as service, alerts

as service. In the future, analysis provides guidance and communication to

operators to act. Brain power and software are on contract.

There is and will be ubiquitous video at well pads and well sites with

remote and automated operations, that pan, zoom, time, recognize abnor-

malities, record acoustics and then store, analyze, and alert for abnormal

issues. Visual diagnostics enable virtual site inspection and will be auto-

mated (see Pixel Velocity, 2017) with recording of events and pattern

recognition.

Here is an interesting comment from JimCrompton,Managing Director

at Reflections Data Consulting, “Technology vendors are so far advanced

versus the current maturity of the upstream O&G operator that the two

are struggling to have a constructive conversation …Digitization of the

oilfield (at least many of them) is happening, but that does not mean that

effective analytics will naturally follow.” The paradigm of the “digital

twin,” a digital representation of the physical system, is that every asset

and its components “learn” using physics plus data analytics from other assets

as to best procedures and processes. The knowledge repository is in the

“digital twin.”
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9.4 AUTOMATION AND REMOTE CONTROL

Dr. Demyanov stated that analyzing, inferring, and making decisions
based on the new monitoring (see Nanosensors above) would be the next

task that would require a step-change level of data analytics implemented

into reservoir surveillance workflows. Can we speculate on the transition

toward artificial intuition embedded in DOF technology so the O&G digital

transformation could result in a self-thinking DOF ecosystem? Demyanov

notes that artificial intelligence and cognitive systems have been widely used

in mining large data domains and supporting expert judgment by elicitation

of vital information patterns from data. Such data-driven methods have been

historically implemented in seismic processing before gaining a wider rec-

ognition in other O&G application domains. Nowadays, the cognitive

approach is intensively implemented in many diagnostic systems that require

interaction with human activity/technology, such as medicine, electronics,

etc. There is great potential in implementing data-driven cognitive learning-

based technology in DOF systems. The present challenges lie with a tech-

nological level of storing and mining the right amount of information at the

acceptable cost level. Furthermore, the cognitive systems to be developed to

mine reservoir operational information should embed experiential learning

based on decades of manual operational success and failures. Such technol-

ogy already exists (e.g., in mechanical manufacturing) where mechanisms

are able to capture and learn from the operators’ experiences. However,

the more complex the mechanisms are, the more elaborate and sophisticated

the cognitive learning needs to be, especially given the vast uncertainty in

hydrocarbon reservoirs and the variability of many different options and pos-

sibilities of events.

Demyanov concludes that there is a great potential in linking the step

change in data acquisition in the DOF era with the novel data-driven

learning-based workflows—as the second is the solution to extract the added

value from the first. It is essential to view the high-level problems of where

the value is in the O&G operations and what are the bottlenecks where the

value is depreciated for certain reasons. Thus, the efforts need to be aimed at

those bottlenecks to explore the opportunities of intelligent data-driven

workflows that would be aimed at gaining the qualitative step change in

the way the DOF systems are operated. Present-day practices and technol-

ogy allow monitoring social behavior and reveal certain dependencies and

even predict behavior events based on the monitored response of a swarm
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activity. The understanding and interpretation of such monitoring still

requires a lot of effort in tying with the governing dynamics of the complex

systems.

In another interview, AnthonyMcDaniels, President of Rare Petro Inc.,

addressed remote operations and control. The “technology industrial

revolution” is here and is being driven from consumer electronics. Robotics

is going to be on site soon and although humans will still be in the field, they

will be fewer and fewer.

As hardware and processing become less expensive, there is a “tipping

point” to move the ‘smarts’ (analytics) to the sensors that are on the end

devices (“edge”). Even small operators are able to collect data and in the

future will have the analytics as well. Therefore, move analytics to the

“edge” and provide decisions and guidance to users—users do not have

to spend their time managing and analyzing data. Software is automatically

upgraded and distributed to devices.

The demographics of the younger generation demands mobile technol-

ogy for everything. There will be “Uber” for supply chain, well interven-

tions, tank deliveries, etc.With GPS on every truck, pumpers will be tracked

and guided for step change in efficiency. Services will be commoditized.

Is there a potential in synergies between the state-of-the-art social/

mobile high technology and O&G optimization, and how could the

E&P digital transformation maximize the “bang for the buck”? Pallav

Sarma, Chief Scientist at Tachyus (an O&G technology company), notes

that, while techniques and underlying principles of data science have been

around for decades in various disciplines such as statistics, computer sci-

ence, machine learning, probability theory, etc., it is only recently that data

science as a unifying umbrella has received significant attention and pop-

ularity. This popularization is due to an explosion of the quantity of data

collected daily by these technology companies, a significant increase in

computational resources available, access to cloud computing facilities,

and advances in data science algorithms. A recent and highly visible exam-

ple of the application of data science in technology is the 4-to-1 defeat of

the reigning GO champion by Google’s DeepMind team. GO is a board

game orders of magnitude more computationally complex than chess;

therefore, brute-force computational solutions are not viable yet for solv-

ing GO. Just recently, it was generally thought that a solution to GOwas at

least 10 years away. However, DeepMind’s approach to GO was made

possible by access to huge amounts of training data, access to Google’s very

large GPU clusters, and significant advances in deep-learning neural
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networks over the past decade. Furthermore, the O&G industry, while

generally lagging in uptake of new technology, has also seen a surge in

activity and applications of data science.

However, this is certainly only the beginning of applications of data sci-

ence to the O&G industry. While such applications to major value drivers

like reservoir modeling are currently being explored, there is scope for

improvement of almost all workflows that consume data of some sort,

and while not being the primary source of value, still have significant impact

on the entire value chain. From predictive modeling of oil field maintenance

and safety to the applications of block chains for supply chain management,

etc., the possibilities are endless!
9.4.1 Wireless Technology
Automation and control will in part be enabled by step changes in com-

munication technology with higher bandwidths. To assure the seven pri-

orities established by the O&G industry (listed at the start of this chapter),

wireless technology (Wi-Fi) is a key factor in the future advancements of

DOF systems. One such promising technology is Li-Fi. Created by the

University of Edinburgh in 2011, Professor Harald Haas tested for the first

time a light emitted from diodes (LED) to transmit data to a mobile device.

The invention is called Li-Fi, which is defined as a “light-based commu-

nication technology that delivers at high speed, bidirectional networked,

and mobile transmission in a similar manner as Wi-Fi” (pureLiFi, 2017).

Fig. 9.4 illustrates a Li-Fi system. Li-Fi is 10,000 times the frequency spec-

trum of radio; the data transmission can achieve up to 10 Gbps, whereas

Wi-Fi can achieve up to 2 Gbps. In terms of security, Li-Fi cannot pen-

etrate walls; therefore, it is more secure and private than Wi-Fi. However,

the Li-Fi cannot penetrate solid objects and sometimes natural sun light,

bulbs, and other external light can interfere with the transmission. Another

issue is that Li-Fi requires a constant and reliable source of electric power

supply. In DOF systems, the great benefit of Li-Fi would be complemen-

ted with Wi-Fi. If a reliable source of power is available, a series of elec-

trical LED bulbs can be installed at a well location to transmit data during

the night, and during the daylight, traditional Wi-Fi using a solar battery

can be used. Fig. 9.3 shows a futuristic location operating during the night;

a series of LED lamps illuminates the entire operation of drilling and pro-

duction sites while transmitting data from the production wellhead loca-

tion and drilling operations to a data center.



Fig. 9.4 A futuristic production location at night; an LED map illuminates a wellhead
production location and drilling operations to transmit real-time data to an operation
center.
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9.4.2 Drones
Drones are just beginning to be used in O&G fields, but they have the

potential to reduce the cost of operations significantly. Today, drones can

be equipped with high-definition (HD) cameras, laser-based sensors,

Wi-Fi, high-frequency radio frequency, ground-penetrating radar, ultra-

sound sensors, and light detectors and optical beams to measure gas emission,

read data on gauges, and notify for leaks or for intruders. Drones can be very

positive for the industry to generate real-time data for DOF systems helping

with the following tasks:

• Visualize entire field operations and safety conditions.

• Surveil remote areas where operators cannot access easily or take too

much time to go in truck.

• Surveil areas with a hostile environment where the operational wells are

inaccessible due to snow, sand, high temperature, flooding, etc.

• Patrol and investigate for intruders and nonauthorized personnel.

• Track down pipeline leaks and perform methane inspections.

• Map with high-resolution imagery, thermal data, and digital points to

generate elevation maps.

• Carry equipment from warehouse to well location to facilitate engineer-

ing operations in less time [e.g., supply chain (“Amazon delivery”)].
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9.5 KNOWLEDGE EVERYWHERE: KNOWLEDGE CAPTURE
AND PEOPLE RESOURCES
9.5.1 Capturing Knowledge in New Ways

DOF systems require new ways of working and are leading to new careers.

In the past 5 years, a career as a data scientist (with titles such as chief data

scientist, chief computational scientist) has become mainstream in both large

and small O&G companies and in the service industry. This relatively new

role that began in the ITDepartment a decade ago in many organizations has

moved into the operations and business units. Engineers in operations are

being tasked with learning and performing data analytics and statistics,

“data-driven production optimization,” and are increasingly coming from

that background and training. This role is necessary because of the use of

ubiquitous data as described above and the use of new technology to analyze

and use the data. The increasing trend of data science is likely to grow as

other conventional roles in the field decline.

9.5.2 Delivering DOF to the Business
Introduction of DOF systems is also bringing innovations to the delivery

model. Terms such as data acquisition as a service, analytics as a service, data

management as a service, communication as a service, and intervention as a

service are entering the industry lexicon. This delivery of services as needed

might be called the “Uberization” of many inputs to the decision chain for

which DOF is a complex integration of services. Edge sensors (with internal

analytics) are being installed and interconnected (IIoT) by service providers

on a unit cost basis. Operating companies will not “own,” that is, capitalize,

the sensors, communications, Big Data storage, etc. Even analytics will

become a service, for example, Microsoft’s Azure model.

9.6 INTEGRATED RESERVOIR DECISIONS

9.6.1 Big Data and Big Models

To improve production forecast accuracy and better decisions to enhance

O&G recovery, Big Data should be integrated in the future into large reser-

voir models. There is no official definition for big reservoir models, but we

can understand big models as those high definition/resolution 3D gridded

models that preserve the geological heterogeneity and fluid properties in cells

with fine resolution. Today, technology is available to manage massive data,

more than 100 TB, and soft-computing hardware and high-performance
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clusters to speed the CPU time. However, the E&P industry faces many

challenges to integrate Big Data with big models, including:

• Enough storage capacity to submit more than 100 realizations/scenarios

to the cloud.

• Parallel multiple simulation jobs without increasing cost.

• CPU scalability and acceleration to reduce CPU.

• Budget constraints. Technology for hardware and software is available,

with literally thousands of economic options for cloud and cluster

environments.

• Decisions about which real-time data should be integrated into big res-

ervoir models. Monthly production data are enough for 3D reservoir

modeling. However, the water and gas breakthrough could occur in

weeks. The simulator is capable of predicting when fluid breakthrough

will happen and what action should be taken to prevent it.

Do we really need to integrate Big Data with big models? In many exper-

iments, we observed potential discoveries and insights that were not

observed with upscaled processes. Stochastic analysis is the key to run Big

Data-big model to explore the impact on production forecast and oil recov-

ery, especially when uncertainty plays a fundamental role.

Fig. 9.5 is a schematic for the integration of a big reservoir model and

Big Data, applying production data to update the model, running many

scenarios for production forecasts, generating intuitive diagnostic and anal-

ysis of production downtime, extracting data for data analytics, and show-

ing where to drill, complete, and optimize well production performance.

It will be one common platform to capture real-time data into the model to

generate scenarios rapidly and rank economic decisions; the future plat-

formwill provide intuitive workflows without coding or mapping individ-

ual properties to connect different software applications. It is envisioned

that the platform will generate cognitive diagnostics to rank solutions

according to events and well issues. Models will integrate physics-based

and data-driven responses.
9.6.2 Optimizing Optimization and the “Closed Loop”
Chapter 6 presents the state of the industry in optimization and introduces

the closed-loop concept. The future DOF will harness and benefit funda-

mentally from advancements in the process optimization technology.

According to Pallav Sarma, an integrated monitoring and control approach

known as model-based closed-loop optimal control has to be implemented



Fig. 9.5 Integration of a big 3D reservoir model (high resolution) and Big Data. Showingmany visualization and information plots for an all-in-
one integrated reservoir decision.

337
The

Future
D
igitalO

ilField



338 Intelligent Digital Oil and Gas Fields
to extract the maximum benefit from the enhanced monitoring capacity and

controllability of smart fields. The goal of such a system is in essence to con-

tinually maximize the life cycle value of the oil field by enabling proactive

optimization and decision-making, which in turn is enabled by real-time

monitoring, continuous model updating, and optimal control of the oil field.

Sarma also notes that the key components required to enable a closed-loop

optimal control system are as follows: a continuous data acquisition and inte-

gration system, a set of forward models relating the control variables to per-

formance indicators or objectives, ability to update these models with the

latest data, ability to optimize these models across multiple objectives and

constraints, and finally a system that enables easy consumption and imple-

mentation of decisions recommended by the system.

New sources of real-time data such as fiber optics and permanent down-

hole sensors have increased the volume of data collected by orders of mag-

nitude. However, much of these data are not used to the fullest extent

possible, and almost certainly not for proactive decision-making. For exam-

ple, pump-off-control and other well-related data can be used for predicting

the probability of well failure and thereby allow predictive maintenance.

However, maintenance decisions are still typically reactive: wells are fixed

after they fail. Such reactive solutions are in general “too little, too late”

and can be quite costly.

The second component of the closed loop, namely, the forward model,

has almost always been a reservoir simulation model in existing (partial)

implementations of the closed loop. However, the computational complex-

ity of simulationmodels, coupledwith the significant time and effort to build

these models, makes the closed loop all but impractical to apply in anything

close to real time. Although techniques can be applied to alleviate some of

these problems, there is no complete solution today and this is undeniably

the most critical component and also the one hindering mass adoption of

closed-loop control.

The third component of the closed loop is technology to efficiently and

accurately update the forward model with the latest data. Techniques here

range from well-established deterministic gradient-based methods to more

recent stochastic/heuristic methods such as genetic algorithms. An addi-

tional aspect of the model updating problem is re-parameterization or

dimensionality reduction of the uncertain model parameters. While there

is still work to be done, Sarma feels that this is an area where significant pro-

gress has been made toward a practical solution that is applicable in a

closed loop.
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The fourth component of the closed loop is technology to efficiently

optimize the decision variables using the updated models that relate these

decision variables to multiple objective functions. The techniques used here

are similar to those used for model updating, such as gradient-based and sto-

chastic optimization methods. Recent approaches, such as mimetic methods

that combine the benefits of both gradient-based and stochastic approaches,

can help reach solutions. Further, combined with scalable parallel cloud

computing and reduced-order models, the optimization problem has

become practically solvable in a closed-loop framework.

Sarma emphasizes that the final and probably most neglected component

of the closed-loop system is a system to enable users—from managers to

engineers to operators—to easily analyze, collaborate, and implement deci-

sions recommended by the closed-loop system. Oil producers and service

companies are notorious for delivering software with very poor and non-

intuitive user interfaces, and most such software are static in that they are

not connected to live data streams, and are certainly not collaborative, that

is to enable multiple disciplines to interact effectively. A software application

enabling closed-loop optimization has to be designed from the ground up

integrating the best design practices and tools from the software industry

to bring this archaic part of the closed-loop system to modern times.

Sarma elaborates that physics-based reservoir simulation and data-driven

machine learning offer complementary strengths. An ideal predictive model

would combine the speed and flexibility of machine learning with the pre-

dictive accuracy of reservoir simulation, at the right scale, so that operators

can integrate data in real time to quantitatively optimize reservoir manage-

ment decisions continuously. To this end, data physics models merge mod-

ern data science and the physics of reservoir simulation seamlessly. Data

physics models, like machine learning models, require only days to set up

and can be run in real time. Additionally, since they include all the same

physics as a reservoir simulation, they offer excellent long-term predictive

capability even when historical data are sparse, missing, or noisy.

Data physics models are optimized for speed and run orders of magnitude

faster. This speed permits repeated comparison and tuning to the underlying

history of production and consequently permits statistically quantifiable

comparative prediction performance between many alternative scenarios

in service of quantitative optimization.

Given this definition of data physics, while this approach is fundamen-

tally different from either traditional machine learning or simulation, on its

own and considering only the science behind the technology, it is not
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sufficiently different to be called a quantum leap in modeling technology.

However, since these models are really designed to enable practical imple-

mentation of the closed-loop system and provide users with an interface to

collaborate and manage all important reservoir management decisions from

daily to long-term ones, it can indeed be considered a quantum leap in how

it enables near real-time data-driven reservoir management processes not

possible to traditional approaches.
9.6.3 High-Performance Computing for the Future DOF
For many industry experts, the advancement in high-performance comput-

ing (HPC) and cloud computing are seen as key enablers for the next-

generation DOF. The future is now and the technology vendors are

aggressively investing in graphic processing unit (GPU)-based reservoir sim-

ulation technology (e.g., Stone Ridge Technology (SRT), 2017 with its

ECHELON simulator and Rock Flow Dynamics (RFD), 2017 with its

tNavigator simulator) with the vision to transform the future DOF. How-

ever, as noted in the interview with Vasilii Shelkov, CEO at RFD, in the

past few years there has been very little progress in accelerating reservoir

simulations, both for shared memory (workstations, laptops) and distributed

memory (public and private clouds) systems.

The typical performance improvements expectations from a CPU

upgrade have diminished to 5–10%, which quickly became unacceptable

and forced the reservoir simulation community to look for new ways to

accelerate. Since performance of reservoir simulations is dominated largely

by throughput and latency of the memory system, the emergence of general

purpose GPU computing and its fast memory started to attract the attention

of software developers. As of now, more and more companies show that

CPU-GPU and GPU-GPU systems can easily challenge scalar performance

of classical CPU-CPU systems. The development of new CPU vector

processing tools like AVX512 couldmake compute-bound parts of reservoir

simulations more competitive with GPU, but will not help much with

memory-bound calculations. Using general purpose GPU computing for

reservoir simulations has already shown potential and with the merge with

CPU and memory systems may eventually become next-generation tech-

nology to boost reservoir simulation performance by an order of magnitude

or more in the next couple of years. In fact, the lack of competition is per-

ceived by Shelkov as the only major hindrance for progress of HPC and

cloud computing in the future of the DOF.
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According to Shelkov, historically, owing to security concerns, reservoir

simulations are typically run on hardware tightly controlled by corporate IT

managers. However, as the hardware refresh cycles have shortened, espe-

cially with GPUs, the benefits of public clouds have started to attract atten-

tion. Using only public clouds, reservoir simulation jobs can be extended to

hundreds and even thousands of computing nodes. The mass use of public

cloud systems can drastically change the uncertainty analysis landscape.

IBM has just announced the 50-qbit quantum computer as a part of the

IBMQ Program. Can quantum computing be seen as a “quantum leap” for

the future of reservoir simulation and as such the next-generation DOF?

Shelkov believes that this technology seems to be many years away from

being useful for reservoir simulations but may eventually become interest-

ing. So far, there have been no attempts to use these systems for reservoir

simulations.
9.7 COLLABORATION, MOBILITY, AND MACHINE-
HUMAN INTERFACE
9.7.1 Mobility and Collaboration

Mobile applications (apps) on phones and tablets are becoming the norm for

field operators who have the same access to data and dashboards as the oper-

ations center and engineering staff. Through mobility, decisions are moving

closer to the wells. Ailworth (2017) reports on an EOGResources app being

used by rig personnel to change the direction of bits with real-time data and

real-time communication with central offices. He quotes Sandeep Bhakhri,

EOG’s Chief Information Officer, “The apps help employees work at the

‘speed of thought’.” Other companies are moving apps into the hands of

all field personnel, pumpers, instrument technicians, etc.
9.7.2 Virtual and Augmented Reality Enable Immersive
Collaboration

VR and augmented reality (AR) are rapidly transitioning from the gaming

and entertainment industries to commercial industry and medicine. Fig. 9.6

illustrates remote or “tele” surgery that is not only being tested but is also

being implemented in medical centers. The technology requires very high

and immediate transmissions of data, voice, video, and analytics. We see VR

and AR growing rapidly for O&G in the future.



Fig. 9.6 Remote surgery or “tele” surgery: on the left is an operating theater with sur-
geon using AR for guidance; on the right is a control unit for remote control for
angiography.
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Another area where VR has a significant impact is in training and edu-

cation. One page of full text can teach a concept and a process description,

one picture can explain the concept, and a 2D image with motion can

explain 100 times what a picture shows. However, in a dynamic, immersive

environment of 3D and 360-degree views, VR and AR can communicate

many times more details of a process. Shell, Chevron, and Exxon-Mobil

now have introduced various training programs using VR to reduce training

costs and avoid obsolete training materials (documents, power point presen-

tation, etc.). Fig. 9.7A shows AR for a processing plant operation, a digital

twin of the operation. Fig. 9.7B–D are from a case study on a Shell Permian

operation used for training (Dietz, 2017). The technology is a tablet appli-

cation that takes 360-degree views of operations in the field, the operations

center, processing facilities, wells, etc. The views become a basis for AR

dynamic interactions by trainees with all the field equipment and can be

done from remote locations. Using VR and AR, the operator can teach

at the office without moving, travel, or waiting for instructors. In the near

future, it could be shown that with training using VR, operators can signif-

icantly reduce operation risks and for engineers, it will be easier to receive

more information in a shorter time, with focus on details that affect opera-

tional safety.

Another benefit of AR is working closer with operators at the field—

taking virtual tours of facilities and well locations without traveling and

showing an exact replica of what the operators are viewing in real time

and sharing it with people in the office. Managers and engineers become

more informed, increase the awareness of everyone on the team, and ulti-

mately make better decisions at the right time. The VRwill be a tremendous

advantage to reduce misunderstanding and miscommunication across the



Fig. 9.7 Augmented reality for plant operations and field training. (A) Real-time oper-
ations digital twin of a processing plant; (B–D) AR 360-degree view of rig and field oper-
ations set for remote training. (Used with permission of 900LBS of Creative.)
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team. Illogic Digital Creativity Lab (2017) has a virtual processing plant by

which a plant operator can interact dynamically with the plant equipment.

Geoscience and subsurface models are representations of the reservoir

to quantify the amount of O&G volume in situ and show the main geo-

logical features of the reservoir, for example, faults, lithology, water con-

tacts, etc. For nonsubsurface engineers, reservoir models have been

considered a black box, difficult to understand. Even for reservoir engi-

neers and geologists, it can be quite difficult to explain what happens in

the reservoir when geological heterogeneities play significant roles in oil

extraction. Using VR, the entire asset team (all disciplines) can see the

unique interpretations (3D-360 degree) of what the reservoir looks like,

where the remaining O&G reserves are, and the localized main faults

and boundaries of the reservoirs.

As noted by Steve Dietz and Cole Wiser of 900LBS of Creative, we are

transitioning from the “digital age” to the “experience age”; that is, the user

will be immersed in the content. Conference rooms, collaboration centers,

and operations centers will have more scaled 3D visuals with mixed reality
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for very practical applications. People will be virtually inside of equipment

and performing operations on wells and facilities just like remote surgery.

Haptic feedback is bringing more real-time cause and effect; peripherals

may not be just goggles or glasses but wearable vests that have sensors for

pressure, feel, temperature, feeling of elevation, etc. Google Project Tango

may enable transition from today’s “data anywhere, anytime” to

“operational interaction and impact anywhere, anytime.” Users will be

immersed inside the system with not just visual sense but audio, touch,

and “presence.” Multiple colleagues will be able to interact and see each

other moving in a relative sense, avatar-like, for example, on a rig or facility.

Interactions may be tracked for learning with heat maps for the elements

engaged.

Chris Lenzsch of Dell-EMC sees that someone in the field will see equip-

ment and operations on their tablet or wearable with a complete history of

interventions, visuals from manuals, step-by-step instructions, inside equip-

ment, sensor readings, etc. simultaneously with remote personnel at opera-

tions centers.
9.7.3 Human-Machine Interface
Humans and machines that are computing devices are increasingly inter-

acting in ways not previously available. Goldberg (2017) refers to this as

“multiplicity,” which is computers and multiple humans interacting as a

dynamic learning enterprise. Multiplicity is diverse groups of people and

machines working together to solve problems; it is not science fiction.

A combination of machine learning, the wisdom of crowds, and cloud com-

puting enables continuous learning. Goldberg describes what Google,

Facebook, Netflix, etc. do when learning users’ preferences and assembling

new offerings as a component of this artificial intelligence, multiplicity.

Automated driving and robotics are enabled by this machine–human learn-

ing. “Collective intelligence with AI enables many of the most sophisticated

and effective systems in use today.”

Another frontier is telepathy (Mims, 2017a,b,c). Facebook is working

on things like headbands that would receive and communicate brain signals

to computers and machines. Other companies are working on brain

implants.

These technologies taken together yield a “digital twin” that is a digital

representation of physical equipment (BSquare, 2017; GE Digital, 2017).

The digital twin concept is transitioning from the consumer marketplace
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to industry. Consumer companies have digital representations of the char-

acteristics of their customers with predictive analytics of what individuals

will tend to do or purchase. For industry and the DOF in particular, there

can be a digital representation for every component in a value chain; for

example, a steam turbine in a plant (GE Digital, 2017) with thousands of

parts. The digital representations for pumps, compressors, pipelines, etc.

have predictive analytics to alert with respect to maintenance, wear, and

production. In the digital twin paradigm, every asset learns from the other

assets and the learning is based on physics plus data analytics.

With human-machine interfaces and AI, capabilities to operate oil fields

from complete DOF systems are on the horizon.

9.8 SUMMING UP AND LOOKING AHEAD

Section 1.5 introduced the three major components for successful
DOF systems: people, technology, and processes (Holland, 2012). We then

overlay these high-level components with more detailed components that

we call the core of DOF, which has five main areas that must be fully syn-

chronized to implement a successful DOF solution: sensing and control, data

management, workflow automation, visualization, and collaboration. The

relationship between these components and additional details are shown

in Fig. 9.8. In closing, we take a final look at the three main components.
9.8.1 People
In 2008, some early visionaries of the DOF discussed the notion of a digital

petroleum engineer (DPE) in an article that appeared in the Society of Petro-

leum Engineers (SPE) Journal of Petroleum Technology (JPT) (Mahdavi, 2009).

They defined the DPE role at its basic level as someone who “combines IT

knowledge with O&G content.”

This book certainly supports the notion that skills frommultiple domains

are vital for successful DOF implementations. As the book, however, has

shown, DOF today and in the future, unlike the view in 2008, requires skills

much beyond IT, that is, deep discipline engineering (production, reservoir,

facilities,and operations), data science, instrumentation and communication,

interdisciplinary knowledge, and collaborative interpersonal competencies.

We consider this book an “in the trenches” report on DOF design, devel-

opment, and implementation. It was our intent with the detailed case studies

and examples to show that deep knowledge of all these areas is necessary.
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Since the technology and how it is used is changing at an ever-faster speed,

people working on DOF solutions must be prepared for lifelong learning,

through formal training, on the job learning, and independent reading.

We encourage you to seek out the many references cited in this book—

many of them are papers published by the SPE and available online at the

links provided in the reference.
9.8.2 Technology
The same JPT article said, “Although we have made progress. It is time

to take a deep breath and take the plunge into total immersion, to be like

fish in water.” Today, this statement is “more true” than when first
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published. In the past, the O&G industry “applied” technology to specific

O&G domains, for example, very early on for reservoir simulation of

production analysis. Over the years as technologies progressed and new ones

emerged, we have continued to apply them to domain problems with

additional efforts to integrate them to support extended workflows.

However, now, with some of the newest technologies we have discussed

here—such as Big Data, the cloud, and IIoT—we really must think of devel-

oping DOF solutions that immerse discipline-specific solutions in integrated

systems and automated workflows. This is an important shift in how we

approach development of DOF solutions. Additionally, technologies such

as artificial intelligence and machine learning enable us to build truly intel-

ligent solutions that can self-monitor, learn, and intelligently control oper-

ations hardware and equipment in the field. These technologies provide an

environment for powerful DOF solutions with comprehensive end-to-end

workflows, but they also increase the complexity of developing and

maintaining these systems. Again, the detailed case studies and examples

are intended to show that, while the problems are complex, they are

surmountable.
9.8.3 Processes
As technology progresses, it becomes increasingly intertwined with process.

Chapters 5, 6, and 8 discuss how technology is used to construct, execute,

and manage automated workflows. Successfully creating these workflows

not only requires deep knowledge of both current domain practices and

workflows, and the technology to correctly implement them—but also

another “level” of knowledge to not merely implement current practice

but understand both well enough to use the technology to transform current

workflows to achieve new levels of efficiency, improve safety, and access

more value from an asset.

Naturally, no one person can or will know all of this on their own.

Chapter 8 talks about the importance of collaboration and change manage-

ment. To create successful, comprehensive DOF solutions requires that

people work together in new ways, sharing, debating, and deliberating what

can be done and how to realize it. Additionally, working in an operation

with sophisticated DOF solutions changes how people can work and opens

up possibilities for transforming the operation, because much surveillance

and response is performed by the DOF system, leaving time for engineers

to focus on higher value work.
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9.8.4 Use this Book for Your DOF Projects
Our end goal for writing this book is to help individuals see possibilities for

their companies and the industry to implement successfully DOF technol-

ogies, systems, and solutions so that it can increase value in terms of

improved safety, efficiency, and operational and business performance.

We hope these real-world case studies and detailed examples and applica-

tions help you, companies and individuals, better understand what is

involved in implementing DOF solutions—the available approaches, the

challenges and how to solve them—and that this book serves as a useful

resource for your current and future DOF projects.
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