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Preface
Decision making touches every one of us, professionally and in our personal lives, 
from relatively minor decisions to the truly significant. The number of petroleum 
companies using decision analysis to support their decision making has grown rap-
idly; however, most petroleum engineers and geoscientists have not been trained in 
the subject or are not aware of its full potential. Decision analysis provides both an 
overall framework for how to think about difficult problems and a set of tools that 
can be used to construct and analyze a model of the decision situation. The end goal 
is to gain sufficient insight and understanding to identify the best course of action.

There are many general books on decision making, but the few that are specific 
to the oil and gas industry are mainly focused on exploration and at best address 
only a subset of decision making topics. This book is intended as an introduction 
to the topic for the practicing engineer, geoscientist, team leader, or manager—
one that focuses the key ideas yet has sufficient depth to guide a real application; 
one that enables meaningful participation in the decision-making process; or one 
that serves as a quick refresher. But the material is also meant to be accessible 
to petroleum-industry professionals in other roles, such as legal, accounting, 
commercial, or business development, who may need to know the best practices in 
decision making. 

Although the book is an introduction, it reflects aspects of current research, our 
own and others, that are of practical benefit. Our goal is to provide a text that is 
simple and accessible but without glossing over important or subtle details. We hope 
to impart a good conceptual understanding of the main tools and methodologies, 
of why they are important, and of the wide range of decisions to which they are 
applicable. Although the content rests upon the academic discipline known as 
Decision Science, a subtopic of the broader field of Management Science, theoretical 
aspects are introduced only as needed to provide insight. The mathematical content 
is presented at a level that should be accessible to most petroleum engineers and 
geoscientists. However, you will be required to think—and thinking exercises the 
mind more deeply than just following mathematical recipes. 

We hope that reading the book gives you an appreciation of the power, practicality, 
and usefulness of decision analysis; enables you to make better decisions at work 
and at home; and makes you better informed than the majority of your peers and 
superiors, thus increasing your value to your organization. 

We did not start out as decision analysts. Many people contributed to our current 
understanding of the topic, and we particularly owe gratitude to our friends and 
collaborators Eric Bickel and John Campbell. We would also like to thank former 
students and colleagues, too numerous to list, for stimulating discussions and the 
insights we gained from them. Several people have, at various stages, reviewed the 
book and suggested valuable improvements. Thanks to Eivind Damsleth, Jim Dyer, 
Frank Koch, Marco Thiele, and Gardner Walkup for their constructive suggestions. 



We also thank Mary Ellen Yarossi for graciously providing the information from the 
IPA database that we refer to in Chapter 1, and Helge Haldorsen for suggesting the 
title. Finally, we would like to thank the SPE editors and staff for their diligent work 
in improving the book’s readability and keeping this project on track.

Reidar B. Bratvold Steve H. Begg
University of Stavanger, Norway  University of Adelaide, Australia
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Chapter 1

Decision Making and 
Uncertainty in the Exploration 
and Production Industry

1.1 Introduction
This book is about how to make good decisions, specifi cally within the upstream oil 
and gas industry but also more generally for any kind of decision. 

Informally, decision making can be defi ned as “choosing the alternative that best fi ts 
a set of goals.” Easy? This apparently simple statement raises many questions such as: 
What, and whose, are the “goals”? Have I missed good alternatives? How do I measure 
“fi t”? How do I defi ne “best”? This book describes a series of tools and processes that 
will enable you to answer these questions for many decisions.

Good decision making is not a natural ability, “wired-in” following some evolution-
ary design (Hastie and Dawes 2001). Choosing wisely is a skill, which, like any other 
skill, can be improved through learning and practice. Whether at work or at home, if 
you apply the principles in this book, you will improve your decision-making skills 
and thereby your chances of getting good outcomes. Table 1.1 provides an indication 
of the sorts of decisions, large and small, broad and narrow, to which these principles 
apply.

We will address the many factors required to make good decisions and will empha-
size the role of uncertainty, showing how its appropriate consideration can lead to 
different decisions from those we would make if we ignored it. In particular, we seek 
to put to rest the fallacies that “we must have a single number to actually make a deci-
sion” and “one cannot make a decision when presented with a range of possible out-
comes and their probabilities.” Indeed, we show that one can make better decisions 
using this information. Moreover, the decisions are often more quickly and easily 
reached, and the decision maker will move on to their implementation with greater 
confi dence in having made the right ones. Dealing with uncertainty is, therefore, an 
integral part of evaluating a decision. It should not be merely a bit of risk/uncertainty/
sensitivity analysis tacked onto the end of a study after the main courses of action 
(decisions) have been chosen.
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1.2 Decisions in the Exploration and Production (E&P) Industry

Life is the art of drawing suffi cient conclusions from insuffi cient premises.

—Samuel Butler (Russo and Schoemaker 2002)

The E&P industry is about exploring, appraising, and producing oil and gas. The E&P 
life cycle goes from early basin assessment and exploration through appraisal, devel-
opment, production—and, fi nally, abandonment. Before, during, and after each phase 
are a number of decision points that require the commitment of company time and 
resources. These commitments can range from minor (i.e., a few days of work, or the 
expenditure of a few thousand dollars) to enormous (i.e., thousands of people working 
on a billion-dollar investment over many years). 

Good performance does not necessarily indicate good decision making and uncer-
tainty management. The pertinent question is, “How does performance compare to 
what it could have been?” There are times when the effects of poor decision making 
and uncertainty management are largely obscured as a result of high oil and gas prices. 
Times of lower prices are more revealing. Many of the E&P investments made in the 
1980s and 1990s would have resulted in major losses if commodity prices stayed at the 
USD 10–12 level of 1999 and the early 2000s. In the period 2005 through mid-2008, 
there was a tremendous upswing in commodity prices, resulting in most of these proj-
ects delivering profi ts that were signifi cantly better than anyone imagined when the 
investment decisions were made. Having no reason to suspect that the quality of deci-
sion making suddenly improved at the same time oil prices rose, we conclude that the 
industry continues to underperform. As Ed Merrow of Independent Project Analysis 
observes (2010): “Although many companies used corporate planning prices in the 

TABLE 1.1—EXAMPLES OF THE TYPES OF DECISIONS TO WHICH THE PRINCIPLES

 

Work Personal 

Fund a research program 

Choose seismic interpretation software  

Acquire exploration acreage  

Partner on a project or go it alone 

Hire a new engineer or drilling contractor  

Drill an extra appraisal well  

Do a reservoir simulation study  

Construct a larger platform with room for extra 
wells to capture OOIP upside potential  

Acquire information to reduce uncertainty or 
build flexibility to manage its  impacts 

Choose best field development concept  

Choose an infill well location  

Choose a new type of flow meter  

Decide when and how to abandon

Determine strategy for the organization

 

Buy a house/car/TV  

Accept a job offer 

Embark upon a career 

Attend a course  

Select a holiday destination  

Purchase stock in a company  

Choose a school for the kids  

Undertake surgery 

Choose a partner
 

IN THIS BOOK CAN BE APPLIED
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$35 - $50 range in the 2004–2007 period, they struggled to make profi ts when the oil 
price fell after the 2008 peak and equilibrated in the $60 - $80 range in 2009 and 2010. 
In my mind, this is a clear indication of poor management.”

1.2.1 Historical E&P Performance—Not Delivering on Our Promises. Through 
anecdotes, internal company reviews, and fi rsthand experience, many in E&P are 
familiar with projects that failed to realize the predicted technical and economic met-
rics that formed the justifi cation for the investment decision. Some argue that this 
failure is the norm. Indeed, as demonstrated by Smith and Winkler (2006) and Chen 
and Dyer (2009), the very way investment projects are valued sometimes contributes 
to this failure to realize metrics.

In an interview with the newspaper Upstream, Edward Merrow talks about an IPA 
study that reviewed more than 1,000 E&P projects (Cottrill 2003)—see the box on 
industry performance (page 4) for a more recent update of this study. Many failed to 
deliver the performance promised, and one in eight projects was a “disaster.” The 
record was even worse for megaprojects, defi ned as those with capital costs of more 
than USD 1 billion. In the interview, Merrow claimed, “Mediocrity prevails,” and 
“The last 10 years might be called a decade of solidly unprofi table growth” for many 
upstream companies. He went on to emphasize, “The two primary problems have been 
volatility in project outcomes that is the highest of any industry sector that we look at, 
and too many disastrous projects,” where “volatility” means large discrepancies, usu-
ally in a negative direction, between actual and predicted outcomes.

Campbell et al. (2001) showed that we consistently overestimate production forecasts. 
For 159 of the 160 projects examined, actual peak production was less than estimated. 

Goode (2002) estimated a total E&P industry loss of USD 30 billion per year as a 
result of bad decision outcomes. 

Rose (2004) stated, “Over the past twenty years of the 20th century, exploration 
departments of most E&P companies habitually delivered only about half of the new 
reserves they promised to their directors”. Rose also reported, “Technology is not solv-
ing the problem” of poor estimations, referring to 125 consecutive global deepwater 
prospects drilled by one company in the 1990s. These wells used state-of-the-art tech-
nologies, yet delivered only 45% of the expected reserves.

Although many forces infl uence these failures, we believe that a root cause is 
uncertainty, in its broadest sense. There is strong evidence (e.g., see Chapter 7) that 
people tend to grossly underestimate the following:

• The number of uncertain factors
• The magnitude of the uncertainties
• The complexity of the relationships among uncertainties
• The consequences of the uncertainties

The E&P industry, with its enormous inherent uncertainties, must be concerned with 
the characterization and analysis of uncertainty to an extent that far exceeds many 
other fi elds—which is not to say that E&P is unique. The issue is relevant to any indus-
try or public decision-making situation in which uncertainty has a major infl uence on 
decision outcomes, and denial of its true extent impacts the choices made. Today, 
while the adequate treatment of uncertainty is still the exception, not the rule, the 
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exceptions are becoming more frequent. Throughout the upstream petroleum industry, 
thoughtful and concerned professionals are concluding that it really isn’t optimal or 
safe to ignore all this uncertainty; it may be important to the decisions that we must 
take and the investments that we will make.

A second, more pernicious, type of underperformance occurs when projects meet 
promised investment criteria, but fail to achieve attainable performance levels. This 
failure may be because of a culture of “satisfi cing” (Simon 1955) in which decisions 
are made that are deemed good enough to justify the investment. In this case, aspects 
of decision quality other than uncertainty are the cause, such as poor understanding of 
the situation or opportunity, inadequate set of alternatives considered, faulty reasoning 
and intuition, unclear objectives, or emotional attachments. A further factor that can 
cause this type of underperformance is an over-focus on mitigating the risks that arise 
from uncertainty, compared to efforts to capture its upside. 

Industry Performance: Are We Delivering on Our Promises?

About the IPA
IPA performs project evaluation, project system benchmarking, and quantitative 
analysis of project management systems. The data cover the entire project life 
cycle, from the business idea through to early operation—being regularly 
updated, detailed, and carefully normalized. Rigorous statistical analysis is con-
ducted to compare project performance in numerous areas and identify practices 
that drive better performance. 

An Analysis of E&P Project Outcomes
IPA evaluated more than 1,000 E&P projects during the last 20 years—covering 
all phases of the project cycle, from the investment decision through operation. 
The outcomes of capital-investment decisions are measured by how they met 
cost and schedule targets established at sanction, ultimately produced as planned, 
and recovered the estimated reserves.

Analysis of recently completed E&P projects shows, on average, a 10% cost 
growth and 12% time slippage from identifi cation of business opportunity to 
production of fi rst oil. Of particular concern for decision makers is the lack of 
predictability: a range of a +/– one standard deviation about the mean gives cost 
growths of +45 to –25% and schedule slippages of +52 to –28%. One of the big-
gest areas for concern is in production attainment: 42% of assets suffered major 
operability problems in the fi rst year of operation (i.e., extended shut-in of pro-
duction, a signifi cant capital upgrade to repair, or a subsurface problem requir-
ing modifi cation). This degree of variability is in part explained by differences 
in overall performance between companies and factors subsequently discussed. 

However, these results do not tell the full story. They mask another signifi cant 
issue: the number of disaster projects. Disaster projects are defi ned as “those 
with costs growing an average of 30% over estimate, taking 37% longer than 

(continued on page 5)
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expected to be completed, and most signifi cantly, realizing 38% or less of their 
planned production.” Alarmingly, 7% of recent projects met all three criteria. 
One in fi ve projects had operability of 50% or less in the fi rst year. Cost and 
schedule predictability was better, with only 12% having cost growth of more 
than 40% from the sanction estimate, and 16% having a schedule slip of 40% 
or more.

The IPA research identifi es two main drivers of performance. The fi rst is the 
quality of defi nition at project sanction. The second is setting targets based on 
realistic expectations. Both drivers are related, because it is easier to be optimis-
tic when elements of the investment decision are ill-defi ned. Chapter 2, “How to 
Make Good Decisions,” treats these drivers as elements of “decision quality,” 
which includes a realistic assessment of uncertainty and optimal decisions about 
project parameters (e.g., wells and facilities). All three performance metrics—
time slippage, cost overruns, and fi rst-year production—are improved with bet-
ter asset defi nition. Assets that can attain a best practical level of defi nition at 
sanction have 15% lower costs than those less defi ned. Schedules see a 12% 
improvement. Critical to meeting the investment objectives, improved project 
defi nition results in project teams meeting their P50 recoverable reserves expec-
tation set at sanction. When the project defi nition is poor, volatility averages ap-
proximately 30%. Organizations that require their projects to attain high levels of 
defi nition (e.g., decision quality) are less likely to experience disaster projects. 

Collectively, the results demonstrate that there is signifi cant room for improv-
ing E&P project investment decisions. Also, an analysis of changes in these per-
formance metrics during the past 20 years shows no appreciable improvement in 
performance. There is even some suggestion that high oil prices in recent years 
led to some investments being authorized with poorer planning.

1.3 Decision Making
In the context of this book, a decision is a “conscious, irrevocable allocation of 
resources to achieve desired objectives.” By “conscious” we mean deliberate as opposed 
to refl ective or involuntary. It is “irrevocable” because if we change our minds later, we 
have lost “resources” (e.g., time, money, and willpower). 

The following three elements are the foundations upon which a decision is evalu-
ated: objectives, alternatives, and information. Objectives are the basic goals of the 
decision. Without knowing these objectives, it is impossible to judge which alternative 
(i.e., choice, course of action, option, or strategy) is best. Information is used to predict 
how well each alternative performs on each objective. There must be more than one 
alternative; otherwise, there is no decision to be made. (In most decisions, one of the 
alternatives is to “do nothing.”)

1.3.1 Decision Analysis. Ron Howard, one of the founders of Decision Science, was 
the fi rst to introduce the term “decision analysis” in a paper discussing nuclear power 
plant decisions (Howard 1966). He described the “discipline of decision analysis” as a 
“systematic procedure for transforming opaque decision problems into transparent 
 decision problems by a sequence of transparent steps.” 
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The decision-analysis process should be viewed as a dialogue between the decision 
makers and the analysts, with the primary goal of providing insight, so that the deci-
sion makers can choose the best course of action. We take “analysts” to mean the broad 
spectrum of disciplines, such as geosciences, petroleum engineering, economics, com-
merce, law—and although not common in our industry, decision analysis. This dia-
logue is in stark contrast to the common advocacy approach, wherein the analysts, 
being tasked with the problem, do not communicate with the decision makers until 
they have determined the “best” solution and then attempt to persuade the decision 
makers to adopt it.

Sometimes, decision analysis is confused with making predictions or forecasts, 
which may cause a waste of time and resources. If the goal is to make better predic-
tions, there is no clear stopping rule, because the forecast can always be refi ned. When 
the goal is decision making, the analysis need only be suffi cient to determine the best 
course of action. In many situations, the best decision may be determined using rela-
tively imprecise forecasts.

1.3.2 Good Decisions vs. Good Outcomes. It is important to distinguish between 
decisions and outcomes. A good outcome (or result) is “a future state of the world that 
we prize relative to other possibilities.” A good decision is “an action we take that is 
logically consistent with our objectives, the alternatives we perceive, the information 
we have, and the preferences we feel.” In an uncertain world, good decisions can lead 
to bad outcomes and vice versa.

Consider two decision situations: one in which there is no uncertainty, and the other 
with uncertainty. If there is no uncertainty, the outcome is determined once the 
decision is made. Therefore, a good decision guarantees a good outcome. If there 
is uncertainty involved, we do not know whether luck (uncontrollable factors) is going 
to swing this way or that way, and the outcome may be bad even though the decision 
is good.

Similarly, it is possible for a bad decision to lead to a good outcome. In this case, 
luck is often mistaken for “skill.” This skill manifests itself in the shape of the “lucky 
fool,” defi ned as a decision maker who benefi ts from a disproportionate share of luck 
but attributes their success to skill and ability (Taleb 2004). 

The folklore of every company contains accounts of heroic decision makers, 
stalwarts who made crucial decisions under conditions of great uncertainty 
and were right. And they did this time and time again. Admiring such heroic 
decision makers makes about as much sense as admiring the heroic pennies 
that come up heads in each of the twenty tries of the usual introductory 
probability theory example.

—R. Richard Ritti (2006)

The distinction between decision and outcome is rarely acknowledged in ordinary 
speech, or in decision reviews or look-backs in E&P companies. If a bad outcome fol-
lows an action (i.e., decision), the decision is regarded as bad; a good outcome is taken 
to imply that the decision was good. Distinguishing action from the role of chance in 
its result can improve the quality of action because it allows us to focus on what we 
can control—the decision. 
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1.3.3 Why Decisions Are Hard. Decisions are diffi cult, and different decisions within 
the upstream life cycle involve different issues. However, some challenges are com-
mon to most decisions. For example, 

• Uncertainty. E&P decisions are inherently based on uncertain information.
• Complexity. There may be many decisions, each with multiple factors to consider, 

with complex sequencing and interactions between decisions and uncertainties.
• Multiple objectives. Most E&P companies use multiple objectives in their deci-

sion making. It is diffi cult to compare the performance of different decision 
alternatives using multiple, often competing, metrics.

• Ambiguity. There is often lack of clarity or consensus about the real objectives 
and their relative importance.

• Anxiety about consequences. The consequences of a decision outcome, which is 
uncertain, may be signifi cant for the decision maker, for the organization and all 
its employees, or for the communities and environments in which it operates.

These, and other, challenges are illustrated and discussed further in Chapter 2.

1.3.4 Normative vs. Descriptive Decision Theories. The discipline of decision anal-
ysis contains two main areas of research: normative and descriptive. In the normative 
area, the goal is to develop theories of how decisions should be made to be logically 
consistent with the following:

• The stated objectives of the decision maker and the decision makers’ preferences 
between these objectives

• The identifi ed alternatives
• The current state of information 

The goal of prescriptive decision-making processes and methods is the pragmatic 
implementation of normative theories. This implementation of normative theories, 
however, is not necessarily how decisions are made—the study of which is the 
purview of the descriptive fi eld of research. Here, the goal is to observe, identify, and 
develop theories that explain observations of the behaviors, attitudes, and cognitive 
practices people display when actually making decisions, which may or may not 
be logically consistent with respect to their objectives, alternatives, and available 
information. Heuristics, or “rules-of-thumb,” generally fall into the descriptive area, 
unless developed through normative practices. 

The normative and descriptive fi elds of study are not competing approaches to deci-
sion making. Rather, they address different aspects of the problem. Both fi elds of study 
contribute toward improved decision making. Although a normative approach results 
in optimal decisions, descriptive theories are useful because they allow us to:

• Identify behaviors, attitudes, and cognitive practices that undermine the applica-
tion of normative procedures 

• Provide insight to the cause of barriers to the widespread adoption of normative 
practices
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• Suggest practices and processes that eliminate or minimize non-normative deci-
sion practices 

1.3.5 Intuition in Decision Making. Given the diffi culty of anticipating the future in 
the highly uncertain E&P environment, some decision makers choose to act on intu-
ition (i.e., a gut feeling or sixth sense) or instinct. Intuition has appeal. It is quick, easy, 
requires no tedious analysis, and can sometimes be brilliant. Unfortunately, this 
approach also presents a real danger.

Researchers who studied intuition found these “gut-feeling” or “sixth-sense” deci-
sions actually follow a coherent path, but one that takes place so rapidly that people 
cannot notice themselves doing so (Russo and Schoemaker 2002). When applying 
unthinking expertise, highly seasoned professionals reach into their mental stores of 
past experience and rapidly match patterns they observe in the current decision and 
its context to those of an old situation. Then, the matched pattern “fi res off ” the old 
action in the new situation. 

Unfortunately, as a decision-making tool, intuition has signifi cant drawbacks. Many 
decision makers are excessively confi dent in their own intuition. For intuition to work, the 
decision maker must have repeated previous experience of decisions similar in most 
 respects. Even when this is the case, if the decision maker moves to a new context (e.g., a 
new basin, country, or type decision), intuition is likely to lead the decision maker astray.

A further problem with intuition is the diffi culty in disputing choices based on intu-
ition, because the decision makers often cannot articulate their own underlying reason-
ing. People “just know” they are right. We cannot tell whether their process is good or 
bad, because there is no observable process to examine—it is so quick, so automatic, 
that there is no way to evaluate its quality. To those who study decision making, the 
most striking feature of intuitive judgment is not its occasional brilliance but its 
 rampant mediocrity (Hastie and Dawes 2001; Russo and Schoemaker 2002; Plous 
1993; Kahneman et al. 1982).

Think: Why Crucial Decisions Can’t be Made in the Blink of an Eye

Malcolm Gladwell’s (2005) bestselling book, Blink, theorizes that our best deci-
sion making is done on impulse, without either factual knowledge or critical 
analysis. This book is just one of a number of seductive books that extol the 
virtue of intuition with the promise of reduced need for thinking and analysis. 
Michael R. LeGault (2006) offers a contrary view in his book Think: Why 
Crucial Decisions Can’t be Made in the Blink of an Eye. He points out that apart 
from special cases, such as decisions that must be made extremely quickly or 
ones in which consequences do not warrant a large degree of analysis, most deci-
sions in today’s society can be improved by a greater degree of objective analy-
sis. LeGault is careful to point out that there is a place for both intuition and 
critical reasoning in good decision making, as opposed to Gladwell, who does 
not argue the value of critical thinking.

(continued on page 9)
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1.4 Uncertainty and Decision Making

To know one’s ignorance is the best part of knowledge.

—Lao Tzu, The Tao, no. 71 (2007) 

Life is inherently uncertain—from the moment of our birth to the unknown moment 
of our death—and yet we hate uncertainty. We generally dislike uncertainty at a per-
sonal level and abhor it in our business planning. Traditionally, leaders in the petro-
leum industry have viewed uncertainty as the enemy—something to be nailed down 
and rooted out, a highly negative factor that detracts from one’s ability to manage with 
control. It is viewed as a major obstacle for the organization in ensuring consistent 
performance.

Most of us have learned to live comfortably with minor uncertainties—those with-
out a signifi cant impact on the outcomes of the decisions we make. However, when the 
stakes are high, we can feel very uncomfortable. We have evolved intuitions, rules of 
thumb, and processes to either accommodate or compensate for the effects of uncer-
tainty. When examined carefully, these strategies do not always perform as well as we 
would like. We still get surprised. We rarely have enough opportunities to repeat a 
decision to see whether another choice would have been better. We may not even be 
able to detect the fact that our intuitive processes have introduced errors or biased our 
judgments. Thus, we muddle through—never really knowing if we could have done 
better. 

As petroleum professionals, we are often expected to perform analysis to reduce 
uncertainty. We use mathematically rich, sophisticated, and complex applications to 
do detailed technical analysis. We gather facts and fi gures. We turn to experts for pre-
dictions. Following detailed, and often very precise, technical analysis, we turn to the 
last option, denial, to avoid uncertainty. It is particularly enticing to ignore uncertain-
ties that we do not know how to deal with, while placing a lot of effort into those we 
can—yet, we have no idea whether the uncertainties we can deal with will be swamped 
by those we cannot. 

We long for certainty with such passion that we very often bend reality to fi t our 
desires. Instead of looking at the complex and chaotic soup that is the reality of the 

What is the relevance to the topic at hand? The pervasive argument against 
decision analysis is that it does not work in the complex uncertain day-to-day 
situations of real life. The implicit corollary to this argument is that our intuition 
and inherent decision-making ability is superior. However, a number of researchers 
and practitioners have illustrated that our intuition in uncertainty evaluation 
and decision-making situations is not nearly as good as we like to think. A 
requirement for successful implementation of decision analysis and uncertainty 
management is the understanding and acceptance that intuition is highly 
overrated and may lead us astray. Rather than relying on intuition, we need to 
challenge our beliefs and conclusions to make sure that our reasoning is consistent 
with and relevant to our goals and objectives.
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upstream petroleum world, we make up a story and stick to that story under cross-
examination, no matter how much the facts argue otherwise.

Yet it is the inherent uncertainty in the E&P business that creates opportunities for 
competitive advantage and superior value creation. Companies that learn how to con-
tinuously manage uncertainty, in all its guises and forms, may reap superior results.

1.4.1 Uncertainty and Knowledge. In the context of decision making, we use the 
concept of probability to quantify the extent of our knowledge about uncertainties such 
as depositional environment, volume in place, production rate, and oil price. In this 
sense, probability merely captures the extent of our degree of belief in the possible 
outcomes of these “events.” Just because an event has already happened, and therefore 
produced a single outcome, does not negate the need to model it probabilistically. It is 
our lack of knowledge of what the outcome is that makes it appropriate to use a proba-
bilistic description. 

A frequent mistake made by newcomers to this fi eld is to say something such as, 
“There is only one reservoir,” or “The reservoir itself is deterministic,” with the implicit 
inference that the reservoir should not be modeled probabilistically. Therefore, the infer-
ence is, “It should not be modeled probabilistically.” The error is in failing to distinguish 
between the reservoir and what we know about the reservoir. Think of a fair die that is 
thrown, but the top face is not yet visible. The outcome of the event “number on top 
face” has already happened, and there is indeed only one real-world outcome. However, 
few people would argue that it is inappropriate to use a probability of 1⁄6 to evaluate a 
decision about whether to bet on the number on the top face. It is our lack of knowledge 
that creates uncertainty, and it is this lack of knowledge that we need to take into account 
(i.e., model) in evaluating a decision. 

In the context of oil and gas decision making, assuming our knowledge of the world 
to be “deterministic” is generally a modeling choice—not a feature of reality. In rare 
circumstances, it may be a reasonable approximation. More often, it is a convenience 
tantamount to choosing one probabilistic outcome, in which the chance of occurrence 
is unknown and therefore arbitrarily assigned a value of one (certainty).

A second consequence of recognizing that uncertainty lies in our lack of knowledge 
is that uncertainty is personal, because knowledge is personal. In the die-toss situation, 
the person who threw the die may be willing to tell me that the center of the upper face 
has a dot—thus, indicating to me that it is 1, 3, or 5 and implying a probability of ⅓ for 
any one of those outcomes. Without this information, the probability that the top face 
displays a “1” remains 1⁄6 . Thus, there is no single, “true” probability, unless all people 
have identical experience, assumptions, and information, and process them in the same 
way. Therefore, it is not only possible, but it is valid, for two people to have different 
probability estimates for the same event, even if it has already happened. Furthermore, 
an individual’s estimate of a probability may change over time as his or her knowledge 
changes. 

A further insight from the previous example is that acquiring information about 
uncertain events can have value. If you were considering a bet on the outcome of a die 
toss, clearly it would be advantageous for you to know if the result was a 1, 3, or 
5—but, how advantageous? And, how much would you pay for this knowledge? The 
key idea is that information has value because it has the capacity to reduce uncertainty 
(i.e., change our beliefs, as quantifi ed by probability) and thereby change a decision. 
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This line of thinking underlies the application of decision tree analysis to calculating 
the economic value of information, which is covered in Chapter 5.

1.4.2 Uncertainty and Risk. Under the U.S. Constitution, the people enjoyed the 
right to bare arms. Acrimony, sometimes called holy, is another name for marriage. 
It is a well-known fact that a deceased body harms the mind. It is diffi cult not to 
laugh when children misuse words and say something different from what they 
intended, or when adults make such mistakes in casual conversations. However, mis-
communication in engineering or business contexts can be catastrophic. For example, 
in 1999, a multimillion-dollar space probe to Mars was lost, because the spacecraft 
designers and builders unwittingly communicated in different measurement units.* 

Decision making, and particularly its uncertainty-assessment aspect(s), is one of the 
many contexts in which clear and correct communication is vital. Misunderstandings 
and miscommunication can have severe effects on investment choices, safety, and 
ultimately, profi ts.

In casual conversation, the words uncertainty and risk are often used interchange-
ably. When given more formal defi nitions, these words have different meanings in 
different disciplines. Even within our own industry, it is common for these terms to be 
confused. However, the difference in concepts is very real; therefore, to bring some 
clarity, we propose the following defi nitions:

Uncertainty. Uncertainty means that a person does not know if a statement is true 
or false. It is a subjective aspect of our state of knowledge. Examples of uncertainty are 
statements about future events (e.g., the price of gas on a given future date) or current 
states of nature (e.g., original oil in place, for a given well or fi eld). To quantify uncer-
tainty, we must identify the possible states that an uncertain quantity may take and 
assign probabilities to those states. As discussed previously, there is no single, “cor-
rect” uncertainty for a given event—the uncertainty represents the lack of knowledge 
of the person or people involved. This notion is further discussed in Section 3.3. 

Risk. Risk is an undesirable consequence of uncertainty. It is “personal” to the deci-
sion maker, because he or she subjectively determines what is undesirable. If I own an 
oil well, uncertainty in the price of oil creates a risk that my well might become 
unprofi table. Risk is quantifi ed by specifying the undesirable event and its probability 
of happening, such as “There is a 30% chance of a negative net present value.” This 
defi nition of risk is consistent with the common use of the term in the context of 
exploration, the probability of a dry hole. Risk has a negative connotation, and by “risk 
management,” we implicitly mean the mitigation of downside possibilities. However, 
it is quite possible to have uncertainty and zero risk. For example, there is uncertainty 
when a coin is tossed, but there is no risk if there is no betting on the outcome.

Note that in fi nance and economics, “risk” is taken to be a measure of uncertainty, 
specifi cally the standard deviation or variance. In that context, it does not necessarily 
represent an undesirable outcome, nor is it a probability. 

*On 30 September 1999, CNN reported: “NASA lost a $125 million Mars orbiter because a Lockheed 
Martin engineering team used English units of measurement while the agency’s team used the more con-
ventional metric system for a key spacecraft operation, according to a review fi nding released Thursday.” 
CNN, Metric mishap caused loss of NASA orbiter. 1999.
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Opportunity. However, there are also desirable consequences of uncertainty. For 
example, the OOIP turns out to be 30% higher than expected. We term this aspect of 
uncertainty “opportunity” [Haldorsen (1996) termed it “good risk”]. Most books about 
decision making emphasize that the risks of project failure must be assessed, but few 
consider the numerous ways uncertainty may be turned into a competitive advantage. 

Thus, as shown in Fig. 1.1, there are two consequences of uncertainty: risk and 
opportunity. We contend that the industry has mainly focused on preventing loss of 
value by managing the downside aspects of uncertainty (i.e., risk). However, this focus 
is a biased approach and thus does not result in value maximization. A differentiating 
feature of this book is that we suggest that more effort should be devoted to creating 
value by planning to capture the upside potential of uncertainty (i.e., opportunity). 

1.4.3 Does Uncertainty Really Matter? For more than 100 years, the E&P industry 
has made decisions with less than complete attention to the inherent uncertainties. 
However, the last decade has seen an increasing number of publications in the E&P 
literature within the broad topic of “decision making under uncertainty.” There also 
has been an increase in meetings and conferences devoted to the topic, which suggests 
an industry-wide realization of the need to improve decision-making abilities. 

Despite this realization, it seems reasonable to ask whether uncertainty actually 
matters very much. Throughout this book, we explore this question and conclude that 
uncertainty does matter and should not be ignored in the analysis and decision process 
for the following reasons:

 1.  The main purpose of analysis is to generate decision-support information, help 
identify the important factors that infl uence the decision, and help anticipate 
the unexpected. An explicit treatment of uncertainty forces us to think more 
carefully about such matters, helps us identify the most and least important 
uncertainties in terms of their consequences, and helps us plan for contin-
gencies or hedge our bets. 

Possible consequences 
of uncertainty

Risk

• Possibility of loss or injury    

•  A dangerous element or factor   

•  The probability of loss  

Opportunity

• Possibility of exceeding  
expectation

• Upside potential 
•  An attractive element or factor   

 
Fig. 1.1—Uncertainty has two potential consequences: risk and opportunity.
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 2.  Petroleum engineers and geoscientists have a professional and ethical respon-
sibility to present not just answers but a clear and explicit statement of the 
implications and limitations of their knowledge. Identifying and dealing with 
the relevant uncertainties helps to execute this responsibility.

 3.  A number of technical experts from different fi elds (e.g., engineering, geology, 
geophysics, fi nance, and law) are involved in E&P decisions. It is often hard to 
be sure we understand exactly what the different experts are telling us. It is 
more diffi cult still to know what to do when different experts appear to be tell-
ing us different things. If we insist that they tell us about the uncertainty of 
their judgments, we are more clear about how much they think they know and 
whether they really disagree.

 4.  In the oil and gas industry, it is common practice to build a base case, which 
often is taken to be the most likely or expected scenario. This practice often is 
done by taking the best estimate of the input variables, such as reserves, pro-
duction, cost, and price, which then are used to calculate the base-case value. 
As documented in probability books for decades, but rarely recognized in 
practice, using expected values (EVs) for the input variables does not, in gen-
eral, result in the correct EV for the output variables. 

 5.  In a recent interview (Schrage 2002), Daniel Kahneman, the professor, 
psychologist, and decision scientist who won the 2002 Nobel Prize in Economics, 
said, “If I had one wish, it is to see organizations dedicating some effort to study 
their own decision processes and their own mistakes, and to keep track so as to 
learn from those mistakes.” This type of analysis is more meaningful and educa-
tional when the uncertainties of past decisions are carefully described, because 
then we can have greater confi dence that we are leveraging earlier experiences in 
an optimal way.

1.4.4 Embracing Uncertainty. Ignoring or hiding from uncertainty does not remove 
its reality. However, uncertainty is not necessarily a negative to be avoided. A defi ning 
characteristic of this book is that decisions can be made to exploit the opportunity 
 aspects of uncertainty. The challenge for decision makers is not to eliminate all uncer-
tainty, rather, to anticipate it and prepare for its consequences—both positive and neg-
ative. To do so, we must acknowledge uncertainty: uncover it, recognize it, understand 
it, assess it, and address it in an unbiased way. 

Decision makers often acquire more information to at least reduce, if not eliminate, 
the discomforting uncertainty. The intent seems logical, and, in part, it is. Many of us 
were trained to manage exactly that way. We learned to work toward single numbers 
for all important parameters such as reserves, production, and oil price. When statis-
tics and probability gained momentum in the oil and gas industry, they often were 
viewed as tools and means for reducing and, ideally, eliminating uncertainty. At the 
corporate-management level, we learn that distilling past performance and future 
prospects to a set of numbers is crucial. Vague projections and expressions of doubt 
are taken as analytic weakness. Therefore, faced with uncertainty, many of us ask for 
more facts, believing (with some justifi cation) that more information allows us to 
pinpoint which of the various options succeed. We demand precise forecasts—and 
ignore their inherent uncertainty. We get impatient with colleagues who offer only 
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loose estimates and wishy-washy “on the one hand, … but on the other hand” or “it 
depends” analyses.

Unfortunately, in a world characterized by increased technical and commercial com-
plexities, as well as increasing uncertainty, we deal not so much with predictable trends 
as with surprises. Numerical precision offers only a false sense of certainty. Even if 
real certainty is possible—and in our industry, it is not—the cost of obtaining it is 
unacceptably high. What should we, as decision makers, do?

Uncertainty should be managed by reducing it to the extent it makes economic sense 
in any given situation; then planning for its consequences. Managing uncertainty does 
not mean accepting vague projections, making vague recommendations, or abandon-
ing planning. It does, however, mean redefi ning rigor. In the uncertain world of explo-
ration and production, rigor is found not in precise single-point predictions, but in 
fi t-for-purpose uncertainty estimates. It is obtained not by selecting the one right pre-
diction for the future, but through a systematic process that enables us to anticipate and 
prepare for multiple possible futures.

This book not only illustrates how to appropriately characterize uncertainty, but it 
also shows how to mitigate the downside risks and capture the upside potential. 
The companies most skilled in eliciting, assessing, and characterizing uncertainty will 
make the best decisions and create competitive advantage.

1.4.5 A Warning—Don’t Overdo It.

There is nothing so useless as doing effi ciently that which should not 
be done at all.

—Peter Drucker

A lot of information gathering and technical analysis is done in the E&P industry, 
 ostensibly in the interest of improving our decisions, but without knowing whether it is 
really worthwhile (i.e., value-creating). In Section 6.2.5, we cover the four criteria that 
information (data gathering, further analysis, studies, etc.) must meet to be worthwhile.

Quantifying uncertainty creates no value in and of itself. It has value only to the 
extent that it holds the potential to change a decision. In other words, if the choice is 
clear, it is a waste of resources to further refi ne uncertainty estimates. (In this context, 
changing contingency or mitigation plans to deal with uncertainty qualifi es as a change 
in the decision.) Similarly, reducing uncertainty creates no value in and of itself. It only 
creates value to the extent that it has potential to change a decision. There is no 
economic value in “feeling better”! Thus, the goal is not to reduce uncertainty, or even 
to defi ne it precisely, but to make good decisions.

Many engineers and geoscientists are perfectionists. Whatever modeling task 
we are given, we like to make our model the best possible. We often add increas-
ing amounts of detail on aspects we know how to model, which is also true when 
we model uncertainty. We need to remember that the purpose of these models is 
to generate insight to improve our decisions. Professionals who initiate or per-
form technical analysis should occasionally return to the five broad arguments 
previously listed in Section 1.4.3 and ask, “Is this really what our analysis is 
 doing?” When the answer is not clearly “yes,” the time has come for some careful 
rethinking.
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1.5 Using Models

All models are wrong—some models are useful.

—G.E.P. Box and N.R. Draper (1987)

A signifi cant part of this book discusses the use of models. A model is only a simpli-
fi ed version of a real system. The purpose of the model is to try to learn about the 
behavior of the real system by doing experiments with the model. As indicated in the 
previous quote, every model is a simplifi cation, omitting many of the complexities of 
the real world the model is intended to describe. This omission is particularly true for 
E&P decisions, because they usually contain signifi cantly more complexity than can 
possibly be modeled. The only model that can be exactly like the real world in every 
aspect is the actual real world.

In this book, we discuss formal quantitative models, often implemented in spread-
sheets; but there are, of course, many other kinds of models. When you think informally 
about some situation in which you have to make a decision, you are creating a mental 
model of the situation as you imagine how your decision may affect various objectives 
and consequences. The model in your imagination is a simplifi cation of reality—as is a 
spreadsheet model—and neither model is necessarily better or more accurate.

One advantage of formal quantitative models is that their details are transparent—they 
are completely specifi ed in a way that other people can examine. In contrast, the model 
within your imagination must be in your mind alone, where it is not so transparent to oth-
ers; and therefore, it is harder to ask colleagues to help scrutinize the hidden assumptions 
in your thoughts. There are always questionable simplifying assumptions in any model; but 
in a formal model, these assumptions are open to examination. When an important decision 
is to be based on the analysis of a formal quantitative model, we should always check to see 
how our conclusions may change when some of the model’s assumptions are changed. 
This process is called sensitivity analysis and is an essential part of any decision analysis.

A disadvantage of formal quantitative models is that they encourage us to focus only 
on those aspects of the decision that are readily quantifi able. Furthermore, nothing 
goes into a formal model until we focus on it and consciously enter it into the model. 
In contrast, the informal models of our imagination may draw almost effortlessly on 
our memories from many different experiences—possibly including some memories 
of which we are not even conscious—in which case, the results of our thought process 
may be called intuition. It is therefore important to compare the results of a formal 
quantitative model with our intuition.

At the same time, human beings are imperfect information processors, which is 
particularly true in a complex decision situation with uncertainties. Personal insights 
about uncertainty, probability, and preferences can be limited and misleading—even 
when the individual making the judgments may demonstrate amazing confi dence. 
An awareness of human cognitive limitations is critical in developing the necessary 
subjective inputs to the model, and a decision maker who ignores these problems can 
magnify, rather than adjust for, human biases. 

How do we avoid “analysis paralysis” while ensuring that our models are useful? 
Chapter 2 discusses the concept of a requisite model: a model containing all informa-
tion important to making the decision, such that no new decision-changing insight is 
gained from continuing to evolve the model. Furthermore, as illustrated in subsequent 
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chapters, decision analysis provides us with clear stopping rules when conducting a 
study or making a forecast.

1.6 Subsequent Chapters
Following this overview, Chapter 2, “How to Make Good Decisions,” sets the stage by 
defi ning and discussing the main elements of any decision situation. We then describe, 
in detail, a prescriptive methodology for making good decisions. The importance of 
understanding and quantifying the values and objectives of the organization or decision 
maker is emphasized. Chapter 3, “Quantifying Uncertainty,” starts with a discussion of 
the subjective nature of probability and then outlines rules for drawing correct conclu-
sions when reasoning about multiple uncertainties. It also describes how to revise, or 
update, probabilities in light of new information. Chapter 4, “Monte Carlo Simulation,” 
introduces the powerful and popular simulation tool of the same name and illustrates 
how it is used to propagate uncertainty, from variables we can assess through to uncer-
tainty in the decision variables we are interested in. We also describe why, even if we are 
not interested in the uncertainty in a decision variable, in many cases we still need to use 
Monte Carlo Simulation to calculate its “best estimate.” Chapter 5, “Structuring and 
Solving Decision Problems,” describes how decision tree analysis can be used to struc-
ture and solve more-complex situations characterized by multiple decisions that interact 
between themselves and with the uncertainties. The chapter also illustrates the use of 
sensitivity analysis and discusses how to make decisions by comparing the probability 
distributions of the alternatives. Chapter 6, “Creating Value From Uncertainty,” shows 
how the tools developed in the previous chapters can be used to manage uncertainty by 
acquiring more information to reduce it, or by using fl exibility to mitigate its downside 
(risk) or capture its upside (opportunity). Finally, Chapter 7, “Behavioral Challenges in 
Decision Making,” illustrates how the human mind and human judgment can play havoc 
with our analyses and decision making. At the end of Chapter 7, we introduce a system-
atic approach to help overcome these biases and traps in probability assessment.

1.7 Suggested Reading
There are many excellent books and papers on decision analysis. Howard (1966) 
defi ned the term “decision analysis” in his seminal paper and has since written numer-
ous key papers on the topic. A very readable and recent overview of both the normative 
and descriptive elements of decision analysis was published by Howard in Advances 
in Decision Analysis—From Foundations to Applications (Edwards et al. 2007). The 
articles in this book provide an excellent and recent overview of the fi eld of decision 
analysis—both the normative and descriptive elements.

Good introductory books on decision analysis include those by Clemen and Reilly 
(2001), Goodwin and Wright (2004), and McNamee and Celona (2005). Their focus is 
on the normative aspects of decision analysis and decision making. Newendorp’s 
(1975) early work with a focus on exploration decisions is a classic.

There are also many books and papers illustrating and discussing the descriptive 
elements of decision analysis. Our favorite books and papers are by Plous (1993), 
Hastie and Dawes (2001), Bazerman and Moore (2008), and Russo and Schoemaker 
(2002). Kahneman et al. (1982) provided many of the initial papers on these topics. 
Ariely’s book, Predictably Irrational (2008), employs innovative experiments to dem-
onstrate many of the cognitive traps in decision making.



Chapter 2

How to Make Good Decisions

Change the decision-making process and cultural change will follow.

—Vince Barabba (1995)

2.1 Introduction
This chapter describes a scalable decision-making framework broadly applicable to most 
decision situations: with or without uncertainty, multi-objective or single objective, single 
decision or linked decisions, personal or business. It provides a framework for incorporat-
ing common decision-making tools, such as decision tree or infl uence diagram analysis, 
Monte Carlo simulation, expected values or utilities, and optimization. Its principles can be 
applied to analyses that span a range of times from less than an hour to months or years.

Real-world decision situations are usually complicated and poorly described. Fre-
quently, it is unclear what the problem is and what decisions need to be made. To deal 
with complex real-world problems, decision analysis uses a process and framework 
that brings transparency, insight, and clarity of action to the decision maker.

Section 1.3.2 introduced one of the most useful distinctions in decision analysis: the 
difference between a good outcome and a good decision. The ultimate goal of the deci-
sion maker, and therefore the aim of this book, is good outcomes. However, at the time 
a decision is made, it is possible to control only the quality of the decision—the out-
come also depends on the implementation and chance factors, as shown in Fig. 2.1.

The methodology developed in this chapter is focused on making high-quality deci-
sions and is designed to lead to optimal outcomes if consistently applied. This chapter 
explores what comprises the “Deciding” box in Fig. 2.1. We start with an overview of 
the methodology. Then we defi ne the elements that make virtually any decision hard, 
and consider some of the factors surrounding these elements. This is followed by three 
sections, each devoted to one of the key steps involved in one of the three main phases 
of the methodology. Finally, we summarize the key requirements for high-quality 
decision making and show how to assess the quality of a decision.

2.2 High-Level Decision-Making Methodology
This section provides an overview of a methodology for making high-quality decisions, 
with the objective of maximizing the chance of good outcomes. This methodology 
is equally applicable to professional as well as personal decisions. For an organization, 
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it is the glue that links the day-to-day work of technical and managerial staff with the 
goals and strategy of the organization.

The methodology incorporates traditional decision- and risk-analysis tools, such as 
infl uence diagrams, decision trees, probability analysis, Monte Carlo simulation, and 
optimization. Although the distinction between process and tools is not always clear, 
the remainder of this chapter emphasizes what may be called procedural tools, with 
the more analytical tools covered in subsequent chapters.

The procedure described in this chapter is not necessarily cumbersome or time-
consuming. Indeed, the methodology contains explicit steps for simplifying and short-
ening the decision-making process. Depending on the nature of the decision and 
amount of information available, the elapsed time from start to fi nish may be as little 
as 30 minutes (e.g., to choose the best supplier for new drilling bits). On the other 
hand, the elapsed time may be several days, weeks, months, or more than a year for a 
major fi eld development decision. In the latter case, only a miniscule fraction of the 
time expended is for implementing the methodology, the rest being for traditional data 
collection, technical analysis, and the like. 

2.2.1 Overview. We developed the following methodology founded on the theory of 
decision science—integrated with our own ideas, fi ndings, and experience. At a high 
level, the methodology consists of the following three main phases: 

1. Structuring the decision problem (sometimes called framing). The main goal of 
this phase is to ensure that the right people are treating the right problem from 
the right perspective. Typical tools used in this phase are decision hierarchies, 
brainstorming, infl uence diagrams, strategy tables, and decision trees. 
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Fig. 2.1—Three factors that influence decision outcomes. Modified after Russo and 
 Schoemaker (2002); copyright © 2002 by Russo and Schoemaker. Used by permission of 
Doubleday, a division of Random House.
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2.  Modeling the main elements of the decision problem and solving it. The goal 
for the modeling phase is to create understanding and insight and to commu-
nicate quantitative results. Tools used are infl uence diagrams, decision trees, 
Monte Carlo simulation, and optimization. 

3.  Assessing the model results and deciding. Most decisions are not made 
immediately after the modeling is presented. The results need to be tested, 
discussed, criticized, assimilated—and, most likely, revised. Typical tools are 
sensitivity analysis (tornado diagrams and spider plots) and tradeoff (or effi -
cient-frontier) plots.

Fig. 2.2 shows, for a major decision, the relationship between these three phases and 
the main participants involved. It is an integration of a process developed by Stanford 
University and the Strategic Decisions Group (SDG), which Barabba (1995) termed a 
“dialogue decision process,” using the analytical techniques of decision science devel-
oped by Howard and Matheson (1989), Raiffa (1968), Keeney (1992), and others. Our 
generic description considers the case in which the decision maker is not the analyst. 
However, the methodology is just as applicable to lower-level business decisions in 
which the analyst’s immediate supervisor is the decision maker—and to business or 
personal decisions in which the decision maker and analyst is the same person. 

As in many other spheres, good decision making requires a set of skills previously 
honed by deliberate practice rather than the result of natural talent or experience alone.* 
Decision makers and decision analysts alike need to acquire these skills, which cur-
rently are not provided within a typical petro-technical education. Consequently, enti-
ties seeking to improve organizational decision making should deliberately plan to 
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Fig. 2.2—High-level model of decision-making methodology.

*Malcolm Gladwell (2008), drawing on research by Ericsson et al. (1993) and others, makes a persua-
sive argument that at least 10,000 hours of deliberate practice is required to achieve the level of mastery 
associated with being a world-class expert—in anything—even for individuals who are talented to begin 
with. Even if the goal is less ambitious than becoming world-class, signifi cant deliberate practice is 
required to excel in decision making.
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develop the required skills of the various participants, with explicit recognition of the 
role of decision analyst.

In some cases, the analysis team may not interact directly with the decision maker, 
but with an intermediary who can make a recommendation further up the chain of 
authority. In such cases, it is very important that the decision objectives are those of the 
real decision maker (as discussed further in subsequent sections). 

A key aspect of making a high-quality decision is the incorporation of learning from 
previous decisions, which particularly impacts Phases 1 and 2, and therefore requires 
the previous decisions (and the processes and data used to reach them) to be recorded 
and available. Although not identifi ed as an explicit step in the previous schema, docu-
menting the methodology and eventual outcome of a decision is vital to improving 
future decisions.

Although the general fl ow of Fig. 2.2 is from left to right, the procedure is not linear. 
There are normally iterations, or feedback loops, both within and between the main 
phases as insight evolves. For example, early in a major decision-making study, we may 
wish to simplify the analysis by identifying which uncertainties really matter and there-
fore need to be modeled in detail later. Thus, the Modeling and Evaluation phase may 
involve the creation of a deterministic model, and the Assessing and Deciding phase 
may be a one-at-a-time sensitivity analysis using tornado plots (see Section 2.7.2).

As suggested by Fig. 2.2, there is regular communication and feedback between the 
main analysis team and the decision maker(s). In particular, it is recommended that 
formal review and approval be given at the beginning and the end of each phase, as 
indicated by the green arrows. This review and approval helps to ensure buy-in and 
alignment with organizational objectives, while preventing the main analysis team 
from pursuing potentially costly modeling approaches or solutions that do not have the 
support of the decision makers. It also means that the decision maker(s) will take 
responsibility for the adequacy of the analysis.

Parts of the methodology involve numeric calculations. However, the main value is 
not in the precision of the numbers generated, but rather is in the structured thinking, 
quantifi cation, objectivity, and insight that this methodology engenders, along with the 
resulting transparency, record, and clarity of action. If the methodology is being fol-
lowed merely because it is required, or there is over-focus on the numeric calculation 
aspects, its value is probably reduced. For some decisions, it may not be necessary to 
perform any numeric or analytical calculations. Merely following the structured pro-
cess, combined with careful thinking about the main elements of the decision (see 
Section 2.3) may be suffi cient.

The methodology is highly scalable and therefore adaptable to a time scale deter-
mined by the signifi cance of the decision and resources available. We are not seeking 
some theoretical optimum that requires unbounded time and resources. Rather, we 
take a pragmatic approach, seeking good decisions given the constraints of time, 
resources, context, and materiality. However, we do propose that the validity of these 
constraints be critically assessed and not based on some preconceived idea of the “right 
answer.” The notion of fi t-for-purpose models is captured by the term “requisite 
model,” as defi ned by Philips (1984): “A model can be considered requisite only when 
no new intuitions emerge about the problem.” (For reasons described in Chapter 7, we 
prefer insights to intuitions). A fi t-for-purpose model can be arrived at by cycling 
through the methodology shown in Fig. 2.2 until there is stabilization of the decision 
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maker’s objectives, preference among the alternatives identifi ed, and beliefs about 
uncertainties.

2.3 Decision Elements
The fi rst step in evaluating a decision situation is to identify its main elements, which 
requires a clear understanding of what constitutes an “element.” The following fi ve 
elements can be identifi ed in virtually all decision situations:

· Alternatives (or choices) to be decided among
· Objectives (or criteria) and preferences for what we want
· Information, which may include data and is usually uncertain
· Payoffs (or outcomes, consequences) of each alternative for each objective 
· Decision, the ultimate choice among the identifi ed alternatives

The fi rst three elements are sometimes called the “decision basis” (Howard 1988). 
A model of the relationship between these elements, and therefore of decisions in 
general, is shown in Fig. 2.3. Broadly, the objectives, alternatives, and information all 
contribute to the predicted payoffs and the alternative with the maximum payoff is 
chosen. Each of these elements is defi ned briefl y in the following subsections and is 
then elaborated on in subsequent sections.

2.3.1 Decisions. In Chapter 1 we defi ned a decision as a “conscious, irrevocable 
allocation of resources to achieve desired objectives.” A good decision is an action we 
take that is logically consistent with our objectives and preferences, alternatives 
perceived, and information available. The decision is made at the point at which we 
commit to one of the alternatives.

As shown in Fig. 2.4, the current decision can be thought of as strategic, because it 
is made in the context of previous policy decisions and can result in future tactical or 
operational decisions. The term strategic is used in a relative, not absolute, sense. 
Therefore, the methodology proposed here is not restricted to decisions that are strate-
gic in the common business usage of the word. For example, in the context of a fi eld-
development decision, the choice of drilling contractor may be considered tactical, 
whereas the choice of the number of wells is strategic. However, once development 
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has commenced, the choice of drilling contractor becomes strategic, and the same 
methodology can be used.  

All too often, the initial focus is on tactical, operational, or how-to-do-it decisions 
rather than on the underlying strategic or what-should-we-be-doing decisions. This 
erroneous focus can manifest itself in a rigid adherence to workfl ows, existing meth-
ods of problem solving, or a let’s-just-get-on-with-it mentality: 

Many are stubborn in pursuit of the path they have chosen, few in pursuit of 
the goal.

—Friedrich Nietzsche

Typically, strategic decisions require (and allow time for) considered thought, and 
are intended to create and maximize things of value to the decision maker. Thus, deci-
sions in emergency situations, decisions for which there are prescribed routine operat-
ing procedures, refl exive reactions, or decisions of trivial consequence are not 
considered strategic in this context. Mackie et al. (2006) discussed relating an appro-
priate process to a decision type. One way to identify the key decisions is to elicit a 
short description of the problem, such as “the elevator pitch,” to explain what the effort 
is all about in the small amount of time available during an elevator ride before you or 
an interested stranger have to disembark. 

2.3.2 Alternatives (or Choices). A defi ning characteristic of a decision situation is 
that alternative courses of action must be available. There is no decision to be made 
if there are no alternatives from which to choose. For example, if the law mandates 
that a well is to be logged, whether or not to log is not a decision to be made (unless 
it is a decision about whether to obey the law). The terms choice, alternative, and 
course of action are used synonymously. We generally use—and prefer—the word 
alternative, because it implies the notion of being mutually exclusive.

Decision alternatives can range from the simple (e.g., drill at location A, B, or C), 
through the complex and sequential (e.g., fi eld development), to those with extremely 
large numbers of alternatives (e.g., how to partition a budget, of which portfolio selection 
is a special case). Sometimes the choice is of strategy, which is a series of sequential 
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decisions. However, rather than evaluate all alternatives for each component decision, 
a single alternative is chosen—one appropriate to the theme that defi nes the strategy. 
See Section 5.3.2  for a better description of strategies. 

2.3.3 Values, Objectives, and Preferences.

No man does anything from a single motive.

—Samuel Taylor Coleridge

It is impossible to choose rationally the best course of action in any given situation 
without having a clear idea of what the decision is intended to achieve. Therefore, an 
absolute prerequisite for rational decision making is to identify and state clearly a set 
of objectives by which the worth of each alternative is judged. 

For each objective, we associate an attribute (measured with an appropriate scale) 
capable of quantifying how well the decision alternatives achieve the objective. Usu-
ally, there are multiple objectives of unequal importance, necessitating the assignment 
of relative weights or another technique to express the decision maker’s preferences 
for the objectives. The identifi cation of these objectives is often driven by the higher-
level values (or evaluation concerns) of the decision maker (or the entity that the deci-
sion maker works for). Fig. 2.5 shows how—taken together—the decision maker’s 
values, objectives, and preferences form a value tree or value hierarchy. Its compo-
nents are described subsequently.

· Values. Values are general, high-level statements of things that matter in the 
context of the decision. A value for a public corporation may be to increase 
shareholder wealth (as given by the fi duciary relationship between the share-
holder and executive management). One element of this relationship is the “duty 

Val1

Values and 

objectives

Val2

Obj1

Val3

Obj3

Obj4

Obj2

Obj5

Obj6

Val1 Val2

Obj1

Val3

Val2

Obj1

Val3

Obj3

Obj4

Obj2

Obj5

Obj6

Obj3

Obj4

Obj2

Obj5

Obj6

Value HierarchyValue Hierarchy

A
1

A
2

A
3

A
4

A
5

A
6

Attributes 

and scales

A
1

A
2

A
3

A
4

A
5

A
6

Weights

w
1

w
2

w
3

w
4

w
5

w
6

w
1

w
2

w
3

w
4

w
5

w
6

Fig. 2.5—Structure of a value hierarchy.



24 Making Good Decisions

of loyalty,” which requires corporate directors to “maximize the investors’ 
wealth rather than [their] own” (Easterbrook and Fischel 1991), or to act in a 
socially responsible manner. For a national company, a value may be to increase 
the well-being of the country’s citizens; and for a private company or individual, 
it can be anything important to them. 

· Objectives. Objectives (sometimes called criteria) are usually verbs that 
describe preferred directions of movement (i.e., maximize or minimize) of quan-
tities that refl ect the high-level values. For example, an objective consistent with 
maximizing shareholder wealth (the value) may be to maximize economic worth. 
(The word goal is sometimes used synonymously with objective—here, we 
reserve the term goal to mean a specifi c level of an objective to be attained.) The 
primary purpose of objectives is to judge the relative merits of each decision 
alternative. A secondary purpose is to inspire the creation of alternatives. 
Although most oil and gas companies typically use several objectives in their 
decision making, maximizing net present value (NPV) is often suffi cient to max-
imize shareholder value (Brealey et al. 2005).

· Attributes. An attribute is a measurement scale that can quantify how well a 
particular decision alternative meets a given objective. For example, NPV may 
be the attribute chosen to quantify the objective “maximize economic worth.” 
An appropriate measure (i.e., attribute) is often obvious for simple, clear objec-
tives. However, if the objectives are more complex or ill-defi ned, there may be 
more than one possible attribute (e.g., stock-tank barrels or reservoir barrels for 
oil volume). This possibility is especially true if the attributes are numeric scores 
that map to a verbal description of the degree of attainment of an objective.

· Preferences. When there are at least two objectives, it is necessary to state the 
relative desirability, to the decision maker, between the objectives. For example, 
is maximizing NPV more important than maximizing reserves? The impact of 
differing objective preferences can be accounted for by assigning a numeric 
weight to each objective. Better performance on one objective can sometimes be 
achieved only at the cost of decreased performance on another. (In this context, 
preference is not our preference, or attitude, regarding risk or for different levels 
of attainment within an objective, which will be discussed later.)

Importance of the Value Tree. A good value tree adds transparency to the decision-
making methodology by making clear how the alternatives are to be (or were) judged. 
It may therefore aid in obtaining the buy-in of all involved in its implementation. It 
can also reveal a hidden agenda, which can be considered as a set of objectives and 
associated preferences not known to, or shared by, everyone involved. People with 
hidden agendas are not inclined to use such a methodology; or, if they do, they may 
make decisions that seem contrary to what the analysis suggests. Often, what 
appears to be a puzzling or irrational decision can become clear (i.e., rational) when 
the true objectives and weights of the decision maker are known. Similarly, arguments 
about the best alternative often involve not the understanding of each alternative and 
its likely outcomes, but, rather, the relative importance of the outcomes to different 
people.

The importance of specifying and agreeing on the objectives of the decision maker 
at an early stage cannot be overstated.
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2.3.4 Information and Uncertain Events. We always have some information about 
factors that infl uence a decision situation—no matter how incomplete or uncertain that 
information may be. The information may be in the form of quantitative data, or it may 
be more qualitative or descriptive.

Normally, referring to uncertainty in decision making is in the context of specifi c 
events whose outcomes are unknown at the time the decision is made. In this context, 
the event may have already happened (e.g., the reservoir is fi lled, and there is an 
unknown original oil in place) or may be yet to happen (e.g., the number of hours it 
takes to complete a well). The difference between “has happened” and “yet to happen” 
is immaterial to decision making, except that, for an event that has already occurred, it 
may be possible to discover its outcome.

As noted in Chapter 1, uncertainty and knowledge are intimately linked. The extent 
of our knowledge about uncertain events is quantifi ed using probability. To do so, we 
fi rst need to identify all possible outcomes of the event (e.g., OOIP may take all pos-
sible values between 100 million and 900 million STB) and then assign probabilities 
to these possible outcomes. A common misconception is to think that we need (a lot 
of) data, in the form of measurements, to be able to assess probabilities. To the con-
trary, it is always possible to assess probabilities. As discussed in Chapter 3, proba-
bility quantifi es our beliefs about the likelihood of an outcome. Those beliefs are 
constructed from our total knowledge of the situation and may or may not include 
measured data. 

Finally, we need to know if the outcomes of several uncertain events depend on each 
other (e.g., if the fi rst well is successful, then there may be an increased probability 
that the next one is also successful). It is necessary to account for any dependency.

Given the myriad uncertainties that exist in any decision context, it is important to 
identify which ones should be considered within the evaluation. This topic is discussed 
in more detail in Section 2.7.2, but here is a simple criterion: Only those uncertainties 
that have a material impact on an objective, and therefore the decision, should be 
included. 

In our industry, unpredicted or surprising outcomes are often observed, even after 
having performed a probabilistic analysis. There are at least two reasons for this. First, 
is the failure to account adequately for all relevant uncertain events or to identify the 
full range of possible outcomes. (This issue is addressed in Chapter 7.) The second 
reason is a tendency to focus uncertainty analysis on only those events that we can 
model (or get information about), while ignoring those we cannot. Ignoring depend-
encies does not cause an unpredicted outcome, but, rather, it results in an erroneous 
estimate of the probabilities of the outcomes. 

2.3.5 Payoffs. A payoff is what fi nally happens with respect to an objective, as mea-
sured on its attribute scale, after all decisions are made and all outcomes of uncertain 
events are resolved. For example, once a well is abandoned and the production profi le, 
prices, and all costs are known, we may determine its NPV (at the point in time that 
the decision was made). 

At the time that the decision is made, some of the payoffs may be known and there-
fore considered to be deterministic. For example, assume that “experience” is one of 
the objectives for the decision “choose a new production engineer,” and it is measured 
by the attribute “number of years relevant employment.” We are likely to be able to 
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assess the payoff for each candidate from his or her resume. Similarly, when choosing 
between products or services, the payoffs often can be found in specifi cation sheets 
and other supplier documentation.

However, because of uncertainty, the payoffs usually have to be forecasted in terms 
of expected values. In Chapter 3, we provide a strict defi nition of what this term means. 
For now, it is suffi cient to think of an expected value as an average that takes uncer-
tainty into account. For hydrocarbon project investment decisions, the forecasted pay-
offs are typically derived from the predictions of reserves, production, or economic 
models. These payoffs are computed as a result of performing Monte Carlo simulation 
(see Chapter 4) or decision tree analysis (see Chapter 5).

Planning Horizon. When determining a payoff, the distance into the future to which 
we should look is not always clear. Consider the objective of “maximize monetary 
value” as measured by NPV. Should we also consider the NPV arising from possible 
future investments made possible by the monies received from the immediate deci-
sion? If future investments are totally unrelated to the present one and may be funded 
from other sources, then we would not include these investments. However, if the pres-
ent investment were an enabling one (e.g., processing facilities that may make cur-
rently uneconomic satellite fi elds viable), then we include it. 

The distance into the future for which we incorporate subsequent decisions and 
uncertain events is termed the planning horizon. It is a judgment call based on the 
analyst’s experience and knowledge of the decision situation, tempered by practicality. 
It should be chosen such that later events and decisions are included only if signifi -
cantly impacted by the immediate decision.

2.3.6 Challenges and Issues Surrounding Decision Elements. The challenges 
surrounding the decision elements are presented in Fig. 2.6.

We are now able to place into context some of the items identifi ed in Chapter 1 as 
making decisions “hard.” Fig. 2.6 is a fairly complete high-level model of a generic 
hard-decision situation. 

Ambiguity and Confl icts in Our Objectives. We are not sure exactly what we want 
or of the relative importance of each objective. We may not even know who the real 
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decision maker is, and therefore whose objectives to use. Sometimes, attainment of 
one objective can only be achieved at the expense of another, such as maximizing cur-
rent production vs. ultimate reserves, or maximizing return and minimizing risk.

Incompleteness of Our Alternatives. We may not have discovered all available 
choices, either because there are too many to enumerate or, more commonly, because 
we have not thought of all possibilities. The search for value-creating alternatives is a 
key part of any decision making, and by using processes ranging from simple heuristics 
to extensive group exercises, companies can stimulate the creativity needed to gener-
ate good alternatives. The failure to uncover all viable options can result in value loss. 
The decision can never be better than the best alternative identifi ed.

Too Many Alternatives. Many problems present a bewildering number of alter-
natives, simply because choices must be made in several decision areas, and each 
decision area has several possibilities to choose from. The number of possible com-
binations increases rapidly with the number of decision areas. Creativity exercises 
may have dramatically increased the number of possible alternatives. The challenge 
is to not only pick a subset of alternatives to make the analysis feasible but also to 
create  alternatives that are suffi ciently different, so that the analysis is creative (see 
Section 5.3.2).

Uncertainty Surrounding Information. The pervasiveness of uncertainty has been 
discussed previously. Uncertainty in technical and commercial factors feeds through 
into uncertainty in the forecasted payoffs, which is the prime information used to make 
the decision. Assessing these uncertainties is one of the most important—and some-
times most diffi cult—jobs of the engineer or geoscientist.

Complexity in Assessing Payoffs. The number of alternatives, number of objectives, 
quantity of data, and uncertainty affect the complexity of the decision model required 
to evaluate the payoffs (excluding the complexity involved in associated technical 
analyses). The complexity is increased if there are dependencies in the system: 
between the immediate decision and other decisions being evaluated, between the 
immediate decision and subsequent contingent decisions, between the outcomes of 
uncertain events, or between pieces of information that can help predict the outcomes 
of the uncertain events. 

Albert Einstein’s declaration: “Keep the model as simple as possible—and no 
simpler” is also the basic rule of decision analysis. For any model used, the primary 
criterion to assess the payoffs has to be precise enough to distinguish between the 
alternatives. Large value swings caused by uncertainties outweigh the precision of the 
model. The iterative nature of the decision-making methodology enables successive 
refi nement of the model; therefore, it does not have to be “perfect” the fi rst time it is 
used. A common comment is, “The model has to be complete and detailed enough to 
convince the managers of its usefulness.” Such logic is poor justifi cation for building 
an overly complex model that does not contribute to the goals of transparency, insight, 
and clarity of action. A more reasonable justifi cation is that, in some instances, it is not 
possible to assess the importance of a factor without modeling it.

Consequences of the Actual Payoffs. The fi nal outcome of the decision may have 
different consequences for different people, and consideration of those consequences 
can impact the analysis. Consider a personal example. Suppose you are nearly broke 
but would like to take a friend out for a meal and then to the cinema. You bet your last 
few dollars on a game that gives you USD 100 if you win. If you lose, your situation 
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does not change very much, but if you win, you have company and an evening’s enter-
tainment. On the other hand, a multimillionaire may gain insuffi cient satisfaction from 
an extra USD 100 to even justify playing the game. Similarly, the payoff of a business 
decision may have important consequences for you and your career, but not necessar-
ily for the shareholders or for the company as a whole. Thus, the signifi cance of the 
payoffs is greatly dependent on the decision maker’s context.   

The decision-making methodology proposed in the following sections is designed 
to deliver good results for decision problems characterized by the model shown in 
Fig. 2.6, even when considering the previously discussed challenges.

2.4 A Decision-Making Methodology
Now that the elements of a decision problem are defi ned, and some of the challenges 
that make decisions hard are identifi ed, we more fully develop the methodology 
described in Section 2.2. 

A good decision is defi ned as “an action we take that is logically consistent with our 
objectives and preferences, the alternatives we perceive, and the information we have” 
The methodology is a series of steps designed to deliver such a decision. The three 
main phases, described in subsequent sections, are broken up into eight sub-steps, 
illustrated in Fig. 2.7, as follows:

· Phase 1—Structuring (Framing)
1. Defi ne the decision context (decision, decision maker, and feasibility).
2. Set the objectives (criteria) by which each alternative will be evaluated and 

identify any confl icts between the objectives.

Uncertainty

2. Set Objectives 3. Identify
Alternatives

5. Preferences 6. Choose
the best

4. Outcome 
Prediction

7. Assess
Trade-offs

8. Sensitivity
Analysis

1. Define
Context

Technical 
and economic

analyses

Structuring
Modeling
Assessing

Uncertainty

2. Set objectives 3. Create
alternatives

5. Weigh the
objectives 6. Choose

the best

4. Assess
payoffs

7. Assess
tradeoffs

8. Sensitivity
analysis

1. Define
context

Fig. 2.7—Diagram of steps in decision-making methodology.
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3. Create, or identify, the alternatives (choices).
· Phase 2—Modeling (Evaluating)

4. Calculate the expected payoff of each alternative based on how well it meets 
the objectives (as measured on their attribute scales).

5. Weigh the objectives according to their relative importance in distinguishing 
between the alternatives.

6. Calculate an overall weighted value for each alternative, and provisionally 
select the best – the one that provides the highest value.

· Phase 3—Assessing and Deciding
7. Assess tradeoffs between competing objectives.
8. Perform a sensitivity analysis to test the robustness of the decision to the 

information that produced it.

Before proceeding, we re-emphasize two points. First, the methodology is highly 
scalable and therefore adaptable to the resources and time available (as determined by 
the signifi cance of the decision). Second, although parts of the methodology involve 
numeric calculations and analytical procedures, the main value is not in the precision 
of the numbers generated but in the structured thinking, objectivity, and insight that the 
methodology engenders, along with the resulting transparency, record, and clarity of 
action. 

How can it be determined whether a good decision was made or if the process leads 
to one? We explained that because of uncertainty, the outcome of any one decision 
cannot be used for this purpose. Instead, we must assess quality by how well the meth-
odology has been or is being implemented. Section 2.8 describes a procedure for doing 
so, based on a series of questions.

The following sections identify several analytical decision-making tools and indi-
cate which parts of the methodology each enables. However, descriptions of the actual 
tools are deferred to later chapters. 

2.4.1 Implementation, Recording, and Learning. Although this book is not a detailed 
implementation, or a “how-to” guide, we briefl y describe the benefi ts of using spread-
sheets as a simple means to implement and document the methodology. 

Apart from being able to conduct numerical calculations, a well-commented spread-
sheet is valuable because it provides a concise, auditable record of why a particular 
decision was made—in the context of the analysis, factors, and information consid-
ered. This record is necessary both to enable learning through subsequent “look-backs” 
and to avoid the hindsight bias whereby the quality of a decision is judged using infor-
mation available only after the decision was made (e.g., the outcome or revision of 
what was known and considered at the time). When reading through the following 
details, it may be helpful to have in mind a structure for Steps 2 through 6 similar to 
that shown in Fig. 2.8. 

2.5 Phase 1: Framing or Structuring
The goal of the fi rst phase is to identify and structure the relationship between the 
main elements of the decision problem. It is arguably the most important phase, 
because all successive phases depend on it. When something goes wrong in analyzing 
a problem, the roots of the diffi culties often lie in the problem structure. Similarly, 
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when a problem is exceptionally well analyzed, it is usually because the analysis was 
well structured and framed from the beginning. The fi rst step is to identify the deci-
sion context, which then is used as a frame of reference within which to identify the 
alternatives (Step 3) and to have specifi ed objectives used to judge their relative value 
(Step 2).

The insights and clarity gained from this part of the methodology may even be suf-
fi cient to solve the decision problem without further work, which provides an oppor-
tunity to create value and mitigate risk. Conversely, producing a great answer to a 
poorly framed problem or opportunity is useless. Decision makers report spending too 
little time on this phase (Russo and Schoemaker 2002). The natural inclination and 
background of many geoscientists and engineers is to focus on information gathering, 
interpretation, model building, and analysis. Conducting the framing phase inade-
quately may lead to the following:

· It is unlikely that radically new ideas or solutions will emerge once you (or the 
team) are in the “nitty gritty” of evaluation.

· You will not achieve support for the decision.
· You may bring a good answer to the wrong problem.
· You will not be protected from the “curse of hindsight.”

Tools that enable this part of the methodology include decision hierarchies; brain-
storming; infl uence diagrams; decision trees; strategy tables; and strengths, weak-
nesses, opportunities, and threats (SWOT) analysis. Perhaps the most important tool is 
an open and imaginative mind. A good fi rst step is to simply create lists of the main 
decisions, objectives, and uncertainties. The decision hierarchy, described in Section 
2.3.1 helps to provide focus on the immediate decisions through avoiding distraction 
by later operational decisions or policy decisions already made. Decision trees and 
infl uence diagrams clarify the relationships between the main decision elements, 
although both tools have uses beyond structuring. A full discussion of decision trees 
can be found in Chapter 5, with additional applications in Chapter 6.

2.5.1 Step 1—Defi ning the Decision Context. The decision context is the setting 
within which the decision occurs. Common errors are to analyze the wrong problem or 
analyze the correct problem in an overly complicated manner. 
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Fig. 2.8—Typical spreadsheet structure for recording and evaluating Steps 2 to 6.
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Defi ning the context helps to set appropriate objectives and identify relevant alterna-
tives. Suppose you are considering the decision “choose a new job.” If you dislike your 
current career or lifestyle, the context should be oriented toward choosing a new one. 
However, if you like the occupation—but dislike your current employer, coworkers, 
conditions, etc.—then the decision is in the context of fi nding a new employer. The 
decision is the same in both cases, but the context is different. Furthermore, it is the 
context that is likely to determine the different objectives and alternatives. Subse-
quently, we discuss four aspects of determining the decision context.

Decision. Just because it may sound trivial, it does not make identifying the 
real decision any the less important. For a decision to exist, there must be a choice—
engaging in an activity is not a decision. Thinking in terms of requests or opportunities 
for resource allocation (i.e., time, money) can help identify the decision. Decision 
situations are generally one of two types: a choice among known alternatives, or prob-
lem solving to create or identify alternatives. (The word problem in problem solving is 
not meant to imply a negative situation, but a complex one, such as how to best exploit 
an opportunity.) The type of decision determines the order in which Steps 2 and 3 are 
conducted. In either case, the decision hierarchy, illustrated in Fig. 2.4, can help to 
identify and exclude decisions already made (i.e., the givens) and any later implemen-
tation decisions that have no impact on the current decision. This decision hierarchy 
often produces a series of sequential decisions that impact materially on the optimal 
choice for the main decision. For example, if deciding between different development 
concepts [e.g., fl oating production storage and offl oading (FPSO) or tension leg plat-
form (TLP)], related decisions surrounding number of wells, processing capacity, etc., 
are important. Furthermore, how some uncertain events are resolved may bring about 
different subsequent decisions. In this case, a good tool for structuring the logical 
relationships between the various decisions and uncertainties is a decision tree, as 
discussed in Chapter 5.

Decision Maker. Identifying the decision maker(s) is important, because it is that 
person’s objectives and preferences that are required (and in the case of a corporation, 
the decision maker’s objectives should be aligned with those of the owners). In most 
cases, it is clear who the decision maker is. For personal decisions, it is obviously you. 
In a work context, it is often you or your manager. However, in some situations, it is 
not at all clear, particularly for complex decisions in large organizations in which 
many parts of the organization may be contributing to the ultimate decision. A key test 
that identifi es the real decision maker is that the person is capable of assigning the 
resources required to implement the decision. If you are not that person, then you need 
to determine the decision maker’s objectives or narrow the context of the decision for 
you to become the decision maker.

Ideally, the decision maker should be as far down in the hierarchy as possible, con-
sistent with being aware of any wider context to the decision (i.e., corporate strategy, 
dependent decisions, etc.). The position of the decision maker and his or her relation-
ship to the analysis is discussed in the next section within the context of setting values 
and objectives.

Feasibility. The defi nition discussed here does not refer to the feasibility of the 
 ultimate decision you make, but to whether you or the analyst team have the time 
and resources needed to perform the evaluation required to make the decision or 
 recommendation. If not, either additional resources should be sought or the problem 
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narrowed to one that is feasible with current resources. If the decision maker is not 
agreeable to either of these alternatives, then the situation should at least be docu-
mented, and the decision maker should acknowledge the concerns in writing. 

Assumptions and Constraints. Any constraints or assumptions should be identifi ed, 
critically assessed, and recorded. By “critically assessed,” we mean they should be 
challenged and their validity established. Sometimes, artifi cial constraints arise, 
because someone either prejudged the “right” answer or restricted the problem by 
specifying the list of alternatives. Doing so can be detrimental, because it generates a 
choose between rather than value-creation focus. Generally, if constraints must be 
imposed, reduce them to the smallest acceptable number, and consider their relevance. 
A special type of constraint is a non-negotiable policy within which the decision is to 
be made, such as, “We are a frontier exploration company.” In the context of choosing 
between exploration opportunities, this constraint may be a reasonable constraint. If 
the decision is about company strategy, it is not a reasonable constraint. 

2.5.2 Step 2—Objective Setting. The identifi cation and setting of appropriate objec-
tives is a crucial part of a good decision-making methodology. The ultimate goal of 
this step is to generate a set of appropriate objectives and their associated attribute 
scales with which to measure the value created by the different decision alternatives. 
(See Section 2.3.3 for a defi nition of these terms.) 

As previously noted, it is impossible to rationally compare alternatives without 
knowing what they are designed to achieve. Objective setting is achieved by develop-
ing a value tree (see Fig. 2.5) used for the following: 

· Guide information collection.
· Ensure that the decision is consistent with the overall aims of your organization. 

(Organization here refers to a public, private, or state company or entity.)
· Help create or identify alternatives (if not prespecifi ed).
· Facilitate communication and buy-in.
· Evaluate the alternatives.

The value tree is developed by working from high-level values down to specifi c 
objectives. The procedure for accomplishing this development is designed to help 
remove the ambiguity that surrounds objectives and to identify confl icting objectives.

Depending on the scope of the decision and its context, as indicated in Fig. 2.9, the 
ultimate decision maker may be separated from the analysts conducting the decision 
evaluation. The greater the number of levels in the hierarchy between analyst and deci-
sion maker, the greater the scope for misalignment between their values and objec-
tives, and the objectives actually used in the analysis. 

The decision makers, irrespective of their position in the hierarchy, should have an 
as-direct-as-possible specifi cation of the objectives, as shown by the green lines in 
Fig. 2.9. If it is impractical for the decision makers to directly specify objectives, then 
they should specify these objectives as far down in the hierarchy as possible, as indi-
cated by the orange lines in Fig. 2.9. The worst case is indicated by the red lines 
whereby intermediaries modify values or objectives they receive from further up the 
hierarchy. There should be no place for modifying specifi c objectives or values. How-
ever, it may be reasonable for intermediaries to interpret values into specifi c objectives 
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on which it is important not to overlay their own objectives or values, such as personal 
attitudes toward levels of risk. An appropriate incentive policy is the key to ensuring 
alignment down the hierarchy.

The sub-steps required to develop the value tree are outlined subsequently (with the 
exception of determining weights, which is covered in Step 5, Section 2.6.2). For 
this discussion, we assume a problem solving decision context in which the possible 
solutions (i.e., decision alternatives) are yet to be identifi ed. If this context is not the 
case, the order of  Steps 2 and 3 should be reversed. 

Identify Values. If the decision is complex, high-level, or broad in scope (e.g., a 
major fi eld development decision or what you would like for a career), the fi rst step 
should be to identify the main values, concerns, or issues the decision is designed to 
address. Values are things that matter to you and are general in nature, such as the 
following examples:

· Be profi table. 
· Be safe.
· Create value.
· Have fun.
· Be wealthy.  

In a work situation, especially if the decision context is broad, the values (and maybe 
even the objectives) are specifi ed by your organization. In a public corporation, these 
values may be the publicly stated corporate values. If the context is more limited 
(e.g., you or your manager is the decision maker), it may be more appropriate to 
develop your own set of values, consistent with your organization’s overall values. If 
the context is personal, the values are things that matter to you.

Set Objectives. Objectives are specifi c, measurable things that you want to achieve 
and that should be consistent with the decision maker’s broader values. They are usually 

Fig. 2.9—Model of specification of values and objectives.
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of the form “maximize X” or “minimize Y.” The fi rst step is to develop a potential list. 
Keeney (1994) provided a list of helpful questions for doing so. If the decision context 
is not one of problem solving, and you are sure that all alternatives have been identi-
fi ed, then you can use inspection of the alternatives (Step 3) to help set the objectives. 
Examples are choosing among a known set of applicants for a job or tenders for a 
contract. Once a list is developed, the next step is to distinguish between fundamental 
and means objectives. 

· Fundamental Objectives. These objectives identify basic reasons why the deci-
sion is important to you. For example, maximize NPV or reserves. One way of 
discovering fundamental objectives is to continually ask, “Why is this impor-
tant?” When the answer—in the context of the decision—is along the lines of 
“Because it is,” “This is why we are making the decision,” or “This is what I care 
about,” then a fundamental objective is reached. In the context of decision mak-
ing in a company, higher-level objectives may be derived from key performance 
indicators in a “balanced scorecard.” As far as practical, fundamental objectives 
should be independent of each other and can be organized into a hierarchy. For 
example, the objective of “maximize profi t” may be subdivided into “minimize 
cost” and “maximize revenue.” The lowest-level objectives in the hierarchy are 
used to defi ne the payoffs of the alternatives.

· Means Objectives. Means objectives are possible ways of achieving the funda-
mental objectives, but are not in themselves ends or reasons for making the deci-
sion. For example, “Motivate team members” may be a means toward the end of 
“Maximize value.” Means objectives can be identifi ed by asking questions, such 
as “How can we do that?” Because a single means objective may contribute to 
multiple fundamental objectives, these objectives are organized as networks 
rather than hierarchies. Means networks are a good source for generating possi-
ble solutions (alternatives) to the decision situation.

Because of the often indirect nature of this step, quantitative studies ideally should 
be undertaken to prove that a relationship does indeed exist between fundamental 
objectives and values, thus ensuring that maximizing/minimizing objectives actually 
results in maximizing the decision maker’s value. For example, in a company setting, 
performance measures known to drive owner value are required. 

Defi ne Attribute Scales. The next step defi nes scales for measuring the achievement 
of objectives. There are two types of scale: natural and constructed.

A natural scale is a commonly understood quantity measured or calculated objec-
tively. Examples are reserves in STB, NPV in dollars, and production rate in STB/D. 
If objectives are defi ned precisely, an appropriate natural scale may be implicit. 
Otherwise, there may be a choice of scales (e.g., Fahrenheit or Celsius to measure 
temperature).

A constructed scale is required for objectives without a commonly accepted mea-
sure, such as the reliability of a potential equipment supplier. A constructed scale is 
typically defi ned by a range of integer values associated with verbal descriptions that 
refl ect increasing levels of achievement of the objective. At the simplest level, it may 
be no more than assigning numbers to words, such as “high,” “medium,” and “low.” 
Constructed scales are usually specifi c to the decision at hand; and, if the decision has 
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a broad context, they are often used to limit the number of objectives by combining 
several into a single, broader objective. The level of detail depends on the nature of the 
decision, the time available, etc. For example, “minimize environmental impact” may 
be measured using a constructed scale from 1 to 5, where

1 = no impact 
2 = removal of 2 km2 of agricultural land
3 = removal of 2 km2 of wetland habitat that contains no endangered species
4 = removal of 2 km2 of wetland habitat that contains at least 1 endangered species 
5 = removal of 2 km2 of wetland habitat that contains species unique to that location

When generating a constructed scale, it is usually best to fi rst defi ne the levels in 
words, and then associate numbers to the levels. Assign 0 to the status quo if there is 
one (e.g., for a “hire replacement geologist” decision, set 0 to the level that describes 
the ability of the incumbent). Negative numbers depict levels worse than the status 
quo, and positive numbers depict levels better than the status quo.

Attribute scales can also be categorized as proxy or direct. A proxy scale is one that 
correlates with the objective, whereas a direct scale is a direct measure for the objec-
tive. For example, in a public corporation, NPV in dollars is a frequently used natural 
scale that is a proxy for measuring shareholder value (for which a direct measure 
consists of a share price and dividends). The Standard and Poor’s (S&P) 500 is a 
constructed-proxy measure for the United States’ economic health. The choice of scale 
type is commonly between natural-proxy and constructed-direct. 

If the alternatives are known, the range of a scale can be determined by inspecting 
the minimum and maximum values of all of the alternatives (e.g., fi ve job candidates 
whose experience ranges from 3 to 15 years). For purchasing decisions, this informa-
tion can be derived from product-specifi cation documents. On a personal front, con-
sumer magazines (e.g., Choice, Which, and Consumer Reports) are a ready source of 
information. 

Review. The fi nal step is to check the whole value tree for adequacy. Keeney and 
Raiffa (1993) listed the following fi ve criteria for checking:

1. Completeness: No signifi cant issues of concern are missing.
2. Operationality: Objectives are clear enough to be able to assess the alter-

natives.
3. Decomposability (independence): Performance of an alternative on one 

objective can be judged independently of other attributes. (This criterion is 
often hard to achieve.)

4. No redundancy: No objective is a rephrasing of another; otherwise, it can 
lead to excess weighting.

5. Minimum size: Do not subdivide more than necessary for operationality and 
decomposability, and remove objectives incapable of distinguishing between 
alternatives. 

Multiple Objectives. There are three main challenges associated with having multi-
ple objectives. First, multiple objectives imply multiple attribute scales. How then do 
we compare the value of, for example, dollars with barrels or with a safety score? This 
problem is addressed in Step 4. Second, the decision maker may have different prefer-
ences for achieving each objective. For example, maximizing economic benefi t may 
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be twice as important as maximizing next year’s production rate. This problem is 
addressed in Step 5. Third, confl icts may exist in which increasing the level of achieve-
ment on one objective, decreases achievement of another objective. For example, 
maximizing current production rate may reduce ultimate recovery. This problem is 
addressed in Step 7.

Although the problem of objective preferences is addressed in detail in Step 5, at this 
point, to help with the forthcoming step of identifying alternatives, the decision mak-
ers should express their relative preference between the objectives by using a simple 
weighting scheme. That is, they should assign each objective a number between 0 and 
100 (or 0 and 1) that indicates their relative preference for achieving them. This is a 
“naïve” weighting scheme that, while useful for helping to create desirable alterna-
tives, is generally not suitable for choosing between those alternatives (for reasons that 
are explained in Section 2.6.2).

2.5.3 Step 3—Identifying Alternatives. Assuming that the decision context involves 
a problem to be solved or an opportunity in which to take advantage, the creation or 
identifi cation of viable alternatives (i.e., choices, solutions, options, and courses of 
action) occurs as the third step.

A decision can never be better than the best alternative identifi ed. Here, the decision 
evaluation methodology can be used to create value. If value-maximizing alternatives 
are not identifi ed now, they are unlikely to emerge once the modeling-and-evaluation 
phase begins. Consequently, a goal should be the generation of substantially different 
alternatives.

Examination of high-level values and objectives (see the “Set Objectives” portion of 
Section 2.5.2) is one way of creating alternatives, using the simple weighting scheme, 
described previously, to ensure focus on identifying alternatives that can deliver what 
the decision maker really values. For example, create a hypothetical ideal solution that 
performs at the maximum level on your fundamental objectives, or create one ideal 
alternative for each objective. These hypothetical alternatives, which are likely to be 
impractical, can then be used as a starting point for developing realistic alternatives. 
An opposite approach also may be useful. Start with a known alternative, and ask how 
it can be improved to perform better against the objectives. Yet another way of creating 
alternatives is to examine the means-objective network, which is essentially a “how to” 
for achieving the fundamental objectives. 

Creativity is especially important when trying to fi nd ways of managing uncertainty. 
For example, delaying revenues is often assumed to cause value loss because of the 
economic concept of the time value of money (the longer time until receipt of a dollar, 
the less its value). However, the value of delaying a decision in order to obtain more 
information, and thus make a better decision, may outweigh the loss in time value. 
Likewise, adding fl exibility into the execution of a project in order to respond to the 
resolution of uncertain events may outweigh the direct cost of the fl exibility and any 
delay it may involve. These ideas are expanded in Chapter 6, under the topics of Value 
of Information (VoI) and Value of Flexibility (VoF). 

This identifi cation of alternatives is often conducted in a group setting. Individual 
communication skills and the facilitation of a creative atmosphere are essential. Group 
members need to actively listen to each other’s suggestions, and negative judgmental 
comments (i.e., bad, crazy, stupid, unrealistic, etc.) should be banned. One person’s 
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“stupid” idea may inspire another person’s “great” idea, which helps to create a range 
of very different alternatives rather than variations on a theme.

If the decision is fairly straightforward and all possible choices can be identifi ed 
easily (e.g., there are only three possible electric submersible pumps from which to 
choose), then it can be helpful to make this step the second step, and use the resulting 
list of alternatives to help specify objectives (Step 2). Remember, the purpose of the 
objectives is to judge the “goodness” of the various alternatives. 

Sometimes, the decision situation involves choosing among alternative strategies 
made up of a series of sequential or related decisions. In this case, the number of com-
binations can quickly become unmanageable. Strategy tables (see Section 5.3.2) are 
recommended for developing a manageable subset of the alternatives to be evaluated.  

2.5.4 Summary and Remarks. Identifi cation of the decision maker and a clear expo-
sition of the decision context are required for the effi cient and successful execution of 
the evaluation procedure. The importance of specifying and agreeing on the objectives 
of the decision maker at an early stage cannot be overstated. Without specifi ed values 
or objectives, it is impossible to rationally decide the best choice, solution, or course 
of action—and there is little point in continuing with the decision-analysis methodol-
ogy we propose. If there are intermediaries between the decision makers and the ana-
lysts, it is necessary to ensure alignment throughout that hierarchy.

The skill, experience, and knowledge of the people involved in the analysis are the 
source of value creation through identifi cation of alternatives, particularly in discover-
ing options to manage uncertainty by mitigating its downside or exploiting its upside.

At the end of this phase, if you are participating in a decision in which you are not 
the decision maker, the analysis-to-date should be reviewed with the decision makers 
and their formal approval sought for the adequacy of the context, specifi cation of 
objectives, and identifi cation of alternatives. This step not only helps to ensure an opti-
mal decision and provides valuable learning information once the outcome is known, but 
addresses any second-guessing in the event that a bad outcome is caused by chance.

2.6 Phase 2: Modeling and Evaluating
The goal of this phase is to reach a preliminary decision based on the alternatives iden-
tifi ed, the objectives set, and the decision maker’s preference for the relative impor-
tance of those objectives. The fi rst step (Step 4) makes an assessment of the extent to 
which each alternative helps achieve each objective (i.e., its payoff). The second step 
(Step 5) determines the decision maker’s relative priority for the objective. The fi nal 
step (Step 6) combines the performance against each objective into an overall score for 
each alternative. Here, modeling refers to modeling the decision, not to technical mod-
eling activities that feed information into the decision.

2.6.1 Step 4—Assessing Alternatives Against Objectives. The goal of this step is to 
make a relative comparison of the merits, or value, of the alternatives toward achieving 
objectives. (This should not be confused with the decision maker’s broad “values” 
described in the “Identify Values” portion of Section 2.5.2.) There are two main tasks to 
be completed. The fi rst is the development of a payoff matrix (sometimes called a conse-
quence matrix) that quantifi es how well each alternative scores on the objective attribute 
scales. The second task is to determine how much value is derived from these scores. 
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Scoring Alternatives. As defi ned in Section 2.3.5, a payoff is the extent to which an 
objective is met after the decision(s) is made and the outcomes of any uncertain events 
are resolved. Usually, the payoffs are not known in advance, are subject to uncertainty, 
and must be estimated or forecasted. Subsequent chapters cover the assessment and 
modeling of uncertainty in detail using tools such as decision trees or Monte Carlo 
simulation. 

Generating the data for this matrix is the primary role of technical, economic, and 
commercial studies (including any models and interpretations that underlie these stud-
ies). This is the point in the decision analysis where the results of such studies are 
incorporated. For example, consider a decision about where to drill an infi ll well. 
Fig. 2.10 shows the expected payoffs of four alternative well locations for each objec-
tive attribute. 

Pause to think for a minute. If you ever wonder why you are doing something or you 
want some guiding context for it, refl ect on the payoff matrix. Directly or indirectly, 
the jobs of most technical and professional staff in an organization are related to iden-
tifying alternatives and assessing their payoffs, with the decision makers being largely 
responsible for specifying objectives. Remember, however, that not all decisions are 
about where to drill wells. You may be deciding on, for example, which drilling con-
tractor to hire—or, if you are a service company, how to set your pricing and terms. 
The point is that no matter what your job or your organization, you should have a 
decision-driven focus. You should be able to trace the linkage between your work and 
the payoff matrix, or your supervisor should be able to show it to you. If not, you or 
your supervisor should at least query the relevance of the work you are doing. What if 
there is not an explicit payoff matrix that all can see? At an absolute minimum, you 
should be able to know to which decision(s) your work is contributing and the objec-
tives by which those decision(s) will be determined. 

Now, having obtained the payoff matrix, which summarizes the key elements of the 
decision, how do we use it to make the decision? Start by recognizing that the role of 
the objectives needs to change from one of helping to identify good alternatives to help-
ing to choose between alternatives. This change of role has practical consequences that 
can lead to considerable simplifi cation of the problem. (It also has consequences for the 
appropriate weighting of objectives and how that weighting interacts with the scores, 
which is discussed in Section 2.6.2). First, any objective that does not distinguish among 
the alternatives, no matter how important, should be removed from the list. For example, 
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Fig. 2.10—Matrix showing payoffs of each alternative vs. each objective.
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if the NPV is extremely important to you, but all the alternatives have essentially the 
same NPV, it should be removed from your list of objectives, because it no longer helps 
to distinguish the alternatives. Likewise, remove any alternatives that do not meet a 
“must have” criterion or constraint (e.g., a house must have at least three bedrooms, the 
project must meet minimum environmental and safety standards), and remove the 
associated objective. Second, when using a constructed scale or making subjective 
judgments on a natural scale, compare all alternatives against a single objective rather 
than taking one alternative and determining its score for each objective. That is, work 
across the rows of the payoff matrix rather than down its columns. 

If all the payoffs are numeric values, we have a further possibility for simplifying 
the problem: We can inspect the payoff matrix to identify and eliminate any alterna-
tives dominated by others. One alternative is said to dominate another if it has higher 
value on some objectives and is no worse on the remaining objectives. All dominated 
alternatives should be removed from the analysis. An alternative may also be 
removed because it is practically dominated, which means that although it may per-
form slightly better on some objectives, it is not enough to make up for clearly 
superior performance by the dominating alternative on other objectives. If any alter-
native has been removed through being dominated, check your matrix again in case 
the performance of the remaining alternatives is identical (or practically so) on one 
or more objectives, which can then be removed because they no longer help to choose 
among the alternatives. 

Consider the payoff matrix in Fig. 2.11, which relates to a decision to choose a log-
ging contractor. (Note: Higher scores on the cost, safety, and equipment age objectives 
are less desirable.) It can be seen that Contractor B performs better on every objective 
compared to Contractor D. Because D is dominated, it should be removed. Although 
this case is the only case of true dominance in the table, close inspection shows that C 
dominates A on all objectives except cost. The decision maker decides that C has sig-
nifi cantly superior performance on four objectives and outweighs its relatively small 
extra cost (especially in percentage terms); therefore, he or she deems that practical 
dominance has occurred, and also removes A from the set of alternatives, which leaves 
only B and C. Both B and C score the same on the safety objective; therefore, it can be 
removed.

If the payoffs for an objective are not expressed in numeric form, we can do one 
of two things to make them so: either assign a rank to each alternative or give it a 
constructed-scale score (see the “Defi ne Attribute Scales” portion of Section 2.5.2). 

A B C D
Average cost, USD thousand/job 133 136 142 137

Reputation, 0–5 scale 1 2 5 0

Safety, lost hr/person/yr 0.05 0.01 0.01 0.02

Average equipment age, years 5.3 2.1 1.6 4.9
Contracting flexibility, –5 to 5 scale 0 –1 3 –4

Contractor
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Fig. 2.11—Payoff matrix for logging contractor decision.
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A constructed scale is preferable because it provides more precise information with 
which to make judgments of practical dominance. Either way, the important thing is to 
consider one objective at a time, and make sure you are consistent in assigning the 
ranks or scores to the alternatives. Dominance is an important concept in decision 
making and is discussed again in Section 2.7.1  and Section 5.5.1.

At this point, the payoffs can be thought of as scores—how well each alternative 
scored on an attribute scale. We now have to address two problems. First, how can our 
preference for different levels of achievement be incorporated into a single-attribute 
scale? For example, a job-enjoyment score of 6 may not be twice as desirable as a 
score of 3. Second, how can we combine payoffs measured on one scale with those of 
another? For example, barrels per day (B/D) and dollars. 

Surprisingly, the fi rst problem applies even to monetary objectives. Suppose that 
you are completely broke, and someone offers you USD 100. You can now feed your-
self for a few days. On the other hand, if you are a multimillionaire, you may not 
appreciate that extra USD 100 quite so much. The reason for your difference in atti-
tude is because in each case, the USD 100 has a different value to you because of its 
consequences. Thus, money is not necessarily its own measure of value!

Converting Scores to Values. The two problems identifi ed previously can be easily 
overcome by using value functions, which transform attribute scores to values on a 
common scale, usually 0 to 1 or 0 to 100 (see Fig. 2.12). This transformation to a com-
mon scale enables the performances of an alternative on multiple objectives to be 
combined. For example, an NPV score of USD 500 million transforms to a value of 40, 
and a safety score of 2 units converts to a value of 70. (The next section discusses how 
the values should be combined.) 

The value function for NPV is a straight line (linear), which in this case means that 
a given increment in NPV is equally preferred irrespective of absolute value—USD 
100 million NPV is worth 20 value units. On the other hand, the safety value function 
is not linear, which means that higher scores become progressively less valuable. For 
example, scores below 2 may be related to loss of life; whereas, higher scores indicate 
levels of injury or lost time. 

A linear value function is often assumed and easily defi ned using the range between 
the minimum and maximum scores of the various alternatives. For the previous 
 example, the lowest and highest NPVs are USD 300 million and USD 800 million, 
respectively. There needs to be clarity about whether increasing levels on the attribute 

Fig. 2.12—Natural and constructed value functions.
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scale increase or decrease value. For example, the score of 1 for the “environmental 
impact” scale in the “Defi ne Attribute Scales” portion of Section 2.5.2 should have a value 
of 100, and the score of 5 should have a value of 0 (i.e., the line should slope downward). 

The transformation from scores to values also offers an opportunity to further simplify 
the problem, if this has not already been done, by identifying any dominated alterna-
tives, which should be removed from consideration. Having done so, the matrix should 
again be checked to see if there are now any objectives for which the performance of the 
remaining alternatives is identical (or practically so) and those objectives removed. 

Utility Theory

When dealing with uncertainty, our preferences can be infl uenced by our atti-
tude toward risk. We may have a preference for guaranteed outcomes over risky 
outcomes. For example, we may prefer a sure USD 1 million over a 50/50 chance 
of receiving either nothing or USD 3 million, despite the second option having a 
greater expected value of USD 1.5 million. Whenever any nonlinearity in the 
value function is caused by the adoption of some risk attitude (usually, more risky 
is less preferable), it is known as a utility function rather than a value function. 
Utility functions are part of utility theory—a theory of preference that takes into 
account both risk attitudes and values for incremental returns. In the case of mul-
tiple attributes, it is sometimes known as multi-attribute utility theory (MAUT). 

It is beyond the scope of this book to discuss the full utility theory, but in the 
context of a company, it is only appropriate to account for risk attitude when 
possible outcomes of the decision have severe negative implications for the 
company as a whole. That is, the appropriate risk attitude is of the owner, not 
necessarily of the decision maker who may be driven by motives; and therefore 
objectives not aligned with the owner. The reader is referred to Clemen and 
Reilly (2001) or McNamee and Celona (2005) for an introduction to how to 
develop utility functions for such cases, and to Keeney and Raiffa (1993) for a 
more comprehensive treatment. Grayson (1960) was the fi rst to discuss utility 
functions for oil and gas decision making. As discussed in Section 3.6.3, the 
appropriate decision criterion for any decision maker is the expected utility 
(EU). However, in many business contexts, the expected value (EV) is a close 
enough approximation to the EU [or, rather, to the certain equivalent (CE), 
which is the dollar value corresponding to the EU] to be used as the decision 
criterion. 

2.6.2 Step 5—Applying Weights. This step addresses the second of the three prob-
lems associated with having multiple objectives, listed in the “Multiple Objec-
tives” portion of Section 2.5.2. Namely, the decision maker may have different levels 
of preference or importance for achievement of one objective over another. For 
example, maximizing NPV may be considered twice as important as maximizing next 
year’s production rate. Preference, in this context, is used to describe the relative 
desirability between different objectives and not our preference for the incremental 
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returns (or risks) of the various possible outcomes within a single objective (attribute), 
which was discussed in the previous step. 

The solution to this problem is simply to apply relative weights to each objective. 
However, the weights must be assigned with care. A naïve, direct-weighting approach 
is as follows:

1. Subjectively rank the importance of the objectives.
2. Assign each a score on a scale of, for example, 0 to 100.
3. Sum all the scores.
4. Normalize their sum to 1.

This direct weighting approach is illustrated in the following example:

Objective Rank Weight Normalized

Maximize safety, score 1 100 0.40
Maximize NPV, USD million 2 90 0.36
Minimize initial rate, million B/D 3 40 0.16
Maximize Reserves, million STB 4 20 0.08

Sum = 250          1.00

However, this approach can cause a problem, because it ignores the payoffs of the 
alternatives. Consider NPV, which is ranked second-most important. What if the expected 
scores of the alternatives were remarkably similar, say, USD 401 million, USD 398 
million, USD 405 million, and USD 403 million? The NPV is no longer a powerful 
discriminator of the relative merits of the four alternatives. The problem is caused by 
forgetting the ultimate purpose of the objectives at this stage in the analysis, leading to an 
error in defi ning what is meant by “important.” The objectives should be ranked accord-
ing to their importance in distinguishing between alternatives, not some absolute measure 
of importance (as they were when being used to help identify good alternatives). In the 
extreme, if the scores of all alternatives were the same, then the weight should be set to 0, 
which has the same effect as removing the objective altogether. 

In practice, the problem can be overcome by using swing weighting, which takes 
into account the relative magnitudes of the payoffs. The objectives are fi rst ranked by 
considering two hypothetical alternatives: one consisting of the worst possible payoffs 
on all objectives (in terms of score, not value), and one consisting of the best possible 
payoffs. See Fig. 2.13 for an example.

The objective with the best score that represents the greatest percentage gain over its 
worst score is given the highest rank, and the methodology is repeated for the remain-
ing objectives until all are ranked. As can be seen, maximizing reserves is now ranked 
as the most important. Steps 2 to 4 of the direct-weighting procedure are then followed 
to determine weights. 

Although the weights can be considered part of the value tree, the preceding prob-
lem shows why they are not assigned in Step 2, but are deferred until all the alterna-
tives are identifi ed and their payoffs are determined.

Having determined the swing weights, the payoff matrix can be inspected for practi-
cal dominance, this time in the light of the new weights (actual dominance does not 



How to Make Good Decisions 43

change, because the payoff values have not changed). If any alternatives are selected 
for removal, then check if any objectives can also be removed (if all remaining alter-
natives now perform the same on a given objective).

2.6.3 Step 6—Determining the Best Alternative. The fi nal part of the evaluation and 
modeling phase is to combine the scores on each objective to determine an overall 
value for each alternative. 

This determination of an overall value is achieved by calculating the weighted sum 
of each column in the value payoff matrix. That is, the weighted overall value, V

j
, is 

computed for each of the N
j
 alternatives over the N

i
 objectives:
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1
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where w
i
 is the weight of the ith objective, and v

ij
 is the payoff of the jth alternative 

for the ith objective. Because of uncertainty, the payoffs should be expected values 
(in the probabilistic sense, as described in Chapter 3), typically resulting from a 
decision-tree analysis or Monte Carlo simulation. Fig. 2.14 illustrates, in the for-
mat of Fig. 2.8, Steps 2 through 6 for a choice among fi ve locations for an infi ll 
well.

The alternatives are then ranked according to their scores. The fi rst-ranked alterna-
tive (A, in this case) is the one logically consistent with maximizing the value of the 
decision, given:

· The alternatives identifi ed
· The decision maker’s objectives and their weights
· The forecasted payoffs based on the information we have
· The decision maker’s preferences for payoffs, as specifi ed by the value functions

In other words, we have employed a methodology that yields a good- or high-quality, 
decision, as defi ned in Chapter 1 and in Section 2.4. As mentioned previously, this 
methodology has its theoretical underpinning in decision science. 

In theory, if we are sure of our preference for outcomes, risks, relative importance of 
objectives, etc., then we should choose the top-ranked alternative. However, it may not 
necessarily be the preferred choice, particularly when the following occurs:

Fig. 2.13—Illustration of swing weighting.
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· We are not absolutely sure of the weights for the various objectives. 
· Some objectives are confl icting (see next section).
· There is a small difference among the overall scores of several alternatives, but 

they satisfy different objectives signifi cantly.

Making comparisons in a matrix of numbers is seldom the easiest way for people to 
analyze the information or to present it to decision makers. One option is to present the 
payoff table in the form of a radar chart (see Fig. 2.15). Each “spoke” of the chart rep-
resents one of the attributes. The 0 is generally at the center of the chart, and 100 (or 1) 
is on the outer rim. (However, in Fig. 2.15, we placed the 0 value one “ring” out from the 
center, which facilitates comparing the alternatives when their value is 0.) Each alterna-
tive is plotted using a line to join its values on each attribute. Either the direct or weighted 
values can be plotted, which makes it much easier to examine the alternatives and dis-
cern which aspects contribute to, or detract from, the overall value. If the line for one 
alternative lies entirely inside the line of another, then the latter dominates the former 
and should be removed. (Our example does not show any cases of this occurrence.)
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Fig. 2.15—Radar or spider plots showing performance of the alternatives on each attribute.
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However, things are not so simple in the case of numerous alternatives, such as 
deciding the percentage allocation of an annual budget among an infi ll well program, 
a workover program, and a sidetrack program. Because the percentage split is a con-
tinuous variable, there is an infi nite number of ways to split the budget. This type of 
problem requires a formal optimization approach, which is outside the scope of this 
book. 

2.6.4 Summary and Remarks. The modeling and evaluation phase uses the results 
of technical modeling and analysis (including technical uncertainty analysis) in the 
decision-making methodology. It is also the phase in which the main decision-modeling 
activity takes place, through the use of tools (e.g., decision trees and Monte Carlo 
simulation) that are discussed in subsequent chapters. 

It is easy, particularly for people who are quantitative, to lose sight of the overall 
objective of attaining clarity of action and instead become absorbed in the calcula-
tions. The real drivers of value are precision in defi nitions, fi t-for-purpose modeling, 
clear objectives, creative thinking, objective assessment of information, and logical 
analysis—followed up by good record keeping. Extensive discussion may be required 
to ensure that everyone has at least a common understanding of, if not agreement with, 
each of the previously discussed elements.

Disagreements about which alternative should be chosen often focus on people’s 
differing opinions about the likely outcomes of the uncertain payoffs. However, the 
disagreement often concerns the objectives, their weights, and the value functions. 
Following the previous procedure at least reveals these sources of disagreement, if not 
helping to resolve them. Barring a convincing argument of faulty analysis, persistent 
support in favor of an alternative not ranked highly may be an indication of a hidden 
agenda.

The decision-analysis part of this phase is likely to account for only a small fraction 
of the elapsed time—the majority being spent on the technical, economic, and com-
mercial analyses required to develop the payoff matrix. If the latter information is 
readily available, the elapsed time is greatly shortened. Clearly, the amount of time 
depends on the scope, or size, of the decision, and the availability of information. As 
before, some iteration is likely required between the various sub-steps as insight is 
gradually gained. 

As with Phase 1, if you are participating in a decision in which you are not the deci-
sion maker, we recommend that the analysis-to-date be reviewed with the decision 
maker(s). Then, formal approval should be sought from the decision maker(s) for the 
adequacy of the evaluation of the payoffs, value functions, and weighting of the objec-
tives. We also strongly recommend that the source of the payoff data (e.g., from tech-
nical studies) be recorded along with any reasoning behind the weighting of the 
objectives and choice of value functions.

2.7 Phase 3: Assessing and Deciding
The fi nal phase of our proposed methodology consists of two steps. The fi rst step 
considers the impacts of any competing objectives and the desirability of making 
tradeoffs between them. The second step conducts an analysis of the sensitivity of the 
decision to input variables and parameters, such as objective weights, probabilities, 
or payoffs.
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2.7.1 Step 7—Tradeoffs. Section 2.5.2 (Objective Setting) and the “Multiple Objec-
tives” discussion within that section noted that confl icting objectives can make deci-
sions hard. For example, maximizing a short-term production rate may decrease 
reserves, increasing safety may decrease profi t by increasing cost, or enjoying a job 
may have to be traded off against salary. A fundamental economic principle is that 
increasing returns come at the expense of increasing risks, in which risk is used in its 
economics sense, equivalent to what we term uncertainty. This tradeoff between risk 
and return is a characteristic of portfolio-selection decisions.

This diffi culty can be addressed by fi rst categorizing the objectives into two classes, 
using natural divisions related to the tradeoffs that have to be made (e.g., costs and 
benefi ts, risk and returns). Overall weighted scores are then calculated for each subset, 
in a similar fashion to Section 2.6.3 . For example, using C to indicate costs and B to 
indicate benefi ts, the overall weighted values for the costs and benefi ts, respectively, of 
alternative j are given by the following:

V
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where N
C
 is the number of objectives classifi ed as costs, and N

B 
is the number classifi ed 

as benefi ts. The next step is to cross-plot the weighted cost/benefi t pairs for each alter-
native as shown in Fig. 2.16, in which higher cost values represent lower actual costs 
(scores).

This plot is interpreted and used through several steps. First, discard all dominated 
alternatives. Consider alternative A, shown by the yellow triangle. With respect to 
alternative B (the red circle), A has both lower cost value (higher actual costs) and 
lower benefi t value. Because B is superior to A on both measures it dominates A, so A 
should be discarded. All other pairings can be evaluated similarly to identify the set of 
non-dominated alternatives—in this case, B, D, F, and G. These non-dominated alter-
natives are viable alternatives, and are termed the effi cient frontier. The next step is to 
start from either the upper left or lower right, and move along the effi cient frontier, 
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each time asking, “Am I willing to accept this change?” In other words, am I willing 
to trade off the change in benefi t for the change in cost? For example, comparing 
Alternative G with F, we ask, “Is a decrease of approximately 2 value-units of benefi t 
worth an increase of approximately 10 value-units of cost?” If the answer is yes, we 
discard G, and then make the same comparison between F and B, and so on, until we 
are no longer willing to make the tradeoff. The last alternative for which we are willing 
to make the tradeoff is our fi nal choice.

The previous example used benefi ts and costs in a loose sense to indicate things that 
were desirable and undesirable, respectively. If the costs are simply real dollar costs 
rather than an amalgamation of attributes that contribute to cost, then we can use those 
actual cost scores and thus be able to assess the tradeoff question in terms of real 
costs. 

Portfolio decision making is another application in which the effi cient frontier is 
used to make tradeoffs. In this context, each alternative is a possible portfolio of 
investments and the desirable quantity is the average NPV of the portfolio, which is to 
be traded off against the undesirable risk of the portfolio, in which risk is often defi ned 
as the standard deviation (or variance) in the NPV.

The previous discussion of dominance assumed that the scores are either determin-
istic quantities or the average values of uncertain variables. However, defi ning domi-
nance in the latter case is not quite so straightforward, because there are many possible 
outcomes of the uncertain variable. In this case, we can use stochastic (or probabilistic) 
dominance, discussed in Section 5.5.1.

Even Swaps. In this section, we briefl y review an alternative method, even swaps, 
for making tradeoffs. A fuller discussion can be found in Hammond et al. (1998). This 
approach starts at the point of having ensured that all entries in the payoff matrix are 
numeric values, any descriptive ones having been converted to numbers through a 
constructed attribute scale in accordance with the “Defi ne Attribute Scales” portion of 
Section 2.5.2.

The basic idea is to create dominance, when there was none before, by making 
equal-value tradeoffs. To illustrate, we return to the example shown in Fig. 2.11. 
Alternatives A and D are removed through dominance, and the “Safety” objective is 
removed, because the remaining alternatives, B and C, had the same score. The deci-
sion problem is now as shown on the “Before Swap” part of Fig. 2.17. 

It can be seen that Alternative B is dominated by Alternative C on all the remaining 
objectives except cost, which is USD 6,000 less for Contractor B. The decision maker 
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looks for an opportunity to tradeoff this USD 6,000 against superior performance on 
another objective. “Contracting Flexibility” looks like a natural possibility, particu-
larly because the decision maker does not attribute much weight to this objective. The 
decision maker judges that the USD 6,000 cost advantage of Alternative B provides the 
same value as, or can be compensated for by, an increase worth three units of “Con-
tracting Flexibility.” Having made the swap, the cost objective becomes irrelevant and 
Alternative C dominates the remaining objectives. It is the best choice. In this exam-
ple, one swap was suffi cient to reach a decision. However, most problems are more 
complex and require repeated application of even swaps to successively simplify the 
problem by creating dominance or removing objectives. 

The goal of even swaps (i.e., fi nding the dominant alternative) is the same as using 
value functions in combination with swing weights. However, because the process is 
implemented through sequential one-at-a-time comparisons, it is important to ensure 
consistency and to be aware of the opportunity it presents for manipulating the tradeoffs 
to now be dominated by an implicitly preferred alternative (which is more diffi cult to 
do with the swing-weighting/value-function approach). 

2.7.2 Step 8—Sensitivity Analysis. The fi nal step in our proposed methodology for 
making high-quality decisions, and thus our best hope for good outcomes, is to deter-
mine how sensitive the decision metrics (payoffs) are to changes in our estimates of 
inputs or assumptions, particularly with respect to uncertain quantities and variables 
over which we have choice (e.g., well numbers).

The quantitative input to the methodology can be divided into three main categories. 
The fi rst category is the subjective assignments of how we perceive value. For exam-
ple, we may not be able to unambiguously assign weights to objectives or to specify 
value functions. The second category is related to the information used to calculate the 
payoffs (e.g., porosity, oil price, seismic velocity, and gas/oil ratio). Much of this 
information is uncertain, quantifi ed by objective measurement or subjective assessment. 
The third category relates to parameters whose values we can choose (e.g., number of 
wells, processing capacity, or pipeline diameter).

A key question is, “How accurately do we need to know these inputs?” This question 
can be answered by assessing to what extent the fi nal decision is sensitive to changes 
in the inputs. If the decision is fairly insensitive to a particular input, then it does not 
need to be quantifi ed more precisely. On the other hand, if the decision is sensitive to 
an input, then the following can be considered:

· If it is of the value type, we want to think more deeply about what matters 
to us. 

· If it is of the informational type, we may want to assess it more accurately, try to 
reduce the uncertainty, or design plans to deal with its consequences. (Chapter 5 
describes two powerful approaches to managing the impacts of key uncertainties, 
VOI and VOF.) 

· If it is of the choice type, we may want to fi nd the value that optimizes the over-
all value of the decision.

There are several ways of performing sensitivity analysis. The remainder of this 
section describes two common approaches and illustrates their application to the three 
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quantity types described previously. Both approaches are based on the principle of 
changing the inputs one at a time and observing the resulting impacts on the output 
variables, which requires access to a quantitative model that calculates values of the 
payoffs from the input variables. The main differences in the methods is in how the 
results are displayed and in whether we are evaluating the effects of a single input on 
multiple payoffs or vice versa.

Tornado Charts—Single Objective, Multiple Uncertainties. The fi rst approach is 
used to assess the sensitivity of a single-output variable to changes in multiple inputs. 
It can be used to help identify two decision-driver types: uncertainty drivers and value 
levers.

· Uncertainty Drivers. These variables are uncertain model-input variables that 
have the biggest impact on the payoffs. Identifying these variables is useful for 
two main reasons. First, it is a quick technique that enables screening multiple 
uncertainties at an early stage to determine which one(s) should be included in 
decision-tree analysis or be more fully evaluated using Monte Carlo simulation. 
Second, it may provide compelling evidence to direct spending on further data 
collection or allocation of personnel to technical analysis.

· Value Levers. Value levers are model parameters whose values the team can 
choose and that have the biggest impact on the payoffs. Identifying these vari-
ables is useful because they provide insight into the question of which ones the 
team should concentrate on in either an ad hoc or a more formal approach to 
optimizing the value of the decision.

The general procedure includes several steps. First, select the input variables and the 
payoff for which the sensitivity analysis is required. Second, one at a time, change the 
input variables by plus and minus a given amount, and record the value of the payoff 
for each change. Changes of plus and minus 10% are often used. Although this change 
refl ects the sensitivity of the payoff to the input, it can be misleading in terms of iden-
tifying which variables are the most important input variables, unless their degrees of 
uncertainty are similar. A better scheme is to derive the changes from an assessment of 
the probability distributions of the input variables. The input variables are then ranked 
in order of decreasing impact on the payoff, the impact being calculated as the absolute 
value difference in payoff for the plus/minus changes. Using the initial (before sensi-
tivity analysis) value of the payoff as a center point, the changes in its value are plotted 
on a bar chart in descending order of impact, as shown in Fig. 2.18a, which illustrates 
the approach applied to a fi eld development decision with NPV as the payoff. The 
typical tornado shape of these bar charts accounts for their name.

Fig. 2.18a indicates the NPV of the model is approximately USD 550 million, and it 
is most sensitive to changes in the reservoir area, followed by porosity, and least sensi-
tive to platform cost. The former variables are candidates for a more rigorous assessment 
of their uncertainty, such as inclusion in decision-tree analysis; any further data collec-
tion or analysis should focus on reducing their uncertainty or managing its impacts. 

Fig. 2.18b shows the same analysis type applied to the main choice variables. 
The NPV is shown to be most sensitive to the platform size, number of wells, and 
facility capacity. These variables should be pursued to optimize the overall value of the 
decision.
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Interpreting these plots necessitates being aware of the correct directional variations 
of the sensitivities. For example, as area increases, the NPV increases. However, as the 
well cost increases, the NPV decreases (in this example, a 10% increase in well cost 
induces a decrease of approximately USD 50 million). The effect of any aggregation 
or splittingof the sensitivity variables must also be accounted for. In the previous 
example, it would have been possible to choose aggregated OOIP as a variable, rather 
than its components (i.e., area, thickness, etc.).

Several variations are possible to the standard tornado chart. One is to subtract the 
initial value of the payoff to make the center line zero, thereby making it easier to see 
the actual dollar amounts of the sensitivity. Another is to color the bars to show the 
direction of the sensitivity. Both these variations are illustrated in Fig. 2.19a. An alter-
native way of displaying the information is as a spider chart, as shown in Fig. 2.19b. 
The steeper the line, the more sensitive the payoff is to the variable. The slopes of the 
lines in the spider chart need be neither symmetric about the zero point nor linear. 
Different slopes indicate that the sensitivity is different for positive and negative 
changes in a variable.

Single Uncertainty, Multiple Objectives. The second approach assesses the effect of 
changing a single-input variable on multiple outputs. It works well for investigating 

(a) Uncertainty Drivers  (b) Value Levers
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Fig. 2.18—Tornado sensitivity plots to identify main uncertainty drivers and value levers.

Fig. 2.19—Tornado chart showing direction of sensitivities, and spider chart.
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the sensitivity of the decision to the choice of weights assigned to the objectives. The 
main idea is to take one (normalized) weight at a time and, while holding the others 
constant, vary it between 0 and 1 in a number of discrete steps, observing the impact 
on the overall weighted values. Because the normalized weights must sum to 1, the 
other weights must be prorated for each value of the weight being varied. Normally, 
one starts with the objective that has the highest weight, and so on. Suppose Objective 
4 has the highest weight, such as 0.18.

Fig. 2.20 shows the result of performing the previous procedure. The overall 
weighted score of each alternative is plotted at each value of the weight, and the points 
are joined to form one line for each alternative. At Objective 4’s current weight, 0.18, 
Alternative A is shown to be the best choice. Moreover, Alternative A remains the best 
choice for any weight between approximately 0.1 and 0.4. Below 0.1, Alternative C 
becomes the best choice, and above 0.4, Alternative D is the best choice. Above a 
weight of approximately 0.47, Alternative E becomes the best choice, which tells us 
that as long as we are confi dent that the weight of Objective 4 lies in the range 0.1 to 
0.4, the decision is robust. 

Multi-Variable Sensitivity Analysis. The previous techniques are forms of deter-
ministic sensitivity analysis, because the changes in the input variables are chosen 
arbitrarily, rather than being driven by probability distributions of the uncertain vari-
ables. They are useful for screening which variables should be modeled in more detail, 
but do not provide a true measure of the dependency of payoff uncertainty on input-
variable uncertainty. A more sophisticated version of tornado chart sensitivity analysis, 
known as probabilistic sensitivity analysis, is described in the Monte Carlo simulation 
section in Chapter 4. This type of analysis enables all variables to change together and 
for those changes to be determined by the probability distributions of the respective 
variables. Consequently, it can provide an absolute measure of the extent to which 
uncertainty in the input variables drives uncertainty in the payoffs.

Finally, we can investigate how sensitive the value of the decision is to either the 
reduction of uncertainty by acquiring more data or conducting further analysis, or to 
the implementation of fl exibility to respond to the outcomes of uncertain events. The 
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description and implementation of these two types of sensitivity analysis are covered 
in Chapter 6 because they require an understanding of probability theory and decision 
trees, which are covered in Chapters 3 and 5, respectively.

2.7.3 Summary and Remarks. The fi nal phase of our recommended decision-making 
methodology is designed primarily to address two of the factors that make decisions 
hard—confl icting objectives and uncertainty (in a loose sense of the word) around the 
values of the different types of input that determine the payoffs.

Confl icts between objectives can be resolved by considering the value of making 
tradeoffs between them. As part of this procedure, the number of alternatives worth 
considering can be reduced by excluding all alternatives for which another alternative 
scores at least as highly on all objectives.

Sensitivity analysis is benefi cial, because it identifi es the following:

· Variables or parameters on which it is not worth expending further effort to 
resolve their values, because they are not material to making the decision

· Key uncertainty drivers, over which we have no control, other than to reduce the 
uncertainty by collecting more data or performing more analysis, or to develop 
plans to mitigate risks or capture opportunities that arise from them

· Key value levers, which can be chosen to optimize the value of the decision
· General insight into the behavior of the decision situation

Together, these benefi ts can create a more decision-driven atmosphere through each 
team member’s knowing the relevance (or irrelevance) of their contribution, thereby 
maximizing the effi ciency of human and fi nancial resources. We have found that tech-
nical specialists are willing to accept a level of analysis that is not all-encompassing, 
when it can be demonstrated to be adequate for the purpose for which it is intended. 
Without this evidence, there is a natural tendency to do the best job possible, often 
leading to a focus on precision rather than overall accuracy of the analysis.

Conducting and interpreting a sensitivity analysis requires delving beyond the sim-
ple tornado style sensitivity charts to investigate the multidimensional nature of the 
sensitivities (i.e., a key driver may be important only for particular combinations of 
other variables).

The analysis-to-date should be reviewed with the decision maker(s), whose formal 
approval should be sought and recorded for the adequacy of the evaluation of the 
tradeoffs and recommendations for further data collection or analysis. The fi nal deci-
sion, of course, lies with the decision maker.

2.8 Assessing Decision Quality
The previous methodology is designed to deliver good decisions, where a good deci-
sion is defi ned as one that is logically consistent with maximizing the value of the 
decision, given the following:

· The alternatives that have been created or identifi ed
· The decision-maker’s objectives and associated weights
· The forecast payoffs based on the information we have
· The decision-maker’s preferences for payoffs, as specifi ed by the value functions
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But how can we assess the quality of the decision, given that the outcome is not a reli-
able indicator? We present a framework based on McNamee and Celona (2005) and 
Matheson and Matheson (1998). In addition to assessing the quality of a current deci-
sion, the framework can be used either as a means of auditing previous decisions or as 
an introduction to or summary of the actual methodology.

2.8.1 The Six Dimensions of High-Quality Decision Making. Matheson and Matheson 
(1998) surveyed a large number of decision makers and combined their responses with 
the thinking of academics to develop a framework that evaluates the quality of a deci-
sion along the six dimensions shown in Fig. 2.21.

As shown in Fig. 2.21, the six dimensions form a chain-of-decision quality and 
broadly refl ect the main elements of the methodology described previously.

1. Helpful Frame. The starting point is to clearly identify the decision to be made 
and how accurately it needs to be assessed. A helpful frame clarifi es the situation to be 
solved. The importance of this step cannot be underestimated. Getting a great answer 
to a poorly framed problem or opportunity is useless. As engineers and geoscientists, 
we tend to immediately employ models (i.e., simulation tools, spreadsheets, geologi-
cal modeling and analysis, etc.) when facing a new decision situation. Expert decision 
makers, however, know that they must consciously identify what needs to be decided. 
Too often, pressed for time and an immediate answer, inexperienced decision makers 
plunge into gathering information or building a quantitative model without stopping to 
ask questions, such as the following:

· What is being decided?
· What is not being decided?

Decision
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Fig. 2.21—The decision-quality chain.
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· What will we take as given?
· Are the assumptions clearly specifi ed?

No matter how little time is available, one should never omit asking the framing-type 
questions. If you do not ask well, you may waste more time than you “save,” because 
you risk solving the wrong problem. 

2. Creative Alternatives. The lack of creative and fl exible alternatives is one of the 
main reasons companies have diffi culty in achieving high-quality decisions. This 
dimension can be illustrated by asking questions such as the following:

· What are my choices?
· Are the alternatives doable?
· Do the alternatives solve the problem?
· Was a broad range of alternatives considered?

This dimension requires the team to stretch its imagination and be creative. Each alter-
native identifi ed should be logically consistent and feasible. Any decision can only be 
as good as the best alternative identifi ed, and if there are no alternatives, there is no 
decision.

3. Useful Information. This dimension emphasizes the need to bring reliable and 
relevant information to bear on the decisions. It can be illustrated by asking the follow-
ing questions: 

· What do we know?
· Did we obtain information on the important things?
· Was the information unbiased?
· How accurate have we been in the past with a similar assessment?
· What information would we gather, given more time/money/resources?

Companies and individuals are often good at including what they know in the analy-
sis. However, a particularly dangerous tendency is aptly illustrated by the following 
quote: 

It ain’t so much the things we don’t know that get us in trouble. It’s the things 
we know that just ain’t so.

—Artemus Ward

The key to quality in this dimension is information about what is not known (i.e., the 
limits of our knowledge). Too many decisions are based on wrong or incomplete infor-
mation. Consciously considering the information needs and gathering useful informa-
tion before acting are essential to good decision making.

4. Clear Values. As discussed previously, an essential component to good decision 
making is to clearly defi ne and articulate the criteria for measuring the value of alter-
natives and how the company makes tradeoffs between them. For most E&P compa-
nies, the key criterion is some combination of the NPV, cash fl ow, production, and 
reserves replacement. Good questions to ask include the following:
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· What consequences do we care about?
· What tradeoffs did we make?
· Have we been able to accurately measure these values in the past?

Tradeoffs are often necessary, and clarity in how the criteria are ranked is essential. 
A commonly expressed value metric in E&P is reduced uncertainty or increased 

confi dence. As we subsequently discuss, these metrics have no economic value by 
themselves. Another danger is to ignore intangible decision metrics, such as corporate 
reputation or safety.

5. Sound Reasoning. Reasoning is how we combine our alternatives, information, 
and values to arrive at a decision. It is our answer to: “We are choosing this alterna-
tive because….” This dimension requires bringing together the inputs of the previ-
ous dimensions to determine which alternative creates the most value. In most cases, 
the decision situation is too complex to rely on intuition and requires a model. This 
dimension can be illustrated by asking the question: “Am I thinking straight about 
this?”

It is not uncommon in the E&P industry to develop models too cumbersome to 
deliver the required clarity and transparency. The common procedure of developing a 
“base case” sometimes results in a detailed and complex deterministic model that 
ignores not only the uncertainty but often also the key dependencies. Its precision may 
lead to a false belief in its accuracy and relevance, as discussed in Chapter 7.

The goal of the evaluation is to develop a clear, transparent, and understandable 
recommendation that maximizes the values of the decision maker.

6. Commitment To Follow Through. This dimension moves decisions to implemen-
tation, which is not trivial. The best decision is useless if the organization does not 
implement it. If we are only halfhearted about our commitment, our follow-through is 
usually less intense and may not achieve the best results. This dimension can be illus-
trated by asking the following questions: 

· Is the recommendation appropriate and feasible? 
· How are we going to communicate the decision? 
· Can the organization support the decision? 
· Is there an implementation plan?

Successful follow through requires resources, such as time, effort, money, or help from 
others. It also requires being prepared to overcome obstacles.

2.8.2 The Strength of the Whole. Any decision is no stronger than its weakest link. 
If, for example, a decision is good in all elements except the frame, it is still of low 
quality. To use decision quality as a metric, Matheson and Matheson (1998) recom-
mended that the chain be converted into a spider diagram, as shown in Fig. 2.22. In this 
diagram, 0% quality is in the center for any of the dimensions, while 100% quality is 
on the perimeter. The diagram can be used to subjectively assess the decision on each 
dimension. A 100% rating on a dimension indicates that additional effort to improve 
this dimension is not worth the cost. For example, in any E&P decision situation, it is 
always possible to acquire more information. At some point, however, additional 
information either does not impact the decision or is not economical.
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The spider diagram is most effectively generated by interviewing the individuals 
involved in a decision situation. The tool can be used to assess the decision quality 
during both the decision-analysis process and at postmortem. Fig. 2.22 illustrates two 
example project decisions. Although the red decision has the higher quality in the 
“Creative Alternatives” and “Sound Reasoning” dimensions, the green decision domi-
nates in the other four dimensions. The diagram also shows that the green decision’s 
weakest dimension is “Sound Reasoning,” which may suggest that more work is 
required to improve the underlying model.

2.9 Summary
We have presented a general, widely applicable methodology for making good deci-
sions. A key advantage is the transparency it brings. In particular, it can help to 
uncover hidden agendas that are the source of unresolved differences in opinion about 
the best course of action. It also brings about a realistic assessment of uncertainty and 
therefore of the role of chance in determining the eventual outcome. Creating transpar-
ency of objectives, values, and decision criteria helps to focus the discussion on the 
real issues that drive the decision. It clarifi es whether differences in opinion arise from 
how we perceive value or from the informational aspects of the decision situation. It 
should lead to a compelling course of action and therefore to acceptance by those hav-
ing a stake in the decision or its implementation.

If you want your organization to develop a competitive advantage through improved 
decision making, monitoring of individual decisions, assessment of their quality, and 
tracking of the results, the decision-quality chain should be considered. To be effec-
tive, it needs to be accompanied by the development of a reward system that is driven 
by decision quality and also encourages alignment of objectives, realistic assessment 
of uncertainties, and appropriate attitudes toward risk.

2.10 Suggested Reading
Identifying the elements of the decision situation is the initial step in the decision-
analysis approach. Ralph Keeney’s book Value-Focused Thinking (1992) emphasizes 

Fig. 2.22—Decision-quality spider diagram.
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the need to understand the decision maker’s values as a prerequisite for high-quality 
decision making. Keeney provides a good summary in the article “Creativity in Deci-
sion Making with Value-Focused Thinking” (1994) and provides a list of the 12 most 
common mistakes (2002).

Several of the references listed at the end of Chapter 1 discuss the decision-analysis 
process [Clemen and Reilly (2001), Goodwin and Wright (2004), and McNamee 
and Celona (2005)]. Kirkwood (1997) also includes a discussion of the decision 
methodology.





Chapter 3

Quantifying Uncertainty

All business proceeds on beliefs, or judgments of probabilities, and not on 
certainties. 

—Charles E. Eliot, President of Harvard University (1869–1909)

3.1 Introduction
Life is full of uncertainties. There are many uncertainties inherent in the oil and gas 
industry, both in assessing current “states of the world/nature” and in predicting future 
events. For example, any event or quantity derived by interpretation must, by defi ni-
tion, be uncertain. However, in everyday language, as well as in technical discussions, 
phrases such as “maybe,” “it’s possible,” “it’s unlikely,” “reasonable certainty,” or 
“beyond a reasonable doubt” are not useful either for consistently communicating our 
beliefs about uncertainty or for making the best decisions in the light of it. Rather, we 
use the rules of probability to help us reason correctly about uncertainty. One of the 
essential elements of decision analysis is that it can incorporate uncertainty of any kind 
through the appropriate use of probability. 

In this chapter, we review some of the probability topics that are fundamental to 
 applying decision analysis to oil and gas decisions. It is assumed that the reader, being 
a petroleum engineer or geoscientist, has taken at least one course in probability or 
statistics. The main prerequisite is a willingness to strive to think clearly.

We start by testing your probability intuition and then introduce uncertain quanti-
ties. Next, we discuss the fundamental nature of uncertainty and probability, highlight-
ing concepts that make them more widely applicable than are often taught in a typical 
college course. This discussion is followed by a review of the basic rules of probability 
and an illustration of how they can be applied to oil and gas decision making—leading 
to an explanation of Bayes’ theorem and how it can be used to update uncertainty 
estimates on the basis of new information or data. Finally, we describe common 
probability-distribution models and their properties.

3.1.1 How Good Is Your Probability Intuition? This chapter and Chapter 7, 
 “Behavioral Challenges in Decision Making,” illustrate the diffi culty many people 
have with probability assessments. It is possible to fall wide of the mark when using 
intuitive reasoning to calculate or estimate a probability. To fi nd out how you fare in 
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this regard, it may be useful to try the following problems before reading on (we will 
answer the questions later in the chapter).

Question 1: Daughter/Son Problem. You are told that a family, completely 
 unknown to you, has two children, and one of these children is a daughter. What is 
the chance the other child is also a daughter? Are the chances altered if, aware of the 
fact that the family has two children only, you ring their doorbell and a daughter opens 
the door?

Question 2: Probability of Dry Hole. The chance of drilling a successful well in a 
basin is assumed to be 1 in 3. If you plan to drill 20 wells, and the outcomes for all 
wells drilled are independent from one another, what is the probability you will drill 
exactly fi ve successful wells?

Question 3: Probability of a Cracked Blowout Preventer. Historical estimates 
suggest that 1 in every 1,000 blowout preventers (BOPs) has serious cracks.  Suppose 
X-ray analysis is a very good, but not perfect, detector of these cracks. If a BOP has 
cracks, X-rays correctly indicate it has them 99% of the time. If a BOP does not 
have cracks, X-rays wrongly indicate it has them 2% of the time. A BOP has been 
X-rayed at random, and the result is positive. What are the chances it really is 
cracked?

3.2 Uncertain Variables
The actual values of most variables in the evaluation of an oil and gas decision are 
ultimately brought about by deterministic, physical processes. What singles out a vari-
able (e.g., original oil original in place, or the future price of oil) as needing to be 
treated probabilistically is that the causal context is hidden, complex, unknown, or 
unknowable. For example, we often model the toss of a fair coin as a random process, 
and assign the probability 0.5 to the outcome of tails, although the hidden physical 
processes that cause the outcome are all deterministic. However, even if it is possible 
to model all processes accurately and know all input parameters exactly, the enormous 
cost of doing so likely outweighs the benefi ts for most decisions. This is the case for 
most oil and gas problems.

Many of the uncertain events in petroleum engineering have outcomes described by 
quantitative variables. Typical examples are oil in place, recovery factor, well costs, 
production, oil and gas prices, and profi t. These outcomes are continuous in that they 
can take on any value between their minima and maxima. Other events are discrete, 
such as the number of successful wells. A discrete event that has no natural ordering 
is a categorical event (e.g., depositional environment). A further distinction can 
be made between intrinsic values (e.g., porosity) and those we can impact or control 
(e.g.,  recovery factor). Sometimes, there is a difference between events that have 
occurred, which (in theory) may be known without error by suffi cient data collection 
(e.g., digging out the whole reservoir to obtain the OOIP), and future events, which 
cannot be predicted with certainty today by any means or cost (e.g., the oil price). 
However, in most decisions, this distinction does not matter. 

Each of these preceding types of event is an uncertain variable. Any other variable 
that depends on an uncertain variable must also be uncertain. For example, suppose we 
are using net present value (NPV) to determine the merits of several decision alterna-
tives. Because NPV is computed from uncertain variables (e.g., oil price, oil quantity, 
costs), it is also uncertain.
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A common approach to making decisions involving uncertain variables is to assess 
a “best” estimate for each variable, and use these estimates to compute payoff for each 
objective (e.g., NPV). People who take this approach often interpret “best” to mean 
“most likely” or “average,” or they neglect to even defi ne it. Under this method of 
single-point estimates, the optimal decision is considered to be the one that yields the 
highest payoff. Although this approach is called deterministic, it is more akin to a 
single probabilistic assessment without knowing the probability attached. In our 
 industry, deterministic analysis is a choice to ignore the inherent uncertainty, not a 
refl ection of reality.

Although this method of using single-point estimates is commonly used, it has prob-
lems. In many cases, as we show in Section 4.5, “best estimates” of uncertain quanti-
ties do not yield best estimates of other quantities that depend on them. Also, ignoring 
uncertainty means failing to plan for its consequences, good and bad, as described in 
the “Do Not Expect the Expected Value” portion of Section 3.6.3, which likely leads 
to mistakes that could be quite costly in a major investment decision. Further, ignoring 
uncertainty seduces one into ignoring the role of chance in the outcomes of our deci-
sions and thereby reinforces poor decision-making practices. Finally, it prevents the 
identifi cation or pursuit of better (higher-value) alternatives. For example, if we ignore 
uncertainty in OOIP, we would never decide to put extra well slots and processing 
capacity on a platform to capture the upside potential. If we acknowledge the reality of 
uncertainty, but do not formally account for it in our decision making, we have no 
logical basis for determining whether to plan for extra wells. 

An important message of this book is that we should use probability to organize our 
thinking about almost all decisions under uncertainty as follows:

• Use probability to quantify the extent of our knowledge.
• Use the rules for combining probabilities when dealing with multiple uncertain 

events.
• Use the range of possible outcomes of our objective attributes in making deci-

sions.

As will be more fully explained in Section 3.3.1, there is no requirement for a decision 
or action to occur multiple times to adopt a probabilistic approach to reasoning under 
uncertainty and thereby decision making. Nor must the assessment of probabilities be 
based on data, in the sense of repeated measurements of the same event, though such 
data may be useful if available. 

3.3 The Nature of Probability
Everyday events involve what we call chance, luck or randomness. But, the best inter-
pretation of statements such as “They were lucky,” “It happened by chance,” and “That 
was a random event” is a refl ection of the knowledge or uncertainty of the person 
speaking. Intuition for chance develops at very early ages (Piaget and Inhelder 1976). 
However, to reason about chance requires a more formal defi nition. Such a defi nition 
can be approached by asking, what do probabilities represent, and where do they come 
from? 

Probability makes sense only when applied to events whose outcomes are currently 
unknown—it makes no sense to talk about the probability of an event whose outcome 
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we have already observed. Furthermore, as mentioned in Chapter 1, probabilities are 
personal and refer to our state of knowledge (or lack of knowledge) of the outcome, 
which may vary from person to person depending on their individual states of 
 knowledge and the nature of the event to which the probability is being ascribed. Thus, 
probabilities are not “real” other than in the sense that they quantify our lack of knowl-
edge. For example, what does it mean to say the probability of the next well being a 
discovery is 30%? It will either be a discovery or not; it cannot be a 30% discovery.

Probabilities represent our state of knowledge. We use them to describe the situation 
or, more precisely, describe our beliefs about the world. They are a statement of how 
likely we think an event is to occur.

. . . The true logic for this world is the calculus of probabilities, which takes 
account of the magnitude of the probability which is, or ought to be, in a 
reasonable man’s mind.

—James Clerk Maxwell (1850)

Many oil and gas professionals learned about probability in a traditional course on 
probability and statistics. For example, if we are considering an event that occurred 
many times in the past, for which we have accurately-observed outcomes, then we may 
use the observed relative frequency* of an outcome as our estimate of the probability 
of a future outcome, assuming that we have absolutely no other information about it. 
This may be a reasonable assumption when applied to, for example, fair games of 
chance in a casino. It is known as the “frequentist” view of probability. 

However, as argued by Jaynes and Bretthorst (2003) and Howard (1966), there is 
really no such thing as a truly “objective probability.” A probability refl ects a  person’s 
knowledge (or equivalently lack of knowledge) about the outcomes of an uncertain 
event. Probability is a state of mind and not a state of things. It is common to think 
that probabilities can be found from data, but they cannot. Only a person can assign 
a  probability, taking into account any data or other knowledge available. McNamee 
and Celona (2005) used a simple example to illustrate this profound concept.  Assume 
an oil company is considering drilling in an unexplored basin. The company presi-
dent believes, based on experience, there is a 20% chance the basin has recoverable 
oil. The company’s chief geologist recently fi nished studying the most recent seismic 
and geological studies on the basin. The chief geologist assigns a 60% probability that 
the basin contains oil. The driller on the drilling site just struck oil and assigns a 100% 
probability to fi nding oil. Who is right? All are, given the knowledge available to 
them, assuming they have processed that knowledge logically and without bias. Their 
different probability assignments simply refl ect their different sets of knowledge.

In this subjective view, the probability of an outcome is the person’s degree of belief 
that the outcome will occur, given all the relevant information currently known by that 
person. For example, this information may include historical observations of the out-
comes of similar events, combined with the results of models and the person’s total 
experience. Because different people may have different information relevant to an 
event, and the same person may acquire new information as time progresses, there is 
strictly no such thing as “the” probability of an outcome (i.e., a single, invariant, uni-

*Probability is the limit of the proportional frequency of an outcome in an infi nite series of trials.
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versally agreed on probability). Different people, or one person at different times, may 
legitimately assign different probabilities to the same outcome. A person should there-
fore refer to “my” probability, rather than “the” probability. Bayes’ theorem (discussed 
in Section 3.5) provides the vehicle for how their beliefs can be updated upon the 
acquisition of more data or information. For that reason, this perspective on probabili-
ties is often called Bayesian.*

Subjective probability can be considered the overarching concept under which, 
with very restrictive assumptions, the frequentist view of probability is a special case. 
With respect to upstream oil and gas decisions, the assumptions required to apply the 
frequentist view are rarely reasonable. For example, to estimate the probability that 
the net/gross ratio for a planned well is greater than 0.4, what is the relevant parent 
population from which to obtain a sample? The net/gross ratio of all previous wells 
in that fi eld? If so, how do we know that the previous wells are representative of the 
well we are planning (i.e., the same event)? Another relevant example pertains to the 
oft-quoted “OOIP is (or should be) log-normally distributed.” As further discussed in 
Section 3.3.2, this statement may be true in the sense of statistics describing the vari-
ability of observed fi eld sizes in a basin or play, or the presumed statistics of OOIP in 
a new play. But, to say that these statistics apply to the probability of the OOIP 
 attached to a specifi c prospect assumes that we know absolutely nothing else about 
the location—we must assume it is a true wildcat for which we have no evidence of 
the prospect even existing. If it is an identifi ed prospect or a discovery, then we do 
have extra information which, along with the statistics, should impact our assessment 
of the OOIP probability (and there is no need for this assessment to retain the 
 log-normal characteristic).

Although probability assignments are subjective, they must be coherent. That is, 
they must obey the rules of probability, as described subsequently. For example, if we 
assign the probability p to our belief that outcome “OOIP is 500 million bbl or more” 
this constrains the assignment of a probability to our belief in the outcome “OOIP is 
less than 500 million bbl” to be 1 – p. Following the rules of probability also ensures 
that we reason logically and draw valid conclusions when facing multiple, interacting 
uncertain events. In addition to being coherent, assessed probabilities need to be con-
sistent with the assessor’s real state of knowledge. This subject is discussed further in 
Chapter 7, which also illustrates some of the pitfalls in developing probabilities and 
how they can be avoided. 

Vick (2002) has an extensive discussion of the different interpretations of probabil-
ity and engineering judgment within the geotechnical and earth sciences.

3.3.1 Application. Applying the concept of probability is infl uenced by the number of 
future events about which we wish to make probabilistic statements and decisions. We 
start by considering a hypothetical case in which there is suffi cient shared-past infor-
mation that all (reasonable) people may ascribe the same probabilities to its outcomes. 
By assuming the past applies to the future, it is possible to make accurate predictions 
about the long-run total or average outcome of the future events, and therefore out-
comes of decisions. 

*This term does not mean that the application of Bayes’ theorem is limited to those who have adopted 
the subjective view of probability. Bayes’ theorem is discussed in Section 3.5.1.
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Some situations require making multiple one-off (i.e., non-repeatable) decisions. 
A nonpetroleum example is going to a casino and making one play at each of the 
many available games. Even though we play each game only once, so long as we know 
historical probabilities and can reasonably assume that they apply to the future, we can 
still make some accurate predictions about our long-run outcome, in the same way we 
would when playing the same game many times. Therefore, to be able to make accu-
rate statements about long-run outcomes, it is not necessary that they be identical 
events, only that there be suffi cient past observations of each event. 

But what if information is limited or its applicability to the future is doubtful? 
 Although this may preclude us from making accurate predictions about long-run 
 outcomes, it does not prevent us from using the concept of probability to help us make 
the best decision. For example, in casual usage, we may ask (as at the time of this 
writing in 2010), “What is the probability that Barack Obama will win the next elec-
tion?” The event in question (“Barack Obama will win the 2012 U.S. presidential 
 election”) has not happened in the past, and cannot happen, if at all, more than once 
in the future. Nonetheless, it makes sense to most people to cast our knowledge of the 
outcome in the language of probability, or chance, by stating our degree of belief in 
the truth of the statement. Furthermore, most people take into account the strength of 
their belief in the statement if they are making a decision that depends on the outcome 
of the election. In such situations, the formal language of probability, including its 
rules for combining probabilities, provides a way for us to reason correctly and make 
the best decisions consistent with our state of knowledge. We cannot be certain 
whether our information about this event is good, whether the probabilities adequately 
represent the information, whether efforts should be made to elicit the probabilities bet-
ter, or whether more information should be gathered. These questions address the quality 
of the probabilistic information, but are not attempts to obtain “correct” probabilities. We 
contend that our industry, and presumably others, is characterized by such decisions.

3.3.2 Variability and Uncertainty.

Variability is a phenomenon in the physical world to be measured, analyzed 
and where appropriate explained. By contrast, uncertainty is an aspect of 
knowledge.

—attributed to Sir David Cox at the convocation of the Indian Statistical 
Institute Alumni Association (1989). 

It is important to distinguish between variability and uncertainty. They are quite differ-
ent, though in our experience, often confused. The distinction is most easily accom-
plished by being very clear about the quantity of interest. For example, consider a 
reservoir composed of sand bodies embedded in shale. We measure the sand-body 
thicknesses observed in wells and draw up a histogram to describe the variability of 
those thicknesses. The histogram describes how variable they are. It makes no state-
ment about uncertainty—we are simply describing how “the world” is. There are no 
probabilities involved. 

Now, consider the item of interest to be the thickness of a specifi c sand body that 
may exist in a new well yet to be drilled. Assuming there is a sand body present, we 
are uncertain about its thickness and want to quantify this uncertainty by assigning it a 
probability. We might choose to use the variability of the collected set of sand bodies 
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to inform our assignment of a suitable probability distribution for this sand body’s 
thickness. If we believe the histogram truly is our only knowledge about the particular 
sand body, we can turn the histogram into a relative frequency distribution and use 
that, or some theoretical probability distribution that fi ts it, as our assessment of uncer-
tainty for the specifi c sand-body. But that was a big “if.” More commonly, we may 
know something about the thickness of this particular sand body (e.g., there is a seis-
mic signal that suggests it is a very thick one) and use that information in combination 
with the variability information to assign a probability distribution. Or, we may ignore 
the variability information altogether. Remember, uncertainty is a function of our 
knowledge. Therefore, the probability distribution we use to describe uncertainty in an 
individual sand body’s thickness may look quite different from the shape of the histo-
gram that quantifi es the variability of all sand body thicknesses.

Note that the previous discussion is not about frequentist (data-driven) vs. subjective 
probabilities—the distribution that describes the sand-body thickness variability can 
equally have been a subjective judgment (based on, for example, knowledge of the 
depositional environment) rather than one derived from observations in other wells.

But what if the variability of actual sand body thicknesses is itself uncertain [e.g., 
in terms of its type (symmetric, skew) and/or in terms of the values of the parameters 
that describe it (e.g., mean, variance)?] In this case, we can simply assign probability 
distributions to those parameters. But we need to be clear: we are now looking at 
uncertainty in the variability of thicknesses of all sand bodies, as opposed to uncer-
tainty in the thickness of an individual sandy body. 

An important consequence of the foregoing discussion is as follows. Although the 
variability of some natural phenomenon may follow a particular functional form (e.g., 
log-normal to describe the variability in the size of commercial hydrocarbon deposits), 
there is no a priori reason for assessed probabilities for a specifi c instance to follow 
any particular functional form. The implication of this conclusion for uncertainty in 
hydrocarbon volumes is discussed in the “Functions of Uncertain Variables” portion of 
Section 3.6.4. As we emphasized in the preceding section, probability is a state of 
mind and not a state of things.

3.4 The Basics
Probability plays an increasingly important role in most fi elds of endeavour. Countless 
problems in our daily lives call for a probabilistic approach, and probability has 
 become an integral part of our lives. Probabilities, and the rules by which they can be 
combined, allow us to reason logically and consistently about uncertain events. Laplace 
wrote the following approximately 200 years ago in A Philosophical Essay on Prob-
abilities (Laplace 1995):

The theory of probabilities is at bottom nothing but common sense reduced 
to calculus; it enables us to appreciate with exactness that which accurate 
minds feel with a sort of instinct for which oft times they are unable to 
account. . . . It teaches us to avoid the illusions which often mislead us. . . . It 
is remarkable that this science, which originated in consideration of games of 
chance, should have become the most important object of human 
knowledge. . . . The most important questions of life are, for the most part, 
really only problems of probability.
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The following quote by Warren Buffett’s lifetime business partner, Charles Munger, 
represents a modern version of the same viewpoint:

If you don’t get this elementary, but mildly unnatural, mathematics of 
elementary probability into your repertoire, then you go through a long life 
like a one-legged man in an ass-kicking contest.

Arguably, probability theory is as applicable to daily life as is geometry; both are 
branches of applied mathematics directly linked with the problems of daily life. But, 
while most people have some intuition for geometry, many have trouble with the 
development of a good intuition for probability. In few other branches of mathematics 
is it so easy to make intuitive mistakes as in probability, especially when trying to 
assess the impact of multiple, interacting probabilities. 

Before proceeding to describe how probabilities can be used to quantify uncertain-
ties and solve decision problems, it will help to defi ne a few terms and to describe the 
basic rules regarding how probabilities can and cannot be manipulated. What follows 
is not meant to be an exposition of probability theory or proof of the statements made. 
Rather, it is a review of the key aspects required for the subject matter of this book.

3.4.1 Events, Outcomes, and Probabilities. We have used the term chance event to 
refer to an occurrence whose outcome is uncertain to the decision maker. By defi nition, 
a chance event must have more than one possible outcome. If an outcome cannot be 
broken down into component outcomes, it is termed a simple outcome. Many of the 
diffi culties people (including ourselves) have with probability stem from not having a 
clear and precise defi nition of both the event of interest and all its possible outcomes.

In academic texts on probability, what we call an event is strictly called an “experi-
ment,” and our outcome is an “event.” However, we have chosen to defi ne these terms 
as above to avoid confusion when applying them to decision making (see Table 3.1). 
Thus, outcome as previously defi ned is entirely consistent with outcome as used in 
Chapter 2.

Events and their possible outcomes need to be both clear and useful. To test the clar-
ity of defi nitions, we use the clairvoyance test. A clairvoyant is a hypothetical person 
who can answer any question accurately, including questions about the future, but who 
possesses no particular expertise or analytical capability. Using this notion, we can say 
a clear event or outcome is one that passes the clarity test: a mental exercise to deter-
mine whether the clairvoyant can immediately answer a question or if the clairvoyant 
needs to know other things fi rst. “Spot price of oil on August 24, 2022,” does not pass 
the test because it needs further specifi cation of the classifi cation (e.g., the Brent or 
West Texas Intermediate (WTI) oil price marker) and it also may need the time of that 
specifi c day. “Technical success” needs to be defi ned to pass the clarity test. “Feel 
good” is a very personal judgment and never passes the clarity test. Nor does “reason-
able certainty.”

A useful event or outcome helps us achieve insight into the decision. There are many 
defi nitions that are clear, but only some may be useful. 

Probability (i.e., Latin probare: to prove or test) can be thought of as a statement of how 
likely we think an outcome is to occur. It is therefore dependent on the precise specifi ca-
tion of the outcome. For example, the probability of getting the mean ± 1%, of some 
uncertain variable, is quite different from the probability of getting the mean ± 10%.
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Could a clairvoyant say what your probability of an event is? No. Firstly, because 
they have different knowledge from you. Secondly, because they know the outcome of 
the event, it is not probabilistic to them (or is trivially probabilistic in that their prob-
ability must be 0 or 1). 

To accept the validity of applying probabilistic analysis and to determine a consis-
tent set of rules by which it should be applied, the decision maker need only accept 
three statements. The rest follows logically: 

1.  Probabilities lie on a scale from 0 to 1. If an outcome is totally impossible, its 
probability is 0. If the outcome is absolutely certain, then it is represented by a 
probability of 1. The closer its probability is to 1, the greater the chance of the 
outcome.

2.  The sum of the probabilities in the sample space must equal 1. In practice, this 
means that we have thought of all possible outcomes, so one of them must hap-
pen. Conversely, there are no potential outcomes that we have failed to iden-
tify.

3.  Probabilities of mutually exclusive outcomes (defi ned subsequently) may be 
added. The probability of one or other of the outcomes occurring is just the 
sum of the probabilities of the individual outcomes.

Symbols and Diagrams. To avoid lengthy phrases, such as, “The probability that 
the oil in place exceeds 300 million bbl,” we use a shorthand, as defi ned in Table 3.2. 
An uppercase letter (e.g., A) denotes the outcome of interest “oil in place exceeds 300 

TABLE 3.1—EVENTS, OUTCOMES, AND SAMPLE SPACE

Chance Event: The process of obtaining an ob on.

Deal a card from a deck.

Drill a well in a given prospect.

Outcome: A specific ob on.

The card is red.

The well produces either oil or gas.

When an experiment is performed, the outcome either happens or does not.

Outcomes are the basic elements to which probability is applied.

The card is red.

The well produces either oil or gas.

Simple Outcome: An outcome that cannot be decomposed.

The card is the ace of hearts.

The well is an oil producer

The well produces either oil or gas.

Sample Space: The set of all simple outcomes.
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million bbl,” and P(A) stands for “the probability of A occurring.” For readers who 
prefer to think visually, a graphic device known as a Venn diagram can help. Think of 
a chance event as being represented by a rectangle of Area 1, as shown in Fig. 3.1. The 
area of the region labeled A represents the probability of Outcome A occurring. The 
area of the rest of the diagram represents the probability of occurrence of the outcome 
“not A” (i.e., its complement). Therefore, P(A) = 1–P(not A). The use in Fig. 3.1 of a 
circle enclosed by a rectangle was arbitrary. What matters is that the sample space has 
an area of 1, and that the outcome probabilities are correct proportions of that area. 

3.4.2 Exclusivity and Exhaustivity. Chance events are a key component of decision-
tree analysis and risk analysis. Yet, as mentioned in Chapter 1, some of their outcomes 
are surprising. To ensure correct analysis and prevent surprises, we need to defi ne the 
outcomes of uncertain events as follows:

1. Only one of the outcomes can happen (i.e., they are mutually exclusive).
2.  All possible outcomes have been included (i.e., they are collectively 

 exhaustive).

TABLE 3.2—PROBABILITY NOTATION

Symbol Defini on Symbol or Defi on

A The outcome A.

A
The outcome “not A” (i.e., all
other outcomes).

The complement of A, A’, “not A.”

P(A) The (marginal) probability of
outcome A occurring.

P(A or B) The probability of outcome A or
B occurring.

( )P A B : The union of A and B.

P(A and B) The joint probability of outcome
A and B occurring.

( )P A B : The intersec on of A and B.

P(A|B) The (condi onal) probability of A
occurring given B occurs.

P(A given B).

Not A

A

Fig. 3.1—Venn diagram illustrating the probability of outcomes “A” and “not A.”
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By defi nition, the sample space comprises a set of mutually exclusive and collectively 
exhaustive outcomes. Table 3.3 illustrates these terms. Failure to observe collective 
exhaustivity is important because our failure to defi ne such a set of outcomes is the 
reason that we still get “surprised” by an outcome not anticipated! An example of this 
type of surprise is a fi nal reserves volume that falls outside the minimum-to-maximum 
range estimated at the time the development decision was made, or the weight of 
 evidence suggesting an interpretation of depositional environment not previously 
considered.

3.4.3 Marginal, Joint, and Conditional Probabilities. Many uncertain outcomes are 
dependent on each other. (Section 3.4.4 gives a strict defi nition of what is meant by 
dependence in the context of the language of probability.)

A joint probability is the chance of two outcomes happening together. In this con-
text, together does not have a temporal meaning; thus, the outcomes may happen, 
either at the same time or at different times. There need not be any causality between 
them. Note that P(A and B) and P(B and A) are the same thing. For example, one out-
come A of the event “take a core plug sample” may be defi ned as “porosity is less than 
10%,” and a second outcome B may be defi ned as “lithotype is fi ne sand.” The prob-
ability of a core plug being both a fi ne sand and having a porosity of less than 10% is 
a joint probability. Fig. 3.2 illustrates this.

The marginal probability of an outcome is only the probability of that outcome 
irrespective of any other outcomes—normally referred to as the “probability” of 
the outcome. It is also called the total probability of the outcome. In the example in 
Fig. 3.2, the probability that a core plug has a porosity of less than 10% irrespective of 
lithotype is a marginal probability and given by the area of Circle A. Likewise, the 
probability that the plug is a fi ne sand irrespective of porosity is another marginal 
probability, the area of Circle B.

A conditional probability allows us to express how the probability of one outcome 
is changed by the occurrence of another outcome. The use of conditional probabilities 
through Bayes’ theorem (see Section 3.5.1) is the key to answering questions such as, 
“What is the value of doing a well test to reduce uncertainty in well productivity?” and 
“Is it worth building a stronger platform in case we need to add water-injection facili-
ties at a later date?” Referring to Fig. 3.2, let us assume that we want to know the 

TABLE 3.3—EXCLUSIVITY AND EXHAUSTIVITY* 

 

 
 

 
 A 

B
A

B

A B A B

evisulcxE yllautuM toNevisulcxE yllautuM

Collectively
Exhaustive

A=red card
B=black card

A=jack or more
B=jack or less

Not 
Collectively
Exhaustive

A=face card
B=eight or less

A=red face card
B=heart

* Areas do not equate to the actual probabilities of the playing card example* Areas do not equate to the actual probabilities of the playing card example.
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probability of the core-plug porosity being <10% (Outcome A) given its lithotype is 
fi ne sand (Outcome B). The implication of the word given is that we are now restricting 
our sample space to only those plugs classifi ed as fi ne sand. Therefore, the required 
probability is just the ratio of the area of the overlap region, P(A and B), to the area of 
Circle B as follows: 

P A B
P A and B

P B
( | )

( )

( )
= ,   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    (3.1)

where the “ | ” stands for given. This is equivalent to normalizing the probability of A 
to the probability of B, or of making the boundary of Outcome B the perimeter of the 
Venn diagram, effectively setting P(B) to 1, which is the meaning of “given that B 
occurs.” Similarly, the conditional probability that a plug is a fi ne sand given its poros-
ity is <10% is just the ratio of the area of the overlap region to the area of Circle A, as 
follows: 

P B A
P A and B

P A
( | )

( )

( )
= ,     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   (3.2)

Conditional probabilities are not symmetrical. That is, P(A | B) is not equal to 
P(B | A). Failure to recognize this inequality is a common error. A trivial example is the 
probability of a card being an ace given that it is a heart (1/13), which clearly differs 
from the probability that the card is a heart given that it is an ace (1/4). Similarly, the 
probability of observing an amplitude variations with offset (AVO) anomaly (A) given 
that hydrocarbons are present (B) is not the same as the probability of hydrocarbons 
being present given that an AVO anomaly is observed (see subsequent example).

Keeping track of what you can and cannot assume to be true can get confusing. One 
can keep track of conditional probabilities by creating a probability table and displaying 
probabilities in a probability tree. This display depicts the uncertainty in an insightful 
way and clarifi es conditional probabilities by decomposing a compound outcome into 
its simpler components. Consider the data in Table 3.4, collected from all 24 prospects 
drilled in a basin to date. The presence or absence of a seismic-bright-spot anomaly, 
and the presence or absence of commercial hydrocarbons, were recorded for each 
prospect. These data are converted to joint probabilities in the interior of 
Table 3.5. Because there were 16 cases when the joint outcome “commercial hydro-
carbons and bright spot occurred,” the probability of this joint outcome is 16/24 = 
0.667. The “total” cells in the same table give the total or marginal probabilities (so 
called because they are found around the margins of a joint-probability table), usually 

Not A or B

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

= P(A and B)
≡ P(B and A)

Shaded overlap area 
is P(A B)

Example:

A
P and

⎛ ⎞

⎜ ⎟
⎝ ⎠

= 

is andA

B

“porosity is < 10%”

 “lithotype is fine sand”

Fig. 3.2—Illustration of joint probability.
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just called the probability. For example, the probability of the outcome “bright spot” 
is 19/24 = 0.792. The probability of the outcome “no commercial hydrocarbons” is 
4/24 = 0.167.

It is now possible to calculate the conditional probabilities. Table 3.6 shows the 
probabilities of commercial hydrocarbons given whether or not a bright spot was 
observed. Of the 19 cases of the bright spot (BS) occurring, we know that commercial 
hydrocarbons (CH) were present in 16, or P(CH | BS) = 16/19 = 0.842, the same result 
obtained by applying the conditional-probability formula, P(A | B) = P(A and B)/P(B) = 
0.667/0.792 = 0.842. The other conditional probabilities are calculated in similar fash-
ion and displayed as a probability tree in Fig. 3.3, where:

• The yellow circles represent the uncertain events, and the black lines represent 
the possible outcomes with their associated probabilities. 

• B denotes the presence of a bright spot and A represents its absence.
• C denotes commercial hydrocarbons, and D denotes a dry well or noncommer-

cial hydrocarbons. 

TABLE 3.4—NUMBER OF OBSERVATIONS 

 

CommercialCommercial
Hydrocarbons

Yes No Total

Bright Yes 16 3 19Bright
Spot No 4 1 5

Total 20 4 24

TABLE 3.5—JOINT AND MARGINAL PROBABILITIES 

 

CommercialCommercial
Hydrocarbons

Yes No Total

Bright Yes 0.667 0.125 0.792Bright
Spot No 0.167 0.042 0.208

Total 0.833 0.167 1.000

TABLE 3.6—CONDITIONAL PROBABILITIES FOR CH|BS 

CommercialCommercial
Hydrocarbons

Yes (C) No (D) Total

Bright Yes (B) 0.842 0.158 1.000
Spot No (A) 0.800 0.200 1.000
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From left to right, the fi rst (unconditional) event is the observation of a bright spot 
BS, and the second (conditional) event is either the presence or absence of commercial 
 hydrocarbons CH. “First” and “second” do not have a temporal meaning in this 
 context.

An interesting aside in this case is to note that P(C | B) = 0.842 and P(C | A) = 0.800. 
This information says that, despite what a cursory examination of the numbers in Table 3.4 
may suggest, the presence or absence of a bright spot is not very helpful for assessing the 
probability of commercial hydrocarbons (84.2% chance if there is a bright spot, 80.0% 
chance if there is not).

The probabilities of observing a bright spot conditioned on the presence or 
absence of commercial hydrocarbons are shown in Table 3.7. Of the 20 cases in 
which commercial hydrocarbons were observed, we know a bright spot was also 
present in 16, or P(BS | CH) = 16/20 = 0.800. The same result can be obtained by 
applying the conditional-probability formula, P(B | A) = P(B and A)/P(A) = 
0.667/0.833 = 0.800. The other conditional probabilities are displayed as a proba-
bility tree in Fig. 3.4. 

The ability to “fl ip” a probability tree in the previously described manner is funda-
mental to answering questions about the economic value of obtaining information 

Bright
spot

P(B)=0.792

P(A)=0.208

P(C |A)=0.800

P(D | B)=0.157

P(C |B)=0.842

P(D|A)=0.200

Commercial
hydrocarbons

Fig. 3.3—Probability tree.

TABLE 3.7—CONDITIONAL PROBABILITIES FOR BS|CH

CommercialCommercial
Hydrocarbons

Yes No

Bright
Yes 0.800 0.750

Bright
Spot No 0.200 0.250

Total 1.000 1.000
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or performing technical analyses. This topic is discussed in more detail in Chapters 
5 and 6.

3.4.4 Addition and Multiplication Rules. The Addition Rule. The addition rule 
states the probability of occurrence if either Outcome A or Outcome B is given, in its 
most general form, by the following:

P A B P A P B P A B( ) ( ) ( ) ( )    or and= + − .    . . . . . . . . . . . . . . . . . . . . . . . . . .   (3.3)

To understand why the addition rule states the probability of occurrence, note that in 
Fig. 3.2, the fi rst two terms on the right side represent the sum of the areas of the two 
circles. However, the size of the overlap region (i.e., the probability of a joint outcome) 
is included twice and therefore must be subtracted to get the correct value. To illus-
trate, assume we draw one card from a standard 52-card deck. The probability of draw-
ing either a queen Q or a heart H is then P(Q or H) = 1 / 13 + 1 / 4 –��� 1 / 52, where 1 / 52 
= P(Q and H) = P(queen of hearts). The same logic is valid for any number of out-
comes. For example, try to verify using a Venn diagram, in which the addition rule for 
three Outcomes A, B, and C is the following:

P A B C P A P B P C

P A B P A C P B

( ) ( ) ( ) ( )

( ) ( ) (

    

     

or or

and and an

= + +
− − − dd C)

 +P A B C( ).    and and      . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (3.4)

If the outcomes are mutually exclusive, then there is no overlap; that is, P(A and B) = 0, 
and therefore the joint probability terms in Eq. 3.4 drop out to give the addition rule for 
mutually exclusive outcomes. 

P A B C P A P B P C( ......) ( ) ( ) ( ) .  or or or = + +      . . . . . . . . . . . . . . . . . . . . .   (3.5)

P(C)=0.833

P(D)=0.167

P(B |D)=0.750

P(A |C)=0.200

P(B |C)=0.800

P(A |D)=0.250

Bright
spot

Commercial
hydrocarbons

Fig. 3.4—Probability tree.
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A mutually exclusive and collectively exhaustive set of outcomes must therefore sum 
to 1. This criterion must be applied when identifying outcomes of uncertain events in 
decision trees.

Multiplication Rule. The joint probability of occurrence of Outcome A and Out-
come B can be derived by rewriting Eq. 3.1 and 3.2 as follows:

P A B P AB P B P A B P A P B A( ) ( ) ( ) ( | ) ( ) ( | )  and = = =      . . . . . . . . . . . . . .    (3.6)

We can again use a deck of 52 cards to illustrate the rule, with the chance event 
being the draw of a card. Defi ne Outcome A to be “card is a queen” and Outcome B 
to be “card is a spade.” The probability of both occurring [i.e., P(A and B)], is as 
follows:

P Q P Q P( ( | ) ( )and♠) = ♠ ♠⋅ = ⋅1 13 1 4.

This probability confi rms the probability of the queen of spades being 1/52. 
Here is another example of the multiplication rule. Suppose you are interested in the 

probability of both the porosity and the permeability of a target being greater than 
some specifi ed minima. You have assessed the probability of the porosity being greater 
than your minimum requirement as P(A) = 0.60. Because of the relationship between 
porosity and permeability, you also assessed that given the porosity being above the 
minimum, the probability of the permeability being greater than the minimum is 
P(B | A) = 0.90. We then have the following:

P A B P B A P A( ) ( | ) ( ) ( )  and 0.90 (0.60) 0.36 36%= = ⋅ = = .

If we have three outcomes A, B, and C, the joint probability can be written as: 

P ABC P C P A C P B AC( ) ( ) ( | ) ( | )=    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    (3.7)

This is a generalization of the multiplication rule and is sometimes called the chain 
rule and it shows how to calculate the joint probability of three outcomes as the prod-
uct of conditional probabilities. The chain rule for three outcomes can be written in six 
possible ways. For example, the same joint probability is also given by P(ABC) = 
P(B) P (A | B) P (C | AB).

3.4.5 Dependence and Independence. Two outcomes are independent if the outcome 
of one is of no relevance in determining the outcome of the other. Thus, if the occurrence 
of B says nothing about the probability of the occurrence of A, then P(A | B) = P(A), even 
though they occur together (jointly). The card example P(Q | ª) = 1/13 = P(Q) says that 
knowing a card is a spade does not give any information about whether or not it is a 
queen. Substituting P(A | B) = P(A) in Eq. 3.1 gives and re-arranging gives the defi ni-
tion of independence as follows:

P A B P A P( ) ( ) ( ) and = ⋅ B    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   (3.8)
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This defi nition of independence says that two outcomes are independent when their 
joint probability is simply the product of their marginal probabilities. Consider the 
probability of the outcome, “Well is a producer,” and the outcome, “Well is a producer 
given that it rains tomorrow.” Although both can occur together, it seems reasonable to 
conclude:

P(Well is a producer) = P(Well is a producer | rain tomorrow).

Because knowing the chance of rain does not help to assess the chance of the well be-
ing a producer. Independent outcomes should not be confused with mutually exclusive 
outcomes. “Rain” and “no rain” constitute mutually exclusive outcomes.

Two outcomes are dependent if the outcome of one is relevant in determining the 
outcome of the other. Their joint probability is given by Eq. 3.6. 

Two mutually exclusive outcomes must be independent, which means a Venn dia-
gram shows no overlap between them. However, when the outcomes are not mutually 
exclusive, it may be diffi cult to recognize dependence or independence by inspecting 
a Venn diagram, as shown in Fig. 3.5. In this case, it is necessary to compute joint and 
conditional probabilities. If any one of the following criteria holds, the outcomes are 
independent (and imply the other two criteria):

P(A | B) = P(A),

P(B | A) = P(B),

P(A and B) = P(A)·P(B).

For the outcomes to be independent, the ratio of areas (A and B)/B must equal 
A/100—that is, P(A and B)/P(B) = P(A)—and the ratio of (A and B)/A must equal 
B/100. The example in the upper part of Fig. 3.5 was contrived to obey this require-
ment. It becomes more diffi cult to create an independent situation as the probabilities 
increase. The practical implication is that when outcomes are not mutually exclusive, 

P(A)=60/100=60%

P(B)=40/100=40%
P(A|B)=24/40=60%=P(A)

P(B|A)=24/60=40%=P(B)

therefore independentP(A and B)=24/100=24%=P(A)P(B)

By counting cells:

P(A)=60/100=60%

P(B)=48/100=48%
P(A|B)=24/48=50% P(A)

P(B|A)=24/60=40% P(B)

therefore dependent P(A and B)=24/100=24% P(A)P(B)

By counting cells:

=

By counting cells:

48
=
=

Fig. 3.5—Illustration of dependence and independence.
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Example 3.1—Dependence of Field Commercial Success on Outcome of First 
Well. Consider the chance event of drilling the fi rst production well in a fi eld. An oil 
and gas decision maker is interested in whether or not the fi eld will be commercially 
successful. Let “commercial” represent the outcome of the fi eld being commercially 
viable. As the decision maker starts their drilling program, they also would like to base 
their probability of the fi eld’s commercial success on the result (outcome) of the fi rst 
well drilled. Let “wet” represent the outcome that the fi rst well contains producible 
hydrocarbons. 

In Fig. 3.6, Circle A represents the outcome of the fi rst well being “wet,” and Circle 
B represents the outcome that the whole fi eld is “commercial.” Then:

• The overlap of the two circles represents the joint outcome of the fi rst well 
being “wet” and the fi eld being “commercial.”

• Circle A minus the overlap area represents the joint outcome of the fi rst well be-
ing “wet” and the fi eld being “not commercial.”

• Circle B minus the overlap area represents the joint outcome of the fi eld being 
“commercial” and the fi rst well being “not wet.” 

• The white area represents the joint outcome that the fi rst well is “not wet ” and 
the fi eld is “not commercial.”

In all cases, the areas of the regions are the probabilities of the outcomes they repre-
sent. Thus, 

• The areas of Circles A and B are the marginal probabilities of the outcomes they 
represent.

• The area of the overlap region is the joint probability of the fi rst well being “wet” 
and the fi eld being “commercial.” There is no difference between P(A and B) 
and P(B and A)—they refer to the same area.

• The conditional probability of outcome “the fi eld is commercial given that the 
fi rst well is wet” is the ratio of the area of the overlap region, P(A and B), to the 
area of Circle B. Likewise, the conditional probability of “the fi rst well is wet 
given that the fi eld is commercial” is the ratio of the area of the overlap region 
to the area of Circle A. Therefore, P(B | A) is not equal to P(A | B), unless 
P(A) = P(B).

A

B

Fig. 3.6—A is first well wet. B is whole field commercial.
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dependence should be assumed until outcomes are proven to be independent, rather 
than vice versa.

For two outcomes to be dependent, or correlated, there need not be any temporal or 
known causal relationship between them. It is suffi cient that knowledge about the 
outcome of one provides knowledge about the outcome of the other. Dependence 
between uncertain outcomes is discussed further in Section 4.4. 

3.5 Updating Probabilities With New Information
Bayes’ theorem is fundamental in E&P uncertainty analysis, because it shows how 
probabilities change when new evidence (e.g., data) becomes available. For example, 
before seeing the new data, we have some information or beliefs about whether a pros-
pect is commercial, a well produces hydrocarbons, or a development project is profi t-
able. We express this information in terms of probabilities. Bayes’ theorem enables us 
to update our probabilities as we get new information. 

Bayes’ theorem is powerful. Extensive use of the ability to update probabilities is 
made in answering questions, such as the following:

• “How can we update our original probability assessments based on new infor-
mation?”

• “What is the value of acquiring 3D seismic?”
• “What is the value of performing a reservoir simulation study?”

3.5.1 Bayes’ Theorem.* Conditional probability often seems diffi cult to under-
stand and use. When you are asked to estimate P(B | A), the conditional probability 
of some Outcome B given some other Outcome A, you are being asked how likely 
you think B is if you learn that A is true. For example, it is known that the vast 
majority of hemophiliacs are male and approximately 1 in 1,000 men are hemophil-
iacs. Given this general knowledge, if you are asked to assess the probability that a 
person is a hemophiliac given the person is male, P(H | M), your answer should be 
close to 1 in 1,000. On the other hand, if you are asked to assess the probability that 
a person is a male, given the person is a hemophiliac, P(M | H), your answer should 
be close to 1.

Bayes’ theorem is a logical consequence of the relationship between conditional and 
joint probabilities through the multiplication rule, Eq. 3.6. Dividing P(B) P(A | B) = P(A)  
P(B | A) by P(A) and rearranging yields the following:

P B A
P A B P B

P A
( | )

( | ) ( )

( )
= .   .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   (3.9)

*Named after Thomas Bayes (1702–1761), an English minister and mathematician. His work Essay 
Toward Solving a Problem in the Doctrine of Chance, published posthumously, contains an early 
attempt to establish what we now refer to as Bayes’ theorem.
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This relationship implies that an initial estimate of the probability of outcome A can be 
updated to a new probability, P(B | A), if we know how the probability of another out-
come, A, depends on it. The initial estimate P(B) is usually termed the prior probability 
of B, while the updated probability P(B | A) is called the posterior probability. The 
term P(A | B) is termed the likelihood and represents the probability of making the 
observation (or of obtaining the data) A, given B is true.

The denominator, P(A), is the total, or marginal, probability of A. Outcome A can 
occur with B or without B; that is, P(A and B) plus P(A and B

–
). Thus, as illustrated in 

Fig. 3.7, by substituting “P(A | B)P(B) + P(A | B
–
)P(B

–
)” for P(A) in Eq. 3.9, Bayes’ the-

orem can be rewritten as follows:

P B A
P A B P B

P A B P B P A B P B
( | )

( | ) ( )

( | ) ( ) ( | ) ( )
=

+
.    . . . . . . . . . . . . . . . . . . . . . . . . .   (3.10)

A and B may be interchanged in Bayes’ theorem; that is, P(A | B) = P(B | A)P(A) / P(B), 
in which case, A is the prior and B is the total. Avoid assuming a particular letter 
always represents a particular probability—it is the meaning of the events represented 
that is important.

The case of the two-headed coin can be used to illustrate the rule. Out of 100 coins, 
1 has heads on both sides. A single coin is chosen at random from the 100 coins and 
tossed twice. What is the probability of getting two heads?

To fi nd the answer, let A be the outcome that two heads are obtained, and let B
1
 be 

the outcome that a fair coin (with both head and tail) was chosen. Then B
2
 = not B

1
 is 

the outcome that the two-headed coin was chosen. From the total-probability rule, we 
have the following:

P A P A B P B P A B P B( ) ( | ) ( ) ( | ) ( )= +

= ⋅ + ⋅ =

1 1 2 2

1

4

99

100
1

1

100
0.2575.

Prior probabilities are based on information or beliefs that are available separately from 
the new information obtained when gathering more data (or any other type observation or 
analysis) while the likelihoods, in some sense, represent the reliability of the data gather-
ing device. In the process of updating, the same information must not be used twice. When 
assessing prior probabilities, use only information not included in the likelihoods.

( ) ( ) ( )= +A P A and B P A and B

= +( | ) ( ) ( | ) ( )

P

P A B P B P A B P B

B

A 

Fig. 3.7—Total, or marginal, probability of A expressed in terms of its two components: 
A occurring with B, and A occurring without B.
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If we see the data from, say, the seismic study, the appraisal well, or the consultant, 
we may have diffi culty assessing our opinion from before we had access to the new 
data. We may be forced to make a posterior assessment without formally using Bayes’ 
theorem, which is likely to lead to an incorrect probability update. It is easy to apply 
faulty reasoning to these types of problems, as seen in the Daughter/Son problem 
posed in Section 3.1.1.

3.5.2. The Daughter/Son Problem. Care must be taken when addressing problems 
involving conditional probability because it is easy to be fooled by our intuition. The 
Daughter/Son problem, fi rst presented as Question 1 in the Introduction to this chapter, 
is an excellent example. 

You are told that a family, completely unknown to you, has two children, and one of 
these children is a daughter. What is the chance the other child is also a daughter? 

Most people, including seasoned statisticians, approach this problem by saying the 
other child is equally likely to be a boy or a girl; therefore, the probability that both 
children are daughters is ½. This answer is wrong. 

To see why, fi rst list the possible outcomes for the event “family has two children,” 
without the knowledge that one child is a daughter. If d stands for daughter and s for 
son, then the possible outcomes are dd, ds, sd, ss. Assuming daughters are equally 
likely as sons, the probability on any given birth is P(d) = P(s) = 1/2. In the absence of 
other knowledge, the probability of each outcome is therefore = ½ ´ ½ = ¼. But, we 
do know that one is a daughter (though we do not know if it is the fi rst or second child). 
Therefore ss is not a possible outcome, which reduces the sample space to dd, ds, and 
sd. The probability of two daughters—given there is at least one daughter—is thus ⅓  . 
The error that people often make is to ignore the information of already knowing there 
is one daughter.

We can also calculate this probability by using Bayes’ theorem, Eq. 3.9. Let d be 
the outcome “at least one child is a daughter” and dd the outcome “both children are 
daughters.” We need to calculate the probability that both children are daughters—
given that we already know one is a daughter; that is, we want P(dd | d). Bayes’ 
theorem tells us the following: 

P dd d
P d dd P dd

P d
( | )

( | ) ( )

( )
= ⋅ .

Now, we calculate the three terms on the right side. P(d | dd) obviously equals 1. By 
inspecting the list of four possible outcomes, the prior (i.e., not knowing one child is a 
daughter) probability of outcome dd is ¼. The probability of there being at least one 
daughter, P(d), is ¾ (i.e., dd, ds, or sd). Thus, the following occurs:

P dd d
P d dd P dd

P d
( | )

( | ) ( )

( )
= ⋅ = ⋅ =1 1/4

3/4

1

3
.

The answer to the second question, “Are the chances altered if, aware that the family 
has only two children, you ring their doorbell and a daughter opens the door?” is yes. 
The probability there are two daughters—given a daughter opens the door—is ½. We 
leave it to the reader to verify this answer by using either a probability tree or Bayes’ 
theorem.
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The daughter/son problem demonstrates how easy it is to succumb to faulty intui-
tive reasoning when trying to solve certain probability problems. This problem and 
others like it are discussed by Bar-Hillel and Falk (1982). They stress that the answer 
to conditional probabilities of this kind can depend on how the information was 
obtained. 

Finally, regarding Question 3 that also was fi rst posed in Section 3.3.1, how was 
your intuition at determining the chance that the tested BOP was cracked? If you are 
like most people who had not seen this type of question, you probably guessed, 
“Greater than 95%.” The correct answer is, less than 5%. To see why, fi rst label the two 
events as follows: A = BOP has cracks, B = BOP tests positive. In probabilistic 
language, the question being asked is, What is P(A | B)? The information we have is: 
P(A) = 0.001, P(B | A) = 0.99, and P(B | A-) = 0.02, the last being the probability of 
“false positive” (i.e., the probability that the BOP tests positive even though it is not 
cracked). Note that we have labeled the events differently from Section 3.4.3 to 
emphasize the point that there is nothing special about the letters A and B in terms of 
representing the prior and total probabilities. To populate the right side of Bayes’ theo-
rem in this case, the following is used:

P A B
P B A P A

P B A P A P B A P A
( | )

( | ) ( )

( | ) ( ) ( | ) ( )
=

+

 
.

The only additional probability we need is P(A-) which is 1–P(A) = 0.999. Thus:

P A B( | )
.

. . .

. . %.

=
⋅

⋅ + ⋅
= =

−

−

0 99 10

0 99 10 0 02 0 999

0 047 4 7

3

3

Further illustrations of the use of probability revision and Bayes’ theorem appear in 
Chapter 6.

3.6 Probability Models
We examined how to calculate the probability of a particular outcome of an uncertain 
event occurring. However, when faced with a decision, it is more likely that we need 
to identify all possible outcomes, together with their probabilities. The complete 
statement of all possible outcomes and their probabilities is known as a probability 
distribution.

We start with a general description of continuous and discrete distributions. Follow-
ing these descriptions, we revisit the expected-value decision criteria and also intro-
duce the concepts of variance and standard deviation. We then discuss the most relevant 
probability distributions for modeling E&P decision problems.

3.6.1 Discrete and Continuous Distributions. The most basic distinguishing prop-
erty of a probability distribution is whether it is continuous or discrete.
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Discrete Distributions. A discrete probability distribution is used to characterize an 
uncertain event that can take on only a fi nite number of outcomes. Examples include 
number of dry holes, number of sand bodies intersecting a wellbore, number of wells 
needed to drain a reservoir, and facies types.

A probability distribution is a characterization of the possible outcomes from an 
uncertain event, along with their probabilities of occurrence. For example, suppose 
you believe there can be no more than fi ve commercial wells in a prospect given its 
areal extent. A possible distribution of the probabilities is tabulated and shown as a 
histogram in Fig. 3.8a. The vertical scale of a discrete distribution is sometimes called 
the probability mass. If the probabilities are relative frequencies (derived from data), 
then it can also be called a relative frequency histogram.

Another way to express a probability distribution is as a cumulative distribution 
function (CDF). A CDF specifi es the probability that the uncertain quantity X assumes 
a value less than or equal to a specifi c value, P(X £ a). For our example, the CDF is 
given on the right side of Fig. 3.8. The maximum value of any CDF is always 1 
because we must get an outcome not greater than the maximum possible.

Continuous Distributions. A continuous distribution is used to represent outcomes 
that can take on any value over the possible range. Oil in place, reserves, oil and gas 
price, production, and NPV are uncertainties in which outcomes are modeled by con-
tinuous distributions. 

For continuous variables, a probability can be specifi ed only for outcomes defi ned 
over an interval. For example, the probability of the occurrence of OOIP must be 
specifi ed as lying within an interval, such as 100 million STB to 110 million STB. In 
shorthand notation, this is written as P(a < X £ b), which means P(X lies in the interval 
a to b). Another outcome may be defi ned as “lying within the range 110 million STB 
to 120 million STB,” and so on, to cover all possible outcomes. The vertical scale of a 
continuous probability distribution is called the probability density—therefore, the 
name probability density function (PDF). 

The probability of an outcome lying within a specifi ed interval is the area under the 
PDF for that interval. The total area under the PDF must equal 1, because any outcome 
must be between the minimum and maximum. For example, the area of the shaded 
region in Fig. 3.9a is the probability of a well cost being between USD 15 million and 20 
million. The probability can be estimated visually from the portion this area constitutes 

Fig. 3.8—(a) Discrete probability distribution; (b) cumulative distribution.
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of the whole area under the PDF curve—in Fig. 3.9a, approximately 50%. A more 
precise answer requires the area to be calculated by integration or determined from the 
CDF as illustrated in the following.

The probabilities of a continuous distribution can also be expressed as a CDF (see Fig. 
3.9b). Again, the CDF is the probability of an outcome less than or equal to a specifi ed 
value. Thus, by defi nition, the CDF at any point on the x-axis is the area under the PDF 
for the interval defi ned from the minimum to that point. Consequently, the probability for 
an interval a < X £ b is given by the difference between the CDF values for a and b. For 
example, P(USD 15 million < well cost £ USD 20 million) can be calculated by fi rst 
selecting the USD 20 million point on the x-axis and reading off the corresponding CDF 
value on the y-axis, 0.75. The CDF value for USD 15 million would be 0.29. P(USD 15 
million < well cost £ USD 20 million) is then 0.75 – 0.29 = 0.46 = 46%.

3.6.2 Interpreting PDF and CDF. Two interesting consequences arise from the need 
to specify outcomes as intervals. The fi rst is that given a continuous distribution, the 
probability of getting an outcome exactly equal to any given value is 0, which can be 
shown in several ways. Specifying an exact value, such as a, is in fact specifying an 
interval of zero width, P(a < X £ a). Intuitively, because there are an infi nite number of 
intervals of zero width, the probability must be infi nitely small; that is, 0. Alternatively, 
the probability is the CDF value at a minus the CDF value at a, which again yields 0. 
As a result, the probability of getting an outcome, which is the mean, P

50
, P

10
, most 

likely, or any other exact value, is 0. We need to defi ne an interval, and the probability 
depends on the width of that interval. As stated earlier, the probability of an outcome 
is critically dependent on how that outcome is defi ned. The outcome must therefore be 
defi ned precisely and satisfy the clarity test discussed in Section 3.4.1.

The second consequence is that the probability density may take a value greater than 
1 (whereas a probability cannot be greater than 1). To see this probability, imagine the 
event of interest is the porosity of a core plug, measured on a scale of 0 to 1. Because 
the area under the PDF curve is equal to 1, the PDF must take on values greater than 1 
if the parameter (x-axis) values cover an interval less than 1.

For some uncertain events, it may be more natural to think of the CDF in terms of the 
probability of an outcome exceeding a value rather than being below it, which is known 
as a reverse, survival, or exceedence CDF. Fig. 3.10 illustrates an exceedence CDF for 
the previous well-cost example. By historical convention, this form of CDF is often 
used in the exploration sector of the oil and gas industry to describe uncertainty in 

Fig. 3.9—(a) PDF; (b) CDF.
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hydrocarbon volumes. The term “survival” for the exceedence CDF stems from its use 
in medicine. It is seldom used elsewhere, perhaps because explorationists are optimists 
and focused on potential revenue (i.e., wanting to know the probability of “more than”), 
whereas production staff are also focused on costs, which they want to be “less than.”

Percentiles. Sometimes, we want to invert the preceding question regarding the 
probability of an outcome being less than a specifi ed value. That is, we want to know 
what outcome corresponds to a given probability; for what outcome, x, is there a 
P = k% chance of getting less than x? For example, at what well cost is there a 50% 
chance of getting less than that cost? As illustrated in Fig. 3.11, this question can be 
answered by examining the CDF (shown in normal form) and reading off the well cost 
that corresponds to a CDF value of 0.5 (50%), USD 17.2 million in our example. For 
k = 50%, this is known as the P50 value (outcome) or 50th percentile value. Similarly, 
we can fi nd the P10 value (USD 12.8 million) and the P90 value (USD 22.7 million). 
The ability to generate percentile values from a CDF is fundamental to a powerful 
technique called Monte Carlo simulation, discussed in Chapter 4, which is used to 
combine multiple uncertainties and calculate average, or expected, outcomes. 

3.6.3 Expected Value and Standard Deviation. The probability distribution gives a 
complete picture about our beliefs regarding an unknown outcome. Many probability 
distributions can be defi ned by a function of several parameters. For example, the nor-
mal distribution is fully defi ned by its mean and variance. Often, these parameters also 
provide an easily-interpreted way to summarize a distribution.

There are many summary measures, or statistics, of probability distributions: 
expected value, median, mode, standard deviation, semi-standard deviation, mean 
absolute error, etc. These same measures are used to characterize a set of sample data. 
Each has drawbacks and limitations, because it is impossible to perfectly summarize 
everything we want to know about every probability distribution by just a few num-
bers. However, two summary measures are particularly frequent and useful: the 
expected value and the standard deviation.

The expected value (sometimes called the expectation, average, or mean) is a mea-
sure of the center of a probability distribution. For an uncertain event, X, its expected 

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25 30 35
Well Costs, USD million

P
(
C

o
s

t
x

-
a

x
i
s

)

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25 30 35

≥

Fig. 3.10—Exceedence CDF.



84 Making Good Decisions

value, E[X], is a weighted average of all possible outcomes, the weights being given by 
the probability of each outcome. Mathematically, for discrete variables, the arithmetic 
expected value is as follows:

E X x P X x x P X x x P X xn n[ ] = = + = + + =1 1 2 2( ) ( ) ( )

 = =
=
∑ x P X xi i
i

n

( ).
1

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   (3.11)

The symbol µ is often used instead of E[X]. (When applied to sample data, each sam-
ple is assumed to be equally likely with probability 1/n; therefore, Eq. 3.11 reduces to 
the familiar equation for the arithmetic mean.) For continuous distributions, the 
expected value is found by integrating the PDF,  f(x), as follows:

E X xf x dx[ ] =
−∞

∞

∫ ( )
   

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     (3.12)

Being a measure of centrality, expected value does not provide any information about 
the variability of a distribution, which means using the expected monetary value 
(EMV) as a decision metric does not account for risk in making one’s choices—the 
decision maker is risk-neutral. Instead, assuming a risk-averse or risk-seeking attitude, 
the expected value would not, by itself, provide enough information for decision mak-
ing (see the box on Decision Criterion).

The variance provides information about the variability of the distribution. It is the 
expectation of the squared deviations about the mean. The mean (rather than median 
or mode) is chosen as the point about which to calculate the deviations, because it is 
the measure that minimizes prediction error.
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Decision Criterion

How do we make decisions under uncertainty? We need a decision criterion that 
indicates the best choice and helps the decision maker choose consistently. The 
decision maker’s real decision criterion is embedded in their values and prefer-
ences. Thus, the decision criterion is very personal (whether the decision maker 
is an individual representing himself/herself or an executive making the decision 
on behalf of the fi rm). Fortunately, decision analysis provides a decision crite-
rion that satisfi es these needs and allows us to make consistent decisions in the 
face of uncertainty.

Clearly, a good decision criterion needs to incorporate our risk attitude; 
whether we are risk-averse, risk-seeking, or risk-neutral. Howard (in Edwards et 
al. 2007) presented fi ve reasonable rules that we should use in our decision mak-
ing if we want to be logically consistent (these rules follow from the axioms of 
utility theory). If we follow them, there is a utility function that describes our 
attitude toward risk taking. The utilities are scaled preference probabilities, and, 
given this utility function, it can be shown that we always prefer the alternative 
with the largest expected utility (McNamee and Celona 2005) (i.e., making deci-
sions by choosing the alternative with the highest expected utility, EU, ensures 
that we account for our values and preferences in a logically-consistent way). 
The certain equivalent (CE) is the monetary measure corresponding to the EU, 
and ranking alternatives on the basis of a CE is equivalent to ranking them on the 
basis of an EU.

Why, then, does this book use the expected value as a decision criterion? In 
the usual case in which the stakes are not very high relative to the overall value 
of the corporation, using the expected value makes sense; because for such deci-
sions, the decision maker is approximately risk-neutral and the CE is equal to 
the expected value. As the stakes rise, most people, whether they act on 
behalf of themselves or a corporation’s shareholders, exhibit risk-averse behav-
ior; and the CE is less than the expected value. Fortunately, most business deci-
sions are not big relative to the overall value of the corporation, and the expected 
value is a good approximation to the CE. Walls et al. (1995) and Walls and Dyer 
(1996) showed that E&P companies tend to be risk-averse. Smith (2004) and 
Bickel (2006) discussed whether or not corporate executives truly represent the 
shareholders’ best interests by being risk-averse in their decision making.

Sometimes, it is argued that because the law of large numbers ensures that 
maximizing the expected value provides higher-value outcomes over the long 
run than using any other function, the expected value should be the decision 
criterion. This argument is faulty, because the decision criterion must be derived 
from the decision maker’s values and preferences.

One of the goals of decision analysis is to provide a single number that repre-
sents a decision alternative under uncertainty and can be used as a decision cri-
terion. This number is the EU or, equivalently, the CE. In this book, we chose to 
work with the expected value, which is a close enough approximation to the CE 
for most E&P decisions. 
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Because the dimension of the variance is the square of the dimension of the original 
variable, it may be easier to understand its square root, the standard deviation, σ. 

Var( ) ( )X X     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   (3.14)

The larger the standard deviation, the greater the range of possible outcomes. For 
example, a commonly used distribution is the normal distribution (i.e., Gaussian, or 
“bell-curve). For a normal distribution, ±1σ covers approximately 68% of the out-
comes. Plus or minus 2σ covers approximately 95%, and ±3σ covers more than 99% 
as shown in Fig. 3.12.

The expected value and the variance have several properties that are important in 
practical applications. If X and Y are independent uncertain events and a and b are 
constants, then the following holds:

. . . . . . . . . . . . . . . . . .   (3.15)

Do Not Expect the Expected Value. The terminology “expected value” can be mis-
leading, because it is not necessarily to be “expected,” as illustrated by the following 
two examples (Howard 2004). First, consider the roll of a fair die. Applying Eq. 3.11 
yields an expected value of 3.5, which is not even a possible outcome. Second, the 
discussion of continuous outcomes in the “Continuous Distributions” portion of Sec-
tion 3.6.1 noted that the probability of any specifi c outcome, such as the expected 
value, is infi nitely small and hardly to be expected. Fig. 3.13 shows, using a normal 
distribution of OOIP with mean = 200 million STB and standard deviation = 50 mil-
lion STB, how the probability of OOIP changes with the defi nition of the outcome. 
In this case, the outcome is defi ned to be an OOIP interval around the mean (e.g., an 
interval width of 100 million STB equates to the interval 150 to 250 million STB). Any 
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probability between 0% and 100% can be obtained by specifying an appropriate inter-
val (outcome), which illustrates why precision is critical when defi ning the outcome to 
which a probability refers. (An interval width of 100 equates to the mean, plus or 
minus one standard deviation.) 

The expected value should be interpreted as the value to which the average of a 
sample of outcomes converges in the long run. Only a very narrow (low-uncertainty), 
symmetric distribution may generate an outcome similar to the expected value (in the 
mathematical sense). The signifi cance of the caveat “in the long run” is described 
subsequently.

The Problem With Averages. An old joke about statistics goes something like this: 
“Although the man who stands with one foot in a boiling pot and the other in freezing 
water may have a mean temperature of 37°C, he will not be very comfortable.” The 
joke reminds us of the danger of using averages to summarize a range of states or out-
comes, which is common practice in the petroleum industry.*

Consider another example. The average depth of a river is 0.5 m. How useful is this 
information with respect to a decision to wade across the river? The answer depends 
on at least four factors, as follows:

1. The real variability of the river depth—and our lack of knowledge of it 
(uncertainty). 

2. How you intend to use the information—in this case, create a prediction of 
what may happen if you decide to wade across the river.

3. Your ability to react to changes in depth (whether you can swim or have 
fl oats).

4. The consequences and to whom they apply.

Suppose that although you cannot swim, you decide to cross the river. If the depth 
variability is such that it may exceed your height, the consequence could be fatal. 

*In his illuminating and entertaining book, The Flaw of Averages, Sam Savage (2009) provides a number 
of examples that illustrate why plans based on average assumptions are wrong, on average, from a broad 
set of different areas such as fi nance, healthcare, the war on terror, and climate change.
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For you, this would be a terrible consequence—but it may be irrelevant, or possibly 
good, for someone else. Thus, using an average depth (i.e., ignoring the variability) is 
not a wise approach to the decision. Further, you are unlikely to argue that “I will wade 
across many times, so it’s okay to use the average depth, which gives the average con-
sequence, that I live.” The error in such thinking is that some consequences may be so 
severe you do not get to make the decision multiple times. Given the uncertainty in the 
depth and the possible consequences, a good decision is to invest in a fl otation device. 
Note that the good decision can be identifi ed without knowing the outcome.

These same elements—variability, uncertainty, processes/decisions/models, magni-
tude of consequences, and ability to react to the outcome of uncertain events—are key 
to making good decisions in our industry.

• Is the variability (uncertainty) small enough that we can ignore it and use an 
expected-value (i.e., a deterministic) approach to addressing uncertainty?

• In what sort of model, process, or decision can this characterization of uncer-
tainty be used? 

• How signifi cant are the consequences and for whom?
• Do we need to develop contingency plans to address some of the possible out-

comes? If so, what are the possibilities, and how much should we spend? 

A frequent problem with using an expected value to characterize the range of possi-
ble values is that in some circumstances, using the averages of uncertain inputs does 
not give the correct average output. In the preceding example, using the average river 
depth as input to the process “wade across the river” gives an outcome of “live,” 
whereas the correct outcome is “drown.” This problem is discussed more fully in 
Section 4.5.

3.6.4 Probability Distributions. Most risk-analysis and statistical software offers a 
wide variety of distributions and this choice can be bewildering. 

A commonly held view is that the decision-model results and conclusions are only 
as good as the distributions that go into it—the old “garbage in, garbage out” point of 
view. Sometimes petroleum engineers or geoscientists will say, “How can I specify the 
distribution for this parameter? I can’t even estimate its average.” As Savage (2009) 
points out, this is a bit like saying, “How can you expect me to learn how to use a 
parachute now? Can’t you see the wing is on fi re?”

As we have emphasized several times, probability is an individual’s or group’s 
assessment of uncertainty and represents a state of mind. Thus, there is no predefi ned 
probability distribution that can be recommended for any particular uncertain situa-
tion. It always depends on the assessor’s state of knowledge.

The one exception is the situation in which the assessor truly has no knowledge of 
the uncertainty—in which case, a uniform distribution from –infi nity to +infi nity 
should be assigned. Similarly, the assessor may know the possible extremes of a vari-
able (e.g., that the porosity must take on a value between 0% and 100%) but has no 
knowledge of the possible value it may take on within that range. Again, the uniform 
distribution between the two extremes is the appropriate representation of this lack of 
knowledge. However, the previous examples are largely hypothetical for any practical 
assessment because the assessor or expert in almost all cases has some knowledge of 
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the uncertain parameter. Indeed, in a corporate context, this knowledge is usually the 
very reason they were hired. Also note that the assignment of a uniform distribution 
does not always imply that the assessor is uninformed. The assessor may have perfect 
knowledge (e.g., the case of a fair coin) and still assign a uniform distribution to the 
uncertain parameter.

To summarize the foregoing discussion, the wrong question to ask is, “What are the 
correct distributions to use for area, porosity, cost, etc.?” The right question to ask is, 
“Will different distributions change my decisions?” It is not important to spend a lot of 
time and effort trying to get the input distributions exactly right. What is important is 
to understand how sensitive the model results are to the choice of input distributions 
and their parameters as well as to the relationships between the input distributions. 
Sensitivity analysis is extensively discussed in Chapters 4, 5, and 6. 

Functions of Uncertain Variables. In this section, we briefl y consider the result of 
combining uncertain quantities. (Chapter 4 describes, in detail, one method of doing 
this—Monte Carlo simulation.) There is no need to “assign” a probability distribution 
to a variable that is computed from uncertain quantities—the appropriate PDF is a 
result of the nature of the computation performed upon the assessed probabilities. 
Some particular computations are worth exploring because they lead to specifi c distri-
butional types. As described by the central limit theorem, if uncertain quantities are 
added, the resulting summation tends to be normally distributed, irrespective of the 
probability distributions used to describe the uncertainty in the input quantities. For 
example, the uncertainty in the aggregate reserves of a portfolio should tend to be 
normally distributed because it is the summation of the reserves of individual projects. 
Similarly, if uncertain quantities are multiplied, the resulting product tends to be log-
normally distributed.* For example, when calculating oil in place by the multiplication 
of average-porosity times average-area, etc., the result tends to log-normal. This is the 
real reason that uncertainty in oil in place is often deemed to be log-normally distrib-
uted. It has nothing to do with the variability of fi eld sizes being log-normal, which is 
purely coincidental.

Drilling Question. Before leaving this section, we illustrate how a probability 
model can be used to answer our second “How Good is Your Probability Intuition?” 
question in Section 3.1.1, as follows:

“The chance of drilling a successful well in a basin is assumed to be 1 in 3. 
If you plan to drill 20 wells, and the outcomes for all wells drilled are 
independent from one another, what is the probability you will drill exactly 
fi ve successful wells?” 

We can use the binomial distribution to answer this question. Letting c stand for the 
chance of success in each trial, the binomial distribution gives the probability of 
observing n

s
 successes from n independent trials. The distribution is completely and 

uniquely defi ned by the number of trials, n, and the chance of success, c. Fig. 3.14 
shows an example of a binomial distribution. Note, that one of the parameters of the 
distribution, c, is a probability itself.

Imbedded in the use of the binomial distribution are three important assumptions:

*Taking the log of the product of two numbers gives ln(a.b) = ln(a) + ln(b). Therefore, the log of multi-
plied distributions tends to be normal, and the calculated distribution itself tends to be log-normal.



90 Making Good Decisions

 1. Only two outcomes, success or failure, can occur on each trial.
 2. Each trial is an independent event.
 3.  The chance of success in each outcome remains constant over the repeated 

trials.

Returning to our question about the probability of successful wells, we have the 
following:

• Number of trials, n = 20
• Chance of success, c = 1/3 

Fig. 3.14 shows the distribution. The answer to the question can be read directly from 
the graph at n

s 
= 5. The probability of drilling exactly fi ve successful wells is approxi-

mately 14.5%.
Using the binomial distribution requires “sampling with replacement” to maintain 

independence between successive trials—the chance of success should not be altered 
by a trial having taken place. To understand this action more fully, consider a problem 
in which the action of performing a trial does alter the chance of success. Suppose 20 
drill bits had been tested for quality, and 5 were found to be defective. Unfortunately, 
these 5 are later mixed in with the 15 good ones. If you select a bit at random, the 
chance of it being defective is thus 25%. Assume you select a non-defective one. The 
bit is used and not replaced in the stock. Now, what is the chance the next bit you pick 
is defective? Having removed 1 good bit leaves a stock of 19, of which 5 are still defec-
tive. The probability of picking a defective one is therefore 5/19 = 26%. This probabil-
ity is a case of “sampling without replacement,” for which the hypergeometric 
distribution should be used. An exception is if the number of successes is signifi cantly 
smaller than the number of trials, in which case, the binomial provides a good 
approximation.

Number of Successful Wells, n s

P
r
o

b
a

b
il
it

y

0.20

0.15

0.10 B(n
s 
, c)

0.00

0.05

0                       5              10         15   20

Fig. 3.14—A binomial distribution.



Quantifying Uncertainty 91

Table 3.8 summarizes the defi nitions and properties of probability distributions 
widely used in the oil and gas industry. For a more detailed discussion of probability 
distributions and their properties, we suggest the reader consult Vose (2008) or Clemen 
and Reilly (2001). 

3.7 Summary
Probability is the only way to consistently describe and communicate our ideas about 
uncertainty and to quantify uncertainty for the purpose of making optimal decisions. 
This chapter has covered the limited aspects of probability analysis required for the 
remainder of this book. Key points are as follows:
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• Most people do not have a good intuition for probabilities and their correct 
manipulation.

• In most cases, probability represents our degree of belief, based on all informa-
tion at our disposal, in the likelihood of the outcome of an uncertain event.

• Conditional probabilities are very useful in updating initial probability estimates 
on receipt of new information, or in anticipating how they would be modifi ed if 
we were to get more information. P(B | A) is not equal to P(A | B).

• Expected values (i.e., averages) give no information about uncertainty. It is best 
to use a full probability distribution. If it is absolutely necessary to use a single 
number to quantify the range of uncertainty, use the standard deviation. 

• Do not expect the expected value.
• For continuous uncertain variables, a probability can be specifi ed only for an 

interval.

3.8 Suggested Reading
The development and foundation of probability theory took a long time and was accom-
panied by successes and failures. Bernstein’s book Against the Gods: The Remarkable 
Story of Risk (Bernstein 1996) is an excellent account of peoples’ evolving views on 
uncertainty and risk throughout history. The eighth edition of First Course in Probability, 
Ross’s (2009) popular and detailed book on probability, was recently released. This is 
one of the most used textbooks for introductory courses on probability.

The subjective interpretation of probability is one of the distinguishing characteristics 
of decision analysis. Savage (1954) was the fi rst to provide this interpretation. Winkler 
(2003) provides an excellent introduction to subjective probability and Bayesian infer-
ence. Grayson (1960) wrote the fi rst book on decision analysis and Bayesian inference 
for oil and gas problems, in which his main focus was exploration drilling.



Chapter 4

Monte Carlo Simulation

4.1 Introduction
Monte Carlo simulation (MCS) is a very popular and powerful tool for uncertainty 
analysis. It is an important component in the skill set of the decision analyst—in our 
industry, usually a petroleum engineer or geoscientist.

A key challenge in decision analysis is assessing the uncertainty in the attributes 
(e.g., net present value, reserves) used to measure the value of the decision alterna-
tives. Rarely can these attribute values and their uncertainty be assessed directly. 
Instead, they are computed from a model that relates input variables that we can 
estimate (e.g., costs, prices, technical parameters) to the attributes of interest. In 
this context, the role of MCS is strictly the propagation of uncertainty from vari-
ables we can assess to variables used to make the decision. If we are able to assess 
the latter directly, we do not need to use MCS. Only a few problems are suffi ciently 
simple that analytical methods can be used to propagate the uncertainties. The 
relationships between input and output variables can be quite complex, involving 
nested models and multi-way dependencies between variables. MCS is a relatively 
easy-to-use, robust, and widely applicable method in such situations. These attrib-
utes lead, in our opinion, to less chance of making a mistake than with analytical 
techniques.

The uncertainty in the output variable(s) of interest needs to be calculated so that it 
is possible to:

 1.  Calculate percentiles of decision variables and answer questions, such as the 
following:
• What is the probability of a negative net present value (NPV)? 
• What is the probability of original oil in place (OOIP) greater than 600 

million bbl?
• What is the probability of time to fi rst production overrunning by more than 

3 months?
 2.  Calculate the expected value (i.e., mean, average) of the model results, particu-

larly in the case of nonlinear models, in which using the expected values of the 
input variables does not generally yield the expected value of the output vari-
ables (as discussed in Section 4.5).
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3.  Perform a full analysis of the decision variable sensitivity to uncertainty in the 
inputs. In contrast to the simple one-at-time sensitivity analysis in which the 
input variables are changed by a fi xed percentage (as described in Section 
2.6.2), a full sensitivity analysis allows all variables to change simultaneously, 
according to their probability distribution, and includes any dependencies 
between them. We also can incorporate any uncertainty in those dependencies. 
Sensitivity analysis is a basis for identifying which variables are candidates for 
further assessment, and those for which uncertainty can be ignored. It also may 
guide experimental design for more detailed technical studies.

The SPE literature includes applications of MCS in a variety of contexts, including 
fi eld-development decisions, drilling decisions, reserves assessment, workover and 
stimulation decisions, lease acquisitions, and portfolio optimization. Murtha (1997) 
provided an overview of the method and its applications in the SPE Distinguished 
Author Series. More recently, MCS has been used extensively for production-model 
updating and forecasting through the use of Markov Chain Monte Carlo (MCMC) 
methods (Liu and Oliver 2003; Liu and McVay 2009), ensemble Kalman fi lters 
(Nævdal et al. 2005), or experimental design (Kalla and White 2007). Arild et al. 
(2008) used a Monte Carlo approach to assess information value. MCS is also the 
underlying methodology in geostatistical simulation of multiple reservoir models 
(Journel and Alabert 1990). Finally, the Monte Carlo method has recently been applied 
to solving real option problems in exploration and production (Willigers and Bratvold 
2008). A recent search on “Monte Carlo” in SPE’s online library, OnePetro, returned 
approximately 700 hits.

This chapter starts with a description of how MCS is performed. We then show 
how MCS can be used to extend one-at-a-time sensitivity analysis, described in 
Section 2.7.2, to the case in which all input variables change together, and those 
changes are driven by the variable probability density function (PDF). This process 
enables us to identify which of the myriad (input) uncertainties are the main 
drivers of uncertainty in the attributes used to measure the value of the decision 
alternatives, and therefore which ones are candidates to have their impacts man-
aged by value-of-information or value-of-fl exibility analyses, which are covered in 
Chapter 6. Finally, we discuss why it is often necessary to perform MCS, even if 
we are not interested in the uncertainty of a decision attribute and merely want to 
calculate its expected value.

4.2 Procedure
To perform an MCS, an appropriate model needs to be developed for the problem 
being investigated. The next step is to describe the uncertainty in the input variables 
in the form of probability distributions. Typical input uncertainties include pay 
thickness, net/gross, recovery factor, costs, and prices. MCS takes a sample from 
each input probability distribution and then uses them in the model to calculate the 
output variables, which are stored for later analysis. The attributes corresponding to 
the decision objectives (see Sections 2.3.3 and 2.5.2) should form some or all of the 
output variables. Model output variables may be NPV, reserves, or production. 

The previous process is repeated many times, and the stored results are used to build 
histograms of the output variables, which then are normalized to give relative-frequency 
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probability distributions from which statistics, such as means, variances, and percen-
tiles, can be calculated. Each loop through the model is called an iteration, and the 
resulting set of random variables (input and output) are called a realization. Therefore, 
each probability distribution is sampled the same number of times as the number of 
iterations. Fig. 4.1 illustrates the procedure for two model inputs, X and Y, and a single 
model output, Z.

The procedure for sampling the input distributions should ensure that for a large 
number of samples, the frequency distribution of those samples closely approximates 
the distribution from which they were taken. Therefore, the distributions of the model 
output variables also refl ect the probabilities with which they could occur. The greater 
the number of samples taken (typically hundreds or thousands), the more representa-
tive the output distributions. 

In essence, we turned a deterministic model into a probabilistic model—also 
referred to as a stochastic model. MCS offers a number of advantages as follows:

• The input variable distributions need not be approximated at all, because the 
technique is not limited to the use of theoretical probability distributions or to 
discrete approximations of continuous distributions. This advantage is impor-
tant, because there is generally no “right” probability distribution for any vari-
able—we are using probability to quantify our degree of belief in what the actual 
outcome will be.

• Correlations and dependencies can be modeled easily (assuming that they are 
recognized, that their nature is understood, and that their consistency main-
tained—which is more diffi cult than to include these dependencies in the 
MCS model).

• The level of mathematics and sophistication required to perform MCS is well 
within the capability of a typical petroleum engineer or geoscientist. It can deal 
with complex models for which analytical solutions are not available.
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• The likelihood of making errors in specifying and solving the problem may be 
lower for MCS than for an analytical approach (if the latter is even possible).

• Commercial software is available to automate the tasks involved in the simula-
tion. In the case of models based on Microsoft’s Excel, it is particularly easy to 
perform an MCS on a new or existing model by the use of so-called add-ins (i.e., 
applications that install as Excel libraries.)  

• Complex, nonlinear mathematics, such as power functions, logs, or conditional 
statements can be included with no extra diffi culty.

• MCS is widely recognized as a valid technique; therefore its results are likely to 
be accepted by both analysts and decision makers.

• The behavior of the model can be investigated easily.
• Changes to the model can be made quickly, and the results can be compared with 

previous models.

4.2.1 Sampling Input Distributions. To say that an uncertain (or random) variable in 
a model simulates some unknown quantity in real life means that from the perspective 
of our current information and beliefs, any possible outcome for a simulated variable 
is just as likely as for the real quantity. The key to MCS, therefore, is to sample the 
input distributions to ensure that this occurs, that is, to sample in an unbiased fashion. 
The term “Monte Carlo simulation” comes from the name of one such sampling pro-
cedure, Monte Carlo sampling. 

MCS—History

The name “Monte Carlo” was coined by physicist Nicholas Metropolis (inspired 
by Stanislaw Ulam’s interest in poker, during the Manhattan Project of World 
War II) because of the similarity of statistical simulation to games of chance, 
and because the capital of Monaco, Monte Carlo, has been a center for gambling 
and similar pursuits (Rubinstein 2007). 

However, an interesting earlier application of the Monte Carlo method was 
made in 1908 when W.S. Gossett (who worked for Guinness and used “Student” 
as his author name) used the Monte Carlo method for estimating the correlation 
coeffi cient in the t-distribution. 

MCS is now used routinely in many diverse fi elds, from the simulation of 
complex physical phenomena, such as radiation transport in the Earth’s atmo-
sphere and of esoteric subnuclear processes in high-energy physics experiments, 
to the mundane, such as the simulation of a Bingo game or the outcome of 
Monty Hall’s vexing offer to the contestant in “Let’s Make a Deal.”

Monte Carlo sampling of a probability distribution proceeds as illustrated in 
Fig. 4.2. First, the PDF is transformed to its cumulative distribution function (CDF) 
equivalent. Then, a random number, r, uniformly distributed between 0 and 1, is gener-
ated. For our example, assume the random number selected is 0.3759. A sample of the 
variable, in this case, a porosity of 16.23%, is obtained by taking the inverse of the 
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CDF function (i.e., the sample is the 0.3759 quantile). Formally, the sample is given by 
CDF–1(r), where r is distributed uniformly [0, 1]. In practice, the sample is obtained by 
analytical solution of the equation for the inverse of the CDF if it exists. Otherwise, it 
can be found by interpolation if the CDF is tabulated. 

Because the random numbers are equally likely, having a uniform [0, 1] distribution, 
the resulting sample values are also equally likely, which sometimes causes confusion 
and can lead to the mistaken belief that the distribution of resulting sample values is 
uniform. This is not the case, because although each sample value is equally likely, 
many more samples are generated where the CDF is steepest (where the PDF is 
highest)—see Fig. 4.3. In concept, this process is no different from random sampling 
of a physically-measurable variable (e.g., people’s heights), in which each data point 
is assumed to have a weight of 1/n, where n is the total number of data points. Such 
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Fig. 4.2—Generating a sample from a probability distribution.

Fig. 4.3—Illustration of how sampling procedure reproduces the PDF.

C
D

F

U
ni

fo
rm

ly
 D

is
tr

ib
ut

ed
 

R
an

do
m

 N
um

be
rs

 [0
,1

]

Samples Distributed According to PDF
0

0.2

0.4

0.6

0.8

1



98 Making Good Decisions

Latin Hypercube Sampling

A problem with Monte Carlo sampling is that low-probability events, such as in 
the tails of the distribution (e.g., P1, P5, P95, P99), may not be adequately 
sampled, particularly if they are fairly fl at. One solution is to increase the num-
ber of samples. However, this is ineffi cient, because it increases the number of 
samples in those parts of the PDF that are adequately covered. An alternative is 
to use stratifi ed sampling, in which the CDF is fi rst split into a number of equal-
probability intervals, or strata (e.g., 0.0 to 0.1, 0.1 to 0.2). Each stratum then is 
sampled randomly (see Fig. 4.4), which prevents clusters in some areas and 
gaps in others. It is also unbiased.

One form of stratifi ed sampling is Latin hypercube sampling, in which each 
input-variable CDF is divided into the same number of strata, that number being the 
total number of iterations required. Each sample is used once and only once (i.e., 
“sampling without replacement”).

Stratifi ed sampling can be used either to improve the accuracy of reproduction 
of the PDF for a given number of samples taken or to reduce the number of 
samples needed (and therefore increase speed) for a given level of accuracy. 
Most MCS programs provide a facility for Latin hypercube sampling, and its 
use is recommended.
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Fig. 4.4—Stratified sampling.

samples rarely have the form of a uniform distribution, even though each data point is 
considered equally likely (i.e., has the same weight).
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4.2.2 Random Number Generation. The sampling procedures described previously 
depend on being able to generate uniformly distributed random numbers between 0 
and 1, which is the function of a random number generator—designed to ensure that 
there is no correlation between successive samples of the same distribution. MCS 
add-ins for Excel have built in random number generators. Random numbers also 
can be generated within Excel using its RAND() function. The latter, combined with 
inverse CDF functions, makes it possible to conduct simple simulations in Excel 
(without any add-ins). For example, the normal distribution can be sampled by the 
following formula:

= NORMINV(RAND(), μ,σ),

where m is the mean and σ is the standard deviation. Excel also includes inverse func-
tions for the beta, gamma, and lognormal distributions. The RANDBETWEEN
(I1, I2) function produces uniformly distributed integers between I1 and I2, whereas 
the following formula 

= a + (b – a)*RAND()

can be used to produce uniformly distributed real numbers between a and b.
The previous functionality makes it possible to perform MCS in Excel. We advise 

readers wishing to learn MCS to start by doing this before advancing to one of the 
add-ins.

Example 4.1—Monte Carlo Simulation for Reserves Estimates. The primary rea-
son for using MCS is to calculate the distribution of outcome values that should be 
anticipated—given our beliefs about the input variables and their probabilities. Once 
we know this distribution, we can use it to identify percentiles, expected value, or 
probability of loss.

Imagine a decision situation in which the OOIP has been calculated. The team that 
did the work recognized the uncertainties involved in the calculations and used MCS 
to generate the probability distribution for OOIP. Their simulation showed that the 
OOIP was close to lognormal, with a mean of 580 million res bbl and a standard 
deviation of 80 million res bbl. 

Suppose we are asked to assess the technical reserves of the fi eld. There is signifi -
cant uncertainty as to whether the primary recovery mechanism is going to be natural 
depletion or whether there is signifi cant pressure support from the underlying aquifer, 
resulting in waterdrive depletion. The reservoir is heavily faulted, but there is limited 
information on the fault sealing across the fi eld. Our best estimate for the technical 
recovery factor (TRF) is that it can be anything between 0.2 and 0.55, and we have no 
information to suggest that any number within that range is more or less likely. There-
fore, we use a uniform distribution, Uniform[0.2, 0.55], for the TRF. To minimize the 
effect of behavioral biases in the uncertainty assessment, we recommend the use of the 
probability elicitation tips discussed in Chapter 7. 

To estimate the technical reserves, we also need to specify the formation volume 
factor, B

o
, which again is uncertain. However, based on our experience from other 

fi elds in the basin, we believe that it is well represented by a triangular distribution 
with a minimum of 1.10, a most likely value of 1.15, and a maximum of 1.25 (i.e., 
Triangular[1.10, 1.15, 1.25]).
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The input distributions we use in our simulation are shown in Fig. 4.5. The model 
for technical reserves is:

Technical reserves
OOIP

TRF=
Bo

⋅

For the fi rst part of this study, we assume that the input parameters are independent. 
Using the MCS procedure described previously, we obtain the distribution for techni-
cal reserves shown in Fig. 4.6.

The range of possible technical reserves runs from a low of 68 million STB to a 
high of 416 million STB, with a mean of 186.4 million STB. The cumulative distri-
bution implies a 10% chance of getting less than 113.9 million STB and a 90% 
chance of getting less than 263.3 million STB. Equivalently, there is a 90% chance of 
getting more than 113.9 million STB and a 10% chance of getting more than 263.3 
million STB.

4.3 Sensitivity Analysis
In practice, given the subjective nature of probability assessment, there are uncertain-
ties associated with the actual input probabilities. It is therefore important to determine 
the sensitivity of the simulation results to changes in the estimates of the input param-
eters. In our example, to what extent is the uncertainty in the technical reserves driven 
by the uncertainty in each of the three input parameters? Is the uncertainty of the 
reserves determined primarily by the uncertainty in the recovery factor or by the 
uncertainty in the OOIP?

There are several ways to conduct this sensitivity analysis. It may simply involve arbi-
trarily changing the input distributions, repeating the simulation, and examining the 

Fig. 4.5—Input distributions.
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 resulting changes in the output distribution. A more systematic and insightful approach 
is to assign distributions to the parameters that defi ne the input distributions. In the pre-
vious example, we may be uncertain about the minimum, most likely value, and maxi-
mum of the formation volume factor. We may then use uniform (or any other) distributions 
to represent these uncertainties in the distribution parameters, and rerun the model.

Tornado diagrams and two-way sensitivity tables are effective tools for examining 
these questions. Chapter 2 discussed how to use one-at-a-time tornado diagrams to 
assess the impact of the input variables on the output variable by varying one parameter 
at a time. This approach works well as a pre-simulation sensitivity analysis, which 
may help to determine the key uncertainties to include in the simulation. 

However, when performing an MCS, all the input variables change together, giving 
a more realistic picture of the uncertainty in the output variables. The impact of uncer-
tainty in an input variable on any given output variable can be quantifi ed by calculating 
the correlation coeffi cient (i.e., regression or rank order) between them using the input 
variable samples and the output variable results. This calculation can be repeated for 
all input variables, and the resulting correlation coeffi cients plotted in descending order 
(see Fig. 4.7), similar to the simple tornado plots described in Chapter 2. However, 
there are two important differences. First, the correlation coeffi cient between an input 
variable and an output variable must be either positive or negative, not both. Therefore, 
the bars can go only to the left or right of the zero correlation line, not to both sides as 
in the simple tornado chart. Second, the variation of the input variables follows their 
probability distribution rather than some arbitrary amount (e.g., plus or minus 10%). 
The result is a form of sensitivity analysis that identifi es those input variables whose 
uncertainty has the greatest impact on the uncertainty of the output variable(s). 
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The interpretation of Fig. 4.7 implies that the technical reserves are strongly posi-
tively correlated with the TRF (0.88), whereas the formation volume factor has the 
least infl uence on the output, being slightly negatively correlated with the TRF 
(–0.087). But what do these numbers mean? The squared correlation coeffi cient is 
the percentage of the variation in the output variable explained by variation in the 
input variable. In this case, 0.88 refl ects that 77% of the uncertainty in reserves is 
attributable to uncertainty in the recovery factor, 22% to OOIP uncertainty, and the 
remaining 1% to uncertainty in B

o
. This type of analysis may be valuable in deciding 

where to focus any further data collection, analysis, or modeling. In this case, resolving 
uncertainty in the TRF results in a larger uncertainty reduction in reserves than can 
be achieved by resolving the uncertainty in the OOIP.

Sensitivity analysis allows us to identify which uncertainties materially impact the 
decision, and therefore which ones need to be managed either by collecting informa-
tion to reduce their uncertainty or by adding fl exibility to respond to their future reso-
lution. Chapter 6 shows how to calculate the amount we should be willing to pay for 
such activities, as a function of their ability to reduce the uncertainty, thus determining 
if they are worthwhile. Other variables, the uncertainty of which does not have a mate-
rial impact on a decision attribute, need be considered no further (from an uncertainty 
perspective), no matter how great their perceived uncertainty. The next section elabo-
rates on how to interpret and use correlation coeffi cients for modeling dependencies.

4.4 Dependencies
We have been assuming that all the probability distributions in our model are indepen-
dent. In reality, it is possible that the value of a variable depends on the values of others. 
In the oil and gas industry, dependencies are more likely than not. For instance, rig 
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Fig. 4.7—Sensitivity of technical reserves to input variables.
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rates may depend on oil and gas prices, which may themselves be dependent upon each 
other. Porosity and initial water saturation are often considered to be correlated, as are 
porosity and permeability, fi eld size and reservoir thickness, oil density and viscosity, 
equipment downtime and maintenance, and many other pairs of parameters. 

The previous reserves example may exhibit some positive correlation between the 
OOIP and the TRF (i.e., when the OOIP is high, the TRF also tends to be high). If we 
neglect to model the dependency between these two components, the joint probabili-
ties of the various combinations of the parameters are incorrect. 

4.4.1 Modeling Dependencies. Modeling dependency is important for two reasons. 
First, ignoring it may result in the generation of impossible combinations, and an 
important rule in quantitative risk analysis is that each of the realizations generated 
through simulation should be potentially observable in real life. Second, the nature of 
the dependency, either positive or negative, changes the distribution of the output vari-
ables. Positive dependencies tend to widen the output distribution, whereas negative 
dependencies tend to narrow it. The latter can be exploited to lower risks when choos-
ing portfolios of investments (called diversifi cation).

Several methods are available for simulating dependencies, such as rank-order cor-
relation (Iman and Conover 1982), the envelope method (Newendorp and Schuyler 
2000; Vose 2008), and copulas (Accioly and Chiyshi 2004, Al-Harthy et al. 2007). 

The most common approach in modern risk-analysis software is the rank-order 
correlation, which models linear dependency between the ranks of the variables. The 
technique requires only that the user nominate the two distributions to be correlated 
and a correlation coeffi cient between –1 and +1, known as Spearman’s rank-order 
correlation coeffi cient (Vose 2008). The required number of samples are drawn from 
each distribution and ordered such that their rank-order correlation coeffi cient obeys 
the desired value.

A correlation value of +1, Fig. 4.8a, forces the two probability distributions to be 
exactly positively correlated: the ith percentile value for each distribution appears in 
the same iteration. 

A correlation value of –1, Fig. 4.8b, forces the two probability distributions to be 
exactly negatively correlated: The ith percentile value in one distribution appears in the 
same iteration as the (100 – i)th percentile value of the other distribution. In practice, 
one rarely uses correlation values of –1 and +1 because it usually is easier and more 
effi cient to cover these types of linear dependencies by specifying the relationship in a 
functional form.

A correlation coeffi cient of 0, Fig. 4.8c, implies that there is no linear relationship 
between the two distributions. A linear correlation coeffi cient of 0 does not rule out the 
possibility of a nonlinear relationship between the two variables.

Positive correlation values between 0 and +1, Fig. 4.8d, produce varying degrees of 
positive correlations: A high value from one distribution corresponds to a high value in 
the other distribution, and a low value from one distribution to a low value from the 
other distribution. The closer the correlation is to 0, the weaker the relationship 
between the two distributions. 

Negative correlation values between 0 and –1 produce varying degrees of inverse 
correlations: A low value from one distribution corresponds to a high value in the other 
distribution, and vice versa.
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Fig. 4.9 illustrates the patterns produced by two normal distributions with varying 
degrees of rank-order correlation. Graphs such as these can help the expert to assess 
the degree of correlation.

The primary disadvantage of rank-order correlation is the diffi culty in selecting the 
appropriate correlation coeffi cient. If we are simply seeking to reproduce a correlation 
observed in previous data, the correlation coeffi cient can be calculated directly from 
those data. However, a rank-order correlation lacks intuitive appeal and therefore 
makes it diffi cult for the expert to judge the extent of the correlation. This diffi culty is 
compounded by the fact that the same degree of correlation looks quite different on 
scatter plots for different distribution types (Murtha 2000). 

Another limitation of rank-order correlation is that it ignores any patterns or struc-
tures embedded in the relationship between the data. There may be, for example, a 
stronger correlation between the data at high values of the variables than at low values. 
Or, the relationship between the variables may be nonlinear. These cases require more 
powerful, but also more diffi cult, methods (e.g., copulas or the envelope method). 

Despite the inherent disadvantages of rank-order correlation, its ease of use and 
speed make it appealing. Let us return to Example 4.1 and include a strong correlation, 
(say, 0.9) between the OOIP and the TRF. After rerunning the simulation, we can plot 
the CDF for the independent and dependent cases on the same graph (Fig. 4.10).

Including positive dependencies in the simulation often increases the uncertainty (i.e., 
standard deviation of the resulting distribution). As can be seen from Fig. 4.10, the 
spread around the mean has increased, although the mean is approximately the same as 
in the independent case. More precisely, when a model is linear, positive dependency 
tends to increase variance, and negative dependency tends to decrease it. If a model is 

Fig. 4.8—Linear correlations.
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nonlinear, such general comment cannot be made, and the impact of dependency 
depends on the functional relationships between the variables. This is why we were able 
to make the previous general comment about negative dependencies reducing the risk in 
a portfolio—because the portfolio return is the linear sum of its components.

In many exploration and production applications, more than two variables are inter-
dependent. Any number of variables can be correlated by using a correlation-coeffi cient 
matrix that includes all the interdependent variables. However, this poses a practical 
problem, because the correlation between each pair needs to be consistent with the 
correlations between all other pairs. For example, if A is strongly positively correlated 
with B, and B is strongly positively correlated with C, then A cannot be negatively 
correlated with C. Strictly, for the correlation structure to be consistent, the matrix 
must be positive defi nite. This is often hard to achieve when populating it with pair-
wise estimates. To help address this problem, most implementation software checks 
whether or not the matrix is positive defi nite. If not, it offers the “closest” matrix that 
is positive defi nite.  

4.5 Expected Value Revisited
This section reviews a well-established, but perhaps not widely known, feature of 
models that contain nonlinear functions of uncertain input variables. Point 2 of the 
introduction to this chapter stated that using the expected values (or averages) of 
uncertain input variables does not always produce the expected value of the model 
output variables, which is a general feature of probabilistic models. We discuss it here 
because MCS is a convenient method of calculating the true expected value. (The true 
expected value can also be calculated by integrating the nonlinear function over the 
PDFs of the variables, in the limited circumstances when that is indeed possible.)

Our industry abounds with models termed nonlinear. Such models contain func-
tions, such as powers, logarithms, or trigonometric functions, of their input parameters. 
Minimum (min), maximum (max), correlations, and conditional statements also create 
nonlinearities, as do virtually all functions other than multiplication by constants and 
addition. Therefore, many simple spreadsheet models are nonlinear, as are many mod-
els with “if … then….else” decision logic. Also, most sophisticated prediction models, 
such as reservoir simulators, are nonlinear.
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We illustrate the idea by the following simple example. Consider the  model:

Y
X

Z
=

2

2
.

This model is nonlinear because of the squared terms and the division. Let the vari-
ables X and Z be uncertain with triangular PDFs given by [min = 2, most likely = 8, 
max = 20] and [min = 1, most likely = 4, max = 10], respectively. The average 
(expected) values of X and Z are then 10 and 5, respectively. Using these to calculate 
Y yields the following: 

Y
E X

E Z
= = =( )

( )

2

2

100

25
4.

However, this result is not the correct average of Y. The true average can be esti-
mated using MCS: Take a sample from each input variable distribution, compute Y, 
repeat a large number of times, and take the average of the results, which yields the 
following:

E Y( ) .≈ 7 8

Thus the true average, obtained from MCS, is almost twice the value obtained by 
using the averages of the inputs.

Similarly, estimating other statistics or the PDF for Y cannot be done by simply deriv-
ing the minimum, maximum, P10, P50, P90, etc. from the respective values of the input 
parameters. This point is dramatically illustrated by the above example: all the above 
statistics have a value of 4 if they are computed from the respective values of the input 
parameters! The actual minimum of Y is of course calculated from the minimum of X 
and the maximum of Z resulting in a value of 1. Similarly, the maximum of Y is 400.

Therefore, an important aspect of nonlinear functions of uncertain variables is: the 
expected values of model output variables are not given by applying the function of 
interest to the expected values of the input variables. Mathematically,
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E f E E Yf X Y X( , , ) , ,[ ] [ ] [ ]≠ …( ),  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (4.1)

where E is the expectation operator, f is nonlinear, and X, Y,… are the uncertain input 
variables. Similarly, the P10, P90, etc. of the outputs are not given by applying the 
model to the P10, P90, etc. of the input variables. 

A consequence of this behavior is that even if one is interested not in the uncertainty 
of the output variable, but only its best estimate (as defi ned by the average), it is gener-
ally still necessary to perform a full probabilistic analysis. This analysis involves assess-
ing the uncertainty in the input parameters, computing the full range of uncertainty in 
the output(s) of interest, and computing their average values. (We say “generally,” 
because there are limited circumstances in which it is possible to perform an analytical 
calculation.)

The previous problem with nonlinear functions of uncertain numbers lies, in part, 
behind the reasons for the use of geostatistical simulation models to describe the 
spatial distribution of reservoir properties, rather than smoothed, spatially averaged 
models (e.g., traditional inverse-distance weighted interpolation, or even kriging—
each of which generates a map for “average” or “best” estimate). Thus, “best” 
estimates of reservoir performance (e.g., production or breakthrough time) are not 
generated from best-estimate models of reservoir properties. Rather, true best 
estimates are derived by taking the average performance over many models of the 
subsurface, each of which replicates the real variability (uncertainty) in reservoir 
properties. In so doing, we also generate estimates of the uncertainty in the perfor-
mance measures as an added bonus.

4.6 Suggested Reading
Hertz (1964) extolled the virtues of simulation for decision analysis early on. Introduction 
to Simulation and Risk Analysis, by Evans and Olson (2002), is a good introductory 
book, with numerous illustrations. Vose (2008) also has several sections on MCS (Risk 
Analysis—A Quantitative Guide). More technical introductions to MCS at a moderate 
level are provided by Law and Kelton (2000) in Simulation Modeling and Analysis 
and by Fishman (2006) in A First Course in Monte Carlo. Murtha (2000) has written 
an introductory book, Decisions Involving Uncertainty: An @RISK Tutorial for the 
Petroleum Industry, on MCS for petroleum applications.





Chapter 5

Structuring and Solving 
Decision Problems

Decision trees are diagrams that show the relationships (including time-sequence) 
between the main elements of the decision problem. They are an excellent tool for 
evaluation purposes:

• Structuring to clearly understand and model the situation, particularly when 
multiple sequential decisions and uncertain events are present

• Calculating the expected value of decision alternatives and thus solving the 
problem for the best alternative (maximum expected value)

• Developing a probability distribution for the payoffs of the optimal decision 
(i.e., a risk profi le)

• Performing an analysis of the sensitivity of the optimal decision alternative to 
either the probabilities of uncertain events [e.g., original oil in place (OOIP) or 
price] or the parameters under our control (e.g., number of wells or processing-
capacity limits)

We start by describing the main components of a decision tree and how they are 
combined to structure the decision problem. Decision trees can become unwieldy be-
cause of the number of possible combinations between the decision alternatives and 
the outcomes of uncertain events. We show how they can be displayed in a more com-
pact form, or reduced in size. Next, we describe how the tree can be solved to deter-
mine the best choice among the decision alternatives and to construct its associated 
risk profi le. We also illustrate the use of stochastic dominance as a decision-making 
criterion. Finally, we illustrate how a sensitivity analysis can be performed, using the 
example of sensitivity to probability. 

5.1 Decision-Tree Elements
A decision tree consists of the elements identifi ed in Section 2.2 as being the main 
components of a decision situation: decisions, uncertainties, and payoffs.

Decisions are irrevocable commitments of resources. A decision node is represented 
by a square, with labeled branches to the right of the node to represent the various 
 alternatives (i.e., choices) to be evaluated. For example, in Fig. 5.1a, three alternatives 
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[fl oating production, storage, and offl oading vessel (FPSO), tension-leg platform 
(TLP), and tieback] are identifi ed for a “select development scheme” decision. A com-
mon error is to implicitly defi ne the decision by a set of a priori alternatives, often 
specifi ed by the decision maker. (“Tell me whether I should do A, B, or C.”) This error 
can obscure the purpose of the decision and prematurely restrict the thought and ana-
lytical process to simply choosing among the given alternatives—the optimal alterna-
tive may be one that has not yet been considered (D, E, ...).

Uncertainties, or chance events, represent states of the decision situation in which 
current values or future outcomes are not known with certainty. Only uncertainties 
likely to have a signifi cant impact on the choice of alternative should be included, 
“minor” uncertainties having been excluded by prior sensitivity analysis. An uncer-
tainty node is represented by a circle, with branches to the right of the node indicat-
ing all its possible outcomes along with their respective probabilities. For example, 
Fig. 5.1b shows three possible outcomes for the OOIP with associated probabilities. 
The outcomes must form a mutually exclusive and collectively exhaustive set 
(see Section 3.4.2) and, thus, their probabilities should sum to 1. The outcomes low, 
medium, and high are therefore labels that represent unambiguous defi nitions (as 
defi ned by the clarity test), such as: High (>200 million STB), medium (100 to 200 
million STB), and low (<100 million STB), which form a collectively exhaustive and 
mutually exclusive set. 

Payoffs are measures of how well a decision alternative performs on the desired 
objectives. Payoff nodes, shown in Fig. 5.1c, occur only at the end of terminating 
branches (i.e., those emanating from decisions, or uncertainty nodes without subse-
quent nodes) and are often represented by triangles. The value associated with the 
path that leads to that termination is written next to it. Sometimes, the triangle is 
omitted and only the value is written. In the case of multiple objectives, there is a 
terminal value for each objective, measured on its corresponding attribute scale. 
These terminal values often result from technical and economic analyses. Often 
they are expected values, mathematically calculated by Monte Carlo simulation, 
that also account for the impacts of other uncertain factors that are not an immediate 
or critical part of the current decision, such as those excluded as a result of an ear-
lier sensitivity analysis. In some cases, it may be useful to explicitly associate the 
decision costs related to the relevant decision node for it to affect all subsequent 
nodes. The payoff values at the end nodes then only represent the income and path-specifi c 
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Fig. 5.1—Decision-tree elements.
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Infl uence Diagrams

What are they?
Infl uence diagrams are similar to decision trees because they are graphical models 
that show the main elements of the decision problem and how they relate to, or infl u-
ence, each other—see the drilling decision shown in Fig. 5.2. However, unlike deci-
sion trees, they do not show the details of the alternatives or outcomes at, respectively, 
each decision and uncertainty node. Nor are the nodes explicitly linked in time 
order. Instead, the nodes are linked by arrows that indicate the relevance of one node 
to another. Relevance arrows between two uncertainty nodes indicate that the prob-
abilities of one node may be relevant to determining those of the other node. That is, 
there may be a statistical dependency between the probabilities, but not, necessarily, 
a causal relationship or time-order dependency. However, relevance arrows into 
a decision node, from either an uncertainty node or another decision node, do indi-
cate time order—meaning the decision or uncertainty at the preceding node(s) is 
resolved before the decision the arrow feeds into.

Why are they useful?
Infl uence diagrams are a compact way to visualize and understand a complex 
decision situation because they do not contain all the detail of a decision tree. As 
such, they are useful to the decision analyst (or team) in the following three 
main ways:

 1. To structure the decision situation to develop a high-level specifi cation 
that is objective-focused and based on a comprehensive understanding 
of the key elements. Unlike decision trees, the infl uence diagram can be 
used early in the analysis to structure the problem either before the alter-
natives are generated or before the specifi c outcomes and probabilities 
of the uncertain events are identifi ed. The clear thinking required to 
develop an infl uence diagram helps resolve the ambiguities, and struc-
ture the complexities, as noted in Chapter 2, Section 2.2.1.

(continued on page 112)

costs. If the costs are correctly inserted where they belong, the optimal decision and 
its value are the same as when the terminal payoffs include the costs and any rele-
vant discounting.

If the decision maker measures value by nonmonetary means, such as “Value 
Functions,” discussed in Sections 2.3.3, “Value, Objectives, and Preferences,” and 
2.6.1, “Step 4—Assessing Alternatives Against Objectives,” then “Values” are 
entered for the payoffs. Similarly, if the decision maker does not have a risk-neutral 
attitude to uncertainty, “Utilities” are entered for the payoffs. To avoid clutter in 
the diagram, the explicit defi nition of the decisions and uncertain events can be 
referred to using labels (e.g., numbers for decision defi nitions and letters for uncer-
tain events).
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5.2 Building Decision Trees
Most decision situations involve more than one decision and more than one uncer-
tain event; otherwise, the solution is trivial: select the alternative with the highest 
expected value (Chapter 6 includes a discussion of why maximizing expected 
value, as opposed to some other combination of probabilities and values, makes 
sense). Nonetheless, building decision trees for more-realistic situations is 
straightforward.

The tree is constructed from the basic decision elements by successively attaching 
nodes to the ends of relevant branches. Decisions should be sequenced, from left to 

2.  To communicate this model and defi nition to other people, notably the 
decision maker or manager, and to the technical experts required to 
assess input data, particularly probabilities of the uncertain events. 

3.  As a template to guide the development of a mathematical or computa-
tional model for calculating the payoffs of the decision alternatives. For 
example, to defi ne the development of a spreadsheet model to be used 
for sensitivity analysis, calculating expected values, or risk analysis 
using Monte Carlo simulation. 

In addition, some decision-tree software permits manipulations of the infl u-
ence diagram that drive formal operations, such as probability-tree fl ipping and, 
ultimately, solving the infl uence diagram for the optimal decision. However, to 
enable this capability, more-detailed information about each node must be 
entered—the same data required for decision-tree analysis. With such informa-
tion, the two representations of the decision problem are equivalent: A tree can 
be collapsed to a unique infl uence diagram, and a properly constructed infl uence 
diagram can be expanded to a tree. The practical relevance is that some decision 
problems are more convenient to analyze with an infl uence diagram than with a 
decision tree. An example is the Value-of-Information (VoI) application, 
described in Chapter 6.

Good references on infl uence diagrams include (Howard 1989), (Howard 
1990), and (Howard and Matheson 1989).

Fig. 5.2—A simple influence diagram.

Drill? Develop?
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right, in the time order of occurrence. Therefore, the fi rst node should represent the 
decision that is the ultimate goal of the analysis, and its alternatives should be those 
identifi ed in Step 3 of the decision methodology outlined in Chapter 2. Uncertainties 
resolved before decisions are made should be inserted before those decisions. Rules 
for the ordering of sequential uncertain events and for the assignment of probabilities 
to their outcomes are described in the next section. The relevant uncertainties or out-
comes may differ or coincide for each decision alternative.

Fig. 5.3 illustrates the process of building a decision tree. Although still a simplifi ca-
tion of a real case, it serves to illustrate the main features. It represents a sequential 
decision-making situation in which the decision to be made now, Decision 1, is how to 
spend a budget allowance for a single well. Assuming there is only one remaining slot 
in an existing offshore platform, two mutually exclusive alternatives are identifi ed, 
Infi ll-at-A or Stepout-to-B. Deciding between these two alternatives is the goal of the 
decision-making exercise.

If the Infi ll-at-A alternative is chosen, two uncertain events are deemed to warrant 
explicit consideration: A, the thickness of the target (thin/medium/thick), and C, the 
horizontal permeability (low/high). There is no uncertainty surrounding whether or 
not the infi ll target is present. The nodes representing these uncertain events are placed 
after the decision nodes. The diagram indicates that the horizontal permeability (k

H
) 

outcome can be either high or low for each of the three possible target thicknesses. 
Section 5.2.1 describes the rules required when the probabilities of one event depend 
on another event.
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Fig. 5.3—Constructing a decision tree.
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If the Stepout-to-B alternative is chosen for Decision 1, there are further decisions 
and uncertainties that impact the value of this alternative. Depending on the outcome 
of Uncertain Event B (whether or not the target is present), there are two possible deci-
sions: Decision 2 (with alternatives Sidetrack to Location C or Abandon) and Decision 
3 (with alternatives Core and Do Not Core). Depending on the selected alternative, 
there are different key uncertainties: D, the porosity at Location B (high or low), and 
E, the thickness of target (if any) at Location C, whose resolution determines the even-
tual payoffs.

Having developed the structure of the decision situation, three further steps must be 
completed before solving for the optimal decision. First, defi ne rigorously the out-
comes of the uncertain events: the precise meaning of thick/medium/thin, high/low 
must be defi ned to form a mutually exclusive and collectively exhaustive set. Second, 
assign probabilities to each outcome (see the following section for the assignment of 
probabilities when there is dependency between the events). Third, perform the techno-
economic calculation of the values of the end nodes corresponding to each path through 
the decision tree. These calculations may be either deterministic or the results of a 
Monte-Carlo-simulation incorporation of uncertain events not modeled explicitly in 
the decision tree. The reasons why Monte Carlo simulation is important for assessing 
the end-node values are discussed in Chapter 4, and particularly Section 4.5.

5.2.1 Ordering of Uncertain Events. Between decisions, or between decisions and 
payoffs, the order in which independent uncertain events are placed does not matter. 
That is, Event A can come before Event B or vice versa. However, if the uncertain 
events A and B are dependent (correlated), then the order in which they are placed in 
the tree implies the conditional probabilities required. For example, in Fig. 5.4a, event 
A is placed fi rst, which means that conditional probabilities are required for the out-
comes of event B (b

1
 and b

2
) given the outcomes of event A (a

1
, a

2
, and a

3
). However, 
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Fig. 5.4—Required conditional probabilities, depending on order of uncertainty nodes.
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if event B is placed fi rst, as in Fig. 5.4b, then we need the conditional probabilities of 
the outcomes of event A given the outcomes of event B.

The sequence of the nodes does not have to follow the actual timing of the resolution 
of the uncertain events, unless there is an intervening decision node. In practice, the 
order of the events should be determined by which conditional probabilities are the 
easiest to assess. If that order is not the same as their time sequence of occurrence 
(or resolution), and it is desirable to make it so, a change of order can be accomplished 
by using Bayes’ theorem (see Sections 3.3.3 and 3.5.1) to “fl ip” the conditional prob-
abilities—for example, from P(a

1 
| b

1
) to P(b

1 
| a

1
).

5.2.2 Modeling Continuous Distributions. One problem in defi ning probability 
nodes is how to deal with uncertain events whose outcomes are characterized by con-
tinuous probability distributions, and therefore have an infi nite number of outcomes. 
One solution is to approximate the real continuous probability density function (PDF) 
by a discrete PDF, with the goal of preserving the expected value as well as possible. 
Another solution is to use Monte Carlo simulation to model the full distribution. These 
two approaches are discussed below.

Discrete Approximations for Continuous Distributions. Two commonly used 
methods for discrete approximation are the extended Swanson-Megill and the 
extended Pearson-Tukey approximations. In both cases, the range of possible out-
comes for the real, continuous PDF is approximated by three discrete outcomes (often 
labeled high, medium, and low) with associated probabilities (see Fig. 5.5).

The difference between the two methods is in the choice of the three discrete out-
comes used to approximate the true PDF and in their associated probabilities. In both 
cases, the discrete outcomes used are specifi ed to be particular percentiles of the con-
tinuous PDF. Their probabilities are chosen for the expected value of the discrete 
distribution to be a good approximation to the expected value of the continuous distri-
bution. The relevant percentiles and probabilities for the two approximations are 
shown in Table 5.1.
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Fig. 5.5—Discretizing a continuous PDF.
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For example, consider discretizing a log-normal distribution in which the mean is 
300 and standard deviation is 150. The required parameters, along with the mean and 
standard deviation of the discretized distribution, are shown in Table 5.2.

The means (expected values) of the discretized distributions closely approximate the 
mean of the real distribution (100), and the standard deviations are also close approxi-
mations. However, it is clearly impossible to model the tails of the real distribution 
with only three points. The practical consequences of these observations are as 
follows: 

 1.  The discretization is suitable for any analysis that requires only the calculation 
of expected values (e.g., solving the decision tree to fi nd the optimum decision—
see next section). 

2.  The discretization should not be used when it is desired to assess the full dis-
tribution of outcomes for a particular decision alternative, particularly the 
identifi cation of possible extreme values and their probabilities of occurrence 
(e.g., in deriving the “risk profi le”—see Section 5.5).

The second listed problem can be mitigated by increasing the number of discrete 
outcomes used, still under the proviso that the probability-weighted sum of the dis-
cretized values is a good approximation to the true expected value. One widely ap-
plied approach is the Bracket Mean/Median method (McNamee and Celona 2005), 

TABLE 5.1—PERCENTILES AND ASSOCIATED PROBABILITIES

FOR DISCRETIZING CONTINUOUS PDFs

Label

yekuT-nosraePn-MegillosnawS

Percentile
Assigned

Probability (%) Percentile
Assigned

Probability (%)

Low  10  30  5  18.5 

Medium  50  40  50  63.0 

High  90  30  95  18.5 

TABLE 5.2—DISCRETE PDF APPROXIMATIONS OF A CONTINUOUS PDF 

P Value Probability P Value Probability 

10 146.4 0.3 05 123.3 0.185 

50 268.3 0.4 50 268.3 0.630 

90 491.1 0.3 95 583.3 0.185 

 8.992 naeM 7.892 naeM

Standard deviation 135.9 Standard deviation 145.8 

Pearson-TukeySwanson-Megill
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which enables a continuous distribution to be discretized into any number of values 
while preserving the expected value. However, increasing the number of intervals used 
in the discretization also expands the decision tree, the number of endpoints, and there-
fore the number of technical and economic evaluations required. Smith (1993) reports 
on the relative performance of different discretization methods.

Finally, because of the ease of specifying discrete approximations (only a limited 
number of values of the uncertain quantity need to be assessed, their probabilities 
being specifi ed by the discretization method), they are often used to directly assess 
subjective probabilities. For example, we may not be able to quantify the full PDF that 
describes the uncertainty in average porosity for an OOIP calculation. However, we 
may make a subjective assessment of its P10, P50, and P90 (or P5, P50, and P95), and 
apply the corresponding probabilities to those values. Section 7.4 discusses a system-
atic procedure for eliciting probabilities from experts.

Monte Carlo Simulation. In the preceding section, choosing more discrete intervals 
improved the approximation. As the number of intervals increases, the answer 
approaches the equivalent of performing a Monte Carlo simulation of each probability 
tree present in the decision tree.

For example, Fig. 5.6 depicts two probability trees. The objective is to calculate the 
expected value of each branch in order to determine the better of the two decision 
alternatives. The upper tree has three uncertain events, A, B, and C, each of which is 
represented using an arc to indicate that the full distribution of outcomes is being con-
sidered. The expected value of this branch may be obtained by performing a Monte 
Carlo simulation. Similarly, the expected value of the lower probability tree—D and 
E—may also be obtained by simulating these events. This type of analysis is easy, as 
long as all full-PDF nodes come after the last decision; but it is more complex if a 
decision node follows an uncertainty node. Most commercial decision-tree applica-
tions and add-ins to Microsoft’s Excel allow this. Mudford (2000), reports on the 
relative benefi ts of using decision trees and Monte Carlo simulation.

5.3 Tree Size and Compact Notation
Decision trees can quickly become “decision forests,” as the decisions, alternatives, 
uncertain events, and outcomes increase. A good rule of thumb is for a decision tree 
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Fig. 5.6—Continuous distributions for uncertain events in a decision tree.
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not to exceed one piece of paper (or fl ipchart, whiteboard, or computer screen) so as to 
retain transparency as a means of communicating the analysis to the decision maker. 
A larger tree should indicate to the analyst that the level of detail may be excessive. 
The following sections describe two approaches that can mitigate this problem. One 
approach is to present the tree in a more compact form, and the other is to reduce the 
actual tree. The former approach does not change the problem in any way; whereas, 
the latter involves simplifying it. 

5.3.1 Reduce Diagram—Compact Notation. A compact form of notation reduces 
the apparent size of the decision tree without losing any information, as follows:

 1.  The same uncertain event (having the same outcomes, possibilities, and prob-
abilities) follows multiple branches of a decision node.

2.  The same decision (with the same list of alternatives) follows multiple branches 
of an uncertainty node.

In such cases, as shown in Fig. 5.7, the convention is to place a single instance of the 
repetitive node (i.e., the uncertain event in this case), separated from the preceding 
branches and centered among them.

5.3.2 Reduce Actual Size—Strategy Tables and Scenario Analysis. The size of the 
problem can be reduced by removing some of the possible combinations of decision 
alternatives or uncertain-event outcomes. Fig. 5.8 illustrates the decision trees for two 
end-member decision situations: one in which there are multiple decisions (e.g., fi eld 
development concept), and one in which there is a single decision (e.g., drill explora-
tion well) and multiple uncertainties. (Note that the former case does not imply there 
are no uncertainties, rather, the focus is on the large number of up-front decisions that 
need to be made.) In both cases we assume the problem size has already been reduced 
by conducting a sensitivity analysis to exclude uncertain events or decision choices 
that have minimal impact.
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Fig. 5.7—Compact notation for a decision tree.
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Fig. 5.8a shows in tree form, the combination of decisions, and their alternatives 
resulting from a strategy table analysis. Decision 1 has three alternatives, Decision 
2 has two alternatives, and Decision 3 has three alternatives—leading to 3·2·3 = 18 
possible decision combinations. However, not all combinations may be logical or 
feasible. For example, if Decision 1 is a choice of number of wells, Decision 2 is 
whether to use a TLP or FPSO, and Decision 3 is choice of separation capacity. Even 
if all combinations are viable, we may choose to consider only a thematic subset of 
alternatives, each subset consisting of a coherent combination—a strategy or course 
of action. The decision problem is reduced to deciding between the strategies—all 
other combinations being ignored. For example, a strategy to minimize the time to 
fi rst oil production may be selected over one with possibly longer time to fi rst 
 production but with the opportunity to learn about uncertainties along the way and 
factor that learning into decisions. When defi ning strategies, it is usual to select 
combinations radically different and, therefore, to span a wide range of possible 
courses of action.

Fig. 5.8b represents a classic “decide now and wait” decision. That is, an alterna-
tive is chosen in which fi nal payoffs are not known until all uncertain events unfold. 
Uncertain events A and B, with three and two outcomes, respectively, occur for 
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each of the three decision alternatives. Each probability tree has six end nodes. As 
the number of events and outcomes increases, the number of end nodes to be evalu-
ated grows rapidly. One solution is to take a similar approach as when reducing the 
number of decision alternatives. In this case, rather than select strategies, we can 
select scenarios—combinations of uncertain outcomes. For example, Scenario 2 
combines a “medium” outcome of event A with a “low” outcome for event B. The 
same three scenarios may be considered for each decision alternative or a different 
scenario may be considered for each alternative, whichever makes sense for the 
specifi c problem. 

Wide-scope decisions, such as choosing a development plan, generally employ 
both techniques for reducing the size of the problem, requiring a logically integrated 
analysis that matches strategies with relevant scenarios. In this case, it often makes 
sense to consider the scenarios fi rst and then develop an appropriate strategy to 
respond to each.

5.4 Solving Decision Trees 
The goal of “solving” a decision tree is to determine the optimal (defi ned as highest 
expected value) choice between the alternatives of the immediate decision (i.e., the 
decision at the leftmost edge of the tree). The tree is solved from right to left using the 
following simple, iterative “rollback,” or “pruning,” procedure. 
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Fig. 5.9—Decision tree for illustrating rollback solution procedure.
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 1. Select a rightmost node without successors.
2. Determine the expected value (EV) associated with the node. 
 a.   If it is a decision node: select the decision with highest-expected-value.
 b.   If it is a chance node: calculate its expected value (i.e., the probability-

weighted sum of the outcomes). 
3. Replace the node with its EV.
4. Return to Step 1, and continue until you arrive at the fi rst decision node.

This procedure is illustrated using the tree shown in Fig. 5.9. The fi rst step selects a 
rightmost node (i.e., the chance node at the end of A3). Because it is a chance node, 
the rule is to replace it with its expected value, which is 0.6·500 + 0.4·(–200) = 220. 
All the rightmost nodes are replaced in this way, giving the partially solved tree shown 
in Fig. 5.10. Although the “values” are most commonly expressed monetarily, they 
could be utilities or derived from value functions.

Next, again select a rightmost node (i.e., the decision node with alternatives A3, A4, 
and A5). The rule for a decision node is to replace it with the highest expected value of 
the alternatives: therefore, 320 for A5. Similarly, the other decision node is replaced 
with 190, because A6 has the higher expected value of the alternatives A6 and A7. The 
process is repeated to eliminate the remaining two chance nodes, to give expected 
values of 216 (0.2·320 + 0.8·190) for A1 and 200 (0.3·900 + 0.7·(–100)) for A2. There-
fore, A1 is the optimal decision.
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Fig. 5.10—Partially solved decision tree.
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The resulting set of optimal decisions taken throughout the tree is sometimes called 
the decision policy. However, the point of the tree is to solve for the best decision that 
needs to be taken now, between the alternatives on the fi rst node, using our current 
state of information. The optimal set of subsequent decisions (i.e., decision policy) 
may change as uncertain events are resolved—as our information changes.

5.4.1 Example—Development Concept Choice. The following simple example illustrates 
the application and solution of a decision tree. Suppose a decision must be made to con-
tinue development of an offshore oil discovery with one or two platforms, or to abandon. A 
sensitivity study has shown the key uncertainty driving this decision is the technical recov-
ery factor (TRF)—specifi cally, the impacts of the reservoir heterogeneity and the relative 
permeability on recovery factor. Previous company experience, combined with the weight 
of published evidence for the depositional environment and recovery mechanism, indicates 
a TRF of approximately 0.25. The uncertainty in TRF is modeled by a discrete three-point 
PDF, as shown in Table 5.3; for example, P(Medium) = P(0.2 < R

f 
< 0.3) = 50%. To date, 

some simple production models have been generated for each option and used in economic 
calculations to yield the NPV shown in Table 5.3. The USD –50 million is not a sunk cost, 
but represents a real cost of relinquishing the opportunity. 

The decision tree representing this problem is shown in Fig. 5.11, along with the EV 
of each alternative. In this case, the one-platform development is the optimal choice 
because it has the highest EV (USD 360 million).

This choice illustrates that when all the payoffs of an uncertain event are the same, 
the event can be replaced by the value of that payoff, thus helping to keep the tree 
compact. In this case, the payoffs are the same for the “Walk” alternative, irrespective 
of the recovery factor.

5.5 Risk Profiles
After establishing the optimal decision, it is good practice to determine the risk profi le 
for that decision. The risk profi le is the set of end-node payoffs and associated uncer-
tainties, for that optimal decision alternative, as illustrated in Fig. 5.12 for the example 
used in Section 5.4 and shown in Fig. 5.9. The procedure is as follows:

 1. Identify all possible outcomes from the optimal-decision alternative by tracing 
forward, from left to right, through all decision alternatives and uncertainty 

TABLE 5.3—CURRENT PROBABILITIES AND PAYOFFS
(NPV, USD million) 

TRF 

High 
(Rf > 30%) 

Medium 
(20% < Rf  <30%) 

Low 
(Rf < 20%) 

30% 50% 20% Probabilities

Two Platforms 800 250 –250 

One Platform  600  400  –100 

  Walk  –50  –50  –50 
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nodes that lead to it (i.e., the decision policy). In our example, the possible 
outcomes are 400, 200, 1,000, –100, and –300.

2.  Calculate the probability of each payoff by multiplying together all the prob-
abilities that lie along the path that leads to it. In our example, the probability 
of the 400 payoff is 0.2·0.6 = 0.12. 

3.  To ensure all paths are correctly identifi ed, verify that the probabilities sum to 1.
4.   Plot the resultant discrete probability distribution and, if desired, the corre-

sponding cumulative distribution function (CDF), as shown in Fig. 5.13.

NPV Probability EV

800 30%
250 50%

–250 20%

600 30%

400 50%

–100 20%

–50 100% –50

315

360

High

Medium
Low

High

Medium
Low

Two platforms

One platform

Walk

Fig. 5.11—Decision tree with probabilities and payoffs (in USD millions).

Fig. 5.12—Finding the risk profile for decision tree in Fig. 5.9.
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5.5.1 Stochastic Dominance. The expected-value rule discussed in Sections 3.6.3 
and 5.4 is powerful, popular, and sensible for the majority of decisions faced by an oil 
company. However, it does not provide any information about the risk associated with 
the expected value, which may limit its usefulness in some situations.

When the expected-value rule fails to adequately capture the nature of the risks and 
opportunities in the decision setting, it may be appropriate to use entire risk profi les to 
compare decision alternatives. But, how can one risk profi le be determined preferable 
to another? Unfortunately, without getting into utility theory and the certain equivalent 
(see the boxes on Utility Theory in Chapter 2 and Decision Criterion in Chapter 3), no 
single answer applies in all situations. However, the idea of stochastic dominance 
allows the identifi cation of those profi les (and their associated alternatives) that can 
be ignored. Such alternatives are said to be dominated by all the other alternatives, 
because for every possible uncertainty value, there are better decisions (i.e., alterna-
tives) available. “Stochastic dominance” is a generalization of the basic concept of 
dominance described in Section 2.6.1.

Imagine an oil company considering three prospective exploration-drilling sites. 
At each site, two basic alternatives have been identifi ed, as follows:

• Alternative A: Drill one well, and use the results from this well to decide whether 
or not to drill another well, and if so, where.

• Alternative B: Drill two wells at the same time.

Alternative A has the advantage of allowing the decision makers to obtain relevant 
information from the fi rst well before drilling the second. Alternative B is cheaper to 
implement and results in earlier production. 

Assume that a reasonably complete and fi t-for-purpose model is developed for the 
analysis for all the sites. The resulting PDFs of the NPV for the two alternatives for the 
fi rst site are shown in Fig. 5.14, and we can immediately conclude that Alternative B 
is superior to, or dominates, Alternative A because the NPV of Alternative B is certain 
to be greater than that of A.

Risk profile for A1

Outcome

0

0.1

0.2

0.3

0.4

0.5

–300 –100 200 400 1,000
0

0.2

0.4

0.6

0.8

1

C
u

m
u

l
a

t
i
v

e
 
P

r
o

b
a

b
i
l
i
t
y

P
r
o

b
a

b
i
l
i
t
y

0

0.1

0.2

0.3

0.4

0.5

0

0.2

0.4

0.6

0.8

1

Fig. 5.13—Risk profile for decision tree in Fig. 5.9.
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At the second site, the PDF intersects (Fig. 5.15), and it is not immediately apparent 
that one strategy is certain to result in a higher NPV than the other. However, we can 
say that for any NPV value, Alternative A is more likely to exceed that value than 
 Alternative B, which is an example of fi rst-order stochastic dominance that exists 
when the PDFs of the competing alternatives intersect—even though the CDF does not.

For both the certain dominance at Site 1 and the stochastic dominance at Site 2, the 
projects can be ranked without any knowledge of the decision maker’s attitude toward 
risk. These dominance rules apply to any decision maker who prefers higher values of 
NPV to lower values over the whole range of possible outcomes.
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F

Fig. 5.14—PDF of two decision alternatives showing dominance of Alternative A over B.
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Fig. 5.15—First-order stochastic dominance of Alternative A over B.
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Now consider the probability distribution for a third site, shown in Fig. 5.16, in 
which Alternative B is more uncertain than Alternative A. Risk-averse decision makers 
can sometimes apply a second rule of stochastic dominance, which accounts for the 
decision maker’s preference for higher rather than lower values of NPV and his/her 
preference for less rather than more risk. It can, however, be diffi cult to implement.

At Site 3, Alternative A is clearly preferable to Alternative B at the lower ranges of 
NPV outcomes; whereas, Alternative B dominates at the higher ranges. The dominant 
alternative overall can be determined by comparing Area X (which shows the extent to 
which A dominates B) and Area Y (which shows the extent to which B dominates A). 
Because Area X is larger, Alternative A is said to have second-order stochastic 
dominance over Alternative B. As long as our limited assumption of the decision maker 
being risk-averse is correct, we can conclude that Alternative A is preferred to Alterna-
tive B. Situations in which the CDF intersects several times require summing the 
disjoint areas to establish the extent to which one alternative dominates the other.

5.6 Sensitivity Analysis
We can use sensitivity analysis to assess how sensitive the decision alternatives are to 
probabilities, as well as to the value and cost estimates. Referring back to the recom-
mended decision-making methodology outlined in Chapter 2, it is good practice to 
conduct a sensitivity analysis of the optimal alternative to changes in the probabilities 
before making a fi nal decision. This is because one possible outcome is that the deci-
sion is not sensitive to the probabilities over a range that their assessor is confi dent they 
lie within, and reducing the uncertainty further would not add any value. (Chapter 6 
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Fig. 5.16—Second-order stochastic dominance of Alternative A over B.
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shows how decision tree analysis can be used to assess the value of acquiring more 
information to reduce uncertainty.)

We can perform the sensitivity analysis by parameterizing the probabilities as fol-
lows. Using the development concept example in Section 5.4.1 and denoting P(M) to 
be the probability of a medium recovery factor, we can express the low and high prob-
abilities, P(L) and P(H), in terms of P(M) by prorating them and ensuring that they all 
sum to 1 [e.g., P(H) = a· P(M) and P(L) = 1 – P(M) – a· P(M)]. We then vary P(M) 
systematically, between 0 and 1, for example, and compute the EV of each decision 
alternative for each value of P(M). (Microsoft Excel’s DATATABLE function provides 
an easy and effi cient way to perform this computation.) Fig. 5.17 shows the results of 
performing this procedure for the concept choice example in Section 5.4.1.

When P(M) is less than 0.3, the highest EMV alternative is a Two Platform devel-
opment. When greater than 0.3, a One Platform development is optimal. Because our 
estimate of P(M) is 0.5, we can consider the selection of the One Platform scheme as 
reasonably robust. That is, P(M) being greater than 0.5 does not change the decision. 
Nor does the decision change if P(M) is less than 0.5, as long as it is greater than 0.3. 
If P(M) is close to 0.3, then NPV is unaffected by which development scheme is 
chosen.

Chapter 1 stressed that reducing uncertainty has no value in and of itself. The 
example discussed above is a case in point. If the company experts, although uncertain 
about the precise value of the probability of medium recovery, are confi dent it is above 
30%, there is no merit in trying to further pinpoint its value, because the optimal deci-
sion does not change.

There are many ways to vary probabilities for a sensitivity analysis. In many cases, 
we may want to preserve the relative likelihood of those events not being subjected to 
sensitivity analysis (i.e., when performing sensitivity of p

i
, all other probabilities maintain 

the same relative value). For example, if we want to check the sensitivity of p
1
 = P(H) 

with p
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 = P(M) and p

3
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the constants k
2 
and

 
k

3
 are given by the original relative likelihoods p

2
/(p

2
+ p

3
) and p

3
/

(p
2
+ p

3
), respectively. The probability k

2
 = p

2
/(p

2
 + p

3
) serves as a weighting coeffi cient 

to determine how the complementary probability (1–p
1
) is allocated between the other 

two elements. With this specifi cation, it is straightforward to perform sensitivity analy-
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have a fully consistent set of algebraic equations for the three-branch case, which can 
readily be extended to any number of branches.

In some cases, we need to perform a two-way sensitivity analysis for two probabili-
ties simultaneously. As always, the sum of the two cannot exceed 1. For example, to 
perform a two-way sensitivity analysis of p

1
 and p

2
, let p

3
 = 1– p

1
–p

2
. Now, vary p

1
 

between 0 and 1, and p
2
 between 0 and (1–p

1
).

Sensitivity analysis can suggest areas for either refi ning estimates or showing the 
consequences of using different confl icting estimates. It provides valuable insight and 
is an essential element of any decision-analysis process.

5.7 Decision Trees in the Context of Decision-Making Methodology
Chapter 2 described the key role of the payoff matrix. Each row of the matrix con-
tains values that measure the performance of each alternative against an objective, as 
measured by that objective’s attribute scale. The required values are simply those on 
the branches of the initial node of the decision tree, which result from solving the 
tree. Thus, a decision tree with a single metric, v, for the terminal nodes, as shown in 
Fig. 5.18 in compact form, corresponds to a payoff matrix with just one objective. 
The values v

A,…,v
E

 are the values on each branch of the initial node that result from 
solving the tree.

However, Chapter 2 emphasized that a common feature of “hard” decisions is the 
presence of multiple objectives. Fig. 5.19 shows, in decision-tree format, a decision to 
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be evaluated on the basis of three objectives as measured by their respective attributes 
(NPV, safety, and reserves). The multiple objectives are handled easily by the method-
ology of converting terminal scores to values, as presented in Section 2.5.1, and then 
combining the values according to the weight of each attribute, as described in Sec-
tions 2.5.2 and 2.5.3.

5.8 Summary 
This chapter discussed the use of decision trees in structuring, analyzing, and solving 
decision problems. The structuring step is critical because it fosters an understanding 
of the decision problem and all its aspects.

The decision tree contains all the elements of a decision problem in detail. Being 
able to see all the detail can be an advantage, but in complex decision situations, the 
trees may grow quickly and seem overwhelming. For these situations, the infl uence 
diagram offers a more compact representation of the decision problem and is better 
suited for discussion.

As will be illustrated in Chapter 6, decision trees are a natural tool for structuring 
and assessing the value of information and the value of fl exibility. As shown by 
Brandão et al. (2005), decision trees can also be extremely useful in valuing real 
options.

5.9 Suggested Reading
Most recent books on decision analysis discuss decision structuring. Good references 
are Clemen and Reilly (2001), Goodwin and Wright (2004), and McNamee and 
Celona (2005). Raiffa (1968) provided one of the earliest sources. Infl uence diagrams 
were originally developed by Ron Howard and the Strategic Decisions Group in the 
late 1970s. The fi rst publication of infl uence diagrams was by Howard and Matheson 
(1981). Since then, Howard (1989, 1990) has published several excellent papers on the 
topic. Shachter (2007) and McNamee and Celona (2005) included extensive illustra-
tion of the practical use of infl uence diagrams.
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Fig. 5.19—Decision tree with multiple attributes.





Chapter 6

Creating Value From 
Uncertainty

This chapter illustrates how the techniques described in the previous chapters can 
be applied to make better decisions by assessing the value of strategies to manage 
uncertainty, rather than just accepting its consequences as fate. We show that the 
purpose of assessing uncertainty is much more than one of predicting possible 
outcomes of a decision and their probabilities. Rather, a good understanding of the 
uncertainty can change what you would otherwise do, and change it in a way that 
creates value.

The focus of this book is on improving asset- or project-level decisions, and, in par-
ticular, on improving how uncertainty impacts decisions. Decision makers who face 
projects with uncertain outcomes can address this uncertainty in three different ways 
as follows:

• Ignore uncertainty.
• Gather information to reduce uncertainty.
• Develop a fl exible response to the uncertainties as they are resolved.

The first approach, and historically the most common in the oil and gas indus-
try, is to ignore uncertainty or to make some ad-hoc increases to economic metric 
hurdles to “account” for it. In the long run, such an approach is guaranteed to 
result in suboptimal allocation of resources and create less value than possible 
(Begg et al. 2003).

The second approach is to gather data and information with the intention of reduc-
ing the uncertainty. Examples of gathering information to reduce uncertainty include 
conducting a seismic study, coring a well, running a well-test analysis, consulting an 
expert, running logging surveys, doing a pilot fl ood, drilling additional appraisal 
wells, doing a reservoir simulation study, and learning from other fi elds, companies, 
or people. The intuitive reason for gathering information is straightforward: If the 
information can reduce uncertainty about future outcomes, we can make decisions 
with better chances for a good outcome. However, such information gathering is often 
costly. Questions that arise include the following:
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• Can the uncertainty reduction change the decision?
• Is the expected uncertainty reduction worth its cost?
• If there are several potential sources of information, which one is most valuable?
• Which sequence of information sources is optimal? 

We describe a formal Value-of-Information (VoI) methodology designed to answer 
these questions before deciding to invest in collecting more information.

The third approach is to develop some form of fl exible response to the outcomes of 
the uncertainties as they become known, or are reduced. Responses could be designed 
to mitigate a negative aspect of uncertainty (e.g., planning for possible pressure sup-
port to mitigate poor aquifer strength) or to enable the capture of a positive aspect of 
uncertainty (e.g., planning room for extra wells on a platform in case the original oil in 
place is higher than expected). Whether the fl exibility is designed to mitigate a risk, or 
to capture an opportunity, the goal is to determine if the expected benefi t of that fl exi-
bility outweighs its cost. We term this analysis Value-of-Flexibility (VoF). 

VoI and VoF are not necessarily competing approaches to managing uncertainty. We 
can determine whether it is more valuable to reduce uncertainty, respond to it, or both. 
Although we primarily defi ne value in terms of a single economic metric, such as net 
present value (NPV), because this is the most common case in practice, none of the 
techniques require that there be a single metric or that it be an economic one. The tech-
niques are therefore applicable to multi-objective decisions as described in Chapter 2.

As a prelude to VoI analysis, we describe the application of Bayes’ theorem to updat-
ing probability estimates, illustrated by using information from cored wells to update 
log-derived predictions of productive facies. VoI is then introduced as a means of put-
ting a value on this ability to gather new information and update probabilities, and it is 
illustrated by application to a reservoir-development decision in which the technical 
recovery factor is the key uncertainty. Finally, we describe and illustrate VoF analysis 
by considering two decisions. The fi rst decision uses fl exibility to mitigate the risk of 
inadequate pressure support caused by uncertainty in aquifer strength. The second deci-
sion involves the appropriate number of well slots on a platform to capture the potential 
upside opportunity resulting from OOIP uncertainty.

6.1 Updating Probabilities With New Information 
Decision analysis helps to distinguish between constructive and wasteful information 
gathering. As petroleum engineers and geoscientists, we often gather information to help 
us assess the primary event of interest. We must frequently update our probabilities, or 
beliefs, about the possible outcomes of uncertain events in the light of new information. 
For example, how should an initial estimate of the chance of success (COS) in a drilling 
program be updated as a result of the outcomes of the fi rst wells drilled? Or, how should 
the probability of OOIP being “high” be updated as a result of drilling an appraisal well? 
Or, how can we use cased-hole logs to discern the probability of suboptimal recovery 
caused by bypassed oil? Such questions can be answered by applying Bayes’ theorem.

6.1.1 Bayes’ Theorem for Updating Probabilities. We derived Bayes’ theorem in 
Chapter 3 (Eq. 3.9):

P B A
P A B P B

P A
( | )

( | ) ( )

( )
.=      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   (6.1)
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It enables us to evaluate probabilities, such as a model being a good representation of 
the real world given an observation, or a hypothesis being true given the data.

In Chapter 3, we showed how the total probability, the denominator on the right side, 
can be decomposed into two components: when A occurs with B, and when A occurs 
without B. However, Eq. 6.1 can be generalized to multiple outcomes for B. Consider 
a collection of n mutually exclusive and collectively exhaustive events, B

1
, B

2
, … , B

n
 

and another event A (see Fig. 6.1). For example, B
1
, B

2
, and B

3
 may represent high, 

medium, and low actual OOIP, respectively; and A may be the OOIP predicted by a 
reservoir characterization study.
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|
( ) =

( ) ( )
( ) ( )=∑ 1

.    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   (6.2)

In using Bayes’ theorem to model learning, we start with an opinion, however 
vague, about the probability of B

i
 occurring (our prior probability). We then 

modify this opinion when presented with new evidence, A, in which probabil-
ity, P(A | B

i
) is called the likelihood function—the probability of observing the 

data (or information, or model) A, given that B
i
 occurs. The denominator is the 

marginal or total probability of A occurring (i.e., all the ways that A can occur 
with the various B

i
). The updated probability for B, given that A occurs, is the 

posterior probability P(B
i
 | A). Using this  terminology, Eq. 6.2 becomes the 

following:

Posterior probability (Likelihood) Prior probability)
(Lik

= ⋅ (
eelihood) Prior probability)⋅[ ]∑ (

   = ⋅(Likelihood) Prior probability)
Marginal

( ,      . . . . . . . . . . . .   (6.3)

where

• Prior probability P(B
i
) = the probability representing our prior beliefs about the 

event B
i 
before we observe the information A. Given the subjective nature of 
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Fig. 6.1—Total probability of Event A.
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probabilities discussed in Section 3.3, P(B
i
) should be considered a conditional 

probability, P(B
i
 | &), in which “&” represents all our information, knowledge, 

and experience to date (excluding the new information A). We will not include 
the & in the probability notation in the remainder of this book. However, it is 
important to recognize that any probability assessment is conditioned on it.

• Likelihood P(A | B
i
) = the calculated or estimated probability of observing the 

data A given B
i
. Regarded as a function of the B

i
, the value of the likelihood 

function embodies the amount of information contained in the data A (i.e., the 
reliability of the data). If the information-content is low, or uninformed, the 
likelihood function is close to a uniform distribution, whereas if the informa-
tion it contains is large, one of the elements of the likelihood function is close 
to 1.

• Marginal probability of A P A B P Bj jj

n
( | ) ( )

=∑ 1  = the probability of what will 
be observed in the information-gathering experiment, sometimes called the total 
probability of A, the preposterior, or evidence. If there is no uncertainty in what 
will be observed, there is no point in performing the experiment.

• Posterior probability P(B
i
  |  A) = our updated state of knowledge of the probabil-

ity of B
i 
after we have observed the data A and given our opinion of the value of 

B
i
 before A was observed.

Bayes’ theorem may at fi rst appear diffi cult, but our teaching experience indicates 
that most people start feeling comfortable with the methodology after working through 
a few examples.

Example 6.1—Uncertainty Updating Using Log-Based Predictions. We illustrate 
the method by calculating the reduction in the uncertainty in predictions of productive 
facies in logged but uncored wells, by calibrating against cores from other wells. An 
interval in a logged well is interpreted, on the basis of its log signature, as having a 
40% chance of being a producing facies. That is, the assessment of the prior probabil-
ity is P(Producing) = 40%. This probability suggests it should not be perforated. How-
ever, before making the decision to perforate, it is proposed to update the probability 
estimate by using the results of a newly available study that assessed the reliability of 
log-based predictions, using cored wells in which the identifi cation of productive 
facies is unambiguous. 

In this study, 30 facies intervals were classifi ed as either productive or nonproduc-
tive. Of the 10 productive intervals, 8 were correctly predicted by the log signature. Of 
the 20 nonproductive intervals, 14 were correctly predicted by the log signature. Thus, 
as is the norm in our industry, the log provides imperfect information. Nonetheless, we 
wish to use the information to revise the probability that the interval in the logged well 
is productive. Mathematically, we seek a value for P(Interval is Productive | Log says 
Productive).

In this example, the prior probability is P(Productive) = 40%, and the informa-
tion from the calibration study is tabulated as shown in Table 6.1, in which Pro-
ductive is abbreviated as Prod, nonproductive is abbreviated as Dry, “Log says 
Productive” is abbreviated as “Prod,” and “Log says Dry” is abbreviated as “Dry.” 
Thus, our problem is to find P(Prod | “Prod”), which can be done using Eq. 6.2 as 
follows:
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(“ ” | ) ( )( | “ ”)
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| + |
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P

P P

P P P P

Prod Prod Prod
Prod Prod

(“Prod”)

(“Prod” Prod) (Prod)

(“Prod” Prod) (Prod) (“Prod” Dry) (Dry)

The solution steps are as follows: 

1. Assess the likelihood of observing the log data given the true productive status 
of an interval, which is P(“Prod” | Prod). The data in Table 6.1 give the likelihood 
as 8/10 = 0.8. That is, of the 10 producing intervals, 8 were correctly identifi ed as 
such from their log signatures.
2. Calculate the marginal probability that the log data indicate a productive 
 interval—the denominator in Eq. 6.2. We already have the prior P(Prod) = 0.4 
and likelihood P(“Prod” | Prod) = 0.8 from Step 1. We also need P(“Prod” | Dry) 
and P(Dry). From the data in Table 6.1, P(“Prod” | Dry) is 6/20 = 0.3, and P(Dry) 
is given by 1 – P(Prod) = 0.6.
3.  Calculate the revised (updated or posterior) probability that the interval in 
question is productive given that the log indicates it is so:

“ ” 0.8 0.4 0.32
(Prod | Prod ) 0.64.

0.8 0.4 + 0.3 0.6 0.32 0.18
P

Thus, by making use of the reliability of the log data, the probability that the interval 
is productive has increased from 40 to 64%.

Every information-gathering process that involves updating prior beliefs with new infor-
mation, regardless of its form, logically requires the steps described above. We have changed 
a reliability probability of the form P(data says | real world is) into a revised probability of 
the form P(real world is | data says). It is the key to the VoI, which extends the method by 
valuing, usually in dollars, a decision about whether or not to acquire the information.
    Table 6.2 lists some events with relevant sources for prior and likelihood probabilities 
for which the same procedure would apply.

TABLE 6.1—NUMBER OF INTERVALS

TO BE USED FOR RELIABILITY ASSESSMENT

Interval is …

Prod Dry

Log data “Prod” 8 6g
says … “Dry” 2 14

Total 10 20
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6.1.2 Perfect Information. A predictor’s information is perfect if always correct. 
That is, if the information from the experiment is perfectly reliable, getting the infor-
mation leaves no doubt about the future outcome. Returning to our previous example, 
if the log prediction of facies productivity were perfectly reliable, then the table of 
likelihood probabilities would be as shown in the left side of Table 6.3. These proba-
bilities are of the form P(A | B) or P(experiment says | real world is). Similarly, the 
updated probabilities of the form P(B | A) or P(real world is | experiment says) are 
shown in the right side of Table 6.3.

Very few, if any, of the methods used for information gathering in the upstream oil 
industry provide perfectly reliable information. Nevertheless, the concept of perfect 
information can be very useful, as described in the next section.

6.2 Value of Information
Most of what we do as petroleum engineers or geoscientists involves “acquiring” 
information in one form or another. “Information” is used here in a broad sense to 
cover acquisition of data, performing technical studies, hiring consultants, perform-
ing diagnostic tests, etc. The hope is that reducing uncertainty increases the chance 
of our decisions yielding a desired outcome. In fact, the only other valid reason for 
information collection or technical analysis is to meet regulatory requirements. The 
fundamental question for any information-gathering process is whether or not the 
expected reduction in uncertainty is worth the cost of obtaining the information. 
The VoI technique is designed to answer this question.

TABLE 6.2—EXAMPLES OF PRIORS AND LIKELIHOODS SOURCES FOR VARIOUS EVENTS  
Event Basis of Prior Probability Source of Likelihood Data

Broken flowmeter Historic % broken flowmeters  Analysis of instantaneous % change 
in production 

Faulty weld in pipe Historic % faulty welds Reliability of “pig-” based x-rays 

Chance of success 
in a prospect

Analogous prospects in basin Initial drilling results for a specific 
prospect 

Average porosity Generic log-based porosity New core data 

TABLE 6.3 —PERFECT INFORMATION 

Given that interval 
is … 

Given that log data
says … Reliability  

p robabilities 
P(says | is) Prod  Dry 

Updated 
probabilities  
P(is|says) “Prod” “Dry” 

“Prod” 1 0 Prod  1 0 
… the log data  
says 

“Dry” 0 1 

… the  
interval is 

Dry 0 1 

Total  1  1 Total  1 1 
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In the previous example, suppose the core-log calibration study had not already been 
completed. We would like to know the value of the study before making the decision 
to do it, given that its value may be less than its cost, especially if no core has been 
taken yet.

6.2.1 Basic Information Gathering. The purpose of a VoI calculation is to estimate 
the value of a proposed information-gathering exercise so that the decision of whether 
or not to implement it is made on an economic basis. For information to be valuable, a 
probabilistic dependence must exist between the information and the outcomes of the 
uncertain event of interest (i.e., it must be relevant). Moreover, the event of interest 
must impact a decision metric suffi ciently that we may change our decision (i.e., it 
must be material). Finally, its value should exceed its cost, in which case the implicit 
investment rule says to acquire the information. In the preceding and subsequent dis-
cussions, the cost of acquiring the information is excluded from the calculation of its 
value. Clearly, the cost depends on the nature of the information. Calculating costs 
includes staff salaries, opportunity costs, and obvious direct costs. 

The VoI can be thought of as the value attributed to the updated probabilities. In 
calculating this value, the following information is needed:

1.  Current, or a priori, probability estimates of the possible outcomes the quan-
tity can take (e.g., 30% chance recovery factor is low, 70% chance it is high). 
2.  Reliability (likelihood) estimates of the effi cacy of the information in predict-
ing the outcomes (e.g., when recovery factor is known to be high, 3D reservoir 
simulation studies correctly indicate high 80% of the time). 
3.  Project values in monetary terms for each of the possible combinations of 
outcomes (e.g., NPV of USD + 600 million if recovery factor is high and  
USD –100 million if it is low).

Although project values can be derived through deterministic analysis, we recom-
mend using expected NPV derived from Monte Carlo simulation of other uncertainties 
because of the often complex interrelationships involved.

6.2.2 Expected Value of Information. VoI calculations are often depicted by deci-
sion trees because they add clarity to the process. In effect, we calculate the expected 
value of two decision trees. The fi rst tree represents the expected value of the project 
with the current probability estimates. The second tree represents the expected value 
of the project with the updated probability estimates that result from acquiring the 
 information, as described in the previous section. The difference in the value of the 
two trees is the expected VoI.* We use expected in its strict mathematical sense—the 
value resulting from repeatedly applying the VoI methodology over many decisions. 
In practice, this step does not mean we have to make the same decision many times, 
merely that we should consistently apply the methodology to all decisions. In any indivi-
d ual case, as discussed in the Decision Criterion box in Section 3.6.3, the expected 

   *This commonly used VoI defi nition is correct only for decision makers with constant risk aversion 
(i.e., a risk-neutral or exponential-utility function).
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value is still the optimal decision criterion. However, in accordance with the discus-
sion in the “Do Not Expect the Expected Value” portion of Section 3.6.3, it is very 
unlikely that we can receive that actual value because of its expected nature. 

Before going through the calculation procedure in detail, we fi rst consider some 
intuitive limits on the VoI. The worst possible case is that regardless of the infor-
mation we get from the predictor, we still make the same decision as without it. In 
this case, the information has zero expected value, irrespective of its cost. Zero is 
therefore a lower bound on VoI.

At the other extreme, perfect information is the best possible case. For example, nothing 
is better than resolving all the uncertainty in the perforation decision before deciding 
whether or not to perforate. We no longer have to worry about unlucky outcomes, because 
once we have the information, we know what the outcome will be and therefore can make 
the optimal decision with certainty. This perfect information provides an upper bound on 
the information value, which is called the expected value of perfect information (EVPI).

The usefulness of computing the EVPI does not rest in any way on the existence of 
perfect information-gathering devices. The point of fi nding the EVPI is that it repre-
sents the most a decision maker should pay for any kind of information about the out-
comes of an uncertain event. No device, person, survey, or other information-gathering 
process can possibly generate values which exceed the EVPI. Knowing the EVPI, the 
decision maker has a benchmark against which to compare any information-gathering 
process that may be proposed. If the cost of the process exceeds the EVPI, there is no 
need to examine the proposal further. Fortunately, its calculation is easy, because it does 
not require any explicit likelihood assessments or probability updating.

If the EVPI indicates that further analysis is warranted, we proceed to calculate the 
value of the information that would be possible to collect.  Since this real information 
cannot tell us the outcome with certainty, it is called the expected value of imperfect 
information (EVII).

6.2.3 Steps in Calculating the VoI. The main procedural steps in conducting a VoI 
study are now outlined below. Subsequently, we will illustrate these steps by applica-
tion to a simplifi ed decision.

1.  Calculate the expected value of the decision to be made as it currently stands 
(i.e., without the information). We term this calculation the value of the base proj-
ect. It is usually carried out using the methodology described in Chapter 2 and 
depicted using a decision tree as described in Chapter 5.
2.  Formulate the structure of the decision situation to include the new information. 
Start by adding a new branch to the fi rst node of the decision tree to represent the 
choice to acquire information. This branch should lead to an uncertainty node, the 
uncertain event being the results of the information-gathering exercise. To each of 
the possible outcomes of the information-gathering event, add the tree that repre-
sents the base project. The resulting sub-tree says that, should we choose to get the 
information, once we know its outcome we will address the original decision.
3.  Calculate the value of perfect information. This can be done either by in-
spection of the decision tree in Step 2, or by entering 1 and 0 (as per Table 6.3) 
for the revised probabilities in Step 4. If the EVPI is negligible, or less than the 
cost of acquiring the information (if known at this stage), decide not to collect 
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4.  Calculate the value of the project with the real, imperfect information. This 
step has the following sub-steps:

a. Estimate the reliability (likelihood) probabilities—P(info says | real world is).
b. Calculate updated (posterior) probabilities for the outcomes.
c.  Enter updated probabilities in the decision tree, and solve for the project 

value.

5. Calculate the expected value of imperfect information (EVII) by taking the dif-
ference in values between Steps 4 and 1, and compare this difference with the cost 
of acquiring the information.
6.  Perform a sensitivity analysis to test the robustness of the decision to changes in 
the prior and reliability (likelihood) probabilities. The robustness of the decision 
with respect to changes in the payoffs should also be investigated. We do not, in 
general, need to assess the payoffs or probabilities with great accuracy. If, over the 
range of possible probabilities and payoffs, the decision does not change, the as-
sessments are good enough for decision purposes. Such knowledge can prevent 
protracted arguments, ineffi ciencies, or angst about assessing them.

The trickiest part of the previous procedure is Step 2—ensuring that we correctly 
formulate the decision situation with the anticipated information included. We illus-
trate this step in a generic sense in subsequent text and in Example 6.4.

Suppose we have a simple decision to either do something (e.g., drill a well) or not. 
We label these two alternatives D

1
 and D

2
, respectively—see Fig. 6.2. Now suppose 

we have an uncertain event B with two possible outcomes, B
1
 and B

2
 (e.g., the well is 

commercial or not commercial, assuming that we agreed on a clear defi nition of the 
event “Commercial”). Our current estimate of the probabilities of B

1
 and B

2
 occurring 

are P(B
1
) and P(B

2
). If we choose D

1
, then the payoff is either NPV(B

1
) or NPV(B

2
), 

depending on which outcome occurs. If we choose D
2
, we assume that our payoff is 

USD 0. This outcome defi nes the base project, Step 1.
Now, we need to formulate the decision problem in light of an opportunity to acquire 

additional information. First, a third alternative, labeled D
A
, is inserted onto the initial 

decision node to indicate the decision to collect information, A. The possible outcomes 
of this information, A

1
 or A

2
, are known to be dependent on the outcomes of interest, 

B
1
 and B

2
. For example, the information may be a 3D seismic survey with the out-

comes of “Bright Spot” or “No Bright Spot.” At this point, we do not know the prob-
abilities of observing A

1
 or A

2
. However, once the probabilities are known, we revert to 

the original decision. This decision is modeled by inserting the original base project 
decision tree at the end of both A

1
 and A

2
.

Because the probabilities of the outcomes of B are related to the probabilities of out-
comes of A, they are dependent and therefore indicated as such by conditional probabil-
ities (as yet unknown). That is, if the outcome of the data acquisition is A

1
, and we decide 

to execute the project D
1
, then either B

1
 or B

2
 occurs given that A

1
 occurred. Similar 

reasoning applies to A
2
. For example, if the 3D seismic indicates a “Bright Spot” (A

1
), 

and we decide to drill, the well can turn out to be commercial with probability 

the information and choose the highest-value alternative in the base project. Oth-
erwise, proceed to Step 4.
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P(Commercial|“Bright Spot”) or not commercial with probability P(Not Commer-
cial | “Bright Spot”).

The decision situation is now formulated to include the option of acquiring informa-
tion. All that remains is to calculate the required probabilities, and then solve the deci-
sion tree in normal fashion. Assuming that we have reliability information about the 
effi cacy of “bright spots” in predicting commercial wells, we can combine this reli-
ability data with our prior probabilities to obtain the required probabilities by tree-
fl ipping, as shown in Fig. 6.3.

The sum of the probabilities of the possible outcomes of the data acquisition, P(A
1
) 

and P(A
2
), is simply the total probability (i.e., the denominator of Bayes’ theorem). 

The updated probabilities are then calculated by the following:

P B A
P A B P B

P A B P B P A B P B1 1
1 1 1

1 1 1 1 2 2

|
|

| |
( ) =

( ) ( )
( ) ( ) + ( ) ( )

P B A
P A B P B

P A B P B P A B P B2 1
1 2 2

1 1 1 1 2 2

|
|
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|
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P B A
P A B P B

P A B P B P A B P B2 2
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Fig. 6.2—Generic VoI decision tree.
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Example 6.2—VoI for Development Concept Decision. We now elaborate on the 
VoI methodology by returning to the fi eld-development decision used to illustrate the 
application of decision trees in Chapter 5. To recapitulate, a decision must be made 
either to develop an offshore oil discovery with one or two platforms, or to abandon. 
Sensitivity analysis shows that the key uncertainty driving this decision is the technical 
recovery factor (TRF)—specifi cally, the impacts of reservoir heterogeneity and rela-
tive permeability on TRF. 

Rather than make the development decision now, it is proposed that, in the next  
appraisal well, core-plug samples be taken from the main reservoir lithotypes and 
submitted for special core analysis. The resulting relative permeabilities and well data 
will then be used in a new reservoir simulation model. For brevity, we call this the 
study. The question to be answered is: “Is the reduction in uncertainty due to carrying 
out the study worth the cost of doing it?”

Step 1. Calculate the value of the base project. The data from the example in Section 
5.4.1 are reproduced for convenience in Table 6.4, and the associated decision-tree 
analysis in Fig. 6.4. The analysis indicates that development with a single platform is 
the best choice, with an expected value (EV) of USD 360 million.

Step 2. Include the option of acquiring new information that may reduce the uncer-
tainty in the TRF. To include this option, we insert the alternative “to conduct the 
study” on the initial decision node. At the end of this branch, we add an uncertainty 
node to represent the unknown outcome of performing the study (i.e., whether or not 
it will say the TRF is “Low,” “Medium,” or “High”—unambiguously defi ned as per 
Section 5.4.1). Finally, we replicate the original decision at the end of each outcome 
branch of the uncertainty node. This new tree is shown, using compact notation, in the 
lower part of Fig. 6.5, where the “…” represents the conditioning event (outcome of 
the study).

Step 3. Calculate the EVPI. If the study is a perfect predictor, its completion leaves 
no uncertainty about the TRF. In this case, we know that the revised probabilities are 

Information we have Information we need 

Totals Posteriors
B1 | A1

A1 P=?
B

P=? B2 | A1
P=?

A

B1 | A2
A2 P=?

B

P=? B2 | A2

P=?

Priors Reliabilities

A1 | B1
B1 P(A1|B1)

A

P(B1) A2 | B1
P(A2|B1)

B

A1 | B2

B2 P(A1|B2)
A

P(B2) A2 | B2

P(A2|B2)

Fig. 6.3—Tree flipping.
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simply the ones shown in Table 6.5, and the probabilities of the study outcomes are the 
original prior probabilities.

Inserting these probabilities into the decision tree in Step 2 reduces it to the tree 
shown in Fig. 6.6, resulting in an EV of USD 430 million. The EVPI is therefore USD 
430 million – USD 360 million = USD 70 million. This upper bound on information 
value is substantially more than the expected cost of the proposed study, suggesting we 
should proceed with an EVII calculation.

Step 4. Calculate the EVII by including the reliability of the information. First, 
obtain probabilities that quantify the reliability of the study as a predictor of TRF; see 
Section 6.2.4 for a general discussion on estimating reliabilities. The assessed reliabil-
ity probabilities for this example are shown in Table 6.6. The reliability data need not 
be symmetric and, in this case, the study is thought to be a better predictor when the 
TRF is high than when it is low.

Next, calculate (a) the probabilities that the study will say (predict) “Low,” 
“Medium,” or “High” TRF, and (b) the revised probabilities of the actual TRF, given 
the study predictions. The desired probabilities are calculated from the prior and reli-
ability probabilities using Bayes’ theorem. For example, the probability that the study 

TABLE 6.4—CURRENT PROBABILITIES AND PAYOFFS (NPV, USD million)

TRF

High
(R

t
 >30%)

Medium
(20%<R

t
 <30%)

Low
(R

t
 <20%)

Probabilities 30% 50% 20%

Two platforms 800 250 –250

One platform 500 400 –100

Walk –50 –50 –50

NPV Probability EV

800 30%
250 50%

–250 20%

600 30%

400 50%

–100 20%

–50 100% –50

315

360

High

Medium
Two

Low

High

Two
platforms

Medium

Low

One
platform

Walk

Fig. 6.4—Decision tree with current probabilities and payoffs (NVP in USD millions).
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Two platforms

One platform

Walk

P(High|…)

P(Medium|…)

P(Low|…)

P(High)

P(Medium)

P(Low)

P(High)

P(Medium)

P(Low)

Two platforms

One platform

Walk

Probability study will
say TRF High, Medium, Low

Revised probabilities TRF
is High, Medium, Low given

study results 

Fig. 6.5—Compact decision tree for VoI calculation.
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–50
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–250

–100

–50

Two platforms

One platform
Walk

Fig. 6.6—EVPI (in USD millions).

will predict the TRF to be “High” is composed of the sum of the probabilities of 
the three circumstances in which that could happen (when the real TRF is High, 
Medium, or Low) as follows:

(“H”) (“H” | H) (H)

(“H” | M) (M)

(“H” | L) (L)

P P P

P P

P P

Preposterior Reliabilities Priors
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TABLE 6.5—REVISED PROBABILITIES WITH PERFECT 

 P(is|says)

Study says TRF … 

“High” “Medium” “Low” 

… the 
actual 
TRF is 

High 1 0 0 

Medium 0 1 0 

Low 0 0 1 

INFORMATION—

TABLE 6.6—ASSESSED RELIABILITIES—P(says| is)

When TRF isWhen TRF is …

High Medium Low

the

“High” 0.80 0.20 0.15

… the 
study 
says

“Medium” 0.15 0.70 0.25

“Low” 0.05 0.10 0.60

where H, M, or L indicate that the TRF is High, Medium, or Low, respectively, and 
“H,” “M,” or “L” indicate that the study will say the TRF is “High,” “Medium,” or 
“Low,” respectively. Substituting the example data gives the following:

(“H”) (0.8)(0.3) (0.2)(0.5) (0.15)(0.2) 0.370,P

which is the (total) probability the study indicates a “High” TRF. Thus, the probability 
that the TRF actually is High given the study indication is as follows: 

“ ”“ ”
“ ”

P P
P

P

( H | H) (H) (0.8)(0.3)
(H | H ) 0.65.

( H ) 0.370

Similar calculations give the other total probabilities to be P(“M ”) = 0.445 and 
P(“L”) = 0.185, and the posterior (revised) probabilities to be as shown in Table 6.7.

All data required for the VoI decision tree are now available; therefore, the fi nal task 
is to solve it for the EV of the decision to “do the study.” The expanded decision tree, 
with the data for this example, is shown in Fig. 6.7. For the option to do the study, the 
decision tree gives an EV of

EV USD million USD million US        = ⋅ + ⋅ + ⋅0 37 566 0 445 364 0 185. . . DD million

USD million

  

  

92

389= .
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Step 5. Calculate the EVII and compare it with the cost of the study. Because the EV 
of the base project is USD 360 million, the EVII is USD 389 million – USD 360 
 million = USD 29 million. The provisional decision, pending the sensitivity analysis 
in Step 6, should be to proceed with the study if its expected cost is less than USD 29 
million. The cost would include the coring and laboratory analyses, the construction of 
a new geological model, upscaling, history matching, and subsequent reservoir simu-
lation. Delaying the main decision because of the study may affect some of the less 
obvious costs, such as staff time, lost-opportunity costs, and any time-value-of-money 
changes to the NPV. 

Having calculated the EVII does not mean that the study will actually produce 
this value, but that applying this decision-making methodology on a consistent ba-
sis maximizes overall outcome. To better understand the possible outcomes and 
their probabilities, it is recommended to generate a risk profi le, as discussed in 
Chapter 5.

Step 6. Conduct a sensitivity analysis of the EVII to the variables used in estimating 
it. How is the EVII affected if the prior or likelihood probabilities are different from 
their initial estimates? 

To get a sense of the robustness of the decision to the uncertainty of the likelihood 
probabilities, it is easiest to fi rst parameterize them. A simplifi ed parameterization 
based on the upper-left cell, p = P(“H” | H), is shown in Table 6.8. Although we vary 
only the upper-left cell of the table, we are investigating the sensitivity to all reliability 
probabilities because of the dependencies enforced by the necessity that the probabili-
ties in each column sum to 1. In Table 6.8, we assigned the variable probability p to the 
diagonal. Because the probabilities must be collectively exhaustive, we then split the 
“remaining” probability, (1 – p), equally between the two off-diagonal elements.* We 
may equally well choose to split the difference with, say, ⅓ to the next nearest estimate 
and ⅔ to the other. Likewise, we may have asymmetric reliabilities by making the 
other diagonal elements some fraction of the upper-left cell. If we wanted to preserve 

TABLE 6.7—REVISED PROBABILITIES—P(is | says)

When study TRFWhen study says TRF …

“High” “Medium” “Low”

the

High 0.65 0.10 0.08

… the 
actual 
TRF is

Medium 0.27 0.79 0.27

Low 0.08 0.11 0.65

*The probabilities of the experiment outcomes (the study says …) must sum to one in the likelihood 
function whilst the probabilities of the outcomes of the underlying uncertainty (the TRF is …) must 
sum to one for the posterior probabilities.
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the relative likelihood of those events not being subjected to sensitivity analysis, we 
should use the parameterization suggested in Section 5.6, “Sensitivity Analysis.” 

Returning to our example, the EVII is calculated for a range of values of p, as shown 
in Fig. 6.8. It can be seen that the decision to do the study is robust with respect to the 
reliability probabilities. As long as we assess p to be greater than approximately 46%, 
it is not necessary to obtain a refi ned value, and we should go ahead and perform the 
study.

At approximately 95% reliability, the slope of the graph changes, which is because 
at this high reliability level , the decision changes from “one platform” to “walk” if the 
study predicts a low TRF. At 100% reliability, the EVII is USD 70 million, which is 
the EVPI.*

NPV Probability EV

800 65%
250 27%

–250 8%

600 65%
400 27%

–100 8%

–50 100% –50

800 10%
250 79%

–250 11%

600 10%
400 79%

–100 11%

–50 100% –50

800 8%

250 27%

–250 65%

600 8%
400 27%

–100 65%

92

489

566

249

364

–30

Study says

TRF is
High

Two platforms

One
platform

Walk

High

Medium
Low

High
Medium

Low

Two platforms

One
platform

Walk

High
Medium

Low

High
Medium

Low

Two platforms

One
platform

Walk

High

Medium
Low

High
Medium

Low

Study says

TRF is Medium

Study
says TRF
is Low

P=37%

P=44.5%

P=18.5%

–50 100% –50

EV=USD 389

Fig. 6.7—Full decision tree for VoI calculation (in USD millions).

*An abrupt slope change in the VoI graph is usually an indication of a decision change.
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Fig. 6.8—Variation of VoI with reliability of P (“H” | H).

TABLE 6.8—PARAMETERIZATION OF RELIABILITIES OF STUDY IN 

PREDICTING RECOVERY FACTOR

When TRFWhen TRF …

High Medium Low

the

“High” p (1–p)/2 (1–p)/2

… the 
study 
says

“Medium” (1–p)/2 p (1–p)/2

“Low” (1–p)/2 (1–p)/2 p

is

60

70
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40% 50% 60% 70% 80% 90% 100%

P(TRF is High | Study says High) Reliability

VoI and Infl uence Diagrams

An infl uence diagram is an effective way to analyze VoI situations. Consider the 
basic risky decision depicted in Fig. 6.9. By drawing an arrow from the uncer-
tainty node to the decision node, we modify the situation to describe what hap-
pens if we have perfect information (i.e., the uncertainty is resolved before the 
decision is made). Simply adding the arrow implies the whole set of calculations 
outlined in Sections 6.2.2 and 6.2.3, “Steps in Calculating the VoI.” Similarly, the 
value of imperfect information can be depicted by adding another uncertainty 
node to represent the outcomes of the “predictor.” Again, solving the infl uence 

(continued on page 148)
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6.2.4 Assessing the Prior and the Likelihood Probabilities. An obvious question at 
this point is: “From where do we get the prior and likelihood probabilities?” As you 
may have surmised, the answer is: from subjective assessments based on people’s 
knowledge of the situation or data.

For the decision and risk analyst, subjectivism is a fact of life. Each model is only an 
approximation of the real world. Decisions about the structure and acceptable accu-
racy of the decision model are unavoidably subjective. Moreover, the decision analyst 
must rely on subjective estimates for most of the model inputs, sometimes without any 
data to back up these estimates.

The Prior. The prior distributions are the description of one’s state of knowledge 
about the event in question before observation of the new information. Far from 
causing problems, accepting this “degree of belief” interpretation of probability 
permits engineers and geoscientists to use any and all knowledge and experience, 
including data deemed to be relevant for a given assessment. Indeed, we submit that 

Decision

Uncertainty

Pay-off

Decision

Uncertainty

Pay-off Decision

Uncertainty

Pay-off

Predictor

IIVEIPVE

Basic risky

decision

Decision

Uncertainty

Payoff

Decision

Uncertainty

Payoff Decision

Uncertainty

Payoff

Predictor

Fig. 6.9—EVPI and VoI.

diagram is the same thing as fl ipping the conditional probabilities as described 
previously. Some software applications allow you to perform VoI calculations 
through the use of infl uence diagrams. Of course, this procedure does not obviate 
the need to assess and specify the prior and likelihood probabilities. 
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being good at assessing priors (and likelihoods) is an essential skill for all engineers 
and geoscientists.

Without being aware of it, petroleum professionals pull prior evidence from many 
different sources. Unfortunately, this procedure is rarely formalized. The beauty of 
Bayesian analysis is that it forces us to consider the prior information transparently 
and formally include it in our analysis. Subjectivity always exists, or scientists would 
never disagree. Making subjectivity explicit makes for good decision analysis.

Discovering and developing these probability judgments requires hard and system-
atic thinking about the important aspects of a decision problem. As discussed in detail 
in Chapter 7, human beings are imperfect information processors, and our insights 
about uncertainty and preference can be both limited and misleading. An awareness of 
human cognitive limitations is critical in developing the necessary judgmental inputs. 
Fortunately, this awareness is an area actively researched during the past several 
 decades. In Section 7.4 we discuss a general procedure for addressing these chal-
lenges. 

The Likelihood. The likelihood function represents the conditional probability of 
the observed event (e.g., amplitude variation with offset well test, appraisal well) given 
the event of interest (e.g., trap, fault, heterogeneity, relative permeability). Perhaps 
more intuitive is that the likelihood function represents the reliability of the information 
gathered to predict the event of interest.

Most of what we do as engineers and geoscientists is to gather information to sup-
port decisions. There is no one way to determine the likelihood function for all of the 
different information-gathering processes. In some cases, the likelihood function can 
be established on the basis of historical results. For example, in judging the quality of 
the information from seismic surveys or log interpretations, relevant historical data 
may exist, which can be frequency data of the form illustrated in Table 6.1. Unfortunately, 
although most oil and gas companies have a long history of collecting information—
sometimes at enormous costs—very few of these companies have developed suitable 
knowledge repositories on the quality of the information they are gathering.

Generally, the likelihood function for the information being collected depends on 
either the quality or accuracy of both the data gathered and the expert’s interpretation 
of the data (see Fig. 6.10).

In developing the likelihood distribution, interpretation bias can be reduced by 
clearly identifying the factors relevant to obtaining an accurate interpretation of the 
possible states of nature of the variable of interest. Similarly, it is important to check 
whether or not the environment from which the information is collected affects the 
accuracy of the information, or whether the information is more accurate for certain 
states of nature. 

When we have access to relevant historical (or other) data, we should use this in-
formation in our assessments. Seismic surveys are one such example and often cited 
in the VoI literature. This emphasis on seismic surveys is not surprising, because 
reservoir characterization makes heavy use of seismic data both for selecting a target 
for drilling and, with time-lapse data, for monitoring the fl uid movements in the res-
ervoir to optimize production of hydrocarbons. Unfortunately, many of these studies 
overestimate the reliability of seismic information (Bickel et al. 2006). In many cases, 
these assessments are not directly tied to observable seismic signals. For example, 
some studies assess the probability of the seismic survey reports as either “success,” 
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Fig. 6.10—Information quality.

“unswept,” or “high OOIP,” even though the actual signal may be an amplitude read-
ing. A more precise defi nition of the latter case is to say that seismic interpretation 
reports “high OOIP.”

In most cases we are not able to very precisely defi ne the likelihood function and a 
better practice is to use reliability bands. A sensitivity analysis then informs us of the 
required reliability to justify the investment in the information. The common question 
to ask in VoI analysis is: “What are the right likelihood probabilities?” A better ques-
tion to ask is: “For what range of likelihood probabilities is the information material 
for the decision at hand?” In most cases we do not need very precise probabilities. 
What we do need to understand, however, is for what probabilities the decisions 
change.

Although one may think that understanding and quantifying the quality of such 
activities is an essential element in the decision to invest, this reasoning does not 
appear to be the case in day-to-day practice (Bratvold et al. 2009).

6.2.5 Discussion. There are four criteria that information gathering must meet to be 
worthwhile (Howard 2005*; Bratvold et al. 2009), as follows:

• Observable: We must be able to view the results of the data-gathering activity 
before deciding.

• Relevant: The information must have the potential to change our beliefs about 
an uncertainty (e.g., the results of a seismic study may change our beliefs about 
the uncertainty in the OOIP).

*Howard, R.H. 2005. Decision Analysis manuscript. Unpublished.
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• Material: The information must have the ability to change the decisions we 
otherwise make. 

• Economic: The value of the information must exceed its cost.

The VoI approach ensures that these criteria are satisfi ed and that any information-
gathering decisions, no matter how complicated, can be handled by the principles and 
tools we have used in this chapter. If the information may benefi t multiple decisions, 
then a VoI analysis should be conducted for each one, excluding the initial cost of the 
information but including any incremental costs. The resulting VoI should then be 
summed and compared to the original single cost.

The examples given so far have been fairly simple. There was only one uncertain 
event, and we modeled the uncertainty with a simple discrete distribution. This uncer-
tainty need not be a limitation. The need to simplify has the virtues of focusing atten-
tion on key aspects of the decision problem, aiding communication, and avoiding a 
false sense of accuracy induced by more precise models.

Some problems, however, require considerably more complex models in which sim-
plifi cation is not justifi ed. The two obvious extensions required are, fi rst, the ability to 
deal with multiple uncertainties, and, second, the ability to handle continuous proba-
bility distributions. Although both of these extensions are beyond the scope of this 
book, we offer a few comments. 

In VoI analysis, the information branch in the decision tree is constructed by revers-
ing the event node and the decision node. The same principle applies when there are 
many sources of uncertainty. We simply move those chance nodes for which informa-
tion is to be obtained to precede the decision node. However, if there are more than a 
couple of such chance nodes, the decision tree can quickly become unwieldy, and the 
use of more compact tools, such as infl uence diagrams, may be benefi cial. Perhaps the 
hardest part is the requirement to assess multiple likelihoods.

Conceptually, addressing continuous distributions is straightforward. First, a fi ner 
discretization of the continuous distribution may be used. In some situations in which 
the prior and posterior distributions have the same form—called natural conjugate 
families—relatively simple rules can be used to determine the posterior distribution 
parameters. Natural conjugate pairs are extensively discussed by Gelman et al. (2003) 
and DeGroot (2004).

In the more complex cases in which it is diffi cult to algebraically defi ne and draw 
from the posterior distribution, the Markov Chain Monte Carlo (MCMC) method (a 
type of random walk) can handle most relevant distributions (Gelman et al. 2003). 
Arild et al. (2008) illustrated VoI calculations with continuous representations of the 
prior and likelihood functions.

6.3 Value of Flexibility 
In many situations, a VoI analysis is the culmination of attempts to manage uncer-
tainty. However, although powerful, VoI is an incomplete exploration of available 
options, because it ignores the potential value that can be achieved by using fl exibility 
to manage the uncertainty. 

6.3.1 Basic Principles. Before proceeding with the acquisition of information, based 
on a positive EV from a VoI study, it is desirable to determine the value of planning an 
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appropriate response to uncertainties as they are resolved. One can perform a similar 
analysis to VoI in which the goal is now to determine how the expected benefi t of fl ex-
ibility outweighs its cost. We term this the VoF. There are four general circumstances 
in which there may be value in employing fl exibility as follows:

• When the value of acquiring information is close to 0, or it is impossible to 
reduce uncertainty 

• When fl exibility is more valuable than acquiring information
• When managing residual uncertainty after information is acquired 
• When fl exibility creates additional value

In the fi rst three situations, the objective is usually to mitigate the risks (i.e., negative 
impacts) associated with uncertainty. In the last situation, it exploits the upside poten-
tial of uncertainty. Flexibility may be particularly appropriate for managing the impact 
of unlikely but high-consequence events.

6.3.2 Creative and Flexible Thinking. The key to gaining value from fl exibility is to 
think creatively about how single decisions and project plans may be split into multiple 
decisions over time, some of which can be deferred, with the opportunity to learn between 
the decisions and the option to react and respond according to that learning. For example, 
expenditures may be split into two phases to permit the option of committing to the sec-
ond phase only if things look promising. The idea is illustrated in Fig. 6.11.

Clearly, the benefi ts must overcome any costs of doing so, which include the cost 
of the fl exibility itself and usually the time-value cost of any delay. For example, 
downside OOIP risk may be mitigated by waiting to fi nalize processing capacity 
until some development wells are drilled, and potential upside OOIP exploited by 
incurring the cost of extra slots on a platform, to be drilled only if the reservoir is 
larger than expected. 

VoF is not only a value-calculation technique but a way of thinking about how to 
address uncertainty, as a value-calculation technique. In many cases, the value calcu-
lations are more straightforward than VoI calculations (see the box on Real Option 
Valuation at the end of this chapter). At a minimum, it can be considered a more formal 
version of traditional “phasing” in which the phasing decision is based on a value as-
sessment derived from a quantitative analysis of uncertainties and their economic im-
pacts. In these circumstances, the emphasis still tends to be on mitigating the risks that 
arise from uncertainty. However, at its most powerful, fl exibility becomes a tool for the 
creative thinker to maximize value. 

Decide now                                                 Defer some decisions 

Fig. 6.11—Splitting decisions to learn the outcomes of uncertainties before proceeding.
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The following two sections describe examples of the use of fl exibility to manage 
uncertainty. The fi rst deals with mitigating the risk of insuffi cient aquifer support 
for a new fi eld development. The second concerns capturing the upside of OOIP 
uncertainty. 

Example 6.3—Managing Aquifer-Strength Risk. This example illustrates the use of 
fl exibility to manage uncertainty in aquifer strength for a major deepwater develop-
ment. All dollar values are for illustration only. Suppose it is thought that there is a 
60% chance the aquifer is strong enough to obviate the need for pressure support by 
water injection. This “deterministic” choice yields an NPV of USD 350 million. How-
ever, there is a 25% chance that the aquifer may be only of medium strength and a 15% 
chance that it is weak, resulting in NPVs of USD 0 and –150 million, respectively. For 
shorthand, we will use the terms Strong, Medium and Weak to describe the possible 
outcomes of the uncertain event “strength of the aquifer”. 

To mitigate the fi nancial consequences of a Medium or Weak aquifer, two alterna-
tive development options are considered. The fi rst is to include a water-injection capa-
bility when the platform is initially built. The second is to build a platform with 
suffi cient space and strength to give the option of adding injection capability at a later 
date if the aquifer strength turns out to be Medium or Weak. The costs associated with 
the choices are as follows: 

 • Injection preinstalled  USD 1 billion
 • No injection   USD 800 million
 • Flexible platform  USD 860 million 

– Plus an additional USD 160 million if injection is installed later

Thus, the additional cost, over “no injection,” of the option to inject later is USD 
860 million – USD 800 million = USD 60 million. If this option is chosen, and the 
aquifer turns out to be Strong, then this USD 60 million is unnecessary. On the other 
hand, if the aquifer is Medium or Weak, we pay the additional USD 160 million to 
install the injection facilities, for a total of USD 1.020 billion. The fi nal NPV and prob-
abilities for each situation are summarized in Table 6.9. 

If the aquifer support is Strong, then the case of no injection facility has the highest 
payoff. The upgradeable (fl exible) platform has the next highest payoff, because we 
lose only the cost of the fl exibility (USD 60 million). However, if the aquifer support 
is Medium or Weak, then the facility with injection capability from day 1 has the high-
est NPV, followed by the fl exible facility, which costs more because of having to install 
the injection capability at a later date when the platform is already in place.

To determine the best decision, we construct the decision tree, as shown in Fig. 6.12. 
The decision tree includes more endpoints than shown in Table 6.9. Although the details 
are not included here, all the endpoints are calculated based on estimates of NPV of 
revenues and costs. If we install injection capability on the fl exible platform in the case 
of a strong aquifer, the expected payoff is calculated as follows:

NPV
Strong, Flex Plat, Inj. Installed

 – Cost
Flex Plat

 – Cost
Inj. Installed 

= USD 1,150 million – USD 860 million – USD 160 million = USD 130 million.
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Similarly, the install decision in the weak aquifer strength case is given by the 
following:

NPV
Weak, Flex Plat, Inj. Installed

 – Cost
Flex Plat

 – Cost
Inj. Installed 

= USD 1,100 million – USD 860 million – USD 160 million = USD 80 million.

The remaining payoffs for the flexible platform option are calculated in the 
same way.

TABLE 6.9—PROBABILITY OF AQUIFER SUPPORT STRENGTH AND PAYOFFS  
 (USD MILLIONS) FOR EACH DECISION ALTERNATIVE 

 

 noitallatsni fo tsoc sedulcnI*

Aquifer Support

Strong Medium Weak

Probabilities 60% 25% 15%

Day one water 
injection 200 150 100

Development 
options

injection

No water 
injection 350 0 –150

Injection 
flexibility 290 130* 80*

NPV

EV=173
Day one capability

Strong=60%

Medium=25%
Weak=15%

0
EV=188

Strong=60%

Medium=25%
Weak=15%

No injection

Install

Flexible platform

Strong=60%

Medium=25%

Weak=15%

EV=219

200
150
100

350

–150

Install

No action

Install

No action

No action

130

–60

130

290

80

–210

Fig. 6.12—The value (USD millions) of water-injection capability.
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The EV of the preinstalled injection facility (USD 173 million) is less than having 
no injection capability (USD 188 million), and is therefore not justifi ed. The best 
choice is the platform with the option of installing an injection capability (USD 219 
million), USD 31 million more than the case if the decision is based on the most-likely 
(deterministic) estimate of aquifer strength.

Example 6.4—Capturing OOIP Upside Uncertainty. This example moves beyond 
risk mitigation and considers the power of fl exibility to extract value from uncertainty. 
Consider a development decision in which a VoI study has been conducted, but there 
is still residual uncertainty in the OOIP. It is decided to develop with a single platform, 
and the choices are as follows:

• A medium-sized platform based on the most-likely estimate of the OOIP—
equivalent to a “deterministic” choice that ignores the remaining uncertainty

• A large platform that can accommodate the upside if the OOIP is high
• A fl exible platform initially sized for the same capacity as the medium one, but 

designed with an option to expand with extra wells and processing capacity if 
the OOIP is high

The costs are as follows:

 • Large platform: USD 400 million
 • Medium platform: USD 300 million
 • Flexible platform: USD 330 million 

– Plus an additional USD 90 million if the decision to expand capacity is 
made.

The probabilities, peak rates, and NPV are shown in Tables 6.10 and 6.11 for each 
of the OOIP cases: Low (< 200 million STB), Medium (between 200 and 500 million 
STB), and High (>500 million STB).

Expansion only occurs if the real OOIP is High. In this case, the NPV of a fl exible 
platform is USD 280 million higher than using the medium-sized one, but USD 20 
million less than going straight to a large platform because of the lost time and incre-
mental cost of building the facilities in two stages. If the real OOIP is Medium, the 
NPV for the fl exible platform is USD 30 million less than the medium one because of 
the cost of the unused fl exibility, but USD 70 million greater than the overbuilt large 
one. If the real OOIP is Low, the NPV refl ects that all cases were overbuilt. 

To determine the best platform decision, we structure the decision tree, as shown in 
Fig. 6.13.

As in the previous example, all the endpoints are calculated based on estimates of 
NPVs of revenues and costs. If we “expand” on the fl exible platform in the case of a 
High OOIP, the expected payoff is calculated as follows: 

NPV
High, Flex Plat, Expansion 

– Cost
Flex Plat

 – Cost
Expansion 

= USD 1,000 million – USD 330 million – USD 90 million = USD 580 million.
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Similarly, the “no action” decision in the low OOIP case is given by the following:

NPV
Low, Flex Plat, No action

 – Cost
Flex Plat

= USD 400 million – USD 330 million = USD 70 million.

The remaining payoffs for the fl exible platform option are calculated in a similar 
manner.

A large platform is seen to have an EV USD 20 million better than the most-likely 
(deterministic) choice of a medium platform. However, the fl exible platform is an even 
better choice, having an EV of USD 63 million more than a decision based on the most 
likely estimate. 

The previous examples were developed to illustrate the concepts involved and the 
power of the method. We do not intend to imply any general conclusion regarding the 
value of accommodating extra well slots or space for injection facilities. In all cases, 
the actual value (and, therefore, decision) depends on the specifi c costs, probabilities, 
and benefi ts. 

TABLE 6.10—PROBABILITY OF OOIP AND PRODUCTION

RATES (1,000 B/D) FOR EACH DECISION ALTERNATIVE 

OOIP
High Medium Low

% % %Probabilities                   30 40% 30%

Large 
platform 100 60 40

Medium 
platform 60 60 40

Flexible 
platform 100 60 40

TABLE 6.11—NPV (USD MILLION) FOR EACH DECISION 

ALTERNATIVE AND OOIP STATES

OOIPOOIP

High Medium Low

Large 
platform 600 200 0

Medium 
platform 300 300 100

Flexible 
platform 580 270 70
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6.4 Discussion
Managing uncertainty is more than risk mitigation or reduction. Designing fl exibility into 
project plans offers the opportunity to also create value. The value of fl exibility increases 
with higher uncertainty and greater ability to respond, as shown in Fig. 6.14.

If uncertainty exists, which is true for most investment opportunities, fl exibility always 
gives positive value if it entails no cost or when it is cheaper than other alternatives. If 
there is a cost, then it must be weighed against a formal assessment of its benefi ts. 

Although we discussed VoI and VoF separately, both can be relevant for any 
given exploration and production (E&P) decision. At an early stage, when little or 
no information has been gathered, VoI may be higher than VoF, and the optimal 
decision is to collect more information. At some point, the uncertainty reduction 
and value creation caused by increased information levels off, and VoF may exceed 
VoI. Both of the evaluations should be a standard part of any decision-making and 
information-gathering process.

6.5 Implementation Issues
Executives and managers desiring employees to “think outside the box” should realize 
that traditional approaches to valuation and dealing with uncertainty often discourage 
such efforts. Asset team members should be encouraged to fi rst explore what factors 
may be uncertain and how great their magnitude may be, rather than being pressured 
to ignore them or underestimate their magnitude. They should then seek any natural or 
creative ways to include fl exibility in the structure of the project and to respond to the 
resolution of uncertainties as time passes. This is an essential part of the structuring 
phase discussed in Section 2.2.

NPV

600
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0EV=260
100,000-B/D platform

High=30%

Medium=40%
Low=30%

300
300
100EV=240

High=30%

Medium=40%
Low=30%

60,000-B/D platform

Expand

No action

Expand

No action

Expand

No action

Flexible platform

High=30%

Medium=40%

Low=30%

EV=303

180

270

580

270

–20

70

Fig. 6.13—Calculating the value (in USD millions) of the option to expand drilling and pro-
cessing capacity to capture OOIP upside.
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When it comes to decision time, the decision maker must accept that expected values, 
although indicating the best decision,* are extremely unlikely to be the actual values 
obtained for any single investment opportunity. Value is derived by the consistent usage 
of maximum expected value as the decision criterion across many projects or decisions. 
In practice, accepting expected value as the decision criterion requires the decision maker 
to be willing to risk the extra expenditure for fl exibility or information possibly not pay-
ing off for the project, even though it is the best choice in the larger corporate context.

As discussed in the next chapter, decision maker risk-aversion and a bias toward 
ignoring or underestimating uncertainty may be bigger barriers to the effective 
adoption of these techniques, and thus to improved economic returns, than lack of 
knowledge or the tools with which to implement them. Incorporating an evaluation 
of the decision maker’s process, rather than decision outcome, as a major element 
of the reward structure would help to overcome these problems. 

*For a risk-neutral investor. Most reasonably sized E&P companies are well diversifi ed and will 
maximize shareholder value by being risk-neutral and therefore use EV as their decision criterion.
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Fig. 6.14—Situations when VoI and VoF are appropriate.

Real Option Valuation

VoF practitioners often use traditional discounted cash fl ow (DCF) metrics, such 
as NPV, for the endpoints (payoffs) in the VoF decision tree. DCF relies on the 
capital asset pricing model (CAPM) and a single, risk-adjusted, time-invariant 
discount rate—often the weighted average cost of capital (WACC).

There are many reasons why classical DCF is a poor vehicle in evaluating invest-
ment opportunities with signifi cant uncertainties and fl exibilities. The most relevant 
reason for this discussion is that the risk profi le for investments with contingent deci-
sions is affected by the decisions being made. Therefore, using a single, risk-adjusted 

(continued on page 159)



Creating Value From Uncertainty 159

6.6 Additional Reading
Schlaifer (1959) is the earliest discussion of the VoI concept in the decision sciences 
literature. The book has fi ve parts in which Part Three discusses “The Use of Informa-
tion Obtained by Sampling,” and Part Four is titled “The Value of Additional Informa-
tion.” Schlaifer authored or coauthored several other books discussing statistical decision 
theory in general, including VoI concepts: Probability and Statistics for Business 
Decisions (1959) and Introduction to Statistics for Business Decisions (1961).

discount rate is not adequate for problems that include fl exibility in the form of con-
tingent decisions. 

An alternative to DCF valuation is the application of the option-pricing ap-
proach with roots in the fi nancial market and used for valuing call and put op-
tions on stock. The term “real options” was coined by Stewart Myers in 1977 
and refers to the application of these methods to “real,” as opposed to fi nancial, 
projects. Initially, the approaches used to value real options were more or less a 
direct application of the fi nancial-option valuation tools, such as the Black-Sc-
holes approach. There are several diffi culties involved in applying the fi nancial-
option valuation methods to real options, of which the most limiting may be the 
assumption that there exists a replicating portfolio of traded assets that exactly 
replicates the project’s cash fl ows. Because oil and gas projects are real assets, 
no such replicating portfolio of securities exists, and markets are incomplete 
with respect to the project.

Several alternative approaches have since been developed. Smith and McCardle 
(1998, 1999) advocated splitting uncertainties into those that are market based (e.g., 
oil and gas prices or steel costs), and those that are private (also called fi rm-specifi c 
or technical) (e.g., reserves or production). Market risks are caused by uncertainties 
that are market correlated and can be fully hedged by trading in securities. Private 
risks are fi rm-specifi c and can be diversifi ed at least to some extent. Using this ap-
proach of splitting the risks, Smith recommended using market-based valuation 
techniques for the market-based risks and using subjective probabilities for the pri-
vate risks.

Although the implementation specifi cs for real options are still being debated 
and are poorly understood by valuation practitioners in the E&P industry, the 
real-options approach is an important way of thinking about valuation and stra-
tegic decision making. The power in this approach is starting to change the eco-
nomic “equation” of many industries. The number of real-options papers 
published and presented in the various SPE conferences and forums is signifi -
cant, and we believe the approach also continues to gain in popularity among 
practitioners in the E&P industry.

The VoI and VoF techniques presented in this chapter address one of the key 
pieces of “thinking” behind real-option valuation, that there is value in the ability 
to manage uncertainty by acquiring information or developing fl exibility. The 
aspect of real-options valuation not included in these techniques is that of using 
market information to determine how much to discount cash fl ows due to market 
risks. 
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Grayson, who completed his PhD studies under the direction of Howard Raiffa at 
Harvard University, was the fi rst to apply formal decision science theory and VoI con-
cepts to oil and gas decisions (Grayson 1960). Grayson subsequently published a num-
ber of papers demonstrating the power of decision analysis in general. 

The Principles and Applications of Decision Analysis by Howard and Matheson 
(1989) is an extensive set of papers on decision analysis, including discussions on VoI, 
probability encoding from experts, and sensitivity analysis. 

Newendorp and Schuyler (2000) have published the second edition of a book origi-
nally published by Newendorp in 1975. It covers a broad range of decision analysis 
topics for petroleum exploration and also includes specifi c discussions and examples 
of VoI applications. 

For a broad overview of uncertainty management, Morgan and Henrion (1990) 
provide excellent coverage of uncertainty elicitation and probability encoding from 
experts. 

Another great book on decision making that offers good coverage of VoI is  Clemen 
and Reilly’s Making Hard Decisions (2001). 

Smith and McCardle (1998, 1999) are two of a number of excellent articles on the 
application of real-options analysis to oil and gas investments.



Chapter 7

Behavioral Challenges 
in Decision Making

Decision making was never quite as easy as rationalists would have us 
think…. Our brains are too limited.

—Amitai Etzioni

7.1 Introduction
The previous chapters presented a set of steps for applying a normative—that is, logi-
cally consistent—decision-making process. These steps build on studies of effective 
systematic reasoning, starting with Bernoulli, who in the early 1700s captured atti-
tudes toward risk taking in mathematical form. Laplace published his Philosophical 
Essay on Probabilities in 1812 (Laplace 1995); and his predecessor, Bayes, showed in 
1763 (Bayes 1763) that probability had uses well beyond simple decision making. In 
spite of these developments, decision makers of every age face the key challenge 
voiced by Etzioni (1989)—how to overcome both the human limitations and the common 
errors that even the brightest people tend to make when pursuing complex decisions 
in the face of uncertainty.

To be effective decision makers, we must be aware of our species’ cognitive and 
motivational weaknesses as follows: 

· The occasionally faulty assessment of our own interests and true wishes
· The tendency to ignore the relevant facts
· The limits of our information processing and learning (cognitive) abilities
· An unwillingness to acknowledge the possible consequences of our decisions 

This chapter summarizes a half-century of research on judgment, decision making, 
and regret.

7.2  The Two Decision Systems
Sometimes, people follow the normative procedure and logical reasoning described 
in the previous chapters, but most of the time they do not—often using short cuts or 



162 Making Good Decisions

intuition; as described in Section 1.3.5, Stanovich and West (2001) termed the processes 
our brains use for the intuitive approach as System 1 thinking, and the processes we 
use for the explicitly logical, analytical approach as System 2. These two processes 
occur in different parts of the brain (Sloman 1996).

System 1 is quick, takes little effort, and is often subconscious. The decision maker 
often has diffi culty explaining the rationale for the decision, instead insisting that it 
simply “feels right.” Its ease makes it seductive—we like to believe that it works well, 
and indeed it does work well for simple decisions we have made many times before, 
such that our intuition has become well-educated. Additionally, if the consequences of 
the decision are trivial, it does not matter whether or not the decision process works 
well. System 1, therefore, works well for many decisions that are part of our day-to-
day living, such as ordering food at a restaurant or deciding which movie to watch. 

System 2 is deliberate, methodical, and slower. The decision maker can clearly 
articulate the process used, the reason for the ultimate choice, and the information on 
which it is based. However, it takes more effort, not only to “think hard” but to gather 
the amount of information analyzed. Normative decision analysis is such a methodol-
ogy. For more complex or important decisions, such as many of those in our industry, 
System 2 thinking leads to better outcomes.

However, many decision makers rely excessively on System 1 thinking because of 
its speed and ease in a stressed and busy environment (Chugh 2004). The situation is 
exacerbated for those in managerial and executive roles, and by overconfi dence in the 
value of general experience and intelligence. We are not suggesting that a full System 
2 process be used for every exploration and production (E&P) decision. Rather, deci-
sion makers should assess each situation and make an explicit choice as to the best 
method to use, or balance between the methods. 

Fig. 7.1—Adelson’s checkerboard. Copyright © 1995, Edward H. Adelson. http://web.mit.
edu/persci/ people/adelson/checkershadow_illusion.html. Accessed 10 June 2010.
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The System 1 approach is often unreliable and results in a variety of systemic and 
predictable mistakes or biases. Consider the example in Fig. 7.1 (Adelson 1995). Our 
System 1 processing tells us that Square A looks darker than Square B. But it is wrong, 
because both are the same shade. If this fact seems hard to believe, try applying Sys-
tem 2 by overlaying a sheet of paper and cutting a couple of holes in it to reveal only 
the two squares.

Biases of judgment in decision making are sometimes called cognitive illusions. 
They are particularly harmful because, like visual illusions, they remain compelling 
even after objective evidence of their defi ciency is revealed. The goal of learning about 
cognitive illusions with respect to decision making is to develop the skill of recogniz-
ing situations in which a System 1 error is both likely and compelling, and therefore 
must be either supplemented or replaced by the more critical or analytical System 2 
thinking. 

Decision makers prone to rely on their System 1 processing take risks they do not 
acknowledge, are prone to unjustifi ed investments, and may end up blaming them-
selves or others for outcomes—especially those they did not anticipate. Decisions in 
the modern petroleum industry seldom satisfy the conditions needed for intuition to 
work well. Further, the decisions may involve serious consequences for the environ-
ment, human safety, and economic performance. In these complex and unfamiliar 
decision situations, reliance on intuition and rules of thumb becomes a recipe for disaster. 
Some of the more common errors relevant in an oil and gas decision-making context 
are summarized in this chapter.

The remainder of this chapter is drawn from the conclusions of decades of cognitive-
science research into the use of heuristics (i.e., rules of thumb) in general (with re-
spect to judgment and decision making), validated by our own research into their 
presence and impacts in the upstream petroleum industry (Bratvold et al. 2002; Welsh 
et al. 2004; Welsh et al. 2005; Welsh et al. 2006, 2007a, 2007b; Begg and Bratvold 
2008). 

7.3 Biases in Judgment and Decision Making
As discussed in Section 1.3.4, research into models of decision making is divided into 
normative and descriptive. The goal of the normative approach is to develop theories 
on how decisions should best be made, whereas the goal of the descriptive fi eld of 
research is to illustrate, describe, and predict how decisions actually are made, irrespec-
tive of any sense of being the “best.” Sometimes, a distinction is made between rational 
and irrational decision making. We generally prefer not to use these terms, partly 
because of their judgmental nature and partly because decisions that appear to be “irra-
tional” can eventually come to be understood as “rational” once the  goals, constraints, 
and motives of the decision maker are clarifi ed. 

7.3.1 Limits on Normative Analysis. Human behavior often deviates from normative 
decision processing, as illustrated by Simon’s concepts of bounded rationality and 
“satisfi cing” (Simon 1955). Simon’s idea was that people are limited in their ability to 
apply normative processes (“bounded rationality”) and, instead of actively searching 
for optimal options, are willing to accept any alternative good enough to meet their 
minimum criteria (“satisfi cing”). This research demonstrated that people tend to rely 
on simplifi ed models of complex events, which then are used as the basis for making 
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decisions. In this context, the term “simplifi ed” is not pejorative but refl ects our mental 
limitations in collecting, analyzing, and interpreting data in a complex world. These 
simplifi ed decision-making rules are known as heuristics (i.e., previously defi ned rules 
of thumb). Although “good enough” may be acceptable for personal decisions, it is 
generally unacceptable within organizations in which the decision makers are obliged 
to act in the best interests of the owners or stakeholders.

More recently, Bazerman and Chugh (2005) extended the idea to “bounded aware-
ness,” whereby people consciously and subconsciously fi lter out potentially useful or 
relevant information to simplify problems, thus making them solvable by heuristics. 
Perhaps the best-known example that illustrates the concept of bounded awareness is 
the problem presented in Fig. 7.2. Without lifting your pen from the paper, draw four—
and only four—straight lines that connect all nine dots shown herein. Take a moment 
to try this before looking at the solution, Fig A-1, in the Appendix of this chapter.

Most people who have not previously seen this problem fail to solve it. They create 
an implicit boundary around the problem by assuming the lines cannot extend beyond 
the square formed by the dots, preventing them from fi nding a solution. The bounds we 
subconsciously impose on a problem may prevent discovery of the solution. This ten-
dency to place falsely-perceived bounds is a very common aspect of decision making. 
A particularly damaging instance is when the decision maker prescribes a limited 
number of acceptable decision alternatives rather than allowing the team to develop 
additional alternatives, some of which may be superior.

Heuristics can be pretty good at times, and provide relief to harried decision makers 
and other professionals. But reliance on heuristics may also create problems, primar-
ily because people are seldom aware of their reliance on them. Human history sug-
gests that heuristics work well when the decision makers have been educated through 
repeated decisions of the same kind, in the same environment, and with observation 
of the outcomes. Then, when a decision maker comes across a decision of the same 
type, in the same environment, he or she can reasonably jump to the correct choice 
without going through all the required analysis. However, even a small degree of 
complexity in the situation, especially if uncertainty is involved, makes heuristics or 
intuition unlikely to deliver the best choice. Indeed, the best decision can be distinctly 

 

Fig. 7.2—The nine-dot problem.
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non-intuitive or even counterintuitive, and the use of heuristics can be shown to lead 
to systemic errors of judgment.

Although Simon was fi rst to note these concepts, not until 15 years later did Tversky 
and Kahneman (1974) provide information about specifi c systemic biases that result 
from the use of heuristics and from non-normative thinking. Their work and the work 
that followed led to our modern understanding of behavioral challenges in decision 
making. Although there are a number of biases and heuristics that impact our judgment 
in decision making, we focus on a subset that is especially relevant in the oil and gas 
industry and that addresses uncertainty in particular as follows: 

· Availability, recency, and vividness
· Over-reaction to chance events 
· Anchoring
· Overconfi dence 
· The “illusion of control” and optimism
· Group biases

The references listed at the end of this chapter provide more comprehensive over-
views of cognitive limitations and behavioral challenges.

7.3.2 Availability, Recency, and Vividness. Tversky and Kahneman (1974) argued 
that individuals judge the frequency with which an event occurs by the availability 
of its instances to memory. Instances of an event more easily recalled are judged to 
be more frequent than an event of equal frequency in which instances are less easily 
recalled. This bias is exaggerated if some instances are particularly vivid and there-
fore more easily recalled. The availability bias is easily observable in everyday life. 
People tend to be more afraid of highly reported, horrifi c categories of events, such 
as terrorist acts, airplane crashes, and earthquakes than the more common but 
under-reported (and less dramatic) categories of at-home accidents, drownings, or 
car crashes.

Managers conducting performance appraisals often fall victim to the availability 
heuristic. Working from memory, vivid instances of an employee’s behavior (either 
positive or negative) are most easily recalled and appear more numerous than com-
monplace incidents; therefore, they are weighted more heavily in the performance 
appraisal. The recency of events can lead to a similar effect—managers give more 
weight to performance during the 3 months before the evaluation than to the previ-
ous 9 months (Bazerman and Moore 2008). Similarly, the last person to get the 
boss’s attention often has the advantage, and closing arguments in a trial tend to 
sway jurors.

Events become magnifi ed if we observe or are directly affected by them. For 
example, if we actually witness a burning house, our assessment of the probability of 
such accidents is likely to be greater than if we had merely read about the fi re. 

Perceptions of the “facts” are often distorted by the most available, most recent, or 
most vivid information. Imagine you have recently been involved in a particularly 
productive fi eld or a well that produced signifi cantly worse than expected. Given the 
recency and vividness of this experience, it is likely to affect your assessment of future 
fi elds or wells.
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What Can Be Done? Decision making often can be improved dramatically by sim-
ply recognizing, understanding, and compensating for these biases. Basing decisions 
on truly representative data may entail modifying procedures to compensate for infor-
mation biases, which can be avoided as follows: 

· Each time you make a forecast or an estimate, examine your assumptions 
to ensure that you are not being unduly swayed by memorable or recent 
distortions.

· When possible, get statistics. Do not rely on your memory if you can avoid it. 
Ensure that your statistics or data are genuinely representative—do not choose 
data solely for being readily available.

· Whenever you rely on memory, deconstruct the event you are trying to assess, 
and then develop an assessment piece by piece.

7.3.3 Overreaction to Chance Events. Suppose a fair coin has just been tossed seven 
times. If you had to bet on which of the following sequences of tosses occurred, which 
would you choose (H = Heads; T = Tails)?

(a) HHHHTTT
(b) THHTHTT
(c) TTTTTTT

In fact, these three sequences are equally likely to occur when a fair coin is tossed, 
the probability of each being 1/128. However, only sequence “b” appears to have the 
characteristics we associate with a “random” sequence. The others appear systematic. 
Most people erroneously believe the second sequence is more likely than the fi rst or 
the third. They think that small samples should be representative of the properties of 
the statistical process that generated the observations, whereas small samples actually 
are more likely to deviate from the true characteristics of a process than are larger 
samples. Tversky and Kahneman (1974) called this fallacy the “law of small 
numbers”—a takeoff on statistics’ Law of Large Numbers, which guarantees that a 
large sample of independent trials does represent the process.  

This observation is sometimes called the “hot hand” fallacy, because it was exten-
sively documented by Gilovich et al. (1985) in their classic study of professional bas-
ketball players. Most observers and participants in basketball believe players are 
sometimes “hot” and sometimes “cold,” meaning that a player experiencing a streak of 
success or failure is more likely to continue at that rate than to revert to the player’s 
long-term average. Gilovich et al. (1985) analyzed the outcomes of players’ shots, 
both from the fi eld and from the free-throw line, in hundreds of games. They found 
no more deviations from a player’s long-term shooting percentage than would be 
expected purely from chance.   

The human mind is a pattern-seeking device, supposedly evolving from our hunting-
and-gathering ancestors, and is strongly biased to accept a causal hypothesis behind 
any notable sequence of events. This cause-seeking tendency often serves us well. 
However, it is so ingrained that we start seeing causes for things that are simply the 
result of chance. 
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Oil and gas professionals can fall victim to this fallacy as well. They may believe, 
for example, that samples drawn from a reservoir are far more representative of the 
entire reservoir than simple statistics dictate. This result is exacerbated by the high 
cost of data, which leads to overinterpretation in a desire to get as much as possible 
out of it. 

Similarly, there is a tendency to assume that deviations from the long-term average 
are self-correcting—after a string of dry holes are drilled, the successful well “must” 
turn up. However, Tversky and Kahneman (1974) noted the reason that this process is 
fallacious, as follows:

Chance is commonly viewed as a self-correcting process in which a deviation 
in one direction induces a deviation in the opposite direction to restore 
equilibrium. In fact, deviations are not corrected as a chance process unfolds, 
they are merely diluted. 

This quotation expresses the principle of “regression to the mean”—in a sequence 
of events from a random process, early deviations from mean behavior are gradually 
wiped out, as the length of the sequence increases. 

The combined effects of the law of small numbers and regression to the mean 
can cause decision makers, who have been successful for a few years in a row, to 
overestimate their prowess and be surprised to learn that their long-term perfor-
mance is more mediocre. Odean (1998b) reported a striking pattern of results in 
his analysis of hundreds of thousands of individual transactions made with a bro-
kerage fi rm. He found that when individual investors sold a stock and quickly 
bought another, the stock sold outperformed the stock they bought by an average 
of 3.4 percentage points in the fi rst year, excluding transaction fees and other 
“overhead.” This costly overtrading can be explained by people perceiving pat-
terns where none exist and by their having too much confi dence in their judgments 
of uncertain events.

The potential to confuse representativeness with likelihood (i.e., probability) 
extends beyond small samples. Consider a detailed stochastic model of a fl uvial depo-
sitional environment, such as one generated by typical reservoir-modeling software. It 
may appear to realistically depict various features, such as meandering channels of the 
right sinuosity that start to bifurcate downstream, fi ning-upward lithotypes within 
point bars, crevasse splays on outer loops of meanders, here and there a shale from an 
old ox-bow lake, etc. This “rich” description may seem very representative of what we 
think a fl uvial system looks like, especially when viewed in the full glory of multicol-
ored 3D virtual reality. Yet, although this computer model may be globally correct 
(because it contains all the features one expects to see and the correct relationships 
between them) it is extremely improbable that it is a correct model of the real world at 
each point (i.e., the model is liable to be locally inaccurate). This improbability is 
because the model is made up of a multitude of probabilistic features or details. The 
multiplication law (Section 3.4.5) states that as more probabilistic features are added—
assuming that they are more or less independent—the probability of all occurring 
together must gradually decrease. Therefore, a model may be very representative, yet 
very improbable. Unfortunately, people incorrectly use representativeness as a heuris-
tic in assessing probability, which was observed by Tversky and Kahneman (1982) as 
follows:  
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As the amount of detail in a scenario increases, its probability can only 
decrease steadily, but its representativeness and hence its apparent likelihood 
may increase. The reliance on representativeness, we believe, is a primary 
reason for the unwarranted appeal of detailed scenarios and the illusory 
sense of insight that such constructions often provide.

That is not to say that representative models are not useful. A representative reser-
voir model may well yield the correct broad characteristics of fl uid fl ow. 

What Can Be Done? To avoid this bias, the following can be done:

· Curb the natural tendency to look for patterns in random events, and avoid 
becoming overconfi dent in interpretations solely because we can conceive 
of causal mechanisms behind them. Be disciplined in your assessment of 
probability.

· Do not try to outguess phenomena that objectively can be described only as 
random. It cannot be done.

· If you think you see a pattern, check out the theory in a setting where the conse-
quences are less signifi cant.

· Do not confuse realism with probability. The more aspects there are to the 
description of the probabilistic event you are assessing, the lower its pro-
bability.

7.3.4 Anchoring. Estimate an answer to the following two questions before pro-
ceeding:

· Do you believe the proven worldwide oil reserves in 2003 were greater than or 
less than 1,722 million bbl? 

· What is your estimate of the proven worldwide oil reserves in 2003?

If you are like most people, your answer to the second question was infl uenced by 
the fi gure of 1,722 million bbl cited in the fi rst question—a fi gure chosen arbitrarily. 
These questions have been posed to many people in the oil and gas industry (Welsh 
et al. 2005). In half the cases, the fi rst question specifi ed 1,722 million bbl; in the other 
half, it specifi ed 574 million bbl. One would hope that the estimates requested in the 
second question are independent of the fi rst, because the fi rst merely asks if the 
reserves are greater or less than an arbitrary number.

The average estimate made by each group is shown in Fig. 7.3. As can be seen, the 
estimates were driven by the number used in the fi rst question—although this estimate 
has no logical basis. This simple but powerful test illustrates the common mental 
phenomenon known as anchoring.

Anchoring is an unconscious process that can infl uence estimates. For example, we 
often provide a best guess before giving a “ballpark range” or confi dence interval 
when assessing probabilities of uncertain model parameters, or when adopting a “most 
likely” or “base-case” interpretation. Surprisingly, even random or clearly irrelevant 
anchors are known to have a strong effect (Chapman and Johnson 2002). Anchors take 
many guises—simple and seemingly innocuous such as a comment offered by your 
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spouse, or a statistic appearing in the morning newspaper. They can be embedded in 
the wording of your decision problem. One of the most common anchors is a past 
event or trend. A manager attempting to forecast the rate of return for a development 
project often begins by looking at the rate of return for earlier projects. The historical 
number becomes the anchor, which the forecaster then adjusts based on other factors—
but rarely enough to counteract the impact of the anchor. In situations characterized by 
rapid change, the historical anchor can lead to poor forecasts and thus poor decisions.

Consider this anecdote from a real fi eld. An exploration team was appraising a new 
discovery for possible development in which subsurface issues (primarily reservoir 
characteristics) concerned management. The team prepared its best estimates based on 
analogs (i.e., the anchors). Then, 3 years later, with more than 10 appraisal wells, the 
team was requested to study and explain why the “new” data differed so much from 
the “estimated” data. It took the team approximately 9 months to convince manage-
ment as to why the actual data should be preferred to the anchored data.

What Can Be Done? The effect of anchors in decision making has been docu-
mented in thousands of experiments. Anchors infl uence the decisions of everyone—
doctors, lawyers, managers, engineers, geoscientists, and economists. However, their 
impact can be reduced by using the following techniques:

· Be aware and watchful, which is the fi rst line of defense. 
· Start any estimation exercise by providing a range rather than a single-point 

value. Especially, try to come up with plausible, though unlikely, extreme 
cases.  

· If you have an anchor and recognize that you have one, try to work with multiple 
anchors rather than just one. Approach key estimates from several starting points. 
Think of several plausible numbers on which to anchor the estimate. Even better, 
make the key estimates conditional on the driving forces. In the previous exam-
ple, the anchored data should have been explicitly tied to assumptions about 
reservoir conditions (in this case, the faulting characteristics). 
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· Remain open to new information. Ask yourself what may have been overlooked. 
Seek answers from others as well. Until the decision is made, remain open to 
new information, new options, and new criteria (Lichtenstein et al. 1982).

7.3.5 Overconfi dence and the Illusion of Control. Assume that you have to estimate 
an 80% confi dence interval that captures your uncertainty in the initial rate for a new 
well. First, you pick a low value, one in which you believe that there is a 10% chance 
that the rate is less than that value—your P10. Then, you pick a high value, one in 
which you believe that there is a 10% chance that the rate is greater than that value—
your P90. In other words, you set a range for the initial rate to have an 80% chance of 
falling between your high and low fi gures. You can repeat this exercise for many other 
variables that are inputs to oil and gas decision making (e.g., oil price, infl ation or 
exchange rates, costs, average porosity). Indeed, as discussed previously, we should 
always think of uncertain quantities in terms of confi dence intervals rather than point 
estimates or best guesses.

Suppose you made such judgments for a large set of unrelated forecasts and waited 
for all outcomes to be known. For each forecast, the real outcome may be lower than 
your P10, within your P10 to P90 range, or greater than your P90. If your judgments 
are not biased and you are a good judge of the limits of your knowledge, you should 
expect the actual value to fall outside of your assessed ranges only approximately 20% 
of the time. Individuals setting confi dence intervals that satisfy this requirement are 
said to be well-calibrated in their judgment of probability (Lichtenstein et al. 1982).

Unfortunately, few people or teams are well-calibrated. A vast amount of research 
documents a highly systemic bias in subjective confi dence intervals. Capen (1976) 
was the fi rst to investigate this problem in the oil and gas industry. He found that the 
actual value typically falls outside the range not 20% of the time, but 50%. A dubious 
criticism of his fi ndings was that they were based on general-knowledge questions and 
therefore may not be applicable in a business context. Welsh et al. (2005) also investi-
gated this effect in their broader study of biases in the industry. However, they used 
questions relevant to their sample of petrotechnical professionals, drawn from a range 
of companies. The results are shown in Fig. 7.4.

The green “expected” bars indicate the proportion of respondents expected to get 
any given number of correct answers if all were good 80% confi dence-interval estima-
tors. Thus, even a well-calibrated 80% confi dence-interval estimator is not expected to 
always get exactly 8 out of 10 questions correct. Because of the small sample size, a 
person may occasionally get 6, 7, 9, or 10 questions correct. The actual results, shown 
in the red “observed” bars, indicate the participants were grossly overconfi dent, plac-
ing their upper and lower estimates too close together. Surprisingly, the assessment of 
uncertainty was part of the job for a signifi cant number of the participants. Baecher 
(1972) analyzed engineers’ estimates for bay mud compression ratios and found over-
confi dence increased with years of experience. 

Lichtenstein et al. (1982) reviewed several studies in which participants were asked to 
give 98% confi dence intervals. Averaging across all these experiments—a total of nearly 
15,000 judgments—the participants were right only 68% of the time. In general, therefore, 
if someone is supposedly 99% sure, the relevant probability may well be 70% or less. Per-
haps most painful, this advice applies even to our own intuitive feelings of confi dence.
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The overconfi dence bias has signifi cant implications. If you underestimate the high 
end or overestimate the low end of a range of values for a crucial variable, you may 
expose yourself to far greater risk than you realize—or you may miss out on opportu-
nities. Yes, you may argue, I understand the tendency to overestimate or underestimate 
the uncertainties, but in the long run, things converge toward the average value. Being 
better at assessing these uncertain parameters or values does not signifi cantly impact 
the valuations, nor does it change most decisions. Unfortunately, this line of reasoning 
is incorrect.

Welsh et al. (2007b) investigated the impact of the overconfi dence bias (among 
others) on a petroleum development decision. They used a probabilistic reservoir 
model with uncertain inputs for determining OOIP, recovery, and oil price. To model 
the impact of overconfi dence, the 10th and 90th percentiles of each “estimated” (i.e., 
overconfi dent) distribution were used to create “unbiased” input distributions with the 
same mode and mean, by adjusting the minimum and maximum values outward by 
equal amounts. For example, assuming 20% overconfi dence (OC20), the 10th and 
90th percentiles of the estimated probability density function (PDF) served as the 20th 
and 80th percentiles for an unbiased PDF—see Fig. 7.5. Transformations of this sort 
were applied to all of the input variables used in calculating the reserves for seven 
levels of overconfi dence, from 0 to 30% in 5% increments. The 0% overconfi dence 
level represented the numbers given by the expert, and the modifi ed distributions rep-
resented the hypothetical true distribution, assuming that the expert is overconfi dent to 
the specifi ed degree.  

The NPV of the project was then calculated by Monte Carlo simulation (using the 
same random seeds in each case and 10,000 iterations) using capital expenditure and 
operating expenditure values appropriate to a development of its size and type. Fig. 7.6 
shows the accelerating decline in the true expected NPV as overconfi dence increases. 
At 0% overconfi dence, the mean NPV was USD 246 million; but at 5% overconfi -
dence, the value of the project is really USD 224 million—compared to the USD 
246 million the company would have estimated based on its experts’ inputs. The true 
value for a company in which the personnel are 30% overconfi dent would be USD –10 
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million to USD 256 million less than the company is expecting based on the experts’ 
numbers.

Furthermore, a company taking a deterministic approach to valuation, using the 
expected values of the input parameters, would estimate the project value at USD 346 
million, USD 100 million more than the true value at 0% overconfi dence and USD 356 
million more than at 30% overconfi dence. This estimate is caused by nonlinearity aris-
ing from the complexity of the model and provides further evidence for arguments 
made in Section 4.5 about the need to use probabilistic rather than deterministic calcu-
lations for the expected value of complex systems (Begg et al. 2001; Bratvold and 
Begg 2008).
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Fig. 7.5—Overconfidence transformation of PDF (Welsh et al. 2007b).
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Clearly, overconfi dence can have serious consequences. Researchers have offered it 
as an explanation for wars, strikes, litigation, entrepreneurial failures, and stock mar-
ket bubbles (Moore and Healy 2008). Malmendier and Tate (2005) used overconfi -
dence to explain the high rate of corporate mergers and acquisitions, despite the fact 
that such ventures so often fail. Odean (1998a, 1999) showed that overconfi dence may 
explain the excessively high rate of trading in the stock market, despite its costs. Plous 
(1993) suggested that overconfi dence contributed to the nuclear accident at Chernobyl 
as well as the explosion of the space shuttle Challenger. In his words, “No problem in 
judgment and decision making is more prevalent and more potentially catastrophic 
than overconfi dence.”

What Can Be Done? Two groups of professionals are found to be reasonably well-
calibrated: meteorologists and horse-racing handicappers. These individuals learn to be 
well-calibrated because they face similar problems every day, make explicitly probabilis-
tic predictions, and obtain rapid and precise feedback on outcomes. When these conditions 
are not satisfi ed, overconfi dence should be expected, for both experts and non-experts.

In the oil and gas industry, feedback may be ineffective or even impossible, because 
of the time lags between decisions and knowledge of their outcomes. However, the 
results for some decisions are reasonably timely and precise, and training may help in 
others. Russo and Schoemaker (1992) described an example based on discussions with 
Shell executives. Shell noticed that newly hired geologists, although highly qualifi ed, 
were particularly overconfi dent. Their primary or subject knowledge was much more 
advanced than their metaknowledge—the knowledge about what they did know vs. 
what they did not know. To develop a better sense of the limits of their knowledge 
required repeated feedback, which was coming too slowly and costing too much 
money. In response, Shell designed a training program whereby the geologists 
received information on numerous past cases of drilled wells before providing best 
guesses for the probability of striking oil, as well as possible production ranges for 
a successful well. Then, they were given feedback as to what actually happened. 
According to Shell, the training was very successful in reducing overconfi dence. To 
minimize overconfi dence, the following are recommended:

· Keep track (prediction vs. outcomes) of instances of your own or your team’s 
overconfi dence. Even if the team does not create confi dence intervals, build your 
own. Make sure you record your predictions at the time made.

· Challenge yourself. Ask yourself why you may be wrong. Never reduce uncer-
tainty estimates, unless you have specifi c data or information that justifi es it. 
Look for justifi able reasons to increase the range of uncertainty. Even then, it is 
likely that you underestimated it.

· Perform reality checks. Are your projections consistent with similar past occur-
rences, particularly in the aggregate? For example, if you are estimating volumes 
of a series of prospects in a basin, is your distribution consistent with that of 
known accumulations?

· Challenge (professionally) any estimates by managers, experts, or advisers in a 
similar fashion. They are as susceptible to overconfi dence as anyone.

· Do your homework. Each time you make a forecast or an estimate, examine 
your assumptions, so that you are not being unduly swayed by memorable 
distortions.



174 Making Good Decisions

7.3.6 Illusion of Control and Optimism. One reason we are overconfi dent is that we 
remember our hits and forget our misses—we often remember the times that we are 
successful but tend to forget the times that we fail. And, when we remember our fail-
ures, we interpret them in a way that bolsters our belief. This bias is known as the illu-
sion of control. If we are successful, we attribute the positive outcome to our knowledge 
and ability. If we are unsuccessful, we attribute the negative outcome to uncontrollable 
factors. 

Makridakis et al. (2009) provided a striking example of this phenomenon. In the 
three years after 11 September 2001 (i.e., 9/11), many people in the US decided not to 
fl y. During that period, car deaths increased by approximately 6,000 over expected, 
while there were only 30 commercial airline fatalities. Why did so many people take 
their car instead of a plane after 9/11? The simple answer—an illusion of control. 
Behind the wheel, people feel in control, even though they readily admit to having no 
infl uence over the skill of other road users, weather, condition of the road, mechanical 
problems, or any other common cause of accidents. Nevertheless, they still feel in 
control of their destiny when they drive. Place people on a plane, and they think their 
life is in the hands of the airline pilot or, worse, a group of terrorists.

How profi cient at your profession are you? Compared to those you encounter in your 
company or joint-venture partners, are you above average, average, or below average? 
Research confi rms that many people are motivated to view themselves positively, as 
opposed to accurately, resulting in an optimistic outlook. Optimists exaggerate their 
talents, which is why nearly 90% of drivers believe they are above average (Svenson 
1981). Many of them must be mistaken. Optimists also underestimate the likelihood of 
bad outcomes over which they have no control—they are biased. The emphasis is on the 
estimation of likelihood of bad outcomes, in contrast to how the illusion of control 
emphasizes the cause of the outcomes. Greenwald (1980) compared the human ego to a 
totalitarian state in which unfl attering or undesirable facts are suppressed in the interest 
of self-enhancement and observed that we write our own history by altering our 
memories to make them consistent with these self-fl attering beliefs.

We are not suggesting that optimism is always bad, or that decision makers should 
try to eliminate it from themselves or their organizations. Optimism generates enthu-
siasm and enables people to be resilient when confronting diffi cult situations or chal-
lenging goals. When it comes time to implement, optimism can be an asset. Risky but 
worthwhile projects may never be undertaken if the key people did not have an opti-
mistic belief in their chances of success. When “positive thinking” is used deliberately 
and strategically, it can yield excellent results. 

However, positive illusions are dangerous in most decision-making situations. Every 
day, people invest their life savings in new businesses with little chance of success. Pos-
itive illusions also lead people to set objectives with little chance of success (Kramer 
1994). The petroleum industry stimulates a unique aspect of the optimism bias. When a 
business unit has only enough resources to drill two to four wells in a year (usually from 
a portfolio of more than 10 times that number), the most optimistic people tend to be the 
ones getting their projects approved, often moving onto the fast track for management. 
Furthermore, because forecast project values tend to be optimistic in the fi rst place, oil 
companies often end up selecting the most optimistic of the already optimistic projects. 
This bias increases the probability of disappointing results (Smith and Winkler 2006; 
Chen and Dyer 2007; Schuyler and Nieman 2007; Begg and Bratvold 2008).
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What Can Be Done? To reduce undue optimism, realize the following:

· Illusion of control and optimism are related to overconfi dence and, in light of 
these biases, good decision making requires not only knowing the facts, but 
understanding the limits of your knowledge. Because you are more likely to 
remember your successes, keep a list of past decisions or recommendations you 
made that were not successful.

· When presenting historical results to managers and colleagues, resist the tempta-
tion to focus on the upside.

· Take the “outside view.” Lovallo and Kahneman (2003) argued people have two 
perspectives on decision making: an insider view and an outsider view. The  
insider view is biased and looks at each situation as unique. The outsider view, 
on the other hand, is more capable of looking at a range of similar situations. For 
example, project teams that undertake development projects know from other, 
similar project developments that such projects typically end up being signifi -
cantly over budget and overdue (see the box on Independent Project Analysis 
(IPA) in Section 1.2.1, Historical E&P Performance—Not Delivering on Our 
Promises). Nevertheless, when project managers initiate their own development 
projects, they believe that their projects are different, will be completed on time, 
as well as near the projected costs (insider view). In light of this, we should ei-
ther adopt the outside view or invite an outsider to share their insight, which 
generally reduces the optimistic bias and may facilitate the application of a con-
sistent level of risk taking. 

7.3.7 Group Biases. Many decisions in the oil and gas industry are made by groups. 
Janis (1982) coined the term “groupthink” to describe “a mode of thinking that people 
engage in while deeply involved in a cohesive group—when the members’ striving for 
unanimity over-rides their motivations to realistically appraise alternative courses of 
action.” Janis argued that groupthink occurred not as a result of deliberate manipula-
tion of the group, but rather as a result of a combination of high group cohesiveness, 
structural faults in the organization (e.g., the lack of a tradition of impartial leader-
ship), and a provocative context. The resulting groupthink manifests itself in three 
main symptoms: (1) overestimation by the group, (2) closed-mindedness, and (3) pres-
sure toward conformity. These factors reduce the quality of information processing. 
For example, less information-seeking takes place, and fewer alternative courses of 
action are considered.

It is easy to underestimate the impact of conformity. Most of us consider ourselves 
as fairly independent-minded people. Asch (1955) devised experiments that demon-
strated the strong tendency we all have towards conformity. Asch’s subjects were 
placed near the end of a line of actors who presented themselves as fellow experimen-
tal subjects, but were actually pre-instructed by Asch on what to say. Cards were held 
up with one line marked on them, and then another card was held up with three lines 
of different lengths: six, eight, and ten inches. Everyone called out in turn which line 
on the second card was the same length as the line on the fi rst. For 12 of the 18 pairs 
of cards, the subjects gave the wrong answer. In almost all of these cases, the subjects 
went along with the wrong answer given by the actors, ignoring the clear evidence 
from their own senses.
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Asch’s experiment is an extreme example of conformity, but the phenomenon is all 
around us. “Communal reinforcement” is the process by which a claim becomes a 
strong belief, through repeated assertions by members of a community. The process is 
independent of whether the claim has been properly investigated or is supported by 
evidence signifi cant enough to justify the belief. Communal reinforcement goes a long 
way towards explaining how testimonials within communities of therapists, psycholo-
gists, politicians, and sometimes also engineers and geoscientists, can supplant and 
become more powerful than scientifi c evidence.

Groups also display bounded awareness, as described in Section 7.3.1. Although a 
common purpose for a group is to access a greater pool of information, several studies 
(Stasser and Titus 1985; Stasser 1988; Stasser and Stewart 1992) showed that group 
discussions tend to focus on the common, rather than unique, information of 
their members. Therefore, information known to an individual but not shared has little 
infl uence on the eventual decision (Bazerman and Moore 2008)—thus defeating the 
purpose of the group. 

What Can Be Done?

· Picking up on the exclamation, “How could I have missed that,” Nalebuff 
and Ayres (2003) suggested that we ask, “Why not?” They argue that devel-
opers should approach their task by imagining the product they could develop 
if they had unlimited resources. Once you know what you want in an 
unbounded world, you can explore whether or not it is viable under real-
world constraints.

· For a group setting, Stasser et al. (2000) proposed strategies for encouraging 
members to share information—unique information in particular. These strate-
gies include informing the group before any discussion of the unique knowledge 
and expertise of the various members.

· The Delphi method (named for the Oracle of Delphi) is an iterative method for 
pooling expert judgments. Each of several experts is asked to supply their 
assessment about a phenomenon. The combined results are fed back to each 
expert, allowing them to revise their original assessments accordingly, and the 
process may be iterated several times. The method had mixed results (Goodwin 
and Wright 2004; Garthwaite et al. 2005).

· Decision conferencing brings together decision analysis, group processes, and 
information technology over an intensive 2- to 3-day session (Goodwin and 
Wright 2004). There are no prepared presentations or fi xed agenda. In the meet-
ing, a computer-based model, which incorporates data and the judgments of the 
participants, is created. The model is a tool for thinking, enabling participants to 
see the logical consequences of differing viewpoints and to develop higher-level 
perspectives. By examining the implications of the model, changing it, and try-
ing out different assumptions, participants develop a shared understanding and 
reach agreement about the way forward. 

7.4 Eliciting and Encoding Probabilities
Decision situations require the participants to identify and determine the decision 
maker’s values, preferences, and objectives, along with the alternatives and beliefs 
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about the outcomes of uncertain events or quantities. As petroleum professionals, we 
are familiar with gathering some of this information, whereas other information (e.g., 
quantifying uncertainty by probabilities) is different and presents new challenges. 
Probability quantifi cation has two main components. The fi rst is a defi nition of the 
possible outcomes of an uncertain event (or quantity) and the second is the assignment 
of probabilities to those outcomes, see Section 3.4.1. The process of obtaining this 
information is called elicitation. 

Given the host of biases and traps to which people are prone, it may seem 
impossible for anyone to provide reliable probability information. Fortunately, 
research has uncovered good elicitation practices in which the primary consider-
ation is to use methods that help knowledgeable individuals avoid the classic 
errors people are prone to make. The approach discussed here builds on assessment 
methods developed by the group of analysts in the Department of Engineering–
Economic Systems at Stanford University and at the Stanford Research Institute 
(SRI) (Spetzler and Staël von Holstein 1972; Merkhofer 1987; McNamee and Ce-
lona 2005). Although it is by no means the only elicitation method available (see, 
for example, Morgan and Henrion 1990 or Garthwaite et al. 2005), the Stanford/
SRI approach has been the most influential in shaping structured probability elic-
itation and is frequently used by practicing decision analysts, including those in 
the E&P industry.

Ideally, questions about the uncertain events of interest should be posed by a person 
trained in probability elicitation (i.e., the elicitor), rather than by the experts directly 
providing probabilities to the evaluation. If impossible, the expert should adapt and 
follow the process described below and, in doing so, be particularly aware of, and 
guard against, the biases and traps discussed previously. It is also desirable that the 
elicitation process be conducted one-on-one and free from distractions; however, 
after the initial elicitation, a group review often helps to resolve differences and share 
information.  

The basic interview process is a fi ve-step approach as follows:

 1. Motivating
· Establish rapport.
· Explain the task and its importance.
· Identify motivational biases.

 2. Structuring
· Discuss the elements of uncertainty.
· Defi ne the uncertain event(s).
· Explore further decomposition. 
· Draw out assumptions.

 3. Conditioning
· Compensate for availability and representativeness.
· Counteract anchoring by asking for extremes.

 4. Encoding
· Assign numerical values.

 5. Verifying
· Apply coherence checks.
· Review for reasonableness.
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7.4.1 Phase 1—Motivating. During this phase, the elicitor develops the necessary rapport 
with the expert. The decision problem and decision model are explained, and the uncertain 
factors are discussed, which ensures that the expert can focus on the task at hand and 
understands the role of probability assessment in the context of decision making.

Next, the elicitor explains the importance of accurately assessing the uncertainty in 
question. The expert must understand that the intent is to assess the range of possible 
outcomes and not to predict a specifi c value. It is helpful to remind the expert of the 
role of sensitivity analysis in decision making, and the decision alternatives are ana-
lyzed for variations in the elicited probabilities. 

The elicitor also should search for potential motivational biases in the expert, such 
as the following: 

· The manager’s bias, which may lead the expert to focus on matching the boss’s 
expectations rather than providing estimates refl ecting his or her own know-
ledge. 

· The expert’s bias, typifi ed by a distribution made overly narrow to make the 
expert appear perceptive.

· The facilitator’s bias, which results from the expert not wanting to appear to be 
in disagreement with offi cial company information. 

If any such biases are present, the resulting elicitation may not accurately refl ect the 
expert’s true beliefs.

7.4.2 Phase 2—Structuring. The objective of the second phase is to structure the 
uncertain quantity to be elicited as well as to explore how the expert thinks about it. 
The fi rst part seeks an unambiguous defi nition of the quantity to be assessed (see 
Section 3.4.1). The second part explores the possibility of decomposing the variable 
into more elemental quantities that the expert has more knowledge about or feels 
should be explored. An example is breaking down gross rock volume into the product 
of area times thickness. These more elemental quantities then need to be assessed 
individually. Units must be chosen with which the expert is comfortable, because he 
or she should not have to perform unit conversion during the process. Finally, all 
assumptions the expert is making in thinking about the variable should be elicited 
and listed. To identify any hidden assumptions, it is sometimes useful to ask the 
expert what contingencies he or she would like to ensure against.

7.4.3 Phase 3—Conditioning. The objective of this phase is to get the expert “condi-
tioned to think fundamentally about their judgment and to avoid cognitive biases” 
(Spetzler and Staël von Holstein 1972). This conditioning entails drawing out the expert’s 
relevant knowledge about the uncertain variable and having him or her explain how to go 
about making the probability judgments. The expert’s judgment often is based on both 
specifi c and general information, and it is important to identify what data—for example, 
historical frequency information—one has available and how one plans to use it.

The next step is to attempt to counteract any anchoring and availability biases by 
eliciting extreme values. A useful strategy is to ask the expert to come up with extreme 
values, and then explain various scenarios that may lead to these extreme outcomes. 
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The elicitor also should explore for any anchors (e.g., budget plans, corporate fore-
casts, or other management desires or expectations).

7.4.4 Phase 4—Encoding. Now that the variable is defi ned and structured, and the 
relevant information for assessing the variable is established and clarifi ed, the next 
step is to quantify the uncertainty. Depending on the level of detail necessary, three to 
fi ve points are generally assessed. High quality in the P10, P50, and P90 values is 
particularly important, because these numbers are used in the sensitivity analysis at the 
early phases of the decision analysis. It may also be important to assess the P1 and P99 
values to establish the range of the probability distribution.

For this step, the Stanford/SRI approach suggests using a probability wheel like that 
shown in Fig. 7.7.

The probability wheel is divided into two sectors with different colors (e.g., orange 
and blue) for which the relative sizes can be adjusted. It thus has the advantage of 
enabling the expert to visualize the chance of the event occurring. To illustrate how the 
wheel works, assume that we are trying to assess the probability distribution for the 
drilling cost of an exploration well. The elicitor selects a potential value for the vari-
able being assessed by letting the blue sector take up, say, 20% of the wheel’s area. 
They then ask the expert to choose between the following two hypothetical bets:

· Bet 1: If the well costs USD 100 million or less, you win USD 1 million. If the 
well costs more than USD 100 million, you win nothing.

· Bet 2: If, after spinning the arrow once, it lands in the orange sector, you win 
USD 1 million. If it lands in the blue sector, you win nothing.

If the expert says they choose Bet 2 they think the probability of the well costing 
more than USD 100 million is more than 20%. The size of the blue sector should then 
be increased, and the question posed again. Eventually, the expert reaches a point 

Fig. 7.7—Probability wheel.



180 Making Good Decisions

where he or she is indifferent between the two bets. If this indifference is achieved 
when the blue sector takes up 40% of the wheel’s area, it implies an estimate that there 
is a 40% probability the well costs will be USD 100 million or less.

It is, of course, recommended that the elicitor not choose the fi rst value in a way that 
may seem signifi cant to the expert; otherwise, he or she may anchor on that value. 
In particular, the process should not be started by asking for a likely value and then 
encoding the corresponding probability. 

Additionally, to avoid anchoring, encoding continuous distributions should start 
with the extreme values, and then work toward the middle [i.e., fi rst the P1 and P99 
values, then the P10 and P90 values, and fi nally (if only fi ve points are needed) the P50 
value]. Similarly, for discrete distributions, the least likely outcome should be encoded 
fi rst, and then the encoding should proceed to more likely outcomes.

Throughout the process, the elicitor should plot and number the encoded values and 
look for inconsistencies. This plot should be kept out of the expert’s view during this 
phase, and the order in which the points are assessed should be noted. The result of 
this process may be something like the points in Fig. 7.8. These points can then be 
connected or fi tted by a smooth curve.

Many people adapt quickly to this visual form of representation (McNamee and 
Celona 2005). Kinnicutt and Einstein (1996) reported good results for probability 
assessment tasks involving geologic site characterization. 

Other methods have been developed for assessing probabilities. One class uses 
repeated judgments from the expert (Sanborn and Griffi ths 2008; Vul and Pashler 
2008; Welsh et al. 2008) and yielded good results in the absence of an elicitor. Other 
references for assessment methods include Lichtenstein et al. (1982), Garthwaite et al. 
(2005), and Morgan and Henrion (1990). Hawkins et al. (2002) and Welsh et al. (2004, 
2005, 2008) discuss elicitation techniques using E&P examples.

The probability wheel is unsuitable for very low or very high probabilities because 
judging size of very small sectors is diffi cult (Merkhofer 1987). For assigning proba-
bilities to rare events, better approaches include event trees, fault trees, and log-odds 
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scales. These approaches are beyond the scope of this book, but Goodwin and Wright 
(2004) provide a good overview.

Finally, in most E&P settings, decision problems are worked by groups in which 
several experts may address any given uncertainty. Because these experts have differ-
ent knowledge, they often differ in their assignment of probabilities to events.

To resolve this difference, there are essentially two approaches: behavioral aggrega-
tion and mathematical aggregation. In behavioral aggregation, a group judgment is 
reached by group members engaging in open discussion. Mathematical aggregation 
involves using some technique such as weighted averaging or some form of a Bayesian 
combination of probabilities (Clemen and Winkler 2007).

Group judgments allow more information about possible ranges of probabilities to 
be obtained, which may then be subject to sensitivity analysis. 

The details of the various aggregation methods are beyond the scope of this book. 
Good references are Clemen and Winkler (2007), Cooke (1991), and Goodwin and 
Wright (2004). Although this topic is still an active research topic, empirical studies 
(Goodwin and Wright 2004; Clemen and Winkler 2007) indicate that: (1) mathemati-
cal aggregation often performs better than group aggregation, and (2) using simple 
averages of probabilities provides results superior to using more advanced models or 
combination rules.

7.4.5 Phase 5—Verifying. In the last phase of the elicitation process, the objective is 
to ascertain whether or not the quantitative judgment the expert has provided refl ects 
his or her beliefs accurately, which can be done in a variety of ways. As an initial test, 
the cumulative distribution can be converted into a histogram, to look for sharp 
extremes or bimodal shapes—with the understanding that a person’s beliefs tend not 
to display such characteristics when accurately represented. The encoded distribution 
can also be checked with bets. The expert may be asked whether he or she would rather 
bet on (1) the actual value being below either the 10th percentile or above the 90th 
percentile, (2) the actual value being between the 10th percentile and 50th percentile, 
or between the 50th percentile and 90th percentile, or (3) the actual value being above 
or below the 50th percentile. The expert’s favoring any of these bets indicates that the 
elicited distribution does not accurately refl ect the expert’s beliefs, and the assess-
ments should be revised.

7.4.6 Summary. The Stanford/SRI method is by no means the only approach to prob-
ability elicitation. It does, however, provide a systematic approach to most of the 
issues important in expert elicitation. It has also yielded good results, and both experts 
and elicitors regard it as useful and easily understood (McNamee and Celona 2005). 
Of course, as with decision analysis in general, the real value of the elicitation process 
is not in the exact numbers but in the insights, transparency, and improved clarity that 
it provides the decision maker. 

7.5 Summary—Why We Need Help

Our knowledge can only be fi nite, while our ignorance must necessarily be 
infi nite.

—Karl Popper
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The fundamental cause of trouble in the world today is that the stupid are 
cocksure while the intelligent are full of doubt.

—Bertrand Russell

At this point, one may reasonably ask if we can ever make good decisions, given our poor 
judgments. However, the situation may not be as bad as it seems. After all, we are able to 
perform computational miracles, such as recognizing human faces and understanding ver-
bal languages, which is far beyond even the fastest and most powerful computers. Behav-
ioral and cognitive decision research tends to focus on the frailties and shortcomings of 
human judgment because such understanding provides the basis for improvements. 

Abundant evidence shows that the decisions of even smart people are routinely 
impaired by biases. Overconfi dence, wishful thinking, and a preference for confi rming 
evidence can foster undue optimism or bias in the information we seek. Shortcuts, 
such as relying critically on the most available, recent, or vivid information, or anchor-
ing estimates on inappropriate numbers, refl ect false effi ciency—distorting how we 
fi lter and interpret information. The critical question is: “What can be done to correct 
these defi ciencies?”

In many situations, awareness combined with an ability to be objective may be suf-
fi cient for a decision maker to accurately assess how much is known and how much is 
not known. However, given the limitations of our perceptions in the face of uncer-
tainty, we cannot rely only on intuition in our decision making. We need to use appro-
priate tools and frameworks to address the uncertainties and decisions. Pilots can fl y 
airplanes on visual while the weather is clear, but they are taught that when encounter-
ing fog or storm clouds, pilots must over-ride their instincts and rely on instrumenta-
tion, such as gyroscopes and radar. It is possible for the instruments to be wrong, but 
this situation is far less likely than intuition being wrong. Although few pilots ignore 
the instruments available to fl y through bad weather, many decision makers—because 
of overconfi dence and the lack of a Federal Aviation Administration for corporate 
navigation—trust their intuition rather than applying the tools and frameworks that can 
help overcome turbulence.

7.6 Suggested Reading
Of the several excellent books and papers on behavioral decision making, it is natu-
ral to start with Kahneman et al. (1982), which cited many of the initial papers on 
this topic. For an up-to-date overview of psychological and judgmental challenges in 
managerial decision making, we recommend Bazerman and Moore (2008). Other 
approachable books include Plous (1993), Hastie and Dawes (2001), and Russo and 
Schoemaker (2002). The book Predictably Irrational (Ariely 2008) used very creative 
experiments to demonstrate many of the cognitive traps in our decision making.

Several papers discussed cognitive biases in decision making in the oil and gas 
industry. Capen (1976) provided an early example of the overconfi dence bias among 
petroleum professionals. The authors of this book were approached by one of the 
major oil companies in 2002 with a proposal and funding for conducting research in 
the area of “human factors in eliciting probabilities from subsurface experts.” As a 
result, we hired behavioral psychologist Dr. Matthew Welsh, and the ensuing work 
resulted in several publications illustrating and discussing cognitive biases in oil and 
gas (Welsh et al. 2004, 2005, 2006, 2007a, 2007b).
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Finally, Daniel Gilbert’s Stumbling on Happiness (2007) is a marvelous book on the 
topic of affective (emotional or sentimental) forecasting and the winner of the United 
Kingdom Royal Society’s science book prize.

Appendix A

Solution to the Problem Presented in Fig. 7.2. Most people miss the fact that the 
problem does not tell you to keep the pencil within the bounds given by the nine 
dots. The problem is a lot easier to solve once they realize there is no such boundary 
(Fig. A-1).

Fig. A-1—Solution to the nine-dot problem.





Glossary

Symbol Defi nition Units

A
−

  Outcome “not A” 
B− Outcome “not B” 

B
o 

Formation volume factor 

CDF Cumulative Distribution Function Percent

CE Certain equivalent 

EU Expected utility 

EV Expected value 

EVII Expected value of imperfect information USD millions

EVPI Expected value of perfect information USD millions

IRR Internal rate of return Percent

NPV Net present value USD millions

OOIP Original oil in place million STB

P or p or Prob Probability Percent

PDF Probability Density Function Percent

RF Recovery factor Percent

TRF Technical Recovery Factor Percent

V Total weighted value of a decision alternative  

Var Variance 

VoF Value of fl exibility USD millions

VoI Value of information USD millions

w Weight 

µ Mean 

σ or s.d. Standard deviation 𝜈 Payoff (Value) 
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