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1Fluid Mechanics Challenges
and Technology Overview

The author’s earlier book on annular flow, entitled Borehole Flow Modeling in Horizontal, Deviated

and Vertical Wells (Gulf Publishing, 1992), was the first to use boundary-conforming, curvilinear

grid systems to host highly eccentric annular cross sections that contained cuttings beds, washouts,

and local fractures. That work also addressed related problems—for example, helical flow and stea-

dy rotation of Power law fluids in concentric annuli, as well as the role of barite sag in promoting

local recirculation zones that dangerously block oncoming mud.

Ten years later, the second edition, renamed Computational Rheology for Pipeline and Annular

Flow (Elsevier, 2001), expanded the initial scope to model effects such as borehole axis curvature,

flows in noncircular pipe (nonannular) ducts, and half-clogged annular domains. These two works

focused on steady, two-dimensional flows without rotation and then single-phase non-Newtonian

rheologies without yield stress. Many of the algorithms have been adopted by operating and oil ser-

vice companies over the past two decades.

The present book, which summarizes major improvements in accuracy, speed, and engineering

focus, represents a significant contribution that renders the prior works almost obsolete. Even so,

the curvilinear grid technology employed in the early books remains state of the art and thus pro-

vides the mathematical foundation for the newer algorithms developed here. Improvements in for-

mulation and solution accuracy are provided, but the new book substantially extends the range of

problem-solving capabilities.

The present work gained significant impetus with the award of U.S. Department of Energy

Contract No. 08121-2502-01 for “Advanced Steady-State and Transient, Three-Dimensional, Single

and Multiphase, non-Newtonian Simulation System for Managed Pressure Drilling,” administered

by the Research Partnership to Secure Energy for America (RPSEA). This award provided the

opportunity to integrate past work, tie up “loose ends,” introduce new extensions, and provide the

software platform to bring much-needed algorithms to the industry for deepwater drilling and

cementing applications.

Although the prior works are by no means old, at least chronologically, the methods developed

therein are often cited as “new.” However, in the context of this book they are antiquated and

entirely replaced by newer algorithms. The methodologies here are described in their entirety so

that interested researchers can develop, improve, and extend the models from first principles. They

are “open source” in this sense. To set the stage for the presentations that follow, we explain the

limitations behind the previous works as well as extensions that have appeared in papers published

up to the late 2000s.
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The recent works in Chin and Zhuang (2011a,b,c,d), presented at the American Association of

Drilling Engineers (AADE) National Technical Conference and Exhibition in Houston in April

2011; the paper by Chin and Zhuang (2011e), given at the Offshore Technology Conference in

Houston in May 2011; and the work by Chin and Zhuang (2010), presented at the CPS-SPE

International Oil & Gas Conference and Exhibition in Beijing in June 2010, do represent up-to-date

contributions. However, the present book provides much more information than is available in the

published summaries, in addition to special solutions that have not yet appeared in print.

CHALLENGES IN ANNULAR FLOW MODELING
The problems confronting borehole flow modeling are numerous. First, the governing partial differ-

ential equations are highly nonlinear and difficult to solve: Classical superposition methods do not

apply. This is so even for flows without rotation, where a single equation for axial velocity is found.

When rotation exists, azimuthal flow coupling generally leads to numerical instabilities, which have

only recently been satisfactorily addressed. When multiphase effects are considered, difficulties in

the solution process are compounded by the introduction of a convective�diffusive equation for

species concentration. Depending on the problem, steady solutions require stable iterative algo-

rithms, whereas transient solutions require robust algorithms admitting larger integration time steps.

Second, annular geometries are complicated. A highly eccentric geometry typical of those encoun-

tered in the drilling and cementing of modern deviated and horizontal wells is shown in part (a) of

Figure 1.1. A less than ideal annulus is sketched in part (f) of the figure, which indicates a washout,

although fractures and cuttings beds are also possible. The governing equations must be solved for

practical geometries, and satisfactory coordinate systems provide the key to success. In engineering

simulation, solutions for reservoir flow from single wells, for instance, are developed naturally with

circular coordinates. Temperatures in rectangular plates, in contrast, are obtained in rectangular

coordinates.

(c)

(d)

(a)
(b)

(e)

(f)

FIGURE 1.1

Real and idealized annular geometry models.
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For parts (a) and (f) in Figure 1.1, neither circular nor rectangular variables apply. Therefore,

researchers have introduced simplifying methods that render the equations amenable to solution.

For instance, the concentric model in part (b) of Figure 1.1 can be solved for steady Power law

flows; however, yield stress formulations have so far defied rigorous analysis, with solutions avail-

able only for circular pipe flows. Out of necessity, real annuli are crudely modeled by “close” con-

centric annular flows.

Equivalent hydraulic radii approaches model the eccentric annulus as an equivalent pipe flow,

as suggested in part (c) of Figure 1.1. Such approaches are completely ad hoc and cannot be

extended to other situations. Slot flow methods are suggested in part (d) of the figure, in which a

narrow eccentric or almost concentric annulus is “unwrapped” and approximated by a series of par-

allel plate problems that can be solved. However, circumferential inertia terms cannot be properly

modeled, and extensions to transient flow are impossible. Finally, the “pie slice” methods indicated

in part (e) remove some limitations inherent in slot flow approaches. Here, concentric solutions are

applied to different slices of the annulus, but, again, the final solution, somewhat crudely, provides

only as many simulation options as those available for the concentric annuli—and these are few.

Third, yield stress effects have introduced significant difficulties in obtaining solutions that are

consistent with reality. In flows with nonvanishing yield stress, plug flows are found that move as

solid bodies; they are embedded in the sheared flows we are accustomed to. For flows in circular

pipes, simple formulas are available for plug radius, volumetric flow rate, and so on. For eccentric

annuli, plug zone size and shape are generally unknown, so solutions to this important problem can-

not be obtained at all. Even if plug zone location and geometry are available, mathematical issues

associated with matching regional solutions across internal boundaries are overwhelming.

Finally, we cite issues associated with utility and user friendliness. Even if all of the problems

just described can be solved, they must be solved quickly and stably with minimal trial and error.

Results must automatically display in three-dimensional color graphics and movies. Computational

and engineering expertise should not be required to obtain practical solutions. Simple definitions of

annular geometry, rheological properties, and run-time inputs such as flow rate or pressure gradient

and pipe axial and rotational speed are all that should be required. Only when such conditions are

fulfilled will the models find real use.

Simulation challenges met and exceeded
We are pleased to report that the difficulties just cited have been overcome through combined use

of rigorous mathematics and state-of-the-art numerical analysis. In addition, careful emphasis and

focus on graphical interfaces and ease-of-use issues promise to make the algorithms relevant to

modern drilling, cementing, and deepwater applications requiring immediate answers. These require

fast solutions operable at field offices and rig sites. The applications are demanding because they

require methods that work the first time and every time. As suggested earlier, we explain in the fol-

lowing paragraphs the limitations behind older models (including the author’s) versus the newer

models to set the stage for the remainder of this book.

While Borehole Flow Modeling, Computational Rheology, and several company algorithms do

model eccentric annuli using the author’s curvilinear grid systems, past transformed differential

equations neglected partial derivatives of the (variable) apparent viscosity because they led to

numerical instabilities. This approximation has been removed.
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In the author’s prior models, plug zone size and shape were determined by a shock-capturing

method that did not always satisfy conservation laws. The new method, using an “extended

Herschel-Bulkley” constitutive relation, recognizes that real fluids vary continuously and do not

solidify suddenly. Computations therefore reach into the plug zone, and plug size, shape, and inter-

facial gradients and details are calculated iteratively as part of the solution. The approach mirrors

the author’s prior aerospace approaches in gas-dynamic shock capturing. In high-speed aerodynam-

ics, shockwaves (or pressure discontinuities) can form at wing surfaces. In the late 1970s, the

author employed the so-called “viscous transonic equation” to naturally compute evolving shocks

that satisfy physical conservation laws and standard thermodynamic and entropy constraints without

partitioning the flow into multiple domains. A similar approach was undertaken here.

Steady rotating pipe flow modeling for eccentric problems is beset with numerical instability

problems that have not been satisfactorily addressed. Although a limited number of papers do

report solutions, they are lacking in numerical detail and the models do not appear to be available

for general use. The present approach, which is robust and numerically stable, calculates steady

rotating pipe flow solutions as the asymptotic limit of a transient problem. Many steady and tran-

sient applications are given in this book.

Steady, single-phase models with rotation have not been generally addressed in the literature—

and unsteady methods hosted on curvilinear grids are even rarer. Here we provide the first such

algorithms for annular borehole flow. These represent more than the obvious “@/@t” appendages to

steady flow operators and simple time integration. Contradictory and confusing issues were

addressed. Prior to 1990, mathematical solutions and field observations indicated that the effect

of pipe rotation was increased flow rate (for a given pressure gradient) due to shear thinning; equiv-

alently, when volumetric flow rate is prescribed, rotation leads to a weaker pressure gradient.

Subsequent to that period, field observations were completely opposite: Pipe rotation decreases

flow rate for the same applied pressure gradient. These contradictions have been cited often in

industry discussions, and the fact that field observations do not represent controlled experiments

does not help.

Our work has provided a simple explanation for the apparent contradictions. In the early work,

concentric annuli were the main focus in vertical well applications. For such problems, the effects

of rheology appear only through shear thinning, and this is responsible for the reduced resistance

observed. In recent publications, the focus lies in deviated and horizontal wells where eccentricities

can be large. Although shear thinning is nonetheless present, the loss of symmetry introduces cer-

tain nonlinear convective terms to the governing equations that modify the effective pressure gradi-

ent. When these terms are included in the model, post-1990s conclusions are computed naturally;

they are consistent with pre-1990s observations for concentric annular flow. The calculations are

operationally significant in managed pressure drilling because pipe rotation now provides additional

means for pressure control at the drillbit.

Conventionally, borehole pressures are adjusted by changing dynamic friction using different

pump rates (a procedure that may not be safe, since sudden pump transients are involved); by alter-

ing mud rheology and weight (a process that is slow); or simply by adjusting the surface choke. In

our work, we demonstrate that drillstring rotation can affect pressures significantly without the lim-

itations just indicated, thus providing an important tool useful in navigating narrow pressure win-

dows often found in ultra-deepwater drilling.
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Transient, three-dimensional, multiphase flow modeling is important to modern drilling and

completions. The work of Savery, Darbe, and Chin (2007), with laboratory validations reported in

Deawwanich et al. (2008), Nguyen et al. (2008), Savery et al. (2008), and Savery, Chin, and Babu

Yerubandi (2008), describes a successful and flexible computational scheme used to solve the fully

coupled equations governing axial and azimuthal velocities and species concentration.

The work models miscible mixing and predicts, for example, diffusion thicknesses as a function

of cross-sectional location, time scales required for different mixing processes, and the locations of

nonplanar interfaces separating multiple fluid slugs. However, the method described is extremely

intensive in computation and memory. Using boundary layer approximations, equally accurate solu-

tions are obtained in Chapters 8 and 9 of this book that are orders of magnitude faster and therefore

suitable for job-planning applications.

For managed pressure drilling applications where the details of interfacial mixing are not impor-

tant, pressure profiles along the borehole (and, in particular, at the drillbit) as functions of time can

be obtained in minutes. For cementing applications, the ability to “zoom in” in order to examine

interfacial mixing details is provided. Unlike the 2007 model of Savery et al., however, computa-

tions require only inputs associated with just two contiguous fluids, thus ensuring fast solutions that

can be easily repeated for multiple “what if” analyses. Rapid access to answers ensures relevance

to job-planning activities.

WHY COMPUTATIONAL RHEOLOGY?
Students accustomed to steady Newtonian fluid mechanics are familiar with “obvious” rules of

thumb. But when petroleum applications are encountered, these must be abandoned without

suitable or useful replacements. We offer numerous examples.

• For Newtonian flows with stationary boundaries, doubling the pressure gradient doubles the flow

rate, while doubling the viscosity halves the volumetric flow. In fact, many solutions contain the

simple lumped parameter “1/μ dp/dz,” where μ is viscosity and dp/dz is pressure gradient. These

observations are not true for non-Newtonian flows, and analogous scaling laws do not exist.

• In Newtonian fluid flow problems, barring dependencies on pressure and temperature, viscosity

is a constant throughout the entire domain. This is not true of non-Newtonian flows, where the

“apparent viscosity” varies throughout the cross section and also depends on pressure gradient

or volumetric flow rate. Thus, while intrinsic parameters like “n” and “K” can be inferred from

viscometer readings, instrument readings for viscosity are largely irrelevant for applications in

which, say, the same fluid is flowing in a real borehole annulus.

• For steady concentric Newtonian annular flows, axial and azimuthal velocity fields completely

decouple despite the nonlinearity of the Navier-Stokes equations. Axial velocities depend on

applied pressure gradient and not on rotational rate, while azimuthal velocities depend on rota-

tional rate and not on pressure gradient. This is not the case for non-Newtonian flows, even in

concentric applications, because the apparent viscosity function depends on both velocities.

Thus, for example, laboratory and field observations obtained for Newtonian flows are

completely inapplicable to non-Newtonian flow, and any expense incurred is wasted.
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• While it is not obvious without studying the governing equations, the time scales associated

with, for instance, flowline startup and shutdown or time to steady state in rotating pipe applica-

tions, are completely different for Newtonian versus non-Newtonian flows.

It is clear from these examples that no simple methods exist for non-Newtonian flow prediction

except for well-validated computational methods. This book develops a wealth of proven algorithms

that, importantly, have been integrated for convenient use within a software framework.

BROAD PRINCIPLES AND NUMERICAL CONSISTENCY
Truisms, such as “death and taxes,” are often difficult to prove. Such truisms are to be found in

annular flow—for instance, for the same applied pressure gradient and pipe and hole diameters,

higher borehole eccentricities move greater amounts of fluid whatever the rheology. Another appar-

ent truism is found for concentric rotating flows—rotation reduces resistance because of shear thin-

ning and increases flow rate. And for most eccentric annular cross sections, rotation seems to

decrease flow rates because axial pressure gradients are altered in subtle ways. There are most

likely exceptions to such “truths” and others. We are gratified that flow simulation results seem

to be consistent with them. More important, however, is that predictive means are now available to

provide “numbers” and, of course, appropriate guidance when truths are not so true.

What we’re not
Although this book focuses on a wide range of problems, it is important to summarize and, if nec-

essary, briefly explain those issues not covered in addition to technical areas that the simulators do

not address.

• Secondary flows in pipes and annuli are not investigated (e.g., Taylor vortices are not studied).

• The simulators do not model gas kicks.

• Pressure and temperature effects on fluids, while important operationally, are not addressed

because they can only be determined from empirical measurement. We assume that rheological

properties for the particular downhole environment are available and “go” with those inputs.

• Present turbulence-modeling methods are highly empirical and do not fit within the predictive

framework of the software research. Thus, conventional models are not included, although an

analogy to “small n” rheologies is developed in some detail.

• Swab-surge effects critically affect drilling operations. A significant portion of our research and

software development focused on accurate modeling of yield stress fluids in complicated annular

domains. The work addressed constant density applications. Transient compressible effects are also

important in practice (i.e., “water hammer” effects), but these are reserved for future investigation.

What we can solve and more
No research or software development effort is ever complete, and ours is no exception. Since 2010,

six papers have been presented by the author at various conferences, and audiences have raised

common questions. We repeat these together with our remarks.
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How well validated is the methodology? Early single-phase flow checks are reported in Borehole

Flow Modeling, and pipeline validations are given in Computational Rheology. The transient,

three-dimensional, multiphase flow references cited earlier give experimental details with photo-

graphs for non-Newtonian, rotating, annular flows obtained at a major university.

Are torque and drag calculations possible? Calculations can be performed with simulator out-

put, but they are not yet part of any automated postprocessing scheme.

Can the gridding technology be extended to three dimensions in order to model real bore-

holes? Yes, definitely. In fact, a large oil service company has parameterized our model by

adding a third “z” direction to the mappings. Mappings are repeated as needed, and local cross-

sectional geometries are developed with the aid of caliper logs. The flow equations are written

to this three-dimensional grid and solved. The resulting software is numerically intensive and

demanding of memory resources.

How general are our transient pipe motion options? The “canned” options available in the

“Transient 2D” and “Transient 3D multiphase” options are very flexible, although, of course,

they cannot cover every possible scenario. We do emphasize that nothing in the general algorithm

and formulation precludes the most arbitrary reciprocating and rotating pipe or casing motions

envisioned by users. Implementation is straightforward but requires source code access.

Is it possible to model rheologies besides Newtonian, Power law, Bingham plastic, and
Herschel-Bulkley (also known as Herschel-Buckley)—that is, fluids with “memory”

effects? Yes, arbitrary rheologies can be modeled. We have selected the Herschel-Bulkley as

our primary candidate only because this is widely used. However, other constitutive relations

can be used by modifying a short apparent viscosity update module. This applies also to mem-

ory fluids. For such flows, the same update procedure is used at the end of each time step dur-

ing the integration process, with fluid strains from previous time steps now entering current

apparent viscosity definitions.

Can rheological flow models be used to predict movements of single cuttings chips?
Although many in the profession and many software salespeople will argue yes, the answer is a

definitive no. The author’s background as a research aerodynamicist at Boeing and as a turbo-

machinery manager at Pratt & Whitney Aircraft is, in part, responsible for this negativism: It is

difficult to model inviscid flow past a single fixed airfoil, let alone low Reynolds number vis-

cous flow past an unrestrained rock chip with unknown geometry and origin.

Computational models can, of course, be used for correlative purposes. For instance, in

Borehole Flow Modeling, the author shows that high viscous stresses at the top of cuttings beds in

deviated wells are associated with good hole cleaning; obviously, mechanical friction plays a cru-

cial role in cuttings bed erosion and removal. On the other hand, high axial velocities and viscosi-

ties are instrumental for debris removal in vertical wells, a conclusion obvious from Stokes’

formula for slow-moving spheres. As another example, low apparent viscosities are associated with

spotting fluid effectiveness in freeing stuck pipe. Because correlative methods offer significant

potential in explaining physical phenomena and in offering solutions, the software models reported

in this book also provide detailed solutions for apparent viscosity, shear rate, and viscous stress in

addition to solutions for velocity. Their availability allows engineers to identify and explain new

observations with greater ease and hopefully to make drilling and cementing safer and more

economical.
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CLOSING INTRODUCTORY REMARKS
Before delving into the heart of annular flow modeling and, in particular, managed pressure drilling

and cementing applications, we offer several remarks (amply illustrated) about the mathematical

approaches taken, the technical problems solved, and the overall system and objectives addressed.

Insofar as theory is concerned, two fundamental building blocks are used. The first employs

“boundary-conforming, curvilinear grid” systems to represent complicated geometries. An example of

an interesting annulus is shown in Figure 1.2, where the borehole wall is shaped with Texas bound-

aries and the “hole” is an elliptical fracture. One would write the governing equations to these coordi-

nates and solve them with iterative methods for steady flows and time-marching integration schemes

for transient problems. The mathematics is developed entirely from first principles in terms of basic

concepts from calculus. The usual references to differential geometry are not necessary and not used.

The conventional constitutive relations used for Newtonian, Power law, Bingham plastic, and

Herschel-Bulkley fluids are illustrated in the stress and shear rate diagrams of Figure 1.3. As will

be explained, computations for fluids without yield stress are straightforward in a sense, but in the

case of yield stress problems, the size, shape, and location of plug zones (which move as solid bod-

ies within sheared flows) are unknown, rendering the computational problem intractable. Until the

work of Chin and Zhuang (2010), calculations for eccentric annular flow with plug zones were not

possible.

A major breakthrough offering fast practical solutions without compromising the mathematics

was achieved, using an “extended Herschel-Bulkley” law proposed in Souza Mendes and Dutra

(2004), which provides for continuous flow solutions reaching across and into typical plug zones.

This approach, generalizable to rheologies beyond those commonly used, promises to broaden the

reach of computational methods for modeling newer muds and cements now being introduced com-

mercially to the industry.

FIGURE 1.2

Annulus with Texas boundaries and elliptical hole.
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Taken together, our grid generation and plug zone methodologies and our advanced numerical

methods for iterative and time-marching schemes (for application to systems of partial differential

equations) allow solutions to the most complicated annular flow problems.

The schematic in Figure 1.4 outlines the scope of the technical problem areas that can be

addressed. These include high annular eccentricity, geometric anomalies like washouts and cuttings

beds, general axial reciprocation in time together with arbitrary unsteady rotational pipe motions,

plug zone modeling associated with yield stress fluids, general pump schedules allowing multiple
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FIGURE 1.3

Constitutive relations for basic rheologies.

FIGURE 1.4

Eccentric annular flow model.
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slugs of non-Newtonian fluids, borehole axis curvature, pressure loss at the drillbit, steady and tran-

sient flow analysis, and so on.

The foregoing capabilities have been assembled to form a user-friendly software framework

with convenient color graphics to model the managed pressure drilling requirements in Figure 1.5.

In effect, we consider the entire problem, from general pumping schedule to flow down the drill-

pipe, through the drillbit, and finally up a highly eccentric annulus. Our objective is accurate com-

putation of a borehole pressure profile and, particularly, pressures at the bit as functions of time;

this computation is essential to job planning in drilling and cementing ultra-deepwater offshore

wells. Fast computing speeds and ease of use, of course, are important to rapid decision making in

environments constrained by dangerous narrow pressure windows. In the end, safety is the prime

motivator.

SECTION 1.1

Managed Pressure Drilling Fluid Flow Challenges

We have satisfactorily answered “Why study rheology?” In petroleum engineering, we emphasize

that rheology here necessarily implies computational rheology. Operational questions bearing

Pressure Psurf(t)
at surface choke

Drillbit Pbit(t)

Mud

Multifluid
transient pump

schedule

RCD rotating
control device

Vertical
concentric
section

Horizontal or deviated well
and eccentric annulus

Turning
section

Tripping in or outPipe rotation

FIGURE 1.5

Managed pressure system simulation.
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important economic implications cannot be answered without dealing with actual clogged pipeline

and annular borehole geometries that can only be conveniently studied using simulation methods.

Before delving into our subject matter, it is useful to review several exact closed-form solutions.

These are useful because they provide important validation points for calculated results, and they are

instructive because they show how limiting analytical methods are. For our purposes, we will not

list one-dimensional, planar solutions, which have limited petroleum industry applications, but will

focus first on pipe and annular flows. Rectangular duct solutions will be treated in Chapter 5.

Newtonian pipe flow
What can be simpler than flow in a pipe? In this chapter, we will find that most “sophisticated”

analytical solutions are available for pipe flows only, and then limited to just several rheological

models.

Figure 1.6 illustrates straight, axisymmetric pipe flow, where the axial velocity u(r). 0 depends

on the radial coordinate r. 0. With these conventions, the “shear rate,” du/dr, 0, is negative; that

is, u(r) decreases as r increases. Very often, the notation dγ/dt5�du/dr. 0 is used. If the viscous

shear stress τ and the shear rate are linearly related by

τ52μ du=dr. 0 (1.1a)

where μ is a constant viscosity, then two simple relationships can be derived for pipe flow.

Let Δp. 0 be the (positive) pressure drop over a pipe of length L, and R be the inner radius of

the pipe. Then the radial velocity distribution satisfies

uðrÞ5 ½Δp=ð4μLÞ�ðR2 2 r2Þ. 0 (1.1b)

Note that u is constrained by a “no-slip” velocity condition at r5R. If the product of “u(r)” and

the infinitesimal ring area “2πr dr” is integrated over (0, R), we obtain the volumetric flow rate

expressed by

Q5πR4Δp=ð8μLÞ. 0 (1.1c)

Equation 1.1c is the well-known Hagen-Poiseuille formula for flow in a pipe. These solutions do

not include unsteadiness or compressibility. These results are exact relationships derived from the

Navier-Stokes equations, which govern viscous flows when the stress-strain relationships take the

linear form in Equation 1.1a. We emphasize that the Navier-Stokes equations apply to Newtonian

flows only and not to more general rheological models.

r

Note: du/dr < 0

u(r) > 0

FIGURE 1.6

Axisymmetric pipe flow.
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Note that viscous stress (and the wall value τw) can be calculated from Equation 1.1a, but the

following formulas can also be used,

τðrÞ5 r Δp=2L. 0 (1.2a)

τw 5R Δp=2L. 0 (1.2b)

Equations 1.2a and 1.2b apply generally to steady laminar flows in circular pipes and—importantly—

whether the rheology is Newtonian or not. But they do not apply to ducts with other cross sections or to

annular flows, even concentric ones, whatever the fluid.

Finally, for Newtonian flows, we show how the effects of pipe rotation are easily modeled.

If we turn to the general Navier-Stokes equations in Equations 2.1 through 2.4 and set vr5 0,

@/@θ5 @/@t5 @/@z5 0, and assume vanishing body forces, the continuity equation is automatically

satisfied. The three main equations become @p/@r5 ρvθ
2/r, @2vθ/@r

211/r @vθ/@r2 vθ/r
25 0, and

@2vz/@r
211/r @vz/@r5 1/μ @p/@z. The azimuthal momentum equation is solved by vθ5ωr—that is,

the fluid executes solid body rotation as the pipe turns at a constant speed ω and there is no influ-

ence from the axial pressure gradient. The solution for the axial momentum equation is just the

u from Equation 1.1b and does not involve ω. In other words, the two velocities behave indepen-

dently. The radial pressure gradient is obtained from the first equation as @p/@r5 ρω2r. Note that

non-Newtonian pipe flows do not behave so simply.

Bingham plastic pipe flow
Bingham plastics satisfy a slightly modified constitutive relationship, usually written in the form

τ5 τ0 2 μ du=dr (1.3a)

where τ0 represents the yield stress of the fluid. In other words, fluid motion will not initiate until

stresses exceed yield; in a moving fluid, a “plug flow” moving as a solid body is always found

below a “plug radius” defined by

Rp 5 2τ0L=Δp (1.3b)

The “if-then” nature of this model renders it nonlinear, despite the (misleading) linear appear-

ance in Equation 1.3a. Fortunately, simple solutions are known:

uðrÞ5 ð1=μÞ½fΔp=ð4LÞgðR2 2 r2Þ2 τ0ðR2 rÞ�; Rp# r # R (1.3c)

uðrÞ5 ð1=μÞ½fΔp=ð4LÞgðR2 2Rp
2Þ2 τ0ðR2RpÞ�; 0# r# Rp (1.3d)

Q=ðπR3Þ5 ½τw=ð4μÞ�½12 4=3ðτ0=τwÞ1 1=3ðτ0=τwÞ4� (1.3e)

Power law fluid pipe flow
These fluids, without yield stress, satisfy the Power law model in Equation 1.4a and the rate solu-

tions in Equations 1.4b and 1.4c.

τ5Kð2du=drÞn (1.4a)
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uðrÞ5 ðΔp=2KLÞ1=n½n=ðn1 1Þ�ðRðn11Þ=n 2 rðn11Þ=nÞ (1.4b)

Q=ðπR3Þ5 ½RΔp=ð2KLÞ�1=nn=ð3n1 1Þ (1.4c)

Nonlinear “Q versus Δp” graphical plots are given in Chapter 4. We emphasize that linear behavior

applies to Newtonian flows exclusively.

Herschel-Bulkley pipe flow
This model combines Power law with yield stress characteristics, with the result that

τ5 τ0 1Kð2du=drÞn (1.5a)

uðrÞ5K21=nðΔp=2LÞ21fn=ðn1 1Þg
3 ½ðRΔp=2L2 τ0Þðn11Þ=n 2 ðrΔp=2L2 τ0Þðn11Þ=n�; Rp # r# R

(1.5b)

uðrÞ5K21=nðΔp=2LÞ21fn=ðn1 1Þg
3 ½ðRΔp=2L2 τ0Þðn11Þ=n 2 ðRpΔp=2L2 τ0Þðn11Þ=n�; 0# r# Rp

(1.5c)

Q=ðπR3Þ5K21=nðRΔp=2LÞ23ðRΔp=2L2 τ0Þðn11Þ=n

3 ½ðRΔp=2L2 τ0Þ2n=ð3n1 1Þ1 2τ0ðRΔp=2L2 τ0Þn=ð2n1 1Þ1 τ02n=ðn1 1Þ� (1.5d)

where the plug radius Rp is again defined by Equation 1.3b.

Ellis fluid pipe flow
Ellis fluids satisfy a more complicated constitutive relationship, with the following known results:

τ52du=dr=ðA1B τα21Þ (1.6a)

uðrÞ5AΔpðR2 2 r2Þ=ð4LÞ1BðΔp=2LÞαðRα11 2 rα11Þ=ðα1 1Þ (1.6b)

Q=ðπR3Þ5Aτw=41Bτwα=ðα1 3Þ
5AðRΔp=2LÞ=41BðRΔp=2LÞα=ðα1 3Þ (1.6c)

Other rheological models appear in the literature. Typical qualitative features of the main models

for velocity are shown in Figure 1.7.

Annular flow solutions
The only known exact, closed-form analytical solution is a classic one describing Newtonian flow in

a concentric annulus. Let R be the outer radius and κR be the inner radius, so that 0, κ, 1. Then

uðrÞ5 ½R2Δp=ð4μLÞ
3 ½12 ðr=RÞ2 1 ð12 κ2Þlogeðr=RÞ=logeð1=κÞ�

(1.7a)

Q5 ½πR4Δp=ð8μLÞ�½12κ4 2 ð12κ2Þ2=logeð1=κÞ� (1.7b)
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noting that this solution assumes stationary walls. Here, the slope formed by Q versus Δp/L is

determined once and for all by the geometry and the value of viscosity. In fact, Q is inversely pro-

portional to μ, varies directly with Δp/L, and depends only on the lumped quantity 1/μ Δp/L. The

net proportionality constant just given can be determined by experiment if desired.

Note that for non-Newtonian flows, even for concentric geometries, numerical procedures are

required—see Fredrickson and Bird (1958), Skelland (1967), or Bird, Stewart, and Lightfoot

(2002). The limited number of exact nonrotating solutions unfortunately summarizes the state of

the art, and for this reason recourse must be made to computational rheology for the great majority

of practical problems. We will, however, derive an exact analytical solution for Herschel-Bulkley

yield stress fluids in concentric annuli without pipe movement in Chapter 5.

SECTION 1.2

MPD Flow Simulator: Steady, Two-Dimensional, Single-Phase Flow

Our “MPD Flow Simulator” system consists of three distinctive capabilities hosted by three differ-

ent but linked menu interfaces. These are “Steady 2D,” “Transient 2D,” and “Transient 3D multi-

phase.” All of the modules residing in each of the interfaces satisfy rigorous mathematical

Newtonian, parabolic profile

Power law, n = 0.5

Power law, n >> 1

Bingham plastic, plug zone

FIGURE 1.7

Typical non-Newtonian velocity profiles.
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formulations that are described in detail in this book. Moreover, they are hosted by fast and numeri-

cally stable algorithms, and are tightly integrated with automated two- and three-dimensional color

graphics displays that together provide detailed solutions within minutes, if not seconds.

While substantial research into fluid mechanics formulations and their computational solutions

supports the totality of our efforts, only those models that operate quickly and stably are offered for

general public use. We emphasize that all of our models have been validated, many with detailed

field and laboratory data and, importantly, that all are consistent with each other to within 2 to

3 percent in their areas of common overlap. The work builds on the author’s books Borehole Flow

Modeling in Horizontal, Deviated and Vertical Wells (Chin, 1992) and Computational Rheology for

Pipeline and Annular Flow (Chin, 2001), which dealt with steady, two-dimensional, single-phase

flows. These models are available to petroleum organizations, as are recent extensions to transient,

two- and three-dimensional, single-phase and multiphase applications, which, however, have seen

only limited publication until now.

We describe our overall capabilities in this introductory chapter to give a flavor of the final

product—in particular what individual software models do and how they deliver their results. In

this manner, we “personalize” our partial differential methods and render them less intimidating.

While great care is taken to explain our formulations, especially in the context of conventional

models, the software product is designed so that no user expertise in theoretical fluid mechanics,

mathematics, computer modeling, or numerical analysis is required. Aside from an appreciation of

basic annular flow problems and applications, and the practical implications behind yield stress

rheologies, nothing is required except the ability to “point and click,” all the time attempting to

understand the consequences of the calculations.

The main “Steady 2D” interface appears in Figure 1.8. The leftmost “Start” menu, expanded in

Figure 1.9, provides access to introductory, self-explanatory functions. “QuikStart” provides enough

information for the user to perform his first simulations the very first minute. The “Install graphics”

FIGURE 1.8

“Steady 2D” main menu.
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function needs to be executed only once from any of the graphics menus in this or in Section 1.3 or

1.4. “User manual” allows direct access to an integrated pdf document. “Examples” loads stored

data for instructive simulations that can be run by simply clicking “Simulate.” “Transient 2D analy-

sis” links the present module to the “Transient 2D” simulator, while “Transient 3D multiphase”

provides access to the more complicated transient, three-dimensional, multiphase flow simulator.

All of these modules are cross-validated later in the book under challenging scenarios to demon-

strate their consistency and accuracy.

The upper left portion of the interface in Figure 1.10 displays input boxes for eccentric annulus

geometry definition, requiring numbers for circle centers and radii following the convention shown.

Eccentricity is calculated in the passive text box at the bottom. Clicking “Show Annulus” displays

the eccentric annulus assumed, together with a coarse, boundary-conforming, curvilinear grid that

might be used to host the simulation. Although grid generation requires the solution of a system of

coupled nonlinear partial differential equations, the process is transparent to the user and requires

seconds, including display time.

Note that our annuli are not restricted to eccentric circles—at run time, inner and outer contours

may be edited point by point at the user’s option. In addition, fine meshes may be selected to pro-

vide still higher resolution. At the lower left, text boxes for borehole axis curvature (which models

centrifugal effects) and axial drillstring or casing speed (for zero, positive, or negative constant

speed movement) are available for general input. At the present time, our steady flow simulator does

not support rotation, since the numerical algorithm is not unconditionally convergent. However,

transient rotations are supported in our “Transient 2D” algorithm and may be used to compute stea-

dy-state effects. Refer to our transient flow write-ups for further discussion.

FIGURE 1.9

Introductory functions. For two circles with inner and outer radii Ri and Ro, and center separation Δ,

“eccentricity” is defined as ε5Δ/(Ro � Ri). Thus, ε5 0 if concentric and 1 if in contact. Eccentricity is

not often used in this book because annuli may be very general to include washouts and cuttings beds.

16 CHAPTER 1 Fluid Mechanics Challenges and Technology Overview



Once annular geometry is defined and Herschel-Bulkley parameters are entered at the top right,

the user selects “axial pressure gradient specified” (to compute flow rate) or “volumetric flow rate

specified” (to compute pressure gradient). Depending on the density of the mesh selected, the itera-

tive calculations (used to solve the nonlinear momentum equations for the particular rheology writ-

ten to the specified grid) may require up to several seconds of computation. Again, the process is

completely automated.

There are two simulation modes, “QuikSim” and “Simulate.” Both use the same numerical

engine, solving the same complete equations hosted by the mapped equations; hydraulic radius, nar-

row annulus, and slot flow models are never used in our work. “QuikSim” assumes the finest mesh

permissible and does not allow editing of inner and outer borehole wall shapes. Also, in order to

expedite calculations, limited text output options are offered, although all possible color plots are

available. “Simulate,” on the other hand, offers detailed geometry-editing capabilities and detailed

text output, tabulated results, and “numbers overlaid on annular geometry” capabilities, where “num-

bers” refers to velocity, apparent viscosity, shear rate, and viscous stress results (see Figure 1.11).

Once “QuikSim” or “Simulate” is clicked and the simulations are run to completion—a process

requiring seconds for “axial pressure gradient specified” but possibly up to a minute for “volumet-

ric flow rate specified”—all simulation results are available through the “Results” menu shown.

“Text output” refers to summaries of geometric annular attributes and rheological parameters, tabu-

lated results for velocity, apparent viscosity, shear rate and viscous stress, and detailed numbers

FIGURE 1.10

“Show Annulus” display and grid generation capability.
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plots that contain more information than is available through more attractive color graphics results.

For instance, this may include ASCII results, such as the following velocity display, which plots

the first two significant digits of axial velocity (in units of in./sec) for an eccentric annulus with a

user-supplied cuttings bed.

COMPUTED AXIAL VELOCITY (IN/SEC):

0     0     0
0     9    15     9     0
9    15    19    15     9

0      15    21  21  21    15       0
9    2121  21  19  21  2121     9
19    19  17  12  17  19    19

0 9      21  12 6 6   0   6 612  21       9 0
1521    17   0           0  17    2115

211912   0           0  121921
0 915       6 0                   0 6      19 9 0

212015 6                       6151921

01519201912 0                       01219201915 9 0

202015 6                       6151820
0 915       5 0                   0 5      15 9 0

1810   0               0  101718   
1519    11   0           0  11    1915

0 9      15   8 5 1   1   1 2 8  1515     9 0
13   9 9   5   5   5   9 9  1513

8   5 8   4 5   4   5 4   8 5   8
0     0     0     0     0     0     0

Axial velocities are also available as “planar,” “static 3D,” and “dynamic 3D” plots, as shown

in Figures 1.12, 1.13, and 1.14, respectively. All may be copied to the Windows clipboard, saved,

and inserted into Windows documents, worksheets, and presentation software. Figure 1.13 illus-

trates contour-plotting capabilities, while Figure 1.14 provides the ability to rotate about any (and

all) of three axes, as well as “zoom” and “move” functions.

In addition to velocities, detailed field properties for apparent viscosity, x and y component

shear rate and viscous stress, dissipation function, and Stokes product, in color and ASCII text

FIGURE 1.11

“Results” menu offering detailed color plots.
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FIGURE 1.12

Planar velocity plot.

FIGURE 1.13

“Static 3D” display with contour plot generation.
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plots, are available for user viewing (Figure 1.15). These properties are obtained by postprocessing

exact computed results for velocity and may be useful for different correlation applications. For

instance, apparent viscosity is used in evaluating spotting fluid effectiveness for stuck pipe applica-

tions, while viscous stress at the surface of the cuttings bed correlates well with cuttings transport

efficiency. Velocity and apparent viscosity are individually useful in hole-cleaning applications in

vertical wells.

While the menu in Figure 1.8 represents our flagship arbitrary geometry capability under the

“Steady 2D” heading, a number of simpler analysis functions are offered in the “Utilities” menu.

These application programs are more restrictive; however, they can be very useful and powerful,

since they are based on closed-form analytical and often exact solutions. For example, three annular

programs are offered under “Concentric steady flow.” Specifically, as shown in Figures 1.16

and 1.17:

• “Newtonian, nonrotating, axial pipe motion” refers to an exact, analytical solution of the

Navier-Stokes equations for Newtonian fluids, assuming a nonrotating inner pipe that may be

stationary axially or moving at constant speed in either direction.

• “Herschel-Bulkley, no rotation or pipe movement” refers to the first exact solution available for

non-Newtonian yield stress fluids, assuming a stationary pipe without rotational or axial movement.

• “Power law, rotating, no axial pipe movement” refers to a closed-form analytical solution

assuming Power law fluids for a rotating inner cylinder without axial pipe movement.

The simplest non-Newtonian fluid is the Power law fluid, characterized by a dimensionless

exponent “n” and a consistency factor “K.” This includes Newtonian fluids (such as air and water)

when n5 1 and K reduces to the constant viscosity μ.

FIGURE 1.14

“Dynamic 3D” display with mouse-rotatable perspective views.
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In Newtonian applications, the viscosity (aside from changes due to pressure and temperature)

is a constant throughout the flow domain, which can be separately measured in a viscometer. For

non-Newtonian fluids, the “apparent viscosity” varies throughout and additionally depends on pres-

sure gradient or flow rate. For Power law fluids, however, the intrinsic properties n and K are

instead constant and determined from separate viscometer measurements. To assist in their determi-

nation, two utilities, as shown in Figure 1.18, are provided. These parameters can be obtained from

knowledge of two Fann dial readings or from viscosity and shear rate data. Values obtained from

these programs can be used in the rheology menu of Figure 1.8.

Newtonian and non-Newtonian fluids differ significantly in their dynamical properties. We indi-

cated how viscosities are constant for the former but variable (and problem dependent) for the latter.

FIGURE 1.15

Detailed physical properties.
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FIGURE 1.16

“Utilities” menu functions.

FIGURE 1.17

Concentric steady flow programs.
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Other important differences are found. For Newtonian flows, the relationship of pressure gradient

versus flow rate is linear for a given viscosity, with a proportionality constant that depends on

geometry. Once this constant is available, either analytically, computationally, or experimentally,

the pressure gradient for a given flow rate is easily determined; the net pressure drop is just the

product of pressure gradient and conduit length. For non-Newtonian fluids, the relationship between

pressure gradient and flow rate is nonlinear. Its determination by experimental means is inconve-

nient and expensive, and computational methods provide an important and practical alternative.

The simulation implied by Figure 1.8 must be performed for numerous values of assumed pres-

sure gradient to obtain the required curve. When influx or outflux is found along the flow channel,

the total volumetric flow rate along the direction of flow changes, so that the local axial pressure

gradient likewise changes. The total pressure drop utility in Figure 1.19 automatically determines

the requisite curve and sums all pressure drops when a user-prescribed influx schedule is available.

Thus, total pressure loss is known for a given influx (outflux) profile, and it is implied that, if pres-

sure deviations from ideal values are known, net influx rates can be back-calculated.

The “pressure gradient versus flow rate curve” function in Figure 1.20 provides the curve only

and represents a subcapability of Figure 1.19. In both cases, the curve is displayed in “dp/dz versus

FIGURE 1.18

Finding n and K for Power law fluids.
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Q” and “Q versus dp/dz” formats, where dp/dz represents the axial pressure gradient and Q denotes

the volumetric flow rate.

The foregoing dp/dz and Q relationships, which, importantly, allow axial pipe movement, are

very useful in managed pressure drilling applications. Although their calculation may appear

straightforward (e.g., specifying a set of dp/dz’s and determining the corresponding Q’s), it is quite

FIGURE 1.19

Influx (outflux) modeling—finding total pressure drop.

FIGURE 1.20

Pressure gradient versus flow rate relationship.
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the contrary. Depending on rheology inputs, the characteristic pressure gradient for any particular

problem may range from 0.00001 to 0.1 psi/ft. Simply selecting the smallest possible dp/dz and

finely incrementing it over a wide range of values requires hours of calculations. To reduce compu-

tation times to one or two minutes, this strategy is employed.

A typical maximum rate of 1,500 gpm is assumed for the annular geometry and fluid rheology con-

sidered, and the “volumetric flow rate specified” option in Figure 1.8 is selected. This uses a rapid “half-

step iteration” for determining the corresponding maximum gradient, one where sequential guesses are

altered geometrically if they do not converge. Once the maximum gradient is available, it may be subdi-

vided into convenient coarser intervals for dp/dz versus Q analysis, providing the required curve.

In the early 1990s, Mario Zamora, then with M-I Drilling Fluids, alerted the author to some

interesting fluid-dynamical phenomena he had observed in his flow loop, one in which density

stratification can be controlled along with flow rate and deviation angle. While one normally envi-

sions flow moving “simply” from regions of high to low pressure, what the author witnessed was

surprising. Under certain conditions, flow visualizations showed that recirculating vortex zones

formed that, for all practical purposes, behaved like solid obstacles that blocked or impeded flow.

The consequences were unimaginable, implying high risks for drilling arising from barite sag, in

the deviated wells that were becoming commonplace.

These possibilities also came at a time when a refinery explosion was found to have occurred

after prolonged shutdown for similar reasons. At the time, this phenomenon could not be explained

by various modeling attempts and danger avoidance strategies could not be developed. It turns out

that similar phenomena have been observed in geophysical and meteorological applications, in

atmospheric and oceanic flow settings.

Fortunately, analytical solutions had been developed over the years for weather prediction and

military use. These formulations were researched and reinterpreted for drilling application—for

example, the Froude number was reintroduced with a dependence on drillstring deviation angle.

The time-tested model is accessible from the menu in Figure 1.21, which provides fast solutions

together with integrated color graphics output and tabulated solutions.

FIGURE 1.21

Stratified flow analysis.
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Finally, we address swab-surge analysis in the context of our “Steady 2D” modeling capabilities.

Numerous papers have addressed the subject over the years, all assuming simple concentric annular

flow and usually Newtonian or Power law rheologies. Investigations have included studies for open

and closed drillbits, ranging from steady flow to transient flows. For steady flow, analytical formulas

are available from the open literature, while for transient analysis, the models remain proprietary.

It is important, however, to emphasize that all transient analyses reviewed by this author do not

distinguish between inertia (that is, constant density “ρ @u/@t” momentum) effects and water ham-

mer effects arising from fluid compressibility. Equations are not offered, so their merits cannot be

evaluated. In our treatment of swab-surge, we will restrict ourselves to steady-state analysis via the

menu in Figure 1.22. This analysis allows general eccentricity, with washouts and cuttings beds, in

addition to axial pipe movement. Transient analysis with general combined reciprocation and rota-

tion is also available, as will be seen from the next discussion. However, fluid compressibility is

not considered.

Consistency Checks
To encourage confident and diligent use of the steady-state simulator for swab-surge and other

applications, consistency checks that validate pressure gradient and flow rate predictions (in the

presence of yield stress, pipe reciprocation, hole axis curvature, eccentricity, and so on) are impor-

tant. In Figure 1.23, we have defined one example in which all input text boxes are populated with

FIGURE 1.22

Swab-surge analysis.
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large numerical values so that all possible logic branches in the underlying simulator source code

are executed. Some of the numbers and results may be unrealistic in practice, but our objective in

this example is computational validation.

For the “pressure gradient specified” option shown, in which a pressure gradient of �0.01 psi/ft

is assumed, clicking on “QuikSim” gives a computed flow rate of 2,823 gpm. We next select the

“volumetric flow rate specified” option and enter “2823” in the input box. After approximately

thirty seconds of iterations, we obtain the required pressure gradient, �0.009961 psi/ft, compared

to an original �0.01 psi/ft.

In this example, a positive tripping speed of 123 in./sec was assumed. We now repeat the “pres-

sure gradient specified” calculation with 2123 ft/sec and �0.01 psi/ft, with the simulation now

leading to a flow rate of 850.5 gpm. Next we revert to a “flow rate specified” mode and enter

850.5 in the input text box. We obtain the pressure gradient �0.009961 psi/ft, in agreement with

the original �0.01 psi/ft used earlier. These calculations used data consistent with highly non-

Newtonian fluids with yield stress, positive and negative drillstring speeds, rapid borehole curva-

ture, and large annular eccentricity. All computations were stably executed. The results showed

excellent consistency, whether the pipe was moving upward or downward in both “flow rate” and

“pressure gradient specified” simulation modes.

SECTION 1.3

MPD Flow Simulator: Transient, Two-Dimensional, Single-Phase Flow

For steady non-Newtonian flows in arbitrary eccentric annuli without rotation, the nonlinear con-

vective (that is, acceleration) terms vanish identically and the axial momentum equation (together

with mass conservation) alone governs the flow. When transient effects are to be considered, the

FIGURE 1.23

Parameters for comprehensive consistency check.
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density-dependent inertia terms “ρ @u/@t1 � � � ” are important and must be included in the analysis.

This completely changes the nature of the mathematics, so the nonlinear partial differential equa-

tion, originally one for a single elliptic equation, is now controlled by parabolic or diffusive effects.

The parabolic system can become quite complicated. When rotation exists, an additional coupled

equation for azimuthal momentum appears, which must be solved together with the axial equation.

This coupling, as will be explained in the theory presentation, is responsible for modifications to

effective pressure gradient that induce changes to flow rate and cross-sectional velocity distribution,

with these being strongly eccentricity dependent.

Our transient modeling addressed subtle questions motivated by confusing issues raised in the

drilling literature. For simplicity, the effects of borehole axis curvature are ignored. The older liter-

ature suggests that the effect of rotation, when pressure gradient is fixed, is to increase flow rate.

The explanation is shear thinning or the reduction in apparent viscosity that accompanies pipe rota-

tion. Field observations are supported by well-known analytical modeling results, and the con-

clusions are very credible. Recent literature, however, suggests the contrary—that is, for a fixed

pressure gradient, the effect of rotation is to decrease flow rate. Again, field observations are cited,

understanding, of course, that field results in either case are not well controlled—washout, cuttings

bed, pump transient, and rheological uncertainties are all likely.

From this perspective, the transient flow research required more than simply introducing

“ρ @u/@t1 � � � ” into the governing equations and integrating. Numerous questions arose. Why do

two conflicting observations exist and how do we reconcile them? And if we can, how can we

devise a predictive scheme that helps with job planning? The required explanations were simple

enough. The older literature dealt with concentric annuli (for vertical wells) where all of the con-

vective terms vanish identically—the only manner in which rheology enters the physics is through

viscosity reduction via shear thinning.

The more recent literature, drawn from deviated and horizontal well applications, usually

applies to highly eccentric annuli for which the convective terms are always present. To assess their

importance, our initial research focused on Newtonian fluids where viscosity is constant, so that

effects related to shear thinning were isolated. The rotational convective terms were shown to

decrease flow rate when the same pressure gradient is assumed by changing the effective applied

pressure gradient, thus explaining a long-standing drilling paradox.

In general, when non-Newtonian rheologies are allowed, shear thinning (which reduces apparent

viscosity) and nonlinear convective terms (which usually produce the opposite effect) compete in a

manner that strongly depends on annular eccentricity. General conclusions are not possible.

Fortunately, the time required to compute flows with arbitrary time-varying pipe reciprocation and

rotation is no longer than that for stationary pipe, but it was necessary to develop a scheme that is

numerically stable for all prescribed motions. Our formulation solves nonlinearly coupled partial

differential equations for axial and azimuthal momentum on curvilinear mesh systems that are

custom-fitted to the eccentric annulus.

To speed the computations, a coarse mesh such as that in Figure 1.10 is hardcoded. This coarse

curvilinear mesh still provides greater physical resolution than is possible using simpler rectangular

and circular systems. The ability to edit inner- and outer-circle contours is not supported, and nei-

ther is our prior modeling of centrifugal effects arising from borehole axis curvature. The menu

designed to access “Transient 2D” capabilities is shown in Figure 1.24, which does allow circles

having arbitrary eccentricity and fluid flows with general Herschel-Bulkley yield stress rheologies.
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The “Start” menu, as seen in Figure 1.25, for “Transient 2D” resembles that for “Steady 2D.”

The complementary “Steady 2D” and “Transient 3D multiphase” solvers are accessible from this

drop-down menu. The upper left portion of the screen, as before, is reserved for annular geometry

definition, with only minor changes to coordinate conventions. Immediately below is a simple util-

ity for calculating hydrostatic pressure at the drillbit using as inputs the surface choke pressure,

hole angle, drillstring length, and specific gravity.

At the center left are input text boxes for Herschel-Bulkley fluid rheology that now include an

entry for specific gravity. We again emphasize the role of fluid density. For nonrotating flows and

general initial conditions, the effects of density disappear asymptotically at large times, assuming,

of course, that the drillstring is not reciprocating. In this regard, the unsteady algorithm may be

used to solve for steady flows; fast solutions, in fact, are possible as the density grows smaller,

since small inertia leads to rapid equilibration (e.g., small specific gravities mean values of 0.01).

For rotating flows, density effects never disappear. To calculate steady rotating flows employing

the unsteady solver, actual specific gravities must be used. These rules will be apparent from

theory.

FIGURE 1.24

“Transient 2D” menu interface.
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The bottom left of the menu in Figure 1.25 supports time step control; additional parameters

(e.g., number of time steps, total time) are self-explanatory. Our transient simulator integrates the gov-

erning partial differential equations in time by advancing the discretized form of the equations one

time step Δt at a time. Since mesh sizes associated with our curvilinear coordinates are hardcoded,

the only parameter available to the user for both accuracy and numerical stability control is Δt. The

selected value is constant for the entire duration of the simulation, although in future updates to

the algorithm dynamically changing step sizes based on local flow gradients will be used to optimize

the integrations. Detailed computed results are available, as indicated in Figures 1.26 and 1.27.

Time step selection represents the most critical decision-making part of the simulation process

undertaken by the user. For nonrotating applications, large time step sizes, say 0.01 to 0.05 seconds,

might be justifiable and useful, based on validations of the type discussed later in this book. When

the inner pipe or casing rotates, the numerical integrations destabilize, and time steps that are

0.001 second or smaller may be necessary. As noted earlier, steady solutions for flows with rotation

cannot presently be computed using the purely steady formulation. A limited number of papers

FIGURE 1.25

Transient 2D “Start” menu.
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have been published on the subject, but without discussion of stability and computing times, and to

this author’s knowledge, none of the methods have been offered for commercial use.

Steady flows can be computed as the large-time limit of a transient calculation, provided, of

course, that the pipe or casing moves without time-dependent change. Again, small Δt’s will gener-

ally be necessary. To support this application, the integration scheme is optimized for speed and

minimal memory resource requirements. For the present software release, up to 10,000,000 time

steps are permitted. If a time step of 0.001 second is assumed, this simulates 10,000 seconds or

almost three hours of continuous rig operation.

When a transient partial differential equation is integrated in time, problem-specific boundary

and initial conditions are required to constrain and start the solution process. With regard to bound-

ary conditions, we assume that fluid at the outer annular boundary adheres to the boundary and

FIGURE 1.26

Transient “Results” menu.

31Section 1.3



does not move. Fluid similarly adheres at the drillpipe or casing and moves with whatever transient

axial reciprocation or azimuthal rotation motions are prescribed at the inner surface.

We permit two types of initial conditions: completely quiescent and steady flow. By steady con-

ditions, we refer to steady flows without rotation. Thus, we can model the start-up of annular flow

from rest, as well as transient reciprocation and rotation starting from nonrotating drill-ahead flow-

ing conditions. Nonrotating flowing initial conditions are actually chosen for special software

development reasons. If steady flowing conditions are permitted, they, of course, must first be com-

puted internally. This process must be both fast and stable numerically to ensure a user-friendly

experience. If the pipe is nonrotating, the only momentum equation that enters is the axial one, and

its steady-state solution can be quickly calculated by assuming small specific gravities and large

time steps, since the final solution is independent of fluid density. This is the strategy taken.

If, on the other hand, rotating flow is allowed, the azimuthal momentum additionally enters.

Its solution requires actual specific gravities, which may be large; extremely small times steps are

necessary for stability, and the user experience requires excessive intervention. It is possible, obvi-

ously, for a rotating drillstring to slow down or accelerate, and this possibility is permitted, as dis-

cussed later.

The engineering variables menu shown in Figure 1.28 provides a high degree of modeling flexi-

bility. For drillpipe or casing axial speed and rotational rate, and for the applied pressure gradient,

assumptions of the general functional form A1Bt1C sin (2πf1φ) are built into the solver, where

A, B, C, f, and φ are constants. The units required are indicated next to the input formulas.

FIGURE 1.27

Transient “Results” menu, more entries.
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Clicking on the question mark to the right of each expression shown in Figure 1.28 produces a line

graph of the proposed auxiliary condition (the time scale may be changed from the “Simulation

Parameters” menu by altering the time step or total time). Examples are shown in Figure 1.29.

Almost all commercial drilling and cementing hydraulics simulators, to this author’s knowledge,

allow constant pressure gradient at best, but do not support reciprocation or rotation.

The menus shown support general transient specifications; moreover, all three inputs may be

transient simultaneously. General reciprocation and rotation capabilities were incorporated by user

request, since quantitative methods to assess the effects of axial drillstring vibrations and torsional

stick-slip were deemed of interest. Very often, one wants to specify volumetric flow rate and

compute pressure gradient. While this is supported in our “Steady 2D” simulator option, it is not

possible here because the required transient calculations are very time consuming. However, speci-

fication of time-dependent axial pressure gradient, say to model pump ramp-up and ramp-down for

swab-surge applications, does to some extent provide the intuitive feeling needed for pressure gra-

dient and flow rate relationships.

Finally, we describe the importance of the “Display options” check boxes at the bottom left of

the “Control Panel” interface in Figure 1.25. If “Interactive plots” is not checked, the transient inte-

grations continue at maximum speed and display a simple status note on-screen indicating elapsed

time, instantaneous volumetric flow rate, and percentage completed. If it is checked, interactive

graphic results are shown at user-defined intervals so that the simulation can be monitored in detail.

Results include axial and azimuthal velocity profiles at the top and bottom of the annulus, plus

“planar velocity plots” like those in Figure 1.12.

These color plots are saved in a movie file for playback at the end of the simulation—for exam-

ple, refer to the “Results” menu in Figures 1.26 and 1.27. Three frames from a typical movie are

FIGURE 1.28

Engineering variables definition.
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captured in Figure 1.30. If the box “Movie frames only” is checked, line graphs for velocity profile

results are not displayed but movie frames are as they become available. One can, for instance,

watch an initially quiescent nonrotating flow evolve in time, with a spatially uniform velocity

changing into one with an axial velocity maximum at the wide part of the annulus. If the pipe or

casing is made to rotate, this maximum then moves azimuthally in agreement with known computa-

tional results from other references. When the simulation ends, a “gpm versus time” plot, as in

Figure 1.31, is provided for user insight into volumetric flow rate and unsteady behavior.

FIGURE 1.29

Example transient reciprocation, rotation, and dp/dz functions.
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SECTION 1.4

MPD Flow Simulator: Transient, Three-Dimensional, Multiphase Flow

In Sections 1.2 and 1.3, we introduced the “Steady 2D” and “Transient 2D” simulators for non-

Newtonian, single-phase annular flow. Aside from obvious differences in “steady” versus “tran-

sient,” it is important to remember that purely steady formulations for rotating flow are numerically

unstable, at least for now, and that rotating pipe or casing flows can only be treated on a transient

basis at the present time. Steady rotating solutions are obtained by evaluating transient runs asymp-

totically to large times. Depending on rotational rate, fluid density, and viscosity, which in turn dic-

tate time step sizes, calculation times may take anywhere from ten seconds to several minutes.

In this section, we discuss the simulator for transient, three-dimensional, multiphase problems.

There are two practical problems that we focus on. The first deals with managed pressure drilling

and, in particular, the operating scenario sketched in Figure 1.5. Here, a general pumping schedule

of non-Newtonian fluid flows is permitted—for example, fluid A pumped for time tA at a flow rate

of GPMA, followed by fluid B pumped for time tB under a rate GPMB, and so on. This fluid travels

down the drillpipe, through the drillbit, and finally up the eccentric borehole annulus. We wish to

determine the pressure profile along the borehole and particularly the pressure at the bit for all

instants in time.

To make calculations tractable, it is assumed that a typical fluid slug length in the pipe or annu-

lus is great compared to the pipe or annular diameter. If so, the locations of all fluid interfaces can

be determined kinematically on a volume basis alone without rheological considerations. Then, at

any given time tn, with the volumetric flow rate Q(tn) known, either of the simulators “Steady 2D”

and “Transient 2D” or any of the many specialized flow solvers available in their respective utili-

ties menus can be used to determine the pressure gradient within any fluid slug. Since the lengths

of all slugs are also available kinematically, the available set of pressure gradients can be integrated

spatially, starting with the pressure value known at the surface choke to provide the pressure distri-

bution along the borehole at that instant in time.

FIGURE 1.30

Example frames from axial velocity movie.
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It is important to understand that this methodology applies to concentric or eccentric annuli, to

pipe or casing that may or may not be rotating, and to all fluid rheologies with or without yield

stress. Moreover, pressure gradients associated with contiguous fluid slugs may be very different

and, in general, may be discontinuous in their values. It is important to realize that pressures at the

bit are important in modern ultra-deepwater applications, where drillers have to navigate narrow

pressure windows to avoid safety problems. The calculations just discussed support the need for

“constant pressure at the bit.” They also provide decision options for pressure control using, for

instance, changes in pump rate or mud rheology and weight, adjustment to surface pressures at the

choke, or pressure variation by altering drillpipe rotational rate.

FIGURE 1.31

Typical line plots, “gpm versus time” (left), and axial and rotational velocity versus radial location

(center and right).
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A second important application is cementing. Here it is also necessary to determine pressure

profiles, first to obtain the pressures needed for pumping. The velocity fields and pressures at any

location and at any time are available using the procedure previously outlined. Here the details of

interfacial mixing may be important, and, if they are desired, calculations may be performed at the

user’s option. These details require solutions to the coupled velocity and species concentration

equations that model both convection and diffusion processes. Calculations for pressure require

minutes, primarily arising from problem setup, which have not yet been entirely automated.

More specifically, once the underlying pressure gradients for the different fluid slugs are avail-

able from calculations using the “building block” flow solvers, the pressure profile calculation itself

requires only seconds. On the other hand, optional calculations for interfacial mixing details (e.g.,

thickness of different diffusion zones about the annular cross section, time scales required in setting

them up, degree of mixing) may require several minutes to an hour, depending on the amount of

resolution needed and the time scale of the computation. As in “Transient 2D,” the borehole axis

here is assumed to be straight.

The main menu shown in Figure 1.32 contains “Start,” “Track (Interfaces),” “Zoom3D,” and

“Utilities” submenus. The “Start” menu shown in Figure 1.33 provides access to generic functions:

for graphics installation (needed only once), user manual access, movie playback, access to “Steady

FIGURE 1.32

Main “Transient, 3D, multiphase” menu.

FIGURE 1.33

Start menu, with access to movies and other simulators.
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2D” and “Transient 2D” solvers, and so on. The “Track (Interfaces)” option launches the “Interface

Tracker” shown in Figure 1.34 with pump schedule and piping system input boxes. Clicking “Run”

leads to numerical results for all fluid interfaces as a function of time, which can be viewed by

clicking “Answer” or “Output file” under “Track (Interfaces),” as shown in Figure 1.35.

The “Zoom3D” menu hosts calculations for interfacial mixing details. As shown in Figure 1.36,

there are two options: the first a “Newtonian mixtures (no rotation)” simulator and the second a

“Non-Newtonian mixtures, rotating” option for general fluid rheologies with pipe or casing rota-

tion. The former provides fast, automated calculations, taking advantage of mathematical simplifi-

cations offered by Newtonian fluids, while the latter, with more general capabilities, handles all

fluid types for concentric or eccentric holes that may contain nonrotating or rotating pipe. While

Figures 1.34 and 1.35 deal with “macroscopic” properties, the “Zoom3D” menu options provide

“microscopic” solutions. The “Newtonian” option highlighted in Figure 1.36 launches the solver

shown in Figure 1.37. Execution details are offered in Chapter 9.

The “Zoom3D” option highlighted in Figure 1.38, “Non-Newtonian mixtures, rotating,” again,

handles general non-Newtonian rheologies with pipes that may be rotating. All of the applications

in this section allow high annular eccentricity. The highlighted option launches the two executable

applications shown in Figures 1.39 and 1.40.

The main menu in Figure 1.39 contains time integration input boxes and the “Simulate” button.

Prior to clicking “Simulate,” the “Pump Schedule” must be defined via Figure 1.40. This screen

FIGURE 1.34

Interface tracker software (macroscopic properties).
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requires inlet and outlet properties and also pressure gradient inputs for the different flow rates

assumed.

The pressure gradients referred to in the previous paragraph are shown in Figure 1.41 and apply

accordingly as the flows are concentric, rotating, Herschel-Bulkley, and so on. They are quickly

launched by checking the option boxes at the bottom of the screen in Figure 1.40.

For completeness, the “Concentric steady flow” modules offered are listed in Figure 1.42, and

the corresponding programs are shown in Figure 1.43. Their underlying math models and functions

are described elsewhere in this book. For convenience, the “Steady 2D” and “Transient 2D”

FIGURE 1.36

Newtonian mixtures, no rotation (microscopic properties).

FIGURE 1.35

Detailed numerical interface position results (macroscopic).
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FIGURE 1.37

Newtonian mixtures, no rotation (microscopic).

FIGURE 1.38

Non-Newtonian mixtures, rotating (microscopic properties).
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FIGURE 1.39

Non-Newtonian mixtures, rotating (microscopic, main menu).

FIGURE 1.40

Non-Newtonian mixtures, rotating (pump schedule).
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FIGURE 1.41

Pressure gradient utilities.



annular flow functions are repeated in Figures 1.44 and 1.45 as reminders. The programs in

Figure 1.46 support definitions of n and K in Power law applications. Finally, the model in

Figure 1.47 provides access to exact Herschel-Bulkley pipe flow problems in applications where

pressure profiles in the drillpipe are required.

FIGURE 1.43

Three concentric steady flow programs.

FIGURE 1.42

Concentric steady flow modules.

43Section 1.4



FIGURE 1.44

“Steady 2D” annular flow module.

FIGURE 1.45

“Transient 2D” annular flow module.
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FIGURE 1.46

Finding n and K, utility programs.

FIGURE 1.47

Exact Herschel-Bulkley pipe flow modules, for both forward and inverse calculations.
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CHAPTER

2General Theory and Physical
Model Formulation

Well-formulated mathematical models and accurate solutions invariably require a detailed and deep

understanding of the partial differential equations underlying fluid flow. Many formulations exist—

steady, transient, single-phase, multiphase, Newtonian, non-Newtonian, rotating versus nonrotating,

and so on—and then in different coordinate systems, such as rectangular, cylindrical, and curvi-

linear grid. In this chapter, we develop the general mathematical formulations used in this book,

which are to be solved using advanced numerical techniques developed especially for the eccentric

annular flows encountered in modern drilling and cementing.

This book introduces a number of formulations important to modern problems in drilling and

cementing in deviated wells, and emphasizes inputs and postprocessed quantities important to man-

aged pressure drilling. Our methodologies are “open” to the extent that our models are described

and analyzed in complete mathematical detail, subjected to detailed testing, and then validated

against one another wherever their input parameters overlap. While many ideas and numerical

approaches have been evaluated over the course of our research, only those that have passed our

rigorous tests—and that provide fast and stable computational results—are discussed in this book

and retained in the final software product for general dissemination.

We stress that a great deal of information can be obtained by studying the form of the equa-

tions, even without solution. Many of the fluid flow properties cited in this book were developed

simply from visual examination of the equations, and only then were detailed algorithms designed

to extract numerical details. Importantly, these properties were used to guide the development of

our algorithms and also provided good checkpoints to ensure programming accuracy. In fact, many

of the properties casually mentioned in our discussions throughout the book arose from qualitative

analysis; to provide the reader with their scientific bases, their trains of thought are documented in

Examples 2.1 and 2.2. This chapter develops the main ideas behind our work in annular flow, while

Chapter 3 addresses numerical approaches that are key to the solutions of all formulations

addressed in this book. Detailed calculated examples are given throughout.

EXAMPLE 2.1

Newtonian Flow Circular Cylindrical Coordinates

In this first example, we study simple Newtonian flows for which the laminar viscosity μ is con-

stant. In practice, viscosity depends on pressure and temperature, but we restrict ourselves to
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simpler processes for which these dependencies do not arise—by “constant,” we imply that viscos-

ity is not affected by the size or shape of the vessel or by the applied pressure gradient or the flow

rate, and that its value can be measured unambiguously in a simple viscometer—properties not

applicable to flows of non-Newtonian fluids. In particular, we will explore the properties of

Newtonian flows written in circular cylindrical coordinates—simple visual inspections of the equa-

tions do lead to interesting and important conclusions.

The so-called Navier-Stokes equations that apply are given in standard textbooks (e.g.,

Schlichting, 1968). When “r,” “θ,” and “z” are radial, azimuthal, and axial coordinates; vr, vθ, and

vz are Eulerian velocities in these directions; Fr, Fθ, and Fz are body forces in the same directions;

ρ is the constant fluid density; p is pressure; and t is time, the following general partial differential

equations can be derived.

Momentum equation in r:

ρf@vr=@t1 vr@vr=@r1 vθ=r@vr=@θ2 vθ
2=r1 vz@vr=@zg5 Fr 2 @p=@r

1 μf@2vr=@r2 1 1=r@vr=@r2 vr=r2 1 1=r2@2vr=@θ2 2 2=r2@vθ=@θ1 @2vr=@z2g
(2.1)

Momentum equation in θ:

ρf@vθ=@t1 vr@vθ=@r1 vθ=r @vθ=@θ1 vrvθ=r1 vz@vθ=@zg5 Fθ 2 1=r @p=@θ

1 μf@2vθ=@r2 1 1=r @vθ=@r2 vθ=r2 1 1=r2 @2vθ=@θ2 1 2=r2 @vr=@θ1 @2vθ=@z2g
(2.2)

Momentum equation in z:

ρf@vz=@t1 vr@vz=@r1 vθ=r @vz=@θ1 vz @vz=@zg5 Fz 2 @p=@z

1 μf@2vz=@r2 1 1=r @vz=@r1 1=r2 @2vz=@θ2 1 @2vz=@z2g
(2.3)

Mass continuity equation:

@vr=@r1 vr=r1 1=r @vθ=@θ1 @vz=@z5 0 (2.4)

The preceding define four equations for the four unknowns vr, vθ, vz, and p. General solutions

to these nonlinearly coupled partial differential equations do not exist. We emphasize that, while

the formulation just given is written in circular cylindrical coordinates, it does apply to flows past

noncircular geometries (in principle the flow through a star-shaped duct, for instance, can be

solved, although in practice the solution would be extremely awkward). Understanding this, we ask

what general conclusions can be drawn for concentric versus eccentric annular flows. For the

remainder of this section, we will ignore the effects of externally imposed body forces (gravity,

electric charge, etc.).

Concentric, steady, two-dimensional flows without influx
We first address the most commonly formulated problem—namely, concentric annular flows with-

out azimuthal dependence, so that @/@θ5 0 (this does not require that vθ5 0); flows without fluid

influx or outflux, for which vr5 0; and then those for which the problem is steady, so that @/@t5 0;

finally, we invoke the restriction to purely two-dimensional flows whose properties do not vary
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from one cross section to the next, so that @/@z5 0. When these conditions are satisfied, the forego-

ing momentum equations reduce to Equations 2.5, 2.6, and 2.7, while Equation 2.4 for mass conser-

vation is identically satisfied.

Momentum equation in r:

@p=@r5 ρvθ2=r (2.5)

Momentum equation in θ:

@2vθ=@r
2 1 1=r @vθ=@r2 vθ=r

2 5 0 (2.6)

Momentum equation in z:

@2vz=@r
2 1 1=r @vz=@r5 ð1=μÞ@p=@z (2.7)

We will provide mathematical and software solutions to these later, but for now we emphasize

their general properties. The linear azimuthal velocity field vθ is determined by solving Equation

2.6 subject to constant values at the radial boundaries. At the inner pipe or casing surface, the speed

is determined by rotational speed and radius, while at the outer annular wall, the speed is zero.

Notice that the solution for vθ does not involve @p/@z. In other words, the azimuthal motion is sim-

ply one induced by “dragging” at the inner pipe surface.

Now consider the solution for axial velocity found by the solution to Equation 2.7 subject

to constant speeds at the radial boundaries (e.g., a zero or nonzero translational speed at the inner

surface and zero at the outer wall). The solution does not involve the rotational speed and includes

μ and the applied pressure gradient @p/@z only to the extent that they appear in the lumped form

(1/μ) @p/@z.
In conclusion, the azimuthal motion does not affect axial flow, and axial motion does not influ-

ence azimuthal flow: The two are dynamically independent. Only when vθ is available is Equation

2.5 used and then only in computing a radial pressure gradient that arises from centrifugal effects.

It is remarkable that such general properties can be derived simply by visual inspection without any

knowledge of partial differential equations.

Eccentric, steady, two-dimensional flow
Now let us repeat this analysis without the assumption calling for concentric flow; that is, we no

longer assume that @/@θ5 0. In doing so, we may deal with cross sections that contain eccentric cir-

cles, but the eccentric annuli may well contain asymmetric washouts at the outer contour and arbi-

trary cuttings beds at the bottom contour. We will again assume that @/@t5 @/@z5 0, but no longer

require vr5 0. Thus, we have

Momentum equation in r:

ρfvr @vr=@r1 vθ=r @vr=@θ2 vθ
2=rg52@p=@r

1 μf@2vr=@r2 1 1=r @vr=@r2 vr=r2 1 1=r2@2vr=@θ2 2 2=r2 @vθ=@θg
(2.8)

49Example 2.1



Momentum equation in θ:

ρfvr @vθ=@r1 vθ=r @vθ=@θ1 vrvθ=rg521=r @p=@θ

1 μf@2vθ=@r2 1 1=r @vθ=@r2 vθ=r2 1 1=r2 @2vθ=@θ2 1 2=r2 @vr=@θg
(2.9)

Momentum equation in z:

ρfvr@vz=@r1 vθ=r @vz=@θg52@p=@z

1 μf@2vz=@r2 1 1=r @vz=@r1 1=r2 @2vz=@θ2g
(2.10)

Mass continuity equation:

@vr=@r1 vr=r1 1=r @vθ=@θ5 0 (2.11)

These remain four coupled partial differential equations in four unknowns, whereas Equations

2.6 and 2.7 are uncoupled, linear, ordinary differential equations. Hence, the solutions are difficult

to obtain. Now, we have not yet specified an annular geometry, nor have we defined the r�θ coor-
dinate system that applies to the problem. Nonetheless, we can assume in a dimensionless sense

that vθ.. vr so that vr can be ignored in a first approximation. Our main focus is the resulting

momentum equation in z, which now takes the form

@2vz=@r
2 1 1=r @vz=@r1 1=r2 @2vz=@θ2 � ð1=μÞ@p=@z1 ðρ=μÞðvθ=rÞ@vz=@θ (2.12)

This should be compared with the earlier result in Equation 2.7; that is, @2vz/@r
21 1/r @vz/@r5

(1/μ) @p/@z. The left side now includes an additional term “1/r2 @2vz/@θ
2.” In fact, the left-hand

operator can be written in the more familiar form “@2vz/@x
21 @2vz/@y

2” using rectangular coordi-

nates, from which we recognize the standard Laplace operator. However, it is the right side that is

extremely interesting. No longer is the effective pressure gradient simply given by the constant

value (1/μ) @p/@z. Instead, this term is modified by the correction (ρ/μ)(vθ/r) @vz/@θ, which we

emphasize is proportional to the fluid density and the inner pipe rotational rate, and is inversely

proportional to viscosity.

What are the physical consequences of this modification? In the concentric problem, the total

volumetric flow rate could be determined by integrating the product of vz (from Equation 2.7) and

“2πr dr” over the annular domain. The result is proportional to (1/μ) @p/@z, with the constant of

proportionality depending only on geometry. The flow rate does not depend on rotational speed.

When eccentricity is permitted, however, the effects of pipe rotation are coupled nonlinearly. In

addition, the correction to (1/μ) @p/@z now depends on the lumped parameter “mud weight3 rpm/

viscosity” in a nontrivial manner.

It is important to note that the correction depends on the spatial coordinates r and θ, as well as
the yet to be determined solution vz(r, θ): It is spatially variable, and volumetric flow rate will no

longer depend on (1/μ) @p/@z alone. Thus, the effective pressure gradient changes from what we

have in the concentric case. The flow rate will generally be different, and computations show that,

for the same μ, @p/@z, and rpm, the effect of eccentricity is a strong reduction in flow. Note that

this conclusion is obtained for a Newtonian fluid having constant viscosity. When non-Newtonian

effects are considered, the competing effects of shear thinning will enter. These will be discussed

separately in Example 2.2.
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Furthermore, because the correction also depends on vθ @vz/@θ, we expect that the location of

the maximum in axial velocity (in an eccentric annulus with left-right symmetry) found at the wide

side along the vertical line of symmetry (e.g., as shown at the left of Figure 2.1) will displace azi-

muthally, and it does, as our later explanation and all of our subsequent calculations will show.

It suffices to emphasize that eccentricity and rotation effects even for basic Newtonian fluids

are extremely subtle. However, simple mathematical constructs can be devised to explore some of

these subtleties and to facilitate fast numerical solutions. We explain an important one in the con-

text of Equation 2.12 for vz, which we rewrite without the subscript “z” for clarity. In mixed coor-

dinates, we have the representation

@2v=@x2 1 @2v=@y2 � ð1=μÞ@p=@z1 ðρ=μÞðvθ=rÞ@v=@θ (2.13)

Now we separate “eccentric, nonrotating” from “eccentric, rotating” effects by isolating the

inertia-dependent (ρ/μ)(vθ/r) @v/@θ. In the language of mathematics, we introduce a “regular pertur-

bation expansion” such that v5 v(0)1 v(1)1 � � � in which the zeroth solution represents leading-

order concentric nonrotating effects and the first perturbation to it includes all others. Mathematics

books that introduce this subject include the well-known research monographs by Van Dyke

(1964), Cole (1968), and Nayfeh (1973). If we next assume that

@2vð0Þ=@x2 1 @2vð0Þ=@y2 5 ð1=μÞ@p=@z (2.14)

then subtraction of Equation 2.14 from Equation 2.13 with the series substitution leads to

@2vð1Þ=@x2 1 @2vð1Þ=@y2 � ðρ=μÞðvθ=rÞ@vð0Þ=@θ (2.15)

The concentric solution to Equation 2.14, or Equation 2.7, is just the classical Poiseuille pipe

flow formula given elsewhere in this book and available in the general literature (e.g., Schlichting

(1968)). However, Equation 2.14 applies to eccentric problems too, and its exact numerical solution

for arbitrary geometries is a subject of this book and one of the simulators.

But we do not need to solve it to understand its implications. We have shown an eccentric annu-

lus at the left of Figure 2.1 with left-right symmetry. We can imagine that we now have obtained

a straight, nonrotating, “out of the page” axial flow solution v(0) applicable to the left diagram.

x

y y

x

θ

∂v(0)/∂θ > 0∂v(0)/∂θ < 0

Axial velocity
v(0) maximum

FIGURE 2.1

Location of axial velocity maximum in nonrotating flow.
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The location of maximum axial speed is shown at the gray dot. With the θ convention highlighted,

it is clear that @v(0)/@θ increases at the right of the line of symmetry, while it decreases at the left.

Next, observe that the sign of the azimuthal velocity vθ in Equation 2.15 cannot change. Thus,

(ρ/μ)(vθ/r) @v
(0)/@θ, which functions as an effective pressure gradient for the disturbance axial flow

v(1), is antisymmetric with respect to the vertical line of symmetry: It subtracts flow on one side

and adds at the other. This effective pressure gradient is variable throughout the annular cross

section. The driver, which depends on the solution to the azimuthal problem, affects total flow rate

in a nontrivial way, although for small values of “mud weight3 rpm/viscosity,” it is clear that the

solution is proportional to it, with the v(1) field again being antisymmetric. This antisymmetry

means that “mud weight3 rpm/viscosity” does not significantly affect total flow rate if it is small.

However, when it is large, our symmetry and antisymmetry ideas may break down. It is also clear

how, in the presence of unsteady effects, arguments like those offered previously are not possible.

We note that, while we have provided useful discussions on rotation and eccentricity, the numer-

ical solution for steady rotating flows in eccentric domains, even under the assumption of simplified

Newtonian flow, has proven to be challenging. A limited number of papers on the subject have been

published by several authors, but these have offered few formulation and numerical details and have

declined to discuss computing times and numerical stability properties. The author, in fact, has writ-

ten a steady, rotating flow solver for non-Newtonian eccentric annular flows, which converges for

vz under restrictive conditions. The controlling “mud weight3 rpm/viscosity” parameter, for the

larger values characteristic of those parameters used in practical drilling and cementing, always

leads to numerical instability.

On the other hand, the perturbation problem for vz
(1) could be solved with unconditional stabil-

ity; however, the linearization used clearly does not apply physically to high values of “mud

weight3 rpm/viscosity.” In this book, however, steady-state flows with rotation are successfully

solved by integrating the transient equations asymptotically in time until steady conditions are

reached using a fast solver.

EXAMPLE 2.2

Shear-Thinning and Non-Newtonian Flow Effects

In the previous example, we studied Newtonian flows for which viscosity always remains constant

to focus on the effects of rotation and eccentricity alone. Here we consider non-Newtonian fluids,

which generally exhibit shear thinning, but we do not discuss rotation, so that we remove the con-

vective effects of inertia. Whereas before the use of circular cylindrical coordinates facilitated our

understanding of pipe rotation, we now introduce rectangular or Cartesian coordinates to assist in

our explanations of non-Newtonian viscosity effects. We consider here eccentric annular flows

formed by general closed curves (which need not be circular), but for simplicity we restrict our-

selves to steady, two-dimensional, single-phase flows. These assumptions are removed later.

The equations for general fluid motions in three dimensions are available from many excellent

textbooks (Bird, Stewart, and Lightfoot, 1960; Streeter, 1961; Schlichting, 1968; Slattery, 1981).

We cite these without proof. For problems without inner pipe rotation, it turns out that their rectan-

gular form is most suitable in deriving curvilinear coordinate transforms—as we later show, the

relevant starting point for rotation effects is cylindrical radial coordinates.
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Governing equations
Let u, v, and w denote Eulerian fluid velocities, and Fz, Fy, and Fx denote body forces, in the z, y,

and x directions, respectively, where (z, y, x) are Cartesian coordinates. Also, let ρ be the constant

fluid density and p be the pressure; we denote by Szz, Syy, Sxx, Szy, Syz, Sxz, Szx, Syx, and Sxy
the nine elements of the general extra stress tensor S. If t is time and @’s represent partial deriva-

tives, the complete equations of motion obtained from Newton’s law and mass conservation are

Momentum equation in z:

ρð@u=@t1 u @u=@z1 v @u=@y1w @u=@xÞ5 Fz 2 @p=@z1 @Szz=@z1 @Szy=@y1 @Szx=@x (2.16)

Momentum equation in y:

ρð@v=@t1 u @v=@z1 v @v=@y1w @v=@xÞ5 Fy 2 @p=@y1 @Syz=@z1 @Syy=@y1 @Syx=@x (2.17)

Momentum equation in x:

ρð@w=@t1 u @w=@z1 v @w=@y1w @w=@xÞ
5 Fx 2 @p=@x1 @Sxz=@z1 @Sxy=@y1 @Sxx=@x

(2.18)

Mass continuity equation:

@u=@z1 @v=@y1 @w=@x5 0 (2.19)

Simple rheological models
These equations apply to all Newtonian and non-Newtonian fluids. In continuum mechanics, the

most common class of empirical models for incompressible, isotropic fluids assumes that S can be

related to the rate of deformation tensor D by a relationship of the form

S5 2NðΓÞD (2.20)

where the elements of D are

Dzz 5 @u=@z (2.21)

Dyy 5 @v=@y (2.22)

Dxx 5 @w=@x (2.23)

Dzy 5Dyz 5 ð@u=@y1 @v=@zÞ=2 (2.24)

Dzx 5Dxz 5 ð@u=@x1 @w=@zÞ=2 (2.25)

Dyx 5Dxy 5 ð@v=@x1 @w=@yÞ=2 (2.26)

In Equation 2.20, N(Γ) is the “apparent viscosity” satisfying

NðΓÞ. 0 (2.27)
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Γ(z, y, x) being a scalar functional of u, v, and w defined by the tensor operation

Γ5 f2traceðD � DÞg1=2 (2.28)

Unlike the constant laminar viscosity μ in classical Newtonian flow, we will demonstrate that

the apparent viscosity depends on the details of the particular problem being considered—for exam-

ple, the rheological model used, the exact annular geometry occupied by the fluid, the applied

pressure gradient, or the net volumetric flow rate. Also, it varies with the position (z, y, x) in the

annular domain. Thus, single measurements obtained from viscometers are usually not meaningful

in practice. In fact, inferences can be very misleading.

Examples
To fix ideas, consider the simple but important Ostwald-de Waele model for two-parameter “Power

law” fluids, for which

NðΓÞ5K Γn21 (2.29a)

where the “consistency factor” K and the “fluid exponent” n are constants. Such Power law fluids

are “pseudoplastic” when 0, n, 1, Newtonian when n5 1, and “dilatant” when n. 1. Most

drilling fluids are pseudoplastic.

In the limit (n5 1, K5 μ), Equation 2.29a reduces to the Newtonian model with N(Γ)5 μ,
where μ is the constant laminar viscosity; in this classical limit, stress is directly proportional to the

rate of strain. Only for Newtonian flows is volumetric flow rate a linear function of applied pres-

sure gradient and inversely proportional to μ.
Power law and Newtonian fluids respond instantaneously to applied pressure and stress. But if

the fluid behaves as a rigid solid until the net applied stresses have exceeded some known critical

yield value, say Syield, then Equation 2.29a can be generalized by writing

NðΓÞ5K Γn21 1 Syield=Γ if f1=2 traceðS � SÞg1=2 . Syield

D5 0 if f1=2 traceðS � SÞg1=2 , Syield
(2.29b)

In this form, Equation 2.29b rigorously describes the Herschel-Bulkley fluid. When the limit

(n5 1, K5 μ) is taken, the first equation becomes

NðΓÞ5 μ1 Syield=Γ if f1=2 traceðS � SÞg1=2 . Syield (2.29c)

This is the Bingham plastic model, where μ is now the “plastic viscosity.” For Herschel-Bulkley

and Bingham plastic flows in circular pipes, exact analytical solutions can be developed for veloc-

ity distribution, plug zone radius, and total flow rate (these limits include Newtonian and Power

law fluids). Analogous solutions are available for flows between parallel plates. Exact solutions for

concentric annuli are not presently available, but are derived in closed analytical form elsewhere in

this book and used to validate numerical flow models.
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ILLUSTRATION 2.1

For tutorial purposes, we examine a limit of two-dimensional Power law flows, where the axial velocity u(y, x)
does not depend on the axial coordinate z. In the absence of rotation, the velocities v and w in the cross-plane
satisfy v5w50, so the functional Γ or shear rate in Equation 2.29a takes the form

Γ5 ½ð@u=@yÞ2 1 ð@u=@xÞ2�1=2 (2.30)

and Equation 2.29a becomes

NðΓÞ5K½ð@u=@yÞ2 1 ð@u=@xÞ2�ðn21Þ=2 (2.31)

The apparent viscosity reduces to the conventional N(Γ)5K (@u/@y)(n21) formula for one-dimensional, parallel
plate, and “slot flow” flows considered in the drilling and cementing literature.

When both independent variables y and x for the cross section are present, as in the case for eccentric
annular flow, significant mathematical difficulty arises. For one, the ordinary differential equation for annular
velocity in simple concentric geometries becomes a partial differential equation. And whereas the former
requires boundary conditions at two points, the partial differential equation requires no-slip boundary conditions
imposed along two arbitrarily closed curves.

The nonlinearity of the governing equation and the irregular annular geometry only compound these
difficulties. Despite such complexities, the resulting problem is simple in a sense. The momentum equations for
v and w vanish identically and that for mass conservation implies that u5 u(y,x) only. The single remaining
equation is

@Szy=@y1 @Szx=@x5 @P=@z5 constant (2.32)

where the constant pressure gradient @P/@z is prescribed. This is to be compared to the simpler Equation 2.7.
Since S 52ND , Equation 2.32 reduces to

@ðN @u=@yÞ=@y1 @ðN @u=@xÞ=@x5 @P=@z (2.33)

Substitution of Equation 2.31 shows that Equation 2.33 can be written as a nonlinear Poisson equation—
that is, as Equation 2.34—in the form

@2u=@y2 1 @2u=@x2 5 ½@P=@z1 ð12 nÞNðΓÞðuy2uyy
12uyuxuyx 1 ux

2uxxÞ=ðuy2 1 ux
2Þ�=NðΓÞ (2.34)

which is to be compared with Equation 2.14. This equation, together with extensions for rotation and complicated
rheological effects, is solved exactly in our software models. Our only purpose in writing it down explicitly here is
to provide a “live” example showing why nonlinear effects are complicated.

The Newtonian limit with n51 reduces Equation 2.34 to the classical Poisson equation @2u/@y21
@2u/@x25 (1/μ) @P/@z, with several important properties. For example, doubling the pressure gradient while
doubling the viscosity leaves u(y,x) unchanged: Only the lumped driver (1/μ) @P/@z appears. And, for instance,
doubling @P/@z with μ constant doubles u everywhere, a property obvious from simple rescaling. Also, μ is just
the quantity measured in a viscometer, and its value remains unchanged for all pressure gradients and flow
cross sections.

However, when n is not unity, the complicated terms at the right of Equation 2.34 remain. Casual observation
leads us to conclude, for example, that doubling the pressure gradient will do something, but exactly what is
uncertain. Because the divisor of @P/@z is not just a constant “μ” but a complicated function that, because it
depends on the as yet unknown solution u(y,x), the so-called “apparent viscosity” is unknown. In fact, it will vary
from case to case, and it will depend on the applied pressure gradient plus the size and shape of the vessel, and
it will be variable throughout the flow cross section. Hence, we have the origin of the terms “shear thickening”
and “shear thinning.” Shear-thickening and shear-thinning fluids are non-Newtonian because their viscosities
increase or decrease, respectively, as the applied shearing stress increases. “Silly Putty” is shear thickening,
while ketchup is shear thinning.
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ILLUSTRATION 2.2

As a second tutorial example, consider the case of steady helical flow with @/@z50 along the hole axis (refer
to the discussion in Bird, Stewart, and Lightfoot (2002) for an example). In this case, the shear rate satisfies
the formula Γ5 dγ/dt5 {(r d(vθ/r)/dr)

21 (dvz/dr)
2}1/25 {(r dΩ/dr)21 (dvz/dr)

2}1/2, where the usual rotational rate
is defined by Ω5 vθ/r. An extension of this expression was used in Bird et al. to study non-Newtonian pipe
flows with combined axial and azimuthal flow where both velocity fields are coupled. It is also used in
Equation 5.47 in Chapter 5, where the effects of rotation in concentric annuli with Power law fluids are
considered.

Note on Mass Density
It can be seen from Equation 2.32 that fluid density ρ completely disappears in this steady flow without rotation.
However, it is important that, from Example 2.1, density remains significant when the flow rotates because the
nonlinear convective terms do not vanish. It also goes without saying that density effects are all important in
transient analysis because inertia is important. We will demonstrate later that steady flows can be computed
from unsteady algorithms using small densities for rapid convergence—but this strategy is applicable only when
there is no underlying pipe rotation.

Only n and K (and not “μ”) are “absolutes” for Power law flow modeling; they can be obtained from
viscometer measurements. The foregoing difficulties apply not just to Power law fluids but to all non-Newtonian
fluids, with or without yield stress. When yield stresses are present, other complications arise—for example, the
inability to identify a priori the size and shape of the plug zone means that such problems cannot be solved for
practical annular geometries. We do, fortunately, offer a rigorous solution to this problem later.

In summary, we offer several general principles from the discussions of Examples 2.1 and 2.2. In particular,

• In Newtonian flow, viscosity is a constant of the motion (barring changes due to pressure and temperature)
that is unambiguously determined from viscometer measurement.

• In nonrotating Newtonian flow, the lumped quantity (1/μ) @p/@z controls the dynamics, and changes to it will
proportionally change u(y,z) everywhere. Thus, faster testing with inexpensive fluids, together with simple
arithmetic extrapolation, can be used in engineering design.

• For concentric annuli in steady Newtonian rotating flow, azimuthal velocities do not depend on the pressure
gradient, and axial flows are unaffected by rotation: The two are dynamically uncoupled.

• Annular eccentricity introduces changes to the applied pressure gradient that are variable throughout the flow
domain (the velocity likewise scales differently at different cross-sectional locations) when rotation is allowed.
Their magnitudes are proportional to the product “density3 rpm/viscosity.” This effect generally decreases the
flow rate (as rotational speed increases) for a fixed pressure gradient—this nontrivial modification applies even
to simple Newtonian fluids without shear thinning.

• Non-Newtonian fluids (even without rotation and three-dimensionality) exhibit shear-thickening and shear-
thinning properties. In a concentric annulus with a rotating inner pipe, drilling fluid viscosity will decrease
because of azimuthal motion, so that net flow rate increases relative to the nonrotating case, assuming that
pressure gradient is fixed. Complications arise when this is countered by the effects of eccentricity—
computational methods are required to determine the exact balances between the two.

• Non-Newtonian flows in eccentric borehole annuli with rotation will exhibit shear-dependent changes to
viscosity, plus changes to applied pressure gradient that depend on rotational speed, fluid density, and
viscosity (the “apparent viscosity” now varies throughout the flow domain). Simple rescaling arguments cannot
be used to deduce flow properties for u(y,z) because the governing equations are extremely complicated in
form.

• For non-Newtonian flows, laboratory testing and extrapolation are not possible because of the foregoing
complications—hence, the only recourse for prediction and job planning is full-scale testing with actual
nonlinear fluids or, alternatively, detailed computational fluid-dynamics analysis.
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Field and laboratory examples
Figures 2.2 and 2.3, together with the related discussions, are obtained from correspondence with

John Lofton, of Chevron, to whom the author is grateful. Figure 2.2 provides a “pressure-while-

drilling” (or PWD) log from a field run. PWD logs provide real-time pressures as they are con-

veyed to the surface with measurement-while-drilling tools and are essential to drilling safety. Such

logs can monitor downhole conditions accurately and supply updates to calibrate software models

used for planning.

Lofton writes,

Look at 1600 hrs on 25 April 02. After the connection at 1693’ (red arrow), the pump is on (green

curve), and the rotary is abruptly increased up to 100 RPM (red curve). The standpipe pressure

FIGURE 2.2

A “pressure-while-drilling” (PWD) log.
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(blue curve) spikes—increased pump pressure. The ECD (red and black curves on the far right)

both increase. The rotation has increased the pump pressure and the annular friction for the

same pump rate. This response seems consistent throughout the PWD log. This is a directional

well from a platform with an angle of less than 45 degrees and is using a low-density water-

based mud.
I have also looked at broader industry applications—some of which I do not have first hand,

on-location experience. There was a study done at the University of Tulsa on the effects of rota-

tion in inclined wellbores. I think it is excellent, honest work: no products to sell, no bias on

the outcome. The effects of rotation were investigated at 40, 65, and 90 degrees of inclination.

The annular pressure was monitored with rotation at each of these inclinations. The results at

40 degrees were similar to those of the PWD log above and reflect my experience in the field,

especially at the lower end of the flow-rates—300 gpm and 350 gpm.

Results for 65 and 90 degrees were more erratic, with some resulting in reduced pressure gradients—

possibly because of hole geometry changes due to unflushed cuttings.

The last comment on pronounced rotation effects at lower volumetric flow rates is especially

significant. Lower flow rates point toward higher values of the dimensionless azimuthal to axial

velocity ratio, which is a good indicator of rotation coupling to the overall flow. Many drillers have
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A laboratory example for a 40-degree well.
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also indicated cuttings transport problems in larger-diameter holes—large diameters are precisely

the ones with smaller annular velocities. These two observations support the use of rotating pipe

models in planning drilling jobs.

EXAMPLE 2.3

Curvilinear Grid Formulation for Highly Eccentric Annular Flows with General Non-Newtonian

Fluids without Rotation

Here we consider eccentric annular flows formed by general closed curves (which need not be

circular) in order to introduce the methodology. For simplicity, we restrict ourselves to steady,

two-dimensional, single-phase flows of non-Newtonian without rotary pipe movement, although

constant-speed axial translation is permitted. The effects of pipe or casing rotation require a

different formalism that is developed in Example 2.4, one that builds on the present introductory

work. Two-phase, three-dimensional flow extensions are covered later in this book. There is

some redundancy between Example 2.2 and the following exposition; however, this is retained

for completeness and clarity. The equations for general fluid motions in three spatial dimensions

are available from many excellent textbooks (e.g., Bird, Stewart, and Lightfoot, 1960; Streeter,

1961; Schlichting, 1968; Slattery, 1981), and we cite these without proof.

Governing equations
Let u, v, and w denote Eulerian fluid velocities, and Fz, Fy, and Fx denote body forces in the z, y, and

x directions, respectively, where (z, y, x) are Cartesian coordinates. Also, let ρ be the constant fluid

density and p be the pressure; we denote by Szz, Syy, Sxx, Szy, Syz, Sxz, Szx, Syx, and Sxy the nine ele-

ments of the general extra stress tensor S. If t is time and @’s represent partial derivatives, the com-

plete transient equations of motion obtained from Newton’s law and mass conservation are

Momentum equation in z:

ρð@u=@t1 u @u=@z1 v @u=@y1w @u=@xÞ
5 Fz � @p=@z1 @Szz=@z1 @Szy=@y1 @Szx=@x

(2.35)

Momentum equation in y:

ρð@v=@t1 u @v=@z1 v @v=@y1w @v=@xÞ
5 Fy � @p=@y1 @Syz=@z1 @Syy=@y1 @Syx=@x

(2.36)

Momentum equation in x:

ρð@w=@t1 u @w=@z1 v @w=@y1w @w=@xÞ
5 Fx 2 @p=@x1 @Sxz=@z1 @Sxy=@y1 @Sxx=@x

(2.37)

Mass continuity equation:

@u=@z1 @v=@y1 @w=@x5 0 (2.38)
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Rheological flow models
The equations just given apply to all Newtonian and non-Newtonian fluids. In continuum mechan-

ics, the most common class of empirical models for incompressible, isotropic fluids assumes that S

can be related to the rate of deformation tensor D by an expression of the form

S5 2 NðΓÞ D (2.39)

where the elements of D are

Dzz 5 @u=@z (2.40)

Dyy 5 @v=@y (2.41)

Dxx 5 @w=@x (2.42)

Dzy 5Dyz 5 ð@u=@y1 @v=@zÞ=2 (2.43)

Dzx 5Dxz 5 ð@u=@x1 @w=@zÞ=2 (2.44)

Dyx 5Dxy 5 ð@v=@x1 @w=@yÞ=2 (2.45)

In Equation 2.39, N(Γ) is the “apparent viscosity” satisfying

NðΓÞ. 0 (2.46)

Γ(z, y, x) being a scalar functional of u, v, and w defined by the tensor operation

Γ5 f2 traceðD � DÞg1=2 (2.47)

Unlike the constant laminar viscosity in classical Newtonian flow, the apparent viscosity

depends on the details of the particular problem being considered—for example, the rheological

model used, the exact annular geometry occupied by the fluid, the applied pressure gradient, or the

net volumetric flow rate. Also, it varies with the position (z, y, x) in the annular domain. Thus, sin-

gle measurements obtained from viscometers may not be meaningful in practice.

Power law fluids
As a model to fix ideas, we will focus briefly on one practical but important simplification. Our

discussion later applies to general fluids with yield stresses. For now, the Ostwald-de Waele model

for two-parameter “Power law” fluids assumes

NðΓÞ5K Γn21 (2.48a)

where the “consistency factor” K and the dimensionless “fluid exponent” n are constants.

Such Power law fluids are “pseudoplastic” when 0, n, 1, Newtonian when n5 1, and “dilat-

ant” when n. 1. Most drilling fluids are pseudoplastic. In the limit (n5 1, K5 μ), Equation 2.48a

reduces to the Newtonian model with N(Γ)5 μ, where μ is the constant laminar viscosity; in this

limit, stress is directly proportional to the rate of strain. Only for Newtonian flows is total volumet-

ric flow rate a linear function of applied pressure gradient.
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Herschel-Bulkley yield stress fluids
Power law and Newtonian fluids respond instantaneously to applied pressure and stress. But if the

fluid behaves as a rigid solid until the net applied stresses have exceeded some known critical yield

value, say Syield, then Equation 2.48a can be generalized by writing

NðΓÞ5K Γn21 1 Syield=Γ if f1=2 traceðS � SÞg1=2 . Syield

D5 0 if f1=2 traceðS � SÞg1=2 , Syield (2.48b)

In this form, Equation 2.48b rigorously describes the general Herschel-Bulkley fluid. When the

limit (n5 1, K5 μ) is taken, the first equation becomes

NðΓÞ5 μ1 Syield=Γ if f1=2 traceðS � SÞg1=2 . Syield (2.48c)

This is the Bingham plastic model, where μ is now the “plastic viscosity.” For Herschel-Bulkley

and Bingham plastic flows in circular pipes, exact analytical solutions can be developed for veloc-

ity distribution, plug zone radius, and total flow rate (these limits include Newtonian and Power

law fluids), and are given elsewhere in this book. Analogous solutions are available for flows

between parallel plates. Exact solutions for concentric annuli do not appear to be available, but are

derived in closed analytical form later in this book; these are used to validate various numerical

eccentric flow models.

Conventionally, until now, eccentric annular flows containing fluids with nonzero yield stresses

have been more difficult to analyze, both mathematically and numerically, than those marked by

zero yield. This is so because there coexist “dead” (or “plug”) and “shear” flow regimes with dis-

tinct internal boundaries that must be determined as part of the solution. This “plug versus no-

plug” transition introduces a type of nonlinearity in the formulation, which exists even for “n5 1”

Bingham plastics; Herschel-Bulkley nonlinearities associated with fractional n’s make matters

worse. Fluids with yield stresses complicate the grid generation problem because distinct but

unknown internal boundaries exist.

In particular, even if a plug zone’s size and shape are known, the transition contour itself

defines a coordinate curve: Radial-like lines approaching from either side and crossing it have slope

discontinuities at intersections, and the underlying conservation laws have to be rederived with

such properties in mind. In dealing with yield stress fluids, the existence of a second isolated

domain has long impeded flow-modeling efforts, and solutions for complicated annular domains

have been impossible. Fortunately, this problem has been addressed and solved from a different

perspective using new but mathematically rigorous methods. The approach, described at the end of

this example, applies to all fluids with and without yield stresses.

Borehole configuration
Our configuration is shown in Figure 2.4. A drillpipe (or casing) and borehole combination is

inclined at an angle α relative to the ground, with α5 0� for horizontal and α5 90� for vertical

wells. Here “z” denotes any point within the annular fluid; section AA is a cut taken normal to the
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local z axis. Figure 2.5 resolves the vertical body force due to gravity at “z” into components paral-

lel and perpendicular to the axis, while Figure 2.6 provides a detailed picture of the cross section at

section AA.

Now we specialize the previous equations to downhole flows. In Figures 2.4, 2.5, and 2.6, we

have aligned z, which increases downward, with the axis of the borehole. The axis may be inclined,

varying from α5 0� for horizontal holes to 90� for vertical holes. The plane of the variables (y,x)

is perpendicular to the z axis, and (z, y, x) are mutually orthogonal Cartesian coordinates. The

body forces due to the gravitational acceleration g can be resolved into components

Fz 5 ρ g sin α (2.49)

Fx 52ρ g cos α (2.50)

Fy 5 0 (2.51)

Inclination α  > 0

Section AA

Arbitrary z

Surface z = 0

z axis

Horizontal ground reference          Drillbit z = L

A

A

FIGURE 2.4

Borehole configuration.

Arbitrary z

ρg sin α

ρg cos α

ρg

α

90°

FIGURE 2.5

Gravity vector components.
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If we now assume that the drillpipe does not rotate, the resulting flow can only move in a direc-

tion parallel to the borehole axis. This requires that the velocities v and w vanish. Axial translation

is still permissible. Therefore,

v5w5 0 (2.52)

Since the analysis applies to constant density flows, we obtain

@ρ=@t5 0 (2.53)

Equations 2.38, 2.52, and 2.53 together imply that the axial velocity u(y, x, t) does not depend

on z. And, if we further confine ourselves to steady laminar flow (that is, to flows driven by axial

pressure gradients that do not vary in time), we find that

u5 uðy; xÞ (2.54)

depends at most on two independent variables—namely, the cross-sectional coordinates y and x.

For a concentric drillpipe and borehole, it is more convenient to collapse y and x into a radial

coordinate r5 (x21 y2)1/2, for which we later provide a complete analysis. For general eccentric

flows, the lack of similar algebraic transformations drives the use of grid generation methods.

Substitution of Equations 2.52 and 2.54 into Equations 2.35, 2.36, and 2.37 leads to

05 ρ g sin α2 @p=@z1 @Szy=@y1 @Szx=@x (2.55)

052@p=@y (2.56)

052ρ g cos α2 @p=@x (2.57)

If we introduce, without loss of generality, the pressure separation of variables,

P5 Pðz; xÞ5 p2 z ρ g sin α1 x ρ g cos (2.58)

x x

y y

(y, x) (y, x)

High side Expanded view

Low side Free body diagram in
(z, y, x) coordinates

−ρg cos α

Pipe and hole not
necessarily circular

FIGURE 2.6

Gravity vector components.
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we can replace Equations 2.55, 2.56, and 2.57 by the single equation

@Szy=@y1 @Szx=@x5 @P=@z5 constant (2.59)

where the constant pressure gradient @P/@z is prescribed. Recall the definitions of the deformation

tensor elements given in Equations 2.40 through 2.45 and the fact that S5 2ND to rewrite

Equation 2.59 as

@ðN @u=@yÞ=@y1 @ðN @u=@xÞ=@x5 @P=@z (2.60)

Early approach, viscosity derivatives omitted
The general “after 2010” method available at the end of this example applies to fluid flows with

and without yield stresses. In the next few paragraphs, though, we summarize for completeness the

approach used from 1990 to 2010, since a number of algorithms developed and distributed during

that time frame required the simplifications discussed here. We will explain their need and the rea-

sons for their deficiencies and provide the needed fixes.

Now, for two-dimensional flows whose velocities do not depend on the axial coordinate z and

that further satisfy the nonrotating flow assumption, we have v5w5 0. The functional Γ in

Equation 2.48a takes the simple form

Γ5 ½ð@u=@yÞ2 1 ð@u=@xÞ2�1=2 (2.61)

so that Equation 2.48b becomes

NðΓÞ5K Γn21 1 Syield=Γ if f1=2 traceðS � SÞg1=2 . Syield

Γ5 ½ð@u=@yÞ2 1 ð@u=@xÞ2�1=2 (2.62)

D5 0 if f1=2 traceðS � SÞg1=2 , Syield

The apparent viscosity reduces to the conventional N(Γ)5K (@u/@y)(n21) formula for one-

dimensional, parallel plate, and “slot flow” flows considered in the literature in the Power law

limit. When both independent variables y and x for the cross section are present, as for eccentric

annular flow, significant mathematical difficulty arises. For one, the ordinary differential equation

for annular velocity in simple concentric geometries becomes a partial differential equation. And

whereas the former requires boundary conditions at two points, the partial differential equation

requires no-slip boundary conditions imposed along two arbitrarily closed curves. The nonlinearity

of the governing equation and the irregular annular geometry only compound these difficulties.

We illustrate the decades-old problem by returning to our Power law example, for which the

apparent viscosity function N(Γ) is given exactly by the nonlinear equation

NðΓÞ5K½ð@u=@yÞ2 1 ð@u=@xÞ2�ðn21Þ=2 (2.63)

Note that Equation 2.60 (that is, @ (N @u/@y)/@y1 @ (N @u/@x)/@x5 @P/@z) and Equation 2.63 make

up the entire system to be solved along with general no-slip velocity boundary conditions at drill-

pipe and borehole surfaces. This formulation also allows constant-velocity axial pipe movement.
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It is important, for the purposes of numerical analysis, to recognize how the net result can be

written as a nonlinear Poisson equation:

@2u=@y2 1 @2u=@x2 5 ½@P=@z1 ð12 nÞNðΓÞ
ðuy2uyy 1 2uyuxuyx 1 ux

2uxxÞ=ðuy2 1 ux
2Þ�=NðΓÞ

(2.64)

In this form, conventional solution techniques for elliptic equations were employed at first. These

include iterative techniques as well as direct inversion methods. The nonlinear terms in the square

brackets, for example, were evaluated using the latest values in a successive approximations scheme.

Also, various algebraic simplifications were used at different times. For some values of n, par-

ticularly those near unity, these nonlinear terms represented negligible higher-order effects if the

“1-n” terms were small in a dimensionless sense compared with pressure gradient effects. For small

n, the second derivative terms on the right side may be unimportant, since such flows contain flat

velocity profiles. In most of the early work, the principal effects of nonlinearity were modeled

using the simpler and more stable Poisson model in Equation 2.65, one that is not unlike the classi-

cal equation for Newtonian flow. The apparent viscosity that acts in concert with the driving pres-

sure gradient was still variable, nonlinear, and dependent on both geometry and rate.

@2u=@y2 1 @2u=@x2 � NðΓÞ21 @P=@z (2.65)

This approximation was used because the additional terms in Equation 2.64 were numerically

unstable. This is not a constant viscosity model because N is still nonlinear and variable throughout

the flow cross section; only its spatial derivatives were ignored. The model, which appeared to

be unconditionally stable, importantly retained the strong influence of local geometry on annular

velocity (e.g., low bottom speeds in eccentric holes regardless of rheology or flow rate), and exten-

sive comparisons with detailed numerical models and laboratory data suggested that the results

were reasonable. Recent extensions, however, now allow us to keep Equation 2.60 in its entirety,

enabling fast and stable calculations even for problems with yield stress. Mathematical and numeri-

cal details are offered later in this chapter.

Additional postprocessing formulas
Once the solution for the velocity field is available, additional formulas are evaluated to provide

useful physical information. Borehole temperature is sometimes important in drilling and cement-

ing. Our momentum model then requires a coupled solution to a temperature partial differential

equation with convective and conductive terms. In the general case, a source term accounts for heat

generation by internal friction and heat may flow to and from formation boundaries. External and

internal sources of heat may affect local fluid viscosity, since n and K depend on temperature.

For problems that are not isothermal, the existence of a steady flow is not guaranteed. The esti-

mation of heat source strength from velocity gradients, while most likely unimportant, is nonethe-

less discussed here because the cumulative effects of distributed sources over large time scales

may have a pronounced effect on the flow if this frictional heat is not dissipated into the boundary.

For completeness, we therefore give the expression for the “dissipation function”—that is, the

distributed heat source term—depends on local velocity gradients.
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We noted that when the temperature T(z, y, x, t) is important, a partial differential equation

with conductive and convective terms couples to our momentum equations. This energy equation

contains a positive definite quantity Φ called the “dissipation function” that represents the distrib-

uted source term responsible for local heat generation. In general, it takes the form

Φðz; y; xÞ5 Szz@u=@z1 Syy@v=@y1 Sxx@w=@x

1 Szyð@u=@y1 @v=@zÞ1 Szxð@u=@x1 @w=@zÞ
1 Syxð@v=@x1 @w=@yÞ (2.66)

Applying assumptions consistent with the foregoing analysis, we obtain

Φ5NðΓÞfð@u=@yÞ2 1 ð@u=@xÞ2g. 0 (2.67)

where, as before, we use Equation 2.63 for the apparent viscosity in its entirety. Equation 2.67

shows that velocity gradients, not magnitudes, contribute to temperature increases.

In other computations, we provide values of local viscous stresses and their corresponding shear

rates. These stresses are the rectangular components

Szy 5NðΓÞ@u=@y (2.68)

Szx 5NðΓÞ@u=@x (2.69)

The shear rates in these equations are @u/@y and @u/@x, respectively. These quantities are useful for

several reasons. They are physically important in estimating the efficiency with which fluids in

deviated wells remove cuttings beds having specified mechanical properties. From the numerical

analysis point of view, they allow checking of computed solutions for physical consistency (e.g.,

high values at solid surfaces, zeros within plug flows) and required symmetries.

We next discuss mathematical issues regarding computational grid generation and numerical

solution. These ideas are highlighted because we solve the complete boundary value problem, satis-

fying no-slip velocity conditions exactly, without simplifying the annular geometry.

Boundary-conforming, curvilinear grid generation
In many engineering problems, a judicious choice of coordinate systems simplifies calculations and

brings out the salient physical features more transparently than otherwise. For example, the use of

cylindrical coordinates for single-well problems in petroleum engineering leads to elegant “radial

flow” results that are useful in well testing. Cartesian grids, on the other hand, are preferred in sim-

ulating oil and gas flows from rectangular fields.

The annular geometry modeling considered here is aimed at eccentric flows with cuttings beds,

arbitrary borehole wall deformations, and unconventional drill collar or casing-centralizer cross sec-

tions. Obviously, simple coordinate transforms are not readily available to handle arbitrary domains

of flow. Without resorting to crude techniques, for instance, applying boundary conditions along

mean circles and squares, or invoking “slot flow” assumptions, there has been no real flow modeling

alternative until the first publication of Borehole Flow Modeling.
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Fortunately, results from differential geometry allow us to construct “boundary-conforming, cur-

vilinear coordinates” that are natural for physical modeling and computation. These general techni-

ques extend classical ideas on conformal mapping. They have accelerated progress in simulating

aerospace flows past airfoils and cascades, and are only beginning to be applied in the petroleum

industry. Thompson, Warsi, and Mastin (1985) provide an excellent introduction to the subject.

To those familiar with conventional analysis, it may seem that the choice of (y, x) coordinates

in Equation 2.65 is “unnatural.” After all, in the limit of a concentric annulus, the equation does

not reduce to a radial “r-only” formulation. But our use of such coordinates was motivated by the

new gridding methods that, like classical conformal mapping, are founded on Cartesian coordinates.

The approach, developed in detail in Example 3.1 (in Chapter 3) in essence requires us to first

solve a set of nonlinearly coupled, second-order partial differential equations. In particular,

ðyη2 1 xη
2Þyξξ 2 2ðyξyη 1 xξxηÞyξη 1 ðyξ2 1 xξ

2Þyηη 5 0 (2.70)

ðyη2 1 xη
2Þxξξ 2 2ðyξyη 1 xξxηÞxξη 1 ðyξ2 1 xξ

2Þxηη 5 0 (2.71)

are considered with special mapping conditions related to the annular geometry. These are no sim-

pler than the original flow equations, and arguably worse, since there are now two more equations,

but they importantly introduce a first step that does not require solution on complicated domains.

Equations 2.70 and 2.71 are, importantly, solved on simple rectangular (ξ, η) grids. Once the

solution is obtained, the results for x(ξ, η) and y(ξ, η) are used to generate the metric transforma-

tions needed to reformulate the physical equations for u in (ξ, η) coordinates. The flow problem is

then solved in these rectangular computational coordinates using standard numerical methods.

These new coordinates implicitly contain all the details of the input geometry, providing fine reso-

lution in tight spaces as needed. To see why, we now briefly describe the boundary conditions used

in the mapping. Figures 2.7(a) and 2.7(b) indicate how a general annular region would map into a

rectangular computational space under the proposed scheme.

External curve C1

(a)

Internal curve C2

B1 B2

Branch cut B2

Branch cut B1

C1

ξmax

ηmax

ξ

(0,0)

(b)

C2

η

FIGURE 2.7

(a) Irregular physical (y, x) plane. (b) Rectangular computational plane.
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Again, the idea rests with special computational coordinates (ξ, η). A discrete set of “user-

selected” physical coordinates (y, x) along curve C1 in Figure 2.7(a) is specified along the straight

line η5 0 in Figure 2.7(b). Similarly, (y, x) values obtained from curve C2 in Figure 2.7(a) are

specified along η5 ηmax in Figure 2.7(b). Values for (y, x) chosen along “branch cuts” B1,2 in

Figure 2.7(a) are required to be single-valued along edges ξ5 0 and ξ5 ξmax in Figure 2.7(b).

With (y, x) prescribed along the rectangle of Figure 2.7(b), Equations 2.70 and 2.71 for y(ξ, η)
and x(ξ, η) can be numerically solved. Once the solution is obtained, the one-to-one correspon-

dences between all physical points (y, x) and computational points (ξ, η) are known. The latter is

the domain chosen for numerical computation for annular velocity. Finite difference representations

of the no-slip conditions “u5 0” that apply along C1 and C2 of Figure 2.7(a) are very easily imple-

mented in the rectangle of Figure 2.7(b). At the same time, the required modifications to the gov-

erning equation for u(y, x) are modest. For example, the simplified Equation 2.65 becomes

ðyη2 1 xη
2Þuξξ 2 2ðyξyη 1 xξxηÞuξη

1 ðyξ2 1 xξ
2Þuηη 5 ðyξxη 2 yηxξÞ2@P=@z=NðΓÞ

(2.72)

whereas the result for Equation 2.64 requires additional terms. For Equation 2.72 and its exact coun-

terpart, the velocity terms in the apparent viscosity N(Γ) of Equation 2.63 transform according to

uy 5 ðxηuξ 2 xξuηÞ=ðyξxη 2 yηxξÞ (2.73)

ux 5 ðyξuη 2 yηuξÞ=ðyξxη 2 yηxξÞ (2.74)

These relationships are also used to evaluate the dissipation function. Again, we emphasize that

in our solution for velocity, Equation 2.72 is importantly solved in rectangular computational coor-

dinates (ξ, η). We leave the details to be developed in Chapter 3, and for now continue with our

development of broad and basic concepts.

Exact viscosity model after 2010
The grid generation approach discussed is general and rigorous, and fast methods have been devel-

oped to solve coupled Equations 2.70 and 2.71. We have transformed the computational problem

for the annular speed u from an awkward one in the physical plane (y, x) to a simpler one in (ξ, η)
coordinates, where the irregular domain becomes rectangular. In doing so, we introduced the inter-

mediate problem dictated by Equations 2.70 and 2.71.

When solutions for y(ξ, η) and x(ξ, η) and their corresponding metrics are available, Equation

2.72, which is slightly more complicated than the original Equation 2.65, can be solved conve-

niently using existing “rectangle-based” methods without compromising the annular geometry.

Although complicated, containing more algebraic terms in the host equation for velocity, the result-

ing system does allow faster computing because fewer equations are actually used in the iteration

process. For iterative methods, fewer equations mean much faster convergence.

The assumptions behind Equation 2.65, used in earlier work and introduced purely for numeri-

cal stability, are physically unacceptable for problems where apparent viscosity varies significantly
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within the flow domain. The solution ultimately developed, allowing us to retain all apparent vis-

cosity derivatives that lead to almost unconditional stability, was simple. In particular, recall that

the complete equation in rectangular coordinates, Equation 2.60,

@ðN @u=@yÞ=@y1 @ðN @u=@xÞ=@x5 @P=@z

can be expanded in the form

@2u=@y2 1 @2u=@x2 1Ny=N @u=@y1Nx=N @u=@x5 1=N @P=@z (2.75)

so that @2u/@y21 @2u/@x25 1/N @P/@z � Ny/N @u/@y � Nx/N @u/@x. For practical reasons, in the past

it was simplest to modify the old solution algorithm by replacing “1/N @P/@z” with “1/N @P/@z �
Ny/N @u/@y � Nx/N @u/@x.” The new terms were evaluated using the latest available solutions for u

in an iterative semi-explicit scheme, or by solving a fully implicit scheme in which the new terms

were determined at the same time as those in @2u/@y21 @2u/@x2. Both of these approaches often led

to unstable or nonconvergent results.

It can be shown, after detailed numerical testing, that the “obvious” central differencing used in

our prior numerical approach—that is,

ð1=N @N=@xÞi � 1=NiðNi11 � Ni21Þ=ðxi11 2 xi21Þ (2.76)

is numerically unstable, while the less obvious approach utilizing

ð1=N @N=@xÞi 5 f@ðln NÞ=@xgi � fðln NÞi11 � ðln NÞi21g=ðxi11 � xi21Þ (2.77)

is very stable. This stable discretization is used and the new terms are all retained in curvilinear coor-

dinate form. Since Equation 2.60 is nonlinear, von Neumann analyses are impossible, but hundreds

of practical simulations have demonstrated the value of the logarithmic representation. Equation

2.60, together with the finite differencing in Equation 2.77, represents the new methodology used in

this book for fluids with and without yield stress.

Equations 2.70 and 2.71 were solved by rewriting them as a single vector equation for x1 iy,

employing simplifications from complex variables, and discretizing the end equation using second-

order accurate formulas. The finite difference equations were then reordered so that the coefficient

matrix is sparse, banded, and computationally efficient. Finally, the “successive line over relaxa-

tion” (SLOR) method was used to obtain the solution in an implicit and iterative manner. The

SLOR scheme is unconditionally stable on a linearized von Neumann basis and is quickly per-

formed. Mesh generation requires 1 to 2 seconds of computing time on typical computers.

Once the transformations for y(ξ, η) and x(ξ, η) are available for a given annular geometry,

Equation 2.60 can be solved any number of times for different applied pressure gradients, volumet-

ric flow rate constraints, or fluid rheology models, without recomputing the mapping. Because

Equation 2.60 is similar to Equations 2.70 and 2.71, the same procedure is used for its solution.

These iterations converge quickly and stably because the meshes used were smooth. When solu-

tions for the velocity field u(ξ, η) are available, these also requiring just seconds, simple inverse

mapping relates each computed “u” with its unique image in the physical (y, x) plane. With u(y, x)

and its spatial derivatives known, postprocessed quantities like N(Γ), Szy, Szx, their shear rates, and
apparent viscosities are easily calculated and displayed in physical (y, x) coordinates.
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Drilling and production engineers recognize that flow properties in eccentric annuli correlate to

some extent with annular position (e.g., low bottom speeds regardless of rheology). Our text-based

graphical display software projects u(y, x) and all postprocessed quantities on the annular geometry.

This facilitates quick, efficient visual correlation of computed physical properties or inferred char-

acteristics (e.g., “cuttings transport efficiency” and “stuck pipe probability”) with annular geometry.

These highly visual outputs and sophisticated color graphics, together with the speed and stability

of the scheme, promote an understanding of annular flow in an interactive, real-time manner.

Extensions for yield stress fluids
We return now to fluids with nonzero yield stresses. In general, there exist internal boundaries

separating “dead” (or “plug”) and flowing “shear” regimes. These unknown boundaries must be

obtained as part of the solution. Previously we indicated that these boundaries must be found as

part of the complete solution process. But even if they were known explicitly, numerical solutions

would be no easier: Slope discontinuities or “kinks” affect coordinate lines crossing the fluid

interface, and special methods must be developed to model sudden changes in slope (the standard

finite difference formulas used in numerical analysis require a function and its derivatives to be

continuous).

The basic problem actually arises from the method devised by mathematicians to “simplify”

combined plug and shear flows using Equation 2.48b. The resulting “if-then” model is responsible

for creating two unnatural domains that must be related by additional auxiliary conditions. We rem-

edy the problem as follows. In reality, flows do not suddenly change from flowing to nonflowing

or vice versa: A steep but continuous transition prevails. Consider, for example, the conventional

Herschel-Bulkley viscoplastic model, which includes Bingham plastics as a special limit when the

model exponent “n” is unity. As in Equation 2.48b, this requires that

τ5 τ0 1Kðdγ=dtÞn; if τ. τ0 (2.78a)

dγ=dt5 0; otherwise (2.78b)

where τ is the shear stress, τ0 is the yield stress, K is the consistency factor, n is the exponent, and

dγ/dt is the shear rate. This model is far from perfect. Both Herschel-Bulkley and Bingham plastic

models, for instance, predict infinite viscosities in the limit of vanishing shear rate, a fact that often

leads to numerical instabilities. In addition, the behavior is not compatible with the conservation

laws that govern many complex flows.

An alternative to Equations 2.78a and 2.78b is the continuous function suggested by Souza

Mendez and Dutra (2004):

τ5 f12 expð2η0 dγ=dt=τ0Þgfτ0 1Kðdγ=dtÞng (2.79)

which applies everywhere in the problem domain. The corresponding apparent viscosity is

η5 τ=ðdγ=dtÞ (2.80)

5 f12 expð2η0dγ=dt=τ0Þgfτ0=ðdγ=dtÞ1Kðdγ=dtÞn21g (2.81)
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Sketches for Equations 2.80 and 2.81 are given in Figure 2.8. We describe this as the

“extended Herschel-Bulkley” model (our terminology). For infinite shear rates, we recover

τ5 τ01K (dγ/dt)n. For low shear rates, a simple Taylor expansion leads to

η � fη0ðdγ=dtÞ=τ0gfτ0=ðdγ=dtÞ1Kðdγ=dtÞn21g (2.82a)

� η0 (2.82b)

where it is clear now that the parameter η0 represents a very high plug zone viscosity.

The use of Equations 2.79, 2.80, and 2.81 in numerical algorithms simplifies both formulation

and coding, since internal boundaries and plug domains do not need to be determined as part of the

solution. A single constitutive law (as opposed to the use of both Equations 2.48a and 2.48b)

applies everywhere; moreover, the continuous function assumed also possesses continuous deriva-

tives and automatically provides rapid transitions across boundaries separating plug and sheared

flows. Standard finite difference formulas then apply.

Also, the use of Equation 2.81 integrates naturally with the method behind Equation 2.77.

Essentially, the apparent viscosity N is stored in a Fortran function statement that is called and

updated as needed. We emphasize that N(Γ)5K [(@u/@y)21 (@u/@x)2](n21)/2, as given in Equation

2.63, applies to unidirectional flows without changes in the z direction (this too must be reexpressed

in curvilinear coordinates).

From the programming and software perspective, there is no distinction between zero-yield and

yield stress fluids. In a practical computer program, the plug zone viscosity might be assumed, for

example, anywhere from 100 to 1,000 cp. In fact, we choose high values of η0 that additionally sta-

bilize the numerical integration schemes used. This strategy is applied throughout our work, both to

our iterative relaxation schemes for steady-state problems and to our transient integration schemes

for more complicated managed pressure drilling formulations. Finally, our “extended” model is not
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Extended Herschel-Bulkley law.
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the “generalized Herschel-Bulkley” (GHB) relation in Becker et al. (2003). That model merely pro-

vides one additional curve-fitting parameter via (τ/τref)
m5 (τ0/τref)

m1 (μN dγ/dt/τref)
n. While useful,

the GHB model does not address plug zone size and shape issues. Thus, it is not used or considered

in this book.

EXAMPLE 2.4

Curvilinear Grid Formulation for Eccentric Annular Flows with General Non-Newtonian Fluids with Rotation

In the previous example, we introduced three strategies relevant to modeling non-Newtonian flows

in highly eccentric annuli: (a) stable numerical modeling of variable apparent viscosities and their

spatial derivatives; (b) extended representations for Herschel-Bulkley yield stress fluids to compute

internal boundaries naturally; and (c) curvilinear grid generation to accommodate irregular geomet-

ric details such as hole eccentricity, cuttings beds, and washouts. Implementation details are

reserved for Chapter 3.

In this example, we further develop the formalism to address problems with inner pipe or casing

rotation, which arise frequently in managed pressure drilling and effective cementing and comple-

tions. The problem is all the more important because drillstring rotation can be used to actively

control downhole pressure in modern managed pressure applications, thus providing another option

for well management besides mud rheology, pump rate, and surface choke adjustment.

We have seen from the foregoing example how the use of rectangular or Cartesian coordinates

provides a natural starting point for detailed geometric modeling of highly eccentric holes. This

technique was first discussed in the author’s Borehole Flow Modeling (1992) and Computational

Rheology (2001), but in the context of nonrotating flows. When pipe rotation is permitted, cylindri-

cal coordinates provide obvious first advantages in describing inner circle steady or transient move-

ments, but ultimately the resulting description must be rewritten to rectangular coordinates for

transfer to curvilinear grid representation using the method of Example 2.3. Thus, rotation problems

involve levels of algebraic manipulations in three successive coordinate systems: cylindrical, rect-

angular, and curvilinear. Actually, two more “hidden” coordinate transforms apply that are related

to computer screen displays; however, these represent issues outside of fluid dynamics and are not

discussed.

Again, we start with circular cylindrical coordinates so that steady or transient rotational rates

can be easily prescribed at the circular pipe or casing surface. The general non-Newtonian rheologi-

cal equations for unsteady single-phase flow with and without yield stress are given in references

previously cited and are listed below without proof. The momentum equations in the “r,” “θ,” and

“z” directions are, respectively,

ρð@vr=@t1 vr @vr=@r1 vθ=r @vr=@θ2 vθ
2=r1 vz @vr=@zÞ

5 Fr � @P=@r1 1=r @ðr SrrÞ=@r1 1=r @Srθ=@θ21=r Sθθ 1 @Srz=@z
(2.83)

ρð@vθ=@t1 vr@vθ=@r1 vθ=r @vθ=@θ1 vrvθ=r1 vz @vθ=@zÞ
5 Fθ � 1=r @P=@θ1 1=r2 @ðr2SθrÞ=@r1 1=r @Sθθ=@θ1 @Sθz=@z

(2.84)

ρð@vz=@t1 vr @vz=@r1 vθ=r @vz=@θ1 vz @vz=@zÞ
5 Fz � @P=@z1 1=r @ðr SzrÞ=@r1 1=r @Szθ=@θ1 @Szz=@z

(2.85)

72 CHAPTER 2 General Theory and Physical Model Formulation



where F denotes body forces, while the equation for mass conservation takes the form

@vr=@r1 vr=r1 1=r @vθ=@θ1 @vz=@z5 0 (2.86)

In the preceding, vr, vθ, and vz are radial, azimuthal, and axial velocity components, respec-

tively. Again, we have

S5 2 NðΓÞD (2.87)

denoting the deviatoric stress tensor, N(Γ); the apparent viscosity function, Γ; the shear rate; and,

now, the deformation tensor, D, whose elements are defined by

Drr 5 @vr=@r (2.88a)

Dθθ 5 1=r @vθ=@θ1 vr=r (2.88b)

Dzz 5 @vz=@z (2.88c)

Drθ 5Dθr 5
1/2½r @ðvθ=rÞ=@r1 1=r @vr=@θ� (2.88d)

Dθz 5Dzθ 5
1/2ð@vθ=@z1 1=r @vz=@θÞ (2.88e)

Drz 5Dzr 5
1/2ð@vr=@z1 @vz=@rÞ (2.88f)

These equations are later solved analytically in Example 5.6 (in Chapter 5) for steady concentric

rotation with axial flow for Power law fluids. Other limits are addressed in this book as well. For

the purposes of modeling eccentric flow with inner pipe rotation, our ultimate objective being the

use of transformed curvilinear coordinates, we compare Equations 2.60 and 2.85 to obtain the com-

posite but exact axial flow model:

ρð@u=@t1 vr @u=@r1 vθ=r @u=@θ1 u @u=@zÞ
5 Fz � @P=@z1 @ðN @u=@yÞ=@y1 @ðN @u=@xÞ=@x (2.89)

We introduce a coordinate system centered with the circular pipe or casing throughout this

book. Then, for steady flows, we have @/@t5 0, while the two-dimensional flow assumption states

that @/@z5 0. If we further assume that radial velocities are small compared with those in the axial

and azimuthal directions, a premise that is valid so long as massive fluid influxes or outfluxes are

ruled out, we have in the absence of body forces

ρvθ=r @u=@θ � �@P=@z1 @ðN @u=@yÞ=@y1 @ðN @u=@xÞ=@x (2.90)

where we have used the notation u5 vz to be consistent with Example 2.3.

Equation 2.90 is just the extension of Equation 2.13 to handle non-Newtonian rheologies. The

simpler model was developed in the context of Newtonian rotating, eccentric annular flows. Here

we rewrite the left side to x and y coordinates using “x5 r cos θ and y5 r sin θ,” and rewrite the

reexpressed azimuthal derivative in rectangular coordinates according to the chain rule results

@/@θ52y @/@x1 x @/@y and @/@r5 (x/r) @/@x1 (y/r) @/@y. The resulting x�y equation is then

transformed to curvilinear coordinates as explained in Example 2.3, and the same x�y methods for

steady and transient flow apply.

Equation 2.90 still contains a velocity vθ that plays the role of a variable coefficient. As we indi-

cated in Example 2.1, its magnitude is proportional to fluid density and to azimuthal speed and,
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here also, inversely proportional to apparent viscosity. In the most general case, the nonlinearly

coupled system formed by Equations 2.84 and 2.90 must be solved. However, for rotating annular

flows, simplifications are possible. We first reconsider Equation 2.84 in the form

ρð@vθ=@t1 vr @vθ=@r1 vθ=r @vθ=@θ1 vrvθ=r1 vz @vθ=@zÞ
5 �1=r @P=@θ1 1=r2 @ðr2 SθrÞ=@r1 1=r @Sθθ=@θ1 @Sθz=@z

� �1=r @P=@θ1NðΓÞð@2vθ=@r2 1 1=r @vθ=@r2 vθ=r
2 1 1=r2 @2vθ=@θ2

1 2=r2 @vr=@θ1 @2vθ=@z
2Þ

(2.91)

Applying the assumptions used for Equation 2.90, plus the fact that the azimuthal flow is pri-

marily “dragged” by the inner surface in the sense shown in Example 2.1, so that @/@θ on the left

side and the induced pressure gradient on the right are both small compared to axial effects, we

have an approximate linear partial differential equation without explicit pressure dependence

obtained as

@2vθ=@r
2 1 1=r @vθ=@r1 1=r2 @2vθ=@θ2 � vθ=r

2 � 0 (2.92)

which must be solved subject to vθ5 0 at the outer wall and vθ5Rω at the circular pipe surface,

where R is the pipe radius and ω is the rotational rate (for transient flows, the ρ@vθ/@t term is

retained).

Equation 2.92, we emphasize, must be solved in curvilinear coordinates consistently with the

x�y form of Equation 2.90. The required form is straightforwardly obtained. For this purpose,

we note that x5 r cos θ and y5 r sin θ imply that r5 (x21 y2)1/2 and @2vθ/@r
211/r @vθ/@r11/r2

@2vθ/@θ
25 @2vθ/@x

211/r2 @2vθ/@y, so we have a simpler @2vθ/@x
211/r2 @2vθ/@y � vθ/(x

21 y2)5 0.

In summary, the steady, rotating flow formulation valid for non-Newtonian fluids with or with-

out yield stress solves the coupled system

@ðN @u=@yÞ=@y1 @ðN @u=@xÞ=@x � @P=@z1 ρvθ=r @u=@θ (2.93)

@2vθ=@x
2 1 1=r2 @2vθ=@y� vθ=ðx2 1 y2Þ5 0 (2.94)

subject to u5 u0 (a constant positive, zero, or negative axial pipe movement speed) and vθ5Rω at

the inner pipe, plus u5 vθ5 0 at the outer annular boundary. Note that the apparent viscosity func-

tion depends on both u and vθ and embodies shear-thinning and shear-thickening effects, so the two

are coupled nonlinearly. Again, Equations 2.93 and 2.94 are written in x�y coordinates but are

transformed to boundary-conforming, curvilinear coordinates for solution. A controlling parameter

in numerical stability is ρω/μ, where μ is proportional to the average apparent viscosity. The

required details related to geometric transformations are explained in Chapter 3.
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CHAPTER

3Numerical Analysis and Algorithm
Development Strategies

In Chapter 1, we provided an overview of all of the simulation functions addressed by the new

annular flow technologies; in Chapter 2, we presented the overall theoretical framework for

boundary-conforming, curvilinear grid approaches to the modeling of non-Newtonian fluids (with

and without yield stress) with drillpipe or casing that may be stationary or rotating. This frame-

work applies to both the single-phase flows treated in Chapters 1 through 7 and their multiphase

extensions in Chapters 8 and 9.

In the present chapter, mathematical details required in implementing curvilinear grids are

described without the usual recourse to differential geometry, an abstract subject area covered in spe-

cialized graduate-level courses. Importantly, in Example 3.1, these advanced ideas are developed

using basic calculus, so they are understandable to practicing engineers and extendable by software

practitioners without much difficulty. We show how arbitrary annular flow “donut” regimes are con-

verted to simple rectangular domains for fast computation. We also demonstrate how the nonlinear

mesh generation equations, whose numerical solutions are often slow and unstable, can be rapidly

computed using an unconditionally stable algorithm.

Example 3.2 outlines how the same methods can be used to model noncircular (nonannular)

ducts, an application that is important in studying hole enlargement in drilling engineering and

pipeline clogging in underwater applications. Practical applications to solids deposition modeling

are addressed in Example 3.3, and numerous calculated results are offered for both Newtonian and

non-Newtonian flow. Finally, Example 3.4 introduces the subject of finite difference analysis using

a solution for classical Hagen-Poiseuille pipe flow in circular pipes, and rapidly progresses to state-

of-the-art curvilinear grid�based methods for non-Newtonian fluids where velocities and apparent

viscosities are found iteratively.

EXAMPLE 3.1

Grid Generation for Eccentric Annular Flow

We introduce abstract (but useful and important) ideas in coordinate transformations, typically pre-

sented from a differential geometry perspective but here reworked using only elementary calculus to

clearly convey the ideas. Suppose we wish to express a function f(x, y) in terms of convenient
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independent variables ξ and η. If the transformations x5 x(ξ, η) and y5 y(ξ, η) are available, direct

substitution allows us to rewrite f(x, y) in the form

fðx; yÞ5 Fðξ; ηÞ (3.1)

In Equation 3.1, the functional relation F(ξ, η) between ξ and η is generally different from the

relation f(x, y) connecting x and y. Derivatives of f(x, y) with respect to x and y are easily related to

derivatives of F(ξ, η) taken with respect to ξ and η. By applying the chain rule of calculus, we have

Fξ 5 fxxξ 1 fyyξ (3.2)

Fη 5 fxxη 1 fyyη (3.3)

where subscripts, along with @’s, will be used to indicate partial derivatives. Equations 3.2 and 3.3

can be algebraically solved for fx and fy to yield

fx 5 ðyηFξ � yξFηÞ=J (3.4)

fy 5 ðxξFη � xηFξÞ=J (3.5)

where

Jðξ; ηÞ5 xξyη � xηyξ (3.6)

is known as the Jacobian of the transformation. For reasons that will be apparent later, we will refer

to this Jacobian as “big jay.”

Most boundary value problems occurring in mathematical physics involve second-order partial

differential equations. To express such equations in (ξ, η) coordinates, transformations similar to

those in Equations 3.4 and 3.5 are therefore needed for fxx, fxy, and fyy. Throughout this presenta-

tion, f and F are considered to be sufficiently smooth, so it is possible to interchange the order of

differentiation between any two independent variables. By “smooth,” we mean that sudden discon-

tinuities are not expected in physical solutions. This is assured, for instance, if kinks do not appear

in the cross-sectional geometry. Application of the chain rule to Equations 3.2 and 3.3 leads to

Fξξ 5 fxxξξ 1 xξðfxxxξ 1 fxyyξÞ1 fyyξξ 1 yξðfyxxξ 1 fyyyξÞ
5 xξξfx 1 yξξfy 1 x2ξ fxx 1 y2ξ fyy 1 2xξyξfxy

(3.7)

Similarly,

Fηη 5 xηηfx 1 yηηfy 1 xη
2fxx 1 yη

2fyy 1 2xηyηfxy (3.8)

and

Fηξ 5 xηξfx 1 yηξfy 1 xηxξfxx 1 yηyξfyy 1 ðxηyξ 1 xξyηÞfxy (3.9)

Now, let us rewrite Equations 3.7, 3.8, and 3.9, treating the functions fxx, fxy, and fyy as alge-

braic unknowns on the left-hand side of a three-by-three system. That is, we write the foregoing

equations as follows:
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xξ
2 fxx 1 2xξyξ fxy1 yξ

2 fyy5 Fξξ � xξξ fx � yξξ fy ð3:10Þ
xη

2 fxx 1 2xηyη fxy1 yη
2 fyy5 Fηη � xηη fx � yηη fy ð3:11Þ

xηxξfxx 1 ðxηyξ 1 xξyηÞ fxy 1 yηyξ fyy 5 Fηξ � xηξ fx � yηξ fy ð3:12Þ
In this form, the solutions for fxx, fxy, and fyy can be easily obtained using determinants. However,

we need not write down individual solutions, since we will not need to use them in our applica-

tions. But we will make use of the rectangular Laplace operator fxx1 fyy, which, in curvilinear

coordinates, takes the form

fxx 1 fyy 5 ðα Fξξ � 2βFξη 1 γFηηÞ=J2 1 ½ðα xξξ � 2βxξη 1 γxηηÞðyξFη � yηFξÞ
1 ðα yξξ � 2βyξη 1 γyηηÞðxηFξ � xξFηÞ�=J3

(3.13)

where the Greek letter coefficients represent the nonlinear functions

α5 xη
2 1 yη

2 (3.14)

β5 xξxη 1 yξyη (3.15)

γ5 xξ
2 1 yξ

2 (3.16)

Thompson’s Mapping
So far, we have not imposed any constraints on the functions x5 x(ξ, η) and y5 y(ξ, η), or their
inverses ξ5 ξ(x, y) and η5 η(x, y). One well-known transformation is Thompson’s mapping, origi-

nally developed to solve the Navier-Stokes equations for viscous flows past planar airfoils in aero-

space applications; see, for example, Thompson (1984); Thompson, Warsi, and Mastin (1985); and

Tamamidis and Assanis (1991). This method was modified for use in Chin (1992, 2001) to study

steady non-Newtonian flows in eccentric annuli and noncircular pipes. In this approach, ξ(x, y) and
η(x,y) are defined as solutions to the elliptic equations

ξxx 1 ξyy 5 P�ðξ; ηÞ (3.17)

ηxx 1 ηyy 5Q�ðξ; ηÞ (3.18)

where P* and Q* are functions chosen (by ingenious guesswork) to control local grid density.

We will explain the exact motivation behind the Thompson approach later. For now, however,

we ask, “What equations govern x5 x(ξ, η) and y5 y(ξ, η) given Equations 3.17 and 3.18?” At

this point, it is helpful to understand that Equation 3.13 holds for any function f. That is, for any

prescribed set of transformations, Equation 3.13 can be viewed as a source of useful identities. Let

us take f(x, y)5 ξ(x, y), in which case F(ξ, η)5 ξ; then Fη5 0, and all second derivatives of

F with respect to ξ and η vanish. Substitution in Equation 3.13 and replacement of the resulting

Laplacian of ξ with respect to x and y using Equation 3.17 lead to

2yηðα xξξ � 2β xξη 1 γ xηηÞ1 xηðα yξξ � 2β yξη 1 γ yηηÞ5 P�J3 (3.19)

77Example 3.1



Similarly, consider f(x, y)5 η(x, y), so that F(ξ, η)5 η. It follows that Fξ5 0 and that all second

derivatives of F with respect to ξ and η vanish. Substitution in Equation 3.13 and replacement of the

Laplacian of η with respect to x and y using Equation 3.18 lead to

yξðα xξξ � 2β xξη 1 γ xηηÞ � xξðα yξξ � 2β yξη 1 γ yηηÞ5Q�J3 (3.20)

If we now regard (α xξξ22β xξη1 γ xηη) and (α yξξ22β yξη1 γ yηη) as algebraic unknowns in a

simple two-by-two system, Equations 3.19 and 3.20 can be solved, thus yielding Thompson’s well-

known elliptic equations

αxξξ � 2βxξη 1 γ xηη 1 J2ðP�xξ 1Q�xηÞ5 0 (3.21)

αyξξ � 2βyξη 1 γ yηη 1 J2ðP�yξ 1Q�yηÞ5 0 (3.22)

Interestingly, we have derived these relationships using basic calculus, without recourse to

more esoteric notions from differential geometry. Equations 3.21 and 3.22 are nonlinearly cou-

pled because the coefficients α, β, and γ in Equations 3.14 through 3.16 depend on both x(ξ, η)
and y(ξ, η).

Some reciprocity relations
For practical reasons, we will need to convert results between physical x2y and computational

ξ2η planes. Thus, reciprocity relationships are needed. Let us return to general considerations and

for now refrain from invoking Thompson’s assumptions. In particular, we examine the general

transformations

x5 xðξ; ηÞ (3.23)

y5 yðξ; ηÞ (3.24)

From elementary calculus, the total differentials dx and dy are given by

xηdη1 xξdξ5 dx (3.25)

yηdη1 yξdξ5 dy (3.26)

Equations 3.25 and 3.26 can be solved in terms of dξ and dη, thus leading to the relationships

dη52yξdx=J1 xξdy=J (3.27)

dξ5 1yηdx=J� xηdy=J (3.28)

where the “big jay” Jacobian is given by Equation 3.6. Now, we can similarly consider the inverse

transformation. If we write

η5 ηðx; yÞ (3.29)

ξ5 ξðx; yÞ (3.30)
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it follows that

dη5 ηxdx1 ηydy (3.31)

dξ5 ξxdx1 ξydy (3.32)

Comparison of Equation 3.27 with Equation 3.31, and of Equation 3.28 with Equation 3.32, leads

to

ηx 52yξ=J (3.33)

ηy 5 xξ=J (3.34)

ξx 5 yη=J (3.35)

ξy 52xη=J (3.36)

On the other hand, we might have proceeded from the definitions for the total differentials dξ
and dη, and reconsidered Equations 3.31 and 3.32 as

ηxdx1 ηydy5 dη (3.37)

ξxdx1 ξydy5 dξ (3.38)

Equations 3.37 and 3.38 can be solved algebraically for dx and dy to give

dx52ξydη=j1 ηydξ=j (3.39)

dy5 1ξxdη=j� ηxdξ=j (3.40)

where the “little jay” Jacobian satisfies

jðx; yÞ5 ξxηy 2 ξyηx (3.41)

Comparison of Equation 3.25 with Equation 3.39, and of Equation 3.26 with Equation 3.40, leads

to

xη 52ξy=j (3.42)

xξ 5 ηy=j (3.43)

yη 5 ξx=j (3.44)

yξ 52ηx=j (3.45)

Finally, comparison of Equation 3.33 with Equation 3.45, Equation 3.34 with Equation 3.43,

Equation 3.35 with Equation 3.44, and lastly, Equation 3.36 with Equation 3.42 leads to

Jðξ; ηÞjðx; yÞ5 1 (3.46)

or

ðxξyη � xηyξÞðξxηy � ξyηxÞ5 1 (3.47)
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It is important to understand that the equations obtained in this section are generally valid,

regardless of Thompson’s or any other transformations. They allow us to move conveniently

between quantities expressed in the physical (x, y) and computational (ξ, η) planes.

Conformal mapping limits
Conformal mapping is a powerful technique used to transform simple harmonic solutions into those

applicable to more complicated shapes. Here, we explore its general properties and attempt to

understand conformal mapping from a mathematical viewpoint. Usually, methods from complex

variables analysis are used to introduce the following concepts, but as in our above treatment for

coordinate transformations, the basic results can be developed using only elementary calculus. We

now formally reintroduce the Cauchy-Riemann conditions:

ξx 5 ηy (3.48)

ηx 52ξy (3.49)

Let us differentiate Equation 3.48 with respect to x and Equation 3.49 with respect to y; elimi-

nation of the cross-derivative term between the two results leads to Equation 3.50. A similar proce-

dure yields Equation 3.51.

ξxx 1 ξyy 5 0 (3.50)

ηxx 1 ηyy 5 0 (3.51)

Equations 3.50 and 3.51 are both elliptic; they are, in fact, exactly Thompson’s Equations 3.17 and

3.18, but with P*5Q*5 0. Since ξ(x, y) and η(x, y) satisfy Laplace’s equation, they are said to be

harmonic. And because harmonic functions are generally obtained as real and imaginary parts of

complex analytical functions, Equations 3.50 and 3.51 are usually derived more elegantly using

complex variables methods. The latter are also used to derive “free” solutions to equations like

“( )xx1 ( )yy5 0.”

That is, if solutions for φxx1φyy5 0 are known, solutions to a related ψxx1ψyy5 0 can be

deduced. In reservoir engineering, φ might represent Darcy pressure, in which case ψ would

describe streamlines. Of course, in real-world problems that satisfy more complicated partial differ-

ential equations, conformal mapping methods cannot be used—in fact, none of the flow models

used in annular flow modeling satisfy Laplace’s equation. We therefore address the use of curvilin-

ear coordinate transformations for general boundary value problems.

To understand the implications of Equations 3.48 and 3.49 in transformed coordinates, we turn

to our reciprocity relations. If the ξx and ηy in Equation 3.48 are replaced by their equivalents using

our Equations 3.43 and 3.44, and if ηx and ξy in Equation 3.49 are replaced by their equivalents

using Equations 3.42 and 3.45, we obtain

yη 5 xξ (3.52)

yξ 52xη (3.53)
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which imply, using the same procedure we have described, that

xξξ 1 xηη 5 0 (3.54)

yξξ 1 yηη 5 0 (3.55)

Thus, x(ξ, η) and y(ξ, η) are likewise harmonic, but in the variables ξ and η. Equations 3.54 and

3.55 are simpler than Equations 3.21 and 3.22, with P*5Q*5 0. Reciprocity shows that there

exists a duality between physical and mapped planes, and vice versa, for conformal transforma-

tions; that is, Equations 3.50 and 3.51 are mirror images of Equations 3.54 and 3.55. One might

have anticipated this type of reversibility, but it is not directly evident from Equations 3.21 and

3.22. Equations 3.54 and 3.55 are consistent with Thompson’s original Equations 3.21 and 3.22.

Use of the Cauchy-Riemann conditions in the transformed plane—that is, Equations 3.52 and

3.53—in Equations 3.14 through 3.16 leads to α5 γ and β5 0. In this presentation, our grid gen-

eration discussions include derivations for results of broad theoretical interest. However, due to

resource limitations in ongoing research, our applications will be restricted to P*5Q*5 0. We

stress that Equations 3.54 and 3.55 are linear, unlike Equations 3.21 and 3.22. However, they do

not generally uncouple for true conformal mappings, as they might superficially suggest, since x

and y cannot be arbitrarily specified along boundaries: To be conformal, x and y must satisfy

Equations 3.52 and 3.53 everywhere.

Solutions to mesh-generation equations
We show how our geometrical transforms are useful in solving boundary value problems. To

explain the issues clearly, we consider an elementary reservoir flow application. Commercial simu-

lators calculate pressures, velocities, and other properties on rectangular grids. Again, their x2y

coordinate lines do not conform to the irregular curves defining actual boundaries; also, high grid

densities imposed near wells imply similarly high densities far away, where such resolution is

unnecessary. This results in large, inefficient computing domains containing dead flow and large

matrices. Sometimes, coarse meshes are used everywhere, together with high-density “corner point”

modeling to provide grid refinement close to wells. However, many refrain from their usage

because cross-derivative terms in the transformed flow equations, which increase computing time,

are incorrectly ignored in the matrix inversion for numerical expediency.

Boundary conditions
Although the industry focuses on Cartesian meshes, more effective boundary-conforming, curvilinear

grids can be generated, adapting to both far-field and near-field boundaries. We now reiterate the

basic ideas because they are essential to understanding the method, but here they focus on

the boundary conditions needed to supplement Thompson’s equations. Suppose that a transform

ξ5 ξ(x, y), η5 η(x, y) exists that maps the irregular, doubly connected domain defined by the general

well and far-field reservoir boundaries of Figure 3.1 into the singly connected rectangle of Figure 3.2.

Physically insignificant branch cuts B1 and B2 have been introduced, which will be discussed.

Such a mapping effectively allows calculations to be performed on more desirable high-resolution

grids like the one in Figure 3.3. It is clear that more meaningful flow models can be formulated using

“ξ, η” coordinates; improved flow description is possible, with fewer grids and less matrix inversion.
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FIGURE 3.1

Irregular domain with inefficient rectangular meshes (application for reservoir flow into a fractured well). Source:

From Chin (2002).
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FIGURE 3.2

Irregular domain mapped to rectangular ξ2 η computational space.
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FIGURE 3.3

Physical domain in boundary-conforming coordinates.
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Now, it is known from complex variables that conformal transformations satisfy linear Laplace equa-

tions in x and y, but classical methods unfortunately do not explain how the mappings are obtained.

Thompson, again, developed a novel approach. Rather than dealing with ξ5 ξ(x, y) and η5 η(x, y)
directly, the method equivalently considers inverse functions x5 x(ξ, η) and y5 y(ξ, η) satisfying

two nonlinearly coupled equations, Equations 3.21 and 3.22:

ðx2η 1 y2ηÞxξξ 2 2ðxξxη 1 yξyηÞxξη 1 ðx2ξ 1 y2ξÞxηη 5 0 (3.56)

ðx2η 1 y2ηÞyξξ 2 2ðxξxη 1 yξyηÞyξη 1 ðx2ξ 1 y2ξÞyηη 5 0 (3.57)

where ξ and η are independent variables. How are these used to create mappings? Suppose that con-

tour CW in Figure 3.1 is to map into η5 0 of Figure 3.2. The user first discretizes CW in Figure 3.1

by penciling along it a sequence of dots chosen to represent the curve. If these are selected in an

orderly, say clockwise, fashion, they define the direction in which ξ increases. Along η5 0, values of

x and y are known (e.g., from measurement on graph paper) as functions of ξ. Similarly, x and y

values along Cr are known as functions of ξ on η5 1 of Figure 3.2. These provide the boundary

conditions for Equations 3.56 and 3.57, which are augmented by single-valuedness constraints at

arbitrarily chosen branch cuts B1 and B2.

In Thompson’s and similar approaches, Equations 3.56 and 3.57 are discretized by finite differ-

ences and solved by point or line relaxation, starting with guesses for the dependent variables x

and y. The problem is linearized by approximating all nonlinear coefficients using values from

earlier iterations. Typically, several updates to Equation 3.56 are taken, followed by updates to

Equation 3.57, with this cycling process, often unstable, repeated until convergence. Variations of the

approach are known, with 1003 100 mesh systems in the ξ2η plane requiring minutes of comput-

ing time on typical personal computers. Once x5 x(ξ, η) and y5 y(ξ, η) are solved and tabulated

as functions of ξ and η, physical coordinates are generated. First, η is fixed; for each node ξ along

this η, the computed values of (x, y) pairs are successively plotted in the x2y plane to produce

the required closed contour. This procedure is repeated for all values of η until the entire family

of closed curves is obtained, with limit values η5 0 and η5 1 again describing Cw and Cr. Orthogonals

are constructed by repeating the procedure, with the η and ξ roles reversed.
This process provides the mapping only. The partial differential equation governing the physical

problem must be transformed into (ξ, η) coordinates and solved. For instance, in reservoir simula-

tion, Darcy’s pressure equation must be expressed in terms of ξ, η and solved; in aerodynamics, the

Navier-Stokes equations are solved. Thompson’s simplification lies not in the transformed host

equation, which may contain mixed derivatives and variable coefficients, but in the computational

domain itself, because it takes on a rectangular form amenable to simple numerical solution. While

the transformed equation is more complicated, fewer equations are actually needed to represent the

complete flow, thus leading to rapid convergence and much faster solutions.

Fast iterative solutions
This section describes the solution to the mapping equations—solutions to the transformed momen-

tum equations, discussed elsewhere in this book, depend on the engineering model under consider-

ation. Existing solution methods solving x(ξ, η) and y(ξ, η) stagger the solutions for Equations 3.56

and 3.57. For example, crude solutions are used to initialize the coefficients of Equation 3.56, and

improvements to x(ξ, η) are obtained. These are used to evaluate the coefficients of Equation 3.57,
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in order to obtain an improved y(ξ, η); then attention turns to Equation 3.56 again, and so on, until

convergence is achieved. Various means are used to implement these iterations—for example, point

SOR, line SLOR, line SOR with explicit damping, alternating-direction-implicit, and multigrid, with

varying degrees of success. Often these schemes diverge computationally. In any event, this stagger-

ing introduces different artificial time levels while iterating. However, classic numerical analysis

suggests that faster convergence and improved stability are possible by reducing their number.

A new approach to rapidly solving the mesh equations was developed by this author using a

simple idea. This has since been validated and extended. Consider zξξ1 zηη5 0, for which zi,j �
(zi21,j1 zi11,j1 zi,j211 zi,j11)/4 holds on constant grid systems. This well-known averaging law

motivates the recursion formula zi,j
n5 (zi21,j

n211 zi11,j
n211 zi,j21

n211 zi,j11
n21)/4 often used to

illustrate and develop multilevel iterative solutions; an approximate, and even trivial, solution can

be used to initialize the calculations, and correct nonzero solutions are always produced from non-

zero boundary conditions.

But the well-known Gauss-Seidel method is fastest: As soon as a new value of zi,j is calculated,

its previous value is discarded and overwritten by the new value. This speed is accompanied by

low memory requirements, since there is no need to store both n and n21 level solutions: Only a

single array, zi,j itself, is required in programming. Our approach to Equations 3.56 and 3.57 was

motivated by the following idea. Rather than solving for x(ξ, η) and y(ξ, η) in a staggered, leapfrog

manner, is it possible to simultaneously update x and y in a similar “once-only” manner? Are con-

vergence rates significantly increased? What formalism permits us to solve in Gauss-Seidel fash-

ion? What are the programming implications?

Complex variables are used in harmonic analysis problems; for example, the real and imaginary

parts of an analytical function f(z), where z5 x1 iy, provide solutions satisfying Laplace’s equa-

tion. Here we use complex analysis differently. We define a dependent variable z by z(ξ, η)5
x(ξ, η)1 iy(ξ, η), and then add Equation 3.56 plus i times Equation 3.57, in order to obtain the

result (xη
21 yη

2)zξξ2 2(xξxη1 yξyη)zξη1 (xξ
21 yξ

2)zηη5 0. Now, the complex conjugate of z is

z*(ξ, η)5 x(ξ, η)2 iy(ξ, η), from which we find that x5 (z1 z*)/2 and y52 i(z2 z*)/2.

Substitution produces the simple and equivalent one-equation result

ðzηz�ηÞzξξ � ðzξz�η 1 z�ξzηÞzξη 1 ðzξz�ξÞzηη 5 0 (3.58)

This form yields significant advantages. First, when z is declared a complex variable in a

Fortran program, Equation 3.58 represents, for all practical purposes, a single equation in z(ξ, η).
There is no need to leapfrog between x and y solutions now, since a single formula analogous to

the classical model zi,j5 (zi21,j1 zi11,j1 zi,j211 zi,j11)/4 is easily written for the zi,j related to

Equation 3.58 using second-order central differences. Because both x and y are simultaneously resi-

dent in computer memory, the extra time level present in staggered schemes is eliminated, as in the

Gauss-Seidel method. In thousands of test simulations conducted using point and line relaxation,

convergence times are shorter by factors of two to three, with convergence rates far exceeding

those obtained for cyclic solutions between x(ξ, η) and y(ξ, η). Convergence appears to be uncondi-

tional, monotonic, and stable. Because Equation 3.58 is nonlinear, von Neumann tests for expo-

nential stability and traditional estimates for convergence rates do not apply, but the evidence for

stability and convergence, while empirical, remains very strong and convincing.
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On Laplacian transformations
We have introduced expedient ways to solve Equations 3.56 and 3.57 computationally for x(ξ, η)
and y(ξ, η). These mappings are not generally conformal. The fast solution method for Equation

3.58 is important because the properties afforded by conformal transformations are not useful for

physical problems governed by models other than Laplace’s equation. As noted earlier, even the

simplest engineering rheology problems satisfy (usually nonlinear) inhomogeneous equations that

are far more complicated in structure.

For example, under conformal transformation, it is possible to show that the x2y Laplacian

satisfies fxx1 fyy5 (Fξξ1 Fηη)/J(ξ, η). In physical problems where “fxx1 fyy5 0,” it follows simi-

larly that “Fξξ1 Fηη5 0,” since J is never zero—this invariance maps simple solutions into more

difficult ones for complicated shapes, providing, in effect, “free” mathematical solutions. In the

problems addressed in this book, the governing partial differential equations are not as elementary;

for instance, the equation “ρ@u/@t52@p/@z1 μ(@2u/@x21 @2u/@y2)” is needed to describe the sim-

plest transient Newtonian flows, with non-Newtonian motions satisfying even more complicated

models. This means that any advantages inherent in conformal mapping are lost by virtue of the

more involved physics. Thus, Equations 3.56 and 3.57 are entirely adequate for solving such prob-

lems, provided the Laplacian fxx1 fyy is replaced by its appropriately transformed value. In fact, if

Equations 3.56 and 3.57 are used to simplify Equation 3.13, we obtain the remarkable result that

fxx 1 fyy 5 ðαFξξ � 2βFξη 1 γFηηÞ=J2 (3.59)

As an example, the steady, isotropic reservoir flow problem for liquids solving pxx1 pyy5 0 for

the Darcy pressure amounts to αPξξ2 2βPξη1 γPηη5 0 in transformed coordinates. But since

p5 pwell at the inner borehole contour and p5 pN at the far-field boundary are constants, noting

that the well may contain fractures and other geometric anomalies, and that the far field may be

highly irregular, derivatives with respect to ξ must vanish, leaving as the governing equation a sim-

plified Pηη5 0 whose general analytical solution takes the form P(η)5 (pN2 pwell )η1 pwell.

This means that the solution to a superset of pressure problems can be expressed in terms of a sin-

gle geometric mapping! The solution to the grid generation problem thus provides the general solu-

tion to the steady reservoir flow problem in a very elegant manner. This fact is used in the reservoir

engineering book of Chin (2002) to develop numerical solutions for flows in reservoirs with very

complicated geometries (e.g., a reservoir having the shape of Texas; see Figure 1.2 in Chapter 1).

When the governing partial differential equation is more complicated than pxx1 pyy5 0, then,

of course, more specialized techniques are required. This book develops the required methods for

non-Newtonian eccentric annular flows with general fluid properties under steady and transient

conditions. In three-dimensional problems with constant cross sections, the same geometric map-

ping applies in all cross sections and J is independent of z. Then the general Laplacian transforms

according to

fxx 1 fyy 1 fzz 5 ðαFξξ � 2βFξη 1 γFηηÞ=J2 1 Fzz (3.60)

This result will prove extremely useful later in this book when we address transient multiphase

flow in three dimensions. But mappings can be developed that are much more general. For

instance, a very long borehole with geometric anomalies and variations in the axial direction (that
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are measurable by caliper logs) can be modeled by creating mappings at periodic axial distances,

resulting in a Jacobian with z dependence. The corresponding flow equations likewise contain the

modified J, and, needless to say, the numerical solution is far more complicated.

The more general models developed for the applications treated in this book will be shown to

reduce to simpler ones for steady and transient, two-dimensional, single-phase flows, and will also

be shown to be numerically consistent, as computed asymptotic results taken for large times and

axial distances reduce to known results obtained in earlier chapters. The extraordinary degree of

cross-checking undertaken for the model development reported in this book ensures that our formu-

lations are consistent and correct in areas where assumptions overlap. This provides a degree of

user confidence needed for job planning in real-world field applications.

EXAMPLE 3.2

Mappings for Flows in Singly Connected Ducts

In our annular flow discussions, where the domain of interest lies between the pipe and the bore-

hole wall, we deal, in a mathematical sense, with “donuts,” as further suggested in Figure 3.3,

which shows a fractured well in a petroleum reservoir (that is, “donuts,” as in “coffee and donuts”).

Domains with “holes” such as these are known as “doubly connected” regions; two holes, for exam-

ple, lead to those that are “triply connected.”

A wealth of material on connectivity is available in mathematical topology. In our more mun-

dane work, we also deal with “singly connected” domains such as those in Figure 3.4. These are

important in modeling flows in complicated ducts, which in petroleum engineering include pipeline

cross sections with clogging debris, boreholes with substantial clogging where the bottom com-

pletely fills with cuttings and the hole is no longer annular, and so on. To generalize the idea of

single connectivity, the possibilities in Figure 3.4 are available for thought.

In Figure 3.1, we introduced “branch cuts” (across which special conditions were invoked for sin-

gle-valuedness) to transform a doubly connected region into one that is singly connected. The trans-

forms for problems such as those in Figure 3.4 are more easily obtained because branch cuts are

unnecessary. Once x2y point values at A, B, C, D, and all intermediate points are assigned (e.g., by

interpolating from graph paper sketches), they can be directly imposed as boundary conditions at the

edges of the rectangle in Figure 3.5. Then the previous solution process for “z” applies. The resulting

generalized duct flow computer model was easily developed from the annular flow work for a pipe-

line application. In this case, we wished to dynamically couple a debris growth model that ultimately

clogs the flow cross section in order to study wax and hydrate buildup in cold subsea environments.

We discuss the solids deposition modeling strategy before providing example computed results.

EXAMPLE 3.3

Solids Deposition Modeling and Applications

What is “solids deposition modeling” and what is its role in pipe or annular flow dynamics?

Although numerous studies have been directed, for instance, at wax deposition and hydrate forma-

tion, none have addressed the dynamic interaction between the solids deposition process and the
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velocity field imparted by the flowing non-Newtonian fluid. The latter serves dual functions: It

assists with solid particle placement, but, at the same time, the viscous stress field associated with

it tends to remove particles that have adhered to solid surfaces.

Until now, determining the velocity field alone has proven difficult, if not impossible: Nonlinear

flow equations must be solved for geometric domains that are far from ideal in shape. However, the

methods developed in this book for annular and general duct flow permit fast and robust solutions

and also efficient postprocessing and visual display for quantities like apparent viscosity, shear rate,
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Singly connected “pipe flow” domains.
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and viscous stress. In this sense, “half” of the problem has been resolved, and in this chapter we

address the remaining half.

To understand the overall philosophy, it is useful to return to the problem of mudcake formation

and erosion, and of cuttings transport, considered in detail in Chapter 5. As we will find, the plug-

ging or cleaning of a borehole annulus can be a dynamic, time-dependent process. For example, the

inability of the low-side flow to remove cuttings results in debris bed formation, when cuttings

combine with mudcake to form mechanical structures. Forced filtration of drilling mud into the for-

mation compacts these beds, and individual particle identities are lost: The resulting beds, charac-

terized by well-defined yield stresses, alter the shape of the borehole annulus and the properties of

the flow.

But the bed can be eroded or removed, provided the viscous stress imparted by the flowing mud

in the modified annulus exceeds the yield value. If this is not possible, plugging will result and

stuck pipe is possible. On the other hand, alternative remedial actions are possible. The driller can

change the composition of the mud to promote more effective cleaning, increase the volumetric

flow rate, or both. Successfully doing so erodes cuttings accumulations and, ideally, promotes

dynamic “self-cleaning” of the hole.

In a sense, developing a new “constitutive relation”—for example, postulating Newtonian or

Power law properties and deriving complementary flow equations—is simpler than designing solids

deposition models. The mathematical process needed to “place” stress-strain relations in momen-

tum differential equation form is more straightforward than the cognitive process required to under-

stand every step of a new physical phenomenon (e.g., wax deposition or hydrate formation). In this

section, we introduce a philosophy behind modeling solids deposition, and as a first step develop a

simple model for mudcake and cuttings bed buildup over porous rock. We emphasize that there are

no simple answers: Each problem is unique, and the developmental process is very iterative.

Mudcake buildup on porous rock
Borehole annuli are lined with slowly thickening mudcake that, over large time scales, will reduce

cross-sectional size. However, dynamic equilibrium is usually achieved because erosive forces in

the flow stream limit such thickening. As a first step in understanding this process, growth in the

absence of erosion must be characterized, but even this requires a detailed picture of the physics.

The reader should carefully consider the steps needed in designing deposition models, taking this

example as a model.

Since the permeability of the formation greatly exceeds that of mudcake, and the thickness of

mudcake is small compared with the borehole radius, we can model cake growth in the idealized

lineal flow test setup in Figure 3.6. We consider a one-dimensional experiment where mud, in

essence a suspension of clay particles in water, is allowed to flow through filter paper. Initially, the

flow rate is rapid. But as time progresses, solid particles (typically 6 percent to 40 percent by vol-

ume for light to heavy muds), such as barite, are deposited onto the surface of the paper, forming a

mudcake that, in turn, retards the passage of mud filtrate by virtue of the resistance to flow that the

cake provides.

We therefore expect the filtrate volumetric flow rate and cake growth rate to decrease with

time, while the filtrate volume and cake thickness continue to increase, but ever more slowly.

These qualitative ideas can be formulated precisely because the problem is based on well-defined
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physical processes. For one, the composition of the homogeneous mud during this filtration does

not change: Its solid fraction is always constant. Second, the flow within the mudcake is a Darcy

flow and is therefore governed by the equations used by reservoir engineers. The only problem,

though, is the presence of a moving boundary—namely, the position interface separating the

mudcake from the mud that ultimately passes through it and continually adds to its thickness. The

physical problem, therefore, is a transient process that requires somewhat different mathematics

than that taught in fundamental partial differential equations courses.

Mudcakes in reality may be compressible; that is, their mechanical properties may vary with

applied pressure differential. We will be able to draw upon reservoir engineering methods devel-

oped for subsidence and formation compaction later. For now, a simple constitutive model for

incompressible mudcake buildup—that is, the filtration of a fluid suspension of solid particles by a

porous but rigid mudcake—can be constructed from first principles. First, let xc(t) . 0 represent

cake thickness as a function of the time, where xc5 0 indicates zero initial thickness. Also, let Vs

and Vl denote the volumes of solids and liquids in the mud suspension, and let fs denote the solid

fraction defined by fs5Vs /(Vs1Vl). Since this does not change throughout the filtration, its time

derivative must vanish.

If we set dfs /dt5 (Vs1Vl)
21dVs /dt2Vs(Vs1Vl)

22(dVs /dt1 dVl/dt)5 0, we can show that

dVs5 (Vs /Vl) dVl. But since, separately, Vs /Vl5 fs /(12 fs), it follows that dVs5 {fs /(12 fs)}dVl.

This is, essentially, a conservation of species law for the solid particles making up the mud suspen-

sion, and does not as yet embody any assumptions related to mudcake buildup. Frequently, we might

note, the drilling fluid is thickened or thinned in the process of making hole; if so, the equations

derived here should be reworked with fs5 fs(t) and its corresponding time-dependent pressure drop.

To introduce the mudcake dynamics, we observe that the total volume of solids dVs deposited

on an elemental area dA of filter paper during an infinitesimal time dt is dVs5 (12φc) dA dxc,

where φc is the mudcake porosity. During this time, the volume of filtrate flowing through our filter

paper screen is dVl5 jvnj dA dt, where jvnj is the Darcy velocity of the filtrate through the cake

and past the paper. We now set our two expressions for dVs equal in order to form {fs/(12 fs)}

Mud

Mudcake

Filter paper

Filtrate

Flow direction

FIGURE 3.6

Simple laboratory mudcake buildup experiment.
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dVl5 (12φc) dA dxc, and replace dVl with jvnj dA dt, so that we obtain {fs/(12 fs)} jvnj dA dt5
(12φc) dA dxc.

Now it is seen that the dA’s cancel, and we are led to a generic equation governing mudcake

growth. In particular, the cake thickness xc(t) satisfies the ordinary differential equation

dxcðtÞ=dt5 ffs=fð12 fsÞð12φcÞggjvnj (3.61a)

At this point, we assume a one-dimensional, constant-density, single liquid flow. For such flows,

the constant Darcy velocity is (k/μ)(Δp/L), where Δp . 0 is the usual “delta p” pressure drop

through the core of length L, assuming that a Newtonian approximation applies. The corresponding

velocity for the present problem is jvnj5 (k/μ)(Δp/xc), where k is the mudcake permeability and μ
is a mean filtrate viscosity. Substitution in Equation 3.61a leads to

dxcðtÞ=dt5 fkfsΔp=fμð12 fsÞð12φcÞgg=xc (3.61b)

If the mudcake thickness is infinitesimally thin at t5 0, with xc(0)5 0, Equation 3.61b can be

integrated, with the result that

xcðtÞ5O½f2kfsΔp=fμð12 fsÞð12φcÞggt�. 0 (3.61c)

This demonstrates that cake thickness in a lineal flow grows with time the same as Ot. However, it

grows ever more slowly because increasing thickness means increasing resistance to filtrate

through-flow, the source of the solid particulates required for mudcake buildup; consequently,

filtrate buildup also slows.

To obtain the filtrate production volume, we combine dVl5 jvnjdA dt and jvnj5 (k/μ)(Δp/xc) to

form dVl5 (kΔpdA/μ) xc
21dt. Using Equation 3.61c, we find dVl5 (kΔpdA/μ)[{2kfsΔp/{μ(12 fs)

(12φc)}}]
21/2(t)21/2 dt. Direct integration, assuming zero filtrate initially, yields

VlðtÞ5 2ðkΔpdA=μÞ½f2kfsΔp=fμð1� fsÞð12φcÞgg�21=2ðtÞ1=2
5Of2kΔpð1� fsÞð1� φcÞ=ðμfsÞg Ot dA

(3.61d)

This correctly reproduces the common observation that filtrate volume increases in time as Ot. The

mudcake deposition model in Equation 3.61c, at this point, is credible and is significant in that it

explicitly highlights the roles of the individual parameters k, fs, Δp, μ, and φc.

Now, along the walls of general boreholes that are not necessarily circular, containing drillpipes

that need not be concentric, the “xc(t)” in Equation 3.61c applies at each location; of course, “xc(t)”

must be measured in a direction perpendicular to the local surface area. This thickness increases with

time by the same amount everywhere; consequently, the hole area decreases and the annular geometry

changes, with more pronounced curvature. At the same time, drilling fluid is flowing parallel to the

borehole axis. This flow, generally non-Newtonian, must be calculated using the methods developed

in this book. The mechanical yield stress τy of the formed cake, which must be separately determined

in the laboratory, is an important physical constant of the system. If the stress τ imparted by the fluid

is less than τy, a very simple deposition model might allow Equation 3.61c to proceed “as is.”

However, if τ . τy applies locally, one might postulate, instead of Equation 3.61c, an “erosion

model,”

dxcðtÞ=dt5 fð. . .Þ (3.62)
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where the function “f , 0” might depend on net flow rate, gel level, weighting material character-

istics, and the magnitude of the difference “τ2 τy.” In unconsolidated sands penetrated by deviated

wells, “f” may vary azimuthally, since gravity effects at the top of the hole differ from those at the

bottom. And in highly eccentric annuli, mudcake at the low side may be thicker than high-side

cake because lower viscous stress levels are less effective in cake removal.

Again, the mudcake buildup and removal process is time dependent, and very dynamic, at least

computationally. In the present example, we conceptually initialize calculations with a given eccen-

tric annulus, possibly contaminated by cake, and calculate the non-Newtonian flow characteristics

associated with this initial state. Equations 3.61c and 3.62 are applied at the next time step to

determine modifications to the initial shape. Then flow calculations are repeated, with the entire

process continuing until some clear indicator of hole equilibrium is achieved. The hole may tend to

plug, in which case remedial planning is suggested, or it may tend to remain open.

In any event, the development of deposition and erosion models such as those in Equations

3.61c and 3.62 requires a detailed understanding of the physics and consequently calls for support-

ing laboratory experiments. As this example for mudcake deposition shows, it is possible to formu-

late phenomenological models analytically when the “pieces of the puzzle” are well understood, as

we have for the “Ot ” model governing mudcake growth.

By the same token, it should be clear that in other areas of solids deposition modeling—for

example, accumulation of produced fines, wax buildup, and hydrate plug formation in pipelines—

“simple answers” are not yet available. More than likely, the particular models used will depend on

the reservoir in question and will probably change throughout the life of the reservoir. For this rea-

son, the present chapter focuses on generic questions and attempts to build a sound research

approach and modeling philosophy for workers entering the field. At the present time, much of the

published research on wax deposition and hydrate formation focuses on fundamental processes like

crystal growth and thermodynamics. An experimental database providing even qualitative informa-

tion is not yet available for detailed model development. Nonetheless, we can speculate on how

typical models may appear and comment on the mathematical forms in which they can be

expressed.

Depositional mechanics
In this section, we introduce the reader to basic ideas in different areas of solids deposition and

transport by fluid flow, if only to highlight common physical processes and mathematical methods.

By far, the most comprehensive literature is found in sedimentary transport and slurry movement,

specialties that have been well developed in civil engineering over decades of research. Anderson

(1961) and Kapfer (1973) provide an excellent introduction to established techniques. These refer-

ences, in fact, motivated the cuttings transport research in Chapter 5. Concepts and results from

these and related works are covered next.

Sedimentary transport
Sediment transport is important to river, shoreline, and harbor projects. The distinction between

“cohesive” and “noncohesive” sediments is usually made. For example, clays are cohesive, while

sand and gravel in stream beds consist of discrete particles. In cohesive sediments, the resistance to
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erosion depends primarily on the strength of the cohesive bond between the particles. Variables

affecting particle lift-off include parameters like bed shear stress; fluid viscosity; particle size,

shape, and mass density; and number density distribution. Different forces are involved in holding

grains down and entraining them into the flow. These include gravity, frictional resistance along

grain contacts, “cohesiveness” or “stickiness” of clays due to electrochemical attraction, and forces

parallel to the bed such as shear stress. The “sediment-transporting capacity” of a moving fluid is

the maximum rate at which moving fluid can transport a particular sediment aggregation.

Lift forces are perpendicular to the flow direction and depend on the shapes of individual parti-

cles. For example, a stationary spherical grain in a uniform stream experiences no lift, since upper

and lower flow fields are symmetric; however, a spinning or “tumbling” spherical grain does expe-

rience lift. Flat grains oriented at nonzero angles with respect to the uniform flow also experience

lift, whose existence is apparent from asymmetry. Of course, oncoming flows need not be uniform.

It turns out that small, heavy particles that have settled in a lighter viscous fluid can resuspend if

the mixture is exposed to a shear field. This interaction between gravity and shear-induced fluxes

strongly depends on particle size and shape. Note that the above force differs from the lift for air-

plane wings: Small grains “see” low Reynolds number flows, while much larger bodies operate at

high Reynolds numbers. Thus, formulas obtained in different fluid specialties must be carefully

evaluated before they are used in deposition modeling. In either case, mathematical analysis is very

difficult.

Once lifted into the flow stream, overall movement is dictated by the vertical “settling velocity”

of the particle and by the velocity in the main flow. Settling velocity is determined by balancing

buoyancy and laminar drag forces, with the latter strongly dependent on fluid rheology. For

Newtonian flows, the classic Stokes solution applies; for non-Newtonian flows, analytical solutions

are not available. Different motions are possible. Finer silts and clays will more or less float within

a moving fluid. On the other hand, sand and gravel are likely to travel close to the bed; those that

“roll and drag” along the bottom move by traction, while those that “hop, skip, and jump” move by

the process of saltation.

In general, modeling non-Newtonian flow past single stationary particles is difficult, even for the

most accomplished mathematicians. Flows past unconstrained bodies are even more challenging.

Finally, modeling flows past aggregates of particles is likely to be impossible without additional

simplifying statistical assumptions. For these reasons, useful and practical deposition and transport

models are likely to be empirical, so scalable laboratory experiments are highly encouraged. Simpler

“ideal” flow setups that provide some physical insight into key parameters are likely to be more use-

ful than “practical engineering” examples that include too many interacting variables.

Slurry transport
A large body of literature exists for slurry transport (e.g., coal slurries, slurries in mining applications,

slurries in process plants, and so on). A comprehensive review is neither possible nor necessary,

since water is the carrier fluid in the majority of references. However, many fundamental ideas

and approaches apply. Early references provide discussions on sewage sludge removal, emphasizing

prevalent non-Newtonian behavior, while acknowledging that computations are not practical. They

also discuss settling phenomena in slurries—for example, the influence of particle size, particle den-

sity, and fluid viscosity.
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“Minimum velocity” formulas are available that, under the assumptions cited, are useful in

ensuring clean ducts when the carrier fluid is water. The notion of “critical tractive force,” the

value of shear stress at which bed movement initiates, is introduced; this concept is important in

our discussions of cuttings transport. Both “velocity” and “stress” criteria are used later in this

chapter to construct illustrative numerical models of eroding flows. Also, the distinction between

transport in closed conduits and open channels is made.

The literature additionally addresses the effects of channel obstructions and the formation of

sediment waves; again, restrictions to water as the carrier fluid are required. Numerous empirical

formulas for volumetric flow rate that would give clean conduits are available in the literature;

however, their applicability to oilfield debris, waxes, and hydrates is uncertain. While we carefully

distinguish between velocity and stress as distinctly different erosion mechanisms, we note that in

some flows the distinction is less clear. At times, for example, the decrease in bed shear stress is

primarily a function of decreasing flow velocity.

Waxes and paraffins: Basic ideas
As hot crude flows from reservoirs into cold pipelines, with low temperatures typical under deep

subsea conditions, wax crystals may form along solid surfaces when wall temperatures drop below

the “cloud point” or “wax appearance temperature.” Crystals may grow in size until the wall is

fully covered, with the possibility of encapsulating oil in the wax layers. Wax deposition can grow

preferentially on one side of the pipe due to gravity segregation. As wax thickness builds, the pres-

sure drop along the pipe must be increased to maintain constant flow rate, and power requirements

increase. Constant pressure processes yield decreasing flow rates.

Paraffin deposition can be controlled through various means. Insulation and direct pipe heating

will reduce exposure to the cold environment. Mechanical pigging is possible. Chemical inhibitors

can also be used. For example, surfactants or dispersants alter the ability of wax particles to adhere

to each other or to pipe wall surfaces; in the language of sedimentary transport, they become less

cohesive and behave more like discrete entities. Biochemical methods, for instance, use bacteria to

control wax growth.

In this book, we will address the effect of nonlinear fluid rheology and noncircular duct flow in

facilitating wax erosion. The “critical tractive force” ideas developed in slurry transport, extended

in Chapter 5 to cuttings removal, again apply to bed-like deposits. Recent authors, for example,

introduce “critical wax tension” analogously, defined as the critical shear force required to remove

a unit thickness of wax deposit; the exact magnitude depends on oil composition, wax content, tem-

perature, buildup history, and aging.

More complications
Paraffin deposition involves thermodynamics, but other operational consequences arise that draw

from all physical disciplines.

• Electro-kinetic effects may be important with heavy organic constituents. Potential differences

along the conduit may develop due to the motion of charged particles; these induce alterations

in colloidal particle charges downstream that promote deposition. That is, electrical charges in

the crude may encourage migration of separated waxes to the pipe wall.
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• In low flow rate pipelines, certain waxes sink because of gravity and form sludge layers at the

low side. Also, density segregation can lead to recirculating flows of the type modeled in

Chapter 5.

• For lighter waxes, buoyancy can cause precipitated wax to collect at the top of the pipe. (In the

simulations performed in this chapter, no distinction is made between “top” and “bottom,” since

our “snapshots” can be turned “upside down.”)

• Deposited wax will increase wall roughness and therefore increase friction, thus reducing pipe-

line flow capacity.

• Suspended particulates such as asphaltenes, formation fines, corrosion products, silt, and sand

may encourage wax precipitation, acting as nuclei for wax separation and accumulation. Wax

particles so separated may not necessarily deposit along walls; they may remain in suspension,

altering the rheology of the carrier fluid, affecting its ability to “throw” particles against pipe

walls or to remove wax deposits by erosion.

• Although significant deposition is unlikely under isothermal conditions—that is, when pipeline

crude and ocean temperatures are in equilibrium—wall deposits may nonetheless form. Pipe

roughness, for instance, can initiate stacking, leading to local accumulations that may further

grow.

Wax precipitation in detail
Waxy crude may contain a variety of light and intermediate hydrocarbons (e.g., paraffins, aro-

matics, naphthenic, wax, heavy organic compounds) and low amount of resins, asphaltenes, and

organo-metallics. Wax in crudes consists of paraffin (C18�C36) and naphthenic (C30�C60)

hydrocarbons. These wax components exist in various states (i.e., gas, liquid, or solid) depend-

ing on temperature and pressure. When wax freezes, crystals are formed. Those formed from

paraffin wax are known as “macrocrystalline” while those originating from naphthenes are

“microcrystalline.”

When the temperature of waxy crude is decreased, the heavier fractions in wax content appear

first. The “cloud point” or “wax appearance temperature” is the temperature below which the oil is

saturated with wax. Deposition occurs when the temperature of the crude falls below the cloud point.

Paraffin will precipitate under slight changes in equilibrium conditions, causing loss of solubility of

the wax in the crude. Wax nucleation and growth may occur along the pipe surface and within the

bulk fluid. Precipitation within the fluid causes its viscosity to increase and alters the non-

Newtonian characteristics of the carrier fluid. Increases in frictional drag may initiate pumping pro-

blems and higher overall pipe pressures. Note that the carrier fluid is rarely a single-phase flow.

More often than not, wax deposition occurs in three-phase oil, water, and gas flow, over a range of

gas-oil ratios, water cuts, and flow patterns, which can vary significantly with pipe inclination angle.

Wax deposition control
The most direct means of control, though not necessarily the least inexpensive, targets wall tempera-

ture by insulation or heating, possibly through internally heated pipes. But the environment is far from

certain. Some deposits do not disappear on heating and are not fully removed by pigging. Crudes may

contain heavy organics like asphaltenes and resin, which may not crystallize upon cooling and may
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not have definite freezing points; these interact with wax differently and may prevent or enhance wax

crystal formation. Solvents provide a different alternative. However, those containing benzene, ethyl

benzene, toluene, and so on are encountering increased opposition from regulatory and environmental

concerns. The problems are acute for offshore applications; inexpensive and environmentally friendly

control approaches with minimal operational impact are desired.

Wax growth on solid surfaces, under static conditions, is believed to occur by molecular diffu-

sion. Behind most deposition descriptions are liquid phase models and equations of state, with the

exact composition of the wax phase determined by the model and the physical properties of the

petroleum fractions. We do not attempt to understand the detailed processes behind wax precipita-

tion and deposition in this section. Instead, we focus on fluid-dynamical modeling issues, demon-

strating how non-Newtonian flows can be calculated for difficult “real-world” duct geometries that

are less than ideal. The “mere” determination of the flow field itself is significant, since it provides

information to evaluate different modes of deposition and to address important remediation issues.

For example, in sediment transport, flow nonuniformities play dual roles: They may “throw”

particles onto surfaces, where they adhere, or they can remove buildups by viscous shear. Both

effects must be studied using experiments considering the background velocity and stress fields that

analysis provides. Modeling approaches hope to establish the hydrodynamic backbone that makes

accurate forecasting of these phenomena possible. Is it possible to design a fluid that keeps particles

suspended or, perhaps, to understand the conditions under which the flow self-cleans? What are the

rheological effects of chemical solvents? Wax can cause crude oil to gel and deposit on tubular sur-

faces. What shear stresses are required to remove it? Waxy crude oil may gel after a period of shut-

down. What levels of pressure are required to initiate start-up of flow?

Modeling dynamic wax deposition
In principle, modeling the dynamic, time-dependent interaction between waxy deposits attempting

to grow and duct flows attempting to erode them is similar to, although slightly more complicated

than, the mudcake model developed earlier. The deposition, or growth model, shown conceptually

in Figure 3.7(a), consists of two parts: a thermal component in which buildup is driven by tempera-

ture gradients and a mechanical component in which velocity “throws” additional particles that

have precipitated in the bulk fluid into the wax-lined pipe surface.

This velocity may be coupled to the temperature environment. Various solids convection models

are available in the fluids literature, and in general different deposition models are needed in differ-

ent production scenarios. The competing erosive model is schematically shown in Figure 3.7(b), in

which we emphasize the role of non-Newtonian fluid stress at the walls; it is similar to our model for

cuttings transport removal from stiff beds. Wax yield stress may be determined in the laboratory or

inferred from mechanical pigging data (see, for example, Souza Mendes et al., 1999, or related pipeline

literature).

Hydrate control
Natural gas production from deep waters can be operationally hampered by pipeline plugging due

to gas hydrates. Predicting the effects of pipe hydraulics on hydrate behavior is necessary to

achieve optimal hydrate control. As exploration moves offshore, the need to minimize production

95Example 3.3



facility construction and maintenance costs becomes important. Producers are seeking options that

permit the transport of unprocessed fluids miles from wellheads or subsea production templates to

central processing facilities located in shallower water. Deepwater, multiphase flowlines can offer

cost-saving benefits to operators; consequently, basic and applied research related to hydrate con-

trol is an active area of interest.

Hydrate crystallization takes place when natural gas and water come into contact at low temper-

ature and high pressure. Hydrates are “ice-like” solids that form when sufficient amounts of water

are available, a “hydrate former” is present, and the proper combinations of temperatures and

Deposition model(a)

Velocity effects Thermal gradients

At each wall point, compare
fluid stress with yield stress

If no changes,
equilibrium known

If fluid stress > wax yield
stress, d(thickness)/dt = f

If fluid stress < wax yield
stress, d(thickness)/dt = g

If fluid stress = wax yield
stress, d(thickness)/dt = 0

Deposition model

If changes, recompute
duct flow properties

Define initial duct size and
shape, wax yield stress at walls.

Increment time, T = T + ΔT

Non-Newtonian solver

(b)

Solve for flow, calculate
viscous wall shear stresses

FIGURE 3.7

(a) Conceptual deposition model. (b) Fluid flow and solids deposition model interaction.
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pressures are conducive. Gas hydrates are crystalline compounds that form whenever water contacts

the constituents found in natural gas, gas condensates, and oils, at the hydrate formation equilibrium

temperatures and pressures, as Figure 3.8 shows. Hydrate crystals can be thought of as integrated

networks of hydrogen-bonded, “soccer ball”�shaped ice cages with gas constituents trapped within.

Low seabed temperatures and high pressures can significantly impact the commercial risk of

deepwater projects. Hydrates can cause plugging, an unacceptable condition given the inaccessi-

bility of deep subsea pipelines. Hydrate plugging is not new and early on profoundly affected

onshore production and flow. But these problems became less severe as hydrate phase equilibrium

data became available; these data provided the basis for modern engineering and chemical inhibition

procedures using methanol and glycol. Such treatments can be costly in deep water, though, given

the quantities of inhibitor required, not to mention expensive storage facilities; but they remain

attractive, as recent research has led the way to more effective, low-toxicity compounds as useful

alternatives to methanol or glycol. Field and laboratory studies have had some success, but problems

remain that must be solved before the industry gains advantages in utilizing these inhibitors.

Operational considerations are also important to hydrate mitigation. Proper amounts of chemi-

cals must arrive at target flowline locations at the required time to control the rate of crystal forma-

tion, growth, agglomeration, and deposition. This combined chemical and hydrodynamic control

strategy in general multiphase pipeline environments must be effective over extended shutin periods

to accommodate a range of potential offshore operating scenarios.

Understanding the effects of chemicals on rheology and flow represents one aspect of the

mitigation problem. In pipeline plugging, we are concerned, as noted previously, with the effects

of obstructions on pressure drops and flow rates. On the other hand, natural hydrates represent a

potentially important source of natural gas, although they can potentially clog pipelines. One possi-

ble delivery solution is to convert associated gases into frozen hydrates, which are then mixed with

refrigerated crude oil to form slurries, which are in turn pumped through pipelines and into shuttle

tankers for transport to shore. By blending ground hydrates with suitable carrier fluids, trans-

portable slurry can be formed that efficiently delivers “gas” to market.

Several questions are immediately apparent. How finely should hydrates be ground? What is the

ideal “solids in fluid” concentration? Fineness, of course, influences rheology; the solids that
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FIGURE 3.8

Hydrate dependence on “P” and “T.”
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remain affect plugging, and the combination controls delivery economics. And what happens as

hydrates convect into higher-pressure pipeline regimes? In any event, we are concerned with the

ability to pump the slurry and also with the ability of the slurry to erode hydrate plugs that have

formed in the flow path. These considerations require a model that is able to simulate flows in duct

geometries that are far from circular. With such a model, we can simulate worst-case conditions

and optimize operations.

In this section, we will not focus on the physics and chemistry of hydrate formation, the kinetics

of formation and agglomeration, or the physiochemical characterization of the solid constituents.

Instead, we will study flows past “hydrate plugs.” Wax buildup is “predictable” to the extent that

depositions can be found at top and low sides and, all too often, azimuthally about the entire cir-

cumference. Hydrates, in contrast, may appear “randomly.” For example, they can form as layers

separating gas on the top side and water on the low side. In terms of size, hydrate particles may

vary from finely dispersed solids to big lumps that stick to the walls of pipelines. Hydrate particle

size is nonuniform and follows wide distribution densities. In general, however, large plugs can be

found almost anywhere, a situation that challenges non-Newtonian flow modeling in arbitrary

ducts. Simulation is important in defining start-up procedures because large plugs are associated

with extremely large pressure drops that may be difficult to achieve in practice.

Pipe inclination may play a significant role for denser fluids. Ibraheem et al. (1998) observe

that, for their horizontal and 45o positions, predictions may be optimistic, since lift forces, virtual

mass effects, and so on are not incorporated and that a two-dimensional model will be necessary.

This caution is well justified. In Chapter 5, we show that density stratification can lead to recircula-

tion vortices that plug the pipeline.

Recapitulation
Very subtle questions are possible. Can hydrate pipeline blockages lead to increased flowline pres-

sures that facilitate additional hydrate growth? Can viscous shear stresses develop within a carrier

fluid, or perhaps a hydrate slurry, that support “self-cleaning,” which in turn eliminates isolated

plugs that form? Again, the formalism developed in Figure 3.7(b) for wax removal applies, but

now with Figure 3.7(a) replaced by one applicable to hydrate formation. We will show that numeri-

cal simulations can be conveniently performed for large, asymmetrically shaped plugs; that is, our

grid generation and velocity solvers are truly “robust” in the numerical sense. Thus, it is clear that

the simulation methodology also applies to other types of conduits, valves, and fittings that can

potentially support hydrate formation.

Modeling concepts and integration
Our mathematical description of time-dependent mudcake buildup, without erosive effects, is rele-

vant to wax buildup under nonisothermal conditions. Recall that once the cake starts building, its

incremental growth retards further buildup, since additional resistance impedes fluid filtration.

Thus, the rate of cake growth should vary inversely with cake thickness; in fact, we have shown

earlier in Equation 3.61b that

dxcðtÞ=dt5 fkfsΔp=fμð12 fsÞð12φcÞgg=xc
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and we showed, in Equation 3.61c that direct integration of “xc dxc5?” leads to “1/2 xc
25? t”—

that is, the “Ot law”:

xcðtÞ5O½f2kfsΔp=fμð12 fsÞð12φcÞggt�. 0

In this section, we introduce some elementary but preliminary ideas, with the hope of stimulat-

ing further research. The following illustrative examples were designed to be simple to show how

mathematics and physics go hand in hand.

Wax buildup due to temperature differences
Paraphrasing an earlier statement on mudcake growth, “once wax starts building, its incremental

growth retards further buildup, since additional insulation impedes heat transfer.” Let Rpipe denote

the inner radius of the pipe, which is constant, and let R(t) , Rpipe denote the time-varying radius

of the wax-to-fluid interface. In cake buildup, growth rate is proportional to the pressure gradient;

here it is proportional to the heat transfer rate, or temperature gradient (T2Tpipe)/(R2Rpipe) by

virtue of Fourier’s law of conduction, with T being the fluid temperature. We therefore write, anal-

ogously to Equation 3.61b,

dR=dt5αðT2TpipeÞ=ðR� RpipeÞ (3.63)

where α . 0 is an empirically determined constant. Cross-multiplying leads to (R2Rpipe) dR5
α(T2Tpipe) dt, where T2Tpipe . 0. Direct integration yields

1/2ðR� RpipeÞ2 5αðT2TpipeÞt. 0 (3.64)

where we have used the initial condition R(0)5Rpipe when t5 0.

Hence, according to this simple model, the thickness of the wax will vary as Ot under static

conditions. Of course, in reality, α may depend weakly on T, crystalline structure, and other factors,

and deviations from Ot behavior are not unexpected. Furthermore, it is not completely clear that

Equation 3.63 in its present form is correct; for example, dR/dt might be replaced by dRn/dt, but, in

any event, guidance from experimental data is necessary. This buildup model treats wax deposition

due to thermal gradients, but obviously other modes exist. For general problems in arbitrarily shaped

ducts, wax particles, debris, and fines convected with the fluid may impinge against pipe walls at

rates proportional to local velocity gradients; or they may deposit at low or high sides by way of

gravity segregation, either because they are heavy or because they are buoyant.

Simulating erosion
Again, any model is necessarily motivated by empirical observation, so our arguments are only

plausible. As Equations 3.65a and 3.65b show, for non-Newtonian flow in circular pipes, it is gen-

erally true that

τðrÞ5 r Δp=2L. 0 (3.65a)

τw 5R Δp=2L. 0 (3.65b)
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These equations are interesting because they show how shear stress τ must decrease as R

decreases: Thus, any wax buildup must be accompanied by lower levels of stress and therefore

decreases in the ability to self-clean or erode the wax. The most simplistic erosion model might

take the form

dR=dt5 βðτ� τyÞ. 0 (3.66)

where β. 0 is an empirical constant, τ2 τy . 0, and τy is the yield stress of the wax coating.

Thus, R increases with time (i.e., the cross-section “opens up”) The uncertainties again remain—

for example, R can be replaced by R2. Note that Equations 3.65a and 3.65b do not apply to annular

flows.

Deposition and flow field interaction
Our solution to the nonlinear rheology equations on curvilinear meshes is “straightforward” because

the problem is at least well defined and tractable numerically. But the same cannot be said for wax

or hydrate deposition modeling, since each individual application must be treated on a customized

basis. As we have suggested in the above discussions, numerous variables enter, even in the sim-

plest problems. For example, these include particle size, shape, and distribution; cohesiveness;

buoyancy; heat transfer; multiphase fluid flow; dissolved wax type; debris content; fluid rheology;

pipeline characteristics; surface roughness; insulation; centrifugal force due to bends; volumetric

flow rate; and so on.

Nonetheless, when a particular engineering problem is well understood, the dominant interac-

tions can be identified, and integrated fluid flow and wax or hydrate deposition models can be con-

structed. The following simulations demonstrate different types of integrated models that have been

designed to simulate flows in clogging and self-cleaning pipelines. These examples illustrate the

broad range of applications that are possible, where the computational “engines” developed for cur-

vilinear grid-based methods have proven invaluable in simulating operational reality.

Detailed calculated examples
In this section, six simulation examples are discussed in detail. These demonstrate how the gen-

eral duct model can be used to host different types of solids deposition mechanisms. However,

the exact “constitutive relations” used are proprietary to the funding companies and cannot be

listed here.

SIMULATION 1

Wax Deposition with Newtonian Flow in Circular Duct

In this first simulation set, we consider a unit centipoise Newtonian fluid, flowing in an initially circular duct; in
particular, we assume a 6-in. radius so that the cross-sectional area is 113.1 in.2. A family of “smile-shaped”
surfaces is selected for the solids buildup boundary family of curves, since wax surfaces are expected to be more
curved than flat. This buildup increases with time, and for convenience the final duct cross section is assumed
to be an exact semicircle whose area is 113.1/2 or 56.55 in.2 A deposition model is invoked, and intermediate
“cross-sectional area versus volumetric flow rate” results, assuming an axial pressure gradient of 0.001 psi/ft, at
selected time intervals, are given in Figure 3.9.
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How do we know that computed results are accurate? We selected Newtonian flow for this validation because
the Hagen-Poiseuille volumetric flow rate formula (see Chapter 1) for circular pipes can be used to check our
numbers. This classic solution, assuming dp/dz50.001 psi/ft, R56 in., and μ51 cp, shows that the flow
rate is exactly 0.755E105, as compared to our 0.750E105 gpm. The ratio 755/750 is 1.007, thus yielding
0.7 percent accuracy.

Another indicator of accuracy is found in our computation of area. Obviously, the formula “πR2” applies
to our starting shape, which again yields 113.1 in.2. However, we have indicated 112.9 in Figure 3.9, for a
0.2 percent error. Why an error at all? This appears because our general topological analysis never utilizes
“πR2.” The formulation is expressed in terms of metrics of the transformations x(ξ, η) and y(ξ, η).

Therefore, if computed circle areas agree with “πR2” and volumetric flow rates are consistent with classical
Hagen-Poiseuille flow results, our mathematical boundary value problems, numerical analysis, and programming
are likely to be correct. The last entry in Figure 3.9 gives our area for the semicircle, which is to be compared
with an exact 113.1/2 or 56.55 in.2. From the ratio 56.55/56.4751.001, our “error” of 0.1 percent suggests
that the accompanying 0.1411E105-gpm rate is also likely to be correct.

Interestingly, from the top and bottom lines of Figure 3.9, it is seen that a 50 percent reduction in flow
area, from “fully circular” to “semi-circular,” is responsible for a five-fold decrease in volume throughput. This
demonstrates the severe consequence of even partial blockage. Because the flow is Newtonian and linear in
this example, the conclusion is “scalable” and applicable to all Newtonian flows. That is, it applies to pipes of
all radii R, to all pressure gradients dp/dz, and to all viscosities μ.

Why is “scalability” a property of Newtonian flows? To see that this is true, we return to the governing
equation “(@2/@x21 @2/@y2) u(x, y)51/μ dp/dz” in the duct coordinates (x, y). Suppose that a solution u(x, y) for
a given value of “1/μ dp/dz” is available. If we replace this by “C/μ dp/dz,” where C is a constant, it is clear that
Cu must solve the modified problem. Similarly, if Q and τ represent total volumetric flow rate and shear stress in
the original problem, the corresponding rescaled values are CQ and Cτ. This would not be true if, for example,
μ were a nonlinear function of @u/@x and @u/@y, as in the case of non-Newtonian fluids; and if it were, it is now
obvious that μ, or “N(Γ),” in the non-Newtonian flow notation must now vary with x and y because Γ depends on
@u/@x and @u/@y. Interestingly, we have deduced these important properties even without “solving” the differential
equation!

Unfortunately, in the case of non-Newtonian fluids, generalizations such as these cannot be made, and each
problem must be considered individually. The extrapolations available to linear mathematical analysis are just
not available. It is instructive to examine, in detail, the velocity, apparent viscosity, shear rate, viscous shear
stress distributions, and so on for the similar sequence of simulations for non-Newtonian flows. Because
generalizations cannot be offered, we do not need to quote the exact parameters assumed. Figure 3.10(a2h)
provides “time lapse” results for a Power law fluid simulation; note, for example, how apparent viscosities are
not constant but, in fact, vary throughout the cross-sectional area of the duct.

Our methodology and software allow us to plot all quantities of physical interest at each time step. Again,
these quantities are needed to interpret solids deposition data obtained in research flow loop experiments,

Area (in.2) Rate (gpm)

.7503E+05.1129E+03 (full circle)

.6931E+05.1082E+03

.1035E+03

.9882E+02

.9411E+02

.8941E+02

.8470E+02

.8000E+02

.7529E+02

.7059E+02

.6588E+02

.6117E+02

.6266E+05

.5670E+05

.5090E+05

.4531E+05

.3994E+05

.3483E+05 

.3000E+05

.2549E+05

.2132E+05

.1752E+05 

.5647E+02 .1411E+05 (semi-circle)

FIGURE 3.9

Flow rate versus duct area, with dp/dz fixed.
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because deposition mechanisms are not very well understood. Due to space limitations, only the first and last
“snapshots,” plus an intermediate one, are shown; in the final time step, our initially circular duct has become
purely semicircular. The varied “snapshots” shown are also instructive because, to the author’s knowledge,
similar detailed results have never before appeared in the literature.

(a) (b)

FIGURE 3.10

(a) Time lapse sequence: axial velocity “U.” (b) Time lapse sequence: apparent viscosity, “N(Γ).” (c) Time

lapse sequence: viscous stress, “N(Γ) @U/@x.” (d) Time lapse sequence: viscous stress, “N(Γ) @U/@y.”
(e) Time lapse sequence: shear rate, “@U/@x.” (f) Time lapse sequence: shear rate, “@U/@y.” (g) Time

lapse sequence: Stokes’ product, “N(Γ)U.” (h) Time lapse sequence: dissipation function, “Φ.” Note:

Parts (e) through (h) on pages 104 and 105.
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SIMULATION 2

Hydrate Plug with Newtonian Flow in Circular Duct (Velocity Field)

In this simulation, consider the flow about an isolated but growing “hydrate plug.” This model does not offer any
geometric symmetry because, in reality, such blockages can form randomly within the duct. Thus, our curvilinear
grid algorithms are useful in modeling real flows and determining pressure drops associated with plugs having
different shapes. For now, we assume Newtonian flow so that our results are scalable in the sense of the previous
example. This is not a limitation of the solver, which handles very nonlinear, non-Newtonian fluids. A Newtonian

(c) (d)

FIGURE 3.10

Continued
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flow is assumed here only to provide results that can be generalized dimensionlessly and therefore may be of
greater utility (refer to the conclusion in the earlier example).

To demonstrate the wealth of physical quantities that can be predicted, we have duplicated typical high-level
summaries; detailed area distributions of all quantities are also available. The assumed pressure gradient of
“1 psi/ft” was taken for convenience and leads to flow rates that are large. However, because the flow is
Newtonian, a thousand-fold reduction in pressure gradient will lead to a thousand-fold decrease in flow rate.
Shear rates and viscous stresses scale similarly. This ability to rescale results makes our tabulated quantities
useful in obtaining preliminary engineering estimates. Following are example results of six time steps selected
for display. Detailed numerical results, for example, showing “typical” shear rates and viscous stresses whose

(e) (f)

FIGURE 3.10

Continued
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magnitudes must be rescaled in accordance with the above paragraph are given first. Then “snapshots” of the
axial velocity field are given, in the same time sequence.

First Run, Initial Full Circle, without Hydrate Plug
NEWTONIAN FLOW OPTION SELECTED.
Newtonian flow, constant viscosity51.00000 cp
Axial pressure gradient assumed as .1000E101 psi/ft.
Total volume flow rate5.7503E108 gal/min
Cross-sectional area5.1129E103 sq inch

(g) (h)

FIGURE 3.10

Continued
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TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O Axial flow velocity5.2266E107 in/sec
O Apparent viscosity5.1465E-06 lbf sec/sq in
O Viscous stress, AppVis x dU/dx,5.1029E100 psi
O Viscous stress, AppVis x dU/dy,5.1230E100 psi
O Dissipation function5.2415E106 lbf/(sec sq in)
O Shear rate dU/dx5.7022E106 1/sec
O Shear rate dU/dy5.8394E106 1/sec
O Stokes product5.3321E100 lbf/in

Second Run
NEWTONIAN FLOW OPTION SELECTED.
Newtonian flow, constant viscosity51.00000 cp
Axial pressure gradient assumed as .1000E101 psi/ft.
Total volume flow rate5.6925E108 gal/min
Cross-sectional area5.1088E103 sq inch

TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O Axial flow velocity5.2159E107 in/sec
O Apparent viscosity5.1465E-06 lbf sec/sq in
O Viscous stress, AppVis x dU/dx,5.1050E100 psi
O Viscous stress, AppVis x dU/dy,5.1176E100 psi
O Dissipation function5.2350E106 lbf/(sec sq in)
O Shear rate dU/dx5.7168E106 1/sec
O Shear rate dU/dy5.8026E106 1/sec
O Stokes product5.3163E100 lbf/in

Third Run
NEWTONIAN FLOW OPTION SELECTED.
Newtonian flow, constant viscosity51.00000 cp
Axial pressure gradient assumed as .1000E101 psi/ft.
Total volume flow rate5.6032E108 gal/min
Cross-sectional area5.1047E103 sq inch

TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O Axial flow velocity5.1974E107 in/sec
O Apparent viscosity5.1465E-06 lbf sec/sq in
O Viscous stress, AppVis x dU/dx,5.1021E100 psi
O Viscous stress, AppVis x dU/dy,5.1066E100 psi
O Dissipation function5.2102E106 lbf/(sec sq in)
O Shear rate dU/dx5.6969E106 1/sec
O Shear rate dU/dy5.7275E106 1/sec
O Stokes product5.2893E100 lbf/in

Fourth Run
NEWTONIAN FLOW OPTION SELECTED.
Newtonian flow, constant viscosity51.00000 cp
Axial pressure gradient assumed as .1000E101 psi/ft.
Total volume flow rate5.4253E108 gal/min
Cross-sectional area5.9642E102 sq inch
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TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O Axial flow velocity5.1538E107 in/sec
O Apparent viscosity5.1465E-06 lbf sec/sq in
O Viscous stress, AppVis x dU/dx,5.9147E-01 psi
O Viscous stress, AppVis x dU/dy,5.8822E-01 psi
O Dissipation function5.1638E106 lbf/(sec sq in)
O Shear rate dU/dx5.6243E106 1/sec
O Shear rate dU/dy5.6021E106 1/sec
O Stokes product5.2254E100 lbf/in

Fifth Run
NEWTONIAN FLOW OPTION SELECTED.
Newtonian flow, constant viscosity51.00000 cp
Axial pressure gradient assumed as .1000E101 psi/ft.
Total volume flow rate5.3417E108 gal/min
Cross-sectional area5.9229E102 sq inch

TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O Axial flow velocity5.1300E107 in/sec
O Apparent viscosity5.1465E-06 lbf sec/sq in
O Viscous stress, AppVis x dU/dx,5.8285E-01 psi
O Viscous stress, AppVis x dU/dy,5.7919E-01 psi
O Dissipation function5.1363E106 lbf/(sec sq in)
O Shear rate dU/dx5.5654E106 1/sec
O Shear rate dU/dy5.5405E106 1/sec
O Stokes product5.1905E100 lbf/in

Sixth, Final Run, with Large Blockage
NEWTONIAN FLOW OPTION SELECTED.
Newtonian flow, constant viscosity51.00000 cp
Axial pressure gradient assumed as .1000E101 psi/ft.
Total volume flow rate5.2711E108 gal/min
Cross-sectional area5.8816E102 sq inch

TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O Axial flow velocity5.1070E107 in/sec
O Apparent viscosity5.1465E-06 lbf sec/sq in
O Viscous stress, AppVis x dU/dx,5.7323E-01 psi
O Viscous stress, AppVis x dU/dy,5.7136E-01 psi
O Dissipation function5.1115E106 lbf/(sec sq in)
O Shear rate dU/dx5.4997E106 1/sec
O Shear rate dU/dy5.4870E106 1/sec
O Stokes product5.1568E100 lbf/in

In Figure 3.11(a2f), sequential “snapshots” of the axial velocity field associated with a growing plug are
shown. The reader should refer to the foregoing listings for the corresponding duct areas, volumetric flow rates,
average shear rates and stresses, and so on. How is “scalability” applied? Consider, for example, that “1 psi/ft”
implies a shear rate component of “0.4997E106 1/sec” in the last printout. A more practical “0.001 psi/ft”
would be associated with a shear rate of “0.4997E103 1/sec.”
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It is also interesting to compare the first and final runs. Initially, the full circle has an area of 112.9 in.2 and
a volumetric flow rate of 0.7503E108 gpm. In the last simulation, these numbers reduce to 88.16 and
0.2711E108. Thus, a 22 percent reduction in flow area is responsible for a 64 percent decrease in flow rate!
It is clear that even “minor” flowline blockages are not tolerable. Following these velocity diagrams, some
discussion of the stress fields associated with the worst-case blockage is given.

(a)

(b)

(c)

(d)

(e)

(f)

FIGURE 3.11

Velocity field, hydrate plug formation.
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SIMULATION 3

Hydrate Plug with Newtonian Flow in Circular Duct (Viscous Stress Field)

In this example, we continue with Simulation 2, but focus on the largest blockage obtained in the final “snapshot.”
In particular, we consider the likelihood that the plug-like structure will remain in the form shown, given the erosive
environment imparted by viscous shear stresses. To facilitate our discussion, we refer to Figure 3.12, which defines
boundary points A, B, C, D, and E, and also interior point F. Figure 3.13(a) displays the “Stokes product,”
proportional to the product of apparent viscosity and velocity, which measures how well individual particles are
convected with the flow. The maximum is located at F, where “in-stream” debris are likely to be found.

Figures 3.13(b) and 3.13(c) display both rectangular components of the viscous stress. The stresses N(Γ)
@u/@x and N(Γ) @u/@y are strong, respectively, along BC and AB. Figure 3.13(d) shows the spatial distribution of
the “dissipation function,” which measures local heat generation due to internal friction, likely to be
insignificant. However, the same function is also an indicator of total stress, which acts to erode surfaces that
can yield. This figure suggests that B is most likely to erode. At the same time, stresses about our “hydrate plug”
are lowest at D, suggesting that additional local growth is possible.

SIMULATION 4

Hydrate Plug with Power Law Flow in Circular Duct

In this example, we study the flow of a non-Newtonian Power law fluid past the worst-case blockage in
Simulation 3. In particular, we examine the “total volumetric flow rate versus axial pressure gradient,” or
“Q versus dp/dz” signature of the flow. Before proceeding, it is instructive to reconsider the exact solution for
Power law flow in a circular pipe:

Q=ðπR3Þ5 ½RΔp=ð2KLÞ�1=nn=ð3n11Þ (3.67)

Results for “Q versus dp/dz” are plotted in Figure 3.14 for different values of “n,” assuming a 6-in.-radius
pipe and a fixed “K” value that would correspond to 100,000 cp if n51. In the Newtonian flow limit of n51,
linearity is clearly seen; however, this exact solution shows that pronounced curvature is obtained as “n”
decreases from unity. For any fixed value of dp/dz, it is also seen that Q is strongly dependent on the Power law
index (Figure 3.15).

A

B C

D

E

(F)

FIGURE 3.12

Generic plug diagram.
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(a)

(b)

(c)

(d)

FIGURE 3.13

(a) Stokes product. (b) Viscous stress, N(Γ) @u/@x. (c) Viscous stress, N(Γ) @u/@y. (d) Dissipation
function.
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We are interested in the corresponding results for Power law flow past the large blockage in the previous
simulation. A number of runs were performed, holding fluid properties and geometry fixed, while “dp/dz”
was varied. The particular values were selected because they gave “practical” volumetric flow rates. When
dp/dz50.01 psi/ft, a flow rate of 651 gpm is obtained; at 0.10 psi/ft, the volumetric flow rate is not “6,510”
but 11,570 gpm, clearly demonstrating the effects of nonlinearity. Values for dp/dz are shown in bold font in the
tabulated results reproduced here, and “Q versus dp/dz” is plotted in Figure 3.16.
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FIGURE 3.14

“Q versus dp/dz” for various “n.”

FIGURE 3.15

Typical Power law velocity profile.
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First Run
POWER LAW FLOW OPTION SELECTED.
Power law fluid assumed, with exponent "n" equal
to .8000E100 and consistency factor of .1000E-03
lbf sec^n/sq in.

Axial pressure gradient assumed as .1000E-01 psi/ft.
Total volume flow rate5.6508E103 gal/min
Cross-sectional area5.8816E102 sq inch

TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area

O Axial flow velocity5.2565E102 in/sec
O Apparent viscosity5.5867E-04 lbf sec/sq in
O Viscous stress, AppVis x dU/dx,5.6413E-03 psi
O Viscous stress, AppVis x dU/dy,5.6308E-03 psi
O Dissipation function5.2344E-01 lbf/(sec sq in)
O Shear rate dU/dx5.1191E102 1/sec
O Shear rate dU/dy5.1162E102 1/sec
O Stokes product5.1604E-02 lbf/in

Second Run
POWER LAW FLOW OPTION SELECTED.
Power law fluid assumed, with exponent "n" equal
to .8000E100 and consistency factor of .1000E-03

dP/dz (psi/ft)

V
ol

um
e 

fl
ow

 r
at

e 
(G

PM
)

5,000

10,000

0.05 0.10

Power law model

0.01

FIGURE 3.16

“Q versus dp/dz” nonlinear behavior.
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lbf sec^n/sq in.
Axial pressure gradient assumed as .3000E-01 psi/ft.
Total volume flow rate5.2569E104 gal/min
Cross-sectional area5.8816E102 sq inch
TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O Axial flow velocity5.1013E103 in/sec
O Apparent viscosity5.4458E-04 lbf sec/sq in
O Viscous stress, AppVis x dU/dx,5.1924E-02 psi
O Viscous stress, AppVis x dU/dy,5.1892E-02 psi
O Dissipation function5.2776E100 lbf/(sec sq in)
O Shear rate dU/dx5.4701E102 1/sec
O Shear rate dU/dy5.4587E102 1/sec
O Stokes product5.4813E-02 lbf/in

Third Run
POWER LAW FLOW OPTION SELECTED.
Power law fluid assumed, with exponent "n" equal
to .8000E100 and consistency factor of .1000E-03
lbf sec^n/sq in.

Axial pressure gradient assumed as .5000E-01 psi/ft.
Total volume flow rate5.4866E104 gal/min
Cross-sectional area5.8816E102 sq inch

TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area

O Axial flow velocity5.1918E103 in/sec
O Apparent viscosity5.3923E-04 lbf sec/sq in
O Viscous stress, AppVis x dU/dx,5.3206E-02 psi
O Viscous stress, AppVis x dU/dy,5.3154E-02 psi
O Dissipation function5.8761E100 lbf/(sec sq in)
O Shear rate dU/dx5.8901E102 1/sec
O Shear rate dU/dy5.8686E102 1/sec
O Stokes product5.8022E-02 lbf/in

Fourth Run
POWER LAW FLOW OPTION SELECTED.
Power law fluid assumed, with exponent "n" equal
to .8000E100 and consistency factor of .1000E-03
lbf sec^n/sq in.

Axial pressure gradient assumed as .1000E100 psi/ft.
Total volume flow rate5.1157E105 gal/min
Cross-sectional area5.8816E102 sq inch
TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area

O Axial flow velocity5.4561E103 in/sec
O Apparent viscosity5.3299E-04 lbf sec/sq in
O Viscous stress, AppVis x dU/dx,5.6413E-02 psi
O Viscous stress, AppVis x dU/dy,5.6308E-02 psi
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O Dissipation function5.4167E101 lbf/(sec sq in)
O Shear rate dU/dx5.2117E103 1/sec
O Shear rate dU/dy5.2066E103 1/sec
O Stokes product5.1604E-01 lbf/in

SIMULATION 5

Hydrate Plug, Herschel-Bulkley Flow in Circular Duct

In this set of runs, the “large blockage” example in Simulation 4 is reconsidered, with identical parameters,
except that a nonzero yield stress of 0.005 psi is allowed. Thus, our “Power law” fluid model becomes a
“Herschel-Bulkley” fluid. Whereas smooth velocity distributions are typical of Power law flows (e.g., Figure 3.15),
the velocity field in flows with nonzero yield stress may contain “plugs” that move as solid bodies. For this
simulation set, the plug flow velocity profiles obtained are typified by Figure 3.17.

At 0.01 psi/ft, our flow rate is now obtained as 95.1 gpm, and at 0.10 psi/ft, we have 1,001 gpm. These flow
rates are an order of magnitude below those calculated previously; interestingly, the “Q versus dp/dz” response
in this example is almost linear, although this is not generally true for Herschel-Bulkley fluids. As before, we
provide “typical numbers” in the tabulated results that follow and also plot “Q versus dp/dz” for what is an
“exceptional” data set in Figure 3.18.

First Run
HERSCHEL-BULKLEY FLOW OPTION SELECTED.
Power law curve assumed with exponent "n" equal
to .8000E100 and consistency factor "k" of .1000E-03
lbf sec^n/sq in.

Yield stress of .5000E-02 psi taken throughout.
Axial pressure gradient assumed as .1000E-01 psi/ft.
Total volume flow rate5.9513E102 gal/min
Cross-sectional area5.8816E102 sq inch

Apparent viscosity and Stokes product set to
zero in plug regime for tabulation and display.

FIGURE 3.17

Plug flow in Herschel-Bulkley fluid.
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TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area

O Axial flow velocity5.3932E101 in/sec
O Viscous stress, AppVis x dU/dx,5.2042E-03 psi
O Viscous stress, AppVis x dU/dy,5.1984E-03 psi
O Dissipation function5.1446E-02 lbf/(sec sq in)
O Shear rate dU/dx5.1180E101 1/sec
O Shear rate dU/dy5.1070E101 1/sec

Second Run
HERSCHEL-BULKLEY FLOW OPTION SELECTED.
Power law curve assumed with exponent "n" equal
to .8000E100 and consistency factor "k" of .1000E-03
lbf sec^n/sq in.

Yield stress of .5000E-02 psi taken throughout.
Axial pressure gradient assumed as .3000E-01 psi/ft.
Total volume flow rate5.2854E103 gal/min
Cross-sectional area5.8816E102 sq inch
Apparent viscosity and Stokes product set to
zero in plug regime for tabulation and display.

TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area

dP/dz (psi/ft)
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FIGURE 3.18

Near-linear behavior for “exceptional” data set.
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O Axial flow velocity5.1180E102 in/sec
O Viscous stress, AppVis x dU/dx,5.6126E-03 psi
O Viscous stress, AppVis x dU/dy,5.5951E-03 psi
O Dissipation function5.1302E-01 lbf/(sec sq in)
O Shear rate dU/dx5.3539E101 1/sec
O Shear rate dU/dy5.3211E101 1/sec

Third Run
HERSCHEL-BULKLEY FLOW OPTION SELECTED.
Power law curve assumed with exponent "n" equal
to .8000E100 and consistency factor "k" of .1000E-03
lbf sec^n/sq in.

Yield stress of .5000E-02 psi taken throughout.
Axial pressure gradient assumed as .5000E-01 psi/ft.
Total volume flow rate5.4757E103 gal/min
Cross-sectional area5.8816E102 sq inch
Apparent viscosity and Stokes product set to
zero in plug regime for tabulation and display.

TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area

O Axial flow velocity5.1966E102 in/sec
O Viscous stress, AppVis x dU/dx,5.1021E-02 psi
O Viscous stress, AppVis x dU/dy,5.9918E-03 psi
O Dissipation function5.3616E-01 lbf/(sec sq in)
O Shear rate dU/dx5.5899E101 1/sec
O Shear rate dU/dy5.5351E101 1/sec

Fourth Run
HERSCHEL-BULKLEY FLOW OPTION SELECTED.
Power law curve assumed with exponent "n" equal
to .8000E100 and consistency factor "k" of .1000E-03
lbf sec^n/sq in.

Yield stress of .5000E-02 psi taken throughout.
Axial pressure gradient assumed as .1000E100 psi/ft.
Total volume flow rate5.1001E104 gal/min
Cross-sectional area5.8816E102 sq inch

Apparent viscosity and Stokes product set to
zero in plug regime for tabulation and display.

TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area

O Axial flow velocity5.4085E102 in/sec
O Viscous stress, AppVis x dU/dx,5.2478E-02 psi
O Viscous stress, AppVis x dU/dy,5.2463E-02 psi
O Dissipation function5.2386E100 lbf/(sec sq in)
O Shear rate dU/dx5.1606E102 1/sec
O Shear rate dU/dy5.1637E102 1/sec
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SIMULATION 6

Eroding a Clogged Bed

Here, we start with a clogged pipe annulus where the inner pipe rests on the bottom, with sand almost filled to
the top. We postulate a simple erosion model, where light particles are washed away at speeds greater than a
given critical velocity. In the runs shown below, this value is always exceeded, so that the sand bed will always
erode. In this final simulation set, the hole completely opens up, providing a successful conclusion to this
section!

To provide general results, we again consider a Newtonian flow, so that the specific results in the tabulations
can be rescaled and recast more generally in the graph shown in Figure 3.20. While “Q versus dp/dz” is linear
in Newtonian fluids, note that “Q versus N%” is not (see Figure 3.19). For that matter, even when a flow is
Newtonian, the variation of Q versus any geometric parameter is typically nonlinear and computational modeling
will be required.
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FIGURE 3.19

Clogged pipe simulation setup.
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FIGURE 3.20

Generalized flow rate versus dimensionless “fill-up.”
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In the following results, a unit cp Newtonian fluid is assumed, and a pressure gradient of 0.001 psi/ft is fixed
throughout. A 6.4-in. diameter is taken for the outer circle, with “y50” referring to its center elevation; a
“yheight” of 23.2 in. implies “no clogging,” while12.0 is almost completely clogged. An inner 4.0-in. O.D.
pipe rests at the very bottom of the annulus.

First Run
Enter YHEIGHT: -3.2
Total volume flow rate5.9340E103 gal/min
Cross-sectional area5.2041E102 sq inch

Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O Axial flow velocity5.1026E103 in/sec
O Apparent viscosity5.1465E-06 lbf sec/sq in
O Viscous stress, AppVis x dU/dx,5.1951E-04 psi
O Viscous stress, AppVis x dU/dy,5.2123E-04 psi
O Dissipation function5.1226E-01 lbf/(sec sq in)
O Shear rate dU/dx5.1331E103 1/sec
O Shear rate dU/dy5.1449E103 1/sec
O Stokes product5.1503E-04 lbf/in

Second Run
Enter YHEIGHT: -2.2
Total volume flow rate5.9383E103 gal/min
Cross-sectional area5.1966E102 sq inch

Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O Axial flow velocity5.1351E103 in/sec
O Apparent viscosity5.1465E-06 lbf sec/sq in
O Viscous stress, AppVis x dU/dx,5.2453E-04 psi
O Viscous stress, AppVis x dU/dy,5.2755E-04 psi
O Dissipation function5.1635E-01 lbf/(sec sq in)
O Shear rate dU/dx5.1674E103 1/sec
O Shear rate dU/dy5.1880E103 1/sec
O Stokes product5.1979E-04 lbf/in

Third Run
Enter YHEIGHT: -1.2
Total volume flow rate5.9157E103 gal/min
Cross-sectional area5.1805E102 sq inch
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O Axial flow velocity5.1586E103 in/sec
O Apparent viscosity5.1465E-06 lbf sec/sq in
O Viscous stress, AppVis x dU/dx,5.2506E-04 psi
O Viscous stress, AppVis x dU/dy,5.3397E-04 psi
O Dissipation function5.1947E-01 lbf/(sec sq in)
O Shear rate dU/dx5.1710E103 1/sec
O Shear rate dU/dy5.2318E103 1/sec
O Stokes product5.2324E-04 lbf/in

Fourth Run
Enter YHEIGHT: 0.
Total volume flow rate5.7837E103 gal/min
Cross-sectional area5.1492E102 sq inch
Area weighted means for absolute values taken
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over entire pipe (x,y) cross-sectional area
O Axial flow velocity5.1769E103 in/sec
O Apparent viscosity5.1465E-06 lbf sec/sq in
O Viscous stress, AppVis x dU/dx,5.1963E-04 psi
O Viscous stress, AppVis x dU/dy,5.4324E-04 psi
O Dissipation function5.2234E-01 lbf/(sec sq in)
O Shear rate dU/dx5.1340E103 1/sec
O Shear rate dU/dy5.2951E103 1/sec
O Stokes product5.2592E-04 lbf/in

Fifth Run
Enter YHEIGHT: 0.6
Total volume flow rate5.6089E103 gal/min
Cross-sectional area5.1253E102 sq inch

Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O Axial flow velocity5.1714E103 in/sec
O Apparent viscosity5.1465E-06 lbf sec/sq in
O Viscous stress, AppVis x dU/dx,5.1259E-04 psi
O Viscous stress, AppVis x dU/dy,5.4737E-04 psi
O Dissipation function5.2291E-01 lbf/(sec sq in)
O Shear rate dU/dx5.8593E102 1/sec
O Shear rate dU/dy5.3233E103 1/sec
O Stokes product5.2511E-04 lbf/in

Sixth Run
Enter YHEIGHT: 1.2
Total volume flow rate5.2823E103 gal/min
Cross-sectional area5.8952E101 sq inch

Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O Axial flow velocity5.1133E103 in/sec
O Apparent viscosity5.1465E-06 lbf sec/sq in
O Viscous stress, AppVis x dU/dx,5.8603E-05 psi
O Viscous stress, AppVis x dU/dy,5.3692E-04 psi
O Dissipation function5.1379E-01 lbf/(sec sq in)
O Shear rate dU/dx5.5871E102 1/sec
O Shear rate dU/dy5.2520E103 1/sec
O Stokes product5.1660E-04 lbf/in

Seventh Run
Enter YHEIGHT: 2.0
Total volume flow rate5.5476E102 gal/min
Cross-sectional area5.4458E101 sq inch

Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O Axial flow velocity5.4484E102 in/sec
O Apparent viscosity5.1465E-06 lbf sec/sq in
O Viscous stress, AppVis x dU/dx,5.4532E-05 psi
O Viscous stress, AppVis x dU/dy,5.2281E-04 psi
O Dissipation function5.5185E-02 lbf/(sec sq in)
O Shear rate dU/dx5.3093E102 1/sec
O Shear rate dU/dy5.1557E103 1/sec
O Stokes product5.6570E-05 lbf/in
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Eighth Run
Enter YHEIGHT: 2.5
Total volume flow rate5.9648E101 gal/min
Cross-sectional area5.2126E101 sq inch

Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O Axial flow velocity5.1624E102 in/sec
O Apparent viscosity5.1465E-06 lbf sec/sq in
O Viscous stress, AppVis x dU/dx,5.2321E-05 psi
O Viscous stress, AppVis x dU/dy,5.1360E-04 psi
O Dissipation function5.1832E-02 lbf/(sec sq in)
O Shear rate dU/dx5.1584E102 1/sec
O Shear rate dU/dy5.9282E102 1/sec
O Stokes product5.2380E-05 lbf/in

Velocity field “snapshots” at different stages of the unclogging process are given in Figure 3.21(a2f).
Although we have described the problem in terms of debris removal for eccentric annuli in horizontal drilling, it is
clear that the computations are also relevant to wax removal in a simple bundled pipeline, where wax has formed
at the top, when heat has been removed temporarily (the plots shown should then be turned upside down).

The basic ideas on solids deposition and integrated non-Newtonian duct flow modeling have

been developed in this chapter, and examples have been given that clearly demonstrate the dangers

of even partial blockage. In summary, minor blockage can significantly decrease flow rate in a con-

stant pressure gradient scenario. This also implies that minor blockages will require high start-up

pressures when a pipeline system is recovering from stoppage. Here the problem can be severe,

since temporary shutdowns generally allow blockages to solidify and adhere more securely. The

“self-cleaning” ability of a flow is degraded under the circumstances.

EXAMPLE 3.4

Finite Difference Details for Annular Flow Problems

Reservoir engineers and structural dynamicists, for example, routinely use advanced finite differ-

ence and finite element methods in design calculations. But drillers have traditionally relied upon

simpler handbook formulas and tables that are convenient at the rig site. Simulation methods are

powerful, to be sure, but they have their limitations. This section explains the pitfalls and the phi-

losophy one must adopt in order to bring state-of-the-art techniques to the field. We emphasize that

numerical methods do not always yield exact answers. But more often than not, they produce excel-

lent trend information that is useful in practical applications.

Concentric Newtonian flow
For our purposes, consider first the steady, concentric annular flow of a Newtonian fluid (see, for

example, Bird et al. (2002)). The governing equations are

d2uðrÞ=dr2 1 r21 du=dr5 ð1=μÞ@p=@z (3.68a)

uðRiÞ5 uðRoÞ5 0 (3.68b)
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FIGURE 3.21

(a) Clogged annulus, “yheight”5 2.0 inches. (b) Clogged annulus, “yheight”5 1.2 inches. (c) Clogged

annulus, “yheight”5 0.6 inches. (d) Clogged annulus, “yheight”5 0.0 inches. (e) Clogged annulus,

“yheight”521.2 inches. (f) Unclogged annulus, “yheight”522.2 inches.
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In Equations 3.68a and 3.68b, u(r) is the annular speed satisfying no-slip conditions at the inner

and outer radii, Ri and Ro. The viscosity μ and the applied pressure gradient dp/dz are known con-

stants. The exact solution was given earlier.

Let us examine a simple numerical solution. A “second-order accurate” scheme is derived by

“central differencing” Equation 3.68a as follows,

ðuj21 2 2uj 1 uj11Þ=ðΔrÞ2 1 ðuj11 2 uj21Þ=2rjΔr5 ð1=μÞ @p=@z (3.69a)

where uj refers to u(r) at the jth node at the rj location, j being an ordering index. Equation 3.69a

can be evaluated at any number of interior nodes for the mesh length Δr. The resulting “implicit”

difference equations, when augmented by

u1 5 ujmax 5 0 (3.69b)

using Equation 3.68b, form a tridiagonal system of jmax unknowns that lends itself to simple solu-

tion for uj and its total volumetric flow rate.

For our first run, we assumed Ri5 4 in., Ro5 5 in., @p/@z520.0005 psi/in., and μ5 2 cp.

Computed flow rates as functions of mesh density are given in Table 3.1. Note how the “100

mesh” solution is almost exact; but the “10 mesh” solution for flow rate, which is ten times faster

to compute, is satisfactory for engineering purposes.

Now let us double the viscosity μ and recompute the solution. The gpms so obtained decrease

exactly by a factor of two, and the dependence on viscosity is certainly brought out very clearly.

However, the trend information relating changes in gpm to those in μ is accurately captured, even

for coarse meshes. Sometimes, then, fine meshes are unnecessary. Similar comments apply to the

pressure gradient dp/dz.

It is clear that the exact value of u(r) is mesh dependent; the finer the mesh, the better the

answer. In some applications, it may be essential to find, through trial and error, a mesh distribution

that leads to the exact solution or that is consistent with real data in some engineering sense. From

that point on, “what if” analyses may be performed accurately with greater confidence. This ratio-

nale is used in reservoir engineering, where history matching with production data plays a crucial

role in estimating reserves.

Table 3.1 Volumetric Flow Rate versus Mesh Number

# Meshes GPM % Error

2 783 25

3 929 11

4 980 6

5 1003 4

10 1035 1

20 1042 0

30 1044 0

100 1045 0
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For other applications, the exact numbers may not be as important as qualitative trends of differ-

ent physical parameters. For example, how does hole eccentricity affect volumetric flow rate for a

prescribed pressure gradient? For a given annular geometry, how does a decrease in the Power law

exponent affect velocity profile curvature?

In structural engineering, it is well known that uncalibrated finite element analyses can accu-

rately pinpoint where cracks are likely to form, even though the computed stresses may not be cor-

rect. For such qualitative objectives, the results of a numerical analysis may be acceptable “as is”

provided the calculated numbers are not literally interpreted. Agreement with exact solutions,

of course, is important, but often it is the very lack of such analytical solutions itself that moti-

vates numerical alternatives. Thus, while consistency with exact solutions is desirable, in practice

it is through the use of comparative solutions that computational methods offer their greatest

value.

For annular flows and pipe flows in ducts having general cross-sectional geometries, this philos-

ophy is appropriate because there are no analytical solutions or detailed laboratory measurements

with which to establish standards for comparison. One should be satisfied as long as the solutions

agree roughly with field data. The real objective, remember, aims at establishing trends with

respect to changes in parameters like fluid rheology, flow rate, and hole eccentricity. We will show

through extensive computations and correlation with empirical data that the models developed with

our difference methods are correct and useful in this engineering sense. The ultimate acid test lies

in validations with field applications, and these are addressed in Chapter 5.

We emphasize that steady eccentric flows are by no means as simple as the above example

might suggest. In Equation 3.68a, the unknown speed u(r) depends on a single variable “r” only.

For general annular flow problems, the velocity depends on two cross-sectional coordinates x and

y, leading to a partial differential equation that is typically nonlinear for oilfield rheologies. The

“two-point” boundary conditions in Equation 3.68b are replaced by no-slip velocity conditions

enforced along two general arbitrary closed curves representing the borehole and pipe contours.

To implement these no-slip conditions accurately, “boundary-conforming meshes” must be used

that provide high resolution in tight spaces. To be numerically efficient, these meshes must be vari-

able with respect to all coordinate directions. The difference equations solved on such host meshes

must be solved iteratively; for unlike Equations 3.69a and 3.69b, which apply to Newtonian flows

with constant viscosities, the Power law, Bingham plastic, and Herschel-Bulkley fluids considered

in this book satisfy nonlinear equations with problem-dependent apparent viscosities. The algo-

rithms must be fast, stable, and robust; they must produce solutions without straining computing

resources. Finally, computed solutions must be physically correct—this is the final arbiter that chal-

lenges all numerical simulations.

Eccentric flow details
The solution just given is straightforward because “concentric flow” implies ordinary differential

equations, while “Newtonian fluid” means constant viscosities μ. For eccentric non-Newtonian

flows, partial differential equations must be solved with variable viscosities N. We consider steady

flows here. Moreover, it is impossible to select a simple grid as we did, say, in setting Δr constant;

a curvilinear grid must be created numerically from the equations for general mappings. Once the
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mappings are available, using the procedure for Equation 3.58 described earlier, the axial momen-

tum equation for u must be transformed to the new coordinates and solved iteratively. In general, a

transformed equation with B(1) and B(2) variable coefficients takes the form

ðαuξξ � 2βuξη 1 γuηη 1Bð1Þuη 1Bð2ÞuξÞ=J2 5 ð1=NÞ @P=@z (3.70a)

If central differences are used for ξ and η derivatives, and the usual four-point molecule is used

for the mixed derivative, then assuming constant grids Δξ and Δη, we can write the resulting equa-

tion in the form

ðγ=Δη2 � Bð1Þ=ð2ΔηÞÞui;j21 � 2ðα=Δξ2 1 γ=Δη2Þui;j 1 ðγ=Δη2 1Bð1Þ=ð2ΔηÞÞui;j11

5 �ðα=Δξ2Þðui21;j 1 ui11;jÞ � Bð2Þ=ð2ΔξÞðui11;j � ui21;jÞ1 ðJ2=NÞ@p=@z
1 2βðui11;j11 � ui2 1;j1 1 � ui11;j21 1 ui21;j2 1Þ=ð4ΔξΔηÞ

(3.70b)

The first line takes the form ( ) ui,j211 ( ) ui,j1 ( ) ui,j1 15 ( ), where we note that the parentheses

contain different expressions. Equation 3.70b is the recursion relation used for iterative solutions of

the steady flow formulation.

The procedure is straightforward. The rectangular computational domain is defined by the

indexes i5 1, 2, 3, . . . , imax and j5 1, 2, 3, . . . , jmax, and we initialize the solution to a stored

approximation or simply “0” if none are available. First we consider the line i5 2. Equation 3.70b

is written for j5 2, 3, . . ., jmax21, yielding jmax22 equations. To obtain solutions, no-slip

boundary conditions are used to define the “j5 1” and “j5 jmax” equations. The resulting system

is linear and can be solved using a tridiagonal equation solver. This process is repeated for i5 3,

i5 4, . . . , imax21 until the entire i2j plane has been solved. At this point, u values along i5 1

and i5 imax are updated using boundary conditions. Then the apparent viscosity function N(i,j),

which depends on the rheological model assumed, is updated using the latest available values for u.

The equation-solving process just described must be repeated until convergence is achieved.

Once the velocity field is available, physical quantities like apparent viscosity, shear rate, and

viscous stress are obtained from their mathematical definitions in terms of velocity derivatives—for

example, ux5 (yηuξ2 yξuη)/J and uy5 (xξuη2 xηuξ)/J, where J5 (xξyη2 xηyξ). All physical quan-

tities are then displayed in color and overlaid on the projection of the annulus in the computational

plane. It is important to note that while Δξ and Δη are constant in computational (ξ, η) space, they
efficiently represent variable grids (with high densities in tight annular spaces) in the physical

plane. Constant values of Δξ and Δη allow further speed increases because more complicated dif-

ference formulas need not be used.

Equation 3.70a applies to boreholes with straight axes only. When this axis is curved, for example,

the radius of curvature, R, enters the formulation and introduces centrifugal effects that modify the

effective pressure gradient. These effects are important in the drilling of deviated and horizontal wells.

Such effects are studied in Model 5.5 in Chapter 5. There we demonstrate that the pressure gradient

(1/N(Γ)) @P/@z in Equation 3.70a is to be replaced by (1/N) @P/@z2 (1/R) @u/@x1 (1/R2) u so that

ðαuξξ � 2βuξη 1 γuηη 1Bð1Þuη 1Bð2ÞuξÞ=J2 5 ð1=NÞ@P=@z� ð1=RÞ@u=@x1 ð1=R2Þu (3.70c)

where “x” is perpendicular to the borehole axis. The iterative process described above now applies

to the modified equation, where @u/@x is evaluated using the formula ux5 (yηuξ2 yξuη)/J.
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We emphasize that an “implicit” iterative scheme has been used, since coupled algebraic equa-

tions are involved. “Point-by-point” iterative methods, known as “explicit” methods, are simpler to

program but may be numerically unstable. For further background development, the reader is

referred to Press et al. (1992). Chapter 7 of Chin (2002) provides simple examples together with

Fortran source code illustrating key differences between explicit and implicit schemes. For presen-

tation purposes, the host model considered there is Laplace’s equation for pressure taken in a sim-

ple rectangular domain.
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CHAPTER

4Steady, Two-Dimensional,
Non-Newtonian, Single-Phase,
Eccentric Annular Flow

This chapter describes detailed applications for steady, two-dimensional, non-Newtonian, single-

phase, eccentric annular flow. We discuss general issues (e.g., Newtonian versus non-Newtonian

effects, properties of “pressure gradient versus volumetric flow rate” curves for different fluid

rheologies, the role of influx and outflux in affecting these curves, modeling of washouts)—topics

that are amply illustrated with computation.

A particularly important application, that of swab-surge in drilling, is treated with respect to the

new modeling capabilities offered in this book: high eccentricity, continuous mud circulation, pipe

rotation, axial pipe movement, and so on (the effects of yield stress, particularly on plug zone

determination in eccentric annuli, with and without pipe movement, are deferred to Chapter 5). We

also take this opportunity to introduce the use of transient solvers in steady swab-surge calculations

and to develop more general definitions for equivalent density calculations.

Some comments on swab-surge analysis are relevant to usage of commercial software. The sub-

ject itself is as old as drilling, but, unfortunately, little progress has been offered during the past dec-

ades. The usual concentric flow models are available, mostly limited to nonyield fluids; recent

publications address yield stress effects but are restricted to slot flow models without any pipe move-

ment. High eccentricity, general rheologies, pipe axial movement, and rotational capabilities, intro-

duced here, are completely new. In recent years, certain oil service companies have offered

“advanced” compressible flow models, claiming to reproduce field results with high accuracy. A

cursory examination of the math reveals surprises—the equations contain a single “z” coordinate

only, so that cross-sectional effects cannot possibly be modeled. In other words, eccentricity and

fluid rheology influences are absent. Users should exercise caution in applying such models and

question assumptions as needed.

EXAMPLE 4.1

Newtonian Flow Eccentric Annulus Applications

We introduce our steady, nonrotating, two-dimensional, single-phase, eccentric annular flow capa-

bilities with the Windows user interface shown in Figure 4.1. Geometric properties are defined

at the left—that is, the inner and outer circle center coordinates and radii, borehole axis curvature,
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and constant (positive, zero, or negative) drillpipe or casing speed. Fluid rheology is defined by

Herschel-Bulkley parameters at the upper right, which also encompass Newtonian, Power law, and

Bingham plastic flows. The entries shown apply to a Newtonian fluid, for which the Power n is

unity, the yield stress vanishes, and the consistency factor K corresponds to a 100-cp viscosity

(note that 1 cp5 0.0000001465 lbf sec/in.2).

The algorithm solves the steady axial momentum equation written to boundary-conforming cur-

vilinear coordinates when the pressure gradient is specified (and volumetric flow rate is to be deter-

mined) or when flow rate is given (and pressure gradient is the objective). Note the “plain English”

design in Figure 4.1. Pre- and postprocessing analyses, grid generation setup, host equation devel-

opment and numerical solution, plus color graphical displays (to be discussed) are completely auto-

mated. No expertise on the part of the user in numerical analysis or fluid mechanics is anticipated.

Convenient utilities are built into the user interface. For example, the passive (shaded) text box

at the bottom center calculates eccentricities as circle properties are changed. Also, clicking on

“Show Annulus” automatically displays annular layout together with a hypothetical 253 11 curvi-

linear grid, which, as shown in Figure 4.2, may be refined or changed at run time.

Extremely fast “no frills” simulation results are available by clicking “QuikSim.” For the inputs in

Figure 4.1, the axial velocity solution on a fine 613 41 mesh, as given in Figure 4.3, appears typically

in two to three seconds, together with its convergence history, calculated flow rate, and computed

cross-sectional area. The iterative relaxation method used for steady-state flow analysis is very

stable and fast, and will, most of the time, provide accurate solutions in seconds. Sometimes, of course,

solutions are not possible. For instance, when yield stress fluids are considered under very low-pressure

gradient conditions, sought solutions will not be found because they do not physically exist.

In that case, iteration errors do not monotonically decrease to zero, and “red zones” depicting

high velocities at the wide part of the annulus will not be found (refer to the inset of Figure 4.3 for

an example of an unconverged simulation)—however, solution divergence is easily corrected by

using a stronger pressure gradient. Physically, the stronger value found computationally is the

one needed to move the fluid. The cross-sectional area is not computed from π(Router
2 2Rinner

2 ),

FIGURE 4.1

Steady, nonrotating flow interface.
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incidentally, although its value will be extremely close. Instead, totals are calculated by summing

quadrilateral areas. This approach applies generally when our circles have been edited to model

washouts, cuttings beds, and stabilizers.

Concentric annulus Newtonian flow validations
How can we be assured that calculated results are correct? After all, exact eccentric annular solu-

tions even for simple Newtonian fluids do not exist. Concentric validations are reassuring. For the

geometry shown in Figure 4.4, clicking “QuikSim” yields a flow rate of 736.2 gpm. The auxiliary

FIGURE 4.3

Fast simulations (unconvergent result, top right).

FIGURE 4.2

Coarse curvilinear grid, fine by conventional standards.
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calculator shown, based on an exact Newtonian flow solution discussed later and available from the

“Utilities” menu, gives an exact value of 740.8 gpm for an error of less than 1 percent.

The results just quoted assume stationary drillpipe or casing. However, both software screens in

Figure 4.4 support constant inner pipe speeds that may be positive, zero, or negative. For the sign con-

vention used in our mathematical model, a negative pressure gradient (indicating pressure decrease

along the flow direction) yields a positive gpm flow rate. A positive pipe or casing speed, defining

movement in the flow direction, will increase flow rate. For instance, when “50 in./sec” is entered into

the screen at the lower left of Figure 4.4, our previous 740.8 gpm increases to an exact 1,045 gpm.

When the same “50” is assumed for the eccentric finite difference model, the result, requiring identical

computation time as before, is 1,047 gpm, again offering extremely high accuracy. If, alternatively,

“250 in./sec” is used to model pipe movement in a direction opposite to the main flow, the exact and

approximate flow rates are, respectively, 436.5 gpm and 425.0 gpm, with an error of 2.7 percent.

More powerful modeling options, available through the “Simulate” button, permit mesh refine-

ment and redefinition for problems where higher accuracy is required; they will be discussed later.

The foregoing results for concentric annuli are reassuring and indicate, at least for the examples con-

sidered, that calculated velocities and flow rates are accurate. Of course, the numerical model hosted

by Figure 4.1 is powerful because pipe movement is also easily considered for highly eccentric annuli.

Figure 4.3 for the eccentric parameters of Figure 4.1 give a flow rate of 1,162 gpm for stationary pipe

(higher than the 736.2 gpm found for concentric flow above). If “50 in./sec” is assumed, the result is

1,448 gpm, whereas the assumption “250 in./sec” yields a reduced 975.9 gpm.

Now, a note on graphics. In Figure 4.3, the red zone at the wide part of the annulus indicates

that maximum speeds are found there; if we had assumed a speed of 500 in./sec, the red zone

would move toward and merge with the pipe boundary because both high speeds are comparable,

as shown in Figure 4.5.

FIGURE 4.4

Concentric annulus comparison.
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Velocity displays such as that in Figure 4.3 are important physically. While it is obvious that

the fastest flow should be found at the widest location, the addition of steady pipe rotation, for

instance, moves this maximum azimuthally and, in the transient case, propagates the entire zone in

the azimuthal direction, a fact that may be useful in cuttings transport studies. Finally, we return to

Figure 4.3, where we found a flow rate of 1,162 gpm. Here, “QuikSim” assumed a large borehole

radius curvature of 123 ft. As an extreme case, we reduce this to 1.23 ft to find a rate decrease to

1,149 gpm. It is well known that decreasing radius of curvature, for a fixed pressure gradient,

decreases flow rate because of centrifugal effects; for the Newtonian fluid acting in this annulus,

calculated results indicate that the effects are minimal.

In the preceding discussions, we specified a (constant negative) pressure gradient dp/dz and cal-

culated positive total volumetric flow rate. In many managed pressure drilling applications, it is

often the pressure gradient that is desired when flow rate is specified. Then the pressure at the drill-

bit is known from “Psurface2 dp/dz3L,” where Psurface is the atmospheric or surface choke pressure

and L is the borehole length. The simulator in Figure 4.3 supports this important calculation mode.

Recall that the pressure gradient 20.01 psi/ft in Figure 4.3 gave 1,162 gpm. If “Volumetric flow

rate” is instead selected in the “Specify” window and “1162” is entered in the input box, clicking

“QuikSim” launches a sequence of automated inverse calculations. Here, iterations on dp/dz are

performed using a half-step routine in which guesses are successively refined starting with a value

applicable to drilling and cementing applications. After one minute of computing time, in which

the complete boundary value problem is solved 13 times, the required value of 20.009961 psi/ft is

obtained together with a color velocity plot (see Figure 4.6).

EXAMPLE 4.2

Power Law Flow in Eccentric Annuli

In Example 4.1, we focused on Newtonian flows because an exact solution for concentric annuli

allowing pipe movement was available for validation purposes. We introduced our “QuikSim”

FIGURE 4.5

Fast pipe movement in the direction of the flow.
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option that allows users to obtain fast “no frills” (but very accurate) solutions. Again, modeling

parameters include borehole curvature and pipe movement in eccentric boreholes. Here we extend

our study to nonlinear Power law flows; yield stress effects, which involve some subtlety, will be

treated separately. We additionally explore more comprehensive options under the “Simulate” but-

ton and provide more details under the “Results” menu.

We first introduce a baseline geometry and its QuikSim solution in Figure 4.7. This is a con-

centric annulus, and, for the parameters shown, the computed flow rate from the finite difference

analysis is 1,494 gpm. An exact analytical solution for Herschel-Bulkley fluids with yield stress is

available for concentric annuli and accessible from the “Utilities” menu; however, a stationary pipe

is required (this is discussed elsewhere in this book). The exact solution (with zero yield stress

here) gives 1,518 gpm, so our solution incurs an error of less than 2 percent.

Having established the accuracy of our non-Newtonian method, we explore the effects of bore-

hole anomalies, in particular the consequences of real-world eccentricities. For example, how do

SIMULATION STARTS ...
Iterating on pressure gradient to match flow rate ...

Iteration  100, Error = .00000000
Iteration  200, Error = .00000011
Iteration  300, Error = .00000000
Iteration  400, Error = .00000000
Iteration  500, Error = .00000000
Iteration  600, Error = .00000000
Iteration  700, Error = .00000011
Iteration  800, Error = .00000000
Iteration  900, Error = .00000000
Iteration 1000, Error = .00000000

O  Axial pressure gradient of -.1000E+00 psi/ft
yields volume flow rate of 0.1162E+05 gal/min.
Iterations continuing ...

Flow rate target error is, .8997E+03 %

Iteration  100, Error = .00000000
Iteration  200, Error = .00000011
Iteration  300, Error = .00000000
Iteration  400, Error = .00000000
Iteration  500, Error = .00000000
Iteration  600, Error = .00000000
Iteration  700, Error = .00000011
Iteration  800, Error = .00000000
Iteration  900, Error = .00000000
Iteration 1000, Error = .00000000

O  Axial pressure gradient of -.5000E-01 psi/ft
yields volume flow rate of 0.5808E+04 gal/min.
Iterations continuing ...

Flow rate target error is, .3998E+03 %

.

.

.

Iteration  100, Error = .00000000
Iteration  200, Error = .00000000
Iteration  300, Error = .00000007
Iteration  400, Error = .00000007
Iteration  500, Error = .00000007
Iteration  600, Error = .00000000
Iteration  700, Error = .00000007
Iteration  800, Error = .00000007
Iteration  900, Error = .00000007
Iteration 1000, Error = .00000000

O  Axial pressure gradient of -.9961E-02 psi/ft
yields volume flow rate of 0.1157E+04 gal/min.
Iterations continuing ...

Pressure gradient found iteratively, -.9961E-02 psi/ft,
to yield 0.1157E+04 gal/min vs target 0.1162E+04 gal/min.
Note:  Iterations terminate within 1% of target rate.
Refine result by manually changing pressure gradient.
Annular flow rate ...... 0.1157E+04 gal/min
Cross-sectional area ... 0.6586E+02 sq inch

FIGURE 4.6

Iterative calculation for dp/dz, with flow rate specified.
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cuttings beds (which reduce flow area) and washouts (which increase area) affect flow properties?

When flow rate is specified, what are the effects on pressure drops for managed pressure drilling?

To address these questions, we click “Simulate,” which offers more comprehensive modeling

options. These provide greater meshing flexibility and convenience. We emphasize that in numeri-

cal analysis, different meshes lead to solutions of varying accuracy. But very often, coarser systems

are used to perform numerous fast runs for comparative purposes. In the QuikSim mode, a fine

613 41 mesh is hardcoded for high accuracy. Here we will use a 253 11 grid to demonstrate mesh

sensitivities in gpm prediction, but mainly, as will be evident, for presentation clarity and space

limitations. When run in pure concentric mode, the 1,494 gpm obtained previously is now replaced

by 1,388 gpm for a 7.6 percent change. This new number is the basis for several comparisons. We

first assess the effect of cuttings beds. Clicking “Simulate” launches a DOS screen in which x�y

conventions and coordinates are displayed:

Pipe radius .2000E101, centered at X50.000E100, Y50.000E100.

Hole radius .4000E101, centered at X50.000E100, Y50.000E100.

All distances and coordinates in inches.

POSITIONS (INCHES):
Node: Xinner Yinner Xouter Youter

1 0.2000E101 0.0000E100 0.4000E101 0.0000E100
2 0.1932E101 20.5176E100 0.3864E101 20.1035E101

3 0.1732E101 20.1000E101 0.3464E101 20.2000E101

FIGURE 4.7

Power law flow in concentric annulus.
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4 0.1414E101 20.1414E101 0.2828E101 20.2828E101

.

.

.

12 20.1932E101 20.5176E100 20.3864E101 20.1035E101

13 20.2000E101 20.3020E-06 20.4000E101 20.6040E-06

14 20.1932E101 0.5176E100 20.3864E101 0.1035E101

15 20.1732E101 0.1000E101 20.3464E101 0.2000E101

16 20.1414E101 0.1414E101 20.2828E101 0.2828E101

17 20.1000E101 0.1732E101 20.2000E101 0.3464E101

18 20.5176E100 0.1932E101 20.1035E101 0.3864E101

The user is reminded that

You may modify (x,y) coordinates point-by-point to

include cuttings bed, borehole swelling and erosion,

and also, noncircular drill collar effects ...

Points are individually queried in clockwise manner

starting from bottom of pipe/annulus at P .... again:

X/Y orientation:

o-----. Y

j
j
P

j
V X

Then the option to modify borehole wall shape and inner circular contour is offered. In this first

example, only the former is changed. For instance, we have simple queries, as shown below, with

responses given in bold font.

Modify borehole wall shape? Y/N: y

Point 1: X5 4.0000, Y5 0.0000

Modify above coordinates? Y/N: y

x Enter new X value: 2.828

x Enter new Y value: 0.

Point 2: X5 3.8637, Y5 21.0353

Modify above coordinates? Y/N: y

x Enter new X value: 2.828

x Enter new Y value: 21.0353

.

.
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A list of 24 points is presented, and we alter 5 points. From the “Results � Text output” menu,

the run summary lists the original coordinates as

POSITIONS (INCHES):

Node: Xinner Yinner Xouter Youter

1 0.2000E101 0.0000E100 0.4000E101 0.0000E100

2 0.1932E101 20.5176E100 0.3864E101 20.1035E101

3 0.1732E101 20.1000E101 0.3464E101 20.2000E101

4 0.1414E101 20.1414E101 0.2828E101 20.2828E101

5 0.1000E101 20.1732E101 0.2000E101 20.3464E101

6 0.5176E100 20.1932E101 0.1035E101 20.3864E101

7 0.1510E206 20.2000E101 0.3020E-06 20.4000E101

8 20.5176E100 20.1932E101 20.1035E101 20.3864E101

9 20.1000E101 20.1732E101 20.2000E101 20.3464E101

10 20.1414E101 20.1414E101 20.2828E101 20.2828E101

11 20.1732E101 20.1000E101 20.3464E101 20.2000E101

12 20.1932E101 20.5176E100 20.3864E101 20.1035E101

13 20.2000E101 20.3020E-06 20.4000E101 20.6040E-06

14 20.1932E101 0.5176E100 20.3864E101 0.1035E101

15 20.1732E101 0.1000E101 20.3464E101 0.2000E101

16 20.1414E101 0.1414E101 20.2828E101 0.2828E101

17 20.1000E101 0.1732E101 20.2000E101 0.3464E101

18 20.5176E100 0.1932E101 20.1035E101 0.3864E101

19 0.2385E-07 0.2000E101 0.4770E-07 0.4000E101

20 0.5176E100 0.1932E101 0.1035E101 0.3864E101

21 0.1000E101 0.1732E101 0.2000E101 0.3464E101

22 0.1414E101 0.1414E101 0.2828E101 0.2828E101

23 0.1732E101 0.1000E101 0.3464E101 0.2000E101

24 0.1932E101 0.5176E100 0.3864E101 0.1035E101

Note that the starting circles need not be concentric; any eccentricity is permissible. The modified

points are also listed; in particular, we show only those lines containing the (bold) cuttings bed we

introduced.

FINAL (POSSIBLY MODIFIED) PIPE/HOLE COORDINATES:

POSITIONS (INCHES):

Node: Xinner Yinner Xouter Youter

1 0.2000E101 0.0000E100 0.2828E101 0.0000E100

2 0.1932E101 20.5176E100 0.2828E101 20.1035E101

3 0.1732E101 20.1000E101 0.2828E101 20.2000E101

4 0.1414E101 20.1414E101 0.2828E101 20.2828E101

.

.

.
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22 0.1414E101 0.1414E101 0.2828E101 0.2828E101

23 0.1732E101 0.1000E101 0.2828E101 0.2000E101

24 0.1932E101 0.5176E100 0.2828E101 0.1035E101

Our interactive screens and text output summary provide more numerical detail than is possible with

color plots. For instance, quantitative information about the curvilinear grid generated is offered, as

shown in Figure 4.8. Then simulation commences, and as the results show, stable and rapid convergence

is achieved. Screen output shows that the annular flow rate is 1,086 gpm as opposed to 1,388 gpm for a

28 percent reduction. The new cross-sectional area is reduced to 32.88 in.2 from π(42222), or 37.70 in.2.

The complete solution, from grid generation to solution, requires only seconds on typical computers.

SIMULATION STARTS ...

Power law fluid assumed with exponent "n" equal

to .8000E100 and consistency factor of .1375E-04

lbf sec^n/sq in.

A yield stress of .0000E100 psi, is taken.

Axial pressure gradient assumed as -.2388E-01 psi/ft.

Iteration 100, Error5.00000020

Iteration 200, Error5.00000013

.

.

Iteration 800, Error5.00000000

Iteration 900, Error5.00000007

Iteration 1000, Error5.00000007

Also provided but not shown are detailed numerical tabulations for all physical properties at all

coordinate points, in addition to the following numerical text displays overlaid on annular shape for

all relevant physical properties (in each case, the first two significant digits are printed for conve-

nience). These can be very informative. In Figure 4.9, for example, we find that maximum velocities

at the top (i.e., 21 in./sec) are five times those at the bottom. These numbers may be useful in hole-

cleaning applications.

COMPUTED MESH SYSTEM:

11    11    11
11    10     9    10    11
10     9     8     9    10

11       9     7   7   7     9      11
10     7 6   6   5   6   6 7    10

8     5   4   3   4   5     8
1110       6   3 2 2   1   2 2 3   6      1011

9 7     4   1           1   4     7 9
6 5 3   1               1   3 5 6

1110 9       2 1                   1 2       81011
7 6 4 2                       2 4 5 7

11 9 8 7 5 3 1                       1 3 5 7 8 91011

7 6 4 2                       2 4 5 7 
1110 9       2 1                   1 2       91011

6 3   1               1   3 5 6
9 7     4   1           1   4     7 9

1110       7   5 3 2   2   2 2 5   6 7    1011
9   8 7   6   6   6   6 8   8 9

10  10 9   9 8   9   7 9   910  10
11    11    11    11 11    11    11

FIGURE 4.8

Curvilinear grid (the reader should “connect the dots”).
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No claim is made to model the enormous difficulties associated with turbulence, but a simple

tool is provided for user convenience. At run time, queries are made for fluid specific gravity and

critical Reynolds number, here taken as 1.5 and 2,100, respectively. Then a flow stability map like

that in Figure 4.10 is provided as a flow analysis guide to the engineer. Average Reynolds numbers

for the bottom half and for the entire annulus are also given.

In Newtonian flows, the viscosity is constant throughout the flow domain (assuming that there

are no temperature or pressure dependencies). However, in non-Newtonian flows, the apparent vis-

cosity varies within the cross section and will depend on pressure gradient or flow rate. It also

depends on the size and shape of the vessel. Figure 4.11 shows the apparent viscosity distribution

obtained for our cuttings bed example. Components of shear rate and viscous stress in the x and y

directions, useful in hole-cleaning applications, are book-kept separately, since components parallel

and perpendicular to the cuttings bed play different bed removal functions. Also, Figures 4.12

through 4.17 are numerical diagrams for both dissipation function and Stokes product.

In many engineering problems, averages provide important tools for correlation purposes. For

example, the average viscous stress at the bottom of the annulus is a good indicator of cuttings

COMPUTED AXIAL VELOCITY (IN/SEC):

0     0     0
0     9    15     9     0
9    15    19    15     9

0      15    21  21  21    15       0
9    2121  21  19  21  2121     9
19    19  17  12  17  19    19

0 9      21  12 6 6   0   6 612  21       9 0
1521    17   0           0  17    2115
211912   0               0  121921

0 915       6 0                   0 6      19 9 0
212015 6                       6151921

01519201912 0                       01219201915 9 0

202015 6    6151820
0 915       5 0                   0 5      15 9 0

1810   0               0  101718
1519    11   0           0  11    1915

0 9      15   8 5 1   1 1 2 8  1515     9 0
13   9 9   5   5   5   9 9  1513
8   5 8   4 5   4   5 4   8 5   8

0     0     0     0     0     0     0

FIGURE 4.9

Axial velocity, U.

L     L     L
L     T     T     T     L
T     T     T     T     T

L       T     T   T   T     T       L
T     T T   T   T   T   T T     T
T     T   T   T   T   T     T

L T       T   T T T   L   T T T   T       T L
T T     T   L           L   T     T T
T T T   L               L   T T T

L T T       T L                   L T       T T L
T T T T                       T T T T

L T T T T T L  L T T T T T T L

T T T T                       T T T T
L T T       T L                   L T       T T L

T T   L      L   T T T
T T     T   L           L   T     T T

L T       T   T T T   T   T T T   T T     T L
T   T T   T   T   T   T T   T T

T   T T   T T   T   T T T T   T
L     L     L     L     L     L     L

FIGURE 4.10

Laminar-turbulent (L-T) stability map.
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COMPUTED APPARENT VISCOSITY (LBF SEC/SQ IN):

40    40    40
40    43    46    43    40
43    46    53    46    43

40      46    69  69  69    46      40
43    6968  68  53  68  6869    43
53    53  46  43  46  53    53

4043      68  434141  38  414143  68      4340
4769    46  38          38  46    6947
685343  38              38  435368

404347      4138                  3841      534340
70684641                      41465370

40475470534339  3943537054474340

71664741                      41475371
404447      4139                  3941      474440

6143  40      40  435261
4868    47  42          42  47    6848

4044      59  544747  49  474554  5659    4440
50  5256  69  80  69  5752  5550

47  4548  5156  53  6451 4845  47
43    42    44    47    44    42    43

FIGURE 4.11

Apparent viscosity, η.

PLOT OF STRESS "AppVisc x dU(x,y)/dx" VS (X,Y):
COMPUTED (ABSOLUTE VALUE OF) VISCOUS STRESSES (PSI):

15    15    15
14    13    10    13    14
11     9     5     9  11

11       8     2   2   2     8      11
9     1 1   2   6   2   1 1     9
4     5   9  14   9   5     4

8 6       1  121515  20  151512   1    6 8
5 0     7  17          17   7     0 5
1 3 7  14              14   7 3 1

4 3 2       810                  10 8       1 3 4
0 0 2 4                       4 2 1 0

0 0 0 0 0 0 0                       0 0 0 0 0 0 0 0

1 0 2 4                       4 2 0 1
4 3 2       7 9                   9 7       2 3 4

0 5  11              11   5 1 0 
5 2     4  11          11   4     2 5

7 6       2   2 7 9   8   9 9 2   0 2     6 7
7   6 3   0   1   0   0 6   5 7

9  11 9   7 4   5   2 7   911   9
10    14    11     7    11    14    10

FIGURE 4.12

Viscous stress, η @U/@x.

PLOT OF STRESS "AppVisc x dU(x,y)/dy" VS (X,Y):
COMPUTED (ABSOLUTE VALUE OF) VISCOUS STRESSES (PSI):

4     0     4
8     3     0     3     8
6     2     0     2     6

11       5     0   0   0     5      11
9     1 1   0  0   0   1 1     9
4     2   2   0   2   2     4

1411       1   7 8 4   0   4 8 7   1      1114
8 1     7  10          10   7     1 8
1 512  14              14  12 5 1

1513 9      1517                  1715       51315
2 2 915                      15 9 5 2

15 9 5 1 61419                      1914 6 1 5 91315

1 2 915                      15 9 6 1
1512 9      1415                  1514       91215

312  11              11  12 6 3
6 0     8   6           6   8     0 6

1210       2   5 6 2   2   2 6 5   4 2    1012
1   2 3   2   1   2   4 2   0 1

3   0 1   0 1   0   1 0   1 0   3
5     0     0     0     0     0     5

FIGURE 4.13

Viscous stress, η @U/@y.
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COMPUTED DISSIPATION FUNCTION (LBF/(SEC X SQ IN)):

6     6     6
6     4     2     4 6
4     2     0     2     4

6       2     0   0   0     2       6
4     0 0   0   0   0   0 0     4
0     0   2   4   2   0     0

6 4       0   4 7 7  10   7 7 4   0       4 6
2 0     2  10          10   2     0 2
0 0 4  10              10   4 0 0

6 4 2       710                  10 7       0 4 6
0 0 2 7                       7 2 0 0

6 2 0 0 0 410                      10 4 0 0 0 2 4 6

0 0 2 6                       6 2 0 0
6 3 1       6 8                   8 6       1 3 6

0 4   6               6   4 0 0
1 0     1   4           4   1     0 1

5 3       0   0 2 1   1   1 3 0   0 0     3 5
1   0 0   0   0   0   0 0   0 1

2   3 1   1 0   0   0 1   1 3   2
3     4     2     1     2     4     3

FIGURE 4.14

Dissipation function.

PLOT OF SHEAR RATE "dU(x,y)/dx" VS (X,Y):
COMPUTED (ABSOLUTE VALUE OF) SHEAR RATES (1/SEC):

39   40    39
35    30    21    30    35
26    20    11    20    26

28      18     2   3   2    18      28
21     2 2   3  11   3   2 2    21

7     9  20  33  20   9     7
2015       2  283640  51  403628   2      1520

10 1    15  44          44  15     110
1 515  36              36  15 5 1

10 7 5      2125                  2521       2 710
0 1 510                      10 5 3 0

0 0 0 0 0 0 0                       0 0 0 0 0 0 0 0

1 0 410                      10 4 1 1
10 8 5      1823                  2318       5 810

013  29              29  13 3 0 
10 3    10 27          27  10     310

1814       4   41519  17  1921 4   0 4    1418
14  11 5   0   1   0   011   914

19  2618  14 8   9   314  1826  19
24    33    25    15    25    33    24

FIGURE 4.15

Shear rate, @U/@x.

PLOT OF SHEAR RATE "dU(x,y)/dy" VS (X,Y):
COMPUTED (ABSOLUTE VALUE OF) SHEAR RATES (1/SEC):

10     0 10
20     8     0     8    20
15     5     0     5    15

28      10     0   0   0    10      28
21     1 1   0   0   0   1 1    21

7     5   5   0   5   5     7
3526       2  152110   0  102115   2      2635

18 2    15  25          25  15     218
2 928  36              36  28 9 2

392920      3644                  4436      102939
2 32040                      402010 2

402010 2113250                      503211 210203040

1 32039                      392011 1
382819      3440                  4034      192838

527  29              29  2711 5
13 0    15  15          15  15     013        

3122       4   913 4   4   414 9   8 4    2231
3   4 6   3   1   3   7 4   1 3

8   0 2   1 1   0   2 1   2 0   8
13     0     0     0     0     0    13

FIGURE 4.16

Shear rate, @U/@y.
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transport efficiency, because it is mechanical stress that removes debris. Averages for various phys-

ical quantities are computed for the entire annulus and for the bottom half, thus providing the engi-

neer with “ballpark” numbers for potential correlation applications. In addition, simple line plots

together with tabulated values are given for all physical quantities at the top of the hole and just

next to the hole bottom, as shown in Figures 4.18 and 4.19.

Again, in this example we have shown how we can edit the borehole outer contour and easily

introduce a flat cuttings bed. Other bed inclination effects are also easily incorporated. In Figure 4.20,

the velocity distribution for the original concentric baseline annulus is shown; that associated with the

cuttings bed modification is given at the center, while to the far right, we have introduced an asym-

metric washout plus stabilizers.

The flows obtained for the previous three calculations are complicated, hardly similar, and quali-

tatively quite different. Despite the differences, we emphasize that all three required identical

PLOT OF "STOKES PRODUCT" OR "VELOCITY X
APPARENT VISCOSITY" VS (X,Y):
COMPUTED STOKES PRODUCT(LBF/IN):

0     0     0
0     4     7     4     0
4     7    10     7     4

0       7    14  14  14     7       0
4    1414  14  10  14  1414     4
10    10   7   5   7  10    10

0 4      14   5 2 2   0   2 2 5  14       4 0
714     7   0           0   7    14 7
1410 5   0               0   51014

0 4 7       2 0                   0 2      10 4 0
1414 7 2                       2 71014

0 7101410 5 0                       0 5101410 7 4 0

1413 7 2                       2 71014
0 4 7       2 0                   0 2       7 4 0

11 4   0               0   4 911              
713     5   0           0   5    13 7

0 4       9   4 2 0   0   0 1 4   8 9     4 0
6   5 5   3   4   3   5 5   8 6

4   2 3   2 2   2   3 2   3 2   4
0   0     0     0     0     0     0

FIGURE 4.17

Stokes product, ηU.

TABULATION OF CALCULATED AVERAGE QUANTITIES, I: 
Area weighted means of absolute values taken over 
BOTTOM HALF of annular cross-section ... 
O  Axial annular velocity  (inches/sec):  .8940E+02
O  Apparent viscosity (lbf sec / sq in):  .5089E-05
O  Viscous stress, AppVis x dU/dx (psi):  .4739E-03
O  Viscous stress, AppVis x dU/dy (psi):  .6356E-03
O  Dissipation fnction (lbf/(sec sqin)):  .2425E+00
O  Shear rate dU/dx (Recip sec, 1 /sec):  .1013E+03
O  Shear rate dU/dy (Recip sec, 1 /sec):  .1407E+03
O  Stokes product Vel x AppVis (lbf/in):  .4854E-03

TABULATION OF CALCULATED AVERAGE QUANTITIES, II: 
Area weighted means of absolute values taken over 
ENTIRE annular (x,y) cross-section ... 
O  Axial annular velocity  (inches/sec):  .1082E+03
O  Apparent viscosity (lbf sec / sq in):  .5033E-05
O  Viscous stress, AppVis x dU/dx (psi):  .5967E-03
O  Viscous stress, AppVis x dU/dy (psi):  .6388E-03
O  Dissipation fnction (lbf/(sec sqin)):  .2941E+00
O  Shear rate dU/dx (Recip sec, 1 /sec):  .1327E+03
O  Shear rate dU/dy (Recip sec, 1 /sec):  .1436E+03
O  Stokes product Vel x AppVis (lbf/in):  .5886E-03

FIGURE 4.18

Average quantities for half and entire domains.
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VERTICAL SYMMETRY PLANE ABOVE DRILL PIPE
Axial velocity distribution (in/sec):

X                     0
_______________________ _______

1.00     0.0000E+00     |                             
1.27     0.9453E+02     |           *                 
1.52     0.1616E+03     |                    *        
1.75     0.1985E+03     |                          *  
1.97     0.2116E+03     |                            *
2.17     0.2112E+03     |                           * 
2.36     0.1989E+03     |                          *  
2.54     0.1702E+03     |                      *      
2.70     0.1253E+03     |               *             
2.86     0.6528E+02     |       *                     
3.00     0.0000E+00     |                             

VERTICAL SYMMETRY PLANE BELOW DRILL PIPE
Axial velocity distribution (in/sec):

X                     0
______________________________

6.93     0.0000E+00     |                             
7.02     0.1758E+02     |       *                     
7.11     0.3267E+02     |               *
7.20     0.4390E+02     |                      *      
7.29     0.5110E+02     |                          *  
7.38     0.5450E+02     |                           * 
7.47     0.5458E+02     |                            *
7.56     0.5047E+02     |                         *   
7.65     0.4067E+02     |                    *        
7.74     0.2390E+02     |           *                 
7.83     0.0000E+00     |                             

VERTICAL SYMMETRY PLANE ABOVE DRILL PIPE
Apparent viscosity distribution (lbf sec/sq in):

X                     0
______________________________

1.00     0.4028E-05     |               *             
1.27     0.4364E-05     |                *            
1.52     0.4699E-05     |                  *          
1.75     0.5365E-05     |                     *       
1.97     0.6955E-05     |                            *
2.17     0.6857E-05     |                           * 
2.36     0.5349E-05     |                     *       
2.54     0.4692E-05     |                  *          
2.70     0.4309E-05     |                *            
2.86     0.4101E-05     |           *             
3.00     0.3893E-05     |              *              

VERTICAL SYMMETRY PLANE BELOW DRILL PIPE
Apparent viscosity distribution (lbf sec/sq in):

X                     0
____________________ __________

6.93     0.4672E-05     |               *             
7.02     0.4998E-05     |                *            
7.11     0.5324E-05     |                 *           
7.20     0.5863E-05     |                   *         
7.29     0.6808E-05     |                       *     
7.38     0.8066E-05     |                            *
7.47     0.7193E-05     |                        *    
7.56     0.6010E-05     |                    *        
7.65   0.5389E-05     |                  *          
7.74     0.5051E-05     |                *            
7.83     0.4714E-05     |               *             

VERTICAL SYMMETRY PLANE ABOVE DRILL PIPE
Viscous stress, AppVis x dU/dx  (psi):

X                                   0
______________________________

1.00     0.1639E-02                   |           *   
1.27     0.1356E-02                   |         *     
1.52     0.1008E-02     |      *        
1.75     0.5934E-03                   |   *           
1.97     0.2100E-03                   |*              
2.17    -0.2224E-03                 * |               
2.36    -0.6002E-03              *  |               
2.54    -0.1014E-02           *       |               
2.70    -0.1425E-02        *          |               
2.86    -0.1738E-02      *            |               
3.00    -0.2012E-02                   |         

FIGURE 4.19

Line graphs and tabulations.
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VERTICAL SYMMETRY PLANE BELOW DRILL PIPE
Viscous stress, AppVis x dU/dx  (psi):

X                                   0
______________________________

6.93   0.1010E-02                   |              *
7.02     0.8670E-03                   |           *   
7.11     0.6961E-03                   |         *     
7.20     0.5103E-03                   |      *        
7.29     0.3216E-03 |   *           
7.38     0.1258E-03                   |*              
7.47    -0.1078E-03                 * |               
7.56    -0.3222E-03              *    |               
7.65    -0.5112E-03           * |               
7.74    -0.6577E-03         *         |               
7.83    -0.7803E-03       *           |               

VERTICAL SYMMETRY PLANE ABOVE DRILL PIPE
Dissipation function (lbf/(sec x sq in)):

X              0
______________________________

1.00     0.6666E+00     |                 *           
1.27     0.4212E+00     |          *                  
1.52     0.2163E+00     |    *                        
1.75     0.6564E-01     *                             
1.97     0.6344E-02     |                             
2.17     0.7212E-02     |                             
2.36     0.6735E-01     *                             
2.54     0.2190E+00     |    *                        
2.70     0.4715E+00     |           *                 
2.86     0.7365E+00     |                   *         
3.00     0.1040E+01     |                            *

VERTICAL SYMMETRY PLANE BELOW DRILL PIPE
Dissipation function (lbf/(sec x sq in)):

X                     0
______________________________

6.93     0.2331E+00     |                            *
7.02     0.1615E+00     |           *          
7.11     0.9869E-01     |          *                  
7.20     0.4940E-01     |    *                        
7.29     0.1851E-01     |*                            
7.38     0.3882E-02     |                       
7.47     0.2246E-02     |                             
7.56     0.1737E-01     |*                            
7.65     0.4851E-01     |    *                        
7.74     0.8571E-01     |         *                   
7.83     0.1292E+00     |              *              

VERTICAL SYMMETRY PLANE ABOVE DRILL PIPE
Shear rate dU/dx  (1/sec):

X                                   0
______________________________

1.00     0.4068E+03                   |          *    
1.27     0.3107E+03                   |        *      
1.52     0.2146E+03                   |     *         
1.75     0.1106E+03                   |  *            
1.97     0.3020E+02         |               
2.17    -0.3243E+02                  *|               
2.36    -0.1122E+03               *   |               
2.54    -0.2160E+03            *      |               
2.70    -0.3308E+03         *         | 
2.86    -0.4238E+03      *            |               
3.00    -0.5168E+03                   |               

VERTICAL SYMMETRY PLANE BELOW DRILL PIPE
Shear rate dU/dx  (1/sec):

X                                   0
______________________________

6.93     0.2162E+03                   |              *
7.02     0.1735E+03                   |           *   
7.11     0.1307E+03                   |        *      
7.20   0.8704E+02                   |     *         
7.29     0.4724E+02                   |  *            
7.38     0.1559E+02                   |*              
7.47    -0.1499E+02                 * |               
7.56    -0.5361E+02 *   |               
7.65    -0.9486E+02            *      |               
7.74    -0.1302E+03         *         |               
7.83    -0.1655E+03       *           |               

FIGURE 4.19

(Continued).
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computation times, the main difference being the degree of labor required to enter coordinate changes.

User interface improvements are planned. Again, the simulator allows us to quantify the effects of fluid

nonlinearities and geometric anomalies, both of which are important to managed pressure drilling.

As a final calculation, we ask, “Which pressure gradient is required to obtain the original flow

rate of 1,388 gpm (obtained for the concentric annulus) for the cuttings bed configuration at the

center of Figure 4.20? This is easily answered by entering parameters as shown in Figure 4.21 and

reentering the coordinate modifications used before.

For our coarse mesh, 12 iterations, each involving completely converged solutions of the veloc-

ity problem were required, taking about 30 seconds of computing time. In fact, the final screen out-

put shows the following.

VERTICAL SYMMETRY PLANE ABOVE DRILL PIPE
Stokes product (lbf/in):

X                     0
______________________________

1.00     0.0000E+00     |                             
1.27    0.4125E-03     |      *                      
1.52     0.7596E-03     |             *               
1.75     0.1065E-02     |                   *         
1.97     0.1472E-02     |                            *
2.17     0.1448E-02 |                           * 
2.36     0.1064E-02     |                   *         
2.54     0.7988E-03     |              *              
2.70     0.5401E-03     |         *                   
2.86     0.2677E-03     |   *   
3.00     0.0000E+00     |                             

VERTICAL SYMMETRY PLANE BELOW DRILL PIPE
Stokes product (lbf/in):

X                     0
______________________________

6.93     0.0000E+00     |                             
7.02     0.8786E-04     |   *                         
7.11     0.1739E-03     |         *                   
7.20     0.2574E-03     |               *             
7.29     0.3478E-03     |                     *       
7.38     0.4396E-03     |                            *
7.47     0.3926E-03     |                        *    
7.56     0.3034E-03     |                  *          
7.65     0.2192E-03     |  *                
7.74     0.1207E-03     |      *                      
7.83     0.0000E+00     |                             

FIGURE 4.19

(Continued).

FIGURE 4.20

Pressure gradient, 20.02388 psi/ft throughout (flow rates, from left to right: 1,388 gpm, 1,086 gpm, and

1,040 gpm).
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Iterating on pressure gradient to match flow rate ...

x Axial pressure gradient of -.2930E-01 psi/ft

yields volume flow rate of 0.1384E104 gal/min.
Iterations continuing ...

Pressure gradient found iteratively, -.2930E-01 psi/ft,

to yield 0.1384E104 gal/min versus target 0.1388E104 gal/min.

Note: Iterations terminate within 1% of target rate.

Refine result by manually changing pressure gradient.

Our results indicate that the blockage introduced by the cuttings bed worsened the pressure gra-

dient from 20.02388 psi/ft to 20.02930 psi/ft, a consequence that may prove unacceptable for drill-

ing safety (this represents a 23 percent increase in equivalent circulating density). We emphasize

that our coarse mesh was used only to reduce the number of pages in this book. In real applications,

the finer meshes supported by this simulator should be used. The focus of Examples 4.1 and 4.2

has been on problems where validations with exact solutions are available and, in particular, that

convey a sense of the “numbers” describing physical properties in the annulus. For the remainder

of this book, we turn to improved graphical displays, analysis tools, and menu options; detailed

tabulated results are, of course, always available at the user’s option.

EXAMPLE 4.3

Turbulence Modeling and Power Law Flow Analogy

The classic paper “Turbulent Flow of Non-Newtonian Systems” by Dodge and Metzner (1959)

derived a general form of the logarithmic friction factor and Reynolds number correlation relation-

ship using dimensional arguments. It is considered the standard for non-Newtonian turbulent pipe

FIGURE 4.21

“Volumetric flow rate” specified mode.
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flow over the past fifty years and remains the most trusted for predictions of turbulent losses in

Power law fluids. The work, for Power law fluids, has spawned numerous scholarly extensions to

more complicated rheologies and geometries. It is not possible, given project constraints, to review

these; however, some key ideas may be applicable to the subject of eccentric annular flow modeling.

Figure 4.22 for Newtonian flow, from Schlichting (1968), shows laminar and turbulent velocity

profiles in a circular pipe. For the same flow rate, the latter profile is significantly flatter than the

paraboloidal shape at the left. Dodge and Metzner (1959) observed that, in a Power law fluid, as n

decreases toward zero, the laminar profile becomes progressively flatter and perfectly flat in the

limit of zero n. Now, on passing from laminar to turbulent flow, the laminar velocity profile is flat-

tened by turbulent momentum transfer from high-velocity to low-velocity areas. Hence, turbulence

has the same effect on velocity profile, as does a decreasing value of n. In the case where n5 0,

again with the laminar profile flat, there is no distinction between laminar and turbulent profile

shape, so the two friction factor�Reynolds number relationships become identical.

Of course, for general eccentric annular flows, the Dodge-Metzner correlation cannot be used

because it applies only to circular pipes. But the authors’ comments motivate us to explore the

possibility of modeling turbulent velocity profiles and pressure drops using very low values of the

Power law exponent. In Figures 4.23 and 4.24, we show computed velocity profiles and volumetric

flow rates for a highly eccentric annulus assuming, respectively, 0.1 and 0.03 values for n. Both

velocity profiles display the required flatness. Here n and K may be related to effective turbulent

eddy as opposed to laminar viscosities. Their values may be related to wall roughness or inlet

disturbance levels, but might practically be viewed as history-matching parameters. Numerical

computations in QuikSim mode require about five seconds, no more than any other eccentric flow

simulations, and are extremely stable.

EXAMPLE 4.4

Pressure Gradient versus Flow Rate Curve Computation for Non-Newtonian Eccentric Annuli

The formulas for stress τ5 {12 exp(2 η0 dγ/dt/τ0)}{τ01K (dγ/dt)n} and apparent viscosity

η5 τ/(dγ/dt)5 {12 exp(�η0 dγ/dt/τ0)}{τ0/(dγ/dt)1K (dγ /dt)n21} are extended Herschel-Bulkley

constitutive relationships that apply to intrinsic fluid properties only (these theoretical representa-

tions are explained in detail elsewhere in this book). The constants n, K, τ0, and η0 are determined

from laboratory measurements using viscometers with simple geometries whose data can be

Laminar Turbulent

FIGURE 4.22

Laminar versus turbulent velocity profiles in a circular pipe.
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FIGURE 4.24

Very low n5 0.03 simulation (787.6 gpm).

FIGURE 4.23

Low n5 0.1 simulation (302.7 gpm).
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interpreted exactly. These relationships apply only to microscopic properties. These equations are

used in flow simulators such as ours to determine pressure gradients, flow rates, and detailed macro-

scopic properties throughout the annular cross section when complicated geometries are specified.

In steady flow applications, the “pressure gradient versus volumetric flow rate” curve is one impor-

tant analysis objective (refer to the menu in Figure 1.20). It describes macroscopic behavior and

depends on annular geometry, drillpipe or casing axial speed, pressure gradient or flow rate, and rota-

tional speed. Unlike, say, Newtonian flow in concentric annuli (e.g., Equation 5.1f), where flow rate

varies linearly with pressure gradient and inversely with viscosity in the stationary case, the relation-

ships for non-Newtonian flow are complicated by nonlinearity and a variable apparent viscosity depen-

dent on geometry and rate.

Eccentricity effects
To demonstrate the subtleties of nonlinearity, we consider inner and outer radii of 3 and 6 in.,

respectively, and apply the steady solver in Figure 4.25 to a Power law fluid with n5 0.415 and

K5 0.0000568 lbf secn/in.2 (for which the yield stress is zero). The dp/dz versus flow rate curve in

FIGURE 4.25

Flow rate versus dp/dz (0.333 eccentricity).
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Figure 4.25 corresponds to an eccentricity of 0.333, while that shown in Figure 4.26 corresponds to

one of 0.667. Note the differences found between the two results. Also note that our plotting utility

will give both “dp/dz versus gpm” and “gpm versus dp/dz” results depending on user preference.

Effect of axial pipe movement
In the next examples, we illustrate the effects of axial pipe or casing movement for our 0.667 eccentric-

ity geometry. We assume a high speed of1100 in./sec to emphasize key ideas. Even when the pressure

gradient vanishes, there is net positive flow because the drillpipe is dragging fluid in the positive

direction (for dp/dz5 0 psi/ft. and Upipe51100 in./sec, we have1669.0 gpm). The bottom part of

Figure 4.27 shows that if pressure increases in the direction of flow, thus opposing motion, posi-

tive flow rate is nonetheless achieved due to dragging. In Figure 4.28, we consider a high nega-

tive speed of 2100 in./sec. The line graph indicates that a strong pressure gradient is needed just

FIGURE 4.26

Flow rate versus dp/dz (0.667 eccentricity).
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to maintain a small positive flow rate because the drillpipe is dragging fluid to the left. In both

figures, the pressure gradient versus flow rate relationship is almost linear. Solutions for very nega-

tive flow rate, which are physically possible, are not calculated or plotted here.

We might note that “dp/dz versus gpm” curve calculations are not as straightforward as they

appear. Since pressure gradients found in practice may range anywhere from 0.0001 psi/ft to

0.1 psi/ft, performing complete annular flow computations at, say, 0.0001 psi/ft increments may

lead to hour-long computing times. The strategy employed is simple. We assume a maximum flow

rate of 1,500 gpm and use our steady solver in “flow rate specified” mode to determine the pressure

gradient characteristic of the annular geometry and rheology. This number is then divided by a

reasonable number, say 20, and then 20 “dp/dz specified” runs are performed to determine the cor-

responding gpms. Example calculated results appear in Figures 4.25, 4.26, 4.27, and 4.28. Our “dp/

dz versus gpm” curve generation option is accessed directly from the menu in Figure 1.20 and is

completely automated. No other software interfaces are called by the high-level menu.

FIGURE 4.27

Positive drillpipe or casing speed.

149Example 4.4



EXAMPLE 4.5

Effects of Influx-Outflux along the Borehole Path for Non-Newtonian Eccentric Annuli without Rotation

Our steady non-Newtonian flow solver is exact two-dimensionally, providing accurate flow rates

and field properties when annular geometries with impermeable walls are specified. In many drill-

ing applications, fluid influxes and outfluxes will be found along the path of the borehole, so that

the volumetric flow rates at a particular location will differ from that at another. A simple utility

was developed to provide approximate solutions for total pressure drop when local fluid gains or

losses can be estimated. This is accessed from the Utilities menu by calling “Influx (outflux) . . .

total pressure drop.” The action produces an “Influx (outflux) interval data” form, as shown in

Figure 4.29, which is completed by the user, allowing up to ten different borehole intervals with

different lengths and net flow rates.

The large variations shown in Figure 4.29 are assumed for illustrative purposes only so that the

reader can follow the interpolation process (described below) by eye. Once “Saved” is selected in

Figure 4.29 and “Total pressure drop” is clicked, the software algorithm automatically constructs

the required “dp/dz versus gpm” curve, as explained in Example 4.4. Then the pressure drop

FIGURE 4.28

Negative drillpipe or casing speed.
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calculations corresponding to those in the user’s influx table are obtained by interpolation from the

general curve and summed. Results are summarized as shown in Figure 4.30. This option can also

be used for inverse applications. For instance, if the total drop in pressure for an interval can be

estimated or is known from a logging measurement, repeated application of the method can be

used to predict net fluid influx or outflux.

We emphasize that the modeling option in Figure 4.29 assumes a nonrotating drillpipe. Depending

on rotational rate and annular eccentricity, the total pressure drop along the borehole path may be

higher or lower than the value determined on a stationary basis. We discuss rotational effects in

Chapter 7 and, in particular, how they can be computed using the “Transient 2D” simulator.

EXAMPLE 4.6

Steady-State Swab-Surge in Eccentric Annuli for Power Law Fluids with

and without Circulation (No Rotation)

In this example, we discuss applications of our steady-state, non-Newtonian flow simulator to

swab-surge analysis for eccentric annuli with and without mud circulation. This problem is

FIGURE 4.29

Creating influx (outflux) interval data.
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important and complementary to new hardware capabilities in managed pressure drilling that allow

continuous mud circulation while tripping in and out of the hole. We focus implicitly on long devi-

ated and horizontal wells for which hole eccentricity is very important. Existing models are either

concentric, which are inapplicable, or one-dimensional, in which case any details of the annular

cross section are impossible to model. Therefore, our work describes completely new methods that

support accurate prediction of pressure distributions in the hole.

Basic concepts
Our simulator predicts the constant pressure gradient @P/@z needed to induce a specified volumetric

flow rate Q for any Herschel-Bulkley fluid in an eccentric annulus. By convention, when Q is posi-

tive or “flowing to the right,” the pressure P falls in the direction of increasing z. Analogously,

when Q is negative or “flowing to the left,” P increases with increasing z. Let us first consider

flows without mud circulation. In the top diagram of Figure 4.31, the drillpipe and bit are shown

moving toward the bottom of the hole and displacing fluid as it moves to the left. This fluid must

then flow to the right as shown and will produce a positive Q. Now, the equation for pressure is

simply P5 z @P/@z1 constant. If z5 0 represents the surface where P5 Psurf is fixed by the driller

and z52L is the bit location with L being the borehole length, then the pressure at the bit is just

Pbit52L @P/@z1 Psurf. Since @P/@z, 0, we have PbitcPsurf, which formally shows that in a

“surge” situation the bottomhole pressure greatly exceeds that at the surface.

FIGURE 4.30

Total pressure drop computed.
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Next, consider the bottom diagram in Figure 4.31. Here we “swab” the drillstring, pulling it out

of the hole. To fill the void left by the drillbit, the flow, Q, must travel toward the left, for which

we have @P/@z. 0. Then Pbit52L @P/@z1 Psurf implies that Pbit{Psurf, which formally shows that

pressure is greatly reduced at the bit. Increased pressures at the bit are associated with formation

invasion and the possibility of fracturing the rock, while decreased pressures may increase the like-

lihood of blowouts.

The main simulation objective is accurate prediction of Pbit as a function of annular geometry,

fluid rheology, and (positive or negative) tripping speed in the presence of mud circulation at any

pump rate. To produce meaningful results, the simulator must be able to model general eccentrici-

ties, arbitrary Herschel-Bulkley parameters, and nonzero drillpipe speeds for any pump rate, the

same as the steady-state flow simulator described here will in an exact manner. There are several

scenarios that must be considered in addressing this problem; they are outlined in Figure 4.32.

Surge situations, as shown in parts (a) and (b) of the figure, are straightforward to model.

In part (a) of Figure 4.32, without mud flow, the net flow Q. 0 simply flows to the right. When

mud is pumped down the drillstring, as shown in part (b), the flow rate Q is simply increased, as

z

z = 0z = −L
P = Psurf − L ∂P/∂z

z = −L
P = Psurf − L ∂P/∂z

P = Psurf

P = Psurf

L

z

z = 0

L

FIGURE 4.31

Coordinate system and conventions.
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shown by the exaggerated velocity profile. Swab scenarios are slightly more subtle. In part (c), with-

out mud flow, pulling the drillstring out of the hole induces a negative flow Q, 0 to the left. In part

(d), mud is pumped down the drillstring at a low pump rate. If the rate is low enough, Q will still be

negative. On the other hand, if the pump rate is high, as suggested in part (e), the net flow will

come out of the hole, with Q. 0 now being positive. In this limit, pulling the drillstring out of the

hole is consistent with pressures at the bit that exceed those at the surface.

(a)

(b)

(c)

(e)

Mud

Mud

(d) Mud

FIGURE 4.32

Five scenarios in continuous flow managed pressure drilling.
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The foregoing five scenarios are obvious in retrospect, and we have summarized them only

because they do not arise in more conventional studies where mud does not circulate. Note that the

equation “Pbit52L @P/@z1 Psurf” is all that is necessary to calculate pressure at the bit. Again, L

is the hole or drillstring length, Psurf is the known pressure at the surface choke, and @P/@z repre-

sents output produced by the simulator.

Macroscopic rheological properties
Unlike Newtonian flows, where the viscosity is a constant once and for all (assuming no pressure or

temperature dependencies), the apparent viscosity in a non-Newtonian flow varies throughout the cross

section and depends on geometrical details plus flow rate or pressure gradient. This is not to say that

viscosity is unimportant: It is a useful correlator for cuttings transport and hole-cleaning efficiency and

may be significant in stuck pipe assessment. Apparent viscosity, we emphasize, is not a property intrin-

sic to the fluid; however, for Herschel-Bulkley fluids, “n,” “K,” and “τyield” are.
These “microscopic” properties are input into the simulator to create an all-important “pressure

gradient versus flow rate curve” that describes “macroscopic” properties for the overall flow. This

curve is important to swab-surge analysis: Once the combined flow rate due to surface pumping

plus tripping is known, it gives the pressure gradient required for use in the equation “Pbit5
2L @P/@z1 Psurf.” We will give examples of different curves obtained for different fluid types and

annular geometries next. We will introduce the basic analysis concepts by way of software modules

that have been developed to host our calculations.

Newtonian fluids
The three Herschel-Bulkley parameters noted above can be determined from viscometer measure-

ments using any number of regression techniques available in the literature. (For zero-yield flows

of Newtonian and Power law fluids, n and K can be determined using the built-in utilities shown in

Figure 1.18.) Once these are available, they are entered into the top right text boxes of the simula-

tor interface in Figure 4.33, where, for the present example, we have assumed the properties of

water at 1 cp. For the concentric geometry indicated, clicking on “QuikSim” leads to a flow rate of

943.5 gpm.

Next, in Figure 4.34, we increase the eccentricity, ε, from 0.0 to 0.667 for the same input para-

meters and obtain the greatly increased flow rate of 1,521 gpm. (It is well known that increases in

eccentricity generally lead to increases in flow rate under the same assumed pressure gradient.)

Figures 4.33 and 4.34 represent the results of “single analysis mode” simulations when detailed

results like those in Figures 1.12, 1.13, 1.14, and 1.15 are required. Much quicker results are

obtained when the option in Figure 4.35 is selected. This option ignores the “pressure gradient

specified” or “flow rate specified” prescriptions and leads, within a minute or two, to the results in

Figure 4.36, here for our eccentric annulus. It is important to observe two features characteristic of

Newtonian flows.

First, the “pressure gradient versus flow rate curve” passes through the origin; second, the curve

is a straight line whose slope depends only on the geometry of the annulus. Once this slope is deter-

mined for a specific eccentric annulus at any given pressure gradient, either computationally or

experimentally, the same applies to all pressure gradients. In this sense, Newtonian flows represent

an exception to general nonlinear fluid rheologies, where every case must be treated on an individual
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basis. The straight line nature of the curve means that changes in flow rate lead to proportional

changes in pressure gradient.

Finally, we note that for the “pressure gradient versus flow rate curve” option in Figure 4.35, we

fixed the pipe or casing speed to zero for our calculations. In general, this can be a positive or negative

constant, making the resulting curve useful in swab-surge applications when tripping at rapid speeds

(compared to a nominal speed in the annulus). We will give example calculations later in this example.

Power law fluids
Next we reconsider the above concentric and eccentric geometries for zero-yield power fluids with

n5 0.415 and K5 0.0000944 lbf secn/in.2 (this unweighted mud was used in a recent laboratory

study). The significant departure of n from unity implies large nonlinearities. This is reflected in

the highly curved lines in Figures 4.37 and 4.38, showing that incremental changes in flow rate do

not lead to proportional changes in pressure gradient—the exact changes are rate dependent. Also

note the significant differences going from concentric (vertical well) to eccentric (deviated or hori-

zontal well) applications. These results serve as a warning that models based on oversimplified geo-

metric assumptions can lead to operational hazards.

FIGURE 4.33

Newtonian concentric (ε5 0.0) flow.
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FIGURE 4.34

Newtonian eccentric (ε5 0.667) flow.

FIGURE 4.35

Newtonian dp/dz versus flow rate calculation (ε5 0.667).
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FIGURE 4.36

Newtonian dp/dz versus flow rate behavior (ε5 0.667).

FIGURE 4.37

Power law concentric flow (ε5 0.0).
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Swab-surge examples
Now we consider an application for “tripping with pumps off” and “tripping with continuous circula-

tion” that demonstrates the subtleties of flow nonlinearity. If we invoke the “Swab-surge (steady)”

option from the main interface in Figure 1.22, we obtain the Swab-Surge Worksheet in Figure 4.39.

(The embedded calculations conservatively assume that the drillbit completely blocks the annulus and

that fluid does not pass through the nozzles.)

We at first turn off the mud pump while assuming a hole radius of 4 in. and a “tripping in” speed

of 5,000 ft/hr. The Worksheet indicates that, following the convention of Figure 4.31, we have a

positive induced flow rate of 1217.6 gpm, while the drillpipe speed is negative with a value of

216.67 in./sec. (The drillbit is assumed to completely block the hole.) The Worksheet instructs the

user to enter “217.6” and “216.67,” as we have in Figure 4.40 for the eccentric annulus and Power

law fluid assumed. Clicking on “Show Annulus” produces the display in Figure 4.41. The required

pressure gradient dp/dz is 20.006494 psi/ft (minus values indicate high surge pressures at the bit).

FIGURE 4.38

Power law eccentric flow (ε5 0.667).

FIGURE 4.39

Assumptions for surge run with pumps off.
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Now consider an identical situation except that the pump is circulating at 500 gpm. The screens

analogous to Figures 4.39 and 4.40 were given previously. Clicking on “QuikSim” (as before)

shows that the required pressure gradient now becomes 20.01045 psi/ft. This pressure drop is

steeper than before, as expected, because the flow rate is higher. It is interesting that the flow rate

ratio between the two previous runs is 717.6/217.6, or 3.30. The ratio of pressure gradients, how-

ever, is 0.01045/0.006494, or 1.61 (Figures 4.42 and 4.43). In a Newtonian flow, the “3.30” and

“1.61” numbers would have been identical. For non-Newtonian flows, they typically are not, and

general conclusions cannot be given—results must be found by case-by-case computations. This

example points to the danger of using Newtonian models even for crude estimates.

In the next calculation, we consider “tripping out” in a swab application with the pumps off.

Instead of “1217.6” and “216.67” as we had before, Figure 4.44 shows that the relevant numbers

are reversed, with “2217.6” and “116.67.” When these replace their counterparts in Figure 4.40,

“QuikSim” analysis correctly shows that the axial pressure gradient is now 10.006494 psi/ft instead

of 20.006494 psi/ft. This positive sign, as discussed earlier, indicates lower pressures relative to

FIGURE 4.40

Additional assumptions for surge run with pumps off.

FIGURE 4.41

Eccentric annulus and curvilinear grid assumed (internal grid used in computations is finer).
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FIGURE 4.42

Assumptions for surge run with pumps on.

FIGURE 4.43

Additional assumptions for surge run with pumps on.

FIGURE 4.44

Assumptions for swab run with pumps off.
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those at the surface. Now let us recall the equation “Pbit52L @P/@z1 Psurf” for pressure at the

drillbit. Suppose that Psurf5 14.7 psi is open to the atmosphere. Then we can express bit pressure in

psi if L is given in feet via Pbit5 14.72 0.006494 L. In this example, Pbit vanishes if L5 2,264 ft,

at which point the possibility of a blowout increases significantly.

What would be the effect if, as in Figure 4.42, we ran the mud pump at 500 gpm? The corre-

sponding Swab-Surge Worksheet would appear as it does in Figure 4.45, showing a net flow

rate of 282.4 gpm. The calculation suggested by Figure 4.46 gives a negative pressure gradient

of20.005811 psi/ft. This shows that our 500-gpm pump rate is enough to prevent overly low pres-

sures when tripping out at 5,000 ft/hr. While we have focused on low pressures that may allow

blowouts, it is obvious that a similar analysis allows us to select pump rates that will not fracture

the formation when the frac gradient is known.

Neutral pressure gradient operation
Our simulator allows us to pose and solve still another problem of interest in swabbing operations.

Suppose, as previously, that we wish to trip out at 5,000 ft/hr, or 16.67 in./sec. We found from

a prior analysis that this action is responsible for a negative flow rate of 2217.6 gpm, with the

FIGURE 4.45

Assumptions for swab run with pumps on.

FIGURE 4.46

Additional assumptions for swab run with pumps on.
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left-bound annular fluid flow arising from the need to fill the borehole void left by the retreating

drillstring. We ask ourselves which net flow rate would allow us to maintain a “neutral pressure

gradient” of 0.00 psi/ft—that is, one that allows us to have a constant pressure along the annulus

equal to the surface choke pressure. If we run the simulator with 116.67 in./sec and 0.00 psi/ft in

“specify axial pressure gradient” mode, we obtain a net flow rate of 53.52 gpm. This 53.52 gpm is,

of course, the flow rate obtained by simply dragging the drillstring along without an imposed pres-

sure gradient. In other words, the pump must be operated at 217.61 53.52, or 271.1, gpm to create

a simple dragging flow and to produce the required zero pressure gradient.

This “reverse thinking” can be verified directly. It is easily validated by the forward calcula-

tion shown in Figure 4.47. This calls for us to enter 53.52 in the volumetric flow rate screen of

Figure 4.48. Clicking “QuikSim” leads to an extremely small 20.00001221 psi/ft, which allows

us to impress surface choke pressure directly on the drillbit. Pressure is constant along the bore-

hole. This predictive capability is a direct result of our ability to model drillpipe movement in a

rigorous computational manner in very complicated borehole environments. We again note that

the simulator was applied to a highly nonlinear Power law fluid with pipe movement in a very

eccentric annulus.

FIGURE 4.47

Surface mud pump rate needed for vanishing axial pressure gradient while tripping out.

FIGURE 4.48

Calculation providing zero axial pressure gradient.
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EXAMPLE 4.7

Steady-State Swab-Surge in Concentric Annuli for Power Law Fluids with Drillpipe Rotation

but Small Pipe Movement

The approach taken to modeling swab-surge effects in Example 4.6 is straightforward. Basically,

the Swab-Surge Worksheet is used to compute a kinematic volumetric flow rate correction to the

mud pump flow rate that accounts for changes in void space near the drillbit due to tripping out or

in. The new flow rate is then used in the annular flow analysis together with the correctly signed

drillpipe speed. We employ this approach throughout for swab-surge applications. When the drill-

pipe rotates, a closed-form analytical solution for the complete flow field is developed in Chapter 5

that allows general steady rotation at any rpm, provided the annulus is concentric and stationary in

the axial direction. This latter assumption is satisfactory for slow tripping speeds, as they invariably

should be in operations given safety considerations. The simpler simulator is accessed as shown in

Figure 4.49.

Four run-time options are shown in the screen in the figure. The first two provide detailed

results for single run sets (detailed examples are developed in Chapter 5). The third and fourth

FIGURE 4.49

Concentric, rotating, Power law flow.
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options provide fast calculations for “GPM versus RPM and dP/dz” and “dP/dz versus RPM and

GPM,” typically requiring about 15 seconds of computing time, with automated three-dimensional

color plots that allow zooming and mouse rotation. Results shown in Figures 4.50 and 4.51 clearly

illustrate the roles of rotation and pressure gradient that must be understood in managed pressure

drilling applications.

EXAMPLE 4.8

Steady-State Swab-Surge in Eccentric Annuli for Herschel-Bulkley Fluids with Drillpipe Rotation

and Axial Movement

In Example 4.7, we addressed pressure gradient computations for general flow rates and rotational

speeds for Power law fluids in a concentric annulus under steady conditions without axial pipe

movement. For such flows, the convective terms in the momentum equations vanish identically.

The effect of rotation is restricted to shear thinning so that, for a given pressure gradient, increases

in rotation rate will reduce apparent viscosity and increase volumetric flow. These effects are well

known in the older literature and apply mainly to vertical wells.

Run A
In deviated and horizontal wells, annular eccentricity is the rule. While shear thinning remains

important, a nonlinear convective term (whose magnitude is proportional to density and rotational

FIGURE 4.50

GPM versus RPM and dP/dz.
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speed and is variable throughout the cross section) appears and modifies the local axial pressure

gradient. For most practical geometries, this will reduce the flow relative to that found for the

eccentric nonrotating problem for the same applied pressure gradient. Equivalently, for the same

flow rate the pressure drop increases significantly. These properties are important in managed pres-

sure drilling.

The direct computation of steady rotating flow in an eccentric annulus is often a numerical pro-

cess that is unstable. Solutions have been published by various authors who have given few compu-

tational details related to convergence properties and computing times. Such schemes tend to

destabilize at higher specific gravities and rotational speeds and, unfortunately, in the ranges typical

of most drilling applications. Fortunately, steady rotating flow solutions can be computed by solv-

ing the transient formulation asymptotically for large times.

Figure 4.52 shows that we have set up flow simulations for a Power law fluid in an eccentric

annulus with axial pipe movement but no rotation. The problem is integrated in time starting with

quiescent conditions. Figure 4.53 shows computed volumetric flow rates reaching constant levels at

941.0 gpm after about one minute of computing time (this is interestingly, but fortuitously, also the

physical time scale) with convergence to steady state achieved very stably. The maximum axial flow

is found, as expected, at the wide side of the annulus.

Run B
Repeating the foregoing simulation to allow drillstring rotation is straightforward. For example, we

simply change the “0” in the RPM box to “100” (as seen from Figure 4.54), and completely auto-

mated calculations lead to a reduced flow rate of 562.2 gpm, as shown in Figure 4.55 (page 170).

FIGURE 4.51

dP/dz versus RPM and GPM.
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As is well known, the location of maximum axial velocity moves azimuthally, and our results are

consistent with this observation, a fact that may be useful in cuttings transport and hole-cleaning

applications. Computed results also indicate that the time to reach equilibrium decreases with

rotation. The results presented here, for pipe moving both axially and azimuthally, show that

pressure gradient calculations are doable and straightforwardly performed for general Power law

fluids in highly eccentric annuli.

Run C
In the next calculation, we repeat that in Figure 4.54, which included axial pipe movement and

nonzero rotational speed in addition to borehole eccentricity and non-Newtonian Power law flow,

but we now consider the additive effects of Herschel-Bulkley yield stress. In Figure 4.56, we mod-

ify the previous “0” to “0.002 psi” and leave all other parameters unchanged. As before, the calcu-

lations require about 30 seconds and are performed stably.

Figure 4.57 (page 172) shows that the volumetric flow rate is reduced from 562.2 gpm to

516.9 gpm, for a 9 percent reduction. One might ask what the required pressure gradient would be

for our yield stress fluid if we needed to maintain a 562-gpm flow rate. For our steady flow solver,

direct “pressure gradient specified” and inverse “flow rate specified” calculation modes were

FIGURE 4.52

Transient 2D flow menu (no rotation).
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available. For mathematical reasons, this is not practical for transient simulations. A simple proce-

dure requires us to manually attempt reasonable pressure gradient guesses. This procedure can be

very efficient. For this example, the author determined that 20.011 psi/ft would yield 562 gpm after

three tries, or about two minutes of desk time. In other words, the presence of yield stress steepened

the pressure gradient by a substantial 10 percent.

Run D
Next, we reconsider the yield stress problem in Figure 4.56 and determine the consequences of increas-

ing rotation rate from 100 to 200 rpm. The input screen is shown in Figure 4.58. The effect of doubling

rotational speed is a decreased flow rate for the same 20.01 psi/ft, in this case a much smaller

443.3 gpm, as shown in Figure 4.59 (page 174). And what if we had insisted on 562 gpm? Then some

simple manual “cut and try” calculations with different pressure gradient guesses lead to a substantially

steepened20.0131 psi/ft, a value that was obtained within two minutes with four different guesses.

Favorable effect of rotation on hole cleaning
The detailed effects of rotation and yield stress have been discussed in the context of eccentric

borehole annuli with coupled axial drillstring movement. These calculations represent completely

new industry capabilities. It is interesting to note that, from Figure 4.53 for nonrotating flow, the

FIGURE 4.53

Eccentric Power law results without pipe rotation.
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location of maximum axial flow speed lies symmetrically at the top at the wide side of the eccen-

tric annulus. When rotation exists, as shown in Figures 4.55, 4.57, and 4.59, the location of the

maximum moves azimuthally as shown, consistently with other known investigations. (Note that in

these three diagrams the “red,” which can be seen in the online figures, denotes different speeds.)

That increased relative speeds are achieved at the bottom of the annulus is consistent with the

improved hole-cleaning ability of drillstrings under rotation observed under many field conditions.

Of course, this improvement comes at the expense of steepened pressure gradients, a crucial trade-

off whose value must be assessed by the drilling engineer. The end decision made at the rig site

will depend on “the numbers,” which can only be obtained computationally.

Run E
Here we study the effect of slowdown in drillstring rotational rate. Acceleration and deceleration

are always encountered in start-up and shutdown. We repeat the calculation of Figure 4.58, starting

with 200 rpm for our nonzero yield stress fluid. But as shown in Figure 4.60 (page 175), we allow

our 200 rpm to slow down to 0, as seen from the “20.5” deceleration rate selected under the RPM

menu. Clicking on “?” to the right produces a plot of the assumed RPM versus time curve in

FIGURE 4.54

Modified flow with 100-rpm drillstring rotation.
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Figure 4.61. (Note that numerous time functions for axial pipe speed, rotational rate, and pressure

gradient are permissible with the simulator.)

The calculated flow rate versus time response is shown in Figure 4.62. This flow rate increases as

expected, with drillstring rotation rate decreasing. In this transient simulation, the location of maxi-

mum axial velocity is not stationary, but instead propagates azimuthally about the eccentric annulus.

A “snapshot” at one instant in time is shown in Figure 4.63. Although this example is purely transient,

we have included it in our steady eccentric annular flow chapter to highlight the importance (or, per-

haps, unpredictability) of transient effects. The shape of the transient rate curve in Figure 4.62, we

emphasize, is obtained for a simple Herschel-Bulkley fluid and not one with “memory” effects.

Run F
In this final example, we consider a complete steady swab-surge application with high annular

eccentricity and a nonlinear yield stress fluid, and allow the drillpipe to move axially while simulta-

neously rotating. This demonstrates the capabilities in our math models and provides a complete

summary of the software menu sequences needed to perform similar calculations. In order to pro-

ceed, the Swab-Surge Worksheet must be invoked from the main “MPD Flow Simulator (Steady

2D)” in Figure 4.64 (page 177).

FIGURE 4.55

Reduced flow rate achieved in shorter time.
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In the Worksheet, we consider a five-inch radius hole and a pipe trip-out speed of 5,000 ft/hr.

During this operation, we wish to pump continuously, with the surface mud pump rate set at

856.9 gpm. Now, as the drillpipe is withdrawn from the hole, fluid must rush in to fill the bottom-

hole void. The Worksheet indicates that the effective annular flow rate is 516.9 gpm and that the

pipe speed is 16.67 in./sec.

Now, we wish to focus our study on the non-Newtonian flow of a Herschel-Bulkley fluid with

n5 0.415, K5 0.0000944 lbf secn/in.2, and τyield5 0.002 psi, in an annulus formed by a 4-in.-diam-

eter pipe in a 10-in.-diameter hole, with an eccentricity of 0.3333. We will demonstrate the solution

process for flows without and with rotation. If we wish to consider axial movement only but without

rotation, we can run the steady flow calculation shown in Figure 4.65 in “volumetric flow rate speci-

fied” mode. Clicking on “QuikSim” produces the screen output iteration history that follows.

SIMULATION STARTS ...

Herschel-Bulkley model, with exponent "n" equal

to 0.4150E100 and consistency factor of 0.9440E-04

lbf sec^n/sq in.

A yield stress of 0.2000E-02 psi is taken.

FIGURE 4.56

Flow at 100 rpm, now with 0.002-psi yield stress.
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Borehole axis radius of curvature is 0.1000E104 ft.

Axial speed of inner pipe is 0.1667E102 in/sec.

Target flow rate of 0.5169E103 gal/min specified.

Iterating on pressure gradient to match flow rate ...

Iteration 100, Error 5 .00672962

Iteration 200, Error 5 .00248959

Iteration 300, Error 5 .00119476

Iteration 400, Error 5 .00052236

Iteration 500, Error 5 .00019270

Iteration 600, Error 5 .00005923

Iteration 700, Error 5 .00001814

Iteration 800, Error 5 .00000521

Iteration 900, Error 5 .00000171

Iteration 1000, Error 5 .00000047

x Axial pressure gradient of -.1000E100 psi/ft

yields volume flow rate of 0.4076E106 gal/min.

Flow rate target error is 0.7876E105 %

Iteration 100, Error 5 .00371665

Iteration 200, Error 5 .00067117

FIGURE 4.57

Flow at 100 rpm, now with 0.002-psi yield stress.
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Iteration 300, Error 5 .00014123

Iteration 400, Error 5 .00002945

Iteration 500, Error 5 .00000702

Iteration 600, Error 5 .00000192

Iteration 700, Error 5 .00000038

Iteration 800, Error 5 .00000010

Iteration 900, Error 5 .00000010

Iteration 1000, Error 5 .00000010

O Axial pressure gradient of -.5000E-01 psi/ft

yields volume flow rate of 0.4141E105 gal/min.

Flow rate target error is 0.7911E104 %

.

.

.

.

x Axial pressure gradient of -.6250E-02 psi/ft

yields volume flow rate of 0.6708E103 gal/min.

FIGURE 4.58

Flow at 200 rpm with 0.002-psi yield stress.

173Example 4.8



Flow rate target error is 0.2977E102 %

Iteration 100, Error 5 .00000000

Iteration 200, Error 5 .00000011

Iteration 300, Error 5 .00000000

Iteration 400, Error 5 .00000011

Iteration 500, Error 5 .00000011

Iteration 600, Error 5 .00000011

Iteration 700, Error 5 .00000000

Iteration 800, Error 5 .00000021

Iteration 900, Error 5 .00000011

Iteration 1000, Error 5 .00000000

x Axial pressure gradient of -.4688E-02 psi/ft

yields volume flow rate of 0.5217E103 gal/min.

Pressure gradient found iteratively, -.4688E-02 psi/ft,

to yield 0.5217E103 gal/min versus target 0.5169E103 gal/min.

Note: Iterations terminate within 1% of target rate.

Refine result by manually changing pressure gradient.

In other words, the pressure gradient associated with the nonrotating flow is 20.004688 psi/ft.

The corresponding axial velocity field is shown in Figure 4.66 (page 178) in a variety of available

FIGURE 4.59

Flow at 200 rpm with 0.002-psi yield stress.

174 CHAPTER 4 Steady Eccentric Annular Flow



plots. Note that for nonrotating flows, our “Steady 2D” solver automatically computes the required

pressure gradient using an internal inverse procedure. It has not been possible to develop a steady

solver that allows rotation that is also unconditionally numerically stable. Fortunately, this does not

mean that steady rotating flows cannot be computed.

We demonstrate how by considering the effect of a 100-rpm rotational rate. We use the

“Transient 2D” solver in Figure 4.67, with input boxes completed for the same simulation para-

meters. Our strategy is to solve a fully transient problem until steady-state behavior is obtained.

Because a “flow rate specified” mode is not available for transient calculations, one must resort to

repeated guesses for pressure gradient, but we have found that three or four will usually lead to a

flow rate within 1 to 2 percent of the target value. Since each trial calculation equilibrates quite

rapidly, as shown in Figure 4.68, the total “desk time” required is often two minutes or less.

For this rotating flow run, a pressure gradient of 20.01 psi/ft is required, as compared to

the 2.004688 psi/ft obtained in the nonrotating case. In other words, pressure gradients are twice as

severe because of rotation. The “Results” menu in Figure 4.67 provides numerous postprocessed

results in addition to those of Figure 4.68 (page 180). For example, axial and azimuthal velocity

distributions are available, as given in Figure 4.69, as are detailed color plots of different physical

properties like apparent viscosity, shear rate, and viscous stress.

FIGURE 4.60

Decreasing rotational rate, from 200 to 0 rpm.
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FIGURE 4.61

Linearly decreasing rpm, from 200 to 0.

FIGURE 4.62

Transient increasing flow rate with decreasing rpm.
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EXAMPLE 4.9

Transient Swab-Surge on a Steady-State Basis

Let us recall that the axial momentum equation takes the general functional form ρ (@u/@t1 v @u/@y1w

@u/@x)52@p/@z1 @Szy/@y1 @Szx/@x when body forces and variations in “z” are ignored. The resulting

two-dimensional equation applies to transient flows with rotation and axial movement as well as to all

rheological models. In later chapters, techniques are developed to integrate this in time and applications

FIGURE 4.63

Transient movement of maximum point as rpm decreases.

FIGURE 4.64

Running the “Swab-Surge Worksheet.” (Areas that do not affect the Worksheet calculator are shaded.)
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FIGURE 4.65

Steady 2D solver.

FIGURE 4.66

Computed axial velocity (nonrotating).
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are given. If true transient effects (i.e., those modeled by the “@u/@t” term) can be ignored, the resulting

ρ (v @u/@y1w @u/@x) �2@p/@z1 @Szy/@y1 @Szx/@x underlies the work in this chapter.
If continuous but transient flow rate pumping is allowed during tripping, but under quasi-steady

conditions, one might ask how the downhole “pressure response versus time” response is con-

structed. The answer is available in the illustrative procedures developed earlier. We recapitulate the

basic ideas, which may or may not be obvious. First, the “flow rate versus pressure gradient curve”

is constructed using, possibly, a combination of the steady-state models described—for example,

one that might take the forms shown earlier in Figure 4.37 or 4.38. At any time t5 tn, we have an

assumed volumetric flow rate Qn for which a pressure gradient (@P/@z)n is now known. Then, the

downhole pressure at the drillbit is simply Pn5 (@P/@z)n L1 Psurf (tn), where L is the borehole length

and Psurf (tn) is the surface choke pressure. This Pn(tn) can be plotted against tn for display.

EXAMPLE 4.10

Equivalent Circulating Density Calculations

A formula is available for equivalent circulating density (ECD) calculation whose derivation is

very straightforward. Again, we start from first principles with ρ (@u/@t1 v @u/@y1w @u/@x)52 ρ

FIGURE 4.67

Transient 2D solver.
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FIGURE 4.68

Flow rate history and velocity distribution. (Maximum axial velocities appear at annular bottom.)

FIGURE 4.69

Axial and azimuthal velocities at cross section “m5 19.”

180 CHAPTER 4 Steady Eccentric Annular Flow



g2 @p/@z1 @Szy/@y1 @Szx/@x, where we have now included the body force 2 ρg (where g is the

acceleration due to gravity) and assumed “z” to be vertical. The left side is “ma,” while the right is

“F” in “F5ma.” The first two terms on the right can be factored as 2g(ρ11/g @p/@z), from which

it is clear that the combination 1/g @p/@z has the dimensions of the density, ρ. This is known as the

“equivalent circulating density” because it provides an additive correction to ρ for hydrostatic

applications.

When the pressure gradient @p/@z is available from flow calculations, the ECD5 1/g @p/@z
formula applies. If the pressure gradient is expressed as N psi/ft, where N is dimensionless, then

ECD5 19.25 N lbm/gal. For example, if a viscous non-Newtonian pipe or annular flow is associ-

ated with a pressure gradient of 20.01 psi/ft, then we have ECD5 19.25 (0.01) lbm/gal or

0.1925 lbm/gal. (This might be compared to the density of water, with a value of approximately

8.33 lbm/gal.). ECDs provide a useful way of appreciating the magnitude of any pressure gradient,

but are, in themselves, not fundamentally important in fluid dynamics. They are, of course, useful

in MPD job planning.
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CHAPTER

5More Steady Flow Applications

In Chapters 2, 3, and 4, we developed the theory and mathematical methods needed to model steady,

nonrotating, non-Newtonian flows in general borehole annular cross sections having arbitrary geome-

tries. These included new topological concepts useful in creating boundary-conforming curvilinear grid

systems, derivation of momentum equations transformed to these coordinates, plus introduction of iter-

ative methods required for fast, robust, and numerically stable solutions. This work extends the early

models reported in the books Borehole Flow Modeling and Computational Rheology by improving

accuracy while reducing calculation times and computer memory resources.

In this chapter, we continue our focus on steady flows by presenting additional math models

that are useful in dealing with specific aspects of annular flow simulation and engineering applica-

tion. These simpler models, while not trivial in any mathematical sense, were also used to validate

the more sophisticated models in this book for fluids with general rheologies in complicated flow

domains. Examples include the first exact, closed-form solution for Herschel-Bulkley fluids in con-

centric annuli; Newtonian flow in concentric annuli with moving walls; solutions modeling flows

in the presence of barite sag; and Newtonian flows in general rectangular ducts.

Importantly, we also address field and laboratory validations for the steady annular flows calcu-

lated using the new methods, in particular dealing with cuttings transport in deviated wells, evaluation

of spotting fluid effectiveness in stuck pipe removal, the effect of non-Newtonian flow pressure drops

in boreholes with bends, the effects of steady rotation in concentric systems, and so on. While this

chapter addresses steady flow validations, it is important to emphasize that results of transient, three-

dimensional, multiphase extensions of these methods are also consistent with experiments, as will be

discussed in Chapters 8 and 9. These represent a major thrust of our research.

MODEL 5.1

Newtonian Flow in Concentric Annulus with Axially Moving (but Nonrotating) Pipe or Casing

We consider Newtonian annular flow between concentric cylinders, as shown in Figure 5.1, in

which the inner cylinder moves with a constant speed VN in either direction and an external pres-

sure gradient dP/dz is imposed in the axial z direction.

Since both radial and azimuthal velocities are assumed to vanish, @/@t5 0 holds for steady flow,

and @/@z5 0 holds for two-dimensional problems (applicable if cylinder lengths are sufficiently

long), the Navier-Stokes equations reduce to a single one for the axial velocity v(r)—namely,

d2v=dr2 1 r21 dv=dr5 μ21Pz (5.1a)
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The boundary conditions are

vðRιÞ5VN along inner radius (5.1b)

vðRoÞ5 0 along outer radius ði:e:; no-slipÞ (5.1c)

The exact solution for velocity at any position “r” is

vðrÞ5 ½ðRo
2 2Ri

2ÞPz=ð4μÞ1VN� loge ðRo=rÞ=loge ðRo=RiÞ1ðr2 2Ro
2ÞPz=ð4μÞ (5.1d)

The volumetric flow rate is given by

Q5

ðRo

Ri

vðrÞ 2πrdr (5.1e)

Q5πVN½ðRo
2 2Ri

2Þ=ð2loge ðRo=RiÞÞ2Ri
2�

1 ðπPz=ð8μÞÞ½ðRo
2 2Ri

2Þ2 1ðRi
4 2Ro

4Þ loge ðRo=RiÞ�=logeðRo=RiÞ (5.1f)

Note that when the inner cylinder is stationary with VN5 0, the relationship between Q and

pressure gradient is linear. In fact, Q is directly proportional to Pz and varies inversely with the

viscosity μ. The additional factor seen in Equation 5.1f depends only on geometrical details. The

viscous shear stress at any position “r” is simply the product between viscosity and shear rate and

is known from

τðrÞ5 μ dvðrÞ=dr5 μf2 ½ðRo
2 2Ri

2ÞPz=ð4μÞ1VN�=ðr logeðRo=RiÞÞ1 r Pz=ð2μÞg (5.1g)

In particular, the shear stress at the moving cylinder r5Ri is

τðRιÞ5 μ dvðRiÞ=dr5 μf2 ½ðRo
2 2Ri

2ÞPz=ð4μÞ1VN�=ðRi loge ðRo=RiÞÞ1RiPz=ð2μÞg (5.1h)

If the axial length of the cylinder is L, the total shear force acting on the inner cylinder is given

by the product of τ(Ri) and the surface area 2πτRi or

Ri

Ro

V�

dP/dz

z

r

FIGURE 5.1

Steady, concentric, Newtonian flow with moving pipe.
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Fshear 5 2πRi L τðRιÞ
5 2π μ Ri Lf2 ½ðRo

2 2Ri
2ÞPz=ð4μÞ1VN�=ðRi loge ðRo=RiÞÞ1Ri Pz=ð2μÞg

(5.1i)

The shear force per unit length is

Fshear=L5 2π μ Rif2 ½ðRo
2 2Ri

2ÞPz=ð4μÞ1VN�=ðRi loge ðRo=RiÞÞ1Ri Pz=ð2μÞg (5.1j)

A simple implementation for volumetric flow rate only is shown in Figure 5.2 and is accessible

from the “Utilities” menu. The results obtained with this model are used to validate steady and

transient implementations of our curvilinear grid, finite difference-based algorithms. A more detailed

version of the software that evaluates the stress and force formulas derived here is available upon

request.

MODEL 5.2

Density Stratification (Barite Sag) and Recirculating Annular Vortexes That Impede Fluid Flow

Problems with cuttings accumulation, flow blockage, and resultant stuck pipe in deviated wells are

becoming increasingly important operational issues as interest in horizontal drilling continues. For

small angles (ß) from the vertical, annular flows and hole cleaning are well understood; for exam-

ple, cleaning efficiency is always improved by increasing velocity, viscosity, or both. But beyond

30 degrees, these issues are rife with challenging questions.

Many unexplained, confusing, and conflicting observations are reported by different investiga-

tors; however, it turns out that bottom viscous stress (which tends to erode cuttings beds having

well-defined mechanical yield stresses) is the correlation parameter that explains many of these dis-

crepancies. The author’s books Borehole Flow Modeling in Horizontal, Deviated and Vertical

Wells (Chin, 1992) and Computational Rheology for Pipeline and Annular Flow (Chin, 2001)

address hole-cleaning applications in which cuttings and other drilling debris block mud transport.

These issues are addressed later.

Here we will learn that flows can be blocked even when no externally introduced debris appears

in the system. In other words, dangerous flow blockage can arise from fluid-dynamical effects

FIGURE 5.2

Software user interface.
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alone. This possibility is very real whenever there exist density gradients in a direction perpendicu-

lar to the flow (e.g., “barite sag” in the context of drilling). This blockage is also possible in pipe

flows of slurries—for instance, slurries carrying ground wax and hydrate particles or other debris.

Although we have focused on rheological effects associated with Newtonian, Power law, Bing-

ham plastic, and Herschel-Bulkley fluids, the physical mechanisms considered in this section relate

to inertial effects and apply to all fluid models. In work addressed elsewhere in this book, the pres-

sure field is assumed to be uniform across the annulus; the velocity field is therefore unidirectional,

with the fluid flowing axially from high-pressure regions to low-pressure regions. These assump-

tions are reasonable, since numerous flows do behave in this manner. Below we will relax these

assumptions, but turn to more general flows with density stratification. A special class of annular

and pipe flow lends itself to strange occurrences we call “recirculating vortex flows,” to which we

now turn our attention.

What are recirculating vortex flows?
In deviated holes where circulation has been temporarily interrupted, weighting material such as

barite, drilled cuttings, or cement additives may fall out of suspension. Similarly, pipelines con-

taining slurries with wax or hydrate particles can develop vertical density gradients when flow is

temporarily slowed or halted. This gravity stratification has mass density increasing downward.

And this stable stratification, which we refer to collectively as “barite sag,” is thought to be

responsible for the trapped, self-contained “recirculation zones” or “bubbles” observed by many

experimenters.

Recirculation zones contain rotating, swirling, “ferris-wheel-like” motions within their interiors;

the external fluid that flows around them “sees” these zones as stationary obstacles that impede

their axial movement up the annulus or pipe. Excellent color videotapes showing these vortex-like

motions in detail have been produced by M-I Drilling Fluids; they were viewed by the author in its

Houston facilities prior to the initial printing of Borehole Flow Modeling.

These strange occurrences are just that; their appearances seem to be sporadic and unpre-

dictable, as much myth as reality. However, once they are formed, they remain as stable fluid-

dynamical structures that are extremely difficult to remove. They are dangerous and undesirable

because of their tendency to entrain cuttings, block axial flow, and increase the possibility of stuck

pipe. One might ask, “Why do these bubbles form? What are the controlling parameters? How can

their occurrences be prevented?”

Detailed study of M-I’s tapes suggests that the recirculating flows form independently of viscos-

ity and rheology to leading order; that is, they do not depend primarily on “n” and “K.” They

appear to be inertia dominated, depending on density effects themselves, while nonconservative vis-

cous terms play only a minor role in sustaining or damping the motion. This leaves the component

of density stratification normal to the hole axis as the primary culprit; it alone is responsible for the

highly three-dimensional pressure field that drives local pockets of secondary flow. It is possible,

of course, to have multiple bubbles coexisting along a long deviated hole.

Again, these recirculating bubbles, observed near pipe bends, stabilizers, and possibly marine

risers and other obstructions, are important for various practical reasons. First, they block the

streamwise axial flow, resulting in the need for increased pressure to pass a given volumetric flow

rate. Second, because they entrain the mud and further trap drilled cuttings, they are a likely cause
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of stuck pipe. Third, the external flow modified by these bubbles can also affect the very process

of cuttings bed formation and removal itself.

Fortunately, these bubbles can be studied, modeled, and characterized in a rather simple man-

ner; very instructive “snapshots” of streamline patterns covering a range of vortex effects are given

later. This section identifies the nondimensional channel parameter Ch responsible for vortex bub-

ble formation and describes the physics of these recirculating flows. The equations of motion are

given and solved using finite difference methods for several practical flows. The detailed bubble

development process is described and illustrated in a sequence of computer-generated pictures.

Motivating ideas and controlling variables
The general governing momentum equations are Euler’s equations, which describe large-amplitude,

inviscid shear flow in both stratified and unstratified media (Schlichting, 1968; Turner, 1973). The

problem at hand can be modeled as two-dimensional stratified flow into a sink, following Yih (1960,

1969, 1980), who initially solved the problem for meteorological and geophysical applications.

The general Euler equations for two-dimensional flows in inclined boreholes simplify to the fol-

lowing three, for a variable density ρ, and the velocity components u and v. These nonetheless

remain intractable.

ρðuux 1 vuyÞ52 px (5.2)

ρðuvx 1 vvyÞ52 py 2 g ρ cos α (5.3)

ðρ uÞx 1 ðρ vÞy 5 0 (5.4)

In fluid mechanics, it is common to reduce the number of unknowns by introducing a “stream-

function” by virtue of mass conservation. Lines of constant streamfunction can be shown to

describe streamlines of the flow, across which fluid motion is not possible. Yih shows that, in his

problems, the formulation and solution that follow apply.

Ψξξ 1Ψηη 5 F22ðη� ΨÞ (5.5a)

Ψ5 0 at η5 0 (5.5b)

Ψ5 1 at η5 1 and at ξ5 0; η 6¼ 0 (5.5c)

Ψ5 η at ξ52N (5.5d)

Ψ5 η1ð2=πÞ
XN
n5 1

n21 exp½ðn2π2 � F22Þ1=2ξ� sin nπη (5.5e)

2N, ξ# 0; 0# η# 1 (5.5f)

Here the sink is located at ξ5 0 and η5 0. A linear density variation is assumed far upstream, the

oncoming flow is almost constant, F. 1/π is a Froude number comparing inertia to gravity effects,

and Ψ is a normalized streamfunction.

In other words, we have assumed that the steady vortex flow is contained in a two-dimensional

rectangular box in the plane of the hole axis (x) and the direction of density stratification (y). This

is based on experimental observation: The vortical flows do not wrap around the drillpipe. In the
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equations just given, u and v would be velocities in the x and y directions, respectively. Subscripts

indicate partial derivatives. In our convention, ρ is a fluid density that varies linearly with y far

upstream, p(x, y) is the unknown pressure field, g is the acceleration due to gravity, and α is the

angle the borehole axis makes with the horizontal. Equations 5.2 and 5.3 are momentum equations

in the x and y directions, while Equation 5.4 describes mass conservation.

Nondimensional parameters are important in understanding physical events. The Reynolds num-

ber, which measures the relative effects of inertia on viscous forces, is one example. It dictates the

onset of turbulence; also, like Reynolds numbers imply dynamically similar flow patterns. Analo-

gous dimensionless variables are used in different areas of physics—for example, the mobility ratio

in reservoir engineering or the Mach number in high-speed aerodynamics.

Close examination of Equations 5.2 through 5.4 using affine transformations shows that the

physics of bubble formation depends on a single nondimensional variable Ch characterizing the

channel flow. It is constructed from the combination of two simpler ones. The first is a Froude

number U2/gL cosα, where U is the average oncoming speed and L is the channel height between

the pipe and borehole walls. The second is a relative measure of stratification—say, dρ/ρref (dρ
might represent the density difference between the bottom and top of the annulus or pipe, and ρref
may be taken as their arithmetic average). The combined parameter Ch of practical significance is

Ch5U2ρref=gL dρ cos α (5.6)

We now summarize our findings. For large values of Ch, recirculation bubbles will not form; the

streamlines of motion are essentially straight, and the rheology-dominated models apply. For small

Ch’s of order unity, small recirculation zones do form and elongate in the streamwise dimension as

Ch decreases. For still smaller values—that is, values below a critical value of 0.3183—solutions

with wavy upstream flows are found, which may or may not be physically realistic. Equations 5.2

through 5.4 can be solved using “brute force” computational methods, but they are more cleverly

treated by introducing the streamfunction used by aerodynamicists and reservoir engineers.

When the problem is reformulated in this manner, the result is a linear Poisson equation that

can be integrated in closed analytical form as indicated above. Streamlines are obtained by connect-

ing computed streamfunction elevations having like values. The arithmetic difference in Ψ between

any two points is proportional to the volumetric flow rate passing through the two points. Velocity

and pressure fields can be obtained by postprocessing computed Ψ solutions.

Detailed calculations
Solutions obtained for a 203 40 mesh require less than one second. In Figures 5.3 through 5.8, we

allow the flow to disappear into a “mathematical sink” (in practice, the distance to this obstacle

over the height L will appear as a second ratio). This sink simulates the presence of obstacles or

pipe elbows located further upstream. With decreasing values of Ch, the appearance of an elongat-

ing recirculation bubble is seen. Streamfunction data as well as processed contour plots are given.

The stand-alone vortexes so obtained are stable, since they represent patches of angular momentum

that physical laws insist must be conserved.

In this sense, they are not unlike trailing aircraft tip vortices that persist indefinitely until dissi-

pation renders them harmless. However, annular bubbles are worse: The channel flow itself is what

drives them, perpetuates them, and increases their ability to do harm by further entraining solid
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0 105 105  96  98 102  99  97 101 101  98  99 101  99  98 100 100  98 100
0  53  73  82  86  89  91 93  94  95  96  96  97  97  98  98  99  99 100
0  32  54  67  74  80  83  86  89  90  92  93  94  95  96  97  98  99 100
0  23  41  55  64  71  76  80  83  86  88  90  92  93  95  96  97  98 100
0  18  33  46  56  64  70  75  78  82  85  87  89  91  93  95  96  98 100
0  14  28  40  50  58  64  69  74  78  81  84  87  89  92  94  96  98 100
0  12  24  35  44  52  59  65  70  74  78  82  85  87  90  93  95  97 100
0  11  22  32  40  48  55  61  67  71  75  79  83  86  89  92  94  97 100
0  10  20  29  37  45  52  58  63  68  73  77  81  84  87  91  94  97 100
0   9  18  27  35  42  49  55  61  66  71  75  79  83  86  90  93  96 100
0   8  17  25  33  40  46  53  58  64  69  73  77  81  85  89  93  96 100
0   8  16  23  31  38  44  51  56  62  67  72  76  80 84  88  92  96 100
0   7  15  22  29  36  43  49  55  60  65  70  75  79  83  88  92  96 100
0   7  14  21  28  35  41  47  53  59  64  69  74  78  83  87  91  95 100
0   7  14  21  27  34  40  46  52  57  63  68  73  77  82  86  91  95 100
0   6  13  20 26  33  39  45  51  56  62  67  72  77  81  86  91  95 100
0   6  13  19  26  32  38  44  50  55  61  66  71  76  81  86  90  95 100
0   6  12  19  25  31  37  43  49  55  60  65  70  75  80  85  90  95 100
0   6  12  18  25  31  37  43  48  54  59  65  70  75  80  85  90  95 100
0   6  12  18  24  30  36  42  48  53  59  64  69  75  80  85  90  95 100
0   6  12  18  24  30  36  41  47  53  58  64  69  74  79  84  89  94 100
0   6  12  18  24  29  35  41  47  52  58  63  69  74  79  84  89  94 100
0   5  11  17  23  29  35  41  46  52  57  63  68  74  79  84  89  94 100
0   5  11  17  23  29  35  40  46  52  57  63  68  73  79  84  89  94 100
0   5  11  17  23  29  34  40  46  51  57  62  68  73  78  84  89  94 100
0   5  11  17  23  28  34  40  45  51  57 62  67  73  78  84  89  94 100
0   5  11  17  23  28  34  40  45  51  56  62  67  73  78  83  89  94 100
0   5  11  17  22  28  34  39  45  51  56  62  67  73  78  83  89  94 100
0   5  11  17  22  28  34  39  45  50  56  62  67  72  78  83  89  94 100
0 5  11  17  22  28  34  39  45  50  56  61  67  72  78  83  89  94 100
0   5  11  17  22  28  33  39  45  50  56  61  67  72  78  83  89  94 100
0   5  11  16  22  28  33  39  45  50  56  61  67  72  78  83  89  94 100
0   5  11  16  22  28  33  39  44  50  56  61  67  72  78  83  89  94 100
0   5  11  16  22  28  33  39  44  50  56  61  67  72  78  83  89  94 100
0   5  11  16  22  28  33  39  44  50  55  61  67  72  78  83  89  94 100
0   5  11  16  22  28  33  39  44  50  55  61  66  72  78  83  89  94 100
0   5  11  16  22  28  33  39  44  50  55  61  66  72  77  83  88  94 100
0   5  11  16  22  27  33  39  44  50  55  61  66  72  77  83  88  94 100
0   5  11  16  22  27  33  39  44  50  55  61  66  72  77  83  88  94 100
0   5  11  16  22  27  33  39 44  50  55  61  66  72  77  83  88  94 100
0   5  11  16  22  27  33  39  44  50  55  61  66  72  77  83  88  94 100
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FIGURE 5.3

Ch5 1.0, straight streamlines without recirculation.
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0 105 105  96  98 102  99  97 101 101  98  99 101  99  98 100 100 98 100
0  54  74  83  88  91  93  94  96  96  97  98  98  98  99  99  99  99 100
0  33  55  68  77  82  86  89  91  93  94  95  96  97  98  98  99  99 100
0  24  43  57  67  74  80  84  87  89  91  93  94  96  97  97  98  99 100
0  19  35  49  59  67  74 79  83  86  88  91  92  94  95  97  98  99 100
0  15  30  43  53  61  68  74  79  82  86  88  90  92  94  96  97  98 100
0  13  26  38  48  56  64  70  75  79  83  86  88  91  93  95  96  98 100
0  12  23  34  44  52  60  66  71  76  80  83  86  89  92  94  96  98 100
0  11  21  31  41  49  56  63  68  73  77  81  85  88  90  93  95  97 100
0  10  20  29  38  46  53  60  65  71  75  79  83  86  89  92  95  97 100
0   9  18  27  36  43  51  57  63  68  73  77  81  85  88  91  94  97 100
0   8  17  26  34  41  48  55  61  66  71  76  80  83  87  90  93  97 100
0   8  16  24  32  40  46  53  59  64  69  74  78  82  86  90  93  96 100
0   8  16  23  31  38  45  51  57  63  68  73  77  81  85  89  93  96 100
0   7  15  22  30  37  43  50  56  61  66  71  76  80 84  88  92  96 100
0   7  14  22  29  36  42  48  54  60  65  70  75  79  84  88  92  96 100
0   7  14  21  28  35  41  47  53  59  64  69  74  78  83  87  91  95 100
0   7  14  20  27  34  40  46  52  58  63  68  73  78  82  87  91  95 100
0   6  13  20 26  33  39  45  51  57  62  67  72  77  82  86  91  95 100
0   6  13  19  26  32  38  44  50  56  61  67  72  76  81  86  90  95 100
0   6  13  19  25  32  38  44  50  55  61  66  71  76  81  86  90  95 100
0   6  12  19  25  31  37  43  49  55  60  65  70  75  80  85  90  95 100
0   6  12  18  25  31  37  43  48  54  59  65  70  75  80  85  90  95 100
0   6  12  18  24  30  36  42  48  53  59  64  70  75  80  85  90  95 100
0   6  12  18  24  30  36  42  47  53  58  64  69  74  79  85  90  95 100
0   6  12  18  24  30  36  41  47  53  58  63  69  74  79  84  89  94 100
0   6  12  18  23  29  35  41  47  52  58  63  69  74  79  84  89  94 100
0   5  11  17  23  29  35  41  46  52  57  63  68  74  79  84  89  94 100
0   5  11  17  23  29  35  40  46  52  57 63  68  73  79  84  89  94 100
0   5  11  17  23  29  34  40  46  51  57  62  68  73  78  84  89  94 100
0   5  11  17  23  29  34  40  46  51  57  62  68  73  78  84  89  94 100
0   5  11  17  23  28  34  40  45  51  57  62  67  73  78  84  89  94 100
0 5  11  17  23  28  34  40  45  51  56  62  67  73  78  83  89  94 100
0   5  11  17  22  28  34  39  45  51  56  62  67  73  78  83  89  94 100
0   5  11  17  22  28  34  39  45  51  56  62  67  73  78  83  89  94 100
0   5  11  17  22  28  34  39  45  50  56  61  67  72  78  83  89  94 100
0   5  11  17  22  28  34  39  45  50  56  61  67  72  78  83  89  94 100
0   5  11  17  22  28  33  39  45  50  56  61  67  72  78  83  89  94 100
0   5  11  16  22  28  33  39  45  50  56  61  67  72  78  83  89  94 100
0   5  11  16  22  28  33  39  45  50  56  61  67  72  78  83  89  94 100
0   5  11  16  22  28  33  39  44  50  56  61  67  72  78  83  89  94 100
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FIGURE 5.4

Ch5 0.5, straight streamlines without recirculation.
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0 105 105  96  98 102  99  97 101 101  98  99 101  99  98 100 100  98 100
0  55  76  85  90  94  96  98  99 100 100 100 101 101 100 100 100 100 100
0  35  58  72  81  87  92  95  97  99 100 101 101 101 101 101 100 100 100
0  25  47  62  73  81  87  92  95  97  99 100 101 101 101 101 101 100 100
0  21  39  55  66  76  83  88  92  95  98  99 100 101 101 101 101 100 100
0  18  34  49  61  71  79  85  90  93  96  98 100 100 101 101 100 100 100
0  16  31  45  57  67  75  82  87  91  94  97  99 100 100 100 100 100 100
0  14  28  41  53  63  71 78  84  89  93  95  97  99  99 100 100 100 100
0  13  26  39  50  60  68  76  82  87  91  94  96  98  99  99 100 100 100
0  12  25  37  47  57  66  73  79  85  89  92  95  96  98  99  99  99 100
0  12  23  35  45  55  63  71  77  82  87  90  93  95  97  98  99  99 100
0  11  22  33  43  53  61  68  75  80  85  89  92  94  96  97  98  99 100
0  11  21  32  42  51  59  66  73  78  83  87  90  93  95  96  98  99 100
0  10  21  31  40  49  57  64  71  77  82  86  89  92  94  96  97  98 100
0  10  20  30  39  47  55  63  69  75  80  84  88  91  93  95  97  98 100
0   9  19  29  38  46  54  61  68  73  78  83  86  90  92  94  96  98 100
0   9  19  28  36  45  53  60  66  72  77  81  85  89  91  94  96  98 100
0   9  18  27  35  44  51  58  65  70  76  80  84  88 90  93  95  97 100
0   9  17  26  35  43  50  57  63  69  74  79  83  87  90  92  95  97 100
0   8  17  26  34  42  49  56  62  68  73  78  82  86  89  92  95  97 100
0   8  17  25  33  41  48  55  61  67  72  77  81  85  88  91  94  97 100
0   8  16  24 32  40  47  54  60  66  71  76  80  84  88  91  94  97 100
0   8  16  24  32  39  46  53  59  65  70  75  79  83  87  90  94  97 100
0   8  15  23  31  38  45  52  58  64  69  74  78  83  86  90  93  96 100
0   7  15  23  30  37  44  51  57  63  68  73  78  82  86  89  93  96 100
0   7  15  22  30  37  44  50  56  62  67  72  77  81  85  89  93  96 100
0   7  15  22  29  36  43  49  55  61  67  72  76  81  85  89  92  96 100
0   7  14  22  29  36  42  49  55  60  66  71  76  80  84  88  92  96 100
0   7  14  21  28  35  42  48  54  60  65  70  75  80  84  88  92  96 100
0   7  14  21  28  35  41  47  53  59  64  70  74  79  83  88  92  96 100
0   7  14  21  27  34  41  47  53  58  64  69  74  79  83  87  91  96 100
0   7  13  20  27  34  40  46  52  58  63 69  73  78  83  87  91  95 100
0   6  13  20  27  33  40  46  52  57  63  68  73  78  82  87  91  95 100
0   6  13  20  26  33  39  45  51  57  62  68  73  77  82  87  91  95 100
0   6  13  20  26  33  39  45  51  56  62  67  72  77  82  86  91  95 100
0 6  13  19  26  32  38  44  50  56  61  67  72  77  81  86  91  95 100
0   6  13  19  26  32  38  44  50  56  61  66  71  76  81  86  90  95 100
0   6  13  19  25  32  38  44  50  55  61  66  71  76  81  86  90  95 100
0   6  12  19  25  31  37  43  49  55  60  66  71  76  81  85  90  95 100
0   6  12  19  25  31  37  43  49  54  60  65  70  76  80  85  90  95 100
0   6  12  19  25  31  37  43  49  54  60  65  70  75  80  85  90  95 100
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FIGURE 5.5

Ch5 0.35, minor recirculating vortex.
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0 105 105  96  98 102  99  97 101 101  98  99 101  99  98 100 100  98 100
0  55  77  87  93  96  99 100 102 102 103 103 103 103 102 102 101 100 100
0  36  60  75  85  92  97 100 103 104 105 106 106 105 104 103 102 101 100
0  27  50  67  79  88  95 100 103 106 107 108 108 107 106 105 103 101 100
0  23  43  60  74  84  92  98 103 106 108 109 109 109 108 106 104 102 100
0  20  39  56  70  81  90  97 102 106 109 110 110 110 109 107 105 102 100
0  18  36  52  66  78  88  96 102 106 109 111 111 111 109 108 105 102 100
0  17 34  50  64  76  86  94 101 105 109 111 111 111 110 108 105 103 100
0  16  33  48  62  74  84  93 100 105 108 111 112 111 110 108 106 103 100
0  16  32  47  60  72  83  92  99 104 108 110 112 111 110 108 106 103 100
0  15  31  45  59  71  82  90  98 103 108 110 111 111 110 108 106 103 100
0  15  30  44  58  70  80  89  97 103 107 110 111 111 110 108 106 103 100
0  15  29  44  57  69  79  88  96 102 106 109 111 111 110 108 106 103 100
0  14  29  43  56  68  78  87  95 101 106 109 110 110 110 108 106 103 100
0  14  28  42  55  67  77  87  94 100 105 108 110 110 109 108 105 103 100
0  14  28  42  54  66  77  86  93  99 104 107 109 110 109 107 105 102 100
0  14  28  41  54  65  76  85  93  99 103 107 108 109 109 107 105 102 100
0  14  27  41  53  65  75  84  92 98 103 106 108 109 108 107 105 102 100
0  13  27  40  53  64  74  83  91  97 102 105 107 108 108 106 105 102 100
0  13  27  40  52  63  74  83  90  96 101 105 107 107 107 106 104 102 100
0  13  26  39  52  63  73  82  89  96 100 104 106 107 107 106 104 102 100
0  13  26  39  51  62  72  81  89  95 100 103 105 106 106 105 104 102 100
0  13  26  39  51  62  72  80  88  94  99 103 105 106 106 105 104 102 100
0  13  26  38  50  61  71  80  87  93  98 102 104 105 105 105 103 102 100
0  13  25  38  50  60  70  79  87  93  98 101 104 105 105 104 103 101 100
0  12  25  37  49  60  70  78  86  92  97 101 103 104 105 104 103 101 100
0  12  25  37  49  59  69  78  85  91  96 100 102 104 104 104 103 101 100
0  12  25  37  48  59  69  77  85  91  96  99 102 103 104 103 102 101 100
0  12  24  36  48  58  68  76  84  90  95  99 101 103 103 103 102 101 100
0  12  24  36  47  58  67  76  83  89  94  98 101 102 103 103 102 101 100
0  12  24  36  47  57  67  75  83  89  94  97 100 102 102 102 102 101 100
0  12  24  35  47  57 66  75  82  88  93  97 100 101 102 102 102 101 100
0  12  24  35  46  56  66  74  81  88  92  96  99 101 102 102 101 101 100
0  12  23  35  46  56  65  74  81  87  92  96  99 100 101 102 101 100 100
0  11  23  35  45  55  65  73  80  86  91  95  98 100 101 101 101 100 100
0  11  23  34  45  55  64  72  80  86  91  95  98  99 101 101 101 100 100
0  11  23  34  45  55  64  72  79  85  90  94  97  99 100 101 101 100 100
0  11  23  34  44  54  63  71  78  85  90  94  97  99 100 100 100 100 100
0  11  22  33  44  54  63  71  78  84  89  93  96  98  99 100 100 100 100
0  11  22  33  44  53  62  70  77  83  88  93  96  98  99 100 100 100 100
0  11  22  33  43  53  62  70  77  83  88  92  95  97  99 100 100 100 100
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FIGURE 5.6

Ch5 0.320, large-scale recirculation.
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0 105 105  96  98 102  99  97 101 101  98  99 101  99  98 100 100  98 100
0  55  77  87  93  97  99 101 102 103 103 103 103 103 102 102 101 100 100
0  36  61  76  86  93  98 101 104 105 106 106 106 106 105 104 102 101 100
0  27  50  67  80  89  96 101 104 107 108 109 109 108 107 105 104 102 100
0  23  44  61  75  85  93 100 104 107 109 110 111 110 109 107 105 102 100
0  20  40  57  71  82  91  99 104 108 110 112 112 111 110 108 105 102 100
0  19  37  53  68  80  90  97 104 108 111 112 113 112 111 109 106 103 100
0  18  35  51  65  78  88  96 103 108 111 113 114 113 111 109 106 103 100
0  17  34  49  63  76  87  95 102 108 111 113 114 113 112 110 107 103 100
0  16  33  48  62  75  85  94 102 107 111 113 114 114 112 110 107 103 100
0  16  32  47  61  73 84  94 101 107 111 113 114 114 112 110 107 103 100
0  16  31  46  60  72  83  93 100 106 110 113 114 114 112 110 107 103 100
0  15  31  45  59  72  83  92 100 106 110 113 114 114 112 110 107 103 100
0  15  30  45  58  71  82  91  99 105 110 112 114 113 112 110 107 103 100
0  15  30  44  58  70  81  91  98 105 109 112 113 113 112 110 107 103 100
0  15  30  44  57  70  81  90  98 104 109 111 113 113 112 110 107 103 100
0  15  29  44  57  69  80  89  97 103 108 111 113 113 112 109 107 103 100
0  14  29  43  56  69  79  89  97 103 108 111 112 112 111 109 106 103 100
0  14  29  43  56  68  79  88  96 102 107 110 112 112 111 109 106 103 100
0  14  29  42  56  68  78  88  96 102 107 110 111 112 111 109 106 103 100
0  14  28  42  55  67  78  87  95 101 106 109 111 111 110 109 106 103 100
0  14  28  42  55  67  77  87  94 101 105 109 110 111 110 108 106 103 100
0  14  28  42  54  66  77  86  94 100 105 108 110 111 110 108 106 103 100
0  14  28  41  54  66  76  86  93 100 104 108 110 110 109 108 106 103 100
0  14  28 41  54  65  76  85  93  99 104 107 109 110 109 108 105 103 100
0  14  27  41  53  65  75  85  92  99 103 107 109 109 109 107 105 102 100
0  14  27  41  53  65  75  84  92  98 103 106 108 109 109 107 105 102 100
0  13  27  40  53  64  75  84  91  98 102 106 108 109 108 107 105 102 100
0  13  27  40  52  64  74  83  91  97 102 105 107 108 108 107 105 102 100
0  13  27  40  52  63  74  83  90  97 102 105 107 108 108 106 105 102 100
0  13  27  40  52  63  73  82  90  96 101 104 107 107 107 106 104 102 100
0  13  26  39  51  63  73  82  89  96 101 104 106 107 107 106 104 102 100
0  13  26  39  51  62  72  81  89  95 100 104 106 107 107 106 104 102 100
0  13  26  39  51  62  72  81  89  95 100 103 105 106 106 105 104 102 100
0  13  26  39  51  62  72  81  88  94 99 103 105 106 106 105 104 102 100
0  13  26  38  50  61  71  80  88  94  99 102 105 106 106 105 104 102 100
0  13  26  38  50  61  71  80  87  93  98 102 104 105 105 105 103 102 100
0  13  25  38  50  61  70  79  87  93  98 101 104 105 105 105 103 101 100
0  13  25  38  49  60  70  79  86  93  97 101 103 105 105 104 103 101 100
0  12  25  37  49  60  70  78  86  92  97 101 103 104 105 104 103 101 100
0  12  25  37  49  60  69  78  85  92  97 100 103 104 104 104 103 101 100
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FIGURE 5.7

Ch5 0.319, major flow blockage.
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0 105 105  96  98 102  99  97 101 101  98  99 101  99  98 100 100  98 100
0  56  77  87  93  97 100 101 103 103 104 104 104 103 103 102 101 100 100
0  36  61  76  87  94  99 102 105 106 107 108 107 107 106 104 103 101 100
0  28  51  68 81  90  97 102 106 108 110 110 110 109 108 106 104 102 100
0  23  45  62  76  87  95 102 107 110 112 113 113 112 110 108 105 102 100
0  21  41  58  72  84  94 101 107 111 113 114 114 113 112 109 106 103 100
0  19  38  55  70  82  92 101 107 111 114 116 116 115 113 110 107 103 100
0  18  36  53  68  81  91 100 107 112 115 117 117 116 114 111 108 104 100
0  18  35  52  66  79  90 100 107 112 115 117 118 117 115 112 108 104 100
0  17  34  50  65  78  90  99 107 112 116 118 118 117 115 112 108 104 100
0  17  34  50  64  78  89  99 106 112 116 118 119 118 116 113 109 104 100
0  17  33  49  64  77  89  98 106 112 116 119 119 118 116 113 109 104 100
0  16  33  49  63  77  88  98 106 112 116 119 119 119 116 113 109 104 100
0  16  33  48  63  76  88  98 106 112 116 119 120 119 117 113 109 105 100
0  16  33  48  63  76  88  98 106 112 116 119 120 119 117 114 109 105 100
0  16  32  48  62  76  87  97 106 112 116 119 120 119 117 114 109 105 100
0  16  32  48  62  76  87  97 106 112 116 119 120 119 117 114 109 105 100
0 16  32  48  62  75  87  97 105 112 116 119 120 119 117 114 110 105 100
0  16  32  48  62  75  87  97 105 112 116 119 120 119 117 114 110 105 100
0  16  32  47  62  75  87  97 105 112 116 119 120 119 117 114 110 105 100
0  16  32  47  62  75  87  97 105 112 116 119 120 119 117 114 110 105 100
0  16  32  47  62  75  87  97 105 112 116 119 120 119 117 114 110 105 100
0  16  32  47  62  75  87  97 105 111 116 119 120 119 117 114 110 105 100
0  16  32  47  62  75  86  97 105 111 116 119 120 119 117 114 110 105 100
0  16  32  47  61  75  86  96 105 111 116 119 120 119 117 114 109 105 100
0  16  32  47  61  75  86  96 105 111 116 119 120 119 117 114 109 105 100
0  16  32  47  61  75  86  96 105 111 116 119 120 119 117 114 109 105 100
0  16  32  47  61  74  86  96 105 111 116 118 119 119 117 114 109 105 100
0  16  32  47  61  74  86  96 105 111 116 118 119 119 117 114 109 105 100
0  16  32  47  61  74  86  96 104 111 116 118 119 119 117 114 109 105 100
0  16  32  47  61  74  86  96 104 111 115 118 119 119 117 113 109 105 100
0  16  32  47  61  74  86  96 104 111 115 118 119 119 117 113 109 105 100
0  16  32  47  61  74  86  96 104 111 115 118 119 119 117 113 109 105 100
0  16  32  47  61  74  86  96 104 111 115 118 119 119 117 113 109 105 100
0  16  31  47  61  74  86  96 104 111 115 118 119 118 117 113 109 105 100
0  16  31  47  61  74  86  96 104 110 115 118 119 118 116 113 109 105 100
0  16  31  47  61  74  86  96 104 110 115 118 119 118 116 113 109 105 100
0  16  31  47  61  74  86  96 104 110 115 118 119 118 116 113 109 105 100
0  16  31  47  61  74  85  95 104 110 115 118 119 118 116 113 109 104 100
0  16  31  46  61  74  85  95 104 110 115 118 119 118 116 113 109 104 100
0  16  31  46  61  74  85  95 104 110 115 118 119 118 116 113 109 104 100
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FIGURE 5.8

Ch5 0.3185, major flow blockage by elongated vortex structure.

194 CHAPTER 5 More Steady Flow Applications



debris in the annulus. In the pipeline context, slurry density gradients likewise promote flow block-

age and vortex recirculation; the resulting “sandpapering,” allowing continuous rubbing against

pipe walls, can lead to metal erosion, decreased strength, and unexpected rupture.

How to avoid stagnant bubbles
We have shown that recirculating zones can develop from interactions between inertia and gravity

forces. These bubbles form when density stratification, hole deviation, and pump rate fulfill certain

special conditions. These are elegantly captured in a single channel variable, the nondimensional

parameter Ch5U2ρref/gLdρ cosα. Moreover, the resulting flow fields can be efficiently computed

and displayed, thus allowing us to understand better their dynamical consequences.

Suppressing recirculating flows is simply accomplished: Avoid small values of the nondimensional

Ch parameter. Small values, as is evident from Equation 5.6, can result from different isolated effects.

For example, they decrease as the hole becomes more horizontal, as density differences become more

pronounced, or as pumping rates decrease. But none of these factors alone control the physics; it is the

combination taken together that controls bubble formation and perhaps the fate of a drilling program.

We have modeled the problem as the single-phase flow of a stratified fluid rather than as the

combined motion of dual-phase fluid and solid continuum. This simplifies the mathematical issues

without sacrificing the essential physical details. For practical purposes, the parameter Ch can be

viewed as a “danger indicator” signaling impending cuttings transport or stuck pipe problems. It is

the single most important parameter whenever interrupted circulation or poor suspension properties

lead to gravity segregation and settling of weighting materials in drilling mud.

These considerations also apply to cementing, where density segregation due to gravity and slow

velocities is likely. When recirculation zones form in either the mud or the cement above or beneath

the casing, the displacement effectiveness of the cement is severely impeded. The result is mud left in

place, an undesirable situation necessitating squeeze jobs. Similar remarks apply to pipeline applica-

tions. Recirculation zones are likely to be encountered at low flow rates that promote density stratifi-

cation, and immediately prior to flow start-up, when slurry particles have been allowed to settle out.

We emphasize that the vortical bubbles considered here are not the “Taylor vortices” studied in the

classical fluid mechanics of homogeneous flows. Taylor vortices are “doughnuts” that would normally

“wrap around,” in our case, the drillpipe; to the author’s knowledge, these have not been observed in

drilling applications. They can be created in the absence of density stratification—that is, they can be

found in purely homogeneous fluids. Importantly, Taylor vortices would owe their existence to finite

drillstring length effects and would represent completely different physical mechanisms.

A practical example
We have discussed the dynamical significance of the nondimensional parameter Ch that appears in

the normalized equations of motion. For use in practical estimates, the channel variable may be

written more clearly as a multiplicative sequence of dimensionless entities:

Ch5U2ρref=gLdρ cos α5 ðU2=gLÞ3 ðρref=dρÞ3 ð1=cos αÞ (5.7)

Let us consider an annular flow studied in the cuttings transport examples of Borehole Flow

Modeling. For the 2-in. and 5-in. pipe and borehole radii, the cross-sectional area is π (52222) or

66 in.2. The experimental data used in Discussions 1 and 2 of Chapter 5 in Borehole Flow Modeling
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assume oncoming linear velocities of 1.91, 2.86, and 3.82 ft/sec. Since 1 ft/sec corresponds to a volumet-

ric flow rate of 1 ft/sec3 66 in.2 or 205.7 gpm, the flow rates are 393, 588, and 786 gpm, respectively.

So, at the lowest flow rate of 393 gpm (a reasonable field number), the average linear speed over the

entire annulus is approximately 2 ft/sec. But the low-side average will be much smaller—say, 0.5 ft/sec.

And if the pipe is displaced halfway down, the length scale L will be roughly (5.2)/2 in. or 0.13 ft.

Thus, the first factor in Equation 5.7 takes the value U2/gL5 (0.5)2/(32.23 0.13)5 0.06. If we

assume a 20 percent density stratification, then ρref/dρ5 5.0; the product of the two factors is 0.30. For

a highly deviated well inclined 70� from the vertical axis, α5 90� 270� 5 20� and cos 20� 5 0.94.

Thus, we obtain Ch5 0.30/0.945 0.32. This value, as Figures 5.3 through 5.8 show, lies just at the

threshold of danger. Velocities lower than the assumed value are even more likely to sustain recir-

culatory flows; higher ones, in contrast, are safer.

Of course, the numbers used above are only estimates; a three-dimensional, viscous solution is

required to establish true length and velocity scales. But these approximate results show that bot-

tomhole conditions typical of those used in drilling and cementing are associated with low values

of Ch near unity.

We emphasize that Ch is the only nondimensional parameter appearing in Equations 5.2 through

5.4. Another parameter describing the geometry of the annular domain would normally appear

through boundary conditions. For convenience, though (and for the sake of argument only), we have

replaced this requirement with an idealized “sink.” In any real calculation, exact geometrical effects

must be included to complete the formulation. Also note that our recirculating flows get worse as

the borehole becomes more horizontal; that is, Ch decreases as α becomes smaller. This is in stark

contrast to the unidirectional, homogeneous flows usually studied, which typically perform worst

near 45�, at least with respect to cuttings transport efficiency. The structure of Equation 5.7 correctly

shows that in near-vertical wells with α approaching 90�, Ch tends to infinity; thus, the effects of

flow blockage due to the vortical bubbles considered here are relegated to highly deviated wells.

Again, flow properties such as local velocity, shear rate, and pressure can be obtained from the

computed streamfunction straightforwardly. They may be useful correlation parameters for cuttings

transport efficiency and local bed buildup. Continuing research is underway, exploring similarities

between this problem and the density-dependent flows studied in dynamic meteorology and ocean-

ography. Obvious extensions of our observations for annular flow apply to the pipeline transport of

wax and hydrate slurries.

Software implementation
The stratified flow solution in this section can be accessed from the “Utilities” menu in Figure 5.9,

which calls the program in Figure 5.10. Clicking “Results” yields numerical streamfunction results

(e.g., those in Figure 5.3) and the three-dimensional color plots shown in Figures 5.11 through 5.13.

MODEL 5.3

Herschel-Bulkley Flow in Concentric Annulus with Axially Stationary and Nonrotating Drillpipe or Casing

Non-Newtonian fluids with yield stress are responsible for plug zones that move as solid bodies

within sheared flows. Unlike circular pipe flow, the plug in a concentric annulus is defined by two
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radial points where shear rates are discontinuous. Sudden changes in shear rate imply that the

velocity derivative is not continuous everywhere, therefore precluding simple numerical solutions

such as the finite difference methods used for Power law fluids. To date, yield stress solutions for

concentric annuli are not available, except under simple slot flow approximations. In our exact

solution that follows, we do not invoke slot or thin annulus assumptions but require that the pipe or

casing remain immobile.

Here we consider Herschel-Bulkley fluids, which encompass Newtonian, Power law, and Bing-

ham plastic yield flows. An exact analytical approach is developed that produces integral solutions

in terms of a parameter “C.” This “C” satisfies special kinematic and dynamic constraints, and is

iteratively determined using a numerical scheme. Once solved, the velocity field is available and is

used to calculate total volumetric flow rate. In addition, the size and location of the plug zone is

accurately quantified. Typically, less than one second of computing time is required for conver-

gence and solution display.

FIGURE 5.10

Stratified flow, user interface.

FIGURE 5.9

Stratified flow, user interface.
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Mathematical formulation
We consider the concentric annular flow of non-Newtonian Herschel-Bulkley fluids with yield

stress, assuming the nomenclature in Figure 5.14. The axial pressure gradient satisfies dp/dz, 0

when the velocity U(r). 0 flows to the right. The radial coordinate is “r.”

It is not possible to formulate finite difference models because shear rate discontinuities at plug

boundaries imply nonexistent derivatives. Thus, we will use less restrictive integral representations

FIGURE 5.12

Large flow blockage.

FIGURE 5.11

Small recirculation zone.
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of the solution. Fortunately, we are able to develop an exact solution. The detailed equations and

constraints are developed in the following discussion.

Axial momentum balance
Let r and z denote radial and axial coordinates in the annulus of Figure 5.14. If τ(r) and p(z) repre-

sent viscous stress and pressure acting on a fluid element, a simple momentum balance requires

dðr τÞ=dr52r dp=dz (5.8a)

Equation 5.8a can be integrated to give r τ(r)521/2 dp/dz r21C, where C is an integration con-

stant, so that

τðrÞ521=2 dp=dz r1C=r (5.8b)

FIGURE 5.13

Safe flow, straight streamlines.

r = 0

r–

r+

Ro

z

Ri

FIGURE 5.14

Concentric annular flow.

199Model 5.3



In non-Newtonian flows with yield stress τyield, a plug flow moving with constant speed is

found in regions where τ, τyield. For circular pipe flow, we set C5 0 because shear stresses can-

not be infinite along the axis r5 0. The circular plug is defined by 0# r# rplug, where the plug

radius follows on setting τ5 τyield with r5 rplug in τ(r)521/2 dp/dz r. It is clear that

rplug522τyield/(dp/dz). 0 always exists, a radius that separates the plug from the shearing flow.

For pipe flows, this C5 0 requirement renders analysis straightforward.

Now, from Figure 5.14, it is clear that two plug radii characterize annular flows, falling between

the inner and outer values Ri and Ro. The argument for vanishing C no longer applies, because

r5 0 does not fall in the radial domain: stress is never infinite. A nonzero C now plays an impor-

tant role in the analysis and satisfies several physical constraints.

Formulas for plug radii
Note that Equation 5.8b, which states that “τ(r)521/2 dp/dz r1C1/r,” applies to the outer annu-

lus, where dU(r)/dr, 0 and τ. 0. Now, if we rewrite “τyield521/2 dp/dz r1C1/r” as the qua-

dratic equation “1/2 dp/dz r21 τyield r2C15 0,” we can determine possible plug radii by solving

ra 5 f2 τyield 2Oðτyield2 1 2C1 dp=dzÞg=ðdp=dzÞ (5.9a)

rb 5 f2 τyield 1Oðτyield2 1 2C1 dp=dzÞg=ðdp=dzÞ (5.9b)

Next, consider the inner annulus, where dU(r)/dr. 0 and τ, 0, and we now have the for-

mula “2τyield521/2 dp/dz r1C2/r.” This leads to the quadratic equation “1/2 dp/dz r22 τyield
r2C25 0,” for which possible plug radii are

rc 5 f1 τyield 2Oðτyield2 1 2C2 dp=dzÞg=ðdp=dzÞ (5.9c)

rd 5 f1 τyield 1Oðτyield2 1 2C2 dp=dzÞg=ðdp=dzÞ (5.9d)

In the zero yield limit τyield-0, we find that ra52O(2C1 dp/dz) }/(dp/dz) and rb51O(2C1

dp/dz)}/(dp/dz), and also that rc52O(2C2 dp/dz)}/(dp/dz) and rd51O(2C2 dp/dz)}/(dp/dz). If

all the O’s are positive, then on noting that dp/dz is negative, it follows that ra. 0 and rb, 0, and

rc. 0 and rd, 0. Thus, only the positive radii in Equations 5.9a and 5.9c are meaningful. But these

formulas must give the same value. This is possible by taking C15C25C, where C is now a sin-

gle unknown. Hence, we write Equations 5.9a and 5.9c as

r1 5 f2 τyield 2Oðτyield2 1 2C dp=dzÞg=ðdp=dzÞ (5.9e)

r2 5 f1 τyield 2Oðτyield2 1 2Cdp=dzÞg=ðdp=dzÞ (5.9f)

for the required plug radii, satisfying r1 . r2 as required in Figure 5.14.

Kinematic constraints
For physical solutions to exist, the discriminant must be non-negative; that is, we seek τyield

21 2C

dp/dz$ 0. Since dp/dz, 0, negative C values will be valid, but positive values are allowed if

C# τyield2=ð2 jdp=dzjÞ (5.10a)
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which decreases as yield stress decreases. This provides the upper bound. A lower bound is

obtained by considering the limit in which τyield5 0 vanishes altogether, in which case 0511/2

dp/dz rplug2C/rplug implies that the constant satisfies C5 1/2 dp/dz rplug
2, 0. Thus, C can be neg-

ative, as noted above, but it will be at the very least, equal to the negative value 1/2 dp/dz Ro
2,

where Ro is the outer annular radius. Hence, we may write

1/2 dp=dz Ro
2 #C# τyield2=ð2 jdp=dzjÞ (5.10b)

Furthermore, C must be chosen such that

r2 ðτyield; dp=dz;CÞ.Ri (5.10c)

r1 ðτyield; dp=dz;CÞ,Ro (5.10d)

uðr; τyield; dp=dz;CÞ. 0 (5.10e)

Dynamic constraints
The physical properties of the annular velocity field are introduced through a suitable constitutive

stress-strain relationship. We assume the classical Herschel-Bulkley model with n, K, and τyield
values as shown in Equation 5.11a. For the outer annulus, where dU/dr, 0, we write

τ5 τyield 1 ð2K dU=drÞn (5.11a)

where “2dU/dr” and τ are both positive, so that all of the ( ) brackets are positive. We substitute

this into Equation 5.8b—that is, τ(r)521/2 dp/dz r1C/r—to obtain

τyield 1 ð2K dU=drÞn 521/2 dp=dz r1C=r (5.11b)

from which

dUðrÞ=dr52ð1=KÞð21/2 dp=dz r1C=r2 τyieldÞ1=n (5.12a)

In order for solutions to exist, the quantity within the brackets must be positive, so that

21/2 dp=dz r1C=r2 τyield $ 0 (5.12b)

When this constraint is satisfied, Equation 5.12a can be integrated over (r, Ro) to give

UðrÞ51ð1=KÞ
ðRo

r

ð21/2 dp=dz r1C=r2 τyieldÞ1=n dr (5.12c)

for r1 , r,Ro, where we have used the outer no-slip axial velocity condition U(Ro)5 0.

For the inner annulus, we require Equation 5.11a in a form suitable for dU/dr. 0 and τ, 0.

This is achieved by taking “2 τ5 τyield1 (K dU/dr)n” so that all of the ( ) brackets are positive.

If we substitute “τ(r)521/2 dp/dz r1C/r,” we obtain

dUðrÞ=dr51ð1=KÞð1/2 dp=dz r2C=r2 τyieldÞ1=n (5.13a)

for which we require

1/2 dp=dz r2C=r2 τyield $ 0 (5.13b)
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If this is satisfied, we integrate over (Ri, r) and apply the no-slip axial velocity condition U(Ri)5
0, to obtain

UðrÞ51ð1=KÞ
ðr

Ri

ð1/2 dp=dz r2C=r2 τyieldÞ1=ndr (5.13c)

for Ri, r, r2 . Now the plug moves with a constant speed Uplug in r2 , r, r1 . Its value from

Equation 5.12c at r5 r1 must equal that using Equation 5.13c at the location r5 r2 if there is no

slippage kinematically. In other words,

ðr2

Ri

ð1/2 dp=dz r2C=r2 τyieldÞ1=n dr

�������������������������5 1ðRo

r1

ð21/2 dp=dz r1C=r2 τyieldÞ1=n dr

(5.14)

Numerical evaluation of constraints
For a flow (corresponding to given Ri, Ro, n, K, τyield, and dp/dz) to exist, C must satisfy all of the

conditions derived. Solutions for C may not exist, for instance, when pressure gradients cannot

overcome fluid yield resistance. For such flows, U(r) vanishes, although the viscous stress may not.

Equation 5.14 is very useful. The left side defines a dimensionless function T(Ri, Ro, n, K, τyield,
dp/dz; C) that increases monotonically as C decreases when all other parameters are fixed. In our

iterative solution, we start with the largest C in Equation 5.10b and incrementally decrease C values

by one-thousandth of the total C interval.

Our earlier constraints are tested first to reduce computing times, since the simple logic tests

required only involve “, ” and “. .” Finally, if a value of C* exists such that T(C*), 1 and T

(C*2ΔC). 1, the solution is C*. This value is used to evaluate Equation 5.12c for the outer

annular velocity and Equation 5.13c for the inner annular velocity. The plug velocity is obtained by

evaluating Equation 5.12c at r1 or Equation 5.13c at r2 . Shear rates and viscous stresses are

obtained by using the equations for dU(r)/dr and τ(r). With U(r) available, the total volumetric flow

rate Q can be determined from the integral

Q5

ðRo

Ri

UðrÞ 2πr dr (5.15)

For the integrals in Equations 5.12c, 5.13c, and 5.15, the trapezoidal rule was taken. Several

simple checks were used. First, numerical solutions for Q were validated against exact solutions

available for Newtonian flow. Second, for a “narrow annulus,” the maximum speed is always

found at the center of the channel, with or without yield stress. Third, with all parameters, particu-

larly dp/dz fixed, the flow rate Q decreases as τyield increases. We emphasize that although we have

used numerical evaluations for our integrals, our solutions are exact from a theoretical perspective,

since the integrations can be made as accurate as desired by decreasing integration step size.
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Software interface and typical results
The model derived here is called and executed from the interface in Figure 5.15 accessed under the

“Utility” menu in our steady flow solver. The complete output file under the assumptions shown is

duplicated in Figure 5.16.

Limitations in the derivation
While the Herschel-Bulkley model derived here provides exact and accurate results for all yield

stress values, extending the classic Power law and Bingham plastic solutions of Fredrickson and

Bird (1958), the concentric flow derivation is not generalizable to eccentric annuli because simple

formulas using circular symmetries are not available. This section uses exact relationships to define

plug and sheared zones unambiguously and to apply the respective velocity formulas accordingly.

In eccentric problems, the size, shape, and location of the plug zone cannot be determined a

priori, and a solution to the flow problem has remained elusive. Authors have typically resorted to

slot flow or narrow annulus assumptions, but the limitations of these models are obvious, in partic-

ular when real-world effects like high eccentricities, cuttings beds, and washouts are important.

Next, we address the limitations inherent in the standard Herschel-Bulkley model itself and pro-

vide a practical, comprehensive, and mathematically rigorous solution for yield stress flows in gen-

eral eccentric annuli, with or without axial pipe or casing movement and with or without inner

body rotation. The solutions developed for yield stress fluids in this book apply to eccentric annuli

not only under steady conditions but also when the pipe or casing undergoes general combined

transient reciprocation and rotation.

MODEL 5.4

Extended Herschel-Bulkley Flow in Eccentric Annulus with Axially Moving

But Nonrotating Drillpipe or Casing

In fluid flows where yield stresses exist, “plug zones” are to be found. These plugs move as solid

bodies within the flowing system. For pipes with circular cross sections and for concentric annuli,

FIGURE 5.15

Exact Herschel-Bulkley concentric model.
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we have derived exact analytical solutions for plug zone size and shape assuming Herschel-Bulkley

fluids in the previous section. For circular pipes, the cross-sectional plug is simply a circle; for con-

centric annuli, the plug is a ring.

The appearance of solid plugs within moving streams results from the rheological model used

by mathematicians to idealize the physics. Since the shear rate is Γ5 [(@u/@y)21 (@u/@x)2]1/2, the
usual idealization takes the form

N5K Γn21 1 Syield=Γ if f1/2 trace ðS� SÞg1=2 . τ0
D5 0 if f1/2 trace ðS � SÞg1=2 , τ0

(5.16a)

where the general extra stress tensor is denoted S and the deformation tensor is given by D . Here, τ0
is the so-called yield stress. The discontinuous “if-then” character behind Equation 5.16a, somewhat

artificial, is responsible for the sudden transition from shear flow to plug flow commonly quoted.

As noted, for flows with azimuthal symmetry—that is, circular pipes and concentric annuli—

exact, rigorous mathematical solutions are in fact possible. For noncircular ducts and eccentric

annuli, which describe a large number of practical engineering problems, it has not been possible to

characterize plug zone size and shape, even approximately. Thus, one of the most significant

Herschel-Bulkley (Concentric) Annulus Model:
Exact solution to differential equations ... 

INPUT SUMMARY                               
Inner annular radius  (in):  0.2000E+01
Outer annular radius  (in):  0.4000E+01
Pressure gradient (psi/ft):  -.2388E-01
Fluid exponent n (dimless):  0.8000E+00
Fluid yield stress   (psi):  0.9028E-03
K factor (lbf sec^n/sq in):  0.1375E-04

Plug is between R =   2.5 and   3.4 in.

R =  2.0 in, U = 0.0000E+00 ft/s
R =  2.1 in, U = 0.2076E+01 ft/s
R =  2.2 in, U = 0.3513E+01 ft/s
R =  2.3 in, U = 0.4399E+01 ft/s

.

.

.

R =  3.6 in, U = 0.4396E+01 ft/s
R =  3.7 in, U = 0.3762E+01 ft/s
R =  3.8 in, U = 0.2827E+01 ft/s
R =  3.9 in, U = 0.1577E+01 ft/s
R =  4.0 in, U = 0.0000E+00 ft/s

Volume flow rate BPM: 0.1124E+02
cuft/s: 0.1052E+01

GPM: 0.4719E+03

Rad (in)  Speed  (ft/s)   0
_______________________

4.00     0.0000E+00     *
3.90     0.1577E+01     |       *                     
3.80     0.2827E+01     |               *             
3.70     0.3762E+01     |                     *       
3.60     0.4396E+01     |            *   
3.50     0.4750E+01     |                           * 
3.40     0.4863E+01     |                            * 
3.30     0.4882E+01     |                            *
3.20     0.4882E+01     |                       *
3.10     0.4882E+01     |                            *
3.00     0.4882E+01     |                            *
2.90     0.4882E+01     |                            *
2.80     0.4882E+01     |                            *
2.70     0.4882E+01     |                            *
2.60     0.4882E+01     |                            *
2.50     0.4882E+01     |                            *
2.40     0.4822E+01     |                           * 
2.30     0.4399E+01     |                         *   
2.20     0.3513E+01     |                   *         
2.10     0.2076E+01     |          *                  
2.00     0.0000E+00     *                             

FIGURE 5.16

Exact velocity profile result.
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petroleum engineering problems important to both drilling and cementing cannot be modeled at all,

let alone accurately. In order to remedy this situation, we observe that the discontinuity offered in

Equation 5.16a is really an artificial one, introduced by theorists for, of all reasons, “simplicity.”

This unfortunately leads to the solution difficulties noted. In reality, practical engineering

flows do not suddenly turn from shear to plug flow; the transition may be rapid, but it will occur

continuously over finite measurable distances. Moreover to the author’s knowledge, ideal plugs

have never been observed experimentally. We therefore turn to more realistic rheological models

that apply continuously throughout the entire problem domain and that, if the underlying flow para-

meters permit, lead to plug zones naturally during the computational solution process.

The conventional Herschel-Bulkley viscoplastic model, which includes Bingham plastics as

a special limit when the exponent “n” is unity, requires that τ5 τ01K(dγ /dt)n if τ. τ0 and

dγ /dt5 0 otherwise. Here τ is the shear stress, τ0 is the yield stress, K is the consistency factor, n

is the exponent, and dγ /dt is the shear rate. As explained, this model is far from perfect. For exam-

ple, both Herschel-Bulkley and Bingham plastic models predict fictitious infinite viscosities in the

limit of vanishing shear rate, a fact that often leads to numerical instabilities. This same infinity

also precludes numerical methods, which typically assume that derivatives exist. In addition, the

behavior is not compatible with conservation laws that govern many complex flows.

An alternative to the standard Herschel-Bulkley model is the use of continuous functions that

apply to sheared regimes and, in addition, through and into the plug zone. One such model is sug-

gested by Souza, Mendez and Dutra (2004): τ5 {12 exp(2 η0 dγ /dt/τ0)}{τ01K (dγ /dt)n}, which
applies everywhere in the problem domain. Its apparent viscosity function is

η5 τ=ðdγ=dtÞ5 f1�expð2η0dγ=dt=τ0Þgfτ0=ðdγ=dtÞ1Kðdγ=dtÞn21g (5.16b)

The “apparent viscosity versus shear stress” and “shear stress versus shear rate” diagrams, from

Souza et al. (2004), are duplicated in Figure 5.17. What are the physical consequences of this

model? Equation 5.16b, in fact, represents an “extended Herschel-Bulkley” model in this sense. For
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FIGURE 5.17

Extended Herschel-Bulkley law.
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infinite shear rates, one would recover τ5 τ01K (dγ/dt)n. But for low shear rates, a simple Taylor

expansion leads to η� {η0(dγ/dt)/τ0}{τ0/(dγ/dt)1K (dγ/dt)n21}� η0, where it is clear now that η0
represents a very high (assumed) viscosity for the plug zone.

The use of Equation 5.16b in numerical algorithms simplifies both formulation and coding,

since internal boundaries and plug domains do not need to be determined as part of the solution. A

single constitutive law (as opposed to the use of two relationships in Equation 5.16a) applies every-

where, thus simplifying computational logic; moreover, the continuous function assumed also pos-

sesses continuous derivatives everywhere and allows the use of standard difference formulas.

Cumbersome numerical matching across internal boundaries is completely avoided. In a practical

computer program, the plug zone viscosity might be assumed, for example, as 1,000 cp. In fact, we

choose high values of η0 that will additionally stabilize the numerical integration schemes used.

This strategy is applied throughout our work, both to our iterative relaxation schemes for steady-

state problems and to our transient integration schemes for more complicated formulations.

It is important to recognize that the standard and extended Herschel-Bulkley models here are not

identical and will not give identical results even in the concentric case, although they will be close.

Thus, it is of interest to consider typical numbers. Yield stresses in drilling and cementing applica-

tions are often quoted as multiples of “lbf/100 ft2” or 0.00006944 psi. An order-of-magnitude correct

yield might be 0.0001 psi. In Figure 5.18, we compare concentric results obtained from our exact

Herschel-Bulkley solver with that produced by the steady, curvilinear grid simulator with the gener-

alized constitutive relation. The exact flow rate is 1,387 gpm, while the finite difference solution

gives 1,364 gpm, incurring less than a 2 percent error. If the yield stress is increased to 0.0005 psi,

then the exact flow rate is 884.7 gpm, while the approximate value is 933.0 gpm, for a 5.5 percent

difference. The difference increases as yield stress increases.

FIGURE 5.18

Comparison for 0.0001-psi yield stress.
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In Figure 5.19, we apply our steady, curvilinear grid, finite difference simulator to a water-like

Bingham plastic fluid and show that the volumetric flow rate for the parameters that are shown is

1,632 gpm. For this test case, the flow rate is 8,461 gpm without yield stress. Calculations require

about one second of computing, including screen display time. The “flat top” profiles associated

with yield stress flows appear naturally even for highly eccentric annuli. Again, the steady flow

simulator supports constant speed drillpipe or casing movement.

In Figure 5.20, for instance, eccentric annular plug flow solutions are obtained for stationary

pipe (left), pipe moving opposite to the flow (middle) and pipe moving with the flow (right). Our

use of a generalized Herschel-Bulkley fluid applies to both steady and unsteady formulations. Yield

stress applications in transient flow are pursued in Chapter 7.

Finally, we emphasize that the term “exact” refers to exact solutions of the discontinuous model

in Equation 5.16a. The model in Equation 5.16b, on the other hand, describes a continuous velocity

field with continuous derivatives. The “exact” discontinuous formulation, of course, is less applica-

ble in an engineering sense than our continuous model, since physical properties may not change

suddenly within a flow field. In this sense, the value of a yield stress model should not be judged

by how consistent it is with an unnatural formulation but by how consistent it is with reality.

MODEL 5.5

Steady Non-Newtonian Flow in Boreholes with Bends

Bends in pipelines and annuli are interesting because they are associated with additional losses; that is,

to maintain a prescribed volumetric flow rate, a greater pressure drop is required in ducts with bends

than in those without. (This book does not deal with “secondary flows” such as rotating vortical eddies

attached to solid walls or corners, separated viscous flows, and so on.) This is true because the net

fluid stresses that act along duct walls are higher. We will first discuss the problem analytically, in the

context of Newtonian flow; in this limit, exact solutions are derived for Poiseuille flow between curved

concentric plates, but we will also focus on the form of the new differential equation used.

The closed-form expressions derived for Newtonian flow, which contain the required centrifugal

force modifications, are new. Their derivation motivates our methodology for non-Newtonian flows

in steady, three-dimensional, curved, closed, simple, and annular ducts, which can only be analyzed

computationally. This simulation feature is built into the “Steady 2D” solver. (It does not appear in

our “Transient 2D” simulator because of time and budget constraints.) As shown in the user interface

of Figure 1.8 at the bottom left, only the radius of curvature needs to be entered in the “Curvature,

hole axis (ft)” text input box. For straight ducts, a large value, say 1,000 ft, can be used.

Straight, closed ducts
This book provides analytical solutions for Newtonian flows in straight circular ducts (i.e., Eqs. 1.1b

and 1.1c) and in rectangular conduits (see Model 5.10), as shown in Figures 5.21 and 5.22. We also

developed a general non-Newtonian viscous flow solver applicable to arbitrary cross section but

straight eccentric annuli utilizing curvilinear meshes (Figure 5.23). These solutions have been vali-

dated in detail in a number of application examples. We now ask, “How are these methodologies

extended to handle finite-radius bends along borehole axes?” These extensions, important to model-

ing borehole curvature in directional wells, are motivated by the parallel plate solutions derived next.
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FIGURE 5.19

Bingham plastic run (note large plug zone).
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FIGURE 5.20

Non-Newtonian plug velocity profiles with pipe movement.

x

y

FIGURE 5.22

Viscous flow in a rectangular duct.

x

y

FIGURE 5.21

Viscous flow in a circular pipe.

x
y

FIGURE 5.23

Viscous flow in a general duct.
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Hagen-Poiseuille flow between planes
Let us consider here the plane Poiseuille flow between parallel plates shown in Figure 5.24, but for

simplicity, we will restrict ourselves first to Newtonian fluids.

Let y be the coordinate perpendicular to the flow, with y5 0 and H representing the walls of

a duct of height H. If u(y) represents the velocity, the Navier-Stokes equations reduce to Equa-

tion 5.17—that is,

d2uðyÞ=dy2 5 1=μ dP=dz (5.17)

uð0Þ5 uðHÞ5 0 (5.18)

which is solved with the no-slip conditions in Equation 5.18. Again, μ is the Newtonian viscosity and

dP/dz is the constant axial pressure gradient. The velocity solution is the well-known parabolic profile

uðyÞ5 1/2ð1=μ dP=dzÞ y ðy2HÞ (5.19)

which yields the volumetric flow rate “Q/L” (per unit length “L” out of the page):

Q=L5

ðH

0

uðyÞ dy52ð1=μ dP=dzÞH3=12 (5.20)

Flow between concentric plates
Now suppose that the upper and lower walls are bent so that they conform to the circumferences

of concentric circles with radii “R” and “R1H,” where R is the radius of curvature of the smaller

circle. We ask, “How are corrections to Equations 5.19 and 5.20 obtained?”

It is instructive to turn to the exact momentum law in the azimuthal “θ” direction used in Model

5.6 for our analysis of rotating concentric flow—that is, Equation 5.49. There, vθ represents the

velocity in the circumferential direction. We now draw upon that azimuthal equation but apply it to

the flow between the concentric curved plates shown in Figure 5.25.

Since there is no flow perpendicular to the page, vz5 0; also, vr5 0 because the velocity is

directed only tangentially, and Fθ is assumed to be zero. In these coordinates, the flow is steady,

and θ and “z” variations vanish identically. Thus, the azimuthal equation reduces to the ordinary

differential equation

d2vθ=dr
2 1 1=r dvθ=dr2 vθ=r

2 5 1=μ f1=r dP=dθg (5.21)

FIGURE 5.24

Flow between parallel plates.
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where the right side, containing the axial pressure gradient “1/r dP/dθ,” is approximately constant.

It must be solved together with the no-slip conditions

vθðRÞ5 vθðR1HÞ5 0 (5.22)

A closed-form solution can be obtained as

vθðrÞ=½1=μ f1=r dP=dθg�5 fðR1HÞ3 2R3g=fR2 2 ðR1HÞ2g3 ðr=3Þ

2R2ðR1HÞ2=fR2 2 ðR1HÞ2g3 fH=ð3rÞg1 1=3 r2
(5.23)

Then the volumetric flow rate “Q/L” per unit length (out of the page) is

Q=L5

ðR1H

R

vθðrÞ dr (5.24)

Q=L5 ð1=18Þð1=μ dP=dzÞf26R3H29R2H2 25RH3 2H4 1 6R4 lnðR1HÞ
1 12HR3 lnðR1HÞ1 6H2R2 lnðR1HÞ26R4 lnðRÞ
212R3H lnðRÞ26R2H2 lnðRÞg=ð2R1HÞ

(5.25)

where we have replaced “1/r dP/dθ” by “dP/dz.” Now, in the limit R..H, Equation 5.25 simplifies to

Q=L � ð1=μ dP=dzÞf2H3=121H5=ð180R2Þ1Oð1=R3Þg (5.26)

The first term in Equation 5.26 is the result in Equation 5.20—that is, the asymptotic contribu-

tion of the straight parallel plate solution. Subsequent terms represent corrections for finite R. In

general, Equation 5.25 applies to all R and H combinations without restriction.

Typical calculations
It is interesting to ask, “How does total volumetric flow rate in such a curved “pipe” compare with

classical parallel plate theory?” For this purpose, consider the ratio obtained by dividing Equation

5.25 by Equation 5.20. It is plotted in Figure 5.26, where we have set H5 1 and varied R.

Rc

FIGURE 5.25

Opened duct flow between concentric curved plates.
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This ratio tends to “1” quickly, when R. 5. We also ask, “What is the worst flow rate penalty

possible?” If we take R-0, it can be shown that the ratio approaches 2/3. Thus, for Newtonian

flow between concentric plates, the volumetric flow rate is at worst equal to 2/3 of the value

obtained between parallel plates for the same H. This assumes that the flow is steady and laminar,

with no secondary viscous flow in the cross-sectional plane.

We also use the velocity solution in Equation 5.23 to study the viscous stresses at the walls of

our concentric channel. Consider Figure 5.27, which shows two impinging particles lodged at A

and B, which may represent wax, hydrate, cuttings, or other debris. The likelihood that they will

dislodge depends on the local viscous stress, among other factors. In this problem, vz5 vr5 0 and

@/@θ5 @/@z5 0, leaving the single stress component τ rθ(r)5 μ r @(vθ/r)/@r. In particular, we plot

“Stress Ratio”52 τrθ(R1H)/τrθ(R) in Figure 5.28, with H5 1 and varying R. The “minus” is

0
0.8

0.85

0.9

0.95

1

1 2 3

R

4 5

FIGURE 5.26

Volumetric flow rate ratio, with H5 1.

A

B

FIGURE 5.27

Particles impinging at duct walls.
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used to keep the ratio positive, since the signs of the opposing stresses are opposite. The result is

shown in Figure 5.28.

This graph shows that stresses at the outer wall are less whenever axis curvatures are finite.

Thus, with all parameters equal, there is less likelihood that B will dislodge more quickly than A.

The velocity and stress solutions obtained here are also useful in determining how and where debris

settles within the duct. Numerous factors enter, of course, among them particle size, shape, and dis-

tribution; buoyancy effects; local velocities and gradients; and so on. Such studies follow lines

established in the sedimentary transport literature.

Flows in closed curved ducts
Our analysis shows that corrections for bends along the axis can be obtained by solving vθ(r) in cylindri-

cal coordinates. It is apparent that the extension of Equations 5.25 and 5.26 to cover closed rectangular

ducts (versus “opened” concentric plates) with finite radius of curvature (e.g., Figure 5.22) only requires

the solution of Equation 5.21 with the “@2vθ/@z
2” term in the earlier azimuthal equation, leading to

@2vθ=@r
2 1 1=r @vθ=@r2 vθ=r

2 1 @2vθ=@z
2 5 1=μ @P=@zaxial (5.27)

where the notation “@P/@zaxial” for axial pressure gradient replaces the “@P/@z” used previously, not-

ing that the “z” in the vθ(r,z) of Equation 5.27 is now perpendicular to the page. For the duct in

Figure 5.22, the no-slip conditions are vθ(R,z)5 vθ(R1H,z)5 0 and vθ(r,z1)5 vθ(r,z2)5 0, where

z5 z1 and z2 are end planes parallel to the page.

With our extension to rectangular geometries clear, the passage to bent ducts with arbitrary

closed cross sections (e.g., Figure 5.29) is obtained by taking Equation 5.27 again, but with no-slip

conditions applied along the perimeter of the shaded duct area or annular domain. Ducts with multi-

ple bends are studied by combining multiple ducts with piecewise constant radii of curvature. Since

the total flow rate is fixed, each section will be characterized by different axial pressure gradients.

0

0.8

0.75

0.85

0.9

0.95

Stress ratio

5 10 15 20 25 30

R

FIGURE 5.28

“Stress Ratio,” H5 1.
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Of course, Equation 5.27 is quite different from the original equation for straight flows—that is,

from “@2u/@y21 @2u/@x2�N(Γ)21 @P/@z1 . . .” To use the previous algorithm, we rewrite Equation

5.27 in the form

@2vθ=@r
2 1 @2vθ=@z

2 5 1=μ @P=@zaxial 21=R @vθ=@r1 vθ=R
2 (5.28)

where we have transferred the new terms to the right side and replaced the variable “r” coefficients

with constants, assuming R..H so that r� R.

The “r, z” in Equation 5.28 are just the “y, x” cross-sectional variables used earlier. In our itera-

tive solution for this Newtonian flow, the right-side velocity terms of Equation 5.28 are evaluated

using latest values, with the relaxation method continuing until convergence.

For non-Newtonian flows, a similar procedure applies; that is, μ is replaced by the apparent vis-

cosity N(Γ). To demonstrate the basic ideas, consider the general θ momentum equation

ρð@vθ=@t1 vr @vθ=@r1 vθ=r @vθ=@θ1 vθvr=r1 vz @vθ=@zÞ
521=r @P=@θ1 1=r2 @ðr2SθrÞ=@r1 1=r @Sθθ=@θ1 @Sθz=@z1 body forces

(5.29)

If @/@t5 @/@θ5 vr5 vz5 0 and body forces vanish, then

@P=@zaxial � 1=r @P=@θ5 1=r2 @ðr2SθrÞ=@r1 1=r @Sθθ=@θ1 @Sθz=@z (5.30)

If we now substitute S5 2 N(Γ) D from Equation 2.39, we obtain

@2vθ=@r2 1 @2vθ=@z2 1 1=r @vθ=@r2 vθ=r2

5 1=NðΓÞ @P=@zaxial 1 . . .
(5.31)

where “1 . . .” represents terms containing derivatives of N(Γ). These are completely retained in

our steady flow solution process but, for brevity, are not written out. The revised partial differential

equation, of course, applies whether or not the inner pipe moves. The constant positive, zero, or

negative speed is entered at the bottom left of the “Steady 2D” user interface in Figure 1.8.

These changes are easily implemented in software. For example, our straight-duct “line relaxa-

tion” Fortran source code previously included the lines that incorporate “N(Γ)21 @P/@z,” where the

other terms shown are related to the Thompson mapping. To introduce borehole curvature, the term

shown in bold is simply replaced as indicated by comparing Figures 5.30 and 5.31.

Rc

x

y

FIGURE 5.29

Arbitrary closed duct with curved axis.
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The second and third lines of our Fortran source code for “CHANGE” represent the “r” velocity

derivative in transformed coordinates. Newtonian calculations similar to those performed for “concen-

tric plate Poiseuille flow” show that, when pressure gradient is prescribed, volumetric flow rate again

decreases as the radius of curvature Rc tends to zero. For a circular cross section of radius R, the

decrease is roughly 20 percent relative to Hagen-Poiseuille flow when Rc and R are comparable. We

have focused on Newtonian flows because exact solutions were available and, importantly, our results

applied to all viscosities and pressure gradients. However, results will vary for pipelines with noncircu-

lar cross sections, non-Newtonian flow, or both; general conclusions, of course, cannot be offered, but

computations can now be easily performed with the numerically stable implementation just derived.

MODEL 5.6

Newtonian and Power Law Flow in Concentric Annulus with Rotating (But Axially Stationary) Pipe or Casing

Analytical solutions for nonlinearly coupled axial and circumferential velocities, their deformation,

stress, and pressure fields, are obtained for concentric annular flow in an inclined borehole with a

centered, rotating drillstring or casing. The closed-form solutions are used to derive formulas for

volumetric flow rate, maximum borehole wall stress, apparent viscosity, and other quantities as

functions of “r.” The analysis is restricted to Newtonian and Power law fluids. Our Newtonian

results are exact solutions to the viscous Navier-Stokes equations without geometric approximation.

For Power law fluids, the analytical results reduce to the Newtonian solutions in the “n5 1”

limit. All solutions satisfy no-slip viscous boundary conditions at both the rotating drillstring and

the borehole wall. Our pipe is assumed to be stationary axially. The formulas are explicit; they

require no iteration and are easily programmed on calculators and computers. Extensive analytical

and calculated results are given, which elucidate the physical differences between the two fluid

types.

WW(J) = -ALPHA(I,J)*(U(I-1,J)+U(I+1,J))/DPSI2

1        +GAKOB(I,J)*GAKOB(I,J)* PGRAD/APPVIS(I,J)

2        +2.0*BETA(I,J)*

3        (U(I+1,J+1)-U(I-1,J+1)-U(I+1,J-1)+U(I-1,J-1))/

4        (4.*DPSI*DETA)

FIGURE 5.30

Original straight-duct Fortran source code.

CHANGE = PGRAD/APPVIS(I,J) 

1       -(YETA(I,J)*(U(I+1,J)-U(I-1,J))/(2.*DPSI)

2       - YPSI(I,J)*(U(I,J+1)-U(I,J-1))/(2.*DETA))/

3        (GAKOB(I,J)*RCURV)

4       + U(I,J)/(RCURV**2.)
C

WW(J) = -ALPHA(I,J)*(U(I-1,J)+U(I+1,J))/DPSI2

1        +GAKOB(I,J)*GAKOB(I,J)*CHANGE

2        +2.0*BETA(I,J)*

3        (U(I+1,J+1)-U(I-1,J+1)-U(I+1,J-1)+U(I-1,J-1))/

4        (4.*DPSI*DETA)

FIGURE 5.31

Modified Fortran source code.
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General governing equations
The equations governing general fluid motion are available from many excellent textbooks on con-

tinuum mechanics (Schlichting, 1968; Slattery, 1981). We will cite these equations without proof.

Let vr, vθ, and vz denote Eulerian fluid velocities, and Fr, Fθ, and Fz the body forces, in the r, θ, and
z directions, respectively. Here (r, θ, z) are standard circular cylindrical coordinates.

Also, let ρ be the constant fluid density and p be the pressure, and denote by Srr, Srθ, Sθθ, Srz,

Sθr, Sθz, Szr, Szθ, and Szz the nine elements of the general extra stress tensor S. If t is time and

@’s represent partial derivatives, the complete equations obtained from Newton’s law and mass

conservation are

Momentum equation in r:

ρð@vr=@t1 vr@vr=@r1 vθ=r @vr=@θ2 vθ
2=r1 vz @vr=@zÞ

5 Fr � @p=@r1 1=r @ðrSrrÞ=@r1 1=r @ðSrθÞ=@θ1 @ðSrzÞ=@z� Sθθ=r
(5.32)

Momentum equation in θ:

ρð@vθ=@t1 vr @vθ=@r1 vθ=r @vθ=@θ1 vrvθ=r1 vz @vθ=@zÞ
5 Fθ � 1=r @p=@θ1 1=r2 @ðr2SθrÞ=@r1 1=r @ðSθθÞ=@θ1 @ðSθzÞ=@z (5.33)

Momentum equation in z:

ρð@vz=@t1 vr @vz=@r1 vθ=r @vz=@θ1 vz@vz=@zÞ
5 Fz � @p=@z1 1=r @ðrSzrÞ=@r1 1=r @ðSzθÞ=@θ1 @ðSzzÞ=@z (5.34)

Mass continuity equation:

1=r @ðrvrÞ=@r1 1=r @vθ=@θ1 @vz=@z5 0 (5.35)

These equations apply to all Newtonian and non-Newtonian fluids. In continuum mechanics, the

most common class of empirical models for isotropic, incompressible fluids assumes that S can be

related to the rate of deformation tensor D by a relationship of the form

S5 2NðΓÞD (5.36)

where the elements of D are

Drr 5 @vr=@r (5.37)

Dθθ 5 1=r @vθ=@θ1 vr=r (5.38)

Dzz 5 @vz=@z (5.39)

Drθ 5Dθr 5 ½r @ðvθ=rÞ=@r1 1=r @vr=@θ�=2 (5.40)

Drz 5Dzr 5 ½@vr=@z1 @vz=@r�=2 (5.41)

Dθz 5Dzθ 5 ½@vθ=@z1 1=r @vz=@θ�=2 (5.42)
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In Equation 5.36, N(Γ) is the “apparent viscosity function” satisfying

NðΓÞ. 0 (5.43)

Γ(r, θ, z) being the scalar functional of vr, vθ, and vz defined by the tensor operation

Γ5 f2 trace ðD�DÞg1=2 (5.44)

These considerations are still very general. Let us examine an important and practical simplifi-

cation. The Ostwald-de Waele model for two-parameter “Power law fluids” assumes that the appar-

ent viscosity satisfies

NðΓÞ5K Γn21 (5.45)

where the exponent “n” and consistency factor “K” are constants. Power law fluids are “pseudo-

plastic” when 0, n, 1, Newtonian when n5 1, and “dilatant” when n. 1. Most drilling fluids are

pseudoplastic. In the limit, taking “n5 1, K5 μ,” Equation 5.45 reduces to a Newtonian model

with N(Γ)5 μ, where μ is the laminar viscosity; here stress is linearly proportional to shear rate.

On the other hand, when n and K take on general values, the apparent viscosity function

becomes somewhat complicated. For isotropic, rotating flows without velocity dependence on the

azimuthal coordinate θ, the function Γ in Equation 5.45 takes the form

Γ5 ½ð@vz=@rÞ2 1 r2ð@fvθ=rg=@rÞ2�1=2 (5.46)

as we will show, so that Equation 5.45 becomes

NðΓÞ5K½ð@vz=@rÞ2 1 r2ð@fvθ=rg=@rÞ2�ðn21Þ=2 (5.47)

This apparent viscosity reduces to the conventional N(Γ)5K (@vz/@r)
(n21) for “axial only” flows

without rotation; and to N(Γ)5K (r@{vθ/r}/@r)
(n21) for “rotation only” viscometer flows without

axial velocity. When both axial and circumferential velocities are present, as in annular flows with

drillstring rotation, neither of these simplifications applies. This leads to mathematical difficulty.

Even though “vθ (max)” is known from the rotational rate, the magnitude of the nondimensional

“vθ (max)/vz(max)” ratio cannot be accurately estimated because vz is highly sensitive to n, K, rota-

tional rate, and pressure drop. Thus, it is impossible to determine beforehand whether or not rota-

tional effects will be weak; simple “axial flow only” formulas cannot be used a priori.

Our result for Newtonian flow, an exact solution to the Navier-Stokes equations, is considered

first, without geometric approximation. Then a closed form analytical solution for pseudoplastic

and dilatant Power law fluids is developed for more general n’s; we will derive results for rotating

flows using Equation 5.47 in its entirety, which lead to useful formulas that can be evaluated

explicitly without iteration. Because the mathematical manipulations are complicated, the

Newtonian limit is examined first to gain insight into the general case. This is instructive because it

allows us to highlight the physical differences between Newtonian and Power law flows.

The annular geometry is shown in Figure 5.32. A drillpipe (or casing) and borehole combination

is inclined at an angle α relative to the ground, with α5 0� for horizontal wells and α5 90� for

vertical wells. “Z” denotes any point within the drillpipe or annular fluid; section AA is cut normal

to the local z axis. What is shown in Figure 5.33 resolves the vertical body force at Z, due to
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gravity, into components parallel and perpendicular to the axis. Figure 5.34 further breaks the latter

into vectors in the radial and azimuthal directions of the cylindrical coordinate system at section

AA. Physical assumptions about the drillstring and borehole flow in these coordinates are devel-

oped next. Their engineering and mathematical consistency will be evaluated, and application for-

mulas and detailed calculations will be given.

Exact Newtonian flow solution
For Newtonian flows, the stress is linearly proportional to shear rate; the proportionality constant

is the laminar viscosity μ. We assume for simplicity that μ is constant (temperature or pressure

dependencies would complicate the solution by coupling additional energy balance and material

equations). Thus, Equations 5.32 through 5.34 become

Momentum equation in r:

ρf@vr=@t1 vr @vr=@r1 vθ=r @vr=@θ2 vθ
2=r1 vz@vr=@zg5 Fr 2 @p=@r

1 μf@2vr=@r2 1 1=r @vr=@r2 vr=r2 1 1=r2 @2vr=@θ2 22=r2 @vθ=@θ1 @2vr=@z2g (5.48)

Momentum equation in θ:

ρf@vθ=@t1 vr @vθ=@r1 vθ=r @vθ=@θ1 vrvθ=r1 vz @vθ=@zg5 Fθ 21=r @p=@θ
1 μf@2vθ=@r2 1 1=r @vθ=@r2 vθ=r2 1 1=r2 @2vθ=@θ2 1 2=r2 @vr=@θ1 @2vθ=@z2g (5.49)

Momentum equation in z:

ρf@vz=@t1 vr @vz=@r1 vθ=r @vz=@θ1 vz @vz=@zg5 Fz 2 @p=@z
1 μf@2vz=@r2 1 1=r @vz=@r1 1=r2 @2vz=@θ2 1 @2vz=@z2g (5.50)

In this section, it is convenient to rewrite Equation 5.35 in the expanded form.

Surface z = 0

z axis

Section AA

Arbitary z

Inclination α > 0

Horizontal ground reference Drillbit z = L

A

A

FIGURE 5.32

Borehole configuration.
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Arbitrary “z”

ρg sin α

ρg cos α

–ρg cos α

High side Expanded view

Free body diagram in
(z, y, x) coordinates

x

y

(y, x)

Low side
(pipe and hole not necessarily circular)

ρg
90°

α

x

y

(y, x)

FIGURE 5.33

Gravity vector components.

x

High side, θ = 90°

Low side, θ = –90°

y
(r, θ)

y

x

(y, x)

ρg cos α cos θ

ρg cos α sin θρg cos α

FIGURE 5.34

Free body diagram, gravity in (r, θ, z) coordinates.
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Mass continuity equation:

@vr=@r1 vr=r1 1=r @vθ=@θ1 @vz=@z5 0 (5.51)

Now consider the free body diagrams in Figures 5.32 through 5.34. Figure 5.32 shows a

straight borehole with a centered, rotating drillstring inclined at an angle α relative to the ground.

Figure 5.33, referring to this geometry, resolves the gravity vector g into components parallel and

perpendicular to the hole axis. Figure 5.34 applies to the circular cross section AA in Figure 5.32

and introduces local cylindrical coordinates (r, θ). The “low side, θ5290�” marks the position

where cuttings beds would normally form. The force ρg cos α of Figure 5.33 is resolved into

orthogonal components ρg cos α sin θ and ρ g cos α cos θ.
Physical assumptions about the flow are now given. First, it is expected that at any section AA

along the borehole axis z, the velocity fields will appear to be the same; they are invariant, so z

derivatives of vr, vθ, and vz vanish. Also, since the drillpipe and borehole walls are assumed to be

impermeable, vr5 0 throughout. (In formation invasion modeling, this would not apply.) While we

do have pipe rotation, the use of circular cylindrical coordinates (with constant vθ at the drillstring)

renders the mathematical formulation steady. Thus, all time derivatives vanish. These assumptions

imply that

2 ρ vθ2=r5 Fr 2 @p=@r22μ=r2 @vθ=@θ (5.52)

ρ vθ=r @vθ=@θ5 Fθ 21=r @p=@θ
1 μf@2vθ=@r2 1 1=r @vθ=@r2 vθ=r2 1 1=r2 @2vθ=@θ2g

(5.53)

ρ vθ=r @vz=@θ5 Fz 2 @p=@z
1 μf@2vz=@r2 1 1=r @vz=@r1 1=r2 @2vz=@θ2g (5.54)

@ vθ=@θ5 0 (5.55)

Equation 5.55 is useful in further simplifying Equations 5.52 through 5.54. We straightfor-

wardly obtain

ρ vθ2=r5 ρ g cos α sin θ1 @p=@r (5.56)

052 ρ g cos α cos θ21=r @p=@θ1 μf@2vθ=@r2 1 1=r @vθ=@r2 vθ=r2g (5.57)

ρ vθ=r @vz=@θ5 ρ g sin α2 @p=@z1 μf@2vz=@r2
1 1=r @vz=@r1 1=r2 @2vz=@θ2g

(5.58)

where we have substituted the body force components of Figures 5.33 and 5.34. Now, since

Equation 5.58 does not explicitly contain θ, it follows that vz is independent of θ. Since we already

showed that there is no z dependence, we find that vz5 vz (r) is a function of r only. Equation 5.58

therefore becomes

05 ρ g sin α2 @p=@z1 μf@2vz=@r2 1 1=r @vz=@rg (5.59)
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To achieve further simplicity, we resolve (without loss of generality) the pressure p(r, θ, z) into
its component dynamic pressures P(z) and P*(r), and its hydrostatic contribution, through the sepa-

ration of variables:

pðr; θ; zÞ5 PðzÞ1 P�ðrÞ1 zρg sin α2 r ρg cos α sin θ (5.60)

This reduces the governing Navier-Stokes equations to the simpler but mathematically equivalent

system

@2vz=@r
2 1 1=r @vz=@r5 1=μ dPðzÞ=dz5 constant (5.61)

@2vθ=@r
2 1 1=r @vθ=@r2 vθ=r

2 5 0 (5.62)

ρ vθ2=r5 dP�ðrÞ=dr (5.63)

The separation of variables introduced in Equation 5.60 and the explicit elimination of “g” in

Equations 5.61 through 5.63 do not mean that gravity is unimportant; the effects of gravity are sim-

ply tracked in the dP(z)/dz term of Equation 5.61. The function P*(r) will depend on the velocity

solution to be obtained. Equations 5.61 through 5.63 are also significant in another respect. The

velocity fields vz(r) and vθ(r) can be obtained independently of each other, despite the nonlinearity

of the Newtonian Navier-Stokes equations, because Equations 5.61 and 5.62 physically uncouple.

This decoupling occurs because the nonlinear convective terms in the original momentum equations

identically vanish. Equation 5.63 is only applied (after the fact) to calculate the radial pressure

field P*(r) for use in Equation 5.60. This decoupling applies only to Newtonian flows. For non-

Newtonian flows, vz(r) and vθ(r) are strongly coupled mathematically, and different solution strate-

gies are needed.

This degeneracy with Newtonian flows means that their physical properties will be completely

different from those of Power law fluids. For Newtonian flows, changes in the rotational rate will

not affect properties in the axial direction, in contrast to non-Newtonian flows. Cuttings transport

recommendations deduced, for example, using water as the working medium cannot be extrapolated

to general drilling fluids having fractional values of n, using any form of dimensional analysis.

Similarly, observations for Power law fluids need not apply to water. This uncoupling was

apparently first observed by Savins and Wallick (1966), and the author is indebted to J. Savins for

bringing this earlier result to his attention. Savins and Wallick noted that in Newtonian flows, no

coupling among the discharge rate, axial pressure gradient, relative motion, and torque through vis-

cosity exists. But we emphasize that the coupling between vz and vθ reappears in eccentric geome-

tries even for Newtonian flows.

Because Equations 5.61 and 5.62 are linear, it is possible to solve for the complete flow field

using exact classical methods. We will give all required solutions without proof, since they can be

verified by direct substitution. For the inside of the drillpipe, the axial flow solution to Equation

5.61 satisfying no-slip conditions at the pipe radius r5RP and zero shear stress at the centerline

defined by r5 0 is

vzðrÞ5 ðr2 2RP
2Þ=4μ dPðzÞ=dz (5.64)
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The rotating flow solution to Equation 5.62 satisfying bounded flow at r5 0 and vθ/r5ω at

r5RP is

vθ 5ωr (5.65)

This is just the expected equation for solid body rotation. Here, “ω” is a constant drillstring rota-

tional rate. These velocity results, again, can be linearly superposed despite the nonlinearity of the

underlying equations.

Now let L denote the length of the pipe, Pmp denote the constant pressure at the “mud pump”

z5 0, and P2 denote the drillpipe pressure at z5L just upstream of the bit nozzles. Direct integra-

tion of Equation 5.63 and substitution in Equation 5.60 yield the complementary solution for

pressure:

pðr; θ; zÞ5 Pmp 1 ðP2 2 PmpÞ z=L1 ρω2r2=2
1 ρgðz sin α2 r cos α sin θÞ1 constant

(5.66)

For the annular region between the rotating drillstring and the stationary borehole wall, the solu-

tion of Equation 5.61 satisfying no-slip conditions at the pipe radius r5RP and at the borehole

radius r5RB is

vzðrÞ5 fr2 2RP
2 1 ðRB

2 2RP
2Þðlog r=RPÞ=log RP=RBg1=4μ dPðzÞ=dz (5.67)

where “log” denotes the natural logarithm. The solution to Equation 5.62 satisfying vθ5 0 at

r5RB and vθ5ωr at r5RP is

vθðrÞ5ωRPðRB=r2 r=RBÞ=ðRB=RP 2RP=RBÞ (5.68)

Now let P1 be the pressure at z5L just outside the bit nozzles, and Pex be the surface exit

pressure at z5 0. The solution for pressure from Equation 5.63 is

pðr; θ; zÞ5 P11 ðPex 2 P1 ÞðL2 zÞ=L1 ρgðz sin α2 r cos α sin θÞ
1 ρω2RP

2f21/2ðRB=rÞ2 1 1/2ðr=RBÞ2 22 log ðr=RBÞ
1 constantg=ðRB=RP 2RP=RBÞ2

(5.69)

Observe that the pressure p(r, θ, z) depends on all three coordinates, even though vz(r) depends

only on r. The pressure gradient @p/@r, for example, throws cuttings through centrifugal force; it

likewise depends on r, θ, and z and on ρ, g, and α. It may be an important correlation parameter in

cuttings transport and bed formation studies. The additive constants in Equations 5.66 and 5.69

have no dynamical significance. Equations 5.64 through 5.69 describe completely and exactly the

internal drillpipe flow and the external annular borehole flow. No geometrical simplifications have

been made. The solution applies to an inclined, centered drillstring rotating at a constant angular

rate ω, but it is restricted to a Newtonian fluid.

Again, these concentric solutions show that in the Newtonian limit, the velocities vz(r) and vθ(r)

uncouple; this is not the case for eccentric flows. And this is never so with non-Newtonian drill-

ing flows, whether concentric or eccentric. Thus, the analysis methods developed here must be

extended to account for the physical coupling.
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Non-Newtonian Power law solution
For general non-Newtonian flows, the Navier-Stokes equations (see Equations 5.48 through 5.50)

do not apply; direct recourse to Equations 5.32 through 5.34 must be made. However, many of the

physical assumptions used and justified above still hold. If we again assume a constant density

flow and assume that velocities do not vary with z, θ, and t and that vr5 0, we again obtain our

Equation 5.55. This implies mass conservation. It leads to further simplifications in Equations 5.32

through 5.34, and in the tensor definitions given by Equations 5.36 through 5.45. The result is the

reduced system of equations:

05 ρg sin α2 @p=@z1 1=r @ðNr @vz=@rÞ=@r (5.70)

052 ρg cos α cos θ21=r @p=@θ1 1=r2 @ðNr3 @ðvθ=rÞ @rÞ=@r (5.71)

2 ρvθ2=r52 ρg cos α sin θ2 @p=@r
1 1=r @ðNr @ðvθ=rÞ=@rÞ=@θ1 @ðN @vz=@rÞ=@z (5.72)

At this point, we introduce the same separation of variables for pressure used for Newtonian

flows, Equation 5.60, so that Equations 5.70 through 5.72 become

052 @P=@z1 1=r @ðNr @vz=@rÞ=@r (5.73)

05 @ðNr3 @ðvθ=rÞ=@rÞ=@r (5.74)

2 ρvθ2=r52 @P�=@r1 1=r @ðNr @ðvθ=rÞ=@rÞ=@θ1 @ðN @vz=@rÞ=@z (5.75)

Of course, the P*(r) applicable to non-Newtonian flows will follow from the solution to Equation

5.75; Equations 5.66 and 5.69 for Newtonian flows do not apply. Since θ does not explicitly appear

in Equation 5.75, vz and vθ do not depend on θ or on z either, as previously assumed. Thus, all par-

tial derivatives with respect to θ and z vanish. Without approximation, the final set of ordinary dif-

ferential equations takes the form

1=r dðNr dvz=drÞ=dr5 dP=dz5 constant (5.76)

dðNr3dðvθ=rÞdrÞ=dr5 0 (5.77)

dP�=dr5 ρvθ2=r (5.78)

where N(Γ) is the complete velocity functional given in Equation 5.46. The application of Equation

5.47 couples our axial and azimuthal velocities, and is the source of mathematical complication.

The solutions to Equations 5.76 through 5.78 may appear to be simple. For example, the

unknowns vθ and vz are governed by two second-order ordinary differential equations—namely,

Equations 5.76 and 5.77; the four constants of integration are completely determined by four no-

slip conditions at the rotating drillstring surface and the stationary borehole wall. Moreover, the

radial pressure (governed by Equation 5.78) is obtained after the fact only, once vθ is available.

In reality, the difficulty lies with the fact that Equations 5.76 and 5.77 are nonlinearly coupled

through Equation 5.47. It is not possible to solve for either vz or vθ sequentially, as we did for the “sim-

pler” Navier-Stokes equations. Because the actual physical coupling is strong at the leading order, it is

incorrect to solve for non-Newtonian effects using perturbation series methods—say, expanded about

decoupled Newtonian solutions. The method described here required tedious trial and error; 24 ways to

implement no-slip conditions were possible, and not all yielded equations that can be integrated.
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We successfully derived closed-form, explicit, analytical solutions for the coupled velocity

fields. However, the desire for closed-form solutions required an additional “narrow annulus”

assumption. Still, the resulting solutions are useful, since they yield explicit answers for rotating

flows, thus providing key physical insight into the role of different flow parameters.

The method devised for arbitrary n that follows does not apply to the Newtonian limit where

n5 1, for which solutions are already available. But in the n-16 limit of our Power law results,

we will show that we recover the Navier-Stokes solution. Thus, the physical dependence on n is

continuous, and the results obtained in this chapter cover all values of n. With these preliminary

remarks said and done, we proceed with the analysis.

Let us multiply Equation 5.76 by r throughout. Next we integrate the result and also integrate

Equation 5.77 once with respect to r, to yield

Nr dvz=dr5 r2=2 dP=dz1E1 (5.79)

Nr3 dðvθ=rÞdr5E2 (5.80)

where E1 and E2 are integration constants. Division of Equation 5.79 by Equation 5.80 gives a

result (independent of the apparent viscosity N(Γ)) relating vz to vθ/r:

dvz=dr5 ðr4=2 dP=dz1E1r
2Þ=E2 dðvθ=rÞdr (5.81)

At this point, it is convenient to introduce the angular velocity

ΩðrÞ5 vθ=r (5.82)

Substitution of the tensor elements D in Equation 5.44 leads to

Γ5 f2 trace ðD�DÞg1=2 5 ½ð@vz=@rÞ2 1 r2ð@fvθ=rg=@rÞ2�1=2 (5.83)

so that the Power law apparent viscosity given by Equation 5.45 becomes

NðΓÞ5K ½ð@vz=@rÞ2 1 r2ð@fvθ=rg=@rÞ2�ðn21Þ=2 (5.84)

These results were stated without proof in Equations 5.46 and 5.47. Now we combine Equations

5.80 and 5.84 so that

K ½ð@vz=@rÞ2 1 r2ð@Ω=@rÞ2�ðn21Þ=2 dΩ=dr5E2=r
3 (5.85)

If dvz/dr is eliminated using Equation 5.81, we obtain, after very lengthy manipulations,

dΩ=dr5 ðE2=KÞ1=n½rð2n14Þ=ðn21Þ

1 rð4n12Þ=ðn21ÞfðE1 1 r2=2dP=dzÞ=E2g2�ð12nÞ=2n
(5.86)

Next, we integrate Equation 5.86 over the interval (r,RB), where RB is the borehole radius. If

we apply the first no-slip boundary condition

ΩðRBÞ5 0 (5.87)

(there are four no-slip conditions altogether) and invoke the Mean Value Theorem of differential

calculus, using as the appropriate mean the arithmetic average, we obtain
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ΩðrÞ5 ðE2=KÞ1=nðr2RBÞ½ððr1RBÞ=2Þð2n14Þ=ðn21Þ

1 ððr1RBÞ=2Þð4n12Þ=ðn21ÞfðE1 1 ðr1RBÞ2=8 dP=dzÞ=E2g2�ð12nÞ=2n
(5.88)

At this point, though, we do not yet apply any of the remaining three no-slip velocity boundary

conditions. We turn our attention to vz instead. We can derive a differential equation independent

of Ω by combining Equations 5.81, 5.82, and 5.86 as follows:

dvz=dr5 ðr4=2 dP=dz1E1r
2Þ=E2 dΩ=dr

5 r2ðE1 1 r2=2 dP=dzÞ=E2 3 ðE2=KÞ1=n½rð2n14Þ=ðn21Þ

1 rð4n12Þ=ðn21ÞfðE1 1 r2=2 dP=dzÞ=E2g2�ð12nÞ=2n
(5.89)

We next integrate Equation 5.89 over (RP, r), where RP is the drillpipe radius, subject to the second

no-slip condition

vzðRPÞ5 0 (5.90)

An integration similar to that used for Equation 5.86, again invoking the Mean Value Theorem,

leads to a result analogous to Equation 5.88:

vzðrÞ5 ððr1RPÞ=2Þ2ðE1 1 ððr1RPÞ=2Þ2=2 dP=dzÞ=E2

3 ðE2=KÞ1=n½ððr1RPÞ=2Þð2n14Þ=ðn21Þ 1 ððr1RPÞ=2Þð4n12Þ=ðn21Þ
fðE1 1 ððr1RPÞ=2Þ2=2 dP=dzÞ=E2g2�ð12nÞ=2nðr2RPÞ

(5.91)

Very useful results are obtained if we now apply the third no-slip condition:

vzðRBÞ5 0 (5.92)

With this constraint, Equation 5.91 leads to a somewhat unwieldy combination of terms:

05 ððRB 1RPÞ=2Þ2ðE1 1 ððRB 1RPÞ=2Þ2=2Þ dP=dzÞ=E2

3 ðE2=KÞ1=n½ððRB 1RPÞ=2Þð2n14Þ=ðn21Þ 1 ððRB 1RPÞ=2Þð4n12Þ=ðn21Þ
fðE1 1 ððRB 1RPÞ=2Þ2=2 dP=dzÞ=E2g2�ð12nÞ=ð2nÞðRB 2RPÞ

(5.93)

But if we observe that the quantity contained within the square brackets “[ ]” is positive definite,

and that (RB2RP) is nonzero, it follows that the left-hand side “0” can be obtained only if

E1 52 ðRB 1RPÞ2=8 dP=dz (5.94)

holds identically. The remaining integration constant E2 is determined from the last of the four no-

slip conditions

ΩðRPÞ5ω (5.95)

Equation 5.95 requires fluid at the pipe surface to move with the rotating surface. Here, without

loss of generality, ω, 0 is the constant drillstring angular rotational speed. Combination of Equations

5.88, 5.94, and 5.95, after lengthy manipulations, leads to the surprisingly simple result that

E2 5K ðω=ðRP 2RBÞÞnððRP 1RBÞ=2Þn12 (5.96)
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With all four no-slip conditions applied, the four integration constants, and hence the analytical

solution for our Power law model, are completely determined. We next perform validation checks

before deriving applications formulas.

Analytical validation
Different analytical procedures were required for Newtonian flows and Power law flows with gen-

eral n’s. This is related to the decoupling between axial and circumferential velocities in the singu-

lar n5 1 limit. On physical grounds, we expect that the Power law solution, if correct, would

behave “continuously” through n5 1 as the fluid passes from the dilatant to the pseudoplastic state.

That is, the solution should change smoothly when n varies from 12 δ to 11 δ, where jδj,, 1 is

a small number. This continuous dependence and physical consistency will be demonstrated next.

The validation also guards against error, given the quantity of algebraic manipulations involved.

The formulas derived above for general Power law fluids will be checked against exact

Newtonian results where K5 μ and n5 1. For consistency, we will take the narrow annulus limit

of those formulas, a geometric approximation used in the Power law derivation. We will demon-

strate that the closed form results obtained for non-Newtonian fluids are indeed “continuous in n”

through the singular point n5 1.

We first check our results for the stresses Srθ and Sθr. From Equations 5.36, 5.40, and 5.88, we

find that

Srθ 5 Sθr 5Kðω=ðRP 2RBÞÞnððRP 1RBÞ=2Þn12 r22 (5.97)

In the limit K5 μ and n5 1, Equation 5.97 for Power law fluids reduces to

Srθ 5 Sθr 5 μ ω=fðRP 2RBÞr2g3 ððRP 1RBÞ=2Þ3 (5.98)

On the other hand, the definition Srθ5 Sθr5 μ dΩ/dr inferred from Equations 5.36 and 5.40

becomes, using Equations 5.68 and 5.82 for Newtonian flow,

Srθ 5 Sθr 5 μ ω=fðRP 2RBÞr2g3 2ðRPRBÞ2=ðRP 1RBÞ (5.99)

Are the two second factors “((RP1RB)/2)
3” and “2(RPRB)

2/(RP1RB)” in Equations 5.98 and

5.99 consistent? If we evaluate these expressions in the narrow annulus limit, setting RP5RB5R,

we obtain R3 in both cases, providing the required validation. This consistency holds for all values

of dP/dz.

For our second check, consider the Power law stresses Srz and Szr obtained from Equations

5.36, 5.41, and 5.89:

Srz 5 Szr 5E1=r1 1/2 r dP=dz5 f1/2 r2 ðRP 1RBÞ2=ð8rÞg dP=dz (5.100)

The corresponding formula in the Newtonian limit is

Srz 5 Szr 5 μ dvz=dr5 f1/2 r2ðRP
2 2RB

2Þ=ð4r log RP=RBÞg dP=dz (5.101)

where we have used Equation 5.67 shown earlier. Now, is “(RP1RB)
2/8” consistent with

“(RP
22RB

2)/(4 log RP/RB)”? As before, consider the narrow annulus limit, setting RP5RB5R.
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The first expression easily reduces to R2/2. For the second, we expand log RB/RP5 log {11
(RB2RP)/RP}5 (RB2RP)/RP and retain only the first term of the Taylor expansion. Direct substi-

tution yields R2/2 again. Therefore, Equations 5.100 and 5.101 are consistent for all rotational rates

ω. From our checks on both Srz and Srθ, then, we find good physical consistency and consequently

reliable algebraic computations.

Newtonian and Power law flow differences
Equations 5.60, 5.82, 5.88, 5.91, 5.94, and 5.96 specify the velocity fields vz and vθ5 rΩ(r) as func-
tions of wellbore geometry, fluid rheology, pipe inclination, rotational rate, pressure gradient, and

gravity, respectively. We emphasize that Equation 5.78, which is to be evaluated using the non-

Newtonian solution for vθ, provides only a partial solution for the complete radial pressure gradient.

The remaining part is obtained by adding the “2 ρg cos α sin θ” contribution of Equation 5.60. As

in Newtonian flows, the pressure and its spatial gradients depend on all the coordinates r, θ, and z

and the parameters ρ, g, and α.
There are fundamental differences between these solutions and the Newtonian solutions. For

example, in the latter the solutions for vz and vθ completely decouple despite the nonlinearity of the

Navier-Stokes equations. The governing equations become linear. But for Power law flows, both vz
and vθ remain highly coupled and nonlinear. In this sense, Newtonian results are singular; but the

degeneracy disappears for eccentric geometries when the convective terms reappear. Cuttings trans-

port experimenters working with concentric Newtonian flows will not be able to extrapolate their

findings to practical eccentric geometries or non-Newtonian fluids.

Also, the expression for vz in the Newtonian limit is directly proportional to dP/dz; however, as

Equation 5.91 for Power law fluids shows, the dependence of vz (and hence of total volumetric flow

rate) on pressure gradient is nonlinear. Similarly, while Equation 5.68 shows that vθ is directly propor-

tional to the rotational rate ω, Equations 5.82, 5.88, and 5.96 illustrate a more complicated nonlinear

dependence for Power law fluids. It is important to emphasize that, for a fixed annular flow geometry

in Newtonian flow, vz depends only on dP/dz and not on ω, and vθ depends only on ω and not on

dP/dz. But for Power law flows, vz and vθ each depend on both dP/dz and ω. Thus, “axial quantities”
like net annular volumetric flow rate cannot be calculated without considering both dP/dz and ω.

Interestingly, though, the stresses Srθ and Srz in the non-Newtonian case preserve their “indepen-

dence” as in Newtonian flows. That is, Srθ depends only on ω and not on dP/dz, while Srz depends

only on dP/dz and not on ω (see Equations 5.102 through 5.105). The Power law stress values

themselves, of course, are different from their Newtonian counterparts. Also, the “maximum stress”

(Srθ
21 Srz

2)1/2, important in borehole stability and cuttings bed erosion, depends on both ω and

dP/dz, as it does in Newtonian flow.

An important question is the significance of rotation in practical calculations. Can “ω” be safely

neglected in drilling and cementing applications? This depends on a nondimensional ratio of cir-

cumferential to axial momentum flux. While the “maximum vθ” is easily obtained as “ωrpm3RP,”

the same estimate for vz is difficult to obtain, since axial velocity is sensitive to both n and K, not

to mention vθ and dP/dz. In general, one needs to consider the full problem without approximation.

Of course, since the analytical solution is now available, the use of approximate “axial flow

only” solutions is really a moot point. The Power law results and the formulas derived next are
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“explicit” in that they require no iteration. And although the software described later is written in

Fortran, our equations are just as easily programmed on calculators. The important dependence of

annular flows on “ω” will be demonstrated in calculated results.

More applications formulas
The cylindrical geometry of the present problem renders all stress tensor components except Srθ, Sθr, Szr,

and Srz zero. From our Power law results, the required formulas for viscous stress can be shown to be

Srθ 5 Sθr 5Kðω=ðRP 2RBÞÞnððRP 1RBÞ=2Þn12 r22 (5.102)

Srz 5 Szr 5E1=r1 1/2 r dP=dz5 f1/2 r2 ðRP 1RBÞ2=ð8rÞg dP=dz (5.103)

Their Newtonian counterparts take the form

Srθ 5 Sθr 5 μ ω=fðRP 2RBÞr2g3 2ðRPRBÞ2=ðRP 1RBÞ (5.104)

Srz 5 Szr 5 μ dvz=dr5 f1/2 r2ðRP
2 2RB

2Þ=ð4r log RP=RBÞg dP=dz (5.105)

In studies on borehole erosion, annular velocity plays an important role, since drilling mud car-

ries abrasive cuttings. The magnitude of fluid shear stress may also be important in unconsolidated

sands, where tangential surface forces assist in wall erosion. Stress considerations also arise in cut-

tings bed transport analysis in highly deviated or horizontal holes (see Model 5.7). The individual

components can be obtained by evaluating Equations 5.102 and 5.103 at r5RB for Power law

fluids, and Equations 5.104 and 5.105 for Newtonian fluids. And since these stresses act in orthogo-

nal directions, the “maximum stress” can be obtained by writing

SmaxðRBÞ5 fSrθ2ðRBÞ1 Srz
2ðRBÞg1=2 (5.106)

The shear force associated with this stress acts in a direction offset from the borehole axis by an

angle

Θmax shear 5 arctan fSrθðRBÞ=SrzðRBÞg (5.107)

Opposing the erosive effects of shear may be the stabilizing effects of hydrostatic and dynamic

pressure. Explicit formulas for the pressures P(z), P*(r), and the hydrostatic background level were

given earlier.

To obtain the corresponding elements of the deformation tensor, we rewrite Equation 5.36 in the form

D5 S=2NðΓÞ (5.108)

and substitute Srz or Srθ as required. In the Newtonian case, N(Γ)5 μ is the laminar viscosity; for

Power law fluids, Equation 5.47 applies. Stresses are important to transport problems; fluid defor-

mations are useful for the kinematic studies often of interest to rheologists.

Annular volumetric flow rate, Q, which depends on pressure gradient, is important in determin-

ing mud pump power requirements and the cuttings transport capabilities of the drilling fluid. It is

obtained by evaluating

Q5

ðRB

Rp

vzðrÞ 2πr dr (5.109)
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In the preceding integrand, Equation 5.67 for vz(r) must be used for Newtonian flows, while

Equation 5.91 will apply to Power law fluids.

Borehole temperature may play an important role in drilling. Problem areas include formation

temperature interpretation and mud thermal stability (e.g., the “thinning” of oil-based muds with

temperature limits cuttings transport efficiency). Many studies do not consider the effects of heat

generation by internal friction, which may be non-negligible; in closed systems, temperature

increases over time may be significant. Ideally, temperature effects due to fluid type and cumula-

tive effects related to total circulation time should be identified.

The starting point is the equation describing energy balance within the fluid, that is, the PDE

for the temperature field T(r, θ, z, t). Even if the velocity field is steady, temperature effects will

typically not be, since irreversible thermodynamic effects cause continual increases of T with time.

If temperature increases are large enough, the changes in viscosity, consistency factor, or fluid

exponent as functions of T must be considered. Then the momentum and energy equations will be

coupled. We will not consider this complicated situation yet, so that the velocity fields can be

obtained independently of T. For Newtonian flows, we have n5 1 and K5 μ. The temperature field

satisfies

ρcð@T=@t1 vr @T=@r1 vθ=r @T=@θ1 vz @T=@zÞ
5Kth ½1=r @ðr @T=@rÞ=@r1 1=r2 @2T=@θ2 1 @2T=@z2�
1 2μ fð@vr=@rÞ2 1 ½1=rð@vθ=@θ1 vrÞ�2 1 ð@vz=@zÞ2g
1 μ fð@vθ=@z1 1=r @vz=@θÞ2 1 ð@vz=@r1 @vr=@zÞ2
1 ½1=r @vr=@θ1 r @ðvθ=rÞ=@r�2g1 ρQ�

(5.110)

where c is the heat capacity, Kth is the thermal conductivity, and Q* is an energy transmission

function. The terms on the first line represent transient and convective effects; those on the second

line model heat conduction; and those on the third through fifth are positive definite and represent

heat generation due to internal fluid friction.

These irreversible thermodynamic effects are referred to collectively as the “dissipation func-

tion” or “heat generation function.” The dissipation function Φ is in effect a distributed heat source

within the moving fluid medium. If we employ the same assumptions as used in our solution of the

Navier-Stokes equations for Newtonian flows, this expression reduces to

Φ5 μ fð@vz=@rÞ2 1 r2ð@Ω=@rÞ2g. 0 (5.111)

which can be easily evaluated using Equations 5.67, 5.68, and 5.82. It is important to recognize

that Φ depends on spatial velocity gradients only and not on velocity magnitudes. In a closed sys-

tem, the fact that Φ. 0 leads to increases in temperature in time if the borehole walls cannot con-

duct heat away quickly.

Equations 5.110 and 5.111 assume Newtonian flow. For general fluids, it is possible to show

that the dissipation function now takes the form

Φ5 Srr @vr=@r1 Sθθ 1=rð@vθ=@θ1 vrÞ
1 Szz @vz=@z1 Srθ½r @ðvθ=rÞ=@r1 1=r @vr=@θ�
1 Srzð@vz=@r1 @vr=@zÞ1 Sθzð1=r @vz=@θ1 @vθ=@zÞ

(5.112)
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The geometrical simplifications used earlier reduce Equation 5.112 to

Φ5K fð@vz=@rÞ2 1 r2ð@Ω=@rÞ2gðn1 1Þ=2
. 0 (5.113)

In the Newtonian limit with K5 μ and n5 1, Equation 5.113 consistently reduces to Equation

5.111. Equations 5.86 and 5.89 are used to evaluate the expression for Φ. As before, Φ depends

upon velocity gradients only and not on magnitudes; it largely arises from high shear at solid

boundaries.

Detailed calculated results
The Power law results derived previously were coded in a Fortran algorithm designed to provide a

suite of output “utility” solutions for any set of input data. These may be useful in determining

operationally important quantities like volumetric flow rate and axial speed. However, they also

provide research utilities needed, for example, to correlate experimental cuttings transport data or

to interpret formation temperature data.

The core code resides in 30 lines of Fortran. It runs on a “stand-alone” basis or as an embedded

subroutine for specialized applications. The formulas used are also programmable on calculators.

Inputs include pipe or casing outer diameter, borehole diameter, axial pressure gradient, rotational

rate, fluid exponent n, and consistency factor K. Outputs include tables, line plots, and ASCII char-

acter plots versus “r” for a number of useful functions, as follows:

• Axial velocity vz (r)

• Angular velocity gradient dω(r)/dr
• Circumferential velocity vθ (r)

• Radial pressure gradient

• Fluid rotational rate ω(r), “local rpm”

• Apparent viscosity versus “r”

• Total absolute speed

• Local frictional heat generation

• Angle between vz(r) and vθ(r)

• All stress tensor components

• Axial velocity gradient dvz(r)/dr

• Maximum wellbore stress

• Azimuthal velocity gradient dvθ/dr

• All deformation tensor components

We emphasize that the “radial pressure gradient” listed refers to the partial contribution in

Equation 5.78, which depends on “r” only. For the complete gradient, Equation 5.60 shows that the

term “2ρg cos α sin θ” must be appended to the value calculated here. This contribution depends

on ρ, g, α, and θ. In addition to the foregoing arrays, total annular volumetric flow rate and radial

averages of all of the listed quantities are computed. Before proceeding to detailed computations,

let us compare our concentric, rotating pipe, narrow annulus results in the limit of zero rotation

with an exact solution.
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MODEL 5.6, EXAMPLE 5.1

East Greenbriar No. 2

A mud hydraulics analysis was performed for “East Greenbriar No. 2” using a computer program offered by a
service company. This program, which applies to nonrotating flows only, is based on the exact Fredrickson and
Bird (1958) solution. In this example, the drillpipe outer radius is 2.5 in., the borehole radius is 5.0 in., the
axial pressure gradient is 0.00389 psi/ft, the fluid exponent is 0.724, and the consistency factor is 0.268 lbf
sec0.724/(100 ft2) (that is, 0.186131024 lbf sec0.724/in.2 in the units employed by our program).

The exact results computed using this data are an annular volumetric flow rate of 400 gal/min and an average
axial speed of 130.7 ft/min. The same input data was used in our program, with an assumed drillstring “rpm” of
0.001. We computed 373.6 gal/min and 126.9 ft/min for this nonrotating flow, agreeing to within 7 percent for
the not so narrow annulus.

Our model was designed, of course, to include the effects of drillstring rotation. We first considered an
extremely large rpm of 300, with the same pressure gradient, to evaluate qualitative effects. The corresponding
results were 526.1 gal/min and 175.6 ft/min. The ratio of the average circumferential speed to the average axial
speed is 1.06, indicating that rotational effects are important. At 150 rpm, our volumetric flow rate of 458.7 gal/
min exceeds 373.6 gal/min by 23 percent.

In this case, the ratio of average circumferential speed to axial speed is still a non-negligible 65 percent.
These results suggest that static models tend to overestimate the pressure requirements needed by a rotating
drillstring to produce a prescribed flow rate. Our hydraulics model indicates that including rotational effects,
for a fixed pressure gradient, is likely to increase the volumetric flow rate over static predictions. These
considerations may be important in planning long deviated wells where one needs to know, for a given rpm, what
maximum borehole length is possible with the pump at hand.

MODEL 5.6, EXAMPLE 5.2

Detailed Spatial Properties versus “r”

Our algorithm does more than calculate annular volumetric flow rate and average axial speed. This section
includes the entire output file from a typical run, in this case “East Greenbriar No. 2,” with annotated
comments. The input menu is nearly identical to the summary in Table 5.1. Because the numerical results are
based on analytical, closed-form results, there are no computational inputs; the grid reference in Table 5.1 is a
print control parameter.

At the present, the volumetric flow rate is the only quantity computed numerically; a second-order scheme is
applied to our vz(r)’s. All inputs are in plain English and are easily understandable. Outputs are similarly user
friendly. All output quantities are defined, along with units, in a printout that precedes tabulated and plotted
results. This printout is duplicated in Table 5.2.

The defined quantities are first tabulated, as shown in Table 5.3, as a function of the radial position “r.”
At this point, the total volumetric flow rate is computed and presented in textual form:

Total volume flow rate ðcubic in=secÞ5 :2026E104

ðgal=minÞ5 :5261E103

A run-time menu prompts the user about quantities needed for display in ASCII file plots. The complete list
of quantities was given previously. Plots corresponding to “East Greenbriar No. 2” are shown in Figures 5.35
through 5.50.

Finally, the computer algorithm calculates radially averaged quantities using the definition

Favg 5

ðRB

RP

FðrÞdr=ðRB 2RPÞ (5.114)

231Model 5.6



and a second-order accurate integration scheme. Note that this is not a volume-weighted average. When
properties vary rapidly over r, the linear average (or any average) may not be meaningful as a correlation or
analysis parameter. Table 5.4 (page 240) displays computed average results.

Table 5.1 Summary of Input Parameters

0 Drillpipe outer radius (inches)5 2.5000

0 Borehole radius (inches)5 5.0000

0 Axial pressure gradient (psi/ft)5 0.0039

0 Drillstring rotation rate (rpm)5 300.0000

0 Drillstring rotation rate (rad/sec)531.4159

0 Fluid exponent “n” (nondimensional)5 0.7240

0 Consistency factor (lbf secn/sq in.)50.1861E-04

0 Mass density of fluid (lbf2sec4/ft )5 1.9000 (e.g., about 1.9 for water)

0 Number of radial “grid” positions5 18

Table 5.2 Analytical (Noniterative) Solutions Tabulated versus “r,” Nomenclature, and Units

Symbols Nomenclature Units

r Annular radial position (in.)

Vz Velocity in axial z direction (in./sec)

Vθ Circumferential velocity (in./sec)

dθ/dt or W θ velocity (rad/sec) (1 rad/
sec5 9.5493 rpm)

dVz/dr Velocity gradient (1/sec)

dVθ/dr Velocity gradient (1/sec)

dW/dr Angular speed gradient (1/(sec3 in.))

Srθ rθ stress component (psi)

Srz rz stress component (psi)

Smax Sqrt (Srz**21Srθ**2) (psi)

dP/dr Radial pressure gradient (psi/in.)

App-Vis Apparent viscosity (lbf sec /sq in.)

Dissip Dissipation function (indicates frictional heat produced) (lbf/(sec3 sq in.))

Atan Vθ/Vz Angle between Vθ and Vz vectors (deg)

Net Spd Sqrt (Vz**21Vθ**2) (in./sec)

Drθ rθ deformation tensor component (1/sec)

Drz rz deformation tensor component (1/sec)
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Table 5.3 Calculated Quantities versus “r”

r Vz Vθ W d(Vz)/dr d(Vθ)/dr dW/dr

5.00 .601E�04 .279E�04 .559E�05 2.610E102 2.293E102 2.586E101

4.86 .848E101 .407E101 .837E100 2.534E102 2.293E102 2.620E101

4.72 .164E102 .814E101 .172E101 2.460E102 2.294E102 2.659E101

4.58 .237E102 .122E102 .266E101 2.390E102 2.295E102 2.702E101

4.44 .304E102 .163E102 .366E101 2.321E102 2.297E102 2.751E101

4.31 .365E102 .203E102 .472E101 2.256E102 2.302E102 2.811E101

4.17 .418E102 .244E102 .585E101 2.193E102 2.310E102 2.885E101

4.03 .462E102 .284E102 .705E101 2.131E102 2.324E102 2.980E101

3.89 .497E102 .325E102 .835E101 2.672E101 2.345E102 2.110E102

3.75 .521E102 .366E102 .975E101 .273E204 2.374E102 2.126E102

3.61 .533E102 .407E102 .113E102 .738E101 2.412E102 2.145E102

3.47 .532E102 .449E102 .129E102 .157E102 2.461E102 2.170E102

3.33 .516E102 .492E102 .148E102 .251E102 2.521E102 2.201E102

3.19 .483E102 .536E102 .168E102 .358E102 2.594E102 2.239E102

3.06 .432E102 .582E102 .190E102 .480E102 2.682E102 2.286E102

2.92 .361E102 .630E102 .216E102 .619E102 2.787E102 2.344E102

2.78 .266E102 .680E102 .245E102 .778E102 2.914E102 2.417E102

2.64 .147E102 .732E102 .277E102 .959E102 2.107E103 2.510E102

2.50 .000E100 .785E102 .314E102 .117E103 2.126E103 2.628E102

r Srθ Srz Smax dP/dr App-Vis Dissip

5.00 .170E203 2.355E203 .393E203 .143E213 .582E205 .266E201

4.86 .180E203 2.319E203 .366E203 .312E203 .598E205 .225E201

4.72 .191E203 2.283E203 .341E203 .128E202 .614E205 .190E201

4.58 .203E203 2.246E203 .318E203 .298E202 .630E205 .161E201

4.44 .216E203 2.208E203 .299E203 .545E202 .646E205 .139E201

4.31 .230E203 2.168E203 .285E203 .878E202 .658E205 .123E201

4.17 .245E203 2.128E203 .277E203 .131E201 .665E205 .115E201

4.03 .262E203 2.869E204 .277E203 .184E201 .665E205 .115E201

3.89 .282E203 2.442E204 .285E203 .248E201 .658E205 .124E201

3.75 .303E203 .175E209 .303E203 .326E201 .643E205 .143E201

3.61 .327E203 .459E204 .330E203 .420E201 .622E205 .175E201

3.47 .353E203 .936E204 .365E203 .532E201 .598E205 .223E201

3.33 .383E203 .144E203 .409E203 .665E201 .573E205 .292E201

3.19 .417E203 .196E203 .461E203 .824E201 .547E205 .388E201

3.06 .456E203 .251E203 .520E203 .102E100 .523E205 .518E201

2.92 .501E203 .309E203 .588E203 .125E100 .499E205 .693E201

2.78 .552E203 .370E203 .665E203 .152E100 .476E205 .928E201

2.64 .611E203 .436E203 .751E203 .186E100 .455E205 .124E100

2.50 .681E203 .507E203 .849E203 .226E100 .434E205 .166E100
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z Vz Vθ Atan Vθ/Vz Net Spd Drθ Drz

5.00 .601E204 .279E204 .249E102 .663E204 .146E102 2.305E102

4.86 .848E101 .407E101 .256E102 .940E101 .151E102 2.267E102

4.72 .164E102 .814E101 .264E102 .183E102 .155E102 2.230E102

4.58 .237E102 .122E102 .272E102 .267E102 .161E102 2.195E102

4.44 .304E102 .163E102 .281E102 .345E102 .167E102 2.161E102

4.31 .365E102 .203E102 .291E102 .417E102 .175E102 2.128E102

4.17 .418E102 .244E102 .303E102 .483E102 .184E102 2.965E101

4.03 .462E102 .284E102 .316E102 .542E102 .197E102 2.653E101

3.89 .497E102 .325E102 .332E102 .593E102 .214E102 2.336E101

3.75 .521E102 .366E102 .351E102 .636E102 .236E102 .137E204

3.61 .533E102 .407E102 .374E102 .670E102 .262E102 .369E101

3.47 .532E102 .449E102 .402E102 .696E102 .295E102 .783E101

3.33 .516E102 .492E102 .436E102 .713E102 .334E102 .125E102

3.19 .483E102 .536E102 .480E102 .722E102 .381E102 .179E102

3.06 .432E102 .582E102 .534E102 .725E102 .436E102 .240E102

2.92 .361E102 .630E102 .602E102 .726E102 .502E102 .309E102

2.78 .266E102 .680E102 .686E102 .730E102 .579E102 .389E102

2.64 .147E102 .732E102 .786E102 .746E102 .673E102 .480E102

2.50 .000E100 .785E102 .900E102 .785E102 .785E102 .584E102

Table 5.3 Calculated Quantities versus “r” (Continued)

Axial speed Vz(r):

r                     0
______________________________

5.00      .6014E-04     |                        
4.86      .8478E+01     |  *                          
4.72      .1639E+02     |       *            No -slip
4.58      .2373E+02     |           *        conditions
4.44      .3044E+02     |               *    enforce d
4.31      .3647E+02     |                  *          
4.17      .4175E+02     |                     *
4.03      .4618E+02     |                       *
3.89      .4966E+02     |                         *   
3.75      .5207E+02     |                           *
3.61      .5329E+02     |                            *
3.47      .5317E+02     |                           * 
3.33      .5157E+02     |                           *
3.19 .4830E+02     |                         *   
3.06      .4320E+02     |                      *      
2.92      .3606E+02     |                  *          
2.78      .2665E+02     |             *               
2.64      .1472E+02     |      *                      
2.50      .0000E+00     |                             

FIGURE 5.35

Axial speed.
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Circumferential speed V θθ(r):
r                     0

______________________________
5.00      .2793E-04     |                             
4.86      .4069E+01     *                             
4.72      .8138E+01     | *                           
4.58      .1220E+02     |  *                          
4.44 .1626E+02     |    *                        
4.31      .2031E+02     |     *                       
4.17      .2436E+02     |       *                     
4.03      .2841E+02     |        *    Maximum speed is
3.89      .3247E+02     |          *  at drillstring
3.75      .3655E+02     |           *                 
3.61      .4068E+02     |             *               
3.47      .4488E+02     |               *             
3.33      .4918E+02     |     *            
3.19      .5361E+02     |                  *          
3.06      .5820E+02     |                    *        
2.92      .6298E+02     |                      *      
2.78      .6797E+02     |                 *     
2.64      .7316E+02     |                         *   
2.50      .7854E+02     |                            *

FIGURE 5.36

Circumferential speed.

Angular speed W(r):
r                     0

______________________________
5.00      .5586E-05     |                             
4.86      .8370E+00     |                             
4.72      .1723E+01     *                             
4.58      .2662E+01     |* 
4.44      .3659E+01     | *                           
4.31      .4718E+01     |  *         Maximum speed is
4.17      .5847E+01     |   *        at drillstring 
4.03      .7053E+01     |    *            
3.89      .8349E+01     |     *                       
3.75      .9748E+01     |       *                     
3.61      .1127E+02     |        *                    
3.47      .1293E+02     |          *                  
3.33      .1475E+02     |            *                
3.19      .1678E+02     |              *              
3.06      .1905E+02     |                *            
2.92      .2159E+02     |                  *          
2.78 .2447E+02     |                     *       
2.64      .2772E+02     |                        *    
2.50      .3142E+02     |                            *

FIGURE 5.37

Angular speed.

Velocity gradient d(Vz)/dr (r):

r 0
______________________________

5.00     -.6096E+02           *       |               
4.86     -.5339E+02            *      |               
4.72     -.4604E+02            *     |               
4.58     -.3896E+02             *     |   Consistent with
4.44     -.3215E+02              *    |   axial velocity
4.31     -.2561E+02               *   |   solution
4.17     -.1930E+02                *  |   
4.03     -.1307E+02                 * |               
3.89     -.6724E+01                  *|               
3.75      .2730E-04                   |               
3.61      .7377E+01                   |               
3.47      .1566E+02                   | *             
3.33      .2505E+02                   |  *            
3.19      .3575E+02                   |   *           
3.06      .4796E+02                   |     *         
2.92 .6188E+02                   |      *        
2.78      .7776E+02                   |        *      
2.64      .9593E+02                   |           *   
2.50      .1168E+03                   |              *

FIGURE 5.38

Velocity gradient.
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Velocity gradient d(V θθ)/dr (r):
r                                   0

______________________________
5.00     -.2929E+02               *   |               
4.86     -.2932E+02               *   |               
4.72     -.2938E+02               *   |               
4.58     -.2949E+02               *   |               
4.44     -.2974E+02               *   |               
4.31     -.3021E+02               *   |               
4.17     -.3104E+02   *   |               
4.03     -.3240E+02               *   |               
3.89     -.3447E+02              *    |               
3.75     -.3738E+02              *    |               
3.61     -.4123E+02              * |               
3.47     -.4612E+02             *     |               
3.33     -.5214E+02            *      |               
3.19     -.5944E+02           *       |               
3.06     -.6821E+02          *        |       
2.92     -.7874E+02         *         |               
2.78     -.9142E+02        *          |               
2.64     -.1068E+03      *            |               
2.50     -.1257E+03                   |               

FIGURE 5.39

Velocity gradient.

Angular speed gradient dW/dr (r):
r                                   0

______________________________
5.00     -.5857E+01                 * |               
4.86   -.6204E+01                 * |               
4.72     -.6586E+01                 * |               
4.58     -.7016E+01                 * |               
4.44     -.7514E+01                 * |               
4.31     -.8112E+01 * |               
4.17     -.8853E+01                *  |               
4.03     -.9796E+01                *  |               
3.89     -.1101E+02                *  |               
3.75     -.1257E+02            *   |               
3.61     -.1454E+02               *   |               
3.47     -.1701E+02              *    |               
3.33     -.2007E+02              *    |               
3.19     -.2386E+02             *     |    
3.06     -.2856E+02            *      |               
2.92     -.3440E+02          *        |               
2.78     -.4172E+02         *         |               
2.64     -.5098E+02      *            |               
2.50     -.6283E+02                   |               

FIGURE 5.40

Angular speed gradient.

Stress component Sr θ(r):
r                     0

______________________________
5.00      .1703E-03     |     *                       
4.86      .1802E-03     |     *                       
4.72      .1910E-03     |    *                      
4.58      .2027E-03     |      *                      
4.44      .2156E-03     |       *                     
4.31      .2297E-03     |        *                    
4.17      .2453E-03     |        *       
4.03      .2625E-03     |         *                   
3.89      .2816E-03     |          *                  
3.75      .3028E-03     |           *                 
3.61      .3266E-03     |            *               
3.47      .3532E-03     |             *               
3.33      .3832E-03     |              *              
3.19      .4173E-03     |                *            
3.06      .4561E-03     |                  *          
2.92 .5006E-03     |                    *        
2.78      .5519E-03     |                      *      
2.64      .6115E-03     |                        *    
2.50      .6813E-03     |                            *

FIGURE 5.41

Viscous stress.
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Stress component Srz (r):

r                                   0
______________________________

5.00     -.3546E-03        *          |               
4.86     -.3190E-03         *         |               
4.72     -.2827E-03          *        |               
4.58     -.2456E-03           *       |               
4.44     -.2075E-03            *      |               
4.31     -.1685E-03              *    |           
4.17     -.1283E-03               *   |               
4.03     -.8694E-04                *  |               
3.89     -.4422E-04                 * |               
3.75      .1754E-09                   |               
3.61      .4589E-04                   |*              
3.47      .9365E-04                   | *             
3.33      .1435E-03                   |   *           
3.19      .1958E-03                   |    *          
3.06      .2507E-03                   |      *        
2.92      .3087E-03                   |        *      
2.78      .3703E-03                   |         *     
2.64      .4360E-03                   |           *   
2.50      .5065E-03      |              *

FIGURE 5.42

Viscous stress.

Maximum stress Smax (r):

r                     0
______________________________

5.00      .3933E-03     |           *              
4.86      .3664E-03     |          *                  
4.72      .3412E-03     |          *   This stress is
4.58      .3184E-03     |         *    responsible for 
4.44      .2992E-03     |        *     erosion of borehole
4.31      .2849E-03     |        *     wall and cuttings
4.17      .2768E-03     |       *      beds.
4.03      .2765E-03     |       *                     
3.89      .2850E-03     |        *                    
3.75      .3028E-03     |        *                    
3.61      .3298E-03     |         *                   
3.47      .3654E-03     |          *                  
3.33      .4092E-03     |            *                
3.19      .4609E-03     |     *              
3.06      .5205E-03     |                *            
2.92      .5881E-03     |                  *          
2.78      .6646E-03     |                     *       
2.64      .7510E-03     |                 *    
2.50      .8490E-03     |                            *

FIGURE 5.43

Maximum viscous stress.

Radial pressure gradient dP/dr (r):
r                     0

______________________________
5.00      .1430E-13     |                             
4.86      .3121E-03     |                             
4.72      .1285E-02     |                             
4.58      .2977E-02     |                             
4.44   .5452E-02     |         Partial            
4.31      .8781E-02     *         centrifugal effects,
4.17      .1305E-01     *         see Equation (5.60)
4.03      .1836E-01     |*         
3.89      .2484E-01     | *                           
3.75      .3265E-01     |  *                          
3.61      .4200E-01     |   *                         
3.47      .5316E-01     |     *                       
3.33      .6649E-01     |      *                      
3.19      .8244E-01     |        *                    
3.06      .1016E+00     |           *                 
2.92      .1246E+00     |              *              
2.78      .1524E+00     |                  *          
2.64      .1858E+00     |                      *      
2.50      .2261E+00     |                            *

FIGURE 5.44

Radial pressure gradient.
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Apparent viscosity vs "r":
r                     0

______________________________
5.00      .5816E-05     |                        *    
4.86      .5976E-05     |                        *    
4.72      .6140E-05     |                 *   
4.58      .6304E-05     |                          *  
4.44      .6455E-05     |                           * 
4.31      .6577E-05     |                           * 
4.17      .6650E-05     |                           * 
4.03      .6652E-05     |                            *
3.89      .6576E-05     |                           * 
3.75      .6426E-05     |                          *  
3.61      .6220E-05     |                          *  
3.47 .5982E-05     |                        *    
3.33      .5729E-05     |                       *     
3.19      .5475E-05     |                      *      
3.06      .5227E-05     |                     *       
2.92      .4989E-05     |                    *        
2.78      .4762E-05     |                   *         
2.64      .4545E-05     |                  *   Varies 
2.50      .4338E-05     |                 *   with "r"!

FIGURE 5.45

Apparent viscosity.

Dissipation function vs "r":
r                     0

______________________________
5.00      .2660E-01     |  *                          
4.86      .2247E-01     |  *            
4.72      .1896E-01     | *     The greatest heat is
4.58      .1609E-01     |*      produced near the  
4.44      .1387E-01     |*      drillstring surface.  
4.31      .1234E-01     |*                            
4.17      .1152E-01     |*                            
4.03      .1149E-01     |*                            
3.89      .1235E-01     |*                            
3.75      .1427E-01     |*                            
3.61 .1748E-01     | *                           
3.47      .2232E-01     |  *                          
3.33      .2923E-01     |   *                         
3.19      .3881E-01     |     *                       
3.06      .5182E-01     |       *                     
2.92      .6933E-01     |          *                  
2.78      .9276E-01     |              *              
2.64      .1241E+00     |                    *        
2.50      .1662E+00     |    *

FIGURE 5.46

Dissipation function.

Angle between Vθθ and Vz vectors, Atan Vθ/Vz (r):

r                     0
______________________________

5.00      .2491E+02     |      *    
4.86      .2564E+02     |      *                      
4.72      .2640E+02     |      *    This angle measures
4.58      .2721E+02     |       *   extent of helical
4.44      .2811E+02     |       *   annular flow in
4.31      .2911E+02     |       *   degrees.
4.17      .3026E+02     |        *                    
4.03      .3160E+02     |        *                    
3.89      .3318E+02     |         *                   
3.75      .3507E+02     |         *                   
3.61      .3736E+02     |          *                  
3.47      .4017E+02     |           *                 
3.33      .4364E+02     |            *                
3.19  .4798E+02     |             *               
3.06      .5341E+02     |               *             
2.92      .6021E+02     |                  *          
2.78      .6859E+02     |                    *        
2.64      .7862E+02     |                        *    
2.50      .9000E+02     |                            *

FIGURE 5.47

Velocity angle.
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Magnitude of total speed vs r:
r                     0

______________________________
5.00      .6631E-04     |                             
4.86      .9404E+01     | *                           
4.72      .1830E+02     |    *                        
4.58      .2668E+02     |        *                    
4.44      .3451E+02     |           *                 
4.31      .4175E+02     |             *               
4.17      .4834E+02     |                *            
4.03      .5422E+02     |                  *          
3.89      .5933E+02     |                    *        
3.75      .6362E+02     |                      *      
3.61      .6704E+02     |                       *         
3.47      .6958E+02     |                        *    
3.33      .7126E+02    |                         *
3.19      .7216E+02     |                         *   
3.06      .7249E+02     |                         *   
2.92      .7257E+02     |                         *   
2.78      .7300E+02     |          *   
2.64      .7462E+02     |                          *  
2.50      .7854E+02     |                            *

FIGURE 5.48

Total speed.

Deformation tensor element Drθθ
(r):

r                     0
______________________________

5.00      .1464E+02     |   *                         
4.86      .1508E+02     |   *                         
4.72      .1555E+02     |   *                         
4.58      .1608E+02     |    *                        
4.44      .1670E+02     |    *                        
4.31      .1746E+02     |    *                        
4.17      .1844E+02     |     *         
4.03      .1973E+02     |     *                       
3.89      .2141E+02     |      *                      
3.75      .2356E+02     |       *                     
3.61      .2625E+02     |        *                  
3.47      .2952E+02     |         *                   
3.33      .3345E+02     |          *                  
3.19      .3811E+02     |            *                
3.06      .4363E+02     |              *              
2.92      .5016E+02     |                 *           
2.78      .5795E+02     |                    *        
2.64      .6727E+02     |                       *     
2.50      .7854E+02     |                            *

FIGURE 5.49

Deformation tensor element.

Deformation tensor element Drz (r):

r                                   0
______________________________

5.00     -.3048E+02           *       |               
4.86     -.2669E+02            *      |               
4.72     -.2302E+02             *     |               
4.58     -.1948E+02             *     |               
4.44     -.1607E+02              *    |               
4.31     -.1281E+02   *   |               
4.17     -.9648E+01                *  |               
4.03     -.6535E+01                 * |               
3.89     -.3362E+01                  *|               
3.75      .1365E-04               |               
3.61      .3689E+01                   |               
3.47      .7828E+01                   | *             
3.33      .1253E+02                   |  *            
3.19      .1788E+02                   |   *   
3.06      .2398E+02                   |     *         
2.92      .3094E+02                   |      *        
2.78      .3888E+02                   |        *      
2.64      .4796E+02                   |           *   
2.50      .5839E+02                   |              *

FIGURE 5.50

Deformation tensor element.

239Model 5.6



MODEL 5.6, EXAMPLE 5.3

More of East Greenbriar

We repeated the calculations for “East Greenbriar No. 2” with all parameters unchanged except for the fluid
exponent, which we increased to a near-Newtonian level of 0.9 (again, 1.0 is the Newtonian value). In the first
run, we considered a static, nonrotating drillstring with an “rpm” of 0.001, and obtained a volumetric flow rate
of 196.2 gal/min. This is quite different from our earlier 373.6 gal/min, which assumed a fluid exponent of
n50.724. That is, a 24 percent increase in the fluid exponent n resulted in a 47 percent decrease in flow rate;
these numbers show how sensitive results are to changes in n.

The axial speeds, apparent viscosities, and averaged parameter values obtained are given in Figures 5.51
(page 241) and 5.52 (page 241), and in Table 5.5 (page 241). Note how the apparent viscosity is almost
constant everywhere with respect to radial position; the well-known localized “pinch” is found near the center of
the annulus, where the axial velocity gradient vanishes.

For our second run, we retained the foregoing parameters with the exception of drillstring rpm, which we
increased for test purposes from 0.001 to 300 (the fluid exponent was still 0.9). The volumetric flow rate
computed was 232.9 gpm, which was higher than the 196.2 gpm obtained above by a significant 18.7 percent.
Thus, even for “almost Newtonian” Power law fluids, the effect of rotation allows a higher flow rate for the same
pressure drop. Thus, to produce the lower flow rate, a pump having less pressure output than normal would
suffice. Computed results are shown in Figures 5.53 and 5.54 (page 242) and Table 5.6 (page 243).

The effect of increasing drillstring rpm is an increase in the average borehole maximum stress by 3.42 times;
this may be of interest to wellbore stability. The apparent viscosity in this example, unlike the previous example,
is nearly constant everywhere and does not “pinch out.” The analytical solutions derived in this chapter are of
fundamental rheological interest. However, they are particularly useful in drilling and production applications,
insofar as the effect of rotation on “volumetric flow rate versus pressure drop” is concerned. They allow us to
study various operational “what-if” questions quickly and efficiently.

Table 5.4 Averaged Values of Annular Quantities

Apparent Viscosities Averaged Parameter Values

Average Vz (in./sec) .3512E102

Average Vz (ft/min) .1756E103

Average Vθ (in./sec) .3737E102

Average W (rad/sec) .1160E102

Average total speed (in./sec) .5379E102

Average angle between Vz and Vθ (deg) .4189E102

Average d(Vz)/dr (1/sec) .0000E100

Average d(Vθ)/dr (1/sec) 2.5028E102

Average dW/dr (1/(sec X in.)) 2.1906E102

Average dP/dr (psi/in.) .5718E201

Average Srθ (psi) .3410E203

Average Srz (psi) .2432E204

Average Smax (psi) .4146E203

Average dissipation function (lbf/(sec sq in.)) .3753E201

Average apparent viscosity (lbf sec/sq in.) .5876E205

Average Drθ (1/sec) .3094E102

Average Drz (1/sec) .4445E101
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Apparent viscosity vs "r":
r                     0

______________________________
5.00      .1341E-04     |       *                     
4.86      .1357E-04     |       *                     
4.72      .1375E-04     |       *          
4.58      .1397E-04     |       *                     
4.44      .1424E-04     |       *                     
4.31      .1457E-04     |       *                     
4.17      .1502E-04     |        *                    
4.03      .1568E-04     |        *                    
3.89      .1690E-04     |         *                   
3.75      .4468E-04     |                            *
3.61      .1683E-04     |         *                   
3.47  .1555E-04     |        *                    
3.33      .1483E-04     |       *                     
3.19      .1433E-04     |       *                     
3.06      .1394E-04     |       *                     
2.92      .1362E-04     |       *                     
2.78      .1335E-04     |      *                      
2.64      .1311E-04     |      *                      
2.50      .1289E-04     |      *                      

FIGURE 5.52

Apparent viscosity.

Axial speed Vz(r):
r                     0

______________________________
5.00      .8649E-05     |                             
4.86      .2948E+01     |  *                          
4.72      .6058E+01     |       *                     
4.58      .9010E+01     |           *                 
4.44      .1171E+02     |               *             
4.31      .1410E+02     |                   *         
4.17      .1613E+02     |                      *      
4.03      .1776E+02     |    *    
3.89      .1897E+02     |                          *  
3.75      .1972E+02     |                           * 
3.61      .1998E+02     |                            *
3.47      .1971E+02     |                * 
3.33      .1889E+02     |                          *  
3.19      .1747E+02     |                        *    
3.06      .1541E+02     |                     *       
2.92      .1268E+02     |                 *          
2.78      .9239E+01     |           *                 
2.64      .5029E+01     |     *                       
2.50      .0000E+00     |                             

FIGURE 5.51

Axial speed.

Table 5.5 Averaged Values of Annular Quantities

Apparent Viscosities Averaged Parameter Values

Average Vz (in./sec) .1305E102

Average Vz (ft/min) .6523E102

Average Vθ (in./sec) .3535E203

Average W (rad/sec) .1074E203

Average total speed (in./sec) .1305E102

Average angle between Vz and VÕ (deg) .2441E101

Average d(Vz)/dr (1/sec) .0000E100

Average d(Vθ)/dr (1/sec) 2.4288E203

Average dW/dr (1/(sec X in.)) 2.1630E203

Average dP/dr (psi/in.) 5 .4719E211

(Continued )
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Table 5.5 (Continued)

Apparent Viscosities Averaged Parameter Values

Average Srθ (psi) .7903E208

Average Srz (psi) .2432E204

Average Smax (psi) .2088E203

Average dissipation function (lbf/(sec sq in.)) .4442E202

Average apparent viscosity (lbf sec/sq in.) .1617E204

Average Drθ (1/sec)5 .2681E203 .2688E203

Average Drz (1/sec)5 .9912E100 .9912E1‘00

Apparent viscosity vs "r":
r                     0

5.00      .1294E-04     |                           * 
4.86      .1298E-04     |                           * 
4.72      .1300E-04     |                           * 
4.58      .1300E-04     |   *
4.44      .1299E-04     |                           * 
4.31      .1296E-04     |                           * 
4.17      .1291E-04     |                           * 
4.03      .1284E-04     |               * 
3.89      .1276E-04     |                           * 
3.75      .1266E-04     |                           * 
3.61      .1255E-04     |                          *  
3.47      .1243E-04     |                          *
3.33      .1231E-04     |                          *  
3.19      .1218E-04     |                          *  
3.06      .1205E-04     |                         *   
2.92      .1191E-04     |                         *   
2.78      .1177E-04     |                         *   
2.64      .1163E-04     |                        *    
2.50      .1148E-04     |                        *    

FIGURE 5.54

Apparent viscosity.

Axial speed Vz(r):
r                     0

______________________________
5.00      .3053E-04     |                             
4.86      .4256E+01     |   *                         
4.72      .8125E+01     |        *                    
4.58      .1159E+02     |             *               
4.44 .1465E+02     |                 *           
4.31      .1727E+02     |                    *        
4.17      .1943E+02     |                       *     
4.03      .2113E+02     |                         *   
3.89      .2232E+02     |                          *  
3.75      .2300E+02     |                           * 
3.61      .2312E+02     |                            *
3.47      .2267E+02     |                           * 
3.33      .2160E+02     |    *  
3.19      .1988E+02     |                       *     
3.06      .1748E+02     |                    *        
2.92      .1434E+02     |                *            
2.78      .1041E+02     |           *    
2.64      .5656E+01     |     *                       
2.50      .0000E+00     |                             

FIGURE 5.53

Axial speed.
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These solutions also provide a means to correlate experimental data nondimensionally. Still, we emphasize
that the rotation can induce opposite effects depending on how eccentric or concentric the annulus is for the
non-Newtonian fluid assumed.

MODEL 5.7

Cuttings Transport Flow Correlations in Deviated Wells

Industry interest in horizontal and highly deviated wells has heightened the importance of annular

flow modeling as it relates to hole cleaning. Cuttings transport to the surface is generally impeded

by hole orientation; this is worsened by decreased “low-side” annular velocities due to pipe eccen-

tricity. In addition, the blockage created by bed buildup decreases overall flow rate, further reduc-

ing cleaning efficiency. In what could possibly be a self-sustaining, destabilizing process, stuck

pipe is a likely end result. This section discloses new cuttings transport correlations and suggests

simple predictive measures to avoid bed buildup. Good hole cleaning and bed removal, of course,

are important to cementing as well.

Few useful annular flow models are available despite their practical importance. The nonlinear

equations governing Power law viscous fluids, for example, must be solved with difficult no-slip

conditions for highly eccentric geometries. Recent slot flow models offer some improvement over

parallel plate approaches. However, because they unrealistically require slow radial variations in

the circumferential direction, large errors are possible. Even when they apply, these models can be

cumbersome; they involve “elliptic integrals,” which are too awkward for field use.

Table 5.6 Averaged Values of Annular Quantities

Apparent Viscosities Averaged Parameter Values

Average Vz (in./sec) .1539E102

Average Vz(ft/min) .7693E102

Average Vθ (in./sec) .3730E102

Average W (rad/sec) .1162E102

Average total speed (in./sec) .4150E102

Average angle between Vz and VÕ (deg)5 .5993E102

Average d(Vz)/dr (1/sec) .0000E100

Average d(Vθ)/dr (1/sec) 2.4303E102

Average dW/dr (1/(sec X in.)) 2.1654E102

Average dP/dr (psi/in.) .5811E201

Average Srθ (psi) .6717E203

Average Srz (psi) .2432E204

Average Smax (psi) .7149E203

Average dissipation function (lbf/(sec sq in.)) .4851E201

Average apparent viscosity (lbf sec/sq in.) .1251E204

Average Drθ (1/sec) .2733E102

Average Drz (1/sec) .1350E101
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Recently developed bipolar coordinate models accurately simulate eccentric flows with circular

pipes and boreholes; however, they cannot be extended to real-world applications containing wash-

outs and cuttings beds. In this section, the eccentric flow model is used to interpret field and labora-

tory results. Because the model actually simulates reality, it has been possible to correlate problems

associated with cuttings transport and stuck pipe to unique average mechanical properties of the

computed flow field. These correlations are discussed next.

Water-based muds
Detailed computations using the eccentric model are described, assuming a Power law fluid, which

correspond to the comprehensive suite of cuttings transport experiments conducted at the University

of Tulsa (see Becker, Azar, and Okrajni (1989)). For a fixed inclination and oncoming flow rate, we

demonstrate that “cuttings concentration” correlates linearly with the mean viscous shear stress

averaged over the lower half of the annulus. Thus, impending cuttings problems can be eased by first

determining the existing average stress level and then adjusting n, K, and gpm values to increase that

stress. Physical arguments supporting our correlations will be given. We emphasize that the present

approach is completely predictive and deterministic; it does not require empirical assumptions

related to the “equivalent hydraulic radius” with questionable “pipe to annulus conversion factors.”

Detailed experimental results for cuttings concentration, a useful indicator of transport efficiency

and carrying capacity, were obtained at the University of Tulsa’s large-scale flow loop. Fifteen ben-

tonite-polymer water-based muds for three average flow rates (1.91, 2.86, and 3.82 ft/sec) at three

borehole inclinations from vertical (30, 45, and 70 degrees) were tested. In Becker et al. (1989),

Table 1 summarizes all measured mud properties, along with specific Power law exponents n and

consistency factors K.

We emphasize that “water-based” does not imply Newtonian flow; in fact, the reported values

of n differed substantially from unity. The annular geometry consisted of a 2-in.-radius pipe, dis-

placed downward by 1.5 in. in a 5-in.-radius borehole; also, the pipe rotated at 50 rpm. Note that

50 rpm corresponds to a tangential surface speed of about 1 ft/sec, so that values in the annulus

were much lower. Since the ratio vθ/vz,, 1, we neglected rotation in the this correlation study.

With flow rate and hole inclination fixed, the authors cross-plotted the nondimensional cuttings

concentration, C, versus particular rheological properties for each mud type used. These included

apparent viscosity, plastic viscosity (PV), yield point (YP), YP/PV, initial and 10-minute gel

strength, “effective viscosity,” K, and Fann dial readings at various rpms. Typically, the correla-

tions obtained were poor, with one exception, to be discussed. That good correlations were not pos-

sible, of course, is not surprising; the “fluid properties” in Becker et al. (1989) were rotational

viscometer readings describing the test instrument only. That is, they had no real bearing to the

actual annular geometry and the corresponding downhole flow.

These cross-plots and tables, numbering more than 20, were nevertheless studied in detail; us-

ing them, the entire laboratory database was reconstructed. The steady eccentric annular model was

then executed for each of the 135 experimental points; detailed results for calculated apparent vis-

cosity, shear rate, viscous stress, and axial velocity, all of which varied spatially, were tabulated

and statistically analyzed along with the experimental data.

Numerous cross-plots were produced, examined, and interpreted. The most meaningful correlation

parameter found was the mean viscous shear stress, obtained by averaging computed values over the
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bottom half of the annulus, where cuttings in directional wells are known to form beds. Figure 5.55

(a�c) display cuttings concentration versus our mean shear stress for different average flow speeds and

inclination angles ß from the vertical. Each plotted symbol represents a distinct test mud. Calculated

correlation coefficients averaged a high 0.91 value. Our correlations apply to laminar flow only.

The program produces easily understood text-mode information. Figure 5.56 displays, for exam-

ple, calculated areal results for viscous shear stress in the visual format described earlier. Tabulated

results, in this case for “Mud No. 10” at 1.91 ft/sec, show that the “24” at the bottom refers to

“0.00024 psi” (the numbers in the plot, when multiplied by 1025, thus give the actual psi level). A

high value of “83” is seen on the upper pipe surface; lows are generally obtained away from solid

surfaces and at the annular floor. The average of these calculated values, taken over the bottom

half of the annulus, supply the mean stress points on the horizontal axes of Figures 5.55.

Becker et al. (1989) noted that the best data fit, obtained through trial and error, was obtained with

low shear rate parameters, in particular Fann dial (stress) readings at low rotary speeds such as 6 rpm.

This corresponds to a shear rate of 10/sec. Our exact, computed results gave averaged rates of 7 to 9/sec

for all mud samples at 1.91 ft/sec; similarly, 11 to 14/sec at 2.86 ft/sec and 14 to 19/sec at 3.82 ft/sec.

Since these are in the 10/sec range, they explain why a 6-rpm correlation worked, at least in their partic-

ular test setup. But, in general, the Becker “low rpm” recommendation will not apply a priori; each non-

linear annular flow presents a unique physical problem with its own characteristic shears. In general,

pipe-to-hole diameter ratio, as well as eccentricity, enters the equation. But this poses no difficulty,

since downhole properties can be obtained with minimal effort with the present computer model.
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FIGURE 5.55

Cuttings transport correlation.
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Cuttings removal in near-vertical holes with ß, 10� is well understood; cleaning efficiency is

proportional to annular velocity or, more precisely, the “Stokes product” between relative velocity

and local viscosity. This product appears naturally in Stokes’ original low Reynolds flow solutions

for flows past spheres, forming part of the coefficient describing net viscous drag. For inclined

wells, the usual notions regarding unimpeded settling velocities do not apply because different pro-

cesses are at work. Cuttings travel almost immediately to the low side of the annulus, a conse-

quence of gravity segregation; they remain there and form beds that may or may not slide

downward. These truss- or lattice-like structures have well-defined mechanical yield stresses; the

right amount of viscous friction will erode the cuttings bed, in the same way mud circulation limits

dynamic filter cake growth. This explains our success in using bottom-averaged viscous stress as

the correlation parameter. The straight line fit also indicates that bed properties are linear in an

elastic sense.

These ideas are not entirely new. Slurry pipeline designers, for example, routinely consider

“boundary shear” and “critical tractive force.” They have successfully modeled sediment beds as

“series of superposed layers” with distinct yield strengths (Streeter, 1961). However, these studies

are usually restricted to Newtonian carrier fluids in circular conduits.

While viscous shear emerges as the dominant transport parameter, its role was by no mean obvi-

ous at the outset. Other correlation quantities tested include vertical and lateral components of shear

rates and stresses, axial velocity, apparent viscosity, and Stokes product. These correlated some-

what well, particularly at low inclinations, but shear stress almost always worked. Consider appar-

ent viscosity as an example. Whereas Figure 6 of Becker et al. (1989) shows significant wide-band

scatter, listing rotational viscometer values ranging from 1 to 50 cp, our exact computations gave

good correlations with actual apparent viscosities ranging up to 300 cp. Computed viscosities

expectedly showed no meaningful connection to the apparent viscosities given by the University of

Tulsa investigators, because the latter were inferred from unrealistic Fann dial readings. This point

is illustrated quantitatively later.

55      57    55       

49      45    47    45    49  

39    39    28    29  28      39    39  
30    24        13        24    30    

27              12        12                27
17     9     4   4   4   9    17    

19     4   6    18  18  18   6   4      19 
12       8     9  19  31  31  31  19   9     8    12

1  19  30  44  5844  30  19     1      
6    12    28  5169  7269  513628  12       6

0 8  1924  436280  8380706243  2419   8 0  
1      1519  293250            555029  1915         1

5 9      20  35                37352020     9 5  
1315    2018                  1920  1513    
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151517       1                   1    15171515 

13 8 212                   7 313 
23222018 9 210                21 3 21418202223 

21          2621 
1511 21518        2918 9 415 

2725       0  15  1815   6 0    212527 
2419     5   8   5  141924  

28      15    13  15      28   
2622    20    26      

24        

FIGURE 5.56

Viscous stress.
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We emphasize that Figure 5.55(a�c) are based on unweighted muds. On a separate note, the

effect of “pure changes in fluid density” should not alter computed shear stresses, at least theoreti-

cally, since the convective terms in the steady governing equations vanish. In practice, however, oil-

field weighting materials are likely to alter n and K; thus, some change in stress level might be

anticipated. The effects of buoyancy, not treated here, will of course help without regard to changes

in shear.

We have shown how cuttings concentration correlates in a satisfactory manner with the mean

viscous shear stress averaged over the lower half of the annulus. Thus, impending hole-cleaning

problems can be alleviated by first determining the existing average stress level and then by adjust-

ing n, K, and gpm values in the actual drilling fluid to increase that stress. Once this danger zone is

past, additives can be used to reduce shear stress and thus mud pump pressure requirements.

Simply increasing gpm may also help, although the effect of rheology on stress is probably more

significant.

Interestingly, Seeberger et al. (1989) described an important field study where extremely high

velocities together with very high yield points did not alleviate hole-cleaning problems. They sug-

gested that extrapolated YP values may not be useful indicators of transport efficiency. Also,

the authors pointed to the importance of elevated stress levels at low shear rates in cleaning

large-diameter holes at high angles. They experimentally showed how oil- and water-based muds

having like rheograms, despite their obvious textural or “look and feel” differences, will clean with

like efficiencies. This implies that a knowledge of n and K alone suffices in characterizing real

muds.

The procedure just described requires minimal change to field operations. Standard viscometer

readings still represent required input information, but they should be used to determine actual

downhole properties through computer analysis. Yield point and plastic viscosity, arising from

older Bingham models, play no direct role in the present methodology, although these parameters

sometimes offer useful correlations.

Cuttings transport database
The viscometer properties and cuttings concentrations data for the 15 muds (at all angles and flow

rates), together with exact computed results for shear rate, stress, apparent viscosity, annular speed,

and Stokes product, have been assembled into a comparative database for continuing study.

These detailed results are available from the author upon request. Tables 5.7, 5.8, and 5.9 summa-

rize bottom-averaged results for the eccentric hole used in the Tulsa experiments. Computations

show that the bottom of the hole supports a low shear rate flow, ranging from 10 to 20 reciprocal

seconds. These values are consistent with the authors’ low shear rate conclusions, established by

trial and error from the experimental data. However, their rule of thumb is not universally correct;

for example, the same muds and flow rates gave high shear rate results for several different down-

hole geometries.

Shear rates can vary substantially depending on eccentricity and diameter ratio. Direct computa-

tional analysis is the only legitimate and final arbiter. These tables also give calculated apparent

viscosities along with values extrapolated from rotating viscometer data (shown in parentheses).

Comparison shows that no correlation between the two exists, a result not unexpected, since the
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measurements bear little relation to the downhole flow. On the other hand, calculated apparent vis-

cosities correlated well with cuttings concentration, although not as well as did viscous stress. This

correlation was possible because bottom-averaged shear rates did not vary appreciably from mud to

mud at any given flow speed. This effect may be fortuitous.

Table 5.7 Bottom-Averaged Fluid Properties at 1.91 ft/sec

Mud n K lbf secn/in.2 Shear Rate 1/sec Shear Stress (psi) Apparent-Viscosity (cp)

1 1.00 0.15E26 9.1 0.13E25 1 (1)

2 0.74 0.72E25 8.1 0.29E24 27 (8)

3 0.59 0.13E24 7.8 0.34E24 35 (5)

4 0.74 0.14E24 8.3 0.59E24 54 (15)

5 0.59 0.25E24 7.6 0.67E24 71 (9)

6 0.42 0.57E24 7.4 0.95E24 116 (6)

7 0.74 0.24E24 8.1 0.97E24 89 (25)

8 0.59 0.43E24 7.6 0.11E23 118 (15)

9 0.42 0.94E24 7.5 0.16E23 191 (10)

10 0.74 0.38E24 8.2 0.16E23 143 (40)

11 0.59 0.68E24 7.7 0.18E23 190 (24)

12 0.42 0.15E23 7.5 0.25E23 307 (16)

13 0.74 0.48E24 8.0 0.19E23 180 (50)

14 0.59 0.85E24 7.6 0.22E23 237 (30)

15 0.42 0.19E23 7.4 0.32E23 388 (20)

Table 5.8 Bottom-Averaged Fluid Properties at 2.86 ft/sec

Mud n K lbf secn/in.2 Shear Rate 1/sec Shear Stress (psi) Apparent-Viscosity (cp)

1 1.00 0.15E26 14 0.20E25 1 (1)

2 0.74 0.72E25 12 0.39E24 24 (8)

3 0.59 0.13E24 11 0.42E24 30 (5)

4 0.74 0.14E24 12 0.78E24 49 (15)

5 0.59 0.25E24 11 0.84E24 60 (9)

6 0.42 0.57E24 11 0.11E23 91 (6)

7 0.74 0.24E24 12 0.13E23 80 (25)

8 0.59 0.43E24 11 0.14E23 100 (15)

9 0.42 0.94E24 11 0.19E23 152 (10)

10 0.74 0.38E24 12 0.21E23 129 (40)

11 0.59 0.68E24 11 0.23E23 161 (24)

12 0.42 0.15E23 11 0.30E23 242 (16)

13 0.74 0.48E24 12 0.26E23 161 (50)

14 0.59 0.85E24 11 0.28E23 199 (30)

15 0.42 0.19E23 11 0.38E23 305 (20)
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Invert emulsions versus “all oil” muds
Conoco’s early Jolliet project successfully drilled a number of deviated wells, ranging 30� to 60�

from vertical, in the deepwater Green Canyon Block 184 using a new “all oil” mud. Compared with

wells previously drilled in the area with conventional invert emulsion fluids, the oil mud proved

vastly superior with respect to cuttings transport and overall hole cleaning (Fraser, 1990a,b,c). High

levels of cleaning efficiency were maintained consistently throughout the drilling program. In this

section we explain, using the fully predictive, steady eccentric annular flow model, why the particu-

lar oil mud employed by Conoco performed well in comparison with the invert emulsion.

Given the success of the correlations developed in the prior discussion, it is natural to test our

“stress hypothesis” under more realistic and difficult field conditions. Conoco’s Green Canyon

experience is ideal in this respect. Unlike the unweighted, bentonite-polymer water-based muds

used in the University of Tulsa experiments, the drilling fluids employed by Conoco were “invert

emulsion” and “all oil” muds. Again, Seeberger et al. (1989) have demonstrated how oil-based and

water-based muds having similar rheograms, despite obvious textural differences, will clean holes

with like efficiencies. This experimental observation implies that a knowledge of n and K alone

suffices in characterizing the carrying capacity of water, oil-based, or emulsion-based drilling

fluids. Thus, the use of a Power law annular flow model as the basis for comparison for the two

Conoco muds is completely warranted.

We assumed for simplicity a 2-in.-radius drill pipe centered halfway down a 5-in.-radius bore-

hole. This eccentricity is consistent with the 30� to 60� inclinations reported by Conoco. The n and

K values we required were calculated from Figure 2 of Fraser (1990b), using Fann dial readings at

13 and 50 rpm. For the invert emulsion, we obtained n5 0.55 and K5 0.0001 lbf secn/in.2; the

values n5 0.21 and K5 0.00055 lbf secn/in.2 were found for the “all oil” mud. Our annular geome-

try is identical to that used in the previous discussion and in Becker et al. (1989). It was chosen so

Table 5.9 Bottom-Averaged Fluid Properties at 3.82 ft/sec

Mud n K lbf secn/in.2 Shear Rate 1/sec Shear Stress (psi) Apparent Viscosity (cp)

1 1.00 0.15E26 18 0.27E25 1 (1)

2 0.74 0.72E25 16 0.49E24 22 (8)

3 0.59 0.13E24 15 0.50E24 27 (5)

4 0.74 0.14E24 17 0.98E24 45 (15)

5 0.59 0.25E24 15 0.10E23 53 (9)

6 0.42 0.57E24 15 0.13E23 78 (6)

7 0.74 0.24E24 16 0.16E23 74 (25)

8 0.59 0.43E24 15 0.17E23 88 (15)

9 0.42 0.94E24 15 0.21E23 128 (10)

10 0.74 0.38E24 16 0.26E23 119 (40)

11 0.59 0.68E24 15 0.27E23 142 (24)

12 0.42 0.15E23 15 0.34E23 205 (16)

13 0.74 0.48E24 17 0.33E23 148 (50)

14 0.59 0.85E24 15 0.33E23 177 (30

15 0.42 0.19E23 15 0.43E23 258 (20)
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that the shear stress results obtained for the Tulsa water-based muds (shown earlier in Figure 5.55)

can be directly compared with those found for the weighted invert emulsion and oil fluids

considered.

For comparative purposes, the two runs described here were fixed at 500 gpm. To maintain this

flow rate, the invert emulsion required a local axial pressure gradient of 0.010 psi/ft; Conoco’s all

oil mud, by contrast, required 0.029 psi/ft. Figures 5.57 and 5.58, for invert emulsion and all oil

muds, give calculated results for axial velocity in in./sec. Again, note how all no-slip conditions are

identically satisfied.

Figures 5.59 and 5.60 display the absolute values of the vertical component of viscous shear stress;

the leading significant digits are shown, corresponding to magnitudes that are typically O(1023) to
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Annular velocity, invert emulsion.

0       0     0

0      41    42    41     0

0    40    47    47  47      40     0
39    46        47        46    39

0              47        47                 0
46    47   47  47  47  47    46

36    47  47    47  47  47  47  47      36
0      44    47  47  45  46  45  47  47    44     0

46  46  45  42  3442  45  46    46
33    46    44  3321  2121  334044  46      32

4244  4543  3220 0   0 0 02032  4345  4341
0      4443  383019             01938  4244         0

2837      40  18                 0183540    3728
3939    27 0                  1527  4039

0        383523                    13313538       0
223133       0                   0    33333122

322919 0                  102532
0152325242214                 0192226262315 0

5             0 5
171815 9 6         0 6131718

011      11   5   5 5  1011    1511 0
6 9     7   7   7  11 9 6

0       5     5   5       0
0 3     3     0

0

FIGURE 5.58

Annular velocity, all oil mud.
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O(1024) psi. This shear stress is obtained as the product of local apparent viscosity and shear rate, both

of which vary throughout the cross section. That is, the viscous stress is obtained exactly as “apparent

viscosity (x, y)3 dU(x, y)/dx.”

Figure 5.57 shows that the invert emulsion yields maximum velocities near 61 in./sec on the

high side of the annulus; the maximums on the low side, approximately 5 in./sec, are less than ten

times this value. By comparison, the “all oil” results in Figure 5.58 demonstrate how a smaller n

tends to redistribute velocity more uniformly. Still, the contrast is high, being 47 in./sec to 7 in./sec.

The difference between the low-side maximum velocities of 5 and 7 in./sec are not significant and

certainly do not explain observed large differences in cleaning efficiency.

Our earlier results in the first discussion provided experimental evidence suggesting that mean vis-

cous shear stress is the correct correlation parameter for hole-cleaning efficiency. This is, importantly,
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Viscous stress, invert emulsion.
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Viscous stress, all oil mud.
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the case here. First note how Figure 5.59 gives a bottom radial stress distribution of “3-2-2-3-3” for the

invert emulsion mud. In the case of Conoco’s “all oil” mud, Figure 5.60 shows that these values signifi-

cantly increase to “10-10-4-6-4.” We calculated mean shear stress values averaged over the lower half

of the annulus. These values, for oil-based and invert-emulsion muds, respectively, were 0.00061 and

0.00027 psi. Their ratio, a sizable 2.3, substantiates the positive claims made in Fraser (1990b).

Calculated shear stress averages for the University of Tulsa experiments in no case exceeded 0.0004 psi.

Similarly averaged apparent viscosities also correlated well, leading to a large ratio of 2.2.

(The “apparent viscosities” in Becker et al. (1989) did not correlate at all, because nonmeaningful rota-

tional viscometer readings were used.) Bottom-averaged shear rates, for oil-based and invert-emulsion

muds, were calculated as 12.7 and 9.6/sec, respectively; at least in this case, we have again justified the

“6 rpm (or 10/sec) recommendation” offered by many drilling practitioners. In general, however, shear

rates will vary widely; they can be substantial depending on the particular geometry and drilling fluid.

The present results and the detailed findings of the first discussion, together with the recommen-

dations of Seeberger et al. (1989), strongly suggest that “bottom-averaged” viscous shear stress cor-

relates well with cuttings carrying capacity. Thus, as before, a driller suspecting cleaning problems

should first determine his current downhole stress level; then he should alter n, K, and gpm to

increase that stress. Once the danger is past, he can lower overall stress levels to reduce mud pump

pressure requirements. This “stress hypothesis” for hole cleaning, first proposed by the author in

1991 in Borehole Flow Modeling, has been adopted for internal use at several oil companies.

Issues in cuttings transport
The empirical cuttings transport literature contains confusing observations and recommendations

that, in light of the foregoing results, can be easily resolved. We will address several questions

commonly raised by drillers. First and foremost is “Which parameters control transport efficiency?”

In vertical wells, the drag or uplift force on small isolated chips can be obtained from lubrication

theory via Stokes’s or Oseen’s low Reynolds number equations. This force is proportional to the

product between local viscosity and the first power of relative velocity between chip and fluid. The

so-called “Stokes product” correlates well in vertical holes.

In deviated and horizontal holes with eccentric annular geometries, cuttings beds invariably

form on the low side. These beds consist of well-defined mechanical structures with nonzero yield

stresses; to remove or erode them, viscous fluid stresses must be sufficiently strong to overcome

their resilience. The stresses computed on a laminar basis are sufficient for practical purposes,

because low-side, low-velocity flows are almost always laminar. In this sense, any turbulence in

the high-side flow is unimportant, since it plays no direct role in bed removal (the high-side flow

does convect debris that are uplifted by rotation). This observation is reiterated by Fraser (1990c).

In his paper, Fraser correctly points out that too much significance is often attached to velocity cri-

teria and fluid turbulence in deviated wells.

A second question concerns drillpipe rotation. With rotation, centrifugal effects throw cuttings

circumferentially upward, where they are convected uphole by the high-side flow; then they fall

downward. In the first part of this cycle, the cuttings are subject to drag forces not unlike those

found in vertical wells. Turbulence can be important, determining the amount of axial throw tra-

versed before the cuttings are redeposited into the bed. In addition to “throwing” estimates, the

capabilities offered by the transient simulator now permit calculations for rotation-induced stress

effects on cuttings bed erosion.
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Other effects of rotation are subtly tied to the rheology of the background fluid. Conflicting obser-

vations and recommendations are often made regarding drillpipe rotation for concentric annuli. To

resolve them, we need to reiterate some of the theoretical results from Example 5.6. There we dem-

onstrated that axial and circumferential speeds completely decouple for laminar Newtonian flows

despite the nonlinearity of the Navier-Stokes equations. This is so because the convective terms

exactly vanish, allowing us to “naively” (but correctly) superpose the two orthogonal velocity fields.

This fact was, apparently, first deduced by Savins et al. (1966), who noted that no coupling

between the discharge rate, axial pressure gradient, relative rotation, and torque could be found

through the viscosity coefficient for Newtonian flows. The decoupling implies that experimental

findings obtained using Newtonian drilling fluids (primarily water and air) cannot be extrapolated to

more general Power law or Bingham plastic rheologies. Likewise, rules of thumb deduced using real

drilling muds will not be consistent with those found for water. Newtonian (e.g., brines) and “real”

muds behave differently in the presence of pipe rotation. In a Newtonian fluid, rotation will not

affect the axial flow, although “centrifugal throwing” is still important. Note that in an initially stea-

dy, concentric non-Newtonian flow, where the mud pump is operating at constant pressure, a

momentary increase in rpm leads to a temporary surge in flow rate and thus improved hole cleaning.

The decoupling just discussed applies to Newtonian flows in concentric annuli only. The coupling

between axial and circumferential velocities reappears, even for Newtonian flows, when the rotating

motion occurs in an eccentric annulus. This is so because the nonlinear convective terms will not

identically vanish. This coupling is amply demonstrated in our transient calculations for flows with

rotation. In general, concentric flow loop tests using Newtonian fluids provide little benefit or infor-

mation in terms of field usefulness. In fact, their results will be subject to misinterpretation.

And the role of fluid rheology? We have demonstrated how bottom-averaged shear stress can be

used as a meaningful correlation parameter for cuttings transport in eccentric deviated holes. This

mean viscous stress can be computed using steady methods for flows without rotation or transient

models for flows with rotation. The arguments given in several discussions are sound on physical

grounds; in cuttings transport, rheology is a significant player by way of its effect on fluid stress.

We have not modeled, nor do we suggest computational studies focusing on the dynamics of

single chips or ensembles of cuttings chips, for reasons cited in Chapter 1. As we have demon-

strated, it suffices to use viscous stress as a correlation parameter. Modeling the dynamics of aggre-

gates of chips involves mathematics so complicated that it is difficult to anticipate any practical

significance, even in the long term.

Finally, we comment on the role of increasing fluid density to improve hole cleaning. For

steady flows without rotation, fluid density completely drops out of the governing equations, but

these equations were written without body forces. In this sense, density is not important. However,

when more complete equations are considered, it is clear that higher densities will always increase

buoyancy effects and that the consequent uplift is beneficial as far as helical “throwing” is con-

cerned; it is therefore helpful in hole cleaning.

MODEL 5.8

Cuttings Bed Growth as an Unstable Flow Process

In vertical wells in which drilled cuttings move unimpeded, cuttings transport and hole-cleaning

efficiency vary directly as the product between mud viscosity and “relative particle and annular
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velocity.” For inclined wells, bed formation introduces a new physical source for clogging. Often,

this means that rules of thumb developed for vertical holes are not entirely applicable to deviated

wells. For example, Seeberger et al. (1989) pointed out that substantial increases in both yield

point and annular velocity did not help in alleviating their hole problems. They suggested

that high shear stresses at low shear rates would be desirable and that stress could be a useful

indicator of cleaning efficiency in deviated wells. We have given compelling evidence for this

hypothesis.

Using the steady eccentric annular flow model, we have demonstrated that “cuttings concentra-

tion” correlates linearly with mean shear stress—that is, the viscous stress averaged over the lower

half of the annulus—for a wide range of oncoming flow speeds and well inclinations. Apparently,

this empirical correlation holds for invert emulsions and oil-based muds as well.

Having established that shear stress is an important parameter in bed formation, it is natural to

ask whether cuttings bed growth itself helps or hinders further growth; that is, does bed buildup

constitute a self-sustaining, destabilizing process? The classic “ball on top of the hill,” for instance,

continually falls once it is displaced from its equilibrium position. In contrast, the “ball in the

valley” consistently returns to its origin, demonstrating “absolute stability.” In this section, we will

consider the effect of cuttings bed thickness.

If cuttings bed growth itself induces further growth, the cleaning process will be unstable in the

foregoing sense. This instability will underline, in field applications, the importance of controlling

downhole rheology so as to increase stress levels at the onset of danger. Field site flow simulation

can play an important role in operations—that is, in determining existing stress levels with a view

towards optimizing fluid rheology in order to increase them. In this section, calculations are

described that suggest that instability is possible.

In the nonrotating eccentric flow calculations that follow, we assume a 2-in.-radius nonrotating

drill pipe, displaced 1.5 in. downward in a 5-in.-radius borehole. This annular geometry is the same

as the experimental setup reported in Becker et al. (1989). For purposes of evaluation, we arbi-

trarily selected “Mud No. 10,” which was used by the University of Tulsa team. It has a Power law

exponent of 0.736 and a consistency factor of 0.0000383 lbf secn/in.2 The total annular volumetric

flow rate was fixed for all of our runs, corresponding to usual operating conditions. The average

linear speed was held to 1.91 ft/sec or 22.9 in./sec. In the reported experiments, this speed yielded

laminar flow at all inclination angles.

Four case studies were performed, the first containing no cuttings bed; the next three assuming

flat cuttings beds successively increasing in thickness. The level surfaces of the “small,” “medium,”

and “large” beds were located at 0.4, 0.8, and 1.0 in., respectively, from the bottom of the annulus.

Required pressure drops varied from 0.0054 to 0.0055 psi/ft. The “Steady 2D” simulator offers

highly visual text output that directly overlays computed quantities on the cross-sectional geometry,

thus facilitating physical interpretation and correlation with annular position. Computed results for

axial velocity in in./sec are shown in Figures 5.61 through 5.64.

All four velocity distributions satisfy the no-slip condition exactly; the text plotter used, we

note, does not always show 0’s at solid boundaries because of character spacing issues. The “no

bed” flow given in Figure 5.61 demonstrates very clearly how velocity can vary rapidly about the

annulus. For example, it has maximums of 51 and 5 in./sec above and below the pipe, a ten-fold

difference. Figures 5.62 through 5.64 show that this factor increases—that is, worsens—as the cut-

tings bed increases in thickness.
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Figures 5.65 through 5.68 give computed results for the vertical component of the shear stress—

that is, “apparent viscosity (x, y)3 strain rate dU/dx,” where “x” increases downward. Results for

the stress related to “dU/dy,” not shown because of space limitations, behaved similarly. For clarity,

only the absolute values are displayed; the actual values, which are separately available in tabulated

form, vary from O(1024) to O(1023) psi.

Note how the bottom viscous stresses decrease in magnitude as the cuttings bed builds in thick-

ness. This decrease, which is accompanied by decreases in throughput area, further compounds cut-

tings transport problems and decreases cleaning efficiency. Thus, hole clogging is a self-sustaining,

destabilizing process. Unless the mud rheology itself is changed in the direction of increasing stress,

differential sticking and stuck pipe are possible. This decrease of viscous stress with increasing bed

thickness is also supported experimentally. Quigley et al. (1990) measured “unexpected” decreases in
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FIGURE 5.61

Annular velocity, “no bed.”
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Annular velocity, “small bed.”
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fluid (as opposed to mechanical) friction in a carefully controlled flow loop where cuttings beds were

allowed to grow. While concluding that “cuttings beds can reduce friction,” the authors clearly do not

recommend its application in the field, since it increases the possibility of differential sticking.

Numerical results such as those shown in Figures 5.65 through 5.68 provide a quantitative means for

comparing cleaning capabilities between different muds at different flow rates. “Should I use the “high-

tech” mud offered by Company A when the simpler drilling fluid of Company B, run at a different

speed, will suffice?” With numerical simulation, these and related questions are readily answered. The

present results indicate that the smaller the throughput height, the smaller the viscous stresses will be.

This is intuitively clear, since narrow gaps impose limits on the peak bottom velocity and thus

the maximum stress. We caution that this result applies only to the present calculations and may

not hold in general. The physical importance of cuttings beds indicates that they should be modeled

in any serious well-planning activity. This necessity also limits the potential of recently developed
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FIGURE 5.63

Annular velocity, “medium bed.”
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FIGURE 5.64

Annular velocity, “large bed.”
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bipolar coordinate annular flow models. These handle circular eccentric annular geometries well,

but they cannot be generalized to handle more difficult holes with cuttings beds. Computationally,

though, even when dealing with purely eccentric circles, bipolar methods demand larger resources

because many transcendental functions need to be evaluated repeatedly.

MODEL 5.9

Spotting Fluid Evaluation for Stuck Pipe and Jarring Applications

Stuck pipe due to differential pressure between the mud column and the formation often results in

costly time delays. The mechanics governing differential sticking are well known (see, for example,
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Viscous stress, “no bed.”
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Viscous stress, “small bed.”
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Outmans (1958)). In the past, diesel oil, mineral oil, and mixtures of these with surfactants, clays,

and asphalts were usually spotted to facilitate the release of the drillstring. However, the use of

these conventional spotting fluids is now stringently controlled by government regulation; environ-

mentally safe alternatives must be found.

Halliday and Clapper (1989) described the development of a successful, nontoxic, water-based

system. Their spotting fluid, identified using simple laboratory screening procedures, was used to

free 1,000 feet of stuck pipe in a 39� hole, from a sand section in the Gulf of Mexico. Since water-

based spotting fluids have seldom been studied in the literature, it is natural to ask whether or not

they really work and, if so, how. This section calculates, on an exact eccentric flow basis, three

important mechanical properties: the apparent viscosity, shear stress, and shear rate of the drilling

mud, with and without the spot additive. Then we provide a complete physical explanation for the
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Viscous stress, “medium bed.”
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Viscous stress, “large bed.”
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reported success. The spotting fluid essentially works by mechanically reducing overall apparent

viscosity; this enables the resultant fluid to perform its chemical functions better.

The eccentric borehole annular model for steady nonrotating flow was used. While we have suc-

cessfully applied it to hole cleaning before the occurrence of stuck pipe, it is of interest to apply it

to other drilling problems—for example, determining the effectiveness of spotting fluids in freeing

stuck pipe. Which mechanical properties are relevant to spotted fluids? What should their orders of

magnitude be? We examined the water-based system described in Halliday and Clapper (1989)

because such systems are becoming increasingly important. Why they work is not yet thoroughly

understood. But it suffices to explain how the water-based spotting fluid behaves, insofar as

mechanical fluid properties are concerned, on a single-phase, miscible flow basis. Conventional

capillary pressure and multiphase considerations for “oil on aqueous filter cake” effects do not

apply here, since we are dealing with “water on water” flows.

We performed our calculations for a 7.75-in.-diameter drill collar located eccentrically within a

12.5-in.-diameter borehole. This corresponds to the bottomhole assembly reported by the authors. A

small bottom annular clearance of 0.25 in. was selected for evaluation purposes. This almost closed

gap is consistent with the impending stuck pipe conditions characteristic of typical deviated holes.

In Hallliday and Clapper, Table 11 gives Fann 600- and 300-rpm dial readings for the water-

based mud used, before and after spot addition; both fluids, incidentally, were equal in density.

In the former case, these values were 46 and 28; in the latter, 41 and 24. These properties were

measured at 120�F. The calculated n and K Power law coefficients are, respectively, 0.70

and 0.000025 lbf secn/in.2 for the original mud; for the spotted mud, we obtained 0.77 and

0.0000137 lbf secn/in.2.

Halliday and Clapper (1989) reported that attempts to free the pipe by jarring down, with the

original drilling fluid in place, were unsuccessful. At that point, the decision to spot the experimen-

tal nonoil fluid was made. Since jarring operations are more impulsive, rather than constant pres-

sure drop processes, we calculated our flow properties for a wide range of applied pressure

gradients. Note that the unsteady, convective term in the governing momentum equation has the

same physical dimensions as pressure gradient. It was in this approximate engineering sense that

our exact simulator was used.

The highest-pressure gradients shown correspond to volumetric flow rates near 1,100 gpm.

Computed results for several parameters averaged over the lower half of the annulus are shown in

Tables 5.10 and 5.11. We emphasize that calculated averages are sensitive to annular geometry;

thus, the results shown in the tables may not apply to other borehole configurations.

In general, any required numerical quantities should be recomputed with the exact downhole

geometry. The results for averaged shear stress are “almost” Newtonian in the sense that stress

increases linearly with applied pressure gradient. This unexpected outcome is not generally true of

non-Newtonian flows. Both treated and untreated muds, in fact, show exactly the same shear stress

values. However, shear rate and volumetric flow rate results for the two muds vary differently, and

certainly nonlinearly with pressure gradient. The most interesting results, those concerned with

spotting properties, are related to apparent viscosity.

The foregoing calculations importantly show how the apparent viscosity for the spotted mud,

which varies spatially over the annular cross section, has a nearly constant “bottom average” close

to 0.000010 lbf sec/in.2 over the entire range of flow rates. This value is approximately 69 cp, far

in excess of the viscosities inferred from rotational viscometer readings, but still two to three times
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less than those of the original untreated mud. The importance of “low viscosity” in spotting fluids

is emphasized in several mud company publications the author is aware of. Whether the apparent

viscosity is high or low, of course, cannot be determined independently of hole geometry and pres-

sure gradient.

The apparent viscosity is relevant because it is related to the lubricity factor conventionally

used to evaluate spotting fluids. Importantly, it is calculated on a true eccentric flow basis, rather

than determined from (unrelated) rotational viscometer measurements. As in cuttings transport, vis-

cometer measurements are only valid to the extent that they provide accurate information for deter-

mining n and K over a limited range of shear rates.

That the treated fluid exhibits much lower viscosities over a range of applied pressures is con-

sistent with its ability to penetrate the pipe and mudcake interface. This lubricates and separates the

contact surfaces over a several-hour period; thus, it enables the spotting to perform its chemical

functions efficiently, thereby freeing the stuck drillstring. The effectiveness of any spotting fluid, of

course, must be determined on a case by case basis.

While computed averages for apparent viscosity are almost constant over a range of pressure

gradients, we emphasize that exact cross-sectional values for each flow property can be quite vari-

able. For example, consider the annular flow for the spotted mud under a pressure gradient of

Table 5.10 Fluid Properties, Original Mud

Pressure Gradient
(psi/ft)

Flow Rate
(gpm)

Apparent Viscosity
(lbf sec/in.2)

Shear Rate
(sec21)

Viscous Stress
(psi)

0.0010 69 0.000036 0.4 0.000011

0.0020 185 0.000027 1.2 0.000022

0.0030 329 0.000022 2.1 0.000033

0.0035 410 0.000021 2.6 0.000038

0.0040 497 0.000020 3.2 0.000044

0.0050 683 0.000018 4.3 0.000055

0.0060 886 0.000017 5.6 0.000066

0.0070 1105 0.000016 7.0 0.000077

Table 5.11 Fluid Properties, Spotted Mud

Pressure Gradient
(psi/ft)

Flow Rate
(gpm)

Apparent Viscosity
(lbf sec/in.2)

Shear Rate
(sec21)

Viscous Stress
(psi)

0.0010 140 0.000014 1.0 0.000011

0.0020 344 0.000012 2.4 0.000022

0.0023 412 0.000011 2.8 0.000025

0.0030 582 0.000010 4.0 0.000033

0.0035 711 0.000010 4.9 0.000039

0.0040 846 0.000010 5.8 0.000044

0.0050 1130 0.000009 7.8 0.000055
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0.002 psi/ft, with a corresponding flow rate of 344 gpm. The velocity solutions in in./sec, using the

visual text output format discussed previously, are shown in Figure 5.69; note, again, how no-slip

conditions are rigorously enforced at all solid surfaces.

Figure 5.70 gives results for exact apparent viscosity, which varies with spatial position plotted

over the eccentric geometry itself. Although the text plotter does not provide visual resolution at

the very bottom, tabulated solutions indicates pipe surface values of 13, increasing to 29 at the mid-

section, finally decreasing to 133 1026 lbf sec/in.2 at the borehole wall. The flatness of the cuttings

bed, or the extent to which it modifies annular bottom geometry, will also be an important factor as

far as lubricity is concerned. Any field-oriented hydraulics simulation should also account for such

bed effects.
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Annular velocity.
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Apparent viscosity.
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We demonstrated earlier that modeling can be used to correlate laboratory and field cuttings

transport efficiency data against actual (computed) downhole flow properties. Bottom-averaged vis-

cous shear stress importantly emerged as the physically significant correlation parameter. This sec-

tion indicates that annular flow modeling can also be used to evaluate spotting fluid effectiveness

in freeing stuck pipe. The important correlation parameter is average apparent viscosity, a fact

mechanical engineers might have anticipated. This is directly related to the lubricity factor usually

obtained in laboratory measurements.

MODEL 5.10

Newtonian Flow in Rectangular Ducts

In this model, we provide solutions for Newtonian flow in rectangular ducts. These solutions and

methods were used in our research to validate more general algorithms for non-Newtonian flow in

complicated cross sections. Of course, they are useful in their own right. We will observe that,

even with our restriction to the simplest fluid, very different mathematical techniques are needed

even for a “simple” change in duct shape. From an engineering point of view, this is impractical: A

more “robust” approach applicable to large classes of problems is needed and motivated, particu-

larly by the discussion that follows.

Exact analytical series solution
Here, a closed-form solution for unidirectional, laminar, steady Newtonian viscous flow in a rectan-

gular duct is obtained. Unlike d2u(r)/dr211/r du/dr5 1/μ dp/dz, which applies to Newtonian flow

in circular pipes and takes the form of an ordinary differential equation requiring data only at two

points in space, we now have the partial differential equation

@2u=@x2 1 @2u=@y2 5 ð1=μÞ dp=dz (5.115)

Its solution is obtained, subject to the “no-slip” velocity boundary conditions

uð21/2 b, y, 1 1/2 b; x5 0Þ5 0 (5.116a)

uð21/2 b, y, 1 1/2 b; x5 cÞ5 0 (5.116b)

uðy521/2 b; 0, x, cÞ5 0 (5.116c)

uðy51 1/2 b; 0, x, cÞ5 0 (5.116d)

where “b” and “c” denote the lengths of the sides of the rectangular duct shown in Figure 5.71.

The solution is obtained by taking u(y, x) as the sum of “particular” and “complementary” solu-

tions—that is, u5 up(x)1 uc(y, x). To simplify the analysis, we allow up(x) to vanish at x5 0

and c, while satisfying d2u/dx25 (1/μ) dp/dz, where dp/dz is a prescribed constant. Then the partic-

ular solution is obtained as up(x)5 dp/dz x2/(2μ)1C1x1C2, where the constants of integration

can be evaluated to give up(x)52 dp/dz (xc2 x2)/(2μ). This involves no loss of generality, since

the complementary solution uc(y, x) has not yet been determined and will be expressed as a
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function of up(x). With this choice, the partial differential equation for uc(x) reduces to the classical

Laplace equation

@2uc=@x
2 1 @2uc=@y

2 5 0 (5.117)

Now, since u5 0 and up(x)5 0 along the upper and lower edges of the rectangle in Figure 5.71,

it follows that uc(x)5 0 there also, since uc5 u2 up(x). By separating variables in the conventional

manner, it is possible to show that product representations of uc(y, x) involve combinations of trigo-

nometric and exponential functions. In particular, we are led to the combination

uc 5
XN
n5 1

An cosh ðnπy=cÞ sin ðnπx=cÞ (5.118)

The factor “sin (nπx/c)” allows uc(y, x) to vanish at the lower and upper boundaries x5 0 and

c. The linear combination of exponentials “cosh (nπy/c)” is selected because the velocity distribu-

tion must be symmetric with respect to the vertical line y5 0. Specific products cannot be disal-

lowed, so the infinite summation accounts for the maximum number permitted. The coefficient An

must be determined in such a way that side wall no-slip conditions are satisfied. To do this, we

reconstruct the complete solution as

u5 upðxÞ1 ucðy; xÞ52 dp=dz ðxc� x2Þ=ð2μÞ
1

P
An cosh ðnπy=cÞ sin ðnπx=cÞ (5.119)

and apply the boundary conditions given by Equations 5.116a and 5.116b. The coefficients of the

resulting Fourier series can be used, together with the orthogonality properties of the trigonometric

sine function, to show that

An 5 dp=dz=ðμcÞc3½22 f2 cosðnπÞ1 nπ sin ðnπÞg=½ðnπÞ3cosh fnπb=ð2cÞg� (5.120)

With An defined, the solution to uc, and thus to Equations 5.115 and 5.116, is determined. The

shear rates @u/@x and @u/@y, and the viscous stresses μ @u/@x and μ @u/@y, can be obtained by dif-

ferentiating Equation 5.119. Again, analytical methods suffer limitations (e.g., the superpositions in

“u5 up1 uc” and “Σ” are not valid when the equation for “u” is nonlinear, as for non-Newtonian

rheologies. Also, while there are no “log” function or “centerline” problems, as for radial formula-

tions, it is clear that even if “y and x” coordinates are found for general ducts, it will not be

y

x

– b/2 + b/2

c

FIGURE 5.71

Rectangular duct cross section.
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possible to find the analogous “sin” and “cosh” functions. In general, for arbitrarily clogged ducts,

there will be no lines of symmetry to help in defining solution products.

Classical techniques are labor intensive in this sense: Each problem requires its own special

solution strategy. The Fortran code required to implement Equations 5.119 and 5.120 is shown in

Figure 5.72. The input units will be explained later. Note that large values of the summation index

“n” will lead to register overflow; thus, the apparent generality behind Equation 5.118 is limited by

practical machine restrictions.

Finite difference solution
Now we obtain the solution for flow in a rectangular duct by purely numerical means. For circular

ducts governed by the ordinary differential equation d2u(r)/dr211/r du/dr5 1/μ dp/dz, the complete

solution can be obtained in a single pass using a tridiagonal equation solver if the equation is discre-

tized implicitly using second-order central differences. For problems in two independent variables,

iterative methods are generally required to obtain practical solutions. For linear problems, say

Newtonian flows, it is possible to obtain the solution in a single pass using “direct solvers.” However,

these are not practical for complicated geometries because numerous meshes are required to character-

ize the defining contours. In the analysis that follows, we will illustrate the use of iterative methods,

since these are used in the solution of our governing grid generation and transformed flow equations.

We now turn to Equation 5.115 and consider it in its entirety, without resolving the dependent var-

iable into particular and complementary parts. That is, we address @2u/@x21 @2u/@y25 (1/μ) dp/dz

directly. Now, from elementary numerical analysis, it can be shown that the central difference formula

d2uðriÞ=dr2 5 ðui21 22ui 1 ui1 1Þ=ðΔrÞ2 (5.121a)

holds to second-order accuracy. Thus, we can similarly write

@2uðyiÞ=@y2 5 ðui21 22ui 1 ui1 1Þ=ðΔyÞ2 (5.121b)

C     SERIES.FOR
C     INPUTS (Observation point (Y,X) assumed)
      B  = 1.
      C  = 1.
      Y  = 0.
      X  = 0.5
      VISC = 0.0000211/144.
      PGRAD = 0.001/12.      
C     SOLUTION (Consider 100 terms in series)
      PI  = 3.14159
      C2  = C**2.      
      SUM = 0.
      DO 100  N=1,100
      TEMP = 2.*(C**3) - (C**3)*(2.*COS(N*PI) +N*PI*SIN(N*PI))
      TEMP = TEMP/((N**3.)*(PI**3.))
      A = PGRAD*TEMP/(VISC*C)
      A = A/COSH(N*PI*B/(2.*C))
      SUM = SUM + A*COSH(N*PI*Y/C)*SIN(N*PI*X/C)
 100  CONTINUE
      UC = SUM
      UP = -PGRAD*(C*X-X**2.)/(2.*VISC)
      U = UC + UP
      WRITE(*,200) U
 200  FORMAT(1X,' Velocity = ',E10.4,' in/sec')
      STOP
      END

FIGURE 5.72

Fortran code, series solution for rectangular duct.
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for second derivatives in the “y” direction. In the present problem, we have an additional “x” direc-

tion, as shown in Figure 5.73. The grid depicted there overlays the cross section of Figure 5.71.

Since “y, x” requires two indexes, we extend Equation 5.121b in the obvious manner. For example,

for a fixed j, the second derivative is

@2uðyi; xjÞ=@y2 5 ðui21;j 22ui;j 1 ui1 1;jÞ=ðΔyÞ2 (5.121c)

Similarly,

@2uðyi; xjÞ=@x2 5 ðui;j21 22ui;j 1 ui;j1 1Þ=ðΔxÞ2 (5.121d)

Thus, at the “observation point” (i,j), Equation 5.115 becomes

ðui21;j 22ui;j 1 ui1 1;jÞ=ðΔyÞ2 1 ðui;j21 22ui;j 1 ui;j1 1Þ=ðΔxÞ2 5 1=μ dp=dz (5.122)

We can proceed to develop a rectangular duct solver allowing arbitrarily different Δx and Δy

values. However, that is not our purpose. For simplicity, we will therefore assume constant meshes

Δx5Δy5Δ, which allows us to rewrite Equation 5.122 in the form

ui;j 5 1/4 ðui21;j 1 ui1 1;j 1 ui;j21 1 ui;j1 1Þ2Δ2=ð4μÞ dp=dz (5.123)

Equation 5.123 is a central difference approximation to governing Equation 5.115, which is second-

order accurate. Interestingly, it can be used as a “recursion formula” that iteratively produces improved

numerical solutions. For example, suppose that some approximate solution for u(i, j) is available. Then

an improved (left-side) solution can be generated by evaluating the right side of Equation 5.123 with

it. It can be shown that, if this method converges, it will tend to the correct physical solution whatever

the starting guess. Thus, if an initial approximation were not available, a trivial “zero solution” for u

would be perfectly acceptable! Such methods are known as “relaxation methods.” Since we have calcu-

lated improvements point by point (e.g., as opposed to an entire line of points at a time), the method

used is a “point relaxation” method.

The Fortran source code implementing Equation 5.123 and the boundary conditions in

Equations 5.116a through 5.116d is given in Figure 5.74. The units used are identical to those of

y

x

Δ

Δ

i – 1 i i + 1

j

j – 1

j + 1

(i, j)

FIGURE 5.73

Rectangular finite difference grid.
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the previous example, but here, a square duct having one-inch sides is considered. A mesh width of

0.1 in. is assumed, so that ten grids are taken along each side of the square. Loop 100 initializes

the “starting guess” for U(I, J) to zero, also setting vanishing velocities along the duct walls I5 1

and 11, and J5 1 and 11. Loop 300 updates U(I, J) in the internal flow domain bounded by

I5 2, . . . , 10 and J5 2, . . . , 10. One hundred iterations are taken, which more than converges the

calculation; in a more refined implementation, suitable convergence criteria would be defined. “Q”

provides the volumetric flow rate in gallons per minute, while “U” is calculated in inches per sec-

ond. For the Fortran code shown, computations are completed in less than one second on standard

personal computers.

Example calculation
Here a pressure gradient with dp/dz5 0.001 psi/ft is assumed, and a square duct with 1-in. sides is

taken; also, we consider a unit centipoise viscosity fluid, with μ5 0.0000211 lbf sec/ft2. Units of

“in., sec, and lbf” are used in the source listing. The program breaks each side of the square into 10

equal increments, with Δx5Δy5 0.1 in. This is done for comparative purposes with radial flow

results. For the finite difference method, the maximum velocity is found at the center of the duct—

that is, y5 0 and x5 0.5 in., and it is given by the value u(6, 6)520.4157E102 in./sec. The code

in Figure 5.72 gives the exact series solution at the center as 20.4190E102, so that the difference

method incurs less than 1 percent error.

Again, this accuracy is achieved with a coarse “103 10” constant mesh. We note in closing this

chapter that the rectangular duct solution, while not bearing directly on petroleum applications, was

developed in part to validate the singly connected duct flow curvilinear grid scheme used in our

solids deposition and wellbore “hole enlargement” applications.

C     SQFDM.FOR (SQUARE DUCT, FINITE DIFFERENCE METHOD)
      DIMENSION U(11,11)
C     SQUARE IS 1" BY 1" AND THERE ARE 10 GRIDS
      DEL =  1./10.      
      VISC = 0.0000211/144.
      PGRAD = 0.001/12.      
      DO 100  I=1,11
      DO 100  J=1,11
      U(I,J) = 0.
 100  CONTINUE 
      DO 300  N=1,100
      DO 200  I=2,10
      DO 200  J=2,10
      U(I,J) =  (U(I-1,J) + U(I+1,J) + U(I,J-1) + U(I,J+1))/4.
     1        -  PGRAD*(DEL**2)/(4.*VISC)
 200  CONTINUE
 300  CONTINUE
      Q = 0.
      DO 400  I=2,11
      DO 400  J=2,11
      Q = Q + U(I-1,J-1)*(DEL**2)
 400  CONTINUE
      Q = Q*0.2597
      Q = -Q
      WRITE(*,500) Q
 500  FORMAT(' Volume flow rate = ',E10.4,' gal/min')
      WRITE(*,510) U(6,6)
 510  FORMAT(' Umax = ',E10.4,' in/sec')     
      STOP
      END

FIGURE 5.74

Finite difference code, rectangular ducts.
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CHAPTER

6Transient, Two-Dimensional,
Single-Phase Flow Modeling

In Chapter 2, a broad foundation for annular flow problems with arbitrary cross-sectional geome-

tries was developed, and we showed how for nonrotating drillpipe and casing, the initial formula-

tion must be presented in rectangular or Cartesian variables in order to implement the boundary-

conforming, curvilinear grid procedure. New subtleties accompanying the treatment of inner body

rotation were discussed. There we demonstrated how, for rotating flow applications, it was neces-

sary to start with a host formulation in circular cylindrical coordinates so that tangential surface

speeds can be adequately described, and then to progress to Cartesian coordinates, and only then to

recast the formulation in general curvilinear coordinates. Of course, in software development, the

geometric transformations do not end with these mappings: There are also screen transforms and

pixel mappings to contend with. However, the latter two are not discussed in this book.

With the underlying formulation issues addressed in Chapter 2, the work in Chapter 3 focused

on the details of the curvilinear grid mappings—for example, the manner in which branch cut

boundary conditions are developed for doubly connected annular flow domains (and how they con-

trast with singly connected geometries), the exact relaxation or iteration schemes needed to solve

the nonlinear mesh generation equations in a fast and numerically stable manner, and the way in

which velocity gradients are expressed in both physical and mapped coordinates.

We also addressed the modeling of yield stress fluids and explained how plug zone size, shape,

and location can be calculated naturally using a new extended Herschel-Bulkley relationship. The

foundation and techniques that were developed in these two early chapters are now presumed to be

understood by the reader; therefore, in the present chapter dealing with transient, two-dimensional,

single-phase flow modeling, we will only outline the broad strategy and omit lower-level details

associated with the mathematics and computational analysis.

SECTION 6.1

Governing Equations for Transient Flow

The transient formulation handles, of course, axial reciprocation and general pump schedules

(ramp-up, ramp-down, changes in flow rate, and so on). But the added complexity inherent in our

use of circular cylindrical coordinates was basically driven by the need to model pipe or casing

rotation, an effect that cannot be modeled by steady flow formulations with absolute numerical

stability.
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We emphasize that the model developed in this chapter, and amply illustrated with calculations in

Chapter 7, handles general axial reciprocation, arbitrary pipe rotation, and pump schedules taken in

any transient form. These unsteady actions may be constant, linearly varying in time, sinusoidal, or any

combination thereof. While the menus in Figure 1.28 might appear restrictive, we emphasize that very

general simultaneous actions can be modeled by modifying just several lines of Fortran source code.

As noted earlier, we formulate the problem first in circular cylindrical coordinates, recognizing

that these also apply (although not conveniently) to arbitrary annular cross-sectional geometries.

The momentum equations in the “r,” “θ,” and “z” directions were discussed previously and are,

respectively,

ρð@vr=@t1 vr @vr=@r1 vθ=r @vr=@θ2 v2θ=r1 vz @vr=@zÞ
5 Fr 2 @P=@r1 1=r @ðr SrrÞ=@r1 1=r @Srθ=@θ2 1=r Sθθ 1 @Srz=@z

(6.1)

ρð@vθ=@t1 vr @vθ=@r1 vθ=r @vθ=@θ1 vrvθ=r1 vz @vθ=@zÞ
5 Fθ 2 1=r @P=@θ1 1=r2 @ðr2 SθrÞ=@r1 1=r @Sθθ=@θ1 @Sθz=@z

(6.2)

ρð@vz=@t1 vr @vz=@r1 vθ=r @vz=@θ1 vz @vz=@zÞ
5 Fz 2 @P=@z1 1=r @ðr SzrÞ=@r1 1=r @Szθ=@θ1 @Szz=@z

(6.3)

where F denotes body forces, while mass conservation takes the form

@vr=@r1 vr=r1 1=r @vθ=@θ1 @vz=@z5 0 (6.4)

In the preceding, vr, vθ, and vz are radial, azimuthal, and axial velocity components, respectively.

Again, we have

S5 2NðΓÞD (6.5)

denoting the deviatoric stress tensor, N(Γ); the apparent viscosity function, Γ; the shear rate; and

now the deformation tensor D whose elements are defined by

Drr 5 @vr=@r (6.6a)

Dθθ 5 1=r @vr=@θ1 vr=r (6.6b)

Dzz 5 @vz=@z (6.6c)

Drθ 5Dθr 5 1=2 ½r @ðvθ=rÞ=@r1 1=r @vr=@θ� (6.6d)

Dθz 5Dzθ 5 1=2 ð@vθ=@z1 1=r @vz=@θÞ (6.6e)

Drz 5Dzr 5 1=2 ð@vr=@z1 @vθ=@θÞ (6.6f)

The solution process proceeds as follows and the steps are described qualitatively but sequentially

next.

1. For most annular flow applications, formation influx and outflux are permitted as described in

Chapter 4; however, we will assume that local effects are not large. Thus, vr can be neglected

in comparison to vz and vθ. This simplification eliminates one partial differential equation.

2. The work of Escudier et al. (2000) suggests that the azimuthal velocity solution in problems

with rotation is dominated by a “dragging” mechanism due to pipe or casing shear. This
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observation is acceptable physically and provides the basis for a second simplification allowing

us to neglect the azimuthal pressure gradient @P/@θ in the formulation. What remains is the

usual @P/@z axial driver.
3. The extended Herschel-Bulkley constitutive law introduced is now invoked so that plug zones

can be calculated naturally, with deep plug and interfacial transition boundaries appearing as

part of any numerical solution. Thus, a single computational domain applies, and there is no

need to consider multiple flow domains.

4. The circular cylindrical coordinate-based momentum equations are rewritten in Cartesian coor-

dinates and then reexpressed in terms of general boundary-conforming, curvilinear coordinates.

These coordinates and all transformation metrics are created using the computational scheme

outlined in Chapter 3. The mappings for steady and unsteady flows are identical.

5. The resulting unsteady, nonlinear partial differential equation system is extremely complicated,

containing variable coefficients, mixed derivatives, first- and second-order terms, and so on.

While high-order accurate “approximate factorization” and “alternating-direction-implicit” (ADI)

schemes are now available in the literature for their solution, implementation requires substantial

research. Thus, a faster explicit time integration method (see Press et al. (1992)) is used.

Consistent with this usage is the neglect of partial derivatives of apparent viscosity, although, of

course, the basic N(Γ) function with its nonlinearity and variability across the flow domain is

retained to leading order. This treatment is also appropriate to the three-dimensional multiphase

calculations pursued in Chapters 8 and 9, where the use of concentration functions to describe

miscible mixing, an empirical procedure, introduces errors consistently of the same order of

magnitude.

6. Before the transient partial differential equations can be integrated in time, initial conditions

must be defined. We offer two options. First, we permit a quiescent state in which the annular

fluid is completely at rest. Second, we allow the borehole fluid to move at steady state under

general eccentric, non-Newtonian, nonrotating conditions.

7. The coupled nonlinear equations are integrated step by step in time, and at the end of each time

step the apparent viscosity function is updated with the latest available velocity gradients.

Although we have dealt only with the conventional models used in petroleum engineering, we

emphasize that “memory” fluids are easily handled by a simple Fortran subroutine change.

8. When the time integration is completed, velocities are processed for display using the color

graphics tools discussed earlier. In addition, shear rates, apparent viscosities, and viscous shear

stresses are computed by postprocessing available velocity results and prepared for on-demand

static displays. For the present transient calculations, axial velocity results are also collected at

different user-selected time intervals and assembled into a movie available for playback after

the calculations terminate.

SECTION 6.2

Rotation Paradox

Developing a transient algorithm, at least for the present annular flow research, involved much

more than the “mechanical” steps just outlined. Numerous observation inconsistencies have been

reported in the literature. Prior to 1990, drillers observed that the effect of pipe rotation (under a
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constant pressure gradient) is an increase in flow rate; equivalently, a fixed flow rate finds a pres-

sure gradient that is less steep. The explanation was simple: Shear thinning of non-Newtonian

fluids leads to reduced viscosities that increase throughput. Mathematicians during this period

reproduced these results analytically and numerically. Observation and theory were consistent.

In the 1990s and beyond, empirical observations were completely opposite: For the same

flow rate, rotation leads to a steepening of axial pressure gradients. Trends related to pressure, of

course, warrant more than academic curiosity because of their application in ultra-deepwater

drilling. Because drillers must navigate narrow pressure windows, errors related to pressures at the

drillbit can lead to dangerous situations that gravely affect safety. Any transient solver claiming to

model rotation, in this practical scenario, must explain the apparent inconsistency before its predic-

tions can be credible.

The present research indicates that no contradictions or inconsistencies exist. Prior to 1990, all

reported empirical observations and mathematical models dealt with the concentric annuli encoun-

tered in vertical well drilling. For this application, the only manner in which rheology appears in

flow formulations is through the apparent viscosity function in viscous terms; that is, the only phys-

ical effect is shear thinning. After 1990, most published works dealt with deviated and horizontal

wells, for which relevant borehole annulus cross sections are eccentric. Thus, certain terms in the

momentum equations that dropped out by virtue of symmetry in concentric applications remain.

The work developed here shows that these new terms effectively modify the applied pressure

gradient in a manner that varies throughout the annulus. Computations using the integrated proce-

dure outlined above gave stable results that were, significantly, consistent with both pre- and post-

1990s field and laboratory observations. Again, the effects of eccentricity are subtle. While shear

thinning nonetheless exists, these effects typically lead to flow rate decreases (for fixed pressure

gradient) as rotation rate increases (see Figure 2.2 and the accompanying explanations).

It is important to emphasize strong axial and azimuthal velocity coupling and flow nonlinearity

in general. In our approach, both are permitted without compromise. Time integrations are used that

minimize artificial viscosity and lead to steady solutions that agree with known analytical solutions

for concentric annuli. However, nonlinearity is often treated using ad hoc “recipes” in the literature.

One paper gives procedures for combining axial velocities across annular gaps (with no rota-

tion), tangential velocities (with no axial flow), and so on. This represents some type of lineariza-

tion about baseline no-flow and no-rotation conditions. Sometimes the method did not work, and

“modeling efforts improved substantially when a nonlinear model for decay of shear rate across the

annular gap was used. . . .” These reports only emphasize the value of addressing full nonlinearity

at the outset so that empirical procedures can be avoided.

SECTION 6.3

Operational Consequences for the Transient Rotation Algorithm

Managed pressure drilling enhances the driller’s ability to control pressures within the borehole

with greater precision. The literature describes three methods for active pressure control. First, mud

pump flow rates can be changed to affect dynamic friction. This is easily accomplished, although,

of course, care must be exercised; flow transients induced by sudden pumping changes by positive
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displacement pumps can be dangerous. Second, mud rheologies and weights can be altered. This

process, however, is time consuming and will not allow rig hands to rapidly respond to dangerous

situations. Third, changing the overall system pressure level by adjusting the surface choke is a pos-

sibility that is effective and simple to carry out.

A fourth, newer, method is proposed in the present work. Our research has shown that drillstring

rotation (or the lack of it) can affect borehole pressures significantly, and theoretical and numerical

results are consistent with field and laboratory observation. Thus, drillstring rotation provides an

important and rapid means for downhole pressure control. Moreover, the effects can be quantified

by computer simulations such as those illustrated in Chapter 7. Because the calculations can be per-

formed quickly using inexpensive computer resources, their role in job planning is enhanced: Prior

to drilling, a range of “what-if” options and responses can be prepared for different contingencies.

Another important applications area is hole cleaning. While we successfully demonstrated the

application of our “stress hypothesis” to hole cleaning using the University of Tulsa data in

Chapter 5, much remains in the way of understanding the role of rotation in removing debris. It is

well known that hole-cleaning problems are heightened in large-diameter wells and that rotation

effects can be subtle. The mathematical reasons are simple. For the larger diameters, axial veloci-

ties are lower. In other words, both axial and azimuthal velocities are comparable in magnitude, so

their nonlinear coupling is not small. Thus, the outcome of any drilling program or simulation, for

that matter, is not obvious.

Computer models provide tools that help to verify and refute possible explanations for hole

cleaning. Does rotation affect the stress field significantly and thus change bed erosion characteris-

tics? Or is the primary effect an “upward throwing” of debris where cuttings chips are consequently

transported by turbulent convection in the wide side of the annulus? These and other questions can

be answered using computed results as correlative tools, in much the same way that we used them

in more elementary applications in Chapter 5. We pursue detailed calculations designed to validate

the method against available solutions and to demonstrate potential applications of the new tran-

sient model. Some comments on pressure gradients are offered next.

SECTION 6.4

Transient Pressure Gradient and Volume Flow Rate

One of the most important relationships in non-Newtonian flow is that between pressure gradient

and volume flow rate. For steady flows, the “Steady 2D” simulator provides an option that automat-

ically calculates and plots the nonlinear curve once annular geometry and borehole fluid are

specified. For unsteady flows, an analogous relationship is desirable for modeling purposes, but

typically is not available. Integration of the axial momentum equation in time requires an explicit

@P/@z input value (see Equation 6.3). But very often, it is the volume flow rate Q that is specified

in a practical problem, and its expression in terms of @P/@z is not generally possible.

However, the @P/@z value needed to produce a given Q(t) can be explicitly written for certain

problems when properties for a baseline steady flow are known—say via calculation using “Steady

2D.” Again we turn to fundamentals. The axial velocity u satisfies

ρ@u=@t1 f. . .g5 2@P=@z1 , . . . . (6.7)
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where {. . .} represents smaller nonlinear convection terms and rotation effects that we will ignore

or that are nonexistent, while , . . .. denotes viscous terms that we keep in their entirety. We

multiply Equation 6.7 by the infinitesimal area element JΔξΔη throughout, where J is the transfor-

mation Jacobian. This leads to the equation

@ðρu J ΔξΔηÞ=@t52@P=@z JΔξΔη1 , . . . . J ΔξΔη (6.8)

Note that the cross-sectional annular area A and the volume flow rate Q(t) through it satisfy

A5

ð ð
J ΔξΔη (6.9)

QðtÞ5
ð ð

u J ΔξΔη (6.10)

Thus, we have

ρ@Q=@t52A @P=@z1

ð ð
, . . . . J ΔξΔη (6.11)

Suppose we have a steady flow with @/@t5 0 and Q* specified. The pressure gradient for this

problem can be computed from the “Steady 2D” solver in the “flow rate specified” mode and

denoted as (@P/@z)*. Therefore, we have the equality
Ð Ð

, .... J ΔξΔη5A(@P/@z)* for Q*. Using

this to approximate the integral above, we find that ρ@Q/@t52A@P/@z1A(@P/@z)* or

@P=@z5 ð@P=@zÞ� 2 ðρ=AÞ @Q=@t (6.12)

Equation 6.12 can be used to evaluate the pressure gradient input in the “Transient 2D” solver

if a baseline steady-state flow with (@P/@z)* and Q* is available. If mudpump flow rate increases

so that @Q/@t. 0, then the axial pressure gradient @P/@z will become more negative, as expected,

by the amount shown. If flow rate is slowing so that @Q/@t, 0, then the pressure gradient will be

less negative. In either case, time variations in pressure gradient are proportional to mud weight, as

would be anticipated on physical grounds. We emphasize that Equation 6.12 provides an estimate

for pressure gradient only.
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CHAPTER

7Transient Applications
Drillpipe or Casing Reciprocation
and Rotation

We will demonstrate how non-Newtonian flows in highly eccentric annuli can be computed under

general transient conditions with the drillstring or casing undergoing arbitrary coupled reciprocation

and rotation together with flow changes in the mud pump. Here the annulus can be highly eccentric,

with the drillpipe almost resting on the formation, thus risking economic losses due to stuck pipe.

Aside from its role in calculating pressure losses and velocity fields, our simulator capability is impor-

tant in jarring applications, with the effects of flow rate ramp-up and ramp-down accounted for.

An important use of the algorithm described here does not include unsteady flow as an end

effect at all. In Chapter 4, we noted that the steady flow formulation with nonzero rotation cannot

presently be solved on an unconditionally stable numerical basis; in fact, the method destabilizes as

specific gravity and rpm values approach those used in field practice. An application developed in

Chapter 5 applies the transient method to steady-state swab-surge where pipe rotation is significant.

Because rotation significantly affects pressure fields, the algorithm described here is extremely

important, and all the more so because it is the only available method serving this function.

In the examples that follow, we first design examples to validate the integration method, in par-

ticular by seeking agreement with known analytical solutions. The effects of rotation are studied

for Newtonian flows (which, because of constant viscosities, never exhibit shear thinning) as well

as non-Newtonian fluids. Foams as well as heavy muds are considered. Then the separate effects

of transient pipe reciprocation, unsteady pipe rotation, and general mud pump flow variation are

considered, and finally, all three simulation modes are permitted. Importantly, the analytical and

numerical formulations are constructed in such a manner that the least and most complicated appli-

cations require almost identical computing times. More general transient capabilities can be devel-

oped by simply modifying modularized Fortran subroutines.

EXAMPLE 7.1

Validation Runs: Three Different Approaches to Steady, Nonrotating Concentric Annular Power Law Flow

Before studying transient effects in detail, we explore the accuracy of three different methods

we have developed in the limit of steady, nonrotating, concentric, non-Newtonian Power law

flow. Specifically, we consider an inner radius of 2 in., an outer radius of 4 in., n5 0.8,
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K5 0.00001375 lbf secn/in.2, and a pressure gradient of 20.02388 psi/ft. In the first case, we run

the finite difference�based simulator based on curvilinear meshes in QuikSim fine-mesh mode to

find a flow rate of 1,494 gpm, as shown in Figure 7.1. (This simulator does allow for pipe or casing

axial movement and yield stress modeling.)

Next we consider the simulator used for rotating Power law flow, noting that it does not allow

axial pipe movement. Recall that approximations were employed to facilitate closed-form analytical

solutions; the nature of the math used does not allow “0 rpm” to be entered directly, so a value of

“1” is used instead (this simulator also will not model Newtonian flows with n5 1). The software

produces a solution of 1,491 gpm, as shown in Figure 7.2. Finally, we use the exact Herschel-

Bulkley solver, which assumes a completely immobile inner pipe, running it in the limit of vanish-

ing yield stress; this gives a solution of 1,523 gpm, as shown in Figure 7.3. The difference between

the largest and smallest predictions is about 2 percent, which is reassuring given that the three mod-

els are derived from completely different assumptions and methods.

EXAMPLE 7.2

Validation Run for Transient, Newtonian, Nonrotating, Concentric Annular Flow

The excellent agreement obtained in Example 7.1 between three completely different steady flow

models should provide a strong degree of user confidence. In the present validation example, we

consider Newtonian, nonrotating, concentric annular flow, for which an exact, closed-form, steady

FIGURE 7.1

Finite difference curvilinear grid simulator result.
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FIGURE 7.2

Rotating Power law approximate flow result.

FIGURE 7.3

Herschel-Bulkley simulator, exact results.
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solution of the Navier-Stokes equation is available using the simulator in Figure 7.4. Here, inner

and outer radii are 3 and 6 in., respectively, and a viscosity of 1 cp and a pressure gradient of

20.0001 psi/ft are assumed. This simulator also allows axial pipe movement, but we disallow it in

the validation that follows. Figure 7.4 shows that the flow rate is 947.1 gpm.

Now we use the finite difference�based, curvilinear grid, transient simulator in Figure 7.5 to

show how the large-time solution of a transient problem is consistent with the steady-state solution

obtained previously from an analytical method. We have assumed a very small specific gravity of

0.01. As will be seen, this allows finite difference numerical solutions to achieve steady state rap-

idly, since in the nonrotating case, the dependence on density vanishes—small densities, in fact,

imply small mechanical inertias for fast equilibration.

FIGURE 7.4

Exact, steady, Newtonian flow solution.

FIGURE 7.5

Low-specific-gravity transient solution.
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The asymptotic flow rate is 928.4 gpm for a small 2 percent error. Importantly, the unsteady

model shows that the physical time scale required to achieve this steady condition, starting from a

quiescent state, is about 30 sec (the computation requires about 15 seconds). The reader should

note the inputs used. Also, the “engineering variables” hidden by the graph are identically zero.

In Figure 7.6, we rerun the foregoing simulation with all inputs unchanged except that the spe-

cific gravity is increased to 2.0, corresponding to a heavy 16.7-lbm/gal mud, and the time step is

increased to 0.005 sec. The same asymptotic flow rate of 928.4 gpm is achieved, and the time

scale to attain steady state from quiescent conditions is about one hour (the simulation itself, for

1,200,000 time steps, requires about four minutes of computing). The transient simulator illustrates

the role of inertia in establishing steady conditions.

We have demonstrated that our transient finite difference results are consistent with the exact

analytical steady solution. (We used our curvilinear grid approach and considered both low and

high specific gravity runs.) Importantly, if transient analysis is used to find steady flows, at least in

nonrotating problems, then low-specific-gravity fluids should be assumed because low mechanical

inertias lead to very rapid physical equilibration.

EXAMPLE 7.3

Validation Run for Transient, Newtonian, Nonrotating, Eccentric Annular Flow

In this consistency check, we examine eccentric annular flows, for which no analytical or exact

solutions are available. We assume a Newtonian fluid with a viscosity of 10 cp and that the pipe is

FIGURE 7.6

High-specific-gravity transient solution.
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not rotating or moving axially. The transient solution in Figure 7.7 requires about five seconds of

computing time and yields an asymptotic steady-state flow rate of 107.2 gpm.

The complementary steady flow computation in Figure 7.8, using the same 253 11 mesh, yields an

identical 107.2 gpm, which is much better than this author had anticipated. This is all the more remark-

able because the steady solver uses an iterative, implicit, successive line over relaxation (SLOR) method,

whereas the transient method uses an explicit time integration procedure. Note that the QuikSim fine-

mesh solution yields 109.2 gpm, for less than a 2 percent difference. That the two final results for

unsteady and steady flow are consistent bodes well for our transient and steady solvers. Again, we

emphasize that the steady flow solver handles constant axial pipe speed motion without rotation, while

the unsteady solver handles coupled axial and rotary movement, both under general transient conditions.

EXAMPLE 7.4

Effect of Steady Rotation for Laminar Power Law Flows in Concentric Annuli

In this example, we use our closed-form analytical solution developed for steady, rotating Power

law fluids in concentric annuli to explore pressure gradient and flow rate relationships in a

non-Newtonian application. The user interface is shown in Figure 7.9, where the third option is

selected. Using automatically defined internal parameters, this simulation plots flow rate (gpm) on

the vertical axis and pressure gradient (dp/dz) and rotational rate (rpm) on the two horizontal axes,

as shown in Figure 7.10. It is clear from this figure that as the (absolute value of) pressure gradient

increases for fixed rpm, flow rate increases, as would be expected. Interestingly, as the rotational

FIGURE 7.7

Transient, Newtonian, nonrotating flow solution.
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rate increases at fixed dp/dz, the flow rate also increases. This is explained by the reduction in

apparent viscosity induced by rotation due to shear thinning.

This result also appears in several related and well-known investigations external to the petro-

leum industry. Significantly, it is consistent with the results of classical studies reported in the

well-regarded book Dynamics of Polymeric Liquids by Bird, Armstrong, and Hassager (1987).

FIGURE 7.8

Steady flow computation on identical mesh.

FIGURE 7.9

Steady, rotating Power law simulator.

279Example 7.4



Their Example 4-2-5 conclusion “shows that the flow in the axial direction is enhanced because of

the imposed shearing in the tangential direction, since this additional shearing causes the viscosity

to be lowered.” The numerical analysis by the respected authors Savins and Wallick (1966) also

supports our findings. From their abstract,

The most interesting consequence of the coupling effect is that the axial flow resistance is lowered

in a helical flow, with the result, for example, that for a given applied axial pressure gradient the

axial discharge rate in a helical flow field is higher than in a purely annular flow field.

In their analysis, the authors observe that

It is seen that the effect of a helical flow produced by impressing a relative rotation on the

z directed annular flow is to increase the axial discharge rate. This result is not unexpected.

The preceding viscosity profile analyses showed that the shear-dependent viscosity is lowered,

hence the axial flow resistance is lowered.

Finally, from their summary,

In contrast, if the fluid were Newtonian, the superimposed laminar flows would be noninterfering

in that there would be no coupling among the discharge rate, axial pressure gradient, relative

rotation, and torque through the viscosity coefficient.

Recall that we have proven this latter observation directly from the governing Navier-Stokes equa-

tions. Several subsequent theoretical and experimental petroleum publications also support the fore-

going results.

It is important to emphasize that, in all of the just mentioned works and in the present example,

laminar, concentric annular flows are considered. For concentric flows, the nonlinear inertia (or

convective) terms in the governing momentum equations vanish identically, and velocity coupling

is possible only through changes to apparent viscosity or shear thinning. Fortuitously, early publica-

tions focused on this limit—from the mathematical perspective for simplicity and from the drilling

perspective by the vertical well applications prior to 1990. In the past two decades, with deviated

FIGURE 7.10

GPM versus RPM and dp/dz.
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and horizontal wells becoming predominant in exploration, conflicting relationships between pres-

sure gradient and flow rate have been reported.

These conflicts arise because of annular eccentricity. In general non-Newtonian flows, shear

thinning is always present; however, when eccentricity exists, the applied pressure gradient is effec-

tively modified by a spatially dependent convective term that is proportional to fluid density and

rotational rate. The complicated interplay among flow rate, applied pressure gradient, fluid rheol-

ogy, rotational rate, and annular geometry cannot be described by casual “rules of thumb”; how-

ever, it can be obtained as the solution to coupled nonlinear partial differential equations, as

described in this book and particularly in this chapter.

Let us return for now to concentric annular flow analysis. Figure 7.11 offers a different view of

the results from that provided in Figure 7.10. It is obtained by selecting the last option in

Figure 7.9. Note that each figure uses hundreds of solution points, and both are produced because

analytical solutions are used in less than one second of computing time. Again, the increase in flow

rate (for a fixed pressure gradient) obtained when the rotational rate increases is well accepted in

the older literature, but confusion and inconsistencies have arisen in recent studies, a point we

address in several examples next.

EXAMPLE 7.5

Effect of Steady-State Rotation for Newtonian Fluid Flow in Eccentric Annuli

Here we consider the effects of annular eccentricity. To isolate rheological effects, we assume a

Newtonian fluid with constant viscosity so shear thinning is impossible. The eccentricity is 0.333.

As a validation point, we first obtain the flow rate under nonrotating conditions using the steady-

state, curvilinear grid flow solver in Figure 7.12. For the assumptions shown, the flow rate is

109.2 gpm. Next we run the transient simulator for the same nonrotating flow conditions, as shown

in Figure 7.13, where the engineering variables not shown are identically zero, to obtain a nearly

identical flow rate of 107.2 (the difference is less than 2 percent). The agreement is excellent.

FIGURE 7.11

dp/dz versus RPM and GPM.
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FIGURE 7.12

Steady-state solution without rotation.

FIGURE 7.13

Transient Newtonian solution without rotation.
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Now it is important to ask, “What if the drillpipe or casing is rotated? Does the flow rate

increase or decrease, assuming the same pressure gradient?” In Figure 7.14, we assume a somewhat

high 400 rpm to demonstrate numerical stability, but also the fact that the asymptotic steady flow

rate decreases to 99.4 gpm, or about 8 percent. Thus, in the complementary problem where flow

rate is specified and pressure gradient is to be determined, we can expect to see similar order-of-

magnitude increases to pressure drop. These changes are significant to drilling safety in managed

pressure drilling.

The exact decrease or increase depends on rheological and geometric parameters, and will vary

from run to run. Differences as high as 50 percent have been observed. But why did flow rate

increase in Example 7.4 but decrease here? The explanation is simple. In the previous example, the

gpm increase was due to a decrease in non-Newtonian apparent viscosity arising from rotation;

also, for concentric annuli the inertia terms in the axial momentum equations vanish identically. In

this example, the viscosity is constant and does not change.

A nonvanishing “ρv/r @U/@θ” inertia term is new. The azimuthal velocity v is proportional to

rpm, while @U/@θ” is related to eccentricity. The term acts as a spatially variable pressure gradient

modifier. These factors are subtle but clear when we examine the governing partial differential

equations. We chose Newtonian fluids in this example to isolate rheological effects in order to

ascertain the importance of the rotating flow inertia terms alone.

In the control panel of Figure 7.13, we checked “Initialize flow to quiescent state.” This

assumes vanishing initial flow. We now check “Steady conditions” for our starting point. The simu-

lator first calculates a steady nonrotating flow, and then at t5 0 uses this flow to initialize time

FIGURE 7.14

Transient rotating solution from quiescent state (the curve actually peaks at 100 and then asymptotes to

99.4 gpm).
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integrations. This corresponds to a nonrotating pipe with flow that is suddenly rotated. Figure 7.15

shows how the flow rate decreases suddenly from 107.2 to 99.4 gpm, highlighting the effects of

rotation (computing time is about one second). Even for this high rotational rate, the transient algo-

rithm for coupled axial and azimuthal movement is fast and stable. Our results demonstrate the use-

fulness of numerical simulation in drilling safety and operations.

EXAMPLE 7.6

Effect of Steady Rotation for Power Law Flows in Highly Eccentric Annuli at Low Densities (Foams)

The annulus in Figure 7.12, while not concentric, is not highly eccentric. In this example, we exam-

ine a cross section with high eccentricity and also allow for nonlinear Power law fluid motion.

Here, the eccentricity is 0.5. Results for a nonrotating pipe are given in Figure 7.16, where a steady

flow rate of 1,052 gpm is indicated. The time required to achieve steady state is approximately one

second. What happens if we rotate the drillpipe at 300 rpm? Figure 7.17 shows that with rotation

the time to reach steady conditions is reduced; also, the flow rate decreases to 905.8 gpm. This sug-

gests that in the complementary problem when volumetric flow rate is fixed, the effect of rotation

is to increase (the absolute value of) pressure gradient.

Consistent with the previous example, the decrease in flow rate occurs because of inertia effects.

We emphasize that the flow rate reduction due to rotation seen here is a sizeable 16 percent.

Finally, in Figure 7.18, we rerun the simulation with the initial fluid assumed to be nonrotating and

flowing. The results show an equilibration time of one second between steady states so that flow

changes are sudden and dangerous. The steady-state flow rate is again about 900 gpm. There is a

“bump” in the gpm versus time curve, one seen repeatedly in many such simulations. Whether this

FIGURE 7.15

Transient rotating solution from flowing state.
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FIGURE 7.16

Power law flow with nonrotating pipe.

FIGURE 7.17

Power law flow with rotating pipe (zero starting conditions).
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effect is real will require laboratory observation. All of the calculations for this example were per-

formed stably, as our line graphs show, and required only two to three seconds of computing time.

It is important to point out some significant software details associated with flow initialization.

For steady flow formulations, the initial state of flow does not appear as a parameter because there

is no variation in time. (Actually, it does in a numerical sense, since initial solution guesses are

taken, although internally to the software.) For transient formulations, the initial state must be spec-

ified. If quiescent stagnant-flow conditions are selected, the box shown in Figure 7.19 is checked

and “Simulate” can be clicked immediately.

On the other hand, the fluid may be moving initially at t5 0, and then the transient flow specifi-

cations shown in the user interface are applied. If the initial flow is not rotating, we know that its

solution does not depend on density; we can therefore calculate it assuming a very small value of ρ
together with large time steps. If we wish to initialize to a nonrotating steady flow, the message

box in Figure 7.20 appears, reminding the user to click “Create Flow” to start this process. Once

this is completed, the “Simulate” button can be clicked to perform the required transient analysis.

FIGURE 7.18

Power law flow with rotating pipe (from flowing conditions).

FIGURE 7.19

Assumed quiescent, stagnant-flow initial conditions.
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If the starting flow is rotating, its solution does depend on density, and time steps will need to

be very small to ensure convergence. This initialization is not supported at the present time because

the solution procedure cannot be made as robust or automatic as desired by the author, but continu-

ing research is being pursued in this area.

EXAMPLE 7.7

Effect of Steady Rotation for Power Law Flows in Highly Eccentric Annuli at High Densities (Heavy Muds)

We emphasized earlier that for nonrotating flows the effects of density vanish at large times. Thus,

in computing nonrotating steady-state flows with the transient algorithm, it is advantageous to use

as small a fluid density as possible in order to quickly converge the calculations. Here we wish to

evaluate the effects of mud weight under rotating conditions. For the non-Newtonian eccentric flow

in Figure 7.21, a very low specific gravity of 0.01 leads to a flow rate of 898.5 gpm.

Next we wish to consider the opposite extreme—for example, a heavy mud or cement with a

specific gravity of 2. Because the unstable convective term never vanishes when the pipe rotates

(its magnitude is proportional to fluid density and pipe rpm), we decrease the time step to

0.0001 sec and increase the number of time steps simulated (Figure 7.22). The resulting flow rate is

a much lower 135.1 gpm. Computation times for the two runs are approximately five seconds and

two minutes. Finally, we reduce the specific gravity to 1.0 (i.e., an unweighted mud). Will the flow

rate vary linearly with density—that is, fall midway between 135.1 and 898.5 gpm? Figure 7.23

shows that the flow rate is, in fact, 160.1 gpm. This unpredictability shows why computer models

are important to real-world field job planning.

EXAMPLE 7.8

Effect of Mud Pump Ramp-Up and Ramp-Down Flow Rate under Nonrotating and Rotating Conditions

In Figure 7.24, we consider a Power law fluid in an eccentric annulus under a constant imposed

pressure gradient of 20.005 psi/ft with the drillpipe completely stationary. This is seen to produce

FIGURE 7.20

Creating a nonrotating, steady initial flow.

287Example 7.8



FIGURE 7.21

Very-low-density fluid (e.g., foam) at high rpm.

FIGURE 7.22

Very-high-density fluid (e.g., heavy mud or cement) at high rpm.
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FIGURE 7.23

Unweighted fluid (e.g., water or brine) at high rpm.

FIGURE 7.24

Constant pressure gradient calculation.
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a steady-state flow rate of 1,051.8 gpm as shown. In practice, the mud pump starts and stops, and

transient effects are associated with ramp-up and ramp-down. We ask, “How are pressure gradient

and flow rate transient properties related?”

To answer this question, we modify several menu entries in Figure 7.24 so that the pressure gradi-

ent is no longer constant. The assumption shown in Figure 7.25 allows a sinusoidal ramp-up from

quiet conditions to our previous value of20.005 psi/ft, followed by a full ramp-down. This is accom-

panied by time mesh refinement plus the use of additional time steps. Clicking on the “?” to the far

right of the pressure gradient menu produces the left-side diagram of Figure 7.26 showing pressure

assumptions. The right-side diagram gives the computed volumetric flow rate as a function of time.

Next we determine the effect of drillstring rotation. We simply change the zero rotation input in

Figure 7.25 to allow for a 100-rpm rotational rate as shown in Figure 7.27. For the same pressure

gradient variation as before, the flow rate is now substantially reduced, as shown in Figure 7.28.

EXAMPLE 7.9

Effect of Rotational and Azimuthal Start-up

In this example, we study the effects of drillstring rotational start-up on the baseline nonrotating

problem defined in Figure 7.29 for a Power law fluid in an eccentric annulus. Figure 7.30 shows

that after 100 sec, the (almost) steady flow rate is 1,024.0 gpm.

FIGURE 7.25

Mud pump ramp-up and ramp-down.

290 CHAPTER 7 Transient Applications



What happens when the drillstring is rotating at a fixed constant 100 rpm for the duration of

the start-up process? This new flow is easily obtained by changing the constant rpm input in

Figure 7.29 to that in Figure 7.31, to produce the flow rate history shown in Figure 7.32. After

100 sec, the flow has fully equilibrated at the reduced rate of 221.1 gpm. There is a flow rate “over-

shoot” near 350 gpm early on that we have observed in all rotational flow calculations.

We next determine the effects of rotational start-up. In Figure 7.33, we choose the “Bt” input

option for rpm definition, typing “1” into that box for the time step information assumed. In

Figure 7.34, we show at the left how the same 100 rpm is achieved as before, but at the end of the

100-sec period. The right-side diagram shows a flow rate returning to the 200-gpm range; however,

the flow rate overshoot is now near 600 gpm.

EXAMPLE 7.10

Effect of Axial Drillstring Movement

In this nonrotating drillstring example, we study the effects of axial movement on the baseline

problem defined in Figure 7.29 for a Power law fluid in an eccentric annulus. Again, Figure 7.30

shows that after 100 sec, the (almost) steady flow rate is 1,024.0 gpm, assuming stationary pipe.

If a constant 120 in./sec is modeled instead, we have an increased 1,132.6 gpm, whereas

if 220 in./sec is taken, we find a reduced 912.6 gpm. Computer screens for these simple constant-

speed dragging calculations are not shown.

In field applications, the drillstring is often reciprocated axially to facilitate jarring operations

or cuttings removal while the mud pump acts under an almost constant pressure gradient

FIGURE 7.26

Assumed pressure gradient and calculated flow rate.
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FIGURE 7.27

Increasing rotational rate to 100 rpm.

FIGURE 7.28

Significantly reduced volumetric flow rate with rotation.
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FIGURE 7.29

Nonrotating flow.

FIGURE 7.30

Nonrotating flow.
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FIGURE 7.31

Constant 100 rpm throughout.

FIGURE 7.32

Constant 100 rpm throughout.
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condition. One might ask what the effects on flow rate, apparent viscosity, shear rate, and viscous

stress are, with the answers sure to assist the engineer in interpreting the physical consequences

of his or her actions. For example, increases in bottomhole stress may improve hole cleaning,

while reductions in apparent viscosity may lubricate the drillstring. In Figure 7.35, we alter the

“Upipe” input to allow sinusoidal drillstring reciprocation with a peak-to-peak amplitude of

20 in./sec and a frequency of 0.1 Hz. Clicking on the “?” at the far right will produce the pipe

displacement speed history at the left of Figure 7.36. At the right is the stably computed oscil-

latory flow rate.

The “Results” menu in Figure 7.37 provides additional postprocessed results useful for correla-

tion purposes. For instance, “Color plots” provides displays of the physical quantities appearing in

the list, several of which are shown in Figure 7.38. Notice in Figure 7.35 that we elected to save

“movie frames” showing the axial velocity distribution evolving in time. (The “interactive plot”

option would produce line graph results during simulation.) Playing the “Axial velocity—Movie”

option produces a movie, which can be viewed continuously or frame by frame. Typical movie

frames (with time increasing to the right) are shown in Figure 7.39. All of the postprocessing

options described here are also available for rotating flow problems.

FIGURE 7.33

Linearly increasing rpm with time.

295Example 7.10



EXAMPLE 7.11

Combined Rotation and Sinusoidal Reciprocation

In this example, again for transient, nonlinear, non-Newtonian Power law flow in an eccentric annu-

lus, we combine two previous calculations and demonstrate the ease with which combined sinusoidal

axially reciprocating pipe motion and drillstring rotation can be modeled, literally by filling in input

boxes and clicking. The assumptions are given in Figure 7.40, assumed pipe displacement histories

are displayed in Figure 7.41, and the computed volumetric flow rate is provided in Figure 7.42. Note

from this curve the pronounced overshoots and flow rate fluctuations. We have modeled the mud

pump as a constant pressure gradient source in our work that leads to variable flow rate.

In reality, the pump may act more as a constant-rate source that leads to time-dependent pres-

sure gradients. This latter model is much more complicated mathematically and cannot be solved

within a reasonable time. However, the percent fluctuations seen from flow rate curves such as the

one in Figure 7.42 represent those for pressure gradient and can be used meaningfully for managed

pressure job planning.

EXAMPLE 7.12

Combined Rotation and Sinusoidal Reciprocation in the Presence of Mud Pump

Flow Rate Ramp-Up for Yield Stress Fluid

This comprehensive example illustrates the high level of simulation complexity offered by our

math model. Here we again consider an eccentric annulus, now containing a Herschel-Bulkley yield

FIGURE 7.34

Linearly increasing rpm with time.
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FIGURE 7.36

Pipe displacement history and computed flow rate.

FIGURE 7.35

Sinusoidal drillstring reciprocation.
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FIGURE 7.37

Example color output.

FIGURE 7.38

Example color output for several physical quantities.
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stress fluid. The drillpipe is allowed to axially reciprocate sinusoidally in time, while rotational rate

increases linearly with time. The mud pump pressure gradient is allowed to steepen with time from

start-up to describe increased pumping action.

All of these effects are coupled nonlinearly. They can be computed quickly and stably, and if

numerical instabilities are encountered, they can be remedied by decreasing time step size. To

accommodate this possibility, the algorithm is efficiently coded to make optimal use of memory

resources and will allow up to 10,000,000 time steps, for which calculations may require 15 minutes

FIGURE 7.39

Frames from axial velocity movie (time increasing).

FIGURE 7.40

Combined transient reciprocation and rotation.
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or more. The assumptions are shown in Figure 7.43, while detailed pipe displacement histories,

applied pressure gradients, and computed volumetric flow rate are given in Figure 7.44.

In this chapter, we demonstrated how the most general transient single-phase, constant-density

non-Newtonian Hershel-Bulkley fluid with yield stress can be studied as it flows through an

eccentric annulus in the presence of coupled and arbitrary drillpipe axial reciprocation, unsteady

rotation, and time-varying axial pressure gradient. The algorithm and its strengths and limitations

FIGURE 7.41

Pipe displacement history display.

FIGURE 7.42

Computed volumetric flow rate.
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FIGURE 7.43

Basic assumptions, comprehensive example.

FIGURE 7.44

Additional assumptions and computed flow rate with time.
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were explained previously. Because the physical problem is nonlinear, general conclusions are not

available and each problem must be treated on a case-by-case basis. To support this endeavor, all

efforts have been made to render the method simple to use, with all text output, report generation,

and color graphics completely automated. There is no requirement on the part of the user for any

special skills in fluid dynamics, advanced mathematics, or computer modeling. The model is

new, and, certainly, as more becomes known about its properties and the consequences of general

borehole flows, we will update our exposition accordingly.

FIGURE 7.44

(Continued).
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CHAPTER

8Cement and Mud Multiphase
Transient Displacements

In Chapters 1 through 7 we dealt with steady and transient single-phase non-Newtonian flows in

two dimensions, allowing arbitrary borehole eccentricity, significant yield stress (with plug zone

size and shape computed as part of the solution), and combined drillpipe or casing reciprocation

and rotation in the most general limit. Such “single-phase” flows may in fact be two-phase (e.g.,

typical fluid-solid mixtures in which barite is the weighting agent or liquid-gas foams used in

underbalanced drilling). However, they are single-phase in that a set of Herschel-Bulkley para-

meters “n,” K,” and “τ0” can characterize the mixture as if it were a unique homogeneous fluid.

In this chapter and in Chapter 9, we consider two-phase flows, by which we imply displacements

of one such single-phase flow by another in a general borehole annulus. Such problems are neces-

sarily transient and three-dimensional and consequently involve more computation.

These are not academic exercises but real flows arising in different important applications. In

drilling, multiple non-Newtonian fluids are pumped down the drillpipe according to a prescribed rate

schedule (e.g., fluid A for tA min at flow rate GPMA, fluid B for tB min at GPMB, and so on). This tran-

sient fluid column then flows downward through the drillbit and finally up the eccentric borehole annu-

lus. For managed pressure drilling, the simulation objective is the pressure profile along the borehole,

and particularly at the bit, as a function of time. Drillers wish to control pressures at the drillbit, perhaps

targeting constant values for safety considerations. This can be accomplished by various means—for

example, changing pump rates to affect dynamic friction, altering mud type and weight, directly con-

trolling surface choke pressures, or, as we have demonstrated, varying drillstring rotational rates.

Simulation methods assist engineers in these objectives by “assigning numbers” to these steps

to quantify their effectiveness. In cementing, the same overall pump scenario applies. However,

flow details at the diffusing interfaces of different fluids are of interest: the extent to which they

mix at different positions in the annular cross section, the time needed to establish target concentra-

tion levels, the role of rheology and diffusion in achieving displacement objectives, and so on.

While the objectives are simple, the formulations and calculations are not. They must be scien-

tifically rigorous and numerically stable. Many strategies are available depending on the research

objectives. For instance, equations for “microscopic” particle interactions between fluid compo-

nents with adjustable parameters are often postulated together with closure hypotheses to model

kinematic and dynamic processes. Such models can require numerically intensive computation. A

simpler and well-known “macroscopic” method offered by physicists is described in Landau and

Lifschitz (1959) and is easily explained. We explain the method in the next section and extend it

for increasing levels of flow and geometric sophistication in the following discussions.
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DISCUSSION 8.1

Unsteady Three-Dimensional Newtonian Flows with Miscible Mixing in Long Eccentric Annular Ducts

The simplest differential equation for transient, single-phase axial flow is given by the two-dimen-

sional model ρ @u/@t52@p/@z1 μ(@2u/@x21 @2u/@y2), where rotation is neglected. In dealing

with flows where miscible mixing is permitted with general initial species variations, purely two-

dimensional flow is not possible, since concentrations must vary in the direction of fluid convection.

Thus, an additional “@2u/@z2” term at the right side is expected. We now interpret u(x, y, z, t) as the

axial speed for an evolving heterogeneous mixture characterized by a mass density function ρ(C)
and a Newtonian viscosity function μ(C), where the local fluid concentration C(x, y, z, t) must satisfy

an isotropic convection-diffusion equation.

The functions ρ(C) and μ(C) for the two-fluid system are determined from simpler experiments,

say steady-state concentric rheometer measurements. Once obtained, our boundary value problem

formulations predict their effects in real physical problems with complicated geometries acting under

general boundary and initial conditions. The general axial velocity equation now takes the form

ρðCÞ ð@u=@t1 u @u=@zÞ52@p=@z1 μðCÞð@2u=@x2 1 @2u=@y2 1 @2u=@z2Þ (8.1)

Equation 8.1 arises from an intuitive ad hoc argument. Note that the viscous terms in Equation 8.1

actually derive from the divergence form “@Szx/@x1 @Szy/@y1 @Szz/@z,” so that the product terms

“@u/@x @μ/@x1 @u/@y @μ/dy1 @u/dz @μ/dz”—that is, dμ(C)/dC{(@u/@x)21 (@u/@y)21 (@u/@z)2}—
have been omitted in comparison to the retained terms shown. These nonlinear terms represent

higher-order effects comparable to those neglected by our use, owing to the complexity of the result-

ing equation system, of simpler explicit time integration methods. The important second-derivative

terms, retained here, are required to impose no-slip boundary conditions on solid boundary surfaces.

Equation 8.1 for the axial velocity u(x, y, z, t) is nonlinearly coupled to the convection-diffusion

equation

@C=@t1 u @C=@z5 εð@2C=@x2 1 @2C=@y2 1 @2C=@z2Þ (8.2)

where ε(C). 0 is an isotropic diffusion coefficient, possibly dependent on C, determined experi-

mentally. Equation 8.1 is solved together with:

• @u/@z5 0 far upstream and downstream

• No-slip velocity conditions at solid surfaces (e.g., u5 uspeed(t) on the pipe surface if the pipe

moves with speed uspeed(t))

• u(x, y, z, 0)5 0 for the assumed initial quiescent state

• Note that the additional convective term “u @u/@z” (from the more complete acceleration

“@u/@t1 u @u/@z”) has been retained, although it is usually negligible for ducts that are uniform

in the axial direction.

Equation 8.2 is solved with boundary conditions C(x, y, zleft, t)5Cleft and C(x, y, zright, t)5
Cright(t), plus the initial condition C(x, y, z, 0)5Cleft for z, zinterface and C(x, y, z, 0)5Cright for

z. zinterface, where z5 zinterface is the initial position of the flat interface separating the two fluids.

Also, the normal partial derivative of C to a solid wall vanishes because there is no diffusion into a

solid. Other boundary and initial conditions are, of course, possible.
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For the concentration equation, the u @C/@z term must be retained in comparison with all of the

others, since it is this term that provides the required convection. The foregoing formulation applies

to borehole flows with arbitrary annular cross sections. However, the use of rectangular coordinates

that do not fit inner and outer pipe and hole contours leads to inaccuracies associated with numeri-

cal noise.

As noted earlier, the use of classical coordinate systems (e.g., Cartesian or cylindrical-radial) is

not appropriate for the eccentric annuli domains encountered in petroleum engineering. Borehole

contours, for instance, must also describe nonideal washout and cuttings bed boundaries. The map-

ping method devised in Chapter 3 is ideal for hosting transformed versions of Equations 8.1 and

8.2. When these equations are combined with Equation 3.59, we obtain the transformed model

ρðCÞð@u=@t1 u @u=@zÞ52@p=@z1 μðCÞ@2u=@z2 1 μðCÞðαuξξ 2 2βuξη 1 γuηηÞ=J2 (8.3a)

@C=@t1 u @C=@z5 εðCÞ @2C=@z2 1 εðCÞðαCξξ 2 2βCξη 1 γCηηÞ=J2 (8.3b)

where α, β, γ, and J are metrics of the mapping transformations available numerically from the

solutions for x(ξ, η) and y(ξ, η). This is the problem solved numerically for this first illustrative

example. The preceding model does not allow rotation, but it does allow transient axial

reciprocation.

The general transient three-dimensional algorithm was checked in the steady two-dimensional

concentric limit where the exact closed-form velocity solution for concentric annuli given in

Chapter 1 is used. This numerical check is extremely important because different discretization pro-

cedures for partial derivatives in parabolic equations can yield additive diffusion to those diffusive

effects indicated explicitly in the equation. This is well known in numerical modeling (see the dis-

cussions on artificial viscosity and von Neumann analysis in Press et al. (1992)). In fact, various

methods attempted at first gave total volumetric flow rates that were noticeably inconsistent with

the exact solution. The validation method used also served to narrow the range of numerical fixes

needed to stabilize the rotating flow version of Equation 8.1. In this sense, the differencing of par-

tial differential equations is as much an art as it is a science.

DISCUSSION 8.2

Transient, Single-Phase, Two-Dimensional Non-Newtonian Flow with Inner Pipe Rotation in Eccentric Annuli

Here we review a different limit of the general flow equations: steady single-phase non-Newtonian

flow with inner pipe rotation in constant eccentric annuli. The flow is driven by an axial pressure

gradient so that rotational and axial velocities both exist. However, because the flow is identical in

all cross sections, the problem is two-dimensional mathematically. This initial discussion is neces-

sary because it explains the detailed mathematical strategy used to model flows with rotation in

eccentric annuli, and it represents the basis for extension when we address complicated multiphase

flows.

In our initial mapping discussion, we started with Cartesian coordinates in order to derive curvi-

linear grid transformations for the general cross section. This approach is suitable so long as the

inner circle does not rotate. When it does rotate, circular cylindrical formulations are needed at first
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to accommodate the no-slip velocity condition at the pipe or casing surface. The formulation is

next reexpressed in rectangular coordinates so that the mapping procedure explained in Chapter 3

can be applied. Thus, rotating flow problems require several sets of coordinate transformations, not

to mention those that project physical plane properties onto computer screen displays.

The general non-Newtonian rheological equations for unsteady single-fluid flow with and with-

out yield stress are given in three dimensions by

ρð@vr=@t1 vr @vr=@r1 vθ=r @vr=@θ2 v2θ=r1 vz@vr=@zÞ
5 Fr 2 @p=@r1 1=r @ðr SrrÞ=@r1 1=r @Srθ=@θ2 1=rSθθ 1 @Srz=@z

(8.4a)

ρð@vθ=@t1 vr @vθ=@r1 vθ=r @vθ=@θ1 vrvθ=r1 vz@vθ=@zÞ
5 Fθ 2 1=r @p=@θ1 1=r2 @ðr2 SθrÞ=@r1 1=r @Sθθ=@θ1 @Sθz=@z

(8.4b)

ρð@vz=@t1 vr @vz=@r1 vθ=r @vz=@θ1 vz@vz=@zÞ
5 Fz 2 @p=@z1 1=r @ðr SzrÞ=@r1 1=r @Szθ=@θ1 @Szz=@z

(8.4c)

@vr=@r1 vr=r1 1=r @vθ=@θ1 @vz=@z5 0 (8.4d)

where vr, vθ, and vz are radial, azimuthal, and axial velocity components, respectively, with

S5 2 NðΓÞD (8.4e)

denoting the deviatoric stress tensor, N(Γ); the apparent viscosity function, Γ; the shear rate; and

D, the deformation tensor whose elements are defined by

Drr 5 @vr=@r (8.4f)

Dθθ 5 1=r @vθ=@θ1 vr=r (8.4g)

Dzz 5 @vz=dz (8.4h)

Drθ 5Dθr 5 1=2½r @ðvθ=rÞ=@r1 1=r @vr=@θ� (8.4i)

Dθz 5Dzθ 5 1=2ð@vθ=@z1 1=r @vz=@θÞ (8.4j)

Drz 5Dzr 5 1=2ð@vr=@z1 @vz=@rÞ (8.4k)

We ignore body forces in this discussion. For steady-state flow (@/@t5 0) under fully developed

(@/@z5 0) conditions, with the further assumption of Newtonian flow, Equations 8.4a through 8.4c

possess a remarkable property. Equations 8.4a and 8.4b are independent of vz and z, so they can be

solved first (we have assumed that the azimuthal @p/@θ driver is insignificant compared to the drag-

ging effect offered by the rotating surface). Once solutions for vr and vθ are available, they are used

to evaluate the left-side convective terms of Equation 8.4c for the solution of axial velocity.

This decoupling is possible because the Newtonian assumption removes vz from Equations 8.4a

and 8.4b by rendering the apparent viscosity a simple constant. That is, rotation affects axial flow

but not conversely. This conclusion is borne out by the more detailed calculations of Escudier et al.

(2000) for eccentric annuli comprising off-centered circles. In flows without rotation, the axial

velocity field is symmetric with respect to a line passing through the centers of both circles.
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Escudier et al. showed that inner circle rotation removes this symmetry and displaces the location

of maximum axial velocity azimuthally.

The steady analysis of Escudier et al. is overly simple for our purposes in several respects.

First, the Newtonian fluid assumption decouples the rotating flow from the axial flow. The resulting

linear second-derivative operators present at all right sides of the differential equations simplify

numerical analysis but preclude any modeling of non-Newtonian shear-thinning effects. In general,

the apparent viscosity function depends on all velocity components and strongly couples all veloc-

ity fields. Our transient formulation, in contrast, is posed in terms of a general stress tensor valid

for fluids with and without yield stresses where the extended Herschel-Bulkley flow model is used.

Also, Escudier et al. use bipolar coordinate systems to model eccentered circles. Our formulation is

developed using general curvilinear coordinates whose outer boundaries may conform to washout

and cuttings beds contours.

Again, while the approach just discussed may be acceptable for Newtonian flows, which allow

vz to be efficiently solved once a complicated cross-flow is obtained, it is not practical for non-

Newtonian fluids because velocities are dynamically coupled through the apparent viscosity. In our

approach, we use both physical and mathematical arguments to facilitate a fast algorithm applicable

to general fluids on arbitrary curvilinear meshes.

We begin with the flow equations in cylindrical radial coordinates, as shown in Equations 8.4a

through 8.4d, which, we emphasize, apply to annuli with circular as well as noncircular boundaries.

It is clear that, in these coordinates, barring the possibility of strong formation influx, the radial

velocity vr is much smaller than both the azimuthal speed vθ and the axial speed vz (the latter two

may be large and comparable). More precisely, “vr is small” because it vanishes at the inner and

outer boundaries, by virtue of zero velocity slip, and also between the two boundaries, because

strong waviness in the contours is absent.

When these conditions are fulfilled, the rotating fluid in the cross-plane is defined by vθ alone,

solved together with @p/@θ � 0. Note that @p/@θ vanishes identically in concentric problems even

when rotations are extremely rapid. For eccentric problems, we are justified in neglecting this azi-

muthal driver because the primary source of rotating flow is the dragging effect of the boundary. In

other words, the problem with fully coupled rotating and axial flow for non-Newtonian fluids in

eccentric annuli with washouts and cuttings beds can be determined by just two nonlinearly coupled

equations for vθ and vz.

In steady, concentric two-dimensional problems, the left side of Equation 8.4b is identically

zero because @/@t5 0, @/@z5 0, vr5 0, and @/@θ5 0. Also, @p/@θ vanishes by virtue of symmetry,

and what remains is 1/r2 @(r2 Sθr)/@r11/r @S
θθ
/@θ5 0. If the fluid is Newtonian, this reduces to a

simple linear ordinary differential equation for vθ. Once vθ is solved subject to “rpm” constraints at

the pipe and no-slip boundary conditions at the borehole wall, Equation 8.4a is used to calculate

the radial pressure gradient @p/@r, therefore resulting in the classical “2 vθ
2/r” centrifugal force

effect.

In our approach to transient non-Newtonian fluids with rotating axial flow coupling in eccentric

annuli, the simple “1/r2 @(r2 Sθr)/@r11/r @Sθθ/@θ5 0” relationship is replaced by the more general

azimuthal approximation

ρð@vθ=@t1 vθ=r @vθ=@θÞ � 1=r2 @ðr2SθrÞ=@r1 1=r @Sθθ=@θ � 0 (8.4l)
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where a more general apparent viscosity function, N(Γ), is solved together with Equation 8.4c.

Consistently assuming @/@t5 0, @/@z5 0, and vr� 0, we have

ρð@vz=@t1 vθ=r @vz=@θÞ � 2@p=@z1 1=r @ðrSzrÞ=@r1 1=r @Szθ=@θ1 @Szz=@z (8.4m)

When the viscous stress terms of Equations 8.4l and 8.4m are expanded, the second-order linear

partial derivative operator Λ5 @2/@r211/r @/@r11/r2 @2/@θ2 � 1/r2 appears (additional nonlinear

terms are present that we do not neglect here). In order to use the curvilinear mapping method

developed in Chapter 3, we first recognize that “@2/@r211/r @/@r11/r2 @2/@θ2” is equivalent to

“@2/@x21 @2/@y2” and that “r25 x21 y2.” Thus, we have Λ5 @2/@x21 @2/@y22 1/(x21 y2). In

curvilinear coordinates, this becomes

Λ5 ðα @2=@ξ2 22β @2=@ξ@η1 γ @2=@η2Þ=J2 2 1=ðxðξ; ηÞ2 1 yðξ; ηÞ2Þ (8.4n)

where the mapping functions x(ξ, η), y(ξ, η), α, β, and γ are known. Stable approximation methods

for “(α @2/@ξ22 2β @2/@ξ@η1 γ@2/η2)/J2” were discussed earlier in this book and are used here.

The negative nature of the additional term “21/(x21 y2)” increases the numerical stability of the

schemes by increasing diagonal dominance.

All spatial derivatives are approximated by second-order accurate central difference formulas.

The convective term ρvθ/r @vz/@θ in Equation 8.4m is also evaluated by central differences, although

several intermediate transformations are required. For example in the cylindrical coordinate deriva-

tion underlying Equation 8.4m, we can reexpress @/@θ as @/@θ52y @/@x1 x @/@y. Thus, in general

curvilinear coordinates, it follows that

@vz=@θ52y @vz=@x1 x @vz=@y

52yðξ; ηÞfξx @vz=@ξ1 ηx @vz=@ηÞ1 xðξ; ηÞfξy @vz=@ξ1 ηy @vz=@ηÞ
(8.4o)

In rotating flows, the combination “@p/@z1 ρvθ/r @vz/@θ” serves as an “effective axial pressure

gradient” that depends on the azimuthal coordinate θ by way of solutions to the equation for vθ.

Computations for steady rotating flows show that the location of maximum axial velocity at the

wide side of eccentric annuli is displaced azimuthally, with displacements increasing with rotational

speed in a manner consistent with Escudier et al. (2000). Again, our method applies to transient

non-Newtonian flow in arbitrary eccentric annuli. The unsteady boundary conditions possible with

this extension include general axial reciprocation coupled with arbitrary transient rotation. It is thus

possible to simulate the effects of drillstring axial vibration and torsional stick-slip on annular fluid

flow characteristics.

DISCUSSION 8.3

Transient, Three-Dimensional Non-Newtonian Flows with Miscible Mixing in Long Eccentric

Annular Ducts with Pipe or Casing Rotation and Reciprocation

For presentation purposes, we introduced the general modeling ideas starting with unsteady, three-

dimensional Newtonian flow, and miscible mixing problems without rotation, and then we

considered transient, two-dimensional non-Newtonian single-phase problems with rotation. With

308 CHAPTER 8 Cement and Mud Multiphase Transient Displacements



these ideas developed, we now present their obvious combination in order to treat the complicated

problem indicated in the discussion title. It is clear that we replace the axial flow momentum

description in Equation 8.4c with the approximation

ρðCÞð@vz=@t1 vθ=r @vz=@θÞ52@p=@z1 1=r @ðrSzrÞ=@r1 1=r @Szθ=@θ1 @Szz=@z (8.5a)

while the azimuthal flow statements in Equations 8.4b and 8.4l are replaced with

ρðCÞð@vθ=@t1 vθ=r @vθ=@θÞ � 1=r2 @ðr2SθrÞ=@r1 1=r @Sθθ=@θ � 0 (8.5b)

where again C is the concentration function. However, the left operator “@C/@t1 u @C/@z” in

Equation 8.2, or “@C/@t1 vz @C/@z” in the present nomenclature, must be replaced by “@C/@t1 vθ/r

@C/@θ1 vz @C/@z,” so that

@C=@t1 vθ=r @C=@θ1 vz @C=@z5 ε ð@2C=@x2 1 @2C=@y2 1 @2C=@z2Þ (8.5c)

The new term models the addition of fluid convection in the azimuthal direction. Boundary condi-

tions for velocity and concentration were given previously.

The numerical strategy for solving Equations 8.5a through 8.5c is straightforward. As suggested

previously, all three equations are first expressed in Cartesian x, y, and z coordinates. Then the curvi-

linear coordinate transformations derived in Chapter 3 are used to map the system to convenient

computational (ξ, η, z) coordinates. Ideally, the transient equations are integrated implicitly, using

newer alternating-direction-implicit equation methods allowing mixed partial derivatives. However,

for simplicity an explicit scheme is used for which concentric flow validations indicate reasonable

accuracy.

An important question that arises is the approximation for the stress tensor, S, used. Again

recall that the general rheology model involves the Herschel-Bulkley parameters n, K, and τ0. It
is tempting to try to fit each of these to linear functions of C—for example, n(C)5 (nright2 nleft)

C1 nleft so that n5 nleft when C5 0 at the left inlet and n5 nright when C5 1 at the right outlet.

However, this approach is not desirable because the physical consequences of this curve fit are

unclear. Instead, at each spatial node (for a fixed time step), the apparent viscosity function

based on the extended Herschel-Bulkley formula is first calculated to give values for Nleft

and Nright.

Then a local weighted average of the viscosity, N, based on the Todd-Longstaff formula using

these two inputs is taken in Equation 8.4e. This alternative approach, dealing with apparent vis-

cosities directly, is physically satisfying. Consistently with the use of an explicit time integra-

tion scheme, we neglect spatial derivatives of apparent viscosity, although, of course, the apparent

viscosity function used is definitely variable throughout the field of flow, barring a perfectly

Newtonian fluid.

For the local mass density, ρ, appearing in both axial and azimuthal momentum equations, the

linear interpolation ρ(C)5 (ρright2 ρleft) C1 ρleft (so that ρ5 ρleft when C5 0 at the left inlet and

ρ5 ρright when C5 1 at the right outlet) is reasonable and thus used. We do emphasize that the

apparent viscosity does not directly appear in the concentration equation, which shows an explicit

diffusion coefficient ε(C) at the right side. However, viscosity and density enter through the veloci-

ties in the convection terms “vθ/r @C/@θ1 vz @C/@z,” which are directly affected by the two

parameters.
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A second question that arises is the functional form of the shear rate expression needed to evalu-

ate local apparent viscosities. In Chapter 2, we indicated that Γ5 {(r d(vθ/r)/dr)
21 (dvz/dr)

2}1/25
{(r dΩ/dr)21 (dvz/dr)

2}1/2, where the usual rotational rate is defined by Ω5 vθ/r, applies when

flow variations in the streamwise direction are small. This expression, which strictly applies to con-

centric flows, also holds eccentrically for most practical flows, as computations show. This usage

significantly enhances numerical stability. As before, the expression in cylindrical coordinates must

be recast in Cartesian coordinates for subsequent transformation to general curvilinear coordinates.

To provide some indication of Fortran source code complexity, we have duplicated several lines

from the apparent viscosity update carried out for each point at the end of an integration time step:

C

UX5YETA(I,M,N)*((UTN(I,M11,N)-UTN(I,M-l,N))/TDPSI)/GAKOB(I,M,N)

1 -YPSI(I,M,N)*((UTN(I,M,N11)-UTN(I,M,N-1))/TDETA)/GAKOB(I,M,N)

UY5XPSI(I,M,N)*((UTN(I,M,N11)-UTN(I,M,N-1))/TDETA)/GAKOB(I,M,N)

1 -XETA(I,M,N)*((UTN(I,M11,N)-UTN(I,M-1,N))/TDPSI)/GAKOB(I,M,N)

C

OMEGAX5YETA(I,M,N)*(OMEGA(I,M1l,N)-OMEGA(I,M-l,N))

1 -YPSI(I,M,N)*(OMEGA(I,M,N1l)-OMEGA(I,M,N-l))

OMEGAY5XPSI(I,M,N)*(OMEGA(I,M,N1l)-OMEGA(I,M,N-l))

1 -XETA(I,M,N)*(OMEGA(I,M1l,N)-OMEGA(I,M-l,N))

OMEGAX5OMEGAX/(2.*GAKOB(I,M,N))

OMEGAY5OMEGAY/(2.*GAKOB(I,M,N))

RDWDR 5XACTUAL(I,M,N)*OMEGAX1YACTUAL(I,M,N)*OMEGAY

C

ARG5UX**21UY**21RDWDR**2

The terms to the right of UX and UY (that is, @U/@x and @U/@y) are expressions in the computa-

tion coordinates (ξ, η, z). The second code block provides results for @Ω/@x and @Ω/@y. Finally,
ARG captures the argument term in the shear rate function.

DISCUSSION 8.4

Subtleties in Non-Newtonian Convection Modeling

The axial momentum equation contains a pressure gradient term @p/@z that drives the flow. In stea-

dy flow, one formulation specifies its value, computes the velocity field, and then integrates to

obtain the total volumetric flow rate, Q. If Q is specified, the steady formulation is solved repeat-

edly using guessed values of @p/@z. These are refined iteratively using a half-step procedure until

the target flow rate is achieved. Although the method is iterative, the final converged solution for

the velocity field is exact.

For transient flows where Q(t) is specified, no such simple procedure exists. It is possible, in

principle, to similarly determine @p/@z within each time step in order to fulfill the target flow rate;

however, such a procedure would be extremely computation intensive. This method is therefore
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unacceptable for practical use. The partial differential equation nonetheless requires some value of

@p/@z for numerical time marching to proceed; the question, of course, is which approximate pres-

sure gradient value to use.

A Newtonian fallacy
Some investigators have approached the nonrotating problem with a seemingly clever solution,

which turns out to be incorrect. We explain this technique so that others will not repeat it. The

method first determines a pressure gradient associated with an equivalent Newtonian flow based,

say, on average shear rate for the annular cross section or some other physical criterion for the

assumed volumetric flow rate. The steady axial velocity field associated with this @p/@z is then

used in the concentration partial differential equation, and standard time integrations are performed.

For constant Q, transient solutions for axial velocity generally vary with time, as expected—a

“warm” feeling, although, of course, the correctness of the solutions cannot be verified. However,

the space-time solution for concentration does not vary from run to run even when input viscosities

are substantially changed.

No explanation or fix for this “bug” was ever obtained, nor could it be. The answer is clear

from simple physical arguments. For steady, two-dimensional Newtonian flows, whether they apply

to pipes or complicated annular geometries, the axial velocity field and the corresponding total vol-

umetric flow rates can be generally written as vz(ξ, η)5 1/μ @p/@z G(ξ, η) and Q5 1/μ @p/@z H,

where the function G(ξ, η) and the constant H both depend exclusively on geometry.

Now, the two relationships can be combined to give vz(ξ, η)5 (Q/H) G(ξ, η), which is

completely independent of the viscosity. In other words, two problems (without rotation) having

very different viscosities but the same flow rate, Q, and geometry will have identical velocity fields

vz(ξ, η) and thus identical space-time histories for concentration. This is clear because setting

vθ5 0 in Equation 8.5c leaves the left side unchanged and obviously incorrect physically. The rea-

son is apparent: Steady Newtonian approximations must not be used locally to simplify the mathe-

matics whatever the physical justification.

Correct physical solution
In determining total pressure drops for managed pressure drilling or cementing, the foregoing approach

leads to grave mistakes. This method illustrates the dangers lurking in “engineering recipes” that may

appear physically justifiable when they in fact lead to incorrect mathematics. For the general problem

considered in Chapter 9, illustrated here as Figure 8.1, each “slug” containing non-Newtonian fluid at

any particular time tn with flow rate Q(tn) is represented by the exact pressure gradient obtained from

our “Steady 2D” and “Transient 2D” solvers. (The latter solver is used for rotating flow.)

A fluid slug with higher average apparent viscosities will have a stronger pressure gradient than

one with lower viscosities. When a very viscous fluid displaces a less viscous slug, neighboring

pressure gradients can vary substantially in magnitude depending on rheology. This is the actual

situation physically, and the challenge in solving for the complete miscible mixing field is a

stable numerical solution in the presence of strong discontinuous axial pressure gradients. The

results of Chapter 9 show that such stability can in fact be achieved in practical displacement prob-

lems in which contiguous fluids can differ substantially.
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DISCUSSION 8.5

Simple Models for Multiple Non-Newtonian Fluids with Mixing

The multifluid mixing problem in the drillpipe annulus represented in Figure 8.1 is in general diffi-

cult to formulate and solve with any degree of accuracy unless certain conditions (introduced later)

are met. A theoretical discussion is given in Bird, Stewart, and Lightfoot (2002), where the equa-

tions of change for multicomponent systems are derived and their solutions outlined. Basically, one

postulates a mixture velocity function applicable at a point that applies to a weighted average for

all of the fluids. The momentum equation for this velocity is solved and used as the convection

driver to solve multiple sets of concentration differential equations for Cm applicable to the differ-

ent fluid species.

This process must be repeated in time and involves substantial numerical work. If this method

can be accurately formulated and solved, then the space-time diffusion history at fluid interfaces can

be determined. For instance, one can in principle determine diffusion zone thicknesses as they vary

throughout the cross section and monitor their evolution in time. That this can be done with any pre-

cision, however, is unclear when fluid slug lengths are comparable to cross-sectional diameters

because empirical mixing laws must be introduced to augment local details of the physical flow.

Although it is not explicitly stated, this approach is implicit in the recent multifluid model of

Savery, Darbe, and Chin (2007). The uncertainties associated with such methods, fortunately, are

Mud
pump

z1 z2 z3 z4 z5

Z1Z2Z

L

Z5

Pipe or
casing

Annulus

z

End

FIGURE 8.1

General pumping schedule with non-Newtonian flow.
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not problematic when fluid slug lengths greatly exceed typical cross-sectional diameters, as is the

case in all drilling and cementing problems. For such applications, the maximum diffusion thickness

in the streamwise direction will always be much shorter than a typical slug length. Consequently,

its effect on the overall pressure field is minimal. This observation allows us to solve for the pressure

field first, ignoring diffusion effects associated with the coefficients εm.
As suggested earlier and demonstrated in Chapter 9, the positions of all fluid interfaces can be

determined on a kinematic volumetric flow rate basis. The actual pressure gradient applicable to a

particular fluid slug at any time tn is obtained from the “Steady 2D” or “Transient 2D” solvers dis-

cussed in Chapters 1 through 7. Once the complete pressure profile is found on this basis, the mix-

ing details between any two contiguous fluids can be obtained by solving a single concentration

equation that supports two different pressure gradients without having to solve a complete system

of coupled concentration equations.

In a sense, the method just outlined takes into account the disparate physical length scales pres-

ent in the problem and substantially reduces the computational work needed to find practical solu-

tions. At the same time, the results are obviously easier to interpret and do not require any analysis

of highly mixed fields like those that result from methods outlined in Bird, Stewart, and Lightfoot

(2002) or in Savery, Darbe, and Chin (2007) for cementing applications.

Our method, in a sense, draws upon “boundary layer-like” simplifications, allowing us to

“zoom in” after the fact, not unlike classical boundary layer methods, which permit inviscid pres-

sure determination over an airfoil first, followed by similar after-the-fact calculations for viscous

drag effects that are confined to narrow zones near solid boundaries. As will be demonstrated in

Chapter 9, time-dependent interfacial details associated with mixing zone growth and convection

are given in Figure 9.9, reproduced as Figure 8.2, where the vertical mixing scale is greatly

exaggerated.

FIGURE 8.2

Propagating and diffusing front in time, constructed from movie frames for viscosity history using exaggerated

diffusion.
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CHAPTER

9Transient, Three-Dimensional,
Multiphase Pipe and Annular Flow

In this chapter, we consider the general problems for managed pressure drilling and cementing flow

simulation with the solutions posed as objectives in this book. All of the “building block” tools cap-

tured in the “Steady 2D” and “Transient 2D” simulators are brought to bear in the transient, three-

dimensional, multiphase applications considered here. Again, we will address the computation of

pressure profiles along the borehole and particularly at the drillbit for all times when a general

pumping schedule is allowed at the mud pump. The problem models the complete system:

1. Surface pumping of general fluids with user-defined time schedules

2. Non-Newtonian flow down the drillpipe

3. Capture of pressure losses through the drillbit

4. Flow up the borehole annulus

For both pipe and annulus, fluid mixing is permitted via the introduction of coupled momentum and

concentration equations. For the borehole, general annular eccentricity is allowed. Once the basic setup

work is undertaken (i.e., defining fluid interface positions and completing the pressure gradient entries

in Figure 1.40 using pressure solvers provided), the calculation of borehole pressure profiles at any

instant in time requires just minutes of hand calculation (this process will be automated in the future).

For cementing applications, the degree to which contiguous fluids mix or do not mix is impor-

tant to zonal isolation. Here, detailed calculations for interfacial mixing yield details related to

diffusion zone geometry and time scales for mixing. These calculations, which are not required for

managed pressure drilling applications, may require anywhere from minutes to an hour, depending

on numerical stability requirements dictated by fluid density, apparent viscosity, and rotational rate

parameters. (The controlling variable is ρω/μ, where ρ is density, ω is rotational rate, and μ repre-

sents an average apparent viscosity.) With these preliminaries taken care of, we now present

detailed calculated validations and results.

DISCUSSION 9.1

Single Fluid in Pipe and Borehole System: Calculating Total Pressure Drops

for General Non-Newtonian Fluids

The general problem considered is shown in Figure 9.1 (our analysis applies to open and

closed systems). A positive displacement mud pump forces drilling fluid or cement into a drillpipe
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centralized in a concentric annulus. This vertical hole turns into a deviated or horizontal borehole

with an eccentric annulus through an intermediate (possibly eccentric) section with radius of curva-

ture, R. Note that Figure 9.1 is used to establish conventions and a frame of reference for discus-

sion only. In fact, our “vertical concentric section” may represent another deviated or horizontal

section with an eccentric cross section, and the turning section (however unlikely) may be concen-

tric if desired. Length scales may be assigned arbitrarily, and out-of-plane sections are permissible.

The geometry considered here is quite general.

We emphasize here “single” in the title of this discussion. When only a single fluid is consid-

ered, the problems are two-dimensional because the flows in the pipe and annulus are unchanged

with time in the axial direction. Only the flow rate changes. For any given flow rate, a single calcu-

lation determines entirely what happens in the drillpipe and similarly for the annulus. When multi-

ple fluids are introduced at the inlet with different slug lengths, a three-dimensional transient model

is obviously required that supports moving interfaces. Net pressure drops will vary with time,

since the fluid system is constantly changing. Significant complications arise that are studied in the

remainder of this chapter.

Pressure PSURF(t)
at surface choke

Drillbit PBIT(t)

Mud

Multifluid
transient pump

schedule

RCD rotating
control device

Vertical
concentric
section

Horizontal or deviated well
and eccentric annulus

Turning
section

Tripping in or outPipe rotation

FIGURE 9.1

Managed pressure system simulation.
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DISCUSSION 9.2

Interface Tracking and Total Pressure Drop for Multiple Fluids Pumped in a Drillpipe and Eccentric Borehole System

In this example, we will consider a centered or eccentered drillpipe (with cross-sectional area Apipe)

located in a borehole annulus whose geometry is unchanged along its length. The annular area is

Aannulus. Note that while pipe area is simply available from “πRpipe
2 ,” the same is not true for the

annulus if the cross-sectional contours from two initially eccentered circles have been edited to incor-

porate washouts, cuttings beds, or fractures. If that is the case, the “Steady 2D” simulator automati-

cally computes and displays total cross-sectional area by summing incremental trapezoidal areas

constructed from the curvilinear grid.

Now mud progresses down the drillpipe and then out through the drillbit, and finally flows

upward in the return annulus. At the outset t5 0, a single initial fluid with Herschel-Bulkley prop-

erties (n0, K0, τ0,0) is assumed to exist in the pipe and annular system (n is the fluid exponent, K is

the consistency factor, and τ0 is the yield stress). The initial fluid may be flowing or quiescent. At

t5 01, the mud pump starts to act according to a user-defined schedule with piecewise constant

rates. At t5 t05 01, fluid “1” with properties (n1, K1, τ0,1) is pumped into the pipe at the volumet-

ric flow rate of Q1; at t5 t1, fluid “2,” with properties (n2, K2, τ0,2) is pumped at rate Q2; and so

on. In fact,

Fluid “1” pumps at rate Q1: t0# t, t1
Fluid “2” pumps at rate Q2: t1# t, t2
Fluid “3” pumps at rate Q3: t2# t, t3
Fluid “4” pumps at rate Q4: t3# t, t4
Fluid “5” pumps at rate Q5: t$ t4

The overall pumping process is illustrated at the top of Figure 9.2. Here fluid introduced at the far

right into the drillpipe travels to the left, then turns at the drillbit (not shown), and finally progresses

to the very far right. The middle diagram shows five interfaces (starting at t0, t1, t2, t3, and t4) associ-

ated with the onset of each pump action. The location “z1” (using the “little z” left-pointing coordi-

nate system shown) describes the interface separating the initial fluid ahead of it with fluid “1” just

behind it. Similarly, “z2” separates fluid “1” ahead of it and fluid “2” behind it. Fluid “5” is a single

fluid that is pumped continuously without stoppage with flow rate Q5 for t $ t4. While more inter-

faces are easily programmed, a limit of five (which model six fluid slugs) to enable rapid modeling

and job prototyping, was assumed, since it suffices for most rig site planning purposes.

Once the first interface reaches the end of the drillpipe, shown with length L—that is, z15L—it

turns into the borehole annulus and travels to the right. Similar descriptions apply to the remaining

interfaces. Annular interfaces are described by the “big (as in capital) Z” right-pointing coordinate sys-

tem at the bottom in Figure 9.2. When Z15L, the first fluid pumped will have reached the surface.

Figure 9.2 provides a “snapshot” obtained for a given instant in time. At different times, the

locations of the interfaces will be different, as will pressure profiles along the borehole (and thus at

the drillbit). Also, while our discussion focuses on drilling applications with distinct mud interfaces,

it is clear that all of our results apply to cement-spacer-mud systems.

Now we wish to determine the locations of z1,2,3,4,5 and Z1,2,3,4,5 as functions of time. In gen-

eral, this is a difficult problem if the fluids are compressible, if significant mixing is found at fluid
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interfaces, or both. However, if the the fluid slugs are long compared to the annular diameter (so

that mixing zones are not dynamically significant), and, further, if the pump acts instantaneously

and transient fluid effects reach equilibrium quickly, interface tracking can be accomplished kine-

matically. Once the locations of all interfaces are known for any instant in time, pressure drop cal-

culations (for each fluid slug) proceed using the non-Newtonian flow models developed previously.

Two output tables are provided by our “interface tracker.” The calculations are performed

almost instantaneously by the software model. The two are, respectively, “Drillpipe Fluid Interfaces

vs. Time” and “Annular Fluid Interfaces vs. Time,” as shown in Figures 9.3 and 9.4. The numbers

assumed for these tables are obviously not realistic, and for this reason the units shown in the head-

ings should be ignored for now. They were chosen so that all results fit on the printed page, with all

values allowing convenient visual checking and understanding of the computer output.

Note that 0’s at early times along a z column indicate absence of the particular fluid in the drill-

pipe. Also, once the interface has reached the position “100” (the end of the borehole in this illus-

tration), the subsequent 0’s are no longer meaningful and are used only to populate the table. Note

as well that the very small annular area of Aannulus selected later was designed only so that we can

“watch fluid move” in the table of Figure 9.4.

Mud
pump

z1 z2 z3 z4 z5

Z1Z2Z

L

Z5

Pipe or
casing

Annulus

z

End

FIGURE 9.2

General pumping schedule.
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To facilitate visual interpretation, we have assumed that Apipe5 1 and Aannulus5 0.5, so that

the nominal linear displacement speeds in the pipe and annulus are Upipe5Q/Apipe and Uannulus5
Q/Aannulus. The borehole length is assumed for clarity to be 100. At the same time, we pump

according to the schedule

Fluid “1” at a rate of Q15 1: 05 t0, t, t15 5

Fluid “2” at a rate of Q25 2: 55 t1, t, t25 10

Fluid “3” at a rate of Q35 3: 105 t2, t, t35 15

Fluid “4” at a rate of Q45 4: 155 t3, t, t45 20

Fluid “5” at a rate of Q55 5: t. t45 20

where our five interfaces originate at t0, t1, t2, t3, and t4.

ELAPSED TIME    FLOW       Drillpipe Fluid Interface (feet)
Minutes  Hours   GPMs     z(1)    z(2)    z(3)    z(4)    z(5)

0       0.      1       0       0       0       0       0
1       0.      1       1       0       0       0       0
2       0.      1       2       0       0       0       0
3       0.      1       3       0       0       0 0
4       0.      1       4       0       0       0       0

5       0.      2       5       0       0       0       0
6       0.      2       7       2       0       0       0
7       0.      2       9       4       0    0       0
8       0.      2      11       6       0       0       0
9       0.      2      13       8       0       0       0

10       0.      3      15      10       0       0       0
11       0.      3      18      13       3       0       0
12       0.      3      21      16       6       0       0
13       0.      3      24      19       9       0       0
14       0.      3      27      22      12       0       0

15       0.      4      30      25  15       0       0
16       0.      4      34      29      19       4       0
17       0.      4      38      33      23       8       0
18       0.      4      42      37      27      12       0
19       0.      4      46      41      31      16       0

20       0.      5      50      45      35      20       0
21       0.      5      55      50      40      25       5
22       0.      5      60      55      45      30      10
23       0.      5      65 60      50      35      15
24       0.      5      70      65      55      40      20
25       0.      5      75      70      60      45      25
26       0.      5      80      75      65      50      30
27       0.      5     85      80      70      55      35
28       0.      5      90      85      75      60      40
29       0.      5      95      90      80      65      45
30       0.      5     100      95      85      70      50
31       1.      5 0     100      90      75      55
32       1.      5       0       0      95      80      60
33       1.      5       0       0     100      85      65
34       1.      5       0       0       0      90      70
35       1.    5       0       0       0      95      75
36       1.      5       0       0       0     100      80
37       1.      5       0       0       0       0      85
38       1.      5       0       0       0       0      90
39       1. 5       0       0       0       0      95
40       1.      5       0       0       0       0     100
41       1.      5       0       0       0       0       0

FIGURE 9.3

Drillpipe Fluid Interfaces vs. Time.
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We next explain Figure 9.3. The left column provides elapsed minutes, while the second provides

elapsed hours. The volumetric flow rate is given in the third column. The corresponding drillpipe

fluid interfaces z1,2,3,4,5 are given in the five remaining columns. Also, each change in flow rate,

(associated with a new interface) is separated by a single horizontal line spacing to enhance clarity.

Consider the result for z1. In the first time block with Upipe5 1/15 1, the interface advances at a rate

ELAPSED TIME    FLOW        Annular Fluid Interface (feet)
Minutes  Hours   GPMs     Z(5)    Z(4)    Z(3)    Z(2)    Z(1)

0       0.      1       0       0       0       0       0
1       0.      1       0       0       0       0       0
2       0.      1       0       0       0       0       0
3       0.      1 0       0       0       0       0
4       0.      1       0       0       0       0       0

5       0.      2       0       0       0       0       0
6       0.      2       0       0       0       0       0
7       0.  2       0       0       0       0       0
8       0.      2       0       0       0       0       0
9       0.      2       0       0       0       0       0

10       0.      3       0       0       0       0       0
11      0.      3       0       0       0       0       0
12       0.      3       0       0       0       0       0
13       0.      3       0       0       0       0       0
14       0.      3       0       0       0       0       0

15 0.      4       0       0       0       0       0
16       0.      4       0       0       0       0       0
17       0.      4       0       0       0       0       0
18       0.      4       0       0       0       0       0
19       0.      4       0       0       0       0       0

20       0.      5       0       0       0       0       0
21       0.      5       0       0       0       0       0
22       0.      5       0       0       0       0       0
23       0.      5       0       0       0       0       0
24       0.      5       0       0       0       0       0
25       0.      5       0       0       0       0       0
26       0.      5       0       0       0       0     0
27       0.      5       0       0       0       0       0
28       0.      5       0       0       0       0       0
29       0.      5       0       0       0       0       0
30       0.      5       0       0       0       0 0
31       1.      5       0       0       0       0      10
32       1.      5       0       0       0      10      20
33       1.      5       0       0       0      20      30
34       1.      5       0       0      10     30      40
35       1.      5       0       0      20      40      50
36       1.      5       0       0      30      50      60
37       1.      5       0      10      40      60      70
38       1.      5       0      20      50 70      80
39       1.      5       0      30      60      80      90
40       1.      5       0      40      70      90     100
41       1.      5      10      50      80     100       0
42       1.      5      20      60     90       0       0
43       1.      5      30      70     100       0       0
44       1.      5      40      80       0       0       0
45       1.      5      50      90       0       0       0
46       1.      5      60     100 0       0       0
47       1.      5      70       0       0       0       0
48       1.      5      80       0       0       0       0
49       1.      5      90       0       0       0       0
50       1.      5     100     0       0       0       0
51       1.      5       0       0       0       0       0

FIGURE 9.4

Annular Fluid Interfaces vs. Time.
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of “1.” In the second block with Upipe5 2/1, the interface advances at the rate “2.” As time increases,

the easily recognized rate increments are 3, 4, and 5 following the pump schedule shown previously.

The z1 interface starts moving at t5 0. Now we turn to the second interface and study the column

for z2 results. At t5 5, the second interface starts moving. Because we are already in the second time

block, the interface moves at the rate “2.” Subsequent speeds are 3, 4, and 5. Similarly, z3 starts at

t5 10 with rate increments of 3, followed by 4 and 5, and so on. We described Figure 9.3 from the

perspective of tracking individual fronts. However, the table is important for pressure calculations.

Let us consider the results obtained at t5 26 (shown in bold font for emphasis). In particular,

we have

ELAPSED TIME FLOW Drillpipe Fluid Interface (feet)
Minutes Hours GPMs z(1) z(2) z(3) z(4) z(5)

26 0. 5 80 75 65 50 30

This printout indicates that at t5 26 the front z1 is located at z5 80, while the last front z5 is

located at z5 30. The drillpipe thus contains six distinct fluid slugs at 100. z. 80, 80. z. 75,

75. z. 65, 65. z. 50, 50. z. 30, and 30. z. 0, where “100” refers to the assumed borehole

length. In fact,

• 100. z. 80 contains “initial fluid” with properties (n0, K0, τ0,0)
• 80. z. 75 contains fluid “1” with properties (n1, K1, τ0,1)
• 75. z. 65 contains fluid “2” with properties (n2, K2, τ0,2)
• 65. z. 50 contains fluid “3” with properties (n3, K3, τ0,3)
• 50. z. 30 contains fluid “4” with properties (n4, K4, τ0,4)
• 30. z. 0 contains fluid “5” with properties (n5, K5, τ0,5)

If a non-Newtonian 2D flow model for a Herschel-Bulkley fluid in a circular pipe is avail-

able that gives the pressure gradient (@P/@z)pipe,n for any of the given fluid slugs “n” flowing

a rate Q with a pipe radius (Apipe/π)
1/2, then the total drillpipe pressure drop is simply calcu-

lated from (100280) (@P/@z)pipe,01 (80275)(@P/@z)pipe,11 (75265) (@P/@z)pipe,21 (65250)

(@P/@z)pipe,31 (50230) (@P/@z)pipe,41 (3020) (@P/@z)pipe,5. The flow rate, Q, used is the one appli-

cable at the time the snapshot was taken—in this case, Q5 5 at t5 26. (A single rate applies to all

slugs at any instant in time.) Now, at time t5 26, Figure 9.4 shows, as indicated by “0’s,” that

none of the pumped fluids have arrived in the annulus:

ELAPSED TIME FLOW Annular Fluid Interface (feet)
Minutes Hours GPMs Z(5) Z(4) Z(3) Z(2) Z(1)

26 0. 5 0 0 0 0 0

Thus, the only fluid residing in the annulus is the initial fluid. If the pressure gradient obtained from

a 2D eccentric flow analysis is (@P/@z)annulus,0, then the pressure drop in the annulus is just (10020)

(@P/@z)annulus,0. If we further denote by Δ the pressure drop through the drillbit, then the total pressure

drop through the entire pipe-bit-annulus system is obtained by summing the prior three results—that

is, (100280)(@P/@z)pipe,01(80275)(@P/@z)pipe,11 (75265)(@P/@z)pipe,21 (65250) (@P/@z)pipe,31 (50230)

(@P/@z)pipe,41 (3020) (@P/@z)pipe,51Δ1 (10020) (@P/@z)annulus,0, which is the pressure (additive to the

surface choke pressure, PSURF) required at the mud pump to support this multislug flow.
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The software that creates Figure 9.3 also provides the times at which fluid interfaces in the drill-

pipe enter the borehole annulus. These are obtained from the table in the figure by noting the

“100” marker. In this case, we have

Borehole total length L, is: 100 ft.
Fluid “1” enters annulus at: 30 min.
Fluid “2” enters annulus at: 31 min.
Fluid “3” enters annulus at: 33 min.
Fluid “4” enters annulus at: 36 min.
Fluid “5” enters annulus at: 40 min.

We next consider another time frame, say t5 36, for which our drillpipe interfaces have entered

the annulus, and explain how annular pressure drops are determined (see Figure 9.5). For this time

frame, Figure 9.4 gives

ELAPSED TIME FLOW Annular Fluid Interface (feet)
Minutes Hours GPMs Z(5) Z(4) Z(3) Z(2) Z(1)

36 1. 5 0 0 30 50 60

This indicates that three interfaces exist in the annulus, with Z1 located at the far right Z5 60,

followed by Z2 at Z5 50 and Z3 at Z5 30. Since the fluid ahead of Z1 is the “initial fluid,”

the total annular pressure drop is calculated from the sum (100260) (@P/@z)annulus,01 (60250)

(@P/@z)annulus,11 (50230) (@P/@z)annulus,21 (3020) (@P/@z)annulus,3, where subscripts denote fluid

type for the annular model.

Z1Z2Z Z3

Annulus

Z

Z1Z2Z30

PSURF

PBIT

P

Time snapshot,
annular Z values
from interface
tracker

L

FIGURE 9.5

Example annular interface distribution.
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We note that the actual pressure PBIT at the drillbit in the formation is obtained by adding the

total annular pressure drop to the pressure PSURF obtained at the surface choke. The value of PSURF
is in itself a “boundary condition,” and, importantly, the pressure PBIT at the bottom of the annulus

in the formation does not depend on the pressure drop Δ through the drillbit. On the other hand,

the pressure required at the pump to move the system includes pipe, bit, and annular losses, as

shown in Figure 9.6 for one interface configuration.

Interface tracking and example
Here we describe the software module that has been implemented to track multiple fluid interfaces,

leading to results such as those in Figures 9.3 and 9.4. For clarity, we did not work in physical units

previously, choosing (unrealistic) numerical inputs whose results were simple to visualize and

understand and parameters that allowed complete tables to fit on single printed pages. Here we

return to physical units and work with a more realistic example. Our “Interface Tracker” is exe-

cuted from the user screen in Figure 9.7, which shows default run parameters. Actual run para-

meters span many ranges and combinations of different numbers. For instance, pump rates will

typically vary 100 to 1,500 gpm, and time schedules will vary up to days. Borehole lengths may

vary from 5,000 to 30,000 ft. Pipe and annular areas are very different from run to run.

To provide meaningful tabulations that are reasonable in file size, time increments are therefore

expressed in minutes. To execute this program, click “Run.” When a blue status screen appears and

instructs the user to click “Answer,” results analogous to Figures 9.3 and 9.4 are provided. For

completeness, we perform our calculations now and explain the outputs at selected instants in time.

These calculations require approximately five seconds.

The output file reproduced that follows contains a summary of all input parameters. Again note

that for interface tracking, provided that our fluid slugs are long compared to the annular diameter

and interfacial mixing is confined to a small axial extent, the tracking process can be performed

Z

Z1Z2Z30

PSURF

PBIT

P

Time snapshot,
annular Z values
from interface
tracker

L"4""5"

PBIT + Δ

PPUMP

P

Drillpipe
or casing
domain

FIGURE 9.6

Complete drillpipe-drillbit-annulus system.
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kinematically (using only the pumping schedule and overall geometric parameters) and does not

depend on the fluid dynamics or rheologies. (These are used after the fact for pressure calculations

as discussed previously.) We now explain selected entries at various times. At the present writing,

interface positions must be inferred from tabular results; however, this process (together with inte-

grated color graphics) will be automated in the near future.

Pump Schedule, Interface Tracking ...
100 gpm: 0 min,T, 60 min
200 gpm: 60 min,T, 120 min
300 gpm: 120 min,T, 180 min
400 gpm: 180 min,T, 240 min
500 gpm: T. 240 min
Drillpipe area (ft^2): 0.250E100
Annular area (ft^2): 0.500E100
Borehole length (ft): 0.500E104
Time simulation (min): 600

ELAPSED TIME FLOW Drillpipe Fluid Interface (feet)
Minutes Hours GPMs z(1) z(2) z(3) z(4) z(5)
0 0.0 100 0 0 0 0 0
1 0.0 100 53 0 0 0 0
2 0.0 100 106 0 0 0 0
3 0.1 100 160 0 0 0 0
4 0.1 100 213 0 0 0 0
5 0.1 100 267 0 0 0 0

FIGURE 9.7

Interface Tracker with default inputs.
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6 0.1 100 320 0 0 0 0
7 0.1 100 374 0 0 0 0
8 0.1 100 427 0 0 0 0
9 0.2 100 481 0 0 0 0

10 0.2 100 534 0 0 0 0
11 0.2 100 588 0 0 0 0
12 0.2 100 641 0 0 0 0
13 0.2 100 695 0 0 0 0
14 0.2 100 748 0 0 0 0
15 0.2 100 802 0 0 0 0
16 0.3 100 855 0 0 0 0
17 0.3 100 909 0 0 0 0
18 0.3 100 962 0 0 0 0
19 0.3 100 1015 0 0 0 0

The first table tracks fluid interfaces in the drillpipe or casing. At t5 20 min, the first interface is

located at 1,069 ft (refer to the coordinate system in the middle diagram of Figure 9.2). By

t5 25 min, it has traveled to 1,336 ft. No other fluid has entered the pipe. This means that the initial

fluid is located in the range 5,000. z. 1,336, while the first fluid pumped is found in the range

1,336. z. 0.

20 0.3 100 1069 0 0 0 0
21 0.3 100 1122 0 0 0 0
22 0.4 100 1176 0 0 0 0
23 0.4 100 1229 0 0 0 0
24 0.4 100 1283 0 0 0 0
25 0.4 100 1336 0 0 0 0
26 0.4 100 1390 0 0 0 0
27 0.4 100 1443 0 0 0 0
28 0.5 100 1497 0 0 0 0
29 0.5 100 1550 0 0 0 0
30 0.5 100 1604 0 0 0 0
31 0.5 100 1657 0 0 0 0
32 0.5 100 1711 0 0 0 0
33 0.6 100 1764 0 0 0 0
34 0.6 100 1818 0 0 0 0
35 0.6 100 1871 0 0 0 0
36 0.6 100 1925 0 0 0 0
37 0.6 100 1978 0 0 0 0
38 0.6 100 2031 0 0 0 0
39 0.6 100 2085 0 0 0 0
40 0.7 100 2138 0 0 0 0
41 0.7 100 2192 0 0 0 0
42 0.7 100 2245 0 0 0 0
43 0.7 100 2299 0 0 0 0
44 0.7 100 2352 0 0 0 0
45 0.8 100 2406 0 0 0 0
46 0.8 100 2459 0 0 0 0
47 0.8 100 2513 0 0 0 0
48 0.8 100 2566 0 0 0 0
49 0.8 100 2620 0 0 0 0
50 0.8 100 2673 0 0 0 0
51 0.9 100 2727 0 0 0 0
52 0.9 100 2780 0 0 0 0
53 0.9 100 2834 0 0 0 0
54 0.9 100 2887 0 0 0 0
55 0.9 100 2940 0 0 0 0
56 0.9 100 2994 0 0 0 0
57 0.9 100 3047 0 0 0 0
58 1.0 100 3101 0 0 0 0
59 1.0 100 3154 0 0 0 0
60 1.0 200 3208 0 0 0 0
61 1.0 200 3315 106 0 0 0
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62 1.0 200 3422 213 0 0 0
63 1.0 200 3529 320 0 0 0
64 1.1 200 3636 427 0 0 0
65 1.1 200 3743 534 0 0 0
66 1.1 200 3850 641 0 0 0
67 1.1 200 3956 748 0 0 0
68 1.1 200 4063 855 0 0 0
69 1.1 200 4170 962 0 0 0

At t5 70 min, the first interface has reached 4,277 ft, while the second interface is located at

1,069 ft. This means that the initial fluid is located in the range 5,000. z. 4,277. The first fluid is

found in the range 4,277. z. 1,069, while the second appears in the range 1,069. z. 0.

70 1.2 200 4277 1069 0 0 0
71 1.2 200 4384 1176 0 0 0
72 1.2 200 4491 1283 0 0 0
73 1.2 200 4598 1390 0 0 0
74 1.2 200 4705 1497 0 0 0
75 1.2 200 4812 1604 0 0 0

At approximately t5 76 min, the first interface is located at 4,919 ft, while the second is found

at 1,711 ft. Recall that the borehole length is assumed to be 5,000 ft. At t5 77 min, the first inter-

face has been flushed out of the pipe and has flowed into the annulus. This is noted in remarks at

the end of this table (“Fluid "1" enters annulus at: 77 min.”). From the t5 77 line, the second

interface is located at 1,818 ft. Thus, the first fluid is to be found in the the range

5,000. z. 1,818, while the second fluid is located in the range 1,818. z. 0.

76 1.3 200 4919 1711 0 0 0
77 1.3 200 0 1818 0 0 0
78 1.3 200 0 1925 0 0 0
79 1.3 200 0 2031 0 0 0
80 1.3 200 0 2138 0 0 0
81 1.4 200 0 2245 0 0 0
82 1.4 200 0 2352 0 0 0
83 1.4 200 0 2459 0 0 0
84 1.4 200 0 2566 0 0 0
85 1.4 200 0 2673 0 0 0
86 1.4 200 0 2780 0 0 0
87 1.5 200 0 2887 0 0 0
88 1.5 200 0 2994 0 0 0
89 1.5 200 0 3101 0 0 0
90 1.5 200 0 3208 0 0 0
91 1.5 200 0 3315 0 0 0
92 1.5 200 0 3422 0 0 0
93 1.5 200 0 3529 0 0 0
94 1.6 200 0 3636 0 0 0
95 1.6 200 0 3743 0 0 0
96 1.6 200 0 3850 0 0 0
97 1.6 200 0 3956 0 0 0
98 1.6 200 0 4063 0 0 0
99 1.6 200 0 4170 0 0 0

At t5 100 min, the second interface is located at 4,277 ft. This means that the first fluid is found

in the range 5,000. z. 4,277, and the second is in the range 4,277. z. 0.

100 1.7 200 0 4277 0 0 0
101 1.7 200 0 4384 0 0 0
102 1.7 200 0 4491 0 0 0
103 1.7 200 0 4598 0 0 0
104 1.7 200 0 4705 0 0 0
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105 1.8 200 0 4812 0 0 0
106 1.8 200 0 4919 0 0 0
107 1.8 200 0 0 0 0 0
108 1.8 200 0 0 0 0 0
109 1.8 200 0 0 0 0 0
110 1.8 200 0 0 0 0 0
111 1.9 200 0 0 0 0 0
112 1.9 200 0 0 0 0 0
113 1.9 200 0 0 0 0 0
114 1.9 200 0 0 0 0 0
115 1.9 200 0 0 0 0 0
116 1.9 200 0 0 0 0 0
117 2.0 200 0 0 0 0 0
118 2.0 200 0 0 0 0 0
119 2.0 200 0 0 0 0 0
120 2.0 300 0 0 0 0 0
121 2.0 300 0 0 160 0 0
122 2.0 300 0 0 320 0 0
123 2.0 300 0 0 481 0 0
124 2.1 300 0 0 641 0 0
125 2.1 300 0 0 802 0 0
126 2.1 300 0 0 962 0 0
127 2.1 300 0 0 1122 0 0
128 2.1 300 0 0 1283 0 0
129 2.2 300 0 0 1443 0 0

At t5 130 min, the third interface is located at 1,604 ft. This means that the second fluid is

located in the range 5,000. z. 1,604, while the third fluid is found in the range 1,604. z. 0.

130 2.2 300 0 0 1604 0 0
131 2.2 300 0 0 1764 0 0
132 2.2 300 0 0 1925 0 0
133 2.2 300 0 0 2085 0 0
134 2.2 300 0 0 2245 0 0
135 2.2 300 0 0 2406 0 0
136 2.3 300 0 0 2566 0 0
137 2.3 300 0 0 2727 0 0
138 2.3 300 0 0 2887 0 0
139 2.3 300 0 0 3047 0 0
140 2.3 300 0 0 3208 0 0
141 2.3 300 0 0 3368 0 0
142 2.4 300 0 0 3529 0 0
143 2.4 300 0 0 3689 0 0
144 2.4 300 0 0 3850 0 0
145 2.4 300 0 0 4010 0 0
146 2.4 300 0 0 4170 0 0
147 2.5 300 0 0 4331 0 0
148 2.5 300 0 0 4491 0 0
149 2.5 300 0 0 4652 0 0

At t5 150min, the third interface is located at 4,812 ft. Since the pipe length is 5,000 ft, it is about

to be flushed out of the end of the pipe. In the next 30 minutes, approximately, there are no interfaces

in the pipe. The “all 0” printout indicates that the only fluid in the pipe is the third fluid.

150 2.5 300 0 0 4812 0 0
151 2.5 300 0 0 4972 0 0
152 2.5 300 0 0 0 0 0
153 2.5 300 0 0 0 0 0
154 2.6 300 0 0 0 0 0
155 2.6 300 0 0 0 0 0
156 2.6 300 0 0 0 0 0
157 2.6 300 0 0 0 0 0
158 2.6 300 0 0 0 0 0
159 2.7 300 0 0 0 0 0
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160 2.7 300 0 0 0 0 0
161 2.7 300 0 0 0 0 0
162 2.7 300 0 0 0 0 0
163 2.7 300 0 0 0 0 0
164 2.7 300 0 0 0 0 0
165 2.8 300 0 0 0 0 0
166 2.8 300 0 0 0 0 0
167 2.8 300 0 0 0 0 0
168 2.8 300 0 0 0 0 0
169 2.8 300 0 0 0 0 0
170 2.8 300 0 0 0 0 0
171 2.8 300 0 0 0 0 0
172 2.9 300 0 0 0 0 0
173 2.9 300 0 0 0 0 0
174 2.9 300 0 0 0 0 0
175 2.9 300 0 0 0 0 0
176 2.9 300 0 0 0 0 0
177 3.0 300 0 0 0 0 0
178 3.0 300 0 0 0 0 0
179 3.0 300 0 0 0 0 0
180 2.0 400 0 0 0 0 0

Now the fourth interface has entered the pipe. The third fluid is located in the range

5,000. z. 213, while the fourth fluid is found in the range 213. z. 0.

181 3.0 400 0 0 0 213 0
182 3.0 400 0 0 0 427 0
183 3.0 400 0 0 0 641 0
184 3.1 400 0 0 0 855 0
185 3.1 400 0 0 0 1069 0
186 3.1 400 0 0 0 1283 0
187 3.1 400 0 0 0 1497 0
188 3.1 400 0 0 0 1711 0
189 3.2 400 0 0 0 1925 0
190 3.2 400 0 0 0 2138 0
191 3.2 400 0 0 0 2352 0
192 3.2 400 0 0 0 2566 0
193 3.2 400 0 0 0 2780 0
194 3.2 400 0 0 0 2994 0
195 3.2 400 0 0 0 3208 0
196 3.3 400 0 0 0 3422 0
197 3.3 400 0 0 0 3636 0
198 3.3 400 0 0 0 3850 0
199 3.3 400 0 0 0 4063 0
200 3.3 400 0 0 0 4277 0

At t5 201 min, the fourth interface has migrated to 4,491 ft. The third fluid is located in the

range 5,000. z. 4,491, while the fourth fluid occupies almost the entire length of the pipe in

the range 4,491. z. 0. By t5 204 min, the fourth interface will have left the pipe and turned into

the annulus. Then the fourth fluid completely occupies the pipe.

201 3.3 400 0 0 0 4491 0
202 3.4 400 0 0 0 4705 0
203 3.4 400 0 0 0 4919 0
204 3.4 400 0 0 0 0 0
205 3.4 400 0 0 0 0 0
206 3.4 400 0 0 0 0 0
207 3.5 400 0 0 0 0 0
208 3.5 400 0 0 0 0 0
209 3.5 400 0 0 0 0 0
210 3.5 400 0 0 0 0 0
211 3.5 400 0 0 0 0 0
212 3.5 400 0 0 0 0 0
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213 3.5 400 0 0 0 0 0
214 3.6 400 0 0 0 0 0
215 3.6 400 0 0 0 0 0
216 3.6 400 0 0 0 0 0
217 3.6 400 0 0 0 0 0
218 3.6 400 0 0 0 0 0
219 3.7 400 0 0 0 0 0
220 3.7 400 0 0 0 0 0
221 3.7 400 0 0 0 0 0
222 3.7 400 0 0 0 0 0
223 3.7 400 0 0 0 0 0
224 3.7 400 0 0 0 0 0
225 3.8 400 0 0 0 0 0
226 3.8 400 0 0 0 0 0
227 3.8 400 0 0 0 0 0
228 3.8 400 0 0 0 0 0
229 3.8 400 0 0 0 0 0
230 3.8 400 0 0 0 0 0
231 3.8 400 0 0 0 0 0
232 3.9 400 0 0 0 0 0
233 3.9 400 0 0 0 0 0
234 3.9 400 0 0 0 0 0
235 3.9 400 0 0 0 0 0
236 3.9 400 0 0 0 0 0
237 4.0 400 0 0 0 0 0
238 4.0 400 0 0 0 0 0
239 4.0 400 0 0 0 0 0
240 4.0 500 0 0 0 0 0
241 4.0 500 0 0 0 0 267
242 4.0 500 0 0 0 0 534
243 4.1 500 0 0 0 0 802
244 4.1 500 0 0 0 0 1069
245 4.1 500 0 0 0 0 1336
246 4.1 500 0 0 0 0 1604
247 4.1 500 0 0 0 0 1871
248 4.1 500 0 0 0 0 2138
249 4.2 500 0 0 0 0 2406

At t5 250 min, the fifth interface is located at 2,673 ft. This means that the fourth fluid is found

in the range 5,000. z. 2,673, while the fifth fluid is found in the range 2,673. z. 0.

250 4.2 500 0 0 0 0 2673
251 4.2 500 0 0 0 0 2940
252 4.2 500 0 0 0 0 3208
253 4.2 500 0 0 0 0 3475
254 4.2 500 0 0 0 0 3743
255 4.2 500 0 0 0 0 4010
256 4.3 500 0 0 0 0 4277
257 4.3 500 0 0 0 0 4545
258 4.3 500 0 0 0 0 4812

At t5 259min, the fifth interface has left the pipe, and the fifth fluid now completely occupies it,

as indicated by the “all 0” data that follow. Note that while, in Figure 9.7, we have allowed for a total

of 600 minutes of simulation, the printout here terminates at t5 259min because nothing of dynamical

significance occurs beyond this time. (The only fluid in the pipe will be the fifth fluid, and this printout is

eliminated for convenience.) The Fortran simulator used to calculate interfaces permits up to 10,000 min-

utes of rig-time modeling, or approximately one week of continuous pumping with six different fluids.

259 4.3 500 0 0 0 0 0
Borehole total length L, is: 5000 ft.
Fluid "1" enters annulus at: 77 min.
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Fluid "2" enters annulus at: 107 min.
Fluid "3" enters annulus at: 152 min.
Fluid "4" enters annulus at: 204 min.
Fluid "5" enters annulus at: 259 min.

The summary above is printed for convenience and is obtained by interrogating the tabular pipe

data. Now that we have completed the tracking of all five interfaces in the pipe, the software algo-

rithm turns to interface tracking in the annulus. The middle diagram in Figure 9.2 used a “left-

pointing, little z” coordinate system for pipe flow with the origin at the far right, but now, as shown

in the bottom diagram of the figure, we use a “right-pointing, big Z” convention for annular flow

with an origin at the far left.

Also note that the tabular interface headings for pipe flow took the form z(1), z(2), . . ., z(5).
However, for annular flow we reverse the order of the tabulation: Z(5), Z(4), . . ., Z(1), as shown

next. The reason for this is obvious. From the summary just given, the first interface does not enter

the annulus until t5 77 min. Thus, prior to t5 77 min, only the initial fluid exists in the annulus.

For this reason, the annular table that follows contains 0’s everywhere until approximately

t5 78 min. We will continue our discussion at the t5 78 min time entry.

ELAPSED TIME FLOW Annular Fluid Interface (feet)
Minutes Hours GPMs Z(5) Z(4) Z(3) Z(2) Z(1)
0 0.0 100 0 0 0 0 0
1 0.0 100 0 0 0 0 0
2 0.0 100 0 0 0 0 0
3 0.1 100 0 0 0 0 0
4 0.1 100 0 0 0 0 0
5 0.1 100 0 0 0 0 0
6 0.1 100 0 0 0 0 0
7 0.1 100 0 0 0 0 0
8 0.1 100 0 0 0 0 0
9 0.2 100 0 0 0 0 0

10 0.2 100 0 0 0 0 0
11 0.2 100 0 0 0 0 0
12 0.2 100 0 0 0 0 0
13 0.2 100 0 0 0 0 0
14 0.2 100 0 0 0 0 0
15 0.2 100 0 0 0 0 0
16 0.3 100 0 0 0 0 0
17 0.3 100 0 0 0 0 0
18 0.3 100 0 0 0 0 0
19 0.3 100 0 0 0 0 0
20 0.3 100 0 0 0 0 0
21 0.3 100 0 0 0 0 0
22 0.4 100 0 0 0 0 0
23 0.4 100 0 0 0 0 0
24 0.4 100 0 0 0 0 0
25 0.4 100 0 0 0 0 0
26 0.4 100 0 0 0 0 0
27 0.4 100 0 0 0 0 0
28 0.5 100 0 0 0 0 0
29 0.5 100 0 0 0 0 0
30 0.5 100 0 0 0 0 0
31 0.5 100 0 0 0 0 0
32 0.5 100 0 0 0 0 0
33 0.6 100 0 0 0 0 0
34 0.6 100 0 0 0 0 0
35 0.6 100 0 0 0 0 0
36 0.6 100 0 0 0 0 0
37 0.6 100 0 0 0 0 0
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38 0.6 100 0 0 0 0 0
39 0.6 100 0 0 0 0 0
40 0.7 100 0 0 0 0 0
41 0.7 100 0 0 0 0 0
42 0.7 100 0 0 0 0 0
43 0.7 100 0 0 0 0 0
44 0.7 100 0 0 0 0 0
45 0.8 100 0 0 0 0 0
46 0.8 100 0 0 0 0 0
47 0.8 100 0 0 0 0 0
48 0.8 100 0 0 0 0 0
49 0.8 100 0 0 0 0 0
50 0.8 100 0 0 0 0 0
51 0.9 100 0 0 0 0 0
52 0.9 100 0 0 0 0 0
53 0.9 100 0 0 0 0 0
54 0.9 100 0 0 0 0 0
55 0.9 100 0 0 0 0 0
56 0.9 100 0 0 0 0 0
57 0.9 100 0 0 0 0 0
58 1.0 100 0 0 0 0 0
59 1.0 100 0 0 0 0 0
60 1.0 200 0 0 0 0 0
61 1.0 200 0 0 0 0 0
62 1.0 200 0 0 0 0 0
63 1.0 200 0 0 0 0 0
64 1.1 200 0 0 0 0 0
65 1.1 200 0 0 0 0 0
66 1.1 200 0 0 0 0 0
67 1.1 200 0 0 0 0 0
68 1.1 200 0 0 0 0 0
69 1.1 200 0 0 0 0 0
70 1.2 200 0 0 0 0 0
71 1.2 200 0 0 0 0 0
72 1.2 200 0 0 0 0 0
73 1.2 200 0 0 0 0 0
74 1.2 200 0 0 0 0 0
75 1.2 200 0 0 0 0 0
76 1.3 200 0 0 0 0 0
77 1.3 200 0 0 0 0 0

At t5 78 min, we find that the first interface (under the Z(1) heading) is located at Z5 53 ft.

Thus, the first fluid is found in the range 0,Z, 53, while the initial fluid is found in the range

53,Z, 5,000 (again, “5,000” represents the surface).

78 1.3 200 0 0 0 0 53
79 1.3 200 0 0 0 0 106
80 1.3 200 0 0 0 0 160
81 1.4 200 0 0 0 0 213
82 1.4 200 0 0 0 0 267
83 1.4 200 0 0 0 0 320
84 1.4 200 0 0 0 0 374
85 1.4 200 0 0 0 0 427
86 1.4 200 0 0 0 0 481
87 1.5 200 0 0 0 0 534
88 1.5 200 0 0 0 0 588
89 1.5 200 0 0 0 0 641
90 1.5 200 0 0 0 0 695
91 1.5 200 0 0 0 0 748
92 1.5 200 0 0 0 0 802
93 1.5 200 0 0 0 0 855
94 1.6 200 0 0 0 0 909
95 1.6 200 0 0 0 0 962
96 1.6 200 0 0 0 0 1015
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97 1.6 200 0 0 0 0 1069
98 1.6 200 0 0 0 0 1122
99 1.6 200 0 0 0 0 1176

100 1.7 200 0 0 0 0 1229
101 1.7 200 0 0 0 0 1283
102 1.7 200 0 0 0 0 1336
103 1.7 200 0 0 0 0 1390
104 1.7 200 0 0 0 0 1443
105 1.8 200 0 0 0 0 1497
106 1.8 200 0 0 0 0 1550
107 1.8 200 0 0 0 0 1604
108 1.8 200 0 0 0 53 1657
109 1.8 200 0 0 0 106 1711
110 1.8 200 0 0 0 160 1764
111 1.9 200 0 0 0 213 1818
112 1.9 200 0 0 0 267 1871
113 1.9 200 0 0 0 320 1925
114 1.9 200 0 0 0 374 1978
115 1.9 200 0 0 0 427 2031
116 1.9 200 0 0 0 481 2085
117 2.0 200 0 0 0 534 2138
118 2.0 200 0 0 0 588 2192
119 2.0 200 0 0 0 641 2245
120 2.0 300 0 0 0 695 2299
121 2.0 300 0 0 0 775 2379
122 2.0 300 0 0 0 855 2459
123 2.0 300 0 0 0 935 2539
124 2.1 300 0 0 0 1015 2620
125 2.1 300 0 0 0 1096 2700
126 2.1 300 0 0 0 1176 2780
127 2.1 300 0 0 0 1256 2860
128 2.1 300 0 0 0 1336 2940
129 2.2 300 0 0 0 1417 3021
130 2.2 300 0 0 0 1497 3101
131 2.2 300 0 0 0 1577 3181
132 2.2 300 0 0 0 1657 3261
133 2.2 300 0 0 0 1737 3342
134 2.2 300 0 0 0 1818 3422
135 2.2 300 0 0 0 1898 3502
136 2.3 300 0 0 0 1978 3582
137 2.3 300 0 0 0 2058 3662
138 2.3 300 0 0 0 2138 3743
139 2.3 300 0 0 0 2219 3823
140 2.3 300 0 0 0 2299 3903
141 2.3 300 0 0 0 2379 3983
142 2.4 300 0 0 0 2459 4063
143 2.4 300 0 0 0 2539 4144
144 2.4 300 0 0 0 2620 4224
145 2.4 300 0 0 0 2700 4304
146 2.4 300 0 0 0 2780 4384
147 2.5 300 0 0 0 2860 4464
148 2.5 300 0 0 0 2940 4545
149 2.5 300 0 0 0 3021 4625

At t5 150 min, the first interface is approaching the surface, since it is located at 4,705 ft (the

surface location is 5,000 ft). The second, Z(2), interface is found at 3,101 ft. Thus, the initial fluid

is found in the range 4,705,Z, 5,000, while the first fluid is in the range 3,101,Z, 4,705. The

second fluid is located in the range 0,Z, 3,101.

150 2.5 300 0 0 0 3101 4705
151 2.5 300 0 0 0 3181 4785
152 2.5 300 0 0 0 3261 4865
153 2.5 300 0 0 80 3342 4946
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Now the first interface has left the annulus and entered the mud tank at the surface. The second

interface is located at 3,422 ft, while the third interface is found at 160 ft. Thus, the first fluid is

found in the range 3,422,Z, 5,000, while the second is found in the range 160,Z, 3,422. The

third fluid is located in the range 0,Z, 160.

154 2.6 300 0 0 160 3422 0
155 2.6 300 0 0 240 3502 0
156 2.6 300 0 0 320 3582 0
157 2.6 300 0 0 401 3662 0
158 2.6 300 0 0 481 3743 0
159 2.7 300 0 0 561 3823 0
160 2.7 300 0 0 641 3903 0
161 2.7 300 0 0 721 3983 0
162 2.7 300 0 0 802 4063 0
163 2.7 300 0 0 882 4144 0
164 2.7 300 0 0 962 4224 0
165 2.8 300 0 0 1042 4304 0
166 2.8 300 0 0 1122 4384 0
167 2.8 300 0 0 1203 4464 0
168 2.8 300 0 0 1283 4545 0
169 2.8 300 0 0 1363 4625 0

At t5 170 min, the second interface is located at 4,705 ft, while the third is found at 1,443 ft.

Thus, the first fluid is located in the range 4,705,Z, 5,000, while the second is found in the

range 1,443,Z, 4,705. The third fluid is found in the range 0,Z, 1,443. At approximately

t5 173 min, the second interface leaves the annulus and completely disappears from the system.

Then the second fluid is found in the range 1,684,Z, 5,000, while the third is located in the

range 0,Z, 1,684.

170 2.8 300 0 0 1443 4705 0
171 2.8 300 0 0 1523 4785 0
172 2.9 300 0 0 1604 4865 0
173 2.9 300 0 0 1684 4946 0
174 2.9 300 0 0 1764 0 0
175 2.9 300 0 0 1844 0 0
176 2.9 300 0 0 1925 0 0
177 3.0 300 0 0 2005 0 0
178 3.0 300 0 0 2085 0 0
179 3.0 300 0 0 2165 0 0
180 3.0 400 0 0 2245 0 0
181 3.0 400 0 0 2352 0 0
182 3.0 400 0 0 2459 0 0
183 3.0 400 0 0 2566 0 0
184 3.1 400 0 0 2673 0 0
185 3.1 400 0 0 2780 0 0
186 3.1 400 0 0 2887 0 0
187 3.1 400 0 0 2994 0 0
188 3.1 400 0 0 3101 0 0
189 3.2 400 0 0 3208 0 0
190 3.2 400 0 0 3315 0 0
191 3.2 400 0 0 3422 0 0
192 3.2 400 0 0 3529 0 0
193 3.2 400 0 0 3636 0 0
194 3.2 400 0 0 3743 0 0
195 3.2 400 0 0 3850 0 0
196 3.3 400 0 0 3956 0 0
197 3.3 400 0 0 4063 0 0
198 3.3 400 0 0 4170 0 0
199 3.3 400 0 0 4277 0 0
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At t5 200 min, the third interface is located at 4,384 ft. Thus, the second fluid is found in the

range 4,384,Z, 5,000, while the first appears in the range 0,Z, 4,384 (recall that, at

t5 173 min, the second interface has left the annulus). By now, the interpretation process for both

pipe and annulus should be apparent. We turn finally to t5 296 min.

200 3.3 400 0 0 4384 0 0
201 3.3 400 0 0 4491 0 0
202 3.4 400 0 0 4598 0 0
203 3.4 400 0 0 4705 0 0
204 3.4 400 0 0 4812 0 0
205 3.4 400 0 106 4919 0 0
206 3.4 400 0 213 0 0 0
207 3.5 400 0 320 0 0 0
208 3.5 400 0 427 0 0 0
209 3.5 400 0 534 0 0 0
210 3.5 400 0 641 0 0 0
211 3.5 400 0 748 0 0 0
212 3.5 400 0 855 0 0 0
213 3.5 400 0 962 0 0 0
214 3.6 400 0 1069 0 0 0
215 3.6 400 0 1176 0 0 0
216 3.6 400 0 1283 0 0 0
217 3.6 400 0 1390 0 0 0
218 3.6 400 0 1497 0 0 0
219 3.7 400 0 1604 0 0 0
220 3.7 400 0 1711 0 0 0
221 3.7 400 0 1818 0 0 0
222 3.7 400 0 1925 0 0 0
223 3.7 400 0 2031 0 0 0
224 3.7 400 0 2138 0 0 0
225 3.8 400 0 2245 0 0 0
226 3.8 400 0 2352 0 0 0
227 3.8 400 0 2459 0 0 0
228 3.8 400 0 2566 0 0 0
229 3.8 400 0 2673 0 0 0
230 3.8 400 0 2780 0 0 0
231 3.8 400 0 2887 0 0 0
232 3.9 400 0 2994 0 0 0
233 3.9 400 0 3101 0 0 0
234 3.9 400 0 3208 0 0 0
235 3.9 400 0 3315 0 0 0
236 3.9 400 0 3422 0 0 0
237 4.0 400 0 3529 0 0 0
238 4.0 400 0 3636 0 0 0
239 4.0 400 0 3743 0 0 0
240 4.0 500 0 3850 0 0 0
241 4.0 500 0 3983 0 0 0
242 4.0 500 0 4117 0 0 0
243 4.1 500 0 4251 0 0 0
244 4.1 500 0 4384 0 0 0
245 4.1 500 0 4518 0 0 0
246 4.1 500 0 4652 0 0 0
247 4.1 500 0 4785 0 0 0
248 4.1 500 0 4919 0 0 0
249 4.2 500 0 0 0 0 0
250 4.2 500 0 0 0 0 0
251 4.2 500 0 0 0 0 0
252 4.2 500 0 0 0 0 0
253 4.2 500 0 0 0 0 0
254 4.2 500 0 0 0 0 0
255 4.2 500 0 0 0 0 0
256 4.3 500 0 0 0 0 0
257 4.3 500 0 0 0 0 0
258 4.3 500 0 0 0 0 0
259 4.3 500 0 0 0 0 0
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260 4.3 500 133 0 0 0 0
261 4.3 500 267 0 0 0 0
262 4.4 500 401 0 0 0 0
263 4.4 500 534 0 0 0 0
264 4.4 500 668 0 0 0 0
265 4.4 500 802 0 0 0 0
266 4.4 500 935 0 0 0 0
267 4.4 500 1069 0 0 0 0
268 4.5 500 1203 0 0 0 0
269 4.5 500 1336 0 0 0 0
270 4.5 500 1470 0 0 0 0
271 4.5 500 1604 0 0 0 0
272 4.5 500 1737 0 0 0 0
273 4.6 500 1871 0 0 0 0
274 4.6 500 2005 0 0 0 0
275 4.6 500 2138 0 0 0 0
276 4.6 500 2272 0 0 0 0
277 4.6 500 2406 0 0 0 0
278 4.6 500 2539 0 0 0 0
279 4.7 500 2673 0 0 0 0
280 4.7 500 2807 0 0 0 0
281 4.7 500 2940 0 0 0 0
282 4.7 500 3074 0 0 0 0
283 4.7 500 3208 0 0 0 0
284 4.7 500 3342 0 0 0 0
285 4.8 500 3475 0 0 0 0
286 4.8 500 3609 0 0 0 0
287 4.8 500 3743 0 0 0 0
288 4.8 500 3876 0 0 0 0
289 4.8 500 4010 0 0 0 0
290 4.8 500 4144 0 0 0 0
291 4.8 500 4277 0 0 0 0
292 4.9 500 4411 0 0 0 0
293 4.9 500 4545 0 0 0 0
294 4.9 500 4678 0 0 0 0
295 4.9 500 4812 0 0 0 0

At t5 296 min, the Z(5) interface is located at 4,946 ft, very close to the surface, which is

located at 5,000 ft. Thus, the fifth fluid is found in the range 0,Z, 4,946, while the fourth fluid

is found in the range 4,946,Z, 5,000. The computation of pressures in the annulus and in the

pipe follows the general discussions given previously. For documentation purposes, we refer to

both tables and their included explanations as Figure 9.8.

On real interfaces
In the calculations just given, we speak of interfaces as being located at “z5 . . .” or “Z5 . . ..” In

other words, “interfaces are flat.” This description suffices from the macroscopic perspective. If we

require details about the mixing zone between two contiguous fluids, we “zoom in” to perform

boundary layer�type calculations using pressure gradient information obtained as discussed earlier.

Typical mixing zones, shown in Figure 9.9, are clearly not planar in the detailed description.

296      4.9    500    4,946       0       0      0       0

297      4.9    500        0       0       0      0       0

FIGURE 9.8

Pipe and annular interface position table.
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DISCUSSION 9.3

Calculating Annular and Drillpipe Pressure Loss

Discussion 9.2 described our interface tracker, an important modeling tool that determines where

our six fluids are at any instant in time. Once the length of a particular “fluid slug” is available, the

volumetric pump rate Q at that instant is used to determine the pressure gradient applicable to the

non-Newtonian fluid in question. The pressure loss associated with this slug is simply the product

of length and pressure gradient. This idea was illustrated using both drillpipe and annular examples

in the previous discussion.

For the sake of completeness, we now summarize key analytical results available for non-Newtonian

pipe flows and recapitulate our new simulation capabilities for eccentric annular flows. Note that our

pump schedule is transient, with Q’s that vary in time; however, within a defined time interval, the Q in

question is constant. In mathematics, this is known as a “piecewise-constant” specification. This approach

makes it possible to use steady-state models within the framework of transient pumping.

Newtonian pipe flow model
Several exact, closed-form, analytical solutions are available in the literature for different types of

rheologies of flow in circular pipe. We will review these results and offer key formulas without

proof. Figure 9.10 illustrates straight, axisymmetric pipe flow, where the axial velocity, u(r). 0,

FIGURE 9.9

Propagating and diffusing front in time, constructed from movie frames for viscosity history using exaggerated

diffusion.

r

Note, du/dr < 0

u(r) > 0

FIGURE 9.10

Axisymmetric pipe flow.
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depends on the radial coordinate r. 0. With these conventions, the “shear rate,” du/dr, 0, is nega-

tive; that is, u(r) decreases as r increases. Very often, the notation dγ /dt52du/dr. 0 is used. If

the viscous shear stress, τ, and the shear rate are linearly related by

τ52 μ du=dr. 0 (9.1a)

where μ is the viscosity, a constant or temperature-dependent quantity, then two simple relation-

ships can be derived for pipe flow.

Let Δp. 0 be the (positive) pressure drop over a pipe of length L, and R be the inner radius of

the pipe. Then the radial velocity distribution satisfies

uðrÞ5 ½Δp=ð4μLÞ� ðR2 2 r2Þ. 0 (9.1b)

Note that u is constrained by a “no-slip” velocity condition at r5R. If the product of “u(r)” and

the infinitesimal ring area “2πr dr” is integrated over (0, R), we obtain the volumetric flow rate

expressed by

Q5πR4Δp=ð8μLÞ. 0 (9.1c)

which is the well-known Hagen-Poiseuille formula for flow in a pipe.

These solutions do not include unsteadiness or compressibility. The results are exact relation-

ships derived from the Navier-Stokes equations, which govern viscous flows when the stress-strain

relationships take the linear form in Equation 9.1a. We emphasize that the Navier-Stokes equations

apply to Newtonian flows only and not to more general rheological models.

Note that viscous stress (and the wall value τw) can be calculated from Equation 9.1a, but the

following formulas can also be used,

τðrÞ5 r Δp=2L. 0 (9.2a)

τw 5R Δp=2L. 0 (9.2b)

Equations 9.2a and 9.2b apply generally to steady laminar flows in circular pipes and, significantly,

whether the rheology is Newtonian or not. But they do not apply to ducts with other cross sections

or to annular flows, even concentric ones, whatever the fluid.

Bingham plastic pipe flow
Bingham plastics satisfy a slightly modified constitutive relationship, usually in the form

τ5 τ0 2 μ du=dr (9.3a)

where τ0 represents the fluid yield stress. In other words, fluid motion will not initiate until stresses

exceed yield; in a moving fluid, a “plug flow” moving as a solid body is always found below a

“plug radius” defined by

Rp 5 2τ0L=Δp (9.3b)

The “if-then” nature of this model renders it nonlinear, despite the (misleading) linear appearance

in Equation 9.3a. Fortunately, simple solutions are known:

uðrÞ5 ð1=μÞ½fΔp=ð4LÞgðR2 2 r2Þ2 τ0ðR2 rÞ�;Rp # r#R (9.3c)
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uðrÞ5 ð1=μÞ½fΔp=ð4LÞgðR2 2Rp
2Þ2 τ0ðR2RpÞ�; 0# r#Rp (9.3d)

Q=ðπR3Þ5 ½τw=ð4μÞ�½12 4=3ðτ0=τwÞ1 1=3ðτ0=τwÞ4� (9.3e)

Power law fluids in pipe flow
Power law fluids without yield stress satisfy Equation 9.4a and the rate solutions in Equations 9.4b

and 9.4c.

τ5Kð2du=drÞn (9.4a)

uðrÞ5 ðΔp=2KLÞ1=n½n=ðn1 1Þ�ðRðn1 1Þ=n 2 rðn1 1Þ=nÞ (9.4b)

Q=ðπR3Þ5 ½RΔp=ð2KLÞ�1=nn=ð3n1 1Þ (9.4c)

Herschel-Bulkley pipe flow model
The Herschel-Bulkley pipe flow model combines Power law with yield stress characteristics, with

the result that

τ5 τ0 1Kð2du=drÞn (9.5a)

uðrÞ5K21=nðΔp=2LÞ21fn=ðn1 1Þg
3 ½ðRΔp=2L2 τ0Þðn1 1Þ=n 2 ðrΔp=2L2 τ0Þðn1 1Þ=n�;Rp # r#R

(9.5b)

uðrÞ5K21=nðΔp=2LÞ21fn=ðn1 lÞg
3 ½ðRΔp=2L2 τ0Þðn1 1Þ=n 2 ðRpΔp=2L2 τ0Þðn1 1Þ=n�; 0# r#Rp

(9.5c)

Q=ðπR3Þ5K21=nðRΔp=2LÞ23ðRΔp=2L2 τ0Þðn1 1Þ=n

3 ½ðRΔp=2L2 τ0Þ2n=ð3n1 1Þ1 2τ0ðRΔp=2L2 τ0Þn=ð2n1 1Þ1 τ20n=ðn1 1Þ� (9.5d)

where the plug radius Rp is again defined by Equation 9.3b.

Ellis fluids in pipe flow
Ellis fluids satisfy a more complicated constitutive relationship, with the following known results:

τ52du=dr=ðA1Bτα21Þ (9.6a)

uðrÞ5A ΔpðR2 2 r2Þ=ð4LÞ1BðΔp=2LÞαðRα1 1 2 rα1 1Þ=ðα1 1Þ (9.6b)
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Q=ðπR3Þ5Aτw=41Bτwα=ðα1 3Þ
5AðRΔp=2LÞ=41BðRΔp=2LÞα=ðα1 3Þ (9.6c)

Dozens of additional rheological models appear in the literature, but the most common ones used

in petroleum engineering are those given here. Typical qualitative features of the associated veloc-

ity profiles are shown in Figure 9.11.

Annular flow solutions
We next discuss annular flow solutions. As noted earlier in this book, annular flow solutions that

are useful in petroleum engineering are lacking. The only known exact, closed-form, analytical

solution is a classic one describing Newtonian flow in a concentric annulus. Let R be the outer

radius and κR be the inner radius, so that 0, κ, 1. Then it can be shown that

uðrÞ5 ½R2Δp=ð4μLÞ�
3 ½12 ðr=RÞ2 1 ð12 κ2Þ loge ðr=RÞ=logeð1=κÞ�

(9.7a)

Q5 ½πR4Δp=ð8μLÞ�½12 κ4 2 ð12 κ2Þ2=logeð1=κÞ� (9.7b)

Newtonian, parabolic profile

Power law, n = 0.5

Power law, n >> 1

Bingham plastic, plug zone

FIGURE 9.11

Typical non-Newtonian velocity profiles.
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For non-Newtonian flows, even for concentric geometries, numerical procedures are required (see

Fredrickson and Bird (1958); Bird, Stewart, and Lightfoot (1960); or Skelland (1967)).

Analytically based treatments for eccentric annuli formed from circles are available through

bipolar coordinate formulations. These are ultimately numerical in nature and require significant

amounts of algebra in their development. Because the methods are limited to circles and not gener-

alizable to practical geometries with cuttings beds, washouts, and other borehole anomalies, they

are not discussed here.

The mappings we have developed, we emphasize, can and have been extended to three-dimen-

sional applications that allow changes of cross-sectional geometry along the borehole. Moreover, the

effects of multiphase flow with diffusive mixing have been incorporated in the author’s models. Recent

publications describing these specialized efforts appear in Savery, Darby, and Chin (2007);

Deawwanich, Liew, Nguyen, Savery, Tonmukayakul, and Chin (2008); Nguyen, Deawwanich,

Tonmukayakul, Savery, and Chin (2008); Savery, Chin, and Babu Yerubandi (2008); and Savery,

Tonmukayakul, Chin, Deawwanich, Liew, and Nguyen (2008).

We note that the algorithms developed in this book are faster and more stable than the models

just referenced, particularly in handling spatial derivatives of apparent viscosity and the coupling of

rotating flows to axial effects. We next review the eccentric annular flow capabilities with respect

to their use in total pressure drop in Discussion 9.2.

Review of steady eccentric flow models
As noted, models do not presently exist for non-Newtonian yield stress fluids in arbitrary eccentric

annuli, for either steady or transient flow, with or without pipe rotation, except for those developed in

this book. Only software models that are fast and numerically stable are discussed and offered for gen-

eral dissemination. We take this opportunity to summarize these methods now because Discussion 9.2

importantly described the roles played by our steady-state “building block” modules. From that dis-

cussion, we noted how the pressure profile in the drillpipe and borehole system (as a function of time)

requires computations that look something like “(100280) (@P/@z)pipe,01 (80275)(@P/@z)pipe,11
(75265) (@P/@z)pipe,21 (65250) (@P/@z)pipe,31 (50230) (@P/@z)pipe,41 (3020) (@P/@z)pipe,51
Δ1 (10020) (@P/@z)annulus,0,” where pipe flow equations were succinctly given previously and the

annular pressure drops require our sophisticated computational modeling tools.

First, we emphasize the importance of our steady flow simulator, whose user interface is shown in

Figure 9.12. This computes all flow properties for eccentric nonrotating annular flows (allowing wash-

outs, cuttings beds, and other geometric anomalies), assuming general Herschel-Bulkley fluids, impor-

tantly, in the “volumetric flow rate specified” mode in which the required pressure gradients are

automatically calculated without user intervention. Here the size and shape of all plug zones are calcu-

lated naturally using an extended Herschel-Bulkley model. The model includes borehole radius of cur-

vature effects, should Figure 9.2 incorporate turns from vertical to horizontal.

Our steady two-dimensional simulator also includes analytical solutions for concentric annuli, as

shown in Figure 9.13. These are “Newtonian, nonrotating, axial pipe motion”; “Herschel-Bulkley, no

rotation or pipe movement”; and “Power law, rotating, no axial pipe movement.” For eccentric flows,

when detailed spatial plots for physical properties are not required, the fast mode shown in Figure 9.14

gives numerous pressure gradient results in one or two minutes of computing time. Our steady 2D

eccentric solver assumes zero pipe rotation.
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As noted elsewhere, the computation of steady flows with pipe rotation within the framework of a

purely steady formulation is an unstable numerical process at the present time. This is not to say that

steady flows with rotation cannot be computed. They can, as indicated in Figure 9.15, provided we treat

the unsteady problem and carry out our computations for large times until steady conditions are

reached. This often requires one minute or less for fluids with low specific gravity and sometimes as

many as three minutes for heavy-weight muds or cements. Figure 9.15 shows how steady-state pressure

gradients can be obtained for given flow rates. Once the target flow rate is given, the search for the

required pressure gradient may take several intelligent guesses. We have summarized all of the methods

we have devised to obtain pressure gradients when target flow rates are specified.

FIGURE 9.13

MPD Flow Simulator, Steady 2D utilities.

FIGURE 9.12

MPD Flow Simulator, Steady 2D.
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DISCUSSION 9.4

Herschel-Bulkley Pipe Flow Analysis

As noted, the calculation of pressure at the drillbit (in the formation) and of pressure along the

borehole is completely determined by the distribution of pressure gradient in the hole and the value

of pressure at the surface choke. If, however, the pressure needed at the mud pump to support the

flow is required, also needed are the pressure loss through the drillbit and the pressure drop in the

drillpipe. For nonrotating pipe flow, exact, closed-form circular pipe flow solutions for radial

velocity distribution and total volumetric flow rate are available for Herschel-Bulkley fluids from

Equations 9.5a through 9.5d. Thus, the same properties for the subsets including Newtonian, Power

law, and Bingham plastic fluids are also available.

The general mathematical solution has been incorporated into two software programs for conve-

nience. The first, shown in Figure 9.16(a), solves Equation 9.5d for pressure gradient when the flow

rate is given. Note that this represents a nonlinear algebraic equation for the unknown. The example

given here applies to a 10-cp Newtonian fluid. For the parameters shown, the required pressure gradi-

ent is about 20.001 psi/ft. In Figure 9.16(b), we introduce yield stress to this fluid, so that it now acts

as a Bingham plastic. We expect that the pressure gradient should steepen because there is greater

difficulty in moving the fluid. In fact, the pressure gradient is now about 20.015 psi/ft. Finally, in

Figure 9.16(c) we change the fluid exponent from 1.0 to 0.8, so that the fluid is now of a Herschel-

Bulkley type. In this case, the pressure gradient is obtained as 20.014 psi/ft. It is interesting how the

presence of yield stress introduces large changes to pressure gradient over Newtonian flows.

FIGURE 9.14

Rapid calculation of multiple flow solutions.
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In Figure 9.17(a), we demonstrate our second use of Equations 9.5a through 9.5d—namely,

computing total flow rate and radial velocity distribution for any Herschel-Bulkley fluid. Here a

Newtonian fluid is assumed, and the classic paraboloidal velocity profile is obtained. In Figure 9.17(b),

we illustrate this capability with a Herschel-Bulkley fluid. The graph clearly indicates the presence

of a plug zone. The plug radius is also given in the output.

DISCUSSION 9.5

Transient, Three-Dimensional Eccentric Multiphase Flow Analysis for Nonrotating Newtonian Fluids

Here we introduce multiphase flow computations for a special limit of the general problem,

one assuming Newtonian mixtures in concentric or eccentric annuli (with possible cross-sectional

FIGURE 9.15

“Transient 2D” solver.
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FIGURE 9.16

(a) Newtonian fluid, flow rate given. (b) Bingham plastic, flow rate given. (c) Herschel-Bulkley fluid, flow rate

given.
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FIGURE 9.17

(a) Newtonian fluid, pressure gradient given. (b) Herschel-Bulkley fluid, pressure gradient fluid given.
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changes in the axial direction)—however, without pipe or casing rotation. Later, we will remove our

Newtonian, nonrotating flow restrictions and consider general non-Newtonian fluids in eccentric

annuli with steady pipe rotation. Software for the present limit was developed because the solution

process could be automated and Newtonian applications do exist. But our purposes are twofold: first

to illustrate basic flow concepts and second to demonstrate that our formulation, solution, and soft-

ware foundation for subsequent development are sound and correct.

DISCUSSION 9.5, EXAMPLE 9.1

We first show that our exact, steady concentric Newtonian flow solution and the transient numerical model under
consideration are consistent in the concentric single-phase flow limit. This is intended to validate the software
architecture, which is complicated and forms the basis for other models. The simulator for our exact solution is
launched from the earlier “Steady 2D” menu in Figure 9.18, leading to the applications program in Figure 9.19.
Note how the assumed parameters yield a flow rate of 947.1 gpm.

FIGURE 9.18

General “Steady 2D” menu.

FIGURE 9.19

Exact two-dimensional Newtonian flow solution.
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Next we launch the “Transient 3D, Multiphase, Newtonian, Non-Rotating” flow simulator in Figure 9.20. For
multiphase problems, it is not meaningful to specify pressure gradients as in single-phase calculations; these
gradients vary with space and time as local fluids mix, and it is impossible to state clearly what they are. One is
therefore forced to specify total flow rate, at least approximately, and this specification must be used when
dealing with multiphase applications. Our simulator operates in a “Specify flow rate” mode.

To be completely consistent with Figure 9.19, we assume a 1-cp viscosity for both “left” and “right” fluids,
zero pipe speed, and identical geometries. We also assume identical small specific gravities; low mechanical
inertias allow larger time steps and reduce integration times needed for convergence. Internal to the software,
C50 means left properties, (i.e., μleft and ρleft), while C51 means right; since left and right properties are
identical, the choice Cleft5Cright51 ensures that C51 continuously throughout and the fluid is homogeneous.

Note that, in Figure 9.20, we have entered 947.1 as the target flow rate. Once numerical integrations begin,
the imposed motion must overcome “nonuniformities” associated with the uniform (unsheared) flow used to
initialize the calculation and, of course, the effects of inertia. After some time, the calculations converge. For
example, Figure 9.21 gives a flow rate of 949.1 gpm for an error of 0.2 percent. For the 10,000 time steps
shown, the computing time is about five minutes for this three-dimensional run. We have used the transient,
three-dimensional, two-phase flow solver to reproduce an exact, steady, two-dimensional, single-phase flow
result. In general, single-phase flows can be calculated this way, although this is obviously suboptimal. However,
the example was designed to show that the numerical model is basically correct.

Transient Flow Subtleties
Again we remind the reader of certain difficulties encountered in transient flow modeling. In steady flow
analysis, whether concentric or eccentric, computations for flow rate (when pressure gradients are given) are very
rapid and vice versa. For linear Newtonian flows, these are especially fast. If (@P/@z)1 corresponding to Q1 is

FIGURE 9.20

Consistent transient simulation parameters.
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known from just one eccentric or concentric calculation or experiment, then the identity (@P/@z)2/Q25 (@P/@z)1/
Q1 allows us to immediately obtain (@P/@z)2 when Q2 is given or Q2 when (@P/@z)2 is given. For non-Newtonian
flows, the nonlinearity of the pressure gradient and flow rate relationship disallows this simple rescaling.
However, the “Specify volumetric flow rate” option in Figure 9.18 does use a rapidly convergent half-step
method to guess the pressure gradient corresponding to a target flow rate to within 1 percent accuracy.

In transient calculations, one can in principle specify total volumetric flow rate at each instant in time. However,
to achieve the required solution, numerous attempts using different pressure gradients will have to be made at each
time step. When this is repeated for the entire range of time integration, the computations needed are voluminous
and require hours or overnight runs. This is particularly unacceptable if, perhaps during the calculations,
instabilities are encountered; then all of the numerical effort expended will be wasted. Thus, we ask if there is an
acceptable compromise: “Is there an approximate pressure gradient we can use in a constant flow rate process?”

For Newtonian nonrotating flows, the answer is yes. We recall from our theoretical discussion of steady single-
phase flow that volumetric flow rate is directly proportional to the pressure gradient @P/@z and inversely related to the
viscosity μ. If “1” and “2” now denote two positions along the three-dimensional channel (at a fixed instant in time)
without area changes, then constancy of flow rate implies that (@P/@z)1/μ15 (@P/@z)2/μ2. Suppose that the volumetric
flow rate at the (left) inlet and the starting viscosity are specified. Then the pressure gradient required for the
eccentric Newtonian flow can be obtained from the “Steady 2D” solver in Figure 9.18. As the fluid at the inlet flows
downstream, it mixes with the “right” fluid and local concentrations will change. The underlying viscosity will
consequently change, in a manner consistent with an assumed mixing relationship (taken again as the Todd-Longstaff

FIGURE 9.21

Example 1, smoothly convergent flow rate history.
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law). If the local viscosity is now μ2, then the corresponding pressure gradient is (@P/@z)25 (@P/@z)1 μ2/μ1, showing
correctly, for instance, that an increase in viscosity will require an increase in pressure gradient.

This procedure has been programmed into the solver of Figure 9.20; there is no need to operate the simulator in
Figure 9.18 because the procedure has been completely automated. Again, starting pressure gradients are obtained
from inlet conditions and local values are obtained by concentration-dependent rescaling. This automation is only
convenient for Newtonian mixtures where there is no pipe rotation. The “(@P/@z)1/μ15 (@P/@z)2/μ2” law does not
apply to eccentric problems with rotation, although it remains valid for concentric rotating flow because axial and
azimuthal modes decouple. For more complicated problems, a more complete approach applies, with different
degrees of complexity, depending on the nature of the underlying flow. The general problem will be considered in
a separate discussion.

DISCUSSION 9.5, EXAMPLES 9.2 AND 9.3

For our second calculation, we repeat the above simulation except that we double the inlet-outlet viscosity and
density ratios, as shown in Figure 9.22. Note that, in order to track two different phases, the concentrations at
the inlet and outlet are set to 0 and 1, respectively. The calculation yields almost identical flow rates and flow
rate history curves. Why? This occurs because, in Newtonian mixtures, the ratio of density to viscosity controls
the dynamics and not either parameter alone; there is, however, an effect associated with the ratio of density to
diffusion coefficient, which need not always be small. Thus, the effects of the doubling almost cancel. In our
third simulation, we set our inlet-outlet viscosity and density ratios to 5 and 2, respectively. Figure 9.23 shows
that the volumetric flow rate history changes somewhat, with the predominant effect being the time required to
reach equilibrium.

A detailed description of the simulator appears in Discussion 9.6. The reader should study it, since many of
its software features are shared by the more general solver introduced in Discussion 9.7, which deals with real
two-phase flows in which the mixing of non-Newtonian fluids, in the presence of rotation, is addressed. Mixing is
controlled by numerous factors: convection, diffusion, annular geometry, rheology, flow rate, and initial

FIGURE 9.22

Example 2 calculation.
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conditions. This complexity means that general conclusions are difficult to formulate and that each flow solution
must be interpreted on a case-by-case basis. Predictions should be substantiated by laboratory experiment and
field data whenever possible.

DISCUSSION 9.6

Transient, Three-Dimensional Eccentric Multiphase Analysis for Nonrotating Newtonian Fluids:

Simulator Description

Here we describe in detail the operation of our “Transient 3D, Multiphase, Newtonian, Non-Rotating”

flow simulator in Figure 9.24. Again, this stand-alone module was developed because the model

could be rigorously formulated and fully automated; it is also, of course, useful as a planning tool in

itself. We emphasize that the module applies to highly eccentric annuli and allows limited cross-sec-

tional geometric modification along the borehole axis. Many of the user features described here are

also incorporated in our more general multiphase solver for non-Newtonian rotating flow.

The upper left text boxes of Figure 9.24 host the annulus definition function common to all of our

simulators, with “Create Grid” displaying the curvilinear grid chosen to host the eccentric annulus at

run time; this feature provides needed error checking to ensure that circles do not cross over. Clicking

“Create Grid,” in this case, leads to Figure 9.25. The “Conventions” button provides explanations

on azimuthal grid numbering conventions needed to select cross-section plots for run-time interactive

displays and movies.

Our annular fluid flows from left to right, with the inlet at the left and the outlet at the right.

Fluid properties are inputted in the lower left menu. We have selected default run inputs that will

FIGURE 9.23

Example 3 calculation.
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provide a good “fast start” user experience: Simply uncheck the “Interactive Display” box, click

“Simulate,” and allow the simulation to run to completion (this process requires less than one min-

ute); finally, click “Movie.” A movie showing computed results (e.g., see Figure 9.35 later) auto-

matically launches, showing the evolution of the convection and mixing process. The inputs in

Figure 9.24 show a heavier, more viscous fluid as the displacing fluid.

FIGURE 9.24

Basic user interface with default parameters.

FIGURE 9.25

Curvilinear grid used in present example.
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The diffusion coefficient used is unusually large, only to provide viewable results (such as those

in Figure 9.35) because the graphical displays used at the present time are capable of providing 12

colors only (see this book’s companion website for color figures). For actual use, diffusion coeffi-

cients available in the environmental or chemical engineering literature should be entered, or those

obtained in laboratory studies. Detailed numbers are output for plotting using commercial software,

and the manner in which these are accessed is described later.

Once the annular geometry and run-time inputs are entered, clicking “Simulate” leads to the

status box shown in Figure 9.26, indicating that the main curvilinear grid for the eccentric annulus

just input has been computed. Clicking “Yes” prompts the simulator to solve (using the grid just

created) a steady, two-dimensional “Specify volumetric flow rate” problem for the inlet conditions

and target low rate prescribed, a process that requires up to two to three seconds. When this is

completed, the status box in Figure 9.27 appears. Clicking “Yes” leads to the query in

Figure 9.28.

If this query is answered affirmatively, the submenu and message box in Figure 9.29 appears.

This allows the user to redefine a portion of the main annulus, whose axial index “i” for the spatial

coordinate zi varies from 1 to 90. For the example shown, the main grid parameters repeated in

FIGURE 9.26

Curvilinear grid for main eccentric annulus created.

FIGURE 9.27

Starting pressure gradient computed using “Steady 2D” solver.

FIGURE 9.28

Option to alter annulus for limited axial extent.
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Figure 9.28 are altered so that they are replaced by the concentric annulus in Figure 9.30. Clicking

“Apply” leads to the display in Figure 9.31. For the present example, we repeat our steps but do

not alter the main annulus; while the numerical engine is presently set up to correctly calculate the

effects of this change, the graphical displays are still being developed at this time. (The annulus

modification feature is usable except for this graphical limitation.)

We next explain the gridding system used. Axial zi grid control is provided for in the central

portion of the menu in Figure 9.24 (cross-sectional grid densities are hardcoded as suggested in

Figures 9.25 and 9.31). The main grid is indexed from i5 1 at the inlet to i5 90 at the outlet, again

with the flow moving from the left inlet to the right outlet. Initially, two fluids are permitted: the

left with a concentration C5 0 and the right with C5 1. The initial (flat) interface is assumed at

i5 iface entered by the user. The finest z mesh length, or “Minimum DZ grid,” is centered at this

initial interface location and is defined by the user. The mesh amplification rate, or “DZ growth

rate,” is a number that equals or exceeds 1. A geometrically varying mesh is generated internally

and used together with our curvilinear cross-sectional grid to provide three-dimensional simulation

capabilities. If we had chosen to modify the main annular geometry, the cross-sectional metrics

would have been automatically changed internally.

FIGURE 9.29

Perturbation annulus definition.

FIGURE 9.30

Concentric annulus defined, 45, I, 55.
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While the gridding and display options presented here are somewhat awkward, we note that

users with more computing resources have extended the algorithm and developed their own grid-

ding and display capabilities. In one case, a fully three-dimensional grid was created that varied

continuously in the z direction and could be updated in real time with borehole caliper measure-

ments. Users interested in such capabilities should discuss their needs with the developers. Also

note that, while we have discussed the initial condition for two phases, it is also straightforward to

perform single-phase flow studies, if there is an interest in modeling single-phase flow in an annu-

lus with internal cross-sectional changes as noted above.

In this case, the left and right concentrations can be set entirely to 0 or to 1, and solutions to the

concentration equations will be entirely 0 or 1 (thus suppressing any internal variations to fluid

properties). The time step shown in Figure 9.24 is large. Generally speaking, it needs to be much

smaller to provide the needed physical resolution. These steps are constant during the simulation.

The total time simulated is simply the product of “time step” and “number of steps.”

Having made preliminary comments, we continue the simulation process. The final status box

in Figure 9.32 appears. If interactive displays are desired, “Interactive Display” should be checked.

Because our fully three-dimensional simulators at the present time do not allow true three-dimen-

sional color displays, we offer the limited options available in the option box. First, we can display

fluid properties in any single azimuthal “m5 constant” plane (click “Conventions” for definitions).

Second, we can give cross-sectional plots at any single “i5 constant” location. Users with special

requirements can contact the developers for source code access or other support. If the interactive

FIGURE 9.32

Simulation to commence.

FIGURE 9.31

Concentric annulus redefinition.
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display box is not checked, a simple status box showing time and “percent complete” appears on

screen.

Upon run termination, all results are written to text output files and movie displays for the time

evolution of axial velocity, and concentration-dependent viscosity and fluid density are available. If

interactive displays are required at periodic user-defined intervals, multiple screens appear, the first

being that shown in Figure 9.33. All three diagrams have flow moving downward. The left dia-

gram, here for “m5 19,” gives the axial velocity. Blue represents low (zero) speeds at the pipe and

annular surfaces, while the uniform red display indicates a high uniform velocity in the annular

space. The middle and right diagrams show displacement of one fluid by a second, starting near

“i5 10.” These are accompanied by velocity plots in Figure 9.34. Closing these windows allows

the simulation to continue.

FIGURE 9.33

Axial velocity, viscosity, and density at m5 19.

FIGURE 9.34

Velocity graph with cross-section plot in background.
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Plots like those in Figure 9.33 are automatically generated internally (whether or not interactive dis-

plays are selected) and are assembled to create movies available for user access by clicking “Movie.”

Example frames are shown in Figure 9.35. The complete output menu is shown in Figure 9.36. The

buttons labeled “Axial Velocity,” “Azimuthal Velocity,” “Concentration,” “Viscosity,” “Density,” and

“Reynolds Number” provide spreadsheet-style numerical output for the respective quantities.

(Azimuthal velocities are identically zero for the present Newtonian flow simulator, but generally need

not be.) Figure 9.37 shows numerical output in the case of concentrations, for azimuthal location

m5 19, where the axial index “i” varies from 1 to 90 and the radial-like index varies from 1 at the

pipe surface to 11 at the annular wall.

DISCUSSION 9.7

Transient, Three-Dimensional Eccentric Multiphase Analysis for General Rotating

Non-Newtonian Fluids: Simulator Description

Here we give a brief qualitative description of the transient, three-dimensional, multiphase flow model

considered in this book. Again, general rheologies are permitted, together with highly eccentric borehole

annular cross sections. Figure 9.38 illustrates the rotating flow problem considered here, but for simplic-

ity displays only two contiguous non-Newtonian fluids. At the top, we have an initial condition in

which a flat fluid interface is located arbitrarily in the flow domain. The situation shown at the bottom

is a diffused interface, not necessarily planar or uniform in thickness, encountered at a later instant in

time. Our objective, of course, is to model the dynamics of this problem.

The remainder of this chapter demonstrates how transient, three-dimensional, multiphase flow

fields can be obtained computationally. Figures 9.39(a) and 9.39(b) illustrate, for instance, “movies”

(with time increasing downward) in which a purely eccentric annulus that does not vary axially is con-

sidered, followed by a mixed geometry having concentric and eccentric sections. These movies can be

accessed from the “Start” menu for the “Transient 3D multiphase” solver shown in Figure 1.33.

Note that the plots in Figures 9.39(a) and 9.39(b) were created using Tecplot 360t software

(see www.tecplot.com).

DISCUSSION 9.8

Transient, Three-Dimensional Eccentric Multiphase Analysis for General Rotating Non-Newtonian Fluids with

Axial Pipe Movement: Validation Runs for Completely Stationary Pipe

Here we will start with simple examples and graduate to more complicated ones, demonstrating

first that the three-dimensional algorithm is correct.
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FIGURE 9.35

Movie frames at different times showing mixing.

357Discussion 9.8



FIGURE 9.36

Output menu.

FIGURE 9.37

Tabulated numerical output (for concentration shown).
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FIGURE 9.38

Mathematical problem formulation.

(a) (b)

FIGURE 9.39

(a) Purely eccentric annulus. (b) Mixed concentric-eccentric flow.
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Validation 1: Concentric single-phase Newtonian flow
In this example, we wish to demonstrate that our transient, three-dimensional simulator is correct in

a limit where an exact solution is available. In particular, we refer to the concentric Newtonian

flow solver in Figure 9.43 that follows. For the parameters shown, the exact volumetric flow rate

given in the bottom shaded box is 947.1 gpm. We ask, “Can we solve a transient, three-dimensional

problem for a long annulus with the same cross section and obtain a 947.1 gpm flow rate in the

steady asymptotic limit?”

To answer this question, we select the simulation option indicated in Figure 9.40. This launches

two screens: the main module in Figure 9.41 and the pump schedule and fluid properties menu in

Figure 9.42. In Figure 9.42, we have populated both inlet and outlet boxes with Newtonian fluid

FIGURE 9.40

General “Transient 3D Multiphase” menu.

FIGURE 9.41

Main simulation menu.
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parameters consistent with Figure 9.43 and assumed a pressure gradient of 20.0001 psi/ft every-

where. A low value of specific gravity is used to minimize mechanical inertia, so that convergence

to steady state can be accelerated (larger values will yield the same answers, but they require

greater computing). It is important to click “Save” next.

In the simulator of Figure 9.41, we have entered the foregoing concentric geometry and assumed

suitable computational parameters, noting in particular a somewhat large time step size of 0.5 sec.

Clicking “Simulate” leads to a picture of the assumed annulus and grid shown in Figure 9.44,

FIGURE 9.43

Exact concentric Newtonian solution.

FIGURE 9.42

Pump schedule and fluid properties definition.
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provided for error checking, and the setup menus in Figure 9.45. Intermediate results (as requested in

Figure 9.41) are displayed in Figure 9.46. Similar results appear at periodic intervals in simulations,

and we will not duplicate them.

On completion of the simulation, the volumetric flow rate versus time history is given as shown

in Figure 9.47, and a final value of 927.6 gpm is calculated. This is to be compared with the

exact value of 947.1 gpm, and it is seen that the two simulators are consistent to within an

acceptable 2 percent error. Of course, solving a steady, two-dimensional problem with an unsteady,

three-dimensional solver is not an efficient use of computing resources. Our only purpose here is in

validating the three-dimensional code logic, which, as we have explained, involves a great deal of

FIGURE 9.45

Setup menu status.

FIGURE 9.44

Geometry displayed for error checking.
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FIGURE 9.46

Intermediate axial velocity displays requested by user, cross-section color plot, and line plot at given

azimuthal station.

FIGURE 9.47

Volumetric flow rate history at end of simulation.

363Discussion 9.8



subtlety. The ultimate purpose is adaptation of the software platform to handle problems that are

truly transient and three-dimensional—namely, those that involve convection and diffusive mixing.

Validation 2: Concentric two-phase Newtonian flow
In this example, we extend our discussion of Validation 1 and ask how the previous setup can be

modified to handle the displacement of a thin fluid by a thicker one. For illustrative purposes, let

us assume that the displaced (right) fluid is identical to the one treated in the earlier example, while

the displacing fluid is ten times more viscous. While we can certainly use the calculator in

Figure 9.43, we need not do so. For Newtonian fluids, which satisfy linear pressure gradient and

flow rate relationships, we need to simply enter the increased inlet viscosity and pressure gradient

as indicated in Figure 9.48.

The corresponding simulation menu is shown in Figure 9.49. Use of the 0.5-sec time step in

Validation 1 will lead to computational instabilities. Thus, a smaller 0.05 sec is taken for this exam-

ple; nonetheless, total computing time is just seconds. In Figure 9.50, it is significant that the specifi-

cation of discontinuous pressure gradients within the field of flow (where the interface is moving)

leads to stable computations and to the identical 927.6 gpm obtained earlier. However, the interme-

diate results are of greater interest. Figures 9.51(a) and 9.51(b) show results at time steps 150 and

300, respectively, while in Figure 9.51(c) we reran the simulation to 2,000 time steps (requiring

about one minute of computing). These plots show the velocity and viscosity mixing thickness.

FIGURE 9.48

Viscosity and pressure gradient increased tenfold.
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Validation 3: Concentric single-phase Herschel-Bulkley flow
Here we repeat the example of Validation 1, except that instead of a Newtonian fluid we consider a

Herschel-Bulkley fluid with nonvanishing yield stress. Checking the “Herschel-Bulkley” box in the

“Pump Schedule” menu automatically launches our exact solver for concentric, nonrotating,

Herschel-Bulkley flow. In fact, we run this solver with the inputs and results shown in Figure 9.52,

noting in particular the 471.9 gpm computed for this problem. The corresponding transient, three-

dimensional calculation is performed in Figure 9.53, in which a steady flow rate of about 487 gpm

is shown, for a modest 3 percent error.

Again, we have obtained an exact solution using our three-dimensional computational logic and

demonstrated its correctness. We do emphasize that in all of our yield stress work, our “extended

Herschel-Bulkley” model is not the same as the “conventional Herschel-Bulkley” offered in the lit-

erature, since a smooth (but rapid) transition from sheared to plug flows is allowed. Thus, agree-

ment will not always be found and discrepancies can be significant for “small n” flows. This, we

emphasize, is to be expected.

FIGURE 9.49

Simulation menu, with reduced time step. Note displays selected at azimuthal station m5 19 and axial

location i5 10.
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Validation 4: Concentric two-phase Herschel-Bulkley flow
Here we repeat Validation 2 except that extended Herschel-Bulkley flow is considered. In fact, we

will displace water with the Herschel-Bulkley fluid analyzed previously. In Figures 9.54(a) and

9.54(b), we run our exact, two-dimensional, concentric model for Newtonian flow in the annulus

shown to give a flow rate of 471.5 gpm. As evident from the line plot, the transient, three-dimen-

sional solver leads to the same flow rate as required (actually, it is 462 gpm, for an error of less

than 2 percent).

In Figure 9.55, we have set up the problem so that our thick Herschel-Bulkley fluid is

displacing water at the 472-gpm flow rate. (An actual rate of 486 gpm is successfully obtained,

for an error of less than 3 percent, again noting that our extended Herschel-Bulkley model is

not the conventional one.) Of interest is the mixing result obtained at the end of the calculations,

shown in Figure 9.56. Computation times in both three-dimensional runs are less than one

minute.

FIGURE 9.50

Volumetric flow rate history.
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FIGURE 9.51

(a) Result at 150 time steps. (b) Result at 300 time steps. (c) Result at 2,000 time steps (requiring one minute).
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FIGURE 9.53

Transient, three-dimensional flow.

FIGURE 9.52

Exact, steady, two-dimensional Herschel-Bulkley solution.
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Validation 5: Eccentric single-phase and multiphase non-Newtonian flow
Here we consider the challenging problem dealing with transient displacement and convective-

diffusive mixing of Herschel-Bulkley fluids in highly eccentric three-dimensional annuli. We also

address some subtleties of the formulations employed in this book and deal with practical simula-

tion ideas. These discussions are given to promote well-considered, and not blind, use of our simu-

lation models. We will discuss the issues as they arise in the simulations.

First we examine the eccentric annulus defined in Figure 9.57. Here the “Steady 2D” simulator

is operated in “Volumetric flow rate specified” mode with a target flow rate of 500 gpm. The result

of the iterative calculation gives a pressure gradient of 20.002881 psi/ft. The computed velocity

field and curvilinear grid used are shown in Figure 9.58.

Next we run our transient, three-dimensional non-Newtonian flow simulator with the

20.002881 psi/ft gradient specified throughout, as shown in Figure 9.59, in order to replicate

FIGURE 9.54

Newtonian flow validation (exact steady solution).
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results consistent with Figure 9.58. However, the line graph shows an asymptotic flow rate of

430 gpm and not the 500 gpm assumed previously. What happened? What is the simulation doing?

Are there errors in the formulation?

Fortunately, the result is not incorrect. In order to understand the boxed entries, it is important

to understand the underlying algorithm. The “500” in Figure 9.59 is not, in any sense, a boundary

condition: It is only used to provide starting velocities to initialize the time integration; its effect

dampens out with time, and in fact one could have taken “1234” and the steady flow rate com-

puted would be the same. The driving terms of dynamical significance insofar as the differential

FIGURE 9.55

Displacement calculation setup.

FIGURE 9.56

Mixing solutions for axial velocity, viscosity, and density.
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equations are concerned are the applied pressure gradients. One might then ask why the

“20.002881 psi/ft” did not lead to 500 gpm.

The reason lies in the formulations used. In “Steady 2D,” the computations are exact in the

sense that the variable apparent viscosity function N(x, y, z), and all of its spatial derivatives are

included. In “Transient 3D” this is not the case. While N(x, y, z) itself is included, its derivatives

are not; this approximation is consistent with the use of Landau’s ad hoc concentration model. The

approach is not unlike the use of significant digits in data interpretation (e.g., there is no reason to

keep three-decimal-place accuracy if some effects are only known to two places). The problem

does not arise in Newtonian fluids, as we have shown by example, since derivatives of the constant

viscosity vanish identically.

FIGURE 9.57

“Steady 2D” menu calculation with target 500-gpm flow rate.

FIGURE 9.58

Computed velocity field and curvilinear grid used.
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All of this does not mean that simulations are not possible. Knowing now how the code is struc-

tured, we simply ignore the “500” in Figure 9.60 and, through trial and error, determine the pres-

sure gradient that will yield “500” in the final line graph for flow rate. For the present example, the

author obtained the “20.00335 psi/ft” shown after four tries, requiring about five minutes of desk-

top effort.

Now let us turn to our second fluid, which we assume for simplicity as Newtonian. For the

same eccentric annulus, running the exact “Steady 2D” solver in “Volumetric flow rate specified”

mode with a target 500-gpm flow rate leads to a pressure gradient of 20.00003281 psi/ft, as shown

in Figure 9.61.

As suggested earlier, there is no problem replicating this result using the transient, three-dimen-

sional solver for Newtonian fluids. As shown in Figure 9.62, a flow rate of 490 gpm is computed,

which differs from 500 gpm by only 2 percent. (The “minus” signs in the pressure gradient boxes

do not appear because they have scrolled to the left, but they are entered.) In summary thus far, we

have obtained the pressure gradients for two different fluids in the same eccentric annulus needed

to achieve a flow rate of 500 gpm. In order to model both the displacement of the second fluid by

the first and the convection and diffusive mixing process, we combine the pressure gradients and

fluid properties as shown in Figure 9.63.

For the two-fluid system assumed in Figure 9.63, we have input strongly discontinuous axial

pressure gradients that differ by two orders of magnitude. This difference is needed because the

two fluids have contrasting rheological properties. Moreover, the discontinuous pressure gradients

are applied to the fluid system while it is moving and diffusing. The plots in Figure 9.64 give sec-

tional properties at the azimuthal index “m5 19” (for the wide side of the annulus) with time

FIGURE 9.59

The “wrong” answer (subject to explanation given).
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increasing as the figures progress downward. (For a color version of this and other figures, see this

book’s companion website.) The flow is moving from top to bottom. The left axial velocity plot

correctly shows a uniformly lower “blue speed” for the non-Newtonian fluid, while the displaced

Newtonian fluid is more colorful, with blues, yellows, oranges, and reds being indicative of the par-

abolic shape we expect. The viscosity plot, in fact, clearly shows how the mixing interface moves

downward with time and widens.

FIGURE 9.60

Hand calculation result for target 500 gpm.

FIGURE 9.61

“Steady 2D” menu calculation for second fluid.
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FIGURE 9.62

Newtonian flow model setup.

FIGURE 9.63

Two-fluid displacement and mixing flow setup.
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DISCUSSION 9.9

Transient, Three-Dimensional Concentric Multiphase Analysis For Rotating Power Law

Fluids without Axial Pipe Movement

In the present calculation, we demonstrate how the foregoing procedures apply when the host pres-

sure solver is the host model for Power law fluids in concentric annuli. Figures 9.65(a) and 9.65(b)

show two calculations for pressure gradient with identical volumetric flow rates and rotational

speeds. The differences between the two are the fluid properties. The pressure gradients shown at

the bottoms of the respective text output screens differ by a factor of 10.

Calculated results are shown in Figures 9.65(c) and 9.65(d). Here it is important to note that the

input 100 gpm in the software screens of Figures 9.65(a) and 9.65(b) are not replicated in the line

graph shown, although the “84” is not significantly different. The reason for this discrepancy lies in

the nature of the simulator in Figures 9.65(a,b). By referring to the mathematics in Example 5.6,

where simplifications to boundary condition implementation were made to enable closed-form ana-

lytical solutions that can be rapidly evaluated by computer.

FIGURE 9.64

“Wide-side” axial velocity and fluid mixing.
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DISCUSSION 9.10

Transient, Three-Dimensional Eccentric Multiphase Analysis for General Rotating Non-Newtonian Fluids

with Axial Pipe Movement: Validation Runs for Constant-Rate Rotation and Translation

In this example, we consider a very complicated annular flow problem typical of those encountered

in field operations. We study the highly eccentric annulus in Figure 9.66(b). The pipe or casing is

moving in the direction of flow at 10 in./sec and simultaneously rotating at 100 rpm. The total volu-

metric flow rate is 100 gpm.

A Herschel-Bulkley fluid—again, one with nonzero yield stress—is entering at the inlet and dis-

placing a 10-cp Newtonian fluid that is partially present in the annulus. The fluid system is initially

quiescent. We wish to calculate the time-dependent axial and azimuthal velocities and apparent

(a)

FIGURE 9.65a

Pressure gradient for thin Power law fluid.
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viscosity fields along with the position and mixing zone history associated with the fluid interface

undergoing transient movement. Following the strategy developed in this chapter, we first calculate

the (very different) pressure gradients present near the inlet and outlet and flow in single-phase

manner. This is accomplished using our exact, transient two-dimensional solvers, a process that

requires only seconds. Then both pressure gradients are used in the combined problem addressing

convective and diffusive mixing to solve the questions posed in this paragraph. The two-dimen-

sional solutions are fast, taking only seconds in computing time. We summarize our calculations.

Steady, rotating, non-Newtonian single-phase eccentric flow solution
We once again remind the reader that solutions for rotating eccentric flow problems using purely

steady flow formulations are presently numerically unstable for parameters of drilling and cement-

ing interest. However, solutions can be found by solving the transient problem asymptotically for

(b)

FIGURE 9.65b

Pressure gradient calculation for thick Power law fluid.
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FIGURE 9.65c

Mixing calculation setup and results.

FIGURE 9.65d

Diffusion solutions in a problem with 100-rpm rotation.
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large times. This is possible using the “Transient 2D” simulator developed in this book. As noted

in prior discussions, it is not possible, for mathematical reasons, to specify volumetric flow rate

and obtain pressure gradient in a single pass. But because the two-dimensional solver is extremely

fast, requiring only seconds or up to a minute per computation, we can determine pressure gradient

by trial and error, entering various test values and “hand-converging” the solutions for the targeted

100 gpm. For the problem at hand, the author was able to complete the entire example in about 15

minutes of desk time. The input assumptions are shown in Figure 9.66(a). For the targeted flow

rate of 100 gpm, the required axial pressure gradient is 20.00016 psi/ft, as indicated in Figures 9.66

(a) and 9.66(c).

Steady, rotating, Newtonian single-phase eccentric flow solution
For our Newtonian fluid (zero yield stress) with a 10-cp viscosity, the unsteady formulation in

Figure 9.66(d) leads to a pressure gradient of 20.000026 psi/ft for the 100-gpm target. (The minus

sign has scrolled to the left.) Entries hidden by the graph are all zero as in Figure 9.66(a). The axial

velocity field is shown in Figure 9.66(e), with high (red) velocities at the pipe because the velocity

in the pipe exceeds those in the annulus. There is no symmetry about the vertical line passing

FIGURE 9.66a

Non-Newtonian, single-phase flow setup.
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through the center because rotation destroys the symmetry. The azimuthal picture is similar to this

one because the rotational speeds are highest at the pipe and vanish at the annular wall.

Mixing problem
Now we solve the problem for the combined fluids using the “Zoom3D” solver shown at the top of

Figure 9.66(f). The target flow rate of 100 gpm is achieved with a 2 percent error. For the para-

meters indicated, about one minute of computing time is required. To create the color profiles

shown in Figure 9.67, the 10,000-step run selected requires about 10 minutes. In the screen

FIGURE 9.66b

Eccentric annulus.

FIGURE 9.66c

Volumetric flow rate history for non-Newtonian fluid.
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FIGURE 9.66d

Newtonian flow formulation and solution.

FIGURE 9.66e

Axial velocity profile in rotating flow.
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captures given, time increases downward from frame to frame; each snapshot displays the

“m5 19” azimuthal solution selected in Figure 9.66(f), which shows axial velocity and apparent

viscosity in the “streamwise-radial” plane.

The initial position index of the interface is 10 out of a maximum 90 grids in the direction of

flow. In these snapshots, the flow moves downward, and the interface is seen progressing down-

ward. As expected, diffusion causes this interface to widen with time. Clicking the right-side but-

tons in Figure 9.66f leads to numerical output captured in text files, as shown in Figures 9.68, 9.69,

9.70, and 9.71, which can be captured for external spreadsheet analysis.

Note that the very low Reynolds numbers in Figure 9.71 indicate fluid stability on a single-

phase-flow basis. The interface in Figure 9.67 is seen to widen gradually as it convects downward.

Our analysis does not include computations for interfacial stability; an extremely difficult problem

FIGURE 9.66f

Transient, three-dimensional, two-phase mixture formulation.
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FIGURE 9.67

Axial velocity (left of each frame); apparent viscosity (right of each frame). The flow moves downward in each

frame; time increases downward from frame to frame.
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FIGURE 9.68

Apparent viscosity for “constant m” or azimuthal angle.

FIGURE 9.69

Axial velocity solution.
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is formulated and solved rigorously. Finally, we emphasize that large diffusion coefficients were

assumed only for visualization purposes so that fluid movement could be seen using our somewhat

crude 12-color plotter. Also, very small specific gravities were taken in order for our transient

results to approach steady conditions quickly. In general, smaller time steps will be required for

higher fluid densities and rotational rates.

FIGURE 9.70

Azimuthal velocity solution.

FIGURE 9.71

Reynolds number solution.
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CHAPTER

10Closing Remarks

In this book, and particularly in Chapter 9, the objectives of our flow simulation efforts, focusing

on the complete system for drilling and cementing shown in Figure 10.1, were brought to closure.

In broad terms, the technical objectives are easily expressed:

• Finding pressures everywhere

• Allowing a general pump schedule for non-Newtonian fluids

• Supporting pipe and casing that may be rotating or moving axially in any transient combination

• Permitting real-world rheologies that may lead to all-important plug flows associated with yield

stress fluids

Pressure PSURF(t)
at surface choke

Drillbit PBIT(t)

Mud

Multifluid
transient pump

schedule

RCD rotating
control device

Vertical
concentric
section

Horizontal or deviated well
and eccentric annulus

Turning
section

Tripping in or outPipe rotation

FIGURE 10.1

General system for drilling and cementing.
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• If need be, determining interfacial mixing details for applications such as cementing in which

diffusion and miscible mixing can be significant.

Operational objectives included “managed pressure drilling,” where pressures along the borehole and

especially at the drillbit are required as functions of time, and cementing and completions, in which

mixing details are needed to assess potential problems with zonal isolation.

The overall problem strategy devised was simple conceptually: develop fundamental “building

blocks” that, in themselves, represent useful simulation tools but, when assembled, address the

transient, three-dimensional multiphase problem in a general manner. First we developed a

“Steady 2D” capability that permits exact numerical modeling of single-phase, non-Newtonian flow

in general eccentric annular cross sections.

This required us to use boundary-conforming curvilinear grids to model the annulus, refining the

ideas first reported by the author in Borehole Flow Modeling (1992) and Computational Rheology

(2001). Also, stable and highly accurate methods were designed to handle apparent viscosity, particu-

larly its spatial derivatives, and “extended Herschel-Bulkley” constitutive relationships were employed

to reach across and into plug zones for fluids with yield stress, allowing complete determination

of plug zone size, shape, and location for accurate pressure drop analysis. In addition, new modeling

capabilities included axial pipe movement, centrifugal effects due to borehole axis curvature, and,

finally, pressure gradient versus flow rate specification, all handled without approximation.

The fast and robust “Steady 2D” building block simulator was augmented with integrated graphics

that automatically display field properties such as axial velocity, apparent viscosity, shear rate, and

viscous stress—quantities that have proven useful for engineering correlation in specific applications.

Substantial effort was expended to design a simulation interface that was easy to use, requiring no

mathematics or computational expertise and enabling fast, accurate solutions the first time and every

time. The methods provide new ways to accurately study swab-surge, hole cleaning, and pressure drop

analysis.

Our second building block is encapsulated in the “Transient 2D” simulator. Aside from its obvi-

ous transient applications—for example, fully unsteady axial reciprocation, pipe rotation, pumping

rate taken in any combination, and helical cuttings transport—this method provides the first gener-

ally available means to study the effects of pipe rotation in eccentric annuli with non-Newtonian

flow. Importantly, this capability implies more than academic interest. We demonstrated the role of

eccentricity in pressure control while rotating. For instance, when pressure gradient is fixed, shear

thinning in concentric flows leads to increased flow rate; new convective terms that appear in

eccentric problems usually lead to decreased throughput.

The foregoing results, demonstrated in numerous calculations and consistent with laboratory

and field observations for concentric and eccentric applications, indicate that drillpipe rotation

can be used for real-time pressure control in managed pressure drilling. Presently, three means are

typically employed:

1. Change in pump rate to effect dynamic friction, a method that may be dangerous, since strong

transients are involved.

2. Altering mud rheology and weight, a slow process that may not be responsive to danger indicators.

3. Direct choke control to adjust background pressures.
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Drillpipe rotation now provides a fourth means. It is an easy-to-implement procedure that can be

modeled conveniently and whose slower transients are unlikely to induce fracturing or rapid influx

or outflux.

In addition to the “Steady 2D” and “Transient 2D” building blocks, we developed many “utilities”

addressing flows in more idealized geometries for rapid and accurate pressure analysis. These include,

among others,

• Analytical solutions for rotating Power law flows in concentric annuli

• Exact Herschel-Bulkley concentric solutions for flows with stationary boundaries

• Newtonian solutions for fluid flow past concentric annuli with axial pipe movement

• Recirculating flow in the presence of barite sag

Taken together, a broad collection of simulators was developed, and all were assembled for

multiple applications.

Importantly, in Chapters 8 and 9 we demonstrated how the foregoing building blocks can be

used to model the fully transient flow of multiple non-Newtonian fluids down the drillpipe follow-

ing a general pump schedule. We studied pressures both along the borehole and at the drillbit as a

function of time, and showed how, when required, interfacial details related to diffusion and flow

convection can be obtained with fully coupled momentum and species concentration models in a

reasonable amount of computing time.

Validation questions invariably arise with simulator use. Engineers ask, “How have computed

results been validated?” As far as math is concerned, our simpler utility models were used to validate

more complicated models. In fact, in areas of common overlap, models developed under different gen-

eral assumptions and solved with contrasting numerical methods often differed by no more than 2 to 3

percent without “fudging.” Solutions for simple geometries were used to check curvilinear coordinate

approaches, two-dimensional solutions validated three-dimensional approaches, and steady curvilinear

grid solutions were shown to be in agreement with transient solutions in the limit of large time.

Our efforts at validation did not end with mathematics; computational consistency was merely

the beginning. Starting with Borehole Flow Modeling (1992) and Computational Rheology (2001),

we analyzed in detail cuttings transport data obtained in laboratory flow loops, spotting fluid results

in jarring applications, vortex formation in flows with barite sag, long boreholes with bends, and

the like, with careful observation being the only final arbiter. A major accomplishment of the pres-

ent research is accurate modeling of pipe or casing rotation in eccentric geometries. Consistency

with field observation (see, for example, Figure 2.2) provided a high degree of credibility.

Our multiphase efforts were also validated through experiment. For example, lab setups and results,

duplicated in Figures 10.2 and 10.3, were reported in detail in Deawwanich, Liew, Nguyen, Savery,

Tonmukayakul, and Chin (2008); Nguyen, Deawwanich, Tonmukayakul, Savery, and Chin (2008);

and Savery, Tonmukayakul, Chin, Deawwanich, Liew, and Nguyen (2008). The math model in these

papers applied to general transient, multiphase three-dimensional flow.

Some more recent work expands on the earlier method by providing a fast means to calculate

borehole pressures using our “Steady 2D” and “Transient 2D” building blocks, the latter providing

the first mathematically rigorous approach dealing with rotating pipe flows. In addition, newer

“zoom” capabilities for interfacial mixing stably and accurately model the suddenly changing pres-

sure gradients acting on contiguous fluids without using cruder approximations.
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Needless to say, our modeling efforts will not end here. In any research, more questions are

raised than are answered, and our research is no exception. By reporting our work in complete

mathematical and numerical detail and making the simulators available for wide dissemination, we

hope that the experiences and comments of users will help us accelerate our progress in addressing

a very challenging and interesting technical and operational problem.

FIGURE 10.3

Typical eccentric flow mixing (time increases left to right).

FIGURE 10.2

Multiphase flow visualization experimental setup.
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Preface

My first exposure to the importance of good hole cleaning and pressure analysis occurred in 1981

when I was initiated into the petroleum industry, having left the aerospace industry, for which

I had trained diligently. The new subject matter was not glamorous, to say the least, but years later

I would come to understand its significance in both drilling and cementing. The advent of deviated

and horizontal wells elevated the role of annular flow in oilfield operations.

A decade later, I published my first book on borehole flow modeling, introducing the use of

curvilinear grid systems to accurately capture the physics. Over the years, this effort was self-

funded and undertaken as a labor of love. However, another decade later I launched my consulting

company, Stratamagnetic Software, LLC, supported by the U.S. Department of Energy through its

Small Business Innovation Research Program, under Grant DE-FG03-99ER82895, to improve grid

generation techniques for the oil industry. Related work in this area with several clients continued

over the years in different and varied applications.

In 2009, the Department of Energy awarded a contract to support my technical proposal

“Advanced Steady-State and Transient, Three-Dimensional, Single and Multiphase, Non-

Newtonian Simulation System for Managed Pressure Drilling.” This comprehensive effort was

administered by the Research Partnership to Secure Energy for America (RPSEA) through its

Ultra-Deepwater Program under Subcontract No. 08121-2502-01. This award enabled my collea-

gues and I to “tie up loose ends” and integrate numerous models developed over two decades.

More important, it provided us the opportunity to significantly extend our models in numerous

directions—rotating flow, fully transient effects, three-dimensionality, multiphase, and so on—and

to perform research and develop software models that we felt would have a lasting influence on the

petroleum industry.

We are very fortunate that many in the industry have recognized our efforts. Aside from those who

have provided us this source of important funding, anonymous reviewers have made it possible for us

to publish five recent papers: four for the American Association of Drilling Engineers (AADE)

National Technical Conference and Exhibition, during April 2011 in Houston and one for the

Offshore Technology Conference during May 2011, also in Houston. We are of course gratified that

Gulf Professional Publishing/Elsevier has agreed to publish this book, Managed Pressure Drilling:

Modeling, Strategy and Planning, which will no doubt achieve wide dissemination of our ideas.

Consistent with my belief that scientific research should be openly shared by industry, this book

and the papers my colleagues have presented disclose all elements of the new annular flow models:

mathematical theory, numerical implementation, source code examples, and computational valida-

tions, with comparisons to laboratory and field data and results whenever possible. Because of

our research focus, and because our ideas are always evolving, the methods developed here and

implemented in software are provided “as is” and no claim is made that they address all potential

technical issues.

It is hoped, however, that others will study the models and help to improve them through use

and research. Over the next several months, the plan is to widely disseminate the software, on

which great effort has been expended in order to optimize the user’s experience through a versatile
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and intuitive interface so we can obtain the feedback needed to support continued product develop-

ment. Access to the fully functional software system flow simulation modules executable over the

Internet are available from the book’s website at gulfpp.com/9780123851246

I am deeply appreciative of the U.S. Department of Energy and the Research Partnership to

Secure Energy for America for the opportunity they have provided me to work in this exciting tech-

nology area, and I look forward to a long collaboration with them and all interested parties.
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