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PREFACE 

The mechanics of fluid (gas, oil, water) flow is a fundamental engineering dis-
cipline explaining various natural phenomena and human-induced processes. It is 
of utmost importance in aviation, shipbuilding, petroleum industries, thermody-
namics, meteorology, and chemical engineering. 

This basic applied scientific discipline enables one to understand and describe 
mathematically the movement of fluids (gas, oil, water) in various media: channels, 
subsurface formations, pipelines, etc. to describe various phenomena and applica-
tions associated with fluid dynamics, the writers used the unified systematic ap-
proach based on the continuity and conservation laws of continuum mechanics. 
Mathematical description of specific applied problems and their solutions are pre-
sented in the book. 

The present book is an outgrowth of copious firsthand experience of the writ-
ers in the fields of hydrodynamics, thermodynamics, heat transfer, and reservoir 
engineering, and teaching various university courses in fluid mechanics and reser-
voir characterization. The continuity principle, the equations of fluid motion, mo-
mentum theorem (Newton's second law), and steady-flow energy equation (first 
law of thermodynamics) are emphasized and used for development of engineering 
solutions of applied problems in this book. The similarities and differences be-
tween the steady-flow energy equations and integrated forms of differential equa-
tions of motion for nonviscous fluids (Bernoulli Equation) are pointed out. 

Differential equations describing the flow of gas and liquid in fractures and frac-
tured-porous reservoir rocks are presented. The two-phase fluid flow is discussed in 
detail. By applying the unified approach of continuum mechanics, the writers 
achieved better understanding of fluid properties (density, viscosity, surface tension, 
vapor pressure, etc) and basic laws of mechanics and thermodynamics. Some chapters 
of the book are devoted exclusively to incompressible and others to compressible flu-
id flow, with comparison of the flow of gas and flow of water in the open channels. 

This book can be used both as a textbook and a handbook by undergraduate 
and graduate students, practicing engineers and researchers working in the field of 
fluid dynamics and related fields. 

Authors are very grateful to the Academician of Russian Academy of Sciences 
S.S. Grigoryan who attentively read through the manuscript and has made a number of 
valuable remarks. 

K. S. Basniev, N. M. Dmitriev, G. V. Chilingar 



PART I. FUNDAMENTALS OF THE MECHANICS 
OF CONTINUA 

CHAPTER I 

BASIC CONCEPTS OF THE MECHANICS 
OF CONTINUA 

Introduction 
The theoretical mechanics is a scientific discipline dealing with general laws 

of equilibrium, movement and interaction between the material bodies. Systems to 
be analyzed are not real physical bodies but the models: material points, material 
point systems, rigid (non-deformable) bodies. Using model makes the description 
of processes simpler with the preservation of major specifics of the phenomena. 

Frequently, not only the movements of the bodies but their deformations are 
important. In such cases the models of theoretical mechanics are inapplicable. 

An extensive scientific discipline dealing with the theoretical mechanics is the 
mechanics of continua. It views physical bodies as continuous deformable media. 
Thus, likewise the theoretical mechanics, it operates with models. 

In many situations (for instance in gas movements) the processes in deforma-
ble media are closely interrelated with thermodynamic phenomena in these media. 
That is why both the laws of the theoretical mechanics and thermodynamics are in 
the base of the mechanics of continua. 

The mechanics of continua is the theoretical basis for disciplines such as hy-
dromechanics of Newtonian and non-Newtonian fluids, gas dynamics, subsurface 
hydromechanics, elasticity theory and plasticity theory. 

1. Continuity hypothesis 

The phenomena analyzed in the mechanics of continua (particularly in liquids 
and gas mechanics) are of macroscopic nature. This fact allows for abstracting 
from the molecular structure of the matter and considers physical bodies as conti-
nuous media. 

Continuous medium is a material continuum. What it means is that it is a con-
tinuous multitude of material points over which the kinematic, dynamic, thermody-
namic and other physicochemical parameters of the reviewed medium are conti-
nuously (in the general case, piecewise-continuously) distributed. 

Mechanics of Fluid Flow 
by Kaplan S. Basniev, Nikolay M. Dmitriev and George V. Chilingar 

Copyright © 2012 Scrivener Publishing LLC 



16 CHAPTER I 

Physically, the acceptance of the continuous medium model signifies that when 
macroscopically described, any "infinitely small" volume contains sufficiently great 
number of molecules. For instance, a 10~9-mm cube of air contains 27*106 molecules 
suggesting that the idealization will not apply in the case of very high vacuum. 

The concept of the "continuous medium" is a model of real medium. The ap-
plication of such model in the fluid mechanics and other disciplines is based on the 
experimental results and comprehensive practical confirmation. The examples 
would be the flow computation in pipelines of diverse purposes, gas and liquid out-
flow through nozzles, filtration through porous media, etc. 

2. Movement of continuous medium: description techniques 

When movement is quantitatively studied, it is assumed that some coordinate 
system is locked relative to which this movement is analyzed. Let us assume that 
an Ox\X2Xi coordinate system with the orthonormal basis1 ei, ei, ei is locked in 
space (Fig. 1.1). 

x The movement of an individual material point 
\f is determined by a time function of its coordinates: 

Xi=xi(t) ( l . i ) 

or in vector format:2 

R = e,x,(t). (1.2) 
X2 

Xi values are in the space coordinates. 
The description of continuous medium 

movement by definition means the assignment of 
movements of all material points, which form the 
continuum under consideration. The spatial coor-

dinates of the point at a moment in time t = to may be used as "flags" for distin-
guishing one material point from another one. 

Let us assign the spatial coordinates of material points in a continuous medium 
at t - to as Xj. Then the movement of the continuous medium movement may be 
described as:3 

xi=xl{XuX2,X3,t)=xi(Xj,t). (1.3) 
Or, in vector format: 

~R = eixt(Xj,t\ (1.4) 

' Orthonormal basis is an aggregate of three mutually perpendicular single vectors. 
2 Here and thereafter, unless specifically stated otherwise, letter subscript assume values of 1, 2, 3, and the 

i 
summation is performed for the repeated subscripts, i. e., eiJt, = ^ .e. ■ xi 

1 When specifying a = αφμ) we thereafter mean that a = a(2>, ,fc2.Ä3,') 

«3 

/ R 
/ 

/ h 
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A conclusion from the "marker" assigning rule is that the Eqs. (1.3) and (1.4) 
must satisfy equalities as: 

Xi = xi(Xj,t0),Ro=eixi(Xj,t0). 

The X, coordinates are called the material coordinates. 
Note: any mutually univalent functions of material coordinates g, = q,{Xj) may 

be used as "markers". 
Function (1.3) is considered to be continuous, having continuous partial deriv-

atives for all of its arguments. Physical considerations say that one and only one 
point in the space corresponds at any moment in time to each material point of 
a continuous matter. The inverse is also true: only one material point corresponds 
to each point in space. Therefore, at t >t0 function (1.3) assigns a mutually univa-
lent correspondence between material coordinates X, and spatial coordinates *,-. The 
latter means that the Jacobian: 

*0, 

And Eq. (1.3) may be solved relative to the material coordinates: 

Xj = XAx,,t). (1.5) 

Two different techniques can be used for describing movement of the conti-
nuous medium. 

The first one is the Lagrange's technique. The Lagrange's variables X, and 
time t are used as independent variables for the description of the movement. On 
assigning a physical value A (either a vector or scalar value) as a function of the 
Lagrange's variables and time: 

Α=Α(Χμ) (1.6) 

At fixed value of material coordinates Xj, the Eq. (1.6) describes the change in 
the value of A with time in a fixed material point of the continuous medium. 
At fixed value of material coordinates /, the Eq. (1.6) describes the distribution of 
value A within the material volume at a fixed moment in time. Therefore, the phys-
ical sense of the Lagrange's technique is in the description of a continuous medium 
by way of describing the movement of individualized material points. 

The second way is the Euler's technique. The spatial coordinates JC, (Euler's 
variables) and time t are utilized for the description of the movement. In this case 
various parameters of the continuous medium (such as velocity, temperature, pres-

j i-'L·*]» -*2' 3 ' 

D(X„X2,X3) 

ax, 
ax, 
dx2 

ax, 
dx3 

ax, 

a*, 
ax, 
dx2 

ax? 
3·ϊ3 

ax2 

a*, 
ax, 
a*,, 
ax, 
a*3 

ax, 
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sure, etc.) must be assigned as functions of the Euler's variables. On assigning val-
ue A (either a vector or scalar value) as a function of the Euler's variables: 

A=A(xj,t) (1.7) 

At fixed spatial coordinates Xj, Eq. (1.7) describes change in the value A in 
a given point in space with time. Therefore, the physical sense of the Euler's tech-
nique is in the description of a continuous medium behavior at fixed points in 
space, and not at points in a moving continuous medium. 

The application of either technique depends on the setting of the problem. 
When deriving the basic laws of motion, the Lagrange 's technique should be used 
as it is formulated for the fixed material objects. Likewise, in solving specific hy-
dromechanical problems, the Euler's technique is preferred as in this case, as a rule, 
it is important to know the medium parameters distribution in space. 

The Lagrange's and Euler's techniques are equivalent in the sense that if a de-
scription of the movement is established under one of them, it is always possible 
to switch to the movement description under another one. 

The transition from the Lagranges variables to the Euler's variables in a case 
where the value A is assigned as a function of the Lagranges coordinates (i. e., the 
Eq. (1.6) is established and the motion law (1.3) is known) boils down to the solu-
tion of Eq. (1.3) relative to Xj values, i. e., to find Eq. (1.5) and replace with Xj by 
Xj(x,t). Then, from (1.5) and (1.6): 

A{Xj,t) = A(Xj(Xi,t),t) = A(xa). (1.8) 

If the law of motion (1.3) is assigned and the A value is assigned as a function 
of the Euler's coordinates, i. e., Eq. (1.7) is given, then by reversing the transforma-
tion in the Eq. (1.8), one obtains: 

A(xitt) = A(xiXj,t),t) = A(Xj,t). (1.9) 
If the law of motion is not assigned but the velocity vector distribution 

v = eftiXjyt) is known4 then it follows from (1.3) or (1.4) that: 

v,Uy,0 = ̂ · (1.10) 

By integrating Eq. (1.10) one obtains *,· = *;(Ci, C2, C3, t), where C, are inte-
gration constants, which represent x, values at some moment in time t0 and may be 
taken as the "markers" that individualize material points of the continuous medium. 
Therefore, by integrating Eq. (1.10) one can define the law of motion of the conti-
nuous matter (Eq. 1.3), and the transition from the Euler's technique to the La-
grange's technique using the Eq. (1.9). 

Thus, only technical difficulties may occur in solving Eq. (1.1) or integrating 
the Eq. (1.8) when switching from the Lagrange's to the Euler's technique and vice 
versa, as theoretically such transition is always possible. 

4 If the Euler's description is known, then the velocity distribution is also known, i. e., the v^xjj) functions are 
known. 
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3. Local and substantive derivative 

The change of any property A, for instance velocity, density, temperature of 
a fixated material point in a moving continuous medium with respect to time is called 

dA 
a substantive (material, individual or total) time derivative and is denoted by—. 

The A value may be a scalar or vector and may be assigned as a function of the 
Lagrange's or Euler's coordinates, i. e., A = A(Xj,t) or A = A(xj,t). As the material 
point is moving along its own trajectory, the A value may also be assigned as 
A = A(s,t) where s is the length of the arc along the trajectory. When a fixed point 
is moving, its material coordinates do not change: 

±A(Xi,t) = te&!l. ( i . i i) 
dt dt 

Conversely, its spatial coordinates are a function of time: 

± A M = *^+***&*JL, (1.12) 
dt dt dx, dt 

or 

±Μ,,,) = *ψϊ + ψ* (1.13) 
dt dt ds dt 

Obviously, — = v is the modulus of the velocity vector, and —L are compo-
dt at 

nents of the velocity vector of the point under consideration. Then, taking Eq. (1.10) 
into account, Eqs. (1.12) and (1.13) may be represented as: 

dt dt ' dXj 

ί , ( ί , ( ) Α + ν ^ . (1.15) 
dt dt ds 

If A is a scalar value: 

v 3A(£^ = v g r a d 4 = v V A ) ( 1 1 6 ) 

ds 

the directional derivative s is equal to: 

dA(s,t) -o dA(s,t) -o -y. 
—r—- = s VA, and v—-—- = vs VA = vVA, (1.17) 

ds as 
where s is a singular vector, tangential to the trajectory; v = e,v, is the velocity vector. 
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Considering Eqs. (1.16) and (1.17), Eqs. (1.14) and (1.15) may be rewritten as: 

^ = M + vVA (1.18) 
dt dt 

If A is a vector (i. e., A = ί,-Α,.), then according to Eq. (1.14) 

dt dt ' dx,' 

then: 

dAL_de!AL_dÄ_ 9A, _ 8e,-A,. = dA~ 
' dt dt dt ' ' dt dt dt 

dA, 3e,-A. ΘΑ -^„ . - r 

and 
CIA ÖA ~ , t—,.-7 , . . Λ-, 

= + (v*V)A, (1.19) 
<Λ 3ί 

where (v * V) is a symbolic operator which is equal to: 

(v*V) = v A 
a*,. 

The first term in Eqs. (1.12)—(1.15) and (1.18), (1.19) describes the change in 
velocity of the property A at the fixed point of space and is called a local derivative. 
The second term in these equations is called a convective derivative and describes 
the change in A due to displacement of the material point in space. The convective 
derivative value is determined by the motion of the material point (v * 0) as well 

3A 
as by non-uniformity of A value distribution in space (— Φ 0). 

dx, 

4. Scalar and vector fields 

If a scalar (vector) value corresponds to each point of the spatial volume D 
and to each temporal moment t, it means that a scalar (vector) field is defined in 
the volume D. Thus, the field of a certain value is defined as the aggregation of its 
numerical values established at each point of the volume D and within the assigned 
time interval. For instance, if the functions of scalar values are established 

p=p(xi,t),T=nxi,t), (1.20) 
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where p is density and T is temperature, then the functions (1.20) define the scalar 
fields of density and temperature. If a vector function is established, for instance, 

v* = vk{xut) or v = v(xi, t), (1.21) 

then the function (1.21) defines the vector field of velocities. 
Thus the concept of the field with a physical value is applicable for the motion 

description only through the Euler's technique. 
A scalar (vector) field is called continuous if any representing function is con-

tinuous over Xi and t. If a function representing the field does not depend on time f, 
the field is called stationary. 

If all fields describing the motion of the continuous medium are stationary, 
such a motion is called transient-free or stationary. However, if these fields (or ei-
ther of them) depend on time, the motion is called transient or non-stationary. 
In the case of the transient-free motion all local derivatives (partial derivatives over 
time) are equal to zero, i. e., 

^ = 0 , ^ = 0 , ^ = 0,... 
dt dt dt 

The notion of transient-free or transient motion is applicable only if the motion 
is described using the Euler's technique relative to a reference coordinates. One 
motion may be transient-free relative to one coordinate system and transient rela-
tive to the other one. For instance, when a solid is moving at a constant velocity in 
a liquid, the liquid's motion is transient-free in the coordinate system associated 
with the solid, and transient in an immovable coordinate system. 

For any vector field, a notion of a vector line may be introduced. The vector 
line is a tangent line at each point at a given moment in time coinciding with the 
direction of the field of vectors . It follows from 

— " A 

this definition that if a vector field A(xnt) is es- ^ 
tablished, then at a given moment in time the con- ^ . 
dition Mds is accomplished in the vector line 
points. Here, ds is infinitely small vector of the 
tangent, or ds = MX where dX is a scalar para-
meter (Fig. 1.2). Fig. 1.2 

The velocity field vector lines are called the flow lines. As by definition for the 
ds = eidxt - vdX = eiv^X, the equation flow lines can be presented as: 

^- = vi{xj,t). (1.22) 
dA 

Please note that the following equality is true along the motion trajectory of 
the material point: 

^ = ν,(*.,ί). (1.23) 
dt ' 
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In Eq. (1.22), the time is the parameter and in Eq. (1.23), it is an independent 
variable. 

The solution of the system of equations (1.22) has a form of x,· = JC,-(C/, λ, t), 
where cj are integrating constants, and the flow lines (vector lines) may have dif-
ferent shapes at different moments in time. 

At the transient-free motion, Eqs. (1.22) and (1.23), respectively, have the fol-
lowing form: 

dx, dx, 
dk ' dt 

And the distinction boils down to the parameter over which the differentiation 
is conducted. Therefore, at the transient-free motion the flow-lines and material 
point trajectories coincide. 

If the equation system (1.22) has a solution, and the solution is singular, then 
the only one flow line runs through each point in space. However, there are some 
points of the velocity field where the conditions of the existence and singularity 
may be broken. In particular, the solution singularity conditions may be broken at 
the points where velocity vector components approach zero or infinity. 

The points where velocity approaches zero or infinity are called singularities. 
Fig. 1.3 shows an example of the velocity field that occurs when the liquid flows 
around a solid. The velocity at point A equals zero, and the flowline bifurcates. 

Fig. 1.3 Fig. 1.4 

Next, the writers examine some aspects of the velocity field with no singulari-
ties. Drawing flowlines within the area of the curve AB, one flowline may be car-
ried through each point of the curve AB. The aggregation of these flowlines forms 
a surface at each point in which the velocity vector lies in the plane tangent to this 
surface. Such a surface is called a flow-surface. As the only flowline runs through 
each point of the flow-surface, this surface is impermeable for the particles of the 
liquid. If the AB line is closed (Fig. 1.4), the surface is called the flow-tube. 

Next, one can assume t h a t ^ i ^ ^ ) = 0 is the equation of flow-surface. Inas-
much as 

df 
V/=ft 

dx, 
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e,vi lies on the 

(1.24) 

is the condition necessarily fulfilled on the flow-surface. 
On cutting the flow-tube with some surface, if the vector at each point of this 

surface is directed normally to this surface, it is called effective cross-section. 
unassuming ^ Ι Λ Λ ) = 0 is the equation of the effective cross-section, the ve-
locity vector v is parallel to the normal to this cross-section, Vm v, or v * V̂ > = 0. 

If the AB line length is infinitely small, the flow-tube is called elementary. The 
flow parameters (velocity, density, etc.) within the elementary flow-tube are un-
iformly distributed on the effective cross-section. 

5. Forces and stresses in the continuous medium. Stress tensor 

A continuous medium and a rigid body move upon acting forces. Theoretical 
mechanics deals mostly with concentrated forces, but mechanics of continua deals 
mainly with distributed forces. 

Depending on the nature of acting forces, regardless of the specific physical 
nature, mechanics of continua distinguishes two types of forces, the mass forces 
and the surface forces. The mass forces are those whose value is proportional to the 
mass of the medium they act on. Gravity, electromagnetic forces, and inertia are 
examples of these types of forces. The surface forces are those whose value is pro-
portional to the surface of the medium they act on such as pressure and friction. 

Mechanics of continua deals not with the mass and surface forces but rather 
with the stress (distribution density). 

The stress of mass forces is defined as the limit of a ratio: 

l i m — = F(Af), 
Δ™->ΟΛΜ 

Where A/?is the main vector of mass forces acting on the mass Am con-
tained in an elementary volume AV, which includes the 
point M (Fig. 1.5). The dimension for mass force's stress 
is that of acceleration. For the gravity force, the stress 
F = g where g is the vector of the gravity acceleration. 

To determine the surface forces, consider an ele-
mentary area AS on the surface 5 placed within the con-
tinuous medium. The AS area includes point M Fig. 1.5 

is the vector normal to this surface, and the velocity vector v 

plane tangent to the flow-surface, then: 

vV/=v,.-^- = 0 
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(Fig. 1.6). The stress of the surface force at point M is determined by the lim-
it of a ratio 

It is obvious that an infinite number of surfaces S may be carried through 
point M. In a general case, the stress at point M may be different for different sur-
faces (Fig. 1.7). Therefore, the stress of a surface force is not only a spatial function 
but a function of the orientation of the elementary area AS. 

Fig. 1.6 Fig. 1.7 

Thus, contrary to stress of the mass forces (they are spatial functions, there-
fore, they form a vector field), the surface force stress does not form a vector field. 

The orientation of the AS area in space may be established by a singular vector 

of the normal n to the surface 5 at point M. Considering p = p(n,M), p as func-

tion of n is denoted by a subscript: p = pn(M). 
However, the surface 5 is bilateral. Two normals may be carried through 

point M, n and -n (Fig. 1.8). That is why a convention 
of the normals positive direction is necessary. Assume 
the positive direction points toward the part of the con-
tinuous medium, from which the surface forces are act-
ing on the area AS. It follows that when the n and pn 

directions coincide, surface forces are extension forces, 
and if these directions are opposite, they are contractive 

Fig. 1.8 forces 

It is desired to divide the continuous medium volume V into parts Vi and V2 by 
surface S (Fig. 1.8). Considering the surface S and the boundary of the volume Vi 
the force acting on the AS area from the side of volume V2, is equal to pn(M)AS, 
and the force acting on the entire surface 5 is given by: 

[~p„(M)dS. 
s 
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However if, the surface S to the boundary of the volume V2 is considered, the 
force acting on the AS area is equal to p_n(M)AS, and the force acting on the en-
tire surface 5 is given by: 

\p_n{M)dS. 
s 

Under the Newton's third law of motion: 
j[pn(M)+p_n(M)]dS=0. 

the surface S is chosen arbitrary such that: 

Λ,(Λί) = -λ„ (Μ) . (1.25) 

the stress pn may be expanded into the normal p„„ and tangential pr components: 

Pn=np„+rpr, (1.26) 

where τ is a singular vector and n * r = 0. 
Carrying coordinate axes x\, X2, X3 through any point of the continuous me-

dium yields an infinitely small tetrahedron ABCM (Fig. 1.9). The verges of the te-
trahedron will be dx\, dxi, dxj. By default, the tetrahe-
dron faces BCM, AM, CAM are perpendicular to the cor-
responding basis vectors. Therefore, n\ = ~ei, m = -ei 
and m = -ei .The ABC face orientation is arbitrary and 
is established by the vector of the normal n = -e\ccnj, 

where anj = ne are directing cosines of the normal. 
Then the stresses on the corresponding faces is given 

Fig-1-9 byp_,, and p. . 
Denoting the area of the ABC face as dS, the areas of the other faces may be 

computed as projections of the areas of the face on the corresponding coordinate 
planes: dS\ = a„\dS for the face BCM, dS2=a„2dS for the face ABM, and 
dS3 = a„jdS for the face ACM, or 

dS, = (n * e,· )dS = amdS. (1.27) 

Surface forces ρ_,·</5(, p„dS and the mass force dR = Fdm = pFdV = 

= pF'/3 hdS are acting on the tetrahedron ABCM (dm is the mass within the tetrahe-
dron dV, and h is the tetrahedron height). Under the Newton's second law of mo-
tion, the sum of forces acting on the tetrahedron ABCM is equal to the product of 
its mass and the acceleration, i. e., demonstrated in Eq. (1.27), 

-phFdS + ~p :anidS = —dm = -ph—dS. (1.28) 
3 dt 3 dt 
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Canceling all dS's in Eq. (1.28), and constricting the tetrahedron to a point 
(i. e., assuming h—>0): 

or, like Eq. (1.25): 

~Pn=~Pf*«· (1-29) 

The pt vectors can be presented in the following format: 

~Pi=ejPji- (1.30) 

Here, pjt is the 7* component of vector pr 

The Eq. (1.30) vector equality is equivalent to the following equations ex-
pressed in the component format: 

Pn\ =P\\(Xn\ + P2\Ol„2 + PT,\CCn3, 

Ρη2 = Ρ\2θηΙ+Ρ22θί,2 + Ρ32αι3 (1-31) 

Pni = P\3CCn\ + PllOnl + ί>33<5.3· 

Thus, the state of stress at any given point is determined by the aggregation 
of three stress vectors /?, or by the nine-component-/?,;, defined over three mutually 
perpendicular areas. The Eq. (1.29) is the definition of tensor. 

The pij components form a second rank tensor like: 

Pu 

P31 

Pn 

P22 

P}2 

Pn 

Pn 

P33 

(1.32) 

*> 
i>23 

The first subscript of the p^ stress tensor component indicates the direction of 

the coordinate axis to which the normal vector n is parallel. The second subscript 
of the pij stress tensor component indicates the direc-
tion of the coordinate axis onto which the stress vector 
is projected (Fig. 1.10). For instance, p2\ represents 
the projection of p2 vector, attached to the area per-
pendicular to the X2 axis, onto the x\ axis. 

The components with the same subscripts pti are 
called normal stresses, and the components /?,* (i * k) 
are called tangential stresses or shear stresses. 

The pij stress tensor depends on coordinates x, 
and time t forming a tensor field. 

It is necessary to note here that the concept described above is the classical 
theory of the state of stress. It is important to note that the moments of the surface 
and mass forces at point M are equal to zero. However, there are more detailed 
theories considering continuous series with distributed moments of surface and 
mass forces. These theories are dealing with special branches of the mechanics of 
continua, for instance in studies of liquid and elastic media with a micro-structure. 

Fig. 1.10 



CHAPTER II 

CONSERVATION LAWS. 
INTEGRAL AND DIFFERENTIAL EQUATIONS 

OF CONTINUOUS MEDIUM 

1. Integral parameters of a continuous medium 
and the conservation laws 

Basic equations for the continuous medium are derived from the conservation 
laws which are the fundamental laws of nature. The major conservation laws in the 
mechanics of continua are the conservation laws of mass, variation in momentum, 
moment of momentum, energy and entropy balance. For a mathematical formula-
tion of the conservation laws, a material (movable) or control volume is reviewed. 

The material (movable) volume is such a volume composed at all time from 
the same material points. 

A volume of space whose boundaries are open to material, energy, and mo-
mentum transfer is called the control volume, and the limiting boundary is called 
the control surface. The control surface may change its position in space but usual-
ly it is considered static. 

When considering the material volume, it is assumed that it represents a singu-
lar physical body with mass: 

M= jpdV, (2.1) 
VU) 

with its corresponding momentum: 

moment of momentum: 

energy: 

7 = jpvdV, (2.2) 
V«) 

Ä7= jp(rxpv)dV, (2.3) 

VU) 
H"+i 

2λ 

dV, (2.4) 

Mechanics of Fluid Flow 
by Kaplan S. Basniev, Nikolay M. Dmitriev and George V. Chilingar 
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which is a sum of the kinetic energy: 

K= \p-dV 
V(l) 

internal energy: 

and entropy: 

U= jpudV, 
V(l) 

S = jpsdV, 

(2.5) 

(2.6) 

(2.7) 
V « ) 

where p = p(xj,t) is density, v = v(jc.,f) is velocity, u - u(xj,t) is per-unit-mass in-
ternal energy, s = s(xj,t) is per-unit-mass entropy, r is radius-vector of a material 
particle with the origin at a point relative to which the kinetic momentum is deter-
mined, V(t) is the material (movable) volume. 

Under the law of mass conservation, the mass of a material volume (2.1) re-
mains constant. Therefore, the total derivative of Eq. (2.1) is equal to zero, i. e., 

dt dt 
\pdV=0. 

v«) 
(2.8) 

Under the Newton's second law of motion, the rate of variation in momentum 
of a liquid volume equals to the sum of all external forces acting on this volume. 
Thus, the material derivative of the Eq. (2.2) is equal: 

dJ d 
dt 

- \pvdV = F" (2.9) 

where F is the total sum of all mass and surface forces attached to the vo-
lume V(t). 

The sum of all mass forces may be presented in the following format 
(Fig. 2.1): 

| pFdV. 
VU) 

The sum of all surface forces (Fig. 2.1) ob-
viously is equal to: 

ΪΡ,Μ, 
S(t) 

Fig. 2.1 
where 5(i) is a closed surface delimiting the ma-
terial volume V(t). 
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Taking all these remarks into account, the law of kinetic momentum Eq. (2.9) 
may be presented in the following format: 

τ-τ£*-}>™*'· αι0) dJ =_ 

V«) V(f) 

Considering the law of kinetic momentum, the rate of change in the kinetic 
momentum of a material volume in relation to any point is equal to the main mo-
mentum of all external mass and surface forces in relation to the same point. Equa-
tion for the momentums is given by: 

\{r*pF)iV, [r*PndS, 

so 
then the relationship for the variation of kinetic momentum of a given material vo-
lume is given by: 

^T = T \CrpvW= j(r*pF)dV+ [r*~P„dS. (2.11) 
"* *" V«) V(l) 5« ) 

As it can be seen from the kinetic momentum relationship, the rate of change 
of a material volume V(t) is equal to the sum of mechanical work W of the external 
mass and surface forces per unit time (external force power) and of the other ener-
gy inflow Q per unit time. Therefore, the material derivative of Eq. (2.4) is asso-
ciated with the W and Q values as follows: 

^ = 4 \p(u + ~W=W + Q. (2.12) 
dt dtvl 2 

From now on, in this book it is assumed that Q is only the rate of heat in-flow 
The law of the energy conservation is also called the first law of thermodynamics. 

Power of the external volume forces W\ is equal to: 

Wt= jpF*vdV, 

and that of the surface forces Wj. 

W2= fp~n*vdS. 
S(0 

Heat inflow Q per unit time may be presented as: 

0= \pq.dV, 
V(0 

where qe is heat delivered per unit volume of fluid V(t) per unit time. 
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The energy conservation law following from Eq. (2.12) is given by: 

dE d 

2 _ — 
jp^-dV = jpFvdV + [p„vdS+ jpN'dV, (2.14) 

= j - \p(u + ^-)dV = \pFvdV+ finvdS+ \pqedV. (2.13) 
at at vw I VU) S(i) V[r) 

Along with the laws of conservation of mass, variation in momentum, moment 
of momentum and energy, a theorem (law) may be formulated for the relationship 
between the variations of kinetic energy (theorem of live force). As opposed to the 
other mentioned laws, the kinetic energy theorem is not an independent law. Con-
sidering the theoretical mechanics law, kinetic energy theorem is derived from the 
momentum theorem (law). According to this theorem; the changes in kinetic energy 
in time for a given fluid volume is equal to the sum of works (powers) done by the 
external and internal forces acting on this volume. The material derivative of 
Eq. (2.5) is given by: 

dK__d_ 
dt dtV[i) *. V(i) su) V(() 

where N* is the magnitude of internal forces per-unit mass of the medium. 
Please notice that Eq. (2.14), as opposed to the energy conservation law 

Eq. (2.13), includes the magnitude of external and of internal forces. 
The change in the entropy of a given fluid volume V(t) can never be less than 

the sum of entropy inflow through its boundary S(t) and entropy generated within it 
by the external sources. This is the definition of the second law of thermodynamics 
or so called the law of the entropy balance. The mathematical expression of this 
law is formulated through an inequality as follows: 

— jpsdV> jpedV- j^dS, (2.15) 
no vu) s(o 

This inequality is called the Klausius-Dughem inequality, where, s is entropy 
per unit mass, e is power of local external sources of entropy per unit mass, q is 
the heat flow vector through a unit area per unit time. The Eq. (2.15) equality is 
valid for the reversible processes, and the Eq. (2.15) inequality is valid for the irre-
versible processes. 

The left portions of the Eqs. (2.8), (2.10), (2.11), (2.13) and (2.14) can be writ-
ten in a general form as: 

j - \φ(χρί)άν =Φ, 

where qKxj,t) can be one of the values of p, pv, r* pv, p{u + v2/2), pv2/2, and Φ 
representing the right portions of the above formulas. In order to attribute the cor-
responding mathematical formulation to Eqs. (2.8), (2.10), (2.11), (2.13) and 
(2.14), it is necessary to compute the total (material) derivative over the material 
(movable) volume. 



CONSERVATION LAWS. INTEGRAL AND DIFFERENTIAL EQUATIONS 31 

2. Time differentiation of the integral taken 
over a movable volume 

To derive the formula for time derivative, it is necessary to review the position 
of the control volume V(t) at time moments t and Δί (Fig. 2.2). From the definition 
of the total derivative: 

d t , , „ , ,. 1 

Δί 
— l<piXj,t)dV = lim 
dt νω Δ/->0 L 

faxj,t + At)dV- j<p(Xj,t)dV 
VU) 

(2.16) 

where V(t + At) is the position occupied by the fluid volume V(t) at the time / + At. 
As 

faxj,t + At)dV = | <pixj,t + At)dV + faxj,t + At)dV, 
V« + i/) VU) V(l+Al)-VU) 

the Eq. (2.16) may be rewritten as: 

<L f ^ , u , , - , ; „ t<p{xpt + At)-<p{xrt) — fi)(x/,i)i/V = lim '- '-—dV + 
VU) V(l) 

1 
(2.17) 

+ lim— f w(xnt + At)dV 
At J 

According to Eq. (2.17), the first component is equal to: 

t φ(χ „t + At) - <p{x ,,t) c dq>{x,,t) 
lim f^-^ ; ψκ >' ' dV = \ Ψ\' JdV. (2.18) 
Δι->ο J Λ ί J dt 

VU) ^' v«) °' 

Considering (Fig. 2.2), the change in the volume can be formulated by 
V(t + At) - V(t) = V2 + V] - V3 - Vi = V2 - Vi. Here, V2 and Vi are volumes of space, 
respectively, freed and occupied again over the period of time Δί, and V3 is the 
shared portion of volumes V(t + At) and V(t). 

For the volume V2. the volume ele-
ment dV may be computed as the volume _ __^v(r + Ar) 
of a cylinder (Fig. 2.2) with the base dS ,'^1—^L· 'H '" 1"^ 
and height VnAt - v * nAt, where v„ is the v(t) 
projection of velocity on the external 
normal n to the surface S2 separating vo-
lumes V2 and V3. 

Then: 

j<p(Xj,t + At)dV = j<pixj,t + At)vnAtdS. 
*2 Si Fig. 2.2 
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Similarly for the volume V, the height of the elementary cylinder is: v * nAt = 
= -vnAt and 

\(p(Xj,t + At)dV =- jV(x,,r + At)vnAtdS , 
v, i, 

where S\ is the surface separating volumes V] and V2. 
This lead to a conclusion that the second component in the right hand side 

of Eq. (2.17) can be formulated as follows: 

hm— f φ(χ ,t + At)dV = hm—[ [m(x.,t + At)dV -
\ t J ' ΛΙ->0Λ/ J ' 

^ J * V(,+A,)-V(() ^ V2 

-j^xJ,t + At)dV] = \im[j<p(xj,t + At)vndS- (2.19) 

- faxj,t + At)vndS] = J φ(χ],t)vndS, 
S, S(/) 

where 5(0 is a closed surface limiting volume V(t). 
Replacing Eqs. (2.18) and (2.19) into Eq. (2.18) yields: 

de e Βφ(χ,,ί) t 
— \(f>{xpt)dV= f ; dV+ fax^XdS. (2.20) 

V(t) VU) S(() 

In Eq. (2.20), the normal n is considered external relative to the closed sur-
face S(t). 

For further transformations of Eq. (2.20), the Gauss-Ostrogradsky theorem is 
used in the following format: 

jandS =fa*riS= ja^dS = Ιγ-dV = jdivä dV, (2.21) 
i s s v i v 

where a = ejCij, £&, are directing cosines of the normal n, and divergence of the 

vector a is: 
,. - da, 

diva = —-. 
ox, 

According to Eq. (2.21), a = φν, deriving from Eq. (2.20): 

j - \<p{xjJ)dV = \[ψ + άίνφνλαν, (2.22) 
" ' l/(i) ν(ιΛ ' 

where, arguments of the <p(xj,t) are not shown. 

As div<pv = (pdivv + vj^-, 
ox, 

and: 
d<p + v d<p = d£ 
dt ' dx. dt ' 
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Eq. (2.22) can be rewritten as follows: 

d r „, r (άφ 
£. \<pdv = f ^+(pdiv-\ 
dtvit) vl\dt ) 

dV. (2.23) 

The Eqs. (2.20) and (2.23) preserve their appearance even when <f(xj,t) is 
a vector function of its arguments. 

3. Continuity equation (law of mass conservation) 

The continuity equation is a differential form of the mass conservation law for 
the continuous medium. Assuming φ = p in Eq. (2.23) and using the condition of 
a fluid volume mass constancy Eq. (2.8): 

vl\dt 
'ivv \dV =0 . (2.24) 

As this equation is true for any fluid volume, the expression under integral 
in Eq. (2.24) is equal to zero: 

— + pdivv = 0. 
dt 

(2.25) 

Eq. (2.25) is called the continuity equation. If Eq. (2.22) is substituted rather 
than Eq. (2.23), the continuity equation changed to the following format: 

dt H (2.26) 

To derive the continuity equation for a flow-tube, Eqs. (2.8) and (2.20) are used. 
Replace φ = p in Eq. (2.20): 

v(i)f— dV+ \pvndS = Q. 1 at ' 
(2.27) 

SO) 

Eq. (2.27) is called the integral form of the continuity equation. 
Next, Eq. (2.27) is applied to the 

fluid flow through a flow-tube. Carrying 
the effective cross-sections 5, and S2 

(Fig. 2.3), the control surface S is com-
posed of three parts: the effective sections 
5, and S2 (through which the fluid flows 
in and out of the flow-tube segment 
under consideration), and its side sur-
face S,. J | 

Fig. 2.3 
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By definition of a flow-tube, at the points of the side surface S3, v„ = 0. Thus, 
Eq. (2.27) forms the following format: 

j ^ £ dV + \pv„dS + jpv„dS=0. (2.28) 
V " ' 5, S2 

Substituting the definitions of effective cross section for 52 as v„ = v, and for S| 
as v„ = -v into Eq. (2.28) yields: 

j^-dV = \pvdS - jpvdS. (2.29) 

In the case of a transient-free motion, — = 0, and from Eq. (2.29): 
dt 

jpvdS = jpvdS = Qm= const. (2.30) 
s, s2 

The ßm = \pvdS is the fluid mass per unit time, running through the effective 
s 

cross-section or so-called the mass throughflow. It can be concluded from 
Eq. (2.30) that under the transient-free flow environment, the mass throughflow 
along the tube is constant. 

For the elementary flow-tube, Eq. (2.30) takes the following format: 

piviSi = P2V2S2 = const. (2.31) 

A fluid is called incompressible if the density of any particle within that fluid 

is a constant value, i. e., if -£- = 0. Eq. (2.25) for incompressible fluid is: divv = 0. 

- 3v. - -
If divv = 0, and as divv = —L, this condition is valid for v = v(x ) as well as for 

dx. 

V = v(Xj,t). 

Then, under the Gauss-Ostrogradsky theorem: 

jdivvdV=jvndS = 0. (2.32) 
V S 

Repeating the procedure similar to the previous one, from Eq. (2.32) the equa-
tion for the flow-tube of an incompressible fluid is: 

jvdS = jvdS =Q{t). (2.33) 
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The Q = \vdS value is the fluid volume running through the effective cross-

section per unit time or so-called throughflow. Therefore, Eq. (2.33) demonstrates 
that when an incompressible fluid is flowing through the tube, the throughflow in 
all of its effective cross-sections at any time is constant whether the flow is tran-
sient-free or not. 

In the case of an elementary flow-tube, Eq. (2.33) follows: 
ViSi = v2S2, (2.34) 

which shows that the smaller the effective cross-section area, the greater the flow 
velocity, and vice versa. 

4. Motion equation under stress 

The formulation of the momentum law Eq. (2.10) includes the pv value, 

which is the momentum of a unit volume, and the surface force stress pn. Thus, to 

derive the motion equations expressed in stresses, by taking φ = pv in Eq. (2.23): 

d_ip-vdV=(^M + p-vdiv-\V = 
dti i\ dt H Γ 

(2.35) .fa^^y.^y 
According to the continuity Eq. (2.25), the expression in parentheses is equal 

to zero. Substituting Eq. (2.35) into the momentum law Eq. (2.10): 

jp^dV = jpFdV + findS , (2.36) 
V ®* V S 

where from Eq. (1.29) 

Ä = P Ä · (2-37) 

Assuming a2 = 03 = 0 in the Gauss-Ostrogradsky theorem Eq. (2.21): 

\a,aJS=\^dV. (2.38) 

Similarly, for the components a2 and 03: 

ja anldS = j~dV. (2.39) 
S V X\ 

It follows from Eqs. (2.37) and (2.39) that 

findS = I pficnidS = j^-dV . (2.40) 
v dX\ 
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Substituting Eqs. (2.40) into (2.36): 

ri dv dpi 

Λ dt dxij 
dV=0, (2.41) 

Eq. (2.41) is applicable for all kinds of material volumes. The expression un-
der integral is equal to zero, i. e.: 

at dXj 

or in coordinate format: 

dv, dp,, 
P-JL = PFJ+-^L- (2-43) 

dt dxi 

Eqs. (2.42) and (2.43) are called equations of motion of a continuous medium 
and expresses the law of kinetic momentum (or the law of variation of momentum). 

The law of kinetic momentum for a flow-tube can be derived from Eqs. (2.10) 
and (2.20) and by taking φ = pv. as follows: 

j^iM. dv + jpwjs = jpFdV + fi>„dS. (2.44) 
v " s v s 

Eq. (2.44) is the integral form of the kinetic momentum law. 
Consider a closed surface S composed of effective cross-sections of the flow-

tube Si and & and its side surface 53 (Fig. 2.4). Repeating the procedure followed 
to the derivation of Eqs. (2.28) and (2.29), one can obtain from Eq. (2.44): 

y^-dV - jpwdS + jpvvdS = jpJdV + fpndS. (2.45) 

Calling G the mass force acting on the identified volume V of the flow-tube: 

jpFdV = G, (2.46) 

V 

and F, results of the surface forces acting from the fluid in the S\ and S2 sections: 

fp„dS = P. (2.47) 
5,+52 

By using factorization presented in Eq. (1.26) forces acting on surface S3 can 
be determined (the S3 surface may, in particular, be a solid wall). Assigning 

J4=\rTpmdS,T=[TPnTdS, (2.48) 
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where N is resultant of the normal forces, and T is resultant of the tangential 
forces applied to surface 53. 

Substituting Eqs. (2.46), (2.47) and (2.48) into Eq. (2.45) results in the mathe-
matical expression for the momentum law for a flow-tube: 

f9(pv) 
dt 

p£^.dV+ jpwdS - jpwdS =G + P + N + T. 

For the transient-free motion, d(pv) 
dt 

= 0, and Eq. (2.49) reduces to: 

jpwdS- jpwdS = G + P + N+T. 

Using the mean value theorem in the integral calculus: 

\pwdS = v \pvdS = v Qm, 

(2.49) 

(2.50) 

-{mean) , 
where v is mean integral value of the velocity vector in cross-section 5. Be-
cause in the transient-free motion Qm = const, Eq. (2.50) may be rewritten as fol-
lows: 

Qm{v1
im"m)-vtm""')) = G + P + N + T, (2.51) 

where vi and V2 are flow velocity mean values, respectively, in cross-
sections S\ and S2. Keep in mind that expressions (2.44), (2.45), (2.49), (2.50) and 
(2.51) are vector equations, so the variation of momentum may occur at a change in 
the velocity value as well as its direction. 

Eq. (2.51) is convenient for the solution of a number of practical problems 
(examples will be provided in Chapter VII). 

5. Law of variation of kinetic momentum. Law of pairing 
of tangential stresses 

Eq. (2.11), the law of kinetic momentum, includes the teim r*pv. Substitut-

ing the expression <p= r * pv into the Eq. (2.23): 

-\(r*pv)dV= \ 
vu) 

d'r 

(r * pv) + (r* pv)divv 

- f 
V 

-i 

dt 
dV-

dv - -
— * pv + r * v —— + r * p \-(r*pv)divv 
dt H dt Hdt H 

dV--

— *pv + (r*v)\ — + pdivv \ + r*p— 
dt H \ d t H ) H dt 

dV. 

(2.52) 
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Using the continuity Eq. (2.25) and taking into account that — = v and con-
dt 

d~r. sequently — * pv = 0, Eq. (2.52) may be transformed into: 
dt 

— \{r x pv)dV = [~r *p—dV . 
&} } dt 

It follows from Eqs. (2.37) and (2.39) that: 

(2.53) 

[r * PndS = [r x ppJdS = fir*Pi)dV . (2.54) 

Substituting Eqs. (2.53) and (2.54) into Eq. (2.11): 

dv -_ — d(r* Pj) J r*p—-r*pF-'-
dx, 

dV -0, (2.55) 

Because Eq. (2.53) is true for any arbitrary volume, the under-integral expres-
sion must be equal to zero, i. e.: 

p*i = -r*pT+*<rlPl 
dt a*, 

(2.56) 

Eq. (2.56) represents the law of the kinetic momentum. This law has one im-
portant implication discussed below. 

First, multiply the motion vector Eq. (2.42) by the radius-vector r: 

- dv - — 
r * p— = r * Or 

ydt H dx, 

Then subtract Eq. (2.57) from Eq. (2.56): 

dx, dx. 

(2.57) 

(2.58) 

As r = eixi, and —— = e, then Eq. (2.58) may be rewritten as follows: 
ax, 

e, * pt = 0. (2.59) 

Using a known vector equation: 

a *b a, a2 a3 

\ b2 fc3 
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where a\ and b\ are projections of vectors a and feonto coordinate axes. From 
Eq. (2.59): 

e, * pi ■■ 

= ^(ρ2}- ρ}2) + β2(ρ}ι- pi3) + e}(pl2- p2l)=0, 

e\ 

1 

Pu 

e2 

0 

Pn 

ei 

0 

Pn 

+ 

e\ 

0 

ftl 

e2 

1 

P22 

ei 

0 

Pn 

+ 

ei 

0 

ft, 

e2 

0 

ft2 

e3 

1 

ft3 

and from this: 

Pn = P21, Pu = P\3, P23 = P32 or pik = pu. (2.60) 

The Eq. (2.60) represents the law of pairing or reciprocity of tangential 
stresses. It follows from this law that the stress tensor Eq. (1.33) is symmetric 
meaning the stress tensor contains only six different components. Thus, the number 
of variables in the Eq. (2.43) decreases. 

6. The law of conservation of energy 

The law of conservation of energy was shown previously in Eq. (2.13). 

To transform this equation, it is assumed φ = p 
f ν 2 Λ 

u + — 
2 

in Eq. (2.23). Then: 

— [p(u+—)dV = f —p(u+—)dV+p(u+—)divv dV = 
dtf 2 }[dtH 2 2 J 

f d , v2. , v2
K,dp .. — .,, 

= p—(u+—) + (« + —)(-i- + pdivv) dV. 
J H Ht 9 9 dt ^ 

(2.61) 

Taking the continuity equation Eq. (2.25) into account, Eq. (2.61) changes into 
the following format: 

(2.62) 
dtfK 2 ^ fdt 2' 

It follows from Eq. (2.37) and the Gauss-Ostrogradsky theorem Eq. (2.39) that: 

j ^'vdS = J ~P~vamdS = \^f^dV . (2.63) 
S S V "Xi 

By substituting Eqs. (2.62) and (2.63) into Eq. (2.13): 

\ p±(u + ̂ -)-pFv-^^--pqedV=0. (2.64) 
J /It 9 rIY 
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Because this equation is valid for an arbitrary volume, the under-integral ex-
pression must be equal to zero: 

ρ±{Λ + £) = ρΓν + ϊψΐ + Η.. (2.65) 
at 2 dc, 

Eq. (2.65) is a mathematical expression of the law of energy conservation for 
the thermo-mechanical continuum. It shows that the change of total energy is equal 
to the sum of all external forces and the amount of heat supplied per unit time. Re-
member that Eq. (2.65) includes per unit volume values. 

Now it is desired to derive the law of energy conservation for the flow-tube. 
v2 

Assuming φ = p(u + —) in Eq. (2.20) and substituting into Eq. (2.13): 

Λ 2 2 _ 

J ^-p(u + —)dV + jp(u + — )vndS = jpFvdV + j"p„ vdS + jpqedV . (2.66) 
v "1 *■ s *■ v s v 

It is assumed that the stress of the internal force has potential, i. e., F = Vn . 
Then, by taking the continuity equation Eq. (2.26) into account: 

_ _ _ _ Λ -

pFv = pvVYl = divpWv - Yldivpv = divpilv + Π ^ - , 
at 

And, based on the Gauss-Ostrogradsky theorem Eq. (2.21): 

\pFvdV = if divpUv + Π ̂ ) d V = [ Π ^ d V + \pTlv„dS . (2.67) 
v Λ < « ; v or S

J 

Consider a closed surface, the surface composed of the flow-tube effective 
cross-sections Si and 52 and its side surface 53 (Fig. 2.4). In the effective cross-
section Si, v- -nv , in 52, v = -nv, and on the side surface 53, v = T\v where Ti is 
a singular vector positioned on the plane tangential to the flow-tube. Then, taking 
Eq. (1.26) into account: 

\PnvdS = - \PmvdS + \PnnvdS + fp~nvdS . (2.68) 
s st s2 s, 

Now by substituting Eqs. (2.67) and (2.68) into Eq. (2.66) and repeating the 
same procedure used for the derivation of Eqs. (2.26) and (2.27), one obtains: 

f Ap( K + l - ) - n ^ dV+ \p(u+^-)vdS- \p(u + ̂ -)vdS = 
Jl* 2 dtj· SJ

 2 _ * 2 (2.69) 
= l(np+pJvdS-j(Tlp+pJVdS+ jpjivdS+jpqedV. 
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(2.70) 

Eq. (2.69) is an expression of the energy conservation law for the flow-tube in 
the presence of the mass force stress potential. In the case of a transient-free motion: 

r v2 r v2 

J p{u + —)pv dS -\p{u + —)pv dS = 
Si S| 

= j(n+^-)pvdS-j(n + ^-)pvdS+ jpn ßTxvdS + \pqedV'. 
s2 P s, P s, v 

Using the mean value theorem: 

j (u+i-)pv ds=(U+v^-ran jpVds=(U+^rm Qm, 

r (n+^s-)pvds =(n+-£a-)meon ipvds = ( n + ^ - T a n Q m , 
/ P Pi P 

and because in the transient-free motion in the flow-tube Qm = const, Eq. (2.70) 
may be rewritten as follows: 

(M + —) Γ" -(« + —) Γ™ = (Π+^Γ<Μ 

2 2 2 ' p 

1 - ( Π + ^ - ) " - , + - L ^ ^ 5 + - } - \pqedV 

where subscripts " 1 " and "2" denote the corresponding cross-sections. 

(2.71) 

7. Teorem of variation of kinetic energy 

In order to develop mathematical expression of the kinetic energy theorem, 
v2 

it should be denoted φ = p— in Eq. (2.23). Then, by considering the continuity 

equation Eq. (2.25): 

d r v2 „, f d . v \ v2 ,. - „, 

jth
dv=ljt

(p-i)+pjdivT: 

r| d v2 v2 ,dp ,. - „, r d .v2. ... 
p + — i-^ + pdivv) dV= \p—(—)dV } H dt 2 2 dt iy rito' 

v L J v 

Substituting Eqs. (2.63) and (2.72) into Eq. (2.14): 

d v2 - - . 3(p,.v) 1" pFv)-- ^ 
dt 2 H dx, 

-pNw dV, 

(2.72) 

(2.73) 
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And because this equation is valid for an arbitrary volume, then: 

d v2 —- 3(P;V) ,,(,·, 
p = pFv+ v,f' '+pNw. (2.74) 

It follows from Eq. (2.74), i. e., from the theorem of forces for the continuous 
medium, that the rate of kinetic energy variation is equal to the sum of all external and 
internal forces. Both Eqs. (2.74) and (2.75) deal with per-unit volume values. 

v2 

In order to obtain the force theorem for the flow-tube, it is assumed φ = ρ — 
2 

in Eq. (2.20). Then by using Eq. (2.14): 

i l l — dV+ \—vndS = jpFvdV + fpnvdS + jpNU)dV , (2.75) 
ydty 2 J s 2 v s v 

which represents the integral format of the theorem of kinetic energy variation. 
Consider a closed surface 5, the surface limited by the effective cross-sections 

5i and S2 of a flow-tube and its side surface 53 (Fig. 2.3). It is also assumed that the 
mass force stress has potential, i. e., F = VIT. Following the procedure similar the 
one used to derive Eq. (2.69) and using Eqs. (2.67) and (2.68), one can obtain from 
Eq. (2.75): 

ί dt{ 2 ) pt 
dV + j—pvdS - j—pvdS = 

= j j n + Ü2L ]pvdS -ύπ + ̂ - \}vdS + jpn TiVdS + jpNwdV, 
s2\ P J s,V P J s, v 

(2.76) 

which represents an expression of the kinetic energy theorem for the flow-tube with 
the presence of potential of the mass forces. 

At transient-free motion, Eq. (2.76) takes the following format: 
..2\ ( „ ..2λ 

ri_n-^+iLUis-ri-n-^+^ 
p 2) i\ P

 2 

= -±-rPJ]VdS+-±-\pN"dV 

pvdS = 

(2.77) 

-U-P^+
V-

s j \fnean 

1 r - -■jpnTivdS+—fpNindV, 
*im S, «in V 

(2.78) 

where the averaging over cross-sections S\ and S2 has the same implication as in 
Eq. (2.71). 
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In order to compute the internal force magnitude per-unit, Nu), consider Eq. 
(2.68). After a scalar (non-vectorial) multiplication of the motion equation in stresses 
Eq. (2.42) by the velocity vector v: 

-dv d ,v2. —- dp, ,„ „™ 
at dt 2 dXj 

Subtracting Eq. (2.79) from Eq. (2.78) term-by-term: 

dxi axi dxj 

But, as p. = ejpi , and v = ekVk: 

~\rU) dv dekvk dvk 
pN =-piix-=-e^^t=-p*w (2m 

It follows from Eq. (2.80) that, if all points of the continuous volume under 
consideration move at the same velocity, i. e., if vk =vk(Xj,t), the N^l)-0. There-
fore, the work of the internal forces may be different from zero only in a spatially 

non-uniform velocity field where —— Φ 0. 
σχ 

8. Heat flow equation 

In order to obtain an equation describing variation in the internal energy, sub-
tract, Eq. (2.74) from the equation of the total energy conservation law (Eq. 2.65) 
term-by-term results in: 

^L = qe-N
u). (2.81) 

dt 
Eq. (2.81) includes internal energy « per-unit mass, heat input q,, internal 

forces TV*" and is called heat flow equation. It shows that under the adiabatic process, 
i. e., if qe = 0, changes of the internal energy can occur only at the expense of work 
of the internal forces. 

Using Eq. (2.80), this equation may be rewritten as follows: 

^ = ί # + Δ - | ΐ . (2.82) 
dt p dxk 

Eq. (2.82) implies that in the uniform velocity field (i. e., at v,= v,(0) changes 
in the internal energy are determined only by the external heat supply. 

Note that the heat flow equation like the kinetic energy variation theorem is 
not an independent equation but is a consequence of the main conservation laws. 

Examples of the heat flow equation applications are reviewed in Chapter IV. 
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9. Continuous medium motion equations 

The continuous medium motions as defined by the fundamental physical laws 
of mass conservation, kinetic momentum conservation, energy conservation are 
described by a system of equations comprised of Eqs. (2.25), (2.42) and (2.65): 

-ς- + pdivv = 0 
at 

dt öxi 

d, v\ — d(ptv) 
dt 2 dx, 

Therefore, the system of equations describing the motion of any continuous 
medium consists of one vector and two scalar equations, or of five scalar equations. 
In a general case, the system Eq. (2.83) includes 11 scalar variables1: v„ /?,,, p, u. 
Therefore, it is not closed. This circumstance implicates the fact that the conserva-
tion laws do not include any parameters describing the properties of specific conti-
nuous media. As a result, the derived equations need to be supplemented by the 
corresponding interrelations (connections), assigning physical properties of a spe-
cific continuous medium. It should be noticed that for different continuous media 
(such as fluids, elastic bodies, plastic bodies, etc.) these connections are different, 
and the resulting, now closed, systems of equations for different continuous media 
are also different. 

The establishment of connections necessary for specific media requires a pre-
liminary study of the continuous medium deformations or deformation rates. 

The relation between stresses and deformations or between stresses and defor-
mation rates are called rheologic equations. Thus, different rheologic equations cor-
respond to different continuous media. 

It is important to note that in this Chapter it is assumed that there is a postulate 
in the classical mechanics of continua under which the main conservation laws are 
considered valid not only for the entire body under consideration (in our case, 
a material volume) but for any section of a body. This postulate is called the prin-
ciple of locality, and the differential equations - results of the integral laws of con-
servation, are called local formulations of the conservation laws. 

It is also important that, if the coordinate system, in which the continuous me-
dium motion is considered, is moving then all equations in this coordinate system 
preserve their format; however, the mass forces also include the inertia forces app-
earing in the relative motion. 

1 The stress of mass forces F and heat input q, are exeternal actions and are considered given. 
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CONTINUOUS MEDIUM DEFORMATION RATE 

1. Small particle deformation rate. Helmholtz theorem 

Let's review a small particle in the continuous medium as shown in Fig. 3.1. 
Here, point O is the particle's center with the spatial coordinates x·, point O' is any 

point within the particle, vector R(^j) = 00' is to-

tally enclosed within the particle. 
The rate distribution within the particle at a giv-

en moment in time ii is determined by the rate (veloc-
ity) field, i.e., velocity values of points O and 0\ 
correspondingly, v„ =v(x,r,) and v' = v(Xj +ξ],ίί), 

or v„i = v, (Xj, /,), v',. = v(Xj +ξρίχ). The motion 

within the particle is assumed to be continuous and 
differentiable. 

Expanding v', by Taylor's series polynomials: Fig. 3.1 

r)v — 
v'i = v „ i + £ ^ + ... = v,+/?Vv,.+..., (3.1) 

where all derivative are taken at point 0. The particle is assumed to be small, i. e., 
ξ are assumed to be small compared with the linear module in the problem under 
review. Hence, truncating Eq. (3.1) only to the terms of first-order gives: 

r)v — 
ox, 

(3.2) 

or 

:V<,+(/?V)V = Vo+0/?. (3.3) 

Mechanics of Fluid Flow 
by Kaplan S. Basniev, Nikolay M. Dmitriev and George V. Chilingar 

Copyright © 2012 Scrivener Publishing LLC 
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Eqs. (3.2) and (3.3) show that the velocity difference v' - vD is defined by the 
matrix: 

Φ = 

3ÜL1 
dx 

3v, 3v, 

dx] dx2 

dv2 dv2 dv2 

dx] dx2 dx, 
3v, dv-, 3v, 

ydx, dx, 9X, 

(3.4) 

whose elements are multipliers for the terms of first order in the expanding v', with 

the Taylor's series. 
Matrix Φ can be represented as the sum of two matrices, one symmetric and 

another one, asymmetric: 

ca, 

is 
dxk 

'3v, 

L + ^ O 
dxt 

dv, 

\ ox3 dx2 j 

o\ 

CO, 

dv, dv2 

dx2 dx, j 

dv2 dv] 

dx. dx, 

(3.5) 

Rearranging the matrix Eq. (3.4) similar to Eq. (3.5): 

Φ = 

V^31 ^33/ 

0 

ω, 0 
ω2 

0 

= £> + Ω . (3.6) 

It can be seen from Eq. (3.5) that e!k = eu. 

Substituting Eq. (3.6) into Eq. (3.3): 

v'=Vo + DR + SiR„. (3.7) 

Rewriting Eq. (3.7) in the coordinate form: 

"Ί = vel + e, & + εηξ2 + ε,,ξ, - ω,ξ2 + ω2ξ,, 

ν\ = νΰ2 + ε21ξ{ + ε22ξ2 + ε2,ξ, - ω,ξ, + ο\ξ,, (3.8) 

ν'} = νοΐ + ετ,χξχ + εηξ2 + ε,,ξ, - οχ,ξ, + ο\ξ2. 

It follows from Eq. (3.5) that cot values are components of vector (o = ek(ok which 

may be written symbolically as: 

co = -

e\ 
d 

— dc, 

ei 

d 

dx2 

ei 

d 

dx} 

1 -
= — rotv. 

2 
(3.9) 
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Vector ω is called velocity rotor.1 

Introducing a quadratic function: 

Ρ = \ε*ξ&> (3-10) 

Because εΛ = eu, it follows from Eq. (3.10): 

%-{·*■ (3.Π) 

Using Eqs. (3.9) and (3.11), Eq. (3.8) may be rewritten as: 
r)F — — 

v', = ve(+ — + (fl>*Ä)f 

or 

v'=v„+(ß>*Ä)1.+VF. (3.12) 

If the small particle under consideration was perfectly rigid, then, from the 
theoretical mechanics postulate, the velocity distribution within it would have been: 

v = v0 + coR, (3.13) 

where v0 is velocity of progressive advance, and ω is vector of instantaneous an-
gular velocity. Therefore, it follows from Eqs. (3.12) and (3.13) that VF = v'-v, 
i. e., the VF is the deformation velocity. 

Comment: the population of points 0\ surrounding the point 0 forms a fluid 
particle. Over the time dt, the point 0 experiences a displacement of v„dt, and the 
point 0i, a displacement of v'0dt. Fig. 3.1 shows that R + v'dt = R' + v„dt or, tak-
ing Eq. (3.12) into account: 

dR = R'-R = (v'-v0)dt = (ä> x~R + VF)dt. (3.14) 

Assuming R'= ειξ\, combining Eqs. (3.3) and (3.14): 

Λ'= ~ekgk = R = (v'-Vo)dt = R + (RVF)vdt. 
Or, in the coordinate format: 

ξ) = ξ<+ξ^ώ. (3.15) 
dxk 

Eqs. (3.15) can be considered as the fluid particle coordinate transformation 
3v. 

during the dt time interval. Because the —'- values, as indicated earlier, are com-
dxk 

1 Some authors recognize rotv = 2ω as velocity rotor. 
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puted at point 0 they are independent of ξΙι, and the transformation (3.15) is linear. 
Thus, during the dt time interval this transformation transforms the second order 
surfaces into second order surfaces, planes into planes, and straight lines into 
straight lines. For instance, a sphere is transformed into an ellipsoid. 

Let's recall: 

dR = R'-R(dR*d~R), £„= — , (3.16) 
R Rdt 

where ER is relative extension of vector R per unit time. It follows from Eqs. (3.10), 
(3.11), (3.14) and (3.16) that: 

_ dR _ RdR _ R{co*R*VF) _ RVF _ ej& _ IF 
Rdt ~ R2dt ~ R2 
_;»>_ » u « »V„, » * . , . „ . OftMn ^_ i 3 1 7 ) 

ξ. — 
Because — = a, are the directing cosine of vector R: 

R 

ε* = £ä£rL = e*<*Pk = mccj), (3.18) 

and the relative extension eR does not depend on the length of vector R but only 
on its direction. 

Assuming that eR =0, then it follows from Eq. (3.17) that: 

/? ~R° 
eR=ArVF = —VF = 0, (3.19) R R2 R 

/? 1 
where R = — = —e£k is the singular direction vector R. As Eq. (3.19) is valid 

R R 

for any R (taking Eq. (3.11) in consideration): 

- dF -

Therefore, £ft£t = 0 and, as ξΙί are arbitrary, ejk = 0. The inverse statement is: if all 

ejk = 0 then ερ = 0, and the particle behaves as it is perfectly rigid. 

It follows from the same argument that v* = VF is indeed the deformation ve-
locity. 

Now Eq. (3.12) can be rewritten into the following format: v' = vm+v* = 
= v» +co*R + VF . This equation is the form of the First Helmholtz theorem: the 
motion of an elementary fluid volume may be presented at any given point in time 
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as expanded into the quasi-rigid motion with the velocity vm (which is equal to the 
sum of the translation velocity v„ and rotation velocity co* R) and the deformation 
motion with velocity v* = VF. 

2. Tensor of the deformation velocity 

Let's review the scalar product RVF first. It follows from Eq. (3.11) and from 
_ _ _ _ dp· 

the vector R definition that RVF = e;£et —— = εΙΙ(ξίξΙί . 

The scalar product in its concept is invariant relative to coordinate conver-
sion, thus: 

εξ&=ε^ξη~ξ„, (3.20) 

where ξί are coordinates of the old coordinate system, and £. coordinates of the 
new one. 

The vector R in both old and new coordinate systems is expressed as 

R = ek^k -ej ζ j where es are unit vectors of the new coordinate system. By mul-

tiplying this relationship by et, the equations for the coordinate transformation can 

be obtained: 

ξ* = ej ~ek ~ξί = ~ξί ajk = ξ„ amk = ξΛ ank, (3.21) 

where ajk are cosines of the angles between the axes of the new and old coordinate 

systems. 

Substituting Eq. (3.21) into Eq. (3.20) results: εΛξ^=ε.Αξ<ηαΜξηαηί = 

= ε„η ξΜ ξ„. This equation is valid for any ξη and ξη, so: 

* - = eikamiank. (3.22) 

Eq. (3.22) is the definition of an affine ortagonal vector of second rank. Thus, 
the deformation velocities are symmetric (εΛ=εα) tensors of second rank, com-
ponents of which are established by the following matrix: 

D-
11 c 12 c 13 

£2i ε22 ε2} 

V^3I ^32 ^33 7 
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3. Physical meaning of the deformation 
velocity tensor components 

To find out the physical meaning of the deformation velocity tensor compo-

nents £ik, let's review vector R which is parallel to the Ox\ axis. The directing co-

sines for this vector are a, = l,a2 = «3 = 0; in this case, using Eq. (3.18), εΗ=εη_ 

Therefore, f,, is the relative extension velocity vector for the vector parallel to the 

Ox\ axis. Similarly one can show that £kt are the relative extension velocities along 

the corresponding coordinate axes. 
Assume that both translational and rota-

tional velocities of a fluid particle are zero. 
Let's consider vector R coplanar with x\Ox2 
plane (Fig. 3.2). During time interval dt, this 
vector transforms into vector /?'which may 
not be coplanar with the x\Ox2 plane. Then 
(Fig. 3.2), 0\0\ v dt Fdt. Let's expand vector 
v dt into the vectors 0\Oi and O2O1 such that 

the vector Οχθι is perpendicular to R and 
coplanar with X\Ox2- From Fig. 3.2 it can be 

■v \dt, and v is a corn-Fig. 3.2 

ponent of vector v on the x\ Oxi plane. 
Because Ot02 = Rdq> = v\ dt, then: 

άφ _ v*i _ riVF 
dt ~ R~ R 

concluded that Ot02 

J_3F=J_3F 
R dn R2 dq>' 

where n is a singular vector directed along 0\C>2-

The vector R coordinates on the x\Ox2 plane are ξί =Rcos<p, ξ2= Rsin<p, 
£,=0 and, according to Eq. (3.10): 

1 R2 

F = -(εηξ
2ι + 2εηξ\ξ2 + ε22ξ2

2) = —(£·,, cos2 φ + ει2 sin2#> + ε22 sin2 φ), 

from where: 

- f = τ(£22 -εηξ)ΆΤί2φ+εη cos 2φ). 
at 2 

(3.23) 

Now let's review vector R\, peφendicular to R and coplanar with the x\Ox2 

π plane. It can be seen that φχ =φλ— and from Eq. (3.23) d<px =-dq>. Therefore, 
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vectors R and R\ are either divergent or convergent, but always rotate in the oppo-

site directions. The rate of γ of the angle variation between vectors R and R\ is 
• άφ ' 

equal to γ = 2—^. If φ= 0, considering Eq. (3.23) results in / = 2ε]2. dt 
So, εη represents one half of the coordinate an-

gle skewing rate in the X\0x2 plane. The 
£ik(i *k)components have a similar meaning on the 

corresponding planes. 
Let's review an example of flow with a veloci-

ty field vi = 0, V2 = I0C3 and V3 = 0. It is can be seen 
that in this case an infinitely small square OABC 
(Fig. 3.3) over the time t with the second order ac-
curacy to small variables will turn into a rhomb £· 
OA\B\C. According to Eq. (3.5), for the field of assigned velocities: 

k 

£11 = £22= £33= = £12= £ 1 3 = 0 , £23 = T · 

Therefore, the skewing velocity of the direct angle AOC is equal to γ = 
= 2e23 = k. 

4. Tensor surface of a symmetric second rank tensor 

Consider a second-order surface with the center in the origin of coordinates. 
Its equation is given by the analytical geometry: 

aijXjXj=\,aij=a}ii (3.24) 

where x, are Cartesian coordinates, ay are coefficients of the second-order surface. 
When changing from one coordinate system to the other, the Cartesian coordinates 

transform according to following rule x, = aki xt, Xj = a{j χι, and in the new coordi-

nate system Eq. (3.24) can be written as follows: 

α^α^α^ Xk xi = am„ xmx„=l, (3.25) 

where amn are the second-order surface coefficients in the new coordinate system. 
Eq. (3.25) indicates that the second-order surface coefficients in the new and 

old coordinate systems are associated in the following way: 

amn = αήαημη{, 

i. e., a,j = second-order surface coefficients [Eq. (3.24)] represent a symmetric tensor 
of second-rank. 
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Thus, each symmetric tensor of the second rank may be put next to a second-
order surface in Eq. (3.24), and any second-order surface in Eq. (3.24) may be placed 
next to a symmetric tensor of the second rank. The surface atjXjXj = 1 is called the 
characteristic surface of the second rank tensor or the tensor surface. 

The analytical geometry proves that any second-order surface in Eq. (3.24) has 
at least three such mutually ortagonal directions which, if taken as coordinate axes, 
lead to the canonic form. These directions are called main or own directions, and 
the coordinate axes, the main axes of the tensor surface. 

Tensor surface [Eq. (3.24)] in main axes has the following form: 

(a,*,2 + a2x2
2 + a « 2 ) = 1, (3.26) 

with the matrix of tensor a,*: 

at 0 0} 

0 a2 0 

,0 0 α,; 

The components of the tensor a,y written in main axes are called main compo-
nents and are denoted by one subscript. 

As follows from the Helmholtz theorem, in a general case the main axes of the 
tensor surface are rotating with the instantaneous angular velocity ω. 

The deformation velocities of an infinitely small spherical particle are given by: 

ξ\ +£ + 6 =l ( 3 2 7 ) 
R2 

During the time period dt, it will transform into an ellipsoid:2 

2 p2 p2 
6 2 ' 9 § - = l. (3.28) 

11 b2 c 

As discussed earlier, the ellipsoid semi-axes are: a = R(l + e\dt), b = 
= R{\ +B2dt),c = R{\ +e3dt). 

The velocity Θ of the particle's volume expansion is: 

4 1. 4 - o 3 
V<-v ^ a b c ~ ^ dv 

Θ = lim = lim ——;— = ε.+εΊ+ε,= —'- = divv, 

3 

where V is the volume of the ellipsoid-Eq. (3.28), V is the volume of the sphere-Eq. 
(3.27). It can be concluded from the definition of the volume expansion velocity that 
Θ and divv are the invariants relative the coordinate transformation. 

2 Main axes of the ellipsoid may not coincide with the coordinate axes Ox.due to the rotation deformation. 
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5. Velocity circulation. Potential motion of the liquid 

Let's review a curve AB within a volume occupied by a fluid. Draw vectors v 
in each point of the line (Fig. 3.4). A scalar product v*ds, where dsis an element 
of the AB curve, does not depend on the coordinate selec-
tion. The corresponding value: 

Γ= yvds = \vsds (3.29) 

Fig. 3.4 

is called the linear integral of vector v along the AB curve 
or the velocity circulation along this curve. When integrat-
ing from A to B or when the pass-around direction 
changes while integrating along the closed curve, the cir-
culation sign changes to the opposite. It means that the cir-
culation along the closed contour (Fig. 3.5) is equal to the sum of the circulations 
along contours I and II, because the integral Eq. (3.29) along theAß line is com-
puted twice, and in the opposite directions. 

According to the Stokes' law, circulation at velocity v 
along a closed contour L is equal to the doubled vortex 
flow of rotor co through surface S tightly pulled over this 
contour, i. e.: 

Γ= jvi/j = 2J"iürfs = 2riy„ds. (3.30) 

If there is a function (fixjj:) satisfying the following 
condition: 

ox, 

Fig. 3.5 

(3.31) 

then the flow is called a potential flow, and the function φ is called the potential 
velocity. It is proven mathematically that for the potential velocity to exist, the fol-
lowing is necessary and sufficient: 

—*- = 0,i*j. (3.32) 
dXi dx, 

By definition, the rotor of velocity CO is equal to: 

co = — rotv = 
2 

ei 
d d 

dxt dx2 dx} 

(3.33) 
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and it follows from Eqs. (3.36) and (3.37) that if v = V<p then ω=0, and con-

versely, if ω = 0 then v = SJq>. It means that the condition ω = 0, i.e., the ab-

sence of rotors, is necessary and sufficient for the existence of a potential flow. 

As the AB curve's element ds = ekdxk, the potential flow from Eqs. (3.31) and 

(3.32) forms the following format: 

Γ = fid's = Je,-^-ekdxk = J ψ-dx, = \d<p= <p(B)-<p(A). (3.34) 
'At, dx, 

Therefore, in this case the velocity circulation depends only on the positions of the 
initial and final points of the AB curve and does not depend on the integration path. 

If potential φ is non-univalent, the circulation along the closed contour L 
differs from zero. This case can happen if there are rotors within the area encircled 
by contour L. 

Under a potential flow, the circulation along the closed contour L is not equal 
to zero only if contour L cannot be constricted to a 
point through a continuous transformation, i. e., if the 
area within L is multiloop (Fig. 3.6). Potential within a 
multiloop area may be non-univalent. 

Let's review the flow with the velocity potential as 
an example: 

Fig. 3.6 
= — θ = —arctg — 

2π 2π χ, 
(3.35) 

Fig. 3.7 

equation can be obtained: 

Function φ is univalent on contour M and non-
univalent, on contour L (Fig. 3.7). After a pass-around 
of point O, potential φ obtains an increment equal to 
lion, where m is the number of pass around about 
point O. Point O (the origin) is a singularity. The cor-
responding potential within it maintains a finite value 
but this value depends on the pass along which the ap-
proach to point O is conducted. 

Thus the following form of the velocity potential 
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= const 

Vector v = Vq> is perpendicular to the line φ = const and is directed toward 
the increase of function φ = φ{θ). The flow-lines 
are circles with the center at origin (Fig. 3.8). 

When r—>0, v—>°°, i.e., the origin is a 
singularity region of the velocity field. At this 

point, derivatives —— and —— experience dis-
axt ax2 

ruption; therefore, the Stokes' law conditions are 
violated. But if the point r = 0 is excluded, the 
area becomes multi-loop. A singularity may be pjg 3 g 
considered as a concentrated rotor. 

Circulation along the circle C with the center at point O is equal to: 

Γ = \vdr = \vrd<p = 2mv = J. 

Circulation along any closed curve C\ which contains the origin is equal to J. 
Indeed, Tc = ΓΒΑ +TC+ ΓΑΒ = Tc, where the subscripts correspond to the curves 

along which the integration is performed (Fig. 3.9). 
Now consider the field of rotor ω. Vector 

lines3 — rotor lines — may be constructed for this 
field. Similar to the flow-tube, rotor tubes may be 
constructed with their effective cross-sections 
(Fig. 3.10). 

It follows from Eq. (3.33) that divco=0 and, 
under the Gauss-Ostrogradsky theorem, 

jdivajdV=jco*ndS=^ndS=0, (3.36) Fig. 3.9 

i. e., vortex flow through a closed surface is equal to zero. 
Take a rotor-tube limited by the cross-sections 5i and S2 and by the side-

surface S3 (Fig. 3.10). By definition, for a rotor-tube ωπ=0 at S3, so from 
Eq. (3.36): 

\condS = fadS + = 0. (3.37) 

3 See Chapter I, Section 4. 
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Reversing on S\ the direction of the normal and using the Stokes' law 
Eq. (3.30), the following equation can be derived from Eq. (3.37): 

\o)ndS = \wndS + = - fid's = - Γ . (3.38) 

Eq. (3.38) indicates that circulation along any closed contour C containing the 
rotor-tube is a constant value. This conclusion is the second Helmholtz theorem. 

From Eq. (3.38), for an elementary rotor-tube: 

2β^Δ51=2ω2Δ52=Γ, (3.39) 

where 5i and 52 are cross-section areas of the rotor-tube. The value 2coAS is called 
the rotor-tube stress. 

Eq. (3.39) shows that if the co value is finite within the entire volume of the 
fluid, the Δ5 within this volume is also finite. Therefore, the rotor-tubes cannot 
end within the fluid volume. They are either closed onto themselves, or end up on 
the surface or stretch into infinity. Apparently, the same conclusion is valid also for 
the flow-tubes. 

4 When using the Stokes' law, the pass-around direction along the contours encircling the cross-sections 5, and S2 

should be the same. That is why, if we take an external normal on S2> it is necessary to take an internal normal on S,. 



CHAPTER IV 

LIQUIDS 

1. Mathematical model of ideal fluid 

As it has already been discussed in Section 2.9, the system of equations of 
continuous medium Eq. (2.90) is unclosed. In order to close it, it is necessary to 
add the rheological equation of the continuous medium under consideration, or in 
other words, to assign the properties of this medium. The simplest continuous me-
dium model is the ideal liquid. 

The ideal fluid (gas) is such Isotropie continuous medium where there are no 
tangent stresses, i. e., pik = 0 (i Φ k). At that, the normal stresses are compressing, 
their value depends only on the point within the continuous medium and does not 
depend on the direction. Tangential stresses in liquid occur due to the friction. That 
is why it may be stated that the ideal fluid is fluid devoid of the internal friction. 

Disregarding the internal (inner, viscous) friction significantly simplifies ma-
thematical handling of hydrodynamic problems. In some cases it helps understand 
the physics of the processes under consideration. Besides, the ideal fluid model al-
lows for a good enough description of such practically important phenomena as 
hydraulic shock, emergence of shock waves in gases, of the wing's lifting force, 
flow-around of smooth bodies, etc., etc. 

For ideal fluid, by definition: 

Pnn = P\ = P2 = Pi=-P- (4·1) 

A positive scalar value p is called pressure. It is usually assumed that the in-
troduced value p is identical to the pressure used in thermodynamics. This, howev-
er, needs additional substantiation. 

The minus sign in front of p indicates that only compressing normal stresses 
are accepted in fluids. The stresses in ideal fluid are: 

In a vector format, 

~P„=-Pn, (4.2) 

in a tensor format, 

Ρν=-Ρδ„, (4.3) 

Mechanics of Fluid Flow 
by Kaplan S. Basniev, Nikolay M. Dmitriev and George V. Chilingar 

Copyright © 2012 Scrivener Publishing LLC 
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and in a matrix format, 

-p 0 0} 

0 -p 0 

0 0 - p 

where ^ is the Kronecker delta. The stress tensor in ideal fluid is often called 

spherical or isotropic. The reason for that is that the tensor surface corresponding to 
the stress tensor is a sphere, and physical properties assigned by such tensors are 
isotropic. 

Eq. (2.83) includes such parameters as — ' - , ——'—. Based on Eqs. (4.1) 

and (4.3): 

9p, _ deip _ _- dp_ _ _ „ 

3x dx, dx, 
(4.4) 

M-_*Ce tpe*vk) _d(p^ = _divp-_-Vp 
3x dx, dxt 

(4.5) 

Substituting Eqs. (4.4) and (4.5) into Eq. (2.83) results in an ideal fluid model: 

-^- + pdivv = 0 

P^ = PF-VP 
at 

(4.6) 

P—("+—) = pFv-divpv + pqe. 
at 2 

The first equation is the continuity equation, the second one is the Euler's mo-
tion equation, and the third one represents the energy conservation law. 

Systems of equation Eq. (4.6) includes five scalar equations and six variables 
(p, v„ p, u). In order to close it, it is necessary to assign the equation of state: 

P = P(pT), (4.7) 

which associates the pressure, temperature and density, and the caloric equation of 
state: 

u = u(p,T). (4.8) 
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Eqs. (4.6), (4.7) and (4.8) include seven equations and seven variables and a 
closed system of equations describing the motion of an ideal compressible flu-
id (gas). 

To derive the kinetic energy theorem in the ideal fluid, Eq. (4.5) should be 
substituted into Eq. (2.74). The result is: 

Λ.2Λ 
= pFv-divpv + pNw. (4.9) d 

PJt v 2 y 

According to the ideal fluid definition and Eq. (2.87), an expression for the in-
ternal forces pf^l) is: 

PNU) = "A* ̂ r = PT1 = Pdivv <4·10) 
dx: dc, 

or, by considering the continuity equation Eq. (2.32): 
pNw = -pdivv = - ü 3 P . (4.11) 

p dt 
Considering Eqs. (4.10) and (4.11), the heat inflow equation Eq. (2.88) can be 

presented with the following format: 
du _ p dp 
~di~qe+~pITt 

or 

^ = ϊ . + ^ (4·12) 

*L = qe-P-divv. (4.13) 
dt p 

Thus, considering Eqs. (4.12) and (4.13), internal energy variation in the ideal 
fluid can occur only due to the supply of external heat qe and to changes in its den-
sity (volume). 

2. Mathematical model of ideal incompressible fluid 

At transient-free fluid flow as well as non-stationary flow with soft velocity 
changes, fluid's density variations are negligible and can be disregarded. The same 
argument is valid for the transient-free gas flow at a low velocity or a flow with 
soft velocity changes. In such cases, the non-compressible fluid model can be used. 

A fluid is incompressible if p = const for a material particle or (under the defi-
nition of material derivative, see Eq. (1.14)) if: 

^ = ^ + Vii£ = 0 . (4.14) 
dt dt dxi 

A fluid is incompressible and uniform if the density value is constant and is 
the same for all material points within the fluid volume under consideration. In 
such a case: 

^ = 0 , ^ = 0 a n d ^ = 0. (4.15) 
dt dt dx, 
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Here, density is not an unknown function but a known value assigned at the 
problem setting. 

Eq. (4.14) (or (4.15)) is the equation of state of incompressible fluid. 
As Eqs. (4.6), (4.14) and (4.15) show, regardless of whether the incompressi-

ble fluid is uniform or non-uniform, the system of motion equations has the follow-
ing format: 

divv = 0, 

(4.16) 

P^ = PF-VP. 
at 

In the case of a uniform incompressible fluid, the system of above equation 
contains four unknown functions of the space and time (ρ,ν,), and, hence, it is a 
closed system. In the case of a non-uniform incompressible fluid, the system of eq-
uation [Eq. (4.16)] contains five unknowns, so to close it the application of 
Eq. (4.14) is necessary. 

The closed system of equations describing the motions of an incompressible 
fluid is purely mechanical, i. e., it does not include any thermodynamic parameters. 

The law of kinetic energy variation Eq. (4.9) for a incompressible fluid is: 

d 
pJt 

' ν ^ 
-■pFv-vVp, (4.17) 

as, according to Eqs. (4.10) and (4.11), in this case Λ^0 = 0. 
The heat-flow equation [Eq. (4.12) or (4.13)] then becomes: 

du 
- = q , (4.18) 

Multiplying (scalar multiplication) the second equation of Eq. (4.6) by v and 
subtracting the result from the third equation of Eq. (4.6) results an incompressible 
fluid equation: 

du 

which coincides with the heat-flow equation [Eq. (4.18)]. Thus, the use of the ener-
gy conservation law or heat-flow equation enables only a judgment of the internal 
energy, i. e., of changes of its temperature. 

It is important to note that the temperature variations can have no effect on the 
flow of an incompressible ideal fluid. 
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The boundary condition at a hard wall for the Euler's equation is derived from 
the condition of non-leakage of fluid through the hard surface, i. e., the following 
condition must be valid at the points of the hard surface: 

v*n = V *n, (4.19) 

where V is hard surface points motion velocity, and n is a normal to this surface. 
If the hard surface is stationary: 

v, = v * n = 0. (4.20) 

It is necessary to mention that due to the presence of non-linear terms such as: 

dA dA dA _ , . - _ , . , . -
— = — + v, ——, pdivv and divpv 
dt at dx, 

Eqs. (4.6) and (4.16) are systems of nonlinear differential equations with par-
tial derivatives. The nonlinearity makes it very difficult to come up with accurate 
solution of the hydromechanical equations even for an ideal fluid model. 

3. Viscous fluid. Stress tensor in viscous fluid 

Pll 

Pl\ 

Pl\ 

Pn 

Pn 

Pn 

Pn) 

Pn 

Pn) 

+ 
(-P 

0 

l o 

0 

-p 
0 

°) 
0 

-p) 

+ 
fr„ 

Ϊ2Ι u, 
Γ,2 

T22 

T32 

O 
r23 

rj 

A viscous fluid is a continuous medium with the following properties: (1) the 
fluid is an isotropic continuous medium, i. e., all directions within it are physically 
equivalent (properties do not depend on the direction); (2) the stress tensor in a 
viscous fluid has the following format: 

or Pik=-pSik+Tik, (4.21) 

where τ,* are viscous stresses which depend on ε,*, <5,* — Kronecker's delta. If in 
addition the correlation between tensors τ,* and ε,* is assumed to be linear then the 
viscous fluid is called the Newtonian viscous fluid. In other words, Newtonian visc-
ous fluid requires that each one of the nine components of the viscous stress tensor 
must be linearly associated with all nine components of the deformation velocity 
tensor. The most general format of this linear association is: 

Γ| 1 = ß l 11 iCi i + a i 122622+<2| 133^33+ · · · +Ö112l£2b 

T22 = Ö221 \E\ 1 + Ö2222C22 + ß2233£33 + . . . + 02221^21, 

T21 = «1211^11 + Ö2122£22+ 02133633+ ■■■ + 02121^21, 
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Or in a matrix format: 

1121 

2221 

3321 

2321 

1321 

1221 

3221 

3121 

2121/ 

(ε Λ 
c l l 
£ 2 2 

£3 3 

£"23 

«13 

εη 

^32 

« 3 , 

V«2iV V 7 2 l 7 V"21 l l "2122 "2133 "2123 

or, by using the summation convention: 

Γ// = ayicfiu-

For an isotropic continuous medium, the aggregate of components iaiJk,l form-

ing the tensor, forth rank, should be such that at any orthogonal transformation of 

the coordinate system the matrix L J would not change its form. This limitation 

allows for introducing the decisive form of the ayu tensor and determination of a 
connection between the τ,* and ε,·* tensors. 

The üiju coefficients must satisfy the symmetry conditions, the conditions that 
result from the symmetry of the stress and deformation velocity tensors. That is 
why the αν« coefficients must satisfy conditions ayu = a^u - ajuk = α//<*. Besides, the 
exchangeability condition of ij ana kl pairs is realized foray«. Therefore, this results 
in subscript symmetry: 

Oijkl = Cßkl = üßtic = üißk = dklij ~ dlkij = O-lkji - O-klji- (4.22) 

The symmetry condition [Eq. (4.22)] reduces the number of independent com-
ponents of the üijki tensor: 

1112 

2212 

3312 

2312 

1312 

1212 

2312 

1312 

1212 7 

(ε \ 
c l l 

«22 

«33 

£"23 

«13 

£ ] 2 

«32 

«31 

V«2 lV 
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As it can be seen, the last three lines in the matrix are the same as the previous 
three lines, so the matrix can be simplified: 

(1U2 

2212 

3312 

2312 

1312 

1212/ 

(ε Λ 
c l l 
ε21 

ε3} 

*23 

*13 

\£I2J 

(4.23) 

Thus, with the symmetry condition [Eq. (4.22)], in general case the linear asso-
ciation between the symmetric tensors, second rank, contains 21 independent coef-
ficient (a constant) ayu. Let's assume the 
matrix Eq. (4.23) is presented in the "old 
coordinate system" Ox\XiX3 (Fig. 4.1) and 
perform a coordinate transformation x\ = 
= x\, χ'ι-~χι, χ'τ, = χζ (the mirror reflec-
tion in plane 0x1*3) as assigned by the 
transformation matrix: 

a,, 

(\ 0 0Λ 

0 - 1 0 

0 0 1 

■*2 

(4.24) 

Fig. 4.1 
Under the requirement imposed on 

the matrix of the coefficients ayu, the ma-
trix components should not change at any orthogonal transformation. So, the fol-
lowing equality: 

a ijkl = O-inO-jmO-ktO-lrO-nmlr - « ijkl (4.25) 

should be realized of the components in the new and old coordinate systems. Let's 
review the condition imposed by Eq. (4.25) on the matrix a^i components by trans-
formation Eq. (4.24). For example, by reviewing the component 01222: 

fl 1222 = 0-\iO-2jO-2\<ßll0.ijU. 

then substituting the transformation matrix [Eq. (4.24)] components into this equa-
tion results: 

#1222 = -01222-

This is the reason that the condition of Eq. (4.25) is valid only at 01222 = 0. It can 
be shown in a similar fashion that for the condition Eq. (4.25) on the transforma-
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tion Eq. (4.24) to be valid, all a,y« matrix components containing the uneven num-
ber of subscripts 2 must be equal to zero. After reviewing the transformations: 

or, = 

(-\ 0 0^ 

0 1 0 

10 o lj 
and a0 = 

ί1 ° 
0 1 

,° ° 

(p 
0 

-h 

the matrix ayu components have certain requirements "all components containing 
the uneven number of subscripts 1 and 3 must be equal to zero". Therefore, the 
Eq. (4.23) changes into the following format: 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

l232: 

0 

0 

o ϊ 
0 

0 

0 

0 

New requirements of the matrix components can be derived upon reviewing 
the transformation matrices: 

or, 

f0 1 0λ 

0 0 1 

1 0 0 
<*„ = 

Ό l 
l o 0 

0 0 - 1 
' « ( ,= 

^0 0 O 

1 0 0 

0 1 0 

Reviewing condition of Eq. (4.25) for these transformations results in the follo-
wing conditions: 

o i l 11 - Ö2222 =03333, 01122=01133 = 03333, 02323=01313 = 01212, 

and the matrix equation: 

fr \ 

ΛΐΏ1 

0 

0 

0 

a, 

0 

0 

0 

1212 

0 

0 

(4.26) 
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Reviewing the transformation representing a rotation by 120° relative to Z-axis 
results: 

a., 

f -1/2 V3/2 θ"| 
■Λ/3/2 -1 /2 0 

0 0 1 

and consequently results in the following condition: 

«1212 = — (.Ö1U1 -a\\22>-

Assuming α\\\\ = λ + 2μ, αιη2 = λ results α\2η = μ (λ and μ are called Lame's 
constants). Rewriting in index format, the matrix of coefficients in Eq. (4.26): 

aiju = λδφΗ + μ(δίΚδβ + öuöjk). (4.27) 

The substitution of Eq. (4.27) tensor into Eq. (4.21) results in the association 
between the τ,* and ε,* tensors for an isotropic viscous fluid. The viscous stress ten-
sor in the matrix format is: 

(4.28) 
7,3 

r23 

7 3 3 , 

= Mivv 

V 

- i 
0 

0 

0 01 

1 0 

0 1, 

+ 2μ 

(ε 
c l l 
£2\ 

fil 

εη 

ε22 

£32 

ε \ 
c 13 
£2i 

£iij 

and in the index (subscript) format: 

rv = λάίννδ^ + 2μεη, εα = diw. 

Substituting Eq. (4.29) into Eq. (4.21), the final result is: 

Pu =-ρδυ+ ί /^Α + M3A + $ Λ )Jfy = -ρδβ + λδ^Ά + 2με,ί 

(4.29) 

(4.30) 

Eq. (4.29) shows that viscous properties of a fluid are defined by the λ and μ 

coefficients. If the fluid is not compressible, divv = 0, and then only one coeffi-
cient, μ, exists for a incompressible fluid. It follows from Eq. (4.29) that μ affects 
not only the tangential stresses but also normal stresses. 

The summation in the Eq. (4.30) is the expressions for normal stresses />**: 

Pn + Pv + Px =-p + U + Ιμ^αίνν = -ρ + ξάϊνν . (4.31) 

The ξ-λ-ν—μ is the coefficient of the second or volume viscosity. The ki-

netic gas theory shows that for monoatomic gases ξ = 0, but in general ξ Φ 0 . 
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A conclusion based on Eq. (4.31) is that for a incompressible fluid, the pres-
sure is the arithmetic average of normal stresses. 

For example, consider a transient-free flow with the velocity field of (Fig. 4.2): 

vi = kx2, V2 = V3 = 0. (4.32) 

From the equations stated earlier: 

,. - dv,. 1 dv, 

dxi 2 dx2 

^11 = ^22 — ^33 = ^13 = ^23 = " · 

From this, based on Eq. (4.29): 

Ξ7 _,>, 
/ Pll = M^T- ' PU= />22 = P33 = - P , Pl3 = i>23 = 0. 
' dx2 

Therefore, in this example only the angle 
skewing is occurring, and such a flow is called 

dv 
Fig. 4.2 simple shear. The 2εη = — L , as proved earlier, is 

dx2 

the velocity of the coordinate angle skewing and is called shear velocity. 
Eq. (4.32) from Eq. (3.38), the flow lines - straight lines X2 = const. 

According to ω - — rotv = 

e\ ei ei 

A . _°L JL 
dxs dx2 8JC3 

fcc2 0 0 

= -eik, e. i., the flow under 

consideration, despite the presence of straight flow-lines, is a rotor flow. 

The equation pl2 =μ—± is a well known Newton's friction law where// is 
ax2 

\f 
the dynamic friction factor. For gases, μ is often determined from μ = μ0 I— 

where T is temperature, °K. The more exact equation (Sutherland equation) is: 

l + C/ΤΌ [f 
μ = μ0 °- I— , where C is a constant differing for various gases. 

The above equations indicate that the gas viscosity increases with the tempera-
ture. For liquids it works the other way: their viscosity declines as temperature in-
creases. 

As in the fluid (gas) flow, the temperature depends on space and time, the vis-
cosity factors are also functions of the space and time. 
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4. Motion equations of viscous fluids 

The continuous matter motion equation is used to derive the fluid matter mo-
tion equation (2.43). 

2 
Considering λ = ξ — μ , from Eq. (4.29): 

dp£=d_ 
dx, dx, 

= a_~ 
dx. 

-ρ + (ξ--μ)άίνν διί+2με,\ = 

-ρ + (ξ--μ)αίνν Λ+2 
ax, 

From Eq. (3.5): 

d(ji£u) _d//idv,. 3νΛ ^djd^ dvj_ 
dx dx, I 3x; dx, . dx, \dXj dx, 

= R 

(4.33) 

(4.34) 

V//Vv + νμ—- + μ^—<1ίνν + μΑν,, 
dxj dxj 

where Δ is the Laplace operator. 
Substituting Eqs. (4.33) and (4.34) into Eq. (2.43): 

dt dx, P-^-=PFj-fr+tjAv<+±-
d_ 

dx, 
(ξ--μ)άίνν 

+μ —— divv + V//V v + V / / — 
dx, dx, 

(4.35) 

Eq. (4.35) is called Navier-Stokes equations for a viscous compressible liquid. 
At μ = ζ= 0 they convert into Euler's Eq. (4.6). The Navier-Stokes equations, as 
as opposed to the Euler's equations, are nonlinear equations of the second order. 

In order to derive the equation of the energy conservation law for the viscous 
compressible fluid, first the following equation should be computed: 

d(p,v) _ d(pijVj) _ dv 

dx, 
From Eqs. (3.5) and (4.29): 

dv, 

dx, 
P>J 

dx, 

dp. 
(4.36) 

Pu dx, 
ρ + {ξ--μ)άίνν *.+**.& 

-ρ + (ξ--μ)ώνν 
dv . dvj 

dx " dx, 
(4.37) 

-ρ + {ξ--μ)<ϋνν άίνν+ΐμε.ε^ 
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And, from Eqs. (4.33) and (4.34): 

UP, 
"'äT* -ρ + (ξ--μ)αίνν 

dv 
(4.38) 

+v V//Vv + v.V// + ßvV(divv) + ßvAv 
dx, 

Substituting Eqs. (4.237) and (4.38) into Eq.(2.65) and using a known equa-
tion of the vector analysis: 

άίνφν = (pdivv + vV#>, 
one obtains: 

d , v . —- .. 
p—(u + —) = pFv + div 

dt 2 
-ρ + (ξ--μ)άίνν v + v,V//Vv, + v V / /— + 

ox. 

(4.39) 
pvV(divv) + μνΑν + Ιμε^ + pqe. 

Eq. (4.39) represents the energy conservation law for a viscous compressible 
fluid. When μ = ζ = 0, this equation changes into the equation for the ideal fluid-
Eq. (4.6). 

The systems of equations for a viscous compressible fluid includes 9 unknown 
variables (ρ, μ, ζ, «, p, v, and T) and seven equations: the continuity equation-
Eq. (2.32); equations of state-Eqs. (4.7) and (4.8); motion equations-Eq. (4.35); and 
the energy conservation law-Eq. (4.39). In order to lock it, it is necessary to add: 

μ = μ(Τ), ζ = ζ(Τ). (4.40) 

5. Mathematical model of a viscous incompressible fluid 

The system of equation for a viscous incompressible fluid follows from 
Eqs. (2.25), (4.8), (4.14), (4.35), (4.39) and (4.40), and has the following format: 

dp dp dp . 
dt dt dxt 

divv = 0 (4.41) 

dv' r dP Λ
 dv· T7 vv T7 dv p = pFi--

i- + μΑν: + V//Vv, + V//—, 
dt dXj dt dxi 

p—(u + —) = pFv -vVp + + v,V//Vv, + vS/μ -— + μνΔν + Ιμε,ε^ + pq , 
dt 2 dx, 

u = u(p,T), μ = μ(Τ). 
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This system of equations includes eight unknown variables (p, μ, u, p, v, 
and 7) and is closed. 

For a uniform incompressible fluid, the first equation of the Eq. (4.41) be-
comes an identity, and density, as indicated, is a known constant. 

As opposed to a incompressible ideal fluid, the Eq. (4.41) is not totally me-
chanical. Indeed, as viscosity is a function of temperature, the temperature affects 
the nature of the flow. 

Under isothermal viscous incompressible fluid flow regime, the system 
Eq. (4.41) becomes much simpler: 

divv = 0 

(4.42) 
dv, dp 

p-— = pF.-^ + pAvr at ax-

This system of equations contains four unknown variables and is closed. In a 
case of a non-uniform incompressible fluid, the first term of the Eq. (4.41) is added 
to Eq. (4.42). Thus, the problem of isothermal flow for an incompressible fluid, like 
the problem of the ideal incompressible fluid flow, is purely mechanical. 

From the kinetic energy theorem at the isothermal motion of a viscous incom-
pressible fluid and from Eqs. (2.74), (2.80) and (4.38): 

d 
PJt 

v̂  
■ pFv + vk-^

L = pFv-vVp + ßv^. (4.43) 
ox, 

As opposed to the Euler's equations, the Navier-Stokes equations are second-
order equations. So, one more condition must be added to the boundary conditions 
Eqs. (4.19) or (4.20). The adhesion hypothesis is accepted accordingly. Its sub-
stance is: on a hard wall, the following conditions is assumed to be realized: 

ντ= V, (4.44) 

where vr and VT are tangential components of the fluid's and wall's velocities. 
Therefore, the boundary conditions for the Navier-Stokes equations are: 

Vn=V„,vT=VT (4.45) 

or, if the wall is stable, 

v„=v r=0 (4.46) 

The difference in the boundary conditions for ideal and viscous liquids has very 
significant results. Indeed, when viscosity tends to zero, the Navier-Stokes equa-
tions at the limit turn into the Euler's equations. However, the Navier-Stokes equa-
tions solutions at μ = 0, ζ- 0 do not turn into the Euler's equations solutions as they 
are derived under different boundary conditions, and the boundary conditions of 
Eq. (4.45) do not depend on viscosity. 
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A more detailed analysis indicates that viscosity substantially affects the flow 
nature only within a rather thin fluid layer next to the hard surface. This layer is 
called the boundary layer. Outside of the boundary layer, viscosity can be disre-
garded, and the fluid can be considered to be ideal. 

These facts resulted in the emergence of a new hydromechanical division, i.e., 
the theory of the boundary layer. 

6. The work of internal forces. Equation of the heat inflow 

As shown in Section 2.7, the kinetic energy equation includes per-unit mass 
power of internal forces /V*'1. For this, the Eq. (2.80) was derived which is valid for 
any continuous medium. Substituting Eq. (4.37), results in the equation for a com-
pressible viscous fluid: 

pNU) = - -ρ + \ζ--μ\<ϋνν div v - 2μεί)εί] = pdiv v-W, (4.47) 

where: 

■Ψ=\ζ--μ\{άίννγ-2μείίεΐ] (4.48) 

is per-unit volume power of internal forces caused by viscosity, or the power of 
dissipative forces. 

Using the transformation: 

2 - 2 -
2ßeij£ij - -μ{άίνν)2 = 2μ{ε2\ι + e2n + ε2α) + Αμ{ε2η + ε22ΐ + ε2ι\) —μ(άίνν)2 = 

■ 2μ ί-,, - -μ(άίνν)2 J + ί ε22 - -μ(άίνν)2 J + ί ε33 - -μ(αίνν)2 

+ 4μ(ε2π + ε2η + ε 2
3ι) —μ{άίνν)2 

one can rewrite Eq. (4.48) as: 

Ψ = ζ{άίνν)2-2μ 1 1 ,. divv) +\ ε21—divv) \ +\ £2}-—divv) 

+ 4μ(ε2
Ι2 + ε2

23 + ε2,ι) 

(4.49) 
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As ζ > 0, μ >0, according to Eqs. (4.47) and (4.49), W> 0, and the work of the 
dissipative forces is always negative. If fluid moves as a solid (i. e., if e,*= 0) then 
W=0. 

By substituting Eq.(4.47) into the general heat-flow equation [Eq. (2.88)] gives 
the heat-flow equation for a viscous compressible fluid: 

du P ,. W 
— = q, div+ —. (4.50) 
dt p p 

From the kinetic energy law [Eq. (2.14)] and from Eq. (4.47), in the absence of 
external forces: 

— = — \pV—dV = \pN{i)dV = j(pdivv-w)dV, (4.51) 
ut at ν L v v 

i. e., the kinetic energy in this case varies only due to the work of the internal 
forces. 

For a viscous incompressible fluid, based on Eq. (4.49), Eq. (4.51) changes in-
to the following format: 

dK 
— = -jWdV = -J2M£iJM£ijdV. 

As W > 0, the kinetic energy declines due to the work of internal forces. The 
limiting value W = 0 is reached at ε,* = 0. Therefore, in the absence of external 
forces, the limiting motion of a viscous incompressible fluid will be the solid body 

, . . dK 
motion at which — = 0. 

dt 
Let's now review some specific forms of the heat-flow and dissipative force 

equation. 
1. The liquid is ideal and in compressible, i.e., // = 0, ζ= 0, divv = 0. From Eqs. 

Eqs. (4.47), (4.48) and (4.50): 

7V(/)=0, W=0, — = qe. 
dt 

Therefore, the work of internal forces (including the dissipative) is equal to zero. 
The internal energy can change only due to the heat supply. 

2. The fluid is ideal and compressible. From Eqs. (4.47), (4.48) and (4.50): 

Nv)=2-divv, W=0, — = q-£divv 
p dt p 
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It follows from the continuity equation that — = -divv. Then: 

( 0 = _ _ ρ _ φ du_ p_dp^ 
p2 dt' dt q' p2dt-

Under expansion, — < 0 and Nu) >0 . Under compression, —— >0 and v dt dt 
Nu) <0 . In case of an adiabatic process (no external heat supply), qe = 0. Under 

compression, — > 0, and the fluid heats-up, under expansion it cools down. 
dt 

3. The fluid is viscous and in compressible. From (4.47), (4.48) and (4.50): 

Nw = Kf w = 2μεΛεΛ = 2μ{ε2π + ε\ι + £2
33) + 4μ(ε2η + ε2

2ι + ε2η) >0 
P 

(4.52) 

du W 

The work of internal forces is caused by dissipation only. At qe = 0, the work of 
dissipative forces increases the internal energy, i. e., heats the fluid. 

Some important conclusions based on the above examples: 
The work (power) is equal to zero only at the motion of an ideal incompressi-

ble fluid. In case of a compressible ideal fluid this work may cause an increase as 
well as a decrease in internal energy. At motion of a viscous incompressible fluid, 
the work of internal forces boils down to the work of the forces of friction and is 
always negative. The presence of friction results in the fluid heating. 



CHAPTER V 

BASICS OF THE DIMENSIONALITY AND 
CONFORMITY THEORY 

The dimensionality and conformity theory establishes conditions for modeling 
and identifies parameters defining the major effects and regimes of the processes. 

1. Systems of units. Dimensionality 

In order to quantitatively describe a physical phenomenon, parameters of that 
phenomenon should be expressed in the form of numbers. These numbers are ob-
tained by way of measuring, i. e., comparing (directly or indirectly) the measured 
physical value with an accepted standard as a measurement unit. Obviously, the 
numerical value of the measurement depends on the measurement unit, i. e. on the 
size of the accepted standard. For instance, the duration of a day may be expresses 
as 1 day = 24 (hours) = 1,440 (minutes) = 86,400 (seconds). 

If the numeric significance of a measured physical value depends on the mea-
surement unit (the size of the standards), such value is called dimensional (velocity, 
time, length, etc.). 

The values whose numeric significance does not depend on the measurement 
unit are called dimensionless (circle length to its radius ratio, the ratio of a sub-
stance density to the water density, etc.). If the standards of the measurement unit is 
selected, independent from the other, for a sufficient number of physical values (for 
instance, describing mechanical phenomena), then based on that and using physical 
laws and definitions it may be possible to establish the measurement unit for all 
values in the description of the phenomena of interest. For instance, under the 
Newton's Second law, force is equal to the product of mass and acceleration. Thus, 
describing force with the physical units can be done through the units of length, 
mass and time and introduction of new standard is not necessary. 

The measurement unit introduced using the standards whose numerical signi-
ficance, by definition, is equal to one, are called the basic units of measurement. 

The measurement units derived for the physical values from the basic units us-
ing the corresponding laws of physics or from the definitions of these values, are 
called the derived measurement units. 

Mechanics of Fluid Flow 
by Kaplan S. Basniev, Nikolay M. Dmitriev and George V. Chilingar 

Copyright © 2012 Scrivener Publishing LLC 
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The aggregation of basic measurement units sufficient for measuring all phys-
ical values used for the description of some class of physical phenomena is called a 
system of measurement units. 

The selection of both the basic measurement units and the systems of mea-
surement units is rather arbitrary. For instance, in mechanics and its applications 
are used such systems of units as CGS (centimeter-gram-second), international sys-
tem SI (meter-kilogram-second), MKS (meter-kilogram-force-second). Heinrich 
Hertz proposed a system based on the units of length, mass and energy. For the 
mechanics, the system containing either more or fewer than three basic measure-
ment units can be constructed. That is why the criterion for the selection of the ba-
sic units of measure and their number in the system of units is their practicality. 

In the above examples of the SI and CGS systems the basic measurement units 
include the standards physical values of length, mass and time. They are different 
only by the value of the standards. The MKS and Hertz's systems include a differ-
ent set of standards, length, force, time or length, mass, energy. 

The aggregation of measurement units, different only in the value of their 
standards rather than in their physical nature, is called a class of the measurement 
units systems. Thus, the SI and CGS systems belong to the same class, and the SI 
and MKS systems, to the different classes. Let's denote length as L, mass as M, 
time as T, and force as F. Then the class which the SI and CGS systems belong to 
may be denoted as LMT, and the class where MKS belongs, as LFT. 

The dimensionality of a physical unit φ is usually denoted as [φ]. It represents 
the expression of derived measurement units through the basic units. 

Under the Newton's Second law, the dimensionality of mass m in the MKS 
[F] FT2 

class is [ml = = where F is force, a is acceleration, and in the MLT class 
[a] L 

[m] = M. 
By definition, the density p of a substance is the ratio of its mass m to its vo-

lume V. Thus in MLT and MKS classes, respectively: 

[Pi [V] ZT LPJ [V] LA ' 
It shows that the unit of mass is basic in the MLT class and derived in the 

MKS class. The dimensionality of the density looks differently in the MLT and 
MKS classes. Therefore, one may call measurement units basic or derived only as it 
is applicable to the measurement units class under consideration. 

Dividing the mass unit by the factor a, and the time unit, by the factor ß, the 
number for the density value, following from the dimensionality in the MLT class, 
will change by the factor of α/Γ3. The same can be done for any other physical value. 

Therefore, the dimensionality of a physical value is a function which deter-
mines how its numerical significance will change when converting the source mea-
surement units system to the other system of units within the same class. 
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2. Dimensionality formula 

The starting point for the derivation of the dimensionality formula is a state-
ment that within the assigned class all unit systems are equivalent. It follows from 
this that the ratio of two numerical expressions of any derived value does not de-
pend on the scale of the basic measurement unit within given class of measurement 
units. For instance, 

Stm
2 _ 5,cm2 plkg/m} _ p^/cm3 

S2m S2cm p2kg/m p2g/cm 
where S\, S2 are areas of some geometric configurations; pu pi are densities of two 
different media. 

Assume that u = fix,y,z) is a derived dimensional value, and x, y, z are numeri-
cal significances of basic measurement units, for instance, length, mass and time. 
Also assume that u' is the significance of u value corresponding to the signific-
ances of arguments χ',γ',ζ'- Multiplying the basic measurement units by the fac-
tors a, β, γ: 

u = f(x,y,z) _ f(ax,ßy,yz) 
u' 

where from: 
f(x\y\z) f(ax',py,Tz')' 

f{ax^yz) J{ax\ßy\yz') = φ{αβγ) 

f(x',y\z') 
(5.1) 

f(x,y,z) 
Thus, the ratio of numerically derived values depends only on the ratio of these 

scales. According to the above definition, the function φ^α,β,γ) is the dimensio-
nality of value u. 

Following from Eq. (5.1): 

φία,,β,γ^-- /(α,χ,βγ,γ,ζ) 

f(x,y,z) ' 
φ{α2,β2,γ2) = 

f{a2x,ß2y,y2z) 
f(x,y,z) 

φ(α],β,γι) = f(a]x,ßly,ylz) 
φ(α2,β2, γ2) f(a2x,ß2y, γ2ζ)' 

Assuming α2χ = χ\ß2y = y', γ2ζ = ζ', then, from Eqs. (5.1) and (5.2): 

f{ax,ßy,yz) _ a. 
/ ( — χ,^-y, L „ ' Ü Z ' ) 

f(x,y,z) f(x\y\z') 
Taking derivative of Eq. (5.3) with respect to or,: 

J Βφ(αι,β,γι) _ 1 

= φ £L A 2L 
a2 β2 γΊ V"7 2 / 

«L A Ά 
<*1 ßl YlJ 

φ{α2,β2,γ2) da, da^ V 

(5.2) 

(5.3) 
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Assuming that a, = a = a , ßt = ß2 = ß, y]=y1 = 7, then: 

1 δφ(α,β,γ) _ m 
da or' 

where: 
φ{α,β,γ) 

dp 

(5.4) 

f Ά. Ä II 
a2' β1'γ1 

'cO 
= const 

ai'/h'ri 

Integrating Eq. (5.4) with respect to or, results in \x\(p = m In or + In C, (/?, γ). 

Thus: 
<p = amC^,r). 

Substituting Eq. (5.5) into Eq. (5.3): 

or,] C,(Ä,yi) or, 

vor2 

fA^ 
βιϊι 

(5.5) 

(5.6) 
2J 

i. e., the same equation in the form of Eq. (5.3) exists. Continuing along the same 
way, i. e., taking derivative of Eq. (5.6) with respect to/?i, etc., results: 

(p = Camß"Y. 
Following from Eq. (5.1) that if or = β=γ = \ then φ -1. Therefore, C = 1, 

and the dimensionality equation has the following format: 

φ = οΤβηγ. (5.7) 

Thus, it is proven that the equation of physical value dimensionality has the an 
exponential mononomial format. 

Following from Eq. (5.7) that for dimensionless values m = n = 1 = 0, φ = \. 

3. Values with independent dimensionalities 

Let's review two the dimensionality of these values: velocity v, pressure p, 
density p and viscosity μ, throughflow Q, length / in the class MLT: 

r L M M M I 
M = r [p^TF> [ρ]=Έ> Μ=π· Q = Tm = L> 

and: 

w-vM-Μτ (5.8) 

As the units of length, mass and time are mutually independent, by equating 
the exponents of L, M, Tin Eq. (5.8): 

α=1,-3α+β = -\, -β = -2, 
where from a = ί,β = 2 and [p] = [p][v]2. 
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Similarly, for μ, Q, I: 

M = lQnifor-jL = ^ 
L". 

The latter equation cannot be fulfilled at no a and β. 
Therefore, the dimensionality of pressure may be expressed through the di-

mensionalities of density and velocity, and the dimensionality of viscosity cannot 
be expressed through the dimensionalities of throughflow and length. 

First let's introduce the following definition. Suppose the aggregation k is giv-
en of dimensional physical values a\, α%, ... Ok- If the dimension of neither of these 
values can be expressed through the dimensionalities of the remaining k-\ values, 
the aggregation a\, 02, ... a* is called a parameter aggregation with independent 
dimensionalities. 

Following from this definition results that μ, Q, I form a parameter aggregation 
with independent dimensionalities, and p, p, v, a parameter aggregation with de-
pendent dimensionalities. 

Suppose a system of measurement is given with m basic units. It can be shown 
that in this system the number k of units with independent dimensionalities cannot 
be greater than m, i. e., k < m. 

To simplify the reasoning, assume that m = 3 and the basic units are L, M, T. 
Suppose a\, «2, «3,04 are dimensional units and also assume: 

[a4] = [αιΥ[α2Υ[α3ΐ. (5.9) 

According to the dimensionality equation Eq. (5.7), [ai] = [M]m'[L]n'[Tf , and 

the Eq. (5.9) can be rewritten as: 

Mm'L"'Tu =(Mm*Ln'T'')(Mm7Ln'T'1)(Mm>Ln'T'iy, 

Thus, equating the L, M and T exponents: 

m\x + rri2y + m^z = m.4, 

n\x + n2y + «3Z = ri4, 

hx + hy + hz = U-

(5.10) 

By stipulation, 04, /J4, 74 are not equal to zero simultaneously ([α^φΐ). Thus, 
Eq. (5.10) represent a non-uniform system of three linear equations relative the un-
known variables x, y, z. 

Let's review the determinant of this system: 

m, 

«1 

k 

m2 

"2 

l2 

m3 

n3 

'3 

If Δ * 0, the system of Eq. (5.10) has a singular solution; therefore, the Eq. (5.9) 
is valid. Thus, the 04 value is dimensionally-dependent, and k = 3. 
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If Δ = 0, the determinant's columns are in linear correlation, such as: 
Xm\ = A/712 + vm-}, λη\ = λη2 + v«3, Xl\ = Ah + v/3 

[a,]" =[a2]"[aj. 
The cases /i = v = 0,/i = A = 0,/l = v = 0are excluded as, by stipulation, a\, ai, 03 

are dimensional values. Therefore, at Δ = 0, the a\, aj, 03 values are dimensionally-
dependent, and k < 3. 

Apparently, the same procedure may be expanded to include the case m > 3. 
Following from the above proof that if a\, «2, ■ · · a* at k = m have independent 

dimensionalities, then the dimensionality of any dimensional value α*+ι may be ex-
pressed as: 

[flt+1]=[fl1r
,[a2r

2...[a*rt. c i u 
Following from Eq. (5.11) that at k = m, the values a\, 02, ... a* can be ac-

cepted as a new system of measurement units. 

4. Π-theorem 

The Π-theorem is the fundamental theorem of the dimensionality theory. To 
prove it, first it is necessary to review one auxiliary statement. 

Suppose within a measurement unit system of a given class there is an aggre-
gate of physical values a\,ai, ... a* having independent dimensionalities. It will be 
shown that within the given class it is possible to switch to such a units of measure 
system where the numerical significance of any of the a 1, 02, ·■■ a* values (for in-
stance, oi) will change by an arbitrary factor A, and the numerical significances of 
all other values will remain unchanged. 

Suppose there are m basic units of measure P, Q, ... in the selected class. 
Then, according to the earlier proved therorem: 

[al] = Pa'Qp\.., [a2] = Pa>Qß\.., [ak] = Pa'Qfi'..., 

where at least one of the a,,/?, significances (1 = 1,2,... m) is different from zero. 
Change the scale of the basic measurement units by the factor P, Q, ... so that 

the numerical significance of the others remained unchanged. Then: 

[Pa'Q/i'... = A, P"2Qfi\.. = l, ..., Pa'Qß\.. = l. (5.12) 

Taking the natural logarithm of Eq. (5.12): 
ailnP+/?,lnß+... = lnA, 

a2lnP + ß2lnQ + ... = 0, (5.13) 

ct*lnP+#tlnß+...=0, 

i. e., resulting in a system of k linear algebraic equations for the unknown transitional 
multipliers P,Q, ... . 
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It is proved above that the number of parameters with independent dimensio-
nalities k is less or equal to the number of the basic units of measure, i. e., k<m. 
Suppose k = m. The determinant of the Eq. (5.13) system is different from zero as 
otherwise a linear dependence would exist between its columns, and the a\, Ü2, ... 
ük values would have dependent dimensionalities, which is contrary to the original 
statement. Hence, dik = m the system Eq. (5.13) have a singular solution. 

When k<m, the number of equations is less than the number of unknown va-
riables, and the system Eq. (5.13) has an infinite multiplicity of solutions. 

Thus, statement is proved. 
Now it is important to prove the Π-theorem. 
Suppose the function: 

a =fiai,a2,...,ak,ak+u ■ ■-,αη), (5.14) 

whose arguments a\, a-i, ■■■ <z* have independent variables, represents a physical 
correlation. The mathematical form of this correlation is not important here. 

Selecting various measurement units systems is possible to change arbitrarily 
the numerical significances of the function / arguments. It is clear, however, that 
the physical correlation, i. e., the format of the/function cannot depend on the ap-
plied measurement units system. In other words, the physical correlations must be 
invariant relative the applied measurement units systems. 

As it was shown in Section 3, the dimensionalities of the a, α*+ι, ··· a„ values 
can be expressed through the dimensionalities of values with independent dimen-
sionalities, i. e.: 

[a] = [a, f[a2 y...[at Y, [ak+l] = [a, ]"'*' [a2 ]*♦' ...[ak]*«, 

(5.15) 

[«„] = [«, ]a-[a2]
ß-...[aiY·. 

Consider the following parameters: 

Π = „ i , , Π , = aM %:' n^i=\X...,n-k. (5.16) 

Following Eq. (5.15), the Eq. (5.16) values are dimensionless. 
Substituting the Eq. (5.16) into Eq. (5.14): 

Πίζ, α{ ...ak - f(ax,a2,...,ak, ΙΙα, α2 ...ak ,..., 1Ι„_4α, α2 ...ak or 

η = Φ(αι,α2,...,αΙ[, n „ n 2 , . . . , n „ _ t . (5.17) 

As it was proved above, by changing the scale of the basic measurement units 
it is possible to change an arbitrary factor the numeric significance of the a\ value. 
Also it is possible to do it so that numerical values of the 02» «3,· · -Ö* values remain 
unchanged. As the ΥΙ,ΥΙι,Π2,...,Πη_Ιι parameters are dimensionless, their numeri-
cal values also do not change. This means that the function Φ does not depend on 
the argument a\, and: 

Π = Φ(β2,α3,...,β4, Π, ,Π2 , . . . ,Π„^). 
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Performing the same procedure consecutively for the parameters a2,a3,...,ak 

from Eq. (5.17), results in: 
Π=Φ(Π„Π2,...,Π„_,). (5.18) 

This result is the content of the Π theorem, or Buckingham's theorem. Sup-
pose there is a physical pattern expressed as the correlation of some dimensional 
value on the dimensional determining parameters. This correlation can always be 
presented as a correlation of some dimensionless value on the dimensionless com-
bination of the determining parameters. The number of these dimensionless combi-
nations is less than the total number of the determining parameters with indepen-
dent dimensionalities. 

In other words, suppose the physical correlation Eq. (5.14) is established and 
suppose the a,,a2,...,öt values have independent dimensionalities. In this case, 
Eq. (5.14) can be reduced to the Eq. (5.18) format where the dimensionless para-
meters Π,Π,,Π,, n„_t are computed from Eq. (5.16). 

Following Eqs. (5.14) and (5.18) that when switching from the correlation 
Eq. (5.14) between the dimensional values to the dimensionless correlation 
Eq. (5.18), the number of arguments decreases by the number k of parameters with 
independent dimensionalities, and Eq. (5.18) is invariant relative to the applied mea-
surement units systems. 

The case k = n is an important case. From Eqs. (5.16) and (5.18) that 
in such a case: 

Π = g = C = const or a = Ca"a2
ß...ak

r. (5.19) 
a, a/...a/ 

It is critical to state that out of the total parameters a\, ai,..., a„ in Eq. (5.14), 
the parameter aggregate a\, 02,···, a* with independent dimensionalities can be se-
lected using various techniques. Thus, as it can be seen in Eq. (5.16), the dimen-
sionless parameters n,n i ,n2 , . . . ,nn_ tcan have different formats at the same for-
mat of the Eq. (5.14). 

Another point to be mentioned is that the substance of the Π -theorem is, in 
essence, in switching to the new units of measure system a\, 02,···, o.k. 

5. Conformity of physical phenomena, modeling 

Let's review a description of a physical phenomenon in the assigned mea-
surement units system. This system is denoted by the superscript (1). Now the scale 
of the basic measurement units is changed and the new system is denoted by the 
superscript (2). Then: 

Π,,1) =Π, (2\ Π(1) =n ( 2 ) . 
As defined by Robert Pohl, "a physical value is the product of the numerical 

significance and the unit of this value". In other words, Y - y\y] where Y is a physi-
cal value, and v is its numerical significance in measurement units [v]. Changing 
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the Y parameter under the same rule as the measurement units \y] is changed results 
in the same change in the y numerical significance. Indeed, the medium density p, 
as an example, is determined as the ratio of its mass m to volume V, i. e.: 

m r Ί Μ p=v [ρ]=τ-
Decreasing the unit of mass by the factor of 10 and increasing the unit of 

length by the factor of 10 results increasing the density's numerical value by the 
factor of 10/(10"')3 = 104. Increasing the mass of the medium by the factor of 10 
results in decreasing the linear dimensions of its volume by the factor of 10. The 
density's numerical value will also change by the factor of 104. 

Now consider two similar physical phenomena (for instance, fluid flow in 
tubes). One of the physical phenomenon is called (N), for Nature, and the other 
one, (M), for Model. The physical parameters are selected in such a way that the 
following conditions are made: 

Π,.(Λί) =Π,.(Λ0. (5.20) 

Then, as follows from the Π -theorem Eq. (5.18), 

Π Π (N) (5.21) 

When the conditions Eq. (5.20) are valid, the model and natural phenomena 
are called similar, and the Π; values are called conformity criteria. 

As stated by L. I. Sedov, "two phenomena are similar if from the parameters 
of one of them it is possible to derive the parameters of the second one using a 
simple computation resembling the transition from one measurement units system 
to another measurement units system". 

From Eqs. (5.16) and (5.21) for the similar phenomena: 
(Λί) 

a, a-, ...a. 
from where: 

( (N) \ a 

aw=aiM) 
(M) 

a β 

a, a{.. 

( „ <"> ^ 

W ) 

f {N)Y 

a,, 
(M) 

(5.22) 

Therefore, when the conformity condition is observed, a model study of a 
physical phenomenon can be replaced for its the experimental study. On numerous 
occasions that is the only possibility. 

The requirement to realize the Eq. (5.20) conditions shows which numerical 
significances of the process parameters should be selected in modeling, i. e., it de-
termines the model parameters providing for the observation of the conformity. 

Eq. (5.22) is a rule for the conversion of model results a(M) into the nature re-
sults a ,(N) 
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6. Parameters determining the class of phenomena 

The mathematical correlation between the value a and the values a\, 02, ... an 

in Eq. (5.14) can have different formats, i.e., it can describe different physical 
processes. Thus, the values a\, aj, ... a„ are called parameters defining the class of 
phenomena. The a parameter is called definiendum. 

In the cases when the mathematical model of a physical process is known, the 
table of parameters which define the class of phenomena is built from the equations 
and initial and boundary conditions defining the class. That is, an aggregation of 
dimensional and dimensionless values necessary and sufficient for the problem so-
lution is written down. The dimensional constants are also included in the defining 
parameters. 

If the mathematical model of a physical process is not known, the table of pa-
rameters can be prepared based on qualitative considerations and experimental data 
(if available). 

The system of parameters defining the class of phenomena must have a prop-
erty of completeness. It means that system must include parameters through the 
dimensionalities of the determining parameters. 

For instance, it is not possible to state that the force F acting on a body from 
the liquid is a function only of its density/) and flow velocity v, i. e., that F =flp,v). 
Indeed, as it is easy to see, the equality: 

is not possible at any numerical significances of a and ß. It is possible to state, 
however, that F = j(l,p,v) where / is a value with the dimensionality of length. In-
deed, in this case: 

From here it can be seen immediately that a = \,ß = 2, γ=2 and F = pv2l2. 
In a similar way, it cannot be stated that a tangential stress τ is a function of 

liquids' density and velocity gradient because: 

r 1 M , „ , 1 A
 M (MY([Y [τ} = —r-, [Vv] = — and — - * — — . 

LT2 T LT2 [ΰ) [TJ 

At the same time, it is possible to state that T = f(p,l, Vv) because: 

lT] = —T[p]ilfiVv]. 
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7. Examples of application of the Π-theorem 

l.Weggling (oscillations) of a mathematical pendulum. The mathematical 
pendulum is a material point of mass m suspended by a weightless and unstretcha-

ble, immovable thread with length I attached at point O 
/P (Fig. 5.1). The equation of planar vibrations for such a pendu-

lum is: 

d2<p 8, 
dt' I 

d<p 

dt 
—;- = -—sin^J, m —— \l = N-mgcos<p (5.23) 

with the initial conditions: 

φ=φ0, -τ- = 0 a t i = i0, 
dt 

(5.24) 

Fig. 5.1 

where φ is the angle between the thread and the vertical, N 
is thread tension and g is gravity acceleration. Following 
Eq. (5.23) and initial conditions [Eq. (5.24)] that the system of 

parameters defining the class of phenomena is: 
φ0, m, I, g, t. 

Therefore, 
φ = φ(φ0, m, I, g, t), N = η(φ0, m, I, g, t) 

Assume as parameters with independent dimensionalities the m, g, I values. 
Then under the Π-theorem, i. e., Eqs. (5.16) and (5.18): 

Π = ^ (Π 1 ,Π 2 ) ,Π '=^(ΠΓ,Π 2 ' ) , 
where: 

π^,π, = % , π 2 = - ^ , π · = - ^ , . Π ' = Π,, Π 2 ' = Π , , (5.25) 

as φ and φο are dimensionless values and the "y" arguments of the functions φ 
and N are the same. 

Based on Eq. (5.25): 

[t] = [m]a[lY[gY, [N]=[mrUf[gY' 
or: 

T = MaLß 4T=^'W£ 
J1) LTZ 

From this, equating the exponents of M, L and T: 
α = 0,β+γ=0, -2γ= 1, α, = 1, ß\ + χ = 1, -2ji = - 2 , 

a = 0,ß=^-,r=^,ai = l,ßl=0,n = l, 

and: 

n 2 = f Π' = N_ 

mg 
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Therefore: 

V ' ' ) 

M 
) — / 

mg 
ft.Jf 

V. ' y 

It is known from experience that the oscillations of a mathematical pendulum have 
period r. Then: 

r = T(tp0,m,l,g) 
or, after switching to dimensionless values: 

τ ^ = τ{φα). 

The oscillations are symmetric, thus τ(φ0) =-τ(φ0); therefore, the τ(φ0) 

function is even. Expanding this function into a series, results: 

r(<p0) = Cl+C2<p0
2 + C}<p0

4+... 

Disregarding small oscillations (<p0 « 0) the terms of the order <p0 and high-

er, results: 

' " # 
It is known from the theory, i. e., from the solutions of Eq. (5.23) at <p0«l, 

that C\ = In. 
2. Clapeyron equation. Assume as a hypothesis that pressure p in gas is totally 

defined by its density p, its heat capacity cv (or cp) and Kelvin temperature Θ. Then: 

P =f(ft,cv,®). 
The p, cv and Θ values have the dimensionalities of: 

M f2 

[p] = -r, [c,] = —. , [Θ]="Κ, y ΰ T2 °K 

i. e., form the parameter system with independent dimensionalities. Then, accord-
ing to Eq. (5.19): 

p = Cpa,c/,®r, C = const. 
It is easy to see that a = β = y = 1, and: 

p = Cpcv® = Rp®, R = Ccv. 

Thus, the Clapeyron equation is based on the stated hypothesis. 
The reviewed examples provide a good illustration to strengths and weak-

nesses of the dimensionality theory. Indeed, by analyzing dimensionalities we ob-
tain the structure of equations for τ and p, but it is not possible to determine with 
this analysis the numerical significances of G and C constants. 
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3. Darcy's filtration law. Consider the filtration rate velocity modulus w within 
a horizontal uniform layer depends only on the pressure gradient modulus |Vp|, vis-
cosity μ, porosity m and module d. Then:1 

v = f(Vp,M,m,d). (5.26) 
The values Vp, μ, m, d have dimensionalities: 

[Vp] = - ^ , W ~ , [m] = l, [d] = L. 

Therefore, Vp, μ, d form a parameter system with independent dimensionali-
ties, and: 

w 

Wr7^=f(m)-
Analyzing the dimensionalities similar to the example 1, results: 

L ( M \(M x Lr^ a + ß = Q^ -2α-β + γ=\, 2α + β = \, 
T \ UT1 I { LT 

from here α = \, β = -\, y = 2,and: 

or, in the vector format: 

w = ~—f(m)\Vp\ 
μ 

w = -—f(m)Vp. (5.27) 
M 

The minus sign is introduced in Eq. (5.27) because v and Vp have opposite di-
rections. 

4. Darcy-Weisbach equation. Consider the liquid flow through a horizontal cy-
lindrical tube, the pressure gradient per unit length of the tube Ap/l depends on 
the average liquid's flow velocity v, liquid's viscosity μ, its density p, tube diame-
ter d and the wall roughness Δ. 

Then: 

^- = f(d,A,p,M,v). (5.28) 

The p, v, d values form a parameter system with independent dimensionalities. 
Therefore, based on the Π-theorem Eq. (5.28) may be written as: 

Π=Φ(Π„Π 2 ) , (5.29) 
where: 

I d p^d* 

1 Liquid's density enters the motion equations only as a multiplier of the acceleration. The acceleration is 
usually negligibly small at filtration. That is why it is possible to disregard in Eq. (5.26) possible correlation 
with density. 
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The dimensionality analysis results in a 

Ap*d 
Π=-

Ipv2 n2 = 

β = 2, γ = -1. Therefore: 

M 
pvd 

Substituting it into Eq. (5.29), results: 

/ (A - Λ 

Αρ = —ρν2Φ d' pvd 
= -/Λν2Φ, 

d 
Δ pvd^ 

(d' μ 

A(e,Re) 
Denoting, as it is customary: 

A = e, ^ = Re, φ ί * , ^ 
d p {d pvd 

(where ε is relative roughness of the tube's walls, Re is the Reynolds number, A 
is the hydraulic resistivity coefficient), gives the Darcy-Weisbach equation: 

Ap = A ^ . 
d l 

(5.30) 

The £,Re coefficients in this case are obviously the conformity criteria. 

Therefore, having determined the Z(e,Re) \alue for a liquid flow, concludes that 

for the flow of a different liquid through a different tube, the hydraulic resistivity 

coefficient A, on condition em = £<2), Re(1) = Re<2), will have the same numerical 

significance. 
When the flow is laminar, the acceleration is zero; hence, thep's numerical sig-

nificance is negligible. The experience shows that in such a case the A's numerical 
significance is also negligible. So, the Eq. (5.28) for the laminar flow is given by: 

f = f(d,M,v). 
As the d,p,v parameters have independent dimensionalities; then, according 

to Eq. (5.19): 

^ = ων/). 
It is easy to see that a = —2, β = γ = \, and: 

Ap = C-^rUv. 
d2 

(5.31) 

A = - ■■ const. 

Equating the right parts of Eqs. (5.30) and (5.31), it can be found that the hy-
draulic resistivity factor at laminar flow is: 

2Cp _ 1C 

pvd R e ' 

Theoretical analysis comes up with a numerical significance for C = 32. 
5. Reservoir liquid displacement by gas. 

Consider a uniform horizontal layer from 
II which the liquid is being displaced by a gas 

Gas Liquid 

Fig. 5.2 (Fig. 5.2). The displacement rate a is given by: 
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a = —— where Vgas is the volume of area I occupied by the gas, and V is the vo-

lume of all pores in this area. 
It may be stated, based on qualitative considerations and experiments, that: 

a = a{k,m,a,Q,Ap,l,ß ,^ ^,ΚΑγ,ρ,ο,Μ,ί), (5.32) 

where k and m are layer's permeability and porosity; σ is liquid's surface tension; Θ 
is contact angle; Ap = (p, - p2) is pressure difference between the end of the layer 
section with the length /; μ , //,iquid are viscosities of gas and liquid; h is layer's 
thickness, Αγ=γ -γίφΛ is specific gravity difference between the liquid and 

gas; p is absolute pressure in any cross-section of the layer; c is the surfactant con-
centration; M is formation water salinity; and t is time. 

The values in Eq. (5.32) have the following dimensionalities: 

[k] = L\ [σ\ = ψ, [Ap] = [p] = jjT. M = [A] = L, 

M 
[Agas] = Liquid ] = ^ p - [Δ?Ί = 

M 
L2T2 

Assume that the /, Ap, μ values have independent dimensionalities. Us-

ing Π-theorem, Eq. (5.32) can be written as: 

a=a 
'AP M„ ' 4 P Ap μα 

(5.33) 
A^gas " ~ f ^f Λ-gas J 

Modeling the displacement process using natural fluids and porous media 
(physicochemical conformity) gives: 

(natural) __ (model) * /natural) _ A^model) —(natural) _ —(model) /c ^A\ 

To observe conformity, the following conditions in particular must be ob-
served as Eq. (5.33) shows: 

ί , . \ (natural) 

ΙΑγ 
~Äp 

/ \ (model) 

' ΙΑγ 
Ap , 

/ \ (natural) 

lAp 

/ x (model) 

a 
.'4P. 

from where, if the Eq. (5.34) conditions are observed, it follows that at the same 
time these equalities must be realized: 

A (model) i(model) *n(model) »(natural) 

A (natural) »(natural) ' * (natural) »(model) 

This is possible only if /(modei) = /<natural), so when working with natural media, it 
is impossible to observe a complete conformity between the model and nature, and 
it is necessary resort to partial modeling. 

The partial modeling is such that only for some conformity criteria the equali-
ty is observed. The effect of nonobservance of other criteria equality is estimated 
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by different methods depending on the phenomenon under study. The problems of 
partial modeling are encountered in solving problems in aviation, shipbuilding and 
other disciplines. 

In dealing with the displacement issues, the conformity criteria of the follow-
ing format may be found in publications: 

Π,=-^-, Π 2 = - £ - , n 3 = - ^ , n 4 = c o s 0 . 
kAP Λ 

V m Considering the conformity criteria in Eq. (5.33), respectively, as: 

As easy to see 

π·, = £, rr2 = m, n'3=-f, π·4=θ, η;Λ rr6=^. 
/ lAp I Ap 

, , -L , Π 3 = - ί ^ _ ί ^ , n 4 =cosn ' 4 . 
'IT, π·, π·5π'6-\|π', 

This example may serve an illustration to the note in Section 4. that the selec-
tion of dimensionless parameters when using the Π -theorem is not singular. 

8. Contraction of equations to dimensionless format 

When conducting numerical calculations, the corresponding equations and 
their analytical solutions are usually contracted to a dimensionless format. As fol-
lows from Π-theorem, it enables two things. First, it allows for a decrease in a 
number of arguments of the definiendum functions. Second, by selecting the cor-
responding modules of the process, it allows to find most convenient numerical 
ranges for dimensionless parameters. 

Indeed, suppose the problem to be solved includes n defining parameters. For 
its comprehensive numerical study it is necessary to vary each parameter m times 
independently of the others, i. e., it is necessary to perform m" computations. After 
contracting to the dimensionless format, the number of parameters will be m-k 
where k is the number of parameters with independent dimensionalities. Therefore, 
the number of the necessary calculations will be m"'k. 

Consider another example. One of the parameters in a problem of the pressure 
shock is the length of the tube /. The lengthwise coordinate x is within the 0 < x < I. 
Assuming x = ξΐ, regardless of the tube's length the dimensionless coordinate ξ va-
ries within the 0 < ξ < 1 range. 

Now consider the problem of contracting to a dimensionless format using as 
the example of the motion equations system for a uniform viscous incompressible 
fluid [Eq. (4.42)]. The motion equations and the boundary conditions in this case 
have the following format: 

divv = 0, ρ— = ρΤ-νΡ + μΑν, v = V over S. (5.35) 
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Suppose Xi= Lx'i where L is linear module in the problem, and the geometric 

conformity is assumed in the problems of a similar class. Further assume 

v = V0v', ρ-Πρ', ί=Θί!where V o , n , 0 a r e characteristic velocity, pressure and 

time in the problem. For the fluid flow in a tube, for instance, its diameter is L, the 
average velocity at some moment in time may be the Vo, the pressure difference at 
the ends of the tube may be Π , and the time of the transitional process (at the non-
stationary motion) may be Θ . Similarly, the characteristic parameters L, Vo, Π , 
Θ may be introduced in the study of any flow. Further assume, for certainty, that 

— - - dv 
F = g. Substituting JC„ v, p, t into Eq. (5.35) and unrolling the — derivative, dt 
results: 

& - * ' v Θ dx' L ' dx) j 

- Π - dp' μν0 - d2v\ -, - . , , , . 
L dx L dx k 

Eq. (5.36) shows that the continuity equation and the boundary condition 
maintain their format after the switch to dimensionless values. By dividing all 
terms of the Navier-Stokes equation by pVo2/L results: 

L dv' dv' _ gL-o Π - dp' μ - d2v\ 

Vß~d7 + ~dx~'~vJ8 "pvJ6idx: + 'p^Lei^\2"' 

—o — 
where g is the basis vector of the g vector. 

Let's introduce the following designations: 

L V2 2 
= Sh is the Strouhal number; - 2 - = Fr is the Froude number ; 

v0& gL 

T- = Eu is the Euler's number; ° = Re is the Reynolds number. 

pv0 μ 
Using these designation, the Navier-Stokes equation can be written as follows: 

c u dv' dv' g° _ - dp' 1 - d2v\ 
Sh — + T — = - Eue/rr -H-—e, L 

dt' dxt' Fr ' dx' Re ' dx\2 ' 

If in two flows the conditions of the flow areas geometrical conformity and the 
relationships Shi = Sh.2, Fri = Fr2, Rei = Re2 are realized, these flows are conforma-
ble. The Eu number is often not important for the flow of an incompressible fluid. 
The reason is that the Navier Stokes equation includes not the pressure but pressure 
gradient. That is why a pressure change within the entire flow volume by a constant 

! In publications, the ,-ί— value is commonly taken for the Froude number. 



90 CHAPTER V 

numerical value (or, which is the same, a change in the characteristic pressure by a 
constant numerical value) does not affect the flow nature. That is why the Euler's 
number may be assigned any numerical value. In particular, assuming Π = pV0 , 

the Euler's number Eu = 1. 
To find the physical meaning of the conformity criteria, let's review a paralle-

lepiped within the fluid with the edges dx/, and mass m. The following forces acting 
on the parallelepiped: 

- gravitational force Fg - mg = pgdx\ dx% dx^ ~pgL3; 

- local inertia force F.=m pU —; 
ix dt H Θ 

- convective inertia force F =mv-— pÜ -2- ; 
dx L 

- and friction Ffric = — dxdS = μ —j dxdS ~ μ - \ U 
dx dx1 U 

Then: 

floe, = _±_ = S h f.™ = Υθ_ = p fcon_ = PM. = R e 

F ΘΚ F gL Fr u 
con v ^ ' 0 g o fnc Λ* 



PART II. HYDROMECHANICS 

CHAPTER VI 

HYDROSTATICS 

1. Liquids and gas equilibrium equations 

Hydrostatics deals with the equilibrium laws of fluids. If the fluid is static 
relative to the walls of the enclosing vessel, and the vessel is static or moving at a con-
tant speed relative to the Earth, the quiescent state is called absolute. If the fluid is 
static relative to the walls of the enclosing vessel, and the vessel is moving relative 
to the Earth with acceleration, the quiescent state is called relative. The fluid motion 
in the case of relative quiescent state may be considered as translational. 

These definitions indicate that under the absolute quiescent state liquid is acted 
upon by the force of gravity, and under the relative quiescent state it is acted upon 
by the force of gravity and the force of the translational motion. 

The deformation rate ε,* = 0 in a quiescent liquid; thus, from the rheologic eq-
uation for a viscous liquid Eq. (4.29): 

Pik = -p8ik, (6.1) 

i. e., only normal compressing stress is acting in a quiescent liquid. L. Prandtl 
stated that "a liquid is such a body where in the state of equilibrium any resistance 
to deformation is zero". Following Prandtl statement,p,* = 0 0 * k ) and, under Eq. 
(4.29), Sit =0 . The size of this stress does not depend on the direction and is called 
pressure. This pressure is called hydrostatic pressure. 

Substituting Eq. (6.1) into the continuous medium motion equations in stresses 

'dV: Λ 
[Eq. (2.42)], gives dt j 

^- = pFrarVp = pT. (6.2) 
dXj 

Eq. (6.2) is called the Euler's equation in hydrostatics. 
-o 

By the scalar multiplication of Eq. (6.2) and singular vector s : 

% = PF?=PF„ (6.3) 

Mechanics of Fluid Flow 
by Kaplan S. Basniev, Nikolay M. Dmitriev and George V. Chilingar 

Copyright © 2012 Scrivener Publishing LLC 
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i. e., the pressure change in a direction s is determined by the projection of the 
mass force Fs in this direction. 

Multiplying (scalar multiplication) Eq. (6.2) by dxj and under equilibrium 
p = p(xj) then: 

-^—dxi =dp = pFjdxj, or dp = pF*dr. (6.4) 

The surfaces along which p = const are called isobars. Following from 
Eq. (6.4), the isobar equation has the following format: 

Fjdxj=0,or~F*d~r = 0, (6.5) 

where the vector dr lies on the plane tangential to the isobar. Following from 
Eq. (6.5), the mass force stress is normal to the isobar. The same conclusion direct-
ly follows from Eq. (6.2). 

It is obvious that Eqs. (6.2)-(6.5) are equally valid for both compressible and 
incompressible fluids. 

From Eq. (6.4): 
P , M 

rdp p £ = {F*d~r, (6.6) 

where M, MQ are points where hydrostatic pressures are, respectively, p and po. 

If the mass force have potential (i. e., F = - V n ), Eq. (6.6) takes the format: 

rdp \-P-=jdn = n(M)-n(M0). 
Pa " " n 

(6.7) 

2. Equilibrium of a liquid in the gravitational field 

For reviewing the liquid equilibrium in the gravitational field it is necessary to 
introduce a coordinate system Oxyz where the Oz axis is directed against the gravity 

force g (Fig. 6.1). In this case, Π =-gz, Fx = 
= Fy= 0, Fz = -g, and Eq. (6.4) looks as fol-
lows: 

z 

n 

g 

\ ft' 
■ 

Z 

■ 

■ 

. 

■ 

Pa 

P 

Zo 

dp = -pgdz. (6.8) 

In the case of a uniform incompressible 
fluid p = const, and from Eq. (6.8): 

P = -pgz + C,C = const. (6.9) 

Eq. (6.9) is valid for any point within the Fig. 6.1 
liquid' volume. The isobar equation in this case has a format: 

dz = 0, or z = C = const. (6.10) 
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Thus, when a fluid in the gravitational field is in the state of equilibrium, the 
isobar is a horizontal plane. 

In order to determine the constant C in Eq. (6.9) it is necessary to assign boun-
dary conditions. Assume that at z = Zo, P - Pa (Fig. 6.1). Then: 

P - Po = pg(zo-z), (6.11) 

or 

pg pg 

Calling zo-z = h, Eq. (6.11) takes the following format: 

(6.12) 

(6.13) 

Follow-

Po 

h 

P=Po+ pgK 

wherepgh is pressure created by the liquid's column with the height h. 
Eqs. (6.8), (6.12) are usually called the basic equation of hydrostatics. 

ing Eq. (6.13) that the force of the liq-
uid's pressure on the vessel's bottom 
with base S does not depend on the 
vessel's shape (Fig. 6.2) and equals 
(po + pgh)S. This result is called Pas-
cal's paradox. 

The excess of the absolute pressure 
pabs over the atmospheric pressure pam, 
i.e., the difference: 

Pm = Pabs ~ Patmt 

is called the manometric pressure. The value: pmc = patm - Pabs at patm > p„bs is 
called vacuum. 

Now it is desired to review some application examples of the hydrostatics eq-
uations. 

1. Communicating vessels (Fig. 6.3). Pressure on the free surfaces with coor-
dinates z\ and zi is equal. Therefore, they are areas of a single isobaric surface and, 
in compliance with Eq. (6.9), z\ = Zi- The same con-
clusion follows from the isobar Eq. (6.10). 

2. Equilibrium of different liquids. Suppose 
two immiscible liquids with densities p\ and pi 
are in a state of equilibrium. The pressure when 
crossing the separation remains continuous. At the 
separation surface, from Eq. (6.8): dp- -pxgdz, 
dp= -p2gdz, or p\gdz= pigdz.Therefore, dz = 0, and 
the seperation boundary is a horizontal plane with 
z = const. 

Po 

PS 

Po 

Fig. 6.3 
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3. Double-liquid manometer (Fig. 6.4). A manometer with the work liquid of 
density p2 is used for the determination of pressure difference in the system filled-

in with a liquid of density pi. At the points 4 and 
5 positioned on a horizontal plane within the 
same liquid, PA=PS- According to Eq. (6.13), 
P5=P\+P\gH, p4=P3+pigH, pi=P2 + 
+ p\g(H-h), wherefrom:p\ -p2 = gh(p2-p\). 

4. Piezometric height (Fig. 6.5). The pres-
sure within a incompressible liquid may be 
measured by the column height of the same 
liquid HPiez with a help of tube/1. For the 
points 1 and 2, pXabs =p0, p„bs = pam + pgHpiez, 

Plabs = Plabs-
Then: 

Fig. 6.4 

piezometric 

Po .1 
_ — _ — _ 

— — — 

— 

-=_ 

-2 

— 
— 

level 

Hpiez 

' < 

~ A 

U _ Ρθ Palm 
"piez ~ 

PS 
(6.14) 

Fig. 6.5 

Eq. (6.7): 

Pressure at any point within the vessel is 
P = P0 + Pgh = pg(Hpiel+h). 

The height Hpiez iss called piezometric, 
and the surface running through the level in 
the piezometer is called a piezometric plane. 
If po>Patm, the piezometric plane is positioned 
above the free surface in the vessel, and if 
Po < Paim, it is below it. 

5. Heavy gas equilibrium. For a gas in 
equilibrium in the gravitational field from 

Up 
I— = g(z0-

P 

z). (6.15) 

To calculate the integral in Eq. (6.15), it is necessary to assign the p=p(p) 
correlation. 

Let's limit the problem to isothermal equilibrium of an ideal gas at tempera-
ture To. Then: 

P 
P = RTn 

and, from Eq. (6.15): 

. p g(z-z„) 
In-1—= -

Po RTn 
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or: 

P = PoexP 
g(Z-Zo) 

RTn 

Expanding it into a series: 

L g(Z-Zo) 1 
P = Po\l + -RTn 

g(z-z„) 

RT0 

If I 
2 

g(z-Zo) 

RTn 

« 1, then: 

P = Po 1 -
g ( z - z . ) 

RTn 

Pog(z-Zo) 
= P0 — = P0-P0g(z-Z„) 

(6.16) 

where p is gas density at pressure po and temperature 7Ό. Following from 
Eq. (6.16) that if z-zo is small, the pressure distribution in gas is practically the 
same as within incompressible fluid. 

For the air, the gas constant R = 287 — — . Suppose 7Ό = 293°K. In this 

case, at z - z 0 < 8 5 m the error from the application of Eq. (6.16) is less than 1 %. 

3. Relative quiescence of fluid 

As indicated earlier, when analyzing relative quiescence of fluid, the mass 
force stress in Eq. (6.2) is understood as the resultant of gravitational force stress 
and of the translational motion inertia force. 

Let's solve a problem of a liquid-filled vessel re-
volving at a constant angular velocity ω about the ver-
tical axis Oz (Fig. 6.6). A liquid's element with the 
mass m is subjected to the gravitational force and cen-
trifugal force whose stresses are: 

Fg=g, F cent=rct)2, 

where r is a vector directed along the beeline from the 
revolution axis toward the element under considera-
tion. The projections of these stresses on the selected 
coordinate axes Oxyz are: 

Fx = rtu2cos^> = χω ,Fy = ra> sinq> = νω , Fz = -g. 

Zo 

V 
A 

yo 

a— 

V 

Fig. 6.6 
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Substituting into Eqs. (6.4) and (6.5), results: 

dp = p{co2xdx + io2ydy - gdz), 

ω xdx + a>2ydy - gdz = 0. 

Integrating these equation, gives: 

P = P 
V 2 

+ C = p— pgz + C, (6.17) 

2x
2 + y2 (o2r2 

co — - ^ - g z = — gz + Cx. (6.18) 

Eq. (6.18) reflects the pressure distribution in the liquid, whereas Eq. (6.18) is 
equation of the isobar family, with the isobars being paraboloid of revolution. 

In order to determine the C constant in Eq. (6.17) and in the free surface 
Eq. (6.18) the point A of the intersection between the free surface and Oz axis has 
chosen been. The point A's coordinates are (Ο,Ο,ζο), and the pressure at the point is 
p0. Then, from Eqs. (6.17) and (6.18), C = po+ gzo, C\ = gzo, therefore: 

P = P^-g(z-z0), (6.19) 

— = i (z -z„ ) · (6.20) 

Let's determine the height H of the paraboloid. For this purpose, assume r = R 
in Eq. (6.20), where R is the radius of the vessel. Then H is: 

. (6.20) can be written 

H = 

as follows: 

co2r2 

2g 

2 u . - , Z o ) . 

where z\ is the coordinate of the intersection point of the straight line r=r\ = const 
with the free surface. Substituting into Eq. (6.19) results: 

P=Po+pg(z\-z). (6.21) 

Thus, if z coordinate from the free surface is considered, the vertical pressure 
distribution in a revolving vessel will be the same as in the quiescent liquid. The 
explanation is in that the force of inertia projection on the Oz axis equals zero. 

This result also directly follows from Eq. (6.3). Indeed, in this case: 

dp 
Tz=-P8> 

Wherefrom, after integrating it, immediately follows Eq. (6.21). 
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Let's now analyze the motion of a closed and liquid-filled vessel down the in-
clined plane with the acceleration a (Fig. 6.7). 

The mass forces' projections on 
the coordinate axes are: 

Fx=jcosa,Fy=0, 

Fz = jsina-g, 

where a is the angle between the plane 
and the horizontal plane, j = -a. Substi-
tuting these expressions into Eqs. (6.4) 
and (6.5): 

dp = p\Jcosadx + (jsina - g)dz, (6.22) 

jcosadx + (Jsina - g)dz = 0 (6.23) 

Eq. (6.23) is the expression for the isobar family. From it: 

όζ n /cos« , , „ , , , 
■±- = \gß = -J- = const, (6.24) 
dx j - sin a 

i. e., the isobars are the planes inclined at angle/? to a horizontal plane. 
Integrating Eq. (6.22), gives the pressure distribution law: 

p = p[xjcosa + zigsina - g)} + C, C = const. 

Let's assume, for the determination of the integration constant C, that pressure 
p =po is known at some point H(xo,0,zo). Then: 

p-po = p[(x- xol/cosa + (z - zoXgsina - g)]. (6.25) 

Review of special cases. 
(a) Descending a vertical wall, i. e., the case of a = π/2. It follows from 

Eq. (6.24) that β = 0,ζ = const. Isobars are horizontal planes. From Eq. (6.25): 

p-po = (j-g)(z-z0). 

During a free fall,y = g and p = po, i. e., pressure is equal at all point of the flu-
ids volume. 

(b) Vessel sliding on the plane without friction. In this case the system is mov-
ing ("dropping") with the acceleration j = gsina, and from Eq. (6.24), tg/? = tga, 
i. e„ the equipotentials are parallel to the plane of sliding. From Eq. (6.25): 

p-po = pg[{x - jco)sina - (z - zo)cosa] cosa. 
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4. Static pressure of liquid on firm surfaces 

Let's review within liquid a surface AB with area S (Fig. 6.8). Resultant R of 
pressure forces acting on this surface and their moment L are: 

~R = -^npdS, (6.26) 

L = - \rx *npdS, (6.27) 

where n is the normal external to the sur-
face directed inside of the liquid volume, 
and r is the radius-vector of the point on 

B AB. 
In the case of a incompressible fluid, in 

the gravitational field the pressure at points 
of the AB surface, according to Eq. (6.13), is: 

p-po=pgh, (6.28) 

Fig. 6.8 

where po is the pressure on the liquid's sur-
face. With Eq. (6.14), the Eq. (6.28) can be 
written as follows: 

Ρ - Pa,mPg{h + Hpiez) (6.29) 

Suppose the AB surface is a plane inclined at the angle a to the horizon (Fig. 6.9). 
All vectors n are parallel to each other; so from Eqs. (6.26), (6.28) and (6.29): 

ratm _ 

R = -n](p0+pgh)dS = 

- i r S i ( 6 3 0 ) 

= -n§_p„m+pgh(h + Hfla)]dS. 

And as: 

\hdS = hcenKrS, 

where Acenter is the distance from the fluid's 

surface to the AB plane center of gravity. 
Using Eq. (6.30): Fig. 6.9 

Ä = -n(p0 + phcgmv )S = -n[pam + pg(/icgrav + H piez )]S -

~ nPc.grm
S> R = Pc.gra>S> 

(6.31) 
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w h e r e Pcemer = Po + P̂ c.grav = Pcm + PgiK.^ + Hpiez) i s t h e pressure in the center 
gravity of AB. 

If the force R is calculated by manometric rather than absolute pressure, it is 
clear that: 

R = -Wt.,m ~ Pmm)]S, R = (pc.gm - Pam)S. (6.32) 

Now determining the position of the pressure center, i. e., the point of applica-
tion of resultant R. Moment Mx of this force relative to axis Ox, which is passing 
ing through the AB plane center of gravity (Fig. 6.9), is equal to: 

Mx = XpressR = \lpdS = \l(p0+pgh)dS, (6.33) 

where λ is the distance between the AB's center of gravity and the pressure 
center, I is the distance between the center of gravity and the element dS. 

Fig. (6.9) shows that h = (/c.grav + Osin. Inserting this expression into Eq. (6.33), 
results in: 

K™R = (Po+P8Lgrmsina) jldS + pgsmajl2dS. (6.34) 
s s 

Keeping in mind that the static momentum of the 5 area relative to the axis 
passing through the center of gravity is equals to zero, i. e.: 

jldS=0 
s 

and: 
jl2dS = J , 

where J is momentum of inertia of area S relative the same axis, from Eq. (6.34) 
(considering Eq. (6.31)): 

. pgj . pgJ . 
Ken = „ SmCC = -^—SmCC ■ press R 

rc.grav 

If the force R is calculated considering excess pressure, then from Eq. (6.32): 

Kress = — S i n 0 r · 
(Pc.gm,-Pam)S 

If Pc.grav > Pam,' t n e n ^press > ̂ ' ^ ^ t n e pressure center is positioned lower 
than the center of gravity. 

Consider the case of a curvilinear surface AB. By projecting Eq. (6.26) on the 
vertical axis Oz and any horizontal axis (for instance, Ox), results: 

«vc = - jpcos(n,z)dS = - jpdS^ , (6.35) 
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*ho,u = - jpcos(n,x)dS = - fpdSm , (6.36) 

where rfShoriz, invert are dS projections on, respectively, a horizontal plane perpendi-
cular to 0z and a vertical plane perpendicular to Ox 

Substituting p value from Eq. (6.29) into Eqs. (6.35) and (6.36): 

*ve„ = - J \.Pm +P8(h + Hpiez)]dShonz = 

*""* (6.37) 
= ~Pa,m

SHoriz 'PS j (h + Hpiel )dShonz , 

* U = " J [Pam +P8(h + Hpiez)]dSwrl = 

(6.38) 
= -Pa,J,en-P& J C*+ #„,«) Α,οηζ' 

The integral: 
j(h + HpiK)dS,mz=Vph 

is the volume of pressure body VPb formed by the surface AB, its projection on the 
piezometric plane and vertical generatrices. Eq. (6.37) can be written as follows: 

Rvert = -(PatmShoriz + PgVpb)- (6.39) 

The integral: 

j(h + Hpiez)dSycn=(hc^ + Hpiez)Syen 

is the static momentum of the vertical projection Svert relative the piezometric 
plane. Thus, from Eq. (6.38): 

flh„nZ = \pam + Pg(hcgra, + Hpiez )JSve„ = -pc.gr„Smn, (6.40) 

where p„nler is pressure in the center of gravity of the area Sverl. 
For the forces calculated using excess pressure instead of Eqs. (6.39) and (6.40): 

Ken = ~PgVpb> Kariz = Pg(K.sra, + Hpiez^V„ · 

Note that Eq. (6.31) converts to Eq. (6.40) if Sver, is replaced by S. 
Examples of construction of pressure bodies are shown in Fig. 6.10. In Fig. 6a 

the volume of the pressure body constructed on the AB surface is within the liquid. 
In Fig. 6b, the volume of the pressure body is outside the liquid. Such a pressure 
body is called fictitious and is used with the minus sign. Fig. 6.10c shows a case 
where vertical generatrices intersect the ABC surface in more than one point. So the 
pressure bodies are constructed separately for the areas AB (the ABED body) and 
BC (the CBED body). The vertical component of the pressure forces on ABC is de-
termined as the difference of the vertical components of forces acting on AB and AC. 
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I! 

B 

b) 

Fig. 6.10 

D E 

c) 

If the surface S is closed and totally submerged in the liquid, then in conformity 
with Eq. (6.26) and the Gauss-Ostrogradsky theorem: 

R = -fiipdS=-jVpdV, (6.41) 

where V is the fluid's volume bounded by the surface 5. In the gravitational force 
and according to the Euler's Eq. (6.2), Vp = -pg, from Eq. (6.41): 

R = -gjpdV=-G, (6.42) 

where G is the weight of the fluid within the volume V. Eq. (6.42) expresses the 
Archimedes law: a body submerged in a fluid is acted upon by the expelling 
force R equal to the weight of the liquid in the volume of the submerged body. 
The force R is also called the hydrostatic lift. 

From Eq. (6.27) and Gauss-Ostrogradsky theorem: 

L = - p * npdS = - \rot(rp)dV (6.43) 

Radius-vector r = ix + kz, therefore: 

rot(rp) = - r * Vp. 

Substituting this expression into Eq. (6.43) results in: 

G „ , G. L = -[r* pgdV =-[?* p—gdV = —* \rpgdV . (6.44) 
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The radius-vector of volume Vs center of gravity is equal to: 

rc.grav = — [rpgdV , 
Gv 

And Eq. (6.44), considering Eq.(6.42), can be presented as follows: 

Z = G*~rc.gmt,=~rc.srm*~R, (6.45) 

which indicates that the action line of hydrostatic lift R runs through the vo-
lume Vs center of gravity. 

5. Elements of buoyancy theory 

Let us consider a body (ship) floating in a liquid. 
The liquid volume displaced by the body is called its volume draught. The re-

sultant of the pressure forces acting on the body, as shown in Section 4, is reduced 
to Archimedes force (also called the supporting force) directed straight up. As fol-
lows from Eq. (6.45), the supporting force's line of action runs through the center 
of gravity of the liquid volume being displaced (which is called the center of 
draught D). It is accepted that the supporting force is attached to the center of 
draught. 

In a general case, center of gravity T of a floating body does not coincide with 
the pressure center D. It is clear that in a static situation these two points are lo-
cated on one vertical line, which is called the buoyancy axis. It is also obvious that 
in a static situation the body weight G is equal in size to the supporting force R and 
that G = -Ä . 

The liquid's free surface plane intersecting the buoyant body is called buoyan-
cy plane. The cross-section perimeter of the buoyant body by the buoyancy plane is 
called waterline. The area enclosed by the waterline is called the waterline area. 

Buoyancy of the body is its capacity to float at the given weight G. The meas-
ure of buoyancy is draught. The buoyancy margin is the acceptable overloading at 
which the body will not sink yet. As the body's submergence in a liquid results in 
its increased draught, the margin of buoyancy is determined by the height of im-
permeable portion of the emerced board over the buoyancy plane. 

The capacity of a body to float in the normal position and return to normal po-
sition in a case when the normal position was disturbed due to listing, as soon as the 
forces that caused listing cease, is called the static stability of a buoyant body. 

The weight of the body does not change at the static listing. Thus, its draught 
and the supporting force R also do not change. However, as the shape of the sub-
merged portion changes, the center of draught is shifting relative to the body to a 
point D] (Fig. 6.11). The body's center of gravity maintains its position on the 
buoyancy axis. In this case movable loads or unbushed liquids is not considered. 
So, when listing occurs the body weight and the supporting force form a force 
couple. Depending on the mutual position of the body's center of gravity T and the 
center of draught D\ this force couple may be either restoring or overturning. 
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The line DD\ along which the center of 
draught moves during listing is called the 
center of draught line. 

The point M where the restoring 
force R\ intersects with the buoyancy axis at 
low listing angles a is called the initial me-
tacenter. The listing angle a is the angle be-
tween the buoyancy axis and the vertical. 

The HM value (the distance between the 
center of gravity and the initial metacenter M) 
is called the initial metacentric height. The 
restoring momentum MM generated by the G 
and R\ force couple is equal to: 

MM = R\HMsina = RH/usina (6.46) 

because at the static listing, the supporting force does not change and is equal to the 
weight of a buoyant body G. 

Fig. 6.11 shows that if the point M is positioned higher than the point T, the 
momentum MM tends to return the body to its initial position. So, if the point M is 
positioned higher than the point T, the initial metacentric height HM is considered 
positive. Obviously, at HM < 0 the MM momentum will be overturning. In other 
words, it is necessary for the static metacentric stability of a buoyant body that the 
initial metacentric height is positive. 

The distance HM + h between the initial metacenter and initial draught center 
(i. e., the length of the MD segment) is called the initial metacentric radius. 

Consider a buoyant body listing at a small angle a from its normal position. 
The amount of the so submerged volume Oab is equal to: 

Vx=\axdS, (6.47) 
s, 

where 5Ί is the portion of the new wateriine area, and x is the distance between the 
intersection line between the wateriine and element dS. The body weight G and its 
supporting force R did not change, so the amount of the emersion volume is equal to: 

V2=- jaxdS = -V,, S^S-S^ (6.48) 
s2 

were S is the wateriine area. 
The supporting force increases by: 

and decreases by: 
SR2=-pgVi=atl. 

The momentums generated by these forces are equal to: 
M, = apg jx2dS, M2 = apg jx2dS. (6.49) 

5, S, 
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According to Eqs. (6.47) and (6.48), 

jxdS+ jxdS=0, 
s, s2 

i. e., the static momentum of the new waterline's area relative to the intersection 
axis of the contiguous waterline areas is equal to zero, and this axis passes through 
the center of gravity of the new waterline area (Euler's theorem). 
From Eqs. (6.48) and (6.49), the restoring momentum MM is equal to: 

MM = M, + M2 = apg jx2dS = apgJ, (6.50) 
s 

where J is the new waterline momentum of inertia relative the axis passing through its 
center of gravity (as seen in Fig. 6.11, M\ and Mi are directed in the same direction). 

The restoring force R\ may be presented as: 
/?, =/? + <S?,+#?2. 

Its momentum relative to the pressure center D is equal to the sum of momen-
tums <?/?,, SR2, i. e., it is equal to M as the action line of the forced passes through D. 
On the other hand, the force R\ momentum is equal to: 

MM = (HM + h) Rsina = {HM + h) Ra, (6.51) 
as R\ = R and al low angles sina = a. 

Equating Eqs. (6.51) and (6.50), results: 

HM= — -h, (6.52) 

p 
where W = — is the volume draught. 

P8 
If the body's center of gravity T is lower that the draught center D, then h< 0, 

and the initial metacentric height HM is always greater than zero. 
Substituting Eq. (6.52) into Eq. (6.46) gives an equation for the restoring mo-

mentum MM as follows: 

MM=F(~h\ma, (6.53) 

which is the metacentric stability equation. 
Eq. (6.53) is derived for low-listing angles (for high-board ships a < 15 - 20°). 

At high listing angles, the correlation between MM and a becomes more complex as 
the metacenter shift relative to its initial position. 

Dynamic metacentric stability is the capacity of a buoyant body to oscillate 
under the action of forces generating the listing momentums within the assigned 
listing angle. The greater the initial metacentric height, the shorter the oscillation 
period. 

Special studies showed that the dynamic listing range under a suddenly ap-
plied force is equal to the double static listing emerging under action of a force of 
the same numerical significance. 

Static (and dynamic) metacentric stability issues have application in ship-
building. 



CHAPTER VII 

FLOW OF IDEAL FLUID 

1. Euler's equations in the Gromeko-Lamb format 

The system of equations for the ideal fluid has the following format: 

dp 

dt 
+ pdiw = 0, 

P— = pF-Vp, 

< v^ 
u + — 

2 
= pFv - άϊ\ρν + pqe. 

The heat-flow equation for the ideal fluid is: 

P ~*:~_ „ . P dP du_ 

dt -=*·ν*νν=*·νΛ 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

dv 
To transform Euler's equation [Eq. (7.2)], let's review total derivative — . Ac-

dt 
cording to Eq. (1.19): 

dv dv - - - dv dv 
_ = — + (v*V)v = — + v , — 
dt dt dt ' dx, 

dv 

(7.5) 

Projecting vector (v * V)v = v, onto the Oxi coordinate axis: 
dx, 

[(v*V)v] =Vj — = v,—L + v2—L + v3—L 

dx dxt dx2 dx3 

(7.6) 

Mechanics of Fluid Flow 
by Kaplan S. Basniev, Nikolay M. Dmitriev and George V. Chilingar 

Copyright © 2012 Scrivener Publishing LLC 
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Eq. (7.6) can be written in the following format: 

dv, dv, dv, dv, dv, dv, dv, dv, 

ox, dx, ox, ax, ax, ax, ox, ox 3̂ *3 

2 dx, 
= T ^ " ( v f + V2 + V32) + V2 

3v, dv2 

ydx2 dx, J 
+ v, 

f3vL_3v3_' 
dx3 dx, 

(7.7) 

According to Eq. (3.9): 

2i»=rotv = 

e\ ei ei 

JL JL A 
dx, dx2 dx3 

(7.8) 

and Eq. (7.7) can be presented in the following format: 

3v, d v 
J dx, dx. 

2v20)i + 2v3ö^. (7.9) 

The medium is isotropic so all coordinate axes are equivalent, and after the 
cyclic rearrangement of the subscript: 

dv2 _ d 

dx, dx, v 2 y 
-2vioxl + 2νιω3, (7.10) 

3v, 3 (v2^ 

dx, dx, 
■ 2ν,ω2 + 2ν1ύ)ι, (7.11) 

where ft), is projection of vector ω onto the Ox, axes. Multiply Eqs. (7.9), (7.10) 

and (7.11), respectively, by e\, ei and ej results: 

dv _ v2 „— -
v, — = V— + 2ω*ν. 
'dx, 2 

(7.12) 

Substituting Eqs. (7.5) and (7.12) into Euler's equation, gives: 

— + V — -2v*w=F-~Vp. 
dt 2 p 

(7.13) 

Eq. (7.13) is Euler's equation in the Gromeko-Lamb format. 
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2. Bernoulli integral 

Continuous medium motion equations in stresses Eq. (2.42) were derived from 
Newton's second law. Euler's equations are a particular case of the Eq. (2.42); 
therefore, they are a mathematical expression of the second law for the ideal fluid. 
Theoretical mechanics states that the motion equations under certain conditions 
have the first integral, which is the law of mechanical energy conservation. Hence, 
Euler's equations under certain conditions also must have the first integral. This 
integral is called Bernoulli's integral. 

Bernoulli's integral is among the most important hydromechanical equations. 
In order to derive it, it is necessary to state the following assumptions: 

dv 
(a) the flow is transient-free, — = 

dt 
0 ; 

(b) the mass force stress has potential, F = Vn . 
Under these assumptions, Eq. (7.13) assumes the following format: 

,.l\ 
Π + - + -V/7 = 

P 
v * rotv. (7.14) 

Flow-lines and rotor-lines at transient-free motion are immobile in the space, 
and the flow-lines coincide with trajectories of the fluid's particles. Along the flow-

- -o — I - i -o -o -o 

line, V = VJI, and along the rotor-line, rotv = rotv\s2, where Ji and S2 are basis 
vectors of tangents to the flow-line and rotor-line. Thus, sequential multiplying 

-o -o 
Eq. (7.14) by ii and S2 or, which is the same, projecting this equation on the flow-
line and rotor-line, results: 

-Π + 
ν2Λ 

V "" J 

- Π + — 
2 / 

i * = 0 . 
pdst 

dp 
pds. 

= 0. 

(7.15) 

(7.16) 

At the transient-free motion, all motion parameters (p, p, T, v) are function 
of si coordinate counted along the spatially immobile flow-line. So, p = p(s\,L\), 
p = p(s],L\), where Liis a mark of the flow-line of interest. Canceling s\, we have 
p =fi(p,Li), where L2 is a mark of the corresponding rotor-line. 

The presence of functions of type p =ßß,L) enables the introduction of a pres-
sure function: 

</P = 4£ , or "=i: dp 
(7.17) 

where the integral is integrated along the flow-line (rotor-line). The pressure func-
tion P is determined with accuracy to the additive constant and in the general case 



108 CHAPTER VII 

is a function of L, i. e., the function of the selected flow- (rotor-) line. Following 
from Eq. (7.17): 

_^L_l_dP .-,„ 1 
dxx p dxy 

Substituting this equation into Eqs. (7.15) and (7.16): 

VP = - V p . 
P 

ds-, 

ν2λ 

-Π + Ρ + — 

- Π + Ρ + -

= 0, 

= 0, 

where from, after integrating along the flow- (rotor-) line: 

(7.18) 

(7.19) 

(7.20) 

2 ' ^ 
(7.21) 

•Π + Ρ + — = C,L·. 
2 2^ 

(7.22) 

Beroulli's integral states that at the transient-free motion and in the presence 
of mass force stress potential, the trinomial: 

- Π + Ρ + — 
2 

(7.23) 

maintains constant numerical value along the flow- (rotor-) line. The C\(Ci) con-
stant may have different numerical value on different flow- (rotor-) lines. 

Eqs. (7.21) and (7.22) are valid, respectively, along any flow-line and rotor-
line, and are called Bernoulli's integral. 

By taking a rotor-line and pass flow-lines through its points forms the surface 
of a flow. As Ci{Li) = const along the locked rotor-line, then along all the flow-
lines crossing it C\(L\) = C2(Z,2) = const. Therefore, on the constructed surface 
a condition C\ = const is realized. 

Similarly, if rotor-lines carried through a flow-line, then the condition 
Ci - const will be realized on the formed surface. In the case of a potential flow 
(i. e., v = V<p), from Eq. (7.8) that rot v = 0, and Eq. (7.14) looks as follows: 

ν2Λ 

■Π + — 
2y P 

(7.24) 

It is necessary to emphasize that at v = V<p, Eq. (7.24) is valid within the entire 
flow volume. Because of this: 

1 V/? = VP, (7.25) 
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And the function P is obviously the same all over the flow volume. Therefore, 
as Eq. (7.18) shows, the pressure depends only on the density. The process at 
which the pressure depends only on the density is called barotropic. 

Examples of barotropic processes are the flow of a incompressible fluid, and 
isothermal processes. Later, we'll review some other barotropic processes. 

Substituting Eq. (7.25) into Eq. (7.24) results: 

< v2^ 
- Π + Ρ + — 

or 
, 2 

= 0 (7.26) 

- Π + Ρ + — = C. (7.27) 

Eq. (7.27) is valid along any line drawn within the fluid, and the constant C 
has the same numerical value within the entire fluid's volume. 

So, if the flow is transient-free, and the mass force stress has potential, the 
process becomes barotropic. 

Conversely, it follows from Eqs. (7.13) and (7.25) that if the flow is transient-
free, potential and barotropic then: 

V 
( v2^ 
P + — 

V 2 y 

= F, 

i. e., such flow may only exist if the mass force stress potential is present. 

3. Particular forms of Bernoulli's integral 

Let's analyze a transient-free flow of the ideal incompressible fluid in the gra-
vitational field. In this case, p = const, F = g, Π = -gz where z is the vertical 
coordinate. 

From Eq. (7.17), the pressure function is P = — +const, and Bernoulli's 
P 

integral Eq. (7.21) [or (7.22)] changes into the following format: 

P v2 

gz + — + — = const (7.28) 
P 2 

or 

P v2 

Z + -Z- + — = H= const. (7.29) 
Pg 2g 
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The terms of the Eq. (7.29) have the dimension of the length and are called: 

z — geometric (or leveling) height or geometric head; -*— — piezometric height 
Pg 

v2 

or piezometric head; velocity height or velocity head; their sum H — to-

tal head. 
Following from Eq. (7.29) at a transient-free flow of the ideal incompressible 

fluid in the gravitational field the total head maintains constant numerical value 
along any flow-line or rotor-line. 

In an effective cross-section of the elementary flow-tube all flow parameters 
are constant by definition. So Eq. (7.29) is valid for the elementary flow-tube. Let's 
review a horizontal flow-tube, z = const. Then, following from Eq. (7.29) the pres-
sure declines as the velocity increases. 

As the flow velocity increases, the pressure may become sufficiently low to be 
equal to the saturated vapor pressure py. The fluid begins to boil, and caverns filled-
up with its vapor form within it. This phenomenon is called cavitation. 

From Eq. (7.28): 

Sz0 +^+| = gz+^+f, 
p 2 p 2 

or: 
.2_2PSiza-z)_p0-p, | vl 

p 2 ' 
where v* is velocity at which cavitation begins. 

Cavitation is damaging for the operation of pumps, intake lines, siphons, pro-
peller screws, etc., and may even cause their destruction. At the transient-free flow, 
the throughflow along the flow-tube is constant under Eq. (2.41) (viSi = V2S2). 
Therefore, if the tube narrows, the velocity increases, and the pressure declines. 
This principle is used in water-suction pumps, pulverizers and other devices. 

Let's now review transient-free motion of an ideal non-viscous gas. Its equa-
tion of state (Clapeyron's equation) is: 

?- = RT, (7.30) 
P 

where R is the gas constant and T is the absolute temperature. 
Eqs. (7.17) and (7.30) demonstrate that the thermodynamic process must be 

assigned for derivation of the pressure function. 
From the heat-flow Eq. (7.4): 

q.dt = du-Ar dp = du + pd— = du + pdV, (7.31) 
P P 
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where V = — is specific (per/unit) volume. Therefore, for a non-viscous gas the 
P 

heat-flow equation is the same as the first law of thermodynamics. 
At p - const, V = const, and: 

qedt = CvdT = du, (7.32) 

where Cv is heat capacity at constant volume. Atp = const, we obtain from Eqs. (7.30) 
and (7.32): 

qedt = C dT = du + d^- = CvdT + RdT, 

and from here, Mayer's equation: 

R = Cp~Cv, (7.33) 

where Cp is heat capacity at constant pressure. 
Combining Eq. (7.31), the equation of state Eq. (7.30), and also Eqs. (7.32) 

and (7.33) results: 

qedt = CvdT + pd- = - ^ -
p CP-CV 

d — + pd— = 

P P *- i 
i J 1 dP 
kpd— + — 

P P. 
(7.34) 

k-\ 
kpd 

1 1 dp 
+ - T 

/?- ' p p 
Jfc-1 pk 

where k = -1- is adiabatic exponent. 

At adiabatic process (i. e., the absence of the external heat inflow) qe = 0 and: 

^ = Θ or P_ 

Po 

r \k 

P_ (7.35) 

It is important to note that for the derivation of the Poisson 's adiabat equation 
the heat-flow equation Eq. (7.31) is used for the ideal fluid. Therefore, the Pois-
son's adiabat is valid at adiabatic process without friction. 

Now it is necessary to demonstrate that the adiabatic process without friction 
is iso-entropic, i. e., in this process entropy remains constant. 

Entropy s can be determined as follows: 

ds = 
dq 

(7.36) 
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Suppose the heat in the liquid volume under consideration comes only from 
the outside, i. e., dq - qedt. Then, from the equation of state and Eqs. (7.33), (7.34) 
and (7.36): 

ds = _<!A = cdL+fLdl = cdL + (cp-Cv)pd± = 
T T T p T p p 

= C d\nT + {k-\)d\n 
P\ 

= Cvd\n-

Then: 

:C„ln 
<Plj 

= Q l n 
( ~ \ 

At isentropic process, s2 = ί,, and from Eq. (7.37): 

In 
/ 

\PiJ 

Ί 

(7.37) 

(7.38) 

\ru J p' 
Eqs. (7.35) and (7.38) show that the adiabatic process without friction is in-

deed isentropic. 
For a general case of a non-adiabatic process, the heat-flow equation Eq. (7.31) 

can be transformed as follows considering Eqs. (7.30), (7.32) and (7.33) 
1 

qedt = CdT = CvdT + pd — , 
P 

or: 

= 0, 
P P 

where C is heat capacity at the thermodynamic process under review. Calling: 

(7.39) 

c-cy 
C -C 

1 

n-\ 
ΠΦ\, 

and from Eq. (7.39): 

npdl + ± = p»-> 
P P 

wherefrom: 
p"-1 p p" l 

p=Ap". (7.40) 

This is the equation of the polytropic process. In a general case, the numerical 
values of A and n (through heat capacity C) may vary from one particle to the next 
(for a non-uniform liquid). Therefore, A and n are functions of the particle's La-
grangian coordinates Xj and t. At the transient-free motion, the flow-line coincides 
with the trajectory; so, if A and n depended on Xj, the pressure at a locked point of 
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the flow-line (of space) would have changed with time, and the motion would be 
non-stationary. Therefore, A and n at transient-free motion may only depend on L. 

If the A and n parameters have the same values within the entire fluid's vo-
lume, the polytropic process becomes barotropic. 

Eqs. (7.17), (7.30), (7.33), (7.35) and (7.40) are used to derive pressure P func-
tion. For adiabatic process, with the accuracy for the constants of integration, one 
obtains: 

P = — Θ / - ' = — 0 ^ = — Z = C J \ ( 7 . 4 1 ) 

k-\ H k-\ F k-lp " 
and for polytropic process: 

n - 1 n - 1 n - 1 p 

For isothermal process: 

S-=PO_ = RT= const, (7.43) 
P Po 

where p0, p0 are pressure and density at temperature 7Ό; so from Eqs. (7.17) 
and (7.43): 

P = Al n_P_ = .Püin-£-. (7.44) 
Po Po Po Po 

By substituting Eq. (7.41) into Eq. (7.21) and assuming Π = -gz, the following 
Bernoulli integral for the adiabatic process is obtained: 

gz + — - + —= C = const, (7.45) 
k-lp 2 

k - — 2 

gz + Θ* p k + — = C = const, (7.46) 6 k-l F 2 

k v2 

gz + -^—Qpk-'+ — = C = const, (7.47) 

v2 

gz + CpT + — = C = const. (7.48) 

From the same Eqs. (7.21) and (7.42) for the polytropic process: 
2 

gz + —-- + — = C = const ( n * l ) , (7.49) 
w-1 p 2 
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1 i i - l 2 
n . - — v _ 

gz + A"p " + — = C = const ( n * l ) , 
n - 1 2 

gz + Apn ' + — = C = const (7 i* l ) . 
H - l 2 

And for isothermal process from Eqs. (7.21) and (7.44), 

(7.50) 

(7.51) 

gz + —\n — + — = const, 
Po Po 2 

gz 
Pn i P V 

+ J-s-ln — +— = const. 
Po Po 2 

(7.52) 

(7.53) 

Eqs. (7.45)—(7.51) show that the numerical values of the —, p and Rvalues 
P 

under adiabatic and polytropic processes decrease with increasing velocity. Under 
adiabatic process, absolute temperature T also decreases with the increase in velo-
city. Under the isothermal process, as Eqs. (7.43), (7.52) and (7.53) show, with 

increasing velocity p and p decrease, and — remains constant. 
P 

4. Simple applications of Bernoulli's integral 

First it is desired to review some simple examples of applying Bernoulli 
integral to the flow of ideal incompressible fluid in the gravitational field. 

1. Fluid's flow through a small hole in a vessel. Suppose So» S where So is 
the area of the fluid's free surface, and 5 is the area of the vessel's hole (Fig. 7.1). 

In such a case the fluid's level change in the 
vessel can be disregarded and assume that zo = 
= const. 

From Eq. (7.28): 

Po<Sa 

P 

P v 

■gz + ^ + — , 
P 2 

(7.54) 

Fi8· 7-! where po is pressure on the free surface, z, p, v 
are parameters of the stream at the exit hole. Eq. (7.54) provides the flow velocity 
from the hole: 

v=\2gh + 2 Po-P (7.55) 
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where h = zo-z- When po - p, from Eq. (7.55) emerges a well-known Torricelli's 
equation: 

v = fig~h, 
i. e., the outflow velocity is equal to the velocity of a heavy body falling from the 
height h. As p = const on the surface of the outflow stream, following Bernoulli's 
integral, with lowering of the stream its velocity increases. 

2. Velocity tube (Pitot's tube). Suppose an axisymmetric body is submerged in 
a fluid so that its axis' direction coincides with the direction of the flow velocity 
(Fig. 7.2). At the point A at a sufficient dis-
tance from the nozzle of the body B, the veloc-
ity is VA, and pressure, p\. At the point B, the 
velocity is VB = 0, flow-lines branch-out. Thus, 
point B is a singularity. It is acceptable to be-
lieve that at point C also quite remote from 
point B the flow disturbance caused by the 
tube nozzle disappeared, so \>c = VA, pc = PA (to 
simplify the problem, the flow is considered to be horizontal). 

From Eq. (7.28) for the flow-line AB: 

PA , V2A _ PB 

P 2 p ' 
and from this: 

Fig. 7.2 

2PB~PA _ 2
p g ~ 

P V P 
Pc (7.56) 

This way, by measuring pressure difference pB - pc the velocity vA can be de-
termined. 

In practice, a correction factor φ is introduced in Eq. (7.56) considering the 
flow distortion and the presence of friction. Factor φ is determined by calibration. 
For high-quality tubes, φ = 0.99 to 1.02. 

3. Venturi meter. As demonstrated in 
Fig. 1.3, cross-sections I-I and II-II are selected 
and assumed that the velocities in these cross-

3v,. 
sections are uniformly distributed, i.e., —^ = 0 . 

Then, it follows from Euler's equation Eq. (7.2) 
that at transient-free flow in each of these cross-
sections Vp = pg , i. e., the pressure is distri-
buted under the hydrostatic law:1 

pgz + p = const. (7.57) F i g 7-3 

1 The same conclusion may be made from the Navier-Stockes equation (4.42). 
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Subscript 1 is ascribed to all values related to the cross-section I-I and a sub-
script 2, to all values related to the cross-section II-II. Let's write Bernoulli's 
integral 

Eq. (7.28) for a flow-line passing along the tube's axis: 

W + ^ + ̂ W i + ^ H f . (7-58) 
p 2 p 2 

As the velocities are distributed uniformly in the cross-sections, under the con-
tinuity equation Eq. (2.41): 

viSi = v252 = Q. (7.59) 

From Eqs. (7.58) and (7.59) follows that: 

QU * <Λ 

2 
1 1 

V J 2 J l / 
= g(z,-z2) + £ L - ^ - . (7.60) 

On the other hand, from Eq. (7.57): 

P8ZA + PA= PgZ\ + Pi. pgzB + pB= pgz2 + p2, (7.61) 

where subscripts A and B relate to holes A and B. 
After substituting Eq. (7.61) into Eq. (7.60): 

Q = S,S: 1 2 1 C2 Si S2 

g(zA-zB) + ^ - ^ 
P 

(7.62) 

Eq. (7.62) shows that having measured the pressure difference pA - pB it is 
possible to determine the throughput Q. In practice, a correction factor μ is intro-
duced into Eq. (7.62). It accounts for a non-uniform velocity field in the cross-
sections and the friction. 

5. Cauchy-Lagrange's integral 

Cauchy-Lagrange's integral is the Bernoulli's integral analog for the non-
stationary motion and derived based on the following assumptions: 

(a) the flow is potential, v = V^>; 

(b) stress of the mass forces has potential, F = VTI; 
(c) the process is barotropic, p = pip). 

The third assumption is based on the fact that the flow-lines under a non-
stationary motion do not coincide with trajectories. Therefore, it is not possible to 
assume that p = p(L,s) and p = p (L,s) and eliminate ί as it was done when deriving 
Bernoulli's integral. Thus in a general case of a non-barotropic motion it is not 
possible to compute the pressure function P. 
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In the above assumptions rotv = 0, and Euler's equation in the Gromeko-
Lamb format Eq. (7.63) looks as follows: 

^ + V— = V n - V P , (7.63) 
dt 2 

where the pressure function P is computed from Eq. (7.18). 
As: 

dv d ._ . „3fi> 
—- = _ (V^) = V - ^ , 
dt dt dt 

Eq. (7.63) can be written in the following format: 
..2Λ 

> - n + p +
v " (7.64) 

As the Hamilton's operator V includes only the space derivatives, and the 
functions in Eq. (7.64) are in general case depends on time, and from Eq. (7.64): 

^ - Π + Ρ + ̂ - = / ( 0 . (7.65) 
at 2 

This equation is called the Cauchy-Lagrange's integral. Following from its de-
rivation that the function fij) has the same format within the entire volume occu-
pied by the fluid. In the transient-free motion, Cauchy-Lagrange's integral converts 
into Bernoulli's integral Eq. (7.27) for the barotropic potential motion. 

To determine function fit), it is necessary to know the motion at any one point 
of the fluid, for instance, at the volume's boundary. 

Instead of the potential <p, the function φ is introduced as follows: 

<Pi=q>+\f(f)dt. 

Then: 

and the Cauchy-Lagrange's integral may be written as follows: 

M _ n + P + ^ = o. 
dt 2 

For an incompressible fluid in the gravitational field: 

dcp. p v2 

at p 2 

For an ideal gas under the iso-entropy process from Eq. (7.37): 

do, k p v2
 n 

-zp- + gz + — + — = 0 . 
dt k-lp 2 

^L + gz + J± + ^ = 0 . (7.66) 
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In many cases, it is more convenient to describe the considered motion in an 
immobile coordinate system using a movable 
coordinate system. Suppose beside the immobile 
system Ox^xi a movable coordinate system 
Ox'\x'2x'3 exists (Fig. 7.4). Assigning numerical 
values to x'j means setting the point M relative to 
the movable system. 

! If point Af's motion relative to the immobile 
coordinate system is known, then: 

Fig. 7.4 

Then, setting numerical values of *'/ 

Xi=Xi{x'j,tf 

3*,. _dxi(xj,t) _ 
dt dt 

(7.67) 

(7.68) 

where v, ,rans are the projections of the transfer motion velocity Vilmns ■ From Euler's 
equation: 

where vo is the velocity of the origin Ο', ω is the instantaneous angular velocity of 
rotation of the coordinate system 0'*Ί*'2*'3, r is the point M's radius-vector in 
this system. 

In the immobile system 0*1*2X3 the velocity potential depends on *,·, t - φ = 
= (p(xi,t). Substituting the motion law Eq. (7.67) into this equation, the result is the 
potential ψ\ = φ[χ,{χμ)] expressed through the coordinates of the mobile system. 
Then: 

όφχ _ όφ όφ äx, 
dt dt dx, dt ' 

V7 dm - -
α \ φ = —- + V,ransV . 

dt 

or, by taking Eq. (7.68) into account: 

-. — ^ ' V trans y 

dt dt 
Now Cauchy-Lagranges integral may be presented as follows: 

dft 
dt 

■v,ransv-n + p+- ■f(t). (7.69) 

Assume the system O'* '1**2* '3 is moving relative to an immobile sys-
tem 0*1*2*3 at a speed v,™s = e{V(t). Then, Eq. (7.69) changes into the following 
format: 

dt 
v- dq\ ,,d<p 1 -eVv-n + P + —= ^ 1 - V ^ ^ - n + P + - ( V ^ ) 2 = / ( i ) 
2 dt dx 2 

' A reminder: x,{x'j,t) meansx,= x< (x\,x2,X),t) ,j= 1, 2, 3. 



FLOWS OF IDEAL FLUID 119 

6. Thomson's theorem 

Select a line AB within the liquid and assume that all its points are moving to-
gether with the fluid, i. e., AB is a fluid line. Then equation representing the line AB 
can be written as r = r(s,t) where s is a parameter 
changing along the line, for instance, the length of 
arc. If s = const r = r(t), which is the motion law 
of any point of the liquid line AB. 

The velocity circulation: 

Γ= [vd'r, (7.70) 

vndt 

is taken along AB, and computed by the derivative lg ' 

— . Remember, not only the velocity of the points forming the line AB but also the 

appearance of the line change with time. First the time derivative of the integral is 
taken along the fluid line. Using the integral definition, results: 

d_ 
dt 

\<pd r=— lim Σ<ΡΑη = Hm 
dt Ar >0~Γ Ar >ι dt Y' dt 

As Ar, = J A S (where s is a singular vector of the tangential to AB, Fig. 7.5), 
then: 

dAn 
dt 

■ = VB, - d v A 
■VA, =——ds 

as 

(7.71) 

and: 

— [<pdr= [-¥-dr+ [φ—ds. (7.72) 

Assuming in Eq. (7.72) φ = v, from Eq. (7.70): 

d£ 
dt 

■dv dv ai tav - t-av , t 
— = —dr+ v—ds = 
At J At J Λ<· J 

•dv 
ds AB AB " " AB "' AB " " " AB 

—dr+ —— 
dt A 2 ds 

ds=j dv , 11 2 i\ 
(7.73) 

Eq. (7.73) is purely cinematic, i. e., it is valid for any motion of any fluid. 
If AB is a closed contour, the second term in Eq. (7.73) is disregarded: 

^=Pd-r-jUPd-r+Uvl-vl). 
dt 

(7.74) 
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When the mass force potential is present (F = VTI), Eq. (7.74) changes its ap-
pearance: 

^=|^-|Ιφ+Ι(^-νΐ), (7.75) 
" ' AB ABV

 L 

where dTl, dp are differentials taken along the arc of the AB curve. 
If the curve AB is closed, and the potential of Π is a univalent function, then 

following from Eq. (7.75): 

^ = -j-dp- (7.76) 
dt 3 p 

Under a barotropic process: 

1 
-dp = dP, <SdP = 0, 
P > 

and from Eq. (7.76): 

— = 0. (7.77) 
dt 

Eq. (7.77) is the Thomson's theorem: in a case of ideal fluid, when the mass 
force stress has a univalent potential and the process is barotropic, the circulation 
along any closed fluid contour does not depend on time. 

Let us pull an arbitrary surface S over a closed contour C. From the Stockes' 
law Eq. (3.35): 

T = -§vd~r = 2\a)„ds. (7.78) 
c s 

Following from Eqs. (7.77) and (7.78) that if the Thomson's theorem condi-
tions are valid, the flow of rotor does not depend on time, or: 

2 fads = j"(rotv)„ik = const, (7.79) 

Eqs. (7.78) and (7.79) are true for any contour C which can be continuously 
drawn tight into a point, and for any surface S pulled over this contour. 

Suppose at initial time t = 0 there are no rotors in the entire volume occupied 
by the fluid (ω = 0). Then, according to Eq. (7.79): 

j(rotv)nds = 0, 
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and as the surface S is arbitrary, for the entire fluid volume: 

(rotv)„ = 0. (7.80) 

The arbitrariness in the selection of surface S also means the arbitrariness in 
the selection of the direction for the normal n. So, from Eq. (7.80): 

rotv = 2i»=0. (7.81) 

Eq. (7.81) gives rise to the Lagrange's theorem — on the following conditions: the 
fluid is ideal; the process is barotropic; mass force stresses have potential; the ve-
locity rotor at some moment in time was equal to zero, — the motion will be vor-
tex-free at any future time. 

The condition Eq. (7.81) is a condition of a potential flow (Chapter III, Sec-
tion 5). Thus in a fluid, satisfying the conditions of the Thomson's theorem, a po-
tential flow remains potential forever if it were potential at some point in time. Si-
milarly, the reverse statement can be shown: if the motion was vertical, it remains 
vertical in the future. 

Lagrange's theorem shows that the motion that emerged continuously from the 
state of quiescence is potential. Remember, this is true only if Thomson's theorem 
conditions are valid. This statement is true particularly for a uniform ideal incom-
pressible fluid in the gravitational field. In a viscous fluid and also when the baro-
tropic nature is broken, the vortices (rotors) may emerge and disappear. 

7. Helmholtz equation 

Following is the ideal fluid motion equation in the Gromeko-Lamb format 
[Eq. (7.13)] under an assumption that the mass force stress has potential, and the 
process is barotropic: 

σν _ π „ v 
dt 

Π + Ρ + 
v 2 y 

-2v*<ö = 0, (7.82) 

dp where VFI = F , and P is a function of pressure: P = f— 
J P 

Applying the rot operation to Eq. (7.82) and keeping in mind that 
rot(V^>) = 0, rotv = 2ω, results: 

^ + rot(<a*v) = 0. (7.83) 
dt 
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Projecting Eq. (7.83) on the axis 0x\: 

M ;_ 3 , - , 3 .-. dox. 3 . 
v), = ^ r L + — (fiiv, + — - ( « * v ) 3 - - ^ - ( < y * v ) 2 = ^ _ + - ^ ( ^ v 2 - ö i 2 v 1 ) - - - ( i O , v , - ^ v 3 ) = 

di dx2 dx3 dt dx2 dx3 

dox. 3v, dox. 3v, 3ω> 3v, 3iu, 

3? 3x2 3x2 3xj 3x2 3xj 3x, 
(7.84) 

dox. dox dox, dox, 
= -P- + v, - - L + v2 - - L + v3 -r-

2- + ox, dt dx, 3bc 3x, 
3v. 3v, 3v3 

v3x, 3x2 3x3, 

dox, dax2 dox, 

y 3x, 3x2 3x3 j 

■ox,-
3v, 

-ax2-
3v, 

■fl% 
3v, _da\ 

+ iUjdivv - v,divß7 - axVvl = 0. 
3x, 3x2 3x, dt 

It is easy to check that div OX = 0 using a direct substitution. Besides, following 

the continuity equation Eq. (7.1), div v = — . So, Eq. (7.84) can be written as: 
p dt 

or: 

wherefrom: 

dt p dt 

1 da\ ox, dp = ω ^ 

p dt p2 dt p ' 

d_ 

dt \P ) 
= —Vv,. (7.85) 

The Eq. (7.85) is the Helmholtz equation as projected onto the Ox, axis and its 

vector format is: 

ax ox *V v . (7.86) 

Helmholtz equation Eq. (7.85) or (7.86) provides an opportunity to find a 
change in the vortex field with time. 

Eqs. (7.83) and (7.86) are purely kinematic and it is apparent from Eq. (7.83). 

Eq. (7.86) is a direct consequence of Eq. (7.84), which, considering div<ü = 0, takes 

the following vector format: 

dt { > 
Consider a vortex line in a fluid. Now it is important to review its element 

ds = e— (by definition of a vortex line, ds\ax) where ε is a small constant. Lets 
p II 
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denote both ends of the ds vector A and B (Fig. 7.5). Fluid's particles (material 

points) which formed ds at the time t form the ds' element at the time t + dt. 
Then: 

d~s'=d~s + vBdt-vAdt. (7.87) 
It is important to note the fact that Eq. (7.87) in its meaning is in agreement with 
Eq. (7.71). 

In accordance with Eq. (3.3) and with the definition of vector ds: 

VB -VA = (ds*V)v = 

and Eq. (7.87) takes the format of: 

ds'-- ω 
/ ■ -

ω * v vdt (7.88) 

ω Now take the vector of vortex d s = ε —. At the time t + At it is equal to: 
P 

as ,- ds , ω d 
■ ds +—dt = e— + e— 

dt p dt 

ω 
dt. (7.89) 

\r j 

ds"=£-
p· dt p 

It is critical to remember that a total derivative is taken in Eq. (7.89). For this 
reason, the second term of this equation (with the accuracy to the terms of higher 

order of smallness) is an addition of a fluid vortex element ds = e— for the time 
P 

period dt. 
Using Helmholtz equation Eq. (7.86), Eq. (7.89) can be written as follows: 

ds"=e ω ^ * V vdt (7.90) 

Vector ds' is the element of the liquid line into which the ds element will 
transform over time period dt. Vector ds" is the element of the fluid line at the 
time period dt +1. It can be seen from Eqs. (7.88) and (7.90), that ds'= ds". There-
fore, the vortex line elements always coincide with the fluid line elements from 
which this vortex line is composed. Thus, if the mass force stress has potential, the 
fluid is ideal and the process is barotropic (the conditions under which Helmholtz 
equation is valid), the vortices move together with the fluid's particles (the second 
Helmholtz theorem). 

Now consider an elementary vortex tube with the cross-section da. Its stress 
is equal to ωάσ. During the time interval dt it converts into a vortex tube with the 
cross-section da'. It is proved earlier that the vortex tube consists of the same par-
ticles at all times. Therefore, from the mass conservation law: 

pdads = p'da'ds'. 



124 CHAPTER VII 

Replacingdswith ε— andds' with ε—.results: 
P P' 

ωάσ = ώάσ\ 
meaning that the stress of the vortex tube remains unchanged in time. 

Following from Helmholtz equation Eq. (7.86) that if at some moment in time 

i»=0, then — 
dt 

'ωΛ 

= 0, i. e., if there were no vortices, they cannot emerge in the 

v ; 
future. 

This statement is not true for a viscous fluid. 
The viscous incompressible fluid's motion equation at μ = const is Eq. (4.42). 

When the mass force potential is present, this equation can be written as: 
dv 3v v2 - — u — 
— = — + Δ-—2ν*β>=ΔΠ-Δρ + ̂ Δ ν . (7.91) dt dt 2 P 

Applying to this equation the same procedure as to Eq. (7.82), and consider-
ing rot(Aar) = Δ rotor, the result is: 

— = (ο>*ν> + ̂ Δή>. (7.92) 

dt p 

Due to the presence of the additional term —Αω, the vortex lines will not be 
P 

the fluid lines, and the vortices can spread from one particle to the next. 

When the interruptions are small, the terms v·—— and (<o* V)v in Eq. (7.92) 

are negligible second-order numerical values, and the equation can be written as 
follows: 

dm μ -
dt p 

this equation is the same as heat-conductivity equation. Therefore, under small in-
terruptions vorticity in a viscous fluid behave the same way as temperature of a 
non-uniformly-heated body. Its tendency is to spread all over the heated body. The 
vortex diffusion occurs. 

8. Potential flow of a incompressible fluid 

The Cauchy-Lagrange's integral Eq. (7.66) for the potential flow of a uniform 
incompressible fluid can be written as follows: 

^ - - n + - ^ - + -(V<p)2=0. (7.93) 
σί ρ 2 
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(7.94) 

From the continuity equation and a condition of the flow potentiality: 

divv = div(V^>) = Δφ = 0, 

where Δ is the Laplace operator. 
Considering Eq. (7.94) that φ is a harmonic function, and Eq. (7.93), when φ 

is known, allows to find the pressure distribution. Eq. (7.93) does not impose limi-
tations on the solution of the Laplace equation. So, each potential flow of a incom-
pressible fluid has its corresponding harmonic function <p, and any harmonic func-
tion has its corresponding potential flow of a incompressible fluid. Thus, study of 
the potential motion of a uniform incompressible fluid is reduced to the study of 
the Laplace equation solutions, i. e., to a search of its solutions with the assigned 
boundary conditions. 

Let's review a space volume where any harmonic function is assigned. From 
Gauss—Ostrogradsky theorem and Eq. (7.94): 

jdiwdV = Jdiv(V<p)dV = fiV<pdS = j^dS = 0. (7.95) 

Suppose the harmonic function φ comes up to a maximum at the internal 

point M of the volume D. Surrounding the point M with an infinitely small sur-

face 5, as φ comes to a maximum at the point M, there must be —— < 0 at the 
dn 

points of the surface S, and Eq. (7.95) is not valid. Therefore, the function φ cannot 
have a maximum at the internal point of the volume D. Using the same approach, it 
is easy to prove that the function φ cannot have a minimum at the internal point of 
the volume D. Thus, the harmonic function may come to a maximum or minimum 
only at the volume D boundary. 

Suppose the flow velocity reaches to a maximum at the internal point of the 
volume and is equal to vM. The coordinate axes at this point is selected so that 

vM = —*-. As φ is a harmonic function, —— is also a harmonic function, so it can-
do:, dx, 

not reach a maximum at point M. Then within a small neighborhood of the point 
M, it is possible to find such a point N where: 

Βφλ |dp 

VdxUN 
dx, 

v « 
and from here: 

d<p 

dx 

d<p 

UN \dx2jN 

d<p 

\dx3jN 

3φ (7.96) 

Eq. (7.96) shows that the flow velocity cannot reach maximum at the internal 
point of a volume. Using the same approach, it is easy to prove that it cannot have a 
minimum at the internal point of the volume. Thus, the potential flow velocity of a 
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incompressible fluid can come to a maximum or minimum only at the volume D 
boundary. 

Now it is beneficial to review some examples of the potential flow of incom-
pressible fluids. 

Suppose: 

φ-. 
0(0 
4/Z7-

In this case: 

r = V(x, - x]0)
2 + (x2 - x20Y + (x, -* 3 0 ) 2 ■ (7.97) 

^ = 3F + i £ + 3± = °· 

d^Q(0**,-*,o ¥φ = Q(t)*r2-3(Xi-xi0)
2 

dx{ 4m r3 ' dx2i 4m r5 

and it follows from here that: 
Β2φ 32φ 32φ 
dx2i dx22 dx23 

Therefore, φ is a harmonic function describing the flow of a incompressible 
fluid. 

Equipotential surfaces φ = const are spheres with the center at point (xio,xio, 

X30,)· The flow velocity v = V#> is directed along the normals to these spheres, i. e., 
along the radii, which are also the flow lines. Then: 

v,=^ = f l , (7.98) 
or 4πτ 

with r = const and vr = const. 
At r —¥ 0, vr —> 00, i. e., the center of the sphere is a singularity where infi-

nite number of flow lines intersect. 
The throughflow through the surface of a sphere of an arbitrary radius is equal to: 

\vrda =vr \άσ =4m-2vr = Q(t). 
s s 

If 0(0 > 0, the flow velocities are directed away from the sphere, there is a flu-
id's source with the intensity Q(t) in the center. If Q(t) < 0, there is a drain. 

Eq. (7.98) indicates that if the source (drain) intensity changes in time, the ve-
locities in the entire fluid's occupied volume simultaneously change, i. e., the dis-
turbances in a incompressible fluid are translated at infinitely large velocity (instan-
taneously). 

Thus, Eq. (7.97) determines the velocity potential from the source (drain) in 
the space. 

Laplace equation is linear; thus, the function: 

φ=-^Σ-ήτ->r* = V(*. - ·% )2+(*2 - x2k )
2+u3 - % )2 

is also its solution and describes the flow emerging in the presence of n sources 
(drains). 
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Consider some volume Vo positioned outside of the moving fluid-occupied vo-
lume D. In this case the function: 

φ = _ J _ f Ä i W 0 , rk = V(x, - xw)2 + (x2 - x20)
2 + {x3 - xx 

An ,f r 
Ϋ 

is harmonic an describes the flow in volume D from the sources with density q, 
continuously distributed in volume V0. Similarly, it is possible to determine poten-
tials for the surface So and line lo, which do not belong to D: 

An _J r An f r 

where m and n are distribution densities of the surficial and linear sources. 
2. Suppose there is a sink at the point Ν(χβ) and the source at the point 

N\(Xio+dxi). Assume that the source's and drain's intensities are equal and consider 
point M(xj) (Fig. 7.6) immobile. Potential at this point from the combination of the 
source and drain is: 

ί 1 Λ 
Q_+Q Qbs 

Anr, Απτ ATths 
, r = yjix, -xl0)

2 + (x2 -x20Ϋ + (x3 -xM)2.(7.99) 

Suppose the point Λ^ approaches point N with no limit, and the product QAs 

remains constant. Then, from Eq. (7.99): 

m l | . 
- - — l i m -
Απ 4̂ -»ο As 

φ--
V I 

where s is a singular vector of the straight 
line connecting the points N and N\. The 

value V — is computed at the point N(JC,O), 

and as the point M is immobile, the differen-
tiation is performed with respect to coordi-
nates JC,O, and: 

l 
-en 

dxtl 

Xi-X, 
= ek- *o r 

Fig. 7.6 

In this case: 

φ-. 
m r*s 

"Απ~ 
m cosö 

"Απ r2 (7.100) 

Such combination of the source and drain is called dipole, the value m is called 
the dipole momentum, and the axis passing through the points N and N\ is called 
the dipole axis. 

Superposing the dipole axis with one of the coordinate axes, it is easy to show 
that the function φ defined by Eq. (7.100) is harmonic. 
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9. Flow around the sphere 

Let's review the motion of a sphere within the infinite incompressible ideal 
fluid. Assume that the fluid at infinity is at rest. There is some disturbed volume 
near the sphere. If the motions of both the sphere and the fluid emerged conti-
nuously from the state of rest then, under Thomson theorem, the fluid's motion is 
potential. 

Now it is important to put together the conditions for the determination of 
the potential of this motion. Under Eq. (7.94), Αφ = 0 within the fluid. As the 
fluid is at rest at infinity, V#> = 0 there. From the fluid's non-leakage condition 
[Eq. (4.20)], v„ = «„where u„,is the normal component of the sphere velocity u at the 
points of its surface. As v = V^>, this condition acquires the following format: 
dq> _ 
du 

Thus, the problem of finding the velocity potential at flowing around the 
sphere is reduced to the solution of Laplace equation when a normal derivative is 
established at the boundary. This is a classical Neumann's problem. 

Suppose a sphere with the radius a is in the translational motion at the veloci-
ty U. It is important to introduce a coordinate system 
0x\y\z\ rigidly attached to the sphere, and will direct 
axis OJCI parallel to the velocity U (Fig. 7.7). Now, take 
a dipole with the axis parallel to (ki and place it into 
the origin. Eq. (7.101) is valid in a stationary coord-
inate system at the time when the center of the sphere 
is at the origin. At any other time io in the stationary 

m cos# 
coordinate system φ = -, where rn is the 

Fig. 7.7 Ψ 4x(r-r0)
2 

sphere's center coordinate at t - to. 

At any point M of the space: 

φ = — —. (7.101) 
4π r 

3φ _ m cos<? 

and at Θ = 0 (Fig. 7.7) at the point A of the sphere: 

dr 2πα3 ' 
and from this: 

Ua3cos0 Ua3x, 
„ = - - ^ = — 1 . (7.102) 

It is easy to see that the potential φ as defined by Eq. (7.102) responds to all 
set conditions. 
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Now assign a velocity to the entire system opposite to the sphere's velocity, 
i. e., -U. This motion has the potential -Ux\. The relative motion's potential (the 
sphere is quiescent, and the liquid overruns it at a velocity of -U) is obtained by 
adding the potentials of the absolute and translational motion together: 

9**= — 2r3 -Ux,=-
„3 Λ 

1 + -
2r3 

f 
Ux, = -U 

„3 \ 

r + -
Ir1 cos 6». (7.103) 

Following from Eq. (7.103), the normal component of the fluid's velocity \n 

on the sphere's surface is equal to: 

dr 
= 0, 

i. e., the immobile sphere is the surface of the flow. That is why the fluid's veloci-
ty vs tangential to this surface is the total value of the velocity, and: 

= V = - ^ L | 
ds rd0l =-£/sin<9. 

° 2 
(7.104) 

π As this equation shows, at points A and B (Fig. 7.7) v = 0, and at Θ = — (at the 

3 
equator) v = —U. Therefore, the velocity of flowing-around the sphere is 50% 

greater at the equator than the velocity of the overrunning flow. 
At a transient-free motion, disregarding the mass forces, and from Bernoulli's 

integral Eq. (7.28): 

P = Po+P-
U1 

(7.105) 

where po and U are pressure and velocity at infinity. Substituting the velocity value 
at the equator in Eq. (7.105), results: 

p = p0--pu 

The velocities are symmetrically distributed rela-
tive the equator. Therefore, pressures are also symme-
trically distributed, and the resistance to the sphere 
motion and the lift are equal to zero. This result is a 
specific case of Dalamber's paradox (see below). 

The theory of a potential continuous motion of 
the ideal fluid results in Dalamber's paradox. Still, it 
can be used to compute the close-to-actual velocity 
distribution for flow-around bodies. This enables also 
a computation of the friction forces using the theory 
of boundary layer where the viscous friction forces 
appear (see Chapter XIV). 

Now it is important to review the non-stationary motion of the sphere. Sup-
pose a sphere with the radius a is in the translational motion at a speed U = U(t) 

Fig. 7.8 
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parallel to axis Ox. For a movable coordinate system tied-in with the sphere, the 
flow potential has the format of Eq. (7.102). Assuming the fluid is incompressible 
and that the mass forces may be disregarded, Cauchy-Lagrange's integral in this case is: 

M _ ^ i / + z + z l = A = c o n s t ; (7.106) 
at dx p 2 p 

as the fluid is quiescent at infinity, the pressure is equal to po (φ\ is potential in a 
moving coordinate system). 
From Eq. (7.102): 

dm _ Ua3r2-3x2 dm _ 3 Ua} 

dx, 2 r5 3v, 2 r5 
dm _ 3 Ua3 

σζ, 2 r 

Therefore, at points M and M\ symmetric relative to the y\Qz\ plane (Fig. 7.8): 

(7.107) 'ϋφ^ 

\dX^M 

V 
v^.v«, 

dm 

dy, 
'V 

V ^ I / M ^ 

' ^ Λ 

V"-'!/ Λί, v&iy* 

3#>Λ 

ν^ΊΛ, 

so: 

V M —V M, 

dx, 
JM 

dm 

v5*>/„, 
(7.108) 

The following hydrodynamic force will be acting on the moving sphere: 

~R = -jpnda, (7.109) 

where σ is the surface of the sphere. The area of an elementary spherical belt is: 
(7.110) dCT=27ra2sin&/6>, 

\p0cos6da = 2mz2p0 jcos&in6fci# = 0. (7.111) 

Projecting Eq. (7.109) onto Ox axis and considering Eqs. (7.109) and (7.111) 
gives: 

Rx = -2m2 Up-p0)cos6sm(kie. (7.112) 

Substituting into Eq. (7.108) the difference (p - pö) from Cauchy-Lagrange's 
integral [Eq. (7.106)], and considering Eqs. (7.107) and (7.108), one obtains: 

Rx = -2m2 p If) cos&in6tf#, (7.113) 

where, in integrating it is necessary to assume r = a as p is pressure at points of the 
sphere. 

From equation for the potential in a moving coordinate system Eq. (7.98) at 
r = a and x\ = rcosft 

dm. a dU 
-p- = cos0. 
dt 2 dt 
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Substituting this equation into Eq. (7.109), results: 

dU't Ϊ Λ . „.,. 3 dU R = -Ιπα'p— \οοϊ2θύηωθ = --m3p—. 
dt I 2 H dt 

dU 
If > 0, the resistance force Rx is negative, i. e., it impedes the increase in ve-

locity U. If < 0, Rx obstructs the drag. The ideal fluid is as if increasing the 
dt 

body's inertia. 
Indeed, the sphere motion equation in the ideal fluid can be written in the fol-

lowing format: 
dU 

ι 
dt 

- JT<<> . 

and in vacuum: 

2π 3dU ( 2π 3 

pa or m +—pa 
3 ^ dt I 3 ^ 

dU pM 

m = F . 
dt 

dU 
dt 

= FU 

2π 1 
The value —pa is called the attached mass. For a sphere it is equal to a half 

of the fluid mass within its volume. 
For a body moving in a viscous fluid the problem in a general case cannot be 

reduced to the computation of the attached masses. However, for a body with good 
flow-around and moving at a high velocity, viscosity may be disregarded, and the 
effect from the action of a variable velocity will be the same as in the ideal fluid. 

10. Applications of the of momentum law 

1. Flat immobile wall at which a jet-stream is directed (Fig. 7.9). The tran-
sient-free motion is disregarded by the mass forces. Under these conditions, the 
momentum law [Eq. (2.51)] is: 

} ^ „ ί / Σ = - | ρ π ί ί Σ , (7.114) 
Σ Σ 

where Σ is a closed surface limited by cross-
sections Si, S2, S3, by the jet surface S4 and the 
surface of the wall a. It is also necessary to 
assume that the pressure at the jet surface is 
constant (p = p0 = const) and that the velocity 
is uniformly distributed in the cross-sections 
Si, S2, S3. Based on this and using Bernoulli's 
integral, a conclusion is that the velocity at the 
jet surface is constant, and using Euler's equa-
tions, the pressure in cross-sections Si, S2, S3 is 
also constant and is equal top = po. Fig. 7.9 
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For an incompressible ideal fluid p = const, and pn = -pn, where n is a nor-
mal to the surface Σ; thus Eq. (7.114) can be written as follows: 

pfivndL = -\(p-p0)rtL (7.115) 
Σ Σ 

because for a closed surface Σ, under Gauss-Ostrogradsky theorem: 
\ρ0ηάΣ = 0 

Σ 

As p*p0 only at the points of the surface a, considering Eq. (7.115) gives: 

ρ^νηαΣ = -^ρ-ρ0)ήάσ = -Τ = Fn, (7.116) 
Σ σ 

where F is the force at which the jet is acting on the wall. Because the fluid is 
ideal, this force is perpendicular to the wall. 

Project Eq. (7.116) onto the axis Ox, which is perpendicular to the wall. Re-
member that Vr> = 0 S* and <T, Vx =0 on 52 and 53, and on S\ v» = - vo = constant, = 
= vx = vosina, where a is the angle between the wall and the jet direction. In this case: 

F = p Jv0
2siniÄ/5 =/7v0

25sinar. 
_ S| 

As the force F emerges due to change in momentum of the jet, i. e., due to a 
rotation of the velocity vector, the cross-sections 52, 53 should be selected where 
the jet surface and, therefore, its velocity, become parallel to the wall. 

2. Horizontal segment of the tube bent at 90° (the "knee") where a liquid (or 
gas) is flowing (Fig. 7.10); Assume the motion is tran-
sient-free and using the law of variation in momentum 
[Eq. (2.58)] in the following format: 

Qm=^2
(a'g)-W"s))=G + ? + R (7.117) 

where R = N + T is the force with which the knee is 
acting upon the liquid. 

Assuming pn=-pn and projecting Eq. (7.117) 
Fig. 7.10 o n t o a x e s QX a mj Q.̂  an(j considering Eq. (2.54) gives: 

Qm={v2r
s>-VJ^)=Px+Rx=-p2S2+Rx, 

(7.118) 

α,=(ν2;"* ,-ν1;- ' ) )=ρ,+^=-/ 'Λ+Α,. 
In the cross-section S\, vj""^ =0, vly

(ms) =-v1
u"s). In the cross-section 52, 

vj0vS) = ^(„v^ v^(m») = 0 T h e n > t h e E q ( ? j 1 8 ) t a k e s m e f o „ o w i n g f o r m a t . 

F,=-R*=-Qmvrs)-p2S2, 

= # 
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F,=-R,=-QmV™-plSl, 
where Fx, Fy are components of the force with which the liquid acts upon the knee. 

Note that due to the presence of a term T, this conclusion is valid also for a 
viscous medium. 

3. Infinitely-long tube filled-up with an ideal liquid. Suppose a body is moving 
within the tube at a constant velocity vo (Fig. 7.11). Assuming the hypothesis that 

far behind the body and far ahead of it the liquid 
is not disturbed, i. e., its velocity is equal to zero. 
Reversing the problem by attributing the veloci-
ty -voto the entire system, in such a case, the 
body is immobile, the velocity at infinity behind 

Pig 7 j i and ahead of the body is - vo, and the flow is 
transient-free. 

Due to the law of variation in momentum [Eq. (2.44)], disregarding the mass 
forces, results: 

jpw„dS=^pndS. (7.119) 
s s 

The body under consideration is within the flow-tube limited by cross-sections 
S\ and 52 (with Si = S2) and the side surface 53. Thus, the closed surface bounding 
the liquid is: 

5 = Si + 52 + 53 + σ where σ is the surface of the body. 

Now it is important to review the distribution of the velocity's normal compo-
nent v„ on the 5 surface. On 53, v„ = 0 by definition of the flow-tube. On σ, νη = 0 
from the condition of impermeability of the body's surface. In the section 5i far 
ahead of the body, v„ = vo- In the section 52 far beyond the body, vn = -v0. Besides, 
in the sections 5i and 52, v = —vo ■ Then: 

jpwJS = - jpvov0dS + jpw0dS . (7.120) 

The liquid by definition is ideal, so pn = -pn, and: 

$pndS=-jpndS-jpn\iS-\pn\iS-R~, (7.121) 
5 St S2 Sy 

where R = \pnda is the force with which the flow acts upon the body. 
σ 

Suppose either the liquid is incompressible or the process is adiabatic. As the ve-
locities in the cross-sections 5i and 52 are of equal numerical value, then following 
Bernoulli's integral Eq. (7.28) or from Eqs. (7.46) and (7.47), p\ =p2 = po,pi =P2 = Po, 
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wherepu p2, p\,pi are pressures and densities in cross-sections 5i and 52. Under these 
conditions and from Eq. (7.120): 

\p~wndS=Q, 

s 

and from Eqs. (7.119) and (7.121): 

R=jp^dS, (7.122) 

because S\ = S2, and the normals on these surfaces are oppositely directed. 
The normal on the surface S3 is perpendicular to the direction of velocity vo. 

So, by projecting Eq. (7.122) onto the direction of the velocity, results: 

R = 0 

Thus, if: a body of arbitrary shape is moving within a liquid at a constant ve-
locity, the liquid is ideal and does not have a free surface, it is incompressible, and 
the process is adiabatic; the motion of the liquid is continuous, the liquid at infinity 
behind and in front of the body is not disturbed — then the resistance to the body 
motion is equal to zero. This statement is the Dalamber's paradox. 

The paradox appears to suggest that far in front of and far behind the body the 
liquid is quiescent, that the liquid is ideal and its flow os continuous. In real life, these 
conditions are not maintained, so the Dalamber's paradox is not observed. 



CHAPTER VIII 

PARALLEL-PLANE FLOWS OF IDEAL 
INCOMPRESSIBLE FLUID 

1. Complex-valued potential of flow 

The flow whose parameters are the same in parallel planes, i. e., depends only 
on the two spatial coordinates and time, is called parallel-plane flow. Such a flow is 
usually considered in the xQy plane. Each line drawn in this plane is actually a di-
rectrix of a cylindrical surface with the generatrix perpendicular to the xQy plane. 
All numerical values of the fluid's throughflow, of forces attached to the bodies, 
are related to the unit height of the corresponding cylindrical surfaces. 

Taking a parallel-plane flow of a incompressible fluid, based on the continuity 
equation Eq. (2.25): 

- dv 3v„ 
divv = - ^ + —^ = 0. (8.1) 

ox ay 

Suppose: 

v * = äT' v ' = - ä T · (8"2) 

and:' 
Function ψ= \fKx,y,i) is in accordance with the continuity equation Eq. (8.1), 

dψ = —!-dx + —!-dy = vxdy - v dx. 
ax ay 

(8.3) 

Function ψ= yKx,y,t) is called the flow function. At άψ=0 and from 
Eq. (8.3): 

^ = ^ . (8.4) 
v, v„ 

' Time / is considered as a parameter here. 

Mechanics of Fluid Flow 
by Kaplan S. Basniev, Nikolay M. Dmitriev and George V. Chilingar 
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As can be seen from Eq. (7.122), Eq. (8.4) is the equation of the flow-lines at 
which ψ= const. 

Taking the flow-lines yK.x,y) = ψο and i/K,x,y) = ψ\ (Fig· 8.1) the throughflow Q 
over the line 5 is equal to: 

Q = Jv * nds = \\yx cos(n, x)dx + vv cos(n, y) \dS. 

Ψ = ψχ 

Fig. 8.1 

dy dx As cos(n,x) = —, cos(n,y) = — , then, under Eq. (8.3): 
dS dS 

Q = jvydx-vxdy=jdw = wl-w0, (8.5) 

i.e., the difference ψ{-ψ0 is the fluid throughflow between the flow-lines 

ψ0 = const and ψι = const. 

At a potential flow: 

3φ 
"Äc' 

d<p 

Following Eqs. (8.2) and (8.6), at a potential flow: 

dp _ di// d<p _ Βψ 
dx dx dy dx 

(8.6) 

(8.7) 

The Eq. (8.7) ratios are Cauchy-Riemann conditions. If they are valid, the 
function of a complex variable z: 

W(z) = <p(x,y) + iw(x,y), z = x + iy (8.8) 

is an analytical function. The function W(z) is called a complex potential. 
From the continuity equation Eqs. (8.1), (8.6) ratios and the Cauchy-Riemann 

conditions Eq. (8.7), Δ̂ > = 0, Δψ = 0, i. e., both the velocity potential and the flow 
function are harmonic functions. 
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The relations: 
φ(χ, y) = const, ψ(χ, y) = const 

are, respectively, equations of equipotential lines and flow-lines. From Eqs. (8.2) 
and (8.6): 

i. e., the vectors V̂ > and V^are mutually perpendicular. Therefore, the equipoten-
tial lines and flow-lines form a family of mutually orthogonal lines. 

By differentiating a complex potential Eq. (8.7) and considering Eqs. (8.2) and 

(8.9) 

(8.7)2, results: 

and from this: 

dW d(p .dw 

dW 
dz 

dW 
= v, arg—— = -θ, 

dz 
(8.10) 

where Θ is the angle between the velocity direction and (k axis. 
Thus, the modulus of the complex potential's de-

rivative is equal to the numerical value of the velocity, 
and the argument is equal to the velocity argument 
with the opposite sign. In other words, the derivative 
of a complex potential is the value of the complex-
conjugate with the flow velocity (Fig. 8.2). 

So, it is possible to construct a complex potential 
for a parallel-plane potential flow that represent an 
analytical function. Conversely, any analytical func-
tion has corresponding parallel-plane potential flow of 
an ideal incompressible fluid. So, the entire apparatus 
of the analytical function theory may be used to study such flows. 

2. Examples of parallel-plane potential flows 

First it is critical to examine the simplest analytical function of complex vari-
ables and the corresponding flows. 

1. W(z) = (a + ib)z = (a + ib)(x + iy) = <p + ii//, a>0, b>0. 
From Eqs. (8.8), (8.9) and (8.10): 

dW 
φ = ax-by, yf = bx + ay, = a + ib = ve 

dz 
->e dW b 

arg = arctg— = -θ, 
dz a v = Ja2+b2. 

1 Sic in the original 
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Flow-lines ψ = const and equipotentials φ = const form a family of mutually 
orthogonal curves. The complex potential W describes the motion at a veloctiy di-

rected at angle Θ = arctg — to the axis Ox (Fig. 8.3). 
a 

2. W(z) = z2 ={x + iyf =φ + ϊψ. 
In this case: 

<p = x2-y2, y/ = 2xy, — = 2z = 2(x + iy)ve~w, 
dz 

dW 
arg = arctg— = —θ, v = ^a2+b2. 

dz x 
The flow-lines ψ = const are equilateral hyperboles with the asymptotes x = 0, 

y = 0; the equipotentials are equilateral hyperboles with the asymptotes x = y, y = -x. 
At the point of origin, flow-lines x = 0, y = 0 intersect, i. e., the origin is a singularity 
where v = 0. 

As in the ideal fluid flow the flow-lines may be replaced with hard walls, the 
complex potential may be interpreted as the flow-around of a direct angle (Fig. 8.4). 

Fig. 8.3 Fig. 8.4 

3. W(z) = z", where n is any real number. From the De Moivre's relationship: 

z" = r
neina = r"(cosnar + isin/icr), 

where from: 

φ= r"cosnna, t/f = isinna, 

dW_= „_, 

dz 
k.7t 

Suppose ψ = r" sinna = 0. As r Φ 0, then a = — , where k is an integer, and 
n 

the flow-lines are straight lines passing through the origin, which is a singularity. 
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At ψ = const * 0 results the flow-lines within the angle a . This flow (Fig. 8.5) 

π may be interpreted as the flow-around of an angle a = —. Fig. 8.3 reflects a case 

with n = 3. 
The flow corresponding to the functio

n 
W(z) = z" can be considered for any n > —.

 If 
it is a flow in the entire plane, the conditio

n 
kK 
— = 2π should be realized. Otherwise point

s 
exist within the fluid where the velocity is 
multivalued, which is a physical impossibility. 
Such points may exist only at the volume's boundary. 

Considering a case with n = —. Then: 

ψ =const 

-''',',*££>= const 

Fig. 8.5 

n 
■ 2π, 

2 

dW = 1 _ 1 

dz ~ 2j~z~ 2 ^ 
a 

At point Pi of the Ox axis (Fig. 8.6), a = 0, θ = 0, v = —γ=, i. e., the veloci-
24 r 

ty is directed along the Ox axis. At r —¥ 0, v —> °°; at r —> <», v —> 0. At the point 
/>2, ex. = 2π, θ = π, and the velocity is directed along the Ox axis but in the oppo-
site direction. The velocity undergoes a disruption along the Ox axis: its modulus is 
maintained but its direction changes to the opposite. The flow represents a flow 
around an infinitely-thin plate (Fig. 8.6). 

Fig. 8.6 Fig. 8.7 

Γ Γ Γ 
4. W(z) = — I n z = —ln(re'a) = — ( I n r + ia) = φ + ίψ. 

2π 2π 2π 
Therefore: 

Γ , Γ 
> = — I n r, ψ = — α , 

2π 2π 

dW = Γ = Γ 

dz 2πζ 2πτ 
ν = , θ = α. 

2πτ 
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The flow-lines ψ= const (Fig. 8.7) are straight lines passing through the ori-
gin, the equipotentials φ = const are circles with the center at the origin. The origin 
is a singularity. At r —> 0, v - i » ; a t r - > » , v —>0. The throughflow through 
a circle with radius r = const (as well as through any closed curve passing through 
the origin) is Q = 2mrv = Γ. At Γ > 0, there is a source at the origin, at I < 0, there 
is a drain. 

Γ Γ Γ 
5. W(z) = lnz = \nre'a =—(a-i\nr) = φ + iw. 

2τά 2m 2π 
Then: 

Ta Γ , dW Γ Γ -<«+f) Γ π 
φ = , ψ = lnr, = = e 2 , v = , θ = α + — . 2π 2π dz 2τάζ 2πτ 2πτ 2 
The flow-lines ψ = const are circles with the center at the origin, the equipo-

tentials φ = const are straight lines passing through the origin. Compared with 
1 -/-

Fig. 8.7, the flow-lines and equipotentials switched places. As -W(z) = W(z)e 2 , 
i 

and the flow-lines and equipotentials are mutually orthogonal, the flow-lines for 
the flow W(z) always turn into equipotentials for the flow -W(z), and the equipo-

i 
tentials, into the flow-lines. 

The circulation along the flow-line r = const is: 

\vdr = \ντάφ = 2τα· = Γ, 
J 2πτ 

i. e., there is a vortex at the origin with vorticity Γ. 

6 w--™2 -~m2Z-
z zz 

In this case: 

m2x m2y 
Ψ 2 , 2 ' Ψ 2 , 2 

x + y x + y 

x +y 

dW _ m2 _ m2
 i{2a+p) 

> — + 2
 β ' 

dz z r 

m2 

V r2 —r, θ = 2α + π. 

Assuming φ = —, ψ = .results: 
C 2C, 

x2 + y2 + 2Cm2y = 0, x2 + y2 - 2Clm
2x = 0. 

Thus, the flow-lines are circles with the centers at the Qy axis and radii 
fl = \C\m2; the equipotentials are circles with the centers at the Ox axis and radii 
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/? = |C,|m2 (Fig. 8.8). The Ox axis is also a flow-line φ = 0. In this example, the 

function W = m2z"' is a complex potential of a flat dipole with the axis Ox. 
Combining the described simple cases, it is possible to y 

derive more complex flows. 
Let's review a combination of the translational motion 

parallel to the axis Ox, the dipole and vortex, i. e., the fol-
lowing equation: 

W--
R 2 \ 

=-v re"+—e 
r 

z + — 
z j 

Γ , 
+ lnz = 

2πί (8.11) 

+ (lnr + i'ar) 
2πί Fig. 8.8 

Obviously, the translational motion velocity is equal to -V, the dipole momen-
tum is equal to m2 = ~VR2, and the circulation is equal to Γ. According to 
Eq.(8.11): 

>2λ 

φ = -

dW 

dz 

r + -
Ta 

Vcosör + , ψ--
2π 

οϊ\ 
Vsinor 

= -V 1 -
R 2\ 

+— = -v 
2mz 

ι-4^-2/α 

2π 
lnr, (8.12) 

Γ -««+-) 
+ —e 2 . (8.13) 

2nr 

Following Eq. (8.12) that at r = R, ψ = 
2π 

-lnr = const, i. e., the circle of the 

= -V . Thus, the complex potential Eq. (8.11) describes a flow-around of 

radius R with the center at the origin is a flow-line. From Eq. (8.13), 
(dW\ 

[dzjz 
the circle (a cylinder with the axis perpendicular to the xOy plane) by a flow whose 
velocity at infinity is -V (Fig. 8.9). 

Fig. 8.9 
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According to Eq. (8.13), the squared velocity v at the circle points r = R is 
equal to: 

v2 = 
rdW dw} (. . Γ V = 2vsinor + . 

dz dz Jr=R 27Cr) 

As the velocity induced by the circulation \θ = a H— is directed counter 

clockwise, then in the upper half-plane: 

v = -2vsinor (α<π), (8.14) 
27cr 

and in the lower half-plane: 

v = 2vsinor + (α>π). (8.15) 
2m 

At a no-circulation flow-around, the velocity at the points A (a = 0) and B 
{a = π) is equal to zero, and these points are singularities. At Γ * 0 the velocity at 
these points is different from zero. As can be seen from Eqs. (8.14) and (8.15), the 
maximum value of the velocity modulus is reached at the point D and is: 

|v| = 2V+ — . 1 ' 2m 
The position of the critical points M and N as follows from Eq. (8.14) is de-

termined from the condition: 

Γ Γ 
2Vsina*= orsina*= , sina*>-l. (8.16) 

2m 4̂ VK 
At r = 4̂ V7f, the points M and ./V coincide with the point C. As Γ further in-

creases, the critical point leaves the circle. 
At the potential flow of a incompressible fluid, the Cauchy-Lagrange's 

integral Eq. (7.65) looks as follows: 

ψ-Π + *+£. = η». (8.17) 
dt p 2 

If Γ = Γ(ί), then, as follows from Eq. (8.12), a term enters Eq. (8.17). 
2π dt 

Therefore, at Γ = Γ(ί) pressure is no longer a univalent function of the coordinates 
(r,a), which is physically impossible. Therefore, the potential flow-around is only 
possible at Γ = const. 

At V = const, -τς- = 0, and the pressure in the flow is calculated using the 
at 

flow velocity and conditions at infinity (or any other conditions allowing for the 
determination of the constant in Bernoulli's integral). As it can be seen from Eqs. 
(8.14) and (8.15), the velocity above the cylinder is higher than below it. As a 
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result, pressure above the cylinder is lower than below it. Due to this, lift is generated 
during a circulation flow-around of a cylinder. The resistance is absent as the flow 
is symmetrical relative the 0y axis. 

Thus, for a circulation flow-around of a cylinder the ideal fluid's model allows 
for the computation of lift operating on the cylinder (and not necessarily only the 
cylinder). Experiments show that it may be done with a high accuracy. 

3. Conformous reflection of flows 

Let's take complex variable function ζ= F(z). Using this function, each point 
in a complex plane z is associated with a point in a complex plane ζ. Thus, function 
ζ = F(z) can be viewed as a reflection of some area D in the plane z onto some area 
D, in the plane C(Fig. 8.10). 

A reflection where the angles between curves at the points of their intersection 
are preserved and infinitely small elements are transformed in a conformous way is 
called conformal. In order for the 
function F(z) to realize a conformal 
reflection of the plane D, it is neces-
sary and sufficient for it to be biuni-
que, analytical, and for the derivative 
F'(z) to be different from zero and 
from infinity in the plane D. The im-
portance of conformal reflections for 
the hydromechanics is in that if 
complex potentials of simple flows 

ψ = const 

\ψ = const 
Fig. 8.10 

φ = const 

are known, then it is possible using these reflections to construct the complex po-
tentials of more complex flows. 

Suppose a flow with the complex potential W = W(z) is given in the plane z. 
As at the conformal reflection the function ζ = ξ + ίη = F(z) must be biunique, it is 
always possible to find a function z =fiQ. Then: 

Ψ(Ζ) = φ(χ,γ) + ίψ(χ,γ) = \ν(Πζ)) = \ν*(ζ) = φ(ξ,η) + ίψ(4,η).(8Λ8) 

Following from Eq. (8.18) that at φ{χ,γ)= const and φ = φ(ξ,η) = const and 
at ψ(χ, y) = const, ψ(ξ,η) = const. Thus, the equipotentials and flow-lines in the 
plane z turn, correspondingly, into equipotentials and flow-lines in the plane f 
(Fig. 8.10). 

Now it is important to review the following equation: 

tdW r t t 
W(z) = j dz = J(v, -ivy){dx + idy) = \vdx + vdy + i\vxdy- vydx . (8.19) 
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According to Eqs. (3.39), (8.3), (8.5) and (8.6): 

jvxdx + vydy = γφ = Γ, jvxdy - vydx = Q, 

i. e., the real part of the Eq. (8.19) integral is the velocity circulation along the 
curve, and the imaginary part is the liquid throughflow through this curve and: 

edW 
W(z)= \ dz=T + iQ. 

J dz 
Replacing the variables z = /(ζ) in Eq. (8.19), results: 

rdW άζ dW 
W(z) = W[/(0]= f ^ - y - * = i^rdC^+iQ 

'άζ dz άζ 

(8.20) 

(8.21) 

Eqs. (8.20) and (8.21) show that the velocity circulation along any line on the z 
plane and along the velocity circulation along the corresponding line in the ζ plane 
coincide. 

Establish association between the flow velocities at corresponding points of 
the planes z and ζ. From (8.9): 

dW _ _,·«,, _ dW άζ _ dW 
dz z άζ dz άζ 

where vz, ΘΖ are velocity's modulus and argument in the plane z- As: 
dW -w. 

(8.22) 

■νζ\Γ(ζ)\, θζ =θζ - arg F\z). (8.23) 

Eq. (8.23) provides a connection between the flow velocities in planes z 
and ζ. From the condition F'{z) * 0 and F\z) *■ °°, the critical points at conformal 
formal transformation convert to the critical points, and no new critical points may 
emerge. 

The W = W(z) correlation can be considered as a reflection of the area D in the 
plane z into the area D* in the W plane (Fig. 8.11). The function W(z) is analytical 

dW n J dW 
so wherever * 0 and Φ °° , 

dz dz 
this reflection is conformal. The flow-
lines ψ = const in the plane W are 
straight lines parallel to the 0ψ axis. 
Therefore, W = W(z) is a reflection of 
the flow in the plane z onto the 
straight-linear translational motion in 
the plane W. Fig. 8.11 
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Suppose there is a flow-line ψ = const with the corner points A and B in the 

0 

x 0 
Fig. 8.12 

® plane z (Fig. 8.12). Suppose W(z) is the 
complex potential of this flow. All 
straight lines in the plane W will turn into 

£ flow-lines, i. e., the conformity will be 
broken at points A and B. 

P It is demonstrated in Example 3 that 
the complex potential: 

W-W0 = (z-zoT (8.24) 

π is describing a flow-around of the angle a = — with the apex at the point z = zo-
n 

At point A, a < π, n > 1, and at point B, a > π, n < 1. Then, from Eq. (8.24), 

: oo at z = ZB, i. e., at flow-around of the incurrent angle dW n J dW 
= 0 at z = ZA, and 

dz dz v = 0, and at flow-around of the pointed end, v = <*>. 
It follows from the Cauchy-Lagrange's integral that at v = °° p = -°°. There-

fore, potential flow-around the pointed end is physically impossible. 

4. Zhukovsky's transform 

Take a complex potential: 

r 
W=k 

2\ R 
z + — 

r = φ + ιψ, (8.25) 

describing a symmetric flow-around the cylinder with the radius R (Fig. 8.13). 
The flow area is the entire plane z external with respect to the cylinder. Now it is 
important to find the corresponding area in the plane W. 

The flow-lines ψ = const in the plane W are straight lines. From Eq. (8.25): 

(p = k z + -
R 2 \ 

cos#, iy = k z--
R 2 \ 

sinö. 

A circle with the radius R and the center at the origin, and the half-segments 
[R < x < °°) and ( - °° < x < -R] correspond to the flow-line ψ = 0 in the plane z. 
The points Au B\ on the axis ψ = 0 with the coordinates φΑ = -2kR, φΒ< = 2kR in 

the plane W correspond to the points A and B with the coordinates ZA = -R, ZB = R 
(Fig. 8.13). 

For the point C with the coordinates zc = Re'e, we have: ψ = 0, (p = 2kRcos,8, 
i. e., the point C in reflected on the W plane into the inside of segment [-2kR, 2kR]. 
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x A, C, B, Ψ 

Fig. 8.13 

Thus, Eq. (8.25) is the reflection of the plane z onto the plane W at which the 
cylinder's external appearance is reflected onto the external appearance of the one-
dimensional simplex A\B\, and the flow-around the cylinder is transformed into the 
flow-around the one-dimensional simplex A\B\. 

At z = ±R, the derivative: 

dW 

dz 
= k 

2 A 

>Λ 
turns into zero, i. e., the reflection's conformance is disrupted at points A and B. 
An infinitely remote point in the plane z turns into an infinitely remote point in the 

fdw\ 
plane W. The direction of the velocity at infinity is maintained as = k , and 

^ dz A 
k > 0 is a real number. 

The transformation such as (8.25) is called the Zhukovsky's transform. 
Suppose there is in the plane z a circle with the center at the origin and the ra-

dius r > R. Then z = re'e, and under Eq. (8.25): 

(p = k r + -
R 2 \ 

cos#, y/ = k 
R 2\ 

sin#, (8.26) 

i. e., the Zhukovsky's transform reflects the external appearance of the circle in the 
plane z onto the external appearance of an ellipse in the plane W, with the points A\ 
and B\ being the ellipse's foci. Eq. (8.26) are parametric equations of the ellipse 

with the half-axes a = k r + -
R 2 ^ 

b = k 
R 2 \ 

and the foci at the points 

φ = ±2kR. 

It may be shown that the circle with the center at the point (x,0) has a corres-
ponding symmetric winged profile Cin the plane W (Zhukovsky's rudder); the cir-
cle with the center at the point (0,y) has a corresponding arc of the circle; the circle 
with the center at the point (x,y) has a corresponding asymmetric winged profile G 
(Zhukovsky's profile) (Fig. 8.14). The angle at the back-edge of the Zhukovsky's 
profiles is 2π, which is their distinctive feature. 
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5. Flow-around of an arbitrary profile 

Suppose a contour C is given in a complex plane ζ. It is required to construct 
its potential flow-around so that at infinity the motion would be translational at 
a velocity V^ directed at the angle a to axis Οζ. The angle a is called the incidence 
angle (Fig. 8.15). 

Fig. 8.14 

To solve this problem, it is necessary to find a complex potential Ψ(ζ) = 
= φ{ξ,η) + ίι/λ,ξ,ή). Consider, together with the plane ζ, the plane z of a complex 
varible and a circle with the radius R in 
the plane z (Fig.8.16). Function ζ=Ρ(ζ) 
gives a reflection of the external ap-
pearance of the circle S onto the exter-
nal appearance of the profile C so that 
a point z = °° has a corresponding 
point ζ = °°, and the derivative 

— = k is real and positive. Under 

these conditions, the function ζ= F{z) 
exists for any contour C and is unique-
ly determined. 

Suppose the function ζ= F(z) is given. As the contour C is a flow-line, the 
circle 5 is also a flow-line. According to Eqs. (8.20) and (8.21), the circulation Tin 
the planes z and £"has the same value. 

From Eqs. (8.22) and (8.23): 

Fig. 8.16 

dW 
dz 

= 
dW 

dz 
= /t 

dW 
,V=kV, 
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Because, by proviso, A: is a real number and k > 0, then: 

arg 
dW 
dz :arg 

dW 
άζ 

Therefore, at infinity the velocity Vz has the same angle a with the axis Ox. 
Now select a coordinate system x'Oy' so that its origin coincides with the cen-

ter of the circle 5, and the axis Ox' is parallel to the velocity Vz. The, Eq. (8.11) for 
a circulation flow-around the circle S: 

W(z') = -Vt z+-
R 2 \ Γ , . 

+ Ι η ζ ' . 
2m 

The function W(z') describes the flow-around in the coordinate system x'Oy'. 
Stepping from z' to z by turning the coordinate system at the angle a, results 
in a complex potential W(z). 

As the function ζ= F(z) is biunique, the function z =fi& can be found: 

W(z)=W(j{z))=W(Q, 

i. e., if the complex potential W(z) and the function ζ= F{z) are known, complex 
potential of the flow-around of the contour C can be constructed. 

Suppose the flow-around contour C has the angle point K (Fig. 8.15). The 
point K\ on the circle S corresponds to this point (Fig. 8.16). As the angle at the 
point K\ equals ft, and at the point K is greater than π, the reflection conformity at 
point K is disrupted, and at that point ζ' = F'(z) = 0. 

Under Eq. (8.22), velocity modulus at any point of the profile C is: 

1 dW 
= 

dW 
dz F'(z) 

dW 
which shows that at * 0, the velocity at point K turns into infinity. It is demon-

dz 
strated above that it is typical of a pointed end and is physically impossible. If so, 

dW 
the condition = 0 must be realized at point K\, i.e., the point K\ must be a crit-

dz 
ical point. 

By selecting the circulation Γ, it is possible to make any point of the circle S 
dW 

into a critical point, and to make it so that the condition = 0 is realized at 
dz 

this point. This requirement was formulated in the Chaplygin-Zhukovsky post-
ulate: a circulation must be defined so that the velocity at an angle point K has a 
finite value. 
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As can be seen from Eq. (8.16), critical points at the circulating flow-around 
of a circle are located in such a way that their contracting bisectant is parallel to Vz 

(Fig. 8.17) and: 

Γ = 4^Vz|sin a *| = 4nRVk(sin (a + γ)). (8.27) 

The values k, R, γ are constants determined by the selected circle and by the 
conform reflection. The incidence angle «rand the velocity at infinity Vf can be as-
signed arbitrarily3, and the circulation Γ is determined from Eq. (8.27). 

6. Forces acting on a profile under the stationary flow-around 

Suppose there is a contour C in the plane z (Fig. 8.18). The contour is being 
flowed-around by the fluid's flow. The complex potential of the flow 
Ψ(ζ) = φ + ίψ is known. The pressure acting on the contour C, under Bernoulli's 
integral Eq. (7.28), disregarding the mass forces, is: 

P = Pa-p— 

where po is pressure at v = 0. 
As: 

2 . . .. . , dW dW 
dz dz 

then: 

P dW dW 

' = A - f * " * · ( 8 · 2 8 ) 

The elementary force with the following projections acts on the element of the 
contour dz: 

dX = -pdy, dY = pdx 

(the contour C pass-around occurs counterclockwise, and the pressure is directed in 
the inside of the contour). Then, taking Eq. (8.28) into account, results: 

dX - idY = -ip(dx - idy) = -ipdz = —i 
f pdwάψλ 

2 dz dz 
dz. (8.29) 

Integrating Eq. (8.29) with respect to the closed contour C, gives: 

X-iy = -iPtMlKd-z. (8.30) 
2 « dz dz 

3 There is certain value of the incidence angle beyond which the flow-around breaks-down. So, the incidence 
angle must be assigned so that this critical value is not exceeded. 
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For a transformation of Eq. (8.30): 

dW -
dz = vxdx + v dy + i(vvdx - vxdy), and 

dz 
dW 

dz = vxdx + v dy + i(v dx - vxdy) 
dz 

The flow-around contour C is a flow-line. As is known, along the flow-line 
vxdy - vydx = 0. So, along the contour C: 

dW - dW 
—dz = —dz. (8.31) 
dz dz 

So, Eq. (8.30) can be presented in the following format: 

This equation is the first Chaplygin's equation. 
The elementary momentum of a force relative to the origin (Fig. 8.18) is given 

by the following equation: 

dM = xdY - ydX = ReizidX - idY), 

wherefrom, in consideration of Eqs.(8.29) and (8.31), and upon integrating along 
the closed contour C, gives: 

In order to be able to compute the integrals in Eqs. (8.32) and (8.33), it is ne-
dW 

cessary to keep in mind that the function near an infinitely remote point is a 
dz 

univalent analytical function, so it may be expanded into a Laurent's series, and as 
at z = °° it has a finite value, the expansion looks as follows: 

(8.34) 

Assuming z = °°: 

On the other hand, under 

dW 
dz 

ίάΨλ 
[dz). 

Eq. (8.9): 
ίάΨλ 
{ dz L 

z z 

= Vze-iff, 
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i*=2rf, f*=0, „>1. 
J 7 J?" 

where V2 is modulus of the flow velocity at infinity; therefore: 

C0=Vze-if>. (8.35) 

Under theorem of residues, integrals along the closed contour are: 

fffe „ _· (dz 

c z c z 

Therefore, from Eqs. (8.34) and (8.20): 

rdW 
\—dz = 2mC{=T + iQ. 

c dz 
The throughflow of a incompressible fluid through a closed contour in the ab-

sence of sources is equal to zero. Therefore: 

c,= 2πί 
By squaring Eq. (8.34): 

^f\ =C0
2

 + 2^^ + (Cl
2+2C0C2)\+..., 

dz J z z 

or, including Eqs. (8.35) and (8.36): 

'dW_)2
 = 

dz) 
vV2"+—vz«-" + 

mz 

( Γ 2 

._ + VC e~ie 

v 4π2 Μ 7+~ 

(8.36) 

(8.37) 

Substituting Eq. (8.37) into Eq. (8.32) and integrating along the closed con-
tour C, gives: 

X-iY = ipTVze-'e 

X -i Y = -ipYVze
w = pTVze H) (8.38) 

This equation is an expression of Zhukovsky theorem: the resultant of pressure 
forces is equal to the product of density p, circulation Γ and velocity of the over-
running flow Vz and is aimed at direct angle to this velocity. Thus: 

P = X + i Y \ = pTVz (8.39) 

is called lift. 
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At the continuous flow-around, the circulation in Eqs. (8.38) and (8.39) is de-
termined from Eq. (8.27). 

After the substitution of the Eq. (8.37) series into Eq. (8.33) and transforma-
tions, results: 

M = 2πρ Re(iC2 Vze\ (8.40) 

and this is the equation of the lift momentum relative the origin. 
Eqs. (8.38) and (8.40) show that in order to compute the lift and its momentum 

it is sufficient to know Vz, Tand C2, i. e., it is sufficient to know three first terms 
of the expansion Eq. (8.34). 

It is important to note that at the circulation flow-around the contour, i. e., at 
Γ Φ 0, the model of an ideal fluid allows for the lift computation, and the results are 
well supported by experiments. At Γ = 0 and P = 0, the Dalamber's paradox occurs. 



CHAPTER IX 

FLOW OF VISCOUS INCOMPRESSIBLE 
FLUID IN PRISMATIC TUBES 

It is well known that there are two fluid flow regimes. First fundamental stu-
dies of the issue have been published by a German scientist G. Gagen in 1839 and 
1854. He showed that as water flows within the tubes, there is a regime when liq-
uid's particles move parallel to the tube's wall, i. e., the liquid is moving in im-
miscible layers. Under the other regime, the liquid's particles mix in a direction 
across the tube's axis. Later on, these regimes have been named, respectively, lami-
nar and turbulent. 

The laminar flow is such that the trajectories of fluid's particles are smooth 
curves. The shape of these curves is defined by the geometry of the flow area. In 
particular flow in prismatic tubes, the trajectories are straight lines parallel to the 
tube's generatrix. Thus, at laminar fluid flow in prismatic tubes the vector of the 
velocity must be parallel to the tube's axis. 

The condition for a laminar flow has been defined by O. Reynolds in 1883. 
The laminar regime takes place if the Reynolds number "Re" satisfies the following 
condition: 

Re = < Recrjt, 
M 

where w is the characteristic velocity of a flow, / is the characteristic size, μ is dy-
namic viscosity of fluid, and Recrjt is the critical Reynolds number. The numeric 
value of Recr;t is greatly dependent on the geometry of the flow area. 

1. Equations descring straight-line motion of a viscous 
incompressible fluid in prismatic tubes 

General equation of isothermal motion of a viscous noncompressible fluid is: 

p~ = pF-Vp + μΑν, di\v =0. (9.1) 

Introducing a coordinate system Oxyz and directing the Oz axis along the axis of 
prismatic tube (Fig. 9.1) and assuming that the flow velocity vector is parallel to 
the tube's axis, i. e., 

vx = vy = 0, vz = «, v = ku, (9.2) 

Mechanics of Fluid Flow 
by Kaplan S. Basniev, Nikolay M. Dmitriev and George V. Chilingar 

Copyright © 2012 Scrivener Publishing LLC 
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where k is the singular vector of the Oz axis. Following the continuity equation 
Eq. (9.1) and from Eq. (9.2): 

du 

dz 
■ 0, u = u(x, y,t). 

So, for a viscous noncompressible fluid in prismatic tubes: 

dv _ dv dv dv dv _dv _-du 

Tt~Tt+V'lbc+Vylty+VzTz~lh~ ¥ ' 
and the motion equation can be presented in the follow-

ing format: 

kp— =pF-Vp+ kpAv. 
dt 

(9.3) 

Fig. 9.1 
Please note that there are no convective terms in 

Eq. (9.3) resulting in linear simplified equation. Projec-
ting Eq. (9.3) onto the coordinate axes results: 

dp _ dp du „ dp pFHxpFHy'p=TrpF>-iz^u- (9.4) 

Assuming F = g = const, the two first equations in Eq. (9.4) coincide with 
Eq. (6.2). Therefore, the hydrostatic pressure distribution lies on the plane xOy per-
pendicular to the tube's axis. 

As u = u(x,y,t), and following from the last equation of Eq. (9.4): 

az 

It can be seen from the first two equations of Eq. (9.4) and the above equation 
that pressure at any given time is linearly associated with the coordinates, i. e.: 

p = pFxx + pFvy + C{t)z + D(t), ^ = C(t). 
az 

(9.5) 

The boundary condition for Eq. (9.4) is: 

u(xuyut)=V, (9.6) 

where jti, y\ are coordinates of the points within the 
tube S (Fig. 9.2), and V is the velocity of its motion 
along the Oz axis. If the tube is motionless, V = 0. 

Consider the following equation: 

u = u- '■-i!*· (9.7) 
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const and — = C(t). Therefore, substituting Eq. (9.7) into Eq. (9.4) and 
dz 

using the boundary condition Eq. (9.6), results in: 

du _μ 

dt p 

d2u d2u 

dx1 + ^ dy2 

u(xl,yl,t) = V-\ F _Ι^Ί 
pdz 

dt, 
3p 

dz 
■■CO). 

(9.8) 

(9.9) 

Thus, the problem of a non-stationary motion of viscous incompressible fluid 
in a prismatic tube may be reduced to the solution of Eq. (9.8), which has the 
format of the heat-conductivity equation with the boundary conditions [Eq. (9.9)]. 

In the case of a transient-free motion — = const, Eq. (9.4) has the following 
dz 

format: 

Au = = !(&.-
ß{dz 

pFz = const, (9.10) 

i. e., the motion equation is reduced to the Poisson's equation. 
The new function ψ is introduced through the following equation: 

Substituting this equation into Eq. (9.10) and the boundary condition [Eq. (9.6)], 

gives: 

fr%-*«*-»-v-u%-*y+»- (9.11) 

As it can be seen, the problem of a transient-free motion of viscous incom-
pressible fluid in a prismatic tube can be reduced to the solution of the Laplace eq-
uation on the boundary, i. e., the Dirichlet problem. 

Consider parallel-plane, vortex-free motion of an ideal incompressible fluid 
within a contour S (Fig. 9.2), restricting the transversal cross-section of a prismatic 
tube. Suppose this contour is revolving at the angular velocity ω about the Oz axis. 
The projections of contour 5 velocities points are: 

vx = -OJy\,Vy = -CüDC\. (9.12) 

On the other hand, considering Eqs. (8.2) and (8.7): 
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v = ——, v = —— 
* dy' > dx 

(9.14) 

where ψ is the flow function. Following Eqs. (9.12) and (9.14) that at the points of 

the contour S: 

dy/ = -v dx + vxdy = -co(x{dx + ytdy), 

and from here: 

Vl -f(V + *Vc. (9.15) 

At C = V and ω = -U>-, pF , Eqs. (9.13) and (9.15) are the same as 
2ß\dz ) 

Eq. (9.11). Therefore, the study of the transient-free motion of an ideal incompress-
ible fluid within prismatic tubes may be replaced by a review of the parallel-plane 
potential flow of an ideal incompressible fluid within a revolving contour, and vice 
versa. It is also important to remark here that equations such as Eq. (9.13), with the 
boundary conditions-Eq. (9.15), describe twisting of prismatic rods. 

2. Straight-line flow between two parallel walls 

A flow within a narrow slit (notch) can be modeled as a motion between two 
parallel walls. 

Consider a transient-free flow between two motionless parallel planes located at 
a distance of 2h from one another (Fig. 9.3). As previously discussed, the flow ve-

locity is u = ku . The boundary conditions are: 

atx = h, u = 0; at x = -h, u = 0. (9.16) 

Due to the symmetry, the motion in the planes 
parallel to the xOz plane is similar, so u = u(x). Thus, 
the motion equation Eq. (9.10) becomes: 

d2u I (dp ) 

and from this: 

1 

2h 

X 

0 

/z 

/ 
y 

Fig. 9.3 
= const, 

_Lf3p. pFz \xl +Clx + C1 
2ß\dz 

After substituting the Eq.(9.17) into the boundary conditions Eq. (9.16 ): 

C,=0, C ,=—ϋ>_οΑ' 

(9.17) 

2ß\dz 
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and: 

2/Λ& J 2/<U A * ) 
Considering the above equation, the maximum flow velocity umm is: 

*(%> nP 

and: 

„2\ 

(9.18) 

(9.19) 

(9.20) 

i. e., a parabolic velocity distribution occurs in the slit between the planes under 
u x 

review. In dimensionless coordinates , —, this distribution is universal 
" m a x h 

(Fig. 9.4) and does not depend on either pressure 
gradient or on the fluid's properties. The fluid's 
throughflow Q per unit of the slit width is 

1.3 , 

0.5 

Λ r , 2h3(dp ^λ Ah , „ „ „ 
Q=ludx=-^{i-^)=Tu- (9-21) 

The average flow velocity uavg is: 

The friction stresses for a incompressible 
fluid, considering Eqs. (4.8) and (3.5), are: 

τΛ=2μεΗί, £·,·*=-
y dxk dXj 

(9.23) 

In this case, the velocity vector has a single nonzero component v3 = vz = u, 
and from Eq. (9.18): 

_ l du (dp )x (9.24) 

and other components of the deformations velocity tensor are equal to zero. By de-
noting the friction's tension at the wall as Th: 

'.-(I-/*.*. (9.25) 
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Substituting Eq. (9.25) into Eqs. (9.18), (9.19), (9.21) and (9.22), gives: 

h 
u = z\ 

2μ " 

h r> 2h h 

The positive direction of the Oz axis is selected so that u > 0 and from 
Eq. (9.26), r„ < 0. 

3. Straight-line flow within axisymmetric tubes 

Let's review the transient-free, untwisted axisymmetric flow of an incompressi-
ble viscous fluid. Consider a cylindrical coordinate system QrzO such that the Oz 
axis coincides with the flow axis of symmetry. Suppose the positive direction on 
the Oz axis coincides with the direction of the flow velocity. Then u = ku(r), and 
the Lagrange's operator becomes: 

A«=ifirfO. (9.27) 
r or \ or J 

Substituting this equation into Eq. (9.10): 
μ 3 ( du\ dp 

Upon integrating this equation: 

Τ-ρΡ,)τ- + ζΙη + ε2. (9.28) 
σζ )4μ 

The solution of Eq. (9.28) is valid for any untwisted axisymmetric flow within 
cylindrical tubes. To determine the integration constants C\ and C2,it is necessary 
to assign the boundary conditions. 

Taking a flow within a circular cylindrical tube of radius R, at r = 0 the veloci-
ty is finite; therefore, C\ =0. According to the adhesion hypothesis, at r = R, u = 0: 

and: 

4μ{οζ Ί 4μ{3ζ Η z Ί - 4 Λ 
(9.29) 

The above equation demonstrates that maximum velocity value «max is reached 
along the tube's axis: 
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Accordingly, Eq. (9.29) can be written as follows: 

ii ill 
V K ) 

i. e., same as in the case of a flow between parallel planes — see Eq. (9.20) — the 

velocities are parabolically distributed, and this pattern is universal for dimension-

less coordinates , —. 
"max R 

Let's now turn to the fluid's throughflow. For this purpose, it is important to 
consider a ring in the transversal cross-section of the tube with the area of dS = 
= 2mdr. Then, according to Eqs. (9.29) and (9.30), the throughflow Q is: 

Q=\udS = 2n jurdr ~ { ^ - ^ j = ̂ « m a x . (9.31) 

Average flow velocity wavg is equal to: 

Eq. (9.31) is the well-known Poiseuille's equation for laminar flow regime in 
round tubes. 

At u = u(r), the deformation velocity tensor has a single nonzero component: 

_}_du_ 
2 Or 

and, from Eq.(9.23), the friction stress is: 

Tn=M^· (9-33) 

By substituting Eq. (9.29) into Eq. (9.33): 

'■-0-4 
Eq. (9.34) shows that the friction stress is linearly associated with the radius. 

Assuming r = R in Eq. (9.34), the friction stress on the tube's wall is: 

'-K!-*)· 
After substituting Eq. (9.35) into Eqs. (9.29)-(9.32): 

RTR 

2μ v R2J 

RTR . nR* RT. R 

In a horizontal tube Fz = 0, and from Eq. (9.32): 

u = - * l 3 P . (9.36) 
avg Sßdz 
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Taking an /-length segment of the tube, as — = const, then: 

dp 

dz 
-Pl~ 

l 
P, -P\ -Pi _ 

I 
Ap 
I 

(9.37) 

where pi, p2 are pressures in the beginning and at the end of the tube segment under 
consideration. After substituting Eqs. (9.36) and (9.37) into the Darcy-Weisbach 
equation Eq. (5.30), the hydraulic resistivity A is obtained: 

Λ = _ 6 4 £ _ = 6 4 > ί / = 2 Α -

pum%d Re 

It is important to note that from the dimensionality and conformance theory: 
2C 

λ = — , C = const, 
Re 

i. e., the exact solution produces C - 64. 
Now consider the flow in a canal formed by two round coaxial cylinders with 

radii R\ (external) and. R2 (internal). See Fig. 9.5. 
The boundary conditions in this case are: 

.R atr = R]u = 0,andatr = R2u = 0. (9.38) 
Substituting the boundary conditions into the solu-

tion Eq. (9.28), gives: 

4//Uz Jin/?, IR2 

C2 = 
4/1 Uz PF* 

R2\nRt -R2\nR2 

In/?, IR2 

and: 

4//Uz 

-M&-PF 

In/?, IR2 In/?, IR, 

(9.39) 

2 ' 2 lnR,/fl2 

The throughflow g through the ring-tube cross-section is equal to: 

Q = *\urdr=*-{*E-pF 
&μ{Βζ 

(f l2- /?2) ^—^-(Rf + R2
2) In/?, //?, ' 2 (9.40) 

Now consider a narrow ring opening when, R2 —» /?,. Suppose: 

r = R2+y,Rt = R2 + h, — « 1. 
/?, 
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Truncating terms not higher than second order, results in: 

In—- = ln 
R2 

Further, 

1 + -
R, i) R, 

1-
2R. 

, l n ^ = ln 
1J R, R1J 

i-IA 
2Λ, 

Γ ί _ ^ _ ( Α 2 _ Α ϊ ) _ ! 5 ^ 
In/?, /&, 

2y(y-A) 
AA 
2Λ, 

2v(y-Ä) 
1 -

1 + 1A 
2R, 

2y{y-h). 
2 7 

By substituting this expression into Eq. (9.39): 

u=U^-^)y2-hy)- (9·4ΐ) 

Note that if the boundary conditions are assigned as: 
at x = 0 u = 0, and at x = 2h = h\ u = 0, 

Eq. (9.18) takes the following format: 

"-έ(!"/*Ψ2"*, ) · (9·42) 
This equation with accuracy to subscripts is the same as Eq. (9.41). Therefore, 

the solution of Eq. (9.41) is also a solution of viscous fluid motion between two 
motionless parallel planes positioned at a distance h = 2h from one another. 

4. Equation of transient-free circular motion of a viscous fluid 

Equation of transient-free motion of a viscous fluid in cylindrical coordinates 
Orcpz has the following format: 

par p 

dv, v dvr dvr ν2φ 

dr r άφ dz r 

fd2vr 1 d2vr d\r 1dvr 

-H -H r--\ '-
dq>2 r2 dp2 dz2 r dr 

«H v dv dv vrv 

or r όφ dz r 

r2 d<p 

9 prd<p p 

dvz . V<P
 dvz , övz 

' dr r dq> dz 

( ■ & 

dr2 r2 d<p2 

ϊνφ \όν9 2 dvr νφ 

dz2 r dr r2 d<p r2 

pdz p 

fd2v 1 d \ 3 V 1 3 

dr 

(9.43) 

v, 

dv 1 άνφ dvz v, 

dr r dtp dz r 

r2 dp2 dz2 r dr 

- = 0. (9.44) 
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Assuming that Oz axis is directed vertically upward and only one mass force 
(the gravitational force) is acting on the system, then: 

Fr = F9 = 0, Fz = -g = const. (9.45) 

It is also assumed that: 

Vr = 0,Vz = 0, (9.46) 

i. e., studying a flow where the trajectories of all particles are concentric circles 
with the center on the axis Oz. 

Based on the continuity equations Eq. (9.44) and conditions of Eq. (9.46) that: 

- ^ Ξ Ο , (9.47) 
όφ 

i. e., the velocity modulus along the circular trajectory maintains its numerical value. 
Considering Eqs. (9.45), (9.46) and (9.47), the motion equations [Eq. (9.43)] 

take the following format: 

ν2
φ _ 1 dp 

r p dr 

(9.48) M 
(dr2 dz1 r dr r1) 

V2
9 

r 

•—I-
From the first and third equations of Eq. (9.48): 

r dz p dzdr p dz 

from which: 

^ = 0. 

_ 1 dp 
pdcp 

dz 
(9.49) 

Thus, the circular motion under review is parallel-plane, and from Eqs. (9.47) 
and (9.49): 

v, = v , ( r ) . (9.50) 

Following from Eqs. (9.45) and (9.47) that the flow is axisymmetric: 

£ = 0 . (9.51) 
όφ 
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Based on Eqs. (9.50) and (9.51), the second equation of Eq. (9.48) can be pre-
sented in the following format: 

d νφ | 1 dvp νφ = d 
dr2 r dr r2 dr dr r A d_ 

dr 

}_d_ 
r dr 

(rvj ■ 0. 

By integrating Eq. (9.52): 
r C 

v = C , - + — , C,,C2 =const. 
2 r 

From the first term in Eq. (9.48): 

p = p \—-dr +C3, C} = const. J r 

(9.52) 

(9.53) 

(9.54) 

5. Flow between two revolving cylinders 

Let's review transient-free flow of a viscous incompressible fluid between two 
round cylinders. The cylinders are coaxial and have the vertical axis Oz of unlimited 
length. 

Suppose the internal cylinder has radius #2 and is 
revolving at an angular velocity ω2, and the external cy-
linder has radius R\ and is revolving at an angular veloci-
ty co\ (Fig. 9.6). Clearly, the boundary conditions are: 

at r = R] νφ = /?ι&>ι; at r = R2 v9 = R2a>2. (9.55) 
Substituting Eq. (9.55) into Eq. (9.53) results: 

Fig. 9.6 

following format: 

, R, CÜ\ - R2 ω2 C =2 -
1 K-R? 

/?,ζ/?/(^-^) 
R\ ~R2 

Therefore, Eq. (9.53) for velocity v acquires the 

R^-R'ax, /?,2ft2
2(a>2-q) = 

R {Rt-R^r 
(R2a\ -R^ca,)r2 + R2R2(co2 - a \ ) 

(R2-R2
2)r 

(9.56) 

Substituting Eq. (9.56) into Eq. (9.54) and performing simple transformations, 
results: 

(R*(ol-R2
2ca1)

2j + 
(R2-R2)2 

+2R2R2{R2a\-R2<o2)(ca2-(Ol)\nr- J?,4/?2
4(^-^)2 

2r2 + C, 
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At vr = vz = 0, and v9 = v^r), the tensor of velocities deformation has a single 
nonzero component: 

dr r 
and, according to Eq. (9.23), the friction stress τΓψ is equal to: 

rdv. 

1 
rY 2 

% =<« a ,- (9.57) 
dr 

Substituting Eq. (9.56) into Eq. (9.57), gives: 

τ'*-2μ tf-V)r> ■ ( 9 · 5 8 ) 

The above equations show that friction stress decreases inversely to the radius 
, (constant ̂  , . . . 

squared as the radius increases. 

The friction force at the cylinder's surface (the cylinder's radius is r, and its height 
is H) is defined by 2τττΗτΓφ, and its momentum relative to the 0z axis is equal to: 

2 2 

M = 2πτ2ΗτΓφ = -4πμΗ *' ^ 2 (ω2 - a\). (9.59) 
Rl ~R2 

Therefore, friction force momentum does not depend on the cylinder's radius. 
In computing the stress tensor components, the normal is considered to be ex-

ternal toward the volume under consideration. Thus, Eqs. (9.58) and (9.59) provide 
the values of friction force stress and momentum on the surface of radius r when it 
experiences friction at the surface of radius r + dr. When the surface of radius r 
exposes to friction at the surface of radius r - dr, the external normal has the direc-
tion of-r and the sign in Eqs. (9.58) and (9.59) must be reversed. 

Following from this argument, the momentum of friction forces on the cylind-
ers of the radii R\ and Ri have the same numerical value with the opposite sign. 

A special case exists when the internal cylinder is motionless, i. e., CÜ2 = 0. 
From Eq. (9.59): 

M = ΑπμΗ ^' ^2
 2 ο\. (9.60) 

/?, -R2 

This Eq. (9.60) is utilized for die determination of viscosity using rotation vis-
cosimeters with coaxial cylinders. Indeed, by measuring angular velocity a\ of the 
external cylinder and the momentum M on the internal cylinder, Eq. (9.60) enables 
the computation of viscosity μ. 



CHAPTER X 

TURBULENT FLOW OF FLUIDS IN PIPES 

The theory of turbulent flow is an independent and vast hydrodynamic discip-
line. This chapter deals with the simplest and very important issues. 

1. Reynolds' experiments 

The classical studies of the fluid flow within circular tubes have been con-
ducted in 1876-1883 by a British physicist Osborn Reynolds. See Fig. 10.1 for the 
schematics of his experimental equipment. A 
thin stream of paint was supplied through a 
nozzle of a long glass tube B into the fluid's 
flow exiting a large tank A. 

It turned out that at a low flow velocity 
the colored stream is extended along the tube 
ß's axis: the flow occurs without any trans-
verse mixing. Fluid's layers move parallel to 
one another. As previously mentioned, such 
flow is called laminar. 

At a high flow velocity the colored stream F'8- 1 0 1 

was fuzzy and washed over the entire cross-
section of the tube. The flow experienced intense intermixing of clearly unstable 
nature. Such a flow is called turbulent. A typical feature of turbulent flow is the 
presence of incoherent crosswise components of the velocity vector. Thus, turbu-
lent flow is in its essence non-stationary. 

Experimental studies showed that the transition from a laminar to a turbulent 
flow is defined neither by the tube's diameter d, average flow velocity w, viscosi-
ty μ or density p individually but rather by a dimensionless value Re = ——, called 

"the Reynolds number". 
The Re value at which the transition from the laminar to turbulent flow occurs 

is called critical (Re^t). When Re < Re^t, the flow is laminar, and when Re > Recnt, the 
flow is turbulent. 

Mechanics of Fluid Flow 
by Kaplan S. Basniev, Nikolay M. Dmitriev and George V. Chilingar 

Copyright © 2012 Scrivener Publishing LLC 
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Reynolds believed, and it was later proved, that the Recrjt value is growing 
with the decrease in disturbance of the flow. For tubes with well rounded intake, he 
obtained Recrjt values on the order of 12,000 to 13,000. Later studies by other phy-
sicists, with the application of special measures to decrease the initial disturbances, 
reached the Rec„t values of about 50,000. However, even a slightest disturbance 
resulted in the flow immediately becoming turbulent. 

At the same time, experiments showed that at Reynolds numbers on the order 
of 2,200 the disturbances present or artificially caused in the flow tended to decay, 
and the flow became laminar. 

There are always some disturbances in technical equipment. That is why for 
calculating flows within the round cylindrical tubes it is customary to assume 
Recrii = 2,320. 

2. Averaging the parameters of turbulent flow 

When measuring at some point of a turbulent flow using an inertia-free sensor, 
a resulting velocity vs. time graph looks like in Fig. 10.2 where vx, vy and vz are 

component vectors of the velocity. I. e., the 
v velocity fluctuates around the average value. 

A I»A i Λ I L AII cvfcKn »Λ. Reynolds proposed to take the instantaneous 
'^^Λψ^^{ψ v> velocity and all other turbulent flow parame-
ώΓΰ^ν^/^^Τ^Ύ^ ν> t e r s value as the sum of time-averaged val-
y^4MM^ ues and pulsation components. 
v v i * Suppose (p{x,y,z,i) is any parameter of 

I the turbulent flow (velocity, pressure, etc.). 
t Its instantaneous value is: 

F i g · 1 0 · 2 φ = φ + φ\ (10.1) 
where φ is the time-averaged value and φ' is the pulsation. The averaged φ value 
is found as: 

T 
t+— 

_ i 2 

φ(χ,γ,ζ,ί) = — j<p(x,y,z,T)dT, (10.2) 
* T 

1 
2 

where the T averaging period is much longer than the characteristic fluctuation pe-
riod but much shorter than the characteristic 
process time. 

If φ estimated for different t values has the 
same numerical value, the turbulent flow is 
called quasi-stationary (or stationary). If φ value 
depends on time (Fig. 10.3), the turbulent flow is 

p· ]Q3 ' non-stationary. 
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For a stationary flow, the repeated averaging of the φ parameter results, based on 
Eq. (10.2), in: 

- 1 <p = — fip(x,y,z,T)dr = <p. (10.3) 

For non-stationary processes the Eq. (10.3) is postulated. 
It directly follows from Eq. (10.2) that: 

φ + ψ = φ + ψ. (10.4) 

According to Eqs. (10.1), (10.3) and (10.4): 

φ-φ+φ' = φ + φ' = φ' + φ\ φ'=0, (10.5) 

i. e., average value of the pulsation is equal to zero. 
In the case of a quasi-stationary flow, as follows from the averaging definition 

Eq. (10.2), 
T 

t+— 

W = — ]φ{χ,)>,ζ,τ)άτ = φψ. (10.6) 
' T 

1 
2 

For non-stationary processes the Eq. (10.6) is postulated. 
Following from Eqs. (10.5) and (10.6) that: 

φψ = φψ'=0. (10.7) 

Under the rule of differentiating an integral with variable limits: 

f 41 f (w'rMr4Kw,i+iH T 
W . r - 2 (10.8) 

= I i \dJLd?J-V, 
Tdt {dr 3r 

/— 
2 

i. e., the time derivative of the averaged value is equal to the averaged value of the 
derivative: 

f-Ä (10.9) 
dr, ax, 
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3. Reynolds' equations 

Reynolds' equations are motion equations of a viscous incompressible fluid 
for the averaged flow parameters. 

Let's review the motion equation of a viscous incompressible fluid (4.42) or: 

ξΐ = 0, ρ ^ = ρΡι-ψ + μΑν,. (10.10) 

dxj at at 

Suppose, according to Reynolds' hypothesis, that: 

p = p + p\ v, =ν,· + ν,.'. (10.11) 

To make the further transformation easier, for a incompressible fluid: 
3v, dv, dv; fa 3v. dv, dvj dv, 3(v,.v ) ...... 

t = t + V^ = t = t + V^ + V% = t + -at- (iai2) 

By substituting Eq. (10.11) for velocity into Eq. (10.12), based on the averag-
ing rules [Eqs. (10.3)—(10.9)] and considering the continuity equation: 

3v, dv. 3(v,.v,) dv/v/ 3v, 3v,.'v 
L = L + '—!- + '—!- = !-+ !_ 

dt dt dx. dx; dt dx, 
(10.13) 

Further, it is clear that under the averaging rules: 

ψ Α , Δ^ = Δν„ | Ρ = | a . (10.14) 

σί at OJC, axj 

Finally, from Eqs. (10.13), (10.14) and (10.10): 

dv dv dp - 3(V;V,) 
^ = 0, ^ = ̂ - ^ + Μ ν , - ^ , (10.15) 

dxi dt dx{ dx: 

or, in the vector format: 

= AV — _ = 3(vv ) 
divv = 0, p— = pF-Vp + pAv-p ' ' . (10.16) 

dt dxi 

Thus, as a result of the averaging, the continuity equation maintains its format, 
and the motion equations acquired additional terms for the /?v,.'vy' format. 

In order to understand the obtained result, consider the continuous medium 
motion equations [Eq. (2.49)]: 
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or: 

3v,. dp,, 
(10.18) 

Averaging Eqs. (10.17) and (10.18) over time, and considering Eq. (10.13): 

p^- = pF + ̂ -{%-pW), (10.19) 
dt a* 

/4='ν£(*-^4 dt dx, 
(10.20) 

Eqs. (10.15), (10.16), (10.19), (10.20) are different ways to write the Reynolds 
equations. Following from the Reynolds equations that at averaging a turbulent 
flow over time, in addition to the tensor of the averaged viscous stresses: 

Ρη=-Ρ~δΓι+2μεβ 

a symmetric tensor of the turbulent stresses arises: 

(10.21) 

Thus, the Reynolds equations include 6 additional variables - components of 
the turbulent tensor stresses Eq. (10.21)-and, therefore, they are unclosed. The issue 
of their closing, i. e., the issue of finding an association between the tensor of tur-
bulent stresses and the averaged flow parameters is until this day one of the major 
problems of the turbulency theory. 

-pv[v[ 

-pv'2v' 

-pv'3v[ 

-pv'/2 

-pv'2v'2 

-PV'A 

-pv,v3 

-ΡνΛ 

-pvy 

4. Semi-empiric turbulency theory by L. Prandtl 

Semi-empiric theories of turbulency are based on hypotheses, which associate 
the turbulent stresses with the averaged velocity field. Such hypotheses are formu-
lated based on generalization of the experimental data and the introduction of the 
empirical constants in the obtained expressions. 

In generating the semi-empirical theories, the Reynolds' concept is used for 
the representation of the turbulent flow velocity field as a sum of the averaged ve-
locity v field and the fluctuating components v'. The averaged motion's flow lines 
are introduced such that they are impermeable to the averaged velocities and per-
meable to the fluctuating components enabling the crosswise mixing in the turbu-
lent flow. 
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The fluctuating velocity components transfer through the averaged flow lines. 
Thus, under the Newton's 2nd law turbulent flow results in the emergence of addi-
tional (turbulent) stresses. 

Now consider quasi-stationary turbulent flow between the stationary planes 

y = 0 and y = h (Fig. 10.4). It is clear that here vy = 0 due to the wall impermea-

bility, and vz = v' = 0 by definition of the plane flow. The averaged flow flow-lines 

are the straight lines parallel to the Ox axis. Clearly, the different from zero compo-

nents of the turbulent stress tensor are -pv'xv'x,- pv'yv'y, -pv'xv'y =—pv'v'x. Expe-

riments showed that the pv'xv'x and pv v' values can be disregarded. 

h ///////////////////////i//////// 

5 
r_da_ 
2<fo. 

•da 

C_dü_ 
2 dy 

Fig. 10.4 

Introducing the following parameters: 

^ = « . v'y=v, -pv'xv'y=T. 
assume that the friction is acting on the upper layer and the lower one, (Fig. 10.4). 
Clearly, the downward momentum transfer must be taken with the «+» sign, and 
upward, with the «-» sign. Due to the presence of the fluctuating component v', the 

the fluid particle located at point A with the coordinate y + — will be transferred 

through the elementary area da (normal to the Ox, axis) to the point B with the 

coordinate y . 
2 

The particle under consideration has averaged velocity u = u\ y + — at 

point A. According to Prandtl's hypothesis, the particle's velocity does not change 

along the way /', and becomes equal to u = u\ y— at point B. The mass flow 

through the da area equals pv'da; the change of the time averaged momentum for 
the lower layer is equal to: 

pv' u\y+
lXu[y-l-\^ 
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Therefore, the time-averaged force of turbulent friction τάσ is equal to: 

τάσ = pv' 
V 

u\y + - u\ y-
/' 

da. (10.22) 

(10.23) 

(10.24) 

The / ' value is called the agitation length. 
The numerical value of / ' is assumed to be small, thus: 

^y±- j = M(y)±-- . 

After Substituting Eq. (10.23) into Eq. (10.22): 

— d «
 .du 

τ = pvl—=A—, 
dy dy 

where A = pv'V is dynamic turbulent viscosity. 

The expression τ = A— is the additional turbulent stress obtained from anal-

ogy with Newton's friction law for laminar flow introduced in 1887 by J. Boussi-

nesq. It is important to emphasize that turbulent viscosity A, as opposed to dynamic 

viscosity μ, is not a constant value for the fluids, but depends on y coordinate and 

flow parameters. 
In the thin near-wall fluid layer, A «μ. This case is called "viscous sublayer"; 

its thickness is about 1 % of the canal's crosswise dimension. Outside of this sub-
layer, within the so-called "turbulent core", A » μ. 

The total time-averaged tangential stress p has the following format: 

P„=U* + A) 
du 

~dy~ 
(10.25) 

In order to determined the agitation length, Prandtl proposed a hypothesis, un-
der which: 

, „du 
v ~ I — . 

dy 

Substituting Eq. (10.26) into Eq. (10.24), results: 

A = pV 
du 
dy 

, T = 
du 
dy 

du 

~dy 

(10.26) 

(10.27) 

where the modulus sign is used to underline that A > 0, and τ is and alternating-sign 
value. The proportionality factor, which should be presented in Eq. (10.26), is in-
cluded into / value, which is also called the agitation length. 
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A theory built based on the concept of the agitation length is called the semi-
empirical Prandlt theory. 

5. Application of the dimensionality theory to the construction 
of semi-empirical turbulence theories 

In constructing his theory, Prandtl assumed that the turbulent viscosity de-

pends on fluid's density and the average velocity u distribution law in the canal's 

cross-section. This distribution, as the first approximation, is determined by the de-

rivative — . Therefore: 

dy 

A = f P> 
du 

dy') 
(10.28) 

The dimensionality of the values in Eq. (10.28) are: 

M 
W ~ , \p\-

M 

LT 

du_ 

dy T 

so the parameter system that determines the class of phenomena, i. e., p and — , 
dy 

does not have the property of completeness. Thus, the equation such as Eq. (10.28) 
is physically impossible and requires to consider /' as independent variable: 

A = f 
du „ , 

(10.29) 

It is easy to see that the parameters p, — , and /' have independent dimen-
dy 

sionalities. So, under the Π-theorem of the dimensionality theory from Eq. (10.29): 

A = Cpa du 

{dy 
l'r, C = const. 

Following the calculations described in detail in Chapter V: 

A = Cla p 
du 
dy = pi2 du 

dy 
τ= A—-pi 

dy 

du 

dy 

du 
(10.30) 

which is exactly the same as Eq. (10.27). 
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The shape of the curve u = u(y) is defined not only by the first derivative but 

also by higher order derivatives. Thus: 

A = f 
du d2u ' 

Parameters p, — , — T have independent dimensionalities. Therefore, based 
H dy dy2 y 

on the Π-theorem: 

A = Cpa 
r ,-\ß 

du 

~dy~ dy2 

Performing the necessary transformations, results in: 

A = k2p 

du 
dy 

d2u 

dy2 

T = k2p 

du 

dy du 

d u 

df 

dy 
(10.31) 

where k = const is an empirical constant. 
A German hydro-mechanicist T. von Carman derived Eq. (10.31) in 1930 us-

ing a more complex thinking. 
As shown above, Prandtl's equations [Eq. (10.30)]have been derived by analyz-

ing two points in a turbulent flow. However, Carman's equations [Eq. (10.31)] do 
not include the linear dimension. 

Eqs. (10.30) and (10.31) demonstrate the different rheological models for the 
turbulent flow of a viscous fluid. 

These equations have been derived based on the assumption that the averaged 
velocity field depends only on one coordinate crosswise to the direction of the 
flow. Because of this assumption, they are valid for a flat as well as for a round 
tube (assuming the axisymmetric flow). 

6. Logarithmic law of velocity distribution 

Let's analyze, using Prandtl's concept, a quazi-stationary turbulent flow within 
a circular cylindrical tube of radius a. In this case: 

du _ du 

dy dr 
(y is measured from the tube's wall to its axis). From Eqs. (10.25) and (10.27), the 
total tangential stress pn is equal to: 

= -(μ + Α)— = -
dy 

μ + ρΐ' 
du 

dy 

du_ 

dy' 
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Within the flow's core A » μ, so that the following assumption in valid: 

du 
-pi' 

dy 

du^ 

dy' 
(10.32) 

Assuming, for the sake of the simplicity, that the tube is horizontal, and consi-
dering its element of radius r and length L (Fig. 10.5). The flow is transient-free, so 

, π the sum of forces acting on the identified 
element is equal to zero, i. e., 

in (P\ - Pi) - iTtrht - 0, 

7Y where: 

r _ A ~ P 2 r _ A p 

Fig. 10.5 

(10.33) 
2L 2L 

Then the friction stress at the tube's 
wall is: 

Δρ 
τ =—α 
" 2L 

or, from Darcy-Weisbach equation Eq. (5.30): 

λρ\χά 
r = ' 'w. 

(10.34) 

(10.35) 

From Eqs. (10.33) and (10.34): 

τ = τ 

and Eq. (10.32) can be presented in the following format: 

p a 

du 

dy 

du 

~dy' 
(10.36) 

Eq. (10.36) is the differential equation required to determine of the averaged 

velocity u. 
It is apparent that the displacement length / near the tube's wall and at the 

flow's axis (out of axial symmetry considerations) must be zero. A. Satkevich pro-
posed the following equation for the displacement length: 

(10.37) l = kA-(a-r), 

where k is an empirical constant. 
Substituting Eq. (10.37) into Eq. (10.36), results: 

± = -k2{a-rf 
P 

du 

dy 

du 
(10.38) 
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The value v, = I— has the dimensionality of velocity and is called dynamic 
\P 

velocity. As v. > 0 and — < 0, from Eq. (10.38): 
dr 

, p = v, =-k(a-r)—. (10.39) 
\P dy 

Integrating Eq. (10.39) and considering that the velocity u has maxima at the 
tube's axis (i. e., at r = 0), results: 

i ^ = «ma i + J_lnazr ( 1 0 4 0 ) 

v, v, k a 

The Eq. (10.40) demonstrates that under the above assumptions the velocity 
distribution within the tube is logarithmic. Next to the wall, at r—¥ a, «—»<*>, 
which does not make physical sense. The reason is that in deriving Eq. (10.40), the 
molecular viscosity μ relation relative to A is disregarded, and it is not valid for the 
near-wall layer. 

Calling a - r = y, now it is possible to present Eq. (10.40) as follows: 

Ä=^+! ln2^=^_Iinf^+IinZi = ß + l n 3 ^ (1041) 
v, v, k aw, v, k v k v v 

where v = — is kinematic viscosity, and B = const for the flow under consideration 
P 

(i. e., for the tube of given radius r and given pressure gradient — ) . 

Considering a small thickness of the near-wall layer and the fact that at 
x -» 0, the value jdnx -> 0, from Eq. (10.41): 

i a — 
■ VlKau(r)dr = v, πα2ν, πα2ν, η 
0 (10.42) 

a2 Z { k v I k v 3 

where w is average flow velocity and Q is throughflow. 
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From the definition of the dynamic velocity v», Eq. (10.34) and the Darcy-
Weisbach equation Eq. (5.30) — or directly from Eq. (10.35): 

v = p - = J-w. (10.43) 

Substituting Eq. (10.43) into Eq. (10.42), results in: 

- = ß - — + I ln -ReJ- , (10.44) 
λ 2k k 2 V8 

where Reynolds number is determined as: 
„ law wd 
Re = = — , 

v v 
where d is the tube's diameter. 

In conclusion, the velocity distribution law [Eq. (10.41)] enables the derivation 
of equation for the determination of hydraulic resistivity λ. Some experimental data 
determined the numerical values of B ~ 5.5 and k ~ 0.4. 

Substituting these values into Eq. (10.44) and switching to decimal logarithms: 

-j= = 2.035 lg Re 4λ - 0.913. 

A more precise description of the results can be derived using the following 
equation: 

-jL = 21og(ReVI) - 0.8 = 2 1 o g ^ ^ . 

Note that when deriving Eq. (10.44), the tube walls' roughness is not consi-
dered. Thus, the equation is valid only for smooth tubes. 

It is also important that currently empirical rather than analytical equations are 
preferred for the λ calculation. 

7. Experimental studies of hydraulic resistivity 

Experimental studies of pressure vi. fluid's throughflow were conducted be-
ginning at least 200 years ago. Individual results significantly varied because the 
scientists did not observe Reynolds conformity law and different roughness of the 
walls. 

First systematic experimental studies of hydraulic resistivity λ vs. Re and 
roughness were conducted in the Gottingen University in 1920's-1039's by Niku-
radze. The tubes involved were smooth brass tubes and the tubes with uniform ar-
tificial roughness. The results in log Re - log λ coordinates are shown in Fig. 10.6 
where ε = Δ/d. He concluded that there were five hydraulic resistivity zones. 
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Zone one (curve I): Re < 2,300; the flow regime is laminar, λ depends on Re 
but does not depend on ε. 

Zone two is under transition from the laminar to turbulent regime, λ is increas-
ing and depends only on Re. 
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Fig. 10.6 
Zone three (curve III) is so-called zone of hydraulically-smooth tubes. Tubes of dif-

ferent roughness behave as if they were smooth, i. e., X depends only on Re. 
Zone four is the area of a mixed friction, λ depends on Re and on ε. 
Zone five is the quadratic friction area, λ depends only on ε. 

The experiments conducted in 1940's in Moscow by Murin with naturally 
rough steel tubes (Fig. 10.7) also identified 
five hydraulic resistivity zones. Contrary to 
Nikuradze's experiments, the results showed 
monotonous decline of hydraulic resistivity λ 
with the increasing Re number. 

There are many empirical and semi-
empirical equations for the determination of 
hydraulic resistivity^ in round tubes. In this 
chapter the most common equations are re-
viewed. 

The laminar flow regime: 

Re 
Re < 2,300. 

1 . 
Λ^^ , 
*Ν_Λ 
fej^A-

I r^ ^ v 

^ 
^ ^ " " - ^ ■* 

: v 

The equation was analytically derived 
and experimentally confirmed. 

The turbulent flow regime, hydraulically smooth tubes: 

Fig. 10.7 
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Both equations have been derived based on processing the experimental results. 
Konakov's equation does not have limitations in terms of the Reynolds number. 

The mixed flow zone: 

(\ 68 Y'25 A ή 
/I = 0.11 — + — , 10—<Re <500—(Altschul equation). The equation 

\d ReJ Δ Δ 
was derived by modifying the empirical Colebrooke's equation. 

Quadratic friction zone: 
\0.25 

λ = 0.11 , Re > 500— (Shifrinson's equation). 
Δ 

At small values of —, Altschul's equation turns into the Blasius equation, and 

at high Re numbers, into the Shifrinson's equation. 
A more complex equation valid for any Re value, including the laminar flow 

regime, is: , 
1 Ϊ2 

1 
1 = 8 

where 

A = { 2.457 In 

Re 

1 

(A + B)2 

(7/Re)09+0.27(A/i/) 
B-

37,53θϊ" 
Re J 



CHAPTER XI 

HYDRAULIC CALCULATION FOR PIPELINES 

1. Bernoulli's equation for a viscous fluid flow 

Bernoulli's Eq. for a viscous fluid flow is one of the main equations used at 
hydraulic design of pipelines. In order to derive it, the following assumptions are 
required: 

(a) the flow is transient-free; 
(b) the fluid is incompressible, density p = const; 

(c) only one mass force, the gravitational force, is active, F = g. 

Under these assumptions, the law of variations in the kinetic energy 
[Eq. (2.82)] has the following format: 

2 _ 

jp—vndS= jpgvdV = + Jp„ vdS + \pNindV, (11.1) 
S V S V 

where for incompressible fluids, according to Eq. (4.50): 

ρΝ{η=-2με,,. (11.2) 

The flow is transient-free, so div pv = 0, and: 

pgv = -pgvz - gzdiwpv = -aivpgzv. 

Then, based on Gauss-Ostrogradsky theorem: 

[pgvdV = - (div pgzvdV = - \pgzvn dS. (11.3) 
V V S 

Furthermore, under Eqs. (1.31), (4.21) and (4.28) for a incompressible fluid: 

p„ =ekpika„ -eici-ρδ,, +T,k)ani =~pn +ekTlkani, τΛ =2μει„ 

and: 

[p„vdS = - jpnvdS + jek vrikanidS = - J/7v„ dS + fepvkelkanidS . (11.4) 

Mechanics of Fluid Flow 
by Kaplan S. Basniev, Nikolay M. Dmitriev and George V. Chilingar 

Copyright © 2012 Scrivener Publishing LLC 



180 CHAPTER XI 

Following Eqs. (11.2) and (11.4) that the sum of terms: 

J2pvke,„anidS + jpNmdV = -NfT (11.5) 

is the capacity of the friction forces. As this capacity is always negative, NfT > 0. 
Substituting Eqs. (11.3) and (11.4) into Eq. (11.1) and considering Eq. (11.5) 

results in: 

.2 λ 
r p v 

Z + — + — 
1 P8 2g 

5,V 

gpvdS=-Nh. (11.6) 

Consider the flow in a tube limited by cross-sections S] and S2 and the tube's 
wall 53. It is clear that v„ = -v on Si, v„ = v on 52 and v„ = 0 on 53. In this case, for 
the tube segment under consideration, Eq. (11.6) takes the following format: 

r 2 λ 
p v * 

z + — + — 
PS 2g 

gpvdS= j 
f 2 Λ 

p v λ 

Pg 2g 

gpvdS + Nu. (11.7) 

It is also required to assume that the pressure in the cross-sections S\ and S2 
is distributed hydrostatically: 

z + — = const. 
Pg 

(11.8) 

It was shown in Section 9.1 that such pressure distribution occurs at the lami-
nar flow in prismatic tubes. This pattern can be approximated by the averaged 
straight-linear turbulent flow and the smoothly-changing flows, i. e., to the flows 
where the area and shape of the cross-section changes little along the tube's length. 

According to Eq. (11.8): 

z + -
Pg 

gpvdS- z + —)g\pvdS = \z + -^-)gQm. (11.9) 
I Pg) i { Pg) 

The product of the gravity acceleration g and the mass through-flow Qm is the 
weight of the fluid flowing through the cross-section per unit time, called the weight 
throughflow. 

In order to calculate the integral: 

2 2 

\^-gPvdS = g\^-vdS 
s2g s 2 
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it is important to review fluid flow with the same mass throughflow Qm but with 
the uniform velocity distribution in the tube's cross-section. Clearly, the velocity 
of such flow is equal to the average flow velocity w, i. e.: 

w = ^ . 
pS 

Kinetic energy K of such flow carried per unit time through the tube's cross-
section (the kinetic energy flow) is equal to: 

K=\p 
2 2 

w ,„ w 
— wdS =—pwS ■■ 
2 2 y 

w 

The kinetic energy flow of a real flow is equal to: 
2 

V 

~2 
\pX—vdS=aK = a^Qm w 

T 
(11.10) 

where a is the correction factor for a non-uniform velocity distribution in the 
cross-section (the so called Coriolis coefficient). 

Substituting Eqs. (11.9) and (11.10) into Eq. (11.7) and considering that at a 
transient-free flow Qm = const: 

Z|+" - + or,· 
pg 2g 

P-> vv, , 
Pg 2g 

(11.11) 

where: 

8<L 
is the work of the friction forces per unit weight, or the specific capacity of these 
forces expended in the tube's segment between the cross-sections 5i and 52. 

Eq. (11.11) is Bernoulli's equation for a viscous incompressible fluid flow. 
Following Eq. (11.8), p\, p2 are pressures at the arbitrarily selected points of 

the cross-sections 5i andS2 with the respective coordinates z\ and zi- In other words, 
p and z values must correspond with the same point in the S section. 

For the laminar flow regime within a round tube of radius R, according to 
Eqs. (11.29), (11.30) and (11.32): 

r 
■ 2w\-

„2 \ 

R2 

Then: 

2 Ä 2 1/ 

\p—vdS = 2n\p—vrdr = ^pw3 j 1 . -4 X 

ov R
 J 

rdr = nR1pwi 
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and from Eq. (11.10): 

a 
2nR2pw3 

>v 2 ß m 

2flR2pw3 

w1 pwTiR2 

For the turbulent flow regime a~ 1.1 to 1.2. 

The flow regime in pipelines is generally turbulent, and — « - J — ; so usually 
2g pg 

in calculations the accepted value of a~ 1. 
The terms of Bernoulli's equation (exactly as the terms of Bernoulli's integral-

Eq. (7.29)) have the dimensionality of length and are called: 
z, 

_P_ 

Pg" 
w2 

a—, 
Ig 

h\-2, 

P w2 

geometric head or geometric height; 

piezometric head, or piezometric height; 

velocity head, or velocity height; 

head loss in the 1-2 segment; 

total head. 
Pg 2g 

There is a simple graphic interpretation of Bernoulli's equation. Consider a 
graph with distance along x-axis and the heads, on the y-axis. Curve A in Fig. 11.1 

describes the position of the flow's axis 
relative to the plane of reference z = 0. 
The distance between curve B and x-axis 

is equal to z + — , and between curve C 
Pg 

and x-axis is equal to the total head H. 
Depending on the flow geometry and 

its spatial position, the sum z + — may 
Pg 

decline or increase in the direction of the 
flow. Due to the friction, the total head is 
always declining. Eq. (11.11) shows that 

if the flow cross-section 1-1 is set, and the distance / to 2-2 cross-section is varia-
ble, then: 

H\= H + h = const, 
and from this: 

w2 

a— 
2g 

z 

-=^£| 

JL· 
r- "B 

A 

Fig. 11.1 

dh 

dl 

dH 

' dl 
(11.12) 

Value i is called hydraulic grade. 
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2. Types of head loss 

Two kinds of friction are distinguished in a fluid flowing through a pipeline: 
length loss hT and loss to local resistances ftioc. 

Local resistances are small segments (compared to the tube's length) in which 
velocity drastically changes in size and/or direction. Such segments are various 
locks, turns, valves, etc. 

The length losses (friction losses) occur due to friction within the flow. They 
are linearly dependent on the tube's length. Losses to the local resistances are caused 
by strong fluid's agitation which is accompanied by vortex formation and large velo-
city gradients. 

Consider a horizontal segment of a cylindrical tube with diameter d and 
length / located between cross-sections 1-1 and 2-2. As the cross-sections are equal, 
the velocity heads are also equal, and from Bernoulli's equation, Eq. (11.11): 

Ap=p\~P2 = pghT. 

then it is possible to write (in accordance with Eq. (5.30)): 

h=A-—. (11.13) 
dig 

This equation is a form of the Darcy-Weisbach equation. The length of the local 
resistances is small, so the pressure loss does not depend on the length and rough-
ness, so: 

Αρ=Μμ<Ρ^)- (H.14) 

After applying Π-theorem and simple transformations: 

Ap = C(R^,h^^cf. (11.15) 
2 pg 2g 

Eq. (11.15) is called Weisbach equation, and ^(Re) is called local resistivity 
factor. 

Total loss in a pipeline between the cross-sections 1-1 and 2-2 is usually de-
termined based on the loss superposition concept, i. e.: 

n m 

i=l j 

where n is the number of straight-line segments of the tubes, and m is the number of 
local resistances. When applying the superposition concept, it is important to note 
that the size of loss due to the local resistances depends on the velocity distribution 
in front of them. 
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Vortex formation behind a local resistance deforms the velocity profile. Then 
velocity profile recovery to the original format, typical of a straight-line segment 
of a long tube, occurs in the stabilization segment. The length of this segment /st, 
based on experiments, is 30 to 40 diameters of the supply pipeline (under the turbu-
lent flow regime). If the distance between the adjacent local resistances is smaller 
than /st, interference occurs between them. As a result the local resistance factors ζ 
and hydraulic resistance factors λ of the connecting tubes will be different from the 
values obtained for the local resistivities at a significant distance from one another. 

In conclusion if the distance between local resistivities is smaller than /st, the 
use of the superposition concept is not valid. 

3. Designing simple pipelines 

A pipeline is called simple if it has constant diameter with no branching lines. 
All other pipelines are called complex. In this section three main procedures of de-
signing simple pipelines reviewed are: 

Determination of pressure p\ when the fluid's throughflow Q and pressure p2 
(Fig. 11.2) are given. 

1. Determination of throughflow Q when 
pressures p\ and pi are given. 

2. Determination of the pipeline diame-
ter d when the throughflow Q and 
pressures p\ and pi are given. 

It is assumed in all these cases that the 
elevations z\ and zi, length Z, tube roughness Δ, 
fluid's density pand viscosity μ are given. 

The first step is deploying the Bernoul-
li's equation for the segment between cross-

p. , . 2 sections 1-1 and 2-2. As d = const, w\ = wj, 
l g ' and Eq. (11.11), considering the Eq. (11.13), 

with no local resistances, is: 

r̂ Ί> 
Z| 

ι^ 

^ 

" \ 
^ Λ 

Zi 

' 

^~ 

Pi 

\ 

1 w 
P,=Pi+P8(z2-z]) + pgh, = p2+pg(z2-zl) + pgÄ---. (11.17) 

dig 

Average velocity, w is equal to: 

4ß 
7ύ2 

Reynolds' number Re and relative roughness ε are: 

R e = A v d £ = A 

u d 
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After calculating the Re and relative roughness values, the flow regime, flow 
area and proper equation for the calculation of hydraulic resistance A can be de-
termined. Then, by using the Darcy-Weisbach Eq. (11.13) the losses ATcan be found 
and, subsequently, from Eq. (11.17), pressure p\. Thus, the calculation procedure is 
a chain, which may be schematically represented as follows: 

Q ->w-> Re -» flow area -» A -> hT -» px . (11.18) 

The second procedure is based on the solution of Eq. (11.17) relative to the ve-
locity w. A form of the A = A(e,Re) function is not known in advance, so it may be 
selected either by step-by-step approximation or analytical graphs. 

To utilize the latter technique, let's assign a series of the throughflow values 
Qi, ß2, ■·· Qn- Using the flow-chart (11.18), the 
head losses h,\, hT2,... Ä^can be calculated; then, 
a throughflow profile of the pipeline is estimated 
(Fig. 11.3). The values p\,p2, Z\, Zi are known, so 
it is possible to determine the losses hT from Eq. 
(11.17). Placing this value on the y-axis (Fig. 
11.3), it is possible to find the corresponding val-
ue of the sought-for fluid's throughflow. 

The variable to be determined in the third pro- Fig. 11.3 
cedure is the pipeline diameter d. Without knowing 
pipeline diameter, calculating the average velocity w, Reynolds number Re and A factor 
are not possible. The solution of Eq. (11.17) can be derived either by step-by-step ap-
proximation or analytical graphs. 

Let's assign a series of pipeline diameters 
d\, fife, ··· d„ and for each of them, knowing the 
throughflow Q, calculate velocities w\, W2, ... vv„. 
Then by using the flow-chart (11.18), for each dt 
the head loss hTi and the correlation plot hx = h^d) 
can be estimated (Fig. 11.4). Because the values 0 d 
of p\, pi, zu ΖΪ are known, the losses hx can be Fig. 11.4 
calculated from Eq. (11.17). Placing this value 
on Fig. 11.4, the corresponding value of the pipeline diameter d is found. 

4. Designing complex pipelines 

The pipelines with local resistances or composed of tubes with different diame-
ters or having branches are called complex pipelines. 

Let's review the calculating procedure of most typical complex pipelines. First, 
starting with the serial connection, this is a complex pipeline including serially 
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connected tubes with local resistances between them. The tubes can have the same 
diameter or of different diameters (Fig. 11.5). 

The pipeline is designed as a system composed of simple pipelines with local 
resistances. The fluid's throughflow is the same at any segment. The loss within 
the segment is calculated the same way as for a simple pipeline. The total losses of 
the segment between the cross-sections 1-1 and 2-2 are calculated from Eq. (11.16). 
It is assumed that all geometrical elements of the pipeline and properties of the fluid 
are known. 

Ϊ 

Fig. 11.5 Fig. 11.6 

The throughflow profile for a serial connection can be constructed using the 
calculation procedure for a simple pipeline. The throughflow profile enables, same 
as a simple pipeline design, finding the fluid's throughflow if the pressures in the 
beginning and at the end of the pipeline are given. 

For a number of purposes (such as increase in throughput capacity, reliability 
increase of a river crossing, etc.) parallel connections are used. A parallel connec-
tion is a pipeline comprising several tubes with the common beginning and com-
mon end (Fig. 11.6). 

Consider a parallel connection of two tubes, and deploy the Bernoulli's equation 
Eq. (11.11) for each of them between the cross-sections 1-2 and la-2a, respectively. 
As previously mentioned, or = 1 is usually assumed for technical calculations. 

z^+A 
. <» 

Pg 

(w,"')2 

2g 

(1) / (1K2 < » + ^ + ( ^ _ ) _ (^ 
pg 2g 

(11.19) 

zr+^ 
(2) 

pg 

(w,'2')2 

2g 

(2K2 

pg 2g 

where superscripts are tube numbers. 
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The cross-section 1 and la, and 2 and 2a are located close to one another. 
Therefore, it is possible to assume: 

(I) (2) (1) _ (2) (I) (2) (1) (2) 

Z, = Z, , Z2 - Z 2 . Pi = />, . P2 =/>2 · (11.20) 

Besides, because the tubes' diameters are constant: 

( I ) (1) (2) (2) (11.21) 

Following Eqs. (11.19), (11.20) and (11.21): 

Kw=hm=h. (11.22) 

Let's now determine the head loss in the A-B segment (Fig. 11.6). Using the 
Bernoulli's equation is not possible because the segment has branches. It is possi-
ble to maintain, however, that the energy loss ΔΕ within the A-B segment is: 

AE<A~B) = AE(A-" + Δ£( | ) + Δ£ι2) + Δ£<2-*>, 

where the superscripts denote the respective pipeline segments. 
As hT is losses per unit weight, then: 

(11.23) 

AE = hrpgQdt, 

and Eq. (11.23) may be rewritten in the following format: 

h^pgQ, dt = h^pgQ, dt + ht
mpgQx dt + hT

(2)pgQ2 dt + h^pgQ, dt. (11.24) 

The fluid's throughflow go before the branching is equal to the sum of the 
throughflows in the branches, i. e.: 

Go = ß i + 02-

After substituting this equation into 
Eq. (11.24), and considering Eq. (11.22), 
gives: 

A,""" = */"""+Ar + Ar""" 

Similar conclusions may be derived 
for the branching pipelines with any 

number of parallel branches. 
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Therefore, a design of parallel connections with n branches can be reduced to 
the solution of the following system of Eq.s: 

a.=ia.Ar=Ar(,)=V2,=-=V"}· (11-25) 

The system Eq. (11.25) can be easily solved by analytical graphs. For exam-

ple, Let's review a case of n = 2. Given a series of the throughflow values 

öl'". Q^\—, Q„W f°r the branch 1 and using the calculation procedure (11.18), it 

is possible to compute the losses hT
m, hT

( \...hT
Mfor each of these values. Based 

on the computation results, the throughflow profile can be built (curve 1 in 
Fig. 11.7). Similarly, the throughflow profile for the branch 2 is constructed 
(curve 2 in Fig. 11.7). By summing-up the Jt-axis readings for curves 1 and 2, the 
summary profile is constructed (curve 1+2). Putting the total throughflow ßo on the 
x-axis, the head loss at the intersection with curve 1+2 is estimated. It is clear that 
V " =6r

<2>, Ö, +Q2 =Q0, i- e., the system Eq. (11.25) is solved. 

It is important to stress again that when determining the head in the A-B seg-
ment the losses within only one of the tubes forming the parallel connection is con-
sidered. 

5. Pipelines performing under vacuum 

Pipelines performing under vacuum (i. e., with pressure below the atmospheric 
pressure) are quite common. They include pump intake lines, siphon pipelines, etc. 

If pressure in any cross-section of such pipeline becomes equal to pressure of 
the saturated vapor of the pumped fluid, the fluid begins to boil, resulting the for-
mation of vapor-saturated voids (caverns). As mentioned, this phenomenon is 
called cavitation. 

Following Bernoulli's equation that if the velocity increases in any cross-
section of a flow, pressure in this cross-section declines. Therefore, cavitation may 
occur in any narrow flow segments; for instance, within local resistances or within 
flow channels of hydraulic machinery. 

The formation of cavitation results in increased head loss, decreases the 
throughflow and subsequently the head loss, i. e., in pressure increase in the loca-
tion where cavitations occurred. This phenomenon is accompanied by shocks 
(pressure in the cavern's center at its collapse can reach 50 MPa), which cause the 
pipeline to vibrate. 

Thus, pressure decline in any pipeline cross-section to the saturated vapor 
pressure py results in an unstable flow regime and may cause the pipeline destruc-
tion. Similar phenomena can occur within the hydraulic equipment. Therefore, the 
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main concept in designing pipelines performing under vacuum is the following re-
quirement: 

Pmin ^ Pyy (11.26) 

where pmj„ is the minimum absolute pressure within the pipeline. 
Let's review designing of a siphon with a constant diameter (Fig. 11.8). It is 

clear that the lowest pressure occurs in the 
cross-section k-k. Assuming that the plane of 
the 0 - 0 cross-section (free water surface in 
the left tank) is the reference plane z = 0. In 
this case, Bernoulli's equation for the segment 
between the cross-sections 0 - 0 and k - k is: 

J*_ 

H 

"F 

L . 1 pg 2g Pg 2g 

+ V*. V * = U T + ^ — · 

(11.27) 
/ 
—1"4 i 

Fig. 11.8 """ """ { d J2g 

where patm is atmospheric pressure, and ζ is the sum of all local resistances within 
the 0 - k segment. Because the free surface area in the tank is much larger than the 
tube's cross-section, then: 

« 2g 2g 

and Eq. (11.27) can be reformatted assuming the tank diameter D = lOd. As 

m1 nD2 w0
2 d4 , ._4 

wn = nv, — - = — r = 10 : 
4 ° 4 * w

2 D 4 

pg Pg 2g { d S | 
(11.28) 

The pipeline length from its beginning to the cross-section k - k is: 

1 + L + Zk, 

where L does not change when Zk changes. Then, from Eq. (11.28) and considering 
Eq. (11.26): 

P k = P atm 

Pg Pg dig) 
1 + λ±^ + ζ 

d lg ;28 Pg 
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and: 

Zk<_pg ^ d_Jlg_ ( U 2 9 ) 

1 + Λ-ί-^-
d 2g 

Thus, the acceptable fluid's raise height in the siphon is a priori less 

than . The acceptable suction lift of a pump is calculated in the same way. 
PS 

Let's write Bernoulli's equation for the segment between the fluid's free sur-
2 2 

w w 
faces in the tanks 0 - 0 and 1 - 1 . Disregarding the velocity heads —2-, —— and 

2g 2g 
considering that on free surfaces p0 = p\ = ρΆ<α results: 

-H+hU2 = 0. (11.30) 

Therefore, the head loss in siphon is equal to the difference of geometrical 
elevations H of the free surfaces in the tanks. 

Eq. (11.30) provides an opportunity to compute the throughflow under the 
second procedure of the simple pipeline design. 
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FLUID'S OUTFLOW FROM ORIFICES 
AND NOZZLES 

The issue of fluid's outflow through orifices and nozzles of various shapes is a 
common occurrence when dealing with numerous technical issues. 

1. Outflow from a small orifice 

Consider a tank with a round orifice of radius d at the bottom (Fig. 12.1). The 
theoretical mechanics states that in the absence of 
shock forces material particles cannot move along 
the trajectories with angular points. It is assumed that 
particles' velocities at those points are different from 
zero. Thus, the surface of a stream flowing out of the 
orifice adjoin the orifice's edge; then, the stream is 
constricted and at some distance / acquires the cross-
sectional area <yc> which is smaller than that of the ori-
fice {ca, Fig. 12.2). 

The value: Fig. 12.1 

ω 

is called the stream contraction factor. 
Unless the tank's walls affect the stream for-

mation, the compression is called perfect. Other-
wise it is called imperfect. Experiments show that in 
order for contraction to be perfect the distance C 
from the tank's wall must be greater than 3d. I. e., a 
condition C>3d must be observed (Fig. 12.1). 
If there are flow deflectors along part of the ori-
fice's perimeter (Fig. 12.2), the contraction is 
called incomplete. When there are no deflectors, it 
is called complete. 

(12.1) 

f l\ 0)L I 

Fig. 12.2 
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In order to determine the outflow velocity from the orifice cross-section, 0-0 
is drawn through the fluid's free surface in the tank and C - C at the level where 
stream's contraction is ended (Fig. 12.1). Let's now write Bernoulli's equation for 
the segment between these cross-sections, taking the C - C cross-section for a refer-
ence plane. Then: 

2 2 

vv, / + H + -£*- + a0 - ^ - = -^- + a 
pg 2g pg 2g 

Besides, following the continuity equation that: 

+ K (12.2) 

(12.3) 

where 0)0 is the tank's area in the O - O cross-section. 

Experiments showed that the distance / at which the stream contraction ends 
is approximately equal to the orifice's diameter d, i. e., l~d. Thus in most cases it 
may be assumed that / « H, and the effect of / in Eq. (12.2) may be disregarded. 

The flow velocity in the orifice is much higher than that in the tank. Thus, it 
can be assumed that all head losses are concentrated within the orifice which is the 
local resistance. Therefore, according to Eq. (11.5): 

2g 
(12.4) 

By eliminating w0 from Bernoulli's equation using Eq. (12.3), disregarding / 
and considering Eq. (12.4), gives: 

Pg 
ω w. 

2 2 

2g pg 2g 2g 
Pc 

or: 

PS 

Following Eq. (12.15) that the outflow velocity wc is equal to: 

ω 

2g 

\α€ + ζ + α0 
ω 

2g H- Po-Pc 

pg 

(12.5) 

(12.6) 

The value Hoi 

"outflow — n + 
Po-Pc 

pg 
(12.7) 

is called the outflow head. 
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The value φ: 

φ = ~ , (12.8) 
ω 

α0 + ζ + α\ε 

is called the velocity factor. 
Using notations in Eq. (12.7) and (12.8), Eq. (12.6) may be written as: 

outflow * 

(12.9) 
The values ao and ac are different from one, and the ζ value is greater than 

zero due to fluid's viscosity, ε < 1 due to inertia. Thus, it is possible to state that the 
velocity factor φ takes into account the viscosity and inertia properties of the fluid. 

As shown on p. 182, ao > 1 and ac > 1. Besides, it is clear that ζ > 0. If the 

ratio of the orifice area 0) and the free surface area in the reservoir 0)o is low, i. e., 

if 
'ωλ 

«1, the orifice is called small. 

Eq. (12.9) preserves its format for the small orifice but, as opposed to 
Eq. (12.8), the velocity factor is: 

1 
Ψ 

And, as ac > 1 and ζ > 0, φ < 1. 

There is no friction in the ideal fluid flow, so ac = 1 and ζ = 0. Then φ -1, 
and Eq. (12.9) becomes: 

wra=V2^outflow (12.10) 

The velocity defined by Eq. (12.10) is called the theoretical outflow velocity. 
Thus, as Eq.s (12.9) and (12.10) demonstrate, the velocity factor is the ratio of the 
actual and theoretical outflow velocities. 

Fluid's throughflow through the orifice is the product of the stream velocity and 
its cross-sectional area, i. e.: 

Q = wccoc =ewcco, 
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or, by considering Eq. (12.9): 

Q = <oeq>j2gHMBaK (12.11) 

or : 

ß = ^ V 2 g / / 0 U l f l 0 W . (12.12) 

The value μ = εφ is called the throughflow factor. 

Thus, the compression factor ε, velocity factor φ and the throughflow fac-

tor μ are not independent, but are linked through Eq. (12.12). So, it is sufficient 

only to know one of them to calculate the outflow from an orifice. 
Let's recall the value: 

Qn0^n=a^2gH outflow (12.13) 

the theoretical throughflow. 
Following Eqs. (12.11) and (12.13), the throughflow factor is the ratio of the 

actual to theoretical throughflow. 
The factors ε, φ and μ are determined experimentally and are functions of 

the Reynolds' number (Fig. 12.3). 

105 Re 
Fig. 12.3 

It is easy to show with Bernoulli's equation that for a small orifice Eqs. (12.9) 
and (12.12) are valid for the orifice located on the side wall of a tank. H in such a 
case is the distance between the orifice's axis and the free surface. 

2. Outflow through nozzles 

A short tube connected to the orifice is called a nozzle. The length of the noz-
zle is 3 to 5 orifice's diameters. The nature of fluid's outflow through the nozzle 
strongly depends on the nozzle's shape. It is clear from the derivation of 
Eqs. (12.9) and (12.12) that these equations are valid also for a nozzle. However, φ 
and μ factors are different for different nozzles. 
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Fig. 12.4 illustrates various nozzles: 1.external cylindrical; 2.internal cylin-
drical; 3.conical converging; 4. conic-
al diverging; 5.conoidal. 

The values of the velocity fac-
tor φ and throughflow factor//for the 
quadratic outflow law are listed in the 
following Table. The flow regime at 
outflow through orifices and nozzles, 
same as at flow through the tubes, is 
quadratic, i. e., φ and// do not depend on the Reynolds' number. 

Fig. 12.4 

Type of nozzle 

Round orifice 

External cylindrical 

Internal cylindrical 

Conical convergent (13°24') 

Conical divergent (5°) 

Conoidal 

μ 
0.62 

0.82 

0.71 

0.95 

0.48 

0.98 

Ψ 
0.97 

0.82 

0.71 

0.96 

0.48 

0.98 

The Table indicates that for some nozzles μ = φ, i. e., ε = 1. The reason is that 
the constriction occurs inside the nozzles, and the μ and φ values are listed for the 
output cross-sections. It also shows that, the throughflow through the external 
cylindrical nozzle is 30 % greater that through a round orifice of the same diameter. 

In this section the fluid's outflow through the external cylindrical nozzle are 
reviewed in more detail. 

In order for the stream to be able to fill-up the nozzle cross-section completely 
its length, as experiments showed, must be equal 
to at least three diameters (see Fig. 12.5) for the 
the stream schematics. Fig. 12.5 shows that stream 
stream is compressed on entry of the nozzle, and — 
then expands. A stagnation zone forms in the cons-
triction area filled-up with vortices. 

Let's draw the cross-sections 1-1 and 2-2 
within the nozzle (Fig. 12.5) and write Bernoul-
li's equation for the segment between the cross-

Fig. 12.5 

sections. (To simplify the problem, the nozzle is considered horizontal). Then: 

Pg 2g Pg 
Px+W-i^ + K-i-

2g 
(12.14) 
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The distance between the cross-sections is small so it is possible to disregard 
the loss along the nozzle length. Therefore, the loss along the 1-2 segment is de-
termined by the loss due to a sudden stream expansion. In order to determine the 
head loss due to such expansion of the stream, consider the variation of momentum 
lawEq. (2.51), i.e.: 

Qm(y2lmm) -νΐ"*α,,) = 0 + Ρ + ~Ν+f. (12.15) 

The gravitational force G , pressure force P , the force of normal reactions N 

applied to stream's side surface, and the friction force T are determined, respec-

tively, from Eqs. (2.53), (2.54) and (2.55). 
Projecting Eq. (12.15) onto the nozzle's horizontal axis Ox and disregarding, 

due to its small length, the friction force f, gives: 

ß m ( w 2 - w , ) = P , + ^ . (12.16) 

Assuming the pressure distribution in the cross-sections 1-1 and 2-2 is hy-
drostatic: 

p , = ΡΙ(0Ι-Ρ2ω2, Νχ=ρί(ω2-ωι), (12.17) 

where ο\,ω2 are stream cross-section areas 1-1 and 2-2, respectively. The mass 

throughput Qm can be formatted as Qm = pw20)2; then, substituting Eq. (12.17) into 

Eq. (12.16): 

pw2(w2-wl) = pl-p2. (12.18) 

Canceling the pressure differences P\ - Pi from Eqs. (12.14) and (12.18), and 

after simple transformations: 

(w,-w,) 
K-2- ' „ ■ (12.19) 

This expression is called Bord equation. 
Following the stream continuity equation that: 

w , = - ^ - w 2 = ^ — w 2 , (12.20) 

where £input = — is the stream contraction factor at the input to the nozzle. 
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Substituting Eqs. (12.19) and (12.20) into the Bernoulli equation Eq. (12.14), re-
sults in: 

P\ _ Pi "input 1-f;.. 
(12.21) 

PS PS «input 2S 

As £jnpuI < 1, it can be observed from Eq. (12.21) that pt< p2, i. e., a pressure 

drawdown occurs in the cross-section 1-1, and that results in the throughput in-
crease compared with the round orifice. Using Eq. (12.9) it is possible to reformat 
Eq. (12.21) as follows: 

^ L - ^ _ 2 ^ i l £ i = L / / o u t f l o w . (12.22) 
PS PS «i nput 

At the outflow to the atmosphere, P2 - />atm, and vacuum forms in the cross-
section 1-1. The value of this vacuum (pVac = Patm -p\) is equal to: 

Pv»c = Pan,-Pi =ιφ^~ε" 

PS PS «input 

. - _ aim V\ _ T,„2 input 

JL Τ Γ " — z z — ~ 1 < P ~~z—"outflow 

and it increases with the increase in the outflow 
head //outflow There is, however, a critical value 
//outfiow=//cnt, above which the nozzle performance 

Fig. 12.6 ' s disrupted, the stream detaches from its walls, 
and the throughput drastically declines (Fig. 12.6). 

The outflow now is occurring the same way as through the orifice. The phenome-
non is called the outflow detachment. For the water, //crjt= 14.5 m. 

As the nozzle length increases, the losses along its length raise. From Darcy-
Weisbach equation, the friction loss Λτ is equal to: 

τ dig 

and following Bernoulli's equation Eq. (12.5), for a nozzle: 

> = .J«c + ^ + / U - . (12.23) 

Eq. (12.23) enables to determine the — value at which the throughflow 
d 

through the nozzle is equal to the throughflow through the orifice. 
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3. Outflow of fluid at variable level 

Let's analyze the fluid's outflow through a small orifice or nozzle with chang-
ing fluid's level in the tank. The flow is 
non-stationary as the outflow head, (hence 
velocity) changes with time. Suppose the 
area of the tank's cross-wise section Ω de-
pends on the height, i. e., Ω = Ω(ζ) 
(Fig. 12.7). The fluid's level in the tank 
will decline by dz over the time interval dt. 
Therefore, the outflowing volume will be 
V = -Ωαζ- On the other hand, during time 
interval dt the volume V = Qdt outflows 
through the orifice (nozzle). Clearly: 

z 

dzh 
, Ω P0 , 

\ —■-— -— _ ^ — J 

\ —j 
V / 

χ— ~~ y' 
*M*' 
Mp 

, 

ΖΊ 

' 

Zl 

' 

Fig. 12.7 

Qdt = -Q(z)dz. (12.24) 

Assuming that Eq. (12.12) is valid for non-stationary flow, Eq. (12.24) can be 
written as: 

dt--
€l{z)dz 

ωμ M 
(12.25) 

or, as in this case: 

/ / „ = z + 
Po-Pc 

pg 

dt 
Cl(z)dz 

(»UJ2g z + -
■Pc 

Pg 

(12.26) 

Following Eq. (12.26), the time t of the level's drop in the tank from elevation 
Zi to Z2 is equal to: 

tKz)dz 

'0)MJ2g z + Po-Pc 

pg 

-\-
Ω.{ζ)άζ 

ωμ z + P0-Pc 

pg 

(12.27) 
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Suppose the throughflow factor μ at the outflow with the constant level is the 
same as at the outflow with variable level. Also suppose that μ = const. Experience 
shows that all these assumptions cause only very small errors. Thus, it is possible 
to rewrite Eq. (12.27) as follows: 

1 a(z)dz 
ωΜ28 ', /- | PQ-PC 

PS 

(12.28) 

Let's now review some examples assuming for the simplicity's sake Ü\atpa =pc. 
1. Outflow from a vertical cylinder 

(Fig. 12.8). In this case Ω = const, and 
from Eq. (12.28): 

t = ML z,-z2 

2. Outflow from a horizontal round cy-
linder (Fig. 12.9). 

It may be seen from Fig. 12.9 that: 

b = 2^R2 - (z - R)2 = ijlRz - z1, 

and the area of free surface is equal to: 

Ω = bL = 2L^2Rz - z2 . 

(12.29) 

V 
Fig. 12.9 Fig. 12.10 
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Then, from Eq. (12.28) atpB = pc: 

<--^]^*-=?ferV^· coßjlg I 4z ωμ^ϊΐ 

4L 
(jlRz-Zt -ftRz-z,). 

3ωμρ8 

3. Outflow from a spherical tank (Fig. 12.10). In this case: 

Ω = 
τώι 

where b value is determined from Eq. (12.29). Then: 

Q. = K{2Rz-zl), 

and from Eq. (12.28): 

π "tlRz - z2 , 2π 
t = p = I /=—dz-

ωμ 
\i D( 3/2 3 /2 \ 

coßyjlg L3 5 
5 / 2 _ 5 

2 ") 



CHAPTER XIII 

NON-STATIONARY FLOW OF VISCOUS 
FLUID IN PIPES 

A wide class of engineering problems such as designing pipelines of various 
designations causes the need to study the non-stationary fluids' flow in the tubes. 
However, the techniques using models of incompressible fluids and non-
deformable pipelines result in substantial discrepancies with the experimental data 
especially in case of long pipelines and fast-going processes. 

Indeed, as Eq. (2.41) shows the above models cannot as a matter of principle 
describe wave processes occurring in the tubes. For such description, the fluid's 
elasticity and tube walls' ductility must be accounted for. 

This resulted in the separation of the theory of non-stationary fluid's flow in 
pipes, as more or less independent section of hydromechanics. 

A complete theory of non-stationary flow of ideal incompressible fluid in pipes 
was constructed by Zhukovsky. Subsequently, other scientists developed various 
approximate techniques for the inclusion of friction forces as corrections introduced 
into the solutions for ideal fluid. Based on the quasi-stationary hypothesis by Chris-
tiansen. I. Charny implemented the inclusion of friction forces directly into the fluids' 
motion equations. 

Currently, the theory based on the quasi-stationary hypothesis is commonly ac-
cepted. It was shown in experimental studies, however, that the quasi-stationary 
hypothesis is just a first approximation and has limited application. 

1. Equations of the non-stationary fluid's flow in pipes 

In order to derive equations of non-stationary fluid's flow in pipes, the continu-
ity equations [Eq. (2.34)] and variation in momentum law [Eq. (2.51)] are used: 

&dV+\pv„dS = 0, (13.1) 
v "v s 

j ^ p l dV + jpvv„dS = jpFdV +[p„dS. (13.2) 
V Ot s v j 

Mechanics of Fluid Flow 
by Kaplan S. Basniev, Nikolay M. Dmitriev and George V. Chilingar 

Copyright © 2012 Scrivener Publishing LLC 
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Assuming: 

Ρη=-Ρη + τ · " 
where τ„ is the friction stress, and using Gauss-Ostrogradsky theorem, Eq. (13.2) 
can be presented as follows: 

f~-dV + \pwndS = j(pF —Vp)dV + jr„dS . (13.3) 
v s v s 

Let's take a volume V of the tube segment with a straight-line axis Ox (ly-
draulic axis). The volume is limited by cross-sections / and f\ positioned at a dis-

tance dx from one another (Fig. 13.1). Thus, / = 
= flx,t), i. e., the area of the tube's cross-wise sec-

; _£_ tion depends on the coordinate and time. As in the 
cross-section/, v„ = -vx, and in the cross-section f\, 
vn = vx, Eq. (13.1) for the identified volume V can 
be written as: 

(dp \-fdV - \pvxdf + \pvxdf + \pvndw = 0 , (13.4) 

Fig. 13.1 
where ω is the side surface of volume V. 

Eq. (13.3) projected onto axis Ox becomes: 

j — 1 dV - jpvx
2df + jpvx

2df + \pvxvnda> = 

(pFx - ^-)dV - jr^df + jTxxdf + \τη^ω. 

Clearly, for the object under consideration: 

j<pdV = \(pdf dx, \<pdf - \<pdf = | - \<pdfdx. 

(13.5) 

(13.6) 

Let's also assume that the shape and cross-section of the tube are changing rela-
tively smoothly, i. e. (Fig. 13.1): 

In this case: 

cos (« ,*)« 1 

ω » x 
(13.7) 
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whereof is the flow cross-section's perimeter. Using Eqs. (13.6) and (13.7) and using 
the same transformation in Eqs. (13.4) and (13.5) to the limit at dx —¥ 0 results: 

fr. 
f CW ΟΛ f z 

(13.8) 

J^4T + ̂ J^^+J^v.^=j[/^-|y + ̂ jT^+Jr^.(13.9) 

To be able to further transform Eqs. (13.8) and (13.9), it is necessary to compute 
the value: 

IK-
where <p(x,y,z,t) is some differentiable function of the coordinates and time. 

As f = f(x,t), df= ν'ηάχΔί, where v'„ is the velocity v projection onto the ex-
ternal normal ri to the flat contour^ (Fig. 13.2). Then: 

d_ 
dt 

\(pdf = lim 
<p(x, ν,ζ,ί + Δί) r φ(χ,γ,ζ,ι + αΐ)„ c 

f(x,l+At) fix.') 

<p{x,y,z,t) 
At 

df 

üm , rfr + AO-gr) f Κ ί ί Μ ^ (13.10) 
/u.o 

J^/ + ^ . 
3r 

J ^ ^ / j f A / 

ZM ν.'Δ/ 

Fig. 13.2 
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In viscous fluid flow, the tangential component of velocity vr at its side surface 

ω is equal to zero (vT = 0), and the normal component vn = ± v . The normal ri lies 

in the surface perpendicular to Ox, and cos2(n^c) « 1 by proviso, then: 

v„'=v„cos(v,n') = v„Vl-cos2(n,x) = v„, 

and Eq. (13.10) can be rewritten as: 

fH=i|f+W^· ( 1 3 · Π ) 

Substituting Eq. (13.11) into Eqs. (13.8) and (13.9), gives: 

dx 
jpdf + yjpvxdf=0, (13.12) 

I W + i j^df - {pF> - | > + έ ρ + j ^ · (13·13) 

Assume further that the only operating mass force is the gravitational force, 

i. e., pFx = -pg —-, where z\ is the coordinate of a point in the fluid measured from 
dx 

an arbitrary horizontal plane vertically up. Then: 

J(*-l>-J(«l+l>-5is<'^>-"l]*-
Both for gases and for slightly compressible fluids, the gz, — value is small 

Ay 

compared with -^-, so: 
dx 

{pFχ~%)df~~ιL·p+p8zι)df=~flL(p+p8z,), ( 1 3 · 1 4 ) 

because for a smoothly-changing flow (COS2(H,JC) « 1), as Navier-Stokes equations 
indicate, p + pgz\ ~ const in the cross-wise section/. 

Further, it is clear that: 

\τ„άχ = τχχ, (13.15) 
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where τχ is average over the cross-section perimeter of flow value of Tm. It is custo-

mary to disregard the: 

_3_ 
dx 

\*Jf 

value in hydraulic computations. This statement is based on the following. Accord-
ing to Eqs. (4.21) and (4.28) for a slightly compressible fluid, pa = 

= - ρ + Γκ =-ρ+μ—, and under regular circumstances / / — « p. Besides, it is 
dx ax 

assumed that the fluid's density changes negligibly in the flow cross-section. 
Considering and substituting Eqs. (13.14) and (13.15) into Eq. (13.13), and 

from Eqs. (13.12) and (13.13): 

dt dx 

(13.16) 

dM dJ ,d 
+ — = - / — 

dt dx dx 

+— = -f—(P + P8z^ + XTz' 

where M = \pvxdf = pwf is the fluid's mass throughflow; J = \pvx
2df = 

f f 

= ßpw2f = ßpMw is projection onto the Ox axis of momentum of the mass M; w is 
average (in the cross-section) fluid's velocity; and ß is Coriolis's correction for 
a non-uniform density and velocity distribution in the flow's momentum equations. 
For turbulent flow, ß ~ 1.03 to 1.1, for laminar flow ß - 1.33. When deriving 
Eq. (13.16), no assumptions are made about the format of the friction law. Thus, 
these equations are valid for any liquid or gas flow (either Newtonian or non-
Newtonian) provided cos 2 (n^ )« l . Eq. (13.16) includes five unknown va-
riables: p, p, w, f,rxß(ß is considered to be a known function of w, fluids proper-
ties, type of nonstationarity and geometry of pipe). In order for the system to be 
closed, it is necessary to add to Eq. (13.16) τχ as a function of w, liquid's (gas) 
equation of state and the connection between the tube cross-section area and pressure. 

It is assumed that the pipe's walls are elastic and the area of cross-section 
depends on pressure under Hooke's law, i. e.: 

f = f0(l + e^A, (13.17) 
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where /o =fo(x) is the area of the pipe's cross-section at pressure p, £n is Young's 
modulus of the pipe's material, e is a dimensionless factor depending on the pipe's 
cross-section shape and wall material. Also, the effect of the lengthwise elasticity 
forces and inertia forces of the pipe's walls are ignored. For a case of a slightly 
compressible fluid, it is also assumed that Hooke's law is valid, i. e.: 

P = Po \ + e-p--& 
K 

(13.18) 
liq ) 

where po is density at pressure/?o, K.\n is fluid's bulk modulus of compression. 
Eqs. (13.17) and (13.18) are only valid when: 

e Z z A « i , £ I A « I , (13.19) 

so: 

Pf=Pofo 1 + 1 + + — (P-Po) ■■Ρ0ώ + Ε ^ \ · (13-20) 

where: 

K = 
K, Hq 

E 

is normalized bulk modulus of compression, which considers elasticity of both the 
fluid and the pipe. For a thin-walled round pipe: 

where d is the internal diameter, h is the thickness of pipe's wall. By definition, 
sound velocity' in a system "elastic fluid flowing in the elastic pipe" is equal to: 

\P \Po' 

According to Eqs. (13.20) and (13.21): 

d(Pf) _ Pofo Φ _ /o dP 

(13.21) 

dt K dt c2 dt 
(13.22) 

1 Under the sound velocity, the propagation velocity of small disturbances is understood, i. e., for which the 
conditions of Eq. (13.19) are fulfilled. 
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On the other hand, under Hooke's law Eq. (13.18), 

ψ4(Ρ + ρ8Ζί)=ψ + 8ζ^Ι + η^ψ~ψ, (13.23) 
dt dt dx dt dt AT|iq dt dt 

where p = p + pgzx is normalized pressure. 
By substituting Eqs. (13.22) and (13.23) into Eq. (13.16): 

c2 dt dx 

dMdJ _ dp | 

dt dx dx z 

(13.24) 

df 
For a gas flowing in a pipe, — = 0, i. e., disregard changes in the pipe's 

dt 
df 

cross-section area. In such a case, using a known equation — = c0
2, where c0is 

dp 
sound velocity of gas, results in: 

3 ρ = _ 1 _ φ d(pf) ^ f dp 
dt cn

2 dt' dt c 2 dt ' 

(13.25) 

dt ά(Ρ + Ρ8Ζ'} dt8Z'dt dt c0
2dt dt 

Consequently, Eqs. (13.24) are valid also for the gas. Thus, different notations for 
c and Co are not used. 

In order to establish the correlation between x and fluid's properties and flow 

parameters, the quasi-stationary hypothesis is used, i. e., the assumption that the 
flow parameters established for a stationary flow are also valid for a non-stationary 
flow. Then, under Eq. (10.35): 

and Eq. (13.24) becomes: 

x =-ÄL-1pw, 

c2 dt dx 

(13.26) 

dM dJ „dp M 
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2. Equation of non-stationary flow for slightly-compressible 
fluid in pipes 

Integrating the second equation Eq. (13.26) with respect to*, results in: 

)^-dx + J(x)- 7(0) = -fj^{x) - p(0)]+ )χλή-pwdxx, 
o dt o 8 

where/avg is average value of area/over the segment [Ο,χ]. Following the defini-
tion of J that: 

is dynamic pressure corresponding to the doubled velocity head. Clearly, when 
dealing with the flow of a slightly compressible fluid it is possible to disregard the 
changes of this pressure compared with the changes of the normalized pressure 
p(x)-p(0). The latter is equivalent to disregarding the term — in Eq. (13.26). 

dx 
Further, according to Eqs. (13.20) and (13.21): 

dM d(pfiv) .dw d(pf) „dw fnwdp .dw = r = pf— + w = pf— + —2——~pf —. 
dx dx dx dx dx c dx dx 

(13.27) 
dM _ d{pfw) _ dw d(f)f) _ dw f0w dp _ dw 
dt dt " dt dt ^ dt c2 dt R dt' 

By substituting Eq. (13.27) into Eq. (13.26), disregarding the term — and as-
dx 

suming f ~ f0, p~ pQ the equations for flow of a viscous slightly-compressible 
fluid are obtained: 

dp 2 dw 
—— = pc — , 
dt ^ dx 

(13.28) 

3p = 

dx 
dw Ä\W\ 

dt 8δ 

f 
where δ = ·=γ is hydraulic radius of the flow. To evaluate the results, let's review 

Λ 
the Navier-Stokes equation [Eq. (9.3)] describing the flow of an incompressible flu-
id in a prismatic tube. Assuming the tube has a circular cross section (the flow is 
axisymmetric) and F = g, and from Eq. (9.3) as projected onto the axis Ox: 

du d , . U d ( du\ 
P*-Yx{P^+P) + ̂ UrTr\ (13'29) 
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Average flow velocity in this case is equal to: 

| ft Λ ft 

w = —T \lnru dr=—\rudr, (13.30) 

where R is the tube's radius. By multiplying Eq. (13.29) by 2itr dr and integrating 
with respect to the radius from 0 to R, and considering Eq. (13.30): 

dp _ dw 2μ du 
dx dt R dr 

or, as for a round tube δ - —, τ - μ 
R du 
2 * ^dr 

-ψ = Ρ~^ (13-31) 
dx dt ö 

Continuity equation for an incompressible fluid has the following format: 

dw 
^ - = 0. (13.32) 
dx 

Comparing Eqs. (13.31) and (13.32) with the Eq. (13.28), shows that the fluid's 
compressibility and tube walls' elasticity are considered in Eq. (13.28), as opposed 
to an incompressible fluid, w = w{x,i), and the sound velocity has a finite value. 
These distinctions, however, have conceptual importance. Indeed, the system 
Eq. (13.28) is hyperbolic, i. e., enabling wave solutions (as opposed to equations 
for incompressible fluid). Therefore, Eq. (13.28) provides description of the wave 
processes arising in the pipes at a non-stationary flow. In a general case, 

\w\ 
Eq. (13.28) includes a nonlinear term Ä^w, which complicates integration opera-

8o 
tions. Various linearization techniques, which can be reduced to the representation 
of the nonlinear term, such as: 

M , _ ^ , , Λ ί Μ Ä—w = 2aw, 2a = 
8δ 8δ avg 

= const >0, (13.33) 

are analyzed in various publications (see References), which also analyze error as a 

result of linearization. At a laminar flow regime, λ = — , and from that: 
Re 

SS p\w\4S*SO 32ρδ2 
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(13.34) 

For round pipes, A = 64, δ = — and 2a = —Hf where d is tube's diameter. VV 4 pd1 

By substituting Eq. (13.33) into Eq. (13.28): 

dp 2 dw 
— = pc — , 

dt dx 

-IMS*2-
Once again, it is assumed in these equations that p = const. 

3. Equations of non-stationary gas flow in pipes at 
low subsonic velocities 

When dealing with gas flow it is necessary to supply Eq. (13.26) with equation 
of state, for instance: 

^- = ZRT, (13.35) 
P 

where Z is super-compressibility, R is the gas constant, and T is temperature, K. 
Substituting Eq. (13.35) into p = p + pgz, results in: 

gZi 

ZRT, 
which shows that even at relatively large zi (zi < 200 m) it is possible to assume 
p = p. As the evaluations show, for the gas flow in long gas lines at low subsonic 
velocities it is possible to disregard dynamic pressure, which corresponds to 
doubled velocity head, and even more so it is possible to disregard its changes, i. e., 

the term — in Eq. (13.24). 
dx 

Considering and assuming/ = ̂ ), and from Eq. (13.26): 
dp _ 2 d(pw) 

p = p + pgzl = p\\ + 

dt dt 

dp _ d(pw) A|w[ _d(pw) Ä\pv\pw 
dx~ dt ~8S~PW~ dt 8δ ~ρ~' 

(13.36) 

Hydraulic resistance depends on Re number, so: 

A = A(Re) = / ^ l , 
I M ) 

viscosity depends on temperature, μ = //(T), so the system of Eqs. (13.35) and (13.36) 
includes four unknown variables, p, p, w, T. For the gas flow in long gas lines it is 
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usually assumed that the flow regime is isothermal, i. e., T=T0 = const. In this, 
case, the system Eqs. (13.35) and (13.36) becomes closed. 

To linearize the second equation of Eq. (13.36), Eq. (13.33) is used. Then: 
dp _ 2 d(pw) 

~~dt~C dt 
(13.37) 

_ | ρ = θ(^) + 

dx dt 
where at low subsonic velocities it can be assumed that c = const. Then the lineari-
zation of Eq. (13.37) coincides with Eq. (3.34) for fluids when p = const. Such li-
nearization is cruder than that for the fluids, as in long pipelines velocity can signif-
icantly change along the length of the pipe, in contrast with the fluids. 

Now, other linearization techniques of Eq. (13.36) are indicated. Considering 
Eq. (13.25), let's rewrite Eq. (13.36) as follows: 

dp _ dw dp _ dw w dp 
dt dx dx dx dx 

dp dw dp Mpwl 
-— = p— + w—+ ' 'pw. 
dx dt dt 8δ 

(13.38) 

dp 
Cancelling — from the second equation Eq. of (13.38): 

dt 
..2\ 

w dp _ dw d 
dx dt dx 

ί i \ w 
8£ 

pw. (13.39) 

It is discussed earlier to review low subsonic velocities and disregard the ve-
locity head and its derivatives. So it is possible to rewrite the first equation of 
Eq. (13.37) and Eq. (13.39) as follows, considering Eq. (13.25) and the equation 
of state [Eq. (13.35)]: 

I dp dw p dw 
- 7 ^ = P ^ - ^ --2 3 / P'dx ZRT dx 

-I-
or 

dw Mpw\ 
— + ' ' w 
dt 8£ 

d\np 

ZRT 

'dw Ä\pw\ 

dt 8δ 

dw 

dt ZRT dx 

1 dlnp 
dt ~~ZRT 

dw A\pw\ 
(13.40) 

Eq. (13.40) coincide with Eq. (13.28) for the fluid if p is replaced by \np, 
and p, by l/(ZRT). Linearization of Eq. (13.40) can be done using Eq. (13.33). 
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4. Integrating equations of non-stationary fluids and gas flow 
using the characteristics technique 

The following systems of equations: 
(a) Nonlinear -

and (b) Linearized -

dp 
dt 

Ϊ-" 
dp 
dt 

2 dw 

dx 

f3w + /lHj 

_ 2dw 
dx 

(13.41) 

(13.42) 

dP=p(^ + 2aW 
dx \dt 

belong to hyperbolic type. Subsequently, discussing the fluid flow, as follows from 

Eqs. (13.28) and (13.34), p is normalized pressure p = p + pgzx. When discus-

sing the gas flow, according to Eq. (13.40), p is considered as In/?, and p as 

1 
P-

ZRT 
■ =const. 

The method of characteristics is highly convenient for the numerical integra-
tion of the nonlinear system Eq. (13.41). Using standard methodology, it is shown 
that the equations of characteristics and the correlations in them have the following 
format: 

λ\ρν\ 

(13.43) 

x - et = const, dp + pcdw + p- -wdx — Q, 

x + ct- const, dp 
APA , 

-pcdw + p-L—1wdx = Q. 
So 

Fig. 13.3 

In this case, equations of characteristics do 
not depend on the solution. It means that their 
grid can be constructed before beginning to 
solve them, which significantly simplify the 
numerical integration procedure. The character-
istic described by equation x-ct = const is 
is called direct, and by equation x+ ct = const 
is called inverse. Replacing the dirrerentials in 
in the differential functions Eq. (13.43) by finite 
differences, the system of equations for the 
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approximation ofp and w values at point 7 are obtained (Fig. 13.3) denoted by ρΊ, 
wj. The System has the following format: 

■pl+pcd(w7-wl) + p-^f-wl(x7-xl) = 0, 
So 

ρη- p2 +pcd(w-, -w2) + p—-z-iw2(x1 -x2) = 0 
ΛΙ 

(13.44) 

w. 

where p\, pz, w\, wj, λ i, λ\ arep, w, λ values, at the points 1 and 2, respectively. In 
order to find these values, it is necessary to assign the initial conditions: 

w(*,0) =/i(x),p(x,0) =f2(x), 0<x<l, 

where / is tube's length. The p and w values at the points 8, 9, 10 and 11 are calcu-
lated similarly. The/77, w-t values derived using Eq. (13.44) are the first approxima-
tion of the p and w functions at the point 7. To increase accuracy, conventional ite-
ration techniques can be employed. Another way of increasing accuracy is decreas-
ing the size of the characteristic grid cell. Thus, it is only one relationship to 
consider from Eq. (13.44): 

Λ,Ινν,Ι 
pn- p-, + pc(wl2-w7) + ρ-^\νΊ(χι2- χΊ) =0, 

which includes two unknown variables, pn and wn. To produce the second equa-
tion, it is necessary to assign the boundary conditions at x = 0, i. e., one of the func-
tions of the kind: 

w = w(t), p = p{t), fip,w) = 0atx = 0,t>0. (13.45) 

The solution at the boundary point 17 is derived similarly. For this, it is neces-
sary to write the finite-difference relationship for the characteristic and assign the 
boundary condition of Eq. (13.45) type but at x = /. Clearly, the characteristics 
technique can be used also for the numerical integration of the linearized system of 
Eq. (13.42). 

5. Integrating linearized equations of non-stationary 
flow using Laplace transform 

The Laplace representations of a function of two variables u{x,t) and its partial 
derivatives are, respectively: 

dU °°cdu(x,t) _s, 
dx · dx 

(13.46) 

U(x,s)= \u{x,t)e-dt, ^Lp^le'-dt, 

sU(x,s)-u(x,0)= [du[Xj) e~s'dt, 
J dt 
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where u(x,0) is the initial condition for function u(x,t), s is a complex parameter, and 
Re(5) > 0. It is assumed that the integrals in Eq. (13.46) do exist, the integration and 
differentiation operations with respect to the coordinate are commutative and: 

limu(x,t)e-s,dt = 0, lim du{xJ)e'" = 0, l i m ^ ^ e - s ' = 0 . 
'-»- <->~ dt '-»- dx 

The transition from the representation to the original format is performed us-
ing the conversion equation: 

u(x,t) = — ; \e"U(x,s)ds, (13.47) 
977J J 

r-i 

and the straight line y - /«>, y + i°° is drawn in such a way that all singularities of 

the representation U(x,s) are to the left of it. 
Let's now review the application of Laplace integral conversion to the solution 

of a system of linearized Eq. (13.42). 
One preliminary note. 
Suppose at t < 0 the flow is stationary. Then following Eq. (13.42): 

wo = w(xß) = const, po = p(xfi) = p(0,0) - lapwox, 

where wo, po are velocity and pressure at stationary flow. 
Let's assume that: 

w(x,t) = w0+w*(x,t),p(x,t) -po + p*(x,t), 

where w*, p* are disturbances of velocity and pressure (their deviations off the sta-
tionary values). It is easy to see that w*, p* satisfy Eq. (13.42). Any non-stationary 
motion can be considered as if it emerged from the stationary motion so the initial 
conditions for the disturbances are: 

i < 0 , w*(x,0) = 0, p*(x,0) = 0, (0 < * < / ) . (13.48) 

So in the future, Eq. (13.42) is considered at initial conditions Eq. (13.48) and, 
dropping the superscript *, w(x,t), p(x,t) represent the velocity and pressure distur-
bances. It is obvious that the boundary conditions also must be formulated for the 
disturbances. 

Applying the Laplace conversion with respect to variable t to Eq. (13.42), and 
using Eq. (13.46) and the initial conditions [Eq. (13.48)], results in: 

dV(x,s) s 
+ —jP(x,s) = 0, 

dx pc 

(13.49) 

dP{x,s) 

dx 
- + p(s + 2a)V(x,s) = 0, 



NON-STATIONARY FLOW OF VISCOUS FLUID IN PIPES 215 

where: 

P(x,s)= jp(x,t)e-stdt, V(x,s)= jw(x,t)e-"dt, 
0 0 

are the Laplace representations of pressure p(x,t) and velocity w(x,t). A general so-
lution of the system of conventional differential Eq. (13.49) has the following 
format: 

P(x,s) = Ae;b:+Be-*x, V(x,s) = — (Ae** -Be^), (13.50) 
Z(s) 

where: 

. 5 I, 2a _. . Γ 2 a 

Assuming in Eq. (13.50) sequentially x = 0 and x = I: 

P(0,s) = A + B, V(0,s) = — (Α-Β), 
Z(s) 

P(l,s) = Aeu +Be~M, V(l,s) = — {AeM -Be~") 
Z(s) 

Canceling the integration constants A and B from Eq. (13.52): 
P(0, s)chAl - P(Z, s) - V(0, s)Z(s)shAl = 0 

P(0,s)^—- + V(0, s)Z(s)chM - V(l, s) = 0. 
Z(s) 

Two equations in Eq. (13.53) are equations of hydraulic quadruple, connecting 
the pressure and velocity representations at the ends of the pipeline. To emphasize, 
the format of Eq. (13.53) does not depend on the boundary conditions of the prob-
lem under consideration. 

In order to obtain the solutions of Eq. (13.42) as representations, it is neces-
sary to determine the constants A and B at arbitrary boundary conditions. 
Eq. (13.52) shows that it is necessary to know any pair of the values P(0,i), V(0,s), 
P(/,s), V(l,s). Following Eq. (13.53) it is sufficient to have two more independent 
interrelations for these values. They can be obtained from additional conditions 
linking the numeric values of pressure, velocity and their derivatives at the end of 
the pipeline. 

Subsequently, only the linear additional conditions are considered. According 
to Eq. (13.42), derivatives with respect to a coordinate can be expressed through 

(13.51) 

(13.52) 

(13.53) 
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velocity and derivatives with respect to time. Thus, any linear additional conditions 
for these equations can be reduced to the following format: 

,„ , dp(0,t) ,n N 3w(0,i) 
aup(0,t) + al2

 F\ +al3w(0,t) + aH—^—-L + 
at at 

+ βηρ(1,ί) + βι2^^- + βί^(1,ί) + βΙ4^^- = φ(ί), 
at at 

(13.54) 
,n , φ(Ο,ί) ,n x 3w(0,i) 

a2lp(0,t) + or22 * ; + or23w(0,t) + a24 —r—- + 
at at 

+ ß2lP{l,t) + ß22 ̂  + ß21w(U) + ß» ^ ψ 1 = ϊΚΟ, 

where a-tj, /^., 97, ^ are known functions of time. 

Assuming in Eq. (13.54): 
a2j=ßj=0, y = l,2,3A 

a general rerepresentation of the linear edge problem is obtained. Assuming: 
ßu = ß2l = 0 or , α,. = a2j =0,j = 1,2,3,4, 

a general representation of the linear Cauchy problem at x = 0 or x = I, respective-
ly, is obtained. 

Now, the only stationary additional conditions are considered, i. e., factors 
atj, β^ are assumed to be constants. Applying the Laplace transform with respect 

to time and imposing the initial conditions [Eq. (13.48)] to the Eq. (13.54): 
α,Ρ(0,5) + #Ρ(/,5) + α2ν(0,ί) + βν ( / , ί ) = Φ(ί), 

α3Ρ(0, s) + ß3P(l,s) + a4V(0,s) + ß4V(l, s) = Ψ(Ϊ) , 
(13.55) 

where: 

or, =au+al2s, ß=ßu+ß2s, 

a2=au+al4s, ß2=ß!3+ßl4s, 

a3=a2i+a22s, ß3=ßl2+ß22s, (13.56) 

a4 = a2J + aus, ß4 = ß2Z + ß24s, 

Φ(«) = j<p(t)e-s'dt, Ψ(5) = fyW'dt. 
0 0 

Eqs. (13.53) and (13.56) form a closed system of four linear algebraic equa-
tions, from which: 

Ρ(0,,) = 4^τ, V((U) = 4 # , (13.57) 
Ms) Ms) 
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where: 

Δ(*) = 

Δ.(5): 

chM 
sh/U 
Z(s) 
or, 

or3 

0 

0 

Φ(«) 
Ψ(ί) 

ch/Ü 
sh^/ 
Z(s) 
or, 
or3 

-1 

0 

# 

A 
-1 

0 

A 
Ä 
-1 

0 

A 
Ä 

Z(s)sh^ 0 

ch/U -1 

or2 #, 

or4 Ä 

Z(s)shAl 0 

ch^/ -1 

or2 ß2 

or4 # 

0 0 

0 -1 

Φ(ί) A 
Ψ(5) Ä 

(13.58) 

Δ3ω = 

From the first equation of Eq. (13.52) and considering Eq. (13.57): 

Λ = Δ,(5)-Ζ(5)Δ3(5) g^A,(5)-Z(s)A3(s) 
2A(s) ' 2A(s) 

Substituting Eq. (13.59) into Eq. (13.50), results in: 

(13.59) 

pM = ^ c h A s - A ^ 
A(s) Ms) 

Z(s)shL·, 

(13.60) 

Ms) shAx+ A2islchAx 

A(s) Z(s) A(i) 

Back transform Eq. (13.60) from Laplace domain to time domain, Ρ(χ,ί), 
V(x,s) to p(x,t), w(x,t), the solution of Eq. (13.42) with initial condition [Eq. (13.48)] 
and additional conditions [Eq. (13.54)] is obtained. This change can be performed 
either with correspondence table or with the conversion Eq. (13.47). 

The presentation, after Laplace, of function f(t), i. e., L\f(ij\ and its representa-
tion after Laplace-Carson are connected through the following equation: 

K\Kt)]=sWt)l 

This equation enables the determination of [/(f)], if its representation L[/(f)] is 
known, using the conversion tables for the Laplace conversion. 

Let's review some examples using to Eq. (13.47). 
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6. Examples of computing non-stationary flow in pipelines 

Computing non-stationary flow in pipelines, in particular, computing the hy-
draulic shocks is often reduced to solving the problems where pressure and velocity 
as a function of time are assigned at the end of the tube. The following cases are 
considered: 

A. / > 0, ρφ,ί) = φ\(ί), νν(/,ί) = ψ2(ί), 

Β. t > 0, ρ(0,ή = φι(ή, ρ(1,ή = φ 2(ί), 

C ί>0,\ν(0,ί) = ψ\{ί),\ν(1,ί) = ψ2{ί\ (13.61) 

D. ί > 0, νν(Ο,ί) = ψ ,(ί), pU,t) = φ lit). 

The initial conditions in all cases are assumed to be zero, i. e., determined 
from Eq. (13.48). 

Clearly, case D is reduced to case A by replacing y = l-x, φ2(ί) = <p\(t), ψ\(ί) = 
= -ψ2{ί). It is assumed that the boundary functions ρ,-(ί), ψ i{t) can have disruptions 
at t = +0. From Eqs. (13.54), (13.56) and (13.51): 

in case A, a\ = 1, /?4 = 1, 

in case B, CC\ = 1, β?, = 1, 

in case C, a2 = 1, β\ = 1. 

The remaining aj, /?, in all three cases are equal to zero. 
Upon having these relationships calculated, the determinant Eq. (13.58) is ob-

tained from Eq. (13.60): 
Case A 

P(x, s) = [s<D, (s) - (9, (40) + φι (40)]F, (/ - x, s) -

CaseS 

CaseC 

-pc [ίΨ2 (s) - ψ2 (40) + ψ2 (40)]F, (x, s) 

V(^i) = ^ T [ iO 1 ( i ) - ^ (+0 ) + ^(+0)]F3(/-^J) + 
pc 

4[*Ψ2 (s) - ψ2 (40) + ψ2 (+0)]F, (*, s) 

PU s) = [sO, (j) - ^ (-fO) + p, (+0)]F4(/--t, s ) -

-[iO2(i)-i)2(+0) + i)2(+0)]F4U,i) 

V(AT, i) = ~ [ίΦ, (ί) - fl (40) + fl (40)]F5 (/ - jr, ί) -
pc 

j [s<t>2 (s) - <p2 (40) 4 φ2 (40)]F5 (JC, s) 
pc 

P(x, s) = pc2[sW , ( i ) - ^ ( 4 0 ) 4 i/,(+0)]F6(/ -ΑΓ,ί)-

(13.62) 

(13.63) 

(13.64) 

V(*, 5) = [ίψ, (ί) - Ψ] (40) 4 (/, (40)]F4 (/ - X, S) 4 [ίΨ2 (ί) - (/2 (40) 4 ̂ 2 (+0)]F4 (JC, S) , 

-PC2[ίΨ2 (i) - ψ2 (40) 4 ψ2 (40)]f6 (*, ί) 
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where: 

Φ,.(ί) = Jfl.(f)<f "</f, Ψ,.(Λ) = ^(Oe^'dt, i = 1, 2, 
o o 

„ . . ch Ay Ash Ay shAy 
F(y,s) = —, FJy,s) = —z , FJy,s)= —, 

' schAl 2 s2chAl 3 7 AchAl 
, , (13·65) 

„ , . shAy chAy AchAy 
sshAl AshAl s chAl 

While deriving Eq. (13.65), the following expression [from Eq. (13.51)] is used: 

Z(s) = £-Ä, 
s 

As the expression ίΦ(ί) - φ(+ϋ) is a representation of function —■, then ac-
σί 

cording to the convolution theorem and Eqs. (13.62), (13.63) and (13.64): 
Case A 

p{x,t) = 1[φ\(θ)Νι(1-χ,ί-θ)-(Κ2ψ·2{θ)Ν2(χ,ί-θ)]άθ + 
o 

+ φχ (-K))N, (/ - x, t) - pc V 2 (+0)^2 (χ<') 

(13.66) 

Caseß 

w(x,t) = \[~φ\(,θ)Νί(1-χ,ί-θ)-ψ\(θ)Ν^χ,ί-θ)\άθ + 
o pc 

+ φ, (+0)Ν3 (/ - X, t) - ψ2 (+0)/V, (χ, /); 

p(x,t) = |[9>',(β)/ν4(/-Λ,ί-ο)+ρ'2(β)Λί4(Λ,ί-β)]ίίο + 
0 , 

+ tp](-M)Ni(l-X,t) + <p2(M))Ni(x,t), 

1 r 
v(jt, f) = r- j[p', (0)N5 (1-χ,ί-θ)-φ·2 (θ)Ν5 (χ,Ι-θ)]άθ + 

/Je 0 

+ ^[φ^Ν^Ι-Χ,Ο-φ^Ν^χ,ί)]; 
pc 

(13.67) 
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CaseC 

p(x,t) = pc2 ][ψ\(θ)Ν(ί(1-χ,ί-θ)+ψ\(θ)Ν(,(χ,ί-θ)]άθ + 
o , 

+ pc2 [ψχ (+0)W6 (I - x, t) + ψ2 (40)JV6 (x, t), 

(13.68) 

w(x,t) = 1[ψ\(θ)Ν4(1-χ,ί-θ)+ψ·2(θ)Ν4(χ,ί-θ)]αθ + 
o 

+ ψί(+0)Ν4(1-χ,ί)-ψΐ(-*))Ν4(χ,ί)], 

where, according to Eq. (13.47): 

N,(y,t) = ^-:
r*fFl(y,syds, / = 1,2,...,6. (13.69) 

IM J--I«, 

Functions F\, Fi, F3 have simple poles sn corresponding to roots of equation: 

chy/ =cosi>i = 0, (13.70) 

and functions F4, F5, Fe have simple poles sm corresponding to roots of equation: 

shy/ = - i sin i>/= 0. (13.71) 

Besides, functions F\, F2, F4 have simple pole so = 0, function F5 — simple 
poles so = 0 and io(" = -2a, and function Ft, — pole io = 0 of the second order. 

From Eqs. (13.70), (13.71) and (13.51) follows that simple poles s„ and smare 
determined from: 

sn = -a ± iv„, sm = -a ± ίγη, m= 1, 2, 3, ... , 

1 ^ \r \2 

n — \7!C\ , I mm:) v.=JlvτJ-»''--im-»,· <'3·72' 
i. e., two poles correspond to each m and each n. 

All roots sn and sm correspond to the conditions Re s„ < 0, Re sm < 0; therefore, 
in Eq. (13.69) it is possible to assume γ = 0. 

To close the integrating contour in Eq. (13.69), let's consider, when computing 
functions N\, N2, iV3, the arc sequence of radius: 

m 
K = — " . 

" / 

and when computing N4, N$, Ne, of radius: 

JK 2m -1 
Λ „ = — — 



NON-STATIONARY FLOW OF VISCOUS FLUID IN PIPES 221 

with the centers at the origin and located left of the imaginary axis of plane s. 
Eq. (13.72) indicates that not a single pole sn lies on arcs of radius Rn, and not 
a single pole sm lies on arcs of radius Rm. It is shown that on the arc of radius Rn at 
n —> oo the value: 

A = 
ch/U 
ch/U 

is limited. On the arc of radius Rn: 

" 2 2 

Then, according to Eq. (13.51), the value of λ„ on this arc will be: 

/?„ 
4. =«„+£=—>" e + -

2a 

R. 

where from, after simple transformations: 

2 R 

a:- 2cz 

\ 
1 + 4-^r- + 4—cos<9 + 2cos2 - 1 + 2—cos# 

Rn Rn Rn 

Hn 2c2 

\ 
1 + 4 — + 4—cosö-2cos2 + l -2—cosö 

V , Rn Rn Rn j 

(13.73) 

The first sub-equation in Eq. (13.73) shows that at n—»°° (and, therefore, 
Rn-*<x>) -°ο<αη<+°°. 

As: 

chA.. 
chAJ 

£-Κ(Ι-χ) + e-*„0+x) 

\ + e~ 

λη(1+ι) + λ.{1-χ) 

l + eu-' 
sh2anx + cos2J3„x 
sh2anl + cos2ßJ 

= A, 

then at x < 1, Re A„ = or„ —> ± °° A —> 0. When a„ is finite, A is a finite value. As 

Eq. (13.73) shows, the condition On = 0 is only realized when cos Θ = . Thus, 
Rn 

D 

ßn = +—S- and cos2ßJ = cos27m = 1, i. e., in this case A has a finite value. Similar-
c 

ly, it can be shown that on arcs of radius R„ with n —» °° the value: 

ch/lc 
ch/l/ 
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and on arcs of radius Rm with m —» °°, the values: 

shAx 
sh/U 

» 
ch/ix 
sh/U 

are limited. Following the proven (as Eq. (13.65) shows) that with Rn —»°° values 

F p F2, F} uniformly tend to zero, and with Rm —»°°, values F4, F5, F6 monoto-

nously tend to zero. Now, according to Jordan's lemma, for t > 0 the integral Eq. 

(13.69), based on Cauchy's integral theorem, can be written as follows: 

2/n, 
N. ■,(y,t) = ~JFJ(y,s)es,ds = fjRcs[F](y,s)es·] , 

where r t (k = n, m) is a closed contour formed by the arc of the radius Rk and by 

the imaginary axis of the complex plane s. Applying a standard procedure of find-
ing residue, and after corresponding transformations: 

N,{y,t) = \ + -i-"f}-^- ch/v„i + — shivj 
π V 2 n - l l iv„ 

cos 
2 « - l K y 

lay 8/ 
N2(y,t) = -f- + 

(-1)" 
( „2 ..2 

„ 2 ^-2„ 2 

C K C ' ( 2 n - l ) 2 

2 / 

-2- sh ivt + 2a ch ivj sin 

w3(?,0 = -2^-e-'X ( -1)" , . . 2η-1πγ 
sh ι vt sin . 

iv. " 2 / ■ 

2 n - l Ky 

~1. Γ' 

(13.74) 

\ 
chiv / + — s h iy t 

iy 

y 
sinwüT—, 

/ 

w ( ^ , 0 = — (l-e-2a') +—e-'Y^-shirjcosmK-, 
2al I V ijm I 

., . . t al iy1 21 ^ ( - 1 ) " (j-

m 

a2-fm shiymt + 2achiyj cosmK-
l 

Eqs. (13.66)—(13.68) and (13.74) provide a solution of problems of Eq. (13. 61) 
It is important that when the pipeline is long, for small n values: 

2 n - l ; r e 

2 / 
<a. 

In such a case, the value vn will be imaginary, and: 

iv=-v= Ja2-\ I , sh/v t = -shv*i, chiv.f = chv!i. 
2 / 
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when: 

v„ is a real value, and 

sh ivt = i sin vj, ch ivt = cos vt. 
n n ' n n 

Similar observations are valid for the cases: 
mm . mm: 

< a and > a . 
/ / 

7. Hydraulic shock 

A drastic velocity change in a pipeline (such as shutting the valve) is followed 
by the corresponding change in pressure. This is called hydraulic shock. This pheno-
menon in an ideal fluid was first studied in detail by Zhukovsky (1898). 

In this section, the application of the equations derived in par. 6 to a classical 
problem of the hydraulic shock is reviewed. At x = 0, there is a high-capacity re-
servoir where pressure is considered to be constant. At x = I, the velocity change 
under a specified rule is occurring. At the instantaneous flow stoppage, the boun-
dary conditions for disturbances have the following format: 

t > 0, p(0,t) = <pi(t) = 0, w(l,t) = ψ2{ί) = -wo, 

where HO is the velocity of the stationary flow. 

Using the boundary conditions with Eq. (13.65), results in: 

p(x,t) = pc2woN2(x,t), 

w(x,t) = -woWiOci). (13.75) 
Following Eqs. (13.74) and (13.75), the solution of the problem under consid-

eration has the appearance of slowly converging series. When a = 0 (ideal fluid): 

In -1 Tfc 
v„= , shivj =ismvj , 

2 / 
and at* = /, according to Eq. (13.74), 

N2(y,t) = — Y- r s in— ~t = -, 0 < ί < —, (13.76) 
Kc^fln-l l i e c 

and from this: 

2/ 
p(l,t)=pcw0, 0 < i < —. (13.77) 

c 

2n-\7üc 
~~2 Γ >a, 



224 CHAPTER XIII 

Eq. (13.77) is the classical Zhukovsky equation for hydraulic shock in the 

ideal fluid. A correlation curve Π = — 2— vs. T = — (i. e., in dimensionless coor-
pcw0 I 

dinates) is presented in Fig. 13.4. Correlation curves Π = — ' — vs. τ = — at 
pcw0 I 

c c c 
α = 0 .125- , α = 0 . 2 5 - , and a = 0 . 5 - are presented in Figs. 13.5, 13.6 and 13.7. 

-1--

Ö = 0 

Π 

1-

0.5· 

0 

0.5· 

-1-

2 

a =0.125-
/ 

4 r 

Fig. 13.4 Fig. 13.5 

a = 0.25-

Fig. 13.6 Fig. 13.7 

Note that the — ° value is the ratio of the pressure loss along the length / 
pcw0c 

to the shock pressure (after Zhukovsky). The graphs indicate that when friction is 

2/ present, pressure in cross-section x = I continues to increase till the time t = —, i. e., 
c 

to the arrival of the wave reflected from the cross-section x = 0. That was established 
by Charny. At a > ell, wave phenomena disappear for all practical purposes. 



NON-STATIONARY FLOW OF VISCOUS FLUID IN PIPES 225 

Let's now review hydraulic shock with the boundary conditions: 

r>0,/7(0,0 = ?i(0 = 0,w(/,/) = 
~w£, Q<t<T, 

T 
{-w0, t>T 

(13.78) 

where T is time of the flow slow-down. 
From Eqs. (13.66) and (13.78), at 0 < t < T: 

at t > T: 

p(l,t) = ££-%L pv2(/,f - θ)άθ = ^ 3 . JN2(l,0)de, 

0 l-T 

For the simplicity, it is assumed a = 0. Then, by considering Eq. (13.76): 

., . 8/7wJ^i 1 2 n - l ; z r I, 
p(l,t) = — t - r 9 - y rcos f 

π2Τ t i ( 2 n - l ) 2 2 / I'1 

where at t < T i, = 0, and at t > T f, = t - T . 

The sum of the series Eq. (13.79) is known and is equal to: 

(13.79) 

Σ 1 2n — 1 K 
7COS 1 = — 

„ = , (2n- l ) 2 2 4 

TdCt 

2/ 

wet 
, -π< — <π. (13.80) 

2/ 

Considering periodicity, Eq. (13.80) can be presented in a more convenient 
format: 

■ ^ Λ 1 2η-\π π1 _ . . 

tt(2n-iy 2 I 8 

where: 

F(t) = 

1 - — + 4*. 4fc< — <4fc + 2, 
/ / 

Ä: = 1, 2, 3 .... (13.81) 

1 + — - 4 / t - 4 , 4k + 2< — <4k + 4, 
I I 

Then Eq. (13.79) becomes: 

p(lJ) = -^-[F(t)-F(ti)]. (13.82) 

To illustrate the application of Eqs. (13.81) and (13.82), the case when T = lie 
is considered. 



226 CHAPTER XIII 

When t<T, 0 < — < 1, k = 0, F(t) = \-—, F(i,) = F(0) = l <mdp= pcw0-. 

ct ct c ct 
When t > T, the range of the values — and —- = — (t-T) = 1 are subdi-

6 I I I I 
vided into the following segments: 

1< — < 2 , * = 0 , F ( 0 = 1 - —; 0 < ^ - < l , * = 0 , F(tl) = 2-—,pc=pcw0; 

2 < — < 3 , * = 0 , F ( 0 = 1 + — - 4 ; l < - ^ - < 2 , * = 0, 
/ / / 

F(i,) = 2 - y , p = - / > o v 0 ^ 2 y - 5 

3 < - < 4 , / t=0, F(f) = l + — - 4 ; 2 < - ^ - < 3 , /t = 0, 
/ / / 

F(?,) = -4 + y , P = -Pcw0; 

4< —<5 , Jk = l, F(/) = 5 - — ; 3 < ^ - < 4 , *=0 , 
/ / I 

F(i,) = - 4 + ^ , p = _ / O C W o ( 9 - 2 y 

etc. The correlation Π : 
pcw0 

vs. τ = (cf)/l is shown in Fig. 13.8. Correlations 

2/ 3/ 
Π vs. r at T = — and T = — are displayed in Figs. 13.9 and 13.10, respectively. 

c c 

- 1 -

T = li-

/5 τ 

Fig. 13.8 Fig. 13.9 
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4/ et ct 
Of a particular interest is the case of T = —. When 0 < — < 2, F(t) = 1 , c I I 

F(i,) = F(0) = l, p = pcw0-. When 2 < — < 4 , F(i) = l + — - 4 , F(i,) = F(0) = - l , 

P = P£%LU_EL\ when t > T, f , = — - 4 , on segment 4 < — < 6 , ik=l, 

ci ci, ct 
F(i,) = 5 ; on segment 0 < —L < 2, k = 0 and F(r) = 5 , from where it fol-

l 
lows that p(l,t) = 0. 

Π 
I f 

r=4-i-
c 

Fig. 13.10 Fig. 13.11 

ct p 
It is easy to see that when 6 < — < °°, p(l,t) = 0. The correlation Π = —-— 

/ pcw0 

vs. τ = (ct)l\ when T = Alle is shown in Fig. 13.11. It is possible to show that if 

T = An—, p(l,t) = 0. Note that the - value is the travel time of the hydraulic shock 
c c 

wave along the entire length of the pipe /. 

8. Effect of flow instability on force of friction 

The equations for non-stationary flow in pipes derived in par. 1, e.g., Eq. (13.24), 
link the average in the cross-section velocity w, density p, pressure p and average 
over the tube's perimeter tangential stress τχ. To close this system of equation, the 
quasi-stationarity hypothesis is usually employed. The computation results are 
usually in a good agreement with experimental data. In some cases, however, sig-
nificant discrepancies with theoretical results were observed, for example in cases 
of steep pressure (velocity) fronts of non-Newtonian fluid flow. 

This casts a shadow over the validity of the stationarity hypothesis. Indeed, τχ 

is function of fluid's rheological parameters and local velocity distribution in the 
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flow cross-section. At the same time, the velocity distribution at non-stationary 
flow is highly different from that at stationary flow. For a laminar non-stationary 
flow of an incompressible fluid was theoretically substantiated by Gromeka, 
Lambossi, etc., and experimentally established by Richardson and Tayler. It is evi-
dent that the equations for averaged values do not allow for the estimation of non-
stationarity effect on the size of friction force. In order to fine-tune the association 
between τχ and averaged flow parameters, it is necessary to analyze differential equ-
ation for local values, i. e., Navier-Stokes equation. 

Under the same assumption as for the derivation of Eq. (13.28), i. e., disre-
garding the fluid's compressibility and the tube elasticity in the motion equation, 
let's write down Navier-Stokes equation in the following format: 

dv -
p— = pF-Vp+pAv. 

at 
(13.83) 

Let's review axisymmetric flow in a round cylindrical tube under assumption 
that the only operating mass force is force of gravity. In this case Eq. (13.83), pro-
jected on the tube's axis Ox, has the Eq. (13.29) format: 

du d . . u d ( du 
P^ = -TX

(P8Z'+P) + 7ö-rH 
(13.84) 

Assuming p(x,t) = po(x) + p*(x,t), u(x,r,t) = uo(x,r) + u*(x,r,t), where UQ, Po are 
stationary values of the velocity and pressure, and u%, p% are their disturbances, 
Eq. (13.84) can be reformatted in the following structure: 

3«* 
dx r dr 

du* 
r 

dr 
(13.85) 

The initial conditions for the disturbances are: 

t< ,u*(x,r,0) = 0,p*(x,t)=0. (13.86) 

Subsequently, superscript * is omitted and as a result, p and u are pressure and 
velocity disturbances. 

Applying Laplace's transform with respect to time to Eq. (13.85) and initial 
conditions [Eq. (13.86)], results in: 

where: 

d2U(x,r,s) 1 dU(x,r,s) s 
dr2 r dr v 

U(x,r,s) + 
1 dP(x,s) 

ps dx 
= 0. (13.87) 

U(x,r,s)= ju(x,r,t)e~s'dt, P(x,s)=jp(x,t)e's'dt, v = ^-. (13.88) 
0 0 P 
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Let's introduce a function: 

<D(jc,r,s) = t / (x,r , j ) + 
1 dP(x,s) 

ps dx 

By multiplying Eq. (13.87) by r and substituting the variable: 

results in: 

Hv'' 

232Φ 3Φ 2 Λ η 

z τ τ + ζ τ z Φ=0. az2 & 

(13.89) 

(13.90) 

(13.91) 

Eq. (13.91) is a regular zero-order Bessel equation with solution limited at r = 
= z = 0: 

Φ(χ,ζ,5) = C(x,s)I0(z), (13.92) 
where /o(z) is Bessel function of the first order imaginary argument. 

Substituting Eq. (13.92) into Eq. (13.89) and considering Eq. (13.90): 

U(x,r,s) = C(x,s)I0 
1 dP(x,s) 

ps dx 
(13.93) 

Function U(x,r,s) must satisfy the condition of fluid's adhesion to the pipe's 

wall, i. e., at r = R: 

U(x,R,s) = 0, 

and from here, according to Eq. (13.93): 

± ^ = αΜΙ0[βή. (13.94) 

Canceling C(x,s) in Eqs. (13.93) and (13.94), results in: 
f Γ~ Λ 

U(x,r,s) = — 
ps 

1, It dP(x,s) 

dx 
(13.95) 

Multiply Eq. (13.95) by 
iTardr 
nR1 and integrate the result from 0 to R, i. e., aver-

ages the solution with respect to the radius. When deriving Eq. (13.96), the known 
relationships for Bessel functions are used: 

Jz/0(z)«fc = /,(*), Ι2(ζ) = Ι0ω~ 2/,ω 
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The result is: 

dP(x,s) 
dx 

1, 

= -psV(x,s)-

"V Λ 
= -psV(x,s)-

VV J 

'lF 

where h is Bessel function of the second order imaginary argument: 

4v IT 4V 

V(x,s) = — \rll(x,r,s)dr, a= — . 
R i R 

(13.96) 

(13.97) 

Following Eqs. (13.30), (13.88) and (13.97): 

V(x,s) = - \ \r\U(x,r,t)e's'dtdr = J-% jru(x,r,t)e'"drdt = \w(x,t)e~sl'dt, 

i. e., V(x,s) is a representation after Laplace of average velocity w(x,t). 
Applying Laplace transform to the first equation in Eq. (13.41) (i. e., to the 

continuity equation) and considering the initial conditions of Eq. (13.86), results in: 

dV(x,s) s 
— = i-P(*,s). 

dx pc 

(13.98) 

Eqs. (13.96) and (13.98) are written as representations after performing Lap-
lace transformation and they are equations of a laminar non-stationary flow of a 
viscous slightly compressible fluid in a round cylindrical tube. They are valid for 
the average in the cross-section values of velocity and pressure at initial conditions 
[Eq. (13.86)]. 

The link between the average velocity w and tangential stress τχ is now to be 
determined. By averaging Eq. (13.85) over the tube's cross-section: 

dv dp 2u du 
p— = ——+ — — H dt dx R dr dx R 

(13.99) 

and after applying Laplace transform to this equation and considering the initial 
conditions [Eq. (13.86)]: 

27" dP(x,s) 

R dx 
+ pxV(s,x), (13.100) 

where: 

T=jrz(x,t)e-adt. 
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dP(x, s) 
Substituting — value from Eq. (13.96) into Eq. (13.100), results in: 

dx 

T = PX-SV(x,s) 
2 I. 

\F 
\P 

(13.101) 

i. e., now a link between the representations of tangential stress T and average ve-
locity V(x,s) exists. And because: 

sV(x,s) = ]^'dt, 

according to the convolution theorem, from Eq. (13.101): 
_ pR \dw(x,6) 

^ V p ^ r ^ C - ^ ' d0 
(13.102) 

where: 

*(0 = 
2m f 1--

or, as 70(z) = J0(iz), h(z) = Ji(iz): 

r Γ~Λ 

2'S 

2if 
2( 

e"ds, 

eads. 

As a result: 

k{t) = -2a - a ^ e x p azk 

where Zk (k*0) are roots of equations J2(z) = J: 2/,£ 

(13.103) 

= 0. Substituting 

Eqs. (13.103) and (13.103) into Eq. (13.99) and using continuity equation from 
Eq. (13.41) orEq. (13.42) (which, clearly, remains unchanged): 

dp 2 dw 
- — = pc — , 

dt ^ dx 

Ύχ
=ρ[-ΐχ-+2™+ραΓϊΤ-

(13.104) 
W(t-0)d0, 



232 CHAPTER XIII 

where: 

tV(Ö = £exp az\\ 
t = at. 

The graph of W(t) function is shown in Fig. 13.12. The parameter 2a, as 
Eq. (13.33) shows, at the laminar flow in a round tube is equal to: 

8v 
SS Re8£ R2 - = const, 

which coincides with Eq. (13.97). Therefore, under laminar flow regime there is no 
need in linearization of Eq. (13.41), i. e., Eq. (13.42) is valid. The rejection of the quasi-
stationarity hypothesis results in the appearance of the following integral term in the 
motion equation: 

'rdw(x,0), 
ap\-

3Θ 
-W(t-0)de. 

This term accounts, with certain weight assigned, the entire previous history of 
a non-stationary process. 

2 3 4 5 6 7 
Fig. 13.12 

Analysis of solutions of Eq. (13.104) showed that under periodic processes the 
attenuation factor of high-frequency harmonics is directly proportional to square 
root of frequency. This results in smoothing of the pressure (velocity) impulses and 
"smearing" of steep fronts. These facts were experimentally confirmed. At the 
same time, following the solutions of Eq. (13.42) the attenuation factor of high-
frequency harmonics is practically not dependent on frequency. 

The use of the quasi-stationarity hypothesis does not allow taking the above 
phenomena into account. Behind the hydraulic shock front, the pressure increase 
curves computed from Eqs. (13.42) and (13.104) gradually become closer. So the 
pressure computation behind the front, including maximum pressure increase, can 
be performed with sufficiently high accuracy using equations derived on the assump-
tion that the quasi-stationarity hypothesis is valid. 



CHAPTER XIV 

LAMINAR BOUNDARY LAYER 

Let's consider a case of the fluid flow-around an immobile wall. If the fluid is 
ideal, the process is described by Euler's equations: 

,*-*-£ 
and the boundary condition: 

v„ | c=0. (14.2) 

For a incompressible viscous fluid, Navier-Stokes equation must be used: 

ρ^- = μΡ,-^- + βΛν, (14.3) 
at ox, 

and the boundary conditions: 

v„|c=0, v r | c =0 . (14.4) 

Clearly, at μ->0, Navier-Stokes Eq. (14.3) at the limit coincides with the 
Euler's Eq. (14.1). However, the solution of Navier-Stokes equation does not tend 
to Euler's equation solution because the boundary conditions Eq. (14.4) do not 
depend on the viscosity and cannot tend to the boundary condition [Eq. (14.2)]. 

These considerations and some experimental results made Prandtl believe that 
at low viscosity (or, which is the same, at high Reynolds numbers), viscosity is ac-
tive only within a thin layer next to the wall (called the boundary layer). Outside 
the boundary layer viscosity effects are negligible, and the fluid can be considered 
to be ideal. 

Navier-Stokes equations for the boundary layer flow, considering its small 
thickness, can be substantially simplified. 

Mechanics of Fluid Flow 
by Kaplan S. Basniev, Nikolay M. Dmitriev and George V. Chilingar 

Copyright © 2012 Scrivener Publishing LLC 
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1. Equations of the boundary layer 

In order to derive equations of the boundary layer let's review, disregarding 
mass forces, the parallel-plane flow-around a thin cylindrical body by a viscous 
incompressible fluid (Fig. 14.1). The flow around the wall is considered to be 
planar along the Ox axis and the Oy axis normal to the Ox axis. 

Fig. 14.1 

Following Eq. (4.42), the flow equations in this case will have the following format: 
dvr dvr dv 
-^- + v —- + v —-
dt x dx y By 

dp 
dx 

r^2 
+ M dx2 + 3-2 

dv., dv., 3ν.Λ 
—- + v —- + v —-
dt x dx y dy, 

dv. dvv 

dp 
dy 

= 0. 

+ M 

dy 

d2v 
- H -

dx2 dy2 

r d \ 
J 

2.. \ 

(14.5) 

dx dy 
To reduce Eq. (14.5) to the dimensionless format, it is required to assume: 

x = L^, y = L77, vx=Vu, vy=Vu, p = pV2p, t = —t, 

where L is the characteristic length of the flowed-around body, V is the characteris-
tic velocity of the flow. Substituting these terms into Eq. (14.5) and dropping (for 
convenience) the bars over the dimensionless time and pressure: 

dp . \ d2u 1 d2u du du du 
dt Βξ dη 3£ + Re3£2 + Re a/72 

1 1.1 H 
dp 

1 

1 θ2ν 1 d2v dv dv dv _ 
— + M — + V — - - — + — — + R e 3 ^ 2 , 

Ι.δ SA 

(14.6) 

(14.7) 

(14.8) 

1 1 
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where δ = —, Re = ——, δ is the thickness of the boundary layer, and the values 
L μ 

underneath the two equations are their estimates within the boundary level by 
the δ value. 

Let's now review the accuracy of these estimates. Suppose velocity vx changes 
by Vover the length L. Then u ~ 1, and: 

dv^_V_du_ V_ 3H 
dx ~ L 3ξ ~ L' Βξ~ 

Similarly, it is possible to show that -^-^ ~ 1. 
^u 

From the continuity equation Eq. (14.8): 

3v du 
Βη Βξ L 

Further: 

because within the boundary level 0 < μ < 8. Also from this inequality: 

d2v 1 du 1 82v 1 

As v ~ δ, then: 

3v -=. d2v -5 

It is also assumed that —— 1, meaning that the sudden acceleration events like 

the hydraulic shock are not considered. Then: 

dt 

Thus, the validity of the above estimates of individual terms in Eqs. (14.6), 
(14.7) and (14.8) is confirmed. Considering these estimates that enable viscosity 

Re3/72 

between the friction forces and the inertia forces can be represented by: 

effect in Eq. (14.6) results in the definition of the term π Λ -2 So the relationship 

du 1 d u 
" τ — : — Ί Γ — r . 

377 Re 3η 
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Prandtl suggested that within the boundary layer the relationship between iner-
tia forces and friction forces is the value on the order of 1, i. e.: 

R e ~ J r . (14.9) 
δ 

This relationship enables the boundary layer thickness estimate as: 

-? 1 (14.10) 
/Re 

For example, suppose the characteristic size of a flow around body L - 1 m, 

the characteristic flow velocity V= 1 m/s, and the dynamic viscosity μ = 10" -3 kg 

m* s 

(water, 20 °C), density p = 103 %. Then: 
m 

Re = ^ = 10\ 
M 

and under Eq. (14.10): 
-? 1 = 10 ' \ 

/Re 
or δ ~ 1 mm. This is the thickness of the layer in which velocity vx changes in val-
ue from zero to its value in the external flow. 

Now, the problem is the nature of the flow within the boundary layer at such 
Re number values. Observations show that the flow along the tablet remains lami-
nar at Re = - ^ < (5* 105 to 106). 

μ 
Disregarding small terms in Eqs. (14.6), (14.7) and (14.8) and considering 

Eq. (14.9) results in: 
du du du _ dp 1 d2u 
¥ + " ^ + V 3 ^ " " ^ + : R W ( l 4 l l ) 

3p=0) ^ . 3 = 0 . 
dη ΰξ dη 

Eq. (14.11) is the Prandtl's equation for the boundary layer in a dimensionless 
format. Back transforming into the dimensional format: 

dvr dv dvr 1 dp u d V 
— + v——+ v„ —- = -Z- + dt ' '" dx v dy pdx p d2y ' 

' (14.12) 

f i = o, f ^ = o. 
ay ox dy 
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These equations indicate that pressure in the cross-wise direction to the boun-
dary layer can be considered to be constant and equal to pressure at its external 
borders. The external flow in relation to the boundary layer, as already indicated, 
can be described using the model for ideal fluid. 

As was shown, at the external boundary of the boundary layer, v ~ δ or 

v δ. The derivative ——, due to disregarding viscosity in the external cross-
L dy 

section at this boundary is also small, and the lengthwise velocity v* turns to veloci-
ty of the external flow U(x,t). Thus the motion equation at the boundary of the 
boundary layer can be written as follows: 

^ + tÄ = - I * (14.13) 
3/ ox p ox 

In a case of the transient-free flow, fromEq. (14.13): 

p + £-U2= const. (14.14) 

V 
As the boundary layer is thin and v 8, the boundary conditions for the 

external flow can be assumed as being the same as at the direct flow-around of 
a body by ideal fluid. In other words, in order to compute the external flow it is 
possible to take the ideal fluid's flow-around of the body and disregard the boun-
dary layer's thickness. 

Thus, the system of equations of Eq. (14.12) becomes: 

3vt 3v dv, 1 dp u d2vr 
i- + V - + V - = —+ — 

dt x dx y dy pox p dy2 

dx dy 

where p = p(x,t) should be considered as a known function and in the case of tran-
sient-free flow it can be determined from Eq. (14.14). Eqs. (14.15) are Prandtl's eq-
uations for the boundary layer. 

The boundary conditions for the Eq. (14.15) have the following format: 

vx=vy=0 at y = 0, vx=U(x,t) at y—>°o. 

The last condition should be understood so that vx asymptotically tends to the 
U(x,t) function which is believed to be assigned in advance. 

Eq. (14.10) provides only an approximate estimate of the boundary layer 
thickness. In reality, the separation between the boundary layer and external flow is 
rather tentative, so various criteria are used to refine it. The simplest case is that the 
velocity at the boundary layer's external border is equal to 99 % of the external 
flow velocity. 
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Fig. 14.2 

2. Blasius problem 

To illustrate the application of the boundary layer's Eq. (14.15), the flow 
around a thin immobile tablet is analyzed (Fig. 14.2). The origin is placed at the 

edge of the tablet and place Ox axis along 
δ ~ -Jx the tablet and parallel to the velocity of the 

.---" overrunning flow. The tablet's length is con-
sidered infinite, and the flow is considered 
stationary. It is also assumed that the over-

~ running flow velocity is i/o. The mentioned 
assumptions and model gives the Blasius 
problem. 

The external flow velocity is constant, 

— = 0 , soEq. (14.15) becomes: 
dx 

du du du 
u 1-v— = v—r-, 

dx dy dy (14.16) 
du du _ . 

dx dy 

where: 
μ 

u = vr, v = vv v = —. 
P 

The boundary conditions for Eq. (14.16) are: 
u = v = 0aty = 0; u=U0 at }>-><*>. (14.17) 

Let's now solve the Blasius problem. Eq. (14.16) and boundary conditions 
of Eq. (14.17) include the following parameters: 

x, y, v, i/o, 

of which only two have independent dimensionalities. Therefore, two dimension-
less combinations can be formed based on this system, such as: 

In this case, functions u(x,y), v(x,y) can be represented through dimensionless 
functions/and Φ as: 
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Let's replace variables in Eq. (14.16) and boundary conditions of Eq. (14.17): 

(14.19) 
]vl 

x = lx,, v = J — v , , u=U0ux, v = 
I u0 

vUn 

I 
Lv,, 

where / is some linear dimension value. 
By substituting Eq. (14.19) into Eq. (14.16) and boundary conditions 

Eq. (14.17): 

3M, 3M, 32W, 

3*i oy, 3y, 

3«, 3V, 
= 0, 

3x, 3y, 

U\ = v\ = 0 at y\ = 0; M, = 1 at y, —> < 

Considering Eq. (14.19): 

y. j v y, /Z/7 ( 7 y, | v [x r— 

^| /C/0 x, V vx \x ^JC, )(vi/0 V / 

(14.20) 

(14.21) 

(14.22) 

Eq. (14.18) can be presented as follows: 

" 1 = / 

( 1 Λ 
v yt yt Φ 

IU0 x/ J7J' ' Τ ί l j Z £ / oV V*7 
v 3Ί 3Ί 

At the same time, Eqs. (14.20), (14.21) and boundary conditions [Eq. (14.22)] 
do not include length I. Therefore, solution of these equations cannot depend on /, 

1. e., on the argument , so: 

« , = / 
( \ 

y, Φ 3Ί 

■\lx\) -\Ιχι \ΛΙΧ] 

V*i » ν* 
(14.23) 

Following continuity Eq. (14.21) that there is a flow function y/(x,y) such that: 

3y, dxl 

Suppose: 

3y, 
yt (14.24) 
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Then: 

_ di/f 1 ,^ ι~άφάξ 1 

dx, 
λ^Μ-χαζΐι. 

2 ^ ' άξ dx, 2jx~{ 

Substituting Eqs. (14.24) and (14.25) into Eq. (14.20) gives: 

[ξφΧξ)-φ(ξ)].' 
(14.25) 

άξ dx, lyjx, άξ dy, άξ 

or, after differentiating and reduction of similar terms: 

2φ'"-φφ"=0. 

άφ' άξ 

άξ dyx j 
dl 

(14.26) 

Following the boundary conditions [Eqs. (14.22)], and Eqs. (14.24), and (14.25), 
that the boundary conditions for Eq. (14.26) are: 

^(0) = 0, ^ ( 0 ) = 0, p'(°°) = l. (14.27) 

Thus, partial derivative Eq. (14.16) with boundary conditions [Eq. (14.17)] is 
reduced to a regular nonlinear differential Eq. (14.26) with marginal conditions 
[Eq. (14.27)]. This problem had long ago been numerically solved with a high degree 
of accuracy. 

From Eqs. (14.19), (14.23), (14.24) and (14.25): 

— = φ v 
- -
2\U0x 

vx -φ . (14.28) 

The graphs of lengthwise and crosswise velocity component distribution with-
in the boundary layer are presented in Figs. 14.3 and 14.4, respectively. 

Fig. 14.3 Fig. 14.4 
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Assuming that at the external boundary of the boundary layer — = 0.99, from 
Un 

the first equation in Eq. (14.28): 

0.99 = φ' 

Then, using the function φ'{ξ) table: 

r ίϊΓΛ 

I o 

Substituting this value into the second equation of Eq. (14.28) and using the 
tables of functions φ{ξ\ ψ'{ζ), at the external boundary of the boundary layer: 

7Γ = \ΙτΓ[5φ'{5) ~ φ{5)]? ~ ° · 8 3 7 111· ■ 
U0 2\ U0x \ U0x 

This solution for the velocity component distribution within the boundary 
layer enables the calculation of friction stress ro on the tablet. 

At laminar flow: 

Γ„=μ 
' 3 ^ 

dy 

Substituting the first equation of Eq. (14.28) results in: 

r0=M dy 
y=0 

V vx 

From the table of function φ"{ξ) numerical values, ^"(0) =0.332, and: 

Τ 0 = 0 . 3 3 2 Λ ' ^ - (14.29) 

From Eq. (14.29), the friction forces W on one side of the plate per unit 
width are: 

W = jr0dx = 0.664p^vUJx . 

3. Detachment of the boundary layer 

It was shown in par. 8.2 that under the stationary flow around a circle by an 
ideal fluid, first the flow velocity along the arc increases, and then decreases. 
According to the Bernoulli's integral, the pressure is also increases first, and then 
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decreases. A similar phenomenon occurs at the flow around any concave contour. 
The fluid flow in a diffuser also occurs under the positive pressure gradient. 

Under the ideal fluid flow, the kinetic energy is sufficient to overcome the 
positive pressure gradient. Due to the viscosity, the flow slows down within the 
boundary layer. Because of this phenomenon, the fluid's kinetic energy is insuffi-
cient for the particle to move far enough into the elevated pressure area. As a result, 
a reverse flow and the associated vortex formation occurs. Thus, the boundary layer 
thickness drastically increases, and the conditions under which Prandtl 's equations 
were derived are not valid any longer. 

Let 's analyze the flow around a curvilinear 
contour C. The coordinate x is considered 
along this contour (Fig. 14.5). According to 
the previously mentioned theories, there is a 
point M with the coordinate XM that at x < XM, 
dp_ 

dx 
< 0, and at x > XM 

dp 

dx 
> 0 . 

Fig. 14.5 At any point of the contour C (i. e., y = 0) 
vv = 0. 

Therefore, according to Eq. (14.15): 

_dp 
ß 

V dx 

d2vx = dp 

dy
2 dx 

< 0 at x < Xu 

(14.30) 

> 0 at x > Xu 

and at point M: 

As the curvature k of the curve y = l(x) is: 

= 0. 

dx2 ' < 

(14.31) 

then, following Eqs. (14.30) and (14.31) that the velocity vx =v^x) profile cur-
vature at point M changes its sign (Fig. 14.5). Therefore, the backflow occurs at 
x > XM and, as a result, the detachment of the boundary layer occurs. 

It is clear that if everywhere within the flow -¥- < 0 , there is no detachment of 
dx 

the boundary layer. 
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UNIDIMENSIONAL GAS FLOW 

Review of unidimensional flow provides an opportunity to study major pat-
terns regarding gases moving at high velocity. Unidimensional gas (liquid) flow is 
such that the flow parameters (velocity v, density p, pressure p, temperature T) 
depends only on one coordinate and time. An example of the unidimensional flow 
is the flow in a flow-tube providing the velocity, density, pressure and temperature 
are uniformly distributed over the flow cross-section. In this case: 

v = v(/,/), p = p(l,t), p = p(l,t), T = T(l,t), 

where / is the coordinate counted along the tube's length. 
For the simplicity and demonstration, the gas is considered to be ideal, i. e., 

with the following equation of state: 

= RT. (15.1) 

1. Sound velocity 

The velocity of the sound propagation in gas is one of the most important con-
cepts of the gas dynamics. To analyze this type of flow, a long cylindrical tube 

closed on one side by a piston and filled-up 
with gas is considered (Fig. 15.1). It is assumed 
that at the initial time the gas in the tube is im-
mobile, and pressure po and density po are equal 
in all cross-sections of the tube. 

Let's move the piston along the tube. The 
gas in front of the piston will begin to compress 
and move at the velocity v, and then distur-
bance propagates left-to-right along the tube at 
some velocity c. 

Suppose at the time t the disturbance reached cross-section I-I, and at the mo-
ment in time t + dt, it reached cross-section II-II. During the time period dt 
between the cross-sections the gas-flow parameters change, i. e., this flow is 

Fig. 15.1 

Mechanics of Fluid Flow 
by Kaplan S. Basniev, Nikolay M. Dmitriev and George V. Chilingar 

Copyright © 2012 Scrivener Publishing LLC 
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non-stationary. The mass conservation law [Eq. (2.29)] and the variation in mo-
mentum law [Eq. (2.49)] are used. 

During the time interval dt gas velocity, pressure and 
density in the cross-section I-I change and reach the values vi, p\, p\\ in the cross-
section II-II velocity is equal to zero, and gas pressure and density are constant (po, 
po) as the disturbance did not have time to reach this cross-section. Therefore, at the 
time t + dt (i. e., by the end of the time interval under consideration) Eqs. (2.29) 
and (2.49) by projecting on the tube's axis Ox become: 

j^dV = jPlv{dS, (15.2) 

j^ldV-^dS=Pi+Tx, (15.3) 

where S\ is the tube's cross-sectional area. The projection of the main vector N of 
the normal components of tube's walls reaction onto its axis is equal to zero, and 
the gas weight is ignored. 

The pressure force acting on the gas volume between the I-I and II-II cross-
sections at the moment in time t + dt is: 

P,= J(P.-Po)<ß.. (15-4) 
s, 

and the friction force is: 

Tx = -Tavtfcdt, (15.5) 

where Tavg is the average friction on the tube's wall over time interval dt and length 
cdt; χ is the wetted perimeter of the tube. Over the time interval dt, the gas density 
over the tube's segment in question varies within the po and p\ values, and velocity 
changes from 0 to vi. So, over the dt segment: 

where the subscript avg also means average value over the time interval dt and vo-
lume V. 

The volume element dV can be represented as: 

dV=cdtdS. (15.7) 

Substituting Eqs. (15.4)—(15.7) into Eqs. (15.2) and (15.3) approximately (be-
cause of the difference between the average and exact values) results in: 

j[(p]-Po)c-plv]}lS=0, (15.8) 
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f(p,v,c- plVl
2)dS = (p, - p0)S -TmgXcdt. (15.9) 

s, 

Considering that the flow is unidimensional (i. e., all parameters are distri-
buted uniformly over the tube's length) and the gas is ideal (τ = Tavg = 0), by taking 
the limit at dt -> 0, and from Eqs. (15.8) and (15.9): 

(pl-p0)c = plvl, p,v,c-p^ = p,-p0. (15.10) 

Canceling velocity Vi from Eq. (15.10), the result is: 

ci=K*hZlSL. (15.H) 
A> Pi-Po 

The sound velocity a is the velocity of infinitely small disturbances: 

Λ-»Λ> 

a = lim c, 

so, according to Eq. (15.11): 

fl2=limAiVzAL=4l. (15.12) 
S : j A A - A dp 

It is important to note that in deriving Eq. (15.12) the medium under consider-
ation can be either gas or liquid. Therefore, this equation is valid for any compress-
ible medium. As gas pressure p and density p are associated through equation of 
state [Eq. (15.1)], then to compute the sound velocity a, it is necessary to assign a 
type of the thermodynamic process associated with the sound propagation. 

Suppose the process is isothermal, i. e., T = const. The sound velocity can be 
computed based on this assumption as αγ. Then, from Eqs. (15.1) and (15.2): 

aT= \^=4RT . (15.13) 
\dp 

2 

Gas constant for the air is ft = 287^ , so for the temperature T= 293°K 
c deg 

sound velocity is aT - 290 m/s. This is significantly different from the experimen-
tal results, and Eq. (15.13) is unsuitable for the sound velocity determination. So, 
we will assume now that the sound propagation process is isentropic, i. e., 
Eq. (7.38) is valid: 

f \k 

(15.14) 
Po 

P_ 
Po 
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Then, considering equation of state Eq. (15.1): 

„ 2 Φ _ , , „ P~ _.PoP _ ^ P _ , 

'dp 
=w . = k_LSLi^ = ^L = kRTy 

P0 P P 

(15.15) 

where a.t the sound velocity computed under the assumption of the isentropic 
, 2 

process. For the air, the adiabatic exponent k = 1.4, and at R = 287 m 
c deg 

and T = 

= 293°K. Thus, from Eq. (15.15), the sound velocity a =343 m/s, which agrees 
well with experimental results. Thus, in the future Eq. (15.15) for the sound velocity 
computation will be used. 

2. Energy conservation law 

In this section, the energy conservation law is derived for the transient-free un-

idimensional flow of an ideal (i. e„ nonviscous) gas. For this purpose Eqs. (2.70) 

and (4.3) are used, according to which for an ideal gas pn = p„„n=-pn. In this 

case, pn * T\ = 0 , and Eq. (2.70) becomes: 

. n + « + £ + ^ pvdS- „ P v" 
-Π+Μ+ — + -

2 \ 

— pvdS=jpqedV. (15.16) 

The flow is unidimensional by definition; therefore, expressions in parentheses 
can be removed from the integral. Besides, at transient-free flow: 

jpvdS~jpvdS = Qm. (15.17) 
S2 5, 

Considering Eq. (15.17), Eq. (15.16) can be rewritten as: 

ί - ,.2Λ 

_n+ u +^+^-
( 2λ 

2 V J\ x£m V 

\pqedV. (15.18) 

Eq. (15.18) is an expression of the energy conservation law for the unidimen-
sional transient-free flow of an ideal gas. In the future, when analyzing gas flow, the 
mass force effect (in particular, weight) is ignored, i. e., Π = 0. 

At adiabatic process, qe = 0; thus, from Eq. (15.18): 

p v 
u + — H = const. 

P 2 

(15.19) 
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The heat function enthalpy / by definition is equal to: 

i = u + £. (15.20) 
P 

Substituting it into Eq. (15.19) results in: 

v2 

i + — =const. (15.21) 
2 

The unit internal energy u for a gas governed by Eq. (15.1) is proportional to 
its absolute temperature T and is equal to: 

u = CVT. (15.22) 

Besides, such gas is subordinated to Mayer's Eq. (7.33): 

Cp-Cv = R. (15.23) 

Following Eqs. (15.22) and (15.23): 

i = CvT+ RT=CPT, (15.24) 

Thus, the energy conservation law Eq. (15.21) can be formatted as follows: 

v2 

CpT— =const. (15.25) 

From Mendeleyev-Clapeyron's Eq. (15.1) and Mayer's equation: 

C T = SP=_^Z = A Z , k=£i.. (15.26) 
' Rp Cp-CvP k-\p Cv 

Substituting Eq. (15.26) into Eq. (15.25), results in: 

k p V 
+ —=const. (15.27) 

k-lp 2 

Note that accurate to the gz term (which we disregard), Eq. (15.27) is the same 
as Bernoulli's Eq. (7.45). It means that Bernoulli's integral is a particular case of 
the energy conservation law. 

A concept of drag parameters is now introduced. Drag parameters in a given 
crosswise section of a unidimensional flow (a flow-tube) are parameters of the gas 
if mentally reduced to isoentropical state, i. e., with the preservation of the energy 
which the flowing gas has in this cross section. Temperature, pressure, drag enthalpy, 
and density of the dragged gas are denoted, respectively, as 7Ό, po, «o. Po· 
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Using the drag parameters, Eqs. (15.21), (15.25) and (15.27), i.e., various 
forms for the energy conservation law, can be written as follows: 

1 + γ = ί0. (15.28) 

CpT + j = CpT0, (15.29) 

J^R + YL=J^£<L. (15.30) 
k-lp 2 k-\pQ 

According to Eqs. (15.28), (15.29) and (15.30), at adiabatic flow of an ideal 

gas, its temperature, enthalpy and — ratio decrease. Eqs. (7.46) and (7.47) show 
P 

also that p and palso decrease (k > 1). It is important to note that if entropy 
changes along the flow, the drag parameters in various cross-sections, generally 
speaking, will be different. Another comment is that adiabatic flow of a nonviscous 
gas is isentropic. 

3. Mach number. Velocity factor 

The energy conservation law [Eq. (15.29)] shows that in the adiabatic flow the 
flow velocity changes from one cross-section to the next resulting in the correspond-
ing temperature changes. On the other hand, from Eq. (15.15), temperature changes 
result in the sound velocity changes. Thus, the sound velocity at any place within 
the flow depends on the gas flow velocity at the same place; increase in the local 
sound velocity v results in the local sound velocity a decrease. 

The ratio M between the velocity v of the gas flow at a given point in the flow 
and the sound velocity at the same point: 

M=V- (15.31) 
a 

is called Mach number. When: 
v < a, or M < 1, the regime is called subsonic; 
v > a, or M > 1, the regime is called supersonic; 
v = a, or M = 1, the regime is called critical. 

Parameters of gas flows under the critical regime are called critical parameters 
and are denoted by Vcr, p e r , y9cr, / cr, CCQT. 

The ratio between local gas velocity v and the critical velocity v« = «er, i. e., k 

A = — = —, (15.32) 
öcr Vcr 

is called velocity factor. 
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Following the energy conservation law Eq. (15.29), the maximum possible ve-
locity of adiabatic flow vmax is reached at T = 0 and: 

Vmax = -j2CpTo (15.33) 

From Eq. (15.15), sound velocity at T= 0 is also equal to zero. Thus, the Mach 
number can range between zero and infinity: 

0 < M < ° ° . 

Substituting sound velocity Eq. (15.31) into the energy conservation law 
Eq. (15.30) results in: 

al-+
V-=*L, (15.34) 

k-l 2 k-l 

where a0 = Ik — = -JlcRT^ is sound velocity at drag temperature T = 7Ό. 
V Pa 

Assuming in Eq. (15.34) a = v = acr: 

It can be seen that in the adiabatic flow with the drag temperature 7Ό critical 
velocity is a constant value for the entire flow. Assuming a = 0 in Eq. (15.34), one 
more equation for vmax is obtained: 

k-l 
(15.36) 

According to the ας, definition and Mayer's Eq. (15.23), Eqs. (15.33) and 
(15.36) are identical. Eqs. (15.32), (15.35) and (15.36) show that the velocity fac-
tor λ can range between the following limits: 

o^<J*±l. 
\k-l 

In order to establish the correlation between the flow parameters and Mach 
number and drag parameters, the energy conservation law is used in the 
Eq. (15.34). From this equation: 

£ - l v 2 _a0
2 

2 a 2 a2' 

or, considering Eqs. (15.15) and (15.31): 

5>- = H - — Λ / 2 . (15.37) 
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According to the Mendeleyev-Clapeyron's equation of state [Eq. (15.1)] and 
Poisson's adiabaticEq. (15.14): 

Po = PoTo = [ Po 

P Ρτ \P) 

Substituting this Eq. (15.38) into Eq. (15.37) results in: 

AL = ( 5 L Γ ; ELJULY-1 

P 

(15.38) 

(15.39) 

A L = 1 + * z ! W > f - ' . (15.40) 

Eqs. (15.37), (15.39) and (15.40) are necessary correlations between the flow 
parameters and Mach number. Note, that if the values p, p, T and po, po, To are taken 
in the same cross-section, then, as follows from the definition of the drag parame-
ters, Eqs. (15.37), (15.39) and (15.40) are valid for non-adiabatic processes as well. 

Assuming M = 1 in Eqs. (15.37), (15.39) and (15.40): 

(15.41) 
T0 

k = 

_ 2 pcr 

k + ϊ p0 

1.3 

T„ 

To 

■ ( ■ 

for the air, k 

= 0.870, PcL 

Po 

2 V-i 

fc + l j ' 
PSL. 

Po w 
= 1.4. So for methane: 

= 0.628, ESL. 

Po 
= 0.546. 

For the air: 

Zk = 0.833, ^ = 0.634, ^ = 0.528. 
To Po Po 

This example shows that the critical flow can occur at relatively small pressure 
gradient. 

According to Eqs. (15.15), (15.3Γ), (15.32), (15.35) and (15.37): 

,2_ v2 _ v 2 a2 a2 _ „ 2 Γ * + 1 _ * + ! „ / , , * - l w 2 * =^Ύ = Ζΐ^ΐ^τ = Μ2^~ = ^Μ2\ΐ + ̂ Μ2\ , (15.42) 

and therefrom: 

Ö„ a α„ α„ T0 2 

2λ2 

k + \-(k-l)A2 
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Substituting this into Eqs. (15.37), (15.39) and (15.40) results in: 

Γ(Λ) = — = 1 - — A2, (15.43) 

T0 k + l 

1 

εα) = £- = (ΐ-!μ1*Υ\ (15.44) 
p 0 { k + l ) 

k 

π{λ) = ̂ Μ_ίζΐΛ-\ (15.45) 
Po I k + l ) 

and these are equations linking the flow parameters, drag parameters and velocity 
factor. 

4. Linkage between the flow tube's cross-sectional area 
and flow velocity 

Continuity equation Eq. (2.30) or (5.17) for the not-transient unidimensional 
gas flow is: 

<2m =/?v S = const . (15.46) 

Differentiating this equation, results in: 

vS dp + pS dv + pv dS = 0 , 

or: 

dS (dp dv 

S yp v , 

Differentiating the energy conservation law Eq. (15.30), results in: 

k pdp-pdp 

(15.47) 

k-l p2 - + vdv = 0, (15.48) 

and as in accordance with Eqs. (15.12) and (15.15): 

dp = a2dp, p = —pa2, 
k 

then, Eq. (15.48) can be formatted as follows: 

,2 dp 
a 2 ^ + vdv = 0. (15.49) 

P 
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Cancelling — from Eqs. (15.47) and (15.49), results in: 
P 

^=(±_vjA = _Mx_A = _±^M2y (1550) 
5 \v a ) v \ a ) v 

Eq. (15.50) shows that at M = 1, dS = 0. Therefore, extrema of the function 
S = S(x), where x coordinate is considered along the axis of the flow tube, corres-
ponds to the critical regime. At M < 1, 1 - M2 > 0, and the signs at dv and dS are 
opposite. It means that under the subsonic regime the flow velocity increases as the 
tube cross-section decreases. In a supersonic flow M > 1, 1 - M2 < 0, and the signs 
at dv and dS coincide. Therefore, in this case, the flow velocity increases as the 
tube cross-section increases. Thus, extrema 5 is a minimum, and the critical regime 
(M = 1) can occur only in the narrowest, so-called critical cross-section of the flow-
tube. The condition dS = 0 cannot correspond to a maximum at subsonic flow; ap-
proaching to Smoj results in decrease in flow velocity, i. e., the Mach number, which is 
smaller than one, will further decrease. If M > 1, then approaching to 5max results 
in acceleration of flow velocity. Therefore, the critical flow (M = 1) is possible only 
when S = 5m,„. 

Following Eq. (15.46), at S = 5ml„ = S„ the mass velocity pv reaches its maxi-
mum. An example of the SISmin graph is presented in Fig. 15.2. 

1 min 

1 

0 1 

Fig. 15.2 Fig. 15.3 

Eq. (15.39) indicates that at supersonic flow the increase in Mach number is 
accompanied by a drastic decrease in the gas density. So, in order for the mass con-
servation law [Eq. (15.46)] to be fulfilled it is necessary to increase the flow-tube 
cross-sectional area. A special note is that under the subsonic flow the correlation 
velocity vs. cross-sectional area is qualitatively similar to the incompressible fluid 
flow. Under a supersonic flow, this correlation is conceptually totally different. 

M 
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5. Gas outflow through a convergent nozzle 

Let's review the stationary adiabatic gas outflow from a tank through a con-
vergent nozzle (Fig. 15.3). As mentioned, adiabatic flow of a nonviscous gas is 
isentropic so that the immobile gas parameters in the tank (p0, To, po) can be consi-
dered as the drag parameters. From the energy conservation law [Eq. (15.30)], the 
gas velocity in any cross-section of the nozzle is: 

2fc PQ 1- P_Po_ 
Po P 

or, considering Poisson's adiabatic equation Eq. (15.14): 

2k p0 

* - l A > 

( \ 
P_ 
Po 

(15.51) 

The mass through-flow in the cross-section under review, under Eqs. (15.1), 
(15.14) and (15.51), is: 

Po 

P_ 

Po 
P0VS: 

_ SPo 2k 
jRT~0Vk-\ 

r \ 
P_ 

yPo. 

( \ 
P_ 
Po 

(15.52) 

This equation can be rewritten after naming the nozzle's output cross-section 
area as S\ and pressure outside the tank as p\. 

Qm 
V o 2k 

\fRT\\\k-\ 

ί \ 
A 

\PoJ 
ÜL 
Po, 

(15.53) 

For a study of Eq. (15.53) it is assumed: 

Po 

f \ 

Po Po 

k-l 

r t 

Clearly, 0 < p] < p0 or 0 < x < 1. Inside this interval y > 0 because (k +l)/k> 2k, 
and at its end, v =0. Therefore, the y(x) function has a maximum within the [0,1] 
segment. Equating first derivative to zero, results in: 

2 !-i * + l r £ = -*- -
dx k 

= 0, 
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from where the mass throughflow Qm will reach its maximum at: 

and: 

Q" 

x = ^ = 

SiPo 

k + l 

k 

* - l 

Wo Λ + \ 

(15.54) 

(15.55) 

Comparing Eqs. (15.54) and (15.41): 

jfc + 1 

k 
k-\ 

EcjL 

P 

Thus, as the external pressure p\ declines, the mass throughflow Qm increases 
from Q = 0 at p = po to Qm

max at p = pcr. At p = pcr the gas velocity in the nozzle's 
output cross-section is critical, i. e., v = vcr = aCT. Such an outflow is called critical. 
Any further decline in pressure/?! must, according to Eq. (15.53), result in a decline 
in mass throughflow contradicting the physical meaning of the process. Expe-

rience shows that at 0 < p{ < pcr, the mass 
throughflow remains constant, pressure and 
velocity in the output orifice remain 
equal {p = pcr, v = vcr) and the flow on exit-
ing the nozzle expands. Thus, there is a 
break between the pressure in the output 
cross-section pcr and the pressure in the am-
bient space p,. 

Therefore, the mass throughflow 
through the convergent nozzle at 
pcr < p, < p0 is determined by Eq. (15.53), 

and at 0< pi < pcr, by Eq. (15.55). The correlation graph Qm vs. — is shown in 
P 

Fig. 15.4. The dashed line corresponds to that part of Eq. (15.53) solution which 
does not have any physical meaning. The throughput consistency in the 
0 < px < pcr area can be explained as follows. When the gas flow velocity in the 
nozzle's outflow cross-section becomes equal to the sound velocity, pressure 
changes in the outside medium cannot penetrate within the nozzle. Indeed, these 
changes (pressure changes) propagate at sound velocity. Therefore, it cannot pene-
trate the cross-section where velocity is critical. A dynamic barrier is created which 
isolates the internal portion of the nozzle from external disturbances, and that is 
exactly what results in the consistency of the mass throughflow. 
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6. De Laval's nozzle 

The Laval's nozzle is composed of the narrowing and expanding portions and 
is used for achieving supersonic gas veloci-
ties. In analyzing the operation of De Laval's 
nozzle, the flow is considered as stationary 
and isentropic. Then, along the nozzle the 
mass conservation law is fulfilled in the for-
mat of Eq. (15.46), and the mass velocity in 
anycross-section, according to Eq. (15.52), is: 

pv-
S(x) 

Po 2k 

\k-\ 

x — I 

Fig. 15.5 

A 
Po 

2 i+1 
Λ7 / Y 

A 
{Po 

(15.56) 

This equation shows that pv = f £ 
VA)7 

, i. e., mass velocity depends only on the 

pressure distribution along the nozzle (flow-tube) and is not clearly dependent on 
its geometry. In other words, mass velocity is a universal function of pressure. 
Based on the analysis in the previous paragraph, max {pv) is achieved at p = pcr, 
i. e., under the critical regime, and: 

max(/Ov) = pcrvcr = 

Schematic of the correlation graph — is shown in Fig. 15.6. 

Therefore, if the area distribution law S(x) and mass throughflow Qm are given, it is 
possible to use Eq. (15.56) to find 

^ = / ( * ) , 
Po 

i. e., pressure distribution 

along de Laval's nozzle. Let's use the 
graph of Fig. 15.6 to find the solution. 
Suppose the shape of de Laval's nozzle 
(i. e., the S = S(x) function) is known. 
Suppose also that the mass through-
flow Qm is also known. Let's take any 
nozzle's cross-section x\ left of the 
cross-section x = xcr (Fig. 15.5). 
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Po 

Fig. 15.6 
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Then, according to Eq. (15.56), the value: 

Qm 

S(x,) 

is also known. In the correlation Eq. (15.56), this value of mass velocity has cor-

responding points 1 and la. At point 1, — > — , and at point la,-^- < — . There-

to Po Po Po 

fore, point 1 corresponds to the subsonic flow, and point la, to the supersonic flow. 
In the narrowing part of the nozzle the flow is speeding-up, and at x = x„ the flow 

cannot be supersonic. Thus, at x = xa only subsonic flow can exist in which only 

one value of — is realized. 
Po 

Let's now take a nozzle's cross-section X2 right of the cross-section x = xcr. 
Mass velocity in this cross-section is: 

S(x2) 

In Fig. 15.6, to the value pv = (pv)2 correspond the points 2 { S L L > ^ - — 
Po Po 

subsonic regime) and 2a ( - ^ - < ̂ - — supersonic regime). 
Po Po 

The flow can experience either increase or drag within the expanding portion 
of the nozzle, i. e., either subsonic or supersonic regimes can exist. Either one ' s 
occurring in reality depends on the pressure at the exit of the nozzle. Conducting 
these calculations for various cross-sections, it is possible to plot the pressure dis-
tribution curves along de Laval 's nozzle length. 

The above discussion indicates that at p e = po (where pe is pressure of the out-
side space) the gas in the nozzle is immobile. Decreasing pe results in the increase in 
the flow at the narrowing part of the nozzle and drag at the expanding part. In the 
process, velocity everywhere remains subsonic, and the pressure distribution is 
shown by the dashed-line in Fig. 15.7. As p e further declines (pe > p c ) , velocity in 
all cross-sections and mass throughflow increase. At p e = p c , the flow velocity in 
cross-section x = xcr equals to the sound velocity acr = vcr and gradually decreases 
in the expanding part of the nozzle. Mass throughflow reaches its maximum value 
Ο Γ " = Pcrvcficr > pressure in the expanding portion increases from p = pcr to 
p = pc (curve A in Fig. 15.7). A further decrease i n p e ( p p = pe = pc) results in the 
emergence of pressure jumps in the expanding portion of the nozzle (curve B in 
Fig. 15.7). In the segment xcr <x<xc the flow is supersonic, and at xc<x<l, 
subsonic. 
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\j er "C ΛΙ 

Fig. 15.7 

At p = pp the flow anywhere in the expanding portion of the nozzle is super-
sonic, and the pressure distribution is described by the curve C in Fig. 15.7. 

At pe< pp, the gas parameters (v, p, p, Τ) in the output cross-section of the 

nozzle are the same as at p = pp, and upon leaving the nozzle, the gas flow will 

expand. Leveling the pressure from the value pp to the value pe is accompanied by 
numerous expansions and contractions of the flow with the occurrence of oblique 
jumps. What results from the construction of curves A and C is that at Qm + β,Γ* 
the pressures pc and pp at the butt of the nozzle are determined only by the nozzle 
geometry and do not depend on backpressure. 

The regimes under which pc = pe and pp = pe are called computable regimes, 
the former being a regime of adiabatic compression, the latter, expansion. All other 
operating regimes of de Laval nozzle are not computable regimes. 

7. Gas-dynamic functions 

Eqs. (15.43), (15.44) and (15.45), i.e., τ(λ), ε(λ) and π(λ) are called gas-
dynamic functions. Detailed tables have been compiled for these functions which 
makes it much easier to conduct gas-dynamic computations. 

There are clear connections between gas-dynamic functions τ(λ), ε(λ) and π(λ): 

J = T(A) = ̂ , -Ρ- = ε{λ) = [τ(λφ, -^- = π{λ) = [τ{λφ[ε(λ)1ί. (15.57) 
T0 ε(λ) p0 p0 

Using gas-dynamic function, the mass throughflow can be represented by: 

Qm=pvS = -2-p0—aaS=paaStea). (15.58) 
Ρθ flcr 

Let's introduce a new gas-dynamic function: 
q{X) = Cte{X) (15.59) 
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and define the constant C so that q(\) = 1. Following Eqs. (15.54) and (15.59): 

C = 

and Eq. (15.59) then becomes: 

q{\) 1__( jfc + iy-i 

ε{\) ε(\) 

q(A) = \±p-rMÄ). (15.60) 

Considering that ε(1) = — , let's now present the q(A) function as: 

(15.61) 
^(1) vcr pcr p0 pcrvcr 

This equation shows that q(A) is a ratio of mass velocity and critical mass ve-
locity. 

The q(A) graph is shown in Fig. 15.8. It is important to note that for each value 
of q(A) * 1 corresponds two A values: one, under the subsonic regime, and another 
one under the supersonic regime. 
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With the introduction of the q(A) function, Eq. (15.58) can be rewritten as 
follows: 

& , = ^ l * 
RT0 V U + l 

k + l 

2 V-1 

q(A). (15.62) 
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The q(X) value in Eq. (15.62) should be taken in the same cross-section as S. 
For instance, when de Laval's nozzle is working under the design regime at x = xcu 

λ = 1, one should assume S = Scr. To illustrate possible applications of gas-dynamic 
functions, let's review de Laval's nozzle operation under the design regime. In this 
case: 

Kern = PcrVcr̂ cr = PoutputVoutput»Joutput, (15.63) 

where poutput, voutputare density and velocity in the nozzle's output cross-section, and 
Soutput ' s m e aTe& of this cross-section. Following Eqs. (15.62) and (15.63): 

"0U'PU' ou'pu'=<?aoulpul) = - ^ . (15.64) 
rcr*cr ôutput 

Let's assume thatpo = 107 Pa, 5cr = 0.5 cm2, R = 287 m2/s2*deg, adiabatic ex-
ponent k = 1.4. It is required to determine λ, M, p, T in the output cross-section of 
the nozzle. From Eq. (15.64), q(Aoa<pM) = 0.25. from the gas dynamic function tables 
fork = 1.4, q(λ) = 0.25 value: 

Ai =0.16; Mi = 0.146; τ(Α,) = 0.996; π(λλ) = 0.985; 
λ2 = \.95\ M2=2/94; τ(λ2) = 0.366; π(λ2) = 0.0297. 

As λ\ < 1 and λ2 > 1, the first regime corresponds to the adiabatic compression, 
and the second one, to adiabatic expansion. 

Using Eq. (15.57), results in: 

Γ, = τ(λι)Τ0 = 292°K, /?, = π(λ\)ρ0 = 9.85*106Pa; 
T2 = τ(λ2)Τ0 = 107°K, p2 = π(λ2)ρο = 2.97* 105Pa. 

And from Eq. (15.62): 

"~\(1) =1.18kg/s. 

8. Shock waves 

In the previous sections, flows where the distribution of all variables (p, v, h, T) 
is continuous in the gas are studied. There are, however, such situations where the 
flow variables experience discontinuity. These discontinuities occur along certain 
surfaces called the rupture surfaces. Intersecting the rupture surface, the flow va-
riables experience a leap, otherwise called a shock wave. 

In order to explain why such leaps occur, it is necessary to review a tube 
closed on one end by a piston and filled with a gas (Fig. 15.1). At the initial time, 
both the piston and the gas are immobile. When the piston begins to enter the tube, 
a disturbance (gas compression) arises in front of it. It is possible to consider the dis-
turbance propagation velocity in each cross-section to be equal to the local sound 
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velocity. The propagation of the piston-created disturbances can be considered as a se-
quence of sound waves continuously following one another where each subsequent 
wave is spreading in the gas disturbed by the previous waves. The gas compression is 
accompanied by heating, and the disturbance propagation velocity increases with in-
crease in temperature. Thus each subsequent wave will move relative to the tube's 
walls faster than the previous one. The waves will catch up with one another, pile up 
and form one strong compression wave - the shock wave. 

When the piston is moving within the tube, the under-pressured waves emerge 
behind it. But in this case the waves will not emerge with one another as a subse-
quent wave will be in a gas cooled-down region as a result of the previous wave, so 
the propagation velocity of the subsequent wave will be lower than that of the pre-
ceding wave. Thus, the under-pressured waves cannot form shock waves. 

Direct compression leap 

Spatially immobile shock wave whose front is perpendicular to the flow ve-
locity is called a direct leap (Fig. 15.9). In order to compute the direct leap, i. e., to 

establish a connection between the gas pa-
rameters before and after the leap, the mass 
conservation law, momentum law and 
energy conservation law are used. The mo-
tion is considered as stationary, and the 
process as adiabatic. Assuming the tube's 
cross-section is constant (5 = 1): 

1 

v, T, 

A 

A 

1 

2 

Ί «. . 
Pi 

Pi 

2 
Pivi =p2V2 = m. (15.65) 

Fig. 15.9 Here, m is mass throughflow per unit 
area of the tube; the subscript 1 relates to 

the gas parameters before the leap, and the subscript 2 relates to the gas parameters 
after the leap. The kinetic momentum law Eq. (2.58) in this case (i. e., when the 
gravitational force and friction are disregarded), as projected on Ox axis, is: 

m{v2-v\) = Px = p\ 

From the energy conservation law: 

-pi. 

k P\ 
k-lp, + -^ = -

FromEq. (15.65): 

m 

P\ 
ί 

k-\p1 

m 

A 

.ft.+.Ü = Po 2_ = 

2 k-lp 

(15.66) 

(15.67) 

k-\ 
EL 

U 
■El. : 
A , 

m 
(15.68) 

A 2 / 
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Canceling m from Eq. (15.68), results in: 

k-l 
A 
U A 

Pi) 
l A 
2 1 

1 1 

_ _ V ^ 2 A2y 
P\~Pi 1 1 

— + — 
vA> Ay 

(15.69) 

Multiplying Eq. (15.69) by ^ - : 
Pi 

k-l 
AA_i 
PI A 

A _ ! | £ . _ I 
P2 

or, after the reduction of the similar terms: 

fc + 1 Pl p2 =k + \ | P| p2 

k-l p2 p, k-\ p2 p] ' 
(15.70) 

Solving Eq. (15.70) relative to — results: 
Pi 

k + \p2 1 

A-AzlA 
P2 i l l 

k-l 

A 
A 

(15.71) 

or, solving it relative to — : 
A 

A 
A 

A: + l p2 + 1 / All A 
U _ 1 Ply 

The Eq. (15.71) or (15.72) functions 
are called the shock adiabatic or Gugonio's 
adiabatic impact. Following Eq. (15.71): 

A _> oo when — jfc + l 
-> and 

A 
Pl 

£ + 1 

" j f c - 1 

k-l 

when — —> oo. 

Fig. 15.10 displays both the Gugonio's 
adiabatic impact and Poisson's adiabatic 
impact. When reviewing these adiabatic 
shock waves, a number of questions arise. 

(15.72) 

Fig. 15.10 
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First, at p2l p{ = 0 , the ratio p2lp,, under Eq. (15.71), becomes negative, which 

has no physical meaning. Second, why p2lpl—^°° at p 2 / p , —»°° according to 

Poisson's adiabatic but according to Gugonio's adiabatic impact the maximum 
. · ,· ■ . k + l „ 

compression is limited to ? 

Let's consider the points a\ and ar2 in Fig. 15.10 (they correspond to a value 

— >1) and ß\ and ^2 (they correspond to a value — < 1 ) . According to Eq. (7.37), 

the entropy change is: 

s2 - i , = Cvln (15.73) 

It is evident in Fig. 15.10 that at — > 1 : 
P 

f \ ( \ 

- > " 
EI 

PtJn 
(15.74) 

where 
f \ 

Ei 

and 
( \ 
Ei 

P'Jn 

is pressure ratio as determined from the Gugonio's adiabatic impact, 

is pressure ratio as determined from the Poisson's adiabatic impact. 

Therefore, according to inequality Eq. (15.74): 

f \ f \k f \ ( \k 

- - p2 
Pi 

Vft7r 
Δ 

vAy 
Pi = 1. (15.75) 

From Eqs. (15.73) and (15.75) at ^ - > 1: 
A 

52 — 5, = Cv\n Ei\ \£L 

PIJAPI, 
>0. (15.76) 

Repeating the similar procedure for points^, and/?2 (i. e., — < 1), results in: 
P\ 

S2 — 5, = Cvln 
f \ ( \k 

Ρχ 

Px 
El 

tAAy 
<0. (15.77) 



UNIDIMENSIONAL GAS FLOW 263 

The inequalities Eqs. (15.76) and (15.77) show that the compression under the 
Gugonio's adiabatic impact is accompanied by entropy increase, and the under-
pressured process, by entropy decrease. Thus, entropy growth and irreversible 
transformation of the mechanical energy into heat occur in the compression shock 

wave. This prevents the unlimited increase of the — value. 
Px 

Entropy decline occurs in the under-pressured shock wave. This is physically 
impossible as it contradicts the second law of thermodynamics. I. e., the under-
pressured shock waves are impossible, and the part of Gugonio's adiabatic impact 

corresponding to — <1 does not have physical meaning. 
Px 

Let's now return to Eqs. (15.65), (15.66) and (15.67) and cancel pressures and 
densities from them. 

From Eq. (15.65): 

m m 
Px=—> Pi= — -

VX V2 

Substituting these expressions into Eq. (15.66), results in: 

m(v2-vl) = -Lpl
 1-p1=m 

Px Pi Px v, P2 v2 

(15.78) 

Using Eq. (15.67), excluding — and —values from Eq. (15.78) and, after 
Px A 

simple transformations: 

or, considering Eq. (15.35): 

v,v2 = 7 ^ 7 ^ · (15.79) 
k + lPo 

(15.80) 

Eq. (15.80) connecting the velocity values before and after the leap is called 
the Prandtl's ratio. It can be represented differently by: 

^ - * ^ = Λ]λ1=1. (15.81) 

Considering this equation, the following cases are technically possible: 

(1) λι > 1, λ2 < 1; (2) λ2 = λ2; (3) λχ < 1, λ2 > 1. 
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According to the continuity equation Eqs. (15.65) and (15.80): 

A = A = Ji_ = 2L = ^ . (15.82) 
A vi v,v2 acr 

Case (3) corresponds to the condition — < 1, i. e., the under-pressured leap. 
A 

As it was shown before, this case is a physical impossibility. Case (2), ρλ = p2, 

there is no leap. Case (1) corresponds to the condition — >1, i. e., the compression 
A 

shock wave. 
The conditions λ\ > 1, Xt < 1 mean that the flow in front of the leap is super-

sonic, and behind the leap is subsonic. 
Thus, compression leaps (direct shock waves) can occur only in a supersonic 

flow. When crossing through the direct shock wave, a supersonic flow converts to a 
subsonic flow. The inverse case is impossible. 

Let's analyze the changes in the gas parameters when it is crossing through a 
direct compression leap. 

Because the process is adiabatic, the drag temperature 7Όι before the leap is 
equal to the drag temperature T02 after the leap, i. e.: 

7οι = Γ02=7Ό. (15.83) 

Therefore: 

«01 = VA/?r0l = «02 = V^T02 = «0· 

To determine the pressure change, the Gugjnio's adiabatic impact Eqs. (15.71) 
and (15.82) are used. Then: 

k + \ p2 -1 
(15.84) ΔΡ = Pi~P\ =Pi 1 = f t - ! A 1 = 2fc 4 - 1 

Pt px pt *L±l_Ex k + \-{k-\)% 
k-\ px 

Replacing λ\ in Eq. (15.84) using Eq. (15.42), results in: 

^ = ̂ > , 2 - l ) . (15.85) 
Px k +1 

When M - » °° or A —> ,1 , — —» oo. 
V * - l P, 
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The density change, as follows from Eq. (15.82), is: 

Ap = P2~Pi = fi t 

A A 

Now Eqs. (15.433) and (15.83) are used to determine temperature changes. 
Then, considering Prandtl's Eq. (15.81), results in: 

k-l , , * - l 1 
T2 _ T2 T0 _ r ( ^ ) _ 1 k + l"2

 =' fc + 142 

k + l ^ k + l 
Ά τ0τ{ M) χ_^\^ ^ ^ 

When \ -> k + l 
k-l 

, l. e . , v —> vm 
T 
— —¥ o°. This does not mean, however, 

that Γ2-»°°, because at v—»vmax 7] ->0. When gas is crossing the shock wave, 

entropy increases. Thus, this process is accompanied by a change in the drag pres-
sure. As the drag temperature is maintained, then under the Mendeleyev-Clapeyron 
equation of state: 

Poi Aoi 

and: 

σ _ Pul _ Al2 _ A)2 A A 

Poi Aoi A A An 

Using Eqs. (15.44), (15.81) and (15.82), the latter equation can be presented as: 

e(^i) An 

k-l^ 

1 - k-l 1 
2 ^ 

(15.86) 

This equation shows that at λ\ > 1, always a < 1, i. e., P02 < Pou Therefore, the 
mechanical energy irreversibly turns into heat, exactly as it should with increasing 
entropy. 
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Oblique compression leap 

When the gas flow direction changes, for instance, at flow around a wedge 
(Fig. 15.11), so-called oblique compression leaps occur. The front of such leaps is 

inclined toward the direction of the overrunning 
flow. Clearly, in this case the mass throughflow 
through unit area of the frontal surface OA is 
equal to: 

p\v„i = p2vn2 = m, (15.87) 

where v„i, v„2 are velocity projections onto the 
normal to the leap plane. 

Let's write the law of kinetic momentum 
Eq. (2.54) in the following format: 

Fig. 15.11 

m(v2-vi) = n (p , - /> 2 ) , (15.88) 

where n is singular vector to the normal OA. 
The energy conservation law maintains its format-Eq. (15.67). 
Projecting Eq. (15.88) onto the plane of the OA leap and onto its normal, re-

sults in: 

V 2 r - V l r = ° . m(V2„ - Vln) = Pi ~ Pi . (15.89) 

where v2r, vlr are the velocity projections onto the leap plane. 

According to the Eq. (15.89) intersecting the leap plane, the tangential com-
ponent of velocity vrdoes not experience disruption, i. e.: 

As: 

then, substituting these functions into the energy conservation law [Eq. (15.67)], 
results in: 

k-\Pl 

Pi , V\n = 
k Pi , V2„ 

k-lp2 2 
Po 

k-\p0 k-l 2k 

1 2 
-v, (15.90) 

Comparing the equation groups [Eqs. (15.65), (15.66), (15.67) and Eqs. (15.87), 
(15.89) and (15.90)], these systems of equations are identical if the velocities vi, V2 
in equations of the direct leap Eqs. (15.65), (15.66), (15.67) are replaced by v[n, v2n, 

and the value Po 
k-lp0 

by 
* - l 

Po. 
Po 

k-l 2 

-~2TV' 
I. e., all equations for the direct 

leap remain valid provided the indicated replacement is done. 
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The Gugonio's adiabatic impact, i. e., Eqs. (15.71) and (15.72), maintains its 
format as these equations do not include velocities. Pradtl's Eq. (15.80), consider-
ing Eqs. (15.79) and (15.89), takes the following format: 

2k 

k + l 
ÜL· 

k-l 2 

"äT' 
2 k-

k + l 

1 2 
■v, . (15.91) 

Analyzing Eq. (15.91) shows that at an oblique leap always vj > V2, but cases 
vi > acr, V2 > aa can be realized. Therefore, as opposed to the direct leap, velocity 
behind the oblique leap can remain supersonic. Eq. (15.85) for the oblique leap 
takes the following format (see Fig. 15.11): 

Ap 2k 

k+l 

\ f 2 

\° J 

2k 

k + l 

2k 
-^s in 2 y0- l = — ( M f s i n ^ - l ) , 

k + l 

i. e., pressure change for the oblique leap is smaller than for the direct one. The 
smaller ß, the weaker the leap. 

9. Computation of gas ejector 

Gas ejectors use a property of a gas stream moving in a gas medium to carry 
along with it the particles of this medium. Thus, gas ejectors are a kind of pump 

widely used in industry. In an ejector, a 
high-velocity gas stream (the active gas) 
and a lower-velocity gas stream (the 
passive gas) are introduced through the 
separate nozzles into a mixing chamber. 
The mixing goes as far as to create an 
almost uniform flow at the end of the 
mixing chamber. The flow from the 

Fig. 15.12 

mixing chamber is directed to the output diffuser. The simplest case is when both 
active and passive gases have the same (or almost the same) composition. In other cases, 
both gas flows can have different physicochemical properties. These differences 
can result in chemical reactions at mixing of the flows (such as burning). An ejec-
tor (Fig. 15.12) includes four major elements: the nozzle 1 of the high-pressure gas 
(the active gas); the nozzle 2 of the low-pressure gas (the passive gas); the mixing 
chamber 3, and the diffuser 4. 

In this section the subscripts: 1 is used for the active gas parameters at the out-
put of the nozzle; 2, for the passive gas in the same cross-section; 3, for the mixture 
parameters at the output of the mixing chamber, and 0, as usual, for the drag para-
meters in the cross-sections under consideration. 

At the exit of the high-pressure gas stream from the nozzle 1, pressure pi is set 
up in the entry cross-section of the mixing chamber. This pressure is always lower 
than the low-pressure gas drag pressure pw.. Under this pressure difference, the 
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low-pressure gas enters the mixing chamber through the nozzle 2. The ratio of mass 
throughflows Qm\ and Qm2 of the ejecting and ejected gases depends on the ratio of 
nozzles' areas, gas densities and ejector operating regime. The ejection factor n: 

0,1 
(15.92) 

can vary within a wide range depending of the ejector's geometric configuration. 
The mass conservation law in this case clearly has the following format: 

or, according to Eq. (15.92): 

Öm3 = Qm\ + Qm2, 

0.1 
(15.93) 

The energy conservation law (disregarding the heat transfer through the ejec-
tor's walls) can be written as: 

0». 
a\ 

C.A+- + Qm; 
2\ 

c Τ+^ Qm 

2\ 

pi 3 n. (15.94) 

It is assumed from this point on that the thermodynamic parameters of the ac-
tive and passive gases, and their mixture, are the same, i. e., cp\ = cP2 - cP3, k\ = 
= k2 = h. Then, changing to the drag temperatures in Eq. (15.94): 

iimrOl + iim2-'02 — ümi'oi · (15.95) 

Talcing Eq. (15.92) and (15.93) into consideration, Eq. (15.95) can be written 
in the following format: 

Γ01+ηΓ02=(1 + η)Γ03. (15.96) 

Let's introduce a following parameter: 

T 

Then: 

^ = Zk=Vö5 (15.97) 

and, according to Eq. (15.96): 
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Disregarding friction about the cylindrical wall of the mixing chamber, the 
momentum law can be written as follows: 

ßm3V3 ~ ßmlVl ~ ß»2V2 = />Λ + P2S2 ~ p353 . 

Let's review the following equation: 

(15.99) 

Qmv + pS = Q„ v + -
pvj 

Using Eqs. (15.1), (15.32), (15.35) and (15.43): 

-£■ = RT = RT0T(Ä) = ̂ -al{\ - ^ λ 2 |, v = acrÄ. 
2k k + \ 

Then: 

Q^pS^a^U^ (15.100) 

From Eqs. (15.99) and (15.100): 

Qmfiu Λ + + ßm2«2, Λ + 
K 

= ßm3«3, 

Dividing this equation by ßm,a,„and considering Eqs. (15.92), (15.93), 

(15.97) and (15.98), results in: 

1 1 
Αι+ — + η4θ λ1+— =,](1 + η)(1 + ηθ) Λ + (15.101) 

The second equation, which together with Eq. (15.101) is used in the ejector 
design, is obtained assuming the cylindrical shape of the mixing chamber, i. e., from 
equation: 

5 3 = 5 , + 5 2 . (15.102) 

According to Eq. (15.62), the mass throughflow of the gas Qm is: 

Λ/Λ7Γ 

fc-l 

2 V+1 

k + \ 
q{X). (15.103) 

Solving this equation relative to 5, substituting the result into Eq. (15.102), and 
considering Eqs. (15.92), (15.93), (15.97) and (15.98), results in: 

V(l + w)(l + ng) 1 η4θ 

Pmqi^i) A>i9(4) Λ)2<7(Λ>) 
(15.104) 
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According to Eqs. (15.92), (15.97) and (15.103): 

„ ' M i W , (15.105) 

where or = —. 

Five Eqs. (15.97), (15.98), (15.101), (15.104) and (15.105), with 12 va-
riables: poi, Po2, Po3, 7bi, 7*02, 7o3, λι, λι, A3, n, or, 0, are required to design gas ejector. 
Therefore, if the parameters at the input of the mixing chamber are supplied, i. e., 
the poi, P02. 7*αι, 7o2, fa, fa values, and the n (or or) value, the indicated equations 
enable to determine the mixture parameters at the output from the mixing chamber, 
i. e., /?03, 7o3, A3 values as well as Θ and or (or n) values. Using the mixing chamber 
stream output parameters, it is possible to determine the stream parameters at the 
output from the diffuser. To perform this, it is necessary to know the diffuser's ra-

5 
tio of the output to input cross-section areas ß = — and the drag pressure loss fac-

^ 3 

tor within the diffuser σ = ^-. 
Pm 

As TM = Tm, from the condition Qm} = Qmi and Eq. (15.103): 

pmSiq(Xi) = p0Siq{Xi), 

/fo-
Having determined Λ4 from this equation and knowing pm, Tm, all remaining 

flow parameters at the diffuser's output can be determined. 

10. Transient-free gas flow in tubes1 

In order to derive equations describing gas transient-free flow in tubes the in 
kinetic energy law Eq. (2.75) should be employed, i. e.: 

J— ^ - dV + j^-vndS = jpF-vdV+fi>„vds +\pN,dV, (15.106) 

where, according to Eq. (4.43): 

pNi = pdi\v-W. (15.107) 

1 For the reader's convenience, some derivations presented in Ch. XI are repeated here. 
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The product pnv can be presented as: 

p„v = (-pn + r„)v = — ρν„ + τ*. (15.108) 

The values W and r* are the terms caused by the gas viscosity or, which is the 
same, by friction. Substituting Eqs. (15.107) and (15.108) into Eq. (15.106) and 
considering that under the Gauss-Ostrogradsky theorem: 

\pvndS = [div pvdV, 
s s 

j | - ( — dV+\^-vndS=\{pF-v-d\\pv + pd\\v)dV- —, (15.109) 

where: 

s 2 - r ' ώ 

dA 
— =jWdV=jr*dS 
ill ,, c 

is friction force capacity. 
Let's introduce a function: 

p = * or VP = -V/>. (15.110) 

In this case: 

pdivv-div/>v = -vVp = -/?vVP, 

and Eq. (15.109) can be rewritten as: 

\^\£}P\dV + \p]TvndS= \(pFv-pvVP)dV-^. (15.111) Jdt{ 2 ) 1 2 J dt 

Let's assume that: 

(1) the flow is transient-free, i. e., 

- Ξ 0 , div/?v = 0; 
σί 

(2) mass force has potential, F = VII. 

Based on these assumptions: 

(F - VP)/w = V(n - P)pv = Υ(Π - P)/w + (Π - P) div/τν = div [p(U - P) v], 
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and Eq. (15.111) takes the following format: 

[p~vn dS = fdiv[/>(n - PMdV - ~ , 
c 2 ,·> dt 

(15.112) 

or, based on Gauss-Ostrogradsky theorem: 

V 
- — Π + Ρ 
2 

pv„dS = -
dA 

dt 
(15.113) 

Now consider a tube's segment constrained between the cross-sections Si and 
52 and tube's side surface S3. Because: 

on Si, v„ = -v; on S2, v„ = v; and on S3, v„ = 0, 

Eq. (15.113) can be rewritten as: 
~ 2 λ 

- Π + Ρ pv„dS- -Π + Ρ pV„dS: 
dA 

dt 

According to the uniform mean value theorem: 

V -Π + Ρ pVndS: - — Π + Ρ 
V /avg5 

\PVJS: 
^v2 

-Π + Ρ 
J 

The mass throughflow Qm is: 

Q = — , 
m dt 

(15.114) 

Qm. (15.115) 

(15.116) 

where dm is mass of the gas that flowed through the cross-section during time dt. 
Under transient-free flow, Qm\ = Qm2. 

FromEqs. (15.114), (15.115) and (15.116)z: 

^ 1 dA V Π + Ρ V Π + Ρ 
A 

Qmdt 

dA_ 

dm 
= -h. (15.117) 

where Λ1-2 is the work of friction forces per unit mass. 
Suppose distance between the cross-sections Si and S2 is dx. Then at dx —> 0 

following Eq. (15.115): 

V -Π + Ρ + dh = -dTl + & + vdv + dh = 0. 
P 

(15.118) 

Eq. (15.118) is called the mechanical format of the energy equation or ex-
panded Bernoulli's equation. In order to use this equation, it is necessary to assign 
the p(p) function, i. e., it is necessary to assign a type of thermodynamic process 

2 For the convenience's sake, the subscriptavg is dropped. 
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that occurs while the gas is flowing in the pipeline. The process is assumed poly-
tropic with a constant polytropic curve exponent n = const, i. e: 

P P 
■^— =const or — P\ 

(15.119) 

According to Darcy-Weisbach equation [Eq. (11.13)], the head loss along the dx 
length is equal to: 

dh = X——, (15.120) 
Dig 

where D is the tube's diameter. 
Experiments showed that the correlations between λ and Re, and also be-

tween λ and relative roughness ε identified for fluids can be applied to the gas flow 
by disregarding the first approximation by the correlation λ vs. Mach number M. 
For turbulent flow it is acceptable to consider λ ~ const. Indeed, the dynamic vis-
cosity μ depends on the temperature as follows: 

where μ = μ0 at T = T0. Then, as Qm 

Rc = pvD = pvDfiÖ = 4 g m ^ = A 
μ μ0^Τ TtDß^Jr VT7' 

and A = const. 
The correlation λ vs. Re in the turbulent flow is at its strongest in hydraulically 

smooth tubes where λ is determined from Blasius equation: 
1 

1 T* -
λ = = , ~ Ts 

VRe VlOOA 
When the gas temperature changes by ±30 °C, the absolute temperature 

changes by ±10 %; therefore, λ changes by ±2 %. So, indeed, it is possible to con-
sider λ = const. Substituting Eq. (15.120) into Eq. (15.118) and, as usual, disre-
garding mass forces, results in: 

± + vdv + X^vl = 0. ( 1 5 . 1 2 1 ) 
p D 2 

Multiplying Eq. (15.121) by the p2 and expressing p through p using 
Eq. (15.119): 

P_ dp + (pvf — + Ä—^- = 0. 
v D 2 
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As /7v = const when D = const, then, integrating this equation in full differen-
tials with respect to x from x = 0 to x, with respect to v from v = vi to v, and with 
respect to p from p\top results: 

n /?, 
Π + \ ηΥη 

( n+\_ m-1 A 

P" ~ A " + ( ^ 1 η ϋ + / 1 ϋ ^ = ο. 
D 2 

As at D = const, pv = plvl, then: 

(15.122) 

v _p 

and Eq. (15.122) can be rewritten as: 

( ill n+\\ 

P" ~ A " 
n px 

» + 1/V-V 

For the gas trunk-lines: 

n p D 2 
(15.123) 

1 1 Pi 1 * 
— I n — « Λ , -n p 2D 

Let's review the following typical example. Suppose D = l m, x = I = 105 m, 

A=l.5*l0"2 , n= \.2,p=p2, -^- = 2. Then: 
Pi 

λ— = 0.75*l(T3, - l n - ^ - = 0.58. 
2D n p2 

Thus, the term with the logarithm in Eq. (15.123) can be disregarded com-
pared to the other terms. Assuming x = l,p = p2, from Eq. (15.123): 

n pl 

n + \ n/n \ 

And the mass throughflow is: 

A " -Pi" = λ 
d 2 

4 4 γ + ΙρΚΜ 

ιλ n-H _ 

A " ~ A 
v y 

(15.124) 

(15.125) 

This equation shows that Q ~ D 2 5 , i. e., the mass throughflow is strongly de-
pendent on the pipeline diameter. If n = k in Eqs. (15.124) and (15.125), it is possi-
ble to obtain equations for pressure and throughflow in adiabatic flow. In long gas 
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pipelines the flow is usually isothermal. In this case, n = 1, and the condition for λ 
is realized exactly rather than approximately. 

Substituting n = 1 into Eqs. (15.124) and (15.125): 

(15.126) 

Qm=: _ π \Px D5 

4V/>, λΐ {P1-P2} 

Eq. (15.126) indicates that pressure in an isothermal flow changes along the 
gas pipeline length under the parabolic law. 

11. Shukhov's equation 

If at the gasline intake temperature T\ differs from the ambient tempera-
ture Tamb, the gas flow will be nonisothermal. 
Let's review a pipeline segment (Fig. 15.13). dx 
Disregarding mass forces and considering 
Eqs. (15.20) and (15.24) and from the energy 
conservation law Eq. (4.18): 

CT + -
,.2\ 

- CT + -

Qm} 
\pqedv 

(15.127) 
Fig. 15.13 

The value \pqedV is the external heat supplied during unit time to the gas be-
V 

tween the cross-sections Si and S2. Disregarding the gas heat-conductivity, assum-
ing the heat is conducted only through the side surface S3, then: 

\pqedV = \q'edS = jq'edzdx, (15.128) 

where q"e is heat supplied during unit time through unit area of the surface S3, and 
χ = nD is the gasline perimeter. 

Substituting Eq. (15.127) into Eq. (15.126) and assuming dx —> 0, results in: 

/ ,.2λ 

CJ + — 
2 , 

= ^-7iDdx. 
Qm 

(15.129) 

The value qe can be represented as: 

q^aV^-TJ, (15.130) 

where or is heat conductivity factor, and T = T(x) is gas temperature in the gasline. 
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Disregarding changes in the velocity head along the gasline, from Eqs. (15.129) 
and (15.130): 

■T)dx. (15.131) 

Integrating Eq. (15.130) on the condition that at the gasline intake at A: = 0 T= T\. 

(T-
CpQJog 

-T 1 
- ^ = -art)x 

σ,-τν,.) 

or: 

T = Tmb+(Tl-Tmib)exp art) 

~CX)' 

(15.132) 

(15.133) 

Eq. (15.133) is Shukhov's equation. It was derived for calculating the cooling 
of heated oil pumped through a pipeline without considering heat released due to 
the hydraulic resistance. Shukhov's equation is totally accurate for ideal gas flow-
ing in the tube at a subsonic velocity. Following Eq. (15.132) at JC —> °° Γ —> Tasnb. 
The value x = x\ at which the gas temperature in the pipeline differs from Tamb by 
less than 1 °C, is determined from Eq. (15.132) as: 

* > ^ l n ^ ' a m b > 

art) 0.017amb 

The estimations using this inequality show that the x value is small, i. e., the 
flow in the gas pipeline can be considered as isothermal. 



CHAPTER XVI 

LAMINAR FLOW OF NON-NEWTONIAN FLUIDS 

The preceding chapters dealt with the flow of viscous fluids, i. e., fluids for 
which the association between the stress tensors and deformation velocity tensors 
has this format: 

Pik=(-p + Ädiw^)S,k+2ß£ik, (16.1) 

or for an incompressible fluid: 

pik =-p + Adiv v + 2μεΛ . (16.2) 

Thus, one major distinction of a viscous fluid is a linear correlation between the 
stress tensors and deformation velocity tensors. However, there exists a broad class 
of various media whose common property is the deviation from the generalized 
Newton's law Eqs. (16.1) or (16.2). Such fluids are called non-Newtonian fluids. 

Non-Newtonian fluids are very common in the petroleum industry. They in-
clude many heavy crudes, fuel oils, drilling muds and cement slurries, and polymer 
solutions. Many non-Newtonian fluids, such as drilling muds, have internal spatial 
structure. They can be composed of paraffin crystals in oil, clay particles in drilling 
muds, etc. Increased stress destroys these structures and the medium properties 
change. As a reminder, a mathematical function connecting stress and deformation 
type of a continuous medium is called rheological equation, and its coefficients are 
called rheological constants. For instance, Eq. (16.1) is a rheological equation for a 
linearly-viscous compressible fluid, and the λ and μ are rheological constants. 

Depending on the pressure, temperature and other parameters, the same fluid 
can behave as Newtonian or non-Newtonian. Thus, the selection of a model (rheo-
logical equation) for a given medium is a difficult problem. 

1. Simple shear 

Let's review the deformation velocity tensor: 

II ^12 ^13 

21 εΎί ^23 

31 εΎΙ £nj 

Mechanics of Fluid Flow 
by Kaplan S. Basniev, Nikolay M. Dmitriev and George V. Chilingar 
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3 yM 

Suppose ε , ,= ε22 = ε33 = 0, and out of the values εΧ2-ε2Χ, εη=εΆ, £· |3=£3ιοη^ 
one is different from zero. Such a deformation is called simple shear, and the cor-

responding flow is called the flow with a simple 
shear. Clearly, the simple shear is the simplest 
kind of a deformation. It was shown in par. 3.3 that 

the velocity γ of skewing a direct angle be-
tween the axes x, and ** is equal to 2εik. Thus, 
the skewing of the direct angle between the two 

Pig· '6-1 mutually ortagonal axes occurs in the flow with 
a simple shear, and the volume of the fluid particle under consideration does not 
change as εη+ ε22 + ε^ =div v = 0. 

Now some examples of flows with a simple shear are reviewed. 
1. Laminar parallel-plane incompressible fluid flow between two parallel 

planes (Fig. 16.1). In this case: 

Thus: 

dx 

ε„, = -
{dz ay 

;* dz 

■ 0. (16.3) 

= 0, ε„ 
dvx av^ 

dy dx 
1 ^ 
2 dy 

-0, ε =-
dy dz 

= 0. 

Therefore, the flow in question is a flow with a simple shear. The velocity of 
3v 

skewing the direct angle jcOy, or the shear velocity is γ = 2ε = —-. The tangential 
dy 

stress in the linearly-viscous fluid will be: 

τ = 2με„=μ 
dy 

■μγ. (16.4) 

2. Laminar incompressible fluid flow in a circular tube. Let's introduce a cy-
lindrical coordinate system Oxrcp so that Ox axis is coincident with the tube's 
axis. Then: 

vx = vx(r), vr = v9= 0. (16.5) 

Deformation velocity tensor components in a cylindrical coordinate system 
have the following format: 

ε =—-, ε 
" dx " 

£r„ =■ 

3v 
= —- ε 

" dr ' φ 

1 dvr | dv<p 

r d(p dr 

r d<p r ' C" 2{dr dx 

r 

1 
£ = — 
V 2 

<Η + ΐ 3 θ 
dx r dcp 

(16.6) 
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Substituting Eq. (16.5) into Eq. (16.6), results in: 

= 0, 

i. e., flow with the simple shear. The skewing velocity of the direct angle xOr is 
equal to: 

γ=2ε„ = 
dr 

and the tangential stress in the linearly-viscous fluid is equal to: 

(16.7) 

(16.8) 

3. Laminar parallel-plane rotational flow between two coaxial cylinders 
(Fig. 16.2). In a cylindrical coordinate system Oxr<p: 

vx = vr = 0, v9 = cor, (16.9) 

where, to = to{r) is angular velocity of the rotational 
flow. Substituting the velocity values of Eq. (16.9) into 
Eq. (16.6), results in: 

Fig. 16.2 

: ε„ = εψ 

j/3v_ 

= 0 ε = 1 ^ - ε 
' ε" 2dr' " 

■■e„=0, 

2\ dr ) 2 dr, 

(16.10) 
v 

r Ψ 

dr r 
i. e., the simple shear again. According to Eq. (16.10), 

the skewing velocity of the direct angle is: 

' 0 du) 
7=2εΓφ = Γ—, 

dr 
and the tangential stress in the linearly-viscous fluid is: 

τ = 2μεΓφ=μτ~ = μγ. 

(16.11) 

(16.12) 

Eqs. (16.4), (16.8) and (16.12) represented Newton's law of viscous friction, 

and at T = const, μ = const, where T is absolute temperature. The value φ - — 
is fluidity. " 

As indicated earlier, the flows with simple shear are the simplest flows. Thus, 
they are commonly used in viscosimetric studies, i. e., for the experimental confir-
mation of a fluid model and for the determination of its Theological parameters. 
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2. Classification of non-Newtonian fluids 

The classification of non-Newtonian fluids is usually based on a type of shear 

velocity γ correlation with the size of the tangential stress r. All non-Newtonian 
fluids can be subdivided in three classes. 

(1). The systems in which the shear velocity depends only on the size of the 
tangential stress, i. e.: 

Y=fV). (16.13) 

These are non-Newtonian viscous fluids or nonlinearly-viscous fluids. 

(2). The systems for which the shear velocity depends on the size of the tan-

gential stress as well as on time, i. e.: γ= f(T,t). 

If at a given γ value, stress in the fluid decreases with time, the fluid is called 
thixotropic, and if it increases, it is called rheopectic. The corresponding flow 
curves (correlations of tangential stress vs. shear velocity) are presented in 
Fig. 16.3. The arrows indicate the direction of the process (loading). 

thixotropy 
0 f 

rheopecty 

Fig. 16.3 

(3). The systems possessing properties of both solids and fluids and partially 
demonstrating elastic restoration of the shape after the stress removal (visco-elastic 
fluids): 

Μγ,γ',γ",...,γ{η))=/2(τ,τ',τ",...τΜ). 

In their turn, non-Newtonian viscous fluids can be subdivided into two groups: 
(a) fluids with the initial shear stress to, i. e., fluids which begin to flow (to de-

form) only after the tangential stress exceeds certain limit TO; 
(b) fluids that do not have the threshold (initial) tangential stress ro. 
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For non-Newtonian fluids, exactly the same way as for the Newtonian fluids, 
the concepts of viscosity and fluidity can be formally introduced, namely: 

A, 
T γ 

7 Ma 
(16.14) 

As opposed to the Newtonian fluids, the values μα and φα are not constants 
but functions of the tangential stress r. Thus, these values are called apparent vis-
cosity and apparent fluidity. 

If the flow curve (Fig. 16.4) is known, it is 
easy to find apparent viscosity μα graphically. 
Indeed, at point A: 

τ AB 
Ma = — = — = tanar. 

" Y OB 

B γ 

Fig. 16.4 

the change of the stress sign, i. e.: 

Following Eqs. (16.13) and (16.14): 

<Pa=<PaCr) = ^~- (16.15) 

The sign of the shear velocity must change at 

f(r) = -f(~T). 

It means that the function / ( r ) is an uneven function. Then, according to 

Eq. (16.15), the function φα(τ) is even. 

A viscous-plastic fluid or the Bingham-Shvedov fluid is an example of fluids 
with the initial shear stress. Its rheological equation is: 

0, 

τ-τη 

n 

r<r„ 

r>r„ 
(16.16) 

where r0 is the initial shear stress, η is the plastic viscosity factor. The visco-

plastic model is very common in descriptions of the behavior of drilling muds. 
Examples of fluids without the initial shear stress are so-called "exponential 

fluids", i. e., fluids whose rheological equation is: 

The k value is called "consistency", and the n is the flow exponent. 

(16.17) 
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For the fluids with different flow exponents n, the k value has different dimen-
sionality. It means that k does not have clear physical 
meaning, and Eq. (16.17) is just a convenient ap-
proximation. When n < 1, the fluid is called pseudop-
lastic, and when n > 1, it is called dilatant. At n = 1, 
Eq. (16.15) turns into Newton's law of friction, i. e., 
into the usual equation for the Newtonian viscous 
fluid, and k coincides with the dynamic viscosity fac-
tor. The flow curves are shown in Fig. 16.5, where 
curve 1 corresponds to the Newtonian fluid, curve 2, 
to a dilatant fluid, 3, to a pseudoplastic fluid and 4, to 
a visco-plastic fluid. 

In the following discussion only the non-Newtonian viscous fluids are dis-
cussed. 

Fig. 16.5 

A> 

3. Viscosimetry 

Viscosimetry (or viscometry) is a combination of techniques for the determi-
nation of fluids' viscosity properties, i. e., plotting the flow curve. Viscosimetry of 
Newtonian fluids is just the determination of their viscosity factor. For non-
Newtonian fluids viscosimetry determines the type of correlation between the shear 
velocity and the tangential stress, and numerical values of constants (rheological 
parameters) of this correlation. 

Most common methods to determine viscosity of fluids are capillary and rota-
tional viscosimeters. 

A conceptual scheme of the capillary viscosimeter is shown in Fig. 16.6. 
There, 1 is the reservoir containing the studied 
fluid; 2 is the calibration measuring tube; 3 is the 
pressure sensor. By changing the fluid's height in 
the reservoir or pressure po over the free fluid's 
surface (if the reservoir is hermetically closed), it 
is possible to record the experimental correlation 
of the pressure gradient Api within the /-length 
tube and the throughflow Q, i. e., the correlation 
Δρ; = f{Q). The gradient is the sum of the gra-
dient Apm over the measurement segment lm and Fig- 1 6 · 6 

the gradient Apinp over the input segment of the length linp (lm= I- linp) 

Apt = Apinp + Apm. 

Repeating the experiment with the same diameter tube of the length L gives 
the curve ApL =f(Q), and again: 

z_z 

ApL=Api:i+ApV 
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where Δρ^ρ is pressure gradient over the /-long input segment of the tube linp, 

and Δρ^° is pressure gradient over the length L - linp. The diameters of both tubes 

and conditions of the fluid's entering these tubes are the same. Thus, at equal 

throughflows, Apinp = Δρ^, and the value: 

Ap = ApL-Ap, =Ap^-Apm 

is pressure gradient over the L-l segment for an infinitely long tube. A segment of 
an infinitely long tube is a segment of the real tube where the end effects are not 
noticeable. 

A conceptual scheme of the rotational viscosimeter is shown in Fig. 16.7. 
When the external cylinder 1 rotates at the angular velocity Ω, tangential stresses 

arise in fluid 2. Rotations generate torque M on the 
internal cylinder 3. Acted upon by this torque, the 
cylinder 3 rotates at the angle Θ. This angle depends 
on M and on the elastic parameters of the thread 4. 
Measuring this angle, the acting torque M is deter-
mined. Experimenting with different Ω values, the 
correlation M = /(Ω) can be derived. As in the case 
of the capillary viscosimeter, end effects arise near 
the fluid's free surface and cylinder's bottom 2. To 
eliminate them, the experiment can be repeated with 
different fluid's level h. The subsequent procedure is 
similar to that for the capillary viscosimeter. Fig. 16.7 

Thus, using the capillary viscosimeter, the function: 

(16.18) 

can be derived, and using the rotational viscosimeter, the function: 
Ω =/2(M). (16.19) 

Both functions are good for an infinitely-long tube and an infinitely-high gap. 
In order to find rheological parameters of a fluid from Eqs. (16.18) and (16.19), it 
is necessary to have the theoretical format of these expressions for various types of 
non-Newtonian fluids. 

4. Fluid flow in an infinitely-long round tube 

Let's review transient-free laminar fluid flow in the segment of an infinitely-
long tube of the length / and radius a. The tangential stress distribution along the 
tube's radius is given by Eqs.1 (10.33) and (10.34), i. e.: 

r 
τ = -τα 

a 
21 

(16.20) 

1 The derivation of (10.33) and (10.34) shows that the result does not depend on the viscosity parameters; 
therefore, they are valid also for the non-Newtonian liquids. 
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dv 
In our case, vx = v = v{r) and — < 0 ; therefore, from Eqs. (16.7) and (16.19): 

dr 

7 = ^ = -ί(τ). (16.21) 
dr 

With this sign selection f(r) > 0 . Substituting Eq. (16.20) into Eq. (16.21), re-

sults in: 

dr a 

which is a differential equation for the determination of the fluid's velocity v(r). 
In order to be able to use Eq. (16.22), the following needs to be kept in mind. 

In a non-Newtonian fluid flow, the presence of the tube's wall can cause the emer-
gence in the fluid of special directions although the fluid is isotropic at a distance 
from the wall. For instance, a potential distribution of the colloidal particles' orien-
tation or the orientation of long polymer chains is affected by the presence of the 
wall. Anomalous flow next to the wall can also occur due to a physico-chemical 
interaction between the fluid and wall material. The flow anomaly arising near the 
wall is called wall-adjacent sliding. The substance of the anomaly is in a drastic 

Change of „ e £ ,al„e i„ ,he wail-ad,,*,,, ,ayer „ ,he conlnuous v e , « i t y di8tH-
dr 

bution along the radius. 
When the wall-adjacent sliding is present, Eq. (16.22) is valid only within the 

0<r<a-h, where h is the thickness of the wall-adjacent layer where anomalous 
flow is occurring. Usually, h « a; so, instead of studying the wall-adjacent layer 
flow it is possible to assign the value v(a) = v(a - h) on the tube's wall, i. e., veloci-
ty value different from zero and equal to velocity at the boundary of the wall-
adjacent layer. 

It is possible to show that the introduced fictional velocity is a function of the 

tangential stress τα. Velocity v(a) = v(ro) = s(Ta) is called the sliding velocity. By 

integrating Eq. (16.22): 

)dv = v(r)-s(Ta) = -)f[raΛΐτ = j ]f{r)dT. (16.23) 

The fluid's throughflow through the tube's cross-section is equal to: 

Q = 2n^v{r)rdr. 
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Following Oldroyd, let's integrate this expression partially. Then, considering 
Eqs. (16.22) and (16.23): 

Q = 2K -v(r) -n[r2—dr = na1s(Ta) + π \r2f\ τα— \dr = 

3 r» 

na1s(Ta) + 7^r \T
2f {τ)άτ 

(16.24) 

Eq. (16.24) is the main relationship for the determination of the slip velocity. 
The presence of the slip velocity and the type of s(Ta) correlation can be experi-
mentally established with a capillary viscosimeter. For this purpose, correlations 
Δρ(β) should be determined for several tubes of different diameters. The results are 

plotted in coordinates —r-, τα=—α (Fig. 16.8). Different curves relate to expe-
l s 11 

riments with the tubes of different diameters. 

_2_ 

Fig. 16.8 

JL 

Fig. 16.9 
T* 

Following Eq. (16.24): 

Q =s(Ta) 1 T\ 
3 - V 

' « 0 

πα a 
\τΊ{τ)άτ 

Q 

s(ra) 
+ F(t.). (16.25) 

If s(ra) = 0, the slippage is absent, = F(Ta), and the curves in Fig. 16.8 

de-plotted for the tubes of different diameters should coincide. If s(Ta) # 0 (—r 

pends on F(Ta) and a), Fig. 16.8 is valid. Drawing in Fig. 16.8 cross-sections by 

the curves (Ta) = const, it is possible to plot the graph of Fig. 16.9, where the lines 

1, 2 and 3 correspond to different ta values. Eq. (16.25) indicates that at 

(ra) = const, the value —j is linearly dependent on —; at that, s(ra) is the tangent 
m a 
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/(*.) = -2 

of inclination angle of lines 1, 2 and 3. After the function s(Ta) is determined, 

Eq. (16.25) is used to determine the function: 

Πτα) = -,)τ1ί{τ)άτ, 
Ta 0 

wherefrom, after differentiation: 

,_ 1 d[TlF(ra)] 
τ\ dra 

Therefore, the function ro can be experimentally determined by a capillary 

viscosimeter. This, however, requires extended experimentation and differentiating 
the function derived from the experiments. As it will be shown later, the task of 
determining parameters of the / ( r ) function is significantly simplified if the ana-
lytical type of the function is known. 

5. Rotational fluid flow within an annulus 

Let's analyze the transient-free laminar rotational flow of a fluid between two 
coaxial cylinders of an infinite height. The fluid is flowing along the circular trajec-
tories whose planes are perpendicular to the axis of the cylinder (Fig. 16.2). It was 
shown in section 1 that such flow is a flow with a simple shear, and the shear ve-
locity is determined from Eq. (16.11). Let's identify within the flow an element of 
radius r, thickness dr and height h. The force attached to a cylindrical surface of the 
radius r is clearly: 

F\ = 2nrhx, 
and the force attached to a cylindrical surface of the radius r + dr is: 

F2 = 2%(r + dr)h{x + dr). 

The identified element is revolving at a time-constant angular velocity co. 
Therefore, the sum of the force momentums attached to this element is equal to ze-
ro, i. e.: 

F2(r + dr) - F^ = 2nh[(r + dr)\z + dr) - Λ ] = 0. (16.26) 

After simple transformations and switching to the limit at dr —» 0 from 
Eq. (16.26): 

^ = - 2 ^ , (16.27) 
T r 

or, after integrating: 

T = ^r. (16.28) 
r 

To determine the integration constant C, M is denoted as the friction force 
momentum on the internal cylinder of radius /?, and of the unitary height. Then: 

M=2nR{CiRi, (16.29) 
where r, is the friction stress at the radius R,. 
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From Eqs. (16.28) and (16.29): 
M 

R{ 27ät; 
M 

and from there C - — , Eq. (16.28) assumes the following format: 
In 

τ = -
M 

2m1 (16.30) 

Substituting Eqs. (16.10), (16.11) and (16.30) into Eq. (16.13), results in 

da> 
r— = / 

dr 2πτ2 (16.31) 

i. e., the differential equation of the fluid's rotational flow in a ring gap is obtained. 
For integrating Eq. (16.31), the internal cylinder is assumed to be immobile, 

and the external one is revolving at an angular velocity Ω. Then, taking the wall-
adjacent slippage into account, it is possible to present the flow velocity on the 
surface of the internal cylinder of the radius /?,: 

v(Rd = s(Td, (16.32) 
and for the flow velocity on the surface of the external cylinder of the radius Re: 

v(Re) = nRe-s(Te), (16.33) 

where xe is the friction force stress on the surface of the external cylinder. As the 

angular velocity co = — , then from Eq. (16.31): 

3 r r R; J 
M 

2m-2 
dr^ 
r 

or, accounting for Eqs. (16.27), (16.30) and (16.32): 

7. 1 r'r ,i \dr 
- = ■ * — + - / ( * ■ ) — · 
r R. 2 r T 

(16.34) 

Eq. (16.34) gives the velocity distribution law with respect to the radius. Based 
on that equation and Eq. (16.33): 

R. R, 2JJK ' τ 
(16.35) 

6. Integral technique in viscosimetry 

The integral technique in viscosimetry involves the beforehand advance assign-
ment of the functions of type / ( r ) and s(Ta) based on some physical assumptions. 
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It enables the computation of integrals in Eqs. (16.24) and (16.35) and derive, consi-
dering Eqs. (16.20) and (16.30), theoretical functions of the type: 

Q = Q{Ap,au a2, ...,<Xn) (16.36) 

for the flow in a tube and: 

Ω = Ω (M, or,, «2, . . · , On) (16.37) 

for the flow in an annulus, where a\, a-i, ..., an are rheological parameters [the con-

stants in functions f(r) and s(ra) ] of the fluid under consideration. 

Suppose the experiments with capillary viscosimeters produced n pairs of val-
ues Qj, Apj. Substituting these values into Eq. (16.36), results in n equations for the 

determination of the numerical values of n rheological parameters <X\, Cfe, ..., a„. 
Similarly, having obtained with rotational viscosimeter n pairs of values Ω ; , Μ. 

and substituting them into Eq. (16.37) results in n equations for the determination of 
the fluid's rheological parameters. Clearly, the numerical values of the rheological 
parameters produced using either viscosimeter type must be similar. If this is not 
so, it means that the assumed f(r) and s(Ta) values do not describe the behavior 

of the fluid under consideration. 
Several simple examples: 

I. A viscous Newtonian fluid. Under Eq. (16.12), for such a fluid: 

μ 
(16.38) 

Substituting these expressions into Eq. (16.23), and considering Eq. (16.20), 
results in: 

v(r) = \τάτ-
μτα i 

a 
j \ 

r<, 
aAp 

V a 
(16.39) 

j 

From Eqs. (16.23), (16.38) and (16.20): 

_ 7BX f 3 Ä H T . 
Q = —\rdT=—-* 

7m 

Jß 
Ap. (16.40) 

As at the flow in a horizontal tube ~-pFx =-—, then it is easy to see that 
ox I 

Eqs. (16.39) and (16.40) are identical with the earlier-derived Eqs. (9.29) and 
(9.31). The a and / values for the capillary viscosimeter are known, so following 
Eq. (16.40), in order to determine the value of the dynamic viscosity factor, it is suf-
ficient to make one measurement of Ap and Q values. 
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For the rotational viscosimeter, under Eqs. (16.30), (16.34) and (16.38), the 
velocity distribution law within a ring gap is obtained as follows: 

1 i τ,-τ Μ v i f . τ,-τ M 
- = — d r = - — = 
r 2μ \ 2μ Απμ 

J 1_ (16.41) 

Taking Eqs. (16.30), (16.35) and (16.38) or assuming r = Re in Eq. (16.41), gives: 

^ = Ω = Μ J 1_ 
Re 4πμ 

The Ri and Re radii are known, so, as with the capillary viscosimeter, it is 
sufficient to make one measurement of the M and Ω pair of values to determine μ. 

II. Bingham-Shvedov fluid. For such a fluid, according to Eq. (16.16), 

0, 
f(T) = {T-Ta 

T<Tn 

, τ>τ0, s ( O = 0. 
(16.42) 

Substituting this equations into Eq. (16.23), results in: 

v(r)=-)f(T)dT + -)f(T)dT = -)^^dT+-)f(T)dT--

= ^ ^ | / ( r ) r f , 
2 ^ D τ. i 

According to Eq. (16.42): 

when τ < τ0, — \f(r)dT= 0, 

(16.43) 

(16.44) 

and when τ>τ0,— ]f(T)dr = — Ϋ—^-άτ = - α ( Γ ° Γ ° ) 2 . (16.45) 

Following Eq. (16.20): 

7„ a τ„ a 
(16.46) 

where ro is the radius at which T = TQ. Then, from Eqs. (16.43), (16.44), (16.45) 

and (16.46): 
( \2 

when 0 < r < r0, v(r) = ^ . | l — s · 
2η { a 

v(r) = ατα 

~2η~ 
ι~& X-L 

\ 2 

when r0<r<a. 
" V Ό7 

Thus, when 0 < r < r0, v(r) = const, i. e., there is a "flow core" where all par-

ticles are moving at the same speed, i. e., as a solid (Fig. 16.10). 



290 CHAPTER XVI 

It can be shown that the presence of the flow core is the property of any fluid 
with the initial shear stress and not only of 
Bingham-Shvedov fluid. By substituting 
Eq. (16.42) into Eq. (16.24): 

*<t\*ZllLdx = Q-—A 

πα}τ 

4η 

\τ 1 r4 ^ 
l__._2.x__o. 

3r0 3 < y 

(16.47) 

E 
vjn 

■z? 

Fig. 16.10 

or, considering Eqs. (16.20) and (16.46): 

Q = 
Ml Δρ 

877/ 
._Λ + Ι_Ζ 
3 α 3 α4 

(16.48) 

Eqs. (16.47) and (16.48) are different formats of Buckingham equation. At 
r0 = r0 = 0 , it becomes Poiseuillle's Eq. (16.40). Eqs. (16.47) and (16.48) indicate 

that to determine the constants r 0 and η, two pairs of Ap and Q numerical values 

must be measured. 
Let's now turn to Bingham-Shvedov fluid flow in the ring gap of a rotational 

viscosimeter. As Λ, < Re, then under Eq. (16.30) always Te < τ,. Thus, until 

Te < Ti, i. e., according to Eq. (16.30) M < 2 /_?/Γ0 = M0, there is no shear, Ω = 0, 

and the fluid between the cylinders is immobile. Suppose now r; > r0 > Te. As 

along the radius, M = const, following Eq. (16.30): 

Rfr^rX^R^T, 

where r0 is the radius at which τ = τ0. Then, it is evident that at R, < r < ro T > T0, 

and at ro< r < Re, T<T0. Therefore, in the interval /?,· < r < ro there will be the 

shear flow, and at ro < r < Re, the fluid will behave as a solid, i. e., it will be revolv-
ing at a constant angular velocity. Substituting Eq. (16.42) into Eq. (16.34) and 
considering Eq. (16.30), gives: 

r 9 J 

T--T_.dr___L 
4̂ 77 

1 1 2 i % — log — , at Rt<r<rü, 

Ω = 
M 

4πη 

1 1 2 R,} 
=const at rn<r<R„. 
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According to Eq. (16.30), r0 = M 
2πτΓ, 

, i. e., with the increase in M, the ro value 

(hence, the volume involved in the shear flow), increase. At ro > τε, the shear flow 
involves the entire interval /?,·< r < Re, and under Eqs. (16.30) and (16.35) the ex-
ternal cylinder angular velocity is: 

Ήί 1 '(T -T0dr _ M 
Ατυη 

1 _\_ (16.49) 

It can be seen from Eq. (16.49) that in order to determine the η and r con-
stants, it is necessary to have two pairs of M, Ω values. 

III. Exponential fluid. According to Eq. (16.17), for an exponential fluid: 

r=f(r) = \jj\ s(ra) = Q. (16.50) 

Substituting Eq. (16.50) into Eqs. (16.23) and (16.24), and considering Eq. (16.20), 
respectively: 

r n + \ \k 
T 

n + \ yikl) 

Q = πα \ — \ = 
3n + l {kj 3n + l 2kl) 

(16.51) 

i. e., the equation for the velocity and throughflow distribution for the flow in a 
round tube. 

For the rotational viscosimeter, according to Eqs. (16.30), (16.34) and (16.38): 

7 ~ 2 U 
'τΛ M 

2nkR? 

2 

Ω = n T, 

2 U 
1-

T. 

vT,v 

M 
2nkR, ί J 

EL 
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IV. Reyner's series. It is assumed that for a fluid with the initial shear stress ro, 
the function fir— ro) can be expanded into an exponential series. As this function is 
uneven, the series can include only uneven exponents of (τ- TO). Therefore: 

r=f(^-TQ) = 
o, τ<τ0, 

| X ( r - r 0 ) 2 * + \ r> r 0 , 5 ( 0 = 0 
(16.52) 

where fo*, ro are the fluid's Theological parameters. 
Substituting Eq. (16.52) into Eq. (16.23) and applying the procedure identical 

to that used with Bingham-Shvedov fluid, results in: 

a ^ K α ^ Κ 
ΛΓ) = Λ-Υ-Ε^(τ τγ*"=1γΛ-Τ™ !_* = const, 0<r<r0 , 

2m&k + V ' °' 2tik + l ' { a) ° 

*r)=^S£|fc-*o) -(w0) J= 
a^ b. u V 1 "k - 2*+l l _ i 

2*+2 / \ 

1- r0 < r < a. 

These equations show that the velocity distribution along the radius is qualita-
tively similar to that shown in Fig. 16.10; i. e., in this case there is the flow core of 
the radius ro too. 

Substituting Eq. (16.52) into Eq. (16.24), gives: 

3 n 

β=^-Σ^-Ό)2' 
la 

{Ta-T0f { 2 r 0 ( r o - r 0 ) | r0
2 

2*+4 2k + 3 2k + 2 
(16.53) 

In the case of a flow within the ring gap, as with Bingham-Shvedov fluid, 
when T, < τ0, there is no flow. At M > M0 = 27r/?,2ro, the shear flow occurs in the gap: 

R,<r<r„ M 
2πτη 

and at r0<r<Re, the fluid revolves at a constant angular velocity, i.e., as a solid. 

At M >27iRe τ0, the shear flow involves the entire area /?, <r<Re. According to 

Eqs. (16.34) and (16.49), at τ,- > τ > ze: 

\2* + 1 

r 2 S J 
-άτ, R. <r<r0, 
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1 " T' (T — T ) 2*+ 1 

- = Ω = -Yjjt γ 0>—dT =const, r0<r<Re. (16.54) 

At τβ > TO the velocity distribution within the entire range (/?,< r < Re) is de-
termined from Eq. (16.54), where the interval must be taken within the TO, T, range, 
and the external cylinder's rotation angular velocity is: 

n = -5>*F—^— d T - (16·55) 

The Theological Eq. (16.52) includes n + 2 Theological parameters: To, &o, b\, 
... , bn.lt is clear from Eqs. (16.53) and (16.55) that to determine these parameters, 
n+2 measurements of Δρ, Q or M, Ω pairs' values must be made. 

7. Hydraulic resistance factor 

Let's take a fluid with the rheological equation: 

γ = /(τ,αι,α2, ...,«„), (16.56) 

where, as previously, at,a2,...,an are the rheological parameters. Similarly to the 
considerations utilized in the derivation of Darcy-Weisbach's Eq. (5.30), the pres-
sure gradient Ap is maintained over the length / within the tube of diameter d 
represented by the equation having the following format: 

Δρ = φ(1,ά, p,w,a:,a2, ...,«„). (16.57) 

Assuming that the parameters d, ?, w have independent dimensionalities, using 
the procedure similar to that utilized in the derivation of Eq. (5.30), from 
Eq. (16.57) we obtain: 

d 2 

where: 

λ = Α(Πι,Π2,...,Πη), (16.58) 

and the values: 

Π = a> 
' dßp*W

s 
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are the conformity criteria. Eqs. (16.56) and (16.58) indicate that the number of the 
conformity criteria is equal to the number of the fluid's rheological parameters. 

Let's for example study the Bingham-Shvedov fluid. In this case, Eq. (16.57) 
becomes: 

and Eq. (16.58): 

where: 

Αρ = φ(1,ά,ρ,η,τ0,\ν), 

Λ = Λ(Π„Π 2 ) , 

Π, 
pwd 

Π = ° 
pw 

(16.59) 

(16.60) 

To arrive at an analytical representation of Eq. (16.59), Eq. (16.47) is first ana-
lyzed. Using Eq. (16.20), it can be written as follows: 

_ 2 παΛΑρ 
Q = m■ w = — — 

tofl 
4 2/ rn 1 

3 β Δρ 3 a Ap 

Λ4 

(16.61) 

or: 

d2Ap 

32/7/ 3 d Ap 3 dAp 

Λ4 

(16.62) 

It is evident that in order to arrive at an equation of the Eq. (16.37) format, 
Eq. (16.62) must be solved relative to Ap. Suppose: 

Ap = ^ z 

and substitute this expression into Eq. (16.62). After performing some simple trans-
formation 

where: 

z<_V+!=o, 
3 3 

, 6 . Tnd 

A rjw 

(16.64) 

(16.65) 

Using a standard technique for the solution of biquadratic equations, the roots 
of Eq. (16.64) are: 
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c-2a 
l ± . l 

3b 
(c - a)(c - 2a) 

(16.67) 

where: 

b = \ja2 + 4cT^\ + lja2 -4aA - 1 = 

Vl + Vl-tt"4 + Α/Ι-Λ/Ι-ΟΤ"41 = α5 A 
(16.68) 

(16.69) c = or+J-fc + ar2. 

Let's take the square root in Eq. (16.67). According to Eq. (16.69): 

3b = 2{c - of - 2d, 

and, after simple transformations: 

3b _ (c + a) 
(c - a)(c - 2a) (c-a)' 

According to Eq. (16.65), a > 1; so, following Eqs. (1.68) and (1.69), b and 
and c are real numbers, and b > c and o a . Therefore: 

1 — 
3b _(c + a) 

(c - a)(c - 2a) (c - a) 
< 0 , 

and the roots 23,4 are complex quantities. 
Now let's take the roots z\,i- A direct check with Eq. (16.68) shows that: 

b3-3b-2a=0, 

and from Eq. (16.69): 

c = or + , 

Substituting this into Eq. (16.66), provides: 

Z i > = - l ± . l -
:V2fc 

(16.70) 

(16.71) 

Following Eqs. (16.68) and (16.69), when a=\,b = 2, c = 3 and: 
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where from, — > 0 when a > 0. Thus, the functions b(a) and c(a) monotonously 
da 

increase as a increases and 
:42b 

< 1 . 

Thus, the roots z\,2 are real numbers. To further analyze them, let's rewrite 
Eq. (16.71) using Eqs. (16.63), (16.65), (16.68) and (16.70): 

M = I i T n + ^ l 
4/ d J 

1 + , i ± . i -
cJ2b y 

(16.72) 

Passing to limit in Eq. (16.72) at r0 —> 0, results in: 

M = 4 ^ L L ( 1 ± I ) 
4i d r 

Eq. (16.61) shows that such passing to limit must result in Poiseuillle's equa-
tion. Therefore, in Eqs. (16.71) and (16.72) the "+" sign should be selected; so 
finally: 

z = - l + . l 
:j2b 

or, considering Eq. (16.63): 

Λ 4 l 

3 d 
l + . l 

c ^ 
(16.73) 

As follows from Eqs. (16.65), (16.68) and (16.69), c - c(A). Comparing 
Eq. (16.73) with Darcy-Weisbach equation, results in: 

λ = \Βφ(Α), 

where B = —^- is a dimensionless parameter: 
pw 

φ(Α) = c 1 + J l -
:42b, 

Therefore, the hydraulic resistance factor at the Bingham-Shvedov fluid flow 
is a function of two independent conformity criteria A and B. At that, B coincides 
with Π2 in Eq. (16.60) and A = ΠιΠ2. 



LAMINAR FLOW OF NON-NEWTONIAN FLUIDS 297 

The numerical values of the <p{A) function are listed in the following Table. It 

1 Tjw 
can be shown that at — = ——>0.1, the^(A) function can be approximated with 

A T0d 

the accuracy of below 2 % by the following equation: 

<p(A) = 4 1 + J l 

\IA 

0.0000 
0.0005 
0.0010 
0.0020 
0.0030 
0.0040 
0.0050 

<H.A) 
3.00 
3.14 
3.20 
3.29 
3.36 
3.42 
3.48 

MA 

0.0060 
0.0080 
0.0100 
0.0120 
0.0140 
0.0160 
0.0200 

tfA) 
3.53 
3.63 
3.71 
3.79 
3.87 
3.94 
4.08 

1/Λ 

0.0250 
0.0300 
0.0350 
0.0400 
0.0450 
0.0500 
0.0600 

#A) 
4.25 
4.40 
4.55 
4.70 
4.84 
4.98 
5.25 

\IA 

0.0700 
0.0800 
0.1000 
0.1500 
0.2000 
0.2500 
0.3000 

φ(Α) 

5.52 
5.78 
6.29 
7.54 
8.76 
9.97 
11.18 

The next example will be an exponential fluid. For such a fluid, Eq. (16.54) has 
the following format: 

Ap = (p(l,d,p,k,n,w). 

Accepting the d,p,w values as parameters with independent dimensionality, 
using Π-theorem, and considering that under Eq.(16.17) [k] =MTn~2U\ the result is: 

Δρ = / 
( d"pw 2-n\ 

n, 
I 2 —pw 
dH 

and from there: 

Ä = 2f 
( d"pw2-^ 

n>— .— 

The non-dimensional conformity criteria are the values: 

d"pw2-" , 
n, — = Re , 

k 
where Re' is an equivalent of Reynolds' number for a linearly-viscous fluid. To 
find out the type of the λ = 2/(n,Re') function, let's review Eq. (16.51) or: 

3n + ll~2j \2kl) ' 
(16.74) 
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And, solving this equation relative to Δρ: 

Comparing this equation with that of Darcy-Weisbach, results in: 

A = rJ3n±lV_k_ 
{ n ) pw2~nd 

8. Additional remarks to the calculation 
of non-Newtonian fluids flow in pipes 

The main equation describing the transient-free flow of viscous fluids in pipes 
are: 
continuity equation: 

Q = wS = const, (16.75) 

Bernoulli's equation: 

ζ,+-^- + α ,^ - = ζ 2 + ^ + α2-^- + /ιι 2, (16.76) 
Pg 2g Pg 2g 

Darcy-Weisbach and Weisbach equations: 

2 2 
I w w 

Κ = λ-—,Κ=ζ—. (16.77) 
dig 2g 

The continuity equation does not include viscosity parameters of the fluid; so it 
is identical for both linearly-viscous and any non-Newtonian fluid. Bernoulli's 
equation, which is the mechanical energy conservation law, also preserves its 
format, although the Coriolis' factors a and loss amounts h\-2 will differ from those 
of the linearly-viscous fluids. Indeed, the a value is determined by the velocity dis-
tribution law along the tube's radius, whereas the loss Ai_2 depends on the medium 
viscosity parameters. The Darcy-Weisbach's and Weisbach's equation are derived 
based on the general concepts of the dimensionality theory. Thus, the format is pre-
served, but the correlation of the hydraulic resistance factor λ and local resistance 
factor ζ vs. the conformity criteria are distinct for each type of the non-
Newtonian fluid. 

Thus, all techniques of the pipeline designing based on Eqs. (16.65)—(16.77) 
can be used for computing the flow of non-Newtonian viscous fluids in considera-
tion of the above remarks. 
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TWO-PHASE FLOW IN PIPES 

The flow of two-phase (multi-phase) fluids in pipes is very common for al-
most any branches of oil and gas industry. In drilling, this is the flow of aerated 
drilling muds and cement slurries, and removal of the cuttings. In oil and gas pro-
duction, this is the gas lift, the flow of gas-condensate, water-oil and gas-water 
mixtures in the well. Multi-phase flows can also be present in the field gathering 
lines. 

The phase is a portion of the uniform system bounded by a separation surface. 
For instance, a mixture of the oil and water is a two-phase system: liquid-liquid. 
Mixtures of the gas and condensate or the gas and oil are two-phase systems: gas-
liquid. The mixture of the water, oil, and gas is a three-phase system. 

The phase can consist of one substance, such as the water. Such a phase is 
called a single-component phase. If the phase comprises several chemical sub-
stances, for instance, a mixture of hydrocarbon gases, it is called multicomponent. 

True solutions (salts in water, gas mixtures, etc.) are single-phase multicom-
ponent systems. 

The following assumptions are usually made when describing the motions of 
multiphase media: 

(1) The size of inclusions or nonuniformities in a mixture (individual parts of a 
nonuniform system) are much larger than distances between molecules, 
lengths of the molecular free pass, etc. In other words, the inclusion sizes 
are such that the techniques of the mechanics of continuous medium are 
applicable to each individual part of a nonuniform system. 

(2) The sizes of the above inclusions are much smaller than the distances over 
which macroscopic parameters of the mixture or phases significantly 
change, i. e., these sizes are much smaller than the characteristic sizes of 
the system under consideration. 

These assumptions enable a description of the multiphase media motions using 
the multispeed continuum model. The multispeed continuum is an aggregation of N 
continuums, each of which is related to its component (phase) and fills-up one and 
the same volume occupied by the mixture. Therefore, at each point of the multis-
peed continuum there are N densities, N velocities, etc. 

Mechanics of Fluid Flow 
by Kaplan S. Basniev, Nikolay M. Dmitriev and George V. Chilingar 

Copyright © 2012 Scrivener Publishing LLC 
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1. Equations of the conservation laws 

The general concepts used in Chapter II to derive the conservation law equa-
tions for a single-phase medium, and the models of a multispeed continuum can be 
utilized for writing the equations of the mass conservation law, momentum law and 
energy conservation law for each component of the mixture. 

The integral representation of these laws is as follows: 
The mass conservation law: 

Ι^ψ^-dV+\aiPivmdS = JX JHdV, i = 1, 2,..., N (17.1) 
v öt s v ;=i 

The momentum law: 

\*ψ1αν + \α,ρ-ν,νιΑ8 = 
v °" s 

N 

\a.,p., F.dV + fi>n,dS + | £ Pj,dV, i = 1, 2, 

(17.2) 

N 
v ;=l 

The energy conservation law: 

f-^dV + laAEiVindS = 
v at s 

_ N 

= ja^FmdV + fi>niVidS + J2X</V- \q\n)dS, i = l, 2,..., N, (17.3) 
V S V 7=1 S 

v.2 

E, =M, .+-^. 
' ' 2 

In Eqs. (17.1)—(17.3), i is the number of a phase (component), ai > 0 is the 

fraction of the mixture's volume occupied by the phase at a given point, and the 
rest of the symbols are the same as in Chapter II. It is clear that: 

2>,=1- (17.4) 

The Jn value is (due to the possibility of phase transformations) the intensity 

of mass transfer from they* to i* component per unit of the mixture volume per unit 
time. 

The Pji is the impulse exchange intensity between the/h and ίΛ components of 
the mixture. The Ejt is the energy exchange intensity between the / h and i* com-
ponents of the mixture. 

Following the conservation laws: 

^ - ^ , ^ Ο , ^ , Λ Ε Ο , Ε - ^ Λ ^ . (17.5) 

It is necessary to note here that / is the phase number. 
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By summing up Eqs. (17.1)—(17.3) according to i and considering Eq. (17.5): 

| | : ί > , Α ^ + | ί > / Λ V « = 0, (17.6) 
V « » 1=1 s i=l 

J^Z W ' d v + ji>,/>, v,-vtf = |Σ«,Α^^ + fE^„,^, (17.7) 
V " ' i'=l i i=l V 1=1 5 1=1 

V " ' 1=1 S 1=1 V i=l 
(17.8) 

5 i=l s (=1 

The mixture density pm is determined as: 

Α.=ί>,Α. (17-9) 
i = l 

and the mass- averaged velocity, from equation: 

v = — X W * . (17.10) 

2. Equations of two-phase mixture flow in pipes 

To derive these equations, we will make the following assumptions: 
(a) The flow is transient-free; 
(b) Pressure and temperature of both phases are the same and are constant in 

the tube's cross-section; 
(c) Relative motions of the components within the phase can be disregarded; 
(d) In each cross-section, the conditions of local thermodynamic equilibrium 

are maintained for a mixture volume crossing the cross-section per unit 
time; 

(e) Only one mass force (the gravitational force) is active. 
With these assumptions, Eqs. (17.6)—(17.8), by considering Eqs. (17.9) and 

(17.10), become: 

j|>,Av,v„,<iS=0, (17.Π) 
v ,·=! 

j|>,/>, wJS = jZ P8*V + SZ~Pn*dS, (17.12) 
5 i=l V '=· S i=l 

fcaiPiE?indS = \Pmv~gdV + fc'p^dS -fetf'dS. (!7-13) 
S i=l V S i = l S i=l 

Let's take as the surface S the tube's segment inclined at angle Θ to the vertical 
and delimited by the cross-sections Si, S2, and the side surface S3 (Fig. 17.1). To 
make the derivation more general it is assumed that the surface S3 is permeable and 
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that continuously distributed gas-liquid mixture is entering the tube through this 
surface. According to Fig. 17.1, in the cross-sections Si, S2, S3: 

at S,: Vi=-nvi, n = -ei, anl=an2=0, orn3 =—1, i' = l, 2; 

at S2: v,=nv,., η = β3, anl=an2=Q, a„3=l, i = l, 2; (17.14) 

at S, -nv,, n = -e\anX+eian2, arn3=0, i = 3, 4. 

Here and thereafter, the subscripts "3" and "4" indicate, respectively, the gas 
and liquid phases of the mixture entering the tube through the S3 surface, em are 
basis vectors of the coordinate axes, anm = nem are cosines of the angles between 
the coordinate axes and the normal. 

Substituting Eq. (17.14) into Eq. (17.11), results in: 
|(α,/>,ν, + a2p2v2)dS-J(a,p,v, +a2p2v2)dS = j(a3p3v3 + a4p4v4)dS. (17.15) 

s2 s, s3 

To transform Eq. (17.12), the tensor of the surface stresses should be analyzed. 
It is assumed that: 

p?=-aiPSu+T», tf =tf , t f =0 . (17.16) 
And, considering Eq. (1.31), from Eq. (17.16): 

Pni = -OCjPn + Tni, Tni = Clfff,,, (17.17) 

where zf" are components of the tensor of additional stresses applied to the i* 
phase. 

It is assumed earlier that pressures within the phases are the same. Therefore, 
from Eq. (17.17) and considering Eq. (17.4), results in: 

N 

τ'™=Υτι™, Tkm = Tmk, T " = 0 . 
(17.18) 
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Note that the summing-up on the repeating subscript is assumed in 
Eq. (17.18). 

From Eqs. (17.14) and (17.18): 
at S,: pn =ejp-e\T31 -e2Tn; 

at S2: ~pn=-~e3p + ~e\Tn+~eiTi2\ (17.19) 

at S3: pn =-(eianl+e2an2)p + elT
2'a„2+e2T12anl+e3(Tnanl + T2}anl). 

By projecting Eq. (17.12) onto the tube's axis OJC, and considering Eqs. (17.14) 
and (17.19): 

\{a,p,v2 + a2p2v
2

2 )dS - ]*(«,/?, v,2 + a2p2v\ )dS = 

S2 f - - f S' f f ( 1 7 · 2 0 ) 

= \pmg-e}dV+ \pdS- jpdS+ jrdS, 

where: 

τ = τηαηΧ+τηαη2 

is a projection of additional stresses onto the axis 0z. 
To transform Eq. (17.13) functions similar to pni*Vi are reviewed. From 

Eqs. (17.14) and (17.17): 

a t V Pni*v>=aiPvi> / = 1> 2> 

at S2: Pni*Vi=-aipvj, i = \, 2; (17.21) 

at 5 3 : ~Pni*vi=aiPvi-2an,anlT^vi, a2
nl+a2

n2=\, / = 3, 4. 

Now substituting Eqs. (17.14) and (17.21) into Eq. (17.13) and assuming that 
the heat inflow through cross-sections S\ and 52 can be disregarded, yields: 

j(aiplElvl +a2p2E2v2)dS - ^α,ρ,Ε,ν, +a2p2E2v2)dS -
Si S, 

- j(a3p3E3v3 + a,p4E4v4)dS = jp„v-gdV + |/>(α,ν, +a2v2)dS -
S) V S, 

r r „ {\T2Tj 
J />(<*, v, + a2v2)dS + J[(«3v3 + or4v4)p - 2arBla„2(r^v3 + rA\)]dS -

s, s3 

s, f-i 

Eqs. (17.15), (17.20) and (17.22) include the following integrals: 

\ftdS, jftdS, \f2dS, jf3dV. 
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Taking limit between cross-sections Si = S(z) and S2 = S(z + dz), gives: 

\fidS-jfidS =±-\f{dSdz, 
s2 s, J az s 

lim 
(17.23) 

lim \f2dS = \f2dZdz, \imjf3dV = jf}dSdz, 

where χ is the wetted perimeter of tube's cross-section S. 
Switching in Eqs. (17.15), (17.20) and (17.22) to limit at dz ->0 and consi-

dering Eq. (17.23), results in: 

— {(α,ρ,ν, + a2p2v2)dS = j(a3p}v, + α4ρΛνη)άχ, (17.24) 
dzs χ 

j - j(aiPlvf+a2p2v
2
2)dS = \pm~TeidS~\pdS + \idX, (17.25) 

dz 
J(«iPAV< + a2p2E2v2)dS - \(α3ρ,Ε3ν3 + a4p4E4v4)άχ = 

jpmvgdS-—j(aivi +a2v2)pdS + $(α}ν}+α4ν4)ράχ-
s az s z 

-2\{τι
2\ + τ\\)αη,αΛάχ- \qMdX, 

(17.26) 

where: 

<?(") = Σ^ι(«)· 

It is assumed when calculating iqin)dx and γαίχ that χ is the perimeter of 
x x 

the tube's cross-section. 
Let's review the integrals in Eqs. (17.24)-(17.26). It is clear that: 

fapPidS^G.,, ( = 1, 2, fepividz = J„ i' = 3, 4, (17.27) 
s x 

where G, is the mass throughflow of the i'th phase, 7, is the mass inflow of the /* 
phase through the surface S3 per unit length. 

Further: 

ja^vfdS =v, fappidS = ViGn i = \, 2, (17.28) 
s x 

where v, is some average value of velocity v,. 
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Following the assumption (b), the pressure, density and internal energy of 
a phase are uniformly distributed over the tube's cross-section. So, considering 
Eqs (17.9) and (17.27): 

jpmg~e3dS = gzpmS, PmS=pljaldS + p2ja2dS, jpdS^pS, (17.29) 

\aiPiEiVidS =\aiPiU,+\ \v,dS 
..2 Λ 

u, +- G,, i = \, 2, (17.30) 

\aivipdS = [aipivi — dS = — G,, i = \, 2, 
J J Pi Pi 

(17.31) 
S S ' " Pi Pi 

where gz is the projection of the g-force acceleration onto the tube's axis, v, avg is 
some averaged value of the velocity v, different from v,. 

According to Eqs. (17.10) and (17.27): 
\p~v~g~dS = g~ei \{αχρχνλ +a2p2v2)dS = gz(G, +G2). (17.32) 
s s 

Assuming the inflow through the surface 53 is axisymmetric, and taking 
Eq. (17.27) into account, results in: 

fafiEftdx = £,. fapftdz = 
( v,^ 

J„ «=3,4 , (17.33) 

[aiPipdX=[aipivi-P-dz = -P-\aipividz=-P-Ji, i = 3, 4, (17.34) 
J J 0. 0 J 0 

\τχ
ί
ινμπ{αη2άχ = τ]2νι\αηλαη2άζ = τ?ν{ \ήηγοο$γ!1άγ = 0, ι = 3, 4, (17.35) 

X X 0 

where R is tube's radius, γ is the angle between the normal n to the surface 53 and 

the basis vector e\ (Fig. 17.2). 
It is also evident that: 

Jefr = W r . \q™dX = q%x, (17.36) 
X X 

where ravg, q^g are average over the perimeter τ and 

qM values. 
Let's now denote S, part of the tube's cross-

section area occupied by the / phase. Then: 
Fig. 17.2 S, = ja,,dS, i = 1, 2, (17.37) 

s 
and the mass throughflow G, can be presented as : 

G, = fcp^dS = p,w, for, dS = p^S, = p,Qt, i = 1, 2, (17.38) 

where νν,, ß, are average over the section velocity and volume throughflow of the 
/* phase. 
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Supposing the phase velocity changes slightly over the tube's cross-section, it 
is possible to assume that: 

V· = V , 2 a v g = M ' , 2 . ' = 1 > 2 · (17.39) 

Under the assumption (b) that the pressure and temperature are uniformly dis-
tributed over the tube's cross-section. So: 

P\=Pi= Pg. Pi = A = Pi< «, = «3 = V u2=u4=un (17.40) 

where the subscript "g" denotes the gas phase, and the subscript "/" denotes the 
liquid phase. Besides, let's denote: 

G i = Gg, G2 = Gi, J4 = Ji,W\=Ws,W2 = Wi. 

From Eq. (17.37): 

5, =Sl = \aldS = &. 

(17.41) 

(17.42) 

The value φ is called true gas-content. 

But as, under Eq. (17.4), Oi = 1 - <X\, then: 

S2=S, = \a1dS = (\-(p)S. (17.43) 

From Eqs. (17.38), (17.40)-(17.43), average velocities of the phases can be 
represented as follows: 

G, w. =——, w, =■ 
* <pPS (l-p)p,S 

Following Eqs. (17.29), (17.40), (17.42) and (17.43): 

Pm=Wt+(\-9)Pi-

The tangential stress on the tube's wall is assigned as1: 

ravg= -γίφρχ + (i - Ψ)ρΜλ = - ^ τ -+^L 
φρ (1-φ)ρ, 

and the heat inflow is assigned as: 

q{:l=k(T-T^), 

(17.44) 

(17.45) 

(17.46) 

(17.47) 

1 The format of equation Eiq. (17.46) is determined by the fact that it is used in this format for the laboratory 
determinations of λ„. 
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where 7^,, is ambient temperature, km is hydraulic resistance of the mixture, k is 

heat transmissibility through the tube's wall, T\s mixture's temperature in the tube, 
and Tamb is ambient temperature. Substituting integrals in Eqs. (17.27)-(17.36) and 
Eqs. (17.46) and (17.47) into Eqs. (17.24)-(17.26) and considering Eqs. (17.39)-
(17.41) and (17.45) and after simple transformations results: 

— - = J
m> 

dz 

dp__ __·_£?! 

dz~Pm8z S2 dz 
Gf 

φρ, <Χ-φ)ρ, 853 
Gf 

φρ. ν-φ)ρ, 
(17.48) 

dp_ 

dz 
K+-

.2\ 

) 
G + V f |C ί 2λ 

S 2 / 
•>s

 + 
f 2 λ 

2 , 
J,+ 

where: 

Gm - Gg + Gi, Jm = Jg + Ji 

are total mass throughflow and inflow: 

P , P 
h =u +—, h, =u,+ — 

P. Pi 

(17.49) 

are enthalpy of gas and liquid phases. 
Together with true gas-content <p, which, according to Eq. (17.42), is equal to: 

p = -L = - 5 - , 

s s 
(17.50) 

the theory of two-phase flow employs the througflow gas-content ß, which is by 
definition equal to: 

ß = Q, 

Qs
+Q, 

(17.51) 

where Qg and Qi are volume throughflows of the gas and liquid phases. From 
Eq. (17.44): 

Q = ^ = qM,S, Q,=^ = (l-<p)w,S. 
Pg Pi 

(17.52) 
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Following Eqs. (17.51) and (17.52): 

φ β w, 

By substituting Eq. (17.52) into Eq. (17.52): 

Ps {P* Pi 

v1 

As the mixture composition entering the tube through the side surface S3 is the 
same as that flowing in the tube, then following the condition (d) of the local 
thermodynamic equilibrium that: 

P* 

^ + A V ' 
Pt P 

-ß-
\P* P'J 

\-[ 

(17.53) 

Gm = Gg+ Gi, Jm=Jg + Ji. Therefore, it is possible to obtain from Eq. (17.53) after 
simple transformations that: 

G. =- ßpfim -. G,=-
ßP,Gm 

J = 

ßpg+(l-ß)p, ßpg+(l-ß)p, 

ßp J ßp J 

ßpg+Q-ß)P,' ''βρ,+α-βϊΡ,' 

(17.54) 

and from Eqs. (17.44) and (17.54): 

■ *> „ | , w , = j 1 - * * - a ,. (17.55) 
Sq\ßpg+{\-ß)pl\ S{\-<p)[ßpg+{\-ß)pl\ 

The densities of the gas and liquid phases are found from equations of state: 

ρ=ρΛρ,Τ), ρ,=ρ,(ρ,Τ). (17.56) 



TWO-PHASE FLOW IN TUBES 309 

The true gas-content φ and hydraulic resistance factor λ„ are found from em-
pirical equations. Suppose: 

1> = lKß,KeM,Frm,WeM,pji), (17.57) 

K = ^m(^Rem,Frm, Wem,p,ju,£), (17.58) 

where Rem, Frra, Wem are Reynolds, Frud's and Weber's numbers for the mixture 
calculated from these equations: 

Re _gAy,+fl-fl/w 
ßßs+(\-ß)ßl ' 

[((Wg+{\-(p)w,f 
Fr„ = , 

gD 
iPi-Ps Wem=2D[<pws+(l-<p)wl] 

u 

The above nomenclature is as follows: ratio of phase densities p = pgl pt; dy-

namic viscosity factors of gas and liquid media ßg, μ,; normalized viscosity of the 

fluid phase μ = μ,/μ„; water viscosity μη; surface tension σ; tube's diameter D; 

relative roughness of the tube's walls ε. 
In order to determine the inflow Jm, a function of the following format needs 

to be assigned: 

Jm= Jm(p,Pamb), (17.59) 

where pamb is ambient pressure. 
The system of 15 Eqs. (17.45), (17.48), (17.54)-(17.59) — called thereafter 

"system A" — includes 23 unknown variables: Gm, Gg, Gi, Jm, Jg, Ji, p, T, pm, pg, pi, 
wg, wt, v4, v3, λ„, β, φ, hg, hi, pg, μι, σ. 

The values ß, hg, hi, pg, μι, σ can be computed using the corresponding thermo-
dynamic procedures as functions oip, Tand the composition of the two-phase mix-
ture. Squared velocities V4, V3 are usually much smaller than the corresponding en-
thalpies and can be disregarded. So, the system A is a closed system and contains 
15 equations with 15 unknown variables. 

Utilizing Eqs. (17.45) and (17.54)—(17.59), it is possible to cancel from 
Eq. (17.48) 12 unknown variables Gg, Gi, Jm, Jg, Jt, pm, pg, ph wg, wt, λη, φ, which are 
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decisively on indecisively enter the equations. Therefore, the system A can be reduced 
to the system Eq. (17.48), which includes p, T, Gm values as unknown variables. 

3. Transformation of equations of two-phase 
flow in pipes 

For the transformation of the equation system Eq. (17.48), it is necessary to in-
troduce the following functions: 

Φ, = 
1 . ♦ - £ 

φρ. (\-φ)Ρι 
. Φ ^ Α , ^ - ^ Φ . [z = *D, S = ^D2\ 

Φ3 = 
ί 2λ 
h + - ^ 8 2 v J 

G
s
 + 

f 2Λ 

h,+-L 

' 2 
G,, «D4=A,y,+V/. (17.60) 

%=gfim-nDk{T-T^). 

Using Eqs. (17.54)—(17.57), it is possible to represent Eq. (17.60) as: 

0 , = G ^ , ( p , r , G J , Ψ, =/>„*,-
(1-φ)β2ρ8+φ(\-β)2

Ρι 

S2[ßpg+(\-ß)Pl] ' 

^=Gm^3(P.T,Gm),^ (17.61) 

1 

ßp +{\-ß)Pl 
ßP> 

..Ϊ\ 

κ+-
w„ 

+ d-ß)P, 
( 2\ 
h,+ — 

Substituting Eqs. (17.60) and (17.61) Eq. into Eq. (17.48) (v2 « h v] « h,): 

* = φ 2 _ ^ = φι_^(σ»ψι), 
j i. j 2. j v /ft 1 - " 

dz dz dz 

dz dz 
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wherefrom, upon differentiating and substituting dGm 

dz 

dp ) dz m dT dz 

= K> gives: 

' dW Λ 

3G_ 

φ αζ d/ ίχζ 

3Ψ,1 
3 mdG. 

(17.62) 

Solving the system Eq. (17.62) for — and — , and taking the first 
dz dz 

Eq. (17.48) into consideration, yields: 

<fe~A 
Φ 2 - ^ ^ „ mMmJ 

3Ψ3 

φ + φ _ / 
3Ψ3 

3G„ 
G ^ 

" dT 
(17.63) 

rfr _ 1 
φ +φ -j 
ψ 4 τ ν 5 J m 

^ 3 + G m 
ΘΨ3Ί 
3G. ■ A 

1 + G . ^ 
n dp 

^l-GJn 
V m y 

G ^ ] 

where: 

1 + G . ^ 
dp 

3Ψ-. 3Ψ, 3Ψ, — 2 — G » * " ' » J 3 

ar m ar dP 

(17.64) 

Within the constraints of our assumptions, Eqs. (17.63) describe the flow of 
two-phase mixtures within perforated tubes. The tube's inclination angle is ac-
counted for in these equations by the term gz and by the format of the functions of 
Eqs. (17.57), (17.58). If the tube's wall is impermeable, Jm = 0, and the system 
Eqs. (17.63) becomes much simpler. At G\ =Ji = 0, Eq. (17.63) describe the single-
phase liquid flow, and at Gg = Jg = 0, the single-phase gas flow. 
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4. Flow regimes 

As indicated earlier, a distinguishing feature of two-phase (multi-phase) flows 
is the presence of the interphase separation boundaries. These boundaries may have 
various shapes. The phase dispersion may also significantly vary. Because of these, 
a concept of the flow regime is introduced to classify the two-phase flows. Experi-
mental studies discovered numerous regimes, which have been named and classi-
fied in many different ways. The following classification is most common for the 
vertical flows: 

Bubble flow. The gas bubbles are distributed in the liquid more or less un-
iformly (Fig. 17-3-7). 

1 2 3 4 5 
Fig. 17.3 

Ffow moving Flow moving 

Fig. 17.4 

Shell flow. When the bubbles are highly concentrated, they merge, their di-
ameter becomes close to the channel diameter, and the bubbles themselves acquire 
a shell-like shape (Fig. 17-3-2). 

Foam flow. As the gas phase flow velocity grows, the shell flow becomes un-
stable. The channel's wall becomes covered with a liquid film, and the gas-liquid 
core becomes a foam (Fig. 17-3-5). 

Ring flow. The liquid flows along the tube's wall as a continuous film, and the 
gas phase moves in the center. Usually the gas core contains some liquid droplets 
(Fig. 17-3-4). 
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Flocky ring regime. The gas flow carries liquid droplets (Fig. 17-3-5). 
A somewhat different classification is applicable to the horizontal flows: 
Bubble flow. The gas bubbles are moving next to the upper generatrix of the 

tube (Fig. 17-4-7). 
Plug flow. The shell-shaped gas bubbles are moving next to the upper genera-

trix of the tube (Fig. 17-4-2). 
Laminated flow. The flow is gravitationally laminated. The liquid is flowing at 

the bottom of the channel, and the gas is flowing above it (Fig. 17-4-3). 
Wavy flow. As the gas flow velocity increases, waves form on the free surface 

of the liquid (Fig. 17-4-4). 
Shell flow. The waves on the liquid's surface increase so much that they reach 

the tube's upper generatrix. The gas phase is flowing along the upper generatrix as 
individual inclusions (Fig. 17-4-5). 

Ring flow. Observed at large gas throughflow. Some amount of liquid is mov-
ing within the gas phase as individual droplets (Fig. 17-4-6). 

The format of (17.57), (17.58) equations, i. e., true gas-content φ and hydraulic 
resistivity factor λ are strongly dependant on the flow regime. 

5. Absolute open flow of a gas-condensate well 

To kill an emergency gusher, it is necessary to know the absolutely open flow 
of the well. It is very important to be able to forecast such a flow in a specific field. 
The forecast rate of a gushing gas-condensate well can be calculated using the equ-
ation system Eq. (17.63). 

Suppose that the penetrated thickness of the productive interval is much small-
er that the depth of the well so that the flow can be considered concentrated. Then 
Jm = 0, and Eq. (17.63) for a vertical well assumes the following format: 

(17.65) 

G. = const 
m 

dz A{ 2 dT 5 mdTf 

dT 1 
dz GmA Φ5 

I op) 
-Φ2Ο ^ 

dp 

where Δ is found from Eq. (17.64). 
To account for the interaction between the well and the reservoir, the binomial 

equation of the fluid inflow is used from the reservoir to the well instead of 
Eq. (17.59): 

PL-pL=AQm + BQ2
m, (17.66) 
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where pws, p^ are, respectively, formation and bottomhole pressures, A and B are 
filtration resistance factors as determined during the regime testing of gas-
condensate wells, Qm is total volume throughflow reduced to standard conditions. 

The system of equations Eq. (17.65) in conjunction with Eqs. (17.45) and 
(17.54)—(17.58) enables calculation of the distribution of pressure, temperature and 
other characteristic parameters of flow through the well under the commercial re-
gime, i. e., when the value of the mass throughflow Gm is known. As the system 
includes two first-order differential equations, two boundary conditions are neces-
sary for its solution. Such conditions can be the bottomhole temperature and pres-
sure, i. e., po = pbh, T0 = 7bh, or the wellhead temperature and pressure, i. e., p{H) = 
= Pwh, 1\H) = 7"Wh, where H is depth of the well. The conditions of the following 
format can also be assigned: p(0) =/?bh, T(H) = 7"Wh or p{h) =pt,h, T(0) = ΤΜ,. 

In a case of the emergency flow (gusher), the Gm value is unknown. In such a 
case, Eq. (17.66) expressing the interaction between the well and the reservoir must 
be added to Eqs. (17.45), (17.54)-(17.58). 

The emergency flow regime can be either critical (the flow velocity at the 
wellhead equals to the local speed of sound) or subcritical depending on the total 
resistance of the reservoir and the well. Under the subcritical flow, the wellhead 
pressure is equal to atmospheric pressure, i. e., pWh = />atm· Besides, it is necessary to 
assign 7/wh or Tbh-

Under the critical flow a disruption between pressure and temperature occurs 

at the wellhead. Mathematically, it means that at z —> H, — —>°o and >°°. 
dz dz 

Following Eqs. (17.63) and (17.64) it is necessary to have: 

Δ = 1 + G ^ ? - G > ? Ä = 0 a t z = tf. (17.67) 
dT m dT dp 

Aside from the condition (17.67), it is necessary to assign 7(0) = %,h· 
The rate determined by the condition Eq. (17.67) is called critical. 
For different flow regimes of the two-phase mixture, the empiric functions 

Eqs. (17.57) and (17.58) have different formats. 
To calculate the true gas-content φ and hydraulic resistance factor Xm, we can 

use experimental results by VNIIGaz Institute. They showed that depending on 
the average volume velocity of the mixture flow (which is equal to: 

Qg+Q, 
= <pwm+(\-(p)wl), four mixture flow regimes are identified: (1). 

S 
Bubbly and shell regime (wm < wa)\ (2). Ring regime (wa < wm < wr); (3). Disper-
sion-ring regime (wr < wm < wcr)\ (4). Dispersion regime (wcr < wm). The wa and w„ 
values are computed as follows: 

0.86exp[9(l-y9)]wr n λ 

wa = E - ^ — t l " r = UM>m+ (1 -m)w,, 
3.3(1 + 0.0027(//-l)) T m K ' 
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eg w,=33 ■&-
\PAPi~P*. 

The wcr value is assumed to be 5 m/s. True gas-content for the above regimes 
is calculated from the following equations: 

'A#,(FrJ at wm<wa, 

Aßf,{¥rm) + f2{ß) at wa<wm<wr, 

AßMFrJ-Uß) at wr<wm<wcr, 

ß at wcr<wm, 

φ--

where: 

a = 0.5 + 0.3exp[0.067(l - //)], 

/i(FrJ = l-exp(-4.4VFrm/Fr*), 

hiß) = 
(l-A)(wm-wa) -2(1-/7) exp(- 7.5 V W ? } 

/3(y5) =(1 + A - 2£)exp(-7.5VT^) 

0.86 3? 
A "A «/ 

l + 0.00275(//-l)'y/Ci 

Fr* = 4[1 - exp (0. \Jl)} - 3[1 - exp (0.05//)]. 

Hydraulic resistance factor is found as follows: 
4 = ^ ( R e m , f ) , 

where Äm(Rem,e) is hydraulic resistance factor computed for a single-phase flow, 
ψ is the correction factor for double-phasiness determined as: 

hiß) at wm<wa, 

W = \E[f4(ß)-f5(k)] at w„<wm<wr, 

1 at w <w„, 

where: 

£ = 1 + 0.03//, 

f ( ^ , l-0-78yg/l(Frm)-0.22ATl-exp(-15p)] 
4 1 - ß + 0.03 exp[-l, 350(1 - ßf] 

/,(*) = 
r Λ0 ·2 5 

go-
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Phase densities p,, pg are calculated using the equations of state, such as 

Peng-Robinson's equation. The values of enthalpy, throughflow gas-content, sur-
face tension, i. e., hg, hi, μί, μι, β, σ, are found with the help of corresponding 
thermodynamic equations. 
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To calculate viscosity of the gas phase, Dean's and Steel's correlation was uti-
lized. Viscosity of the liquid phase was found using the Little and Kennedy tech-
nique. Ideal gas enthalpy for the pure components were determined by Passat and 
Donner's correlation, and for the fractions, by Kessler-Lee's correlation. The in-
crement of enthalpy as a function of p and T was found using the known tech-
niques. For the computation of the interphase tension factor, McLeod-Sugden cor-
relation was applied. Typical pressure and temperature distribution curves in the 
well under the critical flow are presented in Figs. 17-5, 17-6. 



PART III. OIL AND GAS SUBSURFACE 
HYDROMECHANICS 

CHAPTER XVIII 

MAIN DEFINITIONS AND CONCEPTS OF FLUID 
AND GAS FLOW. DARCY'S LAW AND EXPERIMENT 

1. Specifics of fluid flow in natural reservoirs 

The porous and permeable rocks which contain subsurface oil and gas accu-
mulations and can release them in the process of development are called reservoirs. 
Depending on the origin and shape of the voids, the reservoirs are subdivided into 
the porous and fractured ones. 

The natural fluids (oil, gas, underground water and their mixtures) are found in 
the voids (i. e., in pores and fractures) of reservoirs. The fluid in a reservoir can 
be quiescent or moving. The fluid flow through solid bodies (deformable or unde-
formable) along the communicating pores and/or fractures is called flow in under-
ground rocks. Filtration can be caused by the action of various forces: pressure, 
concentration, temperature gradients as well as gravitational, capillary, electromo-
lecular and other forces. For instance, the motion (filtration) of the melted wax 
within a candle's wick or of kerosene in an oil-lamp's wick is caused by capillary 
forces. Thereafter, however, we will be reviewing the flows caused by the action of 
the pressure gradient and/or gravitational force. 

The flow in underground structures theory underwent a significant develop-
ment due to the needs of the economy. In the petroleum industry, the flow in un-
derground structures theory forms the theoretical base for the hydrocarbon field 
development. Due to its specifics, it is called "subsurface hydromechanics". The 
subsurface hydromechanics is a special branch of hydromechanics dealing with the 
fluid equilibrium and/or flow within a specific medium, a solid matrix comprised 
of cemented or loose particles of various shape and size. Thus, the petroleum sub-
surface hydromechanics is dealing with the laws of fluids' quiescence and flow 
within the oil- and gas-saturated reservoirs, as it applies to the technological 
processes of their recovery from the subsurface. 

The particulars of the fluids' flow within the natural reservoirs are caused both 
by the specifics of the reservoir rocks and by the hydrocarbon development 
techniques. 

Pore spaces of sedimentary rocks are a complex system of communicating and 
isolated intergranular voids where it is difficult to identify individual pore channels 
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(Fig. 18.1). The pore sizes of the sands are usually a few to few tens of a 
micrometer (urn). 

Fig. 18.1 Thin section of oil-saturated sandstone 

The fluids' flow within reservoirs occurs at a very low velocity, usually mi-
crometers per second (such flows are called "creeping flows" in hydromechanics). 
The heat-dispersal surfaces are large. Thus, the filtration process to a high degree of 
accuracy can be considered isothermal. At the same time, a substantial friction 
force emerges during filtration within the rocks. 

When fluid flows through reservoirs' void spaces, the contact between the 
rock matrix and the fluid occurs on a huge surface area. As an example, the surface 
area of the void spaces within 1 m3 of the porous medium (sandstone) can reach 
104 m2. Thus the main fluid property affecting the filtration is its viscosity. The 
viscosity is taken into account even for the gas filtration, and as the force of friction 
is uniformly distributed in the entire reservoir volume, it was proposed by Zhu-
kovsky to include the force of friction among the mass forces. 

The structure of oil and gas accumulations is complicated by substantial litho-
logic non-uniformity of the reservoirs, their lamination, faults, and stratigraphic 
unconformities. Appraisal and commercial testing of the accumulations, recovery 
of oil and gas is conducted through wells with diameter of 10 to 20 cm and greater, 
spaced by hundreds, sometimes thousands of meters. 

Some other specifics of the oil and gas flow within the natural reservoirs are: 
• An impossibility to study the fluids' flow within reservoirs through a direct 

application of the classical methods of hydromechanics, i. e., the solution 
of viscous fluid flow equations for the area encompassing the entire 
pore spaces. 

• A combination of very diverse scales of the filtration processes. They are 
defined by characteristic sizes differing by many orders of magnitude: pore 
size (a few to a few tens of micrometers); well diameter (tens of centime-
ters); field size (tens of kilometers); the reservoir variability along its dip 
and strike can be of any value. 

• The limited amount and imprecision of information about the reservoir and 
reservoir fluids properties, which often hampers the generation of a unique 
model of the fluid-saturated accumulation. 
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The listed specifics of the subsurface petroleum hydrodynamics result in the 
formulation of modeling concepts and the development of methodologies directed 
to the primary identification of qualitative process patterns and generation of mod-
els with low sensitivity to the source data accuracy. A cognitive and practical value 
of the results is to a significant degree determined by the clearness of the problem 
setting and depth of the preliminary data analysis. 

2. Basic model concepts of the subsurface liquid 
and gas hydrodynamics 

As earlier indicated, the subsurface petroleum hydromechanics is a special 
branch of hydromechanics. It means that the continuity hypothesis will be used in 
defining the physical values describing the flow process, and in formulating the 
conservation laws. Under this hypothesis the studied objects (such as the moving 
fluid) are considered to be continuously filling the entire area (the space wherein 
the problem is set and being solved). However, the porous medium is understood as 
a multitude of solid particles in close contact with one another, cemented or not. 
The spaces between them (pores, fractures) are filled with a liquid and/or gas. 

Thus, the filtration flow of the reservoir fluids is an aggregation of individual 
micro-motions within an erratic system of the pore channels (Fig. 18.2). Therefore, 
the true filtration flow is not "continuous" so that the effective (fictitious) values 
are introduced in defining the physical parameters. These values are "smeared", 
spread over the entire volume in a continuous way (Fig. 18.3). The effective veloci-
ties, pressures, etc., are replaced for the real ones. These effective parameters are 
represented in Fig. 18-3 as a uniform square grid. 

Fig. 18.2 Idealized porous medium. 1. pore channels, 2. matrix 

It is known from statistical physics that the systems of the porous medium type 
can be described as continuous media whose effective properties are expressed not 
through the properties of individual component elements, but represent averaged 
parameters of sufficiently large volumes of that medium. 
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The transition to a macroscopic description of the processes in the subsurface 
hydromechanics means that all introduced parameters used for the problem setting 

and solving are in the general case functions 
of the porous medium points. The term is ita-
licized because thereafter the concept of the 
porous medium and porous medium points 
will be used in the modeling sense. This 
means a mathematical model and its charac-
teristics as used for the description of a phys-
ical process (in this case, the filtration). 

The concept of a physical and mathe-
matical points relate to totally different ob-
jects. If any volume of the porous medium is 
selected and the coordinate system associated 
with the sample is introduced, orderly triplets 

of numbers can be attributed to each infinitely small volume. These numbers assign 
the "mathematical point" of the porous medium. However, the volume of a "ma-
thematical point" is so small that it always will be positioned entirely within the 
pore (then, for instance, the fluid velocity is different from zero) or within the solid 
matrix (then the fluid velocity is equal to zero). 

Thus a "physical point" is used for description of model parameters in the sub-
surface hydromechanics. 

The "physical point" is such volume of a porous rock, which is large enough 
so that the introduced physical parameter does not depend on the volume of the 
sample but small enough compared with the entire volume where this parameter is 
introduced. This latter circumstance (the sample smallness relative to the entire vo-
lume of interest) allows maintaining an infinitely small volume, the "physical 
point". 

The volume of a porous medium which can be considered a physical point is 
called the elementary or representative volume. All characteristics and parameters 
introduced thereafter are defined over the elementary volumes and for the elemen-
tary volumes. 

This situation with the introduction of the physical and material parameters in 
the subsurface hydromechanics is usual for all models in the mechanics of conti-
nuous medium. For instance, a gas similarly to a liquid is composed of individual 
molecules and atoms. Thus, in introducing physical parameters in hydromechanics 
and gas dynamics, they also relate to physical points, but the sizes of elementary 
volumes are much smaller than they are in subsurface hydromechanics. Indeed, an 
air cube with the edge of 10"3 mm under normal conditions contains 27*106 mole-
cules, so the elementary volume is fractions of a cubic millimeter. In subsurface 
hydromechanics sand grains can replace the molecules, so the elementary volume 
can be on the order of cubic centimeters, and in some reservoir types, tens of cubic 
centimeters and even meters. However, compared with the accumulation volume 
the elementary volume is still very small. 
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3. Reservoir properties of porous rocks. Porosity and clearance 
specific surface area. 

Filtration is naturally determined by the properties of the fluid and of the void 
space (type of the reservoir) wherein it is occurring. So the reservoir properties of 
the porous medium are defined consequently. One of the most important properties 
of the porous medium is porosity denoted by a symbol m. 

Porosity of a uniform porous space is the ratio of volume of pores Vc in the 
porous medium sample to the entire sample volume V: 

0 = ^ . (18.1) 
V 

The porosity so defined is constant for all points of a uniform porous medium. 
In the case of a non-uniform porous medium, Eq. (18.1) defines the average porosity 
value for the sample. The porosity value at a physical point M for a non-uniform 
porous medium will be determined from equation: 

AV dV 
0 ( A f ) = l i m — c - = —C-. (18.2) 

AV^O AV dV 
Therefore, in a general case porosity is a scalar function of the point (physical 

point). 
There are concepts of the total and effective porosity. The effective porosity 

includes only the intercommunicating pores which can be filled with fluid from the 
outside. In studying the filtration processes, only this kind of porosity is meaning-
ful. Thus thereafter, when dealing with porosity, the active or effective porosity 
will be considered. 

Another important property of the porous medium is clearance or plane porosi-
ty, denoted by s. The clearance of a plane cross-section in a uniform porous me-
dium is the ratio between the area of the pores in the cross-section to the area S of 
the entire cross-section: 

i(n) = ^ £ - . (18.3) 

In a case of a non-uniform porous medium, Eq. (18.3) defines the average clear-
ance value for a cross-section. The clearance value at a physical point M for such a 
medium will be determined from equation: 

i ( M , n ) = l i m ^ ^ = ^ ^ . (18.4) 
as-o AS dS 

Clearly, both porosity and clearance can range between 0 and 1. The end val-
ues of this range are, of course, purely model ones. 

In Eqs. (18.3) and (18.4), "n" is the vector of a normal to the cross-section 
plane. The mentioned ratios and definitions indicate that clearance at a point in the 
porous medium depends not only on the point, but also on the cross-section orienta-
tion. Therefore, clearance in the above definition is a scalar function of the vector 
argument. Even taken by its own, this shows that porosity and clearance are different 
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mathematical objects, although connected. But the usual equating of these objects is 
a mistake. The clearance concept is more complex than that usually believed. 

Indeed, after the concept of clearance is in-
troduced by Eq. (18.3), a statement usually fol-
lows that the average clearance value over all di-
rections is equal to porosity. This is a correct 
statement but it is usually followed by an incor-
rect one: "therefore, thereafter there will be no 
distinctions made between the two". However, 
the quoted definition of clearance has more com-
plex physical meaning than what is usually be-
lieved. The fact that the average clearance value 

Fig. 18.4. Changing of section o v e r a11 directions is equal to porosity is no rea-
orientation and normal vector s o n t 0 identify these concepts. Later, when dis-

cussing the results of Darcy's experiment and the 
determination of the filtration velocity, the concept of clearance will be expanded 
and proved that it is impossible to identify it with porosity. 

One more frequently used important parameter of the porous medium is the 
specific surface area per unit of porous medium's volume. The specific surface Σ 
per unit of porous medium's volume is the ratio of the void space's surface area of 
the Sdear medium to the total volume of the porous medium V: 

By the definition Eq. (18.5), the specific pore surface, as opposed to the di-
mensionless porosity and clearance, has a dimensionality of m'1. 

4. Darcy's experiment and Darcy's law. Permeability. 
The concept of "true" average flow velocity and flow velocity 

Let's now turn to the description of a fluid flowing within a porous medium. 
The first experiments with water flowing in sand-filled tubes were conducted by 
Darcy (1856) and Dupui (1848-1863). These experiments initiated the beginning of 
the filtration theory. 

Darcy studied water flowing through the vertical sand filters (Fig. 18.5). The 
result of the experiment was the widely known law: 

Q^kfMiZlLs=kf—S, (18.6) 
Li LI 

where Q is volume throughflow of the liquid through an L-long sand filter with the 
cross-section area S, AH = H\- H2 is the difference of hydraulic water heads over 
the filter and at its base, and kj is the proportionality factor. This factor was first 
called the water-permeability factor then filtration factor, which depends on the na-
ture of the porous medium as well as on the filtering liquid's properties. As men-
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tioned, the filtration velocities are very low, on the order of 10-4 to 10"5 m/s and 
even smaller. That allows disregarding the velocity heads when calculating the hy-
draulic head in Eq. (18.6): 

„2 

H = (18.7) εν ρ ρ 
— + — + z = — + z . 
2g pg pg 

Here, va are the average velocities within the capillary, ai are Coriolis' coef-
ficients (in this case, ax = a2 = 2), p is pressure, z is 
the geometric head, pis liquid's density, g is gravity 
acceleration. 

As follows from Eq. (18.6), the filtration factor 
has the dimensionality of velocity and describes the 
velocity of flow through the unit of the cross-section 
area perpendicular to the flow under the action of a 
unit of the head gradient. 

The filtration factor kf is usually utilized for hy-
drotechnical designs where the only fluid is water. 
When analyzing filtration of the gas, oil and their mix-
tures, it is necessary to separate the effect of the porous 
medium from that of the fluid. For this purpose, 
Eq. (18.6) is formatted differently: 

Q = tpWS (18.8) 

Fig. 18.5. Darcy laborato-
ry unit water flow through 
vertical sandstone cores. 

or: 

Q=k_P;-p2Si 

U L 
(18.9) 

where μ is fluid's dynamic viscosity factor, p* = pgH = p + pgz is normalized 
pressure, k is permeability factor which does not depend on fluid's properties and is 
a dynamic parameter of the porous medium only. The permeability factor dimen-
sionality is determined from the following formula: 

[Q\[ß\[L] _ M3CT'naCM 
Ik]'-

[Δρ*][Ω] naM2 ■ = M ' 

It is the dimensionality of area, i. e., in the SI system, it is the square meter. Per-
meability of most of the rocks are very low, 10"12 to 10~13 m2 (1 to 0.1 μιη2) for 
coarse-grained sandstones, 10~14 m2 (0.01 μηι2) for tight sandstones. A commonly 
used permeability unit in the petroleum industry is 1 D (1 Darcy) = 1.02*10"12 m2. 

Following Eqs. (18.6) and (18.8) the filtration and permeability factors are 
related as follows: 

k,=&-k. 
M 

(18.10) 
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The filtration factor kf or permeability k is experimentally determined with a 
permeameter that contains a sample of the rock (Fig. 18.6). The total through-
flow Q of the flow is maintained constant, the heads H\ and H2 are measured by 
two piezometers connected with the porous medium in the cross-sections 1 and 2. 
Elevations of the cross-sections' centers over the datum are equal to z\ and z2, pres-
sures are/?i and pi, the distance between the cross-sections along the cylinder's 
axis is L. 

Fig. 18.6. Scheme of permeameter 

From Eqs. (18.6) or (18.8): 

k - Q OTfc= MQ 
f S(AH/L) Spg(AH/L)' 

where the head gradient per unit length (the pressure gradient modulus) can be 
formatted as follows: 

L L pgL pgL 

In the field, the permeability factor is determined by testing of wells. In the 
test, the experimentally found correlation between well's pressure and its flow rate 
is also used. 

Eqs. (18.6) and (18.9) are usually called Darcy's law. In actuality, however, 
they are derived relations of Darcy's law and the solution of one of the simplest 
problems of unidimensional flow as it is implemented in the permeameter or a Dar-
cy device. The Darcy's law is the correlation between the filtration velocity vector 
and the filtration pressure gradient. After a concept of the filtration velocity is in-
troduced, the filtration pressure gradient concept will be reviewed. 

Let's divide both parts of Eq. (18.9) by the cross-section area S: 

Q k An 
w = c r · ( 1 8 - U ) 

S μ L 



MAIN DEFINITIONS AND CONCEPTS OF FLUID AND GAS FLOW 325 

Expression w = Q/S has the dimensionality of velocity and determines the 
modulus of the filtration velocity vector. When de-
termining the throughflow, it is assumed that the fil-
tration velocity vector is perpendicular to the plane 
(gallery) through which the fluid is filtering (Fig. 18.7). 
Therefore, if the unit (basis) vector perpendicular to 
this plane is defined (or parallel to velocity) as n, 
then w=wn. The difference between the vector w 
and a regular velocity is in that the filtration velocity Fig. 18.7. Scheme for de-
is a fictitious velocity as in its substance it is deter- termination of filtration rate 
mined at any point within the porous medium (in the 

pores and in the matrix), whereas in actuality the flow occurs only through the pore 
channels at some "true average velocity" v. Of course, the w and v velocities are 
related, which is obvious from the equality of the throughflow at the true velocity 
through the clearance area and through the entire cross-section area at the filtration 
velocity: 

wS = vSdear = Q 
This relation resulting from the above equality is: 

w= wn = sv = svn. (18.12) 
Thus, filtration velocity is equal to true average velocity multiplied by the 

clearance. But it is illegitimate to replace porosity by clearance in Eq. (18.12). 
Let's now prove this statement. Eq. (18.12) is valid on the assumption that the 

filtration properties of porous medium are isotropic and uniform, i. e., permeability 
is independent on the direction and is constant for all points. It is possible to per-
form an experiment on the assumption that the porous medium is uniform but ani-
sotropic. Let's cut a cube with the facets perpendicular to the main directions of 
permeability (i. e., when applying pressure gradient perpendicular to cube's faces, 
the filtration velocity vectors will also be perpendicular to these faces). Now it is 
necessary to introduce a Cartesian coordinate system with the axes directed paral-
lel to cube's edges, and conduct a series of experiments, sequentially directing fil-
tration along each axis. As a result, for each experiment: 

w =&=!^&P w =9>L = i^P w = 0^ = ^ Α Ρ 
W" S μ L ' Wy S M L' ™z S μ L ' 

where wx, wy and wz are component of the filtration velocity, Qx, Qy and Qv and kx, 
ky and kz are throughflow and permeability values along the corresponding coordi-
nate axes. Therefore, at the equal pressure gradients and sample (gallery) cross-
section areas, in the general case it is necessary to input different clearance values 
for constructing the connection between the filtration velocities and true velocities, 
i. e., accept the equalities: 

or: 
(18.13) 
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where vx, v , vz and sx, s , sz are true average velocity and clearance values 

along the respective coordinate axes. Indeed, Eq. (18.12) provides the linear corre-
lation between two vectors. In the most general format, written for the main axes, it 
can be presented as: 

s\ 
0 

0 

0 
S2 

0 

0 

5, 

(\, \ 

(18.14) 

A particular case of Eq. (18.14,) si = S2 = S3 = s results in Eq. (18.12), and in 
the general case results a matrix with the clearance factor. 

Therefore, transiting from average true velocities to filtration velocities, it is 
necessary to use not the scalar function of a vector argument (defined above as 
clearance) but the matrix. 

The transition from experimental Eq. (18.9) to Eq. (18.11) shows that in Dar-
cy's experiment is a linear correlation identified between the two vector parame-
ters: the filtration velocity vector and the filtration pressure gradient vector in a uni-
form, isotropic, non-deformable reservoir (porous medium). However, Eq. (18.11) 
is represented in a scalar format, so it must be restored to the vector format. 

In the case of isotropic filtration properties, the filtration velocity vector and the 
filtration pressure gradient vector are positioned on the same straight line. So, multip-
lying Eq. (18.9) by the unit vector n (which gives the direction of filtration) gives: 

k Δρ*-
: — / 
μ L 

(18.15) 

Here, the multiplier Δρ*IL is the pressure gradient modulus under the linear 
pressure distribution law. Therefore, the further generalizations of the experimental 
result gives the vector equation of the following format: 

w = — g r a d p * . (18.16) 

Vector equation Eq. (18.16) is Darcy's law for an isotropic porous medium. 
The minus sign in the right portion is due to the fact that filtration velocity is di-
rected toward the decreased pressure. So, the filtration velocity vector and the fil-
tration pressure gradient vector are oppositely directed (a reminder: the gradient is 
directed toward the growing pressure; therefore, filtration velocity is oppositely di-
rected from the higher to the lower pressure). 

Eq. (18.16) is the universal format of Darcy's law. It is valid for any coordi-
nate system. The Cartesian format is as follows: 

wx\ + wj + wzk ■ 
dp. dp . dp, 

ox oy dz 
(18.17) 
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where i, j and k are unit vectors of the Cartesian coordinate system; the z axis is 
directed upward. This vector equation can be projected onto the coordinate axes 
and rewritten as a system of equations: 

k dp k dp k (dp Λ . . . . . . 
w,= -f-, wy=—^f, wz = - f + pg . (18.18) 

ßdx μΒγ μ\Βζ J 
However, Darcy's law has limitations which will be discussed in the following 

section. 

5. Applicability limits of Darcy's law. Analysis 
and interpretation of experimental data 

Numerous studies found that Darcy's law has the upper and lower applicabili-
ty limits. The upper boundary is due to a number of reasons associated with the in-
ertia forces at high filtration velocities. The lower boundary is caused by non-
Newtonian Theological properties of fluids, by their interactions with the solid ma-
trix of porous medium at low enough filtration velocities. 

In this section both marginal cases resulting in the appearance of non-linearity 
in the filtration law will be reviewed. 

The upper limit of Darcy's law applicability. This case is the most studied 
case. The upper limit of Darcy's law applicability is associated with some critical 
(cutoff) value of Reynolds' number Re: 

Re = ^ , 
v 

where d is some characteristic parameter of the porous medium, v is kinematic vis-
cosity factor of the fluid (v = μΐρ). 

Numerous experimental studies (Fanchler; Lewis and Burns; Lindquist, Tre-
bin, Zhavoronkov, Aerov and others) attempted to find a universal correlation for 
the porous medium (analogous to the tubular hydraulics) between the hydraulic re-
sistance factor λ and Re number. However, due to variations in the porous media 
composition and structure, these attempts failed. 

Significant care in processing the experimental results was taken to select such 
a characteristic parameter of the pore structure that the deviations from Darcy's law 
would occur at the same Reynolds' number values, and the filtration law within the 
nonlinear area would allow for a universal representation. 

The first quantitative estimate of the upper limit for Darcy's law applicability was 
obtained by Pavlovsky. Using Slichter's results for a model of the ideal rock and as-
suming that the characteristic linear parameter d is equal to the effective diameter deg 
of the particles, he derived the following equation for Reynolds' number: 

wd,„ 
Re = ^ . (18.19) 

(0.750+0.23) v 
Using this equation and the experimental results, Pavlovsky found that the 

critical value of Reynolds' number is: 
7.5 < Recr <9. 
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The narrow range of Re's variability is due to the fact that the porous media 
used in the experiments were not too diverse. To facilitate the processing of mas-
sive experimental data acquired by various scientists, Shchelkachev proposed to 
use the following dimensionless parameter (he called it Darcy's parameter): 

ννμ/Ä _ w//L 
Da=-

Ap/L kAp 
(18.20) 

Eq. (18.20) indicates that Darcy's parameter is the ratio of the force of viscous 
friction to force of pressure. If Darcy's law is realized, Darcy's parameter value 
must be equal to one: 

Da= l . (18.21) 

The introduction of the Da parameter simplifies the study of the linear filtra-
tion law applicability limit. Indeed, if the log Re is depicted on the jc-axis, and log 
Da, on the y-axis, then, as log Da = 0, the correlation graph log Re vs. log Da at 
Re < Recr is a straight line coinciding with the x-axis while Re < Recr. As soon as 
the graph shows deviation from the x-axis, it indicates the deviation from Darcy's 
law (this corresponds to Da < 1, log Da < 0). The Re value at which the deviation 
occurs, is the critical value. 

The above statements are illustrated by Fig. 18.8 showing a processing result of 
the experimental log Da vs. log Re measurements using Shchelkachev equation (Ta-
ble 18.1). The graph reflects the nonlinear filtration area for various porous rocks. 

Da 
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Fig. 18.8. lgDa versus lgRe on logarifmic grid 

Using these data, he analyzed the results obtained by various scientists for Re 
determinations in the subsurface hydromechanics and evaluation of possible critical 
values of Re number for the upper Darcy's law applicability limit. See Table 18.1 
for his comparison results. The first two lines are, respectively, Re number equa-
tions and hydraulic resistance factors obtained by various scientists. Lines four and 
five are, respectively, critical values of Reynolds' number obtained by these scien-
tists, and their refined values. 

Line 3 in the Table lists the ReX values. Eq. (18.21) is valid for the linear filtra-
tion law area (Re < Recr). Therefore, if the product ReA depends only on Darcy's para-
meter (see Table 18.1, columns 5-8) it is constant (i. e„ does not depend on the 
properties of the porous medium) when Re < Recr. Only in this case it is possible to 
obtain the "universal" straight-line graph with coordinates (log Re, log X\ correspond-
ing to filtration of different fluids through porous media having different properties. 
Experimental results support this conclusion. 
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The following conclusions can be drawn from data listed in Table 18.1. 
1. Despite some drawbacks in Pavlovsky's results, there are reasons to com-

pare them with the corresponding results of the tubular hydraulics. What is impor-
tant is that the critical Reynolds' number values calculated from Eq. (18.19) are 
much lower than those corresponding in the tubular hydraulics to the transition 
from the laminar to turbulent flow. It may indicate that the causes of deviations 
from Darcy's law at high filtration velocities (increase in the inertial forces effect 
with increases in Reynolds' number) should not be linked with the turbulent flow. 
The absence of turbulence with deviations from Darcy's law was proven by direct 
experiments by Schnobeli. 

Fancher, Lewis and Burns equations were derived by way of introducing the 
effective diameter deff as the characteristic internal linear dimension of the porous 
medium into the equation for Reynolds' number. They do not compare with the 
results of the tubular hydraulics, result in too narrow a range for Recr (see column 4 
in Table 18.1) and are not well substantiated. 

2. All other formulae in Table 18.1 (columns 5-8) include as the characteristic li-
near dimension values proportionate to -Jk (k is rock permeability factor) whose de-
termination methods are well known. All these formulae are about equally convenient 
for the practical application. Their distinguishing feature is a very wide range of the 
resulting ReCT values for the porous media. This appears to be quite natural considering 
wide variety of the tested porous media. Besides, it indicates that neither of the formu-
lae proposed for the determination of Recr includes a complete set of parameters allow-
ing for the description of the complex structure of porous media. It is quite insufficient 
to use for this purpose porosity and permeability factors. At the same time, the wide 
range of the Recr values can be subdivided into relatively narrow sub-ranges corres-
ponding to different groups of porous rocks. Thus, this means that the upper limit of 
applicability of the Darcy's law is possible for fluid flow in a porous medium. The 
results of such subdivision for Shchelkachev formula (Table 18.1, line 1, column 5) are 
included in Table 18.2. 

Table 18.2. 
Critical Re values for porous rocks samples 

No 
1 
2 
3 

4 

Porous rock sample 
Uniform shots 
Uniform coarse-grained sand 
Nonuniform fine-grained sand dominated by less 
han 0.1 mm fractions 
Cemented sandstone 

Range of critical values 
13-14 
3-10 

0.34-0.23 

0.05-1.4 

6. Nonlinear laws of filtration 

As was shown, Darcy's law, the major equation of the filtration theory, has the 
upper and lower applicability limits. The first expansion at Re>Recrwas sug-
gested by Dupois. The law was named after Forchheimer who independently intro-
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duced the law somewhat later. This binomial law solved relative to the pressure 
gradient in the vector format is: 

grad/> = -^w-/tf-£=|w|w, (18.22) 

where \w\ is modulus of the filtration velocity vector, ß is the porous medium con-
stant determined experimentally, p is fluid density. For the unidimensional flow 
where the pressure gradient modulus does not change along the flow (see 
Eq (18.15)), this equation can be projected onto a coordinate axis and presented in 
the scalar format: 

It is clear from this equation why it is usually interpreted as Taylor's series 
expansion by exponents of the filtration velocity vector. 

It is important to emphasize that the representation of the nonlinear filtration 
law in the Eq. (18.22) format is not unique. Publications give another representa-
tion with the quadratic term. For instance, instead of the constant ß and permeabil-
ity factor, the macro-roughness factor I was introduced by Minsky: 

grad/? = — w \w\w 

or another permeability factor (heavy fluid permeability factor): 

grad p = - — w - — |W|H> , 

where kfl is the viscous fluid permeability factor, and kp is the heavy fluid 

permeability factor. 
All these representations of the nonlinear filtration laws provide just one va-

riant of Darcy's law expansion at high filtration velocity. Another common variant 
solved relative to filtration velocity is: 

— l - n 

w = c|grad/?| » gradp, (18.24) 

where grad p is modulus of filtration pressure gradient vector; c, n are material 
constants of the porous medium determined experimentally. The n constant usually 
ranges between 1 and 2. At n = 2, Eq. (18.24) is called Krasnopolsky's equation 
(this scientist suggested that the correlation between pressure gradient and filtration 
velocity when deviating from Darcy's law is quadratic). For a unidimensional 
flow, Eq. (18.24) can be projected onto a coordinate axis and written in the scalar 
format: 

\w\ = c\gTadpU, 
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wherefrom at n = 2 we obtain: 

\w\ = c|gradp|. 

Eq. (18.22) appears to be more universal than Eq. (18.24). It is usually be-
lieved that it can be used at any filtration velocity. At a low velocity, the second 
component is negligible (with respect to filtration velocity) and can be disregarded. 
At the same time, the exponential law of filtration Eq. (18.24) can be used only in 
conditions when Darcy's law is deviated from (i. e., when Re > Recr). 

The multiplier representation at the squared filtration velocity in Eq. (18.22) 
a multiplier p follows from the dimensionality theory as well as from the physical 
meaning of the cause of the filtration law deviation from linearity (density p is the 
mass per unit volume, i. e., the measure of inertia). 

It is easy to produce the general format of the nonlinear filtration law for iso-
tropic porous media. Let's first multiply (scalar multiplication) Eq. (18.16) by the 
unit vector directed along the filtration velocity. The result is: 

I I k\ A \ \w\ = — grado . 
/ / ' 

Solving this equation relative to k: 

k=r^L. (18.25) 
|grad/?| 

Experiments showed that \w\ = Q/S = F(|gradp|). So, by selecting the class of 

functions where the approximation F(|grad p\) is defined, it is possible to produce 

the expression of a nonlinear filtration law. 
In a similar fashion it is possible to have the filtration law solved relative to 

the filtration pressure gradient. Eq. (18.25) for the filtration resistance ratio has the 
following format: 

_|gradp| 

In this case, the experimentally obtained Eq is formatted as: 

|gradp| = «F(H). 

Let's now go back to the previously mentioned deviation from Darcy's law 
experimentally observed at low filtration velocity (as the velocities are very low, 
these deviations are close to zero). As mentioned, the deviations at low filtration 
velocity have different physical nature and are caused by non-Newtonian properties 
of fluids and by the action of significant surface forces (forces of interaction be-
tween the fluid and the rock matrix). At a very low filtration velocity, even Newto-
nian fluids can acquire non-Newtonian properties in a porous medium. As velocity 
increases, however, this effect rapidly disappears. 

In the petroleum industry, fluids displaying non-Newtonian properties include 
so-called anomalous oils and drilling muds. 
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A classic example of the filtration law expression for non-Newtonian fluids is 
the filtration law with the initial gradient. This 
filtration law is valid for Bingham-Shvedov vis-
coplastic fluids as follows: 

k 
1-7 -^- at Igradpls?', 

dx, ' ' (18.26) 
|gradp| 

0 

|grad p\ 

wi = 0 at |grad p\ < γ. 
As Eqs. (18.26) show, the filtration flow is 

only possible at pressure gradients exceeding 
some value y which is called the initial gradient. 
At lower pressure gradient values the filtration 
flow is absent. The value of the initial gradient 
depends on the fluid's initial shear stress To and 
the effective diameter of the capillary dejf-
Fig. 18.9 displays graphs of the filtration velocity vs. filtration pressure gradient for 
the linear and nonlinear filtration laws. 

j=\gradp\ 
Fig. 18.9. Dependence diagram w 
from |grad p\: 1 — visco-plastic 
fluid with limit gradient; 2 — for 
real non-Newtonian oil; 3 — for 
Darcy law 

7. Structural model of porous media 

Real hydrocarbon reservoirs have very complex void space formed by pore 
channels of drastically changing diameters and direction, composed by particles of 
different shape and size, etc. Thus there is no practical possibility to generate analyti-
cal solutions considering all the above properties of real porous media, and simpli-
fied models are used in the subsurface hydromechanics. Such models include ideal 
(capillary) and fictitious (corpuscular) rocks (media). In the corpuscular models, the 
porous medium is modeled by balls, in the capillary models, by capillary tubules. 

In the simplest corpuscular model, the porous medium is modeled by the con-
stant diameter ball packing. It is called fictitious rock (or fictitious porous me-
dium). In the simplest capillary model, the porous medium is modeled by capillary 
tubules of constant diameter laid at a constant interval. It is called ideal rock (or 
ideal porous medium). 

Most common fictitious rock models are those with the most tight ball packing. 
Two basic packing, cubic and hexagonal, are produced as follows: the first flat layer 
is laid so that each ball touches six adjacent balls; each ball of the second layer is 
placed in the hollow between three balls of the first layer (Fig. 18.10, 18.11). 

The third layer can be laid in two ways. The first one (the cubic packing): each 
third-layer ball lies over the three balls from the second layer so that there is no 
first-layer ball under the third-layer ball (Fig. 18.12). The second one (the hex-
agonal packing): each third-layer ball lies over the three balls from the second layer 
but there is a first-layer ball under the each third-layer ball. 

Besides the mentioned tight packing with the cubic symmetry, the packing 
where each ball in the first layer touches only four balls, and all subsequent layers are 
identical with the first one, is also considered. It can be called a loose cubic packing. 
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Fig. 18.10. Layer of spheres, closely 
packed 

Fig. 18.11. Two main, the most compact 
packages of spheres: a — cubic, b — 
hexagonal 

JN»ftÜ, 

Fig. 18.12. The most compact packages of spheres: cubic (a) and hexagonal (b) 

The simplest capillary rock models are formed at the perpendicular positioning 
of the capillaries. 

The above ideal and fictitious rocks and resulting simplification of the pore 
space structure enables finding analytical equations associating between themselves 
reservoir properties of such simplified porous media and further expansion of the 
derived equations to the real porous media. 

First the major relationships for the fictitious rock will be examined. 
It is relatively simple to derive for the fictitious rock the relationship between 

per-unit volume surface with the packing porosity 0 and ball diameter D. Suppose 
we have a volume containing n balls. The entire volume is the sum of void and sol-
id volumes: 

πθ3 

Porosity then is equal to: 

0 = 1-
6V 

(18.27) 

The per-unit volume surface is equal to the surface area of a single ball multip-
lied by the number of balls in the package: 

Σ = m
2n (18.28) 
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Following Eqs. (18.27) and (18.28): 

Σ = 6(1-0) 
D 

(18.29) 

Slichter simplified the tightest ball packings and introduced the elementary ball-
packing cell (Fig. 18.13). He also derived analytical equations for porosity and clearance: 

and: 

0 = 1 π, (18.30) 
6(l-cosö)A/l + 2cos6' 

s = l — , (18.31) 
4sin<9 

where Θ is the acute angle of the side facet in the 
elementary rhombohedral cell of the ball packing, Spneres package""5" ^ 
Slichter found that the value of this angle ranges 
between 60° and 90°, therefore, porosity and clearance range as follows: 
0.259 < 0 < 0.476 and 0.0931 < s < 0.2146. As Eqs. (18.30) and (18.31) show, nei-
ther porosity nor clearance depend on the ball diameter and are determined only by the 
angle Θ. Therefore, eliminating the angle from these equations it would be possible to 
derive the relationship between porosity and clearance. Regretfully, this equation sys-
tem is transcendental and is not solvable in a decisive format, so this relationship is 
given approximately: 

s = O.61014 or 5 = 0.560-0.052, (18.32) 

with an error of less than 2 % within the aforementioned porosity range of the ball 
packings. 

Later Kozeny and Carman proposed the following equation for the fictitious 
rock permeability: 

0 3 

k=^-T, (18.33) 

where c is Carman's number. Experiments showed that for the ball packings Kar-
man's number is approximately 5. 

Substituting Eq. (18.29) into Eq. (18.33) results the following expression of 
permeability for the fictitious rock: 

03Z>2 

36c(l-0)2 (18.34) 

For the ideal rock, the pore space structure allows for an analytical determina-
tion of major filtration and capacity parameters. Various types of the elementary 
cells (unidimensional, Fig. 18.14 and three-dimensional, Fig. 18.15) were used for 
the representation of the ideal rock. 
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The porosity, clearance, per-unit volume area and permeability for the ideal 
rock formed will be derived by the three systems of mutually perpendicular capilla-
ries with a diameter da = 2ra and the laying spacing of aa, a=l, 2, 3. 

All computations can be conducted for an elementary cell formed by three mu-
tually perpendicular laying systems (Fig. 18.15). 

o o o 

Fig. 18.14. Scheme of packing and elemen-
tary box of unidirectional permeability of 
perfect rock 

Fig. 18.15. Elementary box of three 
dimensional model of perfect rock 

Let's introduce a coordinate system with the axes parallel to the capillaries' axes 
of symmetry, which in turn are parallel to the laying systems. The subscript at deno-
tations of the diameters and systems corresponds to the coordinate axis number to 
which the capillary and system are parallel. Then the following expressions is ob-
tained for, respectively, porosity, clearance, per-unit volume area and permeability: 

0 : 
mifa, 

4(2,0203 
S = -

4αΛαν 
Σ = 

7di a, 
k=- mit 

128αΛα„ 32 
= - f - V (18.35) 

In Eqs. (18.35), the subscript i means summation, and the subscripts a, β and γ 
form cyclical permutation of numbers 1, 2 and 3. The calculations of porosity, 
clearance and per-unit volume area are purely geometric so they are omitted. The 
only remark is that in calculating porosity and per-unit volume area it was assumed 
that the "node" (capillaries' intersection) volume is small and can be disregarded. 

To compute permeability, the fluid's flow within a capillary will be analyzed. 
The Bernoulli's equation is used for a viscous fluid flow and Darcy-Weisbech's 
equation for the head loss determination: 

.2 

P\ or,v; Pi 

P8 dig 2g pg 2g 
where Λ1-2 is the head loss between cross-sections 1 and 2; hT is head loss along the 
length; λ is hydraulic resistivity factor; and / is length of the capillary between 
cross-sections 1 and 2. 

The flow velocities at filtration are very low, so the velocity heads are ignored. 
Thus, for laminar flow in round pipe: 

λ ^ 64 = 64// 
Re vdp 
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To simplify the calculations we will assume that the capillaries are horizontal, 
i. e., the hydraulic resistivity factor with equation for the laminar flow within a round 
zi = zi- We can also assume that the head loss is determined only by the loss for the 
friction along the length, so hu2 = h. After simple transformations, the result is: 

Δρ _ 64// / v 
pg vdp d 2g 

Solving this relative to the average fluid velocity within the capillary (the true 
average velocity of the fluid flow), results: 

d2 Δρ 
v = . 

32// / 
In order to switch to the filtration velocity w, the definition Eq. (18.12) is used, 

i. e., the throughflow corresponding to velocity v is computed, and then "spread" it 
over the entire cross-section of the sample. By multiplying v by the capillary cross-
section area π&14 the volume throughflow Q is obtained. Then volume throughflow is 
divided by the elementary cell area a2 resulting the filtering fluid's flow equation: 

d2 M2 1 Δρ , , „ , , , 
w = 7- , (18.36) 

32 4a2 / / / 
which in its format is identical to Darcy's law Eq. (18.15). 

The structure of the numerical factor in the right portion of Eq. (18.36) is pre-
served for a purpose of emphasizing the physical meaning of its multipliers. Com-

— - k Δρ*-
paring it with the Darcy's law Eq. (18.15) — w = wn = —^—n — it is easy to 

μ L 
observe that the resulting factor TBJ* /\28a2 is permeability of a "unidimensional" 
ideal rock. The first multiplier, d2 /32, gives the conductivity of the capillaries. Its 
format is defined by the shape of channels' crosswise section. The replacement of 
the cylindrical tubes with a round cross-section (used in our example) by flat slits 
or elliptically-shaped capillaries will not alter the proportionality between this mul-
tiplier and the squared characteristic size of the cross-section. The numerical factor, 
however, will be different. The second multiplier, τώ2 /4a2, is the clearance which 
serves as the averaging scale. 

Therefore, permeability is a complex parameter of porous medium. It takes in-
to account the pore channels' shape and cross-section size, and their concentration 
within the medium. Permeability computation equations commonly include the si-
nuosity a, which is equal to the ratio of the conducting pore channel (the "true" 
path of the fluid) to the sample (such as core) length. Various models of the unidi-
mensional ideal rock can include arranging between 1 and 3. 

Eq. (18.36) was derived for a unidimensional model of the ideal rock. Clearly, it 
will stand for a 3D model as well except the subscripts will have to be added to indicate 
which capillary the equation corresponds to. Then Eq. (18.36) changes as following: 

... _ d\ nd2
a 1 Ap 

a 32 4αβαγμ I 
where the subscripts a, ß and y form a cyclic permutation. 

(18.37) 
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From Eq. (18.37) the permeability factor is derived for a 3D model of the ideal 
porous medium: 

mi* 
k= a . (18.38) 

128^0,, 
Following Eq. (18.35) that 0 = s\+ S2+ S3, and clearance is equal to porosity 

only when s2 = S3 = 0. Therefore, the equality 0 = * is valid only for a unidimen-
sional model of the ideal rock. 

When dealing with applied problems, it is often necessary to determine the 
characteristic linear size, which is interpreted as the effective pore diameter or the 
capillary diameter in the model of the ideal rock. In the general case, the following 
can be derived from Eq. (18.38) for the capillary diameter: 

[32F 
da= — . (18.39) 

V sa 
Usually, due to the identification of porosity and clearance, porosity is used in 

Eq. (18.39): 

d°=iit- ( 1 8 · 4 0 ) 

As indicated earlier, this equation is valid only for the unidimensional model 
when 0 = s and is not valid for the three-dimensional model. To transit from clear-
ance to porosity, a structural factor φα =0/ j„can be suggested. Then Eq. (18.39) 
can be rewritten as follows: 

If we assume for a three-dimensional model that d\ = d2 = di = d and s\ = 52 = $3 = 
s then 0 = 3s, and therefore φ - 3, and the capillary diameter equation becomes as: 

d = A—. (18.42) 
V 0 

In the general case, only the lower end of φ is limited (φ > 1), so the structural fac-
tor can change the effective capillary diameter within a wide range. 

A final note: we reviewed only the simplest structural model of the porous me-
dium. For these models reservoir properties can be easily calculated using geometric 
relationships and hydraulic Eqs without involving stochastic and other techniques. 
Currently porous media are modeled using statistical structural models with chaoti-
cally laid spheres, random grids and complex geometry of the capillary channels. 

8. Darcy's law for anisotropic media 

In this section the specifics of the filtration flow within media of a complex 
pore space geometry and anisotropy of the filtration properties will be discussed. 

Depending on the pore space structural specifics and geometry, there are uni-
form and non-uniform, isotropic and anisotropic media. Anisotropy of properties 
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(including filtration properties) relates to different physical and geometrical proper-
ties in different directions. Anisotropy in actual oil and gas reservoirs can be caused 
by fracturing, lamination, the presence of inclusions. For instance, filtration proper-
ties of the laminated porous media are different along the lamination from those 
across the lamination. The filtration flows in fractured-porous media within the 
fractures are well in excess of those in some other directions. 

The generalized Darcy's law is used for the description of the hydrocarbons 
flows within anisotropic reservoirs. The law's validity was confirmed by numerous 
experimental and theoretical studies. The expansion of Darcy's law for the case of 
anisotropic media is done mathematically formally. As Darcy's law postulates the 
linear correlation between two vector fields (filtration velocity vector and filtration 
pressure vector), then Eqs. (18.16)—(18.18) define the simplest relationship when 
both vectors are positioned on the same straight line and are different from one 
another in their direction and length. Such a correlation defines and assigns isotrop-
ic filtration properties. In the general case, the linear correlation between two vec-
tor fields is defined so that each component of one vector depends on all compo-
nents of the other vector. Thus in the most general case the linear correlation be-
tween the filtration velocity vector and the filtration pressure gradient (the most 
general case of Darcy's law for anisotropic media) is formatted as follows: 

1 

1 

1 

dp * dp 
3JC, 

dp* 
dx, 

+ ky 

+ k 22 

dx2 

dp^ 
dx-, 

- + L 

+ k 

dx-

dp' 
3 / 

33 
3*3 J 

dp * , i. dp* J. dp*^ 
l - i " l" /c21 -i " r K 2 3 -, 

ax] dx2 dxJ j 

(18.43) 

where w,· are the components of the filtration velocity vector, dp*/dxi are the 
components of the normalized pressure velocity vector, ky are the components of a 
symmetric matrix (tensor), which is called the permeability factors matrix (tensor). 
The tensor in Eq. (18.43) defines and assigns the filtration properties of the porous 
medium, which can be isotropic or anisotropic with different types of anisotropy. 
The decisive format of the permeability factors' matrix depends on the anisotropy 
type and the coordinate system in which the expanded Darcy's law is written. It is 
always possible to select at least one coordinate system 0x[ xj xi in which the for-
mat of the expanded Darcy's law is the simplest: 

w, =-
fc, dp* 
Mi djc, 

k2dp* 
μ dx2 

k2dp* 
μ dx} 

The Eqs. (18.43) can be represented in a matrix format: 

hi w2 

UsJ 
= 

(kn 

kn 

v*13 

* 1 2 l 

* 2 2 

k2} 

k λ 

Λ 2 3 

^33 j 

fdp*/dxA 
dp* ldx2 

{dp*/dxj 

(18.44) 

(18.45) 
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Rearranging Eq. (18.43) under summation of subscripts results: 

μ dXj 

where / and 7 assume values of 1,2 and 3. 
A coordinate system where the permeability factor matrix has the diagonal 

format, and where the expanded Darcy's law is written in the Eq. (18.44) format is 
called the main coordinate system, and the value of the diagonal permeability fac-
tors ki is called the main values of the permeability tensor. The matrix components 
in the main coordinate system have one subscript, and if the system is not main 
coordinate system, they have two subscripts. The first subscript corresponds to the 
line number, and the second one, to the column number. 

Eq. (18.46) is the most general expression of Darcy's law for anisotropic por-
ous media. By decreasing the number of non-zero matrix components of the per-
meability factor, it is possible to produce isotropy and all possible types of aniso-
tropy. Indeed, if it is assumed that all non-diagonal matrix elements are equal to 
zero, and all diagonal elements are equal to one another, the porous media is iso-
tropic. All other options will assign different types of anisotropy. Before classify-
ing them, Let's first define the most common case of permeability. 

By definition, permeability of the porous medium (directional permeability) is 
the value: 

* W = - Ä , (18.47) 

|grad p\ 

where n, is a unit vector assigning the direction in the porous medium, along which 

directional permeability is determined, νν,η, = (w*n) is a scalar product of the fil-

tration velocity vector and unit vector, and |grad/?| is modulus of the filtration 
pressure gradient. As follows from the definition, in the general case permeability 
can depend on the direction. 

The definition Eq. (18.47) has a transparent physical meaning: by definition, per-
meability is a scalar value which is calculated along certain direction. So, in order to 

calculate it, it is necessary to find the ratio of the scalar 
"gradp values defined along the direction in a special way. In 

, , _ Eq. (18.47), the direction of application of the pressure 
(w-n) ^f " . .-

gradient (grad p = |grad p\n) is assumed to be the di-
rection along which the property is determined, and the 
scalar values are determined by projecting of the filtra-
tion velocity vector and filtration pressure gradient vec-

Fig. 18.16. Sheme to dimen- tor gradp, we obtain wfi, and |gradp|. Their ratio 
sion of directional permea- ,.. ,· , , .. , . . ... . . . . ,· 
.... v multiplied by viscosity and taken with onto this direc-

tion. By projecting the vectors w and the opposite sign 
is equal to permeability. Minus sign is taken because the scalar product w,ni is negative 
(the angle between w and n, is obtuse). The definition of the directional permeability 
is illustrated by Fig. 18.16. 
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Substituting the Darcy's law expanded for anisotropic media Eq. (18.46) into 
Eq. (18.47): 

k(n) = -. ' 
k-,n-n-

grad p\ M 
■gradd = tyi,nr 

(18.48) 

Eq. (18.48) is a general rule for finding permeability valid for both anisotropic 
and isotropic porous media. Indeed, for isotropic porous media, under the definition 
Eq. (18.47) and rule Eq. (18.48) for calculating permeability at the linear filtration law: 

k(n) = knft = k . 

Therefore, permeability of isotropic media does not depend on the direction (it 
is the same for all directions and is equal to k). 

Eq. (18.48) also clarifies the meaning of a statement that the permeability fac-
tor matrix kit defines and assigns the filtration properties of porous medium. The 

matrices define the type of the properties (isotropic or anisotropic), and the numeric 
values of its elements define values which characterize them. 

As was shown, isotropic filtration properties are assigned by the matrix of the type: 

*« = 

fk 
0 

1° 
0 
k 
0 

°1 
0 

k) 

(18.49) 

therefore, all other types of matrices assign anisotropic filtration properties. It is 
possible to show using the linear algebra apparatus that all possible versions of the 
"anisotropic" matrices have the following format: 

(k, 0 0Λ 

0 kx 0 

0 0 * , 

*, 0 0 

0 L· 0 

0 0 k 
3 / 

(k 
ft... 

* . , ■ = 

0 0 

0^ 
0 

(k k k 
Λ Ί Λ12 Λ12 

k k k 
Λ|3 Λ.23 «.33 

(18.50) 

The first type of Eq. (18.50) matrices assigns filtration properties, for example, 
of laminated (usually sedimentary) porous media for which permeability at the tops 
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of the layers is equal (a plane with isotropic filtration properties) and is different 
from permeability in the direction perpendicular to the lamination planes. The ma-
trix has a diagonal format. Therefore, main directions of the permeability factors' 
tensor for this type of porous media are known a priori: one main direction is per-
pendicular to lamination, and the other two lie in the plane. As represented by the 
permeability factors' matrix Eq. (18.50), the direction perpendicular to lamination 
corresponds to the coordinate axis O.X3. 

The first type of anisotropy assigns a porous or fractured medium where, as in 
the first case, the directions of all main ky matrix axes are known a priori but per-
meabilities along all main directions differ. Such anisotropy can be pertinent to 
fractured reservoirs with the three mutually perpendicular fracture systems or al-
ready mentioned sedimentary rocks formed by elongated grains. 

These two types of anisotropy have proper names: the first one is called trans-
verse isotropic, the second one, orthotropic. 

For the remaining two types of anisotropy the position of the main axes is not 
known a priori. For type three, the position of the two main axes is unknown, and for 
the last type, the position of all three main axes in unknown. Apparently, the real-life 
fractured and porous media as a regular rule belong with these types but in solving the 
problems the two first types are usually considered. There are no proper names for 
these two types. By substituting the matrices Eq. (18.50) into Eqs. (18.45) or (18.46) 
the decisive representation of Darcy's law for all types of anisotropy is obtained. 

Eq. (18.43) is a system of linear algebraic equations. It can be solved relative 
to the grad p component and rewritten like follows: 

dp* 
dXj 

In this case, filtration properties are defined and assigned by the symmetric 
matrix of filtration resistivity factors η,·. The decisive format of η, matrices for all 
reviewed cases of anisotropy and isotropy is the same as for permeability factor 
matrices accurate to substituting corresponding components ra, raß for ka, kaß. 

All Eqs. (18.49) and (18.50) given in the matrix format can be represented in 
the subscript format. For an index representation of the filtration laws in the aniso-
tropic porous media the concept of a diad product for two vectors is introduced (see 
Attachment Π.68). 

ab = aibj = 

'apx ap2 afa 

a2bx a2b2 a2b3 

a3bt a3b} α3£>3 

(18.51) 

Where a,·, fo, are the components of the vectors a and b . 



MAIN DEFINITIONS AND CONCEPTS OF FLUID AND GAS FLOW 343 

Further, as the vectors a and b are taken in the Cartesian basis vectors ei, tz, β3, 

whose coordinates we will denote ef\ e'2),e,!3), respectively. It is easy to see that it 

is possible, using basis tensors, to put together nine diads which will represent nine 
special matrices of the Eq. (2.9) format. All components in these matrices besides 
one will be equal to zero. The only component different from the zero will occupy 
the "if position" in multiplying the ia, basis vector by the ja, basis vector. 

Let's review, as an example, the diad product of ei and β2· Then, we have 

e,(1) = (1,0,0), e,<2,= (0,1,0), and in accordance with the definition Eq. (18.51), the 

matrix for this diad will be defined as: 

e,e2 =*<'>*«> = 
f° 
0 

lo 

1 

0 

0 

°1 
0 

oj 
Using the diad products of the basis vectors, the matrix presentation can be 

rewritten as a subscript format by way of expanding the matrices with respect to the 

basis of diads e'*'^" . For instance, for the most general type of anisotropy such 

a presentation will have the following format: 

Wi =-L[jk1|e<»e<'> + M 4 V +ei2)
e«") + *22e,

(2,
eJ

2> + M " * ! 3 ' + 

ox. 

(18.52) 

By decreasing the number of ky coefficients not equal to zero, it is possible to 
come up with the filtration law for any kind of anisotropic or isotropic media. For 
instance, for the orthotropic media: 

w, =--[*.«.< V " +k2e<2)e?) +*3e'V,3)]-
μ ' ' ' dx, 

for the transverse-isotropic: 

w_ = - -[Jt,e<"e<'> + Vi 2 ) e" ' + Mi3 '«"' ^T~' 
l_ 

μ ox, 

and for isotropic: 

Wt =-- [ e , (" ey ' +ef)e(;,+el,)ef)]-P* 1| 
dx: 

(18.53) 

(18.54) 

(18.55) 

The latter equation can be transformed as the brackets include three matrices 
which in the summation form a unit matrix: 

(\ 
0 

lo 

0 
1 

0 

°1 
0 

u 
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A special symbol, <5&/, is use to denote the unit matrix. It is called the Kroneck-
er delta. So, the last equality can be rewritten as: 

1 . dp* 
w<=—^3— μ dXj 

or, after summing-up: 

1 dp* 

μ dx: 

Using the rule of calculating the directions of permeability Eq. (18.48), it is a 
simple operation to calculate permeability for the most general case Eq. (18.50): 

kvn,nt =[kue)"e)l) + M«/'"«"» + β<
2)β·,)) + *22β*2,β<1' + k3/l

3)ef> + kl}(e<')ef> + e,,3,e<',) + 

+ £23(e,<2)e™ +ej3)ef))]ninj = kllcos2a + 2kl2cosacosß + k21cos2ß + k33cos2y+ 

+2£13cosorcos?'+ 2£23cos/?cos γ, 

where or, β and y are the angles between the unit vector n and the coordinate lines. 
By decreasing the number of ky coefficients not equal to zero, it is possible to pro-

vide with the directions of permeability for any kind of anisotropic or isotropic media. 



CHAPTER XIX 

MATHEMATICAL MODELS OF UNIPHASE 
FILTRATION 

1. Introductory notes. The concept of the mathematical model 
of a physical process 

Various equations and methods of their solution, depending on a specific prob-
lem, are used for the description of real physical processes. As mentioned earlier, 
the most common and well developed such technique in the subsurface hydrody-
namics is the macroscopic technique. It is based on the continuity hypothesis, laws 
and methods of the mechanics of continuous medium. Therefore, oil and gas sub-
surface hydromechanics should be treated as a special branch of the mechanics of 
continuous medium. 

Now the major concepts utilized by the mechanics of continuous medium in 
construction of mathematical models will be repeated applied to the oil and gas 
subsurface hydromechanics. 

Different fields in their physical nature are defined in the continuous medium. 
They form under influence of the internal and external factors and may change in 
space and time. Various fields of major physical values occur under the conserva-
tion laws, which are the fundamental laws of nature. The main conservation laws in 
the subsurface hydromechanics (as in the other branches of the continuous medium 
mechanics) are the laws of conservation of mass, momentum (impulse) and kinetic 
momentum (momentum of impulse), conservation of energy and entropy balance. 

The conservation laws are valid for all continuous media whose properties can 
be quite different. Thus using only the conservation laws are insufficient for the 
generation of closed systems of equations needed for the description of physical 
processes and solution of the specific problems. In order to assign properties of the 
specific continuous media, the defining equations and laws are added to the con-
servation laws. These defining equations and laws assign the specific properties of 
a given medium. 

A result of combining the conservation laws with defining equations and laws 
is a closed system of equations where the number of equations is equal to the num-
ber of the unknown functions. Such close system defines a mathematical model of 
the continuous medium describing the specific physical processes. 

From this point on only the isothermal fluid flow in porous media, wherein 
the temperature of the fluid flowing in a porous medium is equal to the medium's 
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temperature and remains constant, is considered. Indeed, as filtration is a very slow 
process, fluid's temperature changes due to the resistance on the walls of pore 
channels and fractures, and due to the fluid's expansion as pressure changes, have 
sufficient time to compensate through heat exchange with the surrounding rocks. 
It is possible not to include the energy equation for such isothermal processes. 

In the oil and gas field development, however, non-isothermal filtration effects 
exist locally at the bottomhole locations due to the significant pressure gradients. 
Study of non-isothermal processes is important in connection with enhanced oil 
recovery by injecting hot fluid in the reservoirs (water, steam), with the develop-
ment of gas-hydrate fields, and in some other cases. The energy conservation law 
equation must be always added to the model in these cases. 

In order to describe physical processes and solve corresponding problems, the 
problem should be set accurately, i. e., the conditions at the initial moment in time 
should be given as well as the conditions at the reservoir boundaries. The result is a 
differential equation with the initial and boundary conditions. By integrating this 
differential equation, it is possible to determine the distribution of the pressures and 
filtration velocities in the reservoir at any moment in time, i. e., to construct the 
functions: 

P = p(x,y,z,t), wx = wx(x,y,z,t), wy = wy(x,y,z,t), wz = wz(x,y,z,t). 

If the fluid inside the reservoir is a incompressible fluid (p = const) in the non-
deformable reservoir ( 0 = const, k = const), then the number of the functions to be 
determined is limited to these four. For a description of a compressible fluid in the 
compressible porous medium, it is also necessary to determine the fluid density p. 
For more complex processes, the unknown functions to be determined are viscosity μ, 
porosity 0 and permeability k. In such a case, eight equations, both differential and 
finite, are required to determine the eight parameters of the filtration flow, fluid and 
porous medium. 

The analytical solution of a system of differential equations is feasible only in 
a few simplest cases, for instance, in the problem of an elastic fluid flow into a well 
in a reservoir of infinite expanse at a constant rate. 

In more complex cases, the system can be solved by the application of the nu-
merical techniques on computers. There are well-developed numerical techniques 
for the solution of diverse and very complex subsurface hydromechanics problems. 
The mentioned analytical solutions are very important for testing the numerical 
techniques. 

The system of differential equations can be used also for the qualitative study 
of a process. If the obtained equations are reduced to the dimensionless format, the 
dimensionless conformity parameters will serve as their coefficients. By analyzing 
their structure and numerical values, it is possible to judge which forces are most 
important in the process, which terms in the equations can be disregarded, etc. 

Now the major conservation laws are formulated by considering the specifics 
of the subsurface hydromechanics. 
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2. Mass conservation laws in a porous medium 

For the integral format of the mass conservation law, the mass of fluid within 
the control volume of the porous me-
dium is computed. z | 

The mass of the fluid within an ^ -y\ 
infinitely-small (physical) volume of 
a porous medium is equal to mpdV. 
Indeed, the pore volume within an 
elementary volume of the porous me-
dium is equal to dVp0re = 0dV. The 
fluid mass within the elementary " ' pjg jg j 
porous volume is: 

dM = pdVp0K = mpdV. 
By integrating this relationship over the entire control volume, the fluid mass 

within the control volume is obtained: 
M = J0pdV. 

V 

The fluid can flow in and out through the control surface (Fig. 19.1). Thus, the 
fluid mass changes in time. The changes are calculated as follows: 

3 „ 3 M =j-$0pdV. 
dt dtr 

The change in the mass is equal to the mass inflow through the control 
surface: 

jpvftdS^^jpwftdS, 

where n is the external normal to the control surface. 
Indeed, the mass flow through an elementary area dS, by definition, is equal to: 

pwndS or pw^dS , 
i. e., to the scalar product of the mass velocity vector and the vector of the normal 
to the elementary area multiplied by the area. In order to calculate the mass flow 
through the entire surface, the elementary flows with respect to the entire surface 
should be integrated. 

Therefore, the balance equation becomes: 
3 
dtv s 

\<Z>pdV = -jpw,n, dS, (19.1) 

which means that the mass changes in the control volume are equal to the fluid flow 
through the control surface. The minus sign is a results of the vector's normal 
orientation with respect to the control surface. As the normal is external with 
respect to the control surface, the fluid "inflow" into the control volume should be 
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accompanied by the increase in mass, a positive derivative with respect to time 
in the left part of Eq. (19.1) and a negative value of the scalar product νν,η, under 
the integral on the right. In order to equalize the signs, minus is needed. A similar 
train of thought is valid for the fluid "outflow". 

Eq. (19.1) is the integral format of the fluid mass conservation law in a porous 
medium. In comparison to the integral format of the mass conservation law derived 
in Chapter II, the integral equation for a porous medium includes the 0 p value in-
stead of p; mp is a fictitious fluid density, the density spread over the entire volume. 
In a transient-free flow, the time derivative is equal to zero, and following 
Eq.(19.1): 

d pwini dS=0. 
s 

So, if a flow tube for the filtration velocity is considered as the control vo-
lume: 

jp,wlnds = \p2w2nds, (19.2) 

where S(a) (or = 1,2) are areas of the flow tube's two cross-sections (at the "input" 
and "output"). The following properties were used in the derivation of Eq. (19.2): 

- the scalar product of the filtration velocity vector and the normal's vector is 
equal to νν,η, = w„, where w„ is the projection of the velocity vector upon the 
normal, 

and 
- in one case it is positive (for instance, in the cross-section 2) and in the other 

case it is negative. 
For an incompressible fluid, p\ = pi-p, so: 

jwlnds = jw2nds. 

If the velocities in both cross-sections are constant over the entire cross-
section: 

"Ί,Α = w2 A · 
These relationships in their physical meaning and format are similar to the 

formulas derived in Part I of this book. 
It is possible to switch from the integral format of the mass conservation law 

to the differential one. For this purpose, as the control volume is fixed in the 
space, the dldt operator is placed under the sign of the integral and then, us-
ing Gauss-Ostrogradsky theorem, transform the surface integral into a volume one. 
The result is: 

j p ^ + divycnvW=0. (19.3) 

Following the condition that Eq. (19.3) is valid for any volume V, that the ex-
pression under the sign of the integral is equal to zero, i.e.: 
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^ - ^ + divpH-=0. (19.4) 
at 

Eq. (19.4) is the differential format of the mass conservation law in a porous me-
dium or the continuity equation for the fluid filtration in a porous medium. 

If porosity m is constant, it can be carried out from the sign of the derivative, 
and the continuity equation can be rewritten as follows: 

0 -~ + div pw = 0. 
of 

For an incompressible fluid p = const; so, the continuity equation is even simpler: 
divpw = 0. 

In the derivation of both differential and integral mass conservation law it was 
assumed that the porous medium volume does not have either fluid source or sink, 
that neither chemical reactions nor phase transformations, etc., occur there. If this is 
not so, a function q must be added to the right side of Eq. (19.4). The function 
q is the fluid mass entering (exiting) the unit volume during unit time, i. e.: 

a0p .. -
+ div pw = q. 

at 
The q value is positive if the fluid enters the volume and negative if it exits the 

volume. 

3. Differential equation of fluid flow 

Another universal conservation law in mechanics is the law of the kinetic 
momentum. In the mechanics of continuous medium the differential form of this 
law has a format of continuous medium equation expressed in stresses. Its further 
transformation is determined by rheologic (or definitive) equations of the medium. 
In our case, Newton's law of viscous friction (leading to Navier-Stokes equations) 
serves as definitive equations. 

As subsurface hydromechanics deals with the flow averaged over the entire 
volume of the porous medium, these equations must be averaged. The averaging 
results in the earlier discussed Darcy's law. The mathematical techniques applied 
for such derivation of Darcy's law are outside the scope of the subsurface hydro-
mechanics. In Chapter I derivations based on hydraulic relationships were re-
viewed. It is now desired to demonstrate another derivation proposed by Zhu-
kovsky. 

Zhukovsky's train of thought was based on Euler's ideal fluid flow equation. 
To simplify the reasoning, the unidimensional flow described by the following eq-
uation is considered: 

dv dv dp , 
pTt+pvYx

=-Tx
+i*< 

where / is the projection of the volume (mass) forces' projection density onto the 
flow direction, and v is true average flow velocity. 
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When a fluid is flowing within a porous medium, the friction force occurs on 
the separation boundary "medium-fluid". The surface of the pore channels is suffi-
ciently great, and in transition from the true average filtration velocity to the filtra-
tion velocity, the friction force is spread all over the volume. Thus the friction force 
can be considered a volume force. Therefore, the volume forces' density can be 
represented as: 

/ = / . +/2, 
where/i is the projection of the volume gravitational force, f\ = gsinor= {z\ - Z2)g/l 
in a case where the flow axis is inclined at the angle or to a horizontal plane 
(see 18.6), fa is the projection of the viscous friction volume force caused by the 
flow in a porous medium. 

Further, assuming that the medium is isotropic and clearance is constant, the 
true average velocity is switched to the filtration velocity: 

pdw w dw _ dp 
s dt s2 dx dx 

Assuming the velocity changes in time are small, we can disregard the3v/3f 
term. The second component in the left part (the inertia term) is also negligibly 
small at low filtration velocities. Then: 

Ι^/Χ/,+Λ)· (19-5) 
Assuming the viscous friction force is linearly proportional to filtration velocity 

w (i. e., assuming/2 = pAw), Eq. (19.5) can be transformed into: 
dp , z, + z, 
-f = pÄw + p^-^g. 
dx I 

If it is assumed that λ = -μΙpk, this assumption leads to Darcy's law. 

4. Closing equations. Mathematical models of isothermal filtration 

As derived earlier, the conservation laws for any given porous medium are: 
for the isotropic porous medium: 

30/7 J . - n —— + divpw = 0, 

k - ( 1 9 6 ) 

w = (gradp + p / ) ; 
M 

for the anisotropic porous medium: 
d0P A- - n + div/?w = 0, 

or 
(19.7) - * „ ί dp 

dx+Pf> 

Of these four scalar equations, three are given by Darcy's law, and one is the 
mass conservation law. These equations include six unknown scalar functions: three 
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components of the velocity vector, density, pressure and porosity. In the general case, 
permeability and viscosity can be added to the list of the unknown functions. This 
makes it clear that the systems Eqs. (19.6) and (19.7) are not closed. Moreover, it is 
clear why just the conservation laws in themselves are insufficient for the production 
of a closed equation system. The conservation laws are valid at viscous fluid filtra-
tion within all porous media. The porous media and viscous fluids can have various 
properties. For instance, the fluid can be compressible and non-compressible, the 
porous medium can be deformable and non-deformable, etc. Thus, to assign the 
properties of a specific porous medium and fluid equations determining these addi-
tional properties are required (thus equations are called definitive). 

With the isothermal filtration flows under consideration the definitive equations 
usually have the format of correlation between density, porosity (permeability, vis-
cosity) and pressure, for instance, p = p(p), etc. In this case, the most general repre-
sentation of a closed system of equations (i. e., the mathematical model) is: 

30p .. - _ 
+ divpw = 0, 

at 

w = --(gmdp + pj), (19.8) 
μ 

p = p(p), 0 = 0(p), k = k(p), μ = μ{ρ). 
Here, the format of the pressure functions is assumed to be given. In the next 

section various types of these function and the corresponding mathematical models 
will be reviewed. 

5. Filtration model of incompressible viscous fluid 
under Darcy's law in a non-deformable reservoir 

The simplest model of isothermal filtration is when the fluid is assumed to be 
incompressible, viscosity is constant and the reservoir is non-deformable. In this 
case the definitive equations are assigned by the following equalities: 

p=const, 0=const, &=const, //=const, (19.9) 

and the closed equation system of filtration in isotropic reservoir has the following 
format: 

div pw = 0, 
- k - (19.10) 
w = (gradp + pf). 

μ 
The system Eq. (19.10) includes four equations and four unknown functions 

(three components of velocity vector and pressure). Density is no longer the un-
known function as it does not change. If necessary, it is assigned at the problem 
setting (as well as the mass forces vector). 
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The system Eq. (19.10) can be transformed. To simplify the arguments, the 
mass forces are disregarded and the Darcy's law is substituted into the continuity 
equation. The result is: 

div gradp 
k k 

■■ divgrad/7 = Ap = 0, or Δρ = 0, 
μ μ 

(19.11) 

where Δ is Laplace's operator. 
Therefore, the system Eq. (19.10) can be rewritten as follows: 

Δρ = 0, 

w = gradp. 
μ 

The closed equation systems Eqs. (19.10) and (19.11) are a mathematical 
model of the theory of a incompressible viscous fluid filtration in the isotropic 
porous medium. 

The equation systems of the theory of a incompressible viscous fluid filtration 
in the anisotropic porous medium look similarly and are derived by substituting in 
Eqs. (19.10) and (19.11) the Darcy's law for anisotropic porous media [Eq. (18.46)] 
for the Darcy's law for isotropic porous media. 

Equations in the systems Eqs. (19.10) and (19.11) are written in the universal 
no-subscript format valid for any coordinate system. By projecting these equations, 
for example, onto the Cartesian coordinate system, respectively, for Eq. (19.10): 

dw. 3w, θνν, 
■ + 

dx dx. 

w, = — 

k 

k 

μ 

dx, 
= 0, 

3p 
dx, + Pf\ 

ax2 

axz 

(19.12) 

and for Eq. (19.11): 
d2p d2p d2p 
dx2 dx2 dx2 = 0, 

w-, =-

k_dp_ 
μ 3JC, ' 
k dp 
μ dx2 

k_dp_ 
μ dx3 

(19.13) 
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The mathematical model for a compressible fluid also includes the equation of 
state. Let's review the consequences of this circumstance. 

6. Gas filtration model under Darcy's law. Leibensohn's function 

As mentioned, when considering fluid's (gas's) compressibility in filtration 
through a non-deformable reservoir, it is necessary to assign in a decisive format 
the equation of state (definitive equation) connecting density with pressure. The 
equations of state can be different, but the model generation and all needed mathe-
matical transformations can be performed in a general form. 

The general form of a mathematical model for the compressible fluid (gas) fil-
tration through a non-deformable isotropic porous medium with no consideration 
of the gravitational force is defined by the following system of equations: 

d0p 
dt 

- + div pw = 0, 

— k 
w = gradp, (19.14) 

M 
P = P(pY 

This system can be converted into the format more convenient for practical 
applications. It is done by reducing it to a single equation relative to one unknown 
function. To derive such equation, Darcy's law is substituted into the continuity 
equation: 

0 — + div - P—gradp = 0 -^ - div(flgradp)= 0. 
dt \ ß ) ot μ 

The further transformation is the introduction of the function P, which enables 
the linearization of the expression under the divergence operator: 

gradP = pgradp. (19.15) 

The function P is called Leibenson's function. Integrating Eq. (19.15) and 
considering that p = p(p), results in: 

P = \p(p)dp . (19.16) 

Eq. (19.16) provides the Leibenson's function format when equation of state 
p = p(p) is given, and by substituting the equation of state into the earlier derived 
equation: 

0^_Adiv(grad/>)=O, 
dt μ 

producing equation relative to only one function, pressure p. In a more general 
form these transformations will be analyzed when discussing the elastic regime 
theory. 
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After Leibenson's function was introduced, the system Eq. (19.14) can be re-
written as follows: 

dt μ 

pw = --gmdP, ( 1 9 1 7 ) 

p = pip\ 

P=\pdp. 

The closed equation systems Eqs. (19.14) and (19.17) define a mathematical 
model of the viscous compressible fluid (gas) filtration theory within a non-
deformable porous isotropic medium. 

The Mathematical models Eqs. (19.14) and (19.17) are equivalent and describe 
non-stationary filtration flow. The systems become simpler for a non-transient pro-
cess, respectively: 

div/)vf = 0, 

w = —grad/j , (19.18) 
M 

p = p(pl 
and: 

ΔΡ = 0, 

pw = gradP, 
M (19.19) 

P = P(P\ 

P=\pdp. 

Thus, under the transient-free filtration, the first equation in the Eq. (19.19) 
system is Laplace's equation for Leibenson's function. By integrating it, this func-
tion can be determined and after that, the pressure and velocity distribution in the 
reservoir can be found. The first equation includes two unknown functions (density 
and Leibenson's function). If, however, the equation of state (equation before the 
last in the system) is given, it also can be represented as a differential equation only 
for Leibenson's function. 

For the mathematical model Eq. (19.18) the reservoir is taken to be deforma-
ble as porosity and permeability are assumed to be functions of pressure. Therefore, 
the pressure changes in the reservoir are so significant that viscosity is also as-
sumed to be a function of pressure. Thus, substitution of Darcy's law into the conti-
nuity equation results in the generalized Leibenson's function: 

d0(p)p .. (k{p) . . AD — ^ ^ - d i v -^-p(p)gtadP 
3/ {p(p) 

■ 0. 
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For this reason, Leibenson's function defined by Eq. (18.16) can be genera-
lized assuming: 

grad/> = - ^ - p(p)grndP. 
M(P) 

Solving this equation relative to the generalized Leibenson's function, the eq-
uation to calculate P is obtained as: 

P=\^fi-p{p)dp. (19.20) 
JM(P) 

After all these transformation, equation system Eq. (19.8) takes the following 
format: 

dt 

w = gradr», 
μ (19.21) 

p = p(p), 0 = 0(p), k=k(p), μ = μ(ρ), 

P=\«p-Pip)dP. 

A specific implementation of the model Eq. (19.21) will be analyzed in Chap-
ter XXI when deriving the main equation of the elastic drive. 

7. Uniphase filtration models in non-deformable reservoir 
under nonlinear filtration laws 

As mentioned earlier, Darcy's law has the upper and lower applicability limits. 
The mathematical models generated in the previous sections are valid only for the 
filtration flows under Darcy's law. If the linear filtration law is broken, these mod-
els are invalid and must be expanded to cover the nonlinear filtration laws. As was 
shown, a filtration law is derived from the law on variation of kinetic momentum. 
The general concept in generating the mathematical model is: the mathematical 
model is a closed equation system with equations representing the conservation 
laws with the addition of the definitive equations. And under a nonlinear case, 
Darcy's law must be replaced with the nonlinear filtration law. 

With the nonlinear filtration of incompressible fluid (disregarding the gravita-
tional force) under Forchheimer law equation system Eq. (19.10) is replaced by: 

div w - 0, 

grad p w - ß-y=\w\w 
μ V* 
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and in filtration under the exponential law, by: 

div w = 0, 
— hi 
w = c |grad p\ ·> grad p. 

Similarly, the mathematical model under non-transient gas filtration is: 

div/?w = 0, 

grad p = w — ß-K=\v\w, 
μ V* 

p = p(pl 
and: 

div/7w = 0, 
— hi. 
w = c|grad p\« grad p, 
P = P(p)-

The analysis and integration of these systems will be dealt with in the next 
Chapter. 

8. Correlation between fluid parameters and porous medium 
parameters with pressure 

For a practical application of the generated models of Uniphase filtration, the 
functions p = p(p), 0 = 0(p), k = k(p) and μ = μ(ρ) must be given in the decisive 
format. Let's write down main relationships between the fluid parameters of the 
porous medium and pressure. 

Under non-stationary processes, a substantial amount of oil can be extracted 
due to the increase in its volume as pressure declines. In these processes, the fluid 
compressibility must be taken into account. In gas, it is necessary to consider the 
gas density correlation with pressure. Thus, the equations of elastic liquid, ideal and 
real gases are treated as main equations of state. 

In the future, pressure is assumed as a function of density only. As mentioned 
previously, the processes where p = ftp) are called barotropic processes. An exam-
ple of such processes is isothermal filtration. 

By definition, liquid's volume compression factor ßwq is equal to the ratio of 
relative change in the liquid's volume fifViiq/Viiq to pressure change dp: 

1 dVy 

^=-^r^r- ( 1 9 · 2 2 ) 

v;iq dp 
The minus sign is introduced in order to make the liquid's volume compres-

sion factor a positive value. Indeed, when pressure grows {dp > 0), the liquid's vo-
lume decreases (<iViiq < 0), and vice versa. I. e., the differentials in the numerator 
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and denominator of Eq. (19.22) have opposite signs. It is usually believed that the 
liquid's volume compression factor is a universal constant, i. e., it does not depend 
either on temperature or on pressure, but it is different for different liquids. 

In Russian oilfields, ß\lq for oil ranges between 7*ΚΓ10 Pa-' and 30*10"'° Pa-1, 
and for the formation water, between 2.7*10"'° Pa"1 and 5*10"'° Pa"'. 

Eq. (19.22) is a subtended form of the correlation between pressure and densi-
ty in an elastic liquid; i. e., it is equation of state. In order to derive the decisive 
format from Eq. (19.22), liquid volumes are switched to densities. For a uniform 
liquid, mass and volume are related as M = pV\lq, so at M = const: 

_. ,M M , 
dVliq=d— = Ίάρ. 

Substituting this expression into Eq. (19.22), results in: 
β =pMdp=dp 

,iq M p2 dp pdp ' 

wherefrom: 

p 
Integrating the latter relationship as follows: 

Jf-A.j*. 
the result is: 

Po 

log—= &,(/>-A>)· 
Po 

From this equation: 
p = p0e

ß^"~'",\ (19.23) 

The exponent ßH(p- pa) is usually small, and the exponential function can 

be expanded into a series. Limiting this expression to only linear terms, results in: 

From all these transformations, we come up with equation of state for an elastic 
slightly-compressible fluid at low pressure gradients: 

/> = A>[l + / V P - P o ) ] · (19-24) 

Equation of state [Eq. (19.23)] must be used for large ßliq(p- p0) values. In-
stead of the volume compression factor, the inverse value is often used; 
ÄTlit( = l//?liq. This value is called liquid's elasticity modulus. 
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Equation of state for ideal gas is often used as the equation of state for natural 
gases (Clapeyron's equation of state): 

P = pRT, (19.25) 

where R is gas constant, T is absolute temperature. For isothermal processes, this 
equation assumes the following format: 

P- = RT = const. 
P 

Usually, the constant in equation of state is determined by assigning the gas 
density and pressure under the atmospheric conditions assuming that temperature is 
equal to the formation temperature TKS: 

- ^ - = const, 
Aatm 

where pum is gas density at atmospheric pressure pMm .Therefore, the ideal gas equ-
ation of state is: 

p = ̂ -p. (19.26) 
Fatm 

A different version of the equation of state (called the real gas equation of 
state) is applied in the high-pressure gas fields (on the order of 40 to 60 MPa): 

p = zpRT, (19.27) 

Where z is the gas super-compressibility factor equal to the ratio of ideal gas 
density to the real gas density at given P and T. The factor accounts for the devia-
tions of the real gas state from the state prescribed by the equation of ideal gas. 
The z factor depends on normalized temperature and pressure values Tr and pr: 

Pr=-P—,Tr=-^- (19.28) 
^avg.crit avg.crit 

and can be determined either analytically or graphically using the cross-plot of 
Fig. 19.2. p rit and Γ rit are average critical pressure and temperature. Natural 

gas includes numerous components (methane, ethane, propane, etc.); so, average 
critical pressure and temperature are determined as follows: 

r avg.crit X"1 * /^avg.crit X - 1 » 

where «,- is the content in gas of the / h component, pCIitj and Tanj are critical pres-
sure and temperature of the/h component, respectively. 
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The RT value for isothermal filtration is constant and can be determined for the 
real gas equation of state under atmospheric conditions: 

— = zp«mRT. 

In this case, equation of state for the real gas assumes the following format: 

„ _ P a . m Z ( P a , m ) P 

Pa.mZ(/>) 
(19.29) 

10 11 12 13 14 />„ 

Fig. 19.2 

Using Eqs. (19.23), (19.24), (19.26) and (19.29), Leibenson's function can be 
calculated for each particular case. 

For the elastic liquid with equation of state Eq. (19.23), Leibenson's function is: 

P = \p/*>->·>& = -&- Y^-^dß hq(p -Po) = 
1 ßu, J 

_ Pa ^lik/p-pp) , Q _ Pa , £ 

ßn ß* 

(19.30) 
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When theß liq(p- p0) value is small, Eq. (19.30) can be transformed by ex-

panding the exponent into a series, so that: 

P = -§s-[l + ß4p-p0)] + C = -&- + Pop-poPo + C = pttp + C*, (19.31) 
/V q ß liq 

where C* = C+-^ - poPo. 
P liq 

For the elastic liquid with equation of state Eq. (19.24): 

P = j>0[l + ß liq(p - p0)]dp = p0p + p0ß „ V 
*τ—ΡοΡ 

v L 
+ C 

or, as the fluid is only slightly compressible and the ß ljq factor is small: 

P = p0p + C. 

Thus, Leibenson's function for equations of state [Eqs. (19.23) and (19.24)] at 
small pressure changes in a slightly compressible fluid, as it was expected, is the 
same and is identical to Leibenson's function for incompressible fluid. Indeed, for 
a incompressible fluid p = p0= const, and Leibenson's function is: 

P = jpdp = pp + C. 

For an ideal gas with equation of state (19.25), Leibenson's function is: 
2 

p= jPmP_dp = pp + c=P*mP +C. (19.32) 
Pom ^Palm 

For a real gas in the case of the isothermal filtration, Leibenson's function is: 

p = / W ( P a , J f P d 

The zip) correlation at constant temperature and small pressure changes can be 
considered linear: 

z = zo[l+az(p0-p)l (19.33) 
where zo is super-compressibility factor at p = po; at large pressure changes it is 
exponential: 

z = zae-a-''"-p\ (19.34) 
and the constant az should be selected in such a way that the Eqs. (19.33) or (19.34) 
curve was as close as possible to the empirical curve in Brown's graphs for z = 
= z(p). 

The procedure illustrated here was the simplest way to account for the changes 
in properties of the real gas depending on changes in pressure and temperature. 
More complex equations of state must be used under complex thermobaric condi-
tions, at filtration of multicomponent gases. 

Experiments showed that the oil viscosity factor (at pressures above the satura-
tion pressure) and gas viscosity factor increase with the rising pressure. If pressure 
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ranges significantly (up to 100 MPa), viscosity of the formation oil and natural 
gases correlation with pressure can be considered exponential: 

ß = ß0e-"^-p). (19.35) 
When the pressure change is small, the correlation is close to be linear: 

μ = μ0[1-αμ(ρ0-ρ)], (19.36) 

where //0 is viscosity at foxed pressure po, and αμ is experimentally found factor 

determined by the oil and gas composition. 
To find the correlation between porosity and pressure, the stresses acting in the 

fluid-filled porous medium will be reviewed. 
Overburden covering the productive reservoir creates the so-called mining 

pressure pmm, which can be considered constant in the process of the reservoir de-
velopment. Mining pressure is determined as pmin= pm\ngH, where pm\a is average 
density of overburden's rocks, and H is the reservoir depth. If it is assumed that the 
reservoir's top and base are completely impermeable and totally assume the load 
from overburden, the mining pressure is compensated by the stress σ in the reser-
voir's matrix and pressure p of the fluid, i. e., 

ρπάα = {1-0)σ + 0ρ. (19.37) 
Here, σ is true stress in the matrix of the porous medium per unit of the hori-

zontal area mentally identified at any point in the reservoir. It acts on the part of the 
area ( 1 - 0 ) . It is more convenient to introduce the so called effective stress creff 
which is defined as the stress difference between the matrix and fluid phase. It can 
be found as: 

creff = ( l-0)(<x-p). (19.38) 
Then, following Eq. (19.37): 

Pmin = CTeff + p. (19.39) 
Effective stress is physically interpreted as that portion of true stress σ in the 

solid phase, which is transmitted through the contacts of the matrix grains, is inde-
pendent of the presence of fluids and will exist also in the dry medium. The con-
cept of the effective stress is convenient also because it can be determined experi-
mentally: it is possible to measure load Γ, which models mining pressure pmin, and 
pore pressure p, and find aeff = Γ-ρ. 

Formation pressure p declines in the process of the accumulation's develop-
ment, and the stress ffeff in the matrix increases. 

Porosity depends on pore pressure p as well as on the effective stress σ^ΐ. 0 = 
= 0(p, ffeff). As pressure declines, the forces compressing each grain of rock de-
creases; thus, the grain volume increases and the pore volume decreases. Increase 
in ffeff results in additional deformations of the grains: the grain contact surface in-
creases, the grain packing become denser (see Fig. 19.3). Some grain regrouping, 
the destruction of the cement and of the grains, etc., can occur. 

It is usually assumed in cases where pmm = const, that porosity depends only on 
pressure: 0 = 0(p). 
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Fig. 19.3 Simlplified scheme of grain deformation in porous medium: a. before deforma-
tion; b. after deformation. pz = p0 (overburden pressure). 

The solid phase's deformation is small, so it is usually assumed that porosity 
correlation with pressure is linear. The rock's compressibility law is presented, with 
the introduction of the elasticity factor /?„ as follows: 

Ä = ^ ~ . (19-40) 
Vdp 

where dVp is the change in pore volume within the reservoir element of vo-

lume V as pressure changes by dp. If the volume of the reservoir element is consi-
dV V 

dered constant, then —E— = d —E— = d0 , and the rock compressibility law as-
Vdp V 

sumes the following format: 

d0=ßcdp. (19.41) 
After integrating this equation: 

0 = 0o+ßc(p-po), (19.42) 
where 0o is porosity at p = po. 

Laboratory and field studies of various granular media showed that the reser-
voir's volume elasticity factor is on the order of ßc = (0.3 to 2)10~'° Pa-1. If pres-
sure changes are significant, porosity changes are described by this equation: 

0 = 0oe-/><<p°-p)/0°. (19.43) 

Experiments also showed that not only porosity but permeability as well sig-
nificantly changes with the change in pressure, and sometimes even larger than 
porosity. Under small pressure changes the correlation can be assumed to be linear: 

k = k0[l -ak(p-po)],ak(p-p0)«l. (19.44) 

Under large pressure changes the correlation is exponential: 

k = k0e-"t""'-p). (19.45) 

The above arguments are appropriate for porous rocks only. Permeability of 
fractured reservoirs more significantly changes with the change of pressure. 
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UNIDIMENSIONAL TRANSIENT-FREE FILTRATION 
OF INCOMPRESSIBLE FLUID AND GAS IN AN 

UNIFORM POROUS MEDIUM. 

1. Schematics of unidimensional filtration 

Real hydrocarbon reservoirs have complex geometry, structure, etc., so simpli-
fied setting of edge problems is often used for modeling of the filtration flows. 
These settings are called model settings. The simplest models deal with unidimen-
sional transient-free filtration within a uniform non-deformable isotropic reservoir. 

In the simplest unidimensional problems, the coordinate system is selected so 
that filtration parameters (velocity, pressure) will be functions of a single coordi-
nate. Unidimensional filtration flows possess different symmetries. Depending on 
the symmetry, there are rectilinear-parallel, radial-plane and radial-spherical flows. 
In a rectilinear-parallel flow the particle trajectories (flow-lines) are straight paral-
lel lines. 

Examples of a rectilinear-parallel flow are: the fluid flow in the Darcy's expe-
rimental device, the fluid or gas flow in laboratory equipment for the determination 
of permeability (Fig. 18.6), etc. 

In a radial-plane flow, the flow-lines are rays on the plane radiating from a 
common center (pole). An example is the fluid flow to the central well in a circular 
reservoir (Fig. 20.1). 

Fig. 20.1 Flow lines at radial-plane flow 

At the radial-spherical flow, the particle trajectories are directed toward the 
center (or from the center) of a hemisphere. Such a filtration flow may occur when 
the reservoir top is penetrated and the fluid flow is directed toward the hemisphere 
(Fig. 20.2). 

Mechanics of Fluid Flow 
by Kaplan S. Basniev, Nikolay M. Dmitriev and George V. Chilingar 

Copyright © 2012 Scrivener Publishing LLC 



364 CHAPTER XX 

V mv 
Fig. 20.2 Radial-spherical flow 

In deriving the schematics for the unidimensional flows, the concepts of tra-
jectory and flow-lines are used. In definitions, kinematic parameters of the filtration 
flow were used, and they reflect not the try, but averaged flow representation, i. e., 
the true particles' trajectories and flow-lines may not coincide with average, mod-
eled parameters of the filtration flow. 

2. Rectiliner-parallel filtration of incompressible fluid 

In this section the unidimensional filtration flow parameters of a incompress-
ible uniform Newtonian fluid within an isotropic noncompressible reservoir are de-
termined. In such a case, the mathematical model is assigned by the following equ-
ation system: 

Δρ = 0, w = grad/?. (20.1) 
M 

Projecting this equation onto the Cartesian coordinate system, results in: 

dx2 dy2 dz2 kdp 
wx —, vvv 

μ dx 

kdp_ 
Mdy' μ3ζ' 

(20.2) 

~v 
<fc__-r_ PJ 

Fig. 20.3 Rectilinear-parallel filtration 

Suppose the reservoir is a rectangular 3D-box of a width B and thickness h, 
limited at the top and base by impermeable planes, and by a charge contour (exter-
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nal reservoir boundary) on the left and a gallery on the right. Let's select the coor-
dinate system as shown in Fig. 20.3, i. e., place the origin on the charge contour 
plane. The name "charge contour" indicates that, under the problem setting, 
through the plane x = 0 a fluid inflow into the reservoir occurs, and the fluid further 
flows to the gallery x = L. The axis Ox is directed parallel to the filtration velocity. 
In this case, it is possible to assume that the unknown functions (pressure and filtra-
tion velocity) depend only on x coordinate. So, Eq. (20.2) may be rewritten as: 

—-γ = 0, wx= f-, w = wz = 0. (20.3) 
dx1 ßdx y 

By integrating the first equation: 

— = C,, and from there dp = C\dx, and further, p = C\x + d-
dx 

To find the integration constants C\ and C2, it is necessary to assign the boun-
dary conditions, i. e., the pressure values at two points on the flow-line. Usually, 
pressures p* at the source contour and at the gallery (p* > pga\) are known. So, to 
find C\ and C2, from the boundary conditions: 

p = pk at x = 0 and p = pgai at x = L. 

By substituting the boundary conditions in the pressure equation: 

pk = Ct and pgai = C\L + C2, 

wherefrom: 

C,= * ga' and C2= pk. 

After substituting the values for the integration constants into equations for 
pressure and the velocity, the problem of the rectilinear-parallel filtration is solved. 

, s Pk-Ρι,Λ 

p(x) = pk T^x' 
(20.4) 

k dp k k pk- ρΐΛ 

μ dx μ μ L 
Let's reformat this result. Multiplying the filtration velocity by the gallery area 

S = Bh (Fig. 20.3), the value for the throughflow Q is obtained: 

wS=Q = -Pk~Pe"S. (20.5) 
* ML 

As the pressure gradient is: 

Pk ~ Pgal _ QM 

L kS ' 
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And after substituting it into equation for the pressure distribution in the reservoir: 

p(x) = pk-^-x. (20.6) 

As Eq. (20.4) indicates, pressure in the reservior at rectilinear-parallel filtration 
is linearly distributed along the x cordinate with the filtration velocity constant in the 
entire reservoir. It is also important that Eq. (20.5), derived as a result of solving the 
problem for mathematical model of incompressible fluid filtration, exactly matches 
the experimental results by Darcy. 

A different interpretation of the Eq. (20.4) is often used for applied studies (like 
the determination of reservoir parameters in the field). When determining the reser-
voir filtration parameters by the transient-free withdrawal technique, an indicator 
curve is plotted. The curve is the graph of throughflow vs. pressure differences at the 
charge contour and the gallery (this difference is called pressure drawdown). Thus, 
the indicator curve is a graph: 

Q = CAp, 

where the proportionality factor C is called the productivity index. Apparently: 

Therefore, when Darcy's law is observed, the indicator curve is a straight line. 
Another problem deals with the determination of time required for "marked 

particles" to move within the reservoir. In order to determine reservoir parameters 
of a petroleum interval, some isotopes or other particles identifiable with special 
techniques may be injected into the reservoir. The motion time of the "marked par-
ticles" is found from the motion law using the determination of the average true 
velocity. 

First the formula is derived in the standard way under which porosity is equal 
to the clearance. Then, the corrections associated with the use of clearance instead 
of porosity is introduced to the equation when determining the relationship between 
the filtration velocity and true average velocity, see Eq. (18.12). 

Suppose equation for the true average velocity is formatted as follows: 

dx w ,nn _ . „ 
v = — = - . 20.7A) 

dt 0 
and after the separation of the variable: 

dt = —dx. 
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Let's now substitute the filtration vector modulus [Eq. (20.4)] into the latter 
expression: 

k Pt-Pgal 

By integrating this equation, the time taken by the "marked particle" to move 
from the charge contour (x = 0 at t = 0) to an arbitrary point within the reservoir 
can be found (x = xt,t = ii): 

f = 0 A _ L S _ ( 2 0 8 A ) 

k Pk-Ppa 

For the particle to move along the entire reservoir from the charge contour to 
the gallery (i. e., xi = L): 

T = 0» ΰ . (20.9A) 
k Pk-P& 

However, in the initial equation clearance must have been used rather that po-
rosity. As a result, a different equation instead of the initial one should be used: 

v = ̂  = ̂ . (20.7B) 
dt sa 

Now, to switch from porosity to clearance, the structural factor introduced in 
Chapter I is used to determine the capillary diameter in ideal porous medium 

0 

transform Eq. (20.7B) into the following format: 

_ dx _ φα\ν 
V~~dt~~0~' 

As φα is a constant in an uniform porous medium, all further calculations 

remain the same as above, and the final result accounting for the fact that porosity 
rosity is not equal to clearance, gives the following equations: 

(=0μ__ί±_ (208Β) 

<Pak Pk ~ Pgal 

and 

T=0M_—L, (20.9B) 
<Pak Pk ~ Pga! 
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Eqs. (20.8B) and (20.9B) differ from usually applied Eqs. (20.8A) and (20.9A) 
by the structural factor φα, whose value satisfies the inequality φα > 1. Therefore, 
the inclusion of the structural factor results in a decreased travel time of the 
"marked particles". 

Another important parameter utilized in the solution of applied problem is av-
erage formation pressure p weighted over the pore space volume. It usually is 
found as: 

p=-±jpdVpor, (20.10) 

where V is total pore volume of the reservoir. This definition, however, is not ex-

actly accurate. Indeed, under porosity definition (0 = dV /dV ), the pore volume 

is represented by a function similar to the following: 

ν,„ = /0</ν. 
V 

which is defined over the same multitude of "physical points" as the reservior volume 
V in which the voids are "spread". Thus, the correct definition Eq. [(20.10)] should be: 

~P = ^-\0pdV, (20.11) 
por V 

i. e., the volume over which integration is performed must be changed. It is 
clear that another parameter may also be introduced. It is the reservoir's aver-
age pressure: 

~P^=^\pdV. (20.12) 

Now, the introduced parameters are compared. For a uniform reservoir 
(dV^ =0dV and 0 = const): 

~p=wjp0dv=~p-=vipdv-
Thus, the average formation pressure for a uniform reservoir is equal to aver-

age value weighted over the pore volume. If the reservoir is non-uniform, the aver-
age formation pressure may not be equal to average value weighted over the pore 
volume: 

jp0dV \pdV 
■* P 

J0dV " \0dV 
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Substitute Eq. (20.4) for pressure distribution in the reservoir into the Eq. (20.11) 
and compute average pressure weighted over volume (which in this case is equal to 
case is equal to the average reservoir pressure). 

M ft - Pt-P» dx = Pk+Pp (20.13) 

Therefore, major filtration parameters at rectiliner-parallel filtration for an 
incompressible fluid are determined from Eqs. (20.4), (20.8A), (20.8B) and (20.13). 

3. Radial-plane filtration of incompressible fluid 

Let's now determine the pressure and filtration velocity distribution in the re-
servoir under the radial-plane environment. Suppose there is a central well with the 
diameter rc intersecting a round reservoir with the thickness h and radius RK 
(Fig. 20.4). A constant pressure pk {pk > Pc) is maintained at the bottomhole. A con-
stant pressure is also maintained on the side surface r - RK. Fluid inflow equal to 
the well's flow rate occurs through the side surface. 

z 

Fig. 20.4. Radial-plane flow in a circular reservoir 

Filtration is transient-free. The side surface through which the inflow occurs is 
called charge contour. The equation system remains the same and in a no-subscript 
format is represented by Eq. (20.1). Projecting these equations onto a cylindrical 
coordinate system, results in: 

1 d ( dp 
■dr 

w=-

dr 
k dp 
μ dr 

+ ± 3 V + öV = 0 
r2d9

2 dz2 

_ k dp _ k dp 
ψ ßd<p' z ßdz' 

(20.14) 

According to the accepted flow scheme, the sought-for functions depend nei-
ther on φ (the flow is axisymmetric) nor on z (the flow is flat); so, in our problem 
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— = — = 0,p- p(r), and \νφ = \νζ = 0, wr = w(r). Under these conditions, the sys-
d<p dz 

tern Eq. (20.14) takes the following format: 

A.(r£\ = 0, » = *-&.. (20.15) 
dr\ dr) μ dr 

It is important to note the fact that in the projection of Darcy's law, or the 
second Eq. (20.15), onto the coordinate axis r, the signs in the left and right parts 
are the same. The reason is that the flow is occurring toward the well, and filtration 
velocity is projected with the minus sign. 

Now, the first equation r— = C is integrated and, after separating the va-
dr 

riables and integrating the last expression, results in: 

pK-p = Clog^-. (20.16) 
r 

When integrating, a following boundary condition is used: 

p - pK at r- RK-

It is possible to use a different boundary condition such as: 

p = pc at r = Rc, 

Thus: 

p-Pe=Clog-. (20.17) 

Both Eqs. (20.16) and (20.17) are equivalent. 
The constant C can be found by the following procedure: multiply filtration 

velocity Eq. (20.15) by the area of a side cylinder of arbitrary radius r(rc<r<rK): 

iTirhw = 2m-h , 
μ dr 

Q = 27th—C, 
ß 

and C is found from this equation: 

QM C = -
Ιτύάι 

Another approach is also possible: supposing in Eq. (20.17) r = Rk; then: 

Pk-Pc= Clog— 
r 
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Solving this equation for C, results in: 

c = Pk ~ Pc 

l o g ^ 

After substituting the determined value of the integration constant C into 
Eqs. (20.16) and (20.17), gives equations for the pressure distribution in the reservoir: 

'■ Λ ~^klog and P = pc+^frlog_ · 
2mn r 2πκη r 

(20.18) 

At r - rc for the first Eq. (20.18) and r = Rk for the second one, the well flow 
rate (volume throughflow) may be found as: 

Q = 
2πΙώ pt-pc 

V l o g ^ 
r 

(20.19) 

Eq. (20.19) is called Dupois formula. 
Using this formula, the pressure distribution in the reservoir can be transformed 

into the following format: 

P = Pk-
Pk 

log — 
r 

^ l o g - ^ and p = Pc + Pk £c log— 
«i r ■ K r 

(20.20) 
log — 

Eqs. (20.18) and (20.20) are equivalent and indicate that the pressure in the 
reservoir is logarithmically distributed. Thus, at the radius values close to the source 
contour radius, pressure changes insignificant, but on approaching the well they 
change drastically (Fig. 20.5). Eqs. (20.18) and (20.20) in space define the surfaces 
generated by the generatrix rotation about the well's axis. This surface of pressure 
distribution is called the depression cone. 

//////////////////// 

P, 

///////////////////. 
77777777777777777777 

Fig. 20.5. Pressure distribution in a radial-plane flow 



372 CHAPTER XX 

The pressure gradient and, hence, the filtration velocity behave in a similar way. 
The difference is that on approaching the well pressure drastically declines, whereas 
velocity drastically increases. This velocity behavior may be shown by analyzing 
equation relating velocity and the throughflow: 

Ml 
2ιΰι r 

(20.21) 

Such behavior of reservoir pressure and filtration velocity is physically under-
standable. Indeed, the same volume of the incompressible fluid flows through any 
cylindrical surface concentric relative to the well (Q = const). The side surface area 
near the charge contour is very high, so velocity there is small. Apporoaching the 
well, the area gradually declines, and velocity increase (Fig. 20.6). In order for this 
to occur, the pressure gradient must increase. 

0 r( r 

Fig. 20.6. Fluid's filtration velocity in a radial-plane flow vs. radius 

As follows from Dupois formula, the indicator curve equation under the radi-
al-plane flow, same as in the case of filtration in a gallery, is the equation of a 
straight line (Fig. 20.7): 

//log-*-
r 

(20.22) 

Fig. 20.7 Indicator curve of incompressible fluid flow under the Darcy law 
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With the productivity index C = -
//log — 

rc 
Let's now derive equations regarding the time the "marked particle" takes to 

move in a radial-plane flow. As in the case of rectilinear-parallel filtration, two op-
tions are reviewed. The first option is a one with porosity being equal to clearance, 
whereas the second one is using correction factor for clearance. From Eqs. (20.7A) 
and (20.21), time required for a "marked particle" to move from the charge contour 
to an arbitrary point in the reservoir is: 

dr w Q 
■ v = -

dr 0 2nrh0 

After separating the variables in this differential equation and integrating it 
with the integration limits from 0 to an arbitrary moment in time t\ and from the 
charge contour radius to n, results in: 

_gft0(ff-r,2) 
, = Q ' 

After the application of Dupois' formula Eq. (20.19): 

' · = — ^ r — ^ — · ( 2 0 · 2 3 ) 

Following Eq. (20.23) that a "marked particle" will traverse the distance from 
the charge contour to the well over a time interval T: 

/ /01og^(/? 2- / · / ) 
T = ^ . (20.24) 

U(pk-pc) 

The replacement of porosity by clearance, as in case of rectilinear-parallel fil-
0 tration, results in the appearance of the structural factor sa= — in Eqs. (20.23) 
Ψα 

and (20.24): 

//01ogf V W - r,2) //01ogf V W - ή) 
t.= \JLM. and 7 = SJ-il . 

2*Pe(P*-Pc) 2kf>a(pk-pe) 
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Next, the average pressure at parallel-plane filtration weighted over the pore 
space is determined. For this purpose the pressure, distribution Eq. (20.20) is substi-
tuted into Eq. (20.10): 

h 2π Rk 

7ύι<Ζ>(Κΐ-ή)1 
\dz\dcp\Pk 

'-'" " l o g ^ 
^—^log^prdr, 

r 

and after integrating with respect to z and φ: 

{ \ 

P = 
V$-t) 

Rt 

Pk-P^logRk 

log-*-
r 

dr+ \Pk ,fc rlogrdr 

'. log— 
j 

The first integral in brackets is easy to calculate, and the second one is inte-
grated part-by-part. The result is: 

3 2 2 , 

-p = P,-^^logRk+
 2 * - P < 

log 
R, rt-ft^EL 

R< 
-*- log 11,,—ε- log rc --(Ri- K) 

Now, this equation is transformed by adding and subtracting the expression 

R-l \ogrcl2 within the brackets. After some transformations, the result is: 

P = Pk~ 
rc(Pk'Pj Pk-Pc 

Ri-e 2 1 o g ^ 
r 

p 
As —- » 1, the second component may be disregarded; so, the final average 

r 
pressure over the pore space is: 

P = Pt 
Pk ~ Pc 

2 1 o g ^ 
r, 

(20.25) 

4. Radial-spherical filtration of incompressible fluid 

Let's analyze the incompressible fluid's radial-spherical filtration within an 
isotropic nondeformable reservoir. Suppose there is a well with the radius rc which 
penetrated the top of a reservoir. Constant pressure pc is maintained at the bottom-
hole. Assuming the reservoir thickness is sufficiently large, it is possible to identify 
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a hemisphere with the radius /?* (Fig. 20.8) at the surface of which constant pres-
sure pk is maintained and through which fluid filtrates at a rate equal to well's 
flow rate. The flow is non-transient, and the surface of the hemisphere is the charge 
contour. It is possible to assume that the penetrated reservoir top in the well has the 
shape of a hemisphere, the filtration velocity vector at any point in the reservoir 
between the charge contour and the bottomhole is directed toward the center of the 
sphere. In this case the problem has spherical symmetry, and it is convenient to 
solve it in the spherical coordinate system. 

'////////// '////////Λ 

R, 

ViiV 
Fig. 20.8. Radial-spherical filtration 

The equation system remains the same and is represented in the no-subscript 
format by Eq.(20.1). In the spherical coordinate system, Eq. (20.1) has the following 
format: 

1 
r29pV I 8 _ f φ 

dr\ dr) s i n ^ 3 ^ dr) sin (pdO 

1 d2p 
■0, 

k dp 1 k dp 
wa= — 

1 dp 
(20.26) 

1 μ dx r ßd(p / / r s i n ^ 3 0 

Under the condition of the process' spherical symmetry, all unknown functions 
depend only on r, so the system Eq. (20.26) becomes simpler: 

dp rv k dp 
= 0, wr=—^-

μ dr 

(20.27) 
dr \ dr, 

The integration of the first equation of the Eq. (20.27) system results in: 

r ^ = C, 
dr 

where C is the integration constant. After separating the variables and integrating, 
the result is: 

\dp = C j — , and from here, pk — p =C 



376 CHAPTER XX 

To determine C, it is also possible to assume in the latter equation r = rc. As a 
result: 

C = (pk-pcW/rc-l/Rt), 

but as Rk» rc: 

C = rc(pk-pc), 

and the pressure distribution equation will transform into the following format: 

P = Pk-rc(Pt-Pc) 
Ί _ _ ι Λ 

r Rkj 
(20.28) 

Using the second Eq. (20.27) and Eq. (20.28), the flow rate is obtained: 

„ 2 „ 2 £ dp Ink , 
β = Λτχ=-2ΛΓ2--ρ = rc(pk-pc). 

μ dr μ 
The remaining parameters of the radial-spherical flow may be derived similar-

ly as the first two cases of the unidimensional flow. 
As it is evident, the Laplace operator for all three reviewed cases of the unidi-

mensional flow may be written as 

d (pa dp 

άξ{ς άξ 
■■ 0, (20.29) 

where the exponent or = 0, 1,2 and may be called the shape factor. At or = 0,the 
flow is rectilinear-parallel flow (ξ= x); at or = 1, the flow is the parallel-plane flow 
(ξ = r); and at or = 2, it is the radial-spherical flow (ξ = r). However, using the for-
mat common for all three cases in is not possible to obtain the universal solution 
format, as the integral assigning pressure distribution is not computed uniquely: 

\-£ = T— + C a to r^ land f-|- = log£ + C ator = l. 1 ξ \-a J ξ 

However, the Eq. (20.29) may be used as a common rule for memorizing the 
Laplace's operator format for different types of unidimensional flows. 

5. Filtration similarity between incompressible liquid and gas 

The previous solutions for the unidimensional flow are valid for the filtration 
of an incompressible fluid. Now, these solutions will be expanded for gases. For this 
purpose, the mathematical models of the transient-free filtration are reviewed for an 
incompressible liquid and gas and establish their similarity. As it is shown in 
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Chapter XIX, equation systems for an incompressible liquid and gas (equation sys-
tems Eqs. (19.10) and (19.18) disregarding mass forces) are, respectively: 

div pw = 0, div pw = 0, 

— k — k 
w = — g r a d p , w =—grad/?, 

μ μ 
p = const p = p(p). 

Now, it is required to switch to Leibensohn's function. For this purpose, Dar-
cy's law is multiplied in the gas model by density; grad Pis used instead of p 
grad/?; and in the continuity equation Darcy's law is substituted. The results are the 
system Eqs. (19.11) and (19.19): 

Ap = 0, AP = 0, 

— k — k 
w =—grad/?, pw = grad/>, 

ß , ß (20.30) 
p = const; P=\pdp 

p = p{p\ 

It is important to note that the gas equation of state is considered to be known. 
A comparison of the first two equations of Eq. (20.30) shows that they are equivalent 
but for the unknown functions (pressure p as opposed to Leibensohn's function P 
and filtration velocity w as opposed to filtration's mass velocity pw). So, if the reser-
voir geometry and boundary conditions in the problems are similar, the solutions 
will have the similar format. Therefore, if the earlier obtained solutions is consi-
dered for the unidimensional filtration flow of an incompressible fluid and replace 
the functions, the solutions valid for the gas filtration are obtained. For instance, 
the solutions for pressure distribution and filtration velocity in the reservoir for the 
rectilinear-parallel flow [Eq. (20.4)] of a incompressible fluid will transform as fol-
lows for the gas filtration: 

for incompressible 
liquid 

for gas 

P(X) = Pk ~^-^χ, PW = Pk -Z-fie-x, 
L " L 

k_ 

M 

k Pk - Pgal Λ k Pk ~ Pea| 
—. pw~ ^~ 

(20.31) 
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In order to obtain pressure and mass velocity distribution at gas filtration in the 
decisive format, the equation of state should be assigned. It is clear that after the 
substitution of Leibensohn's function, different pressure and mass velocity distribu-
tions are obtained, as well as equations for average pressure in the reservoir for each 
of equations of state reviewed in Chapter III. 

Let's analyze each case individually. 

6. Unidimensional filtration flow of ideal gas 

After establishing the similarity in the transient-free filtration of a incom-
pressible liquid and a gas, and assigning equations of state, the solutions for each of 
the unidimensional filtration case should be considered. Suppose the ideal gas is 
followings. 

Rectilinear-parallel filtration flow of the ideal gas. For the ideal gas, the 
substitution of Leibensohn's function Eq. (19.32) into Eq. (20.31) results in the fol-
lowing pressure and velocity distribution, respectively: 

2 2 

PalmPt PttmPyA 

PttmP , Q _ PamPk . Q ^Patm ^Patm 

2Pzm 2Patm L 

PxmPk AitmPgal 

p w = k 2P*"< 2 ^ . m 

μ L 

After the transformations and multiplication of filtration velocity at the gallery 
area results in: 

p{x) = ,\pi-Pk / " J C , (20.32) 

^P^PI PI\ (2033) 
M 2patmL 

pwBh = Qm = - Α " " ( Ρ * ~ Ρ 8 3 | ) Μ . (20.34) 
M 2palmL 

Eqs. (20.32)-(20.34) enable the calculation of major filtration parameters in 
rectilinear-parallel filtration of the ideal gas. Analyzing the mass throughflow 
Eq. (20.34) it is easy to see that it may be derived from equation for the rate of an 
incompressible fluid by substituting Leibensohn's function for pressure and the 
mass throughflow for the volume throughflow. Therefore, a complete similarity 
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between the incompressible liquid and gas filtration is established by the following 
ing substitutions of variables: 

for incompressible liquids 

P(x) 
w 

Q 

for gas 

P(x) 
pw 

Qm 

At the gas filtration studies, beside the mass flow rate, a concept of the volume 
throughflow gatm normalized for the atmospheric conditions is commonly used. 
It is defined by the following equation: 

Q, = - ^ - . 
Aatm 

Equation for the gas volume throughflow, normalized for the atmospheric 
conditions, is: 

n _k Ρ,~ΡιΛ 

M 2/?atmL 
(20.35) 

Using the obtained solution for the mass filtration velocity, it is possible to de-
rive equation for the "marked particles" flow time in a gas reservoir. For this pur-
pose, the filtration velocity Eq (20.33) is substituted into Eq. (20.7): 

:0f dx 2//0L 

o w k(Pk~PgJ 
jp(x)dx- 2/J0LPk 

*(A 2 -Pga , ) 0
J i, 

2 2 
Pk - Pgal 

p\L 
xdx, (20.36) 

where Eq. (20.32) was used for p(x). 
Upon integrating of Eq. (20.36): 

Αμ0ϋρ1 

M(PI-PL)2 
\_pt^kx 

p\L 

This expression may be transformed by way of transferring p\ into the brack-

ets. The result is: 

Αμβϋ(ρΙ-ρ\χ)) 
t = -

mpl-pLf 
(20.37) 

Eq. (20.37) enables determining time necessary for a "marked particle" to flow 
to any point in the reservoir. In particular, at x = L: 

T = 
4M0L2(pl- p\a) 

U{p2
k-pLY 

(20.38) 
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Eq. (20.38) can be made simpler with the use of a formula for weighted aver-
age formation pressure. Average formation pressure weighted over the pore space 
in the ideal gas filtration is determined from the following equation: 

. I L n a 

^ = -rjp0dV= — jjjp(x)dxdydz = 

■i/'w*-tjff7ih* Lpi 

where the same integral as in Eq. (20.36) needs to be calculated. Using the result 
obtained earlier: 

-=2ρΙ-ρ\Λ 
P i 2 2 

3 Pk - Pgal 
After that, Eq. (20.38) may be rewritten as: 

20ßL2~p~ 
T = 

k(Pi ) 

(20.39) 

(20.40) 

As mentioned earlier, Leibensohn's function for elastic fluid at small pressure 
changes coincides with Leibensohn's function for incompressible fluid. So, the 
solutions for elastic liquid at small pressure changes look exactly as for incom-
pressible liquid. 

Comparing the solutions for rectilinear-parallel filtration of incompressible liq-
uid and ideal gas, Eq. (20.32) indicates that pressure in a gas reservoir changes not li-
nearly (as it is for the flow of incompressible fluid), but in proportion with square root 
of the coordinate (Fig. 20.9). Pressure gradient (the angle between curve 2 in Fig. 20.9 
and the x axis) increases as the gas is flowing in the reservoir, and reaches its maxi-
mum at the gallery. Pressure nonlinearity in the reservoir causes changes in pressure 
gradient, and under Darcy's law, in filtration velocity. A comparison of rectilinear-
parallel filtration velocities for the flow of a incompressible liquid and ideal gas is 
illustrated in Fig. 20.10. Ideal gas filtration velocity increases on approaching the gal-
lery. That causes equation of the "marked particle" motion to become nonlinear. 
A comparison of "marked particle" motion time for the flow of a incompressible 
liquid and ideal gas is illustrated in Fig. 20.11. 

W(x) 
W(L) 

W(0) 

Fig. 20.9. Pressure distribution at rectilinear-parallel flow: 1. incompressible liquid, 
2. gas 
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0 L x 
Fig. 20.10. Velocity vs. coordinate correlation f>r rectilinear-parallel filtration: 1 
incompressible liquid, 2 — gas 

Fig. 20.11. Time vs. coordinate correlation of a marked particle under rectilinear-parallel 
filtration: 1 — incompressible liquid, 2 — gas 

Radial-plane filtration flow of the ideal gas. Using the similarity between 
the incompressible liquid and gas filtration, the above solutions [Eqs. (20.19), 
(20.20) and (20.21)] are transformed by replacing Leibensohn's function for pres-
sure, mass velocity for filtration velocity, and mass flow rate for the volume flow 
rate. The result is: 

P = P„ P"~Pc l o g ^ - , 
r 

pw-

<L = 

log(i?t/rr) 

Qm 1 
2nkhr 
Inkh fl-P 

(20.41) 

μ \og(Rk/rc). 
We will now replace Leibensohn's function in Eq. (20.41) by its repre-

sentation for an ideal gas [Eq. (1 9.32)]. As follows from this representation, 

P = P«nP2'2pm+C, Pk = pamP
2

k 12patm+C, and Pc = p^p)llpm + C. 
Thus: 

pw-

*£-m 

s Λ2-
" log(Ä 

a. i 
2Kh r ' 
nkhpam 

-pl 
Jrr 

pi-

log 

■pi 

Rk 

r 

MPsm l o g ( V c ) 
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Therefore, pressure distribution under radial-plane filtration of ideal gas is 
found from: 

P = y\P>- * - * i o g ^ 
log(Rk/rc)

 B r 
(20.42) 

Fig. 20.12 illustrates a comparison between pressure distribution curves in the 
reservoir under transient-free filtration of an incompressible liquid [Eq. (20.20)] 
and that of ideal gas [Eq. (20.42)] with the same boundary conditions and the same 
reservoir size. The curves show that pressure in a gas reservoir changes more slow-
ly near the accumulation limit and more rapidly, near the well than it does in an oil 
reservoir (usually, the model of incompressible liquid is utilized for the calcula-
tions). The rate of pressure change determined pressure gradient, which, in turn, 
determined filtration velocity. Thus, the indicated pressure behavior of the gas re-
servoir results in the violation of the Darcy' s law in the near-hole zone of the fields. 
Thus, the solutions derived from nonlinear filtration laws are better suited for the 
applied calculations of ideal gas flows. Later the solution of the corresponding 
ponding problems will be reviewed and analyzed. 

. 

Pc / 

Rt 

Fig. 20.12. Comparison of pressure distribution in the reservoir under transient-free filtra-
tion of incompressible liquid and perfect gas 

The gas mass flow-rate equation in a gas reservoir is usually converted for the 
volume flow-rate equation under atmospheric conditions. This is done by dividing 
by the gas density under atmospheric conditions: 

«-atm 
nkh pk - p] 

(20.43) 

The indicator curve for gas wells is usually a correlation graph of volume flow-
rate vs. (pi - pi). Therefore, following Eq. (20.43), the indicator curve is a straight 
line (Fig. 2.13), and the productivity index is: 

rich 1 

fPm l°g(** frc)' 
(20.44) 
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P*2-A2 

Fig. 20.13. Indicator diagram for gas wells 

Mass velocity equation under the ideal gas radial-plane filtration, after the 
expression for the mass flow-rate is substituted, may be converted into: 

pw = 
k Aim PI-PI 1 

M2pmlog(Rk/rc)r' 
(20.44) 

Volume throughflow and filtration velocity equations under the ideal gas radi-
al-plane filtration are: 

Q(r) Qm _ Ο.Λ, Kkh „2 „ 2 

P P»UaP 
ßP,m^g(Rklrc)p{r) 

Q(r)_k pi-pi 1 
Inrh μ 2\ogRk Irc p(r)r' 

w = 

(20.45) 

(20.46) 

Now, let's determine average pressure weighted over the pore volume under 
the ideal gas radial-plane filtration: 

p = — \P0dV = L _ UWfJft2 - P* P< log^rdr. 

After integrating this equation with respect to z and <p, and the subsequent re-
moval of pi from under the integral, the result is: 

Rl-r? >i \og(Rklrc) rc 
rdr. (20.47) 

The integral Eq. (20.47) cannot be taken in a finite form and is calculated ap-
proximately. To demonstrate the approximate calculation and simplifications, the 
following expression is introduced: 

\og{Rklrc) rc 
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At rc < r < Rk, the inequality 0 < y < 1 is valid for the new variable (indeed, at 
r = Rk, we have log Rklji = log 1 = 0, and y = 0; at rc < r < Rk, 0 < log Rklr /log RJ 
I rc< 1, and 0 < \ — p] I p\ < 1, so 0 < y < 1). Let's expand the radical into series: 

V y 2 8 

Taking only y-linear term: 

. l-*'Pl i o g ^ . 
21og(Ät/rc)

 & r 

After the simplification, Eq. (20.47) takes the following format: 

p = ^L_lzPlLELlog!k 
R'-e \os(RJr) Br 

rdr. 

This integral is integrated part-by-part (see the calculation of average pressure 
weighted over the pore volume under radial filtration of incompressible liquid in 
Section 2 of this Chapter). Disregarding the component containing rc

2 / /?t
2, the re-

sult is: 

P"Pk 
4 1 o g ( V c ) 

(20.48) 

Now, let's determine the "marked particles" motion time in the gas reservoir 
under the radial filtration. This time is: 

f = 0 j -
dr 

J w(r) 

Substituting this term into the filtration velocity Eq. (20.46), results in: 

Ik(pi-pi) ^ ' 

The time required for the "marked particle" to move from the charge contour to 
the well is determined. For this purpose, the above equation is transformed by sub-
stituting, under the sign of integral, pressure distribution Eq. (20.42) at radial filtra-
tion of ideal gas: 

20/1 log j? t / r c ) 

kipl-p]) Pk)\ 
i - l-*"i i o g ^ 

2 1 o g ( V c ) r 
rdr. 
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This integral was already derived for average pressure weighted over the pore 
volume Eq. (20.47). So, as in the previous case, it can be computed approximately 
by expanding the expression under integral into a series: 

<Zß\og{Rklrc){R2-S) 
T = , , 2 2 ' P- (2 0·4 9) 

The assumption, while deriving Eq. (20.49), was that porosity is equal to clear-
ance. If this assumption is neglected and the porosity/clearance correlation is 
accpted as 0 = q>c$a, the Eq. (20.49) becomes: 

0M\og(Rk/rc)(R
2
k-rc

2) 
7 = ; ~ D. 

ΨΜΡΙ-PC) 

The introduction of the structural factor shortens the motion time of the 
"marked particles". 

Note about the radial-spherical filtration flow of ideal gas. Using 
Eqs. (20.27) and (20.28) and the similarity in filtration of incompressible liquid 
and the gas, it is possible to derive major filtration parameters also for the radial-
spherical filtration flow of ideal gas. 

7. Parallel-plane filtration of real gas under Darcy's law 

In Chapter XIX, the generalized Leibensohn's function Eq. (19.20) is intro-
duced. Let's now assume that permeability is constant, and the density is associated 
with pressure as in equation of state for the real gas [Eq. (19.27)]. In such a case, 
Leibensohn's function takes the following format: 

p =
 kP«mz(P*m) f P d (20.50) 

Pa» }M(P)z(p) 

After assigning the Eqs. (20.33), (20.34), (20.35) and (20.36), Leibensohn's for 
function [Eq. (20.50)] may be used for solving unidimensional filtration problems 
for compressible fluids accounting for the super-compressibility factor and the corr-
elation pressure vs. viscosity. Let's review as an example the problem of a well flow-
rate under the parallel-plane filtration. 

To compute the flow-rate, the analogy between filtration of an incompressible 
liquid and compressible fluid is used, as well as the equation for the mass flow-rate 
utilizing Leibensohn's formula: 

= 2nkh Pk-Pc 

M log(Rk/rc) 
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Let's now substitute the Leibensohn's function [Eq. (20.49)]: 

_2nkh pMmz(pim)"r p , 
Vm μ \og(Rk/rc)jM(p)z(p) *' 

There are different ways to calculate the integral in the above equation. The 
simplest way is to use the graphs in Fig. 19.2 to determine the values ζ(ρύ - Zk, 
z{pc) = Zc, and p(pk) = μ k, p(pc) - μ c'< and to replace the variables zip) and μ(ρ) un-
der the integral by constant values equal to arithmetic averages: 

z = h±I^andM = äL±JL_ (20.51) 
2 2 

After that, equation of the mass flow-rate is formatted as follows: 

Qm = 1M A-z<A-> "\pdp. 
V ßz\og{Rtlrc)p, 

Now, the integral is computable, and equation for the real gas's mass flow rate 
considering the pressure and viscosity is: 

0 =^hp^z(pam)(p2
k-p^) 

μ MzpmlogLRk/rc) 

Inclusion of the real gas properties' deviations from those determined from 
equation of state for ideal gas, as well as of correlation of viscosity vs. pressure results 
in the flow-rate accuracy of up to 30 %. 

Filtration parameters for unidimensional flow of elastic liquids. As mentioned 
in the derivation of Eq. (19.31), under small pressure changes, Leibensohn's function 
for the elastic liquid coincides with Leibensohn's function for incompressible liquid. 
So, the elastic liquid under the transient-free filtration may be considered as in-
compressible, and the solutions derived for the incompressible fluid may be used for 
for the calculations. However, when the pressure changes are large (such as in high-
pressure reservoir with a large pressure drawdown), the use of equation of state for 
the incompressible fluid may cause significant errors. In such a case, equation of 
state [Eq. (19.23)] and the corresponding responding Leibensohn's function 
[Eq. (19.30)] should be used. But in such a case the soultions will be exponential, 
and usually they are not utilized in this form. Thus, models of ideal and real gas 
are considered. The elastic liquid's model is used in the filtration theory for solving 
problems under non-stationary flows. 

8. Radial-plane filtration of incompressible liquid and gas 
under binomial filtration law 

Let's now review the ways to determine major parameters of the radial-plane 
liquids and gas filtration at high velocity, when deviations from Darcy's law 
are caused by significant inertial components of the total filtration resistance. 
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The incompressible liquid and gas filtration models in this case are as following: 

div w = 0, div p w = 0, 

grad p = — w- ß-^=Mw, grad p = — w- /?-T=UH>, 
μ -Jk' ' μ -Jk' ' 

ρ = const ρ = ρ(ρ). 

If the Leibensohn's function is introduced, both models allow for the analogy 
between the liquid and gas filtration also under the nonlinear filtration law. Let's 
multiply by density the filtration law in the gas model, and introduce Leibensohn's 
function. As e result, for the first two equations: 

divw = 0, divpw = 0, 

grad/? = w- ß^j= \v\w; gradr> = pw-^lpwpw. 
μ ft1 ' μ Ik' ' 

Therefore, both models allow for the same analogy as under the linear filtra-
tion law. 

To make the results more general, let's obtain the solution of the transient-free 
parallel filtration problem under the binomial law for the gas, and write down the 
solution for incompressible liquid as a particular case of Leibensohn's function for 
equation of state, p = const. 

Let's project the binomial filtration law onto the flowline (onto the r axis of 
the cylindrical coordinate system): 

^ = fpwr+4r(pwr)
2. (20.52) 

dr k Ik 

In order to reduce differential equation [Eq. (20.72)] to a format for integration, 
the continuity equation is reviewed and the connection between the throughflow 
and filtration velocity is found by integrating the continuity equation. The tran-
sient-free flow continuity equation in the cylindrical coordinate system is: 

dpwrr dpw dpw 
-\ + r z = 0. 

dr dp az 
As the flow is unidimensional and parallel-plane, all sought-for functions de-

pend only on r, and the continuity equation becomes simpler: 

dpw'r = Q 
dr 
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and after integrating: 

pwrr = C = const. 

By multiplying this result by 2m (where h is the reservoir thickness): 

2Kpwrrh = Qm= const, 

and from here, the mass filtration velocity is: 

Qm i 
pwr = 2m r 

Substituting this expression into Eq. (20.52), results in: 

dr k iKhr Jk\2nh) r 2 ' 

By integrating this equation from the contour radius to an arbitrary point with-
in the reservoir: 

'-'■-!&**-£ (20.53) 

* V 
As r « Rk, we may disregard the expression in parentheses. Assuming r = rc, 

Eq. (20.53) may be rewritten as: 

k 2m r -Jk \2m) r 
(20.54) 

Eqs. (20.53) and (20.54) represent, respectively, the Leibensohn'd function 
distribution in the reservoir and the correlation of pressure drawdown vs. flow-rate. 
Now, the following equations will be used: 

P = _PmP 
2Pa, 

+ C for ideal gas, and 

P = p0p + C for a incompressible liquid 

to transit from Leibensohn's function to pressure. This results in the derivation 
from Eqs. (20.53) and (20.54) equations for pressure distribution and the through-
flow vs. pressure drawdown correlation with radial-plane filtration under the bi-
nomial law. For the incompressible liquid, the distribution of pressure in the reser-
voir is found from: 

^ _ A J L l o g ^ _ ^ i J L V i 
k k 2m r 4k\2m) R, 

(20.55) 
k J 
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and the pressure drawdown vs. throughflow correlation, from: 

Pk-Pc=ä^og^+MjQ-)2L. (20.56) 

For ideal gas, pressure distribution in the reservoir is found from: 

n - „ ^ QatmPatm l n „ Rk ßPamPxm ( Q 
P~Vk k ah °g r 24k U 

Vj p 

r R, k J 

(20.57) 

and the pressure drawdown vs. throughflow correlation, from: 

_2 2 M *£atm r a tm ^„„ k ι aim *^atm 
Pk Pc~k til g r c

+ 24k [iTdij rc 
(20.58) 

Eqs. (20.56) and (20.58) show that the indicator curves plotted, in the, Q, Ap 
coordinates for the liquids and Qam, (p2

k-p
2
c) for the gases, are parables 

(Figs. 20.14 and 20.15). 
~Q o ^ ~ßatm 

Pk-Pc 

Fig. 20.14. Indicator diagram at liquid's Fig. 20.15 Indicator diagram at gas flow 
filtration under the binomial law under the binomial law 

Let's now write down equation for the inflow into a well in a different form: 
for a noncompressible liquid: 

pk-Pc=AQ + BQ\ (20.59) 

and for gas: 

Pl-P>\Q*m+B£lm. (20.60) 
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In these equations: 

A = 
2nkh rc 4k{2nh)2 

.HP, log—-
Tdih r 

Ö, 

are filtration resistivity factors constant for a given well. They are found experi-
mentally from well test results under a stabilized regime. The wells are studied un-
der five or six regimes with the flow-rate and bottomhole pressure measured for 
each regime. After that the well is shut-in, and the stabilized bottomhole pressure in 
the shut-in well is assumed to be the contour pressure pk. For interpretation of the 
well test results, Eqs. (20.59) and (20.60) are divided by Q and ßatm, respectively, 
which turns them into straight line equations: 

^ - ^ = A + BQ, 
Q 

(20.61) 

„2 „2 
Pk-Pc _ A+ß,ßa , (20.62) 

The graphs in coordinates Q, (pk -pc)/Qand ßaIm, (p2
k -p

2
c)IQxm are 

straight lines for which A(Aj) is the interval cut on the y axis, and B(B\) is tangent 
of the angle between the straight line and the x axis (Fig. 2.16). 

The flow-rate Eqs. (20.59) and (20.60) with 
experimentally determined factors are widely 
used in the designs of field development. Be-
sides, A(A\) value found from well test results 
provides an opportunity for the determination of 
reservoir properties, such as hydroconductivity 
factor: 

Fig. 20.16 Correlation at filtra-
tion under the binomial law 

and for a gas well: 

\Pl 

for an oil well: 

kh 1 , Rk 

— = log—L 

μ 2τιΑ rc 

^ = ^ l o g ^ L 

pl)lQ, 

7tA 
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Equation of the real gas inflow to the well under the binomial filtration law is: 

pl-pl=2l Qa.m Pm {ο^+βΖ Pat Patm ((LA 1 ^ ( 2 0 6 3 ) 
c k 7&i r 2sjk \ τύι ) rc 

where μ and z are determined from Eq. (20.51). 
One should keep in mind that in real life it is incorrect to assume that a single 

nonlinear filtration law is valid within the entire reservoir, from the well-bore to the 
charge contour. At significant flow-rates, Darcy's law is broken in a near the bottom-
hole, whereas within the rest of the reservoir the linear law is observed. As the flow-
rate increases, the volume where Darcy's law is broken, grows. 

9. Radial-plane filtration of incompressible liquid and gas 
under the exponential filtration law 

Let's now project the exponential filtration law [Eq. (18.45)] onto a cylindrical 
coordinate system. For a radial-plane filtration flow: 

W'={f] '^ = ̂ =°· 
The mathematical model includes, besides the filtration law, the continuity 

equation. Integration of the continuity equation is similar to that performed in 
Section 8 and gives the same result: 

2Kpwrrh -Qm= const. 

Because of this, the mass throughflow equation has the following format: 
I 

Qm = 2npwrrh = Imhcpy — = const. 

To integrate this differential equation, let's raise to the power of n: 

Q" = ( 2 i * c ) " r y p 

and transform it to the following format: 

H dr 

where A = (Qm/2nhc)" = const. 

Separating the variables: 

A = ^p"dp (20.64) 
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and introducing the pressure function P*\ 

P*= jp"dp, 

so that: 

P* = djp"dp = pnp. 

After that, Eq. (20.64) may be rewritten as follows: 

A^ = P*. 
r" 

(20.65) 

(20.66) 

After integrating from the bottomhole to the charge contour (i. e., using for in-
tegrating Eq. (20.66), the boundary conditions;r = rc,P* = Pc* and r = Rk, P* = 
= Pk*), the result is: 

jdp*=p;-p; = JA^= dr = 
r" n — \ 

1 1 
„"-1 D"-l 

* / (n-\)C 
(20.67) 

Substituting A, represented through reservoir parameters and filtration para-
meters, in Eq. (20.67): 

P:-E 
Q: 

(2^c)"(«-i)/-;- ' ' 

and from this, the flow-rate equation is obtained: 

Qm = iTaicr^[(n -1)(/>* -P*)f. (20.68) 

On assuming an arbitrary point (r,P*) as the lower integration limit in Eq. (20.67), 
the result is equation for the pressure function distribution in the reservoir: 

P -P = 
n-\ 

1 1 
„ n - l jr>/ i- l 

Or, eliminating A through Eq. (20.67), 

n-l nn-l 
r<r<K 

The pressure function derived from Eq. (20.65) is: 
for an incompressible liquid: 

P* = PZP+C, 

for an ideal gas (under the isothermal filtration): 

P*=\ PxnP dp = Aim P_ 

V Pirn J n - 1 
+ C. 

(20.69) 

(20.70) 

(20.71) 

(20.72) 
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By substituting Eqs. (20.71) and (20.72) into Eqs. (20.68) and (20.70) equations 
for the flow-rate and pressure distribution is obtained for the liquid and ideal gas, re-
spectively. Filtration velocity equation is then derived from the flow-rate equation. 

Now, let's list all equations for the radial-plane filtration under the exponential 
law for an incompressible liquid. 

The mass flow-rate: 

&,=2*Ä/V," [(n-l)(pk-pc)f; 

the volume flow-rate: 

Qm=2nhcr/r[{n-\){pk-pc)Y ; 

pressure distribution in the reservoir: 

P(r) = Pk-(Pk-Pc)rr J 1_ ,rc<r<Rk 

(20.73) 

(20.74) 

(20.75) 

filtration velocity: 

2mh r 
(20.76) 

If n = 2 is chosen in Eqs. (20.73)-(20.76), the result is Krasnopolsky filtration 
law formulae: 

The mass flow-rate: 

Qm = 2nhp0cjrc(pk-pc) ; 

pressure distribution in the reservoir: 

P(r) = pk-(pk-pc)rc 
r R, 

, r<r<Rk; 

filtration velocity: 

LJOrn r 

(20.77) 

(20.78) 

(20.79) 

The formulae for radial-plane filtration of ideal gas under the exponential 
law are: 

for the mass flow-rate: 

Qm = 2Khpacrc 

"— n 
n raun 

ΟΓΡΪ) (Α ~p< } (20.80) 
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for the volume trie flow-rate normalized for the atmospheric conditions: 

= 2*hp0crc" (η — 1),„+ι „+κ 
(n + 1) 

(20.81) 

for pressure distribution in the reservoir: 

ρ(Γ) = Λ"+1-(Λ"+,-Λ"+ν;"' 

and for filtration velocity: 

1 
n- l 

K 
, rc<r<Rk; (20.82) 

g = c r c " 
2;zrn Ap(r) (n + 1) 

(20.83) 

If n = 2is chosen in Eqs. (20.80)-(20.83), the result is the formulae of the 
Krasnopolsky filtration law. 

Following Eq. (20.75), the pressure distribution curve for incompressible 
liquid has the shape of a hyperbola to a power on n-1, i. e., the drawdown funnel is 
a rotational hyperboloid. The funnel's steepness near the borehole is higher than 
that of a logarithmic curve. The p(r) curve for the gas, Eq. (20.82), is positioned 
higher than for the liquid (at the same pk and pc values). Calculations show that for 
any pk, pc, Rk and rc values over 80 % of the total drawdown {pk - pc) is lost at a 
distance of 1 meter from the borehole. The mass throughflow for fluids, Eq. (20.73), 
is proportional to the pressure drawdown to the power of 1/n. Thus, the indicator 

curve Q = β>Δρ) at 1 < n < 2 has the appearance of 
an exponential curve convex towards the flow-rate 
axis, and the curve's exponent is a fraction, less 
than 2. At filtration under Krasnoselsky law, as 
Eq. (20.76) shows, the indicator curve is a parabola. 
Fig. 20.17 displays the incompressible liquid 
flow indicator curves under the linear filtration law 
(n = 1), under nonlinear filtration laws (1 < n < 2) 
and n = 2. All the above is valid also for the gas 
indicator curves if they are plotted in the coordi-
nates Qm (or ßatm) and pf - ρ"*λ. Both for liquids 

and gases, the throughflow value is in proportion with the well radius to the (n -
l)/n power (yjrc for Krasnoselsky's law), i. e., this correlation is much stronger 

than under Darcy's law. 
Filtration velocity along the flow line changes same way under the nonlinear 

filtration as it does under the linear filtration; for the liquid, w is in inverse proportion 
with the radius, and for the gas, in inverse proportion with rp(r). 

Fig. 20.17 



CHAPTER XXI 

UNIDIMENSIONAL FILTRATION 
OF INCOMPRESSIBLE LIQUID AND GAS 

IN A NONUNIFORM RESERVOIRS 
UNDER DARCY'S LAW 

1. Major types of reservoir nonuniformities 

In nature, productive hydrocarbon reservoirs are rarely uniform, i. e., such that 
the reservoir properties are identical for the entire reservoir. If permeability, porosity 
clearance, specific surface area, etc. change in a reservoir, such reservoir is called 
nonuniform. 

However, permeability changes in the reservoir are sometimes so chaotic that 
significant reservoir volume may be considered as uniformly permeable on the av-
erage. Filtration flow parameters in such reservoirs with great accuracy repeat pa-
rameters of the filtration flows reviewed in the preceding paragraphs for uniform 
reservoirs. 

Often, however, substantial reservoir volumes significantly differ from one 
another in their reservoir properties. These are so-called macro-nonuniform reser-
voirs whose parameter differences strongly affect the nature of the filtration flow. 
It may be acceptable for the calculations of elementary filtration flows within the 
macro-nonuniform reservoirs to resort to simplified flow geometry and to derive 
equivalent values of the filtration resistance factors. These values may be used with 
the equations derived in the preceding paragraph for a uniform reservoir. 

The following types of the macro-nonuniformities are identified in the hydro-
carbon reservoirs: 

(1) Lamination nonuniformity. In such a case, the reservoir's thickness is sub-
divided into several laminae. Reservoir properties within each lamina are 
considered to be uniform and different from those in the adjacent laminae. 
Such reservoirs are also called thickness-nonuniform. The separation boun-
daries between the laminae of different permeabilities are considered plane. 
Thus, it is assumed in a lamination nonuniformity reservoir model that 
permeability, porosity, etc. change only from one lamina to the next and 
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are a piecewise-constant functions of the vertical coordinate. It may be as-
sumed either that individual laminae - interbeds are separated by imperme-
able boundaries (the case of hydraulically isolated laminae) or cross-flows 
between the laminae must be taken into consideration (the case of hydrauli-
cally communicating laminae). In the first case, it is possible to determine 
the filtration parameters using unidimensional flow schematics. In the second 
case, an accurate determination, generally speaking, requires the solution of 
two-dimensional filtration problems. 

(2) Zonal nonuniformity. In such a case, filtration properties change in the la-
mination plane, i. e., the reservoir includes several zones (areas of the reser-
voir). Reservoir properties within each zone are assumed to be identical and 
are assumed to change abruptly at the zones' boundaries. 

(3) Continuous or random nonuniformity. In real life, some reservoirs have re-
servoir properties which change continuously or randomly from one point 
in the reservoir to the next. In solving forward problems of the subsurface 
hydromechanics, reservoir properties are assumed given. So, for the reser-
voirs with a continuous or random nonuniformity these properties are as-
sumed to be given by the known continuous or random functions of the 
coordinates of filtration volume points. 

For instance, in the process of drilling, the drilling mud filters into the hydro-
carbon reservoir and degrade its reservoir properties. The reservoir invasion into 
the reservoir while drilling occurs uniformly, and reservoir properties degrade con-
tinuously from the well into the reservoir. However, such nonuniformity may be 
modeled as zonal as well as continuous. 

Thus, the following may be identified as a result of simplifying filtra-
tion flows: 

(1) Rectilinear-parallel, radial-plane and radial-spherical flows within non-
uniformly laminated reservoir. 

(2) Rectilinear-parallel, radial-plane and radial-spherical flows within zo-
nally nonuniform reservoir. 

(3) Rectilinear-parallel, radial-plane and radial-spherical flows within re-
servoirs where permeability is a continuous or random function of the 
filtration volume points. 

For completeness, filtration within nonuniform reservoir should be analyzed for 
various fluids (incompressible and compressible fluids; and also for non-Newtonian 
liquids under the linear and nonlinear filtration laws). However, the volume of this 
monograph does not allow for such a detailed consideration, so the review is limited 
to the analysis of most typical cases and will note that the methodological approch 
remains he same. 

Now the unidimensional liquid and gas flows are analyzed within the nonuni-
form reservoirs under Darcy's law. 
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2. Rectilinear-parallel flow within nonuniformly-
stratified reservoir 

Suppose a horizontal layer with thickness h and width B includes n laminae with 
permeability &, and porosity 0„ / = 1, 2, ..., n (Fig. 21.1). The reservoir is saturated 
with a liquid or gas. Constant pressure pk is maintained at the charge contour. Con-
stant pressure pgd\ (pk > Pgai) is maintained at the other boundary (gallery) positio-
ned at a distance L from the charge contour. In the case where no crossflows 
exist between the lamina, the flow is rectilinear-parallel flow within each lamina using 
Eqs. (20.4) and (20.5) for determining pressure, filtration velocity and flow-rate for 
the incompressible liquid filtration derived in the preceding Chapter: 

Pt-P, gal 
p(x) = pk-

L, 
■P& 

μΰχ μ μ L 

Fig. 21. 1. Rectilinear-nonuniform flow in a nonuniformly-stratified reservoir: 1 — P(x) 

for the liquid, 2 — p{x) for the gas 

The difference, however, is that the pressure distribution equation is the same for 
all beds, but the filtration velocity and flow-rate will be distinct for each of them: 

/>(-*) = Pt~ 
Pk ~ Ps 

_K_Pk_ 
L 

-p« 

-x, (21.1) 

(21.2) 

0 , = fc, Pk-Pp 
U L 

-kB. (21.3) 

Eqs (21.1), (21.2) and (21.3) include the subscript i, which indicates the num-
ber of the lamina ranging between 1 and n. 
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The differences in Eqs. (21.1), (21.2) and (21.3) are, clearly, due to the fact 
that although the pressure drawdown in all laminae is the same, the laminae reser-
voir properties and size differ. Apparently, the filtration velocity will be higher 
wherever permeability is greater, and the flow-rate will be greater wherever the la-
mina cross-section is larger and permeability is higher. 

Using the similarity between the filtration of incompressible liquid and gas, 
from Eqs. (21.1)—(21.3), expressed through Leibensohn' function, formulas are 
derived, which are also valid for the gas filtration: 

P(x) = Pk-!^Jkx, (21.4) 

i = MWk, ( 2 1 5 ) 
μ L 

l· P - P 
ß l = - - EL*». (21.6) m μ L 

Therefore, if we assume an ideal gas, and substitute the Leibensohn' s func-
tion [Eq. (19.32)] into Eqs. (21.4)—(21.6), the equations are derived for ideal gas 
filtration in the nonuniformly-laminated reservoir: 

PW^Pl-^^x, (21-7) 

μνι _ kiPMm P\ ~ P* = k,p(x) Pi ~ Pga! ̂  ( 2 1 8 ) 

#Pa.m L MPM L 
, , 2 _ 2 

Q =^iPm_Pk—P^_hB (21.9) 
MP*m

 L 

Now, let 's again use the filtration similarity of incompressible liquid and gas 
and make calculations in a general format for both liquid and gas. 
The mass throughflow for the entire reservoir is the sum of the throughflows in in-
dividual laminae: 

3. = Σ& = Σ^Τ*** = m 'rPgJ Σ*Α· (21-10) 
It is convenient in hydrodynamic calculations to replace equations of the fluid 

flow within a nonuniform bed with the equation for the uniform bed of the same 
size with the average permeability kavg. The value of this average permeability may 
be determined from the condition of the flow-rates equality, i. e., from: 

ML ML £ ' " 
one obtains: 

* . , .=Σ*Λ / Α · Λ = ί>· (21.12) 
1=1 i=l 

Therefore, average permeability of a nionuniformly-laminated reservoir does 
not depend on a fluid and is the same for both incompressible liquid and gas. 
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By substituting the Leibensohn's function values for the incompressible liq-
uid and ideal gas into Eq. (21.11), the flow-rate equations for the entire nionuni-
formly-laminated reservoir are obtained: 
For the incompressible liquid: 

ML 
for the gas: 

ßm -Σ*Λ. (21.13) 

Qm = Bpam}pl~plJt^- (21.14) 

Fluid particles movement time for the incompressible liquid (not taking the 
difference between porosity and clearance into account) may be determined from 
Eqs. (20.8A) and (20.9A). However, individual values of porosity and permeability 
will pertain to each lamina: 

0 , μ Lx and 7] A -
K Pt-Pg* ' k, Pk-pg* 

Similarly for the gas, Eqs. (20.37) and (20.38) transform considering reservoir 
properties for each lamina: 

40^\ρΙ-ρ3(χ)) 
t, =- 3*, {pi „2 \2 

/'gal) 
and T, = 

40l//L
2(p3-p3

al) 

^ΛΡΙ-ΡΙ*)1 

3. Rectilinear-parallel flow in zonally-nonuniform bed 

Suppose a horizontal bed of a constant thickness h and constant width B in-
cludes n zones of different permeabilities fc,·, porosities 0 „ and lengths /, (i = 1, 2, 3, 
..., n). Constant pressures pk and pgai are maintained at the bed's boundaries 
(Pk >/>gai), [Fig· 21.2]. Boundaries of each filtration zone are perpendicular to the 
flow direction along the x axis. 

Pk 

Fig. 21.2. Rectilinear-parallel flow in zonally-nonuniform reservoir. p(x) curve for 
a liquid. 
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A transient-free filtration of a uniform fluid occurs within the bed. So, in each 
zone of the zonally-nonuniform bed we have a rectilinear-parallel flow described 
by the same equations for pressure, filtration velocity and flowrate. For instance, at 
the filtration of incompressible liquid: 

P(x) = Pk 

k dp 
μ dx 

wxS = Q = 

Pk 

M ' 

k Pk 

~ Pgal χ 

L 
_k Pk~P$3] 

μ L 

~ P i * s , 

where pressures in the beginning and at the end of each zone are assumed to be, 
respectively, the pressures at the charge source and the gallery, and the length is 
equal to the zone length. Remember that in a nonuniformly-laminated reservoir, 
pressure equation was the same for all laminae with different filtration velocities 
and flow-rates. In this case, the filtration velocities and flow-rates are equal in all 
zones, but the pressure distribution equations are different for each zone. 

The amount entering the reservoir at the charge contour is exiting it at the 
gallery. This is a consequence of the mass conservation law at the transient-free 
flow for the flow-tube. Therefore, the volume throughflow is the same in all zones, 
and at the reservoir's cross-section having constant area the filtration velocity is 
also the same in all zones. 

So, the pressure distribution, filtration velocity and flow-rate equations for rec-
tilinear-parallel flow in zonally-nonuniform reservoir have the following format for 
each zone of the reservoir (1 < i < n): 

pi(x) = Pi-
P'~[

Pi+'x, x,<x<*M, (21-15) 

. K Pi ~ PM 

μ /,. 
(21.16) 

Q = kPi PM hB (21.17) 
M I, 

From Eq. (21.15), we can obtain the pressure gradient value for each zone: 

dp Ax) p, - p:+, 
dx /, 

Thus, the pressure gradient is constant within each zone but different from one 
zone to the next. So the pressure distribution graph is a broken line with straight-
line segments inclined at different angles (Fig. 21.2). 
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To set the problem, it is sufficient to assign pressures only at the charge source 
and at the gallery. That is why the only known values are p\ = pk at x\ = 0 and 

Pn+\ =/>gai at xn+l = L = V i , . Therefore, in order to use Eqs. (21.15)—(21.17) for the 

computations, pressures at the boundaries of all zones must be calculated. To de-
termine these pressures, we will find a flow-rate equation expressed through the pa-
rameters given in the problem. Let's solve Eq. (21.17) for all zones relative to 
the pressure drawdown: 

Pk-p2=Qßi/kiBh, 

Ρτ-Ρ^ = QjUlJ k? Bh, 
fi n Wi 2 ( 2 1 J 8 ) 

P*-P*=QßJKBh-
After addition of Eqs. (21.18), the result is: 

Solving this equation relative to Q, we will obtain equation for the flow-rate in 
zonally-nonuniform bed at rectilinear-parallel filtration of incompressible liquid: 

Q=BhPk~P^ ( 2 U 9 ) 

μ thiK 
i=l 

Using Eqs. (21.17) and (21.19), it is possible to determine pressures at the zone 
boundaries. To find/?2, Eq. (21.17) is used for the first zone as well as Eq. (21.19): 

k Pk'Pi = Pk~ Pgai 

1 = 1 

where the only unknown variable is pressure at the boundary between zones 1 and 2 
(all other values are given at the problem setting). Solving it relative to pi, results in: 

h Pk ~ Pgal 
Pt = Pt—r = — -■ 

1 Σ'Ά 
i=l 

In a case the reservoir includes two zones of nonuniformity, from the above 
expression, the equation for pressure at the zones' boundary is derived: 

h /, 

/ > 2 = 2 '-

Zli/k. 
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Pressures at the other nonuniformity zone boundaries are found similarly. 
Now, the nonuniform reservoir's average permeability will be determined using 
Eq. (21.19): 

0 = Bhpk-P%u = kmi pk - pga, 

and: 

μ ±ι,ιΚ μ L 

*«,=νΣ/'/*'· (2L20) 

Thus, average permeability in a zonally-nonuniform reservoir is determined 
differently from the Eq. (21.12) law for average permeability in a zonally-uniform 
reservoir. 

Using the similarity in the filtration of incompressible liquid and gas, from 
Eqs. (21.15)—(21.17) and (21.19) (expressed through Leibensohn's function) the 
transient-free rectilinear-parallel gas filtration through a zonally-nonuniform reser-
voir is derived: 

p.(x) = PI-
P'~PMX, Xi<x<xM, (21.21) 

k P - P 
pw = ^- ' M, (21.22) 

M h 

Qm=^Z^hB, (21.23) 

Qm = B h P ^ ( 2 1 2 4 ) 

μ Vilki 

Let's now insert Leibensohn's function for ideal gas into these Eqs. (21.21)-
(21.24). The result is equations for pressure distribution, mass velocity, mass 
throughflow and volume throughflow under atmospheric conditions at transient-
free rectilinear-parallel filtration of ideal gas through the zonally-nonuniform re-
servoir: 

PiM = Jpf-Pl fM *' x,<x<xM, (21.25) 

pw = k,Pm P' ~P'+[, (21.26) 
2/̂ a.m h 

Qm = k'p«*> Pi ~ PM hB, (21.27) 
2/4>atm /, 
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Q^BhflzPl (2128) 

Using Eq. (21.28), it is possible to determine average permeability value of a 
zonally nonuniform reservoir at gas filtration. It is easy to see that the result will be 
the same Eq. (21.20) as for incompressible liquid. The result is clear remembering 
the permeability is a parameter of the medium and does not depend on the fluid 
properties. 

Using Eqs. (21.27) and (21.28) the pressures at the zonal boundaries for gas 
filtration can be found. To find p j we will equate the expressions from 
Eqs. (21.28) and (21.27) for the flow-rate in the zone 1 and will obtain the follow-
ing equation: 

2 2 2 2 

Pk - Pi _Pk~ Pgal 
*· L 

i=l 

where the only variable is pressure at the boundary of the zones 1 and 2 (all other 
values are given at the problem setting). Pressures at the other nonuniformity zone 
boundaries are found similarly. 

The time of a fluid particle run in the zone i of an incompressible liquid model 
will be found from equations: 

= 0^ 4 and Ti =0iM_Jl_ (2L29) 
K Pi~PM K P;-PM 

Similarly, for the gas model: 

a40X(rf-f'(x)) and ^ßfjpf-pf) 

In all equations for r, determination, the JC value ranges as x, < x < xM . The to-

tal run-time of the particles within a zonally-nonuniform reservoir is clearly 

4. Calculation of continuously-nonuniform reservoirs 

If non-transient rectilinear flow of incompressible fluid occurs in a reservoir 
with continuously changing permeability (i. e., k = k(x)), the liquid and gas flow-
rates are calculated from the following equations: 

μ dx m μ dx 
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Upon separating variables in these differential equations: 

Qu dx , ,„ Qu dx 
dp = -^^- and dP = --mf^ 

Bh k(x) Bh k{x) 

and integrating them: 

V-ß^andV-ß^, 
I y Bhlk(x) I Bh lk{x) 

gives the distribution in the reservoir of pressure and Leibensohn's function, re-
spectively: 

Pt-p =Qä)jL· and Pk-Pwi=-QJL)*L. (21.31) 
g Bh >k(x) k 8 Bh 3

0k(x) 

Therefore, in this case it is possible to determine all parameters of the fluid 
flow if the function k(x) is given. 

5. Radial-plane flow in a nonuniformly stratified reservoir 

Suppose a round horizontal reservoir of thickness h comprises n interbeds of 
thickness A,, permeability £,, and porosity 0 , each, where i = 1,2, ..., n (Fig. 21.3). 
The reservoir is saturated by a liquid or gas, and there is a radial-plane flow to the 
central well. The charge source is removed from the well by the distance Rk, and 
constant pressure /?* is maintained there, and constant pressure pc is maintained in 
well of radius rc (pk >pc)- In such a case (provided there are no cross-flows between 
the interbeds), there is a radial-plane flow in each of them, and the Eqs. (20.22)-
(20.22) are applicable: 

P(r) = pk-^^log^ 
l o g ^ r 

w - k dP =
 k(Pk-Pc)1 

r 

wrS=Q = 
2nkh{pk-pc) 

/ / log — 
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Pk ^ " " " -— ' ^——— r̂̂ ^̂ - "̂"-" 

~ \ \ I ^ 

1 ///s/s////////ss/s//////t 
! fe,m,,/i, 

i Κ,τηΛ, 

! k„,m„,hn 

(F>2 
f ^ l 

Pc 

////////////////////////> 

•a. 

V///////////////////////)f///////////////////////// 
Pk 

Fig. 21.3. Pressure distribution curves for a liquid (1) and gas (2) at radial-plane flow 
in a nonuniformly-laminated reservoir. 

These are equations for pressure, filtration velocity and flow-rate for an in-
compressible liquid with the difference that the pressure distribution equation is the 
same for all interbeds, whereas the filtration velocity and flow-rate will be individual 
for each of them: 

p(r) = P k - ^ ^ \ o g ^ 

r 
k dp = k(pk-pc) 1 

(21.32) 

wrs^a IricfoiPk ~ Pc) 

//log-*-

The flow-rate for the entire reservoir is determined as the total of flow-rates 
from all interbeds: 

2K{pk-pc)^ 
β=Σ<5.=Σβ' = 

//log — 
r 

-Σ*Λ (21.33) 

Average reservoir permeability value kavg is determined from the condition of the 
flow-rate equality in a nonunifomly-laminated and uniformly-laminated reservoirs: 

2^gKpk-pc) = 2^pk-pc)fu^ 

//log—- //log—- i=1 

and is given by equation ka , where h = ̂ \hi is total reservoir thick-

ness. Equations for average reservoir permeability in a nonunifomly-laminated re-
servoir turn out to be the same for radial and rectilinear-parallel filtration. 
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Using similarity between the incompressible liquid and gas filtration, we derive 

from Eq. (21.32) equations for ideal gas filtration in a nonunifomly-laminated reservoir: 

log — 

μ 2MPxm log — 

ΓΓ"~Ί χΖ-m n 

MPam log — 

(21.34) 

6. Rectilineal-parallel flow in a nonuniformly stratified reservoir 

Suppose a round horizontal reservoir of thickness h comprises n ring-like 
zones with different permeabilities £,·, and porosity 0 ; each, where /' = 1, 2, . . . , n. 
The boundary of each zone has the shape of the side surface of the cylinder coaxial 
with the well. At the external boundary on the zone n, which is the charge source 
r = Rk (r„+i = Rk), constant pressure pi, (p„ = pk) is maintained, and constant pres-
sure pc (pc = pi) is maintained at the reservoir 's internal boundary, i. e., at the bot-
tomhole, r=rc (r\ = rc) (Fig.21.4). 

*777777777777/ 

Fig. 21.4. Pressure distribution at radial-plane flow of incompressible liquid in a zonally-
nonuniform reservoir. 

The problem setting is such that there is the unidimensional transient-free 
flow of a uniform fluid. So, in each zone of this zonally-nonuniform reservoir there 
there is a radial-plane filtration with the same calculation equations as for the uniform 
reservoir: 

Pi(r) = PM-
PM 

log 
^ l o g ^ K 
Λ.·+ι r 
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j L&.=
 ktPM-rilt (21.35) 

μ dr r^ / / l o g - ^ 

^ r 
/ / l og -^ 

n 
Here, pressures in the beginning and at the end of the zone, respectively, are 

taken for pressures at the charge contour and at the well, and the radii of the zone's 
beginning and end are taken for the charge contour and well radii. 

Compared with the nonuniformly-laminated reservoir where the pressure distri-
bution equation was the same for all interbeds, whereas the filtration velocity and 
flow-rate were individual for each of them, in this case the flow-rate equations for all 
zones will be the same, whereas the pressure and filtration velocity distribution equa-
tion will be individual for each zone. Indeed, the same fluid amount entering the re-
servoir at the charge contour is exiting it through the well. This conclusion is based 
on the mass conservation law at the transient-free flow. Therefore, the volume flow-
rate is the same in each zone, but the reservoir cross-sections have different areas. 
Thus, the filtration velocity will be changing not only from one zone to the next but 
also within individual zones. And pressure, filtration velocity and flow-rate distribu-
tion equations at the zonally-nonuniform parallel-plane filtration within each zone of 
the reservoir nonuniformity (0 < i < n) have the format of Eq. (21.35). 

As in the case of the rectilinear-parallel filtration, Eqs. (21.35) cannot be used 
for calculations as pressures in the problem setting are given only at the charge 
contour and in the well. So, with the first step is finding equation for the flow-rate 
expressed through pressures assigned in the problem setting. For this purpose the 
flow-rate equations are solved for each zone relative to the pressure difference: 

2nk,n rn 

2m.h r . 

P , - P c = ^ r l o g i . 
2jtk,h r 

Adding these together gives: 

Λ c 2/zfctr *, 
thus: 

o = Q=2fA pt-pc ( 2 1 3 6 ) 

Σ^Η 
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Using Eq. (21.36), one can derive the average permeability equation: 
= Ιτύι pk - pc = 2nkmih(pk-pc) 

V £ l o g ^ //log^ 

and: 
r 

Σ^~ 
(21.37) 

Using Eqs. (21.35) and (21.36), it is possible to determine pressures at the zon-
al boundaries. To find p(2) equating Eq. (21.35) (written for the flow-rate in zone 1) 
to Eq. (21.36): 

k2 ^ ^ = ^ ^ , , (21.38) 

i=l 

where the only unknown variable is pressure at the boundary between zones 1 
and 2 (all other values are given at the problem setting). The other pressure values 
at the zone nonuniformity boundaries may be determined similarly. 

Using analogy between filtration of the incompressible liquid and gas, 
Eq. (21.35) is used to obtain equations for ideal gas filtration in a zonally-
nonuniform reservoir: 

2 „2 

PM)= P!+I-
PM Pi+'\o, 

log 
η 

^p^lL^lhPmiäüZäli (21.39) 

r: 

w'rpS,=Q, **,hpm(PM-pf) 

MP*m , 0 g ~ 
ri 

To find pressures at the zone boundaries, as we did for incompressible liquid: 
first, derive the flow-rate equation expressed through pressures pu and pc, and 
and after that derive equation similar to Eq. (21.38). 

The particle movement-time in each zone may be found from Eqs. (20.23) 
and (20.24) for incompressible liquid and Eq. (20.49) for the gas with the only 
difference that the nonuniformity zone boundaries will play the role of the charge 
contour and the well. 
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FLAT TRANSIENT-FREE FILTRATION 

1. Major definitions and concepts 

Previously, the flow models to a gallery or to a single central well in a round 
reservoir have been studied. Real-life oil and gas fields are developed by numerous 
wells. Hydrodynamic problems arising in field development include bottomhole 
pressure determination at given flow-rates or, conversely, flow-rate determination 
at given pressures. 

In solving these problems, one has to remember the existence of several oper-
ating wells interfering with one another. The result is that when new wells are 
started-up in the field, the total production increases slower than the increase in the 
number of wells (Fig. 22.1). 

0 1 2 3 4 5 6 7 « 
Fig. 22.1. Production vs. number of wells 

Therefore, making the problems more complex in order to provide more ade-
quate description of the processes occurring in a hydrocarbon field, it is necessary to 
review the setting and solution of the problems involving the simultaneous operation 
of several wells. The simplest problems occur when the reservoir is assumed to be 
flat, and the wells are assumed to be point sources or sinks. The solution of such 
problems acquires a supposition of the potential nature of flow and the potential. 

The flow is called potential if there is a scalar function Φ such that its gradient 
is equal to velocity v, i. e., the following equality is valid: 

v = -grad<J>, 

Mechanics of Fluid Flow 
by Kaplan S. Basniev, Nikolay M. Dmitriev and George V. Chilingar 

Copyright © 2012 Scrivener Publishing LLC 
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where the scalar function Φ is called the potential. This equation is similar to the 
Darcy's law: 

w = -(k/ß)gradp. 
If k and μ are constants, then: 

w = -grad(kp/M) (22.1) 
and: 

Φ = */>///. (22.2) 
Thus, filtration of a liquid with a constant viscosity in an undeformable reservoir 

(k = const) is a potential flow. 

2. Potential of a point source and sink on an isotropic plane. 
Superposition method 

Let's call a point sink the point on a plane which takes in the liquid. A produc-
tion well may be considered as a sink on an assumption that its diameter is infinite-
ly small. The flowlines on a plane around the point sink are straight lines directed 
towards the well, and the equal potential lines are circles (Fig. 22a). An injection 
well from which the fluid enters the reservoir is a source (Fig. 22.2b). 

φ = const 

Fig. 22.2. Source and sink on the plane 

Let's determine the potential of a production well (sink). For this purpose, 
Eq. (22.1) is projected onto a cylindrical coordinate system. The result is: 

αΦ 
w = —. (22.3) 

dr 
Because the well is a producer, velocity directed toward the pole of a polar coor-

dinate system is projected onto the Or-axis with the minus sign, and as a result Eq. 
(22.3) does not include the minus sign. Now, let's introduce the specific flow-rate q per 
unit of the reservoir thickness, q = Qlh, and express it through filtration velocity: 

_ Q _ 27crhw 
q~~h~ h 

■ 2mw. 

Therefore, Eq. (22.3) may be rewritten as: 
q _ άΦ 

2πτ dr ' 
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2 + Y T = 0 . (22.6) 

Let's separate the variables in this equation: 

-— = άΦ 
2m 

and integrate it: 
<S> = (ql2n)\ogr + C, (22.4) 

where C is the integration constant. Obviously, the same calculations are valid for a 
case of the source on the plane: 

Φ = -(q 12/r) log r + C. (22.5) 
Not only the pressure, but also the potentials introduced by Eqs. (22.4) and 

(22.5) satisfy Laplace's equation: 
32Φ ^Φ 
dx1 + dy 

Laplace's equation is linear and uniform, and for this reason its solutions have 
a very important property: the sum of equation's particular solutions and the prod-
uct of a partial solution and of the constant is also a solution. This property allows 
for the application in problem solving of a technique called superposition. The ma-
thematical definition of this technique is as follows. If there are N flows with 
potentials: 

Φ,. =(qillK) log r + Ct, where i= 1,2, ...,N, 

each of which satisfies Laplace's equation, then the linear combination of these po-
N 

tentials Φ = ̂  ί,Φ, where c, are arbitrary constants, also satisfies Laplace's 

Eq. (22.6). 
Hydrodynamically, this means that if the potential of i"1 well is found for a 

case when the only operating well in the reservoir is this 1th well, then in a joint op-
eration of all N wells the solution is found by algebraic addition. Therefore, veloci-
ty in the reservoir is determined as total summation of the filtration velocity vectors 
produced by the operation of each well. Thus, when N wells jointly operate in the 
reservoir, the resulting potential in an arbitrary point M is the sum of potentials of 
all wells (Fig. 22.2a): 

ΦΜ = i > , / 2 * ) l o g r +C at C = j^C,, (22.7) 
i = l i 1=1 

where r, is the distance between the point M and the i'th well (/ = 1, 2, ..., Λ0, and C, 
are constants. 

The filtration velocity vector w at the point M is equal to the sum of the filtra-
tion velocities in each well (Fig. 22.2b): 

w= w\ +wi +... + WN, (22.8) 

where the velocity vector modulus \w\ is equal to: 

1̂ 1 = ^/2^;. 
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Fig. 22.3. Schematics of the filtration velocities at point M when four sinks (wells) 
are operating (a) and the calculation of a resulting velocity at point M(b) 

The superposition method can be used both in the case of an infinite reservoir 
and in the cases when there is a charge contour of an impermeable boundary. In the 
latter cases, imaginary wells are introduced for the problem solving. They help sa-
tisfying the necessary boundary conditions. Then, the performance of the aggrega-
tion of real and imaginary wells in an infinite reservoir is reviewed. This method is 
called the reflection of sources and sinks technique. 

3. Liquid flow to a group of wells with the remote charge contour 

Using the superposition technique, it is possible to calculate the flow-rates, 
bottomhole potentials (pressures), filtration velocities, etc., for a group of wells op-
erating in the reservoir with the remote charge contour. 

Suppose there are n wells (Fig. 22.4) of radiuses r ,·, at which the potentials Φ, are 

given; also, the charge contour radius Rk and the potential ΦΙ[ (contour pressure pk) 
are given, as well as the distances between wells r,y (the distance between i'h and fh 

wells; obviously, η, = η,). It is required to determine the well (sink) flow-rates qt. 

Fig. 22.4. Schematics of a group of wells with the remote charge contour. 
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The potential at an arbitrary point M is given by Eq. (22.7). First, the point M 
is placed at the bottomhole of each well to obtain n equations: 

2π 

®c2 = -^\H\ logr12 + q2 logrc2 +... + qn logr2n) + C, 

which contain n + 1 of variables g,· (i = 1,2, ..., n) and C. To be able to solve this 
system of equations, one more equation is added which occurs when the point M is 
placed at the charge contour: 

Φ* = ~ (9. log Rk + q2 log Rk +... + qN \ogRk) + C. (22.10) 
2π 

It is clear that Eq. (22.10) assumes the distance between all wells and the 
charge contour equal to /?*. 

The obtain system of equations [Eqs. (22.9) and (22.10)] include n + 1 variables 
and can be solved appropriately. To find <?,, parameter C is excluded from the sys-
tem. For this purpose each equation of the Eq. (22.9) is subtracted sequentially 
from Eq. (22.10). The result is n equations: 

φ'-φ"=έ q, log-^ +... + qi log-^ +... + qN log-^ 

(22.11) 

Φ.-Φ =_L 
* ™ 2π 

. Rt . Rl . Rt 

qx log-^ +... + qi log-^ +... + qN log- i 
*1« Λ« *™ V 'In 

After the numerical values are substituted, the system Eq. (22.11) is a linear 
system of equations with respect to qi. It can be solved using any technique for 
solving systems of linear equations (Kramer, Gauss, etc.). 
Let's now review some application examples of reflection of sources and sinks 
technique. 

4. Liquid inflow to a well in the reservoir with 
a rectilinear charge contour 

Suppose the production well is in the reservoir with a rectilinear charge con-
tour, i. e., the reservoir is a semiplane through whose boundary the flow to the well 
occurs. The distance between the well and the charge contour is equal to a, the po-
tentials at the charge contour (Φ*) and in the well (<J>C) are given (Fig. 22.5). It is 
required to determine the well flow-rate and the potential at any point in the reser-
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voir. In this case, the actual well is mirrored relatively to the rectilinear charge con-
tour. But the flow-rate of the reflected well is given the sign opposite to that of the 
actual well's flow-rate. 

Let's write down the potential for an arbitrary point M: 

®M=7T (<7 log 1-<7 log r2) + C, 

and then place the point M first at the well's wall, and then, on the charge contour. 
The result is the system of equations: 

Φα = — (q log rc - q log 2a) + C, 
2π 

<t>k= — (qlogrk-q\ogrk) + C. 
IK 

Fig. 22.5. Schematics of liquid inflow to a well operating next to the rectilinear 
charge contour. 

Let's solve this system relative to q: 

2;r(Ok-Oc) 
\og2a/rc 

9 = - (22.12) 

Using the potential expression Eq. (22.4), it is possible to rewrite Eq. (22.12) 
as follows: 

ß\oglalrc 
(22.13) 

After the flow-rate is found, we will determine the potential at any point in the 
reservoir: 

° M = 2^ 1 ° g ' ' / / " 2 + < I > k ' 
(22.14) 

where q is determined from Eq. (22.12). 
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If the charge contour were a circle of radius a, the flow-rate would have been 
determined from Dupois' equation: 

2nkh{pv-pc) 
M\oga/rc 

In real life, the charge contour form is often unknown. It is evident, however, 
that the charge contour MN (Fig. 22.6) is somewhere between a circle and a 
straight line. Therefore, the well flow-rate under these conditions will be: 

2nkh(pk -PJ^Q^ 2rich(pk - pc) 
ß\oga/rc ßog2alrc 

Fig. 22.6. Schematics of a reservoir with different charge contours 

Filtration velocity at the point M is determined as a geometrical sum of filtra-
tion velocities caused by the performance of the actual and imaginary source wells 
(Fig. 22.5), i. e.: 

w = WA + WA· , 

where \WA\ = qll7ürx and is directed to well A; \WA\ = ql2m1 and is directed away 

from well A. At the charge contour where r\ =r2, the filtration velocity vector is 
clearly perpendicular to the charge contour line. 

Following Eq. (22.14), the equation of the equipotential lines has the following 
format: 

ri/r2 = const or r2 + r2
2 -c 

Expressing r,2 and r2
2 through the coordinates of the point M(x,y) and coordi-

nates of the well centers A(0,a) and A'(0,-a), gives r,2 =(x-a)2 + y2 

and r,2 = {x + a)2 + y2. After substituting these expressions into the equation for the 

equipotentials and performing the necessary transformations: 

( 1 + c f 2 4a2c 
\x-a +y = j - , I \-c) ' (1-c)2 
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\ + c 
which is the equation of a circle with the center at the point x0 =a , y - 0 and 

\ — c 
the radius R = 2a^/n_c)-

\ \ φ; 

y \ \ 

Fig. 22.7. Flow-line and equipotential line families at the liquid flow to a well sink in a 
reservoir with the straight-line charge contour (or in an indefinite reservoir to the source 
and to the sink). 

Changing the value of the constant c, results in generating a family of the equi-
potential curves. They represent circles of different radius and the centers located at 
different points of the x axis. The flow-line family is circles running through the 
centers of both wells, and whose centers are located on the rectilinear segment of 
the charge contour. And the equipotentials (isobars) are always orthogonal to the 
flow-lines (Fig. 22.7). 

5. Liquid inflow to a well in the reservoir near 
the impermeable boundary 

Suppose the production well is in the reservoir with the impenetrable boundary, 
i. e., the reservoir is a semiplane. The distance between the well and impenetrable 
boundary is a, the potentials at the charge contour O t and in the well Oc are given; the 

charge contour radius is /?* (Fig. 22.8). It is required to determine well's flow-rate. In 
real life, such a problem may occur when a production well is located near a fault on 
reservoir pinch-out line. In such a case, the actual well is mirrored relative to the im-
permeable boundary, and the same sign is assigned to the flow-rate of the reflected 
well as of the actual well. 

Then the potential at an arbitrary point M is: 

φ « = — (? log r, + q log r2) + C. 
IK 
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Let's place the point M first on the well's wall, and then on the charge contour. 
The result is: 

<S>c=—(q\ogrc + q\og2a) + C and Ok=—(q\ogRk+qlogRk) + C. 
Ί.Κ Ί.Κ 

Fig. 22.8. Liquid inflow to a well operating close to a straight-line boundary. 

Solving this system relative to q, results in: 

2;τ(Φ, - Φ ) 
q= K \ cJ. (22.15) 

log^2/2«rc 

Using the potential expression Eq. (22.4), it is appropriate to rewrite 
Eq. (22.15) as follows: 

2nkh(pk-pc) 
Q = 

ß\ogRll2arc 
(22.16) 

6. Liquid inflow to a well positioned eccentrically 
in a round reservoir 

Suppose the well is in a reservoir with the circular charge contour but it is lo-
cated at a distance δ from the center of the circle (Fig. 22.9). The distance between 
the reservoir center and the charge contour is /?*; the potentials at the charge con-
tour Φ^ and in the well ΦΓ are given. It is required to determine the well flow-rate 

and the potential at any point in the reservoir. In this case, as previously, the actual 
well - sink A is mirrored into the imaginary well - source A' located at a distance a 
from the well A on the extension of the line OA. The distance a is determined from 
a condition of a constant potential at the contour; therefore, at points M\ and M2 
located at the charge contour. 
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Fig.22.9. Liquid flow to a well eccentrically positioned in a circular reservoir. 

Under the superposition technique, the potential at the points Mi and Mj are: 

(22.17) <&*=<IV=:flog RLS~+C, 
2π a-(Rk-S) 

ot=ay=^-iog * * + * _ + c . 
2π a + (Rk+S) 

(22.18) 

From the condition of the potential equality at the points Mi and M2, equation 
for a is: 

* » - * Rk + S 

wherefrom: 

a-{Rk-S) a + (Rk+S) 

a = (R2
k-S

2)/S. (22.19) 

In order to determine the flow-rate of well A, it is necessary to determine its 
its bottomhole potential: 

<I>c=<I>.=:r-Oogrf-logrc) + C. 
IK 

Subtracting Eq. (22.20) from Eq. (22.17): 

Φ* - Φ , = —log ^ — 
2A- r>-( /? , -<?)] 

or, substituting the a expression [Eq. (22.19)] instead of a: 

q , _ (R2-S2)/S(Rk-S) 
O t -O c =-^ - log 

2Λ· /-,£[(/?*-J2 )/<?-(**-<?)] 

(22.20) 
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Transforming in this equation the expression under the logarithm sign and 
solving it relative to q gives the flow rate of a well eccentrically positioned in a 
round reservoir: 

1 = 
_ 2*(Φ,-Φ,) 

log— 
r 

C 2 V 
1 - ' 

R 

(22.21) 

'c V "* J 

When the eccentricity is equal to 0, this equation converts to Dupois equation. 
To find potential at all points of the reservoir, the superposition technique is 

used by writing the potential at an arbitrary point M: 

ΦΜ =^-(logr1-logr2) + C = ̂ - log-^ + C. (22.22) 
2π 2π r2 

Subtracting Eq. (22.22) from Eq. (22.20) and using Eq. (22.19), results in: 

ΦΜ = Φ +-2- log r^Rl-δ2 

r-, rS 
(22.23) 

Potential at an arbitrary point in the reservoir may also be derived by subtract-
ing Eq. (22.22) from Eq. (22.17). In this case: 

·.-·■-£ log-1— 
h Rt J 

(22.24) 

Clearly, Eqs. (22.23) and (22.24) are equivalent. 

7. On the use of the superposition technique 
at the gas filtration 

The problems solved earlier dealt with transient-free filtration of incompressi-
ble liquids. Now, in this section these solutions will be expanded for transient-free 
filtration of the gas. 

As the reader may recall, the superposition technique is based on Laplace's 
equation linearity and uniformity. As it was shown in the previous Chapter, at tran-
sient-free filtration Laplace equation in the case of incompressible liquid is satis-
fied by the pressure distribution, and in the case of compressible liquid and gas, 
Leibensohn's function. Therefore, the superposition technique may be used also at 
gas filtration, but only for the potentials defined through Leibensohn's function. 

As the reader may recall, the system of equations for the incompressible fluid 
and compressible fluid have, respectively, the following format: 

Δ/? = 0, ΑΡ = 0, 

w = —gradp, 
M 

p = const, 

pw = grad/5, 
M 

P = P(P)-
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Thus, it is necessary to introduce the potential not for the filtration velocity 
vector w but for the filtration mass velocity vector pw, i. e., the following equation 
must be realized: 

pw = -gτadΦ*. (22.25) 
Because of gas filtration: 

— k 
pw = -gradO* = —gradP , 

M 
and from there: 

Φ* = -Ρ. (22.26) 
M 

Therefore, under transient-free gas filtration the potential linearly correlates 
with Leibensohn's function. 

To determine the potential of a producing gas well (sink), Eq. (22.25) is pro-
jected onto a cylindrical coordinate system: 

αΦ* 
Ρ" = -£Γ· (22·27) 

Let's introduce the mass flow-rate qm per-unit thickness of the reservoir (qm = 
- QJh) and express it through mass filtration velocity: 

Qm Inrhpw „ 
qm= — = — = Inrpw. 

h h 
Then Eq. (22.27) can be rewritten as: 

qm ^αΦ* 
2m- dr 

After separating the variables: 

2πτ 
and integrating this equation: 

0* = -^-logr + C (22.28) 
2π 

where C is the integration constant. 
The same train of thought is applicable for a case when there is a source 

on the plane. Then: 

Φ* = —^Mogr + C. 
2π & 

The potential thus introduced, just as the potential introduced through 
Eq. (22.20), satisfies Laplace equation: 

82Φ* 32φ* 
■ + ̂ - V = 0. (22.29) dx2 dy2 
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So, to find solutions through the superposition technique at the transient-free 
gas filtration, it is possible to use the earlier solutions for transient-free filtration of 
incompressible liquids. The analogy between filtration of an incompressible liquid 
and gas is established through the following substitution of variables: 

For the incompressible liquid For the gas 

Pix) 
w 
q 

* k 

Φ = —ρ, 
M 

P(x) 
pw 
qm 

φ* = Α 
M 

(22.30) 

-P 
r 

Therefore, substituting the variables in the solutions for the transient-
free filtration of incompressible liquid gives equations for the transient-free 
gas filtration. 

The system of equations Eq. (22.11) for the flow-rate of a group of wells pro-
ducing from the reservoir with a remote charge contour (gas wells), under the 
analogy defined by Eq. (22.30), will transform as follows: 

<D*t-<D*cl = J_ 
2π 

R R R 
<?mil°g— + ■■■ + ?* log-*- + ... + qmNlog-*-

(22.31) 

Φ* _Φ* =_L 
k m 2π 

R R R 
4mllog— +... +qmi\og^- + ... + qmN\og-^-

For a gas well case, the equation for the per-unit thickness of a well operating 
in the reservoir with impermeable boundary Eq. (22.12) transforms to the following 
format: 

9„=- In R2
k/2arc 

(22.32) 

Eqs. (22.15) and (22.16) for the unit thickness flow-rate and the flow-rate of 
an oil well from a reservoir with the rectilinear charge contour will transform for a 
gas well as follows: 

_2π(Φ*Ιι-Φ*€) 
\og2alrc 

= 2nkh(Pk-Pv) 
y,n Mlog2a/rc 

(22.33) 

(22.34) 
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Equation for the potential at any point in the gas reservoir with a rectilinear 
charge contour is: 

Φ = 
2π 9„.1°8Ά2+φΙ. 

where q is determined from Eq. (22.33). 
Similar changes will occur in equations for the flow-rate of a well eccentrical-

ly positioned in a round reservoir [Eq. (22.21)]. and for the potential at any point in 
the reservoir [Eqs. (22.23) and (22.24)]. The result is: 

l o g - 1 
C 2 \ 

1 — 

(22.35) 

φ* =φ* +!L·-
M ' 2π 

log r, Rl-δ '2\ 

φ* = φ * _-22L 
M * 2π 

rß 

log7Y 
Γ2 Kk J 

V '2 

f 
(22.36) 

Eqs. (22.35) and (22.36), and Eqs. (22.21)-(22.24), at £-> 0, have the passage 
to the limit and become the equations for the potential of an arbitrary point under 
the central well case. Indeed: 

R, 
* - ' -

therefore, at δ -¥ 0: 

r., ~ a —> —- and r, —¥ r 2 δ 
where r is the distance between the central well and an arbitrary point M. 
Therefore: 

ΦΜ -»Φ + — 
c 2π 

r 
log — 

r-, 

f X\ 
= Φ Γ + ^ 1 ο 8 - = Φ , - ^ 1 ο 8 ^ 

2π r, 2π r 

8. Fluids inflow to infinite well lines and ring well rows 

Let's now review the equivalent filtration resistance technique commonly used 
in the oil field development designing (Borisov). The technique uses the analogy 
between the fluid flow in a porous medium and the electric current in wires. 

Let's go, without a derivation, over a solution of the problem of a fluid flow to 
a single infinite well line. The well spacing is 2σ, and they are located at a dis-
tance L from a rectilinear charge contour. Let's assume that the potential at the 
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charge contour is Φκ, and on the well walls, Oc (Fig. 22.10). It is required to deter-
mine the flow-rate of each well and the total rate N of the well in the line. 

Φ. 

B' Φ 

A' 

Φ, 

Fig. 22.10. A rectilinear well line 

The problem is solved using the superposition technique. The line of the sink 
wells is mirrored relative to the charge contour into the source wells. Then, the in-
terference of both well lines in an infinite reservoir is analyzed. The particles will 
move at the highest velocity along the line AB running through the sink well and 
the source well. The particles will move at the slowest velocity along the line A'ß' 
dividing in-half the distance between the wells, as due to the flow symmetry the 
lines are impermeable boundaries. 

The flow-rate of each well is determined from the following equation: 

2*(ΦΚ-Φς) 

r- , „ , nL , σ 
In 2sh (- In — 

σ nr 
where sh 

nL ■■—{e'^"-e "L/") is hyperbolic sine. In a case L>a, the value 

e'^a is small, and In 2sh (nL/σ) = In e"L'a = nL/a. 

Thus, when L > σ, the well flow-rate may be found as: 

2/τ(Φ - Φ ) Φ - Φ 

or designating: 

Eq. (22.37) may 

^ nL , σ 
— + ln — 
σ nrc 

— = /?, —In 
2σ 2π 

be formatted as follows: 

P + 

— + — In 
2σ 2π 

σ 

■Φ.) 

Ρ 

Ρ> 

σ 
nrc 

(22.38) 
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Eq. (22.38) is analogous to the Ohm's law. For this reason, Borisov called 

the p value the ring well row external filtration resistance, and the p value, the 

internal resistance. 
Thus, the fluids flow to the well line may be represented by the wiring of 

equivalent filtration resistances as shown in Fig. 22.11. 

* . · -

T 
Fig. 22.11. Wiring of filtration resistances at the flow to an infinite well line. 

The amperage here is an analog of the flow-rate q, and the electric potential 
difference is an analog of the filtration potential difference. The composite rate N 
of the well in the rectilinear line is: 

QN=QN = qhN-- ( Φ . - Φ . ) P*-Pc 
nL 

- + -
1 

ln-
ßL 

2aNh 2KNh nr khlaN 
μ σ 

———In — 
InkhN πτ 

(22.39) 

Comparing Eqs. (22.38) and (22.39) gives the external filtration resistance of 
p = L/2ahN, and the internal resistance, p = In(ojnrc )/2?rhN . 

Suppose a semi-infinite reservoir with the rectilinear charge contour is devel-
oped by three parallel well lines of m,, m2 and m^ wells. Suppose all wells have 

equal radiuses rcVrcl,rc^ and bottomhole pressures PcV,pc2,PC3- The composite 

rates of the lines are Qi,Q2,Q3. 

Te wiring of the corresponding filtration resistances is shown in Fig. 22.12. 

> 
QtQfQ\ 

Q\ 

> 
ß,'+ßi 

&' 

ft' 
D-

Ql 

k Pel * P«2 * Pa 

Fig. 22.12. Wiring of filtration resistances at the flow to three well lines. 



FLAT TRANSIENT-FREE FILTRATION 425 

The wiring is designed similar to the electric wiring using the Ohm's and 
Kirchhoff s laws. Depending on what is given and what is required, linear algebraic 
equations are written either for the rates QVQ2,Q3 or for the bottomhole pres-
sures pA, pc2,pc} . The external resistances are determined as: 

px = Li/2a]hml, p2 = L2/2a2hm2, p3 = L^/la^hm^, (22.40) 

where LpL^L, are distances, correspondingly, between the charge contour and the 
first line, between the first and second lines, and between the second and third lines 
(if the problem is being solved using potentials in Eqs. (22.39)), and: 

p, =pLl/khB,, p2 =ML1/khB2, /?3 =ßLi/khBl, (22.41) 

where Bi = 2σ,/η, (do not sum over i!), problem is being solved using pressures in 
Eqs. (22.39). 

Internal resistances are determined from the following equations: 

Λ = * ln-2-./V 
M -In <r, 

2Kkhmx πτΛ 

■>Pi 
M - ln -^ - (22.42) 

The rate of a single well in a ring well row which is composed of m wells 
(Fig. 22.13) 

Fig. 22.13. Design of a ring well row 

In a circular reservoir of the radius Rk: 

Q=-
2*A(<D.-<DC) 2xkh(p*-Pc) 

In 
R: 

mrß: 

j2m 

1--
R 

//In R: 
mrcK 

1-
2m \ 

where Rt is the ring well row radius; rc is the well radius. 

(22.43) 
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If the number of wells in he ring row is greater than five, (RjRk) ™ « 1 , 

Eq. (22.43) may be simplified. Besides, if Rjmrc - σ/π^ is subtracted, the approx-

imate equation is: 
^kh(pK-pc) 

Q 
ß(m\nRk //?, + In σ/π^) 

The external and internal filtration resistances are defined as 

" - — Ι η ^ - and p =—-—In — 
7cr 

- l n ^ 
iKkh R, 2Kkhm 

(22.44) 

(22.45) 

For a case of two ring well rows coaxial with the circular charge contour, the 
flow to the wells is calculated using the equivalent filtration resistance wiring as 
shown in Fig. 22.14. 

Ql+Ql Qi 
p. o—i 1— -C 

Q[ 

ύ Pel O Po2 

Fig. 22.14. Wiring of filtration resistances in the case of a flow to two ring well rows 

The external and internal filtration resistances are found from the following 
equations: 

p, = ^ l n : 1 2nkh Λ 
- I n * 

Inkh ft, 

Pt = — —In— 1 - H p2 =—-— 
Inkhm^ nrc 2Kkhm2 

ln-
πκ 

(22.46) 

where /?,, R2 are ring well rows radiuses, and w,, m2 are a number of wells in a row. 

For a case of three ring well rows coaxial with the circular charge contour, the 
flow to the wells is calculated using the equivalent filtration resistance wiring as 
shown in Fig. 22.12. The external and internal filtration resistances are found from 
equations: 

A 
M Ri M ÄI 

27ikh 
/«—*-, p 2 =—*-— In—-, p 3 = 

R 

1 °\ 
-In—1-, p2 

2Mkh R2 

A 

Inkh R^ 

ß - Ι η ^ 
2nkhm2 nrc iKkhrn^ nrc 

(22.47) 

where RrR2,R} are ring well rows radiuses, ml,m2,m3 are a number of wells in 

a ring row. 
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NON-STATIONARY FLOW OF AN ELASTIC FLUID 
IN AN ELASTIC RESERVOIR 

1. Elastic reservoir drive 

In the process of hydrocarbon field development, non-stationary processes of-
ten arise in the reservoirs. They may be associated with well infill or shut-ins, 
changes in the rate of fluid withdrawal from wells, etc. Typically, for the non-
stationary processes the formation pressure redistribution changes in the filtration 
velocity with time subsequent to the change in well flow-rates. The quantitative para-
meters of the non-stationary processes (the values of pressure, velocity, flow-rate 
changes) depend on the elastic properties of the reservoirs and their saturating fluids 
This means that the major form of the reservoir energy providing for the fluid flow 
to the wells in the non-stationary process environment is the energy of fluids' (oil 
and water) and rock matrix's elastic deformation. 

A mathematical model introduced below considers the elastic forces in a single-
phase filtration flow. Thus, it is assumed that pressure at any point in the flow is 
is above the liquid-by-gas saturation pressure. 

When a well is put on-production in the elastic drive environment, the fluids' 
motion begins at the expense of using the potential energy of the reservoir's elastic 
deformation. It begins near the bottomhole first, and then spreads to the more dis-
tant reservoir areas. Indeed, when formation pressure declines, the elastic counte-
raction of the reservoir against the overlying rock mass decreases. This results in a 
decrease in the pore volume, which, in turn, increases fluids' compression. These 
entire phenomenons facilitate the displacement of the fluid from the reservoir to 
wells. The volume elastic deformation factors for both fluids and the solid rock ma-
trix are very small. But due to significant reservoir volume and volume of its satu-
rating fluids, the fluid amounts recovered from the reservoir due to the reservoir 
and fluids elasticity may be quite significant. 

In some cases, the fluid flow to the wells is supported by pressure of the water 
entering the reservoir from the charge area. In such cases, the reservoir drive is 
called elastic water drive. There is also another variety of the elastic drive. It is the 
enclosed elastic drive. There are oil accumulations within traps closed from all 
sides: the productive reservoir pinches-out at a small distance from the oil accumu-

Mechanics of Fluid Flow 
by Kaplan S. Basniev, Nikolay M. Dmitriev and George V. Chilingar 

Copyright © 2012 Scrivener Publishing LLC 
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lation or sliced by a fault or faults. At the initial stages of the development of such 
accumulations, until the formation pressure declines to the saturation pressure lim-
it, the fluid flows under the closed elastic drive. 

A typical feature of the elastic drive in the process of oilfield development is 
the long time it takes for the formation pressure to redistribute or the fluid with-
drawal rate to change after the well began producing. The reason is that very signif-
icant resistance arises as the viscous fluid flows in the reservoir. The non-
stationary processes are in direct proportion with the reservoir permeability k and in 
inverse proportion with fluid's viscosity μ, fluid's volume compressibility ß\iq and 
solid rock's matrix compressibility ßc. 

The initial studies of the elastic drive by Muskat, Schilthuis, Hearst, Tseis and 
Jacob did not take the volume elasticity of the reservoir into consideration. The 
elastic drive theory which did consider the matrix's elastic properties was devel-
oped by Shchelkachev (1999). 

2. Calculation of elastic fluid reserves of a reservoir 

The elastic fluid reserves are the amounts of the fluids that may be extracted 
from the reservoir under declining pressure as a result of the reservoir solid ma-
trix's and its saturating fluid's volume elasticity. Although the elastic volume de-
formation factors are very low for both fluids and reservoir's solid matrix (see 
Chapter XIX), the reservoir volume is very big so that the fluid's elastic reserves in 
the reservoir may be very significant. As the formation pressure declines, the flu-
id's elastic reserves of a reservoir naturally decrease. If the formation pressure in-
creases, the fluid's elastic reserves increase subsequently. 

The fluid's elastic reserves in a reservoir may be calculated as follows. Let's 
conceptually identify a reservoir volume's element Vo· Suppose Voiiq is the fluid's 
volume saturating this reservoir volume's element Vo at formation pressure po. 
Let's determine the fluid's elastic reserves from its volume as measured under the 
initial formation pressure. Let's designate AVres as a change in the fluid's elastic 
reserves within Vo volume when pressure at all points of the reservoir changes 
by Ap. According to Eqs. (19.22) and (19.40), replacing the differentials of the fluid's 
pressure and volume and pore volume by finite differences, results in: 

-ßüqVouqAp = AViiq and ßcV0Ap = AVrock. 

It was assumed, when deriving the formula for the fluid's volume compressibility 
factor yßiiq, that only the hydrostatic pressure acted on the fluid. For this reason, when 
pressure increases (the compression environment), fluid's volume decreases, and 
vice versa. Thus /?nq fector has the minus sign. Under the elastic drive, when 
pressure in the reservoir declines, fluid's volume decreases. Such fluid's behavior 
is caused by the fact that the fluid in question is positioned within pores, and 
following the equation for ßc, under decreased pressure the pore volume also dec-
reases, and the fluid experiences the compressing action from the solid matrix. 
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Thus, the minus sign in front of βγη is omitted. Assuming that the change in the 
elastic reserves includes AViiq and AVr0Ck: 

AVres = # i q V 0 ,iqAp + ßcVoAp. (23.1) 

The initial volume of fluid saturating the reservoir volume element Vo is equal 
to the total pore volume within the element: 

Voiiq = 0Vo, (23.2) 

where 0 is reservoir porosity. 
Now it is possible tp rewrite Eq. (23.1) as follows: 

AVres = ( 0 # i q + ßc)VoAp, (23.3) 

or: 

AVKS=ß*VoAp, (23.4) 

where: 

ß*=0ßUq+ßc. (23.5) 

ß factor is called reservoir storativity or elastic capacity. Following Eq. (23.4), the 
storativity ß is equal to the change in fluid's elastic reserves per reservoir unit vo-
lume at the formation pressure change by one unit: 

V0Ap 

If Eqs. (23.3) and (23.4) are related to an oilfield under development in the 
environment of the closed elastic drive, the VO should be treated as the reservoir 
volume where pressure by a given moment in time changed by Ap. At that, by de-
finition, it is assumed that: 

&P = Pk-P«ms (23.6) 

where pk is initial formation pressure and pw avg is average pressure weighted over 

the disturbed volume Vo· Pw avg
 m a y be calculated if the geometry of the disturbed 

reservoir volume and pressure distribution within this volume are known. 
By differentiating Eq. (23.4): 

d(AVKS)=ß'd[V0{t)Ap}. 

On the other hand, the change in the elastic fluid volume within the reservoir 
over the time interval dt may be found from: 

d(AVKS) = Q(t)dt, 

where Q(t) is the flow-rate of all wells producing from a given oil accumulation. 
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By equating the right portions of these two equations, the differential equation 
of the oil accumulation depletion under the closed elastic drive is obtained: 

ß*d[V0(t)Ap] = Q{t)dt. (23.7) 

This equation for finding approximate solutions under the elastic drive theory 
will be used. 

3. Mathematical model of the elastic fluid non-stationary 
filtration in an elastic porous medium 

Hydrodynamics of the elastic filtration drive is extremely important not only 
theoretically, but also in practice of oil gas field development. The knowledge of 
these basics enables the most complete utilization of the formation fluids' elastic 
reserves for providing the flow into the wells, the correct understanding of the elas-
tic water-head system's potential capability to displace the fluids, and the solution 
of the so-called inverse problems of reservoir property determination based on the 
flow-rate or pressure changes. As a rule, only a small portion of the hydrocarbon 
reserves (2 to 5 %) is recovered under the natural elastic drive. However, there are 
cases where the elastic forces are so great that a much greater fraction of the re-
serves may be produced. For instance, the oil recovery factor from a major Tengiz 
Field in Kazakhstan under the elastic drive is expected to reach 20 %. 

To derive major differential equations of the elastic fluid's filtration in an elas-
tic porous medium, the flow continuity equation, the motion equations (Darcy's 
law) and equations of state of the porous medium and its saturating fluid will be 
used. Also the mathematical model described in Chapter XIX with system of equa-
tions of Eq. (19.8) is used: 

d0p 
dt 

- + di\pw = 0, 

w = - - (gradp+ />/), (23.8) 
M 

p = p(p), 0 = 0(p), k=k(p), μ = μ{ρ). 

After discarding the mass forces and introduction of Leibensohn's generalized 
function, the system converts to the following format [Eq. (19.21)]: 

dt 

pw = -gradP, 

p = p(p), 0 = 0(p), k = k(p), μ = μ{ρ\ 

P=l«f\p(P)dp. 

(23.9) 
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The equations of state for an elastic fluid and an elastic porous medium as de-
rived earlier Eqs. (19.24) and (19.42) are used as equations of state for the medium 
and fluid: 

/> = A[1 + Ä,(P-A>)] (23.10) 

and: 

0 = 0o+ßc(p-po). (23.11) 

It is assumed that permeability k and viscosity μ are constant. Laboratory stu-
dies and the field development practice indicate, however, that on a number of oc-
casions as a result of arising deformations reservoir permeability also changes. It is 
especially typical for the deep hydrocarbon accumulations. This case, however, is 
not considered in the model under consideration. Therefore, the introduction of 
another equation of state, k = k(0(p)), will make the model much more complex. 
Thus, despite numerous developments in the elastic drive theory accounting for k = 
= k(0)p) correlation, the introduction of this more general treatment would make 
this Section too complicated, so the authors recommend all interested readers to refer 
to the specialized monographs. 

4. Derivation of the differential equation of the elastic fluid 
filtration in an elastic porous medium under Darcy's law 

Let's now review a mathematical model of non-stationary flow of the elastic 
fluid. It is assumed that the fluid complies with the Darcy's law and flows within a 
deformable porous medium [Eq. (23.9)] with equations of state [Eqs. (23.10) and 
(23.11)] at k = const and μ = const. The complete system of equations has the fol-
lowing format: 

dt 
pw = -gradP, 

ρ = ρ011 + βΆι(ρ-Ρο)], 

0 = 0o+ßc(p-po), 

k = const, μ = const, 

P = -\pdp. 
μ1 

It is demonstrated that all equations in the system define the mathematical 
model. However, for the problem setting and solution within the model's frame-
work, it is desirable to transform equations to a single equation for the function to 
be determined. 
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After substituting Leibensohn's function into first equation: 

3(0/7) k 
dt 

■ -A[pdp. 
M J 

(23.12) 

Let's now transform the left part by using equation of state for an elastic fluid 
and elastic porous medium [Eqs. (23.10) and (23.11)]: 

p = p0U + fi,q(p-p0)l 0 = 0o+ßc(p-po) 

and calculate the product 0p: 

0/0 = 0OA + (0oAÄq + Poßc )(P-PO) + PA,P\ iP-Pof-

The last member of this equation is small compared to two others and may be 
disregarded (as a reminder: for the oils, /?liqis 7*10"'° to 30*10"'° Pa-1; for the 

formation water it is 2.7*10"'° to 5*10"'° Pa"'; the volume compressibility factor 
of the reservoir ßz = 0.3 to 2*10"'° Pa"'). Then, considering Eq. (23.5), results in: 

0p = 0apo[l + ß'(p-po)/0o], 

and from there, after differentiating with respect to time V. 

3(0£) .3p 

dt ~PoP dt' 

Next, let's transform the right part of Eq. (23.12): 

k 

(23.13) 

U(\pdp). 

Substituting the equation of state for the elastic fluid Eq. (23.10) under integral, 
results in: 

A\pdp)=tt POP+PA V 
ΟΛΊίς PoP + c (23.14) 

Again, as the fluid is slightly-compressible and the /?hq factor is small, the 

second component can be disregarded: 

k Je . \ k -A{\pdp)=-p0Ap. (23.15) 

Substituting Eqs. (23.13) and (23.15) into the source differential Eq. (23.12) 
and obtaining the differential equation with respect to pressure: 

dt μ 
(23.16) 
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or in Cartesian coordinates: 

The notation κ is: 

dt dx2 dy2 dz2 
(23.17) 

«■ = - ^ - · (23.18) 

Eq. (23.16) is the main differential equation of the elastic filtration drive theory. 
It is so called the piezo-conductivity equation. This equation is similar to the heat-
transfer type differential equations (Fourier equations), which is one of the basic 
equations of mathematical physics. 

The K factor describes velocity at which formation pressure redistributes at 
non-stationary filtration of an elastic fluid in the elastic porous medium. It is usual-
ly called the piezo-conductivity factor by analogy with the thermal conductivity 
factor in heat transfer equation. 

The dimensionality of the κ factor may be found from Eq. (23.18): 

M = 
L2 L2 

[μ][β'] L- 'MT- 'LM- 'T 2 T 

where L, M and T are, respectively, the dimensions of length, mass and time. The 
most common values of the piezo-conductivity factor encountered in the oil indus-
try are between 0.1 and 5 m2/s. 

The piezo-conductivity equation is only applicable for a slightly-compressible 

elastic fluid with ß]KI(p - p0)«l. If this condition is not observed, then in trans-

forming from Eqs. (23.14) to (23.15) the component with /?ljq cannot be disregarded. 

It would result in a significant increase of equation's complexity and its becoming 
nonlinear. 

5. Unidimensional filtration of an elastic fluid. 
Point-solutions of the piezo-conductivity equation. 

Main equation of the elastic drive theory 

In this section the simplest point-solutions of the piezo-conductivity Eq. (23.16) 
for the unidimensional flows will be reviewed. 

5.1. Rectilinear-parallel filtration of an elastic fluid 

Case 1. Inflow to the gallery at which constant pressure is maintained. Sup-
pose constant initial formation pressure pk is maintained in the semi-infinite hori-
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zontal reservoir of a constant thickness h and width B. At the gallery (at x = 0) 
pressure is instantaneously dropped to pg3\ and is subsequently maintained at the 
same level (i. e., pgai = const). At any remote point (x —> <*>) pressure is equal p^ at 
any moment in time. 

Under these conditions, non-stationary rectilinear-parallel flow of an elastic 
fluid emerges in the elastic deformable reservoir. Pressure an any point x of the 
flow and at any time may be determined by integrating the piezo-conductivity 
Eq. (23.17), which for the unidimensional flow in the Cartesian coordinates is: 

dt dx 
= rc^f, 0<x<°o . (23.19) 

The initial and boundary conditions formulated earlier are as follows: 

p{x,t) = pka.t t = 0; 

p{x,t) = pgal at x = 0, t > 0; (23.20) 

p(x,t) = pkatx = °°, t>0. 

The problem requires the gallery flow-rate Q(t) and pressure at any point in 
the flow and at any point in time, i. e., the function p(x,t). 

Let's use the dimensionality analysis to show that., arguments on which pres-
sure is dependent may be combined into a single dimensionless complex on which 
the function p(x,t) will depend. 

Let's denoteP = (p- ΡίΛ)Ι{ρ^ - Pgai) as the dimensionless pressure which, as 

Eqs. (23.19) and (23.20) show, depends on the time t, coordinate x and piezo-
conductivity factor K, i. e.: 

P=A*MK). 

Dimensionalities of these variables are as follows: [x] = L, [t] = T, and [κ] = 
= L2T~'. They may be used to construct a dimensionless complex x/Vxr. By as-
suming the value u = as a new variable, the problem is then limited to 
finding the dimensionless pressure P which depends only on u: P =/(«). As a result 
of such transition, the boundary conditions [Eq. (23.20)] can be rewritten: 

P = 0 atw=0; 
P i » ( 2 3 · 2 1 ) 

P = \ at u = °°. 
Because the differential Eq. (23.19) is linear, similar equation exists for the 

dimensionless pressure P as for the dimensional pressure p: 

¥-'T$- ( 2 3 - 2 2 > 
dt dx 



NON-STATIONARY FLOW OF AN ELASTIC FLUID 435 

Using the complex function differentiation rule, partial derivative with respect 
to the coordinate and time may be expressed through a derivative with respect to 
dimensionless variable. As a result of differentiation: 

dP = dPdu dP 1 
dx du dx du 2\pa 

dP__dP^du__dP_ 
dt du dt du 

(dP 1 

1 

ι4?) 

dx2 dx \ dx ) dx 

dp d2P 
' du du1 ' 

d2Pdu 1 d2P 
du 2\[iä) 2-Jlä du2 dx 4x7 du2 

Substituting the values of the derivatives into Eq. (23.22), results in an ordinary 
differential equation: 

d2P 
du2 + 2u^0, 

du 
(23.23) 

which must be solved under conditions listed in Eq. (23.21). For this purpose, the 
parameter dPIdu = f is introduced; then, Eq. (23.23) changes to: 

du 
2 + 2 M £ = 0 . (23.24) 

And, after separating the variables: 

and, performing integration: 

-γ = -2udu, 

log£ = -H2 + logC, 

finally results in: 

i-f-c,-. 
du 

(23.25) 

where C\ is integration constant. 
After integrating Eq. (23.25) and applying the first condition in Eq. (23.21): 

■ QJe'^du. 
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Now, the second condition in Eq. (23.20) is used to find the integration con-
stant C\. Taking the upper limit in the integral to infinity, results in: 

l = Clje-"2du. 

It is known form integral calculus that \e " du = 4π 12, so the preceding equa-
o 

tion gives C, =2/^[π, and finally: 

X 

P = 
4π 

\e " du. (23.26) 

Integral Eq. (23.26) is called the probability integral. It is a tabulated function 
ranging in value between 0 and 1 and has a special notation 

,-> 2 Ä / 

—j= \e" du = erf — 1 = 

Thus, P = erf —γ= and the pressure distribution law in non-stationary recti-

linear-parallel filtration flow of an elastic fluid has the following format: 

P = P^P,-p^rfUJ. (23.27) 

Typical pressure distribution curves at different moments in time in the non-
stationary rectilinear-parallel flow of an elastic fluid in a gallery produced at con-
stant bottomhole pressure pga] = const are displayed in Fig. 23.1. 

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 
· . " X 

Fig. 23.1. Pressure distribution at different moments in time within a non-stationary rectili-
near-parallel flow of an elastic fluid with pgal = const. 
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Let's find the gallery flow-rate Q. The plus sign is associated to the flow-rate 
from gallery (JC = 0) when the flow is moving against the x axis, and dp/dx>0. 
Under Darcy's law: 

w 
M\.dx)x=0 μ Vdx 

(23.28) 

where B and h are, respectively, reservoir's width and thickness. After taking de-
rivative of Eq. (23.27): 

(Pv-PtJ 4π 
„~UÄJ 1 

2>/ö 

Pi-Pt gal (23.29) 

Λ=ο 

Gallery's flow-rate at any moment in time may be determined by substituting 
pressure gradient dp/dx from Eq. (23.29) into Eq. (23.28): 

0 = 
k Pk~ Pgal 

M 
Bh. (23.30) 

The latter equation indicates that gallery's rate declines with time in proportion 
with 1/Vi and tends to zero at t ->°° . At t = 0, Eq. (23.30) gives in the infinite 
value of the flow-rate, which is a consequence of pressure jump at the gallery 
from pk to pgd at the initial moment in time. 

Cumulative oil production VCUm by the time t is determined by: 

vcam = JQ(t)dt = 
k Pt-Pt* n,'(dt _2k(pk-p^Bh 

β\Ιπκ M 
-Bhj™ = 

oJVi 
4t, 

i. e., immediately upon the beginning of the production it rapidly increases, but sub-
sequently grows very slowly (Fig. 23.2). 

0 t 

Fig. 23.2. Fluid's flow rate and production level vs. time after the gallery startup with 
Pgai = const. 
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Case 2. Flow into the gallery where a constant flow-rate is maintained. Sup-
pose from the same kind of semi-infinite reservoir as in Case 1 at the moment in 
time t = 0 a gallery begins producing at a constant volume flow-rate Q. It is re-
quired to determine formation pressure at any point in the reservoir at any moment 
in time. 

Mathematically, the problem reduces to the integration of the same equation 
Eq. (23.22) with different initial and boundary conditions: 

p{x,t) = pkat t = 0; 

w(x,t) = —-^ = w, = const at x = 0, t > 0; (23.31) 
μ dx 

p(x,t) = pk a t i>0, x—>°°. 

The first condition, as in previous Case, gives the pressure distribution in the 
reservoir prior to the gallery start-up. Thus, at the initial moment in time pressure at 
any points in the reservoir is constant and is equal to the contour pressure. The 
second condition sets permanency of gallery's flow-rate after its start-up. Follow-
ing condition 3, the disturbed zone boundary with time moves to infinity. 

For integrating the piezo-conductivity equation, both portions of the Eq. (23.22) 
are multiplied by κΙ μ and then take derivative with respect to x. The result is: 

icd2x p _K d3p 
μ dx dt μ dx3 ' 

then, changing the order of calculating the derivatives: 

3r^// dxy 

d2p(icdp) 

*V^a* (23.32) 

Considering: 

-^- = w(x,t), 
μ dx 

Eq. (23.32) can be rewritten as follows: 

dt dx 

This latter equation in its format also coincides with the heat-transfer Eq. (23.22). 
Therefore, the solution of Eq. (23.33) will be similar to Eq. (23.26), with pressure 
p being replaced by the filtration velocity w. 

W = C ' e r f e ) + C2· (2334) 
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And one has to keep in mind that the initial and boundary conditions for w are: 

w(x,0) = 0, w(0,f) = wi. 

Using these conditions we will find the integration constants. At t = 0 follow-
ing Eq. (23.34): 

0 = C,-== [e-uldu + C2 

and as \e " du = 4n 12, then: 

0 = Ci + C2. 

The second condition at x = 0 provides: 

7 
= C, —r= \e~" du + C2. 

From these two equations Ci = ΗΊ and Ci = -ΗΊ; therefore: 

w(x,t) = w, 1-erf 
f x Λ 

\2ylKt 

tcdp 
μ dx 

(23.35) 

In order to find pressure distribution in the flow, it is necessary to integrate 
Eq. (23.35) with respect to x with constant time t. 

K \dp (1 2-fn 

1-
Γπ I 

\e " du dx. 

After integrating: 

p(x,t)-p(Q,t) = — wlx-
k 2 
μ4π 

( 1 

W, je-u'du dx. (23.36) 

The last component is then integrated part-by-part as: 

k 2 

( I 
2 Ä 

T=W. f \e " du dx = 
MJK o o 
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* 2 

_2//w, 

2 

2N/*7 
dx 

k^Tt 

x* f e-"2du\-[xe-*2,u,-^= 

o ° o 2VÄT 

2 

x^fe-Vi/l-^jl-^2'4") 

So, Eq. (23.36) can be rewritten as: 

1-erfi p(xj)-p(0,t) = ^ x 
k 

l-e~ 

2 V ö J JKXIIJKI 
(23.37) 

Considering that p(0,t) is pressure at the gallery, i. e., p(0,t) = pg3i(t), from 
Eq. (23.37) it is possible to determine the pressure at any point in the flow: 

p(x,t) = p m 1-erf 
2V*r JJ V^ 

(23.38) 

In order to determine the pressure change at the gallery pgai(0, the boundary 
condition p{x,t) = Pa at x—>°° is substituted into Eq. (23.38). As at x - > ° ° , 

erfi 
U V t f , 

• 1, the product x 1-erff uv« gives invalid solution of a °°*0 

kind. Expanding this equation under Lopitale's rule, it is possible to show that this 

product tends to zero. Also, considering that e~x ,ia —> 0 when x —> °°: 

R a i C ^ / V 
2/Λν, V« 

P8ai(0 = P k -

kja 

Qß2y[ä 

Bh kjjr' 
(23.39) 

At long time the solution of Eq. (23.39) loses its physical meaning. Indeed, 
as the process is not time-limited, it is possible to indicate such t values at which 
Pgai (0 < 0 . This result means that the accepted boundary condition w(0,t) = const = 

= W] is excessively "rigid", and its implementation would require large negative 
pressure over a long t. In real life, such pressure will not occur but, rather, cavita-
tions near the gallery will arise. 
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5.2. Rectilinear-parallel filtration flow of an elastic fluid. 
The main equation of the elastic filtration regime theory 

Suppose there is a production well of the "zero" radius (point sink) in an unli-
mited horizontal reservoir of thickness h. Initial formation pressure within the en-
tire reservoir is the same and is equal to p^. The well is started-up at the moment in 
time t = 0 at a flow-rate βο· As a result, a non-stationary radial-plane flow of an 
elastic fluid occurs. 

Pressure distribution in the reservoir p{r,t) at any point and any place in time is 
determined by integrating Eq (23.16), which for the radial flow in the cylindrical 
coordinate system is: 

dt 

d2p+\_dp} 
(23.40) 

The problem has the following initial and boundary conditions: 

p(r,t) = pkatt = 0; 

p(r,t) = pgu at t > 0 and r -» °o; (23.41) 

Λ 2τάάι( Βρλ Λ 

Q = \r^-\ = ßo = const at t > 0. 
M V 3ΓΛ-Ο 

The first condition implies that at initial time t = 0 pressure within the entire 
reservoir was constant and equal to the contour pressure. The second condition in-
dicates that the boundary of the disturbed zone (i. e., the radius at which pressure 
is equal o the contour pressure) is moving with time and for long time tends to in-
finity. Following the third condition, the well's flow-rate is maintained constant. 

Let's write the latter condition as: 

r¥) =!£· (23·42) 

or Jr=0 27001 
As previously shown, the dimensionalities of the equations should be ex-

amined. The pressure distribution in the reservoir depends on the five definitive 
variables: r, f, κ, ργ, and Qoß/(2Kkh). Dimensionalities of these variables are as 
follows: 

[r] = L, [t] = T, and [κ] = Ι^Γ1, [ρύ = \p], [β**/(2**Λ)] = [p], 
where [p] is the dimensionality of pressure. Thus the pressure dimensionality re-
duces to a dimensionless format, P = plp^, depending only on two dimensionless 
parameters (because out of five parameters, three have independent dimensionali-
ties (r, t, pk)). Therefore: 

p=fU^-\ Ϊ=ΤΓ· <2 3-4 3> 
^ 2nkhpkJ 2v« 
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Thus, Eq. (23.40) can be converted to a regular differential equation. Let's 
take derivative of Eq. (23.43) and find the representation of the partial derivatives 
with respect to independent variables t and r through the variables with respect to 
the variable: 

dt ~ 3ξ It' dr ΰξ 2VJÖ' dr2 ~ 4 « 3ξ2 ' 

Substituting these expressions into Eq. (23.40), results in an ordinary differential 
equation: 

^.+fi 2 iK=0, 
af 'K 

(23.44) 

which should be integrated with the conditions obtained from Eq. (23.41) through 
the transformation to dimensionless format: 

Ρ(ξ) = 1 at ξ -> oo, 

άξ ί=ο 2τύάιρκ 

(23.45) 

Let's now use a substitution: 

and obtain from Eq. (21.44): 

dv_ 

dP_ 

rH v = 0 

ς ν 

After integrating Eq. (23.46): 

log£ + logv = -£2+logC, 

where C\ is the integration constant. 
Rearranging Eq. (23.47), gives: 

dP re (' 

(23.46) 

(23.47) 

(23.48) 
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After integrating Eq. (23.48) from £to infinity, and accounting for the first con-

dition from Eq. (23.41): 

"re-? 
/>(£) = - C , j — d £ (23.49) 

C, can be found by multiplying Eq. (23.49) by ξ, directing ξ\.ο infinity and using the 

second condition of Eq. (23.45): 

C, 
QoM 

2τύάιρκ 

Then, Eq. (23.49) can be transformed to appear as: 

*' 2akhpKj ξ h 

This integral is easily reduced to the tabular format by a substitution: 

-2 r2 άξ du 
ιι = ξ = - — , -τ = — 

(23.50) 

4ö, 2« 

Back Substitution from the dimensionless pressure P to dimensional p = PpK, 
results in: 

P(r,t) = Pr 
QoM "r -du. (23.51) 

The integral in Eq. (23.51) is called the integral exponential function. It is a 
tabular integral and is denoted: 

-Ei 
4/a 

ί —du . 
■'/(4«1) 

Thus, pressure at any point in the rectilinear-parallel flow under the elastic filtra-
tion regime is determined from the following equation: 

P(r,t) = pr-
QoM 
iKkh 

-Ei 
f .1^ 

A/a 
(23.52) 

This equation is called the major equation of the elastic regime theory. It is 
widely used in practical applications for the interpretation of well testing results, 
for calculations of pressure distribution at the elastic fluids' filtration, etc. 
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The integral exponential function may be represented as a series: 

(-1)" Ei(-*) = log-^ + £^f-* \ 

which converges at any x values (0<x<°°), γ is Euler's constant (an irrational value 
whose approximate value for hydrodynamic calculation is accepted as 0.5772). 

When the variable x changes from 0 to °°, the function -Ei(-x) rapidly declines 
from ooto 0. The graph of this function is displayed in Fig. 23.3. At small x values, 
the series total may be disregarded; then: 

1 
-Ei(-jt) = log — 0.5772. 

x 

-Ei(-x) 

2 

1.5 

1 

0.5 

\ 
\ 
\ 

0 0.5 1 1.5 2 x 

Fig. 23.3. An integral exponential function. 

The estimated error is: 

0.25 % when x = < 0.01; 

4 « 

5.7% when x= < 0 . 1 ; 

9.7% when x= <0.14. 
r2 

Therefore, for the values x = < 1, pressure may be determined from equation: 
4 « 

P(r,t) = pK- QoM 
Iriai 

l o g ^ - 0 . 5 7 7 2 (23.53) 

From Eq. (23.52), the fluid throughflow through any cylindrical surface of ra-
dius r and filtration velocity can be determined, respectively, from equations: 

Q(r,t) = ^ 2 v h = Q<1e-'1i*'·, 
μ or 

(23.54) 



NON-STATIONARY FLOW OF AN ELASTIC FLUID 445 

w = -Q^e-
rl,4K!. (23.55) 

Inrh 

The latter equation tells us that the stationary velocity wstal = % h is 

reached very rapidly at a short distance from the well as the value of the piezo-
conductivity factor is usually very high. 

In theoretical studies of non-stationary formation pressure redistribution 
processes, it is convenient to use dimensionless Fourier parameter fo and Fo, serving 
as dimensionless time and determined from the following equations: 

fo = 4". Fo = -^-. (23.56) 

Depending on the problem, one or the other Fourier parameter may be used. 
Strictly speaking, the major equation of the elastic drive [Eq. (23.52)] is valid 

only for a point sink (at rc = 0) in a limitless reservoir (/fk = °°). 
Shchelkachev (1990) compared the results obtained from Eq. (23.52) with the 

results computed with the precise equation (Van Everdingen, Hurst), which considers 
the finite radius of the well rc. He found that the pressure error as determined from 
Eq. (23.52) is 

0.6 % at fo = 100 

2.3 % at fo = 25 

5 % at fo = 10 

and 9.4% at fo = 5 

of the charge contour radius (or the radius of the circular impermeable reservoir 
boundary). 

Let's now estimate the practical meaning of this error. Suppose κ= 1 m/s, 
rc = 0.1 m. Then, assuming fo = 100: 

r2 0 12 

i = fo^- = 1 0 0 — = ls. 
K 1 

Therefore, already 1 second after the well startup the bottomhole pressure cal-
culations from Eq. (23.52) will have an error of no greater that 0.6 %. Therefore, 
for the wells of a regular size, Eq. (23.52) provides for a high accuracy at the very 
early stage (and even more so, at the later stages) of the pressure redistribution 
process. 

Direct calculation showed that in most practical cases, when a well was pro-
ducing from a finite open reservoir, a simple Eq. (23.52) for an infinite reservoir 
may be used for a long period of time. The error of the bottomhole pressure does 
not exceed 0.08 % at Fo<0.2, 1 % at Fo< 0.35 and 1.9 % at Fo<0.5. 
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To calculate formation pressure at any point in the open circular reservoir at 
r < 0. l/?k, it is also possible to use Eq. (23.52) with accuracy of up to 0.2 % for the 
infinite reservoir (provided Rk > \05rc, 0.1/?k, Fo< 0.2). 

In addition to these estimations, it is important to note that the bottomhole 
pressure difference in the finite (open and closed) and infinite reservoirs does not 
exceed 1 % if Fo< 0.33, /?k > 50/; or if Fo< 0.35, /?k > l,000rc. 

Solutions of Fourier's differential Eq. (23.40) for different cases of the elastic 
fluid filtration within limited open and closed reservoirs are represented by infinite 
series of the special Bessel's functions. 

In conclusion, let's see how the piezometric curves look near a well producing 
at a constant flow-rate ßo (Fig. 23.4). For the point close to the bottomhole 
Eq. (23.53) can be used. By taking derivative of this equation with respect to the 
coordinate r, the pressure gradient can be found as follows: 

dp/dr = Q0ß(2ricr). 

This equation shows that pressure gradient for r values satisfying the inequality 
r2 < 0.03*4« for any practical purpose does not depend on t and is determined 
from the same equation as for non-transient parallel-plane filtration of an incom-
pressible fluid. For these r values, the piezometric curves are logarithmic curves 
(Fig. 23.4). Bottomhole pressure declines with time; the Θ angles of the tangents at 
the bottomhole are equal for all curves. 

p=pk, t 

/////> 
Ί)/!)'))///)}/'/!//)'//'/'//'//'in 1^ffT 

Fig. 23.4. Piezometric curves at startup of a well with a constant flow-rate Q^ ; rc — well 
radius; RK — radius of the circular charge contour or radius of the circular impermeable 
reservoir boundary. 

6. Approximate solution techniques of the elastic drive problems 

It was shown in the preceding paragraphs that the solutions of boundary prob-
lems for the non-stationary filtration of an elastic fluid in an elastic porous medium 
within infinite and finite reservoirs may be obtained using the well-known integra-
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tion methods of the piezo-conductivity (heat-transfer) differential Eq. (23.16). 
However, in many cases such solutions are represented by the complicated equa-
tions in form of infinitely-slowly converging series or an improper integral contain-
ing special functions. For this reason, attempts were undertaken to find effective 
approximate solutions of the non-stationary filtration of an elastic fluid in an elastic 
porous medium. In the next section some of these methods, which gained wide acc-
eptance in the solution of the elastic drive problems, will be reviewed. 

6.1. Method of sequential change of stationary states 

One of the simplest approximate techniques for the solution of the elastic drive 
problems is the sequential change of stationary states (SCSS) method developed by 
I.A. Charny (1963) and commonly used in practice. 

At each movement, the reservoir is subdivided into two areas, one disturbed and 
the other, undisturbed. It is assumed that in the disturbed area, which begins from the 
well's wall, pressure is distributed so that the fluid flow within the area is non-
transient, and the external boundary of the area is serving at a given moment in 
time as the charge contour. Pressure within the undisturbed reservoir area is con-
stant anywhere and is equal to the initial contour pressure. The motion pattern of 
the movable boundary between the disturbed and undisturbed areas is determined 
from the material balance equation and boundary conditions. 

The separation of the flow into two areas (disturbed and undisturbed) calls for 
the consideration of the formation pressure redistribution process as if occurring 
into two phases. During phase one, the disturbed area boundary continuously expands. 
As soon as it reaches the reservoir boundary, phase two begins. In a theoretical 
study of the process in conditions of an infinite reservoir, we are dealing only with 
phase one whose duration is not restricted. 

Let's now conduct the calculation of non-stationary unidimensional flows of 
an elastic fluid using the SCSS technique. 

A rectilinear non-stationary filtration of an elastic fluid. 
Case 1. Inflow to the gallery where a constant flow-rate Q is maintained. Sup-

pose at the time t = 0, a rectilinear gallery is started-up from a horizontal reservoir 
of the thickness h and width B. A constant flow-rate Q is maintained in the gallery. 
Prior to the start-up, pressure in the entire reservoir was constant and equal to p^. 

By the moment in time t after the gallery start-up the disturbed area boundary 
will spread to length l(t) (Fig. 23.5). Pressure distribution within this area is consi-
dered to be steady-state (see Chapter XX, sec. 2), i. e., it is described by the linear 
equation: 

p(x,t) = pk-f£-{l(t)-xl 0<x</ ( i ) . (23.57) 
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Fig. 23.5. Pressure distribution in the rectilinear -parallel flow after the PSSS technique. 

It is required to find the rule of motion in time of the disturbed area's external 
boundary l(t). 

Eq. (23.7) is used, which is the condition of the production over a period dt be-
ing equal to the change in the fluid's elastic reserve within the disturbed reservoir 
area over the same period of time: 

Qdt = ß d[V (t)Ap], 

where V(t) is the volume of the disturbed reservoir area: 

V(t) = Bhl(t); 

Pi + />gai Pk - Pgi 
ΔΡ = Ργ~ Pw.avg = Pk ■ 

2 2 

Inasmuch as at x - 0, px(r) = pga\(t), from Eq. (23.57): 

Q = Lp>-p*Bh, 

(23.58) 

(23.59) 

(23.60) 

and from there 

QjLd(t) _Pk- Psa gal 

2kBh 2 

After substituting Eqs. (23.59)-(23.61) into Eq. (23.58): 

Q = ß'd_(BhlQä_\ 
dt{ 2kBh) 

and, as Q = const: 

2Q 
J'M^d Q^-n dt 

(23.61) 
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and from there: 

2icdt = dl2 (*-=£/(///?*)). 

After performing integration: 

l(t) = 4liä. (23.62) 

Therefore, Eq (23.57) for pressure distribution in the reservoir will have the 
following format: 

ρ(*,ί) = Λ ~ — i - J l ä - x ) , 0<x<s[2ta, 
^ JkBA (23.63) 

p(x,t) = pk, X > yJlfCt. 

The pk - pS3l pressure drawdown found using the approximate Eq. (23.63) dif-

fers by 25 % from the value determined from the exact Eq. (23.39). 
Case 2. Inflow to the gallery where constant bottomhole pressure is main-

tained (pgai = const). In the same reservoir as in Case 1 the production gallery 
started-up at the moment in time ί = 0 with a constant bottomhole pressure pga\ = 
- const. Before the production startup pressure in the entire reservoir was constant 
and equal to p k It is required to find pressure distribution, the rule of motion in time 
of the disturbed area's external boundary l(t), and change in time of gallery's flow-
rate ß(f). 

Gallery's flow-rate under the transient-free conditions is: 

m =
 k<P>-PjBhsLBh*P\o. 

flit) μ dxU 

The problem is solved similarly to Case 1 with the only difference that the fol-
lowing expressions should be substituted into Eq. (23.58) for fluid's elastic reserve: 

V(t) = Bhl(t), 

Q(t)Jj£^MBh, 
flit) 

and as a result: 

k^-p^Bhdt = ß's BhlPk Ρ*Δ 

flit) 

After performing the arithmetic transformation and integration: 

/(f) = 2Λ/Ο . 
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Therefore, pressure distribution within the disturbed reservoir area is deter-
mined by the expression: 

p(x,t) = pk-(pii-piJ 1-
v 

p(x,t) = pk, * > 2 V ö , 

and the gallery flow-rate: 

1 

ι4ϊα 
0 < x < 2-Jtt, 

Q(t) = -
■p*J 

2μ4~α 
Bh. 

(23.64) 

(23.65) 

The gallery flow-rate error as determined from Eq. (23.65) compared to the 
precise Eq. (23.27) is 1 1 % . Therefore, it is better to use the sequential change of 
stationary states method in the case of non-stationary rectilinear-parallel flows 
when a constant pressure drawdown is given. 

Radial-plane non-stationary flow of an elastic fluid. 
Case 1. Flow to the well whose flow-rate Q is maintained constant. Suppose in 

an infinite horizontal reservoir of a constant thickness h at the moment in time t = 0, 
a production well of a radius rc begins producing at a constant flow-rate Q. Prior to 
the well start-up, pressure in the entire reservoir was constant and equal to p^. 

Under the SCSS technique, it is assumed in the time t since the well start-up a 
disturbed area of a radius R(J) forms around the well. Pressure within this area will 
be distributed under the stationary law: 

p(r,t) = pk 
2xkh r 

(23.66) 

Pressure within the rest of the reservoir is constant and equal to initial forma-
tion pressure p^. 

It is required to find the rule of motion in time of the disturbed area's external 
boundary R(t). 

Pressure distribution curves at different moments in time in such a flow are 
displayed in Fig. 23.6. The well flow-rate can be found from equation similar to 
Dupois formula: 

Pk i = 0 

Pel 

Pc2 

Pc3 Λ(ί,) 
I - R ^ ) I 

////////Λ/////////////////)y>////// 

Fig. 23.6. Pressure distribution in the radial-plane flow at different moments in time under 
the PSSS technique (withdrawal is conducted at Q = const). 
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Q = 2*kh(pk-PA0) ( 2 3 6 7 ) 

μλ0\{ί)Α 
The size of the disturbed area may be found from material balance Eq. (23.58) at: 

V(t) = 4R\t)-r?)h, Ap = Pk-p„.mi. (23.68) 

Weighted average formation pressure pw in the transient-free radial-plane 

flow (see Chapter XX, sec. 3) is determined from Eq. (20.25): 

p =„ - P*-Pc 

2 1 o g ^ 

and from there, in considering of Eq. (23.66): 

Δρ = Pv. - P w a v g = — P 7 7 T = T ^ : ' ( 2 3 · 6 9 ) 

2 log iM 2^Λ 

The rule of motion in time of the disturbed area R(i)\ external boundary may 
be found by substituting Eqs. (23.68) and (23.69) into the material balance 
Eq. (23.58): 

4icdt = d{R2(t)-r?), 

and after integrating from 0 to t and from rc to R{t): 

R(t) = Jr?+4tt. (23.70) 

Then, Eq. (23.66) is used to determine pressure at any point in the reservoir at 
any point in time t: 

Qu , Jr.2 + 4 » /-:—— 

p(x,t) = pk, r>jrc
2+4Kl. 

The pressure drawdown at the moment t: 

A P c ^ P k - A ( 0 = ̂ - l o g - ^ . (23.72) 

Comparison of Eq. (23.71) results with the pressure drawdown determined from 
the exact Eq.(23.52), shows that the relative error decreases with time and is 10.6% 
when fo = «/rc= 100, 7.5 % when fo= 103, and 5.7 % when fo = 104. 
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Case 2. Flow to the well where constant pressure pc = const is maintained. In 
case of the radial-plane fluid flow into the well started-up at a constant bottomhole 
pressure pc = const, the rule of motion in time of the disturbed area's boundary is 
expressed by an integral in the form of a slowly converging series, so the solution 
is not quoted here. The calculation of motion in time of the disturbed area's boun-
dary in this case may be determined from the graph (Fig. 23.7). 

8103 

6-103 

4-103 

2-103 

0 0.5 1 1.5 2 10"7fo 
Fig. 23.7. Dimensionless radius of the disturbed area R{t)lrc vs. dimensionless time/0 at 
fluid withdrawal with a constant bottomhole pressure pc = const. 

Well's flow-rate is determined from Dupois' Eq. (23.67) atpc = const. 
A comparison with the exact calculations shows that the error in rate's deter-

mination using the SCSS technique is about 5 %. 
It is important to note that in case of both linear and radial filtration, the pres-

sure gradient in the transition point from the disturbed to undisturbed area expe-
riences a disruption, which is one of the reasons of discrepancies between the 
SCSS calculations and the exact calculations. The SCSS, however, is an effective cal-
culation technique, and thus it is commonly used not only in the problems asso-
ciated with filtration of single-phase fluids but even in the problems of gas and liq-
uid flow and problems of fluid/gas separation boundary motion. 

Pressure distribution in the filtration area as determined by SCSS technique is 
a rather rough approximation. The technique works much better for the flow-
rate vs. pressure drawdown correlation, especially at radial filtration. 

6.2. Pirverdian's technique 

This method is similar to the SCSS, but is more accurate. According to the SCSS, 
the non-stationary flow at each moment in time is mentally subdivided into two 
areas, disturbed and undisturbed. Their boundary is also determined based on mate-
rial balance equation. As opposed to the SCSS technique, however, pressure dis-
tribution in the disturbed area is assigned in the form of a squared parabola, so that 
the piezometric curve at the boundary of the areas were tangential to a horizontal 

I 
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line representing pressure in the undisturbed area. Pressure distribution will no 
longer be stationary, and the pressure gradient at the boundary of the areas becomes 
equal to zero. This provides for a smooth connection of the pressure profile in the 
disturbed and undisturbed areas. 

Let's review the rectilinear-parallel non-stationary flow of an elastic fluid. 
Case 1. Inflow into a gallery where a constant flow-rate Q is maintained. Sup-

pose a gallery started-up producing at a constant flow-rate Q from a horizontal re-
servoir of a constant thickness h and width B. Prior to the production start-up, pres-
sure pk in the entire reservoir was equal. 

P 
Pk 

Pg.1 

, m , i 
/////////////////}/////////;////// 

////ϊ://///?///////ϊ}///Μ 

Fig. 23.8. Pressure distribution in a rectilinear-parallel flow under the Pirverdyan's 
technique. 

By the moment in time t after the start-up, the disturbed area boundary will 
advance by the length /(/), and the pressure distribution curve within this area will 
be a parabola. The pressure distribution graph in the reservoir by the time t after the 
gallery start-up is displayed in Fig. 23.8. The parabolas equation describing the 
pressure distribution in the disturbed area is as follows: 

1—— , 0<x<l(t). p(x,t) = pk-(pk-pfd) 

The gallery's flow-rate is determined from Darcy's law: 

Q 
U dx 

(23.73) 

(23.74) 

The pressure gradient at the gallery —I „can be found by differentiating 
dx 

Eq. (23.73) and substituting x = 0 in the obtained expression: 

dp, 
dx 

2(Pk-pgal) 
l{t) 

(23.75) 
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Substituting Eq. (23.75) into Eq. (23.74), the equation for the gallery flow-rate 
can be obtained: 

2 H f t - / y ) g / ; 

μ /(f) 
(23.76) 

The rule of the disturbed area boundary motion is determined from the materi-
al balance Eq. (23.58) and considering Eq. (23.59) at Δρ = pk -p w a v g . Now, it is 

possible to determine the weighted average formation pressure within the disturbed 
area by the moment t in time using the distribution Eq. (23.73): 

1 
Pwavg V(t)vft) 

1 [p(x,t)dv= I" / \ - ( p k - / v i ) 1-
KO 

dx=Pi~ 
(Λ-Pgal) 

Therefore, the pressure change is: 

AP = Pk~ Pw.a 
( p k - / v ) 

Using Eq. (23.76), the above equation can be transformed to: 

, (Pk-Pgi)_GWO 
AP = -

6kBh 
(23.77) 

and further, by substituting Eqs. (23.59) and (23.77) into the material balance 
Eq. (23.58): 

Qdt = ß'd Bhl\t) QM 
6kBh 

wherefrom: 

6icdt = dl2{t), 

and, after integrating from 0 to t and from 0 to /: 

l{t) = J6Kt. (23.78) 

Thus, the pressure distribution equation in the disturbed area assumes the fol-
lowing format: 

p(x,t) = pv --^-Jeiä 
" 2kBh^ 

p(x,t) = pk, x>-yJ6>a. 

1 - 0 < ; C < J 6 K 7 ) , 
(23.79) 
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The calculation of pressure drawdown (pk - /?ga|) from Eq. (23.79) results in 

an error of about 9 % compared with the exact solution, i. e., 2.5 times smaller than 
using the SCSS technique. 

Case 2. Inflow into a gallery where a constant pressure pga\ is maintained. 
Suppose there is the rectilinear-parallel flow of an elastic fluid to the gallery, which 
is started-up producing at a constant bottomhole pressure pgai = const. Prior to the 
production start-up, pressure ργ in the entire reservoir was equal. 

To obtain an approximate solution using the Pirverdian's technique the same 
approach as in Case 1 is used. Let's substitute the expressions for the throughflow, 
volume and pressure drawdown into the material balance Eq. (23.58): 

* (Pk-Pg,i)Dl, 1 / M _ D 1 , , ^ A _ _(Pk-Pgai) 
lit) Q = 2T. „.? Bh> V W = BM^> AP = P*~ Pw.avg 

The result is differential equation: 

6Kdt = l(t)dl{t), 

after integrating, the rule for the flow in the disturbed area boundary is obtained: 

l{t) = y/nicdi. 

Substituting the found rule into equations for pressure distribution Eq. (23.73) 
and flow-rate Eq. (23.76), gives the pressure equation within the reservoir's dis-
turbed area: 

Pix>t) = pk-ipk-p.J 
yjllicdt J 

and from the gallery's flow-rate: 

Q = 2-{Pi PiJBh = 2^iP" PiA\h. (23.80) 
μ lit) μ ^j\2Kdt 

The calculation of the gallery flow-rate from the approximate Eq. (23.80) re-
sults in an error of about 2.5 % compared with the exact solution, i. e., better than 2 
times more precise than using the SCSS technique. 

6.3. Integral relationships technique 

The integral ratios technique proposed by Barenblatt, similar to the boundary 
layer techniques for the viscous fluid flow, provides approximate solution of some 
problems of non-stationary filtration for an elastic fluid with the needed accuracy. 
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The technique is base on the following assumptions: 
1. At any moment in time the reservoir is subdivided into the finite disturbed 

area and non-disturbed area where there is no motion. 
2. The pressure distribution in the disturbed area is represented by a binomial 

in the powers of the coordinate x or r (in a case of the radial flow, a loga-
rithmic term is added) with the time-dependent coefficients so that for a rec-
tilinear-parallel flow: 

p(x,t) = a0{t) + a,{t)-^- + ... + a„(t)^— 0<x<l(t), (23.81) 

for a radial-plane filtration: 

p(r,t) = an(t)\og— + a.(t) + a2(t)— + ... + a„+,(t)-!—, r· < r< R(t), (23.82) y ° R(t) ' R(t) ' R"(t) c 

where the number of terms n is selected depending on the desired solution 
accuracy. 

3. The binomial coefficients ao, a\, 02, · · ·, a«> and the size of the disturbed area 
/ft) - or R(i) are derived from (a) the conditions at the gallery (or the bottom-
hole), (b) the conditions of pressure continuity and smoothness of the pres-
sure curve at the boundary of the disturbed area, and (c) special integral ratios 
which are found as follows: 

In the case of inflow to the gallery, both the right and left portions of pieso-
conductivity Eq. (23.19) are multiplied by xk(k =1,2, ...,) and integrated over the 
the entire disturbed area: 

1(0 -, Hi) -,2 

\xk^-dx = K\xk^dx. (23.83) 
J dt J dx2 

In the case of inflow to the well, the right and left portions of differential 
equation is multiplied by / (k = 1,2, ...) and integration is performed over the en-
tire disturbed area: 

T^-Ldr^KpMMr'dr. (23.84) 
r
J dt j rdr\ dr) 

If the Eqs. (23.81) and (23.82) are substituted into Eqs. (23.83) and (23.84), 
respectively, and the necessary integrations is performed, the missing relationships 
for the determination of the factors ao(t), a\{t), ... and lit) — or R(t) will be 
obtained. 

The first of these integral relationships (at k = 0 in the case of inflow to the 
gallery, k = 1 in the case of inflow to the well) is material balance equation from 
which the coordinate of the disturbed area boundary l(t) or R(t) is found. 
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If it is assumed n = 1 in Eq. (23.81) and n = 0 in Eq. (23.82), the solution cor-
responding to the SCSS technique Eqs. (23.63), (23.64), (23.71), depending on condi-
tions at the gallery or the bottomhole, will be obtained. If n =2 in Eq. (23.81), then a 
specific case of the integral relationships technique is the Pirverdian's method. 

Now, the integral relationships technique will be used to solve, for example, a 
problem of the parallel-plane non-stationary filtration of an elastic fluid to the well 
of radius rc put on production at the moment in time / = 0 with a constant flow-
rate Q. The formation pressure at the initial moment is constant within the entire 
reservoir and is equal to ρ±. 

The pressure distribution is assigned within the disturbed area [rc<r< R(t)] as: 

p(r,t)=anlog —— + a. +a„——, (23.85) 
0 R(t) ' 2 R(t) 

i. e., a linear binomial. 
Factors ao, a\ and ai are determined from the conditions at the bottomhole and 

at the disturbed area boundary. 
The condition at the bottomhole, according to Eq. (23.41), is: 

Λ 27άάι dp ,_„ „,v 

β = r f at r = rt. (23.86) 
μ or 

At the boundary of the disturbed area: 

p = pk at r = R(t), 

^- = 0 at r = R(t), (23.87) 
dr 

where the second condition is the pressure curve smoothness condition. 
The factors determined from these conditions are: 

a0= , a, = pk -i , a3 = — (zJ.88) 
27ah 2nkh 2nkh 

(the components proportional to rc and a] are discarded in view of their 
smallness). 

Substituting Eq. (23.88) into the right portion of Eq. (23.85), results in: 

«■»-*+& r r 
log + 1 

R(t) R(t) 

(23.89) 

The movement rule for the disturbed area boundary R(t) is found from the ma-
terial balance Eq. (23.58) and considering Eq. (23.68) (this equation may be ob-
tained from the integral relationship Eq. (23.84) at k = 1). 
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Weighted average formation pressure pwavg in the disturbed area may be de-

termined using the pressure distribution Eq. (23.85): 

1 
/ V a v g = ^ \p{r,t)dV-

1 

K{R\t)-r*) ; 
Py-^LlogJ-+

Q» r \ 
iKhrdr 

Inkh R(t) Inkh 

After integrating and discarding the resulting expression of the terms with rc
2: 

:/v I2nkh 
, and then, from Eq. (23.68), 

AP = PY ~ Pw a 
QM (23.90) 

vavg Unkti 

Substituting Eq. (23.68) for V(t) and Eq. (23.90) into the material balance 
Eq. (23.58), after simple transformations: 

\2Kdt = d(R\t)-rc
2), 

and after integrating: 

R(t) = -yjrc
2 + 12 Kt . 

Therefore, the pressure distribution within the disturbed area will be: 

P(r,t) = pii 
Inkh 

log 

rc </-<^/rc
2+12xr, p(r,i) = Pk, r>^r2 + 1 2 « . 

(23.91) 

Relative error δ in the pressure drawdown calculations |/>k - PcU)] using 
Eq. (23.91) for different values of the Fourier's parameter fo (= Kt/r2) is: δ = -4.9 % 

at fo = 100, £ = - 4 % a t fo = 103, δ= -3.2 % at fo = 104. 
Thus, the approximate values of the average pressure drawdown Apc found by the 

integral relationships technique are underestimated compared with the precise values. 

6.4 "Averaging" technique 

The essence of the "averaging" technique (Sokolov, Guseynov, ....) is in that 
the time derivative dpldt in the elastic drive Eq. (23.40) is averaged over the entire 
disturbed area and is replaced by some time function: 

F(t) = 
R\t)-r> ) dt 

rdr (23.92) 



NON-STATIONARY FLOW OF AN ELASTIC FLUID 459 

whose value is determined from the initial and boundary conditions. Eq. (23.40) 
will then assume the following format: 

F(t) = K-
1 d( dp 

r dry dr 
(23.93) 

This substitution makes the equation simpler and its integration easier. 
Let's determine the pressure distribution at the non-stationary flow of an elas-

tic fluid to the well with a constant flow-rate Q. The conditions at the bottomhole 
and at the disturbed area boundary are represented by Eqs. (23.86) and (23.87). 
Integrating Eq. (23.93) with respect to r under those conditions: 

Qß , r F(t) 
P = Pv + - ^ = - l o g + — ^ 

" Inkh R(t) 2K 
- U r 2 - / ? 2 ( r ) ) - r 2 l o g — 
2 V ; BR(t) 

(23.94) 

The function F(t) is determined from the second condition: Eq. (23.87): 

F(t) = - ΩμΚ (23.95) 
'j*h(R\t)-r?y 

Substituting Eq. (23.95) into Eq. (23.94) and disregarding the terms with τ;2: 

Qß , r Qu 
k Irkh R(t) Ιτάάι R\t) 

rc<r< R(t). (23.96) 

In order to determine the disturbed area coordinate R(t), it is necessary to take 
derivative of Eq. (23.96) with respect to t, substitute the result into Eq. (23.92) and 
considering Eq. (23.53) for F(t): 

R(t) = Jr?+&Kt. (23.97) 

Comparing Eq. (23.96), and considering Eq. (23.97), with the exact solution 
Eq. (23.53) shows that the relative error in the determination of pressure draw-
down pk-pc does not exceed 5 %. 

In conclusion, we would like to mention an approximate result by Chekalyuk 
(1965). He proposed to determine the rate for a well started-up at a constant bottom-
hole pressure using Dupois' Eq. (23.67), where the disturbed area radius is found as: 

R(t) = rc + Λΐπκτ . 

This equation is very important for practical applications as there is no simple 
exact solution of the elastic fluid production on condition pc = const. Calculations 
indicate that Chekalyuk's equation is precise, with the flow-rate determination error 
no greater than 1 %. 
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7. Elastic fluid flow to an aggregate well 

Many oil and gas fields are associated with water-bearing reservoirs are devel-
oped under the water-drive. In the course of the development, pressure in the ac-
cumulation declines, and the bottom or edge water encroaches into the accumula-
tion. The areal extent of the oil (or gas) accumulation decreases. It is important in 
designing the development of such a field to know the amount of the encroached 
water as well as formation pressure at any moment in time (it is usually assumed 
that pressure in the entire accumulation at a given moment in time is constant, i. e., 
the calculations deal with weighted average pressure). Such a problem taking into 
account the fluid contact advance is highly complex. However, at the initial devel-
opment stages, with small amount of information about the reservoir and its specif-
ics, the estimation may be made without consideration of the water encroachment 
into the accumulation. The oil or gas accumulation is modeled as a round one and 
is considered as an aggregate well of a constant radius Rz. The aquifer around the 
well is considered to be either infinite or finite. 

Let's set the problem as follows. A hydrocarbon accumulation of the areal ex-
tent S is considered as an aggregate well with the radius Rz = -Js/π . The aquifer 
extends to infinity. Prior to the production start-up, pressure within the entire aqui-
fer is Rk- At the moment in time assumed to be the initial time t = 0, bottomhole 
pressure declines to pc and is maintained so during the entire production period. 
It is required to determine the amount of water entering the aggregate well during 
the time interval t. 

Assuming the aquifer's thickness is constant and equal to h, with permeability k, 
water viscosity μν and elastic capacity β *, we may use the elastic drive equation for 
the radial-plane water flow to the aggregate well Eq. (23.40): 

dp ' - - ^ 
dr2 r dr 

(23.98) 
dt 

which should be solved under the following conditions: 

p = pk at t = 0, Rz < r < °° ; (23.99) 

p = pc at r = Rz, r > 0 ; (23.100) 

p = pkatr = °°. (23.101) 

By integrating Eq. (23.98) under the conditions of Eqs. (23.99)-(23.101) the 
pressure distribution within the aquifer p(r,t) is determined. Water flow-rate is de-
termined from the following equation: 

Qw=—i^r) 2nRzh, (23.102) 
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and the produced water volume, from this equation: 

)Q„WtQ = ̂ ^'(f\ dt. (23.103) 

This problem was solved by Van Everdingen and Hurst (1949) using the 
Laplace transform. First of all, equation for the produced water volume was re-
duced to dimensionless format: 

ö ( f o ) = - ^ j y 7 — T W ' > A · (23· io4> 
2ÄÄÄl(pk-pc)J 

Tit 

where fo = -^-is Fourier's parameter, ι. e., dimensionless time. 

Equation obtained for Q is: 

äm-±) t'Tt ,|. (23,05, 
tf2

0
J«V0

2(«) + r0
2(«)J 

Here, Jo(u)and Yo(u) are zero order Bessel's functions, respectively, of the first 
and second kind. Tables were prepared and the graph plotted for ß(fo) function 
(Fig. 23.9). 

The problems become more complex if the assigned bottomhole pressure in 
the aggregate well is variable, i. e. pc = pc(t). In such a case, the superposition prin-
ciple under elastic drive conditions may be used. 

Suppose, pressure declines with time as shown in Fig. 23.10. Let's designate 
the moment in time under consideration as tn, and subdivide the entire interval 
0 < t < tn into n segments at a stem equal to Δί. Then tn = At*n. We will replace the 

pc(i) curve by a step-correlation and will assume that pressure within one step is 
constant. Under the superposition principle and from Eq. (23.104): 

Ϊ&ΟΑ-^ΙΑ*«»^«·.-*,* (23106) 

+ Ap2 ß(fo - fo2) + ... + Δρ„_, ß(fo - fo„_,), 

where fo-fo, =—r $■ = H - . 
R] R2

Z R2
Z 

i. e., pressure decline at bottomhole of the operating aggregate well has the same 
effect as if at the moment in time t\ = Δί, in addition to the well operating with 
pressure drawdown Apo; a second well with pressure drawdown Ap\ began operat-
ing in the same location. By the moment tn, this second well would have been oper-
ating during the time interval tn -1\, so its variable is fo - fo, = η(ίη - f,) / Ä2, etc. 
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10 20 30 _40 50 60 70 fo 
Fig. 23.9. Dimensionless volume of water Q extracted from the aggregate well vs. Fouri-
er's parameter/o for an indefinite reservoir (pc = const). 

A a-, 
£, 

£» 

Δρ,_, 

0 t, t2 /_, f„ t 

Fig. 23.10. Pressure dynamics at the bot tomhole of an aggregate well . 

Fig. 23 .11 . Dimensionless pressure d r a w d o w n p vs. Four ie r ' s parameter f0 for an aggregate 

well in an indefinite reservoir at Qe = const . 



NON-STATIONARY FLOW OF AN ELASTIC FLUID 463 

o T*, k h Ci t. t 

Fig. 23.12. Aggregate well flow-rate dynamics. 

Eq. (23.106) is the solution of the set problem if bottomhole pressure is time-
variable. 

Significant for field development may be the problem of determining bottom-
hole pressure pc(t) in the aggregate well if the flow-rate Qw is given. This problem 
may be solved by integrating Eq. (23.98) with the conditions of Eqs. (23.99) and 
(23.100), and the Eq. (23.101) must be replaced by the following: 

Let's denote the dimensionless pressure drawdown as: 

Ίτάύι 
P(fo) = r r t f t -P. i fo)] . 

The Van Everdingen and Hurst (1949) solution is: 

-(f , 4 -f ( l - e
V f 0 ^ 

(23.107) 

(23.108) 

(23.109) 

where 7, (w) and Yt (w)are first-order Bessel's functions, respectively, of the first 

and second kind. The graph of the p(fo) function is presented in Fig. 23.11. 
If the flow-rate Q„ is variable, we will replace the continuous Qw{t) curve by a 

step-correlation (Fig. 23.12) and will subdivide the time interval t = tn into n steps 
t„ = nAt, where t„ = At, t\ = 2At, etc. then the superposition principle is applied as-
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suming that at the moments in time ii, t% etc., new wells located in the same place 
will start operating at the flow-rates Δβι, Δ{?2, etc. 

p k - Ä ( Ä l , 0 = ̂ 7 [Aß 1 Mfo) + Aß1p(fo-fo1) + ... + AßJ(fo-fo„.1)]. (23.110) 

If a finite closed aquifer of radius /?* is assumed, the following condition is 
realized at the boundary: 

dp/dr = 0 atr = Rk. (23.111) 

The solution at pc = const in the dimensionless format as a function of fo and 
R = Rk/Rz is an infinite series: 

2 

ß(fo)=^i-2 ± 2(C
J;{T^v (23·112) 

Where a\, «2, ... are the equation roots: 

J,(anR)Y0(an)-Y{ (a„R)J0(a„) = 0. (23.113) 

The ß(fo) curves for various values of the reservoir's dimensionless radius R 
are listed in Fig. 23.13 and Att.l. The smaller the reservoir's radius, the smaller is 
the elastic reserves, and the shorter time is needed for the extraction of the entire 
fluid's volume, which may be recovered from the reservoir on the account of flu-
id's elasticity at a given pressure drawdown p^ - pc. For instance, for R = 1.5 be-
ginning from fo = 0.8, ß = 0.625 and remains constant, which means no extrac-
tion; for R = 2 the extraction stops at fo = 3, etc. 

If a finite aquifer at a constant given flow-rate ßk is assumed, the dimension-
less pressure drawdown will be: 

- , r , 2 Π , Ϊ (3/?4-4/?4log/?-2tf2-l) 
p(fo) = — - + fo - - 5 '--

ß£.Ä2(-/o(Ä*W,(Ä))' 

(23.114) 

Where β\,βι are the roots of equation 

7, (ßnR)Yt (/?„)-./, (βΛ)Υχ (J3„R) = 0. (23.115) 

Fig. 23.14 and Att. 1 show that the smaller the reservoir size, the more drastic 
pressure drawdown increases at the water production at a constant flow-rate. When 
the time value is low, the boundary effect is not noticeable (for instance, with R = 6 
to the fo value equal to 6, p values are the same as for the infinite reservoir). 
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Q 

3 

2 

1 

0 2 4 fo 

Fig. 23.13. Dimensionless volume Q withdrawn from aggregate well vs.Fourier parame-

ter/,, for a closed reservoir of the finite size (pc = const, R = RK/R,). 

0 5 10 fo 

Fig. 23.14 Dimensionless pressure drawdown p vs. Furier's parameter/„ for the aggregate 

well operating in a finite-size closed reservoir (Qe = const, R R,/R, )· 
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P 
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1 

/ 1.5 

r 

4 

.2 

R=W 

6 

0 10 20 fo 

Fig. 23.15. Dimensionless pressure drawdown p vs. Furier's parameter/0 for the aggre-

gate well in a finite-size open reservoir (Qe= const, R = RK/R,). 

In this section the graphs for the dimensionless pressure drawdown p (fo) for 
a finite open reservoir with a constant pressure at the boundary (p = pk at r = Rk) 
from a constant withdrawal {Qw = const) will be displayed (Fig. 23.15), The 
smaller the reservoir size, the sooner the constant depression sets up, i.e., the sooner 
the first phase of the elastic drive ends and the second phase, the stationary filtra-
tion, begins. 

The problem of an elastic fluid flow to the aggregate well in an infinite reser-
voir at the flow-rate Qw(t) may also be solved approximately using the integral rela-
tionships technique. The problem setting is described by Eqs. (23.98), (23.99), 
(23.101) and (23.107). Let's find the pressure distribution in the reservoir and bot-
tomhole pressure in the aggregate well. 

Under the integral relationship technique (see Section 6), the solution is 
sought for as a binomial with powers of r with the addition of a logarithmic term 
for a parallel-plane flow (see Eq. (23.82)) where R(t) is the disturbed area radius, 
and öo, o\, ai, ··· are time functions. The pressure distribution Eq. (23.82) is valid 
for the disturbed area, i. e., for the values Rz<r< R(t); for the values 
R(t) <r<°°, pressure equals to initial pressure p^. The first power binomial will 
be considered: 

r r 
p(r,t) = a, log 1- aa + a2 . (23.116) 

For the determination of parameters α,, α0, a2, we will use the conditions at 

bottomhole of the aggregate well [Eq. (23.107)] and at the disturbed area boundary: 

p = pk at r = R(t); (23.117) 
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dp/dr = 0 at r = R(t). (23.118) 

The latter equation is the condition of the p(r,t) curve smoothness. From this 
condition: 

a =a = & ( 0 Α , RM ■ 
' 2 2nkh R(t)-Rz' 

a =p = Qw(t)ßw R(t) 
0 " 2Λ*Λ R(t)-R' 

(23.119) 

Substituting this Eq. (23.119) into Eq. (23.116) gives the pressure distribution: 

P(rJ) = pi 
QJt)M„ 

27±h[R(t)-Rz] 
R(t)\og^-R(t) + r 

r 
(23.120) 

Note, that in Eq. (23.120) and all subsequent equations it is not possible to dis-
regard the well radius Rz compared to the disturbed area radius R(t), as it was done 
previously when we were analyzing the flow to a regular well with rc ~ 0.1 m. 

The disturbed area radius is determined from the material balance Eq. (23.58) 
which is reduced to the following format: 

jßw(0 
R, 

Qw(t) K[R(t)-Rz] 

R\t) | R(t) 

12/?.2 4 

R^ 

3 

R(t).R(t) 
log 

2 6 Λ. 

(23.121) 

If ÖH. = const, \Qw(t)dt = Qw(t), and Eq. (23.121) becomes: 

Kt . 1 
—r =fO = 
R] R(t)-Rz 

R'(t) | R(t) Rz R{t) R(t) 

YIR: R, 
(23.122) 

Eqs. (23.121) and (23.122) are transcendent equations relative to R(t). By solv-
ing them graphically or on the computer for different moments in time and substi-
tuting the found R(t) values into Eq. (23.120), the pressure distribution in the reser-
voir at any time will be found. In particular, at r = Rz bottomhole pressure in the 
aggregate well from Eq. (23.120) is: 

p(Rz,t) = Po(t) = Pi 
Q(t)Mw 

2nkh[R(t) - Rz 

R(t)log^--R(t) + Rz . (23.123) 
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The calculation procedure using the approximate Eqs. (23.120), (23.123), 
l 

(23.121) or (23.122) is as follows: (1) find the production amount \θ^{ί)άί from 
o 

the given water flow-rate vs. time correlation Qw{t) by the moment in time under 

consideration; (2) calculate \Qw(t)dt/Qw(t); (3) find R(t) for the same moment 
0 

in time using Eqs. (23.121) and (23.122); (4) substitute found R(t) value into 
Eqs. (23.120) and (23.123), thereby finding pressure distribution p(r,i) and bottom-
hole pressure pc(t). one can evaluate the error by using Eq. (23.123) by reducing 
it to a dimensionless format and comparing its values with the values listed in tables. 
It is important to note that for large time values, when R(t) » Rz, it is possible to 
leave in the right part of Eqs. (23.121) and (23.122) only the first term and in the 
denominator to disregard Rz value compared to the R(t) value. In such a case: 

\Q„WtlQw{t) = R\t)l\2Kt. (23.124) 
o 

Denoting: 

- ^ - f ß w ( 0 * / ß w ( r ) = f o ' , 23.125) 
Rz 0 

where fo' is a known dimensionless time function: 

R(t) = yjl2fo' Rz. (23.126) 

If, however, Qw = const: 

R{t) = ^\lKt . (23.127) 

The use of Eqs. (23.126) and (23.127) substantially simplifies pressure calcu-
lations. 



CHAPTER XXIV 

NON-STATIONARY FLOW OF GAS 
IN A POROUS MEDIUM 

1. Mathematical model of non-stationary gas filtration 

Basics of the gas flow in a porous medium have been developed by L. S. Lei-
bensohn. He was the first to derive differential equations for non-stationary ideal 
gas filtration in a porous medium under Darcy's law. This non-linear parabolic dif-
ferential equation was later called Leibensohn's equation. 

It was assumed in the derivation of this equation that porosity and permeabili-
ty do not depend on pressure (i. e., the reservoir is non-deformable), and gas vis-
cosity also does not depend on pressure, i. e., the gas is ideal. It is also assumed 
that filtration is isothermal, i. e., the gas and reservoir temperature remains con-
stant. It was shown later that the non-stationary gas filtration may indeed be ap-
proximated as isothermal because the gas temperature change occurring under 
changed pressure is to a significant extent compensated through heat-exchange 
with the porous reservoir matrix, ant the gas contact surface with matrix is huge. 

However, at gas filtration in the bottomhole zone of the reservoir non-
isothermal behavior of gas filtration is substantial due to the localization of the ma-
jor pressure drawdown near the borehole wall. (This effect is utilized in interpreta-
tion of thermograms in operating wells for fine-tuning the inflow profile across the 
reservoir thickness, so-called depth flow-rate metering). In analyzing filtration 
process in the reservoir as a whole these local effects may be disregarded. 

Mathematical model of non-stationary isothermal gas filtration includes flow 
continuity equation, motion equation (Darcy's law) and equations of state of the 
gas and porous medium: 

—^- + div pw = 0, 
σ 

~ k A 

w = gradp, 
μ 

plP = P«mlP«m< 0 = const, k = const, μ = const. 

Mechanics of Fluid Flow 
by Kaplan S. Basniev, Nikolay M. Dmitriev and George V. Chilingar 

Copyright © 2012 Scrivener Publishing LLC 
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After the substitution of Darcy's law into continuity equation and introduction 
of Leibensohn's function, the equation system is transformed as follows: 

9 μ 
— k 

pw = gradp, (24.1) 
μ 

P P2 
p=Hjm— + c o n s t 

2/>a.m 

First equation of Eq. (24.1) after substituting the Leibensohn's function, may 
be rewritten as: 

WR-ßJLtf. (24.2) 
3i 2Peji 

Let's now transform the left part of the above equation. Considering the poros-
ity is constant and the ideal gas equation of state in the isothermal process is: 

p=PamP 

d0P Pj&*P 

d' Pa,m & ' 

after the transformation the following equation with only one unknown variable 
pressure: 

dp _ k 

dt ~ 2μ0 
Ap2. (24.3) 

The derived differential equation for non-stationary isothermal filtration of 
ideal gas Eq. (24.3) is Leibensohn's equation. It is a parabolic type nonlinear diffe-
rential equation in partial derivatives. It is valid in a case where Darcy's law is rea-
lized. Porosity variability is disregarded because the porosity factor enters the equa-
tion as a product p0, where gas density is much more variable than porosity. 

Eq. (24.3) is represented in a no-subscript format valid for any coordinate sys-
tem. In the Cartesian coordinate system the equation is: 
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It also may be written differently by multiplying it by pressure p and keeping 
in mind that: 

dp =\dp\ 
Pdt 2 dt '' 

dt μΰ 

or in Cartesian coordinate system: 

dp2 _ kp (d2p2 

dt μ0 

2 „2 λ 

a*2 

2 2 Λ2 

P _+o p 
dy2 dz2 (24.2) 

In this format, under both coordinate and time derivatives is one and the same 
function p2 but the factor in front of Laplace's operator is variable and contains the 
sought-for function p(x,y,z,t). 

It is easy to show that non-stationary filtration of a real gas with equation 
of state: 

Pamz(p) 

and in consideration of viscosity being a function of pressure μ (ρ) and porous me-
dium being non-deformable (0 = const, k = const), is described by the following 
parabolic type nonlinear differential equation: 

- Λ a f i 3„2ΛΛ 

dt z(p) 
_k_ 
20 

1 dp 4 
[dx{M(p)z(p) dx 

2^ d 
+ dy 

1 dp2 

μ(ρ)ζ(ρ) dy 

d 
+ — 

dz 

1 dp2 

[μ(ρ)ζ(ρ) dz ) 

To solve the specific problems in non-stationary gas filtration, differential eq-
uation in the Eq. (24.3) or Eq. (24.4) format should be integrated over the entire gas 
accumulation with the initial and boundary conditions. 

Eq. (24.3) or (24.4) is a complex nonlinear equation in partial derivatives. 
In most cases it does not have exact analytical solution. It may be integrated using 
the computer or solve it approximately. The approximate solutions techniques are 
well developed. Some of them have already been reviewed earlier in this book as 
applied to the elastic drive problems (for instance, the technique of sequential 
change of the stationary state, etc.). 

Numerical techniques in solving various non-stationary gas filtration problems 
based on Leibensohn's equation are also well substantiated in applied problems of 
gas field development. The most common are the techniques of finite difference 
and finite elements. The practice of the gas field development changed over time 
(increase in depth, pressure and temperature, multi-component nature of many 
gases). All these needed to be taken into account in the main Leibensohn's equa-
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tion. It is possible to use Leibensohn's function for ideal gas under low pressures 
in deformable reservoirs. For real gases under high pressure and in deformable 
reservoirs, Leibensohn's function should be calculated as Eq. (19.20): 

P=\^~P(P)dp. + const. 

At non-isothermal filtration, changes in gas properties with temperature should 
be considered. 

Eq. (24.3) was derived using Darcy's law as the motion equation. Subsequent 
studies (Charny, Minsky, etc.) showed, however, that for the natural gas filtration the 
nonlinear (binomial) filtration law should be used. The mathematical difficulties in 
solving the so produced differential equation become even greater. 

One of the efficient directions in solving Leibensohn's equation is its lineari-
zation, i. e., reducing it to linear Fourier's equation. 

2. Linearization of Leibensohn's equation 
and the main solution of linearized equation 

If nonlinear differential equation [Eq. (24.3) or Eq. (24.4)] is replaced by a li-
near equation (i. e., if it is linearized), the differential equation simplifies to a linear 
equation with exact analytical solutions. Clearly, such exact solutions would be ap-
proximations for the nonlinear equation. The error of such replacement may be es-
timated by the comparison with a computer-found solution of exact equation. 

Different ways for linearization of Eq. (24.3) or Eq. (24.4) have been pro-
posed. In the case of the radial-plane flow to a well, the non-transient gas filtration 
theory (see Chapter IV) predicts a very steep pressure drawdown funnel, and pres-
sure over most of the reservoir is only slightly different from contour pressure. 
Based on this, Leibensohn proposed to replace variable pressure p in the coefficient in 
front of Laplace's operator in Eq. (24.4) by constant pressure py_ equal to initial re-
servoir pressure. Then, denoting η = kpk Iμ 0 , another equation will be obtained 
instead of Eq. (24.4): 

dp2 -fay a y ay^ „ A ^ 
a =T1 3T- + V r + -TT- · (24.5) 
a? ^ dx dy dz ) 

This is linear piezo-conductivity equation relative to p2 (compare with 

Eq. (23.17), where η is a constant similar to the piezo-conductivity factor). This 
way of linearization, when the variable factor in Eq. (7.109) is taken for a constant, 
is called Leibensohn's linearization. For instance, Charny (1961) proposed to re-
duce Eq. (24.4) to the linear format by replacing variable pressure in the coefficient 
in front of Laplace's operator by: 

Pavg ~ Pmin + O. l{pmax ~ Pmin), 
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where / w and pmi„ are maximum and minimum gas accumulation's formation 
pressures during the estimation period. 

Now, the linearized Eq. (24.5) is used to solve a problem of gas flow into a 
well of infinitely small diameter (a point drain) located in an infinite size reservoir 
of thickness h. At the initial moment the reservoir is undisturbed, i. e., formation 
pressure in the entire reservoir is constant an equal to p^. From this point forward, 
the gas production begins at a constant flow-rate ßa[m. The goal is to find the forma-
tion pressure in the reservoir with respect to time p(r,t). 

For the radial-plane filtration, Fourier's Eq. (23.40), and for gas filtration: 

dp2 _ -(d2p2 1 dp 
dt 

2Λ 

dr2 + r dr 
(24.6) 

This equation needs to be integrated under the initial condition: 

p2(r,t)=pk
2att = 0; (24.7) 

with the boundary condition for remote points of the reservoir being: 

p2{r,t) = pl at f >0 and r ->°° . (24.8) 

Let's write the condition for bottomhole pressure. For this purpose, let's intro-
duce the expression for the mass flow-rate based on Darcy's law for radial-plane 
filtration in the differential format: 

Qm=pwS = P^p-^P-27crh. 
Pa.™ M or 

Using equations: 

and: 

one obtains: 

dr dr 

»Cm r^atm*^atm ' 

nhk dp2 

P*mM dr 

From this equation the condition at the wall of an infinitely small radius gas 
well is obtained: 

r^=QmPmM a t r = Q ( 249) 
dr 7dih 
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Thus, to solve the assigned problem, Eq. (24.6) should be integrated under the 
conditions of Eqs. (24.7)-(24.9). 

In this Chapter, a similar problem is solved with the elastic liquid production 
from an infinite and initially undisturbed elastic reservoir through a well at a con-
stant flow-rate Q. The mathematical setting of the problem is represented by 
Eq. (23.40) under the condition of Eq. (23.41). Then these relationships for the elastic 
liquid are quoted and compared with the relationships of Eq. (24.6) and Eqs. (24.7)-
(24.9) for the gas. 

dp 

dt 

fV 

dr2 r dr 

p(r,t) = pkatt = 0; 

p(r,t) = pgal at t > 0 and r -> °°; 

dr Ιτάύι 
:0. 

( ■ & 1 \ 3 V Idp 

, dr2 r d . 
p2{r,t)=pk

2att = 0; 
p2{r,t) = pl at i > 0 and r - > ° o ; 

■ OP* = QxmPxnM 

dr τύάι 
at r = 0. 

As it can be seen, pressure in all ideal gas equations is squared, whereas it is to 
power one for the elastic liquid. The piezoconductivity factor for liquid is replaced 

by η= kpk for the gas, and Qßllnkh is replaced by Qilmp^ßlJdih. The rest re-

mains the same. 
As it was shown, the solution of the problem for an elastic liquid is the major 

equation of the elastic drive-Eq. (23.52): 

p{r,t) = pv~ 
QoM 
iKkh 

-Ei 
f r2^ 

4ÄT 

The similarity between filtration of an elastic liquid and gas indicates that if in 

Eq. (23.52) pressure is substituted by p2, Kby η, Qß/2nkh by QmrnP^m^Ttich, this 

gives the solution of the set problem for the gas: 

p2(r,t) = p2
k -Q^P*™*1 

2nkh 
-Ei 

r2 

4ηί 

\ 
(24.10) 

or: 

P(r,t)-
,2 Q&mPiXml·1 

Ιηΐάι 
-Ei r 

Αηι 

(24.11) 

This is the main solution of Leibensohn's linearized equation. 
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For small values of the variable ——, as in the main equation of the elastic 
\ηι 

drive theory Eq. (23.53), the integral exponential function can be replaced by a lo-
garithmic one: 

2r\kh 
l n ^ - 0 . 5 7 7 2 

r 
v 

(24.12) 

or: 

r 

p(rJ)=M_a^i In ^ - - 0 . 5 7 7 2 
r 

V 

(24.13) 

Once again, the solution Eqs. (24.10)-(24.13) are approximate ones as they 
are obtained from integration of Leibensohn's linearized equation. 

a) 
P\ t=0 

Fig. 24.1. Pressure distribution in the reservoir under non-stationary gas flow to a well at 
different moments in time (a) and pressure dynamics at certain points in the reservoir (b). 

Eqs. (24.12) and (24,13) determine pressure distribution around the gas well 
operating at a constant flow-rate from the moment in time to- These depression 
curves have the same shape as for non-transient filtration: they are very steep next 
to the well (Fig. 24.1a). If the value of r is assigned, it is possible to find pressure 
change at a given point with time. In particular, it is posible to determine pressure 
change at the bottomhole (r = rc) after the well began operating (Fig. 24.1b): 

Λ ( ' . ' ) = | Λ 2 - β Pxnß -atmr atm< 

277*A 
In ^ - - 0 . 5 7 7 2 

r 
V 

(24.14) 



476 CHAPTER XXIV 

3. Point solution of an automodel problem 
on axisymmetric gas flow to a well with 

a constant flow-rate 

The previous section includes a solution of the problem of non-stationary 
ideal gas flow at a constant flow-rate to a well of infinitely small diameter. The so-
lution was obtained by integrating the linearized differential equation. 

Barenblatt (1982) used analysis of dimensions to show that at certain initial 
and boundary conditions the non-linear Leibensohn's equation has exact solution. 
This is important as the derived exact solution may serve as the standard for com-
parison with approximate solutions. 

As in Sec. 2, the problem of non-stationary radial-plane gas flow at a constant 
flow-rate to a well in an infinite reservoir will be analyzed. In this case it is neces-
sary to integrate the non-linear Leibensohn's equation: 

dp _ k (d2p2 Idp2^ 
dt 2//0 r dr 

(24.15) 
y 

under the same initial and boundary conditions [Eqs. (24.7)-(24.9)]. 
Barenblatt showed that as set here, the problem is an automodel one, i. e., 

pressure depends on some complex, which includes both variables r and t, and par-
tial derivatives differential Eq. (24.15) is reduced to a regular differential equation 
which is integrable. 

In order to establish the variables on which pressure is dependent, a dimensio-
nality analysis should be performed. As follows from the problem setting, pressure 
distribution in the reservoir depends on five definitive parameters (n = 5): r, t, p^, 
Μ2μ0\ ßatmPatm/" Ij&h. 

Let's denote length dimensionality as [L], time dimensionality as [7], pressure 
dimensionality as \p\. Then dimensionalities of these parameters will be: 
[r] = L, [t] = T, [pk] = [p], [Μ2μ0] = L2\p]lT-\ [QMmp,tm μ /nkh] = [p]1. 

Three of these parameters have independent dimensionalities: r, t, pv. (i = 3). 
As follows from Π-theorem (Chapter V, p. 4), the sought-for function, i. e., pres-
sure reduced to dimensionless format F = p/pk, will depend on two dimensionless 
complexes (n - k = 5 - 3 = 2). It is easy to check that these complexes are: 

ξ= , r =-^ and λ=Ο^Εψ 

2μ0 

i. e.. 

PJ 

F = p/pk = F(£A). 

2khp] 



NON-STATIONARY FLOW OF GAS IN A POROUS MEDIUM 477 

Taking derivative of the F fiinction with respect to r and t and substituting 
derivatives into Eq. (24.15), gives the function F satisfying the regular differential 
equation: 

d2F2 1 dF2 ξ_ά]^ = ύ 

άξ2 +ξάξ+2άξ= ■ 

The initial and boundary conditions [Eqs. (24.7)-(24.9)] are as follows: 

ξ^ζτ = λ at ξ = 0; F(£A) = 1 at £ = «». 

(24.16) 

(24.17) 

Eq. (24.16) was numerically integrated under the conditions of Eq. (24.7). The 
results are presented (Table 24.1) for the values A = 0.01 and A = 0.04994. ζ in the 
table is such value of the variable ξ that for ξ < ξ , the values of ξάΡ'Ίάξ differ 
from A by less than 0.01 %. This means that for ζ<ξ*, it may be stated that 
ξάΡ2Ιάξ =A. Upon integrating this equation: 

F2 = F2(f,A) + A\og($f) 
or: 

F = jF2(f,A) + A\og(#f) for ξ<ξ. (24.18) 

For this reason the values of Ρ(ξ,λ) for £ < £ * a r e not included into 

the table. 
By comparing the dimensionless pressure values p/pk = F ( £ , A) in Table 24.1 

with those calculated from Eq. (24.12), it is possible to find the error introduced by 
linearization of Leibensohn's equation. 

Table 24.1 
Numerical values of automodel solution 

A = 

ξ 
ξ' =0.005787 

0.01157 
0.01923 
0.03472 
0.06553 
0.09645 
0.1582 
0.2816 
0.5285 
0.7754 
1.269 
1.763 
2.751 
3.738 

0.01 
F&X) 
0.9701 
0.9737 
0.9763 
0.9793 
0.9825 
0.9845 
0.9870 
0.9899 
0.9930 
0.9948 
0.9970 
0.9982 
0.9994 
0.9999 

A = 0.004994 

ξ 

ξ* =0.003886 
0.01555 
0.03109 
0.06218 
0.2487 
0.4974 
0.9949 
1.492 
2.487 
3.482 

Ρ{ξ,Α) 
0.9842 
0.9877 
0.9894 
0.9912 
0.9947 
0.9964 
0.9980 
0.9988 
0.9996 
0.9999 
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4. Solution of the problem of gas flow to a well using sequential 
change of stationary states technique 

As indicated in Chapter XXIII, Section 6, this technique is based on the fol-
lowing assumptions: at each time the reservoir is subdivided into two areas, one 
disturbed and the other, undisturbed. It is assumed that in the disturbed area, which 
begins from the well's wall, pressure is distributed so that the liquid flow within the 
area is non-transient, and the external boundary of the area is serving at a given 
moment in time as the charge contour. Pressure within the undisturbed reservoir 
area is constant and is equal to the initial contour pressure. The motion pattern of 
the movable boundary between the disturbed and undisturbed areas is determined 
from the material balance equation and boundary conditions. 

Let's apply this technique to the solution of the problem reviewed in Sections 
1 and 2, i. e., the problem of non-stationary flow of gas to the well at a constant 
rate Qam. However, as opposed to the problem in Section 1, the finite well radius 
equal to rc is considered. 

At any time, the disturbed area is a round area of radius R(t), pressure within 
which is distributed under the stationary condition [Eq. (20.42)]: 

p = U -, p\ Ip} i l p g — · r< -r -m ■ ( 2 4 · 1 9 ) 

Outside of the disturbed area, pressure is equal to the initial pressure (the un-
disturbed state): 

p=pk,r> R(t). 

It is also possible to write the expression Eq. (20.43) for the flow-rate of the 
disturbed area: 

M « , ln(Ä(r)/rf) 

In the problem under review, bottomhole pressure is a function of time. 
For the convenience of further discussion, Eq. (24.20) is rearranged to: 

Pk ~ Pc = QamPamM 
l n R(0 rich 

Substituting this equation into the pressure Eq. (24.19), gives: 

p = p2_QmPmä]n^ä ,rc<r<R(t), (24.21) 
V rich r 
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i. e., pressure distribution expressed through the given flow-rate and reservoir pa-
rameters. 

In order to find R(t), material balance equation is used. The initial gas reserves 
(at p = py) within the reservoir area of radius R(t) are: 

M0 = K{R2 (t) - ή }i0pk = n{R2 (r) - ή )h0^pk. (24.22) 
" a t m 

The current gas reserves may be expressed through weighted average pres-
sure p: 

Mcur = π{ϋ2(0 - ή }ι0ρ = Λ·(/?2 (ί) -rc
2)h0^p, (24.23) 

r'atm 

where p is determined from Eq. (20.48) for transient-free filtration: 

P°°Pk 
I-P2C'PI 
41n(J?t/!■,). 

(24.24) 

The gas is produced at a constant flow-rate Qam, so that the gas mass produced 

by the moment in time t is equal to p^Q^t- Therefore: 

M0-M,=palraßatmr 

or, by using Eqs. (24.22) and (24.23): 

K{R\t) - r?)h0&^(pk -p) = pmQ^t. 
Palm 

Substituting Eqs. (24.23) and (24.24) into Eq. (24.25), results in: 

^ ( O - r / > 0 ^ tä-ft =pm *KPI-P))t 
y ' pam4pkln(R(t)/rc)

 Fam ppam\n{R{t)lrc) 

(24.25) 

and thus: 

3 2 / ^ .2 _ *kpk R{t)-r =-^t = Af]t 

or: 

R(t) = ^+4ift. 

For the time values for which Afjt » rc
2: 

R(t) = ijfft. 

(24.26) 

(24.27) 
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Now that the motion rule of the disturbed area boundary is known according to 
Eq. (24.16) or Eq. (24.27), it is possible to determine pressure at any point of the 
reservoir at any time using Eq. (24.21), as well as bottomhole pressure change at 
any point in time: 

P = ri-a ffl£am^lnV^±Z 
τόάι 

<r<^r^+Afjt, p = pk, r> jrc
2 +4ψ, 

Pi 
Q. 

Ttkh rr 

(24.28) 

(24.29) 

Eqs . (24.28) and (24.29) are valid for the infinite reservoir and for finite open 
and closed reservoir of radius Rk, In the latter case, they are only valid for the first 
phase of the motion until the pressure d rawdown funnel reaches the reservoir 
boundary , i. e. for: 

R(t) = lJfft<Rk. 
Pressure changes in the second phase depend on the reservoir's boundary con-

ditions. If the reservoir is closed, pressure will continue declining over the entire 
reservoir, including the boundary. If the reservoir is open (p = pk or r = /?*), i. e., 
under the water drive, then a stationary regime will form in the second phase with 
the constant pressure drawdown pk -pc, where: 

Pk 
2 ßaimPatmAjj, 

vkh 

5. Solution of the gas flow to well problem 
using averaging technique 

Let's review another technique applicable to the problems of non-stationary 
gas filtration - the technique of averaging time derivative over the space domain. 

Consider an example of rectilinear parallel filtration of a real gas. The exact 
differential equation for this case is: 

d p _ k ( d ( p d p \ 

dt z(p) μ0{3χ{ζ(ρ) dx/y 

Suppose, it is possible to substitute z=z(pavg) instead of supercompressibility 

zip), where pavg is some average pressure in the moving gas. Let's now introduce the 
denotation pi =plz(p). Then the latter equation becomes: 

dt' 
. IS 
μ0 dx\y dx) 

(24.30) 
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Suppose, there is an initially undisturbed gas-saturated reservoir of the width B, 
thickness h and length L. From one side (x = 0) the reservoir is penetrated in a gal-
lery, and from all other sides it is bounded by impermeable planes. At the moment 
in time t = 0 the gas begins to produce trough the gallery at a constant mass flow-
rate, which may be expressed, under Darcy's law, as follows: 

Q =pwBh = £mP]LdJLBh = BhiQ^A*PL. 
Ρ^ζμάχ 2Puji dx 

It is required to determine pressure in the reservoir at any moment in time 
t > 0. For this purpose, Eq. (24.30) should be solved within the domain 
0 < x < L,t > 0, which satisfies the initial condition [Eq. (24.31)] and boundary con-
ditions [Eqs. (24.32) and (24.33)]: 

pl=pl0att = 0; (24.31) 

(24.32) dpi 
dx 

2iL 
k 

at x = 

dpi 
dx 

-- 0 where Q -

= 0 at x = L. 

. 2QmP™ 
Bhzpm 

(24.33) 

As under the change of stationary states technique, it is assumed that at each 
moment in time there is a finite disturbed area, l(t), at the boundaries of which the 
following conditions are realized: 

pf = Pw ^ - = 0 a t x = /(f). (24.34) 
ox 

The pivot in this technique is the acceptance of the condition: 

^ = F(i) (24.35) 
dt 

which is equivalent to a supposition that pressure in the entire disturbed portion of 
the reservoir changes at an equal rate; then, Eq. (24.30) changes to the following 
format: 

Z ̂  = ^ F ( i ) . (24.36) 
dx k 

Integrating this equation twice with respect to x, gives: 

, _ 0μ F{t) , 
pi=^rLL^_Lxi+bx + c = F(j) (24.37) 

k 2 
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Using the boundary conditions at the gallery [Eq. (24.32)] and at the disturbed 
zone boundary [Eq. (24.34)], let's find the integration constants b and c as well as 
the function F(t): 

b = ~r> c = Pio=-
Qß 
k 2k 

F(t) = Qz 
20/(i) 

The result is: 

A2 = P , 2 o - ^ f l - — 1 l0 2k y l{t) 

\ 2 

, 0 < * < / ( f ) . (24.38) 

Determine the l(t) function. For this purpose, the initial Eq. (22.30) is inte-
grated twice with respect to the coordinate and time: 

k J 0
J dt 

o o 

Then, using the boundary conditions [Eqs. (24.32) and (24.34)], the equation 
for weighted average pressure is obtained: 

P = Pw~ 
zQt 

20l(t) 

Let's accept a hypothesis that weighted average pressure is: 

1 ' 

(24.39) 

P = -jp,(x,t)dx 

for this particular case, then it is determined from this equation: 

Reduce equations for p{ [Eqs. (24.39) and (24.40)] to a dimensionless format 
format and equate them: 

1-
zQt 

2<Zl(t)pK 
= 1-

QUKO 
6kpf0 

(24.41) 

This equation is used for the determination of l(t). However, a very simple ap-

umate equation may be derived. 

right part of Eq. (24.41) into a series: 

proximate equation may be derived. Denoting *^~/, 2 = " and expanding the 
/ 6kp]0 
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Keeping two first terms of the series: 

t QßV) _ l Qfdjt) 
6kpf0 I2kpf0 

In this case, Eq. (24.41) takes the following format: 

1 zQt _Λ Qßl(t) 

20l(t)pio Mcpf0 ' 

and from there: 

,(,)= 6 - ^ k f . (24.42) 

Substituting this expression into Eq. (24.38), gives the pressure as a decisive 
function of the coordinate and time. 

At the time T when the disturbed zone reaches the impermeable reservoir 
boundary (l(i) = L), the first phase has ended. To determine its duration, let's assign 
in Eq. (24.41), l{f) = L and find the time T: 

ί I 7^~ΓΛ 
20plo-L[1 l_QßL 

zQ 
1 - 1 -

6kp 
(24.43) 

10 ) 

One can find the approximate T value from Eq. (24.42) and see that the error 
does not exceed 3 to 4 %. 

During phase two, pressure at the boundary x = L declines, and the condition of 
Eq. (24.33) is realized. Equations for the phase two of the gas reservoir depletion 
are constructed in a similar way. After similar calculations, we establish pressure 
distribution law in the reservoir: 

""""'.-ft'-i)05*"· (24-44) 
and pressure distribution law at the gallery: 

^ L__ß02_M. ( 2 4 .45) 
y's l n o 20L ) 3k 

6. Application of superposition principle to problems 
of non-stationary gas filtration 

The superposition technique (flow superposition method) is used to solve li-
nearized equation of non-stationary filtration [Eq. (24.5)]. This equation is linear and 
uniform relative top2. Therefore, if pl{x,y,z,t), where i = 1, 2, ..., n, defines pres-
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sure distribution as a result of the performance of i'th well and is a solution of 
n 

Eq. (24.5), their linear combination p2 = ]Tc;/?,2 is also a solution of Eq. (24.5). 

The superposition technique enables the solution of numerous problems occur-
ring in the design of gas field development. 

Using the superposition technique, we will derive equation of bottomhole 
pressure buildup after gas well shut-in and will show how the gas interval reservoir 
properties may be determined from the pressure buildup curve. 

Suppose a gas well in an infinite reservoir was producing over a long period of 
time T at a constant flow-rate QMm and was suddenly shut-in at the moment T in 
time (i. e., flow of gas to the well suddenly stopped). 

Using the superposition technique, it is assumed that at the moment in time 
t = T an injection well began operating at the same injection rate simultaneously 
with the production well. Then: 

Pk .?:=toLM-,nw (24.46) 
iTtkh y r~ K 

Besides, at the moment of the well shut-in the following equation is realized: 

pi-ptF)--
*ZMmPamM 

Ιτάάι 
In 

2.25/7i 
(24.47) 

Let's subtract Eq. (24.46) from Eq. (24.47): 

pt(t)-p2
c(T) = 

-2 / · , \ „ 2 / -τ · \ _ a^atm Palmr* 

iKkh 

_QPM 

, 2.25777/ , 2.2577? , 2.25(ί-Τ) 
In T1 In r-^ + ln ^ 

Inkh 
l n 2 . 2 5 7 ^ - 7 ) _ b l 

(24.48) 

If prior to shut-in the well operated for a long time T, and t-T«T, then: 

. t , 2.25η(t-T) 
In— « I n '-± 

T 

and the term log ί/Tin Eq. (24.48) may be disregarded. Then: 

p2
c(t)-p

2
c(T) = Q^l;M 

2mch 
In 

2.25777/ 
(24.49) 

Suppose the moment of the well shut-in T is a new beginning of the time 
count: t' = t-T. Then Eq. (24.49) may be written as: 

P
2(n-p2

c(0)=Q"^TM 

2mh 

In 
2.25777' 

(24.50) 
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The bottomhole pressure buildup curve is shown in Fig. 24.2. One can see from 

Eq. (24.50) that the correlation p2
c(t') - p2(0) vs. log t' is linear (Fig. 24.3). 

PXO) 

0 ,i 

Fig. 24.2. Bottomhole pressure distribution after the well is shut-in. 

PAO-PXO) 
1, 

s*^ y^°-B 

i ^L 

0 In/' 

Fig. 24.3. p2(t)-p2(0)vs.lnt. 

Let's identify in the right portion of Eq. (24.50), a term containing log t'. 

p2(t') p2(0) = ^a t m P a l n"ü '"* ' ' Q«mPtxmM^ 2.25/7 
iTtkh 

: ln i '+-
2akh 

-ln- (24.51) 

QPß: 
Ιτόάι 

is the tangent of the angle between the straight line AB and x-axis, and 

OA is the segment cut by the AB line on the y-axis, which is equal to: 

Ijdch r2 r2 
(24.52) 

During the well testing under non-stationary regime (conducted in order to de-
rive reservoir properties), pc values are obtained at different times / ' after the well is 
shut-in. These data are processed in coordinates p2(t')- pi(0) and In t' (or log r'). 

The experimental points are shown in Fig. 24.3. Usually a straight-line seg-
ment may be identified on the experimental line. From this segment, the values of 
/ = tgor and OA are determined. Knowing these values and the well flow-rite prior 
to the shut-in, it is possible to determine the reservoir hydroconductivity factor: 

tt = a a A E L 
μ 2m 

(24.53) 
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and the complex parameter: 

4 = — eM". (24.54) 
ή 2.25 

On the AC segment, the experimental points deflect from the straight line due 
to the gas inflow into the well after the shut-in, which was not taken into account in 
Eqs. (24.46)-(24.48), and due to some other factors. 

Eq. (24.46) may be rewritten as follows: 
i 2 QmpmJiln_L_ 
k c Ιτάάι t-T 

or: 

PcV) = A 2 - i l n ^ . (24.55) 

Pressure buildup curves after the well was shut-in are also processed using Horn-
2 T + t' 

er's technique in coordinates pc(t') and In—;—. Eq. (24.55) in this coordinates 
represent a straight line. From the inclination angle of this line one may determine 
hydroconductivity factor [Eq. (24.53)]. By extrapolating the line to the y-axis 

(In =0), formation pressurepv. (which is usually unknown) is found. 

7. Approximate solution of gas production from closed reservoir 
problems using the material balance equation 

Let's review several problems associated with the gas production from a 
closed round accumulation of radius rc. Prior to well penetration of the reservoir, 
pressure in the entire accumulation is constant and equal to p^. 

Two simple cases are considered: (a) the gas extraction occurs at a constant 
flow-rate Qaim; (b) bottomhole pressure pc remains constant. 

In the case (a), we are interested in the pressure decline at the reservoir boun-
dary pk(0> and in case (b), the pressure decline at the reservoir boundary pk(t) and 
the decline of the flow-rate ßatm(0· 

Both problems are solved using the technique of the sequential change of sta-
tionary states, i.e., using die laws of non-transient gas filtration and equation of gas 
accumulation depletion. The substance of this latter equation (the material balance 
equation) is in that the amount of gas extracted from the reservoir over some time 
interval is equal to the decrease of the gas reserves in the reservoir. Because the 
reservoir is closed, the reserves are limited and not replenished from the outside. 

If p is gas density corresponding to weighted average formation pressure p , 
and Vn is the pore volume which is assumed to be constant, the gas reserves decline 
over an infinitely small time interval dt will be: 

-Vndp=-Vnd^^- = -^-Vndp. (24.56) 
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The mass of the gas extracted over the same time interval is: 

QmW = pemQmdt- (24.57) 

By equating Eq. (24.56) and Eq. (24.57), differential equation of the gas ac-
cumulation depletion is obtained: 

-Vndp = P»mQ,mdt. (24.58) 

It was shown in Eq. (20.58) of Chapter IV on transient-free radial-plane gas 
filtration that the difference between weighted average pressure p and contour 
pressure p^ is small (in our case p^ is pressure at the closed reservoir boundary). 
It was found by Lapuk (1948) that under the same boundary conditions the forma-
tion pressure distribution curve in the case of non-stationary filtration is positioned 
somewhat above the corresponding curve for transient-free filtration. So, the condi-
tion p = pk is assumed and pk is substituted for p in Eq. (24.58): 

-Vndp^PvnQ^dt. (24.59) 

Let's review case (a) where Qatm = const. In this case: 

dpk = -BmEm^dt. (24.60) 

Upon integrating this equation under the initial condition p = pn at t = 0: 

P^=P,-es§ss-t, (24.61) 

i. e., pressure at the reservoir boundary linearly declines with time (Fig. 24.4). 
In order to find how bottomhole pressure changes with time, Eq. (20.43) is used to 
find the well flow-rate: 

β-=-^τ£τ£ ( 2 4 · 6 2 ) 

and find bottomhole pressure from it: 

,2 f^atm^atm 

Substituting Eq. (24.61) into this equation results in: 

Pc=-
n f\tm*^atm * 
Pn y 

vn J 
7±h 

The pc vs. t graph is displayed in Fig. 24.4. 

Ga,mPa.m 1 „ ( » / r ) . ( 2 4 . 6 3 ) 
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A. A 

0 t 

Fig. 24.4. Pressure p„(t) and bottomhole pressure pc(t) dynamics at the boundary 
of a closed gas reservoir at gas withdrawal with constant flow-rate. 

To determine/?k vs. t correlation in the case (b) withpc = const, let's substitute 
the flow-rate Eq. (24.62) into Eq. (24.60) and divide the variable: 

v dpyQ«,,, _7tkh dt 
npl-pVc μ \n(Rklrc) 

Ttkh 

(24.64) 

Introducing the notation A = and integrating Eq. (24.64) from 0 
Mln(Rk/rc) 

to t and from pn to py. 

and from there: 

A " 

0 Λ p.Pt Pc 

yn ( A , - P C ) ( A . + A W A 
2APc ( A + A X A - A ) 

(24.65) 

Fig. 24.5. Pressure pt (t) and flow-rate Qam (t) dynamics at gas withdrawal with constant 
bottomhole pressure. 

Assigning different /?k values at the accumulation's boundary, starting with p„ 
and smaller, it is possible to find the corresponding / values in the accumulation's 
development life. Substituting the same py values into Eq. (24.62), the flow-rates at 
the same moments in time will be found. The graph of pk(f) vs. ßatm(0 is presented 
in Fig. 24.5. 



CHAPTER XXV 

FILTRATION OF NON-NEWTONIAN LIQUID 

There are cases of unusual hydrocarbon behavior in some oil and gas fields, 
which can be explained by the manifestation of non-Newtonian properties by the 
fluids in the process of filtration. These properties are usually called anomalous. 
Filtration specifics of the non-Newtonian oils are mostly due to elevated contents 
of high-molecular-weight components (resins, asphaltenes, paraffin). 

With the evolution of enhanced oil and gas recovery techniques ever more 
numerous substances are being injected into the productive reservoirs. Many of 
such substances (high-molecular-weight compounds, polymers) also display non-
Newtonian properties. Same goes with the drilling mud. A classification of non-
Newtonian liquids was provided in Chapter XVI. Here and thereafter it is quoted 
just as non-Newtonian viscoplastic liquid (NVL). 

1. Viscoplastic liquid: filtration law and mathematical model 

In Chapter XVIII, the NVL filtration law Eq. (18.26) was quoted without deri-
vation, just as an experimental fact. Now the hydrodynamic law for the simplest 
case of the NVL filtration flow in the ideal tube formed by a single capillary sys-
tem will be derived. The velocity profile under the stationary flow is displayed in 
Fig. 16.10, and the equation for the liquid throughflow in a tube is Eq. (16.48), 
which indicates that the average velocity V of a viscoplastic fluid in a tube of the 
diameter d is found as: 

V = 
d2Ap 
32μΙ 

1-1 
3 

4r0L 
dAp) 

4τ0ζΛ 
dAp 

(25.1) 

where Ap is pressure gradient in the capillary over a segment of length L, T0 is ini-

tial (cutoff) shear stress, and μ is plastic viscosity factor. 
Let us consider an ideal single capillary system (Fig. 18.14). In such a case, the 

the flow in each capillary is described by Buckingham's equation [Eq. (25.1)]. A modi-
fied format of this equation is usually applied for the description of NVL in ideal 
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porous media, with the last bracketed term discarded. So, the NVL "filtration" flow 
in a capillary is found as: 

V = 
d2Ap 

ΎΙμΙ 3 dAp 
(25.2) 

Note, that both Eqs. (25.1) and (25.2) determine the true average filtration ve-
locity under the pressure gradient only along the capillary axis of the symmetry. 

In order to transfer from true average velocity to filtration velocity, it is neces-
sary to determine the throughflow through an elementary cell and then "spread" it 
over the entire cell facet, i. e., by multiplying Eq. (25.2) by πά2/4 and dividing the 
result by a2 (see Fig. 18.14 for the size of elementary cell). As a result of such 
transformation: 

ιοΓ 
128/A22 3{dAp 

Ap 
L 

(25.3) 

where w is the modulus of filtration velocity. 
As mentioned, Eq. (25.3) determines filtration velocity in a single capillary 

system for a case when the pressure gradient direction coincides with the direction 
of the capillary axis of symmetry. Generally speaking, the mutual orientation of the 
direction of the capillary axis of symmetry and of the pressure gradient can be arbi-
trary. For this reason it is necessary to review a problem of the NVL filtration in a 
single capillary system. The results of such a transformation, without the deriva-
tion, is: 

k_ 

Mo 
1- r 

3|/,Vy.p| 
Wjp. (25.4) 

Here, /, is the basis vector assigning the direction of the capillary system's axis 

of symmetry (its direction coincides with the direction of the filtration velocity vec-

tor); / , ν^ρ is modulus of the scalar product of the basis vector and pressure gra-

dient; y = 4r0/d is the value of the initial (cutoff) gradient for the capillary sys-

tem; k =^rf4/128//a2is permeability. The Latin subscripts i and j indicate vector 

and tensor components; the summation is assumed with respect to them. Eq. (25.4) 

is not yet the NVL's filtration law as it is valid only if the flow initiation conditions 

are met (for an isotropic case, \Vp\ > γ). In order to evaluate the NVL filtration law 

in the ideal tube formed by a single capillary system, it is necessary to formulate the 
condition for the flow initiation. For such formulation, one can be use the inequal-
ity that follows from the condition of negative work of the friction forces during the 
liquid flow in a porous medium: 

νν,.ν,.ρ < 0. (25.5) 
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After substituting filtration Eq. (25.4) into inequality (25.5), the condition of 
the flow initiation in the direction /, is: 

f \ 

v 
3 \ΨΑ 

lilJViPWjP>0. 

It follows from there that: 

|/.V.p|>4/3?\ (25.6) 

Thus, in the model of ideal tube formed by a single capillary system, the NVL 
flow initiates on condition that the vector gradient projection length onto the capil-
lary axes of the symmetry direction is greater than the cutoff gradient, which is 
4y/3. After the condition of the flow initiation is determined, the filtration law of 
the NVL in the ideal tube is: 

( 

WM 
VjV,P, at | / / v > | > - r (25.7) 

= 0 at |/,.V,.p|<-^. 

Similar transformations can be performed on Buckingham's Eq. (25.1) (i. e., with-
out discarding the nonlinear term). Then the filtration law can be obtained as 
follows: 

Ν Λ 

3/.V,p 3 
Y 

WM 
IJjVjP.at %V,^>-r- (25.8) 

Note, that the flow initiation condition in Eq. (25.8) includes the value of γ, 
whereas the filtration law Eq. (25.7) includes the value of the cutoff gradient with 
the numerical factor. This is due to linearization of the exact solution when switch-
ing to the NVL law used in the filtration theory. The numerical factor, by analogy 
with the Kozeny-Karman theory, can be considered as the shape factor. The filtra-
tion laws [Eqs. (25.7) and (25.8)] can be expanded for the case of isotropic porous 
media. In the case of isotropic porous media, the linear and nonlinear NVL filtration 
laws assume, respectively, the following formats: 

M 
1 * 

3 M 
V,p,at \ViP\>-y (25.9) 

w, = 0 at \ViP\<-/, 
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χ4λ 

ι-ίΛ4 
3 WM V 

w = 0 

V,/>,at \ViP\>r (25.10) 

at |V,./J|< y , 

where V jp\ is modulus of the pressure gradient. 

The filtration laws [Eqs. (25.7)-(25.10)] are written in the subscript format. In 
the vector format, the Eq. (9.15) filtration law takes the format similar to 
Eq. (18.26), and the nonlinear filtration law Eq. (25.10) is: 

k 
w = 1- Y 

v 

1 

3 grad p\ 3 

Ν Λ 

grad p\ 
grad/? at gradp > γ, 

w = 0 at |grad p | < γ . 

The NVL filtration mathematical model includes the continuity equation and 
the filtration law. The viscoplastic liquid is assumed incompressible; so, the equa-
tion system in the mathematical model is: 

ai v w = 0 

4 γ 
1-

3 grad p\ 

vv = 0 

grad/? at |gradp|> — γ. 

at | g r a d p | < - x 

(25.11) 

The NVL filtration law can also be expressed differently. As the pressure gra-
dient vector can be formatted as follows: 

gradp = |gradp|n, 

where n is a basis vector assigning the direction of the pressure gradient vector. 
Then, multiplying the expression in the right part of this equation by the gradient gives: 

k A k 
H> = grad oH j« . 

μ 3μ 
So, if the first equation (assigning the NVL filtration law) is substituted into the 
continuity equation, it results in: 

Ap + - f/n = 0 

k A k i 4 
vv = grad/? yfi at gradp >— v. 

μ 3μ ' 3 

(25.12) 

w = 0 at | g rad /? |< -7 
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For parallel-rectilinear filtration in the Cartesian coordinate system, n = const 
and Vn = 0. So, the mathematical model of NVL filtration is different from the 
Newtonian liquid filtration mathematical model [Eq. (5.1)] only in the filtration law. 
But for unidimensional flows in the generalized curvilinear coordinate systems (the 
cylindrical and spherical), n * const and V« * 0 . Therefore, in a general case, the 
mathematical model of NVL filtration is different from the Newtonian liquid filtra-
tion model not only in the filtration law. 

2. Rectilinear-parallel filtration flow for the viscoplastic liquid 

The solution of the flow-to-gallery problem is important for the processing of 
laboratory core study results, where the rectilinear-parallel flow is realized. 

Suppose a reservoir comprising of a rectilinear block of width B and thick-
ness h. The reservoir is bounded on the top and base by impermeable planes, on 
the left by the charge contour, and on the right, by the gallery. The coordinate system 
(as indicated in Fig. 25.1) is selected, i. e., the origin is placed at the charge contour 
plane. Ox axis is directed parallel to the filtration velocity vector. 

/ 

4 

~fy 

Fig. 25.1. Rectilinear-parallel filtration flow of viscoplastic liquid (VPL). 

It is possible to assume that the sought-for functions (pressure p and filtration 
velocity vv) are dependent only on the x coordinate, and equation of the system 
Eq. (25.12) becomes: 

d2p k 
—f- = 0, wx = — 

dp 

dx dx~ μ 

The first Eq. (25.13) is easily integrable: 

dp 

Aky 
- , w = w = 0 . 

3// 

dx 
= C,, therefore, dp = C\dx, and further p = C2, 

(25.13) 

i. e., the same result as for a Newtonian liquid (see Chapter XX). 
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To find the integration constants C\ and C2, we need the boundary conditions 
(pressure values at some points along the flow line). Let's assume that pressure 
values are known at the charge contour and at the gallery: 

p = p^ at x = 0 and p = />gai at x = L. 

Let's now insert these values into the expression for pressure: 

p\, = C2 and ριΛ = C\L+ C2, 

and from there: 

c i =-^a n dc2 = ft, 

so the pressure distribution equation is: 

p(x) = Pk-
Pk'L

P^x. (25.14) 

Therefore, pressure distribution in the reservoir at NVL filtration is distributed 
under the same law as for filtration of a Newtonian liquid [see Chapter XX, 
Eq. (20.4)]. The difference with the Newtonian liquid is that the above pressure dis-
tribution in the reservoir is valid not for all pressure gradients, but only when the 
following condition is realized: 

\gTadp\>-y. 

So, using Eq. (25.14), it is possible to find the pressure gradient modulus: 

dp 
grad p\ = 

dx 
Pk Pgal (25.15) 

and by adding the flow initiation condition to equation that gives pressure distribu-
tion during NVL filtration: 

p W = A - ^ a t ^ > ^ · (25.16) 

This is the correct format of the pressure distribution equation at NVL filtra-
tion. This equation, however, can be formulated differently when NVL's Theologi-
cal properties are included into it. Before presenting this equation, let's find the so-
lution of filtration velocity and flow-rate problem. 

Let's substitute the expression for pressure gradient [Eq. (25.15)] into 
Eq. (25.13): 

LhlI*.-*L. (25.17) 
μ L 3μ 
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Moreover, the obtained result can be used to determine the flow-rate. For this 
purpose, the filtration velocity should be multiplied by the gallery area S = Bh. The 
result is: 

i P i Z ^ L 5 _ 4 ^ 5 

* μ L 3μ 

or 

L 3r S. (25.18) 

This is equation for the flow-rate determination at viscoplastic liquid filtration 
to the gallery. As it can be seen, if it is assumed γ = 0, then it results in the expres-
sion for the Newtonian liquid flow-rate Eq. (20.5). 

From Eq. (25.18), the pressure gradient can be derived: 

PY-PVJ=QM , 4 

L kS 3 

and substituting into the equation for pressure distribution in the reservoir 
Eq. (25.16), results in: 

Qß 
Px ~PY —X-W. Fx F k kS 

(25.19) 

The same equation can be derived in a shorter way. Let's use the second equa-
tion of Eq. (25.13): 

dp 

dx 

4ky 

' 3 /1 ' 

Let's open the modulus sign, and as \dpldx < 0|: 

_ k dp Aky 

" μ dx 3μ 

After solving this equality relative to the differential and separating the va-
riables: 

ß j 4 , 
- dp = — wtdx + — jdx. 

k x 3 ^ 

As wx = Ql Bh, it is possible to exclude velocity out of this equation: 

-dp=——dx + — idx 
k Bh 3 

(25.20) 
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and integrate it from the charge contour to arbitrary x value (0 < x < L): 

The result is Eq. (25.19): 

/>(*) = Λ - - Γ Τ * - ? * · 
kS 

It is possible to integrate Eq. (25.20) from the gallery to arbitrary x value: 
P L, 

Pg.1 

\dP=^%4r 
k Bh 3 

and obtain: 

"A^v-*- (25.21) 

Similar calculations can be performed also for the nonlinear filtration law 
Eq. (25.10). However, due to nonlinearity of differential equation associating veloc-
ity and pressure gradient, a simple analytical solution is difficult to arrive at. Indeed, 
after projecting the filtration equation onto the coordinate axis: 

k 
w = — 

M 

dp 4 1 
-£- — γ+-
dx 3 3 

After multiplying this equation by the gallery cross-sectional area and trans-
forming gives this format: 

a_kBh 

M 

dp 4 1 
— — γ+-
dx 3 3 

(25.22) 

The indicator curves can be plotted for 
Eqs. (25.18) and (25.22). The plotted lines are 
displayed in Fig. 25.2. 

A particular feature of the indicator curves at 
filtration of the viscoplastic liquid is that all lines 
do not run through the origin, but cut some seg-
ment on the "pressure drawdown" axis. The seg-
ment cut by curves 2 and 3 corresponds to the ini-
tial gradient value, and the segment cut by curve 1 
corresponds to the value4y/3. 

|grad/>| 

Fig. 25.2. Indicator curves using 
Eqs. (25.18)— l,Eq. (25.22) —2 
and Eq. (25.18), without the num-
eric parameter 4/3 at γ — 3. 
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Thus, the filtration law Eq. (25.9) approximates well the nonlinear filtration 
law [Eq. (25.10)] at pressure gradients greater that ΑγΙ3. If the numerical factor 4/3 
at the initial gradient y is not included into the filtration law Eq. (25.9), the indica-
tor curve will be the straight line 3. This figure shows that the approximation with-
out this numerical factor results in greater errors than the filtration law Eq. (25.9). 

Moreover, the real porous medium comprises numerous micro-capillaries of 
diverse diameters. So, as pressure declines, the capillaries are being "plugged" 
starting with the smallest ones and then the largest. Thus, the indicator curves in 
Fig. 25.2 correspond to some averaged parameters, and the "increase" of the cutoff 
gradient value in the filtration law Eq. (25.9) enables the consideration of the smal-
lest "plugged" capillaries. 

The initial (cutoff) gradient value in the porous medium can be determined us-
ing Eq. (25.5) obtained for the NVL flow in a capillary, i. e., the value based on the 
ideal tube model, but accounting for linearization of Buckingham's equation: 

, 4 16r 

where j^is "new" cutoff gradient taking the 4/3 factor into account, which by 
analogy with the Kozeny-Karman theory can be dubbed the shape factor. 

3. Rectilinear-parallel filtration flow of viscoplastic liquid 
in a nonuniformly-stratified reservoir 

In this section, the rectilinear-parallel filtration in a nonuniformly laminated re-
servoir will be reviewed. Usually, permeability and porosity differ from one bed to 
the next. Therefore, as follows from Eq. (25.23), the cutoff gradient will also differ. 
The same equation indicates that the higher permeability (k is proportional to d), 
the lower the cutoff gradient, and vice versa. 

Let's assume that the filtration law with the cutoff gradient is valid for each in-
terbed/lamina: 

M 
1-A-

v M 
V p , at = |V .pi > γα 

1 1 (25.24) 

wi = 0 a t = | V ' j P | - Ya' 

where or is the lamina/interbed number. 
Let's review the bed composed of three interbeds of different permeability 

k\ > fa> &3, then γ\ < y2< γ^. It is assumed that the pressures at the charge contour 
and at the gallery in all interbeds are the same. 

In this case, as pressure grows, the interbeds will sequentially begin to transmit 
liquid. Indeed, if |grad| < γ\, there is no motion in the entire reservoir. At γ\ < |grad| < γ"2 
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filtration will occur only within the first interbed, and so on. In order to introduce 
parameters average for the reservoir, it is possible to use Eqs. (25.24) and "spread" 
the result over the entire reservoir: 

H; H 
1 -

^ 

dp 

dx 
(23.25) 

where ha is the interbed's thickness. Eq. (25.25) describes filtration through a 
piecewise-linear broken line (line 1 in 
Fig 25.3). 

Along with the reviewed NVL filtration 
laws, the exponential filtration law is also 
used: 

w = -C|grad p\" grad p, (25.26) 

where C is the experimental constant, n > 0. 
The exponential law Eq. (25.26) corres-

ponds with the pseudoplastic fluid behavior 
and adequately describes the polymer solution 
flow in a porous medium. It is used in design-
ing polymer flooding of reservoirs as an EOR 
technique. The indicator curve corresponding 

to Eq. (25.26) filtration law is displayed in Fig. 25.3 (line 2). 

|gradp| 
Fig. 25.3. Filtration velocity vs. 
pressure gradient modulus. 1 — 
piecewise-linear (in a laminated 
reservoir); 2 —nonlinear, under the 
exponential filtration law. 

4. Radial-plane filtration of viscoplastic liquid 

In this section, the pressure distribution and filtration velocity in the reservoir 
under the parallel-plane symmetry will be reviewed. Suppose there is a round central 
well of radius rc with constant bottomhole pressure pc located in a circular reservoir 
of thickness h and charge contour radius /?*. A constant pressure p^ is maintained 
in the reservoir (see Fig. 20.4). 

To solve the problem of a viscoplastic liquid flow to the central well in a cir-
cular reservoir, let's rearrange the flow equation in the viscoplastic liquid filtration 
law Eq. (25.11) by solving it relative to the pressure gradient. For this purpose, 
let's represent the pressure gradient as the product of a unitary vector n and the 
pressure gradient modulus |grad p\: 

grad p = |grad p\n 

and open the parentheses in the right part of the first filtration equation: 

k A k k k 
w = grad p + m = grad p H— γ'ή. 

μ 3μ μ μ 
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This equation is easy to solve relative the pressure gradient: 

grad/> = —^-w+γ'η. (25.27) 
k 

Therefore, the NVL filtration law solved relative to the pressure gradient can 
be formatted as follows: 

gradp = -—w+γ'η at |gradp |>/ and |H>|>0 

|grad p\ < γ' and |vv| = 0. 

Furthermore, let's return to Eq. (25.27) and, assume that the flow is axisym-
metric and only dpidr and wr = w(r) are different from zero. So, after projecting 
Eq. (25.27) onto a polar coordinate system: 

£ = £ w + y . (25.28) 
dr k 

To find pressure distribution in the reservoir, we will separate the variables in 
Eq. (25.28): 

dp = —wdr+Y*dr 
y k ' 

and, use the ratio: 

w = -Q-, (25.29) 
2mr 

Canceling the velocity from the equation: 

dp = £^-—+fdr. (25.30) 
k 2πη r 

After having integrated this equation from the charge contour /?* to an arbi-
trary r value (rc<r<Rk): 

P(r) = P k - ^ ^ - / ( R k - r ) . (25.31) 
k 2m r 

By assuming r = rc in Eq. (25.31) and solving this equation relative to the 
flow-rate Q, the equation for the well flow-rate under the viscoplastic liquid filtra-
tion will be derived: 

Q = 
2npkh Pk-Pc Y(Rk-rc) 

\nRklrc \nRklrc , 
(25.32) 
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Eqs. (25.30)-(25.32) are valid only if the conditions of the flow initiation are 
met, i. e., when the inequality: 

|grad p\ > γ (25.33) 

is realized. Let's see, then, to what inequality leads the condition of Eq. (25.33) in 
solving this problem. The pressure gradient modulus is equal to: 

dr 
|grad/?| = - f - = ^ + μ<2 1 

Ί.7άάι r 

Therefore, it is possible to rewrite the inequality Eq. (25.33) as: 

MQ 1 
2nkh r 

>0 

or, using Eq. (25.32): 

or, as Rk» rc: 

>r 

——— > γ* , and from there Ap > y*Rk . 
Rk 

The indicator curve under the viscoplastic liquid filtration is shown in 
Fig. 25.4. 

As it can be seen, the line does not run through the origin and cuts some seg-
ment 0Λ on the "pressure drawdown" axis. The size of 
the segment determines the value of the initial gra-
dient. Indeed, the following equality is realized at the 
point A: 

P«~Pc > γ 0 r Pk-Pc „ γ' 
Rk~rc Rk 

0 liRt-rc) ΔΛ 

filtration law. 

In the field, however, the value of the initial gra-
Fig. 25.4. Indicator curve dient is determined differently. 
corresponding to the VPL I t i s a s s u m e d that after the well is shut-in (Q = 0), 

pressure distribution is still determined from Eq. (25.31). 

(25.34) 

Then after the well shut-in, its bottomhole pressure will be: 

Pc = Pk ~ 7(Rk ~ rc), 
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P\ 
P" 

where pc. pressure in the well after the shut-in (Fig. 25.5). Because the oil by de-
fault is incompressible, theoretically pressure distribution Eq. (25.34) sets up in-

stantaneously after the well is shut-in. However, as 
opposed to the model oil, the real oil is slightly comp-
ressible; the pressure distribution Eq. (25.34) will be 
reached after a while. Also, due to the non-Newtonian 
oil properties, the "restored" pressure in the well turns 
out lower than charge contour pressure and not equal 
to it as it would be under the Darcy's law filtration 
for a Newtonian liquid (y =0). 

After pc. pressure is measured, some amount of 
the same oil is injected back into the well. As a result, 
the oil begins to flow into the reservoir. After the in-
jection is finished and the flow stops, a new pressure 

I 
I 
I 
I 

"minuiimniinnr 

Fig. 25.5. Definition of cut 
off gradient in a reservoir 

distribution will set up, and the well pressure will be: 

pc~ = Pk + 7(Rk-rc). (25.35) 

Subtraction of Eq. (25.34) from Eq. (25.32), results in: 

7 = 
Pc" ~ Pc' 

2R, 
(25.36) 

The described procedure takes a few hours in the field. Initial pressure gra-
dient measured in the Gryazevaya Sopka in Azerbaijan was: y = 0.007 MPa. 

5. Non-stationary filtration of viscoplastic liquid 

In this section, the non-stationary filtration of elastic NVL within an elastic re-
servoir will be reviewed. The mathematical model of such process includes: 

30p 
dt 

-AP = 0, 

pw = -p 1-
IgradpL 

grad p, 

P = PoUßu,(P-Po)l 0 = 0o + ßc(P-Po)> 
k r k = const, u = const, P = —\pdp. 
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So, repeating the same procedure with a different motion equation results in the 
piezoconductivity equation for a compressible NVL: 

dP A-— = ifdiv 
dt 

r Vp N>r (25.37) 

where κ is piezoconductivity factor. 
Eq. (25.37) is the base on which to construct the nonlinear theory of the elastic 

filtration drive. In solving specific filtration problems, initial and boundary condi-
tions are formed for Eq. (25.37), similar to those reviewed in the elastic drive 
theory. At the same time, what is important is that under filtration at a cutoff gra-
dient, a variable area forms in the reservoir. At the boundary of this area (until such 
time when it reaches the reservoir boundary), the pressure gradient modulus must 
be equal to the cutoff gradient, and pressure must be equal to the initial formation 
pressure. 

Let's review some unidimensional problems of this kind. 
Rectilinear-parallel nitration of an elastic NVL. Let's review non-stationary 

filtration of an elastic NVL within the uniform semi-indefinite reservoir. Suppose 
at the initial moment in time t = 0 a production gallery begins operating at the re-
servoir boundary x - 0. Constant pressure pga\ is maintained at the gallery. Two 
areas form in the reservoir: the filtration zone and the no-flow zone. Their boun-
dary is moving with time under the / = /(/) rule, and 1(0) = 0. 

Suppose pressure in the no-flow zone is equal to the initial formation pressure, 
and the cutoff gradient is constant. 

Piezoconductivity equation projected onto the coordinate axis x is: 

'dp dp a 
— = K 

dt dx dx -r \Vp\>r o<x<i (25.38) 

Outside the filtration zone, pressure is equal to the initial formation pressure: 

p(x,t) = p0 at x>l(t) 

The following conditions are realized at the zone boundary x = /(f): 

P{U) = P0 (25.39) 

fa ■*L = r (25.40) 

It is required to find in the 0 < x < I area the solution of Eq. (25.38) equation, 
to determine the flow-rate Q = Q(t) and the l = l{t) law under the conditions of 

Eqs. (25.39) and (25.40) at the zone boundary; and with the initial and boundary 
conditions: 

p(x,0) = p0 and p(0,t)= p gal (25.41) 
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dp^ =γ^(ή) + 2α2φ = 7. 

Let's solve this problem approximately using the integral relationships tech-
nique (Chapter XXIV, Sec. 3). Restricting to only one integral, relationship gives 
only the solution in the following format: 

p(x,t) = yx + a0(t) + a]{t)j + a2{t){j) (25.42) 

wherea0,ax,a2 are unknown variables determined from the boundary conditions 
of Eqs. (25.39), (25.40) and the second condition of Eq. (25.41). 

From the condition of Eq. (25.40): 

dx 

It follows from there that: 

fl1(i) = -2a2(f) 

From the second condition of Eq. (25.41): 

P(0,0= /»pi = a0(f) = const, (25.43) 

and it follows from the condition of Eq. (25.39) that: 
p0(l,t) = rl + a0(t) + ai(t) + a1(t) 

The obtained values of the factors are constant [see Eq. (25.43)] and by sub-
tracting from Eq. (25.42) results in the following equation for pressure distribution 
in the reservoir: 

p{x,t)=p0-r(l-*)-{*Po-fl)[l-jj (25·44) 

where Ap0 = p0-pgaS = const. 

Equation for the gallery flow-rate is derived from filtration equation by mul-
tiplying it by the gallery area Bh, where B and h are, respectively, gallery's width 
and thickness: 

Q(0,t) = -(^--7]Bh (25.45) 

After substituting Eq. (25.44) into Eq. (25.45): 

β(Ο,ί) = - [ ^ - r ] ^ (25.46) 

To determine /(f), the integral relationship characterizing the condition of the 

material balance is used: 
'(') -v f - \ ~ t - - \ V<'> 

\^dx = J r»(*-') f 
dx 
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From there, and considering Eq. (25.44): 

„ 3» , 2fl2 

6κ—= 1 + — - — -
dl Λρ0-γΙ 

Integrating this equation under / ( 0 ) = 0 condition, gives a subtended alge-

braic equation for the zone boundary l(t) motion law: 

\ 2 

3*7 = 
APo 

^ Ϋ 
In- ΔΡο (*PoJ 

ΔΡο-fl 
+ - (25.47) 

Analysis of Eq. (25.47) shows that / ( / ) has the asymptote: 

i=r=*p0/r 

Cutoff (i —» oo) pressure distribution and flow-rate, respectively, will be: 

p = p(x)=p^ + r ato<x<r 

p = p{x) = p0 atx>r (25.48) 

β(οο) = 0 

For better understanding of derivations and formulas, it is important to analyze 
Eqs. (25.44)-(25.48). This would help better understanding the major features of 
non-stationary filtration with the cutoff gradient. 

Problem of the well startup at a constant flow-rate under filtration of an 
elastic viscoplastic fluid in an elastic reservoir. In this case Eq. (25.37) is: 

dp i a 
— = JT 

dt rdr 'Ίτ' \^ρ\>γ 0<r<l 

At the initial point in time, the reservoir is undisturbed: 

p = pk at t = 0 

The condition at the well is derived from the filtration equation: 

(25.49) 

(25.50) 

and from there: 

dp_ Qß 
dr Inkhr 

+ γ at r = rc (25.51) 
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Let's search for an approximate solution of the assigned problem using the 
integral relationships technique. Suppose, pressure distribution in the disturbed zone 
of radius R(t) is: 

p(r,t) = ajn- - + a, +a , at r<R(t) (25.52) 
R(t) ' 2 t f ( 0 

p(r,t) = pk at r>R(t), 

where aQ,ava2 are unknown factors to be determined, R(t) is the disturbed zone 

(where filtration is occurring) radius; there is no filtration outside of this zone. With 

time, the disturbed zone boundary advances under the rule R = R(t), and at 

R(0) = rc. 

The following conditions are realized at the disturbed zone boundary: 

p(R,t) = pk, dp/dr = y at r = R(t) (25.53) 

Factors α0,α^,α2 can be found from the conditions of Eqs. (25.51) and (25.53). 

Then, Eq. (25.52) is transformed to the following format: 

r \ 

P{rj) = pk + <2μ 
iKkh 

in 
* ( ' ) * ( ' ) 

- + 1 -r[R{t)-r~\ (25.54) 

The disturbed zone radius is found from the material balance Eq. (23.7), which 
in the case Q = const can be written as: 

Q = ß'KR1{t)h{pk-p), (25.55) 

where p is weighted average pressure within the reservoir disturbed zone. It is de-

termined from Eq. (20.11). After substituting into Eq. (25.54) and integrating it, the 

result is: 

P = Pk+-^—tR{t) 
" \2nkh 3 v ; 

(25.56) 

From Eq. (25.55) and considering Eq. (25.56), the disturbed zone boundary ad-
vance rule is found: 

*2(0 = 12/tT (25.57) 

Finding from Eq. (25.27) the R{t) values at different times and substituting in-

to Eq. (25.54), p{r,t) values can be found. 
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Of a special interest are bottomhole pressure changes (at r = rc): 

r \ 

p{rc't) = Pk + 
QM In 

R(t) R(t) 
+ 1 

2nkh 

or, a almost immediately after the well startup R(t)» rc: 

-r[R(t)-rc] 

p{r,t)~pk + QM 
iKkh 

In 
R(t) 

- + 1 -yR{t) (25.58) 

In order to analyze bottomhole pressure change under non-stationary filtration 
with the cutoff gradient, Eq. (25.57) will be studied. 

For the values R{t)«QßlAKkhy, the second component in parentheses is 

less than 1 and can be disregarded. Then: 
j 2 / R2{t) = \2Kt (25.59) 

Which is typical of the elastic drive (Chapter XXIII). This relationship is rea-
lized for the small time values: 

f « -
12/r 

QM 
Ankhy 

At that, yR(t)« Qß/AKkh, and the major role in the Eq. (25.58) belongs to 

the logarithmic term: 

, v Qß , 12xt 
LKkh rc 

At long times, when the one in parentheses of Eq. (25.58) can be discarded 
compared with the other components, i. e., / ? ( / ) » Qß/AKkhy, the disturbed zone 
boundary advance rule looks as follows: 

*(<) = zkhy 

1/3 

and bottomhole pressure vs. time correlation is: 

^ ^ - Ä l n ^ - ^ r l + ^ (25·60> 
With some parameter values, the exponential term acquires the main signific-

ance; so, the bottomhole pressure decline rule changes from a logarithmic to the ex-
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ponential one. Therefore, at long times the shape of the bottomhole pressure change 
curves, under filtration with the cutoff gradient, significantly changes compared with 
the elastic liquid filtration. In principle, it enables to identify the manifestation of the 
cutoff pressure gradient. 

7. Formation of bypass zones in the process of 
oil-by-water displacement 

An important effect of filtration with the cutoff pressure gradient is the possi-
bility of formation in the reservoir of bypass zones, where oil or gas remain immo-
bile. These zones form in the reservoir areas where pressure gradient is below the 
cutoff value. Occurrence of the bypass zones results in a decrease of the oil recovery. 
Such bypass zone located between two production wells operating at equal flow-rates 
is shaded (3) in Fig. 25.6a. 

Let's review the oil-by-water displacement from a reservoir under the 5-spot wa-
terflooding system (Fig. 25.6b). Well 1 is the injection well, wells 2 are oil producers. 

a) b) 

Fig. 25.6. Schematics of formation of bypass zone. 

Analysis of the two-dimensional flow demonstrates, that the flow velocity in 
zones 3 is small compared to velocities in the areas next to the straight lines con-
necting the injector with the producers. The result is that these zones are bypassed. 
The ratio of the shaded areas in Fig. 25.6b to the entire area of the 5-spot cell can 
be viewed as the water-flooding sweep factor. It was shown that the size of the by-
pass zone and the reservoir sweep factor are functions of the parameter: 

Ä = Qß/kyL, 

where Q is the production well flow-rate and L is the characteristic linear dimen-

sion (such as half-distance between two wells). 
It turns out that the reservoir sweep factor increases as the λ parameter in-

creases. 
At the same time, in order to derive a sweep factor change due to the cutoff 

pressure gradient as applied to a real oil field, it is necessary to eliminate the 
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effect from the other wells, reservoir non-uniformity, physicochemical pheno-
mena, etc. 

8. Specifics of viscoplastic liquid filtration 
in anisotropic porous media 

For a description of NVL filtration flow in anisotropic porous media, the re-
sults of Sec. 3 in this chapter will be used. Equations derived for the ideal tube 
formed by one system of capillaries for the ideal tube formed by three mutually 
perpendicular systems of cylindrical capillaries will be expanded. Each capillary 
system will have its own diameter da and laying step aa, a -1,2,3. 

It is usually assumed, in generating definitive equations for idealized models, 
that it is acceptable to disregard the flows interaction in the channels. In such a case 
it is possible to derive formulas for the vector components for the true filtration ve-
locity for each channel system. To do so, the true filtration velocity in the case of 
NVL Bukingham's equation Eq. (25.2) can be used. The last component in brack-
ets can be ignored. In this case, such a transformation should be made for each ca-
pillary system. So, as a result of the transformation of the approximate equation: 

W = -
\2%μϋαβαγ 

I-4-
3 
Γϋ£ϊ 
datsp 

&- , (25.61) 
L 

where w" is filtration velocity for the flow along the axis a of the Cartesian coor-
dinate system, αβ and ay are the capillary laying steps along the corresponding 
axes of the coordinate system. Subscripts a, β, γ here and thereafter form a cyclic-
al permutation of numbers 1, 2, 3. As indicated earlier, Eq. (25.61) determines fil-
tration velocity in the capillary system a for a case when the pressure gradient di-
rection coincides with the capillary axis of symmetry. As a general case, we need to 
solve the problem of the NVL filtration within one capillary system, with the mu-
tual relationship between the capillary axis of symmetry and the pressure gradient 
being arbitrary. In such a case, Eq. (25.61) takes the format of Eq. (25.4). 

Let's expand the parentheses in Eq. (25.4) for each capillary system: 

w« = - * S L / » / ? V p + ̂ - / , g / ° , iP , (25.62) 
Mo Mo \lj vyP| 

Here and thereafter the Greek subscripts usually indicate the channel system 
number, and the Latin ones, the vector and tensor components. The summation is 
assumed with respect to the repetitive Latin subscripts. The summation with re-
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spect to the repetitive Greek subscripts, if necessary, is indicated the usual way, 
using the summation symbol. 

Using the assumption of the independent flows in the capillaries, Eqs. (25.62) 
can be summed up over all the capillary systems and transit to a 3D NVL filtration 
equation: 

^ - [ V ^ ^ ^ y ^ l V ^ Z W ^ Ä (25-63) 
Mo Mo α·=ι |'„ v„P\ 

Let's analyze the obtained Eq. (25.63). The grid formed by the three mutually 
perpendicular capillary systems, depending on geometrical parameters da,aa, can 

have either isotropic or anisotropic filtration properties. At άχ=ά2-di and 

a, = a2 = a, we have the grid with isotropic filtration properties, and on almost all 

other occasions the grid will have anisotropic properties. For the isotropic proper-
ties, Eq. (25.63) will be: 

w=-±SVp + JLrYi«i«^jPt (25.64) 
Mo Mo <*=I \lnWnP\ 

where Sij is Kroneker's delta. 

Let's compare the derived Eq. (25.64) with equation for the NVL filtration in 
the isotropic porous medium Eq. (25.9). Usually the rule of NVL filtration in the 
isotropic porous medium is written as: 

Mo 
1- γ 

m. V,.p, (25.65) 

where |V/?| is modulus of filtration pressure gradient. The ratio V(. p/JV/?| is equal 

to a unitary vector directed along the applied action. So, Eq. (25.65) can be 
rearranged differently as: 

w, = - — W jP + — $,/»/ - (25·66> 
Mo Mo 

where w, is the unitary vector which assigns the direction of the action: V, p = |Vp\ nt. 

Despite their mathematical equivalency, Eqs. (25.65) and (25.66) allow for 
different physical interpretations. Eq. (25.65) is usually considered to be a nonli-
near filtration equation, where the expression Ä:(l-y/|V/7|) sets up nonlinear 
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permeability. Eq. (25.66) can be considered to be the sum containing two tensors: the 

permeability tensor (k(j = kSij) and the cutoff (initial) gradient tensor (ttj =kySij). 

Eq. (25.66) is more general as it allows possible symmetry independence of 

the properties given by the tensors ktj and i,y. As it follows for the model permeabi-

lity equation (k" = ndi,
aj\2^,aßay), a situation is possible when at ά^Φά-,Φ d3 the 

medium manifests isotropic properties during filtration of a Newtonian fluid, but in 

the filtration equation of NVL, with the isotropic tensor ktj, we will have the aniso-

tropic tensor itf. 

Indeed, permeability tensor ktj is represented as a composition of two parame-

ters (the shape factor dl/32 and clearance nd2
aJAaßaY), and the cutoff gradients 

tensor is represented as a combination of three parameters (the shape factor, clear-
ance and 4r0/da factor, which is the cutoff pressure gradient for the arth capillary). 
With the isotropic permeability tensor, anisotropic tensor of the cutoff gradients 
can be found. So, it is important to assume that for NVL filtration within porous 
media, filtration equation has the following format: 

w,=-—WjP +—W (25.67) 
Mo Mo 

Let's now come back to Eq. (25.63). Remembering, that V,p = |V/?|n,: 

w,=-—3yV> + — dbfsgn ("A")· <25·68) 
Mo Mo «=i 

where sgn(«;/"J is the signum function, which is equal to one if n 1" > 0, and -1 if 

„;/»<o. 
Let's further review Eqs. (25.67) and (25.68). Comparing them shows that the 

cutoff gradient value in Eq. (25.67) is assigned any direction using the second 
rank tensor. At the same time, in Eq. (25.68) the cutoff gradient is determined 
as the sum of the cutoff gradients along the major directions of the permeability 
tensor. In either case, the cutoff gradient value does not depend on the filtration 
pressure gradient. Thus, the cutoff gradient in Eq. (25.67) can be variable and is 
determined and assigned continuously for any direction. In Eq. (25.68), the cutoff 
gradient is represented by a constant vector in each quadrant of the Cartesian coordin-
ate system. For a continuum model, the Eq. (25.67) appears to be more natural. 
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However, Eq. (25.67), as in the case of a single capillary system, does not com-
pletely define the NVL filtration rule as they only give filtration equations if the 
conditions of the flow beginning are met (for the isotropic case, \Vp\ >γ). Thus, in 

order to derive the rule of the NVL filtration in anisotropic media, it is necessary to 
formulate the condition for the beginning of the flow and write down all possible 
options of filtration flows, which arise due to the fact that the cutoff gradient values 
in anisotropic media vary depending on the direction. 

A condition for the flow beginning, as in the case of a single capillary system, 
can be the inequality based on the condition of negative friction at the fluid flow 
in a porous medium: 

w,V.p<0. (25.69) 

After substituting filtration Eq. (25.67) into this inequality, the condition for 
the flow beginning in the direction nt is: 

, , t-,n,n 
\Vp\>-^-^-. (25.70) 

kijninj 

It follows from there that for the isotropic case the flow is possible at|V/>| > γ. 

For anisotropic media, however, this representation has low information value. 
By analogy with the definition of the directional permeability, the factor of "the 
directional movability" is introduced: 

P(\Vp\, n,) = -//„νν,η,./ΙVp\ = ^η,η, - ί , η^ / |Vp | . (25.71) 

In this case the flow beginning condition boils down to the requirement of po-

sitivity of the movability factor: P(|V/?|,n,.) > 0. Therefore, filtration Eq. (25.67) is 

valid if the movability factor on application of action in the direction n. is greater 

than zero. 
For an isotropic medium, the addition of the no-flow condition (w, = 0) to this 

system in the case of a negative movability factor, would be a complete definition of 
the filtration rule. In the anisotropic porous media, however, motion Eq. (25.67) results 
in numerous possible outcomes in the formulation of the NVL filtration rule. 

Indeed, in the anisotropic media, the realization of the flow beginning condi-

tion PflV/»!,/!,.) > 0 is a guarantee of 3D NVL motion under Eq. (25.67). However, 

the second rank tensors in the main directions assume extremal values of the directional 
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properties. For this reason, the fact that P(\Vp\,nj)<0 does not mean that NVL 

filtration is impossible. 
Indeed, let's assume with certainty that ft >γ2 >γ3. Then, when the condition 

Ρ( |νρ | ,η ; ) < 0 is realized, inequality |Vr/7fr.| > γ} can also be realized (see Fig. 25.7). 

And this means that the pressure gradient attached in the direction n, can be suffi-

cient to realize the flow beginning condition for only one system of channels. In 

this case the filtration flow will be unidimensional and will be described by motion 

Eq. (25.60) at a = 3. The two-dimensional flow is possible if P^\Wp\,n.)<0, but 

[k2nl +k3nl}\Vp\\n0\-(k2/2nl +k2y3nl)>0, where |n0| is the length of vector ni 

projection onto the Ox2x} plane. 

Fig. 25.7. Cross-section of the surface of zero directional movability (initial gradients) at 
k} = k2 and d3/d7 =3. 

Thus, the NVL filtration rule in anisotropic media allows for the single-, two-
and three-dimensional formulations. 



CHAPTER XXVI 

LIQUID AND GAS FLOW IN FRACTURED AND 
FRACTURED-POROUS MEDIA 

As the demand for oil and gas increases, petroleum exploration goes deeper, 
enters new areas, encounters more complex geology. Significant number of large 
fields discovered in the Middle East, North America, Europe and other regions are 
associated with carbonate reservoirs which are fractured. 

Certain anomalous behavior was observed in some fields. Intense circulation 
loss occurred in the wells against low-permeability section; high flow-rates were 
obtained in wells with the stationary regime from the low-permeability intervals. 
These and similar occurrences indicated the presence of systems of communicating 
fractures, which served as avenues for the fluid inflow or circulation loss. 

Field data and laboratory studies of cores and thin-sections showed that the 
fractures have complicated structure, and liquids and gas flow in them has certain 
specifics compared to the porous medium. Fractured rocks have micro- and macro-
fractures, small and large caverns and cavities. At the same time, the rock matrix 
may be totally impermeable or just a regular porous rock. The macro-fracture width 
may be 1 mm, sometimes greater. The width of micro-fractures is usually 1 to 100 μπι. 
The resistance to the fluid flow in the fractured rock is substantial. Based on this, it 
is believed that the macro-fractures are not very long and in most cases connect 
with one another through micro-fractures, and the micro-features create higher resis-
stance to the flow. 

Liquid and gas filtration models created for the clastic granular reservoirs do 
not fully describe filtration specifics in the carbonate reservoirs whose main dis-
tinction was the variable nature of the fracturing. 

Generation of the new filtration models for the fractured rocks involved more 
detailed studies of the geology and physical properties of these rocks. 

This chapter deals with the most common model and concepts associated with 
filtration in fractured rocks. 

1. Specifics of filtration in fractured and fractured-porous media 

The subsurface hydromechanics describes the filtration processes in fractured 
reservoirs using two models, purely fractured (Fig. 26.1a) and fractured-porous 
(Fig. 26.1b). In the former case, the rock between the fractures is impermeable, and 
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the fluid flow occurs only through the fractures. Such rocks include shales, crystal-
line rocks, marls and some limestones and dolomites. 

a) b) 

Fig. 26.1. Schematic representation of a purely-fractured (a) and fractured-porous (b) media. 

Suppose a fluid-saturated fractured rock is considered as a continuous me-
dium. Then a representative volume for which averaged filtration parameters are 
introduced must be much larger than in the case of the filtration parameter determi-
nation for a porous medium. For instance, if the fractured reservoir is represented 
as a system of fractures, then the number of fractures in the representative volume 
should be at least ten. 

Fractured-porous medium is a combination of porous blocks separated by the 
fractures (Fig. 26.1b). The fluid saturates both the porous blocks and fractures. The 
sizes of the fractures significantly exceed characteristic sizes of the pores, so the 
fracture permeability is much greater than that of the porous blocks. At the same 
time, the fractures occupy substantially smaller void volume than the pores. For 
this reason, the fracturing factor 0 i , i. e„ the ratio of the fracture volume to the en-
tire rock volume, is much smaller that the block porosity 02. Fractured porous re-
servoirs are mostly limestones and dolomites, sometimes sandstones and siltstones. 

Let's review a purely fractured rock. The fracture is viewed as a narrow slit 
with two dimensions (breadth and length) much larger than the third one (the dis-
tance between the walls called the fracture width). The fracturing factor 0\, as well 
as permeability kv is determined by the fracture density and width. To determine 

the introduced parameters, a simplified fractured reservoir model is usually consi-
dered. The simplest fractured reservoir is viewed as slits formed by two parallel 
planes with the constant opening width δ and laying period b (Fig. 26.2). Such a 
model is called the fractured medium with ordinary fracture system or just fracture 
system. Fracture density Γ is the number of fractures per unit length of the axis 
perpendicular to the fractures. By definition, the fracture system density is: 

h 
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iz 

y 
Fig. 26.2. Model of the fractured medium with the orderly fracture system. 

For an orderly fracture system, this equation may be written as follows: 

n 1 
Γ ^ 

h n(b + S) b + δ 
(26.1) 

The fracturing factor for an orderly fracture system is 0 ,= Γδ. If there are two 

fracture system in the reservoir, with the equal density and width, then 0 , = 2Γδ, 

etc. 
In a general case, it is believed that for the fractured reservoirs: 

0,=ΘΓδ (26.2) 

where Θ is a dimensionless factor depending on the fracture system geometry in 
the reservoir. 

2. Filtration laws in fractured media 

The liquid or gas flow through an orderly fracture system may be described 
similarly to the way it was done for a single capillary system in a porous medium 
(Chapter XXVIII), but using Boussinesq's (rather than Poiseuille's) equation: 

δ2 Αρ 
\2μ I 

(26.3) 

which associates the average velocity v in one plane of the slit and the pressure 
drawdown Ap at the distance / . For the case of an orderly fracture system and the 
pressure gradient directed parallel to the fracture planes, Eq. (26.3) determines true 
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filtration velocity. To transfer to filtration velocity w, let's calculate the through-
flow through the fracture 

νδα = tf_Ap_ 
\2μ I 

δα 

and "spread" it over the entire area of the elementary cell. The result is the motion 
equation of the filtering liquid: 

νδα δα 1 Ap 
(b + S)a 12 ψ + δ)α μ I 

(26.4) 

This equation coincides in its format with Darcy's law Eq. (18.11) and with 
the motion equation in an ideal tube Eq. (18.37), although with a different represen-
tation of the factor in front of Δρ/μΙ: 

w = 
δα ]_Ap_ 

12 ' (b + S)a μ I 

Darcy's law Eq. (1.11) indicates that the resulting factor: 

£_ δ __ δ' _ 
\2 (δ+b) \2{S+b) 

(26.5) 

(26.6) 

is permeability of the orderly fractures. The format of numerical factors in the right 
part of Eq. (26.6) is preserved (as in the ideal tube model) in order to emphasize the 
physical meaning of its components. The first component <J2/l2 assigns fracture 
system's "conductivity"; its format is determined by the form of the channels 
cross-section (for a cylindrical tubule d2/32). The second component S/(b + S) 

assigns clearance, which plays the role of averaging scale. The sinuosity factor is 
often included in equations for permeability determination. In fractured media, the 
earlier introduced dimensionless factor Θ plays the role of sinuosity. 

Eq. (26.5) can be presented both in the vector and matrix format. With a single 
orderly system of fractures, filtration is only possible in the Oxy plane (Fig. 26.2). 
The medium is impermeable in the direction of the axis z (h = 0). Thus, the matrix 
presentation has the following format: 

/ t o o 
0 A: 0 

0 0 0 

(dp/dx, 
dp/dx2 

dp/dx3 

(26.7) 

where k = δ3/ΐ2(δ+b). 



LIQUID AND GAS FLOW IN FRACTURED AND FRACTURED-POROUS MEDIA 517 

Using the dyadic representation Eq. (18.55), the matrix format Eq. (26.7) can 
be reduced to the vector format: 

(k4]ef+k2e^ef) &- (26.8) 

Eq. (26.5) was derived for a single orderly fracture system. The same train of 
thought will be valid for a 3D model of three mutually perpendicular systems of 
fractures (Fig. 26.3). The only difference would be that the subscripts will be needed 
to the parameters δ and b. The purpose is to indicate to which fracture the written 
equation corresponds and to take into account the fact that the flows in the fractures 
will sum up. Eq. (26.5) in the matrix format Eq. (26.7) can be written for each orderly 
fracture system: 

K 
w\ u, 

h 2 l 
w2

2 

UJ 
'JA 

w] 

kj 

1 

β 

1 

M 

1 

M 

f° 
0 

,o 
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0 

. 0 

i*3 
0 

, 0 

0 

*. 
0 

0 
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0 

0 

k, 

0 

oN 

0 

*., 

°1 
0 

* 2 , 

0N 

0 

°, 

'dp/dx^ 

dp/dx2 

ydp/dx3/ 

'dp/dx^ 

dp/dx2 

Jpßti, 

'3p/V 
dp/dx2 

,3p/d*,, 

where the fracture number is determined by the number of a coordinate axis, to 
which the perpendicular to the fractures is parallel. Then, the total result can be 
by summing up w = ̂  w": 

( \ 

w2 

L W 3 J 

1 

M 

(k2+k} 

0 

I o 

0 

k,+k} 

0 

0 Ϊ 

0 

«i + k2 J 

(dp fa 
dp/dx2 

Jpßx, 
(26.9) 
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Fig. 26.3. 3D model of a fractured rock. 

It follows from Eq. (26.9), that, for instance, by applying the pressure gradient 
parallel to the or* axis the following equation is obtained: 

1 SI ?3 λ 

S„+b„ Sy + brJ 

— · gradp = 
μ 

kn+k„ 

M 
-gradp. (26.10) 

There, the subscripts a, ß, y correspond to the number of the coordinate axis, 
onto which the lengths of the fracture parameters are projected, and form a cyclical 
permutation of the numbers 1, 2 and 3. kß and ky are permeabilities of the orderly 

orderly fracture systems with subscripts ß and y determined, respectively, from 

Eqs. (26.6). 

From Eq. (26.10), we will derive permeability Ka, in the direction of the coor-

dinate axis a, for the 3D fractured medium model: 

*» = Ϊ2 
δΐ 

Sa+b„ 
$ 

Sr+brj 
■■k„+k„ (26.11) 

The technique of obtaining the filtration rule for purely fractured reservoir by 
summing-up of the filtration rules for orderly fracture systems is called the matrix 
technique. 

The other reservoir parameters of a 3D fractured system model are also easy to 
calculate: 

0 = Σ - ^ < Σ = 2Υ 1 
<**Sa+ba S„+b, 

' . Sa = 
S„+b„ Sy+br 

(26.12) 

It follows from Eq. (26.12) that 20 = (s, + s2 + s3), and the equality of clear-

ance and porosity is only realized when δ2 = δ3 = 0, i. e., as was the case for an 
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ideal rock model, only for a single orderly fracture system. One can observe from 
Eqs. (26.9) and (26.11) that fractured reservoirs are as a rule anisotropic, although 
to simplify we will treat them as isotropic. 

3. Permeability vs. pressure in fractured 
and fractured-porous media 

Laboratory experiments and field practice showed that there is a much strong-
er dependence of permeability on pressure in fractured and fractured-porous reser-
voirs than in the porous ones. Let's review several ways to model this correla-
tion k(p). 

First, Eq. (26.6) is rearranged using Eqs. (26.1) and (26.2): 

■ * ^ ΘΓ* (26.13) 
\2(S+b) 12 12 

Then, similar to the case of porosity vs. pressure Eq. (19.40), the correlation of 
openness/width vs. pressure using the elasticity factor β of a fractured reservoir is 
introduced: 

Ρ = ΊΓΓ> ( 2 6 · 1 4 ) 

ddp 
where άδ is the change in the fracture openness/width as pressure changes by dp. 
Now the fracture compressibility rule can be integrated to find correlation between 
the opening/width and pressure δ = δ(ρ). Upon separating the variables: 

and integrating: 

results in: 

or: 

ßdp = d\nö 

ß\dp= \ά\ηδ 

ß{p-Po) = ^ 
°0 

δ=δ/(ρ-'">) (26.15) 
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Assuming the exponent ß(p-p0) is usually small, it is possible to expand it 

into a series and, limiting ourselves only to the linear term of the expansion: 

δ=δ0[ΐ+β(ρ-Ρο)] (26.16) 

At large values of β (ρ- p0), it is necessary to use Eq. (26.15) for the equation 

of state of the elastic liquid. 
Let's now return to Eq. (26.13). By definition, Θ is a dimensionless factor de-

termined by the fracture system geometry in the reservoir. Therefore, it does not 
depend on pressure, and Γ, as Eq. (26.1) shows, at δ/b «1: 

r_n_ n 1 ^ 1 
h n(b + S) b + δ b' 

then permeability as a function of pressure can be presented as follows: 

?ΐ-δΐ\\+β{ρ-ρϋγϊ 

0 12 

k = k0[l + ß(p-p0)]\ (26.17) 

or, as atp= p0: 

, ΘΓδ3 

k= 
12 

then: 

When the β(ρ- ρ0) value is high, similar calculations will result in an expo-

nential correlation between permeability and pressure like Eq. (19.45): 

k = k^"-"^ where α = 3β (26.18) 

In granular reservoirs, at small pressure changes the Eq. (26.17) correlation 
usually can be assumed linear: 

k=k0[l + a{p-p0)] (26.19) 

It is usually believed that under the stationary filtration in a fractured-porous re-
servoir, permeability &, strongly depends on pressure and is defined by one of 

Eqs. (26.17)-(26.19), whereas permeability k2 of the porous blocks does not de-

pend on pressure and is assumed to be constant. 
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In fractured rocks, where the true flow cross-section is relatively small, the 
flow-rates are usually high; a deviation from Darcy's law due to inertia forces is 
highly probable. Usually, the binomial filtration law Eq. (18.22) is used. 

4. Fluid crossflow in fractured-porous media 

These filtration specifics are especially clear in the fractured-porous rocks un-
der non-stationary processes. The fracture system and the pore system are two me-
dia with different linear scales. The average pore size is 10 urn, and the average 
fracture opening/width is 102 μπι (and their length is between a few centimeters 
and hundreds of meters). At the same time, the block/matrix porosity 02 is one 
to two orders of magnitude higher than porosity of fractures 0\. Permeability is 
proportional to the squared characteristic linear size. For this reason fracture per-
meability is much higher than the block/matrix permeability, so most of the fluid is 
contained in pores but filtration occurs in fractures. In the process, the fluid moves 
in pores and fractures with cross-flows from the matrix blocks into fractures. 

Let's review the cross-flow process in more detail. Suppose bottomhole pres-
sure drastically changes (for instance, during the well startup). If the matrix blocks 
are considered impermeable, the regular elastic drive theory can be used. Piezocon-
ductivity x' = /:l/[(/?,1?01 + β)μ\ as determined through the fracture system parame-
ters can turn out to be very large compared with the porous reservoir (because per-
meability k\ of the fractured rock is high, and the fracturing factor 0\ is low). 
It means that the pressure distribution process will occur at a higher velocity in the 
fractures than in the matrix blocks. Indeed, pressure change under the elastic drive 
is found as: 

p(x,t) = p-—(yf2iä-x), 0<*<Λ/2ΧΪ . K ' kBhy ' 

It follows from there that at the x value set, the greater η, the faster pressure 
changes. So, a new pressure distribution sets up in the fractures over a relatively 
short period of time. Pressure within the matrix blocks changes more slowly, so 
pressure difference emerges between the matrix blocks and the fractures. As a re-
sult of the liquids partial cross-flow from the matrix blocks to the fractures, pres-
sure in the entire reservoir will level. The lower the matrix blocks permeability fo, 
the higher their porosity 02 larger their size, and larger liquid and matrix com-
pressibilities β, and β, the longer is the process. 

Thus, the flow parameters in the matrix blocks and fractures are different: the 
matrix blocks pressure p2 is greater that pressure in the fractures p\, the filtration 
velocity in the matrix blocks W2 is much lower that filtration velocity in frac-
tures w\. For this reason, a fractured-porous medium under the non-stationary 
processes can be considered as a combination of two porous media with pores at 
different scale. Medium 1 is an amalgamated medium where the porous matrix 
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blocks play the role of grains and considered to be impermeable. The fractures play 
the role of pore channels. Pressure in this medium is p\, and filtration velocity, w\. 
Medium 2 is porous matrix blocks composed of grains separated by small pores. 
Pressure in this medium is P2, and filtration velocity, w>2. 

Thus, an important feature of the non-stationary processes in fractured-porous 
reservoirs is intensive fluid exchange between both media, i. e., between the porous 
matrix blocks and the fractures. The exchange is caused by the pressure difference 
between the media. 

Clearly, during the motion of a slightly-compressible liquid out of the matrix 
blocks into the fractures per unit time per unit volume, the intensity q of the cross-
flow is in direct proportion to the pressure difference p2 — pt, density p0 (provided 
density changes little in the pressure interval of p] to p2), and in inverse proportion 
to viscosity μ, i. e.: 

q = a0^(p2-Pl), (26.20) 
M 

where a0 is dimensionless factor determined by the matrix block permeability k2, 
characteristic linear size /, and dimensionless values describing the matrix block 
shape; a0 =äk2/l

2. 

Eq. (26.20) should be considered in cases where density strongly depends on 
pressure. For instance, in the ideal gas filtration the cross-flow intensity from the 
matrix blocks into the fractures is: 

q = au-^(p2
1-pf), (26.21) 

M Pa 

where p0 is pressure corresponding to density p0. 

5. Derivation of differential equations for liquids 
and gas flow within the fractured 

and fractured-porous media 

Now, the differential equations are derived for the liquids and gas flow within a 
deformable fractured-porous medium on the assumption that there are two pres-
sures at each point of the medium (p, in the fracture system, p2 in the porous ma-
trix blocks), and two respective filtration velocities w, and w2. The cross-flows 

between the media are determined from Eqs. (26.20) and (26.21). 
Therefore, under the initial assumption the fractured-porous medium is a mul-

ti-velocity continuum where there is the mass transfer from the component 2 into 
the component 1 or the other way around. 
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In this case, the balance of mass equation written for the control volume, as 
opposed to Eq. (19.4), derived earlier in Chapter XIX, has an additional integral 
over the volume with the cross-flow function qyi. This function represents the liq-
uid (or gas) mass flowing per unit time within the control volume from the j * 
component to the i * component and has the following format: 

dt 
fapJV = -jprfds + \qjldV, (26.22) 

where the subscript ί assumes the values 1 and 2 and corresponds to the number of 
the medium (1, fractures; 2, matrix blocks). At that, qn corresponds to the cross-
flow from 1 to 2, q2i, tj the cross-flow from 2 to 1, qu = q22 = 0. 

It is possible to transfer the integral formulation of the mass conservation law 
Eq. (26.22) to a differential formulation. For this purpose let's do the following: 
first, the control volume is set in space, its position does not depend on time, so it is 
possible to move the operator d/dt under the integral; second, the surface integral 
is changed into a volume integral using Gauss-Ostrogradsky theorem: 

jf ^ | p + divp.w, -q\v=0. (26.23) 

The condition of Eq. (26.23) is realized for any "physical" volume, the express-
ion under the integral is equal to zero: 

^ j f i - + divp, ̂ -qß = 0. (26.24) 

Eq. (26.24) is the differential format of the mass conservation law both for 
the fractures (i = 1) and the matrix blocks (i = 2). In the equation for fractures, the 
matrix blocks-to-fractures cross-flow function is q2l = q, and in the equation for the 
matrix blocks, the matrix blocks-to-fractures cross-flow function is qn = -q, i. e., 
q2i = -qn . Density values pi in Eqs. (26.24) correspond to the pressure values pi. 

Clearly, for a purely fractured reservoir q2l = -ql2 = 0, and a single 

Eq. (26.24) remains at i = 1. 
Let's now introduce Leibensohn's functions for the fracture system P\ and for 

the pore matrix blocks Pi according to Eq. (19.20): 

/> = p^rP{Px )dPi +const. (26.25) 
M(Pi) 
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Pi = PlE4p(Pi)dp1 +const. (26.26) 
P\Pi) 

Assuming that the linear Darcy's law is realized, it is possible to write differen-
tial equations as follows: 

or in Cartesian coordinates: 

dP{ 

Pwi*=-^> 
ax 

dP2 

ax 

pw{ = -grad fj 

dPx 

dP2 

pwu=-^ 
dzt 

dP2 
P^n=-~ dzt 

(26.27) 

(26.28) 

Substituting Eqs. (26.27), (26.28) and (26.20) for an elastic liquid or Eq. (26.21) 
for the gas, into the continuity Eqs. (26.24), gives the system of equations for the 
non-stationary filtration of any uniform fluid in a fractured-porous medium. In the 
Cartesian coordinate system: 

^ + ^ + ̂ r = llp(pMp>)}-^lf(Pihf(pl)} (26.29) ax, dx2 dx} at μ 

Ι^ + Τ ^ + 0 = | Κ Λ ) 0 . ( Λ ) ] + ^ ( Λ ) - / ( Λ ) ] . (26-30) axl dx2 dx} at μ 

where f(p) = p0p for an elastic liquid, f(p) = p0p
2/2p0 for the ideal gas. 

In order to solve the above system relative to p , and p2, the initial and boun-
dary conditions must be added. 

6. Stationary unidimensional liquids and gas filtration 
in a fractured and fractured-porous reservoir 

In this section the stationary liquid and gas filtration is considered in a de-
formable purely fractured reservoir where permeability depends on pressure under 
one of the rules of Eqs. (26.17)—(26.19). In this case, Eq. (26.29) is reduced to Lap-
lace's equation for Leibensohn's function as defined by Eq. (11.25): 

dxf dx\ dx\ 
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Let's find the solution for filtration of an uncompressible liquid (p0 = const) 
with constant viscosity (// = const) in a reservoir, whose permeability is 
an exponential function of pressure Eq. (26.18). First, let's calculate Leiben-
sohn's function: 

P = [P^e^^dp + const = P^e" + const s μ αμ 

The solution for a radial-plane filtration flow expressed through Leibensohn's 
function was derived in Chapter XX (see Eq. (20.41)). The P and Qm distribu-
tions have the following format: 

l n ^ r In 
r 

(26.32) 
= 2KkhPk-Pc 

V In R> 

Now the Leibensohn's function is derived at the charge contour and in 
the well: 

P = 0 _ ! + const, P =ZQ-l + const 
αμ αμ 

substituting into Eq. (26.32): 

a(p„-Po) „a(P,-Po) D 

C«{P-PO) -C<*(P«-P«) K e \n 

_2nk1hpfie
a{p'-,"')-ea{p'-!"') 

W Ι η ^ 

(26.33) 

(26.34) 

If it is assumed that p0 = pK, Eqs. (26.34) become: 

ea(p-P.) = 1_i__l_^ in^L 

= 2nk?hp0l-e-a{p*-p<) 

αμ l n Ä 
r, 

(26.35) 
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Equation for the volume flow-rate is: 

2nk°h l - e " g ( p 

αμ In Rk 

(26.36) 

The indicator diagram defined by Eq. (26.36) is a curve convex toward the 
flow-rate axis for the production wells (Fig. 26.4, curve 1), and toward the pressure 
drawdown axis for the injection wells (pc> pK\ curve 2). 

100 200 ß,m3/day 

1 \ ^ ^ 2 

Δρ, MPa 

Fig. 26.4. Indicator curves for a production well (1) and injection well (2) in a deformable 
fractured reservoir. 

Rearranging the first Eq. (26.35), gives the rule for the pressure distribution in 
the reservoir: 

p = p +-\n 
a 

l_e-<<w.> R 
1 ln-^ 

l n ^ 
(26.37) 

Fig. 26.5 represents the pressure distribution curves constructed based on 
Eqs. (26.37) and for undeformable reservoir. Comparison of the curves shows that 
in the deformable fractured reservoir (due to a decrease in the fracture open-
ing/width as pressure decreases) the resistance increases and pressure declines more 
drastically that in an undeformable reservoir. 

The qualitative features of Eqs. (26.36) and (26.37) are also valid in the case 
of the permeability vs. pressure correlation as expressed by Eqs. (26.17)-(26.19). 

The determination of fractured reservoir parameters (permeability ki and fac-
tor ör) is of a great practical importance. 
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Rr
 r 

Fig. 26.5. Pressure distribution curves: 1. undeformable reservoir (k = const), 2. fractured 

reservoir (k = k0e"ll"''')). 

Fig. 26.6. Indicator curve for a fractured reservoir (for parameter determination of fractured 
tured reservoirs). 

Nikolayevsky and Gorlunov (1970) proposed a technique for the processing of 
indicator curves convex toward the flow-rate axis for the production wells in frac-
tured reservoirs. This technique is now reviewed as it applies to the first equation 
of Eq. (26.35). 

Two areas are recognized in the indicator diagram (Fig. 26.4): 

Λρ,. 
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the area between the curve Q(Ap) and K-axis (shaded in Fig. 26.6) and: 

i. e., the quadrangle area for the corresponding point of the indicator curve. 
The ratio of these areas zm=fjf2 is calculated analytically through 

Eq. (26.35). The z depends only on one dimensionless values a\p: 

f 1 1 
Z = — = -r- = where Δο = pa - p . (26.38) 

f2 1-e-0* aAp ^ ° F 

Various values of αΔρ are assigned, and the z values calculated from 
Eq. (26.38) and tabulated. Besides, the z = / , / / 2 ratios are determined for different 
points of the indicator curve from the actual curve (the area is calculated by hand 
for instance, with the trapezoid formula). Then from the table aAp is determined 
for the found z value. As the actual pressure differences Api are known, it is possible 
to determine a. The a values are found for several Api values, and the average is 
calculated. Knowing a, it is possible to calculate from flow-rate Eq. (26.36) the 
hydroconductivity factor k°t h/μ, and then permeability k° (if the reservoir thickness 
h and viscosity μ are known). 

Field practice showed that a is within the following range: a=(0.1-20) 10"" Pa"1. 

The indicator curve curvature with the increase of pressure drawdown can be 
caused not only by the permeability dependence on pressure, but also by some other 
factors (deviation from Darcy's law, the presence in the reservoir of the initial pres-
sure gradient, etc.) So, possible effect of the other factors must be taken into ac-
count in the indicator curve interpretation. 

The well flow-rate from a fractured-porous reservoir is a sum total of the liq-
uid's rate from fractures and that from the porous matrix blocks. For instance, if 
Eq. (26.18) is observed, the total flow-rate of a production well is: 

Q_ 2nk2h{pK-Pc) , 2nk?h\-e-a(r<-^ (2(. 3 9 ) 

where it is assumed that k2 = const. Usually, porous matrix block permeability k-i 

is much lower than fracture permeability k°, and the major contribution is from the 

flow in fractures. Thus, discarding the first component in Eq. (26.39) does not result 
result in a significant flow-rate determination error. 
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Now, let's find the solution for filtration of the compressible fluid (ideal gas) 

with constant viscosity ( μ = const) in the reservoir whose permeability is a linear 

function of pressure Eq. (26.19). The Leibensohn's function can be presented as 

(assuming p0 = pK): 

p = [ £ ί £ 4 , ° ( ρ ) φ +const = Γ 
i μ J 

pmp%[i-<*{p.-p)~\ 
PxmM 

φ +const: 

:£ss^! - [ ( l -ap K ) \pdp + a jp2dp]- (26.40) 

+ const: 
p«X 
PxmM 

n n 

0-«A)y+"y + const 

Gas mass flow-rate at radial-plane filtration in a circular reservoir can be de-

rived by the substitution of Eq. (26.40) into Dupois equation at p = pK and p = pc 

Eq. (20.41): 

Q = 
2xk?hp* 

0-«/\)y + * y (l-apc)^- + a^-
K c' 2 3 

MPu l n ^ 
(26.41) 

The normalized volume flow-rate can be used by differently representing the 
expression in the numerator of the second component: 

*k?h{pl-pt) 
MP»m lnÄ„/ r c v 

fy « 2 p] Λ 

1 px +—a——— 
3 3 pK + P 

(26.42) 

Here, the component in front of the parentheses is the gas flow-rate from the 
undeformable reservoir. Thus, it is possible to estimate the parameter OC effect 
on the gas flow in the circular reservoir. 

If the gas flow-rate from the undeformable reservoir is denoted as Q (ör = 0 ) , 
then from equation: 

Q' 

' a 2 pc 

1 p„ +—a—^— 
3 3 pK + Pc 

(26.43) 

it is possible to determine the deviation of the gas flow-rate from the deformable 
reservoir from the gas flow-rate from the undeformable reservoir (for a reservoir with 
constant permeability). 
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If, for instance, ar = 210"17 Pa"1, ^=10MPa and pc=7MPa, then 

Q'/Qam = 0.78, i. e., the flow-rate declines by 28 %. 

Using the similar technique, it is possible to derive equations for the flow-rate 
and pressure distribution of the liquid and gas (at rectilinear-parallel filtration to the 
gallery) in a fractured deformable reservoir. 

7. Non-stationary liquid and gas flow in fractured 
and fractured-porous reservoirs 

To determine the parameters of a non-stationary filtration in fractured and 
fractured-porous reservoirs, we need to integrate the system of differential Eqs. 
(26.29) and (26.30) at the assigned initial and boundary conditions. 

Let's make the following assumptions: (1) the liquid is weakly-compressible, 

i. e., the equation of state is Eq. (19.23) — p = p0e "" p~ ; (2) viscosity is constant 

{μ = const); (3) both media (fractures and porous blocks) are elastic, i. e., porosity is 

a function of pressure under Eq. (19.42) individually for each reservoir component 

medium mj =m0i + ßcj (p-p0), i = 1,2; (4) permeabilities of both media are 

constant: kt - const, k2= const; (5) there is mass exchange between the fractures and 
blocks, and (6) the mass flowing from the blocks to the fractures is governed by 
Eq. (26.20). 

Under these assumptions, the Leibensohn's functions, as defined by Eqs. (26.25) 
and (26.26), accurate to small values, are as follows: 

/» =£k J[1 + Ä j ( / ? i - Ρ ο ) ] φ , + const - Μ . Λ + const (26.44) 
r* r*' 

/. = Λ*ϊ. j[l + ßuq (p2 _ Po)] dp2 + c o n s t = £sb.Pi + const (26.45) 

Let's transform the right portions of Eqs. (26.29) and (26.30): 

P(Pi)ml(pl) = po[mOi+ff{pl-p0) + ßxßc{pl + p0)
2'\'' 

= A , [ > % + # ( f t - A , ) ] , ' = 1.2 

where the last component is discarded due to its smallness; ß* are elastic capacity 
factors of both media: 

ß;=ßa+m0ißx 
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Then: 

| [pU>,U)] = />otff̂  (26.46) 

Substituting Eqs. (26.44), (26.45), (26.46), and (26.20) into the system 
Eq. (26.29) and (26.30), results in: 

(d2px | d2pi | d2pi 

v ^ 2 

r^2 

dx\ dx] j - * * - > - * > 

d2Pz , d2p2 ( d2p2 

dx. ox., dxl 

?. dp2 

dt 
-ß;^ an 

{Pi-Pi) 

(26.47) 

(26.48) 

where px and p2 are pressures, correspondingly, in the fractures and por-

ous blocks. 
Let's introduce the following notations: 

n - A 1
 PV 

k2 
2 t ' 

M" 'A* ' *■ 
Using the η,ενε2,τ parameters, Eqs. (26.47) and (26.48) look as follows: 

M (Pi-P\) Λ,=^ 

v'p,A+(ft-ft) 77£2V p2 
3r 

(26.49) 

(26.50) 

where V2/?; = Δρ, is the Laplace's operator. 

It is important to note that piezoconductivity factor η is defined through the 

fracture system permeability k, and blocks' elastic capacity β2; the factor τ has 

the dimension of time and is called the delay time. It is a very important factor in the 
theory of liquid's non-stationary flow within a fractured-porous medium. It describes 
the time lag between pressure redistribution in the fractured-porous medium 
compared to a porous reservoir with piezoconductivity 77. The lag is caused by the 
liquid exchange between the system of porous blocks and the fracture system. The 
time lag T can also be formatted differently: 

T = 
μβ'2_μβ;ΐ2 

an äL· 

I2 

άη2 



532 CHAPTER XXVI 

It follows from this equation that large τ values correspond to small piezo-
conductivity η2 values and to large block size / (either factor makes the overflow 

from the blocks into the fractures more difficult). 
The following conclusions can be made analyzing the Eq. system (26.49) and 

(26.50). At T = 0 , px = p2, i. e., the pressures in the fractures and blocks are equal, 
and the medium behaves as if it is uniform. At τ = °°, the system falls apart into 
two filtration equations in the fractures and blocks, i. e., the blocks are now iso-
lated, impermeable, and the medium behaves as if it were purely fractured. The in-
termediate T values correspond to the fractured-porous medium. Then, regardless of 
a specific solution format for a problem, as the time t increases, the solution is 
tending to the solution of the elastic regime problem coming asymptotically close 
to it after the time duration of several i's. 

The system of equations Eqs. (26.49) and (26.50) can be simplified as the frac-
ture porosity 0 i and block permeability k2 are small, i.e., 0 , / 0 2 « l and 

kjk2»\; therefore, £, « 1 and £ 2 « 1 , and the components e^dpjdt and 

ηε2ν
1ρ2 can be discarded. The result is: 

ηψΡι+ί£ΐΖΐά = 0 and ^ + i£lZPA = 0 (26.51) 
T dt T 

The above assumption ( 0 , = 0 and k2 = 0 ) means that the liquid is "stored" 

in the blocks and flows only in the fractures (as the mass change in the fracture 
system and the liquid flow in the blocks are disregarded). 

There are numerous solutions of the system Eqs. (26.49) and (26.50) and of 
the truncated system Eq. (26.51) derived by way of integrating differential equa-
tions and using approximation techniques (integral ratios, averaging, etc.) All these 
solutions are complex and unwieldy. 

Here, the graphs resulting from the solution of the radial-plane problem are in-
cluded for the elastic liquid withdrawal at a constant flow-rate Q from a well with 

the radius rc in an indefinite fractured-porous reservoir. 

The problem setting is as follows: 
Eqs. (26.49) and (26.50) for radial-plane flow are: 

^ f^W, f -^^ (26.52) 
r dry dr) dt τ 

1 3 („dp2)_dp2 , ( P 2 - P i ) 
rdr{drj dt τ 
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At the initial time, the pressures in the fractures and blocks are equal (p0): 

Pi{r,0) = p2{r,0) = p0 

This pressure is maintained at all times in distant locations: 

Pi(r<t) = Pi(r,t) = P0 a t r ->°° , i>0 

The condition at the bore hole is as follows: 

r-Q- + e7 — = μ at r = r. 
dr 2 dr Inhh c 

(26.54) 

(26.55) 

(26.56) 

Fig. 26.7 displays the graphs corresponding to a solution of the above 
problem. On the Y-axis are values of the dimensionless pressure gradients 
ut = Inkjx (p0- p. )/MQ an(1 «2

 = ^kth (p0- p2 )/MQ > an<3 on the X-axis, the di-
mensionless radial coordinate τ^ητ. The curves are plotted for different t/τ val-
ues. The figure shows that the pressure distributes in the blocks much slower than 
in the fractures. For the ratio t/ T = 3,the curve ut \τψ]τ\ is almost coincident with 

the curve u= — £/'i-r2/4^i), which describes a usual porous medium with the 

piezoconductivity η. Therefore, for the times much greater than the delay time r, 
the pressures in the fractures and pores are the same, and the filtration equation for 
a regular porous medium can be used. 

0.5 1.0 1.5r/y£rn 0.5 1.0 1 5 rlV^r 
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Fig. 26.7. Dimensionless pressure distribution in the fractures (a) and blocks (b) at differ-
ent times. 
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Analyzing the elastic liquid's flow to the well in a fractured-porous reservoir, 
Warren and Root (1963) disregarded the liquid's flow within the blocks (i. e., 
£2« 1); thus, they discarded the right part of Eq. (26.50). Using the Laplace's trans-
form they came up with an approximate and relatively simple solution for the pre-
ssure fractures at the bottomhole: 

1 
u, = — ic 2 

where ulc =2Kk,h(p0 -Plc)/ßQ; T = ktt/(ß; + β'2)μκ2 ; 

ω = -β—; = -$—; λ = ά^£- = αε,£- (26.58) 
ß*+ß2 ει+ε2 k, l2 2l2 

As Eq. (26.57) shows, the pressure decline at the bottomhole depends on two 
dimensionless parameters ω and A determined from Eq. (26.28) describing a frac-
tured-porous reservoir: ω is the ratio of the elastic reserves of the fractures to the 
total reserves, and λ is the intensity of blocks-to-fractures overflow. 
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Fig. 26.8. Pressure dynamics in fractures at bottomhole for different (0 and A values, 
ω: 1 —0.001;2 — 0.01; 3 — 0.1;4— 1. A: V — 0; 2' — 5-103; 3' — 5106; 4' — 5109. 

Graphs plotted using Eq. (26.57) for different ω and A values are presented in 
Fig. 26.8. Each curve can be subdivided into three segments. At small values of the 
dimensionless time t (when the liquid enters the well mostly from the fractures), 

0.80908+In/ +Ei 
AT 

ω(1-ω) 
■Ei 

AT 
l-ω 

(26.57) 
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parameter co plays a major role. For such time values, the asymptotic expression of 
the integral exponential function can be used: 

- E i ( - * ) = I n - - 0 . 5 7 7 2 at J C « 1 ; 
x 

P,a M P a 

Z / . D 

27.0 

26.5 

26.0 

25.5 

25,0 

ω=0 ^yf 

v<a/*v / 

/ / 

10 -' 105 10 3 10"' 10° 
t> 

T+t< 

Fig. 26.9. Pressure buildup curves for different CO values <λ = 5-106, Q = 18.3 mVday). 

then 

Ei 
AT 

ω{\-ώ) 

-Ei 
At 

(Ι-ω)) 

: ln^lz^ + 0.5772 
At 

(I-co) 
\n 

AT 
-0.5772 

Inserting these expression into Eq. (26.57), results in: 

" " = 2 
0.80908+In t +ln — 

co 
(26.59) 
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i. e., the first segment in coordinates «,c — In J is a straight line with the 

slope 1.15. This line cuts on the axis a segment equal to [0.80908 -In <a]/2 . 

For the second segment, the pressure in fractures ulc remains almost constant. 

The liquid enters the well both from the fractures and matrix blocks. 
The third segment occurs at large time values when the values of the integral 

exponential functions Eq. (26.57) can be disregarded. Then: 

ulc = [0.80908 + In F]/2 . (26.60) 

This is a straight line parallel to the first straight line and describing the flow 
in a uniform reservoir. The distance between these straight lines depends on para-
meters ω and F (see Fig. 26.8). 

The pressure buildup curves of Fig. 26.9 in coordinates plc — \nt/T + t ,(T is 
the production well operating time prior to shut-in, t is the time after shut-in) have 
a similar format. The curves are plotted for the value Λ = 5-10"* and different ω 
values. 

The ω and λ parameters can be determined in the process of pressure buildup 
or drawdown. 

For additional information on behavior of fractured reservoirs, see Chilingarian 
et al. (1992, 1996). 



APPENDIX A 
Inasmuch as the authors believe that petroleum engineers and geologists must 

be familiar with both the SI and FPS systems of weights and measures and be able 
to easily make necessary conversions, some concepts and problems using FPS sys-
tem are presented here. 

Some fundamental fluid mechanics concepts 
and sample problems 

Fundamental equation of fluid statics 

The fundamental equation of fluid statics states that pressure increases with 
depth, the increment per unit length being equal to the weight per unit volume 
(Binder, 1962, p. 13): 

dp = -pgdz (A-l) 

where dp is increment in pressure; dz is increment in depth (z is a vertical distance 
measured positively in the direction of decreasing pressure); p is density (mass per 
unit volume); and g is gravitational acceleration. The minus sign indicates that 
pressure decreases with increasing z. The above relationship can be clearly under-
stood on examining Fig. A-l, which shows vertical forces on the infinitesimal ele-
ment in the body of a static fluid. In this figure, dA represents an infinitesimal 
cross-sectional area, p is the pressure on the top surface of the element and (p + dp) 
is the pressure on the bottom surface. 

BODY OF A FLUID 

Fig. A-l. Schematic diagram of vertical forces on an infinitesimal element in body 
of any fluid. (Modified after Binder, 1962, fig. 2-2, p. 13) 

Mechanics of Fluid Flow 
by Kaplan S. Basniev, Nikolay M. Dmitriev and George V. Chilingar 
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Inasmuch as the pressure is due to the fluid weight, the weight of the element 
(p g dz dA) is balanced by the force due to pressure difference (dp dA): 

dpdA = -pgdzdA (A-2) 

or: 
dp = ~pg dz 

In integral form, the above equation can be expressed as follows (see Fig. A-2): 

or: 

ips r 
If p is assumed to be constant, eq. A-3 becomes: 

P2-P\=-P8(z2-zl) 

Ap = yh 

(A-3) 

(A-4) 

(A-5) 

where h is the difference in depth between two points, which is commonly referred 
to as the "pressure head"; and y(=p g) is the specific weight. On expressing γ 
in Iblcuft and h mfl, pressure difference Ap is found in Iblsqft. 

Buoyancy 
When a body is completely or partly immersed in a static fluid, there is an up-

ward vertical buoyant force on this body equal in magnitude to the weight of dis-
placed fluid. This force is a resultant of all forces acting on the body by the fluid. 
The pressure is greater on the parts of the body more deeply immersed. The pres-
sures at different points on the immersed body are independent of the body materi-
al. For example, if the same fluid is substituted for the immersed body, this fluid 
will remain at rest. This means that the buoyant, upward force on the substituted 
fluid is equal to its weight. 

If the immersed body is in static equilibrium, the buoyant force and the weight 
of the body are equal in magnitude and opposite in direction, passing through the 
center of gravity of the body. For a comprehensive treatment of fluid statics, the 
reader is referred to an excellent book on fluid mechanics by Binder (1962). 

General energy equation 

The heat added to unit 

weight of the flowing 

fluid between entrance 

and exit. 

The work transferred 

to (done upon) unit 

weight of the flowing 

fluid between entrance 

(l)andexit(2). 

The total gain in energy 

by unit weight of the 

fluid between entrance 

and exit. 
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q+ 
ΡΆ Ριν: 
778 

W 

778 778 
vS-v,' Δΐη Zj, 

2 g (778) 778 
(A-6) 

where p = pressure in psia; v = specific volume in ft3''lib; V = velocity in ft/sec; Z = 

= potential head in^r; q= heat transferred to fluid; ρ,ν,/778 = external work in 

pushing 1 lb of fluid across the entrance; W = work in ft-lb per lb fluid flowing; 

u2-ut= gain in internal energy; [(V2
2-V,2)/2g(778)J = gain in kinetic energy; and 

(Z2 -Z , ) /778= gain in potential energy. Point 1 = entrance; point 2 = exit; 1 Btu = 

= 77% ft-lb; u2-ut = cv(r2 - 7 ) ) ; cv= specific heat at constant volume. 

Inasmuch as enthalpy =A = w + (pv) /778 , eq. 1.1-6 becomes: 

W νϊ-ν ■ = h1-h+-
778 2g(778) 

.hzL. 
778 

(A-7) 

where h1-hi=cp{T1-T^);cp- specific heat at constant pressure. 

For a number of cases, the process is adiabatic and change in internal energy is 
negligible. Thus: 

778 
Pivi , w V2-V, 7 -7 
778 778 2g(778) 778 

(A-8) 

and each term in the latter equation is in Btu/lb fluid flowing. On multiplying 
through by 778: 

W = Ex 
Ϊ2 2g 

- + Z, 
Yx 2g 

- + Z, (A-9) 

where γ= specific weight in lb/ft (1/f); p/y= pressure head in ft; V2/2g = velocity 
head in/f; and Z = potential head in//. 

For frictionless incompressible fluid with no work done: 

^2- + ^ + Z , = - ^ - + ^ + Z.=const. (A-10) 
Ϊ2 2g 7t 2g 

which is the well-known Bernoulli's equation. 

Derivation of formula for flow through orifice meter 
A schematic diagram of incompressible fluid flow through an orifice meter is 

presented in Fig. A-2. For an ideal flow with no friction losses the following rela-
tion will hold true: 

vt
2/2g + pl/r+zl = v^/2g + Pl/r+z1 (A-l l ) 
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where V = velocity in ft/sec; p = pressure in psia; γ= specific weight in lb/cufi; and 
Z = potential head above any datum plane in ft. 

Fig. A-2. Schematic diagram of an orifice meter 

Inasmuch as volumetric rate of flow (in cu ft/sec) Q = V,A, = V2A1: 

ν ,=νΛΜ (A-12) 

Substituting eq. A-12 in eq. A-l 1 and solving for V2: 

V2 = 
2g(p,/r-p2/r+z,-z2) 

1/2 

(A-13) 

For an actual flow one has to introduce correction factor for velocity (Cv) and 
correction factor for area (Cc). The latter is termed coefficient of contraction and is 
equal to A2/A. Thus: 

Q = CVCCV2A (A-14) 

The term discharge coefficient (C or Cd) often is substituted for CvCc. Another 
term flow coefficient (K) is defined as: 

K = c/[l-(A2/Al)
2 2]V2 

Thus: 

actual Q = KA[2g{pJY-pJy+Z, -Z2)]1/2 

If Ah is manometer deflection in inches, of Hg, then: 

P\lY+Z\-P2lr-Z2=-rr{spgrH!. ~spgrf )lspgrf 

(A-15) 

(A-16) 

(A-17) 

where sp grf = specific gravity of fluid flowing. 
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Flow equation for the Venturi meter (Fig. A-3) can be derived similarly; how-
ever, Cc = 1 in this case. 

Fig. A-3. Schematic diagram of a venturi meter 

Compressible flow formula 
For a compressible flow, one can derive the following equation starting with 

the general energy equation (also see Binder, 1962): 

G = CA2y1 
[(28kik-i)}(pjri(i-p2/Pri)ik} 

i-teM)Wp.r 

1/2 

(A-18) 

where G = weight rate of flow in lb/sec, and k = (specific heat at constant pres-
sure )/(specific heat at constant volume) = Cp/cv. As shown in Nelson (1958, p. 211), 
constant k can be obtained for various hydrocarbons. 

Example problem A-l. Maximum reliable flow 
Two reservoirs shown below are connected by a 4-in. 10,000-ft long pipe hav-

ing friction factor of 0.02. Determine: (1) pump horsepower required to maintain a 
flow rate of 0.33 cu ft/sec of water (γ= 62.4 lb/cu ft); and (2) the maximum dis-
tance x for dependable (reliable) flow. 

P, 

% 

X-H 
PUMP 

I 
DATUM PLANE 

Fig. A-4. Diagram for example problem A-l 



542 APPENDIX A 

Solution: 
(1) One can use Bernoulli's equation between points 1 and 3: 

where Ep = energy output of the pump, ft-lb/lb of fluid flowing; hy = head loss due 
to friction = f(l/d)(Vp

2/2g), ft-lb/lb; hie = head loss due to entrance = 

= 0.5Vp
212g in the case of sharp entrance, ft-lb/lb; hu - head loss due to the exit = 

= dissipated kinetic energy (=V2 I2g); Vp = velocity in the pipe, ft/sec; d- inside 

diameter of the pipe, ft; / = length of the pipe, ft; γ= specific weight of the flowing 
fluid, lb/ft3; g = gravitational acceleration, ft/sec ; and z = elevation above some 
datum plane, ft. 

Inasmuch as velocities at the surface of two reservoirs (Vi and V3) can be con-
sidered negligible and pressuresp\ and/73 are atmospheric (0 gage), the above equ-
ation reduces to: 

Ep=(z,-z]) + hlf+hle+hlx=(zi-z,) + V2
pl2g{flld + 0.5 + \) 

Inasmuch as: 

Vp = QIA = 0.33cuft/sec/(7t(4/12)2/4) = 3.78 ft/sec, 

Ep = (325 - 175) + 3.782/64.4[(0.02)(10000)/(4/12) + 0.5 + 1.0)] = 285 ft-lb/lb. 

Thus, horsepower of the pump is equal to: 

HP = Q-jEp/550 = (0.33)(62.4)(285)/550 = 10.6, where 550 ft-lb/sec = 1 HP. 

(2) For maximum and yet reliable flow of water (i. e., no cavitation), the pres-
sure at the inlet side of the pump (p2) should be 2/3 of the barometric head of water. 
With safety factor incorporated, it is equal to -21 ft of water (= pi/j). Thus, using 
Bernoulli's equation between points 1 and 2: 

pJr+Vl
2/2g + zl=p2/y+V2

2/2g + z2+h;f+hle, 

one can solve for unknown distance x, inasmuch as terms p]//and V\2/2g can be 
neglected. Thus: 175 = -21 + (3.78)2/64.4 + 100 + 0.02[(x)/(4/12)] (3.782/64.4) + 
+ 0.5(3.78)2/64.4 and solving for*: x = 7180 ft. 

Example problem A-2. Compressible flow (nozzle) 

A convergent-divergent nozzle is connected to a tank with air, having pressure 
of 100 psia and temperature of 100 °F. The tip diameter (point 3) is equal to two 
inches, and air discharges to atmosphere (p'3 = 14.7 psi and 7"3 = 60°F). Determine 
throat diameter (point 2) necessary to maintain maximum flow rate through this 
nozzle. Adiabatic constant k for air is equal to 1.4. (See Fig. A-5.) 
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Ρ' Τ' 

r2=SONIC 
^SUPERSONIC 

Fig. A-5. Diagram for example problem A-2 

Solution: 
For maximum flow rate, the velocity in the throat must be sonic, because 

maximum velocity attainable in a convergent nozzle is sonic. Inasmuch 

as p'3/pl(=14.7/100 = 0.147) is less than [p2lPx)crilical = {2/(* + 1)}'"~' = 

= {2/(1.4 +1)}14"4"1 = 0.528), velocity V3 in the divergent passage will be supersonic. 
To attain sonic velocity in the throat (point 2), pressure p2 must be critical: 

p2 = pl{2/{k + l))Uk~'= 100x0.528 = 52.8 psia. 

The specific weight of air in the tank, γί is equal to: γ] = pJRT^lOOx 
x 144/53.3x560 = 0.483 lb/ft3, where gas constant for air, R, is equal to 53.3 and T\ 
is the absolute temperature in °R (= °F + 460). 

Inasmuch as γ2/γ]={ρ2/Px)"\ J4 = (0.528) 1/14x0.483 = 0.3 lb/cu ft. In order 

to attain sonic velocity in the throat, temperature in the throat must be critical: 

T2 = T\{2lk + 1) = 560(2/2.4) = 466 °R. 

Thus, velocity V2 is equal to Vc: V2=Vc=c2={kgRT2)"
2=(lAx32.2x 

x53.3x466)l/2= 1060 ft/sec. 
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Temperature at point 3 can be determined from the following equation*: 
T3 =Ti{p3/pl)

k~"k= 560(0.147)°V-4 = 320°R, and # is equal to: γ2 = p3/RT,= 
= 14.7x144/53.3x320 = 0.12 lb/ft3. 

Velocity at point 3 can be determined on using the following equation: 

Vi/2g = (pl/YJk/k-li-(p3/pir
)lk} 

V/=64.4x(l00xl44/0.483Xl.4/0.4){l-(0.147)04"4} 

Solving for V3: 

V3 = 1700 ft/sec, i. e., supersonic speed. 

Inasmuch as for adiabatic flow the weight rate of flow in the throat (W2) is 
equal to the weight rate of flow at the exit (W3): 

(^2
2/4xl44)(1060)(0.3) = (^22/4xl44)(1700)(0.12), one can solve for throat 

diameter άϊ. d-i = 1.161 inches. 

Example problem A-3: Compressor problem 
Air at standard conditions is handled at a rate of 1000 lb/hr by a compressor. 

Cross-sectional area of inlet is 0.6 ft and that of outlet is 0.11 ft2. Air is com-
pressed to 100 psia and 180 °F, and the heat taken from air is 50,000 Btu/hr; cp = 
= 0.239. If the change in elevation is negligible, what is the work done on the air? 
Solution: 

- 50,000 Btu/hr cnn , IL 

q = = -50Btu/lb 
lOOOlb/hr 

Weight rate of flow: 

G = AVylb/sec 

where A = cross-sectional area in ft2; V = velocity in ft/sec; γ= specific weight 
in lb/ft3. 

0 = Αίνιγι=Α2νιγ2 

' ρ,ν, = RT,; ρ,ν, = RT,; v, = I / γ,; v, = 1 / γ,. Thus: Tt = p, I ytR and T3 = p,l /,R . Dividing T, by 

r , : r 3 / 7 ; = ( p , / p , ) ( y , / j ' , ) , and inasmuch as γ,/>,=(p3/ />,)"''; T, IT, = (p 3 / p,){p, I p,)" '" = 
, .»-I/» 
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.. G 1000/3600 £ η £ Δ / 

V. = = = 6.06 fi/s 
\γλ (0.60) x (0.07651) 

where 0.07651 is the specific weight of standard sea-level air (59 °F and 
14.7 psia). 

j fc_ = 100(144) 
2 /?Γ2 (53.3)(640) 

_ g _ = 1000/3600 
2 A ^ (0.11)x (0.421) 

778 ^ 2g/ 

A, - Λ, = 0.239(180 - 59) = 29 Btu I lb 

^ = 50 + 2 9 +
( 5 · 9 7 ) 2 - ( 6 · ° 6 ) 2 

778 (64.4) x (778) 
W= 61,600 ft-lb/lb 

If the answer is desired in / / f then one has to use the following equation: 

(W ft-lb I lb)x(G lb I sec) 
HP = 

(550 fi-lb/sec)/HP 

Example problem A-4. Friction Losses in Circular Pipes 
Calculate the pressure drop in benzene-flowing 200 feet commercial steel 

pipe 6 inches in diameter. Given; temperature = 50 °F; sp. gr. = 0.90; veloci-
ty =11.0 ft/sec; absolute roughness of pipe = 0.00015 ft; dynamic viscosity of ben-
zene = 1.6xl0"5 slugs/ft -sec; and g = gravitational acceleration = 32.2 ft/sec/sec. 

Solution: 
The Reynolds Number is equal to: 

_ Vdp 1in ,6X O.90x62.4wl , ,„_5 , i n 5 

Re = —— = 11.0x(—)x( )/1.6xl0 = 6x10. 
μ 12 32.2 Using Fig. A-6, 

— = 0.0003-0.0004. 
D 

Thus, from Fig. A-7, the friction factor,/= 0.016. 

The head loss, h, is equal to: 

/ V2 200 11 02 

h = f-— = 0.016(—)( ) = 12.02 ft or ft-lb/lb. 
dig 0.5 2x32.2 

12 02 
Pressure drop Ap = yh = 0.90(62.4) = 4.69 psi. 

144 
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Fig. A-6. Chart for determining relative roughness of pipes (After Moody, 1944.) 



APPENDIX A 547 

i aoiovd Nonoiyj 

Fig. A-7. Friction factors for flow in circular pipes (After Moody, 1944.) 
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Farshad's surface roughness values 
and relative-roughness equations 

Surface roughness for various recendy-developed pipes is presented in Table A-l. 
The surface roughness of internally plastic-coated pipes is the lowest compared to the 
other pipes in this group. The bare Crl3 pipe exhibits the highest average surface-
roughness value. 

A relative-roughness chart (Fig. A-8) was developed for (1) internally plastic-
coated, (2) honed-bare carbon steel, (3) electro-polished bare Crl3, (4) cement-
lining, (5) bare carbon steel, (6) fiberglass lining, and (7) bare Crl3 pipes. The rela-
tive roughness eld (dimensionless) is related to the absolute e (in inches) and pipe 
diameter d (in inches). 

A set of nonlinear mathematical models is offered to describe the log/log rela-
tionship between the average relative roughness and pipe diameter for various 
modern pipes (Table A-2). 

Table A-l. 

Farshad's surface roughness values for modern pipes 

Material 

Internally plastic coated 
Honed bare carbon steel 
Electro-polished bare 
Cr l3 
Cement lining 
Bare carbon steel 
Fiber glass lining 
Bare Cr 13 

Average measured absolute 
roughness (inches x 10~3) 

0.2 
0.492 

1.18 

1.3 
1.38 
1.5 
2.1 

Average measured absolute 
roughness (micrometers) 

5 
12.5 

30 

33 
36 
38 
55 

Table A-2. 

Farshad's relative roughness (eld) equations for modern pipes 

Material 
Internally plastic coated 

Honed bare carbon steel 

Elcetro-polished bare Crl3 

Cement lining 

Bare carbon steel tubing 

Fiber glass lining 

BareCrl3 

Equation (diameter, d in inches) 
eld = 0.0002 <Γ,Ό098 

eld= 0.0005 <Γ!0Κ" 

e/d = 0.0012 d'1MS6 

eld=0.00Ud'hm0i 

e/d=0.00Ud'lmn 

eld =0.0016 <Γ10086 

e/rf = 0.0021<T'055 
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Fig. A-8. Farshad's surface roughness chart for modern pipes 

Flow though fractures 

The writers have placed strong emphasis on the importance of fractures in car-
bonate reservoirs. It has been shown in the geological and engineering literature 
that fractures can constitute the most important heterogeneity affecting production. 
Craze (1950) cited carbonate reservoirs in Texas, U.S.A., which have low matrix 
permeabilities, that produce moveable oil from fractures and vugs. Also, Daniel 
(1954) discussed the influence of fractures on oil production from carbonate reser-
voirs of low matrix permeability in the Middle East. Reservoirs are not mechanical-
ly continuous owing to the presence of fractures. In this sense, the reservoir rock is 
a discontinum rather than a continuum. The nature and spatial relationship of dis-
continuities, such as fractures, dissolution channels, and conductive stylolites that 
affect fluid flow in carbonate rocks are best evaluated using large-core analysis. 

Geological conditions which create fractures and control fracture spacing in 
rocks include: (1) variations in lithology; (2) physical and mechanical properties of 
the rocks and fluids in the pores; (3) thickness of beds; (4) depth of burial; (5) 
orientation of the earth's stress field; (6) amount of differential stress (tectonic 
forces); (7) temperature at depth; (8) existing mechanical discontinuities; (9) rate of 
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overburden loading or unloading; (10) gravitational compaction (rock or sediment 
volume reduction as a result of water loss during compaction); (11) anisotropy; and 
(12) continuum state at depth (competent versus incompetent character of the rocks). 

Permeability of a fracture-matrix system 
One is interested in the total permeability of the fracture-matrix system rather 

than the permeability contributions of its various parts. The studies of Huitt (1956) 
and Parsons (1966) provided the following two equations for determining permea-
bility values in a horizontal direction (&#) through an idealized fracture-matrix sys-
tem (using English units): 

kH =K +5.446x10'° w3cos2(a7L), (A-19) 

where km is the matrix permeability (mD); w is the fracture width (in.); L is the 
length of the fracture; and a is the angle of deviation of the fracture from the hori-
zontal plane in degrees. If w and L are expressed in mm, then Eq. A-19 becomes: 

kH =*m+8.44xl0Vcos2(ar/L). 

Various mathematical models have been proposed to describe the velocity of a flu-
id in a fracture, to estimate tank oil-in-place in fractured reservoirs, to determine 
the fracture porosity, and to calculate average "height" of fractures (Chilingarian et 
al., 1992). 

Fluid flow in deformable rock fractures 
Witherspoon et al. (1980) proposed a model analyzing fluid flow in deforma-

ble rock fractures. This study has ramifications with respect to the migration and 
production of subsurface fluids. The withdrawal of fluids from carbonate rocks can 
cause a fracture to close due to induced compaction of the reservoir. 

The above proposed model consists of a single-phase fluid flowing between 
smooth parallel plates. The pressure drop is proportional to the cube of the distance 
between plates (w = width or aperture of a fracture). For laminar flow (Withers-
poon et al., 1980): 

<7 = 5.11χ106[>ν3Δρα/Ζ.μ], (Α-20) 

where q is the volumetric rate of flow (bbl/D); w is the width (or aperture) of a 
fracture (in.); Ap is the pressure drop (psi); or is the width of the fracture face (ft); L 
is the length of the fracture (ft); and μ is the viscosity of the fluid (cP). 

But natural fractures are rarely smooth and, therefore, head loss owing to fric-
tion, hif, is equal to: 

K=f 
LV2 

dt2g 
(A-21) 
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where/ is the friction factor, which is a function of the Reynolds Number, NRC and 
relative roughness that is equal to the absolute roughness, e, divided by the width 
(height or aperture) of the fracture, w (or b) (Fig. A-9). The Reynolds Number is 
equal to νάερ/μ, where V is the velocity of flowing fluid (ft/sec); de is the equivalent 
diameter (fi); p is the mass per unit volume, i. e., specific weight, γ, in lb/ft3 divided 
by the gravitational acceleration, g, in ft/sec/sec (= 32.2). Effective diameter, de, is 
equal to hydraulic radius, Rh, times four (/?/, = area of flow/wetted perimeter). 

Lomize (1951) and Louis (1969) studied the effect of absolute and relative 
roughness on flow through induced fractures, sawed surfaces and fabricated surfac-
es (e. g., by gluing quartz sand onto smooth plates). They found that results deviate 
from the classical cubic law at small fracture widths. Jones et al. (1988) studied 
single-phase flow through open-rough natural fractures. They found that /VRec (crit-
ical Reynolds Number where laminar flow ends) decreases with decreasing fracture 
width (b or w) for such fractures. 

Jones et al. (1988) suggested the following equations for open, rough fractures 
with single-phase flow: 

q = 5.06x10*a[Apw3 / f Lpf5 (A-22) 

and 

k= 5.39x10s ß[wL/fAppf\ (A-23) 

where k is the permeability in darcys; p is the density of the fluid (lb/ft3); a n d / i s 
the friction factor, which is dimensionless. 

Fig. A-9. Simple fracture-fluid-flow model showing the length of the fracture, L; width, a; 
thickness, b; and the absolute roughness, e 
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Based on experimental data, Lomize (1951) developed many equations relat-
ing friction factor if) and Reynolds Number (NRe) for both laminar and turbulent 
flows. He also prepared elaborate graphs relating friction factor, Reynolds Number, 
and relative roughness of fractures (e/b or elw) (Fig. A-10). 

Lomize (1951) found that at the relative roughness (e/b) of less than 0.065, 
fractures behave as smooth ones (e/b = 0) and friction factor (/) is equal to: 

f=6/NR (A-24) 

In the turbulent zone, with e/b varying from 0.04 to 0.24 and NRe < 4000-5000, 
friction factor is equal to: 

f = B/(Nj" (A-25) 

Coefficient B is equal to 0.056 and n can be found from Fig. A-l 1 or by using 
the following equation: 

n = 0.163-[0.684(e/fo)]+[2.71/e765(<,/i,)j (A-26) 

The following example illustrates how to use the discussed equations and 
graphs, and the significance of the results. 

No. 
3 
4 
9 
10 
11 
12 
13 
14 
15 
16 

e, CM 

0.055 
0.055 
0.175 
0.175 
0.175 
0.175 
0.055 
0.055 
0.055 
0.055 

e/b 
0.327 
0.205 
0.854 
0.687 
0.574 
0.432 
0.150 
0.120 
0.069 
0.054 

LOGNn 

Fig. A-10. Chart showing the relation between friction factor,/, and Reynolds number, NRt, 
for laminar, transitional and turbulent fluid flow in granular rocks and smooth fractures. 
(Modified after Lomize, 1951) 
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Fig. A-11. Chart showing the relation between coefficient, n, and the relative roughness, 
elb (b = d), where the coefficient B = 0.056. (Modified after Lomize, 1951) 

Example problem A-5: Effect of fractures on total permeability 

If w = 0.005 in., L = 1 in., a = 0°, and km = 1 mD, then using Eq. A-19. kH = 
= 6,800 mD. 

This example shows the overwhelming contribution which relatively small 
fracture can exert on total permeability. 

Example problem A-6: Pressure drop in a vertical fracture 

Determine the pressure drop in psi in a vertical fracture (flow is in upward di-
rection) given the following information: absolute roughness, e = 0.065 mm; frac-
ture width (w) or height (b) = 0.68 mm; width of fracture face, a =5 mm (a > b); 
length of fracture, L = 5 cm; volumetric rate of flow, q = 1 cm3/sec; specific gravity 
of flowing oil (sp. gr.) = 0.8; and Reynolds Number (NRe = 4000) (see Fig. A-9). 

Using Bernouli's Equation for flow from point 1 to point 2: 

Pl/r+Vi
2/2g + zi=p2/Y+V2

2/2g + z2+h,f 

and 

pi/y-p2/y = Ap/y = (z2-zi)+hlf =L+hlf 
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where p\ and P2 are pressures at points 1 and 2, respectively, in lb/fi2 absolute; V = 
= velocity of flowing fluid in ft/sec; z\, and zi = potential heads at points 1 and 2 
in ft; g = gravitational acceleration, ft/sec/sec (=32.2); ft;/= head loss due to friction 
in ft. All terms in the above equation are in fi-lb per lb of fluid flowing or in ft. 

q = 1 cnrVsec = 1 (cm3/sec) x 3.531 x 10"5(ft3/cm3) = 3.531 x 10"5ft3/sec 

A (cross-sectional area of flow) = a x fc = 5 x 0.68 mm x (1.07639 x 10"5 ft2/mm2) = 
= 3.6597 x 10 5 ft2; 

V = q/A = 3.531 x 10"5/3.6597xl0"5= 0.965 ft/sec 

Hydraulic radius R = (flow area)/(wetted perimeter) = (a x b)/(2a + 2b) = 
= 9.814 xlO"4 ft 

Equivalent diameter = de- AR = 2ab/(a + b) = 3.9277 x 10"3 ft 
Inasmuch as NRe is 4000 and relative roughness, elb = 0.065/0.68 = 0.095, one 

can use Eq. A-26 (and Fig. A-l 1 to determine n): 

/ = B /(NRJ= 0.056/(4000)°12 = 0.0207 

Thus: 

hlf=f(l/de)(V
2/2g) = 

= 0.0207(0.164/3.93 x 10"3) [(0.965)2/(2 x 32.2)] = 0.0197 ft 

Pressure drop Ap = r(L + hef) = [(0.8 x 62.4)(0.164 + 0.0197)]: 144 

= 0.062 psi 
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B 
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Bernoulli's integral, 107-116 
Bernoulli's equation, viscous flow, 179 
Bessel function, 230,461 
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- equations, 234 
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C 

Carman's equation, 173 
Cauchy-Lagrange's integral, 116-118 
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Characteristic surface, 52 
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Deformation velocity tensor, 50 
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Elastic fluid flow, 460 
Elastic drive, 427 
Entropy, 30 
Euler's equations, 18, 58, 105 
Exponential filtration law, 391 
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Farshad's surface roughness, 524 
Fluid flow to infinite well lines, 422 
Flow surface, 9 

- regimes, 312 
Flow though 

- fractures, 525 
- deformable rock fractures, 527 

Filtration 
- gas, 366 
- rectilinear, 355 
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- mass, 23 
- surface, 23 

Forchheimer equation, 322 
Fractured-porous media, 492 
Fracture permeability, 497, 553 
Friction losses, 165, 183, 545, 552 
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Gas-condensate well, 313-316 
Gas dynamic functions, 257 
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Gas flow 
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- through nozzles, 194-197, 253-254 

Gauss-Ostrogradsky theorem, 101, 348 
General energy equation, 512, 538 
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Gromeko-Lamb format, 93-94, 104, 108 
Gugonio's adiabatic impact, 237-241 
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Heat loss, 183,542,545 
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Helmholtz 

- equation, 108 
- theorem, 45-49 
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Hydraulic resistance, 159 
Hydraulic resistance factor, 266-270 

- shock, 223 

I 
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Isothermal filtration, 350 
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Klausius-Dughem inequality, 30 
Kronecker delta, 58, 509 
Konakov's equation, 177 
Kozeny-Carman equation, 335 
Krasnopolsky's equation, 331, 393 

L 

Lagrange theorem, 17 
Laplace equation, 411 

- transform, 230 
Leibensohn's function, 353-355, 359 
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Mach number, 248-252, 543 
Mayer's equation, 111, 247 
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Murin's experiments, 177 

N 

Navier-Stokes equations, 67, 208 
228, 233 

Nikuradze experiments, 176-177 
Non-Newtonian fluids, 277-282 

298 
Nozzles, 194-197 

O 

Oblique compression leap, 266 
Ohm's and Kirchhoff s laws, 425 
Orifice meter, 173, 231, 539-540 

P 

Pairing, law of Paraboloid, 96 
Permeameter, 323-324 
Piezometric, 94 
Piezo-conductivity equation, 433 
Pirverdian's technique, 452-455 
Pitot'stube, 115 
Poisson's adiabatic equation, 111 
Poiseuille's equation, 159 
Polytropic process, 112 
Prandtl theory, 169,172-173 
Pressure buildup curves, 535 

R 

Reserves calculations, 428 
Relative extension, 48 
Relative roughness, 546, 548, 549 
Reliable flow, 541 
Reservoir non-uniformity 

- laminated reservoir, 394 
- zonally-nonuniform bed, 399 

Revolving cylinders, 163 
Reynolds 

- equations, 168 
- experiments, 164 
- number, 327-330 

Rheologie equations, 44 
Rheopectic fluid, 280 
Rhombohedral packing, 335 

S 

Satkevich's equation, 174 
Scalar fields 

- continuous, 20 
- stationary, 21 

Slichter packing, 335 
Singularity, 22 
Shchelkachev equation, 328 
Shifrinson's equation, 178 
Shock waves, 259 
Shukhov's equation, 275-276 
Slip velocity, 285 
Sound velocity, 243 
Source and sink, 410 
Specific surface area, 327 
Statics, 537-538 
Stratified reservoir, 404 
Stress tensor, 23, 61 
Strouhal number, 89 
Subsonic velocities, 210 
Superposition method, 410,419 

T 

Thixotropic fluid, 280 
Thomson's theorem, 119 
Throughflow, 35, 186, 194 
Torricelli's equation, 115 
Terbulent flow, 166 
Two-phase flow, 301 
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V 

Van Everdingen and Hurst equation, 
463 
Vector fields 

- continuous, 20 
- stationary, 21 

Vector line, 21 
Velocity circulation, 53 
Venturi meter, 115, 541 
Viscous fluid, 61 

- motion equation, 67 
Viscoplastic liquid, 489 

- flow, 493-507 
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Viscosimetry 
- integral technigue, theory, 282 
- integral technique, 287 

W 

Weisbach equation, 183 

Z 

Zhukovsky's transform, 145 

Greek 

Π-theorem, 78-80 
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