ROLL NO.

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Max Marks: 80
Max Time: 180 Mins
Weightage: 40 \%

ENDTERM FINAL EXAMINATION

Instructions:

i. Write legibly
ii. Scientific and nonprogrammable calculators are permitted

Part A

[5Q x 4M=20 Marks]

1. State the difference between flip flop and latch.
2. Explain the Race around condition which occurs in J-K flip flop.
3. Explain the role of preset and clear in sequential circuits.
4. Discuss synchronous and asynchronous circuits with example for each.
5. Explain the working of Latch as a storage element shown in fig 1.1.

Fig 1.1
Part B
[3Q x 15M=45 Marks]
6. Explain the working of bi -directional shit register. Discuss the right shift and left shift operation
7. Design 4 bit Ring counter and draw the timing diagram.
8. Design a S-R flip flop using T flip flop
a. Design a characteristic table....
b. Design a table of excitation for \qquad
c. Design Boolean expression for the required flip-flop
d. Draw the circuit diagram for required flip flop using

Part C

[1Q x 15M=15Marks]
9. Design a 4 bit synchronous counter with D Flip Flop.

PRESIDENCY UNIVERSITY, BENGALURU
 SCHOOL OF ENGINEERING

Max Marks: 40
Max Time: 60Min
Weightage: 20 \%

TEST 2

I Semester AY 2017-2018
Course: ECE/EEE 203Digital Design
25 OCT 2017

Instructions:

i. Write legibly
ii. Scientific and non programmable calculators are permitted

Part A

(3Q x $4 \mathrm{M}=12$ Marks)

1. Design a combinational circuit which adds two binary numbers and produces sum and carry as output.
2. Implement the following Boolean function with active low output
$f(x, y, z)=\sum(1,3,5,7)$
$f(x, y, z)=\sum(2,4,6,7)$
3. Design a combinational circuit that compares two 1-bit input.

Part B

(2Q x8 M= 16 Marks)
4. Explain difference between decoder and encoder. Explain the role of enable, Construct a 5-to32 line decoder with four 3 -to- 8 line and one 2-to-4 line.
5. Design a n bit adder/substractor circuit and explain working with suitable example.

Part C

(1Q x $12 \mathrm{M}=12$ Marks)
6. Design a combinational circuit that generates the 9's complement of BCD digits

PRESIDENCY UNIVERSITY, BENGALURU
 SCHOOL OF ENGINEERING

TEST 1

I Semester 2017-2018
Course: ECE/EEE 203 Digital Design
20 SEPT 2017

Instructions:

i. Write legibly
ii. Scientific and non programmable calculators are permitted

Part A

(4Q x $3 \mathrm{M}=12$ Marks)

1. Convert following numbers in respective form.
a) $(396)_{10}=()_{2}$
b) $(27)_{8}=()_{2}$
c) $(110101)_{2}=()_{10}$
2. Solve the following subtraction using 2 's complement method.

01100-00011
3. Solve the following expressions and simplify to minimum number of literal using Boolean rules.

XY+X(WZ+WZ')
4. For the given logic diagram as shown in fig 1 which combination of input ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) makes output (y) $=1$

Draw the truth table for the same.

Fig 1

Part B

(2Q x8 M= 16 Marks)
5. Simplify the Boolean function into a)sum-of -products from b)product of sum form using K- map

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(0,1,2,5,8,9,10)
$$

6. For the given function $f=\mathrm{AB}+\mathrm{AC}^{\prime}+\mathrm{C}+\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{ABC}$
a) Express f in standard SOP form
b) Minimize it and realize the expression using basic gates .

Part C

(1Q x $12 \mathrm{M}=12$ Marks)
7. For the Boolean function $F=w^{\prime} x y+w x^{\prime} y+w x y$
a) Obtain the truth table for the given expression
b) Draw the logic diagram using origin given expression.
c) Obtain the truth table of the function from the simplified expression and show that it is same
d) Draw the logic diagram from the simplified expression and compare the total number of gates with the diagram of part 7 (b).

