

Y.A. Liu, Ai-Fu Chang, and Kiran Pashikanti

Petroleum Refinery Process Modeling

Integrated Optimization Tools and Applications

Petroleum Refinery Process Modeling

Petroleum Refinery Process Modeling

Integrated Optimization Tools and Applications

Y. A. Liu, Ai-Fu Chang, and Kiran Pashikanti

WILEY-VCH

Authors

Prof. Y. A. Liu

Virginia Polytechnic Institute Department of Chemical Engineering and State University 245 Goodwin Hall 735 Prices Fork Road Blacksburg 24061, VA United States

Dr. Ai-Fu Chang

Chevron Phillips Chemical CO 1862 Kingwood Drive Kingwood 77339, TX United States

Dr. Kiran Pashikanti

Chevron Phillips Chemical CO 1862 Kingwood Drive Kingwood 77339, TX United States

Cover Credits: photodisc.com

All books published by **Wiley-VCH** are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-34423-9 ePDF ISBN: 978-3-527-81336-0 ePub ISBN: 978-3-527-81338-4 Mobi ISBN: 978-3-527-81337-7 oBook ISBN: 978-3-527-81339-1

Cover Design Schulz Grafik-Design, Fußgönheim, Germany Typesetting SPi Global, Chennai, India Printing and Binding

Printed on acid-free paper

 $10 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1$

Contents

About the Authors xiii Foreword by Lawrence B. Evans xv Foreword by Steven R. Cope xvii Preface xix Acknowledgments xxiii Scope of Textbook xxv Software Selection and Copyright Notice xxvii v

- 1 Characterization and Physical and Thermodynamic Properties of Oil Fractions 1
- 1.1 Crude Assay 1
- 1.1.1 Bulk Properties 2
- 1.1.2 Fractional Properties 6
- 1.1.3 Interconversion of Distillation Curves 7
- 1.2 Boiling Point-Based Hypothetical or Pseudocomponent Generation *8*
- 1.3 Workshop 1.1 Interconvert Distillation Curves *13*
- 1.4 Workshop 1.2 Extrapolate an Incomplete Distillation Curve *13*
- 1.5 Workshop 1.3 Calculate MeABP of a Given Assay 13
- 1.6 Workshop 1.4 Represent an Oil Fraction by the Old Oil Manager in Aspen HYSYS Petroleum Refining *16*
- 1.7 Workshop 1.5 Represent an Oil Fraction by the New Petroleum Assay Manager in Aspen HYSYS Petroleum Refining 25
- 1.8 Workshop 1.6 Conversion from the Oil Manager to Petroleum Assay Manager and Improvements of the Petroleum Assay Manager over the Oil Manager 32
- 1.9 Property Requirements for Refinery Process Models 33
- 1.10 Physical Properties 36
- 1.10.1 Estimating Minimal Physical Properties for Pseudocomponents 36
- 1.10.2 Molecular Weight 37
- 1.10.3 Critical Properties 38
- 1.10.4 Liquid Density 40
- 1.10.5 Ideal Gas Heat Capacity 42
- 1.10.6 Other Derived Physical Properties 43

vi Contents

- 1.11 Process Thermodynamics 45
- 1.11.1 Process Thermodynamics 47
- 1.11.2 Mixed or Activity Coefficient-Based Approach 47
- 1.11.3 Equation-of-State Approach 49
- 1.12 Miscellaneous Physical Properties for Refinery Modeling 50
- 1.12.1 Two Approaches for Estimating Fuel Properties 51
- 1.12.2 Flash Point 52
- 1.12.3 Freeze Point 52
- 1.12.4 PNA Composition 53
- 1.13 Conclusion 54 Nomenclature 55 Bibliography 56

2 Atmospheric or Crude Distillation Unit (CDU) 59

- 2.1 Introduction 59
- 2.2 Scope of the Chapter 60
- 2.3 Process Overview 60
- 2.3.1 Desalting 61
- 2.3.2 Preheat Train and Heat Recovery 62
- 2.3.3 Atmospheric Distillation 62
- 2.4 Model Development 65
- 2.4.1 MESH Equations 66
- 2.4.2 Overall Column Efficiency and Murphree Stage Efficiency 66
- 2.4.3 Recommendation for Correctly Handling the Efficiency 68
- 2.4.4 Inside-Out Algorithm for Distillation Column Calculation Convergence 69
- 2.5 Feed Characterization 72
- 2.6 Data Requirements and Validation 73
- 2.7 A Representative Atmospheric Distillation Unit 76
- 2.8 Building the Model in Aspen HYSYS Petroleum Refining 77
- 2.8.1 Entering the Crude Information 78
- 2.8.2 Selection of a Thermodynamic Model 84
- 2.8.3 Crude Charge and Prefractionation Units 87
- 2.8.4 Atmospheric Distillation Column Initial 88
- 2.8.5 Atmospheric Distillation Column Side Strippers 95
- 2.8.6 Atmospheric Distillation Column Pumparounds 98
- 2.8.7 Atmospheric Distillation Column Adding Custom Stream Properties *101*
- 2.8.8 Post-Convergence 104
- 2.9 Results 105
- 2.10 Model Applications to Process Optimization 109
- 2.10.1 Improve the 5% Distillation Point for an Individual Cut 109
- 2.10.2 Change Yield of a Given Cut 109
- 2.10.3 Workshop 2.1 Perform Case Studies to Quantify the Effects of Stripping Steam Rate and Product Draw Rate 111
- 2.11 Workshop 2.2 Rebuild Model Using "Backblending" Procedure 114
- 2.11.1 Import Distillation Data into Aspen HYSYS Oil Manager 115

- 2.11.2 Define a New Blend of the Backblended Crude Feed 116
- 2.11.3 Build the CDU Model Based on the Backblended Feed 120
- 2.11.4 Converging Column Model 120
- 2.11.5 Comparison of Results 123
- 2.12 Workshop 2.3 Investigate Changes in Product Profiles with New Product Demands *126*
- 2.12.1 Update Column Specifications 126
- 2.12.2 Vary Draw Rate of LGO 127
- 2.13 Workshop 2.4 Investigate the Effects of Process Variables on Product Qualities *129*
- 2.14 Workshop 2.5 Application of Column Internal Tools (Column Hydraulic Analysis) *131*
- 2.15 Workshop 2.6 Application of the Petroleum Distillation Column *140*
- 2.16 Conclusions 144 Nomenclature 145 Bibliography 145

3 Vacuum Distillation Unit 147

- 3.1 Process Description 147
- 3.2 Plant Data Reconciliation 149
- 3.2.1 Required Data 149
- 3.2.2 Representation of the Atmospheric Residue 149
- 3.2.3 Makeup of Gas Streams 152
- 3.3 Model Implementation 154
- 3.3.1 Plant Data and Modeling Approaches 155
- 3.3.2 Workshop 3.1 Build the Simplified VDU Model *157*
- 3.3.3 Workshop 3.2 Build the Rigorous Model from a Simplified Model *165*
- 3.4 Model Application VDU Deep-Cut Operation 172
- 3.5 Workshop 3.3 Simulation of the VDU Deep-Cut Operation *176* Bibliography *180*
- 4 Predictive Modeling of the Fluid Catalytic Cracking (FCC) Process 183
- 4.1 Introduction 184
- 4.2 Process Description 185
- 4.2.1 Riser–Regenerator Complex 185
- 4.2.2 Downstream Fractionation 187
- 4.3 Process Chemistry 188
- 4.4 Literature Review 190
- 4.4.1 Kinetic Models 190
- 4.4.2 Unit-Level Models 193
- 4.5 Aspen HYSYS Petroleum Refining FCC Model 195
- 4.5.1 Slip Factor and Average Voidage 196
- 4.5.2 21-Lump Kinetic Model 197
- 4.5.3 Catalyst Deactivation 198

- 4.6 Calibrating the Aspen HYSYS Petroleum Refining FCC Model *199*
- 4.7 Fractionation 200
- 4.8 Mapping Feed Information to Kinetic Lumps 203
- 4.8.1 Fitting Distillation Curves 203
- 4.8.2 Inferring Molecular Composition 205
- 4.8.3 Convert Kinetic Lumps to Fractionation Lumps 208
- 4.9 Overall Modeling Strategy 209
- 4.10 Results 211
- 4.11 Applications 220
- 4.11.1 Improving Gasoline Yield 220
- 4.11.2 Increasing Unit Throughput 223
- 4.11.3 Sulfur Content in Gasoline 224
- 4.12 Refinery Planning 225
- 4.13 Workshop 4.1 Guide for Modeling FCC Units in Aspen HYSYS Petroleum Refining 231
- 4.13.1 Introduction 231
- 4.13.2 Process Overview 231
- 4.13.3 Process Data 231
- 4.13.4 Aspen HYSYS and Initial Component and Thermodynamics Setup 231
- 4.13.5 Basic FCC Model 238
- 4.13.6 FCC Feed Configuration 241
- 4.13.7 FCC Catalyst Configuration 246
- 4.13.8 FCC Operating Variable Configuration 250
- 4.13.9 Initial Model Solution 252
- 4.13.10 Viewing Model Results 253
- 4.14 Workshop 4.2 Calibrating Basic FCC Model 258
- 4.15 Workshop 4.3 Build the Model for Main Fractionator and Gas Plant System 267
- 4.15.1 T201_MainFractionator 267
- 4.15.2 Overhead Wet Gas System, Primary Stripper Column T302_Stripper, and Debutanizer or Gasoline Stabilization Column T304_Stabilizer 275
- 4.15.3 T301_Absorber, Primary Absorber and T303_ReAbsorber, Sponge Oil Absorber, or Reabsorption Column 281
- 4.16 Workshop 4.4 Perform Case Studies to Quantify Effects of Key FCC Operating Variables 285
- 4.17 Workshop 4.5 Generate Delta-Base Vectors for Linear Programming (LP)-Based Planning 291
- 4.18 Conclusions 297 Nomenclature 298 Bibliography 299
- 5 Predictive Modeling of Continuous Catalyst Regeneration (CCR) Reforming Process 303
- 5.1 Introduction 304
- 5.2 Process Overview 304

- 5.3 Process Chemistry 311
- 5.4 Literature Review 313
- 5.4.1 Kinetic Models and Networks 314
- 5.4.2 Unit-Level Models 317
- 5.5 Aspen HYSYS Petroleum Refining Catalytic Reformer Model 319
- 5.6 Thermophysical Properties 323
- 5.7 Fractionation System 323
- 5.8 Feed Characterization 324
- 5.9 Model Implementation 328
- 5.9.1 Data Consistency 329
- 5.9.2 Feed Characterization 330
- 5.9.3 Calibration 330
- 5.10 Overall Modeling Strategy 333
- 5.11 Results 335
- 5.12 Applications 340
- 5.12.1 Effect of Reactor Temperature on Process Yields 341
- 5.12.2 Effect of Feed Rate on Process Yields 344
- 5.12.3 Combined Effects on Process Yields 345
- 5.12.4 Effect of Feedstock Quality on Process Yields 346
- 5.12.5 Chemical Feedstock Production 347
- 5.12.6 Energy Utilization and Process Performance 349
- 5.13 Refinery Production Planning 350
- 5.14 Workshop 5.1 Guide for Modeling CCR Units in Aspen HYSYS Petroleum Refining 354
- 5.14.1 Introduction 354
- 5.14.2 Process Overview and Relevant Data 354
- 5.14.3 Aspen HYSYS and Initial Component and Thermodynamic Setup 356
- 5.14.4 Basic Reformer Configuration 358
- 5.14.5 Input Feedstock and Process Variables 362
- 5.14.6 Solver Parameters and Running the Initial Model 368
- 5.14.7 Viewing Model Results 370
- 5.14.8 Updating Results with Molecular Composition Information 372
- 5.15 Workshop 5.2. Model Calibration 376
- 5.16 Workshop 5.3 Build a Downstream Fractionation System 387
- 5.17 Workshop 5.4. Case Study to Vary RON and Product Distribution Profile 395
- 5.18 Conclusion 400 Nomenclature 400 Bibliography 402

6 Predictive Modeling of the Hydroprocessing Units 405

- 6.1 Introduction 406
- 6.2 Aspen HYSYS Petroleum Refining HCR Modeling Tool 411
- 6.3 Process Description 416
- 6.3.1 MP HCR Process 416
- 6.3.2 HP HCR Process 419

- **x** Contents
 - 6.4 Model Development 419
 - 6.4.1 Workflow of Developing an Integrated HCR Process Model 419
 - 6.4.2 Data Acquisition 421
 - 6.4.3 Mass Balance 421
 - 6.4.4 Reactor Model Development 424
 - 6.4.4.1 MP HCR Reactor Model 424
 - 6.4.4.2 HP HCR Reactor Model 430
 - 6.4.5 Delumping of the Reactor Model Effluent and Fractionator Model Development 435
 - 6.4.5.1 Applying the Gauss–Legendre Quadrature to Delump the Reactor Model Effluent 438
 - 6.4.5.2 Key Issue of the Building Fractionator Model Overall Stage Efficiency Model 440
 - 6.4.5.3 Verification of the Delumping Method Gaussian–Legendre Quadrature 440
 - 6.4.6 Product Property Correlation 442
 - 6.5 Modeling Results of MP HCR Process 444
 - 6.5.1 Performance of the Reactor and Hydrogen Recycle System 444
 - 6.5.2 Performance of Fractionators 445
 - 6.5.3 Product Yields 447
 - 6.5.4 Distillation Curves of Liquid Products 449
 - 6.5.5 Product Property 451
 - 6.6 Modeling Results of HP HCR Process 454
 - 6.6.1 Performance of the Reactor and Hydrogen Recycle System 454
 - 6.6.2 Performance of Fractionators 455
 - 6.6.3 Product Yields 455
 - 6.6.4 LPG Composition and Distillation Curves of Liquid Products 459
 - 6.6.5 Product Property 462
 - 6.7 Model Applications 464
 - 6.7.1 H₂-to-Oil Ratio versus Product Distribution, Remained Catalyst Life, and Hydrogen Consumption 464
 - 6.7.2 WART Versus Feed Flow Rate Versus Product Distribution 466
 - 6.8 Model Application Delta-Base Vector Generation 468
 - 6.9 Workshop 6.1 Build a Preliminary Reactor Model of HCR Process 471
 - 6.10 Workshop 6.2 Calibrate Preliminary Reactor Model to Match Plant Data 481
 - 6.11 Workshop 6.3 Case Studies 497
 - 6.12 Workshop 6.4 Fractionation System for HCR Reactor 505
 - 6.13 Conclusion 512 Nomenclature 513 Bibliography 514
 - 7 Alkylation, Delayed Coking, and Refinery-Wide Simulation 517
 - 7.1 Alkylation 517
 - 7.1.1 Process Description 517

- 7.1.2 Feed Components and Alkylation Kinetics 518
- 7.1.3 Workshop 7.1 Hydrofluoric Acid Alkylation Process Simulation *519*
- 7.2 Delayed Coking 528
- 7.2.1 Process Description 528
- 7.2.2 Feed Characterization, Kinetic Lumps, and Coking Reaction Kinetics 529
- 7.2.3 Workshop 7.2 Simulation and Calibration of a Delayed Coking Process 530
- 7.2.4 Workshop 7.3 Simplified Model of Delayed Coker by Petroleum Shift Reactor for Production Planning Applications 542
- 7.3 Refinery-Wide Process Simulation 548
- 7.3.1 Refinery-Wide Process Model: A Key to Integrating Process Modeling and Production Planning 548
- 7.3.2 An Example of a Refinery-Wide Process Simulation Model 549
- 7.3.3 Tools for Developing Refinery-Wide Process Models 551
- 7.3.4 Deployment and Applications of the Refinery-Wide Process Models for Process Engineering and Production Planning 551
- 7.4 Conclusions 553 Bibliography 554

List of Computer Files 555

Index 559

About the Authors

Y.A. Liu, the Alumni Distinguished Professor and the Frank C. Vilbrandt Endowed Professor of Chemical Engineering at Virginia Tech, received his BS, MS, and PhD degrees from National Taiwan University, Tufts University and Princeton University, respectively.

He taught at Auburn University from 1974 to 1981, where his last position was Alumni Associate Professor endowed by the Auburn Alumni Association. He joined Virginia Tech as a Professor of Chemical Engineering in 1982. In 1983, he was appointed the Vilbrandt Professor. In 2012, he was appointed the Alumni Distinguished Professor. He has published numerous papers and ten books. These include six pioneering chemical engineering textbooks on *Artificial Intelligence in Chemical Engineering* (1991) and on *Neural Networks in Bioprocessing and Chemical Engineering* (1995), both by Academic Press; on *Industrial Water Reuse and Wastewater Minimization* (1999) by McGraw-Hill; on *Step-Growth Polymerization Process Modeling and Product Design* (2008), by Wiley; on *Refinery Engineering – Integrated Process Modeling and Optimization* (2012), by Wiley-VCH; and on *Design, Simulation and Optimization of Adsorptive and Chromatographic Separations: A Hands-on Approach* (2018), by Wiley-VCH.

His contributions to chemical engineering teaching, research, and industrial outreach have been recognized by over 30 university, national, and international awards. He is a Fellow of the American Institute of Chemical Engineers, a member of Virginia Tech's Academy of Teaching Excellence, and a recipient of the 1996 AspenTech International Award for University Teaching Excellence in computer-aided design. He has received three awards from the American Society of Engineering Education (ASEE): the Fred Merryfield Design Award (1993) for creativity and excellence in teaching and research of engineering design; the George Westinghouse Award (1990), ASEE's highest honor for an engineering educator under the age of 45 years for outstanding achievements in both teaching and scholarship; and the Western Electric Award (1984) for excellence in instruction of engineering students. In 1986, he received the National Catalyst Award for excellence in chemical education from the Chemical Manufacturers Association. He received the Distinguished Alumni Award in 1990 and the Outstanding Career Achievement Award in 2010, both from Tufts University. In 2015, he received the Virginia Professor of the Year Award from the US. Professors of the Year Awards Program, the only US national awards that recognize and celebrate extraordinary dedication to undergraduate teaching,

sponsored by the Carnegie Foundation for the Advancement of Teaching and the Council for Advancement and Support of Education.

Over the past 25 years, he devoted his school breaks helping petrochemical industries in developing countries and chemical industries in Virginia with technology development and engineering training. He has taught intensive training courses on computer-aided design, advanced process control, energy and water savings, and refinery and polymerization process modeling to over 7000 practic-ing engineers in China, Taiwan, and in the USA. For his contributions to teaching, research, and industrial outreach, he received the Virginia Outstanding Faculty Award from Virginia's Governor Jim Gilmore and the National Friendship Award from China's Premier Zhu Ronjie in 2000.

Ai-Fu Chang received his PhD in the Department of Chemical Engineering at Virginia Polytechnic Institute and State University ("Virginia Tech") in September, 2011. He received his BS in Chemical Engineering from National Taiwan University in 2001. He completed his doctoral dissertation on integrated process modeling and product design of biodiesel manufacturing and refinery reaction and fraction systems. The latter was the basis of this textbook. He has worked on several industrial modeling projects, including poly (acrylonitrile–vinyl acetate), hydrocracking, and biodiesel. These projects were collaborative efforts between Virginia Tech, Aspen Technology, and industrial manufacturers. He is currently employed by Chevron Phillips Chemical Company.

Kiran Pashikanti was a PhD student in the Department of Chemical Engineering at Virginia Tech. He received his BS in Chemical Engineering from Virginia Commonwealth University in 2005 and his PhD in Chemical Engineering from Virginia Tech in September, 2011. He has worked on several industrial modeling projects on integrated modeling of refinery reaction and fraction systems and of carbon-dioxide capture processes. This textbook grows out of his doctoral dissertation on the predictive modeling of fluid catalytic cracking (FCC) and catalytic reforming processes. He is currently a Senior Olefins and NGL Technical Support Engineer at Chevron Phillips Chemical Company.

Foreword by Lawrence B. Evans

Petroleum refining is a huge industry. Everyday the industry produces more than \$8 billion of refined products worldwide. Small improvements in the design and operation of a refinery can deliver large economic value. Crude petroleum is a natural material containing thousands of chemical compounds. The refinery converts the crude into a wide range of products from transportation fuels and petrochemical feedstocks to asphalt and coke. All of these products must meet demanding specifications while the refinery stays within tight environmental constraints.

Computer models are routinely used today to model petroleum refining processes. Engineers use them to design new refineries, to improve the operation of existing refineries, to make decisions on purchasing crude, and to optimize the planning of production. The ability to accurately model each step in the refining process is the key to optimizing the performance of the integrated refinery. Modeling a refinery is challenging because crude petroleum consists of thousands of chemical compounds. The refinery takes the large molecules in crude oil and cracks them into the smaller molecules of transportation fuels. It must also carry out chemical reactions to tailor the composition of products to meet specifications. These reactions take place through a complex set of reaction pathways.

For most of my career, I have worked on the development of computer models of chemical processes. Today, very good commercial software systems exist that enable engineers to build and use sophisticated models for refinery simulation and optimization. But these tools are mainly used by experts. This book by Professor Liu and his colleagues represents a major advance by enabling engineers who are not experts to develop and use state-of-the-art computer models for the simulation and optimization of integrated refinery reaction and fractionation processes.

The book is very well organized and systematic. It starts in the first chapter by showing how to represent the thermodynamic and physical properties of crude petroleum and the complex materials that comprise the intermediate streams in a refinery. The next two chapters cover the major separation units in a refinery: the atmospheric distillation unit (ADU) and the vacuum distillation unit (VDU). The final four chapters cover the most important chemical conversion units together with their product fractionation systems. These include the fluid catalytic cracking (FCC) process, the continuous catalytic reforming

xvi Foreword by Lawrence B. Evans

process, the hydroprocessing units, the alkylation and delayed coking units, and refinery-wide process simulation. Each chapter follows the same pattern starting first with a description of the unit, methods to organize and use the pertinent data from the refinery, and then the workflows to construct a rigorous model using existing commercial software. Finally, the chapter concludes with strategies to tune the models to match performance followed by case study examples, and the discussion of other applications of the models such as for refinery production planning. The book uses Aspen HYSYS for modeling, but most of the concepts are also applicable to other systems. A supplement to the book provides relevant spreadsheets and simulation files for all the models and examples presented in the book.

One of the unique strengths of the book is that it does not stop with the theory, or even the case study examples and hands-on workshops. It covers very practical problems of how to work with real data, how to construct the right level of detail for the problem you are solving and the data you have, and how to tune the model to plant data because, as the authors note, no model is perfect. The book contains numerous up-to-date references to the literature. The field of refinery process modeling is constantly developing and evolving. Individuals who need to contribute to this development or explore new directions will find the review of existing work valuable. The current edition of this book will be valuable to industrial practitioners and to the academic chemical engineers by exposing them to the problem of modeling and optimization of refinery processes and enabling them to solve realistic problems. It will take this work from a technology used mostly by experts to a tool that engineers in a refinery can use in their everyday work.

Lawrence B. Evans

Professor Emeritus of Chemical Engineering Massachusetts Institute of Technology Founder, Aspen Technology, Inc. Member, National Academy of Engineering Past President, American Institute of Chemical Engineers

Foreword by Steven R. Cope

Petroleum refining is one of the most important, exciting, and challenging industries on the face of the earth. It has been in existence for about 100 years, and during that time, it has evolved and advanced to the point where today's modern refinery is full of complex, cutting-edge technologies. Examples include state-of-the-art catalyst systems, complex reactor designs, sophisticated computer control hardware and software, and advanced safety and environmental controls.

A typical medium-sized refinery has hundreds of pumps, heat exchangers, and drums; dozens of furnaces, compressors, and high-temperature/high-pressure reactors; and thousands of control loops and associated advanced computer control technologies. This same typical refinery has dozens of different crudes and other feedstocks to choose from and dozens of products to maximize or minimize based on consumer demands and global marketplace economics. In addition to daily decisions about feedstocks and products, there are also hundreds of decisions to be made each day about operating temperatures, pressures, unit feed rates, catalyst addition rates, cycle times, distillation cut points, product specifications, inventory levels, etc.

In this very competitive global industry, it is critical to minimize overall operating costs while achieving the maximum possible "upgrade" for each hydrocarbon molecule. This is commonly referred to as "molecule management." All of these decisions and options require complex computer modeling to aid in the selection of feedstocks and product slates and in troubleshooting and optimizing the performance of individual refinery "processes" such as distillation units, fluidized catalytic cracking units, continuous catalyst regeneration reforming units, hydrocracking and hydrotreating units, and alkylation and delayed coking units. And eventually, all of these individual parts have to be pulled together into a refinery-wide process simulation model in order to feed a linear program (LP) model capable of optimizing the overall refinery. This integrated process modeling and optimization is the subject of the present book by Y. A. Liu, Ai-Fu Chang, and Kiran Pashikanti.

xviii Foreword by Steven R. Cope

Based on my review of this book, I believe that it provides a very solid introduction to integrated refinery process modeling and optimization, using many of the tools and techniques currently employed in modern refineries. I believe that this book and associated hands-on workshops would be a highly desirable investment by any engineering student considering a career in the petroleum refining industry.

Refining Director – North America ExxonMobil Refining & Supply Company Steven R. Cope

Preface

This book is a substantial revision of our book, *Refinery Engineering: Integrated Process Modeling and Optimization*, published in 2012. We rename our book as *Petroleum Refinery Process Modeling: Integrated Optimization Tools and Applications*, to better reflect the focus and contents of the new edition. Since the publication of our previous edition, there are three primary changes to the petroleum refining industry and simulation software technology that provide a strong motivation for us to update, revise, and expand the coverage of our textbook.

The first primary change to the petroleum refining industry is the declining crude oil price and its impact on the petrochemical industries. The senior author has worked as an advisor to FORTUNE's 2017 global top two oil companies (SINOPEC and PetroChina) since 1993 and has developed good knowledge and experience of the worldwide petrochemical industries. For many petroleum companies with aged oil fields that rely on old technology and extensive labor, it is more profitable to purchase cheaper crude oil from the world market rather than continue with expensive crude oil extraction and production. Thus, many petrochemical corporations are under tremendous pressure to cut their losses with upstream oil extraction and production. As a result, integrated process modeling and optimization of petroleum refining to improve the profit margins, as covered in our book, has become vitally important.

Next, petroleum refining has traditionally relied heavily on the knowledge and experience of engineers and operators to make good estimates of refining unit operating conditions and process performance. However, the growing tide of retiring professionals and increasing loss of experience throughout the industry is making this experience-based task difficult or impossible. Therefore, the use of user-friendly simulation tools and techniques becomes invaluable. Additionally, with a growing focus on intelligence manufacturing in the refining industries, the development of operator training simulators to aid in the training of new operators and engineers requires modeling tools that are user-friendly, efficient, and accurate in the prediction of plant data.

Third, since 2012, there has been a number of significant advances in the user interface and simulation capability for advanced software tools for refinery process modeling and optimization. In particular, Aspen HYSYS Petroleum Refining has included the new Petroleum Assay Manager that represents a major

improvement over the old Oil Manager in defining the hypothetical components (hypos or pseudocomponents) based on boiling point ranges of petroleum assay and in quantifying the physical properties of the hypos. It has added the powerful new tool of column hydraulic analysis for the sizing and rating (performance evaluation) of distillation columns and refinery fractionators. It has provided new modeling tools for refining reaction processes such as alkylation, delayed coking, and isomerization.

Additionally, Aspen HYSYS as well as other Aspen engineering suites of software tools have developed a new "common" user interface that is vastly different from and more user-friendly than the old user interface shown in the hundreds of figures of our first edition published in 2012, making it essential for us to update and revise our textbook. The new user interface is easy to use and it combines simulation, integration, and optimization into a single framework through activation tools. Once a user has developed a process simulation model, the new model interface enables the user to "activate": (1) the rigorous energy-saving analysis based on pinch technology; (2) the rigorous heat exchanger design and rating; and (3) process economic evaluation for profitability analysis. Additionally, the new user interface "integrates" process simulation with new tools for safety analvsis based on process relief devices and safety valves. By doing so, the new Aspen HYSYS interface greatly accelerates collaboration among engineers and specialists involved in process, production, equipment design, cost, safety, and so on into a common software platform. Other commercial simulation tools do not have this unique and significant capability in activation and integration.

Our specific revisions include the following:

- 1) We have replaced the screen images of our illustrative examples and hands-on workshop steps in the first six chapters based on the new user interface. This amounts to over 600 figures.
- 2) We have included new workshops and application case studies in each chapter and have expanded the discussion of our hands-on workshops with additional step-by-step illustrations. Sections 1.7 (petroleum assay manager), 1.8 (from oil manager to petroleum assay manager), 2.4 (model development and recommendation to correctly handle column efficiency), 2.10, 2.12, and 2.13 (new case studies), 2.14 (new column hydraulic analysis tool), 2.15 (petroleum distillation column), 4.13 (complete simulation of integrated FCC reactor, main fractionator and gas plant system), and 6.12 (fractionation system for hydrocracking reactor) are all new. We cover the new petroleum assay manager and its improvement over the old oil manager, column hydraulic analysis, and so on. We teach the reader how to use the new column hydraulic analysis tool for rating and retrofit of existing columns. Workshop 4.3 is significant, as it is the first detailed, step-by-step demonstration of how to build a simulation model for the FCC main fractionator and gas plant system that has ever appeared in a textbook or in the literature. Refinery engineers can apply the same procedure to build the simulation models for the fractionation systems for reformers, hydrocrackers, delayed cokers, and so on.

- 3) We have written a new Chapter 7 that covers the simulation and optimization of alkylation, delayed coking, and refinery-wide simulation and profit margin analysis.
- 4) We have updated our reference sections to include new literature published since 2012 and additional references for further reading.

Lastly, we should mention that we have not found any new competing textbooks and reference volumes published since 2012, and we have taught the materials in this revision to engineers and scientists in global top two oil companies. Our trainees find our materials, particularly the hands-on workshops and case studies, easy to learn and very useful to their simulation and optimization of refining processes from plant data and to significantly increase their refinery profit margins.

Virginia Polytechnic Institute and State University Blacksburg Y. A. Liu

Acknowledgments

It is a pleasure to thank a number of very special persons and organizations that contributed to the preparation of this book.

We would like to express our sincere appreciation to the following senior leaders of Aspen Technology, Inc., for their strong support of the Center of Excellence in Process System Engineering at Virginia Tech since 2002: Antonio Pietri, President and CEO; Willie Chan, Senior Vice President and Chief Technology Officer; Filipe Soares-Pinto, Senior Vice President, Asia-Pacific; Andy Lui, Vice President, R & D; Vikas Dhole, Vice President, Engineering Product Management; and Steven Qi, Vice President, Customer Support and Training; Fran Royer, Senior Manager, University Programs; and Theresa Foley, Senior Customer Care Specialist. We thank the following refinery modeling experts at Aspen Technology for teaching us the art and practice of refinery process modeling: Sandeep Mohan, Dinu Ajikutira, Stephen Dziuk, Hiren Shethna, Dave Dhaval, Darin Campbell, Maurice Jett, and John Adams.

We would like to thank the China Petroleum and Chemical Corporation (SINOPEC) and Formosa Petrochemical Corporation (FPCC) for challenging us to enter the field of refinery process modeling in 2007.

We thank BAE Systems, Aspen Technology, SINOPEC, China National Petroleum Company (PetroChina), Novozymes Biologicals, Universal Fibers, Eastman Chemical, and Mid-Atlantic Technology, Research and Innovation Center for supporting our educational programs in computer-aided design and process system engineering at Virginia Tech. We are very grateful to Mr Cao Xianghong for his strong support of this work during his tenure as Senior Vice President and Chief Technology Officer of SINOPEC and to Mr He Shengbao, Mr Du Jizhou, Mr Xu Yingjun and Mr Chen Yuanpeng, senior executives for research and development at PetroChina for their strong support in refinery technology development and engineering training.

We thank Professor Lawrence B. Evans of Massachusetts Institute of Technology and Mr Steve Cope, ExxonMobil, who kindly took time to write the FORE-WORD for our text.

The senior author would like to thank his wife, Hing-Har Liu, for her support through the laborious process of this book writing and revision.

Scope of Textbook

The purpose of this text to guide senior-level undergraduates, graduate students, and industrial practitioners how to quantitatively model key refinery reaction and fractionation processes. In addition, this text contains advanced modeling topics (such as kinetic network calibration) that will prove useful to researchers and practitioners alike. After following the procedures in this text, the reader will be able to (1) identify key data required for building reaction and fractionation models with commercial software; (2) filter extensive data available at the refinery and use plant data to begin calibrating available models; (3) extend model to include key fractionation submodels; (4) provide a sound and informed basis to understand and exploit plant phenomena to improve yield, consistency, and performance of a given unit; and (5) apply models in an overall refinery context through refinery planning based on linear programming (LP).

We present the topics in a logical progression from basic refinery thermodynamic and physical property predictions to detailed guides for modeling complex reaction and fractionation units. Chapter 1 introduces the reader to the basics of dealing with the thermodynamics and physical property predictions of hydrocarbon components in the context of process modeling. Chapters 2 and 3 use the key concepts of fractionation lumps and physical properties to develop detailed models and workflows for atmospheric or crude (CDU) and vacuum (VDU) distillation units. Chapters 4–7 are largely self-contained that discuss modeling FCC, catalytic reforming, hydroprocessing units, alkylation and delayed coking. In general, we discuss each unit in the following order.

- Process description
- Modeling and literature review
- Key modeling details
 - Kinetic models
 - Fractionation models
- Model calibration
- Model validation with industrial data collected by the authors
- Industrially relevant case studies
- Model application in LP refinery planning context
- Workshops and step-by-step guides for building models using commercial software

In addition, we provide significant supporting materials alongside the text (accessible through Wiley-VCH website, wiley-vch.de/en/ \rightarrow shop \rightarrow bookfinder \rightarrow petroleum refinery process modeling \rightarrow student materials). These materials include relevant spreadsheets, guides, and sample simulation files for all models developed in the workshops throughout this text.

We hope that this text allows both academia and industrial practitioners to understand, model, and optimize complex refinery reaction and fractionation systems. The goal of all modeling exercises presented is to improve yield, consistency, profitability, and performance of a given unit and the refinery as a whole.

Software Selection and Copyright Notice

Aspen HYSYS and Aspen HYSYS Petroleum Refining (Version 8.8 or new version) are available from Aspen Technology, Cambridge, MA (http://www.aspentech.com/).

Microsoft Excel and Visual Basic for Applications (VBA) are available as part of Microsoft's Office software package (http://office.microsoft.com/en-us/ default.aspx).

Aspen HYSYS[®] and Aspen HYSYS Petroleum Refining[®] are available from Aspen Technology, Bedford, MA (http://www.aspentech.com/).

Screenshots of input information and output results from Aspen HYSYS[®] and Aspen HYSYS Petroleum Refining[®] are printed with permission by Aspen Technology, Inc. AspenTech[®], aspen ONE[®], Aspen HYSYS[®], Aspen HYSYS Petroleum Refining[®], and the Aspen leaf logo are trademarks of Aspen Technology, Inc. All rights reserved.

Characterization and Physical and Thermodynamic Properties of Oil Fractions

1

This chapter introduces the common methods for characterizing crude oils and petroleum fractions (i.e., oil fractions) and estimating their thermophysical properties. We begin by defining the essential bulk and fractional properties of oil fractions and by explaining the various types of distillation curves and their interconversion (Section 1.1.1). Next, we explain the generation of hypothetical components ("hypos") or pseudocomponents of oil fractions based on boiling point ranges and the estimation of density and molecular weight distributions of the resulting hypos (Section 1.3). Sections 1.4–1.9 present six hands-on workshops using Excel spreadsheets and Aspen HYSYS Petroleum Refining for (1) the interconversion of distillation curve data; (2) the extrapolation of an incomplete distillation curve data; (3) the calculation of the mean average boiling point (MeABP) of a given oil fraction; (4) specifying an oil fraction in the *old* oil manager; (5) representing an oil fraction in the *new* petroleum assay manager; and (6) conversion from the oil manager to petroleum assay manager and improvements of the petroleum assay manager.

Section 1.10 introduces the essential thermophysical properties for developing refinery reaction and fractionation process models. Section 1.10.1 presents the useful methods for estimating the thermophysical properties (e.g., molecular weight, liquid density, critical properties, ideal gas heat capacity, and heat of vaporization) of pseudocomponents of oil fractions. Section 1.11 describes the important thermodynamic models for refinery reaction and fractionation processes. Section 1.12 discusses the estimation methods for other physical properties such as flash point, freeze point, and PNA (paraffin, naphthalene, and aromatic) content of a refinery feed. Section 1.13 summarizes the conclusion of this chapter. Finally, we present the nomenclature and bibliography.

1.1 Crude Assay

Crude oils and petroleum fractions are the most important feedstocks for refining processes. To properly simulate the refining processes, we must have good understanding of the compositional information and thermophysical properties of crude oils and petroleum fractions. However, the complexity of molecular composition of crude oils and petroleum fractions makes it hardly possible to

1

2 1 Characterization and Physical and Thermodynamic Properties of Oil Fractions

identify individual molecules. Instead, modern refiners use assay to characterize crude oils and petroleum fractions.

A typical crude assay includes two types of information for an oil sample: (1) *bulk properties* and (2) *fractional properties*. Table 1.1 provides examples of both types of properties of a crude assay. For design and modeling purposes, it is always the best practice to have process data obtained in the same period as assay data, as the properties and composition of crude change over time as it is produced from a given well. Kaes [1] suggested that the assay data should not be 2 years older than the process data used to build process simulation. We explain both bulk and fractional properties in the following sections.

1.1.1 Bulk Properties

Bulk properties include specific gravity, sulfur content, nitrogen content, metal (Ni, V, Fe, etc.) content, asphaltene content, C:H ratio, pour point, flash point, freeze point, smoke point, aniline point, cloud point, viscosity, carbon residue, light hydrocarbon yields (C1–C4), acid number, refractive index, and boiling point curve. We generally use the *API (American Petroleum Institute) gravity* to specify the specific gravity (SG) of the crude oil as

$$API = (141.5/SG) - 131.5 \tag{1.1}$$

or

$$SG = 141.5/(API + 131.5)$$
 (1.2)

SG is the specific gravity defined as the ratio of the density of the crude oil to the density of water both at 15.6 °C (60 °F). The API gravity varies from less than 10 for very heavy crudes to between 10 and 30 for heavy crudes, to between 30 and 40 for medium crudes, and to above 40 for light crudes.

The *sulfur content* is expressed as a percentage of sulfur by weight and varies from less than 0.1% to greater than 5%. Crude oils with less than 1 wt% sulfur are called *low sulfur or sweet* and those with more than 1 wt% sulfur are called *high sulfur or sour*. Sulfur-containing constituents of the crude oil include simple mercaptans (also known as thiols), sulfides, and polycyclic sulfides. *Mercaptan sulfur* is simply an alkyl chain (R–) with –SH group attached to it at the end. The simplest form of R–SH is *methyl mercaptan*, CH₃SH.

The *pour point* is a measure of how easy or difficult it is to pump the crude oil, especially in cold weather. Specifically, the pour point is the lowest temperature at which a crude oil will flow or pour when it is chilled without disturbance at a controlled rate. The pour point of the whole crude or oil fractions boiling above 232 °C (450 °F) is determined by the ASTM test method D97.

The *flash point* of a liquid hydrocarbon or an oil fraction indicates its fire and explosion potential, and it is the lowest temperature at which sufficient vapor is produced above the liquid to form a mixture with air that a spontaneous ignition can occur if a spark is present. One of the standard ASTM test methods for flash point is D3278.

The *freeze point* is the temperature at which the hydrocarbon liquid solidifies at atmospheric pressure. It is an important property of kerosene and jet fuels

Table 1.1 A	typical	crude a	assay.
-------------	---------	---------	--------

	Whole crude	C4 and C4–	C5–74 °C	74–166 °C	166–480 °C	480–249 °C	249–537 °C	537 °C+
Cut volume, %	100	1.57	8.26	20.96	17.11	17.52	24.71	9.87
API gravity	38.6	117.9	80.6	55.7	42.82	34.7	25.5	10.9
Carbon, wt%		82.5	83.9	86.0	86.1	86.4	86.4	
Hydrogen, wt%		17.5	16.1	14.0	13.9	13.2	12.8	
Pour point, °C	-12.2				-53.9	-10.6	38.9	56.7
Sulfur, wt%	0.3675			0.0137	0.058	0.2606	0.6393	1.1302
Nitrogen, ppm	970	0	0	0	2.4	94.6	1346	4553
Viscosity at 20 °C/68 °/, cSt	4.59	0.41	0.46	0.73	1.74	6.76	118.4	1 789 683
Viscosity at 100 °C/212 °/, cSt	1.35	0.24	0.26	0.38	0.68	1.43	5.91	372
Mercaptan sulfur, ppm	25			22.8	35.3			
CCR, wt%	1.71					0	0.11	14.21
Nickel, ppm	1.7					0	0.1	12.8
Vanadium, ppm	5.2					0	0.1	41.5
Heat of combustion (gross), BTU/lb	19701							
Heat of combustion (net), BTU/lb	18 496	19078	18729	18 561	18 546			
Salt content, ptb	1.7							
Paraffins, vol%		100	84.77	46.64	48.83	39.42	30.18	
Naphthenes, vol%		0	13.85	36.56	31.54	37.44	31.83	
Aromatics, vol%				16.8	15.15			
Freeze point, °C					-43.9	-0.6		
Smoke point, mm					23.3			
Cetane index 1990 (D4737)	37	131	44	30	43	55	59	43
Cloud point, °C					-47.8	-3.9		

(Continued)

Table 1.1 (Continued)

	Whole crude	C4 and C4–	C5–74°C	74–166 °C	166-480°C	480–249 °C	249–537 °C	537 °C+
Aniline point, °C					57.7	69.5	87.1	
Distillation type	D1160	D86	D86	D86	D86	D86	D1160	D1160
ASTM IBP, °C	0.2	-70.9	-57.2	206.9	97.2	263.1	365.2	559.1
5 vol%, °C	51.9	-27.3	-32.9	212.1	100.1	265.6	367.8	561.7
10 vol%, °C	79.7	13.8	-10.1	214.8	101.6	266.7	373.1	565.7
20 vol%, °C	119.9	30.2	-1.0	220.8	104.9	269.7	384.1	575.1
30 vol%, °C	160.7	36.8	2.7	227.6	108.7	273.7	396.7	585.8
40 vol%, °C	205.6	38.2	3.4	235.8	113.2	278.4	410.8	598.2
50 vol%, °C	254.3	38.3	3.5	244.1	117.8	283.2	426.3	612.4
60 vol%, °C	308.7	42.7	5.9	254.1	123.4	288.7	442.8	631.2
70 vol%, °C	364.0	46.5	8.1	265	129.4	294.8	459.5	653.1
80 vol%,°C	425.6	49.3	9.6	276.8	136.0	301.4	477.6	681.3
90 vol%, °C	502.9	47.5	8.6	289.4	143.0	308.3	496.0	718.7
95 vol%, °C	570.9	47.1	8.4	296.4	146.9	312.2	507.4	751.0
ASTM EBP, °C	730.7	47.9	8.8	307.7	153.2	318.2	520.7	791.6

because of the very low temperatures encountered at high altitudes in jet planes. A standard test method for the freeze point is ASTM D4790.

The *smoke point* refers to the height of a smokeless flame of fuel in millimeters beyond which smoking takes place. It reflects the burning quality of kerosene and jet fuels and is determined by ASTM D1322.

The *aniline point* represents the minimum temperature for complete miscibility of equal volumes of aniline and petroleum oil. It is an important property of diesel fuels and is measured by ASTM D611.

The *cloud point* refers to the temperature at which solidifiable components (waxes) present in the oil sample begin to crystallize or separate from solution under a method of prescribed chilling. It is an important specification of middle distillate fuels, as determined by ASTM D2500.

The *Conradson carbon residue (CCR)* results from ASTM D189. It measures the coke-forming tendencies of oil. It is determined by destructive distillation of a sample to elemental carbon (coke residue) in the absence of air, expressed as the weight percentage of the original sample. A related measure of the carbon residue is called *Ramsbottom carbon residue*, as determined by ASTM D524-15. A crude oil with a high CCR has a low value as a refinery feedstock.

The *acid number* results from ASTM D3339-11 that determines the organic acidity of a refinery stream.

The *refractive index* represents the ratio of the velocity of light in a vacuum to that in the oil. It is determined by ASTM D1218.

The gross heat of combustion or high heating value (HHV) is the amount of heat produced by the complete combustion of a unit quantity of fuel. We obtain the gross heat of combustion by cooling down all products of the combustion to the temperature before the combustion and by condensing all the water vapor formed during combustion.

The *net heat of combustion or lower heating value (LHE)* is obtained by subtracting the latent heat of vaporization of the water vapor formed by combustion from the gross heat of combustion or higher heating value.

The *true boiling point (TBP) distillation* [1] of a crude oil or petroleum fractions results from using the US Bureau of Mines Hempel method and ASTM D285. Neither of these methods specifies the number of theoretical stages or the molar reflux ratio used in the distillation. Consequently, there is a trend toward applying a 15.5 distillation according to ASTM D2892, instead of the TBP. The 15.5 distillation uses 15 theoretical stages and a molar reflux ratio of 5.

A key result from a distillation test is *the boiling point curve*, that is, the boiling point of the oil fraction versus the fraction of oil vaporized. The *initial boiling point (IBP)* is the temperature at which the first drop of liquid leaves the condenser tube of the distillation apparatus. The final boiling point or the *end point (EP)* is the highest temperature recorded in the test.

In addition, oil fractions tend to decompose or crack at a temperature of approximately 650 $^{\circ}$ F (344 $^{\circ}$ C) at 1 atm. Thus, the pressure of TBP distillation is gradually reduced to as low as 40 mmHg, as this temperature is approached to avoid cracking of the sample and distorting the measurements of true components in the oil.

6 1 Characterization and Physical and Thermodynamic Properties of Oil Fractions

The TBP distillation typically takes much time and labor. In practice, we carry out the distillation test of oil fractions using other less costly ASTM methods and convert the resulting boiling point curve into TBP curve using correlations, as given in the *API Technical Data Book – Petroleum Refining* [2]. We have implemented these correlations in an Excel spreadsheet, *ASTMConvert.xls*, for the interconversion of boiling point curves from typical ASTM distillation methods in a hands-on workshop in Section 1.4.

The ASTM D86 distillation of an oil fraction takes place at laboratory room temperature and pressure. Note that the D86 distillation will end below an approximate temperature of 650 °F (344 °C), at which petroleum oils begin to crack at 1 atm.

The ASTM D1160 distillation of an oil fraction is applicable to high-boiling oil samples (e.g., heavy heating oil, cracker gas oil feed, and residual oil) for which there is a significant cracking at atmospheric pressures. The sample is distilled at a reduced pressure, typically at 10 mmHg, to inhibit cracking. In fact, at 10 mmHg, we can distill an oil fraction up to temperatures of 950–1000 °F (510–538 °C), as reported on a 760 mmHg basis. The reduced pressure used for D1160 distillation produces a separation of components that is more ideal than that for D86 distillation.

The *ASTM D2887 distillation* of an oil fraction is a popular chromatographic procedure to "simulate" or predict the boiling point curve of an oil fraction. We determine the boiling point distribution by injecting the oil sample into a gas chromatograph that separates the hydrocarbons in a boiling point order. We then relate the retention time inside the chromatograph to the boiling point through a calibration curve.

1.1.2 Fractional Properties

Bulk properties provide a quick understanding of the type of the oil sample such as sweet and sour, and light and heavy. However, refineries require *fractional properties* of the oil sample that reflects the property and composition for a specific boiling point range to properly refine it into different end products such as gasoline, diesel, and raw materials for chemical process. Fractional properties usually contain PNA contents, sulfur content, and nitrogen content for each boiling point range; octane number for gasoline; freezing point; cetane index; and smoke point for kerosene and diesel fuels.

The *octane number* is a measure of the knocking characteristics of a fuel in a laboratory gasoline engine according to ASTM D2700 [1]. We determine the octane number of a fuel by measuring its knocking value compared to the knocking of a mixture of *n*-heptane and isooctane or 2-2-4-trimethylpentane (224TMP). By definition, we assign an octane number of 0 to pure *n*-heptane and of 100–224TMP. Therefore, a mixture of 30% heptanes and 70% isooctane has an octane number of 70.

There are two specific octane numbers in use. The *motor octane number* (*MON*) reflects the engine performance at highway conditions with high speeds (900 rpm), whereas *the research octane number* (*RON*) corresponds to the low-speed city driving (600 rpm). RON is typically higher than MON because of engine test efficiencies. The posted octane number is an average of MON and RON.

The *cetane number* measures the ease for self-ignition of a diesel fuel sample and is essentially an opposite of the octane number. It represents the percentage of pure cetane (*n*-hexadecane) in a blend of cetane and alpha-methylnaphthalene that matches the ignition quality of a diesel fuel sample. This quality is important for middle distillate fuels.

The *cetane index* is a substitute for the cetane number of diesel fuel. It is calculated based on the fuel's specific gravity and distillation range using ASTM methods D976 and D4737.

1.1.3 Interconversion of Distillation Curves

While building a refining process simulation, the distillation curve of the oil sample is the most confusing information among assay data, as different methods are used to obtain volatility characteristics of an oil sample. The most widely used tests of distillation curve are ASTM D86, ASTM D1160 (atmospheric distillation), ASTM D1160 (vacuum distillation), ASTM D2887 (chromatographic simulation), and TBP. API Technical Databook [2] presents the characteristics of each test and gives the correlations to perform interconversion among these ASTM distillation types. Most commercial process simulators include the capability to convert one type of distillation curve into the other. We develop an MS Excel spreadsheet, which automates the API conversion between any two of the ASTM distillation types (see Figure 1.1). Section 1.4 presents a hands-on workshop for this interconversion of distillation curve data.

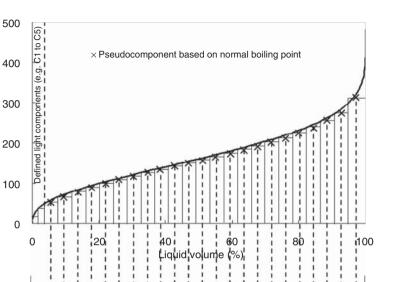
760 mmHg		760 mmHg	760 mmHg	760 mm-lg	760 mmHg	760 mmHg	760 mmHg	760 mmHg
ASTM-D36 (C)	Vol %	ASTM-D86 (F)	TBP (F)	TBP (C)	TBP (C)	TBP(F)	ASTM-D86 (F)	ASTM-D86 (C)
160.0	0%	320	259.1	126.2	128.2	259.1	320	160.0
176.7	10%	350	316.5	158.1	158.1	316.5	350	176.7
193.3	30%	380	372.6	189.2	189.2	372.6	380	193.3
206.7	50%	404	411.2	210.7	210.7	411.2	404	206.7
222.8	70%	433	451.2	232.9	232.9	451.2	433	222.8
242.8	90%	469	496.7	258.2	258.2	496.7	469	242.8
248.9	100%	480	503.0	261.7	261.7	503.0	480	248.9
			760 mmHg	760 mm-lg	760 mmHg	760 mmHg		
ASTM-D2887(C)	Wt%/Vol%	ASTM-D2887(F)	TBP (F)	TBP (C)	TBP (C)	TBP(F)	ASTM-D2887 (F)	ASTM.028870
145.0	5%	293	322.2	161.2	348.0	658.4	639.1711023	337.3
151.7	10%	305	327.7	164.3	369.0	696.2	685.3443333	363.0
162.2	30%	324	332.4	166.9	4(6.0	762.8	756.2204757	402.3
168.9	50%	336	336.0	168.9	453.0	811.4	811.4	433.0
173.3	70%	344	339.6	170.9	459.0	858.2	861,2301007	460.7
181.7	90%	359	350.1	176.7	495.0	923.0	922.5542047	494.8
187.2	95%	369	357.4	180.8	512.0	953.6	974.5478925	523.5
198.9	100%	390	366.2	185.7	556.0	1032.8	1038.378625	559.1
			760 mmHg	760 mm-lg	760 mmHq	760 mmHa		
ASTM-D2287 (C)	Wt%/Vol. %	ASTM-D2287 (F)		ASTM-D86 (C)	ASTM-D86 (C)	ASTM-D86 (F)	ASTM-D2887 (F)	ASTM-02287 (
25.0	0%	77	121.3	49.6	298.8	569.9	446.4892018	230.3
33.9	10%	93	128.2	53.5	349.7	661.5	645 3731877	3185
64.4	30%	148	154.8	68.2	392.0	737.5	7*5.3377437	379.5
101.7	50%	215	206.3	96.8	424.2	795.5	787,7262099	419.8
140.6	70%	285	270.5	132.5	459.0	858.2	856.5298061	458.1
182.2	90%	360	334.3	167.8	514.5	958.0	964.7774337	518.2
208.9	100%	408	367.5	186.4	577.9	1072.2	1273.441992	689.7
760 mmHg		760 mmHg	760 mmHg	760 mm-lg	760 mmHg	760 mmHg	760 mnHg	760 mnHg
STM-D1160 (C)	Vol%	ASTM-D1'60 (F)	TBP (2)	TBP (C)	TBP (C)	TBP(F)	ASTM-D1160 (F)	
369.0	10%	696.2	686.2	363.4	143.1	289.5	300.1	149.0
406.0	30%	762.3	757.9	403.3	201.5	394.7	400.1	204.5
433.0	50%	811.4	811.4	433.0	246.1	475.0	475.0	246.1
459.0	70%	858.2	857.9	458.8	267.7	549.9	550.0	287.8
495.0	90%	923	922.5	494.7	343.3	650.0	650.0	343.4

Figure 1.1 Conversion spreadsheet for distillation curves.

8 1 Characterization and Physical and Thermodynamic Properties of Oil Fractions

1.2 Boiling Point-Based Hypothetical or Pseudocomponent Generation

To simulate refining processes, the first task is to construct a hypothetical (hypo) or pseudocomponent scheme to characterize the feedstock. Data requirement and definition of the hypos or pseudocomponents depend on the type of the refining process to be modeled. There are different issues to consider when specifying hypos for fractionation and reaction units.


The hypos for fractionation units have to accurately characterize volatilities of the hydrocarbons in the feedstock in order to calculate the vapor-liquid equilibrium in distillation columns. Therefore, refiners use hypos based on boiling point ranges to represent the feedstock and model fractionation units. For modeling of reaction units, refiners partition the hydrocarbons into multiple lumps (or model compounds) based on molecular structure or/and boiling point ranges and assume the hydrocarbons of each lump to have an identical reactivity in order to develop the reaction kinetics for reaction units.

This section deals with hypo or pseudocomponent generation based on boiling point ranges for fractionation units. Chapters 4–7 will represent the hypo schemes for the major reaction units in modern refinery – fluid catalytic cracking (FCC) unit, catalytic reformer, catalytic hydrocracker, delayed coker, and alkylation unit.

Most commercial process simulators include the capability to generate hypos based on boiling point ranges representing the oil fractions. Workshop 1.4 in Section 1.7 demonstrates how to use Aspen HYSYS to generate hypos based on boiling point ranges for a given oil fraction with required analysis data.

Specifically, there are four steps to develop pseudocomponents based on boiling point ranges to represent petroleum fraction.

- 1) Convert ASTM D86/ASTM D1160/ASTMD2887 into TBP curve if TBP curve is not available.
 - We develop a spreadsheet, *ASTMConvert.xls*, that allows interconversion between different ASTM distillation types based on the correlations from [2] (see Figure 1.1).
- 2) Cut the entire boiling point range into a number of cut point ranges, which are used to define pseudocomponents (see Figure 1.2).
 - The determination of number of cuts is arbitrary. Table 1.2 provides the typical boiling point widths for pseudocomponents in commercial process simulators.
- 3) Estimate the density distribution of pseudocomponents if only the bulk density is available.
 - Assume the UOP or Watson–Murphy "characterization factor" or *K* factor to be constant throughout the entire boiling point range and calculate the mean average boiling point (MeABP). Dissimilar to weight average boiling point (WABP), MeABP is defined as the average of molal average boiling

Temperature (°C)

 $H_{e}^{0} = \begin{pmatrix} 20 & 40 & 60 & 80 & 100 \\ 100 & 100 & 100 & 100 \\ 0 & 20 & 40 & 60 & 80 & 100 \\ 100 & 100 & 100 & 100 \\ 100 &$

Figure 1.2 Relationship between pseudocomponent properties and the TBP curve. (Redraw from [1].)

Table 1.2Typical boiling point widths forpseudocomponents in commercial process simulators.

Boiling point range	Suggested number of pseudocomponents
IBP-800°F (425°C)	30
800–1200 °F (650 °C)	10
1200–1650 °F (900 °C)	8

10 1 Characterization and Physical and Thermodynamic Properties of Oil Fractions

point (MABP) and cubic average boiling point (CABP). The following equations define these four boiling point indicators:

$$WABP = \sum_{i=1}^{n} x_i T_{bi}$$
(1.3)

$$MABP = \sum_{i=1}^{n} x_i T_{bi}$$
(1.4)

$$CABP = \left(\sum_{i=1}^{n} x_i T_{bi}^{1/3}\right)^3$$
(1.5)

$$MeABP = \frac{MABP + CABP}{2}$$
(1.6)

where T_{bi} indicates the boiling point of component *i* and x_i in Eqs. (1.3)–(1.5) indicates weight fraction, molar fraction, and volume fraction of component *i*, respectively. Here, we create a spreadsheet tool (see Figure 1.3) to perform the iteration of estimating MeABP based on the methods presented by Bollas *et al.* [3] (see Section 1.5)

$$K_{\rm avg} = [MeABP]^{0.333} / SG_{\rm avg}$$
(1.7)

where K_{avg} is the Watson K factor and SG_{avg} is the bulk specific gravity 60 °F/60 °F.

• Calculate the density distribution of the entire boiling point range.

$$SG_i = [T_{i, b}]^{0.333} / K_{avg}$$
(1.8)

where SG_{*i*} is the specific gravity 60 °F/60 °F of pseudocomponent *i* and $T_{i,b}$ is the normal boiling point of pseudocomponent *i*.

 Estimate molecular weight distribution of the entire boiling point range if not available and required properties for modeling purpose (see Section 1.4 for details).

Lacking the analysis data of high boiling point range (>570 °C) is a common problem while building pseudocomponents based on boiling point ranges. Therefore, we need to extrapolate the incomplete distillation curve in order to cover the entire boiling point range. Least squares and probability distribution functions are most widely used to perform the extrapolation of distillation curve in most commercial process simulators. Sanchez *et al.* [5] presented a comprehensive review of using probability distribution functions to fit distillation curves of petroleum fraction. They conclude that the cumulative beta function (with four parameters) can represent a wide range of petroleum products. The beta cumulative density function is

$$f(x,\alpha,\beta,A,B) = \int_{A}^{x \le B} \left(\frac{1}{B-A}\right) \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \left(\frac{x-A}{B-A}\right)^{\alpha-1} \left(\frac{B-x}{B-A}\right)^{\beta-1}$$
(1.9)

where α and β refer to the positive-valued parameters that control the shape of the distribution and Γ refers to the standard gamma function, which is an extension of the factorial function, with its argument shifted down by 1 to real and

	A	В	C	D
4	TBP Curve @ 760 mmHq	1		
5	Vol%	Temperature (F)		Initial
6	0	256.8		0
7	10	368.2		5
8	30	447.2		10
9	50	516.9		15
10	70	583.9		20
11	90	633.4		25
12	100	722.2		30
13				35
-	Specific gravity	0.8505		40
	Refractive index @ 20 C			45
	Oxygen content (wt%)	0.00		50
17	Initial MeABP (F) [Enter as first guess in yellow cell]	506.76		55
18	· · · · ·			60
19	Trial MeABP (F)	497.46		65
20	Trial MeABP (R)	957.13		70
21	Watson-K	11.59		75
22				80
23	Calc. VABP (R)	969.22		85
	Calc. WABP (R)	972.98		90
	Calc. MABP (R)	948.85		95
	Calc. CABP (R)	965.42		
27				
	Calc. MeABP (R)	957.13		
29				
30	Error (Trial MeABP - Calc. MeABP)	0.00000	(Use goals	eek to drive
10000	Correlation for refractive index	A	В	С
	Naphthas	1.028	0.53	
	Straight or hydrosulfurized gas oils	0.9734	0.59	
	Deeply hydrogenated fractions	0.9713	0.59	
	Short residues	0.9345	0.63	0.006
and the second division of	FCC feeds	0.0005	0.00	0.006
-	Coal liquids	Naphthas Straight or hydrosulf	urized oas oils	0.006
	Stream cracker residue	Deeply hydrogenate		5.000
40		Short residues		
41	Selected correlation	FCC feeds Coal liquids		
42		Stream cracker resid	ue	
43		FCC feeds		

Figure 1.3 Iteration spreadsheet for MeABP calculation.

complex numbers. That is, if *v* is a positive integer, then $\Gamma(v) = (v - 1) ! A$ and *B* parameters set lower and upper bounds on the distribution and *x* represents normalized recovery. We develop an MS Excel spreadsheet, *Beta.xls*, to perform the extrapolation of distillation curve by using the cumulative beta distribution function (see Figure 1.4).

Section 1.5 presents Workshop 1.2 for applying our spreadsheet to extrapolate an incomplete distillation curve. We note that we should use the density distribution together with the boiling point whenever the density distribution is available (in step 3), because the assumption of constant Watson *K* factor always fails in low and high boiling point ranges of the distillation curve. Figure 1.5 compares the pseudocomponents generated from constant Watson *K* factor and from density distribution. Using a constant Watson *K* factor shows significant deviations from assay data on estimating the densities of pseudocomponents, particularly in both

12 1 Characterization and Physical and Thermodynamic Properties of Oil Fractions

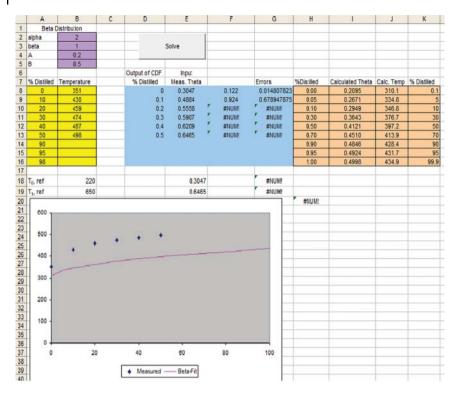
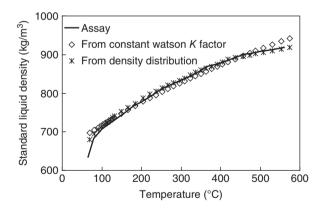



Figure 1.4 Spreadsheet for extrapolating distillation curve.

Figure 1.5 Comparison of the pseudocomponents generated from constant Watson *K* factor and density distribution. (Adapted from Kaes 2000 [1].)

light and heavy ends of the distillation curve. On the other hand, using the density distribution is able to provide good estimation of the densities of pseudocomponents. Estimating the densities of pseudocomponents is the most important part when developing pseudocomponents because density is required for most physical property estimations.

1.3 Workshop 1.1 – Interconvert Distillation Curves

There are two situations that we may encounter when the distillation curve available is not a TBP curve and needs to be converted: (1) it is another ASTM type, and (2) it is ASTM D1160 at vacuum pressure. The spreadsheet we have developed is able to solve these two cases. The following steps demonstrate how to convert an ASTM D1160 curve (at 10 mmHg) into a TBP curve.

Step 1. Open WS1.1 ASTMConvert.xls (Figure 1.6).

Step 2. Copy and paste the ASTM D1160 curve into the sheet for interconversion among different testing pressures of ASTM D1160 (Figure 1.7).

- Step 3. Input the testing pressure, which is 10 mmHg in this case (Figure 1.8).
- *Step 4.* The blue cells will show the converted results, which correspond to ASTM D1160 at 1 atm (Figure 1.9).
- *Step 5*. Copy the values of ASTM D1160 (at 1 atm) to the sheets for converting ASTM D1160 at 1 atm into TBP (Figure 1.10).

Step 6. The blue cells reveal the converted TBP curve (Figure 1.11).

1.4 Workshop 1.2 – Extrapolate an Incomplete Distillation Curve

- *Step 1*. Open *WS1.2 Beta.xls*. Purple cells show the adjustable parameters in beta distribution function, yellow cells require the input of the distillation curve, tan cells and the graph indicate the fitted results (Figure 1.12).
- *Step 2.* Input the incomplete distillation curve into yellow cells. The user is allowed to add/remove the cells of "% Distilled" and "Temperature" according to the number of points in distillation curve (Figure 1.13).
- Step 3. Click "solve" to run the fitting program (Figure 1.14).
- *Step 4.* The purple cells show the fitted parameters. The tan cells and the graph represent the extrapolated distillation curve (Figure 1.15).

1.5 Workshop 1.3 – Calculate MeABP of a Given Assay

- Step 1. Open WS1.3 MeABP Iteration.xls (Figure 1.16).
- Step 2. Select type of the oil fraction. We choose naphtha in this case (Figure 1.17).
- Step 3. Input TBP curve and specific gravity in blue cells (Figure 1.18).
- Step 4. Go to Tool/Goal Seek (for new version of Excel, Data → What–If Analysis → Goal Seek) (Figure 1.19).
- *Step 5*. Assign yellow cell to "By changing cell" and green cell to "Set cell" and input "0" in "To value." And then, click "OK" (Figure 1.20).
- *Step 6*. The yellow cell reveals the calculated MeABP for the given oil fraction (Figure 1.21).

760 mmHg		760 mmHg	760 mmHg	760 mmHg	760 mmHg	760 mmHg	760 mmHg	760 mmHg
ASTM-D86 (C)	Vol. %	ASTM-D86 (F)	TBP (F)	TBP (C)	TBP (C)	TBP (F)	ASTM-D86 (F)	ASTM-D86 (C)
160.0	0%	320	259.1	126.2	126.2	259.1	320	160.0
176.7	10%	350	316.5	158.1	158.1	316.5	350	176.7
193.3	30%	380	372.6	189.2	189.2	372.6	380	193,3
206.7	50%	404	411.2	210.7	210.7	411.2	404	206.7
222.8	70%	433	451.2	232.9	232.9	451.2	433	222.8
242.8	90%	469	496.7	258.2	258.2	496.7	469	242.8
248.9	100%	480	503.0	261.7	261.7	503.0	480	248.9
			760 mmHg	760 mmHg	760 mmHg	760 mmHg		
ASTM-D2887(C)	Wt%/Vol%	ASTM-D2887(F)	TBP (F)	TBP (C)	TBP (C)	TBP (F)	ASTM-D2887 (F)	ASTM-D2887(C
145.0	5%	293	322.2	161.2	348.0	658.4	639.1711023	337.3
151.7	10%	305	327.7	164.3	369.0	696.2	685.3443333	363.0
162.2	30%	324	332.4	166.9	406.0	762.8	756.2204757	402.3
168.9	50%	336	336.0	168.9	433.0	811.4	811.4	433.0
173.3	70%	344	339.6	170.9	459.0	858.2	861.2301007	460.7
181.7	90%	359	350.1	176.7	495.0	923.0	922.5542047	494.8
187.2	95%	369	357.4	180.8	512.0	953.6	974.5478925	523.6
198.9	100%	390	366.2	185.7	556.0	1032.8	1038.378625	559.1
			760 mmHa	760 mmHg	760 mmHa	760 mmHg		
ASTM-D2287 (C)	Wt%/Vol. %	ASTM-D2287 (F)	ASTM-D86 (F)				ASTM-D2887 (F)	ASTM-D2287 (C
25.0	0%	77	121.3	49.6	298.8	569.9	446.4892018	230.3
33.9	10%	93	128.2	53.5	349.7	661.5	605.3731877	318.5
64.4	30%	148	154.8	68.2	392.0	737.5	715.3377437	379.6
101.7	50%	215	206.3	96.8	424.2	795.5	787,7262099	419.8
140.6	70%	285	270.6	132.5	459.0	858.2	856.5298061	458.1
182.2	90%	360	334.0	167.8	514.5	958.0	964,7774337	518.2
208.9	100%	408	367.5	186.4	577.9	1072.2	1273.441992	689.7
760 mmHg		760 mmHg	760 mmHg	760 mmHg	760 mmHg	760 mmHg	760 mmHg	760 mmHg
ASTM-D1160 (C)	Vol%	ASTM-D1160 (F)	TBP (F)	TBP (C)	TBP (C)	TBP (F)	ASTM-D1160 (F)	
280.8	10%	537.3541391	527.3	275.2	143.1	289.5	300.1	149.0
350.6	30%	663.1131895	657.8	347.7	201.5	394.7	400.1	204.5
402.7	50%	756.9327522	756.9	402.7	246.1	475.0	475.0	246.1
450.5	70%	842.8909373	842.9	450.5	287.7	549.9	550.0	287.8
513.0	90%	955.4507826	955.6	513.1	343.3	650.0	650.0	343.4

Figure 1.6 WS1.1 ASTMConvert.xls.

Pressure =	30	mmHg	2 =< P =< 760			
X	0.00180742			760 mmHg	760 mmHg	760 mmHg
TBP/D1160 (C)	Vol%	TBP/D1160 (F)	TBP/D1160 (R)	TBP/D1160 (R)	TBP/D1160 (F)	TBP/D1160 (C)
143.1	10%	289.5	749.2	941.7	482.1	250.0
201.5	30%	394.7	854.4	1063.5	603.8	317.7
246.1	50%	475.0	934.7	1154.8	695.1	368.4
287.7	70%	549.9	1009.6	1238.8	779.1	415.1
343 3	90%	650.0	1109.7	1349.2	889.5	476.4

Figure 1.7 Input cells of ASTM D1160 interconversion in ASTMConvert.xls.

47	Pressure =	10	mmHg	2 =< P =< 760			
48	X	0.00195599			760 mmHg	760 mmHg	760 mmHg
49	TBP/D1160 (C)	Vol%	TBP/D1160 (F)	TBP/D1160 (R)	TBP/D1160 (R)	TBP/D1160 (F)	TBP/D1160 (C)
50	143.1	10%	289.5	749.2	997.0	537.4	280.8
51	201.5	30%	394.7	854.4	1122.8	663.1	350.6
52	246.1	50%	475.0	934.7	1216.6	756.9	402.7
53	287.7	70%	549.9	1009.6	1302.6	842.9	450.5
54	343.3	90%	650.0	1109.7	1415.1	955.5	513.0

Figure 1.8 Input pressure for ASTM D1160 interconversion.

47	Pressure =	10	mmHg	2 =< P =< 760			
48	Х	0.00195599			760 mmHg	760 mmHg	760 mmHg
49	TBP/D1160 (C)	Vol%	TBP/D1160 (F)	TBP/D1160 (R)	TBP/D1160 (R)	TBP/D1160 (F	TBP/D1160 (C
50	143.1	10%	289.5	749.2	997.0	537.4	280.8
51	201.5	30%	394.7	854.4	1122.8	663.1	350.6
52	246.1	50%	475.0	934.7	1216.6	756.9	402.7
53	287.7	70%	549.9	1009.6	1302.6	842.9	450.5
54	343.3	90%	650.0	1109.7	1415.1	955.5	513.0

Figure 1.9 Results of ASTM D1160 interconversion.

37	760 mmHg		760 mmHg	760 mmHg	760 mmHg
38	ASTM-D1160 (C)	Vol%	ASTM-D1160 (F)	TBP (F)	TBP (C)
39	280.8	10%	537.3541391	527.3	275.2
40	350.6	30%	663.1131895	657.8	347.7
41	402.7	50%	756.9327522	756.9	402.7
42	450.5	70%	842.8909373	842.9	450.5
43	513.0	90%	955.4507826	955.6	513.1

Figure 1.10 Input cells for other ASTM interconversion in ASTMConvert.xls.

37	760 mmHg		760 mmHg	760 mmHg	760 mmHg
38	ASTM-D1160 (C)	Vol%	ASTM-D1160 (F)	TBP (F)	TBP (C)
39	280.8	10%	537.3541391	527.3	275.2
40	350.6	30%	663.1131895	657.8	347.7
41	402.7	50%	756.9327522	756.9	402.7
42	450.5	70%	842.8909373	842.9	450.5
43	513.0	90%	955.4507826	955.6	513.1

Figure 1.11 Result cells for other ASTM interconversion in ASTMConvert.xls.

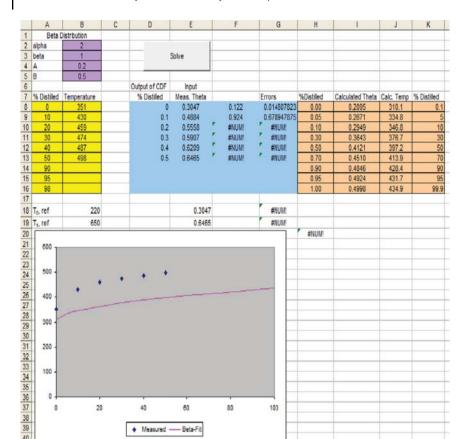


Figure 1.12 WS1.2 Beta.xls.

1.6 Workshop 1.4 – Represent an Oil Fraction by the Old Oil Manager in Aspen HYSYS Petroleum Refining

- Step 1. Start a new case in Aspen HYSYS Petroleum Refining and save as WS1.4 Oil Manager.hsc (Figure 1.22).
- Step 2. Click "add" to add a new component list (Figure 1.23).
- *Step 3.* Click "view" to edit the component list. Add light components, which are shown in assay data (Figure 1.24).
- *Step 4.* Click "add" in "fluid pkgs" tab to add the thermodynamic model (Figure 1.25).
- Step 5. Select the Peng–Robinson method (Figure 1.26).
- Step 6. Click "Input Assay" in "Oil Manager" environment (Figure 1.27).
- *Step 7*. Add an assay by inputting the TBP curve, bulk density, and light end composition (Figure 1.28).

1.6 Workshop 1.4 17

	A	B	С	D	E	F	G	H	1	J	K
1	Beta	Distribution									
2	alpha	2			1						
3	beta	1			Solve						
4	A	0.2									
	В	0.5									
6				Output of CDF	Inpu:						
Γ	% Distilled	Temperature		% Distilled	Meas. Theta		Errors	%Distilled	Calculated Theta		
i.	0	351		0	0.3047	0.122	0.014807823		0.2095	310.1	0.1
	10	430		0.1	0.4884	0.924	0.678947875	0.05	0.2671	334.8	5
)	20	459		0.2	0.5558	#NUM!	* #NUM!	0.10	0.2949	346.8	10
t,	30	474		0.3	0.5907	#NUM!	#NUM!	0.30	0.3643	376.7	30
2	40	487		0.4	0.6209	#NUM!	#NUM!	0.50	0.4121	397.2	30 50 70
8	50	498		0.5	0.6465	#NUM!	#NUM!	0.70	0.4510	413.9	7(
1	90			6				0.90	0.4846	428.4	90
5	95							0.95	0.4924	431.7	95
6	98							1.00	0.4998	434.9	99.9
7											
8	To, ref	220			0.3047		#NUM!				
	T ₁ , ref	650			0.6465		#NUM!				
					36-0-0			#NUM!			
1	600 -										
-							1			-	
2											
23										-	
234	500 -										
2 3 4 5	500 -										
23456	500 -		•	• •							
2 3 4 5 6 7	500 -	. •	•	• •							
2 3 4 5 16 7 8	500 -	•••	•	• •							
2 3 4 5 6 7 8 9	500 - 400 - 300 -	•••	•	• •							
234567890	500 - 400 - 300 -	•••	•	• •							
	500 - 400 - 300 -	•••	•	• •							
	500 - 400 - 300 -	• •	•	• •							
	500 - 400 - 300 -	•••	•	••							
	500 - 400 - 300 -		•	• •							
	500 - 400 - 300 -	• •	•								
	500 - 400 - 300 -		•	• •							
	500 - 400 - 300 -	•••	•	• •		50					
1 2 3 4 5 6 7	500 - 400 - 300 - 200 - 100 -		•	• •	00	80	100				
234567890123456789	500 - 400 - 300 - 200 - 100 -		•	40		80	100				

Figure 1.13 Input cells in WS1.2 Beta.xls.

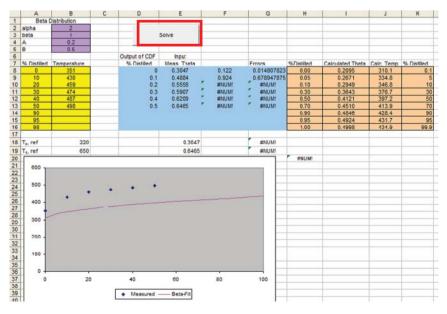


Figure 1.14 Activation button in WS1.2 Beta.xls.

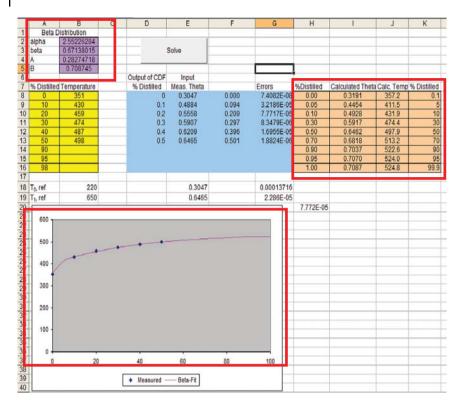


Figure 1.15 Fitted results in WS1.2 Beta.xls.

	<u> </u>	0	6	U			0		
4 5	Vol%	Temperature (F)		Initial	End	Vol%	Mid	Temperature (F)	Tempera
6	0	256.8		0	5	5	2.5	287.626	741
7	10	368.2		5	10	5	7.5	344.524	804
		447.2	-				110		1
8	30			10	15	5	12.5	387.306	848
9	50	516.9		15	20	5	17.5	414.045	87:
10	70	583.9		20	25	5	22.5	430.198	885
11	90	633.4	_	25	30	5	27.5	441.538	90*
12	100	722.2		30	35	5	32.5	453.704	913
13				35	40	5	37.5	469,145	928
	Specific gravity	0.8505		40	45	5	42.5	487,122	946
	Refractive index @ 20 C			45	50	5	47.5	506,759	966
	Oxygen content (wt%)	0.00		50	55	5	52.5	527,163	986
	Initial MeABP (F) [Enter as first guess in yellow cell]	506.76		55	60	5	57.5	547,071	100
18	internet (r)[ener as hist gates in jeion ceij	000.10		60	65	5	62.5	564.852	102
	Trial MeABP (F)	497.46		65	70	5	67.5	578.858	103
	Trial MeABP (R)	957.13		70	75	5	72.5	587.600	104
	Watson-K	11.59		75	80	5	77.5	593,298	105
22		11.00		80	85	5	82.5	601.874	106
	Calc, VABP (R)	969.22		85	90	5	87.5	619,412	107
	Calc. WABP (R)	972 98		90	95	5	92.5	651,683	111
	Calc, MABP (R)	948.85		95	100	5	97.5	697.204	115
	Calc. CABP (R)	965.42				-	01.0	007.201	
27									
	Calc. MeABP (R)	957.13							-
29									
	Error (Trial MeABP - Calc. MeABP)	0.00000	(lise onaise	ek to drive	oreen cell	to 0 by chang	ing vellow	cell, less than 1 R	differen
31			(our gould	en lo silio	green een	o o of onding	ing fereti	oun, reas man i re	- united unit
	Correlation for refractive index	A	B	C					-
	Naphthas	1.028	0.53			497.46	957.13	11.59	1
	Straight or hydrosulfurized gas oils	0.9734	0.59						1
	Deeply hydrogenated fractions	0.9713	0.59						
	Short residues	0.9345	0.63	0.006					-
	FCC feeds	0.9365	0.63	0.006		1			-
	Coal liquids	0.9448	0.63	0.006					
	Stream cracker residue	0.881	0.7						-
40				1					
	Selected correlation	5							-
42									
43		FCC feeds				1			-
11								-	

Figure 1.16 WS1.3 MeABP Iteration.xls.

50				
49		Stream cracker residue	1	
48		Coal liquids		
47		FCC feeds		
46		Deeply hydrogenated f Short residues	fractions	
45		Straight or hydrosulture	zed gas of	
44		Naphthas		
43		FCC teeds	•	
42				
41	Selected correlation	5		
40				
39	Stream cracker residue	0.881	0.7	
38	Coal liquids	0.9448	0.63	
37	FCC feeds	0.9365	0.63	
36	Short residues	0.9345	0.63	
35	Deeply hydrogenated fractions	0.9713	0.59	

Figure 1.17 Select oil type.

5	Vol%	Temperature (F)
6	0	310.2
7	10	341.3
8	30	369.8
9	50	387.4
10	70	406.4
11	90	433.4
5 6 7 8 9 10 11 12 13 14	100	480.6
13		
14	Specific gravity	0.7457
15	Refractive index @ 20 C	
16	Oxygen content (wt%)	0.00
	Initial MeABP (F) [Enter as first guess in yellow cell]	384.93

Figure 1.18 Input distillation curve and specific gravity.

	<u>File Edit View Insert Format</u>	Too	ls <u>D</u> ata <u>W</u> indow <u>H</u> elp
1	🐸 🖬 🔓 🖨 🖓 🖏 l	ABC	<u>S</u> pelling F7
	F26 🔹 🏄	ii)	Research Alt+Click
	A	1	Error Checking
4			Shared Workspace
5	Vol%		Share Workbook
6	0		Share Workbook
7	10		Euro Conversion
8	30		Protection +
9	50		-
10	70		Online Collaboration
11	90		Goal Seek
12	100		Formula Auditing
13			
14	Specific gravity		Macro •
15	Refractive index @ 20 C		Add-Ins
16	Oxygen content (wt%)		Ontions
17	Initial MeABP (F) [Enter as first gue		Options
18			*

Figure 1.19 Activate "goal seek" in WS1.3 MeABP Iteration.xls.

10				00	00	
19	Trial MeABP (F)	422.00		65	70	
20	Trial MeABP (R)	881.67		70	75	
21	Watson-K	12.86	Goal Seek			×
22			Set cell:		Ining	N .
23	Calc. VABP (R)	847.70	Set cell:		\$8\$30	
24	Calc. WABP (R)	848.19	To value:	To value:		
25	Calc. MABP (R)	845.17	By changing	g cel:	\$8\$19	
26	Calc. CABP (R)	847.21		-	404101	
27				OK		Cancel
28	Calc. MeABP (R)	846.19				
29		Contraction of the				
30	Error (Trial MeABP - Calc. MeABP)	1258.74304	(Use goalse	ek to d	rive green	cell to 0 by

Figure 1.20 Assign tuning and objective cells.

5 Vol%	Temperature (F)
6 0	310.2
7 10	341.3
8 30	369.8
9 50	387.4
10 70	406.4
90	433.4
12 100	480.6
13	
14 Specific gravity	0.7457
15 Refractive index @ 20 C	
16 Oxygen content (wt%)	0.00
17 Initial MeABP (F) [Enter as first guess in yellow cell	384.93
18	
19 Trial MeABP (F)	386.55
20 Trial MeABP (R)	040.22
21 Watson-K	12.68
22	
23 Calc. VABP (R)	847.70
24 Calc. WABP (R)	848.19
25 Calc. MABP (R)	845.19
26 Calc. CABP (R)	847.21
27	
28 Calc. MeABP (R)	846.20
29	
30 Error (Trial MeABP - Calc. MeABP)	0.00042

Figure 1.21 Iterative MeABP in *WS1.3 MeABP Iteration.xls*.

Figure 1.22 Start a new case in Aspen HYSYS Petroleum Refining.

Properties	e Com	ponent Lists 🔬 🕂			
All thems Component Lists Component Lists Component Assays Component Maps Component Maps		. Ust Rame	Source	Associated Fluid Packages	Sana
		Add - Com			

Figure 1.23 Add a new component list.

1.6 Workshop 1.4 21

Properties	Component List - 1 × +						
All fierrs	•						
Reg Component Lists	Source Databank: HVSY5				Selects	Pure Components	•
Component List - 1							
Conference and Assays Conference and Assays Conference and Assay Conference and Assay Conference and Assay Conference and Assays Conference and Conference and Assays Conference and Conference and Conference and Conference Conference and Conference and Conferen	Component	Type	Group		Search for:	nitrogen	1
	Methane	Pure Component					
	Ethane	Pure Component			Simuli	ation Name	Eult Nei
	Propane	Pure Component		< Add		NOZ	
	+Butane	Pure Component				N2O4	
	n-Butane	Pure Component				N204	
	i-Pentane	Pure Component		Replace		NitroStyceri	
	n-Pentane	Pure Component					
	CO2	Pure Component					
	Nitrogen	Pure Component		Remove			
	Hydrogen	Pure Component					

Figure 1.24 Add light components.

	d Fit	uid Packages +				
roperties						
II Iterna		PL I A PL I A PL				
Component List Component List Congoorent List Petroleum Asseys Reactions Component Maps Component Maps User Properties		fluid Package	Compose	Prop	enty Package	Status
Properties		Add -				

Figure 1.25 Click "add" to enter the list of thermodynamic models.

Carenet Nation Component Maria Component Maria Compone	r Tabular Notes			
Component List: Package Top:	r Tabular Notes			
Top Base 1 Property Package Selection Optimized Percention Optimized Optimized Optimized De Actions Optimized Notest Optimized De Actions Optimized Notest Optimized Actional Optimized Optimized Optimized Actional	0	Component List Selection	onent List - 1 (HYSYS Databan)	ot •] View
Silk: Fuel Silk: Fuel Two:Sim-Tossave AMACLAR: +	Iona Matpy mitty dity Tc, Tc for Ic2, He reverd Visconity og-Robinsen Options 5 Solution Methods are identification face: Tension Method rever Tension Method	Property Pachage EOS Costadi Madrig Te, Port Mark Hyper Strategy Cable EOS Analysisa Cable EOS Analysisa Markat Mittade Apri 12A3.2-1 Method	Parameters	

Figure 1.26 Select the Peng–Robinson thermodynamic model and click on "Oil Manager" tab.

- Step 8. Check "distillation" and click "edit assay" to input the distillation curve. Refer to the data in the spreadsheet, WS1.4 Distillation Curve and Light End Composition.xlsx. Note that the temperature unit in Figure 1.28 is degree Fahrenheit. To change this to degree Centigrade, go to the File menu and click Options. This will open the Simulation Options window. On the Variables tab, click Units. Choose SI units and then the temperature unit becomes degree Centigrade (Figure 1.29).
- Step 9. Check "bulk props" to input the bulk density and other bulk properties if available (Figure 1.30).
- Step 10. Check "light ends" to input the light end composition (Figure 1.31).

Cipboard Component Fluid Lists Packages Navig		Components	rties Petro Ass	1 3	Hypotheticals Manager Convert Remove Duplicates Hypotheticals	O2 Managar	Convert to Refining Assay	Associate Huid Package Definitions* t) Options Di	A Prop
Properties ¢	Oil Manager ×	+							
All Items - Component Lists Component List - 1 Fluid Packages	Oil Manager G		Output Ser	Use H	IYSYS Petroleum Refini proved assay manage		Petroleum Ass	ays	
Basis-1 Petroleum Assays	Oa	Name	Ready	install	Stream Name	1	Flowsheet		
Output Blend Actions Component Maps User Properties									
Properties	Clear All		Calculate A	1	Input Assay		Output Blend	Install Of	

Figure 1.27 "Input Assay" to define a new assay.

All tiens		Defaults Working Curve	n Pice	Is User Curves Notes			
Dis Component Lists Component Lists Component List 1 Dis Component List 1 Dis Perioteum Astron Dis Perioteum Astron Component Astron Component Mass Dis User Properties	Assay Definition Buik Properties Assay Data Type Light Eros Molecular Wt, Curve Density Curve Viscosity Curves 199 Distillation Cond & Atmospheric	Used TBP Input Composition Not Used Not Used Not Used		Input Data	Assay Bosis Assay Percent	Mole Temperature (F).	-
Z Properties	Handling & Fitting	Calculate		Edit Assay	At least 5	points are required	

Figure 1.28 Select the data to be used to define an assay.

All Items -	Input Data Calculation	Defaults Working Curv	s Pidt	s User Curves Notes			
Component Lists	Assay Definition			Input Data			
Fluid Packages	Bulk Properties	Used		Bulk Props	Assay Basis	Mass	
Basis-1	Assay Data Type	ТВР		 Light Ends Distillation 	Assay Percent	Temperature [C]	
Oil Manager A Input Assay	Light Ends	Input Composition	-		3.60		
Aspay-1					4.90		
Contract Blend	Molecular Wt, Curve	Not Used			6.90		
Reactions	Density Curve	Not Used	-		10.9		
Component Maps	Ciensity Curve	HULUSEU			14.9		
Liser Properties	Viscosity Curves	Not Used			20.1		
	- TBP Distillation Condi	tions			24.7		0
					27.7		
	Atmospheric	Vacuum			31.9	275.0	
					36.0	300.0	
					39.7	0.05E	
	100				45.1	350.0	-

Figure 1.29 Enter the distillation curve.

nput Data Calculation	Defaults Working Curve	s Plots	User Curves Notes		
Assay Definition Bulk Properties Assay Data Type Light Ends Molecular Wt, Curve Density Curve Viscosity Curves TBP Distillation Condi	Used TBP Input Composition Not Used Not Used Not Used Used Utors		Input Data Buik Props Uph Ends Distillation	Molecular Weight Standard Density Watson UOPK Viscosity Type Viscosity 1 Temp Viscosity 2 Temp Viscosity 2	<empty> 854.6 kg/m3 <empty> Bynamic 37.78 C <empty> 98.89 C <empty></empty></empty></empty></empty>

Figure 1.30 Enter the bulk density.

1.6 Workshop 1.4 23

Input Data E	Calculation	Defaults	Working Curves	Plots	User Curves Notes				
Assay Defin	ition				Input Data				
Bulk Prope	rties	Used		-	 Bulk Props Light Ends 	Light Ends Basi	Liquid	Volume %	-
Assay Data	Туре	TBP		•	Distillation	Light Ends	Composition	NBP [C]	
Light Ends		Input C	omposition	-		CO5	1,090	-78.55	
Molecular	and a state	Notus	7.1. 8 .2.209300000	-		Ethane	8.960	-88.60	
MORECULAR	WE CUIVE	Not Us	ed			Hydrogen	12.95	-252.6	
Density Cur	we.	Not Us	est	-		i-Butane	10.68	-11.73	
						i-Pentane	5.850	27.88	
Viscosity Ci	arves.	Not Us	est	-		Methane	4.270	-161.5	
- THP Distill	ation Condi	tions				n-Butane	19.38	-0.5020	
Atmo		© Va				n-Pentane Nitrogen	6.140	36.06	
Ser Aumo	sprieric		courre			Propane	27.47	-42.10	
					Percent of Light En		0.1300		

Figure 1.31 Enter the composition of light components.

ut Data Calculation	Defaults Working Curv	es Plots	User Curves Notes				
ssay Definition			Input Data				
luik Properties	Used		Bulk Props	Light Ends Basis	Liquid	Volume %	-
lssay Data Type	твр		Eight Ends Distillation	Light Ends	Composition	NBP [C]	
ight Ends	Input Composition			CO2	1.090	-78.55	-
	12 (0) I CONTRACTORY			Ethane	8.960	-88.60	_
Aolecular Wt. Curve	Not Used	-		Hydrogen	12.95	-252.6	-
Jensity Curve	Not Used	-		i-Butane	10.68	-11.73	
venisity conve	Not Used			i-Pentane	5.850	27.00	
iscosity Curves	Not Used			Methane	4.270	-161.5	
				n-Butane	19.38	-0.5020	
TBP Distillation Cond				n-Pentane	6.140	36.06	
Atmospheric	C Vacuum			Nitrogen	3.220	-195.8	
				Propane	27.47	-42.10	

Figure 1.32 Click "calculate" for calculation and generate the pseudocomponents.

Properties 4	Petroleum Assays ×	Blend-1 A	ssay-1 = +							
All Items ·	Data Tables Prop	erty Plot Distric	ution Plat Comp	osite Plot Plot Summ	ary Correlations Notes					
Component Lists Component List - 1	Assay Selection an	d Oil Information			Bulk Data		Cut Ranges			
Component List - 1 A B Fluid Packages	Available Assays	0	I Flow Information				Cut Option Selection	Auto Cut		
Basis-1	Assay-7	01	Flow Units	Flow Rate						
Petroleum Assays a CH Manager										
Go Manager A B Input Assay						Dytiamic				
Assay-1										
4 😰 Output Blend										
Cr Blend-1						98.39 C				
Baccions Component Maps User Properties					Press add p	1000000				
					Hypocomponent Ideal Liquid	Censity Calculation:				
	Add»	1	Remo	0.00	Default Method	٠				
Properties	inaution		Output Biend		Input Assay					
C Simulation					Blend Was No	1Calculated				

Figure 1.33 Create a new blend, Blend-1. See our previously defined assay, Assay-1.

- *Step 11.* Click "calculate" to enable the calculations by Aspen HYSYS Petroleum Refining to generate pseudocomponents (Figure 1.32).
- *Step 12.* Click on "Output Blend" and click "Add" to create a new blend, Blend-1 (Figure 1.33).
- *Step 13.* Select "Assay-1" and click add to generate the corresponding pseudocomponents (Figure 1.34).

All Hema	Data Tables Property Plot Distribution Plot Composite Plot Plot Summ	ary Cometations Notes	
Component Lists	Assay Selection and Oil Information Available Assays Oil Flow Information	Bulk Data	Cit Ranges Cit Option Selection Auto Cut
Tari rekuper Tari rekuper Tari Tari rekuper Tari Tari Tari Tari Tari Tari Tari T	Di Flow Date Assyst Uspell Vel <employ< th=""><th></th><th></th></employ<>		
		Hypocomponent Ideal Liquid Density Okulation	

Figure 1.34 Select Assay-1 used to be cut or blended and enable the blend calculation.

All tiems	Data Tables Property Plot Dis	tribution Plot Com	cosite Plot Pl	ot Summary C	omplations No	stara		
Component Lists Component Lists	Table Type	Component Physic				VICTOR .		
Fluid Packages Resis-1	Component Properties *	Comp Name	NBP [C]	Mole WL	Density [kg/m3]	Visconity1 [cP]	Viscosity2 (cP)	
The Partner Asserts	Table Control	NBR 44	44.40	66.15	676.2	0.40766	0.23190	
Oli Manager A IB Inplet Assay	Main Properties	N8P 59	59.02	72.27	684.2	0.55857	0.25990	
	Comer Properties	N8P_22	72.37	76.40	694.8	0.35632	0.20790	
Ere Amay-1	Om	NBP_07	86,63	184.87	704.9	0.33516	0.20611	1.1
# Im Output Blend	Off	N8P_101	101.5	91.98	714.9	0.58158	0.23053	1
Cis Biend-1	Biend-1 *	NEP_116	116.0	99.62	724.7	0,43756	0.25792	
Tim Reactions	1.	N8P_128	128.5	106.6	733.4	0.49704	0.28554	
Component Mage		N8P_144	144.9	112.0	739.7	0.54835	0.30868	
Con User Properties		NEP_159	159.3	119.0	747.7	0.62270	0.34134	
		N8P_173	173.3	128.1	755.9	0.71302	0.37987	
		N0P_100	107.0	136.0	763.0	0.02120	0.42324	
		NRP_203	202.7	146.7	772.8	0.96331	0.47638	
		N8P_217	.217.0	157.6	700.7	1.1496	0.54165	
		N8P_231	233.4	168.4	708.6	1.2615	0.01194	
		N8P_246	243.0	179.7	796.2	1.6145	0.00117	
		N6P_260	260.4	192.0	803.9	1.9349	0.78558	
		N8P_275	274.8	204.6	011.2	2.3209	0.89214	
		N8P_209	289.4	217.0	016.4	2.7980	1.0152	
Properties	install Oil	Ostant Bien		Angust a	General 1			

Figure 1.35 The pseudocomponents used to represent the cut or blend.

All Items -	Data Tables Property Plot D	Astribu	tion Plot Com	posite Plot Plo	t Summary C	orrelations No	ites				
Component Lists Component List - 1	Table Type	0	omponent Physic	al Properties							
Fluid Packages	Component Properties *		Comp Name	N0P [C]	Mole WL	Density [kg/m3]	Viscosity1 [cP]	Viscosity2 [cP]	m		
Petroleum Anaya Oil Manager Oil Manager Oil Manager Oil Manager Oil Manager Output Illend Output Illend Other Illend Other Illend Other Illend Other Illend Other Illend Other Illend Other Illend Other Illend	Table Control Main Properties			NBP_44 NBP_50	44,49 99,02	68.16 72.37	676.2 684.2	0.49766	0.23198	1	
	Cother Properties	050			В	lend-1: Instal	I Oil		-		
	Cili		Oil Na	me	Install	Stream Na	me	Flowsheet			
	Blend-1 *			Blend-1	~		Oil	Cas	e (Main		
							Install	- ca	incel		

Figure 1.36 Install the cut/blend into simulation.

- *Step 14.* Go to "Tables" tab to check the generated pseudocomponents (Figure 1.35).
- *Step 15.* Click on "Install Oil" tab, enter "Oil" as the stream name, and click the "Install" box (Figure 1.36).
- *Step 16.* Go to the simulation environment. The stream "Oil" represents the created oil fraction. Click on the stream to see the Composition under Worksheet. We have duplicated the oil fraction within the Oil Manager within Aspen HYSYS Petroleum Refining (Figure 1.37).

nulation Capital	:USD_Utilities:U	SD/Year C Energy	Savings:MW (%) 🤇	Exchangers - Unknown:
Items Flows	heet Case (Main) - Solver /	Active +		
Contractions Contr	a l	Material Stream	: Oil — 🗆 💌	
Stream Analysis	Worksheet Attachme	ents Dynamics		
Equipment Design	Worksheet		Mole Fractions	
Model Analysis	Conditions			
Data Tables	Properties	Methane	0.0003	
	Composition	Ethane	0.0004	
Strip Charts	Oil & Gas Feed	Propane	0.0011	
Case Studies	Petroleum Assay	i-Butane	0.0004	
🔤 Data Fits	K Value	n-Butane	0.0007	
	User Variables	i-Pentane	0.0002	
	Notes	n-Pentane	0.0002	
	Cost Parameters	02	0.0001	
	Normalized Yields	Hydrogen	0.0016	OIL
		Nitrogen	0.0003	Oil
		N8P[0]44*	0.0126	_
		NBP[0]59*	0.0247	
		NBP[0]72*	0.0389	
		NBP[0]87*	0.0409	
		NBP[0]101*	0.0436	
		NBP[0]116*	0.0498	
		NULBICITY 2414	0.0542	
		Tota	1.00000	
Properties		Edit Vie	w Properties Basis	
Simulation		Unknown Tem	Cast all state	

1.7 Workshop 1.5 25


Figure 1.37 The stream in the simulation environment represents the created oil fraction.

1.7 Workshop 1.5– Represent an Oil Fraction by the New Petroleum Assay Manager in Aspen HYSYS Petroleum Refining

Step 1. Start a new case in Aspen HYSYS Petroleum Refining (Figure 1.38).

Step 2. Right-click "Petroleum Assays" and select "Add new essays" to add a new assay. Choose "Manually enter" option. For "Assay Component Selection," choose "Assay Component Celsius to 850 °C." Click OK (Figure 1.39).

Step 3. This generates the "New Assay" form of Figure 1.40a. Choose "Single Steam Properties." Copy and paste the TBP distillation curve from

Figure 1.38 Start new case in Aspen HYSYS Petroleum Refining and save as WS1.5 Petroleum Assay Manager.hsc. Add the same components (C1, C2, C3, *i*C4, *n*C4, *i*C5, *n*C5, CO₂, H₂, and N₂) and fluid package (Peng–Rob) as shown in Figures 1.24 and 1.25 in WS1.4.

9. <u>8</u> . a <u>a</u> a <u>a</u> a <u>a</u>	AAM					
For Home View Cut	stomize Resources Assay Management					
The second secon	ann Models Events Announcements A seper/ONE Exchange					
Properties <	Petroleum Assays Basis-1 +					
All Items	- Assay Summary					
Component Lists Component List - 1 Fluid Packages Basis-1	Display: All Regions *	haracterization	Status	Fluid Package	From Source	Density (k
Petroleum Assays Reactions	80 7 8					
			There is no assay o this case. Please ch component lists fro the Component Lis Assay Componen	noose one of the form the drop dow st page and creat	onent list added common assay in below, or retu ie a custom one.	m
Properties	Add P Boot		ОК		Cancel	
-{Simulation	Import from Library	and the second				
Safety Analysis	Me Import from File Manually Enter			_	_	al.

Figure 1.39 Right-click "Petroleum Assays" to add a new assay and choose "Assay Components Celsius to 850 °C" for "Assay Component Selection" and click "OK."

WS1.4 Distillation Curve and Light End Compositions.xls into the New Assay form. This results in an input summary of Figure 1.40b.

- *Step 4.* Input the bulk density and other bulk properties if available (Figure 1.41).
- Step 5. In "Pure Component," add a new cut named "LightEnd" and set the IBP as its initial temperature and final boiling point (FBP) as its final temperature. Then, input the light end compositions following the data in WS1.4 Distillation Curve and Light End Compositions.xls (Figure 1.42).
- *Step 6.* In "Input Summary" form, click on "Characterize Assay" to enable the Aspen HYSYS Petroleum Refining to do crude characterization (Figure 1.43).
- *Step 7*. After characterizing the assay, we can create plots of cut yields, distillations, crude properties, cut viscosities, and PNA (Figures 1.44 and 1.45).
- Step 8. Click "Simulation" to enter the simulation environment (Figure 1.46).
- Step 9. Click "Model Palette" to open the window of unit models (Figure 1.47).
- *Step 10.* Click "Refining > Petroleum Feeder" to add a petroleum feed (Figure 1.48).
- Step 11. Add a feed stream (Figure 1.49).
- Step 12. Click the feeder and select feed assays and the product stream (Figure 1.50).

1.7 Workshop 1.5 27

🕸 🗵 🏮 🖇	anning Malak Gerla Ansanarente anning Malak Gerla Ansanarente accrotit betrage	Connutly Support Overkier	oleum Assay Manager.hsc	Connuity St	WS1.5 Petroleum Assay	
Properties (Petroleum Assays / Earlis-1 // +	1 Ne	w Assay		New Assay	
Ul herrs +	Assay Sammary Display, All Regions * Assay Orarac Ma	C Multi Cut Properties N	util Package Basis-2	Name Ass Multi Cut P G Single Sites G BackBlende	oparties Number of Cuts. In Properties	S
Petroleum Assays Reactions Component Maps User Properties		Distriction %	Temperature Ta		Distillation % % Temper 27.7 230 31.9 275	
		• B	65.00 r		36 300 39.7 320	100
		6.9 10.9	100.00 130.00		43.1 330	
		14.9	160.00 180.00		53 395 62.4 440	
		20,1 24,7	200.00 230.00		64.9 475 68.7 500	
		27.7	250.00		71.9 530	00
Properties	Add • Export Capy		Cancel		OK Cancel	

(a)

a therea	Intel Summery Bas Courses	ant I ratification	Data Onting	1										
district district disconcert Link disconcert Link disconcert Link disconcert Link disconcert Link disconcert disconcert	Head Service/ Reac Compare Head Service/ Reacement () Final Temperature () Saturdy/H () Saturdy/H () Reacting/H ()	Whole Crude IBP FBP 854,5200		Gue 2 45.0000 80.0000	Cut 3 80.0000 100.0000	Cut 4 100.0000 130.0000	Gut 5 130.0090 160.0000	Cut 6 160 0090 190 0090	Cut 7 188.0000 209.0000	Curt 8 200.0000 259.0000	Curl 9 230.0000 254.0000	Cut 10 250.000 275.000	Cut 11 275.0000 300.0000	Curt 12 300 0000 320 0000
	DisedPoint SI SmokePoint SI SmokePoint SI MinopereByttin (Si VanaduumByttin (Si				anti arta. Tinan		W IN CATWOO	Dyfetd data:						

(b)

Figure 1.40 (a) Enter the TBP distillation curve into "New Assay" form. (b) The resulting input summary form.

The Characterize Devertical	enze Reserver Rosy Ma Molecular Characterization engine Internation Molecular Nethada											Search aspen	OVE Exchange	
Noperties (Petroleum Assays × Basis-1													
	Input Summary Pare Compo	orent Distillation	in Data Option											
Component List Component List Component List Component List Component List Sass-1 Sass-2 Protoleum Assey		Whole Crude	0/11	Cut 2	Out 3	Out 4	Cut 5	Cut 6	Cut 7	Ge 8	Cut 9	Cut 10	Out 11	Cut 12
	Initial Temperature (C)	82	12.0	65.0000	84 8000	100.0000	130.0000	160.0000	180.0000	200.0000	230.0000	250.0000	275.000	300.0000
	Final Temperature (C)	HIP	65.0000	80.0000	1010000	130 0000	160 5000	180.0000	200.0000	230.0000	250.0000	275.0000	101.000	320.0000
	 CutriedbWol (%) 	106.00	3.60	1.30	2.00	4.00	4.00	2.99	2.30	4.60	3.00	4.20	4.0	3.70
a Anay - 1	Stat. aguet Density (kg/m.	854.5200				and the		1.00	-	1000	101			1.000
Imput Assay	 SutureyWt (%) 													1
Reactions	CirenateViscosty (:St).													
🕞 User Properties	ParattinellyVol (%)													
	NapříthenesikyVol (Si)													
	ClarimityVol (%)													
	AronibyVol (%)													
	 PourPoint (C) 													
	FreezePoint (C)													
	CourPoint (C)													
	SmokePt (H)													
	NitrogenBy#1 (NJ													8.
				81										

Figure 1.41 Enter the bulk density of 854.62 kg/m^3 .

N - E - C				A.	NS	AAM	
and the second se	ntomize Resources		gement		Resources	Assay Ma	nagement
	Molecular Characteriz	ation			alar Characterizatio	pen -	
New Characterize Download	Molecular Information				Information		
Assay Assays Assay	Molecular Methods						
Properties	Petroleum Assays	× Basis-1 ×	Assay - 1 - Inpu	it Assay × +	roleum Assays ×	Basis-1	Assay - 1 - Inpu
All Items			l.		Toleuni Assays	Udisis*1	Assay - 1 - Inpo
4 in Component Lists	Input Summar	y Pure Compon	ent Distillation	Data Option	Input Summary	Pure Comp	onent Distillation
Component List - 1			LightEnd				LightEnd
Component List - 2	Initial Ten	nperature (C)	IBP	Click to Add Cut	Initial Tempe	wature (C)	IBP
Fluid Packages Basis-1	Final Tem	perature (C)	FBP		Final Tempe		195329 M
Basis-2	4				rinal rempe	iacure (c)	FBP
A Retroleum Assays	Basis (%)		By volume		Propane		27.470
Assay - 1 Input Assay	Component	5			i-Butane	10.680	
Reactions	Hydrogen		12.950	950	i-Butene		
Component Maps	Nitrogen		3.220		1-Butene		
User Properties	e co				13-Butacliene		
	Oxygen				n-Butane		19.380
	Methane		4.270		cis2-Butene		
	Ethylene				tr2-Butene		
	Ethane		8,960		i-Pentane		5.850
	► CO2		1.090		1-Pentene		
	H2S				2M-1-butene		
	Propene				n-Pentane		6.140

Figure 1.42 Enter the compositions of light components.

Nore Vev Cu Image: Characterise Developed Image: Characterise Deve	Cut Ye	Resources Annay Ma La La L		-	olar Olaracterip e information lectar Wettoda	fan							Search appe	ONE Exchange	2
operties c	/ Bas	6-1 × Assey - 1 - Sammar	y × Assey-1	- Input Assay ×	Annay - 1 - Co	esentional Res	uts +								
terri 💽		lesuits Summary Pure Comp	onent Distillat	ion Property T	able Message										
Component List: Component List: Component List: - 1 Component List: - 2 Statist Rackages Statist - 1 Statist Rackages Statist - 2 Statist -			Whole Crude	Q#1	Cur.2	Cut 3	Cat 4	Cut S	Cut 6	Cut 7	Car B	930	Cut 10	Cat 11	Cut 12
		Initial Temperature (C)	182	187	65.0000	800008	100.0000	130,0000	160,0000	180.0000	200.0060	230,0000	250,0000	275,0000	300,0000
		Final Temperature (C)	F82	65.0000	90.0000	1000000	130.0000	160.0000	180,0000	200.0000	230.0000	250.0000	275.0000	300,000	320,0000
		CutrieldByVol (%)	100.00	3.72	1.18	200	4.00	4.00	2.90	2.30	4.60	3.00	4.18	412	3.70
a 🖉 Assay - 1		StdLiquidDensity (kg/m_	854.5635	280,8506	548,1735	553.813	548.6172	542,2626	522.8707	591,4778	873,8424	884.9236	894.1606	902,9332	910.6216
Inpet Assay Conventional Results		SuiturByW1 (%)		0.000	0.000	0000	0.000	0.000	0.000	0.000					
B Reactions		Knematic/iscosity (c50	0.608	0.200	0,200	0200	0.200	0.200	0.200	0.200	1532	2,117	2,929	4225	6.178
Component Maps		ParattinsByWol (%)	20.225	41.568	91,779	100300	100.000	100.000	100.000	75,678	23,728	18,142	12.510	8.010	3.191
User Properties		NaphthonesByViol (%)	46.168	0.000	0.000	0000	0.000	0.000	0.000	11.086	40.471	42,649	45.749	47.917	48.911
		ClefinsByVol (%)		0.000	0.000	0000	0.000	0.000	0.000	0010					
		ArontityVol (%)	31.326	0.000	0.000	0000	0.000	0.000	0.000	9.036	35,801	39,209	41,741	44/073	45.890
		PourPoint (C)	165.902	-138.642	-153.104	-147204	-151.080	+152.918	-162.674	-187.E50	-28.569	+19.564	+11.653	-4.158	2.327
		FreezePoint (C)	1.528	-216.646	-167.179	-158581	-162.572	-164.638	-177.179	-187.650	-44.344	-30.518	-18.042	-5.109	6.927
		CloudPoint (C)	-16.092	-259.756	-115.747	-182302	-84.985	-64,642	-47.111	-40,002	-42.222	-30,940	-21.658	-12,868	-2214
		SmokePt (m)	0.01	0.29	0.09	109	0.09	0.09	0.10	0.10	0.01	0.01	.0.01	0.01	0.01
		NitrogenByWt (%)		0.000	0.000	0000	0.000	0.000	0.000	0.000					
	1														

Figure 1.43 Characterize the assay.

File Home View Cu New Characterize Download Assay Assay	Cut Yi	elds Distillations Prop	5	es =	nONE Exchange plecular Characte Molecular Metho	rization	a 🤫
Properties <	Assay	y - 1 - Conventional Results	1× +				
All Items *	R	esults Summary Pure Com	ponent Distillatio	n Property Ta	ble Message		
Component Lists Component List - 1			Whole Crude	Cut 1	Cut 2	Cut 3	ń
Fluid Packages Retroleum Assays		Initial Temperature (C)	IBP	IBP	80.0000	100.000) =
Assay - 1 Input Assay		Final Temperature (C)	FBP	65.0000	100.0000	130.000	, –
Conventional Results	E.	CutVieldByWt (%)	100.00	3.72	2.00	4.00	
Reactions	. K	StdLiquidDensity (kg/m	854.6000	414.6833	766,8767	787.3516	
Component Maps	E.	SulfurByWt (%)					
ag osci i topenes	E.	KinematicViscosity (cSt)	6.746	0.403	0.514	0.616	
	E.	ParaffinsByVol (%)	11.180	84.029	30.894	27.735	
Properties	-	Bilaniakanan (1,31a) (0/3		10.240	11 114	20.465	*
::::::::::::::::::::::::::::::::::::::)K	Flash	assay View	vInputs	

Figure 1.44 Add and edit assay data.

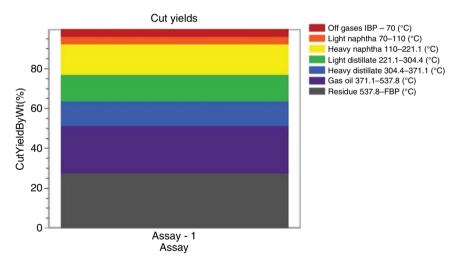


Figure 1.45 Plot of cut yields.

Simulation	<	Economics		Energy		۵
All Items	•	Capital Cost	Utility Cost	Available E	nergy Savings	
Co Workbook		USD	USD/Year O	MW	% of Actual	-
 Image: Image: Ima			USD/Year of		76 OF ACLUA	off
Stream Analysis			a source reare real to the			^
Model Analysis						11
Data Tables Strip Charts						
Case Studies						
🔯 Data Fits						
	_					
Properties						
		<				>
Safety Analysis						- 0 ×
A		Messages	1.00	and case fulleness	a Li Decktoni Ma	
69 Energy Analysis			Ne	ving case C:\Users\V u\Petrorefinery Book w\Newly Created\DUPU st.hsc	Revision\Simu ICATE OIL FRAC	lation Files

Figure 1.46 Enter the simulation environment.

File Home Economics	Dynamics View Customize Resource	Flowsheet/Modify	Format Search aspenONE Exchange	😰 a 😰
Q Zoom Zoom to Fit	🕉 😚 🦵 🗏	1 😤 🎰		0.0.
 Zoom In Page Width Zoom Out 	Flowsheet Model Notes Mess Palette Manager Pan		Save Su	vitch
Zoom	Show	er romis view	Flowsheet Views Layout	Window
Simulation	< 🕑 Pallette 🗕 🗆 💉		Energy	۵
All Items	· 🕂 🐴 🗙	Cost	Available Energy Savings	
Workbook		- Year (off	MW % of Actual	off
Streams	Upstream Refining	Active × +		-
Stream Analysis	Custom Dynamics	-		
Model Analysis	Common Columns			
Data Tables	กิจสด			
Case Studies				
🕞 Data Fits				
	10 C C C C			
	50.53 NI4 /4			
I Properties	±/ Cn(A) 5			
Carles Simulation				~
C/C Simulation	EO			>
Safety Analysis	12. 2. 0. 2	1		→ # ×
6 Energy Analysis	7 1	Auto (0x20	Recovery save of DUPLICATE OIL FF 09f6).ahc	RACTION-test
		Compl		C3
		Savin	g case C:\Users\Will\Desktop\Will	1 research- *

Figure 1.47 Open the window of unit models.

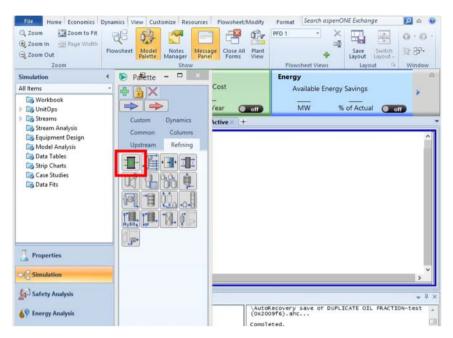


Figure 1.48 Add a petroleum feeder.

File Home Economics	Dynamics	View Customize	Resources	Flowsheet	/Modify	Format	Search aspenONE Exchar	ige 🗾 a 😨
Q Zoom Zoom to Fit Zoom In Page Width Zoom Out Zoom	Flowsheet M	lette Manager	Message Panel Close	All Plant View	PFD 1	• sheet Views	Save Switch Layout Layout	⊖ · ⊖ · ≩ ∄•
Simulation	< 🖻 Pa	Rette - 🗆			Energ			EDR E
All Items	· 4 /	X	ost		A	vailable En	ergy Savings	Unknc
Workbook UnitOps Grant Streams	Upst	tream Refining	9	off		MW	% of Actual 🔘 o	
Co Stream Analysis	Cust	tom Dynamics	:tive ×	+				
 Equipment Design Model Analysis Data Tables Strip Charts Case Studies Data Fits 				Feed	F ler-1		Feed	~
Properties		Eo U		_				
Contraction of the second s		+17 O. UI	U					

Figure 1.49 Add a feed stream.

Upst	rean 🚯	Petrole	um Feeder: Feed	er-100	×	
Cust	Connections R	arameters Worksheet User Varial	bles			
Com	Connections		Name	Feeder-100		
-61	Connections	Feed Assays				
44	L Notes	Assay - 1				
·	144 C	<empty></empty>				
22						
	<u>w</u>			Product Stream		
503-						Feed
			>	Feed		100
±≻+	-<	:				100
2/1	Cn(4					
ď		Feed Streams				
3=2	<u>e</u>	<empty></empty>				
(ITC)	-01			Fluid Package		
2.	2			Basis-2 ·		
	V				10 A	
T		d	ÓK			
-	Delete				100	
Safety					[] ignored	

Figure 1.50 Specify feed assays in the petroleum feeder.

lacoy- 🧆 📥 🦣	Wheels Assistant eactions sar Properties	Components	41 2	Con Ret	otheticals Manager Net Oli Nove Dupikates Manager Spotheticals		-11	Def	sociate Rui Initione* pitons	d Pachaga	Asper Property Option	es Meanurerte	erts		
Il Items •	etroleum Assays Assay Summary Display: Al Re	output Blend ×	+				Convert to Leff Convert HISYS #5379								
Fluid Packages Serie-1 Petroleum Assays		Assay	Characterization Method		Status	R	uid Package	from	Source	Density (k	(Em/g	Suffur (%)	Viscosity (cSt) @ 37.7B C	Watson K	
O O Manager O Namager O Namager			5 <u> </u>	• b+			<u> </u>								

Figure 1.51 Convert the representation from oil manager to petroleum assay manager.

1.8 Workshop 1.6 – Conversion from the Oil Manager to Petroleum Assay Manager and Improvements of the Petroleum Assay Manager over the Oil Manager

We open the file, *WS1.4 Oil Manager.hsc*, and save as *WS1.6 Conversion from Oil Manager to Petroleum Assay Manager.hsc*. Figure 1.51 shows where we highlight the Petroleum Assay within the Properties Environment and then click on the button, Convert to Refinery Assay, to make the conversion.

This is given in Figure 1.52, in which we choose to use the existing fluid package and then click on Convert.

The conversion results in Figure 1.53, which is identical to the representation in the petroleum assay manager in Figure 1.42.

1.9 Property Requirements for Refinery Process Models 33

A Cut	Methods Assistant Methods Assistant Beactions User Properties	Accay Manageme Map Esimponents Update Properties Compensants	Petroleum Assays Bathong 14	127 Hypothaticals Manager Convert Remove Duplicates Hypothaticals	Cil Managar	Convert to Retring Accep	Amodate Dust Package Definitions* Dotors Of	Acpen Properties Options	PvT Laboratory Measurements PVT Data
Projectios All Items All Items Component Lists Component Lists Component List Component Component Component Component List	Assay Summary	Assay	Characterizat Method	This will co	nvert all inst	say Manage taled Oil Mana oleum Refining	iger assays in	-	situr (%) Viscosity (.51) 0 97.78 C
Component Maps				Use Exist For Advance U properties set	sers, modify		utSYS Default		

Figure 1.52 Oil to petroleum assay manager conversion.

Table 1.3 summarizes the improvements of the new petroleum assay manager over the old oil manager.

We strongly recommend the use of the petroleum assay manager to represent oil assays.

1.9 Property Requirements for Refinery Process Models

We classify the processes in modern refinery into two categories: separation units and reaction units. To develop a process model for any unit, we need to check the mass and energy balances of the flowsheet and perform calculations to describe the performance of the target unit. Therefore, the essential properties (physical and chemical) used to simulate these processes depend on the target unit, the chosen pseudocomponent scheme, and the selected kinetic model for reaction unit. Chapters 4 through 6 will represent the relevant issues for the three major reaction units in a modern refinery – FCC, catalytic reformer, and hydrocracker – and Chapter 7 covers additional refinery reaction units such as alkylation and delayed coking. While this chapter focuses primarily on the thermophysical properties required for modeling fractionation processes, the general framework for developing these properties for different kinds of pseudocomponents (i.e., those generated by kinetic lumping networks) is the same.

The previous sections in this chapter address the creation of pseudocomponents by cutting an assay curve into a set of discrete components based on boiling point ranges. We also briefly consider physical properties and process thermodynamics selection in the earlier workshops of this chapter. In this section, we discuss, in detail, the problem of how to represent these components in process modeling software. There are two major concerns in this area: physical properties of pseudocomponents and selection of a thermodynamic model that can deal with these hydrocarbon pseudocomponents in the context of refinery modeling. An accurate selection of physical properties and process thermodynamics results in a process model that can accurately account for material and energy flows in both vapor and liquid process streams.

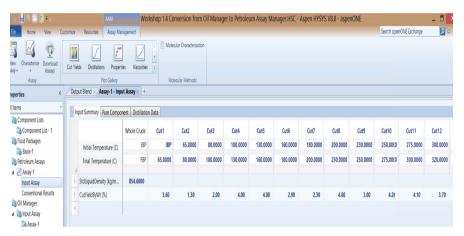
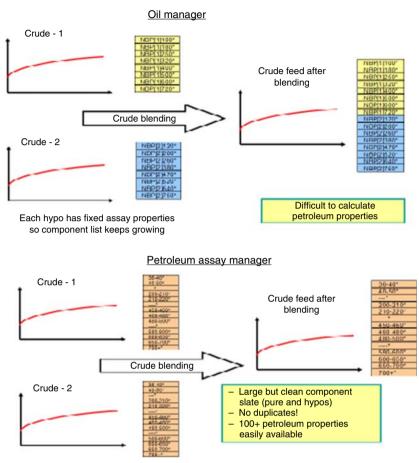



Figure 1.53 The petroleum assay resulting from the conversion from the oil manager.

Assay properties of each hypo component can be different and are stored at stream level

Figure 1.54 Comparison of assay representation in the oil manager and in the petroleum assay manager. (Courtesy of Aspen Technology, Inc.)

 Table 1.3 Improvements of the petroleum assay manager over the oil manager.

Aspen HYSYS oil manager	Aspen HYSYS petroleum refining
Each petroleum assay blend has its own set of component lists (illustrated in Figure 1.54 and in Section 2.11.2 and Figure 2.82)	Multiple assay blend shares the same component list (illustrated in Figure 1.54 and in Section 2.11.2 and Figure 2.83)
Use less accurate blending rules, as each assay blend has its own component list	Calculate property values based on accurate blending rules, as all assays share the same component list
Allows to change very few petroleum properties	Allows the user to change more petroleum properties
Use a simplified option to characterize a petroleum assay	Use advanced options to characterize a petroleum assay

Phase	Required properties
Vapor	Ideal gas heat capacity (CP _{IG})
Liquid	Liquid heat capacity (CP _L), liquid density (ρ_L), latent heat of vaporization (ΔH_{VAP}), vapor pressure (P_{VAP})
Both	Molecular weight (MW)

Table 1.4 Required properties for each phase.

1.10 Physical Properties

For any process simulation that involves only vapor-liquid phases, certain key physical and thermodynamic properties must be available for each phase. Table 1.4 lists these properties for all phases. We can typically obtain these properties for pure components (i.e., *n*-hexane and *n*-heptane) from widely available databases such as DIPPR [2]. Commercial process simulation software (including Aspen HYSYS) also provides access to a large set of physical and thermodynamic properties for thousands of pure components. However, using these databases requires us to identify a component by name and molecular structure first and use experimentally measured or estimated values from the same databases. Given the complexity of the crude feed, it is not possible to completely analyze the crude feed in terms of pure components. Therefore, we must be able to estimate these properties for each pseudocomponent based on certain measured descriptors.

It is important to note that the properties given in Table 1.4 are the minimal physical properties required for rigorous accounting of the material and energy flows in the process. As we discuss in the subsequent sections, process models may require additional properties (especially vapor pressure) depending on the type of thermodynamic models being considered.

1.10.1 Estimating Minimal Physical Properties for Pseudocomponents

We have shown in the previous sections that the minimal amount of information to create pseudocomponents is a distillation curve and a specific gravity or density distribution. If only the bulk density is available, we can use constant Watson *K* factor assumption to estimate the density distribution. If only a partial density distribution is available, we can use the beta function to extrapolate an incomplete distillation curve. Note that it is usually better to incorporate as much experimentally measured information about the density curve as possible when building the process model. Once the distillation and density curve are available, we can cut the curve into a set of discrete pseudocomponents, each with its own boiling point and density. We can then use these two measured properties to estimate a variety of different types of physical properties (i.e., molecular weight, critical temperature, critical pressure, and acentric factor). Using these estimated physical properties, we can derive additional estimates for minimal physical properties required for process simulation. We have also provided a Microsoft Excel spreadsheet, *Critical_Property_Correlations.xls*, in the material that accompanies this text, which includes many of the correlations given in this section.

1.10.2 Molecular Weight

The molecular weight is the most basic information for a given pseudocomponent. Molecular weight is a required property to ensure a material balance throughout the process flowsheet. Researchers have extensively studied the trends of molecular weight for a variety of pure hydrocarbons and oil fractions. Several correlations are available to estimate the molecular weight as a function of boiling point, density, and viscosity. In general, correlations that only require the boiling point are the least accurate and correlations that require values of boiling point, density, and viscosity tend to be the most accurate. We use viscosity as a parameter in these correlations because it correlates well with molecular type – which can further refine the molecular weight estimate. In most cases, we use correlations that require the boiling point and density of a given component. Two popular correlations are the Lee–Kesler correlation [9, 10], Eq. (1.10), and the Twu correlation [11], Eqs. (1.11)–(1.13), respectively.

$$\begin{split} \mathrm{MW} &= -12272.6 + 9486.4(\mathrm{SG}) + (8.3741 - 5.99175 \cdot \mathrm{SG})T_{\mathrm{b}} \\ &+ (1 - 0.77084 \cdot \mathrm{SG} - 0.02058 \cdot \mathrm{SG}^2) \\ &\times \left(0.7465 - \frac{222.466}{T_{\mathrm{b}}} \right) \cdot \frac{10^7}{T_{\mathrm{b}}} + (1 - 0.80882 \cdot \mathrm{SG} - 0.02226 \cdot \mathrm{SG}^2) \\ &\times \left(0.3228 - \frac{17.335}{T_{\mathrm{b}}} \right) \cdot \frac{10^{12}}{T_{\mathrm{s}}^3} \end{split}$$
(1.10)

$$MW^{o} = \frac{T_{b}}{5.8 - 0.0052T_{b}}$$
(1.11)

$$\begin{split} & \mathrm{SG^{o}} = 0.843593 - 0.128624\alpha - 3.36159\alpha^{3} - 13749.5\alpha^{12} \\ & T_{\mathrm{c}}{}^{\mathrm{o}} = T_{\mathrm{b}}(0.533272 + 0.343838 \times 10^{-3} \times T_{\mathrm{b}} + 2.52617 \times 10^{-7} \times T_{\mathrm{b}}{}^{2} \end{split} \tag{1.12}$$

$$-1.654881 \times 10^{-10} \times T_{b}^{3} + 4.60773 \times 10^{-24} \times T_{b}^{-13})^{-1}$$
 (1.13)

$$\alpha = 1 - \frac{T_{\rm b}}{T_{\rm c}^{\rm o}} \tag{1.14}$$

$$\ln(MW) = \ln(MW^{\circ}) \left[\frac{(1+2f_M)}{(1-2f_M)^2} \right]$$
(1.15)

$$f_M = \Delta SG_M \left[\chi + \left(-0.0175691 + \frac{0.143979}{T_b^{0.5}} \right) \right] \Delta SG_M$$
(1.16)

$$\chi = \left| 0.012342 - \frac{0.244515}{T_{\rm b}^{0.5}} \right| \tag{1.17}$$

$$\Delta SG_M = \exp[5(SG^\circ - SG)] - 1 \tag{1.18}$$

Riazi [4] listed several other correlations such as Cavett and Goosens for molecular weight, but they generally do not have significant advantage over the Lee–Kesler or Twu correlations. The Lee–Kesler correlation was developed by

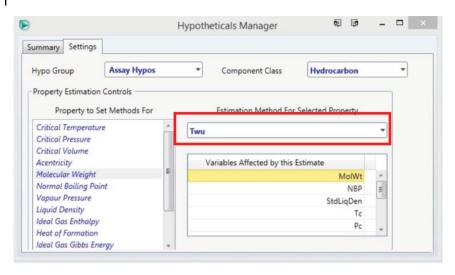


Figure 1.55 Modify the molecular weight correlation in Aspen HYSYS Hypotheticals Manager.

correlating light oil fractions (<850 °F or 454 °C) from a variety of sources. As a result, the Lee–Kesler correlation tends to be less accurate for pseudocomponents with high boiling point temperatures. The Twu correlation includes a significant number of data points to account for heavier components. Aspen HYSYS uses the Twu correlation to calculate the molecular weight. Figure 1.55 shows how to select the molecular weight correlation for a particular blend (shown in earlier workshops) in Aspen HYSYS Hypotheticals Manager.

1.10.3 Critical Properties

Many properties that are required for rigorous accounting of material and energy flows (Table 1.4) in process models are not well defined for pseudocomponents. Fortunately, researchers have found that these required properties correlate well with critical temperature (T_c), critical pressure (P_c), and acentric factor (ω) for different types of hydrocarbons from many sources. Therefore, when we use pseudocomponents of any kind, we must also estimate these critical properties. Just as with molecular weight, many critical property estimation methods are available in the literature. These correlations differ on the basis of the parameters required and underlying data used to create the correlation. We note that as the components get heavier and boil at higher temperatures, the associated change in critical pressure tends to diminish. Hence, correlations for critical pressure tend to be logarithmic formulas. A modeling consequence is that particularly accurate measures of these critical pressures are not required for good modeling results. In addition, most refinery process conditions do not approach the critical properties of these pseudocomponents.

Lee–Kesler [9, 10] and Twu [11] have also produced correlations for critical properties. In our work, we have used the Lee–Kesler correlations extensively. Equations (1.19) and (1.20) give the correlations for critical temperature (T_c) and critical pressure (P_c) using the Lee–Kesler correlations. We recommend using

1.10 Physical Properties **39**

		Hypoth	eticals Manager	•	ø	
Summary Settin	gs					
Hypo Group	Assay Hypos	•	Component Class	Hydrocart	oon	•
Property Estimat	ion Controls					
Property t	o Set Methods For		Estimation Method For	Selected Prop	erty	
Critical Temper	oture	Lee K	esler			P
Critical Pressure	S					
Critical Volume						1
Acentricity	EAL OF	=	Variables Affected by this	s Estimate		
Molecular Weig	Sector and the sector				Tc	
Normal Boiling	Contraction of the second s			Std	LiqDen	
Vapour Pressure	2			COSTALD_Va	riables	
Liquid Density				Viscosity	Thetas	
Ideal Gas Entha						
Heat of Formati						
Ideal Gas Gibbs	Engrave	*				

Figure 1.56 Modify *T*_c correlation in Aspen HYSYS Hypotheticals Manager.

		Hypoth	eticals Manager	6 6	- 0
Summary Setting	s				
Hypo Group	Assay Hypos	-	Component Class	Hydrocarbon	-
Property Estimation	on Controls				_
Property to	Set Methods For		Estimation Method For	Selected Property	
Critical Tempera	ture	Lee	lesler		
Critical Pressure	1				
Critical Volume					
Acentricity			/ariables Affected by this	Estimate	
Molecular Weigh				w	
Normal Boiling P	Point			GS_w	
Vapour Pressure				StdLigDen	
Liquid Density				COSTALD_Variables	
Ideal Gas Enthal				ViscosityThetas	
Heat of Formatio	n				
Ideal Gas Gibbs I					

Figure 1.57 Modify acentric factor correlation in Aspen HYSYS Hypotheticals Manager.

these correlations for all boiling point ranges as the differences that arise from using other correlations are often minor. Figures 1.56 and 1.57 show how we can change the correlation for each blend in Aspen HYSYS Hypotheticals Manager.

$$\begin{split} T_{\rm c} &= 189.8 + 450.6 {\rm SG} + (0.4244 + 0.1174 {\rm SG}) T_{\rm b} \\ &+ (0.1441 - 1.0069 {\rm SG}) 10^5 / T_{\rm b} \\ P_{\rm c} &= 5.689 - \frac{0.0566}{{\rm SG}} - \left(0.43639 + \frac{4.1216}{{\rm SG}} + \frac{0.21343}{{\rm SG}^2}\right) \times 10^{-3} T_{\rm b} \\ &+ \left(0.47579 + \frac{1.182}{{\rm SG}} + \frac{0.15302}{{\rm SG}^2}\right) \times 10^{-6} T_{\rm b}^2 \\ &- \left(2.4505 + \frac{9.9099}{{\rm SG}^2}\right) \times 10^{-10} T_{\rm b}^{-3} \end{split} \tag{1.20}$$

A related property is the acentric factor. The acentric factor accounts for the size and shape of various kinds of molecules. Simple molecules have an acentric factor close to 0, whereas large or complex hydrocarbon molecules may have values approaching 0.5–0.6 [6]. The acentric factor is not measured but defined as an explicit function of the ratio of vapor pressure at the normal boiling point to the measured or estimated critical pressure. We show the definition of the acentric factor in Eq. (1.21).

$$\omega = -\log_{10}(P_r^{\text{VAP}}) - 1.0 \tag{1.21}$$

where $P_{\rm r}^{\rm VAP}$ represents the reduced vapor pressure, that is, the pseudocomponent vapor pressure divided by its critical pressure, when the reduced temperature, $T_{\rm r}$, that is, the temperature divided by the critical temperature, is equal to 0.7.

Given the small range of values for the acentric factor, most correlations can provide useful results. The accuracy of the acentric correlation depends largely on the accuracy of the critical temperature and pressure correlations. However, even large relative errors do not result in significant deviation of derived properties such as ideal gas heat capacity. We again choose the Lee–Kesler [9, 10] correlation for the acentric factor. This correlation, given by Eq. (1.22), relies on extensive vapor pressure data collected by Lee and Kesler for the critical temperature and pressure correlations. The correlation is technically limited to the reduced boiling point temperature ($T_{\rm br}$) of less than 0.8 but has been successfully used at high $T_{\rm br}$ values. Figure 1.57 shows how we can modify the acentric factor estimation method for oil blends in Aspen HYSYS Hypotheticals Manager.

$$\omega = \frac{-\ln(P_{\rm C}/1.01325) - 5.92714 + \frac{6.09648}{T_{\rm br}}}{15.2518 - \frac{15.6875}{T_{\rm br}} - 13.4721\ln(T_{\rm br}) + 0.43577 T_{\rm br}^{-6}}$$
(1.22)

.

In this equation, $T_{\rm br}$ represents the reduced boiling point, that is, the normal boiling point divided by the critical temperature $T_{\rm c}$.

1.10.4 Liquid Density

The liquid density of hydrocarbons is essential for modeling purposes to convert molar and mass flows into volumetric flows. Many processes in the refinery operate on the basis of volumetric flow. In addition, the density of the products is an important constraint while marketing the refinery's products for sale. In the context of process modeling, liquid density is also a property parameter that must be correlated as many of the equation-of-state (EOS) thermodynamic models cannot accurately predict liquid densities. Even when a given process modeling software uses an EOS approach for refinery modeling, liquid density is often calculated independently to ensure accurate results. Figure 1.58 shows how Aspen HYSYS calculates the liquid density independently even when we use an EOS (in this case, Peng–Robinson) as the thermodynamic model.

ackage Type: HYSYS		Component List Selection	Compon	ent List - 1 [HYSYS Databanks]	View
Property Package Selection	Options			Parameters	
<none> +</none>	Enthalpy	Property Pac	kage EOS		
Acid Gas	Density		Costald		
Acid Gas - Physical Solvents	Modify Tc, Pc for H2, He	Modify Tc, Pc f	or H2, He		
Antoine	Indexed Viscosity	HYSYS	Viscosity		
ASME Steam	Peng-Robinson Options		HYSYS		
Braun K10	EQS Solution Methods	Cubic EOS Analytica	1.000		
BWRS Chao Seader		Cubic EOS Analytica			
Chao Seader Chien Null	Phase Identification		Default		
Clean Fuels Pkg	Surface Tension Method	HYSY	Method		
CPA	Thermal Conductivity	API 12A3.2-1	Method		
Esso Tabular	2-1				
Extended NRTL					
GCEOS					
General NRTL					
Glycol Package Grayson Streed					
Kabadi-Danner					
Lee-Kesler-Placker					
Margules					
MBWR					
NBS Steam					
NRTL OLI_Electrolyte					

Figure 1.58 Options for Peng–Robinson equation of state in Aspen HYSYS.

Several correlations are available in the literature for liquid mass density or liquid molar volume as functions of various critical properties. It is possible to convert from liquid mass density to liquid molar volume using the molecular weight of the component in question. This also means that errors in the molecular weight or critical property predictions can introduce additional error in the liquid density or molar volume correlations. Popular correlations for liquid density include Yen-Woods [12], Gunn-Yamada [13], and Lee–Kesler [9, 10]. An accurate correlation (when the reduced temperature is less than 1) of liquid density is the Spencer–Danner (modified Rackett) method [14] with COSTALD (Corresponding States Liquid Density) [15] correction for pressure. Equation (1.23) gives the standard Spencer–Danner equation. This equation actually predicts the molar volume at saturated liquid conditions. We can convert this molar volume into liquid density using the molecular weight.

$$V^{\text{SAT}} = \left(\frac{\text{RT}_C}{P_c}\right) Z_{\text{RA}}^n \text{ with } n = 1.0 + (1.0 - T_r)^{2/7}$$
(1.23)

$$Z_{\rm RA} = 0.29056 - 0.08775\omega \tag{1.24}$$

 Z_{RA} is a special parameter to account for the critical compressibility of the component. Tables of Z_{RA} for many pure components are part of the pure component databases in Aspen HYSYS. We may estimate Z_{RA} for pseudocomponents from Eq. (1.24) as a function of the correlated acentric factor. The liquid density from Spencer–Danner equation is a function of temperature only. Refinery processing conditions can be severe enough where the liquid density is also a function of pressure. To correct the liquid density for high pressure, we can introduce the COSTALD correction given by Eq. (1.25). This equation requires the liquid density, ρ_{P^o} , at a certain reference pressure, P^o , obtained from

Eq. (1.25) and predicts the density, ρ_P , at an elevated pressure, P, as a function of two parameters, C and B.

$$\rho_P = \rho_{P^o} \left[1 - C \ln \left(\frac{B+P}{B+P^o} \right) \right]^{-1} \tag{1.25}$$

$$e = \exp(4.79594 + 0.250047\omega + 1.14188\omega^2)$$
(1.26)

$$B = P_{\rm c}(-1 - 9.0702(1.0 - T_{\rm r})^{\frac{1}{3}} + 62.45326(1.0 - T_{\rm r})^{\frac{2}{3}}$$

$$-135.1102(1.0 - T_{\rm r}) + e(1.0 - T_{\rm r})^{\frac{3}{3}})$$
(1.27)

$$C = 0.0861488 + 0.0344483\omega \tag{1.28}$$

The COSTALD correlation is quite accurate even at high reduced temperatures and pressures. Predicted liquid densities generally agree with measured values within 1–2%, provided the errors in the critical property predictions are low. A potential problem can occur if the reduced temperature is greater than 1. There can be discontinuity from the Spencer–Danner equation in the density prediction, which may cause some process models to fail. However, at a reduced temperature greater than 1, the EOS becomes more accurate and can be used directly. Aspen HYSYS includes a smoothing approach (using the Chueh and Prausnitz correlation [16]) to ensure a smooth transition from the COSTALD densities to EOS-based densities.

1.10.5 Ideal Gas Heat Capacity

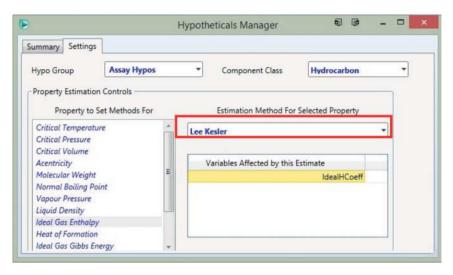
The last property that is often directly correlated is the ideal gas heat capacity of pseudocomponents. The ideal gas heat capacity represents the vapor heat capacity of the pseudocomponent at a given standard condition. The standard conditions typically refer to 25 °C and 1 atm or 77 °F and 14.696 psia. It is well known that the heat capacity of hydrocarbons can be modeled with a simple polynomial expression as a function of temperature. Lee and Kesler [9, 10] presented a popular correlation, Eq. (1.29) to Eq. (1.36), where *M* is molecular weight, *T* in Kelvin, and K_w is Watson *K* factor. These parameters may be estimated from other correlations, including Lee–Kesler equation for MW in Section 1.10.3, Eq. (1.10). The heat capacities of hydrocarbons do not vary significantly over a wide range of temperatures, so very accurate heat capacities are not necessary for good modeling results. We present this correlation in Eq. (1.29). Figure 1.59 shows how we can modify the ideal gas heat capacity estimation method for oil blends in Aspen HYSYS Hypotheticals Manager.

$$CP_{\rm IG} = MW[A_0 + A_1T + A_2T^2 - C(B_0 + B_1T + B_2T^2)]$$
(1.29)

$$A_0 = -1.41779 + 0.11828K_w \tag{1.30}$$

$$A_1 = -(6.99724 - 8.69326K_w + 0.27715K_w^2) \times 10^{-4}$$
(1.31)

$$A_2 = -2.2582 \times 10^{-6} \tag{1.32}$$


$$B_0 = 1.09223 - 2.48245\omega \tag{1.33}$$

$$B_1 = -(3.434 - 7.14\omega) \times 10^{-3} \tag{1.34}$$

$$B_2 = -(7.2661 - 9.2561\omega) \times 10^{-7} \tag{1.35}$$

$$C = \left[\frac{(12.8 - K_{\rm w}) \times (10 - K_{\rm w})}{10\omega}\right]^2$$
(1.36)

1.10 Physical Properties 43

Figure 1.59 Modify ideal gas heat capacity correlation in Aspen HYSYS Hypotheticals Manager.

1.10.6 Other Derived Physical Properties

Once we have obtained the boiling point, density or specific gravity, molecular weight, and critical properties of a particular pseudocomponent, we can also generate estimates for other required properties for process simulation provided in Table 1.4. The accuracy of these predictions is largely a function of the accuracy of the molecular weight and critical property predictions. In addition, depending on the thermodynamic method chosen, we may not require any correlations for certain properties. For example, if we choose an EOS, we do not require any additional correlations for the vapor pressure ($P_{\rm VAP}$) or heat of vaporization ($\Delta H_{\rm VAP}$), as these values will be calculated directly by the EOS. We discuss such features of the EOS in the following section. In this section, we present correlations for all required properties so that model developers are aware of the model limitations and additional data requirements when we do not use an EOS for modeling process thermodynamics.

The liquid heat capacity of pseudocomponents in refinery modeling is largely constant. Walas [6] noted that as the boiling point and density of the pseudocomponent increase, the heat capacity of hydrocarbons tends to approach a value of 1.8–2.2 kJ/kg K near the normal boiling point. Consequently, rough estimates of heat liquid capacities do not affect model results significantly. Two correlations are available for liquid heat capacities of hydrocarbons that are in general use. Equation (1.37) is a correlation by Kesler and Lee [9, 10] and Eq. (1.41) is a correlation recommended by API. Either correlation may be used with equally acceptable results. We generally do not encounter these temperature limits prescribed for both of these correlations. We also note that these correlations are weak functions of temperature. Process modeling software programs have a variety of models to estimate liquid heat capacity, but these methods are only marginally better when compared to the simple correlations given here.

When $145 \text{ K} < T < 0.8 T_{c}$

$$CP_L = a(b + cT) \tag{1.37}$$

$$a = 1.4651 + 0.2302K_{\rm w} \tag{1.38}$$

$$b = 0.306469 - 0.16734SG \tag{1.39}$$

$$c = 0.001467 - 0.000551SG \tag{1.40}$$

When $T_r < 0.85$

$$CP_L = A_1 + A_2T + A_3T^2$$

$$A_1 = -4.90383 + (0.099319 + 0.104281SG)K_{m}$$
(1.41)

$$= -4.90383 + (0.099319 + 0.1042815G)K_{w} + \left(\frac{4.81407 - 0.194833K_{w}}{SG}\right)$$
(1.42)

$$A_2 = (7.53624 + 6.214610K_w) \times \left(1.12172 - \frac{0.27634}{\text{SG}}\right) \times 10^{-4}$$
(1.43)

$$A_3 = -(1.35652 + 1.11863K_w) \times \left(2.9027 - \frac{0.70958}{\text{SG}}\right) \times 10^{-7}$$
(1.44)

Another property related to the heat capacity is the heat of vaporization of pseudocomponent as a liquid. The heat of vaporization represents the heat required to vaporize a given mass (or volume) of liquid into vapor. Similar to heat capacities, there are several correlations to calculate the heat of vaporization in the literature. We present two popular correlations here. Equation (1.45) is the Riedel correlation [17] and Eq. (1.46) is the Chen and Vettere correlation [17]. We note that both correlations rely on critical temperatures and pressure and give the heat of vaporization at the normal boiling point. We can obtain the heat of vaporization at a different temperature by using the Watson relation [1] in Eq. (1.47). Either of the correlations can provide very good results for hydrocarbons (<2% average relative deviation, ARD). We recommend the use of either correlation if the process modeling software does not already include a correlation. In addition to these correlations, Aspen HYSYS offers a more advanced proprietary correlation using two reference state liquids.

$$\Delta H_{\rm NBP}^{\rm VAP} = 1.093 R T_C T_{\rm br} \frac{\ln P_c - 1.013}{0.93 - T_{\rm br}}$$
(1.45)

$$\Delta H_{\rm NBP}^{\rm VAP} = RT_C T_{\rm br} \frac{3.978T_{\rm br} - 3.958 + 1.555\ln P_{\rm c}}{1.07 - T_{\rm br}}$$
(1.46)

$$\Delta H^{\rm VAP} = \Delta H^{\rm VAP}_{\rm NBP} \left(\frac{1 - T_{\rm r}}{1 - T_{\rm br}}\right)^{0.38} \tag{1.47}$$

The vapor pressure of pseudocomponents is also an important property when an EOS is not used. All other approaches to process thermodynamics require some form of vapor pressure correlation. The vapor pressure for pure hydrocarbons has been extensively tabulated in many component databases such as DIPPR (Design Institute for Physical Property Research, American Institute of Chemical Engineers) and significant libraries are available in modern process modeling software. Several correlations for the vapor pressure of pseudocomponents are available in the literature. It is important to recall that the vapor pressure and

heat vaporization are related through the Clausius–Clapeyron equation (Eq. 1.48) [17]. This relationship imposes a constraint if we wish the model to be thermodynamically consistent. In general, most of the popular correlations for vapor pressure such as the Lee–Kesler [9, 10] agree well with heat of vaporization correlations and maintain thermodynamic consistency. We present the Lee–Kesler vapor pressure correlation in Eq. (1.49).

$$\frac{\mathrm{d}\ln P}{\mathrm{d}T} = \frac{\Delta H_{\mathrm{VAP}}}{RT^2}$$
(1.48)
$$\ln P_{\mathrm{r}}^{\mathrm{VAP}} = 5.92714 - \frac{6.096648}{T_{\mathrm{r}}} - 1.28862 \ln T_{\mathrm{r}} + 0.169347 T_{\mathrm{r}}^{\ 6}$$
$$+ \omega \left(15.2518 - \frac{15.6875}{T_{\mathrm{r}}} - 13.4721 \ln T_{\mathrm{r}} + 0.43577 T_{\mathrm{r}}^{\ 6} \right)$$
(1.49)

The Lee–Kesler correlation for vapor pressure is quite accurate for low-to-medium boiling pseudocomponents. For very light components, we recommend using pure component properties directly. In the case of heavy components, Ambrose [17] has presented an additional term for the Lee–Kesler correlation. In practice, however, the additional term is not necessary for refinery modeling purposes.

1.11 Process Thermodynamics

After we have fully characterized the pseudocomponents and any true components in the process model, we must choose a thermodynamic model. The thermodynamic model here refers to a framework that allows us to describe whether a particular mixture of components forms one phase or two phases, the distribution of components within these phases, and material and energy flows of these phases given a set of process conditions. Process thermodynamics also set material and energy transfer limits on various fractionation and reaction units in the model and in the actual plant itself.

Modern refineries deal with a multitude of complex systems that may require different thermodynamic models for each refinery plant and its associated process model. For example, we cannot model the sour gas units that deal with acid gases and water with the same thermodynamic model that we use for the crude fractionation system. In fact, reasonable thermodynamic models form the heart of any process model. Chen and Mathias [7] have documented a variety of thermodynamic models available for frequently encountered chemical and physical systems. Agarwal *et al.* [18] presented a detailed account about the pitfalls of choosing a poor thermodynamic system for process models and the undesired consequences of using these poor models to modify plant operations. Process model developers and users must be aware of the underlying thermodynamics and its limitations.

Given that the field of thermodynamic models is vast, we choose to focus on thermodynamic models that deal with hydrocarbon–hydrocarbon interactions only and can model many units in the refinery quite accurately. The only complication (aside from the choice of an appropriate thermodynamic model) is the

presence of large amounts of water in the form of steam in various fractionation and reaction units. In most cases, we can simply deal with the hydrocarbon and water phases as immiscible. This is known as *the free-water approach*. Kaes [1] discussed this approach extensively and it is a common approach in many process simulators. Some software may include *a dirty-water approach*. This approach uses correlations to model the solubility of water in the hydrocarbon and the solubility of light acid gases in water. For the purposes of refinery reaction and fractionation modeling in this text, both approaches have negligible effects on the overall process model. We give the general statement of vapor–liquid equilibrium for any thermodynamic model in Eq. (1.50).

$$y_i \varphi_i^{\ V} P = x_i \varphi_i^{\ L} P \tag{1.50}$$

where y_i refers to vapor phase molar composition of component *i*, φ_i^V refers to the vapor phase fugacity coefficient of component *i*, *P* is overall pressure, x_i is the liquid phase molar composition of component *i*, and φ_i^L refers to the liquid phase fugacity coefficient of component *i*.

For refinery fractionation modeling, several simplifications are possible. Each one of these simplifications represents a different thermodynamic approach. We list major approaches, required pseudocomponent properties, and our recommendation for use in Table 1.5. We discuss each of these approaches and their requirements in subsequent sections.

Approach	Required physical properties	Recommended
Simple	Molecular weight (MW) Ideal gas heat capacity (CP _{IG})	No
	Vapor pressure (P_{VAP})	
	Heat of vaporization (ΔH_{VAP})	
	Liquid heat capacity (CP _L)	
	Liquid density ($\rho_{\rm L}$)	
Mixed or activity	Molecular weight (MW)	Yes, however, best with heavy
coefficient	Ideal gas heat capacity (CP_{IG})	components that the
	Vapor pressure (P_{VAP})	equation-of-state (EOS) approach cannot deal with
	Heat of vaporization ($\Delta H_{ m VAP}$)	approach cannot dear with
	Liquid heat capacity (CP_L)	
	Liquid density ($\rho_{\rm L}$)	
	Solubility parameter (δ)	
Equation of state	Molecular weight (MW)	Yes, with adequate corrections
	Critical temperature (T_{c})	of liquid density
	Critical pressure (P_c)	
	Acentric factor (ω)	
	Ideal gas heat capacity (CP_{IG})	
	Liquid density ($ ho_{ m L}$)	
	Interaction parameter (k_{ij})	

Table 1.5 Comparison of various thermodynamic approaches.

1.11.1 Process Thermodynamics

The simple approach is the most basic and least rigorous thermodynamic approach. In the simple approach or Raoult's law approach, we assume that vapor phase and liquid phase are ideal. In this case, we may write the general statement of equilibrium equation (1.50), as Eq. (1.51), where y_i is the vapor phase molar composition of component *i*, *P* is the pressure, x_i is the liquid phase molar composition, and $P^{\text{SAT}}(T)$ is the vapor pressure of component *i* as a function of temperature only. These properties are routinely available for pure components and we have extensively discussed how to obtain the required properties from pseudocomponents.

$$y_i P = x_i P^{\text{SAT}}(T) \tag{1.51}$$

A variation of this equation is to rearrange the equation to obtain the equilibrium distribution ratio, y_i/x_i as shown in Eq. (1.52). This distribution ratio is also known as the *K*-value for component *i*. Numerous correlations for *K*-values exist for a variety of pure components and pseudocomponents. The Braun-K10 (BK-10) correlation is a popular correlation of this type [6].

$$K_i = \frac{y_i}{x_i} = \frac{P^{\text{SAT}}(T)}{P} = f(T)$$
 (1.52)

Once we obtain a *K*-value at a given temperature and pressure, we can perform mass and energy balances that include isothermal, isobaric, and isenthalpic flashes. We can also use the ideal gas heat capacity of the vapor phase, heat of vaporization, and heat of capacity of the liquid to represent the enthalpies of relevant vapor and liquid streams.

Most process simulators include these types of correlations, but they are largely of historical interest or used to maintain compatibility with old models. We do not recommend using simple methods, as they cannot adequately quantify the transition from vapor to liquid phases beyond the original correlation. In addition, these correlations tend to be thermodynamically poor (do not consider any interactions between components and thermodynamically inconsistent at higher pressures). We cannot integrate models using these correlations into new models that use an EOS or activity coefficient approach without significant efforts.

1.11.2 Mixed or Activity Coefficient-Based Approach

The mixed or activity coefficient approach uses the concept of activity coefficients to separate out the effects of nonideality because of component interactions and the effect of pressure. For the activity coefficient approach, we can rewrite the general equilibrium statement as

$$y_i \varphi_i^V P = x_i \gamma_i \varphi_i^{\text{SAT}} P^{\text{SAT}}(T) P F_i$$
(1.53)

$$PF_{i} = \exp\left(\int_{P^{SAT}}^{P} \frac{V_{i}(T,\pi)}{RT} d\pi\right)$$
(1.54)

In the equations, y_i is vapor molar composition of component *i*, φ_i^V is the vapor phase fugacity coefficient for component *i*, P is the system pressure, x_i is the liquid molar composition of component *i*, φ_i^{SAT} is the fugacity coefficient for vapor

pressure of component *i*, $P^{\text{SAT}}(T)$ is the vapor pressure of component *i*, and PF_i is the Poynting factor for component *i* at pressure *P*. V_i is the molar volume of component *i* as a function of temperature, *T*, and pressure, π (integrated from P^{SAT} to *P*). The PF_i factor is generally close to a value of 1 unless the system pressure is very high [17]. We can now rewrite the equilibrium relationship in the form of *K*-values as Eq. (1.55).

$$K_i = \frac{y_i}{x_i} = \frac{\gamma_i \varphi_i^{\text{SAT}} P^{\text{SAT}}(T)}{\varphi_i^{V} P}$$
(1.55)

We apply the Redlich–Kwong (RK) EOS [6] and liquid phase correlation (or an EOS) to obtain expressions for φ_i^V and φ_i^{SAT} as function of temperature, pressure, and component critical properties. This is the approach taken by the very popular Chao–Seader and Grayson–Streed methods [6]. The only factor that remains undefined is the liquid activity coefficient. The Chao–Seader and Grayson–Streed methods use regular solution theory to obtain an expression for γ_i as follows:

$$\ln \gamma_i = \frac{V_i}{RT} (\delta_i - \overline{\delta}) \tag{1.56}$$

$$\overline{\delta} = \frac{\sum x_i V_i \delta_i}{\sum x_i V_i} \tag{1.57}$$

where V_i is the liquid molar volume of component *i* and δ_i is the solubility parameter for component *i*. Molar volumes for pure components are readily available and we discussed several methods to estimate molar volumes for pseudocomponents in Section 1.10.5. We can obtain the solubility parameter for pseudocomponents using Eq. (1.56), where ΔH_{VAP} is the heat of vaporization, *R* is the universal gas constant, and *T* is system temperature. We have discussed how to calculate the heat of vaporization for pseudocomponents in Section 1.11.

$$\delta_i = \left(\frac{\Delta H_{\rm VAP} - RT}{V_i}\right)^{0.5} \tag{1.58}$$

We use the K-value expression to calculate various equilibrium properties and perform typical process modeling flashes. As with the simple thermodynamic approach, we can use the heat capacities and heats of vaporization to obtain enthalpy balances for vapor and liquid streams. In addition, as we account for vapor and liquid phase nonideality due to component interaction, and temperature and pressure effects, we can also apply standard thermodynamic relationships to compute excess properties for enthalpies, and so on. The excess properties account for deviation of ideal mixing behavior and resulting deviations in equilibrium behavior.

Using the activity coefficient approach in the form of the Chao–Seader or Grayson–Streed method for refinery modeling is a significant improvement over the simple approach. The activity coefficient approach accounts for vapor and liquid phase nonidealities accurately in both the equilibrium and the enthalpy calculations. In addition, this approach is easy to integrate with other types of activity coefficient models that we may use in refinery models (especially for sour water systems). We prefer to use activity coefficient models while dealing with heavy components that occur especially in vacuum distillation systems. A key shortcoming of this approach is that light components may require fictitious solubility parameters fitted to certain data sets and performance of this approach degrades quickly near the vicinity of the critical point. In general, however, this method is a reasonable thermodynamic model for real and pseudocomponents that we find in refinery reaction and fractionation systems.

1.11.3 Equation-of-State Approach

The most rigorous approach is the EOS approach. When we use an EOS, both vapor and liquid phases use the same model. We do not modify the general equilibrium statement from Eq. (1.50) because we can calculate the fugacity coefficients directly after we choose a particular EOS.

There are many types of EOS with a wide range of complexity. The RK model is a popular EOS that relies only on critical temperatures and critical pressures of all components to compute equilibrium properties for both liquid and vapor phases. However, the RK EOS does not represent liquid phases accurately and is not widely used, except as a method to compute vapor fugacity coefficients in activity coefficient approaches. On the other hand, the Benedict–Webb–Rubin–Starling (BWRS) EOS [6] has up to 16 constants specific for a given component. This EOS is quite complex and is generally not used to predict properties of mixture with more than few components.

For the purposes of refinery reaction and fractionation modeling, the most useful EOS models derive from either the Peng–Robinson (PR) EOS [6] or the Soave–Redlich–Kwong (SRK) EOS [6]. Both the PR and SRK are examples of cubic equations of state. Cubic EOSes are quick and easy to use for modeling work and provide a good balance between thermodynamic robustness and prediction accuracy. In our work, we have used the PR EOS with good results throughout many reaction and fractionation processes in refineries. More advanced EOS models are available in the context of refinery modeling, but we limit the scope of our discussion to the PR EOS.

We give the basic form of the PR EOS in Eq. (1.65). The PR EOS requires three main properties: critical temperature, critical pressure, and acentric factor.

$$a_i = 0.45724 R^2 \frac{T_{ci}^2}{P_{ci}}$$
(1.59)

$$b_i = 0.07780 R \frac{T_{ci}}{P_{ci}} \tag{1.60}$$

$$\alpha_i = [1 + (0.37464 + 1.5426\omega_i - 0.26992\omega_i^2)(1 - T_{r_i}^{0.5})]^2$$
(1.61)

$$a\alpha_{\rm MIX} = \sum_{i} \sum_{j} x_i x_j (a\alpha)_{ij}$$
(1.62)

$$b_{\rm MIX} = \sum x_i b_i \tag{1.63}$$

$$a\alpha_{ij} = \sqrt{a\alpha_{ii}a\alpha_{jj}}(1 - k_{ij}) \tag{1.64}$$

$$P = \frac{KT}{V_{\rm MIX} - b_{\rm MIX}} - \frac{u a_{\rm MIX}}{V_{\rm MIX}^2 + 2b_{\rm MIX} V_{\rm MIX} + b_{\rm MIX}^2}$$
(1.65)

50 1 Characterization and Physical and Thermodynamic Properties of Oil Fractions

where V_{MIX} is the molar volume of the mixture and k_{ij} is an interaction parameter for each *i* and *j* pair of components. The critical properties and interaction parameters for a large number of pure components are available within most process modeling software. We discussed how to obtain the critical properties of pseudocomponents in Section 1.10.4. In general, we can set the interaction parameters for pseudocomponents to 0 without significantly changing model results. Riazi [4] discussed several correlations to estimate the interaction parameters as functions of critical volumes of the components.

The EOS approach is robust and can generate the vapor pressure, heat of vaporization, liquid density, and liquid heat capacity using standard thermodynamic relationships and basic information such as critical properties and ideal gas heat capacities for all components. We refer the reader to the excellent text by Poling *et al.* [17] where there are detailed formulas for all these derived properties from the EOS directly. In general, the PR EOS makes good predictions of equilibrium distributions for light and medium boiling components. In addition, we ensure thermodynamic consistency by design as we use the same model for the vapor and liquid phases. The PR EOS also generates mostly acceptable predictions for vapor and liquid enthalpies and displays good behavior near the critical point.

A key shortcoming in the EOS approach (specifically PR) is that predictions of liquid density are quite poor and not sufficient for process modeling. The most popular method to deal with this problem is to ignore liquid density prediction from the EOS and use COSTALD method described in Section 1.10.5 to provide accurate density predictions. With similar reasoning, some process modeling software programs replace the enthalpy methods of EOS with Lee–Kesler correlations for heat capacity and enthalpy. However, this is not entirely necessary given the inaccuracies in the pseudocomponent physical property predictions themselves. Finally, the presence of very light components such as hydrogen and helium can sometimes provide spurious results. Aspen HYSYS includes several modifications (shown in Figure 1.58) for light components to prevent undesired behavior of light components. In general, we recommend using the EOS approach when developing refinery reaction and fractionation process models.

1.12 Miscellaneous Physical Properties for Refinery Modeling

In addition to thermophysical properties required for modeling purposes, a complete model must also make predictions regarding several fuel properties routinely measured at the refinery. Typically, these fuel or product properties include measurements such as flash point, freeze point, cloud point, and PNA content. These properties not only serve as indicators of product quality and distribution but may also be limited by government or internal refinery regulations. We can often justify the use of process modeling in the refinery by making sure that models also include predictions of these useful fuel properties. We will briefly discuss two approaches in this area and give concrete examples with flash point, freeze point, and PNA content. We choose these particular properties because they display characteristics common to many types of fuel property correlation methods. We refer the reader to API standards [2] and Riazi [4] for more detailed expositions on various types of correlations for fuel properties not discussed in this section.

1.12.1 Two Approaches for Estimating Fuel Properties

Fuel or product properties can be a complex function of feed composition, process conditions, and analysis method. It is generally not possible to take into account all of these variables when estimating fuel properties.

The simplest approach is to correlate the relevant fuel property against modeled or measured bulk properties. For example, the flash point maybe correlated with the 10% point of the ASTM-D86 curve. We can obtain the required distillation curve from the pseudocomponent stream composition. The software accomplishes this task by arranging pseudocomponents in an ascending order of boiling point and creating a running cumulative sum of the liquid fractions of these pseudocomponents. This process results in the TBP curve of a given stream. Most software programs (including Aspen HYSYS) include methods to automatically convert this TBP curve into ASTM D86 or D1160 curve. Once we obtain this distillation curve, we can use several correlations to estimate flash point, freeze point, and so on. This method is simple to use and adaptable to any process simulator. However, this method relies on the availability of good correlations. It is important to remember that such correlations may not be valid or accurate for refineries that process frequently changing feedstocks.

A second approach is to use indexes based on pseudocomponent compositions. In an index-based approach, we represent each fuel property using the following equation:

$$PROP_{MIX} = \sum_{i=0}^{N} PROP_i w_i$$
(1.66)

where PROP_{MIX} represents a given fuel property; PROP_i represents the property index for pseudocomponent *i*; *w_i* corresponds to the liquid, molar, or weight fraction; and N is the total number of pseudocomponents. Process modeling software tools and the literature have used this approach to quantify fuel properties such as octane numbers. An important advantage of this approach is that we can tune the property prediction to a particular plant by modifying the value of PROP_i. This allows the model user to track plant performance accurately. This method is also very useful while attempting to correlate the flash point of various blends of fuels. However, this approach is generally not portable across various process modeling software programs and requires a large initial data set to regress starting values for PROP_i. In addition, there is a danger of overfitting these values to match plant performance. Overfitting the property indexes renders the model less useful for predictive purposes. In our work, we have used both approaches with equal success. However, for simplicity, we recommend the first approach; especially in light of the fact that large sets of data may not be available for determining initial PROP_i values.

1.12.2 Flash Point

The flash point of a fuel typically refers to the temperature at which the fuel can ignite in the presence of an ignition source and sufficient air. A low flash point is an important consideration for gasoline engines as "sparking" or igniting the gasoline fuel is critical to optimum engine performance. In contrast, engines that use diesel and jet fuels do not rely on ignition (but on compression) and require fuels with a high flash point. The API [2] has correlated numerous data for a variety of fuels and found that the open- and closed-cup flash points (alternative measurement methods) linearly correlate well with the 10% ASTM-D86 distillation temperature.

The flash point correlation is

$$FP = A(D86_{10\%}) + B \tag{1.67}$$

where FP is the flash point measured in degree Fahrenheit and D86_{10%} refers to the 10% distillation temperature measured in degree Fahrenheit. A and B are specific constants for various feed types. Typical values of A and B are 0.68–0.70 and 110–120, respectively. We recommend performing a simple linear regression to tune existing measurements into this correlation. API notes that this correlation may be improved using the 5% distillation temperature instead of the 10% distillation temperature. Deviations of 5–7 °F are within the tolerance of this correlation.

1.12.3 Freeze Point

The freeze point refers to the temperature at which solid crystals start to appear as a given fuel sample is being cooled. The freeze point dictates how a given fuel may be sold and if additives or blendings are required to ensure that the fuel does not clog engines at low ambient temperatures. A related concept is the cloud point, which is the temperature at which the sample takes a cloudy appearance. This is due to the presence of paraffins, which solidify at a higher temperature than other components. The freeze point and cloud point do not correlate well with each without considering the paraffin content of the stream. The API [2] has correlated freeze point as follows:

$$FRP = A(SG) + B(K_w) + C(MeABP) + D$$
(1.68)

where FRP is the freeze point in degree Fahrenheit, SG is the specific gravity, K_w is the Watson K factor, and MeABP refers to the mean average boiling point. A, B, C, and D refer to specific constants for a given fuel composition. Typical values for A, B, C, and D are 1830, 122.5, -0.135, and -2391.0, respectively. We can also fix the value of K_w to a constant (roughly 12) for narrowly distributed petroleum cuts. We can calculate the value of MeABP using the spreadsheet procedure described in Section 1.4. It is important to compare this correlation to that for the flash point. This correlation uses more bulk measurements (SG and K_w) to capture the effect of feed composition on the freeze point.

1.12.4 PNA Composition

The last sets of correlations we discuss are composition correlations. These correlations identify chemical composition in terms of total PNA content of a particular feed based on key bulk measurements. These correlations are useful in two respects. First, we use these correlations to screen feeds to different refinery reaction units. For example, we may wish to send a more paraffinic feed to a reforming process when we need to increase the yield of aromatic components from the refinery. Second, these types of correlations form the basis of more detailed lumping for kinetic models that we discuss in detail in subsequent chapters of this book. We use these types of correlations to build extensive component lists that we can use to model refinery reaction processes.

Compositional information is quite useful to the refiner, and many correlations are available in the literature that attempt to correlate PNA content with various bulk measurements. In general, these correlations rely on density or specific gravity, molecular weight, distillation curve, and one or more viscosity measurements. The n-d-M (refractive index, density, and molecular weight) [1], API/Riazi-Daubert [2, [4]], and TOTAL [19] correlations are just a few of the correlations available. The Riazi–Daubert correlation relies on the most directly observed information and we expect it to show the smallest deviation from measured values. The other correlations require parameters (aniline point, etc.) that may not be routinely measured for all feeds. The Riazi–Daubert correlation takes the form

$$\%X_{\rm P} \, or \,\%X_{\rm N} \, or \,\%X_{\rm A} = A + B \cdot R_{\rm i} + C \cdot \text{VGC}' \tag{1.69}$$

where %X represents the percent molar or volumetric composition of paraffins, naphthenes, or aromatics (based on the subscript chosen); R_i is the refractive index; and VGC' is the viscosity gravity constant or viscosity gravity factor defined in ASTM D2501-14. Coefficients *A*, *B*, and *C* take on different values based on whether an aromatic, naphthene, or paraffin is chosen as the subscript. This correlation can provide reasonably accurate results when we know the values of key input parameters with high accuracy. Overall, this method indicates a 6–7% absolute average deviation (AAD) from known measurement test cases.

We have extended the correlation by Riazi [1] to include the specific gravity, refractive index, and the stream viscosity. Our updated correlation is given by

$$\%X_{\rm P} \text{ or } \%X_{\rm A} = A + B \cdot \text{SG} + C \cdot R_i + D \cdot \text{VGC}'$$
(1.70)

$$\%X_{\rm N} = 1 - (X_{\rm P} + X_{\rm A}) \tag{1.71}$$

In the equations, %*X* represents the percent molar or volumetric composition of paraffins (P), naphthenes (N), or aromatics (A) (based on the subscript chosen); SG is the specific gravity; R_i is the refractive index; and VGC' is the viscosity gravity constant or viscosity gravity factor. In addition, the constants *A* to *D* are given for paraffins and naphthenes and for each fuel type. We list our updated constants in Tables 1.6 and 1.7. We also group the constants in this updated correlation by boiling point ranges (light naphtha, etc.). This correlation reproduces plant data with 3–4% AAD, which is a significant improvement over the Riazi–Daubert

	Paraffin (vol%)							
Boiling point range	А	В	С	D	AAD			
Light naphtha	311.146	-771.335	230.841	66.462	2.63			
Heavy naphtha	364.311	-829.319	278.982	15.137	4.96			
Kerosene	543.314	-1560.493	486.345	257.665	3.68			
Diesel	274.530	-712.356	367.453	-14.736	4.01			
VGO	237.773	-550.796	206.779	80.058	3.41			

 Table 1.6
 Coefficients for paraffin content in petroleum fractions.

 Table 1.7 Coefficients for aromatic content in petroleum fractions.

	Aromatic (vol%)						
Boiling point range	А	В	С	D	AAD		
Light naphtha	-713.659	-32.391	693.799	1.822	0.51		
Heavy naphtha	118.612	-447.589	66.894	185.216	3.08		
Kerosene	400.103	-1500.360	313.252	515.396	1.96		
Diesel	228.590	-686.828	12.262	372.209	4.27		
VGO	-159.751	380.894	-150.907	11.439	2.70		

correlation. We show how the grouping constants by boiling point ranges can be useful while creating kinetic lumping procedures for the FCC in Chapter 4.

1.13 Conclusion

This chapter discusses several key modeling steps regarding the characterization and the thermophysical properties of crude oil and petroleum fractions. The basic process for developing a set of pseudocomponents for modeling refinery fractionation systems is as follows:

- 1) The feed to the fractionation system is often poorly defined in terms of actual components. We may only have an assay and associated bulk property measurements (such as density). We use the techniques discussed in Sections 1.1.1–1.4 to produce a complete TBP distillation curve and a density or specific gravity distribution.
- 2) Once we obtain the TBP and density curve, we can cut the components into a number of pseudocomponents. Each of these pseudocomponents has at least a TBP and a density, by definition. The number of pseudocomponents for each cut point range can vary depending on the product range of the fractionation system. We have suggested the number of pseudocomponents for a few product ranges in Table 1.2. Subsequent chapters include more information for specific fractionation systems.

- 3) After obtaining the pseudocomponents, we decide how to model key physical properties (Section 1.10.1) for these components. Process modeling software often includes a large variety of correlations and estimation methods. However, for almost all cases, the Lee–Kesler correlations for critical properties and ideal gas heat capacities are sufficient. We have used the extended Twu correlation for molecular weight in our work. After obtaining the critical properties and molecular weight for a given pseudocomponent, we may estimate all other required properties (heat capacities, etc.) with correlations given by Riazi [1].
- 4) We also select a thermodynamic model to represent vapor-liquid equilibrium for these pseudocomponents. For crude fractionation columns, an EOS approach yields good results. However, an EOS approach does not predict liquid densities accurately and tends to give poor equilibrium predictions of heavy pseudocomponents. We can improve the EOS density predictions with more accurate density correlations such as COSTALD, Eq. (1.25). If the feed and products contain significant amounts of heavy products, it may be better to rely on empirical thermodynamic models such as Grayson–Streed or BK-10.
- 5) Lastly, we must make sure to use the product pseudocomponent information to verify measured product properties. In this chapter, we discuss the flash point, freeze point, and chemical composition properties of the products. The reader may find additional correlations for other fuel properties from the API handbook [2] and work by Riazi [1].

Although this chapter has focused extensively on the requirements for modeling fractionation systems, we can use the same techniques in the context of modeling refinery reaction process as well. We illustrate this process in Chapters 4–7. It is possible to obtain good predictive results for fractionation systems provided we make reasonable choices for the thermodynamics and physical properties of the pseudocomponents involved.

Nomenclature

Α, Β, α, β	Fitting parameters for cumulative beta distribution
CP _{IG}	Ideal gas heat capacity, J/mol K
CPL	Liquid heat capacity, J/mol K
δ	Solubility parameter, (J/cc) ^{0.5}
$\overline{\delta}$	Mean weighted solution solubility parameter, (J/cc) ^{0.5}
D86 _{10%}	10% ASTMD86 distillation point, °F
FP	Flash point, °F
FRP	Freeze point, °F
γ	Activity coefficient, unitless
$\Delta H_{ m VAP}$	Heat of vaporization, J/mol
$\Delta H_{ m VAP}^{ m NBP}$	Heat of vaporization at normal boiling point temperature, J/mol
K_i	<i>K</i> -value, ratio of y_i/x_i , unitless
$K_{\rm w}$	Watson K factor, unitless

56 1 Characterization and Physical and Thermodynamic Properties of Oil Fractions

V	Watson V factor unitless
K_{avg}	Watson K factor, unitless
k_{ij}	Interaction parameter for component <i>i</i> and component <i>j</i> in PR EOS, unitless
MeABP	Mean average boiling point temperature, K
MW	Molecular weight, g/mol
P	Pressure, bar
$P_{\rm c}$	Critical pressure, bar
	Reduced pressure = P/P_c , unitless
$P_{ m r} P^{ m SAT}$	
	Saturation or vapor pressure, bar Pounting correction factor, unitless
PF_i	Poynting correction factor, unitless
PROP _{MIX} PROP _i	Mixture of indexed fuel properties
	Fuel property index for a given component
$ec{arphi}_{i}^{ ext{V}} \ ec{arphi}_{i}^{ ext{SAT}}$	Vapor phase fugacity coefficient for component <i>i</i>
φ_i^{i}	Liquid phase fugacity coefficient corrected to saturation pressure
	for component <i>i</i>
φ_i^{L}	Liquid phase fugacity coefficient for component <i>i</i>
R T	Universal gas constant, 8.315 J/mol K
	Temperature, K
T_{c}	Critical temperature, K
$T_{\rm r}$	Reduced temperature = T/T_c , unitless
T_{b}	Boiling point temperature, K
$T_{\rm br}$	Reduced boiling point temperature = $T_{\rm b}/T_{\rm c}$, unitless
$ ho_{ m L}$	Liquid density, g/cc
ρ_P	Liquid density at pressure P , g/cc
ρ_P^{o}	Liquid density at reference pressure P° , g/cc
$R_{\rm i}$	Refractive index, unitless
SG V ^{SAT}	Specific gravity, unitless
	Molar volume of saturated liquid, cc/mol
V_i	Molar volume of component <i>i</i> as a function of temperature and
Vad	pressure, cc/mol
VGC'	Viscosity gravity constant or viscosity gravity factor, unitless
W_{i}	Weighting factor for property index mixing
$%X_{\rm P}$	Molar or volumetric composition of paraffins
$%X_{\rm N}$	Molar or volumetric composition of naphthenes
$%X_{\rm A}$	Molar or volumetric composition of aromatics
x_i	Liquid phase composition of component <i>i</i>
y_i	Vapor phase composition of component <i>i</i>
$Z_{ m RA}$	Rackett parameter, unitless
ω	Acentric factor, unitless

Bibliography

- 1 Kaes, G.L. (2000) *Refinery Process Modeling. A Practical Guide to Steady State Modeling of Petroleum Processes,* The Athens Printing Company, Athens, GA.
- 2 Daubert, T.E. and Danner, R.P. (1997) API Technical Data Book Petroleum Refining, 6th edn, American Petroleum Institute, Washington, DC.

- **3** Bollas, G.M., Vasalos, I.A., Lappas, A.A., Iatridis, D.K., and Tsioni, G.K. (2004) Bulk molecular characterization approach for the simulation of FCC feedstocks. *Industrial and Engineering Chemistry Research*, **43**, 3270.
- 4 Riazi, M.R. (2005) *Characterization and Properties of Petroleum Fractions*, 1st edn, American Society for Testing and Materials, West Conshohocken, PA.
- 5 Sanchez, S., Ancheyta, J., and McCaffrey, W.C. (2007) Comparison of probability distribution functions for fitting distillation curves of petroleum. *Energy* & *Fuels*, **21**, 2955.
- **6** Walas, S.M. (1985) *Phase Equilibria in Chemical Engineering*, Butterworth-Heinemann, Burlington, MA.
- 7 Chen, C.C. and Mathias, P.M. (2002) Applied thermodynamics for process modeling. *AIChE Journal*, **48**, 194.
- 8 de Hemptinne, J.C. and Behar, E. (2006) Thermodynamic modeling of petroleum fluids. *Oil and Gas Science and Technology*, **61**, 303.
- **9** Lee, B.I. and Kesler, M.G. (1975) A generalized thermodynamic correlation based on three-parameter corresponding states. *AIChE Journal*, **21**, 510.
- 10 Kesler, M.G. and Lee, B.I. (1976) Improve prediction of enthalpy of fractions. *Hydrocarbon Processing*, 55, 153.
- 11 Twu, C.H. (1984) An internally consistent correlation for predicting the critical properties and molecular weights of petroleum and coal-tar liquids. *Fluid Phase Equilibria*, **16**, 137.
- 12 Rackett, H.G. (1970) Equation of state for saturated liquids. *Journal of Chemical and Engineering Data*, 15, 514.
- 13 Yamada, T.G. (1973) Saturated liquid molar volume. The Rackett equation. *Journal of Chemical and Engineering Data*, **18**, 234.
- 14 Spencer, C.F. and Danner, R.P. (1972) Improved equation for the prediction of saturated liquid density. *Journal of Chemical and Engineering Data*, **2**, 236.
- 15 Thomson, G.H., Brobst, K.R., and Hankinson, R.W. (1982) An improved correlation for densities of compressed liquids and liquid mixtures. *AIChE Journal*, **28**, 671.
- 16 Cheuh, P.L. and Prausnitz, J.M. (1969) A generalized correlation for the compressibilities of normal liquids. *AIChE Journal*, 15, 471.
- 17 Poling, B.E., Prausnitz, J.M., and O'Connell, J.P. (2000) *Properties of Gas and Liquids*, 5th edn, McGraw-Hill, New York.
- **18** Agarwal, R., Li, Y.K., Santollani, O., Satyro, M.A., and Vieler, A. (2001, May) Uncovering the realities of simulation. *Chemical Engineering Progress*, **42**.
- 19 Sadeghbeigi, R. (2000) Fluid Catalytic Cracking Handbook. Design, Operation and Troubleshooting of FCC Facilities, Gulf Publishing Company, Houston, TX.
- **20** Mohan, S.R. (2016) *Five Best Practices for Refineries: Maximizing Profit Margins through Process Engineering*, https://www.aspentech.com/White-Paper-Five-Best-Practices-Refineries.pdf.
- 21 Niederberger, N. (2009) *Modeling, Simulation and Optimization of Refining Processes*, https://www.slideshare.net/Bioetanol/wks-biorefinery-jacquesniederbergerpetrobras-refino.
- 22 Wu, Y. (2010) Molecular modeling of refinery operations. Ph.D. dissertation. University of Manchester, Manchester, United Kingdom, https://www.escholar

.manchester.ac.uk/api/datastream?publicationPid=uk-ac-man-scw:93706& datastreamId=FULL-TEXT.PDF.

- 23 Mullick, S., Dooley, K., Dziuk, S., and Ajikutira, D. (2012) *Benefits of Integrating Process Models with Planning and Scheduling in Refining Operations*, https://www.scribd.com/document/269573466/Integrating-Process-Models-With-Refining-PandS.
- 24 Aspen, Technology, Inc. (2012) *Molecule-Based Characterization Methodol*ogy for Correlation and Prediction of Properties for Crude Oil and Petroleum *Fractions* (Molecular Characterization White Paper), https://origin-www .aspentech.com/Molecular_Characterization_White_Paper.pdf.

Atmospheric or Crude Distillation Unit (CDU)

2.1 Introduction

Crude distillation is the oldest and most important part of any refinery. The distillation of crude provides refined products such as gasoline and diesel for direct sale and feedstocks to other units in the refinery. With the advent of large, highly integrated refineries, it is critical to understand the operation of major units and predict desirable and undesirable changes in unit performance as a function of key operating conditions. Recent emphasis on nontraditional crude feeds, reduced energy consumption, operational optimization, production planning modeling, and CO_2 release provides additional impetus to clearly understand the relationship among process variables, feed qualities, and product profiles [1].

Crude distillation has a long history and refiners have developed hundreds of empirical correlations for feed conditions and process variables. It is very difficult to develop general correlations applying a variety of operating scenarios that modern refineries face. Many of these correlations are proprietary or not widely available. These correlations are often not very useful when current unit operations and feed conditions vary significantly from the conditions used for their development. Often, experienced engineers and operators can make good estimates of unit performance. However, the growing tide of retiring professionals and loss of experience throughout the industry make this difficult or impossible.

Given the above issues, the use of simulation tools and techniques becomes invaluable. In fact, refineries were one of the first users of computational models to improve process operation. The rapid pace of advance of computer hardware and software has enabled an engineer to develop a multitude of models for most processes in the refinery. Although the task of building a model is not difficult now, the ability to build a model that accurately reflects the plant operation and has predictive capability remains elusive. We must always remember a fundamental modeling premise "GARBAGE IN = GARBAGE OUT."

It is in this context that we present the bulk of this chapter. We discuss how to model existing crude units, including relevant data collection and validation, estimation of missing data, model development and validation, and model 60 2 Atmospheric or Crude Distillation Unit (CDU)

applications in the form of case studies. This chapter summarizes our own experiences in refinery modeling from plant data and related work presented in the open literature.

2.2 Scope of the Chapter

In this chapter, we address several important issues relevant to the simulation of atmospheric or crude distillation units (CDUs).

- Overview of CDU (Section 2.3.1) Description of a modeler's view of atmospheric crude distillation and recommendation of techniques for column efficiency and calculation convergence for solving refinery distillation models (Section 2.4.1).
- Characterization of the feed to a CDU (Section 2.6)
- Discussion of key data required and estimates for missing or incomplete data (Section 2.7)
- Illustration of representative CDU data for modeling purposes (Section 2.8)
- Building a model based on plant data using Aspen HYSYS (Sections 2.8.2–2.8.4)
- Initializing and converging models successfully (Sections 2.8.5–2.8.8)
- Validating the model predictions with plant data (Section 2.9)
- Industrially relevant case studies that focus on improving the profitability, yields, and predictability (Section 2.10.1)
- Hands-on workshops on model building using backblending procedure (Section 2.11.1), investigating new product profiles with new product demands (Section 2.12.1), studying the effects of process variables on product qualities (Section 2.14), and application of column internal tools (column hydraulic analysis) (Section 2.15)
- Conclusion (Section 2.16), Nomenclature and Bibliography.

2.3 Process Overview

Figure 2.1 shows the general process flow in the initial distillation and product recovery of a refinery. The solid lines refer to primary *material flows* and the dashed lines refer to *energy flows*. Crude from multiple sources (storage, pipeline, etc.) enters the refinery after some initial treatment to remove impurities and sediments. This crude enters an initial heat recovery section to raise its temperature and recover heat from downstream units. The heated crude then enters a desalting section, which removes dissolved salts and associated impurities. Once the salts (and the water associated with the salt removal process) have been sufficiently treated, the crude enters the preheat train, consisting of heat exchangers associated with various downstream equipment throughout the refinery. The preheat train typically raises the temperature of crude significantly and reduces the overall energy consumption in the refinery. Following the preheat train, the crude enters the primary crude furnace. The crude furnace vaporizes a major portion of the crude and feeds this vapor–liquid mixture into

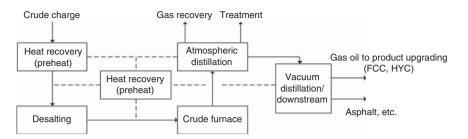


Figure 2.1 General process flow of initial crude processing.

the atmospheric distillation tower. Most refineries today recover the products and send them for further processing into vacuum distillation section and product upgrading sections (catalytic cracking, hydrocracking, reforming, etc.).

Each of the processes shown in Figure 2.1 is quite extensive and can be surprisingly complex in an integrated refinery. In this work, we limit the scope by presenting brief summaries of the units and how to quantitatively simulate the performance of each unit in a modeling context. Our specific focus in this chapter is how to model the atmospheric distillation section.

2.3.1 Desalting

Figure 2.1 shows the basic flow of primary distillation process in modern refineries. Before the crude enters the actual crude distillation column, it must go through several steps to ensure reliable operation. The main steps are as follows:

- Desalting
- Dewatering
- Solid removal.

Most crude contains appreciable levels of salts (20–500 ppm) [9]. It is critical to remove these salts to prevent fouling and scaling of heat transfer surfaces. Loss of heat transfer efficiency can significantly increase the energy required for distillation.

Figure 2.2 shows a typical crude desalter. The charge crude from the storage is heated to a particular salt removal temperature (around 80–150 °C) [9]. Large quantities of water come in contact with the crude. The salts will dissolve preferentially in the water until its saturation point. Next, the water coalesces to large water droplets in the presence of a strong electric field. The droplets begin to settle out from the oil due to gravity. Refiners processing a variety of crudes may include several desalting stages to ensure that the process effectively reduces salts to a minimal level. Due to the presence of other impurities in the crude, refiners may also add de-emulsification agents to prevent forming of oil–water emulsions.

The desalting process is mostly driven by thermodynamic and hydrodynamic constraints. For the purpose of modeling the CDU, we consider the desalting operation as a simple component splitter that removes any water present in the feed crude. Desalting and dewatering processes are very effective and do not consume significant resources compared to other units, so this simple model representation is justified.

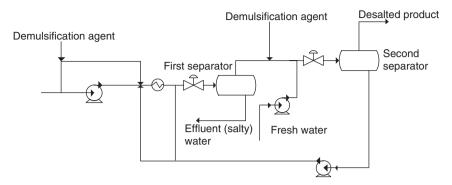


Figure 2.2 Simplified desalting and dewatering process.

2.3.2 Preheat Train and Heat Recovery

The CDU consumes 20-30% [13] of the total energy required to distill a given crude into products. Therefore, it is critical to optimize and recover as much heat as possible from heat streams throughout the refinery to optimally heat and vaporize the crude for fractionation. The preheat train consists of heat exchangers that incrementally heat up the crude feed using hot streams from the crude distillation and other downstream units in the refinery. Crude exits in the preheat train at around 250 °C [13] (Figure 2.3).

Modeling and optimizing the preheat train can be a significant undertaking. Although process simulators can handle the complexity of the network, we require additional tools to optimize this heat exchanger network (e.g., Aspen Technology's Aspen Energy Analyzer). There has been significant work in this area, and impressive savings are possible using pinch technology [11] and mathematical optimization methods [12]. The methods are not the focus of our book; hence, in our simulations, we simplify the preheat train and model it as a simple heater with a variable heat duty.

2.3.3 Atmospheric Distillation

After leaving the preheat train, the heated crude enters the atmospheric (or topping) crude distillation furnace (Figure 2.4). The main purpose of the furnace is to vaporize the portion of the crude that we recover as products from the column. Typically, we set the heat (and outlet temperature) of the furnace so that the amount of crude vaporized equals the sum of the products recovered from the column plus a small percentage. This small percentage excess (typically in the range of 2-10%) [8, 9, 14] is called *overflash*. The overflash indicates the amount of the heavy residue that will be distributed into the lighter products, increasing the D86 95% point of these products. This vapor–liquid crude mixture enters the column around 380-410 °C [14] and immediately flashes in the bottom few trays of the column (flash zone). Most column configurations also include a significant amount of steam at the bottom. This steam serves to strip any residue and prevent excessive thermal cracking of crude due to high temperatures.

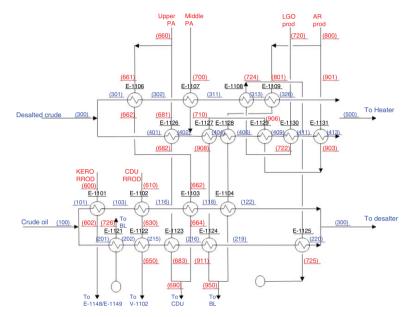


Figure 2.3 Typical preheat train in refineries.

64 2 Atmospheric or Crude Distillation Unit (CDU)

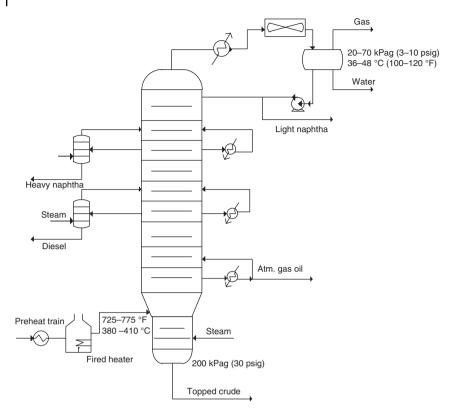


Figure 2.4 Typical flow of a refinery atmospheric distillation unit.

The column typically has 50–60 [3, 14] physical trays or separation stages. These do not correspond to ideal separation stages (discussed in Section 2.4.2), which is an entirely different concept. In general, there are about five stages for each side product and about 10–12 stages are required for the column bottoms and flash zone [9].

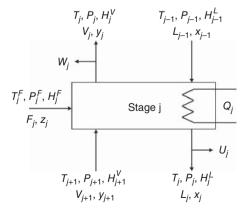
As lighter components of the crude move up the column, we draw various side streams at different locations. The draw locations represent the temperature range of the liquid products that we can collect from the given draw location. Table 2.1 shows the typical products recovered from the atmospheric column. There are many possible side draw locations and configurations given the product demand and refinery economics. The side draws typically have a low D86 5% point, indicating the presence of many light components.

Light components (i.e., pentanes and lighter) travel up the column and leave from the off gas and column condenser liquid output. The temperature of the condenser depends on the column operating pressure and other variables. The typical range is between 30 and 65 °C [14]. An additional feature in most columns is the presence of side coolers or pumparounds. These units reduce the vapor flow in the column (by lower temperature) and allow for heat recovery. Many of the exchangers in the preheat train use pumparound oils as the hot side fluid.

For simulation purpose, we represent the furnace as a simple heater with a variable duty to match the overflash specification. There are many detailed models

Cut	ASTM distillation range (°C)
Light straight-run naphtha (LSR)	32-104
Heavy straight-run naphtha (HSR)	82-204
Kerosene	166-282
Light gas oil (LGO)	216-338
Atmospheric gas oil (AGO)	288-443

Table 2.1 Major products from atmospheric crudedistillation unit [13].


for the fired heaters in process simulators. Using these fired heater models can be sophisticated and is not the focus of this text. We model the crude column rigorously and include all side operations.

2.4 Model Development

The theory of modeling distillation columns is quite extensive, and many authors have written on a variety of approaches in modeling distillation columns. In general, the two major approaches for modeling columns are the rate-based approach and equilibrium-stage approach. In the rate-based approach, multistage operations are defined on the basis of rigorous heat and mass transfer rates between the vapor and liquid phases, and thermodynamic equilibrium between the vapor and liquid phases occurs at the vapor–liquid interface. This approach can be highly accurate and account for numerous phenomena including the physical layout of the column. However, this approach is also very demanding in terms of the parameter values required to produce a reasonable model.

The more traditional approach for modeling multistage operations is the equilibrium-stage approach. In this approach, we consider each stage to separate the vapor-liquid mixture based on thermodynamics and on heat and mass balance constraints alone. Figure 2.5 shows a general schematic of the

Figure 2.5 On-stage convention.

66 2 Atmospheric or Crude Distillation Unit (CDU)

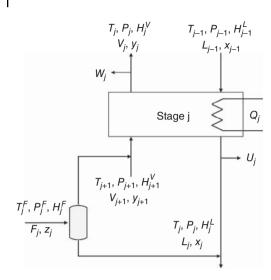


Figure 2.6 Feed flash variation.

stage-by-stage equilibrium process and a variation (Figure 2.6) that includes a flash tank to separate vapor and liquid flows (see Nomenclature).

2.4.1 MESH Equations

$$L_{j-1}x_{i,j-1} + V_{j+1}y_{i,j+1} + F_j z_{i,j} - (L_j + U_j)x_{i,j} - (V_i + W_i)y_{i,i} = 0 \quad \text{Material (M)}$$
(2.1)

$$y_{ij} - K_{ij}x_{ij} = 0 \quad \text{Equilibrium (E)}$$
(2.2)

$$\sum_{i=1}^{N} x_i - \sum_{i=1}^{N} y_i = 0 \quad \text{Summation (S)}$$
(2.3)

$$L_{j-1}H_{L,j-1} + V_{j+1}H_{V,j+1} + F_{j}H_{F,j} - (L_{j} + U_{j})H_{L,j} - (V_{j} + W_{j})H_{V,j} - Q_{j} = 0 \quad \text{Heat/Energy(H)}$$
(2.4)
$$K_{i} = f(T, P, x, y) \quad K\text{-Value}$$
(2.5)

$$K_i = f(I, P, x, y)$$
 K-value (2.5)

$$H_L = f(T, P, x, y) \quad \text{Liquid Enthalpy}$$
(2.6)

$$H_F = f(T, P, x, y)$$
 Feed Enthalpy (2.7)

$$H_V = f(T, P, x, y)$$
 Vapor Enthalpy (2.8)

We collectively refer to Eqs. (2.1)-(2.5) as material, equilibrium, summation, and heat equations or *MESH equations* [5, 7]. Given functions for the *K*-values and enthalpies and values for all the material and energy feeds, we can solve these equations with a variety of techniques. We will discuss the solution techniques in Section 2.5.

2.4.2 Overall Column Efficiency and Murphree Stage Efficiency

A key assumption in the simulation of a multistage distillation column is the equilibrium-stage assumption. For the vapor stream V_j and liquid stream L_j leaving stage j shown in Figure 2.5, the equilibrium-stage assumption implies that both streams have identical temperature T_j and pressure P_j . In addition, the mole

fractions of component *i* leaving stage *j* in the vapor stream and in the liquid stream, $y_{i,j}$ and $x_{i,j}$, are in thermodynamic equilibrium and are related by the equilibrium ratio or *K* factor according to Eq. (2.2).

To simulate an actual column, we first convert the actual number of stages to an equivalent number of equilibrium stages by using an *overall stage efficiency*. Overall stage efficiency refers to the ratio of ideal (or theoretical) stages contained in the column (excluding the condenser and the reboiler) to the actual physical trays. If a distillation column has 20 physical trays and an overall efficiency of 0.5, we model it as a column with 10 ideal stages. *Every stage now remains in thermodynamic equilibrium*. For hydrocarbon distillation, the overall stage efficiencies are 50–90%. For absorption processes, the range is 10–50%.

Table 2.2 lists the number of theoretical stages required for each zone of the crude column. In general, the overall efficiency is roughly 0.5 and the column model contains around 28 theoretical stages (excluding the side strippers) [3].

Figures 2.14 and 2.15 compare a CDU with 56 actual physical trays (excluding side strippers) and its representation by 28 equivalent theoretical stages.

A popular method in dealing with the nonideal stage behavior in process simulators is to use an individual stage efficiency, called Murphree vapor stage efficiency.

$$E_{MVij} = (y_{i,j} - y_{i,j+1}) / (y_{i,j}^* - y_{i,j+1})$$
(2.9)

In the equation, subscript *i* refers to the component and *j* denotes the stage number. $y_{i,j}^*$ is the vapor mole fraction of *i*th component leaving stage *j* that would be in thermodynamic equilibrium with the liquid mole fraction of *i*th component leaving stage *j*, that is, $x_{i,j}$. $y_{i,j}$ and $y_{i,j+1}$ are actual vapor mole fractions of *i*th component leaving stage *j* and *j* + 1, respectively. Further, in implementing the Murphree vapor stage efficiency in process simulators, we commonly assume that this efficiency is independent of the components involved. This simplifies Eq. (2.9) to

$$E_{MVn} = (y_n - y_{n+1}) / (y_n^* - y_{n+1})$$
(2.10)

where subscript *n* refers to stage number.

Zone/location	Theoretical stages	Overall zone efficiency
Column top to naphtha	6-8	0.6
Naphtha to kerosene	4-5	0.5
Kerosene to diesel	3-4	0.5
Diesel to gas oil	4-5	0.4
Gas oil to flash zone	3-4	0.3
Flash zone to column bottoms	1-2	0.2
Total CDU, excluding side strippers	21–28	
Steam stripped side columns	2-3	0.3
Reboiled side stripper columns	3-4	0.5

Table 2.2 Theoretical stages for each fractionation zone of a CDU [3].

Note that after applying the Murphree vapor stage efficiency, the vapor leaving a stage is no longer in vapor–liquid equilibrium with the liquid leaving the same stage; that is, the stage no longer corresponds to a theoretical stage in the distillation model.

2.4.3 Recommendation for Correctly Handling the Efficiency

We summarize the fundamental insights into the use of individual stage efficiency and the overall stage efficiency by Kaes [3] and Kister [5] in the following paragraphs.

Users of process simulators often enter the actual number of stages or trays from the column process flow diagram (PFD) to the simulator and enter individual stage efficiency values independent of components, Eq. (2.10), for different stages in the column such that the actual column operation is replicated. In fact, commercial simulators support this line of thinking by providing a variety of stage efficiency models. Unfortunately, many engineers do not understand the serious limitations of the individual stage efficiency models.

The nonequilibrium liquid and vapor leaving the stages cause uncertainties in heat and mass transfer calculations. In addition, individual stage efficiency models such as Murphree are too simplistic for petroleum columns, in which there are a large number of components and widely varying process conditions. As a result, there are no reports of typical individual stage efficiency values for petroleum columns. The user must then manipulate individual stage efficiency values in the column in order for the simulation results to match the plant data. This manipulation of individual stage efficiencies is similar to the regression fitting of data to an equation form. The rigorous distillation theory of predicting results other than the current column operating conditions is thoroughly masked and violated by the individual stage efficiency. This follows because the principle of equilibrium vapor and liquid leaving each stage has been violated. Therefore, the worst consequence of using individual stage efficiencies is that the simulation model would likely become useless for predicting the performance of the column at operating conditions different from those used to develop the column model.

By contrast, models based on the overall stage efficiency always correspond to rigorous distillation, as the liquid and vapor leaving a stage are in thermodynamic equilibrium. These models tend to be more effective and accurate in the prediction mode because distillation theory will always predict an answer that is directionally correct for a new set of operating conditions.

To summarize, we agree with Kaes [3] and Kister [5] and recommend against the use of individual stage efficiency models such as Murphree vapor stage efficiency. When modeling existing columns, we recommend to use a typical overall stage efficiency value to convert the actual number of trays (stages) to the equivalent number of theoretical stages.

Table 2.3 summarizes the overall stage efficiencies in refinery distillation that we have adapted from Kaes [3]. This table does not include the overall stage efficiencies for CDU given previously in Table 2.2 and those for vacuum distillation unit (VDU) given in Chapter 3 and for FCC main fractionation column given in Chapter 4.

Column	Typical number of actual stages	Typical overall stage efficiency (%)	Typical number of theoretical stages
Simple absorber/stripper	20-30	20-30	4–9
Steam side stripper	5–7	30-40	2-3
Reboiled side stripper	7-10	30-40	3-4
Reboiled absorber	20-40	40-50	10-20
De-ethanizer	25-35	65-70	16-24
Depropanizer	35-40	70-80	25-32
Debutanizer	38-45	85-90	32-40
Alkylation De- <i>i</i> C4 (reflux)	75–90	85-90	64-81
Alkylation De- <i>i</i> C4 (no reflux)	55-70	55-60	30-42
Naphtha splitter	25-35	70–75	18–26
C2 splitter	110-130	95-100	104-130
C3 splitter	200-250	95-100	190-250
C4 splitter	70-80	85-90	60-72
Amine contactor	20-24	20-30	4-7
Amine stripper	20-24	45–55	9–13

Table 2.3 Overall stage efficiencies for refinery distillation (Adapted from [3]).

2.4.4 Inside-Out Algorithm for Distillation Column Calculation Convergence

For refinery distillation column calculation convergence, we recommend the inside-out method first proposed by Boston [7] and further developed later by many others, as reviewed by Kister [5] and Seader *et al.* [8]. The inside-out method does not require significant estimates and converges robustly. This method provides quick convergence and allows for multiple subunit operations.

The inside-out algorithm starts by approximating the K-value and liquid and vapor enthalpies as simple functions of temperature and parameters that are to be fitted. For a reference component or a base component B, we write the relative volatility of component i relative to the base component B as

$$\alpha_{i} = \alpha_{i,B} = (y_{i}/x_{i})/(y_{B}/x_{B}) = K_{i}/K_{B}$$
(2.11)

We rewrite the equation as

$$K_i = K_B \alpha_i \tag{2.12}$$

The inside-out algorithm expresses K_B as a function of temperature T and a reference temperature T_{ref} .

$$\ln K_{B} = A + B \left(\frac{1}{T} - \frac{1}{T_{\text{ref}}} \right)$$
(2.13)

Next, the inside-out algorithm defines the vapor and liquid phase enthalpies, H^V and H^L , as the sum of the enthalpy of an ideal gas, H^{IG} , and the corresponding vapor and liquid phase excess enthalpies, ΔH^V and ΔH^L , and then expresses each

excess enthalpy as a function of temperature and the reference temperature.

$$H^V = H^{\rm IG} + \Delta H^V \tag{2.14}$$

$$\Delta H^V = C + D \left(T - T_{\text{ref}} \right) \tag{2.15}$$

$$H^L = H^{IG} + \Delta H^L \tag{2.16}$$

$$\Delta H^L = E + F(T - T_{\rm ref}) \tag{2.17}$$

Figure 2.7 illustrates the steps involved in the inside-out algorithm. The *outer loop* does the thermodynamic calculations. These involve finding the equilibrium ratios and relative volatilities of all components on various stages of the column, based on the initial temperature and pressure profiles, and fitting the parameters *A*, *B*, *C*, *D*, *E*, and *F* in Eqs. (2.13)–(2.17) based on the predicted values of equilibrium ratios and vapor and liquid enthalpies from the selected thermodynamic model, such as Peng–Robinson equation of state. The *inside loop* does the phase equilibrium calculations and solves the equations for component and overall mass balances, and for energy balance. When the inside loop calculations fail to convergence with the specified error tolerance, the method returns to the outer loop to redo the thermodynamic calculations and update the parameters *A*, *B*, *C*, *D*, *E*, and *F*.

Commercial simulators, such as Aspen HYSYS Petroleum Refining, include the inside-out algorithm and its improved version, modified inside-out algorithm, for refinery distillation column simulations. In general, if the inside-out algorithm fails to converge, we can choose *the modified HYSYS inside-out algorithm* with an adaptive damping factor to facilitate the convergence. Figure 2.8 shows this option within Aspen HYSYS Petroleum Refining.

The term "modified" refers to the fact that the solution procedure uses a full Newton–Raphson method to converge the inner loop (i.e., the stage-by-stage mass and energy balances of the column at fixed stage temperature and pressure specified by the outer loop that focuses on phase-equilibrium calculations) of the

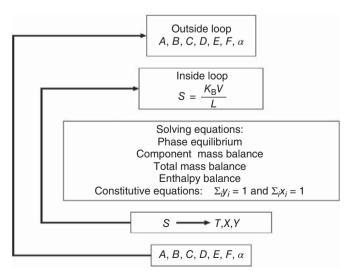
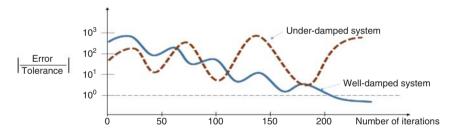



Figure 2.7 The inside-out convergence algorithm for distillation column calculations.

2.4 Model Development 71

Design Para	neters	Side Ops	Rating	Worksheet	Performance	Flowsheet	Reactions Dyr	namics		
Parameters	Solvi	ing Options					Acceleration	1		
Profiles	Maximum Number of Iterations 10000					Accelera	ate Kvalue & H Mode	I Parameters		
Estimates	Equilibrium Error Tolerance Heat / Spec Error Tolerance Save Solutions as Initial Estimate Super Critical Handling Model				1.0000e-05					
Efficiencies Solver 2/3 Phase Fluid Pkgs					5.0000e-04					
					V					
					Simple K		Damping			
	Trace Level			Low		© Fixed				
	Initialise from Ideal K's									
	Two	Liquids Che	eck				Inital Damp	ing Factor	1.00	
	Tight	ten Water T	olerance				a server and an and a server	amping Period	1	
	Use	Estimates fo	or Single :	Staged Tower			Reset Initial			
	Modified HYSIM Inside-Out Control.				Program Generates Estimations Initial Estimate Generator Parameters Dynamic Integration for IEG					
	General Purpose Method which allows mixer, pump,									
	tee, valve and heat exchangers in the sub-flowsheet.			Dynamic Estimates Integrator						
	Advanced Solving Options									

Figure 2.8 Choosing the "modified HYSYS inside-out algorithm" with an adaptive damping factor to improve distillation column convergence calculations: Parameters ->Solver ->Solver Method and Damping.

Figure 2.9 An illustration of how applying a damping factor reduces the ratio of simulation error to error tolerance to less than 1 and thus achieves convergence within a finite number of iterations in a well-damped system.

solution algorithm. Applying the damping factor often reduces the ratio of the root-mean-squared error of process variables to the error tolerance to less than 1 within a finite number of iterations and thus achieves convergence. Figure 2.9 illustrates how this ratio reduces to less than 1 within a finite number of iterations in a well-damped system after applying an adaptive damping factor, and how this ratio grows in an under-damped system.

Many software packages include additional options to speed up and improve convergence, and developers of software packages have tuned these algorithms for the best performance. We emphasize that failure of algorithms to converge is often a result of poor column specifications and not the underlying algorithm itself. We discuss valid specifications and required estimates in the subsequent sections.

2.5 Feed Characterization

Crude oil is a mixture of enormous variety of hydrocarbons derived from multiple sources and it contains hundreds of thousands of different molecules. As a result, we generally do not deal with crude in terms of molecular composition, especially in the case of crude fractionation. We indicate the composition of crude (and refined hydrocarbon products) in terms of bulk properties and distillation-based properties.

Bulk properties refer to properties measured while considering the whole crude. These properties are typically density, viscosity, refractive index, and so on and are useful (but are not sufficient) to define the crude or a cut from this crude. Distillation-based properties refer to the bulk properties measured for small amounts of crude based on that small amount's boiling point. Typically, we present these properties as a function of these small amounts as density distributions, boiling point distributions (TBP, D-2887, SimDist.), and so on. When a refiner considers a particular crude for use, the collection of bulk and distillation-based properties forms the assay of a particular crude. This assay indicates how much of a given cut (or product) we can produce for a selected boiling point range from a given crude. Tables 2.6–2.9 show crude assays for Arab Heavy and Arab Light crude.

When we work with the crude in the process simulator, we deal with specific cuts based on the boiling point distribution of a particular crude feed as shown in Figure 2.10. Each individual bar represents a hypothetical component with pseudo properties (such as critical points, heat of vaporization, and heat capacity) calculated from a correlation. These correlations typically rely on the boiling point and specific gravity or density. The goal is to find a minimum number of pseudocomponents such that the combination of these pseudocomponents approximates the properties and behavior of the entire crude.

We generally need to minimize the number of pseudocomponents to reduce the complexity of the process flowsheet. We show our recommendations for the number of pseudocomponents as a function of boiling point range in Table 2.4. The number of components in the table is greater than that recommended by

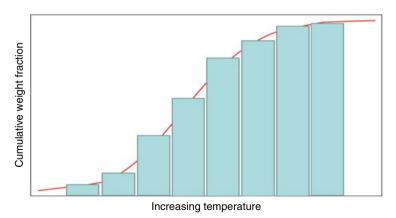


Figure 2.10 Creating pseudocomponents from boiling point distillation curve.

Boiling point range (°F)	Suggested number of hypothetical components
100-800	30
800-1200	10
1200-1600	8

Table 2.4 Pseudocomponents for each boiling point range.

Kaes [3]. We suggest increasing the number of pseudocomponents in the heavier part of the crude to account for heavy crude that most refiners process today. In addition, an increased number of cuts in the higher boiling point range will allow us to model atmospheric and vacuum distillation columns with the same component slate. The added computational requirements are not significant with today's modern computer hardware.

2.6 Data Requirements and Validation

Any modeling exercise requires a reasonable set of input data to ensure that models remain valid and predictive over a wide range of operating scenarios. The complex nature and composition of crude feeds present additional modeling complications when compared to a process that uses a well-defined component slate. Collecting the maximal possible process information is the best way to ensure that a model is valid for a variety of operating scenarios. However, it is frequently too expensive or simply infeasible to collect detailed information during regular operation of the crude tower. Consequently, we must work toward building models that do not require detailed information but also remain valid and predictive over a variety of operating scenarios.

The most important factor in the success of any model of crude columns is an accurate representation of the crude feed. There are two ways to quantify the crude feed to the unit. The first method relies on the availability of crude assays and knowledge of the ratios of the crude mixes fed to the unit. This is particularly useful when a column only processes a few types of crudes. The other method uses current column product yields and qualities to back-mix or "backblend" these products. The goal of *backblending* is to recover the composition of the crude fed to the column. This method is very useful when we have little information of the crude fed to the column or the assays are too old and unreliable. Kaes [3] provided methods to estimate missing data when backblending data for modeling.

While using the first method, it is important to recover as much information from the feed assay as possible. At a minimum, we must obtain a detailed distillation curve and density distribution. The bulk density of the crude is not sufficient to produce a reasonable set of hypothetical components. We suggest the use of the beta statistical function, Eq. (1.7), and Workshop 1.4 in Section 1.6, to fit and interpolate for missing data [3]. We can also remove irregularities in the data with this smoothing procedure. We show the results of this fitting process

2 Atmospheric or Crude Distillation Unit (CDU) 74

1	A	В	C D	Ε	F	G	Н	1	J	K
1	Data-fitting us	ing the cumulati	ve beta statistical d	istribution						
2	(Created by Ki	ran Pashikanti, L	ast update: 05/07/1	1)						
3										
4	alpha	0.325034875	θ _{xLOW}	0		Least Squares Res.	1.07E-02			
5	beta	0.40588245	θ _{xHigh}	150		R ²	0.990155			
6	A	0.017755766	θ_{vLOW}	0.5		AAD	0.005698			
7	8	0.689926701	θ _{γHIGH}	1.2		ARD	0.7%			
8										
9	Max. X	4.9675	0.033117							
10	Min. X	100	0.666667							
11										
12	X, input var.	Y, dep. var	Norm. X	Norm. Y		Pred. Norm. Y	Pred. Y	Error	AAD	ARD
13	4.9675	0.6348	0.033117	0.192571		0.188237402	0.631766	9.20E-06	0.003034	0.004775

Figure 2.11 EXCEL spreadsheet, Beta.xls, for beta function data fitting.

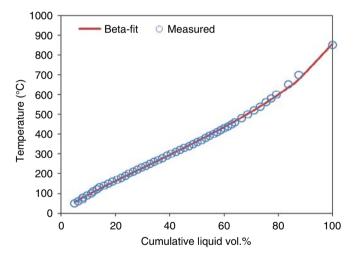


Figure 2.12 Data fit of the distillation curve as a function of liquid volume using the beta function.

in Figures 2.11–2.13. Some process simulators may provide this functionality automatically.

Once we have estimated the composition of crude feed, we must also collect data that summarize the column operating conditions and profile. Table 2.5 provides a basic list of data that we require to develop a reasonable model for the atmospheric or CDU.

One final consideration is to ensure that the collected data are consistent. This means that we must verify mass balance around the column and cannot accept

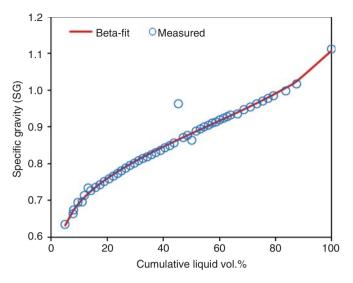


Figure 2.13 Data fit of the specific gravity as a function of liquid volume using the beta function.

Table 2.5 Basic requirements for initial column model for a	CDU.
---	------

Flow rate

- Feed and product steams
- Pumparound flow rates
- Stripping steam rates

Pressure

- Flash zone
- Top of column
- Bottom column

Temperature

- Flash zone
- Top of column
- Bottom column
- Side product draw tray
- Furnace inlet and outlet temperature
- Transfer temperature
- Draw and return temperatures for all pumparounds
- Inlet and outlet temperature of all pumparound cooling streams Analysis

 - Distillation and gravity of atmospheric residue (feed)
 - Distillation and gravity for all product streams
 - Compositional analysis of overhead gas

yield percentages only to calculate flow rates. This may require observation of the unit over a significant period of time, in order to collect a data set that is acceptable. If this is not possible, averaging the yields and column performance over a short period may be acceptable. However, we must accept a higher threshold for error between the measured operating conditions/profiles and

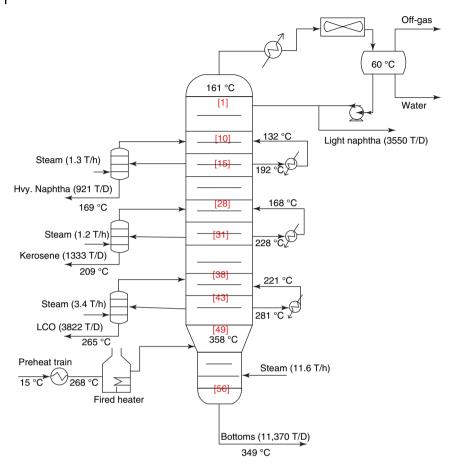


Figure 2.14 True atmospheric column.

predicted values. We can also compare the model predictions to a large databank of historical measurements (1–3 months) to help validate the model in question.

2.7 A Representative Atmospheric Distillation Unit

Figure 2.14 shows data from a typical atmospheric distillation unit that processes a variety of crudes. In subsequent sections of this chapter, we build a simulator model based on these initial data and perform several case studies. Following the previous sections, we build the model in the form of Figure 2.15 using theoretical stages. We note that the number of theoretical stages is roughly half the number of physical trays, indicating an overall stage efficiency of 50%. The locations of each zone (heavy naphtha, kerosene, etc.) reflect the zone fractionation concept from Kaes [3] described in Section 2.4.3. We also summarize key operating conditions in the following tables.

2.8 Building the Model in Aspen HYSYS Petroleum Refining 77

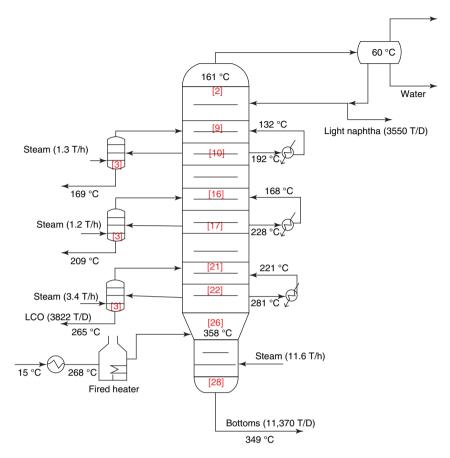


Figure 2.15 Simulation model representation.

2.8 Building the Model in Aspen HYSYS Petroleum Refining

This section documents some of the key steps required to model the representative crude unit described in the previous section. We use a 50–50% mixture of the assays presented in Tables 2.6–2.9 as the feed to the column. In the workshop examples accompanying this chapter, we will simulate this column based on backblending alone and compare the results.

Throughout this work, we have used Aspen HYSYS Petroleum Refining [13] and related software products quite extensively. Despite this fact, the techniques described in this work are applicable almost directly to many other simulation software tools. The most important considerations are the availability of a robust implementation of the inside-out method and the ability to deal with pseudocomponents and associated thermodynamics in the software chosen. Most modern process simulators meet these criteria. As discussed in Sections 1.8 and 1.9, version 8.0 and new versions of Aspen HYSYS Petroleum Refining have included the

78 2 Atmospheric or Crude Distillation Unit (CDU)

% Distilled	Temperature (°C)	% Distilled	Temperature (°C)
4.97	50	42.18	310
6.32	60	43.78	320
7.83	70	45.38	330
8.06	80	46.97	340
9.45	90	48.54	350
11.00	100	50.09	360
11.81	110	51.61	370
13.21	120	53.10	380
14.14	130	54.56	390
15.76	140	55.99	400
17.38	150	57.39	410
18.98	160	58.76	420
20.55	170	60.10	430
22.08	180	61.41	440
23.59	190	62.70	450
25.08	200	63.96	460
26.57	210	66.42	480
28.05	220	68.79	500
29.55	230	71.07	520
31.08	240	73.27	540
32.62	250	75.36	560
34.19	260	77.37	580
35.77	270	79.28	600
37.37	280	83.67	650
38.97	290	87.53	700
40.57	300	100.00	850

 Table 2.6
 Arab Heavy TBP distillation curve.

new *petroleum assay manager* that uses more accurate blending rules to calculate property values. We can use the petroleum assay manager to manage multiple types of assays and blends of different assays.

Following Workshop 1.6, Section 1.7, we define two new petroleum assays, ArabLight and ArabHVY, as illustrated in Figure 2.16. We save the file as *Crude Assay Only.hsc.*

2.8.1 Entering the Crude Information

The first step in building the atmospheric distillation unit is entering the composition of the crude in order to generate the necessary pseudocomponents for the model. For the purposes of this simulation, we consider the crude assays given in Tables 2.6–2.9. It is important to remember that we may have to remove

% Distilled	SG	% Distilled	SG
4.97	0.635	43.78	0.856
7.83	0.664	45.38	0.962
8.06	0.673	46.97	0.871
9.45	0.694	48.54	0.877
11.00	0.695	50.09	0.863
11.81	0.713	51.61	0.889
13.21	0.734	53.10	0.895
14.14	0.726	54.56	0.900
15.76	0.735	55.99	0.905
17.38	0.743	57.39	0.910
18.98	0.751	58.76	0.914
20.55	0.759	60.10	0.919
22.08	0.766	61.41	0.923
23.59	0.774	62.70	0.928
25.08	0.781	63.96	0.932
26.57	0.788	66.42	0.936
28.05	0.795	68.79	0.947
29.55	0.802	71.07	0.955
31.08	0.808	73.27	0.962
32.62	0.814	75.36	0.970
34.19	0.818	77.37	0.978
35.77	0.824	79.28	0.986
37.37	0.830	83.67	0.999
38.97	0.837	87.53	1.017
40.57	0.843	100.00	1.112
42.18	0.849	Bulk	

 Table 2.7
 Arab Heavy density distribution.

extraneous detail from the distillation curve to avoid unusual column behavior. We use the TBP distillation, density distribution, and overall bulk density to define the CDU in Figures 2.17–2.20.

Many simulators offer the ability to build a set of pseudocomponents based on a distillation curve and bulk density. Although this method will produce a set of pseudocomponents, it is not sufficient for crude distillation. Methods that only use the bulk density fix the Watson K factor (typically to 12.0). This can lead to significant errors in predicting the equilibrium distributions of heavier components of the feed. Figures 2.18–2.20 show that we enter both a complete density distribution and the total bulk density. We recommend using the beta smoothing and correlation function described in Section 1.2 and demonstrated in Workshop 1.2 in Section 1.4 to screen out unusual density distributions or predict a density distribution based on a limited number of data points. The data given in

% Distilled	Temperature (°C)	% Distilled	Temperature (°C)
3.79	40	48.99	310
4.51	50	50.78	320
5.14	60	52.57	330
7.06	70	54.35	340
7.97	80	56.11	350
8.78	90	57.90	360
10.89	100	59.61	370
11.82	110	61.28	380
12.79	120	62.90	390
15.33	130	64.48	400
17.11	140	66.01	410
18.88	150	67.50	420
21.10	160	68.94	430
23.11	170	69.96	440
25.13	180	71.32	450
26.99	190	72.65	460
28.86	200	75.23	480
30.54	210	77.68	500
32.41	220	80.02	520
34.26	230	82.24	540
36.12	240	84.19	560
37.97	250	85.88	580
39.81	260	87.45	600
41.64	270	90.90	650
43.47	280	93.72	700
45.37	290	100.00	850
47.18	300		

Table 2.8 Arab Light TBP distillation curve.

the following screenshots come from the Arab Light and Arab Heavy assays given in Tables 2.6–2.9. Additional information such as viscosity distribution does not typically help in defining pseudocomponents.

The last step in defining a complete assay is the description of the light components of the assay (Figures 2.21–2.23). While starting with detailed assays, it is possible to obtain analysis of the feed products as well. While simulating an existing column, it is sufficient to backblend measured light gas products back into the feed of the crude. In addition, for accurate light composition, we must also consider light gas components due to thermal cracking in the column. If the light gas analysis is not available, simulators may provide an option to estimate the light gas distribution. While useful, it is unlikely that these values will be correct. As we will show in later sections, the light gas composition does not play a

% Distilled	SG	% Distilled	SG
3.79	0.634	48.99	0.853
4.51	0.654	50.78	0.860
5.14	0.653	52.57	0.869
7.06	0.663	54.35	0.875
7.97	0.716	56.11	0.882
8.78	0.704	57.90	0.887
10.89	0.702	59.61	0.893
11.82	0.724	61.28	0.898
12.79	0.766	62.90	0.903
15.33	0.733	64.48	0.908
17.11	0.759	66.01	0.910
18.88	0.765	67.50	0.915
21.10	0.763	68.94	0.919
23.11	0.771	69.96	0.923
25.13	0.777	71.32	0.927
26.99	0.785	72.65	0.930
28.86	0.792	75.23	0.936
30.54	0.796	77.68	0.941
32.41	0.802	80.02	0.948
34.26	0.808	82.24	0.955
36.12	0.814	84.19	0.962
37.97	0.816	85.88	0.970
39.81	0.822	87.45	0.978
41.64	0.828	90.90	0.991
43.47	0.834	93.72	1.010
45.37	0.840	100.00	1.098
47.18	0.847	Bulk	

Table 2.9 Arab Light density distribution.

significant role in determining the column performance. Kaes [3] gave methods to estimate the gas composition of crudes.

Depending on the available analysis, users may have to add additional light gas components into the thermodynamic basis to reflect plant measurements. In general, we do not add any components with boiling points higher than the *n*-butane or *n*-pentane series. We require the butane series if we expect the model to handle vapor pressure (Reid vapor pressure, RVP) specifications and predictions for gasoline-type cuts.

The next step in building the set of pseudocomponents is creating a blend. A blend represents a combination of two or more assays on a weight or volume basis. The combined blend is the input to the hypothetical component generator in Aspen HYSYS. For the purposes of this simulation, we use the data from

82 2 Atmospheric or Crude Distillation Unit (CDU)

ArabLight Reactions Component Maps ArabLight Conventional Characterized Successfully Basis-1 User-Voperties	All Items Component Lists	- Assay Displa	Summary y: All Regions 👻			racterization Method	Status		Fluid Package	From Source	
User Properties ArabyHVY Conventional Characterized Successfully Basis-1 User- ArabyHVY Conventional Characterized Successfully Basis-1 User-	ArabLight Reactions		54	-			64		6ª 🔹	ð#	
ArabyHVY Conventional Characterized Successfully Basis-1 User-		1	ArabLight		Conventional		Characterized Successfully		Basis-1	User-Specif	
Properties		1	ArabyHVY		Con	ventional	Characterized Successfully		Basis-1	User-Specif	
roperoes	T. Bussette										
Center Simulation Add Copy Delete	-	4									

Figure 2.16 Define petroleum assays, ArabLight and ArabHVY, in Aspen HYSYS petroleum assay manager and save the file as *Crude Assays Only.hsc.*

Name:	Arab	yHYV	Fluid Pack	age:	Basis-1	-	Heavy).
🖱 Multi (i Cut Properties Number of Cuts:		5				
Single	Stream	n Properties					
C BackBl	endin	9					
		Distillati	on % 🏹	Temp	erature 🏹		
	÷.	TBP					
	2	By mass			С		
	•	4.9700		50.	0000		
	÷.	6.3200		60.	0000		
	P.	7.8300		70.	0000		
	P.	8.0600		80.	0000		
	÷.	9.4500		90.	0000		
		11.0000		100	.0000		
	F.	11.8100		110	.0000		
	P.	13.2100		120	.0000		
	×	14.1400		130	.0000		
	1.1	15.7600		140	.0000		

the representative atmospheric distillation unit of Section 2.8. We can place a petroleum feeder into the flowsheet to create a simulated crude feed by backblending true column products. We show a 50–50% mixture of the assays in Figure 2.24.

Once we create the blend in the petroleum feeder, we can save the feed stream from the feeder as an assay to make several observations about the calculated properties (distillation curve, viscosity curve, etc.) in Aspen HYSYS petroleum 2.8 Building the Model in Aspen HYSYS Petroleum Refining 83

All Items -		water and the second					
Component Lists	li li	nput Summary Pure Compo	onent Distillation	Data			
Fluid Packages			Whole Crude	Cut 1	Cut 2	Cut 3	Cut 4
Petroleum Assays ArabyHVY Input Assay		Initial Temperature (C)	IBP FBP	IBP 50.0000	50.0000	60.0000 70.0000	70.0000
		Final Temperature (C)			60.0000		
Conventional Results		1					
🔺 🛃 ArabLight	- E	CutYieldByWt (%)	100.00	4.97	1.35	1.51	0.23
Input Assay Conventional Results	E	StdLiquidDensity (kg/m3)	884.3000	656.8071	672.6486	687.7315	689.8517
Reactions	- F	SulfurByWt (%)					
 Component Maps User Properties 	P.	KinematicViscosity (cSt)					
	1	ParaffinsByVol (%)					
	E	NaphthenesByVol (%)					
		OlefinsByVol (%)					
	E	AromByVol (%)					
	E.	PourPoint (C)					
T Properties	-						

Figure 2.18 Specify density distribution.

All Items *		put Summary Pure Comp	onent Distillation	Data		
 Component Lists Fluid Packages Petroleum Assays ArabyHVY 		Initial Temperature (C)	Whole Crude IBP	Cut 1 IBP	Cut 2 50.0000	Cut 3 60.0000
Input Assay Conventional Results A C ArabLight Input Assay		Final Temperature (C)	FBP	50.0000	00.0000	70.0000
	F	CutYieldByWt (%)	100.00	4.97	1.35	1.51
	- F	StdLiquidDensity (kg/m3)	884.3000	656.8071	672.6486	687.7315
Conventional Results	E.	SulfurByWt (%)				
Component Maps	E.	KinematicViscosity (cSt)				
User Properties	E E	ParaffinsByVol (%)				
	E.	NaphthenesByVol (%)				
	- 6	OlefinsByVol (%)				
	- E	AromByVol (%)				
	- F	PourPoint (C)				
Properties	-					

Figure 2.19 Specify bulk properties (Arab Heavy).

assay manager. Documentation from AspenTech [19] and work by Riazi [9, 11] summarize most of these correlations. We can review the generated pseudocomponent list (Figure 2.25). This pseudocomponent list shows all relevant physical property information calculated from the input distillation and density data.

The last step is to specify pressure, temperature, and flow rate of the blend stream from the petroleum feeder in the flowsheet (Figure 2.26). We must create a new blend each time the composition of the assays changes. For the purposes of a basic simulation, a blend of assays or a blend of backblended products is sufficient. In the old oil manager of Aspen HYSYS, if we need to evaluate a variety of crudes, the component list can quickly become unmanageable. By contrast, the

84 2 Atmospheric or Crude Distillation Unit (CDU)

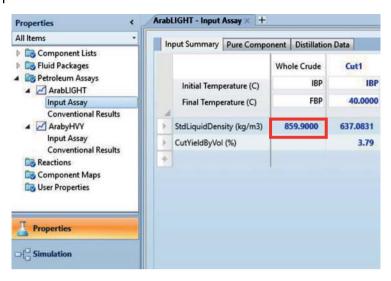


Figure 2.20 Specify bulk properties (Arab Light).

All Items *		11 223	1223			Search for:		Search
4 🔯 Component Lists	Component	Туре	Group					
Component List - 1	Methane	Pure Component				10		
 Buid Packages B Petroleum Assays 	Ethylene	Pure Component		E		Simulation Name	Full Name / Synonym	Formula
Reactions	Ethane	Pure Component			< Add	n-Hexane	C6	C6H14
Component Maps	CO2	Pure Component		-		n-Heptane	C7	C7H16
1 1 13-80	H2S	Pure Component				n-Octane	C8	C8H18
	Propene	Pure Component			Replace	n-Nonane	C9	C9H20
	Propane	Pure Component				n-Decane	C10	C10H22
	i-Butane	Pure Component				n-C11	C11	C11H24
	i-Butene	Pure Component			Remove	n-C12	C12	C12H26
	1-Butene	Pure Component				n-C13	C13	C13H28
	13-Butadiene	Pure Component				n-C14	C14	C14H30
	n-8utane	Pure Component		_		n-C15	C15	C15H32
	cis2-Butene	Pure Component				n-C16	C16	C16H34
Properties	tr2-Butene	Pure Component				n-C17	C17	C17H36

Figure 2.21 Add additional light gas components to the thermodynamic basis.

new petroleum assay manager of Aspen HYSYS generates a unified component list across all assays, which makes it more convenient to handle multiple-assay blends. See our previous comparison in Table 1.3, Section 1.8.

2.8.2 Selection of a Thermodynamic Model

The choice of a thermodynamic model can have significant impact on the results. The primary source of this error is the poor representation of *K*-values, especially for heavier crudes. The following options are typically available for hydrocarbon-rich streams (like crude):

- Equation-of-state (EOS) based.
 - Peng-Robinson (PR), Soave-Redlich-Kwong (SRK)

All Items -		The second se		
Component Lists	Input Summary Pure Comp	onent Distillatio	on Data	
Fluid Packages Petroleum Assays	Initial Temperature (C)	Whole Crude'		
ArabyHVY	A CONTRACTOR OF A CONTRACTOR O		CIER ID ADD CDI	
🔺 🗹 ArabLight	Final Temperature (C)	FBP		
Input Assay Conventional Results	Ethylene			
Reactions	Ethane	0.010		
Component Maps	CO2			
-g over ropentes	H2S			
	Propene			
	Propane	0.170		
	i-Butane	0.180		
	i-Butene			
	1-Butene			
	13-Butadiene			
	n-Butane	0.990		
Properties			Advanced Settings	
Properties	-			cterize Assa

Figure 2.22 Specify light gas components of the assay (Arab Light).

All Items *	Dura Com	
Component Lists Component Lists Component Lists Component Assays Conventional Results Conventional Results Reactions Component Maps User Properties	Input Summary Pure Comp Initial Temperature (C) Final Temperature (C) Basis (%) Components Methane Ethane Propane i-Butane n-Butane H2O	Whole Crude IBP FBP 0.000 0.050 0.690 0.310 1.300 0.000

Figure 2.23 Specify light gas components of the assay (Arab Heavy).

Connections	Parameters	Worksheet	User Variables				
Parameters	-Flow Ratio	os and Boiling	Ranges			_	_
Parameters				Bala	nce Type	Mass	
			Ratio	IBP [C]	FBP [C]		
	ArabLig	ht	0.5000	-252.6	9	00.0	
	ArabyH	VY	0.5000	-252.6	9	00.0	

Figure 2.24 Create a blend from crude assays.

All Items *	R	esults Summary Pure Comp	onent Distillatio	Property Ta	ble Message			
Component Lists		,	Light ends	36-40*	40-50*	50-60*	60-70*	70-80*
Bog Petroleum Assays		Initial Temperature (C)	IBP	36.0000	40.0000	50.0000	60.0000	70.00
ArabyHVV ArabLight		Final Temperature (C)	36.0000	40.0000	50.0000	60.0000	70.0000	80.00
🔺 🛃 Assay from Blend	- 1	CutYieldByWt (%)	1.96	0.56	1.84	1.36	1.72	0.5
Input Assay		CutYieldByMol (%)		1.62	5.09	3.56	4.26	1.3
Conventional Results		MolecularWeight		72.01	75.23	79.62	83.83	88.5
Component Maps		StdLiquidDensity (kg/m		671.3522	671.6852	681.1710	696.0600	701.792
Co User Properties		TotalAcidNumber (mg		0.018	0.021	0.024	0.027	0.03
	1	AnilinePoint (C)		-51.300	-49.107	-46.566	-44.457	-41.70
		AromByVol (%)		0.000	0.000	0.000	0.000	0.14
		AromByWt (%)		0.000	0.000	0.000	0.000	0.18-
Properties	1	AsphalteneByWt (%)		0.000	0.000	0.000	0.000	0.00

Figure 2.25 Review calculated pseudocomponent properties.

Worksheet Attach	ments Dynamics		
Worksheet	Stream Name	Blend	Liquid Phase
Conditions	Vapour / Phase Fraction	0.0000	1.0000
Properties	Temperature [C]	15.00	15.00
Composition	Pressure [kPa]	333.4	333.4
Oil & Gas Feed	Molar Flow [kgmole/h]	4208	4208
Petroleum Assay K Value	Mass Flow [kg/h]	8.750e+005	8.750e+005
User Variables	Std Ideal Liq Vol Flow [m3/h]	1008	1008
Notes	Molar Enthalpy [kl/kgmole]	-4.505e+005	-4.505e+005
Cost Parameters	Molar Entropy [kJ/kgmole-C]	351.8	351.8
Normalized Yield	Figure Heat Flow [kl/h]	-1.896e+009	-1.896e+009
	Liq Vol Flow @Std Cond [m3/h]	1006	1006
	Fluid Package	Basis-1	
	Utility Type		

Figure 2.26 Enter specification of the blend stream.

- Fugacity correlation based.
 - Grayson-Streed, Chao-Seader
- Correlation based.
 - BK-10, ESSO, API

Equations of state generally rely on pure component properties such as critical temperature, critical pressure, and acentric factor. In addition, an interaction parameter is required to account for mixtures of components. Correlation-based approaches rely on measured vapor pressures and observed data to provide empirical correlations for various hypothetical or pseudocomponents.

We have commented extensively on thermodynamic models and various approaches in Chapter 1. In general, we recommend the use of EOS or fugacity correlation-based approaches in modern process simulators. There are minor

Q-101

E-PREHEAT

FEED

deficiencies associated with each type of model. However, advanced options in most process simulators can counteract these problems and provide similar results. We illustrate the impact of the thermodynamic model in Section 2.10.

2.8.3 Crude Charge and Prefractionation Units

Once we have chosen an appropriate thermodynamic representation for the crude feed and associated components, we can begin building the actual simulation. The charge feed enters a simple heat exchanger that simulates the preheat train of the CDU. For a more realistic model, we should simulate the extensive preheat train. As the preheat train is not the focus of this work, we represent the preheat train with a simple heater with a variable heat duty instead (see Figure 2.27; save as *CDU EX-1.hsc*). Figure 2.28 gives the specifications for the outlet stream.

The next major unit is the crude furnace or crude heater. This is typically a very large fired heater capable of vaporizing significant quantities of crude. It is also the major energy consumer in the CDU. Aspen HYSYS includes a fired heater model if extensive information about the fired heater is available. As we do not have this information, we represent the fired heater as a simple exchanger with a given heat duty. However, we must account for the overflash specification of fired heater. The overflash specification controls how much heavy material can be recovered in the nonresidue product from the column. Figures 2.29 and 2.30 show the required setup for this furnace.

We specify the overflash specification by using an Adjust block. As a reminder, the *overflash* is the amount of liquid that is vaporized in addition to all the products recovered in the column excluding the residue. The residue is the crude that was not vaporized in the feed of the column. We specify the furnace initially by an

Feeder-100

CHARGE

Figure 2.27 Simplified preheat train.

5 Material Stream: FEED Worksheet Attachments Dynamics Stream Name FEED V Worksheet Vapour / Phase Fraction 0.4813 Conditions Temperature ICI 268.0 Properties Composition Pressure [kPa] 333.4 Oil & Gas Feed Molar Flow [kgmole/h] 3773 Petroleum Assay Mass Flow [kg/h] 8.750e+005 K Value Std Ideal Lig Vol Flow [m3/h] 1003 User Variables Molar Enthalpy [kJ/kgmole] -3.562e+005 Notes

Figure 2.28 Outlet temperature of the preheat train.

estimate of the heat duty. The Adjust block will vary a manipulated variable, the furnace heat duty, until our design specification, vapor fraction (based on mass) of the furnace outlet stream, reaches a target value.

From Table 2.13, we see that the sum of the liquid products (light naphtha, heavy naphtha, kerosene, and light gas oil) is 45.84 wt%. We would like to specify an overflash of 3%. Therefore, we expect the vapor fraction (on a mass basis) of the stream leaving the furnace to be 48.84 wt% (sum of liquid products and overflash). We will adjust the heat duty to match the overflash requirement.

Figures 2.31 and 2.32 show how to select the adjust variable (in this case, the heat duty to the crude heater). We select the target variable (in this case, the mass vapor fraction of the crude heater outlet) and set the target variable value in Figure 2.33.

The Adjust block may not converge during the initial run. We can typically improve convergence by increasing the number of the iterations and the step size in the solver parameters for the Adjust block in Figure 2.34.

Figure 2.35 shows the completed flowsheet for modeling the Heated_FEED in Section 2.8.4. We save the resulting file as *CDU EX-1.hsc* and begin to configure the actual distillation column.

2.8.4 Atmospheric Distillation Column – Initial

In this section, we create and configure the representative crude unit shown in Figure 2.14 of Section 2.7. As we avoid the use of stage-by-stage efficiency factors, we will create the model based on the overall stage efficiency description from Figure 2.15. We take the data for column configuration and process data

EED E-CRU		Q-102 Heated_FEE JRNACE	ĒD	Simplified crude fired heater.
Design Desi Connect Paramet	tions ters		ater: E-CRUDE_FUF ormance Dynamics	(NACE Contraction of the second secon
User Va Notes	riables	Delta T 96.11 C	→ <u>(</u>)	Duty 2.70000e+008 kJ/h
	Delete	-		OK

Figure 2.30 Supply initial guess for heater duty.

2.8 Building the Model in Aspen HYSYS Petroleum Refining 89

)				ADJ-1	6	9	-		×
Connections	Parameters	Monitor	User Variables						
Connections		Ad	just Name	ADJ-1					
Connections Notes	Adjust	ted Variable	e	4					
	Objec	tt Q-1	102		Select Var				
	Variab	le: Hez	st Flow]			
_						-	2010	_	
			Select A	djusted Variable For ADJ-1	0	ø	-		>
Flowsh	eet		Object	Variable	Variable Specifics	5		OK	
Case (Main)		E-PREHE FEED Feeder-1 Heated_1	E_FURNACE EAT	Heat Flow Heat Flow2 Mass Flow Power Power2 User Variables		3	All Sto Ur Lo O Cc Cc	itOps gicals ilities	Op

Figure 2.31 Select the heat flow as the adjusted variable.

				ADJ-1	5 5	
Connections	Parameters	Monitor	User Variables			
Connections		Ad	just Name	ADJ-1		
Connections Notes	Adjust	ed Variable				
	Objec	t Q-1	02		Select Var	
	Variab	le: Hea	t Flow			
	Target	Variable -				
	Objec	t Hea	tedFEED		Select Var	
	Variab	le: Pha	se Frac on a Mas	s Basis (Vapour Phase)		_
			Select	Target Variable For ADJ-	1 6 9	
Flowsh	eet		Object	Variable	Variable Specifics	ОК
Case (Main)		E-PREHE FEED Feeder-1 Heated_I	E_FURNACE AT 00	Phase Comp Mass Frac Phase Comp Molar Flow Phase Comp Mole Frac Phase Comp Volume Flow Phase Comp Volume Frac Phase Entholpy Phase Entholpy Phase Entholpy Phase Frac on a Mass Basis Phase Frac on a Mola Basis Phase Frac on a Volume Ba Phase Frac on a Volume Ba Phase Fraction Phase Higher Heating Valu Phase Lig Mass Density @S Phase Lia Vol Flow @Std Cit	Aqueous Phase Liquid Phase Mixed Liquid Phase Overall Second Liquid Phase Solid Phase Vapour Phase	Object Filter All Streams UnitOps Logicals Utilities ColumnO Custom Custom Disconne

Figure 2.32 Select mass vapor fraction of heater outlet as target variable.

				ADJ-1	6		-	×
Connections	Parameters	Monitor	User Variables					
Connections		Ad	ijust Name	ADJ-1				
Connections Notes	Adjust	ed Variabl	e					
	Objec	t: Q-1	102		Select Var			
	Variab	le: Hea	at Flow					
	Target	Variable -				_		
	Objec	t: Hea	atedFEED		Select Var			
	Variab	le: Pha	se Frac on a Mas	s Basis (Vapour Phase)				
	Target							
	Sou	rce Jser Suppli	ed	Specified Target Value				
	01	Another Ob	oject	0.4884				

Figure 2.33 Specify the target mass vapor fraction of outlet.

Connections	Parameters	Monitor	User Variables			
Parameters	-Solving F	arameters				
Parameters Options		📰 Sin	nultaneous Solution			
	Method	ł		Secant		
	Toleran	ce		0.10000		
	Step Siz	ze		9000.0 kJ/h		
	Minimu	m (Option	al)	<unbounded></unbounded>		
	Maxim	um (Option	al)	<unbounded></unbounded>		
			ns	1000		

Figure 2.34 Modify solver parameters for the Adjust block.

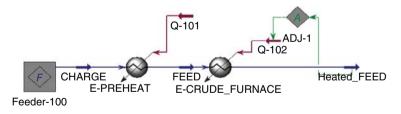


Figure 2.35 Flowsheet of the feed preheater and furnace.

from Tables 2.10 to 2.13. We follow a step-by-step procedure that develops improved initial guesses at each step. This method ensures that even relatively unsophisticated column algorithms can run with these improving column estimates. Sophisticated column algorithms (as in Aspen HYSYS) can converge quickly even without these steps; however, it is quite easy to discover problems in the data that prevent convergence with this method.

Feed/products	Stage	Flow rate (ton/day)	Conditions
Crude feed	49	21 000	3.0% Overflash
Bottoms steam	56	278.4	Sat'd steam @ 250 °C
Off gas	Condenser	N/A	60 °C
Light naphtha	Condenser	3549	60 °C
Residue	Bottoms	11,375	349 °C

 Table 2.10
 Measured plant flow rates and specifications.

 Table 2.11
 Measured pumparound flow rates and specifications.

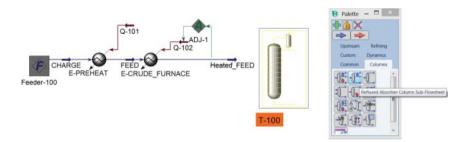
Pumparounds	Flow rate (ton/h)	Temperature change (°C)	Duty (Gcal/h)	Draw/return
Heavy naphtha	376.1	-90	-13.9	15/10
Kerosene	234.9	-60	-9.1	31/28
LGO	298.1	-60	-12.2	43/38

 Table 2.12
 Measured side stripper flow rates and specifications.

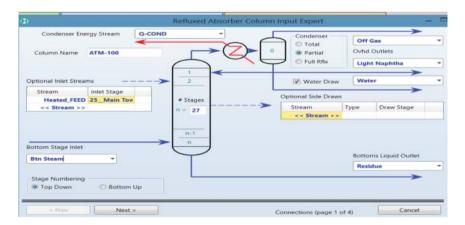
Side strippers	Draw rate (ton/day)	Steam (kg/h)	Draw/return
Heavy naphtha	921	1313	15/10
Kerosene	1333	1243	31/28
LGO	3822	3418	43/38

 Table 2.13
 Measured product distribution and qualities.

ASTM D86 (°C)	LN	HN	Kerosene	LGO	Residue
IBP	69	137	168	218	319
5%	71	165	198	246	368
10%	74	172	203	254	381
30%	88	179	210	268	454
50%	104	183	215	283	533
70%	122	187	221	301	684
90%	146	193	229	328	874
95%	153	196	235	337	-
FBP	162	204	251	378	-
Specific gravity	0.7037	0.7826	0.8034	0.8456	0.9713
Yield (wt%)	16.9	4.39	6.35	18.2	54.16
Yield (ton/day)	3549	921	1333	3822	11,375


We continue with the file *CDU EX-1.hsc* and create a refluxed absorber: $F4 \rightarrow$ operation palette (model menu) \rightarrow columns \rightarrow insert "refluxed absorber T-100" (see Figure 2.36).

We then double-click the column T-100 to open the column input form, rename the column as ATM-100, and enter the relevant stream inputs. We configure the column with 27 ideal stages and attach the relevant energy and material streams (see Figure 2.37).


We specify the pressure profile in Figure 2.38.

The next step is not required by Aspen HYSYS but is *a recommended good practice* to ensure that columns converge regardless of the method used. Based on the measured plant data, we *enter estimates of the top and bottom temperatures* in Figure 2.39. For the initial run, the calculated values may differ from the given temperature estimates.

As this is a refluxed absorber, we must provide two initial specifications in Figure 2.40. We specify a vapor distillate rate (i.e., the off gas flow rate) of 1.421E4 kg/h and a liquid distillate rate (i.e., the light naphtha flow rate) of 1.479E5 kg/h. A reflux ratio of 2.0 generally ensures quick convergence. If the column does not converge with a reflux ratio of 2.0, not enough material may have vaporized in the

Figure 2.36 Insert a refluxed absorber model T-100 to the current flowsheet to represent the CDU.

Figure 2.37 Initial stream setup for column ATM-100 with 27 ideal stages: (1) energy streams – Q-Cond and Btm Steam and (2) material streams – Heated_FEED, Off Gas, Light Naphtha, Water, and Residue.

2.8 Building the Model in Aspen HYSYS Petroleum Refining 93

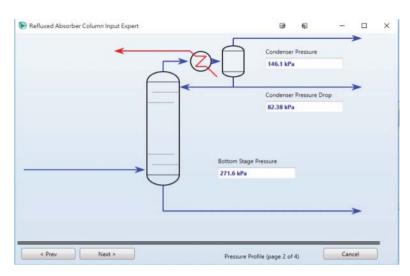


Figure 2.38 Column pressure profile.

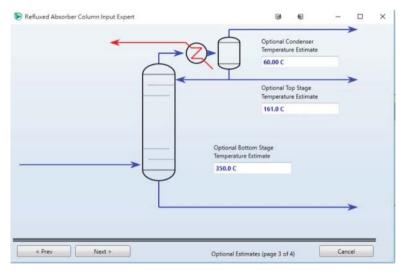


Figure 2.39 Initial estimate of temperature profile.

feed heater. We click "done" in Figure 2.40 to return to the column input summary in Figure 2.41. We see that HYSYS proceeds to do calculations on the column and shows "unconverged" in red. Why? We have not yet specified the Btm Steam input.

We close the column input window and return to the main flowsheet. Click on Btm Steam stream to enter a vapor fraction of 1, a temperature of 250 °C, a mass flow rate of 1.116E4 kg/h (under "Conditions"), and a mass fraction of 1 for water (under "Composition") (see Figure 2.42).

Next, we close the Btm Steam stream, click on the column ATM-100 again, and enter the column input summary window. We go to Column \rightarrow Design \rightarrow Monitor and choose to make specifications of reflux ratio and distillate rate "active"

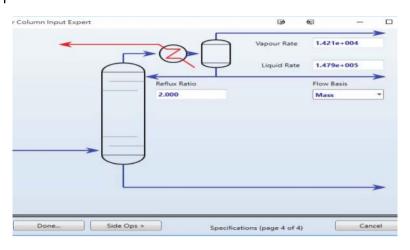


Figure 2.40 Initial flow specifications of reflux ratio and liquid and vapor distillate rates.

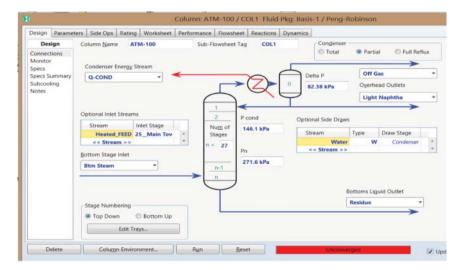


Figure 2.41 Column input summary and unconverged calculations due to a lack of specification of Btm Steam specification.

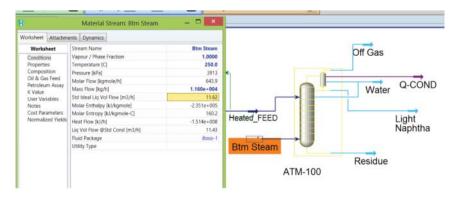


Figure 2.42 Specification of Btm Steam stream.

94

Design	Parameters	Side (Ops Rating	Worksheet P	erformance Flowshe	eet Reactions [Dynamics							
Desi	gn	Option	al Checks -			Profile								
Connecti Monitor	ons	In	put Summar	y View	w Initial Estimates	Temp	Tempera	Temperature vs. Tray Position from						
opecs opecs Su	mmany	Iter	Step	Equilibrium	Heat / Spec	O Press	300.0				94998 ⁴			
Subcooli		1	1.0000	4.620295	0.026974	Flows	250.0	-						
Notes	15	2	1.0000	0.019180	0.004885	Flows	150.0							
	-	3	1.0000	0.000070	0.000611	1	100.0							
		4	1.0000	0.000014	0.000094		000 1111		10	15	20 25			
		Distil	x Ratio late Rate x Rate		2.000 1.479e+005 kg/h <empty></empty>	2.000 1.479e+005 5.152e+005	-0.0000	বর	বাব	<u>।</u> ব				
		Vap	Prod Rate		1.421e+004 kg/h	1.097e+005			2					
		Btms	Prod Rate		<empty></empty>	6.285e+005	<empty></empty>		V					
		10												

Figure 2.43 Converged initial column model.

and then click "run." The column calculations converge quickly (see Figure 2.43). We save the resulting file again as *CDU EX-2.hsc*. We may receive warnings about a potential aqueous phase in the Light Naphtha stream. We ignore these warnings until we complete building the entire column model.

2.8.5 Atmospheric Distillation Column – Side Strippers

Once we have obtained convergence only with the top and bottom products, we will add three side strippers (specified in Table 2.14) in a consecutive manner. We save file *CDU EX-2.hsc* as a new name, *CDU EX-3.hsc*, to include side strippers.

We illustrate this process only for the heavy naphtha side stripper, but it is identical for all side strippers. In Aspen HYSYS, the "Side-Ops" tab allows the user to insert side operations in the main column. By adding the side operations directly

Stripper	SS1	SS2	SS3
Draw stage	10	17	22
Return stage	9	16	21
Product name	SS heavy naphtha	SS kerosene	SS LGO
Draw spec (kg/h)	3.838E4	5.554E4	1.617E5
Stripping steam name and flow rate (kg/h) ^{a)}	Heavy naphtha steam at 1313 kg/h	Kerosene steam at 1243 kg/h	LGO steam at 3418 kg/h

 Table 2.14
 Specifications of side strippers for the CDU model.

a) All stripping steam streams with a vapor fraction of 1, a temperature of 250 °C, and a composition of mass fraction of 1 for water.

lesign	Parameters	Side Ops	Rating	Worksheet	Performance	Flowshee	t Reactions	Dynam	nics				
Side	Ops S	ide Strippe	Summa	y	2 								_
de Rec ump A	le Ops trippers Rectifiers Arounds ypasses			# Stages	Liq Draw Stag	e V	ap Return Stag	je	Outlet Flor	N	Reboiler Du	ιty	

Figure 2.44 Side operations tab in Aspen HYSYS.

ide Ops	Rating	Worksheet	Performance	Flowsheet	Reactions	Dynamics				
le Strippe	r Summar	y					H)	Side Stripp	er - SS1	
		# Stages	Liq Draw S	tage	Vap Return	Stage	Name SS1			
551				<empty></empty>		<empty></empty>	Return Stage			
							9_Main Tower	-		
							-			figuration
							Draw Stage	2		Reboiled
							10_Main Tower	•		Steam Stripped
								k= 3	Stea	m Feed
								k-1	1	
							Flow Basis	××		
							O Molar	\bigcirc		
							Mass Std Ideal Vol			
							Vol @ Std Cond	· · · ·	Produc	t Stream Specs
									luct Stream	SS heavy naphtha
	1						Delete	Install Drav	v Spec	3.838e+004 kg/h
Flow Basi	s 🙆 Ma	iss 💿 Vol	ume	View	Ad	d				
										1
Colum	n Environi	ment	Run	Res	iet		Unconverged	📝 Upda	te Outlets	gnored

Figure 2.45 Connect and specify the product stream and the draw rate for each side stripper SS1.

to the main column, we have a great deal of flexibility when assigning column or product recovery specifications. We show the "Side-Ops" tab in Figure 2.44.

We add the heavy naphtha side stripper SS1 with three theoretical stages (suggested in Table 2.2) and specify the draw stage as 10 and the return stage as 9 in Figure 2.45. We specify the product stream, SS heavy naphtha, and its draw rate, 3.838E4 kg/h (see Figure 2.45). Then, we choose to "install" the side stripper (see Figure 2.46).

We close the side stripper window, return to the main flowsheet, and click on the "Heavy naphtha steam" stream to enter its specifications according to Table 2.14 (see Figure 2.47). 2.8 Building the Model in Aspen HYSYS Petroleum Refining 97

	Janotes.	1011201012000	as the second second		r 100	Side Stripper -		
	# Stages	Liq Draw Stage	Vap Return Stage	Name	551			
SS1	3	10_Main Tower	9_Main Tower	Return 1	Grane			
				Draw St	in Tower *	1 2 2 3 k-1 k	Steam Feed Name Heavy naphtha ste	am
						(alculated Product Inform	ation
					elete	Nam		
Flow Basis						Draw	Rate <e< td=""><td>mpty></td></e<>	mpty>
Molar @ M	ass 💿 Volu	me View	Add_					

Figure 2.46 After installing the side stripper SS1, the model is missing the specifications of the "Heavy naphtha steam" stream required to calculate the draw rate.

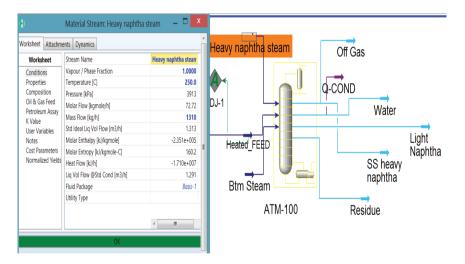


Figure 2.47 Specification of stripping stream for heavy naphtha stripper SS1.

We then close the "Heavy naphtha steam" stream window, click on column ATM-100 to enter to column input window: Column \rightarrow Design \rightarrow Monitor \rightarrow Run \rightarrow Converged (see Figure 2.48).

We recommend solving the column model after adding each side stripper. This ensures that the initial estimates are slowly refined for each step.

We continue with our simulation file, *CDU EX-3*, and save it as a new file, *CDU-EX-4*. Following the same approach from Figures 2.44 to 2.48 and the specifications in Table 2.14, we add side stripper SS2 for SS kerosene product and SS3 for SS LGO product. Figure 2.49 depicts the resulting flowsheet with three side strippers. Figure 2.50 shows the monitor displaying the active specifications of five independent variables and the column calculation convergence after adding three side strippers. Figure 2.51 displays the column profile after adding all the

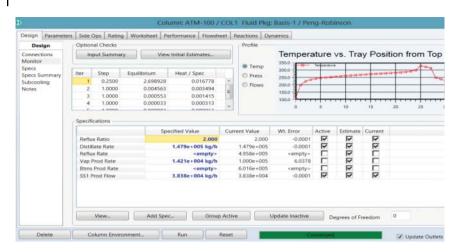


Figure 2.48 Convergence of the ATM-100 column simulation with heavy naphtha stripper SS1.

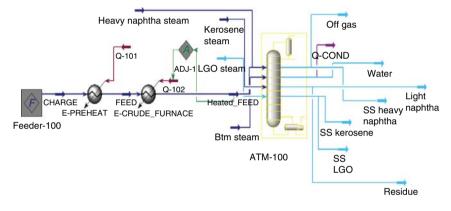


Figure 2.49 CDU flowsheet with products from three side strippers.

three side strippers. We save the resulting files after adding the three side strippers as *CD EX-4.hsc*.

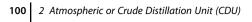
We see from Figure 2.51 that the calculated condenser temperature is 90.71 °C, which is different from our initial specification of 60 °C in Figure 2.39. We shall fix the error below.

2.8.6 Atmospheric Distillation Column – Pumparounds

The last step in building the column model is adding the pumparound for each product draw. We first save the simulation file, *CDU-EX-4.hsc* as a new file, *CDU EX-5.hsc*, and reenter the "Side-Ops" tab and create the pumparound for each product. The draw and return stages are typically the same as side stripper draw and return stages. Kaes [3] documented some alternative configurations, but the difference for simulation is often small when compared to errors in other simulation assumptions. The specifications of pumparounds for the CDU model are given in Table 2.15.

It is important to specify either a duty or a temperature change across the pumparound. Specifying an absolute return temperature can often solve

esign Paramete	ers Side	Ops Rating	Worksheet P	erformance Flowshe	eet Reactions D	ynamics				
Design	Option	al Checks -			Profile					
Connections Monitor	In	put Summar	y View	v Initial Estimates	Temp	-	ature Terroeratul		y Posi	tion from
pecs pecs Summary	Iter	Step	Equilibrium	Heat / Spec	Press	350.0			and the second	T p
Subcooling	10	1.0000	0.201951	0.020399		250.0		ALC DEMONSTRATION		Bran Brand
Notes	11	0.0001	0.111900	0.019349	© Flows	150.0				
	12	1.0000	0.193403	0.012194		1			-	
	13	1.0000	0.038718	0.013803		50.00			1.1	
	- 14	1.0000	0.030433	0.007000		0	5 1	0 15	20 3	25 30 3
	Specifi	ications								
			Sp	ecified Value	Current Value	Wt. Error	Active	Estimate	Current	
	Reflu	x Ratio		2.000	2.000	0.0001	R	R	R	
	Distil	late Rate		1.479e+005 kg/h	1.479e+005	0.0001	R	R	R	
	Reflu	x Rate		<empty></empty>	4.536e+005	<empty></empty>		V		
	Vap	Prod Rate		1.421e+004 kg/h	7.887e+004	4.5503		A		
	Btms	Prod Rate		<empty></empty>	4.056e+005	<empty></empty>		1		
	SS1 8	Prod Flow		3.838e+004 kg/h	3.838e+004	-0.0000	2	P	2	
	SS2 F	Prod Flow		5.554e+004 kg/h	5.554e+004	-0.0000	V	P	P	
	SS3 4	Prod Flow		1.617e+005 kg/h	1.617e+005	0.0000	V	V	V	
				pec Group Active Upo		Update Inactive	_			0


Figure 2.50 Converged CDU model after adding three side strippers.

Jesign Param	eters Side Ops	Kating	Worksheet P	enformance	Flowsheet	Reactions Dyn	amics														
Parameters	Steady State Profi	les						- Flow B													
Profiles					Optional Es	timates		() Ma		@ Mat											
stimates Hiciencies		Stage	Pressure [kPa]	Temp C	Net Liquid [kg/h]	Net Vapour [kg/b)		© Vol			ideal Vol										
	Condenser	0	146.1	90.71	4.535e+005	7.887e+004		Des	Volume												
2/3 Phase	1_Main Tower	1	228.5	183.9	6.718e+005	6.850e+005		- Ma	volume												
2/3 Phase Fluid Pkgs	2_Main Tower	2	230.1	207.5	7.445e+005	9.032e+005								-	-			-			
	Stage (bPa) Condenser 0 146.1 J.,Main Tower 1 228.5 2_,Main Tower 2 220.1 3_,Main Tower 2 213.5 4_,Main Tower 2 223.5 5_,Main Tower 5 223.5 7_,Main Tower 6 236.8 7_,Main Tower 7 238.4	218.4	7.741e+005	9.759e+005	=					ressu	Ire v	s. Iray	Pos	ation f	rom	lop					
	4_Main Tower	4	233.5	224.7	7.867e+005	1.005e+006		200.0	- Pea			-		-	-						
	5_Main Tower	5	235.7	229.2	7.917e+005	1.018e+006		260.0-		-		-	_	-	-	-0-0-0		1	-		
	6_Main Tower	6	236.8	232.7	7.929e+005	1.023e+006		240.0-					***					1			
olver 3 Phase	7_Main Tower	7	238.4	235.8	7.918e+005	1.024e+006		040.0											1		
Hiciencies iolver 1/3 Phase	8_Main Tower	8	240.1	238.8	7.892e+005	1.023e+006		220.0 -	1	-		-	-	-	-		-		+		
	9_Main Tower	9	241.7	241.7	7.850e+005	1.021e+006		202.0-	1	_		-			_		_		_		
	10_Main Tower	10	243.4	245.1		9.990e+005		180.0-	1										1		
	11_Main Tower	11	245.1	248.5	7.222e+005	9.961e+005		180.0 -				_							-		
	12_Main Tower	12	246.7	252.0	7.160e+005	9.907e+005		163.0	-	-		+	-		-+		+		+		*
	13_Main Tower	13	248.4	255.6	7.088e+005	9.844e+005		141.0		-	_	-	_		-	_	-	-	-		
	14_Main Tower	14	250.0	259.4	7.003e+005	9.772e+005	+		1.00	s		10		5	20		25		30		
	Update from	Solution	Clear	Tray C	ear All Trays	Lock		Unlock	s	tream E	stimates.										

Figure 2.51 Temperature and pressure profiles of the CDU after adding three side strippers: ATM100 \rightarrow Parameters \rightarrow Profiles.

Table 2.15 Specifications of pumparounds for the CDU model.

Pumparound	PA1	PA2	PA3
Side stripper	SS heavy naphtha	SS kerosene	SS LGO
Draw stage	10	17	22
Return stage	9	16	21
PA rate (kg/h)	3.761E5	2.35E5	2.981E5
Temperature change, d <i>T</i> (°C)	90	60	60

Side Ops de Strippers de Rectifiers	1	Around Summary —									
e Rectifiers		Denu Stans	Batum Staas	Barr	Duty	Draw T	Return T	[mar			
np Arounds		Draw Stage	Return Stage	Flow	[kl/h]	[C]	[C]	Expor			
Bypasses	PA_1	<empty></empty>	<empty></empty>	<empty></empty>	<empty></empty>	<empty></empty>	<empty></empty>		round - PA_1	ř	
e Draws								rumpre		<i>.</i>	1000
					Name	PA1			Pump dP		
					Return St	tage			<empty></empty>		
					9_Mair	Tower	•		Cooler dP	é.	
					-				0.00 kPa		
								_		->	
							R	Y			
							R				
							1		🖪 Ad	id Pump	
									A	id Valve	
					Draw Sta	ge			A	queous	
	Flow Basis		View	v Adi	10 Ma	in Tower	•				
	Molar	Mass Vol	ume the			Ê	Cancel	_			
							Cancel				1
Delete	Column	Environment	Run	Reset							
Draws					Return	tive Spec PA1_R 3.761e+00 n Stage Iain Tower	ate(Pa)	and Active	Spec PA1_Dt(Pa) 90.00 C	PAI	
Delete	Flow Basis Molar	Mess O Vo	lume Vi	ew J	Drew	turous Stage Main Towe Delote	_		Calculated Infor Draw Temp. dT Return Temp. Flow Rate Duty View Pump	< < -2.550e+	245.1 empty empty empty 010 kl/
Delete	© Molar	👁 Mass 💿 Vo			Draw	Stage Main Towe	_		Draw Temp. dT Return Temp. Flow Rate Duty	< < -2.550e+	e e 0
	Column	Mass Ve	Column:	Reset	vdd	Stage Main Towe Delote	nasis-1 /	AI	Draw Temp. dT Return Temp. How Rate Duty View Pump	< < -2.550e+	empty empty empty 010 kJ/
ign Param Side Ops	Colume	👁 Mass 💿 Vo	Run Column:	Reset	vdd	Stage Main Towe Delote	nasis-1 /	AI	Draw Temp. dT Return Temp. How Rate Duty View Pump	< < -2.550e+	empty empty empty 010 kJ/
ign Param Side Ops e Strippers e Rectifiers mp Arounders	Colume Colume eters Sade	Mass Vice	Column: column: orksheet Perform mary ge Return	Reset ATM-100 / nance Flowst n Stage	Kidu.	Stage Main Towe Delote	asis-1 / mics	A1	Draw Temp. dT Return Temp. Flow Return Temp. Duty View Pump Obinsion	 2.550e+ View 	empty empty empty 010 kJ/
ign Param Side Ops le Strippers le Rectifies mp Arounds p Bypasses	Colume	Mass Vice	Column: column: orksheet Perform mary ge Return	Reset	Vid	Stage Main Towe Delote	asis-1 / mics	A1	Draw Temp. dT Return Temp. Flow Rate Duty View Pump.	 -2.550e+ View Export 	empty empty empty 010 kJ/
sign Param Side Ops le Strippers le Roctifies mp Arounds p Bypastes	Colume Colume eters Sade	Mass Vice	Column: column: orksheet Perform mary ge Return	Reset ATM-100 / nance Flowst n Stage	Kidu.	Stage Main Towe Delote	asis-1 / mics	A1	Draw Temp. dT Return Temp. Flow Return Temp. Duty View Pump Objectson	 2.550e+ View 	empty empty empty 010 kJ/
	Colume Colume eters Sade	Mass Vice	Column: column: orksheet Perform mary ge Return	Reset ATM-100 / nance Flowst n Stage	Kidu.	Stage Main Towe Delote	asis-1 / mics	A1	Draw Temp. dT Return Temp. Flow Return Temp. Duty View Pump Objectson	 2.550e+ View 	empty empty empty 010 kJ/
ign Param Side Ops le Strippers le Rectifies mp Arounds p Bypasses	Colume Colume eters Sade	Mass Vice	Column: column: orksheet Perform mary ge Return	Reset ATM-100 / nance Flowst n Stage	Kidu.	Stage Main Towe Delote	asis-1 / mics	A1	Draw Temp. dT Return Temp. Flow Return Temp. Duty View Pump Objectson	 2.550e+ View 	empty empty empty 010 kJ/
ign Param Side Ops le Strippers le Rectifies mp Arounds p Bypasses	Colume Colume eters Sade	Mass Vice	Column: column: orksheet Perform mary ge Return	Reset ATM-100 / nance Flowst n Stage	Kidu.	Stage Main Towe Delote	asis-1 / mics	A1	Draw Temp. dT Return Temp. Flow Return Temp. Duty View Pump Objectson	 2.550e+ View 	empty empty empty 010 kJ/
ign Param Side Ops le Strippers le Rectifies mp Arounds p Bypasses	Colume Colume eters Sade	Mass Vice	Column: column: orksheet Perform mary ge Return	Reset ATM-100 / nance Flowst n Stage	Kidu.	Stage Main Towe Delote	asis-1 / mics	A1	Draw Temp. dT Return Temp. Flow Return Temp. Duty View Pump Objectson	 2.550e+ View 	empty empty empty 010 kJ/
ign Param ilde Ops e Strippers e Rectifiers np Arounds Dypazzes	Colume Colume eters Sade	Mass Vice	Column: column: orksheet Perform mary ge Return	Reset ATM-100 / nance Flowst n Stage	Kidu.	Stage Main Towe Delote	asis-1 / mics	A1	Draw Temp. dT Return Temp. Flow Return Temp. Duty View Pump Objectson	 2.550e+ View 	empty empty empty 010 kJ/

(c)

Figure 2.52 (a) Add pumparound PA1 for SS heavy naphtha. (b) Add two specifications after installing pumparound PA1. (c) Run the simulation with PA1 and achieve convergence.

significant problems in convergence, especially when the column is specified by draw temperatures instead of product yields.

To add pumparounds, we go to the same "Side-Ops" window within column ATM-100 and click "Pump Arounds." We then add PA1 by following the illustration from Figure 2.52a–c.

After achieving simulation convergence with PA1, we repeat the same process to install and run PA2 and PA3, following the specifications in Table 2.15. Our initial simulation with three PAs does not converge, as shown in Figure 2.53.

We can typically improve convergence by selecting the "Modified HYSIM Inside-Out" method (discussed in Section 2.4.4). The term "modified" refers to the fact that the solution procedure uses a full Newton–Raphson method to converge the inner loop (i.e., the stage-by-stage mass and energy balances of the column at fixed stage temperature and pressure specified by the outer loop that focuses on phase-equilibrium calculations) of the solution algorithm. The modified method can handle a wide variety of specifications just as easily as the standard inside-out algorithm (Figure 2.54).

Figure 2.51 shows that the condenser temperature is 90.71 °C, instead of our estimated 60 °C. Let us now learn how to define a design specification to correct the condenser temperature. We follow the steps: Design \rightarrow Specs \rightarrow Column Specifications \rightarrow Add \rightarrow Column Specification Types \rightarrow Column Temperature \rightarrow Add Spec(s) \rightarrow Temp Spec: Name – Condenser Temperature, Stage – Condenser, and Spec Value – 60 °C (see Figure 2.55).

Figure 2.56 shows that we change the reflux ratio from active to estimate and set condenser temperature as estimate. The simulation converges quickly. We save the converged simulation file as *CDU EX-6.hsc.*

2.8.7 Atmospheric Distillation Column – Adding Custom Stream Properties

Figure 2.57 shows the completed distillation column simulation with all the pumparounds and side strippers. Once we add all the side operations, the

Design	Optional Checks		ew Initial Estimates	Profile	Tompor	turo	ve Tro	v Doo	ition f	rom To				
Monitor	input summa	ty vi	ew initial Estimates		400.0	rature vs. Tray Position from Top								
Specs Specs Summary	Iter Step	Equilibrium	Heat / Spec	Temp Press	300.0	Terperatul	CODE CO	and	T	Pa				
Subcooling Notes				C Flows	100.0	\$000a			39.		_			
					0.000	5 1	0 15	20	25 3	0 35	-			
	Specifications							2	19 <u>1</u>					
		3	Specified Value	Current Value	Wt. Error	Active	Estimate	Current						
	SS1 Prod Flow		3.838e+004 kg/h	3.838e+004	-0.0000	5		P						
	SS2 Prod Flow		5.554e+004 kg/h	5.553e+004	-0.0002	2		P						
	SS3 Prod Flow		1.617e+005 kg/h	1.616e+005	-0.0003	P	R	R						
	PA1_Rate(Pa)		3.761e+005 kg/h	3.761e+005	-0.0000	5	P	P						
	PA1_Dt(Pa)		90.00 C	92.41	0.0048	P	বব	P						
	PA2_Rate(Pa)		2.350e+005 kg/h	2.350e+005	-0.0001	5	R	P						
	PA2_Dt(Pa)		60.00 C	61.70	0.0034	P	R	R			1			
	PA_1_Rate(Pa)		2.981e+005 kg/h	2.980e+005	-0.0003	2	2	2						
	PA_1_Dt(Pa)		60.00 C	60.87	0.0017	P	R	P			-			
	View	Add S	pec Group	Active	Jpdate Inactive		egrees of Fr	reedom	0					

Figure 2.53 CDU model with three pumparounds not yet converged.

Design Para	neters	Side Ops	Rating	Worksheet	Performance	Flowsheet	Reactions	Dynam	nics			
Parameters	Solv	ing Options					Acceler	ation				
Profiles	Max	imum Numt	ber of Iter	rations		10000	Ao	elerate	Kvalue & H Mod	I Parameters		
Estimates	Equi	librium Erro	r Toleran	ce		1.0000e-05						
Efficiencies	Heat	/ Spec Erro	r Toleran	ce		5.0000e-04						
Solver	Save	Solutions a	s Initial E	stimate		2						
2/3 Phase	Super Critical Handling Model			Simple K	Dampin	na						
Fluid Pkgs	Trac	e Level				Low						
	Initia	Initialise from Ideal K's				Fixed Adaptive		Azeotropic				
	Two	Liquids Che	uids Check		Inital C	amping	Factor		0.10			
		Tighten Water Tolerance				Adaptive Damping Period						
	Use	Estimates fo	or Single !	Staged Tower			Reset Initial Damping Factor					
	- Solv	ing Method					Star	dard Ini	itialization			
		odified HYS		e-Out	Con	trol	O Prog	ram Ge	nerates Estimatio	ins		
			*******	000000			-Initial E	stimate	Generator Param	eters		
	G	eneral Purpo	ose Meth	od which allo	ws mixer, pump	2,	📃 Dyr	Dynamic Integration for IEG				
	te	e, valve and	I heat exc	hangers in th	e sub-flowshee	e.		Dynam	nic Estimates Inte	grator		

Figure 2.54 Column convergence options and the modified HYSIM inside-out algorithm: Parameters \rightarrow Solver \rightarrow Solving Method (modified HYSYS inside-out) and Damping (Adaptive).

Design Parameter	s Side Ops Rating	Worksheet.	Performance	Flowsheet	Reactions Dynamics	0	Temp Sp	ec Conde	nser Temperature 🛛 🗖
Design	Column Specification	ns		5	Add Specs - ATM-10	x	Derester	(<u></u>	
Connections Monitor	Reflux Ratio Distillate Rate	*	View.,		Column Specification Types	-1	Parameters	Summary	Spec Type
Specs	Reflux Rate		Add		Column Liquid Flow		Name		Condenser Temperature
Specs Summary	Vap Prod Rate	- 11	Add		Column Physical Properties Spec		Stage		Condenser
Subcooling	Btms Prod Rate	- 11	Delete		Column Pump Around		Spec Value	1	60.00 C
Notes	SS1 Prod Flow	E	Derete		Column Reboil Ratio Spec		opec voice		00.00 C
	SS2 Prod Flow				Column Recovery	- 1			
	SS3 Prod Flow				Column Reflux Feed Ratio Spec				
	PA1_Rate(Pa)				Column Reflux Fraction Spec				
	PA1_Dt(Pa)				Column Reflux Ratio	_			
	PA2_Rate(Pa)				Column Stream Property Spec				
	PA2_Dt(Pa)				Column Tee Split Spec				
	PA_1_Rate(Pa)	*			Column Temperature				
	-			_	Column Transport Properties Spec				
	Updat	e Specs from I	Dynamics		Column User Property Spec				
					Column Vapour Flaw				
	Default Basis	Mass			Column Vapour Fraction Spec				
				_	Column Vapour Pressure Spec				
		Degrees of Fr	edom 0		End Point Based Column Cut Point Sp				
		Degrees UI Pi	Course U		End Point Based Column Gap Spec	21			
					Chrome Constituention				
				_			Delete		
	Switz	th To Alternat	e Speca		Add Spec(s)			_	

Figure 2.55 Procedure to define a design specification: an example of specifying the condenser temperature.

simulation typically converges quickly if we follow the step-by-step procedure. There may be rare cases where the simulation does not converge.

We demonstrate how to add custom petroleum properties to stream reports. As an example, we add the D86 5% and 95% temperatures to SS LGO product.

Design Paramete	ers Side Ops	Rating	Workshee	t Per	formance	Flowshe	et Reactions	Dynamics	1			
Design	Optional	hecks					Profile					
Connections	Input	Summary		View	Initial Estin	nates		Te	Temperature vs. Tray Po			
Monitor	-						@ Tem	1000	-	Temperatul		-
Specs Specs Summary	Iter 5	tep	Equilibrium		Heat / Sr	ec.			-			-
Subcooling		0.2500		0.001311 0.001409			O Press	250.0			and the second second	and all the
Notes	2	2 1.0000 0.0001311 0.001409 2 1.0000 0.000016 0.001574		C Flow	Flows							
		1.0000	0.000	8000	0.0	000254		150.0				
								50.00		1 . 1		
									0	5 10	0 15	20
	Specificati	one										
	Specificati	Uns		1.4.1.1				1				
				spec	ified Value		Current Value	Wt. I		Active	Estimate	Curren
	Reflux Ra			2.000		1.1		-0,4190	2	ব	4	
		Distillate Rate Reflux Rate			1.479e+005 kg/h		1.479e+0 1.884e+0		-0.0000	N N	N V	ř
	Vap Proc			<empty> 1,421e+004 kg/h</empty>		1.420e+0		-0.0005	5	N.	4	
	Btms Pro					4.584e+0		empty>	Ē	N.	Ē	
	SS1 Prod			<empty> 3.838e+004 kg/h</empty>		3.838e+0		-0.0000	P.	N.	5	
	SS2 Prod				5.554e+0		5.554e+0		-0.0000	A.	T.	Š.
	SS3 Prod				1.617e+0		1.617e+0		-0.0000	E.	N.	5
	PA1 Rate	e(Pa)			3.761e+0		3.761e+0		-0.0000	2	R	5
	PA1_Dt(F			90.00 C		90	.00	0.0000	2	2	2	
	PA2_Rate	e(Pa)			2.350e+0	05 kg/h	2.350e+0	105	-0.0000	5	2	5
	PA2_Dt(F	Pa)				60.00 C	60.	.00	0.0000	1	2	R
	PA_1_Rat	te(Pa)			2.981e+0	05 kg/h	2.981e+0	105	-0.0000	5	V	1
	PA_1_Dt					60.00 C		.00	0.0000	2	2	~
	Condens	er Temper	ature			60.00 C	64.	93	0.0099		P	
	Vie	w	Add	i Spec.		Group	Active	Update	Inactive		earees of Fr	

Figure 2.56 Column convergence after relaxing reflux ratio specification as an estimate and adding condenser temperature estimate.

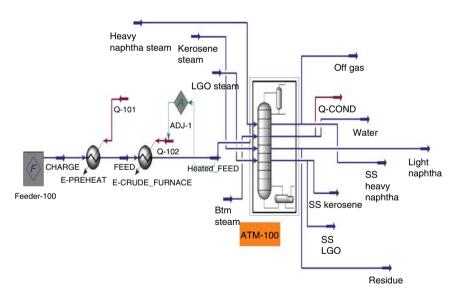


Figure 2.57 Completed atmospheric crude distillation section.

We follow the steps: Flowsheet \rightarrow click on SS LGO stream \rightarrow Material Stream SS LGO \rightarrow Properties \rightarrow click on "+" (append new correlation) \rightarrow Correlation Picker \rightarrow Petroleum \rightarrow Choose D86 5% and apply; choose D86 95% and apply \rightarrow Close (see Figure 2.58). We repeat the same steps to add the D86 5% and 95% temperatures for light naphtha, SS heavy naphtha, SS kerosene, and residue and save the resulting file as *CDU EX-7.hsc*.

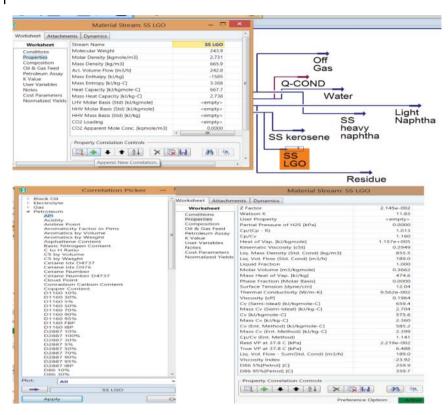


Figure 2.58 Adding custom stream correlations.

2.8.8 Post-Convergence

If the model behavior does not match plant performance even after we converge the model, several adjustments can be made to match plant performance. We suggest the following changes:

- The stripping in the column may be overoptimistic; removing stages especially above the flash zone may help predict lowered efficiency that we observe in columns.
- As steam rates will probably not be accurately measured, we may freely adjust these rates to attempt to match data. However, we must make sure that adjusted values fall within acceptable plant parameters.
- Shift the temperature change in the pumparound circuits. We may shift or lower heat duties on a given stage.
- If the column is specified with either overhead gas draw rate or bottoms rate, remove this specification or adjust this specification to match measurements of the remaining products. The overhead gas and bottoms product (topped crude) are not routinely measured.

We note that making the changes listed above will only show small changes in the yield and product quality profile. The most important contributor to yield and product quality is the feed composition. If there are significant errors, the feed composition is the most likely source.

2.9 Results

Before using the model to study different operating scenarios and perform case studies, we must ensure that the model matches the baseline column conditions and operating profiles. For the atmospheric distillation column, the important operating profile measurements are as follows:

- Column temperature profile specifically the condenser, top dray, and bottoms temperature.
- Temperatures at the draw points of key products.
- Distillation curves of collected key products.
- Density of key products.

The ordering of the above list is significant. We expect to show good agreement with the column temperature profile first and then we should attempt to match the subsequent properties. In addition, it is very unlikely that the model will match plant behavior exactly. Kaes [3] has presented some guidelines to judge whether a model reflects the performance of a real column. We summarize these "reality checks" in Table 2.16.

With these considerations in mind, we present the results of the column simulation developed in the previous section. Figure 2.59 compares the measured column temperature with simulation results. In general, we are able to observe all the trends that Kaes [3] has described. The model stage temperature is higher than measured top stage temperature. In addition, we also note that there is a drop in temperature from the flash zone (Stage 25) to the column bottoms (Stage 27). The temperature of the bottoms stream is also lower than the temperature of the crude feed (366 $^{\circ}$ C at 3% overflash).

The next check in the model results is the prediction of the key product qualities. We typically check this by comparing the D86 (or TBP, whichever are

Model prediction or specification	Expectation/comments
Top stage temperature	Model prediction is generally higher than (7–15 °C) true column temperature
Bottom stage temperature	Model prediction must be lower than flash zone temperature due to isenthalpic cooling
	The temperature of the bottoms stream leaving the column model should be lower than feed temperature of the crude (5–7 $^{\circ}$ C)
Pumparound duties/side stripping steam rates	These values are not routinely measured during true column operation and may vary significantly. It is generally inadvisable to rely on these values to make a simulation converge
Product yields	It is not possible to match yields given a poor representation of feed. Feed crude assays may be too old or inaccurate to represent current operation. Backblending the products may be the only way to correctly represent column feed
Product quality	Adjust stripping steam rates to meet D86 5% point Adjust draw rate of subsequent cut to control the D86 95% point

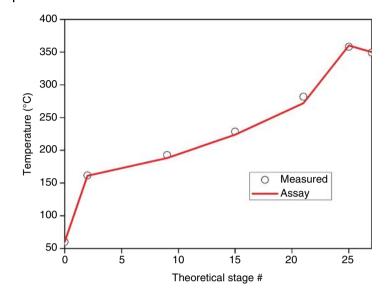
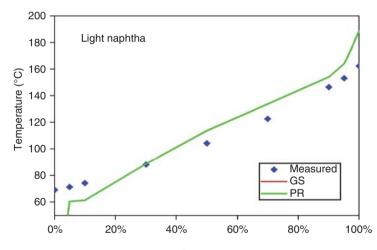



Figure 2.59 Comparison measured and predict column temperature profile.

Figure 2.60 D86 comparison curve for light naphtha: GS = Grayson-Streed equation of state (EOS); PR = Peng-Robinson EOS.

available) curves for all liquids products. Figures 2.60–2.63 show the results of the model with measured values. In this case, we run the model with two different thermodynamic sets (GS –Grayson–Streed and PR – Peng–Robinson). See simulation file *CDU EX-8_GS.hsc.*

In general, we note good agreement with the D86 5% and 95% temperatures. In addition, we also correctly predict the flat distillation curve for "heartcut" draw of SS heavy naphtha and SS kerosene. Typically, more significant deviations appear in the initial and final boiling points of the distillation curves. This often results from various (and possibly) conflicting definitions of the initial and final boiling

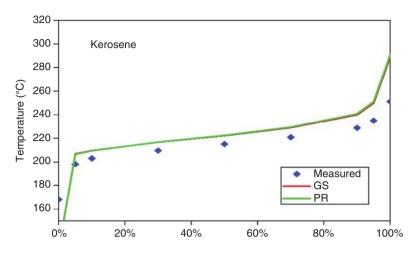


Figure 2.61 D86 comparison curve for kerosene.

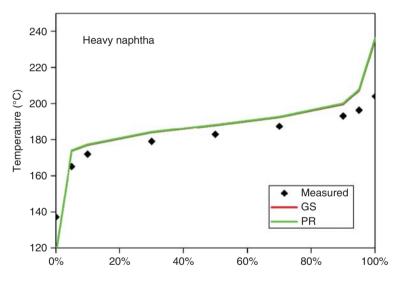


Figure 2.62 D86 comparison curve for heavy naphtha.

points in different simulators and the presence of very light components in a given cut. If accurate estimates for the light products (including the cracked light gases from the column boot) are not available, light products tend to distribute themselves throughout the column. This often leads to errors in the first few points of the distillation curve of light naphtha. We show this effect in Figure 2.60. We can typically alleviate these errors by providing better light gas estimates and specifying condenser temperature (instead of light product draw rates).

The density or specific gravity of the key products is also an important consideration when we verify the model predictions. Figure 2.64 compares the models. With most modern process simulations, it is quite easy to change the thermodynamic model and use sophisticated thermodynamic models. However,

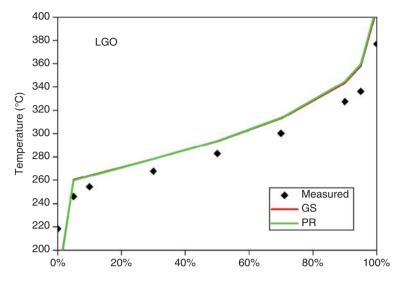


Figure 2.63 D86 comparison curve for LGO.

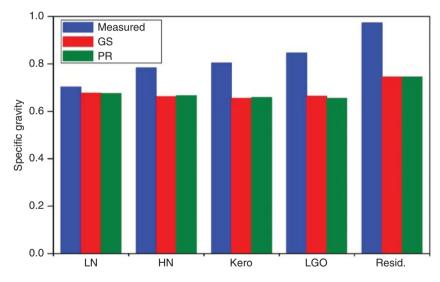


Figure 2.64 Comparison of measured and predicted product-specific gravity.

as shown in Figures 2.60–2.63, different thermodynamic models may give slightly different results. This is especially important for the crude columns, which have a large number of pseudocomponents. In general, while advanced equations of the state predict the K-values accurately, the associated predictions of density are quite poor when compared with a simpler Grayson–Streed model. Different process simulator vendors may provide individual options to keep rigorous K-value predictions using an equation of state, while supplanting other properties from simpler methods. In Aspen HYSYS, the COSTALD [13] liquid density correlation, Eq. (1.27), Section 1.10.4, gives accurate results with

the flexibility of an equation of state. The model developer must be aware of these options and make sure to verify results before using the model to make predictions of column performance.

2.10 Model Applications to Process Optimization

After validating the model predictions with plant data, we would typically like to use the model to predict new operating scenarios or perform experiments that are too costly or otherwise prohibitive in actual atmospheric distillation. Refiners spend significant effort to develop models, but they are rarely used again. Often times, the users neglect these models, while the real column operation continues to change. Thus, when users actually run models, the predictions are far removed from process reality. The simple way to avoid this model stagnation is to use model to help make many different kinds of routine decisions. In this section, we consider a few common scenarios and use the model to investigate these scenarios.

2.10.1 Improve the 5% Distillation Point for an Individual Cut

As the supply and demand of global crude change, heavier crudes become more attractive to process. However, many existing columns cannot produce cuts that meet distillation product specifications. Many process changes could improve the distillation curve of a given product. However, it may be unclear what the side effects of a given change could be. In this case study, we look at how we can improve the distillation curve (5%) of the heavy naphtha and kerosene cuts. One option is to draw more or less of a particular cut to force the distillation curve to shift. However, this will affect other product draws as well.

Nelson [15] noted that the "the initial boiling point of side draw products is always low, and must be corrected by either steam stripping or reprocessing." Consequently, we perform a case study to show the effect of the stream stripping rate on both side strippers of the column. We note that as the steam rate increases, the deviation from the base case is significantly positive. We show the results of the case study in Figures 2.65 and 2.66. An important side effect, in the case of heavy naphtha, is that the distillation curves of the other products remain unaffected. However, when we increase the steam stripping rate to the kerosene side stripper, there is an appreciable loss in the D86 5% temperature of the LGO product. Depending on the subsequent processing of this LGO, this may not be a desirable situation. The use of a properly built column model can advise the refiner of such undesirable changes to the process.

2.10.2 Change Yield of a Given Cut

Modern refineries operate within strong economic, regulatory, and process constraints. Many times, the preferable operating mode for the atmospheric distillation unit may not be the operating mode that maximizes the yield of the most valuable product from the distillation unit alone. The atmospheric

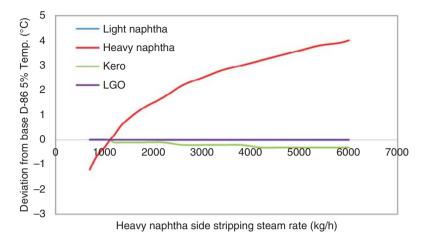
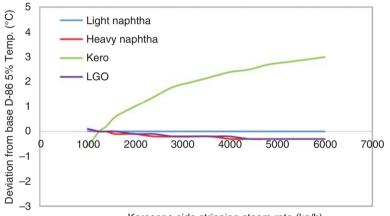
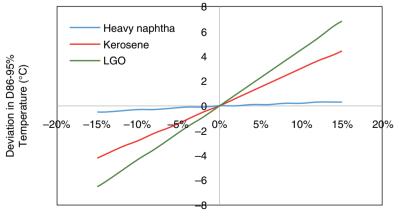




Figure 2.65 Change in distillation curves as a function of heavy naphtha stripping steam rate.

Kerosene side stripping steam rate (kg/h)

Deviation of kerosene draw rate (%)

Figure 2.67 Change in D86-95% as a function of kerosene draw rate.

column operates in concert with many other units in the refinery. Therefore, it is important to understand how the product yield slate changes with different draws of a given cut.

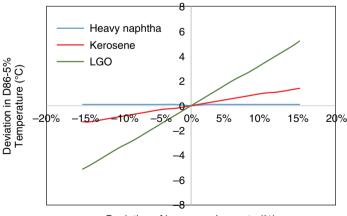

In Figure 2.67, we use the model developed in the earlier sections to study the effect of changing the kerosene draw rate (while holding other draw rates constant), and how this affects the properties of the neighboring cuts. We note that as we increase the kerosene draw rate, the D86 95% point of the LGO increases significantly, while there is no appreciable change in the D86 profile of heavy naphtha. This indicates that if we draw more kerosene, the contribution comes mostly from the heavier portion of the crude and that heavier material is moving up the column.

Figure 2.68 shows the D86 5% point affected by the same change in kerosene yield. The interesting effect here is that the 5% point changes less significantly than the 95% point. This indicates that there is some opportunity to change the steam rate to the LGO and kerosene side strippers to manage the product profile while keeping the yield of heavy and light naphtha relatively constant. Another option that we could explore is increasing the overflash in the feed heater. The overflash is the primary control for how much heavy material is available while the stripper stream and draw rates can serve as finer controls on the heavy material shifts.

2.10.3 Workshop 2.1 – Perform Case Studies to Quantify the Effects of Stripping Steam Rate and Product Draw Rate

We open the converged simulation model, *CDU-EX-6.hsc*, and save it as *Workshop 2.1.hsc* to demonstrate how to use the "case studies" tool in HYSYS (see Figure 2.69).

We define the independent variables in Figures 2.70 and 2.71 and dependent variables in Figures 2.72 and 2.73.

Deviation of kerosene draw rate (%)

Figure 2.68 Change in D86-5% as a function of kerosene draw rate.

LaCoury Dun Seis	annes Uithy Manager Joel Manager RP Package Apoctations Senset in 1 is Senset in 1	150 Electronic Succession Process	Contraction Stream Analysis - Leff Contra Pills B Environment Design - Der Oprimizion BEModel Analysis - Analysis	Ar Pressure Relat A Depressioning A Directory Systems Safety Ameryces
Simulation *	Capital:USD Utilities:USD/Year 🛛 💭	Energy SavingsMW (%)	Case Studies	OK: O Risk: O 🐲.
All Denne (*)	Flowsheet Case (Main) - Solver Active - Case Studie	• H 1+	Case Studies	12
Workbicok Dia Unitopia Stream Analysis	Cater Study Marret	e Study 1	Not Pure	
Equipment Design Model Analysis				
Strip Charts				
Case Studies				
Data Tits				
Properties				

Figure 2.69 Start a new case study; Case Studies \rightarrow Add \rightarrow Case Study 1 \rightarrow Edit.

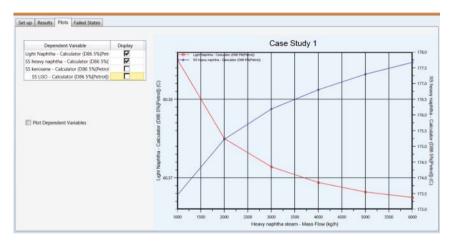
Object Heavy naphtha steam	Vari	able Indep Mass Flow	Ves 🔽		
	B .		Variable Navigator		
	Flowsheet	Object	Variable	Variable Specifics	
Add Remove	D Case (Main)	E-CRUDE_FURNACE E-PREHEAT FEED Facebor-100 FeederBlock_Bitm Steam FeederBlock_Kenzy naphthal FeederBlock_Kenzene steam FeederBlock_CO steam	Lower Heating Value * Macrocut Data Macrocut Gar Composition Macrocut LightFinds Mass Centulary Mass Enthalpy Mass Enthalpy Mass Fintrapy Mass Fintrapy		Add Object Filter All Streams O UnitOps
Independent Variable Heavy naphtha steam - Mass Flow	Navigator Scope Rowsheet Case Case Analysis	Hiratod, FEED Hirany hapitita steam Keronene steam LGO steam Light Naphtha Off Gas Productilisch: Light Naphthe M	Mass Heat Capacity Mass Heat Of Vapour/station Mass Higher Heating Value Mass Lower Heating Value Master Comp Mass Flow Master Comp Mass Frac Master Comp Mass Frac Master Comp Mass Frac		ColumnOps

Figure 2.70 Define independent variables: (1) Flowsheet – Case(Main) \rightarrow Object – Heavy naphtha steam \rightarrow Variable – Mass Flow \rightarrow Add. (2) Repeat the same for kerosene steam mass flow.

Object	E.		Variable		Independent	Includ
Hea	vy naphtha steam			Mass Flow	Ves	44
	Kerosene steam			Ves		
Add	Remove	Edit				
Add State input Type Number of States	Remove	- Edit	Reset after Ru			
State input Type	Nexted 54					
State Input Type Number of States Independent V Heavy naphtha sta	S4	-	E Step Downwa	rd		

Figure 2.71 Specify lower and upper bounds of independent variable and step size.

þ		Variable Navigator				
Flowsheet	Object	Variable		Variable Specifics		OK
▷ Case (Main)	E-PREHEAT * FEED Feeder-100 FeederBlock, Btm Steam FeederBlock, Kerosene stean FeederBlock, LGO steam Heated FEED	BO Water Cut BO Water Oil Ratio BO Watson K Calculator CO2 Composition(mole %) CO2 Loading Comp K Value - Heavy Liquid Comp K Value - Light Liquid		D86 10%(Petrol) D86 30%(Petrol) D86 50%(Petrol) D86 50%(Petrol) D86 50%(Petrol) D86 90%(Petrol) D86 90%(Petrol) D86 59%(Petrol) D86 59%(Petrol)		Add Object Filter All Streams UnitOps
Navigator Scope Flowsheet Case Basis Analysis	Heavy naphtha steam Kerosene steam Light Naphtha Off Gas ProductBlock, Light Naphtha Drych-reflock, Light Naphtha	Comp K Value - Lig1 / Lig2 Comp K Value - Mixed Liguid Cost Foctor Cost Flow Basis Cast Flow Basis Cg/Cv Dynamic P/F Specs Cond Horstle Claustion	*	DB6 IB/Petrol] DB6 IB/Petrol] DDN (Clean/Petrol] Driveability Index(Petrol] Exhaust VOC (Summer) per mil Exhaust VOC (Winter) per mil Fineb DosintDervn1	-	Custom


Figure 2.72 Define dependent variables: (1) Flowsheet – Case(Main) \rightarrow Object – Light naphtha \rightarrow Variable –Calculator \rightarrow Variable Specifics – D86 5% (Petrol) \rightarrow Add; (2) repeat the same for SS Heavy Naphtha, SS Kerosene, and SS LGO D86 5% (Petrol).

up Results Plo	s Failed States					
Ob	ect		Variable		Independent	Include
ł	leavy naphtha steam	í -		Mass Flo	w Yes	P
	Kerosene steam	1		Mass Flo	w Yes	
	Light Naphtha	1	Calc	ulator (D86 5%[Petrol)) No	A
	SS heavy naphtha		Calc	ulator (D86 5%[Petrol]) No	ব
	SS kerosene		Calc	ulator (D86 5%[Petrol]) No	5
	SS LGC	1	Calc	ulator (D86 5%[Petrol	D No	V
Add State Input Type Number of States	Remove Nested	Edit	Reset after Ru			
State Input Type Number of States	Nested 6		Step Downwa	rd		
State Input Type Number of States Independen	Nested 6	•	_			

Figure 2.73 List of independent and dependent variables. Include one independent variable at a time and run simulation.

	G	ase Studies Set	up - Case Study	1		
up Results Plots Failed States						
Table Transpose Table	Results Plot	Save R	esults to File 🔲	Text Filename		
State	State 1	State 2	State 3	State 4	State 5	State 6
Heavy naphtha steam - Mass Flow [kg/h]	1000	2000	3000	4000	5000	6000
Light Naphtha - Calculator (D86 5%(Petrol)) [C]	60.39	60.37	60.37	60.37	60.37	60.37
SS heavy naphtha - Calculator (D86 5%[Petro	173.4	175.2	176.2	176.8	177.3	177.7
SS kerosene - Calculator (D86 5%[Petrol]) [C]	206.6	206.5	205.4	206.4	206.3	206.3
SS LGO - Calculator (D86 5%[Petrol]) ICI	259.9	259.9	259.9	259.9	259.9	259.9

Figure 2.74 Effect of heavy naphtha steam mass flow on the D86 5% temperatures of CDU products.

Figure 2.75 Effect of heavy naphtha mass flow and the D86 5% temperatures on light naphtha and SS heavy naphtha products.

Figures 2.74 and 2.75 illustrate the resulting table and plot from the case study. We save the simulation file as *Workshop 2.1.hsc*.

2.11 Workshop 2.2 – Rebuild Model Using "Backblending" Procedure

The procedure we used in earlier sections to build and validate the crude unit model relies on the availability of crude assays and associated density curves. Although this procedure can provide very accurate results, it can be challenging to implement directly. Often, the composition of the crude entering the atmospheric unit is ill defined and only product yield and operating measurements are available. How do we construct a model using this limited amount of information?

In this workshop, we walk through the process of building a "backblending" model. A "backblending" model refers to the process of reconstructing the feed from known product measurements and to run the crude unit model using this reconstructed feed. We start this process with an analysis of the products that includes distillation curve data and the bulk density at a minimum. Refineries routinely measure this type of data, which should be generally available for modeling

ASTM D86 (°C)	Heavy naphtha (HN)	Light naphtha (LN)	Kerosene	Light gas oil (LGO)	Residue
IBP	69	137	168	218	323 ^{a)}
5%	71	165	198	246	358 ^{a)}
10%	74	172	203	254	381 ^{a)}
30%	88	179	210	268	459 ^{a)}
50%	104	183	215	283	543 ^{a)}
70%	122	187	221	301	656 ^{a)}
90%	146	193	229	328	877 ^{a)}
95%	153	196	235	337	1009 ^{a)}
FBP	162	204	251	378	1178 ^{a)}
Standard liquid density (kg/m ³)	703.7	782.6	803.4	845.6	971.3
Yield (wt%)	16.9	4.39	6.35	18.2	54.16
Yield (ton/day)	3549	921	1333	3822	11375

Table 2.17 Product yield and properties required for "backblending."

Note: Distillation curves have been converted to D86 curves.

a) Values have been estimated.

purposes. Table 2.17 gives product yield measurements for the model developed earlier in this chapter. We will use this set of yields as a basis to reconstruct the crude feed entering the unit.

Table 2.17 contains the distillation curve and standard liquid density (or specific gravity) from each cut. If a complete distillation curve is not available, we recommend using the beta distribution fitting method to identify missing values (see Workshop 1.2, Section 1.4). The residue distillation curve may not be available routinely. We use the simple correlation outlined by Kaes [3] to identify key points on the distillation curve as a function of residue density. We can then use the same beta distribution fit to complete the entire required distillation curve. Finally, we also require the light gas composition (C1–C5) leaving the naphtha and the overhead products.

2.11.1 Import Distillation Data into Aspen HYSYS Oil Manager

We continue the development in Section 2.8.1 and open the simulation file, *Crude Assay Only.hsc*, in which we have already defined two petroleum assays, ArabianLight and ArabianHeavy within the petroleum assay manager. We rename the file as *CDU-Backblending-1.hsc* (see Figure 2.76).

Following Workshop 1.5, Section 1.7, we define the petroleum assays for the five CDU products specified in Table 2.17 within the petroleum assay manager. This involves entering the distillation curve data and the standard liquid density. Figure 2.77 shows the Assay tab in the petroleum assay manager once we have added all the product specifications. We note that the Aspen HYSYS continually updates and verifies the properties of the assays. If the calculated properties require pseudocomponents with boiling points higher than about 1100 °C, Aspen

New Charactertor Download Assays	Cut Ywida	Dest Rations	Assay Marape Freperties of Galery	Var		Molecular Characterization							
Properties 4	Petrole	im Assays	ArabianLight	Sum	mary 🖂 🕹 Arai	bianHeavy - Characterization	ArabianLight - D	haracterization	0.4				
Component Lists Field Packages Field Packages Field Packages Component Lists Field Packages Field Package Field Packag	Displa		ima 🔹	o	teracterization Method	Status	Fluid Package	From Source	Density (kg/m3)	Sultur (%)	Viscosity (cSt) @ 37.78 C	Watson	ĸ
Conventional Results		54 (- 34	-	60	b .	5 .				-	
 ArabianHeavy 	10	rabianLight		Co	riventional	Characterized Successfully	Basis-1	Imported	861.39		5.3081	11,5396	
Input Assay Conventional Results Reactions Component Maps Buser Properties	•	rabianHeavy		Co	rventional	Characterized Successfully	Basis-1	Imported	885.18		9.67045	11,3888	

Figure 2.76 Two petroleum assays, ArabianLight and ArabianHeavy, defined within the petroleum assay manager.

New Oswacteribe Download Assays		iar Characterizati	on								
Properties 4	Petre	sleum Assays -	Heavy Naphi	ha - Input Assay 📧 👔	Arabian Light - Summary ×	1+					
All Items *	Ass	ay Summary									
 Component Lists Stuid Packages 		play: AR Regi	ions +								
Petholeum Assays Arabian Light Input Assay			Accury	Characterization Method	Status	Fluid Package	From Source	Density (kg/m3)	Sultur (%)	Viscosity (cSt) @ 37.78 C	Watson K
Conventional Results		84		• b+ •	de .	+ b+			= +	= •	
4 🛃 Arabian Heavy	116	Arabian Heat	vy :	Conventional	Characterized Successfully	Basis-1	imported	885.18		9.67045	11.3888
Input Assay Conventional Results	1.	Arabian Light		Conventional	Characterized Successfully	Basis-1	imported	861.39		5.3081	11.5396
🔺 🛃 Light Naphtha	1	Heavy Napht	No.	Conventional	Characterized Successfully	Basis-1	User-Specif	782.60		1.08023	11.9434
Input Assay Conventional Results	1	Kerosene		Conventional	Characterized Successfully	Basis-1	User-Specif	803.40		1.53975	11.9103
 Kerosene IGO 		1.	L60		Conventional	Characterized Successfully	Basis-1	User-Specif	845.60		3.6847
		Light Naphth		Conventional	Characterized Successfully	Basis-1	User-Specif	703.70		0.547993	12.4805
 Residue Heavy Naphtha Input Assay Conventional Results 	1	Residue		Conventional	Characterized Successfully	Basis-1	User-Specif	971.30		1523.33	11,6905

Figure 2.77 Created assays of all CDU product cuts.

HYSYS will indicate that the pseudocomponents may not yield accurate results. Although it is generally safe to ignore this warning for atmospheric units, the pseudocomponents may not be sufficient for the VDU. An alternate correlation may be required to account for these high boiling cuts.

2.11.2 Define a New Blend of the Backblended Crude Feed

We continue with the file, *CDU-Backblanding-1.hsc*, and resave it as *CDU-Backblending-2.hsc*. The next step is to create an appropriate blend of the product assays to represent the backblended crude feed. We put a petroleum feeder on the flowsheet as shown in Figure 2.78 and create a new blend stream with the name "BackBlended." We click "View" to edit the feeder and add the respective flow ratio for each product cut.

We use the flow ratio based on the flow rates given in Table 2.17 and the product assays to create a new blend, as shown in Figure 2.79.

Note that the light components are still not yet part of the reconstructed crude definition. We approximate the light gas component mole flows by copying those from the charge stream in our simulation file, *CDU EX-6.hsc*, for our converged CDU flowsheet, Figure 2.57. We show in Figure 2.80 these light gas component mole flows and their duplications to specify the BackBlended_Gas stream in the main flowsheet. We assume the BackBlended_Gas stream to

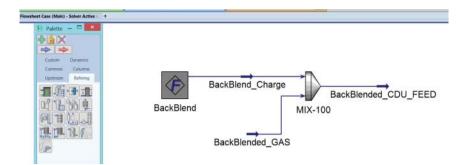


Figure 2.78 Add a new petroleum feeder to reconstruct the backblended crude charge and insert a mixer to add light gas components to the reconstructed the crude feed.

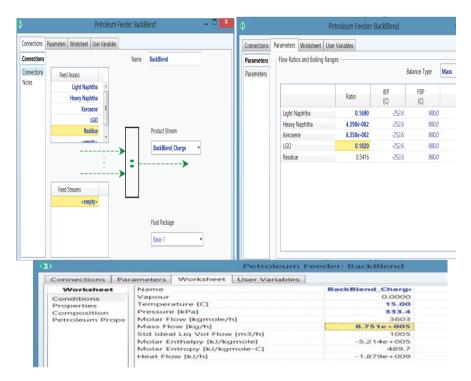


Figure 2.79 Specification of the BackBlend_Charge stream.

have the same temperature (15 °C) and pressure (333.4 kPa) as those of the BackBlended_Charge stream shown in Figure 2.79.

Figure 2.81 shows the specification of our mixer, MIX-100.

Throughout the previous steps from Figures 2.77 to 2.81, the petroleum assay manager automatically generates only *a single list of pseudocomponents* for both the assay blending and the backblending operations. We see this list of pseudocomponents from Properties \rightarrow Component Lists \rightarrow Component List-1, shown in Figure 2.82.

	Materi	al Stream: CHARGE	Material Stream: BackBlended_Gas Worksheet Attachments Dynamics				
orksheet Attachme	ents Dynamics						
Worksheet		Molar Flows	Worksheet		Molar Flows		
Conditions	Ethane	3.5237	Conditions Properties	Ethane	3.523		
Properties	C02	0.0000	Composition	CO2	0.000		
Composition Oil & Gas Feed	H2S	0.0000	Oil & Gas Feed Petroleum Assay K Value	H2S	0.000		
Petroleum Assav	Propene	0.0000		Propene	0.000		
K Value	Propane	49.0995		Propane	49.099		
User Variables	i-Butane	23.6617	User Variables	i-Butane	23.661		
Notes	i-Butene	0.0000	Notes	i-Butene	0.000		
Cost Parameters	1-Butene	0.0000	Cost Parameters Normalized Yields	1-Butene	0.000		
Normalized Yields	13-Butadiene	0.0000		13-Butadiene	0.000		
	n-Butane	114.9703		n-Butane	114.970		
	cis2-Butene	0.0000	-	cis2-Butene	0.000		
	tr2-Butene	0.0000		tr2-Butene	0.000		
	i-Pentane	0.0023		i-Pentane	0.000		
	1-Pentene	0.0000		1-Pentene	0.000		
	2M-1-butene	0.0000		2M-1-butene	0.000		
	n-Pentane	180.7517		n-Pentane	180.751		
	H2O	0.0000		H2O	0.000		

Figure 2.80 Gas component molar flows from original CHARGE stream and its duplication to BackBlended_Gas stream: total mole flow rate = 372.4 kg mol/h.

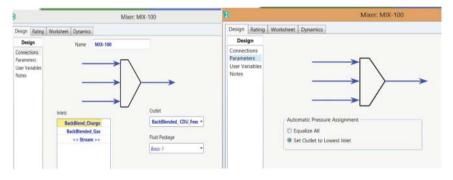
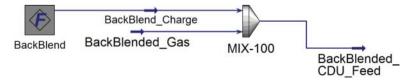


Figure 2.81 Specification of the mixer, MIX-100.

Properties <	Petroleum Assays × Co	mponent List - 1 🖂 🕂 +		
All Items - Component Lists Component List - 1	Source Databank: HYSYS			
 Fluid Packages Petroleum Assays 	Component	Туре	Group	
 Arabian Light Arabian Heavy 	n-Pentane	Pure Component		
Elight Naphtha	H2O	Pure Component		
Kerosene	36-40*	User Defined Hypothe	Assay Hypos	
EGO Esidue	40-50*	User Defined Hypothe	Assay Hypos	
 Residue Heavy Naphtha 	50-60*	User Defined Hypothe	Assay Hypos	
Input Assay	60-70*	User Defined Hypothe	Assay Hypos	
Conventional Results	70-80*	User Defined Hypothe	Assay Hypos	
Component Maps	80-90*	User Defined Hypothe	Assay Hypos	
User Properties	90-100*	User Defined Hypothe	Assay Hypos	
and the second se	100-110*	User Defined Hypothe	Assay Hypos	
	110-120*	User Defined Hypothe	Assay Hypos	
	120-130*	User Defined Hypothe	Assay Hypos	
	130-140*	User Defined Hypothe	Assay Hypos	
	140-150*	User Defined Hypothe	Assay Hypos	
Properties	150-160*	User Defined Hypothe	Assay Hypos	
	160-170*	User Defined Hypothe	Assay Hypos	
거음 Simulation	170-180*	User Defined Hypothe	Assay Hypos	
Safety Analysis	180-190*	User Defined Hypothe	Assay Hypos	
	190-200*	User Defined Hypothe	Assay Hypos	


Figure 2.82 A single list of pseudocomponents generated by the petroleum assay manager.

By contrast, as we discussed previously in Table 1.3, Section 1.8, while using the old oil manager, each assay blend will generate its own set of component lists. In fact, in Figure 2.83 (which is generated by earlier versions of Aspen HYSYS Petroleum Refining when only the old oil manager was available), we see two sets of pseudocomponents, NBP[0]* and NBP[1]*. The NBP[0]* components refer to the components created from the assay blending operation, and NBP[1]* components correspond to the components created from the backblending operation. Users of *the old oil manager* must be aware that continuously adding various blends can create a very large unmanageable component list. Hence, we strongly recommend taking advantage of the significant improvements of *the new petroleum assay manager* over the old oil manager.

Figure 2.84 shows the resulting simulation flowsheet. We save the file as *CDU-Backblending-2.hsc*.

Component Lists	Source Databank: HYSYS			
Fluid Packages Petroleum Assays	Component	Туре	Group	
🐻 Oil Manager	NBP[0]673*	Oil Hypothetical	Blend-1 Hypos	
Reactions Component Maps	NBP[0]724*	Oil Hypothetical	Blend-1 Hypos	
User Properties	NBP[0]774*	Oil Hypothetical	Blend-1 Hypo	
	NBP[0]825*	Oil Hypothetical	Blend-1 Hypos	
	NBP[1]43*	Oil Hypothetical	BackBlend Hypos	
	NBP[1]58*	Oil Hypothetical	BackBlend Hypos	
	NBP[1]72*	Oil Hypothetical	BackBlend Hypos	
	NBP[1]86*	Oil Hypothetical	BackBlend Hypos	
	NBP[1]100*	Oil Hypothetical	BackBlend Hypos	
	NBP[1]114*	Oil Hypothetical	BackBlend Hypos	
	NBP[1]127*	Oil Hypothetical	BackBlend Hypos	
	NBP[1]141*	Oil Hypothetical	BackBlend Hypos	
	NBP[1]156*	Oil Hypothetical	BackBlend Hypos	
	NBP[1]169*	Oil Hypothetical	BackBlend Hypos	
Properties	NBP[1]184*	Oil Hypothetical	BackBlend Hypos	
Cinnelation	NBP[1]197*	Oil Hypothetical	BackBlend Hypos	

Figure 2.83 Composite component list for multiple-assay blends generated by the old oil manager: NBP[0]* refers to the pseudocomponents created from the assay blending operation, and NBP[1]* components correspond to the pseudocomponents created from the backblending operation.

Figure 2.84 The "backblended CDU feed" replacing the "Charge" stream entering the preheat exchanger in Figure 2.27.

2.11.3 Build the CDU Model Based on the Backblended Feed

Following exactly the steps from Figures 2.29 to 2.35, we develop the simulation for the Heated_FEED to the CDU. This results in the flowsheet of Figure 2.85. We save the file as *CDU-Backblending-3.hsc*.

We then follow exactly the steps from Figures 2.36 to 2.57 to develop the complete CDU model based on the backblanded feed. Figure 2.86 shows the resulting CDU flowsheet, and we save the file as *CDU-backblending-4.hsc*.

2.11.4 Converging Column Model

When converging the updated column model, we may occasionally observe the errors shown in Figures 2.87 and 2.88. Aspen HYSYS indicates that two liquid phases may be possible on the bottom stage of the column. This is unlikely given the high temperature of the steam and stage pressure. We will modify the simulation *to include a water draw stream* to enforce that Aspen HYSYS performs a rigorous three-phase check on the bottom stage. The water draw removes all condensed liquid water from a stage to ensure that we can continue to apply the standard inside-out formulation to solve the column model.

To begin adding the water stream, we first enter the Column Environment for the CDU, as shown in Figure 2.89. We double-click on the column icon on the flowsheet and click on the "Column Environment" button. The column

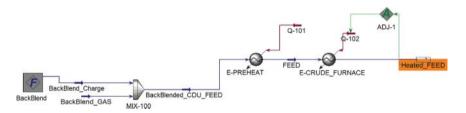
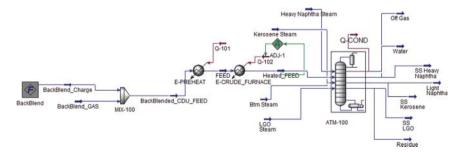



Figure 2.85 The Heated_FEED stream to the CDU developed from backblending.

Beginning	Soluta	on of Column	Flowsheet ATR-100			
Iter:	1	Eqn Error:	0.000000	Heat/Spec Error:	0.000016	Step Size: 1.0000
Liquid on	stage	27_Hain TS	splits to two phases.	Phase fractions:	0.1217 (Liquid),	0.8783 (Liquid)
Column	Flowsk	eet ATM-100	Not Converged			

Figure 2.87 Solver output indicating two phases present.

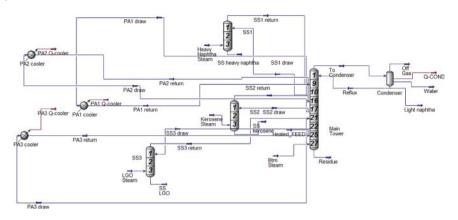

Design	Column Name ATM-	100 Su	b-Flowsheet Tag	COL1				
Connections	Inlet Streams						Stage N	Numbering -
Monitor Specs Specs Summary	Internal Stream Heated_FEED	External Stream Heated_FEED	Inlet Stage 25_Main Tower	Transfe	r Basis P-H Flash	Split		p Down ittom Up
Subcooling Notes	Btm Steam Heavy Naphtha Stear Kerosene Steam	Btm Steam Heavy Naphtha Stea Kerosene Steam	27_Main Tower 3_551 3_552		P-H Flash P-H Flash P-H Flash		E	dit Trays
	LGO Steam ** New **	LGO Steam << Stream >>	3_553		P-H Flash	ä	St.	olit Inlets
	Outlet Streams							
	Internal Stream	External Stream	Outlet Stage	Type	Transfer Basis		dP Top:	82.38 kPa
	Residue	Residue	27_Main Tower	L	P-H	Flash		
	Light naphtha	Light Naphtha	Condenser	L		Flash	P Top:	146.1 kPa
	Off Gas	Off Gas	Condenser	v		Flash		
	Q-COND	Q-COND	Condenser	Q	None		dP Bot:	
	Water	Water	Condenser	w		Flash	or bot	
	SS heavy naphtha	SS Heavy Naphtha	3_551	L		Flash	P Bot	263.3 kPa
	SS kerosene	SS Kerosene	3_552	L		Flash	P.Bot	263.3 KPa
	SS LGO	SS LGO	3_\$\$3	L		Flash		
	PA1 Q-cooler PA2 Q-cooler	<< Stream >>	PA1 cooler PA2 cooler	Q	None			
	PA2 Q-cooler PA3 Q-cooler	<< Stream >>	PA2 cooler PA3 cooler	Q	None			
	** New **	<< Stream >>	PA3 cooler	ų	None	ned q		

Figure 2.89 Enter Column Environment for column.

environment is essentially a subflowsheet that represents all the units internal to the column. In this environment, we can see the connections and draws for all pumparounds, side strippers, and so on for the column.

We first enter the column environment, as shown in Figure 2.90. We can then double-click on the column environment to bring up the advanced configuration for this column. From this interface, we can add nonstandard units such as thermosiphon reboilers. However, for this example, we focus on adding a water draw. We select the "Side Draws" section and create an additional "water draw" stream at tray 27 (the bottom tray), as shown in Figure 2.91. We also choose a "Total" water draw, indicating that all water will be removed from this stage. Partial water draws are not possible with the standard column solver method.

At this point, we can rerun the column to obtain the latest solution and we save the file as *CDU-backblending-5.hsc*. The column should converge quickly (<10 iterations). We must now confirm our assumption that no actual water condenses in the bottom stage. Figure 2.92 shows the results of the water draw stream. The water draw stream has a zero flow. The column solution may indicate that a small amount of water is present in the overhead light naphtha draw. This value is safe to ignore and has little bearing on the product results. In the following section, we compare the results of the "backblending" procedure and original assay method and discuss some reasons for the differences in predictions. 122 2 Atmospheric or Crude Distillation Unit (CDU)

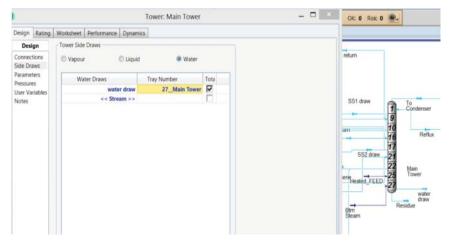
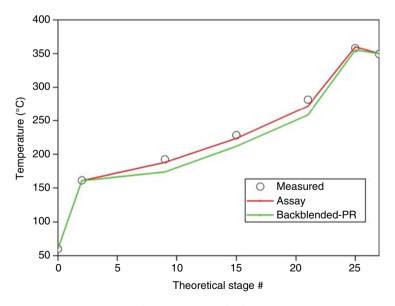


Figure 2.91 Create a "water draw" in stage 27.

nts Dynamics		Worksheet Attachme	nts Dynamics	
Stream Name	water draw	Worksheet		Molar Flows
Vapour / Phase Fraction	0.0000	Conditions	13-Butadiene	
Temperature [C]	344.9	Properties	n-Butane	0.0000
Pressure [kPa]	271.6	Composition	cis2-Butene	70.2261
Molar Flow [kgmole/h]	0.0000	Oil & Gas Feed	tr2-Butene	0.0000
Mass Flow [kg/h]	0.0000	Petroleum Assay	i-Pentane	0.000
Std Ideal Lig Vol Flow [m3/h]	0.0000	Estimates	1-Pentene	0.000
Molar Enthalpy [kJ/kgmole]	-6.893e+005	K Value	2M-1-butene	0.0000
Molar Entropy [ki/kgmole-C]	1925	User Variables Notes	n-Pentane	146.7467
Heat Flow [k]/h]	-0.0000	Cost Parameters	H2O	3.7210
Lig Vol Flow @Std Cond [m3/h]	0.0000	Normalized Yields	36-40*	0.0000
Fluid Package	Basis-1	2000 (CHERONE)	40-50*	16.1275
	Basis-1		50-60*	176.4283
Utility Type			60-70*	168.0380
Iter: 6 Eqm Error:	0.000067	Heat/Spec Error:	0.000308	Step Size: 1.0000
Iter: 7 Eqm Error: Iter: 8 Eqm Error:	0.000018 0.000005	Heat/Spec Error: Heat/Spec Error:	0.000173 0.000090	Step Size: 1.0000 Step Size: 1.0000


Figure 2.92 Water draw stream from column bottoms and detection of water and of two liquid phases (organic and aqueous) in stream light naphtha.

2.11.5 Comparison of Results

Figure 2.93 compares the results of the "backblending" procedure with the original assay blending procedure used for the initial column. In both cases, we used the PR EOS method to model the physical properties of the components. Both methods show good agreement with the measured temperature profile and follow the prediction guidelines given in earlier sections of this text. However, we note that the temperatures from the "backblending" case are consistently lower for the immediate stages than the assay case. This indicates that the temperatures in the distillation curves for the cuts (from the "backblending" case) will be consistently lower as well. Figures 2.94–2.97 compare these distillations curves and display the temperature deviation. This deviation tends to be most pronounced in the lighter cuts.

There are several reasons why this deviation occurs; the primary reason is that there is no detailed density distribution to model pseudocomponents for each of these cuts. The lack of a density distribution tends to create generally lighter components. As increasingly lighter components are drawn off as products in the light products, the higher boiling streams (kerosene and LGO) become lighter as well.

Matching plant results with "backblending" is generally more difficult. The most direct way to improve results is to obtain a distillation curve for the residue product. The residue product is a significant portion of the crude unit effluent and is quite heavy. These heavy components can affect the distribution of light components through all plant cuts.

Figure 2.93 Comparison of temperature profile from "backblending" and traditional assay procedure: PR = Peng–Robinson equation of state (EOS).

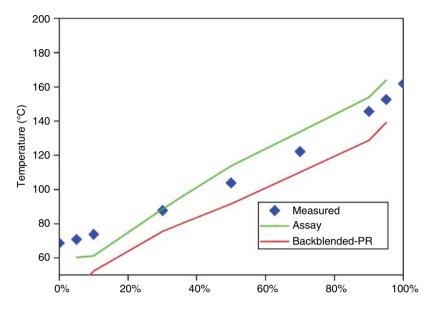


Figure 2.94 D86 comparison curve for light naphtha.

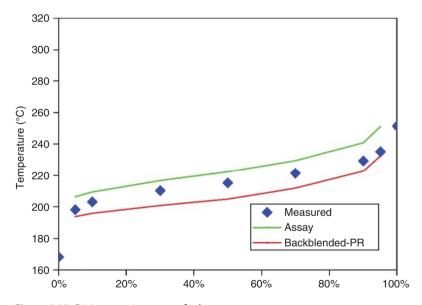


Figure 2.95 D86 comparison curve for kerosene.

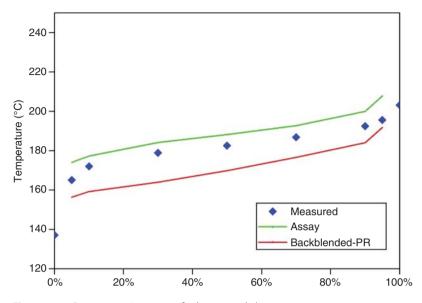


Figure 2.96 D86 comparison curve for heavy naphtha.

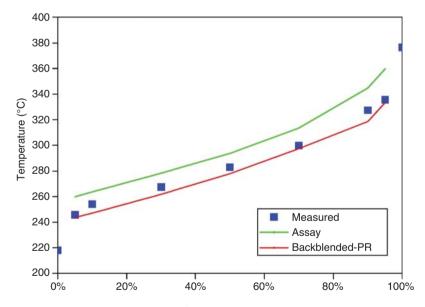


Figure 2.97 D86 comparison curve for LGO.

2.12 Workshop 2.3 – Investigate Changes in Product Profiles with New Product Demands

Seasonal demands and product quality constraints play an important role in determining the draw rates for various products from the crude column. In this workshop, we consider the effect of the draw rates on various product profiles. This type of study is particularly useful when the refiner wishes to shift product profiles in the summer or winter. An important consideration is the 10% distillation point as this point correlates well with other properties such as flash point and cloud point.

2.12.1 Update Column Specifications

We open the converged CDU simulation, *CDU EX-7.hsc*, Section 2.8.8, in which we have already added the D86 5% and 95% temperatures for all CDU products. We save the file as *Workshop 2.3.hsc*. We want to learn how to display these custom product properties while varying an independent variable using the spread-sheet tool available within Aspen HYSYS Petroleum Refining.

We must first change the specifications to allow product yields to vary, as we cannot increase the yield of one product while keeping all others constant. This violates the overall material balance of column. For this workshop, we allow the rate of the overhead vapor product to vary and keep the condenser temperature fixed. In Figure 2.98, we remove the vapor product specification and fix the condenser temperature to 65 °C (which is essentially fixing the initial boiling point of the light naphtha), the simulation converges quickly.

Design	Option	al Checks					Profile				
Connections Monitor	In	put Summar	у.][View	Initial Estimates			Tempera			y Posi
Specs Specs Summary Subcooling	Iter 23	Step 1.0000	Equilit	rium 0.000266	Heat / Spec 0.000022		 Temp Press Flows 	350.0	Temperatul		and the second
Notes	24 25 26	1.0000 1.0000 1.0000		0.000183	0.000019 0.000039 0.000016		- Hows	50.00	40999 9 4		1.
	Specifi	cations		0.00005.4	0.000030	-		0	5 10	5 15	20
				Spe	cified Value	Curr	ent Value	Wt. Error	Active	Estimate	Current
	Reflu	x Ratio			2.000		1.158	-0.4208		P	
	Distil	late Rate			1.479e+005 kg/h		1.479e+005	0.0000	2	5	V
	Reflu	x Rate			<empty></empty>		1.881e+005	<empty></empty>		2	
		Prod Rate			1.421e+004 kg/h		1.446e+004	0.0176		2	
	Btms	Prod Rate			<empty></empty>		4.582e+005	<empty></empty>		R	
	SS1 P	Prod Flow			3.838e+004 kg/h		3.838e+004	-0.0000	5	N	বব
		Prod Flow			5.554e+004 kg/h		5.554e+004	-0.0000	5	5	5
	and the second sec	Prod Flow			1.617e+005 kg/h		1.617e+005	-0.0000	2	2	2
	PA1_	Rate(Pa)			3.761e+005 kg/h		3.761e+005	-0.0000	R	R	R
	PA1_	Dt(Pa)			90.00 C		90.00	0.0000	V	5	P
	PA2_	Rate(Pa)			2.350e+005 kg/h		2.350e+005	-0.0000	2	2	R
		Dt(Pa)			60.00 C		60.00	0.0000	2	5	P
	PA_1	Rate(Pa)			2.981e+005 kg/h		2.981e+005	-0.0000	2	2	বর
		_Dt(Pa)			60.00 C		60.00	0.0000	P	5	4
	Cond	lenser Temp	erature		65.00 C		65.01	0.0000	P	P	P
		View		Add Spe	Group	Active		pdate Inactive	D	egrees of Fr	eedom

Figure 2.98 Remove vapor product rate specification and add condenser temperature specification.

2.12.2 Vary Draw Rate of LGO

We simplify the data collection process by using the spreadsheet object from the Aspen HYSYS palette. We create the flowsheet by selecting the spreadsheet, as shown in Figure 2.99.

We import the dependent variables to display in the spreadsheet as follows: Spreadsheet: SPRDSHT-1 \rightarrow Parameters \rightarrow Add Import \rightarrow Select Import for cell \rightarrow Flowsheet – Case (Main); Object – Residue; Variable – Calculator; Variable Specifics – D86 5%(Petrol) \rightarrow OK. We repeat the same procedure for the D86 5% temperatures for other products (see Figures 2.100 and 2.101).

Flowsheet Case (Main) - Solver Ac	🕫 闭 Palette 🗕 🗆 🗙	Spreadsheet: SPRDSHT-1	
Heavy naphtha stea	opsicum neming	Connections Parameters Formulas Spreadsheet Calculation Order User Variables Spreadsheet Name SPRDSHT-1 Imported Variables	Notes
Q-101	Custom Dynamics Common Columns	Cen Object Vanaue Description	sprDSHT-1
EAT E-CRUDE_FU		Cen Object Vanable Description	t Export
		Delete Function Help Spreadsheet Only	Ignored

Figure 2.99 Add spreadsheet object from Aspen HYSYS palette – F4 \rightarrow Common \rightarrow double-click on Spreadsheet \rightarrow SPRDSHT-1 and Connections interface.

r User Variables Notes	Flowsheet	Object	Variable	Variable Specifics	OK
SPRDSHT-1 Edit Import. Add Import.	⊢ Case (Main)	ProductBlock, Off Gar ProductBlock, Residue ProductBlock, SS Interry napl ProductBlock, SS IGO ProductBlock, Water Q-101 Q-102	BO Std Vol Flow - Oil BO Std Vol Flow - Overall BO Std Vol Flow - Water BO Surface Tension BO Viacosity Coefficient A BO Viacosity Coefficient B BO Water Cut BO Water Cut BO Water Cut Ratio	D2887 30%[Petrol] D2887 5%[Petrol] D2887 5%[Petrol] D2887 5%[Petrol] D2887 50%[Petrol] D2887 50%[Petrol] D2887 50%[Petrol] D2887 59%[Petrol] D2887 199[Perol] D88 10%[Petrol]	Object Filter All Streams UnitOps
Delete Import	Navigator Scope Plowsheet Case Basis Analysis	Q-COND Residue SS heavy naphtha SS kerosene SS LGO Water	BO Watson K Criticulator CO2 Composition(mole %) CO2 Loading Comp K Value - Heavy Liquid Comp K Value - Lig1/Liq2 Comp K Value - Lig1/Liq2	D86 30%[Petrol] D86 5%[Petrol] D86 50%[Petrol] D86 50%[Petrol] D86 50%[Petrol] D86 55%[Petrol] D86 15%[Petrol] D86 16010+++1	C Logicals

Figure 2.100 Select dependent variables to display in the spreadsheet.

Connections Parameters Formulas Spreadsheet Calculation Order User Variables Notes Spreadsheet Name SPRDSHT-1 Imported Variables Edit Import. Cell Object Variable Description Residue Calculator (D86 5%[Petrol]) A1 * Add Import A1 A2 Delete Import A3 84 45 ariables A6 A7 Variable Description Object AB Add Export. A9 A10 **B1** 82 **B**3 84 Function Help. Spreadsheet Only. Ignored 85 Connections Parameters Formulas Spreadsheet Calculation Order User Varia Spreadsheet Name SPRDSHT-1 Imported Variables Cell Object Variable Description A1 Residue Calculator (D86 5%[Petrol]) **B1** SS heavy naphtha Calculator (D86 5%[Petrol]) C1 Calculator (D86 5%[Petrol]) SS kerosene DI SS LGO Calculator (D86 5%[Petrol]) E1 Light Naphtha Calculator (D86 5%(Petroll) Exported Variables Cell Variable Description Object Delete Function Help Spreadsheet Only

Figure 2.101 Select the variables to display in the chosen cell of the spreadsheet. To display five variables in cells A1–E1: Parameters \rightarrow Spreadsheet Parameters \rightarrow set the Number of Columns to 5. Click on "Spreadsheet Only" to export the values of the computed.

We open the monitor of the main column, ATM-100, and vary the SS LGO or the "SS3 product flow" from its current value of 1.617E5 to 2E5 kg/h. We click on "Spreadsheet Only" at the bottom of the spreadsheet to export the computed D86 5% temperature values to cells A1–E1 (see Figure 2.102).

We see from the resulting spreadsheets that when increasing the SS LGO draw rate, the D86 5% temperatures of the SS heavy naphtha, SS kerosene, and light naphtha essentially do not change. By contrast, the D86 5% temperatures of the SS LGO and the residue increase significantly from 259.9 to 264.3 °C and from 372.9 to 387.1 °C, respectively. This means that the LGO stream gets heavier (drawing material from residue) as the draw rate of LGO increases. However, if the refiner wishes lighter material in LGO stream, the steam stripping rate of the cut above LGO, that is, SS kerosene, should be increased.

128 2 Atmospheric or Crude Distillation Unit (CDU)

2.13 Workshop 2.4 – Investigate the Effects of Process Variables on Product Qualities 129

Figure 2.102 Computed D86 5% temperatures of product streams specified in spreadsheet cells A1–E1 when SS LGO or SS3 product flow varies from 1.617E5 to 2.0E5 kg/h.

2.13 Workshop 2.4 – Investigate the Effects of Process Variables on Product Qualities

- Step 1. We open the converged CDU simulation, *CDU EX-7.hsc*, Section 2.8.8, in which we have already added the D86 5% and 95% temperatures for all CDU products. We save the file as *Workshop 2.4.hsc*. Click on Case Study (Figure 2.103).
- Step 2. "Add" a case study (Figure 2.104).

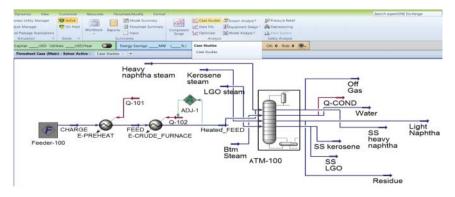


Figure 2.103 Activate "Case Studies."

130 2 Atmospheric or Crude Distillation Unit (CDU)

Latopy - Ge Unit Sets	Dynamics View Process Utility Manager Adjust Manager Buid Package Associations Simulation in	Contermine Resourcess Active Con Hold Softwar 15	teports Dummary http://www.seet.Summary http://www.seet.Summary	Compression Surge Case Studies In Data Fits Optimitate Anotype
Simulation <	Capital:USD UU	ties:USD/Year C	Energy Savings:MW	(%) CD [1
All Items -	Flowsheet Case (Main) - Solver Active - Case 5	tudies +	
Winnsteach Winnsteach Stream Analysis Stream Analysis Monet Analysis Monet Analysis Dotar Table Outar Sta	L	Case Study Name		51atis
Properties →C Nonutation	Add	Eatin		

Figure 2.104 Add a case study.

esults	Plots	Failed States								
	Objec	t	Variable		1	ndepende	nt	Include		
	8				Variable Naviga	ator				
		Flowsheet	Object		Variable			Variable Specifi	cs	ОК
dd put T ndept vy naj	Nav @ F © C © B	No.	ADI-1 ATM-100 Bitm Steem CHARGE E-CRUDE_FURNACE E-CRUDE_FURNACE E-CRUDE_FURNACE FEED Feeder-100 FeederBlock_Heary naphtha FeederBlock_Heary naphtha FeederBlock_Heary naphtha Heated_FEED Heary naphtha steem * mm •	• H •	Sour Gas H25 Mole % Sour Gas Pressure Sour Gas Pressure Spec Eror Spec Eror Spec Is Active Stage Efficiency Stage Heat Row Stage Lig Comp Male Stage Lig Comp Male Stage Lig Comp Male Stage Lig Mole Froc Crean Lis Mar Art Light	l Flow Flow Flow rac	• (11) •	Itum Frod Rate Condenser Temperature Distillate Rate PA_1_D(tPa) PA_1_Rate(Pa) PA_1_Rate(Pa) PA_2_D(tP	Distil	Object Filter
	Variat	ble Description:	Spec Value (PA_1_Rate(Pa)))					-	Cancel

Figure 2.105 Add an independent variable, the specified heavy naphtha pumparound (PA1) flow rate.

- Step 3. Add an independent variable, the specified heavy naphtha pumparound (PA1) flow rate: Variable Navigator \rightarrow Flowsheet Case(Main); Object ATM-100; Variable Spec Value; Variable Specifics PA 1_Rate (Pa) \rightarrow OK (Figure 2.105).
- *Step 4*. Vary heavy naphtha pumparound (PA1) flow rate from 7.5E5 to 8.5E5 kg/h with a step size of 2E4 kg/h. Add product petroleum properties, D86 5% and 95% temperatures, for light naphtha, SS heavy naphtha, SS kerosene, SS LGO, and residue (Figure 2.106).
- *Step 5*. Run the case study and view the result table and plot (Figures 2.107 and 2.108).
- Step 6. Follow the same procedure and try to do a number of case studies yourself.

2.14 Workshop 2.5 – Application of Column Internal Tools (Column Hydraulic Analysis) 131

All Items ·	Flowsheet Case (Main) - Solver Activ	e × Case Studies Se	tup - Case Study 1	Case Studies × +		
Corkbook						
UnitOps	Set up Results Plots Failed Stat	es				
Streams	Object		Variable		Independent	Include
Equipment Design		M-100		ec Value (PA1 Rate(Pa))	Yes	-
Model Analysis	Light N			ulator (D86 5%[Petrol])	No	5
Data Tables	Light N		Calcu	lator (D86 95%[Petrol])	No	R
Strip Charts	SS heavy n	phtha	Calc	ulator (D86 5%[Petrol])	No	য়ব্যব্য
Case Studies	SS heavy n	phtha	Calcu	lator (D86 95%[Petrol])	No	1
Case Study 1		rosene		ulator (D86 5%[Petrol])	No	되
Conta Fits						-
	Add Remo	e Edit				
	State Input Type Nested		🔲 Reset after Ru	in		
	Number of States 6		E Step Downwa	ird		
	Independent Variable	Low Bound	High Bound	Step Size		
	ATM-100 - Spec Value (PA1.Rate	(Pa)) 7.500e+005	8.500e+005	2.000e+004		

Figure 2.106 The resulting display of object, independent variable and its lower and upper bounds, and the product petroleum properties.

et up Results P	Nots Failed States						
Table	C Transpose Table	Results Pi	ot Sav	e Results to File 📰	Text Filename		
State		State 1	State 2	State 3	State 4	State 5	State 6
ATM-100 - Spe	c Value (PA1_Rate(Pa)) [kg/h]	7.500e+005	7.700e+005	7.900e+005	8.100e+005	8.300e+005	8.500e+005
Light Naphtha -	Calculator (D86 5%[Petrol]) [C]	60.38	60.38	60.38	60.38	60.39	60.39
Light Naphtha -	Calculator (D86 95%[Petrol])	170.0	171.2	172.5	173.9	175.5	176.5
SS heavy napht	ha - Calculator (D86 5%[Petro	165.5	164.0	162.4	160.7	158.9	157.6
SS heavy napht	ha - Calculator (D86 95%[Petr	206.7	206.4	205.9	205.4	204.8	204.4
SS kerosene - C	alculator (D86 5%[Petrol]) [C]	206.6	206.6	206.6	206.6	206.5	206.5
SS kerosene - C	alculator (D86 95%[Petrol]) [C]	251.1	251.1	251.2	251.2	251.1	251.1
SS LGO - Calcul	lator (D86 5%[Petrol]) [C]	259.9	259.9	259.9	259.9	259.9	259.9
SS LGO - Calcul	lator (D86 95%[Petrol]) [C]	359.7	359.7	359.7	359.7	359.7	359.7
Residue - Calcu	lator (D86 5%[Petrol]) [C]	372.9	372.9	372.9	372.9	372.9	372.9
Residue - Calcu	lator (D86 95%[Petrol]) [C]	888.9	888.9	888.9	888.9	888.9	888.9

Figure 2.107 Case study result table.

2.14 Workshop 2.5 – Application of Column Internal Tools (Column Hydraulic Analysis)

We open simulation file, *CDU-blending-5*, and save it as *CDU-blending-internals*. Our goal is to become familiar with the column sizing (finding the column-section, CS, diameters), rating (performance evaluation of CSs of existing diameters), and column hydraulic analysis.

We begin with some background of column hydraulic analysis that defines the ranges of liquid and vapor flows for satisfactory column operations. Figure 2.109 illustrates the ranges of liquid and vapor loadings for satisfactory operation of sieve trays [16]. In the figure, L = liquid flow rate, lb/h*(ft² of empty tower cross-sectional area); G = vapor flow rate, lb/h*(ft² of empty tower

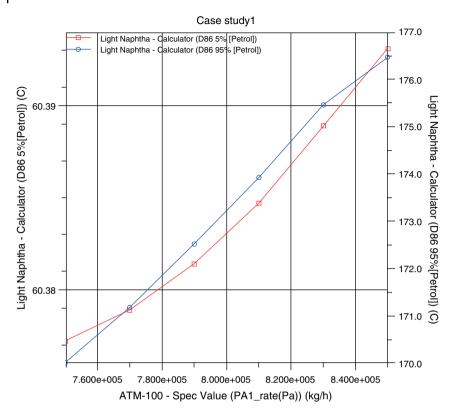


Figure 2.108 Case study result figure.

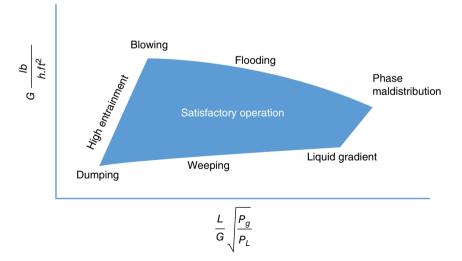
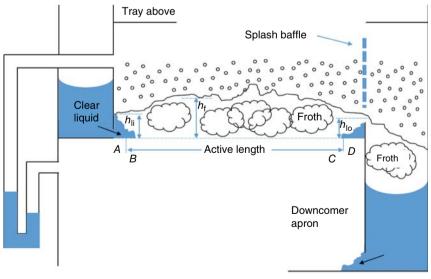



Figure 2.109 Range of satisfactory tray column operations.

cross-sectional area); $\rho_{\rm G}$ = density of gas, lb/ft³; $\rho_{\rm L}$ = density of liquid, lb/ft³. The various operating limits defined in the figure include the following:

- 1) For most *x*-axis values, the capacity limit coming from too high a vapor rate will be *flooding*.
- 2) For low *x*-axis values, such as vacuum towers, the capacity limit corresponding to too high a vapor rate comes from *entrainment*.
- 3) At very high vapor velocities and relative low L/G, the efficiency may drop very markedly because of *blowing*, wherein the tray is blown clear of liquid in the immediate vicinity of the vapor distributors.
- 4) When *L/G* is very high, the quantity of liquid flow across the tray may require a very high *liquid or hydraulic gradient* (see Figure 2.110) in order to drive the flow.
- 5) Another result of too high a liquid gradient can be *phase maldistribution*, wherein the vapor flows preferentially through the perforations near the liquid outlet, and the liquid flows in part download through the perforations near the liquid inlet where the liquid depth is greatest.
- 6) The preferential flow of liquid downward through the perforations, rather than through the downcomer, is called, somewhat colorfully, *weeping*. This happens when vapor flow rate in the perforations is not large enough to hold the liquid out of the perforations. Massive liquid weeping is called *dumping*, resulting in severe phase maldistribution.
- 7) Within the shaded range of satisfactory operation, the upper portion corresponds to the *spray regime* and the lower portion corresponds to the *froth regime*.

Figure 2.110 shows a tray dynamics schematic diagram for froth regime. In the figure, *Liquid or hydraulic gradient* across tray represents the difference between

Tray below

Figure 2.110 Tray dynamics schematic diagram defining the liquid or hydraulic gradient depicted in Figure 2.109.

the clear liquid heights, $h_{\rm li}$ (inlet location AB) and $h_{\rm lo}$ (outlet location CD) on the flow path above the tray.

We now open a converged CDU simulation file, *CDU-backblending-5.hsc*, and save it as *CDU-backblending-internals.hsc*. Figure 2.86 in Section 2.11.4 shows the CDU flowsheet. Double-click the column T-100 to open the CDU column. Choose the "internals" folder (see Figure 2.111).

We first explain the CS diagram below. Each CS typically includes at least a feed, a side stripper return stream, or a pumparound return stream entering the section, together with at least a product, a side stripper draw stream, or a pumparound draw stream leaving the section. For our CDU example:

- 1) CS-1 from stages 1 to 10 includes two input streams, SS HN return stream and PA-1 return stream, both to stage 9; two output streams, SS HN draw stream and PA-1 draw stream, both from stage 10.
- 2) CS-2 from stages 11 to 17 includes two input streams, SS kerosene return stream and PA-2 return stream, both to stage 16; two output streams, SS kerosene draw stream and PA-2 draw stream, both from stage 17.
- 3) CS-3 from stages 18 to 22 includes two input streams, SS LGO return stream and PA-3 return stream, both to stage 21; two output streams, SS LGO draw stream and PA-3 draw stream, both from stage 22.
- 4) CS4 from stages 23 to 27 includes one input stream, Heated_FEED to stage 25; one output stream, residue stream from stage 27.

Figure 2.112 compares the one-pass and multi-pass trays included in Figure 2.111.

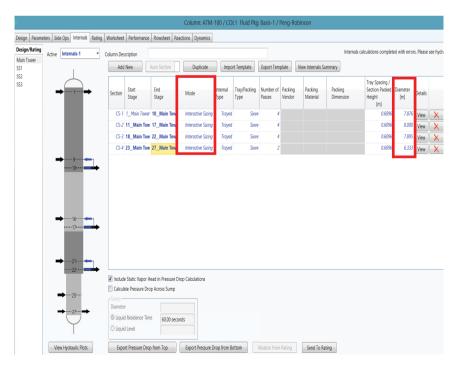
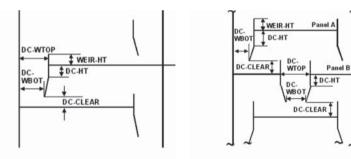


Figure 2.111 Column-section diagram, specification of column-sections, and automatic sizing of column-section diameters.

In Figure 2.111, we choose to do "interactive sizing" to find the required CS diameter based on the vapor velocity at 80% of the maximum vapor velocity at the jet flooding limit. In this example, we choose sieve trays with a tray spacing of 2 ft.

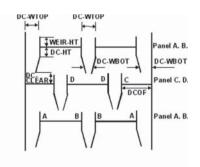

We see from Figure 2.111 that the four CSs have diameters varying from 6.333 to 8.0 ft.

Next, we can change the calculation mode from "interactive sizing" to "rating" or "performance evaluation." The latter means finding the jet flooding percentage under the given feed rates and specified CS diameters (see Figure 2.113). We then click on "View Internals Summary" to see the results in Figure 2.114.

We note that column-section CS-4 (stages 23–27) has a jet flooding of 95.14%. In other words, under the given feed rates and a calculated CS diameter of 6.333 m, the linear vapor velocity is 95.1% of the maximum vapor velocity under the jet flooding limit.

The column internal analysis of Aspen HYSYS has a useful new feature, namely, to illustrate graphically if a chosen CS or a column tray is operating within the range of satisfactory column operations, using a hydraulic plot that is similar to Figure 2.109. We click on "internals" depicted in Figure 2.114 to return to the column internals window and then click on "view hydraulic plots" below the CS diagram. Pay attention to column-section CS-4, particularly stage 23 (see Figure 2.115).

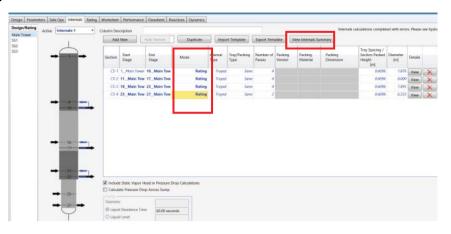
To fix the problems in column-section CS-4, we return to the "Internals" form and click on the CS-4 "View" bottom to see the details (see Figure 2.116).


A One-Pass Tray

A Two-Pass Tray

Tray A/

Tray BB


Center Downcomer

A Four-Pass Tray

Figure 2.112 Comparison of one- and multi-pass tray configurations.

136 *2* Atmospheric or Crude Distillation Unit (CDU)

Performance	Tower N	lain Tower 🔻	Selected Interr	als Internal	-1 v	Transport	Properties	lows			
Summary Column Profiles Feeds / Products	, one.	nternals Summ		Idis Internal		Tursport					
lots	Number	Of Stages		27							
ond./Reboiler	Total He	ight (m)		16.46							
ternals Results	Total He	ad Loss [mm]		2697							
		essure Drop [mb	ar]	168.6							
	Number	Of Sections		4							
	10000000000										
		Of Diameters		4							
	Pressure	Drop Across Su	mp [kPa] <er< th=""><th>4 npty></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></er<>	4 npty>							
	Pressure		mp [kPa] <er< th=""><th>-</th><th></th><th></th><th></th><th></th><th></th><th>_</th><th></th></er<>	-						_	
	Pressure	Drop Across Su	mp [kPa] <er< td=""><td>-</td><td>Height [m]</td><td>Internal Type</td><td>Tray or Packing Type</td><td>Section Pressure Drop [mbar]</td><td>Approach To Flood</td><td>imiting Stage</td><td></td></er<>	-	Height [m]	Internal Type	Tray or Packing Type	Section Pressure Drop [mbar]	Approach To Flood	imiting Stage	
	Pressure Sections Section	Drop Across Su Summary	End	npty> Diameter			Туре	Contraction of the second s	[%]		Vie
	Pressure Sections Section CS-1	Drop Across Su Summary Start	End 10_Main Towe	Diameter [m]	[m]	Туре	Type Sieve	[mbar]	[%]	itage	Vie
	Pressure Sections Section CS-1 CS-2	Drop Across Su Summary Start 1_Main Tower	End 10_Main Towe 17_Main Towe	Diameter [m] 7.876	[m] 6.096	Type Trayed	Type Sieve Sieve	[mbar] 51.72	[%] 80.00 80.94	Stage 10_Main Towe	

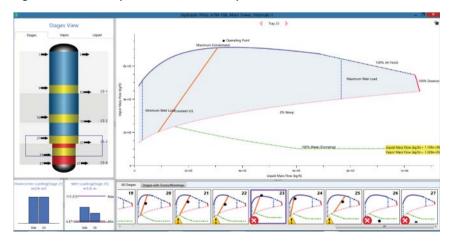


Figure 2.114 Summary of column internal analysis.

Figure 2.115 The hydraulic plot showing the operating point for stage 23 within column-section CS-4 is above the jet flooding limit, and the operating points for stage 26 and 27 are below the weeping limit.

2.14 Workshop 2.5 – Application of Column Internal Tools (Column Hydraulic Analysis) 137

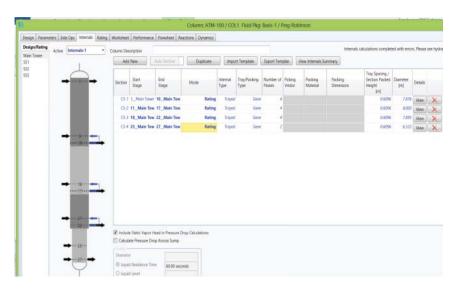


Figure 2.116 Click on "View" bottom to see details of column-section CS-4.

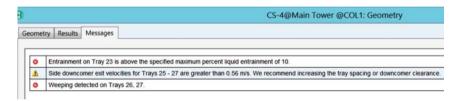


Figure 2.117 Error messages from column-section CS-4 hydraulic analysis.

When opening the "View" details, we see the red color prompt, "Errors in Hydraulics Calculations. Please Check the Messages tab," which appears on the upper left corner of the window. We see the messages shown in Figure 2.117.

We can take care of the first two errors plus the 95.14% approach to flooding shown in Figure 2.114 by increasing the CS diameter to 7.4 m and increase both the downcomer clearance and the weir height to 44 mm. To eliminate the occurrence of liquid weeping at the bottom two stages (26 and 27), we need to change the feed stage of the Heated_FEED from stage 25 to 27 (Column ATM-100 \rightarrow Design \rightarrow Connections \rightarrow Inlet Streams \rightarrow Heated_FEED \rightarrow Inlet Stage). Why? With a large liquid feed flow (Heated_FEED, entering at stage 25), and a small vapor feed flow (Btm Steam, entering at stage 27), the column-section CS4 does not have a sufficiently large vapor flow to present a massive liquid weeping (dumping) from stages 26 and 27. Figure 2.118 shows the changes, and column-section CS-4 no longer shows any error, and the resulting approach to flooding is 61.66% (Internals \rightarrow View Internals Summary).

Figures 2.119 and 2.120 show the hydraulic analysis errors and the corrected column-section CS-1 specifications, in which we increase the side weir length to 4 m and the downcomer weir clearance to 48 mm.

For column-section CS-2, we follow the suggestion in the error message and make the same changes as in column-section CS-1 (Figure 2.121) to correct the specifications.

138 *2* Atmospheric or Crude Distillation Unit (CDU)

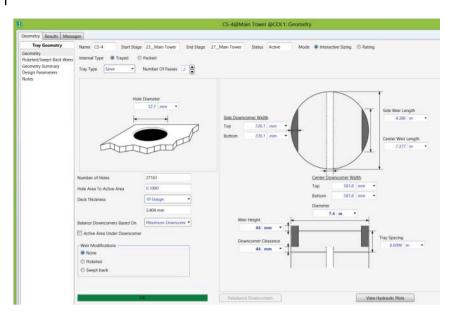


Figure 2.118 Corrected column-section C-4 specifications.

		CS-1@Main Tower @COL1: Geometry
Ge	omet	try Results Messages
Г	_	The length of the side weir is less than 50% of the column diameter. We recommend increasing downcomer widths or using swept back weirs.
	9	The length of the side weir is less than 50% of the column diameter. We recommend increasing downcomer widths or using swept back weirs.

Figure 2.119 Error messages from column-section CS-1 hydraulic analysis.

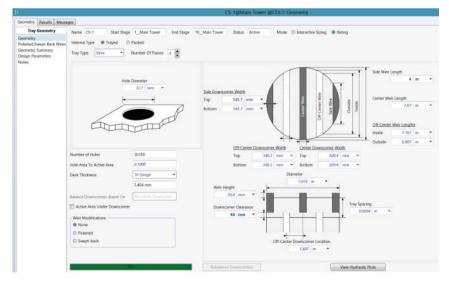


Figure 2.120 Corrected column-section CS-1 specifications.

Lastly, for column-section CS-3, we see the error messages in Figure 2.122 and make corrections by increasing the side weir length to 4 m, column diameter to 8 m, and downcomer clearance to 50 mm (see Figure 2.122).

Figure 2.123 summarizes the results of our hydraulic analysis for the column rating (performance evaluation) and minor retrofits. We encourage the reader to practice using the powerful new tool of hydraulic analysis in Aspen HYSYS V9.

Finally, as an exercise, the reader might want to increase the diameters of all column-sections, CS-1 to CS-4, to 8 m and study the resulting hydraulic analysis.

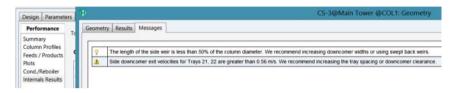


Figure 2.121 Error messages from column-section CS-3 hydraulic analysis.

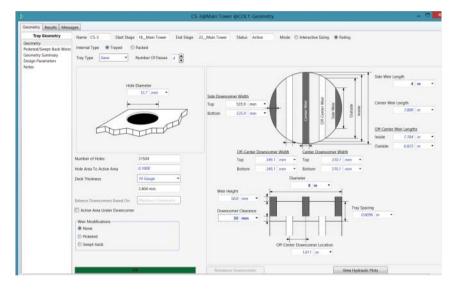


Figure 2.122 Corrected column-section CS-3 specifications.

esign Paramete	rs Side Op	s Internals F	lating Worksh	eet Perform	ance Flowshee	t Reaction	s Dynamics				
Performance	Tower M	ain Tower *	Selected Inter	mais Intern	als-1 v	Transport	Properties F	iows			
Summary Column Profiles Feeds / Products	ioner [nternals Summ		14843							
Plots	Number	Of Stages		27							
Cond./Reboiler Internals Results	Total He			16.46							
Inter meters		ad Loss [mm]		2278							
		essure Drop (mb	er]	142.1							
	10000000000	Of Sections		- 4							
	Number	Of Diameters		4							
	Pressure	Drop Across Su	mp (kPa) <e< td=""><td>mpty></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></e<>	mpty>							
	Pressure Sections 1		mp (k ^p a) <e< td=""><td>mpty></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></e<>	mpty>							
	Litteration		imp (kPa) <e End</e 	Diameter	Height (m)	Internal Type	Tray or Packing Type	Section Pressure Drop	Approach To Flood	Limiting Stage	
	Sections :	Summary	End	Diameter [m]		Type			[36]		View
	Sections : Section CS-1	Summary Start	End 10_Main Town	Diameter (m) 7.876	(m)	Type	Туре	[mbar]	[%] 71.47	Stage	View
	Sections : Section CS-1 CS-2	Summary Start 1_Main Tower	End 10_Main Towe 17_Main Towe	Diameter [m] 7.876 8.000	(m) 6.096	Type Trayed	Type Sieve	[mbar] 45.97	[%] 71.47 72.63	Stage 10_Main Town	

Figure 2.123 Results of column rating and minor retrofits.

2.15 Workshop 2.6 – Application of the Petroleum Distillation Column

We illustrate the use of petroleum distillation column as a simplified representation of the rigorous fractionation column.

This column model simulates a wide range of crude oils for scenarios of optimization or gradient generation (e.g., generating the delta base vector for production planning; see Sections 4.12 and Section 4.17 – Workshop 4.5 Generate Delta-Base Vectors for Linear Programming (LP)-Based Planning). In these situations, we need to simulate the column repeatedly, and the column should converge quickly and consistently in all scenarios. We also use the simplified petroleum distillation column whenever appropriate in developing the large refinery-wide simulation for profit margin analysis in Section 7.3.

This workshop uses a simulation file available in the Aspen HYSYS online example and explains the new concepts involved. We open the starting file, *Workshop 2.6_Starting.hsc* (see Figure 2.124).

We add a petroleum distillation column for the hot crude (see Figure 2.125).

We continue to specify the column input specs. Figure 2.126 shows the initial input form. We need to modify the products to include off gas, unstabilized naphtha, kerosene, LGO (light gas oil), HGO (heavy gas oil), and AR (atmospheric residue). We can do this by typing the new product name under the column "cuts" to override an existing product or to add a new product. See Figure 2.127 and the corresponding column flowsheet in Figure 2.128.

To understand the meanings of ECP (effective cut point), SI TOP (fractionation index, top section), and SI BOT (fractionation index, bottom section), let us consider a plot of Ln(Di/Bi) for all the components versus the normal boiling point (NBP). Here, Di is the mass flow rate of component *i* leaving the top section as a distillate, Bi is the mass flow rate of component *i* leaving at the bottom

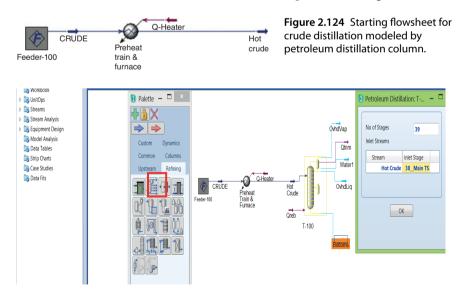


Figure 2.125 Add a petroleum distillation column.

dvarded lotes Separate Pure Component Product Cut Product Info Cuts Draw Stage ECP Vield Product Info Cuts Draw Stage ECP IC] Mole Frac SI TOP SI BOT ECP Offset IC] OvhedVap Condenser <empty> <empty< th=""><th>Design Specs Advanced</th><th>Column Name</th><th></th><th></th><th>Specification Type</th><th></th><th></th><th>Basis Molar</th><th></th></empty<></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty>	Design Specs Advanced	Column Name			Specification Type			Basis Molar	
Separate Pure Component Product Cut Product Info Cuts Draw Stage ECP Mole Frac SI TOP Si BOT ECP Offset ICI OvhdVap Condenser <empty> <empty> <empty> <empty> <empty> <empty> <empty> 00000000000000000000000000000000</empty></empty></empty></empty></empty></empty></empty>		T-100			ECP	C Yield		@ Molar	C Mass
Cuts Draw Stage ECP [C] Mole Frac SI TOP SI BOT ECP Offset [C] OvhdVap Condenser <empty> <empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty>		the second second second second second second	nent Product Cut						
Cuts Draw Stage [C] Mole Frac SI TOP SI BOT [C] OvhdVap Condenser <empty> <empty><td></td><td>Product Info</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty>		Product Info					1		
OvhdLiq Condenser <empty> <empty> <empty> <empty> <empty> 0.0000</empty></empty></empty></empty></empty>		Cuts	Draw Stage		Mole Frac	SI TOP	SI BOT		
		OvhdVap	Condenser	<empty></empty>	<empty></empty>	<empty></empty>	<empty></empty>	<empty></empty>	
Bottoms op-100 <empty> <empty> <empty> <empty> <empty> 0.0000</empty></empty></empty></empty></empty>									
		Bottoms	op-100	<empty></empty>	<empty></empty>	<empty></empty>	<empty></empty>	0.0000	

Figure 2.126 The initial input form for product specs.

Design Wo	rksheet Performance C	alibration						
Design								
Specs	Column Name			Specification Type			Basis	
Advanced Notes	T-100			ECP	C Yield		Molar	○ Ma
	Cuts	Draw Stage	ECP [C]	Mole Frac	SI TOP	SI BOT	ECP Offset [C]	
	Cuts	Draw Stage	[C]	Mole Frac	SITOP	SEBOT	[C]	
	Off Gas	Condenser	<empty></empty>	<empty></empty>	<empty></empty>	<empty></empty>	<empty></empty>	
	Unstalilized Naphtha	Condenser	<empty></empty>	<empty></empty>	<empty></empty>	<empty></empty>	0.0000	
	Kerosene	15_Main TS	<empty></empty>	<empty></empty>	<empty></empty>	<empty></empty>	0.0000	
	LGO	26_Main TS	<empty></empty>	<empty></empty>	<empty></empty>	<empty></empty>	0.0000	
	LGO		<empty></empty>	<empty></empty>	<empty></empty>	<empty></empty>	0.0000	
	HGO	38_Main T5						

Figure 2.127 Modified input form to correspond to the crude distillation unit.

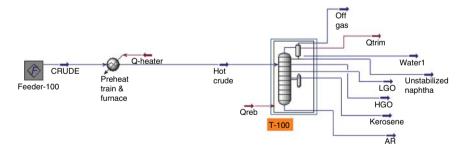


Figure 2.128 Add the petroleum distillation column.

section as a bottoms product, and i = 1, 2, ..., n. This plot is typically bilinear with two straight-line sections of different slopes in a petroleum distillation column. Figure 2.129 illustrates such a plot.

In Figure 2.129, we designate the slope of the top section as S_1 and of the bottom section as S_2 . The fractionation index *SI TOP is defined as* $-1/S_1$ and *SI BOT is defined as* $-1/S_2$.

Both slopes S_1 and S_2 signify the extent of imperfect fractionation. For example, as S_1 tends to zero, there is virtually no separation (SI TOP = -1/0 = - infinity) and inversely, as S_1 approaches negative infinity (SI TOP = -1/(-infinity) = zero),

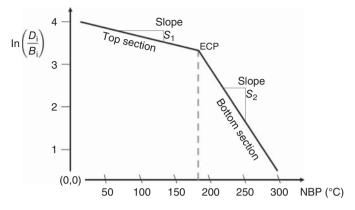


Figure 2.129 Ln(Di/Bi) versus NBP (normal boiling point) for top and bottom sections of a fractionation column.

the separation is almost perfect. The overall distillate and bottoms flow distributions decide the position of the curve horizontally. Note that a SI TOP value of zero represents perfect separation, which we do not get in reality. For practical purposes, we normally start with a value of SI TOP of 5 (i.e., with a S_1 value of -0.20). Decreasing SI TOP value from 5 to 0 implies poor split between the top and bottom sections, whereas increasing SI TOP to 10 suggests a smaller negative slope S_1 with a value of -0.10 and an improved split between the top and bottom sections. We can calibrate the column with plant data and get more realistic values of SI TOP (and SI BOT).

In Figure 2.129, the temperature or NBP at which the two straight-line sections intersect is called *the effective cut point (ECP)*, which is usually close to the TBP cut point. When the users specify the yield of each cut, the SI TOP/BOT supplied by the user is used to create the plot. The ECP is then varied to match the specified yield. With the correct ECP for a cut, users can calculate the value of Ln(Di/Bi) from the plot and then use the mass balance to get the yield for that cut.

Having explained the background of ECP, SI TOP, and SI BOT, we return to Figure 2.127. We complete the required input specs of ECP, SI TOP, and SI BOT as in Figure 2.130 and run the simulation. We can understand the input values of ECP.

Design	Frank Contractory								
Specs	Column Name			Specification Type	Basis				
dvanced lotes	T-100			CP ECP	C Yield		© Molar	Mass	⊛ Liq V
	E Separate Pure Compo	nent Product Cut							
	Cuts	Draw Stage	ECP [C]	Vol Frac	SI TOP	SIBOT	ECP Offset		
	Off Gas	Condenser	<empty></empty>	1.218e-003	<empty></empty>	<empty></empty>	<empty></empty>		
	Unstabilize Gasoline	Condenser	-50.00		5.000	10.00	0.0000		
	Kerosene	15_Main TS	165.0		14.57	2.150	0.0000		
	LGO	26_Main TS	205.0	0.2040	27.15	2.663	0.0000		
	HGO	38 Main TS	330,0	0.1270	32.13	3.692	0.0000		
	AR	op-100	370.0	0.4523	10.00	20.00	0.0000		

Figure 2.130 The initial petroleum column specs and simulation results.

Design Works	sheet Performance Calibration					
Worksheet						
Conditions	Name	Hot Crude	Off Gas U	Instabilized Napht	Water1	A
Properties	Vapour	0.7375	1.0000	0.0000	1.0000	0.000
Composition	Temperature [C]	364.0	-15.77	86.78	133.2	529.
	Pressure [kPa]	200.0	248.4	248.4	248.4	297.
	Molar Flow [kgmole/h]	3680	12.98	1137	0.0000	909.
	Mass Flow [kg/h]	8.124e+005	550.2	1.032e+005	0.0000	4.081e+00
	Std Ideal Liq Vol Flow [m3/h]	935.0	1.139	147.5	0.0000	422
	Molar Enthalpy [kJ/kgmole]	-2.643e+005	-1.052e+005	-1.927e+005	-2.375e+005	-3.476e+00
	Molar Entropy [kJ/kgmole-C]	906.6	156.0	214.8	176.5	201
	Heat Flow [kJ/h]	-9.725e+008	-1.366e+006	-2.192e+008	-0.0000	-3.159e+00
	Name	Kerosene	LGO	HGO		
	Vapour	0.0000	0.0000	0.0000		
	Temperature [C]	212.7	273.6	374.9		
	Pressure [kPa]	266.7	276.9	288.1		
	Molar Flow [kgmole/h]	333.7	890.1	396.6		
	Mass Flow [kg/h]	4.206e+004	1.565e+005	1.020e+005		
	Std Ideal Liq Vol Flow [m3/h]	53.98	190.7	118.8		
	Molar Enthalpy [kJ/kgmole]	-2.210e+005	-2.762e+005	-3.179e+005		
	Molar Entropy [kJ/kgmole-C]	372.2	608.8	1080		
	Heat Flow [kJ/h]	-7.375e+007	-2.458e+008	-1.261e+008		

Figure 2.131 The stream table for the petroleum distillation column.

 Table 2.18
 Comparison of product stream temperatures and effective cut points in the petroleum refinery distillation example.

Product stream	Temperature (°C)	Effective cut point, ECP (°C)
Off gas	-15.77	
Unstabilized naphtha	86.78	-50
Kerosene	212.7	165
LGO	273.6	205
HGO	374.9	330
AR	529	370

Figure 2.131 gives the resulting stream table for the column, which shows, among other results, the temperature of each product stream. Table 2.18 compares the product stream temperatures with the ECPs. We see that ECP values are close to the corresponding product stream temperatures. This means that if we know the product stream temperatures from plant data, we could input values close to them as initial values for ECPs.

Next, we refer to the plant data for six product streams given in the supplement to this book within Chapter 2, *Workshop 2.6_Calibration data for refinery distillation column example.xlsx.* We enter all of the plant data to the calibration folder. See an example in Figure 2.132.

We then run the calibration and see the calibrated model parameters in Figure 2.133.

We conclude this workshop by noting that if we require significant internal details of the column such as vapor—liquid traffic and temperature profiles matching closely to plant data, or if we see more flexibility in the specifications, or the topology of the column, we should use the standard rigorous column models.

144 2 Atmospheric or Crude Distillation Unit (CDU)

Design Wor	ksheet Performance	Calibration						
Calibration								
Products	AR	-	Selected Product Distill	ation Curve an	d Light Ends			
Tables Plots	Flow [kg/h]	408086.52	Yield (MassFraction)	Temperature [C]		Component	Mass Fraction	NBP [C]
	Distillation Curve	TBP	0.0200	366.6		Hydrogen	0.0000	-252
	Light Ends	R	0.0350	374.3		Nitrogen	0.0000	-195.
	Light chus	I.	0.0500	380.8		CO	0.0000	-191.
			0.0750	390.2		Oxygen	0.0000	-183.
			0.1000	398.6	=	Methane	0.0000	-161.
			0.1250	406.4	1	Ethylene	0.0000	-103.
	No of Points to Ad	d 1	0.1500	413.9		Ethane	0.0000	-88.6
			0.1750	421.0		CO2	0.0000	-78.5
			0.2000	427.9		H2S	0.0000	-59.6
			0.2500	441.3		Propene	0.0000	-47.7
			0.3000	455.0		Propane	0.0000	-42.1
			0.3500	469.6		i-Butane	0.0000	-11.7
			0.4000	486.1		i-Butene	0.0000	-6.85
			0.4500	504.9		1-Butene	0.0000	-6.25
			0.5000	525.6		13-Butadiene	0.0000	-4.45
	Distillation Basis		0.5500	548.0		n-Butane		-0.502
	Mass		0.6000	570.4		tr2_Rutone	0.0000	0.877
	C Lig Vol		Clear Product D	ata	Clear Empty Po	ints Add	More Data Poin	ts

Figure 2.132 Enter the plant data for calibration of the petroleum distillation column model.

esign Wo	rksheet	Performance	Calibration						
alibration	Tun	ing Parameters							
roducts ables fots			ECP [C]	SI TO	P	SI BOT	ECP Offset [C]		
	Of	f Gas	<empt< td=""><td>P <</td><td>empty></td><td><empty></empty></td><td><empty< td=""><td>×</td><td></td></empty<></td></empt<>	P <	empty>	<empty></empty>	<empty< td=""><td>×</td><td></td></empty<>	×	
	Ur	stabilized Naph	-136	1.5	5.031	2.817	-0.0	0	
	Ke	rosene	89.	52	3.721	16.78	3.2	34	
	LG	ю	211	.8	23.07	1,540	-0.7	0	
	H	30	322	.4	36.37	6.953	0.5	0	
	AF	ł	330	1.5	1.794	16.31	3.3	8	
		Components Hydro		raction 1.000e-008		Rigorous C	ptimization		Initialization
		Nitro		1.000e-008		Short-cut (Short-cut (Graphical)		
			CO	1.000e-008					Parameters
		Oxy	gen	1.000e-008					
		Meth	iane	1.000e-008					Results
		Ethy		1.000e-008					
			lane	1.000e-004					Calibrate
			CO2	1.000e-008					
		H2S 1.004e-008 -						Transfer Tuning Parameters	

Figure 2.133 Calibrate model parameters.

2.16 Conclusions

This chapter serves as a guide to model atmospheric distillation section of the CDU. We provide relevant process and operational and modeling details to model the atmospheric column. We also discuss methods to estimate missing data for model development. We provide step-by-step instructions to model a particular column in Aspen HYSYS. We discuss how to validate the model predictions with plant data and how to use the model to perform industrially useful case studies.

Nomenclature

- *T* Temperature, °C
- P Pressure, kPa
- F_i Feed entering tray *i*, kmol/h
- L_i Liquid flow leaving tray *i*, kmol/h
- U_i Side draw liquid flow leaving tray *i*, kmol/h
- V_i Vapor flow leaving tray *i*, kmol/h
- W_i Side draw vapor flow leaving tray *i*, kmol/h
- x_i Liquid composition leaving tray
- y_i Vapor composition leaving tray
- $H_{F_{c}}$ Feed molar enthalpy, kJ/kmol
- H_V Vapor molar enthalpy, kJ/kmol
- H_{L_i} Liquid molar enthalpy, kJ/kmol
- K_i Ratio of vapor to liquid composition, y_i/x_i
- $K_{\rm w}$ Watson K factor

Bibliography

- 1 Hsu, C.S. and Robinson, P.R. (2006) Practical Advances in Petroleum Processing. Volume 1 & 2, Springer.
- 2 Daubert, T.E. and Danner, R.P. (1997) *APITechnical Data Book Petroleum Refining*, 6th edn, American Petroleum Institute, Washington DC.
- **3** Kaes, G.L. (2000) *Refinery Process Modeling. A Practical Guide to Steady State Modeling of Petroleum Processes,* The Athens Printing Company, Athens, GA.
- 4 Riazi, M.R. (2005) *Characterization and Properties of Petroleum Fractions*, 1st edn, American Society for Testing and Materials, West Conshohocken, PA.
- 5 Kister, H.Z. (1992) Distillation Design, McGraw-Hill, Inc., New York, NY.
- **6** Bazaraa, M.S., Jarvis, J.J., and Sherali, H.D. (2009) *Linear Programming and Network Flows*, John Wiley and Sons.
- 7 Boston, J.F. (1980) Inside-Out Algorithms for Multicomponent Separation Process Calculations, ACS Symposium Series, vol. 124, pp. 135–151.
- 8 Seader, J.D., Henley, E.J., and Roper, D.K. (2010) *Separation Process Principles*, 3rd edn, John Wiley and Sons, New York.
- **9** Watkins, R.N. (1979) *Petroleum Refinery Distillation*, 2nd edn, Gulf Publishing Company, Houston.
- 10 Gary, J.H., Handwerk, G.E., and Kaiser, M.J. (2007) *Petroleum Refining. Technology and Economics*, 5th edn, CRC Press, Boca Raton, FL.
- 11 Sanchez, S., Ancheyta, J., and McCaffrey, W.C. (2007) *Energy & Fuels*, **21**, 2955–2963.
- 12 Floudas, C.A. (1995) Nonlinear and Mixed-Integer Programming.Fundamentals and Applications, Oxford University Press.
- 13 Aspen Tech. (2017) Aspen HYSYS User Guide.
- 14 Favennec, J.P. (1998) Fractionation Systems, 5th edn, IFP, Paris, France.
- 15 Nelson, W.L. (1974) Petroleum Refinery Engineering, 4th edn, McGraw-Hill, New York.

- 16 King, C.J. (1980) Separation Processes, 2nd edn, McGraw-Hill, New York, pp. 591–603.
- 17 Shankar, N., Sivasubramanian, V., and Arunachalam, K. (2016) Steady state optimization and characterization of crude oil by Aspen HYSS. *Petroleum Science and Technology*, **34**, 1187–1194.
- 18 Waheed, M.A. and Oni, A.O. (2015) Performance improvement of a crude oil fractionation unit. *Applied Thermal Engineering*, **75**, 315–324.
- 19 Al-Mayyahi, M.A. (2014) Energy optimization of crude oil distillation using different designs of pre-flash drums. *Applied Thermal Engineering*, 73, 1204–1210.
- 20 Bashir, D.M., Mohamed, S.A., and Rabah, A.A. (2014) Effect of naphtha and residue yield through different operating and design variables in atmospheric distillation column. *Journal of Petroleum Technology and Alternative Fuels*, 5, 31–37.
- 21 Mittal, V., Zhang, J., Yang, X., and Xu, Q. (2011) E3 (energy, emission and economic) analysis for crude and vacuum distillation system. *Chemical Engineering and Technology*, **34**, 1854–1963.
- 22 Goncalves, D.D., Martins, F.G. and Azevedo, S.F.D. (2010) Dynamic Simulation and Control: Application to Atmospheric Distillation of Crude Oil Refinery. 20th European Symposium on Computer-Aided Processing Engineering- ESCAPE20, 1–6.
- 23 Kim, Y.H. (2017) An energy-efficient crude distillation unit with a prefractionator. *Chemical Engineering and Technology*, 40, 588–597.
- 24 Menezes, B.C., Kelly, J.D., and Grosmann, I.E. (2013) Improved swing-cut modeling for planning and scheduling of oil-refinery distillation units. *Industrial & Engineering Chemistry Research*, 52, 18324–18333.
- **25** Ali, S.F. and Yusoff, N. (2012) Determination of optimal cut point temperatures at crude distillation unit using the Taguchi method. *International Journal of Engineering and Technology, IJET-IJHNS*, **12**, 36–46.
- 26 Ochoa-Estopier, L.M. and Jacobson, M. (2015) Optimization of heat-integrated crude oil distillation systems. Part III: Optimization framework. *Industrial & Engineering Chemistry Research*, 54, 5018–5036.
- 27 Yela, S. (2009) Framework for Operability Assessment of Production Facilities: Application to a Primary Unit of a Crude Oil Refinery. M.S. thesis, Louisian State University, Chemical Engineering, https://etd.lsu.edu/docs/available/etd-11042009-012159/unrestricted/Yela_Thesis.pdf.
- 28 Parthlban, R., Nagarajan, N., Kumaran, V.M., and Kumar, D.S. (2013) Dynamic modelling and simulation of crude fractionation column with three side strippers using Aspen HYSYS dynamics. *Journal of Petroleum and Gas Exploration Research*, 3 (3), 31–39.
- 29 Fu, G. and Mahalec, V. (2015) Comparison of methods for computing crude distillation product properties in production planning and scheduling. *Industrial & Engineering Chemistry Research*, 54, 11371–11382.
- 30 Lopea, D.C., Hoyos, L.J., Mahecha, C.A., Ayellano-Garcia, H., and Wozony, G. (2013) Optimization model of crude oil distillation units for optimal crude oil blending and operating conditions. *Industrial & Engineering Chemistry Research*, 52, 12993–13005.

Vacuum Distillation Unit

3

This chapter presents the methodology for the development and applications of simulation models for vacuum distillation units (VDUs) based on plant data. We begin by describing the typical VDUs in Section 3.1 and then present the data requirements and reconciliation procedures for simulating VDUs in Section 3.2. Section 3.3.1 shows the plant data from a typical VDU, and Sections 3.3.2 and 3.3.3 demonstrate how to develop and validate a simplified model and a rigorous model for a VDU. Section 3.4 discusses the principle of applying a validated VDU model to optimize the deep-cut operation of a VDU. The goal is to process heavier crude feeds and to improve process economics by increasing the cut point of heavy vacuum gas oil (HVGO) higher than 1050 °F (565 °C) to produce more gas oil for downstream units such as fluid catalytic cracking. Section 3.5 presents a hands-on workshop for implementing the deep-cut operation of a VDU. Finally, we present bibliography at the end of the chapter.

3.1 Process Description

The distillated products of atmospheric distillation unit (also known as crude distillation unit, CDU) are limited to the boiling fractions under 350 °C such as gasoline and diesel because petroleum fractions tend to thermally degrade in high temperatures. To recover additional distillates and gas oils, the refinery uses VDU following the CDU. The reduced operating pressure of VDU allows recovery of heavy boiling fraction above 560 °C from the atmospheric residue.

There are two major types of VDU operations in a modern refinery – *feedstock preparation and lubricant production*. Feedstock preparation is the most common operation that recovers gas oil from the atmospheric residue as a feed to the downstream conversion units (e.g., FCC and hydrocracking units), which converts the gas oil into more valuable liquid products such as gasoline and diesel. Lubricant production is designed to extract petroleum fractions from the atmospheric residue to produce lubricant oil with desirable viscosity and other related properties.

This chapter presents the methodology to simulate the VDU for feedstock preparation because it is the most popular operation; however, most of the guidelines in our methodology are also applicable to lubricant production units.

Figure 3.1 represents a typical process flow diagram of VDU operated under wet operations with three vacuum gas oil (VGO) side products from light (L) to medium boiling (M) to heavy (H) – LVGO, MVGO, and HVGO. The furnace outlet temperature varies from 380 to 420 °C, depending on the feedstock type. In particular, asphalt-based feedstock requires higher furnace outlet temperature than nonasphalt-based feedstock. The pressure drop across transfer line is around 20 kPa, whereas the temperature change is 10–15 °C. In the wet operation, a superheated steam is pumped into the stripping zone to enhance the vaporization of gas oil by reducing the partial pressure of hydrocarbon. Therefore, the wet operation requires a lower flash zone temperature than the dry operation for the same service. The flash zone pressure is typically controlled in the range of 2.6–13.3 kPa (20–100 mmHg). For the process shown in Figure 3.1, the wash grid exit is withdrawn from the column and routed back to the transfer line. Some VDUs recycle the wash grid exit stream back through the furnace whereas others send it to the stripping zone to mix with the vacuum residue (VR).

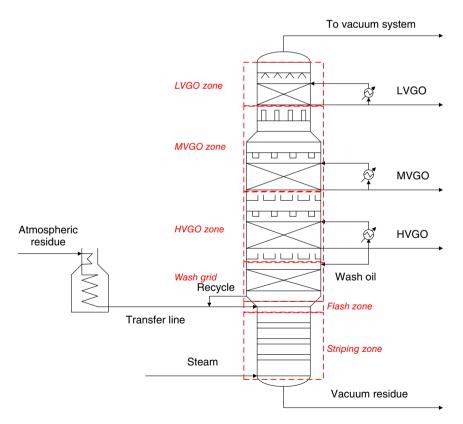


Figure 3.1 Typical process flow diagram of VDU.

3.2 Plant Data Reconciliation

3.2.1 Required Data

Simulating a VDU begins with data collection. We should collect the operating and analysis data as much as possible (see Table 3.1).

It is always helpful to collect a long period (1-3 months) of data for modeling purpose, particularly for a commercial process. As it is common to have missing data or failed meters, we need to take average of the collected data for a short period (1-3 days) or to make up the missing data by extrapolating or interpolating the data collected from adjacent time period in order to construct one complete data set for modeling. It is also important to consult plant engineers about data consistency to ensure that each complete data set does not include the data in the period of operational upset and significant operation changes. In addition, it is always helpful to revisit the original data for test run, because test run data are usually adjusted to show perfect material and heat balances [1].

3.2.2 Representation of the Atmospheric Residue

To represent the feed properly for modeling the VDU, we need to pay attention to two requirements: (1) using a sufficient number of pseudocomponents to represent the atmospheric residue, and (2) having good-quality assay data for the atmospheric residue.

The methodology used in commercial simulators for splitting a petroleum fraction into pseudocomponents typically specifies a small number of

Table 3.1 Data requirement of VDU model.

Flow rate

- Feed and product steams (overhead products are bonus)
- All pumparound streams
- All cooling streams for pumparounds
- Coil and strip steams

Pressure

- Flash zone
- Top of column
- Bottom column

Temperature

- Flash zone
- Top of column
- Bottom column
- Side product draw tray
- Furnace inlet and outlet temperature
- Transfer temperature
- Draw and return temperatures for all pumparounds
- Inlet and outlet temperature of all pumparound cooling streams

Analysis

- Distillation and gravity of atmospheric residue (feed)
- Distillation and gravity for all product streams
- Compositional analysis of overhead gas

150 3 Vacuum Distillation Unit

Boiling point range	Boiling point width of each pseudocomponent	Number of pseudocomponents per 100 °F
IBP-800°F (425 °C)	25 °F (15 °C)	4
800-1200°F (650 °C)	50°F (30°C)	2
1200–1650°F (900 °C)	100 °F (55 °C)	1

 Table 3.2 Typical boiling point widths for pseudocomponents in commercial simulator.

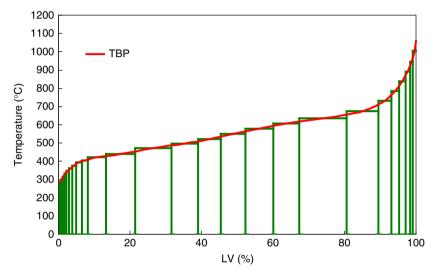
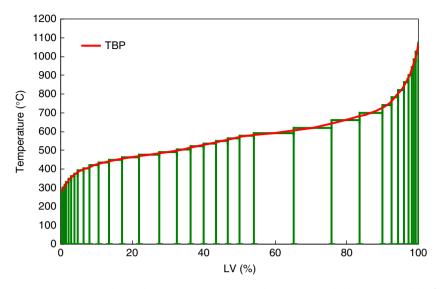



Figure 3.2 Typical pseudocomponents generated by commercial simulator.

pseudocomponents in the higher boiling point region. Table 3.2 lists the typical number of pseudocomponents specified in different boiling point ranges. Within conventional cut point between HVGO and VR (around 1000 °F), the boiling point range of each cut (50 °F) is twice as wide as that (25 °F) above 800 °F. Using a small number of pseudocomponents to define the interested boiling point range may not represent the feed accurately to reflect the real operation and production, particularly when we use the resulting model for deep-cut revamping purpose [5].

Figure 3.2 illustrates the pseudocomponent representation of an atmospheric residue generated by a commercial simulator based on its default pseudocomponent boiling point cutting scheme. By assigning a boiling point width of 25 °F to each pseudocomponent with a boiling point above 800 °F, we can more accurately represent the atmospheric residue. In general, we should do a sensitivity test, investigating the relationship between the side draw rate and the side draw temperature and associated distillation curve to ensure that the pseudocomponents based on boiling point ranges are able to provide reasonable results [1]. If the resulting relationship is stepwise rather than continuous, we should redefine the number of pseudocomponents based on boiling point ranges (Figure 3.3).

Figure 3.3 Improved pseudocomponent generation by assigning a boiling point width of 25 °F to each pseudocomponent with a boiling point above 800 °F.

High-quality assay data for the atmospheric residue are always desirable in modeling a VDU. For VDU simulation, there are three ways to obtain assay data of the atmospheric residue: (1) stream results of CDU simulation if we build the CDU and VDU together; (2) analysis of the atmospheric residue; and (3) backblending the assay data of VDU product streams if product analyses are available.

We need to consider a number of issues when applying each approach to represent the feed for modeling purpose. Specifically, when we build the CDU and VDU models together, the representation of the atmospheric residue is reliable if a detailed feed representation of crude oil is available (by either crude assay or backblending product analysis) and the CDU model performs correctly.

However, we must pay more attention to correctly representing the atmospheric residue when using VDU operation and production data to build a VDU model. This follows because the atmospheric residue is an intermediate stream rather than a final product and a detailed stream analysis is usually not available. Most likely, we can only have the analysis results of the distillation curve below 540 °C and bulk density of the atmospheric residue. We note that when using commercial simulators to construct the atmospheric residue based on an incomplete feed analysis, the resulting pseudocomponent distribution may not represent atmospheric residue well. This is because commercial simulators typically extrapolate the distillation curve by statistical functions and assume a constant Watson K factor within the entire boiling point range. Kaes [1]suggested that it is reliable to backblend product analyses to represent the atmospheric residue for modeling purpose when detailed feed assay data are not available. Table 3.3 illustrates a data set including mass flows, specific gravities, and distillation curves of the atmospheric residue and corresponding products of a VDU [3]. Figure 3.4 shows the difference between the feed analysis and the backblend of product analyses.

152 3 Vacuum Distillation Unit

	Atmospheric residue	LVGO	HVGO	Vacuum residue
Mass flow (kg/h)	234 004	35 172	103 618	94 600
Specific gravity	0.9593	0.8718	0.9321	1.0366
Liquid vaporization (LV) %	D1160 at 1 atm, °C	D1160 at 1 atm, °C	D1160 at 1 atm, °C	D1160 at 1 atm, °C
0	246.1	198.8	360.0	421.1
5	335.0	254.4	393.3	513.8
10	368.3	290.5	405.5	543.3
30	448.8	331.1	446.6	
50	506.1	351.6	475.5	
70		376.6	507.2	
90		407.2	553.3	
95		429.4		
100		475.0		

Table 3.3 Analysis data of a VDU's feedstock and products [3].

Source: Courtesy of G.L. Kaes.

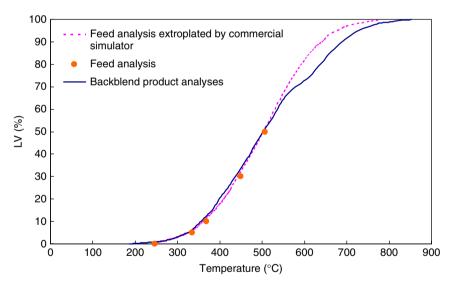


Figure 3.4 Comparison between feed analysis and backblend of product analyses.

3.2.3 Makeup of Gas Streams

Under high-temperature operations of VDU, there is always some extent of cracking of the atmospheric residue into light gases and petroleum fractions. In addition, the vacuum condition also allows some air to leak into the VDU. When the amounts of light gases and petroleum fractions are significant, we must add these materials into the atmospheric residue to represent it properly. Kaes [1]

Flash zone temperature (°F)	Flash zone temperature (°C)	C ₁	C ₂
800	427	1.2	67
775	413	0.6	35
750	399	0.3	20
725	385	0.15	12
700	371	0.08	5

Table 3.4 Values of parameters C_1 and C_2 for Eqs. (3.2) and (3.4).

Source: Courtesy of G.L. Kaes.

suggested that the amount of noncondensable gases that must be removed per 1000 barrels of feed charge to the VDU ranges from 15 to 50 lb $(1-3.5 \text{ kg/m}^3 \text{ charge stock})$. It consists of five different sources of light gases: (1) dissolved light gases; (2) native front-end tail; (3) cracking gas; (4) cracking front-end tail; and (5) air leaks. Kaes gave the general guideline to estimate these gas streams and corresponding compositions to adjust the atmospheric residue.

1) Dissolved light gases. Light gas component dissolved in the feedstock

$$lb/h gas = 11.5 * (feed rate, barrels per day)/1000$$
 (3.1)

2) *Cracking gases.* Low-molecular weight gases resulting from thermal cracking of the feedstock in the furnace

$$lb/h$$
 gas = $C_1 * (feed rate, barrels per day)/24$ (3.2)

where C_1 depends on the flash zone temperature, and its value appears in Table 3.4. For simulation purposes, we may represent both the dissolved light gases and the cracking gases by a 75/25 mixture of ethane (C2) and propane (C3).

3) *Front-end tail (native)*. A tail of low boiling (0.5% liquid vaporization) material inherent from the crude oil fractionation

lb/hgas = 50 * (feed rate, barrels per day)/1000 (3.3)

When the VDU feed rate is generated by simulating a CDU, both adjustments (1) and (3) are not necessary.

4) *Front-end tail (cracking).* Gas components resulting from thermal cracking of the CDU residue within the furnace

$$lb/hgas = C_2 * (feed rate, barrels per day)/24$$
 (3.4)

where C_2 depends on the flash zone temperature, and Table 3.4 shows its value. For simulation purposes, we may represent both the front-end tail (native) and front-end tail (cracking) by a 50/50 mixture of normal undecane (*n*-C11) and normal dodecane (*n*-C12).

5) Air leaks into the overhead system

$$lb/hgas = 6.0 * [(feed rate, barrels per day)/1000]^{1/2}$$
 (3.5)

For simulation purpose, we may represent air leaks by pure nitrogen.

154 3 Vacuum Distillation Unit

	A	в	С	D	E	F
	Feed Flow Rate (bbl/day)	81003				
5	Feed Flow Rate (m3/h)	536.6				
3	Flash Zone Temperature ("C)	407				
		Dissolved Gas	Front end tail (Native)	Front end tail (Cracking)	Cracking Gas	Air Leak
i.	Flow Rate (lb/hr)	932	4050	2188	1494	54
	Flow Rate (kg/hr)	423	1837	993	678	24
7	Molar fraction					
8	N2	0.00	0.00	0.00	0.00	1.00
3	C1	0.00	0.00	0.00	0.00	0.00
0	C2	0.75	0.00	0.00	0.75	0.00
1	C3	0.25	0.00	0.00	0.25	0.00
2	n-C11	0.00	0.50	0.50	0.00	0.00
3	n-C12	0.00	0.50	0.50	0.00	0.00
4						
5		Cracking as	FZ Temp (°C)	FZ Temp (°C)	Front end tail (Cracking)	
6		1.2	427	427	67	
7		0.6	413	413	35	
8		0.3	399	399	20	
9		0.15	385	385	12	
0		0.08	371	371	5	
1		0.44			27.01	
2						

Figure 3.5 Excel spreadsheet to estimate makeup gas streams corresponding to Figure 3.14.

We have developed an Excel spreadsheet to implement Eqs. (3.1)–(3.5), *Gases* makeup.xls. Figure 3.5 illustrates this spreadsheet. It requires the atmospheric residue (AR) flow rate and flash zone temperature (cells B2 and B3) to calculate the flow rate of gas streams. The Excel data correspond to the AR to the VDU examples in this chapter. Cells B21 and E21 represent the values of interpolated parameters C_1 (=0.44) and C_2 (=27.01) at a flash zone temperature of 407 °C according to Table 3.4.

3.3 Model Implementation

Similar to CDU simulation, it is necessary to translate a real distillation column into an equivalent configuration using theoretical stages to properly simulate the VDU. The high vapor velocities and low liquid levels of vacuum column stages make the performance of a real VDU deviating from that predicted by an ideal vapor-liquid equilibrium. Moreover, the packing section of VDU behaves as a heat transfer facility rather than a separation unit, thus making the separation performance even worse. The product distribution of VDU highly depends on the composition of atmospheric residue rather than the extent of fractionation. Therefore, simulating a VDU with two side products usually requires less than 10 theoretical stages. While building VDU simulation, it is common having trouble on converging the column model because of the low liquid flow in the column. Kaes [1] suggested a two-step approach to simulate VDU properly – simplified and rigorous simulations. A simplified model is able to produce quick and informative understanding of a real VDU, particularly for a preliminary study of revamping. In addition, the initial model from a simplified approach provides good estimates to reconcile a rigorous simulation if the column convergence is difficult. The following sections demonstrate the modeling procedures for both simplified and rigorous simulations using Aspen HYSYS and the data from operating VDUs in the Asia Pacific.

3.3.1 Plant Data and Modeling Approaches

There are two important steps to complete before building a process flowsheet in Aspen HYSYS (same as any other commercial simulator): (1) define the feed representation, and (2) select an appropriate thermodynamics model. Table 3.5 and Figure 3.6 represent the key process data and a simplified process flow diagram of a VDU in the Asia Pacific. The VDU is operated in wet conditions (with steam) and produces the VR and three valuable products – vacuum distillate (VD), LVGO, and HVGO. The D1160 analysis of "VGO" in Table 3.5 represents the distillation data of a mixture of VD, LVGO, and HVGO. Feedstock representation is always the first step for building a VDU simulation. As mentioned in Section 3.2.2, there are three approaches to obtain the assay data of the atmospheric residue. However, analysis of feedstock is the only option in this case, as the purpose is to model VDU alone and there is no analysis made for VR.

For both the simplified and rigorous simulations, Kaes [1] recommended using two to three theoretical stages to simulate each separation zone, and three theoretical stages for the wash grid. In addition, Kaes [1] suggested using a single absorber to model each separation zone in the simplified simulation. Thus, we represent the real VDU shown in Figure 3.6 by four similar absorbers with theoretical configurations of Figure 3.7 for simplified modeling. The simplified configuration divides the VDU into four absorbers with each having two theoretical stages, and it includes three theoretical stages to model the wash grid section. The four absorbers represent (1) stripping and flash zone, (2) wash grid and HVGO zone, (3) LVGO zone, and (4) VD zone, respectively. In the simplified simulation, the slop wax includes the overflash and entrained oil. Figure 3.8 shows the process flowsheet of the simplified VDU model built by Aspen HYSYS. We present a step-by-step illustration of the modeling details in the following workshop.

			Atmospheric residue (AR)	VGO
Flash zone temperature (°C)	407	Density (kg/m ³)	971	
Top pressure (mmHg)	76	MW	533	
Pressure of VD draw tray (mmHg)	79		D1160 at 760 mmHg	
Pressure of LVGO draw tray (mmHg)	83	IBP	319°C	304°C
Pressure of HVGO draw tray (mmHg)	90	5%	368 °C	341 °C
Flash zone pressure (mmHg)	100	10%	381 °C	359°C
Bottom pressure (mmHg)	190	30%	454°C	404°C
		50%	533 °C	443°C
		55%	560°C	_
		70%		489°C
		90%		543°C
		95%		562°C

Table 3.5 Key operating and analysis data of VDU for modeling.

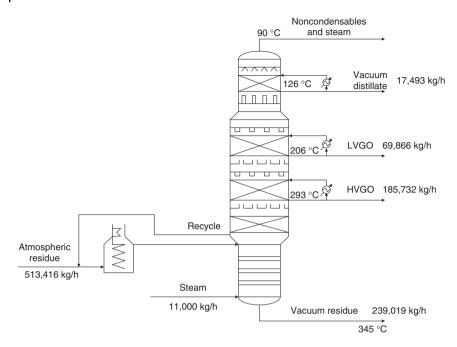


Figure 3.6 Operating and production data of a VDU in Southeast Asia.

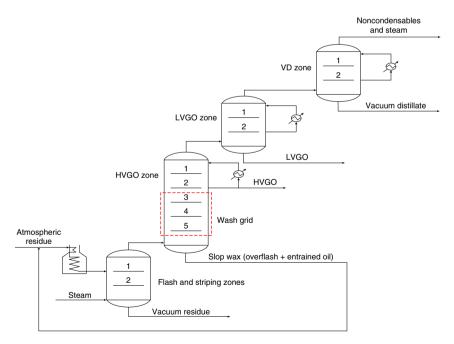


Figure 3.7 Configuration of simplified simulation.

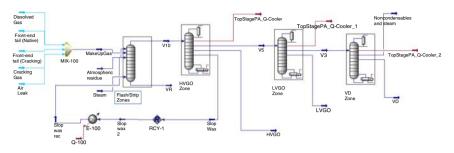


Figure 3.8 Process flowsheet of the simplified VDU model in Aspen HYSYS.

3.3.2 Workshop 3.1 - Build the Simplified VDU Model

Step 1. Define the components, properties, and petroleum assay.

Following Workshop 1.5, Section 1.7, we import the default Component List-1 (petroleumCom1.cml), and choose the default fluid package, Basis-1 (Peng–Robinson).

Make sure to add *n*-C11 and *n*-C12 to the component list. Before we define the atmospheric residue of Table 3.5, we note that the engineer often converts D1160 distillation curve obtained at reduced pressure to the corresponding atmosphere data. Therefore, the model developer should always consult with plant engineers and operators to figure out the type of distillation curve and the corresponding distillation pressure. For our problem, the D1160 distillation curve data for AR in Table 3.5 correspond to a pressure of 760 mmHg. Thus, we must set the option of "D1160 Distillation Conditions" to "Atmospheric." Currently, the Aspen HYSYS petroleum assay manager does not allow us to choose this option directly, but the oil manager does. We therefore define the AR in the old manager first and then convert it to the petroleum assay manager following Workshop 1.6, Section 1.8 (see Figures 3.9–3.13).

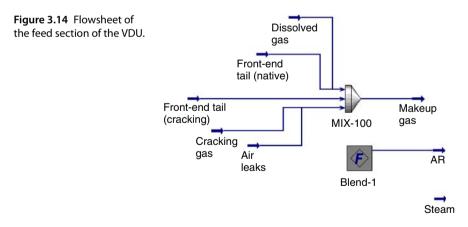
Elterns +			asays Assay-1 +			
Component Lists	Assay Definition	Defaults Working Curves P	Note User Curves Notes			
Fluid Packages			input Data	Molecular Weight	533.0	
Petroleum Assays	Bulk Properties	Used *	Bulk Props	Standard Density	971.0 kg/m3	
Oil Manager	Assay Data Type	ASTM D1160 *	Distillation	Watson UOPK	<empty></empty>	
Reinput Assay				Viscosity Type Viscosity 1 Temp	Dynamic 37.78 C	
Output Blend	Light Ends	lanore *		Viscosity 1	<empty></empty>	
Reactions	Molecular Wt. Curve	Not Used *		Viscosity 2 Temp	98.89 C	
Component Maps	Increasing the corre-	1101 0360		Viscosity 2	<empty></empty>	
User Properties	Density Curve	Not Used *				
-	Viscosity Curves	Not Used *				
	ASTM D1160 Distillati	an Conditions				
	Atmospheric	5 Vacuum				
Properties	Handling & Fitting	Calculate				

Figure 3.9 Input bulk properties and choose D1160 distillation pressure for AR.

Figure 3.10 Input the D1160 distillation curve data, perform property characterization calculations, and convert to refinery from oil manager to refinery assay (petroleum assay manager).

All Items	Data Tables Property P Assay Selection and OI I Available Assays	nformation	w Information	e Plot	Plot Summar	Bulk Data	
By Fluid Packages Basis-1 By Petroleum Assays Cil Manager		Oil Assay-1	Flow Units Liquid Vol	Flow R	s36.6	Molecular Weight Mass Density Watson uopk	 emptys emptys
A Dinput Assay		8			B	lend-1: Install Oil	-
4 D Output Blend			Oil Name		Install	Stream Name	Flowsheet
Co Blend-1			8	lend-1	×	AR	Case (Main)
B User Properties							

Figure 3.11 Select Assay-1 to be cut or blended as Blend-1, move it from Available Assays to Oil Flow Information, enter flow rate of 536.6 m³/h, and install oil. Enter stream name AR within Blend-1:Install Oil, and click install Blend-1.


- *Step 2*. Define the AR feed, makeup gas streams, and steam. Draw the flowsheet of Figure 3.14. See the stream specifications in Table 3.6. Save the resulting simulation file as *Workshop 3.1-1.hsc*.
- *Step 3.* Simulate the flash and stripping zones by specifying a flash zone temperature of 407 °C (see Figures 3.15–3.17). Save the converged simulation as *Workshop 3.1-2.hsc.*

A Cut	tomize Resources Methods Assistant Reactions User Properties R	Assay Managemer	Petroleum Assays Rafining 14	 Hypotheticals Manager Convert Remove Duplicates Hypotheticals 	Oii Manage	Convert to Refining Assay	Associate Fluid Package Definitions* Options	Aspen Properties Options
Properties All Items All Items Component Usits Component Usits Component Usits Component Assay Component Maps	Component Lists Assay Summary Display: All R	Assay	Oli Mani Characterizat Method ða	This will co	nvert all ins HYSYS Petr ng sers, modify	talled Oil Manager C talled Oil Manage O Use Ref5 Use Ref5 Use Ref5 Convert	assays in Says.	

Figure 3.12 Go to Petroleum Assays and choose "Convert to Refinery Assay."

New Characterize Download Aconyo		rtes Vaccaties	*	ular Characterizat	lon					
Properties 4	Component Lists × Oil Ma	ager Assay-1 - I	Input Assay	+						
All items -	Input Summary Pure Con	nonent Distillation	Data							
Component Lists	inter an inter a second	Indiana	And a second second	099-02	0.0000	10000	olive a	Sec.	sectors :	
Fluid Packages		Whole Crude	Cutt	Cut2	Cut3	Cut4	Cut5	Cut6	Cut7	
Petroleum Assays A Assay-1	Initial Temperature (0	180	IBP	319.0000	368.0000	381.0000	454.0000	\$33.0000	\$60,0000	Click to Add Cu
Input Assay	Final Temperature (C)	FBP	319.0000	368.0000	381.0000	454.0000	533.0000	560.0000	FBP	
Conventi hiput Assay a	A									
Gil Manage	MolecularWeight	533.00								
a 🔤 Input Assay	StdLiquidDensity (kg/m	. 971.0000								
Assay-1	 CumeldByVol (%) 		1.28	6,61	2.89	19.66	19.57	5.00	45,00	

Figure 3.13 Converted Assay-1 for AR in petroleum refinery manager.

Stream	Dissolved	Front-end	Front-end	Cracking	Air	Steam
	gas	tail (native)	tail (cracking)	gas	Ieaks	(160 °C, 343.2 kPa)
Mass flow (kg/h) Mole fractions	423 0.75 C2 0.25 C3	1837 0.5 <i>n</i> -C11 0.5 <i>n</i> -C12	933 0.5 <i>n</i> -C11 0.5 <i>n</i> -C12	678 0.75 C2 0.25 C3	54 1.0 N ₂	1.1E4 1.0 H ₂ O

Note: Except for steam, all gas streams and AR feed are at 411 $^{\circ}$ C and 13.33 kPa. AR has a flow rate of 536.6 m³/h.

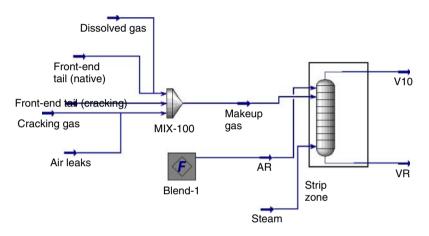


Figure 3.15 Add the flowsheet of the flash/strip zones with a simple absorber without reflux.

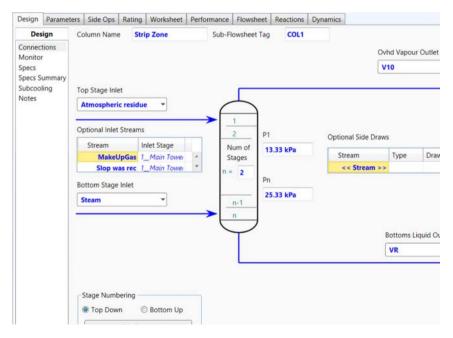


Figure 3.16 Specification of the flash/strip zones.

Des	ion	Option	al Cheo	cks					Profile						
nnect	tions	-	put Sur			View In	itial Estin	nates						y Posi	tion f
ecs ecs Si bcool ites	ummary ing	Iter	Step		Equilibriu	n	Heat / Sp	ec	Tem Pres Flow	ip is vs	405.0 400.0 395.0 390.0 385.0 0	Temperatu	•	-	-
		Specifi	ications			Coacil	ied Value		Current Value	. 1.	Wt. Error	Active	Ectimate	Current	1
		Flash	zone te	emner	ature	Speci		407.0 C		06.9	-0.0002	-			
						Paramet Name Stage Spec Vi	ers S		ne tempera Spec Type Flash zon	e temp 1_Mair		×			
			View			De Id Spec_	lete	Group A	ctive	Up	date Inactive		egrees of F		0

Figure 3.17 Specify the flash zone temperature.

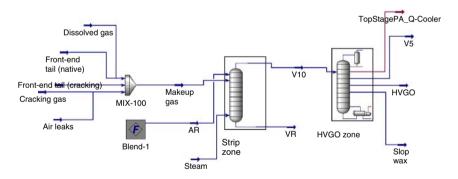


Figure 3.18 Add the flowsheet of the HVGO zone.

Step 4. Add the HVGO zone and the slop wax recycle loop by choosing an absorber with top-stage pumparound (PA) reflux. See the flowsheet and specifications in Figures 3.18–3.20. Save the converged simulation file as *Workshop 3.1-3.hsc.*

In practice, the slop wax stream has two sources, namely, overflash and entrained oil. Figures 3.19–3.21 represent the specifications used in the HVGO zone, including the circulation rate and temperature change of the pumparound stream and HVGO flow rate, following Kaes' suggestions [1]. The model predicts a flow rate of 14 m^3 /h for the slop wax, which is 2.6% of the atmospheric residue flow rate of 536.6 m^3 /h. Considering that the slop wax includes overflash and entrained oil, and typical volume flow ratio of overflash to feed ranges from 0.2% to 5% [4], the simplified model gives good estimates on the slop wax.

0		Absorber Co	lumn Input Expert			
Column Name	HVGO zone					
					Ovhd V	apour Outlet
		\square			V5	
Optional Inlet Stream	ms		_ \$			tg. Reflux
- Shares - Contractor - Contractor	Inlet Stage	# Stages Draw S			O Liq	tg. Reflux uid inlet mp-around
Stream	Inlet Stage	# Stages Draw S	in Tower 🔹	Side Draws	O Liq	uid inlet
Stream	Inlet Stage	# Stages Draw S	in Tower 🔹	Side Draws	O Liq Ø Pu	uid inlet mp-around
Stream	Inlet Stage	# Stages Draw S	in Tower		C Liq Put	uid inlet

- -

•

-

Bottoms Liquid Outlet

Slop wax

Figure 3.19 Specifications of the HVGO zone (step 1).

*

O Bottom Up

	Top Stage Pressure	\frown	Optional Top Stage Temperature Estimate
→.	11.20 kPa		276.0 C
		Pump-Around Specs	
Cooler dP		Flow Basis	Mass
0.0000 kPa		PA Rate	8.586e+005 kg/h
		2nd Spec Type 2nd Spec Value	dT 55.00 C
		→	Optional Bottom Stage Temperature Estimate
\checkmark	Bottom Stage Pressure		400.0 C
	13.20 kPa		

Figure 3.20 Specifications of the HVGO zone (step 2).

		mamics	Reactions Dy	lowsheet	Performance	Worksheet	Rating	Side Ops	Parameters	Design
			Profile				hecks	Optional C	ign	Desi
vs. Tray Pos	ature	Tempera		tes	ew Initial Estim) v	Summary	Input 9		onnect
	Temperature	400.0	Temp						1	Ionitor
	+	380.0	© Press	8	Heat / Sp	Equilibrium	ep	Iter St	ummary	pecs pecs Si
	1	360.0		3573 *	2 0.0	0.60172	0.0001	1 0		ubcool
			Flows	8614 =	5 0.0	0.15883	0.0001	2 0		otes
	-	340.0								
		340.0		5139	0.0	0.13370	0.0375	3 (
		320.0		5139 9513		0.13370	.0375			
1 1 1 1 1	2	- /			0.0			4 1		
4	2	320.0		9513	0.0	0.18816	.0000	4 1		
Estimate Curren	2 Active	320.0	rrent Value	9513	0.0	0.18816	.0000	4 1		
Estimate Curren	2 Active	320.0		9513 • Cu	i 0.0	0.18816	0000 0000 0ns	4 1		
র র র র		320.0 0 Wt. Error	rrent Value	2513 Cu kg/h	51 0.0	0.18816	te	4 1 Specificatio		
ସ ସ	P	320.0 0 0 Wt. Error 0.0000	rrent Value 1.857e+005	2513 Cu kg/h	1 0.0	0.18816	te	4 1 Specificatio		

Figure 3.21 Specifications of the HVGO zone (step 3).

162

V10

Stage Numbering

Top Down

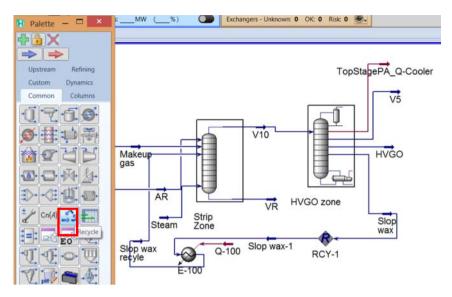


Figure 3.22 Add the flowsheet of the slop wax recycle to stage 1 of the strip zone.

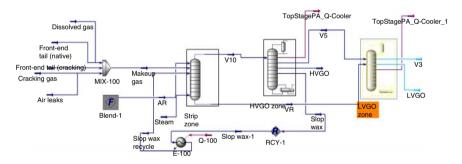


Figure 3.23 Add the flowsheet of the LVGO section.

- Step 5. Complete the recycle loop for slop wax to enter the stage 1 of the strip zone. Heater E-100 heats up slop wax-1 to 411 °C. See Figure 3.22. No need for other specifications. The simulation converges quickly. Save the converged simulation as *Workshop 3.1-4.hsc*.
- Step 6. Add the LVGO zone by choosing an absorber with top-stage pumparound (PA) reflux. See the flowsheet and specification in Figures 3.23–3.26. We add the specification of the LVGO draw rate of 6.987E4 kg/h as an estimate. We do this in Figure 3.26 as follows: Add Spec \rightarrow Column Specification Types \rightarrow Column Draw Rate \rightarrow Draw Spec \rightarrow Name LVGO draw rate; Draw LVGO; Flow Basis mass; Spec Value 6.987E4 kg/h. Save the converged simulation as *Workshop 3.1-5.hsc*.
- *Step 7*. Add the vacuum distillation (VD) zone. See Figures 3.27–3.30 for the flowsheet and specifications. We add the stage 1 temperature of 90 °C. Save the converged simulation as *VDU-Simplified.hsc.*

					Ovhd	Vapour Outlet	
		$ \left(\right) $	-		V3		*
Stream << Stream :	Inlet Stage	# Stages n = 2	Draw Stage 2 Main Tower	Optional Side Dr		iquid inlet Pump-around	
				Stream	Type	Draw Stage	
		n-1		<< Stream	>>		
lottom Stage Ink	et 🔹	Ý			Botto	ms Liquid Outlet	
¥5	-				LVG	0	•
Stage Numberii					1025		

Figure 3.24 Specifications of the LVGO zone (step 1).

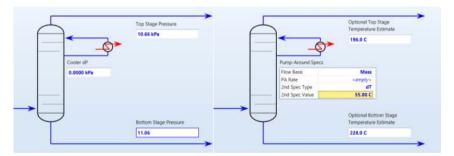


Figure 3.25 Specifications of the LVGO zone (step 2).

Design	Parameters	Side O	ps Rating	Worksheet	Performance	Flowshee	t Reactions	Dynamics			
Des	ign	Optiona	I Checks -				Profile				
Connec	tions	Inp	ut Summary	/	iew Initial Estim	ates		Tempera	ature	vs. Tra	y Po
Monitor	ĸ						Tem	298.0	Temperature		
Specs Specs S	ummary	Iter	Step	Equilibrium	Heat / Sp	ec	Pres	294.0			
Subcool		1	0.0001	0.7652	96 0.0	58964	© Flow	290.0			/
Notes		2	1.0000	0.0008	69 0.0	03185	O Flow	s 286.0	-		
		3	1.0000	0.0000	02 0.0	00022		282.0			_
								0			
	1	Specific	ations								
					Specified Value	1	Current Value	Wt. Error	Active	Estimate	Curren
		TopSta	gePA_Rate	(Pa)	<	empty>	2.117e+0	05 <empty></empty>		V	
		TopSta	gePA_Dt(P	a)	1	55.00 C	55	.00 0.0000	P	V	2
		TopSta	gePA_Duty	(Pa)	<	empty>	-2.991e+0	007 <empty></empty>		5	
		LVGO	draw rate		6.987e+00	4 kg/h	6.987e+0	-0.0000		2	2

Figure 3.26 Specifications of the LVGO zone (step 3).

164 3 Vacuum Distillation Unit

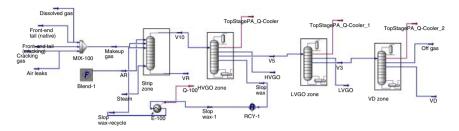


Figure 3.27 Flowsheet of the complete simplified VDU model after adding the vacuum distillation (VD) zone.

Maria and a second s	Abso	rber Column Inpu	it Expert		
Column Name VD zone					
				Ovhd	Vapour Outlet
	6	-		011	gas
Stream Inlet Stage	# Stages	Draw Stage	-) Optional Side Dr		Stg. Reflux liquid inlet Pump-around
	0-1		Stream	Type	Draw Stage
			<< Stream	94 (94)	
Bottom Stage Inlet				Botto	ms Liquid Outle
V3 ~				VD	and creating course
Stage Numbering Top Down OBottom Up					

Figure 3.28 Specifications of the VD zone (step 1).

Figure 3.29 Specifications of the VD zone (step 2).

Figures 3.31–3.33 compare the simplified model predictions with plant data for the VDU temperature profile, D1160 curve of VGO, and product yields. Significantly, our simplified model is able to generate good results that not only provide a quick and informative understanding of the real VDU, but also serve as a convenient platform to investigate the consistency of plant data.

3.3.3 Workshop 3.2 – Build the Rigorous Model from a Simplified Model

- *Step 1.* We open the simulation file for the feed section, *Workshop 3.1-1.hsc*, and save it as *Workshop 3.2-1.hsc*. See Figure 3.14 for the flowsheet.
- *Step 2*. Add an absorber column to represent the rigorous VDU simulation model (see Figures 3.34–3.42). Specifications of rigorous VDU model are similar to

			Colu	mn: VD zon	e/COL4 Flu	uid Pkg:	Basis-1 / Pe	eng-Robinsor	10	11	
Design	Parameters	Side C	ps Rating	Worksheet	Performance	Flowsheet	t Reactions	Dynamics			
Des	sign	Option	al Checks -				Profile				
Connec		Inp	out Summary	v Vi	ew Initial Estim	ates		Temp	erature	vs. Tra	y Po
Monitor Specs	r	2					Tem	p 130.0	- Temperati	78	
	ummary	Iter Step Equilibrium		Equilibrium	Heat / Spe	ec	O Pres	s 120.0			
Subcoo	ling	1	1.0000	0.16962	5 0.12	20025	C Flow	· · · · · ·			/
Notes		2	1.0000	0.01079	8 0.00	82773	OFION	100.0	-		_
		3	1.0000	0.00719	8 0.00	00698		90.00		1995	
		4	1.0000	0.00000	2 0.00	00060		0	1.0	0.01	
		Specific	ations								
				9	pecified Value		Current Value	Wt. Error	Active	Estimate	Curren
		TopSt	agePA_Rate(Pa)	<6	empty>	9.839e+0	005 <emp< td=""><td>oty></td><td></td><td></td></emp<>	oty>		
		TopSt	agePA_Dt(Pa)	4	45.00 C	45	.00 0.0	000		V
		TopSt	agePA_Duty	(Pa)	<6	empty>	-9.008e+0	007 <emp< td=""><td>ty></td><td></td><td></td></emp<>	ty>		
		Tonte	emperature			0.00 C	00	0.0 0.0	000		V

Figure 3.30 Specifications of the VD zone (step 3).

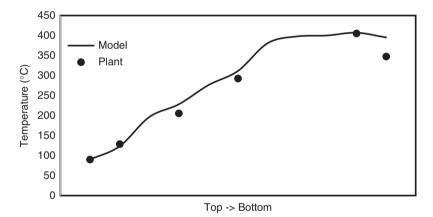


Figure 3.31 Prediction on temperature profile by the simplified model.

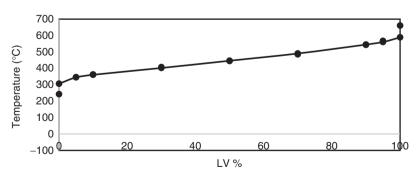
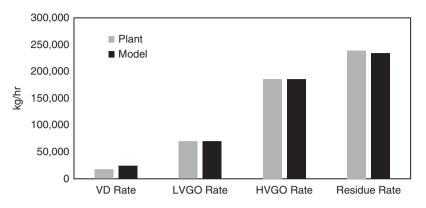
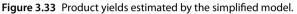




Figure 3.32 Prediction on D1160 curve of VGO by the simplified model.

166 *3 Vacuum Distillation Unit*

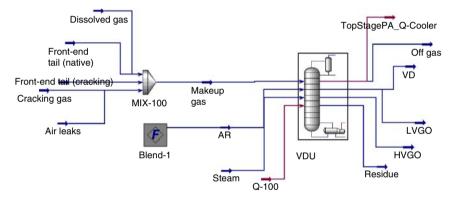
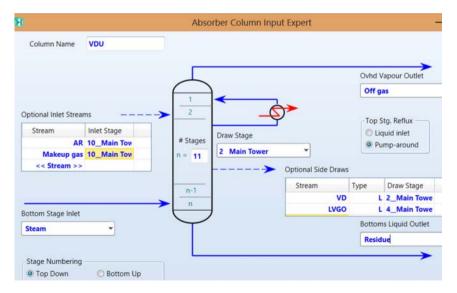



Figure 3.34 Flowsheet of the rigorous VDU simulation model.

Figure 3.35 Specifications of the VDU unit (step 1): Optional Side Draws also include Stream-HVGO, Type-L, Draw Stage-6_Main Tower (not shown).

168 *3 Vacuum Distillation Unit*

\frown	Top Stage Pressure	\frown	Optional Top Stage Temperature Estimate
-	10.13 kPa		90.00 C
Cooler dP	2	Pump-Around Specs	
0.0000 kPa		Flow Basis	Mass
		PA Rate	1.000e+005 kg/h
		2nd Spec Type	Tb
		2nd Spec Value	45.00 C
·			Optional Bottom Stage Temperature Estimate
T	Bottom Stage Pressure		
	25.13 kPa		395.0 C

Figure 3.36 Specifications of the VDU unit (step 2).

and a second			Performance Ficesh	ort feactures	Dynamics		10.00		
Side Ops	Liquid Pump Ar	ound Summary							
de Strippers de Rectifiers amp Arounds	and the	Draw Stage	Return Stage	Flow (kp/N	Duty Draw T Return T Expor	e	1st Active Spec	2nd Active Spec	
D Bygasses	TopStageRA RA_1	2_Main Tower	1_Main Tower	-empty-	3.600e+004 +empty+ -empty+	PA 1	PA 1 Rate(Pa)	PA 1 Dt(Pa)	
le Dravis					B Pump Around	PAT - D	2.200e+005 kg/h	55.00 C	
					Nume PA_1	Party IP	-		
					Return Stage	«empty»	Return Stage		
					3_Main Tower *	Courses (\$P		-	
					<	0.00 kPs	3 Main Tower		-
							American	Calculated Infor	mation
					l d		a 🗋 Aqueous	Calculated Inform	
					Ø		and the second s		<empt;< td=""></empt;<>
					ø	Add Pump	Draw Stage	Draw Temp.	mation <empty <empty <empty< td=""></empty<></empty </empty
					Ø	Add Valve	and the second s	Draw Temp. dT	<empt; <empt;< td=""></empt;<></empt;
					Drew Stage		Draw Stage	Draw Temp. dT Return Temp.	<empty <empty <empty< td=""></empty<></empty </empty
					Deer Stage	Add Valve	Draw Stage	Draw Temp. dT Return Temp. Flow Rate	<empt <empt <empt <empt< td=""></empt<></empt </empt </empt
					Drew Stage	Add Valve	Draw Stage	Draw Temp. dT Return Temp. Flow Rate	4

Figure 3.37 Specifications of the VDU unit (step 3): Add pumparound PA_1.

H	Pump Around - PA_2	×	P P	Pump Around - PA_2	- 🗆 ×
Name PA_2 Return Stage		ump dP <empty></empty>	1st Active Spec	2nd Active Spec	
5_Main Tower	• c	ooler dP	PA_2_Rate(Pa) 8.586e+005 kg/h	PA_2_Dt(Pa) 55.00 C	
		0.00 kPa	Return Stage		
			5_Main Tower	Calculated Infor	mation
	(Δ)		Aqueous	Draw Temp.	<empty></empty>
	X	III a second	Draw Stage	dT	<empty></empty>
	T	Add Pump		Return Temp.	<empty></empty>
		Add Valve	6_Main Tower	Flow Rate	<empty></empty>
Draw Stage		Aqueous		Duty	-3.600e+004 kJ/h
6 Main Tower	-			View Pump	View Valve
Cancel]	Install	Delete	PA_2	

Figure 3.38 Specifications of the VDU unit (step 4): Add pumparound PA_2.

Paramete	rs Side Ops Rating Works	heet Performance Flowsh	eet Reactions Dy	namics				
Design	Optional Checks		Profile					
Connections Monitor	Input Summary	View Initial Estimates	Temp	10.00	Temperature vs. Tray Position from			n
pecs pecs Summary	Iter Step Equilibr	ium Heat / Spec	Press	8000 8000			-	
Subcooling			© Flows	6.000	-	-		-
lotes			C FIDWS	4.000			8 8	1
				2.000				
				0	2	4	6 B	S
	Specifications							
	specifications			222-2010	12.02.02	Lauren	AND STREET	
	TopStagePA_Rate(Pa)	Specified Value 1.000e+005 kg/h	Current Value	Wt. Error <empty></empty>	Active	Estimate	Current	
	TopStagePA_Dt(Pa)	1.000e+005 kg/n 45.00 C	<empty> 45.00</empty>	<empty> 0.0000</empty>	4	N.	R .	
	TopStagePA Duty(Pa)	<empty></empty>	<empty></empty>	<empty></empty>	Ē	R	FI Temp Spec: St	age 10 tempera 🗆 🖬
	VD Rate	<empty></empty>	<empty></empty>	<empty></empty>	R	R	temp spect of	age to temperation
	LVGO Rate	«empty»	<empty></empty>	<empty></empty>	R	বব	Parameters Sun	nmary Spec Type
	HVGO Rate	«empty»	<empty></empty>	<empty></empty>	A	R	Name	Stage 10 temperature
	PA_1_Rate(Pa)	2.200e+005 kg/h	<empty></empty>	<empty></empty>	R	5	Stage	10 Main Towe
	PA_1_Dt(Pa)	55.00 C	55.00	0.0000		ববের	Spec Value	407.0 0
	PA_2_Rate(Pa)	8.586e+005 kg/h	<empty></empty>	<empty></empty>		R	L'Anna anna anna anna anna anna anna anna	
	PA_2_Dt(Pa)	55.00 C	55.00	0.0000		2	Delete	407.0 C
	Stage 1 temperature	90.00 C	<empty></empty>	<empty></empty>		2		764.6 F
	Stage 10 temperature	407.0 C	<empty></empty>	<empty></empty>	P	R	*	
	View	Add Spec Group	Active	pdate inactive	P	earees of Fr	reedom 1	

Figure 3.39 Specifications of the VDU unit (step 5): Add stage 1 temperature of 90 °C and stage 10 (flash zone) temperature of 407 °C.

esign Param	eters	Side Ops	Rating	Worksheet Per	formanc	e Flowsheet	Rea	ctions	Dyna	mics				
Design	Co	lumn Name	VDU		Sub	Flowsheet Ta	1	COL1						
Connections Monitor	ſ	nlet Streams												Numbering -
pecs		Internal S	tream	External Stream		Inlet Stage		Transf	er Basi	s	Split		Top Down	
Specs Summary	1	Steam		Steam		11_Main Tower		P-H Flash				O Bo	ttom Up	
Subcooling			AR			10_Main Tower								
Votes		Ma	akeup gas	Makeu	p gas	10_Main	ower	4	P-	H Flash			-	dit Trays
			Q-100	C	2-100	10_Main	ower		Non	e Req'd				
			** New **	<< Stream	m >>								III o	olit Inlets
	- 4	Outlet Strear	itream	External Stream	-	Outlet Stage		Туре	1.1.1	isfer Basi			dP Top:	on mets
	- 4		itream					Туре	Tran					on mets
	- 4		itream Off gas	01	ff gas	1_Main 1		1	1	p.	H Fla		dP Top:	
	~	Internal S	itream Off gas Residue	Of	ff gas sidue	1_Main 1 11_Main 1	ower	N	1	р. р.	H Fla H Fla	sh		10.13 kPa
		Internal S	itream Off gas Residue A_Q-Cool	Of Re TopStagePA_Q	ff gas sidue -Cool	1_Main 1 11_Main 1 <en< td=""><td>ower pty></td><td>N I C</td><td></td><td>P- P- Non</td><td>H Fla H Fla c Req</td><td>sh i'd</td><td>dP Top: P Top:</td><td></td></en<>	ower pty>	N I C		P- P- Non	H Fla H Fla c Req	sh i'd	dP Top: P Top:	
	d	Internal S	itream Off gas Residue	Of Re: TopStagePA_Q	ff gas sidue	1_Main 1 11_Main 1	ower pty> ower	N		P- P- Non P-	H Fla H Fla	sh j'd sh	dP Top:	
	- (Internal S	off gas Off gas Residue A_Q-Coole VD	Of Re: TopStagePA_Q	f gas sidue -Cool VD	1Main 1 11Main 1 <en 2Main 1</en 	ower pty> ower ower	1 0		P- P- Non P- P-	H Fla H Fla c Req H Fla	sh j'd sh sh	dP Top: P Top:	
	~	Internal S TopStageP/	itream Off gas Residue A_Q-Cool VD LVGO	Of Re: TopStagePA_Q	ff gas sidue -Cool VD LVGO IVGO	1Main 1 11Main 1 <en 2Main 1 4Main 1 6Main 1</en 	ower pty> ower ower			P- P- Non P- P- P-	H Fla H Fla c Req H Fla H Fla	sh I'd sh sh sh	dP Top: P Top:	
	~	Internal S TopStageP/ PA_1,	itream Off gas Residue A_Q-Cool VD LVGO HVGO	Of Re: TopStagePA_Q I H << Stream	ff gas sidue -Cool VD LVGO HVGO m >>	1Main 1 11Main 1 <en 2Main 1 4Main 1 6Main 1 <en< td=""><td>ower pty> ower ower ower</td><td></td><td></td><td>P- P- Non P- P- P- Non</td><td>H Fla H Fla c Req H Fla H Fla H Fla c Req</td><td>sh I'd sh sh sh</td><td>dP Top: P Top: dP Bot: P Bot:</td><td>10.13 kPa</td></en<></en 	ower pty> ower ower ower			P- P- Non P- P- P- Non	H Fla H Fla c Req H Fla H Fla H Fla c Req	sh I'd sh sh sh	dP Top: P Top: dP Bot: P Bot:	10.13 kPa

Figure 3.40 Add an energy stream Q-100 to the stage 10 to tune the flash zone temperature and to ensure the closure of the energy balance calculation. No need to specify its value.

170 3 Vacuum Distillation Unit

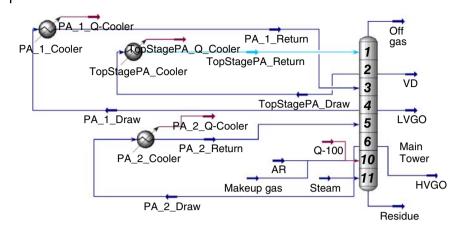


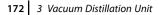
Figure 3.41 The column environment of the VDU model.

esign Parar	neters	Side Ops	Rating	Worksheet	Performance	Flowsheet	Reactions	Dynamics				
arameters	Solv	ing Options					Acceler	ation				
Profiles	Maxi	imum Numb	per of Iter	ations		10000	Ac Ac	Accelerate Kvalue & H Model Parameters				
stimates	Equi	librium Erro	r Toleran	ce		1.0000e-05						
fficiencies	Heat	/ Spec Erro	r Toleran	ce		5.0000e-04						
Solver	Save Solutions as Initial Estimate											
2/3 Phase	Super Critical Handling		andling M	lodel		Simple K		ng				
luid Pkgs	- Hote Lett					Low						
i	Initia	lise from Id	eal K's				© Fixe	d 💿 Adaptive	Azeotropic			
	Two	Liquids Che	ck				Inital D	amping Factor	1.000			
	Tigh	ten Water T	olerance				Adapti	10				
	Use	Use Estimates for Single Staged Tower					Reset Initial Damping Factor					
	Solv	ing Method	Method					Standard Initialization				
	M	dified HYS	IM Insid	e-Out	Con	trol_	200	Program Generates Estimations				
	General Purpose Metho		od which allo	ws mixer, pump),	- Initial E	neters					
			heat exc	exchangers in the sub-flowsheet.				Dynamic Estimates Inte	grator			

Figure 3.42 Choose Modified HYSYS Inside-Out algorithm and adaptive damping under Parameters \rightarrow Solve.

the simplified CDU model, including the circulation rate and temperature change of each pumparound stream, flow rates of all liquid products except for one, top temperature, and flash zone temperature [1]. By using the results of the simplified model, the rigorous simulation converges quickly (Figure 3.43).

Figure 3.44 shows the pressure, temperature, and internal flow profiles obtained from the results of the rigorous model. We save the converged rigorous VDU model as *VDU-Rigorous.hsc.*


Figures 3.45–3.47 compare the rigorous model predictions with plant data for column temperature profile, D1160 curve of VGO, and product yields. The results demonstrate that the two-step approach of model development generates accurate predictions on key operation and production variables of VDU.

Design Parameter	ers Side	Ops Rating	Worksheet	Performance	Flowsheet	Reactions	Dynamics			
Design	Option	al Checks				Profile				
Connections Monitor	In	put Summar	y] [V	/iew Initial Estir	nates		150.0 Temper	ature		y Pos
pecs pecs Summary	Iter	Step	Equilibrium	Heat / Sp	pec	Temp Press	350.0		-	-
ubcooling	203	0.0001	0.0003	08 0.0	000154		250.0	-		
lotes	204	0.0001	0.0003	08 0.0	000029	C Flow:	s 150.0		_	
22220	204	0.2500	0.0002	64 0.0	0.000141		50.00			
	205	1.0000	0.0001	58 0.0	000112		50.00 -			1
	200	1.0000	0.0000	00 0/	000000		v	2	-	
	Specifi	cations								
				Specified Value		Current Value	Wt. Error	Active	Estimate	Curren
	TopS	tagePA_Rate	e(Pa)	1.000e+0	1.000e+005 kg/h		-0.000		2	P
	TopS	tagePA_Dt(F	Pa)		45.00 C	521	1.3 0.952	Read and	5	
	TopS	tagePA Dut	v(Pa)	<empty></empty>		-7.806e+0	07 <empty:< td=""><td></td><td>2</td><td></td></empty:<>		2	
	VD R	ate		1.749e+004 kg/h		1.749e+0	-0.000	8.0.0	V	P
	LVGC	Rate		6.987e+004 kg/h		6.987e+0	-0.000		2	P
	HVG	O Rate		1.857e+005 kg/h		1.857e+0	0.000		P	P
	PA_1	_Rate(Pa)		2.200e+0	05 kg/h	2.200e+0	-0.000		V	P
	PA_1	_Dt(Pa)			55.00 C	55.			P	P
	PA_2	_Rate(Pa)		8.586e+0	8.586e+005 kg/h		0.000		2	ব
	PA_2	_Dt(Pa)		55.00 C		55.	.00 0.000		5	P
	Stage	e 1 temperat	ure		90.00 C	90.	.00 -0.000		2	P
	Stage	e 10 tempera	ature		407.0 C	407	7.0 -0.000		P	P
		View	Add S	Spec	Group A	ctive	Update Inactive		egrees of Fr	reedom

Figure 3.43 Specify rates of VD, LVGO, and HVGO to enable simulation convergence.

Design Para	meters Side Ops	Internals	Rating	Worksheet	Performance	Flowsheet	Reactions
Parameters	Steady State Prof	iles					
Profiles					Optiona	l Estimates	
Estimates Efficiencies		Stage	Pressure [kPa]	Temp [C]	Net Liquid [kgmole/h		
Solver 2/3 Phase	1_Main Tower	0	10.1	3 90	.00 76	2.7 6	61.6
Fluid Pkgs	2_Main Tower	1	11.6	3 21	4.2 76	4.5 1	054
riulu Pkys	3_Main Tower	2	13.1	3 25	0.5 17	775 1	491
	4_Main Tower	3	14.6	3 26	9.6 77	7.6 1	788
	5_Main Tower	4	16.1	3 29	8.7 38	351 1	731
	6_Main Tower	5	17.6	3 32	0.9 11	181 2	466
	7_Main Tower	6	19.1	3 35	0.9 10)74 2	640
	8_Main Tower	7	20.6	3 37	0.6 95	3.2 2	2533
	9_Main Tower	8	22.1	3 38	6.6 74	1.5 2	412
	10_Main Towe	9	23.6	3 40	7.0 55	5.4 2	200
	11_Main Towe	10	25.1	3 39	5.0 39	6.4 7	69.6

Figure 3.44 Pressure, temperature, and internal flow profiles obtained from the rigorous simulation model.

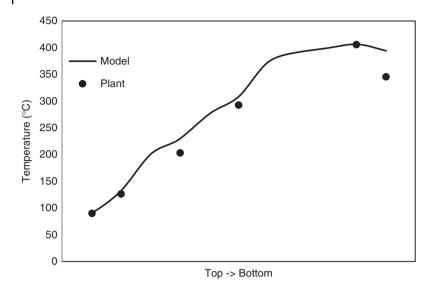


Figure 3.45 Prediction on temperature profile by rigorous model.

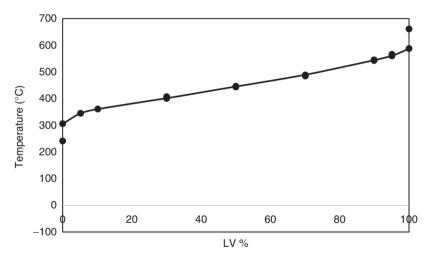


Figure 3.46 Prediction on D1160 curve of VGO by rigorous model.

3.4 Model Application – VDU Deep-Cut Operation

One of the industrially significant applications of VDU simulation is to optimize the deep-cut operation to process heavier crude because of the growing demand of the refiners to process heavier crude feeds. Deep-cut operation is expected to improve process economics by increasing the cut point of HVGO higher than 1050 °F or 565 °C to produce more gas oil for downstream units such as FCC. In our preceding example, the HVGO stream has a D86 95% point of 883 °F or

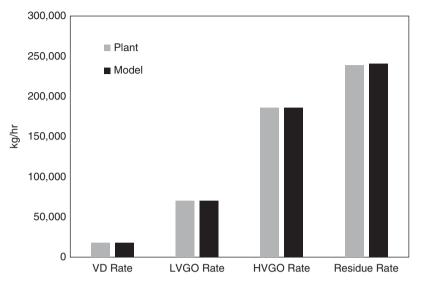


Figure 3.47 Product yields estimated by rigorous model.

489 °C only. In practice, there are four strategies and corresponding actions to perform VDU deep-cut revamping to increase the HVGO yield:

- 1) Increase feed vaporization.
 - Raise flash zone temperature.
 - Reduce flash zone pressure.
- 2) Increase distillate strip-out from residue (if column is steam-stripped).
 - Optimize stripping steam.
- 3) Decrease overflash while maintaining high-quality washing of the vapors rising from the flash zone.
 - Reduce wash oil.
 - Optimize wax recycle.
- 4) Increase vapor-liquid separation in the flash zone.
 - Optimize mechanical design of distillation column.

Except for the fourth strategy, increase vapor-liquid separation in the flash zone, we can investigate all the other three strategies by altering process operations and optimizing the process through simulations. This section presents two case studies to demonstrate the model applications to optimize VDU deep-cut operation by raising flash zone temperature and by optimizing stripping steam.

Figures 3.48 and 3.49 illustrate the effects of flash zone temperature on the mass yield and TBP 95% point of HVGO. The mass yield of HVGO increases 4% when flash zone temperature increases from 407 to 418 °C. In addition, TBP 95% point of HVGO also increases to as high as 567 °C. As higher HVGO yield and cut point result from the higher flash zone temperature, more atmospheric residue gets vaporized.

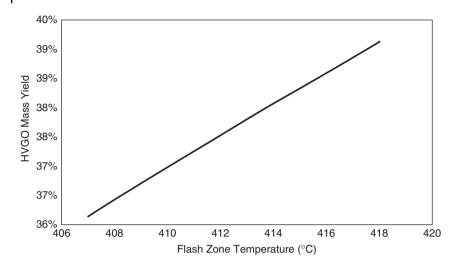


Figure 3.48 Effect of flash zone temperature on HVGO yield.

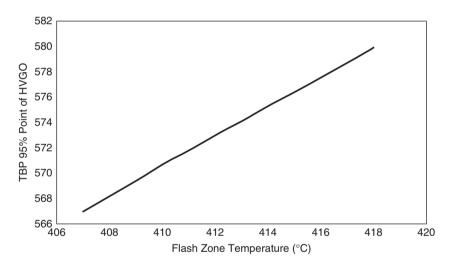


Figure 3.49 Effect of flash zone temperature on HVGO cut point.

Figures 3.50 and 3.51 illustrate the effects of stripping steam rate on the yield and TBP 95% point of HVGO. Similar to the effect of flash zone temperature, both mass yield and TBP 95% point of HVGO increase significantly with increasing stripping steam rate. We note that stripping steam has little effect on vaporizing atmospheric residue directly. Higher stripping steam rate will reduce the vapor pressure of hydrocarbon and enhance the vaporization of atmospheric residue. Both case studies show the expected operations of modern refiners when performing VDU deep-cut operation.

Although process simulation provides a guideline for deep-cut operation, it is important to keep in mind that simulation results are usually the most optimistic scenarios and we should consider other issues before making any changes to a

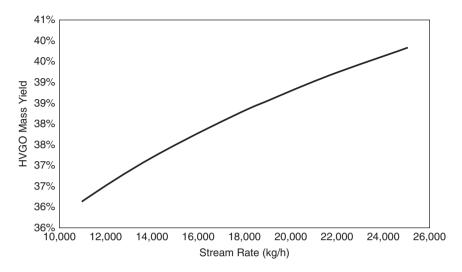


Figure 3.50 Effect of stripping steam rate on HVGO yield.

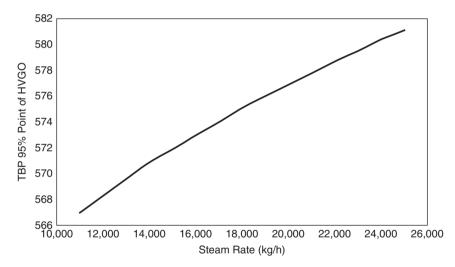
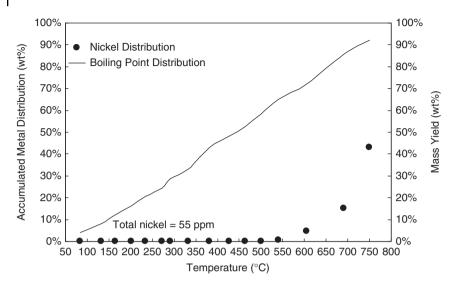



Figure 3.51 Effect of stripping steam rate on HVGO cut point.

real process. The most important issue is the feed oil quality, particularly cracking ability and contaminant distributions, such as nickel and vanadium. We need to minimize the thermal cracking and reduce coke formation in the wash grid. In addition, detailed contaminant distribution of feed stock is also important for process simulation. For example, Figures 3.52 and 3.53 illustrate the nickel and vanadium distribution of some crude oil [8]. Apparently, nickel and vanadium contents rise significantly due to metalloporphyrin components [9] over the temperature range from 550 to 600 °C, which is the target range of deep-cut operation. We must validate the VDU model simulation with a detailed analysis of contaminant distribution to determine if the produced HVGO meets the specifications.

Figure 3.52 Nickel and boiling point distribution of some crude oil. (Adapted from Boduszynski [8].)

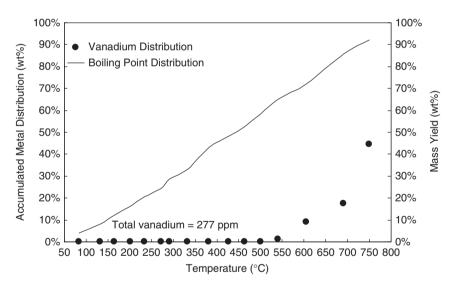
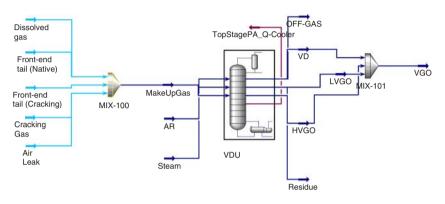
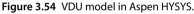


Figure 3.53 Vanadium and boiling point distribution of some crude oil. (Adapted from Boduszynski [8].)


3.5 Workshop 3.3 – Simulation of the VDU Deep-Cut Operation

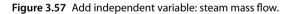

This workshop provides a step-by-step guideline of how to conduct the VDU deep-cut investigation by using "Case Studies" tool that we have demonstrated previously in Workshop 2.1, Section 2.10.3, and in Workshop 2.4, Section 2.13.

Step 1. Open *VDU Deep Cut – Start.hsc*, which is a completed VDU simulation. Save the file as *Workshop 3.3-1.hsc* (Figure 3.54).

Step 2. Activate case studies.

- *Step 3*. Add two independent variables, steam mass flow rate (1.1–2.5E4 kg/h; increment of 0.1E4 kg/h), and flash zone (stage 10) temperature (407–418 °C; increment of 1 °C) (see Figures 3.55–3.57).
- *Step 4*. Define dependent variables: mass flow and TBP 95% point of HVGO and mass flow and TBP 95% point of LVGO (see Figures 3.58 and 3.59).

N . 🗑 🕫 🔂 🖸 🖬 .					Workshop 3	3-1.hsc - Aspen F
File Home Economics	Dynamics View	Customize Reso	urces			
🖓 Copy - 🕂 Unit Sets 🔗	Process Utility Manager Adjust Manager Fluid Package Associations Simulation	Con Hold Works	Dook Reports	Model Summ Flowsheet Sur Input naries	Less 1	Case Studies
Simulation <	Capital:USD Util	ities:USD/Year	Ene	ergy Savings:	_MW (%	Exch
All Items *	Flowsheet Case (Main	n) - Solver Active 🙁	Case Studies ×	+		
Workbook Workbook Workbook Streams Stream Analysis Caupment Design Model Analysis Data Tables Strip Charts Case Studies Case Studi		Case Study Name				Status
Properties	Add					Сору


Figure 3.55 Add a case study.

178 3 Vacuum Distillation Unit

Results Pic	18		Variable Navigator				
Ot	Flowsheet	Object	 Variable		Variable Speci	fics	OK
Add	Case (Main) Navigator Scope Flowsheet Case Basis Analysis	LVGO MokeUpGas MiX-100 MIX-101 OFF-GAS ProductBlock, OFF-GAS ProductBlock, GFF-GAS ProductBlock, VGO Residue STM-2 TopStagePA_Q-Cooler VD VD VGO	Spec Caic Value Spec Error Spec IX Active Spec Value Stage Efficiency Stage Heat Flow Stage Lig Comp Mais Froc Stage Lig Activities Flow Stage Lig Met Actuativo Flow Stage Lig Net Actuativo Flow Stage Lig Net Actuativo Flow Stage Lig Net Mais Flow Stage Lig Net Mais Flow	• [11] •	PA 3, Rate(Pa) PA2, Dit(Pa) PA2, Rate(Pa) Residue Nate TopStagePA, Dut(Pa) TopStagePA, Dut(Pa) TopStagePA, Dut(Pa) TopStagePA, Rate(Pa) Toy 1 Liquid Toy 2 Liquid Toy 2 Liquid Toy 2 Liquid Toy 2 Liquid Toy 4 Liquid Toy 4 Emperature Toy 4 Liquid Toy 4 Emperature	·	Add Object Filter All Streams UnitOps Logicals ColumnOps Custom Custom

Figure 3.56 Add an independent variable, the specified stage 10 (flash zone) temperature: Variable Navigator → Flowsheet – Case (Main); Object – VDU; Variable – Spec Value; Variable Specifics – Tray 10 Temperature \rightarrow OK.

		Variable Navigator		
Flowsheet	Object	Variable	Variable Specifics	ОК
▷ Case (Main)	LVGO MakeUpGas MIX-100 MIX-101 OFF-GAS ProductBlock_OFF-GAS ProductBlock_VGO Residue Steam	 Liq Val Flow @Std Cond Liquid Fraction Lower Heating Value MacroCut Data MacroCut Gat Composition MacroCut LightEnds Mass Density Mass Entholpy Mass Entropy Mass Entwopy 		Object Filter All Streams UnitOps ColumnOps
Navigator Scope Flowsheet Case Basis Analysis	TopStagePA_Q-Cooler VD VDU VGO	Mass Heat Capacity Mass Heat Of Vapourization Mass Higher Heating Value Mass Lower Heating Value Master Comp Mass Flow Master Comp Mass Frag		Custom

Flowsheet	Object	Variable	Variable Specifics	OK
Case (Main)	FeederBlock, Disolved Gas * FeederBlock, Front end tail (i FeederBlock, Front end tail (i FeederBlock, Steam Front end tail (Cracking) Front end tail (Cracking) HVGO LVGO	BO Surface Tension BO Viscosity Coefficient A BO Viscosity Coefficient B BO Water Cut BO Water Oil Ratio BO Water Oil Ratio BO Watson K Calculator CO2 Composition(mole %)	TBP 100%[Petrol] TBP 30%[Petrol] TBP 30%[Petrol] TBP 5%[Petrol] TBP 70%[Petrol] TBP 90%[Petrol] TBP 95%[Petrol] TBP 95%[Petrol] TBrent Conductivity	Add Object Filter - all Streams UnitOps
lavigator Scope Flowsheet Case Basis Analysis	MakeUpGas MIX-100 MIX-101 OFF-GAS ProductBlock_OFF-GAS ProductBlock_Residue ProductBlock_VEGO * 111 *	CO2 Loading Comp K Value - Heavy Llquid Comp K Value - Liap Llquid Comp K Value - Liap Llquid Comp K Value - Mixed Llquid Cost Factor Cost Flow Cost Flow	Total NonEshaust VOC (per n Total Toxic Emission (Summer Total Toxic Emission (Winter)] Total VOC (Summer) per mile Total VOC (Winter) per mile Toxic Acetadehyde Emission (Traic Acetadehyde Emission (Custom

Figure 3.58 Define dependent variable: TBP 95% point of HVGO.

		Variable	Indep	endent	Include	
Spec Value (Tray 10 Temperature)				ure)	Yes	V
Mass Flow			low	Yes		
			Mass F	low	No	P
		Calc	ulator (TBP 95%[Petr	ol])	No	4
			Mass F	low	No	ববব
		Calo	ulator (TBP 95%[Petr	(llo	No	5
	Edi					
		Step Downw	ard			
Hig	ow Bound	High Bound	Step Size			
)	407.0	418.0	1.000			
Hig		High Bound	Step Size			

Figure 3.59 Run case study, varying the tray 10 (flash zone) temperature.

up Results Plots Failed States									
Table 💿 Transpose Table	Results Pic	x Sa	e Results to File 🗐	Text Hienam	e				
State	State 1	State 2	State 3	State 4	State 5	State 6	State 7	State 8	State 1
VDU - Spec Value (Tray 10 Temperature) [C]	407.0	408.0	409.0	410.0	411.0	412.0	413.0	414.0	415.0
HVGO - Mets Flow (kg/h)	2.046e+005	2.059e+005	2.071e+005	2.084e+005	2.097e+005	2.110e+005	2.123e+005	2.136e+005	2.149e+005
HVGO - Calculator (TBP 95%(Petrol]) [C]	581.1	582.1	583.3	584.4	585.6	586.7	587.9	589.1	590.3
LVGO - Mass Row [kg/h]	6.987e+004	6.987e+004	6.987e+004	6.987e+004	6.987e+004	6.987e+004	6.987e+004	6.987e+004	6.987e+004
LVGO - Calculator (TBP 95% [Petrol() (C)	461.6	461.6	461.6	461.7	461.7	461.8	461.8	461.8	461.5
State	State 10	State 11	State 12						
VDU - Spec Value (Tray 10 Temperature) [C]	416.0	417.0	418.0						
HVGO - Mass Flow [kg/h]	2.162e+005	2.175e+005	2.185e+005						
HVGO - Calculator (TBP 95%(Petrol[) (C)	591.6	592.8	594.1						
LVGO - Mass Row [kg/h]	6.987e+004	6.987e+004	6.987e+004						
LVGO - Calculator (TBP 95%[Petrol() [C]	461.9	461.9	461.9						

Figure 3.60 Increasing the flash zone temperature from 407 to 418 °C increases the mass yield of HVGO by 7.3% from 2.046E5 to 2.189E5 kg/h and increases the TBP 95% point only slightly from 461.6 to 461.9 °C.

Workbook	Object		Variable	Independent	Include		
Streams	object						
Stream Analysis			Spec Value (Tray 10 Temperature) Mass Flow				
Equipment Design				Mass Flow	Yes	বেরর	
Model Analysis		HVGO			lator (TBP 95%[Petrol])	No	R
Data Tables		LVGO			Mass Flow	No	R
Strip Charts		LVGO		Calcu	lator (TBP 95%[Petrol])	No	2
Case Studies							
Case Study 1	Add	Remove	Edit				
👌 Data Fits							
	State Input Type	Nested		E Reset after Ru	n		
		L. Contraction					
	Number of States	15		Step Downwa	241		
	Number of States						
	Independent V	/ariable	Low Bound	High Bound	Step Size		
	St	eam - Mass Flow	1.100e+004	2.500e+004	1000		
					united and the second s		
				and the second second second	initia initia antis		
Properties							

Figure 3.61 Run case study, varying the steam mass flow.

180 3 Vacuum Distillation Unit

State	State 1	State 2	State 3	State 4	State 5	State 6	State 7	State 8	State 9
Steam - Mass Flow (kg/h)	1.100e+004	1.200e+004	1.300e+004	1.400e+004	1.500e+004	1.600e+004	1.700e+004	1.800e+004	1.900e+004
HVGO - Mass Flow (log/h)	2.010e+005	2.027e+005	2.043e+005	2.058e+005	2.073e+005	2.086e+005	2.099e+005	2.112e+005	2.124e+005
HVGO - Calculator (TBP 95%(Petrol)) [C]	579.9	581.0	582.2	583.3	584.4	585.4	586.5	587.5	588.5
LVGO - Mass Flow (kg/h)	6.986e+004	6.987e+004							
LVGO - Calculator (TBP 95%[Petrol]) [C]	454.0	463.8	463.7	463.6	463.4	463.2	463.1	462.9	452.8
State	State 10	State 11	State 12	State 13	State 14	State 15			
Steam - Mass Flow (kg/h)	2.000e+004	2.100e+004	2.200e+004	2.300e+004	2.400e+004	2.500e+004			
HVGO - Mass Flow (kg/h)	2.136e+005	2.147e+005	2.158e+005	2.168e+005	2.179e+005	2.189++005			
HVGO - Calculator (TBP 95%(Petrol)) [C]	589.4	590.5	591,4	592.3	593.2	394.1			
LVGD - Mass Flow [kg/h]	6.987e+004	6.987e+004	6.987e+004	6.987e+004	6.987e+004	6.987e+004			
LVGO - Calculator (TBP 95%[Petrol]) (C)	452.6	462.5	462.4	462.2	452.1	461.9			

Figure 3.62 Increasing the steam mass flow from 1.1E4 to 2.5E5 kg/h increases the mass yield of HVGO by 8.9% from 2.01E5 to 2.189E5 kg/h and increases the TBP 95% point significantly from 579.8 to 594.1 °C.

- *Step 5*. Set the lower and upper bounds and step size of the flash zone (tray 10) temperature and run the case study (see Figures 3.59 and 3.60). Save the file as *Workshop 3.3-2.hsc.*
- *Step 6*. Set the lower and upper bounds and step size of the steam mass flow and run the case study (see Figures 3.61 and 3.62). Save the file as *Workshop 3.3-3.hsc*.

Bibliography

- 1 Kaes, G.L. (2000) Refinery Process Modeling A Practical Guide to Steady State Modeling of Petroleum Processes, The Athens Printing Company, Athens, GA.
- 2 Nelsen, N.L. (1951) Oil Gas Journal, 50, 100.
- 3 Kaes, G.L. (2007) Steady State Simulation of an Oil Refinery Using Commercial Software, Kaes Consulting, Colbert, GA.
- **4** Watkins, R.N. (1979) *Petroleum Refinery Distillation*, 2nd edn, Gulf Publishing, Houston, TX.
- 5 Remesat, D. (2008) Improving crude vacuum unit performance. *Petroleum Technology Quarterly*, Q3, 107.
- 6 Barletta, T. and Golden, S.W. (2005) Deep-cut vacuum unit design. *Petroleum Technology Quarterly*, Q4, 91.
- 7 Yahyaabadi, R. (2009 March) Consider practical conditions for vacuum unit modeling. *Hydrocarbon Processing*, **69**.
- **8** Boduszynski, M.M. (1987) Composition of heavy petroleum 1. Molecular weight, hydrogen deficiency, and heteroatom concentration as a function of atmospheric equivalent boiling up to 1400 °F. *Energy & Fuel*, **1**, 2.
- **9** Boduszynski, M.M., Grudoski, D.A., Rechsteiner, C.E., and Iwamoto, J.D. (1995, September) Deep-cut assay reveals additional yields of high-value VGO. *Oil & Gas Journal*, **11**, 39.
- 10 Schneider, D.F. and Musumeci, J. (1997, November) Deep cut vacuum tower processing provides major incentives. *Hydrocarbon Processing*, 76 (11), 83.

- 11 Al-Mutairi, E.M. (2014) Energy optimization of integrated atmospheric and vacuum crude distillation units in oil refinery with light crude. *Asia-Pacific Journal of Chemical Engineering*, **9**, 181.
- 12 Chen, Q. (2014) Comparative analysis and evaluation of three crude oil vacuum distillation process for process selection. *Energy*, **76**, 559.
- 13 Cui, Z. (2016) Application of vacuum deep-cut process in atmospheric-vacuum distillation unit and study on coking prevention. *Petroleum Refinery Engineering*, 46 (3), 14–19.

Predictive Modeling of the Fluid Catalytic Cracking (FCC) Process

4

This chapter presents the methodology to develop, validate, and apply a predictive model for an integrated fluid catalytic cracking (FCC) process. We demonstrate the methodology by using data from a commercial FCC plant in the Asia Pacific with a feed capacity of 800 000 tons per year. Our model accounts for the complex cracking kinetics in the riser–regenerator with a 21-lump kinetic model. We implement the methodology with Microsoft Excel spreadsheets and a commercial software tool, Aspen HYSYS Petroleum Refining from Aspen Technology, Inc. The methodology is equally applicable to other commercial software tools. This model gives accurate predictions of key product yields and properties, given feed qualities and operating conditions. In addition, this work presents the first lumped FCC kinetic model integrated with a gas plant model in the literature. We validate this work using 6 months of plant data. We also perform several case studies to show how refiners may apply this work to improve gasoline yield and increase unit throughput.

A key application of the integrated FCC model is to generate delta-base vectors for linear programming (LP)-based production planning to help refiners choose an optimum slate of crude feeds. Delta-base vectors quantify changes in FCC product yields and properties as functions of changes in feed and operating conditions. Traditionally, refiners generated delta-base vectors using a combination of historical data and empirical correlations. Our integrated model can eliminate guesswork by providing more robust predictions of product yields and properties.

This chapter differentiates itself from previous work in the literature through the following contributions: (1) detailed models of the entire FCC plant, including the overhead gas compressor, main fractionator, primary and sponge oil absorber, primary stripper, and debutanizer columns; (2) process to infer molecular composition required for the kinetic model using routinely collected bulk properties of feedstock; (3) predictions of key liquid product properties not published alongside previous related work (density, D86 distillation curve and flash point); (4) case studies showing industrially useful applications of the model; and (5) application of the model with an existing LP-based production planning tool.

Specifically, Section 4.1 gives the motivation of this chapter. Section 4.2 describes the typical FCC process, including both the riser–regenerator complex and downstream fractionation units. Section 4.3 summarizes the FCC

184 4 Predictive Modeling of the Fluid Catalytic Cracking (FCC) Process

process chemistry and the five main classes of reactions involved, including cracking, isomerization, hydrogen transfer, dehydrogenation and dealkylation, and aromatic ring condensation. Section 4.4 presents a literature review relevant to predictive modeling of FCC processes, covering kinetic models and unit-level models. Section 4.5 describes the features of the Aspen HYSYS Petroleum Refining FCC model, including a 21-lump kinetic model. Section 4.6 presents a step-by-step procedure of determining the parameters of the lumped kinetic model from plant data, called model calibration. Section 4.7 discusses the practical aspects of developing the simulation models of the downstream fractionation units. Section 4.8 presents the guidelines of mapping the feed information to kinetic lumps. We cover fitting distillation curves, inferring molecular compositions, and converting kinetic lumps to fractionations lumps (pseudocomponents). Section 4.9 presents the overall strategy for the model development, and Section 4.10 compares the model predictions with plant data. Section 4.11 illustrates the model applications to improve gasoline yield and increase the throughput of the FCC unit. Section 4.12 demonstrates the model applications to refinery production planning. Sections 4.13-4.17 present five hands-on workshops of development and validation of FCC reaction and fractionation systems from plant data, together with model applications to process optimization and production planning. Section 4.18 summarizes the conclusions of this chapter. Finally, we present "Nomenclature" and "Bibliography" at the end of the chapter.

4.1 Introduction

The current economic, political, and regulatory climates place significant pressures on petroleum refiners to optimize and integrate the refining process. The FCC unit is the largest producer of gasoline and light ends in the refinery [1]. It plays a critical role in the profitable operation of any refinery. Plant operators can make minor adjustments based on the experience to improve the yield and efficiency of the FCC unit. However, major improvements must come from a concerted effort that involves understanding the reaction chemistry, feed characteristics, and equipment performance. In such an endeavor, use of rigorous simulation models is critical. In particular, rigorous simulation models validated with plant data can identify key areas for process improvements.

There is a significant previous work that addresses the issues of process dynamics and control for the integrated FCC unit. We particularly note the efforts by Arbel *et al.* [2] and McFarlane *et al.* [3] in this regard. Subsequent authors [4, 5] use similar techniques and models to identify control schemes and yield behavior. However, most of the earlier work uses a simplified reaction chemistry (yield model) to represent the process kinetics. In addition, previous work in the literature (to our knowledge) does not integrate the FCC model with the complex FCC fractionation system. This work fills the gap between the development of a rigorous kinetic model and industrial application in a large-scale refinery.

4.2 Process Description

The FCC unit is the primary producer of gasoline and olefins in the refinery. Current FCC designs are based on continual improvements and advances in unit and catalyst design since 1940. There are many popular FCC designs in use today and we choose to focus on a Universal Oil Products (UOP) FCC unit. The UOP design includes many features that highlight the unique characteristics of the FCC process. Figure 4.1 shows a general schematic of the FCC unit. We discuss the process flow and unit design in the following section.

4.2.1 Riser–Regenerator Complex

Hot fluidized catalyst (1000 °F+ or 538 °C+) enters the bottom riser through a standpipe where it comes in contact with preheated gas oil feed. The gas oil feed typically consists of vacuum gas oil (VGO) from the vacuum tower, coker gas oil (CGO) from the delayed coker, and recycled products from the FCC main fractionator (Figure 4.2). The heat from the hot catalyst (and any additional

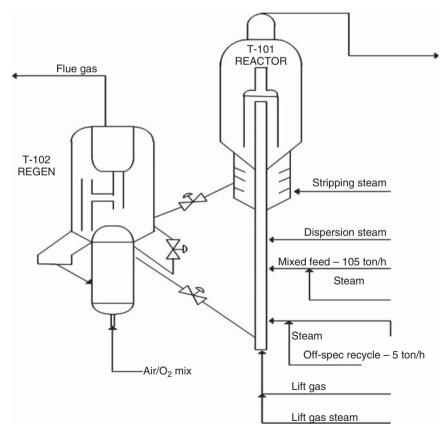


Figure 4.1 General schematic of typical FCC reactor-regenerator unit.

186 4 Predictive Modeling of the Fluid Catalytic Cracking (FCC) Process

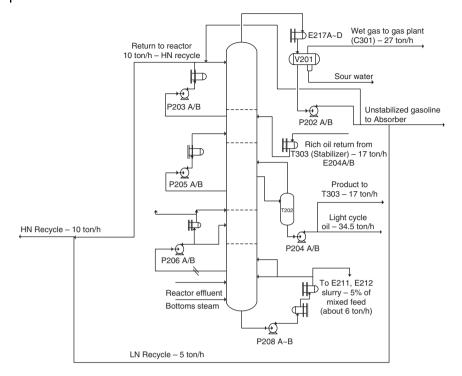


Figure 4.2 Downstream fractionation (main fractionator).

steam or fuel gas added into the standpipe) is sufficient to vaporize the gas oil feed. The components of the vaporized gas oil undergo several reactions over the catalyst surface, including hydrocracking, isomerization, hydrogenation/ dehydrogenation, alkylation/dealkylation, cyclization/decyclization, and condensation. These reactions result in components that make up the product slate. The products typically present are dry gas (hydrogen, methane, and ethane), liquid petroleum gas (propanes, propylene, butanes, and butenes), gasoline (up to 430 °F or 221 °C), light cycle oil (LCO), heavy cycle oil (HCO), slurry or decant oil, and coke. Properties of the feed oil and impurities present on the catalyst significantly affect the distribution of products and the operating profile in the riser.

The catalyst travels to the top of the riser, carrying heavy components and coke deposits from the preceding reactions. The catalyst enters a stripping zone, where some steam is added to further crack and remove the heavy hydrocarbons from the catalyst surface. The catalyst then enters the reactor section, where a cyclone separates the catalyst from the product vapor. The separated product vapor is sent to the main fractionation column (Figure 4.2) that separates the product into gaseous and liquid products. The separated catalyst is piped into the regenerator where the coke on the catalyst is burned off.

The separated catalyst typically contains about 0.4–2.5% of coke by weight [1]. Air and possibly pure oxygen (depending on unit configuration) enter into the regenerator through additional ports. Fresh makeup coke also enters the FCC

plant through additional ports. The coke is mostly oxidized, producing CO_2 and CO as primary products and SO_x and NO_x as secondary products. These flue gas products are typically used in heat integration loops to provide steam to the plant. The catalyst is typically oxidized to a level containing 0.05% of coke by weight [1]. This oxidization also heats the catalyst as it reenters the riser through the standpipe.

4.2.2 Downstream Fractionation

The effluent from the FCC enters the main fractionator with a significant quantity of steam, as shown in Figure 4.2. This fractionator separates the reactor effluent into five product groups: light gases (C1-C4), gasoline (C5+ to 430°F or 221 °C), LCO, HCO (430-650 °F, or 221-343 °C), and slurry/decant oil (650+ °F or 343+ °C). The temperature range of these products varies in different refineries (or different operating scenarios in the same refinery) depending on product demands and current operating constraints. Several pumparounds are associated with the main fractionator, which help control the product distribution and temperature profiles. Most of the products from the main fractionator cannot be sent directly into the refinery's product blending pool. Additional fractionation and product isolation occur in the gas plant associated with the FCC unit, as shown in Figure 4.3. The overhead vapor contains some C5 components, which must be recovered in the product gasoline. A portion of the LCO product is drawn off as sponge oil to recover gasoline in a sponge oil absorber. The liquid from the overhead condenser flows to the primary absorber where C3-C4 components are recovered.

There is a significant value in separating and isolating the C3–C4 components. We may sell these components as LPG, or use them as a valuable feedstock for other petrochemical processes. The FCC gas plant is responsible for the

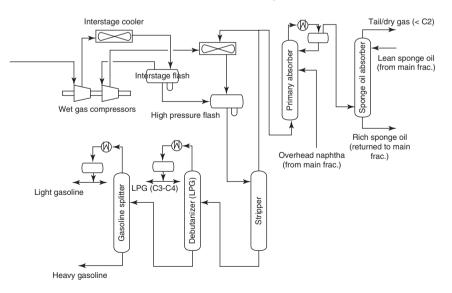


Figure 4.3 FCC gas plant section.

188 4 Predictive Modeling of the Fluid Catalytic Cracking (FCC) Process

separation of C3–C4 components and stabilization of gasoline. The stabilization of gasoline refers to controlling the amount of C4 components present in the product gasoline.

The overhead vapor from the main fractionation column enters the wet gas compressor train. The vapor leaving the compressor train then enters a high-pressure flash system. The vapor from the high-pressure flash enters the primary absorber. The C5 components leave with the bottom product from the primary absorber. This bottom product reenters the high-pressure flash. The overhead vapor product enters a sponge oil absorber where it is contacted with LCO drawn off from the main fractionator. The overhead products of the sponge oil absorber are H2 and C1 components that can serve as fuels to meet the refinery's energy demands. The bottom product from the sponge oil absorber is recycled back to the main fractionator.

The liquid product from the high-pressure flash enters the primary stripping column. The overhead product from the stripping column mainly consists of C2 components. This product is recycled back to the high-pressure flash. The bottom product from the column mainly consists of C3–C4 components and gasoline. This product enters the primary stabilizer (sometimes called a debutanizer), which separates most of the C3–C4 components into the overhead liquid. The stabilized gasoline (containing a regulated amount of C4) leaves as the bottom product.

Some FCC gas plants further separate the gasoline product leaving the stabilizer into heavy and light gasoline. We do not include additional gasoline splitting in this work. In addition, most plants contain a water wash or injection system to control the presence of acidic compounds that lead to corrosion. This water injection typically occurs between the stages of the overhead wet gas compressor. Most of this water leaves the process flow before entering the columns of the gas plant. This water wash has little effect on the overall simulation of the process, so we do not include it in this work.

4.3 Process Chemistry

The feed to the FCC unit is a complex mixture consisting of long-chain paraffins, single- and multiple-ring cycloalkanes, and large aromatic compounds. It is impossible to list every reaction that each individual molecule undergoes in the FCC riser. However, we can place each of the reactions into five different classes based on the type of reactants and products, effect on catalyst activity, and contributions to product slate. In general, catalytic cracking occurs through formation of carbocation (from feed hydrocarbon molecule) in conjunction with a catalyst acid site. This carbocation may then undergo cracking (to produce smaller molecules), isomerization (to rearrange molecules), and hydrogen transfer (to produce aromatic compounds). Table 4.1 gives a simplified overview of key classes of reactions and the general formulas for reactants and products.

The most significant classes of reactions are cracking (reaction class 1), isomerization (reaction class 2), and hydrogen transfer (reaction class 3) [1, 6, 7].

Description	General reaction formula for reactants and products					
Reaction class 1: Cracking						
Paraffin cracked to olefins and smaller paraffins	$C_{m+n}H_{2[(m+n)+2]} \rightarrow C_mH_{2m+2} + C_nH_{2n+2}$					
Olefins cracked to smaller olefins	$C_{(m+n)}H_{2(m+n)} \rightarrow C_mH_{2m} + C_nH_{2n}$					
Aromatic side-chain scission	$Ar-C_{(m+n)}H_{2(m+n)+1} \rightarrow Ar-C_mH_{2m-1} + C_nH_{2n+2}$					
Naphthenes (cycloparaffins) cracked to olefins and smaller naphthenes	$C_{(m+n)}H_{2(m+n)}$ (naphthene) $\rightarrow C_mH_{2m}$ (naphthene) $+ C_nH_{2n}$ (Olefin)					
Reaction class 2: Isomerization						
Olefin bond shift	x - C_n H _{2n} \rightarrow y - C_n H _{2n} (x and y are different locations of the olefin)					
Normal olefin to iso-olefin	$n - C_n H_{2n} \rightarrow i - C_n H_{2n}$					
Normal paraffins to isoparaffin	$n - C_n H_{2n+2} \rightarrow i - C_n H_{2n+2}$					
Cyclohexane to cyclopentane	C_6H_{12} (naphthene) → C_5H_9 − CH_3 (naphthene)					
Reaction class 3: Hydrogen transfer						
Paraffins and olefins converted to aromatics and paraffins	$C_n H_{2n}$ (naphthene) + $C_m H_{2m}$ (olefin) \rightarrow Ar $C_x H_{2x+1}$ (aromatic) + $C_p H_{2p+2}$ (paraffin)					
	(where $x = m + n - 6 - p$)					
Reaction class 4: Dehydrogenation and dealkylation (contaminated catalyst)						
Metal-catalyzed aromatic and light hydrocarbon production	$\begin{split} &i\text{-}\mathbf{C}_{n}\mathbf{H}_{2n-1}+\mathbf{C}_{m}\mathbf{H}_{m-1}\rightarrow \mathrm{Ar}+\\ &\mathbf{C}_{(n+m-6)}\mathbf{H}_{2(n+m-6)} \end{split}$					
	$n\text{-}C_2\text{H}_{2n+2} \rightarrow C_n\text{H}_{2n} + \text{H}_2$					
Reaction class 5: Aromatic ring condensation						
Condensation of single-ring aromatic cores to produce multiple-ring aromatic cores	$Ar-CHCH_2 + R_1CH-CHR_2 \rightarrow Ar-Ar + H_2$					

 Table 4.1 Key classes of reactions with general formulas for products and reactants.

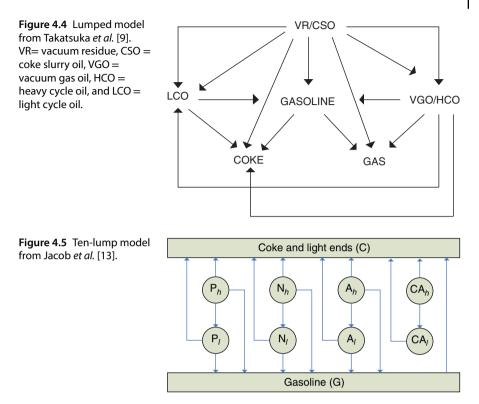
The remaining classes are undesirable and contribute to hydrogen or coke production. The acid-catalyzed cracking reactions from reaction class 1 form the primary pathway for light gas and LPG (C3–C4) components and the long-chain paraffin components of diesel. These reactions also provide some of the lighter aromatic components present in the products. When catalytic conditions are not present (e.g., contaminated/occluded catalyst or high temperatures), a thermal cracking process takes over, promoting lower-order cracking reactions. These reactions tend to produce very large amounts of dry gas components (C1 and C2) and result in higher coke production [1, 6]. In addition, excessive thermal cracking is not an economically attractive operating scenario.

Isomerization reactions (reaction class 2) give an important pathway for high-octane components in the gasoline. This class of reactions is critical for producing high-octane components in the gasoline products. In addition, we

190 4 Predictive Modeling of the Fluid Catalytic Cracking (FCC) Process

find more valuable isobutene components due to the isomerization of butanes. The isoparaffins from the isomerization class of reactions also reduce the cloud point of the diesel product [1].

Hydrogen transfer reactions (reaction class 3) form a class of reactions that improves gasoline yield and stability (by lowering olefin content), but also lower the overall octane rating of the product. These reactions produce paraffins and aromatics that have low octane ratings. In addition, we cannot recover the olefins consumed by hydrogen transfer reactions in the LPG or the light ends of gasoline [8].


Dehydrogenation (reaction class 4) is a result of the presence of metals such as nickel and vanadium on the catalyst. The metal sites on the catalyst promote dehydrogenation and dealkylation. These reactions tend to produce large amounts of H_2 and paraffin components with low octane ratings. The coking process follows a complicated series of reactions that include olefin polymerization and aromatic ring condensation (reaction class 5). The coking reactions dominate when the unit is operating at a nonoptimal temperature (typically less than 850 °F or 454 °C, or greater than 1050 °F or 566 °C), or when the feed contains significant amounts of residue, recycled coke or olefins [8].

4.4 Literature Review

We can divide the literature on FCC modeling into two categories: kinetic and unit-level models. Kinetic models focus on chemical reactions taking place within the riser or reactor section of the FCC unit and attempt to quantify the feed as a mixture of chemical entities to describe the rate of reaction from one chemical entity to another. In contrast, unit-level models contain several submodels to take into account the integrated nature of modern FCC units. A basic unit-level model contains submodels for the riser/reactor, regenerator, and catalyst transfer sections. The riser requires a kinetic model to describe the conversion of chemical entities. The regenerator contains another kinetic model to describe the process of coke removal from the catalyst. The unit-level model also captures the heat balance between the riser and the regenerator.

4.4.1 Kinetic Models

We classify kinetic models according to the chemical entities that makeup the model. Typically, the entities or "lumps" are boiling point lumps or yield lumps, grouped chemical lumps, and full chemical lumps. Early kinetic models consist entirely of yield lumps, which represent the products that the refiner collects from the main fractionator following the FCC unit. Figure 4.4 shows a typical kinetic model based on yield lumps by Takatsuka *et al.* [9]. Many similar models have appeared in the literature. The models differentiate themselves based on their number of lumps. Models may contain as few as two [10] or three lumps [11] and as many as 50 lumps [12]. We note that models with more lumps do not necessarily have more predictive capabilities than models with fewer lumps [6].

The next class of kinetic models considers both chemical type lumps and boiling point or yield lumps. For example, Jacob *et al.* [13] present a popular 10-lump model (shown in Figure 4.5) that includes coke and light ends (C), gasoline (G, C5–221 °C), light paraffin P_l , heavy paraffin P_h , light naphthene N_l , heavy naphthene N_h , light aromatics A_l , heavy aromatics A_h , light aromatic with side chains CA_l , and heavy aromatic with side chains CA_h . The "*l*" subscript refers to "light" lumps in the boiling point range between 221 and 343 °C, whereas the "*h*" subscript refers to "heavy" lumps that have boiling point above 343 °C.

The key advantage of this lumped kinetic model is that we can measure the composition of lumps with various experimental techniques. In addition, the rate constants that arise from using this model are less sensitive to changes in feed and process conditions [14]. This model has served as the basis for models that include more chemical types. Pitault *et al.* [15, 16] have developed a 19-lump model that includes several olefin lumps. Saleh *et al.* [61] utilized a six-lump yield model to study optimization of FCC units. Xu *et al.* [62] proposed an eight-lump kinetic model to study catalytic cracking of VGO. In 2014, Xu *et al.* [63] presented a 22-lump kinetic model to investigate hydroisomerization and hydroaromatization reactions of FCC naphtha. AspenTech [17, 18] has developed a 21-lump model to address heavier and more aromatic feeds, which we will use to model reaction section of the FCC unit. We discuss this 21-lump model in Section 4.5.2.

192 4 Predictive Modeling of the Fluid Catalytic Cracking (FCC) Process

Hsu *et al.* [6] stated that "lumped kinetic models developed by the top-down route have limited extrapolative power." To remedy this situation, many researchers have developed complex reaction schemes based on first chemical principles that involve thousands of chemical species. We can classify them into *mechanistic* models and *pathway* models. Mechanistic models track the chemical intermediates such as ions and free radicals that occur in the catalytic FCC process. Transition state theory helps in quantifying the rate constants involved in adsorption, reaction, and desorption of reactant and product species from the catalyst surface. Froment and coworkers [19] have pioneered the use of such models in a refinery context and have developed a model for catalytic VGO. Hsu et al. [6] claimed that using this method is challenging because of its large size and reaction complexity. Structure-oriented lumping (SOL) is a leading example of the pathway-based models. Quann and Jaffe [20-22] have developed a unique method for tracking molecules in the feed oil. The method tracks different compositional and structural attributes of a molecule (number of aromatic rings, number of nitrogen substituents, sulfur substituents, etc.) in a vector format. Figure 4.6 shows typical vectors for some sample molecules.

After developing these vectors for the feed oil, SOL method includes several rules to generate reaction paths that convert the feed vectors to product vectors. The rate constants and activation energies for these reactions are functions of the reaction type and the feed oil composition vector. Christensen *et al.* [23] discussed applying the SOL method to develop a FCC kinetic model, which contains over 30 000 chemical reactions and 3000 molecular species. The resulting model can accurately predict product yields, compositions, and qualities over a wide range of operating conditions. Klein and coworkers [24] have also developed similar models for FCC and catalytic reforming.

Figure 4.7 compares these kinetic models on the basis of complexity and model fidelity. The yield lump models have the lowest complexity and require the least amount of data. Typically, the feed may be treated as a single lump and there are few reaction rates to calibrate. Chemical lumps require knowledge of chemical type of the lump, namely, paraffin, naphthene, and aromatic (PNA) content of each boiling point range. Pathway and mechanistic models require the detailed analysis of the feed data to develop molecular representation. Additionally, pathway and mechanistic models require the numerous kinetic parameters [6].

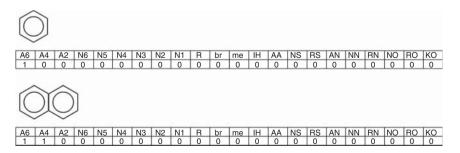
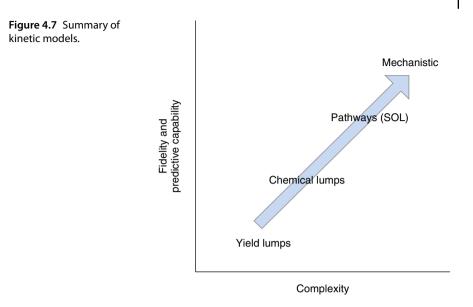



Figure 4.6 Typical SOL lumping. (From [20].)

4.4.2 Unit-Level Models

Table 4.2 compares a selection of published work (after 1985) regarding modeling of an entire FCC unit. This table does not include work that only compares the performance of the riser with experimental or plant data. It includes work where the authors compare the predictions of the entire FCC unit model with published data, experimental data, or plant data. The work by Lee et al. [10], McFarlane et al. [3], and Arbel et al. [2] provided the basis for many dynamic and process control-related models by later authors. These studies focus on optimal control strategies and the dynamic response of the FCC unit. Few papers compare the steady-state operation of the FCC unit with detailed predictions of yield and product properties with plant data. Notably, the work of Fernandes et al. [33] followed an industrial FCC unit over the course of 3 years and gives good predictions of the unit's performance. However, this work does not include any detailed predictions of product quality and composition. Additional work by Fernandes et al. [35] showed how feed and operating conditions such as coke composition, catalyst-to-oil ratio, CCR in the feed, air-to-oil ratio, and regenerator combustion modes can induce multiple steady states with implications for a general unit control strategy.

A complete unit-level model for a FCC unit includes several submodels of varying degrees of rigor. A modern FCC unit involves complex kinetic, heat management, and hydrodynamic issues. Necessarily, researchers develop models that focus on particular aspects of FCC operation. There is significant research [36] on the topic of complex hydrodynamics in the riser and regenerator sections using computational fluid dynamics (CFD). Zhang *et al.* [64] employed the CFD method to model a heavy oil riser with a bottom-lift loop mixer. These models often require detailed information about the process that is proprietary. The focus of this chapter is developing a model to predict key process output variables such as product yields, product properties, and operating profiles of the

Table 4.2 Survey of related published literature for integrated FCC modeling.

Reference	Application	Kinetics	Property predictions	Fractionation modeling	Validation data	Integration with production planning
Lee et al. [10]	Dynamic/ process control	3-Lump	None	None	None	None
McFarlane <i>et al.</i> [3]	Dynamic/ process control	2-Lump	None	None	None	None
Arbel <i>et al.</i> [2]	Dynamic/ process control	10-Lump	None	None	Literature	None
Khandalekar <i>et al.</i> [5]	Dynamic/ process control	3-Lump	None	None	Literature	None
Kumar <i>et al.</i> [25]	Steady state	10-Lump	None	None	Literature	None
Chitnis et al. [1]	Dynamic/ online optimization	4-Lump	None	None	Literature	None
Ellis <i>et al.</i> [26]	Dynamic/ process control	10-Lump	Light gas composition (C1–C4), RON/MON of gasoline products	None	Literature	None
Secchi et al. [27]	Dynamic	10-Lump	None	None	Industrial (dynamic)	None
Mo et al. [28]	Steady state/ online optimization	NA	Extensive properties of all key products	None	Industrial, pilot plant, and experimental	
Elnashaie et al. [29]	Steady state	3-Lump	None	None	Industrial	None
Rao <i>et al.</i> [30]	Steady state	11-Lump	None	None	Industrial	None
Arajuo-Monroy et al. [31]	Steady state	6-Lump	Light gas composition	None	Industrial	None
Bollas <i>et al.</i> [32]	Dynamic/pilot plant process control	2-Lump	None	None	Pilot plant	None
Fernandes et al. [33]	Steady state/ dynamic	6-Lump	None	None	Industrial	None
Shaikh et al. [34]	Steady state	4-Lump	None	None	Pilot plant	None
This work	Steady state	21-Lump	Light gas composition, flash point, density of key products, and RON/MON	Main fractionator and associated gas plant	Industrial	Export model to LP-based planning tool

Note: RON/MON = research octane number/motor octane number.

Submodel	Purpose	Unit operation
Riser reactor	Crack feed species to product species	Plug flow reactor (PFR) operating under pseudo-steady conditions
		Catalyst activity decay to due to coke formation as a result of time on stream, coke on catalyst, and catalyst type
Stripper	Removal of adsorbed hydrocarbons on the catalyst	Continuously stirred tank reactor (CSTR) with well-mixed model
Regenerator	Combust coke present on the catalyst	Stoichiometric or partial combustion of coke Bubbling bed reactor with a dense phase and a dilute phase
Feed vaporizer	Vaporize the feed species for input into the riser model	Heater with associated two-phase flash
Valves	Control the flow and pressure drop from the riser/reactor section to regenerator section	Typical valve equations based on pressure drop across the valve
Cyclones	Separate solids from the hydrocarbon and effluent vapors	Simple component splitter

Table 4.3 Required submodels for a basic simulation of a complete FCC unit.

FCC unit and associated gas plant. We acknowledge that the hydrodynamics and complex kinetics have significant effects on these output variables [1]. However, our goal is to develop a model that engineers can use and modify based on limited process data.

Arandes *et al.* [37] and Han *et al.* [38] summarized the key submodels required for a unit-level model that can provide necessary simulation fidelity for this work. We briefly summarize these submodels in Table 4.3 and refer readers to these two papers for detailed equations and additional references.

Modern FCC units and catalyst have very high conversions in the riser section. The conversion of feed species to product species completes within the riser; thus, we require no additional sections for feed conversion. There are units where feed conversion may occur in locations other than the riser [39, 40], but we have chosen to limit our discussion to the most common type of unit.

4.5 Aspen HYSYS Petroleum Refining FCC Model

The Aspen HYSYS Petroleum Refining FCC model relies on a series of submodels that can simulate an entire operating unit while satisfying the riser and regenerator heat balance. Note that the configuration is similar to the minimum submodels listed in Table 4.3 of the previous section. We summarize Aspen HYSYS Petroleum Refining submodels in Table 4.4 and highlight some key features in subsequent sections (Figure 4.8).

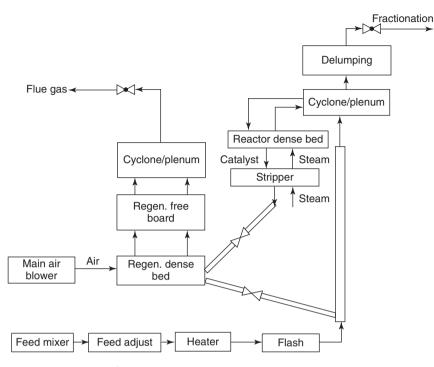

Submodel	Purpose	Unit operation	Considerations
Riser (more than one can be present)	Convert feed to product species using 21-lump kinetics	Modified plug flow reactor (PFR)	Allows any angle of inclination Pressure drop is a combination of pressure drop due to solid and vapor phases Catalyst activity decay due to
			kinetic and metal coke on catalyst Slip factor correlations (difference between vapor and solid velocities) to estimate specie density
Reactor/ stripper	Complete feed conversion and remove adsorbed hydrocarbons	Bubbling bed reactor with two phases	Switches to fluidized-bed reactor model for units with low catalyst holdup
Regenerator	Combust coke present on catalyst	Bubbling bed reactor with two phases	Kinetic models for coke combustion with air and enriching oxygen [41]
Regenerator freeboard	Complete combustion of coke	Simple PFR	Additional kinetics to match behavior of industrial units [42]
Cyclones	Separate solids from hydrocarbon and effluent vapors	Two-phase pressure drop calculation	Pressure drop is a combination of pressure drop due to solid and vapor phases
Delumper	Converts lumped composition into set of true boiling point (TBP) pseudocomponents suitable for fractionation	_	Carries chemical information about the kinetic lumps as an attribute of the pseudocomponent Additional delumping of light gas into C1–C4 components using known kinetics [43]

Table 4.4 Summar	y of Aspen HYSYS Petroleur	n Refining FCC submodels	(adapted from [6]).

4.5.1 Slip Factor and Average Voidage

An important concern in FCC riser submodels is how to calculate the slip factor, φ , and the average voidage, ε , of the riser. The slip factor is simply defined as the ratio between gas velocity and catalyst particle velocity. The slip factor plays an important part in determining the residence time of reactions and thus affects the overall conversion in the riser. Harriot described a slip factor range of 1.2–4.0 for most FCC risers, but also indicates that there is no reliable correlation available for prediction [44]. Previous authors have used a variety of approaches including constant slip factor [45], multiple slip factors [46], and correlations [47]. An alternative approach is to include additional momentum balance equations for the gas phase and catalyst phase [48]. This approach allows users to calculate velocity profiles for each phase and the overall pressure drop in the riser directly.

Aspen HYSYS uses a custom correlation based on a fully developed flow (away from the catalyst particle acceleration zone) that accounts for various angles of riser inclination. We present a similar correlation from Bolkan-Kenny *et al.* [47]

Figure 4.8 Overview of the major submodels that make up the Aspen HYSYS Petroleum Refining FCC model. (Adapted from [6].)

in Eq. (4.1) using dimensionless Froude numbers, Eqs. (4.2)–(4.3). This correlation is essentially a function of riser diameter, D; gravitational constant, g; superficial gas velocity, u_0 ; and u_t , terminal settling velocity of the catalyst particle.

$$\varphi = 1 + \frac{5.6}{Fr} + 0.47 Fr_t^{0.41} \tag{4.1}$$

$$Fr = \frac{u_{\rm o}}{\sqrt{gD}} \tag{4.2}$$

$$Fr_{t} = \frac{u_{t}}{\sqrt{gD}}$$
(4.3)

4.5.2 21-Lump Kinetic Model

The 21-lump kinetic model in Aspen HYSYS Petroleum Refining is similar to the popular 10-lump model from Jacob *et al.* [13] (Figure 4.5). The 21-lump model follows the same basic structure and pathways as the 10-lump model by grouping lumps into boiling point ranges and chemical types within each boiling point range. In addition, the 21-lump model includes a boiling point range to deal with heavy feeds (boiling point greater than 510 °C) that the original 10-lump model cannot handle. To account for the differences in reactivity of various aromatic compounds, aromatic lumps are further split into lumps containing side chains and multiple rings separately. The 21-lump model also splits the original single lump for coke into two separate coke lumps. These separate lumps

Boiling point range	Lumps
<c5< td=""><td>Light gas lump</td></c5<>	Light gas lump
C5–221 °C	Gasoline
221–343 °C (VGO)	Light paraffin (PL)
	Light naphthene (NL)
	Light aromatics with side chains (ALs)
	One-ring light aromatics (ALr1)
	Two-ring heavy aromatics (ALr2)
343–510 °C (heavy VGO)	Heavy paraffin (PH)
	Heavy naphthene (NH)
	Heavy aromatics with side chains (AHs)
	One-ring heavy aromatics (AHr1)
	Two-ring heavy aromatics (AHr2)
	Three-ring heavy aromatics (AHr3)
510+ °C (Residue)	Residue paraffin (PR)
	Residue naphthene (NR)
	Residue aromatics with side chains (ARs)
	One-ring residue aromatics (ARr1)
	Two-ring residue aromatics (ARr2)
	Three-ring residue aromatics (ARr3)
Coke	Kinetic coke (produced by reaction scheme)
	Metal coke (produced by metal activity on catalyst)

Table 4.5 Summary of 21-lump kinetics (adapted from [6]).

account for coke produced from cracking reactions (called *kinetic coke*) and coke produced from metal activity (called *metal coke*) individually. We note that the rate equations in the kinetic network in Aspen HYSYS Petroleum Refining are largely similar to equations in the first-order network for 10-lump model. However, the rate equations in the 21-lump model include additional terms to account for the adsorption of the heavy hydrocarbons (due to the extended boiling point range of the lumps) and the metal activity of the catalyst. Table 4.5 lists the kinetic lumps used in the 21-lump model.

We can obtain the lump composition of the feedstock directly via GC/MS, ¹H NMR, ¹³C NMR, HPLC, and ASTM methods. However, this is infeasible on a regular basis for refineries, given the changing nature of the feedstock. Aspen HYSYS Petroleum Refining includes a method that uses existing feed analysis to infer feed composition using routinely collected data. However, we have developed an alternative scheme to infer feed composition. We detail this method in Section 4.8.

4.5.3 Catalyst Deactivation

Another important consideration in the FCC unit model is the deactivation of catalyst as it circulates through the unit. Previous work has used two different

approaches to model catalyst activity: time-on-stream and coke-on-catalyst [49]. As the 21-lump includes discrete lumps for the kinetic and metal coke, we use a coke-on-catalyst approach to model catalyst deactivation. In addition, we include a rate equation in the kinetic network for coke balance on the catalyst. The general deactivation function due to coke, ϕ_{COKE} , is given by Eq. (4.4).

$$\phi_{\text{COKE}} = \phi_{\text{KCOKE}} \phi_{\text{MCOKE}}$$
$$= \exp(-a_{\text{KCOKE}} C_{\text{KCOKE}}) \exp(-a_{\text{MCOKE}} C_{\text{MCOKE}} f(C_{\text{METALS}}))$$
(4.4)

In the equation, $a_{\rm KCOKE}$ is the activity factor for kinetic coke, $a_{\rm MCOKE}$ is the activity factor for metal coke, $C_{\rm KCOKE}$ is the concentration of kinetic coke on the catalyst, $a_{\rm MCOKE}$ is the activity factor for metal coke, $C_{\rm MCOKE}$ is the concentration of metal coke on the catalyst, and $C_{\rm METALS}$ represents the concentration of metals on the catalyst.

4.6 Calibrating the Aspen HYSYS Petroleum Refining FCC Model

Given the variety of feedstocks that the FCC unit processes, it is unlikely that a single set of kinetic parameters will provide accurate and industrially useful yield and property predictions. In addition, changes in catalyst may significantly alter the yield distribution. Therefore, it is necessary to calibrate the model to a base scenario. Table 4.6 lists the key calibration parameters for the FCC model. We group them by their effects on the model predictions.

Aspen HYSYS Petroleum Refining includes a base set of kinetic and calibration parameters regressed for a variety of feed oils and catalyst types. We use these as a starting point to *calibrate* the model to our specific operating scenario. Due to the chemical nature of the feed lumping, the calibration process results in only small changes in the values of calibration parameters. Significant changes from the base values may result in "overcalibration" and fix the model to a particular operating point. An "overcalibrated" model gives poor predictions even when we make small changes to input variables. It is critical to keep track of these changes

Parameter class	Calibration parameters
Overall reaction selectivity	Selectivity to C (coke lump)
	Selectivity to G (gasoline lump)
	Selectivity to L (VGO lump)
Distribution of light gas components (C1–C4)	Selectivities to C1–C4 light gases
Deactivation	Factors accounting for the metal contents and activity of the equilibrium catalyst (ECAT)
Equipment and process conditions	Activity for CO/CO $_2$ generation from coke combustion in the regenerator

Table 4.6 Key calibration parameters for FCC model.

in the calibration factors and make sure that they are reasonable. The key steps in the calibration process are as follows:

- 1) Obtain a base or reference set of operating data that fully defines the operation of the FCC unit and associated product yields. Table 4.12 lists the relevant data used for calibration in this work.
- 2) Use experimentally measured chemical composition of liquid products (or estimate using the methods given in Section 4.8) to calculate the expected effluent composition of kinetic lumps from FCC unit.
- 3) Vary the reaction selectivities for reaction paths (three parameters) that lead to *coke lumps* (kinetic coke and metal coke), *gasoline* (G lump), and *VGO* (PH, NH, AHs, AHr1, AHr2, and AHr2 lumps); deactivation activity factors (two parameters); and coke burn activity (one parameter) so that model predictions for kinetic lump compositions agree with measured (or estimated) kinetic lump compositions from step 2.
- 4) Vary the distribution selectivities (minimum two parameters ratio between C1 and C2 and ratio between C3 and C4) for light gases to match the total measured light gas composition from the dry gas and LPG stream of the refinery.
- 5) Once calibration is complete, verify that overall material and energy balances hold.

In Aspen HYSYS, we can modify the parameters in steps 3 and 4 concurrently to simplify the calibration process. We note that if the initial kinetic parameters have been regressed from a variety of sources, small adjustments to calibration parameters are enough to match typical plant operation. In our work, the range of calibration parameters is roughly on the order of 0.5–1.5 times the initial calibration parameter values.

4.7 Fractionation

The fractionation section uses standard inside-out methods [50] implemented by many popular simulators, including Aspen HYSYS, as discussed in Section 2.4.4. This method offers robust convergence and wide flexibility in specifications. The key issue in implementing fractionation models is whether to use individual stage efficiencies, such as the Murphree stage efficiency, as defined previously in Eqs. (2.9) and (2.10) in Section 2.4.2. Readers should be careful to avoid confusion with a related concept, the overall stage efficiency. Overall stage efficiency refers to the ratio of theoretical stages used in simulations to physical stages in the actual column. For example, consider the case where we model a distillation column having 20 physical stages with simulator using only 10 theoretical stages. This column has overall efficiency of 10/20 = 0.50. Note that each stage in the simulation operates under valid thermodynamic vapor–liquid equilibrium assumptions.

Section 2.4.3 discussed in detail that distillation column simulations using the Murphree stage efficiency violates vapor—liquid equilibrium constraints and can predict unusual and unphysical solutions for stage-by-stage simulation models. Both Kister [50] and Kaes [51] advised against the use of the stage efficiency

models. They warned that simulations using these factors may lose predictive abilities and may not converge robustly. In our work, we use the rigorous stage-by-stage models for all fractionators with the overall stage efficiency concept. Kaes [51] has documented the relevant overall stage efficiencies that are reasonable for modeling columns in the FCC gas plant. Table 4.7 shows the number of theoretical stages and the overall stage efficiencies for FCC fractionation. We obtain the overall stage efficiency as the ratio of number of theoretical stages to actual physical stages in the column. For example, the main fractionator column typically has 30–40 physical stages and we find that 12–16 theoretical stages are sufficient for modeling purposes. Hence, the overall efficiency ranges from about 40% to 50%. We calculate overall efficiencies for other columns given in Table 4.7 using a typical range for the number of physical stages from various process design data.

We can actually develop the initial model for the fractionation without connecting it to the FCC model. Here, we follow the process of "backblending" (previously demonstrated in Section 2.8), as shown in Figure 4.9, to recover the reactor effluent (or fractionator feed) from a known set of product yield data [51]. This process requires that we know the yields and compositions of all the key products from the FCC plant, the feed rate to the reactor, and additional inputs (such as steam) to the reactor. We then use the composition data of the light products and the distillation curves of the liquid products to reconstruct a reactor effluent as the fractionator feed. We feed this effluent into the initial fractionation model and recover the products that are "backblended." There are two advantages to this process. First, we can verify that the fractionation model accurately reflects plant operation. We verify the fractionation model through accurate predictions of product yields, good overlap between plant and model distillation curves of liquid products, agreement of plant and model gas compositions (dry gas, LPG), and small deviations between the temperature profiles of plant and model columns. Second, this process can shorten the model development time, as we can work on modeling FCC unit and the fractionation units at the same time.

In this work, *calibrating* the fractionation section refers to the process of adjusting the number of theoretical stages in each zone (in the case of the main fractionator) or the number of theoretical stages between feed points. We use a set of a basic initialization specifications and efficiencies given in Table 4.7

Fractionator	Theoretical stages	Overall efficiency (%)	
Main fractionator	13–17	40-50	
Primary absorber	6-10	20-30	
Primary stripper	12-15	40-50	
Secondary absorber	3-8	20-25	
Gasoline stabilizer	25-30	75-80	
LPG (C3/C4) splitter	25-30	75-80	

 Table 4.7
 Theoretical stages and efficiency factors for FCC fractionation.

Source: Courtesy of G. L. Kaes.

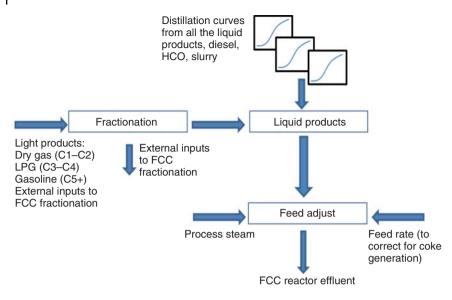


Figure 4.9 "Backblending" products to reconstitute FCC reactor effluent.

Column	Initial specifications	Final specifications	
Main fractionator All pumparound rates and return temperatures (or temperature changes) Draw rates for all products Bottom temperature Condenser temperature		Column overhead temperature Cut point for naphtha draws Pumparound duties Bottom temperature Condenser temperature	
Primary absorber	None	None	
Primary stripper	None	None	
Secondary absorber None		None	
Gasoline stabilizer Reflux ratio (around 2.0) Overhead draw rate		Gasoline <i>n</i> -butane fraction or Reid vapor pressure (RVP) in bottom Column overhead temperature or	
		C5+ content in overhead	
LPG stabilizer	Reflux ratio (around 3.0) Overhead draw rate	Reboiler temperature or bottom temperature	
		Fraction C4 in the column overhead	

to solve the column models. Typically, we only need to add or remove a few stages to calibrate the columns and achieve agreement with the plant operating profile. Once we converge the column models using the basic initialization specifications, we change (especially for the main fractionator) to specifications based on cut point and stage temperature. Kaes [51] described a similar process. We summarize the initial and final specifications in Table 4.8.

4.8 Mapping Feed Information to Kinetic Lumps

Aspen HYSYS Petroleum Refining includes a method to convert limited feed information (distillation curve, density, viscosity, refractive index, etc.) into kinetic lumps for use in the unit-level FCC model. In this section, we present an alternative method based on data and methods available in the public literature. We extend the method based on the work by Bollas *et al.* [52] to infer the kinetic lump composition from limited process data. This method uses techniques to normalize the distillation curve, cut the distillation curve into boiling point lumps, and infer the composition of each of these boiling point lumps. We have developed all of these techniques into spreadsheets using Microsoft Excel. These spreadsheets are available in the supplement to this text.

4.8.1 Fitting Distillation Curves

Distillation curves for FCC feedstock can be limited. Due to the nature of the feedstock, complete true boiling point (TBP) analysis without D-2887/SimDist methods is frequently not possible. Many refiners still use a limited D1160 distillation method to obtain some information about the distillation curve. Table 4.9 shows a typical D1160 analysis for a heavy FCC feedstock.

This curve does not contain enough information to convert into TBP curve using standard ASTM correlations. We must fit these data to a reasonable model to obtain estimates for the missing data points. We have previously demonstrated in Section 1.4, Workshop 1.2, about how to use an Excel spreadsheet, *Beta.xls*, to extrapolate incomplete distillation curve using the beta distribution function. Specifically, Sanchez *et al.* [53] have evaluated several different types of cumulative probability distribution functions to fit distillation curves of crudes and petroleum products. They conclude that the cumulative beta function with four parameters, Eq. (1.7), can represent a wide range of petroleum products [53]. We use this method to extend the measured partial distillation curve.

The beta cumulative density function is given in Eq. (1.7), renumbered as Eq. (4.5):

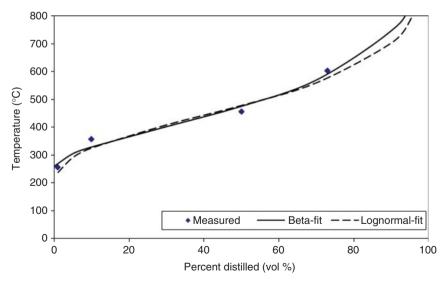
$$f(x,\alpha,\beta,A,B) = \int_{A}^{x \le B} \left(\frac{1}{B-A}\right) \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \left(\frac{x-A}{B-A}\right)^{\alpha-1} \left(\frac{B-x}{B-A}\right)^{\beta-1} \quad (4.5)$$

where α and β refer to the positive valued parameters that control the shape of the distribution, Γ refers to the standard gamma function, *A* and *B* parameters

Table 4.9 Typical distillation curvecollected from D1160.

Recovery	Temperature (°C)
0 (initial point)	253
10	355
50	453
73 (end point)	600

set lower and upper bounds on the distribution, and x represents normalized recovery. We normalize all the temperatures between 0 and 1 using the following equation:


$$\theta_i = \frac{T_i - T_0}{T_1 - T_0} \tag{4.6}$$

where T_0 and T_1 are reference temperatures. For this work, we choose $T_0 = 250$ °C and $T_1 = 650$ °C. Then, we apply the cumulative beta function with each normalized recovery, x_i and initial values for α , β , A, and B parameters. If we choose good estimates for parameters, then the output of the beta function must be close to the corresponding recovery for each x_i . We define the following error terms:

$$RSS = \sum_{i=1}^{n} (x_{\exp,i} - x_i)^2$$
(4.7)

$$AAD = \frac{1}{n} \sum_{i=1}^{n} abs(x_{exp,i} - x_i)$$
(4.8)

where $x_{exp, i}$ represents the recovery measured in the distillation curve and x_i is the output of the beta function. RSS is the sum of least squares and AAD represents average absolution deviation. We now use the SOLVER method in Microsoft Excel to obtain optimized values of α , β , A, and B. Figure 4.10 shows how this fit compares with the result using a log normal distribution with two fitting parameters [53] (see *lognormal.xls* in the supplement to this text) instead of the beta

Figure 4.10 Comparison between using the beta distribution and lognormal distribution to fit the same distillation data.

function. Using the beta function, we can generate the temperatures and recoveries needed for the conversion to TBP using standard ASTM methods.

4.8.2 Inferring Molecular Composition

As mentioned earlier, we must also be able to infer the PNA composition of each boiling point range, given certain measured bulk properties in order to completely map the feed information to kinetic lumps. The API (Riazi–Daubert) [54, 55] is a popular chemical composition correlation, Eq. (1.69), renumbered as Eq. (4.9):

$$\%X_{\rm P} \operatorname{or} \%X_{\rm N} \operatorname{or} \%X_{\rm A} = a + b \cdot R_{\rm i} + c \cdot \operatorname{VGC}'$$

$$\tag{4.9}$$

where $X_{\rm P}$, $X_{\rm N}$, and $X_{\rm A}$ represent the mole composition of paraffins (P), naphthenes (N), and aromatics (A); $R_{\rm i}$ is the refractive index and VGC' is either the viscosity gravity constant (VGC) or the viscosity gravity factor (VGF). The parameters *a*, *b*, and *c* take on different values for each molecule type (paraffin, naphthene, or aromatic). Using the Riazi [55] correlation does not give sufficiently accurate predictions for molecular compositions for this work. We note that this correlation encompasses a wide molecular weight range of 200–600 [55].

We present an alternate correlation in Eqs. (4.10) and (4.11). Our correlation extends the original correlation from Riazi [54, 55] by including specific gravity (SG) as an additional parameter and providing different sets of correlation coefficients (a, b, c, and d) for different boiling point ranges.

$$\%X_{\rm p} \text{ or } \%X_{\rm A} = a + b \cdot \text{SG} + c \cdot R_{\rm i} + d \cdot \text{VGC}'$$

$$\tag{4.10}$$

$$\% X_{\rm N} = 1 - (X_{\rm P} + X_{\rm A}) \tag{4.11}$$

where X_P , X_N , and X_A represent the mole composition of paraffins (P), naphthenes (N), and aromatics (A), respectively; R_i is the refractive index and VGC' is either the VGC or the VGF. The parameters *a*, *b*, *c*, and *d* can take on different values for different molecule type and boiling point ranges.

We use a total of 233 different data points containing laboratory-measured chemical composition and bulk property information (distillation curve, density, refractive index, and viscosity) for light naphtha, heavy naphtha, kerosene, diesel, and VGO. These data points come from various plant measurements made over the six-month course of this study and a variety of light and heavy crude assay data (spanning several years) available to the refinery.

We use Microsoft Excel and the SOLVER method to fit values for the parameters *a*, *b*, *c*, and *d* that minimize the sum of squares residual between the measured $%X_p$ and $%X_A$ and calculated $%X_p$ and $%X_A$. We calculate $%X_N$ by difference, as shown in Eq. (4.10). We show the results of our data regression with the associated average absolute deviation (AAD) in Tables 4.10 and 4.11. Figures 4.11–4.13 compare the measured and calculated molecular compositions.

We can now use the two methods we have developed to propose a technique to use limited feed information to infer the lumped composition. This technique is similar to the one given by Bollas *et al.* [52]. However, we make several changes

	Paraffin (vol%)				
	A	В	с	D	AAD
Light naphtha	311.146	-771.335	230.841	66.462	2.63
Heavy naphtha	364.311	-829.319	278.982	15.137	4.96
Kerosene	543.314	-1560.493	486.345	257.665	3.68
Diesel	274.530	-712.356	367.453	-14.736	4.01
VGO	237.773	-550.796	206.779	80.058	3.41

 Table 4.10
 Coefficients for paraffin content in petroleum fractions.

 Table 4.11
 Coefficients for aromatic content in petroleum fractions.

	Aromatic (vol%)				
	A	В	с	D	AAD
Light naphtha	-713.659	-32.391	693.799	1.822	0.51
Heavy naphtha	118.612	-447.589	66.894	185.216	3.08
Kerosene	400.103	-1500.360	313.252	515.396	1.96
Diesel	228.590	-686.828	12.262	372.209	4.27
VGO	-159.751	380.894	-150.907	11.439	2.70

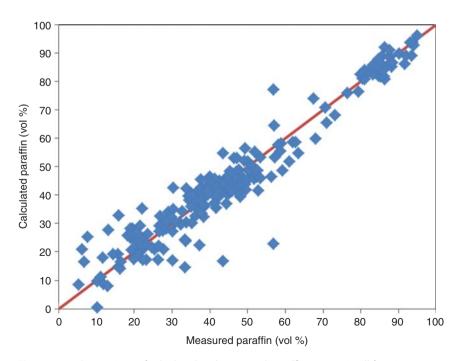


Figure 4.11 Comparison of calculated and measured paraffin content in all fractions.

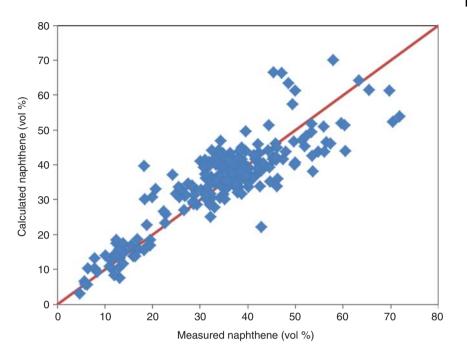


Figure 4.12 Comparison of calculated and measured naphthene content in all fractions.

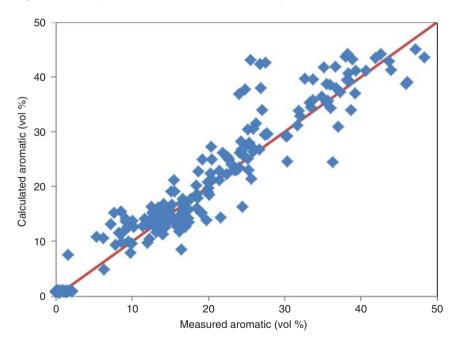


Figure 4.13 Comparison of calculated and measured aromatic content in all fractions.

to account for limited data sets. We outline the technique in the following steps (we indicate the changes from the procedure of Bollas *et al.* [52] with an *):

- 1) Use the beta distribution method (Use *Beta.xls*, Section 1.4) to extend partial ASTM D1160 distillation curves. (*)
- Convert the ASTM D1160 to a TBP curve using standard API correlations [54] (use *ASTMConvert.xls*, Section 1.3). (*)
- 3) Using the 50% point of the TBP, estimate the Watson factor (K_w). Set the 50% TBP temperature as an initial guess for the mean average boiling point (MeABP) (use *MeABP Interation.xls*, Section1.5).
- 4) Use the definition of K_w to create the specific gravity distribution of the fraction.
- 5) Calculate pseudocomponent molecular weight using the correlation of Riazi [55].
- 6) Use densities and mole weights to calculate volume, cubic, molar, and MeABP of the total fraction [55].
- If the MeABP from step 7 is close to the MeABP assumed in step 3, go to step 8. Otherwise, assume a new value for MeABP and go back to step 4.
- 8) Assign a lump to every boiling point range in the kinetic lumping. (*)
- 9) Calculate the boiling point, molecular weight, density, volume, weight, and molar concentrations of each lump.
- 10) Use Goosen's correlation to estimate the refractive index of each lump [56].
- 11) Use correlations from Riazi [55] to estimate the viscosity of the lump. (*)
- 12) Calculate the relevant VGF or VGC [55] for the lump. (*)
- 13) Use correlations (with an appropriate choice for the set of correlation coefficients) proposed in the preceding section to identify the PNA composition of the lump. (*)
- 14) If required, use correlations from Riazi [55] to estimate the number of aromatic rings in each aromatic fraction. (*)

We have found that this technique can provide reasonable estimates of kinetic lump composition. It is difficult to justify a more sophisticated scheme, given the limited amount of data available. Some refiners also make bulk chemical composition measurement of the feed, which includes a measurement of the total aromatic content. The sum of the aromatic kinetic lumps generated from the above technique generally agrees with the measured aromatic content.

4.8.3 Convert Kinetic Lumps to Fractionation Lumps

A related problem is the conversion of kinetic lumps back to fractionation lumps required to build rigorous fractionation models. For our models, Aspen HYSYS gives a method to transition the kinetic lumps to boiling point-based pseudocomponents typically used to model petroleum fractionation. We also propose an alternative technique that can provide similar results using methods developed earlier in this section. Essentially, we must convert the kinetic lumps back into a TBP curve. The key steps in converting the kinetic lumps to boiling point-based pseudocomponents are as follows:

1) Using the "backblending" concept from the previous section, develop a FCC effluent TBP curve from a reference set of product yields. These yields include

all liquid products, such as light and heavy naphtha, light and HCO or diesel, and slurry or decant oil.

- 2) Fit a cumulative beta distribution to this "backblended" reference TBP curve and obtain the best values for the cumulative beta distribution fit. We calculate this initial set of parameters only once.
- 3) Run the model to obtain the product distribution in terms of kinetic lumps.
- 4) Apply steps 3–13 of Section 4.8.2 in reverse; that is, we obtain the 50 % TBP point for each boiling point range from the known PNA distribution of the kinetic lumps involved.
- 5) As we know initial and final boiling points for all the kinetic lumps (by definition), use these points in conjunction with calculated 50% TBP points to generate an updated FCC effluent TBP curve.
- 6) Fit a new cumulative beta distribution to the updated FCC effluent TBP curve using the initial set of cumulative distribution parameters as a starting guess.
- 7) Cut this new TBP curve into petroleum pseudocomponents using methods commonly available in process simulations. In addition, Riazi [55] discussed several strategies to cut a TBP curve into pseudocomponents suitable for fractionation models.

4.9 Overall Modeling Strategy

This work relies primarily on data collected while the refinery is in regular operation. Related work in integrated FCC modeling often relies on pilot plant and experimental data. It is more difficult to produce a predictive model with plant operation data alone. The nature of plant operation determines that there may be abrupt changes in feed quality, operating parameters, inaccurate measurements due to poorly calibrated, failing sensors, or inconsistent data. Fernandes *et al.* [33] have encountered similar issues in the validation phase of their work. We outlined the following strategy and our specific implementation in Figure 4.14.

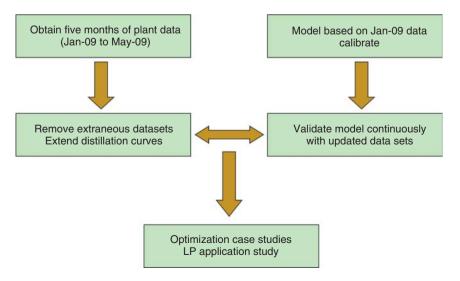


Figure 4.14 Specific implementation of overall modeling strategy.

- Obtain data on a continuous basis from the plant over a number of months:
 - Reconcile data from multiple sources (DCS, Inventory, etc.) (Table 4.12).
 - Check the consistency of the data by ensuring mass balance and enthalpy balance.
 - Accept a data set when it is consistent.
 - Track variation in the data set to ensure there are multiple operating scenarios (Figure 4.15).
- Use the first accepted data set to develop an initial model for FCC unit and fractionation section.
- Calibration:
 - The most basic calibration is to introduce a selectivity calibration factor for classes of the reactions in the kinetic network.
 - It is typically sufficient to vary the calibration selectivity factors to match plant performance during the first accepted data set.
 - The user may introduce additional factors to account for significant changes in catalyst behavior of unit profile.
 - The yield results from the initial model calibration should be within 1-2% of actual plant yield.
- Validation:
 - Use the subsequently accepted data sets to verify and track the performance of the unit and fractionation sections with the model.
 - Make sure to examine the yield of the FCC unit independently of column accuracies in the fractionation section.
 - It is typically possible to predict the mass yields of key products on a normalized feed rate with AAD of less than 2–3%.
- Case studies:
 - The model is calibrated with a finite amount of plant data, so it may not be meaningful to study changing operating parameters of the FCC over a very wide range. However, case studies on the fractionation section can take on wide ranges.
 - Recalibrate the model when significant process changes occur.

Feed	Products	FCC	Fractionation
Flow rate Distillation curves Specific gravity Conradson carbon residue (CCR) Sulfur content (S) Metal contents (Fe, Na, Ni, and V) Saturates, resins, aromatics, and asphaltenes (SARA)	Yield Composition (for light products) Density RON/MON Flash point Sulfur content	Temperatures (feed, riser outlet, regenerator bed, and flue gas) Pressure differential between riser/ reactor and regenerator Steam usage Main air blower flow rate	Temperature profile Pressure profile Draw rates Pumparound flow rates and duties Set points (usually temperatures)

 Table 4.12
 Routinely monitored properties used for model development and calibration.

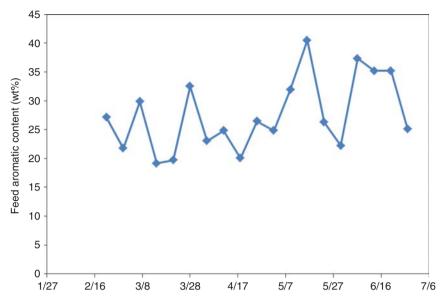


Figure 4.15 Tracking aromatic content in the feed to ensure multiple operating scenarios.

4.10 Results

We evaluate the model using over 6 months of operating data from a commercial FCC unit in the Asia Pacific with a feed capacity of 800 000 ton per year operating under a maximum diesel and gasoline plan. Figure 4.16 shows a process flow diagram (PFD) for the entire process. The evaluation of the model includes comparisons of overall reactor yield, light and heavy product compositions, and operating profiles for key equipment in the gas plant. We note that in general, the model can accurately predict the product yields and compositions over a variety of feed conditions.

The most important prediction is the overall product yields from the reactor. A validated prediction of the overall product yields allow the refiner to use the model to study different kinds of feedstock and operating conditions. Table 4.13 shows the results for product yields. The most important and valuable products are LPG, gasoline, and diesel. We use operating data from the base run to calibrate the model. In terms of overall yield, the largest errors in the base case appear with prediction of LPG and slurry. The AAD for the product over all validation cases (VALID-1 to VALID-6) is 0.96%. The AAD is much lower than the previous AAD standard of 5% for yield predictions in the plant.

Another set of key indicators is the product properties of the liquid fuel from the FCC. The properties of interest to refiners are density, flash point (volatility), RON/MON (for gasoline), sulfur content, and aromatic content. This is one of the areas where our model is different from other published work. We discussed a method of transition from kinetic lumping to fractionation lumping in Section 4.8. Not only does this method allow the user to observe the results directly, we can also see the effect of the reactor conditions on fractionated

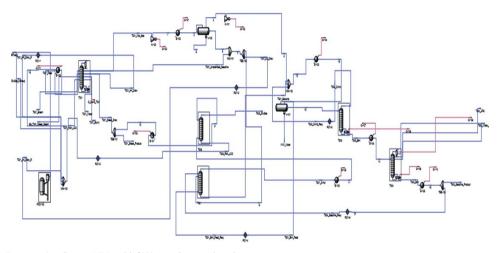


Figure 4.16 Overall Aspen HYSYS model of FCC unit and associated gas plant.

Yield	VAL	ID-1	VAL	ID-2	VAL	ID-3
Mass%	Model	Plant	Model	Plant	Model	Plant
Gasoline	43.3%	41.9%	43.3%	44.2%	40.1%	39.5%
Diesel	24.6%	23.7%	21.6%	22.0%	25.6%	25.2%
LPG	18.5%	20.1%	17.9%	19.9%	19.1%	21.1%
Dry gas	4.9%	4.4%	5.0%	4.2%	4.7%	4.1%
Slurry	1.4%	4.0%	5.5%	3.8%	4.5%	3.9%
Coke	7.3%	5.9%	6.7%	6.0%	6.0%	6.3%
Yield	VAL	ID-4	VAL	ID-5	VAL	ID-6
Mass%	Model	Plant	Model	Plant	Model	Plant
Gasoline	41.5%	41.2%	44.1%	44.2%	40.8%	41.2%
Diesel	24.7%	24.6%	20.8%	20.9%	24.3%	24.5%
LPG	19.3%	21.6%	17.8%	20.6%	18.6%	20.2%
Dry gas	4.8%	3.8%	4.7%	4.3%	5.3%	4.4%
Slurry	3.9%	3.9%	6.5%	3.9%	5.1%	4.0%
Coke	5.7%	4.8%	6.0%	6.2%	5.9%	5.6%

Table 4.13 Product yield results, AAD = 0.96%.

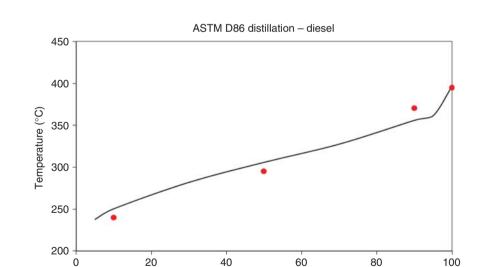
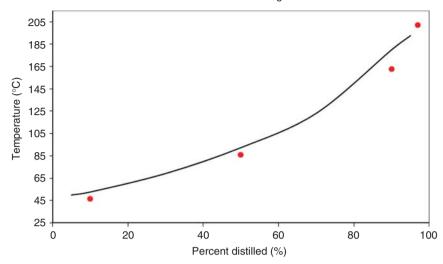



Figure 4.17 ASTM D86 distillation for the product diesel from the main fractionator (VALID-1).

Percent distilled (%)

properties. Using the results from the fractionator model, we can calculate the distillation curves of the liquid products. Figures 4.17 and 4.18 show the distillation curves for one of the validation cases. In general, the model predicts key points from the D86 curve (5%, 95%) within plant tolerance. Further refinement of this prediction requires accurate measurements of the pumparound rates and

ASTM D86 distillation - gasoline

Figure 4.18 ASTM D86 distillation for the product gasoline from debutanizer column (VALID-1).

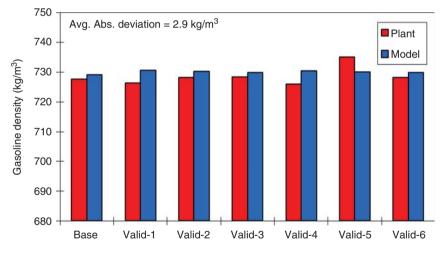


Figure 4.19 Gasoline density comparison.

the heat duty for each pumparound in the main fractionator. These data are not routinely measured.

We can use the predicted D86 curves to calculate several other properties of interest. There are several methods to calculate the flash point and other volatility properties in using the distillation curve and density. Figures 4.19 and 4.20 show the prediction of the densities for gasoline and diesel. We also see good agreement between the measured and predicted results for density. In Figure 4.21,

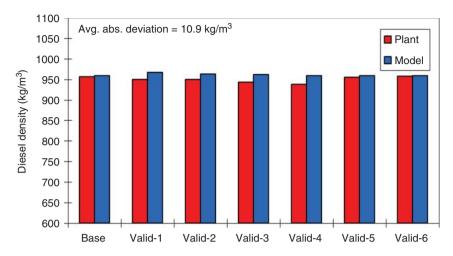


Figure 4.20 Diesel density comparison.

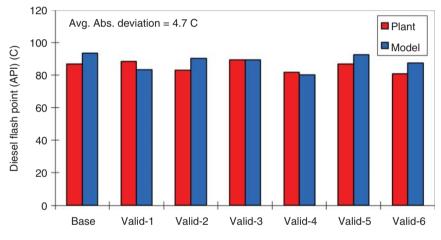


Figure 4.21 Diesel flash point comparison.

we compare our predictions using the API flash point correlations [54] to the measured data. We note good agreement for the flash point.

Roughly, 20–25% of the product in this FCC is LPG, which primarily consists of propane, propylene, butanes, and butenes. The presence of significant amounts (greater than 0.5%) of C5+ products in LPG indicates that the fractionation process is not operating well. Therefore, the prediction of the composition of all the gas and LPG products is essential to validate the model. Tables 4.14 and 4.15 compare the operating data and model predictions for LPG and dry gas. The AAD for the predictions of mole compositions in LPG and dry gas are 1.2% and 1.8%, respectively. We note that there is often more significant error in the prediction of hydrogen and nitrogen.

LPG	VAL	VALID-1		VALID-2		VALID-3	
Mol%	Model	Plant	Model	Plant	Model	Plant	
C3	13.9	15.5	13.9	14.9	14.7	13.3	
C3=	36.6	38.3	35.1	35.9	38.3	38.4	
NC4	4.5	5.3	4.1	5.6	4.0	5.6	
IC4	17.5	17.1	16.9	18.8	16.1	18.0	
IC4=	12.8	13.1	12.1	12.8	11.5	13.4	
T-2-C4=	6.0	6.0	5.5	6.1	5.3	6.1	
C-2-C4=	4.4	4.7	4.0	5.0	3.9	4.7	
LPG	VALID-4		VALID-5		VALID-6		
Mol%	Model	Plant	Model	Plant	Model	Plant	
C3	14.2	13.2	15.6	12.2	15.5	13.0	
C3=	34.5	39.0	35.9	41.7	37.0	39.4	
NC4	4.3	4.9	4.5	3.4	4.5	4.5	
IC4	16.6	18.4	18.2	18.0	17.5	18.6	
		13.1	13.1	13.1	12.7	13.2	
IC4=	12.3	13.1	10.1				
IC4= T-2-C4=	12.3 5.7	6.1	6.0	5.7	6.0	6.3	

 Table 4.14
 Comparison of LPG composition, AAD = 1.2%.

Table 4.15Comparison of dry gas composition, AAD = 1.8%.

Dry gas	VAL	ID-1	VAL	ID-2	VAL	ID-3
Mol%	Model	Plant	Model	Plant	Model	Plant
H ₂	24.3	29.9	23.1	31.8	24.7	29.3
N ₂	21.0	20.1	19.5	16.7	19.7	19.1
CO	1.6	1.6	1.5	2.0	1.6	1.8
CO_2	1.8	1.8	2.2	1.6	1.1	1.8
C1	24.8	23.0	24.5	24.8	25.6	23.1
C2	10.9	10.2	12.1	9.9	11.2	10.3
C2=	11.7	10.5	12.3	10.5	13.0	11.8

Dry gas	VAL	ID-4	VAL	ID-5	VAL	ID-6
Mol%	Model	Plant	Model	Plant	Model	Plant
H ₂	20.5	28.2	21.6	27.5	20.8	28.1
N_2	19.7	22.5	19.7	20.3	18.9	19.8
CO	1.6	1.7	1.6	1.7	1.5	1.4
CO_2	1.7	2.0	1.8	2.0	3.6	1.6
C1	27.7	21.4	26.6	23.1	24.5	23.6
C2	10.6	10.5	11.7	10.1	11.7	10.3
C2=	13.8	11.6	12.9	11.2	11.9	11.2

Table 4.15 (Continued)

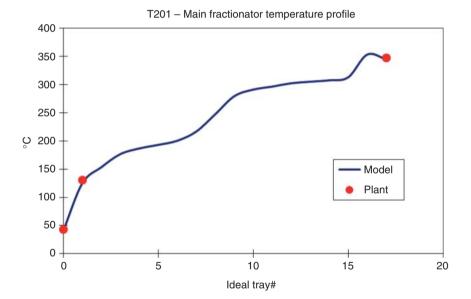
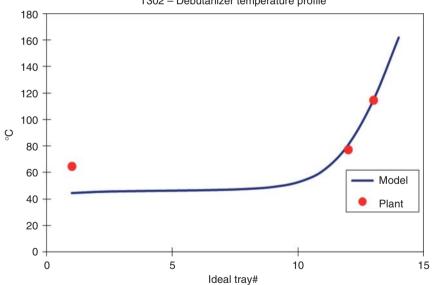



Figure 4.22 Main fractionator temperature profile.

We also apply the model to predict all temperature profiles of columns for each validation case and compare the results with plant operation. We find good agreement between plant measurements for all columns with the exception of the debutanizer column (T302) (see Figure 4.24). This column is very sensitive to the LPG composition in the model. We recall that the base calibration case shows some error in matching the LPG yield from the plant. It is possible to improve this prediction by including catalyst-specific parameters in the kinetic model to match the plant performance. However, we avoid this procedure at this time; thus, we can provide a more broadly useful model. Figures 4.22–4.26 compare model and plant values for temperature profiles for a single validation case (VALID-4).

Figure 4.23 Primary absorber temperature profile.

T302 – Debutanizer temperature profile

Figure 4.24 Debutanizer temperature profile.

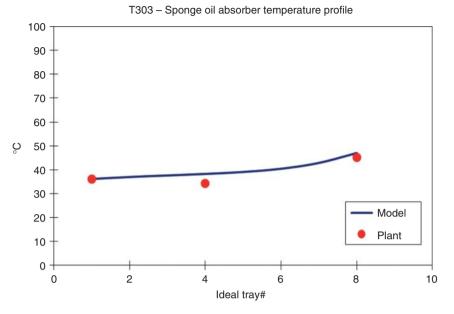
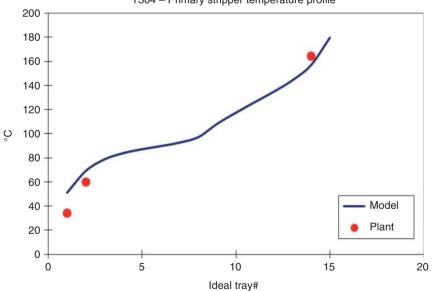



Figure 4.25 Sponge oil absorber temperature profile.

T304 - Primary stripper temperature profile

Figure 4.26 Primary stripper temperature profile.

4.11 **Applications**

Refiners are very interested in obtaining optimal operating conditions that maximize the yield of a profitable product slate. However, unlike traditional chemical plants, the FCC unit generates several products that have different profit margins. Further complicating matters is that these profit margins may change depending on refinery constraints, market conditions, and government regulations. Therefore, it is critical to understand how to manage the FCC unit under different operating scenarios. We consider two common scenarios in FCC operation: improving gasoline yield and increasing the throughput of the unit.

Improving Gasoline Yield 4.11.1

Gasoline yield is a typical complex function of temperature, pressure, feed quality, and catalyst-to-oil ratio [8]. We consider the case where the feed quality is fixed. An easily manipulated operating variable is the riser outlet temperature (ROT). Allowing the ROT to increase improves gasoline yield by promoting cracking and aromatic chain scission reactions that increase the yield of C5+ components. We compute the gasoline yield at various temperatures and Figure 4.27 shows the results. The current ROT is 510 °C and is marked with a yellow square. The ROT that leads to the highest yield of gasoline is roughly 530 °C. Does this mean that we should allow the ROT to increase to 530 °C? To answer this question, we plot the yields of other valuable products from the FCC in Figure 4.28.

Figure 4.28 shows that while gasoline yield reaches the maximum at an ROT of 530 °C, the yields of other valuable products (e.g., diesel) drop significantly. In addition, the yield of fuel/dry gas (light gases) rises quickly. This indicates that we are "overcracking" the feed. The high temperature accelerates the production of

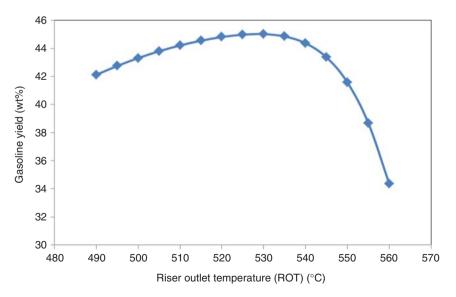
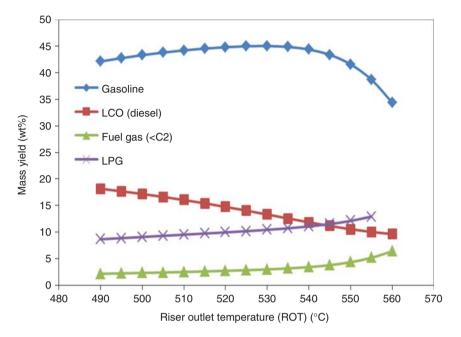
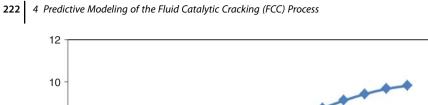
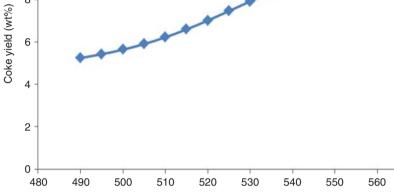


Figure 4.27 Gasoline yield profile as a function of ROT.


Figure 4.28 Yields of key products as functions of ROT.

C1–C2 components (i.e., fuel/dry gas) through the catalytic and thermal cracking pathway. This is clearly an undesired result. Dry gas is not of significant value and can easily overload the overhead wet gas compressor. In addition, Figure 4.29 shows the coke yield on the catalyst as a function of ROT. The amount of coke present on the catalyst leaving the riser is a strong function of ROT. Regenerating catalyst with higher coke deposits increases the utilities required to regenerate the coke to the same level. These side effects shrink the acceptable range of values for the ROT.

We can combine the results from these graphs and consider scenarios where a refiner needs to maximize different products. For example, refiner may need to maximize the production of gasoline and diesel or maximize the production of gasoline and LPG, depending on external constraints. We can easily use the model to generate a case study, as shown in Figure 4.30. This figure shows that there are different optimum ROT values for different scenarios. The maximum gasoline and diesel production occurs in the range of 505–510 °C (confirming the refiner's assertion where these data are obtained), whereas the maximum for gasoline and LPG production occurs in the range of 530–540 °C.

This example shows the importance of a model that accounts for all products, including light gases as a distinct lump. In addition, the integrated heat balance between the riser and regenerator allows us to provide useful estimates for the coke yield. We have not included the effect of these process changes on the downstream fractionation unit in this study. However, we note that there are often significant equipment and process constraints (a prime example is the wet gas compressor) that restrict the acceptable range for the ROT.

Riser outlet temperature (ROT) (°C)

570

Figure 4.29 Coke yield as a function of ROT.

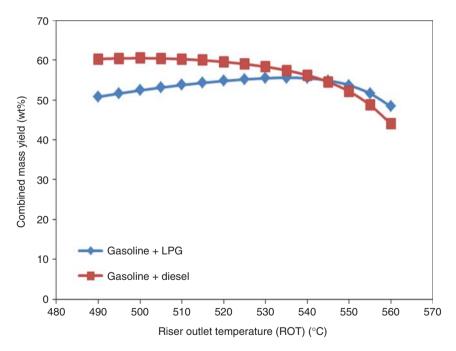


Figure 4.30 Maximizing production of key products as a function of ROT.

8

6

4.11.2 Increasing Unit Throughput

Let us consider another scenario where we need to increase the throughput of the unit. The refiner typically needs to process the largest volume of feedstock possible. Ideally, we would like the FCC to maintain a similar mass yield of the most valuable product (i.e., gasoline). Figure 4.31 shows the mass yield of gasoline as a function of feed rate to the unit. The mass yield decreases almost linearly with increasing feed rate. How can we explain this phenomenon? Figure 4.31 also shows the catalyst-to-oil ratio as a function of increasing feed rate. We note that the cat-to-oil ratio also decreases linearly.

The decreased cat-to-oil ratio determines that there is less contact time between the catalyst and the feed oil. Lower contact time will result in fewer species cracking and subsequently reduce the gasoline yield. However, we must not confuse this effect with "overcracking" described in the previous case study. Figure 4.31 also illustrates the difference between "overcracking" and a reduced cat-to-oil ratio. We note that yield of light products (dry gas and LPG) does not increase. This indicates that high-temperature thermal or catalytic cracking is not taking place.

Let us now consider the scenario where we need to increase or maintain gasoline yield that corresponds to the base unit throughput. We will allow the ROT to increase, while also increasing the feed rate to the unit. Figure 4.32 shows the effect of the increasing feed rate and ROT. We note that the gasoline yield increases with rising ROT. However, once we reach the ROT of 540 °C, the gasoline yield drops quickly. This occurs because we have passed the "overcracking" peak for this particular feed.

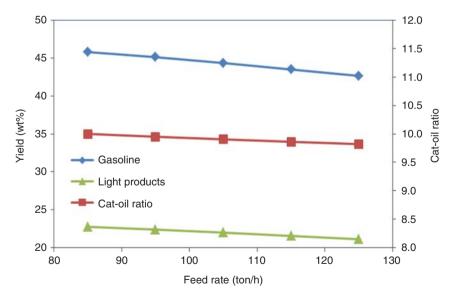


Figure 4.31 Mass yield and cat-to-oil ratio as a function of feed rate.

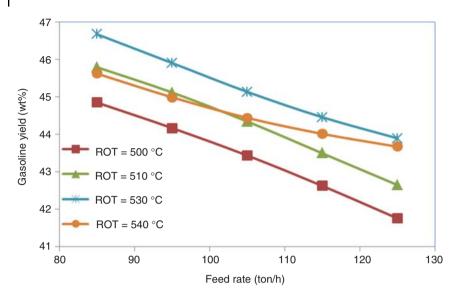


Figure 4.32 Gasoline yield as a function of feed rate.

4.11.3 Sulfur Content in Gasoline

Sulfur content in gasoline is an important regulatory constraint for refiners. Many schemes are in use to reduce the sulfur content in refinery products. In the case of the FCC unit, a significant portion of sulfur in the feed leaves the process as a dry gas. However, the remaining sulfur leaves through the key liquid products.

Sadeghbeigi [1] and Gary *et al.* [7] indicated that hydrotreating the feed significantly reduces the sulfur content in the nonslurry products. However, there may be an economic disadvantage in hydrotreating the feed to the FCC unit. In addition, low sulfur constraints may result in an excess of low-value resid feeds in the refinery. Often, the refiner looks for ways to blend this high-sulfur resid feeds into processing units that can tolerate higher sulfur content. In both cases, we need to understand how the changes in feed sulfur affect the sulfur distribution in the products.

Let us consider the situation where a cheaper feedstock, vacuum residue (VR), is available. The refiner may need to maximize the profitability of the unit by blending the VR with the existing VGO feed. Currently, 5.7 wt% of the feed to the FCC unit is the VR-type feed. We would like to know how much VR we could blend into the VGO feed while meeting the constraint of stabilized gasoline.

To study this question, we must also consider that sulfur content in the VGO feed is changing as well. We vary both the sulfur content in the VGO feed and the amount of VR that is blended. Figure 4.33 shows the outline of the case study process.

We vary the feed ratio of VR from 0% to 11.3% and the associated sulfur content in the VGO. The corresponding sulfur limit for FCC gasoline in this refinery is 800 ppm wt. We use the model to predict the sulfur content in different cases of feed ratio and sulfur in VGO. We note that for the base case of 0.71 wt% sulfur in feed VGO, we could blend more than 10% VR while still meeting the sulfur

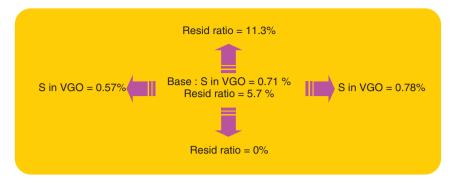


Figure 4.33 Scenario of feed sulfur change.

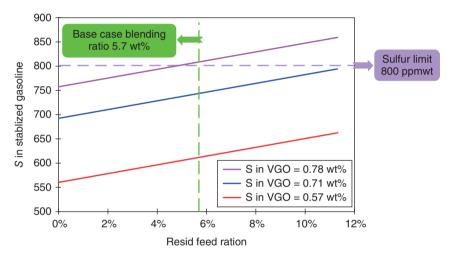


Figure 4.34 Blending varying amounts of residue feed.

constraint. However, if the sulfur content in the VGO increases to 0.78 wt%, we cannot blend more than 4.5 wt% of VR if we need to meet the sulfur constraint (Figure 4.34).

We note that all the above case studies and scenarios are limited to the FCC unit and the associated fractionation system. Modern refineries are highly integrated and changes that appear beneficial in one plant may not benefit another plant in the refinery. One way to apply these models in a larger context (in an existing refinery process) is through the LP for refinery production planning.

4.12 Refinery Planning

We briefly alluded to the complex nature of managing an FCC unit in the previous section. The typical refinery has many units in addition to the FCC (such as catalytic reforming and hydroprocessing) that have their own product distribution and associated profit margins. It is difficult to produce high profit margins dealing

with each unit individually when the actual refinery process is highly integrated. The refiner needs methods to optimize feeds to each unit and related products on a refinery-wide scale.

Refiners have typically solved this problem by using LP methods, which have been used extensively in refineries since 1950. Gary *et al.* [7] stated that "A site-wide model of the refinery is, therefore, usually required in order to properly determine refinery economics."

LP involves the maximization of a linear objective function of many variables subject to linear constraints on each variable [57]. In the context of a refinery, the objective function can refer to overall profit generated from processing a particular set of crudes. The variables that affect this objective function are typically the amounts of different crudes purchased. The goal is to determine an optimal set of crudes that maximize the profit margin of the refinery. This scenario is an example of crude oil evaluation. Refiners typically use LP methods in other scenarios as well. Prominent examples are product blending (where two or more products from different units are mixed to form a single product) and production planning (determining the most profitable distribution of products while meeting site constraints).

A key issue in using LP methods is that the relationships between variables must be linear. In other words, all the equations used in the model must be linear with respect to the variables involved. At first, this requirement appears very confining. In fact, the FCC and gas plant models developed in previous sections of this work are highly nonlinear. However, it is important to note that many units in the refinery have a small window of operating conditions during regular operation of the refinery. This allows us to linearize highly nonlinear processes around the regular operating window of the refinery.

That being said, modern LP software such as Aspen PIMS includes many tools to deal with nonlinear relationships. Aspen PIMS uses techniques such as "recursion" (a form of successive LP where the linear model runs many times with different coefficients to approximate nonlinear behavior) and nonlinear programming (NLP) techniques. These techniques can alleviate many problems that frequently arise, especially in product blending and property estimation, with linearized models. The focus of our application study is to improve an existing LP model for the FCC unit alone. Therefore, we do not consider more sophisticated techniques to deal with nonlinear behavior.

Figure 4.35 represents a highly simplified view of a FCC unit. We can consider the FCC unit as a black box that converts different types of feed into products with varying profit margins. The LP model expects that the profits or values of the products are readily available. If we consider that only straight-run VGO enters the unit at fixed operating conditions (riser temperature, catalyst-to-oil ratio, etc.), we can represent the yield of the unit as

1.0 (Normalized feed rate) =
$$\sum_{i=1}^{N}$$
 Yield_i (4.12)

where we know all terms on the right-hand side to be fixed constants. The yield coefficients, Yield_i, correspond to each measured product of the FCC.

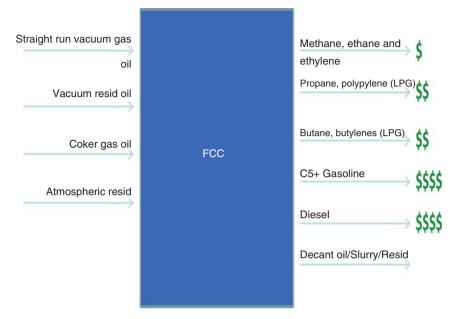


Figure 4.35 Simplified view of FCC unit for a LP application.

Table 4.16 Sample base vector
with typical yields for a
gasoline-maximizing FCC unit.

Row	Product	Base
1	Feed	1.00
2	Dry gas	-0.04
3	LPG	-0.18
4	Gasoline	-0.40
5	Diesel	-0.30
6	Loss and coke	-0.08

We consider the above equation to represent the base yield of the unit. In Aspen PIMS and other similar LP software, we call the base yield as *the base vector*. We typically encode the base vector in a form shown in Table 4.16. The negative signs arise from moving all the terms from the right-hand side of the equation to the left-hand side.

This base vector is sufficient to model a FCC unit that processes a single type of feed at fixed operating conditions. However, most FCC units do not operate this manner. They accept multiple feeds with varying composition and may operate at different conditions. To account for variations in feed composition, the concept of the delta vector is useful. Every attribute (specific gravity concarbon, sulfur content, etc.) of the feed that can affect the yield of the unit has its own delta vector.

The delta vector can be thought of a slope that modifies the base yield of each product. If we consider the specific gravity (SPG) of the feed as an attribute that can change the product yields, we can now rewrite the yield equation as

$$1.0 = \sum_{i=1}^{N} \text{yield}_{i} + \sum_{i=1}^{N} (\text{yield modifier or delta})_{i} * \text{SPG}$$
(4.13)

where the SPG of the feed is a known quantity, yield and delta coefficients are known for each product *i*. The products typically are dry gas, LPG, gasoline, diesel, and resid/coke/loss. Note the value of the delta coefficients correspond to the units of measurement of the particular feed attribute (in this case SPG). Table 4.17 gives sample base and delta vectors for a typical gasoline-maximizing FCC unit.

Refiners can typically obtain the base yield of the FCC unit by averaging the measured yields over some period. The delta vectors often come from estimations, refiner's internal correlations, or published correlations [7, 58, 59]. Previous work by Li *et al.* [60] uses correlations from Gary *et al.* [7] to generate FCC delta-base vectors. These vectors are then combined with a blending model and a crude distillation unit (CDU) model. This process results in two significant problems. The first problem is that the true yield of the FCC unit is not available to LP (only averaged yields). This leads to situations where the LP model can optimize the product distribution based on poor yield information. The second problem is that the delta vectors are fixed to particular correlations or estimates. These correlations may not correctly predict changes in yield accurately when the composition of the feed changes.

We overcome these problems by using the detailed FCC model developed in this work. We have shown that the FCC model can predict yields accurately for varying process conditions. To apply the FCC model into the refinery LP, we must first convert the large nonlinear model in to a linear yield model. We can then use coefficients from this generated linear yield model directly in the LP for the refinery. We show the process for generating the linear yield coefficients in Figure 4.36. We have found that 4–5% is a reasonable value for CHANGE% (variable perturbation) for most of the important feed attributes in the FCC process. For example, to generate the delta vector for sulfur content (SUL), we first run the model at the base conditions and record these yields as the base vector. Next, we perturb the

Row	Product	Base	SPG
1	Feed	1.00	_
2	Dry gas	-0.04	-0.01
3	LPG	-0.18	0.02
4	Gasoline	-0.40	0.01
5	Diesel	-0.30	-0.01
6	Loss and coke	-0.08	-0.02

Table 4.17 Base and delta vectors with typicalyields for a gasoline-maximizing FCC unit.

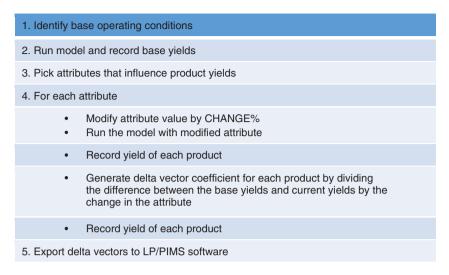


Figure 4.36 Process to generate delta-base vectors.

SUL variable by 5% and record the perturbed product yields. We divide the difference in base yields and perturbed yields by the change in the perturbed value to obtain the delta vector corresponding to the SUL variable.

It is important to note that the process in Figure 4.36 essentially generates an approximation to the Jacobian of the nonlinear FCC unit model. If we consider that vector y represents the model outputs, then the \overline{y} vector represents the base case in our planning scenario and the Δx vector represents the change in model inputs from the base case. We then have a matrix of $\Delta y/\Delta x$, which represents the change from the base condition as a function of the selected feed attributes (or possibly process conditions). Equation (4.14) illustrates the connection between the Jacobian and the delta-base vectors:

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} (Predicion) = \begin{bmatrix} \overline{y_1} \\ \overline{y_2} \\ \vdots \\ \overline{y_m} \end{bmatrix} (Base) + \begin{bmatrix} \frac{\Delta y_1}{\Delta x_1} & \dots & \frac{\Delta y_1}{\Delta x_n} \\ \vdots & \dots & \vdots \\ \frac{\Delta y_m}{\Delta x_1} & \dots & \frac{\Delta y_m}{\Delta x_n} \end{bmatrix}$$

$$(Delta-base) \cdot \begin{bmatrix} \Delta x_1 \\ \vdots \\ \Delta x_n \end{bmatrix} (Delta)$$

$$(4.14)$$

Table 4.18 shows the existing base and delta vectors for the FCC unit. The base vectors come from averaged yields of the FCC unit during the previous quarter (ending December 08). The delta vectors come from refiner's internal correlations. The delta vectors refer to the specific gravity of the feed (SPG), Conradson carbon (concarbon) in the feed (CON), and sulfur in the feed (SUL). We note that this particular set of base and delta vectors do not accurately reflect the operation of the unit. As shown earlier in this work, the actual gasoline yield of the FCC unit ranges from 42% to 46%. The LP model underestimates the gasoline yield.

Row	Feed/product	Base	SPG	CON	SUL
1	Feed	1.00	_	_	_
2	Sour gas	-0.0065	-0.0003	-0.0004	-0.0082
3	Dry gas	-0.0394	-0.0011	-0.0014	0.0000
3	LPG	-0.1740	0.0025	0.0041	0.0000
4	Gasoline	-0.3929	0.0098	0.0081	0.0000
5	Diesel	-0.2899	-0.0057	-0.0033	0.0000
6	Slurry	-0.0381	-0.0032	-0.0038	0.0082
7	Coke	-0.0544	-0.0020	-0.0034	0.0000
8	Loss	-0.0048	0.0000	0.0000	0.0000

Table 4.18 Existing delta-base vectors for FCC unit (normalized to a feed rate of 1.0).

Table 4.19 Delta-base vectors generated using rigorous model.

Row	Feed/product	Base	SPG	CON	SUL
1	Feed	1.00	_	_	_
2	Sour gas	-0.00439	0.00068	0.0001	-0.0057
3	Dry gas	-0.02527	0.00069	0.00033	0.00025
4	LPG	-0.19386	0.02213	0.00271	0.00164
5	Gasoline	-0.4421	0.09480	0.00621	0.00330
6	Coke	-0.06218	-0.05913	-0.00453	0.00038

In addition, as the FCC unit is the most significant producer of gasoline in the refinery, using the LP in crude selection context can lead to nonoptimal crude selection.

Table 4.19 shows the delta-base vectors we generated using the procedure in Figure 4.36. The new base vector accurately reflects the current base gasoline and LPG yields of the FCC unit. In addition, as a consistency check, we note that SUL coefficient for the sour gas (row 1) has a negative coefficient. This indicates that sour gas increases as the sulfur in the feed increases. A similar consistency test with CON coefficient and coke (row 5) shows the same result. We can use the LP model optimally, knowing that LP model does not underestimate key product yields.

The advantage of this method is that LP now reflects the actual capabilities of the unit and not the perceived capabilities based on historical data or correlations. In addition, if the rigorous simulation is updated alongside with plant retrofits, we can modify the LP model quickly to track these retrofits. The workflow we described in Figure 4.36 is easy to integrate into existing process simulation and LP software. Aspen HYSYS Petroleum Refining includes tools to automate the workflow and export the updated delta-base vectors to Aspen PIMS (LP software) directly. This automation allows quick updates of the LP model to accurately reflect the unit performance.

4.13 Workshop 4.1 – Guide for Modeling FCC Units in Aspen HYSYS Petroleum Refining

4.13.1 Introduction

In Sections 4.13–4.17, we demonstrate how to organize data and build and calibrate a model for a FCC unit using Aspen HYSYS Petroleum Refining. We discuss some key issues in model development and how to estimate missing data required by Aspen HYSYS Petroleum Refining. We divide this section into five workshops:

- a) Workshop 4.1: building a basic FCC model;
- b) Workshop 4.2: calibrating the basic FCC model;
- c) Workshop 4.3: build a model for the main fractionator and gas plant system;
- d) Workshop 4.4: perform case study to identify different gasoline production scenarios;
- e) Workshop 4.5: generate delta-base vectors for LP-based planning.

4.13.2 Process Overview

Figures 4.37–4.39 show PFD for the FCC unit and downstream fractionation units that we use to build the model in question. We extensively discussed the features and operating issues associated with this type of unit early in the chapter. Figure 4.40 shows the FCC and fractionation simulation flowsheet that we are to develop in Workshops 4.1–4.3. In Figure 4.40, we showed the four intercolumn stream paths that are labeled in Figures 4.38 and 4.39, including (1) the unstabilized gas oil labeled A from T201_MainFractionator to T301_Absorber; (2) the rich sponge oil labeled B from T303_ReAbsorber to T201_MainFractionator; (3) the LCO product labeled C from T201_MainFractionator to T303_ReAbsorber; and (4) the wet gas labeled D from T201_MainFractionator to WetGas Compressors and then T302_Stripper.

4.13.3 Process Data

Tables 4.20–4.23 give detailed feeds, products, and operation data for a typical UOP FCC process. Values that have been estimated are marked with an *. Operating conditions for the fractionation section largely depend on the FCC unit effluent and are relatively static, so they are not given here.

4.13.4 Aspen HYSYS and Initial Component and Thermodynamics Setup

We start by opening Aspen HYSYS. The typical path to Aspen HYSYS is to enter the Start \rightarrow Programs \rightarrow AspenTech \rightarrow Aspen Engineering Suite \rightarrow Aspen HYSYS. We dismiss the "Tip" dialog and select File \rightarrow New \rightarrow Case. We wish to include fractionation, so we do not choose "FCC" alone. Save the resulting file as *FCC Components and Properties.hsc.*

The first step in creating the model is the selection of a standard set of components and a thermodynamic basis to model the physical properties of these components. When we create a new simulation, we must choose the

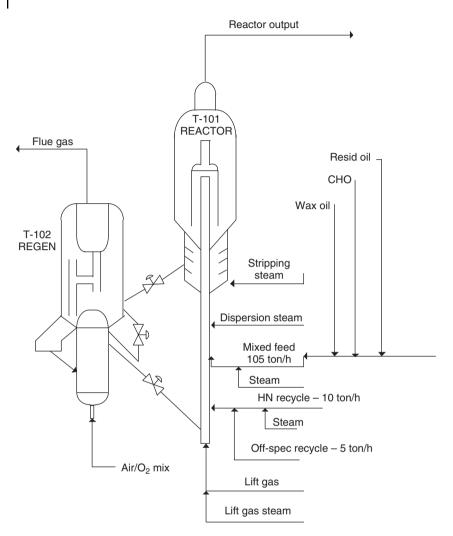
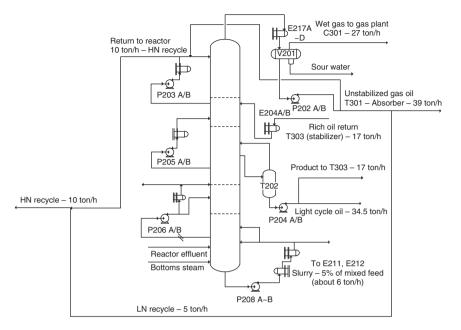
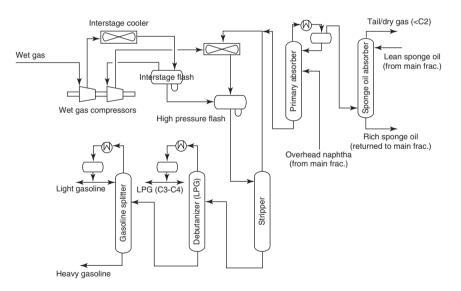
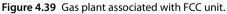



Figure 4.37 Reaction section of FCC unit.


components and thermodynamic model appropriate for the process using the simulation basis manager. The simulation basis manager allows us to define components and associated thermodynamic model in Aspen HYSYS. We may add components through the import button in Figure 4.40. However, we have a predetermined set of the components for the FCC model (Figure 4.41).


To import these components, we click "Import" and navigate to the directory location, "C.\Program Files\AspenTech\Aspen HYSYS V9.0\Paks" and select the "FCC Components Celsius.cml" as the component list (Figure 4.42). The path shown in this figure reflects a standard installation of Aspen HYSYS Petroleum Refining software.

Once we import a component list, HYSYS will create a new component list called "Component List-1." We can view the elements of this component list

by selecting "Component List-1" and clicking on "View" in the simulation basis manager (Figure 4.42). We can add additional components or modify the order of the elements in the component list. We note that the standard FCC component list is quite complete and model most refining processes. The rigorous FCC model does not predict components that are not part of the "FCC Components Celsius.cml" list. However, these additional components may be used in production

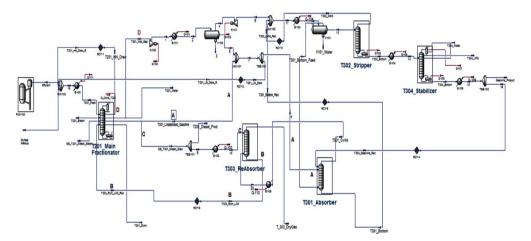


Figure 4.40 A simulation flowsheet of the FCC and fractionation system (see Workshop 4.3-done.hsc).

Feed/products	Feed	Naphtha	Light cycle oil	Bottoms
Flow rate (kg/h)	108 208	46 583	24333	4125
Specific gravity	0.9	0.7	1.0	1.0
Distillation type	D1160	D86	D86	TBP
Initial point (°C)	269.0	35.7	217.9	221
5%	358.6	40.8	235.9	314
10%	376.4	45.6	246.6	343.3
30%	419.0	64.7	275.7	382.2
50%	452.3	86.4	300.3	426.7
70%	488.0	115.0	326.9	468.3
90%	541.8	165.4	365.4	496.1
95%	567.9	191.4	382.5	545.1
End point	665.8	255.4	418.9	649
Nitrogen (ppm wt)	2409.0	9.0	127.8	324.3
Sulfur (wt%)	0.56	0.06	0.91	1.96
CCR (wt%)	1.86	0.01	0.11	0.38
Vanadium (ppm wt)	0.3	_	_	-
Nickel (ppm wt)	3	_	_	-
Sodium (ppm wt)	0.3	_	_	-
Iron (ppm wt)	2.1	-	-	-
Copper (ppm wt)	0.1	_	_	-
RON/MON	_	92/82	_	-
Paraffins (liquid vol%)	28.5	_	-	-
Naphthenes (liquid vol%)	8.529	_	_	-
Aromatics (liquid vol%)	23.6	_	-	-
Cloud point (°C)	-	_	-10	-

Table 4.20 Summary of liquid feeds and products.

of the fractionation models associated with the FCC model. For the purposes of this simulation, we will add *benzene* (Figure 4.43).

The next step is the selection of a "Fluid Package" for this model. The "Fluid Package" refers to the thermodynamic model associated with the chosen list of components. We move to the "Fluid Pkgs" tab in the simulation basis manager and click "Add" (Figure 4.44). Aspen HYSYS will automatically choose the component list and present options for a "Property Package" for these components. The FCC system is mostly of pseudocomponents and light hydrocarbons. Consequently, the Peng–Robinson equation of state is sufficient. We discuss the implications of the process thermodynamics in Chapter 2. In the case of the FCC model, equation of state or hydrocarbon correlation methods (Grayson–Streed, etc.) can sufficiently model the process.

	Dry gas	Sour gas	LPG	Regenerator flue gas
Flow rate (kg/h)	4833	667	19 542	_
Composition	mol%	mol%	vol%	mol%
N ₂	22.5	0.6	-	NA
СО	1.7	-	-	NA
CO_2	1.8	30.5	-	NA
O ₂	-	-	-	2.8
H_2S	0.0	68.5	-	NA
H_2	25.5	-	-	NA
C1	23.3	0.2	-	NA
C2	11.2	0.2	-	NA
C2=	11.3	-	-	-
C3	0.3	-	13.5	-
C3=	1.0	-	41.5	-
nC4	0.2	-	4.7	-
iC4	0.4	-	18.0	-
<i>i</i> C4=	0.4	-	12.5	-
1-C4=	-	-	-	-
<i>c</i> 2–C4=	-	-	4.0	-
<i>t</i> 2–C4=	-	-	5.7	-
<i>c</i> 2–C5=	0.2	-	-	-
<i>t</i> 2–C5=	0.2	-	-	-

 Table 4.21
 Summary of gas flow rates and compositions.

 Table 4.22
 Riser and regenerator operating conditions.

	Flow rate (kg/h)	Temperature (°C)	Pressure (kPa)
Riser feed preheat temperature	_	175	-
Riser inlet steam	5000	200	1301
Riser outlet temperature	-	518	-
Stripping steam	5000	200	1301
Regenerator dense bed temperature	-	680	-
Regenerator pressure	-	-	

Table 4.23 Equilibrium catalyst properties.

Metal contents (V/Ni/Na/Fe/Cu) (ppm wt)	5000/4044/3103/5553/57
Equilibrium activity (%)	66
Inventory (kg)	150 000

4.13 Workshop 4.1 – Guide for Modeling FCC Units in Aspen HYSYS Petroleum Refining 237

File Home	View C	ustomize Resources		Search as	penONE Excl	hange	P	0
K Cut	nent Fluid Packages Navig	Methods Assistant A Reactions User Properties pate	Map Components Update Properties Components	Petroleum Assays Refining G	⊘ み み Hypothet		Options	PVT Data
Properties	۲	Component Lists >	+					
All Items Component Fluid Packag Petroleum A Reactions Component User Propert	es ssays Maps	List	Name		Sourc	e		
Properties		Add	Copy Export		Delete			

Figure 4.41 Adding a component list.

Properties 4	Component Lists × +	File Selection for Importing a Component L	ist	
Vi Items -	List Name	🛞 🍥 🕂 🖡 – Local Disk (C) 🔸 Program Files (x86) 🔸 AspenTech 🔸 Aspen HYSYS V9.0 🔸 P	aks v	C Search Paks
Component Liss Component Liss Component Liss Section Component Maps Component Maps Component Maps Component Maps Component Maps Component Maps Component Liss Component Maps Component Maps Compo	Add	Organize New folder Downoods Amm Destrop Assy Component Celska to 850C-cml 196/2015 601 A My Documents Assy Component Silverheit to 1950C-cml 196/2015 601 A Assy Components Failwerheit to 1950C-cml 196/2015 601 A 196/2015 601 A Assy Components Failwerheit to 1950C-cml 196/2015 601 A 196/2015 601 A Assy Components Failwerheit to 1950C-cml 196/2015 601 A 196/2015 601 A Assy Components Failwerheit to 1950C-cml 196/2015 601 A 196/2015 601 A Marce Assy Components Failwerheit coll 196/2015 601 A Marce HCC Components Failwerheit coll 196/2015 601 A Documents HCR Components Failwerheit coll 196/2015 601 A Documents HCR Components Failwerheit coll 196/2015 601 A Documents HCR Components Failwerheit coll 196/2015 601 A Marcie HCR Components Failwerheit coll 196/2015 601 A Marcie Hodiocasker Components Failwerheit coll 196/2015 601 A Marcie Hodiocasker Components Failwerheit coll 196/2015 601 A Marcie Hodiocasker Comp	M CML File M CML File	III • III Sar 221 (III IIII 223 (III IIII IIII 323 (III IIIII IIIII 325 (IIII IIIIIII IIIIIIIII 325 (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Properties	Import *	Rename: FCC Components Celsius.cml		Component Lists (*.cml)
Safety Analysis	Messages			Open Can

Figure 4.42 Adding FCC component list.

ource Databanic HYSYS				Select	Pure Compone	ints *	Filter:	All Families	
Component	Type	Group *		Search for:	benzene		Search by:	Full Name/Synonym	
675-700C*	User Defined Hypothe	HypoGroup4							
700-725C*	User Defined Hypothe	HypoGroup4		Simul	ation Name	Full Nam	e / Synonym	Formula	
725-750C*	User Defined Hypothe	HypoGroup4	< Add		o-NitAniline	Be	nzenamine_2-Nitro-	C6H6N2	202
750-775C*	User Defined Hypothe	HypoGroup4			m-NitAniline	Be	nzenamine_3-Nitro-	C6H6N2	202
775-800C*	User Defined Hypothe	HypoGroup4			p-NitAniiine	Be	nzenamine_4-Nitro-	C6H6N2	202
800-825C*	User Defined Hypothe	HypoGroup4	Replace		44-2N2PhAmin	Benzenamine_4-	Nitro-N-(4-Nitroph	C12H9N3	304
825-850C*	User Defined Hypothe	HypoGroup4			p-N-2PhAmine	Benzenamin	e_4-Nitro-N-Phenyl-	C12H10N2	202
850-875C*	User Defined Hypothe	HypoGroup4			BenzyICI	Benz	ene_(chloromethy()-	C7H	170
875-900C*	User Defined Hypothe	HypoGroup4	Factoria		1122-TetPhC2	Benzene_1,1',1',	1**-(1,2-Ethanediyii	C264	H22
900-925C*	User Defined Hypothe	HypoGroup4			TetPhenyIC2=	Benzene., 1,1',1".	1	C264	HQC
925-950C*	User Defined Hypothe	HypoGroup4			TetraPhroyIC1	Benzene,_1,1',1',	"-Methanetetrayit	C25F	120
950-975C*	User Defined Hypothe	HypoGroup4			TriPhenyIC1	Benzerve_1,1	",1"-Methylidynetris-	C19F	HIE
975-1000C*	User Defined Hypothe	HypoGroup4			DPhC1-44DiCy	Benzene, 1,1'-Me	thylenebis(4-Isocya	C15H10N2	202
Benzene	Pure Component				1235-E-Benz	Benzer	ne_1,2,3,5-Tetraethyl	C149	122
					433 Filement		And the second second	2474	

Figure 4.43 Adding additional components to FCC component list.

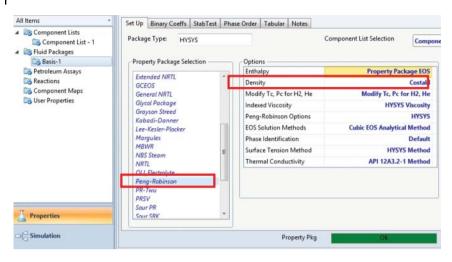


Figure 4.44 Select thermodynamics for fluid package.

It is important to note that even when we choose an equation-of-state approach, Aspen HYSYS does not calculate all physical properties from the equation of state. For hydrocarbons, equations of state do not generally predict the equilibrium properties of very light components such as hydrogen. In addition, density predictions (especially in the heavy hydrocarbon range) can be quite poor. We usually modify the equation of state to account for these deficiencies. For the FCC process, we choose the COSTALD method to predict the liquid density (Figure 4.44).

The last step before building the FCC flowsheet is to verify the interaction parameters (Figure 4.45). If we choose a correlation-based approach (Grayson–Streed, etc.), we do not have to examine the interaction parameters. As we choose an equation-of-state approach, we must ensure that the binary interaction parameters for the equation of state are meaningful. In Aspen HYSYS, the interaction parameters for defined components (such as methane, ethane, etc.) come from an internal data bank based on experimental data. For petroleum pseudocomponents, we can either set the interaction parameters to zero or estimate these values based on correlations. Note that there is little difference in practice whether or not the interactions are set to zero or estimated for lumped components. Especially for the FCC process, both methods yield nearly identical results. Once we have chosen an option for the interaction parameters, we can return to the simulation basis manager and click on "Enter Simulation Environment" to begin building the process model.

4.13.5 Basic FCC Model

We continue with the file, *FCC Components and Properties.hsc*, and save it in a new name, *Workshop 4.1-1.hsc*. The initial flowsheet presents a blank interface where we can place different objects from the Object palette shown in Figure 4.46.

We select the FCC icon from the Refining Reactors palette, click on the FCC icon, and place the icon in the flowsheet. Placing the icon invokes the several

t Up Binary Coe Equation of State			ular Notes		
	Hydrogen	Nitrogen	со	Oxygen	Methane
Hydrogen		-0.03600	0.02530	0.00000	0.2020
Nitrogen	-0.03600		0.01150	-0.01200	0.0360
со	0.02530	0.01150		0.00000	0.0210
Oxygen	0.00000	-0.01200	0.00000		0.0000
Methane	0.20200	0.03600	0.02100	0.00000	
Ethylene	0.00740	0.07220	0.00000	0.00000	0.0215
Ethane	0.22310	0.05000	0.02540	0.00000	0.0022
CO2	0.12020	-0.02000	-0.03140	0.09750	0.1000
H2S	0.75000	0.16760	0.08750	0.00000	0.0850
- 					

Figure 4.45 Binary interaction parameters for fluid package.

🕑 । 🔛 🤊 🐮 🛄 🔍 🖛	Flowihest.	▶ Patette - □ ×
Models and Streams Palette	Dynamics View Customize Resources Flowsheet/Modify Format Attach Attach Attach Break Connection D Zoom Auto Position 2 Swap Connection P Zoom Flowsheet Tools Stream Label 6	
Simulation <	Capital:USD_Utilities:USD/YearEnergy Savings:MW (Upstream Refining
Workbook UnitOps Streams Streams Streams Streams Streams Streams Strip Gaugement Design Guide Analysis Data Tables Strip Charts Case Studies Data Fits	Flowsheet Case (Main) - Solver Active × +	

Figure 4.46 Initial Aspen HYSYS Flowsheet.

submodels that prepare the flowsheet for additional objects and creates a large depiction of the FCC object in the flowsheet.

The first step is to choose whether to use a FCC template or configure a new unit. Aspen HYSYS has several FCC templates that reflect the popular types of industrial FCC configurations. Figure 4.47 shows the initial window when we

🕟 🛛 FCC Template Optr®n 🖻 🗕 🗖
Source for FCC Flowsheet
Read an Existing FCC Template
Configure a New FCC Unit
Cancel

Figure 4.47 Adding the FCC unit.

place a FCC object in the flowsheet. If we choose a template, we do not have to assign the reactor dimensions and select catalyst configuration. However, in this workshop, we will build a FCC unit from scratch, so we choose "Configure a New FCC Unit."

The FCC configuration requires choosing the riser configuration, number and type of regenerators, and catalyst configuration. We may also specify additional downstream fractionation in the form of a simplified main fractionator for the FCC effluent. However, we note that a simplified model for fractionators may not be appropriate for a detailed and integrated process flowsheet. We recommend building a rigorous flowsheet based on standard Aspen HYSYS fractionation objects. In subsequent sections, we will build a complete fractionation section using rigorous stage-by-stage models. In Figure 4.48, we selected a FCC unit with one riser, one-stage regenerator and no fractionation model and click "Next>." We may also use the "Allow Midpoint Injection" to allow for a FCC riser that has multiple injection points.

In the next window, we must specify the key dimensions for the FCC unit. The values in Figure 4.49 reflect typical values for a one-riser, one-regenerator FCC unit. While all measurements are required, the key measurements are the length and diameter of the riser and the height and diameter of the dense and dilute phase in the regenerator. We can estimate all other values (i.e., use values in Figure 4.49) without significantly affecting model results. We click "Next>" after entering all measurements.

Aspen HYSYS now requests to enter to the heat loss for each section of the FCC unit, as shown in Figure 4.50. In general, these values are not available and we recommend using the default values of 0 for all heat losses. These heat losses can account for changes due to external cooling or heating surrounding the unit. Generally, these values are not significant and we may safely ignore them. We click "Next>" to complete the initial unit configuration.

4.13 Workshop 4.1 – Guide for Modeling FCC Units in Aspen HYSYS Petroleum Refining 241

Riser	Regenerator
One Riser	One-stage
Two Risers	Two-stage (Flue Gas in Series)
Allow Midpoint Injection	Two-stage (Separate Flue Gas)
Fractionator	
Include Fractionator	
Next >	Configuration (1 of 4) Cancel

Figure 4.48 Selecting FCC configuration.

The last step is the calibration factors for this particular unit (Figure 4.51). The calibration factors refer to the tuning factors for a specific unit. These tuning factors allow us to match model results with current plant performance. As we need to adjust or calibrate these tuning factors, we choose the "Default" factors. It is possible to have several different sets of tuning factors corresponding to a variety of process, feedstock, and catalyst configurations. However, we recommend that each file should not have more than one set of tuning factors in addition to the "Default" calibration factors.

4.13.6 FCC Feed Configuration

After we complete the basic FCC configuration, we must specify the feed details. We double-click on the FCC icon on the flowsheet to bring up the FCC configuration window shown in Figure 4.52. We enter "Effluent" within Reactor Effluent. We delay entering "Feed-1" within Riser Feed-External, and "VGO" to a later step after we have imported the feed type from the Aspen HYSYS online FCC feed library and have defined the feed stream with its properties.

	Riser		
Total Length [m]	Tribel	36,58	
Diameter [m]		1.000	
Riser Termination Zone		Stripper	
Length [m]	0.3050	Height [m]	7.620
Diameter [m]	4.371	Diameter [m]	3.048
		Annulus Diameter [m]	1.000
Regenerator			1
-	Regenerate		
Dense Bed Height [m]	Regenerato	4.572	
Dense Bed Height [m] Dense Bed Diameter [m]	Regenerato	4.572 6.000	
Dense Bed Height [m] Dense Bed Diameter [m] Dilute Phase Diameter [m]	Regenerato	4.572 6.000 9.000	
Dense Bed Height [m] Dense Bed Diameter [m] Dilute Phase Diameter [m] Interface Diameter [m]	Regenerato	4.572 6.000 9.000 9.000	
Dense Bed Height [m] Dense Bed Diameter [m] Dilute Phase Diameter [m] Interface Diameter [m] Cyclone Inlet Height [m]	Regenerato	4.572 6.000 9.000 9.000 15.24	
Dense Bed Height [m] Dense Bed Diameter [m] Dilute Phase Diameter [m] Interface Diameter [m]	Regenerato	4.572 6.000 9.000 9.000	

Figure 4.49 Specify the dimensions of the FCC unit.

We then click on "Feed Type Library" on the lower right corner of the screen in Figure 4.52 in order to assign a feed type for this model. A feed type refers to how Aspen HYSYS will translate the bulk property information into kinetic lumps. Aspen HYSYS supplies a variety of feed type templates for FCC feeds from a various sources such as VGO, hydrotreated vacuum gas oil (HTVGO), and so on. We click "Import" to import feed types from the feed library. The location of the feed library is shown in Figure 4.53. After choosing the VGO feed type, we delete the "Default" feed type. We also replace "Default" by "VGO" under Feed Type in the Connections screen shown in Figure 4.52.

For this model, we will only choose "fccfeed_vgo.csv." We note that it is possible to include multiple feed types in the same model. In most cases, the VGO feed type is appropriate for most FCC configurations. Even if the FCC feed is a mixture of gas oil from various sources, we recommend using the VGO feed type. If the FCC feed is a largely residue-type feed, then we recommend using the "fccfeed_resid.csv" feed type.

When we import the feed type, Aspen HYSYS shows the details of the feed type, as shown in Figure 4.54. The "Kinetic Lump Weight Percents" indicate the starting composition of the kinetic lumps and the "Methyls and Biases" indicate

	Heat Loss [kJ/h]	
Riser Heat Loss	0.0000	
Regenerator Dense Bed Heat Loss	0.0000	
Regenerator Dilute Phase Heat Loss	0.0000	
Regenerator Flue Gas Line Heat Loss	0.0000	
Reactor Heat Loss	0.0000	
Reactor Stripper Heat Loss	0.0000	

Figure 4.50 Specifying heat loss from different locations of the FCC unit.

how various bulk properties affect the final lump composition. Aspen HYSYS uses the biases to calculate actual kinetic lumps with the bias vectors. The bias vectors essentially correct the kinetic lump composition for the measured bulk properties (which we will enter) from the reference bulk properties in the feed type. We do not modify any information in this window and simply close it to continue the feed configuration process.

We go to the "Feed Data" tab and select the "Properties" section. We click on "Add" to insert "Feed-1" and begin entering the bulk properties of the feed based on the feed information given in Table 4.20 (Figure 4.55). The minimum required feed data are bulk properties (specific gravity, basic or total nitrogen, sulfur content, CCR, and metal contents) and the distillation curve of the feed. We expect that these properties are part of the routine analysis of the feed to the FCC unit. If both total and basic nitrogen are not available, we typically use a value of 3.0 for the total to basic nitrogen ratio. In addition, we typically use 0.5–0.6 for the fraction of feed sulfur processed. Residue-type feeds typically have lower amounts of the fraction of feed sulfur processed. While these values are not exact, they will suffice for our initial model. We also provide some guidelines for related feed information estimates in Table 4.24. However, it is important to provide reasonably accurate values for the metal contents of the feed. The metal contents significantly contribute to the coke production in the unit. As the riser and

Ð	FCC Configuration Wizard	
00	ption 1: When Done button is clicked, goes to calibration environment	
	to generate a new set of calibration factors. (Recommended)	
00	option 2: When Done button is clicked, goes to simulation environment	
	to run a simulation case. Please select a calibration factor set below.	
	Default	
	< Prev Done Calibration Factors (4 of 4)	ose

Figure 4.51 Choose option 2: develop an initial simulation model with default calibration factors.

			Huidund Catalytic Cradking: FCC-100	- 5 .
Design Seed Data	Feattor Section Fractionator	Worksheet Results		
Design	Name FCC-100			
Connectuurs Catalyst Diend Calibration Factors Notes	Inets and Podach Unity Steam	Festar Priver		
	Cree stage	Room Feeds Internal Estern ** Name **	nd foreitige < times >>	Feat Type Library.

Figure 4.52 Enter the effluent stream, effluent, and delay entering feed stream and feed type to a later step.

regenerator are heat-integrated in the FCC unit, this can affect the overall yield prediction from the unit.

We now return to FCC-100 \rightarrow Design \rightarrow Connections to enter the Feed Type, VGO. As we are using the default calibration factors for our initial simulation before our model calibration with plant data, we ignore the recommendation

4.13 Workshop 4.1 – Guide for Modeling FCC Units in Aspen HYSYS Petroleum Refining 245

Internal	External	Feed Type	8	Available	Feed Types		
Feed-1	Food-1 << Stream >>	Default	🔄 🎯 · 🕇 💄 = Aspenfed	h + Aspen HYSYS V9.0 + RefSYS + refre	actor + FCC + feedlibrary	~ ¢	Search fe
8	FCC		Organize • New folder				
- Available Feed Types Defoult Viscoure Gas Out		Edit Add Delete Clone	Converticadi Accent places My Documents Desistop Aspen Plus V9 Favorites Aspen Plus V8 Favorites Aspen Properties V8 Fav Aspen Properties V8 Favo	Name C) foched_penetic.cov C) foched_polypa.cov C) foched_polypa.cov C) foched_polypa.cov C) foched_polypa.cov C) foched_polypa.cov	Date modified 3/13/2015 4:13 PM 3/13/2015 4:13 PM 3/13/2015 4:13 PM 3/13/2015 4:13 PM 3/13/2015 4:13 PM 3/13/2015 4:13 PM 3/13/2015 4:13 PM	Type Microsoft Excel C Microsoft Excel C Microsoft Excel C Microsoft Excel C Microsoft Excel C Microsoft Excel C	io io io
		import_	Documents	C fccfeed_syn.csv C fccfeed_sgo.csv	3/13/2015 4:13 PM 3/13/2015 4:13 PM	Microsoft Excel C Microsoft Excel C	

Figure 4.53 Import from the FCC feed library. C. \rightarrow Program Files (×86) \rightarrow AspenTech \rightarrow Aspen HYSYS \rightarrow RefSYS \rightarrow refractor \rightarrow FCC \rightarrow feedlibrary \rightarrow fccfeed_vgo.csv.

							_
Name:	Vacuum Gas Oil	Vacuum Gas Oil			Date Created:	2/7/2003 16:01,	
Description:					te Modified:	2/7/2003 16:01,	
Kinetic Lump W	eight Percents			- Methyls and	Biases		
C1-C4 lump		0.0000	*	Light WA8P	[C]	302.1	*
C5-430 lump		0.0000			P [C]	431.6	
430-650 Paraf	30-650 Paraffins		-	Resid WABP [C]		548.7	
430-650 Naphthenes 430-650 Aromatic side chains		3.190		Light WABP Bias [C] Heavy WABP Bias [C]		-26.99	
		2.870				-29.68	
430-650 One	ring aromatics	0.8900		Resid WABP	Bias [C]	-39.00	=
430-650 Two	ring aromatics	0.5300		Light Cut Po	oint Bias [C]	0.0000	
650-950 Paraf	fins	13.20		Heavy Cut F	oint Bias [C]	32.28	
650-950 Naph	ithenes	15.97		Resid Cut P	oint Bias [C]	33.31	
650-950 Arom	atic side chains	21.62		Total Ca Bia	s [%]	0.00	1.55
650-950 One	ring aromatics	3.540		1 Ring Meth	nyls	1.000	
650-950 Two	ring aromatics	4.230	*	2 Ring Meth	nyls	2.000	*
Normal	ize			Calculat	e Biases		

Figure 4.54 Feed type template.

of Aspen HYSYS to enter the feed stream under "New" internal steam (see Figure 4.56).

We do not enter specific utility streams in Figure 4.56 under "Utility Streams," but will enter the required stream temperature, pressure, and flow rate of essential utilities in subsequent steps.

Table 4.24 gives typical values for straight-run VGO and can serve a reality check for data collected during analysis. The nitrogen and sulfur contents can increase the rate of catalyst deactivation significantly, while the high metal contents can promote excessive production of hydrogen and light gas. We must be aware of these factors when developing the FCC model. This completes the feed configuration of the FCC unit. We may add additional feeds to the unit at this point (with the same feed type). For this simulation, we only use one feed.

esign Feed Data	Reactor Section Fractionator Worksheet	NEVILS	
ibrary	Feeds	Properties of Selected Feed	
roperties	Feed-1	Name	Feed-1
ptions		Feed Type	Vacuum Gas Oil
		API Gravity	21.75
		Specific Gravity 60F/60F	0.9233
		Distillation Type	TBP
		Initial Point [C]	262.0 C
		5% Point [C]	335.5 C
		10% Point [C]	360.7 C
		30% Point [C]	418.6 C
		50% Point [C]	460.1 C
		70% Point [C]	500.0 C
		90% Point [C]	550.3 C
		95% Point [C]	570.3 C
		End Point [C]	620.2 C
		Basic Nitrogen [ppmwt]	726.0 ppmwt
		Total Nitrogen [ppmwt]	2178 ppmwt
		Total/Basic Nitrogen Ratio	3.000
		Sulfur Content [wt %]	0.6600 wt %
		Fraction of Feed S Processed	0.5000
		Conradson Carbon Residue [wt %]	1.950 wt %
		Ramsbottom Carbon Residue [wt %]	1.509 wt %
		RI @Specified T Meas.(Optional)	<empty></empty>
		RI Meas. Temperature (Optional) [C]	<empty></empty>
		RI @20C Calc. from Lab Data	<empty></empty>
		RI @20C Est. from Bulk Prop.	1.51732
		Ca Meas.(Optional)	<empty></empty>
		Ca Est. from Total Method	19.80
	Add Delete	Viscosity, cSt@210F Lab.(Optional)	<empty></empty>
		Viscosity, SUS@210F Lab.(Optional)	<empty></empty>
	Clone	Viscosity, cSt@210F Est.	9.971
		Vanadium (ppmwt)	0.5000 ppmwt
	Feed Properties	Nickel [ppmwt]	5.000 ppmwt
	Assay	Sodium [ppmwt]	0.3000 ppmwt
	Bulk Properties	Iron (ppmwt)	3.500 ppmwt
	C Kinetic Lumps	Copper [ppmwt]	0.1000 ppmwt

Figure 4.55 Completed feed bulk property information window: Feed Data \rightarrow Properties \rightarrow Add \rightarrow Feed-1 \rightarrow Feed Properties \rightarrow Bulk Properties \rightarrow Properties of Selected Feed.

Bulk property	Typical range or guideline
Specific gravity	0.8–1.2
Concarbon (wt%)	1–3
Basic nitrogen (ppm wt)	500-1000
Total/basic nitrogen ratio	3.0
Sulfur content (ppm wt)	<2
Fraction of feed sulfur processed	0.5-0.6
Total aromatic content (wt%)	20–30 (for straight-run VGO)
Nickel and iron content (ppm wt)	10-100x (vanadium + sodium + copper)

 Table 4.24 Typical range of properties for FCC feed.

4.13.7 FCC Catalyst Configuration

The next step in building the model is selecting the catalyst blend in the unit. We select the "Catalyst Blend" tab in the Design Section Window, as shown in Figure 4.57. The process for importing a catalyst blend is similar to that for importing feed types. We click on the "Catalyst Library" button to bring up the import window for the catalysts.

Figure 4.58 shows the location of the catalyst library and lists the available catalyst types. A catalyst type essentially contains the tuning or calibration

4.13 Workshop 4.1 – Guide for Modeling FCC Units in Aspen HYSYS Petroleum Refining 247

D	Fluidized Catalytic Cracking: FCC-100	÷ 0 ×
Design Feed Data Assetta Section Fractionator Worksheet Assuits		
Peripy Nem: FCC-100 Connectional Calorization factors Nets Image: Test and Postudas Database Database Image: Test and Postudas Database	Fractur (Thurst Efficient *	
See Feeth One stopp Single free	Extension Freet Type Tend 1 <	fest Type Litrary.

Figure 4.56 Specification of the feed type, Vacuum Gas Oil. We previously introduced the internal riser feed, Feed-1, in Figure 4.55, and do not enter the external riser feed.

8		Fluidized Catalytic Cracking: FCC-100	- 0
Design Sees Data	Feattor Section Fractionator Worksheet Results		
Design	Base Catalyst Blend and Composition		
Connections Catalyst Blend Calibration Factors Notes	Weight Flaction Davkle Aarste Rare Earth Catilyof Litrary		formanie trac wrate- wr
	204-1 Adothe Seectivity 204-5 per Unit Mass of Base Birrol	Standard -ampty-	2045 factor.
	Heat Capacities		
	Catalyst Heat Capacity (k)/kg-C] catalyst Heat Capacity (k)/kg-C] color Heat Capacity (k)/kg-C) category		

Figure 4.57 Initial catalyst blend window.

Ð	Available Cat	alysts		×
🔄 🅘 🔻 🕇 퉬 « refr	eactor → FCC → catlibrary	~ C	Search catlibrary	,
Organize 👻 New folder			8≡ ▼	
This PC Desktop Documents Downloads LocalFTP Music Pictures Videos Website files Local Disk (C:)	Name Access905t Access907 Acce		Date modified 12/12/2014 12:05 12/12/2014 12:05 12/12/2014 12:05 12/12/2014 12:05 12/12/2014 12:05 12/12/2014 12:05 12/12/2014 12:05 12/12/2014 12:05 12/12/2014 12:05	Type Microsoft Microsoft Microsoft Microsoft Microsoft Microsoft Microsoft Microsoft
File na	me: af-3	~	Catalyst Lists (*.csv) Open	∨ Cancel

Figure 4.58 Catalyst library. C. \rightarrow Program Files \rightarrow AspenTech \rightarrow Aspen HYSYS \rightarrow RefSYS \rightarrow refractor \rightarrow FCC \rightarrow catlibrary \rightarrow af-3.csv.

factors responsible for light gas distribution, small adjustments to product bulk properties (RON, MON, etc.), and distribution of coke produced by the metal function of the catalyst. The catalyst library contains catalyst data from a variety of manufacturers and sources. If the exact catalyst is not available, we recommend using a similar match. It is possible to tune away variations in the tuning factors due to catalyst type, but this may produce an overcalibrated model with unrealistic yield predictions. For this model, we use the Akzo A/F-3 catalyst and choose "af-3.csv" from the catalyst library.

Once we choose a catalyst, Aspen HYSYS will display a summary of the key features of the catalyst (see Figure 4.59). We can use this list to compare with the true product specifications from the catalyst manufacturer. If the catalyst is not acceptable, we can click "Delete" to remove the catalyst and try another entry from the catalyst library. As we mentioned in the previous paragraph, it is not critical to find an exact match. Once we have added all catalysts we require, we can close the catalyst information window and return to the "FCC Reactor Section."

Next, we must specify the catalyst blend. The catalyst blend refers to two or more different kinds of catalysts from the catalyst library. We can assign individual weight fractions for each of the catalysts in the blend. In our model, we are using only one type of catalyst, so we set the weight fraction to 1.0, as shown in Figure 4.60. We use the default values for the heat capacities of the catalyst and coke. These values are generally not measured; however, we expect only small deviations from the default value in the actual FCC unit.

atalyst	Received and			_
lame:	A/F-3			
escription:	Akzo A/F-3			
lanufacturer:	Akzo			
ate Created:	Oct 20, 2003	Date Modified:	Oct 20, 2003	
atalyst Propert	iec			
Kinetic Coke			1.046	*
Feed Coke			1.167	H
Stripping Eff.			0.9998	-
Metals Coke			1.057	
Methane			1.308	
Ethylene			1.490	
Ethane			1.122	
Propylene			1.352	
risplane			1.517	
Propane			1.276	
Propane			1.319	
Propane IC4			1.319 1.051	

Figure 4.59 Catalyst parameters.

4.13 Workshop 4.1 – Guide for Modeling FCC Units in Aspen HYSYS Petroleum Refining 249

Design F	eed Data Catalyst	Operation	Results		
Catalyst	Base Catalyst Ble		A CONTRACTOR OF A		
Library		A/F-3			Normalized Total
Blend	Weight Fraction		1.0000		1.0000
ctivity	Zeolite		26.69		26.69
1	Alumina		37.20		37.20
	Rare Earth		3.746e-002		3.746e-002
	Selectivity			Standard	
	Selectivity ZSM-5 per Unit	Mass of Base	Blend	0.0000	ZSM5 Factors
	and and a second s	Mass of Base	Blend	0.0000	ZSM5 Factors
	ZSM-5 per Unit Heat Capacities			0.0000	ZSM5 Factors
	ZSM-5 per Unit	apacity [kJ/kg			ZSM5 Factors
	ZSM-5 per Unit Heat Capacities Catalyst Heat C	apacity [kJ/kg		1.100	ZSMS Factors
	ZSM-5 per Unit Heat Capacities Catalyst Heat C	apacity [kJ/kg		1.100	ZSMS Factors

Figure 4.60 Catalyst parameters.

Design Feed Data Re	eactor Section Fractiona	tor Worksheet	Results		
Reactor Section	Option for Specifying	Metals Balance			
Feeds	Constant Ecat Meta	ls 🤅	Constant Feed Me	tals	
Catalyst Activity Riser/Reactor	Feed Metals				
Regenerator		Feed-1			
Pressure Control	Vanadium [ppmwt]	<empty></empty>			
Solver Options	Nickel [ppmwt]	<empty></empty>			
Solver Console	Sodium [ppmwt]	<empty></empty>			
Advanced	Iron [ppmwt]	<empty></empty>			
EO Variables	Copper [ppmwt]	<empty></empty>			
Presolve Commands					
Postsolve Commands	Feed Metal Totals and	Biases		Equilibrium Catalyst	
		Total	Bias	Vanadium [ppmwt]	5000
	Vanadium [ppmwt]	<empty></empty>	<empty></empty>	Nickel [ppmwt]	4044
	Nickel [ppmwt]	<empty></empty>	<empty></empty>	Sodium [ppmwt]	3103
	Sodium [ppmwt]	<empty></empty>	<empty></empty>	Iron [ppmwt]	5553
	Iron [ppmwt]	<empty></empty>	<empty></empty>	Copper [ppmwt]	57.00
	Copper [ppmwt]	<empty></empty>	<empty></empty>		
	50 C		-	Catalyst Inventory [kg]	1.500e+005
		Restore D	Pefault Biases	Fresh Make Up Rate [kg/h]	<empty></empty>
				Equilibrium MAT [%]	66.00

Figure 4.61 Catalyst activity factor and equilibrium metal contents.

We must also specify if any ZSM-5 additive is present in the catalyst. The "ZSM-5 per Unit Mass" variable acts as another tuning factor to adjust model yields of the unit. We may use an average value or set the ZSM-5 content to 0 if the information is not available. As we will tune the unit to an actual product distribution, it is not essential that this value is exactly the same as the actual unit.

The last step in catalyst configuration is to specify the "Activity" section of the "Catalyst" tab in the FCC Reaction Section Window, as shown in Figure 4.61. The activity of the catalyst essentially refers to the effect of metals on catalyst deactivation. We can either maintain a constant level of metals on the catalyst or

keep adjusting the feed metal contents to match makeup rates, and equilibrium catalyst activity (Ecat). We recommend using "Ecat Metals" option, as the information required is available from routine equilibrium catalyst analysis of the FCC catalyst.

We will specify the metal contents of the equilibrium catalyst and equilibrium microactivity test (MAT) value. When we use this option, Aspen HYSYS will automatically calculate the makeup of catalyst required to maintain the equilibrium MAT and keep the metal contents on the catalyst fixed. The total catalyst inventory refers to the total amount of catalyst available to the FCC unit. We can now specify the operating variables for the FCC unit model.

4.13.8 FCC Operating Variable Configuration

Before we specify the operating variables of the FCC unit, we use the main application toolbar to hold the solver. Holding the solver ensures that the solver will not immediately solve, once we specify all variables for the FCC unit. It is generally *a good idea to hold the solver before changing many operating variables* as we do in the following sections. We hold the solver by clicking on the red stop sign in the main application toolbar. We can release the solver by clicking on the green go sign in the toolbar.

We specify the feed rate, temperature, and pressure into the preheater before the feed enters the riser, as shown in Figure 4.62. If we have multiple injection points, we can specify the feed into the injection points as well. To specify the actual temperature of the feed entering the riser, we must either set the preheat duty or a preheat temperature. As we have a single feed, we set the preheat outlet temperature to plant value. We must also specify the steam flow and conditions

Design	Feed Data	Reactor Section	Fractionator We	orksheet Resul	Its			
React	or Section	-Feed Conditio	ns					
Feeds Catalyst	Activity	Feed	Volume Flow [m3/h]	Mass Flow [kg/h]	Temperature [C]	Pressure [kPa]	Location	S Processed
Catalyst Activity Riser/Reactor Regenerator Pressure Control Solver Options Solver Console Advanced EO Variables Presolve Commands Postsolve Commands	Feed-	1 113.3	1.04625e+05	175.0	601.3	Riser	0.5000	
		Total Feed and	d Dispersion Stear					
				m				
		Fresh Feed Vo	olume (m3/h)	Riser	113.3			
		Fresh Feed Vo Fresh Feed M	olume [m3/h] ass [kg/h]	Riser	25e+05			
		Fresh Feed Vo Fresh Feed M Total Feed Vo	olume [m3/h] ass [kg/h] olume [m3/h]	Riser 1.046	25e+05 113.3			
		Fresh Feed Vo Fresh Feed M Total Feed Vo Total Feed Ma	olume [m3/h] ass [kg/h] olume [m3/h] ass [kg/h]	Riser 1.046	25e+05 113.3 25e+05			
		Fresh Feed Vo Fresh Feed M Total Feed Vo Total Feed M Total Feed Pro	olume [m3/h] ass [kg/h] olume [m3/h] ass [kg/h] eheat Duty [kJ/h]	Riser 1.046	25e+05 113.3 25e+05 0.0000			
		Fresh Feed Vo Fresh Feed M Total Feed M Total Feed M Total Feed Pr Total Feed Te	olume [m3/h] ass [kg/h] olume [m3/h] ass [kg/h] eheat Duty [kJ/h] mperature [C]	Riser 1.046	25e+05 113.3 25e+05 0.0000 175.0			
		Fresh Feed Vo Fresh Feed M Total Feed Vo Total Feed Ma Total Feed Pre Total Feed Pre Steam Mass (olume [m3/h] ass [kg/h] olume [m3/h] ass [kg/h] eheat Duty [kl/h] mperature [C] kg/h]	Riser 1.046	25e+05 113.3 25e+05 0.0000			
		Fresh Feed Vo Fresh Feed M Total Feed M Total Feed M Total Feed Pr Total Feed Te	olume [m3/h] ass [kg/h] olume [m3/h] ass [kg/h] eheat Duty [kl/h] mperature [C] kg/h]	Riser 1.046 1.046	25e+05 113.3 25e+05 0.0000 175.0			
		Fresh Feed Vo Fresh Feed M Total Feed Vo Total Feed Ma Total Feed Pre Total Feed Pre Steam Mass (olume [m3/h] ass [kg/h] lume [m3/h] ass [kg/h] eheat Duty [kJ/h] mperature [C] kg/h] al Feed Ratio	Riser 1.046 1.046	25e+05 113.3 25e+05 0.0000 175.0 5200			

Figure 4.62 Specify feed conditions.

associated with the feed into the riser inlet. Typical values for dispersion steam are 1-5 wt% of the fresh feed rate.

The next step is to specify the operating variables for the riser and reactor, as shown in Figure 4.63. In most FCC units, control strategies generally fix the riser outlet temperature (ROT) as a set point, so the ROT is a natural specification for the riser. It is also possible to specify the Cat/Oil ratio or circulation rate, but these specifications make the model quite difficult to converge. We recommend using the ROT as an initial specification and then shifting to other possible specifications.

We also specify the flow rate and conditions of the Lift Gas and Reactor Stripping Zone shown in Figure 4.63. The lift gas is typically an inert in the cracking process and the steam for the reactor stripping zone minimizes thermal cracking due to high temperatures. We must at least supply the stripping steam rate to ensure that the model converges to a reasonable solution. The stripping steam rate is roughly about 1-5 wt% of the fresh feed. The next step is to specify the regenerator operating variables.

In Figure 4.64, we specify regenerator operating variables. The key variables are the dense bed temperature, flue gas oxygen (O_2) composition, and catalyst inventory. The flue gas composition and dense bed temperature fix the airflow rate and coke combustion rate for the regenerator. Some FCC units include side coolers and enriched oxygen streams to completely combust the coke on the catalyst. We may specify these as well; however, they are not common with mostly straight-run VGO type feeds. We enter nominal values for the ambient air conditions and blower discharge temperature. In the typical range for these variables, there is little effect on process performance.

Design Feed Data Ca	talyst Operation Results		
Operation	Riser Temperature Control		
Feeds	Riser Outlet Temperature [C]	518.0	
Riser/Reactor	Reactor Plenum Temperature [C]	<empty></empty>	
Regenerator	Catalyst Circulation Rate [kg/h]	<empty></empty>	
ressure Control	Cat/Oil Ratio	<empty></empty>	
olver Options			
olver Console	- Lift Gas Control		
dvanced O Variables	Lift Gas Volume [STD_m3/h]	0.0000	
o variables resolve Commands	Lift Gas Mass [kg/h]	<empty></empty>	
lostsolve Commands	Lift Gas Temperature [C]	25.00	
Construction of the second sec	Lift Gas Pressure [kPa]	101.3	
	Reactor Stripping Zone		
	Stripping Steam Rate [kg/h]	5000	
	Stripping Steam Temperature [C]	200.0	
	Stripping Steam Pressure [kPa]	1301	
	Ratio to Catalyst Circulation Rate (x1000)	<empty></empty>	
			EO Variables

We show the last step in configuring operating variables in Figure 4.65. All refiners continuously measure the reactor and regenerator pressure to ensure

Figure 4.63 Riser conditions and steam input.

	Inactor Sectory Practiceator Worksheet	Security	
Reactor Section	Cyclane Temperature (C)	 simply> 	 Ambient Air Co
feeds	Flue Gas Temperature (C)	<arrest campby=""></arrest>	Temperature
atalyst Activity	File Gas - Dense Bed Delta-T (C)	Campitys	11.00 C
last/Reactor	Flue Gas O2, Dry (%)	2.600	Production of the second se
egenerator	Hue Gas CO. Dry [%]	<mg></mg> cmg/y>	Presser
Yessure Control	Flue Gas CO2, Dry (%)	<erfify-< td=""><td>101.3 6%</td></erfify-<>	101.3 6%
olver Options	Rue Gas CO/CO2 Ratio	- angly-	01.3 8%
olver Console	File Gas SOL Dry (ppremot)	(airphy)	Andrea Prese
dvanced	Carbon on Regan Cat (CRC) IN2	rempty-	
O Variables	Air Volume Row. Wet (\$10,m3/h)	sengty-	70.00 N
ressive Commands	Air Mass Flow, Wet (kg/h)	rempty-	
ootsche Commanda		-empty-	
	Ervich 02 Mass Row (kg/h)	0.000	1
	Envich O2 Pressure (MPa)	101.3	
	Erwich G2 Temperature [C]	160.0	
	Catalyst Cooler Duty BUNI	- amply-	
	Air Blover Discharge Temp (C)	191.0	
	Dense Bed Bulk Density [Sg/vsl]	carigity>	
	Catalyst Inventory [log]	L305+005	
	Hue Querch Water Rate (kg/h)	8.000	
	Phar Quersch Water Terrar (C)	104.4	
	Hur Charsh Water Pressure (BPa)	547.A	1

Figure 4.64 Regenerator operating parameters. Note that a required dense bed temperature (°C) of 608 is not visible in this image.

	orksheet Results	Reactor Section Fraction	Feed Data	esign
		Pressure Control	tor Section	React
300.1		Reactor Pressure [kP		eeds
296.5		Regenerator Pressur	t Activity	atalyst
<empty></empty>	e Difference	Regenerator-Reacto	eactor	liser/Re
<empty></empty>	Difference [kPa]	Regenerator - Riser	rator	egener
			e Control	ressure
			Options	olver O
			Console	olver C
			Console	
				dvance
			ed	dvance O Varia
			ed	O Varia

Figure 4.65 Pressure control (reactor pressure should be greater than regenerator pressure).

that catalyst is flowing through the unit. Accurate values here will aid in better predictions of catalyst circulation rate through the riser and the catalyst-to-oil ratio. We also note that once we enter the pressure measurements given in Figure 4.65, Aspen HYSYS will indicate that we are ready to solve the model.

4.13.9 Initial Model Solution

Before solving the model, we must ensure that the solver parameters will lead to robust convergence. We bring up the solver options by selecting the "Solver Options" section in "Operation" tab. Figure 4.66 shows the recommend values for the solver options. We have chosen these values based on our experience with running with model.

In general, we do not recommend modifying the constraints for the residual, Hessian parameters, and line search parameters. When running the model for the first time, we increase the number of creep iterations and maximum iterations. Creep iterations refer to initial small changes in the process variables when the starting guesses are very poor (the Jacobian cannot indicate a direction that will decrease the residual). The maximum iterations refer to how many times the solver will iterate through the model before exiting. Depending on process parameters, the initial solution may take up to 30–40 iterations.

We activate the solver by clicking on the green go button in the main application bar. The solver output appears in the lower right-hand corner of the PFD window. The solver output for the configured model is shown in Table 4.25. Column 1 of

Reactor Section	Convergence Tolerance		SQP Hessian Parameters	
eeds	Residual 1.000	0e-006	Initialization	Normal *
Catalyst Activity Riser/Reactor			Scaling factor	1.000
Regenerator Pressure Control	- Iteration Limits		Updates stored	10
Solver Options	Maximum Iterations	50		
Solver Console			Line Search Parameters	
Advanced O Variables	Minimum Iterations	0	Algorithm	Normal *
Presolve Commands	Creep Step Parameters		Step Control	Normal *
Postsolve Commands	On / Off Switch	On 👻	Step Control Iterations	0
	Iterations	10	Variable Scaling Parameter	
	Step Size	0.1000	On / Off Switch	On -
	Completeness Checking		Failure Recovery Action	
	Override Spec Group Cor	npleteness	Revert to the previous result	ts •

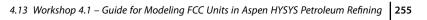
Figure 4.66 Solver convergence options.

the table indicates the number of iterations performed since starting the solver. The residual convergence function indicates how far we are from satisfying the process model equations. When we run the model for the first time, residuals on the order of 1E7 are expected. As we approach the solution, the residual drops to closer and closer to zero. Columns 3 and 4 refer to the residual of the objective function. We use the objective function only during calibration; therefore, it is zero for this model run. The solver used by Aspen HYSYS converges very quickly to solution once the changes in the process equations start appearing to be linear. This is the case when we are in the vicinity of the solution. The solver indicates the vicinity of the solution through columns 5 and 6. The Worst model column indicates which part of the reformer model is furthest from the solution. This is useful for tracking down issues when the model fails to converge. The last lines of the output show several running statistics for the solver.

In general, the FCC model should converge with 20 s on recent computer hardware. If solution requires more than 20 s, it is likely that some conflicts exist in the specifications.

4.13.10 Viewing Model Results

Figure 4.67 shows the converged FCC unit operation window after Aspen HYSYS has successfully solved the model. We connect an effluent stream by bringing up the "Connections" section of the Design tab and typing in "Effluent" for the Reactor Effluent stream. A stream titled "Effluent" will appear on the PFD and we can use this stream to build further downstream fractionation units.


The "Results" tab in Figure 4.68 summarizes various model results in different categories. The Feed Blend tab in Figure 4.69 shows the bulk property information and kinetic lumping for each feed entering the riser. An important check is the sum of the adjusted aromatic core compositions. In Figure 4.69, the sum of the highlighted one-ring, two-ring, and three+ ring aromatic cores is 22.60 wt%. This value should be close to the value of 16.93% of "Ca. Est. from Total Method"

eration	Residual Convergence Function	Objective Convergence Function	Objective Function Value	Overall Nonlinearity Ratio	Model Nonlinearity Ratio	Worst Mode
0	1.641D+02	0.000D+00	0.000D+00	9.991D-01	9.973D-01	
	<line search<="" td=""><td>Creep Mode A</td><td>CTIVE> ==</td><td>> Step taker</td><td>n 1.00D–01</td><td></td></line>	Creep Mode A	CTIVE> ==	> Step taker	n 1.00D–01	
1	1.314D+02	0.000D+00	0.000D+00	9.761D-01	-9.852D+00	
	<line search<="" td=""><td>Creep Mode A</td><td>CTIVE> ==</td><td>> Step take</td><td>n 1.00D–01</td><td></td></line>	Creep Mode A	CTIVE> ==	> Step take	n 1.00D–01	
2	1.059D+02	0.000D+00	0.000D+00	9.788D-01	-4.397D+00	
	<line search<="" td=""><td>Creep Mode A</td><td>CTIVE> ==</td><td>Step taker</td><td>n 1.00D–01</td><td></td></line>	Creep Mode A	CTIVE> ==	Step taker	n 1.00D–01	
3	8.563D+01	0.000D+00	0.000D+00	9.811D-01	-2.454D+00	
	<line search<="" td=""><td>Creep Mode A</td><td>CTIVE> ==</td><td>> Step take</td><td>n 1.00D–01</td><td></td></line>	Creep Mode A	CTIVE> ==	> Step take	n 1.00D–01	
4	6.950D+01	0.000D+00	0.000D+00	9.831D-01	-1.460D+00	
	<line search<="" td=""><td>Creep Mode A</td><td>CTIVE> ==</td><td>> Step take</td><td>n 1.00D–01</td><td></td></line>	Creep Mode A	CTIVE> ==	> Step take	n 1.00D–01	
5	5.654D+01	0.000D+00	0.000D+00	9.849D-01	-8.596D-01	
	<line search<="" td=""><td>Creep Mode A</td><td>CTIVE> ==</td><td>> Step taker</td><td>n 1.00D–01</td><td></td></line>	Creep Mode A	CTIVE> ==	> Step taker	n 1.00D–01	
6	4.608D+01	0.000D+00	0.000D+00	9.865D-01	-4.611D-01	
	<line search<="" td=""><td>Creep Mode A</td><td>CTIVE> ==</td><td>> Step taker</td><td>n 1.00D–01</td><td></td></line>	Creep Mode A	CTIVE> ==	> Step taker	n 1.00D–01	
7	3.760D+01	0.000D+00	0.000D+00	9.879D-01	-1.778D-01	
	<line search<="" td=""><td>Creep Mode A</td><td>CTIVE> ==</td><td>> Step taker</td><td>n 1.00D–01</td><td></td></line>	Creep Mode A	CTIVE> ==	> Step taker	n 1.00D–01	
8	3.070D+01	0.000D+00	0.000D+00	9.891D-01	3.205D-02	
	<line search<="" td=""><td>Creep Mode A</td><td>CTIVE> ==</td><td>> Step taker</td><td>n 1.00D–01</td><td></td></line>	Creep Mode A	CTIVE> ==	> Step taker	n 1.00D–01	
9	2.508D+01	0.000D+00	0.000D+00	9.902D-01	1.928D-01	
10	2.049D+01	0.000D+00	0.000D+00	8.772D-01	-1.091D+01	
11	1.151D-01	0.000D+00	0.000D+00	9.974D-01	9.853D-01	
12	2.523D-06	0.000D+00	0.000D+00	1.000D+00	1.000D+0	
13	1.325D-14	0.000D+00	0.000D+00			
Succes	sful solution.					
	ization Timing		Time ======	Percent		
	EL computation		0.88 secs	49.67 %		
	computations		0.66 secs	37.31 %		
	laneous		0.23 secs	13.02 %		
Total (Optimization Ti	me	1.77 secs	100.00 %		

Table 4.25 Initial solver output.

heighted in Figure 4.68 that represents the aromatic content of feed. If these values differ significantly (>10 wt%), we may have chosen a feed type that does not represent the actual feed to the unit accurately.

We can view the overall product yields in "Product Yields" section. The yields shown in Figure 4.70 are the so-called *standard cut grouped yields*, or *square cut yields*. These yields refer to product yields with fixed end points; typical cuts include *C1-C4 lump*, *C5-430 lump* (C5-430°F or 221°C), *430–650 lump* (430–650°F, or 221–343°C), *650–950 lump* (650–950°F, or 343–510°C), and

esign	Reactor Se	ection F	ractionator	Worksheet	Results				
De	esign	Name	FCC-100	<u>, </u>					
	tions : Blend ion Factors		ds and Prod	lucts		Reactor			
					Riser Feeds			Eeed Type Libr	ary
					Riser Feeds		External	Eeed Type Libr	ary
					000000000000000000000000000000000000000		External << Stream >>		ary
		One-st. Single I	1.1	11/11	000000000000000000000000000000000000000	nal		Feed Type	ary

Figure 4.67 Add effluent stream to PFD.

Results	Blend Properties at Selected Riser Location		
Feed Blend Product Yields	Riser		
Product Properties		Feed-1	Total
Riser/Reactor	Bulk Properties	Feed-1	Total
Regenerator		21.75	
Regenerator API gravity Fractionator Specific Gravity 60F/60F		0.9233	
ractionator Specific Gravity 60F/60F Heat Balance Basic Nitrogen Content [ppmwt]		726.0	726.0
Advanced	Total Nitrogen Content [ppmwt]	2178	2178
	Total/Basic Nitrogen Ratio	3.000	3.000
	Sulfur Content [%]	0.66	
	Fraction of Feed S Processed	0.5000	
	Conradson Carbon Residue (%)	1.95	
	Ramsbottom Carbon Residue [%]	1.95	1.93
	RI @Specified T Meas.	1.31	
	RI Meas. Temperature [C]		
	RI @20C Calc. from Lab Data		
	RI @20C Est. from Bulk Prop.	1.51732	
	Ca Meas.	1.317.32	
	Ca Est, from Total Method	19.80	
	Viscosity, cSt@210F Lab.	15100	
	Viscosity, SUS@210F Lab.		
	Viscosity, cSt@210F Est.	9.971	
	Vanadium Content [ppmwt]	0.5000	
	Nickel Content [ppmwt]	5.000	
	Sodium Content [ppmwt]	0.3000	0.3000
	Iron Content [ppmwt]	3.500	3.500
	Copper Content [ppmwt]	0.1000	0.1000
	D1160 VABP ICI	460.2	
	K Factor Based on D1160 VABP	11.88	
	K Factor Based on D2887 50% Point	11.88	
	Hydrogen Content [%]	12.18	
	Molecular Weight	424.7	
	% of Blended Fresh Feed Aromatics in each Feed [%]	100.00	
	% of Blended Fresh Feed H in each Feed [%]	100.00	
	Distillation Data		
	D2887 Initial Point ICI	313.2	

Figure 4.68 Navigate FCC results.

Design Feed Data	a Reactor Section Fractionator Worksheet Results	
Results	Blend Properties at Selected Riser Location	
Feed Blend	Riser	
Product Yields		
Product Properties	Adjusted Kinetic Lump Composition By Boiling Point	
Riser/Reactor	C1-C4 Lump [%]	0.00
Regenerator	C5-430 Lump [%]	0.00
Fractionator	430-650 Lump [%]	0.00
Heat Balance	650-950 Lump [%]	58.82
Advanced	950+ Lump [%]	41.18
	Totals [%]	100.00
	Adjusted Kinetic Lump Composition Type	
	C1-C4 Lump [%]	0.00
	C5-430 Lump [%]	0.00
	Paraffins [%]	14.35
	Naphthones (9/1	20.02
	One Ring Aromatic Cores [%]	4.94
	Two Ring Aromatic Cores [%]	7.85
	Three+ Ring Aromatic Cores [%]	9.81
	Aromatic Sidechains [%]	34.22
	Totals [%]	100.00
	Composition for Flash Calculation	
	Pseudo250 [%]	0.00
	Deeudo280 [%]	0.00

Figure 4.69 Adjusted kinetic lumps. The sum of highlighted one-ring, two-ring, and three+ ring aromatic cores (not side chains) is 22.60%.

Design	Feed Data	Reactor Section	Fractionator	Worksheet	Results			
Results Feed Blend		Yields						
		Standard cut grouped Standard cut detailed						
Product	t Yields		. g. c ap eu	_ startaat		2009-00-00-00-00-00-00-00-00-00-00-00-00-		
Product	t Properties							
Riser/Re				Volume Flow	M	ass Flow	Volume	Weight
Regene				[m3/h]		[kg/h]	[%]	[%]
Fraction		H2S				378.1828		0.3615
Heat Ba	in a line	Fuel Gas		5.66	33	4745.3760	4.9977	4.5356
Advanc	ed	Propane		5.63	00	2852.5776	4.9684	2.7265
		Propylene		10.41	79	5427.2686	9.1937	5.1874
		nButane		2.98	81	1742.7079	2.6369	1.6657
		iButane		6.80	51	3824.2456	6.0054	3.6552
		Butenes		11.99	94	7247.3443	10.5893	6.9270
		Naphtha C5-4	430F	58.24	78	44638.7854	51.4028	42.6657
		LCO 430-650	F	16.57	72	14659.3714	14.6291	14.0114
		Bottoms 6508	+	11.23	33	12163.4678	9.9133	11.6258
		Coke Yield				6945.3127		6.6383
		Total		123.89	88	104624.6400	109.3389	100.0000
		Conversion					75.4576	74.3628

Figure 4.70 "Standard cut grouped" product yields.

950+lump (>950 °F or 510 °C). These cut points may be different from those being used in the plant. The end point of the plant naphtha cut is generally lower; therefore, the square cut yield is often much higher than the plant yield. We will produce a true plant cut using rigorous fractionation in Workshop 4.3, Section 4.15.

Figure 4.71 shows the "Product Properties" of each square cut from the model. As the square cut yields do not reflect the plant yields directly, model results for

Design	Feed Data	Reactor Section	Fractionator	Worksheet	Results		
Re	sults	Product Propert	ies				
Feed Ble	end						
Product Yields	ſ	C5	265F	265-430F	430-650F	650F+	
	Properties	API Gravity		63.0	1 39.01	28.35	-0.9510
Riser/Re		Specific Gravity		0.727	5 0.8299	0.8852	1.084
Regener		Sulfur [%]		0.0	5 0.14	0.72	1.17
Heat Ba		RON		93.8	91.53		
Advance		MON		84.4	1 79.78		
- and a started		(R+M)/2		89.12	2 85.66		
		Paraffins [vol %	la	37.3	15.99	6.512	2.398
		Olefins [vol %]		47.6	5 16.31	0.0000	0.0000
		Naphthenes [vo	1%]	8.44	5 7.540	8.543	2.810
		Aromatics [vol 9	6]	6.60	1 60.15	84.94	94.79
		Cloud Point [C]				-20.99	
		Concarbon [%]		0.0	2 0.05	0.11	0.38
		Basic Nitrogen	[ppmwt]	3.01	1 12.22	106.6	218.0
		Paraffins [wt %]		35.1	7 14.46	5.468	1.731
		Olefins [wt %]		47.0	1 14.70	0.0000	0.0000
		Naphthenes [with	:%]	9.58	0 7.229	7.440	2.071
		Aromatics [wt %	5]	8.23	63.61	87.09	96.20

Figure 4.71 Properties of square cut products.

each property may not exactly match plant values. We need rigorous fractionation to compare model results with plant measurements. In addition, we will likely improve the agreement of product properties when we calibrate the model in the next workshop.

The last set of significant results is the "Heat Balance" section in Figure 4.72. The heat balance shows the overall coke yield and delta coke for the process. *Delta coke* is simply the difference between the coke on spent catalyst (CSC) at the stripper outlet and the coke on regenerated catalyst (CRC), expressed as a weight percent of catalyst. According to Figure 4.72, the difference between 0.65% and 0.04% is the delta coke of 0.61%.

In addition, the model calculates the catalyst-to-oil ratio (C/O) and catalyst circulation rate. A "coke balance" around the regenerator results in a useful expression for the delta coke [61]. The coke yield must be equal to the difference in the coke entering and leaving the regenerator. Therefore, we write

$$Coke yield = (C/O)[CSC - CRC]$$
(4.15)

or

$$CSC - CRC = (coke yield)/(C/O) = delta coke$$
 (4.16)

In the equations, "coke yield" is wt% of feed; C/O is catalyst circulation, lb of catalyst, per lb of feed; CSC is the coke on spent catalyst, wt% of catalyst; CRC is the coke on regenerated catalyst, wt% of catalyst. Note that the coke yield and C/O must be expressed in the same feed basis, fresh or fresh plus recycle, to result in a meaningful number [61].

Aspen HYSYS uses the delta coke, catalyst circulation rate, and kinetic lumps to calculate an Apparent Heat of Cracking. This value represents the combined heat release from all the cracking reactions. In addition, we can calculate a theoretical heat of cracking with overall mass and heat balance constraints alone.

Design Feed D	ata Reactor Section Fractionator Worksheet Res	ilts							
Results	F Heat Balance								
Feed Blend	Coke Yield [%] 6.	4	Reactor						
Product Yields	wt% Hydrogen in Coke [%] 6.	0 Reactor Plenum Temperature [C]	517.4						
Product Properti	es Delta Coke [%] 0.	Cat/Oil Ratio for Reactor Dilute Phase 14.							
Riser/Reactor									
Regenerator		Riser							
Fractionator	Feed Preheat Temperature [C]	175.0							
Heat Balance	Riser Mix Temperature [C]	565.2							
Advanced	Riser Outlet Temperature [C]	518.0							
	Cat/Oil Ratio	10.77							
	Fresh Feed Basis								
	Apparent Heat of Cracking by Heat Balance [kJ/k	668.9							
	Theoretical Heat of Cracking [kJ/kg]	640.7							
	Heat of Reaction Difference (Apparent-Theoretic	[kJ/kg] 28.17							
		Regenerator							
	Catalyst Circulation Rate [kg/h]	1.129e+006							
	Coke on Spent Catalyst [%]	0.65							
	Coke on Regen Catalyst [%]	0.04							
	Catalyst Cooler Duty [kl/h]	8.414e+006							
	Coke Heat of Combustion [kJ/kg]	3.836e+004							
	Flue Gas O2, Dry [%]	2.80							
	Flue Gas CO, Dry [%]		0.01						
	Flue Gas CO2, Dry [%]	15.53							
	Flue Gas CO/CO2 Ratio	4.997e-004							
	Flue Gas Temperature [C]	688.7							
	Dense Bed Temperature [C]	680.0							

Figure 4.72 Overall heat balance between riser and regenerator.

In most cases, the apparent and theoretical heats of cracking should be quite similar (<15% relative error). In Figure 4.72, the relative error is less than 3%. The 4% error between the theoretical (640 kJ/kg) and apparent (668.9 kJ/kg) heats of cracking indicates that the kinetic model satisfies the thermodynamic constraints within the error tolerance of the plant measurements. Additionally, based on Figure 4.72, we find that the simulation results are within 5% error of plant data when applying Eq. (4.16). We save the completed simulation file as *Workshop 4.1-done.hsc*.

Once we verify that the model is making reasonable initial predictions, we can proceed to the calibration phase. In the calibration phase, we will adjust the tuning factors that come from the choice of feed and catalyst types.

4.14 Workshop 4.2 – Calibrating Basic FCC Model

In this section, we calibrate the model based on known product yields and reactor performance. Calibration involves four distinct steps:

- 1) Pulling data from current simulation.
- 2) Enter measured process yields and performance based on that current simulation.
- 3) Update the activity factors to match these plant yields and performance results.
- 4) Push the calibration data back to the simulation.

We begin the first step of model calibration procedure using our converged initial model, *Workshop 4.1-done.hsc*, and save it under a new name, *Workshop*

4.2-1.hsc. The converged initial model provides the initial guesses for the activity factors, which greatly simplify the model calibration procedure. We enter the model calibration environment by first entering the FCC sub-flowsheet and then selecting the "FCC > Calibration" menu option from the application menu bar (as shown in Figure 4.73). Figure 4.74 shows the FCC calibration environment.

The first step is to "Pull data" from the simulation. When Aspen HYSYS pulls data, current operating conditions, feed stock information, and process

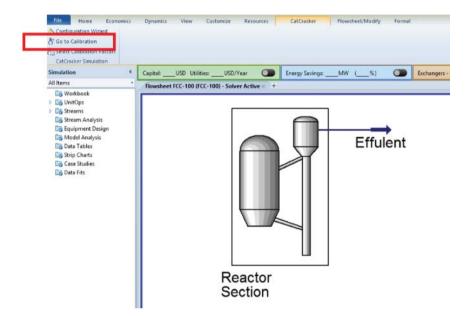


Figure 4.73 Entering FCC calibration environment.

esign Feed Da	ata Catalyst Operation Product Meas	Analysis Prediction	
Design	Flowsheet Configuration		
onfiguration ieometry	Number of Risers	1	
eometry leat Loss	Allow Midpoint Injection	×	
otes	Regenerator	One-stage	
	Fractionator	×	

Figure 4.74 FCC calibration window.

	ta Catalyst	Operation	Product Meas	Analysis	Prediction	
Design	Flowsheet (Configuration	1	9 - 2 A - 1	S. 91	
Configuration	Number of	Risers				1
Seometry Heat Loss	Allow Mid	point Injectio	n		×	
Votes	Regenerati	10				One-stage
19463	Fractionate	or .			×	
			Calibration da	ta will be o	verwritten wit	o the current Si

Figure 4.75 Pull current simulation data into calibration environment.

conditions entered in the FCC environment. A calibration refers to the set of the activity factors that produce a given set of product yields and reactor performance (which we provide to the calibration environment) based on current model state. We pull data by clicking on the "Pull Data from Simulation" button (Figure 4.75).

When we pull data from the simulation, Aspen HYSYS will warn us that current calibration data will be overwritten by the current model results, as shown in Figure 4.75. We can use the "Manage Data Sets" feature to allow multiple calibration data sets. This may be useful if the industrial FCC unit runs under very different operating scenarios. However, for this workshop, we use only one calibration data set. Aspen HYSYS will pull all the feedstock information and process operating conditions after we confirm the calibration data overwrite. The status bar now indicates that we must specify product measurements to begin the calibration process. If necessary, we can modify the operating variables (such as ROT, etc.) of the FCC unit, in addition to the measured values. However, we recommend *creating a new model file* if the operating scenarios are very different.

The second step in model calibration is specifying the measured yields and process performance. Click on the "Prod Meas." tab to bring up the Cuts interface (see Figure 4.76). In the Cuts interface, we can specify how many plant cuts of light gases, LPG, naphtha, LCO or diesel, and bottoms that this particular FCC unit has. FCC units typically have two light gas cuts: the dry gas (C1–C2) and the output from the desulfurization unit (H₂S). The LPG (C3–C4) stream typically leaves from the gasoline stabilizer. The remaining liquid cuts leave from the main fractionator unit. Depending on the type of the FCC unit, there may be two naphtha cuts (light and heavy) and two cycle oil cuts (LCO and HCO).

Once we select the number of cuts, we must enter the data from the light ends and the heavy liquids, as shown in Figure 4.77. If the plant draws multiple light gas streams, we recommend using the same number of streams. Aspen HYSYS will

esign Feed Data	a Catalyst Operation Pro	oduct Meas Ana	lysis Prediction	
oduct Meas				
Cuts	Stream Selection			
Light Ends	Number of Fuel Gas An			2
Heavy Liquids	Number of LPG Analyse	es		1
	Number of Naphtha Cu	uts		1
	Number of LCO Cuts			1
	Buttom Cuts			Bottoms

Figure 4.76 Specify cuts for plant measurement data.

Design Feed Data	Catalyst Operation	Product Meas	Analysis	Prediction				
Product Meas	Light Ends							
Cuts		H2S By Diff	F	uel Gas 1	Fuel Gas 2	LPG 1	Naphtha	
light Ends	Gas Rate [STD_m3/h]	<1	empty>	5781.75	425.915	<empty></empty>	<empty></empty>	
Heavy Liquids	Liquid Rate [m3/h]	<4	empty>	<empty></empty>	<empty></empty>	35.6917	<empty></empty>	
	Mass Rate [kg/h]		474.842	4833.00	667.000	19542.0	<empty></empty>	
	Composition		Mol%	Mol%	Mol%	Vol%	Vol% -	
	N2 [%]	0	0000000	22.4600	0.600000	0.000000	0.000000	
	02 [%]	0	0000000	0.000000	0.000000	0.000000	0.000000	
	CO [%]	0	0000000	1.73500	0.000000	0.000000	0.000000	
	CO2 [%]	0	000000	1.78500	30.5000	0.000000	0.000000	
	H2S [%]		100.000	0.000000	68.5000	0.000000	0.000000	
	H2 [%]	0	0000000	25.5050	0.000000	0.000000	0.000000	
	C1 [%]	0	0000000	23.3300	0.200000	0.000000	0.000000	
	C2 [%]	0	.0000000	11.2250	0.200000	1.00000e-002	0.000000	
	C2= [%]	0	0000000	11.2600	0.000000	0.000000	0.000000	
	C3 [%]	0	000000	0.250000	0.000000	13.5450	0.000000	
	C3= [%]		0000000	1.01000	0.000000	41.5100	0.000000	
	nC4 [%]		.0000000	0.235000	0.000000	4.67500	0.140000	
	iC4 [%]		0000000	0.440000	0.000000	18.0250	0.350000	
	iC4= [%]		000000	0.380000	0.000000	12.4950	4.00000e-002	
	1-C4= [%]		0000000	0.000000	0.000000	0.000000	4.00000e-002	
	c2-C4= [%]		0000000	0.000000	0.000000	4.00500	0.300000	
	t2-C4= [%]		0000000	0.000000	0.000000	5.73500	0.230000	
	C4== [%]		.0000000	0.000000	0.000000	0.000000	8.00000e-002	
	nC5 [%]		0000000	0.000000	0.000000	0.000000	2.00000	
	iC5 [%]		0000000	0.000000	0.000000	0.000000	8.34000	
	cyc-C5 [%]		0000000	0.000000	0.000000	0.000000	0.120000	
	3m,1-C4= [%]		000000	0.000000	0.000000	0.000000	0.370000	
	1-C5= [%]		000000	0.000000	0.000000	0.000000	1.10000	
	2m,1-C4= [%]		000000	0.000000	0.000000	0.000000	0.240000	
	c2-C5= [%]		000000	0.160000	0.000000	0.000000	1.39000	
	t2-C5= [%]		.000000	0.225000	0.000000	0.000000	2.38000	
	2m,2-C4= [%]		000000	0.000000	0.000000	0.000000	3.66000	
	cyc-C5= [%]		000000	0.000000	0.000000	0.000000	0.150000	
	Isoprene [%]		000000	0.000000	0.000000	0.000000	0.310000	
	Benzene [%]		000000	0.000000	0.000000	0.000000	0.830000	
	Naphtha [%]		000000	0.000000	0.000000	0.000000	77.9300	
	Total		100.000	100.000	100.000	100.000	100.000	

Figure 4.77 Measured light gas yields and compositions based on the product measurements in Table 4.21.

automatically combine the light end analyses to reconstruct the reactor effluent. Following the plant data in Table 4.21, Section 4.13.3, we enter the data for fuel gas 1 (dry gas in Table 4.21), fuel gas 2 (sour gas in Table 4.21), LPG 1 (gasoline stabilizer overhead; LPG in Table 4.21), and naphtha (light end analysis). Often, the light end analyses for the naphtha cuts may be missing, as in the case of Table 4.21. We recommend using the nominal values given in Figure 4.77. In addition, we can use a simple material balance around the gasoline stabilizer to estimate the C4 composition of the naphtha cut. However, we note that if we use any estimation method for the C4 content during calibration, the model will likely produce poor predictions for gasoline RVP (Reid vapor pressure) and overhead temperatures for the gasoline stabilizer column.

Figure 4.78 shows the entry window for the Heavy Liquid section of the Prod Meas. tab. The measurements required for the naphtha and LCO cuts are routine measurement data. The distillation curve, density, concarbon, sulfur content, and nitrogen content are required for all the heavy liquid cuts. In addition, the olefins, naphthenes, and aromatics contents are required for at least one of the cuts. In addition, we must enter cloud point for all LCO-type cuts. In most cases, we

Design Feed	i Data	Catalyst	Operation	Product Meas	Analysis	Prediction		
Product Mea	s	Heavy End	s					
Cuts				Naphtha	L	0	Bottoms	
Light Ends Heavy Liquids		Mass Rate [kg/h]		4	46583.0	24333.0	4125.0	
	s	Volume Rate [m3/h]			64.0	25.5	4.0	
		Temperate	ure [C]		25.00		235.0	
		Pressure [kPa]		300.0	310.0	320.0	
		Distillation	п Туре		D86	D86	TBP	
		IBP [C]			35.70	217.9	221.0	
		5% Point [[C]		40.80	235.9	314.0	
		10% Point	[C]		45.60	246.6	343.3	
		30% Point	[C]		64.70	275.7	382.2	
		50% Point [C]			86.40	300.3	426.7	
		70% Point [C]			115.0		468.3	
		90% Point	[C]		165.4	365.4	496.1	
		95% Point [C]			191.4	382.5	545.1	
		End Point	[C]		255.4	418.9	649.0	
		API Gravity		<	empty>	<empty></empty>	<empty></empty>	
		Specific Gravity			0.7276	0.9526	1.021	
		Sulfur [%]			0.06	0.91	1.96	
		RON			92.00	<empty></empty>	<empty></empty>	
		MON			82.00	<empty></empty>	<empty></empty>	
		Olefins [L\	/%]		28.50	<empty></empty>	<empty></empty>	
		Naphthen	es [LV%]		8.53	<empty></empty>	<empty></empty>	
		Aromatics	; [LV%]		23.60	<empty></empty>	<empty></empty>	
		Cloud Poi	nt [C]	<	empty>	-10.00	<pre><empty></empty></pre>	
		Concarbo	n [%]		0.01	0.11	0.38	
		Basic N [p	pmwt]		3.0	42.6	i 108.1	

Figure 4.78 Measure liquid product yields and properties based on the product measurements in Table 4.20.

4.14 Workshop 4.2 – Calibrating Basic FCC Model 263

Feed Group			Coke	and Sulfur Balance		_
Stream		s Flow	Wt% Coke from Stripper [%]			15.00
	[kg		Strip	oper Efficiency [%]		75.00
Feed-1		1.067e+005				
			Hyd	rogen in Coke	6.74	83
Total		1.067e+005				
Product Group		Measured Mass F	low	Adjusted Mass Flow	Assign Bias	
		Measured Mass F	IOW	Adjusted Mass Flow	Assign bias	
	DIM		474.0	467.0		
H2S By	Difference		474.8	467.8	4	
H2S By Fuel Gas 1 Hyd	drocarbons		2984	3043	ব	
H2S By	drocarbons drocarbons	1.954	2984 1.661	3043 1.694	ব	
H2S By Fuel Gas 1 Hyd	drocarbons drocarbons LPG 1		2984	3043	V	I
H2S By Fuel Gas 1 Hyd	drocarbons drocarbons	4.658	2984 1.661 e+004	3043 1.694 1.993e+004	ব	
H2S By Fuel Gas 1 Hyd	drocarbons drocarbons LPG 1 Naphtha	4.658 2.433	2984 1.661 e+004 e+004	3043 1.694 1.993e+004 4.750e+004	য য	

Figure 4.79 Mass balance validation wizard.

cannot obtain the distillation curve of the bottoms cut (routinely not measured or only partial measurement available). Kaes [51] gave a simple correlation to estimate the TBP curve of a bottoms cut as a function of density only. In general, we do not require accurate values for the TBP curve of the bottoms, as it is typically not a significant product.

Once we finish entering the heavy liquid product measurements shown in Figure 4.78, the status button of the calibration will turn yellow and indicate that the model is "Not Solved." At this point, we begin step 3 of the calibration process.

We click "Run Calibration" to bring up the Validation Wizard, as shown in Figure 4.79. The Validation Wizard allows us to assign biases to each measured flow rate, as the sum of the all flow measurements typically does not completely match the feed flow rate. The bias allows us to slightly adjust the measured flow rates to ensure an overall material balance. If the adjustments due the biases are small, we do not recommend removing biases from any product measurements. However, if the adjustments are significant, we should go back and check if all product flow rates and measurements are accurate. Lastly, we note that mass flow rates for the Fuel Gas cuts are much smaller than the values we entered in Light Ends section (see Figure 4.77). This is because inorganic compounds (H_2 , N_2 , O_2 , CO_2 , H_2S , etc.) are not included in the overall material balance. We begin the calibration by clicking "OK" in the Validation Wizards. Table 4.26 shows the progress of the solver during the calibration run.

Iteration		Objective Convergence Function	Objective Function Value	Overall Nonlinearity Ratio	Model Nonlinearity Ratio	Worst Model
0	5.039D+03	0.000D+00	0.000D+00	9.989D-01	-1.592D+01	REGEN
	<line search<="" td=""><td>Creep Mode A</td><td>CTIVE> ==></td><td>Step taken 1.00</td><td>)D-01</td><td></td></line>	Creep Mode A	CTIVE> ==>	Step taken 1.00)D-01	
1	2.891D+03	0.000D+00	0.000D+00	9.536D-01	-8.333D+00	RISCOKE
	<line search<="" td=""><td>Creep Mode A</td><td>ACTIVE> ==></td><td>Step taken 1.00</td><td>)D-01</td><td></td></line>	Creep Mode A	ACTIVE> ==>	Step taken 1.00)D-01	
2	1.600D+03	0.000D+00	0.000D+00	9.575D-01	-3.353D+00	RISCOKE
	<line search<="" td=""><td>Creep Mode A</td><td>ACTIVE> ==></td><td>Step taken 1.00</td><td>)D-01</td><td></td></line>	Creep Mode A	ACTIVE> ==>	Step taken 1.00)D-01	
3	8.297D+02	0.000D+00	0.000D+00	9.605D-01	-1.579D+00	RISCOKE
	<line search<="" td=""><td>Creep Mode A</td><td>ACTIVE> ==></td><td>Step taken 1.00</td><td>)D-01</td><td></td></line>	Creep Mode A	ACTIVE> ==>	Step taken 1.00)D-01	
4	3.764D+02	0.000D+00	0.000D+00	9.615D-01	-6.095D-01	RISCOKE
	<line search<="" td=""><td>Creep Mode A</td><td>ACTIVE> ==></td><td>Step taken 1.00</td><td>)D-01</td><td></td></line>	Creep Mode A	ACTIVE> ==>	Step taken 1.00)D-01	
5	2.446D+02	0.000D+00	0.000D+00	9.619D-01	3.906D-02	RISCOKE
	<line search<="" td=""><td>Creep Mode A</td><td>ACTIVE> ==></td><td>Step taken 1.00</td><td>)D-01</td><td></td></line>	Creep Mode A	ACTIVE> ==>	Step taken 1.00)D-01	
6	2.675D+02	0.000D+00	0.000D+00	9.631D-01	5.303D-01	RISCOKE
	<line search<="" td=""><td>Creep Mode A</td><td>ACTIVE> ==></td><td>Step taken 1.00</td><td>)D-01</td><td></td></line>	Creep Mode A	ACTIVE> ==>	Step taken 1.00)D-01	
7	2.899D+02	0.000D+00	0.000D+00	9.693D-01	5.861D-01	RISER
	<line search<="" td=""><td>Creep Mode A</td><td>ACTIVE> ==></td><td>Step taken 1.00</td><td>)D-01</td><td></td></line>	Creep Mode A	ACTIVE> ==>	Step taken 1.00)D-01	
8	3.088D+02	0.000D+00	0.000D+00	9.737D-01	6.337D-01	RISER
	<line search<="" td=""><td>Creep Mode A</td><td>ACTIVE> ==></td><td>Step taken 1.00</td><td>)D-01</td><td></td></line>	Creep Mode A	ACTIVE> ==>	Step taken 1.00)D-01	
9	3.215D+02	0.000D+00	0.000D+00	9.760D-01	1.659D+00	RISCOKE
	<line search<="" td=""><td>Creep Mode A</td><td>CTIVE> ==></td><td>Step taken 1.00</td><td>)D-01</td><td></td></line>	Creep Mode A	CTIVE> ==>	Step taken 1.00)D-01	
10	3.265D+02	0.000D+00	0.000D+00	6.975D-01	-9.358D+00	RISCOKE
11	1.105D+02	0.000D+00	0.000D+00	9.326D-01	-5.526D-01	REGEN
12	8.204D-02	0.000D+00	0.000D+00	9.994D-01	9.955D-01	PRTCALC
13	1.124D-08	0.000D+00	0.000D+00			
Succe	ssful solution.					
	nization Timin		Time	Percent		
	EL computation		====== 0.91 secs	====== 53.42 %		
	computations		0.63 secs	36.99 %		
	ellaneous		0.16 secs	9.59 %		
Total	Optimization	Time	1.71 secs	100.00 %		
	em converged					

 Table 4.26
 Solver output during calibration run.

The calibration process for the FCC is "square." This implies that *there are no user adjustable tuning factors* unlike the Aspen HYSYS Reformer or Hydrocracking models. In other words, the number of tuning parameters equals the number of available measurements, and the calibration is a much simpler, root-finding exercise. In general, the calibration process is quick and converges within 20 iterations. If there is difficulty during calibration, it is mostly likely due to inconsistent product measurements.

Design Feed Data	Catalyst Operation Produ	ct Meas Analysis Predicti	on				
Analysis	Save for Simulation	Export	Calibration Factors	Library			
Calibration Factors Mass Balance	Reactor Group						
Feed Blend	Riser Kinetic Tuning		*				
Product Yields	Activity on Pathways to C L	ump	1.209				
roduct Properties	Activity on Pathways to G L	ump	0.5247				
liser/Reactor	Activity on Pathways to L L	ump	1.667				
egenerator ractionator	Metals Coke Activity		7.002e-005				
leat Balance	Light Ends Distribution						
dvanced	Light Gas Delumping to Eth	ane	6.849 -				
Worksheet	Delumping and Property Curves						
	Temperature [C]	Delumping Curve	Sulfur	Basic Nitrogen			
	40.00	0.0000	4.826e-003	0.9262			
	50.00	2.292e-002	1.347e-002	0.8566			
	60.00	3.110e-002	2.936e-002	0.8358			
	70.00	3.003e-002	4.855e-002	0.8188			
	80.00	2.931e-002	6.431e-002	0.8188			
	90.00	2.860e-002	7.443e-002	0.8597			
	100.0	2.798e-002	7.871e-002	1.089			
	110.0	2.688e-002	7.562e-002	1.687			
	120.0	2.573e-002	6.515e-002	2.637			
	130.0	2.624e-002	5.360e-002	3.529			
	140.0	2.424e-002	4.650e-002	3.955			

Figure 4.80 Calibrated activity factors.

Figure 4.80 shows the key results of the calibration procedure. The reactor group tuning parameters control the activity of each group of kinetic pathways and the light ends distribution. The delumping curves convert the kinetic lumps into fractionation lumps appropriate for a petroleum refining component slate. An important check of the calibration is shown in Figure 4.81. The theoretical and apparent heats of cracking should not be significantly different (<5% relative error), which we have previously discussed with reference to Figure 4.72 in Section 4.13.10. If we meet this error threshold, we conclude that the calibration procedure is successful.

The last step in the calibration procedure is to export the calibration factors back into the main flowsheet. To do this, we select Calibration factors section Analysis tab. Then, we click the "Save for Simulation …" button to save current calibration factors as Set-1, as shown in Figure 4.82.

To return to the FCC unit PFD environment, we click on "Push Data to Simulation" to return the calibration factors back to the main environment, as shown in Figure 4.83. Aspen HYSYS may prompt to hold solver when returning to the main environment. As the FCC unit solves very quickly, we can choose "No" and force the solver to run when we return the main environment.

This completes the calibration workshop for the FCC unit. We save the converged simulation file as *Workshop 4.2-done.hsc*. At this point, we can perform case studies and build additional downstream fractionation units. In the next workshop, we go through some of the issues involved in building a complete downstream fractionation process for this FCC Unit.

Design Feed Data	Catalyst Operation Product Me	as Analysis P	ediction				
Analysis	Heat Balance		194				
Calibration Factors	Coke Yield [%]	6.22			Reactor		
Mass Balance	wt% Hydrogen in Coke [%]	6.68	Reactor Plen	um Temperature [C]	509.4		
Feed Blend	Delta Coke [%]	0.62	Cat/Oil Ratio for Reactor Dilute Phase 12.56				
Product Yields	Annual and a second sec						
Product Properties Riser/Reactor			Riser				
Regenerator	Feed Preheat Temperature [C]			175.0			
Fractionator	Riser Mix Temperature [C]			556.9			
Heat Balance	Riser Outlet Temperature [C]			510.0			
Advanced	Cat/Oil Ratio			9.898			
Worksheet							
				Fresh Feed Basis	Combined Feed Basis		
	Apparent Heat of Cracking by He	at Balance [kJ/kg]	630.0	630.0		
	Theoretical Heat of Cracking [kJ/	kg]		642.9	642.9		
	Heat of Reaction Difference (App	arent-Theoretical) [kJ/kg]	-12.93	-12.9		
			Regenerato				
	Catalyst Circulation Rate [kg/h]			1.058e+006	E		
	Coke on Spent Catalyst [%]			0.66			
	Coke on Regen Catalyst [%]			0.04			
	Catalyst Cooler Duty [kJ/h]			1.277e+006			
	Calcultant of Complution Holden						

Figure 4.81 Calibrated heat balance between riser and regenerator.

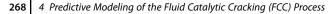
Design	Feed Data	Catalyst Operation	Product Meas	Analysis Pred	iction		
Ana	alysis	Save for Simulati	on	Export	Calibration Facto	ors Library	
Calibratio Mass Bal	on Factors lance	Reactor Group					
Feed Bler		Riser Kinetic Tunin	9	0		A	
Product Product Riser/Rea Regenera Fractiona Heat Bali Advance Workshe	Properties actor ator ator ance ed	Activity on Pathwa Activity on Pathwa Activity on Pathwa Metals Coke Activi Light Ends Distrib Light Gas Delumpi Delumping and Prc Temperature [C]	Set Name	Ilibration Factors		Basic Nitrogen	
						0.9262	-
			50.00	2.292e-002	1.347e-002		
			60.00	3.110e-002	2.936e-002		
			70.00	3.003e-002	4.855e-002		
			80.00	2.931e-002	6.431e-002		
			90.00	2.860e-002	7.443e-002		
		1	100.0	2.798e-002	7.871e-002	1.089	

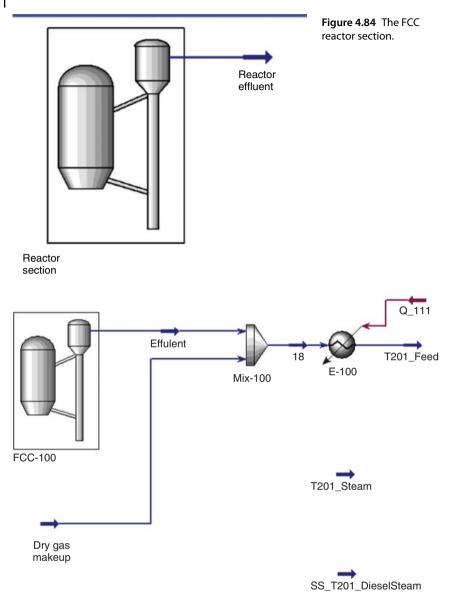
Figure 4.82 Save calibration factors for current calibration.

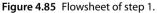
Figure 4.83 Return calibration factors to main FCC environment.

4.15 Workshop 4.3 – Build the Model for Main Fractionator and Gas Plant System

The effluent from the FCC unit is a broad mixture of light gases and liquid products that will be recovered as LPG, gasoline, and diesel (light and heavy cycle oil). The downstream fractionation units separate the reactor effluent into the product cuts through a series of distillation and absorption columns. As illustrated previously in Figures 4.38–4.40, Section 4.13.2, the main components of the downstream fractionation are as follows:


- *Main fractionator column (T201_MainFractionator)* Recovers most naphtha, cycle oil, and bottoms product.
- Overhead wet gas system Recompresses main fractionator overhead gas product to recover additional naphtha.
- *Primary absorber column (T301_Absorber)* Returns light naphtha to the gasoline stream.
- *Primary stripper column (T302_Stripper)* Removes heavy components from naphtha and returns these components to the diesel or LCO section of the main fractionator.
- Secondary absorber or reabsorption column, or sponge oil absorber column (T303_ReAbsorber) Uses an LCO draw to remove very light components (<C2) from the primary absorber overhead vapor.
- Debutanizer or gasoline stabilization column (T304_Stabilizer) Separates LPG (C3–C4) from product gasoline stream.


Workshop 4.3 is significant, as it is the first detailed, step-by-step demonstration of how to build a simulation model for the FCC main fractionator and gas plant system that has ever appeared in a textbook or in the literature. Refinery engineers can apply the same procedure to build the simulation models for the fractionation systems for reformers, hydrocrackers, delayed cokers, and so on. We demonstrate these applications in Chapters 5–7.


4.15.1 T201_MainFractionator

To build the main fractionator, we follow the same procedure as that of a CDU described in Chapter 2. We begin by opening a converged FCC reactor section, *Workshop 4.3-1.hsc* (see Figure 4.84).

- Step 1. Create a stream for dry gas makeup. Connect this stream and the effluent from the FCC unit to a mixer (MIX-100) to create the main feed stream, T201_Feed, to the fractionator. Refer to Workshop 4.3-Additional Specifications.xlsx and Workshop 4.3-Dry Gas Makeup Specifications.xlsx for required stream specifications. Create a heater block to preheat the feed stream up to 510 °C (see Figure 4.85). Save the file as Workshop 4.3-2.hsc.
- *Step 2*. Table 4.7, Section 4.7, recommends the use of 17 equilibrium stages for a FCC main fractionator. We create a refluxed absorber of 17 equilibrium stages as *T201_MainFractionator* (Figures 4.86–4.89).

- *Step 3.* Create a side draw for the heavy naphtha stream (T201_HN_Draw) from stage 9 and specify its draw rate of 1E4 kg/h. Run the simulation to update the temperature profile and save the converged simulation as *Workshop 4.3-3.hsc* (see Figures 4.90–4.92).
- *Step 4.* Refer to Figures 4.93 and 4.94. Add a three-stage diesel side stripper (T201_SSDiesel) along with the side stripper steam flow (T201_SS_DieselSteam at 240 °C, 1351 kPa and 370 kg/h of H₂O) and specify the draw rate of SS_T201_DieselProd of 4.4E4 kg/h. Send T201_HN_Draw to a recycle

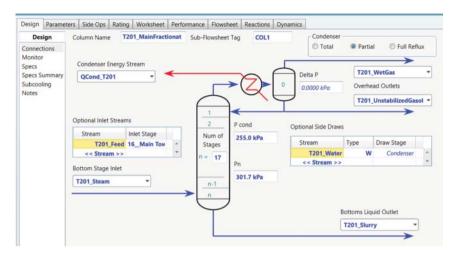


Figure 4.86 Specifications of T201_MainFractionator (1).

Figure 4.87 Specifications of T201_MianFractionator (2).

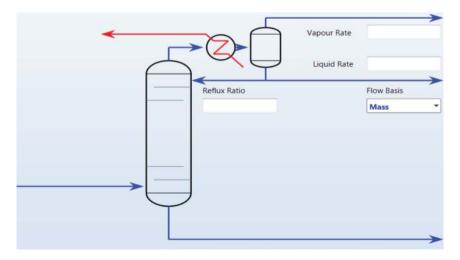


Figure 4.88 Specifications of T201_MainFractionator (3).

Design	Optional Decks				
Convectores Intervitor Speci	Ingest Sciences View Index Tablecom	Temperature vs. Tray Position from Top	Parameters Summary	Spec Type	
Npecs Sarimany Balaccoming Notes	Nor Sear Equilibrium Heat/1 Spec ID Peace 8 1.0000 154.4875328 6.091103 ID Peace ID Peace 4 0.0000 154.4875428 6.00001 ID Peace ID Peace 4 1.0000 0.011080 0.001034 ID Peace ID Peace	==	Name	Slurry Mass Flow Rate	
	4 1.000 0.071001 0.000000 8 1.0000 0.152068 0.000687 4 1.0000 0.152100 0.00067		Draw	T201_Slurry @COL1	
	Circlators		Flow Basis	Mass	
	Specified Viller Current Viller Perfect Rate:	WLEVE Actes Extrans Carsed	Spec Value	5000 kg/h	
	Cestiles Res empty- 5.313e-00 Refer for empty- 3.321e-00 Ves Yoo fate empty- 2.350e-00 Sarry Mas Non Fate 9000 1g.04 500		🔝 Temp Spec: Conder	nser Temper 🗕 🗖 🧱	×
	Condenset Temperature 41.00 C 41.0	1 19 19 19 19	Parameters Summary	Spec Type	ŕ
			Name	Condenser Temperature	1
			Stage	Condenser	

Figure 4.89 Specifying a slurry mass flow rate of 5000 kg/h and a condenser temperature of 41 °C enables column convergence.

Design	Paramete	s Side Ops	Rating	Worksheet	Performanc	e Flowsheet	Reactions	Dynamics			
Des	ign	Column Name	T2	01_MainFract	ionat Sub-	Flowsheet Tag	COL1		Condenser		
Connec Monito Specs		Condenser 8	nergy S	tream				_	Total	Partia	el 💿 Full Reflu
	ummary	QCond_T2	01	•	<			Del	lta P	T201	Wet_Gas
Subcoo Notes	ling						$\langle \boldsymbol{\Delta} \rangle$	0 0.0	0000 kPa	Overhe	ad Outlets
TADIES					(\frown	~	$\mathbf{\mathbf{\nabla}}$		T201	Unstablized Gase
		2000000000				1					
		Optional Inlet	1			2 P	cond	Option	nal Side Dr <u>a</u> ws		
		Stream		nlet Stage 6 Main Tow	*		55.0 kPa	Str	eam	Туре	Draw Stage
		<< Strea	Constanting of	o_wan iow	-	Stages		- Sta	T201_Water		and the second
		Bottom Stage	Inlet			= 17 Pr		T20	01_HN_Draw	L	9_Main Tower
		T201_Steam					01.7 kPa				
		1201_Steam		-	~	n-1					
					Ę	$\overline{}$			E	lottoms Lig	uid Outlet
									[T201_Slum	ry •

Figure 4.90 Add a liquid side draw, T201_HN_Draw from stage 9.

block RCY-1 and then send its output T201_HN-HNRecycle to MIX-100. Note that we have added the specification of the temperature estimates for stages 1 and 17. Create a new stream T201_RichLCO to represent return from T303_ReAbsorber to T201_MainFractionator. Set this new stream to same temperature, pressure, and composition as SS_T201_DieselProd and fix the mass flow rate at 5% of SS_T201_DieselProd ($0.05 \times 4.4E4 \text{ kg/h} = 2200 \text{ kg//h}$). Refer to *Workshop 4.3-Additional Specifications.xlsx* for required stream specifications. Connect this stream to the return stage of the diesel side stripper, that is, stage 7 of the main tower.

Figure 4.95 shows the specifications for the converged simulation. Note that we have added the specification of the temperature estimates for stages 1 and 17. Save the converged simulation as *Workshop 4.3-4*.

Input Summary View Initial Estimates Input Summary View Initial Estimates Temperature vs. Tray Position Temp T	Design Paramete		Ops Ratin	g Workshe	et Pe	erformance	Howshe	et	Profile	Dynamics						
Specifications Specified Value Current Value WL Error Active Estimate Current Specifications Specified Value Current Value WL Error Active Estimate Current Reflux Ratio Specified Value Current Value WL Error Active Estimate Current Reflux Rate <empty> 1.315e+005 <empty> IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</empty></empty>	Connections Monitor			ry	View	v Initial Estin	nates			400.0	npera		vs. Tra	y Pos	tion	fr
1 0.2837 4.273665 0.050443 2 0.0001 4.273665 0.050443 2 1.0000 1.164077 0.00752 3 1.0000 0.016887 0.001408 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *	Specs Summary	iter	Step	Equilibriu	m	Heat / Sp	bec			300.0	-		0-0-0-1			
2 0.0001 4.273665 0.050443 Image: Constraint of the second	ubcooling	1	0.2837	4.2	73665	0.0	050443			200.0	1		-		-	_
3 1.0000 0.016887 0.001408 •	Notes	2	0.0001	4.2	73665	0.0	050443	=	C Flows		1					_
3 1.0000 0.016887 0.001408 0 0 2 4 6 8 10 12 Specifications Current Value Wt. Error Active Estimate Current Specified Value Current Value Wt. Error Active Estimate Current Distillate Rate <empty> 5.432e+004 <empty> I I I Reflux Rate <empty> 1.315e+005 <empty> I I I Vap Prod Rate <empty> 3.048e+004 <empty> I I I Slumy Mass Flow Rate <6000</empty></empty></empty></empty></empty></empty>		2	1.0000	1.1	64077	0.0	007752			0.000	1					_
Specifications Current Value Wt. Error Active Estimate Current Reflux Ratio <empty> 1.550 <empty> I Incomparing the state Distillate Rate <empty> 5.432e+004 <empty> Incomparing the state Reflux Rate <empty> 1.315e+005 <empty> Incomparing the state Vap Prod Rate <empty> 3.048e+004 <empty> Incomparing the state Slumy Mass Flow Rate 5000 kg/h 5000 -0.0000 Image: Image:</empty></empty></empty></empty></empty></empty></empty></empty>		3						-		0.000	0 7	1	6 1	10	12	١.,
Reflux Rate <empty> 1.315e+005 <empty> I Vap Prod Rate <empty> 3.048e+004 <empty> I Stury Mass Flow Rate 5000 kg/h 5000 -0.0000 I I Condenser Temperature 41.00 C 41.00 -0.0000 I I I</empty></empty></empty></empty>		Reflu	x Ratio		Spe			Curr						Current		
Reflux Ratio <empty> 1.550 <empty> I Distillate Rate <empty> 5.432e+004 <empty> I Reflux Rate <empty> 1.315e+005 <empty> I Vap Prod Rate <empty> 3.048e+004 <empty> I Slurry Mass Flow Rate 5000 tg/h 5000 -0.0000 IV IV Condenser Temperature 41.00 C 41.00 -0.0000 IV IV</empty></empty></empty></empty></empty></empty></empty></empty>		Specin	cations	11			. 1			1		_	1		-	
Distillate Rate <empty> 5.432e+004 <empty> Reflux Rate <empty> 1.315e+005 <empty> I Vap Prod Rate <empty> 3.048e+004 <empty> I Slury Mass How Rate 5000 kg/h 5000 -0.0000 I I Condenser Temperature 41.00 41.00 -0.0000 I I</empty></empty></empty></empty></empty></empty>		Reflu	x Ratio									1000				
Vap Prod Rate <empty> 3.048e+004 <empty> Slurry Mass Flow Rate 5000 kg/h 5000 -0.0000 Condenser Temperature 41.00 41.00 -0.0000</empty></empty>		Distil	late Rate			<	empty>		5.432e+0	04 <	empty>					
Slurry Mass Flow Rate 5000 kg/h 5000 -0.000 Image: Condenser Temperature Image: Condenser Temperature 41.00 -0.0000 Image: Condenser Temperature Image: Condenser Temper		Reflu	x Rate			<	empty>		1.315e+0	05 <	empty>					
Condenser Temperature 41.00 C 41.00 -0.0000 🔽 🔽		Vap F	Prod Rate			<	empty>		3.048e+0	04 <	empty>					
		Slum	Mass Flow	Rate		50	00 kg/h		50	00	-0.0000		P			
1201_HN_Draw Rate 1.000e+004 kg/h 1.000e+004 0.0000 ₽ ₽ ₽		Cond	enser Temp	erature			41.00 C		41.	00	-0.0000					
		T201.	HN_Draw F	late		1.000e+0	04 kg/h		1.000e+0	04	0.0000	7	9	\checkmark		
		Vap F Slurry Cond	Prod Rate / Mass Flow enser Temp	erature		50	empty> 00 kg/h 41.00 C		3.048e+0 50 41.	04 < 00 00	empty> -0.0000 -0.0000	বরা	বব	ব		

Figure 4.91 Specifying a mass flow rate of 1E4 kg/h for T201_HN_Draw leads to simulation convergence.

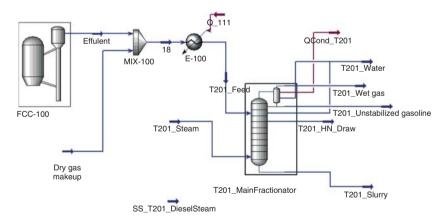
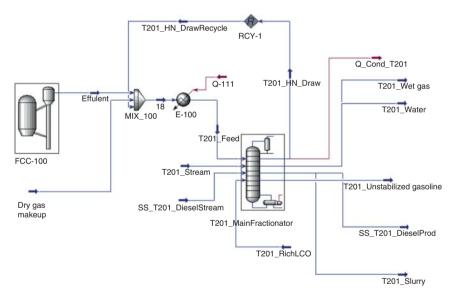



Figure 4.92 Flowsheet of step 3.

Step 5. Following the procedure illustrated in Figures 2.53–2.55 and in Table 2.15, we implement the five pumparounds specified in Table 4.27. Figures 4.96–4.98 show the column details with the pumparounds and the overall flowsheet for T201_MainFractionator, and the specifications for simulation convergence. We save the converged simulation as *Workshop 4.3-5*.

Side Ops	Side Ops Rating	Contraction of the	Performance Flowsh	neet Reactions Dyn	amics	
ide Strippers ide Rectifiers Pump Arounds	SS T201 Diesel	# Stages	Liq Draw Stage	Vap Return Stage	Outlet Flow [kg/h] pty> 0.000	Reboiler Duty [kJ/h]
ap Bypasses	55_1201_Diesei		(H)	Refer to an and the second sec	Stripper - SS_T20	Alexandra and a second and a second sec
			Return St 8_Main Draw Sta 7_Main Flow Bas 0 Molar 10 Mass 0 Std Id	Jower Jge I Tower I T	1 2 k = g k-1 k	Configuration Reboiled Steam Stripped Steam Feed S5_T201_DiselSteam Product Stream Specs
			Del		Product S	Stream SS_T201_DieselProdu

Figure 4.93 Add the diesel side stripper.

The standard inside-out algorithm (Section 2.4.4) can solve the main fractionator with ease when we follow the procedure mentioned above. However, flat distillation cuts or very tight specifications may not allow the standard method to converge robustly. We suggest the following changes to improve the convergence behavior in Aspen HYSYS.

Design Parameters	Side Ops Rating Worksh	eet Performance Flowshe	eet Reactions Dyn	namics					
Design	Optional Checks		Profile						
Connections	Input Summary	View Initial Estimates		Tempera	ature	vs. Tra	y Posit	ion fr	om To
Monitor			Temp	-	Terrotrator		1.00	0-1-0	*
pecs pecs Summary	Iter Step Equilibrie	um Heat / Spec		350.0		1			X
Subcooling		0,00000 0.000013	O Press	150.0		1		-	
lotes			© Flows	50.00	-0-0-1				
				-50.00	-				
				-50.00			10 12	14	16 18
							10 12		10 10
	Specifications								
		Specified Value	Current Value	Wt. Error	Active	Estimate	Current		
	T201_HN_D Rate	1.000e+004 kg/h	1.000e+004	0.0000	R	V	R		
	Slurry Mass Rate	5000 kg/h	5000	0.0000	R	P	5		
	SS_T201_Diesel Prod Flow	4.400e+004 kg/h	4.400e+004	-0.0000	V	2	2		
	Stage 1 Temperature	140.0 C	67.81	-0.1444		P			
	Stage 17 temperature	345.0 C	309.2	-0.0715		N			
	T201_Unstabilized_Gasolir	4.458e+004 kg/h	4.458e+004	0.0000	P	P	P		
	View	Add Spec Group	Active L	pdate inactive	De	grees of Fi	reedom	0	

Figure 4.95 Specifications of step 4 for simulation convergence.

Table 4.27	Specifications of pur	nparounds for T201	_MainFractionator.
------------	-----------------------	--------------------	--------------------

Pumparound	PA_HN	PA_LCO	PA_HCO	PA_Quench	PA_Subcooling
Draw stage	2	8	14	17	17
Return stage	1	7	11	15	17
PA rate (kg/h)	1E4	1E5	4.6E4	2.4E5	8330
Return temperature (°C)	82	182	272	257	257

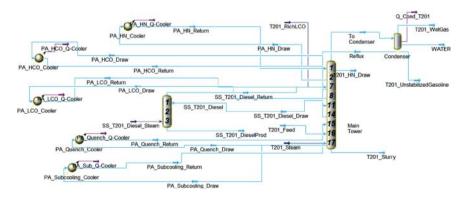


Figure 4.96 Column details with pumparounds for T201_MainFractionator.

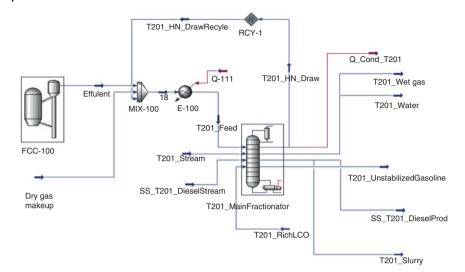
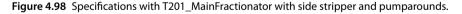



Figure 4.97 Flowsheet of step 5.

esign Paramete	ers Side Ops Rating Worl	sheet Performance Flowsh	eet Reactions Dyn	namics				
Design	Optional Checks		Profile					
onnections	Input Summary	View Initial Estimates		Tempera	ature	vs. Tra	y Positi	on from To
pecs			Temp	350.0	Temperati	<i>a</i>		H
ecs Summary	Iter Step Equilit	0.000002 0.000005	O Press	250,0	-	1		1
bcooling	1 1.0000	0.000002 0.000005	© Flows	150.0		-		200
otes				50.00				
				-50.00				
				0	5	10	15	20
	Specifications							
		Specified Value	Current Value	Wt. Error	Active	Estimate	Current	
	T201_HN_D Rate	1.000e+004 kg/h	10000.	-0.0000	V	V	R	
	PA_HN_Rate(Pa) 1.000e+004 1		1.000e+004	0.0000	R	2	R	
	PA_HN_TRet(Pa)	82.00 C	82.00	0.0000	1	2	R	
	PA_LCO_Rate(Pa)	1.000e+005 kg/h	1.000e+005	-0.0000	2	2	R	
	PA_LCO_TRet(Pa)	182.0 C	182.0	0.0000	2	2	R	
	PA_HCO_Rate(Pa)	4.600e+004 kg/h	4.600e+004	0.0000	2	2	2	
	PA_HCO_TRet(Pa)	272.0 C	272.0	0.0000	2	2	2	
	Slurry Mass Rate	5000 kg/h	5000	0.0000	V	1	2	
	SS_T201_Diesel Prod Flov	4.400e+004 kg/h	4.400e+004	-0.0000	2		2	
	Stage 1 Temperature	140.0 C	67.65	-0.1447		2		
	Stage 17 temperature	345.0 C	349.3	0.0086		2		
	PA_Quench_Rate(Pa)	2.400e+005 kg/h	2.400e+005	0.0000	V	2	R	
	PA_Quench_TRet(Pa)	257.0 C	257.0	0.0000	P	2	P	
PA_Subcooling_Rate(Pa)		8330 kg/h		0.0000		2	N	
	PA_Subcoling_TRet(Pa)	257.0 C	257.0	0.0000	R	R	V	
	T201_Unstabilized_Gasoli	r 4.458e+004 kg/h	4.458e+004	0.0000	P	P	P	
	View	Add Spec Group	Active	Jpdate Inactive	D	egrees of Fr	eedom	0

- 1) Use the modified inside-out method with adaptive damping (Section 2.4.4, Figures 2.8 and 2.9; see also Figure 4.99). The modified method deals much better with tight product specifications.
- 2) Decrease the tolerance for Heat/Spec error from 1E-5 (dfault) to 5E-4 (see Figure 4.99). This method can significantly improve convergence when reconciling the recycle loops in the overall fraction model.

Once we solve the column using the above procedure, we use alternative specifications to allow more flexibility in the column model. This is especially relevant 4.15 Workshop 4.3 – Build the Model for Main Fractionator and Gas Plant System 275

Design Parar	neters	Side Ops	Rating	Worksheet	Performance	Flowsheet	Reactions	Dynamics	
Parameters	Solv	ing Options					Accelerat	tion	
Profiles	Max	mum Numi	per of Iter	ations		10000	Acce	lerate Kvalue & H Model	Parameters
Estimates	Equi	librium Erro	r Toleran	ce		1.0000e-05			
Efficiencies	Heat	/ Spec Erro	r Toleran	ce		5.0000e-04			
Solver	Save	Solutions a	s Initial E	stimate		7			
2/3 Phase	Supe	er Critical Ha	andling M	lodel		Simple K	Damping		
Fluid Pkgs	Trao	e Level				Low			
	Initia	lise from Id	eal K's				C Fixed	Adaptive	Azeotropic
	Two	Liquids Che	ck				Inital Da	mping Factor	0.45
	Tigh	ten Water T	olerance				Adaptive	e Damping Period	
	Use	Estimates fo	r Single S	Staged Tower	카이		Reset In	itial Damping Factor	
	G		i lM Insid ose Meth heat exc	od which allo hangers in th	Cont ws mixer, pump e sub-flowsheet		Progra Initial Est Dynai	ard Initialization am Generates Estimation imate Generator Parame mic Integration for IEG Dynamic Estimates Integr	ters

Figure 4.99 Convergence parameters for the inside-out method in Aspen HYSYS.

 Table 4.28
 Valid specifications for main fractionator.

Original specification	Flexible specification
Overhead liquid draw rate	Condenser temperature
Heavy naphtha draw rate	Heavy naphtha 95% D86 cut point
Pumparound temperature change	Pumparound duty (loose specification)
	Pumparound return temperature (tight specification)

when the flow rate to the column changes significantly. Table 4.28 lists possible replacements for the original specifications.

4.15.2 Overhead Wet Gas System, Primary Stripper Column T302_Stripper, and Debutanizer or Gasoline Stabilization Column T304_Stabilizer

- Step 6. We build the model for the overhead wet gas system and the feed sections to T302_Stripper and to T304_Stabilizer. Refer to the flowsheet given in Figure 4.100.
- 1) Create a compressor (K-100) to compress the wet gas stream from the main fractionator to 748 kPa.
- Create a cooler block to cool down the compressed gas stream to 35 °C (stream 2).
- 3) Connect stream 2 to a three-phase separator (V-100) with the exit streams vapor stream 4, light liquid 5, and heavy liquid 3.
- 4) Connect the light liquid stream (stream 5) and the unstabilized gasoline stream from the main fractionator (T201_UnstablilizedGasoline) to a mixer MIX-101 to create a mixed stream (stream 7).

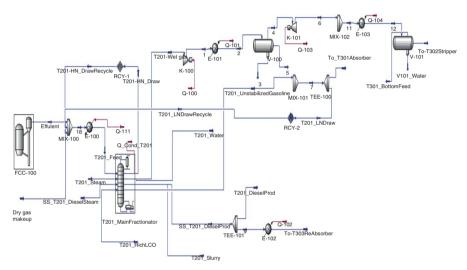


Figure 4.100 Flowsheet of the overhead wet gas system and feed sections to T301_Absorber, to T302_Stripper and to T303_ReAbsorber.

- 5) Connect the vapor stream 4 at 748.3 kPa from V-100 to a compressor K101 raising its pressure to 1802 kPa for stream 6. Then, send stream 6 to a mixer, MIX102 (to mix later in the following step with a recycle stream from T302_Strpper yet to be specified). The exit stream from the mixer MIX-102, stream 11, is cooled through a cooler E-103 to 40 °C for stream 12. Send stream 12 to a three-phase separator V-101, generating three exit streams_vapor steam as T301_BottomFeed, light liquid stream C101_Water, and heavy liquid stream, To_T302Stripper.
- 6) Connect stream 7 to a splitter (TEE-100) with two exit streams, To_T301Absorber and T201_LNDraw. Specify 90.76% of stream 7 mass flow rate going to stream To_T301Absorber.
- 7) Send SS_T201_DieselProd to a splitter (TEE-101), with 56.16% of its mass flow rate going to steamT201_DieselProd and the remaining going to stream 9. Add a cooler (E-102) to cool stream 9 to 35 °C for stream To_T303ReAbsorber.
- 8) Send T201_LNDraw to a recycle block, RCY-2, and then send its exit stream, T201_LNDrawRecycle, to MIX-100 to feed into column T201_ MainFractionator. Refer to the specifications given in Figure 4.101. Save the converged simulation as *Workshop 4.3-6.hsc*.
- *Step 7*. Referring to the flowsheet of Figure 4.102, we complete T302_Stripper and T304_Stabilizer as follows.
- 1) Create the primary stripper, column T302_Stripper, with 13 equilibrium stages suggested by Table 4.7 and feed the light liquid stream from V-101, To_T302Stripper, to the top stage. See specifications in Figures 4.103–4.105.

Design Paramete	rs Side Ops Rating Work	sheet Performan	ce Flowshe	et Reactions Dyn	namics				
Design	Optional Checks			Profile					
onnections Ionitor	Input Summary	View Initial E	stimates		Tempera	ature	vs. Tra	y Posi	tion fr
pecs pecs Summary ubcooling	Iter Step Equilit	orium Heat / 0.000000	Spec 0.000011	Temp Press Flows	350.0	300000		*****	Z
lotes	Specifications			CTIONS	50.00 -50.00 0	5	10	1 1 1 1	,,,,
	specifications	Specified V	alue	Current Value	Wt. Error	Active	Estimate	Current	
	T201_HN_D Rate		+004 kg/h	1.000e+004	0.0000	R	R	P	
	PA HN Rate(Pa)		+004 kg/h	10000.	-0.0000	V	1	R	
	PA_HN_TRet(Pa)		82.00 C	82.00	0.0000	V	R	R	
	PA_LCO_Rate(Pa)	1.000e	+005 kg/h	1.000e+005	0.0000	V	F	V	
	PA_LCO_TRet(Pa)		182.0 C	182.0	0.0000	1	R	R	
	PA_HCO_Rate(Pa)	4.600e	+004 kg/h	4.600e+004	-0.0000	V	R	2	
	PA_HCO_TRet(Pa)		272.0 C	272.0	0.0000	V	2	R	
	Slurry Mass Rate		5000 kg/h	5000	-0.0000	5	2	P	
	SS_T201_Diesel Prod Flow	4.400e	+004 kg/h	4.400e+004	0.0000	V	R	P	
	Stage 1 Temperature		74.00 C	70.28	-0.0074		2		
	Stage 17 temperature		345.0 C	350.8	0.0117		2		
	PA_Quench_Rate(Pa)	2.400e	+005 kg/h	2.400e+005	-0.0000	₹	2	V	
	PA_Quench_TRet(Pa)		257.0 C	257.0	0.0000	R		R	
	PA_Subcooling_Rate(Pa)		8330 kg/h	8330	-0.0000	1	1	V	
	PA_Subcooling_TRet(Pa)		257.0 C	257.0	0.0000	V	R	V	
	T201 Unstabilized Gasoli	r 4,458e	+004 ka/h	4.458e+004	0.0000	V	V	V	
				Active	Jpdate Inactive				0

Figure 4.101 Specifications of step 6 for simulation convergence.

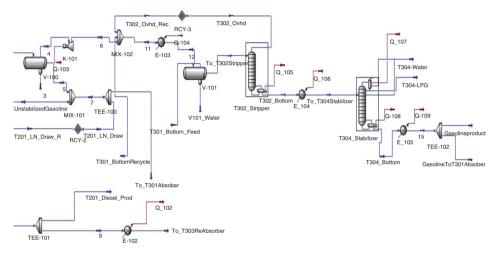


Figure 4.102 Add T302Stripper and T304Stabilizer.

4.15 Workshop 4.3 – Build the Model for Main Fractionator and Gas Plant System 279

Design Paramet	ters Side Ops Ra	ating Worksheet	Performance	Flowsheet.	Reactions	Dynamics	5			
Design	Column Name	T302_Stripper	Sub-F	lowsheet Tag	COL2					
Connections Monitor								Oghd Vapou	r Outlet	
Specs								T302_Ovh	i -	
Specs Summary Subcooling	12010200000000									
Notes	Top Stage Inlet								~	
	To_T302Strippe	n	F	\neg						
	-		-> -	1 2 P1						
	Optional Inlet Str	eams				Opt	ional Side	Draws		
	Stream	Inlet Stage		tages	66 kPa	-	Stream	Туре	Draw Stage	
	<< Stream >	a contract of the second second	0.9	13			<< Strea	m >>		
				Pn						
				n-1	l01 kPa			Reboiler E	nergy Stream	
				n 🔫	2	-		Q-105		٠
			-	n+1	(\Box)	elta P		Bottoms L	iguid Outlet	
				/		0.0000 kPa		T302_Bo	ttom	•
					T				>	-
	Stage Numberin	ng								
	Top Down	Bottom Up								
	Ed	it Trays								

Figure 4.103 Specification of T302_Stripper (1).

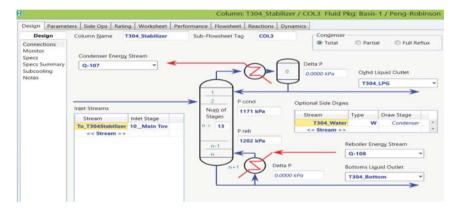

Design	Paran	neters	Side Ops	Rating	Worksheet	Performance	Flowsheet	Reactions	Dynamics
Parame	ters	Stea	dy State Pro	files					
Profiles							Optional Es	timates	
Estimate Efficient Solver				Stage	Pressure [kPa]	Temp [C]	Net Liquid [kgmole/h]	Net Vapour [kgmole/h]	
2/3 Pha		1_	Main Tower	0	1266	45.30	76.14	42.3	9
Fluid Pk		2_	Main Tower	1	1269	81.52	78.96	54.5	8
TIUIU FK	.ys	3_	Main Tower	2	1272	87.37	80.65	57.4	10
		4_	Main Tower	3	1275	91.13	81.79	59.0	9
		5_	Main Tower	4	1278	93.57	82.50	60.2	3
		6_	Main Tower	5	1281	95.24	82.91	60.9	5
		7_	Main Tower	6	1284	96.53	83.07	61.3	5
		8_	Main Tower	7	1286	97.74	83.04	61.5	2
		9_	Main Tower	8	1289	99.13	82.81	61.4	19
		10	_Main Towe	9	1292	101.0	82.32	61.2	25
		11.	_Main Towe	10	1295	103.9	81.50	60.7	7
		12	_Main Towe	ei 11	1298	108.3	80.27	59.9	5
		13	_Main Towe	ei 12	1301	115.0	78.54	58.7	1
		Re	boiler	13	1301	160.8	21.55	56.9	8

Figure 4.104 Specifications of T302_Stripper (2): Pressure and temperature of stage 1 and reboiler.

2) Following the flowsheet of 4.102, recycle the overhead stream from T302_Stripper, (T302_Ovhd) back to MIX-102. Add a cooler (E-104) to cool the bottom outlet stream from T-302 (T302_Bottom) to stream 14 at 40 °C. Run the simulation of T302_Stripper again; save the converged simulation as *Workshop 4.3-7a*.

Design	Parameters	Side Ops	Rating	Worksheet	Performance	Flowshee	t Reactions Dy	namics			
Des	lign	Optional	Checks				Profile				
Connect		Input	Summary		/iew Initial Estin	nates		Tempera	ature	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	y Po
Specs Specs S Subcool Notes	ummary ling	lter S	1.0000	Equilibrium 0.0000	Heat / Sp 00 0.0	900015	Temp Press Flows	120.0 110.0 90.00 80.00 70.00			
		Specificat	ions		Specified Value	. 1	Current Value	o Wt. Error	Active	4 0	Curre
		Ovhd Pr	od Rate		<	empty>	42.39	<empty></empty>		2	
		Btms Pre	od Rate		<	empty>	21.55	<empty></empty>		V	
		Boilup R	atio		<	empty>	2.644	<empty></empty>		N	
		Bottom	Temperatu	re		115.0 C	115.0	0.0000	2	2	5
		Vi	ew	Add	ipec	Group A	Active	Jpdate Inactive		egrees of Fr	eede

Figure 4.105 Specification of bottom (stage 13) temperature enables simulation convergence.

Figure 4.106 Specifications of T304_Stabilizer with a total condenser and a partial reboiler.

Design	Parame	eters Side	Ops	Rating	V	Vorksheet	Performance	Design	Parameters	Side Ops	Rating	Worksheet	Performance	Flowsheet	Reactions [lynamics	
Parame	ters	Steady Sta	te Pro	ofiles				De	sign	Column Sp	ecification	ns		B Comp F	ac Spec: C	5+ Mole _	- 🗆 🗙
Profiles								Connet		Reflux Rat			View	Parameter	Summary	Spec Type	
Estimate Efficience				Stag	-	Pressure [kPa]	Temp [C]	Specs 5	Summary	Reflux Rat Btms Prod	e		Add.	Name Stape		CS+ Mole	Fraction in LPG
Solver 2/3 Phas	2.2	Condens	er		0	1171	49.29	Subcoo	ang	CS+ Mole		in LPG	Delet	Flow Basis			Mole Fraction
Eluid Plo		1_Main	Towe	r	1	1171	64.07	induces		Gasoline I	ele.			Phase Spec Valu			Liquid 3.840e-002
TIGIG PR	ys.	2_Main	Towe	r i i	2	1174	87.44							Spec valu			3.8408-002
		3_Main	Towe	ri i	3	1176	91.10							Componen	23		2M-13-C4
		4_Main	Towe	r i	4	1179	96.14										i-Pentane
		5_Main	Towe	n i	5	1181	102.4										1-Pentene
		6_Main	Towe	r.	6	1184	109.1										2M-1-butene n-Pentane
		7_Main	Towe	r	7	1186	115.4										tr2-Pentene
		8_Main	Towe	ri i	в	1189	120.6										cis2-Pentene
		9_Main	Towe	r.	9	1192	124.6										2M-2-butene
		10 Main	Tow	ei 1	0	1194	127.8										3M-1-butene
		11 Main	Tow	es 1	1	1197	130.5										Cyclopentene Cyclopentane
		12 Main	Tow	es 1	2	1199	133.3			-			2003 02020				90-100F*
		13 Main	Tow	et 1	3	1202	136.8			6	Update	e Specs from	Dynamics				100-110F*
		Reboiler			4	1202	178.9						_				110-120F*
		the bones								Default B	8585	Molar				<< C0	mponent >>

Figure 4.107 Specifications of temperatures of condenser, and stages 1 and 17, and C5+ component mole fraction in LPG.

4.15 Workshop 4.3 – Build the Model for Main Fractionator and Gas Plant System 281

Design	Stream Property Sp	ec: Gasoline R – 🗖 🔛	Correlation Picker	
Desi	Parameters Summary	Spec Type	Pour Point Pour Point Idx	
Connecti	Name	Gasoline RVP	RON (Clear)	
Monitor	Stream	T304_Bottom @COL3	RON (Leaded)	
Specs	Stream Property	Reid Vapour Pressure	RVP Idx	
Specs Su	Spec Value	52.6500 kPa	Refractive Index Reid Vapour Pressure	
Subcooli Notes	Select Property	Remove Property	SG (60/60) SV Smoke Point Sodium Content Std. Liquid Density Sulfur Mercaptan Wt Pct Sulfur Wt Pct TBP 0% TBP 10% TBP 10% TBP 30%	

Figure 4.108 Specification of Gasoline RVP: Design \rightarrow Specs \rightarrow Add \rightarrow Column Stream Property Spec \rightarrow Name: Gasoline RVP; Stream-T304_Bottom@COL3; Stream Property \rightarrow Select Property \rightarrow Correlation Picker – Petroleum – Reid Vapor Pressure \rightarrow Select; Spec Value \rightarrow 52.65 kPa. Repeat the same procedure to set up the petroleum spec, Gasoline IBP.

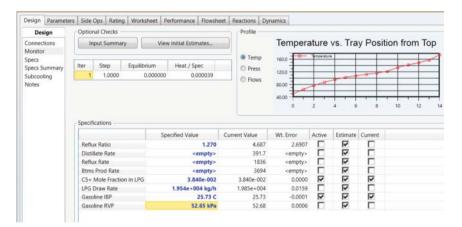


Figure 4.109 Specifications of T304_Absorber for simulation convergence.

- 3) Create T304_Stabilizer, the debutanizer or gasoline stabilization column, with specifications according to Figures 4.106–4.109. Save the converged simulation as *Workshop 4.3-7b*.
- 4) Refer to the flowsheet given in Figure 4.110. Create a cooler block (E-105) to cool down the bottom stream from T-304 to 35 °C for stream 15.
- 5) Create a tee (TEE-105) to split stream 15 into two streams, gasoline (Gasoline_Product) with a mass flow rate of 43630 kg/h and To_T301Absorber. Save the converged simulation as *Workshop 4.3-7c*.

4.15.3 T301_Absorber, Primary Absorber and T303_ReAbsorber, Sponge Oil Absorber, or Reabsorption Column

We continue by saving *Workshop 4.3-7c* to a new file, *Workshop 4.3-8*. Refer to the flowsheet given in Figure 4.111.

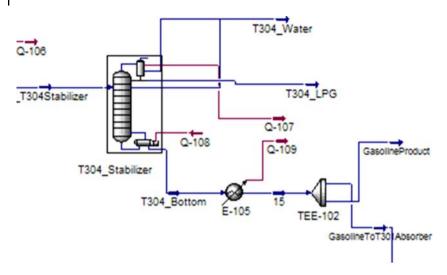


Figure 4.110 Flowsheet of the T304_Stabilizer product streams.

- 1) Create T301_Absorber, the primary absorber, with nine equilibrium stages according to Table 4.7, with three feeds: (1) To_T301Absorber from TEE-100 to stage 1; (2) vapor stream T301_BottomFeed from three-phase separator V-101 to stage 9; and (3) T304_GasolineRecycle, exiting a new recycle block RCY-4 that recycles the stream GasolineToT301Absorber from TEE-102, to stage 1.
- 2) Complete the column specifications following Figure 4.112.
- 3) Connect the overhead stream from T-301 (T301_Ovhd) to an exchanger block (E-106), setting the vapor fraction of the exit stream, stream 20 to 1.0.
- 4) Create a tee (TEE-105) to split the diesel side draw from the main fractionator (SS_T201_DieselProd) into two streams, T201_DieselProd with a mass flow rate of 24710 kg/h and stream 9. Create a cooler block (E-102) to cool down stream 9–50 °C.
- 5) To resolve possible convergence issues with the appearance of two liquid phases (as we demonstrated previously in Figures 2.88–2.91), we create water side draws from stage 1 to stage 9 of T301_Absorber (see Figures 4.113 and 4.114).
- 6) Create T303_ReAbsorber, the sponge oil absorber, or the reabsorption column with nine equilibrium stages (see Table 4.7) and two feeds: (1) To_T303ReAbsorber to stage 1, which is a part of the SS_T201_DieselProd through splitter TEE-101 and exchanger E-102 and (2) stream 20 to stage 8, which is T301_Ovhd from T301_Absorber going through exchanger E-100. See the specifications in Figure 4.115. As with T301_Absorber, we do not need additional specifications for T303_ReAbsorber to achieve simulation convergence. We can repeat the same procedure of adding water side draws to stage 1 to stage 9 of T303_ReAbsorber to resolve the converged simulation as *Workshop 4.3-8.hsc.* This concludes Workshop 4.3. Refer to Figure 4.111 for the final flowsheet and save the converged simulation as *Workshop 4.3-8.*

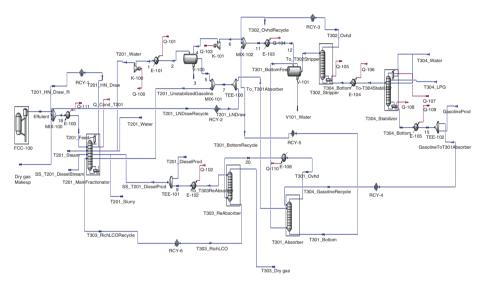
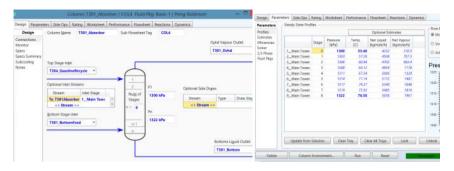



Figure 4.111 Overall Aspen HYSYS model of FCC unit and associated gas plant.

Figure 4.112 Specifications of T301_Absorber, which requires only feed stage locations and product streams, and pressure and temperature estimates to achieve simulation convergence.

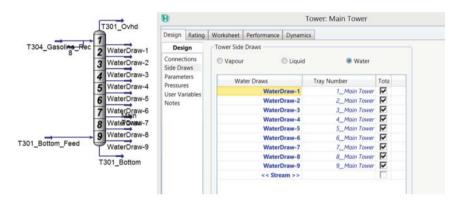


Figure 4.113 Create water side draws from stages 1 to 9 of T301_Absorber.

esign Param	eters Side Ops Rating Worksheet	Performance Flowsheet	Reactions Dyna	imics				
Worksheet Conditions	Name	T304_Gasoline @COL4	8 @COL4	T301_Bottom @COL4	T301_Ovhd @COL4	WaterDraw-1 @COL4	WaterDraw-2 @COL4	WaterDraw-3 @COL4
roperties compositions	Vapour	0.0000	0.0242	1.0000	1.0000	0.0000	0.0000	0.0000
F Specs	Temperature [C]	50.00	35.71	40.00	58.07	58.07	60.73	61.80
	Pressure (kPa)	1202	255.0	1266	1300	1300	1303	1306
	Molar Flow (kgmole/h)	3229	610.2	1900	306.5	0.0000	0.0000	0.0000
	Mass Flow [kg/h]	2.974e+005	4.993e+004	7.377e+004	8058	0.0000	0.0000	0.0000
	Std Ideal Lig Vol Flow [m3/h]	412.8	72.35	141.6	16.98	0,0000	0,0000	0.000
	Molar Enthalpy [kl/kgmole]	-1.858e+005	-1.582e+005	-8981	-4.704e+004	-1.697e+005	+1.625e+005	-1.559e+00
	Molar Entropy [ki/kgmole-C]	161,4	142.9	112.3	164.1	164.2	164.4	162.0
	Heat Flow [kl/h]	-5.999e+008	-9.652e+007	-1.707e+007	-1.442e+007	-0.0000	-0.0000	-0.000
	Name	WaterDraw-4 @COL4	WaterDraw-5 @COL4	WaterDraw-6 @COL4	WaterDraw-7 @COL4	WaterDraw-B @COL4	T301_Bottom @COL4	WaterDraw-9 @COL
	Vapour	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
	Temperature (C)	67,47	74.83	79.73	82.56	83.10	77.81	77.8
	Pressure (kPa)	1308	1311	1314	1317	1319	1322	132
	Molar Flow (kgmole/h)	0.0000	0.0000	0.0000	0.0000	0.0000	5433	0.000
	Mass Flow [kg/h]	0.0000	0.0000	0.0000	0.0000	0.0000	4.131e+005	0.000
	Std Ideal Liq Vol Flow [m3/h]	0.0000	0.0000	0.0000	0.0000	0.0000	609.7	0.000
	Molar Enthalpy [kl/kgmole]	-1.501e+005	-1.456e+005	-1.415e+005	-1.374e+005	-1.335e+005	-1.273e+005	-1.273e+00
	Molar Entropy [kl/kgmole-C]	162.5	163.0	162.0	159.7	156.3	148.1	148.
	Heat Flow [kl/h]	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-6.916e+008	-0.0000

Figure 4.114 Converged results of T301_Absorber showing zero water side draw flow rates from stages 1 to 9.

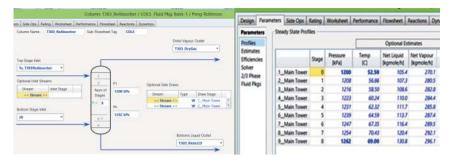


Figure 4.115 Specifications of T303_ReAbsorber, which requires only feed stage locations and product streams, and pressure and temperature estimates to achieve simulation convergence.

4.16 Workshop 4.4 – Perform Case Studies to Quantify Effects of Key FCC Operating Variables

In this workshop, we focus on methods to perform different case studies using a calibrated model. We generally do not need the rigorous fractionation model for many types of yield-related case studies. An important consideration during FCC operation is to improve the yield of a particular key product. As the FCC unit is a large producer of gasoline, we generally need to maximize the throughput and conversion of feed to gasoline. In Section 4.11 regarding FCC modeling and kinetics, we extensively discussed how changes in feed rate and operating temperatures can affect the yield of the unit. We perform two case studies below using Aspen HYSYS that illustrate the effects of feed rate and ROT in practice.

Open simulation file of the calibrated model, *Workshop 4.2-done.hsc*, and save it as *Workshop 4.4-1*. This workshop follows the procedure of Workshop 2.1, Figures 2.69–2.75, Section 2.1. We begin a new case study according to Figure 4.116.

 Harrier
 Decision
 <thDecision</th>
 Decision
 Decisio

We define the independent variables in Figures 4.117 and 4.118.

Figure 4.116 Initialize a new case study: Case Studies \rightarrow Add \rightarrow Case Study 1 \rightarrow Edit.

Flowsheet Case (Main) . Case Study 1 Set up Results Plots Failed States Stream Stream Analysi Ob Variable Equipment Design Variable Na Model Analysi Br Objec Data Table Case (Main) FCC-100 (FCC-100) @FCC-100 Case Studie Case Study Data Fit Add C Stre O UnitOps State Issue Tune Dionicals C Custom Custom Distants Feed Mass Flow

Figure 4.117 Define independent variables - feed mass flow (Feed-1) and riser outlet temperature (Riser).

JI Items	Flowsheet Case (Main) ×	Case Study 1	+				
Workbook	Set up Results Plots	Failed States					
Streams Stream Analysis	Object		1	Variable		Independent	Include
Equipment Design	Reactor S	ection @FCC-100		F	eed Mass Flow (Feed-1)	Yes	1
S Model Analysis		Section @FCC-100		Riser Out	let Temperature (Riser)	Yes	R
🕞 Data Tables							
📑 Data Fits	Add	Remove	Edit				
	State Input Type	Nested	•	🔲 Reset after Ru	n		
	State Input Type Number of States	Nested	•	Reset after Ru Step Downwa			
		299	• Low Bound	THE REAL PROPERTY OF			
	Number of States	299 ariable		Step Downwa	rd		

Figure 4.118 Specify the lower and upper bounds of independent variables and their step sizes.

As we focus only on the product yields, we use the "standard cuts grouped" from the model directly. Previously, we have defined the standard cuts or square cuts" in Section 4.13.10 and in Figure 4.71. Specifically, standard cut grouped *yields or square cut yields* refer to product yields with fixed end points; typical cuts include C1-C4 lump, C5-430 lump (C5-430 °F or 221 °C), 430-650 lump (430-650 °F, or 221-343 °C), 650-950 lump (650-950 °F, or 343-510 °C), and 950+ lump (>950°F or 510°C). Figure 4.119 shows our chosen cut yields for dependent variables.

It is possible to perform the same case study based on plant cuts. In that case, we would add a simple component splitter to separate the reactor effluent based on the initial and end points of the cuts (Figures 4.120 and 4.121).

We summarize the case study of the feed rate change (at a ROT of 510 °C) in Figure 4.122. We save the simulation file as *Workshop 4.4-1.hsc*.

As the feed rate increases to the unit, we note that there is a significant loss in the standard naphtha cut yield. In addition, both the LCO and Bottoms yields

286 4 Predictive Modeling of the Fluid Catalytic Cracking (FCC) Process

FCC-100	Feed Mass Flow (Feed-1)
FCC-100	Yield, Std Cut Grouped (H2S-Weight %)
FCC-100	Yield, Std Cut Grouped (Naphtha C5-430F-Weight %)
FCC-100	Yield, Std Cut Grouped (Fuel Gas-Weight %)
FCC-100	Yield, Std Cut Grouped (Propane-Weight %)
FCC-100	Yield, Std Cut Grouped (Propylene-Weight %)
FCC-100	Yield, Std Cut Grouped (nButane-Weight %)
FCC-100	Yield, Std Cut Grouped (iButane-Weight %)
FCC-100	Yield, Std Cut Grouped (Butenes-Weight %)
FCC-100	Yield, Std Cut Grouped (Naphtha C5-430F-Weight %)
FCC-100	Yield, Std Cut Grouped (LCO 430-650F-Weight %)
FCC-100	Yield, Std Cut Grouped (Bottoms 650F+-Weight %)
FCC-100	Yield, Std Cut Grouped (Coke Yield-Weight %)
FCC-100	Yield, Std Cut Grouped (Conversion-Weight %)

	Variable	Independent	Include				
	Feed Mass Flow (Feed-1)	Yes	되				
Y	field, Std Cut Grouped (H2S-Weight %)	No	N	=			
		Variable Nav	/igator				
Flowsheet	Object	Variable			Variable Specifi	ics	OK
	Effulent FCC-300 ProductBlock_Effulent	Weight % Alumin Weight % Rare Ea Weight % Rare Ea Weight % Zeolite Weight Fraction it Weight Fraction it wt% Hydrogen in Yield, Fractionated	rth in the Blend i the Blend Coke I Detailed	đ	H2S Fuel Gas Propane Propylene nButane iButane Butane Butanes		Object Filter All Streams UnitOps Logicals
Navigator Scope Flowsheet Case Basis Analysis		Yield, Fractionated Yield, Std Cut Detu Yield, Std Cut Grow Zone Top Pressure ZSM-5 Additive ZSM-5 Additive, P	alled aped	f Base 🚎	More Specifi Volume Flow Mass Flow Volume % Weight %	c	ColumnOp Custom

Figure 4.119 The standard cut grouped yields as our dependent variables.

Figure 4.120 An illustration for the selection of dependent variable.

increase significantly. We discuss the reason for loss of naphtha yield extensively in the previous chapter. The loss is essentially a result of low residence time in the riser, which prevents catalytic cracking of the feed. In fact, most of the bottoms product can likely be recovered as LCO at a lower feed rate. *Therefore, if we try to increase the feed rate of the unit, we must also increase the cracking temperature to account for the lowered residence time.* We investigate an increase in cracking temperature in the next case study.

Figure 4.121 Effect of the FCC feed mass flow rate on the standard naphtha and LCO cut yields.

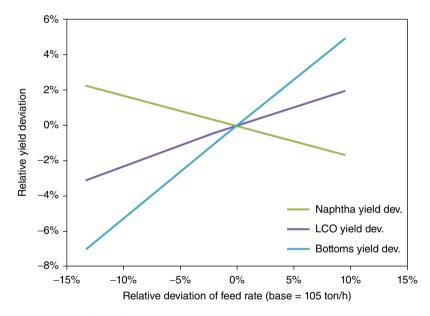


Figure 4.122 Effect of feed rate change on product yield change.

To study the effect of riser temperature at higher unit throughput, we create a case study where we vary the ROT. First, we increase the feed flow rate to the unit Reactor Section of the FCC unit operation window. For this example, we set the feed flow rate to 115 ton/h, as shown in Figure 4.123 and solve the model. If the model does not converge, we can increase the number of creep and total iterations in the Solve Options Section (Figure 4.124).

The results of the case study 2 appear in Figures 4.125 and 4.126. We summarize the results of the case study in Figure 4.127. We save the simulation file as *Workshop 4.4-2.hsc*.

4.16 Workshop 4.4 – Perform Case Studies to Quantify Effects of Key FCC Operating Variables 289

Design Reactor Section	n Fractionator	Worksheet Re	esults					
Reactor Section	- Feed Condition	5						
Feeds Catalyst Activity	Feed	Volume Flow [m3/h]	Mass Flow [kg/h]	Temperature [C]	Pressure [kPa]	Location	S Processed	
Riser/Reactor	Feed-1	125.5	1.15000e+05	175.0	601.3	Riser	0.5000	
Advanced O Variables Presolve Commands Postsolve Commands								
	Total Feed and	Dispersion Stear						
			Riser				Total	
		ume [m3/h]		125.5				
								and the second second second
	Fresh Feed Ma	ss [kg/h]	1.150	00e+05			1.	150e+005
	Fresh Feed Ma Total Feed Vol	ss [kg/h] ume [m3/h]		125.5				150e+005 125.5
	Fresh Feed Ma Total Feed Volu Total Feed Mas	ss [kg/h] ume [m3/h] is [kg/h]		125.5 00e+05				150e+005 125.5 150e+005
	Fresh Feed Ma Total Feed Vole Total Feed Mas Total Feed Pre	ss [kg/h] ume [m3/h] ss [kg/h] heat Duty [kJ/h]		125.5 00e+05 0.0000				125.5 150e+005 125.5 150e+005 0.0000
	Fresh Feed Ma Total Feed Vole Total Feed Mat Total Feed Prei Total Feed Ten	ss [kg/h] ume [m3/h] is [kg/h] heat Duty [kl/h] hperature [C]		125.5 00e+05 0.0000 175.0				150e+005 125.5 150e+005
	Fresh Feed Ma Total Feed Voli Total Feed Mas Total Feed Prel Total Feed Ten Steam Mass [ko	ss [kg/h] ume [m3/h] ss [kg/h] heat Duty [kJ/h] hperature [C] g/h]	1.150	125.5 00e+05 0.0000 175.0 5200				150e+005 125.5 150e+005
	Fresh Feed Ma Total Feed Voli Total Feed Ma Total Feed Prel Total Feed Terr Steam Mass (k Steam to Total	ss [kg/h] ume [m3/h] ss [kg/h] heat Duty [kl/h] hperature [C] g/h] Feed Ratio	1.150	125.5 00e+05 0.0000 175.0 5200 14e-002				150e+005 125.5 150e+005
	Fresh Feed Ma Total Feed Voli Total Feed Mas Total Feed Prel Total Feed Ten Steam Mass [ko	ss [kg/h] ume [m3/h] ss [kg/h] heat Duty [kl/h] hperature [C] g/h] Feed Ratio ature [C]	1.150	125.5 00e+05 0.0000 175.0 5200				125.5 150e+005

Figure 4.123 Increase feed flow rate for riser outlet temperature case study.

Object			Variable		Independent	Include	
Reactor S	Section @FCC-100		Riser Ou	tlet Temperature (Riser)	Yes	5	
Reactor S	Section @FCC-100			rouped (H2S-Weight %)		R	E
	Section @FCC-100			htha C5-430F-Weight %)		P	_ 1
	Section @FCC-100			ped (Fuel Gas-Weight %)		4	
	Section @FCC-100			ped (Propane-Weight %)		A	
	Section @FCC-100			d (Propylene-Weight %)		A	
Deseter	Cashing MECC 100	M	ald Cad Cost Casses	ad InDutene Mainht MI	N.a.	D	-
Number of States	23		E Stee Dewenne	-4			
	23 /ariable	Low Bound	Step Downwa	rd Step Size			
Number of States Independent V Reactor Section - Rise	/ariable	Low Bound 490.0	Step Downwa High Bound 545.0				

Figure 4.124 Case study setup for riser outlet temperature.

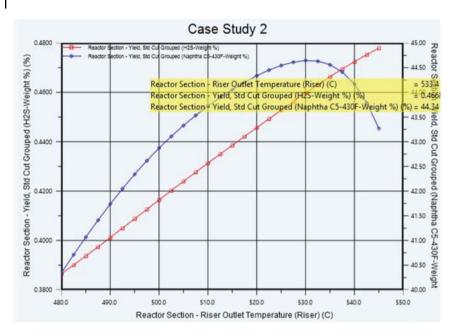


Figure 4.125 Graphical results from the case study.

	Reactor Section - Riser Outlet	Reactor Section - Yield, Std Cut	Reactor Section - Yield, Std Cut	Reactor Section - Yield, Std Cut	
State	Temperature (Riser) [C]	Grouped (H2S- Weight %) [%]	Grouped (Naphtha C5-430F-Weight %) [%]	Grouped (Fuel Gas- Weight %) [%]	G
State 1	480.0	0.39	40.34	2.01	
State 2	482.5	0.39	40.71	2.04	
State 3	485.0	0.39	41.07	2.07	
State 4	487.5	0.40	41.41	2.11	
State 5	490.0	0.40	41.74	2.14	
State 6	492.5	0.40	42.05	2.18	
State 7	495.0	0.41	42.34	2.22	
State 8	497.5	0.41	42.62	2.26	
State 9	500.0	0.42	42.87	2.30	
State 10	502.5	0.42	43.11	2.35	
State 11	505.0	0.42	43.33	2.39	
State 12	507.5	0.43	43.53	2.44	

Figure 4.126 Tabular results from the case study.

Figure 4.127 shows that as we increase the ROT, the yield of naphtha also increases until we reach about 532 °C. At this point, the naphtha yield drops and we have a dramatic increase in the production of light gases and coke. In addition, there is also a significant decrease in the LCO yield. All of these trends are a result of the naphtha "overcracking" curve. We discussed this

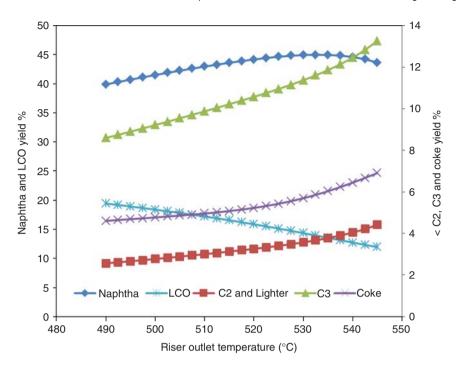


Figure 4.127 Product yield as a function of riser outlet temperature.

phenomenon extensively in the preceding chapter. Gasoline "overcracking" is a result of excessive thermal cracking and catalyst activation. Thermal cracking tends to produce many light compounds (C1–C4). This explains the increase in C2 and C3 yields. In addition, Coke yield increases because of increased coke deposits in the riser and subsequent catalyst deactivation. The lack of catalytic cracking activity explains the loss in LCO yield (as most of the feed that could have been cracked to LCO is now cracked directly in light gases). Figure 4.127 in conjunction with case study can help identify operating scenarios (flow rate and temperatures) to increase yield or shift product distribution slate from the FCC Unit.

4.17 Workshop 4.5 – Generate Delta-Base Vectors for Linear Programming (LP)-Based Planning

An important application of the calibrated model is the generation of LP deltabase vectors for refinery planning. The delta-base vectors essentially represent a linearized model of FCC unit as a function of several key variables. We have extensively discussed linear models in a previous chapter. In this workshop, we will demonstrate how to generate LP delta-base vectors for the calibrated FCC for use with a specific planning software, Aspen PIMS.

We open our calibrated model, *Workshop 4.2-done*, and save it as a new file, *Workshop 4.5.hsc*.

We can attempt to linearize the model by identifying key operating parameters and manually running the model for each chosen operating parameter. However, Aspen HYSYS provides a utility to automate this process. We can access the utility by going to the Analysis \rightarrow Model Analysis \rightarrow PIMS Support in home application menu, as shown in Figure 4.128.

Figure 4.129 shows the delta-base utility configuration window. We must first identify the scope of the delta-base utility. The scope refers to flowsheet objects we will modify during the course of the study. We choose the entire FCC unit as the scope of the utility, as shown in Figure 4.130.

To use the delta-base utility, we must first choose independent and dependent variables. The independent variables refer to model drivers or key operating parameters that control the yield of the unit. In the case of the FCC unit, the key operations parameters are feed-specific gravity, concarbon, and sulfur content.

Dynamics Vie Process Utility Manag Adjust Manager Fluid Package Associa	er To Active	Resources	Model Summary	, 1000	Case Data	Fits	<u>Ω</u> I _E	tream Analysis * quipment Design * lodel Analysis *	(De	rssure Relief pressuring tre System
Read and the second	Golver Golver Main) - Solver Active	ar 💽 E	ummaries nergy Savings:MW (FCC-100) × _ Exchange	(%) r Summary Table	•	Analysis Exchan		Production Alloca Property Balance	tion	y Analysis sic 0 💽.
To activate op	erational risks convert	one or more of you	ur simple models into a rig	orous EDR mode	ı. 💽	Enat		PIMS Support Swing Cut	-	Design a
Exchanger Nan	ne Subflowshee	et 💌 Moo	del Status 💌	Summary	•	Pressure		MS Support.		ssur

Figure 4.128 Creating the delta-base utility from main application menu bar.

Name	PIMS S	Support	-1		(Scope (bjects	-]	
Independ	lent Varia	ables —										
Tag	P	roxy	Cu	istom De	scription		Units	E	Base (Current	Pert	Lower Bnd
Depende	nt Variab	les —										

Figure 4.129 Delta-base utility configuration window.

4.17 Workshop 4.5 – Generate Delta-Base Vectors for Linear Programming 293

bjects Available	March Marcalana Contra	Scope Objects
Flowsheets	Unit Operations	 FCC-100
Object Filter All Streams		
 UnitOps Logicals Flowsheet Wide 		Accept List

Figure 4.130 Scope of delta-base utility.

We add independent variables by clicking on the "Add Independent variables" button on the configuration window. The Variable Navigator (used in earlier workshops) appears and we select the following variables.

- FCC 100 > Reactor Section > Feed Specific Gravity > Feed 1
- FCC 100 > Reactor Section > Feed Conradson Carbon > Feed 1
- FCC 100 > Reactor Section > Feed Sulfur Content > Feed 1

Figure 4.131 shows how we can add the specific gravity to the independent variables. We repeat this process for the other independent variables. A description of each variable added appears in the "Desc." section.

After adding all the independent variables (Figure 4.132), we must add the dependent variables. The dependent variables in the case of refinery planning

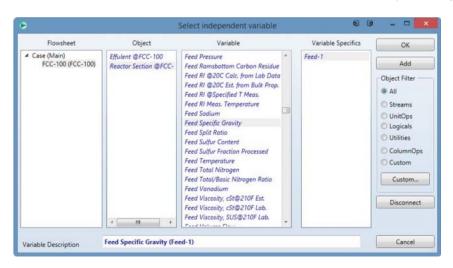


Figure 4.131 Adding specific gravity as an independent variable.

lame PIM	Support-	(FCC-100)	Scope Objects	F	CC-100			C	eate Duplicate		
ndependent V	riables —										
Tag	Proxy	Custom Description	Units		Base	Current	Pert	Lower Bnd	Upper Bnd	Hysys Description	Add
INDVAR100		Feed-1 of Reactor S	ection		0.9164	0.9164	9.164e-00	<empty></empty>	<empty></empty>	Feed Specific Gravity (Fe	
INDVAR101		Feed-1 of Reactor S	ection	.%	1.77	1.77	0.18	<empty></empty>	<empty></empty>	Feed Conradson Carbon Resid	Inser
NDVAR102		Feed-1 of Reactor S	ection	%	0.78	0.78	0.08	<empty></empty>	<empty></empty>	Feed Sulfur Content (Fe	
										 According to the second se Second second s Second second se	Edit
										1	Delet
											Refre

Figure 4.132 All independent variables added to delta-base utility.

almost always refer to the yields of the key products from the FCC unit. In this workshop, we use the square cut yields of the products. However, if we wish to use plant cut yields, we can use a simple component splitter to remap the product effluent from the FCC unit plant cuts based on a TBP cut points.

We add dependent variables by click "Add dependent variables" button. The variable navigator appears and we choose the group yields of all products as dependent variables. We show an example of adding $\rm H_2S$ yield to the dependent variable list in Figure 4.133.

Flowsheet	Object	Variable		Variable Specifics	-
Case (Main)	Effulent FCC-100 ProductBlock_Effulent	User Variables Variable Scaling Parameter Weight % Alumina in the Blend Weight % Alum Farth Weight % Rare Earth Weight % Zeolite Weight % Zeolite in the Blend Weight % Zeolite in the Blend Weight % Zeolite in the Blend Weight fraction in the Blend wt% Hydrogen in Coke Yield, Fractionated Detailed Yield, Std Cut Detailed Yield, Std Cut Grouped Zone Top Pressure ZSM-5 Additive	*	H2S + Fuel Gas F Propylene nButane iButane Butenes Nanktha (?5-430F * More Specific Volume Flow Mass Flow Volume % Weight %	Add Object Filter -
ariable Description	Vield, Std Cut Grouped (ZSM-5 Additive, Per Unit Mass of B	*		Cancel

Figure 4.133 Adding H₂S yield as a dependent variable.

Tag	Custom Description	Units	Base	Current	Lower Bnd	Upper Bnd	Hysys Description
DEPVAR100	H2S-Weight % of FCC-100	%	0.48	0.48	<empty></empty>	<empty></empty>	Vield, Std Cut Grouped (H2S-Weigh
DEPVAR101	Fuel Gas-Weight % of FCC-100	%	3.75	3.75	<empty></empty>	<empty></empty>	Vield, Std Cut Grouped (Fuel Gas-W
DEPVAR102	Propane-Weight % of FCC-100	%	3,42	3.42	<empty></empty>	<empty></empty>	Vield, Std Cut Grouped (Propane-W
DEPVAR103	Propylene-Weight % of FCC-100	%	9.34	9.34	<empty></empty>	<empty></empty>	Yield, Std Cut Grouped (Propylene-\
DEPVAR104	iButane-Weight % of FCC-100	%	4.45	4.45	<empty></empty>	<empty></empty>	Vield, Std Cut Grouped (iButane-We
DEPVAR105	nButane-Weight % of FCC-100	%	1.15	1.15	<empty></empty>	<empty></empty>	Yield, Std Cut Grouped (nButane-W
DEPVAR106	Butenes-Weight % of FCC-100	%	5.78	5.78	<empty></empty>	<empty></empty>	Yield, Std Cut Grouped (Butenes-We
DEPVAR107	Naphtha C5-430F-Weight % of FCC-10	%	43.27	43.27	<empty></empty>	<empty></empty>	Vield, Std Cut Grouped (Naphtha C!
DEPVAR108	LCO 430-650F-Weight % of FCC-100	%	11.28	11.28	<empty></empty>	<empty></empty>	Vield, Std Cut Grouped (LCO 430-65
DEPVAR109	Bottoms 650F+-Weight % of FCC-100	%	7.69	7.69	<empty></empty>	<empty></empty>	Vield, Std Cut Grouped (Bottoms 65
DEPMAD110	Cake Vield Malaht M of ECC 100	64	0.20	0.20	complex	damahra.	Vield Std Cut Ground /Cake Vield

Figure 4.134 All dependent variables added to delta-base utility.

We use the variable navigator to add the following variables as dependent variables (Figure 4.134).

- Case > FCC-100 > Yield, Std. Cut. Grouped > H₂S
- Case > FCC-100 > Yield, Std. Cut. Grouped > Fuel Gas
- Case > FCC-100 > Yield, Std. Cut. Grouped > Propane
- Case > FCC-100 > Yield, Std. Cut. Grouped > Propylene
- Case > FCC-100 > Yield, Std. Cut. Grouped > *n*Butane
- Case > FCC-100 > Yield, Std. Cut. Grouped > *i*Butane
- Case > FCC-100 > Yield, Std. Cut. Grouped > Butenes
- Case > FCC-100 > Yield, Std. Cut. Grouped > Naphtha C5-430 °F
- Case > FCC-100 > Yield, Std. Cut. Grouped > LCO 430F 650 °F
- Case > FCC-100 > Yield, Std. Cut. Grouped > Bottoms 650+ °F
- Case > FCC-100 > Yield, Std. Cut. Grouped > Coke

The next step is to choose a perturbation amount for each variable. As the delta-base utility generates a linearized model of the FCC unit, we must choose the range over which we need to linearize the model. For this workshop, we will perturb each independent variable by 10% of its original base value, as shown in Figure 4.135. We can click "Generate Derivatives" to begin running the model.

Once we click the "Generate Derivatives" button, the model runs several times at the base and perturbed values of the independent variables. The delta-base values appear in the table shown in Figure 4.136. These values may be directly copied into an Excel spreadsheet for Aspen PIMS or exported for further study. We can export the table to a PIMS style interface by clicking the "Export Data." The exported data are shown in Figure 4.137.

	ariables						-		
Tag	Proxy	Custom Description		Units	Ba	se	Current	Pert	Lower Bno
INDVAR100		Feed-1 of Reactor Se	ction		(.9164	0.9164	9.164e-00	<em< td=""></em<>
INDVAR101		Feed-1 of Reactor Se	ction		%	1.77	1.77	0.18	<em< td=""></em<>
INDVAR102		Feed-1 of Reactor Se	ction		%	0.78	0.78	0.08	<em< td=""></em<>
an and ant Var	ables								
ependent Var				-					
Tag		n Description	Units		Base	Currer		ver Bnd	Upper Bnd
DEPVAR100	H29	5-Weight % of FCC-100		%	0.48		0.48	<empty></empty>	<emp< td=""></emp<>
	and the second se								
DEPVAR101		s-Weight % of FCC-100		%	3.75		3.75	<empty></empty>	<emp< td=""></emp<>
DEPVAR101 DEPVAR102	Propane	-Weight % of FCC-100		%	3.42		3.42	<empty></empty>	<emp< td=""></emp<>
DEPVAR101 DEPVAR102 DEPVAR103	Propane	-Weight % of FCC-100 -Weight % of FCC-100		% %	3.42 9.34	1	3.42 9.34	<empty> <empty></empty></empty>	<emp <emp< td=""></emp<></emp
DEPVAR101 DEPVAR102 DEPVAR103 DEPVAR104	Propano Propyleno iButano	-Weight % of FCC-100 -Weight % of FCC-100 -Weight % of FCC-100		% %	3.42 9.34 4.45		3.42 9.34 4.45	<empty> <empty> <empty></empty></empty></empty>	<emp <emp <emp< td=""></emp<></emp </emp
DEPVAR101 DEPVAR102 DEPVAR103 DEPVAR104 DEPVAR105	Propane Propylene iButane nButane	Weight % of FCC-100 Weight % of FCC-100 Weight % of FCC-100 Weight % of FCC-100		% % %	3.42 9.34 4.45 1.15		3.42 9.34 4.45 1.15	<empty> <empty> <empty> <empty></empty></empty></empty></empty>	<emp <emp <emp <emp< td=""></emp<></emp </emp </emp
DEPVAR101 DEPVAR102 DEPVAR103 DEPVAR104 DEPVAR105 DEPVAR106	Propano Propyleno iButano nButano Butene	e-Weight % of FCC-100 e-Weight % of FCC-100 e-Weight % of FCC-100 e-Weight % of FCC-100 s-Weight % of FCC-100		% % % %	3.42 9.34 4.45 1.15 5.78		3.42 9.34 4.45 1.15 5.78	<empty> <empty> <empty> <empty> <empty></empty></empty></empty></empty></empty>	<emp <emp <emp <emp <emp< td=""></emp<></emp </emp </emp </emp
DEPVAR101 DEPVAR102 DEPVAR103 DEPVAR104 DEPVAR105 DEPVAR106 DEPVAR107	Propano Propyleno iButano Butano Butene Naphtha C5-43	-Weight % of FCC-100 -Weight % of FCC-100 -Weight % of FCC-100 -Weight % of FCC-100 s-Weight % of FCC-100 OF-Weight % of FCC-10		% % % % %	3.42 9.34 4.45 1.15 5.78 43.27	4	3.42 9.34 4.45 1.15 5.78 3.27	<empty> <empty> <empty> <empty> <empty> <empty></empty></empty></empty></empty></empty></empty>	<emp <emp <emp <emp <emp< td=""></emp<></emp </emp </emp </emp
DEPVAR101 DEPVAR102 DEPVAR103 DEPVAR104 DEPVAR105 DEPVAR106 DEPVAR107 DEPVAR108	Propylene Propylene iButane Butene Naphtha C5-43 LCO 430-650	e-Weight % of FCC-100 e-Weight % of FCC-100 e-Weight % of FCC-100 e-Weight % of FCC-100 s-Weight % of FCC-100		% % % %	3.42 9.34 4.45 1.15 5.78	4	3.42 9.34 4.45 1.15 5.78	<empty> <empty> <empty> <empty> <empty></empty></empty></empty></empty></empty>	<emp <emp <emp <emp <emp <emp <emp< td=""></emp<></emp </emp </emp </emp </emp </emp

Figure 4.135 Perturb independent variables.

ariables Bas	e Vectors Shift \	ectors Ana	ilysis				
Name PI	IS Support-(FCC-	100)					
Parameters (Optional)		Inde	pendent Varia	bles		
			Tag)	INDVAR100	INDVAR101	INDVAR102
			Uni	ts		%	%
			Per		9.164e-002	0.18	0.08
			Use	proxy			
			Des	c	Feed-1 of Reacto	Feed-1 of Reacto	Feed-1 of Reacto
			Bas	e Value	0.9164	1.77	0.78
			Skip	Deriv Calc			
Dependent V	ariables				Derivatives		
Dependent V	ariables				Derivatives		
Dependent V Tag	ariables Desc	Units	Base	Allow Edit			
Tag	No. Ala		Base 0.48		-3.745e-002		
Tag DEPVAR10	Desc	%			-3.745e-002 -0.1422	-3.874e-002	-4.300e-002
Tag DEPVAR10 DEPVAR10	Desc 0 H2S-Weight 9	%	0.48		-3.745e-002 -0.1422 -0.3659	-3.874e-002 -3.512e-002	-4.300e-002 -3.782e-002
Tag DEPVAR10 DEPVAR10 DEPVAR10	Desc 0 H2S-Weight 9 1 Fuel Gas-Weig	% % %	0.48 3.75		-3.745e-002 -0.1422 -0.3659 -0.4879	-3.874e-002 -3.512e-002 -8.365e-002	-4.300e-002 -3.782e-002 -8.858e-002
DEPVAR10 DEPVAR10 DEPVAR10 DEPVAR10	Desc H2S-Weight 9 Fuel Gas-Weig Propane-Weig	% % %	0.48 3.75 3.42		-3.745e-002 -0.1422 -0.3659 -0.4879 -0.4936	-3.874e-002 -3.512e-002 -8.365e-002 -3.905e-002	-4.300e-002 -3.782e-002 -8.858e-002 -4.189e-002
Tag DEPVAR10 DEPVAR10 DEPVAR10 DEPVAR10 DEPVAR10	Desc 0 H2S-Weight 9 1 Fuel Gas-Weig 2 Propane-Weig 3 Propylene-We	% % % %	0.48 3.75 3.42 9.34		-3.745e-002 -0.1422 -0.3659 -0.4879 -0.4936 -0.1305	-3.874e-002 -3.512e-002 -8.365e-002 -3.905e-002 -9.192e-003	-4.300e-002 -3.782e-002 -8.858e-002 -4.189e-002 -9.837e-003
Tag DEPVAR10 DEPVAR10 DEPVAR10 DEPVAR10 DEPVAR10 DEPVAR10	Desc 0 H2S-Weight 9 1 Fuel Gas-Weig 2 Propane-Weig 3 Propylene-We 4 iButane-Weig	% % % % %	0.48 3.75 3.42 9.34 4.45		-3.745e-002 -0.1422 -0.3659 -0.4879 -0.4936 -0.1305 -0.2164	-3.874e-002 -3.512e-002 -8.365e-002 -3.905e-002 -9.192e-003 -4.883e-002	 -4.300e-002 -3.782e-002 -8.858e-002 -4.189e-002 -9.837e-003 -5.136e-002
Tag DEPVAR10 DEPVAR10 DEPVAR10 DEPVAR10 DEPVAR10 DEPVAR10 DEPVAR10	Desc 0 H2S-Weight 9 1 Fuel Gas-Weig 2 Propane-Weig 3 Propylene-Weig 4 iButane-Weig 5 nButane-Weig	% % % % %	0.48 3.75 3.42 9.34 4.45 1.15		-3.745e-002 -0.1422 -0.3659 -0.4936 -0.1305 -0.2164 -3.271	-3.874e-002 -3.512e-002 -8.365e-002 -3.905e-002 -9.192e-003 -4.883e-002 -0.2808	2 -4.300e-002 2 -3.782e-002 2 -8.858e-002 2 -4.189e-002 3 -9.837e-003 2 -5.136e-002 3 -0.2933
Tag DEPVAR10 DEPVAR10 DEPVAR10 DEPVAR10 DEPVAR10 DEPVAR10 DEPVAR10	Desc H2S-Weight 9 Fuel Gas-Weig Propane-Weig Propylene-Weig Butane-Weig Butane-Weig Butane-Weig Butane-Weig	**************************************	0.48 3.75 3.42 9.34 4.45 1.15 5.78		-3.745e-002 -0.1422 -0.3659 -0.4879 -0.4936 -0.1305 -0.2164 -3.271 6.767	-3.874e-002 -3.512e-002 -8.365e-002 -3.905e-002 -9.192e-003 -4.883e-002 -0.2808 4.028e-002	2 -4.300e-002 2 -3.782e-002 2 -8.858e-002 2 -4.189e-002 3 -9.837e-003 2 -5.136e-002 3 -0.2933 2 -1.715e-002
Tag DEPVAR10 DEPVAR10 DEPVAR10 DEPVAR10 DEPVAR10 DEPVAR10 DEPVAR10 DEPVAR10	Desc H2S-Weight 9 Fuel Gas-Weig 2 Propane-Weig 3 Propylene-Weig 5 nButane-Weig 6 Butenes-Weig 7 Naphtha CS-4:	** ** ** ** **	0.48 3.75 3.42 9.34 4.45 1.15 5.78 43.27		-3.745e-002 -0.1422 -0.3659 -0.4936 -0.1305 -0.2164 -3.271	-3.874e-002 -3.512e-002 -8.365e-002 -3.905e-002 -9.192e-003 -4.883e-002 -0.2806 4.028e-002 1.006e-002	2 -4.300e-002 2 -3.782e-002 2 -8.858e-002 2 -4.199e-002 3 -9.837e-003 2 -5.136e-002 3 -0.2933 2 -1.715e-002 2 -3.094e-003

Figure 4.136 Results from delta-base utility.

Α	В	C	D	E	F	G
	TEXT	BAS	IndVar100	IndVar101	IndVar102	***
•	Units			%	%	
•	Base Perturbation		0.09164	0.177	0.078	
*						
DepVar10	H2S-Weight % of FCC-100 %	-0.47791	0.03745	0.00437	-0.61727	
DepVar10	Fuel Gas-Weight % of FCC-100 %	-3.74881	0.14215	0.03874	0.043	
DepVar10	Propane-Weight % of FCC-100 %	-3.42432	0.36591	0.03512	0.03782	
DepVar10	Propylene-Weight % of FCC-100 %	-9.339	0.48788	0.08365	0.08858	
DepVar10	iButane-Weight % of FCC-100 %	-4.45333	0.49363	0.03905	0.04189	
DepVar10	nButane-Weight % of FCC-100 %	-1.14871	0.13053	0.00919	0.00984	
DepVar10	Butenes-Weight % of FCC-100 %	-5.78458	0.21641	0.04883	0.05136	
DepVar10	Naphtha C5-430F-Weight % of FCC-100 %	-43.2683	3.271	0.28077	0.29333	
DepVar10	LCO 430-650F-Weight % of FCC-100 %	-11.2755	-6.76671	-0.04028	0.01715	
DepVar10	Bottoms 650F+-Weight % of FCC-100 %	-7.68896	-4.89723	-0.01006	0.00309	
DepVar11	Coke Yield-Weight % of FCC-100 %	-9.39057	6.51897	-0.48937	0.0312	
*						
	Feed-1 of Reactor Section	0.9164	1			
	Feed-1 of Reactor Section	1.77		1		
	Feed-1 of Reactor Section	0.7761			1	

Figure 4.137 PIMS style output for delta-base vectors.

If necessary, we can also rename all the variables to be consistent with PIMS delta-base vectors. To rename variables, we enter new names for each entry in the corresponding "Tag" box, as shown in Figure 4.138. When we reexport the delta-base table, we replace all variables with the new tags, as shown in Figure 4.139.

4.18 Conclusions 297

lame PIM	S Suppor	t-(FCC-100)	Scope (Objects	FCC-1	00			Freate Duplicate			
ndependent V	ariables -											
Tag	Proxy	Custom Description		Units	84	se Cun	rent Pert	Lower 8nd	Upper Bnd	Hysys Descr	iption	Add
INDVAR100		Feed-1 of Reactor Se	ection		0	.9164	0.9164 9.164e-00	<empty></empty>		Feed Specific		-
INDVAR101		Feed-1 of Reactor Se			%	1.77	1.77 0.18	<empty></empty>	<empty></empty>	Feed Conradion Car	rbon Reside	Insert
INDVAR102		Feed-1 of Reactor Se	ection		*	0.78	0.78 0.08	<empty></empty>	<empty></empty>	Feed Sulfur C	ontent (Fe	Edit
												Delete
												Defease
												Refresh
•												Refresh
	ablas											Refresh
Dependent Var	ables		<i>i</i> 1.5.								•	
Dependent Var Tag		Custom Description	Units		Base	Current	Lower Bnd	Upper 8nd	Hysys Der		•	Refresh
Dependent Var Tag DEPVAR101		Fuel Gas-Weight % of FCC-100	Units	*	3.75	Current 3.75	cempty>	<empty></empty>	Vield, Std Cut Gro	aped (Fuel Gas-W	•	
Dependent Var Tag DEPVAR101 DEPVAR102		Fuel Gas-Weight % of FCC-100 Propane-Weight % of FCC-100	Units	*	3.75	Current 3.75 3.42	cempty> cempty>	<empty> <empty></empty></empty>	Yield, Std Cut Gro Vield, Std Cut Gro	uped (Fuel Gas-W uped (Propane-W	•	Add
Dependent Var Tag DEPVAR101	Pr	Fuel Gas-Weight % of FCC-100 Propane-Weight % of FCC-100 opylene-Weight % of FCC-100	Units	-	3.75	Current 3.75	cempty> cempty> cempty>	cempty> cempty> cempty>	Vield, Std Cut Gro Vield, Std Cut Gro Vield, Std Cut Gro	aped (Fuel Gas-W aped (Propane-W aped (Propylene-)		Add
Dependent Var Tag DEPVAR101 DEPVAR102 DEPVAR103	Pr	Fuel Gas-Weight % of FCC-100 Propane-Weight % of FCC-100 opylene-Weight % of FCC-100 iButane-Weight % of FCC-100	Units	*	3.75 3.42 9.34	Current 3.75 3.42 9.34	cempty> cempty>	<empty> <empty> <empty> <empty></empty></empty></empty></empty>	Yield, Std Cut Gro Vield, Std Cut Gro	uped (Fuel Gas-W uped (Propane-W uped (Propylene-) uped (iButane-We	*	Add Insert Edit
Dependent Var Tag DEPVAR101 DEPVAR102 DEPVAR103 DEPVAR104	Pr	Fuel Gas-Weight % of FCC-100 Propane-Weight % of FCC-100 opylene-Weight % of FCC-100	Units	* * *	3.75 3.42 9.34 4.45	Current 3.75 3.42 9.34 4.45	cempty> cempty> cempty> cempty>	<empty> <empty> <empty> <empty> <empty></empty></empty></empty></empty></empty>	Vield, Std Cut Gro Vield, Std Cut Gro Vield, Std Cut Gro Vield, Std Cut Gro	aped (Fuel Gas-W aped (Propane-W aped (Propylene-) aped (iButane-We aped (nButane-W		Add
Tag DEPVAR101 DEPVAR102 DEPVAR103 DEPVAR104 EC4 NC4P	Pr	Fuel Gas-Weight % of FCC-100 Propane-Weight % of FCC-100 opylene-Weight % of FCC-100 iButane-Weight % of FCC-100 iButane-Weight % of FCC-100	Units	* * * *	3.75 3.42 9.34 4.45 1.15	Current 3.75 3.42 9.34 4.45 1.15	cempty> cempty> cempty> cempty> cempty>	<empty> <empty> <empty> <empty> <empty> <empty></empty></empty></empty></empty></empty></empty>	Yield, Std Cut Gro Yield, Std Cut Gro Yield, Std Cut Gro Yield, Std Cut Gro Yield, Std Cut Gro	aped (Fuel Gas-W aped (Propane-W aped (Propylene-1 aped (iButane-We aped (nButane-W aped (Butane-W	*	Add Insert Edit Delete
Tag DEPVAR101 DEPVAR102 DEPVAR103 DEPVAR104 EC4 NC4P	Pr	Fuel Gas-Weight % of FCC-100 Propane-Weight % of FCC-100 opylene-Weight % of FCC-100 iButane-Weight % of FCC-100 Butane-Weight % of FCC-100 Butenes-Weight % of FCC-100	Units	* * * * *	3.75 3.42 9.34 4.45 1.15 5.78	Current 3.75 3.42 9.34 4.45 1.15 5.78	cempty> cempty> cempty> cempty> cempty> cempty>	cemptys cemptys cemptys cemptys cemptys cemptys cemptys	Vield, Std Cut Gro Vield, Std Cut Gro	aped (Fuel Gas-W aped (Propane-W aped (Propylene-\ aped (iButane-W aped (nButane-W aped (Butenes-W) aped (Naphtha C1	*	Add Insert Edit Delete
DEPVAR101 DEPVAR102 DEPVAR103 DEPVAR104 IC4 NC4P NAPHTHA LC0	Pr Naphtha LCO 4	Fuel Gas-Weight % of FCC-100 Propane-Weight % of FCC-100 opylene-Weight % of FCC-100 iButane-Weight % of FCC-100 Butane-Weight % of FCC-100 Butenes-Weight % of FCC-100 a C5-430F-Weight % of FCC-10	Units	*****	3.75 3.42 9.34 4.45 1.15 5.78 43.27	Current 3.75 3.42 9.34 4.45 1.15 5.78 43.27	cempty> cempty> cempty> cempty> cempty> cempty> cempty>	cemptys cemptys cemptys cemptys cemptys cemptys cemptys	Vield, Std Cut Gro Vield, Std Cut Gro	aped (Fuel Gas-W aped (Propane-W aped (Propylene-) aped (Butane-W aped (Butane-W aped (Butane-W aped (Naphtha C5 aped (LCO 430-65	*	Add Insert Edit

Figure 4.138 Renaming variables in delta-base utility.

	TEXT	BAS	IndVar100	IndVar101	IndVar102	***
•	Units			%	%	
•	Base Perturbation		0.09164	0.177	0.078	
*						
DepVar10	H2S-Weight % of FCC-100 %	-0.47791	0.03745	0.00437	-0.61727	
SOURGAS	Fuel Gas-Weight % of FCC-100 %	-3.74881	0.14215	0.03874	0.043	
DRYGAS	Propane-Weight % of FCC-100 %	-3.42432	0.36591	0.03512	0.03782	
C3	Propylene-Weight % of FCC-100 %	-9.339	0.48788	0.08365	0.08858	
C3P	iButane-Weight % of FCC-100 %	-4.45333	0.49363	0.03905	0.04189	
IC4	nButane-Weight % of FCC-100 %	-1.14871	0.13053	0.00919	0.00984	
NC4P	Butenes-Weight % of FCC-100 %	-5.78458	0.21641	0.04883	0.05136	
NAPHTHA	Naphtha C5-430F-Weight % of FCC-100 %	-43.2683	3.271	0.28077	0.29333	
LCO	LCO 430-650F-Weight % of FCC-100 %	-11.2755	-6.76671	-0.04028	0.01715	
STM	Bottoms 650F+-Weight % of FCC-100 %	-7.68896	-4.89723	-0.01006	0.00309	
COKE	Coke Yield-Weight % of FCC-100 %	-9.39057	6.51897	-0.48937	0.0312	
•						
	Feed-1 of Reactor Section	0.9164	1			
	Feed-1 of Reactor Section	1.77		1		
	Feed-1 of Reactor Section	0.7761			1	
•						

Figure 4.139 Renamed variables and tags in PIMS interface.

4.18 Conclusions

In this work, we have developed a model for a FCC unit that includes a significant implementation of the associated gas plant using Aspen HYSYS. The key highlights of this work are as follows:

- 1) Brief summary of existing literature for modeling a typical FCC unit.
- 2) Description of the Aspen HYSYS FCC model and 21-lump kinetics.
- 3) Technique to fill out partial distillation curves using statistical functions.
- 4) Regression of parameters for a new PNA correlation for petroleum fractions.
- 5) Technique to infer molecular composition of FCC feedstock from routine analysis.

- 6) Strategy to develop reasonable process models using industrial plant data.
- 7) Application of the model to a large-scale refinery process showing less than 2.0% AAD for key product yields and satisfactory predictions of product composition and product quality (composition/distillation data, density, and flash point).
- 8) Case studies that use the model to investigate industrially useful changes in operation.
- 9) Strategy to transfer results from this model into LP-based refinery planning tool.

Earlier work in this area has focused mostly on isolated parts (kinetic model, riser/regenerator, and gas plant) of the FCC process. In this work, we show how to use routinely collected plant data with well-known commercial software tools to present an integrated process model that includes both reaction and fractionation systems. An integrated model allows users to identify opportunities to improve yield, to increase profitability, and to monitor the unit for predictable operation. This approach is critical for modern refineries that have increasingly complex process flows and require engineers to examine the performance of refinery units holistically.

Nomenclature

VGO	Vacuum gas oil
CGO	Coker gas oil
LCO	Light cycle oil
HCO	Heavy cycle oil
TBP	True boiling point
C1	Methane
C2	Ethane
C3	Propane and propylene
C4	Butanes and butenes
C5	Pentanes and pentenes
PNA	Paraffin, naphthene, and aromatics
arphi	Slip factor, unitless
ε	Voidage factor, unitless
D	Riser diameter, m
G	Acceleration due to gravity, $m/s^2 = 9.81 m/s^2$
<i>u</i> _o	Superficial gas velocity, m/s
u_{t}	Terminal catalyst particle settling velocity, m/s
Fr	Froude number, unitless
Fr _t	Particle Froude number, unitless
$\phi_{ ext{COKE}}$	Total coke deactivation function, unitless
$\phi_{ ext{kcoke}}$	Deactivation function due to kinetic coke, unitless
$\phi_{ ext{MCOKE}}$	Deactivation function due to metal coke, unitless
C_{KCOKE}	Kinetic coke on catalyst, kg kinetic coke/kg catalyst
C_{MCOKE}	Metal coke on catalyst, kg metal coke/kg catalyst

C_{METALS} a_{KCOKE} a_{MCOKE} E x_{n} y_{n} X	Metal composition on catalyst ppm metals/kg catalyst Activity factor due to kinetic coke, unitless Activity factor due to metal coke, unitless Murphree stage efficiency factor Mole fraction of liquid leaving stage <i>n</i> Mole fraction of vapor leaving stage <i>n</i> Normalized liquid recovery, unitless
	Normalized experimental liquid recovery, unitless
x _{exp} RSS	Sum of least squares
AAD	Average absolute deviation
Α, Β, α, β	Fitting parameters for cumulative beta distribution
θ	Normalized temperature
T_0	Lower reference temperature, °C
T_1	Upper reference temperature, °C
$\% X_{\rm P}$	Mole composition of paraffins, unitless
$%X_{\rm N}$	Mole composition of naphthenes, unitless
$%X_{\rm A}$	Mole composition of aromatics, unitless
$R_{\rm i}$	Refractive index, unitless
VGC	Viscosity gravity constant, unitless
VGF	Viscosity gravity factor, unitless
a, b, c, d	Fitting parameters for PNA correlation
SG, SPG	Specific gravity
$K_{ m W}$	Watson <i>K</i> factor, unitless
MeABP	Mean average boiling point temperature, R
RON	Research octane number
MON	Motor octane number
CCR, CON	Conradson carbon residue, wt%
Yield _i	Yield coefficients for LP model, unitless
SUL	Sulfur content, wt%

Bibliography

- 1 Sadeghbeigi, R. (2000) Fluid Catalytic Cracking Handbook. Design, Operation and Troubleshooting of FCC Facilities, Gulf Publishing Company, Houston, TX.
- 2 Arbel, A., Huang, Z., Rinard, I.H., Shinnar, R., and Sapre, A.V. (1995) Industrial and Engineering Chemistry Research, 34, 1228–1243.
- **3** McFarlane, R.C., Reineman, R.C., Bartee, J.F., and Georgakis, C. (1993) *Computers and Chemical Engineering*, **3**, 275–300.
- 4 Chitnis, U.K. and Corripio, A.B. (1998) ISA Transactions, 37, 215-226.
- 5 Khandalekar, P.D. and Riggs, J.B. (1995) *Computers and Chemical Engineering*, **19**, 1153–1168.
- 6 Hsu, C.S. and Robinson, P.R. (2006) *Practical Advances in Petroleum Processing. Volume 1 & 2*, Springer, New York.
- 7 Gary, J.H. and Handwerk, G.E. (2001) *Petroleum Refining Technology and Economics*, 4th edn, Marcel-Dekker, New York.

- 8 Raseev, S.D. (2003) *Thermal and Catalytic Processing in Petroleum Refining*, CRC Press, Boca Raton, FL.
- 9 Takatsuka, T., Sato, S., Morimoto, Y., and Hashimoto, H. (1987) *International Chemical Engineering*, 27, 107–116.
- 10 Lee, E. and Groves, F.R. Jr. (1985) Transactions of the Society for Computer Simulation International, 2, 219–236.
- 11 Blanding, F.H. (1953) Industrial and Engineering Chemistry, 45, 1193-1197.
- 12 Gupta, R.K., Kumar, V., and Srivastava, V.K. (2007) Chemical Engineering Science, 62, 4510–4528.
- 13 Jacob, S.M., Gross, B., Voltz, S.E., and Weekman, V.W. (1976) AIChE Journal, 22, 701–713.
- 14 Oliviera, L.L. and Biscasia, E.C. Jr. (1989) Industrial and Engineering Chemistry Research, 28, 264–271.
- 15 Pitault, I., Nevicato, D., Forissier, M., and Bernard, J.R. (1994) Chemical Engineering Science, 49, 4249–4262.
- 16 Van Landeghem, F., Nevicato, D., Pitault, I., Forissier, M., Turlier, P., Derouin, C., and Bernard, J.R. (1996) *Applied Catalysis A*, 138, 381–405.
- 17 Aspen RefSYS Option Guide (2006) AspenTech, Cambridge, MA.
- 18 Aspen Plus FCC User's Guide (2006) AspenTech, Cambridge, MA.
- 19 Froment, G.F. (2005) Catalysis Reviews Science and Engineering, 47, 83.
- 20 Quann, R.J. and Jaffe, S.B. (1992) Industrial and Engineering Chemistry Research, 31, 2483.
- 21 Quann, R.J. and Jaffe, S.B. (1996) Chemical Engineering Science, 51, 1615.
- 22 Quann, R. (1998) Environmental Health Perspectives Supplements, 106, 1501.
- 23 Christensen, G., Apelian, M.R., Hickey, K.J., and Jaffe, S.B. (1999) Chemical Engineering Science, 54, 2753–2764.
- 24 Klein, M.T. (2006) *Molecular Modeling in Heavy Hydrocarbon Conversions*, CRC Press, Boca Raton, FL.
- 25 Kumar, S., Chadha, A., Gupta, R., and Sharma, R. (1995) Industrial and Engineering Chemistry Research, 34, 3737–3748.
- 26 Ellis, R.C., Li, X., and Riggs, J.B. (1998) AIChE Journal, 44, 2068-2079.
- 27 Secchi, A.R., Santos, M.G., Neumann, G.A., and Trierwiler, J.O. (2001) Computers and Chemical Engineering, 25, 851–858.
- **28** Mo, W., Hadjigeorge, G., Khouw, F.H.H., van der Werf, R.P., and Muller, F. (October 2002) *Hydrocarbon Asia*, 30–42.
- 29 Elnashaie, S.S.E.H., Mohamed, N.F., and Kamal, M. (2004) Chemical Engineering Communications, 191, 813–831.
- **30** Rao, R.M., Rengaswamy, R., Suresh, A.K., and Balaraman, K.S. (2004) *Trans IChemE: Part A*, **82**, 527–552.
- **31** Araujo-Monroy, C. and Lopez-Isunza, F. (2006) *Industrial and Engineering Chemistry Research*, **45**, 120–128.
- 32 Bollas, G.M., Vasalos, I.A., Lappas, A.A., Iatridis, D.K., Voutetakis, S.S., and Papadopoulou, S.A. (2007) *Chemical Engineering Science*, **62**, 1887–1904.
- 33 Fernandes, J.L., Pinheiro, C.I.C., Oliveira, N.M.C., Inverno, J., and Ribeiro, F.R. (2008) *Industrial & Engineering Chemistry Research*, 47, 850–866.
- 34 Shaikh, A.A., Al-Mutairi, E.M., and Ino, T. (2008) *Industrial & Engineering Chemistry Research*, 47, 9018–9024.

- 35 Fernandes, J.L., Pinheiro, C.I.C., Oliveira, N.M.C., Neto, A.I., and F. Ramôa, R. (2007) Chemical Engineering Science, 62, 6308–6322.
- 36 Chang, S.L. and Zhou, C.Q. (2003) Computational Mechanics, 31, 519-532.
- 37 Arandes, J.M., Azkoti, M.J., Bilbao, J., and de Lasa, H.I. (2000) The Canadian Journal of Chemical Engineering, 78, 111–123.
- 38 Han, I.S., Riggs, J.B., and Chung, C.B. (2004) *Chemical Engineering and Processing*, 43, 1063–1084.
- 39 Paraskos, J.A., Shah, Y.T., McKinney, J.D., and Carr, N.L. (1976) Industrial and Engineering Chemistry Process Design and Development, 15, 165–169.
- 40 Shah, Y.T., Huling, G.P., Paraskos, J.A., and McKinney, J.D. (1977) *Industrial* and Engineering Chemistry Process Design and Development, 16, 89–94.
- 41 Arandes, J.M., Abajo, I., Fernandez, I., Lopez, D., and Bilbao, J. (1999) Industrial and Engineering Chemistry Research, 38, 3255-3260.
- 42 De Lasa, H.I. and Grace, J.R. (1979) *The Canadian Journal of Chemical Engineering*, 25, 984–990.
- 43 Rice, N.M. and Wojciechowski, B.W. (1991) The Canadian Journal of Chemical Engineering, 69, 1100–1105.
- 44 Harriot, P. (2003) Chemical Reactor Design, Marcel Dekker, New York, NY.
- 45 Malay, P., Milne, B.J., and Rohani, S. (1999) *The Canadian Journal of Chemical Engineering*, 77, 169–179.
- 46 Corella, J. and Frances, E. (1991) Fluid Catalytic Cracking-II. Concepts in Catalyst Design, ACS Symposium Series, vol. 452, American Chemical Society, Washington, DC, pp. 165–182.
- 47 Bolkan-Kenny, Y.G., Pugsley, T.S., and Berutti, F. (1994) *Industrial and Engineering Chemistry Research*, 33, 3043–3052.
- **48** Han, I.S. and Chung, C.B. (2001) *Chemical Engineering Science*, **56**, 1951–1971.
- 49 Froment, G.F., Bischoff, K.B., and Wilde, J.D. (2010) Chemical Reaction Analysis and Design, 3rd edn, Wiley.
- 50 Kister, H.Z. (1992) Distillation Design, McGraw-Hill, Inc., New York, NY.
- 51 Kaes, G.L. (2000) Refinery Process Modeling A Practical Guide to Steady State Modeling of Petroleum Processes, The Athens Printing Company, Athens, GA.
- 52 Bollas, G.M., Vasalos, I.A., Lappas, A.A., Iatridis, D.K., and Tsioni, G.K. (2004) *Industrial and Engineering Chemistry Research*, 43, 370–3281.
- 53 Sanchez, S., Ancheyta, J., and McCaffrey, W.C. (2007) *Energy & Fuels*, 21, 2955–2963.
- 54 Daubert, T.E. and Danner, R.P. (1997) API Technical Data Book Petroleum Refining, 6th edn, American Petroleum Institute, Washington DC.
- **55** Riazi, M.R. (2005) *Characterization and Properties of Petroleum Fractions*, 1st edn, American Society for Testing and Materials, West Conshohocken, PA.
- 56 Goosens, A.G. (1997) Industrial and Engineering Chemistry Research, 36, 2500.
- 57 Bazaraa, M.S., Jarvis, J.J., and Sherali, H.D. (2009) *Linear Programming and Network Flows*, John Wiley and Sons, Hoboken, NJ.
- 58 Xu, C., Gao, J., Zhao, S., and Lin, S. (2005) Fuel, 84, 669-674.
- 59 Ancheyta-Juarez, J. and Murillo-Hernandez, J.A. (2000) *Energy & Fuels*, 14, 373–379.

- 302 4 Predictive Modeling of the Fluid Catalytic Cracking (FCC) Process
 - 60 Li, W., Chi-Wai, H., and An-Xue, L. (2005) Computers and Chemical Engineering, 29, 2010–2028.
 - **61** Davision, G. (1993) *Guide to Fluid Catalytic Cracking*, W.R. Grace & Co., Columbia, MD, pp. 65–66.
 - 62 Saleh, K., Ibrahim, H., Jayyousi, M. and Diabat, A. (2013) A Novel Optimization Formulation of Fluid Catalytic Cracking Unit. *5th International Conference on Industrial Engineering and Systems Management (IESM)*, Rabat, Morocco, October.
 - 63 Gao, H., Wang, G., Li, R., Xu, C., and Gao, J. (2012) *Energy and Fuels*, 26, 1880–1891.
 - 64 Xu, J., Chen, Z., Fan, Y., Shi, G., and Bao, X. (2015) *Fuel Processing Technology*, 130, 117–126.
 - 65 Zhang, J., Chang, J., Chen, H., Yang, Y., Meng, F., and Wang, L. (2012) Chemical Engineering Science, 78, 128–143.
 - **66** Pashikanti, K. and Liu, Y.A. (2011) Predictive modeling of large-scale integrated refinery reaction and fractionation systems from plant data: 2. Fluid catalytic cracking (FCC) process. *Energy and Fuels*, **25**, 5298–5319.
 - **67** Lancu, M. and Agachi, P.S. (2010) Optimal process control and operation of an industrial heat integrated fluid catalytic cracking plant using model predictive control (MPC). *Computer Aided Chemical Engineering*, **28**, 505–510.
 - 68 Lancu, M., Criestea, M.V., and Agachi, P.S. (2013) Retrofit design of heat exchanger network of a fluid catalytic cracking plant and control based on MPC. *Computers and Chemical Engineering*, 49, 205–216.
 - **69** Radu, S.; Ciuparu, D., Modeling and simulation of an industrial fluid catalytic cracking unit, *Revista de Chimie*, 2014, **65**, 113–119. http://www .revistadechimie.ro/pdf/RADU%20S.pdf%201%2014.pdf.
 - 70 Kumar, S., Lange, J.-P., and Rossum, G.V. (2015) Liquefaction of lignocellulose in fluid catalytic cracker feed: A process concept study. *ChemSusChem*, 8, 4086–4094.
 - 71 Khandeparker, A. (2012) Study of Different Operating Parameters of FCC Unit with Aspen-HYSYS, National Institute of Technology, Rourkela, http:// ethesis.nitrkl.ac.in/3436/.
 - 72 Yusuf, R.O., El-Nafaty, V.A., and Jibril, M. (2012) Effects of operating variables on fluid catalytic cracking unit (FCCU) using HYSYS. *International Journal of Computer Applications*, 3 (2), 1–9.
 - 73 Azubuike, L. C.; Okonkwo, E.; Egbujuo, W.; Chilke-Onyegbula, C. Optimization of propylene production process from fluid catalytic cracking unit, European Journal of Advances in Engineering and Technology, 2016, 3, No. 9, 81–87. http://www.ejaet.com/PDF/3-9/EJAET-3-9-81-87.pdf.
 - 74 Rajeev, N., Prasad, R.K., and Ragula, U.B.R. (2015) Process simulation and modeling of fluidized catalytic cracker performance in crude refinery. *Petroleum Science and Technology*, 33, 110–117.
 - 75 Takeda, K. (2011) Refinery Margin Improvement, Taiyo Oil Company Ltd., AspenTech Global Conference: OPTIMIZE 2011, Washington, DC, May 2011.

This chapter presents the methodology for developing a predictive model for the rating and optimization of an integrated catalytic reforming process with a continuous catalyst regeneration (CCR) using Aspen HYSYS Petroleum Refining. The model relies on routinely monitored data such as ASTM distillation curves, paraffin–naphthene–aromatic (PNA) analysis, and operating conditions. We use a lumped kinetic network with 64 species over a broad C1–C14 range. This network can represent the key dehydrogenation, dehydrocyclization, isomerization, and hydrocracking reactions that typically occur with petroleum feedstock. The lumped kinetic scheme allows us to make accurate predictions of benzene, toluene, ethylbenzene, and xylenes (BTEX). Also, this work accounts for the coke deposited on the catalyst and the associated catalyst regeneration. We implement the hydrogen recycle and product recontacting sections as separate unit operations connected to the CCR reformer model. Also, we include rigorous tray-by-tray simulation models for primary product recovery.

We validate this model using 6 months of plant data from a commercial CCR reforming process handling a feed capacity of 1.4 million tons per year in the Asia Pacific. The validated model predicts key process yields and aromatic yields to within an average absolute deviation (AAD) of 1%. In addition, the model predicts liquid petroleum gas (LPG) composition to within 2.0% AAD. We also present several industrially useful case studies that display common interactions among process variables such as feed composition, reaction temperature, space velocity, and hydrogen-to-hydrocarbon ratio (H₂HC). These case studies accurately quantify the effects of key process variables on process performance and demonstrate the model applications for improving energy efficiency and for optimizing the reformer performance for chemical feedstock production.

This chapter differentiates itself from the reported studies in the literature through the following contributions: (1) detailed kinetic model that accounts for coke generation and catalyst deactivation; (2) complete implementation of a recontactor and primary product fractionation; (3) feed lumping from limited feed information; (4) detailed procedure for kinetic model calibration; (5) industrially relevant case studies that highlight the effects of changes in key process variables; and (6) application of the model to refinery-wide production planning.

The contents of this chapter are as follows. Section 5.2 gives the motivation for our model development and applications. Section 5.3 describes a typical

catalytic reforming unit with CCR. Section 5.4 discusses the chemistry of the catalytic reforming process. Section 5.4.1 presents a literature review relevant to the predictive modeling of catalytic reforming processes, covering lumped kinetic models and unit-level models. Section 5.5 describes the features of the Aspen HYSYS Petroleum Refining CatReform model. Section 5.6 discusses the thermophysical properties required for our model development and the suggested methods for estimating them. Section 5.7 discusses the modeling of the downstream fractionation units. Section 5.8 presents the important aspects of feed characterization for model development. Section 5.9 outlines the overall strategy for the model implementation, covering data consistency, feed characterization, and model calibration with plant data. Section 5.10 describes the overall modeling strategy and Section 5.11 compares the model predictions with plant data. Section 5.12 presents case studies on the effects of reactor temperature, feed rate, and feed quality on process yields; on the optimization of process operations for chemical feedstock production; and on energy utilization and process performance. Section 5.13 demonstrates the model applications to refinery production planning. Sections 5.14-5.17 present four hands-on workshops of development and validation of catalytic reforming reaction and fractionation systems from plant data, together with model applications to process optimization and production planning. Section 5.18 gives the conclusion, followed by nomenclature and bibliography.

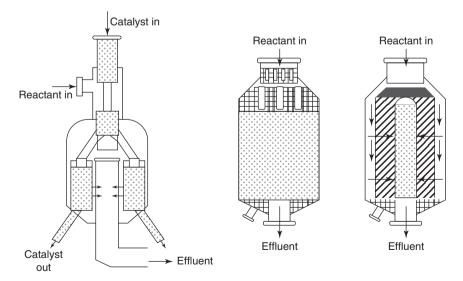
5.1 Introduction

Catalytic reforming has long been a significant source of high-octane gasoline and aromatic feedstocks for chemical processes. Recently, there has been renewed interest in processing nonconventional feedstock, synthetic crude, bio-oil, and so on. Even with those technologies, which generally produce mostly paraffin-like feedstocks, the refinery needs reforming to convert these paraffins into high-octane components. With all these factors in play, it becomes critical to quantitatively understand the reforming process on an industrial scale. This understanding must not be limited to the catalyst behavior itself but also include the associated reforming technology and fractionation equipment.

It is in this context that we present the current work regarding the integrated modeling of the CCR process. There is significant previous work in the area, particularly those by Ancheyta-Juarez *et al.* [1–3] and Taskar *et al.* [4, 5]. Although previous authors have provided significant details on reaction kinetics, there is not much information concerning the associated fractionation system and industrially useful case studies using a rigorous kinetic model. This work fills the gap between the development of a rigorous kinetic model and industrial application in a large-scale refinery.

5.2 Process Overview

The catalytic reforming unit exists primarily to upgrade the octane for gasolineproducing refineries or a rich source of aromatics for petrochemical complexes. The modern catalytic reforming process was first introduced by UOP in 1940 [6]. Since then, there have been many different types of reforming processes developed. In general, current processes are of three distinct types.


- 1) Semiregenerative
- 2) Cyclic
- 3) Moving bed or CCR.

Semiregenerative processes generally involve a single reactor that processes feed. As the reactor processes feed, the catalyst begins to lose activity. At some point, typically around the middle of the catalyst life cycle, the reactor is taken offline and the catalyst is regenerated. The advantages of this process are low capital investment and simple process configuration. However, depending on the type of the feed that the refiner processes, the regeneration cycle may be too long to maintain desired levels of production.

Cyclic processes involve a series of beds that operate on a rotating basis. There is a set of five to six reactors; however, only three to four may be active at any given time. When the catalyst activity for a given reactor falls below a certain value, that reactor is taken offline and the feed flow is shunted to a reactor with recently regenerated catalyst [6].

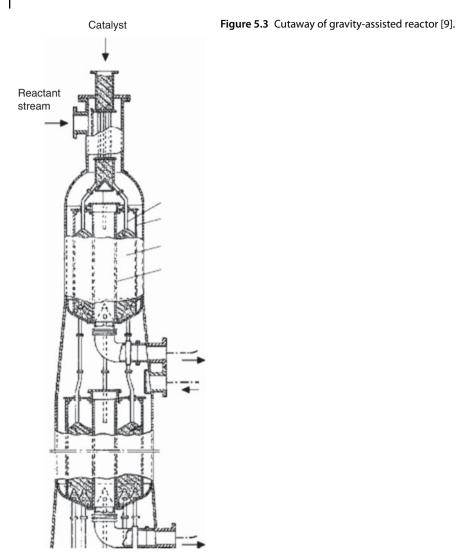
Moving bed or CCR involves the continuous regeneration of the catalyst. This is possible through the construction of a special reactor that allows the continuous withdrawal of catalyst while the reactor is on-stream. The withdrawn catalyst enters a regeneration section [6]. Figure 5.1 shows representative reactors from each of these processes.

The UOP CCR process is by far the most popular reforming process. Over 50% of current reforming capacity originates from this process. This process relies on

Figure 5.1 Different types of reactors used in reforming processes. (a) Continuous catalyst regeneration (CCR) reactor. (b) Fixed-bed axial flow reactor. (c) Fixed-bed radial flow reactor. (Adapted from Ref. [6].)

the continuous regeneration of the catalyst. This type of unit is the focus of our work and we document the process flow in the following section.

Figure 5.2 shows the process flow diagram of a commercial CCR reforming process in the Asia Pacific. This unit typically converts 1.4 million tons per year (28,100 BPD) of straight-run naphtha into high-octane gasoline and aromatic feedstocks for use in subsequent chemical processes. The CCR unit is organized as a series of reaction sections, each having a different loading (weight) of catalyst. Typically, the first unit has the least amount of catalyst and the last unit has the most. This distribution of catalyst loadings is common to all reformers and reflects the fact that during the initial stages of the reaction, highly endothermic reactions dominate the process. This effect slows down the reaction rate; therefore, the interstage heaters reheat the reactor effluent from each section.


Reactor effluent heats the heavy naphtha (from Unit #200 in Figure 5.2) entering the process through a cross exchanger. The hot feed enters the first interstage heater where the temperature rises to the reaction temperature. The feed contacts the moving bed of the catalyst. The components in the feed undergo several reactions, such as dehydrogenation, dehydrocyclization, isomerization, and hydrocracking. However, for a typical feed, the endothermic reactions (namely, dehydrogenation) dominate and the temperature drops significantly as the reactants flow radially through the catalyst bed. The effluent leaves this reactor bed and enters the second interstage heater. A key process variable is the temperature of the feed entering each reaction section. Heaters typically operate to return the reactor effluent at a fixed temperature. The effluent from the first reactor enters the second interstage heater and leaves again at a set reaction temperature. This follows because most of the desirable reactions in reforming are endothermic. This process of heating and reaction continues until the effluent leaves the last reactor and heats up the feed into the reforming reactors. The effluent then enters the recontacting and hydrogen separation section of the process.

At the same time, small amounts of catalyst typically flow through the basket and enter the next reactive section. This is possible because of the special gravity-assisted reactant flow shown in Figure 5.3. The CCR process is unique in which only relatively small amounts of catalyst leave the system for regeneration. As the unit continuously regenerates the catalyst, the unit is designed to operate at much lower pressure than other reforming processes. Low-pressure operation not only encourages high severity but also increases the coke generation rate.

We show the process flow of a typical regeneration cycle in Figure 5.4. The spent catalyst leaves the last reactor and enters the regeneration unit. Several activities occur as the catalyst travels down the regeneration tower. Little [6] indicated five operations that must take place during the catalyst regeneration process: burn the coke, oxidize the active metal promoters on the catalyst, adjust the chloride balance, dry the catalyst to remove unwanted moisture, and finally reduce the metal promoters [7]. These processes occur in a stepwise, semiregenerative manner and can operate independently of the reforming process. In addition, the regeneration process operates at a much different timescale. It typically takes 5–7 days for the spent catalyst to return back to the reforming reactors [7, 8]. This is in stark contrast with the fluid catalytic cracking (FCC) process, where the reaction unit and regeneration unit are highly coupled. A key modeling implication of this

Figure 5.2 Process flow diagram for CCR reforming process.

regeneration time scale and process flow is that we do not need a rigorous model of the regeneration cycle to simulate the reforming process effectively.

The cooled reactor effluent enters a series of separators (shown in Figure 5.2 as FA302 through FA304) that operate at increasing pressure. This process accounts for the fact that the CCR generally operates a much lower pressures than other reforming units. The objective is to improve the recovery of light LPG components (C3–C4) and some C5 components. The liquid product from each of the separators is subsequently cooled in several cross exchangers to recover significant amounts of heat and to condense additional light components in the liquid product. The combined liquid product enters a final separator where significant pressure change occurs and a H2-rich (94–95 mol%) stream leaves as the vapor. This H2-rich stream can typically supply hydrotreating and

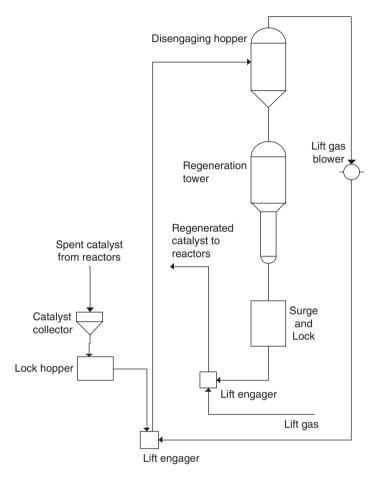


Figure 5.4 Schematic of catalyst regeneration process [6].

hydrocracking process in the refinery. The liquid product combined with other products (containing a significant quantity of aromatics) enters the fractionation section of the process.

Depending on the end use of the reforming product (often called *the reformate*), there are two possible paths for production fractionation. If the purpose of the unit is *gasoline production*, the reformate enters a stabilization fractionator. This fractionator typically only separates the LPG-like portion of the reformate as the overhead product and the bottom product leaves as high-octane gasoline destined for the refinery blending pool. However, if the purpose of the unit is *aromatics production* to support a petrochemical complex, the stabilizer operates differently as a depentanizer (shown as DA-301 in Figure 5.2). The depentanizer separates all the C5 and lighter components as the overhead product. The bottom product largely contains all the aromatics, remaining paraffin, and naphthenic content greater than C6, and it then enters the BTX (benzene-toluene-xylene) separation plant, which may be located in a different area of the refinery altogether.

The separation of product aromatics into discrete aromatic species depends on the refinery configuration. This process can be quite large and complex, especially in the case of petrochemical refineries where aromatics can be recovered from many sources. Typically, a special solvent (e.g., sulfolane or polyglycols) separates out the benzene and toluene components from the feed to BTX separation plant. The separation of xylenes requires additional processing.

Fractionation towers can separate *ortho*-xylene and ethylbenzene isomers. However, the *meta*-xylene and *para*-xylene isomers typically require a crystallization or adsorption on molecular sieves (e.g., IFP process and UOP Parex process) [8]. Due to the complexity of the BTX separation plant, we do not include BTX fractionation in this work. However, our recent textbook covers the design, simulation and optimization of simulated moving beds for xylene purification in the UOP Parex process [56].

The feed to the reforming unit is an important process consideration. The feedstock to a reformer is typically a straight-run naphtha cut or hydrotreated gasoline cut from an FCC unit. In general, a feed that has an end boiling point (EBP) of 205–210 °C is not included. This feed encourages hydrocrack-ing reactions and excessive coke generation. The feed is usually hydrotreated because sulfur, nitrogen, and other trace components can deactivate the catalyst significantly. In fact, many processes may also include several "guard reactors" to prevent sulfur entering the reforming unit. Table 5.1 shows a typical distillation curve and basic compositional analysis of reformer feedstock.

Refiners often consider the total naphthene (N) and aromatics (A) content of the feed as an indicator of how high an octane rating a feedstock can produce. This is referred to as N + A or N + 2A indicator for the feed. Many correlations for reformer yield exist based on these indicators. However, Little [6] indicated that these correlations often have strong built-in assumptions such as catalyst type and operating conditions. Although it may serve for simple feedstock selection, it is not the only significant indicator of unit performance.

The catalyst in the unit is the most important consideration for optimal operation. Little [6] identified three key characteristics of reforming catalysts, namely, *activity, selectivity,* and *stability*. The activity is a measure of how efficiently

ASTM D86 (vol%)	(°C)	Group	Paraffin (wt%)	Naphthene (wt%)	Aromatics (wt%)
IBP	76	C5	1.00	0.47	_
5%	90	C6	6.85	6.66	0.88
10%	94	C7	11.25	13.17	2.31
30%	104	C8	9.42	14.02	3.02
50%	116	C9	7.35	10.79	3.04
70%	131	C10	4.45	5.31	0.00
90%	152	Total	40.32	50.42	9.25
95%	160	Specific gravity (SG)		0.745	
EBP	170	Sulfur/	nitrogen/halide o	content (ppm)	0.5/0.5/NA

Table 5.1 Typical reforming feedstock.

the catalyst can help convert the reactants into products. In general, current reforming catalysts can operate at higher temperatures and maintain high reaction conversion when the reactant flow rate increases. The selectivity refers to the catalyst ability to produce more of the high-value products (aromatics) than low-value products. The stability refers the ability of the catalyst to maintain high activity and selectivity over long periods. The catalyst in modern reforming units is only changed once in every 1-2 years [7].

Modern reforming catalysts consist of an alumina base that supports platinum and rhenium particles to catalyze the desired reactions. Current consensus indicates that the platinum sites promote the dehydrogenation reactions; the alumina, acting as an acid site, promotes cyclization, isomerization, and hydrocyclization [7, 10–12]. These types of catalysts are known as *bimetallic* (and sometimes *bifunctional* catalysts). As the catalyst spends more time on stream, coke deposits and lack of acid sites prevent additional reaction. The rate of coke deposition is a function of olefin-like precursors that lead to the formation of a multiaromatic ring [13]. At this point, the catalyst is taken off-stream and regenerated through several processes to restore its function. The reaction chemistry that occurs on these catalysts can be quite complex, and published experimental studies often do not reflect the conditions that a catalyst operates under in an industrial process. In the following section, we briefly survey some of the key process chemistry and operating parameters.

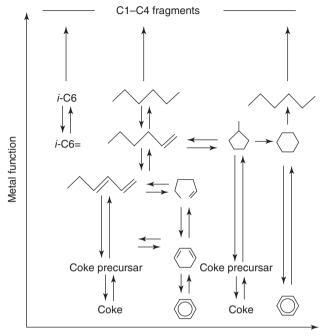

5.3 Process Chemistry

Table 5.2 lists the major reactions observed in the reforming process. This is by no means an exhaustive list. In general, the desired reactions take the following paths: (1) paraffins in the feed convert to isoparaffins or are cyclized into the naphthenes; (2) the naphthenes present convert to aromatic groups; and (3) olefins convert to paraffins through hydrogenation [14].

A detailed study of many of the reactions is out of the scope of this work. We refer readers to Froment *et al.* [10–12] for detailed experimental and mechanistic studies. These studies are very useful in the course of detailed catalyst design and kinetic network generation [15–18]. However, neither of these topics is the subject of the current work. We present these reactions in the context of an integrated process model. As mentioned earlier in this work, the typical reactions in

Table 5.2 Examples of reactions from key reaction classes.

Dehydrogenation of alkylcycloalkanes to aromatics	$\mathrm{MCH} \rightarrow \mathrm{TOL} + \mathrm{H_2}$
Dehydroisomerization of alkylcyclopentanes	$MCP \rightarrow MCH$
Dehydrocyclization of paraffins to aromatics	$NP_7 \rightarrow TOL + H_2$
Isomerization of normal paraffins to isoparaffins	$NP \rightarrow IP$
Isomerization of alkylcylcopentanes to cyclohexanes	$MCP \rightarrow MCH$
Hydrocracking reactions	$P_X \rightarrow P_Y + P_Z$
Hydrogenolysis	$\mathrm{P_7}+6\mathrm{H_2} \rightarrow 7\mathrm{P_1}$

Acid function

Figure 5.5 Relationship between catalyst features and reaction classes [13, 14].

the reforming process are dehydrogenation, dehydrocyclization, isomerization, and hydrocracking. Table 5.2 shows examples of these reaction classes.

Figure 5.5 shows the relationship between the acid and metal functions of the catalyst and particular classes of reactions. The acidic function of the catalyst promotes the isomerization reactions, namely, reactions that convert paraffins into naphthenes and isoparaffins. Isoparaffins are important contributors to high-octane number. The metal function promotes the dehydrogenation reactions, where the naphthenes are dehydrogenated into aromatics. The metal function is also a significant source of coke (or polyaromatic compound) that adsorbs to the catalyst surface. In addition, the olefins are hydrogenated producing paraffins for further reaction.

The degree to which each reaction propagates is a function of temperature and pressure. High temperature and pressure tend to promote hydrocracking and the undesirable hydrogenolysis. The effect of pressure is quite significant on hydrogenolysis and modern reformers tend to operate at much lower pressures than their predecessors. Table 5.3 summarizes the effect of key operating variables on yields. In all cases, increase in reactor temperature increases the reaction rate.

In addition to the operating variables of reactor, the feed composition also plays an important role in determining the distribution of products. Industrial experience and experimental studies of the chemistry of reforming reactions indicate several key trends [7.19].

Reaction	Rate	Heat	Pressure	Hydrogen
Dehydrogenation (naphthene)	Very fast	Endothermic	Negative	Produces
Isomerization (naphthene)	Fast	Exothermic (mild)	None	None
Isomerization (paraffin)	Fast	Exothermic (mild)	None	None
Cyclization	Slow	Exothermic (mild)	Negative	Produces
Hydrocracking	Slowest	Exothermic	Positive	Consumes
Hydrogenolysis	Slowest	Exothermic (high)	Positive	Consumes

Table 5.3 Behavior summary key reaction classes.

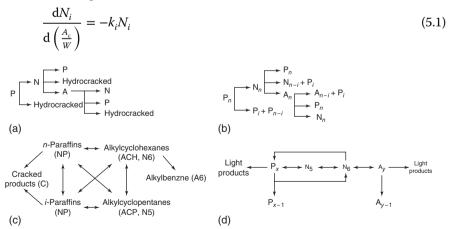
Source: Adapted from Little [6], Antos [7], and Gary [8].

- The primary source of benzene in the reactor products is methylcyclopentane (MCP).
- Dimethylcyclopentane and cycloheptane form a key pathway to produce additional toluene.
- Dimethylcyclohexane and methylcyclohexane produce additional xylene in the product.

In industrial operations, it is difficult to control many process variables to drive reactions to optimal product distributions. There are four primary control variables for reformers, namely, *reactor inlet temperatures, reactor pressures, hydrogen content*, and *feed rate*. There are other variables such as feedstock properties and catalyst type, but these variables are generally fixed for a given period of time.

Refiners generally control the inlet temperature to each reactor bed or section. The inlet temperatures are typically averaged (weighted by the ratio of the catalyst in the given bed to the total catalyst) and presented as *the weight-averaged inlet temperature (WAIT)*. The pressure in sections of the reactor is typically fixed by design and does not vary significantly during operation. This is especially the case in CCR units where the pressure balance drives the catalyst flow. Another important variable is the amount of hydrogen that is recycled back to the unit along with fresh feed. Current reformers typically operate at high conversions and a significant quantity of hydrogen is required to prevent coke formation. During normal operation, the H_2HC ratio (ratio of hydrogen to hydrocarbons) ranges from 3 to 4. The final control variable is typically the feed to the unit. High feed rates typically indicate the low contact time between the catalyst and the feed.

5.4 Literature Review


There is a significant body of literature on the topic of modeling catalytic reformers. They consist of two types of models, kinetic models and unit-level models. Kinetic analysis refers to detailed studies of the reaction mechanism and catalyst behavior. This work is necessarily experimental and based on laboratory studies of various feed compounds. Model development work uses the insights from the kinetic analysis to develop a kinetic network with associated rate constants and

reaction orders. This work typically results in rate expressions that are verified using bench-scale reactors. The unit-level models focus on models that integrate the kinetic model in the context of pilot-scale or commercial reactors. This work often includes models for multiple reactor beds and associated process equipment (interstage heaters, etc.). We provide a brief survey of the current state of knowledge in each of these areas.

5.4.1 Kinetic Models and Networks

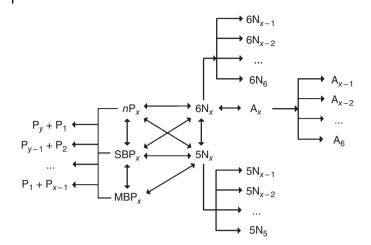
Mechanistic and experimental studies generally result in the creation of a kinetic network that quantitatively describes the path that a particular reactant takes. Given the complexity of the reforming reactions and the number of species involved, many researchers have taken a "lumped" approach toward describing the kinetics. In a lumped approach, many different molecules are placed into a single group or lump. The reaction kinetics then assumes that all species in a lump behave identically. Recently, some researchers have presented models that involve hundreds of reaction species and thousands of reactions [16, 18]. However, there is little published information about these complex kinetic models validated against industrial operation.

The earliest kinetic model for reforming is that of Smith [20], which assumes that the feed is a combination of three lumps: paraffins (P), naphthenes (N), and aromatics (A). We show a basic schematic of the network in Figure 5.6a. The kinetic network accounts for dehydrocyclization ($P \rightarrow N$), dehydrogenation ($N \rightarrow A$), and hydrocracking ($A \rightarrow P$). The hydrocracking reactions in this model result in an equilibrium distribution of paraffins. This model does not include the effect of reaction parameters such as pressure and excess hydrogen present. In addition, there is no deactivation factor due to the presence of coke or heavy adsorbed hydrocarbons. Krane *et al.* [21] further refined this model by splitting up each P, N, and A lump into groups corresponding to the number of carbons. This model has 20 lumps and 53 reactions. Equation (5.1) shows the basic form for each rate expression.

Figure 5.6 Basic lumping kinetic networks. (a) PNA-only model from Smith [20]. (b) PNA-only model from Ancheyta-Juarez *et al.* [2, 3]. (c) ACH and ACP model from Henningsen *et al.* [22]. (d) C5–C8 lumping method from Ramage *et al.* [27].

A significant oversight in Krane's model is the lack of the effect of catalyst activity and pressure. Henningsen *et al.* [22] introduced a network that considers the different rates of reactivity between C5 and C6 naphthenes and an activity factor for catalyst deactivation. Jenkins *et al.* [23] included empirical correction factors for acid and pressure in the rate expression. Ancheyta-Juarez [2, 3] also introduced a similar pressure correction term to account for pressures other than 300 psig specified in the Krane *et al.* model. Later work by Ancheyta and coworkers included additional pathways to consider MCH as a primary precursor to benzene [19] in the product pool and to deal with nonisothermal operation. Models derived from Krane *et al.* [21] and Ancheyta *et al.* [19] have been used to model a variety of reforming processes, ranging from pilot plants to commercial operations. Hu *et al.* [24] used a similar approach to generate a kinetic network. Ancheyta's modifications to Krane's original model still remain in use and work published recently shows good agreement with measured data and model predictions [19, 25, 26].

$$\frac{\mathrm{d}N_i}{\mathrm{d}\left(\frac{A_{\epsilon}}{W}\right)} = -k_i e^{(E_i/R)\left(\frac{1}{T_0} - \frac{1}{T}\right)} \left(\frac{P}{P_0}\right)^{\alpha} P_i$$
(5.2)


Krane's original model and modifications by Ancheyta do not treat kinetic network as a catalytic process occurring heterogeneously and do not consider the difference in reactivities of cyclopentanes and cyclohexanes. Figure 5.6c shows the kinetic network from Henningsen *et al.* [22] that includes separate pathways for cyclopentanes and cyclohexanes. Henningsen *et al.* apply this model in conjunction with a heat balance to account for the nonisothermal operation of the reactor. These works have generally shown excellent agreement with commercial and pilot plant data.

$$\frac{\mathrm{d}C_i}{\mathrm{d}t} = \sum k_i e^{(E_i/RT)} P_i \tag{5.3}$$

A key limitation of the models derived from Krane *et al.* and Henningsen *et al.* is that the reaction network is not treated as a catalytic process. A catalytic reaction kinetics network must include terms to allow for inhibition and decrease in activity due to variety of factors. Raseev *et al.* [14] present the earliest model treating the reaction network as a catalytic system. However, this study is limited due to the lack of experimental data. Figure 5.6d shows the kinetic network from an extensive study by Ramage *et al.* [27] where independent pathways for cyclohexanes and cyclopentanes exist in addition to adsorption and pressure effects. However, this model is limited by the lumping into only C5– and C5+. Kmak [28] presented a similar model that extends the lumping to include C7 components.

$$\frac{\mathrm{d}w_i}{\mathrm{d}\nu} = \frac{\left(\frac{PV}{FRT}\right)k_{\phi}}{1 + K_{\mathrm{H}}P_{\mathrm{H}} + (PF_{\mathrm{c}}/F)\sum K_{w_i}w_i}\sum k_i w_i$$
(5.4)

Key work by Froment and coworkers [7, 10-12] has produced a nearly complete lumping-based reaction network for C5–C9 (and C1–C5 for paraffins) components of reforming feed. This model includes several insights from experimental studies. They consider that the metal sites on the catalyst promote only

Figure 5.7 Lumped kinetic network from Froment where 5 < x < 9 [12].

the dehydrogenation reactions, whereas the acid site promotes the cyclization, isomerization, and hydrocracking reactions. We show the network in Figure 5.7.

The kinetic network in Figure 5.7 includes separate pathways for N5 and N6 components and accounts explicitly for light component production (C1–C5). This is critical to maintaining a good prediction of light gas components from industrial models. In addition, the adsorption factors include terms to account for hydrogen content, total pressure, and adsorbed hydrocarbons. Additional work by Taskar *et al.* [4, 5] modifies this network to include the effects of catalyst deactivation. Table 5.4 shows the key rate equations for each class and the deactivation factor due to Taskar *et al.*

Recent advances in computational power and theoretical insight have led to the creation of mechanistic reaction pathways that can involve thousands of reactions and hundreds of species. The approach of Froment [15–17] is called *the single-event approach*. In this approach, an algorithm generates a reaction network based on fundamental mechanisms such as hydride shifts and beta scission. The use of structural relationships such as Evans–Polanyi reduces the number of

$\phi \cdot A_0 e^{-E/RT} (P_{\rm A} - P_{\rm B}/K_{\rm AB})/\Gamma$	(5.5)
$\phi \cdot A_0 e^{-E/RT} (P_{\rm A} P_{\rm B}) / \Gamma$	(5.6)
$\phi \cdot A_0 e^{-E/RT} (P_{\rm A} - P_{\rm B} P_{\rm H} / K_{\rm AB}) / \Gamma$	(5.7)
$\phi \cdot A_0 e^{-E/RT} (P_{\rm A} - P_{\rm B}) / \Gamma$	(5.8)
$\phi \cdot A_0 e^{-E/RT} (P_{\rm A} - P_{\rm B} P_{\rm H}^3 / K_{\rm AB}) / (P_{\rm H} \theta)^2$	(5.9)
$\Gamma = (P_{\rm H} + K_{\rm C6-}P_{\rm C6-} + K_{\rm P7}P_{\rm P7} + K_{\rm N7}P_{\rm N7} + K_{\rm TOL}P_{\rm TOL})$	(5.10)
$\theta = 1 + K_{\rm MCH1} P_{\rm MCH} + K_{\rm MCH2} (P_{\rm MCH} / P_{\rm H}^{-2})$	(5.11)
$\phi = e^{-\alpha C_c}$	(5.12)
	$\begin{split} \phi \cdot A_0 e^{-E/RT} (P_A P_B) / \Gamma \\ \phi \cdot A_0 e^{-E/RT} (P_A - P_B P_H / K_{AB}) / \Gamma \\ \phi \cdot A_0 e^{-E/RT} (P_A - P_B P_H / K_{AB}) / \Gamma \\ \phi \cdot A_0 e^{-E/RT} (P_A - P_B) / \Gamma \\ \phi \cdot A_0 e^{-E/RT} (P_A - P_B P_H^3 / K_{AB}) / (P_H \theta)^2 \\ \Gamma &= (P_H + K_{C6-} P_{C6-} + K_{P7} P_{P7} + K_{N7} P_{N7} + K_{TOL} P_{TOL}) \\ \theta &= 1 + K_{MCH1} P_{MCH} + K_{MCH2} (P_{MCH} / P_H^2) \end{split}$

Source: Adapted from Taskar 1996 [4] and Taskar 1997 [5].

parameters required for modeling significantly. Experimental data may be used to fit the remaining parameters (roughly 30–50). This approach has been success-fully used for a variety of processes including methanol-to-olefins (MTO) and FCC that exhibit similar features as the catalytic reforming process. Due to limitations of feedstock analysis, this technique makes several assumptions to lump together components in the feedstock and presents rate equation that is the summation of many rate equations drawn from fundamental chemistry.

Another approach is the molecular modeling work by Klein and coworkers [18]. In their work, they propose technique of pathway modeling where a series of chemical reaction paths are applied to many hundreds (if not thousands) of feed species. They then construct a reaction path that only contains the allowable reaction chemistry. Klein *et al.* also simplified the process of estimating kinetic parameters through the linear free energy relationships (LFER). The final network for naphtha reforming involves 116 species and 546 reactions. Several works report the success of this model through several pilot plant studies. A key issue is the feedstock characterization. Klein *et al.* [29] used a stochastic approach where they pick combinations of thousands of species and attempt to match the calculated bulk properties (specific gravity, molecular weight, sulfur content, etc.) of a particular combination to measured bulk properties.

In the course of applying a model to a commercial plant, it is best to rely on kinetic models that only require *the minimal amount of feedstock information and calibration*. Feed to reformers may change quickly, and without laboratory analysis, there is often no choice but to lump components together. In addition, it may not be possible to incorporate large complex models into existing highly integrated flowsheet models. These factors generally drive model developers to choose lumped kinetic networks.

5.4.2 Unit-Level Models

After choosing a representative kinetic model, we must decide how to represent the remaining units for a truly integrated model. Researchers have applied many of the kinetic networks described in the previous section in integrated process models. Figure 5.8 is an overview of the key features of an integrated process model for a three-section reformer. This overview applies to both semiregenerative fixed bed and CCR reformers.

First, the model must be able to take bulk property measurements and convert them into appropriate lumps for kinetic network. This step may be quite simple if the kinetic model chosen only includes total PNA content for the total fraction. However, if the kinetic lumping requires detailed composition information, we must provide some way of estimating these lumps from limited composition information. Taskar *et al.* [4, 5] discussed a possible method based on the measurements of certain bulk properties such as gravity and distillation curve. We discuss the approach used in this work in Sections 5.9 and 5.9.3.

The second consideration is the model for the interstage heaters, product separators, and compressors. In order to model these units meaningfully, we must have reasonable estimates for the key thermophysical properties of the lumps. In the case of the reformer, we must make reasonable prediction of reactant

318 5 Predictive Modeling of Continuous Catalyst Regeneration (CCR) Reforming Process

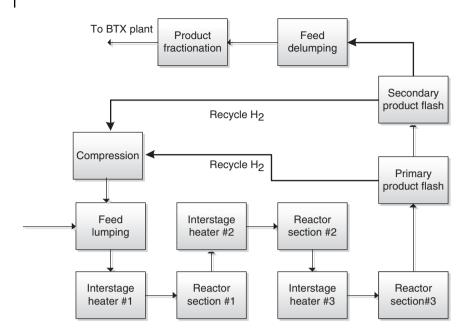


Figure 5.8 Basic process flow for an integrated reformer model.

concentration (at system pressure), *K*-values (for the product separator), and heat capacity (to model the reactor temperature drop and product temperatures correctly). The reforming process generally operates at temperatures and pressures where the ideal gas law applies for hydrocarbon species in the reactor section. Ancheyta-Juarez *et al.* [1, 2] used the ideal gas assumption to calculate the concentration of reactant species. In addition, they use the polynomial heat capacity correlations for pure components to approximate the heat capacity of the mixture. Work by Bommannan *et al.* [30] and Padmavathi *et al.* [31] uses a fixed value for the heat capacity and *K*-value correlation to predict compositions in the primary product separator.

Most authors model the reactor section as a plug-flow reactor (PFR) of fixed length. This length is typically the size of the packing bed for a fixed-bed semiregenerative unit. This assumption works well with all the kinetic networks mentioned above. Modeling the flow through the CCR unit is slightly different in that reactants travel through a moving bed of catalyst particles. Hou *et al.* [32] described how to modify the standard PFR to account for a radial flow unit. Szczygiel [33] studied mass transfer and diffusional resistance in reforming reactors. However, these types of studies are difficult to apply in the context of commercial plants and many authors of integrated models have ignored these effects.

The final step in an integrated model is the delumping of kinetic lumps back to bulk properties and lumps suitable for fractionation models. Many authors do not consider this delumping process as they do not include a rigorous fractionation section. Typically, many studies report only properties such as RON and MON. If the kinetic lumping method used spans to a significant range, then fractionation models can work directly with the kinetic lumps. Works by Hou *et al.* [32] and Li *et al.* [34] use the kinetic lumps directly.

Reference	Application	Kinetics	Feed lumping	Calibration	Planning (LP)
Ramage et al. [27]	Semiregenerative	C5–C8(P, N5, N6, A) lumps	None	Yes	Yes
Bommannan <i>et al.</i> [30]	Semiregenerative	Simple lumps (P, N, A)	None	None	None
Ancheyta <i>et al.</i> [1, 2]	Semiregenerative	C5–C10 (P, N, A)	None	None	None
Taskar [45]	Semiregenerative	C5–C10 (P, N5, N6, A) lumps	Yes	Yes	None
Lee et al. [35]	CCR	Simple lumps (P, N, A)	None	None	None
Padmavathi <i>et al.</i> [31]	Semiregenerative	C6–C9 (P, N5, N6, A) lumps	None	Yes	None
Ancheyta-Juarez <i>et al.</i> [19]	Pilot plant	C5–C11 (P, MCP, N6, A) lumps	None	Yes (kinetic regression)	None
Hu <i>et al.</i> [36]	CCR	C6–C9 (P, N, A) lumps	None	Yes	None
Li <i>et al.</i> [34]	Semiregenerative	C1–C9 (P, N5, N5, A) lumps	None	Yes	None
Hou <i>et al.</i> [32]	CCR	C1–C9 (P, N, A) lumps	None	Yes	None
Stijepovic <i>et al.</i> [25, 37]	Semiregenerative	C6–C9 (P, N, A) lumps	No	No	None
This work	CCR	C1–C14 (P, N5, N6, A) lumps	Yes	Yes	Yes

Table 5.5 Summary of unit-level models reported in the literature.

Table 5.5 summarizes the key features in reported unit-level models (using lumped kinetics) applied to reforming processes. We have only included studies where the authors compare their results to pilot plant or industrial data. In addition, we include those studies where the authors use the model for case studies and plant optimization.

5.5 Aspen HYSYS Petroleum Refining Catalytic Reformer Model

This section discusses the key features of the Aspen HYSYS Petroleum Refining model we use throughout this work. Although the features we discuss are specific to Aspen HYSYS Petroleum Refining, there are other simulation programs that have similar functionality. The goal of this section is to discuss the key features of the simulator that are relevant to developing an integrated reaction and fractionation model.

Figure 5.9 shows a basic outline of the key submodels in Aspen HYSYS Petroleum Refining. This model contains all the key submodels identified in

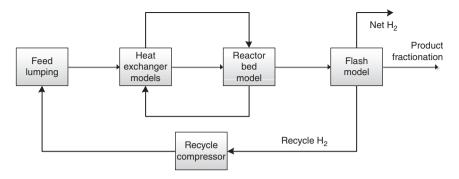


Figure 5.9 Organization of Aspen HYSYS Petroleum Refining CatReform model.

the previous section. The model presented in this work includes the additional fractionation units to model the separation of LPG (<C4) and the reformate into gasoline and high-octane compounds for blending and chemical purposes.

The feed-lumping technique in the Aspen HYSYS Petroleum Refining model relies on a base of compositions and a method to correct those measured compositions based on changes in measured bulk properties. The feed is broken into many (4–14) lumps for each chemical group. Typically, these measured properties are the distillation curve and total PNA content. In our work, we had access to detailed feed composition information, so we did not use this technique. However, we have developed an alternate technique of feed lumping based on minimal base composition data and bulk property requirements. We discuss this technique in Section 5.9.

The reaction network in the reactor model is similar to the network presented by Froment *et al.* [12] and Taskar [4]. However, the reaction network supports higher aromatics up to C14. Although these typically are not expected in reformer feeds, the kinetic model can handle them as well. In addition, the reactor model includes paths for the undesired hydrogenolysis reactions. These highly exothermic reactions do not occur in any significant degree in stable reforming units. However, older reactors may display this behavior, so it is important to model them as well (Table 5.6).

Equations (5.13)–(5.17) show the general form of the kinetic rate expression. The important thing to note is that there are two activity correction factors associated with each rate expression. The first correction factor, a_{class} , is fixed for a

 Table 5.6
 Key reaction classes in Aspen HYSYS Petroleum Refining catalytic reformer model.

Isomerization of paraffins	$a_{\rm class}a_{\rm reaction}A_0e^{-E/RT}(P_{\rm A}-P_{\rm B}/K_{\rm AB})/\Gamma$	(5.13)
Hydrocracking of paraffins	$a_{\rm class}a_{\rm reaction}A_0e^{-E/RT}(P_{\rm A}P_{\rm B})/\Gamma$	(5.14)
Ring closure of paraffins	$a_{\rm class}a_{\rm reaction}A_0e^{-E/RT}(P_{\rm A}-P_{\rm B}P_{\rm H}/K_{\rm AB})/\Gamma$	(5.15)
Ring expansion (C5–C6)	$a_{\rm class}a_{\rm reaction}A_0e^{-E/RT}(P_{\rm A}-P_{\rm B})/\Gamma$	(5.16)
Dehydrogenation	$a_{\rm class}a_{\rm reaction}A_0e^{-E/RT}(P_{\rm A}-P_{\rm B}P_{\rm H}^3/K_{\rm AB})/(P_{\rm H}\theta)^2$	(5.17)

given class of reactions. For example, all the isomerization reactions may have a rate constant of 1.0. The second correction factor, a_{reaction} , refers to correction for an individual pathway. For example, the activity factor for the isomerization of C6 paraffins may have a correction factor of 0.5. The product of these two factors presents the overall activity correction for that reaction. The individual rate constant and activation energy remain fixed. These factors have been derived from experimental data over a variety of catalysts. In practice, however, even significant changes in unit operations do not require significant changes in values of these reaction activity factors.

Another significant feature is that the coke generation is rigorously modeled and included in the deactivation and adsorption factor, Γ , for each reaction. The deactivation factor is a function of reactor pressure, adsorbed hydrocarbons, coke on catalyst, and acid/metal function of the catalyst. This feature allows us to calibrate the model to a variety of operating conditions and catalyst behavior. In this work, we model a CCR with a hydrotreated feed; therefore, we do not include any significant changes in catalyst activity due to changes in acid component of the catalyst.

The reactor model is based on a modified PFR for a moving bed that accounts for catalyst flow in the CCR system. A key consideration in the reactor is the phenomenon of "pinning" [38, 39] in CCR reformers. "*Pinning*" refers to the catalyst that is held immobile against the wall due to cross-flow of reactants. It is important to model this effect, as pinning imposes a maximum flow rate on reactants. The reactor also correctly models the temperature drop due to heat of reaction in the exothermic and endothermic reactions. The other key variables are the WAIT and weight-averaged bed temperature (WABT), both defined in Section 5.4, and the weighted hourly space velocity (WHSV), that is, the weight of feed per hour per unit weight of catalyst loaded in the reactor.

As mentioned in a previous section, integrated model for CCR must also include rigorous models for interstage heaters to predict energy consumption of the unit correctly. We may model the unit as rigorous fired heaters or basic heat exchangers. We include a model to recompress the vapor from the primary product flash. Our work also includes the complete model for the product recontacting section. We must model this section correctly in order to predict the composition of the recycle stream entering the reformer. All of these units require thermophysical properties and methods to predict equilibrium. We use the Peng–Robinson (PR) equation of state modified for hydrogen-containing systems. We describe how to obtain the relevant thermophysical properties for each lump in Section 5.7.

The final step in the integrated model before fractionation is the delumping of products and prediction of bulk properties. As our lumping system is quite broad, we can just calculate key properties of the reformer effluent as combination of the individual properties of the lumps.

$$RON_{MIX} = \sum w_i RON_i$$
(5.18)

$$MON_{MIX} = \sum w_i MON_i$$
(5.19)

where RON_{MIX} and MON_{MIX} refer to the research and motor octane number of product measured in bulk, w_i refers to the weight fraction of each lump, and RON_i and MON_i refer to the research and motor octane number of each lump.

As we wish to use this model to simulate BTX production as well, we need to predict the composition of all the relevant isomers of A8 (ethylbenzene, *ortho-xylene, para-xylene, and meta-xylene*). In our model, we assume that these isomers take on fixed equilibrium ratios as a function of temperature. Figure 5.10 shows the equilibrium distribution of these isomers at various temperatures [40, 41]. The distributions correspond to expected temperatures in the reforming process. Figure 5.11 shows the observed A8 isomer distribution measured at the plant. We note that it is remarkably stable over a lengthy operating period (6 months) and a variety of feed conditions.

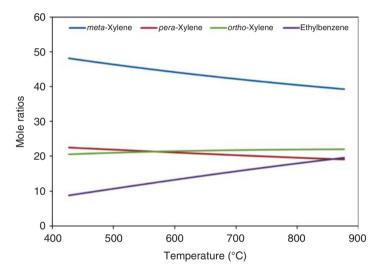


Figure 5.10 Equilibrium composition of A8 isomers (assuming ideal gas conditions).

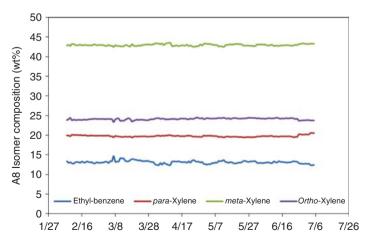


Figure 5.11 Composition of A8 isomers over the study period.

This completes our description of the Aspen HYSYS Petroleum Refining model. In subsequent sections, we discuss issues of thermophysical properties, fractionation, and feed lumping. These issues are not specific to a simulation program and apply generally to any model of a reforming process.

5.6 Thermophysical Properties

The requirements for thermophysical properties depend on the kinetic lumping chosen for the process. Typically, the reactor model requires only the heat capacity and molecular weight. The fractionation section may require a correlation to predict *K*-values or critical parameters when an equation of state is used. One approach is to use one set of lumps for the reactor model and another set for the fractionation. However, this approach may cause problems when recycling material is back into the reactor and makes producing an integrated model difficult. If possible, we suggest the use of uniform lumps across the reactor and fractionation models.

If the reactor lumps resemble real measured products (e.g., A8), then it is sufficient to use the known properties of one of the compounds comprising the lump as the properties of the lump. The kinetic lumps in this work resemble real lumps, so we use known compound properties. If this information is not available, we can use Riazi's correlations [42] to estimate the relevant critical properties for different classes of compounds (paraffins, naphthenes, and aromatics) given the molecular weight of a particular lump.

$$\theta = a(\mathrm{MW})^{b}(\mathrm{CH})^{c} \tag{5.20}$$

where θ represents critical temperature (T_c), critical pressure (P_c), critical volume (V_c), specific gravity (SG), or refractive index (I); CH denotes the carbon-to-hydrogen weight ratio. Riazi [42] provided values for a, b, and c for different classes of compounds.

5.7 Fractionation System

We use the standard inside-out method [43] discussed in Section 2.4.4. This work only includes the primary product debutanizer and deheptanizer. These columns prepare the reactor effluent for further aromatic extraction in the BTX plant.

We refer the reader to review our discussion in Sections 2.4.2 and 2.4.3 regarding the concepts of individual stage efficiency and the overall stage efficiency. In particular, we agree with the recommendation of Kister [43] and Kaes [44] who strongly advised against the use of individual stage efficiencies such as the Murphree vapor stage efficiency, defined in Section 2.4.2.

We recommend the use of overall stage efficiency, which is the ratio of the number of theoretical stages and the number of actual physical trays. This is a single value that can range from 30% to 90%. If we consider the case of a distillation column having 20 physical trays and overall efficiency of 0.5, we would model it as a column with 10 theoretical stages. With this approach, every tray remains

Fractionator	Theoretical trays	Overall efficiency (%)
Reformate splitter (debutanizer)	27	60-70
Deheptanizer	36	60–70

 Table 5.7
 Summary of overall column efficiencies for product fractionation in CCR.

Table 5.8	Key specifications in fractionation section.
-----------	--

Fractionator	Initial specifications	Final specifications
Reformate splitter (debutanizer)	 Reflux ratio Overhead (or bottom) draw rate 	 Reflux ratio Mole purity of C5 in the overhead
Deheptanizer	 Control stage temperature Reflux ratio Overhead draw rate 	 Control stage temperature Reflux ratio Control stage temperature

in thermodynamic equilibrium and predictions away from the base operating scenario are reasonable. In this chapter, we model the DA301, a reformate splitter, and DA302, a deheptanizer. Table 5.7 shows the relevant overall efficiencies for these columns [44].

An important consideration is the selection of specifications to converge columns. Modern simulation software makes it quite easy to choose a wide range of specifications. However, software generally does not provide a guide to choosing reasonable specifications. In our work, we use a two-stage process. We first choose specifications that we know to converge easily for a given feed rate to the column. For a simple distillation column, these are typically the reflux ratio and overhead draw rate. In addition, we also provide temperature estimates. Once we obtain an initial solution, we introduce more difficult specifications such as temperature, mole recovery, and control temperatures. Table 5.8 gives the specifications for relevant columns in the CCR fractionation process.

Another significant consideration is that when modeling an existing plant, model developers should be aware of what the key control variables in the column are. The final specifications in the column must reflect actual plant control variables. For example, we should not fix the temperature of a condenser in the model when the plant actually controls the column based on an overhead draw rate.

5.8 Feed Characterization

The most important consideration for a reactor model is an accurate measure of the feed composition. This is particularly troublesome when modeling refinery reaction processes. Feed to units may change quickly and unpredictably. Although refinery techniques for online measurements of feed composition have improved, many still do not perform detailed molecular based analysis required for complex kinetic models. Without an accurate and up-to-date feed composition, kinetic models fail to make reasonable predictions of product yield and process performance.

There are several methods to alleviate this issue. One method is to work from a standard set of preanalyzed feeds and generate a set of base compositions. In addition, a large database of standard preanalyzed feeds can provide a process to generate the composition shift vectors. This is very similar to the process of generating delta-base vectors for refinery planning discussed in Section 4.12. We attempt to quantify the effects of changes in easily and routinely measured bulk properties such as TBP curves, specific gravity, molecular weight, and viscosity on the changes in the feed composition. Aspen HYSYS Petroleum Refining provides a method based on the presence of several feed types. The feed types refer to the origin of the feedstock entering the reforming unit. Depending on the size of the database used to generate these shift vectors, this method can be very accurate in practice.

Another method is to try and estimate the composition of the reactors based only on bulk property information. This bulk property information typically refers to routinely measured properties such as density and distillation curves. Klein and coworkers [29] have used a much more sophisticated version of this approach to probabilistically sample candidate molecules and generate a very large list of molecules whose combined properties match the measured bulk properties. Hu *et al.* [24] used a probability distribution method to estimate the PNA compositions for their approach toward refinery reactor modeling. The approach we describe is similar, but much simpler to use, as it is targeted only for reformer feeds.

A key assumption in this method is that each class of molecules (i.e., paraffins, naphthenes, and aromatics) is statistically distributed around a certain mean value. For the case of reformer feed, we know that significant portion (80+ wt%) lies between the C6–C9 range. With this information, we assume that each class centers around the C6–C9 range following a statistical distribution. Sanchez *et al.* [45] applied various statistical distributions to fit a variety of distillation data. They recommend the use of the beta statistical function to accurately represent distillation data.

A key criterion is that the statistical function can be normalized and distributed, but nonsymmetrical, as a certain class of compounds may exist in very narrow ranges. In addition, we would like a function that is easily accessible in popular software tools (e.g., Microsoft Excel) and has as few parameters as possible. Based on the observations by Sanchez *et al.* [45] and our criterion, we find that a two-parameter normalized beta statistical distribution for each class of molecules is sufficient for characterizing a reformer feed. We discussed this statistical beta function in Section 1.2, Eq. (1.7), and in Section 1.4, Workshop 1.2. We renumber this equation as Eq. (5.21):

$$f(x, \alpha, \beta, A, B) = \int_{A}^{x \le B} \left(\frac{1}{B-A}\right) \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \left(\frac{x-A}{B-A}\right)^{\alpha-1} \left(\frac{B-x}{B-A}\right)^{\beta-1}$$
(5.21)

where α , β , A, and B refer to the positive-valued parameters that control the shape of the distribution, Γ refers to the standard gamma function, and x identifies a given lump.

We apply the method in the following steps:

- 1) Choose the lumping range. In our work, we choose the PNA lumps in C5–C11 range.
- 2) Precompute the individual properties of each of the lumps (i.e., associate each lump with normal boiling point, standard liquid density, and molecular weight). It is possible to compute each of the properties using correlations from Riazi [42].
- 3) Obtain as much bulk data about the feed as possible. The minimum requirements are specific gravity and true boiling point (TBP) curve.
- 4) If a TBP curve is not available, use API correlations to convert a D86 distillation curve to a TBP curve (see Section1.3).
- This method requires the total PNA content expressed in either weight %, volume %, or mole %. If this information is not available, the API correlation [42] (requiring viscosity) can provide these values.
- 6) Guess values for the mean and standard deviation for each distribution to compute the fraction of each component in the C5–C11 (a total of six parameters). As we know the total PNA (from step 5), we can normalize each distribution to make sure that the sum of fractions of each class of lumps matches the total PNA.
- 7) Compute the bulk property information using the candidate lump compositions.
- 8) Arrange all the candidate lumps in the order of increasing boiling point to generate candidate TBP curve.
- 9) Compute a residual between the measured or known bulk properties and calculated bulk properties in step 7.
- 10) Return to step 6 unless the residual is minimized to some small value.

In our experience, the last end points of a typical 5-point TBP curve (the end point or EBP, 90% vaporization point, and 70% vaporization point), the molecular weight (measured or estimated from API correlation) and specific gravity are good candidate bulk properties to minimize against. This is a basic optimization problem. We have used the SOLVER add-in in Microsoft Excel with considerable success. We note that once an optimized solution has been reached for a base feed, it is often very simple (even manually) to adjust the parameters of the statistical distribution to fit a new feed type. We report the optimal values for the fitting parameters in Table 5.9.

We apply this method to the feed specified in Table 5.1 using the ASTM D86 distillation, specific gravity, and individual PNA composition. We convert the ASTM D86 distillation curve to a TBP curve and estimate the molecular weight (using standard API correlations). We then optimize the parameters to match the EP, 90%, and 70% of the TBP curve, molecular weight, and specific gravity. We compare the calculated and measured values in Figure 5.12 and Table 5.10. For details of our calculations, please refer to Excel file *Alternate_Feed_Lump.xlsm* in the supplement to this text.

Table 5.9Optimizedparameters for PNA betadistribution functions.

Group	α	β
Р	3.9145	6.6190
Ν	1.2454	4.5050
А	3.0402	6.9700

Figure 5.12 Correlation between prediction and measured composition.

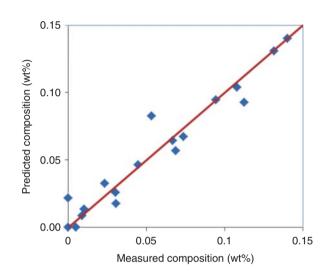
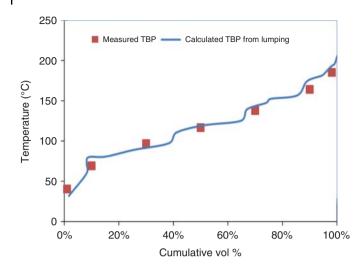



 Table 5.10
 Predicted PNA composition from parameter estimation process.

	Predicted			Measured		
	P	N	Α	Р	N	А
C5	1.36%	0.00%	_	1.00%	0.47%	_
C6	5.70%	6.43%	0.85%	6.85%	6.66%	0.88%
C7	9.29%	13.09%	3.26%	11.25%	13.17%	2.31%
C8	9.46%	14.01%	2.57%	9.42%	14.02%	3.02%
C9	6.74%	10.38%	1.78%	7.35%	10.79%	3.04%
C10	4.64%	8.27%	2.17%	4.45%	5.31%	0.00%

There is good agreement between the measured TBP (converted from ASTM D86 data) and calculated TBP curve. Note that we have not included all the TBP points in the optimization routine, but the optimized solution makes good predictions for the lower TBP points as well (Figure 5.13).

328 5 Predictive Modeling of Continuous Catalyst Regeneration (CCR) Reforming Process

Figure 5.13 Comparison between measured and calculated TBP based on PNA lumping.

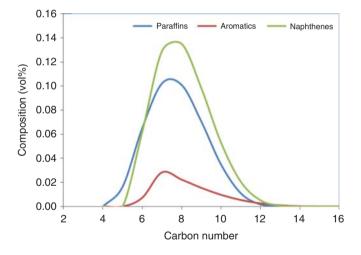


Figure 5.14 Optimized distribution of paraffin, naphthene, and aromatic for a given feed type.

Figure 5.14 shows the optimized distribution of PNA for this feed. As the distribution function predicts an A5 lump (a physically impossible solution), we ignore this component while calculating the lump composition. We note that each of the distributions has a different shape that reflects the different nature of a specific component class. If we use a simple normal distribution function, it is unlikely that we would be able to represent many different types of feed.

5.9 Model Implementation

There are three important considerations while building any reaction model based on plant data:

- Ensure the data consistency through accurate mass balance.
- Characterize the feed based on limited information.
- Calibrate the reactor model to a reasonable level of accuracy.

In the following sections, we discuss several steps and tools to help with the implementation of the model. We provide access to the tools mentioned in this section in the supplement to this text. Finally, we discuss an overall modeling strategy to model an existing reforming unit.

5.9.1 Data Consistency

An important task during data collection and model calibration is the overall mass and hydrogen balance across the reformer unit. The overall mass balance is simply a difference between the sum of all the feeds entering the unit and sum of all products leaving the unit. Although this concept is fundamentally simple, it can be difficult to realize in a real production plant. Many reformer units include feeds from other units that only enter plant through the fractionation section. This is typically the case when the refiner maximizes aromatics recovery produced by other units in the refinery.

We provide a spreadsheet, *Hydrogen_Balance.xls* (Figure 5.15), in the supplement to this text to account for feeds to the reforming plant that enter the reactor section and fractionation section. We can either subtract the feeds entering the unit or make sure they are accounted in the overall balance. We have successfully closed the mass balance to under 0.2–0.3% by making sure to account for all products. The advantages of a closed mass balance are not limited to the kinetic modeling process itself, as other refinery-wide modeling (such as production planning) often relies on accurate mass balances.

A secondary issue relates to the calibration and predictions from the rigorous reformer model. It is critical to ensure that the hydrogen balance is satisfactorily closed before beginning model development. We define the hydrogen balance as follows:

Mass flow rate of hydrogen in the feed

= Mass flow rate of hydrogen leaving the unit (5.22)

4	A	8	C	D	E	F	G	Н	1	J	K	L	M	Ň
1	Enter Mass fra	actions in cel	is below title	e (Can com	ert from mole/vol.	fraction to n	nass fraction	using HYSY	S if necessar	y)				
2														
3	Mass B	alance												
4	In	Out												
5	1.834E+05	1.839E+05	5											
6	Error	-0.29%	8											
7			3											
8	Hydrogen Bala	ance												
9	In	Out												
10	2.669E+04	2.836E+04	1											
11	Error	-6.25%												
12					H2 Flow (kg/h)	2 561E+04	2.918E+01	6.731E+02	3.851E+02		8.029E+03	8.370E+02	3.682E+03	1.582E+04
13		Grouped C	ompositions		Rate (kg/h)	1.759E+05	2.360E+02	4.410E+03	2.779E+03		1.295E+04	3.998E+03	2.090E+04	1.460E+05
14	C Atoms		MW	Wt% H		Feed	#500	#700	#7500		Net Gas	DA301 Ovhd V	DA301 Ovhd L	DA301 Btms
15	() H2	2.02	1.000	1						52.34%	2.79%	0.07%	
16		1 P1	16.04	0.251			0.04%				11.51%	4.34%	0.31%	
17	2	2 P2	30.07	0.201			2.23%	0.97%			14.69%	23.18%	5.24%	
18	3	3 P3	44.10	0.183			18.14%	6.20%			12.53%	36,88%	24.55%	

Figure 5.15 Microsoft Excel-based spreadsheet tool for mass and hydrogen balance calculations (see *Hydrogen_Balance.xls* in the supplement to this text).

Turpin [46] provided a simple formula for calculating the hydrogen content. We use a similar equation to verify the balance of the unit.

$$H_{\text{FACTOR}_{ij}}(\text{for } C_i H_j) = \frac{j \cdot 1.01}{i \cdot 12.01 + j \cdot 1.01}$$
(5.23)

Hydrogen flow of $C_i H_j = H_{FACTOR_{ii}} \cdot Mass$ flow of $C_i H_j$ (5.24)

Turpin [46] recommended that hydrogen mass balances should be closed to less than 0.5% error. This can be difficult without detailed verification of measured flow rates. We recommend that calibration proceeds even if the hydrogen balance cannot be closed. However, it may not be possible to perform a finely tuned calibration as a result.

5.9.2 Feed Characterization

Section 5.8 discusses a method to obtain estimates for the composition when only limited feed characterization data (distillation curves and density) are available. Although the method produces good estimates of the feed composition, it may fail to predict the correct amount of N5 and N6 in the feed. Good estimates of N5 and N6 are critical for a meaningful calibration as these components are the primary pathways to obtain benzene in the reformate.

We recommend that analysis can be performed to determine the N5 and N6 composition before calibrating a detailed model of the reformer. Once feed analysis establishes the baseline N5 and N6 contents, we can expect the calibration to reflect reactor operation more accurately. Figure 5.16 shows the variation in N5 and N6 contents of the hydrotreated reformer feed over the course of our work. There is significant variation in the N6 content, which justifies a detailed feed analysis before the model calibration.

5.9.3 Calibration

Because of the number of unit-level and kinetic models available in the literature and commercially, it is impossible to prescribe a single calibration method that will work for all models and methods. However, there are significant common

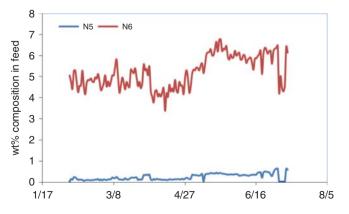


Figure 5.16 Variation in N5 and N6 contents in feed.

features in all of the models to allow for general recommendations. These recommendations form a simple workflow to manage the large number of parameters that may occur in many models.

Modern calibration methods in current software allows users to change many (if not all) parameters in a particular model with ease. Although this is a simple procedure, it is easy to "overcalibrate" the model and generate calibration values that ignore process chemistry and other phenomena. We believe that it is better to follow a step-by-step process where we only change a few parameters (of the same class and with bounds) at a time.

We perform the calibration in two passes. The first pass is *the coarse calibration* of the model, whereas the second pass performs *the fine calibration*. The quality of the model calibration relies on consistent and reliable data. If we cannot find these data, it may be difficult to justify performing the fine calibration of the model. In fact, performing the fine calibration with poor-quality data may result in an "overcalibrated" model. With that in mind, we propose a step-by-step process for calibration.

The key steps in calibration in applying Aspen HYSYS Petroleum Refining are as follows:

- 1) Verify that the material and hydrogen balances are closed.
 - a) If the material balance has an error exceeding 1-2%, this data set should not be used for calibration.
 - b) If the total hydrogen balance has an error exceeding 2–3%, it is unlikely that fine-tuning of the reactor model will be successful.
- 2) Obtain the feed composition.
 - a) Use detailed PNA information if possible.
 - b) If detailed PNA information is not available, use total PNA information and feed characterization method described earlier.
 - c) If total PNA information is not available, it is possible to use bulk measurements such as viscosity, density, and distillation data to estimate the PNA composition required for (b). These correlations are available from our previous work and Riazi [42]. In this case, fine-tuning of the reactor model can become difficult.
- 3) Select the objective function criteria.
 - a) Define the objective function to minimize as $\sum w_i$ (Measured_i Predicted_i)².
 - b) Table 5.11 suggests the terms and associated weightings for both coarse and fine calibrations. A zero entry in the weighting factor indicates that the term should not be part of the objective function.
 - c) If a detailed analysis of the reactor effluent is available, do not include every component in the objective function.
- 4) Coarse tuning
 - a) Select the overall reactor selectivity only.
 - b) Use Table 5.11 to select the terms for coarse tuning form of the objective function.
- 5) Second pass
 - a) Select the overall reactor selectivity and the overall reaction activity.

- b) Use Table 5.12 to select terms for fine-tuning form of the objective function.
- c) Calibrate the model.
- d) Adjust the selectivity for light ends (P1–P3) as the last step in the calibration.

It is important to not include the yield of every significant component. Including every possible measurement for optimization often results in a poor calibration. A poor calibration means that the model is essentially fixed to a single data point, and it will result in a model that responds widely even to small

 Table 5.11
 Major terms and their recommended weighting factors in the reformer model objective function for calibration.

Term	Coarse calibration	Fine calibration
Reactor delta temperature (s)	1.0	1.5-2.0
Total aromatics (wt%)	5.0	10.0
Benzene (wt%)	5.0	10.0
Toluene (wt%)	5.0	10.0
Xylenes (wt%)	1.0	10.0
A9+ (wt%)	0.0 (ignore)	5.0
Paraffins (P1–P3)	0.0 (ignore)	0.5 (last)
Paraffins (P4+)	0.0 (ignore)	1.0
Paraffins (P8+)	0.0 (ignore)	1.0
Naphthenes (N5, N6)	1.0	10.0
Ratio of isomer to normal paraffins	0.0 (ignore)	0.5 (may not be predicted)
Net gas flow	1.0	1.0
Total heavy (wt%)	0.0 (ignore)	1.0

 Table 5.12
 Typical adjustment factors to calibrate reformer model.

Parameter	Range of deviation from the base
Overall reactor activities	0.1–10
Reaction clas	SS
Dehydrogenation	0.1–1.1
Hydrocracking	0.1–1.1
Isomerization	0.1-1.1
Ring closure	0.1-1.1
Ring expansion	0.1 - 1.1
Light ends tun	ing
C1/C2/C3	0.1-5.0

changes in the input variables. It is better to avoid poor calibration even at the expense of not agreeing to plant measurements. When this situation happens, it means that there is likely mass imbalance or hydrogen imbalance in the feed and product measurements. It is best to recheck model inputs before attempting any further calibration.

We use the ranges for adjustment factors and weightings for the error residual to generate constraints for an optimization procedure. As the model is developed in an equation-oriented (EO) format, it is not difficult to apply an optimization procedure to generate optimal values for the adjustment factors. An objective value of less than 250 (using coarse weightings) is sufficient for coarse adjustment when significant feed information (such as composition) is missing or estimated. For fine adjustment, which is required in the case of accurate prediction for aromatic component composition, an objective value of less than 200 (using fine weightings) is required. Obtaining a reasonable calibration using fine-tuning requires accurate composition, feed rate, hydrogen yield, and reactor operating parameter (temperature and pressure) measurements.

The adjustment factors in Table 5.12 are sufficient to represent a wide variety of operating behavior. Models may allow users to individually tune each reaction in the kinetic network. Reaction-specific tuning may result in very good agreement with plant data, but the model may lose predictive ability. The reaction-specific tuning essentially fixes it to one operating point. In addition, models may include adjustment factors for the primary product separation. We do not adjust these values routinely as part of the calibration.

We note that it may not be possible to fine-tune the model to the prescribed limits earlier. Plant mass balance error, poor measurements, and unexpected process variation may limit how well the model agrees with the plant data. However, by following the above calibration procedure, we can ensure that we do not "overcalibrate" the model and subsequently produce poor predictions.

5.10 Overall Modeling Strategy

Figure 5.17 outlines the overall modeling strategy used in this work. We implement and calibrate the model while it is in regular operation in the refinery. Many factors such as abrupt changes in feed quality, operating parameters, and poor and inconsistent measurements impede this process. Work by Fernandes *et al.* [47] documented the same difficulties while modeling an FCC unit. In our work, data set refers to a collection of measurements that reflect plant operation for a short period (less than 1 day). We propose the following steps to ensure that calibration results in a model that is predictive and not fixed to a single operating scenario:

- Record data on a continuous basis from the plant.
 - Reconcile data from multiple sources (DCS, inventory, etc.).
 - Check consistency of the data set by performing material and hydrogen balance. Use the criteria in previous section to accept or reject certain data.

- Accept a data set (or conditionally accept acknowledging that there may be significant error in calibration and prediction).
- Track variation in the data set to ensure that we verify the model against significant changes in feed and operating parameters. We show the significant changes in feed quality in our work in Figure 5.18.
- Develop fractionation models by backblending the measured reactor products and verify that the models agree with plant measurements.
 - We provide guidelines for developing the fractionation system in Section 5.17, Workshop 5.3.
- Calibrate reactor model.
 - Use calibration procedure to produce a coarsely and finely calibrated model.
 - The product yields from the finely calibrated model should be within 1% of actual plant yield. If this is not the case, it is likely that the material balance and hydrogen was not closed sufficiently.
 - The outlet temperatures from the finely calibrated model should be within $3-5^{\circ}$ C of measured plant values.
- Validation
 - Use of accepted data sets track the performance of the reformer and fractionation sections with the model.
 - If possible, examine the yield of the reactor effluent directly with measure products. We can identify if errors arise from the reactor model or the fractionation section and isolate the section for further validation or calibration.
 - It is typically possible to predict yields of key products (BTX) on a feed normalized mass basis with AAD of less than 2–3%.
- Recalibration
 - We suggest recalibration when significant changes occur in the catalyst or regeneration section. The model can generally account for significant changes in feedstock and operating parameters.

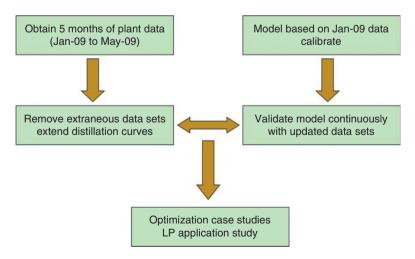


Figure 5.17 Overall modeling strategy.

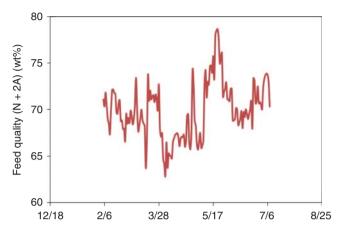


Figure 5.18 Variation in feed quality over the study period.

5.11 Results

Figures 5.19–5.21 show the completed HYSYS/Refining simulation models for the CCR reformer studied in this work. See simulation file *Workshop 5.3.hsc*. We evaluate the model using over 6 months of operating data from a refinery in the Asia Pacific processing hydrotreated naphtha. Key factors for the evaluation of

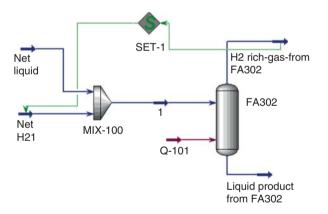


Figure 5.19 Remixing section.

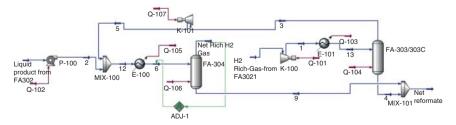


Figure 5.20 Recontacting section.

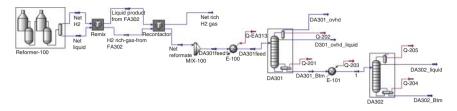


Figure 5.21 Combined reformer and primary fractionation.

the model are comparisons of overall product yields and operating profiles for key equipment in the gas plant. In general, the model accurately predicts the product yields, compositions, and operating profiles over a wide range of feed conditions.

The fractionation section of model uses the PR equation of state and the kinetic lumps directly as the fractionation lumps.

The remixing section is a simple way to reconstruct the plant effluent as the reactor model produces separate streams for the hydrogen product, Net H21, and liquid product, Net Liquid. Remixing the streams allows us to model the recontacting sections to predict compositions reported in the actual hydrogen product and liquid product streams. In Figure 5.19, the Net Liquid is the reformer liquid effluent. Essentially, all of the vapor product from the flash unit FA302, stream "H2 Rich-Gas-from FA302," is recycled back and remixed with the Net Liquid stream entering MIX-100. The liquid product from flash unit FA302, stream "Liq Product from FA302," goes to the recontacting section in Figure 5.20 as stream "H2 Rich-Gas-from FA3021," entering compressor K100.

In Figure 5.20, FA303/303C is a *low-pressure* flash unit at 21.62 bar, and FA304 is a *high-pressure* flash unit at 56.81 bar. The goal of the recontacting section is *to condense more liquid reformate* from the stream "H2 Rich-Gas-from FA3021" as stream 4 going to the mixer MIX-101 has to be collected as Net Reformate; at the same time, we wish *to recycle more pure hydrogen*, stream 3, from the low-pressure flash unit, FA303/303C, through mixer MIX-100 and exchanger E-100, to the high-pressure flash unit, FA304, *as a high-purity hydrogen stream*, Net Rich H2 Gas. The ADJ-1 block adjusts stream 6 temperature to ensure that the mole fraction of hydrogen in stream Net Rich H2 Gas is 0.9406. The liquid product from the high-pressure flash unit, FA303/303C, through the mixer, MIX-101, as stream NetReformate, going to the subsequent fractionation units.

The recontacting section in Figure 5.20 is different from the process flow shown in the plant PFD in Figure 5.2. We find that we do not require as many flash stages as the real process to obtain results similar to the plant. This is expected as each of the separators of in-plant PFD are likely not operating at equilibrium conditions. This is similar to the concept of using overall efficiency in our tray-by-tray fractionation models. We acknowledge that the simplified model of the recontacting section does not report the energy consumption (especially by the secondary compressors) correctly; in practice, the total energy consumption reported by model and the plant is similar.

A well-calibrated model produces significant and repeatable predictions over a wide range of operating conditions. Tables 5.13–5.16 summarize the predictions from our model developed and calibrated according to the previous sections. Each validation case represents roughly 1-month interval of the reformer.

Yield	VALID-2	L	VALID-2	2	VALID-3	
mass%	Model	Plant	Model	Plant	Model	Plant
Rich H ₂	6.1	6.9	6.4	7.2	6.5	7.0
DA301 Ovhd. vapor	1.2	1.8	1.9	1.9	1.5	1.5
DA301 Ovhd. liquid	13.0	12.0	14.2	12.4	12.6	12.4
DA301 Bttm. liquid	79.6	79.3	77.5	78.6	79.4	79.1
DA301 Ovhd. liquid	43.4	45.1	43.4	44.1	42.6	44.6
DA301 Bttm. liquid	56.6	54.9	56.6	55.9	57.4	55.4
	VALID-4		VALID-5		VALID-6	
Yield	VALID-4	ł	VALID-5	5	VALID-6	6
Yield mass%	VALID-4 Model	l Plant	VALID-5 	5 Plant	VALID-6 Model	5 Plant
mass%	Model	Plant	Model	Plant	Model	Plant
mass% Rich H ₂	Model	Plant 7.0	Model	Plant 6.7	Model	Plant 6.8
mass% Rich H ₂ DA301 Ovhd. vapor	Model 6.3 1.7	Plant 7.0 1.7	Model 6.5 1.8	Plant 6.7 1.8	Model 6.6 1.8	Plant 6.8 1.7
mass% Rich H ₂ DA301 Ovhd. vapor DA301 Ovhd. liquid	Model 6.3 1.7 13.6	Plant 7.0 1.7 12.2	Model 6.5 1.8 11.2	Plant 6.7 1.8 12.0	Model 6.6 1.8 11.1	Plant 6.8 1.7 12.3

Table 5.13 Comparison of overall reactor model and plant yields, AAD = 0.85%.

Table 5.14 Comparison of key reactor temperature drop in model and plant values, AAD (Total) = $1.7 \degree$ C.

Reactor temperature drop	VALID-1		VALID-2		VALID-3	
(°C)	Model	Plant	Model	Plant	Model	Plant
Reactor #1	108.2	109.9	107.3	106.0	114.1	111.5
Reactor #2	61.6	63.1	60.6	59.9	67.8	64.9
Reactor #3	33.7	35.2	32.1	33.9	38.0	37.0
Reactor #4	20.5	23.3	18.7	22.3	22.7	25.5
Reactor temperature drop	VALID-4		VALID-5		VALID-6	5
Reactor temperature drop (°C)	VALID-4 Model	Plant	VALID-5 	Plant	VALID-6 	Plant
(°C)	Model	Plant	Model	Plant	Model	Plant
(°C) Reactor #1	Model 107.4	Plant 107.6	Model 113.9	Plant 112.8	Model	Plant 111.7

Reformate yields	VALID-1		VALID-2		VALID-3	
(wt%)	Model	Plant	Model	Plant	Model	Plant
Benzene (B)	7.5	7.9	7.7	7.1	7.0	6.4
Toluene (T)	21.3	20.7	22.0	21.1	20.9	19.9
Ethylbenzene (EB)	3.6	3.5	3.6	3.4	3.5	3.4
para-Xylene (PX)	5.5	5.1	5.6	5.3	5.5	5.1
<i>meta-</i> Xylene (MX)	11.9	11.1	12.1	11.7	11.8	11.2
ortho-Xylene (OX)	6.7	6.3	6.8	6.5	6.6	6.3
Higher aromatics (A9+)	40.5	38.1	39.2	41.6	41.5	43.3
Paraffins (P)	1.4	2.0	1.2	1.0	1.3	1.1
Naphthenes (N)	12.5	14.5	11.9	14.0	12.7	14.5
	VALID-4		VALID-5			
Reformate yields	VALID-	4	VALID-	5	VALID-	6
Reformate yields (wt%)	VALID	4 Plant	VALID- Model	5 Plant	VALID- Model	6 Plant
·						
(wt%)	Model	Plant	Model	Plant	Model	Plant
(wt%) Benzene (B)	Model	Plant 7.7	Model	Plant 8.1	Model	Plant 8.0
(wt%) Benzene (B) Toluene (T)	Model 8.4 22.7	Plant 7.7 21.5	Model 8.0 23.2	Plant 8.1 20.8	Model 8.0 23.2	Plant 8.0 20.5
(wt%) Benzene (B) Toluene (T) Ethylbenzene (EB)	Model 8.4 22.7 3.6	Plant 7.7 21.5 3.3	Model 8.0 23.2 3.6	Plant 8.1 20.8 3.4	Model 8.0 23.2 3.6	Plant 8.0 20.5 3.4
(wt%) Benzene (B) Toluene (T) Ethylbenzene (EB) <i>para-</i> Xylene (PX)	Model 8.4 22.7 3.6 5.5	Plant 7.7 21.5 3.3 5.3	Model 8.0 23.2 3.6 5.6	Plant 8.1 20.8 3.4 5.0	Model 8.0 23.2 3.6 5.6	Plant 8.0 20.5 3.4 4.9
(wt%) Benzene (B) Toluene (T) Ethylbenzene (EB) <i>para-</i> Xylene (PX) <i>ortho-</i> Xylene (OX)	Model 8.4 22.7 3.6 5.5 11.9	Plant 7.7 21.5 3.3 5.3 11.4	Model 8.0 23.2 3.6 5.6 12.1	Plant 8.1 20.8 3.4 5.0 11.0	Model 8.0 23.2 3.6 5.6 12.1	Plant 8.0 20.5 3.4 4.9 10.7
(wt%) Benzene (B) Toluene (T) Ethylbenzene (EB) <i>para-</i> Xylene (PX) <i>ortho-</i> Xylene (OX) <i>meta-</i> Xylene (MX)	Model 8.4 22.7 3.6 5.5 11.9 6.7	Plant 7.7 21.5 3.3 5.3 11.4 6.4	Model 8.0 23.2 3.6 5.6 12.1 6.8	Plant 8.1 20.8 3.4 5.0 11.0 6.3	Model 8.0 23.2 3.6 5.6 12.1 6.8	Plant 8.0 20.5 3.4 4.9 10.7 6.1

Table 5.15 Comparison of key model and plant yields in the reformate, AAD (total) = 1.05; AAD (aromatics) = 0.85.

The most important predictions from the reactor model are the overall yields of all the key products from the unit. In case of the reformer, they are the net gas production, LPG (DA301 Ovhd. liquid), and reformate (DA301 Bttm. liquid). The yields in the above table are from the rigorous tray-by-tray fractionation section. Therefore, the effect of downstream fractionation is also included in these predictions. We note good agreement with the plant values. The AAD (counting all products) is less than 1.0%.

The reactor performance is also a key indicator of model's calibration and prediction. We note that reactor model tracks reactors #1 to #3 with roughly the same accuracy. We observe the larger error in reactor #4 because we do not allow significant changes in individual tuning of the reactions. In the final reactor, more exothermic reactions start to dominate and push the reactor into a region where paraffin cracking becomes significant. However, even this higher deviation of outlet temperature is within the expected deviation at the plant.

As this reformer is part of a petrochemical complex, the predictions of individual molecules in the reformate are quite significant. An accurate prediction of the compositions of benzene, toluene, ethylbenzene, and xylenes

DA301 Ovhd. liquid	VALID-1		VALID-2		VALID-3	
(mol%)	Model	Plant	Model	Plant	Model	Plant
Ethane (C2)	8.7	8.3	8.3	8.1	7.5	9.5
Propane (C3)	25.4	28.3	24.9	26.8	23.6	28.0
Isobutane (<i>i</i> C4)	23.4	20.3	23.9	19.3	23.6	19.2
<i>n</i> -Butane (<i>n</i> C4)	19.6	18.0	19.4	18.4	20.1	17.5
Isopentane (<i>i</i> C5)	14.1	16.0	14.6	17.7	16.0	15.9
<i>n</i> -Pentane (<i>n</i> C5)	6.2	7.6	6.2	8.5	6.7	7.8
DA301 Ovhd. liquid	VALID-4	Ļ	VALID-5	5	VALID-6	;
DA301 Ovhd. liquid (mol%)	VALID-4 Model	Plant	VALID-5	Plant	VALID-6 Model	Plant
1						
(mol%)	Model	Plant	Model	Plant	Model	Plant
(mol%) Ethane (C2)	Model	Plant 9.4	Model 7.1	Plant 7.4	Model 7.0	Plant 8.0
(mol%) Ethane (C2) Propane (C3)	Model 8.4 26.0	Plant 9.4 29.5	Model 7.1 25.1	Plant 7.4 28.5	Model 7.0 25.0	Plant 8.0 26.9
(mol%) Ethane (C2) Propane (C3) Isobutane (<i>i</i> C4)	Model 8.4 26.0 23.5	Plant 9.4 29.5 20.6	Model 7.1 25.1 23.6	Plant 7.4 28.5 20.7	Model 7.0 25.0 23.6	Plant 8.0 26.9 19.6

 Table 5.16
 Comparison of LPG composition from model and plant, AAD = 2.0 mol%.

(collectively referred to as BTEX) validates our model and provides feed values for the downstream model for the BTX separation plant. Table 5.15 compares the predicted values and plant data. The AAD for all the components is 1.05 wt%, whereas the aromatics show a deviation of only 0.85 wt%.

A key part of this work in the development of fractionation sections for the reformate and A6 splitter. We compare the model predictions of the temperature profiles of the LPG column DA301 and reformate separator DA302. We note good agreement with plant measurements (Figures 5.22 and 5.23).

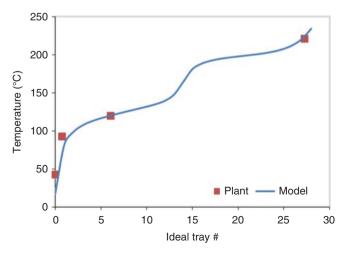
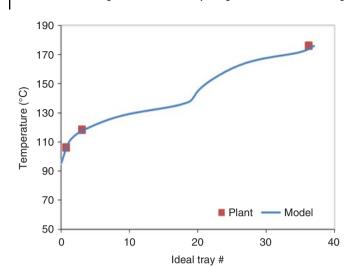



Figure 5.22 Temperature profile of column DA301.

340 5 Predictive Modeling of Continuous Catalyst Regeneration (CCR) Reforming Process

Figure 5.23 Temperature profile of column DA302.

5.12 Applications

Refiners typically face two types of operating scenarios with reformers. The first type of scenario is *the "what-if" scenario*. In this scenario, we want to predict the process performance given a change in a key process variable. For CCR reformers, the typical operating variables for a given feedstock are *the reactor temperature, feed rate (or space velocity), reactor pressure, hydrogen to hydrocarbon ratio* (H_2HC), and *activity of the catalyst*. By making changes in the process variables, refiners can make significant shifts in the product distribution.

The second type of scenario is *the "how-to" scenario*. Modern reforming units may consume a variety of different feedstocks while facing changing product demands. Due to the highly integrated nature of refineries, it is important to consider the effects of the upstream and downstream units on the reformer's performance. There are several typical questions that form the "how-to" scenario. How can we reduce benzene in the reformer outlet? How can we use (or blend in) an additional feedstock? How can we account for changes in the reformer process on an economic basis?

Refiners often rely on performance charts, empirical correlations, and historical data to study these types of scenarios. Gary *et al.* [8] and Little [6] gave examples of several types of these correlations. These methods can be unreliable because they assume a fixed feedstock and a fixed set of operating conditions. In addition, these methods often ignore the interaction between process variables and can mask optimal operating conditions. It is in this context that we consider the use of rigorous models to study various operating scenarios. Rigorous models can account for complex changes in process variables and provide detailed predictions of reactor performance.

5.12.1 Effect of Reactor Temperature on Process Yields

A typical operating scenario is the increase of reactor temperature to promote higher severity operation to produce high-octane reformate and aromatics. Figures 5.24–5.31 indicate key changes in the reformer performance as a function of WAIT in the process. In addition, we must also consider the effect of hydrogen partial pressure in the reactors. We study this effect by changing the WAIT and various values for the H₂HC ratio.

Increasing the reactor temperature through WAIT generally increases the yield of the aromatic components and the octane number. However, for a given H_2HC ratio, there is a maximum aromatic yield and octane number. This results from the increased relative extent of hydrocracking versus dehydrogenation due to the

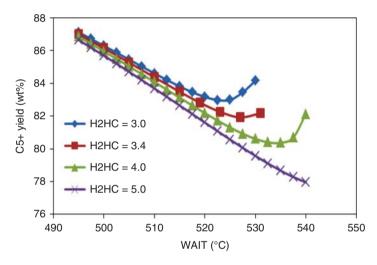
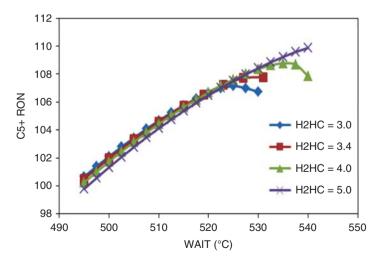
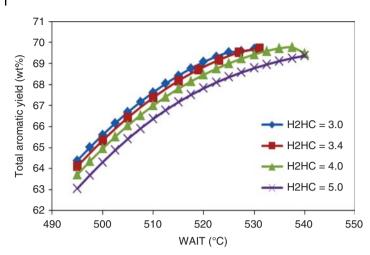




Figure 5.24 Change in C5+ yield (wt%) as a function of WAIT and H_2HC ratio (WHSV = 1.37).

Figure 5.25 Change in C5+ RON as a function of WAIT and H_2 HC ratio (WHSV = 1.37).

Figure 5.26 Change in total aromatic yield (wt%) as a function of WAIT and H_2 HC ratio (WHSV = 1.37).

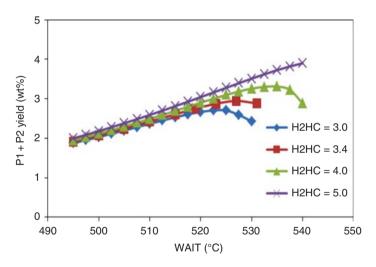
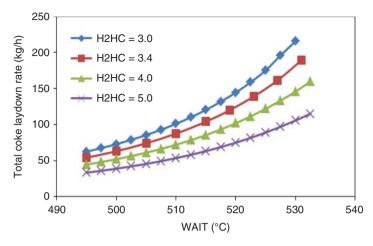



Figure 5.27 Change in light gas yield as a function of WAIT and H_2HC ratio (WHSV = 1.37).

temperature increase. Correspondingly, the C5+ yield (sum of all components greater than C4) decreases with increasing octane number.

To consider operating at high WAIT conditions, it is possible to run the reactor at much higher H_2HC ratios. Figures 5.24–5.26 show that we can reach a much higher octane number at high WAIT values. However, when the WAIT is low (compared to the octane peak), Figures 5.25 and 5.26 show correspondingly lower aromatic yield. Therefore, there must be a balance between the H_2HC ratio and WAIT to produce optimal octane number and aromatic yield. Another important consideration in increasing WAIT is production of undesirable side products and excessive coke generation. Figures 5.27 and 5.28 show the effect of WAIT on the production of dry gas (methane and ethane) and the coke laydown rate.

Figure 5.28 Coke laydown rate (kg/h) as a function of WAIT and H_2HC ratio (WHSV = 1.37).

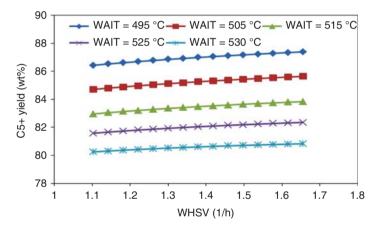
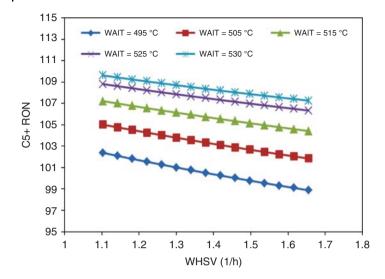



Figure 5.29 Change in C5+ yield (wt%) as a function of WHSV and WAIT.

Before we approach the octane-maximizing peak in Figure 5.25, increasing the reactor temperature increases the yield of light gas and the coke generation rate according to Figures 5.27 and 5.28. The increase in the light gas yield can be problematic. The light gas typically has little economic value and causes bottlenecks in the recycle compressors in the product separation section. Increasing the H_2 HC ratio typically does not help in reducing the light gas yield (Figure 5.27), as high partial pressure of hydrogen in the reactor promotes hydrocracking and subsequently increases the light gas yield. In addition, the coke laydown rate increases exponentially with increased temperature (Figure 5.28) and can put significant pressure on the regenerator section of the CCR. Operating at high temperatures may require a significant addition of fresh catalyst to maintain the same level of catalyst activity.

344 5 Predictive Modeling of Continuous Catalyst Regeneration (CCR) Reforming Process

Figure 5.30 Change in C5+ RON as a function of WHSV and WAIT.

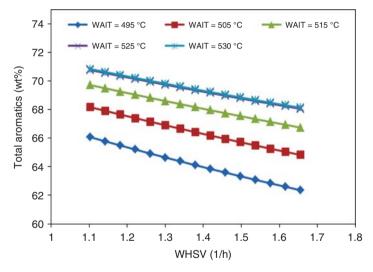


Figure 5.31 Change in total aromatics yield as functions of WHSV and WAIT.

5.12.2 Effect of Feed Rate on Process Yields

The reactor temperature is a primary method of shifting the reactor yield to produce more valuable product distributions. Another process variable is the feed rate to the unit. The feed rate cannot take on drastically different values due to the demands of other units in the refinery. However, small changes in feed rate can influence the product distribution. This occurs because of the change in contact time with the catalyst. Higher contact times increase the conversion of feed to products. Figures 5.29–5.31 show the change in key reactor yields as functions of weight hourly space velocity (WHSV) and the WAIT. The figures show that as WHSV increases (feed rate increases), the conversion to aromatics decreases and the corresponding octane number decreases. This is consistent with our expectation of lower contact time. In general, the impact of changing feed rate is less than changing the reactor temperature. For significant changes in the RON and total aromatic yield, the reactor temperature is still the primary driver. In Figures 5.30 and 5.31, the lines for high WAIT approach a minimum slope, as we are approaching the octane peak for the baseline H_2HC ratio.

5.12.3 Combined Effects on Process Yields

Therefore, changes in octane number and total aromatic yield reflect the coupled effects of feed rate and reactor temperature. We can use the model to provide reactor temperatures that correspond to a fixed RON and varying feed rate. Figure 5.32 shows the relevant WAIT and WSHV to obtain a given C5+ RON. We note that at high C5+ RON operation and high WHSV, the required reactor temperature increases significantly. As shown in Figures 5.27 and 5.28, this increases the unwanted dry gas yield and produces an excessive amount of coke. By using Figure 5.32, we can determine how to change process variables to achieve desired C5+ RON.

We show a related study (Figure 5.33), indicating how the C5+ yield changes with increasing values for C5+ RON. Figure 5.33 helps the refiner identify the range of values that H_2HC ratio may take to obtain the same C5+ RON. Combined with Figure 5.32, we can identify possible operating windows for WAIT, H_2HC , and WHSV for a given feedstock composition.

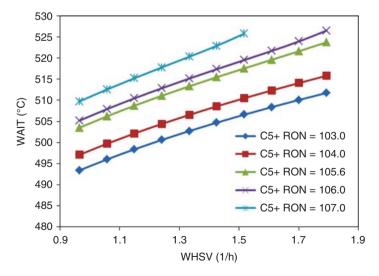
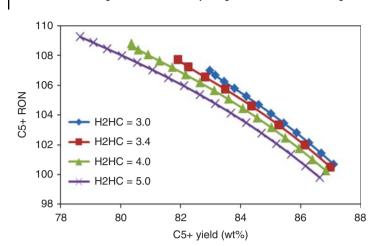



Figure 5.32 Corresponding WAIT and WHSV to obtain various C5+ RON in reactor products.

346 5 Predictive Modeling of Continuous Catalyst Regeneration (CCR) Reforming Process

Figure 5.33 Effect of C5+ yield (wt%) on C5+ RON.

5.12.4 Effect of Feedstock Quality on Process Yields

All the previous studies involve a uniform feedstock composition. In practice, however, feed composition can change significantly over the course of regular refinery operation (see Figure 5.18). Therefore, it is important to study changes in product distribution when the feed composition varies. The benzene content of reformate is of particular interest to refiners. Recent regulations have imposed strict limits on the amount of benzene present in the gasoline pool. As the reformer is the primary source of benzene, we look for ways to reduce the benzene in reformate.

The primary contributors to benzene and toluene are methylcyclopentane (MCP) and methylcyclohexane (MCH). Various authors have commented on the significance of this pathway to produce aromatics [48, 49]. We study the effect of the MCP composition in the feed on the yields of benzene, toluene, and xylenes in Figure 5.34. We use the standard operating parameters as with other

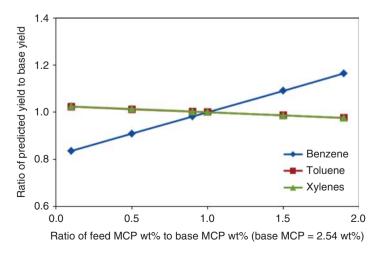


Figure 5.34 Effect of changing feed MCP composition on aromatic yields.

case studies in this work. Figure 5.34 shows that increasing MCP concentration has a strong effect on the benzene yield in the reformate. In addition, MCP composition has little effect on the composition of the higher aromatics.

In practice, a refiner does not directly control the feed composition of MCP to the unit. Typically, we blend in additional feed that has an IBP greater than 95–100 °C. Feeds with IBPs greater than 95–100 °C contain little amounts of MCP and this ratio can be used to control the benzene yield of the unit. By contrast, a refiner who wants to increase the production of benzene (to supply a chemical process) may need to increase the feed of MCP instead of operating the reformer at increasing severity and converting reactor products to benzene. Using a rigorous model can help us find and understand these types of trade-offs.

5.12.5 Chemical Feedstock Production

Many reformers are now part of integrated petrochemical complexes and produce aromatics (benzene, toluene, and xylenes or BTX) to feed into chemical processes for polystyrene, polyesters, and other commodity chemicals. As such, it is important to consider how models can help in optimizing the BTX operation. Model developers and users must also be aware that complete BTX operation may not be the most profitable reformer operation scenario. Economic analyses are required to justify changes from a gasoline-producing scenario to a BTX-producing scenario.

In general, many of the case studies show in earlier sections (relating to higher-octane operation) apply to the BTX scenario as a well. Figures 5.25 and 5.26 show the relationship between octane number and aromatic yield. We repeat some of the case studies shown in previous sections, showing the effect of process variables on BTX yields. In Figures 5.35 and 5.36, we take the yields

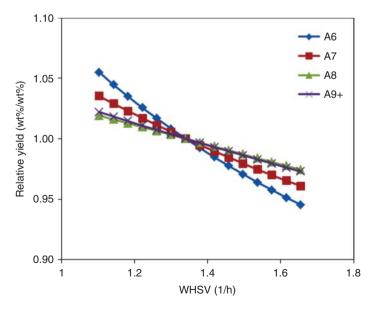
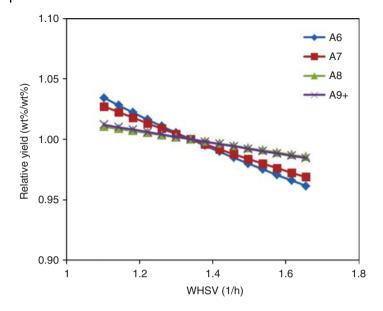



Figure 5.35 Relative yields of aromatic components (where A6 refers to benzene, A7 refers to toluene, and A8 refers to xylenes) as a function of WHSV and WAIT = $495 \degree$ C.

Figure 5.36 Relative yields of aromatic components (where A6 refers to benzene, A7 refers to toluene, and A8 refers to xylenes) as a function of WHSV and WAIT = 525 °C.

of aromatic yields at WHSV of 1.34 and H_2HC ratio of 3.41 as base yields. Table 5.17 shows the base yields at several temperatures.

As the reaction temperature (WAIT) increases, the yields of aromatic components increase significantly. However, at higher temperatures (greater than 520 °C), the H₂HC ratio is not sufficient to prevent undesired hydrocracking reactions. These reactions will decrease the yields of higher aromatics and favor light gas production. Table 5.17 shows that the rate of increase in the production A7 and higher components decreases rapidly. In the case of A9+ yield, we actually show a decrease in yield even though the reactor is operating at higher temperatures. In this case, the refiner may choose to increase H₂HC ratio to continue producing high yields of aromatic components at the expense of increased recycle compressor duties and increased severity during catalyst regeneration. If the recycle compressor is already operating close to the design limit, then an extensive (and costly) revamp may be required to produce additional aromatics. In such a situation, the use of a model to predict alternative scenarios can be very cost-effective.

Table 5.17Base yields of aromatic components at
various WAIT and H_2HC ratio of 3.4.

WAIT	A6 yield (wt%)	A7 yield (wt%)	A8 yield (wt%)	A9+ yield (wt%)
495 °C	4.15	15.90	21.70	22.63
515 °C	6.09	17.13	22.16	23.01
525 °C	6.88	17.56	22.17	22.94

Another important issue is the effect of feed rate (WHSV) on the yield of key aromatics. We note that at lower reaction temperature (WAIT), the effect of WHSV is more pronounced. High feed rates and low reaction temperatures tend to make the process more selective toward toluene (see Figure 5.35). At higher temperatures and high feed rates, as Figure 5.36 shows, there is little difference between the yields of benzene and toluene. It is possible to take advantage of these differences in selectivity to help favor one aromatic component over another. In addition, changes in aromatic precursors (such as MCP) can also significantly shift the aromatic production profile. Figure 5.34 shows the effect of feed composition in the previous section in the context of reducing benzene content in gasoline.

5.12.6 Energy Utilization and Process Performance

The modern refinery is not only concerned with meeting product specifications and demands but also the energy and utility (cooling water, power) consumption of various units. Table 5.18 lists some of the utility consumption data based on various catalytic reforming processes.

In the reforming process, significant energy-consuming steps are interstage heating and recycle compression. About 65–80% of the energy input into the reformer drives the fired heaters responsible for interstage heating. Modest changes in the operation of these fired heaters can provide significant energy savings. Improving the operation of the fired heaters directly can be a significant undertaking [50] and is outside the scope of this work. However, we can study the effect of changing the reactor inlet temperatures (fired heater outlet temperatures) on the product yield and required heater duty.

We consider the scenario in Table 5.19, where the reactor inlet temperature for each reactor bed is fixed to certain values. The values in parenthesis indicate change from the base case. We change the reactor inlet temperatures by values given in the table for four subsequent model runs. We choose these values

Fuel (BTU/barrel of feed)	200e3-350e3
Power (kW-h/barrel of feed)	0.6-6
Cooling water (gal/barrel of feed)	40-200

Table 5.18	Utility consumption data for catalytic
reformers [5, 14].

Scenario	Bed #1(°C)	Bed #2(°C)	Bed #3(°C)	Bed #4(°C)	WAIT (°C)
Base	515.9	513.6	513.6	515.0	514.5
Case-1	510.9 (-5.0)	513.6 (0.0)	513.6 (0.0)	515.0 (0.0)	514.0
Case-2	510.9 (-5.0)	513.6 (0.0)	513.6 (0.0)	510.0 (-5.0)	511.6
Case-3	515.9 (0.0)	508.6 (-5.0)	508.6 (-5.0)	515.0 (0.0)	512.5
Case-4	515.9 (0.0)	513.6 (0.0)	513.6 (0.0)	515.0 (-5.0)	512.2

Table 5.19 Reactor inlet temperature deviations.

Scenario	Total fired duty (kJ/kg)	Aromatic yield (wt%)	C5+ RON	C5+ yield (wt%)	Fired duty deviation (%)
Base	1001.4	66.26	101.1	91.52	0.00
Case-1	996.0	66.08	100.9	91.59	-0.54
Case-2	987.0	65.76	100.4	91.74	-1.92
Case-3	987.8	65.82	100.5	91.74	-1.35
Case-4	987.5	65.94	100.7	91.67	-1.39

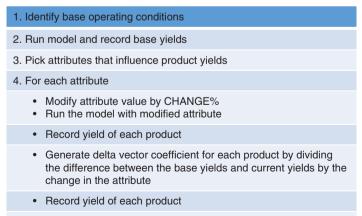
Table 5.20 Key model yields for fired duty case study.

to highlight the effect of reactor inlet temperatures on the initial, final, and intermediate beds independently. The results of this case study appear in Table 5.20.

Although initially the fired duty reductions appear quite small (0.5–1.4%), this may lead to significant energy savings in fuel costs for the fired heater. Vinayagam [51] stated that even a 1% reduction in fuel consumption can give significant cost savings. We note that these energy savings appear because of small octane loss and aromatic yield loss. If the reformer is already operating at high severity, this type of energy analysis may allow for some flexibility in the operating costs of the unit. In addition, this type of analysis serves as a starting point for a larger heat integration analysis to understand how to reduce energy consumption of the overall unit.

5.13 Refinery Production Planning

Production planning is an important activity in modern refineries. The modern refinery is a combination of many complex units such as catalytic reforming, FCC, and hydroprocessing. Although it is possible to tune each unit to an optimal yield, the optimum yield of a particular unit may not reflect a true optimum because of the demands and prices for the wide range of product that the refiner produces. Therefore, it is important to consider each unit in the context of the whole refinery. *Production planning* refers to the activity of choosing feedstock to refinery (and its constituent units) that produces optimal economic benefit while meeting equipment, business, and regulatory constraints.


The refinery production planning problem has been traditionally solved using linear programming (LP) techniques. LP is a mathematical technique that maximizes a linear objective function of many variables with respect to linear constraints on these variables. Bazaraa *et al.* [51] have described the theory and applications of LP techniques extensively. It is well known that LP techniques have several deficiencies, which include linearization of inherently nonlinear process behavior. This often results in finding local optimum instead of a global optimum. Many authors have worked on several different techniques to use non-linear programming in refinery production planning. However, LP techniques are still popular because they are easy to use and incorporate into existing refineries.

A refinery LP and linear unit model represents a set of linear correlations that predict yield given an average yield value and changes in the certain operating variables. In this section, we discuss how to apply the rigorous reforming model in the context of a linear unit model. The key information for a linear model of a nonlinear process is the delta-base vector.

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} (PREDICTION) = \begin{bmatrix} \overline{y_1} \\ \overline{y_2} \\ \vdots \\ \overline{y_m} \end{bmatrix} (BASE) + \begin{bmatrix} \frac{\Delta y_1}{\Delta x_1} & \cdots & \frac{\Delta y_1}{\Delta x_n} \\ \vdots & \cdots & \vdots \\ \frac{\Delta y_m}{\Delta x_1} & \cdots & \frac{\Delta y_m}{\Delta x_n} \end{bmatrix} \times (DELTA-BASE) \cdot \begin{bmatrix} \Delta x_1 \\ \vdots \\ \Delta x_n \end{bmatrix} (DELTA)$$
(5.25)

The delta-base relates the prediction of a new reactor yield (PREDICTION, y_m) given an average starting prediction value (BASE, y_m) and the change in operating variables (DELTA, Δx_n). We note that this delta-base matrix ($\Delta y_n / \Delta x_n$) is essentially the Jacobian matrix for our nonlinear process model centered on a given operating point.

Refiners often develop the linear yield correlations for the LP in a simple fashion. The average value of historical unit yields over a significant period of time (e.g., one operating quarter) form the base yield of the unit. We may calculate the delta-base from published or internal refiner correlations for the given unit. Alternatively, we may generate the delta-base vectors from the change in yields recorded while operating conditions of the unit change. In either approach, the base yield and delta-base matrix represent average values (fixed to certain operating conditions) and may not correctly reflect the true operation of unit. In this work, we use the rigorous nonlinear model to supply the base and delta-base values. Figure 5.37 (previously shown as Figure 4.36) illustrates the process to generate the delta-base vectors.

5. Export delta vectors to LP/PIMS software

Figure 5.37 Process to generate delta-base vectors from rigorous model.

Another important consideration is the choice of operating variables to manipulate in the delta vector. It is not useful to map the entire nonlinear model with all of its variables into the LP. We must choose key operating variables that we can track throughout the whole LP. Typically, each unit model only includes the feedstock characteristics. For catalytic reforming, the choice of operating variables depends on how the refiner deals with the reformer products. If the reformer is primarily a generator of high-octane gasoline for the gasoline pool, it is sufficient to include only a few feed-quality parameters such as N + 2A and feed IBP (initial boiling point). However, if the reformer is a source of aromatics destined for a chemical complex, there may be a cause to include additional feed-quality descriptions such as feed content of cyclopentane (CP) and methylcyclopentane (MCP).

In this work, we restrict ourselves to the gasoline-producing reformer. We choose the feed N(naphthenes content) + 2A (aromatics content) as the single input variable and the output variables as yields of hydrogen, dry gas yield, and yield of the reformate. We also generate the base and delta-base vectors for several cases of varying C5+ reformate RON. Table 5.21 shows the relevant yields of the reactor model. The feed composition for the given N + 2A corresponds to measured plant data. We fix the RON of the C5+ reformate and calculate the required WAIT during model execution.

We use the yield information from the rigorous model in Table 5.21 to construct the LP yield vectors. The base vector is the average of the yields in each RON case. We choose the average value of N + 2A (64) to compute the Δx_n . We then use one of the N + 2A data points to compute the delta-base vector. We show the steps and results of this calculation for RON 102 case in Table 5.22. We compare the results of the linear yield vector predictions and model predictions for an intermediate N + 2A value of 66.6 in Table 5.23. Table 5.24 shows the delta-base calculated for all the RON cases.

WAIT (°C)	501.1	500.8	508.5	508.1	517.2	516.5
N + 2A	64	72	64	72	64	72
Product			Yield	(wt%)		
Hydrogen	2.96	3.13	3.03	3.23	3.10	3.31
Methane	0.59	0.47	0.66	0.53	0.75	0.61
Ethane	1.76	1.41	1.98	1.59	2.25	1.82
Propane	3.38	2.86	3.87	3.27	4.46	3.77
Isobutane	3.36	2.63	3.81	2.99	4.35	3.43
<i>n</i> -Butane	3.10	2.46	3.24	2.58	3.36	2.70
C5+ 102 RON reformate	84.82	87.00	-	-	-	_
C5+ 104 RON reformate	_	_	83.37	85.78	-	-
C5+ 106 RON reformate	_	-	_	-	81.69	84.34
Other	0.03	0.02	0.03	0.03	0.04	0.03

Table 5.21 Reformer yields at various N + 2A and C5+ reformate RON from rigorous model.

		Dev. to N+2A = 72	Dev. to N+2A = 64
Avg. N+2A	68	4	-4
	(wt%)	Delta-base	Prediction
Hydrogen	3.05	0.022	2.96
Methane	0.53	-0.014	0.59
Ethane	1.59	-0.043	1.76
Propane	3.12	-0.066	3.38
Isobutane	3.00	-0.091	3.36
<i>n</i> -Butane	2.78	-0.079	3.10
Reformate	85.91	0.273	84.82

Table 5.22 Calculating the delta-base vectors for theC5+ RON = 102 case.

 Table 5.23
 Comparison of yield predictions from rigorous model and LP yield model.

	Rigorous model prediction	LP vector prediction	AAD
N+2A	66.6	66.6	
	(wt%)	(wt%)	
Hydrogen	3.18	3.17	0.01
Methane	0.73	0.71	0.02
Ethane	2.17	2.11	0.06
Propane	4.45	4.24	0.21
Isobutane	4.14	4.05	0.09
<i>n-</i> Butane	3.16	3.14	0.02
Reformate	82.13	82.55	0.41

 Table 5.24
 Delta-base vectors for different RON cases.

	RON = 102 Base	N + 2A = 68 Delta-base	RON = 104 Base	N + 2A = 68 Delta-base	RON = 106 Base	N + 2A = 68 Delta-base
Hydrogen	3.05	0.022	3.13	0.024	3.20	0.027
Methane	0.53	-0.014	0.60	-0.016	0.68	-0.018
Ethane	1.59	-0.043	1.79	-0.049	2.04	-0.055
Propane	3.12	-0.066	3.57	-0.075	4.12	-0.086
Isobutane	3.00	-0.091	3.40	-0.103	3.89	-0.116
n-Butane	2.78	-0.079	2.91	-0.081	3.03	-0.082
Reformate	85.91	0.273	84.57	0.301	83.01	0.331

We can repeat the process outlined in Figure 5.37 and Table 5.24 for any number of feed composition variables. In general, for typical process changes in feed quality (10–15%), the LP yield vectors can provide reasonable predictions for the process yield. A potential problem is that LP yield prediction can be poor when operating close to process minima or maxima (such as octane number at fixed H₂HC ratio). In addition, N + 2A may not be a detailed descriptor for feedstock changes. If these problems occur in practice, the LP may require more frequent updates to reflect the true unit operation.

5.14 Workshop 5.1 – Guide for Modeling CCR Units in Aspen HYSYS Petroleum Refining

5.14.1 Introduction

In Sections 5.14.1–5.17, we show how to organize data, build and calibrate a model for a catalytic reformer using Aspen HYSYS Petroleum Refining. We discuss some key issues in model development, particularly on how to estimate missing data required by Aspen HYSYS Petroleum Refining. We divide this task into four workshops:

- a) Workshop 5.1 Building a basic catalytic reformer model
- b) Workshop 5.2. Calibrating the basic catalytic reformer model
- c) Workshop 5.3. Building a downstream fractionation system
- d) Workshop 5.4. Performing case study to identify different RON scenarios.

5.14.2 Process Overview and Relevant Data

Figure 5.2 in Section 5.3 shows a typical CCR unit that we use to build the model in question. We also build models for the remixing and hydrogen recontactor section of this flowsheet. Tables 5.25–5.29 list some typical operating data for this unit.

ASTM D86		(wt%)	Р	Ν	Α
IBP	78	C2		_	_
5%	90	C3		-	-
10%	96	C4	0	_	-
30%	108	C5	0.78	0.18	_
50%	119	C6	5.4	5.01	0.91
70%	133	C7	10.72	12.05	2.56
90%	152	C8	9.62	13.68	0.93/0.67/1.74/0.71
95%	160	C9	8.13	11.14	2.61
EBP	170	C10+	6.42	6.74	-
S. G.	0.745	Sum	41.07	48.8	10.13

Table 5.25	Feed	properties.
------------	------	-------------

Comp. (vol%)	Recycle H ₂	Rich H ₂	DA301 top vapor	DA301 top liquid
H ₂	86.72	94.06	36.89	0.66
CH_4	2.61	2.40	5.64	0.44
C_2H_6	2.86	1.78	18.50	8.29
C_3H_8	3.33	1.10	22.04	28.32
C_3H_6	0.01	0.00	0.00	0.12
iC_4H_{10}	1.56	0.31	7.82	20.32
nC_4H_{10}	1.24	0.19	5.53	18.02
iC_5H_{12}	1.08	0.11	2.56	15.95
nC_5H_{12}	0.59	0.05	0.95	7.62
$C_4 =$			0.07	0.26

 Table 5.26
 Product composition profile.

 Table 5.27
 DA301 liquid product composition.

ASTM D86		(wt%)	Р	Ν	A
IBP	74	C2		_	_
5%	85	C3		_	-
10%	94	C4	0	-	-
30%	112	C5	0	0.27	-
50%	128	C6	0.2	0.53	7.925
70%	145	C7	7.22	0.65	20.72
90%	165	C8	5.87	0.54	3.4/5.11/11.1/6.3
95%	173	C9	1.17	_	20.62
EBP	208	C10+	-	_	8.75
SG	0.83	Sum	14.46	1.99	83.55

Table 5.28Overall product flow rate and
yield.

Stream	Rate (tons/h)
Feed	175.9
Net rich ${\rm H_2}$	12.4
DA301 Ovhd. vapor	3.3
DA301 Ovhd. liquid	21.7
DA301 Bttm. liquid	138.5

Reactor bed	Length (m)	Loading (kg)	Inlet temperature (°C)	Δ <i>Τ</i> (°C)
#1	0.54	1.275e4	516.0	110.4
#2	0.69	1.913e4	513.6	64.2
#3	0.96	3.188e4	513.1	36.4
#4	1.41	6.375e4	515.0	23.1

Table 5.29 Reactor configuration.

5.14.3 Aspen HYSYS and Initial Component and Thermodynamic Setup

We start by opening Aspen HYSYS. The typical path to Aspen HYSYS is to enter the Start \rightarrow Programs \rightarrow AspenTech \rightarrow Aspen Process Modeling v9.0 \rightarrow Aspen HYSYS (shown in Figure 5.38). We save the simulation file as *Workshop 5.1.hsc*.

The first step in creating the model is the selection of a standard set of components and a thermodynamic basis to model the physical properties of these components. When we create a new simulation, we must choose the components and the appropriate thermodynamic model. Components may be added manually through the Add button shown in Figure 5.39. However, we have a predetermined set of components for the reformer model.

To import these components, we click "Import" and navigate to the directory location, "C.\Program Files\AspenTech\Aspen HYSYS V9.0\Paks" and select the "CatRefIsom.cml" as the component list (Figure 5.40). The path shown reflects a standard installation of Aspen HYSYS Petroleum Refining software.

Once we import a component list, HYSYS will create a new component list called "Component List-1". We can view the elements of this component lists

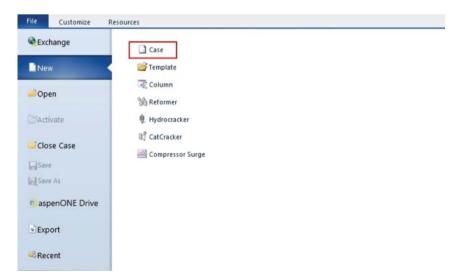


Figure 5.38 Initial start-up of Aspen HYSYS.

5.14 Workshop 5.1 – Guide for Modeling CCR Units in Aspen HYSYS Petroleum Refining 357

File Home View Customize Resour	ces		Search aspen0	ONE Exchar	nge	P & U
Kott Component Lists Clipboard Clipb	nt Kap Components	Petroleum Assays Refining 5	 Hypotheticals Manager Convert Remove Duplicates Hypotheticals 			PVT Data
Properties Component List	s × +					
All Items Component Lists	ist Name		Source		As	sociated Fluid P
Petroleum Assays Assays Component Maps User Properties						
Add Add	Сору		Delete			

Figure 5.39 Adding a component list.

Component Fluid		mondal HI area	File Selection for Importing	a Component List	-0	
Paste Lists Packages Lise coard Navigate	Properties	🕞 🛞 - 🕇 📙 = Local Disk	(C) + Program Files (x86) + AspenTech + Aspe	and the second se	- C	Search Paks
	mponent Lists +	C C T A = LOCAL Disk	(c) + Program Hies (xee) + Aspentiech + Aspe	n mars vito + Pais	• 0	· Search Paks
tente -		Organize • New folder				1 · 1
Component Lists	List Nam	Downloads	Name	Date modified	Type	Size
Fluid Packages		23 Recent places	Assay Components Celsius to 850C.cml	10/6/2015 6:01 AM	CML File	222 KB
Petroleum Assays		My Documents	Assay Components Celsius to 1150C.cml	10/6/2015 6:01 AM	CML File	258 KB
Reactions Component Maps		Desktop Aspen Plus V9 Favorites	Assay Components Fahrenheit to 1500F.c.,	10/6/2015 6:01 AM	CML File	323 KB
User Properties		Aspen Plus V9 Favorites	Assay Components Fahrenheit to 2000F.c	10/6/2015 6:01 AM	CMI, File	362 KB
our repeties		Aspen Properties V8.8 Favorites	CatRellsom.cml	3/13/2015 4:13 PM	CML File	1,205 KB
		Aspen Properties V9 Favo	FCC Components Celsius.cml	10/9/2015 6:01 AM	CMLFile	261 KB
		Aspen Properties va Pavo	FCC Components Fahrenheit.cml	10/9/2015 6:01 AM	CML File	346 KB
		Cal Libraries	HCR.cml	11/4/2015 6:01 AM	CML File	1,609 KB
		Documents	HCR_extended.cml	3/13/2015 4:13 PM	CML File	1,868 KB
		Music	Hydrocracker Components Celsius.cml	10/9/2015 6:01 AM	CML File	242 KB
		S. Pictures	Hydrocracker Components Fahrenheit.cml	10/9/2015 6:01 AM	CML File	284 KB
		L Videos	petroleumComp1_AspenProp.cml	3/13/2015 4:13 PM	CML File	277 KB
		is notes	petroleumComp1_extended_AspenProp.c	3/13/2015 4:13 PM	CML File	942 KB
		Computer	Reformer Components Celsius.cml	10/9/2015 £01 AM	CML File	240 KB
		Local Disk (C)	Reformer Components Fahrenheit.cml	10/9/2015 6:01 AM	CML File	283 KB
		DATA (D)	UpstreamComps.cml	9/30/2015-6:01 AM	CML File	31 KB
		🕰 Motuoria 🤍				
	Add -	File name: Cati	afferen and		~	Component Lists (*

Figure 5.40 Importing reformer component list.

by selecting "Component List-1" and clicking on "View" in the Simulation Basis Manager (Figure 5.41). We can add more components or modify the order of the elements in the component list. We note that the standard reforming component list is quite complete and model most refining processes. The rigorous reforming model does not predict components that are not part of the "CatReform.cml" list. However, these additional components may be used in production fractionation models associated with the reformer model.

The next step is the settings of a "Fluid Package" for this model. The "Fluid Package" refers to the thermodynamic system associated with the chosen list of components. After we import the component list, Apsen HYSYS will automatically set up a fluid package, which is named "REFSRK" (Figure 5.42). The reformer

Properties	Petroleum Assays Compo	nent List + 1 × +					
All Items	* Selected Henry Comps Co	mponent Groups Enterprise	Databases				
Component Lists Component List - 1 Puid Packages	Source Databank: Aspen Pro	perties			Select:	Components	
REFSRK	Component	Туре	Group	1	Search		
Reactions	H2	Pure Component		2			
Component Maps	P1	Pure Component		11			
User Properties	P2	Pure Component					
	OL2	Pure Component					
	P3	Pure Component		Find			
	03	Pure Component					
	IP4	Pure Component					
	NP4	Pure Component					
	P4	User Defined Hypothe	HypoGroup3	Remove			
	04	Pure Component					
	IP5	Pure Component					
	NP5	Pure Component					
	P5	User Defined Hypothe	HypoGroup3				
Properties	05	User Defined Hypothe	HypoGroup3				
Properties	5N5	Pure Component					

Figure 5.41 Initial component list for reforming process.

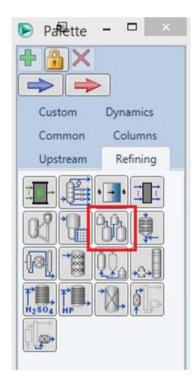
All Items	* Set Up Binary Coeffs Phase Handling	Prop Set Diagnostics Notes	
Component Lists Fluid Packages REFSRK	Package Type: Aspen Properties	Component List Selection	Component List - 1 (Aspen Pro
Caj Petroleum Assays Caj Reactions Caj Component Maps Caj User Properties	Amines APISour B-Pizer BVR-LS BVR-LS BWR-LS BWR-LS BWRS Chos Seoder COSMOSAC Electrolyte NRTL. ENRTL-HG	erty Package Filter Free-Water Meth Water Solubility:	-
Properties	ENRTL-RK FACT GERG2008	No Parameters req	ired for the selected Property Package

Figure 5.42 Select thermodynamics for fluid package.

system is mostly hydrocarbons and consequently the Soave–Redich–Kwong equation of state is sufficient. We discussed the implications of the process thermodynamics in Section 1.9. For the reformer model, equation of state or hydrocarbon correlation methods (Grayson–Streed, etc.) can sufficiently model the process.

5.14.4 Basic Reformer Configuration

The initial flowsheet presents a blank interface where we can place different objects from the Object palette shown in Figure 5.43. The initial tool palette only shows typical unit operations and does not show the advanced Aspen HYSYS Petroleum Refining objects. We use both toolbars to build the complete reformer model. We can bring up the advanced palette by pressing F6.


We select the Reformer icon from the Refining Reactors palette, click on the Reformer icon, and place the icon the flowsheet. Placing the icon invokes the several submodels that prepare the flowsheet for additional objects and creates a large depiction of the reformer object on the flowsheet (Figure 5.44).

5.14 Workshop 5.1 – Guide for Modeling CCR Units in Aspen HYSYS Petroleum Refining 359

ARotate*	Dynamics View Customize Resources Attach Auto Position All [] Size Auto Attach Break Connection H_Zoom Auto Position _ Swap Connection @ Pan Flowsheet /s	Flowsheet/Modify		Palette -	rfault Colour Scheme +
Simulation <	Economics	Energy			6
All Items *	Capital Cost Utility Cost	Avai	lable Energy	Sav Upstream	Refining
🔯 Workbook 📑 UnitOps	USD USD/Year		w %	of	Oynamics Columns
Co Streams Co Stream Analysis Co Equipment Design Co Data Tables Co Data Tables Co Strip Charts Co Case Studies Co Data Fits	Flowsheet Case (Main) - Solver Active × +				
C Properties	<				Ì. ₽Œ
Safety Analysis	Messages				
Solver (Main) - Ready				179% Θ	

Figure 5.43 Refining reactor palette.

Figure 5.44 Reformer icon in refining reactors palette.

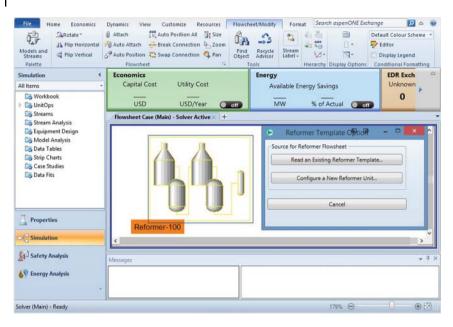


Figure 5.45 Initial reformer window.

The first step is to choose whether to use a reformer template or configure a new unit. Aspen HYSYS has several reformer templates that reflect the popular types of industrial reformer configurations. Figure 5.45 shows the initial window when placed a Reformer object on the Flowsheet. If we choose a template, we do not have to assign the reactor dimensions and catalyst loadings. However, in this workshop, we will build a reformer from scratch, so we choose "Configure a New Reformer Unit."

The reformer configuration requires choosing the type of reformer, number of reactors, and their dimensions and catalyst loadings for each reactor. In addition, we may also specify additional downstream fractionation equipment such as hydrogen recontactor and stabilizer tower. However, we note that the option of including the stabilizer tower actually corresponds to a *simplified* model for fractionation that may not be appropriate for *a detailed and integrated process flow-sheet*. We recommend building a rigorous flowsheet based on standard Aspen HYSYS fractionation objects. In Figure 5.46, we select a CCR reformer with four reactor beds and click "Next>."

The primary catalyst configuration is the dimension of the catalyst bed and associated catalyst loading. Here, the catalyst loading refers to the amount of catalyst exposed to feed in each reactor bed. The length refers to the distance the feed travels radially through the catalyst bed. The most important parameters are the catalyst loadings for all reactor beds and it is important to obtain accurate values from industrial data. An important operating variable of a reformer system is *the WAIT* of each reactor bed or section. We find WAIT by summing up the inlet temperature of each bed that is multiplied (weighted) by the ratio of the catalyst in the given bed (see Figure 5.47) to the total catalyst. Likewise, we find *the WABT*

>	Reformer Co	onfiguration	Wizard	6 0	-	
Type of Unit		leaction Section			1	
Continuous Regeneration		3 Beds	🔘 5 Bed	s		
Semi-Regen		4 Beds	C 6 Bed	s		
Include Hydrogen Reconta	actor					
Include Stabilizer Tower						

Figure 5.46 Basic reformer configuration.

	Bed 1 Bed 2 Bed 3 Bed 4 Reaction Path Length [m] 0.5400 0.6910 0.9560 1.407	atalyst Void Fraction	0.60	and a second sec		
leaction Path Length [m] 0.5400 0.6910 0.9560 1.407	leaction Path Length [m] 0.5400 0.6910 0.9560 1.407	atalyst bulk Density (kg/m:	500			
			Bed 1	Bed 2	Bed 3	Bed 4
		Reaction Path Length [m]	0.5400	0 6010	72.10.200.20	
				0.0910	0.9560	1.407
		Catalyst Weight [kg]	1.275e+004			

Figure 5.47 Reactor dimensions and catalyst loadings.

by summing up the temperature of each bed that is multiplied (weighted) by the ratio of the catalyst in the given bed to the total catalyst.

We use the data given in Table 5.29. The values shown in Figure 5.47 may not be applicable to all CCR reformer plants but provide a good starting point. The void fraction and catalyst density are not that significant for product predictions, but they affect predictions of pressure drop across the reactor beds. The default values given are acceptable for many types of reformers.

The last step in reformer configuration is to choose option 2 for calibration factors for the model as shown in Figure 5.48. The calibration factors refer to the various reaction and process parameters that we will calibrate to match plant performance and predict new operating scenarios. The default values given are based on calibrations from a variety of sources. In general, these factors give a reasonable set of initial guess that we can refine through the calibration process. For the initial model run, we choose the default and click "Done."

5.14.5 Input Feedstock and Process Variables

Figure 5.49 shows the primary control window for the reformer model. Through this window, we can enter feed and process information and view model results. To manipulate the feedstock information, we must drill down to the Reformer submodel. We enter the Reformer submodel by clicking on "Reformer" environment.

Figure 5.50 shows the reformer submodel. We note that the Net Hydrogen and Net Liquids streams are already attached to the reformer model. The reformer model depiction appears red because there is not enough information to solve

•	Reformer Configuration Wizard 🔍 📴		×
to	When DONE button is clicked, goes to calibration environment generate a new set of calibration factors. (Recommended) When DONE button is clicked, goes to simulation environment		
	o run a simulation case. Please select a calibration factor set below. Default		
			-
< Prev	Done Calibration Factors (3 of 3)	Close	

Figure 5.48 Choose calibration factors.

5.14 Workshop 5.1 – Guide for Modeling CCR Units in Aspen HYSYS Petroleum Refining 363

		Catal	ytic Reformer: R	eformer-100	0 0	-	
esign Reactor S	ection Stabilizer Tov	ver Results					
Design	Name Reform	er-100			H2 Product		
Connections Calibration Factors			nternal		Transition	1	
Votes		and the second se	nternal H2 @Reformer-100	External	Petroleum Transition	4	
00752	0	- NEL P	na ignelonner too	cemptys	reuoleum mansicului	-	
	\rightarrow	A.					
		f	1				
			⊾>	Net Liquid	Transition		
				<pre>cc Stream >></pre>	Petroleum Transition		
				s s ou com >>			
	Ļ	IJ IJ		C Sucharia S S			
	Reformer Feeds	IJ IJ		C Sucan 22			
	Reformer Feeds	External	Feed Type	PONA Basis			
			1.2.2.2.2.2. 2. 3.7.1		Feed Type Library		
	internal		1.2.2.2.2.2. 2. 3.7.1				
	internal		1.2.2.2.2.2. 2. 3.7.1				
	internal		1.2.2.2.2.2. 2. 3.7.1				
	internal		1.2.2.2.2.2. 2. 3.7.1				

Figure 5.49 Primary control window for reformer.

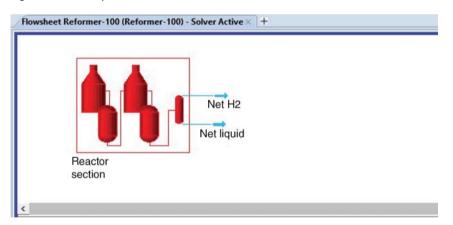


Figure 5.50 Reformer submodel flowsheet.

the model. When enough information is available, the depiction turns yellow and we can proceed to solve. We manipulate the feedstock information by double-clicking on the reactor submodel icon to bring up the reactor submodel window.

Figure 5.51 shows the Feed Data tab from the Reformer submodel. The Feed Type is a basic set of relationships and initial values for all the kinetic lumps in the reactor model. Aspen HYSYS uses bulk property information such as density, distillation curves, and total PNA content in conjunction with the feed type to predict the composition of feed lumps to the model. The "Default" type is sufficient

Design Fee	d Data Operation Results					
Feed Data	Feed Types	Properties of Selected Feed Type -				
Library	Default	IP5/Total C5	0.10000	*		
Properties		nP5/Total C5	0.43600			
		22-Dimethyl-butane/Total P6	0.00700			
		23-Dimethyl-butane/Total P6	0.02600			
		2-Methyl-pentane/Total P6	0.18300			
		3-Methyl-pentane/Total P6	0.16800			
		m-Cyclopentane/Total N6	0.50800			
	Import Export	22-Dimethyl-pentane/Total P7	0.01000			
	Import Export	23-Dimethyl-pentane/Total P7	0.05800			
	Delete	24-Dimethyl-pentane/Total P7	0.02600			
	Delete	33-Dimethyl-pentane/Total P7	0.00800			
		223-Trimethyl-butane/Total P7	0.00400	E		
		2-Methyl-hexane/Total P7	0.23200			
		3-Methyl-hexane/Total P7	0.20300			
		Ethyl-pentane/Total P7	0.01300			
		Dimethyl-cyclopentane/Total N7	0.26000			
		Ethyl-cyclopentane/Total N7	0.05500			
		Normal P8/Total P8	0.42300			
		MB P8/Total P8	0.16400			
		N8 N5/[N5+N6 Ring]	0.45500			
		IP9/Total P9	0.63700			
		N9 N5/[N5+N6 Ring]	0.10300			
		IP10/Total P10	0.86900			
		N10 N5/[N5+N6 Ring]	0.50000	-		
		LIDSA /T L DAA	0.00000			

Figure 5.51 Feed data tab.

for light-to-heavy naphtha. However, there is no guarantee that a particular feed type represents the actual feed accurately. Aspen HYSYS will attempt to manipulate the feed composition to satisfy bulk property measurements given. In general, we advise users to develop a few sets of compositional analysis to verify the kinetic lumps calculated by Aspen HYSYS. We discuss a process to verify these lumps in Section 5.15.

We enter the measured bulk property information in the "Properties" section of the Feed Data tab as shown in Figure 5.52. These data come from sample process data given in Table 5.25. Once we enter the bulk feed information, it is important to "Hold" the solver. By design, Aspen HYSYS will attempt to recalculate the model the instant we make a change. This can be inconvenient and may cause convergence problems when we change many variables. To "Hold" the solver, simply select the Red Stop sign in the top toolbar of the flowsheet window (Figure 5.53).

We now input other operation details by navigating to the "Operation" tab and "Feeds" section of the reformer submodel (see Figure 5.54). The flow rates and process parameters should reflect an operating schedule where the actual reformer is running smoothly. It is difficult to use a model based on upset data for future predictions of stable operating scenarios. We discussed some techniques and approaches previously in Section 5.11 to ensure that the data collected for the model reflects stable operation.

After we enter the feedstock information, we must define operating temperatures and associated process variables. We enter the "Reactor Control" section and define the operating temperature of each bed. There are two ways to specify 5.14 Workshop 5.1 – Guide for Modeling CCR Units in Aspen HYSYS Petroleum Refining 365

Feed Data	Feeds	Feed Properties			
Library	Feed-1	Feed Type	Default	*	
Properties		Distillation Type	D86		
	0% Point [C]	78.00			
		5% Point [C]	90.00		
		10% Point [C]	96.00		
		30% Point [C]	108.0		
		50% Point [C]	119.0		
		70% Point [C]	133.0		
		90% Point [C]	152.0		
		95% Point [C]	160.0		
		100% Point [C]	170.0		
	Add Delete	PONA Basis	Weight %	Ŧ	
		Paraffins [%]	41.07		
	Selected Feed	Olefins [%]	0.00		
	Assay	Naphthenes [%]	48.80		
	Bulk Properties	Aromatics [%]	10.13		
	C GC Full	Sulfur Content [ppmwt]	0.9000		
	C GC Recommended	Fraction Ring Sulfur	<empty></empty>		
	o de necommended	Fraction Mercaptan Sulfur	<empty></empty>		
		Total Nitrogen (ppmwt)	<empty></empty>		
		Total/Basic Nitrogen Ratio	<empty></empty>		
		Basic Nitrogen [ppmwt]	<empty></empty>		
		MON (Clear)	<empty></empty>		
		RON (Clear)	<empty></empty>		

Figure 5.52 Bulk property information.

🔏 Cut	NewUser4 *	Process Utility Manager	TActive		200	Model Summary
Copy*	🖶 Unit Sets	🗩 Adjust Manager	🗊 On Hold	and the second second second	3	Flowsheet Summary
🖺 Paste *		Fluid Package Associations		Workbook	Reports	📄 Input

Figure 5.53 Hold Aspen HYSYS solver.

				Reformer Reac	tor Section		6 6	
Design Feed Data O Operation	Feed C	Results onditions						
Feeds Reactor Control	Fee		Volume Flow [m3/h]	Mass Flow [kg/h]	Std. Vol Flow [m3/h]	Temperature [C]	Pressure [bar]	
Catalyst Product Heater Solver Options Solver Console Advanced Octane Curves EO Variables Presolve Commands Postsolve Commands		Feed-1	234.033	1.7586430e+05	232.620	421.000	11.513	
		Blended	234.033	1.7586430e+05	232.620	421.000	11.513	
			Incomp	Hele Input Specific	a5ions		Ignored (EO Variables

Figure 5.54 Feed flow rate specifications.

reactor inlet temperature. In the first method, we enter *the WAIT* for all the reactors and specify a bias for each reactor. In the second method, we enter a reactor reference temperature and specify a bias for each reactor. We use the second method to fix the inlet temperature of each bed accurately. We recommend this method when running the model for the first time. This ensures that inlet temperatures are accurate for the purposes of calibration. We show how to input the reactors temperatures in Figure 5.55.

The full EO nature of the reformer model technically allows us to enter the octane number of the product and back-calculate the required inlet temperatures to achieve the specified octane number. However, it is very unlikely that an uncalibrated model will converge with those specifications. We recommend entering reactor temperatures directly.

In addition, we must also enter the hydrogen-to-hydrocarbon ratio for the recycle process in the reformer model. The typical range of this value for CCR reforming units is 3–4. Reforming plants routinely measure this value and we expect to enter accurate values. The product separator refers to the conditions of the first separator after leaving the last reforming reactor. This value should be accurate if we do not plan to build a downstream fractionation model.

In Figure 5.56, we enter the "Catalyst" section of "Operation" tab. We must enter an estimate for the catalyst circulate rate as we are modeling a CCR unit. Users will note that it is possible to enter other specifications in the Catalyst Section; however, only the circulation rate ensures robust convergence.

The last process operation parameters are the product heater specifications. As we are building a rigorous fractionation section in this example, we only enter estimated values. If there is no fractionation model planned, we can enter

Design Feed Data Op	peration Results				
Operation	Reactor Temperature Specification				
Feeds	Rx 1 Inlet Temperature [C]	<empty></empty>	<empty></empty>	Copy Data	
Reactor Control	Rx 2 Inlet Temperature [C]	<empty></empty>	<empty></empty>		
Catalyst	Rx 3 Inlet Temperature [C]	<empty></empty>	<empty></empty>		
Product Heater	Rx 4 Inlet Temperature [C]	<empty></empty>	<empty></empty>		
iolver Options	Reactor Inlet Reference Temperature [C]	516.0	<empty></empty>		
Solver Console	Rx 1 Temperature Bias [C]	0.0000	<empty></empty>		
Advanced	Rx 2 Temperature Bias [C]	-2.376	<empty></empty>		
Octane Curves	Rx 3 Temperature Bias [C]	-2.903	<empty></empty>		
EO Variables	Rx 4 Temperature Bias [C]	-0.9252	<empty></empty>		
Presolve Commands Postsolve Commands	WAIT [C]	<empty></empty>	<empty></empty>		
Postsolve Commands	WABT [C]	<empty></empty>	<empty></empty>		
	C5+ RON	<empty></empty>	<empty></empty>		
	C6+ RON	<empty></empty>	<empty></empty>		
	Sum of Aromatics [wt%]	<empty></empty>	<empty></empty>]	
	Hydrogen Recycle				
	Recycle Compressor Flow [STD_m3/h]	<empty></empty>	-		
	H2HC Ratio - Mol/Mol	3.407	Recycle Gas Local	tion Options	
	-Product Separator				
	Product Separator Temperature [C]	30.86			
	Product Separator Pressure [bar]	8.213			

Figure 5.55 Reactor temperature specifications.

5.14 Workshop 5.1 – Guide for Modeling CCR Units in Aspen HYSYS Petroleum Refining 367

		Reformer Reactor Section	0 G - C 🗾
Design Feed Data O	peration Results		
Operation	Continuous Regeneration		
Feeds Reactor Control	Catalyst Circulation Rate [kg/h]	900.0	
Catalyst	Rx 1 Coke on Cat [wt%]	<empty></empty>	
Product Heater	Rx 2 Coke on Cat [wt%]	<empty></empty>	
Solver Options	Rx 3 Coke on Cat [wt%]	<empty></empty>	
Solver Console Advanced	Rx 4 Coke on Cat [wt%]	<empty></empty>	
Octane Curves	Rx 1 Coke Laydown Rate [kg/h]	<empty></empty>	
EO Variables	Rx 2 Coke Laydown Rate [kg/h]	<empty></empty>	
Presolve Commands	Rx 3 Coke Laydown Rate [kg/h]	<empty></empty>	
Postsolve Commands	Rx 4 Coke Laydown Rate [kg/h]	<empty></empty>	
	Reactor 1 Percent Pinning [%] Reactor 2 Percent Pinning [%] Reactor 3 Percent Pinning [%]	<empty> <empty> <empty></empty></empty></empty>	
	Reactor 4 Percent Pinning [%]	<empty></empty>	
	14cor	nplete input Specifications	Ignored EO Variables

Figure 5.56 Catalyst specifications.

measured values for the heater immediately preceding the gasoline stabilization tower. In Figure 5.57, once we enter the product heater specifications, we notice a yellow bar indicating that we are ready to solve the model. In the following section, we will discuss how to solve the model and ensure robust convergence.

•			Reformer Reactor Section	6 B - C ×
Design Feed Data	Operation	Results		
Operation	Produc	t Heater		
Feeds Reactor Control Catalyst Product Heater		erature [C] Duty [kJ/h]	133.0 <empty></empty>	
Solver Options	Press	ure [bar]	8.213	
Solver Console Advanced		P [kPa]	<empty></empty>	
EO Variables Presolve Commands Postsolve Commands				
			One or more feeds Not Solved.	Ignored EO Variables

Figure 5.57 Product heater specifications.

5.14.6 Solver Parameters and Running the Initial Model

Before solving the model, we must ensure that the solver parameters will lead to robust convergence. We bring up the Solver options by selecting the "Solver Options" section in "Operation" tab. Figure 5.58 shows the recommended values for the solver options. We have chosen these values based on our experience with running refinery models.

In general, we do not recommend modifying the constraints for the Residual, Hessian parameters, and Line search parameters. When running the model for the first time, we increase the number creep iterations and total maximum iterations. Creep iterations refer to initial small changes in the process variables when the starting guesses are very poor. The maximum iterations refer to how many times the solver will iterate through the model before exiting. Depending on process parameters, the initial solution may take up to 30–40 iterations.

To begin solving the model, we select the green start icon in the flowsheet toolbar as shown in Figure 5.59. Several initialization steps will appear in the lower right corner window of the application. The solution process may take several minutes and the software appears disabled shortly, whereas solver status messages appear in the lower right corner window.

		Reformer Re	actor Section	6 • •	- 🗆 🗙
Design Feed Data C Operation Feeds Reactor Control Catalyst Product Heater Solver Options Solver Options Solver Console Advanced Octane Curves EO Variables Presolve Commands Postsolve Commands	Operation Results Convergence Tolera Residual Iteration Limits Maximum Iterations Minimum Iterations Creep Step Paramet On / Off Switch	ance 1.000e-006 5 50 * 6 0 * 1.000e-006	Actor Section SQP Hessian Parameters Initialization Scaling factor Updates stored Line Search Parameters Algorithm Step Control Step Control Step Control Iterations	Normal * Normal * Normal * Normal *	- 0 - ×
Options Console ced curves iables re Commands	Maximum Iterations	ers 0 (m) 5 (m) 0.1000	Line Search Parameters Algorithm Step Control	Normal *	
		iroup Completeness	Revert to the previous result	s •	

Figure 5.58 Solver parameters.

🔏 Cut	NewUser4	Process Utility Manager	TActive			Model Summary
Copy*	🖶 Unit Sets	😤 Adjust Manager	🗊 On Hold	and the second se	-	Flowsheet Summary
Paste *		📲 Fluid Package Associations		Workbook	Reports	🗋 Input
Clipboard	Units	Simulation 🕞	Solver Fa		Sun	nmaries

Figure 5.59 Main application toolbar.

Iteration		Objective Convergence Function	Objective Function Value	Overall Nonlinearity Ratio	Model Nonlinearity Ratio	Worst Model
0	7.223D+08	0.000D+00	0.000D+00	1.000D+00	-4.404D+00	PRODHTR
	<line search<="" td=""><td>n Creep Mode</td><td>ACTIVE></td><td>==> Step tak</td><td>en 1.00D–01</td><td></td></line>	n Creep Mode	ACTIVE>	==> Step tak	en 1.00D–01	
1	5.835D+08	0.000D+00	0.000D+00	9.895D-01	-8.761D+00	RXR3.RXHTR
	<line search<="" td=""><td>n Creep Mode A</td><td>ACTIVE></td><td>==> Step tak</td><td>en 1.00D–01</td><td></td></line>	n Creep Mode A	ACTIVE>	==> Step tak	en 1.00D–01	
2	4.712D+08	0.000D+00	0.000D+00	9.903D-01	-3.505D+00	CCRDMO
	<line search<="" td=""><td>n Creep Mode</td><td>ACTIVE></td><td>==> Step tak</td><td>en 1.00D–01</td><td></td></line>	n Creep Mode	ACTIVE>	==> Step tak	en 1.00D–01	
3	3.806D+08	0.000D+00	0.000D+00	9.898D-01	-1.947D+00	RXR4.RXACT
	<line search<="" td=""><td>n Creep Mode A</td><td>ACTIVE></td><td>==> Step tak</td><td>en 1.00D–01</td><td></td></line>	n Creep Mode A	ACTIVE>	==> Step tak	en 1.00D–01	
4	3.076D+08	0.000D+00	0.000D+00	9.907D-01	-4.639D+00	RXR2.RXHTR
	<line search<="" td=""><td>n Creep Mode</td><td>ACTIVE></td><td>==> Step tak</td><td>en 1.00D–01</td><td></td></line>	n Creep Mode	ACTIVE>	==> Step tak	en 1.00D–01	
5	2.487D+08	0.000D+00	0.000D+00	9.022D-01	-3.586D+01	RXR2.RXHTR
6	5.236D+04	0.000D+00	0.000D+00	9.640D-01	9.310D-01	RXR2.RXR
7	5.204D+02	0.000D+00	0.000D+00	9.901D-01	-9.009D-01	RXR2.RXHTR
8	1.165D-02	0.000D+00	0.000D+00	1.000D+00	9.999D-01	RXR4.RXACT
9	1.066D-10	0.000D+00	0.000D+00			
Succe	essful solution.					
Optii	mization Timin	g Statistics	Time	Percent		
	DEL computation		==== .56 secs	===== 19.36 %		
) computations		.05 secs	75.11 %		
	ellaneous		.45 secs	5.53 %		
	Optimization lem converged<		.05 secs ve.ebs>	100.00 %	_	

 Table 5.30 Initial solver output.

We show the solver output for the configured model in Table 5.30. Column 1 indicates the number of iterations performed since starting the solver. The residual convergence function indicates how far we are from satisfying the process model equations. When we run the model for the first time, residuals on the order of 1E9 and 1E10 are expected. As we approach the solution, the residual becomes closer to zero. Column 3 and Column 4 refer to the residual of the objective function. We use the objective function *only during calibration;* therefore, it is zero for this model run. The solver used by Aspen HYSYS converges very quickly to the solution, once the changes in the process equations begin approaching linear. This is the case when we are near the solution. The solver indicates the vicinity of the solution through columns 5 and 6. The Worst model column indicates which part of the reformer model is farthest from the solution. This is useful for tracking down issues when the model fails to converge. The last lines of the output show several running statistics for the solver.

5.14.7 Viewing Model Results

After we complete the initial model solution, we can view the model results by navigating to "Results" tab and clicking the "Summary" section. The Summary section shows the yields of the many products relevant to the reforming process. Figure 5.60 shows that the results from the initial model run. We note that the results are mostly close to the plant measurements. This indicates that we will not have to do significant amounts of calibration to match model predictions with plant performance and yields. We can view the detailed yield results for each lump by going to the "Product Yields" section and select Grouped or Detailed yields as shown in Figure 5.61.

We can also view the reactor temperature and flow profile by selecting the "Reactors" section in the Results tab, as shown in Figure 5.62. Again, we note that the predicted temperature drop for each reactor bed compares well with the measured temperature drop. Most of the temperature change is due to the naphthene dehydrogenation reactions. As the model gives reasonable predictions of the aromatic content, we expect the reactor temperatures to agree as well.

This completes in the initial model solution based on bulk property information. We save the converged simulation as *Workshop 5.1-1.hsc*. We can return to the parent flowsheet by clicking the green up arrow on the flowsheet toolbar (shown in Figure 5.63). Once we return to the main flowsheet, we can attach true product streams by entering names for the Net H2 and Net Liquid Streams and selecting the Basic Transition (see Figure 5.64).

Results	WAIT [C]	514.5		
nmary	WAII [C]	514.5		
d Blend	Yields/RON		Recycle H2	
duct Yields	C5+ Yield, Wt [%]	90.95	Recycle H2 Rate [STD_m3/h]	1.484e+005
uct Properties		85.43	Recycle H2 Purity	0.9208
tors	C5+ RON	102.5	H2/HC Ratio	3,407
sters	C6+ Yield, Wt [%]	81.18		
uct Streams	C6+ Yield, Vol [%]	74.05	Hydrogen Yield	
	C6+ RON	105.5	H2 Yield, Wt [%]	3.20
	Reformate Production [m3/h]	197.2	Net H2 Rate, MMSCFD	60.69
	Aromatics Yields	103.3	H2 Production, SCM/CUM H2 Purity, mole fraction	307.9 0.9208
	Reformate RON	103.3 Wt [%]		
	Reformate RON	Wt	H2 Purity, mole fraction	
	Reformate RON Aromatics Yields	Wt [%]	H2 Purity, mole fraction	
	Reformate RON Aromatics Yields Benzene	Wt [%] 7.56	Vol [%] 6.46 [%]	
	Reformate RON Aromatics Yields Benzene Toluene	Wt [%] 7.56 11.38 4.32 3.45	H2 Purity, mole fraction Vol [%] 6.46 9.86	
	Reformate RON Aromatics Yields Benzene Toluene Ethyl-Benzene Para-sylene Ortho-sylene	Wt [%] 7.56 11.38 4.32 3.45 5.96	Vol [%] 6.46 9.86 3.75 3.01 5.09	
	Reformate RON Aromatics Yields Benzene Toluene Ethyl-Benzene Para-wylene Ortho-xylene Meta-xylene	Wt [%] 7.56 11.38 4.32 3.45 5.96 9.85	H2 Purity: mole fraction	
	Reformate RON Aromatics Yields Benzene Toluene Ethyl-Benzene Para-sylene Ortho-sylene	Wt [%] 7.56 11.38 4.32 3.45 5.96	Vol [%] 6.46 9.86 3.75 3.01 5.09	

Figure 5.60 Reformer result summary.

5.14 Workshop 5.1 – Guide for Modeling CCR Units in Aspen HYSYS Petroleum Refining 371

Design Feed Data	Operation Results				
Results				Grouped	O Detailed
Summary	Grouped Yields				
eed Blend		Wt %	Vol %		
Product Yields Product Properties	Total normal paraffins	11.72	13.85		
Reactors	Total single-branched paraffins	12.67	12.67 14.90 2.06 2.25		
leaters	Total multi-branched paraffins	2.06			
Product Streams	Total paraffins	26.45	31.00		
	Total olefins	1.35	1.55	E	
	Total 5C ring naphthenics	2.88	2.87		
	Total 6C ring naphthenics	0.09	0.09		
	Total naphthenics	2.97	2.96		
	Total aromatics	66.03	57.28		
	Total C4 plus	93.79	89.16		
	Total C5 plus	90.95	85.43		
	Total C6 plus	81.18	74.05	*	
		Weight Ratios			
	C6+ Iso to Normal Ratio	1.968		*	
	C6+ Single-branch to Multi-branch	Rat 4.402			
	C4 Iso to Normal Ratio	0.8486			
	C5 Iso to Normal Ratio	1.700		-	
	C6 Iso to Normal Ratio	1.123			
	C7 Iso to Normal Ratio	2.995			
	C8 Iso to Normal Ratio	7.598			
	C9 Iso to Normal Ratio	8.223			
					EO Variables

Figure 5.61 Reformer yield results.

esign Feed Data	Operation Results						
Results							
eed Blend		Reactor 1	Reactor 2	Reactor 3	Reactor 4		
roduct Yields	Inlet Temperature [C]	516.0	513.6	513.1	515.1		
roduct Properties	Outlet Temperature [C]	399.6	453.2	478.5	497.4		
eactors	Delta T [C]	116.4	60.42	34.57	17.65		
eaters	Inlet Pressure [bar]	12.63	11.38	10.77	10.46		
roduct Streams	Outlet Pressure [bar]	12.46	11.29	10.71	10.42		
	Delta P [kPa]	16.36	9.490	5.598	4.271		
	Inlet Molar Flow [kgmole/h]	7956	9317	1.012e+004	1.061e+004		
	Outlet Molar Flow [kgmole/h]	9317	1.012e+004	1.061e+004	1.087e+004		
	Residence Time [seconds]	000:00:4.90	000:00:5.68	000:00:8.27	000:00:15.32		
	LHSV		1.023				
	LHSV WHSV		1.023 1.379				
	T		a second s				
	T		a second s				
	T		a second s				
	T		a second s				
	T		a second s				
	T		a second s				
	T		a second s				
	T		a second s				

Figure 5.62 Reactor performance results.

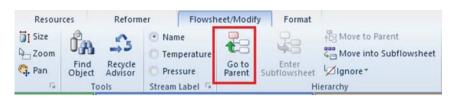


Figure 5.63 Returning to the main flowsheet.

					Catalytic Reformer: R	elonner-100		and the second
Design	Reactor Se	ction St	abilizer Tower	Results				
De	esign	Name	Reformer-1	00			H2 Product	
	tions ion Factors			[Internal	External	Transition	
Votes					Net H2 @Reformer-100	Net Hi	2 Basic Transition	
		Reform	er Feeds			Net Liquid Net Liquic	Transition Basic Transition	
				External	Feed Type			
		Inte	ernal			PONA Basis		
		Inte	Feed-1	<< St	ream >> Default ream >>	PONA Basis Weight	Feed Type Library	

Figure 5.64 Connect external streams to reformer flowsheet.

5.14.8 Updating Results with Molecular Composition Information

In the previous section, we built and solved the reformer model using bulk property and total PNA information only. This approach works reasonably, when the actual feedstock is quite similar to the "Default" or selected feed type. In actual refinery operation, the feed type may change quickly or may not have been analyzed for feed type information. In this section, we discuss an approach to integrate measured molecular composition analysis with the feed type to improve modeling results. This method has shown significant improvement in model predictions, especially in the petrochemical reformers where accurate predictions of aromatic content are significant.

Once we solve the model using the bulk property information, we can obtain the feed lump composition from the "Feed Blend" section of the "Results" tab as shown in Figure 5.65. The composition in mole fraction represents Aspen HYSYS's best estimate of the composition from the bulk information and chosen feed type. In our example, we also have the detailed compositional analysis by PNA and carbon number. We show these measured compositions

5.14 Workshop 5.1 – Guide for Modeling CCR Units in Aspen HYSYS Petroleum Refining	373

		Reformer React	tor Section	6 6	
Design Feed Data	Operation Results				
Results		Feed-1	Blend		
Summary	Mass Flow [kg/h]	1.759e+005	1.759e+005		
Feed Blend	Volume Flow [m3/h]	234.0	234.0		
Product Yields	Std. Vol Flow [m3/h]	232.6	232.6		
Product Properties	Molar Flow [kgmole/h]	1693	1693		
Reactors Heaters	Molecular Weight	103.9	103.9		
Product Streams	Specific Gravity (60F/60F)	0.7522	0.7522		
Product Streams	API Gravity	56.61	56.61		
	Composition, Mol Frac				
	H2	0.0000	0.0000		
	P1	0.0000	0.0000		
	P2	0.0000	0.0000		
	OL2	0.0000	0.0000		
	P3	0.0000	0.0000		
	03	0.0000	0.0000		
	IP4	0.0000	0.0000		
	NP4	0.0000	0.0000		
	P4	0.0000	0.0000		
	04	0.0000	0.0000		
	IP5	1.241e-002	1.241e-002		
	NP5	5.413e-002	5.413e-002		
	P5	0.0000	0.0000		
	05	0.0000	0.0000		
	5N5	5.926e-002	5.926e-002		
	22DMC4	3.029e-004	3.029e-004		
	23DMC4	1.125e-003	1.125e-003		
	MRP6	0.0000	0.0000		
		OK		E lanard	EO Variables
		OK		📃 Ignored	EO Variable

Figure 5.65 Feed blending results.

in the Sample Data section of this chapter. We resave the converged simulation, *Workshop 5.1-1.hsc* (using bulk property information), as *Workshop 5.1-2.hsc* (using measured molecular composition).

Figure 5.66 shows a spreadsheet in Microsoft Excel, *Feed_AspenHYSYS_Transform.xlxs*, available in the supplement to this text, that accepts the measured molecular information and Aspen HYSYS's best estimate of the composition. Using both sets of data, we can rescale Aspen HYSYS's estimate to match the measure molecular composition. Essentially, we rescale the estimates to match plant data for each compositional and carbon group number, while keeping isomer ratios constant.

We perform this rescaling by copying the results of the "Feed Blend" (Figure 5.65) from Aspen HYSYS into Column I of the spreadsheet (Figure 5.66). We also enter the measured compositional information in Column C. Cells C5–C21 and cells C26–C42 represent plant data for PNA (paraffins–naphthenes–aromatics) given in Table 5.25, Section 5.14.3. The results of the rescaling appear in Column U. We must now enter the rescaled feed information back into the reformer model. We must reenter the Reformer subflowsheet and enter the Feed Data tab.

Figure 5.67 shows the Feed Data tab. We select *GC Full (Kinetic Lump)* instead of *Bulk Properties*. Aspen HYSYS now prompts to indicate that we are discarding the bulk property information. We confirm this change and edit the GC Full directly. We copy the results from Column U of the spreadsheet into the Edit Lumps dialog as shown in Figure 5.68. We enter the new feed lump composition

A	в	C	D	E F	G	н	1	J	K	L	M	N	0	P	Q	R S	T	υ	
ed tra	nsform for H	YSYS model																	
		fant Data					Old mol% Input											New wt%	
Ρ	C5	0.73%	41.61%				Feed-1	MW		Wt %						Lump	wt%	W PERC	Æ
	C6	5.46%		H2		Hydrogen	0	2.016			0.00%					н	0.00%		
	C7	11.80%		P1	P01-1	Methane	0	16.04			0.00% P01-1		6 A06-1	0.73%	0.95%	P01-1	0.00%	0.00	
	CB	10.58%		P2	P02-1	Ethane	0	30.07			0.00% P02-1		7 A07-1	3.37%	2.14%	P02-1	0.00%	0.00	
	C9	8.57%		OL2	O02-1	Ethylene	0	28.05			0.00% O02-1		8 A08-1	0.56%	0.74%	O02-1	0.00%	0.00	
	C10	4.47%		P3	P03-1	Propane	0	44.1)	0.00% P03-1		8 A08-2	0.56%	0.74%	P03-1	0.00%	0.00	
N	C5	0.15%	50.20%	03	O03-1	1-Propene	0	42.08			0.00% O03-1		8 A08-3	0.56%	0.74%	O03-1	0.00%	0.00	
	C6	5.13%		IP4	P04-1	i-Butane	0	58.12			0.00% P04-1		8 A08-4	0.56%	0.74%	P04-1	0.00%	0.00	
	C7	13.05%		NP4	P04-2	n-Butane	0	58.12)	0.00% P04-2		8 A08-5	0.00%	0.00%	P04-2	0.00%	0.00	
	C8	15.28%		P4	P04-3	Hypo	0	58.12	()	0.00% P04-3		9 A09-1	2.66%	2.15%	P04-3	0.00%	0.00	
	C9	12.15%		04	O04-1	1-Butene	0.00E+00	56.11)	0.00% O04-1		10 A10-1	1.11%	0.00%	O04-1	0.00%	0.00	
	C10	4.44%		IP5	P05-1	i-Pentane	1.24E-02	72.15	0.895673556	9	0.86% P05-1		11 A11-1	0.00%	0.00%	P05-1	0.14%	0.14	
A	Cő	0.95%	8.19%	NP5	P05-2	1-Pentane	5.41E-02	72.15	3.905136715	5	3.76% P05-2		12 A12-1	0.00%	0.00%	P05-2	0.59%	0.59	
	C7	2.14%		P5	P05-3	Hypo	0.00E+00	72.15	6)	0.00% P05-3		13 A13-1	0.00%	0.00%	P05-3	0.00%	0.00	
	C8	2.95%		05	O05-1	Hypo	0.00E+00	70.13)	0.00% O05-1		14 A14-1	0.00%	0.00%	O05-1	0.00%	0.00	
	C9	2.15%		5N5	N05-1	Cyclopentane	5.93E-02	70.13	4.15568071		4.00% N05-1		5 N05-1	4.00%	0.15%	N05-1	0.15%	0.15	
	C10	0.00%		22DMC	4 P06-1	22-Mbutane	3.03E-04	86.18	0.026105726	3	0.03% P06-1		6 N05-1	5.47%	2.61%	P06-1	0.04%	0.04	
				23DMC	4 P06-2	23-Mbutane	1.13E-03	86.18	0.096964128	3	0.09% P06-2		6 N06-2	5.30%	2.52%	P06-2	0.14%	0.14	
				MBP6	P06-3	Hypo	0E+00	86.18)	0.00% P06-3		7 N07-1	1.85%	3.39%	P06-3	0.00%	0.00	
				2MC5	P06-4	2-methyl-penta	n 7.92E-03	86.18	0.6824782	7	0.66% P06-4		7 N07-2	0.39%	0.72%	P06-4	1.00%	1.00	
Dis	tribution calc	ulated by HY	SYS	3MC5	P06-5	3-methyl-penta	n 7.27E-03	86.18	0.626537428	3	0.60% P06-5		7 N07-3	0.00%	0.00%	P06-5	0.92%	0.92	
P	C5	4.62%	37.97%	SBP6	P06-6	Hypo	0.00E+00	86.18)	0.00% P06-6		7 N07-4	4.88%	8.94%	P06-6	0.00%	0.00	
	C6	3.59%		NP6	P06-7	n-Hexane	2.87E-02	86.18	2.297303904	1	2.21% P06-7		8 N08-1	8.89%	6.95%	P06-7	3.36%	3.36	
	C7	9.14%		O6	O06-1	Hexenes	0.00E+00	84.16)	0.00% 006-1		8 N08-2	10.65%	8.33%	O06-1	0.00%	0.00	
	C8	6.53%		5N6	N06-1	Mcyclopentan	6.75E-02	84.16	5.682045216	3	5.47% N06-1		9 N09-1	0.44%	1.25%	N06-1	2.61%	2.61	
	C9	5.55%		A6	A06-1	Benzene	9.77E-03	78.11	0.76291256	3	0.73% A06-1		9 N09-2	3.84%	10.90%	A06-1	0.95%	0.95	
	C10	8.52%		6N6	N06-2	Cyclohexane	6.54E-02	84.16	5.503083163	2	5.30% N06-2		10 N10-1	1.54%	2 22%	N06-2	2.52%	2.52	

Figure 5.66 Feed rescaling spreadsheet (Feed_AspenHYSYS_Transform.xlxs).

5.14 Workshop 5.1 – Guide for Modeling CCR Units in Aspen HYSYS Petroleum Refining 375

eed Data	- Feeds	Feed Properties				
act but	Feed-1	Feed Type	Default			
Library Properties	reed-1	Distillation Type	D86			
roperues		0% Point [C]	78.00			
		5% Point [C]	90.00			
		10% Doint (C)	96.00			
		Aspen HYSYS	60			
			Yes	No	>	
	Selected			No		
	Selected	Naphthenes [%]		No		
	O Assay	Naphthenes [%]		No		
	 Assay Bulk Properties 		48.80	No		
	 Assay Bulk Properties GC Full 	Naphthenes [%] Aromatics [%]	48.80 10.13	No		
	 Assay Bulk Properties 	Naphthenes [%] Aromatics [%] Sulfur Content [ppmwt]	48.80 10.13 0.9000	No		
	 Assay Bulk Properties GC Full 	Naphthenes [%] Aromatics [%] Sulfur Content [ppmwt] Fraction Ring Sulfur	48.80 10.13 0.9000 <empty></empty>	No	2	
	 Assay Bulk Properties GC Full 	Naphthenes [%] Aromatics [%] Sulfur Content [ppmwt] Fraction Ring Sulfur Fraction Mercaptan Sulfur	48.80 10.13 0.9000 <empty> <empty></empty></empty>	Nc	2	
	 Assay Bulk Properties GC Full 	Naphthenes [%] Aromatics [%] Sulfur Content [ppmwt] Fraction Ring Sulfur Fraction Mercaptan Sulfur Total Nitrogen (ppmwt] Total/Basic Nitrogen Ratio Basic Nitrogen (ppmwt]	48.80 10.13 0.9000 <empty> <empty> <empty></empty></empty></empty>	No	·	
	 Assay Bulk Properties GC Full 	Naphthenes [%] Aromatics [%] Sulfur Content [pmwt] Fraction Ring Sulfur Fraction Ring Sulfur Total Nitrogen [pmwt] Total/Basic Nitrogen Ratio	48.80 10.13 0.9000 <empty> <empty> <empty></empty></empty></empty>	Ne		

Figure 5.67 Changing from the bulk property data to GC Full (kinetic lumps).

Design Fee	d Data Operation Results					
Feed Data	Feeds	Feed	Properties			_
Library	Feed-1	Bas	is	Weight		
Properties		Tur	n Off GC Edit Box			
		C#	Common Name	Short Name	Composition	-
		0	Hydrogen	H2 [wt frac]	0.0000	
		1	Methane	P1 [wt frac]	0.0000	
		2	Ethane	P1 [wt frac]	0.0000	
		2	Ethylene	OL2 [wt frac]	0.0000	
		3	Propane	P3 [wt frac]	0.0000	
		3	Propylene	O3 [wt frac]	0.0000	
		4	Isobutane	IP4 [wt frac]	0.0000	
	Add Delete	4	n-Butane	NP4 [wt frac]	0.0000	
		4	Total butanes	P4 [wt frac]	0.0000	
	Selected Feed	4	Butylenes	O4 [wt frac]	0.0000	
	C Assay	5	Isopentane	IP5 [wt frac]	1.362e-003	
	Bulk Properties	5	n-Pentane	NP5 (wt frac)	5.938e-003	
	GC Full	5	Total pentanes	P5 [wt frac]	0.0000	
		5	Pentylenes	O5 [wt frac]	0.0000	
	GC Recommended	5	Cyclopentane	5N5 [wt frac]	1.500e-003	
		6	22-Dimethylbutane	22DMC4 [wt frac]	3.822e-004	
		6	23-Dimethylbutane	23DMC4 [wt frac]	1.420e-003	
		6	Multi-branch butanes	MBP6 [wt frac]	0.0000	
		6	2-Methylpentane	2MC5 [wt frac]	9.992e-003	
		6	3-Methylpentane	3MC5 [wt frac]	9.173e-003	
		6	Single-branch pentanes	SBP6 [wt frac]	0.0000	

Figure 5.68 Kinetic lump composition entry window.

by weight and normalize to make sure the sum of all the lump compositions is 1. The solver will automatically resolve the model using the new feed lump composition. In general, the initial residual should be on the order of 1E3–1E4, which indicates that the only changes to the model are the feed lump compositions.

5.15 Workshop 5.2. – Model Calibration

In this section, we calibrate the model based on known product yields and reactor performance. Calibration involves four distinct steps:

- 1) Pull data from the current simulation.
- 2) Enter measured process yields and performance based on that current simulation.
- 3) Update the activity factors to match the plant yields and performance.
- 4) Push calibration data back to the simulation.

We begin the first step of model calibration using a converged initial model using measured molecular information, *Workshop 5.1-2.hsc*. We resave the simulation file as *Workshop 5.2.hsc*. The converged initial model will provide initial guesses for the activity factors, which greatly simplify the model calibration. We enter the model calibration environment by first entering the reformer subflowsheet and then selecting the "Reformer > Go to Calibration" menu option from the application menu bar (as shown in Figure 5.69). Figure 5.70 shows the reformer calibration environment.

The first step is to "Pull data" from the simulation. When Aspen HYSYS pulls data, all of the current operating conditions, feed stock information, and process parameters enter the reforming environment. A calibration refers to the set of the activity factors that produce given product yields and reactor performance (which we provide to the calibration environment) based on current model state. We pull data by clicking on the "Pull Data from Simulation" button (Figure 5.71).

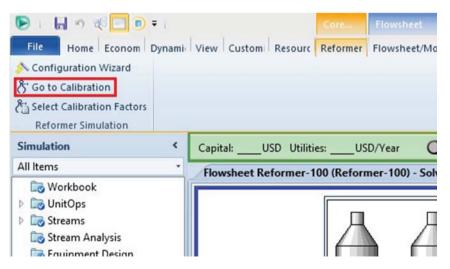


Figure 5.69 Starting the reformer calibration environment.

Jesign Fee	d Data	Operation	Measurement	Calibration Control	Analysis		_
eed Data	Feed	Types		Properties of Selected	Feed Type		
ibrary	Def	ault		IP5/Total C5	0.1	0000	1
Properties				nP5/Total C5	0.4	3600	
				22-Dimethyl-butane	Total P6 0.0	0700	
				23-Dimethyl-butane	Total P6 0.0	2600	
				2-Methyl-pentane/T	otal P6 0.1	8300	
				3-Methyl-pentane/T	otal P6 0.1	6800	
- 1				m-Cyclopentane/To	tal N6 0.5	0800	
	(to		F	22-Dimethyl-pentan	e/Total P7 0.0	1000	
	In	port	Export	23-Dimethyl-pentan	e/Total P7 0.0	5800	
	0	elete		24-Dimethyl-pentan	e/Total P7 0.0	2600	
		eiere		33-Dimethyl-pentan	e/Total P7 0.0	0800	
	-			223-Trimethyl-butan	e/Total P7 0.0	0400	
				2-Methyl-hexane/To	tal P7 0.2	3200	
				3-Methyl-hexane/To	tal P7 0.2	0300	
				Ethyl-pentane/Total	P7 0.0	1300	
				Dimethyl-cyclopenta	me/Total N7 0.2	5000	
				Ethyl-cyclopentane/	Total N7 0.0	5500	
				Normal P8/Total P8	0.4	2300	
				MB P8/Total P8	0.1	5400	
				N8 N5/[N5+N6 Ring]	0.4	5500	
				IP9/Total P9	0.6	3700	
				N9 N5/[N5+N6 Ring]	0.1	0300	
				IP10/Total P10	0.8	6900	
				N10 N5/[N5+N6 Ring	0.5	0000	
				IP11/Total P11	0.9	0000	
				N11 N5/[N5+N6 Ring	0.5	0000	
							1

Figure 5.70 Reformer calibration environment.

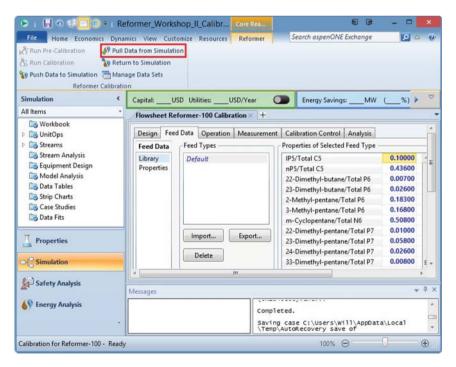


Figure 5.71 Pull data from model results.

When we pull data from the simulation, Aspen HYSYS will warn us that current calibration data will be overwritten by the current model results as shown in Figure 5.72. We can use the Data Set feature (in Figure 5.73) to allow multiple calibration data sets. This may be useful if the industrial reformer runs under very different operating scenarios. However, for the purposes of this workshop, we use only one calibration data set.

Aspen HYSYS will pull all the feedstock information and process operating conditions after we confirm the calibration data overwrite. The status bar now

Run Pre-Calibration		۵ 🍳	0
Simulation	Capital:USD_Utilities:USD/YearEnergy Savings:MW	(%) ≯	ø
All Items	Flowsheet Reformer-100 Calibration × +		,
 Workbook UnitOps Streams 	Design Feed Data Operation Measurement Calibration Control Analysis		
Constraint Analysis Constraint Design Constraint Analysis Constraint Analysis	Aspen HYSYS et up Calibration data will be overwritten with the current Simulation data	0.10000 0.43600 0.00700	- E
Data Tables Strip Charts Case Studies		0.02600 0.18300 0.16800	-
🔀 Data Fits	OK Cancel 27	0.50800	
I Properties	23-Dimethyl-pentane/Total P7	0.05800	
	Delete 24-Dimethyl-pentane/Total P7	0.02600	
	33-Dimethyl-pentane/Total P7	0.00800	E +
63			Þ

Figure 5.72 Importing initial model solution.

Design Feed	Data Operation Measureme	nt Calibration	Control Analysis				
Feed Data	Feeds	Feed Prop	erties				
Library	Feed-1	Basis		Weight	1		
Properties		Turn Off	GC Edit Box	П	1		
		C#	Common Name		Short Name	Composition	1.5
		0 Hyd	rogen	H2 [wt frac]	0.0000	
		1 Met	hane	P1 [v	wt frac]	0.0000	
		2 Etha	ne	P2 [v	wt frac]	0.0000	
		2 Ethy	lene	OL2	[wt frac]	0.0000	
		3 Prop	ane	P3 [v	wt frac]	0.0000	
		3 Prop	ylene	03 [wt frac]	0.0000	
		4 Isob	4 Isobutane		wt frac]	0.0000	
	Add Delete	4 n-B	utane	NP4	[wt frac]	0.0000	
		4 Total butanes		P4 [v	wt frac]	0.0000	
	Selected Feed	4 Buty	lenes	04 [wt frac]	0.0000	
	Assay	5 Isop	entane	IP5 [wt frac]	1.996e-003	
	Bulk Properties	5 n-P	entane	NP5 [[wt frac] 8.704e-003	8.704e-003	
	GC Full	5 Tota	l pentanes	P5 [v	wt frac]	0.0000	
	GC Recommended	5 Pen	lylenes	05[wt frac]	0.0000	
		5 Cyc	opentane	5N5	[wt frac]	4.700e-003	
		20 million	limethylbutane		MC4 [wt frac]	4.508e-004	
		6 23-0	imethylbutane	23D1	VIC4 [wt frac]	1.674e-003	+

Figure 5.73 Feed composition on weight basis.

esign Feed Da	ata Operation Measuremen	nt Calibration Control	Analysis		
Measurement	Reactor	0			
peration		Inlet Pressure [bar]	Pressure Drop [kPa]	Delta T [C]	
roducts analysis	Reactor 1	12.45	15.63	<empty></empty>	
inalysis	Reactor 2	11.27	9.207	<empty></empty>	
	Reactor 3	10.68	5.457	<empty></empty>	
	Reactor 4	10.39	4.196	<empty></empty>	
	- Recycle H2				
	necycleric				
	H2 Purity of Recycle, mol.	. frac. 🔍 <	empty>		
		.frac. <	empty>		
	H2 Purity of Recycle, mol	.frac. <	empty>		
	H2 Purity of Recycle, mol Measured Octanes C5+ RON C6+ RON	frac. <	101.9 103.8		
	H2 Purity of Recycle, mol Measured Octanes	.frac. <	101.9		

Figure 5.74 Reactor performance tab.

indicates that we must specify product measurements to begin the calibration process. If necessary, we can modify the operating variables (such as WAIT) of the reformer in addition to the measured values. However, we recommend creating a new model file if the operating scenarios are very different.

The second step in model calibration is specifying the measured yields and process performance. Click on the Measurement tab to bring up the Operation interface (see Figure 5.74). In the Operation section, we must enter values for reactor temperature drop and recycle hydrogen purity. We can enter in the pressure drops and measure octane values of the product. The default values come from the current model results. Entering new pressure drops allows us to account for unexpected flow behavior in the reforming reactors. Figure 5.75 shows the complete input window for the Operation section.

Next, we specify the flow rates, yields, and composition of all the key streams from the reformer (Figure 5.76). A compositional analysis is necessary to make sure that we model key reaction paths accurately. We recommend that users enter all compositional information for gas streams in mol% and all compositional information for liquid streams in vol% or wt%. Given the data available, we can enter the flow rates of each steam on a gas flow or mass flow basis. We note that internally, Aspen HYSYS converts all measurements into a mol% to achieve an overall material balance in the model results.

We suggest a few guidelines when entering the compositional data:

- If analysis for $\rm H_2$ to fuel stream is not available, we can enter 85–87 mol% $\rm H_2$ as the composition for the stream.
- Measurements for the stabilizer overhead liquid can often be confusing. Often there is little difference in the model results if we choose mol% or vol% for the original data. The molar volumes of these light components are roughly similar, so errors due to mistaken mol% or vol% are often quite small.

- If we do not have all isomers of a given kinetic lump (such as P8, SBP8, and MBP8), then it is possible to distribute the total measured lump over the three components. However, we must make sure *not* to include the isomer ratio as a calibration activity factor. This comment does *not* apply to xylenes. We must have the isomer ratio of xylenes to proceed with the calibration.
- We can group the aromatics higher than A9 into a single lump as A10. This is acceptable as we do not calibrate on aromatics higher than A9 and allow the model to calculate aromatic composition higher than A9 freely.

engit reed be	ata Operation Measuremen	t Calibration Control	Analysis		
leasurement	Reactor				
peration		Inlet Pressure [bar]	Pressure Drop [kPa]	Delta T [C]	
roducts	Reactor 1	12.40			
nalysis	Reactor 2	11.24	9.113	64.10	
	Reactor 3	10.66	5.420	36.10	
	Reactor 4	10.37	4.182	22.80	
	Discharge Pressure [bar] Suction Pressure [bar]		15.55 8.123		
		line	0.8710		
	H2 Purity of Recycle, mol.	frac.	0.0110		
	H2 Purity of Recycle, mol.	Trace			
		nac.	104.5		
	Measured Octanes	118c.			
	Measured Octanes		104.5		

Figure 5.75 Completed reactor performance tab.

Design Feed I	Data Operation Measurement	Calibration Control Analysis							
Measurement			Net H2	H2 to Fuel	Stab OH Vapor	Stab OH Liquid	Reformate	Total	
Operation	Gas Rate [STD_m3/h]		7.921e+004	0.0000	3393	9413	3.309e+004	1.251e+005	
Products	Liquid Rate [m3/h]		103.7	0.0000	8.499	39.11	171.8	323.1	
Analysis	Mass Rate [kg/h]		1.242e+004	0.0000	3284	2.172e+004	1.436e+005	1.810e+005	
	RON						105.1		
	MON						102.0		
	Composition		Mol%	Mol%	Mol%	Mol%	Wt%	Wt%	
	Hydrogen	(H2) [%]	94.06	87.10	44.38	0.66	0.00	3.58	
	Methane	(P1) [%]	2.40	2.67	6.98	0.44	0.00	0.82	
	Ethane	(P2) [%]	1.78	2.87	18.29	8.29	0.00	1.97	
	Ethylene	(OL2) [%]	0.00	0.00	0.00	0.00	0.00	0.00	
	Propane	(P3) [%]	1.10	3.22	18,46	28.32	0.00	4.29	
	Propylene	(03) [%]	0.00	0.01	0.00	0.12	0.00	0.01	
	Isobutane	(IP4) [%]	0.31	1.42	5.82	20.32	0.00	3.20	
	n-Butane	(NP4) [%]	0.19	1.12	3.79	18.02	0.00	2.68	
	Butylenes	(04) [%]	0.00	0.00	0.00	0.26	0.00	0.03	
	Isopentane	(IP5) [%]	0.11	1.02	1.64	15.95	0.00	2.77	
	n-Pentane	(NP5) [%]	0.05	0.57	0.59	7.62	0.00	1.31	
	Pentylenes	(05) [%]	0.00	0.00	0.05	0.00	0.00	0.00	
	Cyclopentane	(5N/5) [%]	0.00	0.00	0.00	0.00	0.25	0.19	
	Multi-branch butanes	(M8P6) [%]	0.00	0.00	0.00	0.00	2.36	1.88	
	Single-branch pentanes	(58P6) [%]	0.00	0.00	0.00	0.00	2.36	1.88	
	n-Hexane	(NP6) [%]	0.00	0.00	0.00	0.00	2.36	1.88	
	Hexenes	(06) [%]	0.00	0.00	0.00	0.00	0.00	0.00	
	Methylcyclopentane	(5146) [%]	0.00	0.00	0.00	0.00	0.19	0.15	
	Benzene	(A6) [%]	0.00	0.00	0.00	0.00	7.02	5.57	

Figure 5.76 Product measurement tab.

Once we enter the composition information correctly, the status bar will turn yellow (see Figure 5.76), indicating that we are ready to begin varying activity factors.

In step 3 of the calibration, we use Aspen HYSYS to vary several activity factors in order to minimize the objective function. We define the objective function as the weighted sum of the absolute deviations from the model predictions and measure data. We can select terms in the objective function by going to the "Objective" section of the Calibration Control tab. We show this interface in Figure 5.77.

The initial objective function is quite strict and requires significantly detailed analysis for calibration purposes. We suggest an alternative objective function that works well when the compositional analysis is limited. In addition, less strict objective function helps make sure that the model does not become fixed or overcalibrated to a single data set.

Terms that do not appear in Table 5.31 are not part of the initial calibration. Low weightings indicate that agreement with a given term is more significant than other terms. We generally do not include isomer ratios as part of the initial calibration. Once we have completed an initial calibration, we use another data set to further calibrate the model using the original strict objective function. For the purposes of this workshop, we perform the calibration only once.

Once we select the objective function, it is a good practice to run *a model precalibration*. The model precalibration ensures that we are starting the model in a feasible location and indicates if the calibration process will succeed. We run the precalibration by clicking the "Pre-Calib" button in the calibration environment (Figure 5.78).

Design	Feed Data	Operation	Measurement	Calibration Control	Analysis		
Calibrat	tion Control	Objective	Function —				-
Parame	ter			Inc	luded	Sigma	
Objecti	ve Function	Yield, w	rt%				1
		C5+			R	0.10	1
		Total A	romatics			0.20	
		Total 5-	Ring Naphthenio	:s		0.10	
		Total 6-	Ring Naphthenio	:5		0.10	
		H2				0.05	
		P1				0.10	
		P2				0.10	
		P3				0.10	
		IP4				0.10	
		NP4				0.10	
		5N5				0.20	
		P5			V	0.15	
		A6				0.10	
		P6			V	0.15	
		A7				0.15	
		P7			V	0.10	
		A8			N	0.20	
		P8				0.10	
		A9				0.20	
		P9			V	0.10	

Figure 5.77 Initial objective function.

Model prediction	Weigł	nt
C5+ yield	0.10	_
Total aromatic yield	0.20	
H ₂ yield	0.05	
P1 yield	0.10	
P2 yield	0.10	
P3 yield	0.10	
IP4 yield	0.10	
NP4 yield	0.10	
5N5 yield	0.20	
P5 yield	0.15	
A6 yield	0.10	
P6 yield	0.15	
A7 yield	0.15	
P7 yield	0.10	
A8 yield	0.20	
P8 yield	0.10	
A9 yield	0.20	
A10 yield	0.20	
P10 yield	0.10	
Recycle gas purity	0.01	
Reactor 1 ΔT	0.75	
Reactor 2 ΔT	0.75	
Reactor 3 ΔT	0.75	
Reactor 4 ΔT	0.75	_
🖔 Run Pre-Calibratio	on	🔊 Pull Data from Simulation
Run Calibration	_	Return to Simulation

Table 5.31 Weighting factors for a less strict objective function.

Figure 5.78 Precalibration in the Reformer Calibration.

When we run the precalibration of the model, Aspen HYSYS presents the Validation Wizard for this data set. The key results in this wizard are mass and hydrogen closure of this data set. Figure 5.79 shows the initial state of the wizard. We note that there is a significant mass and hydrogen imbalance. We can attempt to correct the error by changing the bias for each stream. The biases refer to how the stream flow will be adjusted to ensure that mass and hydrogen balance is closed. Figure 5.80 shows that we can improve the imbalance by unselecting the bias for the reformate.

eed Group			Mass and Hy	ydrogen Balance		
Stream	Mass Flow [kg/h]	Hydrogen Flow [kg/h]	Closu	re (%)	Original [%]	Adjusted [%]
Feed-1	1.759e+005	2.555e+004		Mass	10	2.94 100.00
				Hydrogen	10	5.91 102.88
Total	1.759e+005	2.555e+004]			
Product Group						
Stream	Measured Mass Flow [kg/h]	Adjusted Mass Flow [kg/h]	Assign Bias		lydrogen Flow g/h]	Adjusted Hydrogen Flow [kg/h]
Net H2	1.242e+004	1.206e+004	R		7568	7351
H2 to Fuel	0.0000	0.0000	V		0.0000	0.0000
C. 1. C(11)	3284	3190	M		719.5	699.0
Stab OH Vapor	2.172e+004	2.110e+004	V		3806	3697
Stab OH Vapor Stab OH Liquid			R		1.497e+004	1.454e+004
	1.436e+005	1.395e+005	14 A		104216-004	1742464004

Figure 5.79 Assign bias.

eed Group			Mass and Hyo	drogen Balance	-		
Stream	Mass Flow [kg/h]	Hydrogen Flow [kg/h]	Closure	e (%)	Original [%]	Adjusted [%]	
Feed-1	1.759e+005	2.555e+004		Mass	10	2.94 100.00	
				Hydrogen	10	5.91 99.37	-
lotal	1.759e+005	2.555e+004					
otal	1./596+005	2,00004					
roduct Group							
Stream	Measured Mass Flow [kg/h]	Adjusted Mass Flow [kg/h]	Assign Bias		iydrogen Flow :g/h]	Adjusted Hydrogen Flow [kg/h]	
	1.242e+004	1.070e+004	2		7568	6521	
Net H2		0.0000			0.0000	0.0000	
Net H2 H2 to Fuel	0.0000		V		719.5	620.0	
	0.0000 3284	2830			119.3		
H2 to Fuel		2830 1.871e+004	v		3806	3279	-
H2 to Fuel Stab OH Vapor	3284						_

Figure 5.80 Assign bias – select reformate.

Changing the Assign Bias may not improve the calibration. Significant mass and hydrogen imbalance indicates that the data set may be inconsistent. The first step is to verify the measurement data and obtain updated measurements if necessary. If we cannot close the mass balance, we can proceed with calibration. However, we must realize that a close calibration may not be possible and we must view model prediction with extra caution.

The next step is to choose model activity factors to vary during the calibration run. We select activity factors by navigating to the Parameter section of the Calibration Control tab (Figure 5.81). To include a factor in the calibration, we must check the "Included box" for that factor and specify an upper and lower bound for that factor as shown in Figure 5.82. The bounds for the upper and lower factor must be reasonable to avoid overcalibrating the model. We discuss upper and

Design Feed Data	Operation Measurement Calibration Contr	rol Analysis				
Calibration Control		Included	Initial Value	Lower Bound	Upper Bound	
Parameter	Global Activity Tuning Factors					
Objective Function	Reactor 1		4.063	<empty></empty>	<empty></empty>	
	Reactor 2		1.140	<empty></empty>	<empty></empty>	
	Reactor 3		0.6065	<empty></empty>	<empty></empty>	
	Reactor 4		0.3051	<empty></empty>	<empty></empty>	
	Kinetic Pathways Tuning Factors					
	Dehydrogenation		0.9703	<empty></empty>	<empty></empty>	
	Hydrocracking		0.7894	<empty></empty>	<empty></empty>	
	Multi-branch isomerization		0.8890	<empty></empty>	<empty></empty>	
	Single-branch isomerization		0.9795	<empty></empty>	<empty></empty>	
	Ring closure		0.5268	<empty></empty>	<empty></empty>	
	Ring expansion		0.9522	<empty></empty>	<empty></empty>	
	Dehydrogenation Tuning Factors					
	C7 Naphthenics		0.8474	<empty></empty>	<empty></empty>	
	C8 Naphthenics		0.4073	<empty></empty>	<empty></empty>	
	Ring Closure Tuning Factors					
	C5		0.5948	<empty></empty>	<empty></empty>	
	C6		10.55	<empty></empty>	cemptyo	
	C7		0.2387	<empty></empty>	<empty></empty>	
	C8		0.3843	<empty></empty>	<empty></empty>	
	C9		0.7126	<empty></empty>	<empty></empty>	
	C10		0.8918	<empty></empty>	<empty></empty>	
	Cracking Tuning Factors					
	C5		0.2000	<empty></empty>	<empty></empty>	
	C6		1.202	<empty></empty>	<empty></empty>	
		-				

Figure 5.81 Calibration parameters.

Global Activity Tuning Factors				
Reactor 1	2	4.063	0.1000	10.00
Reactor 2	N	1.140	0.1000	10.00
Reactor 3	V	0.6065	0.1000	10.00
Reactor 4	V	0.3051	0.1000	10.00

Figure 5.82 Set upper and lower bounds for global activity tuning factors.

lower bounds for adjustment factors previously in Table 5.12. Table 5.32 also presents some reasonable upper and lower bounds for the most common activity factors.

We calibrate the model by selecting each group of factors in Table 5.32 once at a time and subsequently run for each group selection. For example, when we calibrate the model for the first time, we should select the Global Activity Tuning Factors and enter the appropriate bounds from Table 5.32 (Figure 5.81). Then, we click on Run Calib to start the optimization process. We run the process at least five times, selecting a different group to calibrate each time.

The output from the solver appears in Table 5.33. Our goal is to reduce the final value of column 4, "Objective Function Value," to some small value. For an

Group #	Terms	Range
1	Global activity tuning factors	1-20
2	Dehydrogenation and hydrocracking tuning factors	0.1 - 1
3	Isomerization, ring closure, and expansion tuning factors	0.1 - 1
4	Individual tuning factors for C7 and C8	0.1 - 1
5	Light gas yield (C1 and C2 only)	0.1-10

 Table 5.32
 Suggested activity factors for calibration.

teration	Residual Convergence Function	Objective Convergence Function	Objective Function Value	Overall Nonlinearity Ratio	Model Nonlinearity Ratio	Worst Model
0	1.332D-02	9.878D-03	1.247D+05	7.076D-01	8.211D-01	RXR2.RXR
	<line search<="" td=""><td>Creep Mode A</td><td>CTIVE> ==</td><td>> Step taken</td><td>a 3.00D-01</td><td></td></line>	Creep Mode A	CTIVE> ==	> Step taken	a 3.00D-01	
1	9.110D-03	7.029D-03	1.250D+05	9.739D-01	-6.060D-01	NETCALV
	<line search<="" td=""><td>Creep Mode A</td><td>CTIVE> ==</td><td>> Step taken</td><td>a 3.00D-01</td><td></td></line>	Creep Mode A	CTIVE> ==	> Step taken	a 3.00D-01	
2	6.273D-03	4.953D-03	1.253D+05	9.813D-01	3.392D-01	NETCALV
	<line search<="" td=""><td>Creep Mode A</td><td>CTIVE> ==</td><td>> Step taken</td><td>a 3.00D-01</td><td></td></line>	Creep Mode A	CTIVE> ==	> Step taken	a 3.00D-01	
3	4.340D-03	3.478D-03	1.255D+05	9.866D-01	6.410D-01	NETCALV
	<line search<="" td=""><td>Creep Mode A</td><td>CTIVE> ==</td><td>> Step taken</td><td>a 3.00D-01</td><td></td></line>	Creep Mode A	CTIVE> ==	> Step taken	a 3.00D-01	
4	3.014D-03	2.438D-03	1.256D+05	9.904D-01	7.827D-01	NETCALV
	<line search<="" td=""><td>Creep Mode A</td><td>CTIVE> ==</td><td>> Step taken</td><td>a 3.00D–01</td><td></td></line>	Creep Mode A	CTIVE> ==	> Step taken	a 3.00D–01	
5	2.098D-03	1.707D-03	1.257D+05	9.652D-01	5.367D-01	NETCALV
6	1.191D-05	1.186D-05	1.259D+05	9.999D-01	9.997D-01	ISOMP4
7	2.669D-09	1.338D-09	1.259D+05			
Succe	ssful solution.					
Optin	nization Timing	g Statistics		Time	Percent	
MOD	EL computation			1.60 secs	24.17 %	
DMO	computations			4.57 secs	69.15 %	
Misce	llaneous			0.44 secs	6.68 %	
	Optimization T em converged	lime		6.61 secs	100.00 %	

Table 5.33 Solver output during calibration.

accurate calibration, the objective function should be lower than 250–300 using the weightings given in Table 5.31.

Each time we successfully run a calibration, we can verify how far model predictions are from measured input values given to Aspen HYSYS. We go to the Calibration Factors section (see Figure 5.83) in the Analysis tab of the Calibration Environment. The "Delta" column indicates the difference between the measured and model values for a given term of the objective function. Contribution indicates the given term's contribution to the objective function (Delta/Weighting). Using the steps in Table 5.32, we can reduce the objective function value to 180. This is below our 250–300 criterion for a reasonable model.

Once we finish calibrating the model to some small residual (<250-300), we should export the results back to the main reformer flowsheet. This is step 4, the last step, of the model calibration that we discussed in the beginning of this section.

We save the model calibration by clicking "Save for Simulation ..." in the Analysis tab of the Reformer Calibration Environment. Aspen HYSYS will prompt us (see Figure 5.84) to save this calibration as "Set-1." We can have multiple calibrations for the same reformer and use different calibration sets for different operating scenarios. We recommend only having only calibration set per reformer model file.

Analysis Calibration Factors	Save for Simulation Export	. Calif	pration Factors Lib	orary				
Mass Balance	Parameters							
Summary	Parameters	Included	Initial Value	Final Value	Lower Bound	Unner Round	1	_
Feed Blend	Global Activity Tuning Factors	included	mitia vanue	Pinal value	Lower bound	opper bound		
Product Yields Reactors	Global Activity luning Factors Reactor 1	1	20.00	20.00	1.000	20.00		- ñ
leater	Reactor 1 Reactor 2	2	5,430		1.000	20.00		=
tabilizer		19 19						3
Product Streams	Reactor 3	2	3.739		1.000	20.00		
	Reactor 4	IN:	20.00	20.00	1.000	20.00		
	Kinetic Pathways Tuning Factors	2						
	Dehydrogenation		0.8677	0.8677	0.1000	1.000		
	Hydrocracking	Y	0.7010		0.1000	1.000		
	Multi-branch isomerization	v V	1.000		0.1000	1.000		
	Single-branch isomerization	N N	0.8124		0.1000	1.000		
	Rina closure	N.	0,4380	0.4380	0.1000	1.000)	
	Objective Function							
		Included	Sigma	Measurement	Model	Delta	Contribution	
	Yield, wt%							
	C5+	1	0.10	82.93	83.05	0.1223	1,495	E
	Total Aromatics	12	0.20	67.34	68.18	0.8444	17.82	
	Total 5-Ring Naphthenics	E	0.10	0.6235	0.5180	-0.1055		
	Total 6-Ring Naphthenics	E	0.10	0.4287	9.500e-002	-0.3337		
	H2	1	0.05	3.590	3.273	-0.3164	40.04	
	P1	5	0.10	0.8422	0.3794	-0.4628	21.42	
	P2	1	0.10	2.074	1.311	-0.7629	58.20	

Figure 5.83 Calibration factors analysis.

Set-1		
this set for the cu	rrent simulation	
ок	Cancel	
	this set for the cu	this set for the current simulation

Figure 5.84 Save calibration factor set.

After saving the Calibration, we should put the solver in holding mode to make sure that Aspen HYSYS exported the calibration factors properly (Figure 5.85). We return to the Reformer Subflowsheet environment. We recommend that users go through each one of the tabs in Reformer Subflowsheet environment to make sure the input data have not changed. It is also important to make sure

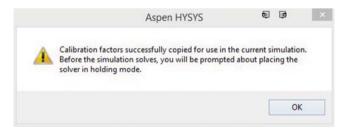


Figure 5.85 Prompt to hold Aspen HYSYS solver.

Feed Data	Feeds	Feed	I Properties				-	
Library	Feed-1	Bas	iis	Weight	1			
Properties		Tur	m Off GC Edit Box		j			
		C#	Common Name		Short Name	Composition		
		0	Hydrogen	H2 I	wt frac]	0.0000		
		1	Methane		wt frac]	0.0000		
		2	Ethane	P2 (wt frac]	0.0000		
		2	Ethylene	OL2	[wt frac]	0.0000		
		3	Propane	P3 [wt frac]	0.0000	1.2	
		3	Propylene	03 [wt frac]	0.0000		
		4	Isobutane	1P4	[wt frac]	0.0000		
	Add Delete	4	n-Butane	NP4	[wt frac]	0.0000		
		4	Total butanes	P4 [wt frac]	0.0000		
	Selected Feed	4	Butylenes	04 [wt frac]	0.0000		
	C Assay	5	Isopentane	IP5	[wt frac]	1.362e-003		
	Bulk Properties	5	n-Pentane	NP5	[wt frac]	5.938e-003		
	GC Full	5	Total pentanes	P5 [wt frac]	0.0000		
	GC Recommended	5	Pentylenes	05	wt frac]	0.0000		
	O de Necommended	5	Cyclopentane	5N5	[wt frac]	1.500e-003		
		6	22-Dimethylbutane	22D	MC4 [wt frac]	3.822e-004		
		6	23-Dimethylbutane	23D	MC4 [wt frac]	1.420e-003		
		6	Multi-branch butanes	MBF	P6 [wt frac]	0.0000		
		6	2-Methylpentane		:5 [wt frac]	9.992e-003		
		6	3-Methylpentane		:5 [wt frac]	9.173e-003		
		6	Single-branch pentages	SBP	fi liwt frac1	0.0000		

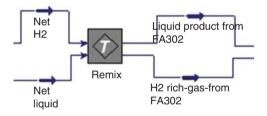
Figure 5.86 Verify feed basis for Feed Data.

the feed basis for the kinetic lumps is same as what was chosen initially (in this work, we always use wt%, see Figure 5.86). We can release the solver to allow Aspen HYSYS to solve the model as shown in Figure 5.86.

We return to the main flowsheet to complete the calibration process for the Reformer Model.

5.16 Workshop 5.3 – Build a Downstream Fractionation System

The next step is to build the downstream fractionation system. The downstream fractionation system for this CCR reformer has three distinct parts:


- 1) Product remixer.
- 2) Hydrogen recontactor.
- 3) Primary gasoline/LPG stabilizer and aromatics recovery.

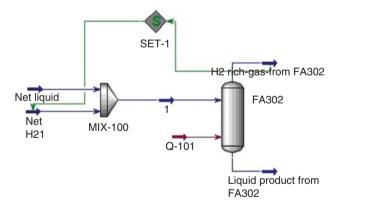
We have previously explained these three parts in conjunction with Figures 5.19–5.21 in Section 5.12. We open the simulation file, *Workshop 5.2.hsc*, and save it as *Workshop 5.3.hsc*, the starting file for the current workshop.

We build a subflowsheet environment for the product remixer by returning to the main flowsheet and creating a subflowsheet. We create a subflowsheet using the "Sub-Flowsheet" icon in the Aspen HYSYS toolbar palette shown in Figure 5.87. The new subflowsheet appears on the main flowsheet as large icon

Figure 5.87 Flowsheet unit operation in Aspen HYSYS palette.

Figure 5.88 Remixer subflowsheet configuration.

with "T" marker (Figure 5.88). We can double-click the icon to bring up the subflowsheet connections window (Figure 5.89).


We attach the inlet connections to the subflowsheet and begin building the internal structure of the subflowsheet (Figure 5.90). We attach the outlet connections once we have completed building the flowsheet (Figure 5.89).

Using the standard Aspen HYSYS objects, we build a simple mixer and separator to remix the product streams and flash the mixed product at the temperature and pressure of the primary product separator. The outlet gas from FA302 represents the initial release of net gas. We use a Set object to ensure that the temperature of the flash is the same as the Net H2 product from the reformer model. Once we finish building this subflowsheet, we can connect outlet feeds as shown in Figure 5.91.

We now proceed to build the hydrogen recontacting section of the fractionation system. Using the same procedure as before, we create a subflowsheet for the Recontactor. The goal of the recontacting section is to improve separation of the light ends from the net gas stream and recover aromatics lost in the initial

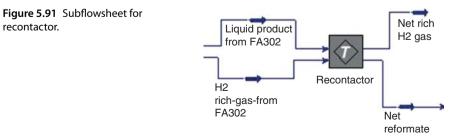

Connections	Parameters	Transfer Basis	Transition	Variables	Notes	Lock		
Name Re	mix				Tag	TPL1		
Inlet Conn	ections to Sub-	-Flowsheet						
	Internal	Stream		Ext	ernal Str	eam		
		Ne	Liquid				Net Liqui	d
		N	let H21				Net H	2
			Q-101				<empty:< td=""><td>></td></empty:<>	>
		**	New **				<empty:< td=""><td>></td></empty:<>	>
- Outlet Con	nections to Su	b-Flowsheet						
- O <u>u</u> tlet Con	nections to Su Internal	an a		Ext	ernal Str	eam		
- O <u>u</u> tlet Con	Internal	an a	FA302	Exte			is-from FA30	2
- Outlet Con	Internal H	Stream		Ext	H2	Rich-Ga	is-from FA30	
- O <u>u</u> tlet Con	Internal H	Stream <mark>2 Rich-Gas-from</mark> Liq Product from		Ext	H2	Rich-Ga		2
- Outlet Con	Internal H	Stream <mark>2 Rich-Gas-from</mark> Liq Product from	FA302	Ext	H2	Rich-Ga	ct from FA30	2

Figure 5.89 Inlet-outlet connections for remixer subflowsheet.

recontactor.

contactor ections to Sub-							
				Tag	TPL2		
Internal	Flowsheet						
meenior	Stream		Exte	ernal Str	eam		
1	iq Product from	FA302		Lie	Product	from FA302	
H2	Rich-Gas-from	FA3021		H2	Rich-Gas	-from FA302	
		Q-106				<empty></empty>	
	Q-101				<empty></empty>	H	
		Q-102				<empty></empty>	
		Q-104	<empty></empty>				
		Q-107				<empty></empty>	*
nections to Su	b-Flowsheet —						
Internal	Stream		Exte	ernal Str	eam		
	Net Rich	H2 Gas			Net	Rich H2 Gas	
		Q-103				<empty></empty>	
		Q-105	<empty></empty>				
			Net Reformate				
	**	New **				<empty></empty>	
	nections to Su	nections to Sub-Flowsheet — Internal Stream Net Rich Net Ref	Q-101 Q-102 Q-104 Q-107 nections to Sub-Flowsheet Internal Stream Net Rich H2 Gas Q-103	Q-106 Q-101 Q-102 Q-104 Q-104 Q-107 nections to Sub-Flowsheet Internal Stream Ext Net Rich H2 Gas Q-103 Q-103 Q-105 Net Reformate	Q-106 Q-101 Q-102 Q-104 Q-104 Q-107 nections to Sub-Flowsheet Internal Stream Net Rich H2 Gas Q-103 Q-105 Net Reformate ** New **	Q-106 Q-101 Q-102 Q-104 Q-107 nections to Sub-Flowsheet Internal Stream Net Rich H2 Gas Q-103 Q-103 Q-105 Net Reformate	Q-106 <empty> Q-101 <empty> Q-102 <empty> Q-104 <empty> Q-107 <empty> nections to Sub-Flowsheet Internal Stream External Stream Net Rich H2 Gas Net Rich H2 Gas Q-103 <empty> Q-105 <empty> Net Reformate Net Reformate</empty></empty></empty></empty></empty></empty></empty>

Figure 5.92 Subflowsheet for recontactor.

net gas stream. Figure 5.92 shows the relevant inlet and outlet stream names and variables for the subflowsheet.

We use standard Aspen HYSYS objects to recreate the recontacting section (Figure 5.93). Typically, a real recontacting section may have several stages to improve product separation. In general, two ideal separators can model multiple real separators as real separators do not typically operate at thermodynamic equilibrium. We also include an Adjust block to ensure that the temperature of the Net H2 Rich Gas leaving matches the plant value. This is often the only calibration required to model plant performance accurately. Table 5.34 shows the specifications we enter for each of the streams in the subflowsheet. We note that these values are not exact but approximated from various sources. When developing a

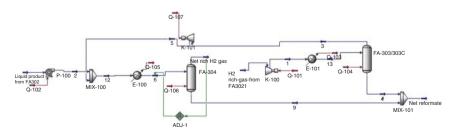


Figure 5.93 Flowsheet for recontacting section.

Stream	Temperature (°C)	Pressure (kPa)
1	-	2612
2	_	5681
5	_	5681
6	10.11	-
13	30.00	_
Net rich ${\rm H}_2$ gas	-	5681

Table 5.34 Stream specifications for recontactor.

model for industrial use, we must make sure to use actual plant values. Table 5.34 indicates the specifications for each stream. Values given by "–" in Table 5.34 indicate that this value should not be specified.

Before the Net Liquid enters the gasoline stabilizer, we must heat the product to a temperature suitable for fractionation. In the actual refinery process, the product heater is often integrated with the bottoms outlet of the gasoline splitter or other columns. However, for the purposes of this simulation, we use a simple heat exchanger instead. For more detailed simulations, we advise the use of cross exchangers to accurately model the duty required for the fractionation (Figure 5.94).

Figure 5.95 shows the stream configuration for the primary gasoline stabilizer. The overhead gas contains mostly light C1–C2 components that did not leave the Net H2 stream. The overhead liquid draw is mostly C3–C4 components, which

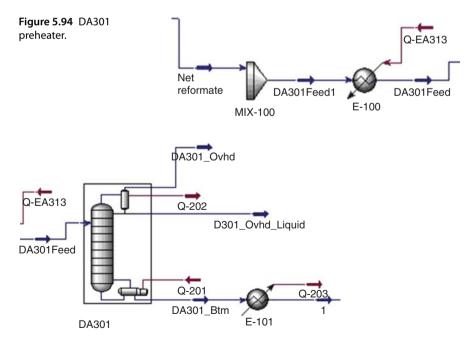


Figure 5.95 DA301 flowsheet.

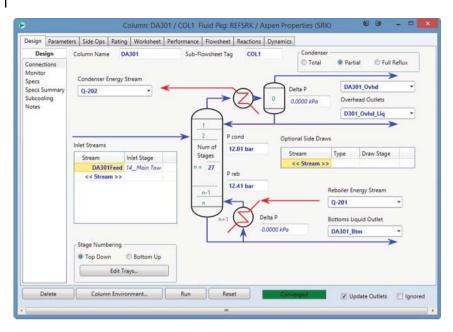


Figure 5.96 DA301 configuration.

form an LPG-like stream. The bottoms stream represents the stabilized gasoline or aromatic enriched liquid product from the reformer.

We show the pressure profile and number of stages required for the gasoline splitter in Figure 5.96. We use 27 theoretical stages to represent the stabilizer in our reformer system according to Table 5.7 in Section 5.8. We use this approach to approximate the column's overall efficiency at 60-70%. We discussed the importance of using the overall stage efficiency over stage-by-stage efficiencies in Section 2.4.3. In general, using the overall stage efficiency approach leads to more robust and predictable column model operation.

As we have three draw streams on DA301, we will require three independent specifications for the column to converge robustly as shown in Figure 5.97. Typically, we use the reflux ratio, temperature of a particular stage, and mole purity (either C4 or C5 in the overhead liquid or vapor) as specifications for the column (see Figure 5.98). If the column is operating as a gasoline splitter, we may want to use the Reid vapor pressure (RVP) of the bottoms as a performance specification. If the column does not converge, we can use the alternate specifications of overhead draw rate, reflux ratio, and bottoms draw to ensure that the column converges to a solution. Once we have a solution, it is quite easy to converge on a performance specification.

As this reformer is part of a petrochemical complex, the product from the gasoline splitter enters an aromatics fractionation column. Column DA302 (see Figure 5.99) has 36 equilibrium stages according to Table 5.7, Section 5.8. It separates toluene and lighter components from xylenes and heavier components. The bottoms product of DA301 enters a heat exchanger to bring down the temperature of the gasoline product to a suitable fractionation temperature (Figure 5.100).

5.16 Workshop 5.3 – Build a Downstream Fractionation System 393

Design Paramete	And	the state of the s	Works	sheet Pe	erformance Fl	lowshee	t R		namics				_
Design	Option	al Checks -						Profile					
Connections Monitor	In	put Summai	y L	View	Initial Estimate	es		Temp	250.0 3-0-	Teriperature		y Posi	ti
Specs Specs Summary	Iter	Step	Equilib	ríum	Heat / Spec			Press	200.0			1000	-
Subcooling	1	0.2500	. (0.050162	0.027	517			150.0				-
Notes	2	1.0000	(0.007283	0.013	949	E C	Flows	100.0				
	3	1.0000	(0.000722	0.005	089			0.000				
	4	1.0000		0.000117	0.001		*		0.000 1111	5	10	15	Ċ,
		1.0000		3.00004C	0.000	777	-						
	Specifi	cations						14					
	-			Specified Value		1	Curre	nt Value	Wt. Error	Active	Estimate	Current	
	Reflu	x Ratio		1.800		.800		1.800	0.0000		P	4	
	Ovhd	Vap Rate			<empty></empty>			93.13	<empty></empty>		P		
		late Rate			<empty></empty>			402.9	<empty></empty>		P		
		x Rate			<empty></empty>			892.8	<empty></empty>	_	N		
		Prod Rate			<empty></empty>		1345		<empty></empty>	-	되		
	100 C 100 C				120.0 C			and the second second					
	Com	p Fraction			1.600e-002		1.602e-002		0.0005	M	M	M	
	Stage	#6 Temp. p Fraction		120.0 C				120.0	0.0000	R	য	বাবা	
		View		Add Spec		Group A	ctive		Jpdate Inactive	D	egrees of Fr	reedom	

Figure 5.97 DA301 specifications.

Design	Parameter	and a subset from the subset of the subset of the	heet Performance Flowsheet	Reac					
Des		Column Specifications		Spec					
Connect		Reflux Ratio Ovhd Vap Rate	View	Spec					
Specs Su	ummary	Distillate Rate Reflux Rate	Add	Com					
Subcool Notes	ing	Btms Prod Rate Stage #6 Temp.	Delete						_
		Comp Fraction		Sp				-	100
		🖪 Comp Frac Spec	Comp Fraction 🛛 🗖	×	Temp S	pec: Stage	#6 Temp.	- 0	X
		Parameters Summar	y Spec Type				a second to		
		Name	Comp Fraction) —			1
		Stage	Condenser		Parameters	Summary	Spec Type		
		Flow Basis Phase	Mole Fraction Vapour		r urunnevera	Jonninery	shee the		
		Spec Value	1.600e-002		-				
		La construction			Name			Chana HE Ta	-
		Components:	IP5 5N5		LAULUE.			Stage #6 Te	mp,
					A				
			22DMC4	1	Stage			6_Main To	wer .
			NP5						
			<< Component >>	•	Spec Value			120	00
		Target Type	Stream Stage		spectrum.	_			

Figure 5.98 Two specifications for DA301 simulation convergence: Components – IP5(*i*-pentane), 5N5(cyclopentane), O4 (1-butene), 22DMC4(22-methyl-butane), NP5 (1-pentane).

Figure 5.101 shows the pressure profile and number of stages required for the aromatics column. Again, we use the same principle of overall stage efficiency (60-70%) to calculate the number of theoretical stages required for the column model. We note that the industrial columns may include a small vent stream in the

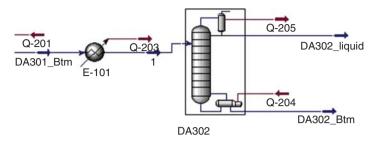


Figure 5.99 DA302 flowsheet.

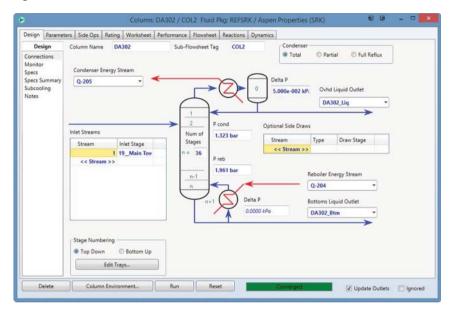


Figure 5.100 DA302 column configuration.

Design	Parameters	Side Ops	Rating	Worksheet	Performance	Flowsheet	t Reactions	Dynamics			
Desig	gn	Optional Checks					Profile				
Connectio	ons	Input Summary View Initial Estimates					Tempe	rature	vs. Tra	y Pos	
Monitor								180.0 -			
Specs		Iter Step Equilibrium Heat / Spec				Temp	160.0			-	
Specs Sul Subcoolir	mmary L	inci Dia	-P	cquinorium	ricary op		Press	140.0	-		an an
lotes	ig						C Flow	120.0	delegent	9999040	_
iones								100.0			-
											+ -
								0	5 1	0 15	
								č	- B - B	12	20
		Specificatio	05						3 6		20
	ſ	Specificatio	ns								
	ſ	Specificatio	ns		Specified Value		Current Value	Wt. Error	Active	Estimate	Current
		Specificatio			Specified Value	1.230	Current Value 1.2	Wt. Error		Estimate	Curren
			tio					Wt. Error 30 0.00	00 🔽	Estimate	Curren
		Reflux Rat	tio Rate		<	1.230	1.2	Wt. Error 30 0.00 3.4 <empty< td=""><td></td><td>Estimate</td><td>Current</td></empty<>		Estimate	Current
		Reflux Rat Distillate	tio Rate te		<0	1.230 mpty>	1.2 63	Wt. Error 30 0.00 3.4 <empty 5.2 <empty< td=""><td></td><td>Estimate</td><td>Current</td></empty<></empty 		Estimate	Current

Figure 5.101 DA302 specifications for aromatic splitter.

condenser for this column. However, depending on the thermodynamic model chosen, the feed to DA302 may not contain any light components. If we create a vent stream, it is likely that the column will have difficulty in converging, as we expect the vent stream to be very small.

As DA302 has two draws in the column, we require two specifications. We typically run the column with the overhead draw rate and reflux ratio as the initial set of specifications (see Figure 5.101). Once have a converged solution, we can use stage temperature as a performance specification to match plant operation. We save the converged simulation as *Workshop 5.3.hsc*.

5.17 Workshop 5.4. – Case Study to Vary RON and Product Distribution Profile

We begin with our calibrated simulation file, *Workshop 5.2.hsc*, and resave it as *Workshop 5.4.hsc*.

In this workshop, we use the calibrated model to perform a case study to determine the operating conditions to produce a desired product yield. The composition of the feed to the reformer may change quickly, and the composition of lighter naphthenes (N5, N6) can change dramatically with the changes to the IBP of the feed. In Section 5.12.1, we discussed several situations that change the product yields with changes in operating conditions and feedstock composition. The most basic, yet useful, case study is to vary the reactor temperature and H_2HC ratio and the effect on product RON and aromatic yields.

We developed the initial model using Reactor Inlet Temperature and associated temperature biases for each reactor. This is useful for a specific reformer plant; however, this method can mask the effect of reactor temperature on the process. We will instead use the WAIT to control the reactor temperature (Figure 5.102).

We change the reactor to the WAIT basis by first holding the solver and prevent it from running while we change the reactor temperature. We note the calculated WAIT from the current solution and copy the value. We paste the value back into the WAIT textbox and release the solver. The solution process should be quite quick with the initial residual on the order of 1E-3 or lower. Higher residuals may indicate that the model was overcalibrated or the model is very sensitive to the operation conditions. In both cases, we will likely have to recalibrate the model with more recent data.

We follow the procedure for case studies demonstrated in Figures 2.69–2.73, Section 2.10.3. Our goal is to the observe product yields as functions of the WAIT and H_2HC ratio. It is possible to manually change each WAIT and H_2HC ratio and rerun the model each time. However, given the typical run time for the reformer solver, this quickly becomes a tedious process. It is better to use the case study features of Aspen HYSYS to automate this process. In addition, as the case study feature will run the model at a variety of conditions and if we successfully solved a model, we can make sure that the model is not overcalibrated.

We add variables from the Reformer object, and we select the Reformer object in the Flowsheet List. The Variable List will show all variables that belong to the Reformer object. We can scroll through this list and click "Add" to add a particular

Prostor Terroritory Seculification			
		and the second sec	Copy Data
	Charles and the second s	and the second sec	
	E Contra La	a second s	
			-
	the second se	<empty></empty>	
Rx 2 Temperature Bias [C]	and the second se	<empty></empty>	
	the second se	<empty></empty>	
Rx 4 Temperature Bias [C]		<empty></empty>	
WAIT [C]	514.4	<empty></empty>	
WABT [C]	492.5	<empty></empty>	
	101.9	<empty></empty>	
C6+ RON	103.7	<empty></empty>	
Sum of Aromatics [wt%]	68.18	<empty></empty>	12 C
- Hydrogen Recycle			
Recycle Compressor Flow ISTD m3/h1			
		Recycle Gas Loca	tion Options
(
Product Separator Pressure [bar]	8.213		
	Rx 3 Temperature Bias [C] Rx 4 Temperature Bias [C] WART [C] WABT [C] C5+ RON C6+ RON Sum of Aromatics [wt%]	Reactor Temperature Specification Rx 1 Inlet Temperature [C] 515.9 Rx 2 Inlet Temperature [C] 513.0 Rx 4 Inlet Temperature [C] 513.0 Rx 4 Inlet Temperature [C] 515.0 Ractor Inlet Reference Temperature [C] 0.0000 Rx 2 Temperature Bias [C] -2.376 Rx 4 Temperature Bias [C] -2.376 Rx 4 Temperature Bias [C] -0.9252 WAIT [C] 514.4 WAST [C] 514.4 C5+ RON 101.9 C6+ RON 103.7 Sum of Aromatics [wt%] 68.18 Hydrogen Recycle Recycle Compressor Flow [STD_m3/h] Revole Compressor Flow [STD_m3/h] 1.502e+005 H2HC Ratio - Mol/Mol 3.407	Reactor Temperature Specification Rx 1 Inlet Temperature [C] 515.9 Rx 2 Inlet Temperature [C] 513.0 Rx 3 Inlet Temperature [C] 513.0 Rx 4 Inlet Temperature [C] 515.0 Rx 4 Inlet Temperature [C] 515.0 Rx 1 Temperature [C] 515.0 Rx 1 Temperature Bias [C] -2.376 Rx 1 Temperature Bias [C] -2.376 Rx 4 Temperature Bias [C] -0.9252 WAIT [C] -0.9252 WAIT [C] 492.5 CS+ RON 103.7 Sum of Aromatics [wths] 68.18 Hydrogen Recycle Recycle Compressor Flow [STD_m3/h] H2HC Ratio - Mol/Mol 3.407

Figure 5.102 Change reactor temperature to WAIT basis.

Table 5.35 Variables for RON case study.

Variable	Туре
WAIT, 495–525°C (an increment of 5°C)	Independent
C5+ RON and C6+ RON	Dependent
H_2HC Ratio, 3–4 (an increment of 0.25)	Independent
Detailed yields (total aromatics, total C8 aromatics)	Dependent
Detailed yields (A6, A7)	Dependent
Detailed yields (H2, P1, P2, and P3)	Dependent

variable to the case study. Table 5.35 shows the variables we need for this case study. Figure 5.103 shows the independent and dependent variables for our case study.

We click View to set the upper and lower bounds for the case study. We change the WAIT from 495 to 525 °C inclusively in 5 °C increments. We also change the H₂HC ratio from 3.0 to 4.0 with an increment of 0.25. The number of states indicates how many times the reformer model will run with various inputs. We generally advise against running more than 40–50 states at a time since the total run time for more than 50 states can be quite significant. In most cases, the reformer operating temperatures are not more than 10 °C or so during normal operation. We click on Start to begin running the case studies. We observe the solver running in the lower right corner of the flowsheet.

Figure 5.104 shows the results of the case study. We can view this graph by clicking the "Results ..." button. The default is to show the graph with the results

5.17 Workshop 5.4. – Case Study to Vary RON and Product Distribution Profile 397

	omize Resources	and a second second				
		Poorts Input Summaries	Studies Stream Ani Fits IIEquipment nizer Model Ana Analysis	Design = 🙀 D	Pressu Depre	
Capital:USD_Utilities: _	USD/Year 🛛	Energy Savings:MW	(%) 🖸	Exchangers - Uni	known: 0 OK	3 0
Flowsheet Case (Main) - So	Iver Active × Case St	udies Setup - Current Case Study	Case Studies ×)+ 		
Object		Variable		Independent	Include	_
	Reformer-100		WAIT	Yes	R	
	Reformer-100	H2H	Yes	Y		
	Reformer-100		No	V		
	Reformer-100		No	V		
	Reformer-100	Grouped Yields, Wt. %	No	7		
-	Reformer-100	Grouped Yields, Wt. % (T	No	N		
	Reformer-100	Detailed	No	2		
	Reformer-100	Detailed	Yields, Wt. % (A7)	No	v	
	Reformer-100	Detailed	Yields, Wt. % (H2)	No	2	
	Reformer-100	Detailed	Yields, Wt. % (P1)	No	V	
	Reformer-100	Detailed	Yields, Wt. % (P2)	No	2	
	Reformer-100	Detailed	Yields, Wt. % (P3)	No	V	
	Reformer-100	Detailed	No	V		
	Reformer-100	Detailed	Yields, Wt. % (O3)	No	4	
	Reformer-100	Detailed Yields, V	Wt. % (ETHYLBEN)	No	V	
	Reformer-100	Detailed Yields, V	Wt. % (M-XYLENE)	No	7	
	Reformer-100	Detailed Yields,	No	ব		

Figure 5.103 Independent and dependent variables of the case study.

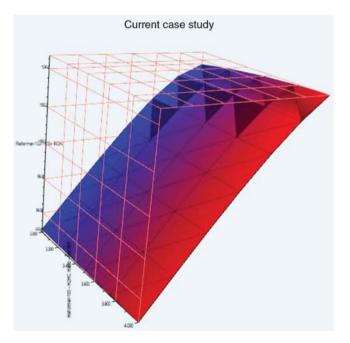


Figure 5.104 Graphical results of case study.

of the case study. In general, we can see the general trend at the high reactor temperatures and low H_2 HC ratios increase the RON of the product. We can view the numerical results of the case study by selecting the "Transpose Table" option. The results appear in the order of increasing WAIT and H_2 HC ratio. Figure 5.105 shows the results table for this case study. We copy these results into Microsoft Excel and create the graphs in Figures 5.105–5.109.

When we graph the results using Microsoft Excel, we find several interesting trends in the data that are not readily apparent from the initial result graph and numerical results. The case study shows that as temperature increases, the RON and yield of aromatic products increase as well (Figures 5.106 and 5.107). However, at around 520 °C for a H_2 HC ratio of 3.0, we find that the yield begins to

Table	Transpose Table	Result	ts Plot Sa	ive Results to File 📃	Text Filename		71
State	Reformer-100 - WAIT [C]	Reformer-100 - H2HC Ratio - Mol/Mol	Reformer-100 - C5+ RON	Reformer-100 - C6+ RON	Reformer-100 - Grouped Yields, Wt. % (Total aromatics) [%]	Reformer-100 - Grouped Yields, Wt. % (Total C8 aromatics) [%]	Reformer-100 - R Detailed Yields, Wt. % Deta (A6) [%]
State 1	495.0	3.000	95.01	96.31	66.07	21.41	3.44
State 2	495.0	3.250	94.97	96.27	65.96	21.36	3.48
State 3	495.0	3.500	94.93	96.23	65.85	21.31	3.51
State 4	495.0	3.750	94.88	96.18	65.75	21.26	3.55
State 5	495.0	4.000	94.84	96.13	65.64	21.21	3.58
State 6	500.0	3.000	96.89	98.30	66.96	21.62	3.71
State 7	500.0	3.250	96.86	98.27	66.85	21.57	3.75
State 8	500.0	3.500	96.82	98.23	66.73	21.51	3.78
State 9	500.0	3.750	96.78	98.20	66.62	21,46	3.82
State 10	500.0	4.000	96.74	98.15	66.50	21,41	3.86
State 11	505.0	3.000	98.74	100.3	67.65	21.73	4.00
State 12	505.0	3.250	98.71	100.2	67.52	21.67	4.05
State 13	505.0	3.500	98.68	100.2	67.39	21.62	4.08
State 14	505.0	3.750	98.65	100.2	67.26	21.56	4.12

Figure 5.105 Numerical results for case study.

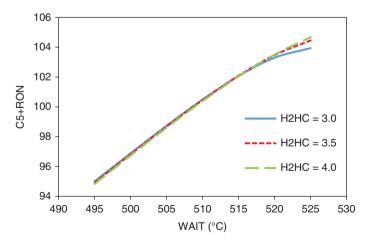


Figure 5.106 RON as a function of WAIT and H₂HC ratio.

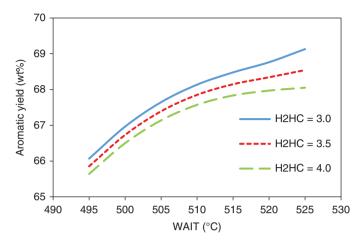


Figure 5.107 Aromatic yield as a function of WAIT and H₂HC ratio.

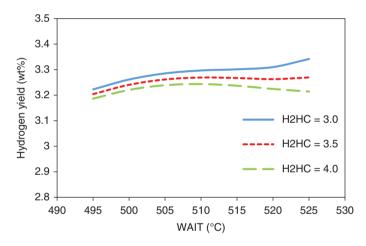
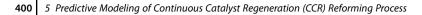



Figure 5.108 H₂ yield as a function of WAIT and H₂HC ratio.

drop. This is due to the increased deactivation of the catalyst at high temperature and low H_2HC ratio. We observe that we can alleviate this situation by increasing the H_2HC ratio.

An interesting side effect of increasing the H_2HC ratio is that around 520 °C, we start to see marked increases in the production of light gases and hydrogen yield (Figures 5.108 and 5.109). Although initially these increases appear small, they can have a significant effect on downstream fractionation. Excessive amounts of light gas can overload recycle compressors and increase the condenser duty requirements for stabilizer columns.

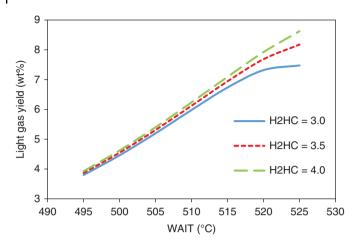


Figure 5.109 Gas yield as a function of WAIT and H₂HC ratio.

5.18 Conclusion

In this work, we have developed an integrated model for an UOP CCR unit in Aspen HYSYS Petroleum Refining. We used detailed feed composition (PNA content) and the routinely collected data such as operating profiles of reactor, product yields, and fractionator temperature profiles. The key highlights of this work are as follows:

- Detailed process description and overview of process chemistry relevant to modeling the reactor.
- Brief survey of existing kinetic and unit-level models for reforming processes.
- Discussion of kinetic and reactor model in Aspen HYSYS Petroleum Refining.
- Guidelines for dealing with the physical properties of the kinetic lumps in the context of the radial flow reactors and fractionator.
- Detailed process to infer molecular composition of feed when little plant information is available.
- Identified key issues relevant to calibration and how to prevent overcalibration of reactor model.
- Used industrial plant data to obtain workflow that produces a reasonable model.
- Applied model to industrial plant data and showed good agreement with plant measurements in yield and composition of key products.
- Investigation of the effects of various process parameters on product yield and composition.
- Transitioned the results from rigorous nonlinear model to the LP model for the refinery.

Nomenclature

- α Beta distribution shape parameter
- α_i Pressure effect exponent for reaction class *j*

Δ	Catalyst activity factor
A_{c}	Catalyst activity factor A romatic lump containing <i>i</i> carbon atoms $(i > 6)$
A_i	Aromatic lump containing <i>i</i> carbon atoms $(i \ge 6)$ Preexponential factor in rate constant $(1/s)$
A _o	Activity factor for reaction group x
a_x	
β	Beta distribution shape parameter
BEN CH	Benzene Carbon to hydrogen weight ratio
	Carbon-to-hydrogen weight ratio
C_i CP	Concentration of component <i>i</i>
E	Cyclopentane
<i>E</i> EBP	Tray efficiency factor Γ is a point (C)
	End boiling point (°C) Activation energy associated with reaction $L(U/kmal)$
E_i	Activation energy associated with reaction I (J/kmol)
$\phi \\ F$	Catalyst deactivation due to coke on catalyst
	Total molar flow rate (kmol/h)
F_i Γ	Molar flow rate of component i (kmol/h)
	Combined adsorption factor due to acid function
H_2HC	Hydrogen-to-hydrocarbon mole ratio
H _{factorij}	Hydrogen-to-carbon weight ratio for component $C_i H_j$
$I_{\rm BP}$	Initial boiling point (°C)
IP_x	Iso (or branched) paraffin containing x carbon atoms Pata constant associated with reaction or component <i>i</i>
k_i	Rate constant associated with reaction or component i
K	(kmol/kg cat s)
K_i MBP _x	Adsorption factor for component <i>i</i> (1/kPa) Multiple-branched paraffin containing <i>x</i> carbon atoms
MDI _x MCH	Methylcyclohexane
MCP	Methylcyclopentane
MON	Motor octane number
MON _i	Motor octane number of component or lump <i>i</i>
MW	Molecular weight
Ni w	Naphthene lump containing <i>i</i> carbon atoms ($i \ge 5$)
N_i	Weight or mole faction of given lump i
$5N_i$	Five-membered naphthene lump containing <i>i</i> carbon atoms ($i \ge 5$)
$6N_i$	Six-membered naphthene lump containing <i>i</i> carbon atoms ($i \ge 6$)
NP_x	Normal paraffin containing <i>x</i> carbon atoms
P	Pressure (kPa)
P_i	Partial pressure of component <i>i</i> (kPa)
P _o	Reference pressure (kPa)
P_x	General paraffin containing <i>x</i> carbon atoms $(x \ge 1)$
θ̈́	Combined adsorption factor due to metal function
R	Universal gas constant (J/kmol K)
RON	Research octane number
RON _i	Research octane number of component or lump <i>i</i>
SBP _x	Single-branched paraffin containing x carbon atoms
T	Temperature (K)
TBP	True boiling point curve (°C)
T_{o}	Reference temperature (K)
TÖL	Toluene
W	Space velocity (1/h)
	•

WAIT	Weight-averaged inlet temperature (°C)
WHSV	Weight hourly space velocity (1/h)
w _i	Weight fraction of component <i>i</i>
x_n	Molar composition of liquid leaving a given tray
\mathcal{Y}_n	Molar composition of vapor leaving a given tray

Bibliography

- 1 Ancheyta-Juarez, J. and Villafuerte-Macias, E. (2000) *Energy & Fuels*, 14, 1032–1037.
- 2 Aguilar-Rodriguez, E. and Ancheyta-Juarez, J. (1994) Oil & Gas Journal, 92, 80-83.
- **3** Ancheyta-Juarez, J. and Aguilar-Rodriguez, E. (1994) *Oil & Gas Journal*, **92**, 93–95.
- 4 Taskar, U.M. (1996) Ph.D. Dissertation. Texas Tech University, Lubbock, TX.
- 5 Taskar, U.M. and Riggs, J.B. (1997) AIChE Journal, 43, 740-753.
- 6 Little, D. (1985) Catalytic Reforming, Penwell Books, Tulsa, OK.
- 7 Antos, G.J. and Aitaini, A.M. (2004) Catalytic Naphtha Reforming, 2nd edn, Marcel Dekker, New York, NY.
- 8 Gary, J.H., Handwerk, G.E., and Kaiser, M.J. (2007) *Petroleum Refining. Technology and Economics*, 5th edn, CRC Press, Boca Raton, FL.
- 9 UOP. (1971) US Patent 3,706,536 (A. R. Greenwood et al.).
- 10 Hosten, L.H. and Froment, G.F. (1971) *Industrial & Engineering Chemistry Process Design and Development*, 10, 280–287.
- 11 Selman, D.M. and Voorhies, A. (1975) Industrial & Engineering Chemistry Process Design and Development, 14, 118–123.
- 12 Froment, G.F. (1987) Chemical Engineering Science, 42, 1073–1087.
- 13 Menon, P.G. and Paal, Z. (1997) Industrial & Engineering Chemistry Research, 36, 3282–3291.
- 14 Raseev, S. (2003) *Thermal and Catalytic Processes in Petroleum Refining*, Marcel Dekker, New York, NY.
- 15 Svoboda, G.D., Vynckier, E., Debrabandere, B., and Froment, G.F. (1995) Industrial & Engineering Chemistry Research, 34, 3793–3800.
- 16 Froment, G.F. (2005) Catalysis Reviews, 47, 83-124.
- 17 Sotelo-Boyas, R. and Froment, G.F. (2009) *Industrial & Engineering Chemistry Research*, 48, 1107–1119.
- 18 Wei, W., Bennet, C.A., Tanaka, R., Hou, G., and Klein, M.T. (2008) Fuel Process Technology, 89, 344–349.
- 19 Ancheyta-Juarez, J., Macias-Villafuerte, E., Schachat, P., Aguilar-Rodriguez, E., and Gonzales-Arredondo, E. (2002) *Chemical Engineering & Technology*, 25, 541–546.
- 20 Smith, R.B. (1959) Chemical Engineering Progress, 55, 76-80.
- 21 Krane, H.G., Groth, B.A., Schulman, L.B., and Sinfelt, H.J. (1959) *Fifth World Petroleum Congress Section III*, World Petroleum Council, London, New York, p. 39.

- 22 Henningsen, J. and Bundgaard-Nielson, M. (1970) British Chemical Engineering, 15, 1433–1436.
- 23 Jenkins, H. and Stephens, T.W. (1980) *Hydrocarbon processing* November, 163 167.
- 24 Hu, S. and Zhu, X.X. (2004) *Chemical Engineering Communications*, 191, 500–512.
- 25 Stijepovic, M.Z., Vojvodic-Ostojic, A., Milenkovic, I., and Linke, P. (2009) Energy & Fuels, 23, 979–983.
- 26 Tailleur, R.G. and Davila, Y. (2008) Energy & Fuels, 2892-2901.
- 27 Ramage, M.P., Graziani, K.R., Schipper, P.H., Krambeck, F.J., and Choi, B.C. (1987) Advances in Chemical Engineering, 13, 193–266.
- 28 Kmak, W.S. (1972) AIChE National Meeting, Houston, TX.
- **29** Klein, M.T. (2006) *Molecular Modeling in Heavy Hydrocarbon Conversions*, CRC Press, Boca Raton, FL.
- 30 Bommannan, D., Srivastava, R.D., and Saraf, D.N. (1989) The Canadian Journal of Chemical Engineering, 67, 405–411.
- 31 Padmavathi, G. and Chaudhuri, K.K. (1997) The Canadian Journal of Chemical Engineering, 75, 930–937.
- 32 Hou, W., Su, H., Hu, Y., and Chu, J. (2006) Chinese Journal of Chemical Engineering, 14, 584–591.
- **33** Szczygiel, J. (2005) Energy & Fuels, **19**, 7–21.
- 34 Li, J., Tan, Y., and Liao, L. (2005) *IEEE Conference on Control Applications*, 2005, 867–872.
- 35 Lee, J.W., Ko, Y.C., Lee, K.S., and Yoon, E.S. (1997) Computers & Chemical Engineering, 21, S1105–S1110.
- **36** Hu, Y., Su, H. and Chu, J. (December 2003) Proceedings of the 42nd IEEE, pp. 6206-6211.
- 37 Stijepovic, M.Z., Linke, P., and Kijevcannin, M. (2010) *Energy & Fuels*, 24, 1908–1916.
- **38** Ginestra, J.C. and Jackson, R. (1985) *Industrial and Engineering Chemistry Fundamentals*, **24**, 121–128.
- 39 Doyle, F.J. III, Jackson, R., and Ginestra, J.C. (1986) *Chemical Engineering Science*, 41, 1485–1495.
- 40 Bhatia, S., Chandra, S., and Das, T. (1989) *Industrial & Engineering Chemistry Research*, 28, 1185–1190.
- 41 Chirico, R.D. and Steele, W.V. (1997) Journal of Chemical & Engineering Data, 42, 784–790.
- 42 Riazi, M.R. (2005) Characterization and Properties of Petroleum Fractions, 1st edn, American Society for Testing and Materials, West Conshohocken, PA.
- 43 Kister, H.Z. (1992) Distillation Design, McGraw-Hill, Inc., New York, NY.
- **44** Kaes, G.L. (2000) *Refinery Process Modeling. A Practical Guide to Steady State Modeling of Petroleum Processes*, The Athens Printing Company, Athens, GA.
- 45 Sanchez, S., Ancheyta, J., and McCaffrey, W.C. (2007) *Energy & Fuels*, 21, 2955–2963.
- 46 Aitani, G.M. and Parera, J.M. (1995) Catalytic Naphtha Reforming (Science and Technology), 1st edn, Marcel Dekker, New York.

- 47 Fernandes, J.L., Pinheiro, C.I.C., Oliviera, N.M.C., Inverno, J., and Ribiero, F.R. (2008) *Ind. Eng. Chem. Res.*, 47, 850–866.
- 48 Van Trimpont, P.A., Marin, G.B., and Froment, G.F. (1986) *Industrial and Engineering Chemistry Fundamentals*, 25, 544–553.
- 49 Van Trimpont, P.A., Marin, G.B., and Froment, G.F. (1988) *Industrial & Engineering Chemistry Research*, 27, 51–57.
- 50 Garg, A. (June 1997) Hydrocarbon processing, pp. 97 105.
- 51 Vinayagam, K. (October 2007) Hydrocarbon processing, 95-104.
- 52 Bazaraa, M.S., Jarvis, J.J., and Sherali, H.D. (2009) *Linear Programming and Network Flows*, John Wiley and Sons, Hoboken, NJ.
- 53 Pashikanti, K. and Liu, Y.A. (2011) Predictive modeling of large-scale integrated refinery reaction and fractionation systems from plant data: 3. Continuous catalyst regeneration (CCR) reforming process. *Energy and Fuels*, 25, 5320–5344.
- 54 Ayodele, B. and Cheng, C.K. (2015) Process modelling, thermodynamic analysis and optimization of dry reforming, partial oxidation and auto-thermal methane reforming for hydrogen and syngas production. *Chemical Product* and Process Modeling, 10, 211–220.
- **55** Taghavi, B. and Fatemi, S. (2014) Modeling and application of response surface methodology in optimization of a commercial continuous catalytic reforming process. *Chemical Engineering Communications*, **201**, 171–190.
- 56 Wood, K.R., Liu, Y.A., and Yu, Y. (2018) Design, Simulation and Optimization of Adsorptive and Chromatographic Separations: A Hands-on Approach, Wiley-VCH, Weinheim, Germany.

Predictive Modeling of the Hydroprocessing Units

6

This chapter presents a workflow to develop, validate, and apply predictive models for rating and optimization of large-scale integrated hydrocracking (HCR) reaction and fractionation systems from plant data. In practice, a HCR process includes hydrotreating (HT) reactors for hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) of the feedstock to HCR reactors. Thus, this chapter actually covers two important types of hydroprocessing operations: *hydrotreating* and *hydrocracking*.

Section 6.1 illustrates the typical HCR process and summarizes the previous work in the development of kinetic, reactor, and process models for HCR operations. Section 6.2 presents the features of the Aspen HYSYS Petroleum Refining HCR modeling tool and discusses in detail the kinetic lumping and reaction networks involved in the HCR model. Section 6.3 describes two commercial processes: a medium-pressure hydrocracking (MP HCR) unit with a feed capacity of 1 million tons per year and a high-pressure hydrocracking (HP HCR) unit with a feed capacity of 2 million tons per year in the Asia Pacific. The units include reactors, fractionators, and hydrogen recycle system. With catalyst and hydrogen, the process converts heavy feedstocks, such as vacuum gas oil (VGO), into valuable low-boiling products, such as gasoline and diesel.

Section 6.4 presents in detail the workflow of developing predictive models of integrated HCR reaction and fractionation systems. We present the detailed procedure for data acquisition to ensure accurate mass balances and for implementing the workflow using Excel spreadsheets and a commercial software tool, Aspen Petroleum Refining. Our procedure is equally applicable to other commercial software tools. The workflow includes special tools to facilitate an accurate transition from lumped kinetic components used in reactor modeling to the pseudocomponents based on boiling point ranges required in the rigorous stage-by-stage simulation of fractionators.

In Sections 6.5 and 6.6, we validate the MP HCR and HP HCR models with 2–3 months of plant data, and the resulting models accurately predict unit performance, product yields, and fuel properties from the corresponding operating conditions.

Section 6.7 illustrates applications of the validated plantwide model to quantify the effect of H_2 -to-oil ratio on product distribution and catalyst life and the effect of HCR reactor temperature and feed flow rate on product distribution.

The results agree well with experimental observations reported in the literature. Our resulting models only require typical operating conditions and routine analysis of feedstock and products and appear to be the only reported integrated HCR models that can quantitatively simulate all key aspects of reactor operation, fractionator performance, hydrogen consumption, product yield, and fuel properties.

Section 6.8 applies the developed model to generate the delta-base vector for production planning. Sections 6.9–6.12 present four hands-on workshops, including the development of a preliminary model for HCR reactor, calibration of the reactor model to match plant data, application of the calibrated model to case studies of the effects of key operating variables, and the fractionation system for a HCR reactor. This chapter concludes with the Nomenclature and Bibliography.

6.1 Introduction

Hydroprocessing units upgrade oil fractions with excess hydrogen and severe process conditions. HCR is one of the most significant hydroprocessing units in modern refinery. It is widely used to upgrade the heavy petroleum fraction, such as VGO. With catalyst and excess hydrogen, HCR converts heavy oil fractions, such as VGO, from crude distillation unit (CDU) into a broad range of valuable low-boiling products, such as gasoline and diesel. Figure 6.1 represents a typical process flow diagram of a single-stage HCR process with two reactors. The first

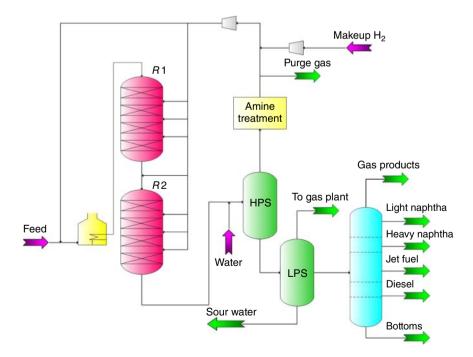


Figure 6.1 Flow diagram of a typical single-stage HCR process.

6.1 Introduction 407

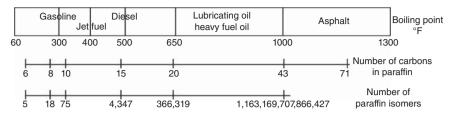


Figure 6.2 Complexity of petroleum oil. (Adapted from Aye and Zhang [1].)

reactor is usually loaded with HT catalyst to remove most of the nitrogen and sulfur compounds from feedstock. In addition, small extent of HCR also takes place in the first reactor. The effluent from the first reactor passes through the HCR catalyst loaded in the second reactor where most of the HCR is reached.

The petroleum fraction is a complex mixture that contains an enormous number of hydrocarbons. Figure 6.2 illustrates the compositional complexity of petroleum oil, displaying the number of paraffin isomers rapidly increasing with the boiling point (BP) and carbon number [1]. Therefore, it is difficult to identify the molecules involved in petroleum oil and study reaction kinetics of the HCR process based on the "real compositions" of the feed oil. To overcome this difficulty, refiners apply lumping technique to partition the hydrocarbons into multiple lumps (or model compounds) based on the molecular structure or/and BP and assume that the hydrocarbons of each lump have an identical reactivity to build the reaction kinetics of HCR. Since Qader and Hill [2] presented first kinetic model of HCR process by using two lumps, a large number of kinetic lumping models of HCR have appeared in the literature.

Figure 6.3 illustrates the scope of published HCR models classified according to a three-layer onion. The core of the onion is the kinetic model, focusing on the microkinetic analysis of reaction mechanisms. It allows for the study of the catalyst selection, feedstock effect, and influence of reaction conditions. The reactor model quantifies the reactor performance (e.g., product yields and fuel properties) under different operating conditions, such as flow rate, temperature profile, and hydrogen pressure. It helps the refiner determine the optimal unit operations. A process model aids in the optimization of plantwide operating conditions to maximize the profit, minimize the cost, and enhance the safety. However, there is little attention paid on developing a plantwide HCR process model in the modeling literature. On the other hand, lumping techniques of kinetic model, as the core of HCR modeling work, have been widely reported in the literature. Most of the modeling literature is concerned about developing detail kinetic lumping model to identify the reaction of the chemistry of HCR process. There are two major classes of lumping techniques: (1) lumping based on nonmolecular composition, and (2) lumping based on molecular composition.

Lumping based on molecular composition defines the kinetic lumps according to structural and reactive characterizations of hydrocarbon species and tracks interactions among a large number of kinetic lumps and reactions. It selects lumped components to characterize the feed oil, build the reaction network, and represent the product composition. In contrast, lumping based on nonmolecular composition considers molecules of different homologous families. For example,

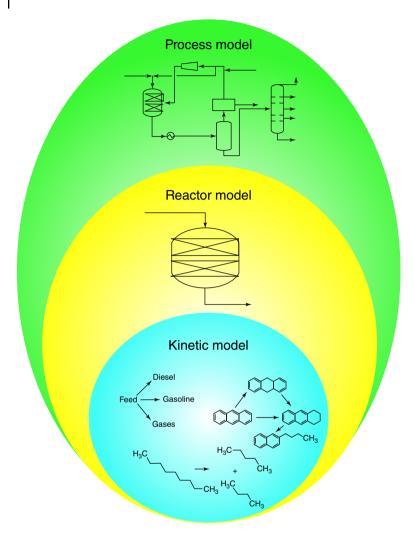


Figure 6.3 Three-layer onion for modeling scope.

a kinetic lump of the BP cut assumes the hydrocarbons within a certain boiling point range to have the same reactivity and cannot differentiate between the different hydrocarbon types in the same boiling point range. When applying a lumping scheme based on molecular composition, the feed oil composition has small or no effect on the resulting kinetic scheme and it allows for predictions of fuel qualities from molecular composition. The most well-known lumping techniques based on molecular composition are the structure-oriented lumping (SOL) [3–5] and the single-event model [6]. The SOL technique has been applied to plantwide process models such as HDS [7] and fluid catalytic cracking (FCC) units [8]. In addition, there is report of the single-event model of HCR kinetics of the oil fraction that includes as many as 1266 kinetic lumps [9]. The lumping based on molecular composition usually requires more computation time Table 6.1 Key features of published HCR models built by lumping based on nonmolecular composition.

Nature of the model					Model capability				
Modeling scope	Lumping technique	Data source	Data requirement (feed)	Data requirement ^{b)} (product)	Reactor operation	Product yield	Column simulation	Fuel quality estimation	
Kinetic model	2 Lumps	Laboratory	None	Yield	N/A	Yes	N/A	N/A	
Kinetic model	4 Lumps	Laboratory	None	Yield	N/A	Yes	N/A	N/A	
Kinetic model	5 Lumps	Pilot	None	Yield	N/A	Yes	N/A	N/A	
Kinetic model	37 Lumps	Laboratory	TBP curve/ SARA analysis/ elemental analysis – C, H, S, N, O, Ni, V	Yield/TBP curve/SARA analysis/ elemental analysis – C, H, S, N, O, Ni, V	N/A	Yes	N/A	N/A	
Kinetic model	Discrete lumps ^{a)}	Pilot/ commercial	TBP curve	Yield/TBP curve	N/A	Yes	N/A	TBP curve	
Reactor model	Discrete lumps	Commercial	TBP curve/ density distribution	Yield/TBP curve	Temperature profile/ hydrogen consumption	Yes	N/A	N/A	
	scope Kinetic model Kinetic model Kinetic model Kinetic model Reactor	scope technique Kinetic 2 Lumps model Kinetic 4 Lumps model Kinetic 5 Lumps model Kinetic 37 Lumps model Kinetic Discrete model Rinetic Discrete	Modeling scope Lumping technique Data source Kinetic 2 Lumps Laboratory Model 4 Lumps Laboratory Kinetic 4 Lumps Laboratory Model - Laboratory Kinetic 5 Lumps Pilot model - - Kinetic 37 Lumps Laboratory model - - Kinetic Discrete Pilot/ model lumps ^{a)} commercial Reactor Discrete Commercial	Modeling scope Lumping technique Data source Data requirement (feed) Kinetic model 2 Lumps Laboratory None Kinetic model 4 Lumps Laboratory None Kinetic model 5 Lumps Pilot None Kinetic model 37 Lumps Laboratory TBP curve/ SARA analysis/ elemental analysis – C, H, S, N, O, Ni, V Kinetic model Discrete lumps ^a Pilot/ commercial TBP curve density	Modeling scopeLumping techniqueData sourceData requirement (feed)Data requirement (product)Kinetic model2 Lumps 4 LumpsLaboratory LaboratoryNoneYieldKinetic model4 Lumps 5 LumpsLaboratory PilotNoneYieldKinetic model5 LumpsPilotNoneYieldKinetic model37 LumpsLaboratory PilotTBP curve/ SARA analysis/ elemental analysis - C, H, S, N, O, Ni, VYield/TBP curve/SARA analysis - C, H, S, N, O, Ni, VKinetic modelDiscrete lumps ^{al} Pilot/ CommercialTBP curve/ TBP curve/ Yield/TBP curveKinetic modelDiscrete lumps ^{al} Pilot/ CommercialTBP curve/ TBP curve/ Yield/TBP curve	Modeling scopeLumping techniqueData sourceData requirement (feed)Data requirement (product)Reactor operationKinetic model2 Lumps LumpsLaboratoryNoneYieldN/AKinetic model4 Lumps LumpsLaboratoryNoneYieldN/AKinetic model5 LumpsPilotNoneYieldN/AKinetic model5 LumpsPilotNoneYieldN/AKinetic model37 LumpsLaboratoryTBP curve/ SARA analysis/ elemental analysis - C, H, S, N, O, Ni, VYield/TBP curve/SARA analysis / elemental analysis - C, H, S, N, O, Ni, VN/AKinetic modelDiscrete lumps*Pilot/ commercialTBP curveYield/TBP curveN/AReactor modelDiscrete lumpsCommercial commercialTBP curve/ density distributionYield/TBP curveTemperature profile/ hydrogen	Modeling scopeLumping techniqueData sourceData requirement (feed)Data requirementbil (product)Reactor operationProduct yieldKinetic model2 Lumps LaboratoryLaboratoryNoneYieldN/AYesKinetic model4 Lumps LumpsLaboratoryNoneYieldN/AYesKinetic model5 LumpsPilotNoneYieldN/AYesKinetic model5 LumpsPilotNoneYieldN/AYesKinetic model37 LumpsLaboratoryTBP curve/ SARA analysis/ elemental 	Modeling scopeLumping techniqueData sourceData requirement (feed)Data requirement (product)Reactor operationProduct yieldColumn simulationKinetic model2 LumpsLaboratoryNoneYieldN/AYesN/AKinetic model4 LumpsLaboratoryNoneYieldN/AYesN/AKinetic model5 LumpsPilotNoneYieldN/AYesN/AKinetic model5 LumpsPilotNoneYieldN/AYesN/AKinetic model37 LumpsLaboratoryTBP curve/ sARA analysis/ elemental analysis - C, H, S, N, O, Ni, VYield/TBP analysis - C, H, S, N, O, Ni, VN/AYesN/AKinetic modelDiscrete lumps ^{a)} Pilot/ commercialTBP curveYield/TBP curveN/AYesN/AKinetic modelDiscrete lumps ^{a)} Pilot/ commercialTBP curve/ densityYield/TBP curveN/AYesN/A	

(Continued)

Table 6.1 (Continued)

				Model cap	ability				
	Modeling scope	Lumping technique	Data source	Data requirement (feed)	Data requirement ^{b)} (product)	Reactor operation	Product yield	Column simulation	Fuel quality estimation
Pacheco and Dassori [17]	Reactor model	Discrete lumps	Commercial	TBP curve/ density distribution	Yield/TBP curve	Temperature profile/ hydrogen consumption	Yes	N/A	N/A
Bhutani <i>et al.</i> [18]	Reactor model	Discrete lumps	Commercial	TBP curve/ density distribution	Yield/TBP curve	Temperature profile/ hydrogen consumption	Yes	N/A	N/A
Laxminarasimhan et al. [19]	Kinetic model	Continuous lumping ^{a)}	Pilot	TBP curve	Yield/TBP curve	N/A	Yes	N/A	N/A
Basak <i>et al.</i> [20]	Reactor model	Continuous lumping	Commercial	TBP curve/PNA distribution along with TBP curve	TBP curve/PNA distribution along with TBP curve	Temperature profile/hydrogen consumption	Yes	N/A	PNA com- position of product
Fukuyama and Terai [21]	Kinetic model	Seven lumps	Laboratory	SARA analysis	Yield/SARA analysis	N/A	Yes	N/A	N/A

a) Discrete lump and continuous lump are defined by boiling points.
 b) TBP = true boiling point; SARA = saturates, aromatics, resins, and asphaltenes; PNA = paraffins, naphthalene, and aromatics.

and makes it difficult to incorporate equipment simulations, such as reactor hydrodynamics. It also requires more data than what the routine chemical analysis in a refinery can provide. This limits its application to kinetics and catalyst studies and can rarely apply to a plantwide process model. In addition to the SOL and single-event model, however, there are other noncomplex lumping techniques based on molecular composition, such as the approach of the Aspen HYSYS Petroleum Refining hydrocracker model that we will discuss in Section 6.2. Table 6.1 summarizes the key features of well-known published HCR models based on nonmolecular composition lumping. For a review and comparison on HCR reactor models, please see the study by Ancheyta *et al.* [10], and for a review of kinetic modeling of large-scale reaction systems through lumping, please refer to the study by Ho [11].

The objective of this chapter is to develop, validate, and apply a methodology for the predictive process model of large-scale integrated refinery reaction and fractionation systems from plant data. In particular, we model two commercial HCR units in the Asia Pacific. MP HCR unit processes 1 million tons feedstock per year with a reactor pressure of 11.5–12.5 MPa, whereas HP HCR unit processes 2 million tons of feedstock per year with a reactor pressure of 14.5–15.0 MPa.

6.2 Aspen HYSYS Petroleum Refining HCR Modeling Tool

In this chapter, we use Aspen HYSYS Petroleum Refining HCR to model the HCR reactors and Aspen HYSYS to develop the rigorous plantwide simulation, including fractionation units.

Figure 6.4 represents the built-in process flow diagram of Aspen HYSYS Petroleum Refining HCR for a single-stage HCR process. It can simulate the feed heater, reactor, high-pressure separator (HPS), hydrogen recycle system, amine treatment (optional), and distillation column (optional). To ensure that the simulation agrees with the real process, users have to configure *the process type (single- or two-stage), number of reactors, number of reactor beds for each reactor,* and *the operation of each unit.* The model of amine treatment is a shortcut component splitter that separates H_2S from the vapor product of the HPS, and the simulation of the distillation column is a shortcut petroleum distillation column discussed in Section 2.15 [22]. In addition, ammonia (NH₃) produced by HDN reactions is split from reactor effluent before its entry into the HPS that is modeled by rigorous thermodynamics.

The reactor model of Aspen HYSYS Petroleum Refining HCR utilizes 97-lump reaction kinetics. The selection of 97 model compounds is based on the carbon number and structural characteristics and is consistent with previous publications [14, 23–26]. The 97 model compounds belong to six groups – light gases, paraffin, naphthene, aromatics, sulfur compound, and nitrogen compound. Furthermore, the sulfur compounds are separated into eight groups of 13 components: thiophene, sulfide, benzothiophene, naphthobenzothiophene, dibenzothiophene, tetrahydrobenzothiophene, tetrahydrodibenzothiophene, and tetrahydronaphthobenzothiophene [22].

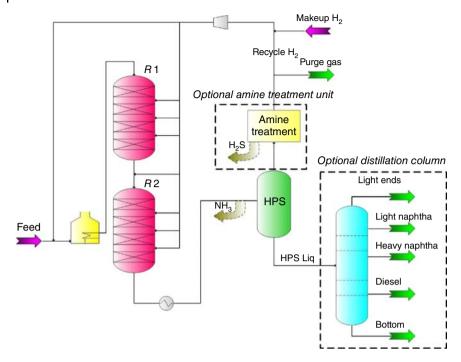


Figure 6.4 Built-in process flow diagram of Aspen HYSYS Petroleum Refining HCR.

In the literature, there are two approaches to develop the kinetic lumping compositions of the feedstock: *forward* and *backward approaches*. The forward approach requires detailed compositional and structural information by performing comprehensive analysis of the feedstock. However, refinery can seldom apply the forward approach because the routine analysis in the refinery does not include the required detailed structural analysis. This leads to the backward approach, which requires a reference library and only limited analytical data from routine measurements, such as density and sulfur content, to estimate kinetic lumping compositions. Brown *et al.* [27] reported a methodology estimating detailed compositional information for the SOL-based model, and Gomez-Prado *et al.* [28] developed molecular-type homologous series (MTHS) representation to characterize heavy petroleum fractions.

In Aspen HYSYS Petroleum Refining, *the forward approach* requires detailed compositional and structural information by performing comprehensive analysis of the feedstock, including API gravity, ASTM D-2887 distillation, refractive index, viscosity, bromine number, total sulfur, total and basic nitrogen, fluorescent indicator adsorption (FIA; total aromatics in vol%), nuclear magnetic resonance (NMR) (carbon in aromatic rings), ultraviolet (UV) method (wt% of mono-, di-, tri-, and tetra-aromatics), high-performance liquid chromatography (HPLC), and gas chromatography/mass spectrometry (GC/MS). With the detailed compositional and structural information, Aspen HYSYS Petroleum Refining quantifies the so-called "fingerprint" (molecular representation) of the feedstock based on 97 kinetic lumps [29]. On the other hand, *the backward*

approach of Aspen HYSYS Petroleum Refining requires only the bulk properties (density, ASTM D-2887 distillation curve, and sulfur and nitrogen contents) of the feedstock. Aspen HYSYS Petroleum Refining contains a built-in fingerprint databank for various types of feedstock, such as light VGO, heavy VGO, FCC cycle oil. The backward approach assumes that the petroleum feedstock with the same fingerprint type maintains the same generic kinetic lump distribution as the initial composition. Aspen HYSYS Petroleum Refining uses a tool called "Feed Adjust" [29] to skew the kinetic lump distribution of the selected fingerprint type to minimize the difference between the measured and calculated bulk properties of the feedstock. We use the resulting kinetic lump distribution as the feed condition for the HCR model. If there is specific concern about compositional information, the user is able to customize the feed fingerprint to match the measurement. For example, the user can change sulfur lump distribution of selected feed fingerprint manually to ensure that the distribution of hindered and nonhindered sulfur compounds matches plant measurement.

The 97 lumps construct the reaction pathways of 177 reactions, including [30] (1) paraffin HCR; (2) ring opening; (3) dealkylation of aromatics, naphthenes, nitrogen lumps, and sulfur lumps; (4) saturation of aromatics, nonbasic nitrogen lumps, and hindered sulfur lumps; (5) HDS of unhindered sulfur lumps; and (6) HDN of nitrogen lumps. Figures 6.5–6.7 illustrate the reaction network.

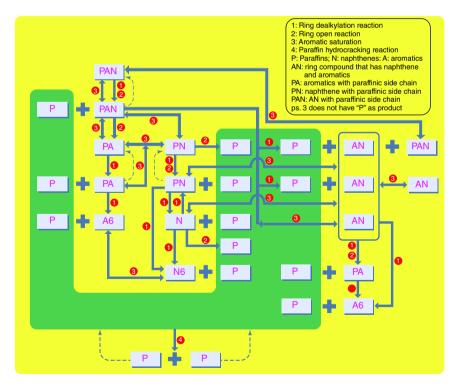


Figure 6.5 Reaction network of Aspen HYSYS Petroleum Refining HCR, paraffin HCR, ring open, ring dealkylation, and aromatic saturation.

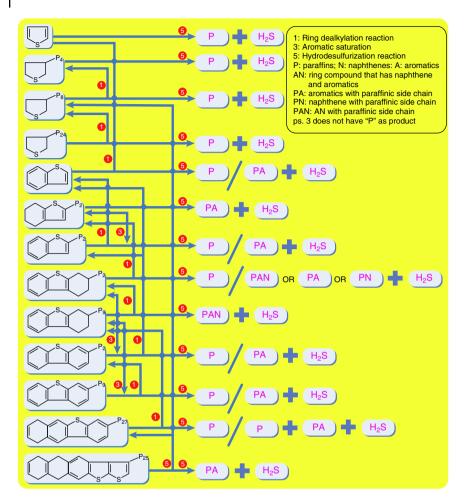


Figure 6.6 HDS reaction network of Aspen HYSYS Petroleum Refining HCR.

Rate equation of each reaction is based on Langmuir–Hinshelwood–Hougen– Watson (LHHW) mechanism with both reversible and irreversible reactions. The mechanism includes [30] the following:

- Adsorption of reactants to the catalyst surface
- Inhibition of adsorption
- Reaction of adsorbed molecules
- Desorption of products.

The kinetic scheme also includes the inhibition resulting from H_2S , NH_3 , and organic nitrogen compounds [30]:

- Inhibition of HDS reactions by H₂S
- Inhibition of paraffin HCR, ring opening, and dealkylation reactions by NH₃ and organic nitrogen compounds.

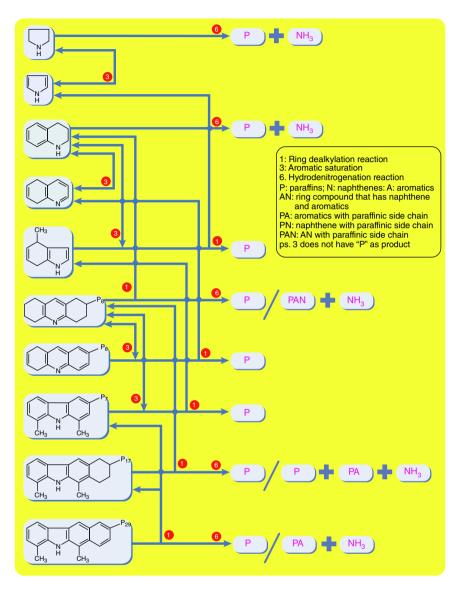


Figure 6.7 HDN reaction network of Aspen HYSYS Petroleum Refining HCR.

Equations (6.1) and (6.2) represent the LHHW-based rate equations for reversible and irreversible reactions, respectively [22].

Rate =
$$K_{\text{total}} \times k \times \frac{((K_{\text{ADS},i}C_i \times K_{\text{ADS},\text{H}_2}(P_{\text{H}_2})^x/K_{\text{eq}}) - K_{\text{ADS},j}C_j)}{\text{ADS}} \cdots$$
 (6.1)

$$Rate = K_{total} \times k \times \frac{K_{ADS,i}C_i \times K_{ADS,H_2}(P_{H_2})^x}{ADS}$$
(6.2)

where K_{total} is the overall activity and k is the intrinsic rate constant, which is assigned by fundamental research [22]. $K_{\text{ADS},i}$ and $K_{\text{ADS},j}$ are the adsorption

416 6 Predictive Modeling of the Hydroprocessing Units

Reaction type	Inhibitors
1. C–C scission (acid site reaction) ^{a)}	NH ₃ , organic nitrogen compound and aromatic hydrocarbon
2. Aromatic saturation (metal site reaction)	Organic nitrogen compound, H_2S , and aromatic hydrocarbon
3. HDS (metal site reaction)	Organic nitrogen compound, H_2S , and aromatic hydrocarbon
4. HDN (metal site reaction)	Organic nitrogen compound, $\rm H_2S$, and aromatic hydrocarbon

 Table 6.2 Reaction types and the corresponding inhibitors.

a) C-C scission includes HCR, ring open, and ring dealkylation reactions.

constants of hydrocarbons *i* and *j*, which are assigned by fundamental researches [22], C_i and C_j are the concentrations of hydrocarbons *i* and *j*, P_{H_2} is the partial pressure of hydrogen, and K_{eq} is the equilibrium constant of the reaction, which is assigned by fundamental researches [22]. ADS is the LHHW adsorption term, which represents competitive adsorption by different inhibitors including aromatic hydrocarbon, H_2S , NH_3 , and organic nitrogen compound. Table 6.2 represents the inhibitors used for each reaction type in Aspen HYSYS Petroleum Refining.

In the rate expressions shown in Eqs. (6.1) and (6.2), K_{total} is the combination of a series of activity factors to represent apparent reaction rates of different reaction groups. For example, K_{total} of the hydrogenation reaction of a light aromatic hydrocarbon is the product of K_{global} , $K_{hdg, overall}$, and $K_{hdg, light}$. K_{global} is the global activity factor assigned to the each catalyst bed, $K_{hdg, overall}$ represents the group activity factor of all hydrogenation reactions, and $K_{hdg, light}$ indicates the activity factor of the hydrogenation reactions for the compounds belonging to light BP cut (below 430 °F). Section 6.4.4 includes more details about the idea of the reaction group and activity factors and gives the details of reaction activities in Aspen HYSYS Petroleum Refining. For reactor design and hydrodynamics, Aspen HYSYS Petroleum Refining HCR applies the design equations of ideal trickle bed and the hydrodynamics described by Satterfield [31], and each catalyst bed is modeled as a separate reactor.

6.3 Process Description

6.3.1 MP HCR Process

Figure 6.8 shows the process flow diagram of an MP HCR unit of a large-scale refinery in the Asia Pacific. The unit upgrades 1 million tons/year of VGO from the CDU into valuable naphtha, diesel, and bottom (the feedstock to ethylene plant) by HCR. The VGO feed from the CDU is mixed with a hydrogen-rich gas and preheated before entering the first reactor. The first reactor uses the HT catalyst to reduce nitrogen and sulfur contents. The second reactor uses the

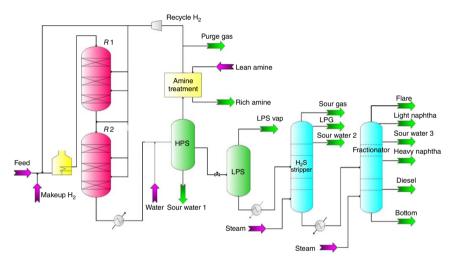


Figure 6.8 Simplified process flow diagram of the MP HCR unit.

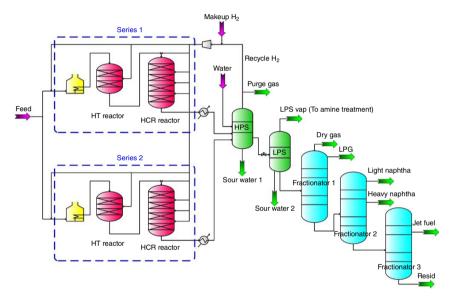


Figure 6.9 Simplified process flow diagram of the HP HPR unit.

HCR catalyst to crack heavy hydrocarbons into lighter oils: naphtha, diesel, and bottom. Following the two reactors, a HPS recovers unreacted hydrogen and a low-pressure separator (LPS) separates the light gases from the liquid outlet of HPS. An amine treatment scrubs sour gases from the vapor product of HPS to concentrate the hydrogen content of the hydrogen recycle stream. To balance the hydrogen in the system, a purge gas stream is removed from amine treatment. In the fractionation part, a H_2S stripper removes the dissolved H_2S from light hydrocarbons and a fractionator with two side strippers produces the major products: light naphtha, heavy naphtha, diesel, and bottom.

6.3.2 HP HCR Process

Figure 6.9 shows the process flow diagram of a HP HCR unit of a large-scale refinery in the Asia Pacific. The unit upgrades 2 million tons/year of VGO into valuable naphtha, jet fuel, and residue oil by HCR. Unlike typical HCR unit, this process includes two parallel reactor series and each series contains one HT reactor and HCR reactor. The VGO feed is mixed with a hydrogen-rich gas and preheated before being fed to the first reactors of both reactor series. The first reactors of both series are loaded with the HT catalyst to reduce nitrogen and sulfur contents. The second reactors of both series are loaded with HCR catalyst to crack heavy hydrocarbons into more valuable liquid products: liquefied petroleum gas (LPG), light naphtha, heavy naphtha, and jet fuel. Following the two reactor series, a HPS recovers unreacted hydrogen and an LPS separates the light gases from the liquid outlet of HPS. To balance the hydrogen in the system, a purge gas stream is removed from vapor product of HPS. In the fractionation part, the first fractionator separates light gases and LPG from light hydrocarbons, the second fractionator produces the most valuable products, namely, light naphtha and heavy naphtha, and the third fractionator further produces jet fuel and residue oil.

6.4 Model Development

6.4.1 Workflow of Developing an Integrated HCR Process Model

Figure 6.10 shows our workflow of developing an integrated HCR model using software tool Aspen HYSYS Petroleum Refining. We recommend that developing all HCR models should follow the same workflow, with only minor changes in the details of each block according to the selection of the kinetic model. For example, the different data requirement of feedstock analysis between wide distillation range lumping (distillation curve) and the SOL model [Fourier transform infrared (FTIR) spectroscopy, API gravity, distillation curve, viscosity, etc.] will make the procedure for data acquisition quite dissimilar. We discuss the details of each block when using Aspen HYSYS Petroleum Refining to build an integrated HCR process model.

The first step of model development is data acquisition, that is, to collect the required data for modeling and then to organize the gathered data and divide them into base and validation data sets. We use the base data set to develop the

420 6 Predictive Modeling of the Hydroprocessing Units

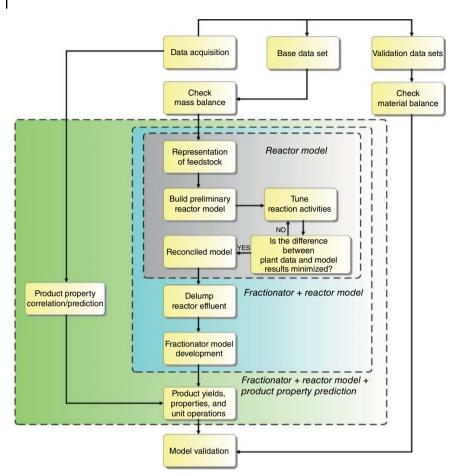


Figure 6.10 Workflow of building an integrated HCR process model.

process model and the validation data sets to test the prediction accuracy of the process model. Before developing the model, it is important to do an accurate mass balance, including the total fresh feed and product streams. If the total mass flow rates of inlets and outlets differ more than 2% or 3%, it is necessary to identify the cause of the imbalance [32]. Following the mass balance is the development of a reactor model. The steps to develop a reactor model also depend on the selection of the kinetic model. The procedures shown in Figure 6.10 correspond to the case using Aspen HYSYS Petroleum Refining. The development of a fractionator model in a HCR process is similar to a CDU. The only difference is the representation of the feed stream to the HCR fractionator. This follows because the HCR reactor effluent is characterized by kinetic lumps instead of the pseudocomponents based on the BP, which are widely used in a CDU model. Therefore, we use a step called *delumping* when the chosen kinetic lumps cannot appropriately characterize the feed stream to a HCR fractionator. Delumping is the

most important step to build a plantwide model of the HCR process because it needs to capture the key properties of the reactor effluent for fractionator simulation during the component transition process. After completing the fractionator model, we incorporate the oil property correlations into the process model to calculate fuel properties, such as the flash point of diesel fuel. Lastly, we verify the model by comparing the predictions with multiple plant data sets.

6.4.2 Data Acquisition

Regardless of the selection of the kinetic model, data acquisition is always the first step of model development. We obtain 2 months of feedstock/product analysis, productions, and operation data from the plant and construct multiple data sets to build and validate the model. It is important to consult plant engineers about data consistency to ensure that each data set does not include the data in the period of operation upsets and significant operation changes. Moreover, it is always helpful to revisit the original data for the test run because we usually adjust the test run data to achieve reasonably accurate perfect mass and heat balances [32].

Data required for the modeling purpose are quite sensitive to the selection of the kinetic model and the modeling scope. This work only requires the operation and analysis data measured daily, and Table 6.3 lists the data requirement in this work. We collect the data from March 2009 to June 2009 and organize the data into eight complete data sets for the MP HCR process and 10 complete data sets for the HP HCR process. We only extract a small number of complete data sets from 4 months of plant data by considering the following: (1) each product stream has its own analysis period, and the analyses of all product streams performed on the same day are not available; (2) it is necessary to find out the date that includes most analysis data and fill up the missing data from adjacent days; and (3) some of the meters fail to record correct values during the period; and (4) some of the data sets fail in mass balance checking (see Section 6.4.3 for the procedure of mass balance calculation). Therefore, it is always useful to collect a long period (1-3)months) of data for modeling purposes, particularly for a commercial process. As it is common to have missing data or failed meters, we take the averages of data over a short period (1-3 days) (an industrial practice also recommended by Kaes [32]), or we make up the missing data by adjacent time periods to construct one complete data set for modeling.

6.4.3 Mass Balance

It is critical to review the collected information to ensure accurate model development, particularly mass balance. The calculation of mass balance should include all of the inlet streams (such as feed oil, makeup H₂, wash water, lean amine, and steam in the MP HCR process) and the outlet streams (such as LPS vapor, sour gas, LPG, flare, light naphtha, heavy naphtha, diesel, bottom, purge gas, sour water, and rich amine in the MP HCR process). However, the streams around amine treatment, wash water, and sour water streams are not routinely measured,

Table 6.3 Requirement of the HCR process model.

Reactor model

- Flow rate
 - Feed oil
 - Makeup H₂
 - Wash water
 - All product streams, including purge gas and rich amine
 - Recycle H₂ (before compressor)
 - Hydrogen quench to each catalyst bed
 - Lean amine

Pressure

- Feed oil
- Inlet and outlet of each catalyst bed
- Inlet and outlet of recycle H₂ compressor
- High-pressure separator
- Low-pressure separator

Temperature

- Feed oil
- Inlet and outlet of each catalyst bed
- Inlet and outlet of recycle H₂ compressor
- High-pressure separator
- Low-pressure separator

Laboratory analysis

- Feed oil (density, distillation curve, total sulfur, total nitrogen, and basic nitrogen)
- All gas products including purge gas (composition analysis)
- Composition analysis of light naphtha
- All liquid products from fractionator (density, distillation curve, and element analysis – C, H, S, N)
- Composition analysis of sour water
- Composition analysis of lean amine and rich amine
- Makeup H₂ (composition analysis)
- Recycle H₂ (composition analysis)
- Purge gas (composition analysis)
- Low-pressure separator gas (composition analysis)

Others

- Bed temperature at SOR (start of run) provided by catalyst vendor
- Bed temperature at EOR (end of run) provided by catalyst vendor

Fractionator model

Flow rate

- Steams
- All pumparound streams

Pressure

- Feed to the main column
- Steams
- Condenser of main column
- Top stage of main column
- Bottom stage of main column
- Feed stage of main column

Table 6.3 (Continued)

Temperature

- Feed to the main column
- Steams
- Inlet and outlet of pumparound
- Inlet and outlet of sides striper reboiler
- Condenser
- Top stage
- Bottom stage
- Feed stage
- Each stage with product draw
- Each stage with side draw
- Bottom stage of main column and side strippers

	A B	Ċ	D	E	F	G	н	1	J	ĸ	L
2	Feed Streams			1							
3		Feed Oil	S in Feed Oil	N in Feed Oil	Make Up H ₂	1					
\$	kg/h	92200	1844	83	4020						
5	S wt%	2									
5	N wt%	0.09									
7	1000			Total Nitrogen Fee	ed						
8	kg/h	96220	1844	83							
9											
0	Product Stream	IS									
1		Purge Gas	LPS Vap	Sour Gas	LPG	Light Naphtha	Heavy Naphtha	Diesei	Bottom		
2	kg/h	1660	1130	1740	3940	3480	20900	32670	29170		
3	H ₂ S wt%	0	7.95	11.81	2.03						
14	H ₂ S kg/h	0	90	205	80			1000			
5	S wt%	0				0	0.0002333	0.00198	0.0015		
6	S kg/h					0	0.05	0.65	0.43		
15 16 17 18	N wt%					0	0	0	0		
8	N kg/h					0	0	0	0		
9	11	Sweet PG	Sweet LV	Sweet SG	Sweet LPG					H ₂ S	NH;
0	kg/h	1660	1040	1535	3860					1958	101
21		Sweet Gas products + Liquid Products	Total H ₂ S	Total NH ₃							
2	kg/h	94315	1958	101							
22											
14	Material Balance	e Deviation									
25	0.16%										

Figure 6.11 Spreadsheet for the mass balance calculation of a HCR process, Mass Balance.xls.

and it is unlikely to include those streams in the calculation of material balance. As those streams only affect the mass balance of sulfur and nitrogen, we recommend doing a separate mass balance of sulfur and nitrogen by assuming that all of the removed sulfur and nitrogen atoms are reacted into H₂S and NH₃.

We calculate the mass balance as follows: (1) calculate the H_2S and NH_3 production by the severity of HDS and HDN reactions; (2) determine the production rates of "sweet" gas products and "sweet" LPG, which means subtracting any reported H_2S and NH_3 from all gas products and LPG; (3) sum up "sweet" gas products, "sweet" LPG, all liquid products, H_2S production, and NH_3 production to determine the total production rate of the reactor effluent; (4) sum up the flow rates of feed oil and makeup H_2 to obtain total feed rate to the reactor; and (5) calculate the ratio between the total production rate of the reactor effluent and the total feed rate.

Figure 6.11 illustrates an Excel spreadsheet (*Mass Balance.xls* available in the supplement) that we develop to do the mass balance calculations. Although we have developed the spreadsheet and the formulas for a specific HCR process, the reader can generalize the steps described earlier and apply the spreadsheet to do a mass balance of any HCR process with only minor changes.

6.4.4 Reactor Model Development

Reactor model development is the core of building a HCR process model. Although the procedure of building a reactor model depends on the selection of the kinetic model, we require the following tasks in developing a model for most commercial HCR processes: (1) do the feedstock analysis based on the selected kinetic model; (2) represent the feedstock as a mixture of kinetic lumps, which can be modeling compounds or pseudocomponents based on boiling point ranges; (3) build the reaction network, define rate equations, and estimate rate constants and heat of reaction; (4) apply the operation data (e.g., reactor temperature and feed rate) to solve rate equations and reactor design equations simultaneously; and (5) minimize objective functions (user-defined indices to represent the differences between model predictions and plant data) by tuning reaction activity parameters.

6.4.4.1 MP HCR Reactor Model

We describe in Section 6.2 the concept of the backward approach in representing the feedstock using the Aspen HYSYS Petroleum Refining. As the refinery does not conduct comprehensive analysis of HCR feedstock routinely, this work applies the backward approach to characterize the feedstock. We select the "LV-GO" fingerprint type for both HCR processes because the feeds to both processes are mainly VGO from CDU, and the selected fingerprint type should be as close to the real feeds as possible. This section demonstrates the last step of building the reactor model using Aspen HYSYS Petroleum Refining to minimize the difference between model predictions and plant data to make the model match plant operation.

Although Aspen HYSYS Petroleum Refining assigns the rate constants to the 177 reactions based on fundamental research, it is necessary to identify the activity factor to match plant operation because the reactor configuration, catalyst activity, and operating conditions vary for different refineries. The procedure of minimizing the difference between model predictions and plant data in Aspen HYSYS Petroleum Refining is called "*calibration*," which means to adjust the model parameters in order for the model predictions to agree with plant data.

Table 6.4 lists the 31 optional objective functions, and Table 6.5 shows the 48 reaction activity factors for selection. Aspen HYSYS Petroleum Refining combines the plant product distribution we enter to construct the reactor effluent. It also partitions the reactor effluent into C1, C2, C3, C4, C5, and four "square cuts," namely, naphtha (C6 to 430 °F cut), diesel (430–700 °F cut), bottom (700–1000 °F) cut, and residue (1000 °F+ cut), which are listed in Table 6.4. All of the objective functions listed in Table 6.4 are either the prediction errors of crucial operations or the important product yields for the HCR process. Aspen HYSYS Petroleum Refining allows us to select the desired objective functions during calibration. After selecting the objective functions, we choose appropriate activity factors to calibrate the reactor model. Figure 6.12 illustrates the relationships among the activity factor, catalyst bed, and reactor

	Note	Notation in this work
The predicting error of temperature rise of catalyst bed	One for each catalyst bed	$OBJ_{TR_i} i = 1-6$
The predicting error of hydrogen quench of catalyst bed	One for each catalyst bed	$OBJ_{HQ_i} i = 1-6$
The predicting error of flow rate of purge gas		OBJ _{PGF}
The predicting error of flow rate of makeup ${\rm H_2}$		OBJ _{MHF}
The predicting error of chemical H_2 consumption		OBJ _{HC}
The predicting error of C6 to 430 °F cut (naphtha) volume flow		OBJ _{NVF}
The predicting error of 430–700 $^{\circ}\mathrm{F}$ cut (diesel) volume flow		OBJ _{DVF}
The predicting error of 700–1000 °F cut (bottom) volume flow		OBJ _{BVF}
The predicting error of 1000 °F+ cut (resid) volume flow		OBJ _{RVF}
The predicting error of C6 to 430 °F cut (naphtha) mass flow		OBJ _{NMF}
The predicting error of 430–700 °F cut (diesel) mass flow		OBJ _{DMF}
The predicting error of 700–1000 °F cut (bottom) mass flow		OBJ _{BMF}
The predicting error of 1000 °F+ cut (resid) mass flow		OBJ _{RMF}
The predicting error of C1–C2 mass yield		OBJ _{C1C2}
The predicting error of C3 mass yield		OBJ _{C3}
The predicting error of C4 mass yield		OBJ _{C4}
The predicting error of sulfur content of 430–700 °F cut		OBJ _{SD}
The predicting error of sulfur content of 700–1000 °F cut		OBJ _{SB}
The predicting error of nitrogen content of 430–700 °F cut		OBJ _{ND}
The predicting error of nitrogen content of 700–1000 °F cut		OBJ _{NB}
The predicting error of nitrogen content in reactor 1 effluent		OBJ _{NR1}

Table 6.4 Objective functions in Aspen HYSYS Petroleum Refining.

type, and Table 6.5 shows the major effect of each activity factor on the model performance, such as global activity ($K_{\rm global}$) on the bed temperature profile, to help the selection of activity factors.

The procedure of model calibration depends on the operational mode, product yields, and precision of plant data. For example, a hydrogen-insufficient refinery might pay more attention to hydrogen consumption and makeup hydrogen flow. In addition, it is necessary to have high precision of light end analysis (C1–C5) if we desire to have accurate predictions of light gas yields. For MPHCR process, the most important considerations to the plant management are the product yields, flow rate of makeup hydrogen, reactor temperature, and properties of liquid fuel products. We note that the reactor model cannot calculate some fuel properties, such as flash point and freezing point of diesel and jet fuel, because the square cuts defined by Aspen HYSYS Petroleum Refining have distillation ranges that are different from those of plant cuts. Therefore, we develop correlations to estimate such fuel properties (see Section 6.4.6).

Notation in this work	Description	Major observation	Number of activity factors	Note
K_{global_i} i = 1-6	Global activity for each catalyst bed	Bed temperature profile	6 ^{a)}	6 global activity factors for 6 catalyst beds
$K_{sul_i_j}$ i = HT, HCR j = O, L, M, H	HDS activity	Sulfur content	8	 factor for overall HDS activity of hydrotreating beds factors for 3 wide boiling point cuts^{b)} of hydrotreating beds factor for overall HDS activity of HCR beds factors for 3 wide boiling point cuts of HCR beds
$K_{\text{nit}_i_j}$ i = HT, HCR j = O, L, H	HDN activity	Nitrogen content	6	 factor for overall HDN activity of hydrotreating beds factors for 2 wide boiling point cuts of hydrotreating beds factor for overall HDN activity of HCR beds factors for 2 wide boiling point cuts of HCR beds
$K_{\text{crc}_i_j}$ i = HT, HCR j = O, L, M, H	Activity of HCR and ring dealkylation	Product yield	8	 factor for overall HCR activity of hydrotreating beds factors for 3 wide boiling point cuts of hydrotreating beds factor for overall HCR activity of HCR beds factors for 3 wide boiling point cuts of HCR beds
K_{hdg,i_j} i = HT, HCR j = O, L, M, H	Activity of hydrogenation (HDG, saturation of aromatic rings)	Hydrogen consumption/ reactor temperature	8	1 factor for overall HDG activity of hydrotreating beds 3 factors for 3 wide boiling point cuts of hydrotreating beds 1 factor for overall HDG activity of HCR beds 3 factors for 3 wide boiling point cuts of HCR beds

 Table 6.5
 Reaction activity factors in Aspen HYSYS Petroleum Refining.

Notation in this work	Description	Major observation	Number of activity factors	Note
$K_{\text{ro}_i_j}$ i = HT, HCR	Activity of ring opening (RO)	Paraffin: naphthene ratio	8	1 factor for overall RO activity of hydrotreating beds
j = O, L, M, H				3 factors for 3 wide boiling point cuts of hydrotreating beds
				1 factor for overall RO activity of HCR beds 3 factors for 3 wide boiling point cuts of HCR beds
K_{light_i} <i>i</i> = 1, 2, 3, 4	Light gas tuning factor	Distribute C1–C4	4	1 factor for each light gas (C1–C4)

Table 6.5 (Continued)

a) Number of global activity factors depends on the number of catalyst beds.

b) The three wide boiling point cuts used to define activity factors are 430 $^{\circ}F-$ (L), 430–950 $^{\circ}F$ (M), and 950 $^{\circ}F+$ (H).

Figure 6.13 illustrates the steps to identify activity factors in this work, which are divided into two phases. The first phase is applicable to any Aspen HYSYS Petroleum Refining HCR model and the second phase depends on the modeling priority of the refinery. As Aspen HYSYS Petroleum Refining assigns small values to K_{global} to ensure the initial convergence, all catalyst beds' performance is almost "dead" initially, which means that the reaction conversion is small. Thus, the first task is to tune the global activity factor of each catalyst bed to "activate" the reactors. After the reactors are activated, the reaction conversion must increase to some extent and we tune the cracking activity factors to minimize the difference between predicted and actual liquid product yields.

Due to heat effects of the reactions, the calculated reactor temperature profiles from previous steps would show deviations from actual plant data. We tune the global activity factors again to ensure that the deviations of reactor temperature predictions are within tolerance. We repeat the calibration of "reactor temperature profiles" and "mass yields of liquid products" several times until the errors of model predictions are within the acceptable tolerance. These back-and-forth procedures compose the first phase shown in Figure 6.13. This figure represents a generalized guideline of initial calibration for the Aspen HYSYS Petroleum Refining HCR model because reactor temperature profiles and major liquid product yields are always crucial considerations for any hydrocracker.

The second phase of Figure 6.13 shows the calibration procedure to reconcile the predictions of the reactor model to agree with the modeling priority of the refinery about process operations and productions. In this case, the flow rate of makeup hydrogen, volume yields of liquid products (crucial to density calculation), and light gas yields are important to the MP HCR process. Due to the lack

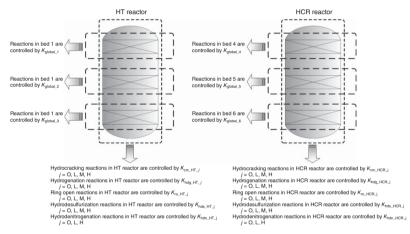


Figure 6.12 Relationships among activity factor, catalyst bed, and reactor type for HT and HCR.

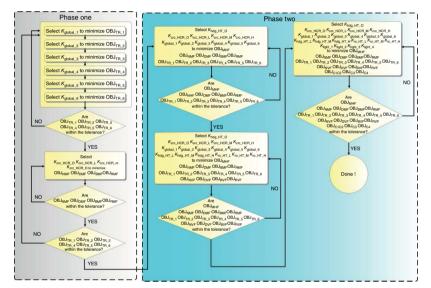


Figure 6.13 Procedure of model calibration.

of analysis data of nitrogen and sulfur contents of liquid product streams, the calibration procedure of this case (see Figure 6.13) does not include reconciliation of HDN and HDS activities.

Although the steps involved in second phase depend on the modeling priority of the refinery management, we can give some common guidelines. (1) Always check reactor temperature profiles and mass yields of liquid products. (2) By our experience, the overall model performance is most sensitive to K_{global} and least sensitive to K_{light} . The following list is in the order of decreasing sensitivity: K_{global} , K_{crc} , K_{hdg} , K_{hds} , K_{hdn} , K_{ro} , and K_{light} . (3) K_{global} has the most significant effect on all objective functions. (4) $K_{\rm crc}$ has a significant effect on the product yield, reactor temperature profile, hydrogen consumption, and flow rate of makeup hydrogen. (5) K_{hdg} affects the product yield, reactor temperature profile, hydrogen consumption, and flow rate of makeup hydrogen. (6) K_{hds} has a notable effect on the sulfur content, some effect on the hydrogen consumption and flow rate of makeup hydrogen, and a small effect on the product yield. (7) K_{hds} has a significant effect on the nitrogen content. (8) K_{light} only affects the distribution ratio between light gases. (9) Tuning K_{light} to distribute light gases (C1–C4) last because the total yields of light gases are determined by cracking reactions. K_{light} only redistributes the light gases and has little effect on the overall model performance.

The goal of model calibration is to seek an optimal solution for the reactor model to match real operation and there is no single optimum solution. It is important to assign reasonable tolerances to the objective functions and lose some of them when necessary.

6.4.4.2 HP HCR Reactor Model

We describe the generalized step-by-step instruction of the reactor model development for our MP HCR process in Section 6.4.4.1. However, the procedures are not applicable to the process with an unusual process flow diagram, such as the HP HCR process, which includes two parallel reactor series. The two parallel reactor series that share one fractionation unit make it unachievable to distinguish the production data from one series to the other. For example, there is no way to split the heavy naphtha product into two streams to represent the performance of each reactor series. In addition, it is difficult to start with building the model of two parallel reactor series because model reconciliation of two reactor series is a time-consuming and difficult task. Therefore, we develop the following procedures to build and reconcile HP HCR reactor model.

- 1) Construct an equivalent reactor to represent the two parallel reactor series.
- 2) Build and reconcile the equivalent reactor model.
- Construct the preliminary models of the real process (two parallel reactor series).
- 4) Apply the reaction activities obtained from equivalent reactor model into the reactor model of two parallel reactor series.
- 5) Fine-tune the model of two parallel reactor series to match real operations and productions.

Equivalent Reactor This section demonstrates the concept of equivalent reactor. Considering a system with two parallel isothermal plug flow reactors (PFRs), where a first-order liquid-phase reaction takes place (see Figure 6.14), the relationship between conversion and residence time of each PFR is

$$CONV_1 = 1 - Exp(-k\tau_1) \tag{6.3}$$

$$CONV_2 = 1 - Exp(-k\tau_2) \tag{6.4}$$

where CONV is conversion, τ is the residence time, and k is the rate constant [33]. We define an equivalent reactor as a reactor that can convert the same amount of total feed flow into the same amount of total product. For the equivalent reactor,

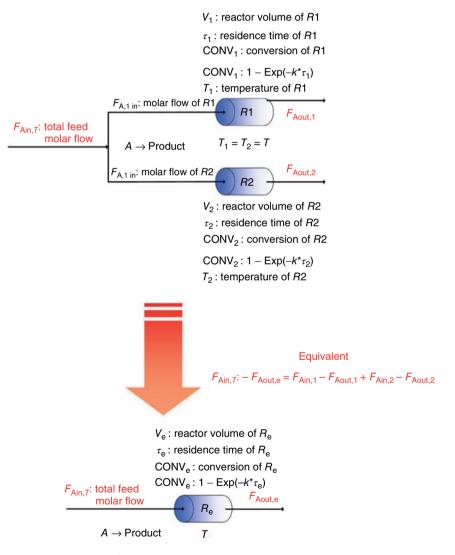


Figure 6.14 Concept of the equivalent reactor.

432 6 Predictive Modeling of the Hydroprocessing Units

we represent the reaction conversion as

$$CONV_e = 1 - Exp(-k\tau_e) \tag{6.5}$$

As the equivalent reactor is defined by having an identical total production to the two parallel isothermal PFRs, we can obtain the following equation:

$$F_{Ain,T} - F_{Aout,e} = F_{Ain,1} - F_{Aout,1} + F_{Ain,2} - F_{Aout,2}$$
(6.6)

Substitute the relationship between the molar flow rate and conversion.

$$CONV_{e} = \frac{F_{Ain,1} - F_{Aout,1} + F_{Ain,2} - F_{Aout,2}}{F_{Ain,T}}$$
(6.7)

Let $\theta_1 = F_{Ain,1}/F_{Ain,T}$ and $\theta_2 = F_{Ain,2}/F_{Ain,T}$ and we have

$$CONV_e = \theta_1 \times CONV_1 + \theta_2 \times CONV_2$$
(6.8)

Substituting Eqs. (6.3)–(6.5) into Eq. (6.8),

. . .

$$1 - \exp(-k\tau_{\rm e}) = \theta_1 \times [1 - \exp(-k\tau_1)] + \theta_2 \times [1 - \exp(-k\tau_2)]$$
(6.9)

After organizing,

$$\tau_e = \frac{-\ln(\theta_1 \times \operatorname{Exp}(-k\tau_1) + \theta_2 \times \operatorname{Exp}(-k\tau_2))}{k}$$
(6.10)

We can rewrite Eq. (6.10) into Eq. (6.11) in terms of space velocity (SV).

$$SV = \frac{k}{-\ln(\theta_1 \times Exp(-k\tau_1) + \theta_2 \times Exp(-k\tau_2))}$$
(6.11)

With molar flow rate, conversion, and SV, we can calculate reactor volume to conduct reactor design. The idea of equivalent reactor provides us a convenient way to understand the performance of a complex reactor system, namely, two parallel PFRs.

Reconciliation of HP HCR Reactor Model As mentioned in the beginning of Section 6.4.4.2, there are five steps to build and reconcile the reactor model of the HP HCR process. We first build an equivalent reactor model to represent the two parallel reactor series. By doing so, we can obtain good initial values of reaction activities to further model the real process. However, the difficulty of building an equivalent reactor model is to assign the process variables by Eq. (6.11) because SV is a function of the rate constant. Qader and Hill [2] presented a two-lump kinetic model of the HCR process that characterizes the feedstock and product as a single lump (see Figure 6.15) and apply first-order kinetics to obtain rate constants under different operating conditions. Equation (6.12) represents the rate equation, and they apply an Arrhenius equation to correlate experimental data to obtain the preexponential term and activation energy. Equation (6.13) shows the temperature dependence of the rate constant.

$$-\frac{d[\text{Gas oil}]}{dt} = k_{\text{GO}} \times [\text{Gas oil}]$$
(6.12)

$$k_{\rm GO}({\rm h}^{-1}) = 1 \times 10^7 ({\rm h}^{-1}) \times \text{Exp}\left[\frac{-21100(\text{cal/mol})}{RT}\right]$$
 (6.13)

In the equations, $k_{\rm GO}$ is rate constant of the gas oil HCR reaction. The experimental data were obtained at 10.34 MPa pressure, 400–500 °C, 0.5–3.0 h⁻¹ SV, and a constant H₂:oil ratio of 500 standard (STD) m³/m³. As they conduct experiment under similar condition as the industrial reactor, it is practical to use kinetic data by

Gas oil → Product

Figure 6.15 Two-lump scheme developed by Qader and Hill. (Adapted from Qader and Hill [2].)

Qader and Hill [2] to investigate the design of the equivalent reactor model. We apply feed flow rates, reactor volumes, and space velocities from the HP HCR process and calculate the reactor volume of the equivalent reactor under different rate constants.

Figure 6.16 illustrates how the HCR rate constant affects equivalent reactor volume. The *y* axis represents the ratio of the equivalent reactor volume to the sum of reactor volumes of the two parallel HCR reactors $(V_e/(V_1 + V_2))$. As *k* approaches zero, the upper limit of 100% is also achieved. This reflects the physical limitation when no reaction takes place. On the other hand, the value of $V_e/(V_1 + V_2)$ drops while *k* increases. Under industrial operating conditions, the *k* value ranges from 0.5 to 3 h⁻¹ (corresponding reactor temperatures are 360–430 °C) according to the kinetic data by Qader and Hill [2]. Therefore, typical values of $V_e/(V_1 + V_2)$ should always be greater than 90%.

As we build the equivalent reactor model merely for obtaining initial values of reaction activities, we will use the sum of the catalyst loading of the real process to construct the equivalent reactor. We also sum up all of the material streams, namely feed flows and hydrogen quenches, to ensure mass balance of the equivalent reactor. In addition, we apply the arithmetic averages of operating conditions, such as reactor temperatures, for the development of equivalent reactor (see Figure 6.17 for details). During the course of model reconciliation of the equivalent reactor model, we take the reactor temperature profile, flow rate of makeup hydrogen, mass and volume yields of liquid products, and light gas yields as objective functions because they are the major concerns of the HP HCR refiners. The objective functions of the HP HCR process are the same as the MP HCR

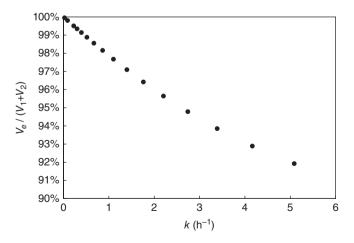


Figure 6.16 HCR rate constant versus equivalent reactor volume.

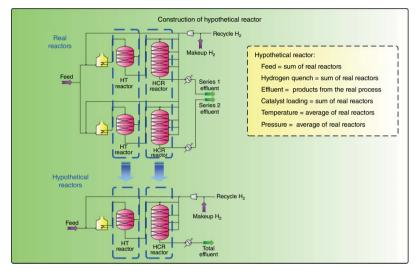


Figure 6.17 Construction of equivalent reactor.

Die Edit giese gewent Pyrnat	Icols Dat	a Aspen Window Help	Type a question fo	rteb +	- 8 ×	🗋 🔁 🖬 🕔	C	10	= >>> >>	00	A misament	Case (Main) Steady State
日日日日 日-1-0-0		1 00% + 🐼 📲 10 + 🔠 🖩 🖉	- <u>A</u> - (b) -		1	· PFD - Case ()	-tain)		1			
Disable Corporate 📾 🖉 🕅	AA	Analogy - Template (0904 Data) +	Simulate -	infe.	10	HHE	44.84	D A	2 2 1		O 1040	all Color Schene
and the second se	6			S Contraction	25	88 98 ET	1 1 1 1		· · ·		e loui	
A	0 0	0	E	1	1.							
			Product Yield and						-11	=		
Giobal Activity	Activity		Product yield and Plant	Model	01					Π		
Reactor 1 - Bed 1	1.8410	Naphtha C6-430F Vol Flow Im3hi	192.5	193.7	1							
Reactor 1 - Bed 1	2.6558	Diesel 430F-700F Vol Flow (m3h)	74.5	65.4	-9					1		
Reactor 2 - Bed 1	0.1314	Bottoms 700-1000F Vol Flow (m3h)	16.5	15.4					-			
Reactor 2 - Bed 2	0.2878	Resid 1000F+ Vol Flow [m3h]	0.0	0.0	8							
Reactor 2 - Bed 3	0.3147	C1C2 Yield PM	2.4	3.0	õ.							
Reactor 2 - Bed 4	0.2000	C3 Yield (%)	2.3	2.9	0							
Overall BAT Activity	4.2000	C4 Yield (%)	6.0	8.4	0				100			
Treating bed	0.0200	Naphtha C6-430F Mass Flow Joghi	143633	147774	405				m			
reating bed to Cracking bed ratio	1.2900	Diesel 430F-700F Mass Flow (kph)	59456	53578	-58					-		
430-SAT Activity		Bottoms 700-1000F Mass Flow Boahl	13989	12440	-15:							
Treating bed	1.0000	Resid 1000F+ Mass Flow MoNI	0	0	0.							
	1.2500	H2 MakeUp (BTD m3/h)	85195	85294	96							
430-950 BAT Activity		Series 01	Series 01									
Treating bed	0.9032	R1B1 Rise (C)	18.0	18.7	0							
reating bed to Cracking bed ratio	1.2500	R182 Rise (C)	20.5	20.2	-0							
950+ SAT Activity		R2B1 Rise (C)	3.5	2.9	-0							
Treating bed	0.9182	R2B2 Rise (C)	8.3	63	-2							
reating bed to Cracking bed ratio		R2B3 Rise (C)	11.7	6.8		PFD 1						
Overall Cracking Activity		R2B4 Rise (C)	24.0	22.5	-1	100.0						
Treating bed	1.7243	Series 02	Series 02							-		
reating bed to Cracking bed ratio		R1B1 Rige (C)	18.9	20.4	1	Required Info : 01 Required Info : 02						
430- Cracking Activity		R1B2 Rise (C)	16.9	20.8	3	Required Info : 03				-		
Treating bed	4.5001	R2B1 Rise (C)	3.4	5.1	1	Required Into 104	Rec - Rega	er a Steam		2.4		
reating bed to Cracking bed ratio		R2B2 Rise (C)	6.4	8.9	2	Warring : FluidPlug	TransismUb	ject - Net S	olved .	-1		
430-950 Cracking Artivity		R2B3 Rise (C)	5.6	12.0	6			11.1. A.				Alt
Treating bed	3.9455	R2B4 Rise (C)	12.3	14.6	2 .							-14

Figure 6.18 Model reconciliation by MS Excel.

process model; thus, we follow the procedures shown in Figure 6.13 to reconcile the equivalent reactor model.

Following reconciliation of the equivalent reactor model is using real operating data to build preliminary models for real HP HCR reactors. We apply the reaction activities from the equivalent reactor model into the preliminary reactor models. It is necessary to fine-tune the preliminary reactor models. From the Aspen Simulation Workbook, we create an MS Excel spreadsheet (Figure 6.18) to make it feasible to fine-tune reactor models of the two parallel series simultaneously. In the HP HCR model, we only fine-tune the HCR selectivity from 4.5 to 3.9 and the resulting model agrees well with real operation and production. The development of equivalent reactor model reduces time and makes it achievable to develop the HP HCR model of two parallel reactor series.

6.4.5 Delumping of the Reactor Model Effluent and Fractionator Model Development

Delumping the reactor model effluent is an essential step to integrate the reactor model with the fractionator model because kinetic lumps used in the reactor model are based on the structure and carbon number and cannot represent accurate thermodynamic behavior of the fractionator model. As BP (volatility) is the most important property for distillation operation, process modelers typically use pseudocomponents based on the true boiling point (TBP) curve to represent the feed oil to the HCR fractionators. We present five steps to develop pseudocomponents based on BP ranges to represent the petroleum fraction [32, 34].

- 1) Convert ASTM D86/ASTM D1160/simple distillation curve into the TBP curve if the curve is not available.
 - We develop a spreadsheet to enable the conversion from different ASTM distillation types to the TBP curve based on the correlations from Ref. [35] (see Figure 6.19 and Section 1.3, Workshop 1.1).
- 2) Cut the entire BP range into a number of cut point ranges to define the pseudocomponents based on boiling point ranges (see Figure 6.20).

436 6 Predictive Modeling of the Hydroprocessing Units

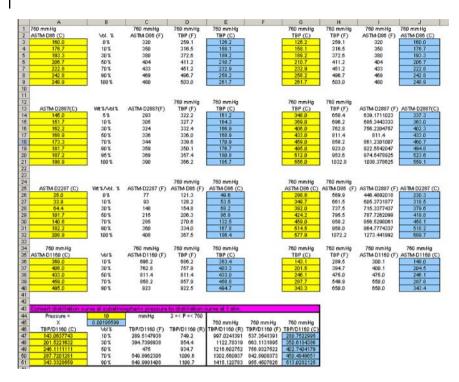


Figure 6.19 Interconversion between different ASTM distillation types (see Section 1.3).

- 3) Develop the density distribution of pseudocomponents if only the bulk density is available.
 - Assume that Watson *K* factor is constant throughout the entire boiling point range and calculate the mean average boiling point (MeABP). We develop a spreadsheet tool (see Section 1.2 and Section 1.5, Workshop 1.3) to perform the iteration of estimating MeABP based on the method presented by Bollas *et al.* [36].

$$K_{\rm avg} = [MeABP]^{0.333} / SG_{\rm avg} \tag{6.14}$$

where K_{avg} is Watson K factor and SG_{avg} is the bulk specific gravity 60 °F/60 °F.

• Calculate the density distribution of the entire boiling point range.

$$SG_i = [T_{i,h}]^{0.333} / K_{avg}$$
(6.15)

where SG_{*i*} is the specific gravity 60 °F/60 °F of pseudocomponent *i* and $T_{i,b}$ is the TBP of pseudocomponent *i*.

4) Estimate molecular weight distribution of the entire boiling point range if it is not available.

There are various correlations to estimate pseudocomponent molecular weight based on standard liquid density and TBP. Riazi [37] presented a comprehensive review and comparison of published correlations.

5) Estimate critical temperatures (T_c), critical pressures (P_c), critical volumes (V_c), and acentric factors (ω) of pseudocomponents. Refer to Riazi [37] for published correlations.

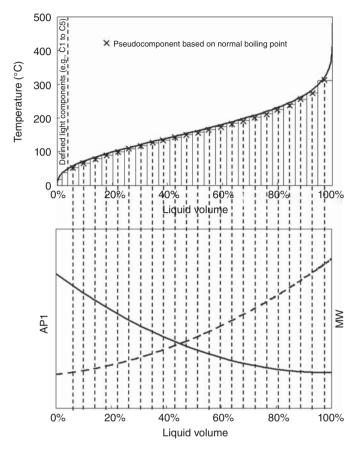
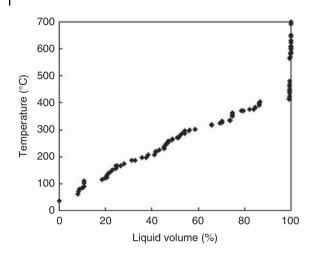



Figure 6.20 Relationship between pseudocomponent properties and the TBP curve (redrawn from ref. [32]).

As the reactor model provides the TBP curve, API gravity, and molecular weight distribution of the model effluent from kinetic lumps, the major issue of developing pseudocomponents in this work is to cut the TBP curve properly into a number of pseudocomponents based on boiling point ranges. However, the number and boiling point ranges of cut points are arbitrary, and there is no general rule to determine the cut point ranges. Having a large number of cuts does not always lead to a good representation, whereas having a small number of cuts may cause discontinuous prediction of column operation [32]. In addition, the discrete nature of kinetic lumps (see Figure 6.21) makes it difficult to cut the TBP curve of the reactor model effluent to define reasonable pseudocomponents based on boiling point ranges. In this work, we find that applying Gauss-Legendre quadrature to cut the reactor model effluent into 20 pseudocomponents based on boiling point ranges works well. The rest of this section will represent the delumping that we use to define these pseudocomponents, how to apply the stage efficiency model while building the fractionator model, and the sensitivity test of the fractionator model to verify the delumping method used in this work.

Figure 6.21 Discontinuity of the C6+ kinetic lump distribution of the reactor model effluent.

6.4.5.1 Applying the Gauss-Legendre Quadrature to Delump the Reactor Model Effluent

Haynes and Matthews [38] applied the Gauss–Legendre quadrature to predict the vapor–liquid equilibrium (VLE) of the hydrocarbon mixture derived from a continuous equation-of-state developed by Cotterman *et al.* [39]. Later, Mani *et al.* [40] extended the work of Haynes and Matthews [38] to partition the cut point ranges of the TBP curve of a petroleum fraction to define pseudocomponents based on boiling point ranges and the predicted VLE satisfactorily matches the experimental data. Hence, we extend the method represented by Mani *et al.* [40] to delump the reactor model effluent into pseudocomponents based on boiling point ranges.

In this work, we develop a method with six steps to delump the reactor model effluent into pseudocomponents based on boiling point ranges by the Gauss–Legendre quadrature.

- 1) Split the reactor model effluent into C6– and C6+ streams because the components below C6 are well-defined light components.
- 2) Obtain the TBP curve, API gravity, and molecular weight distribution of C6+ stream from reactor model.
- 3) Determine the number (*n*) of pseudocomponents to be used in delumping.
 - In this work, we delump the reactor model effluent into 20 pseudocomponents based on boiling point ranges.
- 4) We have included in the supplement to this text the Excel spreadsheet for the quadrature points and weight factors for the Gauss–Legendre integration, *GL_Quad Pt.xls*, which are used to partition the cut points over the TBP curve.
 - Use F_{vi} calculated from the equation below to partition the cut point (F_{vi}) over the TBP curve of C6+ stream.

$$F_{\nu i} = \frac{1}{2} \times [q_i + 1] \tag{6.16}$$

Interpolate TBP curve to obtain the TBP associated with each cut point (F_{vi}) . Figure 6.22 shows the case of n = 6.

• Use the same interpolation procedure to obtain API gravities and molecular weights of the associated cut points (F_{vi}) .

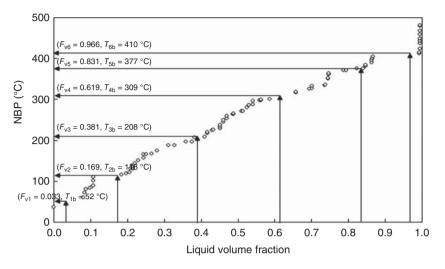


Figure 6.22 Demonstration of the allocating cut point over the TBP curve.

5) Estimate T_c , P_c , V_c , and ω of each pseudocomponent by using molecular weight and specific gravity 60 °F/60 °F, which can be converted from API gravity.

For T_c and P_c , Haynes and Matthews [38] recommended to use the correlation developed by Riazi and Daubert [41].

$$T_{\rm c} \,({\rm K}) = 19.0627 \times T_{\rm b}^{0.58848} \times {\rm SG}^{0.3596}$$
 (6.17)

$$P_{c}(\text{atm}) = 5.458 \times 10^{7} \times T_{b}^{-2.3125} \times \text{SG}^{2.3201}$$
 (6.18)

For the acentric factor ω , Haynes and Matthews [38] suggested to use the correlation developed by Lee and Kesler [42].

$$\omega = \frac{\left(-\ln(P_{\rm c}, \rm{atm}) - 5.92714 + \frac{6.09648}{T_{\rm r}} + 1.28862 \times T_{\rm r} - 0.169347 \times T_{\rm r}^{\,6}\right)}{\left(15.2518 - \frac{15.6875}{T_{\rm r}} - 13.4721 \times \ln(T_{\rm r}) + 0.43577 \times T_{\rm r}^{\,6}\right)}$$
(6.19)

• For *V*_c, to be consistent with the estimations of *T*_c and *P*_c, we also apply the correlation developed by Riazi and Daubert [41].

$$V_{\rm c}({\rm cm}^3/{\rm mol}) = 1.7842 \times 10^{-4} \times T_{\rm b}^{-2.3829} \times {\rm SG}^{-1.683}$$
 (6.20)

- The last step of delumping is to calculate mole fraction (*x_i*) of each pseudocomponent.
 - Use the equation below to calculate mole fraction of each pseudocomponent.

$$x_{i} = \frac{w_{i} \times \mathrm{SG}_{i} \times \mathrm{MW}_{\mathrm{avg}}}{2 \times \mathrm{SG}_{\mathrm{avg}} \times \mathrm{MW}_{i}}$$
(6.21)

In the equation, w_i is the weight factor of Gauss–Legendre quadrature, SG_i and MW_i are the specific gravity and molecular weight of pseudocomponent *I*, which are calculated by interpolating the specific gravity and

440 6 Predictive Modeling of the Hydroprocessing Units

	x _i	q _i ^{a)}	w _i	TBP (°C)	MW	SG	Т _с (°С)	P _c (kPa)	V _c (m ³ / kg mol)	ω	
Pseudo 1	0.1559	-0.932470	0.171324	52	84.0	0.6694	223.6	3373.3	0.340	0.2326	
Pseudo 2	0.2529	-0.661209	0.360762	118	128.8	0.7904	314.8	3233.3	0.400	0.2789	
Pseudo 3	0.2550	-0.238619	0.467914	208	174.9	0.8346	403.3	2282.8	0.595	0.4286	
Pseudo 4	0.1809	0.238619	0.467914	309	248.6	0.8411	486.3	1491.6	0.928	0.6792	
Pseudo 5	0.1091	0.661209	0.360762	377	318.7	0.8438	538.3	1163.0	1.201	0.8968	
Pseudo 6	0.0462	0.932470	0.171324	410	357.5	0.8438	562.3	1037.4	1.352	1.0252	
$MW_{avg} = 175$											
$SG_{avg} = 0.$	SG _{avg} = 0.8084										

Table 6.6 Pseudocomponents and their properties and compositions.

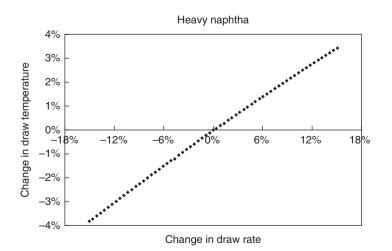
a) q_i are the zeros of the Legendre polynomial of order *n* and m_i are the associated weight factors.

molecular weight distributions of reactor model effluent, respectively, and SG_{avg} and MW_{avg} are the average specific gravity and molecular weight obtained from reactor model, respectively.

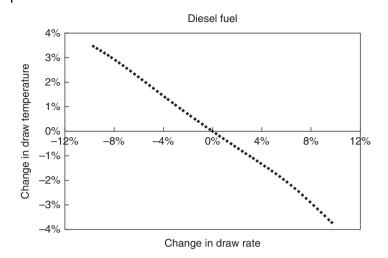
• Table 6.6 lists the resulting pseudocomponents and their properties and compositions for the case of n = 6.

6.4.5.2 Key Issue of the Building Fractionator Model – Overall Stage Efficiency Model

In building simulation models for fractionators, simulation software users often misunderstand the concept of "stage efficiency" [32]. The theoretical column model based on rigorous thermodynamics assumes that each stage is in perfect VLE. However, real distillation columns do not perform perfectly. The "overall stage efficiency," defined as the number of theoretical stages divided by the number of actual stages, indicates the difference of a real column to a theoretical column. We can apply the overall stage efficiency to the entire column or specific separation zones. For example, 20 theoretical stages are required to model an operating column with 40 actual stages and 50% overall stage efficiency. It is important to remember that all stages in this column still perform perfect VLE.


In Section 2.4.2, we discussed the concepts of the overall stage efficiency and the Murphree stage efficiency. In Section 2.4.3, we give recommendations on how to handle the efficiency issue correctly. In particular, in modeling refinery distillation columns, we recommend to use an overall stage efficiency to convert the actual number of stages to the equivalent number of theoretical stages. Refer to Table 2.3, Section 2.4.3, for typical values of overall stage efficiency for refinery distillation. In Section 6.13, we illustrate the development of the fractionation simulation model in HCR units in Workshop 6.4.

6.4.5.3 Verification of the Delumping Method – Gaussian–Legendre Quadrature


As we mentioned before, the number of cut point ranges is defined arbitrarily. Kaes [32] stated that it is necessary to perform a sensitivity test to study the relationship of the side draw rate to the side draw temperature and the associated distillation curve to ensure if the defined pseudocomponents based on boiling point ranges are able to provide reasonable results. If the relationship is stepwise rather than continuous, we need to redefine the number of pseudocomponents based on boiling point ranges. In this work, we cut the reactor model effluent into 20 TBP pseudocomponents to represent the feed to fractionators. To run the sensitivity test, we change draw rates of diesel fuel to investigate the relationship among draw rates, draw temperatures, and distillation curves of products.

To verify that the delumping method of Gauss–Legendre quadrature with 20 pseudocomponents based on boiling point ranges is sufficient for column models, we perform another sensitivity test as a contrast, which uses the even cut point range method to cut reactor model effluent into 46 pseudocomponents based on boiling point ranges. The even cut point range method is a built-in method available in Aspen HYSYS Petroleum Refining that converts the reactor model into pseudocomponents based on boiling point ranges.

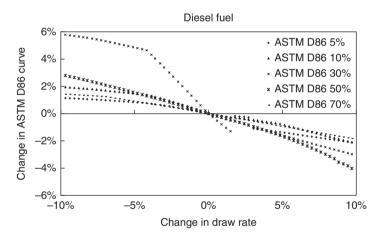

Figures 6.23–6.26 represent the results of sensitivity tests for the even cut point range method and the Gauss–Legendre quadrature. The figures do not include initial points, end points, and 90% and 95% points because the modeled initial points and end points are usually not reliable [32], and the variations in 90% and 95% points are too flat to provide representative results (both are less than 1%). Apparently, both methods generate smooth and continuous relationships between the draw rates and draw temperatures (see Figures 6.23 and 6.24). However, Figures 6.25 and 6.26 illustrate that these two methods have different performances on predicting the relationships between the draw rate and the distillation curve. The Gauss–Legendre quadrature is able to predict smooth and continuous relationship between draw rate and distillation curve, whereas the even cut point range method is not. Using the Gauss–Legendre quadrature to delump the reactor model effluent, we are able to build well-behaved column models with a few pseudocomponents based on boiling point ranges.

Figure 6.23 Relationship between the draw rate and the draw temperature of heavy naphtha (even cut point range method).

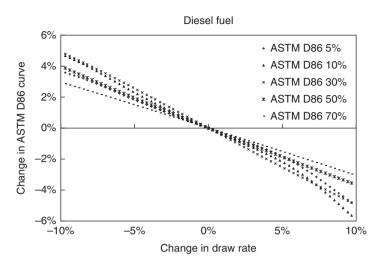

Figure 6.24 Relationship between the draw rate and the draw temperature of diesel fuel (Gauss–Legendre quadrature method).

Figure 6.25 Relationship between the draw rate and the distillation curve of diesel fuel (even cut point range method).

6.4.6 Product Property Correlation

The last important issue of building an integrated HCR model is the fuel property estimation, particularly the flash point and freezing point of diesel fuel and specific gravities of liquid products. We can estimate the specific gravities of liquid products, once we have defined the pseudocomponents based on boiling point ranges and calibrated the model for product flow rates (mass and volume). The flash point is defined as the lowest temperature at which a flame or spark can ignite the mixture of air and the vapors arising from oils. The flash point indicates the highest temperature at which we can store and transport the oils safely. For a pure substance, the freezing point is the temperature at which liquid solidifies.

Figure 6.26 Relationship between the draw rate and the distillation curve of diesel fuel (Gauss–Legendre quadrature method).

For the petroleum fraction, which is the mixture of hydrocarbons, the freezing point is defined as the temperature at which solid crystals formed upon cooling disappear as the temperature is increased [35]. For both properties, we update the parameters used in API correlations [35], Eqs. (6.22) and (6.23).

Flash point (fahrenheit) =
$$A \times 10\%$$
 of ASTMD86 (fahrenheit) + B (6.22)

Freezing point (*R*) =
$$A + B \times SG + C \times \frac{MeABP^{1/3}}{SG} + D \times MeABP$$
 (6.23)

For MP HCR process, we apply 130 and 115 data points collected from the plant to refit Eqs. (6.22) and (6.23), respectively. The average absolute deviations (AADs) of the new correlations for flash point and freezing point are 2.7 and 2.3 °C, respectively, and the resulting correlations are

Flash point (fahrenheit) = $0.677 \times 10\%$ of ASTM D86 (fahrenheit) -118.2(6.24)

Freezing point(*R*) =
$$A + B \times SG + C \times \frac{MeABP^{1/3}}{SG} + D \times MeABP$$
 (6.25)

For HP HCR process, we apply 142 and 63 data points collected from the plant to refit Eqs. (6.22) and (6.23), respectively. The AADs of the new correlations for flash point and freezing point are 1.2 and 1.6°C, respectively, and the resulting correlations are

Flash point (fahrenheit) =
$$0.51 \times 10\%$$
 of ASTMD86 (fahrenheit) - 57.7

(6.26)

Freezing point (*R*) =
$$-857.63 + 437.16 \times SG + 41.68$$

 $\times \frac{MeABP^{1/3}}{SG} - 0.483 \times MeABP$ (6.27)

We apply Eqs. (6.24)-(6.27) to estimate the flash points and freezing points of diesel fuel in MP HCR process and jet fuel in HP HCR process by model predictions on distillation curve, specific gravity, and MeABP.

6.5 Modeling Results of MP HCR Process

6.5.1 Performance of the Reactor and Hydrogen Recycle System

Our MP HCR model includes three major parts of commercial HCR process, including reactors, fractionators, and hydrogen recycle system. Figures 6.27 and 6.28 show the model predictions of the weight average reactor temperatures (WARTs) of the HT reactor and HCR reactors. In the reactor model, we define the inlet temperature of each catalyst bed and the model will calculate the outlet temperature of each bed. The AAD of catalyst bed outlet temperatures of the HCR reactor is 1.9 °C. The model generates good predictions on temperature profile of the HCR reactor, which is important for estimating product yields. However, the predictions on temperature profile of the HCR reactor are less accurate than those of the HCR reactor. As model calibration does not consider HDS and HDN reactions, the model is not able to estimate the reaction activity of the HT reactor well.

Figure 6.29 represents modeling result of makeup hydrogen flow rate, and the average relative deviation (ARD) is about 8%. The error results from two factors. First, the model is not good at predicting HDS and HDN activities, which affects the estimation of hydrogen consumption. Next, the allocation of the hydrogen recycle system of Aspen HYSYS Petroleum Refining (see Figure 6.4) is different from that of the MP HCR unit (see Figure 6.8). Aspen HYSYS Petroleum Refining considers makeup hydrogen mixes with recycle hydrogen before feeding into the hydrogen recycle system; however, in the MP HCR unit, the makeup hydrogen directly mixes with feed oil and does not influence the hydrogen recycle

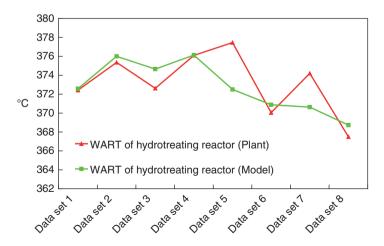


Figure 6.27 Predictions of WARTs of the HT reactor (MP HCR process).

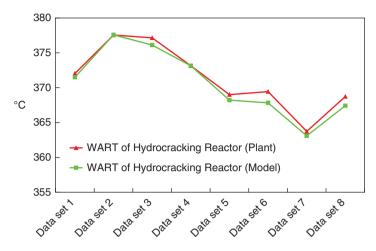


Figure 6.28 Predictions of WARTs of the HCR reactor (MP HCR process).

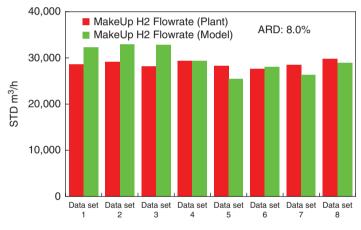


Figure 6.29 Predictions of the makeup hydrogen flow rate (MP HCR).

system. This will make the reactor model less accurate in calculating the hydrogen partial pressure of the reactors, causing deviation upon estimating hydrogen consumption.

6.5.2 Performance of Fractionators

The temperature profile of the distillation column is valuable for evaluating energy consumption and for helping plant operation of cut point and process optimization. Figures 6.30–6.33 illustrate selected modeling results on temperature profiles of distillation columns. Note that we apply the overall stage efficiency model to column simulations and the resulting stage number of the column model does not correspond to the stage number in the real column. Therefore, we use "top \rightarrow bottom" in Figures 6.30–6.33 instead, showing the stage number to illustrate temperature distribution from the condenser to

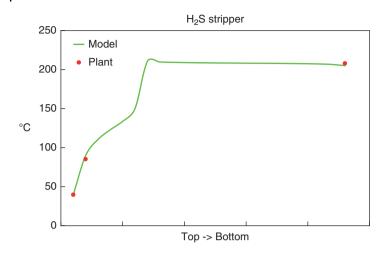


Figure 6.30 Prediction of the temperature profile of the H₂S stripper (data set 1 in MP HCR).

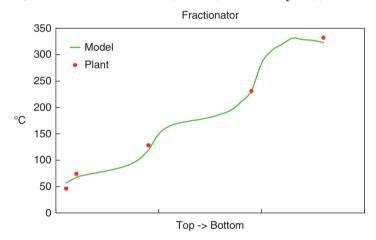


Figure 6.31 Prediction of the temperature profile of the fractionator (data set 1 in MP HCR).

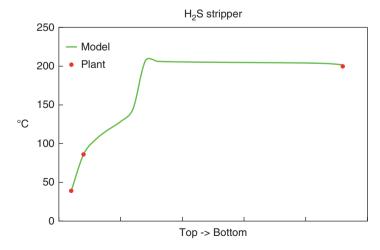


Figure 6.32 Prediction of the temperature profile of the H₂S stripper (data set 5 in MP HCR).

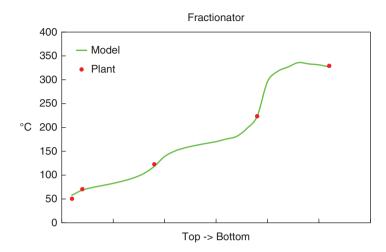


Figure 6.33 Prediction of the temperature profile of the fractionator (data set 5 in MP HCR).

bottom of the column. Obviously, the model is able to provide good predictions on column temperature profiles.

6.5.3 Product Yields

There are seven products in the MP HCR units, as depicted in Figure 6.8, namely, LPS vapor (LPS VAP), sour gas, LPG, light naphtha, heavy naphtha, diesel fuel, and bottom oil. Among these seven products, light naphtha, heavy naphtha, diesel fuel, and bottom oil are major products because they account for over 95 wt% of the overall production. Figures 6.34–6.37 illustrate the model predictions on light naphtha, heavy naphtha, diesel fuel, and bottom oil and the AADs are 0.3, 3.4, 2.4, and 2.4 wt%, respectively. We calculate AADs by averaging the absolute deviations (i.e., |predicted wt% – plant wt%|) of the eight

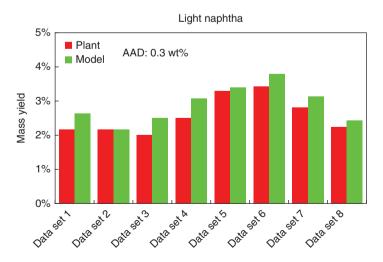


Figure 6.34 Predictions of the light naphtha yield (MP HCR).

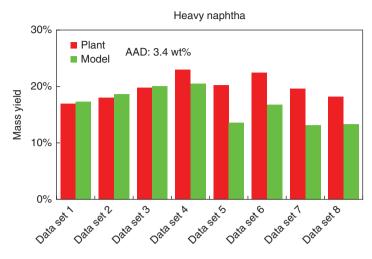


Figure 6.35 Predictions of the heavy naphtha yield (MP HCR).

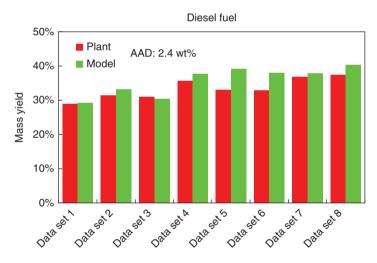


Figure 6.36 Predictions of the diesel fuel yield (MP HCR).

data sets. This follows because the relative deviation (i.e., |predicted wt% – plant wt%|/|plant wt%|) only represents the prediction of model on each product yield rather than the overall yield, which is the key profit concern to the refinery. On the other hand, absolute deviation indicates how the model affects the estimation of the profit of the refinery by considering the deviations in the same scale toward overall production. For example, the model shows 13% relative deviation on predicting the mass production of light naphtha but gives no clues about how the model affects the overall yield. Considering that the mass yield of light naphtha is about 2.6 wt%, the 13% relative deviation has only a very small effect (0.3 wt%) on the overall yield. The model gives good prediction results on product yields when considering the average values of product yields.



Figure 6.37 Predictions of the diesel fuel yield (MP HCR).

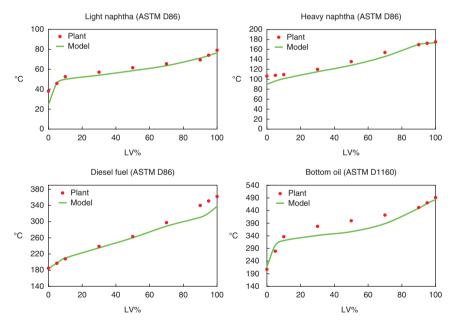


Figure 6.38 Predictions of distillation curves of liquid products (data set 1 in MP HCR).

6.5.4 Distillation Curves of Liquid Products

The distillation curve displays the vaporization temperature after having a certain amount of oil fraction vaporized. Figures 6.38 and 6.39 illustrate selected model predictions on distillation curves of light naphtha, heavy naphtha, diesel fuel, and bottom oil. The deviations of predicting distillation curves result from two factors. First, the fractionator simulation cannot provide reliable results of

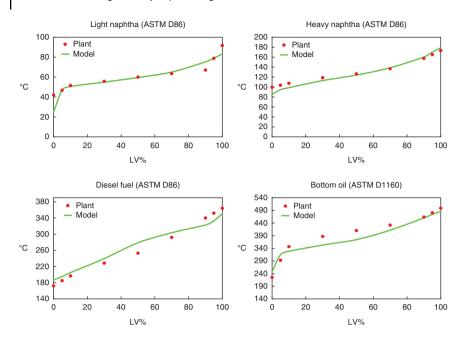
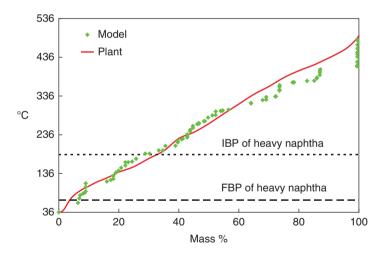
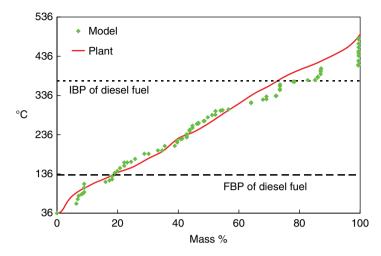




Figure 6.39 Predictions of distillation curves of liquid products (data set 5 in MP HCR).

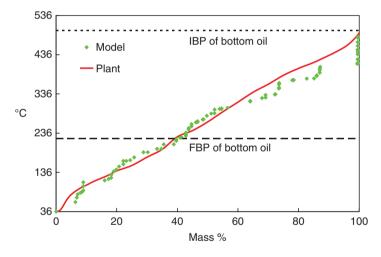


Figure 6.40 Comparison between the C5+ distribution of the plant reactor effluent and the model prediction within the boiling point range of heavy naphtha (data set 4 in MP HCR).

the initial and final BPs of liquid products [32]. Next, the reactor model cannot provide accurate predictions of the BP distribution of the reactor effluent. Although the model is able to predict product yield accurately after calibration, it does not predict the BP distribution (distillation curve) of the liquid product with an equal accuracy. This follows because of the nature of the discrete BP distribution of kinetic lumps. Figures 6.40–6.42 illustrate the differences between the C5+ distribution of the plant reactor effluent and the model prediction.

Figure 6.41 Comparison between the C5+ distribution of the plant reactor effluent and the model prediction within the boiling point range of diesel fuel (data set 4 in MP HCR).

Figure 6.42 Comparison between the C5+ distribution of the plant reactor effluent and the model prediction within the boiling point range of bottom oil (data set 4 in MP HCR).

6.5.5 Product Property

Section 6.4.6 demonstrates the updated correlations for predicting the flash point and freezing point of diesel fuel. Figures 6.43 and 6.44 illustrate model predictions on flash point and freezing point of diesel fuel. The AADs are 3.6 and 4.1 °C, respectively, which are about the same values as that obtained from correlating plant data. Applying the updated correlations demonstrated in Section 6.4.6, we find satisfactory predictions on the flash point and freezing point of diesel fuel. Figures 6.45–6.48 illustrate the specific gravity predictions of liquid products, which are calculated by Aspen HYSYS Petroleum Refining. The accurate predictions reflect the accuracy of the model to predict specific gravity

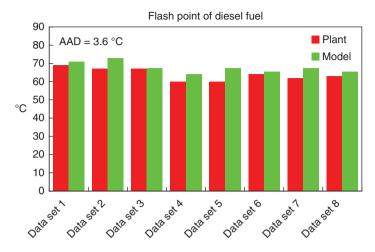


Figure 6.43 Predictions of the flash point of diesel fuel (MP HCR).

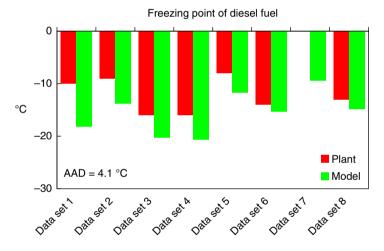


Figure 6.44 Predictions of the freezing point of diesel fuel (MP HCR).

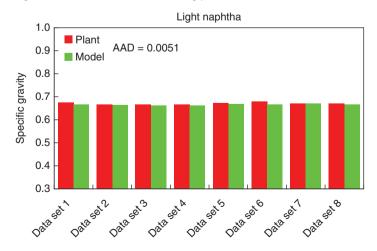


Figure 6.45 Predictions of the specific gravity of light naphtha (MP HCR).

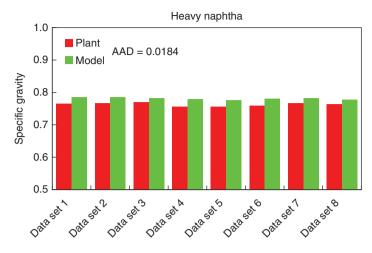


Figure 6.46 Predictions of the specific gravity of heavy naphtha (MP HCR).

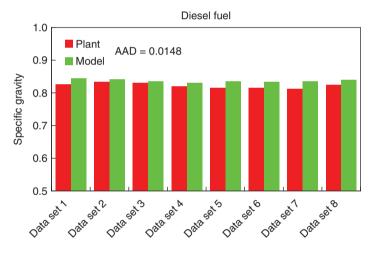
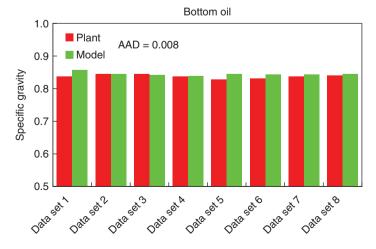
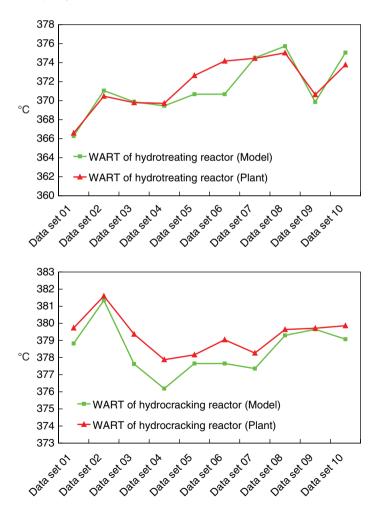


Figure 6.47 Predictions of the specific gravity of diesel fuel (MP HCR).




Figure 6.48 Predictions of the specific gravity of bottom oil (MP HCR).

of the liquid product and demonstrate that the delumping method described in Section 6.4.5 is able to carry over density distribution to pseudocomponents based on boiling point ranges.

6.6 Modeling Results of HP HCR Process

6.6.1 Performance of the Reactor and Hydrogen Recycle System

Our HP HCR model includes three major parts of the commercial HCR process, including reactors, fractionators, and hydrogen recycle system. In the reactor model, we define the inlet temperature of each catalyst bed, and the model will calculate the outlet temperature of each bed. The AADs of catalyst bed outlet temperatures of the two HCR reactors are 1.8 and 3.2 °C for series 1 and 2, respectively. Figures 6.49 and 6.50 show the model predictions of WARTs of HT and

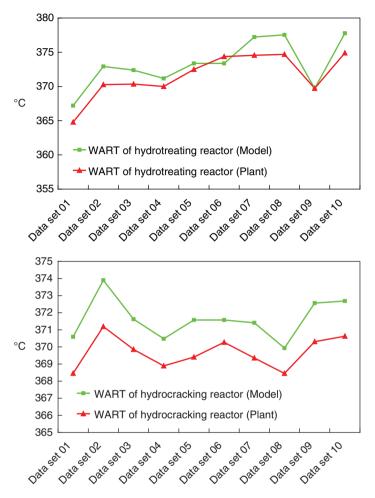


Figure 6.50 Predictions of WARTs of HT and HCR reactors (Series 2 in HP HCR).

HCR reactors. The model generates good predictions on the temperature profile of reactors. Figure 6.51 represents the modeling result of the makeup hydrogen flow rate, and the ARD is only 2%.

6.6.2 Performance of Fractionators

Figures 6.52 and 6.53 illustrate selected modeling results on temperature profiles of distillation columns. These figures are similar to Figures 6.30–6.33 for the MP HCR.

6.6.3 Product Yields

There are seven products in the HP HCR unit, namely, LPS VAP, dry gas, LPG, light naphtha, heavy naphtha, jet fuel, and residue oil. Among these seven products, LPG, light naphtha, heavy naphtha, jet fuel, and residue oil are

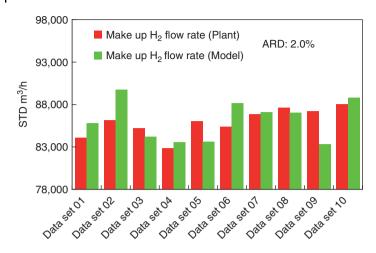


Figure 6.51 Predictions of the makeup hydrogen flow rate (HP HCR).

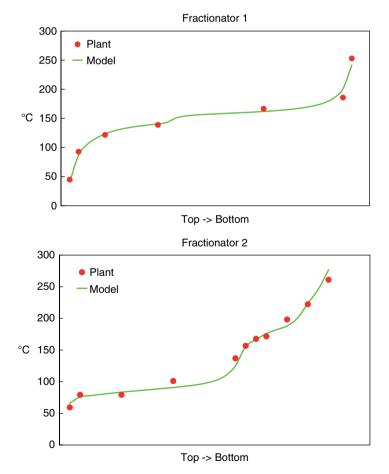


Figure 6.52 Prediction of the temperature profiles of fractionators (data set 1 in HP HCR).

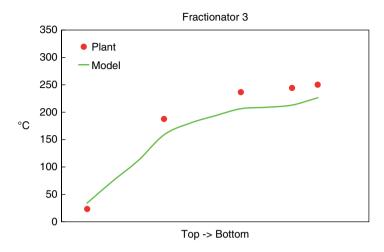


Figure 6.52 (Continued)

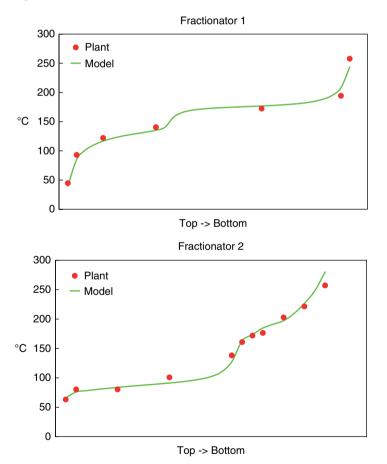
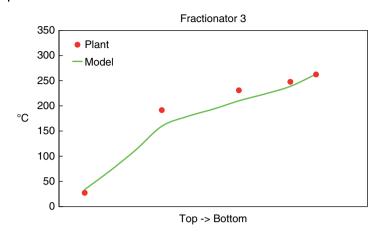
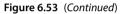
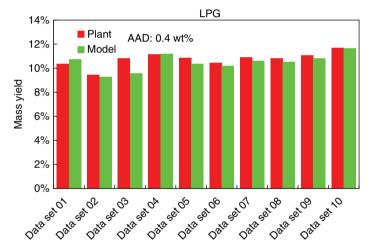
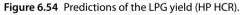






Figure 6.53 Prediction of the temperature profiles of fractionators (data set 7 in HP HCR).

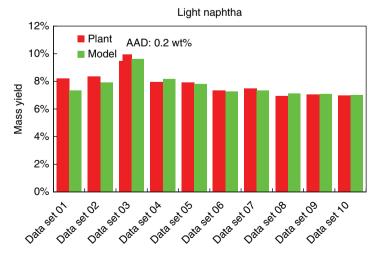


Figure 6.55 Predictions of the light naphtha yield (HP HCR).

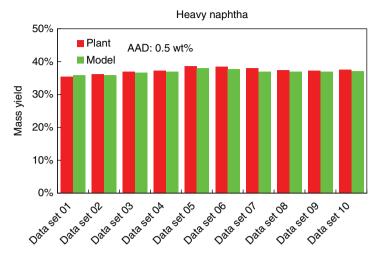


Figure 6.56 Predictions of the heavy naphtha yield (HP HCR).

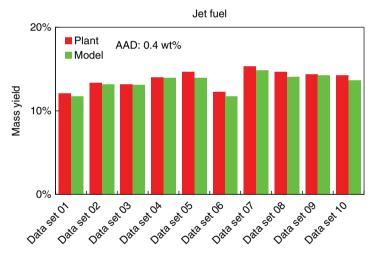


Figure 6.57 Predictions of the jet fuel yield (HP HCR).

major products because they account for over 95 wt% of the overall production. Figures 6.54–6.58 illustrate the model predictions on LPG, light naphtha, heavy naphtha, jet fuel, and residue oil and the AADs are 0.4, 0.2, 0.5, 0.4, and 1.7 wt%, respectively. The model provides good prediction results on product yields when considering overall production.

6.6.4 LPG Composition and Distillation Curves of Liquid Products

Composition, particularly C3 and C4, is the most important indicator to evaluate the quality of the LPG product. Figure 6.59 represents selected model predictions on LPG composition with AAD of each component. For the most important components, C3 and C4, the model shows only 0.021 and 0.058 AADs, respectively,

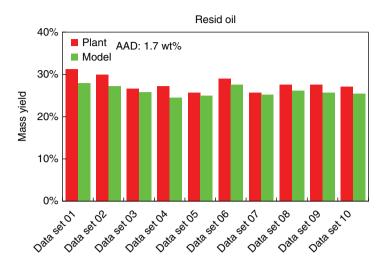


Figure 6.58 Predictions of the residue oil yield (HP HCR).

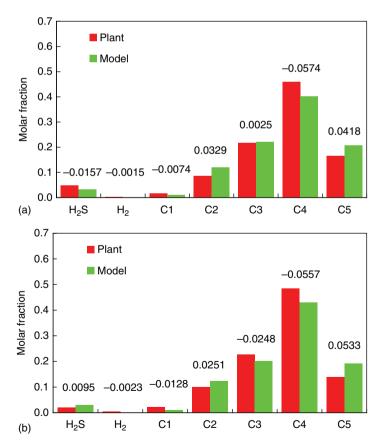


Figure 6.59 Predictions of LPG compositions (HP HCR).

in molar fraction predictions. For other liquid products, the distillation curve is the most popular analysis to indicate the vaporization temperature after having a certain amount of oil fraction vaporized. Figures 6.60 and 6.61 illustrate selected model predictions on distillation curves of light naphtha, heavy naphtha, jet fuel, and residue oil.

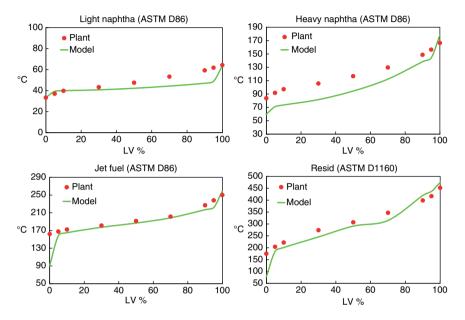


Figure 6.60 Predictions of distillation curves of liquid products (data set 1 in HP HCR).

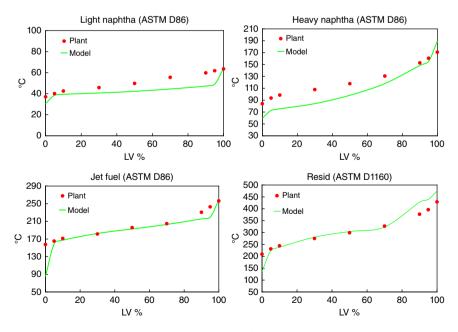


Figure 6.61 Predictions of the distillation curves of liquid products (data set 7 in HP HCR).

6.6.5 Product Property

We apply the updated correlations developed in Section 6.4.6 to estimate the flash point and freezing point of jet fuel. Figures 6.62 and 6.63 illustrate model predictions on the flash point and freezing point of jet fuel. The AADs are 1.6 and 2.3 °C, respectively, which are about the same values as that obtained from correlating plant data. The integrated model collaborated with updated correlations provides satisfactory predictions on the flash point and freezing point of jet fuel. Figures 6.64–6.67 illustrate the specific gravity predictions of liquid products, which are calculated by Aspen HYSYS Petroleum Refining. The AADs of the specific gravity predictions for light naphtha, heavy naphtha, jet fuel, and residue oil are 0.0049, 0.0062, 0.0134, and 0.0045, respectively.

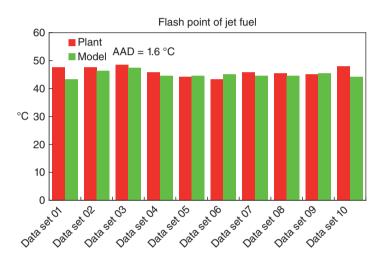


Figure 6.62 Predictions of the flash point of jet fuel (HP HCR).

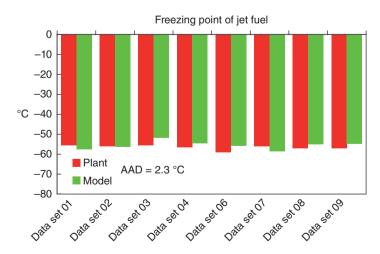


Figure 6.63 Predictions of the freezing point of jet fuel (HP HCR).

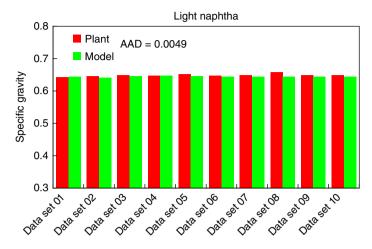


Figure 6.64 Predictions of the specific gravity of light naphtha (HP HCR).

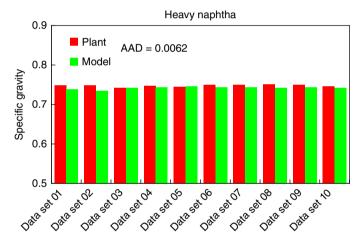


Figure 6.65 Predictions of the specific gravity of heavy naphtha (HP HCR).

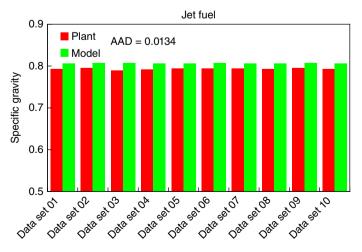


Figure 6.66 Predictions of the specific gravity of jet fuel (HP HCR).

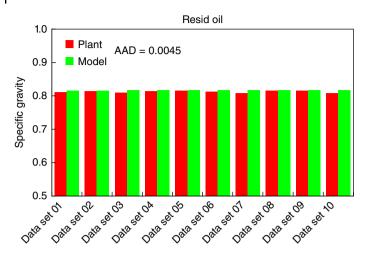
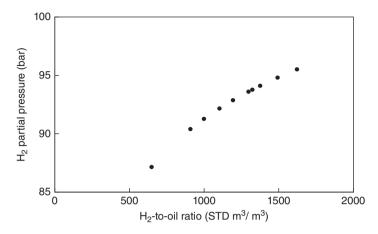


Figure 6.67 Predictions of the specific gravity of residue oil (HP HCR).


6.7 Model Applications

The major operating variables that affect the product distribution (yield) of the HCR process are the reactor temperature, hydrogen partial pressure, amount of ammonia present, and residence time. This section uses MP HCR model to illustrate how to quantify the effects of operating variables on process performance.

6.7.1 H₂-to-Oil Ratio versus Product Distribution, Remained Catalyst Life, and Hydrogen Consumption

Hydrogen partial pressure is a key operating variable for the HCR process. It has two opposite effects on product distribution and process profitability. A higher hydrogen partial pressure can enhance aromatic hydrogenation, increase the H/C ratio of products, and extend the catalyst life by reducing coke precursors (hydrogenation of multiring aromatics). Hydrogen also has a negative effect on paraffin HCR that is crucial for product distribution [44]. In addition, a higher hydrogen partial pressure leads to higher hydrogen consumption, which raises the processing cost.

In this section, we conduct a simulation experiment to study the relationship among the hydrogen partial pressure, product distribution, and remaining catalyst life. The catalyst deactivation model is built in Aspen HYSYS Petroleum Refining that estimates the remaining catalyst life by WART at the SOC (start of run), WART at the EOC (end of run, provided by the catalyst vendor), WART of the current operation, number of days in service, coke precursors (multiring aromatics) in the feed, and hydrogen partial pressure. As the industrial HCR process tunes hydrogen partial pressure through changing gas:oil ratio, we choose the gas:oil ratio as the operating variable rather than the hydrogen partial pressure. Figure 6.68 represents the selected H_2 :oil ratios in our simulation experiment and the corresponding values of the hydrogen partial pressure.

Figure 6.68 H_2 :oil ratios and the corresponding values of H_2 partial pressure.

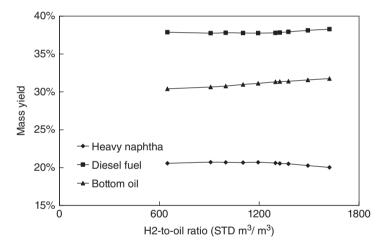


Figure 6.69 H_2 :oil ratios and the corresponding values of H_2 partial pressure.

Figure 6.69 illustrates that the H_2 :oil ratio (hydrogen partial pressure) has little effect on product distribution. The flat product distribution under various H_2 :oil ratios (hydrogen partial pressures) is consistent with observations reported in the literature [45–47]. This implies that the current operation is around the maximum conversion and a further increase/decrease in the hydrogen partial pressure will not change the yields of valuable products, such as heavy naphtha and diesel. Even so, the H_2 :oil ratio is still a double-edged knife for process profitability because it affects the hydrogen consumption and remaining catalyst life. Figure 6.70 represents how the H_2 :oil ratio affects hydrogen consumption and remaining catalyst life. Obviously, the H_2 :oil ratio has a positive effect on both variables. However, the two variables have opposite effects on process profitability, and we can use the model to study the optimal operating point.

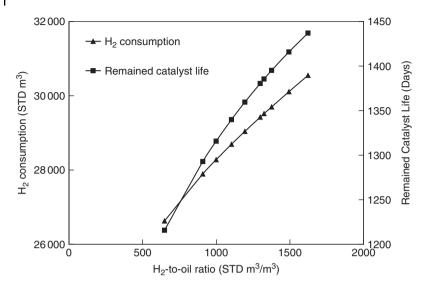


Figure 6.70 Effects of the H₂:oil ratio on H₂ consumption and catalyst life.

6.7.2 WART Versus Feed Flow Rate Versus Product Distribution

The most important operating variable for HCR process is the reactor temperature. Increasing the reactor temperature increases the reaction conversion and shifts the product distribution from heavier to lighter products. However, increasing the reactor temperature does not always benefit the refinery and may generate a process safety issue. This follows because a high reactor temperature will accelerate coke formation, and the secondary HCR of middle distillate oils (such as gasoline and diesel) will increase the product yield of gas products, which are less profitable. Thus, the refiners intend to raise the reactor temperature gradually to produce a desirable product distribution. For instance, the 2 months of operating data of the MP HCR unit show that the WART of the HCR reactor varies within $\pm 8^{\circ}$ C from the base data set.

Figures 6.71–6.73 illustrate the effects of the feed flow rate and WART (HCR reactor) on product distribution (yields). The heavy naphtha yield increases significantly, whereas WART increases and/or feed flow decreases. This follows because the rising HCR reactor temperature enhances HCR reactions, and the decreasing feed flow implies a longer residence time that also enhances HCR reactions. On the other side, the bottom oil yield presents the opposite trend to that of the heavy naphtha yield. This follows because bottom oil is the heaviest product and the higher severity of cracking reactions resulted from a rising WART and/or a falling feed flow rate, with the lower bottom oil yield. However, the most interesting observation comes from Figure 6.72 that represents the diesel fuel yield reaching a maximum value at some operating point. Both Tippett *et al.* [48] and Rossi *et al.* [49] reported that in a HCR process, the yield of the middle distillate fraction (diesel fuel in this case) would approach a maximum value with an increasing reactor temperature because of secondary



Figure 6.71 Effect of the feed flow rate and WART of the HCR reactor on the heavy naphtha yield.

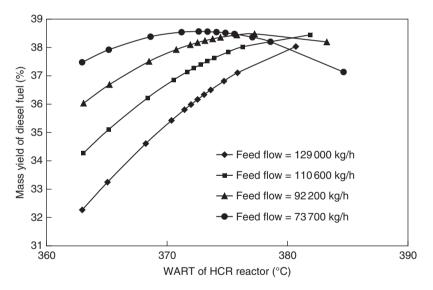


Figure 6.72 Effect of the feed flow rate and WART of the HCR reactor on the diesel fuel yield.

HCR reactions of middle distillate paraffins. We can conclude that with a lower feed flow rate, the diesel fuel yield tends to approach a maximum when increasing WART of the HCR reactor. When performing this simulation experiment, refiners can determine the optimal reactor temperature and feed flow rate to achieve maximum profits under various supply-and-demand situations.

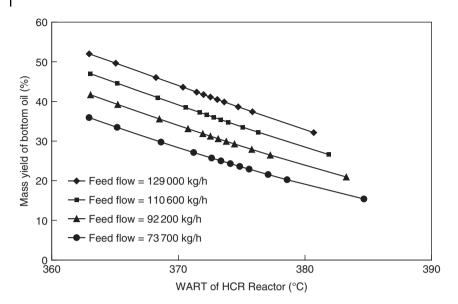
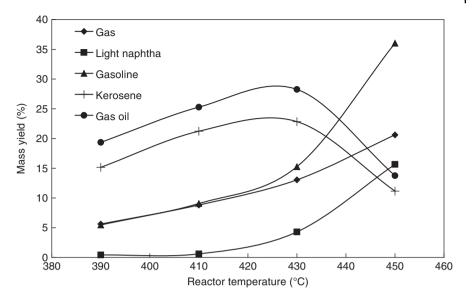



Figure 6.73 Effect of the feed flow rate and WART of the HCR reactor on the bottom oil yield.

6.8 Model Application – Delta-Base Vector Generation

Refining industry started to investigate the application of linear programming (LP)-based model since 1950s [50]. Nowadays, LP-based model is the most important optimized tool to schedule production, evaluate feedstock, study new process configuration, and adjust production plan after operational upsets. For a given refinery, the LP-based model is a combination of economic and technical databanks. The economic databank requires the availability and price of feedstocks, the demand and price of refining products, and operating cost of process units. The technical databank needs process product yields, product properties, product specifications, operating constraints, and use of utility.

Modern refiners gather and update most of the required information from market research, government regulation, design data, and operating history except for product yields. Instead of adopting historic data, refiners apply process model to generate required information of product yields for LP-based model. However, actual refining reaction processes are highly nonlinear and the responses of product yields to process variables, such as operating conditions and feed properties, are usually complex. Figure 6.74 illustrates the nonlinear relationship between the HCR reactor temperature and product distribution (redrawn from Ref. [51]). Yield of each product represents nonlinear variation along with the change of reactor temperature. To integrate the nonlinear relationship between product yields and process variables with LP-based model, refiners linearize product yields over a small range of process variables as illustrated in Figure 6.75a. The linear relationship between product yields and process variables is so-called "delta-base" technology in modern refinery production planning.

Figure 6.74 Nonlinear relationship between product distribution and reactor temperature: (a) linearization of process performance. (b) Scenarios for different operations.

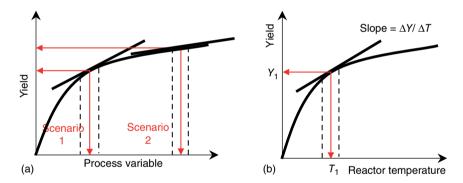


Figure 6.75 Linearization of production yield's response on process variable.

As shown in Eq. (6.28), refiners use delta-base technology to construct the linear representation of product yield's (*Y*) response to the change of process variable $(X - \overline{X} = \Delta X)$, namely, delta vector. Base vector (\overline{Y}) represents the product yield under a selected operating condition and feedstock quality (\overline{X}). Delta-base vector ($\Delta Y / \Delta X$) indicates the departure of product yield (ΔY) from base vector (\overline{Y}) corresponding to a unit change of process variable (ΔX). The delta-base technology simplifies the nonlinearity of refining process and allows LP-based product planning to consider the product yield. However, the resulting LP-based model only provides good prediction of product yield over a small range of operating condition and feedstock qualities. To extend the application of LP-based model, refiners generate different sets of delta-base vectors to reflect various production scenarios as shown in Figure 6.75b. By doing this, the

	TEXT	R90	NA1	RF1	R94	NA2	RF2	R98	NA3	RF3	R02	NA4	RF4
FREE	Free up Adjustors		1			1			1			1	
WBALRFF	Reformer Feed			1.0			1.0			1.0			1.0
WBALHYL	Low-Purity H2	-0.0173	-0.000		-0.0194	-0.000		-0.0214	-0.000		-0.0230	-0.0007	
WBALNC1	Methane	-0.0074	0.001		-0.0093	0.0013		-0.0118	0.0013		-0.0150	0.0013	
WBALNC2	Ethane	-0.0136	0.002		-0.0171	0.002		-0.0216	0.0025		-0.0275	0.0025	
WBALNC3	Propane	-0.0192	0.003		-0.0241	0.003		-0.0304	0.0035		-0.0387	0.0035	
WBALIC4	Iso-Butane	-0.0087	0.001		-0.0109	0.001		-0.0137	0.0016		-0.0175	0.0016	
WBALNC4	N- Butane	-0.0129	0.002		-0.0163	0.0023		-0.0206	0.0023		-0.0263	0.0023	
WBALR90	90 RONC Reformate	-0.9209	-0.0105										
WBALR94	94 RONC Reformate				-0.9029	-0.010							
WBALR98	98 RONC Reformate					100		-0.8805	-0.010				
WBALR02	102 RONC Reformate										-0.8520	-0.0105	

Figure 6.76 Multiscenario delta-base vectors in a catalytic reforming process.

LP-based production planning can switch over delta-base vectors according to the production scenario. Figure 6.76 represents multiscenario delta-base vectors of a catalytic reforming process used in Aspen PIMS. The delta-base vector inside each red box indicates a scenario producing gasoline product with varying research octant number (RON).

$$\begin{bmatrix} Y_1\\Y_2\\\vdots\\Y_m \end{bmatrix} = \begin{bmatrix} \overline{Y}_1\\\overline{Y}_2\\\vdots\\\overline{Y}_m \end{bmatrix} + \begin{bmatrix} \frac{\Delta Y_1}{\Delta X_1} & \frac{\Delta Y_1}{\Delta X_2} & \cdots & \frac{\Delta Y_1}{\Delta X_n} \\ \frac{\Delta Y_2}{\Delta X_1} & \frac{\Delta Y_2}{\Delta X_2} & \cdots & \frac{\Delta Y_2}{\Delta X_n} \\ \vdots & & & \vdots \\ \frac{\Delta Y_m}{\Delta X_1} & \frac{\Delta Y_m}{\Delta X_2} & \cdots & \frac{\Delta Y_m}{\Delta X_n} \end{bmatrix} \bullet \begin{bmatrix} X_1 - \overline{X}_1\\X_2 - \overline{X}_2\\\vdots\\\vdots\\X_n - \overline{X}_n \end{bmatrix}$$
(6.28)

To generate delta-base vector, refiners produce case studies by running process model under varied feed and operating conditions by the following procedures:

- 1) Run the process model.
- 2) Choose the process variables to produce case studies.
 - In real practice, we choose feedstock qualities (such as specific gravity, Watson *K*, and PNA) rather than operating conditions.
- 3) Record base yields (base vector), \overline{Y} in Eq. (6.28), and the values of the selected process variables, \overline{X} in Eq. (6.28), in the process model.
- 4) Produce case studies by running the process model with changing selected process variable(s).
- 5) Record the changes of process variables, ΔX in Eq. (6.28), and the corresponding yields, *Y* in Eq. (6.28).
- 6) Apply Eq. (6.28) to run a linear regression to obtain delta-base vector.

In this section, we use HP HCR model to demonstrate how to generate the delta-base vector from computer simulation. We choose sulfur content, Watson K factor, and API gravity of feed oil as process variables to perform case study and generate delta-base vector. The product yields calculated from the base case of HP HCR model are defined as base vector, \overline{Y} in Eq. (6.28). Then, we input different

Product vield	Base vector	- De	lta-Base ve	a ata z	Delta vector	
$\label{eq:matrix} \begin{array}{c} \underline{\text{Make Up } \text{H}_2} & (\text{STD } \text{m}^{3}/\text{ m}^{3}) \\ \hline \text{Feed Flow} & (\text{wt\%}) \\ \text{LPS (wt\%)} & (\text{Wt\%}) \\ \text{LPG (wt\%)} \\ \text{Light Naphtha (wt\%)} \\ \text{Heavy Naphtha (wt\%)} \\ \text{Jet Fuel (wt\%)} \\ \text{Resid Od(wt\%)} \end{array}$) 4.66 2.32 2.93 9.49 9.42 36.04 12.88 25.34	0.0020 0.0020 0.0031 0.0048 - 0.0068 - 0.0117 - 0.0030 - 0.0012	- 0.0088 - 0.0072 - 0.0104 - 0.0037 - 0.0146 0.0009 - 0.0099 - 0.0291	0.0018 0.0004 0.0006 0.0029 - 0.0055 - 0.0126 - 0.0004 0.0033	Sulfur Content (wt%) Watson K Factor API Gravity	- 0.42 - 11.41 - 31.7

Figure 6.77 Delta-base vector of HP HCR process generated in this work.

feed analyses obtained from the refinery into the HP HCR model to produce case studies. We regress Eq. (6.28) with base vector, \overline{Y} in Eq. (6.28). We record the product yields, Y in Eq. (6.28), and the corresponding change of process variable, namely, ΔX , $X - \overline{X}$ in Eq. (6.28), from 15 case studies to obtain delta-base vector. Figure 6.77 represents the resulting delta-base vector for HP HCR process. We generate one set of delta-base vector because the plant data collected for building the HP HCR model are based on the same production scenario.

The resulting delta-base vector shows that sulfur content of feed oil has a positive effect on the yields of light products and a negative effect on heavier liquid product because more H₂S is produced with increasing sulfur compounds of feed oil. Hu et al. [52] also reported that sulfur content of feed oil has opposite effects on light and heavy products. However, the trends of API gravity and Watson K factor on product yields are irregular. This follows because API factor and Watson factor are not independent, and the resulting delta-base vector represents the mutual effect of these two variables on product yields as well. It is worth noting that API gravity and Watson K factor are not good enough to generate a delta-base vector of HCR process because they provide little information of feed composition such as PNA content that is important to HCR modeling. The attributes relevant to feed composition should be included to obtain a more precise delta-base vector. Although we only use API gravity and Watson K factor to generate a delta-base vector due to the limitation of plant data, HP HCR model's good predictability among two and half months of plant data provides a good incentive for the application of delta-base vector.

6.9 Workshop 6.1 – Build a Preliminary Reactor Model of HCR Process

We start by opening a new case in Aspen HYSYS and go to Properties environment (see Figure 6.78). We save the simulation file as *Workshop 6.1.hsc.*

The first step in creating the model is the selection of a standard set of components and a thermodynamic basis to model the physical properties of these components. We choose to import a predetermined set of the components for the hydrocracker model (Figure 6.79).

N I 🗄 A 🛄 💿 💿 🕬 🕬					Unt	titled - Asper	HYSYS V9 - aspenON	E	
A Cut		Map Components Update Properties Components	Petroleum Assays Refining G	 Иуроtheticals Manager Convert Remove Duplicates Нуроtheticals 	Oi Manager	Convert to Refining Assay	Associate Fluid Package Definitions* Options	PVT Laboratory Measurements PVT Data	
Properties 4	Component Lists	× +							
All Items All Items All I	Li	t Name		Source		Associ	ted Fluid Packages		Sta
Properties	Add	Copy Copy Export.							

Figure 6.78 Initial start-up of Aspen HYSYS.

🕑 i 🖶 🕫 🛄 💿 🖬	Untitled - Aspen H	IYSYS V8.8	- aspenONE	6	100		×
File Home View Customize R	esources		Search aspenC	NE Exchar	nge	2 4	
J Cut Image: Component Lists Image: Component Lists Fluid And the component Clipboard Clipboard Navigate	Update Properties	Petroleum Assays Refining G	 Hypotheticals Manager Convert Remove Duplicates Hypotheticals 			PVT Data	
Properties < Componen	t Lists × +						
All Items •	List Name		Source	T		sociated F	luid D
Component Maps User Properties							
	Copy.						

Figure 6.79 Adding a component list.

To import these components, we click "Import" and navigate to the directory location, "C.\Program Files\AspenTech\Aspen HYSYS V9.0\Paks" and select the "Hydrocracker Components Celsius.cml" as the component list (Figure 6.80). The path shown reflects a standard installation of Aspen HYSYS Petroleum Refining software.

Once we import a component list, HYSYS will create a new component list called "Component List-1." We can view the elements of this component lists

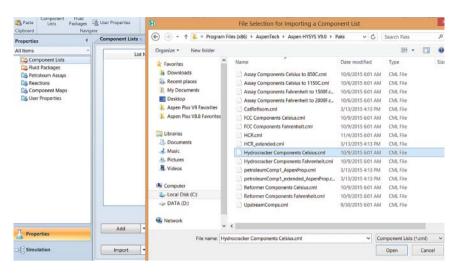
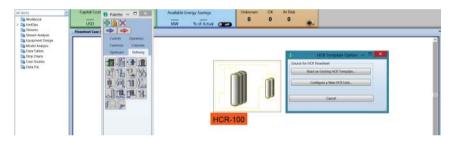


Figure 6.80 Importing hydrocracker component list.

Properties	Component List - 1 ×	+	
All Items Component Lists Component List - 1 Fluid Packages	Source Databank: HYSYS		
Petroleum Assays	Component	Туре	Group
Reactions	i-Butane	Pure Component	
Component Maps	i-Butene	Pure Component	
	1-Butene	Pure Component	E
	13-Butadiene	Pure Component	
	n-Butane	Pure Component	
	tr2-Butene	Pure Component	
	cis2-Butene	Pure Component	
	22-Mpropane	Pure Component	
	i-Pentane	Pure Component	
	1-Pentene	Pure Component	
	2M-1-butene	Pure Component	
	n-Pentane	Pure Component	
	H2O	Pure Component	
	36-40C*	User Defined Hypothe	HypoGroup4
T. Properties	40-500*	User Defined Hynothe	HynoGroun4
	Status:	ОК	


Figure 6.81 Initial component list for hydrocracking process.

by selecting "Component List-1" and clicking on "View" in the Simulation Basis Manager (Figure 6.81). We can add more components or modify the order of the elements in the component list. We note that the standard HCR component list is quite complete and model most refining processes.

The next step is the settings of a "Fluid Package" for this model. The "Fluid Package" refers to the thermodynamic system associated with the chosen list of components. We choose the SRK thermodynamic model for our fluid package

하는 관계 🖸 🛛 🖬 하는 한	lane and a	Untitled - Aspen HYSYS V9 - aspenONE	
Lacer De AA	Anne Reserve Mathem Asstant Chapter An Deathers Dual Properties No. Component Reserve An Deathers Component Reserve An Deathers Component An Deathers An Deat		Search agun(Oki Exchange
All ferms +	Set (i) Binary Coeth Stabilized A	aus Order Tabular Notes	
Eig Component List - 1 File Fact Packages Eig Base - 1 Eig Princean Assays	Package Type: H1515 Property Package Selection	Component List Selection Component List - 1 (197313 Desidentia) • View	
Capitantina Carporate Huga Capitanti Huga Capitanti Hugarten	Gyen Antique	Density Parget Problem (S) Density Castali Modely FL, No Ins2, Inc. Modely S, No Ins2, Inc. Model Named Viscourty CH11171 Streaming IdS Status Viscourty CH11171 Streaming Parel Identification Viscourty CH1111 Streaming Softent Tensor Viscourty AH11133.3-1 Minimal	
Properties		Property Phg	Edit Properties
Safety Analysis	Westaget		
69 Energy Analysis -			
			ues. 0 0
🔋 🜔 🛄 🖣) 🗶 🕫 👘 🕫	🗢 🗉 🐗 📕 😳 S 🗜 🖬 🛸 🚯 🕒 🚱	- 18 4 8 4 Dec 111544

Figure 6.82 Select SRK thermodynamic model for fluid package.

Figure 6.83 Hydrocracker reactor palette – F4 \rightarrow Refining \rightarrow Hydrocracker model \rightarrow Configure a New HCR Unit \rightarrow HCR configuration wizard.

(Figure 6.82). The HCR system is mostly hydrocarbons and consequently the Soave–Redlich–Kwong equation of state is sufficient. We discuss the implications of the process thermodynamics in Section 1.9.

The initial flowsheet presents a blank interface where we can place different objects from the Object palette shown in Figure 6.83.

We continue this workshop with the following step-by-step guidelines to demonstrate how to build a preliminary reactor model of HCR process:

- *Step 1*. Define the process type (single-stage or two-stage), the number of reactors of each stage and the corresponding reaction beds, the number of HPS, and if the amine treatment is included in the model (Figure 6.84).
- *Step 2.* Assign the dimensions and catalyst loading information of each reaction bed (Figure 6.85).
- *Step 3.* Select data set of reaction activity. "Default" is suggested when building a preliminary model from scratch (Figure 6.86).

`	HCR Confi	guration Wizard	1	9 -	
Basic Configuration					_
Single-Stage	Two-Stage				
Reactor					
Number of Reactors	2 -	Reactor	1	2	
		Number of beds	3	3	
Number of Treating Beds	3 -				
Separator					
Number of high pressure s	eparators				
Include amine scrubber					
Fractionator					
Include Fractionator					
Next >			Cance		

		HCR Configurat	tion Wizard	- 0	
	Internal Diameter	Catalyst Loading	Catalyst Density	Bed Voidage	
Reactor 1					
Bed 1	3.200 m	3.230e+004 kg	974.7 kg/m3		
Bed 2	3.200 m	5.472e+004 kg	967.4 kg/m3		
Bed 3	3.200 m	7.144e+004 kg	966.7 kg/m3	0.2000)
Reactor 2		- United and			
Bed 1	3.000 m	2.528e+004 kg	944.0 kg/m3		
Bed 2	3.000 m	2.592e+004 kg			
Bed 3	3.000 m	4.280e+004 kg	991.1 kg/m3	0.3000	
< Pre	v Next		etry (2 of 3)	Close	

Figure 6.84 HCR configuration wizard – define reactors in HCR process.

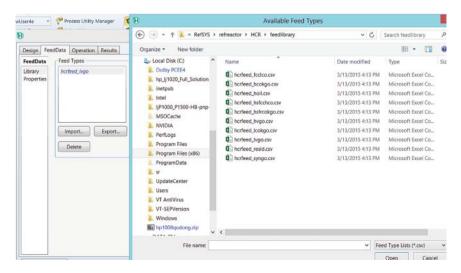
Figure 6.85 Define catalyst bed.

>		HCR Configuration Wizard	5 6	 ×
© Op		tton is clicked, goes to calibration envir et of calibration factors. (Recommended		
Op Op		tton is clicked, goes to simulation envir ase. Please select a calibration factor s		
	Default	Library		
				112

Figure 6.86 Choose set of reaction activity factors.

Step 4. Input the required feed analysis (Figure 6.87).

Step 5. Select an appropriate feed fingerprint (Figure 6.88).


Step 6. Input the conditions of feed streams. The temperature and pressure input here only affect flash calculation of feed stream and have no influence on reactor condition. However, it is important to input correct data of hydrogen flow (Figure 6.89).

Step 7. Input inlet temperature of each reaction bed (Figure 6.90).

- *Step 8.* Input operating data of recycle hydrogen system. It is crucial to ensure that the "outlet pressure of compressor" and "Delta P to Reactor Inlet" are correct because they are used to calculate the inlet pressure of reactor (Figure 6.91).
- *Step 9.* Input the catalyst information provided by vendor. After completing this step, Aspen HYSYS Petroleum Refining will solve the model automatically (Figure 6.92).
- *Step 10.* Increase the number of iterations and reduce the step size of creep step parameters to enhance model convergence (Figure 6.93).
- *Step 11.* Check model results such as product yields and reactor temperature profile. Save the converged simulation file as *Workshop 6.1.hsc* (Figures 6.94 and 6.95).

Figure 6.87 Feed analysis sheet.

Feed Type	hcrfeed_lvgo	-
API Gravity	<empty></empty>	
Specific Gravity (60F/60F)	0.9103	
Distillation Type	D2887	
0% Point [C]	279.0	
5% Point [C]	323.7	
10% Point [C]	359.5	Ξ
30% Point [C]	411.5	
50% Point [C]	418.0	
70% Point [C]	426.8	
90% Point [C]	468.5	
95% Point [C]	505.8	L
100% Point [C]	531.3	
Total Nitrogen [ppmwt]	861.0	
Basic Nitrogen [ppmwt]	<empty></empty>	
Total/Basic Nitrogen Ratio	4.477	
Sulfur Content [%]	1.99	
Meas. RI @ Spec. Temp. (Opt.)	<empty></empty>	
Meas. RI Temp. (Opt.) [C]	<empty></empty>	
RI @ 20C (From Lab Data)	<empty></empty>	
RI @ 20C (From Bulk Prop.)	<empty></empty>	
Viscosity, cSt@210 F Lab (Opt.)	<empty></empty>	
Viscosity, SUS@210 F Lab (Opt.)	<empty></empty>	
Viscosity, cSt@210 F (From Bulk Pre	<empty></empty>	
Measured Ca (Opt.)	<empty></empty>	
Ca Est. From Total Method	<empty></empty>	-

Figure 6.88 Import from the HCR feed library. C \rightarrow Program Files \rightarrow AspenTech \rightarrow Aspen HYSYS 9.0 \rightarrow RefSYS \rightarrow refreactor \rightarrow HCR \rightarrow feedlibrary \rightarrow hcrfeed_lvgo.csv.

	11	1						
Design FeedData O	peration Results							
Operation	- Feed Conditions	5		1			1.14	
Feeds Specifications	Feed	Volume Flow [m3/h]	Mass Flow [kg/h]	Temperatur [C]	e Pressure [bar]	Location		
Recycle Gas Loop Catalyst Deactivation	Feed-1	101.25343	92171.0	25.	00 1.01	3 Reactor	1	
Solver Options Solver Console EO Variables Presolve Commands Postsolve Commands								
	-Total Feed							1
			Reactor 1		actor 2			Total
	Fresh Feed Volu		U.	101.3	0.0			<empty></empty>
	Fresh Feed Volu Fresh Feed Mass	s [kg/h]	1	101.3 92171.0	0.0 0.0			<empty> <empty></empty></empty>
	Fresh Feed Volu Fresh Feed Mass Total Feed Volu	s [kg/h] me [m3/h]	4	101.3 92171.0 empty>	0.0 0.0 <empty></empty>			<empty> <empty> <empty></empty></empty></empty>
	Fresh Feed Volu Fresh Feed Mass Total Feed Volu Total Feed Mass	s [kg/h] me [m3/h] ; [kg/h]	4	101.3 92171.0 empty> 92171.0	0.0 0.0 <empty> 0.0</empty>			<empty> <empty> <empty> <empty></empty></empty></empty></empty>
	Fresh Feed Volu Fresh Feed Mass Total Feed Volu Total Feed Mass Total Feed Prehe	s [kg/h] me [m3/h] ; [kg/h] eat Duty [kl/h]	4	101.3 92171.0 empty>	0.0 0.0 <empty></empty>			<empty> <empty> <empty> <empty></empty></empty></empty></empty>
	Fresh Feed Volu Fresh Feed Mass Total Feed Volu Total Feed Mass Total Feed Prehe Total Feed Press	s [kg/h] me [m3/h] ; [kg/h] eat Duty [kl/h] sure [bar]	4	101.3 92171.0 empty> 92171.0 0.0000	0.0 0.0 <empty> 0.0 0.0000</empty>			<empty> <empty> <empty> <empty> <empty></empty></empty></empty></empty></empty>
	Fresh Feed Volu Fresh Feed Mass Total Feed Volu Total Feed Mass Total Feed Prehe	s [kg/h] me [m3/h] ; [kg/h] eat Duty [kl/h] sure [bar] perature [C]	4	101.3 92171.0 empty> 92171.0 0.0000 1.013	0.0 0.0 <empty> 0.0 0.0000 1.013</empty>			<empty> <empty> <empty> <empty></empty></empty></empty></empty>
	Fresh Feed Volu Fresh Feed Mass Total Feed Volu Total Feed Mass Total Feed Preh Total Feed Press Total Feed Temp Gas to Oil Ratio	s [kg/h] me [m3/h] ; [kg/h] eat Duty [kl/h] sure [bar] perature [C]	4 4 5	101.3 92171.0 empty> 92171.0 0.0000 1.013 25.00	0.0 0.0 <empty> 0.0 0.0000 1.013</empty>			<empty> <empty> <empty> <empty> <empty> Light comp.</empty></empty></empty></empty></empty>
	Fresh Feed Volu Fresh Feed Mass Total Feed Volu Total Feed Mass Total Feed Preh Total Feed Press Total Feed Temp Gas to Oil Ratio	s (kg/h) me [m3/h] ; [kg/h] eat Duty [kl/h] perature [bar] perature [C] [STD_m3/m3] Bed 1 [STD_m3/h]	h] <4	101.3 92171.0 empty> 92171.0 0.0000 1.013 25.00 1298	0.0 0.0 <empty> 0.0 0.0000 1.013 25.00</empty>			<empty> <empty> <empty> <empty> <empty></empty></empty></empty></empty></empty>
	Fresh Feed Volu Fresh Feed Mass Total Feed Volu Total Feed Pass Total Feed Press Total Feed Tens Gas to Oil Ratio Quench Flow to	s (kg/h) me [m3/h] ; [kg/h] eat Duty [kl/h] perature [bar] perature [C] [STD_m3/m3] Bed 1 [STD_m3/h]	h] <4	101.3 92171.0 empty> 92171.0 0.0000 1.013 25.00 1298 empty>	0.0 0.0 (empty> 0.0 0.0000 1.013 25.00 1.773e+004			<empty> <empty> <empty> <empty> <empty> Light comp.</empty></empty></empty></empty></empty>

Figure 6.89 Define feed conditions.

Operation Temperature Pogenition Reactor 1 Read Reactor 2 Bed 1 Iniet Temperature [C] Joure Options Goutest Temperature [C] Outer Options Goutest Temperature [C] Outer Console Outlet Temperature [C] OVariabiles resolve Commands Sotsolve Commands Iniet Temperature [C] Outer Temperature [C] 365.3 Outer Temperature [C] (empty)> WAST [C] <empty> WAST [C] <empty> WAST [C] <empty> Deta T - Rise Bed 2 Bed 3 - Bed2 [C] <empty> Bed3 - Bed2 [C] <empty> Properties/Conversion <empty> Nitrogen in R1 Liquid Product [ppmwt] <empty> Conversion, wrths [%] <empty></empty></empty></empty></empty></empty></empty></empty></empty>	esign FeedData Op	eration Results				
pecifications cycle Gas Loop atkylt Deactivation ober Options ober Console O Variabiles rezolve Commands astsolve Commands astsolve Commands astsolve Commands Difference Outlet Temperature [C] 4 Dute Temperature [C] 4 Outlet Temperature [C] 4 0 0 1	Operation	Temperature				
Bed 1 353.5 371.1 cycle Gas Loop tabyat Deactivation olver Options olver Console OVariabiles resolve Commands astsolve Commands astsolve Commands Bed 1 353.5 371.1 Outlet Temperature [C] 4 (Empty) <empty> <empty> Unite Temperature [C] 365.3 367.2 Outlet Temperature [C] 365.7 364.7 Outlet Temperature [C] 463.7 364.7 Outlet Temperature [C] 465.7 364.7 Outlet Temperature [C] 469.7 460.7 Outlet Temperature [C] 469.7 460.7 Outlet Temperature [C] 460.7 460.7 Delta T - Rise 160.4 460.7 Bed 2 - Bed 2 [C] 460.7 460.7 Properties/Conversion 460.7 460.7 Nitrogen in R1 Liquid Product [ppmwt] 460.7</empty></empty>	eeds		Reactor 1	Reactor 2		
ecycle Gas Loop tadyls Deactivation diver Options diver Options diver Options diver Console D Variabiles resolve Commands otsolve Commands otsolve Commands otsolve Commands otsolve Commands data (C) = (C)		Bed 1				
obver Options obver Console OVariabiles resolve Commands ostsolve Commands WABT [C] <empty> <empty> Utel Temperature [C] 365.3 367.2 Outlet Temperature [C] <empty> <empty> WABT [C] <empty> <empty> Utel Temperature [C] 365.7 364.7 Outlet Temperature [C] <empty> <empty> WABT [C] <empty> <empty> Bed 2 Edd 1 <empty> <empty> Detta T Rise Edd 2 Bed 3 Edd 2 <empty> <empty> Bed 3 Edd 2 <empty> <empty> Detta T Rise <empty> Bed 3 Edd 2 <empty> <empty> Bed 3 Edd 2 <empty> <empty> Bed 3 Edd 2 <empty> <empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty>		Inlet Temperature [C]	355.5	371.1		
bler Console Bed 2 Bed 3 D Variabids Inlet Temperature [C] 365.3 satsolve Commands Outlet Temperature [C] «empty» WABT [C] «empty» «empty» WAST [C] «empty» «empty» Deta T - Rise Bed 2 Bed 2 Bed 3 - Bed 2 [C] «empty» «empty» Bed 3 - Bed 2 [C] «empty» «empty» Properties/Conversion	atalyst Deactivation	Outlet Temperature [C]	<empty></empty>	<empty></empty>		
3) Variables esolve Commands sotucione Commands sotucione Commands Nattriane Commands State Comma	olver Options	WABT [C]	<empty></empty>	<empty></empty>		
resolve Commands Outlet Temperature [C] 4 empty> 4 empty> Bed 3 Intel Temperature [C] 4 empty> 4 empty> Bed 3 Intel Temperature [C] 365.7 364.7 Outlet Temperature [C] 4 empty> 4 empty> WABT [C] 4 empty> 4 empty> WART [C] 4 empty> 4 empty> Deta T - Rise Bed2 - Bed2 [C] 4 empty> 4 empty> Bed3 - Bed2 [C] 4 empty> 4 empty> Properties/Conversion Nitrogen in R1 Liquid Product [ppmwt] 4 empty>		Bed 2	100	100		
Duter (emperature (L) < <mpty> <mpty> Wa3T (C) <mpty> Hed 3 365.7 Journal (C) <mpty> Wa3T (C) <mpty> Bed2 - Bed1 (C) <<mpty> <mpty> Bed3 - Bed2 (C) <mpty> Properties/Conversion <mpty> Nitrogen in R1 Liquid Product (ppmwt) <mpty></mpty></mpty></mpty></mpty></mpty></mpty></mpty></mpty></mpty></mpty></mpty></mpty></mpty></mpty></mpty>		Inlet Temperature [C]	365.3	367.2		
Wash [L] <empty> Bed 3 Set 7 Outlet Temperature [C] 365.7 364.7 Outlet Temperature [C] WAST [C] <empty> WAST [C] <empty> WAST [C] <empty> Detta T - Rise Bed 2 - Bed 1 [C] Bed 2 - Bed 2 [C] <empty> Properties/Conversion <empty> Nitrogen in R1 Liquid Product [ppmwt] <empty></empty></empty></empty></empty></empty></empty></empty>		Outlet Temperature [C]	<empty></empty>	<empty></empty>		
Inlet Temperature [C] 365.7 364.7 Outlet Temperature [C] <empty> <empty> WABT [C] <empty> <empty> WART [C] <empty> <empty> Deta T - Rise Bed2 - Bed1 [C] <empty> <empty> Bed3 - Bed2 [C] <empty> <empty> Properties/Conversion <empty> Nitrogen in R1 Liquid Product [ppmwt] <empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty>	ostsolve Commands	WABT [C]	<empty></empty>	<empty></empty>		
WABT [C] <empty> WABT [C] <empty> WABT [C] <empty> Deta T - Rise Bed2 - Bed1 [C] <empty> Bed3 - Bed2 [C] <empty> Properties/Conversion Nitrogen in R1 Liquid Product [ppmwt] <empty></empty></empty></empty></empty></empty></empty>		Bed 3				
WABT [C] <empty> WART [C] <empty> Deta T Rise Bed2 - Bed1 [C] <empty> Bed3 - Bed2 [C] <empty> Properties/Conversion <empty> Nitrogen in R1 Liquid Product [ppmwt] <empty></empty></empty></empty></empty></empty></empty>		Inlet Temperature [C]	365.7	364.7		
WART [C] <empty> Deta T - Rise Bed2 - Bed1 [C] <empty> Bed3 - Bed2 [C] <empty> Properties/Conversion Nitrogen in R1 Liquid Product [ppmwt] <empty></empty></empty></empty></empty>		Outlet Temperature [C]	<empty></empty>	<empty></empty>		
Delta T - Rise Bed2 - Bed1 [C] <empty> Bed3 - Bed2 [C] <empty> Properties/Conversion Nitrogen in R1 Liquid Product [ppmwt]</empty></empty>		WABT [C]	<empty></empty>	<empty></empty>		
Bed2 - Bed1 [C] <empty> Bed3 - Bed2 [C] <empty> Properties/Conversion <empty> Nitrogen in R1 Liquid Product [ppmwt] <empty></empty></empty></empty></empty>		WART [C]	<empty></empty>	<empty></empty>		
Bed3 - Bed2 [C] <empty> Properties/Conversion </empty>						
Properties/Conversion		Bed2 - Bed1 [C]	<empty></empty>	<empty></empty>		
Nitrogen in R1 Liquid Product (ppmwt) <empty></empty>		Bed3 - Bed2 [C]	<empty></empty>	<empty></empty>		
Nitrogen in R1 Liquid Product (ppmwt) <empty></empty>						
		Properties/Conversion				
Conversion, wt% [%] <empty></empty>			oduct [ppmwt]		and the second se	
		Conversion, wt% [%]			<empty></empty>	

Figure 6.90 Assign reactor temperature.

	peration Results				
Operation	HPS and Recycle Gas Compressor			Product Heater	
Feeds	HPS	Loop 1		Product Temperature [C]	
Specifications	Temperature [C]	49.40		Heater Duty [kJ/h]	0.0000
Recycle Gas Loop	Pressure [bar]	111.8		Product Pressure [bar]	111.8
Catalyst Deactivation	Hydrogen Purge			Delta P [kPa]	0.0000
Solver Options	Purge Fraction	0.0300			
Solver Console	Purge Flow [STD_m3/h]	5285.68			
EO Variables	Compressor		1	H2S Removal	
Presolve Commands	Outlet P [bar]	127.3		H2S in Rec H2 [%]	0.00
Postsolve Commands	Outlet T [C]	57.00		Fraction H2S To Scrubber	1.0000
		Stage 1	1		
	Delta P to Reactor Inlet [kPa]	781.5			
	Hydrogen Makeup Stream	HPS	Loop 1		
		Makeup 1	Makeup 2		
	Mole Flow Rate [STD_m3/h]	1.385e+004	0.000	00	
	Temperature [C]	25.00	25.0	00	
	Pressure [bar]	1.013	1.0	13	
	Composition, Mole Fraction				
	N2	0.0404	0.020	00	
	H2S	0.0000	0.000	00	
	H2	0.9495	0.960	00	
	NH3	0.0000	0.000	00	
	C1	0.0101	0.020	00	
	C2	0.0000	0.000	00	
	C3	0.0000	0.000	00	
	C4	0.0000	0.000	00	
	C5	0.0000	0.000	00	

Figure 6.91 Define hydrogen recycle system.

	HCR Rea	ctor Section	00 ×
Design FeedData C	peration Results		
Operation	WABT at SOC [C]	354.3	
Feeds	WABT at Now [C]	369.8	
Specifications	WABT at EOC [C]	404.0	
Recycle Gas Loop	Day on Stream [days]	217.0 1822 0.3302	
Catalyst Deactivation	Remaining Days [days]		
Solver Options	Current Deactivation Rate [C/(bbl/lb)]		
Solver Console EO Variables	Deactivation Rate at EOC [C/(bbl/lb)]	1.324	
Delete	OK		EO Variables

Figure 6.92 Catalyst deactivation information.

		HCR Reacto	1 Section				-
Design FeedData O	peration Results						
Operation	Convergence Tolera	nce	SQP Hessian Paran	neters			
eeds	Residual	1.000e-006	Initialization	Normal	*		
Specifications Recycle Gas Loop			Scaling Factor	1.000			
Catalyst Deactivation	L		-		-		
Solver Options	Iteration Limits		Updates Stored	10	•		
Solver Console	Maximum Iterations	50	Line Search Parame	atarr			
Presolve Commands	Minimum Iterations 0			Algorithm			
Postsolve Commands					Normal		
	Creep Step Paramet	ers	Step Control		Normal	•	-
	On /Off Switch	On	Step Control Itera	tions	0	÷	
	Iterations	10	Variable Scalling P				
				arameter			7
	Step Size	0.1000	On \\ Off Switch		On	•	1
	Completness Chekir	ng	Failure Recovery A	ction			5
	🔲 Override Spec 🛛	Group Completness	Revert to the pre	vious results]
	-						
Delete		OK		1	lanored	EO Varia	able

Figure 6.93 Select algorithm for model convergence.

Results	· Yields				
Feed Blend Product Yields Product Properties		Volume Flow [m3/h]	Mass Flow [kg/h]	Volume % [%]	Weight % [%]
	NH3	<empty></empty>	68.0551	<empty></empty>	0.0738
Reactor	H2S	<empty></empty>	1949.6121	<empty></empty>	2.1152
Hydrogen System	C1+C2	<empty></empty>	66.3307	<empty></empty>	0.0720
Hydrogen Balance	C3	0.0685	33.2194	0.0677	0.0360
Extended Yields	C4	0.1933	105.7847	0.1909	0.1148
	C5	0.0811	47.6944	0.0800	0.0517
	Naphtha C6-430F	3.1817	2306.7754	3.1423	2.5027
	Distillate 430-700F	11.5180	9391.4793	11.3754	10.1892
	Gas Oil 700-1000F	87.6931	73602.5772	86.6075	79.8544
	Resid 1000F+	6.4100	5336.1427	6.3307	5.7894
	Total	109.1457	92907.6709	107.7946	100.7992
	Total C4+	109.0772	90790.4537	107.7269	98.5022
	Total C5+	108.8839	90684.6691	107.5360	98.3874
	Conversion	<empty></empty>	<empty></empty>	14.8564	15.3937
	Total C5+	108.8839	90684.6691	107.5360	98.3874

Figure 6.94 Model results – product yield.

Design FeedData	Operation Results			
Results	Reactor			
Feed Blend		Reactor 1	Reactor 2	*
Product Yields	Space Velocity			
Product Properties	LHSV	0.4592	0.7278	
Reactor	Bed Temperature			
Hydrogen System	Bed 1			
Hydrogen Balance	Inlet Temperature [C]	355.5	371.1	8
Extended Yields	Outlet Temperature [C]	375.9	373.3	
	Temperature Rise [C]	20.44	2.167	
	WABT [C]	370.2	372.5	
	Bed 2			
	Inlet Temperature [C]	365.3	367.2	
	Outlet Temperature [C]	374.2	369.1	
	Temperature Rise [C]	8.861	1.900	
	WABT [C]	371.2	368.5	
	Delta T-Riser [C]	-11.58	-0.2675	
	Bed 3			
	Inlet Temperature [C]	365.7	364.7	
	Outlet Temperature [C]	372.2	367.5	
	Temperature Rise [C]	6.499	2.776	
	WABT [C]	370.0	366.6	
	Delta T-Riser [C]	-2.362	0.8757	*

Figure 6.95 Model results – reactor performance.

6.10 Workshop 6.2 – Calibrate Preliminary Reactor Model to Match Plant Data

After completing preliminary model, it is necessary to calibrate the model to match plant measurement. The following section represents a step-by-step guideline to calibrating a preliminary model to match plant measurement of reactor temperature profile and product yields. We continue with simulation file, *Work-shop 6.1.hsc*, and save it as *Workshop 6.2-starting.hsc*.

Step 1. Enter the "calibration" environment (Figure 6.96).

- *Step 2*. Click the button of "Pull Data from Simulation" to import the results of the preliminary model (Figure 6.97).
- Step 3. Input temperature rise and pressure drop of each reaction bed (Figure 6.98).
- *Step 4*. Input quench flow of each reaction bed, sour gas removal, makeup hydrogen rate, chemical hydrogen consumption, nitrogen content in first reactor's effluent, and composition of purge gas (Figure 6.99).
- Step 5. Define the number of cuts in each distillate range (Figure 6.100).
- *Step 6*. Input compositional analyses and flow rates of light ends (Fuel Gas 1, Fuel Gas 2, and LPG1). These are important to calculate the composition of naphtha cuts (Figure 6.101).
- *Step 7.* Input distillation curves, elemental analyses, specific gravities, and flow rates of liquid products. Distillation curves and flow rates are the most important properties and they have to be accurate to ensure that the model

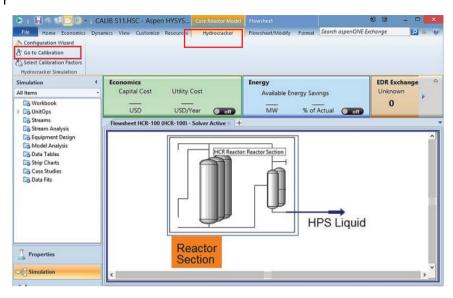
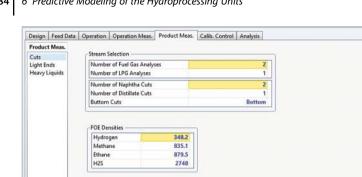


Figure 6.96 Enter calibration environment.

	II Data from Simulation turn to Simulation anage Data Sets	v Customize Resources	Hydrocracker	Search aspenOl	VE Exchange	P a 1	10
Simulation	account of the second		Energy	EDR Exchanger Feasi			0
All items	Capital Cost	Utility Cost	Available Energy Savings	Unknown OK	At Risk		
Workbook	USD	USD/Year O of	MW % of Actual O off	0 0	0		
C3 Streams	and the second se	00 Calibration +					-
Stream Analysis	Design Feed Dat	a Operation Operation Meas. P	roduct Meas. Calib. Control Analysis				
Dig Model Analysis	Design	- Flowsheet Configuration					Ч
Data Tables	Configuration	Basic Configuration	Single-Stage	1			
Case Studies	Geometry	Number of Reactors	2				
Lo Data Fits	Notes	Number of Treating Beds	1				
		Number of HPS	1				
		Amine Scrubber	~				
		Fractionator	×				
		Reactor	1 Reactor 2	1			
		Number of Beds	8 3				
	_						
Z Properties							
Simulation		Data Set: Set-1	•	Must specify	Measurement D	100	ĩ

Figure 6.97 Extract data from simulation.

works well. Specific gravity affects the model's prediction on hydrogenation reaction rate. Elemental analysis only affects the severity of HDN and HDS reactions and hydrogen balance, which have little effect on yield predictions of HCR model (Figure 6.102).


Step 8. Change the iteration scheme to enhance model's convergence (Figure 6.103).

esign Feed Data	Operation	Operation Meas.	Product Meas	Calib. Control	Analysis		
Operation Meas.							
Temp./Press.	Ter	mperature Rise —					
low				Reactor 2			
		d 1 [C]	16.70	6.300			
		d 2 [C]	17.40	8.800			
	Be	d 3 [C]	21.20	10.80			
	Pre	ssure Drop	Reactor 1	Reactor 2			
			Reactor 1	Reactor 2 110.0			
	Be	F					
	Be	d 1 [kPa]	123.0	110.0			
	Be	d 1 [kPa] d 2 [kPa]	123.0 100.0	110.0 90.00			
	Be	d 1 [kPa] d 2 [kPa]	123.0 100.0	110.0 90.00			

Figure 6.98 Input reactor variables.

Operation Meas.	Recycle/Quench Flows	
Temp./Press.	Reactor 1	
Flow	Bed 1 [STD m3/h]	1.315e+005
	Bed 2 (STD_m3/h)	4740
	Bed 3 (STD_m3/h)	1.832c+004
	Reactor 2	
	Bed 1 (STD_m3/h)	1.773c+004
	Bed 2 [STD_m3/h]	1.466c+004
	Bed 3 (STD_m3/h)	1.591c+004
	Flow Measurements for Wizard Mass Balance	
	NH3 Removal - Loop 1 [kg/h]	96.40
	H2S Removal at Contactor [kg/h]	808.2
	Recycle Gas Purge Flow - Loop 1 [STD_m3/h]	713.7
	N2	0.0330
	H2	0.9030
	H2S	0.0000
	C1	0.0640
	C2	0.0000
	C3	0.0000
	C4	0.0000
	C5	0.0000
	C6P	0.0000
	C6N	0.0000
	C6A	0.0000
	C7P	0.0000
	C7N	0.0000
	C7A	0.0000
	H2 Makeup, Consumption and R1 Nitrogen	
	H2 makeup 1 rate - Loop 1 [STD_m3/h]	1.458c+004
	H2 consumption [STD_m3/m3]	82.53
	Nitrogen In R1 Liquid Product (ppmwt)	444.9

Figure 6.99 Input process data.

•

484 6 Predictive Modeling of the Hydroprocessing Units

Figure 6.100 Define plant cuts.

Data Set: Set-1

Design	Feed Data	Operation Operation N	leas. Product Meas.	Calib. Control A	nalysis		
Product	Meas.	Light Ends					
Cuts			Fuel Gas 1	Fuel Gas 2	LPG 1	Light Naphtha	Heavy Naphtha
Light End	ds	Gas Rate [STD_m3/h]	1643.71	580.004	2029.28	<empty></empty>	<empty></empty>
Heavy Li	quids	Liquid Rate [m3/h]	1.05306	1.19917	6.84397	<empty></empty>	<empty></empty>
		Mass Rate [kg/h]	715.900	781.100	4388.90	<empty></empty>	<empty></empty>
		Composition	Mole %	Mole %	Volume %	Volume %	Volume %
		N2 [%]	7.40000	2.10000	0.000000	0.000000	0.000000
		H2S [%]	4.30000	8.20000	2.76969	0.000000	0.000000
		H2 [%]	67.9000	14.3000	0.000000	0.000000	0.000000
		C1 [%]	12.8000	25.0000	0.000000	0.000000	0.000000
		C2 [%]	2.50000	11.6000	3.75885	0.000000	0.000000
		C3 [%]	2.70000	17.7000	19.6940	0.000000	0.000000
		C4 [%]	2.40000	16.8000	50.0847	0.000000	0.000000
		C5 [%]	0.000000	4.30000	23.6928	5.87176	0.000000
		C6+ [%]	0.000000	0.000000	0.000000	94.1282	100.000
		Total	100.000	100.000	100.000	100.000	100.000

Figure 6.101 Input product yields and analyses (light products).

- *Step 9.* Check *all* of the boxes in "object function" sheet so that we are able to probe into how significantly all of the model results deviate from plant data (Figure 6.104).
- *Step 10.* We can use this sheet to select the reaction activities to be adjusted during automatic calibration by clicking "Run calibration" and change the lower and upper bounds of the selected reaction activities. In this step, we click the button of "Run Pre-Calibration" to run the model with current reaction activities, which are also default values (Figure 6.105). After clicking on "Run Pre-Calibration," Apen HYSYS shows a window of "Validation Wizard for

Design Feed Dat	ta Operation	Operation Meas.	Product Meas.	Calib. Control	Analysis		
Product Meas.	Heavy Ends -						
Cuts	Temperature	[C]		25.00	25.00	25.00	25.00
Light Ends	Pressure [bar	1		1.013	1.013	1.013	1.013
Heavy Liquids	Distillation T	ype		D86	D86	D86	D1160
	IBP [C]			40.00	98.00	170.0	7 293.6 0 350.0 7 385.5
	5% Point [C]			49.70	102.7	184.7	
	10% Point [C	1		51.00	107.0	198.0	350.0
	30% Point [C	3		55.90	118.2	228.7	385.5
	50% Point (C]		58.60	125.0	247.0	407.0
	70% Point [C	1		59.10	135.2	279.9	430.5
	90% Point [C	1		65.70	156.5	325.0	464.0
	95% Point [C	1		69.40	164.3	337.0	480.3
	End Point [C	1		73.40	172.3	349.0	498.2
	API Gravity			81.25	55.62	41.02	37.62
	Specific Grav	vity		0.6651	0.7562	0.8202	0.8367
	Chemical co	mposition (Wt%)					
	H [%]			17.00	15.00	14.00	13.00
	C [%]			82.9998	84.9998	85.9983	86.9987
	S [%]			0.0001	0.0001	0.0017	0.0013
	N [%]			0.0001	0.0001	0.0000	0.0000
	Total [%]			100.0000	100.0000	100.0000	100.0000

Figure 6.102 Input product yields and analyses (heavy products).

Operation Convergence Tolerance SQP Hessian Parameters Feeds Specification Residual 1.000e-006 Initialization Advance Security Distribution Residual 1.000e-006 Scaling Factor 1.000	
Specification Residual 1.000e-006 Initialization Advance Recycle Gas Loop Scaling Factor	
	ed 🔹
Catalyst Deactivation Obj Residual 1.000e-004 1.000	
Solver Options Updates Stored 5	
Solver Console Presolve Commands Maximum Iterations 300 Line Search Parameters	
Postsolve Commands Minimum Iterations 0 Algorithm Residue	· · ·
Creep Step Parameters Step Control Norma	•
On / Off Switch On Step Control Iterations 0	
Iterations 10 Variable Scaling Parameter	
Step Size 0.3000 On / Off Switch On	•
Completeness Checking Failure Recovery Action	
Override Spec Group Completeness Revert to the previous results	•

Figure 6.103 Iteration algorithm for model convergence.

Set-1" (Figure 6.106), which compares the measured and adjusted mass flows and mass balance. We click "OK" to continue.

Step 11. Analysis sheet represents the results after running calibration. It also shows the comparisons between model results from current reaction activities and plant data. Save the simulation file as *Workshop 6.2-1.hsc* (Figure 6.107).

Design	Feed Dat	a Operation	Operat	ion Meas. Product Meas.	Calib. Control	Analysis				_
Calib. Co	ontrol	6			Included	Sigma			Reset	
Paramet		Temperature	Rise		included	Jigina				
Obj Fun	ction	R1B1 Temperat		[C]	N	1.000	0			
		R1B2 Temperat			R	1.000	0			
		R1B3 Temperat	ture Rise	[C]	R	1.000	0			
		R2B1 Temperat	ture Rise	[C]	N	1.000	0	=		
		R2B2 Temperat	ture Rise	[C]	N	1.000	0			
		R2B3 Temperat	ture Rise	[C]	M	1.000	0			
		Recycle/Quen	ch Flow							
		Reactor 1						-		
		Bed 1 [STD_m3	/h]		M	720.0	0			
		Bed 2 [STD_m3	/h]		R	720.0	0			
		Bed 3 [STD_m3	/h]		R	720.0	0			
		Reactor 2								
		Bed 1 [STD_m3	/h]		R	720.0	0			
		Bed 2 [STD_m3				720.0				
		Bed 3 [STD_m3			N	720.0				
		Purge gas flow			M	36.00	-			
				p 1 [STD_m3/h]	되	36.00	-			
		H2 Consumpti			R	1.000	0			
	_	Product Flow a	and Prop	perties				*		

Figure 6.104 Objective function sheet.

Simulation < Capita	ItUSD	Utilities: USD/Year	Energy Savings:	MW (9	6) 💽	Exchangers - Uni	known: 0
All Items • Flow	sheet HCR-	100 Calibration × +					
Co Workbook	Les inte						
	gn Feed D	ata Operation Operation Meas. Pro	duct Meas, Cali	ib. Control Analy	rsis		
	b. Control		Included	Initial Value	Lower Bound	Upper Bound	
	ameters	Global Activity	included	inter value	correct country	opper bound	
	Function	Reactor 1 - Bed 1		0,2000	<empty></empty>	<empty></empty>	1
Data Tables		Reactor 1 - Bed 2	Ē	0,2000	<empty></empty>	cemptyo	
Strip Charts		Reactor 1 - Bed 3		0.2000		<empty></empty>	
Case Studies		Reactor 2 - Bed 1		0.2000		<empty></empty>	1
Data Fits		Reactor 2 - Bed 2		0.2000		<empty></empty>	
Lo Data His		Reactor 2 - Bed 3		0.2000	<empty></empty>	<empty></empty>	
		Overall HDS Activity					
		Treating bed		9.761e-002	<empty></empty>	<empty></empty>	
		Treating bed to Cracking bed ratio		0.6336	<empty></empty>	<empty></empty>	
		430- HDS Activity					
		Treating bed		1.000	<empty></empty>	<empty></empty>	
		Treating bed to Cracking bed ratio		1.000	<empty></empty>	<empty></empty>	
		430- 950 HDS Activity					
		Treating bed		0.7581	<empty></empty>	<empty></empty>	
		Treating bed to Cracking bed ratio		1.000	<empty></empty>	<empty></empty>	
		950+ HDS Activity	Charles .				
		Treating bed		1.000		<empty></empty>	
		Treating bed to Cracking bed ratio		1.000	<empty></empty>	<empty></empty>	
		Overall HDN Activity	_				
		Treating bed		0.2508	<empty></empty>	<empty></empty>	

Figure 6.105 Reaction activity factor sheet.

Step 12. Select "R1B1 Temperature Rise" in "Obj. Function" sheet (Figure 6.108). Step 13. Select "Global activity – Reactor 1 – Bed 1" and assign appropriate lower and upper bounds. We suggest that the lower and upper bounds are $\pm 25\%$ up and down around current value (i.e., initial value). By doing steps 12 and 13, the model will tune "Global Activity – Reactor 1 – Bed 1" within the assigned range to minimize the deviation between model result of "R1B1 Temperature Rise" and plant measurement (Figures 6.109 and 6.110).

Run Calibration 💦 Retur Push Data to Simulation 🛗 Manu Hydrocracker Calibrat	ALL STORES								
Simulation 4	Capital:USD_U	Utilities: USD/Year	Energy Savings:	MW (%)	C Excha	ngers - L	Inknown 0 OF	0 Risk (
All Items •	Flowsheet HCR-1			Validation	Wizard for Se	et-1			
B Workbook	Design Feed Dr	Feed Group				-	Material Bala	nce	
 DnitOps Streams 	Calib. Control	Stream	Mass Flow [kg/h]		gen Flow (g/h)		Closures	Measured (%)	Adjusted [%]
Stream Analysis	Parameters	Feed-1	9.21	7e+004	1.136e+00	04	Mass	101.57	100.00
Equipment Design	Obj Function	H2 Makeup 1		1880	114	45	Hydrogen	109.61	107.92
B Model Analysis		H2 Makeup 2		0.0000	0.000	00	Carbon	99.85	
Strip Charts							Sulfur	122.41	
Case Studies							Nitrogen	97.11	95.61
Data Fits		Total	9.40	5e+004	1.250e+00	04			
		Product Group					Chemical Hyd	irogen	
		Stream	Measured Mass Flow	Adjusted Mass Flow	Assign Bias				Consumption
		NH3 Removal - Loop 1	62.05	61.0			Mass Rate (k		234
		Recycle Gas Purge Flow - Loop	984.3	969			Molar Rate [2.753e+00
		H2S Removal at Contactor	1689	166		=	Ratio to Fee		
		Fuel Gas 1	715.9	704	9 🖬		Wt % of Fee	1	2.5
		Fuel Gas 2	781.1	769	1 🖌				
		LPG 1	4389	432					
		Light Naphtha	2306	227	0 17				
		Total	9.552e+004	9.405e+00	4				

Figure 6.106 Validation wizard for Set-1.

Design	Feed Data	Operation	Operation Meas.	Product N	leas. C	alib. Contro	An An	alysis		2011	
An	alysis	Save fo	or Simulation		xport		Calil	bration Fact	tors Library	Re-initia	lize
Calib Su Mass Ba	immary alance	Calibration	Factors								
Feed Ble	end				Include	Starting V	/alı Fi	inal Value	Lower Bound	Upper Bounc	
Product	Yields	Global Ac	tivity								-
Product	Properties	Reactor 1	- Bed 1			0.20	000	0.2000	<empty></empty>	<empty></empty>	
Reactor	Constant States and	Reactor 1	- Bed 2			0.20	000	0.2000	<empty></empty>	<empty></empty>	
	en System	Reactor 1	- Bed 3			0.20	000	0.2000	<empty></empty>	<empty></empty>	
Fraction		Reactor 2	- Bed 1			0.20	000	0.2000	<empty></empty>	<empty></empty>	
	en Balance	Reartor 2	- Red 2			0.20	000	0.2000	cemptro	cempto	
Workshe	d Yields	Objective	Function								
WORSH	eet				Sig	ma	Plant	t	Model	Delta	Contribution
		Temperat	ure Rise								
		R1B1 Tem	perature Rise [C]			1.000		16.70	19.25	2.553	6.520
		R1B2 Tem	perature Rise [C]			1.000		17.40	7.668	-9.732	94.70
		R1B3 Tem	perature Rise [C]			1.000		21.20	5.756	-15.44	238.5
		R2B1 Tem	perature Rise [C]			1.000		6.300	2.014	-4.286	i 18.37
		R2B2 Tem	perature Rise [C]			1.000		8.800	1.722	-7.078	50.10
		R2B3 Tem	perature Rise [C]			1.000		10.80	2.493	-8.307	69.01
		Recycle/C	Juench Flows								
		Reactor 1									-
		Lauren	n		_		فتسله	A+C	+ 0.4.F	4.000 040	0.040 00/

Figure 6.107 Calibration result sheet.

- *Step 14.* Check the results in "Analysis" sheet. Repeat step 14 to assign new lower and upper bounds to calibrate the model again if the model results are not good enough. We save the converged simulation as *Workshop 6.2-2* (Figure 6.111).
- Step 15. After obtaining satisfied result of "R1B1 Temperature Rise," uncheck the selections of "R1B1 Temperature Rise" and "Global activity – Reactor 1 – Bed 1." Repeat steps 12–14 for the other reaction bed temperature rises and corresponding global activity reaction activities one by one (R1B2, R1B3, R2B1, R2B2, and R2B3).

Design Feed D	ata Operation Operation Meas. Product Meas	. Calib. Control	Analysis		
Calib. Control		Included	Sigma	ПE	Reset
Parameters	Temperature Rise		0.9.1.0	4	
Obj Function	R1B1 Temperature Rise [C]	N.	1.000	m	
	R1B2 Temperature Rise [C]	-	1.000		
	R1B3 Temperature Rise [C]		1.000		
	R2B1 Temperature Rise [C]		1.000	-	
	R2B2 Temperature Rise [C]		1.000	-	
	R2B3 Temperature Rise [C]		1.000		
	Recycle/Quench Flows				
	Reactor 1				
	Bed 1 [STD_m3/h]		720.0		
	Bed 2 [STD_m3/h]		720.0		
	Bed 3 [STD_m3/h]		720.0		
	Reactor 2				
	Bed 1 [STD_m3/h]		720.0		
	Bed 2 [STD_m3/h]		720.0		
	Bed 3 [STD_m3/h]		720.0		
	Purge gas flow - Loop 1 [STD_m3/h]		36.00		
	H2makeup 1 rate - Loop 1 [STD_m3/h]		36.00		
	H2 Consumption [STD_m3/m3]		1.000		
	Product Flow and Properties				
	Naphtha C6-430F Vol Flow [m3/h]		1.000	*	

Figure 6.108 Define objective function (first bed).

Design Feed [Data Operation Operation Meas. Prod	luct Meas. Cali	b. Control Analy	/sis		
Calib. Control		Included	Initial Value	Lower Bound	Upper Bound	
Parameters Obj Function	Global Activity	included	million volue	concroound	opper bound	
	Reactor 1 - Bed 1	ঘ	0,2000	0,1500	0.2500	m
	Reactor 1 - Bed 2	-	0.2000	<empty></empty>	<empty></empty>	
	Reactor 1 - Bed 3		0.2000	<empty></empty>	<empty></empty>	E
	Reactor 2 - Bed 1		0.2000	<empty></empty>	<empty></empty>	
	Reactor 2 - Bed 2		0.2000	<empty></empty>	<empty></empty>	- 42
	Reactor 2 - Bed 3		0.2000	<empty></empty>	<empty></empty>	
	Overall HDS Activity			10.00	10476	
	Treating bed		9.761e-002	<empty></empty>	<empty></empty>	
	Treating bed to Cracking bed ratio		0.6336	<empty></empty>	<empty></empty>	
	430- HDS Activity					
	Treating bed		1.000	<empty></empty>	<empty></empty>	
	Treating bed to Cracking bed ratio		1.000	<empty></empty>	<empty></empty>	
	430- 950 HDS Activity					
	Treating bed		0.7581	<empty></empty>	<empty></empty>	
	Treating bed to Cracking bed ratio		1.000	<empty></empty>	<empty></empty>	
	950+ HDS Activity					
	Treating bed		1.000	<empty></empty>	<empty></empty>	
	Treating bed to Cracking bed ratio		1.000	<empty></empty>	<empty></empty>	-
	Update Initial Value					

Figure 6.109 Select tuning activity factor (first global activity) before running the calibration.

Streen Analysis Added Analysis Added Analysis Data Tables Strip Charts Data Fits Cbj Function Construction C	ata Operation Operation Meas. Pro	duct Meas. Cal	ib. Control Analy	sis			
Co Streams	Calib. Control		Included	Initial Value	Lower Bound	Upper Bound	
Stream Analysis		Global Activity	included	mittai vaide	Lower bound	opper bound	
Model Analysis	Obj Function	Reactor 1 - Bed 1	N	0.1420	0.1250	0.2500	
Data Tables	tt Design Obj Function alysis es ts	Reactor 1 - Bed 2		0.2000	<empty></empty>	<empty></empty>	
Strip Charts		Reactor 1 - Bed 3		0.2000	<empty></empty>	<empty></empty>	-
		Reactor 2 - Bed 1		0.2000	<empty></empty>	<empty></empty>	
Case Studies		Reactor 2 - Bed 2		0.2000	<empty></empty>	<empty></empty>	-
		Reactor 2 - Bed 3		0.2000	<empty></empty>	<empty></empty>	
		Overall HDS Activity					
		Treating bed		9.761e-002	<empty></empty>	<empty></empty>	
		Treating bed to Cracking bed ratio		0.6336	<empty></empty>	<empty></empty>	
		430- HDS Activity					
		Treating bed		1.000	<empty></empty>	<empty></empty>	
		Treating bed to Cracking bed ratio		1.000	<empty></empty>	<empty></empty>	
		430- 950 HDS Activity					
		Treating bed		0.7581	<empty></empty>	<empty></empty>	
		Treating bed to Cracking bed ratio		1.000	<empty></empty>	<empty></empty>	
		950+ HDS Activity					
		Treating bed		1.000	<empty></empty>	<empty></empty>	
a:	Treating	Treating bed to Cracking bed ratio		1.000	<empty></empty>	<empty></empty>	*
Properties		Vpdate Initial Value					

Figure 6.110 Converged tuning activity factor (first global activity) after running the calibration.

Design Feed Data	Operation	Operation Meas.	Product Meas.	Calib. C	ontrol	Analysis				
Analysis	Save fo	or Simulation	Expor	t	C	alibration Fact	ors Library	Re-initial	lize	
Calib Summary Mass Balance	Calibration	n Factors			Tamanta					
Feed Blend			Incl	ude Star	ting Valu	Final Value	Lower Bound	Upper Bounc		
Product Yields	Global Ac	tivity								
Product Properties	Reactor 1	- Bed 1	F	7	0.2000	0.1420	0.1250	0.2500		
Reactor	Reactor 1	- Bed 2	Г	1	0.2000	0.2000	<empty></empty>	<empty></empty>		
Hydrogen System	Reactor 1	- Bed 3	Г	1	0.2000	0.2000	<empty></empty>	<empty></empty>		
Fractionator	Reactor 2	- Bed 1	E	1	0.2000	0.2000	<empty></empty>	<empty></empty>		
Hydrogen Balance Extended Yields	Reactor 2	- Red 2	F	1	0.2000	0.2000	commun	cemotics		
Worksheet	Objective I	Function								
WORKSHEEL				Sigma	DI	ant	Model	Delta	Contribu	tion
	Temperat	ture Rise	1							
		perature Rise (C)			1.000	16.70	16.70	3.052e-006	9.318	le-012
	R1B2 Tem	perature Rise [C]			1.000	17.40	9.260	-8.140		
	R1B3 Tem	perature Rise (C)			1.000	21.20	6.066	-15.13		
	R2B1 Tem	perature Rise [C]			1.000	6.300	2.074	-4.226		
		perature Rise [C]	_		1.000	8.800	1.761			_
	R2B3 Tem	perature Rise [C]			1.000	10.80	2.540	-8.260		
	Recycle/C	Juench Flows								
	Reactor 1									
	La									

Figure 6.111 Excellent calibration result of temperature rise (first bed).

- Step 16. In most cases, the reactor temperature profiles obtained from step 15 will show similar trend as plant measurements rather than perfect agreement. To make model's prediction on reactor temperature profiles match plant measurements well, we select all of the "Temperature Rise" variables as objective functions and assign new initial values and lower and upper bounds to all of the "global reaction activities" (Figures 6.112–6.115).
- *Step 17*. Repeat step 16 until model's predictions on reactor temperature profiles agree well with plant measurements (Figures 6.116 and 6.117).

Design Feed [Data Operation Operation Meas. Product Me	eas. Calib. Control	Analysis			
Calib. Control		Included	Sigma		Reset	
Parameters	Temperature Rise	Included	Jigitia			
Obj Function	R1B1 Temperature Rise [C]	<u>ସ</u>	1.000			
	R1B2 Temperature Rise [C]	ম	1.000			
	R1B3 Temperature Rise [C]	2	1.000			
		N	1.000	=		
		2	1.000			
Ļ		N	1.000			
L			10000			
	Riss Temperature Rise [C] R2B2 Temperature Rise [C] R2B3 Temperature Rise [C] Recycle/Quench Rise Reactor 1 Bed 1 [STD_m3/h] Bed 2 [STD_m3/h] Bed 3 [STD_m3/h]					
	Bed 1 [STD_m3/h]		720.0			
	Bed 2 [STD_m3/h]		720.0			
	Bed 3 (STD_m3/h)		720.0			
	Reactor 2					
	Bed 1 [STD_m3/h]		720.0			
	Bed 2 [STD_m3/h]		720.0			
	Bed 3 [STD_m3/h]		720.0			
	Purge gas flow - Loop 1 [STD_m3/h]		36.00			
	H2makeup 1 rate - Loop 1 [STD_m3/h]		36.00			
	H2 Consumption [STD_m3/m3]		1.000			
	Product Flow and Properties			12		

Figure 6.112 Define objective function (all beds).

Design	Feed D	ata	Operation	Operation Meas.	Product Meas.	Calib. Contro	Analy	sis	
Calib. C	ontrol			2	Include	d Initial	Value	Lower Bound	Upper Bound
Parame	ters	GI	obal Activity	,	merude	a minadi	value	cower bound	opper bound
Obj Fun	ction		actor 1 - Bec		N		0.1000	0.1500	0.5000
			actor 1 - Bec		V		0.1000	0.1500	0.5000
				(Contraction of the Contraction	V		0.5000	0.1500	1,200
	Reactor 2 - Reactor 2 - Overall HD Treating b 430 - HDS Treating b 430 - 950 Treating b 430 - 950 Treating b Treating b Treating b Treating b Treating b Treating b				V		0.5000	0.1500	1.200
		Re	actor 2 - Bec	12	V		1,500	0,1500	2.000
		Re	actor 2 - Bed	13	V		1.500	0.1500	2.000
		Overall HDS Activity							
		Tr	reating bed			9.7	61e-002	<empty></empty>	<empty></empty>
		Treating bed to Cracking bed ratio					0.6336	<empty></empty>	<empty></empty>
		43	0- HDS Acti	vity					
		Tr	reating bed				1.000	<empty></empty>	<empty></empty>
		Tr	reating bed to	o Cracking bed ratio			1.000	<empty></empty>	<empty></empty>
		43	0- 950 HDS	Activity					
		Tr	reating bed				0.7581	<empty></empty>	<empty></empty>
		Tr	reating bed to	o Cracking bed ratio			1.000	<empty></empty>	<empty></empty>
		95	0+ HDS Act	ivity					
		reating bed				1.000	<empty></empty>	<empty></empty>	
		Reactor 1 - Bed 3 Reactor 2 - Bed 1 Reactor 2 - Bed 2 Reactor 2 - Bed 3 Overall HDS Activity Treating bed			1.000	<empty></empty>	<empty></empty>		

- *Step 18.* Even though the reactor temperature profiles from the model agree well with plant measurements, model's prediction on product yields still significantly deviates from plant data (see Figure 6.118). Save the simulation file as *Workshop 6.2-3.hsc* and then resave the file as *Workshop 6.2-4.hsc* before continuing with step 19.
- Step 19. Select the following objective functions and reaction activities to calibrate the model on temperature rise and on recycle/quench flows (by

Design Feed Data	Operation Operation Meas. Produ	ct Meas. Ca	alib. Control	Analysis			
Analysis	Save for Simulation	Export		alibration Fac	tors Library	Re-initial	ize
Calib Summary Mass Balance	Calibration Factors						
Feed Blend		Include	Starting Val	Final Value	Lower Bound	Upper Bounc	
Product Yields	Reactor 1 - Bed 1	V	0.1000	0.1500	0.1500	0.5000	4
Product Properties	Reactor 1 - Bed 2		0.1000	0.4782	0.1500	0.5000	C3
Reactor Hydrogen System Fractionator Hydrogen Balance Extended Yields Worksheet	Reactor 1 - Bed 3	V	0.5000	1.200	0.1500	1.200	
	Reactor 2 - Bed 1	V	0.5000	0.8137	0.1500	1.200	
	Reactor 2 - Bed 2	2	1.500	1.402	0.1500	2.000	1.00
	Reactor 2 - Red 3		1.500	1.467	0 1500	2 000	
	Objective Function						
		Sign	na P	lant	Model	Delta	Contribution
	Temperature Rise						
	R1B1 Temperature Rise [C]		1.000	16.70	14.95	-1.752	3.069
	R1B2 Temperature Rise [C]		1.000	17.40	14.87	-2.526	6.382
	R1B3 Temperature Rise [C]		1.000	21.20	17.67	-3.531	12.47
	R2B1 Temperature Rise [C]		1.000	6.300	5.409	-0.8911	0.7940
	R2B2 Temperature Rise [C]		1.000	8.800	7.926	-0.8745	0.7647
	R2B3 Temperature Rise [C]		1.000	10.80	9.859	-0.9414	0.8862
	Recycle/Quench Flows						
	Reactor 1						

Figure 6.114 Calibration results corresponding to the parameters of Figure 6.113 – further tuning of R1B1, R1B2, and R1B3 temperature rises suggested.

Design Feed D	Data Operation Operation Meas. Proc	duct Meas. Cal	ib. Control Analy	sis	
Calib. Control		Included	Initial Value	Lower Bound	Upper Bound
Parameters	Global Activity	Included	initial value	Lower Bound	opper bound
Obj Function	Reactor 1 - Bed 1	4	0.1000	0.1500	0.5000
	Reactor 1 - Bed 2	V	1.000	0.1500	2.000
	Reactor 1 - Bed 3	V	1.000	0.1500	2.000
	Reactor 2 - Bed 1	1	0.8137	0.1500	1.500
	Reactor 2 - Bed 2	1	1.402	0.1500	2.000
	Reactor 2 - Bed 3	V	1.467	0.1500	2.000
	Overall HDS Activity				
	Treating bed		9.761e-002	<empty></empty>	<empty></empty>
	Treating bed to Cracking bed ratio		0.6336	<empty></empty>	<empty></empty>
	430- HDS Activity				
	Treating bed		1.000	<empty></empty>	<empty></empty>
	Treating bed to Cracking bed ratio		1.000	<empty></empty>	<empty></empty>
	430- 950 HDS Activity				
	Treating bed		0.7581	<empty></empty>	<empty></empty>
	Treating bed to Cracking bed ratio		1.000	<empty></empty>	<empty></empty>
	950+ HDS Activity				
	Treating bed		1.000	<empty></empty>	<empty></empty>
	Treating bed to Cracking bed ratio		1.000	<empty></empty>	<empty></empty>

Figure 6.115 Calibration parameter changes from those in Figure 6.113.

clicking the button of "run calib") (see Figures 6.119–6.121). Repeat this step until the model matches plant measurements on reactor temperature profiles and product yields.

Figure 6.122 shows the results of calibrated tuning activity factors.

Design Feed Data	Operation Operation Meas.	Product N	Aeas. Ca	lib. Control	Analysis			
Analysis	Save for Simulation	1	Export		alibration Fact	ors Library	Re-initial	ize
Calib Summary Mass Balance	Calibration Factors							
Feed Blend			Include	Starting Val	Final Value	Lower Bound	Upper Bounc	
Product Yields	Reactor 1 - Bed 1		R	0.1000	0.2125	0.1500	0.5000	
Product Properties	Reactor 1 - Bed 2		V	1.000	0.7626	0.1500	2.000	
Reactor	Reactor 1 - Bed 3		2	1.000	2.000	0.1500	2.000	
Hydrogen System	Reactor 2 - Bed 1		2	0.8137	0.9462	0.1500	1.500	
Fractionator	Reactor 2 - Bed 2		2	1.402	1.838	0.1500	2.000	
lydrogen Balance xtended Yields	Reactor 2 + Red 3			1.467	2.000	0.1500	2.000	*
Worksheet	Objective Function							Sile and the second second
worksheet			Sign	na P	lant	Model	Delta	Contribution
	Temperature Rise							
	R1B1 Temperature Rise [C]			1.000	16.70	16.38	-0.3210	0.1030
	R1B2 Temperature Rise [C]			1.000	17.40	17.09	-0.3094	9.575e-002
	R1B3 Temperature Rise [C]			1.000	21.20	20.83	-0.3704	0.1372
	R2B1 Temperature Rise [C]			1.000	6.300	6.075	-0.2253	5.074e-002
	R2B2 Temperature Rise [C]			1.000	8.800	8.577	-0.2225	4.952e-002
	R2B3 Temperature Rise [C]			1.000	10.80	10.39	-0.4094	0.1676
	Recycle/Quench Flows							
	Reactor 1		_					

Figure 6.116 Calibration result corresponding to the parameters of Figure 6.115 – increasing the upper bonds of R1B3 and R2B3 suggested.

Design Feed D	ata Operation Operation Meas. Prod	duct Meas. Cal	ib. Control Analy	sis	
Calib. Control		Included	Initial Value	Lower Bound	Upper Bound
Parameters	Global Activity	mendded	initial value	Lower bound	opper bound
Obj Function	Reactor 1 - Bed 1	2	0.2301	0.1500	0.5000
	Reactor 1 - Bed 2	V	0.8310	0.1500	2.000
	Reactor 1 - Bed 3	2	2,167	0.1500	4.000
	Reactor 2 - Bed 1	1	1.016	0.1500	1.500
	Reactor 2 - Bed 2	1	1.991	0.1500	2.000
	Reactor 2 - Bed 3	2	2.171	0.1500	4.000
	Overall HDS Activity				
	Treating bed		9.761e-002	<empty></empty>	<empty></empty>
	Treating bed to Cracking bed ratio		0.6336	<empty></empty>	<empty></empty>
	430- HDS Activity				
	Treating bed		1.000	<empty></empty>	<empty></empty>
	Treating bed to Cracking bed ratio		1.000	<empty></empty>	<empty></empty>
	430- 950 HDS Activity				
	Treating bed		0.7581	<empty></empty>	<empty></empty>
	Treating bed to Cracking bed ratio		1.000	<empty></empty>	<empty></empty>
	950+ HDS Activity				
	Treating bed		1.000	<empty></empty>	<empty></empty>
	Treating bed to Cracking bed ratio		1.000	<empty></empty>	<empty></empty>

Figure 6.117 Increase the upper bounds for R1B3 and R2B2 in Figure 6.115 to 4.0.

Step 20. In some cases, the model's predictions match most of the plant measurements except for one or two process variables. It is suggested not to run automatic calibration but manually reconcile the model that allows "creep" moving by small step in each run. For example, Figure 6.123 shows that the model only fails to predict the third bed temperature of first reactor (R1B3).

Design Feed Data	Operation Operation Meas. Product M	teas. Ca	lib. Contro	Analysis			
Analysis	Save for Simulation E	xport -		Calibration	Factors Library	Re-initial	ize
Calib Summary Mass Balance	Calibration Factors		7.6 57				_
Feed Blend			Starting \	alı Final Va	ue Lower Bound	d Upper Bounc	
Product Yields	Reactor 1 - Bed 1	P	0.2		0.150		
	Reactor 1 - Bed 2	বর	0.76		0.150		
Hydrogen System	Reactor 1 - Bed 3 Reactor 2 - Bed 1	직	0.94		.167 0.150		
Fractionator	Reactor 2 - Bed 1 Reactor 2 - Bed 2	N N			.016 0.150		
Hydrogen Balance	Reartry 2 - Red 3	D.			171 0.150		*
alib Summary ass Balance wed Blend oduct Vields oduct Properties sector ydrogen System actionator ydrogen Balance tended Vields	Objective Function						
worksneet	and the second se	Sigr	na	Plant	Model	Delta	Contribution
	Temperature Rise						
Construct Treas	R1B1 Temperature Rise [C] R1B2 Temperature Rise [C]		1.000		.70 16.7		
	R1B3 Temperature Rise [C]		1.000		.20 21.2		
	R2B1 Temperature Rise [C]		1.000		6.29		
	R2B2 Temperature Rise [C]		1.000	8.0	8.79	8 -1.615e-003	2.607e-006
	R2B3 Temperature Rise [C]		1.000	10	.80 10.8	0 -2.660e-003	7.074e-006
	Objective Function						
	C4 Yield [%]			1.00	2.45	2.80	0.35
	Sulfur in Bottom 700+F [ppmwt]	É.		10.00	11.91	-3.677e-009	-11.91
	Nitrogen in Bottom 700+F (ppm	wt]		10.00	0.5522	5.317e-002	-0.4991
	Sulfur in Distillate 430-700F [ppr	mwt]		10.00	18.62	-3.517e-011	-18.62
	Nitrogen in Distillate 430-700F [ppmwt]		10.00	0.3895	0.5398	0.1503
	Nitrogen in R1 Effluent [ppmwt]			10.00	444.9	5.465	-439.4
	Naphtha C6-430F Mass Flow [kg,	/h]		500.0	3.326e+004	3.073e+004	-2524
	Distillate 430-700F Mass Flow [k	g/h]		500.0	3.118e+004	1.690e+004	-1.429e+004
	Gas Oil 700-1000F Mass Flow [kg]/h]		500.0	2.265e+004	3.567e+004	1.302e+004
	Resid 1000F+ Mass Flow [kg/h]			500.0	0.0000	1516	1516

Figure 6.118 Improved calibration results for temperature rise correspond to parameters of Figure 6.117 and notable deviations between plant data and model predictions for naphtha, distillate, gas oil, and resid mass flows.

Jesign Feed D	ata Operation Operation Meas. Product Me	as. Calib. Control	Analysis		
Calib. Control		Included	Siama	Reset	
Parameters	Temperature Rise	included	Sigma		
Obj Function	R1B1 Temperature Rise [C]	ঘ	1.000	n l	
~~	R1B2 Temperature Rise [C]	J.	1.000		
	R1B3 Temperature Rise [C]	<u>च</u>	1.000		
	R2B1 Temperature Rise [C]	R	1.000		
	R2B2 Temperature Rise [C]	J	1.000	E	
	R2B3 Temperature Rise [C]	5	1.000		
	Recycle/Quench Flows				
	Reactor 1				
	Bed 1 [STD_m3/h]	V	720.0		
	Bed 2 [STD_m3/h]	N	720.0		
	Bed 3 [STD_m3/h]	N	720.0		
	Reactor 2				
	Bed 1 [STD_m3/h]	N	720.0		
	Bed 2 [STD_m3/h]	2	720.0		
	Bed 3 [STD_m3/h]	N	720.0		
	Purge gas flow - Loop 1 [STD_m3/h]	N	36.00		
	H2makeup 1 rate - Loop 1 [STD_m3/h]	A	36.00		
	H2 Consumption [STD_m3/m3]	N	1.000		
L	Product Flow and Properties				

Figure 6.119 Define objective function (all beds).

Step 21. To reconcile the model manually, assign a new value to the related reaction activity. In this case, the predicted temperature is lower than plant measurement and a bigger value of the related reaction reactivity is expected. Thus, we change "Global Activity Reactor 1 – Bed 3" from the current value of 1.944 to 2.0 and click the button "pre-calib" to run the model with current values of reaction activities (Figure 6.124).

Design Feed D	Data Operation Operation Meas. Product Meas.	Calib. Control	Analysis		
Calib. Control		Included	Sigma		Reset
Parameters	Gas Oil 700-1000F Vol Flow [m3/h]		1.000		
Obj Function	Resid 1000F+ Vol Flow [m3/h]	Ē	1.000		
	C1C2 Yield [%]	Ē	1.000	-	
	C3 Yield [%]		1.000	-	
	C4 Yield [%]		1.000		
	Sulfur In Bottom 700+F [ppmwt]		10.00		
	Nitrogen In Bottom 700+F [ppmwt]		10.00		
	Sulfur In Distillate 430-700F (ppmwt)		10.00		
	Nitrogen In Distillate 430-700F (ppmwt)		10.00		
	Nitrogen In R1 Effluent [ppmwt]		10.00		
r	Naphtha C6-430F Mass Flow [kg/h]	V	500.0		
	Distillate 430-700F Mass Flow [kg/h]	R	500.0		
	Gas Oil 700-1000F Mass Flow [kg/h]	N	500.0		
	Resid 1000F + Mass Flow [kg/h]	-	500.0		
	Extended Product Flows			-	
	Light Naphtha C6-260F Mass Flow [kg/h]		500.0		
	Heavy Naphtha 260-430F Mass Flow [kg/h]		500.0		
	Light Distillate 430-580F Mass Flow [kg/h]		500.0		
	Heavy Distillate 580-700F Mass Flow [kg/h]		500.0		
	Bottoms 700-1000F Mass Flow [kg/h]		500.0		
	Resid 1000F+ Mass Flow [kg/h]		500.0	-	
	Light Nanhtha C6-260E Vol Elow [m3/h]		1.000		

Figure 6.120 Define objective function (all mass yields except for resid).

Design Feed D	Data Operation Operation Meas	s. Product Meas. C	alib. Control Analy	/sis		
Calib. Control		Included	Initial Value	Lower Bound	Upper Bound	
Parameters	Global Activity	nciudea	millai value	Lower Bound	opper bound	
Obj Function	Reactor 1 - Bed 1	ঘ	0.2301	0,1500	0.5000	
	Reactor 1 - Bed 2	<u>र</u>	0.8310			
	Reactor 1 - Bed 3	<u>ज</u>	2.167			
_	Reactor 2 - Bed 1	<u>र</u>	1.016			
	Reactor 2 - Bed 2	<u>با</u>	1.991			
	Reactor 2 - Bed 3	N.	2.171	0.1500		
	Overall HDS Activity	6.1				
	Treating bed	2	6.500e-002	6.500e-002	0.1220	
	Treating bed to Cracking bed ra		0.6336	<empty></empty>	<empty></empty>	
	430- HDS Activity					
	Treating bed	2	0.8000	0.8000	2.000	
	Treating bed to Cracking bed ra	atio 🔽	1.000	<empty></empty>	<empty></empty>	
	430- 950 HDS Activity					
	Treating bed	V	0.8000	0.8000	2.000	
	Treating bed to Cracking bed ra	atio 🗖	1.000	<empty></empty>	<empty></empty>	
	950+ HDS Activity					
	Treating bed	v	0.9000	0.9000	2.000	
	Treating bed to Cracking bed ra	atio 🗖	1.000	<empty></empty>	<empty></empty>	
	Overall HDN Activity					
	Treating bed	V	2.000	0.2500	2.000	
	Treating bed to Cracking bed ra	atio 🔽	0.8342	<empty></empty>	<empty></empty>	
	430- HDN Activity					
	Treating bed	V	6.500e-002	6.500e-002	0.1220	
	Treating bed to Cracking bed ra	atio 🗖	1.000	<empty></empty>	<empty></empty>	

Figure 6.121 Select tuning activity factor (all global activities and all cracking activities on cracking beds).

Design Feed D	Data Operation Operation Meas. Pr	oduct Meas.	Calib. Control	Analy	sis		
Calib. Control		Included	Initial Valu	Je	Lower Bound	Upper Bound	
Parameters	Global Activity						
Obj Function	Reactor 1 - Bed 1	2	0.1	500	0.1500	0.5000	- 11
	Reactor 1 - Bed 2	V	0.1	500	0.1500	2.000	
	Reactor 1 - Bed 3	2	0.1	961	0.1500	4.000	_
	Reactor 2 - Bed 1	2	0.1	500	0.1500	1.500	
	Reactor 2 - Bed 2	2	0.1	500	0.1500	2.000	E
	Reactor 2 - Bed 3	2	0.5	652	0.1500	4.000	
	Overall HDS Activity						
	Treating bed	R	6.500e	002	6.500e-002	0.1220	
	Treating bed to Cracking bed ratio		0.6	336	<empty></empty>	<empty></empty>	- 13
	430- HDS Activity						
	Treating bed	V	2	.000	0.8000	2.000	
	Treating bed to Cracking bed ratio		1	.000	<empty></empty>	<empty></empty>	
	430- 950 HDS Activity						
	Treating bed		0.8	8000	0.8000	2.000	
	Treating bed to Cracking bed ratio		1	.000	<empty></empty>	<empty></empty>	
	950+ HDS Activity						
	Treating bed	5	0.9	0000	0.9000	2.000	
	Treating bed to Cracking bed ratio		1	.000	<empty></empty>	<empty></empty>	
	Overall HDN Activity						
	Treating bed	-	0.9	560	0.2500	2.000	
	Treating bed to Cracking bed ratio		0.8	342	<empty></empty>	<empty></empty>	
	430- HDN Activity						
	Treating bed	V	0.1	220	6.500e-002	0.1220	
	Treating bed to Cracking bed ratio		1	.000	<empty></empty>	<empty></empty>	-
	Update Initial Value						

Figure 6.122 Results of calibrated activity factors.

Design Feed Data	Operation Operation Meas. Prod	uct Meas. Ca	lib. Control	Analysis				
Analysis	Save for Simulation	Export	0	alibration Fact	ors Library	Re-initial	ize	
Calib Summary Mass Balance	Calibration Factors							
Feed Blend		Include	Starting Valu	Final Value	Lower Bounc	Upper Bounc		
Product Yields	Global Activity		-					
Product Properties Reactor	Reactor 1 - Bed 1	R	0.2154	0.2154	0.1250	0.2500		
Hydrogen System	Reactor 1 - Bed 2	N	0.6068	0.6068	0.2600	0.7000		
Fractionator	Reactor 1 - Bed 3	2	1.500	1.500	0.6000	1.500		
Hydrogen Balance	Reactor 2 - Bed 1	P	0.9507	0.9507	0.2500	1.300		
Extended Yields	Reactor 2 - Bed 2	4	1.672	1.672	0.5000	2.000	*	
Worksheet	Objective Function							
		Sign	na Pi	ant	Model	Delta	Contribution	-
	Temperature Rise R1B1 Temperature Rise [C]		1.000	16.70	15.09	-1.611	2.597	-
	R1B2 Temperature Rise [C]		1.000	17.40	15.86		2.360	-
	R1B3 Temperature Rise [C]	_	1.000	21.20	19.10		4.412	
L	R2B1 Temperature Rise [C]		1.000	6,300	5,403	0.1027	1.055e-002	
	R2B2 Temperature Rise [C]		1.000	8.800	8.649	-0.1509	2.276e-002	
	R2B3 Temperature Rise [C]		1.000	10.80	9.879	-0.9209	0.8481	
	Recycle/Quench Flows Reactor 1							
	Bed 1 [STD_m3/h]		720.0	1.315e+005	1.315e+005			

Figure 6.123 Calibration results indicating a significant deviation of R1B3 temperature rise.

Calib. Control Included Initial Value Lower Bound Upper Bound Parameters Obj Function Global Activity		1.	at concerning and and	Linucoun P	about the second s			
Global Activity Image: Constraint of the constrend of the constraint of the constraint of the cons			Included	Initial Value	Lower Bound	Upper Bound		
Reactor 1 - Bed 1 IP 0.1405 0.1250 0.2500 Reactor 1 - Bed 2 IP 0.7000 0.2600 0.7000 Reactor 1 - Bed 3 IP 2.000 1.800 2.200 Reactor 1 - Bed 3 IP 0.0339 0.2500 1.300 Reactor 2 - Bed 3 IP 1.617 0.5000 2.000 Reactor 2 - Bed 3 IP 1.697 0.2500 2.000 Overall HDS Activity Treating bed IP 0.1220 6.500e-002 0.1220 Treating bed to Cracking bed ratio 0.6336 <empty> <empty> 430-HDS Activity Treating bed to Cracking bed ratio 1.000 <empty> Treating bed to Cracking bed ratio 1.000 <empty> <empty> 430-950 HDS Activity Treating bed to Cracking bed ratio 1.000 <empty> Treating bed to Cracking bed ratio I 0.05360 0.0000 Treating bed to Cracking bed ratio I 0.000 <empty> <empty> Treating bed to Cracking bed ratio I 0.000 <empty> <empty></empty></empty></empty></empty></empty></empty></empty></empty></empty></empty>		Global Activity						
Reactor 1 - Bed 3 Image: Constraint of the sector 2 - Bed 1 Image: Constraint of the sector 2 - Bed 2 Image: Constraint of the sector 2 - Bed 2 Image: Constraint of the sector 2 - Bed 2 Image: Constraint of the sector 2 - Bed 3 Image: Constraint of the sector 2 - Bed 3 Image: Constraint of the sector 2 - Bed 3 Image: Constraint of the sector 2 - Bed 3 Image: Constraint of the sector 2 - Bed 3 Image: Constraint of the sector 2 - Bed 3 Image: Constraint of the sector 2 - Bed 3 Image: Constraint of the sector 2 - Bed 3 Image: Constraint of the sector 3 - Bed 3 Image: Consector 3 - Bed 3	Obj Function	Reactor 1 - Bed 1	V	0.1405	0.1250	0.2500		
Reactor 2- Bed 1 R 0.2539 0.2500 1.300 Reactor 2- Bed 1 R 0.0233 0.2500 1.300 Reactor 2- Bed 2 F 1.617 0.5000 2.000 Overall HOS Activity		Reactor 1 - Bed 2	V	0.7000	0.2600	0.7000		
Reactor 2 - Bed 2 ▼ 1,617 0.5000 2.000 Reactor 2 - Bed 3 ▼ 1,697 0.2500 2.000 Overall HDS Activity -	f	Reactor 1 - Bed 3	V	2.000	1.800	2.200	E	
Resctor 2 - Bed 3 Image: Constraint of the sector 2 - Bed 3 Image: Constraint of the sector 2 - Bed 3 Image: Constraint of the sector 2 - Bed 3	- F	Reactor 2 - Bed 1	1	0.8539	0.2500	1.300		
Overall HDS Activity Control Treating bed Image: Control of C		Reactor 2 - Bed 2		1.617	0.5000	2.000		
Treating bed Image: Constraint of the system Image: Constrainton system Image: Constan system <t< td=""><td></td><td>Reactor 2 - Bed 3</td><td>R</td><td>1.697</td><td>0.2500</td><td>2.000</td><td></td><td></td></t<>		Reactor 2 - Bed 3	R	1.697	0.2500	2.000		
Treating bed to Cracking bed ratio 0.6336 <empty> <empty> 430- HDS Activity Treating bed to Cracking bed ratio 0.9936 0.8000 2.000 Treating bed to Cracking bed ratio 1.000 <empty> 430- 950 HDS Activity Treating bed to Cracking bed ratio 0.9580 0.8000 Treating bed to Cracking bed ratio Treating bed to Cracking bed ratio 1.000 <empty> Treating bed to Cracking bed ratio 1.000 <empty></empty></empty></empty></empty></empty>		Overall HDS Activity						
430- HDS Activity Image: Constraint of the second secon		Treating bed	R	0.1220	6.500e-002	0.1220		
Treating bed Image: Constraint of the state of the stat		Treating bed to Cracking bed ratio		0.6336	<empty></empty>	<empty></empty>		
Treating bed to Cracking bed ratio □ 1.000 <empty> 430-950 HDS Activity - Treating bed I 0.9580 0.8000 Treating bed to Cracking bed ratio □ 1.000 <empty></empty></empty>		430- HDS Activity						
430-950 HDS Activity		Treating bed		0.9936	0.8000	2.000		
Treating bed Image: Constraint of the second s		Treating bed to Cracking bed ratio		1.000	<empty></empty>	<empty></empty>		
Treating bed to Cracking bed ratio		430- 950 HDS Activity						
		Treating bed	- North	0.9580	0.8000	2.000		
950+ HDS Activity		Treating bed to Cracking bed ratio		1.000	<empty></empty>	<empty></empty>		
		950+ HDS Activity						
Treating bed 🗹 1.350 0.9000 2.000		Treating bed		1.350	0.9000	2.000		
Treating bed to Cracking bed ratio		Treating bed to Cracking bed ratio		1.000	<empty></empty>	<empty></empty>	-	

Figure 6.124 Manual calibration of R1B3 temperature rise tuning factor.

Design Feed Data	Operation Operation Meas. Produ	ct Meas. Ca	lib. Control	Analysis				
Analysis	Save for Simulation	Export	C	alibration Fact	ors Library	Re-initial	ize	
Calib Summary Mass Balance	Calibration Factors							
Feed Blend		Include	Starting Valu	Final Value	Lower Bounc	Upper Bounc		
Product Yields	Global Activity							
Product Properties	Reactor 1 - Bed 1	R	0.1405	0.1405	0.1250	0.2500		
Reactor	Reactor 1 - Bed 2	R	0.7000	0.7000	0.2600	0.7000		
Hydrogen System Fractionator	Reactor 1 - Bed 3	R	2,000	2.000	1.800	2.200		
Hydrogen Balance	Reactor 2 - Bed 1		0.8539	0.8539	0.2500	1.300		
Extended Yields	Reactor 2 - Bed 2		1.617	1.617	0.5000	2.000	*	
Worksheet	Objective Function							
		Sign	na Pl	lant	Model	Delta	Contribution	
	Temperature Rise							
	R1B1 Temperature Rise [C]		1.000	16.70	16.30	-0.4009	0.1607	1
	R1B2 Temperature Rise [C]		1.000	17.40	16.99	-0.4087	0.1670	
	R183 Temperature Rise [C]		1.000	21.20	21.82	0.6162	0.3797	
	R2B1 Temperature Rise [C]		1.000	6.300	5.632	-0.6683	0.44 7	
	R2B2 Temperature Rise [C]		1.000	8.800	7.849	-0.9510	0.9044	
	R2B3 Temperature Rise [C]		1.000	10.80	9.144	-1.656	2.741	
	Recycle/Quench Flows							
	Reactor 1							
	Bed 1 (STD m3/h)		720.0	1.315e+005	1.315e+005	2.328		
	0.13/670.343		730.0	4740	3636	2007		

Figure 6.125 Improved calibration results after manual calibration.

Step 22. By observing the results, the temperature of R1B3 is closer to the plant measurement. To obtain better result, it is necessary to repeat step 21 until the temperature profile is within the tolerance. Meanwhile, it is also important to watch out for all of the other objective process variables – other reaction bed temperatures and product yields. It may be necessary to repeat steps 16–21 if the model's predictions fail in other objective process variables during manual calibration (Figure 6.125).

Step 23. Figure 6.126 gives the calibration results in this workshop.

Step 24. After completing model calibration, click the button "push data to simulation" to export updated reaction activities into HCR simulation environment (Figure 6.127).

Design Feed Data	Operation Operation Meas. Prod	uct Meas. Ca	lib. Control	Analysis				
Analysis	Save for Simulation	Export	C	alibration Fact	ors Library	Re-initial	lize	
Calib Summary Mass Balance	Calibration Factors							
Feed Blend		Include	Starting Valu	Final Value	Lower Bounc	Upper Bounc		
Product Yields	Global Activity							
roduct Properties	Reactor 1 - Bed 1	M	0.1405	0.1405	0.1250	0.2500	- C3	
Reactor Hydrogen System	Reactor 1 - Bed 2	R	0.7000	0.7000	0.2600	0.7000		
ractionator	Reactor 1 - Bed 3	R	2.000	2.000	1.800	2.200		
lydrogen Balance	Reactor 2 - Bed 1	R	0.8539	0.8539	0.2500	1.300		
atended Yields	Reactor 2 - Bed 2	A	1.617	1.617	0.5000	2.000	*	
Vorksheet	Objective Function							
		Sign	na Pl	ant	Model	Delta	Contribution	
	Temperature Rise	5			and showing the	ingen on Arc	497.04	
	R1B1 Temperature Rise [C]		1.000	16.70	16.30	-0.4009	0.1607	
	R1B2 Temperature Rise [C]		1.000	17.40	16.99	-0.4087	0.1670	
	R1B3 Temperature Rise [C]		1.000	21.20	21.82	0.6162	0.3797	-
	R2B1 Temperature Rise [C]		1.000	6.300	5.632			
	R2B2 Temperature Rise [C]		1.000	8.800	7.849	-0.9510	0.9044	
	R2B3 Temperature Rise [C]		1.000	10.80	9.144	-1.656	2.741	
	Recycle/Quench Flows							
	Reactor 1							
	Bed 1 [STD_m3/h]		720.0	1.315e+005	1.315e+005			
	Bed 2 [STD_m3/h]		720.0	4740	7626			
	Bed 3 [STD_m3/h]		720.0	1.832e+004	2.019e+004	1866		
	Reactor 2		730.0	4 772 004	4 772 004	0.0000		_
-	Bed 1 [STD m3/h]		720.0	1.773e+004	1.773e+004	0.0000		

Figure 6.126 Calibration results of this workshop.

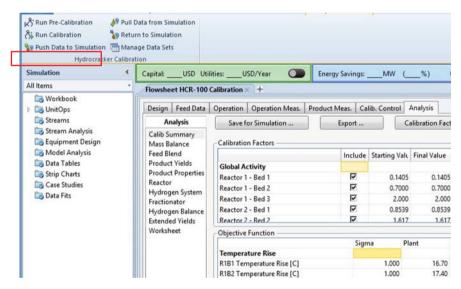


Figure 6.127 Export calibrated activity factors and results into simulation.

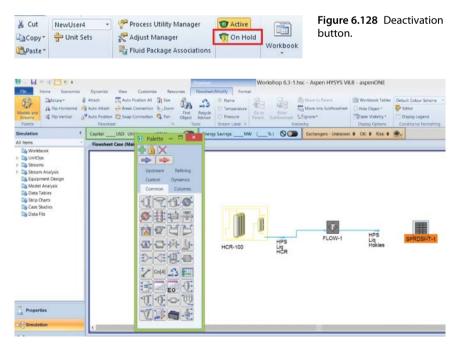
6.11 Workshop 6.3 – Case Studies

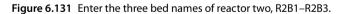
One of HCR model applications is to investigate different operating scenarios and help answering what-if question by running case studies. This workshop demonstrates how to use developed Aspen HYSYS Petroleum Refining HCR model to investigate the effect of WART of HCR reactor and feed flow rate on product distribution. In real operation, the only way to tune WART is to change the inlet temperature of reaction bed. In this workshop, we will change inlet temperatures of the three HCR beds at the same time to perform case study. We begin with simulation file, *Workshop 6.3-starting.hsc.*

- *Step 1*. Hold the model to avoid automatic calculation while defining variables for the simulation experiment (Figure 6.128).
- Step 2. We need to add a "spreadsheet" in Aspen HYSYS Petroleum Refining to make tuning three inlet temperatures possible. Click "Model Palette (F4)" \rightarrow "add spreadsheet" (Figure 6.129).

Open the reactor model and pay attention to the inlet temperatures of three beds of reactor 2, R2B1, R2B2, and R2B3 (see Figure 6.130).

- *Step 3.* Open the spreadsheet tab and input current values of the three HCR beds' inlet temperatures. In cells A1–A3, enter the three reactor bed names, R2B1, R2B2, and R2B3 (see Figure 6.131). Export the three temperatures to the spreadsheet (see Figures 6.131–6.133).
- *Step 4.* Add a cell called "temp increment," which will be used as an operator to allow a step change of inlet temperature during the simulation experiment. Specify an initial increment value of 0 °C (Figure 6.134).
- *Step 5*. Enter "Feed Mass Flow" to cell D1 and send the current value of feed mass flow to cell E1 of the spreadsheet. Enter "Feed Increment" in cell D2, and enter an initial value of 0 kg/h in cell E2 (Figure 6.135).
- *Step 6*. Add equations to cell C1, C2, C3, and F1 to calculate the new process variables (inlet temperature of HCR bed and feed mass flow rate) while running case study: C1 = B1 + B4, C2 = B2 + B4, C3 = B3 + B4, F1 = E1 + E2 (Figure 6.136).




Figure 6.129 Add spreadsheet in Aspen HYSYS.

6.11 Workshop 6.3 – Case Studies 499

	Design Reactor Section	Fractionator Results		
	Reactor Section	Temperature		
	Feed		Reactor 1	Reactor 2
	Specification	Bed 1		
	Recycle Gas Loop	Inlet Temperature [C]	355.5	371.1
	Catalyst Deactivation	Outlet Temperature [C]	372.4	377.7
1	Solver Options	WABT [C]	367.8	375.5
	Solver Console	Bed 2		
	EO Variables Presolve Commands	Inlet Temperature [C]	365.3	307.
	Presolve Commands Postsolve Commands	Outlet Temperature [C]	383.0	376.
	Posisoive commanus	WABT [C]	377.1	373.4
HPS		Bed 3		
HCR-100 Lig HCR		Inlet Temperature [C]	365.7	
HCR		Outlet Temperature [C]	387.4	375.8
		WABT [C]	380.1	372.1
		WART [C]	376.6	373.4
		Delta T - Rise		
		Bed2 - Bed1 [C]	0.7886	2.634
		Bed3 - Bed2 [C]	3.929	1.809
		Properties/Conversion Nitrogen in R1 Liquid P Conversion, wt% [%]	roduct [ppmwt]	24.39 77.83
		and served to be the		11105

Figure 6.130 Inlet temperatures of three beds of reactor two.

			1	Norkshop (6.3-1.hsc - Asp	en HYSY	S V8,8 - asp	enONE			
cs Dynamics View Process Utifity Manager RAdjust Manager	Active Con Hold	Nesources	Model Summary	Compressor		Itquip	nent Design *	PPressure Relief & Depressuring			Search asper
Ruid Package Associations			Input	Surge	Optimizer	巡り			Spreadshe	et: SPRDSHI	et.
Cacital: USD U		sar 🕥 B	nerov Savinos MW	(%)	Andysis Exe	chang at an	neters Formul	spreadsheet	Calculation Order	User Variable	concern.
Fractionator Results				-		riab	le:			Angles in:	-
Temperature	Reactor 1 R	eactor 2									
Bed 1	NEBLUOI I N	could a									
Inlet Temperature (C)	355.5	371.1		1.1	SPRDSHT-1			8	C		0
Outlet Temperature [C]	372.4	377.7				-			e.		
WABT [C]	367.8	375.5					R281				
Bed 2				-			R2B2				
Inlet Temperature (C)	365.3	367.2		1			R283				
Outlet Temperature (C)	383.0	376.5									
WABT (C)	377.1	373.4		UU I	_	_					
Bed 3					-						
Inlet Temperature (C)	365.7	304.7			HPS Liq HCR						
Outlet Temperature (C)	387.4	375.8			HCR						
WABT [C]	380,1	372.1									
WART [C]	376.6	373.4									
Delta T - Rise											
Bed2 - Bed1 (C)	0.7885	2,634									
Bed3 - Bed2 ICI	3.929	1,809									

Capital USD Utilit	ties: USD/	Yest 🕥		MW (%)	Exchang	srameters	Formulas	Spreadsheet	Calculation Order	User Variables	Notes
H	ydrocracker	= HCR-100				_					Exportable []]	
Fractionator Results						_	riable:	1			Angles in:	
lemperature								-			sanasa si	
R	leactor 1	Reactor 2	1									
Bed 1												
inlet Temperature [C]	355.5	371.1			SPROSHT-	1	A		B	с		D
Outlet Temperature [C]	372,4	377	Select All	1			RZ					
WAST [C]	367,8	375	Copy	Ctrl+C			R2	81				
Bed 2			Paste	Otri+V			R2	82				
inlet Temperature [C]	365.3	367	Paste	Caley			R2	83				
Outlet Temperature (C)	383.0	376	Send To		Data Tables							
WAST [C]	377.1	373	JENTY									
Bed 3			Print Datasheet		Strip Charts							
Inlet Temperature [C]	365.7	364	Find In Flowsheet		Case Study	- 3						
Outlet Temperature (C)	387.4				Spread Shee	e - 1	Cn	eate New		1		
WABT [C]	380.1	372	Connections				- 1					
WART (C)	376.6	373					SP	RDSHT-1				
Delta T - Rise			Open Frame				Fn	r Transition @	TPL1			
Bed2 - Bed1 (C)	0.7886	2.634										
8ed3 - Bed2 (C)	3.929	1.809	1									

Figure 6.132 Right-click "send to" to export the R2B1, R2B2, and R2B3 temperatures of 371.1 °C, 367.2 °C, and 364.7 °C from the reactor input to cells B1, B2, and B3.

Hy	drocracker: HC	R-100						-					
Fractionator Results				Send To	Spread	Sheet O	ptions	×	Case Studes 35		Pressure Relief		
Temperature			Start	with cell:	83			0		puipment Design*	A Depressuring		
remperature					and the second second	1.12			Anatysis	8		Spreadsheet: 5	PRDSH
Bed 1	Reactor 1	Reactor 2	Note	e: This will	overwrite	cells.				stameters Formu	las Spreadsheet Cal	culation Order Us	er Variable
Inlet Temperature [C]	355.5	371.1		A	8	c	D		Dichang	2			
Outlet Temperature [C]	372.4	377.7	1	х	х							Epp	ortable 🛄
WABT ICI	367.8	375.5	2	х	x					nable:			iles in:
Bed 2			3	x	x					napie:		Ang	ies in
Inlet Temperature [C]	365.3	367.2	4						-				
Outlet Temperature (C)	383.0	376.5	2										
WABT (C)	377.1	373.4	5						SPRDSHT-1				
Bed 3			6						SPRUSHI-I	A	B	C	
Inlet Temperature [C]	365.7	364.7	7							R281	371.1 C		
Outlet Temperature (C)	387.4	375.8	8										
WABT (C)	380.1	372.1	g.							R2B2	367.2 C		
WART ICI	376.6	373.4	10							R283	364.7 C		
Delta T - Rise			10	10			-	- 1					
Bed2 - Bed1 (C)	0.7886	2.634		- 0	K	Cancel	1 ²⁰						
Bed3 - Bed2 [C]	3.929	1.809		_	and and a second se			_	UD9				

Figure 6.133 Send the reactor bed temperatures to the spreadsheet, cells B1–B3.

Summaries Energy Savings:MW (ge Mr Optimizer M Analysis %) Exchar	M FL ons Parameters Formul Cell		adsheet: SPRDSHT-1 culation Order User Vari
_ **		Variable:		Exportable Angles in:
	SPRDSHT-1	A 8281	B 371.1 C	c
	1	R282 R283	367.2 C 364.7 C	
	HPS Lig HCR	temperature increment	0.0000	

Figure 6.134 Add a temperature increment with an initial value of 0 °C.

		-100 -		B	с	D	E
lits				371.1 C		Feed mass flow	9.217e+004 kg/h
				367.2 C		Feed increment	1.000
		emperature	Pressure	364.7 C)	
Sector and a sector and a sector and a sector a				0.0000			
101.25343	92171.0	25.00	1.013				
		-					
		ume Flow Mass Flow [kg/h]	ume Flow Mass Flow emperature [kg/h] [C]	ume Flow Mass Flow Temperature Pressure (m3/h) [C] [Dar]	367.2 C ume Row Mass Row [kg/h] [C] [bar] 0.0000	Mass Flow Persenue 367.2 C ume Flow Mass Flow Persenue 364.7 C [kg/h] [C] [bar] 0.0000	J367.2 C Feed increment ume Flow Mass Flow emperature Pressure 364.7 C [kg/h] [C] [bar] 0.0000 0.0000

Figure 6.135 Export the feed flow into the spreadsheet.

				Spreadshee	000-00-00	estrete de			
Connections	Parameters	Formulas	Spreadshe	et Calculatio	on Order	User Variable	s Notes		
Current Ce Varia	ll ble Type:	Temperat	ture		•	Exportable			
C1	Variable:	R2B1 inle	t temperat	are		Angles in:	Rad	•	Edit Rows/Columns
= B1 +B4									
= B1 +B4	A		В	с		D		E	F
= B1 + B4	A	R2B1	B 371.1 C	C 371.1 C	Fe	D red mass flow	9.217e	E +004 kg/	
= B1 + B4	A						9.217e		h 9.217e+004 kg/h
1	A	R2B2	371.1 C	371.1 C		eed mass flow	9.217e	+004 kg/	h 9.217e+004 kg/h
1 2 3	A	R2B2 R2B3	371.1 C 367.2 C	371.1 C 367.2 C		eed mass flow	9.217e	+004 kg/	h 9.217e+004 kg/h

Figure 6.136 Add equations to allow the three reactor temperatures to be tuned at once.

- Step 7. In order to link the calculated cell results in the spreadsheet with our case studies later, we right-click on the selected cell and click "export formula result." We do this to export the calculated temperatures for beds 1–3 of reactor 2 (cells C1–C3 for R2B1, R2B2, and R2B3) and for feed mass flow rate (cell F1) [see Figures 6.125–6.127 (Figure 6.137)].
- *Step 8.* Select the inlet temperature of R2B1 to export the calculated temperature (Figures 6.138 and 6.139).

			Sp	readsheet	: SPRE	OSHT-1			
Connections	Parameters	Formulas	Spreadsheet	Calculation	Order	User Variables	Notes		
Current Ce Expor	ell rted To:	Reactor Se	ection			Exportable 🔽			
C1	Variable:	Inlet Temp	perature (Reaction	or 2-Bed 1)		Angles in:	Rad	•	Edit Rows/Columns
=B1+B4									
	A		В	с		D	E		F
1		R2B1	371.1	371-1-0		d Mass Flam	0 317-		9.217e+004 kg/h
2		R2B2	367.2	36.	Select	: All		04.0	
2 3		R2B2 R2B3	367.2 364.7	36. 36	Сору	All		Ctrl+C	
3	Temperature I	R2B3	100000			All		Ctrl+C Ctrl+V	
3 4	Temperature I	R2B3	364.7		Сору				
3	Temperature I	R2B3	364.7		Copy Paste Send	То	t	Ctrl+V	
3 4 5 6	Temperature I	R2B3	364.7		Copy Paste Send View	To Associated Objec	t	Ctrl+V	
4	Temperature I	R2B3	364.7		Copy Paste Send View	То	t	Ctrl+V	

Figure 6.137 Export formula results.

Flowsheet	Object	Variable		Variable Specifics	OK
Case (Main) HCR-100 (HCR-100)	HPS Lig HCR @HCR-10 Reactor Section @HCR-	Initial Point Inlet Temperature	-	Reactor 1 Reactor 2	Add
		Inlet Temperature K Factor Based on D2887 50% Poir Kinetic Lumps LHSV Line Search Algorithm Line Search Step Control			Object Filter All Streams UnitOps
		Line Search Step Control Iterations Maximum Iterations		More Specific	Logicals Utilities
		Measured Ca (Opt.) Measured Cn (opt) Measured Cn (opt) Minimum Iterations Malecular Weight Molecular Weight		Bed 2 Bed 3	ColumnOp Custom
	<	NDM Cn	*		

Figure 6.138 Export formula results for R2B1 inlet temperature.

Current Cell Exported To:	Reactor Secti			Exportable		(
F1 Variable:	Feed Mass Fl	ow (Feed-1)		Angles in:	Rad	Edit Rows/Columns	
	A B		c	D	E	F	
1	R2B1	371.1	371.1 C	Feed Mass Flow	9.217e+004	9.217e+004 kg/h	
	Select		rt for cell Fee	d Mass Flow (Fe	ed-1)		_ 🗆
Flowsheet	Object		Variable		Variab	le Specifics	ОК
Case (Main) HCR-100 (HCR-100)	HPS Liq HCR @HC Reactor Section @	HCR- Fee Fee Fee Fee Fin Fin Fin Fin Gai Gla H2	d - Distillation T, d - Feed Type d - Lead Type d - Location d Mass Flow d Pressure d Temperature d Volume Flow al Point el Collar bi Feed Volume el to Oll Ratio bal Activity Consumption Consumption, Ti	ro Scrubber	* Feed-1		Add Object Filter All Streams UnitOps Logicals Utilities ColumnOp Custom Custom

Figure 6.139 Export formula results for feed mass flow.

Step 9. Change the temperature increment to 7 °C and the feed mass flow increment to 2.3E4 kg/h (Figure 6.140).

Step 10. Activate case studies (Figure 6.141).

Step 11. We follow the procedure for case studies demonstrated in Figures 2.69–2.73, Section 2.10.3; and in Workshop 5.4, Section 5.17. Insert feed mass flow, spreadsheet cells B4 (temperature increment) and E2 (feed mass flow

Connect	ions Parameters I	Formulas	Spreadsheet	Calculation Order	User Variable	s Notes		
Curren]	Exportable []] Angles in:	Rad	Edit Rows/Columns	
	A		В	c		D	E	F
1	A R2B1		B 371.1	-	78.1 C Fi	D eed Mass Flow	E 9.217e+004	F 1.152e+005 kg/h
				37				F 1.152e+005 kg/H
2	R2B1	2	371.1	37		eed Mass Flow	9.217e+004	F 1.152e+005 kg/h
1 2 3 4 1	R2B1 R2B2	2	371.1 367.2	31 31 31	74.2 C F	eed Mass Flow	9.217e+004	F 1.152e+005 kg/ł

Figure 6.140 Exported formula results in spreadsheet.

4					Flowsh	lect	1		CALIB CS-3.hsc - As
nics	Dynamics Vie	ew	Customize	Resources	Flows	heet/Modify Format			
*	Process Utility Manag Adjust Manager Fluid Package Associa		T Active	Workbook	Reports	Model Summary Flowsheet Summary Input	Compressor Surge	🚁 Data Fits	Stream Analysis * Dequipment Design * Model Analysis *
	Simulation	6	Solver 🛱		Sum	maries		Analysis	5

Figure 6.141 New case studies.

Objec	t		Variable		Independent	Include	
	HCR-100		61	Feed Mass Flow (Feed-	I) Yes		
	SPRDSHT-1			B	4: Yes	1	
	SPRDSHT-1			E	2: Yes	V	
	HCR-100			WART (Reactor	2) No	IV.	
Reactor	Section @HCR-100	Yields, Standard	Cut Products (Nag	phtha C6-430F-Weight	9 No	R	
Reactor	Section @HCR-100	Yields, Standard	Cut Products (Dis	tillate 430-700F-Weig	nt No	R.	
Desites	C	Walds Canadand	Cut Das durate ICar	OIL 700 10007 MI-1-L	AL-	17	12
ate Input Type	Nested	•	📃 Reset after Ru	n			
umber of States	75		Step Downwa	rd			_
	75 Variable	Low Bound	Step Downwa	rd Step Size			
umber of States	75		Step Downwa	rd			

Figure 6.142 Insert independent process variables into the case study.

Flowsheet	Object	Variable		Variable Specifics	OK
 Case (Main) HCR-100 (HCR-100) Navigator Scope Flowsheet Case Basis Analysis 	HPS Liq HCR @HCR-100 Reactor Section @HCR-100	Total Preheat Duty Total Preheat Duty Total/Basic Nitrogen Ratio User Variables Variable Scaling Parameter Viscosity, cSt @ 210 F Est. Viscosity, cSt @ 210 F (From Bulk Prop.) WABT WABT WABT at COC WABT at Now WABT at SOC WART Vields, Standard Cut Products •	*	C3 C4 C5 Naphtha C6-430F Distillate 430-700F Resid 1000F+ Total Total C4+ Mare Specific Volume Flow Mass Flow Volume % Weight %	Add Object Filter All Streams UnitOps Logicals ColumnOp Custom Custom.
nable Description:	Yields Standard Cut Product	s (Naphtha C6-430F-Weight %)			Cancel

Figure 6.143 Insert product yields into case study.

up Results Plots	Failed States						
Obje	ct		Variable		Independent	Include	
	SPRDSHT-1			B4:	Yes	9	
	SPRDSHT-1			E2:	Yes	R	
	HCR-100			WART (Reactor 2)	No	P	
Reactor	Section @HCR-100	Yields, Standard	Cut Products (Nag	htha C6-430F-Weight 9	No	R	1
Reactor	Section @HCR-100	Yields, Standard	Cut Products (Dist	illate 430-700F-Weight	No		
Reactor	Section @HCR-100	Yields, Standard	Cut Products (Gas	Oil 700-1000F-Weight	No	R	
State Input Type	Nested	•	🔲 Reset after Ru	n			
Number of States	75		Step Downwa	rd			
	75 Variable	Low Bound	E Step Downwa	rd Step Size			
Number of States	75		Step Downwa	rd			
Number of States	75 Variable SPRDSHT-1 - B4;	Low Bound -7.000	E Step Downwa High Bound 7.000	rd Step Size 1.000			

Figure 6.144 Insert dependent process variables in the case study.

increment), WART of reactor 2 (HCR reactor), and standard cut product yields for naphtha, distillate, and gas oil. We also specify the lower and upper bounds of spreadsheet cells B4 (temperature increment) and E2 (feed mass flow increment) and their step sizes (see Figures 6.142–6.144).

- *Step 12.* Click "view" to open a new window to assign lower and upper bounds that allow WART and feed mass flow to change while running the simulation experiment. Click "start" to run a case study.
- *Step 13.* Click "Start" to run the case study and click "Results" to check the results of the case study (see Figure 6.145). Save the simulation file as *Workshop* 6.3-done.hsc.

Table	Transpose Table	Result	s Plot Sa	ave Results to File 📃	Text Filename	
State	SPRDSHT-1 - B4:	SPRDSHT-1 - E2:	HCR-100 - WART (Reactor 2) [C]	Reactor Section - Vields, Standard Cut Products (Naphtha C6-430F-Weight %) [%]	Reactor Section - Yields, Standard Cut Products (Gas Oil 700-1000F-Weight %) [%]	
State 1	-7.000	-2.500e+004	364.7	28.13	19.21	
State 2	-7.000	-1.300e+004	364.7	24.91	19.32	
State 3	-7.000	-1000	304.5	22. 2	19.25	
State 4	-7.000	1.100e+004	364.4	19.62	19.03	
State 5	-7.000	2.300e+004	364.3	17.32	18.68	
State 6	-6.000	-2.500e+004	365.9	29.12	19.10	
State 7	-6.000	-1.300e+004	365.8	25.83	19.28	
State 8	-6.000	-1000	365.6	22.97	19.26	
State 9	-6.000	1.100e+004	365.5	20.39	19.09	
State 10	-6.000	2.300e+004	365.3	18.02	18.78	
State 11	-5.000	-2.500e+004	367.0	30.11	18.97	
State 12	-5.000	-1.300e+004	366.9	26.76	19.21	

Figure 6.145 Results of case study.

6.12 Workshop 6.4 – Fractionation System for HCR Reactor

We open the reactor model, *HCR-Reactor.hsc*, and save it as *Workshop* 6.4-fractionation.hsc.

We add exchanger E-100 (see Figure 6.146).

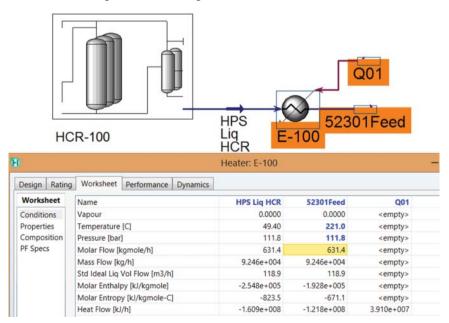


Figure 6.146 Add a heater to HPS Liq HCR stream.

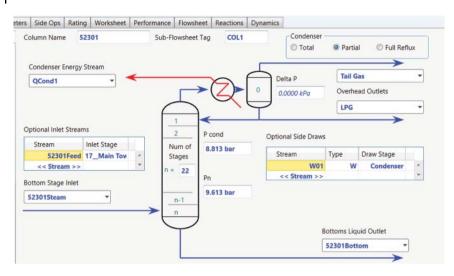


Figure 6.147 Column 52301 definitions with 52301 steam at 345 °C, 11.01 bar, and 680 kg/h.

Design Parameter	rs Side Ops Rating Worl	ksheet Performance Flowshe	et Reactions Dy	mamics				
Design	Optional Checks		Profile	1		~		
Connections Monitor	Input Summary	View Initial Estimates		Temperature vs. Tray Position f				
pecs pecs Summary ubcooling lotes	Iter Step Equilit	brium Heat / Spec 0.000000 0.000007	Temp Press Flows	180.0 9 9 140.0 140.0 100.0 60.00		* <u>0-0-0-</u> -		the second second
	C Specifications ————————————————————————————————————			20.00	5	10	15	20
		Specified Value	Current Value	Wt. Error	Active	Estimate	Current	
	Reflux Ratio	1.551	2.856	0.8411		R		
	Btms Prod Rate	<empty></empty>	460.9	<empty></empty>		V	Г	
	Cond Temp	37.50 C	37.50	0.0000	V	V	R	
	8tm Temp	179.1 C	179.1	-0.0000	V	V	P	
	Top Temperature	80.04 C	79.12	-0.0018		R		
	LPG Flow	4389 kg/h	186.2	-0.9576		A		
	Tair Gas Flow	781.0 kg/h	5500	6.0420		4		
	Draw Rate	8.690e+004 kg/h	8.942e+004	0.0290		V		
	View_							
		Add Spec Group	Active	Update Inactive		egrees of Fr	madam (2

Figure 6.148 Column 52301 specifications for column convergence.

6.12 Workshop 6.4 – Fractionation System for HCR Reactor 507

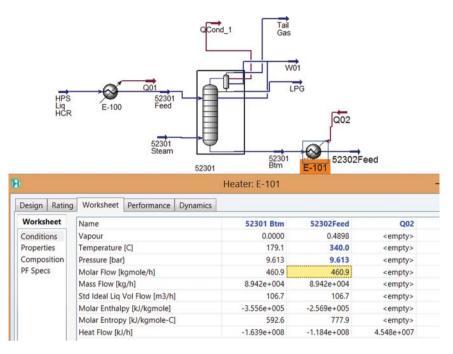


Figure 6.149 Add a heater to 52301Btm stream.

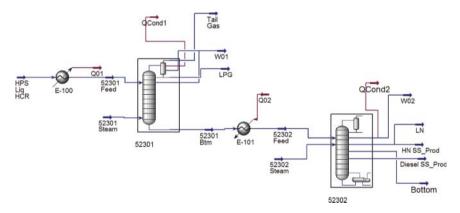


Figure 6.150 Add column 52302.

We then add column 52301, following Figures 6.147 and 6.148.

We continue to add exchanger E-101 (see Figure 6.149).

We then add column 52302, a reboiler absorber with 43 equilibrium stages. This column has two side strippers with reboilers for diesel and heavy naphtha (HN), each having eight equilibrium stages. The column also has a pumparound PA-1 (see Figures 6.150–6.158).

Save the converged simulation as *Workshop 6.4-fractionation.hsc*. Figure 6.159 shows the resulting stream table for column 52302.

Design	Parameter	s Side Ops	Rating	Worksheet	Performance	Flowsheet	Reactions	Dynamics				
Des	ign	Column Name	523	02	Sub-Fl	lowsheet Tag	COL2		Condenser			
Connect Monitor Specs Specs S Subcool Notes	r ummary ling	Condenser f QCond2 Optional Inlet Stream 52302 << Strea Bottom Stage 52302 Stear	Streams Ir Feed 44 m >> Inlet	ilet Stage	* si	lum of 1. tages Pn	cond 600 bar 880 bar	0 0. Option		LN	Iquid Outlet	

Figure 6.151 Column definitions with 52302 steam at 345 °C, 11.01 bar, and 200 kg/h.

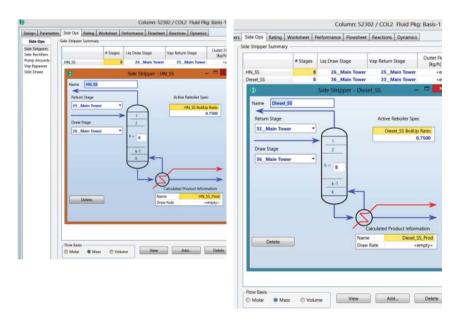


Figure 6.152 Add heavy naphtha (HN) and diesel side strippers.

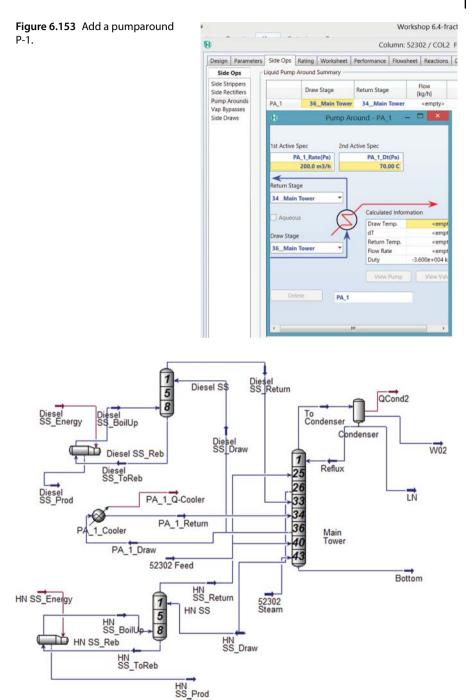


Figure 6.154 Column 52302 with naphtha and diesel side strippers and a pumparound.

esign	Parameters	Side Ops	Rating	Worksheet	Performance	Flowsheet	Reactions	Dyna	mics			
Des	ign	Column Sp	ecification	ns			Specificatio	on Deta	ails —			1911
Monitor	Distatute Aute			View_		Spec Name Distillate Rate				 Active Use As Estimate 		
Specs Specs St	ummary	Reflux Rate Btms Prod			Add		Converged	17			No	Current
Subcooling Notes	ling	HN_SS Pro	d Flow		Delete							Dry Flow Basis
		DieseLSS I	Prod Flow	10	Draw Spe	c: Distillate	Rate	-		×		
		Diesel_SS I PA_1_Rate			meters Sum	mary Spec	Туре					
		PA_1_Dt(P	(0)	Nar	ne			LN	Flow			
				Dra	w w Basis			LN @	COL2 Mass			
					w Basis ic Value			2306				2306 kg/h
												<empty></empty>
												1.000e-002
												<empty></empty>
												1.000 kg/h
												<empty></empty>

Figure 6.155 Rename "Distillate Rate" as "HN Flow" and specify its value of 2306 kg/h; rename "Btms Prod Rate" as "Bottom Flow" and speciffy its value of 3.047E4 kg/h.

Design	Parameters	Side Ops	Rating	Worksheet	Performance	Flowsheet	Reactions	Dynamics
Des	ign	Column Sp	ecificatio	ns			Specification	n Details
Connections Monitor Specs Specs Summary Subcooling Notes		Reflux Ratio LN Flow Reflux Rate Bottom Flow HN_SS Poid Flow HN_SS BoilUp Ratio DieseLSS Prod Flow DieseLSS BoilUp Ratio		View Add Delete Temp Spec: Cond		Spec Name Bottom Fi Converged ?		
		PA_1_Dt(P Cond Tem		S	lame itage ipec Value Delete			Cond Temp Condenser 52.00 C

Figure 6.156 Specify condenser, stage 1, and bottom temperatures of 52 °C, 64 °C, and 316 °C.

Design	Parameters	Side Ops	Rating	Worksheet	Performance	Flowsheet	Reactions	Dynamics
Design		Column Sp	ecification	Specification Details				
Connections Monitor Specs Specs Summary		Reflux Ratio Cond Temp Stage 1 Temp LN Flow			View,		Spec Name	HN IBP
					Add	Converged ?	?	
ubcoo Notes	ling	Bottom Fle Bottom Te			Delete			
		HN SS Pro		1			Casa Tur	100
		HN IBP		(1)	(Cut Pt Spe	C: HN IBP	
		HN 95		Name				HN IBP
		Diesel SS I		Stage				HN SS_Reb
		Diesel 109		Туре				ASTM D86
		Diesel FBF		Flow	Basis		Vol	ume Fraction
		PA_1_Rate PA_1_Dt(P		Phase				Liquid
		PALI_DUP	~u)	Cut P	oint [%]			0.0000
				Spec	Value			84.00 C
				AST	M D86 Options			
				D86	Conversion Typ	e: API 1	974	
				Subt	ract API Crackin	a Effect:	O No	O Yes

Figure 6.157 Specify "End Point-Based Column Cut Point Spec" for HN IBP (cut point 0%) of 84 °C, HN 95 (95%) of 170 °C, Diesel 10% of 200 °C, and Diesel FBP (100%) of 338 °C.

Design	Optional Checks		Profile	N/4	3	100	21 5	10 10 10 10 10 10 10 10 10 10 10 10 10 1	_
Connections Monitor	Input Summary		Temperature vs. Tray Position from Top						
Specs Specs Summary Subcooling Notes	Iter Step Equili	brium Heat / Spec	Temp Press Flows	300.0 250.0 200.0 150.0 100.0 50.00 0	10	2		50 60	70
	- Specifications								
		Specified Value	Current Value	Wt. Error	Active	Estimate	Current		
	Reflux Ratio	<empty></empty>	12.83	<empty></empty>		2			
	Cond Temp	52.00 C	52.00 C 52.16			2			
	Stage 1 Temp	64.00 C	64.00	0.0000	V	2	V		
	LN Flow	2306 kg/h	2104	-0.0877		2			
	Bottom Flow	3.047e+004 kg/h	5.235e+004	0.7181		2			
	Bottom Temp	316.0 C	316.0	-0.0000	5	2	V		
	HN SS Prod Flow	<empty></empty>	184.0	<empty></empty>		2			
	HN IBP	84.00 C	84.00	0.0000	V	2	2		
	HN 95	170.0 C	170.0	-0.0000	R	2	R		
	Diesel SS Prod Flow	<empty></empty>	85.34	<empty></empty>		2			
	Diesel 10%	200.0 C	200.0	0.0000	P	2	P		
	Diesel FBP	338.0 C	338.0	-0.0000		2			
	PA_1_Rate(Pa)	200.0 m3/h	200.0	-0.0000	₹	2	2		
	PA_1_Dt(Pa)	70.00 C	71,48	0.0030	5	5	P		
	View	Add Spec Group	Active 0	Jpdate Inactive	D	egrees of Fi	reedom	0	

Figure 6.158 Column specifications for simulation convergence.

Design Param	eters Side Ops Rating Worksheet	Performance Flowsheet	Reactions Dynam	ICS				
Worksheet	Name	52302 Feed @COL2	52302 Steam @COL2	LN OCOL2	W02 @COL2	Btm @COL2	HN SS_Prod @COL2	Diesel SS_Prot
Properties	Vapour	0.4898	1.0000	0.0000	0.0000	0.0000	0.0000	0.000
Compositions PF Specs	Temperature [C]	340.0	345.0	52.16	52.16	316.0	115.5	244
	Pressure [bar]	9.613	11.01	1.600	1.600	1.880	1.767	1.83
	Molar Flow (kgmole/h)	460.9	11.10	27.71	24.71	150.2	184.0	85.3
	Mass Flow (kg/h)	8.942e+004	200.0	2104	445.2	5.235e+004	1.917e+004	1.555e+00
	Std Ideal Liq Vol Flow (m3/h)	106.7	0.2004	3.210	0.4451	57.67	26.46	19.0
	Molar Enthalpy [kl/kgmole]	-2.569e+005	-2.310e+005	-1.694e+005	-2.841e+005	-4.972e+005	-2.060e+005	-2.983e+00
	Molar Entropy [kJ/kgmole-C]	777.9	178.8	147.0	60.48	1282	285.3	601.
	Heat Flow [kJ/h]	-1.184e+008	-2.564e+006	-4.694e+006	-7.021e+006	-7.468e+007	-3.790e+007	-2.545e+00

Figure 6.159 Stream table for column 52302.

Conclusion 6.13

HCR process models are usually very sophisticated because their complex feedstocks and highly coupled reaction mechanisms make it difficult to build a plantwide HCR process simulation. However, refiners are mostly concerned about maximizing profit under steady operations, which imply small changes of the process operations and feedstock varieties. Therefore, a good operating model of the refining process only needs to match key product yields, qualities, and process operations under small process changes.

We summarize the key achievements of this work as follows:

- 1) We develop two integrated HCR process models, which include reactors, fractionators, and hydrogen recycle systems.
- 2) We provide the step-by-step guideline of model development that has not been reported in the literature.
- 3) We apply the Gauss–Legendre quadrature to convert kinetic lumps into pseudocomponents based on boiling point ranges (delumping) for rigorous fractionator simulation.
- 4) Our delumping method gives a continuous response to changes in fractionator specification such as distillate rate.
- 5) We update API correlations of flash point and freezing point to plant operation and production.
- 6) The integrated HCR process models are able to predict accurately the product yields, distillation curves of liquid products, and temperature profiles of reactors and fractionators.
- 7) The integrated HCR process models also gives good estimations on liquid product qualities – density, flash point, and freezing point of diesel fuel (MP HCR) and jet fuel (HP HCR) – by using updated API correlations.
- 8) We apply the integrated MP HCR process model to conduct simulation experiments to quantify the effects of operating variables on product yields.
- 9) We apply the integrated HP HCR process model to generate a delta-base vector for LP-based production planning.

This work represents the workflow to build an integrated HCR process model using Aspen HYSYS Petroleum Refining and routine measurement in refinery. We only use routine measurement of feedstock (ASTM D86, specific gravity, total

sulfur, and nitrogen content) to build the preliminary model. Furthermore, we also use routine measurements of products (compositional analysis of gas products and distillation curve and specific gravity of liquid product) to calibrate the model. Although the resulting model provides good predictions for 2 months of process and production data, there are several aspects worthy of further studies:

- 1) Apply SimDist analysis whenever it is available.
- 2) Currently, the feed lump distribution is developed by routine measurements and it is unachievable for any modeling technique to accurately estimate the molecular information of oil fraction (such as PNA content, multiring aromatics distribution, and hindered and nonhindered sulfur content) by using routine measurement only. Therefore, the resulting model is sensitive to feedstock and needs to be recalibrated when the feedstock is changed from the base case. If detail molecular information of the feedstock is available, the feed lump distribution can be customized to better characterize the feedstock.
- 3) Users are also allowed to customize the calibration environment to include product property and product composition as objective functions if detail molecular information of product is available.

Nomenclature

CONV	Conversion (–)
F	Molar flow (mol/h)
$F_{\nu i}$	The <i>i</i> cut point while applying Gauss–Legendre quadrature into
	delump
I_m	Inhibition factor in LHHW mechanism ($m = NH_3$, H_2S , and organic
	nitrogen compounds) (–)
$K_{\rm avg}$	Watson K factor (–)
$K_{\rm ADS}$	LHHW adsorption constants of hydrocarbon (kPa^{-1})
K_{eq}	Equilibrium constant of reversible reaction (–)
$K_{\rm total}^{\rm eq}$	Overall activity of reaction group (–)
K_{global_i}	Global activity for the <i>i</i> catalyst bed $(-)$
$K_{\text{sul}_i_j}^{\text{globul}_i}$	Hydrodesulfurization activity of the <i>j</i> distillate cut (j = whole fraction,
5ui_i_)	430 °F–, 430–950 °F, and 950 °F+) in the i reactor ($i =$ hydrotreating
	and hydrocracking reactor) (–)
$K_{\operatorname{crc}_i_j}$	Hydrocracking activity of the <i>j</i> distillate cut (j = whole fraction,
	430 °F–, 430–950 °F, and 950 °F+) in the <i>i</i> reactor (i = hydrotreating
	and hydrocracking reactor) (–)
$K_{\mathrm{hdg}_i_j}$	Aromatic hydrogenation activity of the <i>j</i> distillate cut (j = whole
114 <u>6</u> _1_)	fraction, 430 °F–, 430–950 °F, and 950 °F+) in the <i>i</i> reactor ($i =$
	hydrotreating and hydrocracking reactor) (–)
$K_{\mathrm{ro}_i_j}$	Ring-opening activity of the <i>j</i> distillate cut (j = whole fraction, 430
10_1_)	$(-)^{\circ}F-$, 430–950 $(-)^{\circ}F$, and 950 $(-)^{\circ}F+$) in the <i>i</i> reactor (<i>i</i> =
	hydrotreating and hydrocracking reactor) (–)
K_{light_i}	Light gas distributing factor ($i = C1, C2, C3, and C4$) (–)
k	Intrinsic rate constant of reaction (h^{-1})
MeABP	Mean average boiling point (Rankine)

MW	Molecular weight (–)
OBJ _{TR}	The predicting error of temperature rise of catalyst bed (°C)
OBJ _{HQ}	The predicting error of hydrogen quench of catalyst bed (STD m ³ /h)
OBJ _{PGF}	The predicting error of flow rate of purge gas (STD m^3/h)
OBJ _{MHF}	The predicting error of flow rate of makeup H_2 (STD m ³ /h)
OBJ _{HC}	The predicting error H ₂ consumption (STD m^3/m^3)
OBJ _{NVF}	The predicting error of C6 to 430 °F cut (naphtha) volume flow (m^3/h)
OBJ _{DVF}	The predicting error of $430-700$ °F cut (diesel) volume flow (m ³ /h)
OBJ _{BVF}	The predicting error of 700–1000 °F cut (bottom) volume flow (m^3/h)
OBJ _{RVF}	The predicting error of 1000 °F+ cut (resid) volume flow (m^3/h)
OBJ _{NMF}	The predicting error of C6 to 430 °F cut (naphtha) mass flow (kg/h)
OBJ _{DMF}	The predicting error of 430–700 °F cut (diesel) mass flow (kg/h)
OBJ _{BMF}	The predicting error of 700–1000 °F cut (bottom) mass flow (kg/h)
OBJ _{RMF}	The predicting error of 1000 °F+ cut (resid) mass flow (kg/h)
OBJ _{C1C2}	The predicting error of C1C2 mass yield (wt%)
OBJ _{C3}	The predicting error of C3 mass yield (wt%)
OBJ _{C4}	The predicting error of C4 mass yield (wt%)
OBJ _{SD}	The predicting error of sulfur content of 430–700 °F cut (wt%)
OBJ _{SB}	The predicting error of sulfur content of 700–1000 °F cut (wt%)
OBJ _{ND}	The predicting error of nitrogen content of 430–700 °F cut (ppmwt)
OBJ _{NB}	The predicting error of nitrogen content of 700–1000 °F cut (ppmwt)
OBJ _{NR1}	The predicting error of nitrogen content in reactor 1 effluent (ppmwt)
$P_{\rm c}$	Critical pressure (kPa)
$P_{ m H_2}$	Partial pressure of hydrogen (kPa)
q_i	The zeros of the Legendre polynomial (–)
SG	Specific gravity 60 °F/60 °F (–)
SV	Space velocity (1/h)
T	Temperature (°C)
$T_{\rm b}$	Normal boiling point (°C)
T_{c}	Critical temperature (°C)
$T_{ m r} V$	Reduced temperature (–) Volume (m ³)
V V _c	Critical volume (m ³)
v _c W _i	Weight factor of Gauss–Legendre quadrature (–)
ω^{w_i}	Acentric factor (–)
θ	Feed ratio of feed 1 to feed 2 (–)
τ	Residence time (h)
-	

Bibliography

- 1 Aye, M.M.S. and Zhang, N. (2005) Chemical Engineering Science, 60, 6702.
- 2 Qader, S.A. and Hill, G.R. (1969) Industrial & Engineering Chemistry Process Design and Development, 8, 98.
- 3 Quann, R.J. and Jaffe, S.B. (1992) Industrial & Engineering Chemistry Research, 31, 2483.
- 4 Quann, R.J. and Jaffe, S.B. (1996) Chemical Engineering Science, 51, 1615.

- 5 Quann, R.R. (1998) Environmental Health Perspectives Supplements, 106, 1501.
- 6 Froment, G.F. (2005) Catalysis Reviews Science and Engineering, 47, 83.
- 7 Ghosh, P., Andrews, A.T., Quann, R.J., and Halbert, T.R. (2009) *Energy & Fuels*, **23**, 5743.
- 8 Christensen, G., Apelian, M.R., Karlton, J.H., and Jaffe, S.B. (1999) *Chemical Engineering Science*, **54**, 2753.
- 9 Kumar, H. and Froment, G.F. (2007) Industrial & Engineering Chemistry Research, 46, 5881.
- 10 Ancheyta, J., Sánchez, S., and Rodríguez, M.A. (2005) Catalysis Today, 109, 76.
- 11 Ho, T.C. (2008) Catalysis Reviews: Science and Engineering, 50, 287.
- 12 Valavarasu, G., Bhaskar, M., and Sairam, B. (2005) Petroleum Science and Technology, 23, 1323.
- 13 Sánchez, S., Rodríguez, M.A., and Ancheyta, J. (2005) Industrial & Engineering Chemistry Research, 44, 9409.
- 14 Verstraete, J.J., Le Lannic, K., and Guibard, I. (2007) *Chemical Engineering Science*, **62**, 5402.
- 15 Stangeland, B.E. (1974) Industrial & Engineering Chemistry Process Design and Development, 13, 71.
- 16 Mohanty, S., Saraf, D.N., and Kunzru, D. (1991) *Fuel Processing Technology*, 29, 1.
- 17 Pacheco, M.A. and Dassori, C.G. (2002) Chemical Engineering Communications, 189, 1684.
- 18 Bhutani, N., Ray, A.K., and Rangaiah, G.P. (2006) *Industrial & Engineering Chemistry Research*, 45, 1354.
- 19 Laxminarasimhan, C.S., Verma, R.P., and Ramachandran, P.A. (1996) *AIChE Journal*, 42, 2645.
- 20 Basak, K., Sau, M., Manna, U., and Verma, R.P. (2004) Catalysis Today, 98, 253.
- 21 Fukuyama, H. and Terai, S. (2007) Petroleum Science and Technology, 25, 277.
- 22 Aspen HYSYS Petroleum Refining Option Guide (2006) AspenTech, Cambridge, MA.
- 23 Korre, S.C., Klein, M.T., and Quann, R. (1997) Industrial & Engineering Chemistry Research, 36, 2041.
- 24 Jacob, S.M., Quann, R.J., Sanchez, E., and Wells, M.E. (1998, July) Oil & Gas Journal, 6, 51.
- 25 Filimonov, V.A., Popov, A.A., Khavkin, V.A., Perezhigina, I.Y., Osipov, L.N., Rogov, S.P., and Agafonov, A.V. (1972) *International Chemical Engineering*, 12, 21.
- 26 Jacobs, P.A. (1997) Industrial & Engineering Chemistry Research, 36, 3242.
- 27 Brown, J.M., Sundaram, A., Saeger, R.B., Wellons, H.S., Kennedy, H.S., and Jaffe, S.B. (2009) WO2009051742.
- 28 Gomez-Prado, J., Zhang, N., and Theodoropoulos, C. (2008) Energy, 33, 974.
- 29 Aspen Plus Hydrocracker User's Guide (2006), AspenTech, Cambridge, MA.
- **30** Mudt, D.R., Pedersen, C.C., Jett, M.D., Karur, S., McIntyre, B., and Robinson, P.R. (2006) Refinery-wide optimization with rigorous models, in *Practical*

Advances in Petroleum Processing (eds C.S. Hsu and P.R. Robinson), Springer, New York, NY.

- 31 Satterfield, C.N. (1975) AIChE Journal, 21, 209.
- 32 Kaes, G.L. (2000) Refinery Process Modeling: A Practical Guide to Steady State Modeling of Petroleum Processes, The Athens Printing Company, Athens, GA.
- **33** Fogler, H.S. (2005) *Elements of Chemical Reaction Engineering*, 4th edn, Prentice Hall, Upper Saddle River, NJ.
- 34 Aspen HYSYS Simulation Basis (2006), AspenTech, Cambridge, MA.
- 35 Daubert, T.E. and Danner, R.P. (1997) API Technical Data Book Petroleum Refining, 6th edn, American Petroleum Institute, Washington, DC.
- 36 Bollas, G.M., Vasalos, I.A., Lappas, A.A., Iatridis, D.K., and Tsioni, G.K. (2004) *Industrial & Engineering Chemistry Research*, 43, 3270.
- 37 Riazi, M.R. (2005) Characterization and Properties of Petroleum Fractions, 1st edn, American Society for Testing and Materials, West Conshohocken, PA.
- 38 Haynes, H.W. Jr. and Matthews, M.A. (1991) Industrial & Engineering Chemistry Research, 30, 1911.
- 39 Cotterman, R.L., Bender, R., and Prausnitz, J.M. (1985) Industrial & Engineering Chemistry Process Design and Development, 24, 194.
- 40 Mani, K.C., Mathews, M.A., and Haynes, H.W. Jr. (1993, Feb) Oil & Gas Journal, 15, 76.
- 41 Riazi, M.R. and Daubert, T.E. (1980) Hydrocarbon Processing, 59 (3), 115.
- 42 Lee, B.I. and Kesler, M.A. (1985) AIChE Journal, 31, 1136.
- 43 Kister, H.Z. (1992) Distillation Design, McGraw-Hill, Inc., New York, NY.
- 44 Roussel, M., Norsica, S., Lemberton, J.L., Guinet, M., Cseri, T., and Benazzi, E. (2005) *Applied Catalysis*, 279, 53.
- 45 Dufresne, P., Bigeard, P.H., and Bilon, A. (1987) Catalysis Today, 1, 367.
- **46** Scherzer, J. and Gruia, A.J. (1996) *Hydrocracking Science and Technology*, Marcel Dekker, New York, NY.
- 47 Hu, Z.H., Xiong, Z.L., Shi, Y.H., and Li, D.D. (2005) Petroleum Processing and Petrochemicals, 36, 35.
- 48 Tippett, T.W. and Ward, J.W. (1985) National Petroleum Refiners Association (NPRA) Annual Meeting, 24 Mar 1985, AM-85-43.
- 49 Rossi, V.J., Mayer, J.F., and Powell, B.E. (1978, October) Hydrocarbon Processing, 15, 123.
- 50 Bodington, C.E. and Baker, T.E. (1990) Interfaces, 20, 117.
- 51 El-Kady, F.Y. (1979) Indian Journal of Technology, 17, 176.
- 52 Hu, M.C., Powell, R.T., and Kidd, N.F. (1997) *Hydrocarbon Processing*, 76 (6), 81.
- 53 Chang, A.F. and Liu, Y.A. (2011) Predictive modeling of large-scale integrated refinery reaction and fractionation systems from plant data: 1. Hydrocracking (HCR) processes. *Energy and Fuels*, 25, 5264–5397.
- 54 Briggs, B. January 2012 "Hydrocracking Model to Support Crude Selection Process", BP Refining Technology, AspenTech Global Conference: OPTIMIZE 2011, Washington, DC, May 2011; AspenTech Webinar: Improve Refinery Margins with Hydroprocessing Models.

Alkylation, Delayed Coking, and Refinery-Wide Simulation

This chapter presents three new topics that are of growing importance in the integrated process modeling and optimization of petroleum refineries. Section 7.1 discusses the alkylation process to produce high-octane blending components for gasoline from reacting isobutane with light olefins. Section 7.2 covers the delayed coking process to upgrade and convert petroleum residual or "bottom of the barrel" materials (e.g., vacuum residue) to valuable liquid and gas product streams (fuel gas, LPG, naphtha, and coke gas oil) and petroleum coke. Section 7.3 demonstrates how to improve profit margins through a refinery-wide process simulation model. Section 7.4 presents the conclusions. Finally, the Bibliography is listed.

7.1 Alkylation

7

7.1.1 Process Description

Kaes [2], Gary *et al.* [1], and Kranz [4] gave good reviews on the alkylation process, its chemistry, product separation, and technology economics. We describe the key features from these references, focusing mainly on those aspects that are relevant to process simulation and optimization.

Basically, alkylation reactions combine light C3–C5 olefins with isobutane in the presence of a strong acid catalyst. Alkylation can occur at high temperatures without a catalyst, but all commercial processes involve low-to-moderate temperatures using either sulfuric or hydrofluoric acid as a catalyst. Reactions are complete with both catalysts, achieving 100% conversion of the feedstock to isoparaffins and by-products.

Alkylation reactions typically produce 75–150 different isoparaffin isomers. With appropriate operating conditions, the product (alkylate) will fall into the gasoline boiling range with motor octane numbers (MON) of 85–95 and research octane number (RON) of 90–98 [4]. Thus, alkylation operation is important to refineries in producing high-octane blending components for gasoline from reacting isobutane with light olefins.

Figure 7.1 shows a schematic diagram of an alkylation process [2]. A feed stream containing light C3–C5 olefins is combined with an isobutane-rich recycle and

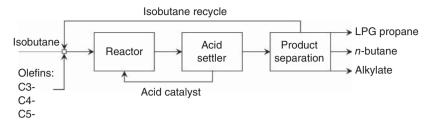


Figure 7.1 A schematic diagram of an alkylation process.

makeup streams and is sent to a reactor, where either HF or H_2SO_4 is used as a catalyst. The reacted mixture passes into an acid settler, where the acid is separated and recycled back to the reactor. We send the hydrocarbon phase from the settler to product separation, where LPG-grade propane, *n*-butane, and alkylate are recovered. A large circulating stream of isobutane is also recovered and sent back to the process as recycle isobutane.

We refer the reader to Refs. [1] and [2] for more detailed process flowsheets using HF or H_2SO_4 as a catalyst, and note the following differences in operating conditions: (1) reaction temperature -18-45 °C (HF) versus 2-15 °C (H_2SO_4); (2) acid strength -80-95 wt% (HF) versus 88-95 wt% (H_2SO_4); (3) isobutene concentration -30-80 vol% (HF) versus 40-80 vol% (H_2SO_4); and (4) hydrocarbon contact time -8-20 min (HF) versus 20-30 min (H_2SO_4).

7.1.2 Feed Components and Alkylation Kinetics

Aspen HYSYS alkylation model uses 45 pure components and 57 reactions. The Excel spreadsheet *Alkyation components and reactions.xlxs*, in the supplementary material of this book, within this chapter, lists these components and reactions.

Specifically, there are three types of reactions in the alkylation process. First, *the primary alkylation reactions* include all of the C3–C5 olefins reacting with isobutane to form *branched paraffins (BP)* with carbon number from C7 to C13, that is, C7BP to C13BP. Next, *the hydrogen transfer reactions* react C3–C5 olefins with isobutane to form C3–C5 paraffins and isobutene. Third, *the secondary alkylation reactions* are the reactions between the C7–C9 BP formed from primary alkylation and the C3–C5 olefins to form C10–C14 BP. The kinetics of each reaction is represented by a first-order reaction, with its reaction rate constant being represented by the standard Arrhenius equation. On the "Advanced" page of the "Calibration" tab, we can specify advanced kinetic and property parameters to fine-tune the kinetic model to better match plant data. Figure 7.2 is a part of the "kinetic factors" folder, in which E_a is the activation energy, R is the ideal gas constant, and A is the preexponential factor for the Arrhenius equation.

The alkylation model also includes the tuning factors for different classes of reactions (see Figure 7.3). To understand more about tuning these parameters, use functional key F1 to access the Aspen HYSYS V9 help. For example, using functional key F1 teaches us the meanings of activity factors and split factors for C6–C9 (see Figures 7.4 and 7.5).

Simulation	Calibratio	n Worksheet Solver			
Simulatio	n				
Input			Ea/(1000*R)	In(A)	
Results	1-BUTENE + 1-BUTANE => C8BP	6.014	11.92		
-	1	BUTENE + I-BUTANE => C8BP	6.014	11.92	
	ors TI	R2-BUTE + I-BUTANE => C8BP	6.014	11.51	=
Notes	C	S2-BUT + I-BUTANE => C8BP	6.014	11.51	L
	IS	OBUTEN + I-BUTANE => C8BP	6.014	11.51	
	1.	PENTEN + I-BUTANE => C9BP	6.014	11.51	
	T	R2-PENT + I-BUTANE => C9BP	6.014	11.51	
	C	S2-PEN + I-BUTANE => C9BP	6.014	11.51	
	21	M-1-BUT + I-BUTANE => C9BP	6.014	11.51	
	3	M-1-BUT + I-BUTANE => C9BP	6.014	11.51	
	21	M-2-BUT + I-BUTANE => C9BP	6.014	11.51	
	1	-3-BUTA + 2*I-BUTANE => C12BP	6.014	23.03	
	IS	OPRENE + 2*I-BUTANE => C13BP	6.014	23.03	
	La	700 - 0000FNF - C1000	C 014	11.51	-

Figure 7.2 A part of the "kinetic factors" folder showing the alkylation reactions.

Simulation	Calibration	Worksheet	Solver		
Simulatio	n React	ion Activities			
nput	Glo	bal Activity		5.257	
Results	Hyd	rogen Transfe	er Activity	368.6	
Tuning Fact	ors C6 /	Activity		0.0000	
Kinetic Facto	ors C7 /	Activity		33.75	
Notes	C8 /	Activity		55.37	
	C9 /	Activity			
	C10	Activity		357.6	
	C11	Activity		4.694	
	C12	Activity		9.923e-002	
	C13	Activity		5.805e-002	
	C14	Activity		1.670e-003	
	Pro	bane Activity		2.588e-003	
	n-B	utane Activity		7.868e-004	
	n-P	entane Activit	y	3.384e-002	
	Split	Factors			
	C6	1	2,3-Dime	thylbutane	0.9996
	C7		2-Methy	pentane	0.0000
	C8		3-Methy	nentane	3.544e-004

Figure 7.3 Tuning factors for different classes of reactions in the alkylation model.

7.1.3 Workshop 7.1 – Hydrofluoric Acid Alkylation Process Simulation

We start by opening a new case in Aspen HYSYS, go to Properties Environment, and import the component list, *Assay Components Celsius to 850C.cml*. Go to the Chapter 7 folder in the supplementary material of this book and open the file *Workshop 7.1-1 Input Data.xlxs*. Add the additional components relevant

In the Tuning Factors page on the Simulation tab, you can specify reaction activities:

The reaction activities multiply the pre-exponential factors for any reaction in that class.

- C7 to C14 activities affect the primary and secondary alkylation reactions that form C7 through C14 paraffins.
- The hydrogen transfer activity affects all hydrogen transfer reactions.
- The n-Butane activity affects the hydrogen transfer reactions that form normal butane.
- The n-Pentane activity affects the hydrogen transfer reactions that form normal pentane.
- The Propane activity affects the hydrogen transfer reactions that form propane.
- The global activity affects all of the reactions.

Figure 7.4 Online help for alkylation simulation model – manually increase or decrease the tuning factors for different reaction activities to match the plant data.

Split Factors:

Fac	tor	Description
C6	2-3-Dimethylbutane	The split faction of 2-3-Dimethylbutane in C6.
	2-Methylpentane	The split faction of 2-Methylpentane in C6.
	3-Methylpentane	The split faction of 3-Methylpentane in C6.
C7	2-2-Dimethylpentane	The split faction of 2-2-Dimethylpentane in C7.
	2-3-Dimethylpentane	The split faction of 2-3-Dimethylpentane in C7.
	2-4-Dimethylpentane	The split faction of 2-4-Dimethylpentane in C7.
	2-Methylhexane	The split faction of 2-Methylpentane in C7.
	3-Methylhexane	The split faction of 3-Methylpentane in C7.

Figure 7.5 Online help for alkylation simulation model – specification of split fraction of C6 and C7 branched paraffins to a specific component.

to alkylation noted in the Excel to our component list, Component List-1 (see Figure 7.6). Use Peng–Robinson equation of state for the fluid package.

We continue to import a petroleum assay, *Arab Light –1983*, from the Aspen assay library to represent our feeds (see Figures 7.7 and 7.8).

Next, we draw the initial flowsheet of the feed system to the alkylation reactor (see Figure 7.9). We then enter the input data from the above Excel spreadsheet, *Workshop 7.1-1 Alkylation Input Data.xlsx*, to define the two feed streams, Fresh_*i*Butane and ALKY_Feed, and an assumed *i*-butane recycle stream, *i*Butane_RCY.

We use a "SET" operator to define the relationship that the volumetric flow rate of Mixed_*i*Butane is eight times that of ALKF_Feed. Based on the assumed flow rate of *i*-butane recycle stream, *i*Butane_RCY, the "SET" operator can determine the required flow rate of fresh butane, Fresh_*i*Butane (see Figure 7.10).

Next, we add an alkylation reactor to the flowsheet and input the alkylation specifications (see Figures 7.11 and 7.12). Figure 7.13 shows the calculated results of the alkylation reactor.

We now add a petroleum distillation column to simulate the alkylation product separation. Figure 7.14 shows the addition of a petroleum distillation column.

operties		Component List - 1 × +	P.					
Items								
Component Lists		Source Databank: HYSYS				Select:	Pure Components	•
Component List	-1					10000		
Fluid Packages Basis-1		Component	Type	Group		Search for:		
Petroleum Assays		650-675C*	User Defined Hypothe	Assay Hypos				
Reactions Component Maps		675-700C*	User Defined Hypothe	Assay Hypos		Simula	ation Name	Full Name
User Properties		700-725C*	User Defined Hypothe	Assay Hypos	< Add		n-Hexane	
		725-750C*	User Defined Hypothe	Assay Hypos			n-Heptane	
		750-775C*	User Defined Hypothe	Assay Hypos			n-Octane	
		775-800C*	User Defined Hypothe	Assay Hypos	Replace		n-Nonane	
		800-825C*	User Defined Hypothe	Assay Hypos			n-Decane	
		825-850C*	User Defined Hypothe	Assay Hypos			n-C11	
		850+C*	User Defined Hypothe	Assay Hypos	Remove		n-C12	
		Benzene	Pure Component				n-C13	
		Toluene	Pure Component				n-C14	
		MTBE	Pure Component				n-C15	
		ETBE	Pure Component				n-C16	
		Ammonia	Pure Component	1			n-C17	
							n-C18	

Figure 7.6 Add five more components after importing the component list, *Assay Components Celsius to 850C.cml* to define Component List-1.

say + Adseyt Adsay	Milecular Metho	0						Add Assay	and the second second second			and the second second	
roperties. f	Petroleum Ass	Search Crite	ria .										
E horra 4		Select library	All		Property	Minim	m Maxim	m Unit	Clear				
Component Lists	Assay Summe				Density			API					
Fluid Packages	Display: Al	Assay name:	Arab		Sultur			*					
B Petroleum Assays		Region	All Regions		Viscosity			63					
Component Maps	144				TAN			mg KOH/g					
S User Properties	10	Country:	All Countries	.	Pour Point			c					
	10000	Select Assay											
			Accey		Library Name	Assay date:	Region	Country	Density(AP0	Suture?	Viscosity/c50 @ 37.78C	TANEng KOH/gl	Pour Points
					b .	b .		• •		•			-
		F Anabian P	wwy-1983		Aspen Assay L.	4/11/1983	Middle East	Seuti Antria	27.7555	2.796	1.785e+007	0.131	0.6
		 Arabian U 	ight-1983		Aspen Assay L_	4/11/1983	Middle East	Saudi Arabia	32,8900	1,748	3-221	0.100	6.31
		Atabian E	isia Light-2011		Aspen Assay L_	4/11/2011	Middle East	Saudi Arabia	41.6984	0.825	1.001	0.061	19.7
		Arabian H	eavy-2006		Aspen Assay L.	2/7/2006	Middle East	Saudi Arabia	28.7977	2.685	4,462	0.139	29.2
		+ Andrian L	ght-2012		Aspen Assay L_	2/1/2012 (cs.)	Middle East	Sauti Antria	31,9064	1,874	1.982	0.056	20.1
		Atabian N	ledum-2012		Aspen Assay L_	11/22/2011	Middle East	Sauth Arabia	30.9920	2,453	2.937	0.167	28.0
		+ Anabian B	erri-1992		Aspen Assay L_	1992	Middle East	Seudi Arabia	37,8508	1.307	2.226	0.077	11,7
		+ Atabian S	uper Light-1994		Aspen Assay L.	12/1994 (ca.)	Middle East	Saudi Arabia	50.4342	0.022	0.900	0.059	7.3
			ren Illevil. 1983		Airen Louse I	4711/1085-5re1	Michille Fast	Georgi Anabria	12 12 12	1.062	3 799	0.087	8.71

Figure 7.7 Import a petroleum assay, Arab Light – 1983.

Properties	5 A	etroleum A	asays - T	-														
All Items a		Assay Summ	22	***														
Component List - 1 Ruid Packages Basis-1 Petroleum Assays		Display:	All Regions Assa	and.	Characterization Method		Status	Fluid Package	P	ram Source	D	ensity (kg/m3)		Suther (%)		Viscosity (cSt) @ 37.78 C		Watson K
Arab Light Input Assay Conventional Results Reactions Component Maps User Properties		6≠ → Arab I	Ught		de 🛛 –	1.001	racterized Successfully	de 🗾 🔹	im	ported	-		-		-		-	

Figure 7.8 The Arab Light petroleum assay added.

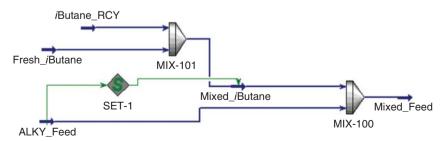


Figure 7.9 Initial flowsheet for the feed system to the alkylation reactor.

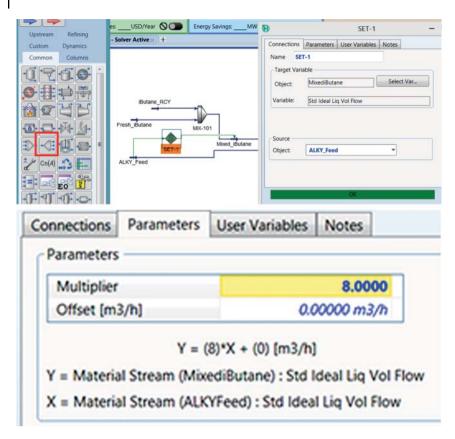


Figure 7.10 Use a "SET" operator to define the flow rate relationship.

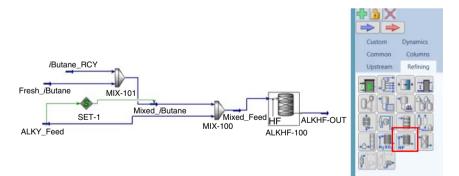


Figure 7.11 Add an alkylation reactor.

Figure 7.15 shows the tuning parameters for the petroleum distillation column. We refer the reader to Section 2.15, Workshop 2.6, Application of the Petroleum Distillation Column, for detailed explanations of the tuning parameters ECP (effective cut point), SI TOP (fractionation index, top section), and SI BOT (fractionation index, bottom section). Figures 7.16 and 7.17 show the predicted product streams by the initial model.

				HF	Alkylation Unit: AL	KHF-100	
Simulation	Calibration	Worksheet	Solver				
Simulatio	n Name	ALKHF	-100		Fluid Package	Basis-1	•
Input Results Tuning Fact Kinetic Fact Notes		Mixed	Feed	•	Reactor S	pecifications	
						[m3] iemperature [C] Duty [k]/h]	40.00 30.00 -8.895e+007
	HF Ac	id Feed					
	Std I	s Flow [kg/h] deal Liq Vol I concentration	Flow [m3/h]	4.478e+005 475.0 100.0			

Figure 7.12 Specifications of the alkylation reactor.

Simulation Cali	bration Wo	rksheet	Solver			
Simulation	Yields				Reactor Temperature	
Input	Propane	[wt %]		3.582e-002	Inlet Temperature [C]	-12.60
Results	Butane (v	vt %]		2.737e-002	Outlet Temperature [C]	30.00
Tuning Factors	Isobutan	e [wt %]		76.41	Cooling Duty [kJ/h]	-8.884e+007
Kinetic Factors	Alkylate	(C5+) [w	t %]	22.87		
	MON (CH			88.06		
	RON (Cle			92.22		
	D86 0% [61.47		
	D86 5% [C]		95.37		
	D86 10%	[C]		103.1		
	D86 30%	[C]		112.9		
	D86 50%	[C]		113.2		
	D86 70%	[C]		115.3		
	D86 90%	[C]		127.1		
				435.7		
	D86 95%	[C]		135.7		

Figure 7.13 Calculated results of the alkylation reactor.

We now close the recycle loop for *i*Butane recycle. See Figure 7.18. First, we delete the stream *i*Butane_RCY to mixer MIX-101 and add a recycle block, RCY-1 with a new recycle stream, *i*Butane_RCY1.

Next, we return *i*Butane_RCY1 to MIX-101 to close the recycle loop, and the simulation converges quickly (see Figures 7.19 and 7.20).

We check the resulting volumetric flow rates: Mixed_*i*Butane has a flow rate of $424 \text{ m}^3/\text{h}$, which is exactly eight times that of ALKY_Feed, $53 \text{ m}^3/\text{h}$; iButane_RCY1 has a flow rate of $368.9 \text{ m}^3/\text{h}$. This requires Fresh-*i*Butane stream to have a flow rate of 424-368.9 or $55.1 \text{ m}^3/\text{h}$, which is exactly what the simulation results show. Therefore, the RCY-1 and SET blocks work well. Figures 7.21 and 7.22 show the resulting product streams and their properties.

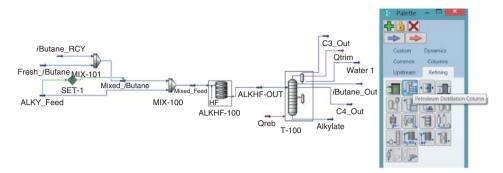


Figure 7.14 Add a petroleum distillation column.

Design	Worksheet	Performance C	alibration								
Design											
Specs	Colun	in Name			Specification Type -			Basis			
Advance Notes	d T-10	0			ECP	C Yield		Molar	🖯 Ma		
		arate Pure Compo ct Info	nent Product Cut								
		Cuts	Draw Stage	ECP [C]	Mole Frac	SI TOP	SI BOT	ECP Offset [C]			
		C3_Out	Condenser	<empty></empty>	3.305e-003	<empty></empty>	<empty></empty>	<empty></empty>			
		iButane_Out	Condenser	-30.00	0.8564	0.5000	1.000	0.0000			
			C4_Out			-5.000	4.220e-003	1.000	2.500	0.0000	
			6_Main TS	100 10.00	4.2206-003	1.000	2.500	0.0000			

Figure 7.15 Specification of tuning parameters for the petroleum distillation column.

Design Works	sheet Performance Calibration					
Worksheet	-					
Conditions	Name	ALKHF-OUT	C3_Out	iButane_Out	Water1	Alkylat
Properties	Vapour	0.8680	1.0000	0.0000	0.0000	0.000
Composition	Temperature [C]	30.00	-46.89	-11.64	99.96	101.
	Pressure [kPa]	101.3	101.3	101.3	101.3	101.
	Molar Flow [kgmole/h]	4157	13.68	3551	0.0000	574.
	Mass Flow [kg/h]	2.697e+005	580.2	2.064e+005	0.0000	6.177e+00
	Std Ideal Liq Vol Flow [m3/h]	457.2	1.119	367.2	0.0000	87.2
	Molar Enthalpy [kJ/kgmole]	-1.461e+005	-3888	-1.590e+005	-2.804e+005	-2.155e+00
	Molar Entropy [kJ/kgmole-C]	179.4	88.33	67.68	71.23	314.
	Heat Flow [kJ/h]	-6.075e+008	-5.321e+004	-5.646e+008	-0.0000	-1.239e+00
	Name	C4_Out				
	Vapour	0.0000				
	Temperature [C]	-2.683				
	Pressure [kPa]	101.3				
	Molar Flow [kgmole/h]	17.47				
	Mass Flow [kg/h]	998.8				
	Std Ideal Liq Vol Flow [m3/h]	1.670				
	Molar Enthalpy [kJ/kgmole]	-7.603e+004				
	Molar Entropy [kJ/kgmole-C]	71.84				
	Heat Flow [kJ/h]	-1.328e+006				

Figure 7.16 Product streams predicted by the initial model.

esign Workshi	eet Performance Calibration				
Performance					
Summary Energy Balance	Feed Produ	ict			
Plots		C3_Out	iButane_Out	C4_Out	Alkylate
	Yield by Volume [%]	0.24	80.32	0.37	19.07
	Yield by Weight [%]	0.22	76.51	0.37	22.90
	TBP 5% [C]	-53.76	-24.25	-16.84	79.21
	TBP 95% [C]	-46.39	-15.00	3.323	133.0
	D86 5% [C]	<empty></empty>	<empty></empty>	-5.355	97.11
	D86 95% [C]	<empty></empty>	<empty></empty>	4.143	127.7
	Gap (D86) [C]			92.96	
	RON (Clear)	104.2	101.4	96.59	90.07
	MON (Clear)	86.97	97.57	84.99	85.92
	Freeze Point [C]	-185.7	-159.1	-138.1	<empty></empty>
	Smoke Point [mm]	<empty></empty>	<empty></empty>	<empty></empty>	<empty></empty>
	Cetane Idx D976	<empty></empty>	<empty></empty>	-63.81	36.62
	API	141.1	120.0	104.8	68.06
	SG (60/60)	0.5190	0.5626	0.5988	0.7091
	Sulfur Wt Pct [%]	0.00	0.00	0.00	<empty></empty>
	Nitrogen Content [ppmwt]	3.825	1.081e-005	9.793e-013	<empty></empty>
	Basic Nitrogen Content [ppmwt]	3.825	1.081e-005	9.793e-013	<empty></empty>
	Paraffins by Volume [%]	17.04	99.74	36.07	<empty></empty>
	Naphthenes by Volume [%]	0.00	0.00	0.00	<empty></empty>
	Aromatics by Volume [%]	0.00	0.00	0.00	<empty></empty>
	Paraffins by Wt [%]	16.65	99.72	34.47	<empty></empty>

Figure 7.17 Predicted properties of product streams.

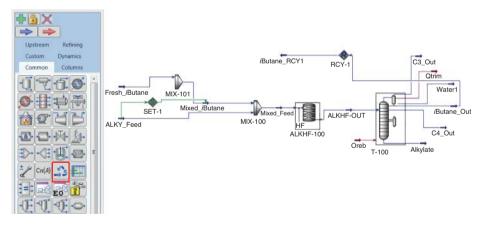


Figure 7.18 Add a recycle block to recycle *i*Butane_Out to MIX-101.

We conclude this workshop by noting that: (1) if plant data are available, we could replace the petroleum distillation column by a rigorous column; (2) the current alkylation model does not include catalyst (HF or H_2SO_4) as a component, but only include its flow rate and concentration in the reaction kinetics calculations; thus, both HF an H_2SO_4 alkylation models are quite similar.

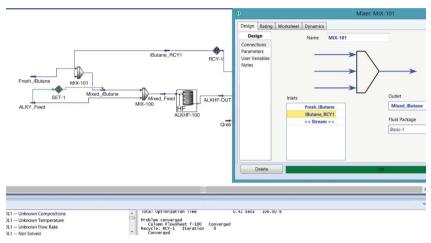


Figure 7.19 Close the *i*Butane recycle loop.

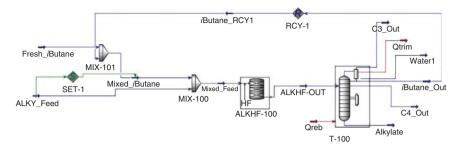


Figure 7.20 The final HF alkylation process flowsheet with *i*Butane recycle.

Worksheet						
Conditions	Name	ALKHF-OUT	C3_Out	iButane_Out	Water1	Alkylate
Properties	Vapour	0.8693	1.0000	0.0000	0.0000	0.0000
Composition	Temperature [C]	30.00	-46.89	-11.64	99.96	100.9
	Pressure [kPa]	101.3	101.3	101.3	101.3	101.3
	Molar Flow [kgmole/h]	4157	13.68	3551	0.0000	574.8
	Mass Flow [kg/h]	2.697e+005	580.2	2.064e+005	0.0000	6.178e+004
	Std Ideal Lig Vol Flow [m3/h]	457.2	1.119	367.2	0.0000	87.21
	Molar Enthalpy [kJ/kgmole]	-1.460e+005	-3888	-1.590e+005	-2.804e+005	-2.150e+005
	Molar Entropy [kJ/kgmole-C]	175.1	88.33	67.68	71.23	280.5
	Heat Flow [kJ/h]	-6.068e+008	-5.320e+004	-5.646e+008	-0.0000	-1.236e+008
	Name	C4_Out				
	Vapour	0.0000				
	Temperature [C]	-2.684				
	Pressure [kPa]	101.3				
	Molar Flow [kgmole/h]	17.46				
	Mass Flow [kg/h]	998.7				
	Std Ideal Lig Vol Flow [m3/h]	1.669				
	Molar Enthalpy [kJ/kgmole]	-7.602e+004				
	Molar Entropy [kJ/kgmole-C]	71.85				
	Heat Flow [kJ/h]	-1.328e+006				

Figure 7.21 Product streams from the HF alkylation process.

Worksheet							
Conditions							
properties	Name	ALKHF-OUT	Alkylate	C3_Out	iButane_Out	Water1	
Composition	Molecular Weight	64.89	107.5	42.40	58.12	18.02	
	Molar Density [kgmole/m3]	4.746e-002	6.042	5.562e-002	10.22	52.62	
	Mass Density (kg/m3)	3.080	649.4	2.358	593.9	947.9	
	Act. Volume Flow [m3/h]	8.759e+004	95,14	246.0	347.5	0.0000	
	Mass Enthalpy [kJ/kg]	-2250	-2001	-91.70	-2736	-1.556e+004	
	Mass Entropy [kJ/kg-C]	2.698	2.610	2.083	1.165	3.954	
	Heat Capacity [kJ/kgmole-C]	116.0	260.0	53.63	124.7	79.22	
	Mass Heat Capacity [kJ/kg-C]	1.788	2.420	1.265	2.145	4.398	
	LHV Molar Basis (Std) [kJ/kgmole]	<empty></empty>	<empty></empty>	1.946e+006	2.652e+006	0.0000	
	HHV Molar Basis (Std) [kJ/kgmole]	<empty></empty>	<empty></empty>	2.076e+006	2.857e+006	4.101e+004	
	HHV Mass Basis (Std) [kJ/kg]	<empty></empty>	<empty></empty>	4.895e+004	4.917e+004	2276	
	CO2 Loading	<empty></empty>	<empty></empty>	<empty></empty>	<empty></empty>	<empty></empty>	
	CO2 Apparent Mole Conc. [kgmole/m3]	<empty></empty>	3.189e-022	<empty></empty>	0.0000	<empty></empty>	
	CO2 Apparent Wt, Conc. [komol/kg]	<empty></empty>	4.911e-025	<empty></empty>	0.0000	<empty></empty>	
	LHV Mass Basis (Std) [kJ/kg]	<empty></empty>	<empty></empty>	4.590e+004	4.564e+004	0.0000	
	Phase Fraction [Vol. Basis]	0.8315	<empty></empty>	1.000	<empty></empty>	0.0000	
	Phase Fraction [Mass Basis]	0.8041	0.0000	1.000	0.0000	0.0000	
	Phase Fraction [Act. Vol. Basis]	0.9991	0.0000	1.000	0.0000	0.0000	
	Mass Exergy [kJ/kg]	0.1432	18.97	14.11	54.90	35.22	
	Partial Pressure of CO2 [kPa]	0.0000	0.0000	4.538e-004	0.0000	0.0000	
	Cost Based on Flow [Cost/s]	0.0000	0.0000	0.0000	0.0000	0.0000	
	Act. Gas Flow [ACT_m3/h]	8.751e+004	<empty></empty>	246.0	<empty></empty>	<empty></empty>	
		¥		m			

Figure 7.22 Product properties for HF alkylation process.

7.2 Delayed Coking

7.2.1 Process Description

Kaes [2], Gary *et al.* [1], and Ellis and Paul [7] gave good descriptions of the petroleum coke and the delayed coking operation, coking reactions, product separation, and technology economics. We summarize the key features from these references, focusing mainly on those aspects that are relevant to process simulation and optimization.

Basically, delayed coking is a severe thermal cracking operation to upgrade and convert petroleum residual materials (e.g., bottoms from atmospheric and vacuum distillation of crude oil) to liquid and gas product streams (fuel gas, LPG, naphtha, and coke gas oil), leaving behind a large amount of concentrated solid carbon material, petroleum coke [7]. The coker gas oil is a suitable feed to a fluid catalytic cracking unit or to a hydrocracking unit. Figure 7.23 shows a simplified delayed coking process flowsheet.

The feed to a delayed coker is typically a vacuum residue. It combines with a recycle oil from the coker fractionation bottom and with a steam stream and is heated in a charge furnace (fired heater with horizontal tubes) to reach a thermal cracking temperature of 485–505 °C. With a short residence time in the furnace tubes, coking of the feed material is "delayed" until it reaches the bottom of a large coking drum downstream of the furnace [7]. The coker drum has a long residence time, allowing the heavy liquids to polymerize and dehydrogenate to form petroleum coke and to deposit the coke on the sides of the drum. The coke builds in the drum from bottom up. When the accumulated coke reaches a certain height, the drum is taken off-line, and the coke deposit is removed by a hydraulic drill. The removal of coke from a drum consumes a large amount of water, and the contaminated water requires treatment before water reuse [2].

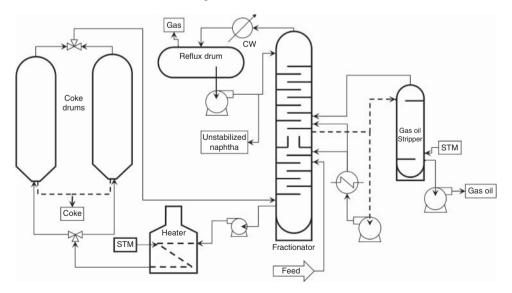


Figure 7.23 A schematic diagram of a typical delayed coking process. (Courtesy of Kaes [2].)

This coke deposit and removal operation are cyclic. At least two coker drums are used. When one drum is filled with coke deposit, it is taken off-line for coke removal, and the other coker drum is brought on-line [2].

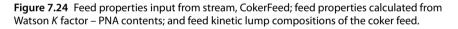
The steam and oil vapors that do not coke leave the top of the coker drum and are quenched with cold gas oil to stop the reactions before fractionation. The quenched coke drum vapors are introduced to the wash zone at the bottom of the fractionation column, where they are "washed' with heavy gas oil. The washed zone liquid falls to the bottom of the fractionation column, where it mixes with the fresh residual charge [7].

The main fractionator separates the vapors from the wash zone into fuel gas, LPG, naphtha or unstabilized gasoline, light gas oil (LGO), heavy gas oil (HGO), and a bottom residue stream. The residue stream is recycled to the coker inlet as a coker feed. The coker gas oils may be further processed in hydrotreaters and used as feedstock to other cracking processes.

7.2.2 Feed Characterization, Kinetic Lumps, and Coking Reaction Kinetics

There are three types of reactions occurring in a delayed coker. First, thermal cracking can occur in furnace, drum liquid, and drum vapor phase. Next, coke formation from precipitation or polymerization can occur in the drum liquid phase. Lastly, the asphaltenes can precipitate in the drum to form coke.

To model the reaction kinetics within a delayed coker using Aspen HYSYS, we first characterize the coker feed by *its specific gravity (API gravity), sulfur content, Conradson carbon residue (CCR), nitrogen content, and D2887 9-point distillation curve.* With delayed coking becoming the technology of choice to upgrade the petroleum residue materials ("bottom of the barrel") in a refinery, it is important to be able to predict product yields based on coker feed characterization. Ancheyta [8] and Gary *et al.* [1] have reviewed empirical correlations reported from 1981 to 2006 to predict product yields from a delayed coker, with most of the correlations based on CCR and API gravity. References [9] and [10] present examples of applying these correlations to commercial delayed cokers.


In this chapter, we show the reader how to develop simulation models for the delayed cokers that can predict the effects of operating conditions, in addition to feed properties, using Aspen HYSYS.

Aspen HYSYS delayed coker model uses 37 kinetic lumps and 113 reactions. Aspen HYSYS takes the feed properties listed and calculates properties that are more directly related to the kinetic lumps, particularly the Watson *K* factor, Eq. (1.7). From the Watson *K*, Aspen HYSYS estimates paraffins, naphthenes, and aromatics (PNA). We illustrate the feed properties and the estimated PNA contents for the coker feed in the simulation file, *Workshop 7.2-1 Closed Loop_Calibration.hsc.* Open the file and go to COKER-100 \rightarrow Calibrate \rightarrow Feed Summary (see Figure 7.24).

Aspen HYSYS uses the PNA contents, along with the distillation curve and CCR to calculate the kinetic lump compositions entering the coker.

To understand the meaning of the acronym of each kinetic lump, we may put the mouse on top of one kinetic lump, say, HP, and click on the functional key F1 to access the Aspen HYSYS V9 Help. We then see the explanation in Figure 7.25.

Simulation	Calibrate	Worksheet Solver			
Calib	rate	Feed properties input from	n stream	Feed lump com	position (wt %)
Feed/Opera	ation	Specific Gravity	0.9856	HP	0.9494
Feed Summ	nary	Sulfur [wt %]	6.026	HPS	0.6536
Cuts		ConCarbon [wt %]	8.206	HN	1.884
Light Ends		Nitrogen [ppmwt]	7803	HAA1	3.480
Heavy Ends		D2887 IBP [C]	390.0	HAA2	0.3809
Calibration	Targets	D2887 5% [C]	432.3	HAA3	0.2777
Calibration	Results	D2887 10% [C]	474.7	HASA1	2.262
Advanced	10 IS	D2887 30% [C]	533.6	HASA2	0.2477
Base Prope	rty Curves	D2887 50% [C]	589.0	HASA3	0.1806
		D2887 70% [C]	641.7	HDA2	8.200e-003
		D2887 90% [C]	715.7	HDA3	8.200e-003
		D2887 95% [C]	825.3	RP	10.44
		D2887 FBP [C]	871.6	RPS	6.786
				RN	20.59
		Feed properties calculated	from stream	RAA1	24.08
		Watson K	11.28	RAA2	2.637
		Paraffins [wt %]	18.83	RAA3	1.922
		Naphthenics [wt %]	22.48	RAA4	1.401
		Aromatics [wt %]	58.69	RASA1	15.66
				RASA2	1.714
				RASA3	1.250
				RASA4	0.9111

In addition to the 24 lumps depicted in Figure 7.24, Aspen HYSYS also include nine more components and kinetic lumps, including H_2S , C (lights), G (gasoline), GS (gasoline S), LP (light paraffins), LPS (light paraffin S), LN (light naphthenes), coke, and water.

The 33 components and kinetic lumps are involved in 133 reactions, with the kinetics of each reaction being represented by a first-order reaction, with its reaction rate constant being represented by the standard Arrhenius equation. On the Advanced page of the Calibration tab, we can specify advanced kinetic and property parameters to fine-tune the kinetic model to better match plant data (see Figure 7.26).

To understand more about tuning these parameters, use functional key F1 to access the Aspen HYSYS V9 help. For example, using functional key F1 teaches us that "fraction of the unconverted resid" represents the resid that did not coke but remains in the coker drum at the end of the drum cycle. This corresponds to the volatile matter in the coke. Increasing this value decreases the coke production and drum temperature.

7.2.3 Workshop 7.2 – Simulation and Calibration of a Delayed Coking Process

In this workshop, we teach the reader how to duplicate a completed delayed coker model available from the installation package of Aspen HYSYS V9 under the file name *delayedcoker_rigorouscolumn.hsc*.

HP	Gas Oil Paraffin
HPS	Gas Oil Sulfides
HN	Gas Oil Naphthenes
HAA1	Gas Oil 1-Ring Alkyl Aromatics
HAA2	Gas Oil 2-Ring Alkyl Aromatics
HAA3	Gas Oil 3-Ring Alkyl Aromatics
HASA1	Gas Oil 1-Ring Sulfide Aromatics
HASA2	Gas Oil 2-Ring Sulfide Aromatics
HASA3	Gas Oil 3-Ring Sulfide Aromatics
HDA2	Gas Oil 2-Ring Denuded Aromatics (No more crackable sidechains)
HDA3	Gas Oil 3-Ring Denuded Aromatics
RP	Resid Paraffin
RPS	Resid Sulfides
RN	Resid Naphthenes
RAA1	Resid 1-Ring Alkyl Aromatics
RAA2	Resid 2-Ring Alkyl Aromatics
RAA3	Resid 3-Ring Alkyl Aromatics
RAA4	Resid 4-Ring Alkyl Aromatics
RASA1	Resid 1-Ring Sulfide Aromatics
RASA2	Resid 2-Ring Sulfide Aromatics
RASA3	Resid 3-Ring Sulfide Aromatics
RASA4	Resid 4-Ring Sulfide Aromatics
RDA3	Resid 3-Ring Denuded Aromatics
RDA4	Resid 4-Ring Denuded Aromatics

Figure 7.25 Aspen HYSYS V9 Help – explanation of the meaning of 24 kinetic lumps.

We start by opening a new case in Aspen HYSYS, go to Properties Environment, and click on Petroleum Assay. Note the three options for adding an assay – import from library, import from file, and manually enter (see Figure 7.27). We save the simulation file as *Workshop 7.2-1.hsc*.

The traditional feed to a delayed coker is a vacuum residue. For this workshop, we choose to import an existing assay in Aspen assay library, Hondo Monterrey – 1983 to define this vacuum residue. After clicking on "Import from library" button on the previous figure, HYSYS asks us to select assay components from a list. We choose component list (cml), "Assay Component Celsius to 850C.cml". We then search for the assay Hondo Monterey – 1983 and import it (see Figures 7.28–7.31).

Next, we enter the Simulation Environment to define a Petroleum Feeder to the flowsheet (see Figure 7.32). We enter the temperature, pressure, and mass flow

				De	layed Coker:	COKER-100		
Simulation	Calibrate	Worksheet	Solver					
Calibr	rate	Kinetics				E	A/(1000R) [K]	
Feed/Opera	ation	Fraction of	Unconver	rted Resid	2.000	e-002	Cracking	25.51
Feed Summ	CCC2	Sulfur to hy	drocarbo	n cracking ratio		1 100	Coking	10.00
Cuts		Furnace Ac	tivity		0	.5000		
Light Ends		Furnace Co	king Activ	vity	1.000	e-005		
Heavy Ends		Light Activi	ty		0	0.0000		
Calibration	Targets	Gasoil Activ	ity		2.000	e-002		
Calibration	Results	Aromatics (oking Ac	tivity		1.000		
Advanced		Saturates C	oking Act	tivity	1.000	e-003		
Base Prope	rty Curves	Multi-ring a	romatics	Coking Activity	ing Activity 100.0			
		Properties	5	Sulfur C5-230F	230-350F	350-650F	cror, linet	
			-				650F+Liquid	
		Drum Inlet		8.056e-004	1.926e-003	3.538e-003	4.030e-003	
		Drum Inlet Combined	Contra e provense e	-8.230e-005	-1.126e-004	-2.468e-004		
			eed Kati	-	-0.4477	-0.6448		
		Feed SG		1.087	1.027	1.051		-
		Feed Sulfur		-1.458e-002	-3.032e-002	-4.801e-002	the second se	
		Feed CCR		-4.976e-003	-9.353e-003	-1.443e-002		
		Base		0.1734	0.3579	0.5669	0.7469	

Figure 7.26 Advanced kinetic and property parameters for fine-tuning the kinetic model response to match plant data.

reperties		Assays : +					_								_	
Tarity	Annay Sint															
Third Packages	Display:	All Registre *														
Reactions Component Maps		Assay		Characterization Method	n	Status		uid Package	From Source	Density (kg/m2)		Sutter (N)	*	scoulty icito @		Watson K
User Properties			-	8-	-] [- 1.0-		a		-		14	(+)	-	

Figure 7.27 Open a new case, enter the Properties environment, click on Petroleum Assays, and choose "Import from Library" to add an assay.

rate of CokerFeed based on the plant data, and we assume initially CokerFeed to have the same composition and properties as the petroleum assay, Honod Monterey – 1983 (see Figure 7.33).

Next, we add the delayed coker into the flowsheet and specify the connecting streams (Figure 7.34).

We enter the required input to the delayed coker. Note that *the combined feed ratio*, CFR, is the flow rate ratio of the coker feed from the coker fractionator to the feed entering the coke fractionator. Generally, this ratio varies between 1.05 and 1.15 (see Figure 7.35).

Next, we add another petroleum feeder based on the same petroleum assay, Honod Monterey – 1983, with a product stream, VR Feed, which is the vacuum

7.2 Delayed Coking 533

Properties	Petroleum	Assays × +												
All Items	· Assay Su	mmary												
Component Lists	Display:	All Regions *												
Petroleum Assays	company.	(min regions												
Reactions	-			Charac	terization			atus		From Source			Sulfur (%)	Vie
Component Maps		Assay		Me	thod		21	atus	Fluid Package	From Source	Density (k	g/m3)	Sulfur (%)	
Co User Properties	da .		•	4		A .	55	Assay Cor	nponent Select	ion - I	×	-	=	
								1000 001	inponenti seneci					
7								component lists the Component Assay Compon Assay Compo Assay Compo Assay Compo Assay Compon FCC Compone FCC Compone Hydrocracker Reformer Com	ents Fahrenheit Components Cels Components Fah nponents Celsius	vn below, or retu te a custom one. OC 50C 150C to 1500F to 2000F dus renheit				
Properties	Add	Export				Telete		Reformer Con	nponents Fahrenh	ieit				
Safety Analysis	Messages													
4	Required Inf	o : Fluid Packages S	elect pr	operty p	ackage									

Figure 7.28 Choose a predefined component list from Aspen HYSYS. (Courtesy of ASPEN Technology, Inc.)

- 40								Ad	d Assay										
Select library:	All		Propert	y	Mnimur	n	Махаттыт		Unit.		Clear								
			Density						API										
Assay name:	Hondo		+ Suttur						16										
	-																		
Region	All Regions	•																	
310300																			
Country	All Countries	-	Pour Point						c										
Select Assay																			
	Assay		Library Name	Ama	y date:		legios		Country		Density(API)		Sultur(%)	1	Viscosity(cSt) @ 37.78C	TAN	mg KOH(yg)	Pou	r Point(C)
			• d# •	- 50		84		de.		• •		=		1	•	-		=[
+ Hondo B	end-1963		Aspen Assay L.	4/11/1	453	North	America	Un	med States		14.9379		4.605		56122.777		0.168		22.55
Hondo M	lonterey-1983		Aspen Assay L.	4/11/19	183	North	America	Un	ited States		17.7726		5.005		134,273		0.172		26.56
+ Hondo Sa	inditione-1983		Aspen Assay L	4/11/19	163	North	America	Un	ited States		33.7052		0.227		2.912		0.087		20.69
																	OK	1	Carce
	Select iBray: Assay name: Region: Country: Select Assay - Mando M Hendo M	Region: All Regions Country: All Countries Select Assay Assay	Select Broy/ AB Assy rame: Hando Region: All Region: Country All Countries Select Allary Assy be: Hendo Bres-1483 Hendo Bres-1483 Hendo Bres-1483	Select Utrany All Propert Assay name: Hando Schur Schur Region: All Regions Schur County: All Countries Vaccosity All County: All Countries Vaccosity Schur Prove name Schur Assay Asay A	Select Brays AB Property Assay name Fonde Denetly Assay name Fonde Scalar Region AB Regions For Viscoily County: All Countries Property Select Assay All County: All Countries Property Select Assay All County: All Countries Property Select Assay Assay Assay Assay Assay Assay Assay L Hendes Bland-1929 Agen Assay L 4/11(1) Hoodo Monteey-1923 Agen Assay L 4/11(1)	Select Blong: All Property Miximum Assay ream: Finando Subur Property Subury Assay ream: Subury All Region: All Region: All Region: All Region: Property Country All Countries Property Country Assay date: A	Select Broys AB Property Minimum Assay name: Hondo Assay name: Hondo Bogtom All Region: Country All Countries Procenty Country Analy date:	Select Bandy All Property Minimum Mealmum Assey rome: Fando S Grant Gran	Select Broys AB Property Minimum Maximum Assay name: Fondo Satur Satur Vaccostry AB Property Minimum Maximum Assay name: Satur Satur Vaccostry AB Country Property Minimum Assay date: Property Satur Vaccostry Property Vaccostry Property Vaccostry Vaccostry Property Vaccostry Property Vaccostry Property Vaccostry Property Vaccostry Property Vaccostry Vaccostry Property Vaccostry Property Vaccostry Property Vaccostry Vaccostry Property Vaccostry Vaccostry Property Vac	Select Ekniyi Ali Property Maximum Maximum Unit Ansy rome: Fando I Dentity Anit Anit Region: Ali Regions I Color County Ali Countries Proper Point C County Ali Countries Proper Point C County Anity Anity Unit Anity A	Select Marky Adl Property Morimum Morimum Date Assay ream: Fando Denkity Control API Assay ream: Fando Sufur API Bregion: All Region Sufur CSI Country All Countries Prop Peter CC Country All Countries Prop Peter C Select Allar Prop Peter C Assay ream Assay date: Region Country Assay Band Assay date: Region C Assay Band Assay date: Region Country F Housdo Bland-1818 Aspen Assay L. 477/1783 Nouth America United States F Housdo Bland-1918 Aspen Assay L. 471/1783 Nouth America United States F	Select Maray: Adl Property Mozimum Mozimum Data Ansay ream: Property Mozimum Mozimum Data Ansay ream: All Subscr Property Mozimum Marine Ansay All Subscr All Subscr All Subscr All Subscr All Subscr All Subscr All Subscr Country Subscr Country Subscr Prop Parmer Country Mozimum Ansay Subscr Subscr Country Subscr Density(APE Country Density (APE Country Density (APE Country Density (APE Country Density (APE Country Density (APE Country Densit (Select Birriy AB Property Maimum Multimum Unit Class Assey rame: Fando 0 Dercity Assey API API Assey rame: Fando 0 Sclar Sci Sci API Region: All Bingtoms F Visionity Cast Sci Sci	Select Kindy All Propenty Meanum Date Accey reme: Fande Dentity Meanum ARI Accey reme: Fande Dentity Meanum ARI Region: All Regions Stdue Stdue Stdue Counting In Dentity Meanum Meanum ARI Counting In Dentity Meanum Meanum ARI Property Meanum Stdue Stdue Stdue Counting In Property Meanum Stdue Stdue Select Anise In Dentity Meanum Arise date Regrees Counting Suffice/Site Assey Litten Yiam Arise date Regrees Counting Suffice/Site Intendo Bane-1818 Agen Anary L. 471/1938 North Ameres Under Sites 1972/4 4055 Intendo Meantering 1983 Accen Assey L. 471/1938 North Ameres Under Sites 1772/8 4055	Select String: All Property Minimum Musimum Unit CBBI Acceptamin: Francis Density Annu Ang Acceptamin: Francis Density Ang Acceptamin: Staffar	Select Burryl All Property Maximum Maximum Unit Assey rame: Fando 1 Density API API Assey rame: Fando 1 Density API API Region: All Bregions 1 Solidation Solidation Solidation Country: All Countries 1 TAV mg BOH1g Country Assey rame: Proor Priori C C Solidation Proor Priori C C Assey rame: Assey date: Region: Country: Density(API Assey rame: Assey date: Region: Country: C Assey rame: Assey date: Region: Country: Density(API Sufface/Bill Assey rame: Assey date: Assey date: North Asservace Month Asservace Month Asservace 1 Hondo Monthere(1983) Appen Assey: 4/11/1983 North Aservace Month Aservace Month Aservace 3 Rooto Monthere(1983) Appen Assey: 4/11/1983 North Aservace Month Aservace	Select Europi All Property Meanum Meanum Desite All Accey room: Fando 1 Dentity All All	Select Moniy, Adl Property, Minimum Maximum Unit Assay ream: Feedbily, Assay ream: Sufur Progen: Sufur Assay ream: Sufur Progen: All Regions Statu cst Counting Poor Point Counting Poor Point Select Allar eng SOFky Select Allar eng SOFky Assay ream: Poor Point Select Allar Brany Namer Assay ream: Barry Namer Barry Namer Barry Namer	Select Bandy All Planny Maintain Maainain Unit Assy rame: Fandio & Decity All All Select Region: All Regions & Viscosity College Bandy All Regions

Figure 7.29 Search for the assay, Hondo Monterey – 1983 from Aspen Assay Library. (Courtesy of ASPEN Technology, Inc.)

Properties I	190	rolean Asseys × Hondo M	onterey-1583 - (Conventional Ra	tanits +										
Villeró ·		Results Sammary Page Com	www.i.Dimiliari	ion Roomets T	unic Merculus	1									
Component Lists	1		1	Curt	Cw2	043	Cur4	Curis	Cutti	Ġu0	Curl8	Curt	Cw110	Gatt	Curt2
A P Hondo Monterey-1983		Initial Temperature (C)	1841	187	40.0000	84,7059	129.4118	174,1176	218.8235	263.5294	308.2353	352.9412	397.6471	442,3529	487.0
Input Assay Conventional Results		Risal Temperature (C)	182	40.0000	84,7259	129.4118	174,1176	218,8235	263.5294	306.2353	352.9412	397.6471	442.3529	487.0588	\$31.7
Reactions		CuttleIdByVol (%)	100.00	0.10	0.75	3.95	10.30	7.81	4.80	4.16	\$.77	531	5.05	4.90	43
Component Maps		StdLiquidDensity (kg/m_	945.9816	597,3093	776.2384	796.3719	814,9255	836.1575	852,7148	875.4776	894,0762	913,2534	991.6811	950.7836	966.35
The Properties		SulfurByWL(N)	5.005	0.000	0.061	0.192	0.891	2302	3.425	1.730	3.933	4.056	4,205	4565	5.1
		KinematicViscosity (c50	529,560	0.200	0.663	0.890	1.222	2.124	3.762	9.514	24,347	82.636	379.685	2867.558	28108.5
		Knemalk/Vacosity (c50	134,273	0.200	0.510	0.671	0.936	1.530	2.476	3,295	11,164	28.953	93.271	433.194	2431.9
		EnersaticViscosity (cSt)	45.552	0,200	0.411	0.542	0.744	1.148	1,729	1,255	5.972	12.692	31.528	101.972	376.9
		EneraticViscosity (c50-	10.953	0.200	0,309	0.397	0.525	0.744	1.014	1.620	2.505	4.222	7.740	35.410	36.9
		PourPoint (C)	26.563	-143.734	-106.470	-88.835	-71,910	-54.522	-39.389	-14.600	0.716	6.327	11.455	16.835	21.7
		VariadumiRyWt (%)	0.034	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
		NickelByW1 (%)	0.016	0.000	0.000	0.000	0.000	0.000	8.000	0.000	0.000	0.000	0.000	0.000	0.0
		Iron By WIT (11)	0.004	0.000	0.000	0.000	0.000	0.000	8.000	0.000	0.000	0.000	0.000	0.000	0.0
		RONOear	22.09	88.66	71.88	62,14	57.51	52.44	47.83	40.55	35.93	31.09	26.11	30.97	16.
		SmokePt (m)	0.00	0.07	0.03	0.05	50.0	9.02	0.02	0.01	0.01	0.01	0.01	0.01	0.1
	-														

Figure 7.30 The imported petroleum assay, Hondo Monterey – 1983.

Properties < 2				
Component List - 1	Source Databank: HYSYS			
Fluid Packages Basis-1	Component	Туре	Group	1
Petroleum Assays	460-480C*	User Defined Hypothe	Assay Hypos	
 Hondo Monterey-1983 Input Assay 	480-500C*	User Defined Hypothe	Assay Hypos	
Conventional Results	500-520C*	User Defined Hypothe	Assay Hypos	
Reactions	520-540C*	User Defined Hypothe	Assay Hypos	
Component Maps	540-560C*	User Defined Hypothe	Assay Hypos	
	560-580C*	User Defined Hypothe	Assay Hypos	
	580-600C*	User Defined Hypothe	Assay Hypos	
	600-625C*	User Defined Hypothe	Assay Hypos	
	625-650C*	User Defined Hypothe	Assay Hypos	
	650-675C*	User Defined Hypothe	Assay Hypos	
	675-700C*	User Defined Hypothe	Assay Hypos	
	700-725C*	User Defined Hypothe	Assay Hypos	
	725-750C*	User Defined Hypothe	Assay Hypos	
	750-775C*	User Defined Hypothe	Assay Hypos	
	775-800C*	User Defined Hypothe	Assay Hypos	
Properties	800-825C*	User Defined Hypothe	Assay Hypos	
	825-850C*	User Defined Hypothe	Assay Hypos	-
Cafata Anabaia	850+C*	User Defined Hypothe	Assay Hypos	

Figure 7.31 The Component List-1, with hypocomponents up to a boiling range above 850 °C.

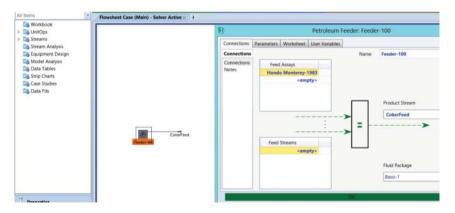


Figure 7.32 Define petroleum feeder showing feed assay, Hondo Monterey – 1983, and product stream, CokerFeed.

7.2 Delayed Coking 535

	Worksheet Attachme	ents Dynamics	
	Worksheet	Stream Name	CokerFeed
	Conditions	Vapour / Phase Fraction	0.7153
	Properties	Temperature [C]	417.3
	Composition	Pressure [kPa]	190.0
	Oil & Gas Feed	Molar Flow [kgmole/h]	765.4
	Petroleum Assay K Value	Mass Flow [kg/h]	2.310e+005
CokerFeed	User Variables	Std Ideal Liq Vol Flow [m3/h]	243.9
Coner ceu	Notes	Molar Enthalpy [kJ/kgmole]	-3.331e+005
	Cost Parameters	Molar Entropy [kJ/kgmole-C]	1161
	Normalized Yields	Heat Flow [kJ/h]	-2.549e+008
		Liq Vol Flow @Std Cond [m3/h]	245.3
		Fluid Package	Basis-1
		Utility Type	

Figure 7.33 Enter the conditions of CokerFeed.

		0		1	Delayed Coker: C	OKER-100
Custom Dynamics		Simulation Calibra	ne Worksheet Solver			
Common Columns		Simulation	Name COKER-100		Fluid Package	Basis-1
Upstream Refiring		Connections Input Feed Summary		-		
		Product Yields	Crude Feed to Heater	CokerFee	•	
		Product Properties Tuning Factors	Coker Drum Effluent	CokerOff	Gas -	E.
1 11 1		Notes				
Brm rm	CokerOffGa					
	CokerFeed					
e e	CokerFeed					

Figure 7.34 Add a delayed coker to the flowsheet.

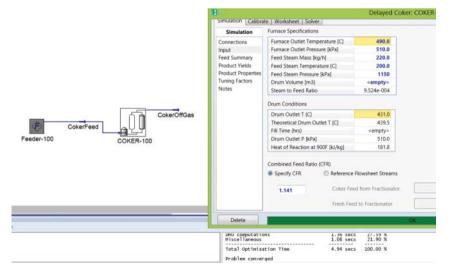


Figure 7.35 Enter input to the delayed coker model and achieve simulation convergence.

reside to the fractionation column. We specify the temperature, pressure, and flow rate of VR Feed (see Figure 7.36).

We continue to add a fractionation column with VR Feed and CokerOffGas as feeds and with fuel gas, LPG, naphtha, LGO, HGO, and coker feed as products. The column has a side stripper and a pumparound. We use a refluxed absorber, with a condenser but no reboiler, as our column model (see details in Figures 7.37–7.40).

Figure 7.41 shows the eight specifications that enable the convergence of the coker fractionation column. We save the converged open-loop simulation as *Workshop 7.2-1 Open Loop_Converged.hsc.*

Next, we delete the petroleum feeder F-100. We add a recycle block RCY-1 and connect the streams as Figure 7.41. We see the converged specifications for the

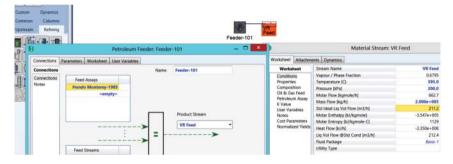


Figure 7.36 Define a petroleum feed and its product stream, VR Feed.

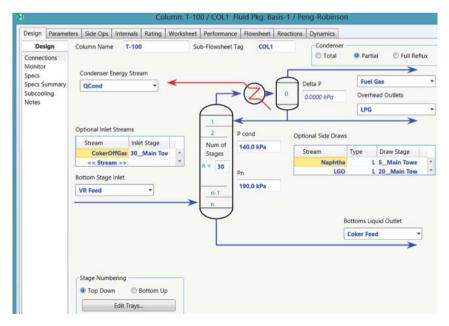


Figure 7.37 Specifications of the coker fractionation column.

7.2 Delayed Coking 537

Design Parameter	s Side Ops In	nternals Rating W	orksheet Performance	Flowsheet Reactions	Dynamics	Side C	ps Intern	ils Rating	Worksheet	Performance	Flowsheet	Reactions D
Side Ops	Side Stripper S	ummary				-	ump Around		1			2 12
Side Strippers Side Rectifiers Pump Arounds		# Stages	Liq Draw Stage	Vap Return Stage	Outlet Flow [kg/h]		Dra	w Stage	Return S	itage	Flow	Duty [ki/h]
Vap Bypasses	\$\$1		29_Main Tower	and the second second second	<empty< td=""><td>PA_1</td><td></td><td><empt< td=""><td>(P)</td><td><empty></empty></td><td><empty></empty></td><td><empty< td=""></empty<></td></empt<></td></empty<>	PA_1		<empt< td=""><td>(P)</td><td><empty></empty></td><td><empty></empty></td><td><empty< td=""></empty<></td></empt<>	(P)	<empty></empty>	<empty></empty>	<empty< td=""></empty<>
Side Draws	8		Side Stripper - S	51	- • ×	50			Pump A	round - PA	1	_ 0
	Name 551					Nam	PA,1			Pump di		
	Return Stag	e		Active Reboiler Spec		Retur	n Stage			<empty< td=""><td></td><td></td></empty<>		
	24_Main 1	Tower •	\rightarrow	SS1 BoilUp Ra 0.10		_	Main Towe	•		Cooler d		
	Draw Stage	-	2			-			1	0.00 kP	'a	
	29_Main 1											
			k= 6					6	5		->	
			61					ç	\geq	-		
		Į.						-	^		Add Pump	
			γ		>						Add Valve	
					>	Draw	Stage		1		Aqueous	
			Calo	ulated Product Informatie	an .	11_	Main Towe					
	Delete		Name	SS1 P	bot			Cano				Install

Figure 7.38 Specifications of side stripper and pumparound for the coker fractionation column.

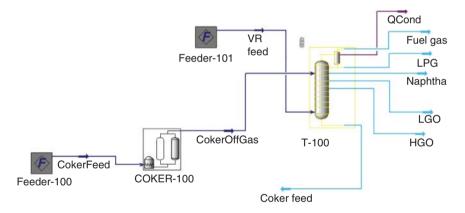


Figure 7.39 Flowsheet with the coker fractionation column before recycle.

coker fractionation column in Figure 7.42. We save the simulation as *Workshop* 7.2-1 *Closed Loop_Converged.hsc.*

We continue to do calibration of the delayed coker model using plant data. First, we resave the file *Workshop 7.2-1 Closed Loop_Converged.hsc* as *Workshop 7.2-1 Closed Loop_Calibration.hsc*. We open the delayed coker model, go to "Calibration," and click on "Pull Data from Simulation." Figure 7.43 shows the resulting data.

We then enter the available plant data for calibration (see Figures 7.44–7.46). For convenience, we can copy these calibration data from the supplement to this book, under the file *Workshop 7.2-1 Initial and Calibration Data.xlsx*.

The calibration involves three steps: (1) initialize calibration; (2) calibrate; and (3) transfer the resulting calibrated model parameters back to the simulation file (see Figure 7.47).

Column: T-100 / COL1 Fluid Pkg: Basis-1 / Peng-Robinson Draw Spec: Naphtha Rate _ 🗆 🛛 ign Parameters Side-Ops Internals Rating Worksheet Performance Flowsheet Reactions Dynamics Parameters Summary Spec Type Ontional Checks Name Draw -Profile COL Temperature vs. Trav Po Input Sum Flow Ba @ Temp Spec Value 2.0 004 kg/h Step at / Sner O Press - -Draw Spec: LGO Rate 4.57313 16 6943 O Flo 0.4726 -0.431056 40.285712 Parameters Summary Spec Type 1.0000 0.029047 2.203588 Name 1.0000 0.001346 0.001079 LGO @COL1 Flow Basis Mass led Value Current Value Wt. Error Active Draw Spec: HGO Flow Rate B 10.62 ממממממממממ 00 kg/t 7.578e-005 3.236e+005 Parameters Summary Spec Type ux Rate mpty> an Prod Rate 3.046e+004 SS1_Prod @COL! Draw et Brout Rat 2 310e+005 km 2 310e+005 and Ros GO Rate 3.013e+004 npty: HGO Flow Rab 9.501e+004 Draw Spec: Btms Prod Rate 004 km/ SS1 BoilUp Ra 0.2596 0 1596 rs Summary Spec Typ A_1_Rate(Pa) PA_1_Dt(Pa) 40.00 40.00 0.0000 65.00 (65.00 neer Ten 0.0000 er Feed @COL 350.0 0 350.0 Add Spec.. Group Active Update Inactive Degrees of Freedom 8 Summary Spec Type Run Reset Vindate 0 SS1_Rel Stage 350 0 0

538 7 Alkylation, Delayed Coking, and Refinery-Wide Simulation

Figure 7.40 Eight specifications to achieve coker fractionation column convergence in the open-loop flowsheet.

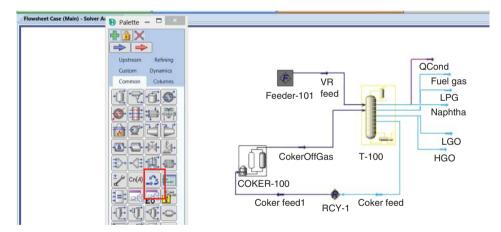


Figure 7.41 Convert the open-loop converged flowsheet to a closed loop.

To conclude this workshop, we note that when plant data are available, the reader can continue to add more fractionation units (such as the stabilizer for the naphtha or unstabilized gasoline product) to our current delayed coking process flowsheet. We can do this fairly easily by referring to Workshop 4.3, Sections 4.14.1–4.15.3, where we present a detailed, step-by-step demonstration of how to build a simulation model for the FCC main fractionator and gas plant system (including the stabilizer from Figures 4.106–4.110). We can apply the same procedure to build the simulation models for the complete fractionation systems for reformers, hydrocrackers, delayed cokers, and so on.

Design	Optional (Checks	11.255			Pre	ofile					_
Connections	Input	Summary		View Initial	Estimates			Tempera	ature	vs. Tra	y Pos	itio
Monitor							Temp		Temperatu	.	_	T
Specs Specs Summary	Iter S	tep Ed	uilibrium	Heat	/ Spec	0.53	Press	350.0				
Subcooling	1	1.0000	0.000	0000	0.000026			250.0	+ +		1 and	+
Notes							Flows	150.0	- anai	0000000	aer	+
221222A								50.00			6	\pm
								0.00	5 10	0 15	20	25
	Specificati	ons									11	
				Specified 1	/alue	Current V	alue	Wt. Error	Active	Estimate	Current	T
	Reflux R	atio			<empty></empty>		9.245	<empty></empty>		V		
	Distillate	Rate)	0.0000 kg/h	1.9	54e-005	-0.0000	V	V	V	
	Reflux R	ate			<empty></empty>	2.74	6e+005	<empty></empty>				
	Vap Pro	d Rate			<empty></empty>	2.97	0e+004	<empty></empty>		V		
	Btms Pro	od Rate		2.310	e+005 kg/h	2.31	0e+005	0.0000	~	V	2	
	Naphtha	Rate		2.000	e+004 kg/h	2.00	0e+004	0.0000	V	V	V	
	LGO Rat	e			<empty></empty>	4.13	3e+004	<empty></empty>		V		
	HGO Flo	w Rate		9.500	e+004 kg/h	9.50	0e+004	-0.0000	~	V	2	
	SS1 Boil	Up Ratio			0.1000		0.1000	-0.0000	~	V		
	PA_1_Ra	te(Pa)		2.000	e+005 kg/h	2.00	0e+005	0.0000	V	V	J	
	PA_1_Dt	(Pa)			40.00 C		40.00	0.0000	2	V	V	
	Condens	er Temperat	ure		65.00 C		65.00	0.0000	2	V	2	
	HGO Ter	mperature			350.0 C		381.3	0.0626		P		
	Vie	ew	Ado	d Spec	Group	Active		Jpdate Inactive	D	egrees of Fi	reedom	
]												
Delete	Colur	nn Environm	ent	Rur		Reset		Converge	ed		Updat	e (
						m.						
: Internals-1@M	ain Tower@CC	L1 No See	tions			+ Pr	oblem co	nverged Solution of C		lowshoot 7	- 100	_
ernals-1@Main To	wer@COL1	Calculate				E	Iter:	1 Eqm Er	ror:	0.0000		

Figure 7.42 Converged fraction column specifications in the closed-loop flowsheet.

050			Delayed C	loker: COKER-100	
	Calibrate	Pull Data from Simulatio	n		
	Feed/Operation Feed Summary	Feed Conditions		Furnace Specifications	
	Cuts	Mass Flow [kg/h]	2.310e+005	Furnace Outlet Temperature [C]	490.0
	Light Ends	Liquid Volume Flow [m3/h]	265.3	Furnace Outlet Pressure [kPa]	510.
	Heavy Ends	Temperature [C]	385.0	Feed Steam Mass [kg/h]	220.
	Calibration Targets Calibration Results	Pressure [kPa]	190.0	Feed Steam Temperature [C]	200.
	Advanced	uter and the second		Feed Steam Pressure [kPa]	115
	Base Property Curves	Feed Properties		Steam to Feed Ratio	9.524e-00
n		Specific Gravity	0.8717	C	
<u> </u>		Sulfur [wt %]	5.314	Combined Feed Ratio (CFR)	
-100		ConCarbon [wt %]	8.602	1.141	
		Nitrogen [ppmwt]	4.327e+004		
		D2887 IBP [C]	322.5		
Coke		D2887 5% [C]	343.6		
		D2887 10% [C]	364.6		
		D2887 30% [C]	403.9		
		D2887 50% [C]	440.7		
		D2887 70% [C]	529.5		
		D2887 90% [C]	650.9		
		D2887 95% [C]	715.7		
		D2887 FBP [C]	745.4		

Figure 7.43 The first step in calibration is to pull data from a converged simulation.

		Delayed Coker:	COKER-100		- 5
Simulation Calibrate	Worksheet Solver				
Calibrate		H2S	FuelGas 1	LPG 1	Naphtha 1
Feed/Operation	Std Gas Flow [STD_m3/h]	<empty></empty>	2.013e+004	<empty></empty>	<empty></empty>
Feed Summary	Liquid Volume Flow [m3/h]	<empty></empty>	<empty></empty>	15.30	<empty></empty>
Cuts	Liquid Mass Rate [kg/h]	2601	1.480e+004	8200	<empty></empty>
Light Ends	Composition	Mol%	Mol%	Liquid Vol%	Liquid Vol%
Heavy Ends	CO2 [%]	0.00	0.23	0.00	0.00
Calibration Targets	H2S (%)	100.00	4.00	0.00	0.0
Calibration Results	H2 [%]	0.00	15.90	0.00	0.0
Advanced	Methane [%]	0.00	59.72	0.00	0.0
Base Property Curves	Ethylene [%]	0.00	1.74	0.00	0.0
	Ethane [%]	0.00	18.41	0.00	0.00
	Propylene [%]	0.00	0.00	17.92	0.00
	Propane [%]	0.00	0.00	47.46	0.00
	iButane (%)	0.00	0.00	15.02	0.00
	nButane [%]	0.00	0.00	5.78	0.00
	C4Olefins [%]	0.00	0.00	13.82	0.00
	tiPentane [%]	0.00	0.00	0.00	0.00
	nPentane [%]	0.00	0.00	0.00	0.0
	Cyclopentane [%]	0.00	0.00	0.00	0.00
	C5Olefin [%]	0.00	0.00	0.00	0.00
	C6+Naptha [%]	0.00	0.00	0.00	100.00
	Total [%]	100.00	100.00	100.00	100.00

Figure 7.44 Plant data for light ends for calibration.

Simulation	Calibrate	Worksheet	Solver			
Calibr	rate			Naphtha 1	Light Gas Oil	Heavy Gas Oil
Feed/Opera	ation	Mass Rate [kg/h]	20000.0	30000.0	80000.0
Feed Summ		Volume Rat	e [m3/h]	26.7	34.1	84.2
Cuts		Temperatur	e [C]	100.0	100.0	100.0
Light Ends		Pressure [k	Pa]	100.0	100.0	100.0
Heavy Ends		Distillation	Туре	TBP	TBP	TBP
Calibration	Targets	IBP [C]		106.2	159.0	286.5
Calibration	Results	5% Point	t [C]	111.4	183.2	311.7
Advanced		10% Poir	nt [C]	116.7	207.3	336.8
Base Proper	rty Curves	30% Poir	nt [C]	129.4	232.7	375.2
		50% Poir	nt [C]	142.0	244.8	398.5
		70% Poi	nt [C]	153.3	252.6	433.1
		90% Poir	nt [C]	166.8	270.8	475.3
		95% Poi	nt [C]	171.2	280.2	504.3
		End Poin	nt [C]	194.6	349.3	750.8
		API Gravity		57.17	29.30	17.45
		Specific Gra	vity	0.7500	0.8800	0.9500
		Sulfur [wt %	5]	1.500	2.400	5.000
		Olefins (vol	%]	55.00	12.50	8.500
		Naphthene	s [vol %]	4.000	24.25	16.25
		Aromatics [vol %]	5.000	39.00	59.00
		Nitrogen [p	pmwt]	50.0	250.0	1000.0

Figure 7.45 Plant data for heavy ends for calibration.

		Delayed C	10		Delayed Col
6		1000 A 1000 A 1000 A	Simulation Calibrate	Worksheet Solver	
Simulation Calibrate	Worksheet Solver		Solver	Convergence Tolerance	
Calibrate	Operation		Simulation Engine Solver Settings	Residual	1.000e-006
Feed/Operation	Drum Outlet Temperature [C]	432.2	Presolve Commands		
Feed Summary	Drum Outlet Pressure [kPa]	200.0	Postsolve Commands EO Variables	Iteration Limits	
Cuts	Coke Sulfur [%]	7.00	EO Equations	Maximum Iterations	200
Light Ends	Furnace Residence Time (Sec)	60.00		Minimum Iterations	0
Heavy Ends				Creep Step Parameters	
Calibration Targets				On Off	
Calibration Results Advanced				Creep Iterations	50
Base Property Curves				Step Size	5.000e-002

Figure 7.46 Calibration targets and solver settings.

		Delaver	d Coker: CO	KER-100	
	worksneet solver	Delayer	a doner. CO	100	
Calibrate	Kinetic Factors				
Feed/Operation	Heat Load Bias [kJ/h]	1.427e+010			
Feed Summary	Crack to Naphtha	2.718e-002			
Cuts	Crack to Light Gasoil	4.932e-002			
Light Ends	Crack to Heavy Gasoil	9.680e-002			
Heavy Ends Calibration Targets	Cracking Activity	4.503e-002			
Calibration Results	Coking Activity	560.7			
Advanced	Crack to H2S Drum Pressure Drop [kPa]	310.0			
Base Property Curves	Drum Pressure Drop [kPa]	510.0	<u>ال</u>		
	Property Factors				
		C5-230F 2			650F+Liquid
	SG Parameters	5.355e-002	1.730e-002	7.777e-002	0.1205
	Sulfur Parameters	1.589	0.7786	0.9198	0.9703
	Nitrogen Parameters	2.903	2.641	3.709	4.226
	Olefins Parameters	10.08	4.601	-1.113	-0.2667
	Naphthenes Parameters	-0.5480 0.7441	-1.247	-0.3525 2.590	-0.7206
	Aromatics Parameters				1.029
	Initiali	zation Succeeded.	Ready to run ca		
	Initialize Calibration	Calibrate		Transfer to Si	mulation
Calibrate	Kinetic Factors				
	Heat Load Bias [kl/h]	1.245e+010			
Feed/Operation Feed Summary	Crack to Naphtha	2.869e-00			
Cuts	Crack to Light Gasoil	5.212e-00			
Light Ends	Crack to Heavy Gasoil	9.640e-00			
Heavy Ends	Cracking Activity	5.358e-00			
Calibration Targets	Coking Activity	269.			
Calibration Results	Crack to H2S	220.3	2		
Advanced	Drum Pressure Drop [kPa]	68.85	2		
Base Property Curves					
Base Property Curves	Property Factors				
Base Property Curves		C5-230F	230-350F	350-650F	650F+Liquid
Base Property Curves	SG Parameters	C5-230F 7.982e-002	230-350F 4.861e-002	0.1124	0.1569
Base Property Curves	SG Parameters Sulfur Parameters	C5-230F 7.982e-002 2.071	230-350F 4.861e-002 0.8371	0.1124	0.1569
Base Property Curves	SG Parameters Sulfur Parameters Nitrogen Parameters	C5-230F 7.982e-002 2.071 2.903	230-350F 4.861e-002 0.8371 2.641	0.1124 0.9466 5.772	0.1569 0.9858 6.026
Base Property Curves	SG Parameters Sulfur Parameters Nitrogen Parameters Olefins Parameters	C5-230F 7.982e-002 2.071 2.903 5.339	230-350F 4.861e-002 0.8371 2.641 -6.978	0.1124 0.9466 5.772 -1.113	0.1569 0.9858 6.026 -0.2667
Base Property Curves	SG Parameters Sulfur Parameters Nitrogen Parameters	C5-230F 7.982e-002 2.071 2.903	230-350F 4.861e-002 0.8371 2.641	0.1124 0.9466 5.772	0.1569 0.9858 6.026 -0.2667
Base Property Curves	SG Parameters Sulfur Parameters Nitrogen Parameters Ofefins Parameters Naphthenes Parameters Aromatics Parameters	C5-230F 7.982e-002 2.071 2.903 5.339 4.688 2.356	230-350F 4.861e-002 0.8371 2.641 -6.978 7.301 4.856	0.1124 0.9466 5.772 -1.113 -0.3525 2.590	0.1569 0.9858 6.026 -0.2667 -0.7206
Base Property Curves	SG Parameters Sulfur Parameters Nitrogen Parameters Ofefins Parameters Naphthenes Parameters Aromatics Parameters	C5-230F 7.982e-002 2.071 2.903 5.339 4.688	230-350F 4.861e-002 0.8371 2.641 -6.978 7.301 4.856 dy to Transfer 1	0.1124 0.9466 5.772 -1.113 -0.3525 2.590	0.1569 0.9858 6.026 -0.2667 -0.7206 1.629
ase Property Curves	SG Parameters Suffur Parameters Nitrogen Parameters Olefins Parameters Naphthenes Parameters Aromatics Parameters Calibrati Initialize Calibration	C5-230F 7.982e-002 2.071 2.903 5.339 4.688 2.356 on Succeeded! Rea	230-350F 4.861e-002 0.8371 2.641 -6.978 7.301 4.856 dy to Transfer 1	0.1124 0.9466 5.772 -1.113 -0.3525 2.590 o Simulation	0.1569 0.9858 6.026 -0.2667 -0.7206 1.629
Calibrate	SG Parameters Sulfur Parameters Nitrogen Parameters Olefins Parameters Naphthenes Parameters Aromatics Parameters Calibrati Initialize Calibration Kinetic Factors	C5-230F 7.982e-002 2.071 2.903 5.339 4.688 2.356 on Succeeded Rea Calibrat	230-350F 4.861e-002 0.8371 2.641 - 6.978 7.301 4.856 dy to Transfer 1 e	0.1124 0.9466 5.772 -1.113 -0.3525 2.590 o Simulation	0.1569 0.9858 6.026 -0.2667 -0.7206 1.629
Calibrate eed/Operation	SG Parameters Sulfur Parameters Nutrogen Parameters Olefins Parameters Naphthenes Parameters Aromatics Parameters Initialize Calibration Kinetic Factors Heat Load Bias [kl/h]	C5-230F 7.982e-002 2.071 2.903 5.339 4.688 2.356 on Succeeded Rea Calibrat	230-350F 4.861e-002 0.8371 2.641 -6.978 7.301 4.856 5y to Transfer t e	0.1124 0.9466 5.772 -1.113 -0.3525 2.590 o Simulation	0.1569 0.9858 6.026 -0.2667 -0.7206 1.629
Calibrate red/Operation red Summary	SG Parameters Sulfur Parameters Nitrogen Parameters Olefins Parameters Naphthenes Parameters Aromatics Parameters Calibrati Initialize Calibration Kinetic Factors Heat Load Bias [k/h] Crack to Naphtha	C5-230F 7.982e-002 2.071 2.993 5.339 4.688 2.356 on Succeeded! Rea Calibrat 1.245e-01 2.869e-00	230-350F 4.861e-002 0.8371 2.641 -6.978 7.301 4.856 4y to Transfer t e	0.1124 0.9466 5.772 -1.113 -0.3525 2.590 o Simulation	0.1569 0.9858 6.026 -0.2667 -0.7206 1.629
Calibrate eed/Operation seed Summary uts	SG Parameters Sulfur Parameters Nitrogen Parameters Olefins Parameters Aromatics Parameters Aromatics Parameters Initialize Calibration Kinetic Factors Heat Load Bias (kJ/h) Crack to Naphtha Crack to Light Gasoil	C5-230F 7.982e-002 2.071 2.903 5.339 4.668 2.356 on Succeeded Rea Calibrat 1.245e+01 2.869e-00 5.212e-00	230-350F 4.661e-002 0.8371 2.641 -6.978 7.3010 4.856 5y to Transfer 1 e	0.1124 0.9466 5.772 -1.113 -0.3525 2.590 o Simulation	0.1569 0.9858 6.026 -0.2667 -0.7206 1.629
Calibrate eed/Operation sed Summary uts ght Ends	SG Parameters Sulfur Parameters Nutrogen Parameters Olefins Parameters Olefins Parameters Aromatics Parameters Initialize Calibrati Initialize Calibration Kinetic Factors Heat Load Bias (kJ/h) Crack to Naphtha Crack to Light Gasoil Crack to Light Gasoil	C5-230F 7.982e-002 2.071 2.903 5.339 4.688 2.356 on Succeeded Rea Calibrat 1.245e+01 2.869e-00 5.212e-00 9.640e-00	230-350F 4.861e-002 0.9371 2.641 -6.978 7.301 4.856 3y to Transfer t e	0.1124 0.9466 5.772 -1.113 -0.3525 2.590 o Simulation	0.1569 0.9858 6.026 -0.2667 -0.7206 1.629
Calibrate red/Operation red Summary uts ght Ends eavy Ends	SG Parameters Sulfur Parameters Nitrogen Parameters Olefins Parameters Aromatics Parameters Aromatics Parameters Calibrati Initialize Calibration Kinetic Factors Heat Load Bias (k/h) Crack to Light Gasoil Cracking Activity	C5-230F 7.982e-002 2.071 2.903 5.339 4.688 2.356 on Succeeded1 Rea Calibrat 1.245e-01 2.869e-00 5.212e-00 9.640e-00 9.640e-00 5.328e-00	230-350F 4.861e-002 0.8371 2.641 -6.978 7.301 4.856 by to Transfer 1 e 2 2 2 2	0.1124 0.9466 5.772 -1.113 -0.3525 2.590 o Simulation	0.1569 0.9858 6.026 -0.2667 -0.7206 1.629
Calibrate ed/Operation ed Summary its pht Ends eavy Ends ibiration Targets	SG Parameters Sulfur Parameters Nitrogen Parameters Olefins Parameters Aromatics Parameters Calibrati Initialize Calibration Kinetic Factors Heat Load Bias (k/h) Crack to Naphtha Crack to Naphtha Crack to Heavy Gasoil Cracking Activity Coking Activity	C5-230F 7-982e-002 2.071 2.903 5.339 4.668 2.356 on Succeeded Rea Calibrat 1.245e+01 2.869e-00 5.212e-00 9.640e-00 5.358e-00 2.659	230-350F 4.861e-002 0.8371 2.641 -6.978 7.3010 4.856 4.856 4.856 4.856 2 2 2 2 2 2 2 2	0.1124 0.9466 5.772 -1.113 -0.3525 2.590 o Simulation	0.1569 0.9858 6.026 -0.2667 -0.7206 1.629
Calibrate red/Operation red Summary uts ph Ends aeavy Ends alibration Targets alibration Results	SG Parameters Sulfur Parameters Nitrogen Parameters Olefins Parameters Aromatics Parameters Aromatics Parameters Initialize Calibratii Initialize Calibration Kinetic Factors Heat Load Bias (K/h) Crack to Naphtha Crack to Naphtha Crack to Naphtha Crack to Heavy Gasoil Cracking Activity Coking Activity Crack to H2S	C5-230F 7.982e-002 2.071 2.903 5.339 4.688 2.356 on Succeeded Reae Calibrat 1.245e+01 2.869e-00 5.212e-00 9.640e-00 5.358e-00 269, 220.	230-350F 4.861e-002 0.8371 2.641 -6.978 7.3010 4.856 5y to Transfer e 2 2 2 2 2 2 2 2 2	0.1124 0.9466 5.772 -1.113 -0.3525 2.590 o Simulation	0.1569 0.9858 6.026 -0.2667 -0.7206 1.629
Calibrate eed/Operation eed Summary uts ght Ends eavy Ends alibration Targets alibration Results dvanced	SG Parameters Sulfur Parameters Nitrogen Parameters Olefins Parameters Aromatics Parameters Calibrati Initialize Calibration Kinetic Factors Heat Load Bias (k/h) Crack to Naphtha Crack to Naphtha Crack to Heavy Gasoil Cracking Activity Coking Activity	C5-230F 7-982e-002 2.071 2.903 5.339 4.668 2.356 on Succeeded Rea Calibrat 1.245e+01 2.869e-00 5.212e-00 9.640e-00 5.358e-00 2.659	230-350F 4.861e-002 0.8371 2.641 -6.978 7.3010 4.856 5y to Transfer e 2 2 2 2 2 2 2 2 2	0.1124 0.9466 5.772 -1.113 -0.3525 2.590 o Simulation	0.1569 0.9858 6.026 -0.2667 -0.7206 1.629
Calibrate eed/Operation eed Summary uts ght Ends eavy Ends alibration Targets alibration Results dvanced	SG Parameters Sulfur Parameters Nitrogen Parameters Olefins Parameters Aromatics Parameters Aromatics Parameters Initialize Calibratii Initialize Calibration Kinetic Factors Heat Load Bias (K/h) Crack to Naphtha Crack to Naphtha Crack to Naphtha Crack to Heavy Gasoil Cracking Activity Coking Activity Crack to H2S	C5-230F 7.982e-002 2.071 2.903 5.339 4.688 2.356 on Succeeded Reae Calibrat 1.245e+01 2.869e-00 5.212e-00 9.640e-00 5.358e-00 269, 220.	230-350F 4.861e-002 0.8371 2.641 -6.978 7.3010 4.856 5y to Transfer e 2 2 2 2 2 2 2 2 2	0.1124 0.9466 5.772 -1.113 -0.3525 2.590 o Simulation	0.1569 0.9858 6.026 -0.2667 -0.7206 1.629
Calibrate eed/Operation eed Summary uts ght Ends eavy Ends alibration Targets alibration Results dvanced	SG Parameters Suffur Parameters Nitrogen Parameters Olefins Parameters Naphthenes Parameters Aromatics Parameters Aromatics Parameters Calibrati Initialize Calibration Kinetic Factors Heat Load Bias (k//h) Crack to Light Gasoil Crack to Light Gasoil Crack to Light Gasoil Cracking Activity Coking Activity Coking Activity Crack to L2S Drum Pressure Drop (kPa)	C5-230F 7.982e-002 2.071 2.903 5.339 4.688 2.356 on Succeeded Reae Calibrat 1.245e+01 2.869e-00 5.212e-00 9.640e-00 5.358e-00 269, 220.	230-350F 4.861e-002 0.8371 2.641 -6.978 7.3010 4.856 5y to Transfer e 2 2 2 2 2 2 2 2 2	0.1124 0.9466 5.772 -1.113 -0.3525 2.590 o Simulation	0.1569 0.9858 6.026 -0.2667 -0.7206 1.629
Calibrate eed/Operation sed Summary uts ght Ends eavy Ends alibration Targets alibration Results dvanced	SG Parameters Suffur Parameters Nitrogen Parameters Olefins Parameters Naphthenes Parameters Aromatics Parameters Aromatics Parameters Calibrati Initialize Calibration Kinetic Factors Heat Load Bias (k//h) Crack to Light Gasoil Crack to Light Gasoil Crack to Light Gasoil Cracking Activity Coking Activity Coking Activity Crack to L2S Drum Pressure Drop (kPa)	C5-230F 7.982e-002 2.071 2.903 5.339 4.688 2.356 on Succeeded1 Rea Calibrat 2.869e-00 5.212e-00 9.640e-00 5.328e-00 5.328e-00 2.658e-00 5.328e-00 2.668.8	230-350F 4.861e-002 0.8371 2.641 -6.978 7.301 4.856 by to Transfer 1 e 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 9	0.1124 0.9466 5.772 -1.113 -0.3525 2.590 o Simulation Transfer to S 350-650F	0.1569 0.9858 6.026 -0.2667 -0.7206 1.629 imulation
Calibrate eed/Operation eed Summary uts ght Ends eavy Ends alibration Targets alibration Results dvanced	SG Parameters Sulfur Parameters Nitrogen Parameters Olefins Parameters Aromatics Parameters Aromatics Parameters Calibrati Initialize Calibration Kinetic Factors Heat Load Bias (k/h) Crack to Laght Gasoil Crack to Haph	C5-230F 7.982e-002 2.071 2.903 5.339 4.688 2.356 on Succeeded! Rea Calibrat 1.245e+01 2.869e-00 5.212e-00 9.640e-00 5.358e-00 5.358e-00 2.69, 220, 68.8 C5-230F	230-350F 4.861e-002 0.0371 2.641 -6.978 7.301 4.856 sy to Transfer 1 e 0 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1124 0.9466 5.772 -1.113 -0.3525 2.590 o Simulation Transfer to S 350-650F : 0.112	0.1569 0.9658 6.026 -0.2667 -0.7206 1.629 imulation
Calibrate eed/Operation eed Summary uts ght Ends eavy Ends alibration Targets alibration Results dvanced	SG Parameters Sulfur Parameters Nitrogen Parameters Olefins Parameters Clefins Parameters Aromatics Parameters Aromatics Parameters Initialize Calibrati Initialize Calibration Kinetic Factors Heat Load Bias (k/h) Crack to Naphtha Crack to Naphtha Crack to Naphtha Crack to Heavy Gasoil Crack to Heavy Gasoil Crack to Heavy Gasoil Crack to H2S Drum Pressure Drop (kPa) Property Factors SG Parameters	C5-230F 7.982e-002 2.071 2.903 5.339 4.688 2.356 on Succeeded Rea Calibrat 1.245e+01 2.869e-00 5.212e-00 9.640e-00 5.28e, 220, 68.8 C5-230F 7.982e-002	230-350F 4.861e-002 0.8371 2.641 -6.978 7.3010 4.856 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1124 0.9466 5.772 -1.113 -0.3525 2.590 o Simulation Transfer to S 350-650F : 0.112 0.946	0.1569 0.9658 6.0266 -0.2667 -0.7206 1.629 imulation
Calibrate eed/Operation eed Summary uts joht Ends ieavy Ends alibration Targets alibration Results dvanced	SG Parameters Sulfur Parameters Nutrogen Parameters Olefins Parameters Olefins Parameters Aromatics Parameters Aromatics Parameters Initialize Calibration Kinetic Factors Heat Load Bias [kl/h1] Crack to Naphtha Crack to Light Gasoil Crack to Light Gasoil Crack to Light Gasoil Crack to Light Casoil Crack to Light Casoil Crack to Light Colking Activity Colking Ac	C5-230F 7.982e-002 2.071 2.903 5.339 4.688 2.356 on Succeeded1 Rea Calibrat 2.869e-00 9.640e-00 9.640e-00 9.640e-00 9.640e-00 2.2026 7.982e-002 2.071	230-350F 4.861e-002 0.8371 2.641 -6.978 7.301 4.856 by to Transfer t e 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1124 0.9466 5.772 -1.113 -0.3525 2.590 o Simulation Transfer to S 350-650F : 0.112 0.946 5.777	0.1569 0.9658 6.026 -0.2667 -0.7206 1.629 imulation 650F+Liquid 4 0.156 6 0.985 2 6.02
Calibrate eed/Operation eed Summary tuts ight Ends leavy Ends alibration Targets alibration Results idvanced ase Property Curves	SG Parameters Sulfur Parameters Nitrogen Parameters Olefins Parameters Calibrati Initialize Calibration Kinetic Factors Heat Load Bias (kJ/h) Crack to Naphtha Crack to Light Gasoli Crack to Light Gasoli Crack to Light Gasoli Crack to Heavy Gasoli Crack to H2S Drum Pressure Drop (kPa) Property Factors SG Parameters Sulfur Parameters Sulfur Parameters Olefins Parameters	C5-230F 7.982e-002 2.071 2.903 5.339 4.688 2.356 on Succeeded! Rea Calibrat 1.245e-01 2.869e-00 5.212e-00 9.640e-00 5.358e-00 2.68,8 220, 68.8 C5-230F 7.982e-002 2.071 2.903	230-350F 4.861e-002 0.0371 2.641 -6.978 7.301 4.856 sy to Transfer 1 e 0 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1124 0.9466 5.772 -1.113 -0.3525 2.590 to Simulation Transfer to S 0.50650F 0.112 0.946 5.777 -1.11	0.1569 0.9658 6.026 -0.2667 -0.7206 1.629 imulation imulation imulation 650F+Liquid 4 0.156 6 0.985 2 6.020 3 -0.266
Calibrate eed/Operation eed Summary uts ight Ends ieavy Ends alibration Targets alibration Results dvanced	SG Parameters Sulfur Parameters Nitrogen Parameters Olefins Parameters Initialize Parameters Initialize Calibrati Initialize Calibration Kinetic Factors Heat Load Bias (k/h) Crack to Naphtha Crack to Jiph Gasoil Crack to Heavy Gasoil Crack to	C5-230F 7.982e-002 2.071 2.903 5.339 4.668 2.356 on Succeeded Rea Calibrat 1.245e+01 2.869e-00 5.212e-00 9.640e-00 5.212e-00 9.640e-00 2.69, 220, 68.8 C5-230F 7.982e-002 2.071 2.903 5.339	230-350F 4.861e-002 0.8371 2.641 -6.978 7.3011 4.856 5y to Transfer 1 e 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1124 0.9466 5.772 -1.113 -0.3525 2.590 o Simulation Transfer to S 0.0112 0.946 5.777 -1.111 -0.352	650F+Liquid 4 0.1569 6 0.2667 -0.2667 -0.7206 1.629 imulation
Calibrate eed/Operation eed Summary uts joht Ends ieavy Ends alibration Targets alibration Results dvanced	SG Parameters Sulfur Parameters Nitrogen Parameters Olefins Parameters Calibrati Initialize Calibration Kinetic Factors Heat Load Bias (kJ/h) Crack to Naphtha Crack to Light Gasoli Crack to Light Gasoli Crack to Light Gasoli Crack to Heavy Gasoli Crack to H2S Drum Pressure Drop (kPa) Property Factors SG Parameters Sulfur Parameters Sulfur Parameters Olefins Parameters	C5-230F 7.982e-002 2.071 2.903 5.339 4.688 2.356 on Succeeded1 Rea Calibrat 2.869e-00 9.640e-00 9.640e-00 9.640e-00 9.640e-00 9.640e-00 2.2026 7.982e-002 2.071 2.903 5.339 4.688	230-350F 4.861e-002 0.8371 2.641 -6.978 7.3010 4.856 4.856 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.1124 0.9466 5.772 -1.113 -0.3525 2.590 o Simulation Transfer to S 5.771 -1.111 -0.3525 5.771 -1.111 -0.3525 5.771 -1.111	650F+Liquid 4 0.1569 6 0.2667 -0.2667 -0.7206 1.629 imulation

Figure 7.47 Three steps of calibration of the delayed coker model.

7.2.4 Workshop 7.3 – Simplified Model of Delayed Coker by Petroleum Shift Reactor for Production Planning Applications

We use this workshop to introduce the petroleum shift reactor that is widely used in the simplified modeling of refinery reactors for production planning purposes.

The petroleum shift reactor is developed based on the same principle that we have previously discussed in Section 4.12, Production Planning, and in Section 4.17, Workshop 4.5, Generate Delta-Base Vectors for Linear Programming (LP)-Based Planning. Basically, the petroleum shift reactor quantifies the effects of "shifts" (changes) in independent variables on the "shifts" of product yields and properties and on the "shifts" of utility consumptions according to our previous relationship in defining the delta-base vector, Eq. (4.13), now renumbered as Eq. (7.1):

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} (Prediction) = \begin{bmatrix} \overline{y_1} \\ \overline{y_2} \\ \vdots \\ \overline{y_m} \end{bmatrix} (Base) + \begin{bmatrix} \frac{\Delta y_1}{\Delta x_1} & \cdots & \frac{\Delta y_1}{\Delta x_n} \\ \vdots & \cdots & \vdots \\ \frac{\Delta y_m}{\Delta x_1} & \cdots & \frac{\Delta y_m}{\Delta x_n} \end{bmatrix}$$

$$\times (Delta-Base) \cdot \begin{bmatrix} \Delta x_1 \\ \vdots \\ \Delta x_n \end{bmatrix} (Delta)$$
(7.1)

In the context of the petroleum shift reactor,

- x_i is the value of the *i*th independent variable, such as the API gravity, CCR, or sulfur content (wt%) of the vacuum residue feeding to the delayed coker.
- y_i is the value of the *i*th dependent variable relating to products, properties, and utilities, such as the mass yield (%) of coker product (light ends, naphtha, distillate, gas oil, or coke), the liquid density (a property) of coker distillate, or the mass flow rate of utility steam to the coker.
- The delta vector defines the "shifts" (changes) in the independent variables, x_1 to x_n .
- The base vector gives the base-case values of dependent variables, *y*₁ to *y_m*, representing product yields or properties or utility consumptions.
- The delta-base matrix, or Jacobian, consists of element, $\Delta y_m / \Delta x_n$, representing the "shift" of the product yield or property, or "shift" in utility consumption, $y_{m,n}$ per one-unit "shift" in the independent variable x_n .

The petroleum shift reactor enables computational speed with some compromise in the rigorousness required for building large refinery-wide flowsheets. The delta-base concept is also the main approach by which production planning and scheduling software tools, Aspen PIMS and Aspen Petroleum Scheduler, use in modeling. Thus, the petroleum shift reactor makes it easier to integrate Aspen HYSYS for process modeling and optimization with production and scheduling tools into a single framework. To run the petroleum shift reactor, we must make sure *to attach a petroleum assay to the fluid package of the flowsheet*. This follows that the model requires some petroleum properties of the feed and also needs to calculate some petroleum properties for products.

For this workshop, we open a starting file that contains the models for CDU/VDU discussed in detail in Chapters 2 and 3. This file is available in the supplementary material of this book for this chapter, *Workshop 7.3 – petroleum shift reactor for delayed coker_starting file.hsc.* Figure 7.48 shows the flowsheet for CDU and VDU of the starting file, and we are to send the vacuum residue from the bottom of the VDU to a petroleum shift reactor.

We add a petroleum shift reactor (see Figure 7.49).

We choose the energy stream, *Q*-steam, as medium-pressure (MP) steam (see Figure 7.50).

Based on the Excel spreadsheet, *Workshop 7.3 – petroleum shift reactor for delayed coker_input data.xlsx*, available in the supplement to this book, under Chapter 7, we complete the required input. To complete the "Model Data" under "Design" in Figure 7.51, we do as follows: Design \rightarrow Model Data \rightarrow Design Vars (variables) \rightarrow Independent Vars \rightarrow Petroleum Shift Reactor: Delayed Coker \rightarrow Specify Independent Vars \rightarrow Insert \rightarrow Case(Main) \rightarrow Vacuum Tower(COL2) \rightarrow Vacuum Residue @COL2 \rightarrow Calculator \rightarrow Select: (1) *Sulfur Wt Pct* (petrol); (2) *Conradson Carbon Content* (petrol); (3) *API* (petrol). Then, copy and paste the input data from the spreadsheet. (*Note:* Currently, Aspen HYSYS lists the last chosen independent variable, i.e., API (petrol), first; and the first chosen independent variable, i.e., Sulfur Wt Pct (petrol), is listed last. Pay attention to matching the order of independent variables with that of the spreadsheet input data.)

The "Base Yield Fractions" column in Figure 7.51 represents the BASE shift vector in Eq. (7.1); the (5 row \times 3 column) matrix with first row [-5.000E-4, 5.5E3, 2.1E-3], ... and fifth row [-5E-4, 5.5E-3, 2.1E-3], is the delta base, or Jacobian, matrix in Eq. (7.1), representing the shift (change) of the product yield, y_m , per one-unit shift (change) in the independent variable x_n

We compare the shifted values of three independent variables (API = 1.709, Conradson carbon = 21.20%, and sulfur = 3.558%) with the corresponding values in the vacuum residue feed (see Figure 7.52).

We continue to complete other input forms (see Figures 7.53–7.56).

Figure 7.57 shows the simulation results for product streams. We save the resulting simulation file as *Workshop 7.3 – petroleum shift reactor for delayed coker-end file.hsc.*

To summarize, this section demonstrates how to do efficient refinery reactor modeling using data tables with petroleum shift reactor, to implement a delta-base vector approach to quantify the effects of shifts (changes) in independent variables on shifts of product yields and properties and on the shift of utility consumptions, and to manipulate product yields and properties using a linear shift relationship.

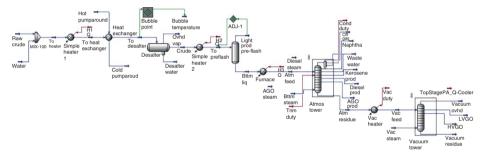


Figure 7.48 The starting flowsheet of the CDU and VDU from which we are to send the vacuum residue to a delayed coker represented by a petroleum shift reactor.

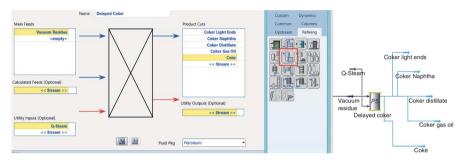


Figure 7.49 Add a petroleum shift reactor to represent the delayed coker.

Energy Stream	n: Q-Steam — 🗖 🗾	
Properties Stream Name Heat Flow (k//h) Ref. Temperature (C) Utility Type Utility Mass Flow (kg/h)	Chart User variables Q-Steam <empty> <empty> MP Steam <empty></empty></empty></empty>	Coker light ends O-Stean Coker naphtha Vacuum -s residue Delayed coker
Unknown H	eat Flow	Coker gas oi Coke

Figure 7.50 Specify the energy stream as MP steam.

	1		Petroleum Shift Read				
Design Product	Specs Model Summa	ary Worksheet					
Design	- Design Vars					Vield Basis	
Connections	Independent	Vars				Flow Fraction	C Flow Ra
Model Data User Variables	Reactor Par	ams				Yield Fraction Basis	Mass
Notes	- Vields Base-Shift						
		Base Yield Fractions	Calculator (API(Petrol))	Calculator (Conradson Ca (%)	Calculator (Sulfur Wt Pct) (%)		
	Design Var Base		1,709	21.20 %	3.558 %	6	
	Coker Light Ends	0.1216	-5.000e-004	5.500e-003	2.100e-003		
	Coker Naphtha	0.2128	-4.000e-004	-1.190e-002	-6.600e-003	Ú.	
	Coker Distillate	0.2643	-4.000e-004	-1.320e-002	-7.000e-003	1	
	Coker Gas Oil	0.2833	1.300e-003	-1.320e-002	1.150e-002		
	Coke	0,1180	-5.000e-004	5.500e-003	2.100e-003		
	Total	1.000	-5.000e-004	-2.730e-002	2.100e-003	1)	

Figure 7.51 Select independent variables and enter model data for the petroleum shift reactor.

orksheet	Attachmen	ts Dynamics		
Works	neet	Stream Name	Vacuum Residue	Liquid Phase
Conditio	ns	Molecular Weight	530.3	530.3
Propertie	25	Molar Density [kgmole/m3]	1.583	1.583
Composi		Mass Density [kg/m3]	839.3	839.3
Oil & Ga		Act. Volume Flow [m3/h]	162.2	162.2
Petroleur K Value	m Assay	Mass Enthalpy [kJ/kg]	-1468	-1468
User Vari	iables	Mass Entropy [kJ/kg-C]	1.847	1.847
Notes		Heat Capacity [kJ/kgmole-C]	1412	1412
Cost Para		Mass Heat Capacity [kJ/kg-C]	2.663	2.663
Normaliz	ed Yields	LHV Molar Basis (Std) [kJ/kgmole]	<empty></empty>	<empty></empty>
	1	API[Petrol]	1.289	<empty></empty>
		Conradson Carbon Content[Petrol] [%]	23.04	<empty></empty>
		Sulfur Wt Pct[Petrol] [%]	3.65	<empty></empty>
		Property Correlation Controls		

Figure 7.52 Values of three independent variables in the vacuum residue feed to the delayed coker.

Product Specs	Product Stream Specs (Bas	ic)		
Product Cuts Distillation Curves		Product Temperature [C]	IBP [C]	FBP [C]
Assay Properties	Coker Light Ends	100.0 C	-253.000000	40.00000
Property Shift	Coker Naphtha	100.0 C	40.000000	180.00000
Utility Shift	Coker Distillate	100.0 C	180.000000	340.000000
Shift Summary	Coker Gas Oil	100.0 C	340.000000	550.000000
	Coke	100.0 C	550.000000	600.000000

Figure 7.53 Define product stream cuts.

			1	1		
roduct Cuts		Coker Light Ends	Coker Naphtha	Coker Distillate	Coker Gas Oil	Coke
listillation Curves	Liquid Density	×	×	×	×	×
ssay Properties	Sulfur Content	×	×	×	×	×
roperty Shift	Basic Nitrogen Content	×	×	×	×	×
tility Shift	Conradson Carbon Content	×	×	×	×	×
hift Summary	RON (Clear)	×	×	×	×	×
	MON (Clear)	×	×	×	×	×
	Assay - Aromatics Vol Pct	×	×	×	×	×
	Assay - Naphthenes Vol Pct	×	×	×	×	×
	Reid Vapour Pressure	×	×	×	×	×
	Cetane Number	×	×	×	×	×
	Pour Point	×	×	×	×	×
	Viscosity @ 38C	×	×	×	×	×

Figure 7.54 Select assay properties.

Product Specs	Utilities Options				
Product Cuts		Utility Type	Utility Flow	Per F	eed Flowrate Option
Distillation Curves	Q-Steam	MP Stear	m Ma	ss Flow	55
Assay Properties					
Property Shift					
Jtility Shift					
Shift Summary	Utilities Base-Shift				
	Utilities Base-Shift	Utility Base Value C	alculator (API[Petrol])	Calculator (Conradson (%)	Calculator (Sulfur Wt Pc (%)
	Utilities Base-Shift	Utility Base Value C	alculator (API[Petrol])		

Product Specs	Overall Base-Shifts Summa	iry				
Product Cuts Distillation Curves		Base Value	Calculator (API[Petrol])	Calculator (Conradson (%)	Calculator (Sulfur Wt Po (%)	
Assay Properties	Design Var Base		1.709	21.20 %	3.558 %	
Property Shift	Coker Light Ends	0.1216	-5.000e-004	5.500e-003	2.100e-003	
Utility Shift	Coker Naphtha	0.2128	-4.000e-004	-1.190e-002	-6.600e-003	
Shift Summary	Coker Distillate	0.2643	-4.000e-004	-1.320e-002	-7.000e-003	
	Coker Gas Oil	0.2833	1.300e-003	-1.320e-002	1.150e-002	
	Coke	0.1180	-5.000e-004	5.500e-003	2.100e-003	
	Q-Steam	1000 kg/h	0.0000	0.0000	0.0000	

Figure 7.56 Overall base-shifts summary

Worksheet	Name	Vacuum Residue	Coker Light Ends	Coker Naphtha	Coker Distillate	Coker Gas Oil	Coke	Q-Steam
Conditions	Vapour	0.0000	1.0000	1.0000	0.0000	0.0000	0.0000	<empty></empty>
Properties	Temperature (C)	341.6	100.0	100.0	100.0	100.0	100.0	<empty></empty>
Composition	Pressure [kPa]	13.00	13.00	13.00	13.00	13.00	13.00	<empty></empty>
	Molar Flow [kgmole/h]	256.7	256.5	247.5	157.8	89.46	31.50	<empty></empty>
	Mass Flow (kg/h)	1.361e+005	1.798e+004	2.593e+004	3.262e+004	3.533e+004	1.749e+004	1000
	Std Ideal Lig Vol Flow [m3/h]	127.9	23.74	30.51	35.30	35.91	16.53	<empty></empty>
	Molar Enthalpy (ki/kgmole)	-7.784e+005	-1.205e+005	-1.814e+005	-4.154e+005	-7.876e+005	-1.114e+005	<empty></empty>
	Molar Entropy [kJ/kgmole-C]	979.2	85.12	46.71	71.57	479.1	478.2	<empty></empty>
	Heat Flow (kJ/h)	-1.998e+008	-3.092e+007	-4.490e+007	-6.555e+007	-7.046e+007	-3.510e+007	1.981e+006

Figure 7.57 Simulation results of the petroleum shift reactor for the delayed coker.

7.3 Refinery-Wide Process Simulation

This section benefits from references written by Dziuk and Mohan [11–13]. In particular, we greatly appreciate the kind help by a co-author of these references, Sandeep Mohan, in the preparation of this section.

7.3.1 Refinery-Wide Process Model: A Key to Integrating Process Modeling and Production Planning

Profit margin analysis is a crucial exercise for refineries operating on tight profit margins. Process engineering software tools that enable refinery-wide process modeling can greatly improve and facilitate the profit margin analysis for both process engineers and production planners in the refinery. By developing *a refinery-wide process simulation model*, process engineers can evaluate the economic impact of operational improvements and unexpected events, and they can help production planners in achieving a more accurate assessment of profit margins. The process engineer can use the rigorous model data to easily evaluate why profit margins are low, suggest remedial actions, and predict the effect on profit margins.

A key challenge to developing fully rigorous refinery-wide process simulation models is their cumbersome nature. These models can take a long lead time to develop and run. These models often require a high level of expertise to operate, keeping refineries dependent on expensive third-party service providers to develop and use the models.

A practical solution is to develop a refinery-wide process simulation model by employing a mixture of shortcut and rigorous submodels [11–13]. In particular, there are three recent advances in process simulation technology that are making it easier to develop refinery-wide process simulation models for integrated process engineering and production planning applications. Let us consider, for example, the integration between the process simulation tool (Aspen HYSYS) and the production planning tool (Aspen PIMS) below.

The first advance is the petroleum assay manager, discussed in Sections 1.5 and 1.6. The *same* petroleum assay manager is used in both Aspen HYSYS and Aspen PIMS. Thus, both process engineering and production planning models

use an identical set of pure and hypothetical components and characterize the assay by the same set of petroleum properties. This shared assay management tool enables the easy transfer of crude oil information between engineers and planners and facilitates greater accuracy in process simulation and production planning models.

The second advance is the fractionation model. Specifically, both Aspen HYSYS and Aspen PIMS use: (1) the *same* rigorous fractionation model, such as the crude distillation unit (CDU) and the vacuum distillation unit (VDU), discussed in Chapters 2 and 3, and (2) the *same* shortcut petroleum distillation column model discussed in Section 2.6. A benefit of this integration is that we can, for example, better calibrate the Aspen PIMS CDU model to match plant data by using the petroleum distillation model that Aspen PIMS shares with Aspen HYSYS.

The third advance is the availability of the *same* shortcut reactor models, such as the petroleum shift reactors, in both Aspen HYSYS and Aspen PIMS. This means that engineers can use the simulation results from rigorous refinery reactor models (e.g., FCC, reformer, hydrotreating unit, hydrocracker, delayed coker, and alkylation unit) to update the PIMS reactor submodels using petroleum shift reactors. This integration creates a streamlined and more efficient workflow for planning model updates.

With these integrations, process engineers can quickly develop a "clone" of their PIMS refinery model in Aspen HYSYS. This provides the process engineer with a simple refinery-wide process model that has the same credibility of a PIMS planning model. With a newly expanded, complete suite of rigorous reactor models available in the process simulation environment, process engineers can enhance the rigor of the refinery-wide process model by selectively upgrading specific shortcut reactor submodels to rigorous models in Aspen HYSYS. This capability allows process engineers to easily manage and maintain the model, while ensuring the rigor required for accurate refinery margin analysis.

7.3.2 An Example of a Refinery-Wide Process Simulation Model

Figure 7.58 illustrates a refinery-wide process simulation model that consists of nine submodels (subflowsheets) [11]. We include either rigorous or shortcut simulation models in each submodel, depending on the purposes of model applications. These applications include, but not limited to, the following: operational improvements, refinery reconfigurations, response to unexpected events, new unu startups, turnaround planning, planning support, and emission utility analyses [11].

Table 7.1 summarizes the rigorous and shortcut simulation models that are included in each submodel (subflowsheet).

For examples of larger and more complex, refinery-wide process simulation models, open up a new case in Aspen HYSYS V9.0. Go to: Examples \rightarrow refinery cases \rightarrow (1) *Refinery-wide model.hsc* and (2) *RefineryWideModel_Gulf Coast.hsc.*

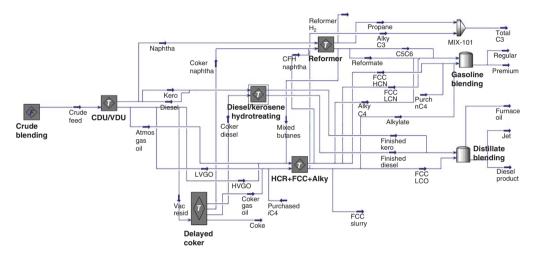


Figure 7.58 An example of a refinery-wide process simulation model. (Adapted from Dziuk and Mohan 2016 [11].)

Submodel	Rigorous models used	Shortcut models used
1. Crude blending	Petroleum feeder	
2. CDU/VDU (crude distillation unit/vacuum distillation unit)		Petroleum distillation columns for both CDU and VDU
3. Delayed coker		Petroleum shift reactor for coker; petroleum distillation column for coker fractionation
4. Diesel/kerosene hydrotreating		Petroleum shift reactors for both hydrotreaters
5. HCR/FCC/Alky (hydrocracking/fluid catalytic/alkylation)	Hydrocracking and fluid catalytic cracking reactor models	Conversion reactor for alkylation; petroleum distillation columns for product fractionations
6. Reformer	Naphtha hydrotreating and catalytic reactor models	Petroleum distillation columns for product fractionations
7. Gasoline blending	Product blending for optimization	
8. Distillate blending	Product blender for optimization	

Table 7.1A summary of rigorous and shortcut simulation models included in the refinery-widesimulation model of Figure 7.58.

7.3.3 Tools for Developing Refinery-Wide Process Models

The preceding example illustrates the following essential tools to develop refinery-wide process simulation models:

- Petroleum assay manager (Sections 1.5 and 1.6);
- Rigorous CDU (Chapter 2), VDU (Chapter 3), product fractionation unit, and gas plant (Section 4.15);
- Rigorous refinery reactor models (Chapters 3–7): Except for vis breaker and isomerization units, this text has covered all of the other reactor models displayed in Figure 7.59 [11];
- Shortcut petroleum shift reactor (Section 7.2.4) and shortcut petroleum distillation column (Section 2.6);
- Petroleum product blender [14];
- Excel spreadsheet within Aspen HYSYS for easy display of the values of key independent and dependent variables and the profit function.

7.3.4 Deployment and Applications of the Refinery-Wide Process Models for Process Engineering and Production Planning

There are three steps to deploy a refinery-wide process simulation model [11]:

Step 1. Match the Aspen HYSYS model for process engineering with Aspen PIMS model for production planning. This implies the use of shortcut reactor and fractionation models in Aspen HYSYS, particularly the petroleum shift reactor and the petroleum distillation column. Define the scope for Step 2 model upgrade.

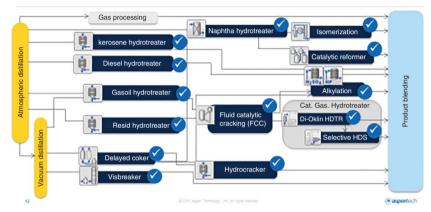


Figure 7.59 Current rigorous refinery reactor models in Aspen HYSYS [11]. (Courtesy of ASPEN Technology, Inc.)

- Step 2. Upgrade the Aspen HYSYS model with rigorous reactor and fractionation submodels. This includes the use of improved stream property methods, convert shortcut petroleum shift reactor models to rigorous refinery reactor models (such as those for FCC and for hydrocrackers), and use rigorous refinery fractionation models to replace the shortcut petroleum distillation models.
- Step 3. Apply the refinery-wide simulation model to: (1) refinery reconfigurations - reconfiguring refineries for changes in crude oil mixtures, for changes in product slates and for strategic planning for capital projects; (2) operational improvements - examples include the reevaluation of optimal cut points and reactor set points across the refinery, the evaluation of changes of catalyst for reactor units, perform deeper cuts at the VDU to increase conversion feed, and balance hydrogen production from reformer against hydrogen demand from hydroprocessors; (3) operational response for unexpected events – when a key equipment (e.g., a major feed pump) is down, when the crude feed rates decrease due to supply interruptions, and when the production rates decrease due to shipment problems; (4) *improved* startup strategy – examples include the planning of startup for new refinery units and the response to unexpected shutdowns during commissioning; (5) turnaround planning - how to rebalance the refinery when large parts of it are shut down for maintenance once every 3-5 years; (6) improved planning model support - improved collaboration between process engineers and production planners; improved validation of planning model results; more flexible and powerful modeling tools to support production planning, such as the identical representation of petroleum assays and their properties, and rigorous refinery reactor models to generate the delta-base vectors for linear programming (LP)-based Aspen PIMS planning model (Section 4.17); and (7) evaluation of refinery-wide emissions and utilities – use Aspen HYSYS refinery process model to evaluate greenhouse gas emissions for air quality reports and to generate refinery-wide utility balances.

7.4 Conclusions

This chapter covers three important aspects of integrated refinery modeling and production planning: (1) the alkylation process to produce high-octane blending components for gasoline; (2) the delayed coking process to upgrade and convert the "bottom of the barrel" residue materials to valuable liquid and gas product streams; and (3) refinery-wide process simulation model for process engineers and production planners.

As demonstrated in this text, modern refinery simulation models provide a power tool to predict product yields and properties, and to guide both process engineers and production planners how to optimize the process operations and to sustain refinery margins.

Bibliography

- 1 Gary, J.H., Handwerk, G.E., and Kaiser, M.J. (2007) *Petroleum Refining. Technology and Economics*, 5th edn, CRC Press, Boca Raton, FL.
- 2 Kaes, G.L. (2000) Refinery Process Modeling A Practical Guide to Steady State Modeling of Petroleum Processes, The Athens Printing Company, Athens, GA.
- **3** Luyben, W.L. (2009) Design and control of an auto refrigerated alkylation process. *Industrial & Engineering Chemistry Research*, **48**, 11081–11093.
- 4 Kranz, K. (2008) Introduction to alkylation chemistry: mechanisms, operating variables, and olefin interactions. *DuPont STRATCO Clean Fuel Technology*, http://www.dupont.com/content/dam/dupont/products-andservices/consulting-services-and-process-technologies/consulting-servicesand-process-technologies-landing/documents/AlkylationChemistry_RU.pdf.
- 5 Sun, W., Shi, Y., Chen, J., Xi, Z., and Zhao, L. (2013) Alkylation kinetics of isobutane by C4 olefins using sulfuric acid as catalyst. *Industrial & Engineering Chemistry Research*, **52**, 15262–15269.
- 6 Esteves, P.M., Araujo, C.L., Horta, B.A.C., Alvarez, L.J., Zicovich-Wilson, C.M., and Ramirez-Solis, A. (2005) The isobutylene-isobutane alkylation processing liquid HF revisited. *The Journal of Physical Chemistry*, 109, 12946–12955.
- 7 Ellis, P.J. and Paul, C.A. (1998) Delayed Coking Fundamentals. AIChE Spring National Meeting in New Orleans, LA, http://inside.mines.edu/~jjechura/ Refining/DECOKTUT.pdf.
- 8 Ancheyta, J. (2013) *Modeling of Processes and Reactors for Upgrading of Heavy Petroleum*, CRC Press, Boca Raton, FL.
- 9 Akpabio, E.J. and Ekott, E.J. (2012) Integrating delayed coking process into Nigeria's refinery configuration. *Indian Journal of Science and Technology*, 5, 2923–2927.
- 10 Alfeel, A.M.M., Mohamed, A.A.A., Ali, A., Lo-Lujo, E.O.Y. and Mhmound, L.A.M. (2016) *Simulation of Delayed Coking Unit in KRC*, http://repository .sustech.edu/handle/123456789/15098.
- 11 Dziuk, S. and Mohan, S. (2016) Rapidly Deploy a Refinery-Wide Process Model for Improved Profit Margin Analysis, AspenTech webinar, February 16.
- 12 Dziuk, S. and Mohan, S. (2016) Improve Profit Margins through a Refinery-wide Process Model. 114th American Fuel and Petrochemical Manufacturers Annual Meeting. AFAM_AM_2016<Day3<AspenTec.pdf, http:// www.aspentech.com/resource-library/ → white papers → refining → Aspen HYSYS.
- 13 Dziuk, S. and Mohan, S. Secure Your Refinery Profit Margins by Keeping Planning Models Up to Date, http://www.aspentech.com/resource-library/ → white papers → refining → Aspen PIMS.
- 14 Aspen Technology, Inc. (2016) Aspen HYSYS Petroleum Refining Unit Operations and Reactor Models V9: Reference Guide, May, pp. 59–80, Chapter 5, "Product Blender".

Α

List of Computer Files

Accessible through Wiley-VCH website, wiley-vch.de/en/ \rightarrow shop \rightarrow bookfinder \rightarrow petroleum refinery process modeling \rightarrow student materials

Chapter 1

- WS1.1 ASTMConvert.xls Convert one ASTM distillation curve into another
- WS1.2 Beta.xls Extrapolate incomplete distillation curve by beta distribution
- WS1.3 MeABP Iteration.xls Calculate MeABP for a given oil fraction
- WS1.4 Oil Manager.hsc Answer file of workshop 1.4
- WS1.4 Distillation Curve and Light End Composition.xlsx
- WS1.5 Petroleum Assay Manager.hsc
- WS1.6 Conversion from Oil Manager to Petroleum Assay Manager.hsc
- Critical_Property_Correlations.xls Spreadsheet containing various methods to estimate critical properties of pseudocomponents (Section 1.10.1)

- Beta_Data_Fit.xls Spreadsheet to fit distillation and density/specific gravity curves to beta distributions
- ASTM_Convert.xls Spreadsheet to convert distillation curves from ASTM type to another
- Crude Assay Only.hsc Define assays for crude column model (Section 2.8.1)
- CDU EX-1.hsc Add Feed-Preheat system to column model (Section 2.8.2)
- CDU EX-2.hsc Initial Column model before solving (no side ops) (Sections 2.8.3 and 2.8.4)

556 A List of Computer Files

• CDU EX-3.hsc

Initial Column model (after adding the side stripper for heavy naphtha) (Section 2.8.5)

- CDU EX-4.hsc Initial Column model (after adding all three side strippers) (Section 2.8.5)
- CDU EX-5.hsc Column simulation model with preheat train and all side strippers and all pumparounds (Section 2.8.6)
- CDU EX-6.hsc Converged simulation model with three side strippers and three pumparounds (Section 2.8.7)
- CDU EX-7.hsc Converged simulation model after adding custom stream properties (Section 2.8.7)
- CDU EX-8_GS.hsc Solve column model with preheat train and all side strippers and all pumparounds with Grayson–Streed thermodynamics (Section 2.9)
- CDU-Case Study.hsc
 Case study of the effects of independent variables on the CDU product petroleum properties (Section 2.10.3)
- CDU-Backblending-1.hsc Define the CDU product assays in the petroleum assay manager (Section 2.11.1)
- CDU-Backblending-2.hsc Define a new blend of the backblended crude feed (Section 2.11.2)
- CDU-Backblending-3.hsc Simulation model for the Heated_FEED to the CDU developed from backblending (Section 2.11.3)
- CDU-Backblending-4.hsc CDU simulation model based on the backblended feed (Section 2.11.3)
- CDU-Backblending-5.hsc CDU simulation model based on the backblended feed with water draw to speed up column convergence when two liquid phases might be present (Section 2.11.4)
- Workshop 2.3.hsc (Section 2.12)
- Workshop 2.4.hsc (Section 2.13)
- CDU-backblending-internals.hsc (Section 2.14, column hydraulic analysis)
- Workshop 2.5: CDU-blending-internals.hsc
- Workshop 2.6-starting.hsc; Workshop 2.6-end.hsc

- Workshop 3.1-1.hsc to Workshop 3.1-6.hsc: Step-by-step illustration of the development of the simplified VDU model; VDU-Simplified.hsc the final converged simulation file (Section 3.3.2)
- Workshop 3.2-1.hsc and VDU-Rigorous.hsc: Step-by-step illustration of the development of the rigorous VDU model (Section 3.3.2)

• VDU Deep Cut-Start.hsc, Workshop 3.3-1.hsc to Workshop 3.3-3.hsc (Section 3.5)

Chapter 4

- Composition_PNA.xls PNA correlation for various feed types
- FCC_HeatBalance_US.xls Perform heat balance and calculate delta-coke for FCC units
- FCC_DecantOil.xls Estimating distillation curves of FCC decant oil
- Fuel_Properties.xls Various fuel properties (Cloud, Freeze, etc.) for petroleum fractions
- Lognormal.xls Fitting distillation or specific gravity data to lognormal distributions
- FCC Components and Properties.hsc (Section 4.13.4), Workshop 4.1-1.hsc, and Workshop 4.1-done.hsc (Build the basic FCC model, Sections 4.13.5-4.13.10)
- Workshop 4.2-1.hsc and Workshop 4.2-done.hsc (Calibrate a basic FCC model, Section 4.14)
- Workshop 4.3-1.hsc to Workshop 4.3-8.hsc (Section 4.15, Workshop 4.3 Build a fractionation section for the FCC model)
- Workshop 4.4-1.hsc and Workshop 4.4-2.hsc (Section 4.16 Case studies)
- Workshop 4.5.hsc (Section 4.17 Application to production planning)

Chapter 5

- Alternate_Feed_Lumping.xlsm Alternate method for feed lumping for reformer
- Feed_AspenHYSYS_Transform.xlxs Remap measured component feed into Aspen HYSYS components
- Hydrogen_Balance.xls Calculate hydrogen balance of reformer unit with external feeds
- Workshop 5.1.hsc (Section 5.14)
- Workshop 5.1-1.hsc (Section 5.14, using bulk properties), Workshop 5.1-2.hsc (Section 5.14, using measured molecular information)
- Workshop 5.2.hsc (Section 5.15, Model calibration)
- Workshop 5.3.hsc (Section 5.16, Fractionation system)
- Workshop 5.4-1.hsc and Workshop 5.4-2.hsc (Section 5.17, two case studies)

- GL_Quad Pt.xls Allocation points of Gaussian quadrature
- Mass Balance.xls Check the mass balance of HCR unit

558 A List of Computer Files

- Workshop 2 (Folder) The simulation file of each step described in workshop 2
- Workshop 3 (Folder) The simulation file and results of workshop 3
- Workshop 4 (Folder) The simulation files of workshop 4 and the spreadsheet for delumping (Delump.xls)

- Workshop 7.1-1 Input Data.xlsx
- Workshop 7.1-1 alkylation_open loop_petroleum distillation column.hsc
- Workshop 7.1-1 alkylation_closed loop_petroleum distillation column.hsc
- Workshop 7.2-1 Initial and Calibration Data.xlsx
- Workshop 7.2-1 Open Loop_Converged.hsc
- Workshop 7.2-1 Closed Loop_Converged.hsc
- Workshop 7.2-1 Closed Loop_Calibration.hsc
- Workshop 7.3 Petroleum shift reactor for delayed coker_starting file.hsc
- Workshop 7.3 Petroleum shift reactor for delayed coker_end file.hsc

а

A8 isomers 322 absolute average deviation (AAD) 53 absorbers atmospheric distillation unit 92, 160 fluid catalytic cracking 187 vacuum distillation unit 160 acentric factor 39 acid-catalyzed cracking reactions 189 acid number, ASTM D3339-11 5 activity coefficient 47 activity factors alkylation 518 continuous catalyst generation reforming 384 fluid catalytic cracking 200, 265 hydrocracking 491 hydroprocessing units 425, 476 adjustment factors 332 adsorption 310 advanced kinetic and property parameters 532 air leaks 153 alkylation feed components and alkylation kinetics 518-519 hydrofluoric acid alkylation process simulation 519-527 process description 517-518 alkylation simulation model 520 alkylcycloalkanes 311 alkylcyclepentanes 311 American Petroleum Institute (API) correlations atmospheric distillation unit 85

continuous catalyst regeneration reforming 326 fluid catalytic cracking 208 hydroprocessing units 443, 512 amine 69, 474 aniline point 5 API gravity 2 Apparent heat of cracking 257 Aqueous phase 95 Arab Heavy density distribution 79 Arab Heavy TBP distillation curve 78 Arab Light density distribution 81 Arab Light TBP distillation curve 80 aromatic content 207 coefficients for 206 aromatic hydrogenation 464, 513 aromatic ring condensation 189 aromatics continuous catalyst regeneration reforming 309, 344 fluid catalytic cracking 191, 235 hydroprocessing units 413 Arrhenius equation 530 Aspen HYSYS alkylation model 518 atmospheric distillation unit 77 continuous catalyst regeneration reforming 354 main fractionator 267 initial component and thermodynamics setup 356, 358 input feedstock and process variables 362, 367

Petroleum Refinery Process Modeling: Integrated Optimization Tools and Applications, First Edition. Y. A. Liu, Ai-Fu Chang, and Kiran Pashikanti. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA. Aspen HYSYS (contd.) molecular composition information 372, 376 for process engineering 551 oil fractions 25-32 process overview and relevant data 354, 356 refinery reactor models 552 reformer configuration 358, 362 with rigorous reactor 553 solver parameters and running initial model 368, 369 vacuum distillation unit 157, 165 viewing model results 370 Aspen HYSYS petroleum refining catalytic reformer model 354 deep-cut operation 172 delayed coker 530 fluid catalytic cracking 231 hydrocracking 471 new petroleum assay manager 25 - 32old oil manager 16-25 Aspen HYSYS petroleum refining, atmospheric CDUs adding custom stream properties 101 - 104Arab Heavy assays, bulk properties of 83 Arab Light assays, bulk properties of 84 blend streams, specification of 86 creating blends from assays 81, 85 creation and configuration of CDU 88-95 crude charge feed and prefractionation unit 87-88 density distributions, specification of generated pseudocomponent list review 83, 86 initial assay definition-TBP distillation data 82 light gas components of assays 84, 85 operating profile measurements 105 petroleum assay manager 77

plant performance, adjustments to 104 pumparounds for 98-101 results 105-109 side strippers 95–98 thermodynamic model selection 84-87 validating column model predictions, reality checks for 105 Aspen HYSYS petroleum refining, delayed coker model 530 Aspen HYSYS petroleum refining FCC model and associated gas plant, schematic illustration 211 average voidage 196-197 calibration parameters 199-200 catalyst deactivation 198-199 debutanizer temperature profile 218 diesel density comparison 215 diesel flash point comparison 215 diesel product, ASTM D86 distillation for 213 distillation curves 203-205 dry gas composition 216 fractionation 200-202 gasoline density comparison 214gasoline product, ASTM D86 distillation for 213, 214 kinetic lump transition to boiling point-based pseudocomponents 208 LPG composition 216 21-lump kinetic model 197–198 main fractionator temperature profile 217modeling strategy 209-211 molecular composition 205-208 primary absorber temperature profile 218 primary stripper temperature profile 217product yield results 211 slip factor 196-197 sponge oil absorber temperature profile 219 submodels 195

Aspen HYSYS petroleum refining hydrocracker model 411 backward approach 413 built-in process flow diagram of 411 forward approach 412 HDN reaction network of 415 HDS reaction network of 413, 414 integrated HCR process model 419 97 model compounds 411, 413 objective functions in 424, 425, 427 reaction activity factors 424, 426, 427 reaction network of 413 reaction types and inhibitors 416 specific gravity predictions 451, 453 workshop 497–505 Aspen HYSYS petroleum refining software 472 Aspen HYSYS V9 531 Aspen PIMS 226 for production planning 551 Aspen RefSYS assavs oil fractions 25-32 atmospheric distillation unit 72 ASTM D86 distillation 6 ASTM D1160 distillation 6 ASTM D2887 distillation 6 ASTM D1160 interconversion 15 atmospheric crude distillation units 59 Aspen HYSYS Petroleum Refining 77-104 backblending procedure 114–125 column hydraulic analysis 131-139 data requirements and validation 73-76 desalting and dewatering process 61 - 62draw rates effect on product profiles 126 - 129feed characterization 72-73 fractionation zone of 67 furnace, purpose of 62 improving distillation curves 109 initial crude processing, process flow of 60-61 kerosene draw rate 110, 111

modeling distillation columns 65 - 72overflash 62 petroleum distillation column 140 - 144preheat train and heat recovery 62 process optimization 109–114 process variables effects on product qualities 129-131 products recovered from 64 requirements for 75 simulation model representation 76-77 stripping steam and product draw rate, effects of 111–114 atmospheric distillation 7 average absolute deviation (AAD) continuous catalyst regeneration reforming 337-353 fluid catalytic cracking 214-216 HP hydrocracking 449-453 MP hydrocracking 449, 452–453 average relative deviation (ARD) 444, 456 average voidage 196-197

b

backblending 73 atmospheric distillation unit 114, 123 fluid catalytic cracking 201, 208, 387 vacuum distillation unit 151 backblending procedure, atmospheric CDUs 114 converging updated column model 120 Heated_FEED stream 120–122 importing distillation data into Aspen HYSYS 115-116 new blend stream 116-119 product yield and properties 115 results 123-125 backblending process 201 backward feedstock approach 412 base vector 227, 228 bench-scale reactors 314

Benedict-Webb-Rubin-Starling (BWRS) EOS 49 benzene 346 benzothiophene 411 benzene-toluene-xylene (BTX) 309, 347 Beta density distribution function atmospheric distillation unit 74 continuous catalyst regeneration unit 325 fluid catalytic cracking 204 oil fractions 10, 74 bifunctional/bimetallic catalysts 311 blending atmospheric distillation unit 78, 114 continuous catalyst regeneration unit 325 fluid catalytic cracking 224 oil fractions 35 boiling point based hypothetical, see pseudocomponents; generation boiling point curve 5 bottom residue stream 529 branched paraffins (BP) 518 bulk density 26 bulk properties 72

С

calibration 330, 333 catalyst configuration, in FCC unit 246 - 250catalyst deactivation 199 catalytic reformer model 319, 323 C3-C5 olefins 517 cetane index 7 cetane number 7 Chao-Seader method 48 chromatographic simulation 7 Chueh-Prausnitz correlation 42 Clausius-Clapeyron equation 45 cloud point 5 CokerFeed 532 Coker gas oil (CGO) 185 coking process 190 component list alkylation 518 atmospheric distillation 78

continuous catalyst regeneration reforming 356 delayed coking 529 fluid catalytic cracking 231 hydrocracking 356 hydroprocessing 356 computational fluid dynamics (CFD) 193 Conradson carbon residue (CCR) 5, 529, 542 continuous catalyst regeneration (CCR) reforming applications 340 Aspen HYSYS 354, 376 calibration 330, 333 catalytic reformer model 319, 323 chemical feedstock production 347, 349 combined effect 345 cyclic processes 305 data consistency 329 downstream fractionation system 387, 395 energy utilization and process performance 349, 350 feed characterization 324, 328, 330 feed rate, effect of 344 feedstock quality, effect of 346 fractionation system 323, 324 kinetic models and networks 314. 317 model calibration 376, 387 model implementation 328, 329 moving-bed 305 overall modeling strategy 333, 335 process chemistry 311, 313 process overview 304, 311 reactor temperature effect 341, 343 refinery planning 350, 354 results 335, 340 RON and product distribution profile 395, 399 semiregenerative processes 305 thermophysical properties 323 unit-level models 317, 319

correlation API 208 Bolkan-Kenny 196 Braun-K10 (BK-10) 47 Chueh-Prausnitz 42 ESSO 86 Gooson 208 Riazi 209 Riazi-Daubert 439 Riedel 44 Twu 38 correlation-based approach 238 COSTALD (Correspond States Liquid Density) correlation 42 cracking gases 153 creep step parameters 480 critical pressure 49 critical temperature 49 critical volume 49 crude assays bulk properties API gravity 2 CCR 5 Ramsbottom carbon residue 5 fractional properties 6-7 interconversion of distillation curves crude distillation, see atmospheric crude distillation units crude distillation unit (CDU) 416 cubic average boiling point (CABP) 10 cubic equation of state 49 cut points hydrocracking 438 petroleum distillation column 143 refinery-wide simulation 553 cycle oil 186 cyclization CCR reforming 313 fluid catalytic cracking 186, 316 cyclic processes 305 cycloalkanes 188 cycloheptane 313 cyclohexanes 315 cyclones 196

d

D1160 analysis, for heavy FCC feedstock 203 data acquisition, HCR 421 deactivation 315-317, 399 dealkylation 190, 413 debutanizer continuous catalyst regeneration reforming 324 fluid catalytic cracking 187, 214-218, 233, 275 overall column (stage) efficiency 69 decvclization 186 deep-cut operations 172 default calibration parameters 199, 384 dehydrocyclization 314 dehydrogenation 189 dehydroisomerization 311 delayed coking coking reaction kinetics 529–530 feed characterization 529-530 kinetic lumps 529–530 petroleum shift reactor 542-548 process description 528-529 simulation and calibration 530-541 delta coke 257 DELTA vector 227-229 DELTA-BASE matrix 542 DELTA-BASE vectors 183, 228–230, 351-353 delumping 420, 435 building fractionator model 440 Gauss-Legendre Quadrature 438 - 442pseudocomponents 435-437 desalting process 61-62 dewatering process 61–62 DIPPR (Design Institute for Physical Property Research) 44 "dirty-water" approach 46 dissolved light gases 153 distillation-based properties 72 distillation columns, modeling of equilibrium-stage approach 65 individual stage efficiency 68 inside-out algorithm 69–71

distillation columns, modeling of (contd.) MESH equations 66 Murphree vapor stage efficiency 67, 68 overall stage efficiency 67–69 rate-based approach 65 distillation curves 203–205 spreadsheet 7 D2887 9-point distillation curve 529 draw rate 91 dry gas 186

е

effective cut point (ECP) 522 efficiency factor, see Murphree stage efficiency end boiling point (EBP) 310 end of run (EOC) 464 energy consumption 60, 321, 336, 350, 445 energy flows 33, 60 energy utilization 349, 350 equation of state (EOS) 49 equilibrium-stage approach 65 equilibrium catalyst properties 236 equilibrium stages 67 ESSO correlation 86 equation-of-state (EOS) approach 49 extrapolation of incomplete distillation curve 13

f

feed adjust 413 feed characterization 324, 328, 330 feed components and alkylation kinetics alkylation simulation model 520 turning factors, classes reactions 518 feed kinetic lump compositions 530 feed lumping technique 320 feedstock preparation 147 feed system, alkylation reactor 521 feed type library (fingerprint) 242 fitting parameters of Beta distribution 203 flash point 2 flow diagram 156, 212, 307, 406, 412, 417, 418 flow rate relationship 522 fluid catalytic cracking (FCC) cycle oil 413 process 8, 306, 310, 317, 333, 350 fluid catalytic cracking (FCC) unit 183, 231,408 acid-catalyzed cracking reactions 189 binary interaction parameters for fluid package 238 calibration 258-266 case studies 285-291 catalyst activity factor and equilibrium metal contents 250 catalyst blend 248 catalyst library 246, 247 catalyst parameters 248 component list, addition of 231, 235, 237 configuration 240 COSTALD method 238 dehydrogenation 190 dimensions for 240 downstream fractionation 187-188 236 equilibrium catalyst properties feed configuration 241-246 gas flow rates and compositions 236 gasoline producer 184 gasoline yield, improvement of 220 - 222gas plant associated with 233 gas plant section 188 heat losses 240 hydrogen transfer reactions 190 increasing unit throughput 223-224 initial Aspen HYSYS flowsheet 238 initial catalyst blend window 246 initial solver output 254 isomerization reactions 189 for linear programming application 226 liquid feeds and products 235 LP DELTA-BASE vector generation 291 - 297lumped kinetic model 190–193

main fractionator 267–275 main fractionator associated with 233 model results 253-258 operating variable configuration 250 - 252overhead wet gas system and feed sections 275–281 reaction section 232 regenerator operating variables 251riser and regenerator operating conditions 236 riser-regenerator complex 185-187 schematic illustration 185, 187 simulation flowsheet 234 solver convergence options 252 standard cut grouped/square cut vields 254 submodels for 195 sulfur content in gasoline 224-225 T301_Absorber and T303_Reabsorber 281-285 tuning factors 241 unit-level models 193-195 Universal Oil Products design 185 fluid package 235, 473 fluorescent indicator adsorption (FIA) 412 fractionation 200-202 fractionation index, top section (SI TOP) 522 fractionation system 323, 324 "free-water" approach 46 freeze point 2 front-end tail gas 153 Froude number 197 fuel properties 51 fuel property index 51 fugacity coefficient 47

g

gasoline continuous catalyst regeneration reforming 395 fluid catalytic cracking 187 overcracking 291 production scenarios 220, 285, 469 stabilization column 188 Gauss–Legendre quadrature 438–442 Gooson correlation 208 Grayson-Streed EOS 86 Gravity *see* specific gravity gross heat of combustion, *see* high heating value (HHV)

h

heat balance, FCC 257, 266 heat capacity 42 heat exchanger networks 62 heat of vaporization (ΔH_{VAP}) 43 heavy cycle oil (HCO) 186 heavy naphtha 130, 206, 268, 275, 406, 448 heavy straight run (HSR) naphtha 65 heavy vacuum gas oil (HVGO) 148 Hessian parameters 252, 368 HF alkylation process 527 H2HC ratio 313 high heating value (HHV) 5 high-octane components, in gasoline products 189 high-pressure HCR (HP HCR) 411 LPG composition and distillation curves 459-461 performance of fractionators 455 process flow diagram of 419 product property 462-464 product yields 455-459 reactor and hydrogen recycle system 454-455 reactor model equivalent reactor 431 - 432procedures 430 reconciliation of 432-435 high-pressure separator (HPS) 419 hydrocarbon-hydrocarbon interactions 45 hydrocracking (HCR) 406 calibrating preliminary model to match plant measurement 481 - 497case studies 497-505 complexity of petroleum oil 407 data acquisition 421

hydrocracking (HCR) (contd.) delta-base vector generation 468 - 471flow diagram of 406 fractionation system 505-512 HP HCR unit 411, 419 hydrogen partial pressure 464 integrated HCR model 419-421 lumping techniques 407, 408 mass balance 421-423 MP HCR unit 411, 416-419 preliminary reactor model 471–481 product property correlation 442 reactor model development, see Reactor model development three-layer onion 407 VGO 406 WART versus feed flow rate versus product distribution 466-468 hydrocracking reactions 310 hydrodenitrogenation (HDN) 413, 415 hydrodesulfurization (HDS) 408, 413, 414 hydrofluoric acid alkylation process simulation 519-527 hydrogen balance 329 hydrogen consumption 415, 444, 464 hydrogenation 311 hydrogenolysis 311 hydrogen-to-hydrocarbon ratio 366 hydrogen transfer reactions 518 hydroprocessing units, HCR, see hydrocracking (HCR) hydrotreating and hydrocracking process 309 hypothetical components 1, 93

i

iButane recycle loop 523 ideal gas heat capacity 42–43 ignition 52 incomplete distillation curve 13 index-based approach 51 inhibitors 416 initial boiling point (IBP) 5, 352 input assay 22 inside-out algorithm 69–71 interaction parameters 239 integrated fluid catalytic cracking (FCC) process, *see* fluid catalytic cracking (FCC) unit interconvert distillation curves 13 intrinsic rate constant 415 isenthalpic/isobaric flashes 47 isomerization reactions 189 iteration spreadsheet for MeABP calculation 11

j

Jacobian 229, 252, 351, 542 jet fuel 5, 52, 406, 418, 461

k

kinetic coke 198 kinetic lump compositions 529 kinetic models and networks 317 Krane's model 315

I

Langmuir-Hinshelwood-Hougen-Watson (LHHW) mechanism 414 Lee-Kesler EOS 37 Light components 21–28 light cycle oil (LCO) 186, 233, 235 light ends tuning 332 light gas oil (LGO) 65, 115 light naphtha 29, 54, 64, 91, 106, 114, 124, 206, 406, 447, 449 light straight run (LSR) naphtha 65 line search parameters 252, 368 linear free energy relationships (LFER) 317 linear programming (LP) based planning 183, 542 methods 226 techniques 350 liquid petroleum gas (LPG) 303, 449 lognormal distribution 205 lower heating value (LHV) 5 lubricant production 147 lumped kinetic model 190 lumping based on molecular composition

Aspen HYSYS Petroleum Refining hydrocracker model, *see* Aspen HYSYS petroleum refining hydrocracker model reactor hydrodynamics 411 SOL technique 408 lumping based on nonmolecular composition key features of 409–411 21-lump kinetic model 197–198 LVGO (light vacuum gas oil) 148, 170, 177, 544

m

main fractionator temperature profile 217mass balance 70, 142, 263, 329, 423 material, equilibrium, summation and heat(MESH) equations 66 mean average boiling point (MeABP) 10-20, 208, 436 mechanistic FCC models 192 medium-pressure HCR (MP HCR) description of 416-419 distillation curves of liquid products 449-451 performance of fractionators 445 product property 451-454 product yields 447-449 reactor and hydrogen recycle system 444-445 unit 411 medium-pressure (MP) steam 543 mercaptan sulfur 2 **MESH** equations metal coke 198 metal functions, catalysts 312 metal content, catalysts 210, 236, 259 methane methanol-to-olefins (MTO) 317 methyl mercaptan 2 methylcyclohexane (MCH) 346 methylcyclopentane (MCP) 346 minimal pseudocomponents properties estimation critical properties 38-40 ideal gas heat capacity 42-43

liquid density 40-42 mixed or activity-coefficient approach 47 - 49molecular weight 37-38 physical properties 43-45 process thermodynamics 45-50 mixed or activity-coefficient approach 47 model applications atmospheric distillation unit 126, 129 continuous catalyst regeneration reforming 395 delayed coking 542 fluid catalytic cracking 285, 291 hydrocracking 495 production planning 291, 468, 542 refinery-wide simulation 551 vacuum distillation unit 171 modified HYSYS inside-out algorithm 70,71 molal average boiling point (MABP) 10 molecular-type homologous series (MTHS) 412 molecular weight 323 motor octane number (MON) 6, 517 moving-bed catalyst regeneration 305 Murphree stage efficiency 200, 440 Murphree vapor stage efficiency 67,68

n

naphtha or unstabilized gasoline 529 naphthene content 207 net heat of combustion, *see* lower heating value (LHE) Newton-Raphson method 70 nitrogen content 529 normal distribution function 328 nonlinear programming (NLP) 226

0

objective function 253, 264, 332, 369, 381, 385, 425, 486 octane number 6, 366, 517

oil fractions, thermodynamic properties Aspen HYSYS petroleum refining new petroleum assay manager 25 - 32old oil manager 16-25 boiling point based hypothetical/pseudocomponent generation 8-12 crude assays bulk properties 2-6 fractional properties 6–7 interconversion of distillation curves 7 incomplete distillation curve 13 interconvert distillation curves 13 refinery process models, property requirements 33 oil manager vs. petroleum assay manager conversion 32–33, 35 olefins 262, 311 on stage convention 65 organic nitrogen compounds 414 overall column (stage) efficiency 67 overcracking 291 overhead gas compressor 183 overhead wet gas system 276 overflash 62, 111

р

paraffin content 206 paraffin-naphthene-aromatic (PNA) content 6, 50, 53, 317, 320, 325-328, 331, 363, 372, 373, 529 pathway models 192, 317 Peng-Robinson (PR) equation of state (EOS) 49 petroleum assay 521 petroleum assay manager improvement 35 petroleum distillation column 140 - 144petroleum fractions 1 petroleum shift reactors 542, 553 physical properties minimum properties for pseudocomponents 35 oil fractions 2, 6

required properties for process modeling (simulation) 46 thermodynamic approaches 47 PIMS (process industry management system) 226, 291–297, 470, 549 pinch technology 62 pinning 321 platinum 311 plug-flow reactor (PFR) 318 post-convergence 104 pour point 2 Poynting correction factor 48 prefractionation units 87 preheat train 63 preheater 90, 391 primary absorber temperature profile 218 primary alkylation reactions 518 primary stripper temperature profile 217 probability distribution 10, 203 profit margin analysis 548 process chemistry alkylation 518 continuous catalyst regeneration reforming 311 delayed coking 529 fluid catalytic cracking 188 hydrocracking 411 process flow diagram (PFD) see flow diagram process optimization continuous catalyst regeneration reforming 395 delayed coking 542 fluid catalytic cracking 285, 291 hydrocracking 497 model applications 126, 129, 131, 140, 172, 285, 291, 395, 497, 519, 542 VDU deep-cut operation 172 process thermodynamics 45-50 property package 235 pseudocomponents 72 commercial process simulators 9 generation 8-12 properties vs. TBP curve 9

pumparounds atmospheric distillation unit 99 fluid catalytic cracking 273 hydrocracking 510 vacuum distillation unit 168 purge gas 406

r

Rackett parameter 41 Raoult's law 47 Ramsbottom carbon residue 5 rate-based approach 65 reaction classes alkylation 518 continuous catalyst regeneration reforming 311 delayed coking 529 fluid catalytic cracking 189 hydroprocessing units 416 reaction network 413-415 reactor inlet temperature 349 reactor model development 424 delumping, see delumping HP HCR process 430-435 MP-HCR 424-430 reactor-regenerator unit 185 reactor temperature specifications 366 recontactor 389 Redlich-Kwong (RK) EOS 49 refinery production planning 225, 350, 354 LP DELTA-BASE vector generation 291-297 refinery process models, property requirements 33 refinery reactor models, Aspen HYSYS 552 refinery-wide process simulaiton deploys 551-553 developing tools 551 fractionation model 549 integrating process model 548–549 reactor models 549 simulation model 548-549 refractive index, ASTM D1218 5 RefSYS 245, 247, 477 regeneration timescale 308

regenerator 258, 266 Reid vapor pressure (RVP) 392 research octane number (RON) 6, 517 residence time 287 residual Hessian parameters 252, 368 residue-type feeds 243 rhenium 311 Riazi-Daubert correlation 53 rigorous model continuous catalyst regeneration reforming 354, 376, 387 delta-base vectors 191, 468 fluid catalytic cracking 267-285 vacuum distillation unit 165 rigorous VDU simulation model 154, 165 - 172ring dealkylation 415 riser outlet temperature (ROT) 220, 221

S

secondary alkylation reactions 518 semiregenerative processes 305 side strippers 67, 68, 95, 272, 507 side-chain scission 189 simplified model, VDU 157 simulation alkylation 519 atmospheric distillation unit 77, 120 continuous catalyst regeneration reforming 354, 376, 387 delayed coking 530 fluid catalytic cracking 231, 258, 267 hydrocracking 471, 481 vacuum distillation unit 157, 165 refinery plant-wide 157 simulation basis manager 232, 233, 235, 473 single-event approach 316 slip factor 196-197 smoke point 5 Soave-Redlich-Kwong (SRK) 49, 358, 474 SOLVER method 204, 205 solver parameters 90, 368 specific gravity (SG) 2 Spencer-Danner method 42

sponge oil absorber temperature profile 219 spreadsheet distillation curve conversion 13 HCR mass balance 421 make-up gas streams, VDU 152 MeABP calculation 13 square cut yields 255 stabilizer 392, 538 stage efficiency, fractionation atmospheric distillation column 69 fluid catalytic cracking 201 hydrocracking 440 reformer 324 stage-by-stage model 201, 240 structure-oriented lumping (SOL) 192,408 sulfides 2 sulfur content fluid catalytic cracking 225, 246 gasoline 224 hydrocracking 426, 470 oil fractions 6 superficial gas velocity 197

t

T_c correlation 39 ten-lump model 191 thermodynamic approaches required physical properties and recommendation 46 thermal cracking delayed coking 528 fluid catalytic cracking 189, 291 vacuum distillation unit 153 thermophysical properties 323 thiols 2 three-layer onion hydroprocessing unit modeling 408 toluene 346 2-2-4-trimethylpentane (224TMP) 6 true boiling point (TBP) 7, 326, 328 twenty-one-lump kinetic model FCC 197 Twu correlation 37 typical crude assay 3

u

unit-level models 193, 317–319 Universal Oil Products (UOP) CCR process 305 design, FCC 185 utility consumption 349, 542

v

vacuum distillation 7 vacuum distillation units (VDUs) 147 absorbers 155 atmospheric residue, representation of 149-152 data requirement 149 deep-cut operation 172 high-temperature operations 152 light gases, source of 153 operation types 147 plant data and modeling approaches 155 - 157process flow diagram 148 product distribution 154 rigorous simulation model 154, 165 - 172simplified and rigorous simulations 155 simplified VDU model 154, 157 - 165in Southeast Asia 156 wet operating conditions 148 validation atmospheric distillation unit 73 continuous catalyst regeneration reforming unit 334, 487 fluid catalytic cracking 209-217, 263 vanadium contaminants 3 vapor enthalpy 66 vapor-liquid equilibrium in distillation 8 vapor pressure 43 viscosity gravity constant (VGC) 205 viscosity gravity factor (VGF) 205 volatility 69

W

wash grid 148 water draw stream 120-122 water wash 188 Watson K factor atmospheric distillation column 79 delayed coking 529 hydrocracking 436 oil fractions 10–12 PNA contents 530 Weight-average boiling point (WABP) 8 weight-averaged bed temperature (WABT) 321, 360 weight-averaged inlet temperature (WAIT) 313, 321, 360, 366 weight-average reactor temperatures (WARTs) 444 weighted-average reactor inlet temperature (WAIT) 341, 345 weight hourly space velocity (WHSV) 321, 345

weighting factors for reformer model calibration 332, 382 for property index mixing 51 wet gas compressor 187 what-if-scenario workflow *see also* flowchart, flow diagram

X

xylenes 310, 338, 347, 380

y vields

alkylation 523 atmospheric distillation column 105 backblending 105 continuous catalyst regeneration reforming 337, 341, 348 fluid catalytic cracking 287, 291 hydrocracking 447 vacuum distillation unit 167