GAIN MORE KNOWLEDGE

ROLL NO.

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Max Marks: 80 Max Time: 120 Mins Weightage: 40 %

ENDTERM FINAL EXAMINATION

I Semester AY 2017-2018 Course: CSE 205 COMPUTER ORGANIZATION 18 DEC 2017

AND ARCHITECTURE

Instructions:

i. Write legibly.

ii. No exchange of anything permitted.

Part A

[4 Q x 5 M = 20 Marks]

- **1.** Explain cache *coherence*. State the solution.
- 2. Differentiate between *loosely coupled* and *tightly coupled* multiprocessing.
- **3.** Explain *reliability* and *availability* of I/O devices. Give a measure of *availability*.
- **4.** Derive a quantitative measure of pipelining speed-up. 'The gain in throughput from increasing the number of pipeline stages begins to diminish after a certain period'- justify the statement.

Part B

[2 Q x 15 M= 30 Marks]

		vi— Su iviai K
5.	i) Compare and contrast CISC and RISC architecture.	3
	ii) Explain base-index-offset and memory-indirect addressing modes with suitable inst	ructions as
	examples in case of any RISC processor.	6
	iii) Write a recursive function to compute the factorial of 11, initially stored in register	· r0. Save the
	result in register r1. Use any RISC ISA.	6
6.	i) Explain the concept of virtual memory.	2
	ii) State how external fragmentation in memory can be reduced effectively.	2
	iii) 'Page size is always power of 2'-Explain.	2
	iv) Write the steps of handling a page fault in case of paging.	5
	v) Describe segmentation scheme in memory management.	4
		D 4 0

Part C

[2 Q x 15 M= 30 Marks]

7.	i) Differentiate between polling and interrupt-driven I/O.	4
	ii) Explain Direct Memory Access. State what is 'stale data' problem in DMA. Write the solution	ns
	for the same.	5
	iii) Explain the concept of RAID. Briefly describe the different RAID levels. State what is RAID	10.
		6
8.	i) Explain the architecture of <i>superscalar</i> processors along with a neat block diagram and proper	•
	technical example.	4
	ii) State Flynn's classification of multiprocessors. Give proper examples of each class of	
	multiprocessors.	5
	iii) Explain how vector processors function. Explain the vector instruction VectorSub.S Vi,Vj,Vk.	
	4-	⊦2

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Max Marks: 40 Max Time: 60 Mins Weightage: 20 %

TEST 2

I Semester AY 2017-2018 Course: **CSE205 Computer Organization and Architecture** 27 OCT 2017

Instructions:

- i. Write legibly.
- ii. No exchange of anything permitted.

Part A

 $(3Q \times 3 M = 09 Marks)$

- 1. State the major stages of execution of an instruction. Distinguish between instruction cycle and machine cycle.
- **2.** State what is Structural hazard in Instruction pipelining with example.
- **3.** 'Pipelining does not reduce the execution time of an individual instruction, but increases instruction throughput'- Explain with example. Write an expression for pipeline speedup.

Part B

(2 Q x 8 M = 16 Marks)

- **4.** 'Every processor state within a machine cycle is basically a RTL activity' Explain. (2+6) Describe the RTL activities done by the CPU during Instruction Fetch machine cycle with appropriate block diagram.
- **5.** Design datapath and control path for the first CPU state of a typical Instruction Fetch machine cycle. (4+4)

Part C

(1 Q x 15 M = 15 Marks)

6.	A) Explain what a 5 stage Instruction Pipeline is.	3
	B) Differentiate <i>in-order</i> and <i>out-of-order</i> pipelines.	1
	C) Describe the 3 types of Data hazards and their solutions.	5
	D) State why only <i>forwarding</i> is not a solution for a Load-use data hazard.	3
	E) Write what is Branch Prediction. State its necessity.	3

PRESIDENCY UNIVERSITY, BENGALURU CSE, SCHOOL OF ENGINEERING

Max Marks: 40 Max Time: 60 Mins Weightage: 20 %

TEST 1

V Semester 2017-2018 Course: **CSE205 Computer Organization and**

16 SEPT 2017

Architecture

Instructions:

i. Write legibly.

ii. No exchange of anything permitted.

Part A

 $(3Q \times 3 M = 09 Marks)$

- 1. Describe the Von Neumann Architecture.
- 2. State the reasons why cache memory is generally made up of SRAM cells.
- **3.** Explain memory hierarchy. Compare different types of memory using the three distinct memory comparison parameters.

Part B

(2 Q x 8 M = 16 Marks)

- **4.** Explain the concept of virtual memory. Explain the locality of reference concept in detail. Explain what a Split cache is.
- **5.** Explain the two distinct techniques of Cache writes. Also discuss their effects on system performance, precisely in handling cache misses.

Part C

(1 Q x 15 M = 15 Marks)

6. A) Assume a system cache of 4 one word blocks. The CPU needs to address the following sequence of main memory blocks: 5, 9, 5, 11, 9.

Analyze and compare the Miss rates in each of the following cache mapping techniques.

- i) Direct Mapping
- ii) Fully Associative Mapping
- iii) 2-way Set Associative mapping.

9

6

B) Explain the concept and advantages of memory interleaving with suitable examples.