# PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING 

Max Marks: 40
Max Time: 120 Mins
Weightage: $40 \%$

## END TERM FINAL EXAMINATION

I Semester AY 2017-2018
Course: CIV 209 - Structural Analysis - II
18 December 2017

## Instructions:

i. Write legibly and draw clear diagrams wherever required. Solving the problem in pencil is not allowed. Units if not written will be penalized.
ii. Diagrams to be drawn using a pencil and scale only. Pen diagrams will be penalized.
iii. Scientific and non-programmable calculators are permitted.
iv. If the correct question number and part is not mentioned, the answer will be marked wrong.

## Part A

(2 Q x $5 \mathrm{M}=10$ Marks)

1. Derive the expression for length of cable (parabolic) when supports are at different levels.
2. Find the maximum deflection and slope at the support for a simply supported beam with span ' L ' and uniformly distributed load (UDL) of 'W per meter run'.

## Part B

(1 Q x $14 \mathrm{M}=14$ Marks)
3. A suspension cable is suspended from two piers 200 m apart, the left support being 5 m above the right support. The cable carries a UDL of $1.5 \mathrm{kN} / \mathrm{m}$ and has its lowest point 10 m below the lower support. The ends of the cable are attached to saddle on rollers atop of piers and a backstay (anchor cable) which may be assumed straight are inclined at $60^{\circ}$ to the vertical. Determine:
(a) Maximum tension in the cable.
(b) The tension in the backstays.
(c) The thrust on each pier.

## Part C

( $1 \mathrm{Q} x 16 \mathrm{M}=16$ Marks)
4. Analyse the given frame shown in Figure 1 by slope deflection method and draw the Bending Moment Diagram (BMD).


Figure 1

# PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING 

Max Marks: 20
Max Time: 60 Mins
Weightage: 20 \%
TEST 2
I Semester AY 2017-2018
Course: CIV 209 - Structural Analysis - II
27 October 2017

## Instructions:

i. Write legibly and draw clear diagrams wherever required. Solving the problem in pencil is not allowed. Units if not written will be penalized.
ii. Diagrams to be drawn using a pencil and scale only. Pen diagrams will be penalized.
iii. Scientific and non-programmable calculators are permitted.
iv. If the correct question number and part is not mentioned, the answer will be marked wrong.

## Part A

(1 Q x 4 M= 4 Marks)

1. Analyse the given frame shown in figure 1 by stiffness matrix method and answer the following:
a. Calculate the Degree of Redundancy of the beam and identify the redundants.
b. Calculate the Fixed End Moments.


Figure 1
Part B
( $1 \mathrm{Q} \times 8 \mathrm{M}=8$ Marks)
2. Refer to Figure 1 of Part A and answer the following:
a. Calculate the Net Moments on the beam.
[2 Marks]
b. Perform the Stiffness Matrix Analysis.

## Part C

(1 Q x 8 M= 8 Marks)
3. Refer to Figure 1 of Part A and answer the following:
a. Calculate the Redundants.
b. Calculate the Final Moments.
c. Calculate the Shear Force acting on the beam.
d. Draw the Bending Moment Diagram and Shear Force Diagram.

# PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING 

Max Marks: 20
Max Time: 60 Mins
Weightage: 20 \%

## TEST 1

I Semester 2017-2018
Course: CIV 209-Structural Analysis - II
16 September 2017

## Instructions:

i. Write legibly and draw clear diagrams wherever required.
ii. Diagrams to be drawing using a pencil and scale only. Pen diagrams will be penalized.
iii. Scientific and non-programmable calculators are permitted.

## Part A

(1 Q x 4 M=4 Marks)

1. Analyse the given frame shown in figure 1 by moment distribution method and answer the following:
a. Calculate the Fixed End Moments
b. Calculate the Distribution Factors for the given frame.


Figure 1

## Part B

2. Refer to Figure 1 of Part A and answer the following:
a. Perform the Moment Distribution Analysis.
[3 Marks]
b. Calculate the Additional Moments that occur due to Sway.

## Part C

( $1 \mathrm{Q} x 10 \mathrm{M}=10$ Marks)
3. Refer to Figure 1 of Part B and answer the following:
a. Perform the Sway Analysis
b. Calculate the Final Moments
c. Draw the Bending Moment Diagram.

