ROLL NO.

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

Max Marks: 40
Max Time: 120 Mins
Weightage: 40 \%
END TERM FINAL EXAMINATION

I Semester AY 2017-2018 Course: CIV 214 Foundation Engineering
20 DEC 2017

Instructions:

i. Write legibly
ii. Scientific and non-programmable calculators are permitted.

Part A

(2Q x $4 \mathrm{M}=8$ Marks)

1. What are the different components of settlements for shallow footing? What is meant by flexible and rigid footing?
2. Classify the Pile foundations on different basis (in a tabular column).

Part B

(4 Q x $4 \mathrm{M}=16$ Marks)
3. A rectangular footing $3 \mathrm{~m} \times 1.5 \mathrm{~m}$ exerts a pressure of $80 \mathrm{KN} / \mathrm{m}^{2}$ on a cohesive soil (Es $=5.1 \times 10^{4}$ $\mathrm{KN} / \mathrm{m}^{2}, \mu=0.50$).Determine the immediate settlement at the center, assuming the footing is (a) flexible and (b) rigid. Flexible influence factors for $\mathrm{L} / \mathrm{B}=2$ are 1.53 at the center and 0.77 at the corner and for rigid it is 0.8 .
4. A concrete Pile 50 cm in diameter and 20 m long is driven into a homogeneous mass of clay soil of medium consistency. The water table is at the ground surface. The unit cohesion is $45 \mathrm{KN} / \mathrm{m}^{2}$ and adhesion factor $\mathrm{a}=0.70$. Compute Q_{u} and Q_{a} with FS 2.5.
5. A square pile group of 16 piles, 12 m long, passed through a filled up soil of 4 m depth. The pile diameter is 300 mm and the pile spacing is 800 mm . If unit cohesion of the material is $18 \mathrm{KN} / \mathrm{m}^{2}$ and the unit weight is $15 \mathrm{KN} / \mathrm{m}^{3}$ compute the negative skin friction of the group.
6. A pile of 0.45 m diameter is driven in saturated loose sand as shown in the figure 1 . Estimate the ultimate load carrying capacity from static formula.

Figure 1

Part C

(2 Q x $8 \mathrm{M}=16$ Marks)
7. Calculate the total consolidation settlement of soil profile as shown in figure 2, composed of two different types of clay, ie clay 1 and clay 2 due to 150 kpa net foundation loading. Take unit weight of water as $10 \mathrm{KN} / \mathrm{m}^{3}$ and assume that Skempton-Bjerrum correction factor $\mu=0.7$ for both clay layers. Note that Pc is the preconsolidation pressure.

Figure 2
8. A square footing of size $10 \mathrm{~m} \times 10 \mathrm{~m}$ is founded at a depth of 2 m below the ground surface in loose medium dense sand with $\mathrm{q}_{\mathrm{n}}=120 \mathrm{KN} / \mathrm{m}^{2}$.Standard penetration tests conducted at the site gave the following N_{60} values:

Depth below GL in m	N_{60}	Depth below GL in m	N_{60}
2	8	12	16
4	8	14	18
6	12	16	17
8	12	18	20
10	11		

The water table is at the base of the foundation. Above the water table, $\gamma=16.5 \mathrm{KN} / \mathrm{m}^{3}$ and submerged $\gamma_{\mathrm{b}}=8.5 \mathrm{KN} / \mathrm{m}^{3}$. Compute the elastic settlement by using, $\mathrm{E}_{\mathrm{s}}=250\left(\mathrm{~N}_{\text {corr }}+15\right)$ for computing the modulus of elasticity of the sand. Assume $\mu=0.3$ and depth of compressible layer $=2 \mathrm{~B}=20 \mathrm{~m}(=\mathrm{H})$

REFERENCE FIGURE FOR QUESTION 8

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

TEST 2

Instructions:

i. Write legibly
ii. Scientific and non-programmable calculators are permitted.

Part A

(2Q x $3 \mathrm{M}=6$ Marks)

1. What are the different modes of failure of finite slopes? Explain with diagram.
2. What are the different types of bearing capacity failure? Explain with a diagram.

Part B

(2 Q x $4 \mathrm{M}=8$ Marks)
3. A laboratory test gave the following soil parameters $\mathrm{C}=35 \mathrm{KN} / \mathrm{m}^{2}, \phi=32^{\circ}$ The expected parameters of the mobilized shearing resistance are $\mathrm{C}_{\mathrm{m}}=20 \mathrm{KN} / \mathrm{m}^{2}, \phi_{\mathrm{m}}=25^{\circ}$. The average effective pressure on the failure plane is $165 \mathrm{KN} / \mathrm{m}^{2}$. Find the factors of safety w.r.t average shearing strength, cohesion and internal friction
4. A square footing $3 \mathrm{~m} \times 3 \mathrm{~m}$ is built on a homogeneous bed of sand of density $19 \mathrm{KN} / \mathrm{m}^{3}$ and having ϕ $=35^{0}$. The depth of foundation is 1.5 m below the ground. Determine the safe load that can be applied on the footing with F.O.S of 3.0 considering $\mathrm{N}_{\mathrm{c}}=57.8, \mathrm{~N}_{\mathrm{q}}=41.4$ and $\mathrm{N}_{\gamma}=42.4$ as the bearing capacity factors for analysis.

Part C

$$
\text { (} 1 \mathrm{Q} \times 6 \mathrm{M}=6 \text { Marks })
$$

5. An embankment is to be constructed with $\mathrm{C}=25 \mathrm{KN} / \mathrm{m}^{2}, \phi=25^{\circ}, \gamma=19 \mathrm{KN} / \mathrm{m}^{3}, \mathrm{Fc}=1.3$, height H $=12 \mathrm{~m}$.Estimate the side slope required. Taylor's stability numbers are as follows for slope angle.

Slope Angle	90	75	60	45	30	20	10
$\mathrm{~S}_{\mathrm{n}}$	0.182	0.134	0.097	0.062	0.025	0.005	0

Also find the factor of safety if the slope angle is $1 \mathrm{~V}: 2 \mathrm{H}$, given $\phi=25^{\circ}$

PRESIDENCY UNIVERSITY, BENGALURU SCHOOL OF ENGINEERING

TEST 1

Instructions:

i. Write legibly
ii. Scientific and non-programmable calculators are permitted.

Part A

(4Q x $5 \mathrm{M}=20$ Marks)

1. How is standard penetration test conducted in the field? Explain with a neat diagram
2. How is the depth and lateral extent of soil exploration determined?
3. With a neat sketch of soil sampler, define (1) Area ratio (ii) Recovery ratio (iii) Inside clearance (iv) Outside Clearence.
4. Compare Boussinesq's and Westergaard's theory.

Part B

(2 Q x $7 \mathrm{M}=14$ Marks)
5. Calculate the stress by point load method of Boussinesq at a depth of 20 m below the centre of a raft of size $30 \times 12 \mathrm{~m}$ founded at a depth of 2.5 m subjected to a uniform pressure of $150 \mathrm{KN} / \mathrm{m}^{2}$. Neglect the effect of founding depth. Assume coordinate of the centre of the raft is $(0,0)$
6. What is meant by SPT ' N ' value?

A single concentrated load of 1000 KN acts at the ground surface. Construct an isobar for $\sigma_{\mathrm{z}}=40$ $\mathrm{kN} / \mathrm{m}^{2}$ by making use of the Boussinesq equation.

Part C

$$
\text { (} 1 \mathrm{Q} \times 6 \mathrm{M}=6 \text { Marks) }
$$

7. ABCD is a raft foundation of a multi-storey building as shown in Figure 1

Figure 1

Where $A B=20 \mathrm{~m}, \mathrm{BC}=12 \mathrm{~m}$, the udl q over raft is $350 \mathrm{KN} / \mathrm{m}^{2}$. Determine σ_{z} at a depth of 6 m below point O where $\mathrm{AA}_{1}=4 \mathrm{~m}, \mathrm{~A}_{1} \mathrm{O}=6 \mathrm{~m}$.

FADUM'S CHART

Figure 2

