Paper No: PU-SOE- Physics - 06

Structural, optical and photoresponse characteristics of metal-insulator-semiconductor (MIS) type Au/Ni/CeO₂/GaN Schottky barrier ultraviolet photodetector

Nanda Kumar Reddy, Nallabala, **Srinivas Godavarthi**, Venkata Krishnaiah Kummara, **Mohan Kumar Kesarla**, Debabrata Saha, Harish Sharma Akkera, Gopi Krishna Guntupall, Suresh Kumar, S.V. Prabhakar Vattikuti

Abstract

GaN based metal-insulator-semiconductor (MIS) type ultraviolet photodetector was fabricated and investigated using high-k dielectric CeO₂ as an insulating oxide layer. Using XRD analysis, the phase formation of the as-deposited CeO₂ films on GaN was found to be cubic fluorite. Non-contact mode atomic force microscopy technique was utilized and explored the surface morphology of CeO₂ films on GaN composed of prearranged clusters of spherical shape with an average rms surface roughness of 0.428 μ m. XPS analysis has revealed the existence of two oxidation states such as Ce³⁺ and Ce⁴⁺ in the Ce3d spectral envelop. Using absorbance versus wavelength data, the Tauc's plot was plotted and calculated a direct optical bandgap of 3.52 eV. The current-voltage (I–V) characteristics extracted from the device revealed the symmetric behavior or formation of back-to-back Schottky barrier at the metal-semiconductor (MS) interface. Photoresponsivity of the device at +10 V bias was calculated as 28.99 A/W and it is higher compared to the values extracted from metal-semiconductor-metal (MSM) type UV PDs reported in the literature. Furthermore, the transient response characteristics of the prepared device showed good stability with almost same rise time and fall time of ~2.73 s and ~5.35 s, respectively. Based on the device performance, the proposed MIS type structure could be a suitable for the development of ultraviolet photodetectors.

Keywords:

NHEP-CAT redox system, Oxidation-kinetics, Rate law, Mechanism, Activation parameters

Publication Details: Journal Name	Vol.	Month & Year	Page No.	Publisher	Scimago Ranking
Materials Science in Semiconductor Processing	117	Oct, 2020	NA	Elsevier	Q2