Paper No: PU-SOE- Physics - 10

Enhanced near-infrared luminescence at 1.07 µm of Nd³⁺ doped PbCl₂–Li₂B₄O₇ glasses for solid state laser and optical fiber amplifier applications

D.Vijayatha^{1,2}, B.Sujatha³, G.Chandrashekaraiah^{1,4}, C. Narayana Reddy⁵, N Sivasankara Reddy⁶ Department of Physics, School of Engineering, Presidency University, Bangalore 560064, India

Abstract

Nd³⁺ doped PbCl₂–Li₂B₄O₇ glasses have been synthesized using melt quenching technique. XRD spectra reveals the signature of noncrystalline behavior of synthesized glasses. DSC studies reveal glass transition temperature and thermal stability parameter (ΔT) exhibit composition dependent trends and ΔT is as high as 114 °C. UV–Vis spectra contain eleven well-defined absorption peaks with five intense absorption bands centered at 527, 586, 750, 806 and 876 nm which are assigned to transitions from ⁴I_{9/2} \rightarrow ⁴G_{7/2}, [⁴G_{5/2},²G_{7/2}], [⁴F_{7/2}, ⁴S_{3/2}], [⁴F_{5/2}, ²H_{9/2}] and ⁴F_{3/2} respectively. The maximum absorption cross section 1.139×10–20 cm² of 806 nm pump level transition ⁴I_{9/2} \rightarrow [⁴G_{5/2}, ²G_{7/2}]. Near infrared emission spectra exhibit very high emission intensity at 1070 nm for ⁴F_{3/2} \rightarrow ⁴I_{11/2} transition along with two dominant emission bands at 904 and 1340 nm corresponding to ⁴F_{3/2} \rightarrow ⁴I_{9/2} and ⁴F_{3/2} \rightarrow ⁴I_{13/2} transitions. This high absorption and emission intensities are attributed to high degree of covalent environment of ligands surrounding Nd³⁺ ions. Bonding parameter, δ increase with Nd₂O₃ content which suggests dominance of covalency between Nd³⁺ ion and ligands. ¹¹B MAS NMR studies reveal that, the addition of Nd₂O₃ to Li₂B₄O₇ glasses with superior absorption coefficient shows linear relationship with optical band gap energy. Hence Nd³⁺ doped PbCl₂–Li₂B₄O₇ glasses with superior absorption and emission properties are found to be potential candidates for near-infrared solid state laser and optical fiber amplifier applications.

Keywords:

Thermal stability, Near-infrared luminescence, Metallization, Spectroscopy, ¹¹B MAS NMR,

Publication Details: Journal Name	Vol.	Month & Year	Page No.	Publisher	Scimago Ranking
Optical Materials	111	Jan, 2021	NA	Elsevier	Q1