

scientifically.

a) Quailing Theory

a) Policies

Roll No												
---------	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF COMMERCE & MANAGEMENT

			TEST 1	
E	Even Semeste	er: 2021 - 22		Date: 27th April 2022
(Course Code:	OE 145		Time : 11:30 AM to 12.30 PM
(Course Name:	: Optimization Techniques		Max Marks: 30
F	Program & Se	m: BBB/BBF/BBD/BBE & I	V Sem	Weightage: 15%
	Instructions	3:		
	(i) Read the	all questions carefully and	answer accordingly.	
	` '	III the questions.		
	(iii) Normal G	Graph Sheets are allowed.		
		Part A [Memo	ory Recall Question	ns]
Answ	er all the Qu	estions. Each question	carries ONE mark	c. (10Qx 1M= 10M)
1)	Operations R a) Research	, ,	ery powerful tool for _ king c) Operat	tions d) None of the above
2)	The term Ope	erations Research was coir	ned in the year	(CO1)
	a) 1950	b) 1940	c) 1978	d) 1960
3)	This innovativa) Civil War	•		red during (CO1) [Knowledge] Industrial Revolution
4)	Operations R a) Scientists		· · · · · · · · · · · · · · · · · · ·	a team of(CO1) [Knowledge] mics d) All of the above
5)	Operations R solution. a) Scientific	Research involves b) Systematic	attack of complex	c problems to arrive at the optimum (CO1) [Knowledge] d) Statistical

6) Operations Research uses models to help the management to determine its

c) Both A and B

c) Both A and B

7) Which technique is used in finding a solution for optimizing a given objective, such as profit

b) Actions

maximization or cost minimization under certain constraints?

b) Waiting Line

(CO1) [Knowledge]

(CO1) [Knowledge]

d) None of the above

d) Linear Programming

8)	What refers to Linear Programming that incin various alternatives of choice for manage a) Probabilistic Programming c) Both A and B	ement decisions?	(CO1) [Knowledge]
9)	In models there is risk a) Deterministic Models c) Both A and B	and uncertainty. b) Probabilistic Models d) None of the above	(CO1) [Knowledge]
10) The objective functions and constraints are a) Variables b) Constraints	linear relationship between c) Functions d) A	, ,-
	Part B [Thought P	rovoking Questions]	
Answ	er both the Questions. Each question	carries FIVE marks.	(2Qx5M=10M)
11) State various phases of Operations Resea	rch and explain in brief.	(CO1) [Comprehension]
12) A Manufacturer produces 3 models I, II and	•	•

The following table gives the data. Formulate this problem as a Linear programming model.

(CO1) [Comprehension]

Raw Material	Requir	ement p	Availability	
Naw Material		II	Ш	Availability
Α	2	3	5	4000
В	4	2	7	6000
Min Demand	200	200	150	
Profit / Unit	30	20	50	

Part C [Problem Solving Questions]

Answer the Question. The question carries TEN marks.

(1Qx10M=10M)

13) Briefly explain the formulation of LPP using Graphical Method.

(CO1) [Application]

Maximize Z = 3 x + 5 ySubject to the constraints

x ≤ 4

2 y ≤ 12

 $3 x + 2 y \le 18$

where $x, y \ge 0$ using graphical method.

Roll No													
---------	--	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF COMMERCE & MANAGEMENT

TEST 2

Even Semester: 2021 - 22		Date : 2 nd June 2022
Course Code: OE 145		Time : 11:30 AM to 12.30 PM
Course Name: Optimization Tech	nniques	Max Marks: 30
Program & Sem: BBB/BBF/BBD/	BBE & IV Sem	Weightage: 15%
Instructions:		
(iv) Read the all questions ca	refully and answer accordingly.	
(v) Answer all the questions.		
Part A	[Memory Recall Questions]	
Answer all the Questions. Each q	uestion carries ONE mark.	(10Qx 1M= 10M)
14)The transportation problem is a) Maximization model b)	s basically a Minimization model c) Transshipme	(CO3) [Knowledge] ent problem d) Iconic model
resource is known as a) Balanced transportation pr	rhere the demand or requirement roblem b) Regular tra portation problem d) Simple tran	(CO3) [Knowledge] nsportation problem
16) In transportation Problems, Va) Value Addition Methodc) Virginia Approximation Me	b) Vogel's Approxima	(CO3) [Knowledge] ation Method
17)The Assignment Problem is s a) Complex method b) Grap	solved by phical method c) Vector method	(CO3) [Knowledge] d) Hungarian method
18)The assignment matrix is alw a) Rectangular matrix b)	ays a Square matrix c) Identity mat	(CO3) [Knowledge] trix d) None of the above
the transportation problem?	ds is used to verify the optimality	(CO3) [Knowledge]
a) LCM b) VAM	c) Modified distribution meth	nod d) All of the above
20) In a transportation problem, vequal.		
a) destinations; sources	b) units supplied; units dem	
c) columns; rows	d) positive cost coefficients;	negative cost coefficients

- 21)The solution to a transportation problem with m-rows (supplies) and n-columns (destination) is feasible if the number of positive allocations are (CO3) [Knowledge]
 - a) m+n
- b) mxn
- c) m+n-1
- d) m+n+1
- 22)The Hungarian method for solving an assignment problem can also be used to solve (CO3) [Knowledge]
 - a) A transportation problem
- b) A traveling salesman problem

c) A LP problem

- d) Both a & b
- 23) In the assignment problem of maximization, the objective is to maximize

(CO3) [Knowledge]

a) Profit

b) optimization

c) cost

d) None of the above

Part B [Thought Provoking Questions]

Answer both the Questions. Each question carries FIVE marks.

(2Qx5M=10M)

24) Solve the assignment problem by Hungarian method

(CO3) [Comprehension]

	Α	В	С	D
Р	8	26	17	11
Q	13	28	4	26
R	38	19	18	15
S	19	26	24	10

25)Construct a network diagram for each of the projects whose activities and their precedence relationships are given below: (CO3) [Comprehension]

Activity	A	В	C	D	Е	F	G	Н	I	J	K
Predecessors				A	В	В	C	D	Е	H, I	F, G

Part C [Problem Solving Questions]

Answer the question. The question carries TEN marks.

(1Qx10M=10M)

26) Find the minimized cost using all the three transportation methods. (CO3) [Application]

	D1	D2	D3	D4
01	19	30	50	10
O2	70	30	40	60
O3	40	8	70	20

- - -

Roll No												
---------	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY **BENGALURU**

SCHOOL OF COMMERCE & MANAGEMENT

END TERM EXAMINATIONS

Date: 29th June 2022 **Even Semester**: 2021 - 22

Time: 01:00pm - 04.00pm Course Code: OE 145

Max Marks: 100 Course Name: Optimization Techniques Weightage: 50%

Program & Sem: BBB/BBF/BBD/BBE & IV Sem

Instructions:

- (vi) Read the all questions carefully and answer accordingly.
- Answer all the questions. (vii)
- Normal Graph Sheets are allowed. (viii)

	Part A [Memory	y Recall Questions	5]	
Answer all the Que	stions. Each question o	carries ONE mark.	(10Qx 1M= 10M))
	esearch (OR), which is a b) Decision – Making		for (CO1) [Knowledge d) None of the above	}]
28)Operations Re	esearch has the characte	eristics the it is done	by a team of	
a) Scientists	b) Mathematicians	c) Academics	(CO1) [Knowledge d) All of the above	<u>;]</u>
profit maximiz	ation or cost minimizatio	n under certain con	ing a given objective, such a straints (CO1) [Knowledge d) Linear Programming	
30)The objective	functions and constraints	s are linear relations	ship between	
a) Variables	b) Constraints	c) Functio	(CO1) [Knowledgens d) All of the above	-
,	ation problem is basically on model b) Minimization		(CO3) [Knowledge oment problem d) Iconic mode	-
resource is kr a) Balanced ti		b) Regula		
a) Value Addi	on Problems, VAM stand tion Method	b) Vogel's Appro		∋]

34) The Assignment Problem is solved by

(CO3) [Knowledge]

- a) Complex method b) Graphical method c) Vector method
- d)Hungarian method
- 35) Which of the following methods is used to verify the optimality of the current solution of the transportation problem? (CO3) [Knowledge]
 - a) LCM
- b) VAM
- c) Modified distribution method
- d) All of the above
- 36) The solution to a transportation problem with m-rows (supplies) and n-columns (destination) is feasible if the number of positive allocations are (CO3) [Knowledge]
 - a) m+n
- b) mxn
- c) m+n-1
- d) m+n+1

Part B [Thought Provoking Questions]

Answer all the Questions. Each question carries 10 marks.

(5Qx10M=50M)

37) State various phases of Operations Research and explain in brief.

(CO1) [Comprehension]

38) Briefly explain the formulation of LPP using Graphical Method.

(CO2) [Application]

Minimize Z = 20 x + 10 y

Subject to the constraints $x + 2y \le 40$

$$3 x + y \ge 30$$

$$4 x + 3 y \ge 60$$

where

x, $y \ge 0$ using graphical method.

39) Find an optimal solution for the transportation methods using any two methods of your choice. (CO3) [Application]

	D1	D2	D3	D4	Supply
01	6	4	1	5	14
O2	8	9	2	7	6
O3	4	3	6	2	3
Demand	6	10	6	2	

40) Solve the assignment problem by Hungarian method

(CO3) [Comprehension]

	Α	В	С	D
Р	8	26	17	11
Q	13	28	4	26
R	38	19	18	15
S	19	26	24	10

41) Construct a network diagram for each of the projects whose activities and their precedence relationships are given below: (CO3) [Comprehension]

Activity	Α	В	C	D E		F	G	Ι	-	J	K
Predecessors			Α	Α	I, J, K	B, D	B, D	F	Α	G, H	F

Part C [Problem Solving Questions]

Answer both the questions. Each question carries 20 marks.

(2Qx20M=40M)

42)A small maintenance project consists of the following jobs whose precedence relationships are given below

(CO4) [Application]

Job	1-2	1-3	2-3	2-5	3-4	3-6	4-5	4-6	5-6	6-7
Duration (days)	15	15	3	5	8	12	1	14	3	14

- (a) Draw an arrow diagram representing the project.
- (b) Find the total float and free float for each activity.
- (c) Find the critical path and the total project duration.
- 43)A small project is composed of seven activities whose time estimates are listed in the table as below

(CO4) [Application]

Activity	1-2	1-6	2-3	2-4	3-5	4-5	6-7	5-8	7-8
Optimistic	1	2	2	2	7	5	5	3	8
Most likely	7	5	14	5	10	5	8	3	17
Pessimistic	13	14	26	8	19	17	29	9	32

- (a) Draw the Project network.
- (b) Find the expected duration and variance of each activity.
- (c) Find the Critical path and total duration of the project.
- (d) Calculate the Variance and standard deviation of project length.

_ _ _