	rr						·			
₹.	Roll No.									
	UNIVER	SITY								
GAIN MORE KNOWLEDGE REACH GREATER HEIGHTS BENGALURU										
SCHOOL OF ENGINEERING										
MIDTERM EXAMINATION SET - A										
Odd Semester: II Sem (AY 2021-22)			–	ate: 1			000			
Course Code: PHY1002				i me : 0	-		-	3.00 F	РΜ	
Course Name: Optoelectronics and device physic	CS			ax Ma						
Program & Sem: B.Tech, & 2 nd Semester			W	/eighta	age:	<u>25%</u>)			
Instructions:										
 (i) Read the question properly and answer (ii) Question paper consists of 3 parts. 	er according	ly.								
(iii) Scientific and Non-programmable calc	ulators are	oermitte	d.							
(iv) Given: Planck's constant h = 6.625×10				tron e	=1.6	×10	^{.19} C			
Dert A Mersens D		(
Part A [Memory Re Answer all the questions. Each question c		-	S	(1)	0Qx2	2M=	20N	/)		
1. Identify the solid material which has				•				-,		
			(C.O.1) (Kr	lwor	edg	e)		
a) Aluminum b) Diamond c) Wo2. Identify the critical field required to			lsun	ercon	duct	or				
		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		C.O.1			edg	e)		
a) 30 T b) 0.1 T c) 1 T	,									
 In the Hall Effect, the electric field is direction. What is the direction of th 			and	curre	nt is	in tr	ie Y	-		
	ie magnetik		O.1)	(Knov	vledg	je)				
a) X b) Y c) XY		Z		` 		· ·				
4. Which dopant will result in p-type se	emiconduc	tor?	(C	C.O.1)	(Kn	owle	edge	;)		
a) P b) Si c) B d) Ge										
5. Identify the diamagnetic material			(0	C.O.1)	(Kn	owle	edge	e)		
a) Iron b) Nickel c) Gold d) Pla	atinum									
6. Identify the high susceptibility magn		al	(C	CO.1)	(Kno	owle	dge)		
				, N A	,		Ū	,		
a) Diamagnetic b) Paramagnet 7. Fermi level lies in P-type semicondu				d) Su C.O.1)						
a) Below the conduction band	0.01		(C	.0.1)		50010	Juge	·)		
b) Above the Valence band										
c) Middle of the Energy gapd) None of the above.										
8. Fermi level lies in intrinsic semicond	luctor at									
				.O.1)	(Kno	wlea	dge)	1		
a) Below the conduction band										
b) Above the Valence bandc) Middle of the Energy gap										
d) None of the above										
					F	Page	1 of	12		
					'	~50	- 01			

9. Choose the wrong statement?

- a) Superconductivity is a phenomenon in which electric current pass through a material without any resistance.
- b) Superconducting state of material is observed only below a temperature called transition or critical temperature.
- c) superconductors are perfect diamagnetic
- d) Superconductivity is not possible to destroy by applying external magnetic field.
- 10. Which of the following are the properties of superconductors?

(C.O.1) (Knowledge)

- a) They are diamagnetic in nature
- b) They have zero resistivity
- c) They have infinite conductivity
- d) All of the above

Part B [Thought Provoking Questions]

Answer all the questions. Each question carries FIVE marks. (3Qx5M=15 M)

11. The conversation of intrinsic semiconductor to extrinsic semiconductor helps to improve the conductivity of semiconductors, what is the process involved in improving the conductivity, explain with neat diagrams?. (C.O.1) (Comprehension)
12. Materials are having high, low and negative susceptibilities, identify the materials

and distinguish between them? (C.O.1) (Comprehension)

13. The process in which a transverse electric field is developed in a solid material when the material carrying an electric current is placed in a magnetic field that is perpendicular to the current. Identify the effect, explain the same with neat diagram

(C.O.1) (Comprehension)

Part C [Problem Solving Questions]

Answer all the questions. Each question carries FIFTEEN marks. (1Qx15M=15 M)

14. (a) C, Sn, Si, Ge are present in the same group but Si and Ge are semiconductors while C and Sn are not. State the reasons? (C-Band gap-5.2 eV, Si-Band gap-1.1 eV, Ge-Bandgap-0.7 eV, Sn-Energy bap-0 eV). (3M)

(b)The Resistivity of conductor decreases with temperature and at particular temperature resistivity is equal to zero, is there any theory developed to explain above property? and explain the same in detail. (7M)

(c) N-type semiconductors are donor type, calculate the number of donor atoms per m3 of n-type material having resistivity of 0.25 Ω -m, the mobility of electrons is 0.3 m²/V-s. (5 M)(C.O.1)(Application)

Roll No.							
GAIN MORE KNOWLEDGE REACH GREATER HEIGHTS PRESIDENCY UNIVERSITY							
SCHOOL OF ENGINEERING MIDTERM EXAMINATION	SET - A						
Odd Semester: II Sem (AY 2021-22)	Date: 10.MAY.2022						
Course Code: PHY1002	Time: 01:30 PM to 03.00 PM						
Course Name: Optoelectronics and device physics Program & Sem: B.Tech, & 2 nd Semester	Max Marks: 50						
Instructions:	Weightage: 25%						
(v) Read the question properly and answer accordingly.							
(vi) Question paper consists of 3 parts.							
 (vii)Scientific and Non-programmable calculators are permitted (viii) Given: Planck's constant h = 6.625×10⁻³⁴ Js; Charge o 							
C							
Part A [Memory Recall Questions]							
Answer all the questions. Each question carries TWO mark	s. (10Qx2M=20M)						
4. Identify the solid material which has low resistivity and	d high conductivity (C.O.1) (Knowledge)						
a) Aluminum b) Diamond c) Wood d) Silicon	(C.O.T) (Knowledge)						
5. Identify the critical field required to destroy the Type-I	I superconductor (C.O.1) (Knowledge)						
 a) 30 T b) 0.1 T c) 1 T d) 3.0 T e) 1 T d) 3.0 T d) 3.0 T e) 1 T d) 3.0 T d) 4.0 T d) 4.0 T d) 4.0 T d) 4.0 T <lid) 4.0="" li="" t<=""> d) 4.0 T d) 4.0 T <lid) 4.0="" li="" t<=""> d) 4.0 T <lid) 4.0="" li="" t<=""> d) 4.0 T <lid) 4.0="" li="" t<=""> <lid) 4.0="" li="" t<=""> d) 4.0 T <lid) 4.0="" li="" t<=""> d) 4.0 T <lid) 4.0="" li="" t<=""> <lid) 4.0="" li="" t<=""> d) 4.0 T d) 4.0 T d) 4.0 T <lid) 4.0="" li="" t<=""> d) 4.0 T <lid) 4.0="" li="" t<=""> <lid) 4.0="" li="" t<=""> d) 4.0 T <lid) 4.0="" li="" t<=""> d) 4.0 T <lid) 4.0="" li="" t<=""> <lid) 4.0="" li="" t<=""> <lid) 4.0="" li="" t<=""> d) 4.0 T <lid) 4.0="" li="" t<=""> <lid)< td=""><td></td></lid)<></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)></lid)>							
b) X b) Y c) XY plane d) Z	O.1) (Knowledge)						
4. Which dopant will result in p-type semiconductor?	(C.O.1) (Knowledge)						
b) P b) Si c) B d) Ge							
6. Identify the diamagnetic material	(C.O.1) (Knowledge)						
a) Iron b) Nickel c) Gold d) Platinum 6. Identify the high susceptibility magnetic material	(C.O.1) (Knowledge)						
 a) Diamagnetic b) Paramagnetic c) Ferromagnetic 7. Fermi level lies in P-type semiconductor e) Below the conduction band f) Above the Valence band g) Middle of the Energy gap h) None of the above. 	(C.O.1) (Knowledge)						
8. Fermi level lies in intrinsic semiconductor at	(C.O.1) (Knowledge)						
a) Below the conduction bandb) Above the Valence bandc) Middle of the Energy gap	(0.0) (
	Page 3 of 12						

- d) None of the above
- 9. Choose the wrong statement?
 - (C.O.1) (Knowledge) e) Superconductivity is a phenomenon in which electric current pass through a material without any resistance.
 - f) Superconducting state of material is observed only below a temperature called transition or critical temperature.
 - q) superconductors are perfect diamagnetic
 - h) Superconductivity is not possible to destroy by applying external magnetic field.
- 10. Which of the following are the properties of superconductors?

(C.O.1) (Knowledge)

- e) They are diamagnetic in nature
- f) They have zero resistivity
- g) They have infinite conductivity
- h) All of the above

Part B [Thought Provoking Questions]

Answer all the questions. Each question carries FIVE marks. (3Qx5M=15 M)

11. The conversation of intrinsic semiconductor to extrinsic semiconductor helps to improve the conductivity of semiconductors, what is the process involved in improving the conductivity, explain with neat diagrams?. (C.O.1) (Comprehension)

12. Materials are having high, low and negative susceptibilities, identify the materials

and distinguish between them?

13. The process in which a transverse electric field is developed in a solid material when the material carrying an electric current is placed in a magnetic field that is

perpendicular to the current. Identify the effect, explain the same with neat diagram

(C.O.1) (Comprehension)

(C.O.1) (Comprehension)

Part C [Problem Solving Questions]

Answer all the questions. Each question carries FIFTEEN marks. (1Qx15M=15 M)

14. (a)C, Sn, Si, Ge are present in the same group but Si and Ge are semiconductors while C and Sn are not. State the reasons? (C-Band gap-5.2 eV, Si-Band gap-1.1 eV, Ge-Bandgap-0.7 eV, Sn-Energy bap-0 eV). (3M)

(b) The Resistivity of conductor decreases with temperature and at particular temperature resistivity is equal to zero, is there any theory developed to explain above property? and explain the same in detail. (7M)

(c) N-type semiconductors are donor type, calculate the number of donor atoms per m3 of n-type material having resistivity of 0.25 Ω -m, the mobility of electrons is 0.3 m²/V-s. (5 M)(C.O.1)(Application)

Roll No.							
----------	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY BENGALURU SCHOOL OF ENGINEERING MIDTERM EXAMINATION

Winter Semester: 2021-22 Course Code: PHY1002 Course Name: Optoelectronics and device physics Program & Sem: B.Tech, & 2nd Semester SET – B Date: 10.MAY.2022 Time: 01:30 PM to 03.00 PM Max Marks: 50 Weightage: 25%

(C.O.1) (Knowledge)

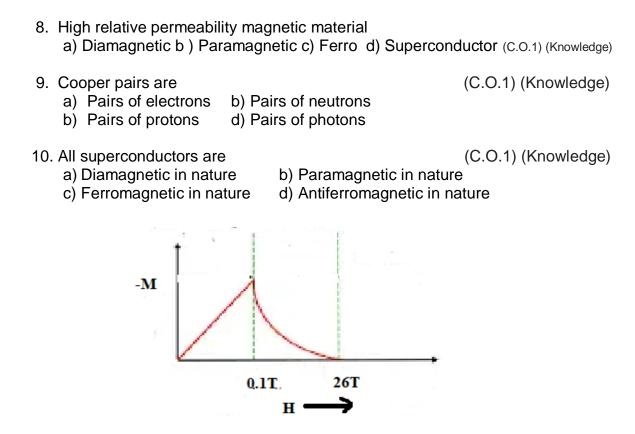
Instructions:

- (ix) Read the question properly and answer accordingly.
- (x) Question paper consists of 3 parts.
- (xi) Scientific and Non-programmable calculators are permitted.

(xii)Given: Planck's constant $h = 6.625 \times 10^{-34}$ Js; Charge of the electron $e = 1.6 \times 10^{-19}$ C

Part A [Memory Recall Questions]

Answer all the questions. Each question carries TWO marks.	(10Qx2M=20M)
A semiconductor in its purest form is called	(C.O.1) (Knowledge)


- 7. A semiconductor in its purest form is called
 a) Insulator
 b) Superconductor
 c) Intrinsic semiconductor
 d) Extrinsic semiconductor
- 8. Fermi energy is the highest energy level occupied by an electron at
 a) 0°C b) 273 K c) 273°C d) 0 K (C.O.1) (Knowledge)
- 9. In the Hall Effect, the induced electric field is in the X-direction and the current is in the Y-direction. What is the direction of the magnetic field?
 c) X b) Y c) XY plane d) Z (C.O.1) (Knowledge)
- 4. Aluminum can be used as
 c) Pentavalent Impurity
 b) Trivalent Impurity
 c) Tetravalent Impurity d) None of the above

7. The temperature at which a material undergoes a transition from the normal state to the superconducting state by losing its resistivity is called.

- a) Critical Temperature b) Absolute Temperature (C.O.1) (Knowledge)
- b) Curie Temperature d) Crystallization temperature
- 6. In the Hall effect, the output voltage produced across the crystal is due to
 - a) Drop across the crystal is due to the current passed through it
 - b) Due to repulsive force between unlike charges.
 - c) Movement of charge carriers towards one end
 - d) All the above (C.O.1) (Knowledge)

7. Type I superconductors are not used as superconducting magnets because a) The value of the critical field is low b) They have two critical fields

c) They don't have any critical field d) None of the above (C.O.1) (Knowledge)

Part B[Thought Provoking Questions]

Answer all the questions. Each question carries FIVE marks. (3Qx5M=15 M)

11. The expulsion of magnetic flux from a superconducting material in superconducting state. Identify the effect, explain the same with neat diagram. (C.O.1) (Comprehension)

12. Electron-electron interaction via phonon. Explain the theory behind the concept. (C.O.1) (Comprehension)

13. The Hall coefficient of certain Si specimen was found to be $-7.35 \times 10^{-5} \text{ m}^3 \text{ C}^{-1}$ from 100 to 400 K. Determine the nature of the semiconductor. If the conductivity was found to be 200 Ohm ⁻¹ m⁻¹. Estimate the density and mobility of the charge carrier.

(C.O.1) (Comprehension)

Part C [Problem Solving Questions]

Answer all the questions. Each question carries 15 marks. (1Qx15M=15 M)

14.

a) What type of material is illustrated in the graph? (2Marks)

b) Analyze the graph and explain the properties of the given material. (5 Marks)

c) Redraw the graph with complete labelling. (2 Marks)

d) The electron mobility and hole mobility in Si are $0.125 \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$ and $0.058 \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$ respectively at room temperature. If the carrier concentration is $1.2 \times 10^{16} \text{ m}^{-3}$. Estimate the resistivity of **Si** at room temperature. (6 Marks)

(C.O.1) (Application)

Roll No.		
----------	--	--

PRESIDENCY UNIVERSITY BENGALURU SCHOOL OF ENGINEERING MIDTERM EXAMINATION

Winter Semester: 2021-22 Course Code: PHY1002 Course Name: Optoelectronics and device physics

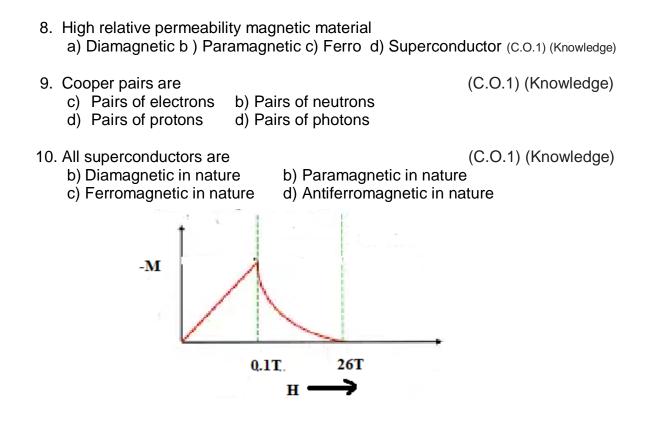
Program & Sem: B.Tech, & 2nd Semester

SET – B Date: 10.MAY.2022 Time: 01:30 PM to 03.00 PM Max Marks: 50 Weightage: 25%

(C.O.1) (Knowledge)

Instructions:

- (xiii) Read the question properly and answer accordingly.
- Question paper consists of 3 parts. (xiv)
- (xv)Scientific and Non-programmable calculators are permitted.
- (xvi) Given: Planck's constant $h = 6.625 \times 10^{-34}$ Js; Charge of the electron $e = 1.6 \times 10^{-19}$
- С


Part A [Memory Recall Questions]

Answer all the questions. Each question carries TWO marks. (10Qx2M=20M)(C.O.1) (Knowledge)

10. A semiconductor in its purest form is called b) Insulator

b) Superconductor

- d) Extrinsic semiconductor c) Intrinsic semiconductor
- 11. Fermi energy is the highest energy level occupied by an electron at
- (C.O.1) (Knowledge) a) 0°C b) 273 K c) 273°C d) 0 K
- 12. In the Hall Effect, the induced electric field is in the X-direction and the current is in the Y-direction. What is the direction of the magnetic field? d) X b) Y c) XY plane d) Z (C.O.1) (Knowledge)
- 4. Aluminum can be used as d) Pentavalent Impurity b) Trivalent Impurity c)Tetravalent Impurity d) None of the above
- 8. The temperature at which a material undergoes a transition from the normal state to the superconducting state by losing its resistivity is called.
 - a) Critical Temperature b) Absolute Temperature (C.O.1) (Knowledge)
 - b) Curie Temperature d) Crystallization temperature
- 6. In the Hall effect, the output voltage produced across the crystal is due to
 - e) Drop across the crystal is due to the current passed through it
 - f) Due to repulsive force between unlike charges.
 - g) Movement of charge carriers towards one end
 - h) All the above (C.O.1) (Knowledge)
- 7. Type I superconductors are not used as superconducting magnets because b) The value of the critical field is low b) They have two critical fields
 - c) They don't have any critical field d) None of the above (C.O.1) (Knowledge)

Part B[Thought Provoking Questions]

Answer all the questions. Each question carries FIVE marks. (3Qx5M=15 M)

11. The expulsion of magnetic flux from a superconducting material in superconducting state. Identify the effect, explain the same with neat diagram. (C.O.1) (Comprehension)

12. Electron-electron interaction via phonon. Explain the theory behind the concept. (C.O.1) (Comprehension)

13. The Hall coefficient of certain Si specimen was found to be $-7.35 \times 10^{-5} \text{ m}^3 \text{ C}^{-1}$ from 100 to 400 K. Determine the nature of the semiconductor. If the conductivity was found to be 200 Ohm $^{-1}$ m⁻¹. Estimate the density and mobility of the charge carrier.

(C.O.1) (Comprehension)

Part C [Problem Solving Questions]

Answer all the questions. Each question carries 15 marks. (1Qx15M=15 M)

14.

a) What type of material is illustrated in the graph? (2Marks)

b) Analyze the graph and explain the properties of the given material. (5 Marks)

c) Redraw the graph with complete labelling. (2 Marks)

d) The electron mobility and hole mobility in Si are $0.125 \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$ and $0.058 \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$ respectively at room temperature. If the carrier concentration is $1.2 \times 10^{16} \text{ m}^{-3}$. Estimate the resistivity of **Si** at room temperature. (6 Marks)

(C.O.1) (Application)

	Roll No.													
PRESIDENCY UNIVERSITY BENGALURU SCHOOL OF ENGINEERING														
Odd Semester : II Sem (AY 2021-22) Date : 30 th June 2022														
Course Code: PHY1002 Time: 1:00 AM to 4.00 PM						0 PM								
Course Name: Optoelectronics and Device Physics Max Marks: 100														
Program & Sem: B.Tech, & II Sem							W	eigh	ntag	e : 5	60%			

Instructions:

- (i) Read the question properly and answer accordingly.
- (ii) Scientific and Non-programmable calculators are permitted.

(iii) Given : Planck's constant $h = 6.625 \times 10^{-34}$ Js; Charge of the electron $e = 1.6 \times 10^{-19}$ C

Part A [Memory Recall Questions]

Answer all the Questions. Each question carries TWO marks. (20Qx2M=40M)

1. A semiconductor at very low temper [Knowledge]	rature behaves as	(CO1)
 a) Conductor b) Semiconductor 2.It is found that the number of free material. Identify the material. (CO1) [Knowledge] 		-
a) Conductor b) Intrinsic Semicon Superconductor	ductor c) Extrins	ic Semiconductor d)
3. According to the de-Broglie, the wa	velength of electron is	larger if the momentum is
(CO3) [Knowledge] a) smaller b) Larger c) Waveler 4. The physical nature exhibited by the (CO3) [Knowledge] a) Particle nature b) Wave nature nature 5. When an electron is accelerated by is (CO3) [Knowledge]	e radiation	wave d) Particle and Wave
 a) 1.227 A°/√V b) 1227 A°/√V 6. When the band gap of LED is increation (CO2) [Knowledge] 	,	/
	c) Remains same	d) doubles

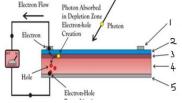
•	ciple of an optical fibe	er.	(CO4	4)
,	flection b) Electro of a matter wave as:]			se
a) Larger 9. The Charge car (CO1) [Knowledge	riers in semiconducto	c) no change ors are	d) Zero	
a) Both electrons a 10. Matter waves a (CO3) [Knowledge	•	ons c) Holes	d) Cations	
a) Mass	-	c) Velocity	d) Kinetic energy	
11. If the kinetic er	nergy of particle is qu	adrupled then the wa	avelength of the matter way	
a) Doublos	b) Quadruples	c) Triplos	(CO3) [Knowledg d) Halves	e]
	used as a Voltage re	, .	u) Halves	
(CO2) [Knowledge	•	0		
a) Zener Diode	,	c) Photodiode	d) all	
•	ne of the scientist ex	plained uncertainty p	principle	
(CO3) [Knowledge	-	a) Haisanbarg	d) Typdall	
a) Broglie 14. Superconduct		c) Heisenberg	(CO	1)
[Knowledge]			(00)	1)
	y b) Infinite conduct	ivity c) both a&b	d) none of these	
15. Arsenic can be	e used as			
(CO1) [Knowledge	1			
· · · ·	-			
a) Pentavalent dop	pant b) Trivalent c	lopant c) Tetrava	llent dopant d) Hexavale	nt
a) Pentavalent dop dopant	bant b) Trivalent c			
a) Pentavalent dopdopant16. The physical n	-		ilent dopant d) Hexavale (CO	
a) Pentavalent dop dopant	ature exhibited by the	e matter		3)
a) Pentavalent dopdopant16. The physical n[Knowledge]	ature exhibited by the	e matter	(CO	3)
 a) Pentavalent dop dopant 16. The physical na [Knowledge] a) Particle nature nature 17. Laser light is high 	bant b) Trivalent c ature exhibited by the b) Wave nature c) ighly	e matter	(CO	3)
 a) Pentavalent dop dopant 16. The physical n [Knowledge] a) Particle nature nature 17. Laser light is h (CO4) [Knowledge] 	bant b) Trivalent c ature exhibited by the b) Wave nature c) ighly]	e matter Neither Particle nor	(CO wave d) Particle and Way	3) ve
 a) Pentavalent dop dopant 16. The physical ne [Knowledge] a) Particle nature nature 17. Laser light is he (CO4) [Knowledge a) Monochromatic 	bant b) Trivalent c ature exhibited by the b) Wave nature c) ighly]	e matter Neither Particle nor	(CO	3) ve
 a) Pentavalent dop dopant 16. The physical ne [Knowledge] a) Particle nature nature 17. Laser light is he (CO4) [Knowledge a) Monochromatic d) All 	bant b) Trivalent c ature exhibited by the b) Wave nature c) ighly] beam of light b) Int	e matter Neither Particle nor ense beam of light	(CO wave d) Particle and Wav c) Convergent beam of ligh	3) ve nt
 a) Pentavalent dop dopant 16. The physical ne [Knowledge] a) Particle nature nature 17. Laser light is he (CO4) [Knowledge a) Monochromatic d) All 	bant b) Trivalent c ature exhibited by the b) Wave nature c) ighly]	e matter Neither Particle nor ense beam of light	(CO wave d) Particle and Wav c) Convergent beam of ligh	3) ve nt
 a) Pentavalent dop dopant 16. The physical ne [Knowledge] a) Particle nature nature 17. Laser light is he (CO4) [Knowledge] a) Monochromatic d) All 18. Identify type of [Knowledge] a) Type-I 	bant b) Trivalent c ature exhibited by the b) Wave nature c) ighly] beam of light b) Int	e matter Neither Particle nor ense beam of light ys complete Meissne c) Both a ar	(CO wave d) Particle and Way c) Convergent beam of ligh er effect. (CO nd b d) Neither a or b	3) ve tt
 a) Pentavalent dop dopant 16. The physical ne [Knowledge] a) Particle nature nature 17. Laser light is he (CO4) [Knowledge] a) Monochromatic d) All 18. Identify type of [Knowledge] a) Type-I 	bant b) Trivalent c ature exhibited by the b) Wave nature c) ighly] beam of light b) Int superconductor obe b) Type-II	e matter Neither Particle nor ense beam of light ys complete Meissne c) Both a ar	(CO wave d) Particle and Way c) Convergent beam of ligh er effect. (CO	3) ve tt
 a) Pentavalent dop dopant 16. The physical ne [Knowledge] a) Particle nature nature 17. Laser light is he (CO4) [Knowledge a) Monochromatic d) All 18. Identify type of [Knowledge] a) Type-I 19. The life time of [Knowledge] a) Many times larg 	bant b) Trivalent c ature exhibited by the b) Wave nature c) ighly] beam of light b) Int superconductor obe b) Type-II an atom in metastat	e matter Neither Particle nor eense beam of light ys complete Meissne c) Both a ar ble state is	(CO wave d) Particle and Way c) Convergent beam of ligh er effect. (CO nd b d) Neither a or b	3) ve tt
 a) Pentavalent dop dopant 16. The physical ne [Knowledge] a) Particle nature nature 17. Laser light is his (CO4) [Knowledge] a) Monochromatic d) All 18. Identify type of [Knowledge] a) Type-I 19. The life time of [Knowledge] a) Many times larg b) Many times small 	bant b) Trivalent c ature exhibited by the b) Wave nature c) ighly] beam of light b) Int superconductor obe b) Type-II an atom in metastat er than ordinary high aller than ordinary high	e matter Neither Particle nor eense beam of light ys complete Meissne c) Both a ar ble state is	(CO wave d) Particle and Way c) Convergent beam of ligh er effect. (CO nd b d) Neither a or b	3) ve tt
 a) Pentavalent dop dopant 16. The physical ne [Knowledge] a) Particle nature nature 17. Laser light is he (CO4) [Knowledge] a) Monochromatic d) All 18. Identify type of [Knowledge] a) Type-I 19. The life time of [Knowledge] a) Many times larg b) Many times smatc c) Many times larg 	bant b) Trivalent c ature exhibited by the b) Wave nature c) ighly] beam of light b) Int superconductor obe b) Type-II an atom in metastat	e matter Neither Particle nor eense beam of light ys complete Meissne c) Both a ar ble state is her energy state gher energy state	(CO wave d) Particle and Wav c) Convergent beam of ligh er effect. (CO nd b d) Neither a or b (CO	3) ve tt

20. Identify the phy	sical property of wave.			(CO3)
[Knowledge]				
a) Wavelength	b) Amplitude	c) frequency	d) All	

Part B [Thought Provoking Questions]

Answer all the Questions. Each question carries TEN marks. (3Qx10M=30 M)

21.a) The silicon semiconductor at a temperature of 300 K has p number of free electrons q number of free holes. When the temperature of silicon is increased to 400 K, then the number free electrons become P and number of free holes become Q. Mention the relationship between the following quantities.


(4M)(CO1) [Application]

(1) p and q (2) q and Q (3) P and Q (4) $\frac{p}{p} = \frac{q}{q}$

b) Are there any conditions of LASER? If yes, what are they and explain it? (6M) (CO4) [Application]

22. The device shown in the figure develops meaningful voltage when exposed to the sun light. Identify the device. Mention the type of material used to make the device. Label the parts of the device and explain the principle and working of this device.

pie and working of this device. (10M) (CO2) [Application]

23. a) Nature demonstrates two types of emissions of light. In one case, highly incoherent polychromatic divergent weak beam of light is emitted and in other case, highly coherent monochromatic convergent strong beam of light is emitted. Identify the types of emission processes involved and explain them in detail. (5M)

b) The ratio of population of two energy levels is 1.069 x 10⁻³⁰. The wavelength of light emitted at 628nm. Calculate the temperature of the system.
 (5M) CO4) [Comprehension]

Part C [Problem Solving Questions]

Answer all the Questions. Each question carries FIFTEEN marks. (2Qx15M=15 M)

24. a) It is observed that a direct band gap based p-n junction diode ($E_g > 1.8 \text{ eV}$) emits Infra-red and visible light when it is forwarded biased with a suitable knee voltage. Identify the device and describe the principle, construction and working of this device with neat diagram. Mention how band gap of this device to be changed if one is interested in blue light instead of red light. (9M)(CO2) [Application]

b) Gallium Arsenide (GaAs) LED has a band gap of 2.6 eV. Find the wavelength of light emitted by it and identify the color of the light (5+1).

(CO2) [Application]

- 25. a) It is observed that the sub microscopic particles in motion exhibit wave properties. Identify the waves and discuss their properties.
 - (4M) (CO3) [Application]

b) Calculate the de Broglie wavelength associated with electrons if the accelerating voltage is 6000.

(4M) (CO3) [Application]

c) Identify the high band width cable which is used in communication system. Explain the communication process from transmitter to receiver with schematic diagram.

(7M) (CO4) [Application]