PRESIDENCY UNIVERSITY
 BENGALURU

SCHOOL OF ENGINEERING

MID TERM EXAMINATION

Winter Semester: 2021-22
Course Code: CSE 2018
Course Name: THEORY OF COMPUTATION
Program \& Sem: CSE,COM \& $2^{\text {nd }}$

Date: 12/May/2022
Time: 10:00 AM - 11:30 AM
Max Marks: 50
Weightage: 25\%

Instructions:

(i) Read the all questions carefully and answer accordingly.

Part A [Memory Recall Questions]

Answer all the Questions. Each question carries TWO marks.
(3Qx 2M=6M)

1. Define Positive Closure and Star Closure
(C.O.No.1) [Knowledge]
2. Define Automata. List the applications of Finite automata
(C.O.No.1) [Knowledge]
3. Define the following terms a) Language b) Power of an alphabet
(C.O.No.1) [Knowledge]

Part B [Thought Provoking Questions]

Answer all the Questions. Each question carries EIGHT mark.
4. Design a DFA to accept the binary strings divisible by 4 and write the machine for the same. (C.O.No-2) [Comprehension]
5. Define DFA. Construct the DFA accepting the language $L=\left\{w 101 w \mid w\right.$ belongs to $\left.(0+1)^{\star}\right\}$
(C.O.No-2) [Comprehension]
6. Define NFA. Construct the NFA accepting the strings of a's and b's having substring aba. Write the machine for the same.
(C.O.No-2) [Comprehension]
7. A password system accepts only the input symbols \#,@ and \$. The pattern for the password is it has to begin with \# followed by any number of @,\# and \$ and has to end with $\$$. The minimum length of the password is 3 . Design an automaton which accepts the following pattern and also write the machine for the same. (C.O.No-2) [Comprehension]

Part C [Problem Solving Questions]

Answer all the Questions. Each question carries TWELVE marks.
8. Convert the given NFA to DFA using Lazy Evaluation method.

(C.O.No.2) [Application]

PRESIDENCY UNIVERSITY
 BENGALURU

SCHOOL OF MANAGEMENT
END TERM EXAMINATION

Winter Semester: 2021-22
Course Code: CSE2018
Course Name: Theory of Computation
Program \& Sem: BTech \& II Sem

Date: 29th June 2022
Time: 01:00 PM to 04:00 PM
Max Marks: 100
Weightage:50\%

Instructions:

(ii) Read the all questions carefully and answer accordingly.

Part A [Memory Recall Questions]

Answer all the Questions. Each question carries FIVE marks.
(4Qx 5M= 20M)

1. Show LMD and RMD for the following grammar to generate the string aaabbabbba
(C.O.No.3) [Application]

$$
\begin{aligned}
& S \rightarrow a B / b A \\
& A \rightarrow a S / b A A / a \\
& B \rightarrow b S / a B B / b
\end{aligned}
$$

2. Design an NFA that accept strings having aba as substring $\quad \sum=\{a, b\}$
(C.O.No.2) [Application]
3. Define PDA. Draw the block diagram of PDA
(C.O.No.4) [Knowledge]
4. Write down Regular Expression for the following Languages:
a) $L=\left\{a^{2 n} b^{2 m+1} \mid m>=0, n>=0\right\}$
b) Set of strings consisting of even number of 0's followed by odd number of 1's
(C.O.No.3) [Application]

Part B [Thought Provoking Questions]

Answer all the Questions. Each question carries TEN marks.
(5Qx10M=50M)
5. Define DFA. Construct a DFA accepting the language $L=\left\{w 1011 w \mid w\right.$ belongs to $\left.(0+1)^{*}\right\}$
(C.O.No. 2) [Application level]
6. Check whether the given grammar G is ambiguous or not for the string $a+a * a$:

$$
\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}\left|\mathrm{E}^{\star} \mathrm{E}\right| \mathrm{E} \mid \mathrm{a}
$$

(C.O.No.3) [Application]
7. Convert the following NFA to DFA
(C.O.No.2) [Application]

8. State Pumping Lemma. Prove that the language $L=\left\{a^{n} b^{n} \mid n>=1\right\}$ is not regular.
(C.O.No.3) [Application]
9. Minimize the following DFA.
(C.O.No.2) [Application]

Part C [Problem Solving Questions]

Answer both the Questions. Each question carries FIFTEEN marks.
(2Qx15M=30M)
10. Construct a PDA for the for the language $L=\left\{w^{R}, \quad w \in\{a, b\}^{*}\right.$
(C.O.No. 4) [Application]
11. Construct a Turing Machine for the language $L=\left\{0^{n} 1^{n} \quad, n>=1\right\}$
(C.O.No. 4) [Application]

PRESIDENCY UNIVERSITY
 BENGALURU

SCHOOL OF ENGINEERING

MID TERM EXAMINATION

Winter Semester: 2021-22
Course Code: CSE 2018
Course Name: THEORY OF COMPUTATION
Program \& Sem: CSE,COM \& $2^{\text {nd }}$

Date: 12/May/2022
Time: 10:00 AM - 11:30 AM
Max Marks: 50
Weightage: 25\%

Instructions:

(iii) Read the all questions carefully and answer accordingly.

Part A [Memory Recall Questions]

Answer all the Questions. Each question carries TWO marks.
(3Qx 2M=6M)

1. Define Positive Closure and Star Closure
(C.O.No.1) [Knowledge]
2. Define Automata. List the applications of Finite automata
(C.O.No.1) [Knowledge]
3. Define the following terms a) Language b) Power of an alphabet
(C.O.No.1) [Knowledge]

Part B [Thought Provoking Questions]

Answer all the Questions. Each question carries EIGHT mark.
9. Design a DFA to accept the binary strings divisible by 4 and write the machine for the same.
(C.O.No-2) [Comprehension]
10. Define DFA. Construct the DFA accepting the language $L=\left\{w 101 w \mid w\right.$ belongs to $\left.(0+1)^{*}\right\}$
(C.O.No-2) [Comprehension]
11. Define NFA. Construct the NFA accepting the strings of a's and b's having substring aba. Write the machine for the same.
(C.O.No-2) [Comprehension]
12. A password system accepts only the input symbols \#,@ and \$. The pattern for the password is it has to begin with \# followed by any number of @,\# and \$ and has to end with $\$$. The minimum length of the password is 3 . Design an automaton which accepts the following pattern and also write the machine for the same. (C.O.No-2) [Comprehension]

Part C [Problem Solving Questions]

Answer all the Questions. Each question carries TWELVE marks.
13. Convert the given NFA to DFA using Lazy Evaluation method.

(C.O.No.2) [Application]

