GAIN MORE KNOWLEDGE REACH GREATER HEIGHTS PRESIDENCY UNIVERSITY BENGALURU			
SCHOOL OF ENGINEERING			
MID TERM EXAMINATION			
Winter Semester: 2021 - 22	Date: 12/May/2022		
Course Code: CSE 2018	Time : 10:00 AM – 11:30 AM		
Course Name: THEORY OF COMPUTATION	Max Marks: 50		
Program & Sem: CSE,COM & 2 nd	Weightage: 25%		
Instructions: (i) Read the all questions carefully and answer accordingly.			
Part A [Memory Recall Questions]			
Answer all the Questions. Each question carries TWO marks.	(3Qx 2M= 6M)		
1. Define Positive Closure and Star Closure	(C.O.No.1) [Knowledge]		
2. Define Automata. List the applications of Finite automata	(C.O.No.1) [Knowledge]		

3. Define the following terms a) Language b) Power of an alphabet

Part B [Thought Provoking Questions]

Answer all the Questions. Each question carries EIGHT mark. (4Qx8M=32M)

4. Design a DFA to accept the binary strings divisible by 4 and write the machine for the same. (C.O.No-2) [Comprehension] 5. Define DFA. Construct the DFA accepting the language L={w101w| w belongs to (0+1)*} (C.O.No-2) [Comprehension] 6. Define NFA. Construct the NFA accepting the strings of a's and b's having substring aba. Write the machine for the same. (C.O.No-2) [Comprehension] 7. A password system accepts only the input symbols #,@ and \$. The pattern for the password is it has to begin with # followed by any number of @,# and \$ and has to end with \$. The minimum length of the password is 3. Design an automaton which accepts the following pattern and also write the machine for the same. (C.O.No-2) [Comprehension]

(C.O.No.1) [Knowledge]

Answer all the Questions. Each question carries TWELVE marks. (1Qx12M=12M)

8. Convert the given NFA to DFA using Lazy Evaluation method.

(C.O.No.2) [Application]

	,
ation	level]

(C.O.No.3) [Application]

PRESIDENCY UNIVERSITY **BENGALURU**

SCHOOL OF MANAGEMENT

END TERM EXAMINATION

Winter Semester: 2021 - 22 Course Code: CSE2018 Course Name: Theory of Computation Program & Sem: BTech & II Sem

Date: 29th June 2022 Time: 01:00 PM to 04:00 PM Max Marks: 100 Weightage:50%

Instructions:

(ii) Read the all questions carefully and answer accordingly.

Part A [Memory Recall Questions]

Answer all the Questions. Each guestion carries FIVE marks. (4Qx 5M = 20M)

1. Show LMD and RMD for the following grammar to generate the string aaabbabbba

(C.O.No.3) [Application]

(C.O.No.2) [Application] (C.O.No.4) [Knowledge]

 $S \rightarrow aB / bA$ $A \rightarrow aS / bAA / a$ $B \rightarrow bS / aBB / b$

2. Design an NFA that accept strings having aba as substring $\Sigma = \{a, b\}$

- 3. Define PDA. Draw the block diagram of PDA
- 4. Write down Regular Expression for the following Languages:
 - a) L={ $a^{2n}b^{2m+1}$ | m>=0,n>=0}
 - b) Set of strings consisting of even number of 0's followed by odd number of 1's

(C.O.No.3) [Application]

(5Qx10M=50M)

Part B [Thought Provoking Questions]

Answer all the Questions. Each guestion carries TEN marks.

- 5. Define DFA. Construct a DFA accepting the language L={w1011w| w belongs to (0+1)*} (C.O.No. 2) [Applica
- 6. Check whether the given grammar G is ambiguous or not for the string $a+a^*a$:

 $E \rightarrow E+E \mid E^*E \mid E \mid a$

Roll No

7. Convert the following NFA to DFA

- 8. State Pumping Lemma. Prove that the language L= $\{a^nb^n \mid n \ge 1\}$ is not regular.
 - (C.O.No.3) [Application]

9. Minimize the following DFA.

(C.O.No.2) [Application]

Part C [Problem Solving Questions]

PRESIDENCY UNIVERSITY BENGALURU			
SCHOOL OF ENGINEERING			
MID TERM EXAMINATION			
Winter Semester: 2021 - 22	Date: 12/May/2022		
Course Code: CSE 2018	Time : 10:00 AM – 11:30 AM		
Course Name: THEORY OF COMPUTATION	Max Marks: 50		
Program & Sem: CSE,COM & 2 nd	Weightage: 25%		
Instructions: (iii) Read the all questions carefully and answer accordingly. Part A [Memory Recall Questions]			
Answer all the Questions. Each question carries TWO marks.	(3Qx 2M= 6M)		
1. Define Positive Closure and Star Closure	(C.O.No.1) [Knowledge]		
2. Define Automata. List the applications of Finite automata	(C.O.No.1) [Knowledge]		
3. Define the following terms a) Language b) Power of an alphab	pet		

Roll No

(C.O.No.1) [Knowledge]

Part B [Thought Provoking Questions]

Answer all the Questions. Each question carries EIGHT mark. (4Qx8M=32M) 9. Design a DFA to accept the binary strings divisible by 4 and write the machine for the same. (C.O.No-2) [Comprehension] 10. Define DFA. Construct the DFA accepting the language L={w101w| w belongs to (0+1)*} (C.O.No-2) [Comprehension] 11. Define NFA. Construct the NFA accepting the strings of a's and b's having substring aba. Write the machine for the same. 12. A password system accepts only the input symbols #,@ and \$. The pattern for the password is it has to begin with # followed by any number of @,# and \$ and has to end with \$. The minimum length of the password is 3. Design an automaton which accepts the following pattern and also write the machine for the same.

Answer all the Questions. Each question carries TWELVE marks. (1Qx12M=12M)

13. Convert the given NFA to DFA using Lazy Evaluation method.

(C.O.No.2) [Application]