

Roll No													
---------	--	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

MID TERM EXAMINATION

Winter Semester: 2021 - 22

Date: 13/MAY/2022

Course Code: EEE 1006

Time: 01:30 PM - 03:00 PM

Course Name: Smart Sensors for Engineering Applications

Max Marks: 50

Program & Sem: B-Tech & II Sem

Weightage: 25%

Instructions:

- (i) Read the all questions carefully and answer accordingly.
- (ii) Scientific/ Non programmable calculators are allowed

Part A [Memory Recall Questions]

Answer all the Questions. Each question carries TWO marks. (10Qx 2M= 20M)

	a device that conver	= -			=
and so on. Self-ger	nerating type transdu	cers are	Transduc	ers	
(a) Passive	(b) Inverse	(c) Active	(d) Seconda	ary	
			(C.O.No.1) [E	Bloom's level: Kr	nowledge]
2. A Temperature T	ransducer is a device	that converts the th	ermal quantity	y into any physica	al quantity
such as mechanica	ıl energy, pressure a	nd electrical signals	s etc. The the	rmocouple circui	it which is
used to measure te	mperature works on	effect.			
(a) Peltier	(b) Seebeck	(c) Thomson	(d) Joule		
			(C.O.No.1) [E	Bloom's level: Kr	nowledge]
	a semiconductor dev hoto-diodes work in		tion that conv	erts photons (or	light) into
	(b) Independent of		biasing (c)	reverse biased	(d) Any
configuration			(C.O.No.2) [B	Bloom's level: Kn	owledge]
	type of resistor whos resistors. In general		• • •	•	
(a) Negative	(b) Positive	(c) Zero	(d) None of	these	
			(C.O.No.2) [E	Bloom's level: Kr	nowledge]
5. A measurement	t system consists o	f sensors, actuato	rs, transducei	rs and signal p	rocessing
devices	is not an example of	transducer.			
(a) Thermocouple	(b) Photo electric ce	ell (c) Analog v	oltmeter/	(d) LVDT	
			(C.O.No.1) [E	Bloom's level: Kn	iowledge]
	a passive transducer which can be measu			•	
•	citance (b)Variation		-	· · ·	
(,		(3)		Bloom's level: Kr	

A Capacitive T	ransducer is a pa	ssive transduce	r which is used to	measure the pressure,
displacement, and	d other physical qu	antities. Capaci	tive transducer ope	erate upon the principle
of		•		
(a) variation of ove	er -lapping area of pl	ates	(b) variation of	separation of plates
(c) variation of rela	tive permittivity of d	ielectric material	between two plates	(d) all of the above
			(C.O.No.1) [B	loom's level: Knowledge]
8. The transducer	which requires an	external excitat	ion to provide its or	utput is referred to as a
passive transduce	r is an e	example of a pas	ssive transducer.	
(a) Thermocouple	(b) Piezoelectric to	ansducer	(c) Strain gauge	(d) Photovoltaic cell
			(C.O.No.1) [Bl	oom's level: Knowledge]
9. Stress is defined	d as			
(a) Diameter per u	nit area (b) length p	er unit area (c)	weight per unit area	(d) force per unit area
			(C.O.No.1) [BI	oom's level: Knowledge]
10. Micro-electro-r	nechanical systems	(MEMS) is the i	ntegration of mecha	nical elements, sensors,
actuators and ele	ctronics on a comi	mon silicon sub	strate through micr	ofabrication technology.
Microelectronics in	ntegrated circuit in M	IEMS package c	an be thought as the	e of a system
(a) Brain	(b) Arms	(c) Eyes	(d) All of thes	6e
			(C.O.No.2) [BI	oom's level: Knowledge]
			, , -	.

Part B [Thought Provoking Questions]

Answer all the Questions. Each question carries FIVE marks.

(4Qx5M=20M)

- 11. Mr. Vivek likes to experiment with sensors and transducers. Recently he had added a sound activated switch to his fan so that it would switch on and off when he clapped. Now he wants to control the fan speed by sensing the temperature in his room. Recommend a suitable transducer to Mr. Vivek best suited to his application and also help him in understanding the construction and working of the particular transducer. (C.O.No.1) [Bloom's leve: Comprehension]
- 12. Some engineers got a contract of building an automatic monorail system, as their project in Bologne Italy, which would be powered mainly by the solar panels and additional power requirement will be met by some other sources of energy. The system is designed to operate using solar energy captured by photovoltaic panels placed at each monorail station and along the track's south facing side. It was suggested by some experts that a special type of a material which generates electrical power when compressed could be used as a source for meeting the additional power requirements by placing it on the track of the monorail system. Suggest and discuss about the material which could be used to fulfill the additional power requirements.

(C.O.No.1) [Bloom's level: Comprehension]

13. Assume that you are the technical expert in a company that deals with sensors. Presidency University wants to implement a non- contact sensor based system for detecting the presence of metallic object carried by the students in a certain lab before allowing them to the lab. Identify the sensor to be used and discuss the working of such sensors with neat diagram.

(C.O.No.2) [Bloom's level: Comprehension]

14. Ms. Arya is interested in doing projects and building circuits as her hobby. She has to use an isolating circuit in one of her projects to isolate control circuit using Arduino microcontroller from the power circuit which is intended to operate at 1kW level. She has purchased an optoisolator 4N35 as shown in figure 1 below. Ms. Arya is curious to know the sensor used in such systems and the working of such sensors. Help Ms. Arya in identifying the sensor used in optoisolator and discuss in brief about the working of the same. (C.O.No.2) [Bloom's level: Comprehension]

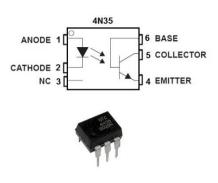


Figure. 1

Part C [Problem Solving Questions]

Answer all the Questions. Each question carries TEN marks. (1Qx10M=10M)

- 15. Piezoelectric materials are capable of transforming mechanical strain and vibration energy into electrical energy. Piezoelectric materials can be broadly classified as either crystalline, ceramic, or polymeric. The most commonly produced piezoelectric ceramics are lead zirconate titanate (PZT), barium titanate and lead titanate. A barium titanate pick up has the dimensions of 5mm x 5mm x1.25mm. The force acting on it is 5N. The charge sensitivity of barium titanate is 150pC/N and its permittivity is 12.5x10⁻⁹ F/m. If the Modulus of elasticity of barium titanate is 12x10⁶ N/m², then:
 - a) Identify any four unknown parameters that can be obtained from the above data.
 - b) Calculate the values of these unknown parameters

(C.O.No.1) [Bloom's level: Comprehension]

Roll No													
---------	--	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

END TERM EXAMINATION

Winter Semester: 2021 - 22

Date: 1st July 2022

Course Code: EEE1006

Time: 01:00 PM to 04:00 PM

Course Name: Smart Sensors for Engineering Applications

Max Marks: 100

Program & Sem: B.Tech & II Sem

Weightage: 50 %

4				
\sim \sim $+$ $^{\circ}$	* 1 14	~+1	\sim	ne
nstı				115

(i) Read the all questions carefully and

answer accordingly.

(ii) All of you should bring your calculator

Part A [Memory Recall Questions]

Answer all the Questions. Each	(10Qx 2M= 20M		
Q.NO.1 Gyroscopes are			
a) Inertial Motion sensors	b) Pressure sensors		
	d) Humidity sensors	(C.O.No.1) [Knowledge]	
Q.NO.2 Which of the following is	not a piezo electric sensor?		
a) PZT	b) Roscelle salt		
c) Quartz	d) None of the mentioned	(C.O.No.1) [Knowledge]	
Q.NO.3 Which of the following is	not a configuration of a smart sensor?		
a) Transducer	b) Network interface		
c) Processor	d) None of the mentioned	(C.O.No.1) [Knowledge]	
Q.NO.4 Input signal to smart sens	sor is fed from		
a) Power supply	b) Transducer		
c) Voltmeter	d) All of the mentioned	(C.O.No.1) [Knowledge]	
Q.NO.5 Output of smart sensors	will of		
a) Analog	b) Digital		
c) Analog and digital	d) None of the mentioned	(C.O.No.1) [Knowledge]	
Q.NO.6 Which of the following de	fines smartness of sensor?		
a) Quality of data	b) Circuit size		
c) Circuit components	d) All of the mentioned	(C.O.No.1) [Knowledge]	
Q.NO.7 Input data of smart senso	or will be		
a) Analog	b) Digital		
c) Analog and digital	d) None of the mentioned	(C.O.No.1) [Knowledge]	
Q.NO.8 Smart Sensor performs			
a) Logic function	b) Make decision		
c) Two-way communication	d) All of the above	(C.O.No.1) [Knowledge]	
Q.NO.9 Transducer Interface Mod	dule (TIM) contains		
a) A/D Converter	b) Signal Conditioning		

- d) None of these (C.O.No.1) [Knowledge]
- Q.NO.10 A_____ is thermally sensitive resistor that exhibits a large change in resistance.
- a) Thermistor

b) Resistance Thermometer

c) Thermocouple

c) Both (a) and (b)

d) Semiconductor based sensor (C.O.No.1) [Knowledge]

Part B [Thought Provoking Questions]

Answer all the questions. Each question carries TEN marks

(5Qx10M=50M)

Q.NO.11 Mr. Joseph is planning to construct 5-star hotel and he wants to conserve the power in each of the rooms. The key power consumption equipment in the hotel is air conditioner and lights. Kindly suggest any two sensors with their working which would help him to conserve power.

(C.O.No.3) [Comprehension]

Q.NO.12 An Electric Vehicle Industry wants to increase the Global NCAP safety rating in their vehicle. For this, their main intention is to protect the safety of passenger while the car meet with an accident. Kindly suggest any two sensor which would help them to tackle this condition.

(C.O.No.3) [Comprehension]

Q.NO.13 The water wasted in agriculture is a key concern for Govt. of India. They are planning to adopt some mechanism to maintain the moisture of the soil and at the same time, the water should be used at optimum level. Please suggest any sensor which would perform this task to maintain the moisture at the optimum level.

(C.O.No.4) [Comprehension]

Q.NO.14 Mr. Jignesh purchased a brand-new smartphone for his regular activities. As his eyesight is very weak, he turned on the automatic balancing of brightness in his phone to tune the brightness of screen's smartphone with the outside environment. Which sensor would perform this task in his smartphone? Explain the working of the sensor with neat and clean diagram.

(C.O.No.3) [Comprehension]

Q.NO.15 Mrs. Geeta stays in rural area, and she is suffering from diabetes and blood pressure. She needs to regularly visit the doctor for physical examination but due to long distance between her home and hospital, she is unable to visit the doctor. Please suggest the convenient mode of data collection technique which would help Mrs. Geeta to send the data to the Doctor.

(C.O.No.3) [Comprehension]

Part C [Problem Solving Questions]

Answer both the Questions. Each question carries FIFTEEN marks.

(2Qx15M=30M)

Q.NO.7 A barium titanate pickup has the dimension of 5mmx5mmx1.25mm. The force acting on it is 5N. The charge sensitivity of barium titanate is 150 pC/N and its permittivity is 12.5x10⁻⁹ F/m. If the modulus of Elasticity of barium titanate is 12x10⁶ N/m². Calculate the strain. Also calculate the charge and the capacitance. (C.O.No.3) [Comprehension]

Q.NO.8 A capacitive transducer uses two quartz diaphragms of area 750mm2 separated by a distance of 3.5mm. A pressure of 900 kN/m2 when applied to the top diaphragms produces a deflection of 0.6mm. The capacitance is 370 pF when no pressure is applied to the diaphragms. Find the value of capacitor after application of a pressure of 900 kN/m2.

(C.O.No.3) [Comprehension]

Roll No													
---------	--	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

MID TERM EXAMINATION

Winter Semester: 2021 - 22

Date: 13/MAY/2022

Course Code: EEE 1006

Time: 01:30 PM - 03:00 PM

Course Name: Smart Sensors for Engineering Applications

Max Marks: 50

Program & Sem: B-Tech & II Sem

Weightage: 25%

Instructions:

- (iii) Read the all questions carefully and answer accordingly.
- (iv) Scientific/ Non programmable calculators are allowed

Part A [Memory Recall Questions]

Answer all the Questions. Each question carries TWO marks. (10Qx 2M= 20M)

		••	form to another. Transducers may be
_	• •	• • • • • • • • • • • • • • • • • • • •	conversion, nature of the output signal,
	erating type transdu		
(a) Passive	(b) Inverse	(c) Active	
			(C.O.No.1) [Bloom's level: Knowledge]
2. A Temperature T	ransducer is a device	that converts the th	ermal quantity into any physical quantity
	I energy, pressure a mperature works on	_	s etc. The thermocouple circuit which is
(a) Peltier	(b) Seebeck	(c) Thomson	(d) Joule
` ,	,	,	(C.O.No.1) [Bloom's level: Knowledge]
3. A photodiode is a	a semiconductor dev	rice with a P-N junc	tion that converts photons (or light) into
electrical current. P	hoto-diodes work in _.		
(a) Forward biased	(b) Independent of f	orward and reverse	biasing (c) reverse biased (d) Any
configuration			(C.O.No.2) [Bloom's level: Knowledge]
4. A thermistor is a	type of resistor whos	se resistance is stro	ngly dependent on temperature, more
so than in standard	resistors. In general	, the temperature co	pefficient of thermistor is
(a) Negative	(b) Positive	(c) Zero	(d) None of these
			(C.O.No.2) [Bloom's level: Knowledge]
5. A measurement	system consists of	f sensors, actuator	rs, transducers and signal processing
devices	is not an example of	transducer.	
(a) Thermocouple	(b) Photo electric ce	ell (c) Analog v	oltmeter (d) LVDT
			(C.O.No.1) [Bloom's level: Knowledge]
6. Strain gauge is a	a passive transducer	that converts the a	applied force, pressure, torque etc., into
an electrical signal	which can be measu	red. Electrical strair	n gauge works on the principle of
(a) Variation of capa	citance (b)Variation	of inductance (c)Va	riation of area (d) Variation of resistance
			(C.O.No.1) [Bloom's level: Knowledge]

A Capacitive T	ransducer is a pa	ssive transduce	r which is used to	measure the pressure,
displacement, and	l other physical qu	antities. Capaci	tive transducer ope	erate upon the principle
of				
(a) variation of ove	er -lapping area of pl	ates	(b) variation of	separation of plates
(c) variation of rela	itive permittivity of d	ielectric material	between two plates	(d) all of the above
			(C.O.No.1) [B	loom's level: Knowledge]
8. The transducer	which requires an	external excitat	ion to provide its or	utput is referred to as a
passive transduce	r is an e	example of a pas	ssive transducer.	
(a) Thermocouple	(b) Piezoelectric t	ransducer	(c) Strain gauge	(d) Photovoltaic cell
			(C.O.No.1) [Bl	oom's level: Knowledge]
9. Stress is defined	d as			
(a) Diameter per u	nit area (b) length p	er unit area (c)	weight per unit area	(d) force per unit area
			(C.O.No.1) [BI	oom's level: Knowledge]
10. Micro-electro-r	nechanical systems	(MEMS) is the i	ntegration of mecha	nical elements, sensors,
actuators and ele	ctronics on a comi	non silicon sub	strate through micr	ofabrication technology.
Microelectronics in	tegrated circuit in M	EMS package c	an be thought as the	e of a system
(a) Brain	(b) Arms	(c) Eyes	(d) All of thes	se
			(C.O.No.2) [BI	oom's level: Knowledge]

Part B [Thought Provoking Questions]

Answer all the Questions. Each question carries FIVE marks.

(4Qx5M=20M)

- 11. Mr. Vivek likes to experiment with sensors and transducers. Recently he had added a sound activated switch to his fan so that it would switch on and off when he clapped. Now he wants to control the fan speed by sensing the temperature in his room. Recommend a suitable transducer to Mr. Vivek best suited to his application and also help him in understanding the construction and working of the particular transducer. (C.O.No.1) [Bloom's leve: Comprehension]
- 12. Some engineers got a contract of building an automatic monorail system, as their project in Bologne Italy, which would be powered mainly by the solar panels and additional power requirement will be met by some other sources of energy. The system is designed to operate using solar energy captured by photovoltaic panels placed at each monorail station and along the track's south facing side. It was suggested by some experts that a special type of a material which generates electrical power when compressed could be used as a source for meeting the additional power requirements by placing it on the track of the monorail system. Suggest and discuss about the material which could be used to fulfill the additional power requirements.

(C.O.No.1) [Bloom's level: Comprehension]

13. Assume that you are the technical expert in a company that deals with sensors. Presidency University wants to implement a non- contact sensor based system for detecting the presence of metallic object carried by the students in a certain lab before allowing them to the lab. Identify the sensor to be used and discuss the working of such sensors with neat diagram.

(C.O.No.2) [Bloom's level: Comprehension]

14. Ms. Arya is interested in doing projects and building circuits as her hobby. She has to use an isolating circuit in one of her projects to isolate control circuit using Arduino microcontroller from the power circuit which is intended to operate at 1kW level. She has purchased an optoisolator 4N35 as shown in figure 1 below. Ms. Arya is curious to know the sensor used in such systems and the working of such sensors. Help Ms. Arya in identifying the sensor used in optoisolator and discuss in brief about the working of the same. (C.O.No.2) [Bloom's level: Comprehension]

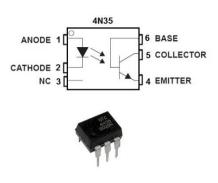


Figure. 1

Part C [Problem Solving Questions]

Answer all the Questions. Each question carries TEN marks. (1Qx10M=10M)

- 15. Piezoelectric materials are capable of transforming mechanical strain and vibration energy into electrical energy. Piezoelectric materials can be broadly classified as either crystalline, ceramic, or polymeric. The most commonly produced piezoelectric ceramics are lead zirconate titanate (PZT), barium titanate and lead titanate. A barium titanate pick up has the dimensions of 5mm x 5mm x1.25mm. The force acting on it is 5N. The charge sensitivity of barium titanate is 150pC/N and its permittivity is 12.5x10⁻⁹ F/m. If the Modulus of elasticity of barium titanate is 12x10⁶ N/m², then:
 - c) Identify any four unknown parameters that can be obtained from the above data.
 - d) Calculate the values of these unknown parameters

(C.O.No.1) [Bloom's level: Comprehension]