¥		Roll No							
GAIN MORE KNOWLEDGE REACH GREATER HEIGHTS	PRESIDENCY U BENGAL								
SCHOOL OF ENGINEERING									
TEST 1									
Winter Semester: 2021-22 Course Code: MAT 2002 Course Name: Numerical M and Sampli Program &Sem: B.Tech & M	Methods, Probability Dist ng Techniques	tributions	Date: Time: Max Marks: 30 Weightage: 15%						
Instructions: (i) Read all questions carefully and answer accordingly. (ii) Question paper consists of 3 parts. (iii) Scientific and Non-programmable calculators are permitted.									
	Part A [Memory Recall Questions]								
Answer all the questions.	Each question carrie	s one mark.	(5Q x 1	M = 5M)					
1. Check whether the system	m of linear equations								
10x + y + z	= 12, 2x + 10y + z	= 13, 2x + 2	y + 10z = 14						
is diagonally dominant.			(C.O.NO.1) [Kno	wledge]					
2. The formula for Newton-F	Raphson method is	·	(C.O.NO.1) [Knowledge]						
3. Newton-Gregory backwa	rd interpolation formula	a can only be u	sed for						
			(C.O.NO.2) [Kno	owledge]					
4. The formula for Newton-0	Gregory forward interpo	olation is	 (C.O.NO.1) [Kno	wiedzel					
			(C.O.NO. I) [KIIC	Jwiedgej					
5 is the p	process of finding the	value of a func							
range of x.			(C.O.NO.1) [Knc	owledge]					
Part B [Thought Provoking Questions]									
Р	art B [Thought Provo	king Questior	IS]						
P Answer all the questions.		•	ıs] (3Q x 5N	1 = 15M)					

7. The area of a circle (A) corresponding to the diameter (D) is given in the following table:

D	80	85	90	95	100
А	5026	5674	6362	7088	7854

Find the area corresponding to the diameter of 105 using an appropriate interpolation formula. (C.O.NO.2) [Comprehension]

8. Apply Lagrange's interpolation formula to find y(5) for the following data

х	1	3	4	6
у	3	9	30	132

(C.O.NO.2) [Comprehension]

Part C [Problem Solving Questions]

Answer the following question. The question carries ten marks. (1Q x 10M = 10M)

9. Apply the LU decomposition method to solve the following system of linear equations

3x + 2y + 7z = 4, 2x + 3y + z = 5, 3x + 4y + z = 7.

(C.O.NO.1) [Comprehension]

					1	<u>г</u>			r	<u>г г</u>	1	-	т —
	7			Roll	No								
GAIN MORE KN REACH GREATE	INVLEDGE R HEIGHTS	PRES		' UNIVE ALURU	RSITY	,							
		<u>SCHO</u>	<u>OL OF E</u>		ERINO	<u>}</u>	SE	ET /	4				
			TES	ST 1									
Winter Semeste Course Code: Course Name: Program &Sem:		2				ר א	Date: 2 Time: 7 Max Ma Veight	11.30 arks) AN : 30	/I to ')		PM	
Instructions:													-
					.,		d all q ver ac				refully	ano	1
(ii) Questior (iii) Scientific			•	lators are p				oora					_
Answer all the qu = 5M) 1. Gauss-Seidel m							bi met			(5 No.1	5 Q x 1	IM	
[Knowledge] 2. Rate of converg	gence of N	lewton-Ra	aphson m	ethod is _	·			,		No.1	,		
[Knowledge] 3. The secant met [Knowledge]	hod fails i	f						(C	.0.1	No.1)		
4. The process of range is called [Knowledge]	-		y for any	given valu	ie of x v	whic	h lies			een No.2	-	iven	
5. Write the Newto [Knowledge]	on's divide	ed differer	nce interpo	olation for	mula.			(C	.0.1	No.2	2)		
	Р	art B [Th	ought Pro	ovoking (Questio	ons	1						
Answer all the qu 15M)	uestions.	Each que	estion ca	rries FIVE	E mark	s.				(30	Q x 51	= N	
6. Using Newton-F places. [Comprehensio	-	nethod, fii	nd a real r	oot of x^3	-2x	— [CO O.N			3 dec	imal	
7. Find $f(1955)$ [Comprehension]	for the giv	ven data					(C.	.O.N	lo.2)			
	X	1951	1961	1971	1981	1	199 <i>1</i>	1					
	$f(\mathbf{x})$	19.96	39.96	58.81	77.2	1	94.6	1					

8. Find a polynomial f(x) for the given data using Lagrange's interpolation formula

x	0	1	2	5
f(<i>x</i>)	2	3	12	147

(C.O.No.2)

[Comprehension]

Part C [Problem Solving Questions]

Answer the following question. The question carries TEN marks. (1Q x 10M = 10M)

9. Solve 3x + 2y + 7z = 4, 2x + 3y + z = 5, 3x + 4y + z = 7 using LU decomposition method. (C.O. No.1) [Comprehension]

PRESIDENCY UNIVERSIT BENGALURU SCHOOL OF ENGINEER	
TEST 1	
Winter Semester: 2021-22 Course Code: MAT2002 Course Name: Numerical Methods, Probability Distributions and Sampling Techniques Program &Sem: B.Tech & IV Sem	Date: 25 th April 2022 Time: 11.30 AM to 12.30 PM Max Marks: 30 Weightage: 15%
Instructions:	
	 Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.(iii) Scientific and Non-programmable calculators are p	permitted.
Part A [Memory Recall Que	estions]
Answer all the questions. Each question carries ONE	mark. (5Q x 1M = 5M)
1. True or False: The expression $2x^2 - (\sin 1)x + 1$ (C.O.NO.1) [Knowledge]	t=0 is a transcendental equation.
2. Write down the lower triangular matrix of the LU decom system of 3 equations in 3 unknowns. (C.O.NO.1	· -
3. Every polynomial of degree <i>n</i> has exactly root	ts. (C.O.NO.1) [Knowledge]

4. The expression of second order divided difference $f(x_1, x_2, x_3) =$ _____.

(C.O.NO.2) [Knowledge]

5. Write down the Lagrange's interpolation formula for the following data

x	x_0	<i>x</i> ₁
У	y_0	<i>y</i> ₁

(C.O.NO.2) [Knowledge]

Part B [Thought-Provoking Questions]

Answer all the Questions. Each question carries FIVE marks. (3Q x 5M = 15M)

- 6. Find a real root of the equation $e^{-x} = x$ using Newton-Raphson method correct to 4 decimal places. (C.O.NO.1) [Comprehension]
- 7. Compute y when x = 0.66 from the following data

x	<u>,</u>	0.61	0.63	0.65	0.67
y	7	1.840	1.878	1.195	1.954

(C.O.NO.2) [Comprehension]

Roll No.

8. The upward velocity of a rocket is given as a function of time in the following table.

t (s)	0	10	15	20
v(t) (m/s)	0	227.04	362.78	517.35

Find the velocity of the rocket at t = 12 by using Lagrange's interpolation formula. (C.O.NO.2) [Comprehension]

Part C [Problem Solving Questions]

Answer the Question. Question carries TEN marks. (1Q x 10M = 10M)

9. Solve 2x + 3y + z = 9, x + 2y + 3z = 6, 3x + y + 2z = 8 by using LU decomposition method. (C.O.No.1) [Comprehension]

	Roll No							
GAIN MORE KNOWLEDGE REACH GREATER HEIGHTS								
SCHOOL OF ENGINEERING SET A								
TEST	2							
 Winter Semester: 2021-22 Course Code: MAT2002 Course Name: Numerical Methods, Probability Distr Sampling Techniques Program & Sem.: B.Tech. & IV Sem. (All Programs) 		Date: 31 st May 2022 Time: 10.00 AM to 11.00 AM Max Marks: 30 Weightage: 15%						
Instructions: (ii) Question paper consists of 3 parts.	(i)	Read all the questions carefully and answer accordingly.						
Part A [Memory Red Answer ALL the questions. Each question car = 5M)		-						
1. For $n = 4$, the Simpson's 1/3 rd rule is [Knowledge]		(C.O.No.2)						
2. The Taylor's series expansion of $y(x)$ about	the point x_0) is						
[Knowledge]		(C.O.No.2)						
3. For a sure event E , $n(E) = $ [Knowledge]		(C.O.No.3)						
4. If A and B are independent events, then $P(A \ [Knowledge]$	∩ <i>B</i>) =	(C.O.No.3)						
5. The conditional probability of event A given ev	ent <i>C</i> is de	fined as $P(A C) = $						
[Knowledge]		(C.O.No.3)						

Part B [Thought Provoking Questions]

Answer ALL the questions. Each question carries FIVE marks. (3Q x 5M = 15M)

6. Using Runge-Kutta method of order 4 solve $\frac{dy}{dx} = x + y$, y(0) = 1 at x = 0.1 by taking the step length h = 0.1. Carry out the computations correct up to 4 decimal places. (C.O.No.2)

[Comprehension]

7. A bag contains 7 red, 6 white and 5 blue balls. If 4 balls are drawn at random, find the probability that (a) two are red and two are white (b) three are blue and one is red.

(C.O.No.3)

[Comprehension]

8. Suppose that one of the three men, a politician, a businessman and an educator will be appointed as the vice chancellor of a university. The respective probabilities of their appointments are 0.5, 0.3 and 0.2. The probabilities that research activities are promoted by these people if they get appointed are 0.3, 0.7 and 0.8 respectively. A research activity is promoted. Find the probability that the research activity is promoted by the educator.

(C.O.No.3)

[Comprehension]

Part C [Problem Solving Question]

Answer the following question. The question carries TEN marks. (1Q x 10M = 10M)

9. Evaluate the definite integral $\int_0^6 \frac{dx}{1+x^2}$, correct up to 4 decimal places, by considering 6 subintervals using (a) trapezoidal rule (b) Simpson's $1/3^{rd}$ rule (c) Simpson's $3/8^{th}$ rule. (C.O.No.2)

[Comprehension]

		Roll No					
GAIN MORE KNOWLEDGE REACH GREATER HEIGHTS	PRESIDENCY U BENGAL		Υ Υ			<u> </u>	
	SCHOOL OF EN	GINEERIN	IG	S	SET B		
	TEST	2					
Winter Semester: 2021-2	2						
Course Code: MAT2002					st May 202		
Course Name : Numerical Sampling	Methods, Probability E Fechniques	Distributions a	and	Time: 10 Max Mar	.00 am to ks : 30	0 11.00	AM
Program & Sem.: B.Tech	. & IV Sem. (All Progra	ms)		Weighta	ge : 15%		
Instructions: (ii) Question paper cons (iii) Scientific and Non-pa	•	(i) rs are permit	and ar	all the qu nswer acco		carefull	
I Answer all the questions. E = 5M)	Part A [Memory Rec Each question carrie		-		(5Q	x 1M	
1. The Simpson's 3/8 th rule is [Knowledge]	applicable if n is a n	nultiple of _		(C.0	O.No.2)		
2. In modified Euler's method	, we first predict y va	alue by the f	ormula	$y_1 = _{}$			
[Knowledge]				(C.0	D.No.2)		
3. If $P(E) = 0.6$, then $P(\overline{E})$ [Knowledge] 4. If A and B are mutually explanation			-	(C.	ne event O.No.3)	Ε.	
[Knowledge]					D.No.3)		
5. The conditional probability	of event B given eve	ent A is defi	ned as	P(B A)	=		
[Knowledge]				(C.0	D.No.3)		

6. Using Runge-Kutta method of order 4 solve $\frac{dy}{dx} = 3x + \frac{y}{2}$, y(0) = 1 at x = 0.1 by taking step length h = 0.1. Carry out the computations correct up to 4 decimal places.

[Comprehension]

7. A bag contains 8 red, 6 white and 6 blue balls. If 3 balls are drawn at random, find the probability that (a) 2 white and 1 blue balls are drawn (b) 1 ball of each color is drawn.

[Comprehension]

8. A factory has three units A, B and C. Unit A produces 25% of its products, unit B produces 25% and unit C produces 50%. It is known that the percentage of defective items produced by the three units A, B and C are respectively 10%, 20% and 30%. An item is selected randomly from the total products of the factory and it is found to be defective. Find the probability that it is produced by the unit A. (C.O.No.3) [Comprehension]

Part C [Problem Solving Question]

Answer the following question. The question carries TEN marks. (1Q x 1M = 10M)

9. Evaluate the definite integral $\int_0^6 \frac{dx}{1+x}$, correct up to 4 decimal places, by considering 6 subintervals using (a) trapezoidal rule (b) Simpson's 1/3rd rule (c) Simpson's 3/8th rule. (C.O.No.2)

[Comprehension]

(C.O.No.2)