PRESIDENCY UNIVERSITY
 BENGALURU

SCHOOL OF ENGINEERING

TEST 1

Winter Semester: 2021-22
Course Code: MAT 2002
Course Name: Numerical Methods, Probability Distributions and Sampling Techniques
Program \&Sem: B.Tech \& IV Sem

Date:
Time
Max Marks: 30
Weightage: 15\%

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and Non-programmable calculators are permitted.

Part A [Memory Recall Questions]

Answer all the questions. Each question carries one mark.

1. Check whether the system of linear equations

$$
10 x+y+z=12,2 x+10 y+z=13,2 x+2 y+10 z=14
$$

is diagonally dominant.
(C.O.NO.1) [Knowledge]
2. The formula for Newton-Raphson method is \qquad .
(C.O.NO.1) [Knowledge]
3. Newton-Gregory backward interpolation formula can only be used for \qquad .
(C.O.NO.2) [Knowledge]
4. The formula for Newton-Gregory forward interpolation is \qquad .
(C.O.NO.1) [Knowledge]
5. \qquad is the process of finding the value of a function $\mathrm{y}(\mathrm{x})$ within the given range of x.
(C.O.NO.1) [Knowledge]

Part B [Thought Provoking Questions]

Answer all the questions. Each question carries five marks.
6. Estimate a real root of the equation $\cos x-x e^{x}=0$ lies in the interval $(0.5,1)$. Perform three iterations of the secant method.
(C.O.NO.1) [Comprehension]
7. The area of a circle (A) corresponding to the diameter (D) is given in the following table:

D	80	85	90	95	100
A	5026	5674	6362	7088	7854

Find the area corresponding to the diameter of 105 using an appropriate interpolation formula.
(C.O.NO.2) [Comprehension]
8. Apply Lagrange's interpolation formula to find $y(5)$ for the following data

x	1	3	4	6
y	3	9	30	132

(C.O.NO.2) [Comprehension]

Part C [Problem Solving Questions]

Answer the following question. The question carries ten marks.
$(1 Q \times 10 M=10 M)$
9. Apply the LU decomposition method to solve the following system of linear equations

$$
3 x+2 y+7 z=4, \quad 2 x+3 y+z=5, \quad 3 x+4 y+z=7 .
$$

(C.O.NO.1) [Comprehension]

PRESIDENCY UNIVERSITY
 BENGALURU

SCHOOL OF ENGINEERING
SET A

TEST 1

Winter Semester: 2021-22
Course Code:
Course Name:
Program \&Sem:

Date: $25^{\text {th }}$ April 2022
Time: 11.30 AM to 12.30 PM
Max Marks: 30
Weightage: 15\%

Instructions:
(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and Non-programmable calculators are permitted.

Part A [Memory Recall Questions]

Answer all the questions. Each question carries ONE mark.
(5Q x 1M = 5M)

1. Gauss-Seidel method converges \qquad as fast as Gauss-Jacobi method.
(C.O.No.1)
[Knowledge]
2. Rate of convergence of Newton-Raphson method is \qquad .
(C.O.No.1) [Knowledge]
3. The secant method fails if \qquad . [Knowledge]
4. The process of finding the value of y for any given value of x which lies in between the given range is called \qquad .
[Knowledge]
5. Write the Newton's divided difference interpolation formula.
(C.O.No.2)
[Knowledge]

Part B [Thought Provoking Questions]

Answer all the questions. Each question carries FIVE marks.
$(3 Q \times 5 M=$ 15M)
6. Using Newton-Raphson method, find a real root of $x^{3}-2 x-5=0$ correct to 3 decimal places. (C.O.No.1)
[Comprehension]
7. Find $f(1955)$ for the given data (C.O.No.2)
[Comprehension]

x	1951	1961	1971	1981	1991
$f(x)$	19.96	39.96	58.81	77.21	94.61

8. Find a polynomial $f(x)$ for the given data using Lagrange's interpolation formula

x	0	1	2	5
$f(x)$	2	3	12	147

(C.O.No.2)
[Comprehension]

Part C [Problem Solving Questions]

Answer the following question. The question carries TEN marks. $(1 \mathrm{Q} \times 10 \mathrm{M}=$ 10M)
9. Solve $3 x+2 y+7 z=4,2 x+3 y+z=5,3 x+4 y+z=7$ using LU decomposition method.
(C.O. No.1) [Comprehension]

PRESIDENCY UNIVERSITY
 BENGALURU
 SCHOOL OF ENGINEERING

TEST 1

Winter Semester: 2021-22
Course Code: MAT2002
Course Name: Numerical Methods, Probability Distributions and Sampling Techniques
Program \&Sem: B.Tech \& IV Sem

Date: $25^{\text {th }}$ April 2022
Time: 11.30 AM to 12.30 PM
Max Marks: 30
Weightage: 15\%

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and Non-programmable calculators are permitted.

Part A [Memory Recall Questions]

Answer all the questions. Each question carries ONE mark. (5Q x 1M = 5M)

1. True or False: The expression $2 x^{2}-(\sin 1) x+1=0$ is a transcendental equation. (C.O.NO.1) [Knowledge]
2. Write down the lower triangular matrix of the LU decomposition method for the general linear system of 3 equations in 3 unknowns.
(C.O.NO.1) [Knowledge]
3. Every polynomial of degree n has exactly \qquad roots. (C.O.NO.1) [Knowledge]
4. The expression of second order divided difference $f\left(x_{1}, x_{2}, x_{3}\right)=$ \qquad _.
(C.O.NO.2) [Knowledge]
5. Write down the Lagrange's interpolation formula for the following data

x	x_{0}	x_{1}
y	y_{0}	y_{1}

(C.O.NO.2) [Knowledge]

Part B [Thought-Provoking Questions]

Answer all the Questions. Each question carries FIVE marks. ($3 Q \times 5 \mathrm{M}=15 \mathrm{M}$)
6. Find a real root of the equation $e^{-x}=x$ using Newton-Raphson method correct to 4 decimal places.
(C.O.NO.1) [Comprehension]
7. Compute y when $x=0.66$ from the following data

x	0.61	0.63	0.65	0.67
y	1.840	1.878	1.195	1.954

8. The upward velocity of a rocket is given as a function of time in the following table.

$t(s)$	0	10	15	20
$v(t)(\mathrm{m} / \mathrm{s})$	0	227.04	362.78	517.35

Find the velocity of the rocket at $t=12$ by using Lagrange's interpolation formula.
(C.O.NO.2) [Comprehension]

Part C [Problem Solving Questions]

Answer the Question. Question carries TEN marks.
$(1 Q \times 10 M=10 M)$
9. Solve $2 x+3 y+z=9, x+2 y+3 z=6,3 x+y+2 z=8$ by using LU decomposition method.
(C.O.No.1) [Comprehension]

SET A

TEST 2

Winter Semester: 2021-22
Course Code: MAT2002
Course Name: Numerical Methods, Probability Distributions and Sampling Techniques
Program \& Sem.: B.Tech. \& IV Sem. (All Programs)

Date: $31^{\text {st }}$ May 2022
Time: 10.00 AM to 11.00 AM
Max Marks: 30
Weightage: 15\%

Instructions:

(i) Read all the questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and Non-programmable calculators are permitted.

Part A [Memory Recall Questions]

Answer ALL the questions. Each question carries ONE mark. = 5M)

1. For $n=4$, the Simpson's $1 / 3^{\text {rd }}$ rule is \qquad .
(C.O.No.2) [Knowledge]
2. The Taylor's series expansion of $y(x)$ about the point x_{0} is \qquad .
(C.O.No.2)
[Knowledge]
3. For a sure event $E, n(E)=$ \qquad . [Knowledge]
4. If A and B are independent events, then $P(A \cap B)=$ \qquad . (C.O.No.3) [Knowledge]
5. The conditional probability of event A given event C is defined as $P(A \mid C)=$ \qquad .
[Knowledge]

Part B [Thought Provoking Questions]

Answer ALL the questions. Each question carries FIVE marks. 15M)
6. Using Runge-Kutta method of order 4 solve $\frac{d y}{d x}=x+y, y(0)=1$ at $x=0.1$ by taking the step length $\mathrm{h}=0.1$. Carry out the computations correct up to 4 decimal places.
(C.O.No.2)
[Comprehension]
7. A bag contains 7 red, 6 white and 5 blue balls. If 4 balls are drawn at random, find the probability that (a) two are red and two are white (b) three are blue and one is red.
(C.O.No.3)
[Comprehension]
8. Suppose that one of the three men, a politician, a businessman and an educator will be appointed as the vice chancellor of a university. The respective probabilities of their appointments are $0.5,0.3$ and 0.2 . The probabilities that research activities are promoted by these people if they get appointed are $0.3,0.7$ and 0.8 respectively. A research activity is promoted. Find the probability that the research activity is promoted by the educator.
(C.O.No.3)
[Comprehension]

Part C [Problem Solving Question]

Answer the following question. The question carries TEN marks. 10M)
9. Evaluate the definite integral $\int_{0}^{6} \frac{d x}{1+x^{2}}$, correct up to 4 decimal places, by considering 6 subintervals using (a) trapezoidal rule (b) Simpson's $1 / 3^{\text {rd }}$ rule (c) Simpson's $3 / 8^{\text {th }}$ rule. (C.O.No.2)
[Comprehension]

PRESIDENCY UNIVERSITY
 BENGALURU

SCHOOL OF ENGINEERING
SET B

TEST 2

Winter Semester: 2021-22
Course Code: MAT2002
Course Name: Numerical Methods, Probability Distributions and Sampling Techniques
Program \& Sem.: B.Tech. \& IV Sem. (All Programs)
Weightage: 15\%

Instructions:

(i) Read all the questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and Non-programmable calculators are permitted.

Part A [Memory Recall Questions]

Answer all the questions. Each question carries ONE mark.
= 5M)

1. The Simpson's $3 / 8^{\text {th }}$ rule is applicable if n is a multiple of \qquad .
(C.O.No.2) [Knowledge]
2. In modified Euler's method, we first predict y value by the formula $y_{1}=$ \qquad .
(C.O.No.2)
[Knowledge]
3. If $P(E)=0.6$, then $P(\bar{E})=$ \qquad , where \bar{E} is the complement of the event E.
(C.O.No.3)
[Knowledge]
4. If A and B are mutually exclusive events, then $P(A \cap B)=$ \qquad .
(C.O.No.3)
[Knowledge]
5. The conditional probability of event B given event A is defined as $P(B \mid A)=$
\qquad .
[Knowledge]

Part B [Thought Provoking Questions]

Answer all the questions. Each question carries FIVE marks. 15M)
6. Using Runge-Kutta method of order 4 solve $\frac{d y}{d x}=3 x+\frac{y}{2}, y(0)=1$ at $x=0.1$ by taking step length $\mathrm{h}=0.1$. Carry out the computations correct up to 4 decimal places.
(C.O.No.2)
[Comprehension]
7. A bag contains 8 red, 6 white and 6 blue balls. If 3 balls are drawn at random, find the probability that (a) 2 white and 1 blue balls are drawn (b) 1 ball of each color is drawn.
[Comprehension]
8. A factory has three units A, B and C. Unit A produces 25% of its products, unit B produces 25% and unit C produces 50%. It is known that the percentage of defective items produced by the three units A, B and C are respectively $10 \%, 20 \%$ and 30%. An item is selected randomly from the total products of the factory and it is found to be defective. Find the probability that it is produced by the unit A.
(C.O.No.3)
[Comprehension]

Part C [Problem Solving Question]

Answer the following question. The question carries TEN marks. 10M)

9. Evaluate the definite integral $\int_{0}^{6} \frac{d x}{1+x}$, correct up to 4 decimal places, by considering 6 subintervals using (a) trapezoidal rule (b) Simpson's $1 / 3^{\text {rd }}$ rule (c) Simpson's $3 / 8^{\text {th }}$ rule. (C.O.No.2) [Comprehension]
