× ×
GAIN MORE KNOWLEDGE
REACH GREATER HEIGHTS

Roll No												
---------	--	--	--	--	--	--	--	--	--	--	--	--

PRESIDENCY UNIVERSITY **BENGALURU**

SCHOOL OF ENGINEERING

TEST 1

Winter Semester: 2021 - 22 Course Code: MEC 209 Course Name: Heat and Mass Transfer Program & Sem: B.Tech. & VI

Date: 25th April 2022 Time: 1.30 PM to 2.30 PM Max Marks: 30 Weightage: 15%

Instructions:

(i) Read the all questions carefully and answer accordingly.

(ii) Use of Non-programmable calculator is allowed.

Part A [Memory Recall Questions]

Answer all the Questions. Each question carries ONE marks. (10Qx 1M = 10M)(C.O.1) [Knowledge] 1. Which of the following is the rate of heat transfer unit..... A. Watt B. Pascal C. Joule D. Newton 2. Which of the following is an example of steady-state heat transfer

(C.O.1) [Knowledge] A. Boilers and turbines

B. Cooling of I.C engine

- C. Chilling effect of cold wind on a warm body
- D. Electric bulb cools down by the surrounding atmosphere

3. Which way is heat transfer believed to take place in a long, hollow cylinder that is kept at (C.O.1) [Knowledge] consistent but varied temperatures on its inner and outer surfaces?

A. Unpredictable E	3. Radial only	C. No I	heat transfer takes place	ce D. Axial only			
4. Insulators are good con	(C.O.1) [Knowledge]						
5. Conduction is NOT pose	sible in gases. (T	rue/Fals	se)	(C.O.1) [Knowledge]			
6 Fourier's law is used for.	(C.O.1) [Knowledge]						
A. One dimension cases B. Two dimension cases C. Irregular surface D. Any Surface							
7. Unit of thermal Resisten	ice is			(C.O.1) [Knowledge]			
A. Watt/metre-Kelvin	B. metre-Kelv	in/Watt	C. Watt/metre2-Kelvir	n D. None			

8. Thermal conductivity of solid substance is more than liquid but less than gases. (True/False) (C.O.1) [Knowledge]

a) Convection b) Radiation c) Conduction d) All of the mentioned

10. Good conductor of electricity are generally bad conductor of heat due to presence of free electrons.(True/False) (C.O.1) [Knowledge]

Part B [Thought Provoking Questions]

Answer all the Questions. Each question carries FOUR marks.

11. Explain with neat diagram the concept of critical radius of Insulation and its importance.

(C.O.1) [Comprehension]

12. Derive with a neat diagram the Fourier law of Conduction.

9. Which of the following is a method of heat transfer.

(C.O.1) [Comprehension]

Part C [Problem Solving Questions]

Answer all the Questions. Each question carries SIX marks.

Q.NO. 13. Steady one-dimensional heat conduction takes place across the faces 1 and 3 of a composite slab consisting of slabs A and B in perfect contact as shown in figure 1, where kA, kB denote the respective thermal conductivities. Using the data as given in the figure, Find the interface temperature T2 (in_°C). Assume the cross-sectional area of each slab as 1 m².

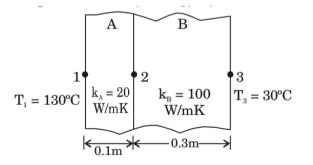


Figure 1

(C.O.1) [Application]

Q.NO. 14. A plane wall of 10 cm thickness and 3 m² area is made of a material whose conductivity is 8.5 W/m-K. The temperature of the wall surface are steady at 100°C and 30°C respectively. Draw the circuit diagram and Calculate.

- a. Temperature Gradient
- b. Heat flow across the wall in Kilowatts.

(C.O.1) [Application]

(C.O.1) [Knowledge]

(2Qx4M=8M)

(2Qx6M=12M)

7		Roll No										
GAIN MORE KNOWLEDGE REACH GREATER HEIGHTS	ESIDENCY BENGA	•••••	ытү									
SCHOOL OF ENGINEERING												
	TES	Г 2										
Winter Semester: 2021 - 22					Date: 31 st MAY 2022 Time: 01:30 PM to 02:30 PM							
Course Code: MEC 209							01:30 larks:		to U	2:30	РМ	
Course Name: Heat and Mass T							itage:		%			
Program & Sem: B.Tech. & VI S	em					.9.	lugo.	10				
Instructions:		<i>(i)</i>			e all accor		uestic	ons	care	fully	and	
(ii) Use of Non-programmable	calculator is allow	wed.	ansi			un	igiy.					
Part	A [Memory Ro	ecall Ques	tions]								
Answer all the Questions. Each q	uestion carrie	s TWO ma	rks.				(6	(6Qx 2M= 12M)				
1. On heat transfer surface, fins are	provided				[2]	M]	(C.O	1) [I	۲no	wlea	lge]	
A. To decrease the rate of h	neat transfer.											
B. To decrease the velocity	of air.											
C. To increase surface area	a to promote the	e rate of he	at tra	nsfe	r							
D. None of these												
2. If heat dissipation for one fin is gi for 12 fins?	ven by 377.45	k J/hour, th	ien wł	hat i			eat di (C.O.	-			ge]	
A. 7529.4 k J/hour	B. 6529.4 k J	/hour										
C. 5529.4 k J/hour	D. 4529.4 k J/	hour										
3. The value of Biot number is very less(less than 0.1) when.						M]	(C.O	1) [Kno	wlea	dge]	
A. The Conductive resistence of solid first increases and then it becomes constant.												
B. The Conductive resister	nce of fluid is ne	egligible.										
C. The Conductive resister	C. The Conductive resistence of solid is very large.											
D. None of the mentioned												
4. For evaporators and condensers, for the given conditions, the logarithm temperature difference (LMTD) for parallel flow is:							nean. (C.O		Kno	owle	dge]	

(2Qx5M=10M)

Page 4 of 7

D. None of the above

5. In parallel flow heat exchanger both the fluids (hot and cold fluid) flow in opposite direction. (True/False) [2M] (C.O.1) [Knowledge]

6. In Counter flow heat exchanger both the fluids (hot and cold fluid) flow in same direction. (True/False). [2M] (C.O.1) [Knowledge]

Part B [Thought Provoking Questions]

Answer both the Questions. Each question carries FOUR marks. (2Qx4M=8M)

11. You are designing a car and you want to install a heat exchanger so that maximum heat can be dissipated from the heat exchanger. Which heat exchanger will you choose and why. Mention proper reason with temperature profile for selecting a particular heat exchanger. Assume input of all types of heat exchanger is same. [4M](C.O.1) [Comprehension]

12. Define Fins. Also define effectiveness of fin and write the expression for effectiveness of fins. Assume fin to be of length L and tip insulated. [4M](C.O.1) [Comprehension]

Part C [Problem Solving Questions]

Answer both the Questions. Each question carries FIVE marks.

A. Equal to that for counter flow

C. Smaller than that for counter flow

13. Cold water flowing at 0.1 kg/s is heated from 20°C to 70°C in a counter flow type heat exchange by a hot water stream flowing at 0.1 kg/s and entering at 90°C. The specific heat of water is 4200 J/(kgK) and density is 1000 kg/m3. If the overall heat transfer coefficient U for the heat exchange is 2000 W/(m2 K), Draw temperature diagram of heat exchanger and find the required heat exchanger area (in m²). [5M] (C.O.1) [Application]

14. A steel ball of diameter 60 mm is initially in thermal equilibrium at 1030°C in a furnace. It is suddenly removed from the furnace and cooled in ambient air at 30°C, with convective heat transfer coefficient h = 20 W/m²K. The thermophysical properties of steel are: density ρ = 7800 kg/m², conductivity k = 40 W/mK and specific heat c= 600 J/kgK. Find the time required (in seconds) to cool the steel ball in air from 1030°C to 430°C. [5M](C.O.1) [Application]

B. Greater than that for counter flow

3		Roll No											
GAIN MORE KNOWLEDGE REACH GREATER HEIGHTS	PRESIDEN	ICY UNIVE NGALURU	RSITY										
SCHOOL OF ENGINEERING													
END TERM EXAMINATION Winter Semaster: 2021 22 Date: 28 th June 2022													
Winter Semester: 2021 - 2	2		Time : 9.30 AM to 12.30 PM										
Course Code: MEC 209	T		Max Marks: 100										
Course Name: Heat and M					eightag								
Program & Sem: B.Tech.M	IECH & VI Sem				Janag								
Instructions: (iii) Read the all question (iv) Use of Non-programm	•		ngly.										
	Part A [Memo	ry Recall Qu	estions	5]									
1. Answer all the Questions.	Each question	n carries TW	O mark	s.		(15Q	x 21	/ = 3	60M)				
i. Heat is transferred in throu	gh vaccum by n	neans of											
					(C.	O.1) [Knov	wlec	lge]				
A. Conduction B. Co			None of		-0								
ii. Which of the following is co	rect regarding of	one almensio	nai neat	transfe		.0.1)	[Knc	אאום	Ianhe				
A. Steady – f (x, y, t),	Unsteady – f (x))	B. Ste	ady – f	•	,	-		• -				
C. Steady – f (x, t), Ur	• • •		B. Steady – f (y, z), Unsteady – f (y) D. Steady – f (x), Unsteady – f (x, t)										
iii. Radiation heat transfer is c	naracterized by		(C.O.1) [Knowledge]										
A. Movement of discr	•	•••	-	netic wa	aves								
B. Due to bulk fluid m		•											
C. There is the circula D. Thermal energy tra	=			tice stru	icture (of the	mat	oria	I				
iv. Upto the critical radius of in		onal chergy i				.0.1)							
A. adding insulation wi		transfer			(-	,	L		-9-1				
B adding insulation wil	l decrease heat	transfer											
C. adding insulation wi	Il first increase	and then dec	rease he	eat trans	sfer								
D. None of above					(0	• • •							
v. Unit of thermal diffusivity is.		ondor og og	mored	to poro	•	.O.1)	-		• -				
vi. LMTD in case of counter is.	now near exch	anger as cor	npareu	to para		.O.1)							
A. Higher B. Low	er C.S	Same D	. Deper	nds on a	•		-		• -				
vii. The emissive power of a	blackbody is P.	If its absolut	e tempe	erature i	s doul	bled, f	the (emis	ssive				
power becomes				(C	.0.1)	[Knc	wle	dge]					
A. 2P B. 4		C. 8P	, , , ,			. Non		• •					
viii. For an opaque surface, the	ie absorptivity (α), transmiss	ivity (t) a	and refle					•				
the equation: A. α+ ρ= τ B. α+ ρ-	+ т = 0	C. α+ ρ= 1			(C D. N	.O.1) Ione	[1/10	wie	uyej				
		0. u · p- 1			0.1		F	bage	5 of 7				

ix. Which of the following is a mode of heat transfer.(C.O.1) [Knowledge]a) Convectionb) Radiationc) Conductiond) All of the mentionedx. Shape factor of a flat plate with respect to itself is......(Assume the radiation from flat surfaceis from one side)(C.O.1) [Knowledge]xi. Consider the radiation heat exchange inside an annulus between two very long concentriccylinders. The radius of the outer cylinder is R_0 and that of the inner cylinder is R_i . The radiationview factor of the outer cylinder onto itself is......(C.O.1) [Knowledge]xii. Saturated steam at 100°C condenses on the outside of a tube. Cold fluid enters the tubeat 20°C and exits at 50°C. The value of the Log Mean Temperature Difference (LMTD) is

 $(C.O.1) [Knowledge] \label{eq:constraint} xiii. For a heat exchanger, ΔT_{MAX} is the maximum temperature difference and ΔT_{MIN} is the minimum temperature difference between the two fluids. LMTD is the log mean temperature difference. C_{MIN}$ and C_{MAX}$ are the minimum and the maximum heat capacity rates. The maximum possible heat transfer (Q_{MAX}) between the two fluids is (C.O.1) [Knowledge]$

- A. C_{MIN.}LMTD
- B. $C_{\text{MIN.}} \Delta T_{\text{MAX}}$
- $C. \ C_{\text{MAX.}} \, \Delta T_{\text{MAX}}$
- $D. \ C_{MAX.} \ \Delta T_{MIN}$

xiv. In a heat exchanger, it is observed that $\Delta T1 = \Delta T2$, where $\Delta T1$ is the temperature difference between the two single phase fluid streams at one end and $\Delta T2$ is the temperature difference at the other end. This heat exchanger is...... (C.O.1) [Knowledge]

- A. a Condenser
- B. an evaporator
- C. Counter flow heat exchanger
- D. Parallel flow heat exchanger

xv. Which one of the following configurations has the highest fin effectiveness?

(C.O.1) [Knowledge]

- A. Thin, closely spaced fins
- B. Thin, widely spaced fins
- C. Thick, closely spaced fins
- D. Thick, widely spaced fins

Part B [Thought Provoking Questions]

Answer all the Questions. Each question carries FIVE marks.

2. Explain effectiveness of heat exchanger with the formula to calculate the effectiveness.

(C.O.1) [Comprehension]

(4Qx5M=20M)

3. Derive with a neat diagram the Fourier law of Conduction.

(C.O.1) [Comprehension]

4. Define Radiation heat transfer and emissivity. Also state Kirchhoff's law of radiation.

(C.O.1) [Comprehension]

5. Define Irradiation and Radiosity. Write the formula for total number of surface resistances and space resistances when 'n' number of radiation shields placed between two surfaces.

(C.O.1) [Comprehension] Page **6** of **7**

Part C [Problem Solving Questions]

Answer all the Questions. Each question carries TEN marks.

(5Qx10M=50M)

6. Find the heat flow rate through the composite wall as shown in the fig. 1. Assume one dimensional heat flow.

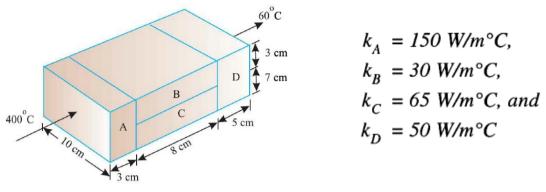


Fig. 1

7. A solid copper sphere of 10 cm diameter, density ρ =8954 kg/ m^3 , Specific heat C_P =383 J/kg-K, thermal conductivity K = 386 W/m-K, initially at uniform temperature t_i = 250°*C*, is suddenly immersed in a well-stirred fluid which is maintained at a uniform temperature, t_a = 50°*C*. The heat transfer coefficient between sphere and fluid is h= 200 W/ m^2 -K. Determine the temperature of copper block at time=300 seconds after the immersion. (C.O.3) [Application] 8. In a concentric counter flow heat exchange, water flows through the inner tube at 25°C and leaves

at 42°C. The engine oil enters at 100°C and flows in the annular flow passage. The exit temperature of the engine oil is 50°C. Mass flow rate of water and the engine oil are 1.5 kg/s and 1 kg/s, respectively. The specific heat of water and oil are 4178 J/kg-K and 2130 J/kg-K, respectively. Find the effectiveness of this heat exchanger. (C.O.3) [Application]

9. Define shape factor and explain with proper example.

A solid sphere 1 (as shown in fig 2) of radius 'r' is placed inside a hollow, closed hemispherical surface 2 of radius '4r'. Find the shape factor F_{21} . (C.O.3) [Application]

Fig 2

10. A plate having 10 cm^2 area each side is hanging in the middle of a room of 100 m^2 total surface area. The plate temperature and emissivity are respectively 800 K and 0.6. The temperature and emissivity value for the surfaces of the room are 300 K and 0.3 respectively. Boltzmann's constant $\sigma = 5.67 \times 10^{-8} \text{ W/}m^2K^4$. Find the total heat loss from the two surfaces of the plate.

(C.O.3) [Application]