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An Efficient Solution For the Response of Electrical 
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Abstract-An efficient method for computing the response of some 
electrical logging tools in a complex environment is presented. This 
complex environment consists of multiple geological beds with a bore- 
hole and invaded zones. The method uses local reflection and trans- 
mission operators of a single-bed boundary and a general recursive 
algorithm to derive generalized reflection and transmission operators. 
Using this method, the computation time scales linearly as N ,  where N 
is the number of beds in the environment. Hence the method is much 
more efficient than the finite-element method for solving the same 
problem. Furthermore, the solution is presented in a symmetric form 
so that reciprocity can be readily verified. 

I .  INTRODUCTION 
ELL-LOGGING, whereby sensing instruments are low- W ered into boreholes to measure the physical properties of 

the subsurface earth, is an important part of geophysical explo- 
ration. Among well-logging tools, electrical (or electromag- 
netic) tools which measure conductivities (or resistivities) and 
dielectric constants are essential. In oil exploration, for in- 
stance, oil-impregnated rocks have a higher resistivity than 
water-saturated rocks, because connate water is conductive, 
whereas oil is an insulator. As such, the resistivity of rocks is 
a good indicator of the presence of hydrocarbon. On the other 
hand, water has a high dielectric constant of go€,, which is much 
greater than that of oil, being about 2c0. Hence the dielectric 
constant measurement is a good indicator of the presence of 
water [ 11. 

Electromagnetic well-logging tools are designed to inject or 
induce current flow in the rock formation. For example, later- 
ologs inject currents into the rock formation by using elec- 
trodes. However, the induction tools induce eddy currents in a 
rock formation using a current loop which generates a time- 
varying magnetic field. The manner in which the formation re- 
sponds to the field excited by the source can then be used to 
determine the resistivity and dielectric constant of the rock for- 
mation [2]. 

In a homogeneous formation a simple formula can usually be 
derived for the conductivity and dielectric constant. This is 
measured by a logging tool. Unfortunately, the real environ- 
ment in which the tool operates consists of complex inhomo- 
geneities. Such complex inhomogeneities can make the 
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interpretation of well-logging measurements extremely diffi- 
cult. Hence it is often necessary to ascertain how a complex 
environment confuses the log interpretation process and to re- 
fine the interpretation if patterns are observed. 

One way to ascertain the effect of a complex environment is 
to perform experiments. However, experiments are often ex- 
pensive and physical parameters cannot be altered easily. An 
alternative is to perform computer modeling. Computer mod- 
eling cuts the cost of such studies, because the physical param- 
eters in a model can be altered easily. Moreover, advances in 
computer technology are rapidly decreasing the cost of such 
studies. 

In this paper we shall discuss the computer modeling of the 
response of an electromagnetic source in a two-dimensional 
well-logging environment. The environment consists of a bore- 
hole and horizontal beds, with invaded zones in the beds. More- 
over, the number of beds is arbitrary. In theory, the field 
equations can be solved by the finite-element method. How- 
ever, a routine application of the finite-element method results 
in the use of an exorbitantly large amount of computer memory, 
along with lengthy computer run-times. On the other hand, a 
combined use of numerical and analytic methods can result in 
a great savings in computational resources. Such a method is 
known variously as the semi-analytic method or the hybrid 
method 131-[ 101. We shall call it the numerical mode-matching 
method due to its resemblance to mode matching [ 111-[ 141. The 
method also has a recursive structure, so that its implementation 
on a computer is straightforward. Moreover, the computation 
effort grows linearly with the number of beds, rendering it very 
efficient. This work differs from the work in [ 101 because here, 
generalized reflection and transmission operators which are de- 
rived recursively are used to propagate the wave through dif- 
ferent regions. In [lo], a generalized Haskell matrix is used to 
propagate the wave through different regions. The method de- 
scribed here is more like the geometric optics ray series ap- 
proach, whereas [ 101 uses a method more akin to the propagator 
matrix approach [ 151. 

The numerical mode-matching method reduces a higher-di- 
mensional problem to a lower-dimensional one in which the 
modes are found numerically. These modes are then propagated 
through the higher dimension analytically using mode propa- 
gators. For example, a two-dimensional problem involving ( p ,  
z )  is reduced to a one-dimensional problem involving only p 
from which the modes are found numerically. These modes are 
then propagated in the z direction analytically with mode prop- 
agators. Hence the modes can propagate through large distances 
without much computational effort. When a discontinuity is 
present, the reflection, transmission, and conversion of modes 
are characterized by reflection and transmission operators. These 
operators are easily derived for a single-discontinuity problem 
[3]-[5]. When many discontinuities are present, they can be 
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treated as a concatenation of one-discontinuity problems [8]. In 
this manner multiple reflections and transmissions are easily ac- 
counted for with generalized reflection and transmission oper- 
ators using a recursive algorithm. 

We will present the result here in a symmetrical form so that 
reciprocity is readily verified. 

11. THEORY 
First, consider the case where the inhomogeneity is transla- 

tionally invariant in the z direction (i.e.,  no z variation in the 
inhomogeneity). Then the field due to a source can be written 
as [3]-[5]:  

= f ' ( p )  . e i k z l z - z ' l  . E;' f ( P ' )  (1) 

where f( p )  is a column vector containing A ( p  ), the ith eigen- 
vector; EZ is a diagonal matrix containing kl, _on the diagonal; 
and p' and z' are source coordinates. Hence e i k z l z - z ' l  is ' a prop- 
agator that propagates the modes through a distance I z - z' 1 .  
Here, A ,  is either E,  or H, depending on whether we are con- 
sidering the TE or the TM problem. 

Now, if the source is embedded between two bed boundaries, 
then the field that emanates from the source will be reflected by 
the bed boundaries. Consequently, (1) has to be augmcnted by 
the reflected field terms, consisting of upgoing and downgoing 
waves. Assuming the source to be in the mth bed region as 
shown in Fig. 1 ,  then 

~ 

PA,, - f ; ( P )  - 
. [ e ~ k , n ; l ? - z ' l  + eik,n,z . cm + e - i k ~ n : z  . o m  I 

. . f m ( P ' ) .  ( 2 )  

Here c,,, and 0, are unknown matrices yet to be determined. 
They can be found easily if the generalized reflection operators 
of the beds above and below the source are known. With these 
reflection operators, constraint conditions can be written at z =  
d,,,- I and z = d,. With the constraint conditions, C,,, and Dm 
can then be found [ 81. 

The constraint conditions at z = d, - is that the downgoing 
wave is a consequence of the reflection of the upgoing waves. 
Assuming the generalized reflection operator here to be 
R m , m - l  [81, then it follows that 
I - 

- 
D m  e- ikmzdm-i  . 

- I 

c, + e i k m ( d m - i - z ' l  1. ( 3 )  - - . ( e i k m z d m - i  . - R m , m - i  

Applying a similar constraint condition at z = d, and assuming 
the reflection operator here to be 5 ,,, + then 

~ 

? 09 

Fig. 1. Geometry of the problem. 

and t ,  is the thickness of the mth region. Consequently, (5) and 
(6) can be used in (2) to find the field in region m. The resultant 
expression after some algebraic manipulations could further be 
simplified to: 

As the manipulation that leads to (8) from (2) is rather complex, 
the interested reader is encouraged to first work with a scalar 
version of both (2) and (8). After having obtained the insight 
of the algebraic manipulation for the scalar case, that the vector 
case can be gotten similarly except now, the orders of the op- 
erators are important. 

The preceding expression has the advantage of being sym- 
metrical between the source point and observation point. Hence 
the reciprocity theorem is readily verified from it [ 5 ] .  

Now if the observation point is in region n ,  where n < m but 
the source is still in region m, the field can then be written as 

p ~ , ,  = f ; ( p )  . [erkmz + e - ~ k n ~ ( : - d n - ~ )  

- 
( 9 )  

- 
R , , , - l  * erknZdn- l ]  . A,. 

Here A,, is a vector denoting the amplitude of the upgoing wave 
in region n.  It can be related to thnamplitude of the upgoing 
wave in region m as [8] - - 

- -  
A,  = On+ T , + l , ,  . e i k n + l z r n + l  a+,,+ . T n + 2 , n + l  etknzdn . 

- - 
D,+3,+ . T n + 3 , n + 2  

. erkn+2.r rn+2 . 
- 

. e r k n + 3 r r n + ~  . . . e r k m - ~  d m - i  . D m - I , +  

. T ~ , ~ - ~  . erkm~dm-l  . A m  
- 
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where - -  
(11) - e r 4 r , )  - 1  ol+ = ( j  - 75,,,+, e~kfz tz  . R191-, . 

and Tl, is a local transmission operator at a bed boundary. The 
order of the operator is important in (10). Using ( lo) ,  a gener- 
alized transmission operator between region m and n can be 
defined such that 

= 
* A,,,. (12) e ~ k d n  . A, = T,, . e l k m d m - ~  

It relates the upgoing wave amplitude at z = d,,, - to the up- 
going wave amplitude at z = d,,. On comparing (10) and (12), 

the definition of T,, can be deduced. 
From (8) we notice that the upgoing wave amplitude at z = 

d m - l  is - - 

m,m+ I 
e r k m z d m - ~  . A, = erkmrr,n . M,+ . [ , - rk , ( z ' -dm)  + E 

I * En;,' * f m ( P ' ) .  ( 1 3 )  . e~knzr (z ' -dm)  

Consequently, (9) becomes: 

p ~ , ,  . [ e z k n r ( ~ - d n - ~ )  + e - l k n z ( z - d n - ~ )  . R n , n - 1 1  = 

1 . e i k m f z ' - d m )  
m,m + I 

. [ , - i k m Z ( z ' - d m )  + E 
- 

* k ~ '  . f m ( P ' ) .  (14)  
The above form is symmetrical between the source point and 
observation point so that reciprocity can be readily proven. 

Similarly, if the observation point is in region I ,  where 1 > 
m,  the field in region 1 can be written as - 
p ~ l ,  = f f ( P )  . [ e - i k i z z  + e i k / z f z - d i )  . - e - i k i ~ d ]  . Bi. 

Rl,i+l . 
(15)  

Here BI is a vector denoting the amplitude of the downgoing 
wave in region 1. It can be related to the amplitude of the down- 
going wave in region m as 

e - ik i ;d/ -  I . Bl = 4 -  . TI-l , /  * e i k i - ' . z n - l  e Bl-l .-  . T , - 2 , f - ,  
- - , -  - 

- . e i k i - 2 . : ~ i  2 . . . e i k n l + ~ . : r t , l + ~  . 

. T, , ,+ ,  . eikm:dm+~ . 
D,+l ,+ 

- 
B m  

where 

and is a local transmission operator at a bed boundary. The 
order of operators is important in (16). With (16), a generalized 
transmission operator between region m and I can be defined 
such that 

e -iki,di- I . B~ = T , ~  . e-ikmzdm . B,,,. 

It relates the downgoing wave amplitude at z = d,,, to the down- 

going wave amplitude at z = dl - ,. The definition of Tmi can 
be deduced on comparing (16) and (18). 

From (18), we notice that the downgoing wave amplitude at 
z = dm is 

- - 
(18) 

- 
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Fig. 2.  (a) Parameters of a four-bed geometry modeled at 20 KHz for the 
6FF40 induction tool with three transmitters and three receivers. (b) Com- 
parison between the numerical mode-matching method and the finite- 
element method for the geometry shown in (a). 

This form is symmetrical between the source point and obser- 
vation point so that reciprocity is easily proven. 

111. RESULTS 
A computer program has been developed that executes the 

above formulation. Results have been compared with results 
from the finite-element method. Comparisons with the two-di- 
mensional finite-element method [16] have been made at 20 
KHz, the frequency of the induction tool, as well as at 25 MHz, 
the frequency of the deep propagation tool (DPT) [ 171, [ 181. 
Excellent agreement has been noted between the results of the 
numerical mode-matching method described above and the 
finite-element method. However, the numerical mode-matching 
code is much faster than the general finite-element code. The 
increase in speed is a consequence of treating the problem an- 
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Fig. 3 .  (a) A ten-bed geometry for induction logging. (b) Comparison be- 
tween the numerical mode-matching method and the finite-element method 
for the geometry shown in (a). 

alytically in the z direction, while solving the problem in the p 
direction numerically as only a one-dimensional finite-element 
method [3] - [5] .  

Shown in Fig. 2(a) is a four-bed geometry for modeling the 
induction tool response, with one invaded zone in each layer. 
The conductivities and dimensions of the layers are shown in 
the figure, along with the induction tool. The tool is the 6FF40, 
with three transmitters and three receivers operating at 20 KHz. 
Shown in Fig. 2(b) is a comparison of the apparent resistivity 
obtained by the numerical mode-matching method (NMM) and 
finite-element method (FEM). Excellent agreement is ob- 
served. 

Fig. 3(a) shows a ten-bed geometry for induction logging in 
the invaded zone in layers 3 and 8, respectively. The compar- 
ison of the computed apparent resistivity obtained by NMM and 
FEM in Fig. 3(b) shows very good agreement between these 
two methods. 

The NMM is also used to model DPT response in compli- 
cated borehole environments. The DPT operates at 25 MHz, 
which is much higher than the induction tool frequency. Fig. 
4(a) shows a four-bed geometry for modeling the DPT re- 
sponse. There is no borehole fluid invasion present. Fig. 4(b) 
shows the apparent dielectric constant calculated by NMM for 
DPT, along with the result obtained by FEM. Fig. 4(c) shows 
the corresponding apparent resistivity. The agreement between 
NMM and FEM is excellent in both cases. 

25 MHz 

c 

4-Bed DPT 
(a) 

- T  

(C) 
Fig. 4. (a) A four-bed geometry for the DPT at 25 MHz. (b) Comparison 
between the numerical mode-matching method and the finite-element 
method for the apparent dielectric constant for the geometry shown in (a). 
(c) Comparison between the numerical mode-matching method and the 
finite-element method for the apparent resistivity for the same case. 

Fig. 5(a) illustrates a ten-bed geometry for modeling the DPT 
response. There is one invaded zone in layers 2 and 8, respec- 
tively. The dielectric constants and conductivities of the various 
regions are shown in the figure. Fig. 5(b) and (c) shows a com- 
parison of the apparent dielectric constant and apparent resis- 
tivity, respectively, obtained by the NMM and FEM. Again, 
the agreement between the two methods is very good. However, 
the numerical mode-matching method is far more efficient than 
the finite-element method. For this particular ten-bed geometry, 
the computation time for the NMM is about 8.6 s, while it is 
about 630 s for the FEM, when the codes were run on a Cray 
X-MP/14. Hence the NMM is about 73 times faster than the 
FEM. In addition, the NMM requires less computer memory 
than the FEM. This makes the NMM simulation possible even 
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Fig. 5 .  (a) A ten-bed geometry for the DPT at 25 MHz. (b) Comparison 
between the numerical mode-matching method and the finite-element 
method for the apparent dielectric constant for the geometry in (a). (c) 
Comparison for the apparent resistivity for the same case. 

on a small computer such as a VAX, where the FEM code takes 
hours to generate results. The long FEM computer run-time on 
a virtual memory machine such as a VAX is a result of the large 
number of page-faults. The ten-bed NMM case takes about 248 
s on a VAX, which is still faster than the FEM code running on 
the CRAY. 

IV. CONCLUSIONS 
A symmetrical form of the solution for an electrical source 

in a multibed well logging environment has been derived. The 
symmetric solution readily renders the proof of reciprocity. A 
computer program has been developed to implement the solu- 
tion. The program is robust and generates accurate results from 
20 KHz to 25 MHz, achieving excellent agreement with the 
finite-element method solution of the same problem. However, 
the method discussed here is many times more efficient than the 
finite-element method. This efficient method has important ap- 
plications in the computer-aided design of well-logging tools, 
as well as in the computer-aided interpretation of well logs. 
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