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Lithology Determination from Well Logs with
Fuzzy Associative Memory Neural Network

Hsien-cheng Chang, Hui-Chuan Chen, and Jen-Ho Fang

Abstract—An artificial intelligence technique of fuzzy asso-
ciative memory is used to determine rock types from well-log
signatures. Fuzzy associative memory (FAM) is a hybrid of neural
network and fuzzy expert system. This new approach combines
the learning ability of neural network and the strengths of fuzzy
linguistic modeling to adaptively infer lithologies from well-log
signatures based on 1) the relationships between the lithology
and log signature that the neural network have learned during
the training and/or 2) geologist’s knowledge about the rocks. The
method is applied to a sequence of the Ordovician rock units in
northern Kansas. This paper also compares the performances of
two different methods, using the same data set for meaningful
comparison. The advantages of FAM are 1) expert knowledge
acquired by geologists is fully utilized; 2) this knowledge is
augmented by the neural network learning from the data, when
available; and 3) FAM is “transparent” in that the knowledge is
explicitly stated in the fuzzy rules.

I. INTRODUCTION

L ITHOLOGY determination from well-log responses is a
labor-intensive, ambiguous, and subjective undertaking.

Thus, considerable research has been directed toward automa-
tion of lithology identification in order to achieve efficiency,
consistency, and objectivity. The traditional approach in this
endeavor is the use of statistical methods such as princi-
pal component, discriminant function, and/or cluster analysis.
Recently, the techniques of artificial intelligence, especially
that of neural networks have steadily gained prominence over
the statistical methods. Recent papers that employ neural
networks in the determination of lithologies from well logs
include: [3] and [4] using a self-organizing network; [15],
[17], [20], and [21] employing an architecture known as
the backpropagation neural network (BPNN). Despite the
successful applications of BPNN to lithology determination
as shown by these publications, the BPNN algorithm suffers
from 1) training time is often too long; 2) there are chances
that the network never converges; 3) the output can only yield
pre-determined groups or clusters; that is, the network cannot
handle cases or examples which lie outside the pre-defined
training set; 4) determination of the numbers of intermediate
or hidden layers and nodes (in each layer) still depends on
“trial and error;” and 5) most importantly, it is difficult for the
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user to interpret or understand the “knowledge” that the neural
network has, by simply examining the connection weights and
thresholds obtained by backpropagation.

The purpose of this paper is to introduce a new and better
neural-network architecture called fuzzy associative memory
(FAM) to determine rock types from well logs. The prime
reason for this paper is that FAM possesses several advantages
which overcome the shortcomings of the BPNN approach.
They are: 1) FAM is transparent in that the knowledge is
explicitly revealed in the rules; 2) FAM also learns the rules
from the well-log signatures versus lithology relations during
training, or directly from geologists or domain experts; and 3)
FAM essentially coordinates available knowledge and makes
fuzzy inferences based on associative memories in performing
recursive learning to mimic human cognition and reasoning
processes.

In the following sections, we give some brief description
on FAM, then outline the FAM architecture, followed by
an implementation of FAM employing the same data set in
our previous paper [17], so that a direct and meaningful
comparison may be made between the two neural-network
architectures.

II. BACKGROUND

A. What Is Fuzzy Logic?

Fuzzy logic is an extension of the classical logic (viz. two-
valued logic) where every proposition is either true or false.
This true-false dichotomy is problematic in some propositions
which are neither completely true nor completely false, but
somewhere in between. In order to deal with such propositions,
different degrees of truth are used. This multivalued logic is
called fuzzy logic [24]. Fuzzy logic is primarily concerned
with quantifying and reasoning about fuzzy terms appearing
in our natural language. These fuzzy terms can be represented
by fuzzy sets. The most significant aspect of fuzzy set is the
concept of unsharp boundaries between classes; that is, the
concept of partial membership. An object does not have to
completely belong to one set, but can partially belong to the
set; this kind of set is called fuzzy set.

Fuzzy logic allows us to emulate the approximation of the
human reasoning processes and draw conclusions based on
fuzzy premises. This method of reasoning couched in fuzzy
logic is known as fuzzy inference, or fuzzy reasoning [23].
The concept that plays a central role in the application of
fuzzy sets is that of linguistic variables which provide knowl-
edge representation in an imprecise or uncertain environment.
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Fig. 1. Numerical value versus linguistic value. (a) Crisp numerical value for
gamma-ray is 25. This translates to� = 1 at API= 25 and� = 0 elsewhere;
(b) Linguistic value for gamma-ray islow. This means that� = 1 for API =
0–25, and� = 0 at API= 50, and� is between 0 and 1 for API= 25–50.

Consider a linguistic variable, such as gamma-ray reading
whose linguistic values arelow, medium, and high. These
linguistic values are defined by membership functions. The
advantages of using linguistic values are 1) it is more general;
2) it mimics the way in which humans describe attributes; and
3) the transition from one linguistic value to a contiguous
linguistic value is gradual rather than abrupt, resulting in
continuity and robustness. Fig. 1 compares the corresponding
linguistic value with a numerical value. In natural language,
humans may add additional information to a given expression
by using adverbs such asvery, very very, or more-or-less. For
example, the gamma-ray reading which has linguistic value
low may be modified tovery lowor very very low. To account
for this modification, some mathematical operations may be
employed to transform the existing fuzzy set—low into a new
fuzzy set—very low or very very low.

Fuzzy logic has been widely applied to engineering control
processes, including cement kilns, wood pulp grinders, sewer
treatment plants, elevators, subway trains, air conditioners,
and refrigerators [13]. The theory also has been applied to
environmental problems—such as, groundwater management
[14], and hydrology [1], [2]. During the past several years,
we have applied fuzzy logic to petroleum prospect appraisal
[5], [6], [8], qualitative X-ray analysis [22], and thin-section
mineral identification [9]. In this paper, we propose a technique
which combines fuzzy logic with a neural network and use it
to determine rock types from well logs.

B. What Is Associative Memory Network?

Human memory operates in an associative manner, one
thing reminds us of another, and that, of still another. Like
human memory, the associative memory neural network not
only returns a full and correct memory when an incomplete
or imprecise memory is supplied to it, but also sends back
a different memory associated with the one provided to the
network. These characteristics are reminiscent of human cog-
nitive processes and bring artificial neural networks one step
closer to an emulation of the human brain.

Each association is an input-output vector pair. The ar-
chitecture of an associative memory neural network may be
feedforward, bidirectional, or recurrent [10]. In this paper we
use a feedforward net; well-log data flow from the input layer

through the net and invokes the output layer resulting in the
associated lithology for the given well-logs signatures.

C. What Is Fuzzy Associative Memory?

Kosko [12] coined the name, FAM, denoting a neural
network architecture of associative memory modified with
fuzzy logic and rules. By combining the two approaches,
the advantages of each method are enhanced. The neural
network and fuzzy rules behave as associative memories,
which link input data with corresponding outputs. FAM learns
from example and/or geologist’s knowledge without requiring
mathematical formulae describing how the output functionally
depends on the input data. The knowledge learned by the
neural network is encoded in the connection weights, and the
knowledge in fuzzy rules is described by “if-then” rules. Neu-
ral networks acquire knowledge through learning (or training),
and the geologist provides the knowledge as fuzzy rules.

III. FUZZY ASSOCIATIVE MEMORY NEURAL NETWORK

A. FAM Mappings

By combining associative memory and fuzzy logic, Kosko
[12] devised fuzzy associative memory (FAM), which encodes
the fuzzy output set with the fuzzy input set (see Fig. 2).
Thus, FAM resembles neural network processing, and yet,
retains fuzzy approach that is characterized by linguistic rules.
In other words, explanations and justifications are done in
the fuzzy part, but not in the neural network, thus removing
the major deficiency of the “opaqueness” of ordinary neural
networks. The numerical framework of FAM allows us to
adaptively add and modify fuzzy rules, directly from experts
or from statistical techniques. As shown in Fig. 2, associative
neural networks are simple nets, in which the weights, denoted
by , are determined by the fuzzy Hebb rule (described
under “FAM learning” in a following subsection) matrix or
the “correlation-minimum encoding” scheme (see Appendix
B). Each association is a pair of vectors connectingand .
The weight or correlation matrix maps the input to the
associated output by a max–min composition operation “”
(see Appendix B):

If an input is fuzzy (a degree of membership is provided
to indicate the closeness of to ), the output will also
be a fuzzy set. If is exactly identical to , then will
be identical to . The more resembles the more
resembles .

B. Proposed FAM System

Consider a fuzzy association: “If gamma-ray reading islow,
then lithology islimestoneor dolomite.” The fuzzy association
is (low, limestone) or (low, dolomite). The input linguistic
variable gamma-ray assumes the fuzzy-set valuelow. The
output linguistic variable lithology assumes the linguistic value
limestoneor dolomite. In general, a FAM system encodes and
processes a set of rules in parallel. Each input to the system
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Fig. 2. Fuzzy mapping.

will activate each encoded rule to a different degree. The
proposed FAM network is composed of three layers:, ,
and , as shown in Fig. 3, which was redrawn from [16]. A
node in the -layer represents a fuzzy set in the antecedent
part of a fuzzy rule. A node in the-layer represents lithology.
Input well-log values are first fuzzified tohigh ( ), medium
( ) or low ( ), and various degrees of membership of

become the numerical inputs for the network.
Fuzzy inference is then invoked between the-layer and
the -layer by the – composition operation. Finally,
the inferred results obtained by each rule are aggregated to
produce a final result for the-layer. The aggregation is given
by adding the associative relationships between the-layer
and the -layer.

Therefore, the FAM encodes each linguistic association
or “rule” in a numerical FAM mapping. The FAM then
numerically processes numerical input data, and generates a
degree of membership for each . These
degrees of membership are then translated into linguistic
outputs where a popular method of maximum-membership
defuzzification scheme is used. In this scheme, allwith
memberships greater than 0.6 are candidates, instead of only
one that has the maximal membership in the-layer. After
normalization ( for candidates), the with the
highest value is considered as the rock type. For example, if
the output is: “the degree of rock type being dolomite is 1
and the degrees of being all other rock types are 0,” then the
linguistic output will be: “the lithology is dolomite.” If output

Fig. 3. A FAM neural network withr rules.

Fig. 4. The proposed FAM system.

is “the degree of dolomite is 0.6, and the degree of limestone
is 0.4 and the degrees of all other lithologies are 0,” then the
output will be “the lithology is limy dolomite.”

In our system, there are four separate mod-
ules—fuzzification, FAM, translation, and defuzzification. In
addition, a training module that modifies FAM weights (or
associative matrices) to improve system performance is also
included. The outline of the proposed system is shown in
Fig. 4. If the rules provided by the geologist are complete,
then the training module may be bypassed. If additional
data sets containing different relationships are available, the
training module can also learn these different pairs from
the data sets.

C. FAM Learning

The if-then rules encoded in the FAM can either be learned
and/or refined by the given network from a training set [19].
A generalized delta rule, for instance, can be employed to
determine the weights for an FAM network (see Appendix C
for detail). There are two sets of weights and (see
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Fig. 5. Fuzzy subsets for well-log responses.

Fig. 3) that can be changed. If the errors between the results
computed by the FAM system and the desired output are used
to modify the rules, then weights will be updated. If the
errors will cause the modification of membership functions,
then weights will be updated. Thus, if we are not
completely confident that membership functions are defined
correctly, we can learn membership functions from the data
set. Similarly, we can train the existing rules, and ask for com-
ments from the log analysts or geologists. It is perhaps easier
for the experts to comment upon these rules than it is for them
to create consistent and all-inclusive, or all-exclusive rules.

IV. I MPLEMENTATION AND RESULTS

Three types of well logs (gamma-ray, neutron, and density)
of the lower Paleozoic sequence in Nemaha County, northern
Kansas were used. Doveton [7] used this suite of logs as an
example to illustrate graphical methods of lithology determi-
nation in his book. The 500-ft section penetrates the Hunton
Groups (Silurian), Maquoketa Shale, Viola Limestone, and
Simpson Group (Ordovician).

Ten fuzzy rules are encoded in the network:

Rule 1 If gamma-ray reading islow or very low, neutron
porosity islow, and density porosity isvery very
low, then the lithology is dolomite.

Rule 2 If gamma-ray reading islow or very low, neutron
porosity ismedium, and density porosity isvery
low, then the lithology is dolomite.

Rule 3 If gamma-ray reading islow or very low, neutron
porosity ishigh, and density porosity islow, then
the lithology is dolomite.

Rule 4 If gamma-ray reading islow or very low, neutron
porosity isvery low, and density porosity islow
or very low, then lithology is limestone.

Rule 5 If gamma-ray reading islow or very low and
neutron porosity and density porosity are about
the same, then the lithology is limestone.

Rule 6 If gamma-ray reading ishigh or very high, neu-
tron porosity ishigh or very high, and density
porosity is low or medium, then the lithology is
shale.

Rule 7 If gamma-ray reading islow or very low, neutron
porosity ishigh, and density porosity isvery high,
then the lithology is sandstone.

Rule 8 If gamma-ray reading islow or very low, neutron
porosity ismedium, and density porosity ishigh,
then the lithology is sandstone.

Rule 9 If gamma-ray reading islow or very low, neutron
porosity is low, and density porosity ismedium,
then the lithology is sandstone.

Rule 10 If gamma-ray reading islow or very low, neutron
porosity isvery low, and density porosity islow,
then the lithology is sandstone.

The membership functions used are shown in Fig. 5. There
are five fuzzy sets both for gamma-ray and neutron porosity,
and six sets for density porosity. These numbers were chosen
based on the available geological information. Although we
expressed the fuzzy sets as trapezoid fuzzy numbers, triangular
fuzzy numbers could be used.

The FAM output for the test example from Doveton [7]
is shown in Fig. 6. Rock types given in [7] are denoted
near the curves. Fig. 7 compares the result with our previous
paper—the FAM output is shown in the middle; BPNN 1)
and BPNN 2) are shown on the left and right, respectively.
The different outputs from BPNN are due to different training
sets. A cursory examination of these figures reveal that 1)
there is almost perfect agreement between the results from the
graphical method [7] and the FAM output, except that the FAM
output yielded finer details—in FAM, the degree of detail is
determined by the numbers and complexity of the rules, and
2) FAM does not give more than one determination depending
on the different training sets used, as is the case with the
BPNN results. This removes some uncertainty associated with
the choice of different training sets.

V. CONCLUSIONS

We have introduced a new and better neural-network ar-
chitecture FAM—a hybrid of neural network characterized by
inductive reasoning and fuzzy expert system characterized by
deductive reasoning. FAM has the following advantages over
BPNN. First, FAM emulates human knowledge better than
BPNN. In the latter architecture, the knowledge is modeled
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Fig. 6. The example logs—redrawn from Doveton (1986; pp. 125–157) and the FAM output.

in the connection weights, which are opaque to the user,
but in FAM, in addition to the weights, “transparent” fuzzy
rules are also employed. Second, BPNN acquires knowledge
through training. Thus, the training set must be adequate and
exhaustive. Otherwise, the network may make inaccurate (and
may even erroneous) decisions. Whereas in FAM, the training
is augmented by expert knowledge manifested in fuzzy rules.
Finally, FAM can be tuned to yield different degrees of details.

Further studies using different lithologic sequences with
diverse degrees of complexity will be needed to validate our
conclusions.

APPENDIX A
REPRESENTATION BY FUZZY SETS

A crisp (conventional) set is expressed as
indicating that the set is made up of five

members or elements, with the membership of each element
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Fig. 7. Comparison between the FAM and BPNN outputs.

equals to one. In other words, a crisp set is defined in
such a way to dichotomize the individuals as members or
nonmembers; that is, the grade or the degree of membership is
either one or zero. A fuzzy set, on the other hand, is written as

where the “denominators” are integers (1 through 5 of the
crisp set) and the “numerators” are the grades of member-

ship associated with the corresponding integers given in the
“denominators.” Note that the fuzzy sets allow grades of
membership to assume fractional values between zero and one.

Thus, we can represent a linguistic valuelow for, say, the
gamma-ray readings:
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Another type of fuzzy representation is as follows:

gamma-ray reading

meaning that the gamma-ray islow with membership ,
is mediumwith , and is high with . The
fuzzy rules given in the text are of this type. For example, if
gamma-ray ( ) is very-lowor low, the neutron porosity ( )
is almost low, and the density porosity ( ) is low or near
very-low, then the lithology ( ) is limestone. This fuzzy rule
is translated into the fuzzy representations as

If

Then

Note that the fuzzy representation of has a degree of 1.0
for low, a degree of 0.2 forvery lowand a degree of 0.2 for
mediumto reflect the fuzzy concept “almost low.” The term
almost, is a hedge used for fine-tuning the primary fuzzy set
low [18].

APPENDIX B
FUZZY VECTOR–MATRIX COMPOSITION RELATION

Given a system of rules, we consider the th rule: If
then , where ) and

) are two fuzzy sets. is
the antecedent and is the consequence of a given rule. We
form an associated pair ( ), and the fuzzy associative
memory , which is defined by the minimums of and :

for and

where for and , and
is called the “correlation-minimum encoding” matrix. For

example,

we can obtain

Fuzzy associative memory (FAM) can be treated as a kind
of neural network consisting of two layers and . The
combination intensity between the nodes of and is

represented by the matrix , where the components ( )
are degrees of interrelationship between nodeof layer
and node of layer . If a vector is input to the FAM,

is finally associated by taking the fuzzy inner product of
vector with the th column of :

Thus, we can say that the FAM system exhibits “perfect recall”
in the forward direction. This – operation is called
“ – composition operation” [11]. Mathematically, we
denote this operation by

If the input vector is not exactly identical to , even
in fuzzy terms, the FAM maps input to , a partially
activated version of . The more matches , the more

resembles . The above concept can be applied for all
rules in the system.

APPENDIX C
GENERALIZED DELTA LEARNING FOR FAM

Given a collection of input–output pairs of data
, we construct a simple

procedure to modify the weights ( for , and
) of the FAM with a “supervised learning.” The

standard learning procedure usually encompasses a series
of iterations to minimize an error function (denoted by)
which may be the mean-squared error, or the total error
incurred in the network. Mathematically, this learning scheme
can be described as

where is the increment of , and is a learning rate.
The weights of the network are then modified by

new old for all

For the FAM proposed here, we adjust weight ,
which is the connection between node and node ,
(as shown in Fig. 2), after presentation of each training-
data pair. Given a pair of training data, ( ) where

is a fuzzy input, and
is a desired fuzzy output,

we first compute outputs of FAM with a set of pre-determined
(either provided by the expert or randomly generated)

and input . It is assumed that the error is defined as the
squared differences between the desired outputand the
actual output :

for

Note that is the output produced by node. Applying a
generalized delta learning rule, we obtain the gradient ofas
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Recall (see “Fuzzy vector–matrix composition relation” in
Appendix B) that

Let , we can rewrite the above equation for
in a new form as

while the calculations involved are standard generalized delta
rules, the computation of the derivative of the maximum oper-
ation needs special attention [25]. In this maximum operation,

can be either 1) or 2)
In case of 1), we have

However, in case of 2), we obtain

if
if

If , the weight adjustment becomes

new old

Recall that the initial weights can be provided by the experts in
the “if-then-rule” forms or can be generated from any random
value between zero to one, if no expert knowledge available.
The above learning scheme has to be repeated until E is
acceptably small for each of the training pairs.

REFERENCES

[1] A. Bardossy and M. Disse, “Fuzzy rule-based models for infiltration,”
Water Resources Res.,vol. 29, pp. 373–382, 1993.

[2] A. Bardossy, A. Bonstert, and B. Merz, “1-, 2-, and 3-dimensional
modeling of water movement in the unsaturated soil matrix using a
fuzzy approach,”Adv. Water Resources,vol. 18, pp. 237–251, 1995.

[3] J. L. Baldwin, A. R. M. Bateman, and C. L. Wheatley, “Application of
neural network to the problem of mineral identification from well logs,”
Log Analyst,vol. 3, pp. 279–293, 1990.

[4] J. L. Baldwin, D. N. Otte, and C. L. Wheatley, “Computer emulation
of human mental process: Application of neural network simulations to
problems in well log interpretation,”Soc. Petroleum Eng.,Paper 19619,
pp. 481–493, 1989.

[5] H. C. Chen, and J. H. Fang, “A new method for prospect appraisal,”
AAPG Bull.,vol. 77, pp. 9–18, 1993.

[6] H. C. Chen, L. H. Li, and J. H. Fang, “Evaluation and ranking
of prospects by fuzzy multi-criteria decision making paradigm,” in
Symbolic and Computational Applications of Artificial Intelligence in
the Petroleum Industry,B. Braunschweig and K. Day, Eds. France:
Institut Francaio du Petrole, Editions Technip, 1994, ch. 11.

[7] J. H. Doveton,Log Analysis of Subsurface Geology.New York: Wiley,
1986.

[8] J. H. Fang and H. C. Chen, “Uncertainties are better handled by fuzzy
arithmetic,” AAPG Bull.,vol. 74, pp. 1228–1233, 1990.

[9] J. H. Fang, H. C. Chen, and D. Wright, “A fuzzy expert system for
thin-section mineral identification,”SEG-Geophys. Dev.,pp. 203–220,
1991.

[10] I. A. Freeman and D. M. Skapura,Neural Networks—Algorithms,
Applications, and Programming Techniques.Reading, MA: Addison-
Wesley, 1992.

[11] G. K. Klir and T. A. Folger,Fuzzy Sets, Uncertainty, and Information.
Englewood Cliffs, NJ: Prentice Hall, 1988.

[12] B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems
Approach to Machine Intelligence.Englewood Cliffs, NJ: Prentice
Hall, 1987.

[13] B. Kosko and S. Isaka, “Fuzzy logic,”Scientific American,pp. 76–81,
July 1993.

[14] Y. W. Lee, M. F. Dahab, and I. Bogardi, “Fuzzy decision making in
groundwater nitrate risk management,”Water Resources Bull.,vol. 30,
pp. 135–148, 1994.

[15] S. Pezeshk, C. V. Camp, and S. Karprapu, “Geophysical log interpreta-
tion using neural network,”J. Comp. Civil Eng.,vol. 10, pp. 136–142,
1996.

[16] A. L. Ralescu, Ed.,Applied Research in Fuzzy Technology: Three
Years of Research at the Laboratory for International Fuzzy Engineering
(LIFE), Yokohama, Japan.Norwell, MA: Kluwer, 1994, pp. 295–369.

[17] S. J. Rogers, J. H. Fang, C. L. Karr, and D. A. Stanley, “Determination
of lithology, from well logs using a neural network,”AAPG Bull.,vol.
76, pp. 731–739, 1992.

[18] K. J. Schmucker,Fuzzy Sets, Natural Language Computations, and Risk
Analysis. Rockville, MD: Computer Sci. Press, 1984.

[19] P. D. Wasserman,Neural Computing, Theory and Practice.New York:
Van Nostrand Reinhold, 1989.

[20] P. M. Wong, F. X. Jiang, and I. J. Taggart, “A critical comparison of
neural networks and discriminant analysis in lithofacies, porosity and
permeability predictions,”J. Petro. Geol.,vol. 18, pp. 191–206, 1995.

[21] P. M. Wong, T. D. Gedeon, and I. J. Taggart, “An improved technique
in prediction: A neural network approach,”IEEE Trans. Geosci. Remote
Sensing,vol. 33, pp. 971–980, 1995.

[22] D. Wright, C. L. Lin, D. Stanley, H. C. Chen, and J. H. Fang, “X-rays:
A fuzzy expert system for qualitative XRD analysis,”Comp. Geosci.,
vol. 19, pp. 1429–1443, 1993.

[23] L. A. Zadeh, “Syllogistic reasoning in fuzzy logic and its application
to reasoning with dispositions,”IEEE Trans. Syst., Man, Cybern.,vol.
SMC-15, pp. 754–763, 1985.

[24] L. A. Zadeh, “Knowledge representation in fuzzy logic,” inAn Intro-
duction to Fuzzy Logic Applications in Intelligent Systems,P. R. Yager
and L. A. Zadeh, Ed. Norwell, MA: Kluwer, 1992, pp. 1–25.

[25] W. Pedrycz,Fuzzy Sets Engineering.Boca Raton, FL: CRC, 1995.

Hsien-cheng Changis a Ph.D. candidate in envi-
ronmental engineering in the Department of Civil
and Environmental Engineering, University of Al-
abama, Tuscaloosa. His research interests are in the
applications of fuzzy systems and neural networks to
the design and control of waste treatment systems as
well as nonlinear dynamic environmental systems.

Hui-Chuan Chen is a professor in the Depart-
ment of Computer Sciences, University of Alabama,
Tuscaloosa. She has been teaching and directing
research in artificial intelligence, neural networks,
expert systems, and fuzzy modeling.

Jen-Ho Fang received the B.S. degree from Na-
tional Taiwan University, Taipei, Taiwan, R.O.C.,
and the Ph.D. degree from Pennsylvania State Uni-
versity, University Park, in 1961.

He is a professor of geology at the University of
Alabama, Tuscaloosa. He was once a mineralogist,
and a mineral, “Fangite” (Tl3AsS4), was named
after him.

Dr. Fang is a fellow of the Mineralogical Society
of America and the Geological Society of Amer-
ica. He served as President of the Mathematical

Geologists of the United States.


