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Abstract—Machine learning today becomes more and more
effective instrument to solve many particular problems, where
there are difficulties to apply well known and described math
model. In other words - it is a great tool to describe non-
linear phenomena. We tried to use this technique to improve
existing process of stratigraphy and lithology interpretation and
reduce costs on site by applying computer leaded predictions
on the basis of existing on-field collected data. Article describes
usage of machine learning algorithms for several geology data
stratigraphy and lithology boundaries classification based on
geophysics logging data for deposits in Kazakhstan. Correct
marking of stratigraphy and lithology from geophysics logging
data is complex non-linear task. To solve this task we applied
several algorithms of machine learning: random forest, logistic
regression, gradient boosting (scikit-learn library), k – nearest
neighbour (KNN) and XGBoost.

Index Terms—stratigraphy, lithology, classification, machine
learning, geophysics logging data

I. INTRODUCTION

The Chu–Sarysu basins of Kazakhstan Fig. 1 is a large arte-
sian basin that was split into two main components following
the Pliocene uplift of the Karatau Mountain Range. The basins
are filled with thick sandy aquifers capped by impermeable
shaly beds. Mineralization, as stacked roll fronts, is hosted by
sands of Upper Cretaceous to Palaeocene–Eocene age.

Moyunkum deposit Fig. 2 is a part of the Uvanas –
Kanjugan metallogenic zone, where it is controlled by regional
redox fronts in permeable zones of 3 Paleogene horizons, from
top to bottom: Ikansk, Uyuk and Kanjugan.

Knowledge of stratigraphy and lithology boundaries Fig. 3
is important for hydrogeology, oil and gas and in-situ recov-
ery areas. Stratigraphy boundaries for uranium deposits are
provided two main information for detail study: water level
horizon, which is important for monitoring of environment
situation in underground and defining production reservoir that
give bottom and top level for detail geology study. Lithology
boundaries are provided main information about geology and
detail information about type of geology – permeable or
impermeable rocks, it is major data which give to engineer
to make decision – to mine ore or not mine. Stratigraphy
and lithology are obtained by drilling and geophysics logging.
Interpretation of data is based on resistivity and spontaneous
measurement.

Well logging interpretation is based on mathematical and
physical modelling of the processes under study (solution of

Fig. 1. Regional geology of Chu-Sarysu basins, Southern Kazakhstan.

Fig. 2. Stratigraphy levels for Chu-Sarysu basins.

direct problems of geophysics), statistical methods (correlation
and discrimination), solving systems of non-linear equations
petrophysics (inverse problem of geophysics) and some other
linear statistical methods.

Depending on the logging signals from the calculated phys-
ical and geological parameters - permeability, shaliness and
radioactivity of host rocks, water content, salinity of aquifers,
etc. Often geophysical raw acquired data have complex non-



Fig. 3. Interpretation of geophysical logging and creation lithology types.

linear nature. In addition, it is necessary to take into account
the geophysics measurement error signal, specificity of the
geological environment. All these analytical conditions and
parameters lead to the assumption that the solutions for
the problems of geophysical techniques will be more easily
obtained by using algorithms such as: random forest, logistic
regression, gradient boosting and k – nearest neighbour. These
methods have the property of adaptability, generalizations,
knowledge extraction and modelling of complex non-linear
dependencies in the data.

In the last few years machine learning algorithms are
explored in different areas and in geology area it is often
used. Before for automation process of interpretation geology
was used statistical methods [1], fuzzy logic classification [3],
Naı̈ve Bayes classifier [4] also was proposed to use artificial
neural network (ANN) for rocks classification [5], [6]. Naı̈ve
Bayes classifier and ANN are used a lot for lithology classi-
fication but algorithms perform poorly on minority lithology
data, this research is done in article [7]. In [6] article author
used a probabilistic ANN for classification and demonstrate
that it is performed better than support vector machine.

In this article we describe using the machine learning
algorithms for stratigraphy and lithology interpretation on ura-
nium deposit. This problem is not complicate if we compare
with lithology facies classification challenge due to compli-
cate geology on Chu–Sarysu basins. In this article we do
not use ANN but apply quite new algorithms of gradient
boosting algorithms: XGBoost and gradient boosting (scikit-
learn library). We compared an accuracy of algorithms for
stratigraphy and lithology datasets.

II. FORMALIZATION

Underground stratification of geology is studied through
geophysics logging. Significant changing of geology stratifi-

cation defines boundaries of stratigraphy, interpretation geo-
physics logging provides rock types, for example clay, sand,
organic matter, etc. – lithological facies. Our targets are view –
generalization of boundaries; compare accuracy of algorithms
for stratigraphy and lithological facies data. To solve it we use
next data:
• Resistivity Logging (R) – well logging that measuring

electric resistivity of rocks
• Spontaneous potential logging (SP) – well logging that

measuring small electric potentials of rocks
• Depth (D) – values of distance between geodesic eleva-

tion and down points
• Elevation (El) – values of distance between well head (0

value) and down points
On each depth with these type of data will be defined next

8 classes of stratigraphy Tab. I:

TABLE I
CLASSES OF STRATIGRAPHY

Strati Code Description
01-Q Cenozioque-Quaternaire

02-N2 Cenozioque-Quaternaire
03-N1 Cenozioque-Quaternaire

04-P-2-3-im1 Paleogene/ Intoumak
04-P-2-3-im2 Paleogene/ Intoumak
05-P-2-2-ik Paleogene/ Uyuk+Ikansk/ Ikansk

06-P-2-2-uk-sup Paleogene/ Uyuk+Ikansk/ Uyuk
09-P-1-2-kn2 Paleogene aquifere/ Kanjougan

On each depth with these type of data will be defined next
6 classes of lithology Tab. II:

TABLE II
CLASSES OF LITHOLOGY

Lithology Code Description
1 Clay
2 Fine sand
3 Medium-grained sand
4 Coarse sand
5 Sandstone
6 Fine-grained sand

Base on this matrix of data (R,SP,D,EL), our goal is to
find best machine learning algorithms which will associate the
appropriate stratigraphy class according to input parameters
values with best accuracy. And check can selected algorithms
show same accuracy for lithology data. The training set is from
Moinkum deposit and selected 42 wells in area of 2 square
kilometre, see Fig. 4. For training selected 75 % (32 wells ,
156512 rows) of data and testing 25 % (10 wells, 48491 rows).

III. DATA ANALYSIS AND MODEL SELECTION

In this article we will speak about supervised learning
algorithms for classification. During our previous researches
we already applied several models and algorithms to improve
remote sensing data analysis procedures [8]. We choose several
algorithms: regression, random forest, KNN (these algorithms
are well described in the book [9]) and XGBoost (it was



created and developed by Tianqi Ch. [10]). In this article
we will not go in details in process of feature engineering
data tuning each algorithm to train data. All these steps of
process are described in [11]. We present our comparison
analysis of Resistivity log, it is based on manual algorithm
of geophysics engineer interpretation logs: to detect slope of
changing logging value depend on previous values if slope of
curve grow up it means a rock is permeable and if down rock
is impermeable as well. In this case we can detect boundaries
of stratigraphy levels. To define slope of curve we will use
gradients of 1st and 2nd derivatives of resistivity log:
• Gradient of RM curve, first derivative (R′) – angle of

changing curve is defined a boundary of rock types, if
curve grows than rock is permeable, usually type is sand
and if curve is down than rock is impermeable, usually
type is clay

• Gradient of R curve, second derivative (R′′)
Experimental results show how these two features are im-

pact to accuracy during train and test data. Before training
the model we need to study existed data: to create statistical
distribution of training data Tab. III; to plot a histogram of
number of training stratigraphy and lithology data Fig. 5,
6; In geoscience there is cross plots are very common tool
for visualization, we create scatter matrix which visualize the
variation between features: KS, PS, Grad1, Grad2, STRATI
Fig. 7. To look at well logs: KS, PS, stratigraphy and lithology
we use tutorial described by A. Amato del Monte’s Fig. 8.

TABLE III
STATISTICS OF STRATIGRAPHY AND LITHOLOGY DATA.

STAT ELEV DEPTH PS KS STRATI LITHO
count 156200 156200 156200 156200 156200 31440
mean -66.1 251.1 33.2 50.9 4.2 1.9
std 141.5 141.2 24.1 89.4 2.7 1.6
min -335.5 0.9 -93 0 0 0
25% -187.9 128.9 NaN 8.5 2 0
50% -65.9 250.9 NaN 13.4 5 2
75% 56.1 373 NaN 30.8 7 3
max 199.1 516.2 163.8 2412.9 7 5

Fig. 4. Location of wells which selected for train and test algorithms

Fig. 5. Histogram of Stratigraphy data for training

Fig. 6. Histogram of Lithology data for training

IV. EXPERIMENTAL RESULTS

During the experiments we have obtained the accuracy of
selected algorithms and time performance of each algorithm.
To measure the quality of algorithm we have selected metrics,
and selected accuracy as a main metric. To validate the
results of training we’ve selected a 3 fold cross – validation
strategy. The tuning of algorithm meta-parameters is impor-

Fig. 7. Scatter matrix for all features



Fig. 8. Logging of two wells

tant process, and we have configured the best parameters
for each of the model. To train our models we selected 4
features: (R,SP,EL,D). Another train model is done for 6
features:(R,SP,EL,D,R′,R′′). We can see that addition of 2
extra features have not significantly improved the accuracy
in Tab. IV, V.

TABLE IV
ACCURACY FOR 4 FEATURES TEST STRATIGRAPHY DATA

Algorithm Accuracy Time
Gradient Boosting 0.96 2 min

KNeighbors 0.97 1 sec
Random Forest 0.96 2 min

Logistic Regression 0.95 2 min
XGBoost 0.97 2 min

TABLE V
ACCURACY FOR 6 FEATURES TEST STRATIGRAPHY DATA

Algorithm Accuracy Time
Gradient Boosting 0.97 3 min

KNeighbors 0.94 2 sec
Random Forest 0.96 6 min

Logistic Regression 0.96 4 min
XGBoost 0.97 4 min

TABLE VI
ACCURACY FOR 4 FEATURES TEST LITHOLOGY DATA

Algorithm Accuracy Time
Gradient Boosting 0.58 3 min

KNeighbors 0.53 1 sec
Random Forest 0.66 12 sec

Logistic Regression 0.61 16 sec
XGBoost 0.57 1 min

On the basis of result we recommend to use XGBoost
algorithm for making this type of classification and if you

TABLE VII
ACCURACY FOR 6 FEATURES TEST LITHOLOGY DATA

Algorithm Accuracy Time
Gradient Boosting 0.65 6 min

KNeighbors 0.51 1 sec
Random Forest 0.70 15 sec

Logistic Regression 0.68 38 sec
XGBoost 0.65 3 min

are limited by time you can use K – nearest neighbours, the
algorithm has a good training time and shows high accuracy
on test data.

V. CONCLUSION

In this article, we used 5 machine learning algorithms to
approach stratigraphy classification based on KS, PS data and
additional data like gradient (first and second derivative) for
uranium deposit. All algorithms showed high accuracy on test
stratigraphy data and less for lithology data. This approach
helps to create a self-automatic definition of stratigraphy
levels and reduces the time for data interpretation. We’ve
successfully used this model on site and it helps to improve
the whole business process of uranium mining.

Our hypothesis was that using gradient can help to im-
prove accuracy of model but after testing and comparison
of accuracy with 4 and 6 features we have obtained the
results that showed not significant improvement of accuracy
for stratigraphy. Tab. IV, V Indeed - the accuracy with 4
features was already very good. However for lithology data
additional features (gradient) increase the accuracy and it is
explained that gradient of curve is defined a boundary of rock
types. If compare accuracy of algorithms between stratigraphy
and lithology we can see significant difference and accuracy
for lithology data is not acceptable Tab. VI, VII.

According to the achieved results, our future work will
be dedicated to application of XGBoost and random forest
algorithms for facies lithology classification, verify hypothesis
of gradient logging for improvement accuracy and apply deep
learning algorithm (convolution neural network) for facies
lithology classification.
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