PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING
END TERM EXAMINATION - JAN 2023

Semester : Semester III-2021
Course Code : CSE2018
Course Name : Sem III - CSE2018 - Theory of Computation
Program : B.Tech. CSE/ISE/IST/ISD/ISR

Date : 19-JAN-2023
Time : 1.00PM - 4.00PM
Max Marks : 100
Weightage : 50\%

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.

PART A

ANSWER ALL THE TEN QUESTIONS

$10 \times 2=20 \mathrm{M}$

1. Mention two applications of PDA.
(CO1) [Knowledge]
2. Briefly describe the reversal and length of the string with an example
(CO1) [Knowledge]
3. Construct NFA for $L=\{$ all strings with prefix $a b)\}$ over $\{a, b\}$
(CO2) [Knowledge]
4. Define Epsilon NFA.
(CO2) [Knowledge]
5. Give the techniques of representation for a derivation tree.
(CO3) [Knowledge]
6. Give Regular Expressions for the following Languages:
a) all strings ending in b
b) all strings of even Length
(CO3) [Knowledge]
7. Mention the language that is accepted by PDA and FA. Give an example for each.
(CO4) [Knowledge]
8. The transition in a Push down automaton makes is additionally dependent upon the:
(CO4) [Knowledge]
9. Mention two major differences between TM and PDA.
(CO5) [Knowledge]
10. Mention the transitions that takes place for every time step in TM.

PART B

ANSWER ALL THE FIVE QUESTIONS

$5 \times 10=50 M$
11. Convert given NFA to its equivalent DFA

Present	Next State	
State	0	1
$->A$	$\{B, D\}$	$\{F\}$
B	$\{C\}$	$\{C, B\}$
${ }^{*} C$	$\{A, C\}$	$\{C\}$
D	$\{C\}$	$\{C, D\}$
E	$\{B, E\}$	$\{F\}$

(CO2) [Comprehension]
12. Constrcut a Turing machine for $L=\left\{1^{\wedge} n 2^{\wedge} n, n>=1\right\}$

Write Transition diagram, Transition table, TM tuples, string accpetance and rejection.
(CO2) [Comprehension]
13. a. Define the recursive Regular Expression
b. Write regular expressions for the following languages on $\{a, b\}$:
(a) All strings ending in ba.
(b) All strings not ending in aa
(c) All strings containing an odd number of a's.
(CO3) [Comprehension]
14. a) Consider the following grammar
$S \rightarrow b B / A a$
$\mathrm{A} \rightarrow \mathrm{b} / \mathrm{bS} / \mathrm{aAA}$
$\mathrm{B} \rightarrow \mathrm{a} / \mathrm{aS} / \mathrm{bBB}$
Find: Leftmost and right most derivation For string bbaababa and Also find derivation tree
b) Given: $L(G)=\left\{a^{\wedge} n b^{\wedge} n\right.$: n is odd $\}$. Find CFG.
(CO3) [Comprehension]
15. Consider the dfa with initial state $q 0$, final state $q 2$ and
$\delta(q 0, a)=q 2 \delta(q 0, b)=q 2$
$\delta(q 1, a)=q 2 \delta(q 1, b)=q 2$
$\delta(q 2, a)=q 3 \delta(q 2, b)=q 3$
$\delta(q 3, a)=q 3 \delta(q 3, b)=q 1$
Find a minimal equivalent dfa.
(CO2,CO5) [Comprehension]

PART C

ANSWER ALL THE TWO QUESTIONS

$2 \times 15=30 M$
16. What are the three stack operations in PDA? Give example
(CO4) [Application]
17. Design a Turing Machine that acceptsL $=\left\{a^{\wedge}\{n\} b^{\wedge}\{n\} c^{\wedge}\{n\}: n>=1\right\}$

