

PRESIDENCY UNIVERSITY BENGALURU

SET - A

SCHOOL OF ENGINEERING END TERM EXAMINATION - JAN 2023

Semester : Semester III - 2021 Course Code : CSE2018 Course Name : Sem III - CSE2018 - Theory of Computation Program : B.Tech. CSE/ISE/IST/ISD/ISR Date : 19-JAN-2023 Time : 1.00PM - 4.00PM Max Marks : 100 Weightage : 50%

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.

PART A

	ANSWER ALL THE TEN QUESTIONS 1	0 X 2 = 20M
1.	Mention two applications of PDA.	(CO1) [Knowledge]
2.	Briefly describe the reversal and length of the string with an example	
3.	Construct NFA for L= { all strings with prefix ab) } over {a,b}	(CO1) [Knowledge]
4.	Define Epsilon NFA.	(CO2) [Knowledge]
5.	Give the techniques of representation for a derivation tree.	(CO2) [Knowledge]
6.	Give Regular Expressions for the following Languages: a) all strings ending in b b) all strings of even Length	(CO3) [Knowledge]
_		(CO3) [Knowledge]
7.	Mention the language that is accepted by PDA and FA. Give an example for each.	(CO4) [Knowledge]
8.	The transition in a Push down automaton makes is additionally dependent upon the	ne: (CO4) [Knowledge]
9.	Mention two major differences between TM and PDA.	(CO5) [Knowledge]
10.	Mention the transitions that takes place for every time step in TM.	(CO5) [Knowledge]

ANSWER ALL THE FIVE QUESTIONS

11. Convert given NFA to its equivalent DFA

5 X 10 = 50M

(CO5) [Application]

Present Next State State 0 1 {B,D} {F} ->A {C} R {C,B} *C $\{A,C\} \ \{C\}$ D {C} {C,D} Е {B,E} {F} (CO2) [Comprehension] **12.** Construct a Turing machine for L= $\{1^n, n>=1\}$ Write Transition diagram, Transition table, TM tuples, string accpetance and rejection. (CO2) [Comprehension] **13.** a. Define the recursive Regular Expression b. Write regular expressions for the following languages on {a, b}: (a) All strings ending in ba. (b) All strings not ending in aa (c) All strings containing an odd number of a's. (CO3) [Comprehension] **14.** a) Consider the following grammar $S \rightarrow bB/Aa$ A→b/ bS/ aAA $B \rightarrow a/aS/bBB$ Find: Leftmost and right most derivation For string bbaababa and Also find derivation tree b) Given: L(G)= {a^{nb}n: n is odd}. Find CFG. (CO3) [Comprehension] **15.** Consider the dfa with initial state q0, final state q2 and [5M] $\delta(q0, a) = q2 \ \delta(q0, b) = q2$ $\delta(q1, a) = q2 \ \delta(q1, b) = q2$ $\delta(q^2, a) = q^3 \delta(q^2, b) = q^3$ $\delta(q3, a) = q3 \delta(q3, b) = q1$ Find a minimal equivalent dfa. (CO2,CO5) [Comprehension] PART C **ANSWER ALL THE TWO QUESTIONS** $2 \times 15 = 30M$ **16.** What are the three stack operations in PDA? Give example (CO4) [Application] **17.** Design a Turing Machine that acceptsL = $\{a^{n}b^{n}c^{n}\}$: $n \ge 1$