(CO4) [Knowledge]

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING END TERM EXAMINATION - JAN 2023

Semester : Semester III - 2021 Course Code : ECE3004 Course Name : Sem III - ECE3004 - Electromagnetic Theory Program : B.Tech. Electronics and Communication Engineering

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.

ANSWER ALL THE FIVE QUESTIONS

PART A

1.	What is the gradient of the function $x^2 + y^2 + z^2$ at the point (1,1,1)?	
		(CO1) [Knowledge]
2.	If a circular conducting loop carrying current (in clockwise direction) is placed in the be the direction of magnetic field? Justify your answer mentioning the relevant law.	e XY-plane, what will
		(CO2) [Knowledge]
3.	Write down the mathematical relationship between electric field and electric potentia	
		(CO2) [Knowledge]
4.	Can a static magnetic field produce an electric field? Why or why not?	
		(CO3) [Knowledge]
5.	An electric field associated with an EM wave is given by $\vec{E} = E_0 \cos(\omega t - \beta x) \hat{a}_x$. What the electric field and that of propagation of the wave?	at is the direction of

Roll No

Date : 16-JAN-2023 Time : 1.00PM - 4.00PM Max Marks : 100 Weightage : 50%

5 X 2 = 10M

ANSWER ALL THE TWO QUESTIONS

6. (a) What do you mean by an irrotational vector? Give an example of an irrotational function.
(b) A function is given as F = (y + z) i + (z + x) j + (x + y) k. Find its divergence and curl. Verify that the function is irrotational and hence find its scalar potential.

(CO1) [Comprehension]

- 7. (a) Give the statement of Gauss's law.
 - (b) Write down the mathematical form of Gauss's law for both electrostatics and magnetostatics.
 - (c) Consider an infinite sheet placed in the ZX-plane that has a uniform charge density of $\rho_S C/m^2$. Using Gauss's law, find the electric field at any point on the Y -axis, perpendicular to the sheet.
 - (d) Can electric field exist inside a perfect conductor?

(CO2) [Comprehension]

 $3 \times 20 = 60 M$

PART C

ANSWER ALL THE THREE QUESTIONS

- **8.** (a) Write down the statement of Faraday's law
 - (b) Write down the mathematical form of mathematical law
 - (c) What is the unit of magnetic flux density?
 - (d) Can a static magnetic field produce an electric field? Why? Or why not?

(e) If the electric field intensity in free-space is given as $\vec{E} = E_0 \sin(\alpha x) \sin(\omega t)$, find the magnetic field intensity \vec{H} using Faraday's law.

(CO2) [Application]

9. Write down the mathematical form of Ampere's circuital law and Faraday's law. Assume a homogenous material of infinite extent with $\varepsilon = 2 \times 10^{-6}$ (F/m) and $\mu = 1.25 \times 10^{-5}$ (H/m). Let the electric field intensity be $\vec{E} = 400 \cos(10^6 t - kz) \hat{t}$ (V/m). If all the fields vary sinusoidally, find $k, \vec{D}, \vec{B} and, \vec{H}$. You can use the Ampere's circuital law and the Faraday's law for your solution.

(CO3) [Application]

- **10.** An electric field intensity is given in free-space as $\vec{E} = 100 * \cos(10^6 t z * 10^6 \sqrt{\mu_0 \varepsilon_0}) (V/m)$. Calculate the following
 - a. Amplitude, frequency and speed of propagation of the wave
 - b. Directions of propagation of the wave and the magnetic field associated with this wave
 - c. Phase-constant β
 - d. If the free-space is replaced by a medium of $\varepsilon_r = 81$ (i.e. water) calculate the change in velocity of propagation of the water

(CO4) [Application]

2 X 15 = 30M