Roll No

PRESIDENCY UNIVERSITY **BENGALURU**

SCHOOL OF ENGINEERING **END TERM EXAMINATION - JAN 2023**

Semester : Semester III - 2021 Course Code : EEE2003 Course Name : Sem III - EEE2003 - Electromagnetic Fields Program : B.Tech. Electrical and Electronics Engineering

Instructions:

- (i) Read all questions carefully and answer accordingly. (ii) Question paper consists of 3 parts.
- (iii) Scientific and non-programmable calculator are permitted.

PART A

ANSWER ALL THE TEN QUESTIONS

- 1. In vector calculus, the curl is a vector operator that describes the infinitesimal circulation of a vector field in three-dimensional Euclidean space. The curl of a field is formally defined as the circulation density at each point of the field. A vector field whose curl is zero is called
 - a) Rotational
 - b) Solenoidal
 - c) Irrotational.
 - d) Sinusoidal
- 2. All vector fields can be classified in terms of their vanishing or non-vanishing divergence or curl. If the divergence of a vector field is zero, it is called
 - a) Solenoidal
 - b) Non Solenoidal
 - c) Irrotational
 - d) Rotational
- 3. The electric potential V is a ------ quantity
 - a) Scalar
 - b) Vector
 - c) directional
 - d) All the above

Date: 9-JAN-2023 Time: 1.00PM - 4.00PM **Max Marks**: 100 Weightage: 50%

(CO2) [Knowledge]

(CO1) [Knowledge]

(CO1) [Knowledge]

 $10 \times 2 = 20M$

4.	Gauss's law states that the total electric flux through any closed surface is equal to a)Zero b) Infinity c) the total charge enclosed by that surface	(CO2) [Knowledge]
	d) the current density	
5.	Ampere's circuit law states that the line integral of the tangential component of path is the same as	
	a) the net current enclosed by the path	(CO3) [Knowledge]
	b)The net charge enclosed	
	c)Potential difference	
	d)None of the above	
6.	The relative permeability of free space is	
	a)0	(CO3) [Knowledge]
	b) Infinity	
	c) 10	
	d) 1	
7.	A loop is rotating about the y-axis in a magnetic field $B = Ba \sin wt ax Wb/m2$. The loop is due to	e voltage induced in
	a) Motional emf	(CO4) [Knowledge]
	b) Transformer emf	
	c) A combination of motional and transformer emf	
	d)None of the above	
8.	For a distortionless transmission line condition has to be satisfied.	
	a) R/L = G/C	(CO4) [Knowledge]
	b) R/G = L/C	
	c) RC = LG	
	d)All the above	
9.	The range of the value of coefficient of coupling in a magnetic circuit is	
	a)-1 <k<1< th=""><th>(CO3) [Knowledge]</th></k<1<>	(CO3) [Knowledge]
	b)0 <k<1< th=""><th></th></k<1<>	
	c) 1 <k<10< th=""><th></th></k<10<>	
	d)-1 <k<0< th=""><th></th></k<0<>	
10		
	a) 0 degree	(CO4) [Knowledge]
	b) 180 degree	
	c)90 degree	
	d) 120 degree	

PART B

ANSWER ALL THE FOUR QUESTIONS

11. In some cases vector field behaves like a source at a given point. If a gas is heated, it will expand. This will cause a net motion of gas particles outward in all directions. Consider the vector field given below, and identify its strength at the point Q(-2,1,6). Comment on the result. $P = x^2yz ax + xz az$

(CO1) [Comprehension]

12. A total charge Q = 60 μC is split into two equal charges located at 180° intervals around a circular loop of radius 4 m. Estimate the potential at the center of the loop.

(CO2) [Comprehension]

13. Consider a magnetic field with intensity H (or flux density B) passing from one magnetic media to another having relative permeability μr1 and μr2. List down all the boundary conditions possible during the transfer with suitable sketches.

(CO3) [Comprehension]

14. Poynting's theorem is a statement of conservation of energy applied to electromagnetic fields. Justify the statement with mathematical expression and schematic diagram. Explain the significance of Poynting vector.

(CO4) [Comprehension]

 $2 \times 20 = 40 M$

PART C

ANSWER ALL THE TWO QUESTIONS

15. The xy-plane serves as the interface between two different media. Medium 1 (z < 0) is filled with a material whose $\mu r = 6$, and medium 2 (z > 0) is filled with a material whose $\mu r = 4$. If the interface carries current (1/ μ o) ay mA/m, and B2 = 5ax, + 8az mWb/m2, find H1 and B1.

(CO3) [Application]

16. A distortionless line has Zo = 60 Ohm, Attenuation factor is 20mNp/m, u = 0.6c, where c is speed of light in vaccum, frequency of propagation is 100MHz. Identify all the unknown parameters that can be calculated from the above data and estimate them.

(CO4) [Application]

4 X 10 = 40M