PRESIDENCY UNIVERSITY

BENGALURU

SCHOOL OF ENGINEERING END TERM EXAMINATION - JAN 2023

Semester : Semester V - 2020
Course Code : CSE2018
Course Name : Sem V - CSE2018 - Theory of Computation
Program : B.Tech. CBC/CBD/CCS/CSD/CDV/CIT/CSG/CST/ECM/ECI/ISE/IST

Date : 9-JAN-2023
Time : 9.30AM - 12.30PM
Max Marks : 100
Weightage : 50\%

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.

PART A

ANSWER ALL THE TEN QUESTIONS

$10 \times 2=20 M$

1. Compare the powers of different types of automata witha an example each.
(CO1) [Knowledge]
2. List the operations of strings.
(CO1) [Knowledge]
3. Define Non Deterministic Finite Automata (NFA).
(CO2) [Knowledge]
4. Construct NFA for $L=\{$ all strings with prefix $a b)\}$ over $\{a, b\}$.
(CO2) [Knowledge]
5. The grammar $G=(\{S\},\{a, b\}, S, P)$

Where $P=\{S \rightarrow$ aaSbb|ab| $\mid \epsilon\}$ is a CFG. Find the language represented by given grammar.
(CO3) [Knowledge]
6. The grammar $G=(\{S\},\{a, b\}, S, P)$

Where $P=\{S \rightarrow a S a, S \rightarrow b S b$, Sà $\epsilon\}$ is a CFG. Find the language represented by given grammar
(CO3) [Knowledge]
7. Differentiate between DPDA and NPDA.
(CO4) [Knowledge]
8. Mention the ways of representing the Deterministic PDA.
(CO4) [Knowledge]
9. Define the transition function in TM.
(CO5) [Knowledge]
10. Write the hierarchy of Languages in Theory of Computation.
(CO5) [Knowledge]

PART B

ANSWER ALL THE FIVE QUESTIONS

11. Minimize the following DFA to its equivalent machine?

	0	1
$->A$	B	F
B	G	C
${ }^{*} C$	A	C
D	C	G
E	E	F
F	C	G
G	G	E
H	G	C

(CO2) [Comprehension]
12. Define DFA. Design a DFA accepting the language $L=\left\{w 0100 w \mid w\right.$ belongs to $\left.\{0,1\}^{*}\right\}$
(CO2) [Comprehension]
13. Using pumping lemma theorm prove that the language $L=\left\{w \in\{a, b\}^{*}: n a(w)<n b(w)\right\}$ is not regular.
(CO3) [Comprehension]
14. Construct PDA for $L=\left\{0^{\wedge} n 1^{\wedge} m 2^{\wedge} m 3^{\wedge} n, n \& m>=1\right\}$
(CO3) [Comprehension]
15. Write all stack operations used for PDA construction along with example and stack diagram.
(CO5,CO2) [Comprehension]

PART C

ANSWER ALL THE TWO QUESTIONS

$2 \times 15=30 M$
16. Construct a Turing machine for $L=\left\{1^{\wedge} n 2^{\wedge} n 3^{\wedge} n, n>=1\right\}$.

Write Transition Diagram, Transition Table, TM Tuples, one string acceptance and one string rejection
(CO4) [Application]
17. Define a Turing machine. Also, design a turing machine to accept the set of all palindromes over $\{0,1\}^{*}$ with transition table. Write the transition diagram for the constructed turing machine and write the sequence of ID's for the input string '1001'
(CO5) [Application]

