PRESIDENCY UNIVERSITY **BENGALURU**

Roll No

SCHOOL OF INFORMATION SCIENCE **END TERM EXAMINATION - JAN 2023**

Semester : Semester I - 2022 Course Code : MAT2023 Course Name : Sem I - MAT2023 - Matrix Computations for Data Science Program : B.Sc. Data Science

Instructions:

(i) Read all questions carefully and answer accordingly. (ii) Question paper consists of 3 parts. (iii) Scientific and non-programmable calculator are permitted.

ANSWER ALL THE FOLLOWING QUESTIONS

PART A

1.	Whether the following statement is true. A homogeneous linear system has at least one solution.	
		(CO1) [Knowledge]
2.	Whether $AB = I \Rightarrow BA = I$ for square matrices.	
		(CO1) [Knowledge]
3.	Whether $A + A^T$ is symmetric for any matrix A.	
		(CO2) [Knowledge]
4.	Let $A = \begin{bmatrix} 2 & 3 & 1 \\ 4 & 5 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 1 \\ 3 & 2 \\ 1 & 1 \end{bmatrix}$. Define $C = AB$. Then find c_{12}	
		(CO2) [Knowledge]
5.	Define null space of a matrix.	
		(CO2) [Knowledge]
6.	Whether for every invertible matrix A , $Av = \lambda v \Rightarrow A^{-1}v = \lambda^{-1}v$.	
		(CO3) [Knowledge]
7.	Is every invertible matrix is diagonalizable?	
		(CO3) [Knowledge]
8.	How you define the length of a vector?	
		(CO4) [Knowledge]

Date: 13-JAN-2023 Time: 9.30AM - 12.30PM Max Marks: 100 Weightage: 50%

$10 \times 2 = 20M$

9. Find all values of *a* such that
$$u = \begin{bmatrix} 1 \\ -13 \\ a \end{bmatrix}$$
 and $v = \begin{bmatrix} -3 \\ 1 \\ a \end{bmatrix}$ are orthogonal.

(CO4) [Knowledge]

10. Define orthogonality of Vectors.

(CO3) [Knowledge]

PART B

ANSWER ALL THE FOLLOWING QUESTIONS

5 X 10 = 50M

- **11.** Whether the matrix $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$ is in reduced row echelon form. Determine its reduced row echelon form. (CO1) [Comprehension]
- **12.** Solve the linear system Ax = b by giving LU-factorization where $A = \begin{bmatrix} 2 & 8 & 0 \\ 2 & 2 & -3 \\ 1 & 2 & 7 \end{bmatrix}$, $b = \begin{bmatrix} 18 \\ 1 \\ 12 \end{bmatrix}$ (CO1) [Comprehension]

13. Let $A = \begin{bmatrix} 4 & 3 & 2 \\ 3 & -2 & 5 \\ 2 & 4 & 6 \end{bmatrix}$. Compute the determinant using row reduction. (CO2) [Comprehension]

14. If possible, find a matrix *P* that diagonalizes $A\begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{bmatrix}$. (CO3) [Comprehension]

15. Use the Gram-Schmidt Process to find an orthogonal basis for the column spaces of the matrix $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$. (CO4) [Comprehension]

PART C

ANSWER ALL THE FOLLOWING QUESTIONS

16. Let
$$A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2 \end{bmatrix}$$
.

(a) Find all eigenvalues of A.

(b) Is A diagonalizable? if Yes, find P such that $D = P^{-1}AP$ is diagonal.

17. For the system
$$Ax = b$$
, where $A = \begin{bmatrix} 1 & 2 & -1 \\ -3 & -5 & 2 \\ 2 & 3 & -1 \end{bmatrix}$ and $b = \begin{bmatrix} -1 \\ -3 \\ 1 \end{bmatrix}$, obtain the solution of least norm.

(CO4) [Application]

2 X 15 = 30M

* * * * *