## PRESIDENCY UNIVERSITY

## BENGALURU

## SCHOOL OF INFORMATION SCIENCE END TERM EXAMINATION - JAN 2023

Semester : Semester III-2021
Course Code : CSA2005
Course Name : Sem III - CSA2005 - Analysis of Algorithms
Program : BCA (All)

Date : 12-JAN-2023
Time : 9.30AM - 12.30PM
Max Marks : 100
Weightage : 50\%

## Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.

## PART A

## ANSWER ALL THE FOLLOWING QUESTIONS

$10 \times 2=20 \mathrm{M}$

1. Give the order of growth for brute force string matching algorithm in any 2 cases.
(CO1) [Knowledge]
2. What is basic effeciency class and give its order of growth.
(CO1) [Knowledge]
3. Consider the array $A=\{25,9,15,30,11,17,22\}$.

Apply bubble sort on $A$ and find which element is present at index 2 after third pass.
(CO2) [Knowledge]
4. List the worst case's equations with the help of Master's theorem.
(CO3) [Knowledge]
5. Explain general method of decrease and conquer technique in brief.
(CO3) [Knowledge]
6. Obtain the worst case time complexity for the linear search.
(CO2) [Knowledge]
7. Explain path matrix in brief and name the algorithm which is used to generate the path matrix.
(CO4) [Knowledge]
8. Mention the time complexity of prims and kruskal's algorithm.
(CO4) [Knowledge]
9. Explain distance matrix in brief and name the algorithm which is used to generate the distance matrix.
(CO4) [Knowledge]
10. Define backtracking in brief.
(CO5) [Knowledge]

## PART B

11. Define asymptotic notation. Explain all three notations used to express the order of growth of an algorithmin detail.
(CO1) [Comprehension]
12. Write any one sorting algorithm which uses brute force technique, Also give its order of growth by analyzing it.
(CO2) [Comprehension]
13. Write merge sort algorithm along with its purpose, input and output. Also give its analysis.
(CO3) [Comprehension]
14. Define Transitive closure. Write Warshall algorithm and also do its analysis.
(CO4) [Comprehension]
15. Define Backtracking in detail. Apply backtracking technique to solve 4 Queen's problem.
(CO5) [Comprehension]

## PART C

## ANSWER ALL THE FOLLOWING QUESTIONS

## $2 \times 15=30 \mathrm{M}$

16. Explain the Dynamic Knapsack problem in detail with all the necessary terminologies. Derive the three equations required to solve the dynmaic knapsack problem. Also write its algorithm.
(CO4) [Application]
17. Construct the Minimum Spanning Tree using both prim's and Kruskal's algorithm for the graph whose details is
a) It contains 6 vertices namely A, B,C,D,E and F.
b) $A$ to $B$ is $5, A$ to $E$ is $4, A$ to $F$ is $2, B$ to $C$ is $3, B$ to $E$ is $3, E$ to $F$ is $1, E$ to $C$ is $5, E$ to $D$ is $4, C$ to $D$ is 6 and $F$ to $D$ is 5 .
c) Assume it is Undirected graph.
d) Assume starting vertex is A.
(CO4) [Application]
