PRESIDENCY UNIVERSITY
BENGALURU

SCHOOL OF ENGINEERING
 END TERM EXAMINATION - FEB 2023

Semester: Semester I-2022
Course Code : CIV1003
Course Name : Sem I - CIV1003 - Elements of Engineering Mechanics
Program : B.Tech - CIV

Date : 23-FEB-2023
Time : 1.00PM - 4.00PM
Max Marks : 100
Weightage: 50\%

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.
(iv) Do not write any information on the question paper other than Roll Number.

PART A

ANSWER ALL THE QUESTIONS

(5 X 5 = 25M)

1. Describe the concept of Rigid body and Particle. Also mention any 4 assumptions made in Engineering Mechanics.
2. Four forces are acting on a bolt as shown in the figure. Determine the magnitude and direction of the resultant force.

(CO1) [Knowledge]
3. An electric light fixture weighing 25 N hangs from a point C , by two strings AC and BC . The string $A C$ is inclined at 60° to the horizontal and $B C$ at 45° to the vertical; as shown in figure. Determine the forces in the strings $A C$ and $B C$.

(CO2) [Knowledge]
4. Explain the types of beams and supports with the help of neat figures.
(CO2) [Knowledge]
5. Prove angle of repose equal to angle of friction.
(CO3) [Knowledge]

PART B

ANSWER ALL THE QUESTIONS

($3 \times 10=30 \mathrm{M}$)
6. Determine: (i) The resultant of the forces (ii) The sum of moments of the forces about the point A , the 10 kN force acts parallel to AB as shown in the figure.
(CO1) [Comprehension]

7. Two spheres each of radius 100 mm and weight 5 kN are in a rectangular box as shown in the figure. Calculate the reactions at all the points of contact.

(CO2) [Comprehension]
8. A small block of weight 1000 N as shown in the figure, is placed on a 30° inclined plane with $\mu=0.25$. Determine the horizontal force to be applied for:
(i) Impending motion down the plane
(ii) Impending motion up the plane.

(CO3) [Comprehension]

PART C

ANSWER ALL THE QUESTIONS

9. Calculate the support reactions for the cantilever beam loaded as shown in figure.

(CO2) [Application]
10. Determine the centroid of the shaded area shown in figure.

(CO3) [Application]
11. Determine the moment of inertia of the section, shown in figure, about its centroidal axes.

(CO3) [Application]
