PRESIDENCY UNIVERSITY BENGALURU

SET - A

## SCHOOL OF ENGINEERING END TERM EXAMINATION - FEB 2023

Semester : Semester I - 2022 Course Code : MAT1001 Course Name : Sem I - MAT1001 - Calculus and Linear Algebra Program : B.Tech - (All Programs) Date : 25-FEB-2023 Time : 1.00PM - 4.00PM Max Marks : 100 Weightage : 50%

## Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Question paper consists of 3 parts.
- (iii) Scientific and non-programmable calculator are permitted.
- (iv) Do not write any information on the question paper other than Roll Number.

## PART A

## ANSWER ALL THE QUESTIONS

**1.** If 1, -1, 2 are the eigenvalues of the matrix A then the eigen values of  $A^{-1}$  are \_\_\_\_\_. (CO1) [Knowledge] If  $\lambda^2 - 5\lambda = 0$  is the characteristic equation for the matrix  $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$  then apply Cayley Hamilton theorem. 2. (CO1) [Knowledge] 3. Check the function  $f(x,y) = \frac{4x^3 - 2xy^2}{xy^0}$  is homogeneous or not? (CO2) [Knowledge] 4.  $\partial(u,v)$ Suppose  $u = 7e^{0x}$  and  $v = -2e^{0y}$  then find  $\overline{\partial(x, y)}$ . (CO2) [Knowledge] **5.** Write down the conditions for the function f(x, y) attains maximum value at  $(x_0, y_0)$ . (CO2) [Knowledge] 6. Define Gamma function. (CO3) [Knowledge] 7. What is the relationship between Beta and Gamma function? (CO3) [Knowledge] **8.** If the roots are real and equal then write the complementry function. (CO4) [Knowledge]



(10 X 2 = 20M)

| 10.    | If the roots are real and equal then write the complementry function.                                                                     | (CO4) [Knowledge]       |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| PART B |                                                                                                                                           |                         |
|        | ANSWER ALL THE QUESTIONS                                                                                                                  | (5 X 10 = 50M)          |
| 11.    | $A = \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix}$ , using Cayley-Hamilton theorem.                               |                         |
|        |                                                                                                                                           | (CO1) [Comprehension]   |
| 12.    | Suppose $sinu = \frac{x^3 + y^3}{x - y}$ , then show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} - 2tanu = 0$ . |                         |
|        |                                                                                                                                           | (CO2) [Comprehension]   |
| 13.    | Expand $e^{x}log(1+y)$ in powers of $x$ and $y$ up to second degree by Taylor's                                                           |                         |
| 14.    | Find $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dz dy dx.$                                                              | (CO2) [Comprehension]   |
|        |                                                                                                                                           | (CO3) [Comprehension]   |
| 15.    | Solve $y'' - 8y' + 16y = 3e^{4x}$ given that $y = 0$ at $x = 0$ and $x = 2$ .                                                             | (CO4) [Comprehension]   |
| PART C |                                                                                                                                           |                         |
|        | ANSWER ALL THE QUESTIONS                                                                                                                  | (2 X 15 = 30M)          |
| 16.    | Find the Eigenvalues and Eigenvectors of $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ .                            |                         |
|        | $(\mathbf{p}^2, \mathbf{p}, \mathbf{p}) = \frac{2\pi}{2}$                                                                                 | (CO2,CO1) [Application] |

**9.** If the roots are real and distinct then write the complementry function.

**17.** Find general solution of  $(D^2 - 2D + 5)y = e^{2x}sinx$ .

(CO4,CO3) [Application]

(CO4) [Knowledge]