Roll	No
ROII	INO

PRESIDENCY UNIVERSITY BENGALURU

SET - B

SCHOOL OF ENGINEERING END TERM EXAMINATION - JAN 2023

Semester : Semester III - 2021 Course Code : CSE2018 Course Name : Sem III - CSE2018 - Theory of Computation Program : B.Tech. CSE/ISE/IST/ISD/ISR

Date : 19-JAN-2023 Time : 1.00PM - 4.00PM Max Marks : 100 Weightage : 50%

Instructions:

- (i) Read all questions carefully and answer accordingly.
- (ii) Question paper consists of 3 parts.
- (iii) Scientific and non-programmable calculator are permitted.
- (iv) Do not write any information on the question paper other than Roll Number.

PART A

	ANSWER ALL THE TEN QUESTIONS	10 X 2 = 20M
1.	What is language recognizer?	(CO1) [[(a suda da s]
2.	Write any FOUR applications of Finite Automata.	(CO1) [Knowledge]
3.	What is epsilon closure? write with example.	(CO1) [Knowledge]
	Define non-deterministic automata with example.	(CO2) [Knowledge]
		(CO2) [Knowledge]
5.	Write a regular expression for language with strings having odd number of 0's ov	ver input {0, 1}. (CO3) [Knowledge]
6.	Write regular expression for a L={ a^n b^n , n>=1}	(CO3) [Knowledge]
7.	Define NPDA with all tuples.	(CO4) [Knowledge]
8.	Transition function in PDA depends upon	
9.	Write TM transition function for write opeartion on tape.	(CO4) [Knowledge]
		(CO5) [Knowledge]

(CO5) [Knowledge]

PART B

ANSWER ALL THE FIVE QUESTIONS

Define DFA. Construct a DFA accepting the language L={w0100w| w belongs to (0+1)*}. 11.

(CO2) [Comprehension]

5 X 10 = 50M

Convert the given NFA to DFA. 12.

1

(CO2) [Comprehension]

(CO3) [Comprehension]

13. Write the Pumping Lemma theorem and Using pumping Lemma prove that the language L={VV^R : V belongs to $\sum^{*}=\{a,b\}^{*}\}$.

14. Construct left-most and right-most derivation trees for the string aaabbabbba using the grammar S->aBlbA; A->alaSlbAA; B->blbSlaBB. Discuss about ambiguity of this grammar?

(CO3) [Comprehension]

(CO4) [Comprehension]

 $2 \times 15 = 30M$

Design a push down automata for a language $L(G) = \{a^n, b^n, n \ge 1\}$ 15.

PART C

ANSWER ALL THE TWO QUESTIONS

16. Define Push Down Automata. Design a PDA for the language L= { ww^R, w€{a,b}*}. Write Transition Diagram, Transition Table, PDA Tuples, extended transition function for sample acceptance string, and sample rejection string.

(CO4) [Application]

Define TM. Construct a Turing Machine for the language $L=\{0^n, 1^n, n>=1\}$. 17.

(CO5) [Application]

