SCHOOL OF ENGINEERING
 END TERM EXAMINATION - JAN 2023

Semester : Semester III-2021
Course Code : CSE2018
Course Name : Sem III - CSE2018 - Theory of Computation Program : B.Tech. CSE/ISE/IST/ISD/ISR

Date : 19-JAN-2023
Time : 1.00PM - 4.00PM
Max Marks : 100
Weightage : 50\%

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.
(iv) Do not write any information on the question paper other than Roll Number.

PART A

ANSWER ALL THE TEN QUESTIONS

$10 \times 2=20 \mathrm{M}$

1. What is language recognizer?
(CO1) [Knowledge]
2. Write any FOUR applications of Finite Automata.
(CO1) [Knowledge]
3. What is epsilon closure? write with example.
(CO2) [Knowledge]
4. Define non-deterministic automata with example.
(CO2) [Knowledge]
5. Write a regular expression for language with strings having odd number of 0 's over input $\{0,1\}$.
(CO3) [Knowledge]
6. Write regular expression for $a L=\left\{a^{\wedge} n b^{\wedge} n, n>=1\right\}$
(CO3) [Knowledge]
7. Define NPDA with all tuples.
(CO4) [Knowledge]
8. Transition function in PDA depends upon.
(CO4) [Knowledge]
9. Write TM transition function for write opeartion on tape.
10. Define Tape with example.
(CO5) [Knowledge]

PART B

ANSWER ALL THE FIVE QUESTIONS

11. Define DFA. Construct a DFA accepting the language $L=\left\{w 0100 w \mid w\right.$ belongs to $\left.(0+1)^{*}\right\}$.
(CO2) [Comprehension]
12. Convert the given NFA to DFA.

(CO2) [Comprehension]
13. Write the Pumping Lemma theorem and Using pumping Lemma prove that the language $L=\left\{V V^{\wedge} R: V\right.$ belongs to $\left.\sum^{*}=\{a, b\}^{*}\right\}$.
(CO3) [Comprehension]
14. Construct left-most and right-most derivation trees for the string aaabbabbba using the grammar $\mathrm{S}->\mathrm{aB}|\mathrm{bA} ; \mathrm{A}->\mathrm{a}| \mathrm{aS}|\mathrm{bAA} ; \mathrm{B}->\mathrm{b}| \mathrm{bS} \mid \mathrm{aBB}$. Discuss about ambiguity of this grammar?
(CO3) [Comprehension]
15. Design a push down automata for a language $L(G)=\left\{a^{\wedge} n b^{\wedge} n, n>=1\right\}$
(CO4) [Comprehension]

PART C

ANSWER ALL THE TWO QUESTIONS

$2 \times 15=30 M$
16. Define Push Down Automata. Design a PDA for the language $L=\left\{w w^{\wedge} R, w \in\{a, b\}^{*}\right\}$. Write Transition Diagram, Transition Table, PDA Tuples, extended transition function for sample acceptance string, and sample rejection string.
(CO4) [Application]
17. Define TM. Construct a Turing Machine for the language $L=\left\{0^{\wedge} n 1^{\wedge} n, n>=1\right\}$.
(CO5) [Application]

