PRESIDENCY UNIVERSITY

BENGALURU

SCHOOL OF INFORMATION SCIENCE END TERM EXAMINATION - JAN 2023

Semester : Semester III-2022
Course Code : MAT2023
Course Name : Sem I - MAT2023 - Matrix Computations for Data Science Program : B.Sc. Data Science

Date : 13-JAN-2023
Time : 9.30AM - 12.30PM
Max Marks : 100
Weightage : 50\%

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Question paper consists of 3 parts.
(iii) Scientific and non-programmable calculator are permitted.

PART A

ANSWER ALL THE FOLLOWING QUESTIONS

$10 \times 2=20 \mathrm{M}$

1. Whether the following statement is true. A homogeneous linear system has at least one solution.
(CO1) [Knowledge]
2. Whether $A B=I \Rightarrow B A=I$ for square matrices.
(CO1) [Knowledge]
3. Whether $A+A^{T}$ is symmetric for any matrix A.
4. Let $A=\left[\begin{array}{lll}2 & 3 & 1 \\ 4 & 5 & 1\end{array}\right], B=\left[\begin{array}{ll}2 & 1 \\ 3 & 2 \\ 1 & 1\end{array}\right]$. Define $C=A B$.Then find c_{12} (CO2) [Knowledge]
(CO2) [Knowledge]
5. Define null space of a matrix.
(CO2) [Knowledge]
6. Whether for every invertible matrix $A, A v=\lambda v \Rightarrow A^{-1} v=\lambda^{-1} v$,
(CO3) [Knowledge]
7. Is every invertible matrix is diagonalizable?
(CO3) [Knowledge]
8. How you define the length of a vector?
9. Find all values of a such that $u=\left[\begin{array}{c}1 \\ -13 \\ a\end{array}\right]$ and $v=\left[\begin{array}{c}-3 \\ 1 \\ a\end{array}\right]$ are orthogonal.
(CO4) [Knowledge]
10. Define orthogonality of Vectors.
(CO3) [Knowledge]

PART B

ANSWER ALL THE FOLLOWING QUESTIONS

$$
5 \times 10=50 \mathrm{M}
$$

11. Whether the matrix $A=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & 1\end{array}\right]$ is in reduced row echelon form. Determine its reduced row echelon
form. (CO1) [Comprehension]
12. Solve the linear system $A x=b$ by giving LU-factorization where $A=\left[\begin{array}{rrr}2 & 8 & 0 \\ 2 & 2 & -3 \\ 1 & 2 & 7\end{array}\right], b=\left[\begin{array}{c}18 \\ 1 \\ 12\end{array}\right]$
(CO1) [Comprehension]
13. Let $A=\left[\begin{array}{rrr}4 & 3 & 2 \\ 3 & -2 & 5 \\ 2 & 4 & 6\end{array}\right]$. Compute the determinant using row reduction.
(CO2) [Comprehension]
14. If possible, find a matrix P that diagonalizes $A\left[\begin{array}{rrr}1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2\end{array}\right]$.
(CO3) [Comprehension]
15. Use the Gram-Schmidt Process to find an orthogonal basis for the column spaces of the matrix $\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$.
(CO4) [Comprehension]

PART C

ANSWER ALL THE FOLLOWING QUESTIONS

$2 \times 15=30 M$
16. Let $A=\left[\begin{array}{ccc}4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2\end{array}\right]$.
(a) Find all eigenvalues of A.
(b) Is A diagonalizable? if Yes, find P such that $D=P^{-1} A P$ is diagonal.
17. For the system $A x=b$, where $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ -3 & -5 & 2 \\ 2 & 3 & -1\end{array}\right]$ and $b=\left[\begin{array}{c}-1 \\ -3 \\ 1\end{array}\right]$, obtain the solution of least norm.
(CO4) [Application]

