Roll No			
---------	--	--	--

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF INFORMATION SCIENCE END TERM EXAMINATION - JAN 2023

Semester: Semester III - 2022 Date: 13-JAN-2023

Course Code: MAT2023 **Time**: 9.30AM - 12.30PM

Course Name: Sem I - MAT2023 - Matrix Computations for Data Science Max Marks: 100

Program: B.Sc. Data Science Weightage: 50%

Instructions:

(i) Read all questions carefully and answer accordingly.

(ii) Question paper consists of 3 parts.

(iii) Scientific and non-programmable calculator are permitted.

PART A

ANSWER ALL THE FOLLOWING QUESTIONS

10 X 2 = 20M

1. Whether the following statement is true. A homogeneous linear system has at least one solution.

(CO1) [Knowledge]

2. Whether $AB = I \Rightarrow BA = I$ for square matrices.

(CO1) [Knowledge]

3. Whether $A + A^T$ is symmetric for any matrix A.

(CO2) [Knowledge]

4. Let $A = \begin{bmatrix} 2 & 3 & 1 \\ 4 & 5 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 1 \\ 3 & 2 \\ 1 & 1 \end{bmatrix}$. Define C = AB. Then find c_{12}

(CO2) [Knowledge]

5. Define null space of a matrix.

(CO2) [Knowledge]

6. Whether for every invertible matrix $A, Av = \lambda v \Rightarrow A^{-1}v = \lambda^{-1}v$,

(CO3) [Knowledge]

7. Is every invertible matrix is diagonalizable?

(CO3) [Knowledge]

8. How you define the length of a vector?

(CO4) [Knowledge]

9. Find all values of a such that $u = \begin{bmatrix} 1 \\ -13 \\ a \end{bmatrix}$ and $v = \begin{bmatrix} -3 \\ 1 \\ a \end{bmatrix}$ are orthogonal.

(CO4) [Knowledge]

10. Define orthogonality of Vectors.

(CO3) [Knowledge]

PART B

ANSWER ALL THE FOLLOWING QUESTIONS

 $5 \times 10 = 50M$

- 11. Whether the matrix $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$ is in reduced row echelon form. Determine its reduced row echelon form. (CO1) [Comprehension]
- **12.** Solve the linear system Ax = b by giving LU-factorization where $A = \begin{bmatrix} 2 & 8 & 0 \\ 2 & 2 & -3 \\ 1 & 2 & 7 \end{bmatrix}, b = \begin{bmatrix} 18 \\ 1 \\ 12 \end{bmatrix}$

(CO1) [Comprehension]

13. Let $A = \begin{bmatrix} 4 & 3 & 2 \\ 3 & -2 & 5 \\ 2 & 4 & 6 \end{bmatrix}$. Compute the determinant using row reduction.

(CO2) [Comprehension]

14. If possible, find a matrix P that diagonalizes $A\begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{bmatrix}$.

(CO3) [Comprehension]

15. Use the Gram-Schmidt Process to find an orthogonal basis for the column spaces of the matrix $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$ (CO4) [Comprehension]

PART C

ANSWER ALL THE FOLLOWING QUESTIONS

2 X 15 = 30M

16. Let
$$A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2 \end{bmatrix}$$
.

- (a) Find all eigenvalues of A.
- (b) Is A diagonalizable? if Yes, find P such that $D = P^{-1}AP$ is diagonal.

(CO3) [Application]

17. For the system Ax = b, where $A = \begin{bmatrix} 1 & 2 & -1 \\ -3 & -5 & 2 \\ 2 & 3 & -1 \end{bmatrix}$ and $b = \begin{bmatrix} -1 \\ -3 \\ 1 \end{bmatrix}$, obtain the solution of least norm.

(CO4) [Application]
