PRESIDENCY UNIVERSITY

BENGALURU

SCHOOL OF ENGINEERING
MAKEUP EXAMINATION - JAN 2023
Course Code: ECE 314
Course Name: Linear Algebra for Communication Engineering
Program : B. Tech
Date: 24-JAN-2023
Time: 01:00 pm to 04:00 pm
Max Marks: 100 Marks
Weightage: 50\%

Instructions:

(i) Read all questions carefully and answer accordingly.
(ii) Non-Programmable and Scientific Calculators permitted

Part A [Memory Recall Questions]

Answer all the Questions. Each question carries FIVE marks

1. Given an n * n matrix A and n * 1 column matrices B and X, solve $A X=B$ for X. Assume that all necessary inverses exist.
[C.O.No.1] [Knowledge Level]
2. Solve a System of linear equations by Substitution method: $5 x+y=4,2 x-3 y=5$
[C.O.No.1] [Knowledge Level]
3. Given the matrices $A=\left[\begin{array}{cc}0 & 9 \\ 2 & -3 \\ -1 & 1\end{array}\right] \quad B=\left[\begin{array}{cc}8 & 1 \\ -7 & 0 \\ 4 & -1\end{array}\right] \quad C=\left[\begin{array}{cc}2 & 3 \\ -2 & 5 \\ 10 & -6\end{array}\right]$ compute 3A+2B-1/2C [C.O.No.1] [Knowledge Level]
4. The Row space of matrix A, is the set of all linear combinations of the rows of matrix A and Rank is the dimension of row A which is given by the number of vectors in the basis of row A. Give the basis of the row space and the rank of the matrix

$$
A=\left[\begin{array}{cccc}
1 & 0 & -6 & 0 \\
0 & 0 & 0 & 0 \\
0 & 2 & 0 & -9
\end{array}\right] \quad \text { [C.O.No.1] [Knowledge Level] }
$$

5.Define Inner product and Inner product space. Also list the axioms for the same.
[C.O.No.2] [Knowledge Level]
6. Let S be a set that contains vectors $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots . . \mathrm{v}_{\mathrm{n}}$. Define Orthogonal vectors, orthogonal set, orthonormal set and basis of a vector space.
[C.O.No.2] [Knowledge Level]

Part B [Thought Provoking Questions]

Answer all the Questions. Each question carries TEN marks.

(3Qx10M=30M)
7. By using elementary row operations, Determine the inverse of the following matrix given that it is invertible. $A=\left[\begin{array}{ccc}3 & 1 & 0 \\ -1 & 2 & 2 \\ 5 & 0 & -1\end{array}\right]$
[C.O.No.1] [Application Level]
8 i) Geometrically, an eigen vector of a matrix A is a non-zero vector x in R^{n} such that the vector x and $A x$ are parallel. It can be determined by solving the homogeneous system of equations (A$\lambda) \mathrm{x}=0$ for each eigen value λ. Determine the eigen values and eigen vectors of $A=\left[\begin{array}{cc}2 & 1 \\ 4 & -1\end{array}\right]$
ii) Explain the properties of determinant.
[C.O.No.2] [Comprehension Level]
9. Solve the following system of equations using cramer's rule.

$$
x+y+z=8, x-y+2 z=6,3 x+5 y-7 z=14
$$

[C.O.No.2] [Application Level]

Part C [Problem Solving Questions]

Answer all the Questions. Each question carries TEN marks.
(4Qx10M=40M)
10. Diagonalize the following matrix, if possible $A=\left[\begin{array}{ccc}1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1\end{array}\right]$. Find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$
[C.O.No.2] [Application Level]
11. Apply Gram-Schmidt orthogonalization process to the basis $B=\{(1,0,1),(1,0,-1),(0,3,4)\}$ of the inner product space R^{3} to find an orthogonal basis of R^{3}.
[C.O.No.2] [Application Level]
12. Construct the L and U matrix by the method of factorization $A=\left[\begin{array}{lll}1 & 3 & 0 \\ 2 & 4 & 0 \\ 2 & 0 & 1\end{array}\right]$
[C.O.No.2] [Application Level]
13. Find a Singular Value Decomposition of the given matrix $A=\left[\begin{array}{cc}1 & -1 \\ -2 & 2 \\ 2 & -2\end{array}\right]$
[C.O.No.3] [Application Level]

