PRESIDENCY UNIVERSITY
 BENGALURU

SCHOOL OF ENGINEERING
MAKE-UP EXAMINATION - JAN 2023
Course Code: MAT 2002
Course Name: Num. Methods, Prob. Distributions and Sampling Techniques
Program : B.Tech - (All Programs)
Date: 20-JAN-2023
Time: 9.30AM - 12.30PM
Max Marks:100
Weightage:50\%

Instructions:

(i) Read the all questionscarefully and answer accordingly.
(ii) Scientific calculator and distribution tables are allowed.

Part A [Memory Recall Questions]

Answer all the Questions. Each question carries FOUR marks.
(5Qx 4M=20M)

1. Define algebraic equation and write the iterative formula for Newton Raphson method
(C.O.No.1) [Knowledge level]
2. Define Interpolation and write the Newton's Forward interpolation formula.(C.O.No.2) [Knowledge level]
3. While tossing a coin 3 times, find the probability of getting a tails atmost two times.
(C.O.No.4) [Knowledge level]
4. Define Null hypothesis, Alternative hypothesis, equally likely events and independent events.
(C.O.No.5) [Knowledge level]
5. The probability mass function of a variable X is given below, then find the value of k and $P(x \leq 3)$.

X	0	1	2	3	4	5
$P(X)$	k	$3 k$	$6 k$	$5 k$	$2 k$	$3 k$

(C.O.No.3) [Knowledge level]

Part B [Thought Provoking Questions]

Answer all the Questions. Each question carries TEN marks.
(5Qx10M=50M)
6. Solve the system of equations $3 x+y-2 z=7, x-3 y+4 z=15,2 x-2 y+z=12$ by using Gauss- Seidel method.
(C.O.No2) [Comprehensive level]
7. Using Runge kutta method, find $y(0.2)$ given $y^{\prime}=y+e^{x}, y(0)=0$. (Carry out computations correct to 4 decimal places)
(C.O.No.2) [Comprehensive level]
8. $A B C$ Auto Insurance classifies drivers as good, medium, or poor risks. Drivers who apply to them for insurance fall into these three groups in the proportions $30 \%, 50 \%$ and 20% respectively. The probability a "good" driver will have an accident is 0.01 , the probability a "medium" risk driver will have an accident is 0.03 , and the probability a "poor" driver will have an accident is 0.10 . The company sells an insurance policy to a driver and he has an accident. What is the probability that the driver is a medium risk driver?
(C.O.No3) [Comprehensive level]
9. A certain type of storage battery lasts, on average 3.0 years with a standard deviation of 0.5 years. Assuming that battery life is normally distributed, find the probability that a given battery will last less than 2.3 years.
(C.O.No4) [Comprehensive level]
10. Consider the following joint probability distribution table, and then find the covariance of X and Y ?

		x	x			
	$f(x, y)$		1	2	$h(y)$	
y	0	$\frac{9}{28}$	$\frac{3}{28}$	$\frac{15}{28}$		
	1	$\frac{3}{14}$	$\frac{3}{14}$	0	$\frac{3}{7}$	
	2	$\frac{1}{28}$	0	0	$\frac{1}{28}$	
	$g(x)$	$\frac{5}{14}$	$\frac{15}{28}$	$\frac{3}{28}$	1	

(C.O.No4) [Comprehensive level]

Part C [Problem Solving Questions]

Answer all the Questions. Each question carries FIFTEEN marks.

(2Qx15M=30M)
11.(a) Evaluate $\int_{0}^{0.6} e^{-x^{2}} d x$ using Simpson's $1 / 3^{\text {rd }}$ rule by taking seven ordinates.
(b) By using modified Euler's method, solve $\frac{d y}{d x}=y+2 x, y(0)=2$ at the pointx $=0.1$ by taking step length $h=0.1$ (up to 4 decimal places). (C.O.No2) [Application level]
12. (a) It is known that 5% of the books bound at a certain bindery will have defective bindings. Find the probability that
i). 3 of 100 books bound by this bindery will have defective bindings.
ii). 4 to 6 books bound by this bindery will have defective bindings.
(b) (i). Is the function defined below is a density function?
$f(x)= \begin{cases}e^{-x}, & x \geq 0 \\ 0, & x<0\end{cases}$
(ii). If so, determine the probability that the variate having this density will fall in the interval $(1,2)$.
(iii). Also find the cumulative probability function $\mathrm{F}(2)$.
(C.O.No4) [Application level]

