								Roll	No												
				174	F	PRES	BIDENC BEN	CY UN Galui		RSIT	Υ										
			GAIN MOR REACH GR	E KNOWLEDGE EATER HEIGHTS	S	СНС	OL OF		INE	ERIN	IG										
					MA	KE-UI	P EXAM	INATIC	<u>)</u> N – .	<u>JAN</u>	<u>202</u>	3									
Course Code: MAT 2002											Date: 20-JAN-2023 Time: 9.30AM - 12.30PM										
Cou	se	Nam	e : Nu	ım. Meth	ods, Pr	ob. Dist	ributions ar	nd Sampli	ng Teo	hnique	es				/lark				501	111	
Program : B.Tech – (All Programs)											Weightage:50%										
Instructie (i) (ii)	Re	ad tl					and ansv ition table		•												
					Pa	art A [Memory	y Recal	l Qu	estio	ons]										
Answer a	all t	he C	Ques	tions.	Each	ques	stion ca	rries F(OUR	mar	ks.		(5	Q	x 41	/ =2	201	V)			
1. Define a	alge	braio	c equ	ation a	nd wri	te the	iterative f	formula	for Ne	ewtor	Rap	ohse	on n	net	hod						
													(C.	О.	No.1)[ŀ	۲nc	owle	dge	e lev	/el]
2. Define I	nter	pola	tion a	and wri	te the	Newto	n's Forw	ard inter	polat	ion fc	ormu	la.(0	C.O	.No	o.2)	[Kn	OW	led	ge le	eve]
3. While to	ossir	ng a	coin	3 times	s, find t	the pro	bability o	of getting	g a ta	ils atr	nost	two	o tim	nes							
													(C.	О.	No.4	I) [I	۲nc	owle	dge	e lev	/el]
4. Define I	Null	hypo	othes	is, Alte	rnative	e hypo	thesis, e	qually lik	ely e	vents	and	l ind	lepe	end	ent	eve	ente	3.			
													(C.	О.	No.5	5) [ŀ	۲nc	owle	dge	e lev	/el]
5. The pro	bab	ility ı	mass	functio	on of a	variat	ole X is g	iven bel	ow, th	nen fii	nd th	ne va	alue	e of	k a	nd	P(x	(≤ 3)	3).		
>	(0	1	2	3	4	5														
Р	(X)	k	3k	6k	5k	2k	3k					(C.O	.No	o.3)	[Kr	IOM	led	ge l	eve	I]
					De	4 D IT	hought	Drovek:		uo c4:	onc [.]	1									
Answer a	ll th	e Qı	jesti	ons. F		-	•		•		0113	1	(50	אַ <i>ג</i>	10M	= 5	OM	Ð			
6. Solve the method.					-						-		= 12	2 k	by us	sing	g G	aus		Seid	el
7 . Using Ruplaces)	inge	kutt	a met	hod, fir:	nd y(0.2	2) give	n y'= y+	- <i>e^x , y</i> (0) = 0. (out O.N		-								I

8. ABC Auto Insurance classifies drivers as good, medium, or poor risks. Drivers who apply to them for insurance fall into these three groups in the proportions 30%, 50% and 20% respectively. The probability a "good" driver will have an accident is 0.01, the probability a "medium" risk driver will have an accident is 0.03, and the probability a "poor" driver will have an accident is 0.10. The company sells an insurance policy to a driver and he has an accident. What is the probability that the driver is a medium risk driver? (C.O.No3) [Comprehensive level]

9. A certain type of storage battery lasts, on average 3.0 years with a standard deviation of 0.5 years.
Assuming that battery life is normally distributed, find the probability that a given battery will last less than 2.3 years.
(C.O.No4) [Comprehensive level]

10. Consider the following joint probability distribution table, and then find the covariance of X and Y?

			x		
	f(x,y)	0	1	2	h(y)
	0	$\frac{3}{28}$	$\frac{9}{28}$	$\frac{3}{28}$	$\frac{15}{28}$
y	1	$\frac{3}{14}$	$\frac{3}{14}$	0	$\frac{3}{7}$
	2	$\frac{1}{28}$	0	0	$\frac{1}{28}$
	g(x)	$\frac{5}{14}$	$\frac{15}{28}$	$\frac{3}{28}$	1

(C.O.No4) [Comprehensive level]

Part C [Problem Solving Questions]

Answer all the Questions. Each question carries FIFTEEN marks. (2Qx15M= 30M)

11.(a) Evaluate $\int_0^{0.6} e^{-x^2} dx$ using Simpson's 1/3rd rule by taking seven ordinates.

(b) By using modified Euler's method, solve $\frac{dy}{dx} = y + 2x$, y(0) = 2 at the pointx = 0.1 by taking step length h = 0.1(up to 4 decimal places). (C.O.No2) [Application level]

12. (a) It is known that 5% of the books bound at a certain bindery will have defective bindings. Find the probability that

i). 3 of 100 books bound by this bindery will have defective bindings.

ii). 4 to 6 books bound by this bindery will have defective bindings.

(b) (i). Is the function defined below is a density function?

$$f(x) = \begin{cases} e^{-x}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

(ii). If so, determine the probability that the variate having this density will fall in the interval (1,2).

(iii). Also find the cumulative probability function F(2).

(C.O.No4) [Application level]