BENGALURU	
GAIN MORE KNOWLEDGE REACH GREATER HEIGHTS SCHOOL OF ENGINEERING	
MAKEUP EXAMINATION – JAN 2023	
Course Code: MEC 2005 Course Name: Fundamentals of Aerospace Engineering Program & Sem: B. Tech & I Sem	Date: 23 Jan 2022 Time: 09:30 AM to 12:30 PM Max Marks: 100 Veightage: 50 %
Instructions: (i) Read all the questions carefully and answer accordingly. (ii) All questions are mandatory.	
Part A [Memory Recall Questions]	
Answer all the Questions. Each question carries TWO marks.	(5Qx 2M= 10M)
1 The angle between chord and relative wind is known as	(C.O.No.2) [Knowledge]
2 The maximum thickness of NACA 4414 when chord length is 200 mm i	s mm. (C.O.No.2) [Application]
3 When the mass entering and mass leaving a system is same, we can s conserved. State if this statement is TRUE/FALSE.	ay that the mass is (C.O.No.1) [Knowledge]
4 The cross-sectional shape obtained by the intersection of the wing and to the wing is called	d a plane perpendicular (C.O.No.3) [[Knowledge]
5 Absolute altitude is the sum of &	(C.O.No.1) [[Knowledge]

Roll No

PRESIDENCY UNIVERSITY

Ž

Part B [Thought Provoking Questions]

Answer all the Questions. Each question carries 15 marks. (4Qx15M=60M)

6. Conservation of mass says that mass can neither be created nor destroyed. If we consider a converging duct, explain this and derive continuity equation. (C.O.No.2) [Comprehension]

7. Explain the working principle of a propeller with proper diagrams.

(C.O.No.4) [Comprehension]

8. Name and explain the types of orbits with appropriate diagrams, based on :

i) Altitude

ii) Inclination

iii) Shape

9. Draw and explain airfoil terminology.

Part C [Problem Solving Questions]

Answer all the Questions.

10. Define Escape Velocity. Calculate escape velocity for earth while mass of earth is 5.97219×10^{24} kg, Universal gravitational constant is 6.67408×10^{-11} m³/kg.s² and radius of earth is 6378 km. [10M] (C.O.No.2) [Comprehension]

11. An aneroid barometer in an Airbus A-380 cursing at a geometric altitude of 14km displays the static pressure of air outside to be 1.41×10^4 Pa. Determine the error in this reading as per the standard atmosphere model. Also, determine density and temperature of air at the same geometric height. [Radius of earth = 6357km, R_{air} = 287 J/Kg.K, Density of air at sea level is 1.225 kg/m^3 , Temperature and pressure at sea level are 288.16K and 101.325 kPa]

[20M] (C.O.No.1) [Application]

(C.O.No.3) [Comprehension]

(C.O.No.2) [Comprehension]

(30M)