

Roll No						

PRESIDENCY UNIVERSITY BENGALURU

SCHOOL OF ENGINEERING

MAKE UP EXAMINATION – JAN 2023

Course Code: MEC 330

Course Name: Renewable Energy Systems (OE-II)

Program: B.Tech All Branches

Date: 27-JAN-2023

Time: 1.00 PM to 4.00 PM

Max Marks: 100

Weightage: 50 %

Instructions:

- (i) Read the all questions carefully and answer accordingly.
- (ii) Use of a Scientific calculator is permitted.

Part A [Memory Recall Questions]

nswe	r both the Questions. The questions carries THIRTY marks.	(30M)
1. 4	Answer all the questions.	(12Qx2M=24M)
i.	Solar Energy is received on the earth's surface in the form of	(CO1)[Knowledge]
ii.	The approximate distance of earth from sun is kms. (150*10 ⁶ /120*10	
		(CO1)[Knowledge]
iii.	Solar Constant is defined as the rate at which solar energy arrives at the earth's	surface. (True/False)
		(CO2)[Knowledge]
iv.	The variation in the distance between earth and sun follows a	behaviour. (Linear/
	Sinusoidal/Exponential)	(CO2)[Knowledge]
٧.	Air mass does not depend on the path length covered by the sun's rays through	igh the atmosphere.
	(True/ False)	(CO2)[Knowledge]
vi.	The Flat Plate type of collector is not a concentrating type of collector.(True/Fa	alse)
		(CO2)[Knowledge]
vii.	Concentrating types of collectors do not have the facility to track the sun. (True	/False)
		(CO2)[Knowledge]
viii.	Solar Distillation is one of the direct applications of solar energy. (True/False)	
		(CO2)[Knowledge]
ix.	Biomass conversion technologies play an important role in producing fuels. W	hich premium fuel is
	produced from the anaerobic digestion process?	(CO3)[Knowledge]
	a. Methane b. Ethanol c. Diesel d. Hydrocarbon liqui	ds
Х.	Vertical axis wind turbine is better in overall performance than horizontal	axis wind turbine.
	(True/False)	(CO3)[Knowledge]
xi.	Wind flows from pressure region to pressure region. (H	ligh, Low)
		(CO3) [Knowledge]
xii.	Wind vanes attached to the Wind turbines help to face the wind direction. (True	e/False)
		(CO3) [Knowledge]

2. Match the pair for the below conversion process and their principle output.

[3Qx2M=6M)

(CO3) [Knowledge]

Conversion process	Principle output				
Anaerobic Digestion	a. Mixture of Oils				
2. Hydrogenation	b. Charcoal				
3. Liquification	c. Methane				

Part B [Thought Provoking Questions]

Answer all the Questions. Each question carries SIX marks.

(5Qx6M=30M)

3. How biogas plants are classified? Explain them briefly.

(CO3)[Comprehension]

4. List out minimum six factors to be considered to decide the optimum size of a biogas plant.

(CO3)[Comprehension]

5. Explain the photo voltaic effect using p-n junction semiconductor. Draw a neat sketch.

(CO2)[Comprehension]

6. Explain the working of parabolic trough collector with a neat sketch. Also mention its two features.

(CO2)[Comprehension]

7. Explain in detail the generation of wind globally and locally.

(CO3)[Comprehension]

Part C [Problem Solving Questions]

Answer all the Questions. Each question carries TEN marks.

(4Qx10M=40M)

8. The following data are given for a family biogas digester suitable for the output of four cows: the retention time is 30 days, temperature 35°C, dry matter consumed per day per cow= 6 kg, biogas yield is 0.24 m³ per kg. The efficiency of the burner is 60%, methane proportion is 0.78. The heat of combustion of methane = 35 MJ/m³. Calculate: i) the volume of the biogas digester in m³/day; ii) the power available from the digester in MJ/day. Take the density of cow dung = 50 kg/m³.

(CO3)[Application]

- 9. Wind at 1 standard atmospheric pressure and 15°C has an inlet velocity of 15 m/s and exit velocity of 7 m/s. Given: Turbine diameter = 120 m, and turbine operating speed = 40 RPM. The propeller-type wind turbine is considered. Calculate: a) the total power density in the wind stream in W/m², b) the maximum obtainable power density in W/m², c) Axial Thrust in N.
 - $(1 \text{ atmospheric pressure} = 1.01325 * 10^5 \text{ Pa})$

(CO3)[Application]

- 10. Determine the local solar time (in the form of hours, minutes, and seconds) and declination at a location latitude 23° 15' N, longitude 77° 30' E at 12.30 IST on July 1. The equation of a time correction is given from the standard table = (-ve) 3' 01". (CO2)[Application]
- 11. Calculate the angle made by beam radiation with the normal to a flat collector on February 14, at 10.00 AM., solar time for a location at 28° 35' N. The collector is tilted at an angle of 30°, with the horizontal and is pointing due south. Take local solar noon = 12.00 Noon. (CO2)[Application]